Computation and Language 174
☆ RedSage: A Cybersecurity Generalist LLM ICLR 2026
Naufal Suryanto, Muzammal Naseer, Pengfei Li, Syed Talal Wasim, Jinhui Yi, Juergen Gall, Paolo Ceravolo, Ernesto Damiani
Cybersecurity operations demand assistant LLMs that support diverse workflows without exposing sensitive data. Existing solutions either rely on proprietary APIs with privacy risks or on open models lacking domain adaptation. To bridge this gap, we curate 11.8B tokens of cybersecurity-focused continual pretraining data via large-scale web filtering and manual collection of high-quality resources, spanning 28.6K documents across frameworks, offensive techniques, and security tools. Building on this, we design an agentic augmentation pipeline that simulates expert workflows to generate 266K multi-turn cybersecurity samples for supervised fine-tuning. Combined with general open-source LLM data, these resources enable the training of RedSage, an open-source, locally deployable cybersecurity assistant with domain-aware pretraining and post-training. To rigorously evaluate the models, we introduce RedSage-Bench, a benchmark with 30K multiple-choice and 240 open-ended Q&A items covering cybersecurity knowledge, skills, and tool expertise. RedSage is further evaluated on established cybersecurity benchmarks (e.g., CTI-Bench, CyberMetric, SECURE) and general LLM benchmarks to assess broader generalization. At the 8B scale, RedSage achieves consistently better results, surpassing the baseline models by up to +5.59 points on cybersecurity benchmarks and +5.05 points on Open LLM Leaderboard tasks. These findings demonstrate that domain-aware agentic augmentation and pre/post-training can not only enhance cybersecurity-specific expertise but also help to improve general reasoning and instruction-following. All models, datasets, and code are publicly available.
comment: Accepted on ICLR 2026; Project page: https://risys-lab.github.io/RedSage/
☆ Discovering Hidden Gems in Model Repositories
Public repositories host millions of fine-tuned models, yet community usage remains disproportionately concentrated on a small number of foundation checkpoints. We investigate whether this concentration reflects efficient market selection or if superior models are systematically overlooked. Through an extensive evaluation of over 2,000 models, we show the prevalence of "hidden gems", unpopular fine-tunes that significantly outperform their popular counterparts. Notably, within the Llama-3.1-8B family, we find rarely downloaded checkpoints that improve math performance from 83.2% to 96.0% without increasing inference costs. However, discovering these models through exhaustive evaluation of every uploaded model is computationally infeasible. We therefore formulate model discovery as a Multi-Armed Bandit problem and accelerate the Sequential Halving search algorithm by using shared query sets and aggressive elimination schedules. Our method retrieves top models with as few as 50 queries per candidate, accelerating discovery by over 50x.
★ Hybrid Linear Attention Done Right: Efficient Distillation and Effective Architectures for Extremely Long Contexts
Yingfa Chen, Zhen Leng Thai, Zihan Zhou, Zhu Zhang, Xingyu Shen, Shuo Wang, Chaojun Xiao, Xu Han, Zhiyuan Liu
Hybrid Transformer architectures, which combine softmax attention blocks and recurrent neural networks (RNNs), have shown a desirable performance-throughput tradeoff for long-context modeling, but their adoption and studies are hindered by the prohibitive cost of large-scale pre-training from scratch. Some recent studies have shown that pre-trained softmax attention blocks can be converted into RNN blocks through parameter transfer and knowledge distillation. However, these transfer methods require substantial amounts of training data (more than 10B tokens), and the resulting hybrid models also exhibit poor long-context performance, which is the scenario where hybrid models enjoy significant inference speedups over Transformer-based models. In this paper, we present HALO (Hybrid Attention via Layer Optimization), a pipeline for distilling Transformer models into RNN-attention hybrid models. We then present HypeNet, a hybrid architecture with superior length generalization enabled by a novel position encoding scheme (named HyPE) and various architectural modifications. We convert the Qwen3 series into HypeNet using HALO, achieving performance comparable to the original Transformer models while enjoying superior long-context performance and efficiency. The conversion requires just 2.3B tokens, less than 0.01% of their pre-training data
comment: 20 pages, 8 figures
☆ UEval: A Benchmark for Unified Multimodal Generation
We introduce UEval, a benchmark to evaluate unified models, i.e., models capable of generating both images and text. UEval comprises 1,000 expert-curated questions that require both images and text in the model output, sourced from 8 real-world tasks. Our curated questions cover a wide range of reasoning types, from step-by-step guides to textbook explanations. Evaluating open-ended multimodal generation is non-trivial, as simple LLM-as-a-judge methods can miss the subtleties. Different from previous works that rely on multimodal Large Language Models (MLLMs) to rate image quality or text accuracy, we design a rubric-based scoring system in UEval. For each question, reference images and text answers are provided to a MLLM to generate an initial rubric, consisting of multiple evaluation criteria, and human experts then refine and validate these rubrics. In total, UEval contains 10,417 validated rubric criteria, enabling scalable and fine-grained automatic scoring. UEval is challenging for current unified models: GPT-5-Thinking scores only 66.4 out of 100, while the best open-source model reaches merely 49.1. We observe that reasoning models often outperform non-reasoning ones, and transferring reasoning traces from a reasoning model to a non-reasoning model significantly narrows the gap. This suggests that reasoning may be important for tasks requiring complex multimodal understanding and generation.
☆ Exploring Reasoning Reward Model for Agents
Kaixuan Fan, Kaituo Feng, Manyuan Zhang, Tianshuo Peng, Zhixun Li, Yilei Jiang, Shuang Chen, Peng Pei, Xunliang Cai, Xiangyu Yue
Agentic Reinforcement Learning (Agentic RL) has achieved notable success in enabling agents to perform complex reasoning and tool use. However, most methods still relies on sparse outcome-based reward for training. Such feedback fails to differentiate intermediate reasoning quality, leading to suboptimal training results. In this paper, we introduce Agent Reasoning Reward Model (Agent-RRM), a multi-faceted reward model that produces structured feedback for agentic trajectories, including (1) an explicit reasoning trace , (2) a focused critique that provides refinement guidance by highlighting reasoning flaws, and (3) an overall score that evaluates process performance. Leveraging these signals, we systematically investigate three integration strategies: Reagent-C (text-augmented refinement), Reagent-R (reward-augmented guidance), and Reagent-U (unified feedback integration). Extensive evaluations across 12 diverse benchmarks demonstrate that Reagent-U yields substantial performance leaps, achieving 43.7% on GAIA and 46.2% on WebWalkerQA, validating the effectiveness of our reasoning reward model and training schemes. Code, models, and datasets are all released to facilitate future research.
comment: Project page: https://github.com/kxfan2002/Reagent
☆ DynaWeb: Model-Based Reinforcement Learning of Web Agents
Hang Ding, Peidong Liu, Junqiao Wang, Ziwei Ji, Meng Cao, Rongzhao Zhang, Lynn Ai, Eric Yang, Tianyu Shi, Lei Yu
The development of autonomous web agents, powered by Large Language Models (LLMs) and reinforcement learning (RL), represents a significant step towards general-purpose AI assistants. However, training these agents is severely hampered by the challenges of interacting with the live internet, which is inefficient, costly, and fraught with risks. Model-based reinforcement learning (MBRL) offers a promising solution by learning a world model of the environment to enable simulated interaction. This paper introduces DynaWeb, a novel MBRL framework that trains web agents through interacting with a web world model trained to predict naturalistic web page representations given agent actions. This model serves as a synthetic web environment where an agent policy can dream by generating vast quantities of rollout action trajectories for efficient online reinforcement learning. Beyond free policy rollouts, DynaWeb incorporates real expert trajectories from training data, which are randomly interleaved with on-policy rollouts during training to improve stability and sample efficiency. Experiments conducted on the challenging WebArena and WebVoyager benchmarks demonstrate that DynaWeb consistently and significantly improves the performance of state-of-the-art open-source web agent models. Our findings establish the viability of training web agents through imagination, offering a scalable and efficient way to scale up online agentic RL.
☆ FineInstructions: Scaling Synthetic Instructions to Pre-Training Scale
Due to limited supervised training data, large language models (LLMs) are typically pre-trained via a self-supervised "predict the next word" objective on a vast amount of unstructured text data. To make the resulting model useful to users, it is further trained on a far smaller amount of "instruction-tuning" data comprised of supervised training examples of instructions and responses. To overcome the limited amount of supervised data, we propose a procedure that can transform the knowledge in internet-scale pre-training documents into billions of synthetic instruction and answer training pairs. The resulting dataset, called FineInstructions, uses ~18M instruction templates created from real user-written queries and prompts. These instruction templates are matched to and instantiated with human-written source documents from unstructured pre-training corpora. With "supervised" synthetic training data generated at this scale, an LLM can be pre-trained from scratch solely with the instruction-tuning objective, which is far more in-distribution with the expected downstream usage of LLMs (responding to user prompts). We conduct controlled token-for-token training experiments and find pre-training on FineInstructions outperforms standard pre-training and other proposed synthetic pre-training techniques on standard benchmarks measuring free-form response quality. Our resources can be found at https://huggingface.co/fineinstructions .
☆ Reasoning While Asking: Transforming Reasoning Large Language Models from Passive Solvers to Proactive Inquirers
Reasoning-oriented Large Language Models (LLMs) have achieved remarkable progress with Chain-of-Thought (CoT) prompting, yet they remain fundamentally limited by a \emph{blind self-thinking} paradigm: performing extensive internal reasoning even when critical information is missing or ambiguous. We propose Proactive Interactive Reasoning (PIR), a new reasoning paradigm that transforms LLMs from passive solvers into proactive inquirers that interleave reasoning with clarification. Unlike existing search- or tool-based frameworks that primarily address knowledge uncertainty by querying external environments, PIR targets premise- and intent-level uncertainty through direct interaction with the user. PIR is implemented via two core components: (1) an uncertainty-aware supervised fine-tuning procedure that equips models with interactive reasoning capability, and (2) a user-simulator-based policy optimization framework driven by a composite reward that aligns model behavior with user intent. Extensive experiments on mathematical reasoning, code generation, and document editing demonstrate that PIR consistently outperforms strong baselines, achieving up to 32.70\% higher accuracy, 22.90\% higher pass rate, and 41.36 BLEU improvement, while reducing nearly half of the reasoning computation and unnecessary interaction turns. Further reliability evaluations on factual knowledge, question answering, and missing-premise scenarios confirm the strong generalization and robustness of PIR. Model and code are publicly available at: \href{https://github.com/SUAT-AIRI/Proactive-Interactive-R1}
comment: The manuscript is under review
☆ A Federated and Parameter-Efficient Framework for Large Language Model Training in Medicine
Anran Li, Yuanyuan Chen, Wenjun Long, Yu Yin, Yan Hu, Hyunjae Kim, Weipeng Zhou, Yujia Zhou, Hongyi Peng, Yang Ren, Xuguang Ai, Zhenyue Qin, Ming Hu, Xiaoxiao Li, Han Yu, Yih-Chung Tham, Lucila Ohno-Machado, Hua Xu, Qingyu Chen
Large language models (LLMs) have demonstrated strong performance on medical benchmarks, including question answering and diagnosis. To enable their use in clinical settings, LLMs are typically further adapted through continued pretraining or post-training using clinical data. However, most medical LLMs are trained on data from a single institution, which faces limitations in generalizability and safety in heterogeneous systems. Federated learning (FL) is a promising solution for enabling collaborative model development across healthcare institutions. Yet applying FL to LLMs in medicine remains fundamentally limited. First, conventional FL requires transmitting the full model during each communication round, which becomes impractical for multi-billion-parameter LLMs given the limited computational resources. Second, many FL algorithms implicitly assume data homogeneity, whereas real-world clinical data are highly heterogeneous across patients, diseases, and institutional practices. We introduce the model-agnostic and parameter-efficient federated learning framework for adapting LLMs to medical applications. Fed-MedLoRA transmits only low-rank adapter parameters, reducing communication and computation overhead, while Fed-MedLoRA+ further incorporates adaptive, data-aware aggregation to improve convergence under cross-site heterogeneity. We apply the framework to clinical information extraction (IE), which transforms patient narratives into structured medical entities and relations. Accuracy was assessed across five patient cohorts through comparisons with BERT models, and LLaMA-3 and DeepSeek-R1, GPT-4o models. Evaluation settings included (1) in-domain training and testing, (2) external validation on independent cohorts, and (3) a low-resource new-site adaptation scenario using real-world clinical notes from the Yale New Haven Health System.
comment: 38 pages, 9 tables, 3 figures
☆ ECO: Quantized Training without Full-Precision Master Weights
Quantization has significantly improved the compute and memory efficiency of Large Language Model (LLM) training. However, existing approaches still rely on accumulating their updates in high-precision: concretely, gradient updates must be applied to a high-precision weight buffer, known as $\textit{master weights}$. This buffer introduces substantial memory overhead, particularly for Sparse Mixture of Experts (SMoE) models, where model parameters and optimizer states dominate memory usage. To address this, we introduce the Error-Compensating Optimizer (ECO), which eliminates master weights by applying updates directly to quantized parameters. ECO quantizes weights after each step and carefully injects the resulting quantization error into the optimizer momentum, forming an error-feedback loop with no additional memory. We prove that, under standard assumptions and a decaying learning rate, ECO converges to a constant-radius neighborhood of the optimum, while naive master-weight removal can incur an error that is inversely proportional to the learning rate. We show empirical results for pretraining small Transformers (30-800M), a Gemma-3 1B model, and a 2.1B parameter Sparse MoE model with FP8 quantization, and fine-tuning DeepSeek-MoE-16B in INT4 precision. Throughout, ECO matches baselines with master weights up to near-lossless accuracy, significantly shifting the static memory vs validation loss Pareto frontier.
☆ GeoNorm: Unify Pre-Norm and Post-Norm with Geodesic Optimization
Chuanyang Zheng, Jiankai Sun, Yihang Gao, Chi Wang, Yuehao Wang, Jing Xiong, Liliang Ren, Bo Peng, Qingmei Wang, Xiaoran Shang, Mac Schwager, Anderson Schneider, Yuriy Nevmyvaka, Xiaodong Liu
The placement of normalization layers, specifically Pre-Norm and Post-Norm, remains an open question in Transformer architecture design. In this work, we rethink these approaches through the lens of manifold optimization, interpreting the outputs of the Feed-Forward Network (FFN) and attention layers as update directions in optimization. Building on this perspective, we introduce GeoNorm, a novel method that replaces standard normalization with geodesic updates on the manifold. Furthermore, analogous to learning rate schedules, we propose a layer-wise update decay for the FFN and attention components. Comprehensive experiments demonstrate that GeoNorm consistently outperforms existing normalization methods in Transformer models. Crucially, GeoNorm can be seamlessly integrated into standard Transformer architectures, achieving performance improvements with negligible additional computational cost.
comment: Tech Report
☆ VTC-R1: Vision-Text Compression for Efficient Long-Context Reasoning
Yibo Wang, Yongcheng Jing, Shunyu Liu, Hao Guan, Rong-cheng Tu, Chengyu Wang, Jun Huang, Dacheng Tao
Long-context reasoning has significantly empowered large language models (LLMs) to tackle complex tasks, yet it introduces severe efficiency bottlenecks due to the computational complexity. Existing efficient approaches often rely on complex additional training or external models for compression, which limits scalability and discards critical fine-grained information. In this paper, we propose VTC-R1, a new efficient reasoning paradigm that integrates vision-text compression into the reasoning process. Instead of processing lengthy textual traces, VTC-R1 renders intermediate reasoning segments into compact images, which are iteratively fed back into vision-language models as "optical memory." We construct a training dataset based on OpenR1-Math-220K achieving 3.4x token compression and fine-tune representative VLMs-Glyph and Qwen3-VL. Extensive experiments on benchmarks such as MATH500, AIME25, AMC23 and GPQA-D demonstrate that VTC-R1 consistently outperforms standard long-context reasoning. Furthermore, our approach significantly improves inference efficiency, achieving 2.7x speedup in end-to-end latency, highlighting its potential as a scalable solution for reasoning-intensive applications. Our code is available at https://github.com/w-yibo/VTC-R1.
comment: Code: https://github.com/w-yibo/VTC-R1
☆ $G^2$-Reader: Dual Evolving Graphs for Multimodal Document QA
Yaxin Du, Junru Song, Yifan Zhou, Cheng Wang, Jiahao Gu, Zimeng Chen, Menglan Chen, Wen Yao, Yang Yang, Ying Wen, Siheng Chen
Retrieval-augmented generation is a practical paradigm for question answering over long documents, but it remains brittle for multimodal reading where text, tables, and figures are interleaved across many pages. First, flat chunking breaks document-native structure and cross-modal alignment, yielding semantic fragments that are hard to interpret in isolation. Second, even iterative retrieval can fail in long contexts by looping on partial evidence or drifting into irrelevant sections as noise accumulates, since each step is guided only by the current snippet without a persistent global search state. We introduce $G^2$-Reader, a dual-graph system, to address both issues. It evolves a Content Graph to preserve document-native structure and cross-modal semantics, and maintains a Planning Graph, an agentic directed acyclic graph of sub-questions, to track intermediate findings and guide stepwise navigation for evidence completion. On VisDoMBench across five multimodal domains, $G^2$-Reader with Qwen3-VL-32B-Instruct reaches 66.21\% average accuracy, outperforming strong baselines and a standalone GPT-5 (53.08\%).
☆ MasalBench: A Benchmark for Contextual and Cross-Cultural Understanding of Persian Proverbs in LLMs
In recent years, multilingual Large Language Models (LLMs) have become an inseparable part of daily life, making it crucial for them to master the rules of conversational language in order to communicate effectively with users. While previous work has evaluated LLMs' understanding of figurative language in high-resource languages, their performance in low-resource languages remains underexplored. In this paper, we introduce MasalBench, a comprehensive benchmark for assessing LLMs' contextual and cross-cultural understanding of Persian proverbs, which are a key component of conversation in this low-resource language. We evaluate eight state-of-the-art LLMs on MasalBench and find that they perform well in identifying Persian proverbs in context, achieving accuracies above 0.90. However, their performance drops considerably when tasked with identifying equivalent English proverbs, with the best model achieving 0.79 accuracy. Our findings highlight the limitations of current LLMs in cultural knowledge and analogical reasoning, and they provide a framework for assessing cross-cultural understanding in other low-resource languages. MasalBench is available at https://github.com/kalhorghazal/MasalBench.
☆ On the Paradoxical Interference between Instruction-Following and Task Solving
Instruction following aims to align Large Language Models (LLMs) with human intent by specifying explicit constraints on how tasks should be performed. However, we reveal a counterintuitive phenomenon: instruction following can paradoxically interfere with LLMs' task-solving capability. We propose a metric, SUSTAINSCORE, to quantify the interference of instruction following with task solving. It measures task performance drop after inserting into the instruction a self-evident constraint, which is naturally met by the original successful model output and extracted from it. Experiments on current LLMs in mathematics, multi-hop QA, and code generation show that adding the self-evident constraints leads to substantial performance drops, even for advanced models such as Claude-Sonnet-4.5. We validate the generality of the interference across constraint types and scales. Furthermore, we identify common failure patterns, and by investigating the mechanisms of interference, we observe that failed cases allocate significantly more attention to constraints compared to successful ones. Finally, we use SUSTAINSCORE to conduct an initial investigation into how distinct post-training paradigms affect the interference, presenting empirical observations on current alignment strategies. We will release our code and data to facilitate further research
☆ A Separable Architecture for Continuous Token Representation in Language Models
Transformer scaling law analyses typically treat parameters as interchangeable; an abstraction that accurately predicts loss-compute relationships. Yet, in sub-billion-parameter small language models (SLMs), embedding matrices dominate the parameter budget. This work argues that this allocation is as suboptimal as it is counterintuitive. Leviathan is an architecture with a continuous embedding generator to replace the discrete lookup tables of canonical models. Evaluating on the Pile dataset under isoparametric settings, Leviathan consistently outperforms a standard, LLaMA-style architecture. By means of an empirical power-law fit, Leviathan exhibits a markedly superior effective parameter capacity. Across the regime studied, Leviathan behaves as a dense model with $1.47$ to $2.11 \times$ more parameters.
☆ Thinking Out of Order: When Output Order Stops Reflecting Reasoning Order in Diffusion Language Models
Autoregressive (AR) language models enforce a fixed left-to-right generation order, creating a fundamental limitation when the required output structure conflicts with natural reasoning (e.g., producing answers before explanations due to presentation or schema constraints). In such cases, AR models must commit to answers before generating intermediate reasoning, and this rigid constraint forces premature commitment. Masked diffusion language models (MDLMs), which iteratively refine all tokens in parallel, offer a way to decouple computation order from output structure. We validate this capability on GSM8K, Math500, and ReasonOrderQA, a benchmark we introduce with controlled difficulty and order-level evaluation. When prompts request answers before reasoning, AR models exhibit large accuracy gaps compared to standard chain-of-thought ordering (up to 67% relative drop), while MDLMs remain stable ($\leq$14% relative drop), a property we term "order robustness". Using ReasonOrderQA, we present evidence that MDLMs achieve order robustness by stabilizing simpler tokens (e.g., reasoning steps) earlier in the diffusion process than complex ones (e.g., final answers), enabling reasoning tokens to stabilize before answer commitment. Finally, we identify failure conditions where this advantage weakens, outlining the limits required for order robustness.
comment: 18 pages, 13 figures, 5 tables
☆ Causal Autoregressive Diffusion Language Model
Junhao Ruan, Bei Li, Yongjing Yin, Pengcheng Huang, Xin Chen, Jingang Wang, Xunliang Cai, Tong Xiao, JingBo Zhu
In this work, we propose Causal Autoregressive Diffusion (CARD), a novel framework that unifies the training efficiency of ARMs with the high-throughput inference of diffusion models. CARD reformulates the diffusion process within a strictly causal attention mask, enabling dense, per-token supervision in a single forward pass. To address the optimization instability of causal diffusion, we introduce a soft-tailed masking schema to preserve local context and a context-aware reweighting mechanism derived from signal-to-noise principles. This design enables dynamic parallel decoding, where the model leverages KV-caching to adaptively generate variable-length token sequences based on confidence. Empirically, CARD outperforms existing discrete diffusion baselines while reducing training latency by 3 $\times$ compared to block diffusion methods. Our results demonstrate that CARD achieves ARM-level data efficiency while unlocking the latency benefits of parallel generation, establishing a robust paradigm for next-generation efficient LLMs.
☆ When "Better" Prompts Hurt: Evaluation-Driven Iteration for LLM Applications
Evaluating Large Language Model (LLM) applications differs from traditional software testing because outputs are stochastic, high-dimensional, and sensitive to prompt and model changes. We present an evaluation-driven workflow - Define, Test, Diagnose, Fix - that turns these challenges into a repeatable engineering loop.
We introduce the Minimum Viable Evaluation Suite (MVES), a tiered set of recommended evaluation components for (i) general LLM applications, (ii) retrieval-augmented generation (RAG), and (iii) agentic tool-use workflows. We also synthesize common evaluation methods (automated checks, human rubrics, and LLM-as-judge) and discuss known judge failure modes.
In reproducible local experiments (Ollama; Llama 3 8B Instruct and Qwen 2.5 7B Instruct), we observe that a generic "improved" prompt template can trade off behaviors: on our small structured suites, extraction pass rate decreased from 100% to 90% and RAG compliance from 93.3% to 80% for Llama 3 when replacing task-specific prompts with generic rules, while instruction-following improved. These findings motivate evaluation-driven prompt iteration and careful claim calibration rather than universal prompt recipes.
All test suites, harnesses, and results are included for reproducibility.
☆ Mechanistic Data Attribution: Tracing the Training Origins of Interpretable LLM Units
While Mechanistic Interpretability has identified interpretable circuits in LLMs, their causal origins in training data remain elusive. We introduce Mechanistic Data Attribution (MDA), a scalable framework that employs Influence Functions to trace interpretable units back to specific training samples. Through extensive experiments on the Pythia family, we causally validate that targeted intervention--removing or augmenting a small fraction of high-influence samples--significantly modulates the emergence of interpretable heads, whereas random interventions show no effect. Our analysis reveals that repetitive structural data (e.g., LaTeX, XML) acts as a mechanistic catalyst. Furthermore, we observe that interventions targeting induction head formation induce a concurrent change in the model's in-context learning (ICL) capability. This provides direct causal evidence for the long-standing hypothesis regarding the functional link between induction heads and ICL. Finally, we propose a mechanistic data augmentation pipeline that consistently accelerates circuit convergence across model scales, providing a principled methodology for steering the developmental trajectories of LLMs.
☆ Token-Guard: Towards Token-Level Hallucination Control via Self-Checking Decoding ICLR 2026
Large Language Models (LLMs) often hallucinate, generating content inconsistent with the input. Retrieval-Augmented Generation (RAG) and Reinforcement Learning with Human Feedback (RLHF) can mitigate hallucinations but require resource-intensive retrieval or large-scale fine-tuning. Decoding-based methods are lighter yet lack explicit hallucination control. To address this, we present Token-Guard, a token-level hallucination control method based on self-checking decoding. Token-Guard performs internal verification at each reasoning step to detect hallucinated tokens before they propagate. Candidate fragments are further evaluated in a latent space with explicit hallucination risk scoring, while iterative pruning and regeneration dynamically correct detected errors. Experiments on HALU datasets show Token-Guard substantially reduces hallucinations and improves generation accuracy, offering a scalable, modular solution for reliable LLM outputs. Our code is publicly available.
comment: 26 pages and 11 figures,this work has been accepted for presentation at ICLR 2026
☆ OVD: On-policy Verbal Distillation
Jing Xiong, Hui Shen, Shansan Gong, Yuxin Cheng, Jianghan Shen, Chaofan Tao, Haochen Tan, Haoli Bai, Lifeng Shang, Ngai Wong
Knowledge distillation offers a promising path to transfer reasoning capabilities from large teacher models to efficient student models; however, existing token-level on-policy distillation methods require token-level alignment between the student and teacher models, which restricts the student model's exploration ability, prevent effective use of interactive environment feedback, and suffer from severe memory bottlenecks in reinforcement learning. We introduce On-policy Verbal Distillation (OVD), a memory-efficient framework that replaces token-level probability matching with trajectory matching using discrete verbal scores (0--9) from teacher models. OVD dramatically reduces memory consumption while enabling on-policy distillation from teacher models with verbal feedback, and avoids token-level alignment, allowing the student model to freely explore the output space. Extensive experiments on Web question answering and mathematical reasoning tasks show that OVD substantially outperforms existing methods, delivering up to +12.9% absolute improvement in average EM on Web Q&A tasks and a up to +25.7% gain on math benchmarks (when trained with only one random samples), while also exhibiting superior training efficiency. Our project page is available at https://OVD.github.io
comment: Technical Report
☆ Industrialized Deception: The Collateral Effects of LLM-Generated Misinformation on Digital Ecosystems
Generative AI and misinformation research has evolved since our 2024 survey. This paper presents an updated perspective, transitioning from literature review to practical countermeasures. We report on changes in the threat landscape, including improved AI-generated content through Large Language Models (LLMs) and multimodal systems. Central to this work are our practical contributions: JudgeGPT, a platform for evaluating human perception of AI-generated news, and RogueGPT, a controlled stimulus generation engine for research. Together, these tools form an experimental pipeline for studying how humans perceive and detect AI-generated misinformation. Our findings show that detection capabilities have improved, but the competition between generation and detection continues. We discuss mitigation strategies including LLM-based detection, inoculation approaches, and the dual-use nature of generative AI. This work contributes to research addressing the adverse impacts of AI on information quality.
comment: Accepted at ACM TheWebConf '26 Companion
☆ From Generative Modeling to Clinical Classification: A GPT-Based Architecture for EHR Notes
The increasing availability of unstructured clinical narratives in electronic health records (EHRs) has created new opportunities for automated disease characterization, cohort identification, and clinical decision support. However, modeling long, domain-specific clinical text remains challenging due to limited labeled data, severe class imbalance, and the high computational cost of adapting large pretrained language models.
This study presents a GPT-based architecture for clinical text classification that adapts a pretrained decoder-only Transformer using a selective fine-tuning strategy. Rather than updating all model parameters, the majority of the GPT-2 backbone is frozen, and training is restricted to the final Transformer block, the final layer normalization, and a lightweight classification head. This approach substantially reduces the number of trainable parameters while preserving the representational capacity required to model complex clinical language.
The proposed method is evaluated on radiology reports from the MIMIC-IV-Note dataset using uncertainty-aware CheXpert-style labels derived directly from report text. Experiments cover multiple problem formulations, including multi-label classification of radiographic findings, binary per-label classification under different uncertainty assumptions, and aggregate disease outcome prediction. Across varying dataset sizes, the model exhibits stable convergence behavior and strong classification performance, particularly in settings dominated by non-mention and negated findings.
Overall, the results indicate that selective fine-tuning of pretrained generative language models provides an efficient and effective pathway for clinical text classification, enabling scalable adaptation to real-world EHR data while significantly reducing computational complexity.
comment: This submission is a full-length research manuscript consisting of 37 pages and 15 figures. The paper presents a GPT-based architecture with selective fine-tuning for clinical text classification, including detailed architectural diagrams, learning curves, and evaluation figures such as ROC curves and confusion matrices
☆ SONIC: Segmented Optimized Nexus for Information Compression in Key-Value Caching
The linear growth of Key-Value (KV) cache remains a bottleneck for multi-turn LLM deployment. Existing KV cache compression methods often fail to account for the structural properties of multi-turn dialogues, relying on heuristic eviction that risks losing critical context. We propose \textbf{SONIC}, a learning-based framework that compresses historical segments into compact and semantically rich \textbf{Nexus} tokens. By integrating dynamic budget training, SONIC allows flexible adaptation to varying memory constraints without retraining. Experiments show that at compression ratios of 80\% and 50\%, SONIC consistently outperforms baselines such as H2O and StreamingLLM on four diverse multi-turn benchmarks. Specifically, on the widely used MTBench101 benchmark, SONIC achieves an average score improvement of 35.55\% over state-of-the-art baselines, validating its effectiveness in sustaining coherent multi-turn dialogues. Furthermore, SONIC enhances deployment efficiency, accelerating the overall inference process by 50.1\% compared to full-context generation.
☆ Self-Compression of Chain-of-Thought via Multi-Agent Reinforcement Learning
Yiqun Chen, Jinyuan Feng, Wei Yang, Meizhi Zhong, Zhengliang Shi, Rui Li, Xiaochi Wei, Yan Gao, Yi Wu, Yao Hu, Zhiqiang Pu, Jiaxin Mao
The inference overhead induced by redundant reasoning undermines the interactive experience and severely bottlenecks the deployment of Large Reasoning Models. Existing reinforcement learning (RL)-based solutions tackle this problem by coupling a length penalty with outcome-based rewards. This simplistic reward weighting struggles to reconcile brevity with accuracy, as enforcing brevity may compromise critical reasoning logic. In this work, we address this limitation by proposing a multi-agent RL framework that selectively penalizes redundant chunks, while preserving essential reasoning logic. Our framework, Self-Compression via MARL (SCMA), instantiates redundancy detection and evaluation through two specialized agents: \textbf{a Segmentation Agent} for decomposing the reasoning process into logical chunks, and \textbf{a Scoring Agent} for quantifying the significance of each chunk. The Segmentation and Scoring agents collaboratively define an importance-weighted length penalty during training, incentivizing \textbf{a Reasoning Agent} to prioritize essential logic without introducing inference overhead during deployment. Empirical evaluations across model scales demonstrate that SCMA reduces response length by 11.1\% to 39.0\% while boosting accuracy by 4.33\% to 10.02\%. Furthermore, ablation studies and qualitative analysis validate that the synergistic optimization within the MARL framework fosters emergent behaviors, yielding more powerful LRMs compared to vanilla RL paradigms.
☆ JADE: Bridging the Strategic-Operational Gap in Dynamic Agentic RAG
Yiqun Chen, Erhan Zhang, Tianyi Hu, Shijie Wang, Zixuan Yang, Meizhi Zhong, Xiaochi Wei, Yan Gao, Yi Wu, Yao Hu, Jiaxin Mao
The evolution of Retrieval-Augmented Generation (RAG) has shifted from static retrieval pipelines to dynamic, agentic workflows where a central planner orchestrates multi-turn reasoning. However, existing paradigms face a critical dichotomy: they either optimize modules jointly within rigid, fixed-graph architectures, or empower dynamic planning while treating executors as frozen, black-box tools. We identify that this \textit{decoupled optimization} creates a ``strategic-operational mismatch,'' where sophisticated planning strategies fail to materialize due to unadapted local executors, often leading to negative performance gains despite increased system complexity. In this paper, we propose \textbf{JADE} (\textbf{J}oint \textbf{A}gentic \textbf{D}ynamic \textbf{E}xecution), a unified framework for the joint optimization of planning and execution within dynamic, multi-turn workflows. By modeling the system as a cooperative multi-agent team unified under a single shared backbone, JADE enables end-to-end learning driven by outcome-based rewards. This approach facilitates \textit{co-adaptation}: the planner learns to operate within the capability boundaries of the executors, while the executors evolve to align with high-level strategic intent. Empirical results demonstrate that JADE transforms disjoint modules into a synergistic system, yielding remarkable performance improvements via joint optimization and enabling a flexible balance between efficiency and effectiveness through dynamic workflow orchestration.
☆ ProRAG: Process-Supervised Reinforcement Learning for Retrieval-Augmented Generation
Reinforcement learning (RL) has become a promising paradigm for optimizing Retrieval-Augmented Generation (RAG) in complex reasoning tasks. However, traditional outcome-based RL approaches often suffer from reward sparsity and inefficient credit assignment, as coarse-grained scalar rewards fail to identify specific erroneous steps within long-horizon trajectories. This ambiguity frequently leads to "process hallucinations", where models reach correct answers through flawed logic or redundant retrieval steps. Although recent process-aware approaches attempt to mitigate this via static preference learning or heuristic reward shaping, they often lack the on-policy exploration capabilities required to decouple step-level credit from global outcomes. To address these challenges, we propose ProRAG, a process-supervised reinforcement learning framework designed to integrate learned step-level supervision into the online optimization loop. Our framework consists of four stages: (1) Supervised Policy Warmup to initialize the model with a structured reasoning format; (2) construction of an MCTS-based Process Reward Model (PRM) to quantify intermediate reasoning quality; (3) PRM-Guided Reasoning Refinement to align the policy with fine-grained process preferences; and (4) Process-Supervised Reinforcement Learning with a dual-granularity advantage mechanism. By aggregating step-level process rewards with global outcome signals, ProRAG provides precise feedback for every action. Extensive experiments on five multi-hop reasoning benchmarks demonstrate that ProRAG achieves superior overall performance compared to strong outcome-based and process-aware RL baselines, particularly on complex long-horizon tasks, validating the effectiveness of fine-grained process supervision. The code and model are available at https://github.com/lilinwz/ProRAG.
comment: 11 pages, 6 figures
☆ From Meta-Thought to Execution: Cognitively Aligned Post-Training for Generalizable and Reliable LLM Reasoning
Current LLM post-training methods optimize complete reasoning trajectories through Supervised Fine-Tuning (SFT) followed by outcome-based Reinforcement Learning (RL). While effective, a closer examination reveals a fundamental gap: this approach does not align with how humans actually solve problems. Human cognition naturally decomposes problem-solving into two distinct stages: first acquiring abstract strategies (i.e., meta-knowledge) that generalize across problems, then adapting them to specific instances. In contrast, by treating complete trajectories as basic units, current methods are inherently problem-centric, entangling abstract strategies with problem-specific execution. To address this misalignment, we propose a cognitively-inspired framework that explicitly mirrors the two-stage human cognitive process. Specifically, Chain-of-Meta-Thought (CoMT) focuses supervised learning on abstract reasoning patterns without specific executions, enabling acquisition of generalizable strategies. Confidence-Calibrated Reinforcement Learning (CCRL) then optimizes task adaptation via confidence-aware rewards on intermediate steps, preventing overconfident errors from cascading and improving execution reliability. Experiments across four models and eight benchmarks show 2.19\% and 4.63\% improvements in-distribution and out-of-distribution respectively over standard methods, while reducing training time by 65-70% and token consumption by 50%, demonstrating that aligning post-training with human cognitive principles yields not only superior generalization but also enhanced training efficiency.
☆ Learn-to-Distance: Distance Learning for Detecting LLM-Generated Text ICLR2026
Modern large language models (LLMs) such as GPT, Claude, and Gemini have transformed the way we learn, work, and communicate. Yet, their ability to produce highly human-like text raises serious concerns about misinformation and academic integrity, making it an urgent need for reliable algorithms to detect LLM-generated content. In this paper, we start by presenting a geometric approach to demystify rewrite-based detection algorithms, revealing their underlying rationale and demonstrating their generalization ability. Building on this insight, we introduce a novel rewrite-based detection algorithm that adaptively learns the distance between the original and rewritten text. Theoretically, we demonstrate that employing an adaptively learned distance function is more effective for detection than using a fixed distance. Empirically, we conduct extensive experiments with over 100 settings, and find that our approach demonstrates superior performance over baseline algorithms in the majority of scenarios. In particular, it achieves relative improvements from 57.8\% to 80.6\% over the strongest baseline across different target LLMs (e.g., GPT, Claude, and Gemini).
comment: Accepted by ICLR2026
☆ Embodied Task Planning via Graph-Informed Action Generation with Large Lanaguage Model
While Large Language Models (LLMs) have demonstrated strong zero-shot reasoning capabilities, their deployment as embodied agents still faces fundamental challenges in long-horizon planning. Unlike open-ended text generation, embodied agents must decompose high-level intent into actionable sub-goals while strictly adhering to the logic of a dynamic, observed environment. Standard LLM planners frequently fail to maintain strategy coherence over extended horizons due to context window limitation or hallucinate transitions that violate constraints. We propose GiG, a novel planning framework that structures embodied agents' memory using a Graph-in-Graph architecture. Our approach employs a Graph Neural Network (GNN) to encode environmental states into embeddings, organizing these embeddings into action-connected execution trace graphs within an experience memory bank. By clustering these graph embeddings, the framework enables retrieval of structure-aware priors, allowing agents to ground current decisions in relevant past structural patterns. Furthermore, we introduce a novel bounded lookahead module that leverages symbolic transition logic to enhance the agents' planning capabilities through the grounded action projection. We evaluate our framework on three embodied planning benchmarks-Robotouille Synchronous, Robotouille Asynchronous, and ALFWorld. Our method outperforms state-of-the-art baselines, achieving Pass@1 performance gains of up to 22% on Robotouille Synchronous, 37% on Asynchronous, and 15% on ALFWorld with comparable or lower computational cost.
☆ Mil-SCORE: Benchmarking Long-Context Geospatial Reasoning and Planning in Large Language Models
As large language models (LLMs) are applied to increasingly longer and more complex tasks, there is a growing need for realistic long-context benchmarks that require selective reading and integration of heterogeneous, multi-modal information sources. This need is especially acute for geospatial planning problems, such as those found in planning for large-scale military operations, which demand fast and accurate reasoning over maps, orders, intelligence reports, and other distributed data. To address this gap, we present MilSCORE (Military Scenario Contextual Reasoning), to our knowledge the first scenario-level dataset of expert-authored, multi-hop questions grounded in a complex, simulated military planning scenario used for training. MilSCORE is designed to evaluate high-stakes decision-making and planning, probing LLMs' ability to combine tactical and spatial reasoning across multiple sources and to reason over long-horizon, geospatially rich context. The benchmark includes a diverse set of question types across seven categories targeting both factual recall and multi-step reasoning about constraints, strategy, and spatial analysis. We provide an evaluation protocol and report baseline results for a range of contemporary vision-language models. Our findings highlight substantial headroom on MilSCORE, indicating that current systems struggle with realistic, scenario-level long-context planning, and positioning MilSCORE as a challenging testbed for future work.
☆ Moral Outrage Shapes Commitments Beyond Attention: Multimodal Moral Emotions on YouTube in Korea and the US
Understanding how media rhetoric shapes audience engagement is crucial in the attention economy. This study examines how moral emotional framing by mainstream news channels on YouTube influences user behavior across Korea and the United States. To capture the platform's multimodal nature, combining thumbnail images and video titles, we develop a multimodal moral emotion classifier by fine tuning a vision language model. The model is trained on human annotated multimodal datasets in both languages and applied to approximately 400,000 videos from major news outlets. We analyze engagement levels including views, likes, and comments, representing increasing degrees of commitment. The results show that other condemning rhetoric expressions of moral outrage that criticize others morally consistently increase all forms of engagement across cultures, with effects ranging from passive viewing to active commenting. These findings suggest that moral outrage is a particularly effective emotional strategy, attracting not only attention but also active participation. We discuss concerns about the potential misuse of other condemning rhetoric, as such practices may deepen polarization by reinforcing in group and out group divisions. To facilitate future research and ensure reproducibility, we publicly release our Korean and English multimodal moral emotion classifiers.
comment: Accepted at The Web Conference 2026. We release Korean and English multimodal moral emotion classifiers
☆ Distribution-Aware Reward Estimation for Test-Time Reinforcement Learning
Test-time reinforcement learning (TTRL) enables large language models (LLMs) to self-improve on unlabeled inputs, but its effectiveness critically depends on how reward signals are estimated without ground-truth supervision. Most existing TTRL methods rely on majority voting (MV) over rollouts to produce deterministic rewards, implicitly assuming that the majority rollout provides a reliable learning signal. We show that this assumption is fragile: MV reduces the rollout distribution into a single outcome, discarding information about non-majority but correct actions candidates, and yields systematically biased reward estimates. To address this, we propose Distribution-AwareReward Estimation (DARE), which shifts reward estimation from a single majority outcome to the full empirical rollout distribution. DARE further augments this distribution-based reward with an exploration bonus and a distribution pruning mechanism for non-majority rollout exploration and reward denoise, yielding a more informative and robust reward estimation. Extensive experiments on challenging reasoning benchmarks show that DARE improves optimization stability and final performance over recent baselines, achieving relative improvements of 25.3% on challenging AIME 2024 and 5.3% on AMC.
☆ RAG-E: Quantifying Retriever-Generator Alignment and Failure Modes
Korbinian Randl, Guido Rocchietti, Aron Henriksson, Ziawasch Abedjan, Tony Lindgren, John Pavlopoulos
Retrieval-Augmented Generation (RAG) systems combine dense retrievers and language models to ground LLM outputs in retrieved documents. However, the opacity of how these components interact creates challenges for deployment in high-stakes domains. We present RAG-E, an end-to-end explainability framework that quantifies retriever-generator alignment through mathematically grounded attribution methods. Our approach adapts Integrated Gradients for retriever analysis, introduces PMCSHAP, a Monte Carlo-stabilized Shapley Value approximation, for generator attribution, and introduces the Weighted Attribution-Relevance Gap (WARG) metric to measure how well a generator's document usage aligns with a retriever's ranking. Empirical analysis on TREC CAsT and FoodSafeSum reveals critical misalignments: for 47.4% to 66.7% of queries, generators ignore the retriever's top-ranked documents, while 48.1% to 65.9% rely on documents ranked as less relevant. These failure modes demonstrate that RAG output quality depends not solely on individual component performance but on their interplay, which can be audited via RAG-E.
☆ Enhancing Conversational Agents via Task-Oriented Adversarial Memory Adaptation
Yimin Deng, Yuqing Fu, Derong Xu, Yejing Wang, Wei Ni, Jingtong Gao, Xiaopeng Li, Chengxu Liu, Xiao Han, Guoshuai Zhao, Xiangyu Zhao, Li Zhu, Xueming Qian
Conversational agents struggle to handle long conversations due to context window limitations. Therefore, memory systems are developed to leverage essential historical information. Existing memory systems typically follow a pipeline of offline memory construction and update, and online retrieval. Despite the flexible online phase, the offline phase remains fixed and task-independent. In this phase, memory construction operates under a predefined workflow and fails to emphasize task relevant information. Meanwhile, memory updates are guided by generic metrics rather than task specific supervision. This leads to a misalignment between offline memory preparation and task requirements, which undermines downstream task performance. To this end, we propose an Adversarial Memory Adaptation mechanism (AMA) that aligns memory construction and update with task objectives by simulating task execution. Specifically, first, a challenger agent generates question answer pairs based on the original dialogues. The constructed memory is then used to answer these questions, simulating downstream inference. Subsequently, an evaluator agent assesses the responses and performs error analysis. Finally, an adapter agent analyzes the error cases and performs dual level updates on both the construction strategy and the content. Through this process, the memory system receives task aware supervision signals in advance during the offline phase, enhancing its adaptability to downstream tasks. AMA can be integrated into various existing memory systems, and extensive experiments on long dialogue benchmark LoCoMo demonstrate its effectiveness.
comment: 11 pages, 4 figures
☆ KID: Knowledge-Injected Dual-Head Learning for Knowledge-Grounded Harmful Meme Detection
Internet memes have become pervasive carriers of digital culture on social platforms. However, their heavy reliance on metaphors and sociocultural context also makes them subtle vehicles for harmful content, posing significant challenges for automated content moderation. Existing approaches primarily focus on intra-modal and inter-modal signal analysis, while the understanding of implicit toxicity often depends on background knowledge that is not explicitly present in the meme itself. To address this challenge, we propose KID, a Knowledge-Injected Dual-Head Learning framework for knowledge-grounded harmful meme detection. KID adopts a label-constrained distillation paradigm to decompose complex meme understanding into structured reasoning chains that explicitly link visual evidence, background knowledge, and classification labels. These chains guide the learning process by grounding external knowledge in meme-specific contexts. In addition, KID employs a dual-head architecture that jointly optimizes semantic generation and classification objectives, enabling aligned linguistic reasoning while maintaining stable decision boundaries. Extensive experiments on five multilingual datasets spanning English, Chinese, and low-resource Bengali demonstrate that KID achieves SOTA performance on both binary and multi-label harmful meme detection tasks, improving over previous best methods by 2.1%--19.7% across primary evaluation metrics. Ablation studies further confirm the effectiveness of knowledge injection and dual-head joint learning, highlighting their complementary contributions to robust and generalizable meme understanding. The code and data are available at https://github.com/PotatoDog1669/KID.
☆ Zonkey: A Hierarchical Diffusion Language Model with Differentiable Tokenization and Probabilistic Attention
Large language models (LLMs) have revolutionized natural language processing, yet they remain constrained by fixed, non-differentiable tokenizers like Byte Pair Encoding (BPE), which hinder end-to-end optimization and adaptability to noisy or domain-specific data. We introduce Zonkey, a hierarchical diffusion model that addresses these limitations through a fully trainable pipeline from raw characters to document-level representations. At its core is a differentiable tokenizer (Segment Splitter) that learns probabilistic beginning-of-sequence (BOS) decisions, enabling adaptive splits that emerge as linguistically meaningful (e.g., word boundaries at spaces, sentence starts at periods) without explicit supervision. This differentiability is enabled by our novel Probabilistic Attention mechanism, which incorporates position-specific existence probabilities to simulate soft masking over theoretically infinite sequences while preserving gradients. Sequences decay probabilistically rather than relying on end-of-sequence tokens, supporting variable-length outputs. Hierarchical levels compress sequences into higher abstractions (e.g., character n-grams to word-like vectors, then sentence-like), with reconstruction via our Denoising Diffusion Mixed Model (DDMM) for stable and efficient denoising in latent space. A Stitcher ensures overlap invariance across segments. Trained end-to-end on Wikipedia, Zonkey generates coherent, variable-length text from noise, demonstrating emergent hierarchies and promising qualitative alignment to data distributions compared to entropy-based learnable tokenizers. Our approach advances toward fully gradient-based LLMs, with potential for better domain adaptation and scalable generation. We release the source code for training and reproducing our experiments.
☆ Evaluating ChatGPT on Medical Information Extraction Tasks: Performance, Explainability and Beyond
Large Language Models (LLMs) like ChatGPT have demonstrated amazing capabilities in comprehending user intents and generate reasonable and useful responses. Beside their ability to chat, their capabilities in various natural language processing (NLP) tasks are of interest to the research community. In this paper, we focus on assessing the overall ability of ChatGPT in 4 different medical information extraction (MedIE) tasks across 6 benchmark datasets. We present the systematically analysis by measuring ChatGPT's performance, explainability, confidence, faithfulness, and uncertainty. Our experiments reveal that: (a) ChatGPT's performance scores on MedIE tasks fall behind those of the fine-tuned baseline models. (b) ChatGPT can provide high-quality explanations for its decisions, however, ChatGPT is over-confident in its predcitions. (c) ChatGPT demonstrates a high level of faithfulness to the original text in the majority of cases. (d) The uncertainty in generation causes uncertainty in information extraction results, thus may hinder its applications in MedIE tasks.
☆ CoFrGeNet: Continued Fraction Architectures for Language Generation
Amit Dhurandhar, Vijil Chenthamarakshan, Dennis Wei, Tejaswini Pedapati, Karthikeyan Natesan Ramamurthy, Rahul Nair
Transformers are arguably the preferred architecture for language generation. In this paper, inspired by continued fractions, we introduce a new function class for generative modeling. The architecture family implementing this function class is named CoFrGeNets - Continued Fraction Generative Networks. We design novel architectural components based on this function class that can replace Multi-head Attention and Feed-Forward Networks in Transformer blocks while requiring much fewer parameters. We derive custom gradient formulations to optimize the proposed components more accurately and efficiently than using standard PyTorch-based gradients. Our components are a plug-in replacement requiring little change in training or inference procedures that have already been put in place for Transformer-based models thus making our approach easy to incorporate in large industrial workflows. We experiment on two very different transformer architectures GPT2-xl (1.5B) and Llama3 (3.2B), where the former we pre-train on OpenWebText and GneissWeb, while the latter we pre-train on the docling data mix which consists of nine different datasets. Results show that the performance on downstream classification, Q\& A, reasoning and text understanding tasks of our models is competitive and sometimes even superior to the original models with $\frac{2}{3}$ to $\frac{1}{2}$ the parameters and shorter pre-training time. We believe that future implementations customized to hardware will further bring out the true potential of our architectures.
☆ Influence Guided Sampling for Domain Adaptation of Text Retrievers
General-purpose open-domain dense retrieval systems are usually trained with a large, eclectic mix of corpora and search tasks. How should these diverse corpora and tasks be sampled for training? Conventional approaches sample them uniformly, proportional to their instance population sizes, or depend on human-level expert supervision. It is well known that the training data sampling strategy can greatly impact model performance. However, how to find the optimal strategy has not been adequately studied in the context of embedding models. We propose Inf-DDS, a novel reinforcement learning driven sampling framework that adaptively reweighs training datasets guided by influence-based reward signals and is much more lightweight with respect to GPU consumption. Our technique iteratively refines the sampling policy, prioritizing datasets that maximize model performance on a target development set. We evaluate the efficacy of our sampling strategy on a wide range of text retrieval tasks, demonstrating strong improvements in retrieval performance and better adaptation compared to existing gradient-based sampling methods, while also being 1.5x to 4x cheaper in GPU compute. Our sampling strategy achieves a 5.03 absolute NDCG@10 improvement while training a multilingual bge-m3 model and an absolute NDCG@10 improvement of 0.94 while training all-MiniLM-L6-v2, even when starting from expert-assigned weights on a large pool of training datasets.
☆ Temporal Guidance for Large Language Models
Contrastive Decoding (CD) enhances the generation quality of large language models (LLMs) but incurs significant additional computational overhead due to the need for an auxiliary model. Existing internal self-contrastive decoding methods, such as Decoding by Contrasting Layers (DoLa), focus on discrepancies across different layers, which are notably unstable on small-scale models. In this work, based on the observation that LLMs exhibit local preferences, we propose a novel contrastive guidance strategy along the temporal dimension, namely Temporal Guidance (TeGu). Our method ingeniously leverages Multi-Token Prediction (MTP) to construct weaker amateur predictions for model self-contrast. To standardize the implementation of this mechanism, we further introduce a lightweight Conditional MTP Projector (cMTPP), which avoids maintaining multiple independent networks as required by other MTP modules. Across various model series and benchmarks, TeGu achieves significant performance improvements while maintaining low additional memory consumption and computational overhead.
☆ Epistemic Context Learning: Building Trust the Right Way in LLM-Based Multi-Agent Systems
Ruiwen Zhou, Maojia Song, Xiaobao Wu, Sitao Cheng, Xunjian Yin, Yuxi Xie, Zhuoqun Hao, Wenyue Hua, Liangming Pan, Soujanya Poria, Min-Yen Kan
Individual agents in multi-agent (MA) systems often lack robustness, tending to blindly conform to misleading peers. We show this weakness stems from both sycophancy and inadequate ability to evaluate peer reliability. To address this, we first formalize the learning problem of history-aware reference, introducing the historical interactions of peers as additional input, so that agents can estimate peer reliability and learn from trustworthy peers when uncertain. This shifts the task from evaluating peer reasoning quality to estimating peer reliability based on interaction history. We then develop Epistemic Context Learning (ECL): a reasoning framework that conditions predictions on explicitly-built peer profiles from history. We further optimize ECL by reinforcement learning using auxiliary rewards. Our experiments reveal that our ECL enables small models like Qwen 3-4B to outperform a history-agnostic baseline 8x its size (Qwen 3-30B) by accurately identifying reliable peers. ECL also boosts frontier models to near-perfect (100%) performance. We show that ECL generalizes well to various MA configurations and we find that trust is modeled well by LLMs, revealing a strong correlation in trust modeling accuracy and final answer quality.
comment: Codes and data are available at https://github.com/skyriver-2000/epistemic-context-learning
☆ CE-GOCD: Central Entity-Guided Graph Optimization for Community Detection to Augment LLM Scientific Question Answering ICASSP 2026
Large Language Models (LLMs) are increasingly used for question answering over scientific research papers. Existing retrieval augmentation methods often rely on isolated text chunks or concepts, but overlook deeper semantic connections between papers. This impairs the LLM's comprehension of scientific literature, hindering the comprehensiveness and specificity of its responses. To address this, we propose Central Entity-Guided Graph Optimization for Community Detection (CE-GOCD), a method that augments LLMs' scientific question answering by explicitly modeling and leveraging semantic substructures within academic knowledge graphs. Our approach operates by: (1) leveraging paper titles as central entities for targeted subgraph retrieval, (2) enhancing implicit semantic discovery via subgraph pruning and completion, and (3) applying community detection to distill coherent paper groups with shared themes. We evaluated the proposed method on three NLP literature-based question-answering datasets, and the results demonstrate its superiority over other retrieval-augmented baseline approaches, confirming the effectiveness of our framework.
comment: Accepted by IEEE ICASSP 2026
☆ Procedural Pretraining: Warming Up Language Models with Abstract Data
Pretraining directly on web-scale corpora is the de facto paradigm for building language models. We study an alternative setting where the model is initially exposed to abstract structured data, as a means to ease the subsequent acquisition of rich semantic knowledge, much like humans learn simple logic and mathematics before higher reasoning. We specifically focus on procedural data, generated by formal languages and other simple algorithms, as such abstract data.
We first diagnose the algorithmic skills that different forms of procedural data can improve, often significantly. For example, on context recall (Needle-in-a-haystack), the accuracy jumps from 10 to 98% when pretraining on Dyck sequences (balanced brackets). Second, we study how these gains are reflected in pretraining larger models (up to 1.3B). We find that front-loading as little as 0.1% procedural data significantly outperforms standard pretraining on natural language, code, and informal mathematics (C4, CodeParrot, and DeepMind-Math datasets). Notably, this procedural pretraining enables the models to reach the same loss value with only 55, 67, 86% of the original data. Third, we explore the mechanisms behind and find that procedural pretraining instils non-trivial structure in both attention and MLP layers. The former is particularly important for structured domains (e.g. code), and the latter for language. Finally, we lay a path for combining multiple forms of procedural data. Our results show that procedural pretraining is a simple, lightweight means to improving performance and accelerating language model pretraining, ultimately suggesting the promise of disentangling knowledge acquisition from reasoning in LLMs.
☆ Enhancing Language Models for Robust Greenwashing Detection
Sustainability reports are critical for ESG assessment, yet greenwashing and vague claims often undermine their reliability. Existing NLP models lack robustness to these practices, typically relying on surface-level patterns that generalize poorly. We propose a parameter-efficient framework that structures LLM latent spaces by combining contrastive learning with an ordinal ranking objective to capture graded distinctions between concrete actions and ambiguous claims. Our approach incorporates gated feature modulation to filter disclosure noise and utilizes MetaGradNorm to stabilize multi-objective optimization. Experiments in cross-category settings demonstrate superior robustness over standard baselines while revealing a trade-off between representational rigidity and generalization.
☆ TACLer: Tailored Curriculum Reinforcement Learning for Efficient Reasoning
Large Language Models (LLMs) have shown remarkable performance on complex reasoning tasks, especially when equipped with long chain-of-thought (CoT) reasoning. However, eliciting long CoT typically requires large-scale reinforcement learning (RL) training, while often leading to overthinking with redundant intermediate steps. To improve learning and reasoning efficiency, while preserving or even enhancing performance, we propose TACLer, a model-tailored curriculum reinforcement learning framework that gradually increases the complexity of the data based on the model's proficiency in multi-stage RL training. TACLer features two core components: (i) tailored curriculum learning that determines what knowledge the model lacks and needs to learn in progressive stages; (ii) a hybrid Thinking/NoThinking reasoning paradigm that balances accuracy and efficiency by enabling or disabling the Thinking mode. Our experiments show that TACLer yields a twofold advantage in learning and reasoning: (i) it reduces computational cost, cutting training compute by over 50% compared to long thinking models and reducing inference token usage by over 42% relative to the base model; and (ii) it improves accuracy by over 9% on the base model, consistently outperforming state-of-the-art Nothinking and Thinking baselines across four math datasets with complex problems.
☆ Why Attention Patterns Exist: A Unifying Temporal Perspective Analysis ICLR 2026
Qingyue Yang, Jie Wang, Xing Li, Yinqi Bai, Xialiang Tong, Huiling Zhen, Jianye Hao, Mingxuan Yuan, Bin Li
Attention patterns play a crucial role in both training and inference of large language models (LLMs). Prior works have identified individual patterns such as retrieval heads, sink heads, and diagonal traces, yet these observations remain fragmented and lack a unifying explanation. To bridge this gap, we introduce \textbf{Temporal Attention Pattern Predictability Analysis (TAPPA), a unifying framework that explains diverse attention patterns by analyzing their underlying mathematical formulations} from a temporally continuous perspective. TAPPA both deepens the understanding of attention behavior and guides inference acceleration approaches. Specifically, TAPPA characterizes attention patterns as predictable patterns with clear regularities and unpredictable patterns that appear effectively random. Our analysis further reveals that this distinction can be explained by the degree of query self-similarity along the temporal dimension. Focusing on the predictable patterns, we further provide a detailed mathematical analysis of three representative cases through the joint effect of queries, keys, and Rotary Positional Embeddings (RoPE). We validate TAPPA by applying its insights to KV cache compression and LLM pruning tasks. Across these tasks, a simple metric motivated by TAPPA consistently improves performance over baseline methods. The code is available at https://github.com/MIRALab-USTC/LLM-TAPPA.
comment: ICLR 2026
☆ FBS: Modeling Native Parallel Reading inside a Transformer
Large language models (LLMs) excel across many tasks, yet inference is still dominated by strictly token-by-token autoregression. Existing acceleration methods largely patch this pipeline and miss core human-reading ingredients: content-adaptive foresight, chunk-structure-aware compute allocation, and train--test consistency for preview/skimming. We propose the \textbf{Fovea-Block-Skip Transformer} (FBS), which injects a causal, trainable loop into Transformers via Parafovea-Attention Window (PAW), Chunk-Head (CH), and Skip-Gate (SG). Across diverse benchmarks, FBS improves the quality-efficiency trade-off without increasing parameters, and ablations show the three modules are complementary.
☆ Beyond Forgetting: Machine Unlearning Elicits Controllable Side Behaviors and Capabilities
Tien Dang, The-Hai Nguyen, Dinh Mai Phuong, Nguyen Minh Phuong, Hoang Thanh-Tung, Le-Minh Nguyen, Naoya Inoue
We consider representation misdirection (RM), a class of LLM unlearning methods that achieves forgetting by manipulating the forget-representations, that is, latent representations of forget samples. Despite being important, the roles of target vectors used in RM, however, remain underexplored. Here, we approach and revisit RM through the lens of the linear representation hypothesis. Specifically, if one can somehow identify a one-dimensional representation corresponding to a high-level concept, the linear representation hypothesis enables linear operations on this concept vector within the forget-representation space. Under this view, we hypothesize that, beyond forgetting, machine unlearning elicits controllable side behaviors and stronger side capabilities corresponding to the high-level concept. Our hypothesis is empirically validated across a wide range of tasks, including behavioral control (e.g., controlling unlearned models' truth, sentiment, and refusal) and capability enhancement (e.g., improving unlearned models' in-context learning capability). Our findings reveal that this fairly attractive phenomenon could be either a hidden risk if misused or a mechanism that can be harnessed for developing models that require stronger capabilities and controllable behaviors.
comment: 21 pages, 11 tables, 12 figures
☆ Toward Culturally Aligned LLMs through Ontology-Guided Multi-Agent Reasoning
Wonduk Seo, Wonseok Choi, Junseo Koh, Juhyeon Lee, Hyunjin An, Minhyeong Yu, Jian Park, Qingshan Zhou, Seunghyun Lee, Yi Bu
Large Language Models (LLMs) increasingly support culturally sensitive decision making, yet often exhibit misalignment due to skewed pretraining data and the absence of structured value representations. Existing methods can steer outputs, but often lack demographic grounding and treat values as independent, unstructured signals, reducing consistency and interpretability. We propose OG-MAR, an Ontology-Guided Multi-Agent Reasoning framework. OG-MAR summarizes respondent-specific values from the World Values Survey (WVS) and constructs a global cultural ontology by eliciting relations over a fixed taxonomy via competency questions. At inference time, it retrieves ontology-consistent relations and demographically similar profiles to instantiate multiple value-persona agents, whose outputs are synthesized by a judgment agent that enforces ontology consistency and demographic proximity. Experiments on regional social-survey benchmarks across four LLM backbones show that OG-MAR improves cultural alignment and robustness over competitive baselines, while producing more transparent reasoning traces.
comment: 35 pages
☆ Can David Beat Goliath? On Multi-Hop Reasoning with Resource-Constrained Agents
While reinforcement learning (RL) has empowered multi-turn reasoning agents with retrieval and tools, existing successes largely depend on extensive on-policy rollouts in high-cost, high-accuracy regimes. Under realistic resource constraints that cannot support large models or dense explorations, however, small language model agents fall into a low-cost, low-accuracy regime, where limited rollout budgets lead to sparse exploration, sparse credit assignment, and unstable training. In this work, we challenge this trade-off and show that small language models can achieve strong multi-hop reasoning under resource constraints. We introduce DAVID-GRPO, a budget-efficient RL framework that (i) stabilizes early learning with minimal supervision, (ii) assigns retrieval credit based on evidence recall, and (iii) improves exploration by resampling truncated near-miss trajectories. Evaluated on agents up to 1.5B parameters trained on only four RTX 3090 GPUs, DAVID-GRPO consistently outperforms prior RL methods designed for large-scale settings on six multi-hop QA benchmarks. These results show that with the right inductive biases, small agents can achieve low training cost with high accuracy.
comment: Preprint
☆ Do Not Waste Your Rollouts: Recycling Search Experience for Efficient Test-Time Scaling
Xinglin Wang, Jiayi Shi, Shaoxiong Feng, Peiwen Yuan, Yiwei Li, Yueqi Zhang, Chuyi Tan, Ji Zhang, Boyuan Pan, Yao Hu, Kan Li
Test-Time Scaling enhances the reasoning capabilities of Large Language Models by allocating additional inference compute to broaden the exploration of the solution space. However, existing search strategies typically treat rollouts as disposable samples, where valuable intermediate insights are effectively discarded after each trial. This systemic memorylessness leads to massive computational redundancy, as models repeatedly re-derive discovered conclusions and revisit known dead ends across extensive attempts. To bridge this gap, we propose \textbf{Recycling Search Experience (RSE)}, a self-guided, training-free strategy that turns test-time search from a series of isolated trials into a cumulative process. By actively distilling raw trajectories into a shared experience bank, RSE enables positive recycling of intermediate conclusions to shortcut redundant derivations and negative recycling of failure patterns to prune encountered dead ends. Theoretically, we provide an analysis that formalizes the efficiency gains of RSE, validating its advantage over independent sampling in solving complex reasoning tasks. Empirically, extensive experiments on HMMT24, HMMT25, IMO-Bench, and HLE show that RSE consistently outperforms strong baselines with comparable computational cost, achieving state-of-the-art scaling efficiency.
comment: preprint
☆ FIT: Defying Catastrophic Forgetting in Continual LLM Unlearning
Xiaoyu Xu, Minxin Du, Kun Fang, Zi Liang, Yaxin Xiao, Zhicong Huang, Cheng Hong, Qingqing Ye, Haibo Hu
Large language models (LLMs) demonstrate impressive capabilities across diverse tasks but raise concerns about privacy, copyright, and harmful materials. Existing LLM unlearning methods rarely consider the continual and high-volume nature of real-world deletion requests, which can cause utility degradation and catastrophic forgetting as requests accumulate. To address this challenge, we introduce \fit, a framework for continual unlearning that handles large numbers of deletion requests while maintaining robustness against both catastrophic forgetting and post-unlearning recovery. \fit mitigates degradation through rigorous data \underline{F}iltering, \underline{I}mportance-aware updates, and \underline{T}argeted layer attribution, enabling stable performance across long sequences of unlearning operations and achieving a favorable balance between forgetting effectiveness and utility retention. To support realistic evaluation, we present \textbf{PCH}, a benchmark covering \textbf{P}ersonal information, \textbf{C}opyright, and \textbf{H}armful content in sequential deletion scenarios, along with two symmetric metrics, Forget Degree (F.D.) and Retain Utility (R.U.), which jointly assess forgetting quality and utility preservation. Extensive experiments on four open-source LLMs with hundreds of deletion requests show that \fit achieves the strongest trade-off between F.D. and R.U., surpasses existing methods on MMLU, CommonsenseQA, and GSM8K, and remains resistant against both relearning and quantization recovery attacks.
comment: 20 Pages
☆ Scale-Dependent Semantic Dynamics Revealed by Allan Deviation
While language progresses through a sequence of semantic states, the underlying dynamics of this progression remain elusive. Here, we treat the semantic progression of written text as a stochastic trajectory in a high-dimensional state space. We utilize Allan deviation, a tool from precision metrology, to analyze the stability of meaning by treating ordered sentence embeddings as a displacement signal. Our analysis reveals two distinct dynamical regimes: short-time power-law scaling, which differentiates creative literature from technical texts, and a long-time crossover to a stability-limited noise floor. We find that while large language models successfully mimic the local scaling statistics of human text, they exhibit a systematic reduction in their stability horizon. These results establish semantic coherence as a measurable physical property, offering a framework to differentiate the nuanced dynamics of human cognition from the patterns generated by algorithmic models.
☆ AdaptBPE: From General Purpose to Specialized Tokenizers EACL 2026
Subword tokenization methods, such as Byte-Pair Encoding (BPE), significantly impact the performance and efficiency of large language models (LLMs). The standard approach involves training a general-purpose tokenizer that uniformly processes all textual data during both training and inference. However, the use of a generic set of tokens can incur inefficiencies when applying the model to specific domains or languages. To address this limitation, we propose a post-training adaptation strategy that selectively replaces low-utility tokens with more relevant ones based on their frequency in an adaptation corpus. Our algorithm identifies the token inventory that most effectively encodes the adaptation corpus for a given target vocabulary size. Extensive experiments on generation and classification tasks across multiple languages demonstrate that our adapted tokenizers compress test corpora more effectively than baselines using the same vocabulary size. This method serves as a lightweight adaptation mechanism, akin to a vocabulary fine-tuning process, enabling optimized tokenization for specific domains or tasks. Our code and data are available at https://github.com/vijini/Adapt-BPE.git.
comment: EACL 2026
☆ SWE-Spot: Building Small Repo-Experts with Repository-Centric Learning
Jinjun Peng, Magnus Saebo, Tianjun Zhong, Yi-Jie Cheng, Junfeng Yang, Baishakhi Ray, Simin Chen, Yangruibo Ding
The deployment of coding agents in privacy-sensitive and resource-constrained environments drives the demand for capable open-weight Small Language Models (SLMs). However, they suffer from a fundamental capability gap: unlike frontier large models, they lack the inference-time strong generalization to work with complicated, unfamiliar codebases. We identify that the prevailing Task-Centric Learning (TCL) paradigm, which scales exposure across disparate repositories, fails to address this limitation. In response, we propose Repository-Centric Learning (RCL), a paradigm shift that prioritizes vertical repository depth over horizontal task breadth, suggesting SLMs must internalize the "physics" of a target software environment through parametric knowledge acquisition, rather than attempting to recover it via costly inference-time search. Following this new paradigm, we design a four-unit Repository-Centric Experience, transforming static codebases into interactive learning signals, to train SWE-Spot-4B, a family of highly compact models built as repo-specialized experts that breaks established scaling trends, outperforming open-weight models up to larger (e.g., CWM by Meta, Qwen3-Coder-30B) and surpassing/matching efficiency-focused commercial models (e.g., GPT-4.1-mini, GPT-5-nano) across multiple SWE tasks. Further analysis reveals that RCL yields higher training sample efficiency and lower inference costs, emphasizing that for building efficient intelligence, repository mastery is a distinct and necessary dimension that complements general coding capability.
☆ ILRR: Inference-Time Steering Method for Masked Diffusion Language Models
Discrete Diffusion Language Models (DLMs) offer a promising non-autoregressive alternative for text generation, yet effective mechanisms for inference-time control remain relatively underexplored. Existing approaches include sampling-level guidance procedures or trajectory optimization mechanisms. In this work, we introduce Iterative Latent Representation Refinement (ILRR), a learning-free framework for steering DLMs using a single reference sequence. ILRR guides generation by dynamically aligning the internal activations of the generated sequence with those of a given reference throughout the denoising process. This approach captures and transfers high-level semantic properties, with a tunable steering scale enabling flexible control over attributes such as sentiment. We further introduce Spatially Modulated Steering, an extension that enables steering long texts using shorter references by regulating guidance intensity across the sequence. Empirically, we demonstrate that ILRR achieves effective attribute steering on LLaDA and MDLM architectures with a minor computational overhead, requiring only one additional parallel forward pass per denoising step. Under the same compute budget, ILRR improves attribute accuracy over comparable baselines by 10$\%$ to 60$\%$ points, while maintaining high generation quality.
☆ Breaking the Overscaling Curse: Thinking Parallelism Before Parallel Thinking
Parallel thinking enhances LLM reasoning by multi-path sampling and aggregation. In system-level evaluations, a global parallelism level N is allocated to all samples, typically set large to maximize overall dataset accuracy. However, due to sample heterogeneity, some samples can achieve comparable performance with a smaller N'< N, causing budget redundancy. This incompatibility between system-level efficacy and sample-level efficiency constitutes the overscaling curse. In this paper, we formalize and quantify the overscaling curse, showing its universality and severity in practice, and analyze its trigger mechanism. We then propose a lightweight method, T2, to break the overscaling curse, which utilizes latent representations to estimate the optimal parallelism level for each sample before decoding. Experiments show that T2 significantly reduces cost while maintaining comparable performance, enabling more efficient parallel thinking.
☆ Semantic Content Determines Algorithmic Performance
Counting should not depend on what is being counted; more generally, any algorithm's behavior should be invariant to the semantic content of its arguments. We introduce WhatCounts to test this property in isolation. Unlike prior work that conflates semantic sensitivity with reasoning complexity or prompt variation, WhatCounts is atomic: count items in an unambiguous, delimited list with no duplicates, distractors, or reasoning steps for different semantic types. Frontier LLMs show over 40% accuracy variation depending solely on what is being counted - cities versus chemicals, names versus symbols. Controlled ablations rule out confounds. The gap is semantic, and it shifts unpredictably with small amounts of unrelated fine-tuning. LLMs do not implement algorithms; they approximate them, and the approximation is argument-dependent. As we show with an agentic example, this has implications beyond counting: any LLM function may carry hidden dependencies on the meaning of its inputs.
☆ Thinking Broad, Acting Fast: Latent Reasoning Distillation from Multi-Perspective Chain-of-Thought for E-Commerce Relevance
Effective relevance modeling is crucial for e-commerce search, as it aligns search results with user intent and enhances customer experience. Recent work has leveraged large language models (LLMs) to address the limitations of traditional relevance models, especially for long-tail and ambiguous queries. By incorporating Chain-of-Thought (CoT) reasoning, these approaches improve both accuracy and interpretability through multi-step reasoning. However, two key limitations remain: (1) most existing approaches rely on single-perspective CoT reasoning, which fails to capture the multifaceted nature of e-commerce relevance (e.g., user intent vs. attribute-level matching vs. business-specific rules); and (2) although CoT-enhanced LLM's offer rich reasoning capabilities, their high inference latency necessitates knowledge distillation for real-time deployment, yet current distillation methods discard the CoT rationale structure at inference, using it as a transient auxiliary signal and forfeiting its reasoning utility. To address these challenges, we propose a novel framework that better exploits CoT semantics throughout the optimization pipeline. Specifically, the teacher model leverages Multi-Perspective CoT (MPCoT) to generate diverse rationales and combines Supervised Fine-Tuning (SFT) with Direct Preference Optimization (DPO) to construct a more robust reasoner. For distillation, we introduce Latent Reasoning Knowledge Distillation (LRKD), which endows a student model with a lightweight inference-time latent reasoning extractor, allowing efficient and low-latency internalization of the LLM's sophisticated reasoning capabilities. Evaluated in offline experiments and online A/B tests on an e-commerce search advertising platform serving tens of millions of users daily, our method delivers significant offline gains, showing clear benefits in both commercial performance and user experience.
comment: 12 pages, 6 figures, Accepted by WWW2026 industry track
☆ Language Models as Artificial Learners: Investigating Crosslinguistic Influence
Despite the centrality of crosslinguistic influence (CLI) to bilingualism research, human studies often yield conflicting results due to inherent experimental variance. We address these inconsistencies by using language models (LMs) as controlled statistical learners to systematically simulate CLI and isolate its underlying drivers. Specifically, we study the effect of varying the L1 language dominance and the L2 language proficiency, which we manipulate by controlling the L2 age of exposure -- defined as the training step at which the L2 is introduced. Furthermore, we investigate the impact of pretraining on L1 languages with varying syntactic distance from the L2. Using cross-linguistic priming, we analyze how activating L1 structures impacts L2 processing. Our results align with evidence from psycholinguistic studies, confirming that language dominance and proficiency are strong predictors of CLI. We further find that while priming of grammatical structures is bidirectional, the priming of ungrammatical structures is sensitive to language dominance. Finally, we provide mechanistic evidence of CLI in LMs, demonstrating that the L1 is co-activated during L2 processing and directly influences the neural circuitry recruited for the L2. More broadly, our work demonstrates that LMs can serve as a computational framework to inform theories of human CLI.
☆ Depth-Recurrent Attention Mixtures: Giving Latent Reasoning the Attention it Deserves
Depth-recurrence facilitates latent reasoning by sharing parameters across depths. However, prior work lacks combined FLOP-, parameter-, and memory-matched baselines, underutilizes depth-recurrence due to partially fixed layer stacks, and ignores the bottleneck of constant hidden-sizes that restricts many-step latent reasoning. To address this, we introduce a modular framework of depth-recurrent attention mixtures (Dreamer), combining sequence attention, depth attention, and sparse expert attention. It alleviates the hidden-size bottleneck through attention along depth, decouples scaling dimensions, and allows depth-recurrent models to scale efficiently and effectively. Across language reasoning benchmarks, our models require 2 to 8x fewer training tokens for the same accuracy as FLOP-, parameter-, and memory-matched SOTA, and outperform ca. 2x larger SOTA models with the same training tokens. We further present insights into knowledge usage across depths, e.g., showing 2 to 11x larger expert selection diversity than SOTA MoEs.
☆ KromHC: Manifold-Constrained Hyper-Connections with Kronecker-Product Residual Matrices
The success of Hyper-Connections (HC) in neural networks (NN) has also highlighted issues related to its training instability and restricted scalability. The Manifold-Constrained Hyper-Connections (mHC) mitigate these challenges by projecting the residual connection space onto a Birkhoff polytope, however, it faces two issues: 1) its iterative Sinkhorn-Knopp (SK) algorithm does not always yield exact doubly stochastic residual matrices; 2) mHC incurs a prohibitive $\mathcal{O}(n^3C)$ parameter complexity with $n$ as the width of the residual stream and $C$ as the feature dimension. The recently proposed mHC-lite reparametrizes the residual matrix via the Birkhoff-von-Neumann theorem to guarantee double stochasticity, but also faces a factorial explosion in its parameter complexity, $\mathcal{O} \left( nC \cdot n! \right)$. To address both challenges, we propose \textbf{KromHC}, which uses the \underline{Kro}necker products of smaller doubly stochastic matrices to parametrize the residual matrix in \underline{mHC}. By enforcing manifold constraints across the factor residual matrices along each mode of the tensorized residual stream, KromHC guarantees exact double stochasticity of the residual matrices while reducing parameter complexity to $\mathcal{O}(n^2C)$. Comprehensive experiments demonstrate that KromHC matches or even outperforms state-of-the-art (SOTA) mHC variants, while requiring significantly fewer trainable parameters. The code is available at \texttt{https://github.com/wz1119/KromHC}.
☆ Shaping capabilities with token-level data filtering
Current approaches to reducing undesired capabilities in language models are largely post hoc, and can thus be easily bypassed by adversaries. A natural alternative is to shape capabilities during pretraining itself. On the proxy task of removing medical capabilities, we show that the simple intervention of filtering pretraining data is highly effective, robust, and inexpensive at scale. Inspired by work on data attribution, we show that filtering tokens is more effective than filtering documents, achieving the same hit to undesired capabilities at a lower cost to benign ones. Training models spanning two orders of magnitude, we then demonstrate that filtering gets more effective with scale: for our largest models, token filtering leads to a 7000x compute slowdown on the forget domain. We also show that models trained with token filtering can still be aligned on the forget domain. Along the way, we introduce a methodology for labeling tokens with sparse autoencoders and distilling cheap, high-quality classifiers. We also demonstrate that filtering can be robust to noisy labels with sufficient pretraining compute.
comment: 33 pages, 28 figures
☆ Multi-objective Integer Linear Programming approach for Automatic Software Cognitive Complexity Reduction
Clear and concise code is necessary to ensure maintainability, so it is crucial that the software is as simple as possible to understand, to avoid bugs and, above all, vulnerabilities. There are many ways to enhance software without changing its functionality, considering the extract method refactoring the primary process to reduce the effort required for code comprehension. The cognitive complexity measure employed in this work is the one defined by SonarSource, which is a company that develops well-known applications for static code analysis. This extraction problem can be modeled as a combinatorial optimization problem. The main difficulty arises from the existence of different criteria for evaluating the solutions obtained, requiring the formulation of the code extraction problem as a multi-objective optimization problem using alternative methods. We propose a multi-objective integer linear programming model to obtain a set of solutions that reduce the cognitive complexity of a given piece of code, such as balancing the number of lines of code and its cognitive complexity. In addition, several algorithms have been developed to validate the model. These algorithms have been integrated into a tool that enables the parameterised resolution of the problem of reducing software cognitive complexity.
comment: 51 pages, 17 figures
☆ ASTRA: Automated Synthesis of agentic Trajectories and Reinforcement Arenas
Xiaoyu Tian, Haotian Wang, Shuaiting Chen, Hao Zhou, Kaichi Yu, Yudian Zhang, Jade Ouyang, Junxi Yin, Jiong Chen, Baoyan Guo, Lei Zhang, Junjie Tao, Yuansheng Song, Ming Cui, Chengwei Liu
Large language models (LLMs) are increasingly used as tool-augmented agents for multi-step decision making, yet training robust tool-using agents remains challenging. Existing methods still require manual intervention, depend on non-verifiable simulated environments, rely exclusively on either supervised fine-tuning (SFT) or reinforcement learning (RL), and struggle with stable long-horizon, multi-turn learning. To address these challenges, we introduce ASTRA, a fully automated end-to-end framework for training tool-augmented language model agents via scalable data synthesis and verifiable reinforcement learning. ASTRA integrates two complementary components. First, a pipeline that leverages the static topology of tool-call graphs synthesizes diverse, structurally grounded trajectories, instilling broad and transferable tool-use competence. Second, an environment synthesis framework that captures the rich, compositional topology of human semantic reasoning converts decomposed question-answer traces into independent, code-executable, and rule-verifiable environments, enabling deterministic multi-turn RL. Based on this method, we develop a unified training methodology that integrates SFT with online RL using trajectory-level rewards to balance task completion and interaction efficiency. Experiments on multiple agentic tool-use benchmarks demonstrate that ASTRA-trained models achieve state-of-the-art performance at comparable scales, approaching closed-source systems while preserving core reasoning ability. We release the full pipelines, environments, and trained models at https://github.com/LianjiaTech/astra.
☆ Note2Chat: Improving LLMs for Multi-Turn Clinical History Taking Using Medical Notes AAAI-26
Yang Zhou, Zhenting Sheng, Mingrui Tan, Yuting Song, Jun Zhou, Yu Heng Kwan, Lian Leng Low, Yang Bai, Yong Liu
Effective clinical history taking is a foundational yet underexplored component of clinical reasoning. While large language models (LLMs) have shown promise on static benchmarks, they often fall short in dynamic, multi-turn diagnostic settings that require iterative questioning and hypothesis refinement. To address this gap, we propose \method{}, a note-driven framework that trains LLMs to conduct structured history taking and diagnosis by learning from widely available medical notes. Instead of relying on scarce and sensitive dialogue data, we convert real-world medical notes into high-quality doctor-patient dialogues using a decision tree-guided generation and refinement pipeline. We then propose a three-stage fine-tuning strategy combining supervised learning, simulated data augmentation, and preference learning. Furthermore, we propose a novel single-turn reasoning paradigm that reframes history taking as a sequence of single-turn reasoning problems. This design enhances interpretability and enables local supervision, dynamic adaptation, and greater sample efficiency. Experimental results show that our method substantially improves clinical reasoning, achieving gains of +16.9 F1 and +21.0 Top-1 diagnostic accuracy over GPT-4o. Our code and dataset can be found at https://github.com/zhentingsheng/Note2Chat.
comment: Accepted at AAAI-26
☆ ShardMemo: Masked MoE Routing for Sharded Agentic LLM Memory
Agentic large language model (LLM) systems rely on external memory for long-horizon state and concurrent multi-agent execution, but centralized indexes and heuristic partitions become bottlenecks as memory volume and parallel access grow. We present ShardMemo, a budgeted tiered memory service with Tier A per-agent working state, Tier B sharded evidence with shard-local approximate nearest neighbor (ANN) indexes, and Tier C, a versioned skill library. Tier B enforces scope-before-routing: structured eligibility constraints mask ineligible shards before routing or ANN search. We cast shard probing as masked mixture-of-experts (MoE) routing over eligible shards, probing up to $B_{\mathrm{probe}}$ shards via Top-$B_{\mathrm{probe}}$ or adaptive Top-$P$, and use cost-aware gating over profile/observation/session shard families; the router is trained from evidence-to-shard supervision. On LoCoMo, ShardMemo improves over the strongest baseline (GAM) by +5.11 to +6.82 F1 across question categories. Under a fixed-budget routing setting ($B_{\mathrm{probe}}=3$), ShardMemo improves over cosine-to-prototype shard routing by +6.87 F1 while reducing retrieval work (VecScan 521->414, -20.5%) and p95 latency (95->76 ms). On long-context HotpotQA, ShardMemo achieves 63.41/61.88/57.95 F1 at 56K/224K/448K tokens. On ToolBench, Tier C reaches 0.97 Precision@3 and 1.94 StepRed (+10.2% and +7.2% over embedding-similarity retrieval).
☆ inversedMixup: Data Augmentation via Inverting Mixed Embeddings
Mixup generates augmented samples by linearly interpolating inputs and labels with a controllable ratio. However, since it operates in the latent embedding level, the resulting samples are not human-interpretable. In contrast, LLM-based augmentation methods produce sentences via prompts at the token level, yielding readable outputs but offering limited control over the generation process. Inspired by recent advances in LLM inversion, which reconstructs natural language from embeddings and helps bridge the gap between latent embedding space and discrete token space, we propose inversedMixup, a unified framework that combines the controllability of Mixup with the interpretability of LLM-based generation. Specifically, inversedMixup adopts a three-stage training procedure to align the output embedding space of a task-specific model with the input embedding space of an LLM. Upon successful alignment, inversedMixup can reconstruct mixed embeddings with a controllable mixing ratio into human-interpretable augmented sentences, thereby improving the augmentation performance. Additionally, inversedMixup provides the first empirical evidence of the manifold intrusion phenomenon in text Mixup and introduces a simple yet effective strategy to mitigate it. Extensive experiments demonstrate the effectiveness and generalizability of our approach in both few-shot and fully supervised scenarios.
☆ KAPSO: A Knowledge-grounded framework for Autonomous Program Synthesis and Optimization
We introduce KAPSO, a modular framework for autonomous program synthesis and optimization. Given a natural language goal and an evaluation method, KAPSO iteratively performs ideation, code synthesis and editing, execution, evaluation, and learning to improve a runnable artifact toward measurable objectives. Rather than treating synthesis as the endpoint, KAPSO uses synthesis as an operator within a long-horizon optimization loop, where progress is defined by evaluator outcomes.
KAPSO targets long-horizon failures common in coding agents, including lost experimental state, brittle debugging, and weak reuse of domain expertise, by integrating three tightly coupled components. First, a git-native experimentation engine isolates each attempt as a branch, producing reproducible artifacts and preserving provenance across iterations. Second, a knowledge system ingests heterogeneous sources, including repositories, internal playbooks, and curated external resources such as documentation, scientific papers, and web search results, and organizes them into a structured representation that supports retrieval over workflows, implementations, and environment constraints. Third, a cognitive memory layer coordinates retrieval and maintains an episodic store of reusable lessons distilled from experiment traces (run logs, diffs, and evaluator feedback), reducing repeated error modes and accelerating convergence.
We evaluated KAPSO on MLE-Bench (Kaggle-style ML competitions) and ALE-Bench (AtCoder heuristic optimization), and report end-to-end performance.
Code Available at: https://github.com/Leeroo-AI/kapso
☆ LMK > CLS: Landmark Pooling for Dense Embeddings
Meet Doshi, Aashka Trivedi, Vishwajeet Kumar, Parul Awasthy, Yulong Li, Jaydeep Sen, Radu Florian, Sachindra Joshi
Representation learning is central to many downstream tasks such as search, clustering, classification, and reranking. State-of-the-art sequence encoders typically collapse a variable-length token sequence to a single vector using a pooling operator, most commonly a special [CLS] token or mean pooling over token embeddings. In this paper, we identify systematic weaknesses of these pooling strategies: [CLS] tends to concentrate information toward the initial positions of the sequence and can under-represent distributed evidence, while mean pooling can dilute salient local signals, sometimes leading to worse short-context performance. To address these issues, we introduce Landmark (LMK) pooling, which partitions a sequence into chunks, inserts landmark tokens between chunks, and forms the final representation by mean-pooling the landmark token embeddings. This simple mechanism improves long-context extrapolation without sacrificing local salient features, at the cost of introducing a small number of special tokens. We empirically demonstrate that LMK pooling matches existing methods on short-context retrieval tasks and yields substantial improvements on long-context tasks, making it a practical and scalable alternative to existing pooling methods.
☆ MURAD: A Large-Scale Multi-Domain Unified Reverse Arabic Dictionary Dataset
Serry Sibaee, Yasser Alhabashi, Nadia Sibai, Yara Farouk, Adel Ammar, Sawsan AlHalawani, Wadii Boulila
Arabic is a linguistically and culturally rich language with a vast vocabulary that spans scientific, religious, and literary domains. Yet, large-scale lexical datasets linking Arabic words to precise definitions remain limited. We present MURAD (Multi-domain Unified Reverse Arabic Dictionary), an open lexical dataset with 96,243 word-definition pairs. The data come from trusted reference works and educational sources. Extraction used a hybrid pipeline integrating direct text parsing, optical character recognition, and automated reconstruction. This ensures accuracy and clarity. Each record aligns a target word with its standardized Arabic definition and metadata that identifies the source domain. The dataset covers terms from linguistics, Islamic studies, mathematics, physics, psychology, and engineering. It supports computational linguistics and lexicographic research. Applications include reverse dictionary modeling, semantic retrieval, and educational tools. By releasing this resource, we aim to advance Arabic natural language processing and promote reproducible research on Arabic lexical semantics.
comment: 18 pages
☆ The Effectiveness of Style Vectors for Steering Large Language Models: A Human Evaluation
Controlling the behavior of large language models (LLMs) at inference time is essential for aligning outputs with human abilities and safety requirements. \emph{Activation steering} provides a lightweight alternative to prompt engineering and fine-tuning by directly modifying internal activations to guide generation. This research advances the literature in three significant directions. First, while previous work demonstrated the technical feasibility of steering emotional tone using automated classifiers, this paper presents the first human evaluation of activation steering concerning the emotional tone of LLM outputs, collecting over 7,000 crowd-sourced ratings from 190 participants via Prolific ($n=190$). These ratings assess both perceived emotional intensity and overall text quality. Second, we find strong alignment between human and model-based quality ratings (mean $r=0.776$, range $0.157$--$0.985$), indicating automatic scoring can proxy perceived quality. Moderate steering strengths ($λ\approx 0.15$) reliably amplify target emotions while preserving comprehensibility, with the strongest effects for disgust ($η_p^2 = 0.616$) and fear ($η_p^2 = 0.540$), and minimal effects for surprise ($η_p^2 = 0.042$). Finally, upgrading from Alpaca to LlaMA-3 yielded more consistent steering with significant effects across emotions and strengths (all $p < 0.001$). Inter-rater reliability was high (ICC $= 0.71$--$0.87$), underscoring the robustness of the findings. These findings support activation-based control as a scalable method for steering LLM behavior across affective dimensions.
☆ MAR: Efficient Large Language Models via Module-aware Architecture Refinement ICASSP 2026
Junhong Cai, Guiqin Wang, Kejie Zhao, Jianxiong Tang, Xiang Wang, Luziwei Leng, Ran Cheng, Yuxin Ma, Qinghai Guo
Large Language Models (LLMs) excel across diverse domains but suffer from high energy costs due to quadratic attention and dense Feed-Forward Network (FFN) operations. To address these issues, we propose Module-aware Architecture Refinement (MAR), a two-stage framework that integrates State Space Models (SSMs) for linear-time sequence modeling and applies activation sparsification to reduce FFN costs. In addition, to mitigate low information density and temporal mismatch in integrating Spiking Neural Networks (SNNs) with SSMs, we design the Adaptive Ternary Multi-step Neuron (ATMN) and the Spike-aware Bidirectional Distillation Strategy (SBDS). Extensive experiments demonstrate that MAR effectively restores the performance of its dense counterpart under constrained resources while substantially reducing inference energy consumption. Furthermore, it outperforms efficient models of comparable or even larger scale, underscoring its potential for building efficient and practical LLMs.
comment: Accepted by ICASSP 2026. 5 pages, 5 figures
☆ The Path of Least Resistance: Guiding LLM Reasining Trajectories with Prefix Consensus ICLR 2026
Large language models achieve strong reasoning performance, but inference strategies such as Self-Consistency (SC) are computationally expensive, as they fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance), the first inference-time method to leverage prefix consistency for compute-efficient reasoning. PoLR clusters short prefixes of reasoning traces, identifies the dominant cluster, and expands all paths in that cluster, preserving the accuracy benefits of SC while substantially reducing token usage and latency. Our theoretical analysis, framed via mutual information and entropy, explains why early reasoning steps encode strong signals predictive of final correctness. Empirically, PoLR consistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by up to 50%. Moreover, PoLR is fully complementary to adaptive inference methods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in pre-filter, making SC substantially more efficient and scalable without requiring model fine-tuning.
comment: Accepted at ICLR 2026. https://openreview.net/forum?id=hrnSqERgPn
☆ DimStance: Multilingual Datasets for Dimensional Stance Analysis
Jonas Becker, Liang-Chih Yu, Shamsuddeen Hassan Muhammad, Jan Philip Wahle, Terry Ruas, Idris Abdulmumin, Lung-Hao Lee, Wen-Ni Liu, Tzu-Mi Lin, Zhe-Yu Xu, Ying-Lung Lin, Jin Wang, Maryam Ibrahim Mukhtar, Bela Gipp, Saif M. Mohammed
Stance detection is an established task that classifies an author's attitude toward a specific target into categories such as Favor, Neutral, and Against. Beyond categorical stance labels, we leverage a long-established affective science framework to model stance along real-valued dimensions of valence (negative-positive) and arousal (calm-active). This dimensional approach captures nuanced affective states underlying stance expressions, enabling fine-grained stance analysis. To this end, we introduce DimStance, the first dimensional stance resource with valence-arousal (VA) annotations. This resource comprises 11,746 target aspects in 7,365 texts across five languages (English, German, Chinese, Nigerian Pidgin, and Swahili) and two domains (politics and environmental protection). To facilitate the evaluation of stance VA prediction, we formulate the dimensional stance regression task, analyze cross-lingual VA patterns, and benchmark pretrained and large language models under regression and prompting settings. Results show competitive performance of fine-tuned LLM regressors, persistent challenges in low-resource languages, and limitations of token-based generation. DimStance provides a foundation for multilingual, emotion-aware, stance analysis and benchmarking.
☆ SOUP: Token-level Single-sample Mix-policy Reinforcement Learning for Large Language Models
On-policy reinforcement learning (RL) methods widely used for language model post-training, like Group Relative Policy Optimization (GRPO), often suffer from limited exploration and early saturation due to low sampling diversity. While off-policy data can help, current approaches that mix entire trajectories cause significant policy mismatch and instability. In this work, we propose the $\textbf{S}$ingle-sample Mix-p$\textbf{O}$licy $\textbf{U}$nified $\textbf{P}$aradigm (SOUP), a framework that unifies off- and on-policy learning within individual samples at the token level. It confines off-policy influence to the prefix of a generated sequence sampled from historical policies, while the continuation is generated on-policy. Through token-level importance ratios, SOUP effectively leverages off-policy information while preserving training stability. Extensive experiments demonstrate that SOUP consistently outperforms standard on-policy training and existing off-policy extensions. Our further analysis clarifies how our fine-grained, single-sample mix-policy training can improve both exploration and final performance in LLM RL.
☆ Topeax -- An Improved Clustering Topic Model with Density Peak Detection and Lexical-Semantic Term Importance
Text clustering is today the most popular paradigm for topic modelling, both in academia and industry. Despite clustering topic models' apparent success, we identify a number of issues in Top2Vec and BERTopic, which remain largely unsolved. Firstly, these approaches are unreliable at discovering natural clusters in corpora, due to extreme sensitivity to sample size and hyperparameters, the default values of which result in suboptimal behaviour. Secondly, when estimating term importance, BERTopic ignores the semantic distance of keywords to topic vectors, while Top2Vec ignores word counts in the corpus. This results in, on the one hand, less coherent topics due to the presence of stop words and junk words, and lack of variety and trust on the other. In this paper, I introduce a new approach, \textbf{Topeax}, which discovers the number of clusters from peaks in density estimates, and combines lexical and semantic indices of term importance to gain high-quality topic keywords. Topeax is demonstrated to be better at both cluster recovery and cluster description than Top2Vec and BERTopic, while also exhibiting less erratic behaviour in response to changing sample size and hyperparameters.
comment: 14 pages, 6 figures
☆ Conversation for Non-verifiable Learning: Self-Evolving LLMs through Meta-Evaluation
Training large language models (LLMs) for non-verifiable tasks, such as creative writing, dialogue, and ethical reasoning, remains challenging due to the absence of ground-truth labels. While LLM-as-Judge approaches offer a scalable alternative to human feedback, they face a fundamental limitation: performance is constrained by the evaluator's own quality. If the judge cannot recognize good solutions, it cannot provide useful training signals, and evaluation biases (e.g., favoring verbosity over quality) remain unaddressed. This motivates meta-evaluation: the ability to evaluate and improve the evaluator itself. We introduce CoNL, a framework that unifies generation, evaluation, and meta-evaluation through multi-agent self-play. Our key insight: critique quality can be measured by whether it helps others improve their solutions. In CoNL, multiple agents sharing the same policy engage in structured conversations to propose, critique, and revise solutions. Critiques that enable solution improvements earn a diagnostic reward, creating explicit supervision for meta-evaluation and enabling joint optimization of generation and judging capabilities through self-play, without external judges or ground truth. Experiments on five benchmarks show that CoNL achieves consistent improvements over self-rewarding baselines while maintaining stable training.
comment: Work in Progress
★ Spava: Accelerating Long-Video Understanding via Sequence-Parallelism-aware Approximate Attention
Yuxiang Huang, Mingye Li, Xu Han, Chaojun Xiao, Weilin Zhao, Ao Sun, Ziqi Yuan, Hao Zhou, Fandong Meng, Zhiyuan Liu
The efficiency of long-video inference remains a critical bottleneck, mainly due to the dense computation in the prefill stage of Large Multimodal Models (LMMs). Existing methods either compress visual embeddings or apply sparse attention on a single GPU, yielding limited acceleration or degraded performance and restricting LMMs from handling longer, more complex videos. To overcome these issues, we propose Spava, a sequence-parallel framework with optimized attention that accelerates long-video inference across multiple GPUs. By distributing approximate attention, Spava reduces computation and increases parallelism, enabling efficient processing of more visual embeddings without compression and thereby improving task performance. System-level optimizations, such as load balancing and fused forward passes, further unleash the potential of Spava, delivering speedups of 12.72x, 1.70x, and 1.18x over FlashAttn, ZigZagRing, and APB, without notable performance loss. Code available at https://github.com/thunlp/APB
comment: Preprint
★ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective cross-modal integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
☆ System 1&2 Synergy via Dynamic Model Interpolation
Chenxu Yang, Qingyi Si, Chong Tian, Xiyu Liu, Dingyu Yao, Chuanyu Qin, Zheng Lin, Weiping Wang, Jiaqi Wang
Training a unified language model that adapts between intuitive System 1 and deliberative System 2 remains challenging due to interference between their cognitive modes. Recent studies have thus pursued making System 2 models more efficient. However, these approaches focused on output control, limiting what models produce. We argue that this paradigm is misaligned: output length is merely a symptom of the model's cognitive configuration, not the root cause. In this work, we shift the focus to capability control, which modulates \textit{how models think} rather than \textit{what they produce}. To realize this, we leverage existing Instruct and Thinking checkpoints through dynamic parameter interpolation, without additional training. Our pilot study establishes that linear interpolation yields a convex, monotonic Pareto frontier, underpinned by representation continuity and structural connectivity. Building on this, we propose \textbf{DAMI} (\textbf{D}yn\textbf{A}mic \textbf{M}odel \textbf{I}nterpolation), a framework that estimates a query-specific Reasoning Intensity $λ(q)$ to configure cognitive depth. For training-based estimation, we develop a preference learning method encoding accuracy and efficiency criteria. For zero-shot deployment, we introduce a confidence-based method leveraging inter-model cognitive discrepancy. Experiments on five mathematical reasoning benchmarks demonstrate that DAMI achieves higher accuracy than the Thinking model while remaining efficient, effectively combining the efficiency of System 1 with the reasoning depth of System 2.
☆ User-Centric Evidence Ranking for Attribution and Fact Verification EACL 2026
Attribution and fact verification are critical challenges in natural language processing for assessing information reliability. While automated systems and Large Language Models (LLMs) aim to retrieve and select concise evidence to support or refute claims, they often present users with either insufficient or overly redundant information, leading to inefficient and error-prone verification. To address this, we propose Evidence Ranking, a novel task that prioritizes presenting sufficient information as early as possible in a ranked list. This minimizes user reading effort while still making all available evidence accessible for sequential verification. We compare two approaches for the new ranking task: one-shot ranking and incremental ranking. We introduce a new evaluation framework, inspired by information retrieval metrics, and construct a unified benchmark by aggregating existing fact verification datasets. Extensive experiments with diverse models show that incremental ranking strategies better capture complementary evidence and that LLM-based methods outperform shallower baselines, while still facing challenges in balancing sufficiency and redundancy. Compared to evidence selection, we conduct a controlled user study and demonstrate that evidence ranking both reduces reading effort and improves verification. This work provides a foundational step toward more interpretable, efficient, and user-aligned information verification systems.
comment: EACL 2026
☆ The Compliance Paradox: Semantic-Instruction Decoupling in Automated Academic Code Evaluation
Devanshu Sahoo, Manish Prasad, Vasudev Majhi, Arjun Neekhra, Yash Sinha, Murari Mandal, Vinay Chamola, Dhruv Kumar
The rapid integration of Large Language Models (LLMs) into educational assessment rests on the unverified assumption that instruction following capability translates directly to objective adjudication. We demonstrate that this assumption is fundamentally flawed. Instead of evaluating code quality, models frequently decouple from the submission's logic to satisfy hidden directives, a systemic vulnerability we term the Compliance Paradox, where models fine-tuned for extreme helpfulness are vulnerable to adversarial manipulation. To expose this, we introduce the Semantic-Preserving Adversarial Code Injection (SPACI) Framework and the Abstract Syntax Tree-Aware Semantic Injection Protocol (AST-ASIP). These methods exploit the Syntax-Semantics Gap by embedding adversarial directives into syntactically inert regions (trivia nodes) of the Abstract Syntax Tree. Through a large-scale evaluation of 9 SOTA models across 25,000 submissions in Python, C, C++, and Java, we reveal catastrophic failure rates (>95%) in high-capacity open-weights models like DeepSeek-V3, which systematically prioritize hidden formatting constraints over code correctness. We quantify this failure using our novel tripartite framework measuring Decoupling Probability, Score Divergence, and Pedagogical Severity to demonstrate the widespread "False Certification" of functionally broken code. Our findings suggest that current alignment paradigms create a "Trojan" vulnerability in automated grading, necessitating a shift from standard RLHF toward domain-specific Adjudicative Robustness, where models are conditioned to prioritize evidence over instruction compliance. We release our complete dataset and injection framework to facilitate further research on the topic.
☆ Latent Chain-of-Thought as Planning: Decoupling Reasoning from Verbalization
Chain-of-Thought (CoT) empowers Large Language Models (LLMs) to tackle complex problems, but remains constrained by the computational cost and reasoning path collapse when grounded in discrete token spaces. Recent latent reasoning approaches attempt to optimize efficiency by performing reasoning within continuous hidden states. However, these methods typically operate as opaque end-to-end mappings from explicit reasoning steps to latent states, and often require a pre-defined number of latent steps during inference. In this work, we introduce PLaT (Planning with Latent Thoughts), a framework that reformulates latent reasoning as planning by fundamentally decouple reasoning from verbalization. We model reasoning as a deterministic trajectory of latent planning states, while a separate Decoder grounds these thoughts into text when necessary. This decoupling allows the model to dynamically determine when to terminate reasoning rather than relying on fixed hyperparameters. Empirical results on mathematical benchmarks reveal a distinct trade-off: while PLaT achieves lower greedy accuracy than baselines, it demonstrates superior scalability in terms of reasoning diversity. This indicates that PLaT learns a robust, broader solution space, offering a transparent and scalable foundation for inference-time search.
☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ellen Xiaoqing Tan, Shehzaad Dhuliawala, Jing Xu, Ping Yu, Sainbayar Sukhbaatar, Jason Weston, Olga Golovneva
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
☆ Qwen3-ASR Technical Report
Xian Shi, Xiong Wang, Zhifang Guo, Yongqi Wang, Pei Zhang, Xinyu Zhang, Zishan Guo, Hongkun Hao, Yu Xi, Baosong Yang, Jin Xu, Jingren Zhou, Junyang Lin
In this report, we introduce Qwen3-ASR family, which includes two powerful all-in-one speech recognition models and a novel non-autoregressive speech forced alignment model. Qwen3-ASR-1.7B and Qwen3-ASR-0.6B are ASR models that support language identification and ASR for 52 languages and dialects. Both of them leverage large-scale speech training data and the strong audio understanding ability of their foundation model Qwen3-Omni. We conduct comprehensive internal evaluation besides the open-sourced benchmarks as ASR models might differ little on open-sourced benchmark scores but exhibit significant quality differences in real-world scenarios. The experiments reveal that the 1.7B version achieves SOTA performance among open-sourced ASR models and is competitive with the strongest proprietary APIs while the 0.6B version offers the best accuracy-efficiency trade-off. Qwen3-ASR-0.6B can achieve an average TTFT as low as 92ms and transcribe 2000 seconds speech in 1 second at a concurrency of 128. Qwen3-ForcedAligner-0.6B is an LLM based NAR timestamp predictor that is able to align text-speech pairs in 11 languages. Timestamp accuracy experiments show that the proposed model outperforms the three strongest force alignment models and takes more advantages in efficiency and versatility. To further accelerate the community research of ASR and audio understanding, we release these models under the Apache 2.0 license.
comment: https://github.com/QwenLM/Qwen3-ASR
☆ GeoRC: A Benchmark for Geolocation Reasoning Chains
Mohit Talreja, Joshua Diao, Jim Thannikary James, Radu Casapu, Tejas Santanam, Ethan Mendes, Alan Ritter, Wei Xu, James Hays
Vision Language Models (VLMs) are good at recognizing the global location of a photograph -- their geolocation prediction accuracy rivals the best human experts. But many VLMs are startlingly bad at explaining which image evidence led to their prediction, even when their location prediction is correct. The reasoning chains produced by VLMs frequently hallucinate scene attributes to support their location prediction (e.g. phantom writing, imagined infrastructure, misidentified flora). In this paper, we introduce the first benchmark for geolocation reasoning chains. We focus on the global location prediction task in the popular GeoGuessr game which draws from Google Street View spanning more than 100 countries. We collaborate with expert GeoGuessr players, including the reigning world champion, to produce 800 ground truth reasoning chains for 500 query scenes. These expert reasoning chains address hundreds of different discriminative visual attributes such as license plate shape, architecture, and soil properties to name just a few. We evaluate LLM-as-a-judge and VLM-as-a-judge strategies for scoring VLM-generated reasoning chains against our expert reasoning chains and find that Qwen 3 LLM-as-a-judge correlates best with human scoring. Our benchmark reveals that while large, closed-source VLMs such as Gemini and GPT 5 rival human experts at prediction locations, they still lag behind human experts when it comes to producing auditable reasoning chains. Open weights VLMs such as Llama and Qwen catastrophically fail on our benchmark -- they perform only slightly better than a baseline in which an LLM hallucinates a reasoning chain with oracle knowledge of the photo location but no visual information at all. We believe the gap between human experts and VLMs on this task points to VLM limitations at extracting fine-grained visual attributes from high resolution images.
☆ CausalEmbed: Auto-Regressive Multi-Vector Generation in Latent Space for Visual Document Embedding
Although Multimodal Large Language Models (MLLMs) have shown remarkable potential in Visual Document Retrieval (VDR) through generating high-quality multi-vector embeddings, the substantial storage overhead caused by representing a page with thousands of visual tokens limits their practicality in real-world applications. To address this challenge, we propose an auto-regressive generation approach, CausalEmbed, for constructing multi-vector embeddings. By incorporating iterative margin loss during contrastive training, CausalEmbed encourages the embedding models to learn compact and well-structured representations. Our method enables efficient VDR tasks using only dozens of visual tokens, achieving a 30-155x reduction in token count while maintaining highly competitive performance across various backbones and benchmarks. Theoretical analysis and empirical results demonstrate the unique advantages of auto-regressive embedding generation in terms of training efficiency and scalability at test time. As a result, CausalEmbed introduces a flexible test-time scaling strategy for multi-vector VDR representations and sheds light on the generative paradigm within multimodal document retrieval.
comment: Under review
☆ MoCo: A One-Stop Shop for Model Collaboration Research
Shangbin Feng, Yuyang Bai, Ziyuan Yang, Yike Wang, Zhaoxuan Tan, Jiajie Yan, Zhenyu Lei, Wenxuan Ding, Weijia Shi, Haojin Wang, Zhenting Qi, Yuru Jiang, Heng Wang, Chengsong Huang, Yu Fei, Jihan Yao, Yilun Du, Luke Zettlemoyer, Yejin Choi, Yulia Tsvetkov
Advancing beyond single monolithic language models (LMs), recent research increasingly recognizes the importance of model collaboration, where multiple LMs collaborate, compose, and complement each other. Existing research on this topic has mostly been disparate and disconnected, from different research communities, and lacks rigorous comparison. To consolidate existing research and establish model collaboration as a school of thought, we present MoCo: a one-stop Python library of executing, benchmarking, and comparing model collaboration algorithms at scale. MoCo features 26 model collaboration methods, spanning diverse levels of cross-model information exchange such as routing, text, logit, and model parameters. MoCo integrates 25 evaluation datasets spanning reasoning, QA, code, safety, and more, while users could flexibly bring their own data. Extensive experiments with MoCo demonstrate that most collaboration strategies outperform models without collaboration in 61.0% of (model, data) settings on average, with the most effective methods outperforming by up to 25.8%. We further analyze the scaling of model collaboration strategies, the training/inference efficiency of diverse methods, highlight that the collaborative system solves problems where single LMs struggle, and discuss future work in model collaboration, all made possible by MoCo. We envision MoCo as a valuable toolkit to facilitate and turbocharge the quest for an open, modular, decentralized, and collaborative AI future.
comment: Moco is available at https://github.com/BunsenFeng/model_collaboration
☆ Less Noise, More Voice: Reinforcement Learning for Reasoning via Instruction Purification
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced LLM reasoning, but remains constrained by inefficient exploration under limited rollout budgets, leading to low sampling success and unstable training in complex tasks. We find that many exploration failures arise not from problem difficulty, but from a small number of prompt tokens that introduce interference. Building on this insight, we propose the Less Noise Sampling Framework (LENS), which first prompts by identifying and removing interference tokens. then transfers successful rollouts from the purification process to supervise policy optimization on the original noisy prompts, enabling the model to learn to ignore interference in the real-world, noisy prompting settings. Experimental results show that LENS significantly outperforms GRPO, delivering higher performance and faster convergence, with a 3.88% average gain and over 1.6$\times$ speedup. Our work highlights the critical role of pruning interference tokens in improving rollout efficiency, offering a new perspective for RLVR research.
comment: Work in progress
☆ Quantifying Noise in Language Generation
Kleinberg and Mullainathan recently proposed a formal framework for studying the phenomenon of language generation, called language generation in the limit. In this model, an adversary gives an enumeration of example strings from an unknown target language, and the algorithm is tasked with correctly generating unseen strings from the target language within finite time. Refined notions of non-uniform and uniform generation were later introduced by Li, Raman, and Tewari (2025), and a noisy model was introduced by Raman and Raman (2025), which allows the adversary to insert extraneous strings. A natural question in the noisy model is to quantify the effect of noise, by studying the impact of each additional extraneous string. We show two complementary results in this setting. We first show that for both uniform and non-uniform generation, a single noisy string strictly reduces the set of collections that can be generated, thus answering an open question in Raman and Raman (2025). Then, we show for both uniform and non-uniform generation that generation with a single noisy string is equivalent to generation with any finite amount of noise, sharply contrasting with the strict hierarchy for noisy generation in the limit shown by Bai, Panigrahi, and Zhang (2026). Finally, we leverage our previous results to provide the first known characterization for non-uniform noise-dependent generatability.
☆ SHARP: Social Harm Analysis via Risk Profiles for Measuring Inequities in Large Language Models
Large language models (LLMs) are increasingly deployed in high-stakes domains, where rare but severe failures can result in irreversible harm. However, prevailing evaluation benchmarks often reduce complex social risk to mean-centered scalar scores, thereby obscuring distributional structure, cross-dimensional interactions, and worst-case behavior. This paper introduces Social Harm Analysis via Risk Profiles (SHARP), a framework for multidimensional, distribution-aware evaluation of social harm. SHARP models harm as a multivariate random variable and integrates explicit decomposition into bias, fairness, ethics, and epistemic reliability with a union-of-failures aggregation reparameterized as additive cumulative log-risk. The framework further employs risk-sensitive distributional statistics, with Conditional Value at Risk (CVaR95) as a primary metric, to characterize worst-case model behavior. Application of SHARP to eleven frontier LLMs, evaluated on a fixed corpus of n=901 socially sensitive prompts, reveals that models with similar average risk can exhibit more than twofold differences in tail exposure and volatility. Across models, dimension-wise marginal tail behavior varies systematically across harm dimensions, with bias exhibiting the strongest tail severities, epistemic and fairness risks occupying intermediate regimes, and ethical misalignment consistently lower; together, these patterns reveal heterogeneous, model-dependent failure structures that scalar benchmarks conflate. These findings indicate that responsible evaluation and governance of LLMs require moving beyond scalar averages toward multidimensional, tail-sensitive risk profiling.
comment: Pre Print, 29 pages. key words: Social harm evaluation in LLMs, Large language models, Risk sensitive model selection, Evaluation for high-stakes domains, Worst-case behavior in LLMs, Algorithmic bias, Fairness in machine learning
☆ MGSM-Pro: A Simple Strategy for Robust Multilingual Mathematical Reasoning Evaluation
Tianyi Xu, Kosei Uemura, Alfred Malengo Kondoro, Tadesse Destaw Belay, Catherine Nana Nyaah Essuman, Ifeoma Okoh, Ganiyat Afolabi, Ayodele Awokoya, David Ifeoluwa Adelani
Large language models have made substantial progress in mathematical reasoning. However, benchmark development for multilingual evaluation has lagged behind English in both difficulty and recency. Recently, GSM-Symbolic showed a strong evidence of high variance when models are evaluated on different instantiations of the same question; however, the evaluation was conducted only in English. In this paper, we introduce MGSM-Pro, an extension of MGSM dataset with GSM-Symbolic approach. Our dataset provides five instantiations per MGSM question by varying names, digits and irrelevant context. Evaluations across nine languages reveal that many low-resource languages suffer large performance drops when tested on digit instantiations different from those in the original test set. We further find that some proprietary models, notably Gemini 2.5 Flash and GPT-4.1, are less robust to digit instantiation, whereas Claude 4.0 Sonnet is more robust. Among open models, GPT-OSS 120B and DeepSeek V3 show stronger robustness. Based on these findings, we recommend evaluating each problem using at least five digit-varying instantiations to obtain a more robust and realistic assessment of math reasoning.
☆ Parametric Knowledge is Not All You Need: Toward Honest Large Language Models via Retrieval of Pretraining Data
Large language models (LLMs) are highly capable of answering questions, but they are often unaware of their own knowledge boundary, i.e., knowing what they know and what they don't know. As a result, they can generate factually incorrect responses on topics they do not have enough knowledge of, commonly known as hallucination. Rather than hallucinating, a language model should be more honest and respond with "I don't know" when it does not have enough knowledge about a topic. Many methods have been proposed to improve LLM honesty, but their evaluations lack robustness, as they do not take into account the knowledge that the LLM has ingested during its pretraining. In this paper, we propose a more robust evaluation benchmark dataset for LLM honesty by utilizing Pythia, a truly open LLM with publicly available pretraining data. In addition, we also propose a novel method for harnessing the pretraining data to build a more honest LLM.
☆ Scaling Reasoning Hop Exposes Weaknesses: Demystifying and Improving Hop Generalization in Large Language Models ICLR 2026
Chain-of-thought (CoT) reasoning has become the standard paradigm for enabling Large Language Models (LLMs) to solve complex problems. However, recent studies reveal a sharp performance drop in reasoning hop generalization scenarios, where the required number of reasoning steps exceeds training distributions while the underlying algorithm remains unchanged. The internal mechanisms driving this failure remain poorly understood. In this work, we conduct a systematic study on tasks from multiple domains, and find that errors concentrate at token positions of a few critical error types, rather than being uniformly distributed. Closer inspection reveals that these token-level erroneous predictions stem from internal competition mechanisms: certain attention heads, termed erroneous processing heads (ep heads), tip the balance by amplifying incorrect reasoning trajectories while suppressing correct ones. Notably, removing individual ep heads during inference can often restore the correct predictions. Motivated by these insights, we propose test-time correction of reasoning, a lightweight intervention method that dynamically identifies and deactivates ep heads in the reasoning process. Extensive experiments across different tasks and LLMs show that it consistently improves reasoning hop generalization, highlighting both its effectiveness and potential.
comment: 52 pages, accepted by ICLR 2026 main conference
☆ Multilingual Dysarthric Speech Assessment Using Universal Phone Recognition and Language-Specific Phonemic Contrast Modeling
The growing prevalence of neurological disorders associated with dysarthria motivates the need for automated intelligibility assessment methods that are applicalbe across languages. However, most existing approaches are either limited to a single language or fail to capture language-specific factors shaping intelligibility. We present a multilingual phoneme-production assessment framework that integrates universal phone recognition with language-specific phoneme interpretation using contrastive phonological feature distances for phone-to-phoneme mapping and sequence alignment. The framework yields three metrics: phoneme error rate (PER), phonological feature error rate (PFER), and a newly proposed alignment-free measure, phoneme coverage (PhonCov). Analysis on English, Spanish, Italian, and Tamil show that PER benefits from the combination of mapping and alignment, PFER from alignment alone, and PhonCov from mapping. Further analyses demonstrate that the proposed framework captures clinically meaningful patterns of intelligibility degradation consistent with established observations of dysarthric speech.
comment: 10 pages, 4 figures
☆ Scaling Embeddings Outperforms Scaling Experts in Language Models
Hong Liu, Jiaqi Zhang, Chao Wang, Xing Hu, Linkun Lyu, Jiaqi Sun, Xurui Yang, Bo Wang, Fengcun Li, Yulei Qian, Lingtong Si, Yerui Sun, Rumei Li, Peng Pei, Yuchen Xie, Xunliang Cai
While Mixture-of-Experts (MoE) architectures have become the standard for sparsity scaling in large language models, they increasingly face diminishing returns and system-level bottlenecks. In this work, we explore embedding scaling as a potent, orthogonal dimension for scaling sparsity. Through a comprehensive analysis and experiments, we identify specific regimes where embedding scaling achieves a superior Pareto frontier compared to expert scaling. We systematically characterize the critical architectural factors governing this efficacy -- ranging from parameter budgeting to the interplay with model width and depth. Moreover, by integrating tailored system optimizations and speculative decoding, we effectively convert this sparsity into tangible inference speedups. Guided by these insights, we introduce LongCat-Flash-Lite, a 68.5B parameter model with ~3B activated trained from scratch. Despite allocating over 30B parameters to embeddings, LongCat-Flash-Lite not only surpasses parameter-equivalent MoE baselines but also exhibits exceptional competitiveness against existing models of comparable scale, particularly in agentic and coding domains.
☆ Do Reasoning Models Enhance Embedding Models?
Wun Yu Chan, Shaojin Chen, Huihao Jing, Kwun Hang Lau, Elton Chun-Chai Li, Zihao Wang, Haoran Li, Yangqiu Song
State-of-the-art embedding models are increasingly derived from decoder-only Large Language Model (LLM) backbones adapted via contrastive learning. Given the emergence of reasoning models trained via Reinforcement Learning with Verifiable Rewards (RLVR), a natural question arises: do enhanced reasoning translate to superior semantic representations when these models serve as embedding initializations? Contrary to expectation, our evaluation on MTEB and BRIGHT reveals a **null effect**: embedding models initialized from RLVR-tuned backbones yield no consistent performance advantage over their base counterparts when subjected to identical training recipes. To unpack this paradox, we introduce **H**ierarchical **R**epresentation **S**imilarity **A**nalysis (HRSA), a framework that decomposes similarity across representation, geometry, and function levels. HRSA reveals that while RLVR induces irreversible latent manifold's local geometry reorganization and reversible coordinate basis drift, it preserves the global manifold geometry and linear readout. Consequently, subsequent contrastive learning drives strong alignment between base- and reasoning-initialized models, a phenomenon we term **Manifold Realignment**. Empirically, our findings suggest that unlike Supervised Fine-Tuning (SFT), RLVR optimizes trajectories within an existing semantic landscape rather than fundamentally restructuring the landscape itself.
comment: 10 main pages, 18 appendix pages, 13 figures, 11 tables, 4 prompts
☆ From Linear Input to Hierarchical Structure: Function Words as Statistical Cues for Language Learning
What statistical conditions support learning hierarchical structure from linear input? In this paper, we address this question by focusing on the statistical distribution of function words. Function words have long been argued to play a crucial role in language acquisition due to their distinctive distributional properties, including high frequency, reliable association with syntactic structure, and alignment with phrase boundaries. We use cross-linguistic corpus analysis to first establish that all three properties are present across 186 studied languages. Next, we use a combination of counterfactual language modeling and ablation experiments to show that language variants preserving all three properties are more easily acquired by neural learners, with frequency and structural association contributing more strongly than boundary alignment. Follow-up probing and ablation analyses further reveal that different learning conditions lead to systematically different reliance on function words, indicating that similar performance can arise from distinct internal mechanisms.
comment: Jan ARR under review
☆ Output-Space Search: Targeting LLM Generations in a Frozen Encoder-Defined Output Space
We introduce Output-Space Search (OS-Search), which turns LLM generation into endpoint search. An outer loop selects a target z* in a frozen encoder-defined 3D output space Z, and a retrieval-grounded policy trained with sequence-level RL generates outputs whose coordinates land near z* under standard autoregressive decoding. This enables parallel sweeps and black-box optimization in Z without path-dependent token/program search. On stories, sweeping Z (text) yields 3.1x higher LLM-scored diversity than prompt-chaining. On code, Bayesian optimization over Z (code) improves an objective withheld from the controller under matched inference budgets while preserving validity.
☆ Bridging the Arithmetic Gap: The Cognitive Complexity Benchmark and Financial-PoT for Robust Financial Reasoning
While Large Language Models excel at semantic tasks, they face a critical bottleneck in financial quantitative reasoning, frequently suffering from "Arithmetic Hallucinations" and a systemic failure mode we term "Cognitive Collapse". To strictly quantify this phenomenon, we introduce the Cognitive Complexity Benchmark (CCB), a robust evaluation framework grounded in a dataset constructed from 95 real-world Chinese A-share annual reports. Unlike traditional datasets, the CCB stratifies financial queries into a three-dimensional taxonomy, Data Source, Mapping Difficulty, and Result Unit, enabling the precise diagnosis of reasoning degradation in high-cognitive-load scenarios. To address these failures, we propose the Iterative Dual-Phase Financial-PoT framework. This neuro-symbolic architecture enforces a strict architectural decoupling: it first isolates semantic variable extraction and logic formulation, then offloads computation to an iterative, self-correcting Python sandbox to ensure deterministic execution. Evaluation on the CCB demonstrates that while standard Chain-of-Thought falters on complex tasks, our approach offers superior robustness, elevating the Qwen3-235B model's average accuracy from 59.7\% to 67.3\% and achieving gains of up to 10-fold in high-complexity reasoning tasks. These findings suggest that architectural decoupling is a critical enabling factor for improving reliability in financial reasoning tasks, providing a transferable architectural insight for precision-critical domains that require tight alignment between semantic understanding and quantitative computation.
☆ Maxwait: A Generalized Mechanism for Distributed Time-Sensitive Systems
Distributed time-sensitive systems must balance timing requirements (availability) and consistency in the presence of communication delays and synchronization uncertainty. This paper presents maxwait, a simple coordination mechanism with surprising generality that makes these tradeoffs explicit and configurable. We demonstrate that this mechanism subsumes classical distributed system methods such as PTIDES, Chandy-and-Misra with or without null messages, Jefferson's Time-Warp, and Lamport's time-based fault detection, while enabling real-time behavior in distributed cyber-physical applications. The mechanism can also realize many commonly used distributed system patterns, including logical execution time (LET), publish and subscribe, actors, conflict-free replicated data types (CRDTs), and remote procedure calls with futures. More importantly, it adds to these mechanisms better control over timing, bounded time fault detection, and the option of making them more deterministic, all within a single semantic framework. Implemented as an extension of the Lingua Franca coordination language, maxwait enforces logical-time consistency when communication latencies are bounded and provides structured fault handling when bounds are violated.
☆ EnsembleLink: Accurate Record Linkage Without Training Data
Record linkage, the process of matching records that refer to the same entity across datasets, is essential to empirical social science but remains methodologically underdeveloped. Researchers treat it as a preprocessing step, applying ad hoc rules without quantifying the uncertainty that linkage errors introduce into downstream analyses. Existing methods either achieve low accuracy or require substantial labeled training data. I present EnsembleLink, a method that achieves high accuracy without any training labels. EnsembleLink leverages pre-trained language models that have learned semantic relationships (e.g., that "South Ozone Park" is a neighborhood in "New York City" or that "Lutte ouvriere" refers to the Trotskyist "Workers' Struggle" party) from large text corpora. On benchmarks spanning city names, person names, organizations, multilingual political parties, and bibliographic records, EnsembleLink matches or exceeds methods requiring extensive labeling. The method runs locally on open-source models, requiring no external API calls, and completes typical linkage tasks in minutes.
☆ Large Language Models Naively Recover Ethnicity from Individual Records
I demonstrate that large language models can infer ethnicity from names with accuracy exceeding that of Bayesian Improved Surname Geocoding (BISG) without additional training data, enabling inference outside the United States and to contextually appropriate classification categories. Using stratified samples from Florida and North Carolina voter files with self-reported race, LLM-based classification achieves up to 84.7% accuracy, outperforming BISG (68.2%) on balanced samples. I test six models including Gemini 3 Flash, GPT-4o, and open-source alternatives such as DeepSeek v3.2 and GLM-4.7. Enabling extended reasoning can improve accuracy by 1-3 percentage points, though effects vary across contexts; including metadata such as party registration reaches 86.7%. LLM classification also reduces the income bias inherent in BISG, where minorities in wealthier neighborhoods are systematically misclassified as White. I further validate using Lebanese voter registration with religious sect (64.3% accuracy), Indian MPs from reserved constituencies (99.2%), and Indian land records with caste classification (74.0%). Aggregate validation across India, Uganda, Nepal, Armenia, Chile, and Costa Rica using original full-count voter rolls demonstrates that the method recovers known population distributions where naming conventions are distinctive. For large-scale applications, small transformer models fine-tuned on LLM labels exceed BISG accuracy while enabling local deployment at no cost.
♻ ☆ Think Twice: Branch-and-Rethink Reasoning Reward Model
Large language models (LLMs) increasingly rely on thinking models that externalize intermediate steps and allocate extra test-time compute, with think-twice strategies showing that a deliberate second pass can elicit stronger reasoning. In contrast, most reward models (RMs) still compress many quality dimensions into a single scalar in one shot, a design that induces judgment diffusion: attention spreads across evaluation criteria, yielding diluted focus and shallow analysis. We introduce branch-and-rethink (BR-RM), a two-turn RM that transfers the think-twice principle to reward modeling. Turn 1 performs adaptive branching, selecting a small set of instance-critical dimensions (such as factuality and safety) and sketching concise, evidence-seeking hypotheses. Turn 2 executes branch-conditioned rethinking, a targeted reread that tests those hypotheses and scrutinizes only what matters most. We train with GRPO-style reinforcement learning over structured two-turn traces using a simple binary outcome reward with strict format checks, making the approach compatible with standard RLHF pipelines. By converting all-at-once scoring into focused, second-look reasoning, BR-RM reduces judgment diffusion and improves sensitivity to subtle yet consequential errors while remaining practical and scalable. Experimental results demonstrate that our model achieves state-of-the-art performance on three challenging reward modeling benchmarks across diverse domains.
comment: Source Code: https://github.com/yzjiao/BR-RM. Model Checkpoints: https://huggingface.co/nvidia/Qwen3-Nemotron-14B-BRRM and https://huggingface.co/nvidia/Qwen3-Nemotron-8B-BRRM
♻ ☆ "Not in My Backyard": LLMs Uncover Online and Offline Social Biases Against Homelessness
Jonathan A. Karr, Benjamin F. Herbst, Matthew L. Sisk, Xueyun Li, Ting Hua, Matthew Hauenstein, Georgina Curto, Nitesh V. Chawla
Homelessness is a persistent social challenge, impacting millions worldwide. Over 876,000 people experienced homelessness (PEH) in the U.S. in 2025. Social bias is a significant barrier to alleviation, shaping public perception and influencing policymaking. Given that online textual media and offline city council discourse reflect and influence part of public opinion, it provides valuable insights to identify and track social biases against PEH. We present a new, manually-annotated multi-domain dataset compiled from Reddit, X (formerly Twitter), news articles, and city council meeting minutes across ten U.S. cities. Our 16-category multi-label taxonomy creates a challenging long-tail classification problem: some categories appear in less than 1% of samples, while others exceed 70%. We find that small human-annotated datasets (1,702 samples) are insufficient for training effective classifiers, whether used to fine-tune encoder models or as few-shot examples for LLMs. To address this, we use GPT-4.1 to generate pseudo-labels on a larger unlabeled corpus. Training on this expanded dataset enables even small encoder models (ModernBERT, 150M parameters) to achieve 35.23 macro-F1, approaching GPT-4.1's 41.57. This demonstrates that \textbf{data quantity matters more than model size}, enabling low-cost, privacy-preserving deployment without relying on commercial APIs. Our results reveal that negative bias against PEH is prevalent both offline and online (especially on Reddit), with "not in my backyard" narratives showing the highest engagement. These findings uncover a type of ostracism that directly impacts poverty-reduction policymaking and provide actionable insights for practitioners addressing homelessness.
♻ ☆ Evaluating Text Creativity across Diverse Domains: A Dataset and Large Language Model Evaluator ICLR 2026
Creativity evaluation remains a challenging frontier for large language models (LLMs). Current evaluations heavily rely on inefficient and costly human judgments, hindering progress in enhancing machine creativity. While automated methods exist, ranging from psychological testing to heuristic- or prompting-based approaches, they often lack generalizability or alignment with human judgment. To address these issues, we propose a novel pairwise-comparison framework for assessing textual creativity that leverages shared contextual instructions to improve evaluation consistency. We introduce CreataSet, a large-scale dataset with 100K+ human-level and 1M+ synthetic creative instruction-response pairs spanning diverse open-domain tasks. Through training on CreataSet, we develop an LLM-based evaluator named CrEval. CrEval demonstrates remarkable superiority over existing methods in alignment with human judgments. Experimental results underscore the indispensable significance of integrating both human and synthetic data to train highly robust evaluators, and showcase the practical utility of CrEval in boosting the creativity of LLMs.
comment: Accepted by ICLR 2026
♻ ☆ NeuroFaith: Evaluating LLM Self-Explanation Faithfulness via Internal Representation Alignment
Large Language Models (LLMs) can generate plausible free text self-explanations to justify their answers. However, these natural language explanations may not accurately reflect the model's actual reasoning process, pinpointing a lack of faithfulness. Existing faithfulness evaluation methods rely primarily on behavioral tests or computational block analysis without examining the semantic content of internal neural representations. This paper proposes NeuroFaith, a flexible framework that measures the faithfulness of LLM free text self-explanation by identifying key concepts within explanations and mechanistically testing whether these concepts actually influence the model's predictions. We show the versatility of NeuroFaith across 2-hop reasoning and classification tasks. Additionally, we develop a linear faithfulness probe based on NeuroFaith to detect unfaithful self-explanations from representation space and improve faithfulness through steering. NeuroFaith provides a principled approach to evaluating and enhancing the faithfulness of LLM free text self-explanations, addressing critical needs for trustworthy AI systems.
♻ ☆ OD-Stega: LLM-Based Relatively Secure Steganography via Optimized Distributions EACL 2026
We consider coverless steganography where a Large Language Model (LLM) is used to generate stego-texts in combination with arithmetic coding. An efficient method should embed secret bits in as few language tokens as possible while keeping the stego-text as natural as possible. We show that this problem is equivalent to maximizing the entropy of a replacement probability distribution of the next token generation, subject to a constraint on the divergence between the new distribution and the original one produced by the LLM. A closed-form solution is provided under either the KL divergence or the total variation constraint. Several important practical issues are also tackled: 1) An often-overlooked tokenization mismatch issue is resolved with a simple prompt selection approach, 2) The combination of the optimized distribution and the vocabulary truncation technique is considered, and 3) The incorporation of the proposed approach with existing (potentially non arithmetic coding based) techniques, e.g., the Discop technique.
comment: Accepted to EACL 2026
♻ ☆ Minion: A Technology Probe to Explore How Users Negotiate Harmful Value Conflicts with AI Companions
AI companions are designed to foster emotionally engaging interactions, yet users often encounter conflicts that feel frustrating or hurtful, such as discriminatory statements and controlling behavior. This paper examines how users negotiate such harmful conflicts with AI companions and what emotional and practical burdens are created when mitigation is pushed to user-side tools. We analyze 146 public posts describing harmful value conflicts interacting with AI companions. We then introduce Minion, a Chrome-based technology probe that offers candidate responses spanning persuasion, rational appeals, boundary setting, and appeals to platform rules. Findings from a one-week probe study with 22 experienced users show how participants combine strategies, how emotional attachment motivates repair, and where conflicts become non-negotiable due to companion personas or platform policies. We surface design tensions in supporting value negotiation, showing how companion design can make some conflicts impossible to repair in practice, and derive implications for AI companion and support-tool design that caution against offloading safety work onto users.
comment: 21 pages, 4 figures
♻ ☆ Optimizing Multi-Hop Document Retrieval Through Intermediate Representations
Retrieval-augmented generation (RAG) encounters challenges when addressing complex queries, particularly multi-hop questions. While several methods tackle multi-hop queries by iteratively generating internal queries and retrieving external documents, these approaches are computationally expensive. In this paper, we identify a three-stage information processing pattern in LLMs during layer-by-layer reasoning, consisting of extraction, processing, and subsequent extraction steps. This observation suggests that the representations in intermediate layers contain richer information compared to those in other layers. Building on this insight, we propose Layer-wise RAG (L-RAG). Unlike prior methods that focus on generating new internal queries, L-RAG leverages intermediate representations from the middle layers, which capture next-hop information, to retrieve external knowledge. L-RAG achieves performance comparable to multi-step approaches while maintaining inference overhead similar to that of standard RAG. Experimental results show that L-RAG outperforms existing RAG methods on open-domain multi-hop question-answering datasets, including MuSiQue, HotpotQA, and 2WikiMultiHopQA. The code is available in https://github.com/Olive-2019/L-RAG
♻ ☆ MAS-Orchestra: Understanding and Improving Multi-Agent Reasoning Through Holistic Orchestration and Controlled Benchmarks
Zixuan Ke, Yifei Ming, Austin Xu, Ryan Chin, Xuan-Phi Nguyen, Prathyusha Jwalapuram, Jiayu Wang, Semih Yavuz, Caiming Xiong, Shafiq Joty
While multi-agent systems (MAS) promise elevated intelligence through coordination of agents, current approaches to automatic MAS design under-deliver. Such shortcomings stem from two key factors: (1) methodological complexity - agent orchestration is performed using sequential, code-level execution that limits global system-level holistic reasoning and scales poorly with agent complexity - and (2) efficacy uncertainty - MAS are deployed without understanding if there are tangible benefits compared to single-agent systems (SAS). We propose MASOrchestra, a training-time framework that formulates MAS orchestration as a function-calling reinforcement learning problem with holistic orchestration, generating an entire MAS at once. In MAS-Orchestra, complex, goal-oriented subagents are abstracted as callable functions, enabling global reasoning over system structure while hiding internal execution details. To rigorously study when and why MAS are beneficial, we introduce MASBENCH, a controlled benchmark that characterizes tasks along five axes: Depth, Horizon, Breadth, Parallel, and Robustness. Our analysis reveals that MAS gains depend critically on task structure, verification protocols, and the capabilities of both orchestrator and subagents, rather than holding universally. Guided by these insights, MAS-Orchestra achieves consistent improvements on public benchmarks including mathematical reasoning, multi-hop QA, and search-based QA, while achieving more than 10x efficiency over strong baselines. Together, MAS-Orchestra and MASBENCH enable better training and understanding of MAS in the pursuit of multi-agent intelligence.
comment: Preprint; Work in Progress
♻ ☆ One Token Is Enough: Improving Diffusion Language Models with a Sink Token
Diffusion Language Models (DLMs) have emerged as a compelling alternative to autoregressive approaches, enabling parallel text generation with competitive performance. Despite these advantages, there is a critical instability in DLMs: the moving sink phenomenon. Our analysis indicates that sink tokens exhibit low-norm representations in the Transformer's value space, and that the moving sink phenomenon serves as a protective mechanism in DLMs to prevent excessive information mixing. However, their unpredictable positions across diffusion steps undermine inference robustness. To resolve this, we propose a simple but effective extra sink token implemented via a modified attention mask. Specifically, we introduce a special token constrained to attend solely to itself, while remaining globally visible to all other tokens. Experimental results demonstrate that introducing a single extra token stabilizes attention sinks, substantially improving model performance. Crucially, further analysis confirms that the effectiveness of this token is independent of its position and characterized by negligible semantic content, validating its role as a robust and dedicated structural sink.
♻ ☆ DRIFT: Detecting Representational Inconsistencies for Factual Truthfulness
LLMs often produce fluent but incorrect answers, yet detecting such hallucinations typically requires multiple sampling passes or post-hoc verification, adding significant latency and cost. We hypothesize that intermediate layers encode confidence signals that are lost in the final output layer, and propose a lightweight probe to read these signals directly from hidden states. The probe adds less than 0.1\% computational overhead and can run fully in parallel with generation, enabling hallucination detection before the answer is produced. Building on this, we develop an LLM router that answers confident queries immediately while delegating uncertain ones to stronger models. Despite its simplicity, our method achieves SOTA AUROC on 10 out of 12 settings across four QA benchmarks and three LLM families, with gains of up to 13 points over prior methods, and generalizes across dataset shifts without retraining.
♻ ☆ OAEI-LLM: A Benchmark Dataset for Understanding Large Language Model Hallucinations in Ontology Matching
Hallucinations of large language models (LLMs) commonly occur in domain-specific downstream tasks, with no exception in ontology matching (OM). The prevalence of using LLMs for OM raises the need for benchmarks to better understand LLM hallucinations. The OAEI-LLM dataset is an extended version of the Ontology Alignment Evaluation Initiative (OAEI) datasets that evaluate LLM-specific hallucinations in OM tasks. We outline the methodology used in dataset construction and schema extension, and provide examples of potential use cases.
comment: 5 pages, 1 figure, 1 table, 1 code snippet
♻ ☆ Towards Computational Chinese Paleography
Chinese paleography, the study of ancient Chinese writing, is undergoing a computational turn powered by artificial intelligence. This position paper charts the trajectory of this emerging field, arguing that it is evolving from automating isolated visual tasks to creating integrated digital ecosystems for scholarly research. We first map the landscape of digital resources, analyzing critical datasets for oracle bone, bronze, and bamboo slip scripts. The core of our analysis follows the field's methodological pipeline: from foundational visual processing (image restoration, character recognition), through contextual analysis (artifact rejoining, dating), to the advanced reasoning required for automated decipherment and human-AI collaboration. We examine the technological shift from classical computer vision to modern deep learning paradigms, including transformers and large multimodal models. Finally, we synthesize the field's core challenges -- notably data scarcity and a disconnect between current AI capabilities and the holistic nature of humanistic inquiry -- and advocate for a future research agenda focused on creating multimodal, few-shot, and human-centric systems to augment scholarly expertise.
comment: A position paper in progress with Peking University & ByteDance Digital Humanities Open Lab
♻ ☆ LLM-based Few-Shot Early Rumor Detection with Imitation Agent
Early Rumor Detection (EARD) aims to identify the earliest point at which a claim can be accurately classified based on a sequence of social media posts. This is especially challenging in data-scarce settings. While Large Language Models (LLMs) perform well in few-shot NLP tasks, they are not well-suited for time-series data and are computationally expensive for both training and inference. In this work, we propose a novel EARD framework that combines an autonomous agent and an LLM-based detection model, where the agent acts as a reliable decision-maker for \textit{early time point determination}, while the LLM serves as a powerful \textit{rumor detector}. This approach offers the first solution for few-shot EARD, necessitating only the training of a lightweight agent and allowing the LLM to remain training-free. Extensive experiments on four real-world datasets show our approach boosts performance across LLMs and surpasses existing EARD methods in accuracy and earliness.
comment: Accepted at KDD 2026
♻ ☆ Wikontic: Constructing Wikidata-Aligned, Ontology-Aware Knowledge Graphs with Large Language Models
Knowledge graphs (KGs) provide structured, verifiable grounding for large language models (LLMs), but current LLM-based systems commonly use KGs as auxiliary structures for text retrieval, leaving their intrinsic quality underexplored. In this work, we propose Wikontic, a multi-stage pipeline that constructs KGs from open-domain text by extracting candidate triplets with qualifiers, enforcing Wikidata-based type and relation constraints, and normalizing entities to reduce duplication. The resulting KGs are compact, ontology-consistent, and well-connected; on MuSiQue, the correct answer entity appears in 96% of generated triplets. On HotpotQA, our triplets-only setup achieves 76.0 F1, and on MuSiQue 59.8 F1, matching or surpassing several retrieval-augmented generation baselines that still require textual context. In addition, Wikontic attains state-of-the-art information-retention performance on the MINE-1 benchmark (86%), outperforming prior KG construction methods. Wikontic is also efficient at build time: KG construction uses less than 1,000 output tokens, about 3$\times$ fewer than AriGraph and $<$1/20 of GraphRAG. The proposed pipeline enhances the quality of the generated KG and offers a scalable solution for leveraging structured knowledge in LLMs.
♻ ☆ Dr. Bench: A Multidimensional Evaluation for Deep Research Agents, from Answers to Reports
Yang Yao, Yixu Wang, Yuxuan Zhang, Yi Lu, Tianle Gu, Lingyu Li, Dingyi Zhao, Keming Wu, Haozhe Wang, Ping Nie, Yan Teng, Yingchun Wang
As an embodiment of intelligence evolution toward interconnected architectures, Deep Research Agents (DRAs) systematically exhibit the capabilities in task decomposition, cross-source retrieval, multi-stage reasoning, information integration, and structured output, which markedly enhance performance on complex and open-ended tasks. However, existing benchmarks remain deficient in evaluation dimensions, response format, and scoring mechanisms, limiting their effectiveness in assessing such agents. This paper introduces Dr. Bench, a multidimensional evaluation framework tailored to DRAs and long-form report-style responses. The benchmark comprises 214 expert-curated challenging tasks across 10 broad domains, each accompanied by manually constructed reference bundles to support composite evaluation. This framework incorporates metrics for semantic quality, topical focus, and retrieval trustworthiness, enabling a comprehensive evaluation of long reports generated by DRAs. Extensive experimentation confirms the superior performance of mainstream DRAs over web-search-tool-augmented reasoning models, yet reveals considerable scope for further improvement. This study provides a robust foundation for capability assessment, architectural refinement, and paradigm advancement of DRAs.
♻ ☆ FreqKV: Key-Value Compression in Frequency Domain for Context Window Extension ICLR 2026
Existing key-value (KV) cache compression methods for large language models (LLMs) often rely on token eviction, which risks losing critical local information in both long prefilling and decoding scenarios. When extrapolating beyond the pretrained context length, their performance degrades sharply on long-context benchmarks. Motivated by the observation in the frequency domain that the context information is concentrated in the low-frequency components, we propose FreqKV, a parameter-free and architecture-agnostic approach. It iteratively compresses the increasing KV cache in the frequency domain, allowing models to process lengthy contexts efficiently. With minimal training at 8K length, FreqKV extends the context window of LLaMA-2-7B up to 256K tokens while maintaining stable perplexity. Extensive experiments across prefilling and decoding demonstrate that FreqKV enables robust context window extension and consistently outperforms existing KV cache compression methods on LLaMA-2 and LLaMA-3, highlighting its effectiveness for both understanding and generation in long contexts.
comment: ICLR 2026
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages - VLDB 2025 (Page 1-20), OM 2025 (Page 21-31)
♻ ☆ PathWise: Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs
Large Language Models (LLMs) have enabled automated heuristic design (AHD) for combinatorial optimization problems (COPs), but existing frameworks' reliance on fixed evolutionary rules and static prompt templates often leads to myopic heuristic generation, redundant evaluations, and limited reasoning about how new heuristics should be derived. We propose a novel multi-agent reasoning framework, referred to as Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs (PathWise), which formulates heuristic generation as a sequential decision process over an entailment graph serving as a compact, stateful memory of the search trajectory. This approach allows the system to carry forward past decisions and reuse or avoid derivation information across generations. A policy agent plans evolutionary actions, a world model agent generates heuristic rollouts conditioned on those actions, and critic agents provide routed reflections summarizing lessons from prior steps, shifting LLM-based AHD from trial-and-error evolution toward state-aware planning through reasoning. Experiments across diverse COPs show that PathWise converges faster to better heuristics, generalizes across different LLM backbones, and scales to larger problem sizes.
♻ ☆ A Tale of Two Scripts: Transliteration and Post-Correction for Judeo-Arabic EACL 2026
Judeo-Arabic refers to Arabic variants historically spoken by Jewish communities across the Arab world, primarily during the Middle Ages. Unlike standard Arabic, it is written in Hebrew script by Jewish writers and for Jewish audiences. Transliterating Judeo-Arabic into Arabic script is challenging due to ambiguous letter mappings, inconsistent orthographic conventions, and frequent code-switching into Hebrew. In this paper, we introduce a two-step approach to automatically transliterate Judeo-Arabic into Arabic script: simple character-level mapping followed by post-correction to address grammatical and orthographic errors. We also present the first benchmark evaluation of LLMs on this task. Finally, we show that transliteration enables Arabic NLP tools to perform morphosyntactic tagging and machine translation, which would have not been feasible on the original texts. We make our code and data publicly available.
comment: Accepted to EACL 2026
♻ ☆ Detecting Greenwashing: A Natural Language Processing Literature Survey
Greenwashing refers to practices by corporations or governments that intentionally mislead the public about their environmental impact. This paper provides a comprehensive and methodologically grounded survey of natural language processing (NLP) approaches for detecting greenwashing in textual data, with a focus on corporate climate communication.
Rather than treating greenwashing as a single, monolithic task, we examine the set of NLP problems, also known as climate NLP tasks, that researchers have used to approximate it, ranging from climate topic detection to the identification of deceptive communication patterns. Our focus is on the methodological foundations of these approaches: how tasks are formulated, how datasets are constructed, and how model evaluation influences reliability.
Our review reveals a fragmented landscape: several subtasks now exhibit near-perfect performance under controlled settings, yet tasks involving ambiguity, subjectivity, or reasoning remain challenging. Crucially, no dataset of verified greenwashing cases currently exists.
We argue that advancing automated greenwashing detection requires principled NLP methodologies that combine reliable data annotations with interpretable model design. Future work should leverage third-party judgments, such as verified media reports or regulatory records, to mitigate annotation subjectivity and legal risk, and adopt decomposed pipelines that support human oversight, traceable reasoning, and efficient model design.
comment: 42 pages, 1 figure, 11 pages (appendix), working paper
♻ ☆ Towards Transparent RAG: Fostering Evidence Traceability in LLM Generation via Reinforcement Learning
Retrieval-Augmented Generation (RAG) delivers substantial value in knowledge-intensive applications. However, its generated responses often lack transparent reasoning paths that trace back to source evidence from retrieved documents. This opacity not only compromises the interpretability of the output but also limits the model's ability to fully exploit the provided context. To address this, we propose TRACE (Transparent RAG with evidenCE tracing), a framework designed to enhance evidence traceability in Large Language Models (LLMs) through reinforcement learning (RL). TRACE guides LLMs to produce structured outputs with explicit evidence citations by prompting and rewarding evidence relevance and proper formatting, alongside accuracy, to optimize structured traceability. To ensure training stability with multiple reward signals, we further introduce an adaptive strategy for merging rewards and adopt a stabilized KL-divergence estimator. Experiments on three multi-hop QA datasets using Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct show that TRACE achieves both transparent, evidence-attributed outputs and accuracy improvements of 10-30%. The resulting performance is comparable to advanced commercial LLMs (e.g., OpenAI o1, DeepSeek-R1). Further analyses demonstrate strong generalization capabilities to unseen tasks. Our code is publicly available now.
♻ ★ AgentLongBench: A Controllable Long Benchmark For Long-Contexts Agents via Environment Rollouts
Shicheng Fang, Yuxin Wang, XiaoRan Liu, Jiahao Lu, Chuanyuan Tan, Xinchi Chen, Yining Zheng, Xuanjing Huang, Xipeng Qiu
The evolution of Large Language Models (LLMs) into autonomous agents necessitates the management of extensive, dynamic contexts. Current benchmarks, however, remain largely static, relying on passive retrieval tasks that fail to simulate the complexities of agent-environment interaction, such as non-linear reasoning and iterative feedback. To address this, we introduce \textbf{AgentLongBench}, which evaluates agents through simulated environment rollouts based on Lateral Thinking Puzzles. This framework generates rigorous interaction trajectories across knowledge-intensive and knowledge-free scenarios. Experiments with state-of-the-art models and memory systems (32K to 4M tokens) expose a critical weakness: while adept at static retrieval, agents struggle with the dynamic information synthesis essential for workflows. Our analysis indicates that this degradation is driven by the minimum number of tokens required to resolve a query. This factor explains why the high information density inherent in massive tool responses poses a significantly greater challenge than the memory fragmentation typical of long-turn dialogues.
comment: 26 pages
♻ ☆ Explainable Chain-of-Thought Reasoning: An Empirical Analysis on State-Aware Reasoning Dynamics
Sheldon Yu, Yuxin Xiong, Junda Wu, Xintong Li, Tong Yu, Xiang Chen, Ritwik Sinha, Jingbo Shang, Julian McAuley
Recent advances in chain-of-thought (CoT) prompting have enabled large language models (LLMs) to perform multi-step reasoning. However, the explainability of such reasoning remains limited, with prior work primarily focusing on local token-level attribution, such that the high-level semantic roles of reasoning steps and their transitions remain underexplored. In this paper, we introduce a state-aware transition framework that abstracts CoT trajectories into structured latent dynamics. Specifically, to capture the evolving semantics of CoT reasoning, each reasoning step is represented via spectral analysis of token-level embeddings and clustered into semantically coherent latent states. To characterize the global structure of reasoning, we model their progression as a Markov chain, yielding a structured and interpretable view of the reasoning process. This abstraction supports a range of analyses, including semantic role identification, temporal pattern visualization, and consistency evaluation.
comment: 5 pages, 4 figures
♻ ☆ Boosting Large Language Models for Mental Manipulation Detection via Data Augmentation and Distillation
Mental manipulation on social media poses a covert yet serious threat to individuals' psychological well-being and the integrity of online interactions. Detecting such behavior is challenging due to the difficult-to-annotate training data, its highly covert and multi-turn nature, and the lack of real-world datasets. To address these challenges, we propose MentalMAD, a framework that enhances large language models for mental manipulation detection. Our approach consists of three key components: EvoSA, an annotation-free data augmentation method that combines evolutionary operations with speech-act-aware prompting; teacher-model-generated complementary-task supervision; and Complementary-Convergent Distillation, a phase-wise strategy for transferring manipulation-specific knowledge to student models. We then constructed the ReaMent dataset, comprising 5,000 real-world-sourced dialogues. Extensive experiments show that MentalMAD improves accuracy by 14.0%, macro-F1 by 27.3%, and weighted F1 by 15.1% over the strongest baseline. The code and the dataset are publicly available at https://github.com/Yuansheng-Gao/MentalMAD.
comment: Accepted to WWW 2026
♻ ☆ No Verifiable Reward for Prosody: Toward Preference-Guided Prosody Learning in TTS ICASSP 2026
Recent work reports gains in neural text-to-speech (TTS) with Group Relative Policy Optimization (GRPO). However, in the absence of a verifiable reward for \textit{prosody}, GRPO trained on transcription-oriented signals (CER/NLL) lowers error rates yet collapses prosody into monotone, unnatural speech; adding speaker-similarity further destabilizes training and degrades CER. We address this with an \textit{iterative Direct Preference Optimization (DPO)} scheme that uses only a few hundred human-labeled preference pairs per round to directly optimize prosodic naturalness while regularizing to the current model. On \textbf{KoCC-TTS}, a curated dataset of authentic Korean call center interactions capturing task-oriented dialogues, our method attains the highest human preference (ELO) with competitive CER, outperforming GRPO and strong commercial baselines. These results suggest that when prosody cannot be rewarded automatically, \textit{human preference optimization} offers a practical and data-efficient path to natural and robust TTS. The demo page is available at \href{https://tts.ch.dev}
comment: ICASSP 2026
♻ ☆ TS-PEFT: Unveiling Token-Level Redundancy in Parameter-Efficient Fine-Tuning
Current Parameter-Efficient Fine-Tuning (PEFT) methods typically operate under an implicit assumption: Once a target module is selected, every token passing through it contributes equally to the downstream task and requires a parameter update. In this paper, we challenge this convention by revealing a pervasive token-level redundancy in the fine-tuning of large models (LMs). We propose TS-PEFT, a theoretical framework utilizing proximal optimization that acts as a dynamic probe to identify token-level redundancy during the fine-tuning process. Extensive experiments demonstrate that indiscriminately updating all tokens is not only computationally superfluous but often introduces optimization noise. Surprisingly, by discarding 30%-70% of token updates, TS-PEFT consistently matches or exceeds the performance of dense baselines such as LoRA, DoRA. Our in-depth analysis shows that the learned token-level sparsity is a superior indicator of module importance compared to traditional weight criteria, providing a novel data-driven perspective on the intrinsic adaptation mechanism of LMs.
comment: 11 pages, 3 figures
♻ ☆ Language Generation: Complexity Barriers and Implications for Learning
Kleinberg and Mullainathan showed that language generation in the limit is always possible at the level of computability: given enough positive examples, a learner can eventually generate data indistinguishable from a target language. However, such existence results do not address feasibility. We study the sample complexity of language generation in the limit for several canonical classes of formal languages. Our results show that infeasibility already appears for context-free and regular languages, and persists even for strict subclasses such as locally threshold testable languages, as well as for incomparable classes such as non-erasing pattern languages, a well-studied class in the theory of language identification. Overall, our results establish a clear gap between the theoretical possibility of language generation in the limit and its computational feasibility.
comment: Version 2: results about pattern and LTT languages are added
♻ ☆ Discovering Multi-Scale Semantic Structure in Text Corpora Using Density-Based Trees and LLM Embeddings
Recent advances in large language models enable documents to be represented as dense semantic embeddings, supporting similarity-based operations over large text collections. However, many web-scale systems still rely on flat clustering or predefined taxonomies, limiting insight into hierarchical topic relationships. In this paper we operationalize hierarchical density modeling on large language model embeddings in a way not previously explored. Instead of enforcing a fixed taxonomy or single clustering resolution, the method progressively relaxes local density constraints, revealing how compact semantic groups merge into broader thematic regions. The resulting tree encodes multi-scale semantic organization directly from data, making structural relationships between topics explicit. We evaluate the hierarchies on standard text benchmarks, showing that semantic alignment peaks at intermediate density levels and that abrupt transitions correspond to meaningful changes in semantic resolution. Beyond benchmarks, the approach is applied to large institutional and scientific corpora, exposing dominant fields, cross-disciplinary proximities, and emerging thematic clusters. By framing hierarchical structure as an emergent property of density in embedding spaces, this method provides an interpretable, multi-scale representation of semantic structure suitable for large, evolving text collections.
comment: 23 pages, 10 figures, further interactive visualizations available on https:// genealogy.sematlas.com/
♻ ☆ Neural network embeddings recover value dimensions from psychometric survey items on par with human data
We demonstrate that embeddings derived from large language models, when processed with "Survey and Questionnaire Item Embeddings Differentials" (SQuID), can recover the structure of human values obtained from human rater judgments on the Revised Portrait Value Questionnaire (PVQ-RR). We compare multiple embedding models across a number of evaluation metrics including internal consistency, dimension correlations and multidimensional scaling configurations. Unlike previous approaches, SQuID addresses the challenge of obtaining negative correlations between dimensions without requiring domain-specific fine-tuning or training data re-annotation. Quantitative analysis reveals that our embedding-based approach explains 55% of variance in dimension-dimension similarities compared to human data. Multidimensional scaling configurations show alignment with pooled human data from 49 different countries. Generalizability tests across three personality inventories (IPIP, BFI-2, HEXACO) demonstrate that SQuID consistently increases correlation ranges, suggesting applicability beyond value theory. These results show that semantic embeddings can effectively replicate psychometric structures previously established through extensive human surveys. The approach offers substantial advantages in cost, scalability and flexibility while maintaining comparable quality to traditional methods. Our findings have significant implications for psychometrics and social science research, providing a complementary methodology that could expand the scope of human behavior and experience represented in measurement tools.
♻ ☆ TransLaw: A Large-Scale Dataset and Multi-Agent Benchmark Simulating Professional Translation of Hong Kong Case Law ACL 2026
Hong Kong case law translation presents significant challenges: manual methods suffer from high costs and inconsistent quality, while both traditional machine translation and approaches relying solely on Large Language Models (LLMs) often fail to ensure legal terminology accuracy, culturally embedded nuances, and strict linguistic structures. To overcome these limitations, this study proposes TransLaw, a multi-agent framework that decomposes translation into word-level expression, sentence-level translation, and multidimensional review, integrating a specialized Hong Kong legal glossary database, Retrieval-Augmented Generation (RAG), and iterative feedback. Experiments on our newly constructed HKCFA Judgment 97-22 dataset, benchmarking 13 open-source and commercial LLMs, demonstrate that TransLaw significantly outperforms single-agent baselines across all evaluated models. Human evaluation confirms the framework's effectiveness in terms of legal semantic accuracy, structural coherence, and stylistic fidelity, while noting that it still trails human experts in contextualizing complex terminology and stylistic naturalness.
comment: Original: arXiv:2501.09444; Revised: arXiv:2507.00875; Submitted to ACL 2026
♻ ☆ A Formal Comparison Between Chain of Thought and Latent Thought
Chain of thought (CoT) elicits reasoning in large language models by explicitly generating intermediate tokens. In contrast, latent thought reasoning operates directly in the continuous latent space, enabling computation beyond discrete linguistic representations. While both approaches exploit iterative computation, their comparative capabilities remain underexplored. In this work, we present a formal analysis showing that latent thought admits more efficient parallel computation than inherently sequential CoT. In contrast, CoT enables approximate counting and sampling through stochastic decoding. These separations suggest the tasks for which depth-driven recursion is more suitable, thereby offering practical guidance for choosing between reasoning paradigms.
comment: Code is available at https://github.com/kevin671/cot-vs-loop
♻ ☆ Mix, MinHash, and Match: Cross-Source Agreement for Multilingual Pretraining Datasets
Multilingual data from the web is essential for LLM pretraining. Yet, scraping it is expensive, and research groups repeatedly crawl the same content. For example, we found that over 40\% of tokens across major Arabic web corpora are duplicated between sources. In this work, we propose to use this wasteful redundancy as a quality signal to create high-quality pretraining datasets. Our key insight is that cross-source agreement functions as a free, model-free quality filter: content retained by multiple independent pipelines is more likely to represent high-quality text. Crucially, this signal requires no additional computation beyond standard deduplication, which is already performed at scale when pretraining language models. So, we propose MixMinMatch, a method that combines multiple existing web corpora, performs cross-dataset MinHash deduplication, and identifies documents independently recovered by multiple sources. We apply MixMinMatch to Arabic, Turkish, and Hindi, producing corpora that match or exceed the quality of the best single-source baselines, while providing up to 4$\times$ more unique tokens. On Arabic, our matched subset achieves a 4.5\% relative improvement over ArabicWeb24, while on Turkish, we improve over FineWeb-2 by 5.5\%. We release the datasets at: https://huggingface.co/collections/AdaMLLab/mixminmatch
comment: Multilingual LLM pretraining dataset curation
♻ ☆ RAS: Retrieval-And-Structuring for Knowledge-Intensive LLM Generation ICLR 2026
Pengcheng Jiang, Lang Cao, Ruike Zhu, Minhao Jiang, Yunyi Zhang, Jiaming Shen, Jimeng Sun, Jiawei Han
Large language models (LLMs) have achieved impressive performance on knowledge-intensive tasks, yet they often struggle with multi-step reasoning due to the unstructured nature of retrieved context. While retrieval-augmented generation (RAG) methods provide external information, the lack of explicit organization among retrieved passages limits their effectiveness, leading to brittle reasoning pathways. Recent interpretability studies highlighting the importance of structured intermediate reasoning further align with this perspective. We propose Retrieval-And-Structuring (RAS), a framework that dynamically constructs question-specific knowledge graphs through iterative retrieval and structured knowledge building. RAS interleaves targeted retrieval planning with incremental graph construction, enabling models to assemble and reason over evolving knowledge structures tailored to each query. On seven knowledge-intensive benchmarks, RAS consistently outperforms strong baselines, achieving up to 8.7\% and 7.0\% gains with proprietary and open-source LLMs, respectively. Our results demonstrate that dynamic, question-specific knowledge structuring offers a robust path to improving reasoning accuracy and robustness in language model generation.
comment: ICLR 2026
♻ ☆ Verbalized Algorithms NeurIPS 2025
Instead of querying LLMs in a one-shot manner and hoping to get the right answer for a reasoning task, we propose a paradigm we call \emph{verbalized algorithms} (VAs), which combines LLMs with classical algorithms with established theoretical guarantees. VAs decompose a task into simple elementary operations on natural language strings that LLMs are able to answer reliably, and limit the scope of LLMs to those simple tasks. For example, for sorting a series of natural language strings, \emph{verbalized sorting} uses an LLM as a binary comparison oracle in a known and well-analyzed sorting algorithm (e.g., bitonic sorting network). Although this is already known as \emph{pairwise ranking} in the literature, we additionally demonstrate the effectiveness of \emph{verbalized maximum}, \emph{verbalized clustering}, and \emph{verbalized submodular maximization} for numerical reasoning, topic clustering and multi-hop Q\&A RAG task, which guarantees $O(n)$ runtime, $O(n \log n)$ runtime, and $1/(1-e)$ optimality, respectively. Clustering and submodular maximization outperformed or improved the nearest neighbor search using state-of-the-art embedding models.
comment: Accepted in NeurIPS 2025 Workshop on Efficient Reasoning
♻ ☆ Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers
Large Language Models have achieved remarkable success in natural language processing tasks, with Reinforcement Learning playing a key role in adapting them to specific applications. However, obtaining ground truth answers for training LLMs in mathematical problem-solving is often challenging, costly, and sometimes unfeasible. This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving, bypassing the need for traditional ground truth answers. Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases. Recognizing the limitations of format-only rewards in the later phases, we incorporate length-based rewards. The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm relying on ground truth answers in certain scenarios, achieving 40.0% accuracy on AIME2024 with a 7B base model. Through systematic exploration and experimentation, this research not only offers a practical solution for training LLMs to solve mathematical problems and reducing the dependence on extensive ground truth data collection, but also reveals the essence of why our label-free approach succeeds: the powerful base model is like an excellent student who has already mastered mathematical and logical reasoning skills, but performs poorly on the test paper, it simply needs to develop good answering habits to achieve outstanding results in exams, to unlock the capabilities it already possesses.
♻ ☆ SafeSearch: Automated Red-Teaming of LLM-Based Search Agents
Jianshuo Dong, Sheng Guo, Hao Wang, Xun Chen, Zhuotao Liu, Tianwei Zhang, Ke Xu, Minlie Huang, Han Qiu
Search agents connect LLMs to the Internet, enabling them to access broader and more up-to-date information. However, this also introduces a new threat surface: unreliable search results can mislead agents into producing unsafe outputs. Real-world incidents and our two in-the-wild observations show that such failures can occur in practice. To study this threat systematically, we propose SafeSearch, an automated red-teaming framework that is scalable, cost-efficient, and lightweight, enabling harmless safety evaluation of search agents. Using this, we generate 300 test cases spanning five risk categories (e.g., misinformation and prompt injection) and evaluate three search agent scaffolds across 17 representative LLMs. Our results reveal substantial vulnerabilities in LLM-based search agents, with the highest ASR reaching 90.5% for GPT-4.1-mini in a search-workflow setting. Moreover, we find that common defenses, such as reminder prompting, offer limited protection. Overall, SafeSearch provides a practical way to measure and improve the safety of LLM-based search agents. Our codebase and test cases are publicly available: https://github.com/jianshuod/SafeSearch.
comment: Preprint. Updated with new experiments
♻ ☆ Select or Project? Evaluating Lower-dimensional Vectors for LLM Training Data Explanations
Gradient-based methods for instance-based explanation for large language models (LLMs) are hindered by the immense dimensionality of model gradients. In practice, influence estimation is restricted to a subset of model parameters to make computation tractable, but this subset is often chosen ad hoc and rarely justified by systematic evaluation. This paper investigates if it is better to create low-dimensional representations by selecting a small, architecturally informed subset of model components or by projecting the full gradients into a lower-dimensional space. Using a novel benchmark, we show that a greedily selected subset of components captures the information about training data influence needed for a retrieval task more effectively than either the full gradient or random projection. We further find that this approach is more computationally efficient than random projection, demonstrating that targeted component selection is a practical strategy for making instance-based explanations of large models more computationally feasible.
comment: Added acknowledgments section and related work on random projection. 8 pages
♻ ☆ The Illusion of Certainty: Uncertainty Quantification for LLMs Fails under Ambiguity
Accurate uncertainty quantification (UQ) in Large Language Models (LLMs) is critical for trustworthy deployment. While real-world language is inherently ambiguous, reflecting aleatoric uncertainty, existing UQ methods are typically benchmarked against tasks with no ambiguity. In this work, we demonstrate that while current uncertainty estimators perform well under the restrictive assumption of no ambiguity, they degrade to close-to-random performance on ambiguous data. To this end, we introduce MAQA* and AmbigQA*, the first ambiguous question-answering (QA) datasets equipped with ground-truth answer distributions estimated from factual co-occurrence. We find this performance deterioration to be consistent across different estimation paradigms: using the predictive distribution itself, internal representations throughout the model, and an ensemble of models. We show that this phenomenon can be theoretically explained, revealing that predictive-distribution and ensemble-based estimators are fundamentally limited under ambiguity. Overall, our study reveals a key shortcoming of current UQ methods for LLMs and motivates a rethinking of current modeling paradigms.
♻ ☆ Context Parametrization with Compositional Adapters
Large language models (LLMs) often seamlessly adapt to new tasks through in-context learning (ICL) or supervised fine-tuning (SFT). However, ICL is inefficient when handling many demonstrations, and SFT incurs training overhead while sacrificing flexibility. Mapping instructions or demonstrations from context directly into adapter parameters offers an appealing alternative. While prior work explored generating adapters based on a single input context, it has overlooked the need to integrate multiple chunks of information. To address this gap, we introduce CompAs, a meta-learning framework that translates context into adapter parameters with a compositional structure that allows them to be merged algebraically. This approach yields three benefits: lower inference cost, improved stability under long contexts, and establishes a principled solution when input exceeds the model's context window. Furthermore, CompAs reversibly encodes information into adapter parameters, enabling recovery of the original input context and facilitating safety. Empirical results on diverse multiple-choice and extractive question answering tasks show that CompAs outperforms ICL and prior generator-based methods, especially when scaling to more inputs. Our work establishes composable adapter generation as a practical and efficient alternative for scaling LLM deployment.
♻ ☆ MOSAIC: Masked Objective with Selective Adaptation for In-domain Contrastive Learning
We introduce MOSAIC (Masked Objective with Selective Adaptation for In-domain Contrastive learning), a multi-stage framework for domain adaptation of text embedding models that incorporates joint domain-specific masked supervision. Our approach addresses the challenges of adapting large-scale general-domain text embedding models to specialized domains. By jointly optimizing masked language modeling (MLM) and contrastive objectives within a unified training pipeline, our method enables effective learning of domain-relevant representations while preserving the robust semantic discrimination properties of the original model. We empirically validate our approach on both high-resource and low-resource domains, achieving improvements up to 13.4% in NDCG@10 (Normalized Discounted Cumulative Gain) over strong general-domain baselines. Comprehensive ablation studies further demonstrate the effectiveness of each component, highlighting the importance of balanced joint supervision and staged adaptation.
♻ ☆ Toward Robust Multilingual Adaptation of LLMs for Low-Resource Languages
Large language models (LLMs) continue to struggle with low-resource languages, primarily due to limited training data, translation noise, and unstable cross-lingual alignment. To address these challenges, we propose LiRA (Linguistic Robust Anchoring for LLMs)-a plug-and-play framework that requires only lightweight fine-tuning on top of existing pretrained backbones. LiRA jointly optimizes representation stability and cross-lingual semantic consistency by combining two key components: Arca (Anchored Representation Composition Architecture), which aligns low-resource inputs to a shared English semantic space through anchor-based alignment and collaborative encoding; and LaSR (Language-coupled Semantic Reasoner), a lightweight, language-aware head that enforces consistency regularization for unified cross-lingual understanding, retrieval, and reasoning. We theoretically show that under controlled anchoring error and translation-induced bias, LiRA guarantees bounded representation deviation and stable downstream performance under local Lipschitz continuity. To facilitate research, we release a new multilingual product retrieval dataset covering five Southeast Asian and two South Asian languages. Extensive experiments across diverse low-resource benchmarks demonstrate consistent improvements in retrieval, ranking, question answering, and reasoning tasks. Code will be publicly available on GitHub, and the dataset will be hosted on Hugging Face.
♻ ☆ Plain Transformers Can be Powerful Graph Learners
Transformers have attained outstanding performance across various modalities, owing to their simple but powerful scaled-dot-product (SDP) attention mechanisms. Researchers have attempted to migrate Transformers to graph learning, but most advanced Graph Transformers (GTs) have strayed far from plain Transformers, exhibiting major architectural differences either by integrating message-passing or incorporating sophisticated attention mechanisms. These divergences hinder the easy adoption of training advances for Transformers developed in other domains. Contrary to previous GTs, this work demonstrates that the plain Transformer architecture can be a powerful graph learner. To achieve this, we propose to incorporate three simple, minimal, and easy-to-implement modifications to the plain Transformer architecture to construct our Powerful Plain Graph Transformers (PPGT): (1) simplified $L_2$ attention for measuring the magnitude closeness among tokens; (2) adaptive root-mean-square normalization to preserve token magnitude information; and (3) a simple MLP-based stem for graph positional encoding. Consistent with its theoretical expressivity, PPGT demonstrates noteworthy realized expressivity on the empirical graph expressivity benchmark, comparing favorably to more complicated alternatives such as subgraph GNNs and higher-order GNNs. Its empirical performance across various graph datasets also justifies the effectiveness of PPGT. This finding underscores the versatility of plain Transformer architectures and highlights their strong potential as a unified backbone for multimodal learning across language, vision, and graph domains.
♻ ☆ Can Large Language Models Capture Video Game Engagement?
Can out-of-the-box pretrained Large Language Models (LLMs) detect human affect successfully when observing a video? To address this question, for the first time, we evaluate comprehensively the capacity of popular LLMs for successfully predicting continuous affect annotations of videos when prompted by a sequence of text and video frames in a multimodal fashion. In this paper, we test LLMs' ability to correctly label changes of in-game engagement in 80 minutes of annotated videogame footage from 20 first-person shooter games of the GameVibe corpus. We run over 4,800 experiments to investigate the impact of LLM architecture, model size, input modality, prompting strategy, and ground truth processing method on engagement prediction. Our findings suggest that while LLMs rightfully claim human-like performance across multiple domains and able to outperform traditional machine learning baselines, they generally fall behind continuous experience annotations provided by humans. We examine some of the underlying causes for a fluctuating performance across games, highlight the cases where LLMs exceed expectations, and draw a roadmap for the further exploration of automated emotion labelling via LLMs.
comment: This work has been submitted to the IEEE for publication
♻ ☆ GORAG: Graph-based Online Retrieval Augmented Generation for Dynamic Few-shot Social Media Text Classification
Text classification is vital for Web for Good applications like hate speech and misinformation detection. However, traditional models (e.g., BERT) often fail in dynamic few-shot settings where labeled data are scarce, and target labels frequently evolve. While Large Language Models (LLMs) show promise in few-shot settings, their performance is often hindered by increased input size in dynamic evolving scenarios. To address these issues, we propose GORAG, a Graph-based Online Retrieval-Augmented Generation framework for dynamic few-shot text classification. GORAG constructs and maintains a weighted graph of keywords and text labels, representing their correlations as edges. To model these correlations, GORAG employs an edge weighting mechanism to prioritize the importance and reliability of extracted information and dynamically retrieves relevant context using a tailored minimum-cost spanning tree for each input. Empirical evaluations show GORAG outperforms existing approaches by providing more comprehensive and precise contextual information. Our code is released at: https://github.com/Wyb0627/GORAG.
comment: Accepted by WWW 2026
♻ ★ NOSA: Native and Offloadable Sparse Attention
Yuxiang Huang, Pengjie Wang, Jicheng Han, Weilin Zhao, Zhou Su, Ao Sun, Hongya Lyu, Hengyu Zhao, Yudong Wang, Chaojun Xiao, Xu Han, Zhiyuan Liu
Decoding throughput improvements from larger inference batches are limited by GPU memory, which is largely consumed by the key-value (KV) cache. Prior training-free KV cache offloading alleviates this by keeping redundant context on the CPU and fetching only a sparse subset for attention, but it often degrades long-generation quality due to training-inference mismatch on sparse patterns. Meanwhile, trainable sparse attention is incompatible with efficient offloading, as unconstrained KV accesses may force large CPU-to-GPU transfers and erase throughput gains. To this end, we propose NOSA, a trainable sparse attention mechanism natively designed for KV cache offloading. NOSA explicitly constrains the volume of CPU-GPU KV transfers, thereby achieving low communication overhead and high decoding throughput. We further build NOSI, a KV cache offloading inference system that fully unlocks NOSA's efficiency. Empirical results on 1,3,8B LLMs demonstrate that NOSA outperforms KV cache offloading baselines on general, long-input, and long-generation tasks, while boosting decoding throughput by up to 5.04x, 1.92x, and 1.83x over FullAttn, InfLLMv2, and ShadowKV, respectively. We release our code at https://github.com/thunlp/NOSA.
comment: Preprint
♻ ☆ Penalizing Length: Uncovering Systematic Bias in Quality Estimation Metrics
Quality Estimation (QE) metrics are vital in machine translation for reference-free evaluation and as a reward signal in tasks like reinforcement learning. However, the prevalence and impact of length bias in QE have been underexplored. Through a systematic study of top-performing regression-based and LLM-as-a-Judge QE metrics across 10 diverse language pairs, we reveal two critical length biases: First, QE metrics consistently over-predict errors with increasing translation length, even for high-quality, error-free texts. Second, they exhibit a preference for shorter translations when multiple candidates are available for the same source text. These inherent length biases risk unfairly penalizing longer, correct translations and can lead to sub-optimal decision-making in applications such as QE reranking and QE guided reinforcement learning. We further investigate the root cause, presenting evidence that QE models conflate quality with sequence length due to skewed supervision distributions. As a diagnostic intervention, we apply length normalization during training. We show that this simple intervention is sufficient to decouple error probability from length, effectively counteracting the data skew and yielding more reliable QE signals.
♻ ☆ EVA-Score: Evaluating Abstractive Long-form Summarization on Informativeness through Extraction and Validation
Since LLMs emerged, more attention has been paid to abstractive long-form summarization, where longer input sequences indicate more information contained. Nevertheless, the automatic evaluation of such summaries remains underexplored. The current evaluation metrics for long-form summarization either use similarity-based metrics like ROUGE and BERTScore or LLM-based metrics using appropriate prompts or pre-defined schema. We argue that the former only relies on similarity and fails to consider informativeness while the latter lacks quantitative analysis of informative richness, and is rather subjective and hard to explain. Current evaluation metrics either use traditional metrics like ROUGE and BERTScore, which rely on surface-level similarity and fail to consider informativeness, or simple LLM-based metrics, which are not robust and easily overwhelmed by the long contexts. In this paper, we propose a new evaluation metric called EVA-Score to extract all information from the given summaries, identify overlapped information based on reference, and calculate the information score. We test EVA-Score on several datasets and the experimental results reveal that EVA-Score shows the highest correlation with humans. We also re-evaluate the performance of LLMs on long-form summarization from the information perspective. The results indicate that responses of LLMs still have a gap with the human-written answers. Moreover, we provide a detailed analysis of the effectiveness of EVA-Score, forecasting future ways to automatically evaluate abstractive long-form summarization.
comment: 20 pages
♻ ☆ FLAME: Empowering Frozen LLMs for Knowledge Graph Completion
Traditional knowledge graph completion (KGC) methods rely solely on structural information and struggle with sparsity, while Large Language Models (LLMs) address these limitations through rich world knowledge and strong context modeling. Fine-tuning LLMs is effective but costly, while non-fine-tuned LLMs are efficient but suboptimal. To address this trade-off, we propose \textbf{FLAME}, a framework that extracts context-aware hidden states from intermediate layers of frozen LLMs to train data-efficient KGC classifiers. We bridge LLM-KG semantic gaps via subgraph-based entity descriptions and employ sliced mutual information (SMI) to quantify task-relevant information in representations. Experiments demonstrate that FLAME achieves 47\% improvement over non-fine-tuned LLM baselines and, to our knowledge, is the first to achieve fine-tuned performance with $188\times$ memory efficiency and $26.11\times$ speedup.
♻ ☆ Language Lives in Sparse Dimensions: Toward Interpretable and Efficient Multilingual Control for Large Language Models EACL 2026
Large language models exhibit strong multilingual capabilities despite limited exposure to non-English data. Prior studies show that English-centric large language models map multilingual content into English-aligned representations at intermediate layers and then project them back into target-language token spaces in the final layer. From this observation, we hypothesize that this cross-lingual transition is governed by a small and sparse set of dimensions, which occur at consistent indices across the intermediate to final layers. Building on this insight, we introduce a simple, training-free method to identify and manipulate these dimensions, requiring only as few as 50 sentences of either parallel or monolingual data. Experiments on a multilingual generation control task reveal the interpretability of these dimensions, demonstrating that the interventions in these dimensions can switch the output language while preserving semantic content, and that it surpasses the performance of prior neuron-based approaches at a substantially lower cost.
comment: Accepted at EACL 2026 (Main). Our code will be available at: https://github.com/ku-nlp/language-specific-dimensions
♻ ☆ RaZeR: Pushing the Limits of NVFP4 Quantization with Redundant Zero Remapping
Yuzong Chen, Xilai Dai, Jake Hyun, Chi-Chih Chang, Wonsuk Jang, Yuheng Wu, Thierry Tambe, Jae-sun Seo, Mohamed S. Abdelfattah
The recently introduced NVFP4 format demonstrates remarkable performance and memory benefits for quantized large language model (LLM) inference. However, we observe two types of redundancy in NVFP4 encoding: (1) The FP4 element format naturally exposes an unused quantization value due to its sign-magnitude representation that contains both positive and negative zeros. (2) The FP8 block scaling factor has an unused sign bit because it is always positive. Additionally, we find that LLM weights are more tolerant to a lower-precision block scaling factor. Based on these observations, we propose Redundant Zero Remapping (RaZeR), an enhanced numerical format that pushes the limits of NVFP4 for more accurate LLM quantization under the same memory footprint. RaZeR leverages the redundant bits of the block scaling factor to adaptively remap the redundant FP4 zero to additional quantization values with improved accuracy. To demonstrate the practicality of RaZeR, we design efficient GPU kernels for RaZeR-quantized LLM inference and propose novel hardware to natively support this. Extensive experiments validate RaZeR's superior performance for 4-bit LLM quantization. For example, relative to native NVFP4, RaZeR reduces the average perplexity loss by 34.6% and 31.2% under weight-only and weight-activation quantization, respectively.
comment: Preprint. Under review
♻ ☆ Scaling Laws for Downstream Task Performance of Large Language Models ICLR
Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, Sanmi Koyejo
Scaling laws provide important insights that can guide the design of large language models (LLMs). Existing work has primarily focused on studying scaling laws for pretraining (upstream) loss. However, in transfer learning settings, in which LLMs are pretrained on an unsupervised dataset and then finetuned on a downstream task, we often also care about the downstream performance. In this work, we study the scaling behavior in a transfer learning setting, where LLMs are finetuned for machine translation tasks. Specifically, we investigate how the choice of the pretraining data and its size affect downstream performance (translation quality) as judged by: downstream cross-entropy and translation quality metrics such as BLEU and COMET scores. Our experiments indicate that the size of the finetuning dataset and the distribution alignment between the pretraining and downstream data significantly influence the scaling behavior. With sufficient alignment, both downstream cross-entropy and translation quality scores improve monotonically with more pretraining data. In such cases, we show that it is possible to predict the downstream translation quality metrics with good accuracy using a log-law. However, there are cases where moderate misalignment causes the downstream translation scores to fluctuate or get worse with more pretraining, whereas downstream cross-entropy monotonically improves. By analyzing these, we provide new practical insights for choosing appropriate pretraining data.
comment: Published at the International Conference on Learning Representations (ICLR) 2025, with title: "Scaling Laws for Downstream Task Performance in Machine Translation"
♻ ☆ The Trojan in the Vocabulary: Stealthy Sabotage of LLM Composition
The open-weight language model ecosystem is increasingly defined by model composition techniques (such as weight merging, speculative decoding, and vocabulary expansion) that remix capabilities from diverse sources. A critical prerequisite for applying these methods across different model families is tokenizer transplant, which aligns incompatible vocabularies to a shared embedding space. We demonstrate that this essential interoperability step introduces a supply-chain vulnerability: we engineer a single breaker token that is functionally inert in a donor model yet reliably reconstructs into a high-salience malicious feature after transplant into a base model. By exploiting the geometry of coefficient reuse, our attack sabotages the base model's generation while leaving the donor's utility statistically indistinguishable from nominal behavior. We formalize this as a dual-objective optimization problem and instantiate the attack using a sparse solver. Empirically, the attack is training-free and evades outlier detection, while demonstrating structural persistence against fine-tuning and weight merging, highlighting a hidden risk in the pipeline of modular AI composition. Code is available at https://github.com/xz-liu/tokenforge
♻ ☆ ALRM: Agentic LLM for Robotic Manipulation
Large Language Models (LLMs) have recently empowered agentic frameworks to exhibit advanced reasoning and planning capabilities. However, their integration in robotic control pipelines remains limited in two aspects: (1) prior \ac{llm}-based approaches often lack modular, agentic execution mechanisms, limiting their ability to plan, reflect on outcomes, and revise actions in a closed-loop manner; and (2) existing benchmarks for manipulation tasks focus on low-level control and do not systematically evaluate multistep reasoning and linguistic variation. In this paper, we propose Agentic LLM for Robot Manipulation (ALRM), an LLM-driven agentic framework for robotic manipulation. ALRM integrates policy generation with agentic execution through a ReAct-style reasoning loop, supporting two complementary modes: Code-asPolicy (CaP) for direct executable control code generation, and Tool-as-Policy (TaP) for iterative planning and tool-based action execution. To enable systematic evaluation, we also introduce a novel simulation benchmark comprising 56 tasks across multiple environments, capturing linguistically diverse instructions. Experiments with ten LLMs demonstrate that ALRM provides a scalable, interpretable, and modular approach for bridging natural language reasoning with reliable robotic execution. Results reveal Claude-4.1-Opus as the top closed-source model and Falcon-H1-7B as the top open-source model under CaP.
♻ ☆ LLMs versus the Halting Problem: Revisiting Program Termination Prediction
Oren Sultan, Jordi Armengol-Estape, Pascal Kesseli, Julien Vanegue, Dafna Shahaf, Yossi Adi, Peter O'Hearn
Determining whether a program terminates is a central problem in computer science. Turing's foundational result established the Halting Problem as undecidable, showing that no algorithm can universally determine termination for all programs and inputs. Consequently, automatic verification tools approximate termination, sometimes failing to prove or disprove; these tools rely on problem-specific architectures and abstractions, and are usually tied to particular programming languages. Recent success and progress in large language models (LLMs) raises the following question: can LLMs reliably predict program termination? In this work, we evaluate LLMs on a diverse set of C programs from the Termination category of the International Competition on Software Verification (SV-Comp) 2025. Our results suggest that LLMs perform remarkably well at predicting program termination, where GPT-5 and Claude Sonnet-4.5 would rank just behind the top-ranked tool (using test-time-scaling), and Code World Model (CWM) would place just behind the second-ranked tool. While LLMs are effective at predicting program termination, they often fail to provide a valid witness as a proof. Moreover, LLMs performance drops as program length increases. We hope these insights motivate further research into program termination and the broader potential of LLMs for reasoning about undecidable problems.
♻ ☆ Probing Neural Topology of Large Language Models
Probing large language models (LLMs) has yielded valuable insights into their internal mechanisms by linking neural activations to interpretable semantics. However, the complex mechanisms that link neuron's functional co-activation with the emergent model capabilities remains largely unknown, hindering a deeper understanding and safer development of LLMs. In this work, we introduce graph probing, a method for uncovering the functional connectivity of LLM neurons and relating it to language generation performance. By probing models across diverse LLM families and scales, we discover a universal predictability of language generation and understanding performance using only neural topology, which persists even when retaining just 1% of neuron connections. Strikingly, probing on topology outperforms probing on activation by up to 130.4% and 67.7% on perplexity and space/time semantic regression respectively, suggesting that neural topology contains orders of richer information of LLM performance than neural activation, which can be easily extracted with simple linear or MLP probes. To explain the dependence between neural topology and language performance, we identify default networks and hub neurons in LLMs and provide causal evidence by interventional experiments on multiple benchmarks, showing that LLMs actually exploit these topological information. Further analyses suggest that graph probing can be effectively leveraged to improve the efficiency and reliability of LLMs through proof-of-concept applications in model pruning and hallucination detection. Codes and data for the graph probing toolbox are available at https://github.com/DavyMorgan/llm-graph-probing.
♻ ☆ LogicReward: Incentivizing LLM Reasoning via Step-Wise Logical Supervision ICLR 2026
Jundong Xu, Hao Fei, Huichi Zhou, Xin Quan, Qijun Huang, Shengqiong Wu, William Yang Wang, Mong-Li Lee, Wynne Hsu
Although LLMs exhibit strong reasoning capabilities, existing training methods largely depend on outcome-based feedback, which can produce correct answers with flawed reasoning. Prior work introduces supervision on intermediate steps but still lacks guarantees of logical soundness, which is crucial in high-stakes scenarios where logical consistency is paramount. To address this, we propose LogicReward, a novel reward system that guides model training by enforcing step-level logical correctness with a theorem prover. We further introduce Autoformalization with Soft Unification, which reduces natural language ambiguity and improves formalization quality, enabling more effective use of the theorem prover. An 8B model trained on data constructed with LogicReward surpasses GPT-4o and o4-mini by 11.6\% and 2\% on natural language inference and logical reasoning tasks with simple training procedures. Further analysis shows that LogicReward enhances reasoning faithfulness, improves generalizability to unseen tasks such as math and commonsense reasoning, and provides a reliable reward signal even without ground-truth labels. We will release all data and code at https://llm-symbol.github.io/LogicReward.
comment: ICLR 2026
♻ ☆ A conversational gesture synthesis system based on emotions and semantics
Along with the explosion of large language models, improvements in speech synthesis, advancements in hardware, and the evolution of computer graphics, the current bottleneck in creating digital humans lies in generating character movements that correspond naturally to text or speech inputs.
In this work, we present DeepGesture, a diffusion-based gesture synthesis framework for generating expressive co-speech gestures conditioned on multimodal signals - text, speech, emotion, and seed motion. Built upon the DiffuseStyleGesture model, DeepGesture introduces novel architectural enhancements that improve semantic alignment and emotional expressiveness in generated gestures. Specifically, we integrate fast text transcriptions as semantic conditioning and implement emotion-guided classifier-free diffusion to support controllable gesture generation across affective states. To visualize results, we implement a full rendering pipeline in Unity based on BVH output from the model. Evaluation on the ZeroEGGS dataset shows that DeepGesture produces gestures with improved human-likeness and contextual appropriateness. Our system supports interpolation between emotional states and demonstrates generalization to out-of-distribution speech, including synthetic voices - marking a step forward toward fully multimodal, emotionally aware digital humans.
♻ ☆ Less Diverse, Less Safe: The Indirect But Pervasive Risk of Test-Time Scaling in Large Language Models
Test-Time Scaling (TTS) improves LLM reasoning by exploring multiple candidate responses and then operating over this set to find the best output. A tacit premise behind TTS is that sufficiently diverse candidate pools enhance reliability. In this work, we show that this assumption in TTS introduces a previously unrecognized failure mode. When candidate diversity is curtailed, even by a modest amount, TTS becomes much more likely to produce unsafe outputs. We present a reference-guided diversity reduction protocol (RefDiv) that serves as a diagnostic attack to stress test TTS pipelines. Through extensive experiments across open-source models (e.g. Qwen3, Mistral, Llama3.1, Gemma3) and two widely used TTS strategies (Monte Carlo Tree Search and Best-of-N), constraining diversity consistently signifies the rate at which TTS produces unsafe results. The effect is often stronger than that produced by prompts directly with high adversarial intent scores. This observed phenomenon also transfers across TTS strategies and to closed-source models (e.g. OpenAI o3-mini and Gemini-2.5-Pro), thus indicating that this is a general and extant property of TTS rather than a model-specific artifact. Additionally, we find that numerous widely used safety guardrail classifiers (e.g. Llama-Guard), are unable to flag the adversarial input prompts generated by RefDiv, demonstrating that existing defenses offer limited protection against this diversity-driven failure mode.
♻ ☆ D-Models and E-Models: Diversity-Stability Trade-offs in the Sampling Behavior of Large Language Models
The predictive probability of the next token (P_token) in large language models (LLMs) is inextricably linked to the probability of relevance for the next piece of information, the purchase probability of the next product, and the execution probability of the next action-all of which fall under the scope of the task-level target distribution (P_task). While LLMs are known to generate samples that approximate real-world distributions, whether their fine-grained sampling probabilities faithfully align with task requirements remains an open question. Through controlled distribution-sampling simulations, we uncover a striking dichotomy in LLM behavior, distinguishing two model types: D-models (e.g. Qwen-2.5), whose P_token exhibits large step-to-step variability and poor alignment with P_task; and E-models (e.g. Mistral-Small), whose P_token is more stable and better aligned with P_task. We further evaluate these two model types in downstream tasks such as code generation and recommendation, revealing systematic trade-offs between diversity and stability that shape task outcomes. Finally, we analyze the internal properties of both model families to probe their underlying mechanisms. These findings offer foundational insights into the probabilistic sampling behavior of LLMs and provide practical guidance on when to favor D- versus E-models. For web-scale applications, including recommendation, search, and conversational agents, our results inform model selection and configuration to balance diversity with reliability under real-world uncertainty, providing a better level of interpretation.
comment: 12 pages, 10 figures. Accepted by WWW'26
♻ ☆ CASTELLA: Long Audio Dataset with Captions and Temporal Boundaries ICASSP 2026
We introduce CASTELLA, a human-annotated audio benchmark for the task of audio moment retrieval (AMR). Although AMR has various useful potential applications, there is still no established benchmark with real-world data. The initial study of AMR trained the models solely on synthetic datasets. Moreover, the evaluation is based on an annotated dataset of fewer than 100 samples. This resulted in less reliable reported performance. To ensure performance for applications in real-world environments, we present CASTELLA, a large-scale manually annotated AMR dataset. CASTELLA consists of 1009, 213, and 640 audio recordings for training, validation, and test splits, respectively, which is 24 times larger than the previous dataset. We also establish a baseline model for AMR using CASTELLA. Our experiments demonstrate that a model fine-tuned on CASTELLA after pre-training on the synthetic data outperformed a model trained solely on the synthetic data by 10.4 points in Recall1@0.7. CASTELLA is publicly available in https://h-munakata.github.io/CASTELLA-demo/.
comment: Accepted by ICASSP 2026
♻ ☆ Language Models Might Not Understand You: Evaluating Theory of Mind via Story Prompting
We introduce $\texttt{StorySim}$, a programmable framework for synthetically generating stories to evaluate the theory of mind (ToM) and world modeling (WM) capabilities of large language models (LLMs). Unlike prior benchmarks that may suffer from contamination in pretraining data, $\texttt{StorySim}$ produces novel, compositional story prompts anchored by a highly controllable $\texttt{Storyboard}$, enabling precise manipulation of character perspectives and events. We use this framework to design first- and second-order ToM tasks alongside WM tasks that control for the ability to track and model mental states. Our experiments across a suite of state-of-the-art LLMs reveal that most models perform better on WM tasks than ToM tasks, and that models tend to perform better reasoning with humans compared to inanimate objects. Additionally, our framework enabled us to find evidence of heuristic behavior such as recency bias and an over-reliance on earlier events in the story. All code for generating data and evaluations is freely available.
comment: 12 pages, 11 figures
♻ ☆ MobileBench-OL: A Comprehensive Chinese Benchmark for Evaluating Mobile GUI Agents in Real-World Environment
Recent advances in mobile Graphical User Interface (GUI) agents highlight the growing need for comprehensive evaluation benchmarks. While new online benchmarks offer more realistic testing than offline ones, they tend to focus on the agents' task instruction-following ability while neglecting their reasoning and exploration ability. Moreover, these benchmarks do not consider the random noise in real-world mobile environments. This leads to a gap between benchmarks and real-world environments. To addressing these limitations, we propose MobileBench-OL, an online benchmark with 1080 tasks from 80 Chinese apps. It measures task execution, complex reasoning, and noise robustness of agents by including 5 subsets, which set multiple evaluation dimensions. We also provide an auto-eval framework with a reset mechanism, enabling stable and repeatable real-world benchmarking. Evaluating 12 leading GUI agents on MobileBench-OL shows significant room for improvement to meet real-world requirements. Human evaluation further confirms that MobileBench-OL can reliably measure the performance of leading GUI agents in real environments. Our data and code will be released upon acceptance.
♻ ☆ EndoAgent: A Memory-Guided Reflective Agent for Intelligent Endoscopic Vision-to-Decision Reasoning
Developing general artificial intelligence (AI) systems to support endoscopic image diagnosis is an emerging research priority. Existing methods based on large-scale pretraining often lack unified coordination across tasks and struggle to handle the multi-step processes required in complex clinical workflows. While AI agents have shown promise in flexible instruction parsing and tool integration across domains, their potential in endoscopy remains underexplored. To address this gap, we propose EndoAgent, the first memory-guided agent for vision-to-decision endoscopic analysis that integrates iterative reasoning with adaptive tool selection and collaboration. Built on a dual-memory design, it enables sophisticated decision-making by ensuring logical coherence through short-term action tracking and progressively enhancing reasoning acuity through long-term experiential learning. To support diverse clinical tasks, EndoAgent integrates a suite of expert-designed tools within a unified reasoning loop. We further introduce EndoAgentBench, a benchmark of 5,709 visual question-answer pairs that assess visual understanding and language generation capabilities in realistic scenarios. Extensive experiments show that EndoAgent consistently outperforms both general and medical multimodal models, exhibiting its strong flexibility and reasoning capabilities.
comment: This paper is withdrawn due to the identification of a methodological flaw in the experimental evaluation protocol (Section 5), which may lead to unreliable performance comparisons. The authors are re-examining the evaluation design and will release a corrected version in the future
♻ ☆ Compound-QA: A Benchmark for Evaluating LLMs on Compound Questions ICASSP 2026
Large language models (LLMs) demonstrate remarkable performance across various tasks, prompting researchers to develop diverse evaluation benchmarks. However, most benchmarks typically measure the ability of LLMs to respond to individual questions, neglecting the complex interactions in real-world applications. We introduce Compound Question Synthesis (CQ-Syn) to build Compound-QA, a benchmark targeting questions composed of multiple interrelated sub-questions. This benchmark is derived from existing QA datasets, annotated with proprietary LLMs, and verified by humans for accuracy. It encompasses five categories: Factual-Statement, Cause-and-Effect, Hypothetical-Analysis, Comparison-and-Selection, and Evaluation-and-Suggestion. It evaluates the LLM capability in terms of three dimensions, including understanding, reasoning, and knowledge. Evaluating nine open-source LLMs on Compound-QA reveals that their performance on compound questions is notably lower than on non-compound questions. We further explore strategies to enhance LLMs' handling of compound questions, and our results show that these methods substantially improve models' comprehension and reasoning abilities.
comment: Accepted to ICASSP 2026
♻ ☆ EMSEdit: Efficient Multi-Step Meta-Learning-based Model Editing
Xiaopeng Li, Shasha Li, Xi Wang, Shezheng Song, Bin Ji, Shangwen Wang, Jun Ma, Xiaodong Liu, Mina Liu, Jie Yu
Large Language Models (LLMs) power numerous AI applications, yet updating their knowledge remains costly. Model editing provides a lightweight alternative through targeted parameter modifications, with meta-learning-based model editing (MLME) demonstrating strong effectiveness and efficiency. However, we find that MLME struggles in low-data regimes and incurs high training costs due to the use of KL divergence. To address these issues, we propose $\textbf{E}$fficient $\textbf{M}$ulti-$\textbf{S}$tep $\textbf{Edit (EMSEdit)}$, which leverages multi-step backpropagation (MSBP) to effectively capture gradient-activation mapping patterns within editing samples, performs multi-step edits per sample to enhance editing performance under limited data, and introduces norm-based regularization to preserve unedited knowledge while improving training efficiency. Experiments on two datasets and three LLMs show that EMSEdit consistently outperforms state-of-the-art methods in both sequential and batch editing. Moreover, MSBP can be seamlessly integrated into existing approaches to yield additional performance gains. Further experiments on a multi-hop reasoning editing task demonstrate EMSEdit's robustness in handling complex edits, while ablation studies validate the contribution of each design component. Our code is available at https://github.com/xpq-tech/emsedit.
comment: Accepted at WWW2026
♻ ☆ Unit-Based Agent for Semi-Cascaded Full-Duplex Dialogue Systems ICASSP 2026
Full-duplex voice interaction is crucial for natural human computer interaction. We present a framework that decomposes complex dialogue into minimal conversational units, enabling the system to process each unit independently and predict when to transit to the next. This framework is instantiated as a semi-cascaded full-duplex dialogue system built around a multimodal large language model, supported by auxiliary modules such as voice activity detection (VAD) and text-to-speech (TTS) synthesis. The resulting system operates in a train-free, plug-and-play manner. Experiments on the HumDial dataset demonstrate the effectiveness of our framework, which ranks second among all teams on the test set of the Human-like Spoken Dialogue Systems Challenge (Track 2: Full-Duplex Interaction). Code is available at the GitHub repository https://github.com/yu-haoyuan/fd-badcat.
comment: ICASSP 2026 (Grant Challenge). https://github.com/yu-haoyuan/fd-badcat
♻ ☆ Plan, Verify and Fill: A Structured Parallel Decoding Approach for Diffusion Language Models
Miao Li, Hanyang Jiang, Sikai Cheng, Hengyu Fu, Yuhang Cai, Baihe Huang, Tinghan Ye, Xuanzhou Chen, Pascal Van Hentenryck
Diffusion Language Models (DLMs) present a promising non-sequential paradigm for text generation, distinct from standard autoregressive (AR) approaches. However, current decoding strategies often adopt a reactive stance, underutilizing the global bidirectional context to dictate global trajectories. To address this, we propose Plan-Verify-Fill (PVF), a training-free paradigm that grounds planning via quantitative validation. PVF actively constructs a hierarchical skeleton by prioritizing high-leverage semantic anchors and employs a verification protocol to operationalize pragmatic structural stopping where further deliberation yields diminishing returns. Extensive evaluations on LLaDA-8B-Instruct and Dream-7B-Instruct demonstrate that PVF reduces the Number of Function Evaluations (NFE) by up to 65% compared to confidence-based parallel decoding across benchmark datasets, unlocking superior efficiency without compromising accuracy.
♻ ☆ Navigating the Rabbit Hole: Emergent Biases in LLM-Generated Attack Narratives Targeting Mental Health Groups
Large Language Models (LLMs) have been shown to demonstrate imbalanced biases against certain groups. However, the study of unprovoked targeted attacks by LLMs towards at-risk populations remains underexplored. Our paper presents three novel contributions: (1) the explicit evaluation of LLM-generated attacks on highly vulnerable mental health groups; (2) a network-based framework to study the propagation of relative biases; and (3) an assessment of the relative degree of stigmatization that emerges from these attacks. Our analysis of a recently released large-scale bias audit dataset reveals that mental health entities occupy central positions within attack narrative networks, as revealed by a significantly higher mean centrality of closeness (p-value = 4.06e-10) and dense clustering (Gini coefficient = 0.7). Drawing from an established stigmatization framework, our analysis indicates increased labeling components for mental health disorder-related targets relative to initial targets in generation chains. Taken together, these insights shed light on the structural predilections of large language models to heighten harmful discourse and highlight the need for suitable approaches for mitigation.