Computation and Language 56
☆ Making Large Language Models Efficient Dense Retrievers
Recent work has shown that directly fine-tuning large language models (LLMs) for dense retrieval yields strong performance, but their substantial parameter counts make them computationally inefficient. While prior studies have revealed significant layer redundancy in LLMs for generative tasks, it remains unclear whether similar redundancy exists when these models are adapted for retrieval tasks, which require encoding entire sequences into fixed representations rather than generating tokens iteratively. To this end, we conduct a comprehensive analysis of layer redundancy in LLM-based dense retrievers. We find that, in contrast to generative settings, MLP layers are substantially more prunable, while attention layers remain critical for semantic aggregation. Building on this insight, we propose EffiR, a framework for developing efficient retrievers that performs large-scale MLP compression through a coarse-to-fine strategy (coarse-grained depth reduction followed by fine-grained width reduction), combined with retrieval-specific fine-tuning. Across diverse BEIR datasets and LLM backbones, EffiR achieves substantial reductions in model size and inference cost while preserving the performance of full-size models.
☆ MoE-DiffuSeq: Enhancing Long-Document Diffusion Models with Sparse Attention and Mixture of Experts
We present MoE-DiffuSeq, a mixture of experts based framework for enhancing diffusion models in long document generation. Existing diffusion based text generation models, such as DiffuSeq, suffer from high computational cost and memory overhead when applied to extended sequences. To address these challenges, MoE-DiffuSeq integrates sparse attention with a mixture of experts architecture, enabling efficient and scalable long sequence modeling. Our approach introduces a customized sparse attention mechanism designed to reduce computational complexity while preserving text quality and coherence. In addition, we incorporate a soft absorbing state within the diffusion process to accelerate sequence reconstruction and improve generation precision. Extensive experiments demonstrate that MoE-DiffuSeq significantly improves training efficiency and sampling speed compared to existing diffusion models. These advantages are particularly effective for long document scenarios, including scientific article generation, code repository modeling, and long form dialogue generation. Benchmark results further show that MoE-DiffuSeq improves efficiency, speed, accuracy, and expressiveness, advancing the practical applicability of diffusion models for high quality long form text generation.
comment: Under submission
☆ Cube Bench: A Benchmark for Spatial Visual Reasoning in MLLMs
We introduce Cube Bench, a Rubik's-cube benchmark for evaluating spatial and sequential reasoning in multimodal large language models (MLLMs). The benchmark decomposes performance into five skills: (i) reconstructing cube faces from images and text, (ii) choosing the optimal next move, (iii) predicting the outcome of a candidate move without applying it, (iv) executing multi-step plans while recovering from mistakes, and (v) detecting and revising one's own errors. Using a shared set of scrambled cube states, identical prompts and parsers, and a single distance-to-solved metric, we compare recent MLLMs side by side as a function of scramble depth. Across seven MLLMs, accuracy drops sharply with depth; once a trajectory stalls or diverges, models rarely recover, and high face-reconstruction accuracy does not guarantee competent action selection or multi-step execution. A pronounced closed- vs open-source gap emerges: the strongest closed model leads on both single-step perception tasks and multi-step control tasks, while open-weight models cluster near chance on the hardest settings; yet even the best MLLM degrades at higher cube complexity. A simple self-correction via reflective thinking yields modest gains but can also introduce overthinking. Cube Bench offers a compact, reproducible probe of sequential spatial reasoning in MLLMs.
comment: 27 pages, 5 figures, 9 tables. Cube available at https://github.com/dana-23/cube-bench
☆ Automated stereotactic radiosurgery planning using a human-in-the-loop reasoning large language model agent
Humza Nusrat, Luke Francisco, Bing Luo, Hassan Bagher-Ebadian, Joshua Kim, Karen Chin-Snyder, Salim Siddiqui, Mira Shah, Eric Mellon, Mohammad Ghassemi, Anthony Doemer, Benjamin Movsas, Kundan Thind
Stereotactic radiosurgery (SRS) demands precise dose shaping around critical structures, yet black-box AI systems have limited clinical adoption due to opacity concerns. We tested whether chain-of-thought reasoning improves agentic planning in a retrospective cohort of 41 patients with brain metastases treated with 18 Gy single-fraction SRS. We developed SAGE (Secure Agent for Generative Dose Expertise), an LLM-based planning agent for automated SRS treatment planning. Two variants generated plans for each case: one using a non-reasoning model, one using a reasoning model. The reasoning variant showed comparable plan dosimetry relative to human planners on primary endpoints (PTV coverage, maximum dose, conformity index, gradient index; all p > 0.21) while reducing cochlear dose below human baselines (p = 0.022). When prompted to improve conformity, the reasoning model demonstrated systematic planning behaviors including prospective constraint verification (457 instances) and trade-off deliberation (609 instances), while the standard model exhibited none of these deliberative processes (0 and 7 instances, respectively). Content analysis revealed that constraint verification and causal explanation concentrated in the reasoning agent. The optimization traces serve as auditable logs, offering a path toward transparent automated planning.
☆ Can LLMs Predict Their Own Failures? Self-Awareness via Internal Circuits
Large language models (LLMs) generate fluent and complex outputs but often fail to recognize their own mistakes and hallucinations. Existing approaches typically rely on external judges, multi-sample consistency, or text-based self-critique, which incur additional compute or correlate weakly with true correctness. We ask: can LLMs predict their own failures by inspecting internal states during inference? We introduce Gnosis, a lightweight self-awareness mechanism that enables frozen LLMs to perform intrinsic self-verification by decoding signals from hidden states and attention patterns. Gnosis passively observes internal traces, compresses them into fixed-budget descriptors, and predicts correctness with negligible inference cost, adding only ~5M parameters and operating independently of sequence length. Across math reasoning, open-domain question answering, and academic knowledge benchmarks, and over frozen backbones ranging from 1.7B to 20B parameters, Gnosis consistently outperforms strong internal baselines and large external judges in both accuracy and calibration. Moreover, it generalizes zero-shot to partial generations, enabling early detection of failing trajectories and compute-aware control. These results show that reliable correctness cues are intrinsic to generation process and can be extracted efficiently without external supervision.
☆ Distilling to Hybrid Attention Models via KL-Guided Layer Selection
Distilling pretrained softmax attention Transformers into more efficient hybrid architectures that interleave softmax and linear attention layers is a promising approach for improving the inference efficiency of LLMs without requiring expensive pretraining from scratch. A critical factor in the conversion process is layer selection, i.e., deciding on which layers to convert to linear attention variants. This paper describes a simple and efficient recipe for layer selection that uses layer importance scores derived from a small amount of training on generic text data. Once the layers have been selected we use a recent pipeline for the distillation process itself \citep[RADLADS;][]{goldstein2025radlads}, which consists of attention weight transfer, hidden state alignment, KL-based distribution matching, followed by a small amount of finetuning. We find that this approach is more effective than existing approaches for layer selection, including heuristics that uniformly interleave linear attentions based on a fixed ratio, as well as more involved approaches that rely on specialized diagnostic datasets.
☆ Step-DeepResearch Technical Report
Chen Hu, Haikuo Du, Heng Wang, Lin Lin, Mingrui Chen, Peng Liu, Ruihang Miao, Tianchi Yue, Wang You, Wei Ji, Wei Yuan, Wenjin Deng, Xiaojian Yuan, Xiaoyun Zhang, Xiangyu Liu, Xikai Liu, Yanming Xu, Yicheng Cao, Yifei Zhang, Yongyao Wang, Yubo Shu, Yurong Zhang, Yuxiang Zhang, Zheng Gong, Zhichao Chang, Binyan Li, Dan Ma, Furong Jia, Hongyuan Wang, Jiayu Liu, Jing Bai, Junlan Liu, Manjiao Liu, Na Wang, Qiuping Wu, Qinxin Du, Shiwei Li, Wen Sun, Yifeng Gong, Yonglin Chen, Yuling Zhao, Yuxuan Lin, Ziqi Ren, Zixuan Wang, Aihu Zhang, Brian Li, Buyun Ma, Kang An, Li Xie, Mingliang Li, Pan Li, Shidong Yang, Xi Chen, Xiaojia Liu, Yuchu Luo, Yuan Song, YuanHao Ding, Yuanwei Liang, Zexi Li, Zhaoning Zhang, Zixin Zhang, Binxing Jiao, Daxin Jiang, Jiansheng Chen, Jing Li, Xiangyu Zhang, Yibo Zhu
As LLMs shift toward autonomous agents, Deep Research has emerged as a pivotal metric. However, existing academic benchmarks like BrowseComp often fail to meet real-world demands for open-ended research, which requires robust skills in intent recognition, long-horizon decision-making, and cross-source verification. To address this, we introduce Step-DeepResearch, a cost-effective, end-to-end agent. We propose a Data Synthesis Strategy Based on Atomic Capabilities to reinforce planning and report writing, combined with a progressive training path from agentic mid-training to SFT and RL. Enhanced by a Checklist-style Judger, this approach significantly improves robustness. Furthermore, to bridge the evaluation gap in the Chinese domain, we establish ADR-Bench for realistic deep research scenarios. Experimental results show that Step-DeepResearch (32B) scores 61.4% on Scale AI Research Rubrics. On ADR-Bench, it significantly outperforms comparable models and rivals SOTA closed-source models like OpenAI and Gemini DeepResearch. These findings prove that refined training enables medium-sized models to achieve expert-level capabilities at industry-leading cost-efficiency.
☆ Coherence in the brain unfolds across separable temporal regimes
Davide Stauba, Finn Rabe, Akhil Misra, Yves Pauli, Roya Hüppi, Nils Lang, Lars Michels, Victoria Edkins, Sascha Frühholz, Iris Sommer, Wolfram Hinzen, Philipp Homan
Coherence in language requires the brain to satisfy two competing temporal demands: gradual accumulation of meaning across extended context and rapid reconfiguration of representations at event boundaries. Despite their centrality to language and thought, how these processes are implemented in the human brain during naturalistic listening remains unclear. Here, we tested whether these two processes can be captured by annotation-free drift and shift signals and whether their neural expression dissociates across large-scale cortical systems. These signals were derived from a large language model (LLM) and formalized contextual drift and event shifts directly from the narrative input. To enable high-precision voxelwise encoding models with stable parameter estimates, we densely sampled one healthy adult across more than 7 hours of listening to thirteen crime stories while collecting ultra high-field (7T) BOLD data. We then modeled the feature-informed hemodynamic response using a regularized encoding framework validated on independent stories. Drift predictions were prevalent in default-mode network hubs, whereas shift predictions were evident bilaterally in the primary auditory cortex and language association cortex. Furthermore, activity in default-mode and parietal networks was best explained by a signal capturing how meaning accumulates and gradually fades over the course of the narrative. Together, these findings show that coherence during language comprehension is implemented through dissociable neural regimes of slow contextual integration and rapid event-driven reconfiguration, offering a mechanistic entry point for understanding disturbances of language coherence in psychiatric disorders.
☆ Sentiment-Aware Extractive and Abstractive Summarization for Unstructured Text Mining
With the rapid growth of unstructured data from social media, reviews, and forums, text mining has become essential in Information Systems (IS) for extracting actionable insights. Summarization can condense fragmented, emotion-rich posts, but existing methods-optimized for structured news-struggle with noisy, informal content. Emotional cues are critical for IS tasks such as brand monitoring and market analysis, yet few studies integrate sentiment modeling into summarization of short user-generated texts. We propose a sentiment-aware framework extending extractive (TextRank) and abstractive (UniLM) approaches by embedding sentiment signals into ranking and generation processes. This dual design improves the capture of emotional nuances and thematic relevance, producing concise, sentiment-enriched summaries that enhance timely interventions and strategic decision-making in dynamic online environments.
comment: WITS 2025 (Workshop on Information Technologies and Systems 2025)
☆ Generative Digital Twins: Vision-Language Simulation Models for Executable Industrial Systems
We propose a Vision-Language Simulation Model (VLSM) that unifies visual and textual understanding to synthesize executable FlexScript from layout sketches and natural-language prompts, enabling cross-modal reasoning for industrial simulation systems. To support this new paradigm, the study constructs the first large-scale dataset for generative digital twins, comprising over 120,000 prompt-sketch-code triplets that enable multimodal learning between textual descriptions, spatial structures, and simulation logic. In parallel, three novel evaluation metrics, Structural Validity Rate (SVR), Parameter Match Rate (PMR), and Execution Success Rate (ESR), are proposed specifically for this task to comprehensively evaluate structural integrity, parameter fidelity, and simulator executability. Through systematic ablation across vision encoders, connectors, and code-pretrained language backbones, the proposed models achieve near-perfect structural accuracy and high execution robustness. This work establishes a foundation for generative digital twins that integrate visual reasoning and language understanding into executable industrial simulation systems.
comment: 10 pages, 9 figures
☆ Multi-LLM Thematic Analysis with Dual Reliability Metrics: Combining Cohen's Kappa and Semantic Similarity for Qualitative Research Validation
Qualitative research faces a critical reliability challenge: traditional inter-rater agreement methods require multiple human coders, are time-intensive, and often yield moderate consistency. We present a multi-perspective validation framework for LLM-based thematic analysis that combines ensemble validation with dual reliability metrics: Cohen's Kappa ($κ$) for inter-rater agreement and cosine similarity for semantic consistency. Our framework enables configurable analysis parameters (1-6 seeds, temperature 0.0-2.0), supports custom prompt structures with variable substitution, and provides consensus theme extraction across any JSON format. As proof-of-concept, we evaluate three leading LLMs (Gemini 2.5 Pro, GPT-4o, Claude 3.5 Sonnet) on a psychedelic art therapy interview transcript, conducting six independent runs per model. Results demonstrate Gemini achieves highest reliability ($κ= 0.907$, cosine=95.3%), followed by GPT-4o ($κ= 0.853$, cosine=92.6%) and Claude ($κ= 0.842$, cosine=92.1%). All three models achieve a high agreement ($κ> 0.80$), validating the multi-run ensemble approach. The framework successfully extracts consensus themes across runs, with Gemini identifying 6 consensus themes (50-83% consistency), GPT-4o identifying 5 themes, and Claude 4 themes. Our open-source implementation provides researchers with transparent reliability metrics, flexible configuration, and structure-agnostic consensus extraction, establishing methodological foundations for reliable AI-assisted qualitative research.
comment: 11 pages, 1 figure, 3 tables
☆ Can LLMs Solve My Grandma's Riddle? Evaluating Multilingual Large Language Models on Reasoning Traditional Bangla Tricky Riddles
Nurul Labib Sayeedi, Md. Faiyaz Abdullah Sayeedi, Khushnur Binte Jahangir, Swakkhar Shatabda, Sarah Masud Preum
Large Language Models (LLMs) show impressive performance on many NLP benchmarks, yet their ability to reason in figurative, culturally grounded, and low-resource settings remains underexplored. We address this gap for Bangla by introducing BanglaRiddleEval, a benchmark of 1,244 traditional Bangla riddles instantiated across four tasks (4,976 riddle-task artifacts in total). Using an LLM-based pipeline, we generate Chain-of-Thought explanations, semantically coherent distractors, and fine-grained ambiguity annotations, and evaluate a diverse suite of open-source and closed-source models under different prompting strategies. Models achieve moderate semantic overlap on generative QA but low correctness, MCQ accuracy peaks at only about 56% versus an 83% human baseline, and ambiguity resolution ranges from roughly 26% to 68%, with high-quality explanations confined to the strongest models. These results show that current LLMs capture some cues needed for Bangla riddle reasoning but remain far from human-level performance, establishing BanglaRiddleEval as a challenging new benchmark for low-resource figurative reasoning. All data, code, and evaluation scripts are available on GitHub: https://github.com/Labib1610/BanglaRiddleEval.
☆ SpidR: Learning Fast and Stable Linguistic Units for Spoken Language Models Without Supervision
Maxime Poli, Mahi Luthra, Youssef Benchekroun, Yosuke Higuchi, Martin Gleize, Jiayi Shen, Robin Algayres, Yu-An Chung, Mido Assran, Juan Pino, Emmanuel Dupoux
The parallel advances in language modeling and speech representation learning have raised the prospect of learning language directly from speech without textual intermediates. This requires extracting semantic representations directly from speech. Our contributions are threefold. First, we introduce SpidR, a self-supervised speech representation model that efficiently learns representations with highly accessible phonetic information, which makes it particularly suited for textless spoken language modeling. It is trained on raw waveforms using a masked prediction objective combined with self-distillation and online clustering. The intermediate layers of the student model learn to predict assignments derived from the teacher's intermediate layers. This learning objective stabilizes the online clustering procedure compared to previous approaches, resulting in higher quality codebooks. SpidR outperforms wav2vec 2.0, HuBERT, WavLM, and DinoSR on downstream language modeling benchmarks (sWUGGY, sBLIMP, tSC). Second, we systematically evaluate across models and layers the correlation between speech unit quality (ABX, PNMI) and language modeling performance, validating these metrics as reliable proxies. Finally, SpidR significantly reduces pretraining time compared to HuBERT, requiring only one day of pretraining on 16 GPUs, instead of a week. This speedup is enabled by the pretraining method and an efficient codebase, which allows faster iteration and easier experimentation. We open-source the training code and model checkpoints at https://github.com/facebookresearch/spidr.
comment: 30 pages, 16 figures
☆ Patterns vs. Patients: Evaluating LLMs against Mental Health Professionals on Personality Disorder Diagnosis through First-Person Narratives
Growing reliance on LLMs for psychiatric self-assessment raises questions about their ability to interpret qualitative patient narratives. We present the first direct comparison between state-of-the-art LLMs and mental health professionals in diagnosing Borderline (BPD) and Narcissistic (NPD) Personality Disorders utilizing Polish-language first-person autobiographical accounts. We show that the top-performing Gemini Pro models surpassed human professionals in overall diagnostic accuracy by 21.91 percentage points (65.48% vs. 43.57%). While both models and human experts excelled at identifying BPD (F1 = 83.4 & F1 = 80.0, respectively), models severely underdiagnosed NPD (F1 = 6.7 vs. 50.0), showing a reluctance toward the value-laden term "narcissism." Qualitatively, models provided confident, elaborate justifications focused on patterns and formal categories, while human experts remained concise and cautious, emphasizing the patient's sense of self and temporal experience. Our findings demonstrate that while LLMs are highly competent at interpreting complex first-person clinical data, they remain subject to critical reliability and bias issues.
☆ AprielGuard
Jaykumar Kasundra, Anjaneya Praharaj, Sourabh Surana, Lakshmi Sirisha Chodisetty, Sourav Sharma, Abhigya Verma, Abhishek Bhardwaj, Debasish Kanhar, Aakash Bhagat, Khalil Slimi, Seganrasan Subramanian, Sathwik Tejaswi Madhusudhan, Ranga Prasad Chenna, Srinivas Sunkara
Safeguarding large language models (LLMs) against unsafe or adversarial behavior is critical as they are increasingly deployed in conversational and agentic settings. Existing moderation tools often treat safety risks (e.g. toxicity, bias) and adversarial threats (e.g. prompt injections, jailbreaks) as separate problems, limiting their robustness and generalizability. We introduce AprielGuard, an 8B parameter safeguard model that unify these dimensions within a single taxonomy and learning framework. AprielGuard is trained on a diverse mix of open and synthetic data covering standalone prompts, multi-turn conversations, and agentic workflows, augmented with structured reasoning traces to improve interpretability. Across multiple public and proprietary benchmarks, AprielGuard achieves strong performance in detecting harmful content and adversarial manipulations, outperforming existing opensource guardrails such as Llama-Guard and Granite Guardian, particularly in multi-step and reasoning intensive scenarios. By releasing the model, we aim to advance transparent and reproducible research on reliable safeguards for LLMs.
☆ SlideTailor: Personalized Presentation Slide Generation for Scientific Papers AAAI 2026
Automatic presentation slide generation can greatly streamline content creation. However, since preferences of each user may vary, existing under-specified formulations often lead to suboptimal results that fail to align with individual user needs. We introduce a novel task that conditions paper-to-slides generation on user-specified preferences. We propose a human behavior-inspired agentic framework, SlideTailor, that progressively generates editable slides in a user-aligned manner. Instead of requiring users to write their preferences in detailed textual form, our system only asks for a paper-slides example pair and a visual template - natural and easy-to-provide artifacts that implicitly encode rich user preferences across content and visual style. Despite the implicit and unlabeled nature of these inputs, our framework effectively distills and generalizes the preferences to guide customized slide generation. We also introduce a novel chain-of-speech mechanism to align slide content with planned oral narration. Such a design significantly enhances the quality of generated slides and enables downstream applications like video presentations. To support this new task, we construct a benchmark dataset that captures diverse user preferences, with carefully designed interpretable metrics for robust evaluation. Extensive experiments demonstrate the effectiveness of our framework.
comment: AAAI 2026 (with appendix)
☆ Corpus of Cross-lingual Dialogues with Minutes and Detection of Misunderstandings
Speech processing and translation technology have the potential to facilitate meetings of individuals who do not share any common language. To evaluate automatic systems for such a task, a versatile and realistic evaluation corpus is needed. Therefore, we create and present a corpus of cross-lingual dialogues between individuals without a common language who were facilitated by automatic simultaneous speech translation. The corpus consists of 5 hours of speech recordings with ASR and gold transcripts in 12 original languages and automatic and corrected translations into English. For the purposes of research into cross-lingual summarization, our corpus also includes written summaries (minutes) of the meetings.
Moreover, we propose automatic detection of misunderstandings. For an overview of this task and its complexity, we attempt to quantify misunderstandings in cross-lingual meetings. We annotate misunderstandings manually and also test the ability of current large language models to detect them automatically. The results show that the Gemini model is able to identify text spans with misunderstandings with recall of 77% and precision of 47%.
comment: 12 pages, 2 figures, 6 tables, published as a conference paper in Text, Speech, and Dialogue 28th International Conference, TSD 2025, Erlangen, Germany, August 25-28, 2025, Proceedings, Part II. This version published here on arXiv.org is before review comments and seedings of the TSD conference staff
☆ FaithLens: Detecting and Explaining Faithfulness Hallucination
Shuzheng Si, Qingyi Wang, Haozhe Zhao, Yuzhuo Bai, Guanqiao Chen, Kangyang Luo, Gang Chen, Fanchao Qi, Minjia Zhang, Baobao Chang, Maosong Sun
Recognizing whether outputs from large language models (LLMs) contain faithfulness hallucination is crucial for real-world applications, e.g., retrieval-augmented generation and summarization. In this paper, we introduce FaithLens, a cost-efficient and effective faithfulness hallucination detection model that can jointly provide binary predictions and corresponding explanations to improve trustworthiness. To achieve this, we first synthesize training data with explanations via advanced LLMs and apply a well-defined data filtering strategy to ensure label correctness, explanation quality, and data diversity. Subsequently, we fine-tune the model on these well-curated training data as a cold start and further optimize it with rule-based reinforcement learning, using rewards for both prediction correctness and explanation quality. Results on 12 diverse tasks show that the 8B-parameter FaithLens outperforms advanced models such as GPT-4.1 and o3. Also, FaithLens can produce high-quality explanations, delivering a distinctive balance of trustworthiness, efficiency, and effectiveness.
☆ Towards Natural Language-Based Document Image Retrieval: New Dataset and Benchmark CVPR 2025
Document image retrieval (DIR) aims to retrieve document images from a gallery according to a given query. Existing DIR methods are primarily based on image queries that retrieve documents within the same coarse semantic category, e.g., newspapers or receipts. However, these methods struggle to effectively retrieve document images in real-world scenarios where textual queries with fine-grained semantics are usually provided. To bridge this gap, we introduce a new Natural Language-based Document Image Retrieval (NL-DIR) benchmark with corresponding evaluation metrics. In this work, natural language descriptions serve as semantically rich queries for the DIR task. The NL-DIR dataset contains 41K authentic document images, each paired with five high-quality, fine-grained semantic queries generated and evaluated through large language models in conjunction with manual verification. We perform zero-shot and fine-tuning evaluations of existing mainstream contrastive vision-language models and OCR-free visual document understanding (VDU) models. A two-stage retrieval method is further investigated for performance improvement while achieving both time and space efficiency. We hope the proposed NL-DIR benchmark can bring new opportunities and facilitate research for the VDU community. Datasets and codes will be publicly available at huggingface.co/datasets/nianbing/NL-DIR.
comment: CVPR 2025
☆ Learning to Reason in LLMs by Expectation Maximization
Junghyun Lee, Branislav Kveton, Sunav Choudhary, Subhojyoti Mukherjee, Anup Rao, Ryan A. Rossi, Alexa Siu
Large language models (LLMs) solve reasoning problems by first generating a rationale and then answering. We formalize reasoning as a latent variable model and derive an expectation-maximization (EM) objective for learning to reason. This view connects EM and modern reward-based optimization, and shows that the main challenge lies in designing a sampling distribution that generates rationales that justify correct answers. We instantiate and compare several sampling schemes: rejection sampling with a budget, self-taught reasoner (STaR), and prompt posterior sampling (PPS), which only keeps the rationalization stage of STaR. Our experiments on the ARC, MMLU, and OpenBookQA datasets with the Llama and Qwen models show that the sampling scheme can significantly affect the accuracy of learned reasoning models. Despite its simplicity, we observe that PPS outperforms the other sampling schemes.
comment: 12 pages, 3 figures, 1 table
★ AI Security Beyond Core Domains: Resume Screening as a Case Study of Adversarial Vulnerabilities in Specialized LLM Applications
Large Language Models (LLMs) excel at text comprehension and generation, making them ideal for automated tasks like code review and content moderation. However, our research identifies a vulnerability: LLMs can be manipulated by "adversarial instructions" hidden in input data, such as resumes or code, causing them to deviate from their intended task. Notably, while defenses may exist for mature domains such as code review, they are often absent in other common applications such as resume screening and peer review. This paper introduces a benchmark to assess this vulnerability in resume screening, revealing attack success rates exceeding 80% for certain attack types. We evaluate two defense mechanisms: prompt-based defenses achieve 10.1% attack reduction with 12.5% false rejection increase, while our proposed FIDS (Foreign Instruction Detection through Separation) using LoRA adaptation achieves 15.4% attack reduction with 10.4% false rejection increase. The combined approach provides 26.3% attack reduction, demonstrating that training-time defenses outperform inference-time mitigations in both security and utility preservation.
☆ Fun-Audio-Chat Technical Report
Qian Chen, Luyao Cheng, Chong Deng, Xiangang Li, Jiaqing Liu, Chao-Hong Tan, Wen Wang, Junhao Xu, Jieping Ye, Qinglin Zhang, Qiquan Zhang, Jingren Zhou
Recent advancements in joint speech-text models show great potential for seamless voice interactions. However, existing models face critical challenges: temporal resolution mismatch between speech tokens (25Hz) and text tokens (~3Hz) dilutes semantic information, incurs high computational costs, and causes catastrophic forgetting of text LLM knowledge. We introduce Fun-Audio-Chat, a Large Audio Language Model addressing these limitations via two innovations from our previous work DrVoice. First, Dual-Resolution Speech Representations (DRSR): the Shared LLM processes audio at efficient 5Hz (via token grouping), while the Speech Refined Head generates high-quality tokens at 25Hz, balancing efficiency (~50% GPU reduction) and quality. Second, Core-Cocktail Training, a two-stage fine-tuning with intermediate merging that mitigates catastrophic forgetting. We then apply Multi-Task DPO Training to enhance robustness, audio understanding, instruction-following and voice empathy. This multi-stage post-training enables Fun-Audio-Chat to retain text LLM knowledge while gaining powerful audio understanding, reasoning, and generation. Unlike recent LALMs requiring large-scale audio-text pre-training, Fun-Audio-Chat leverages pre-trained models and extensive post-training. Fun-Audio-Chat 8B and MoE 30B-A3B achieve competitive performance on Speech-to-Text and Speech-to-Speech tasks, ranking top among similar-scale models on Spoken QA benchmarks. They also achieve competitive to superior performance on Audio Understanding, Speech Function Calling, Instruction-Following and Voice Empathy. We develop Fun-Audio-Chat-Duplex, a full-duplex variant with strong performance on Spoken QA and full-duplex interactions. We open-source Fun-Audio-Chat-8B with training and inference code, and provide an interactive demo.
comment: 21 pages, https://github.com/FunAudioLLM/Fun-Audio-Chat
☆ Retrieval-augmented Prompt Learning for Pre-trained Foundation Models
Xiang Chen, Yixin Ou, Quan Feng, Lei Li, Piji Li, Haibo Ye, Sheng-Jun Huang, Shuofei Qiao, Shumin Deng, Huajun Chen, Ningyu Zhang
The pre-trained foundation models (PFMs) have become essential for facilitating large-scale multimodal learning. Researchers have effectively employed the ``pre-train, prompt, and predict'' paradigm through prompt learning to induce improved few-shot performance. However, prompt learning approaches for PFMs still follow a parametric learning paradigm. As such, the stability of generalization in memorization and rote learning can be compromised. More specifically, conventional prompt learning might face difficulties in fully utilizing atypical instances and avoiding overfitting to shallow patterns with limited data during the process of fully-supervised training. To overcome these constraints, we present our approach, named RetroPrompt, which aims to achieve a balance between memorization and generalization by decoupling knowledge from mere memorization. Unlike traditional prompting methods, RetroPrompt leverages a publicly accessible knowledge base generated from the training data and incorporates a retrieval mechanism throughout the input, training, and inference stages. This enables the model to actively retrieve relevant contextual information from the corpus, thereby enhancing the available cues. We conduct comprehensive experiments on a variety of datasets across natural language processing and computer vision tasks to demonstrate the superior performance of our proposed approach, RetroPrompt, in both zero-shot and few-shot scenarios. Through detailed analysis of memorization patterns, we observe that RetroPrompt effectively reduces the reliance on rote memorization, leading to enhanced generalization.
comment: IEEE/ACM Transactions on Audio, Speech and Language Processing
★ Multi-hop Reasoning via Early Knowledge Alignment
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for Large Language Models (LLMs) to address knowledge-intensive queries requiring domain-specific or up-to-date information. To handle complex multi-hop questions that are challenging for single-step retrieval, iterative RAG approaches incorporating reinforcement learning have been proposed. However, existing iterative RAG systems typically plan to decompose questions without leveraging information about the available retrieval corpus, leading to inefficient retrieval and reasoning chains that cascade into suboptimal performance. In this paper, we introduce Early Knowledge Alignment (EKA), a simple but effective module that aligns LLMs with retrieval set before planning in iterative RAG systems with contextually relevant retrieved knowledge. Extensive experiments on six standard RAG datasets demonstrate that by establishing a stronger reasoning foundation, EKA significantly improves retrieval precision, reduces cascading errors, and enhances both performance and efficiency. Our analysis from an entropy perspective demonstrate that incorporating early knowledge reduces unnecessary exploration during the reasoning process, enabling the model to focus more effectively on relevant information subsets. Moreover, EKA proves effective as a versatile, training-free inference strategy that scales seamlessly to large models. Generalization tests across diverse datasets and retrieval corpora confirm the robustness of our approach. Overall, EKA advances the state-of-the-art in iterative RAG systems while illuminating the critical interplay between structured reasoning and efficient exploration in reinforcement learning-augmented frameworks. The code is released at \href{https://github.com/yxzwang/EarlyKnowledgeAlignment}{Github}.
comment: 16 pages
☆ M$^3$KG-RAG: Multi-hop Multimodal Knowledge Graph-enhanced Retrieval-Augmented Generation
Hyeongcheol Park, Jiyoung Seo, Jaewon Mun, Hogun Park, Wonmin Byeon, Sung June Kim, Hyeonsoo Im, JeungSub Lee, Sangpil Kim
Retrieval-Augmented Generation (RAG) has recently been extended to multimodal settings, connecting multimodal large language models (MLLMs) with vast corpora of external knowledge such as multimodal knowledge graphs (MMKGs). Despite their recent success, multimodal RAG in the audio-visual domain remains challenging due to 1) limited modality coverage and multi-hop connectivity of existing MMKGs, and 2) retrieval based solely on similarity in a shared multimodal embedding space, which fails to filter out off-topic or redundant knowledge. To address these limitations, we propose M$^3$KG-RAG, a Multi-hop Multimodal Knowledge Graph-enhanced RAG that retrieves query-aligned audio-visual knowledge from MMKGs, improving reasoning depth and answer faithfulness in MLLMs. Specifically, we devise a lightweight multi-agent pipeline to construct multi-hop MMKG (M$^3$KG), which contains context-enriched triplets of multimodal entities, enabling modality-wise retrieval based on input queries. Furthermore, we introduce GRASP (Grounded Retrieval And Selective Pruning), which ensures precise entity grounding to the query, evaluates answer-supporting relevance, and prunes redundant context to retain only knowledge essential for response generation. Extensive experiments across diverse multimodal benchmarks demonstrate that M$^3$KG-RAG significantly enhances MLLMs' multimodal reasoning and grounding over existing approaches.
☆ ABBEL: LLM Agents Acting through Belief Bottlenecks Expressed in Language
As the length of sequential decision-making tasks increases, it becomes computationally impractical to keep full interaction histories in context. We introduce a general framework for LLM agents to maintain concise contexts through multi-step interaction: Acting through Belief Bottlenecks Expressed in Language (ABBEL), and methods to further improve ABBEL agents with RL post-training. ABBEL replaces long multi-step interaction history by a belief state, i.e., a natural language summary of what has been discovered about task-relevant unknowns. Under ABBEL, at each step the agent first updates a prior belief with the most recent observation from the environment to form a posterior belief, then uses only the posterior to select an action. We systematically evaluate frontier models under ABBEL across six diverse multi-step environments, finding that ABBEL supports generating interpretable beliefs while maintaining near-constant memory use over interaction steps. However, bottleneck approaches are generally prone to error propagation, which we observe causing inferior performance when compared to the full context setting due to errors in belief updating. Therefore, we train LLMs to generate and act on beliefs within the ABBEL framework via reinforcement learning (RL). We experiment with belief grading, to reward higher quality beliefs, as well as belief length penalties to reward more compressed beliefs. Our experiments demonstrate the ability of RL to improve ABBEL's performance beyond the full context setting, while using less memory than contemporaneous approaches.
☆ A Novel Graph-Sequence Learning Model for Inductive Text Classification
Text classification plays an important role in various downstream text-related tasks, such as sentiment analysis, fake news detection, and public opinion analysis. Recently, text classification based on Graph Neural Networks (GNNs) has made significant progress due to their strong capabilities of structural relationship learning. However, these approaches still face two major limitations. First, these approaches fail to fully consider the diverse structural information across word pairs, e.g., co-occurrence, syntax, and semantics. Furthermore, they neglect sequence information in the text graph structure information learning module and can not classify texts with new words and relations. In this paper, we propose a Novel Graph-Sequence Learning Model for Inductive Text Classification (TextGSL) to address the previously mentioned issues. More specifically, we construct a single text-level graph for all words in each text and establish different edge types based on the diverse relationships between word pairs. Building upon this, we design an adaptive multi-edge message-passing paradigm to aggregate diverse structural information between word pairs. Additionally, sequential information among text data can be captured by the proposed TextGSL through the incorporation of Transformer layers. Therefore, TextGSL can learn more discriminative text representations. TextGSL has been comprehensively compared with several strong baselines. The experimental results on diverse benchmarking datasets demonstrate that TextGSL outperforms these baselines in terms of accuracy.
☆ Memory-T1: Reinforcement Learning for Temporal Reasoning in Multi-session Agents
Yiming Du, Baojun Wang, Yifan Xiang, Zhaowei Wang, Wenyu Huang, Boyang Xue, Bin Liang, Xingshan Zeng, Fei Mi, Haoli Bai, Lifeng Shang, Jeff Z. Pan, Yuxin Jiang, Kam-Fai Wong
Temporal reasoning over long, multi-session dialogues is a critical capability for conversational agents. However, existing works and our pilot study have shown that as dialogue histories grow in length and accumulate noise, current long-context models struggle to accurately identify temporally pertinent information, significantly impairing reasoning performance. To address this, we introduce Memory-T1, a framework that learns a time-aware memory selection policy using reinforcement learning (RL). It employs a coarse-to-fine strategy, first pruning the dialogue history into a candidate set using temporal and relevance filters, followed by an RL agent that selects the precise evidence sessions. The RL training is guided by a multi-level reward function optimizing (i) answer accuracy, (ii) evidence grounding, and (iii) temporal consistency. In particular, the temporal consistency reward provides a dense signal by evaluating alignment with the query time scope at both the session-level (chronological proximity) and the utterance-level (chronological fidelity), enabling the agent to resolve subtle chronological ambiguities. On the Time-Dialog benchmark, Memory-T1 boosts a 7B model to an overall score of 67.0\%, establishing a new state-of-the-art performance for open-source models and outperforming a 14B baseline by 10.2\%. Ablation studies show temporal consistency and evidence grounding rewards jointly contribute to a 15.0\% performance gain. Moreover, Memory-T1 maintains robustness up to 128k tokens, where baseline models collapse, proving effectiveness against noise in extensive dialogue histories. The code and datasets are publicly available at https://github.com/Elvin-Yiming-Du/Memory-T1/
☆ Reason2Decide: Rationale-Driven Multi-Task Learning
Despite the wide adoption of Large Language Models (LLM)s, clinical decision support systems face a critical challenge: achieving high predictive accuracy while generating explanations aligned with the predictions. Current approaches suffer from exposure bias leading to misaligned explanations. We propose Reason2Decide, a two-stage training framework that addresses key challenges in self-rationalization, including exposure bias and task separation. In Stage-1, our model is trained on rationale generation, while in Stage-2, we jointly train on label prediction and rationale generation, applying scheduled sampling to gradually transition from conditioning on gold labels to model predictions. We evaluate Reason2Decide on three medical datasets, including a proprietary triage dataset and public biomedical QA datasets. Across model sizes, Reason2Decide outperforms other fine-tuning baselines and some zero-shot LLMs in prediction (F1) and rationale fidelity (BERTScore, BLEU, LLM-as-a-Judge). In triage, Reason2Decide is rationale source-robust across LLM-generated, nurse-authored, and nurse-post-processed rationales. In our experiments, while using only LLM-generated rationales in Stage-1, Reason2Decide outperforms other fine-tuning variants. This indicates that LLM-generated rationales are suitable for pretraining models, reducing reliance on human annotations. Remarkably, Reason2Decide achieves these gains with models 40x smaller than contemporary foundation models, making clinical reasoning more accessible for resource-constrained deployments while still providing explainable decision support.
☆ Schoenfeld's Anatomy of Mathematical Reasoning by Language Models
Large language models increasingly expose reasoning traces, yet their underlying cognitive structure and steps remain difficult to identify and analyze beyond surface-level statistics. We adopt Schoenfeld's Episode Theory as an inductive, intermediate-scale lens and introduce ThinkARM (Anatomy of Reasoning in Models), a scalable framework that explicitly abstracts reasoning traces into functional reasoning steps such as Analysis, Explore, Implement, Verify, etc. When applied to mathematical problem solving by diverse models, this abstraction reveals reproducible thinking dynamics and structural differences between reasoning and non-reasoning models, which are not apparent from token-level views. We further present two diagnostic case studies showing that exploration functions as a critical branching step associated with correctness, and that efficiency-oriented methods selectively suppress evaluative feedback steps rather than uniformly shortening responses. Together, our results demonstrate that episode-level representations make reasoning steps explicit, enabling systematic analysis of how reasoning is structured, stabilized, and altered in modern language models.
☆ Bias Beneath the Tone: Empirical Characterisation of Tone Bias in LLM-Driven UX Systems
Large Language Models are increasingly used in conversational systems such as digital personal assistants, shaping how people interact with technology through language. While their responses often sound fluent and natural, they can also carry subtle tone biases such as sounding overly polite, cheerful, or cautious even when neutrality is expected. These tendencies can influence how users perceive trust, empathy, and fairness in dialogue. In this study, we explore tone bias as a hidden behavioral trait of large language models. The novelty of this research lies in the integration of controllable large language model based dialogue synthesis with tone classification models, enabling robust and ethical emotion recognition in personal assistant interactions. We created two synthetic dialogue datasets, one generated from neutral prompts and another explicitly guided to produce positive or negative tones. Surprisingly, even the neutral set showed consistent tonal skew, suggesting that bias may stem from the model's underlying conversational style. Using weak supervision through a pretrained DistilBERT model, we labeled tones and trained several classifiers to detect these patterns. Ensemble models achieved macro F1 scores up to 0.92, showing that tone bias is systematic, measurable, and relevant to designing fair and trustworthy conversational AI.
♻ ☆ Thematic Dispersion in Arabic Applied Linguistics: A Bibliometric Analysis using Brookes' Measure
This study applies Brookes' Measure of Categorical Dispersion (Δ) to analyze the thematic structure of contemporary Arabic Applied Linguistics research. Using a comprehensive, real-world dataset of 1,564 publications from 2019 to 2025, classified into eight core sub-disciplines, we calculate a dispersion index of Δ = 0.194. This remarkably low value indicates extreme thematic dispersion, revealing that the field is characterized by pronounced heterogeneity rather than concentration. The analysis identifies Computational Linguistics as a dominant but non-hegemonic force, coexisting with robust research in Sociolinguistics, Language Teaching, and other subfields. This study clarifies the correct application of Brookes' original formula, demonstrates its utility for field characterization, and provides a replicable bibliometric methodology for assessing disciplinary structure across domains.
♻ ☆ Enhancing Uncertainty Estimation in LLMs with Expectation of Aggregated Internal Belief AAAI 2026
Large Language Models (LLMs) have achieved remarkable success across a wide range of natural language tasks, but often exhibit overconfidence and generate plausible yet incorrect answers. This overconfidence, especially in models undergone Reinforcement Learning from Human Feedback (RLHF), poses significant challenges for reliable uncertainty estimation and safe deployment. In this paper, we propose EAGLE (Expectation of AGgregated internaL bEief), a novel self-evaluation-based calibration method that leverages the internal hidden states of LLMs to derive more accurate confidence scores. Instead of relying on the model's final output, our approach extracts internal beliefs from multiple intermediate layers during self-evaluation. By aggregating these layer-wise beliefs and calculating the expectation over the resulting confidence score distribution, EAGLE produces a refined confidence score that more faithfully reflects the model's internal certainty. Extensive experiments on diverse datasets and LLMs demonstrate that EAGLE significantly improves calibration performance over existing baselines. We also provide an in-depth analysis of EAGLE, including a layer-wise examination of uncertainty patterns, a study of the impact of self-evaluation prompts, and an analysis of the effect of self-evaluation score range.
comment: Accepted by AAAI 2026
♻ ☆ Let's Think in Two Steps: Mitigating Agreement Bias in MLLMs with Self-Grounded Verification
Verifiers--functions assigning rewards to agent behavior--have been key for AI progress in domains like math and code. However, extending gains to domains without clear-cut success criteria (e.g., computer use) remains a challenge: while humans can recognize desired outcomes, translating this intuition into scalable rules is nontrivial. Multimodal Large Language Models (MLLMs) emerge as a promising solution, given their world knowledge, human-preference alignment, and reasoning skills. We evaluate MLLMs as verifiers across web navigation, computer use, and robotic manipulation, and identify a critical limitation: a strong tendency to over-validate agent behavior, a phenomenon we term agreement bias. This bias is pervasive across models, resilient to test-time scaling, and poses risks to existing methods relying on MLLM evaluations. We discuss methods to evaluate and improve MLLM verifiers and introduce Self-Grounded Verification (SGV), a lightweight method that harnesses MLLMs' own sampling mechanisms by modulating (un)conditional generation to better leverage their knowledge, alignment, and reasoning. SGV operates in two steps: first, the MLLM is elicited to generate broad priors about desired behavior, independent of the data under evaluation. Then, conditioned on self-generated priors, it reasons over and evaluates a candidate trajectory. SGV yields more human-aligned evaluations with gains of up to 25pp in failure detection, 14pp in accuracy, and benefits extending to downstream applications. In self-refinement and online supervision, SGV boosts task completion of a GUI specialist in OSWorld, a diffusion policy in robomimic, and a ReAct agent in VisualWebArena--setting a new state of the art, surpassing the previous best by 20pp. We release an updated version of VisualWebArena featuring more human-aligned evaluators, high-fidelity environment parallelism, and speedups of over 10x.
comment: Our code, models, and data are publicly available at https://mshalimay.github.io/agreement-bias-sgv/
♻ ☆ AWPO: Enhancing Tool-Use of Large Language Models through Explicit Integration of Reasoning Rewards
While reinforcement learning (RL) shows promise in training tool-use large language models (LLMs) using verifiable outcome rewards, existing methods largely overlook the potential of explicit reasoning rewards to bolster reasoning and tool utilization. Furthermore, natively combining reasoning and outcome rewards may yield suboptimal performance or conflict with the primary optimization objective. To address this, we propose advantage-weighted policy optimization (AWPO) -- a principled RL framework that effectively integrates explicit reasoning rewards to enhance tool-use capability. AWPO incorporates variance-aware gating and difficulty-aware weighting to adaptively modulate advantages from reasoning signals based on group-relative statistics, alongside a tailored clipping mechanism for stable optimization. Extensive experiments demonstrate that AWPO achieves state-of-the-art performance across standard tool-use benchmarks, significantly outperforming strong baselines and leading closed-source models in challenging multi-turn scenarios. Notably, with exceptional parameter efficiency, our 4B model surpasses Grok-4 by 16.0 percent in multi-turn accuracy while preserving generalization capability on the out-of-distribution MMLU-Pro benchmark.
♻ ☆ Why mask diffusion does not work
The main advantages of diffusion language models over autoregressive (AR) models lie in their ability to support parallel generation and bidirectional attention, enabling a more controllable generation process. In recent years, open-source mask diffusion language models have emerged, most of which are based on a variant known as absorbing diffusion. However, this paper demonstrates why mask diffusion faces inherent difficulties in achieving parallel generation and bidirectional attention. We also propose the most effective training and inference strategies for mask diffusion.
♻ ☆ DrVoice: Parallel Speech-Text Voice Conversation Model via Dual-Resolution Speech Representations
Chao-Hong Tan, Qian Chen, Wen Wang, Chong Deng, Qinglin Zhang, Luyao Cheng, Hai Yu, Xin Zhang, Xiang Lv, Tianyu Zhao, Chong Zhang, Yukun Ma, Yafeng Chen, Hui Wang, Jiaqing Liu, Xiangang Li, Jieping Ye
Recent studies on end-to-end (E2E) speech generation with large language models (LLMs) have attracted significant community attention, with multiple works extending text-based LLMs to generate discrete speech tokens. Existing E2E approaches primarily fall into two categories: (1) Methods that generate discrete speech tokens independently without incorporating them into the LLM's autoregressive process, resulting in text generation being unaware of concurrent speech synthesis. (2) Models that generate interleaved or parallel speech-text tokens through joint autoregressive modeling, enabling mutual modality awareness during generation. This paper presents DrVoice, a parallel speech-text voice conversation model based on joint autoregressive modeling, featuring dual-resolution speech representations. Notably, while current methods utilize mainly 12.5Hz input audio representation, our proposed dual-resolution mechanism reduces the input frequency for the LLM to 5Hz, significantly reducing computational cost and alleviating the frequency discrepancy between speech and text tokens and in turn better exploiting LLMs' capabilities. Experimental results demonstrate that DrVoice-7B establishes new state-of-the-art (SOTA) on prominent speech benchmarks including OpenAudioBench, VoiceBench, UltraEval-Audio and Big Bench Audio, making it a leading open-source speech foundation model in ~7B models.
comment: Work in progress
♻ ☆ Vision Language Models are Confused Tourists
Patrick Amadeus Irawan, Ikhlasul Akmal Hanif, Muhammad Dehan Al Kautsar, Genta Indra Winata, Fajri Koto, Alham Fikri Aji
Although the cultural dimension has been one of the key aspects in evaluating Vision-Language Models (VLMs), their ability to remain stable across diverse cultural inputs remains largely untested, despite being crucial to support diversity and multicultural societies. Existing evaluations often rely on benchmarks featuring only a singular cultural concept per image, overlooking scenarios where multiple, potentially unrelated cultural cues coexist. To address this gap, we introduce ConfusedTourist, a novel cultural adversarial robustness suite designed to assess VLMs' stability against perturbed geographical cues. Our experiments reveal a critical vulnerability, where accuracy drops heavily under simple image-stacking perturbations and even worsens with its image-generation-based variant. Interpretability analyses further show that these failures stem from systematic attention shifts toward distracting cues, diverting the model from its intended focus. These findings highlight a critical challenge: visual cultural concept mixing can substantially impair even state-of-the-art VLMs, underscoring the urgent need for more culturally robust multimodal understanding.
♻ ☆ SoK: Are Watermarks in LLMs Ready for Deployment?
Large Language Models (LLMs) have transformed natural language processing, demonstrating impressive capabilities across diverse tasks. However, deploying these models introduces critical risks related to intellectual property violations and potential misuse, particularly as adversaries can imitate these models to steal services or generate misleading outputs. We specifically focus on model stealing attacks, as they are highly relevant to proprietary LLMs and pose a serious threat to their security, revenue, and ethical deployment. While various watermarking techniques have emerged to mitigate these risks, it remains unclear how far the community and industry have progressed in developing and deploying watermarks in LLMs.
To bridge this gap, we aim to develop a comprehensive systematization for watermarks in LLMs by 1) presenting a detailed taxonomy for watermarks in LLMs, 2) proposing a novel intellectual property classifier to explore the effectiveness and impacts of watermarks on LLMs under both attack and attack-free environments, 3) analyzing the limitations of existing watermarks in LLMs, and 4) discussing practical challenges and potential future directions for watermarks in LLMs. Through extensive experiments, we show that despite promising research outcomes and significant attention from leading companies and community to deploy watermarks, these techniques have yet to reach their full potential in real-world applications due to their unfavorable impacts on model utility of LLMs and downstream tasks. Our findings provide an insightful understanding of watermarks in LLMs, highlighting the need for practical watermarks solutions tailored to LLM deployment.
♻ ☆ Zero-Overhead Introspection for Adaptive Test-Time Compute
Large language models excel at reasoning but lack key aspects of introspection, including anticipating their own success and the computation required to achieve it. Humans use real-time introspection to decide how much effort to invest, when to make multiple attempts, when to stop, and when to signal success or failure. Without this, LLMs struggle to make intelligent meta-cognition decisions. Test-time scaling methods like Best-of-N drive up cost and latency by using a fixed budget of samples regardless of the marginal benefit of each one at any point in generation, and the absence of confidence signals can mislead people, prevent appropriate escalation to better tools, and undermine trustworthiness. Learned verifiers or reward models can provide confidence estimates, but do not enable adaptive inference and add substantial cost by requiring extra models or forward passes. We present ZIP-RC, which equips models with zero-overhead introspective predictions of reward and cost. At every token, ZIP-RC reuses reserved or unused logits in the same forward pass as next-token prediction to output a joint distribution over final reward and remaining length -- no extra models, architecture change, or inference overhead. This full joint distribution is used to compute a sampling utility which is the linear combination of the expected maximum reward, total compute, and latency of set of samples if generated to completion. During inference, we maximize this utility with meta-actions that determine which prefix of tokens to continue or initiate sampling from. On mixed-difficulty mathematical benchmarks, ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower average cost, and traces smooth Pareto frontiers between quality, compute, and latency. By providing real-time reward-cost introspection, ZIP-RC enables adaptive, efficient reasoning.
♻ ☆ External Hippocampus: Topological Cognitive Maps for Guiding Large Language Model Reasoning
This paper proposes the External Hippocampus framework, which models language model reasoning from a cognitive dynamics perspective as the flow of information energy in semantic space. Unlike traditional weight-space optimization methods, this framework constructs topological cognitive maps through dimensionality reduction projection, enabling precise navigation and intervention of energy flow at test time while avoiding substantial computational requirements and demonstrating predictable intervention patterns. The method effectively addresses the cognitive deadlock problem in multi-step reasoning for small models. Experiments on models <=7B parameters show: map-guided methods achieve 81.20% accuracy on 500 challenging problems (relative baseline +16.80%), reduce reasoning time by >= 15x, with key findings revealing that reasoning stagnation manifests as "Cognitive Vortex" and low-entropy potential wells, while temperature perturbations effectively restart energy flow. The framework requires no additional training, possesses autonomous growth capability, and provides an efficient and controllable topological-aware solution for small model reasoning.
comment: 12 pages, 7 figures
♻ ☆ C$^2$GSPG: Confidence-calibrated Group Sequence Policy Gradient towards Self-aware Reasoning
Reinforcement Learning (RL) methods, exemplified by Group Relative Policy Optimization (GRPO) and its variants, play a central role in developing reasoning models. However, these methods often suffer from a critical overconfidence issue, which prevents them from achieving self-aware reasoning models. In this study, we propose a simple yet effective confidence-calibration group sequence policy gradient method, called C$^2$GSPG, which simultaneously enhances reasoning performance while suppressing overconfidence. In principle, we propose a Group Sequence Policy Gradient (GSPG) framework for learning reasoning models, which eliminates the token-level bias commonly appearing in GRPO and its variants. In this framework, we define the model confidence for each reasoning problem using the normalized sequence-level probability, and then apply a cross-entropy regularizer to calibrate the model confidence to the sequence's reward. We demonstrate that the confidence calibration regularizer and GSPG are collaborative for binary rewards, as their objectives always share the same gradient direction. For non-binary rewards, we apply nonlinear reward normalization and adaptive regularizer clipping, mitigating the potential conflict between the two objectives. Applying C$^2$GSPG to post-train large language models in logical and mathematical reasoning tasks, we show its superiority over state-of-the-art methods in both reasoning accuracy and confidence calibration. The code of C$^2$GSPG is available at https://github.com/HaotianLiu123/CCGSPG.
♻ ★ Select2Reason: Efficient Instruction-Tuning Data Selection for Long-CoT Reasoning
A practical approach to activate long chain-of-thoughts reasoning ability in pre-trained large language models is to perform supervised fine-tuning on instruction datasets synthesized by strong Large Reasoning Models such as DeepSeek-R1, offering a cost-effective alternative to reinforcement learning. However, large-scale instruction sets with more than 100k samples incur significant training overhead, while effective strategies for automatic long-CoT instruction selection still remain unexplored. In this work, we propose Select2Reason, a novel and efficient instruction-tuning data selection framework for long-CoT reasoning. From the perspective of emergence of rethinking behaviors like self-correction and backtracking, we investigate common metrics that may determine the quality of long-CoT reasoning instructions. Select2Reason leverages a quantifier to estimate difficulty of question and jointly incorporates a reasoning trace length-based heuristic through a weighted scheme for ranking to prioritize high-utility examples. Empirical results on OpenR1-Math-220k demonstrate that fine-tuning LLM on only 10% of the data selected by Select2Reason achieves performance competitive with or superior to full-data tuning and open-source baseline OpenR1-Qwen-7B across three competition-level and six comprehensive mathematical benchmarks. Further experiments highlight the scalability in varying data size, efficiency during inference, and its adaptability to other instruction pools with minimal cost.
♻ ☆ DramaBench: A Six-Dimensional Evaluation Framework for Drama Script Continuation
Drama script continuation requires models to maintain character consistency, advance plot coherently, and preserve dramatic structurecapabilities that existing benchmarks fail to evaluate comprehensively. We present DramaBench, the first large-scale benchmark for evaluating drama script continuation across six independent dimensions: Format Standards, Narrative Efficiency, Character Consistency, Emotional Depth, Logic Consistency, and Conflict Handling. Our framework combines rulebased analysis with LLM-based labeling and statistical metrics, ensuring objective and reproducible evaluation. We conduct comprehensive evaluation of 8 state-of-the-art language models on 1,103 scripts (8,824 evaluations total), with rigorous statistical significance testing (252 pairwise comparisons, 65.9% significant) and human validation (188 scripts, substantial agreement on 3/5 dimensions). Our ablation studies confirm all six dimensions capture independent quality aspects (mean | r | = 0.020). DramaBench provides actionable, dimensionspecific feedback for model improvement and establishes a rigorous standard for creative writing evaluation.
comment: Project page: https://dramabench.pages.dev/
♻ ☆ On Structured State-Space Duality
Structured State-Space Duality (SSD) [Dao & Gu, ICML 2024] is an equivalence between a simple Structured State-Space Model (SSM) and a masked attention mechanism. In particular, a state-space model with a scalar-times-identity state matrix is equivalent to a masked self-attention with a $1$-semiseparable causal mask. Consequently, the same sequence transformation (model) has two algorithmic realizations: as a linear-time $O(T)$ recurrence or as a quadratic-time $O(T^2)$ attention. In this note, we formalize and generalize this duality: (i) we extend SSD from the scalar-identity case to general diagonal SSMs (diagonal state matrices); (ii) we show that these diagonal SSMs match the scalar case's training complexity lower bounds while supporting richer dynamics; (iii) we establish a necessary and sufficient condition under which an SSM is equivalent to $1$-semiseparable masked attention; and (iv) we show that such duality fails to extend to standard softmax attention due to rank explosion. Together, these results tighten bridge between recurrent SSMs and Transformers, and widen the design space for expressive yet efficient sequence models.
comment: v2 fixed typos and added numerical results (Appendix B)
♻ ☆ Generative Retrieval with Few-shot Indexing ECIR 2026
Existing generative retrieval (GR) methods rely on training-based indexing, which fine-tunes a model to memorise associations between queries and the document identifiers (docids) of relevant documents. Training-based indexing suffers from high training costs, under-utilisation of pre-trained knowledge in large language models (LLMs), and limited adaptability to dynamic document corpora. To address the issues, we propose a few-shot indexing-based GR framework (Few-Shot GR). It has a few-shot indexing process without any training, where we prompt an LLM to generate docids for all documents in a corpus, ultimately creating a docid bank for the entire corpus. During retrieval, we feed a query to the same LLM and constrain it to generate a docid within the docid bank created during indexing, and then map the generated docid back to its corresponding document. Moreover, we devise few-shot indexing with one-to-many mapping to further enhance Few-Shot GR. Experiments show that Few-Shot GR achieves superior performance to state-of-the-art GR methods requiring heavy training.
comment: Accepted for publication at the 48th European Conference on Information Retrieval (ECIR 2026)
♻ ☆ Latent learning: episodic memory complements parametric learning by enabling flexible reuse of experiences
When do machine learning systems fail to generalize, and what mechanisms could improve their generalization? Here, we draw inspiration from cognitive science to argue that one weakness of parametric machine learning systems is their failure to exhibit latent learning -- learning information that is not relevant to the task at hand, but that might be useful in a future task. We show how this perspective links failures ranging from the reversal curse in language modeling to new findings on agent-based navigation. We then highlight how cognitive science points to episodic memory as a potential part of the solution to these issues. Correspondingly, we show that a system with an oracle retrieval mechanism can use learning experiences more flexibly to generalize better across many of these challenges. We also identify some of the essential components for effectively using retrieval, including the importance of within-example in-context learning for acquiring the ability to use information across retrieved examples. In summary, our results illustrate one possible contributor to the relative data inefficiency of current machine learning systems compared to natural intelligence, and help to understand how retrieval methods can complement parametric learning to improve generalization. We close by discussing some of the links between these findings and prior results in cognitive science and neuroscience, and the broader implications.
♻ ☆ Persistent Instability in LLM's Personality Measurements: Effects of Scale, Reasoning, and Conversation History AAAI 2026
Tommaso Tosato, Saskia Helbling, Yorguin-Jose Mantilla-Ramos, Mahmood Hegazy, Alberto Tosato, David John Lemay, Irina Rish, Guillaume Dumas
Large language models require consistent behavioral patterns for safe deployment, yet there are indications of large variability that may lead to an instable expression of personality traits in these models. We present PERSIST (PERsonality Stability in Synthetic Text), a comprehensive evaluation framework testing 25 open-source models (1B-685B parameters) across 2 million+ responses. Using traditional (BFI, SD3) and novel LLM-adapted personality questionnaires, we systematically vary model size, personas, reasoning modes, question order or paraphrasing, and conversation history. Our findings challenge fundamental assumptions: (1) Question reordering alone can introduce large shifts in personality measurements; (2) Scaling provides limited stability gains: even 400B+ models exhibit standard deviations >0.3 on 5-point scales; (3) Interventions expected to stabilize behavior, such as reasoning and inclusion of conversation history, can paradoxically increase variability; (4) Detailed persona instructions produce mixed effects, with misaligned personas showing significantly higher variability than the helpful assistant baseline; (5) The LLM-adapted questionnaires, despite their improved ecological validity, exhibit instability comparable to human-centric versions. This persistent instability across scales and mitigation strategies suggests that current LLMs lack the architectural foundations for genuine behavioral consistency. For safety-critical applications requiring predictable behavior, these findings indicate that current alignment strategies may be inadequate.
comment: Accepted at AAAI 2026, Track on AI Alignment
♻ ☆ Large Language Models Develop Novel Social Biases Through Adaptive Exploration
As large language models (LLMs) are adopted into frameworks that grant them the capacity to make real decisions, it is increasingly important to ensure that they are unbiased. In this paper, we argue that the predominant approach of simply removing existing biases from models is not enough. Using a paradigm from the psychology literature, we demonstrate that LLMs can spontaneously develop novel social biases about artificial demographic groups even when no inherent differences exist. These biases result in highly stratified task allocations, which are less fair than assignments by human participants and are exacerbated by newer and larger models. In social science, emergent biases like these have been shown to result from exploration-exploitation trade-offs, where the decision-maker explores too little, allowing early observations to strongly influence impressions about entire demographic groups. To alleviate this effect, we examine a series of interventions targeting model inputs, problem structure, and explicit steering. We find that explicitly incentivizing exploration most robustly reduces stratification, highlighting the need for better multifaceted objectives to mitigate bias. These results reveal that LLMs are not merely passive mirrors of human social biases, but can actively create new ones from experience, raising urgent questions about how these systems will shape societies over time.
♻ ☆ GRAPHMOE: Amplifying Cognitive Depth of Mixture-of-Experts Network via Introducing Self-Rethinking Mechanism
Bo Lv, Chen Tang, Zifan Zheng, Bohao Yang, Kun Zhao, Ning Liao, Xiaoxing Wang, Feiyu Xiong, Zhiyu Li, Nayu Liu, Jingchi Jiang
Traditional Mixture-of-Experts (MoE) networks benefit from utilizing multiple smaller expert models as opposed to a single large network. However, these experts typically operate independently, leaving a question open about whether interconnecting these models could enhance the performance of MoE networks. In response, we introduce GRAPHMOE, a novel method aimed at augmenting the cognitive depth of language models via a self-rethinking mechanism constructed on Pseudo GraphMoE networks. GRAPHMOE employs a recurrent routing strategy to simulate iterative thinking steps, thereby facilitating the flow of information among expert nodes. We implement the GRAPHMOE architecture using Low-Rank Adaptation techniques (LoRA) and conduct extensive experiments on various benchmark datasets. The experimental results reveal that GRAPHMOE outperforms other LoRA based models, achieving state-of-the-art (SOTA) performance. Additionally, this study explores a novel recurrent routing strategy that may inspire further advancements in enhancing the reasoning capabilities of language models.
comment: 10 pages
♻ ☆ GenEnv: Difficulty-Aligned Co-Evolution Between LLM Agents and Environment Simulators
Jiacheng Guo, Ling Yang, Peter Chen, Qixin Xiao, Yinjie Wang, Xinzhe Juan, Jiahao Qiu, Ke Shen, Mengdi Wang
Training capable Large Language Model (LLM) agents is critically bottlenecked by the high cost and static nature of real-world interaction data. We address this by introducing GenEnv, a framework that establishes a difficulty-aligned co-evolutionary game between an agent and a scalable, generative environment simulator. Unlike traditional methods that evolve models on static datasets, GenEnv instantiates a dataevolving: the simulator acts as a dynamic curriculum policy, continuously generating tasks specifically tailored to the agent's ``zone of proximal development''. This process is guided by a simple but effective $α$-Curriculum Reward, which aligns task difficulty with the agent's current capabilities. We evaluate GenEnv on five benchmarks, including API-Bank, ALFWorld, BFCL, Bamboogle, and TravelPlanner. Across these tasks, GenEnv improves agent performance by up to \textbf{+40.3\%} over 7B baselines and matches or exceeds the average performance of larger models. Compared to Gemini 2.5 Pro-based offline data augmentation, GenEnv achieves better performance while using 3.3$\times$ less data. By shifting from static supervision to adaptive simulation, GenEnv provides a data-efficient pathway for scaling agent capabilities.
comment: Our codes are available at https://github.com/Gen-Verse/GenEnv
♻ ☆ SiamGPT: Quality-First Fine-Tuning for Stable Thai Text Generation
Thittipat Pairatsuppawat, Abhibhu Tachaapornchai, Paweekorn Kusolsomboon, Chutikan Chaiwong, Thodsaporn Chay-intr, Kobkrit Viriyayudhakorn, Nongnuch Ketui, Aslan B. Wong
Open-weights large language models remain difficult to deploy for Thai due to unstable generation under complex instructions, despite strong English performance. To mitigate these limitations, We present SiamGPT-32B, an open-weights model based on Qwen3-32B, fine-tuned with a Quality-First strategy emphasizing curated supervision over data scale. The fine-tuning pipeline combines translated high-complexity English instruction data with a Thai-adapted AutoIF framework for instruction and linguistic constraints. Using supervised fine-tuning only, without continual pretraining or corpus expansion, SiamGPT-32B improves instruction adherence, multi-turn robustness, and linguistic stability. Evaluations on the SEA-HELM benchmark show that SiamGPT-32B achieves the strongest overall performance among similar-scale open-weights Thai models, with consistent gains in instruction following, multi-turn dialogue, and natural language understanding.
♻ ☆ Don't Pay Attention, PLANT It: Pretraining Attention via Learning-to-Rank
State-of-the-art Extreme Multi-Label Text Classification models rely on multi-label attention to focus on key tokens in input text, but learning good attention weights is challenging. We introduce PLANT - Pretrained and Leveraged Attention - a plug-and-play strategy for initializing attention. PLANT works by planting label-specific attention using a pretrained Learning-to-Rank model guided by mutual information gain. This architecture-agnostic approach integrates seamlessly with large language model backbones such as Mistral-7B, LLaMA3-8B, DeepSeek-V3, and Phi-3. PLANT outperforms state-of-the-art methods across tasks including ICD coding, legal topic classification, and content recommendation. Gains are especially pronounced in few-shot settings, with substantial improvements on rare labels. Ablation studies confirm that attention initialization is a key driver of these gains. For code and trained models, see https://github.com/debjyotiSRoy/xcube/tree/plant
♻ ☆ VTCBench: Can Vision-Language Models Understand Long Context with Vision-Text Compression?
The computational and memory overheads associated with expanding the context window of LLMs severely limit their scalability. A noteworthy solution is vision-text compression (VTC), exemplified by frameworks like DeepSeek-OCR and Glyph, which convert long texts into dense 2D visual representations, thereby achieving token compression ratios of 3x-20x. However, the impact of this high information density on the core long-context capabilities of vision-language models (VLMs) remains under-investigated. To address this gap, we introduce the first benchmark for VTC and systematically assess the performance of VLMs across three long-context understanding settings: VTC-Retrieval, which evaluates the model's ability to retrieve and aggregate information; VTC-Reasoning, which requires models to infer latent associations to locate facts with minimal lexical overlap; and VTC-Memory, which measures comprehensive question answering within long-term dialogue memory. Furthermore, we establish the VTCBench-Wild to simulate diverse input scenarios.We comprehensively evaluate leading open-source and proprietary models on our benchmarks. The results indicate that, despite being able to decode textual information (e.g., OCR) well, most VLMs exhibit a surprisingly poor long-context understanding ability with VTC-processed information, failing to capture long associations or dependencies in the context.This study provides a deep understanding of VTC and serves as a foundation for designing more efficient and scalable VLMs.
♻ ☆ Fewer Hallucinations, More Verification: A Three-Stage LLM-Based Framework for ASR Error Correction
Automatic Speech Recognition (ASR) error correction aims to correct recognition errors while preserving accurate text. Although traditional approaches demonstrate moderate effectiveness, LLMs offer a paradigm that eliminates the need for training and labeled data. However, directly using LLMs will encounter hallucinations problem, which may lead to the modification of the correct text. To address this problem, we propose the Reliable LLM Correction Framework (RLLM-CF), which consists of three stages: (1) error pre-detection, (2) chain-of-thought sub-tasks iterative correction, and (3) reasoning process verification. The advantage of our method is that it does not require additional information or fine-tuning of the model, and ensures the correctness of the LLM correction under multi-pass programming. Experiments on AISHELL-1, AISHELL-2, and Librispeech show that the GPT-4o model enhanced by our framework achieves 21%, 11%, 9%, and 11.4% relative reductions in CER/WER.
comment: This paper has been ACCEPTED for publication in ASRU
♻ ☆ Low-Resource Domain Adaptation for Speech LLMs via Text-Only Fine-Tuning
Recent advances in automatic speech recognition (ASR) have combined speech encoders with large language models (LLMs) through projection, forming Speech LLMs with strong performance. However, adapting them to new domains remains challenging, especially in low-resource settings where paired speech-text data is scarce. We propose a text-only fine-tuning strategy for Speech LLMs using unpaired target-domain text without requiring additional audio. To preserve speech-text alignment, we introduce a real-time evaluation mechanism during fine-tuning. This enables effective domain adaptation while maintaining source-domain performance. Experiments on LibriSpeech, SlideSpeech, and Medical datasets show that our method achieves competitive recognition performance, with minimal degradation compared to full audio-text fine-tuning. It also improves generalization to new domains without catastrophic forgetting, highlighting the potential of text-only fine-tuning for low-resource domain adaptation of ASR.
comment: This paper has been ACCEPTED for publication in ASRU