MyArxiv
Computation and Language 115
☆ Language Generation with Infinite Contamination
We study language generation in the limit, where an algorithm observes an adversarial enumeration of strings from an unknown target language $K$ and must eventually generate new, unseen strings from $K$. Kleinberg and Mullainathan [KM24] proved that generation is achievable in surprisingly general settings. But their generator suffers from ``mode collapse,'' producing from an ever-smaller subset of the target. To address this, Kleinberg and Wei [KW25] require the generator's output to be ``dense'' in the target language. They showed that generation with density, surprisingly, remains achievable at the same generality. Both results assume perfect data: no noisy insertions and no omissions. This raises a central question: how much contamination can generation tolerate? Recent works made partial progress on this question by studying (non-dense) generation with either finite amounts of noise (but no omissions) or omissions (but no noise). We characterize robustness under contaminated enumerations: 1. Generation under Contamination: Language generation in the limit is achievable for all countable collections iff the fraction of contaminated examples converges to zero. When this fails, we characterize which collections are generable. 2. Dense Generation under Contamination: Dense generation is strictly less robust to contamination than generation. As a byproduct, we resolve an open question of Raman and Raman [ICML25] by showing that generation is possible with only membership oracle access under finitely many contaminated examples. Finally, we introduce a beyond-worst-case model inspired by curriculum learning and prove that dense generation is achievable even with infinite contamination provided the fraction of contaminated examples converges to zero. This suggests curriculum learning may be crucial for learning from noisy web data.
☆ DigiData: Training and Evaluating General-Purpose Mobile Control Agents
AI agents capable of controlling user interfaces have the potential to transform human interaction with digital devices. To accelerate this transformation, two fundamental building blocks are essential: high-quality datasets that enable agents to achieve complex and human-relevant goals, and robust evaluation methods that allow researchers and practitioners to rapidly enhance agent performance. In this paper, we introduce DigiData, a large-scale, high-quality, diverse, multi-modal dataset designed for training mobile control agents. Unlike existing datasets, which derive goals from unstructured interactions, DigiData is meticulously constructed through comprehensive exploration of app features, resulting in greater diversity and higher goal complexity. Additionally, we present DigiData-Bench, a benchmark for evaluating mobile control agents on real-world complex tasks. We demonstrate that the commonly used step-accuracy metric falls short in reliably assessing mobile control agents and, to address this, we propose dynamic evaluation protocols and AI-powered evaluations as rigorous alternatives for agent assessment. Our contributions aim to significantly advance the development of mobile control agents, paving the way for more intuitive and effective human-device interactions.
comment: Website: https://facebookresearch.github.io/DigiData
☆ SPOT: An Annotated French Corpus and Benchmark for Detecting Critical Interventions in Online Conversations
We introduce SPOT (Stopping Points in Online Threads), the first annotated corpus translating the sociological concept of stopping point into a reproducible NLP task. Stopping points are ordinary critical interventions that pause or redirect online discussions through a range of forms (irony, subtle doubt or fragmentary arguments) that frameworks like counterspeech or social correction often overlook. We operationalize this concept as a binary classification task and provide reliable annotation guidelines. The corpus contains 43,305 manually annotated French Facebook comments linked to URLs flagged as false information by social media users, enriched with contextual metadata (article, post, parent comment, page or group, and source). We benchmark fine-tuned encoder models (CamemBERT) and instruction-tuned LLMs under various prompting strategies. Results show that fine-tuned encoders outperform prompted LLMs in F1 score by more than 10 percentage points, confirming the importance of supervised learning for emerging non-English social media tasks. Incorporating contextual metadata further improves encoder models F1 scores from 0.75 to 0.78. We release the anonymized dataset, along with the annotation guidelines and code in our code repository, to foster transparency and reproducible research.
☆ SpatialThinker: Reinforcing 3D Reasoning in Multimodal LLMs via Spatial Rewards NeurIPS 2025
Multimodal large language models (MLLMs) have achieved remarkable progress in vision-language tasks, but they continue to struggle with spatial understanding. Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific modifications, and remain constrained by large-scale datasets or sparse supervision. To address these limitations, we introduce SpatialThinker, a 3D-aware MLLM trained with RL to integrate structured spatial grounding with multi-step reasoning. The model simulates human-like spatial perception by constructing a scene graph of task-relevant objects and spatial relations, and reasoning towards an answer via dense spatial rewards. SpatialThinker consists of two key contributions: (1) a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA dataset, and (2) online RL with a multi-objective dense spatial reward enforcing spatial grounding. SpatialThinker-7B outperforms supervised fine-tuning and the sparse RL baseline on spatial understanding and real-world VQA benchmarks, nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-4o. These results showcase the effectiveness of combining spatial supervision with reward-aligned reasoning in enabling robust 3D spatial understanding with limited data and advancing MLLMs towards human-level visual reasoning.
comment: Preprint. Accepted at NeurIPS 2025 Workshops on SPACE in Vision, Language, and Embodied AI (SpaVLE), Embodied World Models for Decision Making (EWM), Aligning Reinforcement Learning Experimentalists and Theorists (ARLET), and Scaling Environments for Agents (SEA)
☆ ConvFill: Model Collaboration for Responsive Conversational Voice Agents
Deploying conversational voice agents with large language models faces a critical challenge: cloud-based foundation models provide deep reasoning and domain knowledge but introduce latency that disrupts natural conversation, while on-device models respond immediately but lack sophistication. We propose conversational infill, a task where a lightweight on-device model generates contextually appropriate dialogue while seamlessly incorporating streaming knowledge from a powerful backend model. This approach decouples response latency from model capability, enabling systems that feel responsive while accessing the full power of large-scale models. We present ConvFill, a 360M parameter model trained on synthetic multi-domain conversations. Evaluation across multiple backend models shows that conversational infill can be successfully learned, with ConvFill achieving accuracy improvements of 36-42% over standalone small models of the same size while consistently retaining sub-200ms response latencies. Our results demonstrate the promise of this approach for building on-device conversational agents that are both immediately responsive and knowledgeable.
☆ Surgical Agent Orchestration Platform for Voice-directed Patient Data Interaction
In da Vinci robotic surgery, surgeons' hands and eyes are fully engaged in the procedure, making it difficult to access and manipulate multimodal patient data without interruption. We propose a voice-directed Surgical Agent Orchestrator Platform (SAOP) built on a hierarchical multi-agent framework, consisting of an orchestration agent and three task-specific agents driven by Large Language Models (LLMs). These LLM-based agents autonomously plan, refine, validate, and reason to map voice commands into specific tasks such as retrieving clinical information, manipulating CT scans, or navigating 3D anatomical models on the surgical video. We also introduce a Multi-level Orchestration Evaluation Metric (MOEM) to comprehensively assess the performance and robustness from command-level and category-level perspectives. The SAOP achieves high accuracy and success rates across 240 voice commands, while LLM-based agents improve robustness against speech recognition errors and diverse or ambiguous free-form commands, demonstrating strong potential to support minimally invasive da Vinci robotic surgery.
comment: 22 pages, 12 figures, 1 table, Supplementary Information, Supplementary Data 1
☆ Teaching Pretrained Language Models to Think Deeper with Retrofitted Recurrence
Recent advances in depth-recurrent language models show that recurrence can decouple train-time compute and parameter count from test-time compute. In this work, we study how to convert existing pretrained non-recurrent language models into depth-recurrent models. We find that using a curriculum of recurrences to increase the effective depth of the model over the course of training preserves performance while reducing total computational cost. In our experiments, on mathematics, we observe that converting pretrained models to recurrent ones results in better performance at a given compute budget than simply post-training the original non-recurrent language model.
comment: code: https://github.com/mcleish7/retrofitting-recurrence, models: https://huggingface.co/collections/tomg-group-umd/retrofitting-recurrence
☆ Retriv at BLP-2025 Task 2: Test-Driven Feedback-Guided Framework for Bangla-to-Python Code Generation
Large Language Models (LLMs) have advanced the automated generation of code from natural language prompts. However, low-resource languages (LRLs) like Bangla remain underrepresented due to the limited availability of instruction-to-code datasets and evaluation benchmarks. To address this, the BLP Workshop at IJCNLP-AACL 2025 introduced a shared task on "Code Generation in Bangla". In this work, we propose a method that combines instruction prompting with a test-driven, feedback-guided iterative refinement process using a fine-tuned Qwen2.5-14B model. The model generates code from Bangla instructions, tests it against unit tests, and iteratively refines any failing outputs through three evaluation passes, using test feedback to guide each step. This approach helped our team "Retriv" to secure 2nd place in the shared task with a Pass@1 score of 0.934. The analysis highlights challenges in Bangla instruction understanding and Python code generation, emphasizing the need for targeted methods in LRLs. We made experimental scripts publicly available for the community.
comment: 8 pages, 1 figure, experimental scripts publicly available at https://github.com/NafiAsib/Retriv-BLP25-Task-2
☆ Selecting Auxiliary Data via Neural Tangent Kernels for Low-Resource Domains
Large language models (LLMs) have achieved remarkable success across widespread tasks, yet their application in low-resource domains remains a significant challenge due to data scarcity and the high risk of overfitting. While in-domain data is limited, there exist vast amounts of similar general-domain data, and our initial findings reveal that they could potentially serve as auxiliary supervision for domain enhancement. This observation leads us to our central research question: \textbf{\textit{how to effectively select the most valuable auxiliary data to maximize domain-specific performance}}, particularly when traditional methods are inapplicable due to a lack of large in-domain data pools or validation sets. To address this, we propose \textbf{NTK-Selector}, a principled and efficient framework for selecting general-domain auxiliary data to enhance domain-specific performance via neural tangent kernels (NTK). Our method tackles two challenges of directly applying NTK to LLMs, theoretical assumptions and prohibitive computational cost, by empirically demonstrating a stable NTK-like behavior in LLMs during LoRA fine-tuning and proposing a Jacobian-free approximation method. Extensive experiments across four low-resource domains (medical, financial, legal, and psychological) demonstrate that NTK-Selector consistently improves downstream performance. Specifically, fine-tuning on 1,000 in-domain samples alone only yielded +0.8 points for Llama3-8B-Instruct and +0.9 points for Qwen3-8B. In contrast, enriching with 9,000 auxiliary samples selected by NTK-Selector led to substantial \textbf{gains of +8.7 and +5.1 points}, which corresponds to a \textbf{10.9x and 5.7x improvement} over the domain-only setting.
comment: 27 pages
☆ Self-Evaluating LLMs for Multi-Step Tasks: Stepwise Confidence Estimation for Failure Detection NeurIPS 2025
Reliability and failure detection of large language models (LLMs) is critical for their deployment in high-stakes, multi-step reasoning tasks. Prior work explores confidence estimation for self-evaluating LLM-scorer systems, with confidence scorers estimating the likelihood of errors in LLM responses. However, most methods focus on single-step outputs and overlook the challenges of multi-step reasoning. In this work, we extend self-evaluation techniques to multi-step tasks, testing two intuitive approaches: holistic scoring and step-by-step scoring. Using two multi-step benchmark datasets, we show that stepwise evaluation generally outperforms holistic scoring in detecting potential errors, with up to 15% relative increase in AUC-ROC. Our findings demonstrate that self-evaluating LLM systems provide meaningful confidence estimates in complex reasoning, improving their trustworthiness and providing a practical framework for failure detection.
comment: Accepted at NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ IterResearch: Rethinking Long-Horizon Agents via Markovian State Reconstruction
Recent advances in deep-research agents have shown promise for autonomous knowledge construction through dynamic reasoning over external sources. However, existing approaches rely on a mono-contextual paradigm that accumulates all information in a single, expanding context window, leading to context suffocation and noise contamination that limit their effectiveness on long-horizon tasks. We introduce IterResearch, a novel iterative deep-research paradigm that reformulates long-horizon research as a Markov Decision Process with strategic workspace reconstruction. By maintaining an evolving report as memory and periodically synthesizing insights, our approach preserves consistent reasoning capacity across arbitrary exploration depths. We further develop Efficiency-Aware Policy Optimization (EAPO), a reinforcement learning framework that incentivizes efficient exploration through geometric reward discounting and enables stable distributed training via adaptive downsampling. Extensive experiments demonstrate that IterResearch achieves substantial improvements over existing open-source agents with average +14.5pp across six benchmarks and narrows the gap with frontier proprietary systems. Remarkably, our paradigm exhibits unprecedented interaction scaling, extending to 2048 interactions with dramatic performance gains (from 3.5\% to 42.5\%), and serves as an effective prompting strategy, improving frontier models by up to 19.2pp over ReAct on long-horizon tasks. These findings position IterResearch as a versatile solution for long-horizon reasoning, effective both as a trained agent and as a prompting paradigm for frontier models.
comment: https://github.com/Alibaba-NLP/DeepResearch
☆ FinRpt: Dataset, Evaluation System and LLM-based Multi-agent Framework for Equity Research Report Generation AAAI 2026
While LLMs have shown great success in financial tasks like stock prediction and question answering, their application in fully automating Equity Research Report generation remains uncharted territory. In this paper, we formulate the Equity Research Report (ERR) Generation task for the first time. To address the data scarcity and the evaluation metrics absence, we present an open-source evaluation benchmark for ERR generation - FinRpt. We frame a Dataset Construction Pipeline that integrates 7 financial data types and produces a high-quality ERR dataset automatically, which could be used for model training and evaluation. We also introduce a comprehensive evaluation system including 11 metrics to assess the generated ERRs. Moreover, we propose a multi-agent framework specifically tailored to address this task, named FinRpt-Gen, and train several LLM-based agents on the proposed datasets using Supervised Fine-Tuning and Reinforcement Learning. Experimental results indicate the data quality and metrics effectiveness of the benchmark FinRpt and the strong performance of FinRpt-Gen, showcasing their potential to drive innovation in the ERR generation field. All code and datasets are publicly available.
comment: AAAI 2026
☆ When Bias Pretends to Be Truth: How Spurious Correlations Undermine Hallucination Detection in LLMs
Despite substantial advances, large language models (LLMs) continue to exhibit hallucinations, generating plausible yet incorrect responses. In this paper, we highlight a critical yet previously underexplored class of hallucinations driven by spurious correlations -- superficial but statistically prominent associations between features (e.g., surnames) and attributes (e.g., nationality) present in the training data. We demonstrate that these spurious correlations induce hallucinations that are confidently generated, immune to model scaling, evade current detection methods, and persist even after refusal fine-tuning. Through systematically controlled synthetic experiments and empirical evaluations on state-of-the-art open-source and proprietary LLMs (including GPT-5), we show that existing hallucination detection methods, such as confidence-based filtering and inner-state probing, fundamentally fail in the presence of spurious correlations. Our theoretical analysis further elucidates why these statistical biases intrinsically undermine confidence-based detection techniques. Our findings thus emphasize the urgent need for new approaches explicitly designed to address hallucinations caused by spurious correlations.
☆ RLVE: Scaling Up Reinforcement Learning for Language Models with Adaptive Verifiable Environments
We introduce Reinforcement Learning (RL) with Adaptive Verifiable Environments (RLVE), an approach using verifiable environments that procedurally generate problems and provide algorithmically verifiable rewards, to scale up RL for language models (LMs). RLVE enables each verifiable environment to dynamically adapt its problem difficulty distribution to the policy model's capabilities as training progresses. In contrast, static data distributions often lead to vanishing learning signals when problems are either too easy or too hard for the policy. To implement RLVE, we create RLVE-Gym, a large-scale suite of 400 verifiable environments carefully developed through manual environment engineering. Using RLVE-Gym, we show that environment scaling, i.e., expanding the collection of training environments, consistently improves generalizable reasoning capabilities. RLVE with joint training across all 400 environments in RLVE-Gym yields a 3.37% absolute average improvement across six reasoning benchmarks, starting from one of the strongest 1.5B reasoning LMs. By comparison, continuing this LM's original RL training yields only a 0.49% average absolute gain despite using over 3x more compute. We release our code publicly.
☆ ACE-ICD: Acronym Expansion As Data Augmentation For Automated ICD Coding AACL 2025
Automatic ICD coding, the task of assigning disease and procedure codes to electronic medical records, is crucial for clinical documentation and billing. While existing methods primarily enhance model understanding of code hierarchies and synonyms, they often overlook the pervasive use of medical acronyms in clinical notes, a key factor in ICD code inference. To address this gap, we propose a novel effective data augmentation technique that leverages large language models to expand medical acronyms, allowing models to be trained on their full form representations. Moreover, we incorporate consistency training to regularize predictions by enforcing agreement between the original and augmented documents. Extensive experiments on the MIMIC-III dataset demonstrate that our approach, ACE-ICD establishes new state-of-the-art performance across multiple settings, including common codes, rare codes, and full-code assignments. Our code is publicly available.
comment: Camera ready version for IJCNLP-AACL 2025 (Findings)
☆ Retriv at BLP-2025 Task 1: A Transformer Ensemble and Multi-Task Learning Approach for Bangla Hate Speech Identification
This paper addresses the problem of Bangla hate speech identification, a socially impactful yet linguistically challenging task. As part of the "Bangla Multi-task Hate Speech Identification" shared task at the BLP Workshop, IJCNLP-AACL 2025, our team "Retriv" participated in all three subtasks: (1A) hate type classification, (1B) target group identification, and (1C) joint detection of type, severity, and target. For subtasks 1A and 1B, we employed a soft-voting ensemble of transformer models (BanglaBERT, MuRIL, IndicBERTv2). For subtask 1C, we trained three multitask variants and aggregated their predictions through a weighted voting ensemble. Our systems achieved micro-f1 scores of 72.75% (1A) and 72.69% (1B), and a weighted micro-f1 score of 72.62% (1C). On the shared task leaderboard, these corresponded to 9th, 10th, and 7th positions, respectively. These results highlight the promise of transformer ensembles and weighted multitask frameworks for advancing Bangla hate speech detection in low-resource contexts. We made experimental scripts publicly available for the community.
comment: 7 pages, 3 figures, experimental scripts publicly available at https://github.com/sahasourav17/Retriv-BLP25-Task-1
☆ Who Is the Story About? Protagonist Entity Recognition in News
News articles often reference numerous organizations, but traditional Named Entity Recognition (NER) treats all mentions equally, obscuring which entities genuinely drive the narrative. This limits downstream tasks that rely on understanding event salience, influence, or narrative focus. We introduce Protagonist Entity Recognition (PER), a task that identifies the organizations that anchor a news story and shape its main developments. To validate PER, we compare he predictions of Large Language Models (LLMs) against annotations from four expert annotators over a gold corpus, establishing both inter-annotator consistency and human-LLM agreement. Leveraging these findings, we use state-of-the-art LLMs to automatically label large-scale news collections through NER-guided prompting, generating scalable, high-quality supervision. We then evaluate whether other LLMs, given reduced context and without explicit candidate guidance, can still infer the correct protagonists. Our results demonstrate that PER is a feasible and meaningful extension to narrative-centered information extraction, and that guided LLMs can approximate human judgments of narrative importance at scale.
☆ The Few Govern the Many:Unveiling Few-Layer Dominance for Time Series Models
Large-scale models are at the forefront of time series (TS) forecasting, dominated by two paradigms: fine-tuning text-based Large Language Models (LLM4TS) and training Time Series Foundation Models (TSFMs) from scratch. Both approaches share a foundational assumption that scaling up model capacity and data volume leads to improved performance. However, we observe a \textit{\textbf{scaling paradox}} in TS models, revealing a puzzling phenomenon that larger models do \emph{NOT} achieve better performance. Through extensive experiments on two model families across four scales (100M to 1.7B parameters) and diverse data (up to 6B observations), we rigorously confirm that the scaling paradox is a pervasive issue. We then diagnose its root cause by analyzing internal representations, identifying a phenomenon we call \textit{few-layer dominance}: only a small subset of layers are functionally important, while the majority are redundant, under-utilized, and can even distract training. Based on this discovery, we propose a practical method to automatically identify and retain only these dominant layers. In our models, retaining only 21\% of the parameters achieves up to a 12\% accuracy improvement and a 2.7$\times$ inference speedup. We validate the universality of our method on 8 prominent SOTA models (LLM4TS and TSFMs, 90M to 6B), showing that retaining less than 30\% of layers achieves comparable or superior accuracy in over 95\% of tasks.
☆ Discourse Graph Guided Document Translation with Large Language Models
Adapting large language models to full document translation remains challenging due to the difficulty of capturing long-range dependencies and preserving discourse coherence throughout extended texts. While recent agentic machine translation systems mitigate context window constraints through multi-agent orchestration and persistent memory, they require substantial computational resources and are sensitive to memory retrieval strategies. We introduce TransGraph, a discourse-guided framework that explicitly models inter-chunk relationships through structured discourse graphs and selectively conditions each translation segment on relevant graph neighbourhoods rather than relying on sequential or exhaustive context. Across three document-level MT benchmarks spanning six languages and diverse domains, TransGraph consistently surpasses strong baselines in translation quality and terminology consistency while incurring significantly lower token overhead.
☆ EMODIS: A Benchmark for Context-Dependent Emoji Disambiguation in Large Language Models AAAI2026
Large language models (LLMs) are increasingly deployed in real-world communication settings, yet their ability to resolve context-dependent ambiguity remains underexplored. In this work, we present EMODIS, a new benchmark for evaluating LLMs' capacity to interpret ambiguous emoji expressions under minimal but contrastive textual contexts. Each instance in EMODIS comprises an ambiguous sentence containing an emoji, two distinct disambiguating contexts that lead to divergent interpretations, and a specific question that requires contextual reasoning. We evaluate both open-source and API-based LLMs, and find that even the strongest models frequently fail to distinguish meanings when only subtle contextual cues are present. Further analysis reveals systematic biases toward dominant interpretations and limited sensitivity to pragmatic contrast. EMODIS provides a rigorous testbed for assessing contextual disambiguation, and highlights the gap in semantic reasoning between humans and LLMs.
comment: Accepted by AAAI2026
☆ Graph Representation-based Model Poisoning on the Heterogeneous Internet of Agents
Internet of Agents (IoA) envisions a unified, agent-centric paradigm where heterogeneous large language model (LLM) agents can interconnect and collaborate at scale. Within this paradigm, federated learning (FL) serves as a key enabler that allows distributed LLM agents to co-train global models without centralizing data. However, the FL-enabled IoA system remains vulnerable to model poisoning attacks, and the prevailing distance and similarity-based defenses become fragile at billion-parameter scale and under heterogeneous data distributions. This paper proposes a graph representation-based model poisoning (GRMP) attack, which passively exploits observed benign local models to construct a parameter correlation graph and extends an adversarial variational graph autoencoder to capture and reshape higher-order dependencies. The GRMP attack synthesizes malicious local models that preserve benign-like statistics while embedding adversarial objectives, remaining elusive to detection at the server. Experiments demonstrate a gradual drop in system accuracy under the proposed attack and the ineffectiveness of the prevailing defense mechanism in detecting the attack, underscoring a severe threat to the ambitious IoA paradigm.
comment: 6 pages, 6 figures
☆ AdaRec: Adaptive Recommendation with LLMs via Narrative Profiling and Dual-Channel Reasoning
We propose AdaRec, a few-shot in-context learning framework that leverages large language models for an adaptive personalized recommendation. AdaRec introduces narrative profiling, transforming user-item interactions into natural language representations to enable unified task handling and enhance human readability. Centered on a bivariate reasoning paradigm, AdaRec employs a dual-channel architecture that integrates horizontal behavioral alignment, discovering peer-driven patterns, with vertical causal attribution, highlighting decisive factors behind user preferences. Unlike existing LLM-based approaches, AdaRec eliminates manual feature engineering through semantic representations and supports rapid cross-task adaptation with minimal supervision. Experiments on real ecommerce datasets demonstrate that AdaRec outperforms both machine learning models and LLM-based baselines by up to eight percent in few-shot settings. In zero-shot scenarios, it achieves up to a nineteen percent improvement over expert-crafted profiling, showing effectiveness for long-tail personalization with minimal interaction data. Furthermore, lightweight fine-tuning on synthetic data generated by AdaRec matches the performance of fully fine-tuned models, highlighting its efficiency and generalization across diverse tasks.
☆ Categorical Emotions or Appraisals - Which Emotion Model Explains Argument Convincingness Better?
The convincingness of an argument does not only depend on its structure (logos), the person who makes the argument (ethos), but also on the emotion that it causes in the recipient (pathos). While the overall intensity and categorical values of emotions in arguments have received considerable attention in the research community, we argue that the emotion an argument evokes in a recipient is subjective. It depends on the recipient's goals, standards, prior knowledge, and stance. Appraisal theories lend themselves as a link between the subjective cognitive assessment of events and emotions. They have been used in event-centric emotion analysis, but their suitability for assessing argument convincingness remains unexplored. In this paper, we evaluate whether appraisal theories are suitable for emotion analysis in arguments by considering subjective cognitive evaluations of the importance and impact of an argument on its receiver. Based on the annotations in the recently published ContArgA corpus, we perform zero-shot prompting experiments to evaluate the importance of gold-annotated and predicted emotions and appraisals for the assessment of the subjective convincingness labels. We find that, while categorical emotion information does improve convincingness prediction, the improvement is more pronounced with appraisals. This work presents the first systematic comparison between emotion models for convincingness prediction, demonstrating the advantage of appraisals, providing insights for theoretical and practical applications in computational argumentation.
☆ TCM-Eval: An Expert-Level Dynamic and Extensible Benchmark for Traditional Chinese Medicine
Large Language Models (LLMs) have demonstrated remarkable capabilities in modern medicine, yet their application in Traditional Chinese Medicine (TCM) remains severely limited by the absence of standardized benchmarks and the scarcity of high-quality training data. To address these challenges, we introduce TCM-Eval, the first dynamic and extensible benchmark for TCM, meticulously curated from national medical licensing examinations and validated by TCM experts. Furthermore, we construct a large-scale training corpus and propose Self-Iterative Chain-of-Thought Enhancement (SI-CoTE) to autonomously enrich question-answer pairs with validated reasoning chains through rejection sampling, establishing a virtuous cycle of data and model co-evolution. Using this enriched training data, we develop ZhiMingTang (ZMT), a state-of-the-art LLM specifically designed for TCM, which significantly exceeds the passing threshold for human practitioners. To encourage future research and development, we release a public leaderboard, fostering community engagement and continuous improvement.
comment: Work in Progress
☆ LoRA on the Go: Instance-level Dynamic LoRA Selection and Merging
Low-Rank Adaptation (LoRA) has emerged as a parameter-efficient approach for fine-tuning large language models.However, conventional LoRA adapters are typically trained for a single task, limiting their applicability in real-world settings where inputs may span diverse and unpredictable domains. At inference time, existing approaches combine multiple LoRAs for improving performance on diverse tasks, while usually requiring labeled data or additional task-specific training, which is expensive at scale. In this work, we introduce LoRA on the Go (LoGo), a training-free framework that dynamically selects and merges adapters at the instance level without any additional requirements. LoGo leverages signals extracted from a single forward pass through LoRA adapters, to identify the most relevant adapters and determine their contributions on-the-fly. Across 5 NLP benchmarks, 27 datasets, and 3 model families, LoGo outperforms training-based baselines on some tasks upto a margin of 3.6% while remaining competitive on other tasks and maintaining inference throughput, highlighting its effectiveness and practicality.
☆ Think Consistently, Reason Efficiently: Energy-Based Calibration for Implicit Chain-of-Thought
Large Language Models (LLMs) have demonstrated strong reasoning capabilities through \emph{Chain-of-Thought} (CoT) prompting, which enables step-by-step intermediate reasoning. However, explicit CoT methods rely on discrete token-level reasoning processes that are prone to error propagation and limited by vocabulary expressiveness, often resulting in rigid and inconsistent reasoning trajectories. Recent research has explored implicit or continuous reasoning in latent spaces, allowing models to perform internal reasoning before generating explicit output. Although such approaches alleviate some limitations of discrete CoT, they generally lack explicit mechanisms to enforce consistency among reasoning steps, leading to divergent reasoning paths and unstable outcomes. To address this issue, we propose EBM-CoT, an Energy-Based Chain-of-Thought Calibration framework that refines latent thought representations through an energy-based model (EBM). Our method dynamically adjusts latent reasoning trajectories toward lower-energy, high-consistency regions in the embedding space, improving both reasoning accuracy and consistency without modifying the base language model. Extensive experiments across mathematical, commonsense, and symbolic reasoning benchmarks demonstrate that the proposed framework significantly enhances the consistency and efficiency of multi-step reasoning in LLMs.
☆ More Agents Helps but Adversarial Robustness Gap Persists
When LLM agents work together, they seem to be more powerful than a single LLM in mathematical question answering. However, are they also more robust to adversarial inputs? We investigate this question using adversarially perturbed math questions. These perturbations include punctuation noise with three intensities (10, 30, and 50 percent), plus real-world and human-like typos (WikiTypo, R2ATA). Using a unified sampling-and-voting framework (Agent Forest), we evaluate six open-source models (Qwen3-4B/14B, Llama3.1-8B, Mistral-7B, Gemma3-4B/12B) across four benchmarks (GSM8K, MATH, MMLU-Math, MultiArith), with various numbers of agents n from one to 25 (1, 2, 5, 10, 15, 20, 25). Our findings show that (1) Noise type matters: punctuation noise harm scales with its severity, and the human typos remain the dominant bottleneck, yielding the largest gaps to Clean accuracy and the highest ASR even with a large number of agents. And (2) Collaboration reliably improves accuracy as the number of agents, n, increases, with the largest gains from one to five agents and diminishing returns beyond 10 agents. However, the adversarial robustness gap persists regardless of the agent count.
☆ MENTOR: A Metacognition-Driven Self-Evolution Framework for Uncovering and Mitigating Implicit Risks in LLMs on Domain Tasks
Ensuring the safety and value alignment of large language models (LLMs) is critical for their deployment. Current alignment efforts primarily target explicit risks such as bias, hate speech, and violence. However, they often fail to address deeper, domain-specific implicit risks and lack a flexible, generalizable framework applicable across diverse specialized fields. Hence, we proposed MENTOR: A MEtacognition-driveN self-evoluTion framework for uncOvering and mitigating implicit Risks in LLMs on Domain Tasks. To address the limitations of labor-intensive human evaluation, we introduce a novel metacognitive self-assessment tool. This enables LLMs to reflect on potential value misalignments in their responses using strategies like perspective-taking and consequential thinking. We also release a supporting dataset of 9,000 risk queries spanning education, finance, and management to enhance domain-specific risk identification. Subsequently, based on the outcomes of metacognitive reflection, the framework dynamically generates supplementary rule knowledge graphs that extend predefined static rule trees. This enables models to actively apply validated rules to future similar challenges, establishing a continuous self-evolution cycle that enhances generalization by reducing maintenance costs and inflexibility of static systems. Finally, we employ activation steering during inference to guide LLMs in following the rules, a cost-effective method to robustly enhance enforcement across diverse contexts. Experimental results show MENTOR's effectiveness: In defensive testing across three vertical domains, the framework substantially reduces semantic attack success rates, enabling a new level of implicit risk mitigation for LLMs. Furthermore, metacognitive assessment not only aligns closely with baseline human evaluators but also delivers more thorough and insightful analysis of LLMs value alignment.
☆ Wasm: A Pipeline for Constructing Structured Arabic Interleaved Multimodal Corpora
The performance of large language models (LLMs) and large multimodal models (LMMs) depends heavily on the quality and scale of their pre-training datasets. Recent research shows that large multimodal models trained on natural documents where images and text are interleaved outperform those trained only on image-text pairs across a wide range of benchmarks, leveraging advanced pre- trained models to enforce semantic alignment, image-sequence consistency, and textual coherence. For Arabic, however, the lack of high-quality multimodal datasets that preserve document structure has limited progress. In this paper, we present our pipeline Wasm for processing the Common Crawl dataset to create a new Arabic multimodal dataset that uniquely provides markdown output. Unlike existing Arabic corpora that focus solely on text extraction, our approach preserves the structural integrity of web content while maintaining flexibility for both text-only and multimodal pre-training scenarios. We provide a comprehensive comparative analysis of our data processing pipeline against those used for major existing datasets, highlighting the convergences in filtering strategies and justifying our specific design choices. To support future research, we publicly release a representative dataset dump along with the multimodal processing pipeline for Arabic.
☆ EmoBang: Detecting Emotion From Bengali Texts
Emotion detection from text seeks to identify an individual's emotional or mental state - positive, negative, or neutral - based on linguistic cues. While significant progress has been made for English and other high-resource languages, Bengali remains underexplored despite being the world's fourth most spoken language. The lack of large, standardized datasets classifies Bengali as a low-resource language for emotion detection. Existing studies mainly employ classical machine learning models with traditional feature engineering, yielding limited performance. In this paper, we introduce a new Bengali emotion dataset annotated across eight emotion categories and propose two models for automatic emotion detection: (i) a hybrid Convolutional Recurrent Neural Network (CRNN) model (EmoBangHybrid) and (ii) an AdaBoost-Bidirectional Encoder Representations from Transformers (BERT) ensemble model (EmoBangEnsemble). Additionally, we evaluate six baseline models with five feature engineering techniques and assess zero-shot and few-shot large language models (LLMs) on the dataset. To the best of our knowledge, this is the first comprehensive benchmark for Bengali emotion detection. Experimental results show that EmoBangH and EmoBangE achieve accuracies of 92.86% and 93.69%, respectively, outperforming existing methods and establishing strong baselines for future research.
☆ Importance-Aware Data Selection for Efficient LLM Instruction Tuning AAAI 2026
Instruction tuning plays a critical role in enhancing the performance and efficiency of Large Language Models (LLMs). Its success depends not only on the quality of the instruction data but also on the inherent capabilities of the LLM itself. Some studies suggest that even a small amount of high-quality data can achieve instruction fine-tuning results that are on par with, or even exceed, those from using a full-scale dataset. However, rather than focusing solely on calculating data quality scores to evaluate instruction data, there is a growing need to select high-quality data that maximally enhances the performance of instruction tuning for a given LLM. In this paper, we propose the Model Instruction Weakness Value (MIWV) as a novel metric to quantify the importance of instruction data in enhancing model's capabilities. The MIWV metric is derived from the discrepancies in the model's responses when using In-Context Learning (ICL), helping identify the most beneficial data for enhancing instruction tuning performance. Our experimental results demonstrate that selecting only the top 1\% of data based on MIWV can outperform training on the full dataset. Furthermore, this approach extends beyond existing research that focuses on data quality scoring for data selection, offering strong empirical evidence supporting the effectiveness of our proposed method.
comment: Accepted by AAAI 2026 Oral
☆ Aligning Attention with Human Rationales for Self-Explaining Hate Speech Detection AAAI
The opaque nature of deep learning models presents significant challenges for the ethical deployment of hate speech detection systems. To address this limitation, we introduce Supervised Rational Attention (SRA), a framework that explicitly aligns model attention with human rationales, improving both interpretability and fairness in hate speech classification. SRA integrates a supervised attention mechanism into transformer-based classifiers, optimizing a joint objective that combines standard classification loss with an alignment loss term that minimizes the discrepancy between attention weights and human-annotated rationales. We evaluated SRA on hate speech benchmarks in English (HateXplain) and Portuguese (HateBRXplain) with rationale annotations. Empirically, SRA achieves 2.4x better explainability compared to current baselines, and produces token-level explanations that are more faithful and human-aligned. In terms of fairness, SRA achieves competitive fairness across all measures, with second-best performance in detecting toxic posts targeting identity groups, while maintaining comparable results on other metrics. These findings demonstrate that incorporating human rationales into attention mechanisms can enhance interpretability and faithfulness without compromising fairness.
comment: Accepted at the Annual AAAI Conference on Artificial Intelligence (AAAI26)
☆ When Sufficient is not Enough: Utilizing the Rashomon Effect for Complete Evidence Extraction
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications this is inadequate. For compliance and cataloging, the full set of contributing features must be identified - complete evidence. We perform a case study on a medical dataset which contains human-annotated complete evidence. We show that individual models typically recover only subsets of complete evidence and that aggregating evidence from several models improves evidence recall from $\sim$0.60 (single best model) to $\sim$0.86 (ensemble). We analyze the recall-precision trade-off, the role of training with evidence, dynamic ensembles with certainty thresholds, and discuss implications.
☆ Evaluating LLMs for Anxiety, Depression, and Stress Detection Evaluating Large Language Models for Anxiety, Depression, and Stress Detection: Insights into Prompting Strategies and Synthetic Data
Mental health disorders affect over one-fifth of adults globally, yet detecting such conditions from text remains challenging due to the subtle and varied nature of symptom expression. This study evaluates multiple approaches for mental health detection, comparing Large Language Models (LLMs) such as Llama and GPT with classical machine learning and transformer-based architectures including BERT, XLNet, and Distil-RoBERTa. Using the DAIC-WOZ dataset of clinical interviews, we fine-tuned models for anxiety, depression, and stress classification and applied synthetic data generation to mitigate class imbalance. Results show that Distil-RoBERTa achieved the highest F1 score (0.883) for GAD-2, while XLNet outperformed others on PHQ tasks (F1 up to 0.891). For stress detection, a zero-shot synthetic approach (SD+Zero-Shot-Basic) reached an F1 of 0.884 and ROC AUC of 0.886. Findings demonstrate the effectiveness of transformer-based models and highlight the value of synthetic data in improving recall and generalization. However, careful calibration is required to prevent precision loss. Overall, this work emphasizes the potential of combining advanced language models and data augmentation to enhance automated mental health assessment from text.
☆ Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks
We introduce llama-embed-nemotron-8b, an open-weights text embedding model that achieves state-of-the-art performance on the Multilingual Massive Text Embedding Benchmark (MMTEB) leaderboard as of October 21, 2025. While recent models show strong performance, their training data or methodologies are often not fully disclosed. We aim to address this by developing a fully open-source model, publicly releasing its weights and detailed ablation studies, and planning to share the curated training datasets. Our model demonstrates superior performance across all major embedding tasks -- including retrieval, classification and semantic textual similarity (STS) -- and excels in challenging multilingual scenarios, such as low-resource languages and cross-lingual setups. This state-of-the-art performance is driven by a novel data mix of 16.1 million query-document pairs, split between 7.7 million samples from public datasets and 8.4 million synthetically generated examples from various open-weight LLMs. One of our key contributions is a detailed ablation study analyzing core design choices, including a comparison of contrastive loss implementations, an evaluation of synthetic data generation (SDG) strategies, and the impact of model merging. The llama-embed-nemotron-8b is an instruction-aware model, supporting user-defined instructions to enhance performance for specific use-cases. This combination of top-tier performance, broad applicability, and user-driven flexibility enables it to serve as a universal text embedding solution.
☆ Multilingual Lexical Feature Analysis of Spoken Language for Predicting Major Depression Symptom Severity
Background: Captured between clinical appointments using mobile devices, spoken language has potential for objective, more regular assessment of symptom severity and earlier detection of relapse in major depressive disorder. However, research to date has largely been in non-clinical cross-sectional samples of written language using complex machine learning (ML) approaches with limited interpretability. Methods: We describe an initial exploratory analysis of longitudinal speech data and PHQ-8 assessments from 5,836 recordings of 586 participants in the UK, Netherlands, and Spain, collected in the RADAR-MDD study. We sought to identify interpretable lexical features associated with MDD symptom severity with linear mixed-effects modelling. Interpretable features and high-dimensional vector embeddings were also used to test the prediction performance of four regressor ML models. Results: In English data, MDD symptom severity was associated with 7 features including lexical diversity measures and absolutist language. In Dutch, associations were observed with words per sentence and positive word frequency; no associations were observed in recordings collected in Spain. The predictive power of lexical features and vector embeddings was near chance level across all languages. Limitations: Smaller samples in non-English speech and methodological choices, such as the elicitation prompt, may have also limited the effect sizes observable. A lack of NLP tools in languages other than English restricted our feature choice. Conclusion: To understand the value of lexical markers in clinical research and practice, further research is needed in larger samples across several languages using improved protocols, and ML models that account for within- and between-individual variations in language.
☆ A Picture is Worth a Thousand (Correct) Captions: A Vision-Guided Judge-Corrector System for Multimodal Machine Translation AACL 2025
In this paper, we describe our system under the team name BLEU Monday for the English-to-Indic Multimodal Translation Task at WAT 2025. We participate in the text-only translation tasks for English-Hindi, English-Bengali, English-Malayalam, and English-Odia language pairs. We present a two-stage approach that addresses quality issues in the training data through automated error detection and correction, followed by parameter-efficient model fine-tuning. Our methodology introduces a vision-augmented judge-corrector pipeline that leverages multimodal language models to systematically identify and correct translation errors in the training data. The judge component classifies translations into three categories: correct, visually ambiguous (requiring image context), or mistranslated (poor translation quality). Identified errors are routed to specialized correctors: GPT-4o-mini regenerates captions requiring visual disambiguation, while IndicTrans2 retranslates cases with pure translation quality issues. This automated pipeline processes 28,928 training examples across four languages, correcting an average of 17.1% of captions per language. We then apply Low-Rank Adaptation (LoRA) to fine-tune the IndicTrans2 en-indic 200M distilled model on both original and corrected datasets. Training on corrected data yields consistent improvements, with BLEU score gains of +1.30 for English-Bengali on the evaluation set (42.00 -> 43.30) and +0.70 on the challenge set (44.90 -> 45.60), +0.60 for English-Odia on the evaluation set (41.00 -> 41.60), and +0.10 for English-Hindi on the challenge set (53.90 -> 54.00).
comment: Accepted at The 12th Workshop on Asian Translation, co-located with IJCLNLP-AACL 2025
☆ Beyond English: Toward Inclusive and Scalable Multilingual Machine Translation with LLMs
Large language models have significantly advanced Multilingual Machine Translation (MMT), yet the broad language coverage, consistent translation quality, and English-centric bias remain open challenges. To address these challenges, we introduce \textbf{LMT}, a suite of \textbf{L}arge-scale \textbf{M}ultilingual \textbf{T}ranslation models centered on both Chinese and English, covering 60 languages and 234 translation directions. During development, we identify a previously overlooked phenomenon of \textbf{directional degeneration}, where symmetric multi-way fine-tuning data overemphasize reverse directions (X $\to$ En/Zh), leading to excessive many-to-one mappings and degraded translation quality. We propose \textbf{Strategic Downsampling}, a simple yet effective method to mitigate this degeneration. In addition, we design \textbf{Parallel Multilingual Prompting (PMP)}, which leverages typologically related auxiliary languages to enhance cross-lingual transfer. Through rigorous data curation and refined adaptation strategies, LMT achieves SOTA performance among models of comparable language coverage, with our 4B model (LMT-60-4B) surpassing the much larger Aya-101-13B and NLLB-54B models by a substantial margin. We release LMT in four sizes (0.6B/1.7B/4B/8B) to catalyze future research and provide strong baselines for inclusive, scalable, and high-quality MMT \footnote{\href{https://github.com/NiuTrans/LMT}{https://github.com/NiuTrans/LMT}}.
☆ Automated Circuit Interpretation via Probe Prompting
Mechanistic interpretability aims to understand neural networks by identifying which learned features mediate specific behaviors. Attribution graphs reveal these feature pathways, but interpreting them requires extensive manual analysis -- a single prompt can take approximately 2 hours for an experienced circuit tracer. We present probe prompting, an automated pipeline that transforms attribution graphs into compact, interpretable subgraphs built from concept-aligned supernodes. Starting from a seed prompt and target logit, we select high-influence features, generate concept-targeted yet context-varying probes, and group features by cross-prompt activation signatures into Semantic, Relationship, and Say-X categories using transparent decision rules. Across five prompts including classic "capitals" circuits, probe-prompted subgraphs preserve high explanatory coverage while compressing complexity (Completeness 0.83, mean across circuits; Replacement 0.54). Compared to geometric clustering baselines, concept-aligned groups exhibit higher behavioral coherence: 2.3x higher peak-token consistency (0.425 vs 0.183) and 5.8x higher activation-pattern similarity (0.762 vs 0.130), despite lower geometric compactness. Entity-swap tests reveal a layerwise hierarchy: early-layer features transfer robustly (64% transfer rate, mean layer 6.3), while late-layer Say-X features specialize for output promotion (mean layer 16.4), supporting a backbone-and-specialization view of transformer computation. We release code (https://github.com/peppinob-ol/attribution-graph-probing), an interactive demo (https://huggingface.co/spaces/Peppinob/attribution-graph-probing), and minimal artifacts enabling immediate reproduction and community adoption.
comment: 27 pages, 5 figures, 3 tables. Code and interactive demo available
☆ SCOPE: Intrinsic Semantic Space Control for Mitigating Copyright Infringement in LLMs AAAI 2026
Large language models sometimes inadvertently reproduce passages that are copyrighted, exposing downstream applications to legal risk. Most existing studies for inference-time defences focus on surface-level token matching and rely on external blocklists or filters, which add deployment complexity and may overlook semantically paraphrased leakage. In this work, we reframe copyright infringement mitigation as intrinsic semantic-space control and introduce SCOPE, an inference-time method that requires no parameter updates or auxiliary filters. Specifically, the sparse autoencoder (SAE) projects hidden states into a high-dimensional, near-monosemantic space; benefiting from this representation, we identify a copyright-sensitive subspace and clamp its activations during decoding. Experiments on widely recognized benchmarks show that SCOPE mitigates copyright infringement without degrading general utility. Further interpretability analyses confirm that the isolated subspace captures high-level semantics.
comment: Accepted by the AAAI 2026 (Main Track)
☆ HLPD: Aligning LLMs to Human Language Preference for Machine-Revised Text Detection AAAI'26
To prevent misinformation and social issues arising from trustworthy-looking content generated by LLMs, it is crucial to develop efficient and reliable methods for identifying the source of texts. Previous approaches have demonstrated exceptional performance in detecting texts fully generated by LLMs. However, these methods struggle when confronting more advanced LLM output or text with adversarial multi-task machine revision, especially in the black-box setting, where the generating model is unknown. To address this challenge, grounded in the hypothesis that human writing possesses distinctive stylistic patterns, we propose Human Language Preference Detection (HLPD). HLPD employs a reward-based alignment process, Human Language Preference Optimization (HLPO), to shift the scoring model's token distribution toward human-like writing, making the model more sensitive to human writing, therefore enhancing the identification of machine-revised text. We test HLPD in an adversarial multi-task evaluation framework that leverages a five-dimensional prompt generator and multiple advanced LLMs to create diverse revision scenarios. When detecting texts revised by GPT-series models, HLPD achieves a 15.11% relative improvement in AUROC over ImBD, surpassing Fast-DetectGPT by 45.56%. When evaluated on texts generated by advanced LLMs, HLPD achieves the highest average AUROC, exceeding ImBD by 5.53% and Fast-DetectGPT by 34.14%. Code will be made available at https://github.com/dfq2021/HLPD.
comment: 9 pages, 3 figures, accepted by AAAI'26
☆ RPTS: Tree-Structured Reasoning Process Scoring for Faithful Multimodal Evaluation
Large Vision-Language Models (LVLMs) excel in multimodal reasoning and have shown impressive performance on various multimodal benchmarks. However, most of these benchmarks evaluate models primarily through multiple-choice or short-answer formats, which do not take the reasoning process into account. Although some benchmarks assess the reasoning process, their methods are often overly simplistic and only examine reasoning when answers are incorrect. This approach overlooks scenarios where flawed reasoning leads to correct answers. In addition, these benchmarks do not consider the impact of intermodal relationships on reasoning. To address this issue, we propose the Reasoning Process Tree Score (RPTS), a tree structure-based metric to assess reasoning processes. Specifically, we organize the reasoning steps into a reasoning tree and leverage its hierarchical information to assign weighted faithfulness scores to each reasoning step. By dynamically adjusting these weights, RPTS not only evaluates the overall correctness of the reasoning, but also pinpoints where the model fails in the reasoning. To validate RPTS in real-world multimodal scenarios, we construct a new benchmark, RPTS-Eval, comprising 374 images and 390 reasoning instances. Each instance includes reliable visual-textual clues that serve as leaf nodes of the reasoning tree. Furthermore, we define three types of intermodal relationships to investigate how intermodal interactions influence the reasoning process. We evaluated representative LVLMs (e.g., GPT4o, Llava-Next), uncovering their limitations in multimodal reasoning and highlighting the differences between open-source and closed-source commercial LVLMs. We believe that this benchmark will contribute to the advancement of research in the field of multimodal reasoning.
☆ EduGuardBench: A Holistic Benchmark for Evaluating the Pedagogical Fidelity and Adversarial Safety of LLMs as Simulated Teachers AAAI2026
Large Language Models for Simulating Professions (SP-LLMs), particularly as teachers, are pivotal for personalized education. However, ensuring their professional competence and ethical safety is a critical challenge, as existing benchmarks fail to measure role-playing fidelity or address the unique teaching harms inherent in educational scenarios. To address this, we propose EduGuardBench, a dual-component benchmark. It assesses professional fidelity using a Role-playing Fidelity Score (RFS) while diagnosing harms specific to the teaching profession. It also probes safety vulnerabilities using persona-based adversarial prompts targeting both general harms and, particularly, academic misconduct, evaluated with metrics including Attack Success Rate (ASR) and a three-tier Refusal Quality assessment. Our extensive experiments on 14 leading models reveal a stark polarization in performance. While reasoning-oriented models generally show superior fidelity, incompetence remains the dominant failure mode across most models. The adversarial tests uncovered a counterintuitive scaling paradox, where mid-sized models can be the most vulnerable, challenging monotonic safety assumptions. Critically, we identified a powerful Educational Transformation Effect: the safest models excel at converting harmful requests into teachable moments by providing ideal Educational Refusals. This capacity is strongly negatively correlated with ASR, revealing a new dimension of advanced AI safety. EduGuardBench thus provides a reproducible framework that moves beyond siloed knowledge tests toward a holistic assessment of professional, ethical, and pedagogical alignment, uncovering complex dynamics essential for deploying trustworthy AI in education. See https://github.com/YL1N/EduGuardBench for Materials.
comment: 22 pages, 9 figures, accepted by AAAI2026 as oral paper
☆ Inclusion of Role into Named Entity Recognition and Ranking
Most of the Natural Language Processing sys- tems are involved in entity-based processing for several tasks like Information Extraction, Question-Answering, Text-Summarization and so on. A new challenge comes when entities play roles according to their act or attributes in certain context. Entity Role Detection is the task of assigning such roles to the entities. Usu- ally real-world entities are of types: person, lo- cation and organization etc. Roles could be con- sidered as domain-dependent subtypes of these types. In the cases, where retrieving a subset of entities based on their roles is needed, poses the problem of defining the role and entities having those roles. This paper presents the study of study of solving Entity Role Detection prob- lem by modeling it as Named Entity Recogni- tion (NER) and Entity Retrieval/Ranking task. In NER, these roles could be considered as mutually exclusive classes and standard NER methods like sequence tagging could be used. For Entity Retrieval, Roles could be formulated as Query and entities as Collection on which the query needs to be executed. The aspect of Entity Retrieval task, which is different than document retrieval task is that the entities and roles against which they need to be retrieved are indirectly described. We have formulated au- tomated ways of learning representative words and phrases and building representations of roles and entities using them. We have also explored different contexts like sentence and document. Since the roles depend upon con- text, so it is not always possible to have large domain-specific dataset or knowledge bases for learning purposes, so we have tried to exploit the information from small dataset in domain- agnostic way.
comment: MTP Paper
☆ CLiFT-ASR: A Cross-Lingual Fine-Tuning Framework for Low-Resource Taiwanese Hokkien Speech Recognition
Automatic speech recognition (ASR) for low-resource languages such as Taiwanese Hokkien is difficult due to the scarcity of annotated data. However, direct fine-tuning on Han-character transcriptions often fails to capture detailed phonetic and tonal cues, while training only on romanization lacks lexical and syntactic coverage. In addition, prior studies have rarely explored staged strategies that integrate both annotation types. To address this gap, we present CLiFT-ASR, a cross-lingual fine-tuning framework that builds on Mandarin HuBERT models and progressively adapts them to Taiwanese Hokkien. The framework employs a two-stage process in which it first learns acoustic and tonal representations from phonetic Tai-lo annotations and then captures vocabulary and syntax from Han-character transcriptions. This progressive adaptation enables effective alignment between speech sounds and orthographic structures. Experiments on the TAT-MOE corpus demonstrate that CLiFT-ASR achieves a 24.88\% relative reduction in character error rate (CER) compared with strong baselines. The results indicate that CLiFT-ASR provides an effective and parameter-efficient solution for Taiwanese Hokkien ASR and that it has potential to benefit other low-resource language scenarios.
comment: Accepted for an oral presentation at the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)
☆ Beyond Plain Demos: A Demo-centric Anchoring Paradigm for In-Context Learning in Alzheimer's Disease Detection AAAI
Detecting Alzheimer's disease (AD) from narrative transcripts challenges large language models (LLMs): pre-training rarely covers this out-of-distribution task, and all transcript demos describe the same scene, producing highly homogeneous contexts. These factors cripple both the model's built-in task knowledge (\textbf{task cognition}) and its ability to surface subtle, class-discriminative cues (\textbf{contextual perception}). Because cognition is fixed after pre-training, improving in-context learning (ICL) for AD detection hinges on enriching perception through better demonstration (demo) sets. We demonstrate that standard ICL quickly saturates, its demos lack diversity (context width) and fail to convey fine-grained signals (context depth), and that recent task vector (TV) approaches improve broad task adaptation by injecting TV into the LLMs' hidden states (HSs), they are ill-suited for AD detection due to the mismatch of injection granularity, strength and position. To address these bottlenecks, we introduce \textbf{DA4ICL}, a demo-centric anchoring framework that jointly expands context width via \emph{\textbf{Diverse and Contrastive Retrieval}} (DCR) and deepens each demo's signal via \emph{\textbf{Projected Vector Anchoring}} (PVA) at every Transformer layer. Across three AD benchmarks, DA4ICL achieves large, stable gains over both ICL and TV baselines, charting a new paradigm for fine-grained, OOD and low-resource LLM adaptation.
comment: Accepted to the 40th Annual AAAI Conference on Artificial Intelligence (2026) - Main Technical Track (Oral)
☆ Learning to Focus: Focal Attention for Selective and Scalable Transformers
Attention is a core component of transformer architecture, whether encoder-only, decoder-only, or encoder-decoder model. However, the standard softmax attention often produces noisy probability distribution, which can impair effective feature selection at every layer of these models, particularly for long contexts. We propose Focal Attention, a simple yet effective modification that sharpens the attention distribution by controlling the softmax temperature, either as a fixed hyperparameter or as a learnable parameter during training. This sharpening enables the model to concentrate on the most relevant tokens while suppressing irrelevant ones. Empirically, Focal Attention scales more favorably than standard transformer with respect to model size, training data, and context length. Across diverse benchmarks, it achieves the same accuracy with up to 42% fewer parameters or 33% less training data. On long-context tasks, it delivers substantial relative improvements ranging from 17% to 82%, demonstrating its effectiveness in real world applications.
☆ SAFENLIDB: A Privacy-Preserving Safety Alignment Framework for LLM-based Natural Language Database Interfaces
The rapid advancement of Large Language Models (LLMs) has driven significant progress in Natural Language Interface to Database (NLIDB). However, the widespread adoption of LLMs has raised critical privacy and security concerns. During interactions, LLMs may unintentionally expose confidential database contents or be manipulated by attackers to exfiltrate data through seemingly benign queries. While current efforts typically rely on rule-based heuristics or LLM agents to mitigate this leakage risk, these methods still struggle with complex inference-based attacks, suffer from high false positive rates, and often compromise the reliability of SQL queries. To address these challenges, we propose \textsc{SafeNlidb}, a novel privacy-security alignment framework for LLM-based NLIDB. The framework features an automated pipeline that generates hybrid chain-of-thought interaction data from scratch, seamlessly combining implicit security reasoning with SQL generation. Additionally, we introduce reasoning warm-up and alternating preference optimization to overcome the multi-preference oscillations of Direct Preference Optimization (DPO), enabling LLMs to produce security-aware SQL through fine-grained reasoning without the need for human-annotated preference data. Extensive experiments demonstrate that our method outperforms both larger-scale LLMs and ideal-setting baselines, achieving significant security improvements while preserving high utility.WARNING: This work may contain content that is offensive and harmful!
comment: 26 pages, 14 figures, 22 tables
☆ Sensitivity of Small Language Models to Fine-tuning Data Contamination
Small Language Models (SLMs) are increasingly being deployed in resource-constrained environments, yet their behavioral robustness to data contamination during instruction tuning remains poorly understood. We systematically investigate the contamination sensitivity of 23 SLMs (270M to 4B parameters) across multiple model families by measuring susceptibility to syntactic and semantic transformation types during instruction tuning: syntactic transformations (character and word reversal) and semantic transformations (irrelevant and counterfactual responses), each applied at contamination levels of 25\%, 50\%, 75\%, and 100\%. Our results reveal fundamental asymmetries in vulnerability patterns: syntactic transformations cause catastrophic performance degradation, with character reversal producing near-complete failure across all models regardless of size or family, while semantic transformations demonstrate distinct threshold behaviors and greater resilience in core linguistic capabilities. Critically, we discover a ``\textit{capability curse}" where larger, more capable models become more susceptible to learning semantic corruptions, effectively following harmful instructions more readily, while our analysis of base versus instruction-tuned variants reveals that alignment provides inconsistent robustness benefits, sometimes even reducing resilience. Our work establishes three core contributions: (1) empirical evidence of SLMs' disproportionate vulnerability to syntactic pattern contamination, (2) identification of asymmetric sensitivity patterns between syntactic and semantic transformations, and (3) systematic evaluation protocols for contamination robustness assessment. These findings have immediate deployment implications, suggesting that current robustness assumptions may not hold for smaller models and highlighting the need for contamination-aware training protocols.
☆ Rethinking Retrieval-Augmented Generation for Medicine: A Large-Scale, Systematic Expert Evaluation and Practical Insights
Large language models (LLMs) are transforming the landscape of medicine, yet two fundamental challenges persist: keeping up with rapidly evolving medical knowledge and providing verifiable, evidence-grounded reasoning. Retrieval-augmented generation (RAG) has been widely adopted to address these limitations by supplementing model outputs with retrieved evidence. However, whether RAG reliably achieves these goals remains unclear. Here, we present the most comprehensive expert evaluation of RAG in medicine to date. Eighteen medical experts contributed a total of 80,502 annotations, assessing 800 model outputs generated by GPT-4o and Llama-3.1-8B across 200 real-world patient and USMLE-style queries. We systematically decomposed the RAG pipeline into three components: (i) evidence retrieval (relevance of retrieved passages), (ii) evidence selection (accuracy of evidence usage), and (iii) response generation (factuality and completeness of outputs). Contrary to expectation, standard RAG often degraded performance: only 22% of top-16 passages were relevant, evidence selection remained weak (precision 41-43%, recall 27-49%), and factuality and completeness dropped by up to 6% and 5%, respectively, compared with non-RAG variants. Retrieval and evidence selection remain key failure points for the model, contributing to the overall performance drop. We further show that simple yet effective strategies, including evidence filtering and query reformulation, substantially mitigate these issues, improving performance on MedMCQA and MedXpertQA by up to 12% and 8.2%, respectively. These findings call for re-examining RAG's role in medicine and highlight the importance of stage-aware evaluation and deliberate system design for reliable medical LLM applications.
comment: 34 pages, 6 figures
☆ Revisiting the Data Sampling in Multimodal Post-training from a Difficulty-Distinguish View AAAI 2026
Recent advances in Multimodal Large Language Models (MLLMs) have spurred significant progress in Chain-of-Thought (CoT) reasoning. Building on the success of Deepseek-R1, researchers extended multimodal reasoning to post-training paradigms based on reinforcement learning (RL), focusing predominantly on mathematical datasets. However, existing post-training paradigms tend to neglect two critical aspects: (1) The lack of quantifiable difficulty metrics capable of strategically screening samples for post-training optimization. (2) Suboptimal post-training paradigms that fail to jointly optimize perception and reasoning capabilities. To address this gap, we propose two novel difficulty-aware sampling strategies: Progressive Image Semantic Masking (PISM) quantifies sample hardness through systematic image degradation, while Cross-Modality Attention Balance (CMAB) assesses cross-modal interaction complexity via attention distribution analysis. Leveraging these metrics, we design a hierarchical training framework that incorporates both GRPO-only and SFT+GRPO hybrid training paradigms, and evaluate them across six benchmark datasets. Experiments demonstrate consistent superiority of GRPO applied to difficulty-stratified samples compared to conventional SFT+GRPO pipelines, indicating that strategic data sampling can obviate the need for supervised fine-tuning while improving model accuracy. Our code will be released at https://github.com/qijianyu277/DifficultySampling.
comment: Accpeted by AAAI 2026
☆ Sentiment Analysis On YouTube Comments Using Machine Learning Techniques Based On Video Games Content
The rapid evolution of the gaming industry, driven by technological advancements and a burgeoning community, necessitates a deeper understanding of user sentiments, especially as expressed on popular social media platforms like YouTube. This study presents a sentiment analysis on video games based on YouTube comments, aiming to understand user sentiments within the gaming community. Utilizing YouTube API, comments related to various video games were collected and analyzed using the TextBlob sentiment analysis tool. The pre-processed data underwent classification using machine learning algorithms, including Na\"ive Bayes, Logistic Regression, and Support Vector Machine (SVM). Among these, SVM demonstrated superior performance, achieving the highest classification accuracy across different datasets. The analysis spanned multiple popular gaming videos, revealing trends and insights into user preferences and critiques. The findings underscore the importance of advanced sentiment analysis in capturing the nuanced emotions expressed in user comments, providing valuable feedback for game developers to enhance game design and user experience. Future research will focus on integrating more sophisticated natural language processing techniques and exploring additional data sources to further refine sentiment analysis in the gaming domain.
comment: 6 pages, 7 figures, 2025 IEEE 9th International Conference on Software Engineering & Computer Systems
☆ Place Matters: Comparing LLM Hallucination Rates for Place-Based Legal Queries
How do we make a meaningful comparison of a large language model's knowledge of the law in one place compared to another? Quantifying these differences is critical to understanding if the quality of the legal information obtained by users of LLM-based chatbots varies depending on their location. However, obtaining meaningful comparative metrics is challenging because legal institutions in different places are not themselves easily comparable. In this work we propose a methodology to obtain place-to-place metrics based on the comparative law concept of functionalism. We construct a dataset of factual scenarios drawn from Reddit posts by users seeking legal advice for family, housing, employment, crime and traffic issues. We use these to elicit a summary of a law from the LLM relevant to each scenario in Los Angeles, London and Sydney. These summaries, typically of a legislative provision, are manually evaluated for hallucinations. We show that the rate of hallucination of legal information by leading closed-source LLMs is significantly associated with place. This suggests that the quality of legal solutions provided by these models is not evenly distributed across geography. Additionally, we show a strong negative correlation between hallucination rate and the frequency of the majority response when the LLM is sampled multiple times, suggesting a measure of uncertainty of model predictions of legal facts.
☆ Textual Self-attention Network: Test-Time Preference Optimization through Textual Gradient-based Attention AAAI2026
Large Language Models (LLMs) have demonstrated remarkable generalization capabilities, but aligning their outputs with human preferences typically requires expensive supervised fine-tuning. Recent test-time methods leverage textual feedback to overcome this, but they often critique and revise a single candidate response, lacking a principled mechanism to systematically analyze, weigh, and synthesize the strengths of multiple promising candidates. Such a mechanism is crucial because different responses may excel in distinct aspects (e.g., clarity, factual accuracy, or tone), and combining their best elements may produce a far superior outcome. This paper proposes the Textual Self-Attention Network (TSAN), a new paradigm for test-time preference optimization that requires no parameter updates. TSAN emulates self-attention entirely in natural language to overcome this gap: it analyzes multiple candidates by formatting them into textual keys and values, weighs their relevance using an LLM-based attention module, and synthesizes their strengths into a new, preference-aligned response under the guidance of the learned textual attention. This entire process operates in a textual gradient space, enabling iterative and interpretable optimization. Empirical evaluations demonstrate that with just three test-time iterations on a base SFT model, TSAN outperforms supervised models like Llama-3.1-70B-Instruct and surpasses the current state-of-the-art test-time alignment method by effectively leveraging multiple candidate solutions.
comment: AAAI2026
☆ Steering LLMs toward Korean Local Speech: Iterative Refinement Framework for Faithful Dialect Translation LREC 2026
Standard-to-dialect machine translation remains challenging due to a persistent dialect gap in large language models and evaluation distortions inherent in n-gram metrics, which favor source copying over authentic dialect translation. In this paper, we propose the dialect refinement (DIA-REFINE) framework, which guides LLMs toward faithful target dialect outputs through an iterative loop of translation, verification, and feedback using external dialect classifiers. To address the limitations of n-gram-based metrics, we introduce the dialect fidelity score (DFS) to quantify linguistic shift and the target dialect ratio (TDR) to measure the success of dialect translation. Experiments on Korean dialects across zero-shot and in-context learning baselines demonstrate that DIA-REFINE consistently enhances dialect fidelity. The proposed metrics distinguish between False Success cases, where high n-gram scores obscure failures in dialectal translation, and True Attempt cases, where genuine attempts at dialectal translation yield low n-gram scores. We also observed that models exhibit varying degrees of responsiveness to the framework, and that integrating in-context examples further improves the translation of dialectal expressions. Our work establishes a robust framework for goal-directed, inclusive dialect translation, providing both rigorous evaluation and critical insights into model performance.
comment: Submitted to LREC 2026
☆ How AI Fails: An Interactive Pedagogical Tool for Demonstrating Dialectal Bias in Automated Toxicity Models
Now that AI-driven moderation has become pervasive in everyday life, we often hear claims that "the AI is biased". While this is often said jokingly, the light-hearted remark reflects a deeper concern. How can we be certain that an online post flagged as "inappropriate" was not simply the victim of a biased algorithm? This paper investigates this problem using a dual approach. First, I conduct a quantitative benchmark of a widely used toxicity model (unitary/toxic-bert) to measure performance disparity between text in African-American English (AAE) and Standard American English (SAE). The benchmark reveals a clear, systematic bias: on average, the model scores AAE text as 1.8 times more toxic and 8.8 times higher for "identity hate". Second, I introduce an interactive pedagogical tool that makes these abstract biases tangible. The tool's core mechanic, a user-controlled "sensitivity threshold," demonstrates that the biased score itself is not the only harm; instead, the more-concerning harm is the human-set, seemingly neutral policy that ultimately operationalises discrimination. This work provides both statistical evidence of disparate impact and a public-facing tool designed to foster critical AI literacy.
comment: 9 pages, 5 figures, 4 tables, 14 references
☆ HiMo-CLIP: Modeling Semantic Hierarchy and Monotonicity in Vision-Language Alignment AAAI 2026
Contrastive vision-language models like CLIP have achieved impressive results in image-text retrieval by aligning image and text representations in a shared embedding space. However, these models often treat text as flat sequences, limiting their ability to handle complex, compositional, and long-form descriptions. In particular, they fail to capture two essential properties of language: semantic hierarchy, which reflects the multi-level compositional structure of text, and semantic monotonicity, where richer descriptions should result in stronger alignment with visual content.To address these limitations, we propose HiMo-CLIP, a representation-level framework that enhances CLIP-style models without modifying the encoder architecture. HiMo-CLIP introduces two key components: a hierarchical decomposition (HiDe) module that extracts latent semantic components from long-form text via in-batch PCA, enabling flexible, batch-aware alignment across different semantic granularities, and a monotonicity-aware contrastive loss (MoLo) that jointly aligns global and component-level representations, encouraging the model to internalize semantic ordering and alignment strength as a function of textual completeness.These components work in concert to produce structured, cognitively-aligned cross-modal representations. Experiments on multiple image-text retrieval benchmarks show that HiMo-CLIP consistently outperforms strong baselines, particularly under long or compositional descriptions. The code is available at https://github.com/UnicomAI/HiMo-CLIP.
comment: Accepted by AAAI 2026 as an Oral Presentation (13 pages, 7 figures, 7 tables)
☆ Adaptive Testing for Segmenting Watermarked Texts From Language Models
The rapid adoption of large language models (LLMs), such as GPT-4 and Claude 3.5, underscores the need to distinguish LLM-generated text from human-written content to mitigate the spread of misinformation and misuse in education. One promising approach to address this issue is the watermark technique, which embeds subtle statistical signals into LLM-generated text to enable reliable identification. In this paper, we first generalize the likelihood-based LLM detection method of a previous study by introducing a flexible weighted formulation, and further adapt this approach to the inverse transform sampling method. Moving beyond watermark detection, we extend this adaptive detection strategy to tackle the more challenging problem of segmenting a given text into watermarked and non-watermarked substrings. In contrast to the approach in a previous study, which relies on accurate estimation of next-token probabilities that are highly sensitive to prompt estimation, our proposed framework removes the need for precise prompt estimation. Extensive numerical experiments demonstrate that the proposed methodology is both effective and robust in accurately segmenting texts containing a mixture of watermarked and non-watermarked content.
comment: 13 pages, 3 figures, accepted for publication in STAT, October 28, 2025
☆ GRAPH-GRPO-LEX: Contract Graph Modeling and Reinforcement Learning with Group Relative Policy Optimization
Contracts are complex documents featuring detailed formal structures, explicit and implicit dependencies and rich semantic content. Given these document properties, contract drafting and manual examination of contracts have proven to be both arduous and susceptible to errors. This work aims to simplify and automate the task of contract review and analysis using a novel framework for transforming legal contracts into structured semantic graphs, enabling computational analysis and data-driven insights. We introduce a detailed ontology mapping core legal contract elements to their graph-theoretic equivalents of nodes and edges. We then present a reinforcement learning based Large Language Model (LLM) framework for segmentation and extraction of entities and relationships from contracts. Our method, GRAPH-GRPO-LEX, incorporates both LLMs and reinforcement learning with group relative policy optimization (GRPO). By applying a carefully drafted reward function of graph metrics, we demonstrate the ability to automatically identify direct relationships between clauses, and even uncover hidden dependencies. Our introduction of the gated GRPO approach shows a strong learning signal and can move contract analysis from a linear, manual reading process to an easily visualized graph. This allows for a more dynamic analysis, including building the groundwork for contract linting similar to what is now practiced in software engineering.
☆ Duality-based Mode Operations and Pyramid Multilayer Mapping for Rhetorical Modes
Rhetorical modes are useful in both academic and non-academic writing, and can be subjects to be studied within linguistic research and computational modeling. Establishing a conceptual bridge among these domains could enable each to benefit from the others. This paper proposes duality-based mode operations (split-unite, forward-backward, expansion-reduction and orthogonal dualities) to expand the set of rhetorical modes, introducing generated modes like combination and generalization, thereby enhancing epistemic diversity across multiple applications. It further presents a pyramid multilayer mapping framework (e.g., three layers from the rhetorical model layer, to cognitive layer, and to epistemic layers) that reduces the resulting cognitive complexity. The degrees of expressive diversity and complexity reduction are quantified through binomial combinatorics and Shannon entropy analysis. A Marginal Rhetorical Bit (MRB) is identified, permitting the definition of a rhetorical-scalable parameter that measures expressive growth speed in bits per stage. A direct entropy measure shows that hierarchical selection over smaller subsets markedly reduces choice uncertainty compared with flat selection across all modes. These considerations appear to transform static and non-measurable rhetorical taxonomies into more dynamic and more measurable systems for discourse design. From this work, it would be possible to identify a pathway for future AI systems to operate not only on language tokens but on layered rhetorical reasoning structures, bridging linguistic, pedagogical, academic, and computational research
☆ MedVoiceBias: A Controlled Study of Audio LLM Behavior in Clinical Decision-Making
As large language models transition from text-based interfaces to audio interactions in clinical settings, they might introduce new vulnerabilities through paralinguistic cues in audio. We evaluated these models on 170 clinical cases, each synthesized into speech from 36 distinct voice profiles spanning variations in age, gender, and emotion. Our findings reveal a severe modality bias: surgical recommendations for audio inputs varied by as much as 35% compared to identical text-based inputs, with one model providing 80% fewer recommendations. Further analysis uncovered age disparities of up to 12% between young and elderly voices, which persisted in most models despite chain-of-thought prompting. While explicit reasoning successfully eliminated gender bias, the impact of emotion was not detected due to poor recognition performance. These results demonstrate that audio LLMs are susceptible to making clinical decisions based on a patient's voice characteristics rather than medical evidence, a flaw that risks perpetuating healthcare disparities. We conclude that bias-aware architectures are essential and urgently needed before the clinical deployment of these models.
☆ TabRAG: Tabular Document Retrieval via Structured Language Representations NeurIPS 2025
Ingesting data for Retrieval-Augmented Generation (RAG) involves either fine-tuning the embedding model directly on the target corpus or parsing documents for embedding model encoding. The former, while accurate, incurs high computational hardware requirements, while the latter suffers from suboptimal performance when extracting tabular data. In this work, we address the latter by presenting TabRAG, a parsing-based RAG pipeline designed to tackle table-heavy documents via structured language representations. TabRAG outperforms existing popular parsing-based methods for generation and retrieval. Code is available at https://github.com/jacobyhsi/TabRAG.
comment: NeurIPS 2025 AI4Tab
♻ ☆ Mixed Signals: Understanding Model Disagreement in Multimodal Empathy Detection
Multimodal models play a key role in empathy detection, but their performance can suffer when modalities provide conflicting cues. To understand these failures, we examine cases where unimodal and multimodal predictions diverge. Using fine-tuned models for text, audio, and video, along with a gated fusion model, we find that such disagreements often reflect underlying ambiguity, as evidenced by annotator uncertainty. Our analysis shows that dominant signals in one modality can mislead fusion when unsupported by others. We also observe that humans, like models, do not consistently benefit from multimodal input. These insights position disagreement as a useful diagnostic signal for identifying challenging examples and improving empathy system robustness.
♻ ☆ REINFORCE++: Stabilizing Critic-Free Policy Optimization with Global Advantage Normalization
Reinforcement Learning from Human Feedback~(RLHF) plays a crucial role in aligning Large Language Models~(LLMs). The dominant algorithm, Proximal Policy Optimization~(PPO), employs a critic network to estimate advantages, which introduces significant computational and memory overhead. To address this, a family of critic-free algorithms (e.g., GRPO, RLOO) has emerged. However, these methods typically rely on \textit{prompt-level (local)} advantage normalization, which suffers from inaccurate advantage estimation, a tendency to overfit, and, as we show, is a theoretically biased estimator. To solve these challenges, we introduce REINFORCE++, a critic-free framework centered on \textbf{Global Advantage Normalization}. By normalizing advantages across the entire global batch rather than small, prompt-specific groups, our method provides a more stable and theoretically sound, \textit{effectively unbiased} estimate (whose bias vanishes as batch size increases). We introduce two variants: REINFORCE++, a highly efficient and general algorithm ($k \ge 1$) for general-domain RLHF, and REINFORCE++ /w baseline, a robust group-sampling variant ($k > 1$) for complex reasoning tasks. Our empirical evaluation demonstrates that each variant shows superior stability and performance in its respective domain, outperforming existing methods and even PPO in complex agentic settings.
comment: refactor
♻ ☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
♻ ☆ When Language Shapes Thought: Cross-Lingual Transfer of Factual Knowledge in Question Answering
Multilingual large language models (LLMs) offer promising opportunities for cross-lingual information access, yet their use of factual knowledge remains highly sensitive to the input language. Prior work has addressed this through English prompting and evaluation, assuming that English-based reasoning is universally beneficial. In this work, we challenge that assumption by exploring factual knowledge transfer from non-English to English through the lens of Language and Thought Theory. We introduce Language-to-Thought (L2T) prompting, which aligns the model's internal ''thinking'' language with the source of knowledge. Across three languages and four models, L2T consistently outperforms English-based reasoning, reversing the expected advantage of English prompts. Our code is available at https://github.com/GeomeunByeol/Language2Thought.
comment: Accepted at CIKM2025 (Expanded version)
♻ ☆ ZK-SenseLM: Verifiable Large-Model Wireless Sensing with Selective Abstention and Zero-Knowledge Attestation
ZK-SenseLM is a secure and auditable wireless sensing framework that pairs a large-model encoder for Wi-Fi channel state information (and optionally mmWave radar or RFID) with a policy-grounded decision layer and end-to-end zero-knowledge proofs of inference. The encoder uses masked spectral pretraining with phase-consistency regularization, plus a light cross-modal alignment that ties RF features to compact, human-interpretable policy tokens. To reduce unsafe actions under distribution shift, we add a calibrated selective-abstention head; the chosen risk-coverage operating point is registered and bound into the proof. We implement a four-stage proving pipeline: (C1) feature sanity and commitment, (C2) threshold and version binding, (C3) time-window binding, and (C4) PLONK-style proofs that the quantized network, given the committed window, produced the logged action and confidence. Micro-batched proving amortizes cost across adjacent windows, and a gateway option offloads proofs from low-power devices. The system integrates with differentially private federated learning and on-device personalization without weakening verifiability: model hashes and the registered threshold are part of each public statement. Across activity, presence or intrusion, respiratory proxy, and RF fingerprinting tasks, ZK-SenseLM improves macro-F1 and calibration, yields favorable coverage-risk curves under perturbations, and rejects tamper and replay with compact proofs and fast verification.
comment: 45 pages
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ Text-to-Pipeline: Bridging Natural Language and Data Preparation Pipelines
Data preparation (DP) transforms raw data into a form suitable for downstream applications, typically by composing operations into executable pipelines. Building such pipelines is time-consuming and requires sophisticated programming skills, posing a significant barrier for non-experts. To lower this barrier, we introduce Text-to-Pipeline, a new task that translates NL data preparation instructions into DP pipelines, and PARROT, a large-scale benchmark to support systematic evaluation. To ensure realistic DP scenarios, PARROT is built by mining transformation patterns from production pipelines and instantiating them on 23,009 real-world tables, resulting in ~18,000 tasks spanning 16 core operators. Our empirical evaluation on PARROT reveals a critical failure mode in cutting-edge LLMs: they struggle not only with multi-step compositional logic but also with semantic parameter grounding. We thus establish a strong baseline with Pipeline-Agent, an execution-aware agent that iteratively reflects on intermediate states. While it achieves state-of-the-art performance, a significant gap remains, underscoring the deep, unsolved challenges for PARROT. It provides the essential, large-scale testbed for developing and evaluating the next generation of autonomous data preparation agentic systems.
♻ ☆ CoSense-LLM: Semantics at the Edge with Cost- and Uncertainty-Aware Cloud-Edge Cooperation
We present CoSense-LLM, an edge-first framework that turns continuous multimodal sensor streams (for example Wi-Fi CSI, IMU, audio, RFID, and lightweight vision) into compact, verifiable semantic tokens and coordinates with large language models under explicit latency, energy, bandwidth, and privacy constraints. CoSense-LLM has four parts: (i) SenseFusion, a lightweight encoder that aligns sensor embeddings with language and compresses them into short discrete code sequences; (ii) Edge-RAG, a local hybrid retrieval layer that grounds generation in site specific policies and notes; (iii) PromptRouter, a cost and uncertainty aware policy that selects edge only generation, edge plus retrieval, or compact cloud escalation; and (iv) Secure Execution, an auditable redaction path that enforces data minimization so raw waveforms never leave the device. The system works with modern serving optimizations, including paged or streaming KV caches, FlashAttention style kernels, speculative decoding, and quantized LoRA adapters, and supports on device personalization and federated updates under non IID drift. Across home, office, and clinic deployments, CoSense-LLM delivers grounded explanations while meeting tight service level objectives: it sustains sub second (p95) end to end latency on edge dominant paths, reduces inter tier token and bandwidth costs by preferring local retrieval grounded responses, and preserves privacy by transmitting only discrete codes and redacted metadata. Ablations show that Edge-RAG improves factual consistency and reduces contradictions, calibrated uncertainty enables selective abstention and controlled escalations, and KV plus decoding accelerators lower energy per decision. The results support an edge first design that treats semantics, privacy, and predictable latency as co equal goals for large model deployments in interference prone environments.
comment: 19 pages,8 figures
♻ ☆ Rethinking Tokenization for Rich Morphology: The Dominance of Unigram over BPE and Morphological Alignment
The relationship between tokenizer algorithm (e.g., Byte-Pair Encoding (BPE), Unigram), morphological alignment, tokenization quality (e.g., compression efficiency), and downstream performance remains largely unclear, particularly for languages with complex morphology. In this paper, we conduct a comprehensive evaluation of tokenizers using small-sized BERT models -- from pre-training through fine-tuning -- for Telugu (agglutinative), along with preliminary evaluation in Hindi (primarily fusional with some agglutination) and English (fusional). To evaluate morphological alignment of tokenizers in Telugu, we create a dataset containing gold morpheme segmentations of 600 derivational and 7000 inflectional word forms. Our experiments reveal two key findings for Telugu. First, the choice of tokenizer algorithm is the most significant factor influencing performance, with Unigram-based tokenizers consistently outperforming BPE across most settings. Second, while better morphological alignment shows a moderate, positive correlation with performance on text classification and structure prediction tasks, its impact is secondary to the tokenizer algorithm. Notably, hybrid approaches that use morphological information for pre-segmentation significantly boost the performance of BPE, though not Unigram. Our results further showcase the need for comprehensive intrinsic evaluation metrics for tokenizers that could explain downstream performance trends consistently.
♻ ☆ All Entities are Not Created Equal: Examining the Long Tail for Ultra-Fine Entity Typing
Due to their capacity to acquire world knowledge from large corpora, pre-trained language models (PLMs) are extensively used in ultra-fine entity typing tasks where the space of labels is extremely large. In this work, we explore the limitations of the knowledge acquired by PLMs by proposing a novel heuristic to approximate the pre-training distribution of entities when the pre-training data is unknown. Then, we systematically demonstrate that entity-typing approaches that rely solely on the parametric knowledge of PLMs struggle significantly with entities at the long tail of the pre-training distribution, and that knowledge-infused approaches can account for some of these shortcomings. Our findings suggest that we need to go beyond PLMs to produce solutions that perform well for infrequent entities.
♻ ☆ Evaluating the Ability of Large Language Models to Reason about Cardinal Directions, Revisited IJCAI
We investigate the abilities of 28 Large language Models (LLMs) to reason about cardinal directions (CDs) using a benchmark generated from a set of templates, extensively testing an LLM's ability to determine the correct CD given a particular scenario. The templates allow for a number of degrees of variation such as means of locomotion of the agent involved, and whether set in the first, second or third person. Even the newer Large Reasoning Models are unable to reliably determine the correct CD for all questions. This paper summarises and extends earlier work presented at COSIT-24.
comment: 8 pages, 5 figures. Accepted at QR 2025 : 38th International Workshop on Qualitative Reasoning at IJCAI. arXiv admin note: substantial text overlap with arXiv:2406.16528
♻ ☆ DeepDiver: Adaptive Search Intensity Scaling via Open-Web Reinforcement Learning NeurIPS 2025
Information seeking demands iterative evidence gathering and reflective reasoning, yet large language models (LLMs) still struggle with it in open-web question answering. Existing prompting and supervised fine-tuning (SFT) methods remain fixed by prompt rules or training corpora, and are usually benchmarked only on well-structured wiki sources, limiting real-world adaptability. We introduce WebPuzzle, a 24k-sample training and 275-sample test benchmark that evaluates information seeking on the live internet, across both wiki and open-domain queries. Leveraging 7k WebPuzzle instances, we develop DeepDiver, a reinforcement-learning (RL) framework that cultivates Search Intensity Scaling (SIS)-an emergent ability to escalate search frequency and depth instead of settling on overconfident, under-evidenced answers. With SIS, Qwen2.5-7B-Instruct and Pangu-7B-Reasoner attain performance on real-web tasks comparable to the 671B-parameter DeepSeek-R1. We detail DeepDiver's curriculum from cold-start SFT to a well designed RL procedure, and show that its seeking policy generalized from closed-ended queries to open-ended generation such as long-form writing. Our results advance adaptive information seeking in LLMs and provide a rigorous benchmark for future work.
comment: Accepted as NeurIPS 2025 Spotlight
♻ ☆ Shared Heritage, Distinct Writing: Rethinking Resource Selection for East Asian Historical Documents AACL 2025
Historical documents in the Sinosphere are known to share common formats and practices, particularly in veritable records compiled by court historians. This shared linguistic heritage has led researchers to use Classical Chinese resources for cross-lingual transfer when processing historical documents from Korea and Japan, which remain relatively low-resource. In this paper, we question the assumption of cross-lingual transferability from Classical Chinese to Hanja and Kanbun, the ancient written languages of Korea and Japan, respectively. Our experiments across machine translation, named entity recognition, and punctuation restoration tasks show minimal impact of Classical Chinese datasets on language model performance for ancient Korean documents written in Hanja, with performance differences within $\pm{}0.0068$ F1-score for sequence labeling tasks and up to $+0.84$ BLEU score for translation. These limitations persist consistently across various model sizes, architectures, and domain-specific datasets. Our analysis reveals that the benefits of Classical Chinese resources diminish rapidly as local language data increases for Hanja, while showing substantial improvements only in extremely low-resource scenarios for both Korean and Japanese historical documents. These findings emphasize the need for careful empirical validation rather than assuming benefits from indiscriminate cross-lingual transfer.
comment: IJCNLP-AACL 2025 Findings
♻ ☆ How Efficient Are Diffusion Language Models? A Critical Examination of Efficiency Evaluation Practices
Diffusion language models (DLMs) have emerged as a promising alternative to the long-dominant autoregressive (AR) paradigm, offering a parallelable decoding process that could yield greater efficiency. Yet, in practice, current open-source DLMs often underperform their AR counterparts in speed, limiting their real-world utility. This work presents a systematic study of DLM efficiency, identifying key issues in prior evaluation methods. Through empirical benchmarking and a theoretical analysis, we demonstrate that AR models generally achieve higher throughput, while DLMs consistently lag. We also investigate acceleration strategies, finding that techniques like dual cache and parallel decoding mainly offer gains at small batch sizes, with their benefits diminishing upon scaling. Our findings underscore the necessity of robust evaluation methods and improved acceleration strategies to advance research on DLMs.
♻ ☆ On the Consistency of Multilingual Context Utilization in Retrieval-Augmented Generation EMNLP 2025
Retrieval-augmented generation (RAG) with large language models (LLMs) has demonstrated strong performance in multilingual question-answering (QA) tasks by leveraging relevant passages retrieved from corpora. In multilingual RAG (mRAG), the retrieved passages can be written in languages other than that of the query entered by the user, making it challenging for LLMs to effectively utilize the provided information. Recent research suggests that retrieving passages from multilingual corpora can improve RAG performance, particularly for low-resource languages. However, the extent to which LLMs can leverage different kinds of multilingual contexts to generate accurate answers, *independently from retrieval quality*, remains understudied. In this paper, we conduct an extensive assessment of LLMs' ability to (i) make consistent use of a relevant passage regardless of its language, (ii) respond in the expected language, and (iii) focus on the relevant passage even when multiple `distracting' passages in different languages are provided in the context. Our experiments with four LLMs across three QA datasets covering a total of 48 languages reveal a surprising ability of LLMs to extract the relevant information from passages in a different language than the query, but a much weaker ability to formulate a full answer in the correct language. Our analysis, based on both accuracy and feature attribution techniques, further shows that distracting passages negatively impact answer quality regardless of their language. However, distractors in the query language exert a slightly stronger influence. Taken together, our findings deepen the understanding of how LLMs utilize context in mRAG systems, providing directions for future improvements.
comment: Best Paper Award at MRL Workshop 2025, colocated with EMNLP 2025. All codes and data are released at https://github.com/Betswish/mRAG-Context-Consistency
♻ ☆ Employing Sentence Space Embedding for Classification of Data Stream from Fake News Domain
Tabular data is considered the last unconquered castle of deep learning, yet the task of data stream classification is stated to be an equally important and demanding research area. Due to the temporal constraints, it is assumed that deep learning methods are not the optimal solution for application in this field. However, excluding the entire -- and prevalent -- group of methods seems rather rash given the progress that has been made in recent years in its development. For this reason, the following paper is the first to present an approach to natural language data stream classification using the sentence space method, which allows for encoding text into the form of a discrete digital signal. This allows the use of convolutional deep networks dedicated to image classification to solve the task of recognizing fake news based on text data. Based on the real-life Fakeddit dataset, the proposed approach was compared with state-of-the-art algorithms for data stream classification based on generalization ability and time complexity.
comment: 16 pages, 7 figures
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding has become a standard way to accelerate LLM inference: a small drafter proposes multiple tokens and a large target model verifies them once per speculation length. Recently, scaling of the LLM vocabulary has pushed the number of tokens to grow substantially. While verification over the full vocabulary leaves the target model largely unaffected, the O(|V|d) parameters in the drafter's output head become a latency bottleneck, slowing the entire pipeline. Contemporary methods (e.g., FR-Spec, VocabTrim) restrict the drafter's vocabulary to a fixed top frequent subset of the target model's vocabulary. Although this reduces draft-time compute, it is brittle, since: (i) frequency lists are corpus-dependent and require retuning to generalize, and (ii) static shortlists suppress rare or domain-specific tokens, lowering the expected number of tokens per verification step. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism that is robust, speeds up drafting, and generalizes across diverse tasks. Concretely, we introduce lightweight, coarse-grained meta-classifiers that route contexts to a small number of token clusters; the union of the top-k selected clusters forms the drafter's shortlist, while verification retains the full vocabulary and exactness. The meta-classifier finishes its computation earlier than the drafter's hidden state generation by exploiting parallel execution of draft encoding and meta shortlisting on separate streams. Across standard speculative decoding benchmarks, DynaSpec delivers consistent improvements in mean accepted length, for Llama-3-8B, reaching upto 98.2% of full-vocabulary performance, while fixed-shortlist baselines attain only 84.4%. By leveraging context-dependent selection, DynaSpec achieves up to a 2.18 times increase in generated tokens compared to 1.91 times for fixed-vocabulary approaches.
♻ ☆ Dissecting Long-Chain-of-Thought Reasoning Models: An Empirical Study
Despite recent progress in training long-chain-of-thought reasoning models via scaling reinforcement learning (RL), its underlying training dynamics remain poorly understood, and several counterintuitive behaviors persist. This work focuses on three key aspects: (1) We systematically analyze the roles of positive and negative samples in scaling RL, revealing that positive samples mainly facilitate precise fitting to the training data, whereas negative samples significantly enhance generalization and robustness. Interestingly, while positive samples are essential for convergence in the zero-RL setting, training on negative samples alone suffices to attain strong reasoning performance and even better generalization in cold-start scenarios. (2) We identify substantial data inefficiency in group relative policy optimization, where over half of the samples yield zero advantage. To address this, we explore two strategies, including relative length rewards and offline sample injection, to leverage these data better and enhance reasoning efficiency and capability. (3) We investigate unstable performance across various reasoning models and benchmarks, attributing instability to uncertain problems with ambiguous outcomes, and demonstrate that greedy decoding can distort evaluation by flipping the correctness of responses. Our code is available at: https://github.com/takagi97/Dissect-Long-Reason-Models.
comment: Working in process
♻ ☆ LegalEval-Q: A New Benchmark for The Quality Evaluation of LLM-Generated Legal Text
As large language models (LLMs) are increasingly used in legal applications, current evaluation benchmarks tend to focus mainly on factual accuracy while largely neglecting important linguistic quality aspects such as clarity, coherence, and terminology. To address this gap, we propose three steps: First, we develop a regression model to evaluate the quality of legal texts based on clarity, coherence, and terminology. Second, we create a specialized set of legal questions. Third, we analyze 49 LLMs using this evaluation framework. Our analysis identifies three key findings: First, model quality levels off at 14 billion parameters, with only a marginal improvement of $2.7\%$ noted at 72 billion parameters. Second, engineering choices such as quantization and context length have a negligible impact, as indicated by statistical significance thresholds above 0.016. Third, reasoning models consistently outperform base architectures. A significant outcome of our research is the release of a ranking list and Pareto analysis, which highlight the Qwen3 series as the optimal choice for cost-performance tradeoffs. This work not only establishes standardized evaluation protocols for legal LLMs but also uncovers fundamental limitations in current training data refinement approaches. Code and models are available at: https://github.com/lyxx3rd/LegalEval-Q.
comment: 10 pages, 11 figures
♻ ☆ Evaluating Test-Time Scaling LLMs for Legal Reasoning: OpenAI o1, DeepSeek-R1, and Beyond EMNLP 2025
Recent advances in test-time scaling of large language models (LLMs), exemplified by DeepSeek-R1 and OpenAI's o1, show that extending the chain of thought during inference can significantly improve general reasoning performance. However, the impact of this paradigm on legal reasoning remains insufficiently explored. To address this gap, we present the first systematic evaluation of 12 LLMs, including both reasoning-focused and general-purpose models, across 17 Chinese and English legal tasks spanning statutory and case-law traditions. In addition, we curate a bilingual chain-of-thought dataset for legal reasoning through distillation from DeepSeek-R1 and develop Legal-R1, an open-source model specialized for the legal domain. Experimental results show that Legal-R1 delivers competitive performance across diverse tasks. DeepSeek-R1 exhibits clear advantages in Chinese legal reasoning, while OpenAI's o1 achieves comparable results on English tasks. We further conduct a detailed error analysis, which reveals recurring issues such as outdated legal knowledge, limited capacity for legal interpretation, and susceptibility to factual hallucinations. These findings delineate the main obstacles confronting legal-domain LLMs and suggest promising directions for future research.
comment: 23 pages, Published in Findings of the Association for Computational Linguistics: EMNLP 2025
♻ ☆ Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training
Network pruning focuses on algorithms that aim to reduce a given model's computational cost by removing a subset of its parameters while having minimal impact on performance. Throughout the last decade, the most widely used pruning paradigm has been pruning and re-training, which nowadays is inconvenient due to the vast amount of pre-trained models, which are, in any case, too expensive to re-train. In this paper, we exploit functional information from dense pre-trained models, i.e., their input activations, to obtain sparse models that maximize the activations' alignment with respect to their corresponding dense models. Hence, we propose \textbf{NeuroAl}, a \emph{top-up} algorithm that can be used on top of any given pruning algorithm for LLMs, which modifies the block-wise and row-wise sparsity, exploiting information from both the dense model and its sparse version to maximize the \emph{neuron alignment} among activations. Different from existing methods, our approach adaptively selects the best hyperparameters for the block-wise and row-wise sparsity ratios w.r.t. the model and the desired sparsity, and requires \emph{no re-training}. We test our method over $\sim$300 test cases with four LLM families, three sparsity ratios, and ten language tasks (three language modeling and seven zero-shot datasets), showing how it consistently outperforms the latest state-of-the-art methods in terms of performance-runtime trade-off. The code is available at \href{https://github.com/eliacunegatti/NeuroAL}{https://github.com/eliacunegatti/NeuroAL}.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ BEE-RAG: Balanced Entropy Engineering for Retrieval-Augmented Generation
With the rapid advancement of large language models (LLMs), retrieval-augmented generation (RAG) has emerged as a critical approach to supplement the inherent knowledge limitations of LLMs. However, due to the typically large volume of retrieved information, RAG tends to operate with long context lengths. From the perspective of entropy engineering, we identify unconstrained entropy growth and attention dilution due to long retrieval context as significant factors affecting RAG performance. In this paper, we propose the balanced entropy-engineered RAG (BEE-RAG) framework, which improves the adaptability of RAG systems to varying context lengths through the principle of entropy invariance. By leveraging balanced context entropy to reformulate attention dynamics, BEE-RAG separates attention sensitivity from context length, ensuring a stable entropy level. Building upon this, we introduce a zero-shot inference strategy for multi-importance estimation and a parameter-efficient adaptive fine-tuning mechanism to obtain the optimal balancing factor for different settings. Extensive experiments across multiple RAG tasks demonstrate the effectiveness of BEE-RAG.
♻ ☆ ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning AAAI 2026
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and its high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods could fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition on reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global context comprehension, offering a principled, cognitively motivated paradigm towards retrieval-based stateful reasoning. Our framework is made publicly available at https://github.com/EternityJune25/ComoRAG.
comment: Accepted by AAAI 2026
♻ ☆ UnsafeChain: Enhancing Reasoning Model Safety via Hard Cases
As large reasoning models (LRMs) grow more capable, chain-of-thought (CoT) reasoning introduces new safety challenges. Existing SFT-based safety alignment studies dominantly focused on filtering prompts with safe, high-quality responses, while overlooking hard prompts that always elicit harmful outputs. To fill this gap, we introduce UnsafeChain, a safety alignment dataset constructed from hard prompts with diverse sources, where unsafe completions are identified and explicitly corrected into safe responses. By exposing models to unsafe behaviors and guiding their correction, UnsafeChain enhances safety while preserving general reasoning ability. We fine-tune three LRMs on UnsafeChain and compare them against recent SafeChain and STAR-1 across six out-of-distribution and five in-distribution benchmarks. UnsafeChain consistently outperforms prior datasets, with even a 1K subset matching or surpassing baseline performance, demonstrating the effectiveness and generalizability of correction-based supervision. We release our dataset and code at https://github.com/mbzuai-nlp/UnsafeChain
♻ ☆ How Does a Deep Neural Network Look at Lexical Stress?
Despite their success in speech processing, neural networks often operate as black boxes, prompting the question: what informs their decisions, and how can we interpret them? This work examines this issue in the context of lexical stress. A dataset of English disyllabic words was automatically constructed from read and spontaneous speech. Several Convolutional Neural Network (CNN) architectures were trained to predict stress position from a spectrographic representation of disyllabic words lacking minimal stress pairs (e.g., initial stress WAllet, final stress exTEND), achieving up to 92% accuracy on held-out test data. Layerwise Relevance Propagation (LRP), a technique for CNN interpretability analysis, revealed that predictions for held-out minimal pairs (PROtest vs. proTEST ) were most strongly influenced by information in stressed versus unstressed syllables, particularly the spectral properties of stressed vowels. However, the classifiers also attended to information throughout the word. A feature-specific relevance analysis is proposed, and its results suggest that our best-performing classifier is strongly influenced by the stressed vowel's first and second formants, with some evidence that its pitch and third formant also contribute. These results reveal deep learning's ability to acquire distributed cues to stress from naturally occurring data, extending traditional phonetic work based around highly controlled stimuli.
comment: 11 pages, 5 figures, submitted to the Journal of the Acoustical Society of America (JASA)
♻ ☆ Pralekha: Cross-Lingual Document Alignment for Indic Languages
Mining parallel document pairs for document-level machine translation (MT) remains challenging due to the limitations of existing Cross-Lingual Document Alignment (CLDA) techniques. Existing methods often rely on metadata such as URLs, which are scarce, or on pooled document representations that fail to capture fine-grained alignment cues. Moreover, the limited context window of sentence embedding models hinders their ability to represent document-level context, while sentence-based alignment introduces a combinatorially large search space, leading to high computational cost. To address these challenges for Indic languages, we introduce Pralekha, a benchmark containing over 3 million aligned document pairs across 11 Indic languages and English, which includes 1.5 million English-Indic pairs. Furthermore, we propose Document Alignment Coefficient (DAC), a novel metric for fine-grained document alignment. Unlike pooling-based methods, DAC aligns documents by matching smaller chunks and computes similarity as the ratio of aligned chunks to the average number of chunks in a pair. Intrinsic evaluation shows that our chunk-based method is 2-3x faster while maintaining competitive performance, and that DAC achieves substantial gains over pooling-based baselines. Extrinsic evaluation further demonstrates that document-level MT models trained on DAC-aligned pairs consistently outperform those using baseline alignment methods. These results highlight DAC's effectiveness for parallel document mining. The dataset and evaluation framework are publicly available to support further research.
♻ ☆ Compositional Phoneme Approximation for L1-Grounded L2 Pronunciation Training AACL 2025
Learners of a second language (L2) often map non-native phonemes to similar native-language (L1) phonemes, making conventional L2-focused training slow and effortful. To address this, we propose an L1-grounded pronunciation training method based on compositional phoneme approximation (CPA), a feature-based representation technique that approximates L2 sounds with sequences of L1 phonemes. Evaluations with 20 Korean non-native English speakers show that CPA-based training achieves a 76% in-box formant rate in acoustic analysis, 17.6% relative improvement in phoneme recognition accuracy, and over 80% of speech being rated as more native-like, with minimal training. Project page: https://gsanpark.github.io/CPA-Pronunciation.
comment: Accepted to IJCNLP-AACL 2025
♻ ☆ LLMCARE: early detection of cognitive impairment via transformer models enhanced by LLM-generated synthetic data
Alzheimer's disease and related dementias(ADRD) affect nearly five million older adults in the United States, yet more than half remain undiagnosed. Speech-based natural language processing(NLP) offers a scalable approach for detecting early cognitive decline through subtle linguistic markers that may precede clinical diagnosis. This study develops and evaluates a speech-based screening pipeline integrating transformer embeddings with handcrafted linguistic features, synthetic augmentation using large language models(LLMs), and benchmarking of unimodal and multimodal classifiers. External validation assessed generalizability to a MCI-only cohort. Transcripts were drawn from the ADReSSo 2021 benchmark dataset(n=237, Pitt Corpus) and the DementiaBank Delaware corpus(n=205, MCI vs. controls). Ten transformer models were tested under three fine-tuning strategies. A late-fusion model combined embeddings from the top transformer with 110 linguistic features. Five LLMs(LLaMA8B/70B, MedAlpaca7B, Ministral8B,GPT-4o) generated label-conditioned synthetic speech for augmentation, and three multimodal LLMs(GPT-4o,Qwen-Omni,Phi-4) were evaluated in zero-shot and fine-tuned modes. On ADReSSo, the fusion model achieved F1=83.3(AUC=89.5), outperforming transformer-only and linguistic baselines. MedAlpaca7B augmentation(2x) improved F1=85.7, though larger scales reduced gains. Fine-tuning boosted unimodal LLMs(MedAlpaca7B F1=47.7=>78.7), while multimodal models performed lower (Phi-4=71.6;GPT-4o=67.6). On Delaware, the fusion plus 1x MedAlpaca7B model achieved F1=72.8(AUC=69.6). Integrating transformer and linguistic features enhances ADRD detection. LLM-based augmentation improves data efficiency but yields diminishing returns, while current multimodal models remain limited. Validation on an independent MCI cohort supports the pipeline's potential for scalable, clinically relevant early screening.
♻ ☆ LLM Teacher-Student Framework for Text Classification With No Manually Annotated Data: A Case Study in IPTC News Topic Classification
With the ever-increasing number of news stories available online, classifying them by topic, regardless of the language they are written in, has become crucial for enhancing readers' access to relevant content. To address this challenge, we propose a teacher-student framework based on large language models (LLMs) for developing multilingual news topic classification models of reasonable size with no need for manual data annotation. The framework employs a Generative Pretrained Transformer (GPT) model as the teacher model to develop a news topic training dataset through automatic annotation of 20,000 news articles in Slovenian, Croatian, Greek, and Catalan. Articles are classified into 17 main categories from the Media Topic schema, developed by the International Press Telecommunications Council (IPTC). The teacher model exhibits high zero-shot performance in all four languages. Its agreement with human annotators is comparable to that between the human annotators themselves. To mitigate the computational limitations associated with the requirement of processing millions of texts daily, smaller BERT-like student models are fine-tuned on the GPT-annotated dataset. These student models achieve high performance comparable to the teacher model. Furthermore, we explore the impact of the training data size on the performance of the student models and investigate their monolingual, multilingual, and zero-shot cross-lingual capabilities. The findings indicate that student models can achieve high performance with a relatively small number of training instances, and demonstrate strong zero-shot cross-lingual abilities. Finally, we publish the best-performing news topic classifier, enabling multilingual classification with the top-level categories of the IPTC Media Topic schema.
comment: This work has been accepted and published in the IEEE Access journal. This arXiv version is retained for archival purposes. Readers should use and cite the IEEE Access Version available at https://ieeexplore.ieee.org/document/10900365
♻ ☆ DrKGC: Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion across General and Biomedical Domains EMNLP 2025
Knowledge graph completion (KGC) aims to predict missing triples in knowledge graphs (KGs) by leveraging existing triples and textual information. Recently, generative large language models (LLMs) have been increasingly employed for graph tasks. However, current approaches typically encode graph context in textual form, which fails to fully exploit the potential of LLMs for perceiving and reasoning about graph structures. To address this limitation, we propose DrKGC (Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion). DrKGC employs a flexible lightweight model training strategy to learn structural embeddings and logical rules within the KG. It then leverages a novel bottom-up graph retrieval method to extract a subgraph for each query guided by the learned rules. Finally, a graph convolutional network (GCN) adapter uses the retrieved subgraph to enhance the structural embeddings, which are then integrated into the prompt for effective LLM fine-tuning. Experimental results on two general domain benchmark datasets and two biomedical datasets demonstrate the superior performance of DrKGC. Furthermore, a realistic case study in the biomedical domain highlights its interpretability and practical utility.
comment: Accepted at EMNLP 2025 Findings
♻ ☆ Skill Path: Unveiling Language Skills from Circuit Graphs AAAI 2026
Circuit graph discovery has emerged as a fundamental approach to elucidating the skill mechanistic of language models. Despite the output faithfulness of circuit graphs, they suffer from atomic ablation, which causes the loss of causal dependencies between connected components. In addition, their discovery process, designed to preserve output faithfulness, inadvertently captures extraneous effects other than an isolated target skill. To alleviate these challenges, we introduce skill paths, which offers a more refined and compact representation by isolating individual skills within a linear chain of components. To enable skill path extracting from circuit graphs, we propose a three-step framework, consisting of decomposition, pruning, and post-pruning causal mediation. In particular, we offer a complete linear decomposition of the transformer model which leads to a disentangled computation graph. After pruning, we further adopt causal analysis techniques, including counterfactuals and interventions, to extract the final skill paths from the circuit graph. To underscore the significance of skill paths, we investigate three generic language skills-Previous Token Skill, Induction Skill, and In-Context Learning Skill-using our framework. Experiments support two crucial properties of these skills, namely stratification and inclusiveness.
comment: accepted by AAAI 2026 (oral)
♻ ☆ Verifiable Fine-Tuning for LLMs: Zero-Knowledge Training Proofs Bound to Data Provenance and Policy
Large language models are often adapted through parameter efficient fine tuning, but current release practices provide weak assurances about what data were used and how updates were computed. We present Verifiable Fine Tuning, a protocol and system that produces succinct zero knowledge proofs that a released model was obtained from a public initialization under a declared training program and an auditable dataset commitment. The approach combines five elements. First, commitments that bind data sources, preprocessing, licenses, and per epoch quota counters to a manifest. Second, a verifiable sampler that supports public replayable and private index hiding batch selection. Third, update circuits restricted to parameter efficient fine tuning that enforce AdamW style optimizer semantics and proof friendly approximations with explicit error budgets. Fourth, recursive aggregation that folds per step proofs into per epoch and end to end certificates with millisecond verification. Fifth, provenance binding and optional trusted execution property cards that attest code identity and constants. On English and bilingual instruction mixtures, the method maintains utility within tight budgets while achieving practical proof performance. Policy quotas are enforced with zero violations, and private sampling windows show no measurable index leakage. Federated experiments demonstrate that the system composes with probabilistic audits and bandwidth constraints. These results indicate that end to end verifiable fine tuning is feasible today for real parameter efficient pipelines, closing a critical trust gap for regulated and decentralized deployments.
comment: 20 pages, 10 figures
♻ ☆ SageLM: A Multi-aspect and Explainable Large Language Model for Speech Judgement
Speech-to-Speech (S2S) Large Language Models (LLMs) are foundational to natural human-computer interaction, enabling end-to-end spoken dialogue systems. However, evaluating these models remains a fundamental challenge. We propose \texttt{SageLM}, an end-to-end, multi-aspect, and explainable speech LLM for comprehensive S2S LLMs evaluation. First, unlike cascaded approaches that disregard acoustic features, SageLM jointly assesses both semantic and acoustic dimensions. Second, it leverages rationale-based supervision to enhance explainability and guide model learning, achieving superior alignment with evaluation outcomes compared to rule-based reinforcement learning methods. Third, we introduce \textit{SpeechFeedback}, a synthetic preference dataset, and employ a two-stage training paradigm to mitigate the scarcity of speech preference data. Trained on both semantic and acoustic dimensions, SageLM achieves an 82.79\% agreement rate with human evaluators, outperforming cascaded and SLM-based baselines by at least 7.42\% and 26.20\%, respectively.
♻ ☆ BLADE: Benchmarking Language Model Agents for Data-Driven Science EMNLP 2024
Data-driven scientific discovery requires the iterative integration of scientific domain knowledge, statistical expertise, and an understanding of data semantics to make nuanced analytical decisions, e.g., about which variables, transformations, and statistical models to consider. LM-based agents equipped with planning, memory, and code execution capabilities have the potential to support data-driven science. However, evaluating agents on such open-ended tasks is challenging due to multiple valid approaches, partially correct steps, and different ways to express the same decisions. To address these challenges, we present BLADE, a benchmark to automatically evaluate agents' multifaceted approaches to open-ended research questions. BLADE consists of 12 datasets and research questions drawn from existing scientific literature, with ground truth collected from independent analyses by expert data scientists and researchers. To automatically evaluate agent responses, we developed corresponding computational methods to match different representations of analyses to this ground truth. Though language models possess considerable world knowledge, our evaluation shows that they are often limited to basic analyses. However, agents capable of interacting with the underlying data demonstrate improved, but still non-optimal, diversity in their analytical decision making. Our work enables the evaluation of agents for data-driven science and provides researchers deeper insights into agents' analysis approaches.
comment: EMNLP 2024
♻ ☆ Continual Pre-training of MoEs: How robust is your router?
Sparsely-activated Mixture of Experts (MoE) transformers are promising architectures for foundation models. Compared to dense transformers that require the same amount of floating-point operations (FLOPs) per forward pass, MoEs benefit from improved sample efficiency at training time and achieve much stronger performance. Many closed-source and open-source frontier language models have thus adopted an MoE architecture. Naturally, practitioners will want to extend the capabilities of these models with large amounts of newly collected data without completely re-training them. Prior work has shown that a simple combination of replay, learning rate re-warming, and re-decaying can enable the continual pre-training (CPT) of dense decoder-only transformers with minimal performance degradation compared to full re-training. In the case of decoder-only MoE transformers, however, it is unclear how the routing algorithm will impact continual pre-training performance: 1) do the MoE transformer's routers exacerbate forgetting relative to a dense model?; 2) do the routers maintain a balanced load on previous distributions after CPT?; 3) are the same strategies applied to dense models sufficient to continually pre-train MoE LLMs? In what follows, we conduct a large-scale study training a 500M parameter dense transformer and four 500M-active/2B-total parameter MoE transformers. Each model is trained for 600B tokens. Our results establish a surprising robustness to distribution shifts for MoEs using both Sinkhorn-Balanced and Z-and-Aux-loss-balanced routing algorithms, even in MoEs continually pre-trained without replay. Moreover, we show that MoE LLMs maintain their sample efficiency (relative to a FLOP-matched dense model) during CPT and that they can match the performance of a fully re-trained MoE at a fraction of the cost.
♻ ☆ RareAgents: Autonomous Multi-disciplinary Team for Rare Disease Diagnosis and Treatment AAAI2026
Rare diseases, despite their low individual incidence, collectively impact around 300 million people worldwide due to the vast number of diseases. The involvement of multiple organs and systems, and the shortage of specialized doctors with relevant experience, make diagnosing and treating rare diseases more challenging than common diseases. Recently, agents powered by large language models (LLMs) have demonstrated notable applications across various domains. In the medical field, some agent methods have outperformed direct prompts in question-answering tasks from medical examinations. However, current agent frameworks are not well-adapted to real-world clinical scenarios, especially those involving the complex demands of rare diseases. To bridge this gap, we introduce RareAgents, the first LLM-driven multi-disciplinary team decision-support tool designed specifically for the complex clinical context of rare diseases. RareAgents integrates advanced Multidisciplinary Team (MDT) coordination, memory mechanisms, and medical tools utilization, leveraging Llama-3.1-8B/70B as the base model. Experimental results show that RareAgents outperforms state-of-the-art domain-specific models, GPT-4o, and current agent frameworks in diagnosis and treatment for rare diseases. Furthermore, we contribute a novel rare disease dataset, MIMIC-IV-Ext-Rare, to facilitate further research in this field.
comment: AAAI2026 Oral
♻ ☆ Likelihood-based Mitigation of Evaluation Bias in Large Language Models
Large Language Models (LLMs) are widely used to evaluate natural language generation tasks as automated metrics. However, the likelihood, a measure of LLM's plausibility for a sentence, can vary due to superficial differences in sentences, such as word order and sentence structure. It is therefore possible that there might be a likelihood bias if LLMs are used for evaluation: they might overrate sentences with higher likelihoods while underrating those with lower likelihoods. In this paper, we investigate the presence and impact of likelihood bias in LLM-based evaluators. We also propose a method to mitigate the likelihood bias. Our method utilizes highly biased instances as few-shot examples for in-context learning. Our experiments in evaluating the data-to-text and grammatical error correction tasks reveal that several LLMs we test display a likelihood bias. Furthermore, our proposed method successfully mitigates this bias, also improving evaluation performance (in terms of correlation of models with human scores) significantly.
comment: 5 main pages
♻ ☆ SDS KoPub VDR: A Benchmark Dataset for Visual Document Retrieval in Korean Public Documents
Existing benchmarks for visual document retrieval (VDR) largely overlook non-English languages and the structural complexity of official publications. To address this gap, we introduce SDS KoPub VDR, the first large-scale, public benchmark for retrieving and understanding Korean public documents. The benchmark is built upon 361 real-world documents, including 256 files under the KOGL Type 1 license and 105 from official legal portals, capturing complex visual elements like tables, charts, and multi-column layouts. To establish a reliable evaluation set, we constructed 600 query-page-answer triples. These were initially generated using multimodal models (e.g., GPT-4o) and subsequently underwent human verification to ensure factual accuracy and contextual relevance. The queries span six major public domains and are categorized by the reasoning modality required: text-based, visual-based, and cross-modal. We evaluate SDS KoPub VDR on two complementary tasks: (1) text-only retrieval and (2) multimodal retrieval, which leverages visual features alongside text. This dual-task evaluation reveals substantial performance gaps, particularly in multimodal scenarios requiring cross-modal reasoning, even for state-of-the-art models. As a foundational resource, SDS KoPub VDR enables rigorous and fine-grained evaluation and provides a roadmap for advancing multimodal AI in real-world document intelligence. The dataset is available at https://huggingface.co/datasets/SamsungSDS-Research/SDS-KoPub-VDR-Benchmark.
comment: 27 pages, 15 figures, 6 tables
♻ ☆ SEAGraph: Unveiling the Whole Story of Paper Review Comments
Peer review, as a cornerstone of scientific research, ensures the integrity and quality of scholarly work by providing authors with objective feedback for refinement. However, in the traditional peer review process, authors often receive vague or insufficiently detailed feedback, which provides limited assistance and leads to a more time-consuming review cycle. If authors can identify some specific weaknesses in their paper, they can not only address the reviewer's concerns but also improve their work. This raises the critical question of how to enhance authors' comprehension of review comments. In this paper, we present SEAGraph, a novel framework developed to clarify review comments by uncovering the underlying intentions behind them. We construct two types of graphs for each paper: the semantic mind graph, which captures the authors' thought process, and the hierarchical background graph, which delineates the research domains related to the paper. A retrieval method is then designed to extract relevant content from both graphs, facilitating coherent explanations for the review comments. Extensive experiments show that SEAGraph excels in review comment understanding tasks, offering significant benefits to authors. By bridging the gap between reviewers' critiques and authors' comprehension, SEAGraph contributes to a more efficient, transparent and collaborative scientific publishing ecosystem.
♻ ☆ Atomic Consistency Preference Optimization for Long-Form Question Answering
Large Language Models (LLMs) often produce factoid hallucinations - plausible yet incorrect answers. A common mitigation strategy is model alignment, which improves factual accuracy by training on curated (factual, non-factual) pairs. However, this approach often relies on a stronger model (e.g., GPT-4) or an external knowledge base to assess factual correctness that may not always be accessible. Addressing this, we propose Atomic Consistency Preference Optimization (ACPO), a self-supervised preference-tuning method that enhances factual accuracy without external supervision. ACPO leverages atomic consistency signals (i.e., the agreement of individual facts across multiple stochastic responses) to identify high- and low-quality data pairs for model alignment. Despite being fully self-supervised, ACPO outperforms the strong supervised alignment baseline by 1.95 points averaged across Phi-3 and Llama3 on the LongFact and BioGen datasets, demonstrating its effectiveness in improving factual reliability without relying on external models or knowledge bases.
comment: 13 pages, 1 figure
♻ ☆ multiMentalRoBERTa: A Fine-tuned Multiclass Classifier for Mental Health Disorder
The early detection of mental health disorders from social media text is critical for enabling timely support, risk assessment, and referral to appropriate resources. This work introduces multiMentalRoBERTa, a fine-tuned RoBERTa model designed for multiclass classification of common mental health conditions, including stress, anxiety, depression, post-traumatic stress disorder (PTSD), suicidal ideation, and neutral discourse. Drawing on multiple curated datasets, data exploration is conducted to analyze class overlaps, revealing strong correlations between depression and suicidal ideation as well as anxiety and PTSD, while stress emerges as a broad, overlapping category. Comparative experiments with traditional machine learning methods, domain-specific transformers, and prompting-based large language models demonstrate that multiMentalRoBERTa achieves superior performance, with macro F1-scores of 0.839 in the six-class setup and 0.870 in the five-class setup (excluding stress), outperforming both fine-tuned MentalBERT and baseline classifiers. Beyond predictive accuracy, explainability methods, including Layer Integrated Gradients and KeyBERT, are applied to identify lexical cues that drive classification, with a particular focus on distinguishing depression from suicidal ideation. The findings emphasize the effectiveness of fine-tuned transformers for reliable and interpretable detection in sensitive contexts, while also underscoring the importance of fairness, bias mitigation, and human-in-the-loop safety protocols. Overall, multiMentalRoBERTa is presented as a lightweight, robust, and deployable solution for enhancing support in mental health platforms.
comment: Accepted in IEEE Big Data, 8-11 December, 2025 @ Macau SAR, China
♻ ☆ Rethinking Text-based Protein Understanding: Retrieval or LLM? EMNLP 2025
In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at https://github.com/IDEA-XL/RAPM.
comment: Accepted by Empirical Methods in Natural Language Processing 2025 (EMNLP 2025) Main Conference
♻ ☆ Reasoning Planning for Language Models
Selecting an appropriate reasoning method for a given query remains a key challenge in language model generation. Existing approaches typically generate multiple candidate responses and use an aggregation strategy to select the output answer, often assuming that more candidate answers yield higher accuracy. We revisit this assumption through a rigorous theoretical analysis, deriving accuracy bounds for standard aggregation methods under fixed generation distributions and candidate sizes. Building on these insights, we introduce EPIC, an Ensemble Planning with Contrastive learning framework to learn a shared representation space that captures both model reasoning abilities and query-method compatibility. EPIC incorporates our probability bounds as a regularizer in a utility-driven optimization that balances accuracy and computational cost. Experiments on diverse mathematical reasoning tasks show that EPIC consistently selects optimal reasoning methods, improving accuracy while reducing computational overhead. Our code can be found at https://github.com/nguyenngocbaocmt02/EPIC.
comment: 27 pages, 5 figures
♻ ☆ The Markovian Thinker
Reinforcement learning (RL) has recently become a strong recipe for training reasoning LLMs that produce long chains of thought (LongCoT). Yet the standard RL "thinking environment", where the state is the prompt plus all prior reasoning tokens, makes the state unbounded and forces attention-based policies to pay quadratic compute as thoughts lengthen. We revisit the environment itself. We propose Markovian Thinking, a paradigm in which the policy advances reasoning while conditioning on a constant-size state, decoupling thinking length from context size. As an immediate consequence this yields linear compute with constant memory. We instantiate this idea with Delethink, an RL environment that structures reasoning into fixed-size chunks. Within each chunk, the model thinks as usual; at the boundary, the environment resets the context and reinitializes the prompt with a short carryover. Through RL, the policy learns to write a textual state near the end of each chunk sufficient for seamless continuation of reasoning after reset. Trained in this environment, an R1-Distill 1.5B model reasons in 8K-token chunks yet thinks up to 24K tokens, matching or surpassing LongCoT-RL trained with a 24K budget. With test-time scaling, Delethink continues to improve where LongCoT plateaus. The effect of linear compute is substantial: we empirically estimate at 96K average thinking length LongCoT-RL costs 27 H100-months vs. 7 for Delethink. Analysis at RL initialization shows off-the-shelf reasoning models (1.5B-120B) often sample Markovian traces zero-shot across diverse benchmarks, providing positive samples that make RL effective at scale. Our results show that redesigning the thinking environment is a powerful lever: it enables very long reasoning without quadratic overhead and opens a path toward efficient, scalable reasoning LLMs.
♻ ☆ Mufu: Multilingual Fused Learning for Low-Resource Translation with LLM
Multilingual large language models (LLMs) are great translators, but this is largely limited to high-resource languages. For many LLMs, translating in and out of low-resource languages remains a challenging task. To maximize data efficiency in this low-resource setting, we introduce Mufu, which includes a selection of automatically generated multilingual candidates and an instruction to correct inaccurate translations in the prompt. Mufu prompts turn a translation task into a postediting one, and seek to harness the LLM's reasoning capability with auxiliary translation candidates, from which the model is required to assess the input quality, align the semantics cross-lingually, copy from relevant inputs and override instances that are incorrect. Our experiments on En-XX translations over the Flores-200 dataset show LLMs finetuned against Mufu-style prompts are robust to poor quality auxiliary translation candidates, achieving performance superior to NLLB 1.3B distilled model in 64% of low- and very-low-resource language pairs. We then distill these models to reduce inference cost, while maintaining on average 3.1 chrF improvement over finetune-only baseline in low-resource translations.
comment: 29 pages
♻ ☆ R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs AACL 2025
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks still suffer two practical drawbacks: they must be re-tuned whenever the KG or reasoning task changes, and they depend on a single, high-capacity LLM for reliable (i.e., trustworthy) reasoning. To address this, we introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across five diverse benchmarks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability with reduced inference cost but increased abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning, reducing reliance on high-capacity LLMs while ensuring trustworthy inference. The code is available at https://github.com/ekrxjwh2009/R2-KG/.
comment: Accepted to IJCNLP-AACL 2025 Findings
♻ ☆ EMNLP: Educator-role Moral and Normative Large Language Models Profiling EMNLP
Simulating Professions (SP) enables Large Language Models (LLMs) to emulate professional roles. However, comprehensive psychological and ethical evaluation in these contexts remains lacking. This paper introduces EMNLP, an Educator-role Moral and Normative LLMs Profiling framework for personality profiling, moral development stage measurement, and ethical risk under soft prompt injection. EMNLP extends existing scales and constructs 88 teacher-specific moral dilemmas, enabling profession-oriented comparison with human teachers. A targeted soft prompt injection set evaluates compliance and vulnerability in teacher SP. Experiments on 14 LLMs show teacher-role LLMs exhibit more idealized and polarized personalities than human teachers, excel in abstract moral reasoning, but struggle with emotionally complex situations. Models with stronger reasoning are more vulnerable to harmful prompt injection, revealing a paradox between capability and safety. The model temperature and other hyperparameters have limited influence except in some risk behaviors. This paper presents the first benchmark to assess ethical and psychological alignment of teacher-role LLMs for educational AI. Resources are available at https://e-m-n-l-p.github.io/.
comment: 29pages, 15 figures, Accepted by EMNLP Main Confrence
♻ ☆ Understanding Forgetting in LLM Supervised Fine-Tuning and Preference Learning - A Convex Optimization Perspective
The post-training of LLMs, which typically consists of the supervised fine-tuning (SFT) stage and the preference learning stage (RLHF or DPO), is crucial to effective and safe LLM applications. The widely adopted approach in post-training popular open-source LLMs is to sequentially perform SFT and RLHF/DPO. However, this is suboptimal in terms of SFT and RLHF/DPO trade-off: the LLM gradually forgets about the first stage's training when undergoing the second stage's training. This sequential paradigm persists largely due to its simplicity and modularity, which make it easier to implement and manage at scale despite its limitations. We theoretically prove the sub-optimality of sequential post-training and propose a practical joint post-training framework which has theoretical convergence guarantees and empirically outperforms sequential post-training framework, with up to 23% overall performance improvement across multiple LLM evaluation benchmarks, while having minimal computational overhead. Our code is available at https://github.com/heshandevaka/XRIGHT.
♻ ☆ Retrieval-Augmented Feature Generation for Domain-Specific Classification
Feature generation can significantly enhance learning outcomes, particularly for tasks with limited data. An effective way to improve feature generation is to expand the current feature space using existing features and enriching the informational content. However, generating new, interpretable features usually requires domain-specific knowledge on top of the existing features. In this paper, we introduce a Retrieval-Augmented Feature Generation method, RAFG, to generate useful and explainable features specific to domain classification tasks. To increase the interpretability of the generated features, we conduct knowledge retrieval among the existing features in the domain to identify potential feature associations. These associations are expected to help generate useful features. Moreover, we develop a framework based on large language models (LLMs) for feature generation with reasoning to verify the quality of the features during their generation process. Experiments across several datasets in medical, economic, and geographic domains show that our RAFG method can produce high-quality, meaningful features and significantly improve classification performance compared with baseline methods.
comment: Accepted by ICDM 2025
♻ ☆ EditGRPO: Reinforcement Learning with Post-Rollout Edits for Clinically Accurate Chest X-Ray Report Generation AACL 2025
Radiology report generation requires advanced medical image analysis, effective temporal reasoning, and accurate text generation. Although recent innovations, particularly multimodal large language models, have shown improved performance, their supervised fine-tuning (SFT) objective is not explicitly aligned with clinical efficacy. In this work, we introduce EditGRPO, a mixed-policy reinforcement learning algorithm designed specifically to optimize the generation through clinically motivated rewards. EditGRPO integrates on-policy exploration with off-policy guidance by injecting sentence-level detailed corrections during training rollouts. This mixed-policy approach addresses the exploration dilemma and sampling efficiency issues typically encountered in RL. Applied to a Qwen2.5-VL-3B, EditGRPO outperforms both SFT and vanilla GRPO baselines, achieving an average improvement of 3.4\% in clinical metrics across four major datasets. Notably, EditGRPO also demonstrates superior out-of-domain generalization, with an average performance gain of 5.9\% on unseen datasets.
comment: AACL 2025
♻ ☆ Minimal and Mechanistic Conditions for Behavioral Self-Awareness in LLMs
Recent studies have revealed that LLMs can exhibit behavioral self-awareness: the ability to accurately describe or predict their own learned behaviors without explicit supervision. This capability raises safety concerns as it may, for example, allow models to better conceal their true abilities during evaluation. We attempt to characterize the minimal conditions under which such self-awareness emerges, and the mechanistic processes through which it manifests. Through controlled finetuning experiments on instruction-tuned LLMs with low-rank adapters (LoRA), we find: (1) that self-awareness can be reliably induced using a single rank-1 LoRA adapter; (2) that the learned self-aware behavior can be largely captured by a single steering vector in activation space, recovering nearly all of the fine-tune's behavioral effect; and (3) that self-awareness is non-universal and domain-localized, with independent representations across tasks. Together, these findings suggest that behavioral self-awareness emerges as a domain-specific, linear feature that can be easily induced and modulated.
♻ ☆ KVLink: Accelerating Large Language Models via Efficient KV Cache Reuse
We describe KVLink, an approach for efficient key-value (KV) cache reuse in large language models (LLMs). In many LLM applications, different inputs can share overlapping context, such as the same retrieved document appearing in multiple queries. However, the LLMs still need to encode the entire context for each query, leading to redundant computation. In this paper, we investigate a new strategy to eliminate such inefficiency, where the KV cache of each document is precomputed independently. During inference, the KV caches of retrieved documents are concatenated, allowing the model to reuse cached representations instead of recomputing them. To mitigate the performance degradation when using KV caches computed independently for each document, KVLink introduces two key techniques: adjusting positional embeddings of the KV cache at inference to match the global position after concatenation, and using trainable special tokens to restore self-attention across independently encoded documents. Experiments across 7 datasets demonstrate that KVLink improves question answering accuracy by an average of 4% over state-of-the-art methods. Furthermore, by leveraging precomputed KV caches, our approach reduces time-to-first-token by up to 96% compared to standard LLM inference, making it a scalable and efficient solution for context reuse. Additionally, KVLink can be combined with KV cache compression to further save cache loading and storage overhead while outperforming the baselines.
♻ ☆ Breadcrumbs Reasoning: Memory-Efficient Reasoning with Compression Beacons
The scalability of large language models for long-context reasoning is severely constrained by the linear growth of their Transformer key-value cache, which incurs significant memory and computational costs. We posit that as a model generates reasoning tokens, the informational value of past generated tokens diminishes, creating an opportunity for compression. In this work, we propose to periodically compress the generation KV cache with a learned, special-purpose token and evict compressed entries. We train the model to perform this compression via a modified joint distillation and reinforcement learning (RL) framework. Our training method minimizes overhead over the conventional RL process, as it leverages RL outputs for distillation. Empirically, our method achieves a superior memory-accuracy Pareto frontier compared to both the model without cache compression and training-free compression techniques.
Computer Vision and Pattern Recognition 164
☆ Lightning Grasp: High Performance Procedural Grasp Synthesis with Contact Fields
Despite years of research, real-time diverse grasp synthesis for dexterous hands remains an unsolved core challenge in robotics and computer graphics. We present Lightning Grasp, a novel high-performance procedural grasp synthesis algorithm that achieves orders-of-magnitude speedups over state-of-the-art approaches, while enabling unsupervised grasp generation for irregular, tool-like objects. The method avoids many limitations of prior approaches, such as the need for carefully tuned energy functions and sensitive initialization. This breakthrough is driven by a key insight: decoupling complex geometric computation from the search process via a simple, efficient data structure - the Contact Field. This abstraction collapses the problem complexity, enabling a procedural search at unprecedented speeds. We open-source our system to propel further innovation in robotic manipulation.
comment: Code: https://github.com/zhaohengyin/lightning-grasp
☆ Robot Learning from a Physical World Model
We introduce PhysWorld, a framework that enables robot learning from video generation through physical world modeling. Recent video generation models can synthesize photorealistic visual demonstrations from language commands and images, offering a powerful yet underexplored source of training signals for robotics. However, directly retargeting pixel motions from generated videos to robots neglects physics, often resulting in inaccurate manipulations. PhysWorld addresses this limitation by coupling video generation with physical world reconstruction. Given a single image and a task command, our method generates task-conditioned videos and reconstructs the underlying physical world from the videos, and the generated video motions are grounded into physically accurate actions through object-centric residual reinforcement learning with the physical world model. This synergy transforms implicit visual guidance into physically executable robotic trajectories, eliminating the need for real robot data collection and enabling zero-shot generalizable robotic manipulation. Experiments on diverse real-world tasks demonstrate that PhysWorld substantially improves manipulation accuracy compared to previous approaches. Visit \href{https://pointscoder.github.io/PhysWorld_Web/}{the project webpage} for details.
comment: Project page: https://pointscoder.github.io/PhysWorld_Web/
☆ TwinOR: Photorealistic Digital Twins of Dynamic Operating Rooms for Embodied AI Research
Developing embodied AI for intelligent surgical systems requires safe, controllable environments for continual learning and evaluation. However, safety regulations and operational constraints in operating rooms (ORs) limit embodied agents from freely perceiving and interacting in realistic settings. Digital twins provide high-fidelity, risk-free environments for exploration and training. How we may create photorealistic and dynamic digital representations of ORs that capture relevant spatial, visual, and behavioral complexity remains unclear. We introduce TwinOR, a framework for constructing photorealistic, dynamic digital twins of ORs for embodied AI research. The system reconstructs static geometry from pre-scan videos and continuously models human and equipment motion through multi-view perception of OR activities. The static and dynamic components are fused into an immersive 3D environment that supports controllable simulation and embodied exploration. The proposed framework reconstructs complete OR geometry with centimeter level accuracy while preserving dynamic interaction across surgical workflows, enabling realistic renderings and a virtual playground for embodied AI systems. In our experiments, TwinOR simulates stereo and monocular sensor streams for geometry understanding and visual localization tasks. Models such as FoundationStereo and ORB-SLAM3 on TwinOR-synthesized data achieve performance within their reported accuracy on real indoor datasets, demonstrating that TwinOR provides sensor-level realism sufficient for perception and localization challenges. By establishing a real-to-sim pipeline for constructing dynamic, photorealistic digital twins of OR environments, TwinOR enables the safe, scalable, and data-efficient development and benchmarking of embodied AI, ultimately accelerating the deployment of embodied AI from sim-to-real.
☆ DIMO: Diverse 3D Motion Generation for Arbitrary Objects ICCV 2025
We present DIMO, a generative approach capable of generating diverse 3D motions for arbitrary objects from a single image. The core idea of our work is to leverage the rich priors in well-trained video models to extract the common motion patterns and then embed them into a shared low-dimensional latent space. Specifically, we first generate multiple videos of the same object with diverse motions. We then embed each motion into a latent vector and train a shared motion decoder to learn the distribution of motions represented by a structured and compact motion representation, i.e., neural key point trajectories. The canonical 3D Gaussians are then driven by these key points and fused to model the geometry and appearance. During inference time with learned latent space, we can instantly sample diverse 3D motions in a single-forward pass and support several interesting applications including 3D motion interpolation and language-guided motion generation. Our project page is available at https://linzhanm.github.io/dimo.
comment: Published in ICCV 2025, project page https://linzhanm.github.io/dimo
☆ SpatialThinker: Reinforcing 3D Reasoning in Multimodal LLMs via Spatial Rewards NeurIPS 2025
Multimodal large language models (MLLMs) have achieved remarkable progress in vision-language tasks, but they continue to struggle with spatial understanding. Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific modifications, and remain constrained by large-scale datasets or sparse supervision. To address these limitations, we introduce SpatialThinker, a 3D-aware MLLM trained with RL to integrate structured spatial grounding with multi-step reasoning. The model simulates human-like spatial perception by constructing a scene graph of task-relevant objects and spatial relations, and reasoning towards an answer via dense spatial rewards. SpatialThinker consists of two key contributions: (1) a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA dataset, and (2) online RL with a multi-objective dense spatial reward enforcing spatial grounding. SpatialThinker-7B outperforms supervised fine-tuning and the sparse RL baseline on spatial understanding and real-world VQA benchmarks, nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-4o. These results showcase the effectiveness of combining spatial supervision with reward-aligned reasoning in enabling robust 3D spatial understanding with limited data and advancing MLLMs towards human-level visual reasoning.
comment: Preprint. Accepted at NeurIPS 2025 Workshops on SPACE in Vision, Language, and Embodied AI (SpaVLE), Embodied World Models for Decision Making (EWM), Aligning Reinforcement Learning Experimentalists and Theorists (ARLET), and Scaling Environments for Agents (SEA)
☆ StreamDiffusionV2: A Streaming System for Dynamic and Interactive Video Generation
Generative models are reshaping the live-streaming industry by redefining how content is created, styled, and delivered. Previous image-based streaming diffusion models have powered efficient and creative live streaming products but have hit limits on temporal consistency due to the foundation of image-based designs. Recent advances in video diffusion have markedly improved temporal consistency and sampling efficiency for offline generation. However, offline generation systems primarily optimize throughput by batching large workloads. In contrast, live online streaming operates under strict service-level objectives (SLOs): time-to-first-frame must be minimal, and every frame must meet a per-frame deadline with low jitter. Besides, scalable multi-GPU serving for real-time streams remains largely unresolved so far. To address this, we present StreamDiffusionV2, a training-free pipeline for interactive live streaming with video diffusion models. StreamDiffusionV2 integrates an SLO-aware batching scheduler and a block scheduler, together with a sink-token--guided rolling KV cache, a motion-aware noise controller, and other system-level optimizations. Moreover, we introduce a scalable pipeline orchestration that parallelizes the diffusion process across denoising steps and network layers, achieving near-linear FPS scaling without violating latency guarantees. The system scales seamlessly across heterogeneous GPU environments and supports flexible denoising steps (e.g., 1--4), enabling both ultra-low-latency and higher-quality modes. Without TensorRT or quantization, StreamDiffusionV2 renders the first frame within 0.5s and attains 58.28 FPS with a 14B-parameter model and 64.52 FPS with a 1.3B-parameter model on four H100 GPUs, making state-of-the-art generative live streaming practical and accessible--from individual creators to enterprise-scale platforms.
comment: Project Page: http://streamdiffusionv2.github.io
☆ Real-Time LiDAR Super-Resolution via Frequency-Aware Multi-Scale Fusion
LiDAR super-resolution addresses the challenge of achieving high-quality 3D perception from cost-effective, low-resolution sensors. While recent transformer-based approaches like TULIP show promise, they remain limited to spatial-domain processing with restricted receptive fields. We introduce FLASH (Frequency-aware LiDAR Adaptive Super-resolution with Hierarchical fusion), a novel framework that overcomes these limitations through dual-domain processing. FLASH integrates two key innovations: (i) Frequency-Aware Window Attention that combines local spatial attention with global frequency-domain analysis via FFT, capturing both fine-grained geometry and periodic scanning patterns at log-linear complexity. (ii) Adaptive Multi-Scale Fusion that replaces conventional skip connections with learned position-specific feature aggregation, enhanced by CBAM attention for dynamic feature selection. Extensive experiments on KITTI demonstrate that FLASH achieves state-of-the-art performance across all evaluation metrics, surpassing even uncertainty-enhanced baselines that require multiple forward passes. Notably, FLASH outperforms TULIP with Monte Carlo Dropout while maintaining single-pass efficiency, which enables real-time deployment. The consistent superiority across all distance ranges validates that our dual-domain approach effectively handles uncertainty through architectural design rather than computationally expensive stochastic inference, making it practical for autonomous systems.
☆ Inference-Time Scaling of Diffusion Models for Infrared Data Generation
Infrared imagery enables temperature-based scene understanding using passive sensors, particularly under conditions of low visibility where traditional RGB imaging fails. Yet, developing downstream vision models for infrared applications is hindered by the scarcity of high-quality annotated data, due to the specialized expertise required for infrared annotation. While synthetic infrared image generation has the potential to accelerate model development by providing large-scale, diverse training data, training foundation-level generative diffusion models in the infrared domain has remained elusive due to limited datasets. In light of such data constraints, we explore an inference-time scaling approach using a domain-adapted CLIP-based verifier for enhanced infrared image generation quality. We adapt FLUX.1-dev, a state-of-the-art text-to-image diffusion model, to the infrared domain by finetuning it on a small sample of infrared images using parameter-efficient techniques. The trained verifier is then employed during inference to guide the diffusion sampling process toward higher quality infrared generations that better align with input text prompts. Empirically, we find that our approach leads to consistent improvements in generation quality, reducing FID scores on the KAIST Multispectral Pedestrian Detection Benchmark dataset by 10% compared to unguided baseline samples. Our results suggest that inference-time guidance offers a promising direction for bridging the domain gap in low-data infrared settings.
comment: Peer-reviewed workshop paper
☆ Preparation of Fractal-Inspired Computational Architectures for Advanced Large Language Model Analysis
It introduces FractalNet, a fractal-inspired computational architectures for advanced large language model analysis that mainly challenges model diversity on a large scale in an efficient manner. The new set-up involves a template-driven generator, runner, and evaluation framework that, through systematic permutations of convolutional, normalization, activation, and dropout layers, can create more than 1,200 variants of neural networks. Fractal templates allow for structural recursion and multi-column pathways, thus, models become deeper and wider in a balanced way. Training utilizes PyTorch, Automatic Mixed Precision (AMP), and gradient checkpointing and is carried out on the CIFAR-10 dataset for five epochs. The outcomes show that fractal-based architectures are capable of strong performance and are computationally efficient. The paper positions fractal design as a feasible and resource-efficient method of automated architecture exploration.
☆ Garbage Vulnerable Point Monitoring using IoT and Computer Vision
This paper proposes a smart way to manage municipal solid waste by using the Internet of Things (IoT) and computer vision (CV) to monitor illegal waste dumping at garbage vulnerable points (GVPs) in urban areas. The system can quickly detect and monitor dumped waste using a street-level camera and object detection algorithm. Data was collected from the Sangareddy district in Telangana, India. A series of comprehensive experiments was carried out using the proposed dataset to assess the accuracy and overall performance of various object detection models. Specifically, we performed an in-depth evaluation of YOLOv8, YOLOv10, YOLO11m, and RT-DETR on our dataset. Among these models, YOLO11m achieved the highest accuracy of 92.39\% in waste detection, demonstrating its effectiveness in detecting waste. Additionally, it attains an mAP@50 of 0.91, highlighting its high precision. These findings confirm that the object detection model is well-suited for monitoring and tracking waste dumping events at GVP locations. Furthermore, the system effectively captures waste disposal patterns, including hourly, daily, and weekly dumping trends, ensuring comprehensive daily and nightly monitoring.
☆ YoNoSplat: You Only Need One Model for Feedforward 3D Gaussian Splatting
Fast and flexible 3D scene reconstruction from unstructured image collections remains a significant challenge. We present YoNoSplat, a feedforward model that reconstructs high-quality 3D Gaussian Splatting representations from an arbitrary number of images. Our model is highly versatile, operating effectively with both posed and unposed, calibrated and uncalibrated inputs. YoNoSplat predicts local Gaussians and camera poses for each view, which are aggregated into a global representation using either predicted or provided poses. To overcome the inherent difficulty of jointly learning 3D Gaussians and camera parameters, we introduce a novel mixing training strategy. This approach mitigates the entanglement between the two tasks by initially using ground-truth poses to aggregate local Gaussians and gradually transitioning to a mix of predicted and ground-truth poses, which prevents both training instability and exposure bias. We further resolve the scale ambiguity problem by a novel pairwise camera-distance normalization scheme and by embedding camera intrinsics into the network. Moreover, YoNoSplat also predicts intrinsic parameters, making it feasible for uncalibrated inputs. YoNoSplat demonstrates exceptional efficiency, reconstructing a scene from 100 views (at 280x518 resolution) in just 2.69 seconds on an NVIDIA GH200 GPU. It achieves state-of-the-art performance on standard benchmarks in both pose-free and pose-dependent settings. Our project page is at https://botaoye.github.io/yonosplat/.
☆ Beyond Boundaries: Leveraging Vision Foundation Models for Source-Free Object Detection AAAI 2026
Source-Free Object Detection (SFOD) aims to adapt a source-pretrained object detector to a target domain without access to source data. However, existing SFOD methods predominantly rely on internal knowledge from the source model, which limits their capacity to generalize across domains and often results in biased pseudo-labels, thereby hindering both transferability and discriminability. In contrast, Vision Foundation Models (VFMs), pretrained on massive and diverse data, exhibit strong perception capabilities and broad generalization, yet their potential remains largely untapped in the SFOD setting. In this paper, we propose a novel SFOD framework that leverages VFMs as external knowledge sources to jointly enhance feature alignment and label quality. Specifically, we design three VFM-based modules: (1) Patch-weighted Global Feature Alignment (PGFA) distills global features from VFMs using patch-similarity-based weighting to enhance global feature transferability; (2) Prototype-based Instance Feature Alignment (PIFA) performs instance-level contrastive learning guided by momentum-updated VFM prototypes; and (3) Dual-source Enhanced Pseudo-label Fusion (DEPF) fuses predictions from detection VFMs and teacher models via an entropy-aware strategy to yield more reliable supervision. Extensive experiments on six benchmarks demonstrate that our method achieves state-of-the-art SFOD performance, validating the effectiveness of integrating VFMs to simultaneously improve transferability and discriminability.
comment: Accepted to AAAI 2026. Extended version with full Appendix
☆ LMM-IQA: Image Quality Assessment for Low-Dose CT Imaging
Low-dose computed tomography (CT) represents a significant improvement in patient safety through lower radiation doses, but increased noise, blur, and contrast loss can diminish diagnostic quality. Therefore, consistency and robustness in image quality assessment become essential for clinical applications. In this study, we propose an LLM-based quality assessment system that generates both numerical scores and textual descriptions of degradations such as noise, blur, and contrast loss. Furthermore, various inference strategies - from the zero-shot approach to metadata integration and error feedback - are systematically examined, demonstrating the progressive contribution of each method to overall performance. The resultant assessments yield not only highly correlated scores but also interpretable output, thereby adding value to clinical workflows. The source codes of our study are available at https://github.com/itu-biai/lmms_ldct_iqa.
☆ VADER: Towards Causal Video Anomaly Understanding with Relation-Aware Large Language Models
Video anomaly understanding (VAU) aims to provide detailed interpretation and semantic comprehension of anomalous events within videos, addressing limitations of traditional methods that focus solely on detecting and localizing anomalies. However, existing approaches often neglect the deeper causal relationships and interactions between objects, which are critical for understanding anomalous behaviors. In this paper, we propose VADER, an LLM-driven framework for Video Anomaly unDErstanding, which integrates keyframe object Relation features with visual cues to enhance anomaly comprehension from video. Specifically, VADER first applies an Anomaly Scorer to assign per-frame anomaly scores, followed by a Context-AwarE Sampling (CAES) strategy to capture the causal context of each anomalous event. A Relation Feature Extractor and a COntrastive Relation Encoder (CORE) jointly model dynamic object interactions, producing compact relational representations for downstream reasoning. These visual and relational cues are integrated with LLMs to generate detailed, causally grounded descriptions and support robust anomaly-related question answering. Experiments on multiple real-world VAU benchmarks demonstrate that VADER achieves strong results across anomaly description, explanation, and causal reasoning tasks, advancing the frontier of explainable video anomaly analysis.
☆ Verifying rich robustness properties for neural networks
Robustness is a important problem in AI alignment and safety, with models such as neural networks being increasingly used in safety-critical systems. In the last decade, a large body of work has emerged on local robustness, i.e., checking if the decision of a neural network remains unchanged when the input is slightly perturbed. However, many of these approaches require specialized encoding and often ignore the confidence of a neural network on its output. In this paper, our goal is to build a generalized framework to specify and verify variants of robustness in neural network verification. We propose a specification framework using a simple grammar, which is flexible enough to capture most existing variants. This allows us to introduce new variants of robustness that take into account the confidence of the neural network in its outputs. Next, we develop a novel and powerful unified technique to verify all such variants in a homogeneous way, viz., by adding a few additional layers to the neural network. This enables us to use any state-of-the-art neural network verification tool, without having to tinker with the encoding within, while incurring an approximation error that we show is bounded. We perform an extensive experimental evaluation over a large suite of 8870 benchmarks having 138M parameters in a largest network, and show that we are able to capture a wide set of robustness variants and outperform direct encoding approaches by a significant margin.
☆ PlanT 2.0: Exposing Biases and Structural Flaws in Closed-Loop Driving
Most recent work in autonomous driving has prioritized benchmark performance and methodological innovation over in-depth analysis of model failures, biases, and shortcut learning. This has led to incremental improvements without a deep understanding of the current failures. While it is straightforward to look at situations where the model fails, it is hard to understand the underlying reason. This motivates us to conduct a systematic study, where inputs to the model are perturbed and the predictions observed. We introduce PlanT 2.0, a lightweight, object-centric planning transformer designed for autonomous driving research in CARLA. The object-level representation enables controlled analysis, as the input can be easily perturbed (e.g., by changing the location or adding or removing certain objects), in contrast to sensor-based models. To tackle the scenarios newly introduced by the challenging CARLA Leaderboard 2.0, we introduce multiple upgrades to PlanT, achieving state-of-the-art performance on Longest6 v2, Bench2Drive, and the CARLA validation routes. Our analysis exposes insightful failures, such as a lack of scene understanding caused by low obstacle diversity, rigid expert behaviors leading to exploitable shortcuts, and overfitting to a fixed set of expert trajectories. Based on these findings, we argue for a shift toward data-centric development, with a focus on richer, more robust, and less biased datasets. We open-source our code and model at https://github.com/autonomousvision/plant2.
☆ CAMP-VQA: Caption-Embedded Multimodal Perception for No-Reference Quality Assessment of Compressed Video
The prevalence of user-generated content (UGC) on platforms such as YouTube and TikTok has rendered no-reference (NR) perceptual video quality assessment (VQA) vital for optimizing video delivery. Nonetheless, the characteristics of non-professional acquisition and the subsequent transcoding of UGC video on sharing platforms present significant challenges for NR-VQA. Although NR-VQA models attempt to infer mean opinion scores (MOS), their modeling of subjective scores for compressed content remains limited due to the absence of fine-grained perceptual annotations of artifact types. To address these challenges, we propose CAMP-VQA, a novel NR-VQA framework that exploits the semantic understanding capabilities of large vision-language models. Our approach introduces a quality-aware prompting mechanism that integrates video metadata (e.g., resolution, frame rate, bitrate) with key fragments extracted from inter-frame variations to guide the BLIP-2 pretraining approach in generating fine-grained quality captions. A unified architecture has been designed to model perceptual quality across three dimensions: semantic alignment, temporal characteristics, and spatial characteristics. These multimodal features are extracted and fused, then regressed to video quality scores. Extensive experiments on a wide variety of UGC datasets demonstrate that our model consistently outperforms existing NR-VQA methods, achieving improved accuracy without the need for costly manual fine-grained annotations. Our method achieves the best performance in terms of average rank and linear correlation (SRCC: 0.928, PLCC: 0.938) compared to state-of-the-art methods. The source code and trained models, along with a user-friendly demo, are available at: https://github.com/xinyiW915/CAMP-VQA.
comment: 14 pages, 6 figures
☆ Glioma C6: A Novel Dataset for Training and Benchmarking Cell Segmentation
We present Glioma C6, a new open dataset for instance segmentation of glioma C6 cells, designed as both a benchmark and a training resource for deep learning models. The dataset comprises 75 high-resolution phase-contrast microscopy images with over 12,000 annotated cells, providing a realistic testbed for biomedical image analysis. It includes soma annotations and morphological cell categorization provided by biologists. Additional categorization of cells, based on morphology, aims to enhance the utilization of image data for cancer cell research. Glioma C6 consists of two parts: the first is curated with controlled parameters for benchmarking, while the second supports generalization testing under varying conditions. We evaluate the performance of several generalist segmentation models, highlighting their limitations on our dataset. Our experiments demonstrate that training on Glioma C6 significantly enhances segmentation performance, reinforcing its value for developing robust and generalizable models. The dataset is publicly available for researchers.
☆ Segmentation of Ischemic Stroke Lesions using Transfer Learning on Multi-sequence MRI
The accurate understanding of ischemic stroke lesions is critical for efficient therapy and prognosis of stroke patients. Magnetic resonance imaging (MRI) is sensitive to acute ischemic stroke and is a common diagnostic method for stroke. However, manual lesion segmentation performed by experts is tedious, time-consuming, and prone to observer inconsistency. Automatic medical image analysis methods have been proposed to overcome this challenge. However, previous approaches have relied on hand-crafted features that may not capture the irregular and physiologically complex shapes of ischemic stroke lesions. In this study, we present a novel framework for quickly and automatically segmenting ischemic stroke lesions on various MRI sequences, including T1-weighted, T2-weighted, DWI, and FLAIR. The proposed methodology is validated on the ISLES 2015 Brain Stroke sequence dataset, where we trained our model using the Res-Unet architecture twice: first, with pre-existing weights, and then without, to explore the benefits of transfer learning. Evaluation metrics, including the Dice score and sensitivity, were computed across 3D volumes. Finally, a Majority Voting Classifier was integrated to amalgamate the outcomes from each axis, resulting in a comprehensive segmentation method. Our efforts culminated in achieving a Dice score of 80.5\% and an accuracy of 74.03\%, showcasing the efficacy of our segmentation approach.
comment: Ischemic Stroke, Segmentation, Transfer Learning, Magnetic Resonance Imaging, Deep Learning, Res-UNet
StreamKV: Streaming Video Question-Answering with Segment-based KV Cache Retrieval and Compression
Video Large Language Models (Video-LLMs) have demonstrated significant potential in the areas of video captioning, search, and summarization. However, current Video-LLMs still face challenges with long real-world videos. Recent methods have introduced a retrieval mechanism that retrieves query-relevant KV caches for question answering, enhancing the efficiency and accuracy of long real-world videos. However, the compression and retrieval of KV caches are still not fully explored. In this paper, we propose \textbf{StreamKV}, a training-free framework that seamlessly equips Video-LLMs with advanced KV cache retrieval and compression. Compared to previous methods that used uniform partitioning, StreamKV dynamically partitions video streams into semantic segments, which better preserves semantic information. For KV cache retrieval, StreamKV calculates a summary vector for each segment to retain segment-level information essential for retrieval. For KV cache compression, StreamKV introduces a guidance prompt designed to capture the key semantic elements within each segment, ensuring only the most informative KV caches are retained for answering questions. Moreover, StreamKV unifies KV cache retrieval and compression within a single module, performing both in a layer-adaptive manner, thereby further improving the effectiveness of streaming video question answering. Extensive experiments on public StreamingVQA benchmarks demonstrate that StreamKV significantly outperforms existing Online Video-LLMs, achieving superior accuracy while substantially improving both memory efficiency and computational latency. The code has been released at https://github.com/sou1p0wer/StreamKV.
☆ Omni-AVSR: Towards Unified Multimodal Speech Recognition with Large Language Models
Large language models (LLMs) have recently achieved impressive results in speech recognition across multiple modalities, including Auditory Speech Recognition (ASR), Visual Speech Recognition (VSR), and Audio-Visual Speech Recognition (AVSR). Despite this progress, current LLM-based approaches typically address each task independently, training separate models that raise computational and deployment resource use while missing potential cross-task synergies. They also rely on fixed-rate token compression, which restricts flexibility in balancing accuracy with efficiency. These limitations highlight the need for a unified framework that can support ASR, VSR, and AVSR while enabling elastic inference. To this end, we present Omni-AVSR, a unified audio-visual LLM that combines efficient multi-granularity training with parameter-efficient adaptation. Specifically, we adapt the matryoshka representation learning paradigm to efficiently train across multiple audio and visual granularities, reducing its inherent training resource use. Furthermore, we explore three LoRA-based strategies for adapting the backbone LLM, balancing shared and task-specific specialization. Experiments on LRS2 and LRS3 show that Omni-AVSR achieves comparable or superior accuracy to state-of-the-art baselines while training a single model at substantially lower training and deployment resource use. The model also remains robust under acoustic noise, and we analyze its scaling behavior as LLM size increases, providing insights into the trade-off between performance and efficiency.
comment: Project website: https://umbertocappellazzo.github.io/Omni-AVSR/
☆ MVU-Eval: Towards Multi-Video Understanding Evaluation for Multimodal LLMs
The advent of Multimodal Large Language Models (MLLMs) has expanded AI capabilities to visual modalities, yet existing evaluation benchmarks remain limited to single-video understanding, overlooking the critical need for multi-video understanding in real-world scenarios (e.g., sports analytics and autonomous driving). To address this significant gap, we introduce MVU-Eval, the first comprehensive benchmark for evaluating Multi-Video Understanding for MLLMs. Specifically, our MVU-Eval mainly assesses eight core competencies through 1,824 meticulously curated question-answer pairs spanning 4,959 videos from diverse domains, addressing both fundamental perception tasks and high-order reasoning tasks. These capabilities are rigorously aligned with real-world applications such as multi-sensor synthesis in autonomous systems and cross-angle sports analytics. Through extensive evaluation of state-of-the-art open-source and closed-source models, we reveal significant performance discrepancies and limitations in current MLLMs' ability to perform understanding across multiple videos. The benchmark will be made publicly available to foster future research.
☆ 4DSTR: Advancing Generative 4D Gaussians with Spatial-Temporal Rectification for High-Quality and Consistent 4D Generation AAAI 2026
Remarkable advances in recent 2D image and 3D shape generation have induced a significant focus on dynamic 4D content generation. However, previous 4D generation methods commonly struggle to maintain spatial-temporal consistency and adapt poorly to rapid temporal variations, due to the lack of effective spatial-temporal modeling. To address these problems, we propose a novel 4D generation network called 4DSTR, which modulates generative 4D Gaussian Splatting with spatial-temporal rectification. Specifically, temporal correlation across generated 4D sequences is designed to rectify deformable scales and rotations and guarantee temporal consistency. Furthermore, an adaptive spatial densification and pruning strategy is proposed to address significant temporal variations by dynamically adding or deleting Gaussian points with the awareness of their pre-frame movements. Extensive experiments demonstrate that our 4DSTR achieves state-of-the-art performance in video-to-4D generation, excelling in reconstruction quality, spatial-temporal consistency, and adaptation to rapid temporal movements.
comment: Accepted by AAAI 2026.The first two authors contributed equally
☆ Leveraging Text-Driven Semantic Variation for Robust OOD Segmentation IROS
In autonomous driving and robotics, ensuring road safety and reliable decision-making critically depends on out-of-distribution (OOD) segmentation. While numerous methods have been proposed to detect anomalous objects on the road, leveraging the vision-language space-which provides rich linguistic knowledge-remains an underexplored field. We hypothesize that incorporating these linguistic cues can be especially beneficial in the complex contexts found in real-world autonomous driving scenarios. To this end, we present a novel approach that trains a Text-Driven OOD Segmentation model to learn a semantically diverse set of objects in the vision-language space. Concretely, our approach combines a vision-language model's encoder with a transformer decoder, employs Distance-Based OOD prompts located at varying semantic distances from in-distribution (ID) classes, and utilizes OOD Semantic Augmentation for OOD representations. By aligning visual and textual information, our approach effectively generalizes to unseen objects and provides robust OOD segmentation in diverse driving environments. We conduct extensive experiments on publicly available OOD segmentation datasets such as Fishyscapes, Segment-Me-If-You-Can, and Road Anomaly datasets, demonstrating that our approach achieves state-of-the-art performance across both pixel-level and object-level evaluations. This result underscores the potential of vision-language-based OOD segmentation to bolster the safety and reliability of future autonomous driving systems.
comment: 8 pages, 5 figure references, 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) submission
☆ Noise & pattern: identity-anchored Tikhonov regularization for robust structural anomaly detection
Anomaly detection plays a pivotal role in automated industrial inspection, aiming to identify subtle or rare defects in otherwise uniform visual patterns. As collecting representative examples of all possible anomalies is infeasible, we tackle structural anomaly detection using a self-supervised autoencoder that learns to repair corrupted inputs. To this end, we introduce a corruption model that injects artificial disruptions into training images to mimic structural defects. While reminiscent of denoising autoencoders, our approach differs in two key aspects. First, instead of unstructured i.i.d.\ noise, we apply structured, spatially coherent perturbations that make the task a hybrid of segmentation and inpainting. Second, and counterintuitively, we add and preserve Gaussian noise on top of the occlusions, which acts as a Tikhonov regularizer anchoring the Jacobian of the reconstruction function toward identity. This identity-anchored regularization stabilizes reconstruction and further improves both detection and segmentation accuracy. On the MVTec AD benchmark, our method achieves state-of-the-art results (I/P-AUROC: 99.9/99.4), supporting our theoretical framework and demonstrating its practical relevance for automatic inspection.
☆ Mapping Reduced Accessibility to WASH Facilities in Rohingya Refugee Camps with Sub-Meter Imagery
Access to Water, Sanitation, and Hygiene (WASH) services remains a major public health concern in refugee camps. This study introduces a remote sensing-driven framework to quantify WASH accessibility-specifically to water pumps, latrines, and bathing cubicles-in the Rohingya camps of Cox's Bazar, one of the world's most densely populated displacement settings. Detecting refugee shelters in such emergent camps presents substantial challenges, primarily due to their dense spatial configuration and irregular geometric patterns. Using sub-meter satellite images, we develop a semi-supervised segmentation framework that achieves an F1-score of 76.4% in detecting individual refugee shelters. Applying the framework across multi-year data reveals declining WASH accessibility, driven by rapid refugee population growth and reduced facility availability, rising from 25 people per facility in 2022 to 29.4 in 2025. Gender-disaggregated analysis further shows that women and girls experience reduced accessibility, in scenarios with inadequate safety-related segregation in WASH facilities. These findings suggest the importance of demand-responsive allocation strategies that can identify areas with under-served populations-such as women and girls-and ensure that limited infrastructure serves the greatest number of people in settings with fixed or shrinking budgets. We also discuss the value of high-resolution remote sensing and machine learning to detect inequality and inform equitable resource planning in complex humanitarian environments.
comment: 23 pages, 13 figures, 2 tables
☆ Omni-View: Unlocking How Generation Facilitates Understanding in Unified 3D Model based on Multiview images
This paper presents Omni-View, which extends the unified multimodal understanding and generation to 3D scenes based on multiview images, exploring the principle that "generation facilitates understanding". Consisting of understanding model, texture module, and geometry module, Omni-View jointly models scene understanding, novel view synthesis, and geometry estimation, enabling synergistic interaction between 3D scene understanding and generation tasks. By design, it leverages the spatiotemporal modeling capabilities of its texture module responsible for appearance synthesis, alongside the explicit geometric constraints provided by its dedicated geometry module, thereby enriching the model's holistic understanding of 3D scenes. Trained with a two-stage strategy, Omni-View achieves a state-of-the-art score of 55.4 on the VSI-Bench benchmark, outperforming existing specialized 3D understanding models, while simultaneously delivering strong performance in both novel view synthesis and 3D scene generation.
comment: Under review
☆ Breaking the Stealth-Potency Trade-off in Clean-Image Backdoors with Generative Trigger Optimization AAAI '26
Clean-image backdoor attacks, which use only label manipulation in training datasets to compromise deep neural networks, pose a significant threat to security-critical applications. A critical flaw in existing methods is that the poison rate required for a successful attack induces a proportional, and thus noticeable, drop in Clean Accuracy (CA), undermining their stealthiness. This paper presents a new paradigm for clean-image attacks that minimizes this accuracy degradation by optimizing the trigger itself. We introduce Generative Clean-Image Backdoors (GCB), a framework that uses a conditional InfoGAN to identify naturally occurring image features that can serve as potent and stealthy triggers. By ensuring these triggers are easily separable from benign task-related features, GCB enables a victim model to learn the backdoor from an extremely small set of poisoned examples, resulting in a CA drop of less than 1%. Our experiments demonstrate GCB's remarkable versatility, successfully adapting to six datasets, five architectures, and four tasks, including the first demonstration of clean-image backdoors in regression and segmentation. GCB also exhibits resilience against most of the existing backdoor defenses.
comment: 19 pages, 22 figures, 15 tables. To appear in AAAI '26 (Oral). This paper extends the AAAI-2026 version by including the Appendix
☆ Geometric implicit neural representations for signed distance functions
\textit{Implicit neural representations} (INRs) have emerged as a promising framework for representing signals in low-dimensional spaces. This survey reviews the existing literature on the specialized INR problem of approximating \textit{signed distance functions} (SDFs) for surface scenes, using either oriented point clouds or a set of posed images. We refer to neural SDFs that incorporate differential geometry tools, such as normals and curvatures, in their loss functions as \textit{geometric} INRs. The key idea behind this 3D reconstruction approach is to include additional \textit{regularization} terms in the loss function, ensuring that the INR satisfies certain global properties that the function should hold -- such as having unit gradient in the case of SDFs. We explore key methodological components, including the definition of INR, the construction of geometric loss functions, and sampling schemes from a differential geometry perspective. Our review highlights the significant advancements enabled by geometric INRs in surface reconstruction from oriented point clouds and posed images.
☆ Automated Estimation of Anatomical Risk Metrics for Endoscopic Sinus Surgery Using Deep Learning
Endoscopic sinus surgery requires careful preoperative assessment of the skull base anatomy to minimize risks such as cerebrospinal fluid leakage. Anatomical risk scores like the Keros, Gera and Thailand-Malaysia-Singapore score offer a standardized approach but require time-consuming manual measurements on coronal CT or CBCT scans. We propose an automated deep learning pipeline that estimates these risk scores by localizing key anatomical landmarks via heatmap regression. We compare a direct approach to a specialized global-to-local learning strategy and find mean absolute errors on the relevant anatomical measurements of 0.506mm for the Keros, 4.516{\deg} for the Gera and 0.802mm / 0.777mm for the TMS classification.
comment: Accepted to SPIE Medical Imaging conference 2026
☆ LiteUpdate: A Lightweight Framework for Updating AI-Generated Image Detectors
The rapid progress of generative AI has led to the emergence of new generative models, while existing detection methods struggle to keep pace, resulting in significant degradation in the detection performance. This highlights the urgent need for continuously updating AI-generated image detectors to adapt to new generators. To overcome low efficiency and catastrophic forgetting in detector updates, we propose LiteUpdate, a lightweight framework for updating AI-generated image detectors. LiteUpdate employs a representative sample selection module that leverages image confidence and gradient-based discriminative features to precisely select boundary samples. This approach improves learning and detection accuracy on new distributions with limited generated images, significantly enhancing detector update efficiency. Additionally, LiteUpdate incorporates a model merging module that fuses weights from multiple fine-tuning trajectories, including pre-trained, representative, and random updates. This balances the adaptability to new generators and mitigates the catastrophic forgetting of prior knowledge. Experiments demonstrate that LiteUpdate substantially boosts detection performance in various detectors. Specifically, on AIDE, the average detection accuracy on Midjourney improved from 87.63% to 93.03%, a 6.16% relative increase.
☆ Federated Learning for Video Violence Detection: Complementary Roles of Lightweight CNNs and Vision-Language Models for Energy-Efficient Use
Deep learning-based video surveillance increasingly demands privacy-preserving architectures with low computational and environmental overhead. Federated learning preserves privacy but deploying large vision-language models (VLMs) introduces major energy and sustainability challenges. We compare three strategies for federated violence detection under realistic non-IID splits on the RWF-2000 and RLVS datasets: zero-shot inference with pretrained VLMs, LoRA-based fine-tuning of LLaVA-NeXT-Video-7B, and personalized federated learning of a 65.8M-parameter 3D CNN. All methods exceed 90% accuracy in binary violence detection. The 3D CNN achieves superior calibration (ROC AUC 92.59%) at roughly half the energy cost (240 Wh vs. 570 Wh) of federated LoRA, while VLMs provide richer multimodal reasoning. Hierarchical category grouping (based on semantic similarity and class exclusion) boosts VLM multiclass accuracy from 65.31% to 81% on the UCF-Crime dataset. To our knowledge, this is the first comparative simulation study of LoRA-tuned VLMs and personalized CNNs for federated violence detection, with explicit energy and CO2e quantification. Our results inform hybrid deployment strategies that default to efficient CNNs for routine inference and selectively engage VLMs for complex contextual reasoning.
comment: 5 pages, 3 figures, ICTAI 2025
☆ ProcGen3D: Learning Neural Procedural Graph Representations for Image-to-3D Reconstruction
We introduce ProcGen3D, a new approach for 3D content creation by generating procedural graph abstractions of 3D objects, which can then be decoded into rich, complex 3D assets. Inspired by the prevalent use of procedural generators in production 3D applications, we propose a sequentialized, graph-based procedural graph representation for 3D assets. We use this to learn to approximate the landscape of a procedural generator for image-based 3D reconstruction. We employ edge-based tokenization to encode the procedural graphs, and train a transformer prior to predict the next token conditioned on an input RGB image. Crucially, to enable better alignment of our generated outputs to an input image, we incorporate Monte Carlo Tree Search (MCTS) guided sampling into our generation process, steering output procedural graphs towards more image-faithful reconstructions. Our approach is applicable across a variety of objects that can be synthesized with procedural generators. Extensive experiments on cacti, trees, and bridges show that our neural procedural graph generation outperforms both state-of-the-art generative 3D methods and domain-specific modeling techniques. Furthermore, this enables improved generalization on real-world input images, despite training only on synthetic data.
comment: Project Page: https://xzhang-t.github.io/project/ProcGen3D/
☆ MPJudge: Towards Perceptual Assessment of Music-Induced Paintings
Music induced painting is a unique artistic practice, where visual artworks are created under the influence of music. Evaluating whether a painting faithfully reflects the music that inspired it poses a challenging perceptual assessment task. Existing methods primarily rely on emotion recognition models to assess the similarity between music and painting, but such models introduce considerable noise and overlook broader perceptual cues beyond emotion. To address these limitations, we propose a novel framework for music induced painting assessment that directly models perceptual coherence between music and visual art. We introduce MPD, the first large scale dataset of music painting pairs annotated by domain experts based on perceptual coherence. To better handle ambiguous cases, we further collect pairwise preference annotations. Building on this dataset, we present MPJudge, a model that integrates music features into a visual encoder via a modulation based fusion mechanism. To effectively learn from ambiguous cases, we adopt Direct Preference Optimization for training. Extensive experiments demonstrate that our method outperforms existing approaches. Qualitative results further show that our model more accurately identifies music relevant regions in paintings.
☆ Sparse4DGS: 4D Gaussian Splatting for Sparse-Frame Dynamic Scene Reconstruction AAAI 2026
Dynamic Gaussian Splatting approaches have achieved remarkable performance for 4D scene reconstruction. However, these approaches rely on dense-frame video sequences for photorealistic reconstruction. In real-world scenarios, due to equipment constraints, sometimes only sparse frames are accessible. In this paper, we propose Sparse4DGS, the first method for sparse-frame dynamic scene reconstruction. We observe that dynamic reconstruction methods fail in both canonical and deformed spaces under sparse-frame settings, especially in areas with high texture richness. Sparse4DGS tackles this challenge by focusing on texture-rich areas. For the deformation network, we propose Texture-Aware Deformation Regularization, which introduces a texture-based depth alignment loss to regulate Gaussian deformation. For the canonical Gaussian field, we introduce Texture-Aware Canonical Optimization, which incorporates texture-based noise into the gradient descent process of canonical Gaussians. Extensive experiments show that when taking sparse frames as inputs, our method outperforms existing dynamic or few-shot techniques on NeRF-Synthetic, HyperNeRF, NeRF-DS, and our iPhone-4D datasets.
comment: AAAI 2026
☆ HENet++: Hybrid Encoding and Multi-task Learning for 3D Perception and End-to-end Autonomous Driving
Three-dimensional feature extraction is a critical component of autonomous driving systems, where perception tasks such as 3D object detection, bird's-eye-view (BEV) semantic segmentation, and occupancy prediction serve as important constraints on 3D features. While large image encoders, high-resolution images, and long-term temporal inputs can significantly enhance feature quality and deliver remarkable performance gains, these techniques are often incompatible in both training and inference due to computational resource constraints. Moreover, different tasks favor distinct feature representations, making it difficult for a single model to perform end-to-end inference across multiple tasks while maintaining accuracy comparable to that of single-task models. To alleviate these issues, we present the HENet and HENet++ framework for multi-task 3D perception and end-to-end autonomous driving. Specifically, we propose a hybrid image encoding network that uses a large image encoder for short-term frames and a small one for long-term frames. Furthermore, our framework simultaneously extracts both dense and sparse features, providing more suitable representations for different tasks, reducing cumulative errors, and delivering more comprehensive information to the planning module. The proposed architecture maintains compatibility with various existing 3D feature extraction methods and supports multimodal inputs. HENet++ achieves state-of-the-art end-to-end multi-task 3D perception results on the nuScenes benchmark, while also attaining the lowest collision rate on the nuScenes end-to-end autonomous driving benchmark.
comment: Preliminary version, 19 pages
☆ GEWDiff: Geometric Enhanced Wavelet-based Diffusion Model for Hyperspectral Image Super-resolution AAAI 2026
Improving the quality of hyperspectral images (HSIs), such as through super-resolution, is a crucial research area. However, generative modeling for HSIs presents several challenges. Due to their high spectral dimensionality, HSIs are too memory-intensive for direct input into conventional diffusion models. Furthermore, general generative models lack an understanding of the topological and geometric structures of ground objects in remote sensing imagery. In addition, most diffusion models optimize loss functions at the noise level, leading to a non-intuitive convergence behavior and suboptimal generation quality for complex data. To address these challenges, we propose a Geometric Enhanced Wavelet-based Diffusion Model (GEWDiff), a novel framework for reconstructing hyperspectral images at 4-times super-resolution. A wavelet-based encoder-decoder is introduced that efficiently compresses HSIs into a latent space while preserving spectral-spatial information. To avoid distortion during generation, we incorporate a geometry-enhanced diffusion process that preserves the geometric features. Furthermore, a multi-level loss function was designed to guide the diffusion process, promoting stable convergence and improved reconstruction fidelity. Our model demonstrated state-of-the-art results across multiple dimensions, including fidelity, spectral accuracy, visual realism, and clarity.
comment: This manuscript has been accepted for publication in AAAI 2026
☆ Task-Adaptive Low-Dose CT Reconstruction
Deep learning-based low-dose computed tomography reconstruction methods already achieve high performance on standard image quality metrics like peak signal-to-noise ratio and structural similarity index measure. Yet, they frequently fail to preserve the critical anatomical details needed for diagnostic tasks. This fundamental limitation hinders their clinical applicability despite their high metric scores. We propose a novel task-adaptive reconstruction framework that addresses this gap by incorporating a frozen pre-trained task network as a regularization term in the reconstruction loss function. Unlike existing joint-training approaches that simultaneously optimize both reconstruction and task networks, and risk diverging from satisfactory reconstructions, our method leverages a pre-trained task model to guide reconstruction training while still maintaining diagnostic quality. We validate our framework on a liver and liver tumor segmentation task. Our task-adaptive models achieve Dice scores up to 0.707, approaching the performance of full-dose scans (0.874), and substantially outperforming joint-training approaches (0.331) and traditional reconstruction methods (0.626). Critically, our framework can be integrated into any existing deep learning-based reconstruction model through simple loss function modification, enabling widespread adoption for task-adaptive optimization in clinical practice. Our codes are available at: https://github.com/itu-biai/task_adaptive_ct
☆ How Bias Binds: Measuring Hidden Associations for Bias Control in Text-to-Image Compositions AAAI
Text-to-image generative models often exhibit bias related to sensitive attributes. However, current research tends to focus narrowly on single-object prompts with limited contextual diversity. In reality, each object or attribute within a prompt can contribute to bias. For example, the prompt "an assistant wearing a pink hat" may reflect female-inclined biases associated with a pink hat. The neglected joint effects of the semantic binding in the prompts cause significant failures in current debiasing approaches. This work initiates a preliminary investigation on how bias manifests under semantic binding, where contextual associations between objects and attributes influence generative outcomes. We demonstrate that the underlying bias distribution can be amplified based on these associations. Therefore, we introduce a bias adherence score that quantifies how specific object-attribute bindings activate bias. To delve deeper, we develop a training-free context-bias control framework to explore how token decoupling can facilitate the debiasing of semantic bindings. This framework achieves over 10% debiasing improvement in compositional generation tasks. Our analysis of bias scores across various attribute-object bindings and token decorrelation highlights a fundamental challenge: reducing bias without disrupting essential semantic relationships. These findings expose critical limitations in current debiasing approaches when applied to semantically bound contexts, underscoring the need to reassess prevailing bias mitigation strategies.
comment: Accepted for publication at the Alignment Track of The 40th Annual AAAI Conference on Artificial Intelligence (AAAI 2026)
☆ Achieving Effective Virtual Reality Interactions via Acoustic Gesture Recognition based on Large Language Models ICASSP 2026
Natural and efficient interaction remains a critical challenge for virtual reality and augmented reality (VR/AR) systems. Vision-based gesture recognition suffers from high computational cost, sensitivity to lighting conditions, and privacy leakage concerns. Acoustic sensing provides an attractive alternative: by emitting inaudible high-frequency signals and capturing their reflections, channel impulse response (CIR) encodes how gestures perturb the acoustic field in a low-cost and user-transparent manner. However, existing CIR-based gesture recognition methods often rely on extensive training of models on large labeled datasets, making them unsuitable for few-shot VR scenarios. In this work, we propose the first framework that leverages large language models (LLMs) for CIR-based gesture recognition in VR/AR systems. Despite LLMs' strengths, it is non-trivial to achieve few-shot and zero-shot learning of CIR gestures due to their inconspicuous features. To tackle this challenge, we collect differential CIR rather than original CIR data. Moreover, we construct a real-world dataset collected from 10 participants performing 15 gestures across three categories (digits, letters, and shapes), with 10 repetitions each. We then conduct extensive experiments on this dataset using an LLM-adopted classifier. Results show that our LLM-based framework achieves accuracy comparable to classical machine learning baselines, while requiring no domain-specific retraining.
comment: 5 pages, 4 figures, 1 table, under review at ICASSP 2026
☆ Pandar128 dataset for lane line detection
We present Pandar128, the largest public dataset for lane line detection using a 128-beam LiDAR. It contains over 52,000 camera frames and 34,000 LiDAR scans, captured in diverse real-world conditions in Germany. The dataset includes full sensor calibration (intrinsics, extrinsics) and synchronized odometry, supporting tasks such as projection, fusion, and temporal modeling. To complement the dataset, we also introduce SimpleLidarLane, a light-weight baseline method for lane line reconstruction that combines BEV segmentation, clustering, and polyline fitting. Despite its simplicity, our method achieves strong performance under challenging various conditions (e.g., rain, sparse returns), showing that modular pipelines paired with high-quality data and principled evaluation can compete with more complex approaches. Furthermore, to address the lack of standardized evaluation, we propose a novel polyline-based metric - Interpolation-Aware Matching F1 (IAM-F1) - that employs interpolation-aware lateral matching in BEV space. All data and code are publicly released to support reproducibility in LiDAR-based lane detection.
☆ LeCoT: revisiting network architecture for two-view correspondence pruning
Two-view correspondence pruning aims to accurately remove incorrect correspondences (outliers) from initial ones and is widely applied to various computer vision tasks. Current popular strategies adopt multilayer perceptron (MLP) as the backbone, supplemented by additional modules to enhance the network ability to handle context information, which is a known limitation of MLPs. In contrast, we introduce a novel perspective for capturing correspondence context information without extra design modules. To this end, we design a two-view correspondence pruning network called LeCoT, which can naturally leverage global context information at different stages. Specifically, the core design of LeCoT is the Spatial-Channel Fusion Transformer block, a newly proposed component that efficiently utilizes both spatial and channel global context information among sparse correspondences. In addition, we integrate the proposed prediction block that utilizes correspondence features from intermediate stages to generate a probability set, which acts as guiding information for subsequent learning phases, allowing the network to more effectively capture robust global context information. Notably, this prediction block progressively refines the probability set, thereby mitigating the issue of information loss that is common in the traditional one. Extensive experiments prove that the proposed LeCoT outperforms state-of-the-art methods in correspondence pruning, relative pose estimation, homography estimation, visual localization, and $3$D~reconstruction tasks. The code is provided in https://github.com/Dailuanyuan2024/LeCoT-Revisiting-Network-Architecture-for-Two-View-Correspondence-Pruning.
comment: Just accepted at SCIENCE CHINA Information Sciences
☆ ClusterMine: Robust Label-Free Visual Out-Of-Distribution Detection via Concept Mining from Text Corpora WACV 2026
Large-scale visual out-of-distribution (OOD) detection has witnessed remarkable progress by leveraging vision-language models such as CLIP. However, a significant limitation of current methods is their reliance on a pre-defined set of in-distribution (ID) ground-truth label names (positives). These fixed label names can be unavailable, unreliable at scale, or become less relevant due to in-distribution shifts after deployment. Towards truly unsupervised OOD detection, we utilize widely available text corpora for positive label mining, bypassing the need for positives. In this paper, we utilize widely available text corpora for positive label mining under a general concept mining paradigm. Within this framework, we propose ClusterMine, a novel positive label mining method. ClusterMine is the first method to achieve state-of-the-art OOD detection performance without access to positive labels. It extracts positive concepts from a large text corpus by combining visual-only sample consistency (via clustering) and zero-shot image-text consistency. Our experimental study reveals that ClusterMine is scalable across a plethora of CLIP models and achieves state-of-the-art robustness to covariate in-distribution shifts. The code is available at https://github.com/HHU-MMBS/clustermine_wacv_official.
comment: Accepted in WACV 2026. Code in https://github.com/HHU-MMBS/clustermine_wacv_official 9 Tables, 11 Figures
☆ RaLD: Generating High-Resolution 3D Radar Point Clouds with Latent Diffusion
Millimeter-wave radar offers a promising sensing modality for autonomous systems thanks to its robustness in adverse conditions and low cost. However, its utility is significantly limited by the sparsity and low resolution of radar point clouds, which poses challenges for tasks requiring dense and accurate 3D perception. Despite that recent efforts have shown great potential by exploring generative approaches to address this issue, they often rely on dense voxel representations that are inefficient and struggle to preserve structural detail. To fill this gap, we make the key observation that latent diffusion models (LDMs), though successful in other modalities, have not been effectively leveraged for radar-based 3D generation due to a lack of compatible representations and conditioning strategies. We introduce RaLD, a framework that bridges this gap by integrating scene-level frustum-based LiDAR autoencoding, order-invariant latent representations, and direct radar spectrum conditioning. These insights lead to a more compact and expressive generation process. Experiments show that RaLD produces dense and accurate 3D point clouds from raw radar spectrums, offering a promising solution for robust perception in challenging environments.
☆ TauFlow: Dynamic Causal Constraint for Complexity-Adaptive Lightweight Segmentation
Deploying lightweight medical image segmentation models on edge devices presents two major challenges: 1) efficiently handling the stark contrast between lesion boundaries and background regions, and 2) the sharp drop in accuracy that occurs when pursuing extremely lightweight designs (e.g., <0.5M parameters). To address these problems, this paper proposes TauFlow, a novel lightweight segmentation model. The core of TauFlow is a dynamic feature response strategy inspired by brain-like mechanisms. This is achieved through two key innovations: the Convolutional Long-Time Constant Cell (ConvLTC), which dynamically regulates the feature update rate to "slowly" process low-frequency backgrounds and "quickly" respond to high-frequency boundaries; and the STDP Self-Organizing Module, which significantly mitigates feature conflicts between the encoder and decoder, reducing the conflict rate from approximately 35%-40% to 8%-10%.
comment: 42 pages and 9 figures
☆ Improving Deepfake Detection with Reinforcement Learning-Based Adaptive Data Augmentation
The generalization capability of deepfake detectors is critical for real-world use. Data augmentation via synthetic fake face generation effectively enhances generalization, yet current SoTA methods rely on fixed strategies-raising a key question: Is a single static augmentation sufficient, or does the diversity of forgery features demand dynamic approaches? We argue existing methods overlook the evolving complexity of real-world forgeries (e.g., facial warping, expression manipulation), which fixed policies cannot fully simulate. To address this, we propose CRDA (Curriculum Reinforcement-Learning Data Augmentation), a novel framework guiding detectors to progressively master multi-domain forgery features from simple to complex. CRDA synthesizes augmented samples via a configurable pool of forgery operations and dynamically generates adversarial samples tailored to the detector's current learning state. Central to our approach is integrating reinforcement learning (RL) and causal inference. An RL agent dynamically selects augmentation actions based on detector performance to efficiently explore the vast augmentation space, adapting to increasingly challenging forgeries. Simultaneously, the agent introduces action space variations to generate heterogeneous forgery patterns, guided by causal inference to mitigate spurious correlations-suppressing task-irrelevant biases and focusing on causally invariant features. This integration ensures robust generalization by decoupling synthetic augmentation patterns from the model's learned representations. Extensive experiments show our method significantly improves detector generalizability, outperforming SOTA methods across multiple cross-domain datasets.
☆ From Pretrain to Pain: Adversarial Vulnerability of Video Foundation Models Without Task Knowledge AAAI 2026
Large-scale Video Foundation Models (VFMs) has significantly advanced various video-related tasks, either through task-specific models or Multi-modal Large Language Models (MLLMs). However, the open accessibility of VFMs also introduces critical security risks, as adversaries can exploit full knowledge of the VFMs to launch potent attacks. This paper investigates a novel and practical adversarial threat scenario: attacking downstream models or MLLMs fine-tuned from open-source VFMs, without requiring access to the victim task, training data, model query, and architecture. In contrast to conventional transfer-based attacks that rely on task-aligned surrogate models, we demonstrate that adversarial vulnerabilities can be exploited directly from the VFMs. To this end, we propose the Transferable Video Attack (TVA), a temporal-aware adversarial attack method that leverages the temporal representation dynamics of VFMs to craft effective perturbations. TVA integrates a bidirectional contrastive learning mechanism to maximize the discrepancy between the clean and adversarial features, and introduces a temporal consistency loss that exploits motion cues to enhance the sequential impact of perturbations. TVA avoids the need to train expensive surrogate models or access to domain-specific data, thereby offering a more practical and efficient attack strategy. Extensive experiments across 24 video-related tasks demonstrate the efficacy of TVA against downstream models and MLLMs, revealing a previously underexplored security vulnerability in the deployment of video models.
comment: AAAI 2026 (Oral presentation)
☆ 3D-ANC: Adaptive Neural Collapse for Robust 3D Point Cloud Recognition AAAI 2026
Deep neural networks have recently achieved notable progress in 3D point cloud recognition, yet their vulnerability to adversarial perturbations poses critical security challenges in practical deployments. Conventional defense mechanisms struggle to address the evolving landscape of multifaceted attack patterns. Through systematic analysis of existing defenses, we identify that their unsatisfactory performance primarily originates from an entangled feature space, where adversarial attacks can be performed easily. To this end, we present 3D-ANC, a novel approach that capitalizes on the Neural Collapse (NC) mechanism to orchestrate discriminative feature learning. In particular, NC depicts where last-layer features and classifier weights jointly evolve into a simplex equiangular tight frame (ETF) arrangement, establishing maximally separable class prototypes. However, leveraging this advantage in 3D recognition confronts two substantial challenges: (1) prevalent class imbalance in point cloud datasets, and (2) complex geometric similarities between object categories. To tackle these obstacles, our solution combines an ETF-aligned classification module with an adaptive training framework consisting of representation-balanced learning (RBL) and dynamic feature direction loss (FDL). 3D-ANC seamlessly empowers existing models to develop disentangled feature spaces despite the complexity in 3D data distribution. Comprehensive evaluations state that 3D-ANC significantly improves the robustness of models with various structures on two datasets. For instance, DGCNN's classification accuracy is elevated from 27.2% to 80.9% on ModelNet40 -- a 53.7% absolute gain that surpasses leading baselines by 34.0%.
comment: AAAI 2026
☆ Certified L2-Norm Robustness of 3D Point Cloud Recognition in the Frequency Domain AAAI26
3D point cloud classification is a fundamental task in safety-critical applications such as autonomous driving, robotics, and augmented reality. However, recent studies reveal that point cloud classifiers are vulnerable to structured adversarial perturbations and geometric corruptions, posing risks to their deployment in safety-critical scenarios. Existing certified defenses limit point-wise perturbations but overlook subtle geometric distortions that preserve individual points yet alter the overall structure, potentially leading to misclassification. In this work, we propose FreqCert, a novel certification framework that departs from conventional spatial domain defenses by shifting robustness analysis to the frequency domain, enabling structured certification against global L2-bounded perturbations. FreqCert first transforms the input point cloud via the graph Fourier transform (GFT), then applies structured frequency-aware subsampling to generate multiple sub-point clouds. Each sub-cloud is independently classified by a standard model, and the final prediction is obtained through majority voting, where sub-clouds are constructed based on spectral similarity rather than spatial proximity, making the partitioning more stable under L2 perturbations and better aligned with the object's intrinsic structure. We derive a closed-form lower bound on the certified L2 robustness radius and prove its tightness under minimal and interpretable assumptions, establishing a theoretical foundation for frequency domain certification. Extensive experiments on the ModelNet40 and ScanObjectNN datasets demonstrate that FreqCert consistently achieves higher certified accuracy and empirical accuracy under strong perturbations. Our results suggest that spectral representations provide an effective pathway toward certifiable robustness in 3D point cloud recognition.
comment: Accepted by AAAI26
☆ A Picture is Worth a Thousand (Correct) Captions: A Vision-Guided Judge-Corrector System for Multimodal Machine Translation AACL 2025
In this paper, we describe our system under the team name BLEU Monday for the English-to-Indic Multimodal Translation Task at WAT 2025. We participate in the text-only translation tasks for English-Hindi, English-Bengali, English-Malayalam, and English-Odia language pairs. We present a two-stage approach that addresses quality issues in the training data through automated error detection and correction, followed by parameter-efficient model fine-tuning. Our methodology introduces a vision-augmented judge-corrector pipeline that leverages multimodal language models to systematically identify and correct translation errors in the training data. The judge component classifies translations into three categories: correct, visually ambiguous (requiring image context), or mistranslated (poor translation quality). Identified errors are routed to specialized correctors: GPT-4o-mini regenerates captions requiring visual disambiguation, while IndicTrans2 retranslates cases with pure translation quality issues. This automated pipeline processes 28,928 training examples across four languages, correcting an average of 17.1% of captions per language. We then apply Low-Rank Adaptation (LoRA) to fine-tune the IndicTrans2 en-indic 200M distilled model on both original and corrected datasets. Training on corrected data yields consistent improvements, with BLEU score gains of +1.30 for English-Bengali on the evaluation set (42.00 -> 43.30) and +0.70 on the challenge set (44.90 -> 45.60), +0.60 for English-Odia on the evaluation set (41.00 -> 41.60), and +0.10 for English-Hindi on the challenge set (53.90 -> 54.00).
comment: Accepted at The 12th Workshop on Asian Translation, co-located with IJCLNLP-AACL 2025
☆ Performance Decay in Deepfake Detection: The Limitations of Training on Outdated Data
The continually advancing quality of deepfake technology exacerbates the threats of disinformation, fraud, and harassment by making maliciously-generated synthetic content increasingly difficult to distinguish from reality. We introduce a simple yet effective two-stage detection method that achieves an AUROC of over 99.8% on contemporary deepfakes. However, this high performance is short-lived. We show that models trained on this data suffer a recall drop of over 30% when evaluated on deepfakes created with generation techniques from just six months later, demonstrating significant decay as threats evolve. Our analysis reveals two key insights for robust detection. Firstly, continued performance requires the ongoing curation of large, diverse datasets. Second, predictive power comes primarily from static, frame-level artifacts, not temporal inconsistencies. The future of effective deepfake detection therefore depends on rapid data collection and the development of advanced frame-level feature detectors.
☆ TrueCity: Real and Simulated Urban Data for Cross-Domain 3D Scene Understanding 3DV 2026
3D semantic scene understanding remains a long-standing challenge in the 3D computer vision community. One of the key issues pertains to limited real-world annotated data to facilitate generalizable models. The common practice to tackle this issue is to simulate new data. Although synthetic datasets offer scalability and perfect labels, their designer-crafted scenes fail to capture real-world complexity and sensor noise, resulting in a synthetic-to-real domain gap. Moreover, no benchmark provides synchronized real and simulated point clouds for segmentation-oriented domain shift analysis. We introduce TrueCity, the first urban semantic segmentation benchmark with cm-accurate annotated real-world point clouds, semantic 3D city models, and annotated simulated point clouds representing the same city. TrueCity proposes segmentation classes aligned with international 3D city modeling standards, enabling consistent evaluation of synthetic-to-real gap. Our extensive experiments on common baselines quantify domain shift and highlight strategies for exploiting synthetic data to enhance real-world 3D scene understanding. We are convinced that the TrueCity dataset will foster further development of sim-to-real gap quantification and enable generalizable data-driven models. The data, code, and 3D models are available online: https://tum-gis.github.io/TrueCity/
comment: The paper accepted for 3DV 2026 (International Conference on 3D Vision 2026)
☆ Exploring the "Great Unseen" in Medieval Manuscripts: Instance-Level Labeling of Legacy Image Collections with Zero-Shot Models
We aim to theorize the medieval manuscript page and its contents more holistically, using state-of-the-art techniques to segment and describe the entire manuscript folio, for the purpose of creating richer training data for computer vision techniques, namely instance segmentation, and multimodal models for medieval-specific visual content.
☆ Oh That Looks Familiar: A Novel Similarity Measure for Spreadsheet Template Discovery
Traditional methods for identifying structurally similar spreadsheets fail to capture the spatial layouts and type patterns defining templates. To quantify spreadsheet similarity, we introduce a hybrid distance metric that combines semantic embeddings, data type information, and spatial positioning. In order to calculate spreadsheet similarity, our method converts spreadsheets into cell-level embeddings and then uses aggregation techniques like Chamfer and Hausdorff distances. Experiments across template families demonstrate superior unsupervised clustering performance compared to the graph-based Mondrian baseline, achieving perfect template reconstruction (Adjusted Rand Index of 1.00 versus 0.90) on the FUSTE dataset. Our approach facilitates large-scale automated template discovery, which in turn enables downstream applications such as retrieval-augmented generation over tabular collections, model training, and bulk data cleaning.
comment: 5 pages, 2 figures, Accepted for EuroIPS: AI for Tabular Data Workshop (2025)
☆ Learning from the Right Patches: A Two-Stage Wavelet-Driven Masked Autoencoder for Histopathology Representation Learning
Whole-slide images are central to digital pathology, yet their extreme size and scarce annotations make self-supervised learning essential. Masked Autoencoders (MAEs) with Vision Transformer backbones have recently shown strong potential for histopathology representation learning. However, conventional random patch sampling during MAE pretraining often includes irrelevant or noisy regions, limiting the model's ability to capture meaningful tissue patterns. In this paper, we present a lightweight and domain-adapted framework that brings structure and biological relevance into MAE-based learning through a wavelet-informed patch selection strategy. WISE-MAE applies a two-step coarse-to-fine process: wavelet-based screening at low magnification to locate structurally rich regions, followed by high-resolution extraction for detailed modeling. This approach mirrors the diagnostic workflow of pathologists and improves the quality of learned representations. Evaluations across multiple cancer datasets, including lung, renal, and colorectal tissues, show that WISE-MAE achieves competitive representation quality and downstream classification performance while maintaining efficiency under weak supervision.
☆ GFix: Perceptually Enhanced Gaussian Splatting Video Compression
3D Gaussian Splatting (3DGS) enhances 3D scene reconstruction through explicit representation and fast rendering, demonstrating potential benefits for various low-level vision tasks, including video compression. However, existing 3DGS-based video codecs generally exhibit more noticeable visual artifacts and relatively low compression ratios. In this paper, we specifically target the perceptual enhancement of 3DGS-based video compression, based on the assumption that artifacts from 3DGS rendering and quantization resemble noisy latents sampled during diffusion training. Building on this premise, we propose a content-adaptive framework, GFix, comprising a streamlined, single-step diffusion model that serves as an off-the-shelf neural enhancer. Moreover, to increase compression efficiency, We propose a modulated LoRA scheme that freezes the low-rank decompositions and modulates the intermediate hidden states, thereby achieving efficient adaptation of the diffusion backbone with highly compressible updates. Experimental results show that GFix delivers strong perceptual quality enhancement, outperforming GSVC with up to 72.1% BD-rate savings in LPIPS and 21.4% in FID.
☆ PADM: A Physics-aware Diffusion Model for Attenuation Correction WACV
Attenuation artifacts remain a significant challenge in cardiac Myocardial Perfusion Imaging (MPI) using Single-Photon Emission Computed Tomography (SPECT), often compromising diagnostic accuracy and reducing clinical interpretability. While hybrid SPECT/CT systems mitigate these artifacts through CT-derived attenuation maps, their high cost, limited accessibility, and added radiation exposure hinder widespread clinical adoption. In this study, we propose a novel CT-free solution to attenuation correction in cardiac SPECT. Specifically, we introduce Physics-aware Attenuation Correction Diffusion Model (PADM), a diffusion-based generative method that incorporates explicit physics priors via a teacher--student distillation mechanism. This approach enables attenuation artifact correction using only Non-Attenuation-Corrected (NAC) input, while still benefiting from physics-informed supervision during training. To support this work, we also introduce CardiAC, a comprehensive dataset comprising 424 patient studies with paired NAC and Attenuation-Corrected (AC) reconstructions, alongside high-resolution CT-based attenuation maps. Extensive experiments demonstrate that PADM outperforms state-of-the-art generative models, delivering superior reconstruction fidelity across both quantitative metrics and visual assessment.
comment: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
☆ FoCLIP: A Feature-Space Misalignment Framework for CLIP-Based Image Manipulation and Detection
The well-aligned attribute of CLIP-based models enables its effective application like CLIPscore as a widely adopted image quality assessment metric. However, such a CLIP-based metric is vulnerable for its delicate multimodal alignment. In this work, we propose \textbf{FoCLIP}, a feature-space misalignment framework for fooling CLIP-based image quality metric. Based on the stochastic gradient descent technique, FoCLIP integrates three key components to construct fooling examples: feature alignment as the core module to reduce image-text modality gaps, the score distribution balance module and pixel-guard regularization, which collectively optimize multimodal output equilibrium between CLIPscore performance and image quality. Such a design can be engineered to maximize the CLIPscore predictions across diverse input prompts, despite exhibiting either visual unrecognizability or semantic incongruence with the corresponding adversarial prompts from human perceptual perspectives. Experiments on ten artistic masterpiece prompts and ImageNet subsets demonstrate that optimized images can achieve significant improvement in CLIPscore while preserving high visual fidelity. In addition, we found that grayscale conversion induces significant feature degradation in fooling images, exhibiting noticeable CLIPscore reduction while preserving statistical consistency with original images. Inspired by this phenomenon, we propose a color channel sensitivity-driven tampering detection mechanism that achieves 91% accuracy on standard benchmarks. In conclusion, this work establishes a practical pathway for feature misalignment in CLIP-based multimodal systems and the corresponding defense method.
comment: 15 page, 9 figures, published to PRCV
☆ From Attribution to Action: Jointly ALIGNing Predictions and Explanations AAAI 2026
Explanation-guided learning (EGL) has shown promise in aligning model predictions with interpretable reasoning, particularly in computer vision tasks. However, most approaches rely on external annotations or heuristic-based segmentation to supervise model explanations, which can be noisy, imprecise and difficult to scale. In this work, we provide both empirical and theoretical evidence that low-quality supervision signals can degrade model performance rather than improve it. In response, we propose ALIGN, a novel framework that jointly trains a classifier and a masker in an iterative manner. The masker learns to produce soft, task-relevant masks that highlight informative regions, while the classifier is optimized for both prediction accuracy and alignment between its saliency maps and the learned masks. By leveraging high-quality masks as guidance, ALIGN improves both interpretability and generalizability, showing its superiority across various settings. Experiments on the two domain generalization benchmarks, VLCS and Terra Incognita, show that ALIGN consistently outperforms six strong baselines in both in-distribution and out-of-distribution settings. Besides, ALIGN also yields superior explanation quality concerning sufficiency and comprehensiveness, highlighting its effectiveness in producing accurate and interpretable models.
comment: Accepted in AAAI 2026
☆ PlantTraitNet: An Uncertainty-Aware Multimodal Framework for Global-Scale Plant Trait Inference from Citizen Science Data AAAI
Global plant maps of plant traits, such as leaf nitrogen or plant height, are essential for understanding ecosystem processes, including the carbon and energy cycles of the Earth system. However, existing trait maps remain limited by the high cost and sparse geographic coverage of field-based measurements. Citizen science initiatives offer a largely untapped resource to overcome these limitations, with over 50 million geotagged plant photographs worldwide capturing valuable visual information on plant morphology and physiology. In this study, we introduce PlantTraitNet, a multi-modal, multi-task uncertainty-aware deep learning framework that predictsfour key plant traits (plant height, leaf area, specific leaf area, and nitrogen content) from citizen science photos using weak supervision. By aggregating individual trait predictions across space, we generate global maps of trait distributions. We validate these maps against independent vegetation survey data (sPlotOpen) and benchmark them against leading global trait products. Our results show that PlantTraitNet consistently outperforms existing trait maps across all evaluated traits, demonstrating that citizen science imagery, when integrated with computer vision and geospatial AI, enables not only scalable but also more accurate global trait mapping. This approach offers a powerful new pathway for ecological research and Earth system modeling.
comment: Preprint version of the paper accepted at the 40th AAAI Conference on Artificial Intelligence (AAAI-26), organized by the Association for the Advancement of Artificial Intelligence
☆ DTTNet: Improving Video Shadow Detection via Dark-Aware Guidance and Tokenized Temporal Modeling
Video shadow detection confronts two entwined difficulties: distinguishing shadows from complex backgrounds and modeling dynamic shadow deformations under varying illumination. To address shadow-background ambiguity, we leverage linguistic priors through the proposed Vision-language Match Module (VMM) and a Dark-aware Semantic Block (DSB), extracting text-guided features to explicitly differentiate shadows from dark objects. Furthermore, we introduce adaptive mask reweighting to downweight penumbra regions during training and apply edge masks at the final decoder stage for better supervision. For temporal modeling of variable shadow shapes, we propose a Tokenized Temporal Block (TTB) that decouples spatiotemporal learning. TTB summarizes cross-frame shadow semantics into learnable temporal tokens, enabling efficient sequence encoding with minimal computation overhead. Comprehensive Experiments on multiple benchmark datasets demonstrate state-of-the-art accuracy and real-time inference efficiency. Codes are available at https://github.com/city-cheng/DTTNet.
☆ Mono3DVG-EnSD: Enhanced Spatial-aware and Dimension-decoupled Text Encoding for Monocular 3D Visual Grounding
Monocular 3D Visual Grounding (Mono3DVG) is an emerging task that locates 3D objects in RGB images using text descriptions with geometric cues. However, existing methods face two key limitations. Firstly, they often over-rely on high-certainty keywords that explicitly identify the target object while neglecting critical spatial descriptions. Secondly, generalized textual features contain both 2D and 3D descriptive information, thereby capturing an additional dimension of details compared to singular 2D or 3D visual features. This characteristic leads to cross-dimensional interference when refining visual features under text guidance. To overcome these challenges, we propose Mono3DVG-EnSD, a novel framework that integrates two key components: the CLIP-Guided Lexical Certainty Adapter (CLIP-LCA) and the Dimension-Decoupled Module (D2M). The CLIP-LCA dynamically masks high-certainty keywords while retaining low-certainty implicit spatial descriptions, thereby forcing the model to develop a deeper understanding of spatial relationships in captions for object localization. Meanwhile, the D2M decouples dimension-specific (2D/3D) textual features from generalized textual features to guide corresponding visual features at same dimension, which mitigates cross-dimensional interference by ensuring dimensionally-consistent cross-modal interactions. Through comprehensive comparisons and ablation studies on the Mono3DRefer dataset, our method achieves state-of-the-art (SOTA) performance across all metrics. Notably, it improves the challenging Far(Acc@0.5) scenario by a significant +13.54%.
comment: 10 pages
☆ Classification of Microplastic Particles in Water using Polarized Light Scattering and Machine Learning Methods
Facing the critical need for continuous, large-scale microplastic monitoring, which is hindered by the limitations of gold-standard methods in aquatic environments, this paper introduces and validates a novel, reflection-based approach for the in-situ classification and identification of microplastics directly in water bodies, which is based on polarized light scattering. In this experiment, we classify colorless microplastic particles (50-300 $\mu$m) by illuminating them with linearly polarized laser light and capturing their reflected signals using a polarization-sensitive camera. This reflection-based technique successfully circumvents the transmission-based interference issues that plague many conventional methods when applied in water. Using a deep convolutional neural network (CNN) for image-based classification, we successfully identified three common polymer types, high-density polyethylene, low-density polyethylene, and polypropylene, achieving a peak mean classification accuracy of 80% on the test dataset. A subsequent feature hierarchy analysis demonstrated that the CNN's decision-making process relies mainly on the microstructural integrity and internal texture (polarization patterns) of the particle rather than its macroshape. Critically, we found that the Angle of Linear Polarization (AOLP) signal is significantly more robust against contextual noise than the Degree of Linear Polarization (DOLP) signal. While the AOLP-based classification achieved superior overall performance, its strength lies in distinguishing between the two polyethylene plastics, showing a lower confusion rate between high-density and low-density polyethylene. Conversely, the DOLP signal demonstrated slightly worse overall classification results but excels at accurately identifying the polypropylene class, which it isolated with greater success than AOLP.
comment: 20 pages, 6 figures
☆ Adaptive Morph-Patch Transformer for Arotic Vessel Segmentation AAAI 2026
Accurate segmentation of aortic vascular structures is critical for diagnosing and treating cardiovascular diseases.Traditional Transformer-based models have shown promise in this domain by capturing long-range dependencies between vascular features. However, their reliance on fixed-size rectangular patches often influences the integrity of complex vascular structures, leading to suboptimal segmentation accuracy. To address this challenge, we propose the adaptive Morph Patch Transformer (MPT), a novel architecture specifically designed for aortic vascular segmentation. Specifically, MPT introduces an adaptive patch partitioning strategy that dynamically generates morphology-aware patches aligned with complex vascular structures. This strategy can preserve semantic integrity of complex vascular structures within individual patches. Moreover, a Semantic Clustering Attention (SCA) method is proposed to dynamically aggregate features from various patches with similar semantic characteristics. This method enhances the model's capability to segment vessels of varying sizes, preserving the integrity of vascular structures. Extensive experiments on three open-source dataset(AVT, AortaSeg24 and TBAD) demonstrate that MPT achieves state-of-the-art performance, with improvements in segmenting intricate vascular structures.
comment: This is the preprint version of a paper accepted by AAAI 2026. The final version will appear in the AAAI Proceedings
☆ A Two-Stage System for Layout-Controlled Image Generation using Large Language Models and Diffusion Models
Text-to-image diffusion models exhibit remarkable generative capabilities, but lack precise control over object counts and spatial arrangements. This work introduces a two-stage system to address these compositional limitations. The first stage employs a Large Language Model (LLM) to generate a structured layout from a list of objects. The second stage uses a layout-conditioned diffusion model to synthesize a photorealistic image adhering to this layout. We find that task decomposition is critical for LLM-based spatial planning; by simplifying the initial generation to core objects and completing the layout with rule-based insertion, we improve object recall from 57.2% to 99.9% for complex scenes. For image synthesis, we compare two leading conditioning methods: ControlNet and GLIGEN. After domain-specific finetuning on table-setting datasets, we identify a key trade-off: ControlNet preserves text-based stylistic control but suffers from object hallucination, while GLIGEN provides superior layout fidelity at the cost of reduced prompt-based controllability. Our end-to-end system successfully generates images with specified object counts and plausible spatial arrangements, demonstrating the viability of a decoupled approach for compositionally controlled synthesis.
comment: 12 pages, 5 figures
☆ Generating an Image From 1,000 Words: Enhancing Text-to-Image With Structured Captions
Text-to-image models have rapidly evolved from casual creative tools to professional-grade systems, achieving unprecedented levels of image quality and realism. Yet, most models are trained to map short prompts into detailed images, creating a gap between sparse textual input and rich visual outputs. This mismatch reduces controllability, as models often fill in missing details arbitrarily, biasing toward average user preferences and limiting precision for professional use. We address this limitation by training the first open-source text-to-image model on long structured captions, where every training sample is annotated with the same set of fine-grained attributes. This design maximizes expressive coverage and enables disentangled control over visual factors. To process long captions efficiently, we propose DimFusion, a fusion mechanism that integrates intermediate tokens from a lightweight LLM without increasing token length. We also introduce the Text-as-a-Bottleneck Reconstruction (TaBR) evaluation protocol. By assessing how well real images can be reconstructed through a captioning-generation loop, TaBR directly measures controllability and expressiveness, even for very long captions where existing evaluation methods fail. Finally, we demonstrate our contributions by training the large-scale model FIBO, achieving state-of-the-art prompt alignment among open-source models. Model weights are publicly available at https://huggingface.co/briaai/FIBO
☆ VAEVQ: Enhancing Discrete Visual Tokenization through Variational Modeling
Vector quantization (VQ) transforms continuous image features into discrete representations, providing compressed, tokenized inputs for generative models. However, VQ-based frameworks suffer from several issues, such as non-smooth latent spaces, weak alignment between representations before and after quantization, and poor coherence between the continuous and discrete domains. These issues lead to unstable codeword learning and underutilized codebooks, ultimately degrading the performance of both reconstruction and downstream generation tasks. To this end, we propose VAEVQ, which comprises three key components: (1) Variational Latent Quantization (VLQ), replacing the AE with a VAE for quantization to leverage its structured and smooth latent space, thereby facilitating more effective codeword activation; (2) Representation Coherence Strategy (RCS), adaptively modulating the alignment strength between pre- and post-quantization features to enhance consistency and prevent overfitting to noise; and (3) Distribution Consistency Regularization (DCR), aligning the entire codebook distribution with the continuous latent distribution to improve utilization. Extensive experiments on two benchmark datasets demonstrate that VAEVQ outperforms state-of-the-art methods.
☆ Ambiguity-aware Truncated Flow Matching for Ambiguous Medical Image Segmentation AAAI-26
A simultaneous enhancement of accuracy and diversity of predictions remains a challenge in ambiguous medical image segmentation (AMIS) due to the inherent trade-offs. While truncated diffusion probabilistic models (TDPMs) hold strong potential with a paradigm optimization, existing TDPMs suffer from entangled accuracy and diversity of predictions with insufficient fidelity and plausibility. To address the aforementioned challenges, we propose Ambiguity-aware Truncated Flow Matching (ATFM), which introduces a novel inference paradigm and dedicated model components. Firstly, we propose Data-Hierarchical Inference, a redefinition of AMIS-specific inference paradigm, which enhances accuracy and diversity at data-distribution and data-sample level, respectively, for an effective disentanglement. Secondly, Gaussian Truncation Representation (GTR) is introduced to enhance both fidelity of predictions and reliability of truncation distribution, by explicitly modeling it as a Gaussian distribution at $T_{\text{trunc}}$ instead of using sampling-based approximations.Thirdly, Segmentation Flow Matching (SFM) is proposed to enhance the plausibility of diverse predictions by extending semantic-aware flow transformation in Flow Matching (FM). Comprehensive evaluations on LIDC and ISIC3 datasets demonstrate that ATFM outperforms SOTA methods and simultaneously achieves a more efficient inference. ATFM improves GED and HM-IoU by up to $12\%$ and $7.3\%$ compared to advanced methods.
comment: 13 pages, 10 figures, extended version of AAAI-26 paper
☆ Distillation Dynamics: Towards Understanding Feature-Based Distillation in Vision Transformers AAAI 2026
While feature-based knowledge distillation has proven highly effective for compressing CNNs, these techniques unexpectedly fail when applied to Vision Transformers (ViTs), often performing worse than simple logit-based distillation. We provide the first comprehensive analysis of this phenomenon through a novel analytical framework termed as ``distillation dynamics", combining frequency spectrum analysis, information entropy metrics, and activation magnitude tracking. Our investigation reveals that ViTs exhibit a distinctive U-shaped information processing pattern: initial compression followed by expansion. We identify the root cause of negative transfer in feature distillation: a fundamental representational paradigm mismatch between teacher and student models. Through frequency-domain analysis, we show that teacher models employ distributed, high-dimensional encoding strategies in later layers that smaller student models cannot replicate due to limited channel capacity. This mismatch causes late-layer feature alignment to actively harm student performance. Our findings reveal that successful knowledge transfer in ViTs requires moving beyond naive feature mimicry to methods that respect these fundamental representational constraints, providing essential theoretical guidance for designing effective ViTs compression strategies. All source code and experimental logs are provided in the supplementary material.
comment: Accepted to AAAI 2026. Submitted version
☆ Gaussian-Augmented Physics Simulation and System Identification with Complex Colliders NeurIPS 2025
System identification involving the geometry, appearance, and physical properties from video observations is a challenging task with applications in robotics and graphics. Recent approaches have relied on fully differentiable Material Point Method (MPM) and rendering for simultaneous optimization of these properties. However, they are limited to simplified object-environment interactions with planar colliders and fail in more challenging scenarios where objects collide with non-planar surfaces. We propose AS-DiffMPM, a differentiable MPM framework that enables physical property estimation with arbitrarily shaped colliders. Our approach extends existing methods by incorporating a differentiable collision handling mechanism, allowing the target object to interact with complex rigid bodies while maintaining end-to-end optimization. We show AS-DiffMPM can be easily interfaced with various novel view synthesis methods as a framework for system identification from visual observations.
comment: Accepted to NeurIPS 2025. Project website: https://as-diffmpm.github.io/
☆ Aerial Image Stitching Using IMU Data from a UAV
Unmanned Aerial Vehicles (UAVs) are widely used for aerial photography and remote sensing applications. One of the main challenges is to stitch together multiple images into a single high-resolution image that covers a large area. Featurebased image stitching algorithms are commonly used but can suffer from errors and ambiguities in feature detection and matching. To address this, several approaches have been proposed, including using bundle adjustment techniques or direct image alignment. In this paper, we present a novel method that uses a combination of IMU data and computer vision techniques for stitching images captured by a UAV. Our method involves several steps such as estimating the displacement and rotation of the UAV between consecutive images, correcting for perspective distortion, and computing a homography matrix. We then use a standard image stitching algorithm to align and blend the images together. Our proposed method leverages the additional information provided by the IMU data, corrects for various sources of distortion, and can be easily integrated into existing UAV workflows. Our experiments demonstrate the effectiveness and robustness of our method, outperforming some of the existing feature-based image stitching algorithms in terms of accuracy and reliability, particularly in challenging scenarios such as large displacements, rotations, and variations in camera pose.
☆ PanoNav: Mapless Zero-Shot Object Navigation with Panoramic Scene Parsing and Dynamic Memory AAAI 2026
Zero-shot object navigation (ZSON) in unseen environments remains a challenging problem for household robots, requiring strong perceptual understanding and decision-making capabilities. While recent methods leverage metric maps and Large Language Models (LLMs), they often depend on depth sensors or prebuilt maps, limiting the spatial reasoning ability of Multimodal Large Language Models (MLLMs). Mapless ZSON approaches have emerged to address this, but they typically make short-sighted decisions, leading to local deadlocks due to a lack of historical context. We propose PanoNav, a fully RGB-only, mapless ZSON framework that integrates a Panoramic Scene Parsing module to unlock the spatial parsing potential of MLLMs from panoramic RGB inputs, and a Memory-guided Decision-Making mechanism enhanced by a Dynamic Bounded Memory Queue to incorporate exploration history and avoid local deadlocks. Experiments on the public navigation benchmark show that PanoNav significantly outperforms representative baselines in both SR and SPL metrics.
comment: Accepted as a poster in AAAI 2026
☆ Vision-Based System Identification of a Quadrotor
This paper explores the application of vision-based system identification techniques in quadrotor modeling and control. Through experiments and analysis, we address the complexities and limitations of quadrotor modeling, particularly in relation to thrust and drag coefficients. Grey-box modeling is employed to mitigate uncertainties, and the effectiveness of an onboard vision system is evaluated. An LQR controller is designed based on a system identification model using data from the onboard vision system. The results demonstrate consistent performance between the models, validating the efficacy of vision based system identification. This study highlights the potential of vision-based techniques in enhancing quadrotor modeling and control, contributing to improved performance and operational capabilities. Our findings provide insights into the usability and consistency of these techniques, paving the way for future research in quadrotor performance enhancement, fault detection, and decision-making processes.
☆ NeuroBridge: Bio-Inspired Self-Supervised EEG-to-Image Decoding via Cognitive Priors and Bidirectional Semantic Alignment AAAI 2026
Visual neural decoding seeks to reconstruct or infer perceived visual stimuli from brain activity patterns, providing critical insights into human cognition and enabling transformative applications in brain-computer interfaces and artificial intelligence. Current approaches, however, remain constrained by the scarcity of high-quality stimulus-brain response pairs and the inherent semantic mismatch between neural representations and visual content. Inspired by perceptual variability and co-adaptive strategy of the biological systems, we propose a novel self-supervised architecture, named NeuroBridge, which integrates Cognitive Prior Augmentation (CPA) with Shared Semantic Projector (SSP) to promote effective cross-modality alignment. Specifically, CPA simulates perceptual variability by applying asymmetric, modality-specific transformations to both EEG signals and images, enhancing semantic diversity. Unlike previous approaches, SSP establishes a bidirectional alignment process through a co-adaptive strategy, which mutually aligns features from two modalities into a shared semantic space for effective cross-modal learning. NeuroBridge surpasses previous state-of-the-art methods under both intra-subject and inter-subject settings. In the intra-subject scenario, it achieves the improvements of 12.3% in top-1 accuracy and 10.2% in top-5 accuracy, reaching 63.2% and 89.9% respectively on a 200-way zero-shot retrieval task. Extensive experiments demonstrate the effectiveness, robustness, and scalability of the proposed framework for neural visual decoding.
comment: AAAI 2026
☆ ConsistTalk: Intensity Controllable Temporally Consistent Talking Head Generation with Diffusion Noise Search AAAI26
Recent advancements in video diffusion models have significantly enhanced audio-driven portrait animation. However, current methods still suffer from flickering, identity drift, and poor audio-visual synchronization. These issues primarily stem from entangled appearance-motion representations and unstable inference strategies. In this paper, we introduce \textbf{ConsistTalk}, a novel intensity-controllable and temporally consistent talking head generation framework with diffusion noise search inference. First, we propose \textbf{an optical flow-guided temporal module (OFT)} that decouples motion features from static appearance by leveraging facial optical flow, thereby reducing visual flicker and improving temporal consistency. Second, we present an \textbf{Audio-to-Intensity (A2I) model} obtained through multimodal teacher-student knowledge distillation. By transforming audio and facial velocity features into a frame-wise intensity sequence, the A2I model enables joint modeling of audio and visual motion, resulting in more natural dynamics. This further enables fine-grained, frame-wise control of motion dynamics while maintaining tight audio-visual synchronization. Third, we introduce a \textbf{diffusion noise initialization strategy (IC-Init)}. By enforcing explicit constraints on background coherence and motion continuity during inference-time noise search, we achieve better identity preservation and refine motion dynamics compared to the current autoregressive strategy. Extensive experiments demonstrate that ConsistTalk significantly outperforms prior methods in reducing flicker, preserving identity, and delivering temporally stable, high-fidelity talking head videos.
comment: AAAI26 poster
☆ MUGSQA: Novel Multi-Uncertainty-Based Gaussian Splatting Quality Assessment Method, Dataset, and Benchmarks
Gaussian Splatting (GS) has recently emerged as a promising technique for 3D object reconstruction, delivering high-quality rendering results with significantly improved reconstruction speed. As variants continue to appear, assessing the perceptual quality of 3D objects reconstructed with different GS-based methods remains an open challenge. To address this issue, we first propose a unified multi-distance subjective quality assessment method that closely mimics human viewing behavior for objects reconstructed with GS-based methods in actual applications, thereby better collecting perceptual experiences. Based on it, we also construct a novel GS quality assessment dataset named MUGSQA, which is constructed considering multiple uncertainties of the input data. These uncertainties include the quantity and resolution of input views, the view distance, and the accuracy of the initial point cloud. Moreover, we construct two benchmarks: one to evaluate the robustness of various GS-based reconstruction methods under multiple uncertainties, and the other to evaluate the performance of existing quality assessment metrics. Our dataset and benchmark code will be released soon.
☆ Integrating Reweighted Least Squares with Plug-and-Play Diffusion Priors for Noisy Image Restoration
Existing plug-and-play image restoration methods typically employ off-the-shelf Gaussian denoisers as proximal operators within classical optimization frameworks based on variable splitting. Recently, denoisers induced by generative priors have been successfully integrated into regularized optimization methods for image restoration under Gaussian noise. However, their application to non-Gaussian noise--such as impulse noise--remains largely unexplored. In this paper, we propose a plug-and-play image restoration framework based on generative diffusion priors for robust removal of general noise types, including impulse noise. Within the maximum a posteriori (MAP) estimation framework, the data fidelity term is adapted to the specific noise model. Departing from the conventional least-squares loss used for Gaussian noise, we introduce a generalized Gaussian scale mixture-based loss, which approximates a wide range of noise distributions and leads to an $\ell_q$-norm ($0
comment: 12 pages
☆ TiS-TSL: Image-Label Supervised Surgical Video Stereo Matching via Time-Switchable Teacher-Student Learning
Stereo matching in minimally invasive surgery (MIS) is essential for next-generation navigation and augmented reality. Yet, dense disparity supervision is nearly impossible due to anatomical constraints, typically limiting annotations to only a few image-level labels acquired before the endoscope enters deep body cavities. Teacher-Student Learning (TSL) offers a promising solution by leveraging a teacher trained on sparse labels to generate pseudo labels and associated confidence maps from abundant unlabeled surgical videos. However, existing TSL methods are confined to image-level supervision, providing only spatial confidence and lacking temporal consistency estimation. This absence of spatio-temporal reliability results in unstable disparity predictions and severe flickering artifacts across video frames. To overcome these challenges, we propose TiS-TSL, a novel time-switchable teacher-student learning framework for video stereo matching under minimal supervision. At its core is a unified model that operates in three distinct modes: Image-Prediction (IP), Forward Video-Prediction (FVP), and Backward Video-Prediction (BVP), enabling flexible temporal modeling within a single architecture. Enabled by this unified model, TiS-TSL adopts a two-stage learning strategy. The Image-to-Video (I2V) stage transfers sparse image-level knowledge to initialize temporal modeling. The subsequent Video-to-Video (V2V) stage refines temporal disparity predictions by comparing forward and backward predictions to calculate bidirectional spatio-temporal consistency. This consistency identifies unreliable regions across frames, filters noisy video-level pseudo labels, and enforces temporal coherence. Experimental results on two public datasets demonstrate that TiS-TSL exceeds other image-based state-of-the-arts by improving TEPE and EPE by at least 2.11% and 4.54%, respectively..
comment: 8 pages, 4 figures, accepted by BiBM2025
☆ ConeGS: Error-Guided Densification Using Pixel Cones for Improved Reconstruction with Fewer Primitives
3D Gaussian Splatting (3DGS) achieves state-of-the-art image quality and real-time performance in novel view synthesis but often suffers from a suboptimal spatial distribution of primitives. This issue stems from cloning-based densification, which propagates Gaussians along existing geometry, limiting exploration and requiring many primitives to adequately cover the scene. We present ConeGS, an image-space-informed densification framework that is independent of existing scene geometry state. ConeGS first creates a fast Instant Neural Graphics Primitives (iNGP) reconstruction as a geometric proxy to estimate per-pixel depth. During the subsequent 3DGS optimization, it identifies high-error pixels and inserts new Gaussians along the corresponding viewing cones at the predicted depth values, initializing their size according to the cone diameter. A pre-activation opacity penalty rapidly removes redundant Gaussians, while a primitive budgeting strategy controls the total number of primitives, either by a fixed budget or by adapting to scene complexity, ensuring high reconstruction quality. Experiments show that ConeGS consistently enhances reconstruction quality and rendering performance across Gaussian budgets, with especially strong gains under tight primitive constraints where efficient placement is crucial.
☆ RRTS Dataset: A Benchmark Colonoscopy Dataset from Resource-Limited Settings for Computer-Aided Diagnosis Research
Background and Objective: Colorectal cancer prevention relies on early detection of polyps during colonoscopy. Existing public datasets, such as CVC-ClinicDB and Kvasir-SEG, provide valuable benchmarks but are limited by small sample sizes, curated image selection, or lack of real-world artifacts. There remains a need for datasets that capture the complexity of clinical practice, particularly in resource-constrained settings. Methods: We introduce a dataset, BUET Polyp Dataset (BPD), of colonoscopy images collected using Olympus 170 and Pen- tax i-Scan series endoscopes under routine clinical conditions. The dataset contains images with corresponding expert-annotated binary masks, reflecting diverse challenges such as motion blur, specular highlights, stool artifacts, blood, and low-light frames. Annotations were manually reviewed by clinical experts to ensure quality. To demonstrate baseline performance, we provide bench- mark results for classification using VGG16, ResNet50, and InceptionV3, and for segmentation using UNet variants with VGG16, ResNet34, and InceptionV4 backbones. Results: The dataset comprises 1,288 images with polyps from 164 patients with corresponding ground-truth masks and 1,657 polyp-free images from 31 patients. Benchmarking experiments achieved up to 90.8% accuracy for binary classification (VGG16) and a maximum Dice score of 0.64 with InceptionV4-UNet for segmentation. Performance was lower compared to curated datasets, reflecting the real-world difficulty of images with artifacts and variable quality.
☆ Robust and High-Fidelity 3D Gaussian Splatting: Fusing Pose Priors and Geometry Constraints for Texture-Deficient Outdoor Scenes IROS 2025
3D Gaussian Splatting (3DGS) has emerged as a key rendering pipeline for digital asset creation due to its balance between efficiency and visual quality. To address the issues of unstable pose estimation and scene representation distortion caused by geometric texture inconsistency in large outdoor scenes with weak or repetitive textures, we approach the problem from two aspects: pose estimation and scene representation. For pose estimation, we leverage LiDAR-IMU Odometry to provide prior poses for cameras in large-scale environments. These prior pose constraints are incorporated into COLMAP's triangulation process, with pose optimization performed via bundle adjustment. Ensuring consistency between pixel data association and prior poses helps maintain both robustness and accuracy. For scene representation, we introduce normal vector constraints and effective rank regularization to enforce consistency in the direction and shape of Gaussian primitives. These constraints are jointly optimized with the existing photometric loss to enhance the map quality. We evaluate our approach using both public and self-collected datasets. In terms of pose optimization, our method requires only one-third of the time while maintaining accuracy and robustness across both datasets. In terms of scene representation, the results show that our method significantly outperforms conventional 3DGS pipelines. Notably, on self-collected datasets characterized by weak or repetitive textures, our approach demonstrates enhanced visualization capabilities and achieves superior overall performance. Codes and data will be publicly available at https://github.com/justinyeah/normal_shape.git.
comment: 7 pages, 3 figures. Accepted by IROS 2025
☆ CAST-LUT: Tokenizer-Guided HSV Look-Up Tables for Purple Flare Removal
Purple flare, a diffuse chromatic aberration artifact commonly found around highlight areas, severely degrades the tone transition and color of the image. Existing traditional methods are based on hand-crafted features, which lack flexibility and rely entirely on fixed priors, while the scarcity of paired training data critically hampers deep learning. To address this issue, we propose a novel network built upon decoupled HSV Look-Up Tables (LUTs). The method aims to simplify color correction by adjusting the Hue (H), Saturation (S), and Value (V) components independently. This approach resolves the inherent color coupling problems in traditional methods. Our model adopts a two-stage architecture: First, a Chroma-Aware Spectral Tokenizer (CAST) converts the input image from RGB space to HSV space and independently encodes the Hue (H) and Value (V) channels into a set of semantic tokens describing the Purple flare status; second, the HSV-LUT module takes these tokens as input and dynamically generates independent correction curves (1D-LUTs) for the three channels H, S, and V. To effectively train and validate our model, we built the first large-scale purple flare dataset with diverse scenes. We also proposed new metrics and a loss function specifically designed for this task. Extensive experiments demonstrate that our model not only significantly outperforms existing methods in visual effects but also achieves state-of-the-art performance on all quantitative metrics.
☆ SlotVLA: Towards Modeling of Object-Relation Representations in Robotic Manipulation
Inspired by how humans reason over discrete objects and their relationships, we explore whether compact object-centric and object-relation representations can form a foundation for multitask robotic manipulation. Most existing robotic multitask models rely on dense embeddings that entangle both object and background cues, raising concerns about both efficiency and interpretability. In contrast, we study object-relation-centric representations as a pathway to more structured, efficient, and explainable visuomotor control. Our contributions are two-fold. First, we introduce LIBERO+, a fine-grained benchmark dataset designed to enable and evaluate object-relation reasoning in robotic manipulation. Unlike prior datasets, LIBERO+ provides object-centric annotations that enrich demonstrations with box- and mask-level labels as well as instance-level temporal tracking, supporting compact and interpretable visuomotor representations. Second, we propose SlotVLA, a slot-attention-based framework that captures both objects and their relations for action decoding. It uses a slot-based visual tokenizer to maintain consistent temporal object representations, a relation-centric decoder to produce task-relevant embeddings, and an LLM-driven module that translates these embeddings into executable actions. Experiments on LIBERO+ demonstrate that object-centric slot and object-relation slot representations drastically reduce the number of required visual tokens, while providing competitive generalization. Together, LIBERO+ and SlotVLA provide a compact, interpretable, and effective foundation for advancing object-relation-centric robotic manipulation.
comment: under review
☆ Med-SORA: Symptom to Organ Reasoning in Abdomen CT Images
Understanding symptom-image associations is crucial for clinical reasoning. However, existing medical multimodal models often rely on simple one-to-one hard labeling, oversimplifying clinical reality where symptoms relate to multiple organs. In addition, they mainly use single-slice 2D features without incorporating 3D information, limiting their ability to capture full anatomical context. In this study, we propose Med-SORA, a framework for symptom-to-organ reasoning in abdominal CT images. Med-SORA introduces RAG-based dataset construction, soft labeling with learnable organ anchors to capture one-to-many symptom-organ relationships, and a 2D-3D cross-attention architecture to fuse local and global image features. To our knowledge, this is the first work to address symptom-to-organ reasoning in medical multimodal learning. Experimental results show that Med-SORA outperforms existing medical multimodal models and enables accurate 3D clinical reasoning.
comment: 9 pages
☆ Hierarchical Spatial-Frequency Aggregation for Spectral Deconvolution Imaging TPAMI
Computational spectral imaging (CSI) achieves real-time hyperspectral imaging through co-designed optics and algorithms, but typical CSI methods suffer from a bulky footprint and limited fidelity. Therefore, Spectral Deconvolution imaging (SDI) methods based on PSF engineering have been proposed to achieve high-fidelity compact CSI design recently. However, the composite convolution-integration operations of SDI render the normal-equation coefficient matrix scene-dependent, which hampers the efficient exploitation of imaging priors and poses challenges for accurate reconstruction. To tackle the inherent data-dependent operators in SDI, we introduce a Hierarchical Spatial-Spectral Aggregation Unfolding Framework (HSFAUF). By decomposing subproblems and projecting them into the frequency domain, HSFAUF transforms nonlinear processes into linear mappings, thereby enabling efficient solutions. Furthermore, to integrate spatial-spectral priors during iterative refinement, we propose a Spatial-Frequency Aggregation Transformer (SFAT), which explicitly aggregates information across spatial and frequency domains. By integrating SFAT into HSFAUF, we develop a Transformer-based deep unfolding method, \textbf{H}ierarchical \textbf{S}patial-\textbf{F}requency \textbf{A}ggregation \textbf{U}nfolding \textbf{T}ransformer (HSFAUT), to solve the inverse problem of SDI. Systematic simulated and real experiments show that HSFAUT surpasses SOTA methods with cheaper memory and computational costs, while exhibiting optimal performance on different SDI systems.
comment: Under Review at TPAMI
☆ Semi-distributed Cross-modal Air-Ground Relative Localization IROS 2025
Efficient, accurate, and flexible relative localization is crucial in air-ground collaborative tasks. However, current approaches for robot relative localization are primarily realized in the form of distributed multi-robot SLAM systems with the same sensor configuration, which are tightly coupled with the state estimation of all robots, limiting both flexibility and accuracy. To this end, we fully leverage the high capacity of Unmanned Ground Vehicle (UGV) to integrate multiple sensors, enabling a semi-distributed cross-modal air-ground relative localization framework. In this work, both the UGV and the Unmanned Aerial Vehicle (UAV) independently perform SLAM while extracting deep learning-based keypoints and global descriptors, which decouples the relative localization from the state estimation of all agents. The UGV employs a local Bundle Adjustment (BA) with LiDAR, camera, and an IMU to rapidly obtain accurate relative pose estimates. The BA process adopts sparse keypoint optimization and is divided into two stages: First, optimizing camera poses interpolated from LiDAR-Inertial Odometry (LIO), followed by estimating the relative camera poses between the UGV and UAV. Additionally, we implement an incremental loop closure detection algorithm using deep learning-based descriptors to maintain and retrieve keyframes efficiently. Experimental results demonstrate that our method achieves outstanding performance in both accuracy and efficiency. Unlike traditional multi-robot SLAM approaches that transmit images or point clouds, our method only transmits keypoint pixels and their descriptors, effectively constraining the communication bandwidth under 0.3 Mbps. Codes and data will be publicly available on https://github.com/Ascbpiac/cross-model-relative-localization.git.
comment: 7 pages, 3 figures. Accepted by IROS 2025
☆ Image Restoration via Primal Dual Hybrid Gradient and Flow Generative Model AAAI26
Regularized optimization has been a classical approach to solving imaging inverse problems, where the regularization term enforces desirable properties of the unknown image. Recently, the integration of flow matching generative models into image restoration has garnered significant attention, owing to their powerful prior modeling capabilities. In this work, we incorporate such generative priors into a Plug-and-Play (PnP) framework based on proximal splitting, where the proximal operator associated with the regularizer is replaced by a time-dependent denoiser derived from the generative model. While existing PnP methods have achieved notable success in inverse problems with smooth squared $\ell_2$ data fidelity--typically associated with Gaussian noise--their applicability to more general data fidelity terms remains underexplored. To address this, we propose a general and efficient PnP algorithm inspired by the primal-dual hybrid gradient (PDHG) method. Our approach is computationally efficient, memory-friendly, and accommodates a wide range of fidelity terms. In particular, it supports both $\ell_1$ and $\ell_2$ norm-based losses, enabling robustness to non-Gaussian noise types such as Poisson and impulse noise. We validate our method on several image restoration tasks, including denoising, super-resolution, deblurring, and inpainting, and demonstrate that $\ell_1$ and $\ell_2$ fidelity terms outperform the conventional squared $\ell_2$ loss in the presence of non-Gaussian noise.
comment: 13 pages; AAAI26 version with appendix
☆ PointCubeNet: 3D Part-level Reasoning with 3x3x3 Point Cloud Blocks
In this paper, we propose PointCubeNet, a novel multi-modal 3D understanding framework that achieves part-level reasoning without requiring any part annotations. PointCubeNet comprises global and local branches. The proposed local branch, structured into 3x3x3 local blocks, enables part-level analysis of point cloud sub-regions with the corresponding local text labels. Leveraging the proposed pseudo-labeling method and local loss function, PointCubeNet is effectively trained in an unsupervised manner. The experimental results demonstrate that understanding 3D object parts enhances the understanding of the overall 3D object. In addition, this is the first attempt to perform unsupervised 3D part-level reasoning and achieves reliable and meaningful results.
☆ Otter: Mitigating Background Distractions of Wide-Angle Few-Shot Action Recognition with Enhanced RWKV AAAI 2026
Wide-angle videos in few-shot action recognition (FSAR) effectively express actions within specific scenarios. However, without a global understanding of both subjects and background, recognizing actions in such samples remains challenging because of the background distractions. Receptance Weighted Key Value (RWKV), which learns interaction between various dimensions, shows promise for global modeling. While directly applying RWKV to wide-angle FSAR may fail to highlight subjects due to excessive background information. Additionally, temporal relation degraded by frames with similar backgrounds is difficult to reconstruct, further impacting performance. Therefore, we design the CompOund SegmenTation and Temporal REconstructing RWKV (Otter). Specifically, the Compound Segmentation Module~(CSM) is devised to segment and emphasize key patches in each frame, effectively highlighting subjects against background information. The Temporal Reconstruction Module (TRM) is incorporated into the temporal-enhanced prototype construction to enable bidirectional scanning, allowing better reconstruct temporal relation. Furthermore, a regular prototype is combined with the temporal-enhanced prototype to simultaneously enhance subject emphasis and temporal modeling, improving wide-angle FSAR performance. Extensive experiments on benchmarks such as SSv2, Kinetics, UCF101, and HMDB51 demonstrate that Otter achieves state-of-the-art performance. Extra evaluation on the VideoBadminton dataset further validates the superiority of Otter in wide-angle FSAR.
comment: Accepted by AAAI 2026 Oral
☆ SinSEMI: A One-Shot Image Generation Model and Data-Efficient Evaluation Framework for Semiconductor Inspection Equipment
In the early stages of semiconductor equipment development, obtaining large quantities of raw optical images poses a significant challenge. This data scarcity hinder the advancement of AI-powered solutions in semiconductor manufacturing. To address this challenge, we introduce SinSEMI, a novel one-shot learning approach that generates diverse and highly realistic images from single optical image. SinSEMI employs a multi-scale flow-based model enhanced with LPIPS (Learned Perceptual Image Patch Similarity) energy guidance during sampling, ensuring both perceptual realism and output variety. We also introduce a comprehensive evaluation framework tailored for this application, which enables a thorough assessment using just two reference images. Through the evaluation against multiple one-shot generation techniques, we demonstrate SinSEMI's superior performance in visual quality, quantitative measures, and downstream tasks. Our experimental results demonstrate that SinSEMI-generated images achieve both high fidelity and meaningful diversity, making them suitable as training data for semiconductor AI applications.
☆ Rethinking Rainy 3D Scene Reconstruction via Perspective Transforming and Brightness Tuning AAAI 2026
Rain degrades the visual quality of multi-view images, which are essential for 3D scene reconstruction, resulting in inaccurate and incomplete reconstruction results. Existing datasets often overlook two critical characteristics of real rainy 3D scenes: the viewpoint-dependent variation in the appearance of rain streaks caused by their projection onto 2D images, and the reduction in ambient brightness resulting from cloud coverage during rainfall. To improve data realism, we construct a new dataset named OmniRain3D that incorporates perspective heterogeneity and brightness dynamicity, enabling more faithful simulation of rain degradation in 3D scenes. Based on this dataset, we propose an end-to-end reconstruction framework named REVR-GSNet (Rain Elimination and Visibility Recovery for 3D Gaussian Splatting). Specifically, REVR-GSNet integrates recursive brightness enhancement, Gaussian primitive optimization, and GS-guided rain elimination into a unified architecture through joint alternating optimization, achieving high-fidelity reconstruction of clean 3D scenes from rain-degraded inputs. Extensive experiments show the effectiveness of our dataset and method. Our dataset and method provide a foundation for future research on multi-view image deraining and rainy 3D scene reconstruction.
comment: Accepted by AAAI 2026 (Oral)
☆ Argus: Quality-Aware High-Throughput Text-to-Image Inference Serving System
Text-to-image (T2I) models have gained significant popularity. Most of these are diffusion models with unique computational characteristics, distinct from both traditional small-scale ML models and large language models. They are highly compute-bound and use an iterative denoising process to generate images, leading to very high inference time. This creates significant challenges in designing a high-throughput system. We discovered that a large fraction of prompts can be served using faster, approximated models. However, the approximation setting must be carefully calibrated for each prompt to avoid quality degradation. Designing a high-throughput system that assigns each prompt to the appropriate model and compatible approximation setting remains a challenging problem. We present Argus, a high-throughput T2I inference system that selects the right level of approximation for each prompt to maintain quality while meeting throughput targets on a fixed-size cluster. Argus intelligently switches between different approximation strategies to satisfy both throughput and quality requirements. Overall, Argus achieves 10x fewer latency service-level objective (SLO) violations, 10% higher average quality, and 40% higher throughput compared to baselines on two real-world workload traces.
comment: Accepted at Middleware 2025
☆ Revisiting the Data Sampling in Multimodal Post-training from a Difficulty-Distinguish View AAAI 2026
Recent advances in Multimodal Large Language Models (MLLMs) have spurred significant progress in Chain-of-Thought (CoT) reasoning. Building on the success of Deepseek-R1, researchers extended multimodal reasoning to post-training paradigms based on reinforcement learning (RL), focusing predominantly on mathematical datasets. However, existing post-training paradigms tend to neglect two critical aspects: (1) The lack of quantifiable difficulty metrics capable of strategically screening samples for post-training optimization. (2) Suboptimal post-training paradigms that fail to jointly optimize perception and reasoning capabilities. To address this gap, we propose two novel difficulty-aware sampling strategies: Progressive Image Semantic Masking (PISM) quantifies sample hardness through systematic image degradation, while Cross-Modality Attention Balance (CMAB) assesses cross-modal interaction complexity via attention distribution analysis. Leveraging these metrics, we design a hierarchical training framework that incorporates both GRPO-only and SFT+GRPO hybrid training paradigms, and evaluate them across six benchmark datasets. Experiments demonstrate consistent superiority of GRPO applied to difficulty-stratified samples compared to conventional SFT+GRPO pipelines, indicating that strategic data sampling can obviate the need for supervised fine-tuning while improving model accuracy. Our code will be released at https://github.com/qijianyu277/DifficultySampling.
comment: Accpeted by AAAI 2026
☆ AvatarTex: High-Fidelity Facial Texture Reconstruction from Single-Image Stylized Avatars 3DV 2026
We present AvatarTex, a high-fidelity facial texture reconstruction framework capable of generating both stylized and photorealistic textures from a single image. Existing methods struggle with stylized avatars due to the lack of diverse multi-style datasets and challenges in maintaining geometric consistency in non-standard textures. To address these limitations, AvatarTex introduces a novel three-stage diffusion-to-GAN pipeline. Our key insight is that while diffusion models excel at generating diversified textures, they lack explicit UV constraints, whereas GANs provide a well-structured latent space that ensures style and topology consistency. By integrating these strengths, AvatarTex achieves high-quality topology-aligned texture synthesis with both artistic and geometric coherence. Specifically, our three-stage pipeline first completes missing texture regions via diffusion-based inpainting, refines style and structure consistency using GAN-based latent optimization, and enhances fine details through diffusion-based repainting. To address the need for a stylized texture dataset, we introduce TexHub, a high-resolution collection of 20,000 multi-style UV textures with precise UV-aligned layouts. By leveraging TexHub and our structured diffusion-to-GAN pipeline, AvatarTex establishes a new state-of-the-art in multi-style facial texture reconstruction. TexHub will be released upon publication to facilitate future research in this field.
comment: 3DV 2026 Accepted
☆ Relative Energy Learning for LiDAR Out-of-Distribution Detection
Out-of-distribution (OOD) detection is a critical requirement for reliable autonomous driving, where safety depends on recognizing road obstacles and unexpected objects beyond the training distribution. Despite extensive research on OOD detection in 2D images, direct transfer to 3D LiDAR point clouds has been proven ineffective. Current LiDAR OOD methods struggle to distinguish rare anomalies from common classes, leading to high false-positive rates and overconfident errors in safety-critical settings. We propose Relative Energy Learning (REL), a simple yet effective framework for OOD detection in LiDAR point clouds. REL leverages the energy gap between positive (in-distribution) and negative logits as a relative scoring function, mitigating calibration issues in raw energy values and improving robustness across various scenes. To address the absence of OOD samples during training, we propose a lightweight data synthesis strategy called Point Raise, which perturbs existing point clouds to generate auxiliary anomalies without altering the inlier semantics. Evaluated on SemanticKITTI and the Spotting the Unexpected (STU) benchmark, REL consistently outperforms existing methods by a large margin. Our results highlight that modeling relative energy, combined with simple synthetic outliers, provides a principled and scalable solution for reliable OOD detection in open-world autonomous driving.
☆ MRT: Learning Compact Representations with Mixed RWKV-Transformer for Extreme Image Compression
Recent advances in extreme image compression have revealed that mapping pixel data into highly compact latent representations can significantly improve coding efficiency. However, most existing methods compress images into 2-D latent spaces via convolutional neural networks (CNNs) or Swin Transformers, which tend to retain substantial spatial redundancy, thereby limiting overall compression performance. In this paper, we propose a novel Mixed RWKV-Transformer (MRT) architecture that encodes images into more compact 1-D latent representations by synergistically integrating the complementary strengths of linear-attention-based RWKV and self-attention-based Transformer models. Specifically, MRT partitions each image into fixed-size windows, utilizing RWKV modules to capture global dependencies across windows and Transformer blocks to model local redundancies within each window. The hierarchical attention mechanism enables more efficient and compact representation learning in the 1-D domain. To further enhance compression efficiency, we introduce a dedicated RWKV Compression Model (RCM) tailored to the structure characteristics of the intermediate 1-D latent features in MRT. Extensive experiments on standard image compression benchmarks validate the effectiveness of our approach. The proposed MRT framework consistently achieves superior reconstruction quality at bitrates below 0.02 bits per pixel (bpp). Quantitative results based on the DISTS metric show that MRT significantly outperforms the state-of-the-art 2-D architecture GLC, achieving bitrate savings of 43.75%, 30.59% on the Kodak and CLIC2020 test datasets, respectively.
☆ MirrorMamba: Towards Scalable and Robust Mirror Detection in Videos
Video mirror detection has received significant research attention, yet existing methods suffer from limited performance and robustness. These approaches often over-rely on single, unreliable dynamic features, and are typically built on CNNs with limited receptive fields or Transformers with quadratic computational complexity. To address these limitations, we propose a new effective and scalable video mirror detection method, called MirrorMamba. Our approach leverages multiple cues to adapt to diverse conditions, incorporating perceived depth, correspondence and optical. We also introduce an innovative Mamba-based Multidirection Correspondence Extractor, which benefits from the global receptive field and linear complexity of the emerging Mamba spatial state model to effectively capture correspondence properties. Additionally, we design a Mamba-based layer-wise boundary enforcement decoder to resolve the unclear boundary caused by the blurred depth map. Notably, this work marks the first successful application of the Mamba-based architecture in the field of mirror detection. Extensive experiments demonstrate that our method outperforms existing state-of-the-art approaches for video mirror detection on the benchmark datasets. Furthermore, on the most challenging and representative image-based mirror detection dataset, our approach achieves state-of-the-art performance, proving its robustness and generalizability.
☆ K-Stain: Keypoint-Driven Correspondence for H&E-to-IHC Virtual Staining
Virtual staining offers a promising method for converting Hematoxylin and Eosin (H&E) images into Immunohistochemical (IHC) images, eliminating the need for costly chemical processes. However, existing methods often struggle to utilize spatial information effectively due to misalignment in tissue slices. To overcome this challenge, we leverage keypoints as robust indicators of spatial correspondence, enabling more precise alignment and integration of structural details in synthesized IHC images. We introduce K-Stain, a novel framework that employs keypoint-based spatial and semantic relationships to enhance synthesized IHC image fidelity. K-Stain comprises three main components: (1) a Hierarchical Spatial Keypoint Detector (HSKD) for identifying keypoints in stain images, (2) a Keypoint-aware Enhancement Generator (KEG) that integrates these keypoints during image generation, and (3) a Keypoint Guided Discriminator (KGD) that improves the discriminator's sensitivity to spatial details. Our approach leverages contextual information from adjacent slices, resulting in more accurate and visually consistent IHC images. Extensive experiments show that K-Stain outperforms state-of-the-art methods in quantitative metrics and visual quality.
☆ SPAN: Spatial-Projection Alignment for Monocular 3D Object Detection
Existing monocular 3D detectors typically tame the pronounced nonlinear regression of 3D bounding box through decoupled prediction paradigm, which employs multiple branches to estimate geometric center, depth, dimensions, and rotation angle separately. Although this decoupling strategy simplifies the learning process, it inherently ignores the geometric collaborative constraints between different attributes, resulting in the lack of geometric consistency prior, thereby leading to suboptimal performance. To address this issue, we propose novel Spatial-Projection Alignment (SPAN) with two pivotal components: (i). Spatial Point Alignment enforces an explicit global spatial constraint between the predicted and ground-truth 3D bounding boxes, thereby rectifying spatial drift caused by decoupled attribute regression. (ii). 3D-2D Projection Alignment ensures that the projected 3D box is aligned tightly within its corresponding 2D detection bounding box on the image plane, mitigating projection misalignment overlooked in previous works. To ensure training stability, we further introduce a Hierarchical Task Learning strategy that progressively incorporates spatial-projection alignment as 3D attribute predictions refine, preventing early stage error propagation across attributes. Extensive experiments demonstrate that the proposed method can be easily integrated into any established monocular 3D detector and delivers significant performance improvements.
☆ AnoStyler: Text-Driven Localized Anomaly Generation via Lightweight Style Transfer AAAI 2026
Anomaly generation has been widely explored to address the scarcity of anomaly images in real-world data. However, existing methods typically suffer from at least one of the following limitations, hindering their practical deployment: (1) lack of visual realism in generated anomalies; (2) dependence on large amounts of real images; and (3) use of memory-intensive, heavyweight model architectures. To overcome these limitations, we propose AnoStyler, a lightweight yet effective method that frames zero-shot anomaly generation as text-guided style transfer. Given a single normal image along with its category label and expected defect type, an anomaly mask indicating the localized anomaly regions and two-class text prompts representing the normal and anomaly states are generated using generalizable category-agnostic procedures. A lightweight U-Net model trained with CLIP-based loss functions is used to stylize the normal image into a visually realistic anomaly image, where anomalies are localized by the anomaly mask and semantically aligned with the text prompts. Extensive experiments on the MVTec-AD and VisA datasets show that AnoStyler outperforms existing anomaly generation methods in generating high-quality and diverse anomaly images. Furthermore, using these generated anomalies helps enhance anomaly detection performance.
comment: Accepted to AAAI 2026
☆ Flexible Concept Bottleneck Model AAAI 2026
Concept bottleneck models (CBMs) improve neural network interpretability by introducing an intermediate layer that maps human-understandable concepts to predictions. Recent work has explored the use of vision-language models (VLMs) to automate concept selection and annotation. However, existing VLM-based CBMs typically require full model retraining when new concepts are involved, which limits their adaptability and flexibility in real-world scenarios, especially considering the rapid evolution of vision-language foundation models. To address these issues, we propose Flexible Concept Bottleneck Model (FCBM), which supports dynamic concept adaptation, including complete replacement of the original concept set. Specifically, we design a hypernetwork that generates prediction weights based on concept embeddings, allowing seamless integration of new concepts without retraining the entire model. In addition, we introduce a modified sparsemax module with a learnable temperature parameter that dynamically selects the most relevant concepts, enabling the model to focus on the most informative features. Extensive experiments on five public benchmarks demonstrate that our method achieves accuracy comparable to state-of-the-art baselines with a similar number of effective concepts. Moreover, the model generalizes well to unseen concepts with just a single epoch of fine-tuning, demonstrating its strong adaptability and flexibility.
comment: To appear in AAAI 2026
☆ REOcc: Camera-Radar Fusion with Radar Feature Enrichment for 3D Occupancy Prediction IROS 2025
Vision-based 3D occupancy prediction has made significant advancements, but its reliance on cameras alone struggles in challenging environments. This limitation has driven the adoption of sensor fusion, among which camera-radar fusion stands out as a promising solution due to their complementary strengths. However, the sparsity and noise of the radar data limits its effectiveness, leading to suboptimal fusion performance. In this paper, we propose REOcc, a novel camera-radar fusion network designed to enrich radar feature representations for 3D occupancy prediction. Our approach introduces two main components, a Radar Densifier and a Radar Amplifier, which refine radar features by integrating spatial and contextual information, effectively enhancing spatial density and quality. Extensive experiments on the Occ3D-nuScenes benchmark demonstrate that REOcc achieves significant performance gains over the camera-only baseline model, particularly in dynamic object classes. These results underscore REOcc's capability to mitigate the sparsity and noise of the radar data. Consequently, radar complements camera data more effectively, unlocking the full potential of camera-radar fusion for robust and reliable 3D occupancy prediction.
comment: IROS 2025
☆ Sim4Seg: Boosting Multimodal Multi-disease Medical Diagnosis Segmentation with Region-Aware Vision-Language Similarity Masks AAAI 2026
Despite significant progress in pixel-level medical image analysis, existing medical image segmentation models rarely explore medical segmentation and diagnosis tasks jointly. However, it is crucial for patients that models can provide explainable diagnoses along with medical segmentation results. In this paper, we introduce a medical vision-language task named Medical Diagnosis Segmentation (MDS), which aims to understand clinical queries for medical images and generate the corresponding segmentation masks as well as diagnostic results. To facilitate this task, we first present the Multimodal Multi-disease Medical Diagnosis Segmentation (M3DS) dataset, containing diverse multimodal multi-disease medical images paired with their corresponding segmentation masks and diagnosis chain-of-thought, created via an automated diagnosis chain-of-thought generation pipeline. Moreover, we propose Sim4Seg, a novel framework that improves the performance of diagnosis segmentation by taking advantage of the Region-Aware Vision-Language Similarity to Mask (RVLS2M) module. To improve overall performance, we investigate a test-time scaling strategy for MDS tasks. Experimental results demonstrate that our method outperforms the baselines in both segmentation and diagnosis.
comment: AAAI 2026
☆ Active Learning for Animal Re-Identification with Ambiguity-Aware Sampling AAAI
Animal Re-ID has recently gained substantial attention in the AI research community due to its high impact on biodiversity monitoring and unique research challenges arising from environmental factors. The subtle distinguishing patterns, handling new species and the inherent open-set nature make the problem even harder. To address these complexities, foundation models trained on labeled, large-scale and multi-species animal Re-ID datasets have recently been introduced to enable zero-shot Re-ID. However, our benchmarking reveals significant gaps in their zero-shot Re-ID performance for both known and unknown species. While this highlights the need for collecting labeled data in new domains, exhaustive annotation for Re-ID is laborious and requires domain expertise. Our analyses show that existing unsupervised (USL) and AL Re-ID methods underperform for animal Re-ID. To address these limitations, we introduce a novel AL Re-ID framework that leverages complementary clustering methods to uncover and target structurally ambiguous regions in the embedding space for mining pairs of samples that are both informative and broadly representative. Oracle feedback on these pairs, in the form of must-link and cannot-link constraints, facilitates a simple annotation interface, which naturally integrates with existing USL methods through our proposed constrained clustering refinement algorithm. Through extensive experiments, we demonstrate that, by utilizing only 0.033% of all annotations, our approach consistently outperforms existing foundational, USL and AL baselines. Specifically, we report an average improvement of 10.49%, 11.19% and 3.99% (mAP) on 13 wildlife datasets over foundational, USL and AL methods, respectively, while attaining state-of-the-art performance on each dataset. Furthermore, we also show an improvement of 11.09%, 8.2% and 2.06% for unknown individuals in an open-world setting.
comment: In Proceedings of AAAI Conference on Artificial Intelligence 2026
☆ HiMo-CLIP: Modeling Semantic Hierarchy and Monotonicity in Vision-Language Alignment AAAI 2026
Contrastive vision-language models like CLIP have achieved impressive results in image-text retrieval by aligning image and text representations in a shared embedding space. However, these models often treat text as flat sequences, limiting their ability to handle complex, compositional, and long-form descriptions. In particular, they fail to capture two essential properties of language: semantic hierarchy, which reflects the multi-level compositional structure of text, and semantic monotonicity, where richer descriptions should result in stronger alignment with visual content.To address these limitations, we propose HiMo-CLIP, a representation-level framework that enhances CLIP-style models without modifying the encoder architecture. HiMo-CLIP introduces two key components: a hierarchical decomposition (HiDe) module that extracts latent semantic components from long-form text via in-batch PCA, enabling flexible, batch-aware alignment across different semantic granularities, and a monotonicity-aware contrastive loss (MoLo) that jointly aligns global and component-level representations, encouraging the model to internalize semantic ordering and alignment strength as a function of textual completeness.These components work in concert to produce structured, cognitively-aligned cross-modal representations. Experiments on multiple image-text retrieval benchmarks show that HiMo-CLIP consistently outperforms strong baselines, particularly under long or compositional descriptions. The code is available at https://github.com/UnicomAI/HiMo-CLIP.
comment: Accepted by AAAI 2026 as an Oral Presentation (13 pages, 7 figures, 7 tables)
☆ NOVO: Bridging LLaVA and SAM with Visual-only Prompts for Reasoning Segmentation
In this study, we propose NOVO (NO text, Visual-Only prompts), a novel framework that bridges vision-language models (VLMs) and segmentation models through visual-only prompts. Unlike prior approaches that feed text-derived SEG token embeddings into segmentation models, NOVO instead generates a coarse mask and point prompts from the VLM output. These visual prompts are compatible with the Segment Anything Model (SAM), preserving alignment with its pretrained capabilities. To further enhance boundary quality and enable instance-level segmentation, we introduce a training-free refinement module that reduces visual artifacts and improves the quality of segmentation masks. We also present RISeg, a new benchmark comprising 918 images, 2,533 instance-level masks, and diverse reasoning queries to evaluate this task. Experiments demonstrate that NOVO achieves state-of-the-art performance across multiple metrics and model sizes, demonstrating its effectiveness and scalability in reasoning segmentation.
☆ FreqGRL: Suppressing Low-Frequency Bias and Mining High-Frequency Knowledge for Cross-Domain Few-Shot Learning
Cross-domain few-shot learning (CD-FSL) aims to recognize novel classes with only a few labeled examples under significant domain shifts. While recent approaches leverage a limited amount of labeled target-domain data to improve performance, the severe imbalance between abundant source data and scarce target data remains a critical challenge for effective representation learning. We present the first frequency-space perspective to analyze this issue and identify two key challenges: (1) models are easily biased toward source-specific knowledge encoded in the low-frequency components of source data, and (2) the sparsity of target data hinders the learning of high-frequency, domain-generalizable features. To address these challenges, we propose \textbf{FreqGRL}, a novel CD-FSL framework that mitigates the impact of data imbalance in the frequency space. Specifically, we introduce a Low-Frequency Replacement (LFR) module that substitutes the low-frequency components of source tasks with those from the target domain to create new source tasks that better align with target characteristics, thus reducing source-specific biases and promoting generalizable representation learning. We further design a High-Frequency Enhancement (HFE) module that filters out low-frequency components and performs learning directly on high-frequency features in the frequency space to improve cross-domain generalization. Additionally, a Global Frequency Filter (GFF) is incorporated to suppress noisy or irrelevant frequencies and emphasize informative ones, mitigating overfitting risks under limited target supervision. Extensive experiments on five standard CD-FSL benchmarks demonstrate that our frequency-guided framework achieves state-of-the-art performance.
☆ UniADC: A Unified Framework for Anomaly Detection and Classification
In this paper, we introduce the task of unified anomaly detection and classification, which aims to simultaneously detect anomalous regions in images and identify their specific categories. Existing methods typically treat anomaly detection and classification as separate tasks, thereby neglecting their inherent correlation, limiting information sharing, and resulting in suboptimal performance. To address this, we propose UniADC, a unified anomaly detection and classification model that can effectively perform both tasks with only a few or even no anomaly images. Specifically, UniADC consists of two key components: a training-free controllable inpainting network and a multi-task discriminator. The inpainting network can synthesize anomaly images of specific categories by repainting normal regions guided by anomaly priors, and can also repaint few-shot anomaly samples to augment the available anomaly data. The multi-task discriminator is then trained on these synthesized samples, enabling precise anomaly detection and classification by aligning fine-grained image features with anomaly-category embeddings. We conduct extensive experiments on three anomaly detection and classification datasets, including MVTec-FS, MTD, and WFDD, and the results demonstrate that UniADC consistently outperforms existing methods in anomaly detection, localization, and classification. The code is available at https://github.com/cnulab/UniADC.
☆ DIAL-GS: Dynamic Instance Aware Reconstruction for Label-free Street Scenes with 4D Gaussian Splatting
Urban scene reconstruction is critical for autonomous driving, enabling structured 3D representations for data synthesis and closed-loop testing. Supervised approaches rely on costly human annotations and lack scalability, while current self-supervised methods often confuse static and dynamic elements and fail to distinguish individual dynamic objects, limiting fine-grained editing. We propose DIAL-GS, a novel dynamic instance-aware reconstruction method for label-free street scenes with 4D Gaussian Splatting. We first accurately identify dynamic instances by exploiting appearance-position inconsistency between warped rendering and actual observation. Guided by instance-level dynamic perception, we employ instance-aware 4D Gaussians as the unified volumetric representation, realizing dynamic-adaptive and instance-aware reconstruction. Furthermore, we introduce a reciprocal mechanism through which identity and dynamics reinforce each other, enhancing both integrity and consistency. Experiments on urban driving scenarios show that DIAL-GS surpasses existing self-supervised baselines in reconstruction quality and instance-level editing, offering a concise yet powerful solution for urban scene modeling.
☆ Explainable Cross-Disease Reasoning for Cardiovascular Risk Assessment from LDCT
Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking-first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with explanatory rationale. It integrates three synergistic components: a pulmonary perception module that summarizes lung abnormalities, a knowledge-guided reasoning module that infers their cardiovascular implications, and a cardiac representation module that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening and mortality prediction, outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
☆ On Accurate and Robust Estimation of 3D and 2D Circular Center: Method and Application to Camera-Lidar Calibration
Circular targets are widely used in LiDAR-camera extrinsic calibration due to their geometric consistency and ease of detection. However, achieving accurate 3D-2D circular center correspondence remains challenging. Existing methods often fail due to decoupled 3D fitting and erroneous 2D ellipse-center estimation. To address this, we propose a geometrically principled framework featuring two innovations: (i) a robust 3D circle center estimator based on conformal geometric algebra and RANSAC; and (ii) a chord-length variance minimization method to recover the true 2D projected center, resolving its dual-minima ambi- guity via homography validation or a quasi-RANSAC fallback. Evaluated on synthetic and real-world datasets, our framework significantly outperforms state-of-the-art approaches. It reduces extrinsic estimation error and enables robust calibration across diverse sensors and target types, including natural circular objects. Our code will be publicly released for reproducibility.
☆ Spatial-Frequency Enhanced Mamba for Multi-Modal Image Fusion
Multi-Modal Image Fusion (MMIF) aims to integrate complementary image information from different modalities to produce informative images. Previous deep learning-based MMIF methods generally adopt Convolutional Neural Networks (CNNs) or Transformers for feature extraction. However, these methods deliver unsatisfactory performances due to the limited receptive field of CNNs and the high computational cost of Transformers. Recently, Mamba has demonstrated a powerful potential for modeling long-range dependencies with linear complexity, providing a promising solution to MMIF. Unfortunately, Mamba lacks full spatial and frequency perceptions, which are very important for MMIF. Moreover, employing Image Reconstruction (IR) as an auxiliary task has been proven beneficial for MMIF. However, a primary challenge is how to leverage IR efficiently and effectively. To address the above issues, we propose a novel framework named Spatial-Frequency Enhanced Mamba Fusion (SFMFusion) for MMIF. More specifically, we first propose a three-branch structure to couple MMIF and IR, which can retain complete contents from source images. Then, we propose the Spatial-Frequency Enhanced Mamba Block (SFMB), which can enhance Mamba in both spatial and frequency domains for comprehensive feature extraction. Finally, we propose the Dynamic Fusion Mamba Block (DFMB), which can be deployed across different branches for dynamic feature fusion. Extensive experiments show that our method achieves better results than most state-of-the-art methods on six MMIF datasets. The source code is available at https://github.com/SunHui1216/SFMFusion.
comment: This work is accepted by IEEE Transactions on Image Processing. More modifications may be performed
☆ TabRAG: Tabular Document Retrieval via Structured Language Representations NeurIPS 2025
Ingesting data for Retrieval-Augmented Generation (RAG) involves either fine-tuning the embedding model directly on the target corpus or parsing documents for embedding model encoding. The former, while accurate, incurs high computational hardware requirements, while the latter suffers from suboptimal performance when extracting tabular data. In this work, we address the latter by presenting TabRAG, a parsing-based RAG pipeline designed to tackle table-heavy documents via structured language representations. TabRAG outperforms existing popular parsing-based methods for generation and retrieval. Code is available at https://github.com/jacobyhsi/TabRAG.
comment: NeurIPS 2025 AI4Tab
♻ ☆ Capturing Gaze Shifts for Guidance: Cross-Modal Fusion Enhancement for VLM Hallucination Mitigation
Vision language models (VLMs) often generate hallucination, i.e., content that cannot be substantiated by either textual or visual inputs. Prior work primarily attributes this to over-reliance on linguistic prior knowledge rather than visual inputs. Some methods attempt to mitigate hallucination by amplifying visual token attention proportionally to their attention scores. However, these methods overlook the visual attention sink problem, where attention is frequently misallocated to task-irrelevant visual regions, and neglect cross-modal fusion balance by enhancing only visual attention without adjusting attention to the user query. This can result in amplifying incorrect areas while failing to properly interpret the user query. To address these challenges, we propose a simple yet effective method called Gaze Shift-Guided Cross-modal Fusion Enhancement (GIFT). GIFT pre-computes a holistic visual saliency map by tracking positive changes in visual attention, or "gaze shifts", during user query comprehension, and leverages this map to amplify attention to both salient visual information and the user query at each decoding step. This reduces the impact of visual attention sink, as irrelevant tokens exhibit minimal shifts, while ensuring balanced cross-modal fusion for well-integrated representation. Extensive experiments show that GIFT effectively mitigates hallucination in VLMs across both generative and classification tasks, achieving up to 20.7% improvement over greedy decoding, while maintaining general vision-language performance with low computational overhead.
♻ ☆ Real-to-Sim Robot Policy Evaluation with Gaussian Splatting Simulation of Soft-Body Interactions
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
comment: The first two authors contributed equally. Website: https://real2sim-eval.github.io/
♻ ☆ Bridging Weakly-Supervised Learning and VLM Distillation: Noisy Partial Label Learning for Efficient Downstream Adaptation
In the context of noisy partial label learning (NPLL), each training sample is associated with a set of candidate labels annotated by multiple noisy annotators. With the emergence of high-performance pre-trained vision-language models (VLMs) such as CLIP, LLaVA and GPT-4V, the direction of using these models to replace time-consuming manual annotation workflows and achieve ``manual-annotation-free" training for downstream tasks has become a highly promising research avenue. This paper focuses on learning from noisy partial labels annotated by pre-trained VLMs and proposes an innovative collaborative consistency regularization (Co-Reg) method. Unlike the symmetric noise primarily addressed in traditional noisy label learning, the noise generated by pre-trained models is instance-dependent, embodying the underlying patterns of the pre-trained models themselves, which significantly increases the learning difficulty for the model. To address this, we simultaneously train two neural networks that implement collaborative purification of training labels through a ``Co-Pseudo-Labeling" mechanism, while enforcing consistency regularization constraints in both the label space and feature representation space. Specifically, we construct multiple anti-overfitting mechanisms that efficiently mine latent information from noisy partially labeled samples including alternating optimization of contrastive feature representations and pseudo-labels, as well as maintaining prototypical class vectors in the shared feature space.
♻ ☆ Onboard Hyperspectral Super-Resolution with Deep Pushbroom Neural Network
Hyperspectral imagers on satellites obtain the fine spectral signatures essential for distinguishing one material from another at the expense of limited spatial resolution. Enhancing the latter is thus a desirable preprocessing step in order to further improve the detection capabilities offered by hyperspectral images on downstream tasks. At the same time, there is a growing interest towards deploying inference methods directly onboard of satellites, which calls for lightweight image super-resolution methods that can be run on the payload in real time. In this paper, we present a novel neural network design, called Deep Pushbroom Super-Resolution (DPSR) that matches the pushbroom acquisition of hyperspectral sensors by processing an image line by line in the along-track direction with a causal memory mechanism to exploit previously acquired lines. This design greatly limits memory requirements and computational complexity, achieving onboard real-time performance, i.e., the ability to super-resolve a line in the time it takes to acquire the next one, on low-power hardware. Experiments show that the quality of the super-resolved images is competitive or even outperforms state-of-the-art methods that are significantly more complex.
♻ ☆ GauSSmart: Enhanced 3D Reconstruction through 2D Foundation Models and Geometric Filtering
Scene reconstruction has emerged as a central challenge in computer vision, with approaches such as Neural Radiance Fields (NeRF) and Gaussian Splatting achieving remarkable progress. While Gaussian Splatting demonstrates strong performance on large-scale datasets, it often struggles to capture fine details or maintain realism in regions with sparse coverage, largely due to the inherent limitations of sparse 3D training data. In this work, we propose GauSSmart, a hybrid method that effectively bridges 2D foundational models and 3D Gaussian Splatting reconstruction. Our approach integrates established 2D computer vision techniques, including convex filtering and semantic feature supervision from foundational models such as DINO, to enhance Gaussian-based scene reconstruction. By leveraging 2D segmentation priors and high-dimensional feature embeddings, our method guides the densification and refinement of Gaussian splats, improving coverage in underrepresented areas and preserving intricate structural details. We validate our approach across three datasets, where GauSSmart consistently outperforms existing Gaussian Splatting in the majority of evaluated scenes. Our results demonstrate the significant potential of hybrid 2D-3D approaches, highlighting how the thoughtful combination of 2D foundational models with 3D reconstruction pipelines can overcome the limitations inherent in either approach alone.
♻ ☆ LangBridge: Interpreting Image as a Combination of Language Embeddings
Recent years have witnessed remarkable advances in Large Vision-Language Models (LVLMs), which have achieved human-level performance across various complex vision-language tasks. Following LLaVA's paradigm, mainstream LVLMs typically employ a shallow MLP for visual-language alignment through a two-stage training process: pretraining for cross-modal alignment followed by instruction tuning. While this approach has proven effective, the underlying mechanisms of how MLPs bridge the modality gap remain poorly understood. Although some research has explored how LLMs process transformed visual tokens, few studies have investigated the fundamental alignment mechanism. Furthermore, the MLP adapter requires retraining whenever switching LLM backbones. To address these limitations, we first investigate the working principles of MLP adapters and discover that they learn to project visual embeddings into subspaces spanned by corresponding text embeddings progressively. Based on this insight, we propose LangBridge, a novel adapter that explicitly maps visual tokens to linear combinations of LLM vocabulary embeddings. This innovative design enables pretraining-free adapter transfer across different LLMs while maintaining performance. Our experimental results demonstrate that a LangBridge adapter pre-trained on Qwen2-0.5B can be directly applied to larger models such as LLaMA3-8B or Qwen2.5-14B while maintaining competitive performance. Overall, LangBridge enables interpretable vision-language alignment by grounding visual representations in LLM vocab embedding, while its plug-and-play design ensures efficient reuse across multiple LLMs with nearly no performance degradation. See our project page at https://curryx-001.github.io/LangBridge.github.io/
comment: The code and weights are open-sourced. Project page: https://curryx-001.github.io/LangBridge.github.io/
♻ ☆ Consistent Story Generation: Unlocking the Potential of Zigzag Sampling
Text-to-image generation models have made significant progress in producing high-quality images from textual descriptions, yet they continue to struggle with maintaining subject consistency across multiple images, a fundamental requirement for visual storytelling. Existing methods attempt to address this by either fine-tuning models on large-scale story visualization datasets, which is resource-intensive, or by using training-free techniques that share information across generations, which still yield limited success. In this paper, we introduce a novel training-free sampling strategy called Zigzag Sampling with Asymmetric Prompts and Visual Sharing to enhance subject consistency in visual story generation. Our approach proposes a zigzag sampling mechanism that alternates between asymmetric prompting to retain subject characteristics, while a visual sharing module transfers visual cues across generated images to %further enforce consistency. Experimental results, based on both quantitative metrics and qualitative evaluations, demonstrate that our method significantly outperforms previous approaches in generating coherent and consistent visual stories. The code is available at https://github.com/Mingxiao-Li/Asymmetry-Zigzag-StoryDiffusion.
comment: 20 pages, 10 figures
♻ ☆ DeepEyesV2: Toward Agentic Multimodal Model
Agentic multimodal models should not only comprehend text and images, but also actively invoke external tools, such as code execution environments and web search, and integrate these operations into reasoning. In this work, we introduce DeepEyesV2 and explore how to build an agentic multimodal model from the perspectives of data construction, training methods, and model evaluation. We observe that direct reinforcement learning alone fails to induce robust tool-use behavior. This phenomenon motivates a two-stage training pipeline: a cold-start stage to establish tool-use patterns, and reinforcement learning stage to further refine tool invocation. We curate a diverse, moderately challenging training dataset, specifically including examples where tool use is beneficial. We further introduce RealX-Bench, a comprehensive benchmark designed to evaluate real-world multimodal reasoning, which inherently requires the integration of multiple capabilities, including perception, search, and reasoning. We evaluate DeepEyesV2 on RealX-Bench and other representative benchmarks, demonstrating its effectiveness across real-world understanding, mathematical reasoning, and search-intensive tasks. Moreover, DeepEyesV2 exhibits task-adaptive tool invocation, tending to use image operations for perception tasks and numerical computations for reasoning tasks. Reinforcement learning further enables complex tool combinations and allows model to selectively invoke tools based on context. We hope our study can provide guidance for community in developing agentic multimodal models.
comment: Homepage: https://visual-agent.github.io/
♻ ☆ Distilling Diversity and Control in Diffusion Models
Distilled diffusion models generate images in far fewer timesteps but suffer from reduced sample diversity when generating multiple outputs from the same prompt. To understand this phenomenon, we first investigate whether distillation damages concept representations by examining if the required diversity is properly learned. Surprisingly, distilled models retain the base model's representational structure: control mechanisms like Concept Sliders and LoRAs transfer seamlessly without retraining, and SliderSpace analysis reveals distilled models possess variational directions needed for diversity yet fail to activate them. This redirects our investigation to understanding how the generation dynamics differ between base and distilled models. Using $\hat{\mathbf{x}}_{0}$ trajectory visualization, we discover distilled models commit to their final image structure almost immediately at the first timestep, while base models distribute structural decisions across many steps. To test whether this first-step commitment causes the diversity loss, we introduce diversity distillation, a hybrid approach using the base model for only the first critical timestep before switching to the distilled model. This single intervention restores sample diversity while maintaining computational efficiency. We provide both causal validation and theoretical support showing why the very first timestep concentrates the diversity bottleneck in distilled models. Our code and data are available at https://distillation.baulab.info/
comment: Project Page: https://distillation.baulab.info/
♻ ☆ Mitigating Sexual Content Generation via Embedding Distortion in Text-conditioned Diffusion Models NeurIPS 2025
Diffusion models show remarkable image generation performance following text prompts, but risk generating sexual contents. Existing approaches, such as prompt filtering, concept removal, and even sexual contents mitigation methods, struggle to defend against adversarial attacks while maintaining benign image quality. In this paper, we propose a novel approach called Distorting Embedding Space (DES), a text encoder-based defense mechanism that effectively tackles these issues through innovative embedding space control. DES transforms unsafe embeddings, extracted from a text encoder using unsafe prompts, toward carefully calculated safe embedding regions to prevent unsafe contents generation, while reproducing the original safe embeddings. DES also neutralizes the ``nudity'' embedding, by aligning it with neutral embedding to enhance robustness against adversarial attacks. As a result, extensive experiments on explicit content mitigation and adaptive attack defense show that DES achieves state-of-the-art (SOTA) defense, with attack success rate (ASR) of 9.47% on FLUX.1, a recent popular model, and 0.52% on the widely adopted Stable Diffusion v1.5. These correspond to ASR reductions of 76.5% and 63.9% compared to previous SOTA methods, EraseAnything and AdvUnlearn, respectively. Furthermore, DES maintains benign image quality, achieving Frechet Inception Distance and CLIP score comparable to those of the original FLUX.1 and Stable Diffusion v1.5.
comment: NeurIPS 2025 accepted. Official code: https://github.com/amoeba04/des
♻ ☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
♻ ☆ UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning NeurIPS 2025
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.
comment: NeurIPS 2025 Camera Ready. Project Page: https://polyu-chenlab.github.io/unipixel/
♻ ☆ ChestGPT: Integrating Large Language Models and Vision Transformers for Disease Detection and Localization in Chest X-Rays
The global demand for radiologists is increasing rapidly due to a growing reliance on medical imaging services, while the supply of radiologists is not keeping pace. Advances in computer vision and image processing technologies present significant potential to address this gap by enhancing radiologists' capabilities and improving diagnostic accuracy. Large language models (LLMs), particularly generative pre-trained transformers (GPTs), have become the primary approach for understanding and generating textual data. In parallel, vision transformers (ViTs) have proven effective at converting visual data into a format that LLMs can process efficiently. In this paper, we present ChestGPT, a deep-learning framework that integrates the EVA ViT with the Llama 2 LLM to classify diseases and localize regions of interest in chest X-ray images. The ViT converts X-ray images into tokens, which are then fed, together with engineered prompts, into the LLM, enabling joint classification and localization of diseases. This approach incorporates transfer learning techniques to enhance both explainability and performance. The proposed method achieved strong global disease classification performance on the VinDr-CXR dataset, with an F1 score of 0.76, and successfully localized pathologies by generating bounding boxes around the regions of interest. We also outline several task-specific prompts, in addition to general-purpose prompts, for scenarios radiologists might encounter. Overall, this framework offers an assistive tool that can lighten radiologists' workload by providing preliminary findings and regions of interest to facilitate their diagnostic process.
comment: 8 pages, 5 figures, 4 tables
♻ ☆ AGO: Adaptive Grounding for Open World 3D Occupancy Prediction
Open-world 3D semantic occupancy prediction aims to generate a voxelized 3D representation from sensor inputs while recognizing both known and unknown objects. Transferring open-vocabulary knowledge from vision-language models (VLMs) offers a promising direction but remains challenging. However, methods based on VLM-derived 2D pseudo-labels with traditional supervision are limited by a predefined label space and lack general prediction capabilities. Direct alignment with pretrained image embeddings, on the other hand, often fails to achieve reliable performance because of inconsistent image and text representations in VLMs. To address these challenges, we propose AGO, a novel 3D occupancy prediction framework with adaptive grounding to handle diverse open-world scenarios. AGO first encodes surrounding images and class prompts into 3D and text embeddings, respectively, leveraging similarity-based grounding training with 3D pseudo-labels. Additionally, a modality adapter maps 3D embeddings into a space aligned with VLM-derived image embeddings, reducing modality gaps. Experiments on Occ3D-nuScenes show that AGO improves unknown object prediction in zero-shot and few-shot transfer while achieving state-of-the-art closed-world self-supervised performance, surpassing prior methods by 4.09 mIoU. Code is available at: https://github.com/EdwardLeeLPZ/AGO.
♻ ☆ Diffusion Implicit Policy for Unpaired Scene-aware Motion Synthesis
Scene-aware motion synthesis has been widely researched recently due to its numerous applications. Prevailing methods rely heavily on paired motion-scene data, while it is difficult to generalize to diverse scenes when trained only on a few specific ones. Thus, we propose a unified framework, termed Diffusion Implicit Policy (DIP), for scene-aware motion synthesis, where paired motion-scene data are no longer necessary. In this paper, we disentangle human-scene interaction from motion synthesis during training, and then introduce an interaction-based implicit policy into motion diffusion during inference. Synthesized motion can be derived through iterative diffusion denoising and implicit policy optimization, thus motion naturalness and interaction plausibility can be maintained simultaneously. For long-term motion synthesis, we introduce motion blending in joint rotation power space. The proposed method is evaluated on synthesized scenes with ShapeNet furniture, and real scenes from PROX and Replica. Results show that our framework presents better motion naturalness and interaction plausibility than cutting-edge methods. This also indicates the feasibility of utilizing the DIP for motion synthesis in more general tasks and versatile scenes. Code will be publicly available at https://github.com/jingyugong/DIP.
♻ ☆ Distilling 3D distinctive local descriptors for 6D pose estimation
Three-dimensional local descriptors are crucial for encoding geometric surface properties, making them essential for various point cloud understanding tasks. Among these descriptors, GeDi has demonstrated strong zero-shot 6D pose estimation capabilities but remains computationally impractical for real-world applications due to its expensive inference process. Can we retain GeDi's effectiveness while significantly improving its efficiency? In this paper, we explore this question by introducing a knowledge distillation framework that trains an efficient student model to regress local descriptors from a GeDi teacher. Our key contributions include: an efficient large-scale training procedure that ensures robustness to occlusions and partial observations while operating under compute and storage constraints, and a novel loss formulation that handles weak supervision from non-distinctive teacher descriptors. We validate our approach on five BOP Benchmark datasets and demonstrate a significant reduction in inference time while maintaining competitive performance with existing methods, bringing zero-shot 6D pose estimation closer to real-time feasibility. Project Website: https://tev-fbk.github.io/dGeDi/
comment: Project Website: https://tev-fbk.github.io/dGeDi/
♻ ☆ Bidirectional Image-Event Guided Fusion Framework for Low-Light Image Enhancement
Under extreme low-light conditions, frame-based cameras suffer from severe detail loss due to limited dynamic range. Recent studies have introduced event cameras for event-guided low-light image enhancement. However, existing approaches often overlook the flickering artifacts and structural discontinuities caused by dynamic illumination changes and event sparsity. To address these challenges, we propose BiLIE, a Bidirectional image-event guided fusion framework for Low-Light Image Enhancement, which achieves mutual guidance and complementary enhancement between the two modalities. First, to highlight edge details, we develop a Dynamic Adaptive Filtering Enhancement (DAFE) module that performs adaptive high-pass filtering on event representations to suppress flickering artifacts and preserve high-frequency information under varying illumination. Subsequently, we design a Bidirectional Guided Awareness Fusion (BGAF) mechanism, which achieves breakpoint-aware restoration from images to events and structure-aware enhancement from events to images through a two-stage attention mechanism, establishing cross-modal consistency, thereby producing a clear, smooth, and structurally intact fused representation. Moreover, recognizing that existing datasets exhibit insufficient ground-truth fidelity and color accuracy, we construct a high-quality low-light image-event dataset (RELIE) via a reliable ground truth refinement scheme. Extensive experiments demonstrate that our method outperforms existing approaches on both the RELIE and LIE datasets. Notably, on RELIE, BiLIE exceeds the state-of-the-art by 0.81dB in PSNR and shows significant advantages in edge restoration, color fidelity, and noise suppression.
♻ ☆ MAROON: A Dataset for the Joint Characterization of Near-Field High-Resolution Radio-Frequency and Optical Depth Imaging Techniques
Utilizing the complementary strengths of wavelength-specific range or depth sensors is crucial for robust computer-assisted tasks such as autonomous driving. Despite this, there is still little research done at the intersection of optical depth sensors and radars operating close range, where the target is decimeters away from the sensors. Together with a growing interest in high-resolution imaging radars operating in the near field, the question arises how these sensors behave in comparison to their traditional optical counterparts. In this work, we take on the unique challenge of jointly characterizing depth imagers from both, the optical and radio-frequency domain using a multimodal spatial calibration. We collect data from four depth imagers, with three optical sensors of varying operation principle and an imaging radar. We provide a comprehensive evaluation of their depth measurements with respect to distinct object materials, geometries, and object-to-sensor distances. Specifically, we reveal scattering effects of partially transmissive materials and investigate the response of radio-frequency signals. All object measurements will be made public in form of a multimodal dataset, called MAROON.
♻ ☆ MM-UNet: Morph Mamba U-shaped Convolutional Networks for Retinal Vessel Segmentation
Accurate detection of retinal vessels plays a critical role in reflecting a wide range of health status indicators in the clinical diagnosis of ocular diseases. Recently, advances in deep learning have led to a surge in retinal vessel segmentation methods, which have significantly contributed to the quantitative analysis of vascular morphology. However, retinal vasculature differs significantly from conventional segmentation targets in that it consists of extremely thin and branching structures, whose global morphology varies greatly across images. These characteristics continue to pose challenges to segmentation precision and robustness. To address these issues, we propose MM-UNet, a novel architecture tailored for efficient retinal vessel segmentation. The model incorporates Morph Mamba Convolution layers, which replace pointwise convolutions to enhance branching topological perception through morph, state-aware feature sampling. Additionally, Reverse Selective State Guidance modules integrate reverse guidance theory with state-space modeling to improve geometric boundary awareness and decoding efficiency. Extensive experiments conducted on two public retinal vessel segmentation datasets demonstrate the superior performance of the proposed method in segmentation accuracy. Compared to the existing approaches, MM-UNet achieves F1-score gains of 1.64 % on DRIVE and 1.25 % on STARE, demonstrating its effectiveness and advancement. The project code is public via https://github.com/liujiawen-jpg/MM-UNet.
comment: This paper was accepted by IEEE BIBM 2025 conference
♻ ☆ Improving Generalization in Deepfake Detection with Face Foundation Models and Metric Learning
The increasing realism and accessibility of deepfakes have raised critical concerns about media authenticity and information integrity. Despite recent advances, deepfake detection models often struggle to generalize beyond their training distributions, particularly when applied to media content found in the wild. In this work, we present a robust video deepfake detection framework with strong generalization that takes advantage of the rich facial representations learned by face foundation models. Our method is built on top of FSFM, a self-supervised model trained on real face data, and is further fine-tuned using an ensemble of deepfake datasets spanning both face-swapping and face-reenactment manipulations. To enhance discriminative power, we incorporate triplet loss variants during training, guiding the model to produce more separable embeddings between real and fake samples. Additionally, we explore attribution-based supervision schemes, where deepfakes are categorized by manipulation type or source dataset, to assess their impact on generalization. Extensive experiments across diverse evaluation benchmarks demonstrate the effectiveness of our approach, especially in challenging real-world scenarios.
comment: The authors did not manage to secure approval by the funder of this research on time
♻ ☆ Not Only Consistency: Enhance Test-Time Adaptation with Spatio-temporal Inconsistency for Remote Physiological Measurement
Remote physiological measurement (RPM) has emerged as a promising non-invasive method for monitoring physiological signals using the non-contact device. Although various domain adaptation and generalization methods were proposed to promote the adaptability of deep-based RPM models in unseen deployment environments, considerations in aspects such as privacy concerns and real-time adaptation restrict their application in real-world deployment. Thus, we aim to propose a novel fully Test-Time Adaptation (TTA) strategy tailored for RPM tasks in this work. Specifically, based on prior knowledge in physiology and our observations, we noticed not only there is spatio-temporal consistency in the frequency domain of BVP signals, but also that inconsistency in the time domain was significant. Given this, by leveraging both consistency and inconsistency priors, we introduce an innovative expert knowledge-based self-supervised \textbf{C}onsistency-\textbf{i}n\textbf{C}onsistency-\textbf{i}ntegration (\textbf{CiCi}) framework to enhances model adaptation during inference. Besides, our approach further incorporates a gradient dynamic control mechanism to mitigate potential conflicts between priors, ensuring stable adaptation across instances. Through extensive experiments on five diverse datasets under the TTA protocol, our method consistently outperforms existing techniques, presenting state-of-the-art performance in real-time self-supervised adaptation without accessing source data. The code will be released later.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ FedHUG: Federated Heterogeneous Unsupervised Generalization for Remote Physiological Measurements
Remote physiological measurement gained wide attention, while it requires collecting users' privacy-sensitive information, and existing contactless measurements still rely on labeled client data. This presents challenges when we want to further update real-world deployed models with numerous user data lacking labels. To resolve these challenges, we instantiate a new protocol called Federated Unsupervised Domain Generalization (FUDG) in this work. Subsequently, the \textbf{Fed}erated \textbf{H}eterogeneous \textbf{U}nsupervised \textbf{G}eneralization (\textbf{FedHUG}) framework is proposed and consists of: (1) Minimal Bias Aggregation module dynamically adjusts aggregation weights based on prior-driven bias evaluation to cope with heterogeneous non-IID features from multiple domains. (2) The Global Distribution-aware Learning Controller parameterizes the label distribution and dynamically manipulates client-specific training strategies, thereby mitigating the server-client label distribution skew and long-tail issue. The proposal shows superior performance across state-of-the-art techniques in estimation with either RGB video or mmWave radar. The code will be released.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ LegalEval-Q: A New Benchmark for The Quality Evaluation of LLM-Generated Legal Text
As large language models (LLMs) are increasingly used in legal applications, current evaluation benchmarks tend to focus mainly on factual accuracy while largely neglecting important linguistic quality aspects such as clarity, coherence, and terminology. To address this gap, we propose three steps: First, we develop a regression model to evaluate the quality of legal texts based on clarity, coherence, and terminology. Second, we create a specialized set of legal questions. Third, we analyze 49 LLMs using this evaluation framework. Our analysis identifies three key findings: First, model quality levels off at 14 billion parameters, with only a marginal improvement of $2.7\%$ noted at 72 billion parameters. Second, engineering choices such as quantization and context length have a negligible impact, as indicated by statistical significance thresholds above 0.016. Third, reasoning models consistently outperform base architectures. A significant outcome of our research is the release of a ranking list and Pareto analysis, which highlight the Qwen3 series as the optimal choice for cost-performance tradeoffs. This work not only establishes standardized evaluation protocols for legal LLMs but also uncovers fundamental limitations in current training data refinement approaches. Code and models are available at: https://github.com/lyxx3rd/LegalEval-Q.
comment: 10 pages, 11 figures
♻ ☆ Enhanced Partially Relevant Video Retrieval through Inter- and Intra-Sample Analysis with Coherence Prediction
Partially Relevant Video Retrieval (PRVR) aims to retrieve the target video that is partially relevant to the text query. The primary challenge in PRVR arises from the semantic asymmetry between textual and visual modalities, as videos often contain substantial content irrelevant to the query. Existing methods coarsely align paired videos and text queries to construct the semantic space, neglecting the critical cross-modal dual nature inherent in this task: inter-sample correlation and intra-sample redundancy. To this end, we propose a novel PRVR framework to systematically exploit these two characteristics. Our framework consists of three core modules. First, the Inter Correlation Enhancement (ICE) module captures inter-sample correlation by identifying semantically similar yet unpaired text queries and video moments, combining them to form pseudo-positive pairs for more robust semantic space construction. Second, the Intra Redundancy Mining (IRM) module mitigates intra-sample redundancy by mining redundant moment features and distinguishing them from query-relevant moments, encouraging the model to learn more discriminative representations. Finally, to reinforce these modules, we introduce the Temporal Coherence Prediction (TCP) module, which enhances temporal structure learning by training the model to predict the original temporal order of randomly shuffled video frames and moments. Extensive experiments demonstrate the superiority of our approach compared to prior methods, achieving state-of-the-art results.
comment: Upon further consideration, we have concluded that the current version requires revision and may not yet be ready for publication. We plan to conduct additional experiments and make necessary improvements to ensure the paper meets the standards for future submission
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs NeurIPS 2025
Despite progress in Large Vision-Language Models (LVLMs), their capacity for visual reasoning is often limited by the binding problem: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current LVLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces Visual Input Structure for Enhanced Reasoning (VISER), a simple, effective method that augments visual inputs with low-level spatial structures and pairs them with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks, using only a single-query inference. Specifically, VISER improves GPT-4o performance on visual search, counting, and spatial relationship tasks by 25.0%, 26.8%, and 9.5%, respectively, and reduces edit distance error in scene description by 0.32 on 2D datasets. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. VISER underscores the importance of visual input design over purely linguistically based reasoning strategies and suggests that visual structuring is a powerful and general approach for enhancing compositional and spatial reasoning in LVLMs.
comment: Accepted to NeurIPS 2025 (Thirty-ninth Conference on Neural Information Processing Systems)
♻ ☆ The Evolving Nature of Latent Spaces: From GANs to Diffusion
This paper examines the evolving nature of internal representations in generative visual models, focusing on the conceptual and technical shift from GANs and VAEs to diffusion-based architectures. Drawing on Beatrice Fazi's account of synthesis as the amalgamation of distributed representations, we propose a distinction between "synthesis in a strict sense", where a compact latent space wholly determines the generative process, and "synthesis in a broad sense," which characterizes models whose representational labor is distributed across layers. Through close readings of model architectures and a targeted experimental setup that intervenes in layerwise representations, we show how diffusion models fragment the burden of representation and thereby challenge assumptions of unified internal space. By situating these findings within media theoretical frameworks and critically engaging with metaphors such as the latent space and the Platonic Representation Hypothesis, we argue for a reorientation of how generative AI is understood: not as a direct synthesis of content, but as an emergent configuration of specialized processes.
comment: Presented and published at Ethics and Aesthetics of Artificial Intelligence Conference (EA-AI'25)
♻ ☆ Free-T2M: Robust Text-to-Motion Generation for Humanoid Robots via Frequency-Domain
Enabling humanoid robots to synthesize complex, physically coherent motions from natural language commands is a cornerstone of autonomous robotics and human-robot interaction. While diffusion models have shown promise in this text-to-motion (T2M) task, they often generate semantically flawed or unstable motions, limiting their applicability to real-world robots. This paper reframes the T2M problem from a frequency-domain perspective, revealing that the generative process mirrors a hierarchical control paradigm. We identify two critical phases: a semantic planning stage, where low-frequency components establish the global motion trajectory, and a fine-grained execution stage, where high-frequency details refine the movement. To address the distinct challenges of each phase, we introduce Frequency enhanced text-to-motion (Free-T2M), a framework incorporating stage-specific frequency-domain consistency alignment. We design a frequency-domain temporal-adaptive module to modulate the alignment effects of different frequency bands. These designs enforce robustness in the foundational semantic plan and enhance the accuracy of detailed execution. Extensive experiments show our method dramatically improves motion quality and semantic correctness. Notably, when applied to the StableMoFusion baseline, Free-T2M reduces the FID from 0.152 to 0.060, establishing a new state-of-the-art within diffusion architectures. These findings underscore the critical role of frequency-domain insights for generating robust and reliable motions, paving the way for more intuitive natural language control of robots.
♻ ☆ Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation 3DV
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.
comment: This paper has been accepted at International Conference on 3D Vision (3DV) 2026
♻ ☆ OccLE: Label-Efficient 3D Semantic Occupancy Prediction
3D semantic occupancy prediction offers an intuitive and efficient scene understanding and has attracted significant interest in autonomous driving perception. Existing approaches either rely on full supervision, which demands costly voxel-level annotations, or on self-supervision, which provides limited guidance and yields suboptimal performance. To address these challenges, we propose OccLE, a Label-Efficient 3D Semantic Occupancy Prediction that takes images and LiDAR as inputs and maintains high performance with limited voxel annotations. Our intuition is to decouple the semantic and geometric learning tasks and then fuse the learned feature grids from both tasks for the final semantic occupancy prediction. Therefore, the semantic branch distills 2D foundation model to provide aligned pseudo labels for 2D and 3D semantic learning. The geometric branch integrates image and LiDAR inputs in cross-plane synergy based on their inherency, employing semi-supervision to enhance geometry learning. We fuse semantic-geometric feature grids through Dual Mamba and incorporate a scatter-accumulated projection to supervise unannotated prediction with aligned pseudo labels. Experiments show that OccLE achieves competitive performance with only 10\% of voxel annotations on the SemanticKITTI and Occ3D-nuScenes datasets. The code will be publicly released on https://github.com/NerdFNY/OccLE
♻ ☆ DeNAS-ViT: Data Efficient NAS-Optimized Vision Transformer for Ultrasound Image Segmentation AAAI-26
Accurate segmentation of ultrasound images is essential for reliable medical diagnoses but is challenged by poor image quality and scarce labeled data. Prior approaches have relied on manually designed, complex network architectures to improve multi-scale feature extraction. However, such handcrafted models offer limited gains when prior knowledge is inadequate and are prone to overfitting on small datasets. In this paper, we introduce DeNAS-ViT, a data-efficient NAS-optimized Vision Transformer, the first method to leverage neural architecture search (NAS) for ultrasound image segmentation by automatically optimizing model architecture through token-level search. Specifically, we propose an efficient NAS module that performs multi-scale token search prior to the ViT's attention mechanism, effectively capturing both contextual and local features while minimizing computational costs. Given ultrasound's data scarcity and NAS's inherent data demands, we further develop a NAS-guided semi-supervised learning (SSL) framework. This approach integrates network independence and contrastive learning within a stage-wise optimization strategy, significantly enhancing model robustness under limited-data conditions. Extensive experiments on public datasets demonstrate that DeNAS-ViT achieves state-of-the-art performance, maintaining robustness with minimal labeled data. Moreover, we highlight DeNAS-ViT's generalization potential beyond ultrasound imaging, underscoring its broader applicability.
comment: Accepted by AAAI-26 Main Technical Track
♻ ☆ DOS: Directional Object Separation in Text Embeddings for Multi-Object Image Generation AAAI 2026
Recent progress in text-to-image (T2I) generative models has led to significant improvements in generating high-quality images aligned with text prompts. However, these models still struggle with prompts involving multiple objects, often resulting in object neglect or object mixing. Through extensive studies, we identify four problematic scenarios, Similar Shapes, Similar Textures, Dissimilar Background Biases, and Many Objects, where inter-object relationships frequently lead to such failures. Motivated by two key observations about CLIP embeddings, we propose DOS (Directional Object Separation), a method that modifies three types of CLIP text embeddings before passing them into text-to-image models. Experimental results show that DOS consistently improves the success rate of multi-object image generation and reduces object mixing. In human evaluations, DOS significantly outperforms four competing methods, receiving 26.24%-43.04% more votes across four benchmarks. These results highlight DOS as a practical and effective solution for improving multi-object image generation.
comment: Accepted to AAAI 2026
♻ ☆ Seg2Any: Open-set Segmentation-Mask-to-Image Generation with Precise Shape and Semantic Control
Despite recent advances in diffusion models, top-tier text-to-image (T2I) models still struggle to achieve precise spatial layout control, i.e. accurately generating entities with specified attributes and locations. Segmentation-mask-to-image (S2I) generation has emerged as a promising solution by incorporating pixel-level spatial guidance and regional text prompts. However, existing S2I methods fail to simultaneously ensure semantic consistency and shape consistency. To address these challenges, we propose Seg2Any, a novel S2I framework built upon advanced multimodal diffusion transformers (e.g. FLUX). First, to achieve both semantic and shape consistency, we decouple segmentation mask conditions into regional semantic and high-frequency shape components. The regional semantic condition is introduced by a Semantic Alignment Attention Mask, ensuring that generated entities adhere to their assigned text prompts. The high-frequency shape condition, representing entity boundaries, is encoded as an Entity Contour Map and then introduced as an additional modality via multi-modal attention to guide image spatial structure. Second, to prevent attribute leakage across entities in multi-entity scenarios, we introduce an Attribute Isolation Attention Mask mechanism, which constrains each entity's image tokens to attend exclusively to themselves during image self-attention. To support open-set S2I generation, we construct SACap-1M, a large-scale dataset containing 1 million images with 5.9 million segmented entities and detailed regional captions, along with a SACap-Eval benchmark for comprehensive S2I evaluation. Extensive experiments demonstrate that Seg2Any achieves state-of-the-art performance on both open-set and closed-set S2I benchmarks, particularly in fine-grained spatial and attribute control of entities.
♻ ☆ A Lightweight Complex-Valued Deformable CNN for High-Quality Computer-Generated Holography
Holographic displays have significant potential in virtual reality and augmented reality owing to their ability to provide all the depth cues. Deep learning-based methods play an important role in computer-generated holography (CGH). During the diffraction process, each pixel exerts an influence on the reconstructed image. However, previous works face challenges in capturing sufficient information to accurately model this process, primarily due to the inadequacy of their effective receptive field (ERF). Here, we designed complex-valued deformable convolution for integration into network, enabling dynamic adjustment of the convolution kernel's shape to increase flexibility of ERF for better feature extraction. This approach allows us to utilize a single model while achieving state-of-the-art performance in both simulated and optical experiment reconstructions, surpassing existing open-source models. Specifically, our method has a peak signal-to-noise ratio that is 2.04 dB, 5.31 dB, and 9.71 dB higher than that of CCNN-CGH, HoloNet, and Holo-encoder, respectively, when the resolution is 1920$\times$1072. The number of parameters of our model is only about one-eighth of that of CCNN-CGH.
comment: 13 pages, 9 figures
♻ ☆ High-Frequency Semantics and Geometric Priors for End-to-End Detection Transformers in Challenging UAV Imagery
Object detection in Unmanned Aerial Vehicle (UAV) imagery is fundamentally challenged by a prevalence of small, densely packed, and occluded objects within cluttered backgrounds. Conventional detectors struggle with this domain, as they rely on hand-crafted components like pre-defined anchors and heuristic-based Non-Maximum Suppression (NMS), creating a well-known performance bottleneck in dense scenes. Even recent end-to-end frameworks have not been purpose-built to overcome these specific aerial challenges, resulting in a persistent performance gap. To bridge this gap, we introduce HEDS-DETR, a holistically enhanced real-time Detection Transformer tailored for aerial scenes. Our framework features three key innovations. First, we propose a novel High-Frequency Enhanced Semantics Network (HFESNet) backbone, which yields highly discriminative features by preserving critical high-frequency details alongside robust semantic context. Second, our Efficient Small Object Pyramid (ESOP) counteracts information loss by efficiently fusing high-resolution features, significantly boosting small object detection. Finally, we enhance decoder stability and localization precision with two synergistic components: Selective Query Recollection (SQR) and Geometry-Aware Positional Encoding (GAPE), which stabilize optimization and provide explicit spatial priors for dense object arrangements. On the VisDrone dataset, HEDS-DETR achieves a +3.8% AP and +5.1% AP50 gain over its baseline while reducing parameters by 4M and maintaining real-time speeds. This demonstrates a highly competitive accuracy-efficiency balance, especially for detecting dense and small objects in aerial scenes.
comment: 12 pages, 9 figures
♻ ☆ Holistic Unlearning Benchmark: A Multi-Faceted Evaluation for Text-to-Image Diffusion Model Unlearning ICCV 2025
As text-to-image diffusion models gain widespread commercial applications, there are increasing concerns about unethical or harmful use, including the unauthorized generation of copyrighted or sensitive content. Concept unlearning has emerged as a promising solution to these challenges by removing undesired and harmful information from the pre-trained model. However, the previous evaluations primarily focus on whether target concepts are removed while preserving image quality, neglecting the broader impacts such as unintended side effects. In this work, we propose Holistic Unlearning Benchmark (HUB), a comprehensive framework for evaluating unlearning methods across six key dimensions: faithfulness, alignment, pinpoint-ness, multilingual robustness, attack robustness, and efficiency. Our benchmark covers 33 target concepts, including 16,000 prompts per concept, spanning four categories: Celebrity, Style, Intellectual Property, and NSFW. Our investigation reveals that no single method excels across all evaluation criteria. By releasing our evaluation code and dataset, we hope to inspire further research in this area, leading to more reliable and effective unlearning methods.
comment: ICCV 2025
♻ ☆ Learning Temporal 3D Semantic Scene Completion via Optical Flow Guidance NeurIPS 2025
3D Semantic Scene Completion (SSC) provides comprehensive scene geometry and semantics for autonomous driving perception, which is crucial for enabling accurate and reliable decision-making. However, existing SSC methods are limited to capturing sparse information from the current frame or naively stacking multi-frame temporal features, thereby failing to acquire effective scene context. These approaches ignore critical motion dynamics and struggle to achieve temporal consistency. To address the above challenges, we propose a novel temporal SSC method FlowScene: Learning Temporal 3D Semantic Scene Completion via Optical Flow Guidance. By leveraging optical flow, FlowScene can integrate motion, different viewpoints, occlusions, and other contextual cues, thereby significantly improving the accuracy of 3D scene completion. Specifically, our framework introduces two key components: (1) a Flow-Guided Temporal Aggregation module that aligns and aggregates temporal features using optical flow, capturing motion-aware context and deformable structures; and (2) an Occlusion-Guided Voxel Refinement module that injects occlusion masks and temporally aggregated features into 3D voxel space, adaptively refining voxel representations for explicit geometric modeling. Experimental results demonstrate that FlowScene achieves state-of-the-art performance on the SemanticKITTI and SSCBench-KITTI-360 benchmarks.
comment: Accepted by NeurIPS 2025
♻ ☆ Fine-grained Image Retrieval via Dual-Vision Adaptation AAAI2026
Fine-Grained Image Retrieval~(FGIR) faces challenges in learning discriminative visual representations to retrieve images with similar fine-grained features. Current leading FGIR solutions typically follow two regimes: enforce pairwise similarity constraints in the semantic embedding space, or incorporate a localization sub-network to fine-tune the entire model. However, such two regimes tend to overfit the training data while forgetting the knowledge gained from large-scale pre-training, thus reducing their generalization ability. In this paper, we propose a Dual-Vision Adaptation (DVA) approach for FGIR, which guides the frozen pre-trained model to perform FGIR through collaborative sample and feature adaptation. Specifically, we design Object-Perceptual Adaptation, which modifies input samples to help the pre-trained model perceive critical objects and elements within objects that are helpful for category prediction. Meanwhile, we propose In-Context Adaptation, which introduces a small set of parameters for feature adaptation without modifying the pre-trained parameters. This makes the FGIR task using these adjusted features closer to the task solved during the pre-training. Additionally, to balance retrieval efficiency and performance, we propose Discrimination Perception Transfer to transfer the discriminative knowledge in the object-perceptual adaptation to the image encoder using the knowledge distillation mechanism. Extensive experiments show that DVA has fewer learnable parameters and performs well on three in-distribution and three out-of-distribution fine-grained datasets.
comment: Accepted by AAAI2026
♻ ☆ SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection AAAI 2026
With the rapid advancement of remote sensing technology, high-resolution multi-modal imagery is now more widely accessible. Conventional Object detection models are trained on a single dataset, often restricted to a specific imaging modality and annotation format. However, such an approach overlooks the valuable shared knowledge across multi-modalities and limits the model's applicability in more versatile scenarios. This paper introduces a new task called Multi-Modal Datasets and Multi-Task Object Detection (M2Det) for remote sensing, designed to accurately detect horizontal or oriented objects from any sensor modality. This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization. To address these, we establish a benchmark dataset and propose a unified model, SM3Det (Single Model for Multi-Modal datasets and Multi-Task object Detection). SM3Det leverages a grid-level sparse MoE backbone to enable joint knowledge learning while preserving distinct feature representations for different modalities. Furthermore, it integrates a consistency and synchronization optimization strategy using dynamic learning rate adjustment, allowing it to effectively handle varying levels of learning difficulty across modalities and tasks. Extensive experiments demonstrate SM3Det's effectiveness and generalizability, consistently outperforming specialized models on individual datasets. The code is available at https://github.com/zcablii/SM3Det.
comment: Accepted as Oral in AAAI 2026
♻ ☆ Towards Visual Grounding: A Survey TPAMI 2025
Visual Grounding, also known as Referring Expression Comprehension and Phrase Grounding, aims to ground the specific region(s) within the image(s) based on the given expression text. This task simulates the common referential relationships between visual and linguistic modalities, enabling machines to develop human-like multimodal comprehension capabilities. Consequently, it has extensive applications in various domains. However, since 2021, visual grounding has witnessed significant advancements, with emerging new concepts such as grounded pre-training, grounding multimodal LLMs, generalized visual grounding, and giga-pixel grounding, which have brought numerous new challenges. In this survey, we first examine the developmental history of visual grounding and provide an overview of essential background knowledge. We systematically track and summarize the advancements, and then meticulously define and organize the various settings to standardize future research and ensure a fair comparison. Additionally, we delve into numerous related datasets and applications, and highlight several advanced topics. Finally, we outline the challenges confronting visual grounding and propose valuable directions for future research, which may serve as inspiration for subsequent researchers. By extracting common technical details, this survey encompasses the representative work in each subtopic over the past decade. To the best of our knowledge, this paper represents the most comprehensive overview currently available in the field of visual grounding. This survey is designed to be suitable for both beginners and experienced researchers, serving as an invaluable resource for understanding key concepts and tracking the latest research developments. We keep tracing related work at https://github.com/linhuixiao/Awesome-Visual-Grounding.
comment: Accepted by TPAMI 2025.We keep tracing related works at https://github.com/linhuixiao/Awesome-Visual-Grounding
♻ ☆ Multispectral-NeRF:a multispectral modeling approach based on neural radiance fields
3D reconstruction technology generates three-dimensional representations of real-world objects, scenes, or environments using sensor data such as 2D images, with extensive applications in robotics, autonomous vehicles, and virtual reality systems. Traditional 3D reconstruction techniques based on 2D images typically relies on RGB spectral information. With advances in sensor technology, additional spectral bands beyond RGB have been increasingly incorporated into 3D reconstruction workflows. Existing methods that integrate these expanded spectral data often suffer from expensive scheme prices, low accuracy and poor geometric features. Three - dimensional reconstruction based on NeRF can effectively address the various issues in current multispectral 3D reconstruction methods, producing high - precision and high - quality reconstruction results. However, currently, NeRF and some improved models such as NeRFacto are trained on three - band data and cannot take into account the multi - band information. To address this problem, we propose Multispectral-NeRF, an enhanced neural architecture derived from NeRF that can effectively integrates multispectral information. Our technical contributions comprise threefold modifications: Expanding hidden layer dimensionality to accommodate 6-band spectral inputs; Redesigning residual functions to optimize spectral discrepancy calculations between reconstructed and reference images; Adapting data compression modules to address the increased bit-depth requirements of multispectral imagery. Experimental results confirm that Multispectral-NeRF successfully processes multi-band spectral features while accurately preserving the original scenes' spectral characteristics.
♻ ☆ Descriptive Image-Text Matching with Graded Contextual Similarity
Image-text matching aims to build correspondences between visual and textual data by learning their pairwise similarities. Most existing approaches have adopted sparse binary supervision, indicating whether a pair of images and sentences matches or not. However, such sparse supervision covers a limited subset of image-text relationships, neglecting their inherent many-to-many correspondences; an image can be described in numerous texts at different descriptive levels. Moreover, existing approaches overlook the implicit connections from general to specific descriptions, which form the underlying rationale for the many-to-many relationships between vision and language. In this work, we propose descriptive image-text matching, called DITM, to learn the graded contextual similarity between image and text by exploring the descriptive flexibility of language. We formulate the descriptiveness score of each sentence with cumulative term frequency-inverse document frequency (TF-IDF) to balance the pairwise similarity according to the keywords in the sentence. Our method leverages sentence descriptiveness to learn robust image-text matching in two key ways: (1) to refine the false negative labeling, dynamically relaxing the connectivity between positive and negative pairs, and (2) to build more precise matching, aligning a set of relevant sentences in a generic-to-specific order. By moving beyond rigid binary supervision, DITM enhances the discovery of both optimal matches and potential positive pairs. Extensive experiments on MS-COCO, Flickr30K, and CxC datasets demonstrate the effectiveness of our method in representing complex image-text relationships compared to state-of-the-art approaches. In addition, DITM enhances the hierarchical reasoning ability of the model, supported by the extensive analysis on HierarCaps benchmark.
comment: This version is incomplete and requires substantial revisions and extensions. We withdraw the paper and plan to submit a thoroughly revised version as a new submission
♻ ☆ Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling NeurIPS 2025
Diffusion models, though originally designed for generative tasks, have demonstrated impressive self-supervised representation learning capabilities. A particularly intriguing phenomenon in these models is the emergence of unimodal representation dynamics, where the quality of learned features peaks at an intermediate noise level. In this work, we conduct a comprehensive theoretical and empirical investigation of this phenomenon. Leveraging the inherent low-dimensionality structure of image data, we theoretically demonstrate that the unimodal dynamic emerges when the diffusion model successfully captures the underlying data distribution. The unimodality arises from an interplay between denoising strength and class confidence across noise scales. Empirically, we further show that, in classification tasks, the presence of unimodal dynamics reliably reflects the generalization of the diffusion model: it emerges when the model generates novel images and gradually transitions to a monotonically decreasing curve as the model begins to memorize the training data.
comment: First two authors contributed equally. Accepted at NeurIPS 2025
♻ ☆ Improving Contactless Fingerprint Recognition with Robust 3D Feature Extraction and Graph Embedding
Contactless fingerprint has gained lots of attention in recent fingerprint studies. However, most existing contactless fingerprint algorithms treat contactless fingerprints as 2D plain fingerprints, and still utilize traditional contact-based 2D fingerprints recognition methods. This recognition approach lacks consideration of the modality difference between contactless and contact fingerprints, especially the intrinsic 3D features in contactless fingerprints. This paper proposes a novel contactless fingerprint recognition algorithm that captures the revealed 3D feature of contactless fingerprints rather than the plain 2D feature. The proposed method first recovers 3D features from the input contactless fingerprint, including the 3D shape model and 3D fingerprint feature (minutiae, orientation, etc.). Then, a novel 3D graph matching method is proposed according to the extracted 3D feature. Additionally, the proposed method is able to perform robust 3D feature extractions on various contactless fingerprints across multiple finger poses. The results of the experiments on contactless fingerprint databases show that the proposed method successfully improves the matching accuracy of contactless fingerprints. Exceptionally, our method performs stably across multiple poses of contactless fingerprints due to 3D embeddings, which is a great advantage compared to 2D-based previous contactless fingerprint recognition algorithms.
comment: Oral presentation accepted at the 2025 IEEE International Joint Conference on Biometrics (IJCB) 2025, Osaka, Japan (9/8-9/11/2025)
♻ ☆ Self Forcing: Bridging the Train-Test Gap in Autoregressive Video Diffusion NeurIPS 2025
We introduce Self Forcing, a novel training paradigm for autoregressive video diffusion models. It addresses the longstanding issue of exposure bias, where models trained on ground-truth context must generate sequences conditioned on their own imperfect outputs during inference. Unlike prior methods that denoise future frames based on ground-truth context frames, Self Forcing conditions each frame's generation on previously self-generated outputs by performing autoregressive rollout with key-value (KV) caching during training. This strategy enables supervision through a holistic loss at the video level that directly evaluates the quality of the entire generated sequence, rather than relying solely on traditional frame-wise objectives. To ensure training efficiency, we employ a few-step diffusion model along with a stochastic gradient truncation strategy, effectively balancing computational cost and performance. We further introduce a rolling KV cache mechanism that enables efficient autoregressive video extrapolation. Extensive experiments demonstrate that our approach achieves real-time streaming video generation with sub-second latency on a single GPU, while matching or even surpassing the generation quality of significantly slower and non-causal diffusion models. Project website: http://self-forcing.github.io/
comment: NeurIPS 2025 spotlight. Project website: http://self-forcing.github.io/
♻ ☆ A Step Toward World Models: A Survey on Robotic Manipulation
Autonomous agents are increasingly expected to operate in complex, dynamic, and uncertain environments, performing tasks such as manipulation, navigation, and decision-making. Achieving these capabilities requires agents to understand the underlying mechanisms and dynamics of the world, moving beyond reactive control or simple replication of observed states. This motivates the development of world models as internal representations that encode environmental states, capture dynamics, and support prediction, planning, and reasoning. Despite growing interest, the definition, scope, architectures, and essential capabilities of world models remain ambiguous. In this survey, we go beyond prescribing a fixed definition and limiting our scope to methods explicitly labeled as world models. Instead, we examine approaches that exhibit the core capabilities of world models through a review of methods in robotic manipulation. We analyze their roles across perception, prediction, and control, identify key challenges and solutions, and distill the core components, capabilities, and functions that a fully realized world model should possess. Building on this analysis, we aim to motivate further development toward generalizable and practical world models for robotics.
comment: 24 pages, 5 figures
♻ ☆ F2RVLM: Boosting Fine-grained Fragment Retrieval for Multi-Modal Long-form Dialogue with Vision Language Model
Traditional dialogue retrieval aims to select the most appropriate utterance or image from recent dialogue history. However, they often fail to meet users' actual needs for revisiting semantically coherent content scattered across long-form conversations. To fill this gap, we define the Fine-grained Fragment Retrieval (FFR) task, requiring models to locate query-relevant fragments, comprising both utterances and images, from multimodal long-form dialogues. As a foundation for FFR, we construct MLDR, the longest-turn multimodal dialogue retrieval dataset to date, averaging 25.45 turns per dialogue, with each naturally spanning three distinct topics. To evaluate generalization in real-world scenarios, we curate and annotate a WeChat-based test set comprising real-world multimodal dialogues with an average of 75.38 turns. Building on these resources, we explore existing generation-based Vision-Language Models (VLMs) on FFR and observe that they often retrieve incoherent utterance-image fragments. While optimized for generating responses from visual-textual inputs, these models lack explicit supervision to ensure semantic coherence within retrieved fragments. To this end, we propose F2RVLM, a generative retrieval model trained in a two-stage paradigm: (1) supervised fine-tuning to inject fragment-level retrieval knowledge, and (2) GRPO-based reinforcement learning with multi-objective rewards promoting semantic precision, relevance, and contextual coherence. To handle varying intra-fragment complexity, from locally dense to sparsely distributed, we introduce difficulty-aware curriculum sampling that ranks training instances by model-predicted difficulty and gradually exposes the model to harder samples. This boosts reasoning ability in long, multi-turn contexts. F2RVLM outperforms popular VLMs in both in-domain and real-domain settings, demonstrating superior retrieval performance.
♻ ☆ Scalable Offline Metrics for Autonomous Driving IROS 2025
Real-world evaluation of perception-based planning models for robotic systems, such as autonomous vehicles, can be safely and inexpensively conducted offline, i.e. by computing model prediction error over a pre-collected validation dataset with ground-truth annotations. However, extrapolating from offline model performance to online settings remains a challenge. In these settings, seemingly minor errors can compound and result in test-time infractions or collisions. This relationship is understudied, particularly across diverse closed-loop metrics and complex urban maneuvers. In this work, we revisit this undervalued question in policy evaluation through an extensive set of experiments across diverse conditions and metrics. Based on analysis in simulation, we find an even worse correlation between offline and online settings than reported by prior studies, casting doubts on the validity of current evaluation practices and metrics for driving policies. Next, we bridge the gap between offline and online evaluation. We investigate an offline metric based on epistemic uncertainty, which aims to capture events that are likely to cause errors in closed-loop settings. The resulting metric achieves over 13% improvement in correlation compared to previous offline metrics. We further validate the generalization of our findings beyond the simulation environment in real-world settings, where even greater gains are observed.
comment: Accepted at IROS 2025 (IEEE/RSJ International Conference on Intelligent Robots and Systems); typos corrected
♻ ☆ Continual Learning with Synthetic Boundary Experience Blending
Continual learning (CL) seeks to mitigate catastrophic forgetting when models are trained with sequential tasks. A common approach, experience replay (ER), stores past exemplars but only sparsely approximates the data distribution, yielding fragile and oversimplified decision boundaries. We address this limitation by introducing synthetic boundary data (SBD), generated via differential privacy: inspired noise into latent features to create boundary-adjacent representations that implicitly regularize decision boundaries. Building on this idea, we propose Experience Blending (EB), a framework that jointly trains on exemplars and SBD through a dual-model aggregation strategy. EB has two components: (1) latent-space noise injection to synthesize boundary data, and (2) end-to-end training that jointly leverages exemplars and SBD. Unlike standard experience replay, SBD enriches the feature space near decision boundaries, leading to more stable and robust continual learning. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet demonstrate consistent accuracy improvements of 10%, 6%, and 13%, respectively, over strong baselines.
♻ ☆ Reg-DPO: SFT-Regularized Direct Preference Optimization with GT-Pair for Improving Video Generation
Recent studies have identified Direct Preference Optimization (DPO) as an efficient and reward-free approach to improving video generation quality. However, existing methods largely follow image-domain paradigms and are mainly developed on small-scale models (approximately 2B parameters), limiting their ability to address the unique challenges of video tasks, such as costly data construction, unstable training, and heavy memory consumption. To overcome these limitations, we introduce a GT-Pair that automatically builds high-quality preference pairs by using real videos as positives and model-generated videos as negatives, eliminating the need for any external annotation. We further present Reg-DPO, which incorporates the SFT loss as a regularization term into the DPO loss to enhance training stability and generation fidelity. Additionally, by combining the FSDP framework with multiple memory optimization techniques, our approach achieves nearly three times higher training capacity than using FSDP alone. Extensive experiments on both I2V and T2V tasks across multiple datasets demonstrate that our method consistently outperforms existing approaches, delivering superior video generation quality.
comment: The paper is withdrawn due to the need for further revision and verification of experimental results. A revised version will be resubmitted once the updates are completed
♻ ☆ Temporal Inconsistency Guidance for Super-resolution Video Quality Assessment AAAI
As super-resolution (SR) techniques introduce unique distortions that fundamentally differ from those caused by traditional degradation processes (e.g., compression), there is an increasing demand for specialized video quality assessment (VQA) methods tailored to SR-generated content. One critical factor affecting perceived quality is temporal inconsistency, which refers to irregularities between consecutive frames. However, existing VQA approaches rarely quantify this phenomenon or explicitly investigate its relationship with human perception. Moreover, SR videos exhibit amplified inconsistency levels as a result of enhancement processes. In this paper, we propose \textit{Temporal Inconsistency Guidance for Super-resolution Video Quality Assessment (TIG-SVQA)} that underscores the critical role of temporal inconsistency in guiding the quality assessment of SR videos. We first design a perception-oriented approach to quantify frame-wise temporal inconsistency. Based on this, we introduce the Inconsistency Highlighted Spatial Module, which localizes inconsistent regions at both coarse and fine scales. Inspired by the human visual system, we further develop an Inconsistency Guided Temporal Module that performs progressive temporal feature aggregation: (1) a consistency-aware fusion stage in which a visual memory capacity block adaptively determines the information load of each temporal segment based on inconsistency levels, and (2) an informative filtering stage for emphasizing quality-related features. Extensive experiments on both single-frame and multi-frame SR video scenarios demonstrate that our method significantly outperforms state-of-the-art VQA approaches. The code is publicly available at https://github.com/Lighting-YXLI/TIG-SVQA-main.
comment: 15 pages, 10 figures, AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE(AAAI-26)
♻ ☆ Graph Flow Matching: Enhancing Image Generation with Neighbor-Aware Flow Fields AAAI
Flow matching casts sample generation as learning a continuous-time velocity field that transports noise to data. Existing flow matching networks typically predict each point's velocity independently, considering only its location and time along its flow trajectory, and ignoring neighboring points. However, this pointwise approach may overlook correlations between points along the generation trajectory that could enhance velocity predictions, thereby improving downstream generation quality. To address this, we propose Graph Flow Matching (GFM), a lightweight enhancement that decomposes the learned velocity into a reaction term -- any standard flow matching network -- and a diffusion term that aggregates neighbor information via a graph neural module. This reaction-diffusion formulation retains the scalability of deep flow models while enriching velocity predictions with local context, all at minimal additional computational cost. Operating in the latent space of a pretrained variational autoencoder, GFM consistently improves Fr\'echet Inception Distance (FID) and recall across five image generation benchmarks (LSUN Church, LSUN Bedroom, FFHQ, AFHQ-Cat, and CelebA-HQ at $256\times256$), demonstrating its effectiveness as a modular enhancement to existing flow matching architectures.
comment: The 40th Annual AAAI Conference on Artificial Intelligence
Machine Learning 150
☆ Routing Manifold Alignment Improves Generalization of Mixture-of-Experts LLMs
Sparse Mixture-of-Experts (MoE) have been widely adopted in recent large language models since it can efficiently scale up the model capability without increasing the inference cost. However, evaluations on broad downstream tasks reveal a consistent suboptimality of the routers in existing MoE LLMs, which results in a severe performance gap (e.g., 10-20% in accuracy) to the optimal routing. In this paper, we show that aligning the manifold of routing weights with that of task embedding can effectively reduce the gap and improve MoE LLMs' generalization performance. Our method, "Routing Manifold Alignment (RoMA)", introduces an additional manifold regularization term in the post-training objective and only requires lightweight finetuning of routers (with other parameters frozen). Specifically, the regularization encourages the routing weights of each sample to be close to those of its successful neighbors (whose routing weights lead to correct answers) in a task embedding space. Consequently, samples targeting similar tasks will share similar expert choices across layers. Building such bindings between tasks and experts over different samples is essential to achieve better generalization. Moreover, RoMA demonstrates the advantage of unifying the task understanding (by embedding models) with solution generation (by MoE LLMs). In experiments, we finetune routers in OLMoE, DeepSeekMoE, and Qwen3-MoE using RoMA. Evaluations on diverse benchmarks and extensive comparisons with baselines show the substantial improvement brought by RoMA.
☆ Language Generation with Infinite Contamination
We study language generation in the limit, where an algorithm observes an adversarial enumeration of strings from an unknown target language $K$ and must eventually generate new, unseen strings from $K$. Kleinberg and Mullainathan [KM24] proved that generation is achievable in surprisingly general settings. But their generator suffers from ``mode collapse,'' producing from an ever-smaller subset of the target. To address this, Kleinberg and Wei [KW25] require the generator's output to be ``dense'' in the target language. They showed that generation with density, surprisingly, remains achievable at the same generality. Both results assume perfect data: no noisy insertions and no omissions. This raises a central question: how much contamination can generation tolerate? Recent works made partial progress on this question by studying (non-dense) generation with either finite amounts of noise (but no omissions) or omissions (but no noise). We characterize robustness under contaminated enumerations: 1. Generation under Contamination: Language generation in the limit is achievable for all countable collections iff the fraction of contaminated examples converges to zero. When this fails, we characterize which collections are generable. 2. Dense Generation under Contamination: Dense generation is strictly less robust to contamination than generation. As a byproduct, we resolve an open question of Raman and Raman [ICML25] by showing that generation is possible with only membership oracle access under finitely many contaminated examples. Finally, we introduce a beyond-worst-case model inspired by curriculum learning and prove that dense generation is achievable even with infinite contamination provided the fraction of contaminated examples converges to zero. This suggests curriculum learning may be crucial for learning from noisy web data.
☆ DigiData: Training and Evaluating General-Purpose Mobile Control Agents
AI agents capable of controlling user interfaces have the potential to transform human interaction with digital devices. To accelerate this transformation, two fundamental building blocks are essential: high-quality datasets that enable agents to achieve complex and human-relevant goals, and robust evaluation methods that allow researchers and practitioners to rapidly enhance agent performance. In this paper, we introduce DigiData, a large-scale, high-quality, diverse, multi-modal dataset designed for training mobile control agents. Unlike existing datasets, which derive goals from unstructured interactions, DigiData is meticulously constructed through comprehensive exploration of app features, resulting in greater diversity and higher goal complexity. Additionally, we present DigiData-Bench, a benchmark for evaluating mobile control agents on real-world complex tasks. We demonstrate that the commonly used step-accuracy metric falls short in reliably assessing mobile control agents and, to address this, we propose dynamic evaluation protocols and AI-powered evaluations as rigorous alternatives for agent assessment. Our contributions aim to significantly advance the development of mobile control agents, paving the way for more intuitive and effective human-device interactions.
comment: Website: https://facebookresearch.github.io/DigiData
☆ Entangled Schrödinger Bridge Matching
Simulating trajectories of multi-particle systems on complex energy landscapes is a central task in molecular dynamics (MD) and drug discovery, but remains challenging at scale due to computationally expensive and long simulations. Previous approaches leverage techniques such as flow or Schr\"odinger bridge matching to implicitly learn joint trajectories through data snapshots. However, many systems, including biomolecular systems and heterogeneous cell populations, undergo dynamic interactions that evolve over their trajectory and cannot be captured through static snapshots. To close this gap, we introduce Entangled Schr\"odinger Bridge Matching (EntangledSBM), a framework that learns the first- and second-order stochastic dynamics of interacting, multi-particle systems where the direction and magnitude of each particle's path depend dynamically on the paths of the other particles. We define the Entangled Schr\"odinger Bridge (EntangledSB) problem as solving a coupled system of bias forces that entangle particle velocities. We show that our framework accurately simulates heterogeneous cell populations under perturbations and rare transitions in high-dimensional biomolecular systems.
☆ SpatialThinker: Reinforcing 3D Reasoning in Multimodal LLMs via Spatial Rewards NeurIPS 2025
Multimodal large language models (MLLMs) have achieved remarkable progress in vision-language tasks, but they continue to struggle with spatial understanding. Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific modifications, and remain constrained by large-scale datasets or sparse supervision. To address these limitations, we introduce SpatialThinker, a 3D-aware MLLM trained with RL to integrate structured spatial grounding with multi-step reasoning. The model simulates human-like spatial perception by constructing a scene graph of task-relevant objects and spatial relations, and reasoning towards an answer via dense spatial rewards. SpatialThinker consists of two key contributions: (1) a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA dataset, and (2) online RL with a multi-objective dense spatial reward enforcing spatial grounding. SpatialThinker-7B outperforms supervised fine-tuning and the sparse RL baseline on spatial understanding and real-world VQA benchmarks, nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-4o. These results showcase the effectiveness of combining spatial supervision with reward-aligned reasoning in enabling robust 3D spatial understanding with limited data and advancing MLLMs towards human-level visual reasoning.
comment: Preprint. Accepted at NeurIPS 2025 Workshops on SPACE in Vision, Language, and Embodied AI (SpaVLE), Embodied World Models for Decision Making (EWM), Aligning Reinforcement Learning Experimentalists and Theorists (ARLET), and Scaling Environments for Agents (SEA)
☆ StreamDiffusionV2: A Streaming System for Dynamic and Interactive Video Generation
Generative models are reshaping the live-streaming industry by redefining how content is created, styled, and delivered. Previous image-based streaming diffusion models have powered efficient and creative live streaming products but have hit limits on temporal consistency due to the foundation of image-based designs. Recent advances in video diffusion have markedly improved temporal consistency and sampling efficiency for offline generation. However, offline generation systems primarily optimize throughput by batching large workloads. In contrast, live online streaming operates under strict service-level objectives (SLOs): time-to-first-frame must be minimal, and every frame must meet a per-frame deadline with low jitter. Besides, scalable multi-GPU serving for real-time streams remains largely unresolved so far. To address this, we present StreamDiffusionV2, a training-free pipeline for interactive live streaming with video diffusion models. StreamDiffusionV2 integrates an SLO-aware batching scheduler and a block scheduler, together with a sink-token--guided rolling KV cache, a motion-aware noise controller, and other system-level optimizations. Moreover, we introduce a scalable pipeline orchestration that parallelizes the diffusion process across denoising steps and network layers, achieving near-linear FPS scaling without violating latency guarantees. The system scales seamlessly across heterogeneous GPU environments and supports flexible denoising steps (e.g., 1--4), enabling both ultra-low-latency and higher-quality modes. Without TensorRT or quantization, StreamDiffusionV2 renders the first frame within 0.5s and attains 58.28 FPS with a 14B-parameter model and 64.52 FPS with a 1.3B-parameter model on four H100 GPUs, making state-of-the-art generative live streaming practical and accessible--from individual creators to enterprise-scale platforms.
comment: Project Page: http://streamdiffusionv2.github.io
☆ Solving bilevel optimization via sequential minimax optimization
In this paper we propose a sequential minimax optimization (SMO) method for solving a class of constrained bilevel optimization problems in which the lower-level part is a possibly nonsmooth convex optimization problem, while the upper-level part is a possibly nonconvex optimization problem. Specifically, SMO applies a first-order method to solve a sequence of minimax subproblems, which are obtained by employing a hybrid of modified augmented Lagrangian and penalty schemes on the bilevel optimization problems. Under suitable assumptions, we establish an operation complexity of $O(\varepsilon^{-7}\log\varepsilon^{-1})$ and $O(\varepsilon^{-6}\log\varepsilon^{-1})$, measured in terms of fundamental operations, for SMO in finding an $\varepsilon$-KKT solution of the bilevel optimization problems with merely convex and strongly convex lower-level objective functions, respectively. The latter result improves the previous best-known operation complexity by a factor of $\varepsilon^{-1}$. Preliminary numerical results demonstrate significantly superior computational performance compared to the recently developed first-order penalty method.
comment: Accepted by Mathematics of Operations Research
☆ C3PO: Optimized Large Language Model Cascades with Probabilistic Cost Constraints for Reasoning
Large language models (LLMs) have achieved impressive results on complex reasoning tasks, but their high inference cost remains a major barrier to real-world deployment. A promising solution is to use cascaded inference, where small, cheap models handle easy queries, and only the hardest examples are escalated to more powerful models. However, existing cascade methods typically rely on supervised training with labeled data, offer no theoretical generalization guarantees, and provide limited control over test-time computational cost. We introduce C3PO (Cost Controlled Cascaded Prediction Optimization), a self-supervised framework for optimizing LLM cascades under probabilistic cost constraints. By focusing on minimizing regret with respect to the most powerful model (MPM), C3PO avoids the need for labeled data by constructing a cascade using only unlabeled model outputs. It leverages conformal prediction to bound the probability that inference cost exceeds a user-specified budget. We provide theoretical guarantees on both cost control and generalization error, and show that our optimization procedure is effective even with small calibration sets. Empirically, C3PO achieves state-of-the-art performance across a diverse set of reasoning benchmarks including GSM8K, MATH-500, BigBench-Hard and AIME, outperforming strong LLM cascading baselines in both accuracy and cost-efficiency. Our results demonstrate that principled, label-free cascade optimization can enable scalable LLM deployment.
☆ A Diffusion Model to Shrink Proteins While Maintaining Their Function
Many proteins useful in modern medicine or bioengineering are challenging to make in the lab, fuse with other proteins in cells, or deliver to tissues in the body, because their sequences are too long. Shortening these sequences typically involves costly, time-consuming experimental campaigns. Ideally, we could instead use modern models of massive databases of sequences from nature to learn how to propose shrunken proteins that resemble sequences found in nature. Unfortunately, these models struggle to efficiently search the combinatorial space of all deletions, and are not trained with inductive biases to learn how to delete. To address this gap, we propose SCISOR, a novel discrete diffusion model that deletes letters from sequences to generate protein samples that resemble those found in nature. To do so, SCISOR trains a de-noiser to reverse a forward noising process that adds random insertions to natural sequences. As a generative model, SCISOR fits evolutionary sequence data competitively with previous large models. In evaluation, SCISOR achieves state-of-the-art predictions of the functional effects of deletions on ProteinGym. Finally, we use the SCISOR de-noiser to shrink long protein sequences, and show that its suggested deletions result in significantly more realistic proteins and more often preserve functional motifs than previous models of evolutionary sequences.
comment: Code available at https://github.com/baronet2/SCISOR
☆ Teaching Pretrained Language Models to Think Deeper with Retrofitted Recurrence
Recent advances in depth-recurrent language models show that recurrence can decouple train-time compute and parameter count from test-time compute. In this work, we study how to convert existing pretrained non-recurrent language models into depth-recurrent models. We find that using a curriculum of recurrences to increase the effective depth of the model over the course of training preserves performance while reducing total computational cost. In our experiments, on mathematics, we observe that converting pretrained models to recurrent ones results in better performance at a given compute budget than simply post-training the original non-recurrent language model.
comment: code: https://github.com/mcleish7/retrofitting-recurrence, models: https://huggingface.co/collections/tomg-group-umd/retrofitting-recurrence
☆ LoReTTA: A Low Resource Framework To Poison Continuous Time Dynamic Graphs AAAI 2026
Temporal Graph Neural Networks (TGNNs) are increasingly used in high-stakes domains, such as financial forecasting, recommendation systems, and fraud detection. However, their susceptibility to poisoning attacks poses a critical security risk. We introduce LoReTTA (Low Resource Two-phase Temporal Attack), a novel adversarial framework on Continuous-Time Dynamic Graphs, which degrades TGNN performance by an average of 29.47% across 4 widely benchmark datasets and 4 State-of-the-Art (SotA) models. LoReTTA operates through a two-stage approach: (1) sparsify the graph by removing high-impact edges using any of the 16 tested temporal importance metrics, (2) strategically replace removed edges with adversarial negatives via LoReTTA's novel degree-preserving negative sampling algorithm. Our plug-and-play design eliminates the need for expensive surrogate models while adhering to realistic unnoticeability constraints. LoReTTA degrades performance by upto 42.0% on MOOC, 31.5% on Wikipedia, 28.8% on UCI, and 15.6% on Enron. LoReTTA outperforms 11 attack baselines, remains undetectable to 4 leading anomaly detection systems, and is robust to 4 SotA adversarial defense training methods, establishing its effectiveness, unnoticeability, and robustness.
comment: Accepted at AAAI 2026
Transformers Provably Learn Chain-of-Thought Reasoning with Length Generalization NeurIPS 2025
The ability to reason lies at the core of artificial intelligence (AI), and challenging problems usually call for deeper and longer reasoning to tackle. A crucial question about AI reasoning is whether models can extrapolate learned reasoning patterns to solve harder tasks with longer chain-of-thought (CoT). In this work, we present a theoretical analysis of transformers learning on synthetic state-tracking tasks with gradient descent. We mathematically prove how the algebraic structure of state-tracking problems governs the degree of extrapolation of the learned CoT. Specifically, our theory characterizes the length generalization of transformers through the mechanism of attention concentration, linking the retrieval robustness of the attention layer to the state-tracking task structure of long-context reasoning. Moreover, for transformers with limited reasoning length, we prove that a recursive self-training scheme can progressively extend the range of solvable problem lengths. To our knowledge, we provide the first optimization guarantee that constant-depth transformers provably learn $\mathsf{NC}^1$-complete problems with CoT, significantly going beyond prior art confined in $\mathsf{TC}^0$, unless the widely held conjecture $\mathsf{TC}^0 \neq \mathsf{NC}^1$ fails. Finally, we present a broad set of experiments supporting our theoretical results, confirming the length generalization behaviors and the mechanism of attention concentration.
comment: This is the full version of a paper published at NeurIPS 2025
☆ Provable Benefit of Curriculum in Transformer Tree-Reasoning Post-Training
Recent curriculum techniques in the post-training stage of LLMs have been widely observed to outperform non-curriculum approaches in enhancing reasoning performance, yet a principled understanding of why and to what extent they work remains elusive. To address this gap, we develop a theoretical framework grounded in the intuition that progressively learning through manageable steps is more efficient than directly tackling a hard reasoning task, provided each stage stays within the model's effective competence. Under mild complexity conditions linking consecutive curriculum stages, we show that curriculum post-training avoids the exponential complexity bottleneck. To substantiate this result, drawing insights from the Chain-of-Thoughts (CoTs) solving mathematical problems such as Countdown and parity, we model CoT generation as a states-conditioned autoregressive reasoning tree, define a uniform-branching base model to capture pretrained behavior, and formalize curriculum stages as either depth-increasing (longer reasoning chains) or hint-decreasing (shorter prefixes) subtasks. Our analysis shows that, under outcome-only reward signals, reinforcement learning finetuning achieves high accuracy with polynomial sample complexity, whereas direct learning suffers from an exponential bottleneck. We further establish analogous guarantees for test-time scaling, where curriculum-aware querying reduces both reward oracle calls and sampling cost from exponential to polynomial order.
☆ Consistency Is Not Always Correct: Towards Understanding the Role of Exploration in Post-Training Reasoning
Foundation models exhibit broad knowledge but limited task-specific reasoning, motivating post-training strategies such as RLVR and inference scaling with outcome or process reward models (ORM/PRM). While recent work highlights the role of exploration and entropy stability in improving pass@K, empirical evidence points to a paradox: RLVR and ORM/PRM typically reinforce existing tree-like reasoning paths rather than expanding the reasoning scope, raising the question of why exploration helps at all if no new patterns emerge. To reconcile this paradox, we adopt the perspective of Kim et al. (2025), viewing easy (e.g., simplifying a fraction) versus hard (e.g., discovering a symmetry) reasoning steps as low- versus high-probability Markov transitions, and formalize post-training dynamics through Multi-task Tree-structured Markov Chains (TMC). In this tractable model, pretraining corresponds to tree expansion, while post-training corresponds to chain-of-thought reweighting. We show that several phenomena recently observed in empirical studies arise naturally in this setting: (1) RLVR induces a squeezing effect, reducing reasoning entropy and forgetting some correct paths; (2) population rewards of ORM/PRM encourage consistency rather than accuracy, thereby favoring common patterns; and (3) certain rare, high-uncertainty reasoning paths by the base model are responsible for solving hard problem instances. Together, these explain why exploration -- even when confined to the base model's reasoning scope -- remains essential: it preserves access to rare but crucial reasoning traces needed for difficult cases, which are squeezed out by RLVR or unfavored by inference scaling. Building on this, we further show that exploration strategies such as rejecting easy instances and KL regularization help preserve rare reasoning traces. Empirical simulations corroborate our theoretical results.
☆ UAV-Assisted Resilience in 6G and Beyond Network Energy Saving: A Multi-Agent DRL Approach
This paper investigates the unmanned aerial vehicle (UAV)-assisted resilience perspective in the 6G network energy saving (NES) scenario. More specifically, we consider multiple ground base stations (GBSs) and each GBS has three different sectors/cells in the terrestrial networks, and multiple cells are turned off due to NES or incidents, e.g., disasters, hardware failures, or outages. To address this, we propose a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) framework to enable UAV-assisted communication by jointly optimizing UAV trajectories, transmission power, and user-UAV association under a sleeping ground base station (GBS) strategy. This framework aims to ensure the resilience of active users in the network and the long-term operability of UAVs. Specifically, it maximizes service coverage for users during power outages or NES zones, while minimizing the energy consumption of UAVs. Simulation results demonstrate that the proposed MADDPG policy consistently achieves high coverage ratio across different testing episodes, outperforming other baselines. Moreover, the MADDPG framework attains the lowest total energy consumption, with a reduction of approximately 24\% compared to the conventional all GBS ON configuration, while maintaining a comparable user service rate. These results confirm the effectiveness of the proposed approach in achieving a superior trade-off between energy efficiency and service performance, supporting the development of sustainable and resilient UAV-assisted cellular networks.
comment: 6 pages, 5 figures, 1 table
☆ Private Sketches for Linear Regression
Linear regression is frequently applied in a variety of domains. In order to improve the efficiency of these methods, various methods have been developed that compute summaries or \emph{sketches} of the datasets. Certain domains, however, contain sensitive data which necessitates that the application of these statistical methods does not reveal private information. Differentially private (DP) linear regression methods have been developed for mitigating this problem. These techniques typically involve estimating a noisy version of the parameter vector. Instead, we propose releasing private sketches of the datasets. We present differentially private sketches for the problems of least squares regression, as well as least absolute deviations regression. The availability of these private sketches facilitates the application of commonly available solvers for regression, without the risk of privacy leakage.
comment: 13 pages
☆ Self-Evaluating LLMs for Multi-Step Tasks: Stepwise Confidence Estimation for Failure Detection NeurIPS 2025
Reliability and failure detection of large language models (LLMs) is critical for their deployment in high-stakes, multi-step reasoning tasks. Prior work explores confidence estimation for self-evaluating LLM-scorer systems, with confidence scorers estimating the likelihood of errors in LLM responses. However, most methods focus on single-step outputs and overlook the challenges of multi-step reasoning. In this work, we extend self-evaluation techniques to multi-step tasks, testing two intuitive approaches: holistic scoring and step-by-step scoring. Using two multi-step benchmark datasets, we show that stepwise evaluation generally outperforms holistic scoring in detecting potential errors, with up to 15% relative increase in AUC-ROC. Our findings demonstrate that self-evaluating LLM systems provide meaningful confidence estimates in complex reasoning, improving their trustworthiness and providing a practical framework for failure detection.
comment: Accepted at NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ Inference-Time Scaling of Diffusion Models for Infrared Data Generation
Infrared imagery enables temperature-based scene understanding using passive sensors, particularly under conditions of low visibility where traditional RGB imaging fails. Yet, developing downstream vision models for infrared applications is hindered by the scarcity of high-quality annotated data, due to the specialized expertise required for infrared annotation. While synthetic infrared image generation has the potential to accelerate model development by providing large-scale, diverse training data, training foundation-level generative diffusion models in the infrared domain has remained elusive due to limited datasets. In light of such data constraints, we explore an inference-time scaling approach using a domain-adapted CLIP-based verifier for enhanced infrared image generation quality. We adapt FLUX.1-dev, a state-of-the-art text-to-image diffusion model, to the infrared domain by finetuning it on a small sample of infrared images using parameter-efficient techniques. The trained verifier is then employed during inference to guide the diffusion sampling process toward higher quality infrared generations that better align with input text prompts. Empirically, we find that our approach leads to consistent improvements in generation quality, reducing FID scores on the KAIST Multispectral Pedestrian Detection Benchmark dataset by 10% compared to unguided baseline samples. Our results suggest that inference-time guidance offers a promising direction for bridging the domain gap in low-data infrared settings.
comment: Peer-reviewed workshop paper
☆ Walsh-Hadamard Neural Operators for Solving PDEs with Discontinuous Coefficients
Neural operators have emerged as powerful tools for learning solution operators of partial differential equations (PDEs). However, standard spectral methods based on Fourier transforms struggle with problems involving discontinuous coefficients due to the Gibbs phenomenon and poor representation of sharp interfaces. We introduce the Walsh-Hadamard Neural Operator (WHNO), which leverages Walsh-Hadamard transforms-a spectral basis of rectangular wave functions naturally suited for piecewise constant fields-combined with learnable spectral weights that transform low-sequency Walsh coefficients to capture global dependencies efficiently. We validate WHNO on three problems: steady-state Darcy flow (preliminary validation), heat conduction with discontinuous thermal conductivity, and the 2D Burgers equation with discontinuous initial conditions. In controlled comparisons with Fourier Neural Operators (FNO) under identical conditions, WHNO demonstrates superior accuracy with better preservation of sharp solution features at material interfaces. Critically, we discover that weighted ensemble combinations of WHNO and FNO achieve substantial improvements over either model alone: for both heat conduction and Burgers equation, optimal ensembles reduce mean squared error by 35-40 percent and maximum error by up to 25 percent compared to individual models. This demonstrates that Walsh-Hadamard and Fourier representations capture complementary aspects of discontinuous PDE solutions, with WHNO excelling at sharp interfaces while FNO captures smooth features effectively.
☆ TNT: Improving Chunkwise Training for Test-Time Memorization
Recurrent neural networks (RNNs) with deep test-time memorization modules, such as Titans and TTT, represent a promising, linearly-scaling paradigm distinct from Transformers. While these expressive models do not yet match the peak performance of state-of-the-art Transformers, their potential has been largely untapped due to prohibitively slow training and low hardware utilization. Existing parallelization methods force a fundamental conflict governed by the chunksize hyperparameter: large chunks boost speed but degrade performance, necessitating a fixed, suboptimal compromise. To solve this challenge, we introduce TNT, a novel training paradigm that decouples training efficiency from inference performance through a two-stage process. Stage one is an efficiency-focused pre-training phase utilizing a hierarchical memory. A global module processes large, hardware-friendly chunks for long-range context, while multiple parallel local modules handle fine-grained details. Crucially, by periodically resetting local memory states, we break sequential dependencies to enable massive context parallelization. Stage two is a brief fine-tuning phase where only the local memory modules are adapted to a smaller, high-resolution chunksize, maximizing accuracy with minimal overhead. Evaluated on Titans and TTT models, TNT achieves a substantial acceleration in training speed-up to 17 times faster than the most accurate baseline configuration - while simultaneously improving model accuracy. This improvement removes a critical scalability barrier, establishing a practical foundation for developing expressive RNNs and facilitating future work to close the performance gap with Transformers.
☆ DeepPersona: A Generative Engine for Scaling Deep Synthetic Personas NeurIPS 2025
Simulating human profiles by instilling personas into large language models (LLMs) is rapidly transforming research in agentic behavioral simulation, LLM personalization, and human-AI alignment. However, most existing synthetic personas remain shallow and simplistic, capturing minimal attributes and failing to reflect the rich complexity and diversity of real human identities. We introduce DEEPPERSONA, a scalable generative engine for synthesizing narrative-complete synthetic personas through a two-stage, taxonomy-guided method. First, we algorithmically construct the largest-ever human-attribute taxonomy, comprising over hundreds of hierarchically organized attributes, by mining thousands of real user-ChatGPT conversations. Second, we progressively sample attributes from this taxonomy, conditionally generating coherent and realistic personas that average hundreds of structured attributes and roughly 1 MB of narrative text, two orders of magnitude deeper than prior works. Intrinsic evaluations confirm significant improvements in attribute diversity (32 percent higher coverage) and profile uniqueness (44 percent greater) compared to state-of-the-art baselines. Extrinsically, our personas enhance GPT-4.1-mini's personalized question answering accuracy by 11.6 percent on average across ten metrics and substantially narrow (by 31.7 percent) the gap between simulated LLM citizens and authentic human responses in social surveys. Our generated national citizens reduced the performance gap on the Big Five personality test by 17 percent relative to LLM-simulated citizens. DEEPPERSONA thus provides a rigorous, scalable, and privacy-free platform for high-fidelity human simulation and personalized AI research.
comment: 12 pages, 5 figures, accepted at LAW 2025 Workshop (NeurIPS 2025)
☆ Grounding Computer Use Agents on Human Demonstrations
Building reliable computer-use agents requires grounding: accurately connecting natural language instructions to the correct on-screen elements. While large datasets exist for web and mobile interactions, high-quality resources for desktop environments are limited. To address this gap, we introduce GroundCUA, a large-scale desktop grounding dataset built from expert human demonstrations. It covers 87 applications across 12 categories and includes 56K screenshots, with every on-screen element carefully annotated for a total of over 3.56M human-verified annotations. From these demonstrations, we generate diverse instructions that capture a wide range of real-world tasks, providing high-quality data for model training. Using GroundCUA, we develop the GroundNext family of models that map instructions to their target UI elements. At both 3B and 7B scales, GroundNext achieves state-of-the-art results across five benchmarks using supervised fine-tuning, while requiring less than one-tenth the training data of prior work. Reinforcement learning post-training further improves performance, and when evaluated in an agentic setting on the OSWorld benchmark using o3 as planner, GroundNext attains comparable or superior results to models trained with substantially more data,. These results demonstrate the critical role of high-quality, expert-driven datasets in advancing general-purpose computer-use agents.
☆ Preparation of Fractal-Inspired Computational Architectures for Advanced Large Language Model Analysis
It introduces FractalNet, a fractal-inspired computational architectures for advanced large language model analysis that mainly challenges model diversity on a large scale in an efficient manner. The new set-up involves a template-driven generator, runner, and evaluation framework that, through systematic permutations of convolutional, normalization, activation, and dropout layers, can create more than 1,200 variants of neural networks. Fractal templates allow for structural recursion and multi-column pathways, thus, models become deeper and wider in a balanced way. Training utilizes PyTorch, Automatic Mixed Precision (AMP), and gradient checkpointing and is carried out on the CIFAR-10 dataset for five epochs. The outcomes show that fractal-based architectures are capable of strong performance and are computationally efficient. The paper positions fractal design as a feasible and resource-efficient method of automated architecture exploration.
☆ Q-RAG: Long Context Multi-step Retrieval via Value-based Embedder Training
Retrieval-Augmented Generation (RAG) methods enhance LLM performance by efficiently filtering relevant context for LLMs, reducing hallucinations and inference cost. However, most existing RAG methods focus on single-step retrieval, which is often insufficient for answering complex questions that require multi-step search. Recently, multi-step retrieval approaches have emerged, typically involving the fine-tuning of small LLMs to perform multi-step retrieval. This type of fine-tuning is highly resource-intensive and does not enable the use of larger LLMs. In this work, we propose Q-RAG, a novel approach that fine-tunes the Embedder model for multi-step retrieval using reinforcement learning (RL). Q-RAG offers a competitive, resource-efficient alternative to existing multi-step retrieval methods for open-domain question answering and achieves state-of-the-art results on the popular long-context benchmarks Babilong and RULER for contexts up to 10M tokens.
comment: 16 pages, 3 figures, 2 tables
☆ Garbage Vulnerable Point Monitoring using IoT and Computer Vision
This paper proposes a smart way to manage municipal solid waste by using the Internet of Things (IoT) and computer vision (CV) to monitor illegal waste dumping at garbage vulnerable points (GVPs) in urban areas. The system can quickly detect and monitor dumped waste using a street-level camera and object detection algorithm. Data was collected from the Sangareddy district in Telangana, India. A series of comprehensive experiments was carried out using the proposed dataset to assess the accuracy and overall performance of various object detection models. Specifically, we performed an in-depth evaluation of YOLOv8, YOLOv10, YOLO11m, and RT-DETR on our dataset. Among these models, YOLO11m achieved the highest accuracy of 92.39\% in waste detection, demonstrating its effectiveness in detecting waste. Additionally, it attains an mAP@50 of 0.91, highlighting its high precision. These findings confirm that the object detection model is well-suited for monitoring and tracking waste dumping events at GVP locations. Furthermore, the system effectively captures waste disposal patterns, including hourly, daily, and weekly dumping trends, ensuring comprehensive daily and nightly monitoring.
☆ When Bias Pretends to Be Truth: How Spurious Correlations Undermine Hallucination Detection in LLMs
Despite substantial advances, large language models (LLMs) continue to exhibit hallucinations, generating plausible yet incorrect responses. In this paper, we highlight a critical yet previously underexplored class of hallucinations driven by spurious correlations -- superficial but statistically prominent associations between features (e.g., surnames) and attributes (e.g., nationality) present in the training data. We demonstrate that these spurious correlations induce hallucinations that are confidently generated, immune to model scaling, evade current detection methods, and persist even after refusal fine-tuning. Through systematically controlled synthetic experiments and empirical evaluations on state-of-the-art open-source and proprietary LLMs (including GPT-5), we show that existing hallucination detection methods, such as confidence-based filtering and inner-state probing, fundamentally fail in the presence of spurious correlations. Our theoretical analysis further elucidates why these statistical biases intrinsically undermine confidence-based detection techniques. Our findings thus emphasize the urgent need for new approaches explicitly designed to address hallucinations caused by spurious correlations.
☆ RLVE: Scaling Up Reinforcement Learning for Language Models with Adaptive Verifiable Environments
We introduce Reinforcement Learning (RL) with Adaptive Verifiable Environments (RLVE), an approach using verifiable environments that procedurally generate problems and provide algorithmically verifiable rewards, to scale up RL for language models (LMs). RLVE enables each verifiable environment to dynamically adapt its problem difficulty distribution to the policy model's capabilities as training progresses. In contrast, static data distributions often lead to vanishing learning signals when problems are either too easy or too hard for the policy. To implement RLVE, we create RLVE-Gym, a large-scale suite of 400 verifiable environments carefully developed through manual environment engineering. Using RLVE-Gym, we show that environment scaling, i.e., expanding the collection of training environments, consistently improves generalizable reasoning capabilities. RLVE with joint training across all 400 environments in RLVE-Gym yields a 3.37% absolute average improvement across six reasoning benchmarks, starting from one of the strongest 1.5B reasoning LMs. By comparison, continuing this LM's original RL training yields only a 0.49% average absolute gain despite using over 3x more compute. We release our code publicly.
☆ De-Individualizing fMRI Signals via Mahalanobis Whitening and Bures Geometry
Functional connectivity has been widely investigated to understand brain disease in clinical studies and imaging-based neuroscience, and analyzing changes in functional connectivity has proven to be valuable for understanding and computationally evaluating the effects on brain function caused by diseases or experimental stimuli. By using Mahalanobis data whitening prior to the use of dimensionality reduction algorithms, we are able to distill meaningful information from fMRI signals about subjects and the experimental stimuli used to prompt them. Furthermore, we offer an interpretation of Mahalanobis whitening as a two-stage de-individualization of data which is motivated by similarity as captured by the Bures distance, which is connected to quantum mechanics. These methods have potential to aid discoveries about the mechanisms that link brain function with cognition and behavior and may improve the accuracy and consistency of Alzheimer's diagnosis, especially in the preclinical stage of disease progression.
comment: 34 pages, 7 figures
☆ Superhuman AI for Stratego Using Self-Play Reinforcement Learning and Test-Time Search
Few classical games have been regarded as such significant benchmarks of artificial intelligence as to have justified training costs in the millions of dollars. Among these, Stratego -- a board wargame exemplifying the challenge of strategic decision making under massive amounts of hidden information -- stands apart as a case where such efforts failed to produce performance at the level of top humans. This work establishes a step change in both performance and cost for Stratego, showing that it is now possible not only to reach the level of top humans, but to achieve vastly superhuman level -- and that doing so requires not an industrial budget, but merely a few thousand dollars. We achieved this result by developing general approaches for self-play reinforcement learning and test-time search under imperfect information.
☆ Can Training Dynamics of Scale-Invariant Neural Networks Be Explained by the Thermodynamics of an Ideal Gas?
Understanding the training dynamics of deep neural networks remains a major open problem, with physics-inspired approaches offering promising insights. Building on this perspective, we develop a thermodynamic framework to describe the stationary distributions of stochastic gradient descent (SGD) with weight decay for scale-invariant neural networks, a setting that both reflects practical architectures with normalization layers and permits theoretical analysis. We establish analogies between training hyperparameters (e.g., learning rate, weight decay) and thermodynamic variables such as temperature, pressure, and volume. Starting with a simplified isotropic noise model, we uncover a close correspondence between SGD dynamics and ideal gas behavior, validated through theory and simulation. Extending to training of neural networks, we show that key predictions of the framework, including the behavior of stationary entropy, align closely with experimental observations. This framework provides a principled foundation for interpreting training dynamics and may guide future work on hyperparameter tuning and the design of learning rate schedulers.
☆ Enabling Off-Policy Imitation Learning with Deep Actor Critic Stabilization
Learning complex policies with Reinforcement Learning (RL) is often hindered by instability and slow convergence, a problem exacerbated by the difficulty of reward engineering. Imitation Learning (IL) from expert demonstrations bypasses this reliance on rewards. However, state-of-the-art IL methods, exemplified by Generative Adversarial Imitation Learning (GAIL)Ho et. al, suffer from severe sample inefficiency. This is a direct consequence of their foundational on-policy algorithms, such as TRPO Schulman et.al. In this work, we introduce an adversarial imitation learning algorithm that incorporates off-policy learning to improve sample efficiency. By combining an off-policy framework with auxiliary techniques specifically, double Q network based stabilization and value learning without reward function inference we demonstrate a reduction in the samples required to robustly match expert behavior.
comment: 14 pages and 4 images
☆ MG-HGNN: A Heterogeneous GNN Framework for Indoor Wi-Fi Fingerprint-Based Localization
Received signal strength indicator (RSSI) is the primary representation of Wi-Fi fingerprints and serves as a crucial tool for indoor localization. However, existing RSSI-based positioning methods often suffer from reduced accuracy due to environmental complexity and challenges in processing multi-source information. To address these issues, we propose a novel multi-graph heterogeneous GNN framework (MG-HGNN) to enhance spatial awareness and improve positioning performance. In this framework, two graph construction branches perform node and edge embedding, respectively, to generate informative graphs. Subsequently, a heterogeneous graph neural network is employed for graph representation learning, enabling accurate positioning. The MG-HGNN framework introduces the following key innovations: 1) multi-type task-directed graph construction that combines label estimation and feature encoding for richer graph information; 2) a heterogeneous GNN structure that enhances the performance of conventional GNN models. Evaluations on the UJIIndoorLoc and UTSIndoorLoc public datasets demonstrate that MG-HGNN not only achieves superior performance compared to several state-of-the-art methods, but also provides a novel perspective for enhancing GNN-based localization methods. Ablation studies further confirm the rationality and effectiveness of the proposed framework.
comment: 16 pages, 11 figures, 11 tables
☆ The Value of Personalized Recommendations: Evidence from Netflix
Personalized recommendation systems shape much of user choice online, yet their targeted nature makes separating out the value of recommendation and the underlying goods challenging. We build a discrete choice model that embeds recommendation-induced utility, low-rank heterogeneity, and flexible state dependence and apply the model to viewership data at Netflix. We exploit idiosyncratic variation introduced by the recommendation algorithm to identify and separately value these components as well as to recover model-free diversion ratios that we can use to validate our structural model. We use the model to evaluate counterfactuals that quantify the incremental engagement generated by personalized recommendations. First, we show that replacing the current recommender system with a matrix factorization or popularity-based algorithm would lead to 4% and 12% reduction in engagement, respectively, and decreased consumption diversity. Second, most of the consumption increase from recommendations comes from effective targeting, not mechanical exposure, with the largest gains for mid-popularity goods (as opposed to broadly appealing or very niche goods).
☆ RobustA: Robust Anomaly Detection in Multimodal Data
In recent years, multimodal anomaly detection methods have demonstrated remarkable performance improvements over video-only models. However, real-world multimodal data is often corrupted due to unforeseen environmental distortions. In this paper, we present the first-of-its-kind work that comprehensively investigates the adverse effects of corrupted modalities on multimodal anomaly detection task. To streamline this work, we propose RobustA, a carefully curated evaluation dataset to systematically observe the impacts of audio and visual corruptions on the overall effectiveness of anomaly detection systems. Furthermore, we propose a multimodal anomaly detection method, which shows notable resilience against corrupted modalities. The proposed method learns a shared representation space for different modalities and employs a dynamic weighting scheme during inference based on the estimated level of corruption. Our work represents a significant step forward in enabling the real-world application of multimodal anomaly detection, addressing situations where the likely events of modality corruptions occur. The proposed evaluation dataset with corrupted modalities and respective extracted features will be made publicly available.
comment: Submitted to IEEE Transactions on Image Processing
Multi-modal Dynamic Proxy Learning for Personalized Multiple Clustering AAAI 2026
Multiple clustering aims to discover diverse latent structures from different perspectives, yet existing methods generate exhaustive clusterings without discerning user interest, necessitating laborious manual screening. Current multi-modal solutions suffer from static semantic rigidity: predefined candidate words fail to adapt to dataset-specific concepts, and fixed fusion strategies ignore evolving feature interactions. To overcome these limitations, we propose Multi-DProxy, a novel multi-modal dynamic proxy learning framework that leverages cross-modal alignment through learnable textual proxies. Multi-DProxy introduces 1) gated cross-modal fusion that synthesizes discriminative joint representations by adaptively modeling feature interactions. 2) dual-constraint proxy optimization where user interest constraints enforce semantic consistency with domain concepts while concept constraints employ hard example mining to enhance cluster discrimination. 3) dynamic candidate management that refines textual proxies through iterative clustering feedback. Therefore, Multi-DProxy not only effectively captures a user's interest through proxies but also enables the identification of relevant clusterings with greater precision. Extensive experiments demonstrate state-of-the-art performance with significant improvements over existing methods across a broad set of multi-clustering benchmarks.
comment: Accepted by AAAI 2026
☆ Understanding the role of depth in the neural tangent kernel for overparameterized neural networks
Overparameterized fully-connected neural networks have been shown to behave like kernel models when trained with gradient descent, under mild conditions on the width, the learning rate, and the parameter initialization. In the limit of infinitely large widths and small learning rate, the kernel that is obtained allows to represent the output of the learned model with a closed-form solution. This closed-form solution hinges on the invertibility of the limiting kernel, a property that often holds on real-world datasets. In this work, we analyze the sensitivity of large ReLU networks to increasing depths by characterizing the corresponding limiting kernel. Our theoretical results demonstrate that the normalized limiting kernel approaches the matrix of ones. In contrast, they show the corresponding closed-form solution approaches a fixed limit on the sphere. We empirically evaluate the order of magnitude in network depth required to observe this convergent behavior, and we describe the essential properties that enable the generalization of our results to other kernels.
☆ High-Dimensional Asymptotics of Differentially Private PCA
In differential privacy, statistics of a sensitive dataset are privatized by introducing random noise. Most privacy analyses provide privacy bounds specifying a noise level sufficient to achieve a target privacy guarantee. Sometimes, these bounds are pessimistic and suggest adding excessive noise, which overwhelms the meaningful signal. It remains unclear if such high noise levels are truly necessary or a limitation of the proof techniques. This paper explores whether we can obtain sharp privacy characterizations that identify the smallest noise level required to achieve a target privacy level for a given mechanism. We study this problem in the context of differentially private principal component analysis, where the goal is to privatize the leading principal components (PCs) of a dataset with n samples and p features. We analyze the exponential mechanism for this problem in a model-free setting and provide sharp utility and privacy characterizations in the high-dimensional limit ($p\rightarrow\infty$). Our privacy result shows that, in high dimensions, detecting the presence of a target individual in the dataset using the privatized PCs is exactly as hard as distinguishing two Gaussians with slightly different means, where the mean difference depends on certain spectral properties of the dataset. Our privacy analysis combines the hypothesis-testing formulation of privacy guarantees proposed by Dong, Roth, and Su (2022) with classical contiguity arguments due to Le Cam to obtain sharp high-dimensional privacy characterizations.
☆ AgenticSciML: Collaborative Multi-Agent Systems for Emergent Discovery in Scientific Machine Learning
Scientific Machine Learning (SciML) integrates data-driven inference with physical modeling to solve complex problems in science and engineering. However, the design of SciML architectures, loss formulations, and training strategies remains an expert-driven research process, requiring extensive experimentation and problem-specific insights. Here we introduce AgenticSciML, a collaborative multi-agent system in which over 10 specialized AI agents collaborate to propose, critique, and refine SciML solutions through structured reasoning and iterative evolution. The framework integrates structured debate, retrieval-augmented method memory, and ensemble-guided evolutionary search, enabling the agents to generate and assess new hypotheses about architectures and optimization procedures. Across physics-informed learning and operator learning tasks, the framework discovers solution methods that outperform single-agent and human-designed baselines by up to four orders of magnitude in error reduction. The agents produce novel strategies -- including adaptive mixture-of-expert architectures, decomposition-based PINNs, and physics-informed operator learning models -- that do not appear explicitly in the curated knowledge base. These results show that collaborative reasoning among AI agents can yield emergent methodological innovation, suggesting a path toward scalable, transparent, and autonomous discovery in scientific computing.
☆ PADiff: Predictive and Adaptive Diffusion Policies for Ad Hoc Teamwork AAAI
Ad hoc teamwork (AHT) requires agents to collaborate with previously unseen teammates, which is crucial for many real-world applications. The core challenge of AHT is to develop an ego agent that can predict and adapt to unknown teammates on the fly. Conventional RL-based approaches optimize a single expected return, which often causes policies to collapse into a single dominant behavior, thus failing to capture the multimodal cooperation patterns inherent in AHT. In this work, we introduce PADiff, a diffusion-based approach that captures agent's multimodal behaviors, unlocking its diverse cooperation modes with teammates. However, standard diffusion models lack the ability to predict and adapt in highly non-stationary AHT scenarios. To address this limitation, we propose a novel diffusion-based policy that integrates critical predictive information about teammates into the denoising process. Extensive experiments across three cooperation environments demonstrate that PADiff outperforms existing AHT methods significantly.
comment: Accepted by the 40th AAAI conference on Artificial Intelligence (AAAI 2026)
☆ A Fully Polynomial-Time Algorithm for Robustly Learning Halfspaces over the Hypercube
We give the first fully polynomial-time algorithm for learning halfspaces with respect to the uniform distribution on the hypercube in the presence of contamination, where an adversary may corrupt some fraction of examples and labels arbitrarily. We achieve an error guarantee of $\eta^{O(1)}+\epsilon$ where $\eta$ is the noise rate. Such a result was not known even in the agnostic setting, where only labels can be adversarially corrupted. All prior work over the last two decades has a superpolynomial dependence in $1/\epsilon$ or succeeds only with respect to continuous marginals (such as log-concave densities). Previous analyses rely heavily on various structural properties of continuous distributions such as anti-concentration. Our approach avoids these requirements and makes use of a new algorithm for learning Generalized Linear Models (GLMs) with only a polylogarithmic dependence on the activation function's Lipschitz constant. More generally, our framework shows that supervised learning with respect to discrete distributions is not as difficult as previously thought.
comment: 52 pages, 1 figure
☆ The Few Govern the Many:Unveiling Few-Layer Dominance for Time Series Models
Large-scale models are at the forefront of time series (TS) forecasting, dominated by two paradigms: fine-tuning text-based Large Language Models (LLM4TS) and training Time Series Foundation Models (TSFMs) from scratch. Both approaches share a foundational assumption that scaling up model capacity and data volume leads to improved performance. However, we observe a \textit{\textbf{scaling paradox}} in TS models, revealing a puzzling phenomenon that larger models do \emph{NOT} achieve better performance. Through extensive experiments on two model families across four scales (100M to 1.7B parameters) and diverse data (up to 6B observations), we rigorously confirm that the scaling paradox is a pervasive issue. We then diagnose its root cause by analyzing internal representations, identifying a phenomenon we call \textit{few-layer dominance}: only a small subset of layers are functionally important, while the majority are redundant, under-utilized, and can even distract training. Based on this discovery, we propose a practical method to automatically identify and retain only these dominant layers. In our models, retaining only 21\% of the parameters achieves up to a 12\% accuracy improvement and a 2.7$\times$ inference speedup. We validate the universality of our method on 8 prominent SOTA models (LLM4TS and TSFMs, 90M to 6B), showing that retaining less than 30\% of layers achieves comparable or superior accuracy in over 95\% of tasks.
☆ Does TabPFN Understand Causal Structures?
Causal discovery is fundamental for multiple scientific domains, yet extracting causal information from real world data remains a significant challenge. Given the recent success on real data, we investigate whether TabPFN, a transformer-based tabular foundation model pre-trained on synthetic datasets generated from structural causal models, encodes causal information in its internal representations. We develop an adapter framework using a learnable decoder and causal tokens that extract causal signals from TabPFN's frozen embeddings and decode them into adjacency matrices for causal discovery. Our evaluations demonstrate that TabPFN's embeddings contain causal information, outperforming several traditional causal discovery algorithms, with such causal information being concentrated in mid-range layers. These findings establish a new direction for interpretable and adaptable foundation models and demonstrate the potential for leveraging pre-trained tabular models for causal discovery.
☆ Deep Neural Operator Learning for Probabilistic Models
We propose a deep neural-operator framework for a general class of probability models. Under global Lipschitz conditions on the operator over the entire Euclidean space-and for a broad class of probabilistic models-we establish a universal approximation theorem with explicit network-size bounds for the proposed architecture. The underlying stochastic processes are required only to satisfy integrability and general tail-probability conditions. We verify these assumptions for both European and American option-pricing problems within the forward-backward SDE (FBSDE) framework, which in turn covers a broad class of operators arising from parabolic PDEs, with or without free boundaries. Finally, we present a numerical example for a basket of American options, demonstrating that the learned model produces optimal stopping boundaries for new strike prices without retraining.
comment: 36 pages, 1 figure
☆ Noise & pattern: identity-anchored Tikhonov regularization for robust structural anomaly detection
Anomaly detection plays a pivotal role in automated industrial inspection, aiming to identify subtle or rare defects in otherwise uniform visual patterns. As collecting representative examples of all possible anomalies is infeasible, we tackle structural anomaly detection using a self-supervised autoencoder that learns to repair corrupted inputs. To this end, we introduce a corruption model that injects artificial disruptions into training images to mimic structural defects. While reminiscent of denoising autoencoders, our approach differs in two key aspects. First, instead of unstructured i.i.d.\ noise, we apply structured, spatially coherent perturbations that make the task a hybrid of segmentation and inpainting. Second, and counterintuitively, we add and preserve Gaussian noise on top of the occlusions, which acts as a Tikhonov regularizer anchoring the Jacobian of the reconstruction function toward identity. This identity-anchored regularization stabilizes reconstruction and further improves both detection and segmentation accuracy. On the MVTec AD benchmark, our method achieves state-of-the-art results (I/P-AUROC: 99.9/99.4), supporting our theoretical framework and demonstrating its practical relevance for automatic inspection.
☆ DETECT: Data-Driven Evaluation of Treatments Enabled by Classification Transformers
Chronic pain is a global health challenge affecting millions of individuals, making it essential for physicians to have reliable and objective methods to measure the functional impact of clinical treatments. Traditionally used methods, like the numeric rating scale, while personalized and easy to use, are subjective due to their self-reported nature. Thus, this paper proposes DETECT (Data-Driven Evaluation of Treatments Enabled by Classification Transformers), a data-driven framework that assesses treatment success by comparing patient activities of daily life before and after treatment. We use DETECT on public benchmark datasets and simulated patient data from smartphone sensors. Our results demonstrate that DETECT is objective yet lightweight, making it a significant and novel contribution to clinical decision-making. By using DETECT, independently or together with other self-reported metrics, physicians can improve their understanding of their treatment impacts, ultimately leading to more personalized and responsive patient care.
comment: 5 pages, 4 figures, 2 tables, accepted for presentation by IEEE ICDM 2025 UGHS Symposium and publication with proceedings forthcoming
☆ Breaking the Stealth-Potency Trade-off in Clean-Image Backdoors with Generative Trigger Optimization AAAI '26
Clean-image backdoor attacks, which use only label manipulation in training datasets to compromise deep neural networks, pose a significant threat to security-critical applications. A critical flaw in existing methods is that the poison rate required for a successful attack induces a proportional, and thus noticeable, drop in Clean Accuracy (CA), undermining their stealthiness. This paper presents a new paradigm for clean-image attacks that minimizes this accuracy degradation by optimizing the trigger itself. We introduce Generative Clean-Image Backdoors (GCB), a framework that uses a conditional InfoGAN to identify naturally occurring image features that can serve as potent and stealthy triggers. By ensuring these triggers are easily separable from benign task-related features, GCB enables a victim model to learn the backdoor from an extremely small set of poisoned examples, resulting in a CA drop of less than 1%. Our experiments demonstrate GCB's remarkable versatility, successfully adapting to six datasets, five architectures, and four tasks, including the first demonstration of clean-image backdoors in regression and segmentation. GCB also exhibits resilience against most of the existing backdoor defenses.
comment: 19 pages, 22 figures, 15 tables. To appear in AAAI '26 (Oral). This paper extends the AAAI-2026 version by including the Appendix
☆ SMiLE: Provably Enforcing Global Relational Properties in Neural Networks
Artificial Intelligence systems are increasingly deployed in settings where ensuring robustness, fairness, or domain-specific properties is essential for regulation compliance and alignment with human values. However, especially on Neural Networks, property enforcement is very challenging, and existing methods are limited to specific constraints or local properties (defined around datapoints), or fail to provide full guarantees. We tackle these limitations by extending SMiLE, a recently proposed enforcement framework for NNs, to support global relational properties (defined over the entire input space). The proposed approach scales well with model complexity, accommodates general properties and backbones, and provides full satisfaction guarantees. We evaluate SMiLE on monotonicity, global robustness, and individual fairness, on synthetic and real data, for regression and classification tasks. Our approach is competitive with property-specific baselines in terms of accuracy and runtime, and strictly superior in terms of generality and level of guarantees. Overall, our results emphasize the potential of the SMiLE framework as a platform for future research and applications.
☆ Synergy over Discrepancy: A Partition-Based Approach to Multi-Domain LLM Fine-Tuning NeurIPS 2025
Large language models (LLMs) demonstrate impressive generalization abilities, yet adapting them effectively across multiple heterogeneous domains remains challenging due to inter-domain interference. To overcome this challenge, we propose a partition-based multi-stage fine-tuning framework designed to exploit inter-domain synergies while minimizing negative transfer. Our approach strategically partitions domains into subsets (stages) by balancing domain discrepancy, synergy, and model capacity constraints. We theoretically analyze the proposed framework and derive novel generalization bounds that justify our partitioning strategy. Extensive empirical evaluations on various language understanding tasks show that our method consistently outperforms state-of-the-art baselines.
comment: 20 pages, 5 figures, 21 tables. Accepted at NeurIPS 2025. Corresponding author: Xuan Zhang (xuanzhang2199@gmail.com)
☆ Simulation-based Methods for Optimal Sampling Design in Systems Biology
In many areas of systems biology, including virology, pharmacokinetics, and population biology, dynamical systems are commonly used to describe biological processes. These systems can be characterized by estimating their parameters from sampled data. The key problem is how to optimally select sampling points to achieve accurate parameter estimation. Classical approaches often rely on Fisher information matrix-based criteria such as A-, D-, and E-optimality, which require an initial parameter estimate and may yield suboptimal results when the estimate is inaccurate. This study proposes two simulation-based methods for optimal sampling design that do not depend on initial parameter estimates. The first method, E-optimal-ranking (EOR), employs the E-optimal criterion, while the second utilizes a Long Short-Term Memory (LSTM) neural network. Simulation studies based on the Lotka-Volterra and three-compartment models demonstrate that the proposed methods outperform both random selection and classical E-optimal design.
☆ Federated Learning for Video Violence Detection: Complementary Roles of Lightweight CNNs and Vision-Language Models for Energy-Efficient Use
Deep learning-based video surveillance increasingly demands privacy-preserving architectures with low computational and environmental overhead. Federated learning preserves privacy but deploying large vision-language models (VLMs) introduces major energy and sustainability challenges. We compare three strategies for federated violence detection under realistic non-IID splits on the RWF-2000 and RLVS datasets: zero-shot inference with pretrained VLMs, LoRA-based fine-tuning of LLaVA-NeXT-Video-7B, and personalized federated learning of a 65.8M-parameter 3D CNN. All methods exceed 90% accuracy in binary violence detection. The 3D CNN achieves superior calibration (ROC AUC 92.59%) at roughly half the energy cost (240 Wh vs. 570 Wh) of federated LoRA, while VLMs provide richer multimodal reasoning. Hierarchical category grouping (based on semantic similarity and class exclusion) boosts VLM multiclass accuracy from 65.31% to 81% on the UCF-Crime dataset. To our knowledge, this is the first comparative simulation study of LoRA-tuned VLMs and personalized CNNs for federated violence detection, with explicit energy and CO2e quantification. Our results inform hybrid deployment strategies that default to efficient CNNs for routine inference and selectively engage VLMs for complex contextual reasoning.
comment: 5 pages, 3 figures, ICTAI 2025
☆ On Stealing Graph Neural Network Models
Current graph neural network (GNN) model-stealing methods rely heavily on queries to the victim model, assuming no hard query limits. However, in reality, the number of allowed queries can be severely limited. In this paper, we demonstrate how an adversary can extract the GNN with very limited interactions with the model. Our approach first enables the adversary to obtain the model backbone without making direct queries to the victim model and then to strategically utilize a fixed query limit to extract the most informative data. The experiments on eight real-world datasets demonstrate the effectiveness of the attack, even under a very restricted query limit and under defense against model extraction in place. Our findings underscore the need for robust defenses against GNN model extraction threats.
☆ Fuzzy Label: From Concept to Its Application in Label Learning
Label learning is a fundamental task in machine learning that aims to construct intelligent models using labeled data, encompassing traditional single-label and multi-label classification models. Traditional methods typically rely on logical labels, such as binary indicators (e.g., "yes/no") that specify whether an instance belongs to a given category. However, in practical applications, label annotations often involve significant uncertainty due to factors such as data noise, inherent ambiguity in the observed entities, and the subjectivity of human annotators. Therefore, representing labels using simplistic binary logic can obscure valuable information and limit the expressiveness of label learning models. To overcome this limitation, this paper introduces the concept of fuzzy labels, grounded in fuzzy set theory, to better capture and represent label uncertainty. We further propose an efficient fuzzy labeling method that mines and generates fuzzy labels from the original data, thereby enriching the label space with more informative and nuanced representations. Based on this foundation, we present fuzzy-label-enhanced algorithms for both single-label and multi-label learning, using the classical K-Nearest Neighbors (KNN) and multi-label KNN algorithms as illustrative examples. Experimental results indicate that fuzzy labels can more effectively characterize the real-world labeling information and significantly enhance the performance of label learning models.
☆ Combining digital data streams and epidemic networks for real time outbreak detection
Responding to disease outbreaks requires close surveillance of their trajectories, but outbreak detection is hindered by the high noise in epidemic time series. Aggregating information across data sources has shown great denoising ability in other fields, but remains underexplored in epidemiology. Here, we present LRTrend, an interpretable machine learning framework to identify outbreaks in real time. LRTrend effectively aggregates diverse health and behavioral data streams within one region and learns disease-specific epidemic networks to aggregate information across regions. We reveal diverse epidemic clusters and connections across the United States that are not well explained by commonly used human mobility networks and may be informative for future public health coordination. We apply LRTrend to 2 years of COVID-19 data in 305 hospital referral regions and frequently detect regional Delta and Omicron waves within 2 weeks of the outbreak's start, when case counts are a small fraction of the wave's resulting peak.
LLMscape NeurIPS 2025
LLMscape is an interactive installation that investigates how humans and AI construct meaning under shared conditions of uncertainty. Within a mutable, projection-mapped landscape, human participants reshape the world and engage with multiple AI agents, each developing incomplete and provisional accounts of their environment. Exhibited in Shanghai and continually evolving, the work positions AI not as deterministic tools but as embodied co-witnesses to an unstable world, examining the parallels between human and artificial meaning-making and inviting reflection on our shared epistemic limits.
comment: Accepted to NeurIPS 2025, Creative AI Track
☆ Guiding Generative Models to Uncover Diverse and Novel Crystals via Reinforcement Learning
Discovering functional crystalline materials entails navigating an immense combinatorial design space. While recent advances in generative artificial intelligence have enabled the sampling of chemically plausible compositions and structures, a fundamental challenge remains: the objective misalignment between likelihood-based sampling in generative modelling and targeted focus on underexplored regions where novel compounds reside. Here, we introduce a reinforcement learning framework that guides latent denoising diffusion models toward diverse and novel, yet thermodynamically viable crystalline compounds. Our approach integrates group relative policy optimisation with verifiable, multi-objective rewards that jointly balance creativity, stability, and diversity. Beyond de novo generation, we demonstrate enhanced property-guided design that preserves chemical validity, while targeting desired functional properties. This approach establishes a modular foundation for controllable AI-driven inverse design that addresses the novelty-validity trade-off across scientific discovery applications of generative models.
☆ Conditional Diffusion as Latent Constraints for Controllable Symbolic Music Generation
Recent advances in latent diffusion models have demonstrated state-of-the-art performance in high-dimensional time-series data synthesis while providing flexible control through conditioning and guidance. However, existing methodologies primarily rely on musical context or natural language as the main modality of interacting with the generative process, which may not be ideal for expert users who seek precise fader-like control over specific musical attributes. In this work, we explore the application of denoising diffusion processes as plug-and-play latent constraints for unconditional symbolic music generation models. We focus on a framework that leverages a library of small conditional diffusion models operating as implicit probabilistic priors on the latents of a frozen unconditional backbone. While previous studies have explored domain-specific use cases, this work, to the best of our knowledge, is the first to demonstrate the versatility of such an approach across a diverse array of musical attributes, such as note density, pitch range, contour, and rhythm complexity. Our experiments show that diffusion-driven constraints outperform traditional attribute regularization and other latent constraints architectures, achieving significantly stronger correlations between target and generated attributes while maintaining high perceptual quality and diversity.
☆ Dynamics-Decoupled Trajectory Alignment for Sim-to-Real Transfer in Reinforcement Learning for Autonomous Driving
Reinforcement learning (RL) has shown promise in robotics, but deploying RL on real vehicles remains challenging due to the complexity of vehicle dynamics and the mismatch between simulation and reality. Factors such as tire characteristics, road surface conditions, aerodynamic disturbances, and vehicle load make it infeasible to model real-world dynamics accurately, which hinders direct transfer of RL agents trained in simulation. In this paper, we present a framework that decouples motion planning from vehicle control through a spatial and temporal alignment strategy between a virtual vehicle and the real system. An RL agent is first trained in simulation using a kinematic bicycle model to output continuous control actions. Its behavior is then distilled into a trajectory-predicting agent that generates finite-horizon ego-vehicle trajectories, enabling synchronization between virtual and real vehicles. At deployment, a Stanley controller governs lateral dynamics, while longitudinal alignment is maintained through adaptive update mechanisms that compensate for deviations between virtual and real trajectories. We validate our approach on a real vehicle and demonstrate that the proposed alignment strategy enables robust zero-shot transfer of RL-based motion planning from simulation to reality, successfully decoupling high-level trajectory generation from low-level vehicle control.
☆ Trading Vector Data in Vector Databases
Vector data trading is essential for cross-domain learning with vector databases, yet it remains largely unexplored. We study this problem under online learning, where sellers face uncertain retrieval costs and buyers provide stochastic feedback to posted prices. Three main challenges arise: (1) heterogeneous and partial feedback in configuration learning, (2) variable and complex feedback in pricing learning, and (3) inherent coupling between configuration and pricing decisions. We propose a hierarchical bandit framework that jointly optimizes retrieval configurations and pricing. Stage I employs contextual clustering with confidence-based exploration to learn effective configurations with logarithmic regret. Stage II adopts interval-based price selection with local Taylor approximation to estimate buyer responses and achieve sublinear regret. We establish theoretical guarantees with polynomial time complexity and validate the framework on four real-world datasets, demonstrating consistent improvements in cumulative reward and regret reduction compared with existing methods.
comment: Accepted by ICDE 2026
☆ LoRA on the Go: Instance-level Dynamic LoRA Selection and Merging
Low-Rank Adaptation (LoRA) has emerged as a parameter-efficient approach for fine-tuning large language models.However, conventional LoRA adapters are typically trained for a single task, limiting their applicability in real-world settings where inputs may span diverse and unpredictable domains. At inference time, existing approaches combine multiple LoRAs for improving performance on diverse tasks, while usually requiring labeled data or additional task-specific training, which is expensive at scale. In this work, we introduce LoRA on the Go (LoGo), a training-free framework that dynamically selects and merges adapters at the instance level without any additional requirements. LoGo leverages signals extracted from a single forward pass through LoRA adapters, to identify the most relevant adapters and determine their contributions on-the-fly. Across 5 NLP benchmarks, 27 datasets, and 3 model families, LoGo outperforms training-based baselines on some tasks upto a margin of 3.6% while remaining competitive on other tasks and maintaining inference throughput, highlighting its effectiveness and practicality.
☆ REACT-LLM: A Benchmark for Evaluating LLM Integration with Causal Features in Clinical Prognostic Tasks
Large Language Models (LLMs) and causal learning each hold strong potential for clinical decision making (CDM). However, their synergy remains poorly understood, largely due to the lack of systematic benchmarks evaluating their integration in clinical risk prediction. In real-world healthcare, identifying features with causal influence on outcomes is crucial for actionable and trustworthy predictions. While recent work highlights LLMs' emerging causal reasoning abilities, there lacks comprehensive benchmarks to assess their causal learning and performance informed by causal features in clinical risk prediction. To address this, we introduce REACT-LLM, a benchmark designed to evaluate whether combining LLMs with causal features can enhance clinical prognostic performance and potentially outperform traditional machine learning (ML) methods. Unlike existing LLM-clinical benchmarks that often focus on a limited set of outcomes, REACT-LLM evaluates 7 clinical outcomes across 2 real-world datasets, comparing 15 prominent LLMs, 6 traditional ML models, and 3 causal discovery (CD) algorithms. Our findings indicate that while LLMs perform reasonably in clinical prognostics, they have not yet outperformed traditional ML models. Integrating causal features derived from CD algorithms into LLMs offers limited performance gains, primarily due to the strict assumptions of many CD methods, which are often violated in complex clinical data. While the direct integration yields limited improvement, our benchmark reveals a more promising synergy.
☆ Think Consistently, Reason Efficiently: Energy-Based Calibration for Implicit Chain-of-Thought
Large Language Models (LLMs) have demonstrated strong reasoning capabilities through \emph{Chain-of-Thought} (CoT) prompting, which enables step-by-step intermediate reasoning. However, explicit CoT methods rely on discrete token-level reasoning processes that are prone to error propagation and limited by vocabulary expressiveness, often resulting in rigid and inconsistent reasoning trajectories. Recent research has explored implicit or continuous reasoning in latent spaces, allowing models to perform internal reasoning before generating explicit output. Although such approaches alleviate some limitations of discrete CoT, they generally lack explicit mechanisms to enforce consistency among reasoning steps, leading to divergent reasoning paths and unstable outcomes. To address this issue, we propose EBM-CoT, an Energy-Based Chain-of-Thought Calibration framework that refines latent thought representations through an energy-based model (EBM). Our method dynamically adjusts latent reasoning trajectories toward lower-energy, high-consistency regions in the embedding space, improving both reasoning accuracy and consistency without modifying the base language model. Extensive experiments across mathematical, commonsense, and symbolic reasoning benchmarks demonstrate that the proposed framework significantly enhances the consistency and efficiency of multi-step reasoning in LLMs.
☆ On the Joint Minimization of Regularization Loss Functions in Deep Variational Bayesian Methods for Attribute-Controlled Symbolic Music Generation
Explicit latent variable models provide a flexible yet powerful framework for data synthesis, enabling controlled manipulation of generative factors. With latent variables drawn from a tractable probability density function that can be further constrained, these models enable continuous and semantically rich exploration of the output space by navigating their latent spaces. Structured latent representations are typically obtained through the joint minimization of regularization loss functions. In variational information bottleneck models, reconstruction loss and Kullback-Leibler Divergence (KLD) are often linearly combined with an auxiliary Attribute-Regularization (AR) loss. However, balancing KLD and AR turns out to be a very delicate matter. When KLD dominates over AR, generative models tend to lack controllability; when AR dominates over KLD, the stochastic encoder is encouraged to violate the standard normal prior. We explore this trade-off in the context of symbolic music generation with explicit control over continuous musical attributes. We show that existing approaches struggle to jointly minimize both regularization objectives, whereas suitable attribute transformations can help achieve both controllability and regularization of the target latent dimensions.
comment: IEEE Catalog No.: CFP2540S-ART ISBN: 978-9-46-459362-4
☆ A Provably-Correct and Robust Convex Model for Smooth Separable NMF
Nonnegative matrix factorization (NMF) is a linear dimensionality reduction technique for nonnegative data, with applications such as hyperspectral unmixing and topic modeling. NMF is a difficult problem in general (NP-hard), and its solutions are typically not unique. To address these two issues, additional constraints or assumptions are often used. In particular, separability assumes that the basis vectors in the NMF are equal to some columns of the input matrix. In that case, the problem is referred to as separable NMF (SNMF) and can be solved in polynomial-time with robustness guarantees, while identifying a unique solution. However, in real-world scenarios, due to noise or variability, multiple data points may lie near the basis vectors, which SNMF does not leverage. In this work, we rely on the smooth separability assumption, which assumes that each basis vector is close to multiple data points. We explore the properties of the corresponding problem, referred to as smooth SNMF (SSNMF), and examine how it relates to SNMF and orthogonal NMF. We then propose a convex model for SSNMF and show that it provably recovers the sought-after factors, even in the presence of noise. We finally adapt an existing fast gradient method to solve this convex model for SSNMF, and show that it compares favorably with state-of-the-art methods on both synthetic and hyperspectral datasets.
comment: 30 pages, 10 figures, code available from https://github.com/vleplat/ConvexSmoothSeparableNMF.git
☆ E2E-VGuard: Adversarial Prevention for Production LLM-based End-To-End Speech Synthesis NeurIPS 2025
Recent advancements in speech synthesis technology have enriched our daily lives, with high-quality and human-like audio widely adopted across real-world applications. However, malicious exploitation like voice-cloning fraud poses severe security risks. Existing defense techniques struggle to address the production large language model (LLM)-based speech synthesis. While previous studies have considered the protection for fine-tuning synthesizers, they assume manually annotated transcripts. Given the labor intensity of manual annotation, end-to-end (E2E) systems leveraging automatic speech recognition (ASR) to generate transcripts are becoming increasingly prevalent, e.g., voice cloning via commercial APIs. Therefore, this E2E speech synthesis also requires new security mechanisms. To tackle these challenges, we propose E2E-VGuard, a proactive defense framework for two emerging threats: (1) production LLM-based speech synthesis, and (2) the novel attack arising from ASR-driven E2E scenarios. Specifically, we employ the encoder ensemble with a feature extractor to protect timbre, while ASR-targeted adversarial examples disrupt pronunciation. Moreover, we incorporate the psychoacoustic model to ensure perturbative imperceptibility. For a comprehensive evaluation, we test 16 open-source synthesizers and 3 commercial APIs across Chinese and English datasets, confirming E2E-VGuard's effectiveness in timbre and pronunciation protection. Real-world deployment validation is also conducted. Our code and demo page are available at https://wxzyd123.github.io/e2e-vguard/.
comment: Accepted to NeurIPS 2025
☆ Sample-efficient quantum error mitigation via classical learning surrogates
The pursuit of practical quantum utility on near-term quantum processors is critically challenged by their inherent noise. Quantum error mitigation (QEM) techniques are leading solutions to improve computation fidelity with relatively low qubit-overhead, while full-scale quantum error correction remains a distant goal. However, QEM techniques incur substantial measurement overheads, especially when applied to families of quantum circuits parameterized by classical inputs. Focusing on zero-noise extrapolation (ZNE), a widely adopted QEM technique, here we devise the surrogate-enabled ZNE (S-ZNE), which leverages classical learning surrogates to perform ZNE entirely on the classical side. Unlike conventional ZNE, whose measurement cost scales linearly with the number of circuits, S-ZNE requires only constant measurement overhead for an entire family of quantum circuits, offering superior scalability. Theoretical analysis indicates that S-ZNE achieves accuracy comparable to conventional ZNE in many practical scenarios, and numerical experiments on up to 100-qubit ground-state energy and quantum metrology tasks confirm its effectiveness. Our approach provides a template that can be effectively extended to other quantum error mitigation protocols, opening a promising path toward scalable error mitigation.
comment: 26 pages, 8 figures
☆ Direct Molecular Polarizability Prediction with SO(3) Equivariant Local Frame GNNs
We introduce a novel equivariant graph neural network (GNN) architecture designed to predict the tensorial response properties of molecules. Unlike traditional frameworks that focus on regressing scalar quantities and derive tensorial properties from their derivatives, our approach maintains $SO(3)$-equivariance through the use of local coordinate frames. Our GNN effectively captures geometric information by integrating scalar, vector, and tensor channels within a local message-passing framework. To assess the accuracy of our model, we apply it to predict the polarizabilities of molecules in the QM7-X dataset and show that tensorial message passing outperforms scalar message passing models. This work marks an advancement towards developing structured, geometry-aware neural models for molecular property prediction.
☆ Breaking Privacy in Federated Clustering: Perfect Input Reconstruction via Temporal Correlations
Federated clustering allows multiple parties to discover patterns in distributed data without sharing raw samples. To reduce overhead, many protocols disclose intermediate centroids during training. While often treated as harmless for efficiency, whether such disclosure compromises privacy remains an open question. Prior analyses modeled the problem as a so-called Hidden Subset Sum Problem (HSSP) and argued that centroid release may be safe, since classical HSSP attacks fail to recover inputs. We revisit this question and uncover a new leakage mechanism: temporal regularities in $k$-means iterations create exploitable structure that enables perfect input reconstruction. Building on this insight, we propose Trajectory-Aware Reconstruction (TAR), an attack that combines temporal assignment information with algebraic analysis to recover exact original inputs. Our findings provide the first rigorous evidence, supported by a practical attack, that centroid disclosure in federated clustering significantly compromises privacy, exposing a fundamental tension between privacy and efficiency.
☆ RedOne 2.0: Rethinking Domain-specific LLM Post-Training in Social Networking Services
As a key medium for human interaction and information exchange, social networking services (SNS) pose unique challenges for large language models (LLMs): heterogeneous workloads, fast-shifting norms and slang, and multilingual, culturally diverse corpora that induce sharp distribution shift. Supervised fine-tuning (SFT) can specialize models but often triggers a ``seesaw'' between in-distribution gains and out-of-distribution robustness, especially for smaller models. To address these challenges, we introduce RedOne 2.0, an SNS-oriented LLM trained with a progressive, RL-prioritized post-training paradigm designed for rapid and stable adaptation. The pipeline consist in three stages: (1) Exploratory Learning on curated SNS corpora to establish initial alignment and identify systematic weaknesses; (2) Targeted Fine-Tuning that selectively applies SFT to the diagnosed gaps while mixing a small fraction of general data to mitigate forgetting; and (3) Refinement Learning that re-applies RL with SNS-centric signals to consolidate improvements and harmonize trade-offs across tasks. Across various tasks spanning three categories, our 4B scale model delivers an average improvements about 2.41 over the 7B sub-optimal baseline. Additionally, RedOne 2.0 achieves average performance lift about 8.74 from the base model with less than half the data required by SFT-centric method RedOne, evidencing superior data efficiency and stability at compact scales. Overall, RedOne 2.0 establishes a competitive, cost-effective baseline for domain-specific LLMs in SNS scenario, advancing capability without sacrificing robustness.
☆ ClusterMine: Robust Label-Free Visual Out-Of-Distribution Detection via Concept Mining from Text Corpora WACV 2026
Large-scale visual out-of-distribution (OOD) detection has witnessed remarkable progress by leveraging vision-language models such as CLIP. However, a significant limitation of current methods is their reliance on a pre-defined set of in-distribution (ID) ground-truth label names (positives). These fixed label names can be unavailable, unreliable at scale, or become less relevant due to in-distribution shifts after deployment. Towards truly unsupervised OOD detection, we utilize widely available text corpora for positive label mining, bypassing the need for positives. In this paper, we utilize widely available text corpora for positive label mining under a general concept mining paradigm. Within this framework, we propose ClusterMine, a novel positive label mining method. ClusterMine is the first method to achieve state-of-the-art OOD detection performance without access to positive labels. It extracts positive concepts from a large text corpus by combining visual-only sample consistency (via clustering) and zero-shot image-text consistency. Our experimental study reveals that ClusterMine is scalable across a plethora of CLIP models and achieves state-of-the-art robustness to covariate in-distribution shifts. The code is available at https://github.com/HHU-MMBS/clustermine_wacv_official.
comment: Accepted in WACV 2026. Code in https://github.com/HHU-MMBS/clustermine_wacv_official 9 Tables, 11 Figures
☆ Aligning Attention with Human Rationales for Self-Explaining Hate Speech Detection AAAI
The opaque nature of deep learning models presents significant challenges for the ethical deployment of hate speech detection systems. To address this limitation, we introduce Supervised Rational Attention (SRA), a framework that explicitly aligns model attention with human rationales, improving both interpretability and fairness in hate speech classification. SRA integrates a supervised attention mechanism into transformer-based classifiers, optimizing a joint objective that combines standard classification loss with an alignment loss term that minimizes the discrepancy between attention weights and human-annotated rationales. We evaluated SRA on hate speech benchmarks in English (HateXplain) and Portuguese (HateBRXplain) with rationale annotations. Empirically, SRA achieves 2.4x better explainability compared to current baselines, and produces token-level explanations that are more faithful and human-aligned. In terms of fairness, SRA achieves competitive fairness across all measures, with second-best performance in detecting toxic posts targeting identity groups, while maintaining comparable results on other metrics. These findings demonstrate that incorporating human rationales into attention mechanisms can enhance interpretability and faithfulness without compromising fairness.
comment: Accepted at the Annual AAAI Conference on Artificial Intelligence (AAAI26)
☆ When Sufficient is not Enough: Utilizing the Rashomon Effect for Complete Evidence Extraction
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications this is inadequate. For compliance and cataloging, the full set of contributing features must be identified - complete evidence. We perform a case study on a medical dataset which contains human-annotated complete evidence. We show that individual models typically recover only subsets of complete evidence and that aggregating evidence from several models improves evidence recall from $\sim$0.60 (single best model) to $\sim$0.86 (ensemble). We analyze the recall-precision trade-off, the role of training with evidence, dynamic ensembles with certainty thresholds, and discuss implications.
☆ Anatomy-Aware Lymphoma Lesion Detection in Whole-Body PET/CT
Early cancer detection is crucial for improving patient outcomes, and 18F FDG PET/CT imaging plays a vital role by combining metabolic and anatomical information. Accurate lesion detection remains challenging due to the need to identify multiple lesions of varying sizes. In this study, we investigate the effect of adding anatomy prior information to deep learning-based lesion detection models. In particular, we add organ segmentation masks from the TotalSegmentator tool as auxiliary inputs to provide anatomical context to nnDetection, which is the state-of-the-art for lesion detection, and Swin Transformer. The latter is trained in two stages that combine self-supervised pre-training and supervised fine-tuning. The method is tested in the AutoPET and Karolinska lymphoma datasets. The results indicate that the inclusion of anatomical priors substantially improves the detection performance within the nnDetection framework, while it has almost no impact on the performance of the vision transformer. Moreover, we observe that Swin Transformer does not offer clear advantages over conventional convolutional neural network (CNN) encoders used in nnDetection. These findings highlight the critical role of the anatomical context in cancer lesion detection, especially in CNN-based models.
☆ Learning Quantized Continuous Controllers for Integer Hardware
Deploying continuous-control reinforcement learning policies on embedded hardware requires meeting tight latency and power budgets. Small FPGAs can deliver these, but only if costly floating point pipelines are avoided. We study quantization-aware training (QAT) of policies for integer inference and we present a learning-to-hardware pipeline that automatically selects low-bit policies and synthesizes them to an Artix-7 FPGA. Across five MuJoCo tasks, we obtain policy networks that are competitive with full precision (FP32) policies but require as few as 3 or even only 2 bits per weight, and per internal activation value, as long as input precision is chosen carefully. On the target hardware, the selected policies achieve inference latencies on the order of microseconds and consume microjoules per action, favorably comparing to a quantized reference. Last, we observe that the quantized policies exhibit increased input noise robustness compared to the floating-point baseline.
comment: 17 pages, 6 figures
☆ Fair Bayesian Data Selection via Generalized Discrepancy Measures
Fairness concerns are increasingly critical as machine learning models are deployed in high-stakes applications. While existing fairness-aware methods typically intervene at the model level, they often suffer from high computational costs, limited scalability, and poor generalization. To address these challenges, we propose a Bayesian data selection framework that ensures fairness by aligning group-specific posterior distributions of model parameters and sample weights with a shared central distribution. Our framework supports flexible alignment via various distributional discrepancy measures, including Wasserstein distance, maximum mean discrepancy, and $f$-divergence, allowing geometry-aware control without imposing explicit fairness constraints. This data-centric approach mitigates group-specific biases in training data and improves fairness in downstream tasks, with theoretical guarantees. Experiments on benchmark datasets show that our method consistently outperforms existing data selection and model-based fairness methods in both fairness and accuracy.
☆ Correcting False Alarms from Unseen: Adapting Graph Anomaly Detectors at Test Time AAAI 2026
Graph anomaly detection (GAD), which aims to detect outliers in graph-structured data, has received increasing research attention recently. However, existing GAD methods assume identical training and testing distributions, which is rarely valid in practice. In real-world scenarios, unseen but normal samples may emerge during deployment, leading to a normality shift that degrades the performance of GAD models trained on the original data. Through empirical analysis, we reveal that the degradation arises from (1) semantic confusion, where unseen normal samples are misinterpreted as anomalies due to their novel patterns, and (2) aggregation contamination, where the representations of seen normal nodes are distorted by unseen normals through message aggregation. While retraining or fine-tuning GAD models could be a potential solution to the above challenges, the high cost of model retraining and the difficulty of obtaining labeled data often render this approach impractical in real-world applications. To bridge the gap, we proposed a lightweight and plug-and-play Test-time adaptation framework for correcting Unseen Normal pattErns (TUNE) in GAD. To address semantic confusion, a graph aligner is employed to align the shifted data to the original one at the graph attribute level. Moreover, we utilize the minimization of representation-level shift as a supervision signal to train the aligner, which leverages the estimated aggregation contamination as a key indicator of normality shift. Extensive experiments on 10 real-world datasets demonstrate that TUNE significantly enhances the generalizability of pre-trained GAD models to both synthetic and real unseen normal patterns.
comment: 9 pages, 5 figures, accepted by AAAI 2026
☆ Multilingual Lexical Feature Analysis of Spoken Language for Predicting Major Depression Symptom Severity
Background: Captured between clinical appointments using mobile devices, spoken language has potential for objective, more regular assessment of symptom severity and earlier detection of relapse in major depressive disorder. However, research to date has largely been in non-clinical cross-sectional samples of written language using complex machine learning (ML) approaches with limited interpretability. Methods: We describe an initial exploratory analysis of longitudinal speech data and PHQ-8 assessments from 5,836 recordings of 586 participants in the UK, Netherlands, and Spain, collected in the RADAR-MDD study. We sought to identify interpretable lexical features associated with MDD symptom severity with linear mixed-effects modelling. Interpretable features and high-dimensional vector embeddings were also used to test the prediction performance of four regressor ML models. Results: In English data, MDD symptom severity was associated with 7 features including lexical diversity measures and absolutist language. In Dutch, associations were observed with words per sentence and positive word frequency; no associations were observed in recordings collected in Spain. The predictive power of lexical features and vector embeddings was near chance level across all languages. Limitations: Smaller samples in non-English speech and methodological choices, such as the elicitation prompt, may have also limited the effect sizes observable. A lack of NLP tools in languages other than English restricted our feature choice. Conclusion: To understand the value of lexical markers in clinical research and practice, further research is needed in larger samples across several languages using improved protocols, and ML models that account for within- and between-individual variations in language.
☆ TrueCity: Real and Simulated Urban Data for Cross-Domain 3D Scene Understanding 3DV 2026
3D semantic scene understanding remains a long-standing challenge in the 3D computer vision community. One of the key issues pertains to limited real-world annotated data to facilitate generalizable models. The common practice to tackle this issue is to simulate new data. Although synthetic datasets offer scalability and perfect labels, their designer-crafted scenes fail to capture real-world complexity and sensor noise, resulting in a synthetic-to-real domain gap. Moreover, no benchmark provides synchronized real and simulated point clouds for segmentation-oriented domain shift analysis. We introduce TrueCity, the first urban semantic segmentation benchmark with cm-accurate annotated real-world point clouds, semantic 3D city models, and annotated simulated point clouds representing the same city. TrueCity proposes segmentation classes aligned with international 3D city modeling standards, enabling consistent evaluation of synthetic-to-real gap. Our extensive experiments on common baselines quantify domain shift and highlight strategies for exploiting synthetic data to enhance real-world 3D scene understanding. We are convinced that the TrueCity dataset will foster further development of sim-to-real gap quantification and enable generalizable data-driven models. The data, code, and 3D models are available online: https://tum-gis.github.io/TrueCity/
comment: The paper accepted for 3DV 2026 (International Conference on 3D Vision 2026)
☆ S$^2$Drug: Bridging Protein Sequence and 3D Structure in Contrastive Representation Learning for Virtual Screening AAAI 2026
Virtual screening (VS) is an essential task in drug discovery, focusing on the identification of small-molecule ligands that bind to specific protein pockets. Existing deep learning methods, from early regression models to recent contrastive learning approaches, primarily rely on structural data while overlooking protein sequences, which are more accessible and can enhance generalizability. However, directly integrating protein sequences poses challenges due to the redundancy and noise in large-scale protein-ligand datasets. To address these limitations, we propose \textbf{S$^2$Drug}, a two-stage framework that explicitly incorporates protein \textbf{S}equence information and 3D \textbf{S}tructure context in protein-ligand contrastive representation learning. In the first stage, we perform protein sequence pretraining on ChemBL using an ESM2-based backbone, combined with a tailored data sampling strategy to reduce redundancy and noise on both protein and ligand sides. In the second stage, we fine-tune on PDBBind by fusing sequence and structure information through a residue-level gating module, while introducing an auxiliary binding site prediction task. This auxiliary task guides the model to accurately localize binding residues within the protein sequence and capture their 3D spatial arrangement, thereby refining protein-ligand matching. Across multiple benchmarks, S$^2$Drug consistently improves virtual screening performance and achieves strong results on binding site prediction, demonstrating the value of bridging sequence and structure in contrastive learning.
comment: Accepted by AAAI 2026 Main Technical Track
☆ CoLM: Collaborative Large Models via A Client-Server Paradigm
Large models have achieved remarkable performance across a range of reasoning and understanding tasks. Prior work often utilizes model ensembles or multi-agent systems to collaboratively generate responses, effectively operating in a server-to-server paradigm. However, such approaches do not align well with practical deployment settings, where a limited number of server-side models are shared by many clients under modern internet architectures. In this paper, we introduce \textbf{CoLM} (\textbf{Co}llaboration in \textbf{L}arge-\textbf{M}odels), a novel framework for collaborative reasoning that redefines cooperation among large models from a client-server perspective. Unlike traditional ensemble methods that rely on simultaneous inference from multiple models to produce a single output, CoLM allows the outputs of multiple models to be aggregated or shared, enabling each client model to independently refine and update its own generation based on these high-quality outputs. This design enables collaborative benefits by fully leveraging both client-side and shared server-side models. We further extend CoLM to vision-language models (VLMs), demonstrating its applicability beyond language tasks. Experimental results across multiple benchmarks show that CoLM consistently improves model performance on previously failed queries, highlighting the effectiveness of collaborative guidance in enhancing single-model capabilities.
☆ HCFSLN: Adaptive Hyperbolic Few-Shot Learning for Multimodal Anxiety Detection
Anxiety disorders impact millions globally, yet traditional diagnosis relies on clinical interviews, while machine learning models struggle with overfitting due to limited data. Large-scale data collection remains costly and time-consuming, restricting accessibility. To address this, we introduce the Hyperbolic Curvature Few-Shot Learning Network (HCFSLN), a novel Few-Shot Learning (FSL) framework for multimodal anxiety detection, integrating speech, physiological signals, and video data. HCFSLN enhances feature separability through hyperbolic embeddings, cross-modal attention, and an adaptive gating network, enabling robust classification with minimal data. We collected a multimodal anxiety dataset from 108 participants and benchmarked HCFSLN against six FSL baselines, achieving 88% accuracy, outperforming the best baseline by 14%. These results highlight the effectiveness of hyperbolic space for modeling anxiety-related speech patterns and demonstrate FSL's potential for anxiety classification.
Breaking the Gradient Barrier: Unveiling Large Language Models for Strategic Classification NeurIPS 2025
Strategic classification~(SC) explores how individuals or entities modify their features strategically to achieve favorable classification outcomes. However, existing SC methods, which are largely based on linear models or shallow neural networks, face significant limitations in terms of scalability and capacity when applied to real-world datasets with significantly increasing scale, especially in financial services and the internet sector. In this paper, we investigate how to leverage large language models to design a more scalable and efficient SC framework, especially in the case of growing individuals engaged with decision-making processes. Specifically, we introduce GLIM, a gradient-free SC method grounded in in-context learning. During the feed-forward process of self-attention, GLIM implicitly simulates the typical bi-level optimization process of SC, including both the feature manipulation and decision rule optimization. Without fine-tuning the LLMs, our proposed GLIM enjoys the advantage of cost-effective adaptation in dynamic strategic environments. Theoretically, we prove GLIM can support pre-trained LLMs to adapt to a broad range of strategic manipulations. We validate our approach through experiments with a collection of pre-trained LLMs on real-world and synthetic datasets in financial and internet domains, demonstrating that our GLIM exhibits both robustness and efficiency, and offering an effective solution for large-scale SC tasks.
comment: Accepted by NeurIPS 2025
☆ Fast Bayesian Updates via Harmonic Representations
Bayesian inference, while foundational to probabilistic reasoning, is often hampered by the computational intractability of posterior distributions, particularly through the challenging evidence integral. Conventional approaches like Markov Chain Monte Carlo (MCMC) and Variational Inference (VI) face significant scalability and efficiency limitations. This paper introduces a novel, unifying framework for fast Bayesian updates by leveraging harmonic analysis. We demonstrate that representing the prior and likelihood in a suitable orthogonal basis transforms the Bayesian update rule into a spectral convolution. Specifically, the Fourier coefficients of the posterior are shown to be the normalized convolution of the prior and likelihood coefficients. To achieve computational feasibility, we introduce a spectral truncation scheme, which, for smooth functions, yields an exceptionally accurate finite-dimensional approximation and reduces the update to a circular convolution. This formulation allows us to exploit the Fast Fourier Transform (FFT), resulting in a deterministic algorithm with O(N log N) complexity -- a substantial improvement over the O(N^2) cost of naive methods. We establish rigorous mathematical criteria for the applicability of our method, linking its efficiency to the smoothness and spectral decay of the involved distributions. The presented work offers a paradigm shift, connecting Bayesian computation to signal processing and opening avenues for real-time, sequential inference in a wide class of problems.
comment: 13 pages
☆ Rethinking Crystal Symmetry Prediction: A Decoupled Perspective
Efficiently and accurately determining the symmetry is a crucial step in the structural analysis of crystalline materials. Existing methods usually mindlessly apply deep learning models while ignoring the underlying chemical rules. More importantly, experiments show that they face a serious sub-property confusion SPC problem. To address the above challenges, from a decoupled perspective, we introduce the XRDecoupler framework, a problem-solving arsenal specifically designed to tackle the SPC problem. Imitating the thinking process of chemists, we innovatively incorporate multidimensional crystal symmetry information as superclass guidance to ensure that the model's prediction process aligns with chemical intuition. We further design a hierarchical PXRD pattern learning model and a multi-objective optimization approach to achieve high-quality representation and balanced optimization. Comprehensive evaluations on three mainstream databases (e.g., CCDC, CoREMOF, and InorganicData) demonstrate that XRDecoupler excels in performance, interpretability, and generalization.
☆ Oh That Looks Familiar: A Novel Similarity Measure for Spreadsheet Template Discovery
Traditional methods for identifying structurally similar spreadsheets fail to capture the spatial layouts and type patterns defining templates. To quantify spreadsheet similarity, we introduce a hybrid distance metric that combines semantic embeddings, data type information, and spatial positioning. In order to calculate spreadsheet similarity, our method converts spreadsheets into cell-level embeddings and then uses aggregation techniques like Chamfer and Hausdorff distances. Experiments across template families demonstrate superior unsupervised clustering performance compared to the graph-based Mondrian baseline, achieving perfect template reconstruction (Adjusted Rand Index of 1.00 versus 0.90) on the FUSTE dataset. Our approach facilitates large-scale automated template discovery, which in turn enables downstream applications such as retrieval-augmented generation over tabular collections, model training, and bulk data cleaning.
comment: 5 pages, 2 figures, Accepted for EuroIPS: AI for Tabular Data Workshop (2025)
☆ Hybrid Autoencoders for Tabular Data: Leveraging Model-Based Augmentation in Low-Label Settings
Deep neural networks often under-perform on tabular data due to their sensitivity to irrelevant features and a spectral bias toward smooth, low-frequency functions. These limitations hinder their ability to capture the sharp, high-frequency signals that often define tabular structure, especially under limited labeled samples. While self-supervised learning (SSL) offers promise in such settings, it remains challenging in tabular domains due to the lack of effective data augmentations. We propose a hybrid autoencoder that combines a neural encoder with an oblivious soft decision tree (OSDT) encoder, each guided by its own stochastic gating network that performs sample-specific feature selection. Together, these structurally different encoders and model-specific gating networks implement model-based augmentation, producing complementary input views tailored to each architecture. The two encoders, trained with a shared decoder and cross-reconstruction loss, learn distinct yet aligned representations that reflect their respective inductive biases. During training, the OSDT encoder (robust to noise and effective at modeling localized, high-frequency structure) guides the neural encoder toward representations more aligned with tabular data. At inference, only the neural encoder is used, preserving flexibility and SSL compatibility. Spectral analysis highlights the distinct inductive biases of each encoder. Our method achieves consistent gains in low-label classification and regression across diverse tabular datasets, outperforming deep and tree-based supervised baselines.
comment: accepted to neurips 2025, main text is 10 pages
☆ Learning to Focus: Prioritizing Informative Histories with Structured Attention Mechanisms in Partially Observable Reinforcement Learning NeurIPS 2025
Transformers have shown strong ability to model long-term dependencies and are increasingly adopted as world models in model-based reinforcement learning (RL) under partial observability. However, unlike natural language corpora, RL trajectories are sparse and reward-driven, making standard self-attention inefficient because it distributes weight uniformly across all past tokens rather than emphasizing the few transitions critical for control. To address this, we introduce structured inductive priors into the self-attention mechanism of the dynamics head: (i) per-head memory-length priors that constrain attention to task-specific windows, and (ii) distributional priors that learn smooth Gaussian weightings over past state-action pairs. We integrate these mechanisms into UniZero, a model-based RL agent with a Transformer-based world model that supports planning under partial observability. Experiments on the Atari 100k benchmark show that most efficiency gains arise from the Gaussian prior, which smoothly allocates attention to informative transitions, while memory-length priors often truncate useful signals with overly restrictive cut-offs. In particular, Gaussian Attention achieves a 77% relative improvement in mean human-normalized scores over UniZero. These findings suggest that in partially observable RL domains with non-stationary temporal dependencies, discrete memory windows are difficult to learn reliably, whereas smooth distributional priors flexibly adapt across horizons and yield more robust data efficiency. Overall, our results demonstrate that encoding structured temporal priors directly into self-attention improves the prioritization of informative histories for dynamics modeling under partial observability.
comment: Accepted to Embodied World Models for Decision Making (EWM) Workshop at NeurIPS 2025
☆ Fine-Tuning Diffusion-Based Recommender Systems via Reinforcement Learning with Reward Function Optimization
Diffusion models recently emerged as a powerful paradigm for recommender systems, offering state-of-the-art performance by modeling the generative process of user-item interactions. However, training such models from scratch is both computationally expensive and yields diminishing returns once convergence is reached. To remedy these challenges, we propose ReFiT, a new framework that integrates Reinforcement learning (RL)-based Fine-Tuning into diffusion-based recommender systems. In contrast to prior RL approaches for diffusion models depending on external reward models, ReFiT adopts a task-aligned design: it formulates the denoising trajectory as a Markov decision process (MDP) and incorporates a collaborative signal-aware reward function that directly reflects recommendation quality. By tightly coupling the MDP structure with this reward signal, ReFiT empowers the RL agent to exploit high-order connectivity for fine-grained optimization, while avoiding the noisy or uninformative feedback common in naive reward designs. Leveraging policy gradient optimization, ReFiT maximizes exact log-likelihood of observed interactions, thereby enabling effective post hoc fine-tuning of diffusion recommenders. Comprehensive experiments on wide-ranging real-world datasets demonstrate that the proposed ReFiT framework (a) exhibits substantial performance gains over strong competitors (up to 36.3% on sequential recommendation), (b) demonstrates strong efficiency with linear complexity in the number of users or items, and (c) generalizes well across multiple diffusion-based recommendation scenarios. The source code and datasets are publicly available at https://anonymous.4open.science/r/ReFiT-4C60.
comment: 14 pages, 12 figures, 9 tables
♻ ☆ Lagrangian neural ODEs: Measuring the existence of a Lagrangian with Helmholtz metrics NeurIPS 2025
Neural ODEs are a widely used, powerful machine learning technique in particular for physics. However, not every solution is physical in that it is an Euler-Lagrange equation. We present Helmholtz metrics to quantify this resemblance for a given ODE and demonstrate their capabilities on several fundamental systems with noise. We combine them with a second order neural ODE to form a Lagrangian neural ODE, which allows to learn Euler-Lagrange equations in a direct fashion and with zero additional inference cost. We demonstrate that, using only positional data, they can distinguish Lagrangian and non-Lagrangian systems and improve the neural ODE solutions.
comment: Accepted for the NeurIPS 2025 Machine Learning and the Physical Sciences workshop. 6 pages, 3 figures
♻ ☆ Embedding-Aware Quantum-Classical SVMs for Scalable Quantum Machine Learning
Quantum Support Vector Machines face scalability challenges due to high-dimensional quantum states and hardware limitations. We propose an embedding-aware quantum-classical pipeline combining class-balanced k-means distillation with pretrained Vision Transformer embeddings. Our key finding: ViT embeddings uniquely enable quantum advantage, achieving up to 8.02% accuracy improvements over classical SVMs on Fashion-MNIST and 4.42% on MNIST, while CNN features show performance degradation. Using 16-qubit tensor network simulation via cuTensorNet, we provide the first systematic evidence that quantum kernel advantage depends critically on embedding choice, revealing fundamental synergy between transformer attention and quantum feature spaces. This provides a practical pathway for scalable quantum machine learning that leverages modern neural architectures.
comment: Accepted for Poster, Presentation and Proceedings at: 3rd International Workshop on AI for Quantum and Quantum for AI (AIQxQIA 2025), co-located with ECAI 2025, Bologna, Italy, 25-30 October 2025
♻ ☆ Sensitivity Analysis for Climate Science with Generative Flow Models
Sensitivity analysis is a cornerstone of climate science, essential for understanding phenomena ranging from storm intensity to long-term climate feedbacks. However, computing these sensitivities using traditional physical models is often prohibitively expensive in terms of both computation and development time. While modern AI-based generative models are orders of magnitude faster to evaluate, computing sensitivities with them remains a significant bottleneck. This work addresses this challenge by applying the adjoint state method for calculating gradients in generative flow models. We apply this method to the cBottle generative model, trained on ERA5 and ICON data, to perform sensitivity analysis of any atmospheric variable with respect to sea surface temperatures. We quantitatively validate the computed sensitivities against the model's own outputs. Our results provide initial evidence that this approach can produce reliable gradients, reducing the computational cost of sensitivity analysis from weeks on a supercomputer with a physical model to hours on a GPU, thereby simplifying a critical workflow in climate science. The code can be found at https://github.com/Kwartzl8/cbottle_adjoint_sensitivity.
♻ ☆ Graph-Conditional Flow Matching for Relational Data Generation AAAI26
Data synthesis is gaining momentum as a privacy-enhancing technology. While single-table tabular data generation has seen considerable progress, current methods for multi-table data often lack the flexibility and expressiveness needed to capture complex relational structures. In particular, they struggle with long-range dependencies and complex foreign-key relationships, such as tables with multiple parent tables or multiple types of links between the same pair of tables. We propose a generative model for relational data that generates the content of a relational dataset given the graph formed by the foreign-key relationships. We do this by learning a deep generative model of the content of the whole relational database by flow matching, where the neural network trained to denoise records leverages a graph neural network to obtain information from connected records. Our method is flexible, as it can support relational datasets with complex structures, and expressive, as the generation of each record can be influenced by any other record within the same connected component. We evaluate our method on several benchmark datasets and show that it achieves state-of-the-art performance in terms of synthetic data fidelity.
comment: 9 pages of main content, accepted to AAAI26 conference
♻ ☆ NOWS: Neural Operator Warm Starts for Accelerating Iterative Solvers
Partial differential equations (PDEs) underpin quantitative descriptions across the physical sciences and engineering, yet high-fidelity simulation remains a major computational bottleneck for many-query, real-time, and design tasks. Data-driven surrogates can be strikingly fast but are often unreliable when applied outside their training distribution. Here we introduce Neural Operator Warm Starts (NOWS), a hybrid strategy that harnesses learned solution operators to accelerate classical iterative solvers by producing high-quality initial guesses for Krylov methods such as conjugate gradient and GMRES. NOWS leaves existing discretizations and solver infrastructures intact, integrating seamlessly with finite-difference, finite-element, isogeometric analysis, finite volume method, etc. Across our benchmarks, the learned initialization consistently reduces iteration counts and end-to-end runtime, resulting in a reduction of the computational time of up to 90 %, while preserving the stability and convergence guarantees of the underlying numerical algorithms. By combining the rapid inference of neural operators with the rigor of traditional solvers, NOWS provides a practical and trustworthy approach to accelerate high-fidelity PDE simulations.
♻ ☆ Estimation of aboveground biomass in a tropical dry forest: An intercomparison of airborne, unmanned, and space laser scanning
According to the Paris Climate Change Agreement, all nations are required to submit reports on their greenhouse gas emissions and absorption every two years by 2024. Consequently, forests play a crucial role in reducing carbon emissions, which is essential for meeting these obligations. Recognizing the significance of forest conservation in the global battle against climate change, Article 5 of the Paris Agreement emphasizes the need for high-quality forest data. This study focuses on enhancing methods for mapping aboveground biomass in tropical dry forests. Tropical dry forests are considered one of the least understood tropical forest environments; therefore, there is a need for accurate approaches to estimate carbon pools. We employ a comparative analysis of AGB estimates, utilizing different discrete and full-waveform laser scanning datasets in conjunction with Ordinary Least Squares and Bayesian approaches SVM. Airborne Laser Scanning, Unmanned Laser Scanning, and Space Laser Scanning were used as independent variables for extracting forest metrics. Variable selection, SVM regression tuning, and cross-validation via a machine-learning approach were applied to account for overfitting and underfitting. The results indicate that six key variables primarily related to tree height: Elev\.minimum, Elev\.L3, lev\.MAD\.mode, Elev\.mode, Elev\.MAD\.median, and Elev\.skewness, are important for AGB estimation using ALSD and ULSD, while Leaf Area Index, canopy coverage and height, terrain elevation, and full-waveform signal energy emerged as the most vital variables. AGB values estimated from ten permanent tropical dry forest plots in Costa Rica Guanacaste province ranged from 26.02 Mg/ha to 175.43 Mg/ha. The SVM regressions demonstrated a 17.89 error across all laser scanning systems, with SLSF W exhibiting the lowest error 17.07 in estimating total biomass per plot.
comment: 32 pages, 17 figures, research paper
♻ ☆ CAGE: Curvature-Aware Gradient Estimation For Accurate Quantization-Aware Training
Despite significant work on low-bit quantization-aware training (QAT), there is still an accuracy gap between such techniques and native training. To address this, we introduce CAGE (Curvature-Aware Gradient Estimation), a new QAT method that augments the straight-through estimator (STE) gradient with a curvature-aware correction designed to counteract the loss increase induced by quantization. CAGE is derived from a multi-objective view of QAT that balances loss minimization with the quantization constraints, yielding a principled correction term that depends on local curvature information. On the theoretical side, we introduce the notion of Pareto-optimal solutions for quantized optimization, and establish that CAGE yields strong convergence guarantees in the smooth non-convex setting. In terms of implementation, our approach is optimizer-agnostic, but we provide a highly-efficient implementation that leverages Adam statistics. CAGE significantly improves upon the prior state-of-the-art methods in terms of accuracy, for similar computational cost: for QAT fine-tuning, it halves the compression accuracy loss relative to the prior best method, while for QAT pre-training of Llama models, its accuracy for 3-bit weights-and-activations (W3A3) matches the accuracy achieved at 4-bits (W4A4) with the prior best method. The official implementation can be found over https://github.com/IST-DASLab/CAGE .
♻ ☆ Adaptive Group Robust Ensemble Knowledge Distillation
Neural networks can learn spurious correlations in the data, often leading to performance degradation for underrepresented subgroups. Studies have demonstrated that the disparity is amplified when knowledge is distilled from a complex teacher model to a relatively ``simple'' student model. Prior work has shown that ensemble deep learning methods can improve the performance of the worst-case subgroups; however, it is unclear if this advantage carries over when distilling knowledge from an ensemble of teachers, especially when the teacher models are debiased. This study demonstrates that traditional ensemble knowledge distillation can significantly drop the performance of the worst-case subgroups in the distilled student model even when the teacher models are debiased. To overcome this, we propose Adaptive Group Robust Ensemble Knowledge Distillation (AGRE-KD), a simple ensembling strategy to ensure that the student model receives knowledge beneficial for unknown underrepresented subgroups. Leveraging an additional biased model, our method selectively chooses teachers whose knowledge would better improve the worst-performing subgroups by upweighting the teachers with gradient directions deviating from the biased model. Our experiments on several datasets demonstrate the superiority of the proposed ensemble distillation technique and show that it can even outperform classic model ensembles based on majority voting. Our source code is available at https://github.com/patrikken/AGRE-KD
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Which Similarity-Sensitive Entropy?
A canonical step in quantifying a system is to measure its entropy. Shannon entropy and other traditional entropy measures capture only the information encoded in the frequencies of a system's elements. Recently, Leinster, Cobbold, and Reeve (LCR) introduced a method that also captures the rich information encoded in the similarities and differences among elements, yielding similarity-sensitive entropy. More recently, the Vendi score (VS) was introduced as an alternative, raising the question of how LCR and VS compare, and which is preferable. Here we address these questions conceptually, analytically, and experimentally, using 53 machine-learning datasets. We show that LCR and VS can differ by orders of magnitude and can capture complementary information about a system, except in limiting cases. We demonstrate that both LCR and VS depend on how similarities are scaled and introduce the concept of ``half distance'' to parameterize this dependence. We prove that VS provides an upper bound on LCR for several values of the R\'enyi-Hill order parameter and conjecture that this bound holds for all values. We conclude that VS is preferable only when interpreting elements as linear combinations of a more fundamental set of ``ur-elements'' or when the system or dataset possesses a quantum-mechanical character. In the broader circumstance where one seeks simply to capture the rich information encoded by similarity, LCR is favored; nevertheless, for certain half-distances the two methods can complement each other.
comment: 21 pages, 8 figures
♻ ☆ Real-to-Sim Robot Policy Evaluation with Gaussian Splatting Simulation of Soft-Body Interactions
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
comment: The first two authors contributed equally. Website: https://real2sim-eval.github.io/
♻ ☆ Revisiting Stochastic Approximation and Stochastic Gradient Descent
In this paper, we introduce a new approach to proving the convergence of the Stochastic Approximation (SA) and the Stochastic Gradient Descent (SGD) algorithms. The new approach is based on a concept called GSLLN (Generalized Strong Law of Large Numbers), which extends the traditional SLLN. Using this concept, we provide sufficient conditions for convergence, which effectively decouple the properties of the function whose zero we are trying to find, from the properties of the measurement errors (noise sequence). The new approach provides an alternative to the two widely used approaches, namely the ODE approach and the martingale approach, and also permits a wider class of noise signals than either of the two known approaches. In particular, the ``noise'' or measurement error \textit{need not} have a finite second moment, and under suitable conditions, not even a finite mean. By adapting this method of proof, we also derive sufficient conditions for the convergence of zero-order SGD, wherein the stochastic gradient is computed using $2d$ function evaluations, but no gradient computations. The sufficient conditions derived here are the weakest to date, thus leading to a considerable expansion of the applicability of SA and SGD theory.
comment: 31 pages
♻ ☆ When Bias Helps Learning: Bridging Initial Prejudice and Trainability
Understanding the statistical properties of deep neural networks (DNNs) at initialization is crucial for elucidating both their trainability and the intrinsic architectural biases they encode prior to data exposure. Mean-field (MF) analyses have demonstrated that the parameter distribution in randomly initialized networks dictates whether gradients vanish or explode. Recent work has shown that untrained DNNs exhibit an initial-guessing bias (IGB), in which large regions of the input space are assigned to a single class. In this work, we provide a theoretical proof linking IGB to MF analyses, establishing that a network predisposition toward specific classes is intrinsically tied to the conditions for efficient learning. This connection leads to a counterintuitive conclusion: the initialization that optimizes trainability is systematically biased rather than neutral. We validate our theory through experiments across multiple architectures and datasets.
♻ ☆ Multiple Streams of Knowledge Retrieval: Enriching and Recalling in Transformers
When an LLM learns a new fact during finetuning (e.g., new movie releases, newly elected pope, etc.), where does this information go? Are entities enriched with relation information, or do models recall information just-in-time before a prediction? Or, are ``all of the above'' true with LLMs implementing multiple redundant heuristics? Existing localization approaches (e.g., activation patching) are ill-suited for this analysis because they usually \textit{replace} parts of the residual stream, thus overriding previous information. To fill this gap, we propose \emph{dynamic weight grafting}, a technique that selectively grafts weights from a finetuned model onto a pretrained model. Using this technique, we show two separate pathways for retrieving finetuned relation information: 1) ``enriching" the residual stream with relation information while processing the tokens that correspond to an entity (e.g., ``Zendaya'' in ``Zendaya co-starred with John David Washington'') and 2) ``recalling" this information at the final token position before generating a target fact. In some cases, models need information from both of these pathways to correctly generate finetuned facts while, in other cases, either the ``enrichment" or ``recall" pathway alone is sufficient. We localize the ``recall'' pathway to model components -- finding that ``recall" occurs via both task-specific attention mechanisms and an entity-specific extraction step in the feedforward networks of the final layers before the target prediction. By targeting model components and parameters, as opposed to just activations, we are able to understand the \textit{mechanisms} by which finetuned knowledge is retrieved during generation.
♻ ☆ From Invariant Representations to Invariant Data: Provable Robustness to Spurious Correlations via Noisy Counterfactual Matching
Models that learn spurious correlations from training data often fail when deployed in new environments. While many methods aim to learn invariant representations to address this, they often underperform standard empirical risk minimization (ERM). We propose a data-centric alternative that shifts the focus from learning invariant representations to leveraging invariant data pairs -- pairs of samples that should have the same prediction. We prove that certain counterfactuals naturally satisfy this invariance property. Based on this, we introduce Noisy Counterfactual Matching (NCM), a simple constraint-based method that improves robustness by leveraging even a small number of \emph{noisy} counterfactual pairs -- improving upon prior works that do not explicitly consider noise. For linear causal models, we prove that NCM's test-domain error is bounded by its in-domain error plus a term dependent on the counterfactuals' quality and diversity. Experiments on synthetic data validate our theory, and we demonstrate NCM's effectiveness on real-world datasets.
♻ ☆ VeriLLM: A Lightweight Framework for Publicly Verifiable Decentralized Inference
Decentralized inference provides a scalable and resilient paradigm for serving large language models (LLMs), enabling distributed resource utilization and reducing reliance on centralized providers. However, in a permissionless environment without trusted nodes, ensuring the correctness of model outputs remains a core challenge. We introduce VeriLLM, a publicly verifiable protocol for decentralized LLM inference that achieves security under a one-honest-verifier assumption while maintaining practical efficiency. VeriLLM combines lightweight empirical rerunning with cryptographic commitments, allowing verifiers to validate results at approximately 1% of the underlying inference cost. To prevent verification bottlenecks, we design an isomorphic inference-verification architecture that multiplexes both inference and verification roles across the same GPU workers. This design (i) improves GPU utilization and overall throughput, (ii) enlarges the effective validator set, enhancing robustness and liveness, and (iii) enforces task indistinguishability to prevent node-specific optimizations or selective behavior. Through theoretical analysis and system-level evaluation, we show that VeriLLM achieves reliable public verifiability with minimal overhead, offering a practical foundation for trustworthy and scalable decentralized LLM inference.
comment: 20 pages, 4 figures, 6 tables
♻ ☆ Universal Spectral Tokenization via Self-Supervised Panchromatic Representation Learning NeurIPS 2025
Sequential scientific data span many resolutions and domains, and unifying them into a common representation is a key step toward developing foundation models for the sciences. Astronomical spectra exemplify this challenge: massive surveys have collected millions of spectra across a wide range of wavelengths and resolutions, yet analyses remain fragmented across spectral domains (e.g., optical vs. infrared) and object types (e.g., stars vs. galaxies), limiting the ability to pool information across datasets. We present a deep learning model that jointly learns from heterogeneous spectra in a self-supervised manner. Our universal spectral tokenizer processes spectra from a variety of object types and resolutions directly on their native wavelength grids, producing intrinsically aligned, homogeneous, and physically meaningful representations that can be efficiently adapted to achieve competitive performance across a range of downstream tasks. For the first time, we demonstrate that a single model can unify spectral data across resolutions and domains, suggesting that our model can serve as a powerful building block for foundation models in astronomy -- and potentially extend to other scientific domains with heterogeneous sequential data, such as climate and healthcare.
comment: Accepted at NeurIPS 2025 Machine Learning and the Physical Sciences Workshop; v2: added collaboration
♻ ☆ HyperSHAP: Shapley Values and Interactions for Explaining Hyperparameter Optimization AAAI-26
Hyperparameter optimization (HPO) is a crucial step in achieving strong predictive performance. Yet, the impact of individual hyperparameters on model generalization is highly context-dependent, prohibiting a one-size-fits-all solution and requiring opaque HPO methods to find optimal configurations. However, the black-box nature of most HPO methods undermines user trust and discourages adoption. To address this, we propose a game-theoretic explainability framework for HPO based on Shapley values and interactions. Our approach provides an additive decomposition of a performance measure across hyperparameters, enabling local and global explanations of hyperparameters' contributions and their interactions. The framework, named HyperSHAP, offers insights into ablation studies, the tunability of learning algorithms, and optimizer behavior across different hyperparameter spaces. We demonstrate HyperSHAP's capabilities on various HPO benchmarks to analyze the interaction structure of the corresponding HPO problems, demonstrating its broad applicability and actionable insights for improving HPO.
comment: Accepted at AAAI-26 (oral)
FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L \Delta \sigma_l^2)/(S K R \epsilon^2)}+(L \Delta)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.
♻ ☆ Tool Zero: Training Tool-Augmented LLMs via Pure RL from Scratch EMNLP 2025
Training tool-augmented LLMs has emerged as a promising approach to enhancing language models' capabilities for complex tasks. The current supervised fine-tuning paradigm relies on constructing extensive domain-specific datasets to train models. However, this approach often struggles to generalize effectively to unfamiliar or intricate tool-use scenarios. Recently, reinforcement learning (RL) paradigm can endow LLMs with superior reasoning and generalization abilities. In this work, we address a key question: Can the pure RL be used to effectively elicit a model's intrinsic reasoning capabilities and enhance the tool-agnostic generalization? We propose a dynamic generalization-guided reward design for rule-based RL, which progressively shifts rewards from exploratory to exploitative tool-use patterns. Based on this design, we introduce the Tool-Zero series models. These models are trained to enable LLMs to autonomously utilize general tools by directly scaling up RL from Zero models (i.e., base models without post-training). Experimental results demonstrate that our models achieve over 7% performance improvement compared to both SFT and RL-with-SFT models under the same experimental settings. These gains are consistently replicated across cross-dataset and intra-dataset evaluations, validating the effectiveness and robustness of our methods.
comment: EMNLP 2025 finding
♻ ☆ HumorReject: Decoupling LLM Safety from Refusal Prefix via A Little Humor
Large Language Models (LLMs) commonly rely on explicit refusal prefixes for safety, making them vulnerable to prefix injection attacks. We introduce HumorReject, a novel data-driven approach that reimagines LLM safety by decoupling it from refusal prefixes through humor as an indirect refusal strategy. Rather than explicitly rejecting harmful instructions, HumorReject responds with contextually appropriate humor that naturally defuses potentially dangerous requests. Our approach effectively addresses common "over-defense" issues while demonstrating superior robustness against various attack vectors. Our findings suggest that improvements in training data design can be as important as the alignment algorithm itself in achieving effective LLM safety. The code and dataset are available at https://github.com/wooozihui/HumorReject.
♻ ☆ ChemBOMAS: Accelerated BO in Chemistry with LLM-Enhanced Multi-Agent System
Bayesian optimization (BO) is a powerful tool for scientific discovery in chemistry, yet its efficiency is often hampered by the sparse experimental data and vast search space. Here, we introduce ChemBOMAS: a large language model (LLM)-enhanced multi-agent system that accelerates BO through synergistic data- and knowledge-driven strategies. Firstly, the data-driven strategy involves an 8B-scale LLM regressor fine-tuned on a mere 1% labeled samples for pseudo-data generation, robustly initializing the optimization process. Secondly, the knowledge-driven strategy employs a hybrid Retrieval-Augmented Generation approach to guide LLM in dividing the search space while mitigating LLM hallucinations. An Upper Confidence Bound algorithm then identifies high-potential subspaces within this established partition. Across the LLM-refined subspaces and supported by LLM-generated data, BO achieves the improvement of effectiveness and efficiency. Comprehensive evaluations across multiple scientific benchmarks demonstrate that ChemBOMAS set a new state-of-the-art, accelerating optimization efficiency by up to 5-fold compared to baseline methods.
♻ ☆ Causal Discovery in Dynamic Fading Wireless Networks
Dynamic causal discovery in wireless networks is essential due to evolving interference, fading, and mobility, which complicate traditional static causal models. This paper addresses causal inference challenges in dynamic fading wireless environments by proposing a sequential regression-based algorithm with a novel application of the NOTEARS acyclicity constraint, enabling efficient online updates. We derive theoretical lower and upper bounds on the detection delay required to identify structural changes, explicitly quantifying their dependence on network size, noise variance, and fading severity. Monte Carlo simulations validate these theoretical results, demonstrating linear increases in detection delay with network size, quadratic growth with noise variance, and inverse-square dependence on the magnitude of structural changes. Our findings provide rigorous theoretical insights and practical guidelines for designing robust online causal inference mechanisms to maintain network reliability under nonstationary wireless conditions.
comment: Inaccurate contextual grounding of the methodology explored in the paper. This inaccuracy could lead to false results if other researchers read and use the method in their projects. To prevent such scenario from happening, it is appropriate if this paper is withdrawn. Thank you
♻ ☆ FedMAC: Tackling Partial-Modality Missing in Federated Learning with Cross-Modal Aggregation and Contrastive Regularization
Federated Learning (FL) is a method for training machine learning models using distributed data sources. It ensures privacy by allowing clients to collaboratively learn a shared global model while storing their data locally. However, a significant challenge arises when dealing with missing modalities in clients' datasets, where certain features or modalities are unavailable or incomplete, leading to heterogeneous data distribution. While previous studies have addressed the issue of complete-modality missing, they fail to tackle partial-modality missing on account of severe heterogeneity among clients at an instance level, where the pattern of missing data can vary significantly from one sample to another. To tackle this challenge, this study proposes a novel framework named FedMAC, designed to address multi-modality missing under conditions of partial-modality missing in FL. Additionally, to avoid trivial aggregation of multi-modal features, we introduce contrastive-based regularization to impose additional constraints on the latent representation space. The experimental results demonstrate the effectiveness of FedMAC across various client configurations with statistical heterogeneity, outperforming baseline methods by up to 26% in severe missing scenarios, highlighting its potential as a solution for the challenge of partially missing modalities in federated systems. Our source code is provided at https://github.com/nmduonggg/PEPSY
comment: The 22nd International Symposium on Network Computing and Applications (NCA 2024)
♻ ☆ Exploring the Early Universe with Deep Learning
Hydrogen is the most abundant element in our Universe. The first generation of stars and galaxies produced photons that ionized hydrogen gas, driving a cosmological event known as the Epoch of Reionization (EoR). The upcoming Square Kilometre Array Observatory (SKAO) will map the distribution of neutral hydrogen during this era, aiding in the study of the properties of these first-generation objects. Extracting astrophysical information will be challenging, as SKAO will produce a tremendous amount of data where the hydrogen signal will be contaminated with undesired foreground contamination and instrumental systematics. To address this, we develop the latest deep learning techniques to extract information from the 2D power spectra of the hydrogen signal expected from SKAO. We apply a series of neural network models to these measurements and quantify their ability to predict the history of cosmic hydrogen reionization, which is connected to the increasing number and efficiency of early photon sources. We show that the study of the early Universe benefits from modern deep learning technology. In particular, we demonstrate that dedicated machine learning algorithms can achieve more than a $0.95$ $R^2$ score on average in recovering the reionization history. This enables accurate and precise cosmological and astrophysical inference of structure formation in the early Universe.
comment: EPIA 2025 preprint version, 12 pages, 3 figures
♻ ☆ GPT, But Backwards: Exactly Inverting Language Model Outputs ICML 2025
The task of reconstructing unknown textual inputs to language models is a fundamental auditing primitive that allows us to assess the model's vulnerability to a range of security issues, including stealing hidden system prompts, detecting backdoors, and leaking private data. Existing inversion works assume access to differing levels of information (e.g. requiring input-output examples, the model parameters, intermediate activations or output logits) but oftentimes fail to fully reconstruct the desired input. In this paper, we present the Sparse One-hot Discrete Adam (SODA) algorithm, a search-based inversion method that can accurately reconstruct the input text, given white-box access to the language model and its output. Our experiments demonstrate for the first time that exact language model inversion is possible on both natural language and random inputs. Indeed, SODA achieves respectively 98% and 79% reconstruction rates on inputs with lengths up to 10 tokens. Furthermore, we show that input length and vocabulary size have a far greater impact on the probability of a successful reconstruction than the size of the language model itself, thus allowing us to scale to models from 33M to 3B parameters.
comment: 7 pages, ICML 2025 Workshop on Reliable and Responsible Foundation Models
♻ ☆ ANO : Faster is Better in Noisy Landscape ICLR 2026
Stochastic optimizers are central to deep learning, yet widely used methods such as Adam and Adan can degrade in non-stationary or noisy environments, partly due to their reliance on momentum-based magnitude estimates. We introduce Ano, a novel optimizer that decouples direction and magnitude: momentum is used for directional smoothing, while instantaneous gradient magnitudes determine step size. This design improves robustness to gradient noise while retaining the simplicity and efficiency of first-order methods. We further propose Anolog, which removes sensitivity to the momentum coefficient by expanding its window over time via a logarithmic schedule. We establish non-convex convergence guarantees with a convergence rate similar to other sign-based methods, and empirically show that Ano provides substantial gains in noisy and non-stationary regimes such as reinforcement learning, while remaining competitive on low-noise tasks.
comment: Under Review for ICLR 2026, 25 pages total with appendix, 7 figures, 12 tables
♻ ☆ Mitigating Sexual Content Generation via Embedding Distortion in Text-conditioned Diffusion Models NeurIPS 2025
Diffusion models show remarkable image generation performance following text prompts, but risk generating sexual contents. Existing approaches, such as prompt filtering, concept removal, and even sexual contents mitigation methods, struggle to defend against adversarial attacks while maintaining benign image quality. In this paper, we propose a novel approach called Distorting Embedding Space (DES), a text encoder-based defense mechanism that effectively tackles these issues through innovative embedding space control. DES transforms unsafe embeddings, extracted from a text encoder using unsafe prompts, toward carefully calculated safe embedding regions to prevent unsafe contents generation, while reproducing the original safe embeddings. DES also neutralizes the ``nudity'' embedding, by aligning it with neutral embedding to enhance robustness against adversarial attacks. As a result, extensive experiments on explicit content mitigation and adaptive attack defense show that DES achieves state-of-the-art (SOTA) defense, with attack success rate (ASR) of 9.47% on FLUX.1, a recent popular model, and 0.52% on the widely adopted Stable Diffusion v1.5. These correspond to ASR reductions of 76.5% and 63.9% compared to previous SOTA methods, EraseAnything and AdvUnlearn, respectively. Furthermore, DES maintains benign image quality, achieving Frechet Inception Distance and CLIP score comparable to those of the original FLUX.1 and Stable Diffusion v1.5.
comment: NeurIPS 2025 accepted. Official code: https://github.com/amoeba04/des
♻ ☆ PyLO: Towards Accessible Learned Optimizers in PyTorch ICML
Learned optimizers have been an active research topic over the past decade, with increasing progress toward practical, general-purpose optimizers that can serve as drop-in replacements for widely used methods like Adam. However, recent advances -- such as VeLO, which was meta-trained for 4000 TPU-months -- remain largely inaccessible to the broader community, in part due to their reliance on JAX and the absence of user-friendly packages for applying the optimizers after meta-training. To address this gap, we introduce PyLO, a PyTorch-based library that brings learned optimizers to the broader machine learning community through familiar, widely adopted workflows. Unlike prior work focused on synthetic or convex tasks, our emphasis is on applying learned optimization to real-world large-scale pre-training tasks. Our release includes a CUDA-accelerated version of the small_fc_lopt learned optimizer architecture from (Metz et al., 2022a), delivering substantial speedups -- from 39.36 to 205.59 samples/sec throughput for training ViT B/16 with batch size 32. PyLO also allows us to easily combine learned optimizers with existing optimization tools such as learning rate schedules and weight decay. When doing so, we find that learned optimizers can substantially benefit. Our code is available at https://github.com/Belilovsky-Lab/pylo
comment: Accepted at ICML CODEML Workshop 2025
♻ ☆ REINFORCE++: Stabilizing Critic-Free Policy Optimization with Global Advantage Normalization
Reinforcement Learning from Human Feedback~(RLHF) plays a crucial role in aligning Large Language Models~(LLMs). The dominant algorithm, Proximal Policy Optimization~(PPO), employs a critic network to estimate advantages, which introduces significant computational and memory overhead. To address this, a family of critic-free algorithms (e.g., GRPO, RLOO) has emerged. However, these methods typically rely on \textit{prompt-level (local)} advantage normalization, which suffers from inaccurate advantage estimation, a tendency to overfit, and, as we show, is a theoretically biased estimator. To solve these challenges, we introduce REINFORCE++, a critic-free framework centered on \textbf{Global Advantage Normalization}. By normalizing advantages across the entire global batch rather than small, prompt-specific groups, our method provides a more stable and theoretically sound, \textit{effectively unbiased} estimate (whose bias vanishes as batch size increases). We introduce two variants: REINFORCE++, a highly efficient and general algorithm ($k \ge 1$) for general-domain RLHF, and REINFORCE++ /w baseline, a robust group-sampling variant ($k > 1$) for complex reasoning tasks. Our empirical evaluation demonstrates that each variant shows superior stability and performance in its respective domain, outperforming existing methods and even PPO in complex agentic settings.
comment: refactor
♻ ☆ Robust Hallucination Detection in LLMs via Adaptive Token Selection NeurIPS 2025
Hallucinations in large language models (LLMs) pose significant safety concerns that impede their broader deployment. Recent research in hallucination detection has demonstrated that LLMs' internal representations contain truthfulness hints, which can be harnessed for detector training. However, the performance of these detectors is heavily dependent on the internal representations of predetermined tokens, fluctuating considerably when working on free-form generations with varying lengths and sparse distributions of hallucinated entities. To address this, we propose HaMI, a novel approach that enables robust detection of hallucinations through adaptive selection and learning of critical tokens that are most indicative of hallucinations. We achieve this robustness by an innovative formulation of the Hallucination detection task as Multiple Instance (HaMI) learning over token-level representations within a sequence, thereby facilitating a joint optimisation of token selection and hallucination detection on generation sequences of diverse forms. Comprehensive experimental results on four hallucination benchmarks show that HaMI significantly outperforms existing state-of-the-art approaches.
comment: Accepted by NeurIPS 2025
♻ ☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ How do Machine Learning Models Change?
The proliferation of Machine Learning (ML) models and their open-source implementations has transformed Artificial Intelligence research and applications. Platforms like Hugging Face (HF) enable this evolving ecosystem, yet a large-scale longitudinal study of how these models change is lacking. This study addresses this gap by analyzing over 680,000 commits from 100,000 models and 2,251 releases from 202 of these models on HF using repository mining and longitudinal methods. We apply an extended ML change taxonomy to classify commits and use Bayesian networks to model temporal patterns in commit and release activities. Our findings show that commit activities align with established data science methodologies, such as the Cross-Industry Standard Process for Data Mining (CRISP-DM), emphasizing iterative refinement. Release patterns tend to consolidate significant updates, particularly in model outputs, sharing, and documentation, distinguishing them from granular commits. Furthermore, projects with higher popularity exhibit distinct evolutionary paths, often starting from a more mature baseline with fewer foundational commits in their public history. In contrast, those with intensive collaboration show unique documentation and technical evolution patterns. These insights enhance the understanding of model changes on community platforms and provide valuable guidance for best practices in model maintenance.
comment: This paper has been accepted for publication in ACM Transactions on Software Engineering and Methodology (TOSEM)
♻ ☆ Privacy-Preserving Personalization in Education: A Federated Recommender System for Student Performance Prediction
The increasing digitalization of education presents unprecedented opportunities for data-driven personalization, but it also introduces significant challenges to student data privacy. Conventional recommender systems rely on centralized data, a paradigm often incompatible with modern data protection regulations. A novel privacy-preserving recommender system is proposed and evaluated to address this critical issue using Federated Learning (FL). The approach utilizes a Deep Neural Network (DNN) with rich, engineered features from the large-scale ASSISTments educational dataset. A rigorous comparative analysis of federated aggregation strategies was conducted, identifying FedProx as a significantly more stable and effective method for handling heterogeneous student data than the standard FedAvg baseline. The optimized federated model achieves a high-performance F1-Score of 76.28%, corresponding to 92% of the performance of a powerful, centralized XGBoost model. These findings validate that a federated approach can provide highly effective content recommendations without centralizing sensitive student data. Consequently, our work presents a viable and robust solution to the personalization-privacy dilemma in modern educational platforms.
♻ ☆ Mirror Descent Policy Optimisation for Robust Constrained Markov Decision Processes
Safety is an essential requirement for reinforcement learning systems. The newly emerging framework of robust constrained Markov decision processes allows learning policies that satisfy long-term constraints while providing guarantees under epistemic uncertainty. This paper presents mirror descent policy optimisation for robust constrained Markov decision processes, making use of policy gradient techniques to optimise both the policy (as a maximiser) and the transition kernel (as an adversarial minimiser) on the Lagrangian representing a constrained Markov decision process. Our proposed algorithm obtains an $\tilde{\mathcal{O}}\left(1/T^{1/3}\right)$ convergence rate in the sample-based robust constrained Markov decision process setting. The paper also contributes an algorithm for approximate gradient descent in the space of transition kernels, which is of independent interest for designing adversarial environments in general Markov decision processes. Experiments confirm the benefits of mirror descent policy optimisation in constrained and unconstrained optimisation, and significant improvements are observed in robustness tests when compared to baseline policy optimisation algorithms.
♻ ☆ DPCformer: An Interpretable Deep Learning Model for Genomic Prediction in Crops
Genomic Selection (GS) uses whole-genome information to predict crop phenotypes and accelerate breeding. Traditional GS methods, however, struggle with prediction accuracy for complex traits and large datasets. We propose DPCformer, a deep learning model integrating convolutional neural networks with a self-attention mechanism to model complex genotype-phenotype relationships. We applied DPCformer to 13 traits across five crops (maize, cotton, tomato, rice, chickpea). Our approach uses an 8-dimensional one-hot encoding for SNP data, ordered by chromosome, and employs the PMF algorithm for feature selection. Evaluations show DPCformer outperforms existing methods. In maize datasets, accuracy for traits like days to tasseling and plant height improved by up to 2.92%. For cotton, accuracy gains for fiber traits reached 8.37%. On small-sample tomato data, the Pearson Correlation Coefficient for a key trait increased by up to 57.35%. In chickpea, the yield correlation was boosted by 16.62%. DPCformer demonstrates superior accuracy, robustness in small-sample scenarios, and enhanced interpretability, providing a powerful tool for precision breeding and addressing global food security challenges.
comment: This work has been accepted by BIBM 2025
♻ ☆ Tight Bounds for Schrödinger Potential Estimation in Unpaired Data Translation
Modern methods of generative modelling and unpaired data translation based on Schr\"odinger bridges and stochastic optimal control theory aim to transform an initial density to a target one in an optimal way. In the present paper, we assume that we only have access to i.i.d. samples from initial and final distributions. This makes our setup suitable for both generative modelling and unpaired data translation. Relying on the stochastic optimal control approach, we choose an Ornstein-Uhlenbeck process as the reference one and estimate the corresponding Schr\"odinger potential. Introducing a risk function as the Kullback-Leibler divergence between couplings, we derive tight bounds on generalization ability of an empirical risk minimizer in a class of Schr\"odinger potentials including Gaussian mixtures. Thanks to the mixing properties of the Ornstein-Uhlenbeck process, we almost achieve fast rates of convergence up to some logarithmic factors in favourable scenarios. We also illustrate performance of the suggested approach with numerical experiments.
comment: 54 pages, 4 figures
♻ ☆ CodeEvolve: An open source evolutionary coding agent for algorithm discovery and optimization
In this work, we introduce CodeEvolve, an open-source evolutionary coding agent that unites Large Language Models (LLMs) with genetic algorithms to solve complex computational problems. Our framework adapts powerful evolutionary concepts to the LLM domain, building upon recent methods for generalized scientific discovery. CodeEvolve employs an island-based genetic algorithm to maintain population diversity and increase throughput, introduces a novel inspiration-based crossover mechanism that leverages the LLMs context window to combine features from successful solutions, and implements meta-prompting strategies for dynamic exploration of the solution space. We conduct a rigorous evaluation of CodeEvolve on a subset of the mathematical benchmarks used to evaluate Google DeepMind's closed-source AlphaEvolve. Our findings show that our method surpasses AlphaEvolve's performance on several challenging problems. To foster collaboration and accelerate progress, we release our complete framework as an open-source repository.
comment: 11 pages, 9 figures, 2 tables
♻ ☆ Addressing Polarization and Unfairness in Performative Prediction
In many real-world applications of machine learning such as recommendations, hiring, and lending, deployed models influence the data they are trained on, leading to feedback loops between predictions and data distribution. The performative prediction (PP) framework captures this phenomenon by modeling the data distribution as a function of the deployed model. While prior work has focused on finding performative stable (PS) solutions for robustness, their societal impacts, particularly regarding fairness, remain underexplored. We show that PS solutions can lead to severe polarization and prediction performance disparities, and that conventional fairness interventions in previous works often fail under model-dependent distribution shifts due to failing the PS criteria. To address these challenges in PP, we introduce novel fairness mechanisms that provably ensure both stability and fairness, validated by theoretical analysis and empirical results.
♻ ☆ Data-assimilated model-informed reinforcement learning
The control of spatio-temporally chaos is challenging because of high dimensionality and unpredictability. Model-free reinforcement learning (RL) discovers optimal control policies by interacting with the system, typically requiring observations of the full physical state. In practice, sensors often provide only partial and noisy measurements (observations) of the system. The objective of this paper is to develop a framework that enables the control of chaotic systems with partial and noisy observability. The proposed method, data-assimilated model-informed reinforcement learning (DA-MIRL), integrates (i) low-order models to approximate high-dimensional dynamics; (ii) sequential data assimilation to correct the model prediction when observations become available; and (iii) an off-policy actor-critic RL algorithm to adaptively learn an optimal control strategy based on the corrected state estimates. We test DA-MIRL on the spatiotemporally chaotic solutions of the Kuramoto-Sivashinsky equation. We estimate the full state of the environment with (i) a physics-based model, here, a coarse-grained model; and (ii) a data-driven model, here, the control-aware echo state network, which is proposed in this paper. We show that DA-MIRL successfully estimates and suppresses the chaotic dynamics of the environment in real time from partial observations and approximate models. This work opens opportunities for the control of partially observable chaotic systems.
♻ ☆ Nowcast3D: Reliable precipitation nowcasting via gray-box learning
Extreme precipitation nowcasting demands high spatiotemporal fidelity and extended lead times, yet existing approaches remain limited. Numerical Weather Prediction (NWP) and its deep-learning emulations are too slow and coarse for rapidly evolving convection, while extrapolation and purely data-driven models suffer from error accumulation and excessive smoothing. Hybrid 2D radar-based methods discard crucial vertical information, preventing accurate reconstruction of height-dependent dynamics. We introduce a gray-box, fully three-dimensional nowcasting framework that directly processes volumetric radar reflectivity and couples physically constrained neural operators with datadriven learning. The model learns vertically varying 3D advection fields under a conservative advection operator, parameterizes spatially varying diffusion, and introduces a Brownian-motion--inspired stochastic term to represent unresolved motions. A residual branch captures small-scale convective initiation and microphysical variability, while a diffusion-based stochastic module estimates uncertainty. The framework achieves more accurate forecasts up to three-hour lead time across precipitation regimes and ranked first in 57\% of cases in a blind evaluation by 160 meteorologists. By restoring full 3D dynamics with physical consistency, it offers a scalable and robust pathway for skillful and reliable nowcasting of extreme precipitation.
♻ ☆ Disturbance-based Discretization, Differentiable IDS Channel, and an IDS-Correcting Code for DNA-based Storage
With recent advancements in next-generation data storage, especially in biological molecule-based storage, insertion, deletion, and substitution (IDS) error-correcting codes have garnered increased attention. However, a universal method for designing tailored IDS-correcting codes across varying channel settings remains underexplored. We present an autoencoder-based approach, THEA-code, aimed at efficiently generating IDS-correcting codes for complex IDS channels. In the work, a disturbance-based discretization is proposed to discretize the features of the autoencoder, and a simulated differentiable IDS channel is developed as a differentiable alternative for IDS operations. These innovations facilitate the successful convergence of the autoencoder, producing channel-customized IDS-correcting codes that demonstrate commendable performance across complex IDS channels, particularly in realistic DNA-based storage channels.
♻ ☆ Variational Diffusion Unlearning: A Variational Inference Framework for Unlearning in Diffusion Models under Data Constraints
For a responsible and safe deployment of diffusion models in various domains, regulating the generated outputs from these models is desirable because such models could generate undesired, violent, and obscene outputs. To tackle this problem, recent works use machine unlearning methodology to forget training data points containing these undesired features from pre-trained generative models. However, these methods proved to be ineffective in data-constrained settings where the whole training dataset is inaccessible. Thus, the principal objective of this work is to propose a machine unlearning methodology that can prevent the generation of outputs containing undesired features from a pre-trained diffusion model in such a data-constrained setting. Our proposed method, termed as Variational Diffusion Unlearning (VDU), is a computationally efficient method that only requires access to a subset of training data containing undesired features. Our approach is inspired by the variational inference framework with the objective of minimizing a loss function consisting of two terms: plasticity inducer and stability regularizer. Plasticity inducer reduces the log-likelihood of the undesired training data points, while the stability regularizer, essential for preventing loss of image generation quality, regularizes the model in parameter space. We validate the effectiveness of our method through comprehensive experiments for both class unlearning and feature unlearning. For class unlearning, we unlearn some user-identified classes from MNIST, CIFAR-10, and tinyImageNet datasets from a pre-trained unconditional denoising diffusion probabilistic model (DDPM). Similarly, for feature unlearning, we unlearn the generation of certain high-level features from a pre-trained Stable Diffusion model
♻ ☆ Disciplined Biconvex Programming
We introduce disciplined biconvex programming (DBCP), a modeling framework for specifying and solving biconvex optimization problems. Biconvex optimization problems arise in various applications, including machine learning, signal processing, computational science, and control. Solving a biconvex optimization problem in practice usually resolves to heuristic methods based on alternate convex search (ACS), which iteratively optimizes over one block of variables while keeping the other fixed, so that the resulting subproblems are convex and can be efficiently solved. However, designing and implementing an ACS solver for a specific biconvex optimization problem usually requires significant effort from the user, which can be tedious and error-prone. DBCP extends the principles of disciplined convex programming to biconvex problems, allowing users to specify biconvex optimization problems in a natural way based on a small number of syntax rules. The resulting problem can then be automatically split and transformed into convex subproblems, for which a customized ACS solver is then generated and applied. DBCP allows users to quickly experiment with different biconvex problem formulations, without expertise in convex optimization. We implement DBCP into the open source Python package dbcp, as an extension to the famous domain specific language CVXPY for convex optimization.
♻ ☆ TimeMosaic: Temporal Heterogeneity Guided Time Series Forecasting via Adaptive Granularity Patch and Segment-wise Decoding AAAI
Multivariate time series forecasting is essential in domains such as finance, transportation, climate, and energy. However, existing patch-based methods typically adopt fixed-length segmentation, overlooking the heterogeneity of local temporal dynamics and the decoding heterogeneity of forecasting. Such designs lose details in information-dense regions, introduce redundancy in stable segments, and fail to capture the distinct complexities of short-term and long-term horizons. We propose TimeMosaic, a forecasting framework that aims to address temporal heterogeneity. TimeMosaic employs adaptive patch embedding to dynamically adjust granularity according to local information density, balancing motif reuse with structural clarity while preserving temporal continuity. In addition, it introduces segment-wise decoding that treats each prediction horizon as a related subtask and adapts to horizon-specific difficulty and information requirements, rather than applying a single uniform decoder. Extensive evaluations on benchmark datasets demonstrate that TimeMosaic delivers consistent improvements over existing methods, and our model trained on the large-scale corpus with 321 billion observations achieves performance competitive with state-of-the-art TSFMs.
comment: This paper has been accepted by AAAI
♻ ☆ Environment-Aware Indoor LoRaWAN Ranging Using Path Loss Model Inversion and Adaptive RSSI Filtering
Achieving sub-10 m indoor ranging with LoRaWAN is difficult because multipath, human blockage, and micro-climate dynamics induce non-stationary attenuation in received signal strength indicator (RSSI) measurements. We present a lightweight, interpretable pipeline that couples an environment-aware multi-wall path loss model with a forward-only, innovation-driven Kalman prefilter for RSSI. The model augments distance and wall terms with frequency, signal-to-noise ratio (SNR), and co-located environmental covariates (temperature, relative humidity, carbon dioxide, particulate matter, and barometric pressure), and is inverted deterministically for distance estimation. On a one-year single-gateway office dataset comprising over 2 million uplinks, the approach attains a mean absolute error (MAE) of 4.74 m and a root mean square error (RMSE) of 6.76 m in distance estimation, improving over a COST-231 multi-wall baseline (12.07 m MAE) and its environment-augmented variant (7.76 m MAE. Filtering reduces RSSI volatility from 10.33 to 5.43 dB and halves path loss error to 5.35 dB while raising R-squared from 0.82 to 0.89. The result is a single-anchor LoRaWAN ranging method with constant per-packet cost that is accurate, robust, and interpretable, providing a strong building block for multi-gateway localization.
♻ ☆ Employing Sentence Space Embedding for Classification of Data Stream from Fake News Domain
Tabular data is considered the last unconquered castle of deep learning, yet the task of data stream classification is stated to be an equally important and demanding research area. Due to the temporal constraints, it is assumed that deep learning methods are not the optimal solution for application in this field. However, excluding the entire -- and prevalent -- group of methods seems rather rash given the progress that has been made in recent years in its development. For this reason, the following paper is the first to present an approach to natural language data stream classification using the sentence space method, which allows for encoding text into the form of a discrete digital signal. This allows the use of convolutional deep networks dedicated to image classification to solve the task of recognizing fake news based on text data. Based on the real-life Fakeddit dataset, the proposed approach was compared with state-of-the-art algorithms for data stream classification based on generalization ability and time complexity.
comment: 16 pages, 7 figures
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding has become a standard way to accelerate LLM inference: a small drafter proposes multiple tokens and a large target model verifies them once per speculation length. Recently, scaling of the LLM vocabulary has pushed the number of tokens to grow substantially. While verification over the full vocabulary leaves the target model largely unaffected, the O(|V|d) parameters in the drafter's output head become a latency bottleneck, slowing the entire pipeline. Contemporary methods (e.g., FR-Spec, VocabTrim) restrict the drafter's vocabulary to a fixed top frequent subset of the target model's vocabulary. Although this reduces draft-time compute, it is brittle, since: (i) frequency lists are corpus-dependent and require retuning to generalize, and (ii) static shortlists suppress rare or domain-specific tokens, lowering the expected number of tokens per verification step. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism that is robust, speeds up drafting, and generalizes across diverse tasks. Concretely, we introduce lightweight, coarse-grained meta-classifiers that route contexts to a small number of token clusters; the union of the top-k selected clusters forms the drafter's shortlist, while verification retains the full vocabulary and exactness. The meta-classifier finishes its computation earlier than the drafter's hidden state generation by exploiting parallel execution of draft encoding and meta shortlisting on separate streams. Across standard speculative decoding benchmarks, DynaSpec delivers consistent improvements in mean accepted length, for Llama-3-8B, reaching upto 98.2% of full-vocabulary performance, while fixed-shortlist baselines attain only 84.4%. By leveraging context-dependent selection, DynaSpec achieves up to a 2.18 times increase in generated tokens compared to 1.91 times for fixed-vocabulary approaches.
♻ ☆ Dissecting Long-Chain-of-Thought Reasoning Models: An Empirical Study
Despite recent progress in training long-chain-of-thought reasoning models via scaling reinforcement learning (RL), its underlying training dynamics remain poorly understood, and several counterintuitive behaviors persist. This work focuses on three key aspects: (1) We systematically analyze the roles of positive and negative samples in scaling RL, revealing that positive samples mainly facilitate precise fitting to the training data, whereas negative samples significantly enhance generalization and robustness. Interestingly, while positive samples are essential for convergence in the zero-RL setting, training on negative samples alone suffices to attain strong reasoning performance and even better generalization in cold-start scenarios. (2) We identify substantial data inefficiency in group relative policy optimization, where over half of the samples yield zero advantage. To address this, we explore two strategies, including relative length rewards and offline sample injection, to leverage these data better and enhance reasoning efficiency and capability. (3) We investigate unstable performance across various reasoning models and benchmarks, attributing instability to uncertain problems with ambiguous outcomes, and demonstrate that greedy decoding can distort evaluation by flipping the correctness of responses. Our code is available at: https://github.com/takagi97/Dissect-Long-Reason-Models.
comment: Working in process
♻ ☆ Model Inversion Attacks Meet Cryptographic Fuzzy Extractors
Model inversion attacks pose an open challenge to privacy-sensitive applications that use machine learning (ML) models. For example, face authentication systems use modern ML models to compute embedding vectors from face images of the enrolled users and store them. If leaked, inversion attacks can accurately reconstruct user faces from the leaked vectors. There is no systematic characterization of properties needed in an ideal defense against model inversion, even for the canonical example application of a face authentication system susceptible to data breaches, despite a decade of best-effort solutions. In this paper, we formalize the desired properties of a provably strong defense against model inversion and connect it, for the first time, to the cryptographic concept of fuzzy extractors. We further show that existing fuzzy extractors are insecure for use in ML-based face authentication. We do so through a new model inversion attack called PIPE, which achieves a success rate of over 89% in most cases against prior schemes. We then propose L2FE-Hash, the first candidate fuzzy extractor which supports standard Euclidean distance comparators as needed in many ML-based applications, including face authentication. We formally characterize its computational security guarantees, even in the extreme threat model of full breach of stored secrets, and empirically show its usable accuracy in face authentication for practical face distributions. It offers attack-agnostic security without requiring any re-training of the ML model it protects. Empirically, it nullifies both prior state-of-the-art inversion attacks as well as our new PIPE attack.
♻ ☆ Rectifying Regression in Reinforcement Learning
This paper investigates the impact of the loss function in value-based methods for reinforcement learning through an analysis of underlying prediction objectives. We theoretically show that mean absolute error is a better prediction objective than the traditional mean squared error for controlling the learned policy's suboptimality gap. Furthermore, we present results that different loss functions are better aligned with these different regression objectives: binary and categorical cross-entropy losses with the mean absolute error and squared loss with the mean squared error. We then provide empirical evidence that algorithms minimizing these cross-entropy losses can outperform those based on the squared loss in linear reinforcement learning.
♻ ☆ Time-Prompt: Integrated Heterogeneous Prompts for Unlocking LLMs in Time Series Forecasting
Time series forecasting aims to model temporal dependencies among variables for future state inference, holding significant importance and widespread applications in real-world scenarios. Although deep learning-based methods have achieved remarkable progress, they still exhibit suboptimal performance in long-term forecasting. Recent research demonstrates that large language models (LLMs) achieve promising performance in time series forecasting, but this progress is still met with skepticism about whether LLMs are truly useful for this task. To address this, we propose Time-Prompt, a framework for activating LLMs for time series forecasting. Specifically, we first construct a unified prompt paradigm with learnable soft prompts to guide the LLM's behavior and textualized hard prompts to enhance the time series representations. Second, to enhance LLM' comprehensive understanding of the forecasting task, we design a semantic space embedding and cross-modal alignment module to achieve fusion of temporal and textual data. Finally, we efficiently fine-tune the LLM's parameters using time series data. Furthermore, we focus on carbon emissions, aiming to provide a modest contribution to global carbon neutrality. Comprehensive evaluations on 6 public datasets and 3 carbon emission datasets demonstrate that Time-Prompt is a powerful framework for time series forecasting.
♻ ☆ Bayesian Network Structural Consensus via Greedy Min-Cut Analysis AAAI-26
This paper presents the Min-Cut Bayesian Network Consensus (MCBNC) algorithm, a greedy method for structural consensus of Bayesian Networks (BNs), with applications in federated learning and model aggregation. MCBNC prunes weak edges from an initial unrestricted fusion using a structural score based on min-cut analysis, integrated into a modified Backward Equivalence Search (BES) phase of the Greedy Equivalence Search (GES) algorithm. The score quantifies edge support across input networks and is computed using max-flow. Unlike methods with fixed treewidth bounds, MCBNC introduces a pruning threshold $\theta$ that can be selected post hoc using only structural information. Experiments on real-world BNs show that MCBNC yields sparser, more accurate consensus structures than both canonical fusion and the input networks. The method is scalable, data-agnostic, and well-suited for distributed or federated scenarios.
comment: Camera-ready version accepted at AAAI-26. The official proceedings version will appear in the Proceedings of the 40th AAAI Conference on Artificial Intelligence (AAAI-26)
♻ ☆ Stacking Variational Bayesian Monte Carlo
Approximate Bayesian inference for models with computationally expensive, black-box likelihoods poses a significant challenge, especially when the posterior distribution is complex. Many inference methods struggle to explore the parameter space efficiently under a limited budget of likelihood evaluations. Variational Bayesian Monte Carlo (VBMC) is a sample-efficient method that addresses this by building a local surrogate model of the log-posterior. However, its conservative exploration strategy, while promoting stability, can cause it to miss important regions of the posterior, such as distinct modes or long tails. In this work, we introduce Stacking Variational Bayesian Monte Carlo (S-VBMC), a method that overcomes this limitation by constructing a robust, global posterior approximation from multiple independent VBMC runs. Our approach merges these local approximations through a principled and inexpensive post-processing step that leverages VBMC's mixture posterior representation and per-component evidence estimates. Crucially, S-VBMC requires no additional likelihood evaluations and is naturally parallelisable, fitting seamlessly into existing inference workflows. We demonstrate its effectiveness on two synthetic problems designed to challenge VBMC's exploration and two real-world applications from computational neuroscience, showing substantial improvements in posterior approximation quality across all cases. Our code is available as a Python package at https://github.com/acerbilab/svbmc.
comment: Published in Transactions on Machine Learning Research (November 2025), https://openreview.net/forum?id=M2ilYAJdPe. 38 pages, 13 figures
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs NeurIPS 2025
Despite progress in Large Vision-Language Models (LVLMs), their capacity for visual reasoning is often limited by the binding problem: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current LVLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces Visual Input Structure for Enhanced Reasoning (VISER), a simple, effective method that augments visual inputs with low-level spatial structures and pairs them with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks, using only a single-query inference. Specifically, VISER improves GPT-4o performance on visual search, counting, and spatial relationship tasks by 25.0%, 26.8%, and 9.5%, respectively, and reduces edit distance error in scene description by 0.32 on 2D datasets. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. VISER underscores the importance of visual input design over purely linguistically based reasoning strategies and suggests that visual structuring is a powerful and general approach for enhancing compositional and spatial reasoning in LVLMs.
comment: Accepted to NeurIPS 2025 (Thirty-ninth Conference on Neural Information Processing Systems)
♻ ☆ Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training
Network pruning focuses on algorithms that aim to reduce a given model's computational cost by removing a subset of its parameters while having minimal impact on performance. Throughout the last decade, the most widely used pruning paradigm has been pruning and re-training, which nowadays is inconvenient due to the vast amount of pre-trained models, which are, in any case, too expensive to re-train. In this paper, we exploit functional information from dense pre-trained models, i.e., their input activations, to obtain sparse models that maximize the activations' alignment with respect to their corresponding dense models. Hence, we propose \textbf{NeuroAl}, a \emph{top-up} algorithm that can be used on top of any given pruning algorithm for LLMs, which modifies the block-wise and row-wise sparsity, exploiting information from both the dense model and its sparse version to maximize the \emph{neuron alignment} among activations. Different from existing methods, our approach adaptively selects the best hyperparameters for the block-wise and row-wise sparsity ratios w.r.t. the model and the desired sparsity, and requires \emph{no re-training}. We test our method over $\sim$300 test cases with four LLM families, three sparsity ratios, and ten language tasks (three language modeling and seven zero-shot datasets), showing how it consistently outperforms the latest state-of-the-art methods in terms of performance-runtime trade-off. The code is available at \href{https://github.com/eliacunegatti/NeuroAL}{https://github.com/eliacunegatti/NeuroAL}.
comment: Published in Transactions on Machine Learning Research (TMLR)
Preference-Guided Reinforcement Learning for Efficient Exploration
In this paper, we investigate preference-based reinforcement learning (PbRL), which enables reinforcement learning (RL) agents to learn from human feedback. This is particularly valuable when defining a fine-grain reward function is not feasible. However, this approach is inefficient and impractical for promoting deep exploration in hard-exploration tasks with long horizons and sparse rewards. To tackle this issue, we introduce LOPE: \textbf{L}earning \textbf{O}nline with trajectory \textbf{P}reference guidanc\textbf{E}, an end-to-end preference-guided RL framework that enhances exploration efficiency in hard-exploration tasks. Our intuition is that LOPE directly adjusts the focus of online exploration by considering human feedback as guidance, thereby avoiding the need to learn a separate reward model from preferences. Specifically, LOPE includes a two-step sequential policy optimization technique consisting of trust-region-based policy improvement and preference guidance steps. We reformulate preference guidance as a trajectory-wise state marginal matching problem that minimizes the maximum mean discrepancy distance between the preferred trajectories and the learned policy. Furthermore, we provide a theoretical analysis to characterize the performance improvement bound and evaluate the effectiveness of the LOPE. When assessed in various challenging hard-exploration environments, LOPE outperforms several state-of-the-art methods in terms of convergence rate and overall performance.The code used in this study is available at https://github.com/buaawgj/LOPE.
comment: 13 pages, 15 figures
♻ ☆ On the Relation between Rectified Flows and Optimal Transport NeurIPS 2025
This paper investigates the connections between rectified flows, flow matching, and optimal transport. Flow matching is a recent approach to learning generative models by estimating velocity fields that guide transformations from a source to a target distribution. Rectified flow matching aims to straighten the learned transport paths, yielding more direct flows between distributions. Our first contribution is a set of invariance properties of rectified flows and explicit velocity fields. In addition, we also provide explicit constructions and analysis in the Gaussian (not necessarily independent) and Gaussian mixture settings and study the relation to optimal transport. Our second contribution addresses recent claims suggesting that rectified flows, when constrained such that the learned velocity field is a gradient, can yield (asymptotically) solutions to optimal transport problems. We study the existence of solutions for this problem and demonstrate that they only relate to optimal transport under assumptions that are significantly stronger than those previously acknowledged. In particular, we present several counterexamples that invalidate earlier equivalence results in the literature, and we argue that enforcing a gradient constraint on rectified flows is, in general, not a reliable method for computing optimal transport maps.
comment: Accepted for NeurIPS 2025
♻ ☆ ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning AAAI 2026
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and its high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods could fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition on reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global context comprehension, offering a principled, cognitively motivated paradigm towards retrieval-based stateful reasoning. Our framework is made publicly available at https://github.com/EternityJune25/ComoRAG.
comment: Accepted by AAAI 2026
♻ ☆ Data Leakage and Deceptive Performance: A Critical Examination of Credit Card Fraud Detection Methodologies
This study critically examines the methodological rigor in credit card fraud detection research, revealing how fundamental evaluation flaws can overshadow algorithmic sophistication. Through deliberate experimentation with improper evaluation protocols, we demonstrate that even simple models can achieve deceptively impressive results when basic methodological principles are violated. Our analysis identifies four critical issues plaguing current approaches: (1) pervasive data leakage from improper preprocessing sequences, (2) intentional vagueness in methodological reporting, (3) inadequate temporal validation for transaction data, and (4) metric manipulation through recall optimization at precision's expense. We present a case study showing how a minimal neural network architecture with data leakage outperforms many sophisticated methods reported in literature, achieving 99.9\% recall despite fundamental evaluation flaws. These findings underscore that proper evaluation methodology matters more than model complexity in fraud detection research. The study serves as a cautionary example of how methodological rigor must precede architectural sophistication, with implications for improving research practices across machine learning applications.
♻ ☆ The Evolving Nature of Latent Spaces: From GANs to Diffusion
This paper examines the evolving nature of internal representations in generative visual models, focusing on the conceptual and technical shift from GANs and VAEs to diffusion-based architectures. Drawing on Beatrice Fazi's account of synthesis as the amalgamation of distributed representations, we propose a distinction between "synthesis in a strict sense", where a compact latent space wholly determines the generative process, and "synthesis in a broad sense," which characterizes models whose representational labor is distributed across layers. Through close readings of model architectures and a targeted experimental setup that intervenes in layerwise representations, we show how diffusion models fragment the burden of representation and thereby challenge assumptions of unified internal space. By situating these findings within media theoretical frameworks and critically engaging with metaphors such as the latent space and the Platonic Representation Hypothesis, we argue for a reorientation of how generative AI is understood: not as a direct synthesis of content, but as an emergent configuration of specialized processes.
comment: Presented and published at Ethics and Aesthetics of Artificial Intelligence Conference (EA-AI'25)
♻ ☆ Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Accurately estimating treatment effects over time is crucial in fields such as precision medicine, epidemiology, economics, and marketing. Many current methods for estimating treatment effects over time assume that all confounders are observed or attempt to infer unobserved ones. In contrast, our approach focuses on unobserved adjustment variables, which specifically have a causal effect on the outcome sequence. Under the assumption of unconfoundedness, we address estimating Conditional Average Treatment Effects (CATEs) while accounting for unobserved heterogeneity in response to treatment due to these unobserved adjustment variables. Our proposed Causal Dynamic Variational Autoencoder (CDVAE) is grounded in theoretical guarantees concerning the validity of latent adjustment variables and generalization bounds on CATE estimation error. Extensive evaluations on synthetic and real-world datasets show that CDVAE outperforms existing baselines. Moreover, we demonstrate that state-of-the-art models significantly improve their CATE estimates when augmented with the latent substitutes learned by CDVAE, approaching oracle-level performance without direct access to the true adjustment variables.
comment: Published at TMLR
♻ ☆ How Does a Deep Neural Network Look at Lexical Stress?
Despite their success in speech processing, neural networks often operate as black boxes, prompting the question: what informs their decisions, and how can we interpret them? This work examines this issue in the context of lexical stress. A dataset of English disyllabic words was automatically constructed from read and spontaneous speech. Several Convolutional Neural Network (CNN) architectures were trained to predict stress position from a spectrographic representation of disyllabic words lacking minimal stress pairs (e.g., initial stress WAllet, final stress exTEND), achieving up to 92% accuracy on held-out test data. Layerwise Relevance Propagation (LRP), a technique for CNN interpretability analysis, revealed that predictions for held-out minimal pairs (PROtest vs. proTEST ) were most strongly influenced by information in stressed versus unstressed syllables, particularly the spectral properties of stressed vowels. However, the classifiers also attended to information throughout the word. A feature-specific relevance analysis is proposed, and its results suggest that our best-performing classifier is strongly influenced by the stressed vowel's first and second formants, with some evidence that its pitch and third formant also contribute. These results reveal deep learning's ability to acquire distributed cues to stress from naturally occurring data, extending traditional phonetic work based around highly controlled stimuli.
comment: 11 pages, 5 figures, submitted to the Journal of the Acoustical Society of America (JASA)
Multimedia 8
☆ CAMP-VQA: Caption-Embedded Multimodal Perception for No-Reference Quality Assessment of Compressed Video
The prevalence of user-generated content (UGC) on platforms such as YouTube and TikTok has rendered no-reference (NR) perceptual video quality assessment (VQA) vital for optimizing video delivery. Nonetheless, the characteristics of non-professional acquisition and the subsequent transcoding of UGC video on sharing platforms present significant challenges for NR-VQA. Although NR-VQA models attempt to infer mean opinion scores (MOS), their modeling of subjective scores for compressed content remains limited due to the absence of fine-grained perceptual annotations of artifact types. To address these challenges, we propose CAMP-VQA, a novel NR-VQA framework that exploits the semantic understanding capabilities of large vision-language models. Our approach introduces a quality-aware prompting mechanism that integrates video metadata (e.g., resolution, frame rate, bitrate) with key fragments extracted from inter-frame variations to guide the BLIP-2 pretraining approach in generating fine-grained quality captions. A unified architecture has been designed to model perceptual quality across three dimensions: semantic alignment, temporal characteristics, and spatial characteristics. These multimodal features are extracted and fused, then regressed to video quality scores. Extensive experiments on a wide variety of UGC datasets demonstrate that our model consistently outperforms existing NR-VQA methods, achieving improved accuracy without the need for costly manual fine-grained annotations. Our method achieves the best performance in terms of average rank and linear correlation (SRCC: 0.928, PLCC: 0.938) compared to state-of-the-art methods. The source code and trained models, along with a user-friendly demo, are available at: https://github.com/xinyiW915/CAMP-VQA.
comment: 14 pages, 6 figures
☆ Improving Remote Patient Monitoring Systems Using a Fog-based IoT Platform with Speech Recognition
Due to the recent shortage of resources in the healthcare industry, Remote Patient Monitoring (RPM) systems arose to establish a convenient alternative for accessing healthcare services remotely. However, as the usage of this system grows with the increase of patients and sensing devices, data and network management becomes an issue. As a result, wireless architecture challenges in patient privacy, data flow, and service interactability surface that need addressing. We propose a fog-based Internet of Things (IoT) platform to address these issues and reinforce the existing RPM system. The introduced platform can allocate resources to alleviate server overloading and provide an interactive means of monitoring patients through speech recognition. We designed a testbed to simulate and test the platform in terms of accuracy, latency, and throughput. The results show the platform's potential as a viable RPM system for sound-based healthcare services.
☆ Mono3DVG-EnSD: Enhanced Spatial-aware and Dimension-decoupled Text Encoding for Monocular 3D Visual Grounding
Monocular 3D Visual Grounding (Mono3DVG) is an emerging task that locates 3D objects in RGB images using text descriptions with geometric cues. However, existing methods face two key limitations. Firstly, they often over-rely on high-certainty keywords that explicitly identify the target object while neglecting critical spatial descriptions. Secondly, generalized textual features contain both 2D and 3D descriptive information, thereby capturing an additional dimension of details compared to singular 2D or 3D visual features. This characteristic leads to cross-dimensional interference when refining visual features under text guidance. To overcome these challenges, we propose Mono3DVG-EnSD, a novel framework that integrates two key components: the CLIP-Guided Lexical Certainty Adapter (CLIP-LCA) and the Dimension-Decoupled Module (D2M). The CLIP-LCA dynamically masks high-certainty keywords while retaining low-certainty implicit spatial descriptions, thereby forcing the model to develop a deeper understanding of spatial relationships in captions for object localization. Meanwhile, the D2M decouples dimension-specific (2D/3D) textual features from generalized textual features to guide corresponding visual features at same dimension, which mitigates cross-dimensional interference by ensuring dimensionally-consistent cross-modal interactions. Through comprehensive comparisons and ablation studies on the Mono3DRefer dataset, our method achieves state-of-the-art (SOTA) performance across all metrics. Notably, it improves the challenging Far(Acc@0.5) scenario by a significant +13.54%.
comment: 10 pages
☆ Pedagogical Reflections on the Holistic Cognitive Development (HCD) Framework and AI-Augmented Learning in Creative Computing
This paper presents an expanded account of the Holistic Cognitive Development (HCD) framework for reflective and creative learning in computing education. The HCD framework integrates design thinking, experiential learning, and reflective practice into a unified constructivist pedagogy emphasizing autonomy, ownership, and scaffolding. It is applied across courses in game design (CS3247, CS4350), virtual reality (CS4240), and extended reality systems, where students engage in iterative cycles of thinking, creating, criticizing, and reflecting. The paper also examines how AI-augmented systems such as iReflect, ReflexAI, and Knowledge Graph-enhanced LLM feedback tools operationalize the HCD framework through scalable, personalized feedback. Empirical findings demonstrate improved reflective depth, feedback quality, and learner autonomy. The work advocates a balance of supportive autonomy in supervision, where students practice self-directed inquiry while guided through structured reflection and feedback.
comment: Short Abstract
♻ ☆ FedMAC: Tackling Partial-Modality Missing in Federated Learning with Cross-Modal Aggregation and Contrastive Regularization
Federated Learning (FL) is a method for training machine learning models using distributed data sources. It ensures privacy by allowing clients to collaboratively learn a shared global model while storing their data locally. However, a significant challenge arises when dealing with missing modalities in clients' datasets, where certain features or modalities are unavailable or incomplete, leading to heterogeneous data distribution. While previous studies have addressed the issue of complete-modality missing, they fail to tackle partial-modality missing on account of severe heterogeneity among clients at an instance level, where the pattern of missing data can vary significantly from one sample to another. To tackle this challenge, this study proposes a novel framework named FedMAC, designed to address multi-modality missing under conditions of partial-modality missing in FL. Additionally, to avoid trivial aggregation of multi-modal features, we introduce contrastive-based regularization to impose additional constraints on the latent representation space. The experimental results demonstrate the effectiveness of FedMAC across various client configurations with statistical heterogeneity, outperforming baseline methods by up to 26% in severe missing scenarios, highlighting its potential as a solution for the challenge of partially missing modalities in federated systems. Our source code is provided at https://github.com/nmduonggg/PEPSY
comment: The 22nd International Symposium on Network Computing and Applications (NCA 2024)
♻ ☆ Fine-grained Image Retrieval via Dual-Vision Adaptation AAAI2026
Fine-Grained Image Retrieval~(FGIR) faces challenges in learning discriminative visual representations to retrieve images with similar fine-grained features. Current leading FGIR solutions typically follow two regimes: enforce pairwise similarity constraints in the semantic embedding space, or incorporate a localization sub-network to fine-tune the entire model. However, such two regimes tend to overfit the training data while forgetting the knowledge gained from large-scale pre-training, thus reducing their generalization ability. In this paper, we propose a Dual-Vision Adaptation (DVA) approach for FGIR, which guides the frozen pre-trained model to perform FGIR through collaborative sample and feature adaptation. Specifically, we design Object-Perceptual Adaptation, which modifies input samples to help the pre-trained model perceive critical objects and elements within objects that are helpful for category prediction. Meanwhile, we propose In-Context Adaptation, which introduces a small set of parameters for feature adaptation without modifying the pre-trained parameters. This makes the FGIR task using these adjusted features closer to the task solved during the pre-training. Additionally, to balance retrieval efficiency and performance, we propose Discrimination Perception Transfer to transfer the discriminative knowledge in the object-perceptual adaptation to the image encoder using the knowledge distillation mechanism. Extensive experiments show that DVA has fewer learnable parameters and performs well on three in-distribution and three out-of-distribution fine-grained datasets.
comment: Accepted by AAAI2026
♻ ☆ SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection AAAI 2026
With the rapid advancement of remote sensing technology, high-resolution multi-modal imagery is now more widely accessible. Conventional Object detection models are trained on a single dataset, often restricted to a specific imaging modality and annotation format. However, such an approach overlooks the valuable shared knowledge across multi-modalities and limits the model's applicability in more versatile scenarios. This paper introduces a new task called Multi-Modal Datasets and Multi-Task Object Detection (M2Det) for remote sensing, designed to accurately detect horizontal or oriented objects from any sensor modality. This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization. To address these, we establish a benchmark dataset and propose a unified model, SM3Det (Single Model for Multi-Modal datasets and Multi-Task object Detection). SM3Det leverages a grid-level sparse MoE backbone to enable joint knowledge learning while preserving distinct feature representations for different modalities. Furthermore, it integrates a consistency and synchronization optimization strategy using dynamic learning rate adjustment, allowing it to effectively handle varying levels of learning difficulty across modalities and tasks. Extensive experiments demonstrate SM3Det's effectiveness and generalizability, consistently outperforming specialized models on individual datasets. The code is available at https://github.com/zcablii/SM3Det.
comment: Accepted as Oral in AAAI 2026
♻ ☆ Temporal Inconsistency Guidance for Super-resolution Video Quality Assessment AAAI
As super-resolution (SR) techniques introduce unique distortions that fundamentally differ from those caused by traditional degradation processes (e.g., compression), there is an increasing demand for specialized video quality assessment (VQA) methods tailored to SR-generated content. One critical factor affecting perceived quality is temporal inconsistency, which refers to irregularities between consecutive frames. However, existing VQA approaches rarely quantify this phenomenon or explicitly investigate its relationship with human perception. Moreover, SR videos exhibit amplified inconsistency levels as a result of enhancement processes. In this paper, we propose \textit{Temporal Inconsistency Guidance for Super-resolution Video Quality Assessment (TIG-SVQA)} that underscores the critical role of temporal inconsistency in guiding the quality assessment of SR videos. We first design a perception-oriented approach to quantify frame-wise temporal inconsistency. Based on this, we introduce the Inconsistency Highlighted Spatial Module, which localizes inconsistent regions at both coarse and fine scales. Inspired by the human visual system, we further develop an Inconsistency Guided Temporal Module that performs progressive temporal feature aggregation: (1) a consistency-aware fusion stage in which a visual memory capacity block adaptively determines the information load of each temporal segment based on inconsistency levels, and (2) an informative filtering stage for emphasizing quality-related features. Extensive experiments on both single-frame and multi-frame SR video scenarios demonstrate that our method significantly outperforms state-of-the-art VQA approaches. The code is publicly available at https://github.com/Lighting-YXLI/TIG-SVQA-main.
comment: 15 pages, 10 figures, AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE(AAAI-26)
Artificial Intelligent 245
☆ Lightning Grasp: High Performance Procedural Grasp Synthesis with Contact Fields
Despite years of research, real-time diverse grasp synthesis for dexterous hands remains an unsolved core challenge in robotics and computer graphics. We present Lightning Grasp, a novel high-performance procedural grasp synthesis algorithm that achieves orders-of-magnitude speedups over state-of-the-art approaches, while enabling unsupervised grasp generation for irregular, tool-like objects. The method avoids many limitations of prior approaches, such as the need for carefully tuned energy functions and sensitive initialization. This breakthrough is driven by a key insight: decoupling complex geometric computation from the search process via a simple, efficient data structure - the Contact Field. This abstraction collapses the problem complexity, enabling a procedural search at unprecedented speeds. We open-source our system to propel further innovation in robotic manipulation.
comment: Code: https://github.com/zhaohengyin/lightning-grasp
☆ Language Generation with Infinite Contamination
We study language generation in the limit, where an algorithm observes an adversarial enumeration of strings from an unknown target language $K$ and must eventually generate new, unseen strings from $K$. Kleinberg and Mullainathan [KM24] proved that generation is achievable in surprisingly general settings. But their generator suffers from ``mode collapse,'' producing from an ever-smaller subset of the target. To address this, Kleinberg and Wei [KW25] require the generator's output to be ``dense'' in the target language. They showed that generation with density, surprisingly, remains achievable at the same generality. Both results assume perfect data: no noisy insertions and no omissions. This raises a central question: how much contamination can generation tolerate? Recent works made partial progress on this question by studying (non-dense) generation with either finite amounts of noise (but no omissions) or omissions (but no noise). We characterize robustness under contaminated enumerations: 1. Generation under Contamination: Language generation in the limit is achievable for all countable collections iff the fraction of contaminated examples converges to zero. When this fails, we characterize which collections are generable. 2. Dense Generation under Contamination: Dense generation is strictly less robust to contamination than generation. As a byproduct, we resolve an open question of Raman and Raman [ICML25] by showing that generation is possible with only membership oracle access under finitely many contaminated examples. Finally, we introduce a beyond-worst-case model inspired by curriculum learning and prove that dense generation is achievable even with infinite contamination provided the fraction of contaminated examples converges to zero. This suggests curriculum learning may be crucial for learning from noisy web data.
☆ Robot Learning from a Physical World Model
We introduce PhysWorld, a framework that enables robot learning from video generation through physical world modeling. Recent video generation models can synthesize photorealistic visual demonstrations from language commands and images, offering a powerful yet underexplored source of training signals for robotics. However, directly retargeting pixel motions from generated videos to robots neglects physics, often resulting in inaccurate manipulations. PhysWorld addresses this limitation by coupling video generation with physical world reconstruction. Given a single image and a task command, our method generates task-conditioned videos and reconstructs the underlying physical world from the videos, and the generated video motions are grounded into physically accurate actions through object-centric residual reinforcement learning with the physical world model. This synergy transforms implicit visual guidance into physically executable robotic trajectories, eliminating the need for real robot data collection and enabling zero-shot generalizable robotic manipulation. Experiments on diverse real-world tasks demonstrate that PhysWorld substantially improves manipulation accuracy compared to previous approaches. Visit \href{https://pointscoder.github.io/PhysWorld_Web/}{the project webpage} for details.
comment: Project page: https://pointscoder.github.io/PhysWorld_Web/
☆ DigiData: Training and Evaluating General-Purpose Mobile Control Agents
AI agents capable of controlling user interfaces have the potential to transform human interaction with digital devices. To accelerate this transformation, two fundamental building blocks are essential: high-quality datasets that enable agents to achieve complex and human-relevant goals, and robust evaluation methods that allow researchers and practitioners to rapidly enhance agent performance. In this paper, we introduce DigiData, a large-scale, high-quality, diverse, multi-modal dataset designed for training mobile control agents. Unlike existing datasets, which derive goals from unstructured interactions, DigiData is meticulously constructed through comprehensive exploration of app features, resulting in greater diversity and higher goal complexity. Additionally, we present DigiData-Bench, a benchmark for evaluating mobile control agents on real-world complex tasks. We demonstrate that the commonly used step-accuracy metric falls short in reliably assessing mobile control agents and, to address this, we propose dynamic evaluation protocols and AI-powered evaluations as rigorous alternatives for agent assessment. Our contributions aim to significantly advance the development of mobile control agents, paving the way for more intuitive and effective human-device interactions.
comment: Website: https://facebookresearch.github.io/DigiData
☆ Using Vision Language Models as Closed-Loop Symbolic Planners for Robotic Applications: A Control-Theoretic Perspective
Large Language Models (LLMs) and Vision Language Models (VLMs) have been widely used for embodied symbolic planning. Yet, how to effectively use these models for closed-loop symbolic planning remains largely unexplored. Because they operate as black boxes, LLMs and VLMs can produce unpredictable or costly errors, making their use in high-level robotic planning especially challenging. In this work, we investigate how to use VLMs as closed-loop symbolic planners for robotic applications from a control-theoretic perspective. Concretely, we study how the control horizon and warm-starting impact the performance of VLM symbolic planners. We design and conduct controlled experiments to gain insights that are broadly applicable to utilizing VLMs as closed-loop symbolic planners, and we discuss recommendations that can help improve the performance of VLM symbolic planners.
☆ SpatialThinker: Reinforcing 3D Reasoning in Multimodal LLMs via Spatial Rewards NeurIPS 2025
Multimodal large language models (MLLMs) have achieved remarkable progress in vision-language tasks, but they continue to struggle with spatial understanding. Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific modifications, and remain constrained by large-scale datasets or sparse supervision. To address these limitations, we introduce SpatialThinker, a 3D-aware MLLM trained with RL to integrate structured spatial grounding with multi-step reasoning. The model simulates human-like spatial perception by constructing a scene graph of task-relevant objects and spatial relations, and reasoning towards an answer via dense spatial rewards. SpatialThinker consists of two key contributions: (1) a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA dataset, and (2) online RL with a multi-objective dense spatial reward enforcing spatial grounding. SpatialThinker-7B outperforms supervised fine-tuning and the sparse RL baseline on spatial understanding and real-world VQA benchmarks, nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-4o. These results showcase the effectiveness of combining spatial supervision with reward-aligned reasoning in enabling robust 3D spatial understanding with limited data and advancing MLLMs towards human-level visual reasoning.
comment: Preprint. Accepted at NeurIPS 2025 Workshops on SPACE in Vision, Language, and Embodied AI (SpaVLE), Embodied World Models for Decision Making (EWM), Aligning Reinforcement Learning Experimentalists and Theorists (ARLET), and Scaling Environments for Agents (SEA)
☆ Surgical Agent Orchestration Platform for Voice-directed Patient Data Interaction
In da Vinci robotic surgery, surgeons' hands and eyes are fully engaged in the procedure, making it difficult to access and manipulate multimodal patient data without interruption. We propose a voice-directed Surgical Agent Orchestrator Platform (SAOP) built on a hierarchical multi-agent framework, consisting of an orchestration agent and three task-specific agents driven by Large Language Models (LLMs). These LLM-based agents autonomously plan, refine, validate, and reason to map voice commands into specific tasks such as retrieving clinical information, manipulating CT scans, or navigating 3D anatomical models on the surgical video. We also introduce a Multi-level Orchestration Evaluation Metric (MOEM) to comprehensively assess the performance and robustness from command-level and category-level perspectives. The SAOP achieves high accuracy and success rates across 240 voice commands, while LLM-based agents improve robustness against speech recognition errors and diverse or ambiguous free-form commands, demonstrating strong potential to support minimally invasive da Vinci robotic surgery.
comment: 22 pages, 12 figures, 1 table, Supplementary Information, Supplementary Data 1
☆ Teaching Pretrained Language Models to Think Deeper with Retrofitted Recurrence
Recent advances in depth-recurrent language models show that recurrence can decouple train-time compute and parameter count from test-time compute. In this work, we study how to convert existing pretrained non-recurrent language models into depth-recurrent models. We find that using a curriculum of recurrences to increase the effective depth of the model over the course of training preserves performance while reducing total computational cost. In our experiments, on mathematics, we observe that converting pretrained models to recurrent ones results in better performance at a given compute budget than simply post-training the original non-recurrent language model.
comment: code: https://github.com/mcleish7/retrofitting-recurrence, models: https://huggingface.co/collections/tomg-group-umd/retrofitting-recurrence
☆ LoReTTA: A Low Resource Framework To Poison Continuous Time Dynamic Graphs AAAI 2026
Temporal Graph Neural Networks (TGNNs) are increasingly used in high-stakes domains, such as financial forecasting, recommendation systems, and fraud detection. However, their susceptibility to poisoning attacks poses a critical security risk. We introduce LoReTTA (Low Resource Two-phase Temporal Attack), a novel adversarial framework on Continuous-Time Dynamic Graphs, which degrades TGNN performance by an average of 29.47% across 4 widely benchmark datasets and 4 State-of-the-Art (SotA) models. LoReTTA operates through a two-stage approach: (1) sparsify the graph by removing high-impact edges using any of the 16 tested temporal importance metrics, (2) strategically replace removed edges with adversarial negatives via LoReTTA's novel degree-preserving negative sampling algorithm. Our plug-and-play design eliminates the need for expensive surrogate models while adhering to realistic unnoticeability constraints. LoReTTA degrades performance by upto 42.0% on MOOC, 31.5% on Wikipedia, 28.8% on UCI, and 15.6% on Enron. LoReTTA outperforms 11 attack baselines, remains undetectable to 4 leading anomaly detection systems, and is robust to 4 SotA adversarial defense training methods, establishing its effectiveness, unnoticeability, and robustness.
comment: Accepted at AAAI 2026
Transformers Provably Learn Chain-of-Thought Reasoning with Length Generalization NeurIPS 2025
The ability to reason lies at the core of artificial intelligence (AI), and challenging problems usually call for deeper and longer reasoning to tackle. A crucial question about AI reasoning is whether models can extrapolate learned reasoning patterns to solve harder tasks with longer chain-of-thought (CoT). In this work, we present a theoretical analysis of transformers learning on synthetic state-tracking tasks with gradient descent. We mathematically prove how the algebraic structure of state-tracking problems governs the degree of extrapolation of the learned CoT. Specifically, our theory characterizes the length generalization of transformers through the mechanism of attention concentration, linking the retrieval robustness of the attention layer to the state-tracking task structure of long-context reasoning. Moreover, for transformers with limited reasoning length, we prove that a recursive self-training scheme can progressively extend the range of solvable problem lengths. To our knowledge, we provide the first optimization guarantee that constant-depth transformers provably learn $\mathsf{NC}^1$-complete problems with CoT, significantly going beyond prior art confined in $\mathsf{TC}^0$, unless the widely held conjecture $\mathsf{TC}^0 \neq \mathsf{NC}^1$ fails. Finally, we present a broad set of experiments supporting our theoretical results, confirming the length generalization behaviors and the mechanism of attention concentration.
comment: This is the full version of a paper published at NeurIPS 2025
☆ Real-Time LiDAR Super-Resolution via Frequency-Aware Multi-Scale Fusion
LiDAR super-resolution addresses the challenge of achieving high-quality 3D perception from cost-effective, low-resolution sensors. While recent transformer-based approaches like TULIP show promise, they remain limited to spatial-domain processing with restricted receptive fields. We introduce FLASH (Frequency-aware LiDAR Adaptive Super-resolution with Hierarchical fusion), a novel framework that overcomes these limitations through dual-domain processing. FLASH integrates two key innovations: (i) Frequency-Aware Window Attention that combines local spatial attention with global frequency-domain analysis via FFT, capturing both fine-grained geometry and periodic scanning patterns at log-linear complexity. (ii) Adaptive Multi-Scale Fusion that replaces conventional skip connections with learned position-specific feature aggregation, enhanced by CBAM attention for dynamic feature selection. Extensive experiments on KITTI demonstrate that FLASH achieves state-of-the-art performance across all evaluation metrics, surpassing even uncertainty-enhanced baselines that require multiple forward passes. Notably, FLASH outperforms TULIP with Monte Carlo Dropout while maintaining single-pass efficiency, which enables real-time deployment. The consistent superiority across all distance ranges validates that our dual-domain approach effectively handles uncertainty through architectural design rather than computationally expensive stochastic inference, making it practical for autonomous systems.
☆ Consistency Is Not Always Correct: Towards Understanding the Role of Exploration in Post-Training Reasoning
Foundation models exhibit broad knowledge but limited task-specific reasoning, motivating post-training strategies such as RLVR and inference scaling with outcome or process reward models (ORM/PRM). While recent work highlights the role of exploration and entropy stability in improving pass@K, empirical evidence points to a paradox: RLVR and ORM/PRM typically reinforce existing tree-like reasoning paths rather than expanding the reasoning scope, raising the question of why exploration helps at all if no new patterns emerge. To reconcile this paradox, we adopt the perspective of Kim et al. (2025), viewing easy (e.g., simplifying a fraction) versus hard (e.g., discovering a symmetry) reasoning steps as low- versus high-probability Markov transitions, and formalize post-training dynamics through Multi-task Tree-structured Markov Chains (TMC). In this tractable model, pretraining corresponds to tree expansion, while post-training corresponds to chain-of-thought reweighting. We show that several phenomena recently observed in empirical studies arise naturally in this setting: (1) RLVR induces a squeezing effect, reducing reasoning entropy and forgetting some correct paths; (2) population rewards of ORM/PRM encourage consistency rather than accuracy, thereby favoring common patterns; and (3) certain rare, high-uncertainty reasoning paths by the base model are responsible for solving hard problem instances. Together, these explain why exploration -- even when confined to the base model's reasoning scope -- remains essential: it preserves access to rare but crucial reasoning traces needed for difficult cases, which are squeezed out by RLVR or unfavored by inference scaling. Building on this, we further show that exploration strategies such as rejecting easy instances and KL regularization help preserve rare reasoning traces. Empirical simulations corroborate our theoretical results.
☆ Machine-Learning Accelerated Calculations of Reduced Density Matrices
$n$-particle reduced density matrices ($n$-RDMs) play a central role in understanding correlated phases of matter. Yet the calculation of $n$-RDMs is often computationally inefficient for strongly-correlated states, particularly when the system sizes are large. In this work, we propose to use neural network (NN) architectures to accelerate the calculation of, and even predict, the $n$-RDMs for large-size systems. The underlying intuition is that $n$-RDMs are often smooth functions over the Brillouin zone (BZ) (certainly true for gapped states) and are thus interpolable, allowing NNs trained on small-size $n$-RDMs to predict large-size ones. Building on this intuition, we devise two NNs: (i) a self-attention NN that maps random RDMs to physical ones, and (ii) a Sinusoidal Representation Network (SIREN) that directly maps momentum-space coordinates to RDM values. We test the NNs in three 2D models: the pair-pair correlation functions of the Richardson model of superconductivity, the translationally-invariant 1-RDM in a four-band model with short-range repulsion, and the translation-breaking 1-RDM in the half-filled Hubbard model. We find that a SIREN trained on a $6\times 6$ momentum mesh can predict the $18\times 18$ pair-pair correlation function with a relative accuracy of $0.839$. The NNs trained on $6\times 6 \sim 8\times 8$ meshes can provide high-quality initial guesses for $50\times 50$ translation-invariant Hartree-Fock (HF) and $30\times 30$ fully translation-breaking-allowed HF, reducing the number of iterations required for convergence by up to $91.63\%$ and $92.78\%$, respectively, compared to random initializations. Our results illustrate the potential of using NN-based methods for interpolable $n$-RDMs, which might open a new avenue for future research on strongly correlated phases.
comment: 10+32 pages, 6+4 figures, 1+6 tables
☆ Self-Evaluating LLMs for Multi-Step Tasks: Stepwise Confidence Estimation for Failure Detection NeurIPS 2025
Reliability and failure detection of large language models (LLMs) is critical for their deployment in high-stakes, multi-step reasoning tasks. Prior work explores confidence estimation for self-evaluating LLM-scorer systems, with confidence scorers estimating the likelihood of errors in LLM responses. However, most methods focus on single-step outputs and overlook the challenges of multi-step reasoning. In this work, we extend self-evaluation techniques to multi-step tasks, testing two intuitive approaches: holistic scoring and step-by-step scoring. Using two multi-step benchmark datasets, we show that stepwise evaluation generally outperforms holistic scoring in detecting potential errors, with up to 15% relative increase in AUC-ROC. Our findings demonstrate that self-evaluating LLM systems provide meaningful confidence estimates in complex reasoning, improving their trustworthiness and providing a practical framework for failure detection.
comment: Accepted at NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ Inference-Time Scaling of Diffusion Models for Infrared Data Generation
Infrared imagery enables temperature-based scene understanding using passive sensors, particularly under conditions of low visibility where traditional RGB imaging fails. Yet, developing downstream vision models for infrared applications is hindered by the scarcity of high-quality annotated data, due to the specialized expertise required for infrared annotation. While synthetic infrared image generation has the potential to accelerate model development by providing large-scale, diverse training data, training foundation-level generative diffusion models in the infrared domain has remained elusive due to limited datasets. In light of such data constraints, we explore an inference-time scaling approach using a domain-adapted CLIP-based verifier for enhanced infrared image generation quality. We adapt FLUX.1-dev, a state-of-the-art text-to-image diffusion model, to the infrared domain by finetuning it on a small sample of infrared images using parameter-efficient techniques. The trained verifier is then employed during inference to guide the diffusion sampling process toward higher quality infrared generations that better align with input text prompts. Empirically, we find that our approach leads to consistent improvements in generation quality, reducing FID scores on the KAIST Multispectral Pedestrian Detection Benchmark dataset by 10% compared to unguided baseline samples. Our results suggest that inference-time guidance offers a promising direction for bridging the domain gap in low-data infrared settings.
comment: Peer-reviewed workshop paper
☆ TNT: Improving Chunkwise Training for Test-Time Memorization
Recurrent neural networks (RNNs) with deep test-time memorization modules, such as Titans and TTT, represent a promising, linearly-scaling paradigm distinct from Transformers. While these expressive models do not yet match the peak performance of state-of-the-art Transformers, their potential has been largely untapped due to prohibitively slow training and low hardware utilization. Existing parallelization methods force a fundamental conflict governed by the chunksize hyperparameter: large chunks boost speed but degrade performance, necessitating a fixed, suboptimal compromise. To solve this challenge, we introduce TNT, a novel training paradigm that decouples training efficiency from inference performance through a two-stage process. Stage one is an efficiency-focused pre-training phase utilizing a hierarchical memory. A global module processes large, hardware-friendly chunks for long-range context, while multiple parallel local modules handle fine-grained details. Crucially, by periodically resetting local memory states, we break sequential dependencies to enable massive context parallelization. Stage two is a brief fine-tuning phase where only the local memory modules are adapted to a smaller, high-resolution chunksize, maximizing accuracy with minimal overhead. Evaluated on Titans and TTT models, TNT achieves a substantial acceleration in training speed-up to 17 times faster than the most accurate baseline configuration - while simultaneously improving model accuracy. This improvement removes a critical scalability barrier, establishing a practical foundation for developing expressive RNNs and facilitating future work to close the performance gap with Transformers.
☆ DeepPersona: A Generative Engine for Scaling Deep Synthetic Personas NeurIPS 2025
Simulating human profiles by instilling personas into large language models (LLMs) is rapidly transforming research in agentic behavioral simulation, LLM personalization, and human-AI alignment. However, most existing synthetic personas remain shallow and simplistic, capturing minimal attributes and failing to reflect the rich complexity and diversity of real human identities. We introduce DEEPPERSONA, a scalable generative engine for synthesizing narrative-complete synthetic personas through a two-stage, taxonomy-guided method. First, we algorithmically construct the largest-ever human-attribute taxonomy, comprising over hundreds of hierarchically organized attributes, by mining thousands of real user-ChatGPT conversations. Second, we progressively sample attributes from this taxonomy, conditionally generating coherent and realistic personas that average hundreds of structured attributes and roughly 1 MB of narrative text, two orders of magnitude deeper than prior works. Intrinsic evaluations confirm significant improvements in attribute diversity (32 percent higher coverage) and profile uniqueness (44 percent greater) compared to state-of-the-art baselines. Extrinsically, our personas enhance GPT-4.1-mini's personalized question answering accuracy by 11.6 percent on average across ten metrics and substantially narrow (by 31.7 percent) the gap between simulated LLM citizens and authentic human responses in social surveys. Our generated national citizens reduced the performance gap on the Big Five personality test by 17 percent relative to LLM-simulated citizens. DEEPPERSONA thus provides a rigorous, scalable, and privacy-free platform for high-fidelity human simulation and personalized AI research.
comment: 12 pages, 5 figures, accepted at LAW 2025 Workshop (NeurIPS 2025)
☆ Grounding Computer Use Agents on Human Demonstrations
Building reliable computer-use agents requires grounding: accurately connecting natural language instructions to the correct on-screen elements. While large datasets exist for web and mobile interactions, high-quality resources for desktop environments are limited. To address this gap, we introduce GroundCUA, a large-scale desktop grounding dataset built from expert human demonstrations. It covers 87 applications across 12 categories and includes 56K screenshots, with every on-screen element carefully annotated for a total of over 3.56M human-verified annotations. From these demonstrations, we generate diverse instructions that capture a wide range of real-world tasks, providing high-quality data for model training. Using GroundCUA, we develop the GroundNext family of models that map instructions to their target UI elements. At both 3B and 7B scales, GroundNext achieves state-of-the-art results across five benchmarks using supervised fine-tuning, while requiring less than one-tenth the training data of prior work. Reinforcement learning post-training further improves performance, and when evaluated in an agentic setting on the OSWorld benchmark using o3 as planner, GroundNext attains comparable or superior results to models trained with substantially more data,. These results demonstrate the critical role of high-quality, expert-driven datasets in advancing general-purpose computer-use agents.
☆ IterResearch: Rethinking Long-Horizon Agents via Markovian State Reconstruction
Recent advances in deep-research agents have shown promise for autonomous knowledge construction through dynamic reasoning over external sources. However, existing approaches rely on a mono-contextual paradigm that accumulates all information in a single, expanding context window, leading to context suffocation and noise contamination that limit their effectiveness on long-horizon tasks. We introduce IterResearch, a novel iterative deep-research paradigm that reformulates long-horizon research as a Markov Decision Process with strategic workspace reconstruction. By maintaining an evolving report as memory and periodically synthesizing insights, our approach preserves consistent reasoning capacity across arbitrary exploration depths. We further develop Efficiency-Aware Policy Optimization (EAPO), a reinforcement learning framework that incentivizes efficient exploration through geometric reward discounting and enables stable distributed training via adaptive downsampling. Extensive experiments demonstrate that IterResearch achieves substantial improvements over existing open-source agents with average +14.5pp across six benchmarks and narrows the gap with frontier proprietary systems. Remarkably, our paradigm exhibits unprecedented interaction scaling, extending to 2048 interactions with dramatic performance gains (from 3.5\% to 42.5\%), and serves as an effective prompting strategy, improving frontier models by up to 19.2pp over ReAct on long-horizon tasks. These findings position IterResearch as a versatile solution for long-horizon reasoning, effective both as a trained agent and as a prompting paradigm for frontier models.
comment: https://github.com/Alibaba-NLP/DeepResearch
☆ FinRpt: Dataset, Evaluation System and LLM-based Multi-agent Framework for Equity Research Report Generation AAAI 2026
While LLMs have shown great success in financial tasks like stock prediction and question answering, their application in fully automating Equity Research Report generation remains uncharted territory. In this paper, we formulate the Equity Research Report (ERR) Generation task for the first time. To address the data scarcity and the evaluation metrics absence, we present an open-source evaluation benchmark for ERR generation - FinRpt. We frame a Dataset Construction Pipeline that integrates 7 financial data types and produces a high-quality ERR dataset automatically, which could be used for model training and evaluation. We also introduce a comprehensive evaluation system including 11 metrics to assess the generated ERRs. Moreover, we propose a multi-agent framework specifically tailored to address this task, named FinRpt-Gen, and train several LLM-based agents on the proposed datasets using Supervised Fine-Tuning and Reinforcement Learning. Experimental results indicate the data quality and metrics effectiveness of the benchmark FinRpt and the strong performance of FinRpt-Gen, showcasing their potential to drive innovation in the ERR generation field. All code and datasets are publicly available.
comment: AAAI 2026
☆ When Bias Pretends to Be Truth: How Spurious Correlations Undermine Hallucination Detection in LLMs
Despite substantial advances, large language models (LLMs) continue to exhibit hallucinations, generating plausible yet incorrect responses. In this paper, we highlight a critical yet previously underexplored class of hallucinations driven by spurious correlations -- superficial but statistically prominent associations between features (e.g., surnames) and attributes (e.g., nationality) present in the training data. We demonstrate that these spurious correlations induce hallucinations that are confidently generated, immune to model scaling, evade current detection methods, and persist even after refusal fine-tuning. Through systematically controlled synthetic experiments and empirical evaluations on state-of-the-art open-source and proprietary LLMs (including GPT-5), we show that existing hallucination detection methods, such as confidence-based filtering and inner-state probing, fundamentally fail in the presence of spurious correlations. Our theoretical analysis further elucidates why these statistical biases intrinsically undermine confidence-based detection techniques. Our findings thus emphasize the urgent need for new approaches explicitly designed to address hallucinations caused by spurious correlations.
☆ Superhuman AI for Stratego Using Self-Play Reinforcement Learning and Test-Time Search
Few classical games have been regarded as such significant benchmarks of artificial intelligence as to have justified training costs in the millions of dollars. Among these, Stratego -- a board wargame exemplifying the challenge of strategic decision making under massive amounts of hidden information -- stands apart as a case where such efforts failed to produce performance at the level of top humans. This work establishes a step change in both performance and cost for Stratego, showing that it is now possible not only to reach the level of top humans, but to achieve vastly superhuman level -- and that doing so requires not an industrial budget, but merely a few thousand dollars. We achieved this result by developing general approaches for self-play reinforcement learning and test-time search under imperfect information.
☆ Beyond Boundaries: Leveraging Vision Foundation Models for Source-Free Object Detection AAAI 2026
Source-Free Object Detection (SFOD) aims to adapt a source-pretrained object detector to a target domain without access to source data. However, existing SFOD methods predominantly rely on internal knowledge from the source model, which limits their capacity to generalize across domains and often results in biased pseudo-labels, thereby hindering both transferability and discriminability. In contrast, Vision Foundation Models (VFMs), pretrained on massive and diverse data, exhibit strong perception capabilities and broad generalization, yet their potential remains largely untapped in the SFOD setting. In this paper, we propose a novel SFOD framework that leverages VFMs as external knowledge sources to jointly enhance feature alignment and label quality. Specifically, we design three VFM-based modules: (1) Patch-weighted Global Feature Alignment (PGFA) distills global features from VFMs using patch-similarity-based weighting to enhance global feature transferability; (2) Prototype-based Instance Feature Alignment (PIFA) performs instance-level contrastive learning guided by momentum-updated VFM prototypes; and (3) Dual-source Enhanced Pseudo-label Fusion (DEPF) fuses predictions from detection VFMs and teacher models via an entropy-aware strategy to yield more reliable supervision. Extensive experiments on six benchmarks demonstrate that our method achieves state-of-the-art SFOD performance, validating the effectiveness of integrating VFMs to simultaneously improve transferability and discriminability.
comment: Accepted to AAAI 2026. Extended version with full Appendix
☆ LMM-IQA: Image Quality Assessment for Low-Dose CT Imaging
Low-dose computed tomography (CT) represents a significant improvement in patient safety through lower radiation doses, but increased noise, blur, and contrast loss can diminish diagnostic quality. Therefore, consistency and robustness in image quality assessment become essential for clinical applications. In this study, we propose an LLM-based quality assessment system that generates both numerical scores and textual descriptions of degradations such as noise, blur, and contrast loss. Furthermore, various inference strategies - from the zero-shot approach to metadata integration and error feedback - are systematically examined, demonstrating the progressive contribution of each method to overall performance. The resultant assessments yield not only highly correlated scores but also interpretable output, thereby adding value to clinical workflows. The source codes of our study are available at https://github.com/itu-biai/lmms_ldct_iqa.
Hard vs. Noise: Resolving Hard-Noisy Sample Confusion in Recommender Systems via Large Language Models AAAI2026
Implicit feedback, employed in training recommender systems, unavoidably confronts noise due to factors such as misclicks and position bias. Previous studies have attempted to identify noisy samples through their diverged data patterns, such as higher loss values, and mitigate their influence through sample dropping or reweighting. However, we observed that noisy samples and hard samples display similar patterns, leading to hard-noisy confusion issue. Such confusion is problematic as hard samples are vital for modeling user preferences. To solve this problem, we propose LLMHNI framework, leveraging two auxiliary user-item relevance signals generated by Large Language Models (LLMs) to differentiate hard and noisy samples. LLMHNI obtains user-item semantic relevance from LLM-encoded embeddings, which is used in negative sampling to select hard negatives while filtering out noisy false negatives. An objective alignment strategy is proposed to project LLM-encoded embeddings, originally for general language tasks, into a representation space optimized for user-item relevance modeling. LLMHNI also exploits LLM-inferred logical relevance within user-item interactions to identify hard and noisy samples. These LLM-inferred interactions are integrated into the interaction graph and guide denoising with cross-graph contrastive alignment. To eliminate the impact of unreliable interactions induced by LLM hallucination, we propose a graph contrastive learning strategy that aligns representations from randomly edge-dropped views to suppress unreliable edges. Empirical results demonstrate that LLMHNI significantly improves denoising and recommendation performance.
comment: Accepted by AAAI2026
☆ Verifying rich robustness properties for neural networks
Robustness is a important problem in AI alignment and safety, with models such as neural networks being increasingly used in safety-critical systems. In the last decade, a large body of work has emerged on local robustness, i.e., checking if the decision of a neural network remains unchanged when the input is slightly perturbed. However, many of these approaches require specialized encoding and often ignore the confidence of a neural network on its output. In this paper, our goal is to build a generalized framework to specify and verify variants of robustness in neural network verification. We propose a specification framework using a simple grammar, which is flexible enough to capture most existing variants. This allows us to introduce new variants of robustness that take into account the confidence of the neural network in its outputs. Next, we develop a novel and powerful unified technique to verify all such variants in a homogeneous way, viz., by adding a few additional layers to the neural network. This enables us to use any state-of-the-art neural network verification tool, without having to tinker with the encoding within, while incurring an approximation error that we show is bounded. We perform an extensive experimental evaluation over a large suite of 8870 benchmarks having 138M parameters in a largest network, and show that we are able to capture a wide set of robustness variants and outperform direct encoding approaches by a significant margin.
☆ Enabling Off-Policy Imitation Learning with Deep Actor Critic Stabilization
Learning complex policies with Reinforcement Learning (RL) is often hindered by instability and slow convergence, a problem exacerbated by the difficulty of reward engineering. Imitation Learning (IL) from expert demonstrations bypasses this reliance on rewards. However, state-of-the-art IL methods, exemplified by Generative Adversarial Imitation Learning (GAIL)Ho et. al, suffer from severe sample inefficiency. This is a direct consequence of their foundational on-policy algorithms, such as TRPO Schulman et.al. In this work, we introduce an adversarial imitation learning algorithm that incorporates off-policy learning to improve sample efficiency. By combining an off-policy framework with auxiliary techniques specifically, double Q network based stabilization and value learning without reward function inference we demonstrate a reduction in the samples required to robustly match expert behavior.
comment: 14 pages and 4 images
☆ Glioma C6: A Novel Dataset for Training and Benchmarking Cell Segmentation
We present Glioma C6, a new open dataset for instance segmentation of glioma C6 cells, designed as both a benchmark and a training resource for deep learning models. The dataset comprises 75 high-resolution phase-contrast microscopy images with over 12,000 annotated cells, providing a realistic testbed for biomedical image analysis. It includes soma annotations and morphological cell categorization provided by biologists. Additional categorization of cells, based on morphology, aims to enhance the utilization of image data for cancer cell research. Glioma C6 consists of two parts: the first is curated with controlled parameters for benchmarking, while the second supports generalization testing under varying conditions. We evaluate the performance of several generalist segmentation models, highlighting their limitations on our dataset. Our experiments demonstrate that training on Glioma C6 significantly enhances segmentation performance, reinforcing its value for developing robust and generalizable models. The dataset is publicly available for researchers.
☆ Designing Beyond Language: Sociotechnical Barriers in AI Health Technologies for Limited English Proficiency
Limited English proficiency (LEP) patients in the U.S. face systemic barriers to healthcare beyond language and interpreter access, encompassing procedural and institutional constraints. AI advances may support communication and care through on-demand translation and visit preparation, but also risk exacerbating existing inequalities. We conducted storyboard-driven interviews with 14 patient navigators to explore how AI could shape care experiences for Spanish-speaking LEP individuals. We identified tensions around linguistic and cultural misunderstandings, privacy concerns, and opportunities and risks for AI to augment care workflows. Participants highlighted structural factors that can undermine trust in AI systems, including sensitive information disclosure, unstable technology access, and low digital literacy. While AI tools can potentially alleviate social barriers and institutional constraints, there are risks of misinformation and uprooting human camaraderie. Our findings contribute design considerations for AI that support LEP patients and care teams via rapport-building, education, and language support, and minimizing disruptions to existing practices.
☆ Beyond Detection: Exploring Evidence-based Multi-Agent Debate for Misinformation Intervention and Persuasion AAAI 2026
Multi-agent debate (MAD) frameworks have emerged as promising approaches for misinformation detection by simulating adversarial reasoning. While prior work has focused on detection accuracy, it overlooks the importance of helping users understand the reasoning behind factual judgments and develop future resilience. The debate transcripts generated during MAD offer a rich but underutilized resource for transparent reasoning. In this study, we introduce ED2D, an evidence-based MAD framework that extends previous approach by incorporating factual evidence retrieval. More importantly, ED2D is designed not only as a detection framework but also as a persuasive multi-agent system aimed at correcting user beliefs and discouraging misinformation sharing. We compare the persuasive effects of ED2D-generated debunking transcripts with those authored by human experts. Results demonstrate that ED2D outperforms existing baselines across three misinformation detection benchmarks. When ED2D generates correct predictions, its debunking transcripts exhibit persuasive effects comparable to those of human experts; However, when ED2D misclassifies, its accompanying explanations may inadvertently reinforce users'misconceptions, even when presented alongside accurate human explanations. Our findings highlight both the promise and the potential risks of deploying MAD systems for misinformation intervention. We further develop a public community website to help users explore ED2D, fostering transparency, critical thinking, and collaborative fact-checking.
comment: This paper has been accepted to AAAI 2026
☆ AgenticSciML: Collaborative Multi-Agent Systems for Emergent Discovery in Scientific Machine Learning
Scientific Machine Learning (SciML) integrates data-driven inference with physical modeling to solve complex problems in science and engineering. However, the design of SciML architectures, loss formulations, and training strategies remains an expert-driven research process, requiring extensive experimentation and problem-specific insights. Here we introduce AgenticSciML, a collaborative multi-agent system in which over 10 specialized AI agents collaborate to propose, critique, and refine SciML solutions through structured reasoning and iterative evolution. The framework integrates structured debate, retrieval-augmented method memory, and ensemble-guided evolutionary search, enabling the agents to generate and assess new hypotheses about architectures and optimization procedures. Across physics-informed learning and operator learning tasks, the framework discovers solution methods that outperform single-agent and human-designed baselines by up to four orders of magnitude in error reduction. The agents produce novel strategies -- including adaptive mixture-of-expert architectures, decomposition-based PINNs, and physics-informed operator learning models -- that do not appear explicitly in the curated knowledge base. These results show that collaborative reasoning among AI agents can yield emergent methodological innovation, suggesting a path toward scalable, transparent, and autonomous discovery in scientific computing.
☆ PADiff: Predictive and Adaptive Diffusion Policies for Ad Hoc Teamwork AAAI
Ad hoc teamwork (AHT) requires agents to collaborate with previously unseen teammates, which is crucial for many real-world applications. The core challenge of AHT is to develop an ego agent that can predict and adapt to unknown teammates on the fly. Conventional RL-based approaches optimize a single expected return, which often causes policies to collapse into a single dominant behavior, thus failing to capture the multimodal cooperation patterns inherent in AHT. In this work, we introduce PADiff, a diffusion-based approach that captures agent's multimodal behaviors, unlocking its diverse cooperation modes with teammates. However, standard diffusion models lack the ability to predict and adapt in highly non-stationary AHT scenarios. To address this limitation, we propose a novel diffusion-based policy that integrates critical predictive information about teammates into the denoising process. Extensive experiments across three cooperation environments demonstrate that PADiff outperforms existing AHT methods significantly.
comment: Accepted by the 40th AAAI conference on Artificial Intelligence (AAAI 2026)
☆ MVU-Eval: Towards Multi-Video Understanding Evaluation for Multimodal LLMs
The advent of Multimodal Large Language Models (MLLMs) has expanded AI capabilities to visual modalities, yet existing evaluation benchmarks remain limited to single-video understanding, overlooking the critical need for multi-video understanding in real-world scenarios (e.g., sports analytics and autonomous driving). To address this significant gap, we introduce MVU-Eval, the first comprehensive benchmark for evaluating Multi-Video Understanding for MLLMs. Specifically, our MVU-Eval mainly assesses eight core competencies through 1,824 meticulously curated question-answer pairs spanning 4,959 videos from diverse domains, addressing both fundamental perception tasks and high-order reasoning tasks. These capabilities are rigorously aligned with real-world applications such as multi-sensor synthesis in autonomous systems and cross-angle sports analytics. Through extensive evaluation of state-of-the-art open-source and closed-source models, we reveal significant performance discrepancies and limitations in current MLLMs' ability to perform understanding across multiple videos. The benchmark will be made publicly available to foster future research.
☆ Leveraging Text-Driven Semantic Variation for Robust OOD Segmentation IROS
In autonomous driving and robotics, ensuring road safety and reliable decision-making critically depends on out-of-distribution (OOD) segmentation. While numerous methods have been proposed to detect anomalous objects on the road, leveraging the vision-language space-which provides rich linguistic knowledge-remains an underexplored field. We hypothesize that incorporating these linguistic cues can be especially beneficial in the complex contexts found in real-world autonomous driving scenarios. To this end, we present a novel approach that trains a Text-Driven OOD Segmentation model to learn a semantically diverse set of objects in the vision-language space. Concretely, our approach combines a vision-language model's encoder with a transformer decoder, employs Distance-Based OOD prompts located at varying semantic distances from in-distribution (ID) classes, and utilizes OOD Semantic Augmentation for OOD representations. By aligning visual and textual information, our approach effectively generalizes to unseen objects and provides robust OOD segmentation in diverse driving environments. We conduct extensive experiments on publicly available OOD segmentation datasets such as Fishyscapes, Segment-Me-If-You-Can, and Road Anomaly datasets, demonstrating that our approach achieves state-of-the-art performance across both pixel-level and object-level evaluations. This result underscores the potential of vision-language-based OOD segmentation to bolster the safety and reliability of future autonomous driving systems.
comment: 8 pages, 5 figure references, 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) submission
☆ Discourse Graph Guided Document Translation with Large Language Models
Adapting large language models to full document translation remains challenging due to the difficulty of capturing long-range dependencies and preserving discourse coherence throughout extended texts. While recent agentic machine translation systems mitigate context window constraints through multi-agent orchestration and persistent memory, they require substantial computational resources and are sensitive to memory retrieval strategies. We introduce TransGraph, a discourse-guided framework that explicitly models inter-chunk relationships through structured discourse graphs and selectively conditions each translation segment on relevant graph neighbourhoods rather than relying on sequential or exhaustive context. Across three document-level MT benchmarks spanning six languages and diverse domains, TransGraph consistently surpasses strong baselines in translation quality and terminology consistency while incurring significantly lower token overhead.
LLMServingSim2.0: A Unified Simulator for Heterogeneous Hardware and Serving Techniques in LLM Infrastructure
This paper introduces LLMServingSim2.0, a system simulator designed for exploring heterogeneous hardware in large-scale LLM serving systems. LLMServingSim2.0 addresses two key limitations of its predecessor: (1) integrating hardware models into system-level simulators is non-trivial due to the lack of a clear abstraction, and (2) existing simulators support only a narrow subset of serving techniques, leaving no infrastructure that captures the breadth of approaches in modern LLM serving. To overcome these issues, LLMServingSim2.0 adopts trace-driven performance modeling, accompanied by an operator-level latency profiler, enabling the integration of new accelerators with a single command. It further embeds up-to-date serving techniques while exposing flexible interfaces for request routing, cache management, and scheduling policies. In a TPU case study, our profiler requires 18.5x fewer LoC and outperforms the predecessor's hardware-simulator integration, demonstrating LLMServingSim2.0's low-effort hardware extensibility. Our experiments further show that LLMServingSim2.0 reproduces GPU-based LLM serving with 1.9% error, while maintaining practical simulation time, making it a comprehensive platform for both hardware developers and LLM service providers.
comment: 4 pages, 3 figures
☆ NoteEx: Interactive Visual Context Manipulation for LLM-Assisted Exploratory Data Analysis in Computational Notebooks
Computational notebooks have become popular for Exploratory Data Analysis (EDA), augmented by LLM-based code generation and result interpretation. Effective LLM assistance hinges on selecting informative context -- the minimal set of cells whose code, data, or outputs suffice to answer a prompt. As notebooks grow long and messy, users can lose track of the mental model of their analysis. They thus fail to curate appropriate contexts for LLM tasks, causing frustration and tedious prompt engineering. We conducted a formative study (n=6) that surfaced challenges in LLM context selection and mental model maintenance. Therefore, we introduce NoteEx, a JupyterLab extension that provides a semantic visualization of the EDA workflow, allowing analysts to externalize their mental model, specify analysis dependencies, and enable interactive selection of task-relevant contexts for LLMs. A user study (n=12) against a baseline shows that NoteEx improved mental model retention and context selection, leading to more accurate and relevant LLM responses.
☆ SMiLE: Provably Enforcing Global Relational Properties in Neural Networks
Artificial Intelligence systems are increasingly deployed in settings where ensuring robustness, fairness, or domain-specific properties is essential for regulation compliance and alignment with human values. However, especially on Neural Networks, property enforcement is very challenging, and existing methods are limited to specific constraints or local properties (defined around datapoints), or fail to provide full guarantees. We tackle these limitations by extending SMiLE, a recently proposed enforcement framework for NNs, to support global relational properties (defined over the entire input space). The proposed approach scales well with model complexity, accommodates general properties and backbones, and provides full satisfaction guarantees. We evaluate SMiLE on monotonicity, global robustness, and individual fairness, on synthetic and real data, for regression and classification tasks. Our approach is competitive with property-specific baselines in terms of accuracy and runtime, and strictly superior in terms of generality and level of guarantees. Overall, our results emphasize the potential of the SMiLE framework as a platform for future research and applications.
☆ Twenty-Five Years of MIR Research: Achievements, Practices, Evaluations, and Future Challenges
In this paper, we trace the evolution of Music Information Retrieval (MIR) over the past 25 years. While MIR gathers all kinds of research related to music informatics, a large part of it focuses on signal processing techniques for music data, fostering a close relationship with the IEEE Audio and Acoustic Signal Processing Technical Commitee. In this paper, we reflect the main research achievements of MIR along the three EDICS related to music analysis, processing and generation. We then review a set of successful practices that fuel the rapid development of MIR research. One practice is the annual research benchmark, the Music Information Retrieval Evaluation eXchange, where participants compete on a set of research tasks. Another practice is the pursuit of reproducible and open research. The active engagement with industry research and products is another key factor for achieving large societal impacts and motivating younger generations of students to join the field. Last but not the least, the commitment to diversity, equity and inclusion ensures MIR to be a vibrant and open community where various ideas, methodologies, and career pathways collide. We finish by providing future challenges MIR will have to face.
☆ Evaluating Online Moderation Via LLM-Powered Counterfactual Simulations AAAI
Online Social Networks (OSNs) widely adopt content moderation to mitigate the spread of abusive and toxic discourse. Nonetheless, the real effectiveness of moderation interventions remains unclear due to the high cost of data collection and limited experimental control. The latest developments in Natural Language Processing pave the way for a new evaluation approach. Large Language Models (LLMs) can be successfully leveraged to enhance Agent-Based Modeling and simulate human-like social behavior with unprecedented degree of believability. Yet, existing tools do not support simulation-based evaluation of moderation strategies. We fill this gap by designing a LLM-powered simulator of OSN conversations enabling a parallel, counterfactual simulation where toxic behavior is influenced by moderation interventions, keeping all else equal. We conduct extensive experiments, unveiling the psychological realism of OSN agents, the emergence of social contagion phenomena and the superior effectiveness of personalized moderation strategies.
comment: Accepted for publication at AAAI Conference on Artificial Intelligence 2026
☆ Resilient by Design - Active Inference for Distributed Continuum Intelligence
Failures are the norm in highly complex and heterogeneous devices spanning the distributed computing continuum (DCC), from resource-constrained IoT and edge nodes to high-performance computing systems. Ensuring reliability and global consistency across these layers remains a major challenge, especially for AI-driven workloads requiring real-time, adaptive coordination. This paper introduces a Probabilistic Active Inference Resilience Agent (PAIR-Agent) to achieve resilience in DCC systems. PAIR-Agent performs three core operations: (i) constructing a causal fault graph from device logs, (ii) identifying faults while managing certainties and uncertainties using Markov blankets and the free-energy principle, and (iii) autonomously healing issues through active inference. Through continuous monitoring and adaptive reconfiguration, the agent maintains service continuity and stability under diverse failure conditions. Theoretical validations confirm the reliability and effectiveness of the proposed framework.
☆ Federated Learning for Video Violence Detection: Complementary Roles of Lightweight CNNs and Vision-Language Models for Energy-Efficient Use
Deep learning-based video surveillance increasingly demands privacy-preserving architectures with low computational and environmental overhead. Federated learning preserves privacy but deploying large vision-language models (VLMs) introduces major energy and sustainability challenges. We compare three strategies for federated violence detection under realistic non-IID splits on the RWF-2000 and RLVS datasets: zero-shot inference with pretrained VLMs, LoRA-based fine-tuning of LLaVA-NeXT-Video-7B, and personalized federated learning of a 65.8M-parameter 3D CNN. All methods exceed 90% accuracy in binary violence detection. The 3D CNN achieves superior calibration (ROC AUC 92.59%) at roughly half the energy cost (240 Wh vs. 570 Wh) of federated LoRA, while VLMs provide richer multimodal reasoning. Hierarchical category grouping (based on semantic similarity and class exclusion) boosts VLM multiclass accuracy from 65.31% to 81% on the UCF-Crime dataset. To our knowledge, this is the first comparative simulation study of LoRA-tuned VLMs and personalized CNNs for federated violence detection, with explicit energy and CO2e quantification. Our results inform hybrid deployment strategies that default to efficient CNNs for routine inference and selectively engage VLMs for complex contextual reasoning.
comment: 5 pages, 3 figures, ICTAI 2025
☆ AdaRec: Adaptive Recommendation with LLMs via Narrative Profiling and Dual-Channel Reasoning
We propose AdaRec, a few-shot in-context learning framework that leverages large language models for an adaptive personalized recommendation. AdaRec introduces narrative profiling, transforming user-item interactions into natural language representations to enable unified task handling and enhance human readability. Centered on a bivariate reasoning paradigm, AdaRec employs a dual-channel architecture that integrates horizontal behavioral alignment, discovering peer-driven patterns, with vertical causal attribution, highlighting decisive factors behind user preferences. Unlike existing LLM-based approaches, AdaRec eliminates manual feature engineering through semantic representations and supports rapid cross-task adaptation with minimal supervision. Experiments on real ecommerce datasets demonstrate that AdaRec outperforms both machine learning models and LLM-based baselines by up to eight percent in few-shot settings. In zero-shot scenarios, it achieves up to a nineteen percent improvement over expert-crafted profiling, showing effectiveness for long-tail personalization with minimal interaction data. Furthermore, lightweight fine-tuning on synthetic data generated by AdaRec matches the performance of fully fine-tuned models, highlighting its efficiency and generalization across diverse tasks.
☆ Fuzzy Label: From Concept to Its Application in Label Learning
Label learning is a fundamental task in machine learning that aims to construct intelligent models using labeled data, encompassing traditional single-label and multi-label classification models. Traditional methods typically rely on logical labels, such as binary indicators (e.g., "yes/no") that specify whether an instance belongs to a given category. However, in practical applications, label annotations often involve significant uncertainty due to factors such as data noise, inherent ambiguity in the observed entities, and the subjectivity of human annotators. Therefore, representing labels using simplistic binary logic can obscure valuable information and limit the expressiveness of label learning models. To overcome this limitation, this paper introduces the concept of fuzzy labels, grounded in fuzzy set theory, to better capture and represent label uncertainty. We further propose an efficient fuzzy labeling method that mines and generates fuzzy labels from the original data, thereby enriching the label space with more informative and nuanced representations. Based on this foundation, we present fuzzy-label-enhanced algorithms for both single-label and multi-label learning, using the classical K-Nearest Neighbors (KNN) and multi-label KNN algorithms as illustrative examples. Experimental results indicate that fuzzy labels can more effectively characterize the real-world labeling information and significantly enhance the performance of label learning models.
☆ Conditional Diffusion as Latent Constraints for Controllable Symbolic Music Generation
Recent advances in latent diffusion models have demonstrated state-of-the-art performance in high-dimensional time-series data synthesis while providing flexible control through conditioning and guidance. However, existing methodologies primarily rely on musical context or natural language as the main modality of interacting with the generative process, which may not be ideal for expert users who seek precise fader-like control over specific musical attributes. In this work, we explore the application of denoising diffusion processes as plug-and-play latent constraints for unconditional symbolic music generation models. We focus on a framework that leverages a library of small conditional diffusion models operating as implicit probabilistic priors on the latents of a frozen unconditional backbone. While previous studies have explored domain-specific use cases, this work, to the best of our knowledge, is the first to demonstrate the versatility of such an approach across a diverse array of musical attributes, such as note density, pitch range, contour, and rhythm complexity. Our experiments show that diffusion-driven constraints outperform traditional attribute regularization and other latent constraints architectures, achieving significantly stronger correlations between target and generated attributes while maintaining high perceptual quality and diversity.
☆ LoRA on the Go: Instance-level Dynamic LoRA Selection and Merging
Low-Rank Adaptation (LoRA) has emerged as a parameter-efficient approach for fine-tuning large language models.However, conventional LoRA adapters are typically trained for a single task, limiting their applicability in real-world settings where inputs may span diverse and unpredictable domains. At inference time, existing approaches combine multiple LoRAs for improving performance on diverse tasks, while usually requiring labeled data or additional task-specific training, which is expensive at scale. In this work, we introduce LoRA on the Go (LoGo), a training-free framework that dynamically selects and merges adapters at the instance level without any additional requirements. LoGo leverages signals extracted from a single forward pass through LoRA adapters, to identify the most relevant adapters and determine their contributions on-the-fly. Across 5 NLP benchmarks, 27 datasets, and 3 model families, LoGo outperforms training-based baselines on some tasks upto a margin of 3.6% while remaining competitive on other tasks and maintaining inference throughput, highlighting its effectiveness and practicality.
☆ Saliency Map-Guided Knowledge Discovery for Subclass Identification with LLM-Based Symbolic Approximations
This paper proposes a novel neuro-symbolic approach for sensor signal-based knowledge discovery, focusing on identifying latent subclasses in time series classification tasks. The approach leverages gradient-based saliency maps derived from trained neural networks to guide the discovery process. Multiclass time series classification problems are transformed into binary classification problems through label subsumption, and classifiers are trained for each of these to yield saliency maps. The input signals, grouped by predicted class, are clustered under three distinct configurations. The centroids of the final set of clusters are provided as input to an LLM for symbolic approximation and fuzzy knowledge graph matching to discover the underlying subclasses of the original multiclass problem. Experimental results on well-established time series classification datasets demonstrate the effectiveness of our saliency map-driven method for knowledge discovery, outperforming signal-only baselines in both clustering and subclass identification.
☆ Think Consistently, Reason Efficiently: Energy-Based Calibration for Implicit Chain-of-Thought
Large Language Models (LLMs) have demonstrated strong reasoning capabilities through \emph{Chain-of-Thought} (CoT) prompting, which enables step-by-step intermediate reasoning. However, explicit CoT methods rely on discrete token-level reasoning processes that are prone to error propagation and limited by vocabulary expressiveness, often resulting in rigid and inconsistent reasoning trajectories. Recent research has explored implicit or continuous reasoning in latent spaces, allowing models to perform internal reasoning before generating explicit output. Although such approaches alleviate some limitations of discrete CoT, they generally lack explicit mechanisms to enforce consistency among reasoning steps, leading to divergent reasoning paths and unstable outcomes. To address this issue, we propose EBM-CoT, an Energy-Based Chain-of-Thought Calibration framework that refines latent thought representations through an energy-based model (EBM). Our method dynamically adjusts latent reasoning trajectories toward lower-energy, high-consistency regions in the embedding space, improving both reasoning accuracy and consistency without modifying the base language model. Extensive experiments across mathematical, commonsense, and symbolic reasoning benchmarks demonstrate that the proposed framework significantly enhances the consistency and efficiency of multi-step reasoning in LLMs.
☆ On the Joint Minimization of Regularization Loss Functions in Deep Variational Bayesian Methods for Attribute-Controlled Symbolic Music Generation
Explicit latent variable models provide a flexible yet powerful framework for data synthesis, enabling controlled manipulation of generative factors. With latent variables drawn from a tractable probability density function that can be further constrained, these models enable continuous and semantically rich exploration of the output space by navigating their latent spaces. Structured latent representations are typically obtained through the joint minimization of regularization loss functions. In variational information bottleneck models, reconstruction loss and Kullback-Leibler Divergence (KLD) are often linearly combined with an auxiliary Attribute-Regularization (AR) loss. However, balancing KLD and AR turns out to be a very delicate matter. When KLD dominates over AR, generative models tend to lack controllability; when AR dominates over KLD, the stochastic encoder is encouraged to violate the standard normal prior. We explore this trade-off in the context of symbolic music generation with explicit control over continuous musical attributes. We show that existing approaches struggle to jointly minimize both regularization objectives, whereas suitable attribute transformations can help achieve both controllability and regularization of the target latent dimensions.
comment: IEEE Catalog No.: CFP2540S-ART ISBN: 978-9-46-459362-4
☆ More Agents Helps but Adversarial Robustness Gap Persists
When LLM agents work together, they seem to be more powerful than a single LLM in mathematical question answering. However, are they also more robust to adversarial inputs? We investigate this question using adversarially perturbed math questions. These perturbations include punctuation noise with three intensities (10, 30, and 50 percent), plus real-world and human-like typos (WikiTypo, R2ATA). Using a unified sampling-and-voting framework (Agent Forest), we evaluate six open-source models (Qwen3-4B/14B, Llama3.1-8B, Mistral-7B, Gemma3-4B/12B) across four benchmarks (GSM8K, MATH, MMLU-Math, MultiArith), with various numbers of agents n from one to 25 (1, 2, 5, 10, 15, 20, 25). Our findings show that (1) Noise type matters: punctuation noise harm scales with its severity, and the human typos remain the dominant bottleneck, yielding the largest gaps to Clean accuracy and the highest ASR even with a large number of agents. And (2) Collaboration reliably improves accuracy as the number of agents, n, increases, with the largest gains from one to five agents and diminishing returns beyond 10 agents. However, the adversarial robustness gap persists regardless of the agent count.
☆ Two Heads are Better than One: Distilling Large Language Model Features Into Small Models with Feature Decomposition and Mixture
Market making (MM) through Reinforcement Learning (RL) has attracted significant attention in financial trading. With the development of Large Language Models (LLMs), more and more attempts are being made to apply LLMs to financial areas. A simple, direct application of LLM as an agent shows significant performance. Such methods are hindered by their slow inference speed, while most of the current research has not studied LLM distillation for this specific task. To address this, we first propose the normalized fluorescent probe to study the mechanism of the LLM's feature. Based on the observation found by our investigation, we propose Cooperative Market Making (CMM), a novel framework that decouples LLM features across three orthogonal dimensions: layer, task, and data. Various student models collaboratively learn simple LLM features along with different dimensions, with each model responsible for a distinct feature to achieve knowledge distillation. Furthermore, CMM introduces an H\'{a}jek-MoE to integrate the output of the student models by investigating the contribution of different models in a kernel function-generated common feature space. Extensive experimental results on four real-world market datasets demonstrate the superiority of CMM over the current distillation method and RL-based market-making strategies.
☆ MENTOR: A Metacognition-Driven Self-Evolution Framework for Uncovering and Mitigating Implicit Risks in LLMs on Domain Tasks
Ensuring the safety and value alignment of large language models (LLMs) is critical for their deployment. Current alignment efforts primarily target explicit risks such as bias, hate speech, and violence. However, they often fail to address deeper, domain-specific implicit risks and lack a flexible, generalizable framework applicable across diverse specialized fields. Hence, we proposed MENTOR: A MEtacognition-driveN self-evoluTion framework for uncOvering and mitigating implicit Risks in LLMs on Domain Tasks. To address the limitations of labor-intensive human evaluation, we introduce a novel metacognitive self-assessment tool. This enables LLMs to reflect on potential value misalignments in their responses using strategies like perspective-taking and consequential thinking. We also release a supporting dataset of 9,000 risk queries spanning education, finance, and management to enhance domain-specific risk identification. Subsequently, based on the outcomes of metacognitive reflection, the framework dynamically generates supplementary rule knowledge graphs that extend predefined static rule trees. This enables models to actively apply validated rules to future similar challenges, establishing a continuous self-evolution cycle that enhances generalization by reducing maintenance costs and inflexibility of static systems. Finally, we employ activation steering during inference to guide LLMs in following the rules, a cost-effective method to robustly enhance enforcement across diverse contexts. Experimental results show MENTOR's effectiveness: In defensive testing across three vertical domains, the framework substantially reduces semantic attack success rates, enabling a new level of implicit risk mitigation for LLMs. Furthermore, metacognitive assessment not only aligns closely with baseline human evaluators but also delivers more thorough and insightful analysis of LLMs value alignment.
☆ A Theoretical Analysis of Detecting Large Model-Generated Time Series AAAI-2026
Motivated by the increasing risks of data misuse and fabrication, we investigate the problem of identifying synthetic time series generated by Time-Series Large Models (TSLMs) in this work. While there are extensive researches on detecting model generated text, we find that these existing methods are not applicable to time series data due to the fundamental modality difference, as time series usually have lower information density and smoother probability distributions than text data, which limit the discriminative power of token-based detectors. To address this issue, we examine the subtle distributional differences between real and model-generated time series and propose the contraction hypothesis, which states that model-generated time series, unlike real ones, exhibit progressively decreasing uncertainty under recursive forecasting. We formally prove this hypothesis under theoretical assumptions on model behavior and time series structure. Model-generated time series exhibit progressively concentrated distributions under recursive forecasting, leading to uncertainty contraction. We provide empirical validation of the hypothesis across diverse datasets. Building on this insight, we introduce the Uncertainty Contraction Estimator (UCE), a white-box detector that aggregates uncertainty metrics over successive prefixes to identify TSLM-generated time series. Extensive experiments on 32 datasets show that UCE consistently outperforms state-of-the-art baselines, offering a reliable and generalizable solution for detecting model-generated time series.
comment: 23 pages,12 figures, to be published in AAAI-2026 main track
☆ GEWDiff: Geometric Enhanced Wavelet-based Diffusion Model for Hyperspectral Image Super-resolution AAAI 2026
Improving the quality of hyperspectral images (HSIs), such as through super-resolution, is a crucial research area. However, generative modeling for HSIs presents several challenges. Due to their high spectral dimensionality, HSIs are too memory-intensive for direct input into conventional diffusion models. Furthermore, general generative models lack an understanding of the topological and geometric structures of ground objects in remote sensing imagery. In addition, most diffusion models optimize loss functions at the noise level, leading to a non-intuitive convergence behavior and suboptimal generation quality for complex data. To address these challenges, we propose a Geometric Enhanced Wavelet-based Diffusion Model (GEWDiff), a novel framework for reconstructing hyperspectral images at 4-times super-resolution. A wavelet-based encoder-decoder is introduced that efficiently compresses HSIs into a latent space while preserving spectral-spatial information. To avoid distortion during generation, we incorporate a geometry-enhanced diffusion process that preserves the geometric features. Furthermore, a multi-level loss function was designed to guide the diffusion process, promoting stable convergence and improved reconstruction fidelity. Our model demonstrated state-of-the-art results across multiple dimensions, including fidelity, spectral accuracy, visual realism, and clarity.
comment: This manuscript has been accepted for publication in AAAI 2026
☆ E2E-VGuard: Adversarial Prevention for Production LLM-based End-To-End Speech Synthesis NeurIPS 2025
Recent advancements in speech synthesis technology have enriched our daily lives, with high-quality and human-like audio widely adopted across real-world applications. However, malicious exploitation like voice-cloning fraud poses severe security risks. Existing defense techniques struggle to address the production large language model (LLM)-based speech synthesis. While previous studies have considered the protection for fine-tuning synthesizers, they assume manually annotated transcripts. Given the labor intensity of manual annotation, end-to-end (E2E) systems leveraging automatic speech recognition (ASR) to generate transcripts are becoming increasingly prevalent, e.g., voice cloning via commercial APIs. Therefore, this E2E speech synthesis also requires new security mechanisms. To tackle these challenges, we propose E2E-VGuard, a proactive defense framework for two emerging threats: (1) production LLM-based speech synthesis, and (2) the novel attack arising from ASR-driven E2E scenarios. Specifically, we employ the encoder ensemble with a feature extractor to protect timbre, while ASR-targeted adversarial examples disrupt pronunciation. Moreover, we incorporate the psychoacoustic model to ensure perturbative imperceptibility. For a comprehensive evaluation, we test 16 open-source synthesizers and 3 commercial APIs across Chinese and English datasets, confirming E2E-VGuard's effectiveness in timbre and pronunciation protection. Real-world deployment validation is also conducted. Our code and demo page are available at https://wxzyd123.github.io/e2e-vguard/.
comment: Accepted to NeurIPS 2025
☆ Boosting Fine-Grained Urban Flow Inference via Lightweight Architecture and Focalized Optimization AAAI'26
Fine-grained urban flow inference is crucial for urban planning and intelligent transportation systems, enabling precise traffic management and resource allocation. However, the practical deployment of existing methods is hindered by two key challenges: the prohibitive computational cost of over-parameterized models and the suboptimal performance of conventional loss functions on the highly skewed distribution of urban flows. To address these challenges, we propose a unified solution that synergizes architectural efficiency with adaptive optimization. Specifically, we first introduce PLGF, a lightweight yet powerful architecture that employs a Progressive Local-Global Fusion strategy to effectively capture both fine-grained details and global contextual dependencies. Second, we propose DualFocal Loss, a novel function that integrates dual-space supervision with a difficulty-aware focusing mechanism, enabling the model to adaptively concentrate on hard-to-predict regions. Extensive experiments on 4 real-world scenarios validate the effectiveness and scalability of our method. Notably, while achieving state-of-the-art performance, PLGF reduces the model size by up to 97% compared to current high-performing methods. Furthermore, under comparable parameter budgets, our model yields an accuracy improvement of over 10% against strong baselines. The implementation is included in the https://github.com/Yasoz/PLGF.
comment: Accepted as a regular paper by AAAI'26
☆ Agentic AI Sustainability Assessment for Supply Chain Document Insights
This paper presents a comprehensive sustainability assessment framework for document intelligence within supply chain operations, centered on agentic artificial intelligence (AI). We address the dual objective of improving automation efficiency while providing measurable environmental performance in document-intensive workflows. The research compares three scenarios: fully manual (human-only), AI-assisted (human-in-the-loop, HITL), and an advanced multi-agent agentic AI workflow leveraging parsers and verifiers. Empirical results show that AI-assisted HITL and agentic AI scenarios achieve reductions of up to 70-90% in energy consumption, 90-97% in carbon dioxide emissions, and 89-98% in water usage compared to manual processes. Notably, full agentic configurations, combining advanced reasoning (thinking mode) and multi-agent validation, achieve substantial sustainability gains over human-only approaches, even when resource usage increases slightly versus simpler AI-assisted solutions. The framework integrates performance, energy, and emission indicators into a unified ESG-oriented methodology for assessing and governing AI-enabled supply chain solutions. The paper includes a complete replicability use case demonstrating the methodology's application to real-world document extraction tasks.
comment: 17 pages, 4 figures
☆ Data Complexity of Querying Description Logic Knowledge Bases under Cost-Based Semantics AAAI 2026
In this paper, we study the data complexity of querying inconsistent weighted description logic (DL) knowledge bases under recently-introduced cost-based semantics. In a nutshell, the idea is to assign each interpretation a cost based upon the weights of the violated axioms and assertions, and certain and possible query answers are determined by considering all (resp. some) interpretations having optimal or bounded cost. Whereas the initial study of cost-based semantics focused on DLs between $\mathcal{EL}_\bot$ and $\mathcal{ALCO}$, we consider DLs that may contain inverse roles and role inclusions, thus covering prominent DL-Lite dialects. Our data complexity analysis goes significantly beyond existing results by sharpening several lower bounds and pinpointing the precise complexity of optimal-cost certain answer semantics (no non-trivial upper bound was known). Moreover, while all existing results show the intractability of cost-based semantics, our most challenging and surprising result establishes that if we consider $\text{DL-Lite}^\mathcal{H}_\mathsf{bool}$ ontologies and a fixed cost bound, certain answers for instance queries and possible answers for conjunctive queries can be computed using first-order rewriting and thus enjoy the lowest possible data complexity ($\mathsf{TC}_0$).
comment: Long version of paper to appear in AAAI 2026
☆ Sample-efficient quantum error mitigation via classical learning surrogates
The pursuit of practical quantum utility on near-term quantum processors is critically challenged by their inherent noise. Quantum error mitigation (QEM) techniques are leading solutions to improve computation fidelity with relatively low qubit-overhead, while full-scale quantum error correction remains a distant goal. However, QEM techniques incur substantial measurement overheads, especially when applied to families of quantum circuits parameterized by classical inputs. Focusing on zero-noise extrapolation (ZNE), a widely adopted QEM technique, here we devise the surrogate-enabled ZNE (S-ZNE), which leverages classical learning surrogates to perform ZNE entirely on the classical side. Unlike conventional ZNE, whose measurement cost scales linearly with the number of circuits, S-ZNE requires only constant measurement overhead for an entire family of quantum circuits, offering superior scalability. Theoretical analysis indicates that S-ZNE achieves accuracy comparable to conventional ZNE in many practical scenarios, and numerical experiments on up to 100-qubit ground-state energy and quantum metrology tasks confirm its effectiveness. Our approach provides a template that can be effectively extended to other quantum error mitigation protocols, opening a promising path toward scalable error mitigation.
comment: 26 pages, 8 figures
☆ How Bias Binds: Measuring Hidden Associations for Bias Control in Text-to-Image Compositions AAAI
Text-to-image generative models often exhibit bias related to sensitive attributes. However, current research tends to focus narrowly on single-object prompts with limited contextual diversity. In reality, each object or attribute within a prompt can contribute to bias. For example, the prompt "an assistant wearing a pink hat" may reflect female-inclined biases associated with a pink hat. The neglected joint effects of the semantic binding in the prompts cause significant failures in current debiasing approaches. This work initiates a preliminary investigation on how bias manifests under semantic binding, where contextual associations between objects and attributes influence generative outcomes. We demonstrate that the underlying bias distribution can be amplified based on these associations. Therefore, we introduce a bias adherence score that quantifies how specific object-attribute bindings activate bias. To delve deeper, we develop a training-free context-bias control framework to explore how token decoupling can facilitate the debiasing of semantic bindings. This framework achieves over 10% debiasing improvement in compositional generation tasks. Our analysis of bias scores across various attribute-object bindings and token decorrelation highlights a fundamental challenge: reducing bias without disrupting essential semantic relationships. These findings expose critical limitations in current debiasing approaches when applied to semantically bound contexts, underscoring the need to reassess prevailing bias mitigation strategies.
comment: Accepted for publication at the Alignment Track of The 40th Annual AAAI Conference on Artificial Intelligence (AAAI 2026)
☆ Green AI: A systematic review and meta-analysis of its definitions, lifecycle models, hardware and measurement attempts
Across the Artificial Intelligence (AI) lifecycle - from hardware to development, deployment, and reuse - burdens span energy, carbon, water, and embodied impacts. Cloud provider tools improve transparency but remain heterogeneous and often omit water and value chain effects, limiting comparability and reproducibility. Addressing these multi dimensional burdens requires a lifecycle approach linking phase explicit mapping with system levers (hardware, placement, energy mix, cooling, scheduling) and calibrated measurement across facility, system, device, and workload levels. This article (i) establishes a unified, operational definition of Green AI distinct from Sustainable AI; (ii) formalizes a five phase lifecycle mapped to Life Cycle Assessment (LCA) stages, making energy, carbon, water, and embodied impacts first class; (iii) specifies governance via Plan Do Check Act (PDCA) cycles with decision gateways; (iv) systematizes hardware and system level strategies across the edge cloud continuum to reduce embodied burdens; and (v) defines a calibrated measurement framework combining estimator models with direct metering to enable reproducible, provider agnostic comparisons. Combining definition, lifecycle processes, hardware strategies, and calibrated measurement, this article offers actionable, evidence based guidance for researchers, practitioners, and policymakers.
LLM Driven Processes to Foster Explainable AI
We present a modular, explainable LLM-agent pipeline for decision support that externalizes reasoning into auditable artifacts. The system instantiates three frameworks: Vester's Sensitivity Model (factor set, signed impact matrix, systemic roles, feedback loops); normal-form games (strategies, payoff matrix, equilibria); and sequential games (role-conditioned agents, tree construction, backward induction), with swappable modules at every step. LLM components (default: GPT-5) are paired with deterministic analyzers for equilibria and matrix-based role classification, yielding traceable intermediates rather than opaque outputs. In a real-world logistics case (100 runs), mean factor alignment with a human baseline was 55.5\% over 26 factors and 62.9\% on the transport-core subset; role agreement over matches was 57\%. An LLM judge using an eight-criterion rubric (max 100) scored runs on par with a reconstructed human baseline. Configurable LLM pipelines can thus mimic expert workflows with transparent, inspectable steps.
☆ Achieving Effective Virtual Reality Interactions via Acoustic Gesture Recognition based on Large Language Models ICASSP 2026
Natural and efficient interaction remains a critical challenge for virtual reality and augmented reality (VR/AR) systems. Vision-based gesture recognition suffers from high computational cost, sensitivity to lighting conditions, and privacy leakage concerns. Acoustic sensing provides an attractive alternative: by emitting inaudible high-frequency signals and capturing their reflections, channel impulse response (CIR) encodes how gestures perturb the acoustic field in a low-cost and user-transparent manner. However, existing CIR-based gesture recognition methods often rely on extensive training of models on large labeled datasets, making them unsuitable for few-shot VR scenarios. In this work, we propose the first framework that leverages large language models (LLMs) for CIR-based gesture recognition in VR/AR systems. Despite LLMs' strengths, it is non-trivial to achieve few-shot and zero-shot learning of CIR gestures due to their inconspicuous features. To tackle this challenge, we collect differential CIR rather than original CIR data. Moreover, we construct a real-world dataset collected from 10 participants performing 15 gestures across three categories (digits, letters, and shapes), with 10 repetitions each. We then conduct extensive experiments on this dataset using an LLM-adopted classifier. Results show that our LLM-based framework achieves accuracy comparable to classical machine learning baselines, while requiring no domain-specific retraining.
comment: 5 pages, 4 figures, 1 table, under review at ICASSP 2026
☆ Pandar128 dataset for lane line detection
We present Pandar128, the largest public dataset for lane line detection using a 128-beam LiDAR. It contains over 52,000 camera frames and 34,000 LiDAR scans, captured in diverse real-world conditions in Germany. The dataset includes full sensor calibration (intrinsics, extrinsics) and synchronized odometry, supporting tasks such as projection, fusion, and temporal modeling. To complement the dataset, we also introduce SimpleLidarLane, a light-weight baseline method for lane line reconstruction that combines BEV segmentation, clustering, and polyline fitting. Despite its simplicity, our method achieves strong performance under challenging various conditions (e.g., rain, sparse returns), showing that modular pipelines paired with high-quality data and principled evaluation can compete with more complex approaches. Furthermore, to address the lack of standardized evaluation, we propose a novel polyline-based metric - Interpolation-Aware Matching F1 (IAM-F1) - that employs interpolation-aware lateral matching in BEV space. All data and code are publicly released to support reproducibility in LiDAR-based lane detection.
☆ Increasing AI Explainability by LLM Driven Standard Processes
This paper introduces an approach to increasing the explainability of artificial intelligence (AI) systems by embedding Large Language Models (LLMs) within standardized analytical processes. While traditional explainable AI (XAI) methods focus on feature attribution or post-hoc interpretation, the proposed framework integrates LLMs into defined decision models such as Question-Option-Criteria (QOC), Sensitivity Analysis, Game Theory, and Risk Management. By situating LLM reasoning within these formal structures, the approach transforms opaque inference into transparent and auditable decision traces. A layered architecture is presented that separates the reasoning space of the LLM from the explainable process space above it. Empirical evaluations show that the system can reproduce human-level decision logic in decentralized governance, systems analysis, and strategic reasoning contexts. The results suggest that LLM-driven standard processes provide a foundation for reliable, interpretable, and verifiable AI-supported decision making.
☆ Wasm: A Pipeline for Constructing Structured Arabic Interleaved Multimodal Corpora
The performance of large language models (LLMs) and large multimodal models (LMMs) depends heavily on the quality and scale of their pre-training datasets. Recent research shows that large multimodal models trained on natural documents where images and text are interleaved outperform those trained only on image-text pairs across a wide range of benchmarks, leveraging advanced pre- trained models to enforce semantic alignment, image-sequence consistency, and textual coherence. For Arabic, however, the lack of high-quality multimodal datasets that preserve document structure has limited progress. In this paper, we present our pipeline Wasm for processing the Common Crawl dataset to create a new Arabic multimodal dataset that uniquely provides markdown output. Unlike existing Arabic corpora that focus solely on text extraction, our approach preserves the structural integrity of web content while maintaining flexibility for both text-only and multimodal pre-training scenarios. We provide a comprehensive comparative analysis of our data processing pipeline against those used for major existing datasets, highlighting the convergences in filtering strategies and justifying our specific design choices. To support future research, we publicly release a representative dataset dump along with the multimodal processing pipeline for Arabic.
☆ RedOne 2.0: Rethinking Domain-specific LLM Post-Training in Social Networking Services
As a key medium for human interaction and information exchange, social networking services (SNS) pose unique challenges for large language models (LLMs): heterogeneous workloads, fast-shifting norms and slang, and multilingual, culturally diverse corpora that induce sharp distribution shift. Supervised fine-tuning (SFT) can specialize models but often triggers a ``seesaw'' between in-distribution gains and out-of-distribution robustness, especially for smaller models. To address these challenges, we introduce RedOne 2.0, an SNS-oriented LLM trained with a progressive, RL-prioritized post-training paradigm designed for rapid and stable adaptation. The pipeline consist in three stages: (1) Exploratory Learning on curated SNS corpora to establish initial alignment and identify systematic weaknesses; (2) Targeted Fine-Tuning that selectively applies SFT to the diagnosed gaps while mixing a small fraction of general data to mitigate forgetting; and (3) Refinement Learning that re-applies RL with SNS-centric signals to consolidate improvements and harmonize trade-offs across tasks. Across various tasks spanning three categories, our 4B scale model delivers an average improvements about 2.41 over the 7B sub-optimal baseline. Additionally, RedOne 2.0 achieves average performance lift about 8.74 from the base model with less than half the data required by SFT-centric method RedOne, evidencing superior data efficiency and stability at compact scales. Overall, RedOne 2.0 establishes a competitive, cost-effective baseline for domain-specific LLMs in SNS scenario, advancing capability without sacrificing robustness.
☆ Improving Region Representation Learning from Urban Imagery with Noisy Long-Caption Supervision AAAI-26
Region representation learning plays a pivotal role in urban computing by extracting meaningful features from unlabeled urban data. Analogous to how perceived facial age reflects an individual's health, the visual appearance of a city serves as its ``portrait", encapsulating latent socio-economic and environmental characteristics. Recent studies have explored leveraging Large Language Models (LLMs) to incorporate textual knowledge into imagery-based urban region representation learning. However, two major challenges remain: i)~difficulty in aligning fine-grained visual features with long captions, and ii) suboptimal knowledge incorporation due to noise in LLM-generated captions. To address these issues, we propose a novel pre-training framework called UrbanLN that improves Urban region representation learning through Long-text awareness and Noise suppression. Specifically, we introduce an information-preserved stretching interpolation strategy that aligns long captions with fine-grained visual semantics in complex urban scenes. To effectively mine knowledge from LLM-generated captions and filter out noise, we propose a dual-level optimization strategy. At the data level, a multi-model collaboration pipeline automatically generates diverse and reliable captions without human intervention. At the model level, we employ a momentum-based self-distillation mechanism to generate stable pseudo-targets, facilitating robust cross-modal learning under noisy conditions. Extensive experiments across four real-world cities and various downstream tasks demonstrate the superior performance of our UrbanLN.
comment: Accepted as a full paper by AAAI-26
☆ Do LLMs Feel? Teaching Emotion Recognition with Prompts, Retrieval, and Curriculum Learning AAAI 2026
Emotion Recognition in Conversation (ERC) is a crucial task for understanding human emotions and enabling natural human-computer interaction. Although Large Language Models (LLMs) have recently shown great potential in this field, their ability to capture the intrinsic connections between explicit and implicit emotions remains limited. We propose a novel ERC training framework, PRC-Emo, which integrates Prompt engineering, demonstration Retrieval, and Curriculum learning, with the goal of exploring whether LLMs can effectively perceive emotions in conversational contexts. Specifically, we design emotion-sensitive prompt templates based on both explicit and implicit emotional cues to better guide the model in understanding the speaker's psychological states. We construct the first dedicated demonstration retrieval repository for ERC, which includes training samples from widely used datasets, as well as high-quality dialogue examples generated by LLMs and manually verified. Moreover, we introduce a curriculum learning strategy into the LoRA fine-tuning process, incorporating weighted emotional shifts between same-speaker and different-speaker utterances to assign difficulty levels to dialogue samples, which are then organized in an easy-to-hard training sequence. Experimental results on two benchmark datasets-- IEMOCAP and MELD --show that our method achieves new state-of-the-art (SOTA) performance, demonstrating the effectiveness and generalizability of our approach in improving LLM-based emotional understanding.
comment: Accepted at AAAI 2026
☆ TauFlow: Dynamic Causal Constraint for Complexity-Adaptive Lightweight Segmentation
Deploying lightweight medical image segmentation models on edge devices presents two major challenges: 1) efficiently handling the stark contrast between lesion boundaries and background regions, and 2) the sharp drop in accuracy that occurs when pursuing extremely lightweight designs (e.g., <0.5M parameters). To address these problems, this paper proposes TauFlow, a novel lightweight segmentation model. The core of TauFlow is a dynamic feature response strategy inspired by brain-like mechanisms. This is achieved through two key innovations: the Convolutional Long-Time Constant Cell (ConvLTC), which dynamically regulates the feature update rate to "slowly" process low-frequency backgrounds and "quickly" respond to high-frequency boundaries; and the STDP Self-Organizing Module, which significantly mitigates feature conflicts between the encoder and decoder, reducing the conflict rate from approximately 35%-40% to 8%-10%.
comment: 42 pages and 9 figures
☆ Learning Quantized Continuous Controllers for Integer Hardware
Deploying continuous-control reinforcement learning policies on embedded hardware requires meeting tight latency and power budgets. Small FPGAs can deliver these, but only if costly floating point pipelines are avoided. We study quantization-aware training (QAT) of policies for integer inference and we present a learning-to-hardware pipeline that automatically selects low-bit policies and synthesizes them to an Artix-7 FPGA. Across five MuJoCo tasks, we obtain policy networks that are competitive with full precision (FP32) policies but require as few as 3 or even only 2 bits per weight, and per internal activation value, as long as input precision is chosen carefully. On the target hardware, the selected policies achieve inference latencies on the order of microseconds and consume microjoules per action, favorably comparing to a quantized reference. Last, we observe that the quantized policies exhibit increased input noise robustness compared to the floating-point baseline.
comment: 17 pages, 6 figures
☆ Benchmarking LLMs for Fine-Grained Code Review with Enriched Context in Practice
Code review is a cornerstone of software quality assurance, and recent advances in Large Language Models (LLMs) have shown promise in automating this process. However, existing benchmarks for LLM-based code review face three major limitations. (1) Lack of semantic context: most benchmarks provide only code diffs without textual information such as issue descriptions, which are crucial for understanding developer intent. (2) Data quality issues: without rigorous validation, many samples are noisy-e.g., reviews on outdated or irrelevant code-reducing evaluation reliability. (3) Coarse granularity: most benchmarks operate at the file or commit level, overlooking the fine-grained, line-level reasoning essential for precise review. We introduce ContextCRBench, a high-quality, context-rich benchmark for fine-grained LLM evaluation in code review. Our construction pipeline comprises: (1) Raw Data Crawling, collecting 153.7K issues and pull requests from top-tier repositories; (2) Comprehensive Context Extraction, linking issue-PR pairs for textual context and extracting the full surrounding function or class for code context; and (3) Multi-stage Data Filtering, combining rule-based and LLM-based validation to remove outdated, malformed, or low-value samples, resulting in 67,910 context-enriched entries. ContextCRBench supports three evaluation scenarios aligned with the review workflow: (1) hunk-level quality assessment, (2) line-level defect localization, and (3) line-level comment generation. Evaluating eight leading LLMs (four closed-source and four open-source) reveals that textual context yields greater performance gains than code context alone, while current LLMs remain far from human-level review ability. Deployed at ByteDance, ContextCRBench drives a self-evolving code review system, improving performance by 61.98% and demonstrating its robustness and industrial utility.
☆ Diffolio: A Diffusion Model for Multivariate Probabilistic Financial Time-Series Forecasting and Portfolio Construction
Probabilistic forecasting is crucial in multivariate financial time-series for constructing efficient portfolios that account for complex cross-sectional dependencies. In this paper, we propose Diffolio, a diffusion model designed for multivariate financial time-series forecasting and portfolio construction. Diffolio employs a denoising network with a hierarchical attention architecture, comprising both asset-level and market-level layers. Furthermore, to better reflect cross-sectional correlations, we introduce a correlation-guided regularizer informed by a stable estimate of the target correlation matrix. This structure effectively extracts salient features not only from historical returns but also from asset-specific and systematic covariates, significantly enhancing the performance of forecasts and portfolios. Experimental results on the daily excess returns of 12 industry portfolios show that Diffolio outperforms various probabilistic forecasting baselines in multivariate forecasting accuracy and portfolio performance. Moreover, in portfolio experiments, portfolios constructed from Diffolio's forecasts show consistently robust performance, thereby outperforming those from benchmarks by achieving higher Sharpe ratios for the mean-variance tangency portfolio and higher certainty equivalents for the growth-optimal portfolio. These results demonstrate the superiority of our proposed Diffolio in terms of not only statistical accuracy but also economic significance.
☆ TrueCity: Real and Simulated Urban Data for Cross-Domain 3D Scene Understanding 3DV 2026
3D semantic scene understanding remains a long-standing challenge in the 3D computer vision community. One of the key issues pertains to limited real-world annotated data to facilitate generalizable models. The common practice to tackle this issue is to simulate new data. Although synthetic datasets offer scalability and perfect labels, their designer-crafted scenes fail to capture real-world complexity and sensor noise, resulting in a synthetic-to-real domain gap. Moreover, no benchmark provides synchronized real and simulated point clouds for segmentation-oriented domain shift analysis. We introduce TrueCity, the first urban semantic segmentation benchmark with cm-accurate annotated real-world point clouds, semantic 3D city models, and annotated simulated point clouds representing the same city. TrueCity proposes segmentation classes aligned with international 3D city modeling standards, enabling consistent evaluation of synthetic-to-real gap. Our extensive experiments on common baselines quantify domain shift and highlight strategies for exploiting synthetic data to enhance real-world 3D scene understanding. We are convinced that the TrueCity dataset will foster further development of sim-to-real gap quantification and enable generalizable data-driven models. The data, code, and 3D models are available online: https://tum-gis.github.io/TrueCity/
comment: The paper accepted for 3DV 2026 (International Conference on 3D Vision 2026)
☆ S$^2$Drug: Bridging Protein Sequence and 3D Structure in Contrastive Representation Learning for Virtual Screening AAAI 2026
Virtual screening (VS) is an essential task in drug discovery, focusing on the identification of small-molecule ligands that bind to specific protein pockets. Existing deep learning methods, from early regression models to recent contrastive learning approaches, primarily rely on structural data while overlooking protein sequences, which are more accessible and can enhance generalizability. However, directly integrating protein sequences poses challenges due to the redundancy and noise in large-scale protein-ligand datasets. To address these limitations, we propose \textbf{S$^2$Drug}, a two-stage framework that explicitly incorporates protein \textbf{S}equence information and 3D \textbf{S}tructure context in protein-ligand contrastive representation learning. In the first stage, we perform protein sequence pretraining on ChemBL using an ESM2-based backbone, combined with a tailored data sampling strategy to reduce redundancy and noise on both protein and ligand sides. In the second stage, we fine-tune on PDBBind by fusing sequence and structure information through a residue-level gating module, while introducing an auxiliary binding site prediction task. This auxiliary task guides the model to accurately localize binding residues within the protein sequence and capture their 3D spatial arrangement, thereby refining protein-ligand matching. Across multiple benchmarks, S$^2$Drug consistently improves virtual screening performance and achieves strong results on binding site prediction, demonstrating the value of bridging sequence and structure in contrastive learning.
comment: Accepted by AAAI 2026 Main Technical Track
☆ Hybrid Autoencoders for Tabular Data: Leveraging Model-Based Augmentation in Low-Label Settings
Deep neural networks often under-perform on tabular data due to their sensitivity to irrelevant features and a spectral bias toward smooth, low-frequency functions. These limitations hinder their ability to capture the sharp, high-frequency signals that often define tabular structure, especially under limited labeled samples. While self-supervised learning (SSL) offers promise in such settings, it remains challenging in tabular domains due to the lack of effective data augmentations. We propose a hybrid autoencoder that combines a neural encoder with an oblivious soft decision tree (OSDT) encoder, each guided by its own stochastic gating network that performs sample-specific feature selection. Together, these structurally different encoders and model-specific gating networks implement model-based augmentation, producing complementary input views tailored to each architecture. The two encoders, trained with a shared decoder and cross-reconstruction loss, learn distinct yet aligned representations that reflect their respective inductive biases. During training, the OSDT encoder (robust to noise and effective at modeling localized, high-frequency structure) guides the neural encoder toward representations more aligned with tabular data. At inference, only the neural encoder is used, preserving flexibility and SSL compatibility. Spectral analysis highlights the distinct inductive biases of each encoder. Our method achieves consistent gains in low-label classification and regression across diverse tabular datasets, outperforming deep and tree-based supervised baselines.
comment: accepted to neurips 2025, main text is 10 pages
☆ FoCLIP: A Feature-Space Misalignment Framework for CLIP-Based Image Manipulation and Detection
The well-aligned attribute of CLIP-based models enables its effective application like CLIPscore as a widely adopted image quality assessment metric. However, such a CLIP-based metric is vulnerable for its delicate multimodal alignment. In this work, we propose \textbf{FoCLIP}, a feature-space misalignment framework for fooling CLIP-based image quality metric. Based on the stochastic gradient descent technique, FoCLIP integrates three key components to construct fooling examples: feature alignment as the core module to reduce image-text modality gaps, the score distribution balance module and pixel-guard regularization, which collectively optimize multimodal output equilibrium between CLIPscore performance and image quality. Such a design can be engineered to maximize the CLIPscore predictions across diverse input prompts, despite exhibiting either visual unrecognizability or semantic incongruence with the corresponding adversarial prompts from human perceptual perspectives. Experiments on ten artistic masterpiece prompts and ImageNet subsets demonstrate that optimized images can achieve significant improvement in CLIPscore while preserving high visual fidelity. In addition, we found that grayscale conversion induces significant feature degradation in fooling images, exhibiting noticeable CLIPscore reduction while preserving statistical consistency with original images. Inspired by this phenomenon, we propose a color channel sensitivity-driven tampering detection mechanism that achieves 91% accuracy on standard benchmarks. In conclusion, this work establishes a practical pathway for feature misalignment in CLIP-based multimodal systems and the corresponding defense method.
comment: 15 page, 9 figures, published to PRCV
☆ Learning to Focus: Prioritizing Informative Histories with Structured Attention Mechanisms in Partially Observable Reinforcement Learning NeurIPS 2025
Transformers have shown strong ability to model long-term dependencies and are increasingly adopted as world models in model-based reinforcement learning (RL) under partial observability. However, unlike natural language corpora, RL trajectories are sparse and reward-driven, making standard self-attention inefficient because it distributes weight uniformly across all past tokens rather than emphasizing the few transitions critical for control. To address this, we introduce structured inductive priors into the self-attention mechanism of the dynamics head: (i) per-head memory-length priors that constrain attention to task-specific windows, and (ii) distributional priors that learn smooth Gaussian weightings over past state-action pairs. We integrate these mechanisms into UniZero, a model-based RL agent with a Transformer-based world model that supports planning under partial observability. Experiments on the Atari 100k benchmark show that most efficiency gains arise from the Gaussian prior, which smoothly allocates attention to informative transitions, while memory-length priors often truncate useful signals with overly restrictive cut-offs. In particular, Gaussian Attention achieves a 77% relative improvement in mean human-normalized scores over UniZero. These findings suggest that in partially observable RL domains with non-stationary temporal dependencies, discrete memory windows are difficult to learn reliably, whereas smooth distributional priors flexibly adapt across horizons and yield more robust data efficiency. Overall, our results demonstrate that encoding structured temporal priors directly into self-attention improves the prioritization of informative histories for dynamics modeling under partial observability.
comment: Accepted to Embodied World Models for Decision Making (EWM) Workshop at NeurIPS 2025
☆ From Attribution to Action: Jointly ALIGNing Predictions and Explanations AAAI 2026
Explanation-guided learning (EGL) has shown promise in aligning model predictions with interpretable reasoning, particularly in computer vision tasks. However, most approaches rely on external annotations or heuristic-based segmentation to supervise model explanations, which can be noisy, imprecise and difficult to scale. In this work, we provide both empirical and theoretical evidence that low-quality supervision signals can degrade model performance rather than improve it. In response, we propose ALIGN, a novel framework that jointly trains a classifier and a masker in an iterative manner. The masker learns to produce soft, task-relevant masks that highlight informative regions, while the classifier is optimized for both prediction accuracy and alignment between its saliency maps and the learned masks. By leveraging high-quality masks as guidance, ALIGN improves both interpretability and generalizability, showing its superiority across various settings. Experiments on the two domain generalization benchmarks, VLCS and Terra Incognita, show that ALIGN consistently outperforms six strong baselines in both in-distribution and out-of-distribution settings. Besides, ALIGN also yields superior explanation quality concerning sufficiency and comprehensiveness, highlighting its effectiveness in producing accurate and interpretable models.
comment: Accepted in AAAI 2026
☆ PlantTraitNet: An Uncertainty-Aware Multimodal Framework for Global-Scale Plant Trait Inference from Citizen Science Data AAAI
Global plant maps of plant traits, such as leaf nitrogen or plant height, are essential for understanding ecosystem processes, including the carbon and energy cycles of the Earth system. However, existing trait maps remain limited by the high cost and sparse geographic coverage of field-based measurements. Citizen science initiatives offer a largely untapped resource to overcome these limitations, with over 50 million geotagged plant photographs worldwide capturing valuable visual information on plant morphology and physiology. In this study, we introduce PlantTraitNet, a multi-modal, multi-task uncertainty-aware deep learning framework that predictsfour key plant traits (plant height, leaf area, specific leaf area, and nitrogen content) from citizen science photos using weak supervision. By aggregating individual trait predictions across space, we generate global maps of trait distributions. We validate these maps against independent vegetation survey data (sPlotOpen) and benchmark them against leading global trait products. Our results show that PlantTraitNet consistently outperforms existing trait maps across all evaluated traits, demonstrating that citizen science imagery, when integrated with computer vision and geospatial AI, enables not only scalable but also more accurate global trait mapping. This approach offers a powerful new pathway for ecological research and Earth system modeling.
comment: Preprint version of the paper accepted at the 40th AAAI Conference on Artificial Intelligence (AAAI-26), organized by the Association for the Advancement of Artificial Intelligence
☆ Fine-Tuning Diffusion-Based Recommender Systems via Reinforcement Learning with Reward Function Optimization
Diffusion models recently emerged as a powerful paradigm for recommender systems, offering state-of-the-art performance by modeling the generative process of user-item interactions. However, training such models from scratch is both computationally expensive and yields diminishing returns once convergence is reached. To remedy these challenges, we propose ReFiT, a new framework that integrates Reinforcement learning (RL)-based Fine-Tuning into diffusion-based recommender systems. In contrast to prior RL approaches for diffusion models depending on external reward models, ReFiT adopts a task-aligned design: it formulates the denoising trajectory as a Markov decision process (MDP) and incorporates a collaborative signal-aware reward function that directly reflects recommendation quality. By tightly coupling the MDP structure with this reward signal, ReFiT empowers the RL agent to exploit high-order connectivity for fine-grained optimization, while avoiding the noisy or uninformative feedback common in naive reward designs. Leveraging policy gradient optimization, ReFiT maximizes exact log-likelihood of observed interactions, thereby enabling effective post hoc fine-tuning of diffusion recommenders. Comprehensive experiments on wide-ranging real-world datasets demonstrate that the proposed ReFiT framework (a) exhibits substantial performance gains over strong competitors (up to 36.3% on sequential recommendation), (b) demonstrates strong efficiency with linear complexity in the number of users or items, and (c) generalizes well across multiple diffusion-based recommendation scenarios. The source code and datasets are publicly available at https://anonymous.4open.science/r/ReFiT-4C60.
comment: 14 pages, 12 figures, 9 tables
☆ Proceedings of the 2025 XCSP3 Competition
This document represents the proceedings of the 2025 XCSP3 Competition. The results of this competition of constraint solvers were presented at CP'25 (31st International Conference on Principles and Practice of Constraint Programming).
comment: 110 pages
☆ Sampling and Loss Weights in Multi-Domain Training
In the training of large deep neural networks, there is a need for vast amounts of training data. To meet this need, data is collected from multiple domains, such as Wikipedia and GitHub. These domains are heterogeneous in both data quality and the diversity of information they provide. This raises the question of how much we should rely on each domain. Several methods have attempted to address this issue by assigning sampling weights to each data domain using heuristics or approximations. As a first step toward a deeper understanding of the role of data mixing, this work revisits the problem by studying two kinds of weights: sampling weights, which control how much each domain contributes in a batch, and loss weights, which scale the loss from each domain during training. Through a rigorous study of linear regression, we show that these two weights play complementary roles. First, they can reduce the variance of gradient estimates in iterative methods such as stochastic gradient descent (SGD). Second, they can improve generalization performance by reducing the generalization gap. We provide both theoretical and empirical support for these claims. We further study the joint dynamics of sampling weights and loss weights, examining how they can be combined to capture both contributions.
☆ Counterfactual Explanation for Multivariate Time Series Forecasting with Exogenous Variables
Currently, machine learning is widely used across various domains, including time series data analysis. However, some machine learning models function as black boxes, making interpretability a critical concern. One approach to address this issue is counterfactual explanation (CE), which aims to provide insights into model predictions. This study focuses on the relatively underexplored problem of generating counterfactual explanations for time series forecasting. We propose a method for extracting CEs in time series forecasting using exogenous variables, which are frequently encountered in fields such as business and marketing. In addition, we present methods for analyzing the influence of each variable over an entire time series, generating CEs by altering only specific variables, and evaluating the quality of the resulting CEs. We validate the proposed method through theoretical analysis and empirical experiments, showcasing its accuracy and practical applicability. These contributions are expected to support real-world decision-making based on time series data analysis.
comment: 27pages,9figures,9tables
☆ RPTS: Tree-Structured Reasoning Process Scoring for Faithful Multimodal Evaluation
Large Vision-Language Models (LVLMs) excel in multimodal reasoning and have shown impressive performance on various multimodal benchmarks. However, most of these benchmarks evaluate models primarily through multiple-choice or short-answer formats, which do not take the reasoning process into account. Although some benchmarks assess the reasoning process, their methods are often overly simplistic and only examine reasoning when answers are incorrect. This approach overlooks scenarios where flawed reasoning leads to correct answers. In addition, these benchmarks do not consider the impact of intermodal relationships on reasoning. To address this issue, we propose the Reasoning Process Tree Score (RPTS), a tree structure-based metric to assess reasoning processes. Specifically, we organize the reasoning steps into a reasoning tree and leverage its hierarchical information to assign weighted faithfulness scores to each reasoning step. By dynamically adjusting these weights, RPTS not only evaluates the overall correctness of the reasoning, but also pinpoints where the model fails in the reasoning. To validate RPTS in real-world multimodal scenarios, we construct a new benchmark, RPTS-Eval, comprising 374 images and 390 reasoning instances. Each instance includes reliable visual-textual clues that serve as leaf nodes of the reasoning tree. Furthermore, we define three types of intermodal relationships to investigate how intermodal interactions influence the reasoning process. We evaluated representative LVLMs (e.g., GPT4o, Llava-Next), uncovering their limitations in multimodal reasoning and highlighting the differences between open-source and closed-source commercial LVLMs. We believe that this benchmark will contribute to the advancement of research in the field of multimodal reasoning.
☆ A Hybrid Autoencoder-Transformer Model for Robust Day-Ahead Electricity Price Forecasting under Extreme Conditions
Accurate day-ahead electricity price forecasting (DAEPF) is critical for the efficient operation of power systems, but extreme condition and market anomalies pose significant challenges to existing forecasting methods. To overcome these challenges, this paper proposes a novel hybrid deep learning framework that integrates a Distilled Attention Transformer (DAT) model and an Autoencoder Self-regression Model (ASM). The DAT leverages a self-attention mechanism to dynamically assign higher weights to critical segments of historical data, effectively capturing both long-term trends and short-term fluctuations. Concurrently, the ASM employs unsupervised learning to detect and isolate anomalous patterns induced by extreme conditions, such as heavy rain, heat waves, or human festivals. Experiments on datasets sampled from California and Shandong Province demonstrate that our framework significantly outperforms state-of-the-art methods in prediction accuracy, robustness, and computational efficiency. Our framework thus holds promise for enhancing grid resilience and optimizing market operations in future power systems.
comment: Published in 2025 IEEE 1st International Symposium on the Application of Artificial Intelligence in Electrical Engineering (AAIEE) https://ieeexplore.ieee.org/document/11100637
☆ On The Presence of Double-Descent in Deep Reinforcement Learning
The double descent (DD) paradox, where over-parameterized models see generalization improve past the interpolation point, remains largely unexplored in the non-stationary domain of Deep Reinforcement Learning (DRL). We present preliminary evidence that DD exists in model-free DRL, investigating it systematically across varying model capacity using the Actor-Critic framework. We rely on an information-theoretic metric, Policy Entropy, to measure policy uncertainty throughout training. Preliminary results show a clear epoch-wise DD curve; the policy's entrance into the second descent region correlates with a sustained, significant reduction in Policy Entropy. This entropic decay suggests that over-parameterization acts as an implicit regularizer, guiding the policy towards robust, flatter minima in the loss landscape. These findings establish DD as a factor in DRL and provide an information-based mechanism for designing agents that are more general, transferable, and robust.
☆ COGNOS: Universal Enhancement for Time Series Anomaly Detection via Constrained Gaussian-Noise Optimization and Smoothing
Reconstruction-based methods are a dominant paradigm in time series anomaly detection (TSAD), however, their near-universal reliance on Mean Squared Error (MSE) loss results in statistically flawed reconstruction residuals. This fundamental weakness leads to noisy, unstable anomaly scores with a poor signal-to-noise ratio, hindering reliable detection. To address this, we propose Constrained Gaussian-Noise Optimization and Smoothing (COGNOS), a universal, model-agnostic enhancement framework that tackles this issue at its source. COGNOS introduces a novel Gaussian-White Noise Regularization strategy during training, which directly constrains the model's output residuals to conform to a Gaussian white noise distribution. This engineered statistical property creates the ideal precondition for our second contribution: a Kalman Smoothing Post-processor that provably operates as a statistically optimal estimator to denoise the raw anomaly scores. The synergy between these two components allows COGNOS to robustly separate the true anomaly signal from random fluctuations. Extensive experiments demonstrate that COGNOS is highly effective, delivering an average F-score uplift of 57.9% when applied to 12 diverse backbone models across multiple real-world benchmark datasets. Our work reveals that directly regularizing output statistics is a powerful and generalizable strategy for significantly improving anomaly detection systems.
☆ DeepBooTS: Dual-Stream Residual Boosting for Drift-Resilient Time-Series Forecasting AAAI-26
Time-Series (TS) exhibits pronounced non-stationarity. Consequently, most forecasting methods display compromised robustness to concept drift, despite the prevalent application of instance normalization. We tackle this challenge by first analysing concept drift through a bias-variance lens and proving that weighted ensemble reduces variance without increasing bias. These insights motivate DeepBooTS, a novel end-to-end dual-stream residual-decreasing boosting method that progressively reconstructs the intrinsic signal. In our design, each block of a deep model becomes an ensemble of learners with an auxiliary output branch forming a highway to the final prediction. The block-wise outputs correct the residuals of previous blocks, leading to a learning-driven decomposition of both inputs and targets. This method enhances versatility and interpretability while substantially improving robustness to concept drift. Extensive experiments, including those on large-scale datasets, show that the proposed method outperforms existing methods by a large margin, yielding an average performance improvement of 15.8% across various datasets, establishing a new benchmark for TS forecasting.
comment: 28 pages,17 pages, Published in AAAI-26
☆ TuckA: Hierarchical Compact Tensor Experts for Efficient Fine-Tuning
Efficiently fine-tuning pre-trained models for downstream tasks is a key challenge in the era of foundation models. Parameter-efficient fine-tuning (PEFT) presents a promising solution, achieving performance comparable to full fine-tuning by updating only a small number of adaptation weights per layer. Traditional PEFT methods typically rely on a single expert, where the adaptation weight is a low-rank matrix. However, for complex tasks, the data's inherent diversity poses a significant challenge for such models, as a single adaptation weight cannot adequately capture the features of all samples. To address this limitation, we explore how to integrate multiple small adaptation experts into a compact structure to defeat a large adapter. Specifically, we propose Tucker Adaptation (TuckA), a method with four key properties: (i) We use Tucker decomposition to create a compact 3D tensor where each slice naturally serves as an expert. The low-rank nature of this decomposition ensures that the number of parameters scales efficiently as more experts are added. (ii) We introduce a hierarchical strategy that organizes these experts into groups at different granularities, allowing the model to capture both local and global data patterns. (iii) We develop an efficient batch-level routing mechanism, which reduces the router's parameter size by a factor of $L$ compared to routing at every adapted layer (where $L$ is the number of adapted layers) (iv) We propose data-aware initialization to achieve loss-free expert load balancing based on theoretical analysis. Extensive experiments on benchmarks in natural language understanding, image classification, and mathematical reasoning speak to the efficacy of TuckA, offering a new and effective solution to the PEFT problem.
☆ Deep learning EPI-TIRF cross-modality enables background subtraction and axial super-resolution for widefield fluorescence microscopy
The resolving ability of wide-field fluorescence microscopy is fundamentally limited by out-of-focus background owing to its low axial resolution, particularly for densely labeled biological samples. To address this, we developed ET2dNet, a deep learning-based EPI-TIRF cross-modality network that achieves TIRF-comparable background subtraction and axial super-resolution from a single wide-field image without requiring hardware modifications. The model employs a physics-informed hybrid architecture, synergizing supervised learning with registered EPI-TIRF image pairs and self-supervised physical modeling via convolution with the point spread function. This framework ensures exceptional generalization across microscope objectives, enabling few-shot adaptation to new imaging setups. Rigorous validation on cellular and tissue samples confirms ET2dNet's superiority in background suppression and axial resolution enhancement, while maintaining compatibility with deconvolution techniques for lateral resolution improvement. Furthermore, by extending this paradigm through knowledge distillation, we developed ET3dNet, a dedicated three-dimensional reconstruction network that produces artifact-reduced volumetric results. ET3dNet effectively removes out-of-focus background signals even when the input image stack lacks the source of background. This framework makes axial super-resolution imaging more accessible by providing an easy-to-deploy algorithm that avoids additional hardware costs and complexity, showing great potential for live cell studies and clinical histopathology.
☆ Differentiated Directional Intervention A Framework for Evading LLM Safety Alignment AAAI-26
Safety alignment instills in Large Language Models (LLMs) a critical capacity to refuse malicious requests. Prior works have modeled this refusal mechanism as a single linear direction in the activation space. We posit that this is an oversimplification that conflates two functionally distinct neural processes: the detection of harm and the execution of a refusal. In this work, we deconstruct this single representation into a Harm Detection Direction and a Refusal Execution Direction. Leveraging this fine-grained model, we introduce Differentiated Bi-Directional Intervention (DBDI), a new white-box framework that precisely neutralizes the safety alignment at critical layer. DBDI applies adaptive projection nullification to the refusal execution direction while suppressing the harm detection direction via direct steering. Extensive experiments demonstrate that DBDI outperforms prominent jailbreaking methods, achieving up to a 97.88\% attack success rate on models such as Llama-2. By providing a more granular and mechanistic framework, our work offers a new direction for the in-depth understanding of LLM safety alignment.
comment: AAAI-26-AIA
☆ NeuroBridge: Bio-Inspired Self-Supervised EEG-to-Image Decoding via Cognitive Priors and Bidirectional Semantic Alignment AAAI 2026
Visual neural decoding seeks to reconstruct or infer perceived visual stimuli from brain activity patterns, providing critical insights into human cognition and enabling transformative applications in brain-computer interfaces and artificial intelligence. Current approaches, however, remain constrained by the scarcity of high-quality stimulus-brain response pairs and the inherent semantic mismatch between neural representations and visual content. Inspired by perceptual variability and co-adaptive strategy of the biological systems, we propose a novel self-supervised architecture, named NeuroBridge, which integrates Cognitive Prior Augmentation (CPA) with Shared Semantic Projector (SSP) to promote effective cross-modality alignment. Specifically, CPA simulates perceptual variability by applying asymmetric, modality-specific transformations to both EEG signals and images, enhancing semantic diversity. Unlike previous approaches, SSP establishes a bidirectional alignment process through a co-adaptive strategy, which mutually aligns features from two modalities into a shared semantic space for effective cross-modal learning. NeuroBridge surpasses previous state-of-the-art methods under both intra-subject and inter-subject settings. In the intra-subject scenario, it achieves the improvements of 12.3% in top-1 accuracy and 10.2% in top-5 accuracy, reaching 63.2% and 89.9% respectively on a 200-way zero-shot retrieval task. Extensive experiments demonstrate the effectiveness, robustness, and scalability of the proposed framework for neural visual decoding.
comment: AAAI 2026
☆ DeepRWCap: Neural-Guided Random-Walk Capacitance Solver for IC Design AAAI-26
Monte Carlo random walk methods are widely used in capacitance extraction for their mesh-free formulation and inherent parallelism. However, modern semiconductor technologies with densely packed structures present significant challenges in unbiasedly sampling transition domains in walk steps with multiple high-contrast dielectric materials. We present DeepRWCap, a machine learning-guided random walk solver that predicts the transition quantities required to guide each step of the walk. These include Poisson kernels, gradient kernels, signs and magnitudes of weights. DeepRWCap employs a two-stage neural architecture that decomposes structured outputs into face-wise distributions and spatial kernels on cube faces. It uses 3D convolutional networks to capture volumetric dielectric interactions and 2D depthwise separable convolutions to model localized kernel behavior. The design incorporates grid-based positional encodings and structural design choices informed by cube symmetries to reduce learning redundancy and improve generalization. Trained on 100,000 procedurally generated dielectric configurations, DeepRWCap achieves a mean relative error of $1.24\pm0.53$\% when benchmarked against the commercial Raphael solver on the self-capacitance estimation of 10 industrial designs spanning 12 to 55 nm nodes. Compared to the state-of-the-art stochastic difference method Microwalk, DeepRWCap achieves an average 23\% speedup. On complex designs with runtimes over 10 s, it reaches an average 49\% acceleration.
comment: Accepted to AAAI-26
☆ Beyond Plain Demos: A Demo-centric Anchoring Paradigm for In-Context Learning in Alzheimer's Disease Detection AAAI
Detecting Alzheimer's disease (AD) from narrative transcripts challenges large language models (LLMs): pre-training rarely covers this out-of-distribution task, and all transcript demos describe the same scene, producing highly homogeneous contexts. These factors cripple both the model's built-in task knowledge (\textbf{task cognition}) and its ability to surface subtle, class-discriminative cues (\textbf{contextual perception}). Because cognition is fixed after pre-training, improving in-context learning (ICL) for AD detection hinges on enriching perception through better demonstration (demo) sets. We demonstrate that standard ICL quickly saturates, its demos lack diversity (context width) and fail to convey fine-grained signals (context depth), and that recent task vector (TV) approaches improve broad task adaptation by injecting TV into the LLMs' hidden states (HSs), they are ill-suited for AD detection due to the mismatch of injection granularity, strength and position. To address these bottlenecks, we introduce \textbf{DA4ICL}, a demo-centric anchoring framework that jointly expands context width via \emph{\textbf{Diverse and Contrastive Retrieval}} (DCR) and deepens each demo's signal via \emph{\textbf{Projected Vector Anchoring}} (PVA) at every Transformer layer. Across three AD benchmarks, DA4ICL achieves large, stable gains over both ICL and TV baselines, charting a new paradigm for fine-grained, OOD and low-resource LLM adaptation.
comment: Accepted to the 40th Annual AAAI Conference on Artificial Intelligence (2026) - Main Technical Track (Oral)
☆ TiS-TSL: Image-Label Supervised Surgical Video Stereo Matching via Time-Switchable Teacher-Student Learning
Stereo matching in minimally invasive surgery (MIS) is essential for next-generation navigation and augmented reality. Yet, dense disparity supervision is nearly impossible due to anatomical constraints, typically limiting annotations to only a few image-level labels acquired before the endoscope enters deep body cavities. Teacher-Student Learning (TSL) offers a promising solution by leveraging a teacher trained on sparse labels to generate pseudo labels and associated confidence maps from abundant unlabeled surgical videos. However, existing TSL methods are confined to image-level supervision, providing only spatial confidence and lacking temporal consistency estimation. This absence of spatio-temporal reliability results in unstable disparity predictions and severe flickering artifacts across video frames. To overcome these challenges, we propose TiS-TSL, a novel time-switchable teacher-student learning framework for video stereo matching under minimal supervision. At its core is a unified model that operates in three distinct modes: Image-Prediction (IP), Forward Video-Prediction (FVP), and Backward Video-Prediction (BVP), enabling flexible temporal modeling within a single architecture. Enabled by this unified model, TiS-TSL adopts a two-stage learning strategy. The Image-to-Video (I2V) stage transfers sparse image-level knowledge to initialize temporal modeling. The subsequent Video-to-Video (V2V) stage refines temporal disparity predictions by comparing forward and backward predictions to calculate bidirectional spatio-temporal consistency. This consistency identifies unreliable regions across frames, filters noisy video-level pseudo labels, and enforces temporal coherence. Experimental results on two public datasets demonstrate that TiS-TSL exceeds other image-based state-of-the-arts by improving TEPE and EPE by at least 2.11% and 4.54%, respectively..
comment: 8 pages, 4 figures, accepted by BiBM2025
☆ Controllable Flow Matching for Online Reinforcement Learning AAAI
Model-based reinforcement learning (MBRL) typically relies on modeling environment dynamics for data efficiency. However, due to the accumulation of model errors over long-horizon rollouts, such methods often face challenges in maintaining modeling stability. To address this, we propose CtrlFlow, a trajectory-level synthetic method using conditional flow matching (CFM), which directly modeling the distribution of trajectories from initial states to high-return terminal states without explicitly modeling the environment transition function. Our method ensures optimal trajectory sampling by minimizing the control energy governed by the non-linear Controllability Gramian Matrix, while the generated diverse trajectory data significantly enhances the robustness and cross-task generalization of policy learning. In online settings, CtrlFlow demonstrates the better performance on common MuJoCo benchmark tasks than dynamics models and achieves superior sample efficiency compared to standard MBRL methods.
comment: 9 pages, The Fortieth AAAI Conference on Artificial Intelligence(AAAI2026)
☆ MathSE: Improving Multimodal Mathematical Reasoning via Self-Evolving Iterative Reflection and Reward-Guided Fine-Tuning
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in vision-language answering tasks. Despite their strengths, these models often encounter challenges in achieving complex reasoning tasks such as mathematical problem-solving. Previous works have focused on fine-tuning on specialized mathematical datasets. However, these datasets are typically distilled directly from teacher models, which capture only static reasoning patterns and leaving substantial gaps compared to student models. This reliance on fixed teacher-derived datasets not only restricts the model's ability to adapt to novel or more intricate questions that extend beyond the confines of the training data, but also lacks the iterative depth needed for robust generalization. To overcome these limitations, we propose \textbf{\method}, a \textbf{Math}ematical \textbf{S}elf-\textbf{E}volving framework for MLLMs. In contrast to traditional one-shot fine-tuning paradigms, \method iteratively refines the model through cycles of inference, reflection, and reward-based feedback. Specifically, we leverage iterative fine-tuning by incorporating correct reasoning paths derived from previous-stage inference and integrating reflections from a specialized Outcome Reward Model (ORM). To verify the effectiveness of \method, we evaluate it on a suite of challenging benchmarks, demonstrating significant performance gains over backbone models. Notably, our experimental results on MathVL-test surpass the leading open-source multimodal mathematical reasoning model QVQ. Our code and models are available at \texttt{https://zheny2751\allowbreak-dotcom.github.io/\allowbreak MathSE.github.io/}.
comment: 19 pages, 11 figures
☆ AgentSUMO: An Agentic Framework for Interactive Simulation Scenario Generation in SUMO via Large Language Models
The growing complexity of urban mobility systems has made traffic simulation indispensable for evidence-based transportation planning and policy evaluation. However, despite the analytical capabilities of platforms such as the Simulation of Urban MObility (SUMO), their application remains largely confined to domain experts. Developing realistic simulation scenarios requires expertise in network construction, origin-destination modeling, and parameter configuration for policy experimentation, creating substantial barriers for non-expert users such as policymakers, urban planners, and city officials. Moreover, the requests expressed by these users are often incomplete and abstract-typically articulated as high-level objectives, which are not well aligned with the imperative, sequential workflows employed in existing language-model-based simulation frameworks. To address these challenges, this study proposes AgentSUMO, an agentic framework for interactive simulation scenario generation via large language models. AgentSUMO departs from imperative, command-driven execution by introducing an adaptive reasoning layer that interprets user intents, assesses task complexity, infers missing parameters, and formulates executable simulation plans. The framework is structured around two complementary components, the Interactive Planning Protocol, which governs reasoning and user interaction, and the Model Context Protocol, which manages standardized communication and orchestration among simulation tools. Through this design, AgentSUMO converts abstract policy objectives into executable simulation scenarios. Experiments on urban networks in Seoul and Manhattan demonstrate that the agentic workflow achieves substantial improvements in traffic flow metrics while maintaining accessibility for non-expert users, successfully bridging the gap between policy goals and executable simulation workflows.
comment: Submitted to Transportation Research Part C (under review)
☆ Learning to Fast Unrank in Collaborative Filtering Recommendation
Modern data-driven recommendation systems risk memorizing sensitive user behavioral patterns, raising privacy concerns. Existing recommendation unlearning methods, while capable of removing target data influence, suffer from inefficient unlearning speed and degraded performance, failing to meet real-time unlearning demands. Considering the ranking-oriented nature of recommendation systems, we present unranking, the process of reducing the ranking positions of target items while ensuring the formal guarantees of recommendation unlearning. To achieve efficient unranking, we propose Learning to Fast Unrank in Collaborative Filtering Recommendation (L2UnRank), which operates through three key stages: (a) identifying the influenced scope via interaction-based p-hop propagation, (b) computing structural and semantic influences for entities within this scope, and (c) performing efficient, ranking-aware parameter updates guided by influence information. Extensive experiments across multiple datasets and backbone models demonstrate L2UnRank's model-agnostic nature, achieving state-of-the-art unranking effectiveness and maintaining recommendation quality comparable to retraining, while also delivering a 50x speedup over existing methods. Codes are available at https://github.com/Juniper42/L2UnRank.
☆ Recursive Dynamics in Fast-Weights Homeostatic Reentry Networks: Toward Reflective Intelligence
This study introduces the Fast-Weights Homeostatic Reentry Layer (FH-RL), a neural mechanism that integrates fast-weight associative memory, homeostatic regularization, and learned reentrant feedback to approximate self-referential computation in neural networks. Unlike standard transformer architectures that operate in a purely feedforward manner during inference, FH-RL enables internal recurrence without external looping, allowing prior latent states to be dynamically re-entered into the ongoing computation stream. We conduct controlled experiments sweeping the reentry gain $\gamma$ and evaluate emergent internal dynamics using three novel metrics: the Information Reentry Ratio (IRR), Eigen-Spectrum Recursion Index (ESRI), and Representational Drift Periodicity (RDP). Results show that reentry quantity increases proportionally with~$\gamma$, while the learned feedback matrix $W_r$ remains bounded and becomes more structured at moderate gains. Critically, a stable reflective band emerges around $\gamma \approx 0.10-0.20$, where internal feedback is maximally expressive yet spectrally stable: IRR rises smoothly, ESRI remains near zero, and RDP exhibits consistent low-frequency cycles. These findings provide quantitative evidence that reflective, thought-like internal processing can arise from a principled balance between feedback amplification and homeostatic regulation, linking modern fast-weight architectures to theories of cortical reentry and recursive cognition.
comment: 17 pages, 6 figures
☆ Cross-Modal Unlearning via Influential Neuron Path Editing in Multimodal Large Language Models AAAI 2026
Multimodal Large Language Models (MLLMs) extend foundation models to real-world applications by integrating inputs such as text and vision. However, their broad knowledge capacity raises growing concerns about privacy leakage, toxicity mitigation, and intellectual property violations. Machine Unlearning (MU) offers a practical solution by selectively forgetting targeted knowledge while preserving overall model utility. When applied to MLLMs, existing neuron-editing-based MU approaches face two fundamental challenges: (1) forgetting becomes inconsistent across modalities because existing point-wise attribution methods fail to capture the structured, layer-by-layer information flow that connects different modalities; and (2) general knowledge performance declines when sensitive neurons that also support important reasoning paths are pruned, as this disrupts the model's ability to generalize. To alleviate these limitations, we propose a multimodal influential neuron path editor (MIP-Editor) for MU. Our approach introduces modality-specific attribution scores to identify influential neuron paths responsible for encoding forget-set knowledge and applies influential-path-aware neuron-editing via representation misdirection. This strategy also enables effective and coordinated forgetting across modalities while preserving the model's general capabilities. Experimental results demonstrate that MIP-Editor achieves a superior unlearning performance on multimodal tasks, with a maximum forgetting rate of 87.75% and up to 54.26% improvement in general knowledge retention. On textual tasks, MIP-Editor achieves up to 80.65% forgetting and preserves 77.9% of general performance. Codes are available at https://github.com/PreckLi/MIP-Editor.
comment: Accepted at AAAI 2026 as a Conference Paper (Oral Presentation)
☆ Robust Causal Discovery under Imperfect Structural Constraints
Robust causal discovery from observational data under imperfect prior knowledge remains a significant and largely unresolved challenge. Existing methods typically presuppose perfect priors or can only handle specific, pre-identified error types. And their performance degrades substantially when confronted with flawed constraints of unknown location and type. This decline arises because most of them rely on inflexible and biased thresholding strategies that may conflict with the data distribution. To overcome these limitations, we propose to harmonizes knowledge and data through prior alignment and conflict resolution. First, we assess the credibility of imperfect structural constraints through a surrogate model, which then guides a sparse penalization term measuring the loss between the learned and constrained adjacency matrices. We theoretically prove that, under ideal assumption, the knowledge-driven objective aligns with the data-driven objective. Furthermore, to resolve conflicts when this assumption is violated, we introduce a multi-task learning framework optimized via multi-gradient descent, jointly minimizing both objectives. Our proposed method is robust to both linear and nonlinear settings. Extensive experiments, conducted under diverse noise conditions and structural equation model types, demonstrate the effectiveness and efficiency of our method under imperfect structural constraints.
☆ Resource Efficient Sleep Staging via Multi-Level Masking and Prompt Learning AAAI 2026
Automatic sleep staging plays a vital role in assessing sleep quality and diagnosing sleep disorders. Most existing methods rely heavily on long and continuous EEG recordings, which poses significant challenges for data acquisition in resource-constrained systems, such as wearable or home-based monitoring systems. In this paper, we propose the task of resource-efficient sleep staging, which aims to reduce the amount of signal collected per sleep epoch while maintaining reliable classification performance. To solve this task, we adopt the masking and prompt learning strategy and propose a novel framework called Mask-Aware Sleep Staging (MASS). Specifically, we design a multi-level masking strategy to promote effective feature modeling under partial and irregular observations. To mitigate the loss of contextual information introduced by masking, we further propose a hierarchical prompt learning mechanism that aggregates unmasked data into a global prompt, serving as a semantic anchor for guiding both patch-level and epoch-level feature modeling. MASS is evaluated on four datasets, demonstrating state-of-the-art performance, especially when the amount of data is very limited. This result highlights its potential for efficient and scalable deployment in real-world low-resource sleep monitoring environments.
comment: 16 pages, 4 figures, to be published in AAAI 2026
☆ On the Mechanisms of Collaborative Learning in VAE Recommenders
Variational Autoencoders (VAEs) are a powerful alternative to matrix factorization for recommendation. A common technique in VAE-based collaborative filtering (CF) consists in applying binary input masking to user interaction vectors, which improves performance but remains underexplored theoretically. In this work, we analyze how collaboration arises in VAE-based CF and show it is governed by latent proximity: we derive a latent sharing radius that informs when an SGD update on one user strictly reduces the loss on another user, with influence decaying as the latent Wasserstein distance increases. We further study the induced geometry: with clean inputs, VAE-based CF primarily exploits \emph{local} collaboration between input-similar users and under-utilizes global collaboration between far-but-related users. We compare two mechanisms that encourage \emph{global} mixing and characterize their trade-offs: (1) $\beta$-KL regularization directly tightens the information bottleneck, promoting posterior overlap but risking representational collapse if too large; (2) input masking induces stochastic geometric contractions and expansions, which can bring distant users onto the same latent neighborhood but also introduce neighborhood drift. To preserve user identity while enabling global consistency, we propose an anchor regularizer that aligns user posteriors with item embeddings, stabilizing users under masking and facilitating signal sharing across related items. Our analyses are validated on the Netflix, MovieLens-20M, and Million Song datasets. We also successfully deployed our proposed algorithm on an Amazon streaming platform following a successful online experiment.
☆ OntoTune: Ontology-Driven Learning for Query Optimization with Convolutional Models
Query optimization has been studied using machine learning, reinforcement learning, and, more recently, graph-based convolutional networks. Ontology, as a structured, information-rich knowledge representation, can provide context, particularly in learning problems. This paper presents OntoTune, an ontology-based platform for enhancing learning for query optimization. By connecting SQL queries, database metadata, and statistics, the ontology developed in this research is promising in capturing relationships and important determinants of query performance. This research also develops a method to embed ontologies while preserving as much of the relationships and key information as possible, before feeding it into learning algorithms such as tree-based and graph-based convolutional networks. A case study shows how OntoTune's ontology-driven learning delivers performance gains compared with database system default query execution.
☆ Pedagogical Reflections on the Holistic Cognitive Development (HCD) Framework and AI-Augmented Learning in Creative Computing
This paper presents an expanded account of the Holistic Cognitive Development (HCD) framework for reflective and creative learning in computing education. The HCD framework integrates design thinking, experiential learning, and reflective practice into a unified constructivist pedagogy emphasizing autonomy, ownership, and scaffolding. It is applied across courses in game design (CS3247, CS4350), virtual reality (CS4240), and extended reality systems, where students engage in iterative cycles of thinking, creating, criticizing, and reflecting. The paper also examines how AI-augmented systems such as iReflect, ReflexAI, and Knowledge Graph-enhanced LLM feedback tools operationalize the HCD framework through scalable, personalized feedback. Empirical findings demonstrate improved reflective depth, feedback quality, and learner autonomy. The work advocates a balance of supportive autonomy in supervision, where students practice self-directed inquiry while guided through structured reflection and feedback.
comment: Short Abstract
☆ Data Trajectory Alignment for LLM Domain Adaptation: A Two-Phase Synthesis Framework for Telecommunications Mathematics
General-purpose large language models (LLMs) are increasingly deployed in verticals such as telecommunications, where adaptation is hindered by scarce, low-information-density corpora and tight mobile/edge constraints. We propose Data Trajectory Alignment (DTA), a two-phase, model-agnostic data curation framework that treats solution processes - not only final answers - as first-class supervision. Phase I (Initializing) synthesizes diverse, high-coverage candidates using an ensemble of strong teachers. Phase II (DTA) rewrites teacher solutions to align intermediate steps and presentation style with the target student's inductive biases and then performs signal-aware exemplar selection via agreement checks and reflection-based judging. Instantiated on telecommunications mathematics (e.g., link budgets, SNR/AMC selection, and power-control feasibility), DTA yields state-of-the-art (SOTA) accuracy on TELEMATH without enabling explicit "thinking" modes: 72.45% pass@1, surpassing distilled-only training by +17.65 points and outperforming a strong baseline (Qwen3-32B with thinking enabled) by +2.94 points. Token-shift analyses indicate that DTA concentrates gains on logical-structural discourse markers rather than merely amplifying domain nouns, indicating improved reasoning scaffolding. Under edge-like inference settings, DTA improves efficiency by reducing reliance on multi-sample voting and disabling expensive reasoning heuristics, cutting energy per output token by ~42% versus Qwen3-32B (thinking mode enabled) and end-to-end latency by ~60% versus Qwen3-32B (thinking mode disabled). These results demonstrate that aligning how solutions are produced enables compact, high-yield supervision that is effective for both accuracy and efficiency, offering a practical recipe for domain adaptation in low-resource verticals beyond telecom.
☆ QUARK: Quantization-Enabled Circuit Sharing for Transformer Acceleration by Exploiting Common Patterns in Nonlinear Operations
Transformer-based models have revolutionized computer vision (CV) and natural language processing (NLP) by achieving state-of-the-art performance across a range of benchmarks. However, nonlinear operations in models significantly contribute to inference latency, presenting unique challenges for efficient hardware acceleration. To this end, we propose QUARK, a quantization-enabled FPGA acceleration framework that leverages common patterns in nonlinear operations to enable efficient circuit sharing, thereby reducing hardware resource requirements. QUARK targets all nonlinear operations within Transformer-based models, achieving high-performance approximation through a novel circuit-sharing design tailored to accelerate these operations. Our evaluation demonstrates that QUARK significantly reduces the computational overhead of nonlinear operators in mainstream Transformer architectures, achieving up to a 1.96 times end-to-end speedup over GPU implementations. Moreover, QUARK lowers the hardware overhead of nonlinear modules by more than 50% compared to prior approaches, all while maintaining high model accuracy -- and even substantially boosting accuracy under ultra-low-bit quantization.
comment: ICCAD 2025
☆ Sensitivity of Small Language Models to Fine-tuning Data Contamination
Small Language Models (SLMs) are increasingly being deployed in resource-constrained environments, yet their behavioral robustness to data contamination during instruction tuning remains poorly understood. We systematically investigate the contamination sensitivity of 23 SLMs (270M to 4B parameters) across multiple model families by measuring susceptibility to syntactic and semantic transformation types during instruction tuning: syntactic transformations (character and word reversal) and semantic transformations (irrelevant and counterfactual responses), each applied at contamination levels of 25\%, 50\%, 75\%, and 100\%. Our results reveal fundamental asymmetries in vulnerability patterns: syntactic transformations cause catastrophic performance degradation, with character reversal producing near-complete failure across all models regardless of size or family, while semantic transformations demonstrate distinct threshold behaviors and greater resilience in core linguistic capabilities. Critically, we discover a ``\textit{capability curse}" where larger, more capable models become more susceptible to learning semantic corruptions, effectively following harmful instructions more readily, while our analysis of base versus instruction-tuned variants reveals that alignment provides inconsistent robustness benefits, sometimes even reducing resilience. Our work establishes three core contributions: (1) empirical evidence of SLMs' disproportionate vulnerability to syntactic pattern contamination, (2) identification of asymmetric sensitivity patterns between syntactic and semantic transformations, and (3) systematic evaluation protocols for contamination robustness assessment. These findings have immediate deployment implications, suggesting that current robustness assumptions may not hold for smaller models and highlighting the need for contamination-aware training protocols.
☆ SRNN: Spatiotemporal Relational Neural Network for Intuitive Physics Understanding
Human prowess in intuitive physics remains unmatched by machines. To bridge this gap, we argue for a fundamental shift towards brain-inspired computational principles. This paper introduces the Spatiotemporal Relational Neural Network (SRNN), a model that establishes a unified neural representation for object attributes, relations, and timeline, with computations governed by a Hebbian ``Fire Together, Wire Together'' mechanism across dedicated \textit{What} and \textit{How} pathways. This unified representation is directly used to generate structured linguistic descriptions of the visual scene, bridging perception and language within a shared neural substrate. Moreover, unlike the prevalent ``pretrain-then-finetune'' paradigm, SRNN adopts a ``predefine-then-finetune'' approach. On the CLEVRER benchmark, SRNN achieves competitive performance. Our analysis further reveals a benchmark bias, outlines a path for a more holistic evaluation, and demonstrates SRNN's white-box utility for precise error diagnosis. Our work confirms the viability of translating biological intelligence into engineered systems for intuitive physics understanding.
☆ Implicit Federated In-context Learning For Task-Specific LLM Fine-Tuning
As large language models continue to develop and expand, the extensive public data they rely on faces the risk of depletion. Consequently, leveraging private data within organizations to enhance the performance of large models has emerged as a key challenge. The federated learning paradigm, combined with model fine-tuning techniques, effectively reduces the number of trainable parameters. However,the necessity to process high-dimensional feature spaces results in substantial overall computational overhead. To address this issue, we propose the Implicit Federated In-Context Learning (IFed-ICL) framework. IFed-ICL draws inspiration from federated learning to establish a novel distributed collaborative paradigm, by converting client local context examples into implicit vector representations, it enables distributed collaborative computation during the inference phase and injects model residual streams to enhance model performance. Experiments demonstrate that our proposed method achieves outstanding performance across multiple text classification tasks. Compared to traditional methods, IFed-ICL avoids the extensive parameter updates required by conventional fine-tuning methods while reducing data transmission and local computation at the client level in federated learning. This enables efficient distributed context learning using local private-domain data, significantly improving model performance on specific tasks.
☆ Hierarchical Spatial-Frequency Aggregation for Spectral Deconvolution Imaging TPAMI
Computational spectral imaging (CSI) achieves real-time hyperspectral imaging through co-designed optics and algorithms, but typical CSI methods suffer from a bulky footprint and limited fidelity. Therefore, Spectral Deconvolution imaging (SDI) methods based on PSF engineering have been proposed to achieve high-fidelity compact CSI design recently. However, the composite convolution-integration operations of SDI render the normal-equation coefficient matrix scene-dependent, which hampers the efficient exploitation of imaging priors and poses challenges for accurate reconstruction. To tackle the inherent data-dependent operators in SDI, we introduce a Hierarchical Spatial-Spectral Aggregation Unfolding Framework (HSFAUF). By decomposing subproblems and projecting them into the frequency domain, HSFAUF transforms nonlinear processes into linear mappings, thereby enabling efficient solutions. Furthermore, to integrate spatial-spectral priors during iterative refinement, we propose a Spatial-Frequency Aggregation Transformer (SFAT), which explicitly aggregates information across spatial and frequency domains. By integrating SFAT into HSFAUF, we develop a Transformer-based deep unfolding method, \textbf{H}ierarchical \textbf{S}patial-\textbf{F}requency \textbf{A}ggregation \textbf{U}nfolding \textbf{T}ransformer (HSFAUT), to solve the inverse problem of SDI. Systematic simulated and real experiments show that HSFAUT surpasses SOTA methods with cheaper memory and computational costs, while exhibiting optimal performance on different SDI systems.
comment: Under Review at TPAMI
☆ Physically-Grounded Goal Imagination: Physics-Informed Variational Autoencoder for Self-Supervised Reinforcement Learning
Self-supervised goal-conditioned reinforcement learning enables robots to autonomously acquire diverse skills without human supervision. However, a central challenge is the goal setting problem: robots must propose feasible and diverse goals that are achievable in their current environment. Existing methods like RIG (Visual Reinforcement Learning with Imagined Goals) use variational autoencoder (VAE) to generate goals in a learned latent space but have the limitation of producing physically implausible goals that hinder learning efficiency. We propose Physics-Informed RIG (PI-RIG), which integrates physical constraints directly into the VAE training process through a novel Enhanced Physics-Informed Variational Autoencoder (Enhanced p3-VAE), enabling the generation of physically consistent and achievable goals. Our key innovation is the explicit separation of the latent space into physics variables governing object dynamics and environmental factors capturing visual appearance, while enforcing physical consistency through differential equation constraints and conservation laws. This enables the generation of physically consistent and achievable goals that respect fundamental physical principles such as object permanence, collision constraints, and dynamic feasibility. Through extensive experiments, we demonstrate that this physics-informed goal generation significantly improves the quality of proposed goals, leading to more effective exploration and better skill acquisition in visual robotic manipulation tasks including reaching, pushing, and pick-and-place scenarios.
☆ Rank-1 LoRAs Encode Interpretable Reasoning Signals NeurIPS 2025
Reasoning models leverage inference-time compute to significantly enhance the performance of language models on difficult logical tasks, and have become a dominating paradigm in frontier LLMs. Despite their wide adoption, the mechanisms underpinning the enhanced performance of these reasoning models are not well understood. In this work, we show that the majority of new capabilities in reasoning models can be elicited by small, single-rank changes to base model parameters, with many of these changes being interpretable. Specifically, we use a rank-1 LoRA to create a minimal parameter adapter for Qwen-2.5-32B-Instruct which recovers 73-90% of reasoning-benchmark performance compared to a full parameter finetune. We find that the activations of this LoRA are as interpretable as MLP neurons, and fire for reasoning-specific behaviors. Finally, we train a sparse autoencoder on the entire activation state of this LoRA and identify fine-grained and monosemantic features. Our findings highlight that reasoning performance can arise largely from minimal changes to base model parameters, and explore what these changes affect. More broadly, our work shows that parameter-efficient training methods can be used as a targeted lens for uncovering fundamental insights about language model behavior and dynamics.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Interpretability Workshop
☆ Diagnosing and Breaking Amplitude Suppression in Seismic Phase Picking Through Adversarial Shape Learning
Deep learning has revolutionized seismic phase picking, yet a paradox persists: high signal-to-noise S-wave predictions consistently fail to cross detection thresholds, oscillating at suppressed amplitudes. We identify this previously unexplained phenomenon as amplitude suppression, which we diagnose through analyzing training histories and loss landscapes. Three interacting factors emerge: S-wave onsets exhibit high temporal uncertainty relative to high-amplitude boundaries; CNN's bias toward sharp amplitude changes anchors predictions to these boundaries rather than subtle onsets; and point-wise Binary Cross-Entropy (BCE) loss lacks lateral corrective forces, providing only vertical gradients that suppress amplitude while temporal gaps persist. This geometric trap points to a shape-then-align solution where stable geometric templates must precede temporal alignment. We implement this through a conditional GAN framework by augmenting conventional BCE training with a discriminator that enforces shape constraints. Training for 10,000 steps, this achieves a 64% increase in effective S-phase detections. Our framework autonomously discovers target geometry without a priori assumptions, offering a generalizable solution for segmentation tasks requiring precise alignment of subtle features near dominant structures.
☆ S-DAG: A Subject-Based Directed Acyclic Graph for Multi-Agent Heterogeneous Reasoning
Large Language Models (LLMs) have achieved impressive performance in complex reasoning problems. Their effectiveness highly depends on the specific nature of the task, especially the required domain knowledge. Existing approaches, such as mixture-of-experts, typically operate at the task level; they are too coarse to effectively solve the heterogeneous problems involving multiple subjects. This work proposes a novel framework that performs fine-grained analysis at subject level equipped with a designated multi-agent collaboration strategy for addressing heterogeneous problem reasoning. Specifically, given an input query, we first employ a Graph Neural Network to identify the relevant subjects and infer their interdependencies to generate an \textit{Subject-based Directed Acyclic Graph} (S-DAG), where nodes represent subjects and edges encode information flow. Then we profile the LLM models by assigning each model a subject-specific expertise score, and select the top-performing one for matching corresponding subject of the S-DAG. Such subject-model matching enables graph-structured multi-agent collaboration where information flows from the starting model to the ending model over S-DAG. We curate and release multi-subject subsets of standard benchmarks (MMLU-Pro, GPQA, MedMCQA) to better reflect complex, real-world reasoning tasks. Extensive experiments show that our approach significantly outperforms existing task-level model selection and multi-agent collaboration baselines in accuracy and efficiency. These results highlight the effectiveness of subject-aware reasoning and structured collaboration in addressing complex and multi-subject problems.
☆ Revisiting the Data Sampling in Multimodal Post-training from a Difficulty-Distinguish View AAAI 2026
Recent advances in Multimodal Large Language Models (MLLMs) have spurred significant progress in Chain-of-Thought (CoT) reasoning. Building on the success of Deepseek-R1, researchers extended multimodal reasoning to post-training paradigms based on reinforcement learning (RL), focusing predominantly on mathematical datasets. However, existing post-training paradigms tend to neglect two critical aspects: (1) The lack of quantifiable difficulty metrics capable of strategically screening samples for post-training optimization. (2) Suboptimal post-training paradigms that fail to jointly optimize perception and reasoning capabilities. To address this gap, we propose two novel difficulty-aware sampling strategies: Progressive Image Semantic Masking (PISM) quantifies sample hardness through systematic image degradation, while Cross-Modality Attention Balance (CMAB) assesses cross-modal interaction complexity via attention distribution analysis. Leveraging these metrics, we design a hierarchical training framework that incorporates both GRPO-only and SFT+GRPO hybrid training paradigms, and evaluate them across six benchmark datasets. Experiments demonstrate consistent superiority of GRPO applied to difficulty-stratified samples compared to conventional SFT+GRPO pipelines, indicating that strategic data sampling can obviate the need for supervised fine-tuning while improving model accuracy. Our code will be released at https://github.com/qijianyu277/DifficultySampling.
comment: Accpeted by AAAI 2026
☆ MirrorMamba: Towards Scalable and Robust Mirror Detection in Videos
Video mirror detection has received significant research attention, yet existing methods suffer from limited performance and robustness. These approaches often over-rely on single, unreliable dynamic features, and are typically built on CNNs with limited receptive fields or Transformers with quadratic computational complexity. To address these limitations, we propose a new effective and scalable video mirror detection method, called MirrorMamba. Our approach leverages multiple cues to adapt to diverse conditions, incorporating perceived depth, correspondence and optical. We also introduce an innovative Mamba-based Multidirection Correspondence Extractor, which benefits from the global receptive field and linear complexity of the emerging Mamba spatial state model to effectively capture correspondence properties. Additionally, we design a Mamba-based layer-wise boundary enforcement decoder to resolve the unclear boundary caused by the blurred depth map. Notably, this work marks the first successful application of the Mamba-based architecture in the field of mirror detection. Extensive experiments demonstrate that our method outperforms existing state-of-the-art approaches for video mirror detection on the benchmark datasets. Furthermore, on the most challenging and representative image-based mirror detection dataset, our approach achieves state-of-the-art performance, proving its robustness and generalizability.
☆ Sensor Calibration Model Balancing Accuracy, Real-time, and Efficiency
Most on-device sensor calibration studies benchmark models only against three macroscopic requirements (i.e., accuracy, real-time, and resource efficiency), thereby hiding deployment bottlenecks such as instantaneous error and worst-case latency. We therefore decompose this triad into eight microscopic requirements and introduce Scare (Sensor Calibration model balancing Accuracy, Real-time, and Efficiency), an ultra-compressed transformer that fulfills them all. SCARE comprises three core components: (1) Sequence Lens Projector (SLP) that logarithmically compresses time-series data while preserving boundary information across bins, (2) Efficient Bitwise Attention (EBA) module that replaces costly multiplications with bitwise operations via binary hash codes, and (3) Hash optimization strategy that ensures stable training without auxiliary loss terms. Together, these components minimize computational overhead while maintaining high accuracy and compatibility with microcontroller units (MCUs). Extensive experiments on large-scale air-quality datasets and real microcontroller deployments demonstrate that Scare outperforms existing linear, hybrid, and deep-learning baselines, making Scare, to the best of our knowledge, the first model to meet all eight microscopic requirements simultaneously.
☆ Structural Enforcement of Statistical Rigor in AI-Driven Discovery: A Functional Architecture
Sequential statistical protocols require meticulous state management and robust error handling -- challenges naturally suited to functional programming. We present a functional architecture for structural enforcement of statistical rigor in automated research systems (AI-Scientists). These LLM-driven systems risk generating spurious discoveries through dynamic hypothesis testing. We introduce the Research monad, a Haskell eDSL that enforces sequential statistical protocols (e.g., Online FDR (false discovery rate) control) using a monad transformer stack. To address risks in hybrid architectures where LLMs generate imperative code, we employ Declarative Scaffolding -- generating rigid harnesses that structurally constrain execution and prevent methodological errors like data leakage. We validate this approach through large-scale simulation (N=2000 hypotheses) and an end-to-end case study, demonstrating essential defense-in-depth for automated science integrity.
☆ Place Matters: Comparing LLM Hallucination Rates for Place-Based Legal Queries
How do we make a meaningful comparison of a large language model's knowledge of the law in one place compared to another? Quantifying these differences is critical to understanding if the quality of the legal information obtained by users of LLM-based chatbots varies depending on their location. However, obtaining meaningful comparative metrics is challenging because legal institutions in different places are not themselves easily comparable. In this work we propose a methodology to obtain place-to-place metrics based on the comparative law concept of functionalism. We construct a dataset of factual scenarios drawn from Reddit posts by users seeking legal advice for family, housing, employment, crime and traffic issues. We use these to elicit a summary of a law from the LLM relevant to each scenario in Los Angeles, London and Sydney. These summaries, typically of a legislative provision, are manually evaluated for hallucinations. We show that the rate of hallucination of legal information by leading closed-source LLMs is significantly associated with place. This suggests that the quality of legal solutions provided by these models is not evenly distributed across geography. Additionally, we show a strong negative correlation between hallucination rate and the frequency of the majority response when the LLM is sampled multiple times, suggesting a measure of uncertainty of model predictions of legal facts.
☆ Magnitude-Modulated Equivariant Adapter for Parameter-Efficient Fine-Tuning of Equivariant Graph Neural Networks
Pretrained equivariant graph neural networks based on spherical harmonics offer efficient and accurate alternatives to computationally expensive ab-initio methods, yet adapting them to new tasks and chemical environments still requires fine-tuning. Conventional parameter-efficient fine-tuning (PEFT) techniques, such as Adapters and LoRA, typically break symmetry, making them incompatible with those equivariant architectures. ELoRA, recently proposed, is the first equivariant PEFT method. It achieves improved parameter efficiency and performance on many benchmarks. However, the relatively high degrees of freedom it retains within each tensor order can still perturb pretrained feature distributions and ultimately degrade performance. To address this, we present Magnitude-Modulated Equivariant Adapter (MMEA), a novel equivariant fine-tuning method which employs lightweight scalar gating to modulate feature magnitudes on a per-order and per-multiplicity basis. We demonstrate that MMEA preserves strict equivariance and, across multiple benchmarks, consistently improves energy and force predictions to state-of-the-art levels while training fewer parameters than competing approaches. These results suggest that, in many practical scenarios, modulating channel magnitudes is sufficient to adapt equivariant models to new chemical environments without breaking symmetry, pointing toward a new paradigm for equivariant PEFT design.
☆ ML-EcoLyzer: Quantifying the Environmental Cost of Machine Learning Inference Across Frameworks and Hardware
Machine learning inference occurs at a massive scale, yet its environmental impact remains poorly quantified, especially on low-resource hardware. We present ML-EcoLyzer, a cross-framework tool for measuring the carbon, energy, thermal, and water costs of inference across CPUs, consumer GPUs, and datacenter accelerators. The tool supports both classical and modern models, applying adaptive monitoring and hardware-aware evaluation. We introduce the Environmental Sustainability Score (ESS), which quantifies the number of effective parameters served per gram of CO$_2$ emitted. Our evaluation covers over 1,900 inference configurations, spanning diverse model architectures, task modalities (text, vision, audio, tabular), hardware types, and precision levels. These rigorous and reliable measurements demonstrate that quantization enhances ESS, huge accelerators can be inefficient for lightweight applications, and even small models may incur significant costs when implemented suboptimally. ML-EcoLyzer sets a standard for sustainability-conscious model selection and offers an extensive empirical evaluation of environmental costs during inference.
☆ Textual Self-attention Network: Test-Time Preference Optimization through Textual Gradient-based Attention AAAI2026
Large Language Models (LLMs) have demonstrated remarkable generalization capabilities, but aligning their outputs with human preferences typically requires expensive supervised fine-tuning. Recent test-time methods leverage textual feedback to overcome this, but they often critique and revise a single candidate response, lacking a principled mechanism to systematically analyze, weigh, and synthesize the strengths of multiple promising candidates. Such a mechanism is crucial because different responses may excel in distinct aspects (e.g., clarity, factual accuracy, or tone), and combining their best elements may produce a far superior outcome. This paper proposes the Textual Self-Attention Network (TSAN), a new paradigm for test-time preference optimization that requires no parameter updates. TSAN emulates self-attention entirely in natural language to overcome this gap: it analyzes multiple candidates by formatting them into textual keys and values, weighs their relevance using an LLM-based attention module, and synthesizes their strengths into a new, preference-aligned response under the guidance of the learned textual attention. This entire process operates in a textual gradient space, enabling iterative and interpretable optimization. Empirical evaluations demonstrate that with just three test-time iterations on a base SFT model, TSAN outperforms supervised models like Llama-3.1-70B-Instruct and surpasses the current state-of-the-art test-time alignment method by effectively leveraging multiple candidate solutions.
comment: AAAI2026
☆ Rapidly Learning Soft Robot Control via Implicit Time-Stepping
With the explosive growth of rigid-body simulators, policy learning in simulation has become the de facto standard for most rigid morphologies. In contrast, soft robotic simulation frameworks remain scarce and are seldom adopted by the soft robotics community. This gap stems partly from the lack of easy-to-use, general-purpose frameworks and partly from the high computational cost of accurately simulating continuum mechanics, which often renders policy learning infeasible. In this work, we demonstrate that rapid soft robot policy learning is indeed achievable via implicit time-stepping. Our simulator of choice, DisMech, is a general-purpose, fully implicit soft-body simulator capable of handling both soft dynamics and frictional contact. We further introduce delta natural curvature control, a method analogous to delta joint position control in rigid manipulators, providing an intuitive and effective means of enacting control for soft robot learning. To highlight the benefits of implicit time-stepping and delta curvature control, we conduct extensive comparisons across four diverse soft manipulator tasks against one of the most widely used soft-body frameworks, Elastica. With implicit time-stepping, parallel stepping of 500 environments achieves up to 6x faster speeds for non-contact cases and up to 40x faster for contact-rich scenarios. Finally, a comprehensive sim-to-sim gap evaluation--training policies in one simulator and evaluating them in another--demonstrates that implicit time-stepping provides a rare free lunch: dramatic speedups achieved without sacrificing accuracy.
comment: Code: https://github.com/QuantuMope/dismech-rl
☆ Sim4Seg: Boosting Multimodal Multi-disease Medical Diagnosis Segmentation with Region-Aware Vision-Language Similarity Masks AAAI 2026
Despite significant progress in pixel-level medical image analysis, existing medical image segmentation models rarely explore medical segmentation and diagnosis tasks jointly. However, it is crucial for patients that models can provide explainable diagnoses along with medical segmentation results. In this paper, we introduce a medical vision-language task named Medical Diagnosis Segmentation (MDS), which aims to understand clinical queries for medical images and generate the corresponding segmentation masks as well as diagnostic results. To facilitate this task, we first present the Multimodal Multi-disease Medical Diagnosis Segmentation (M3DS) dataset, containing diverse multimodal multi-disease medical images paired with their corresponding segmentation masks and diagnosis chain-of-thought, created via an automated diagnosis chain-of-thought generation pipeline. Moreover, we propose Sim4Seg, a novel framework that improves the performance of diagnosis segmentation by taking advantage of the Region-Aware Vision-Language Similarity to Mask (RVLS2M) module. To improve overall performance, we investigate a test-time scaling strategy for MDS tasks. Experimental results demonstrate that our method outperforms the baselines in both segmentation and diagnosis.
comment: AAAI 2026
☆ Active Learning for Animal Re-Identification with Ambiguity-Aware Sampling AAAI
Animal Re-ID has recently gained substantial attention in the AI research community due to its high impact on biodiversity monitoring and unique research challenges arising from environmental factors. The subtle distinguishing patterns, handling new species and the inherent open-set nature make the problem even harder. To address these complexities, foundation models trained on labeled, large-scale and multi-species animal Re-ID datasets have recently been introduced to enable zero-shot Re-ID. However, our benchmarking reveals significant gaps in their zero-shot Re-ID performance for both known and unknown species. While this highlights the need for collecting labeled data in new domains, exhaustive annotation for Re-ID is laborious and requires domain expertise. Our analyses show that existing unsupervised (USL) and AL Re-ID methods underperform for animal Re-ID. To address these limitations, we introduce a novel AL Re-ID framework that leverages complementary clustering methods to uncover and target structurally ambiguous regions in the embedding space for mining pairs of samples that are both informative and broadly representative. Oracle feedback on these pairs, in the form of must-link and cannot-link constraints, facilitates a simple annotation interface, which naturally integrates with existing USL methods through our proposed constrained clustering refinement algorithm. Through extensive experiments, we demonstrate that, by utilizing only 0.033% of all annotations, our approach consistently outperforms existing foundational, USL and AL baselines. Specifically, we report an average improvement of 10.49%, 11.19% and 3.99% (mAP) on 13 wildlife datasets over foundational, USL and AL methods, respectively, while attaining state-of-the-art performance on each dataset. Furthermore, we also show an improvement of 11.09%, 8.2% and 2.06% for unknown individuals in an open-world setting.
comment: In Proceedings of AAAI Conference on Artificial Intelligence 2026
☆ CaberNet: Causal Representation Learning for Cross-Domain HVAC Energy Prediction
Cross-domain HVAC energy prediction is essential for scalable building energy management, particularly because collecting extensive labeled data for every new building is both costly and impractical. Yet, this task remains highly challenging due to the scarcity and heterogeneity of data across different buildings, climate zones, and seasonal patterns. In particular, buildings situated in distinct climatic regions introduce variability that often leads existing methods to overfit to spurious correlations, rely heavily on expert intervention, or compromise on data diversity. To address these limitations, we propose CaberNet, a causal and interpretable deep sequence model that learns invariant (Markov blanket) representations for robust cross-domain prediction. In a purely data-driven fashion and without requiring any prior knowledge, CaberNet integrates i) a global feature gate trained with a self-supervised Bernoulli regularization to distinguish superior causal features from inferior ones, and ii) a domain-wise training scheme that balances domain contributions, minimizes cross-domain loss variance, and promotes latent factor independence. We evaluate CaberNet on real-world datasets collected from three buildings located in three climatically diverse cities, and it consistently outperforms all baselines, achieving a 22.9\% reduction in normalized mean squared error (NMSE) compared to the best benchmark. Our code is available at https://github.com/rickzky1001/CaberNet-CRL.
comment: Accepted at ACM e-Energy 2026
☆ Spilling the Beans: Teaching LLMs to Self-Report Their Hidden Objectives
As AI systems become more capable of complex agentic tasks, they also become more capable of pursuing undesirable objectives and causing harm. Previous work has attempted to catch these unsafe instances by interrogating models directly about their objectives and behaviors. However, the main weakness of trusting interrogations is that models can lie. We propose self-report fine-tuning (SRFT), a simple supervised fine-tuning technique that trains models to admit their factual mistakes when asked. We show that the admission of factual errors in simple question-answering settings generalizes out-of-distribution (OOD) to the admission of hidden misaligned objectives in adversarial agentic settings. We evaluate SRFT in OOD stealth tasks, where models are instructed to complete a hidden misaligned objective alongside a user-specified objective without being caught by monitoring. After SRFT, models are more likely to confess the details of their hidden objectives when interrogated, even under strong pressure not to disclose them. Interrogation on SRFT models can detect hidden objectives with near-ceiling performance (F1 score = 0.98), while the baseline model lies when interrogated under the same conditions (F1 score = 0). Interrogation on SRFT models can further elicit the content of the hidden objective, recovering 28-100% details, compared to 0% details recovered in the baseline model and by prefilled assistant turn attacks. This provides a promising technique for promoting honesty propensity and incriminating misaligned AI systems.
☆ Explainable Cross-Disease Reasoning for Cardiovascular Risk Assessment from LDCT
Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking-first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with explanatory rationale. It integrates three synergistic components: a pulmonary perception module that summarizes lung abnormalities, a knowledge-guided reasoning module that infers their cardiovascular implications, and a cardiac representation module that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening and mortality prediction, outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
☆ How Do VLAs Effectively Inherit from VLMs?
Vision-language-action (VLA) models hold the promise to attain generalizable embodied control. To achieve this, a pervasive paradigm is to leverage the rich vision-semantic priors of large vision-language models (VLMs). However, the fundamental question persists: How do VLAs effectively inherit the prior knowledge from VLMs? To address this critical question, we introduce a diagnostic benchmark, GrinningFace, an emoji tabletop manipulation task where the robot arm is asked to place objects onto printed emojis corresponding to language instructions. This task design is particularly revealing -- knowledge associated with emojis is ubiquitous in Internet-scale datasets used for VLM pre-training, yet emojis themselves are largely absent from standard robotics datasets. Consequently, they provide a clean proxy: successful task completion indicates effective transfer of VLM priors to embodied control. We implement this diagnostic task in both simulated environment and a real robot, and compare various promising techniques for knowledge transfer. Specifically, we investigate the effects of parameter-efficient fine-tuning, VLM freezing, co-training, predicting discretized actions, and predicting latent actions. Through systematic evaluation, our work not only demonstrates the critical importance of preserving VLM priors for the generalization of VLA but also establishes guidelines for future research in developing truly generalizable embodied AI systems.
☆ GRAPH-GRPO-LEX: Contract Graph Modeling and Reinforcement Learning with Group Relative Policy Optimization
Contracts are complex documents featuring detailed formal structures, explicit and implicit dependencies and rich semantic content. Given these document properties, contract drafting and manual examination of contracts have proven to be both arduous and susceptible to errors. This work aims to simplify and automate the task of contract review and analysis using a novel framework for transforming legal contracts into structured semantic graphs, enabling computational analysis and data-driven insights. We introduce a detailed ontology mapping core legal contract elements to their graph-theoretic equivalents of nodes and edges. We then present a reinforcement learning based Large Language Model (LLM) framework for segmentation and extraction of entities and relationships from contracts. Our method, GRAPH-GRPO-LEX, incorporates both LLMs and reinforcement learning with group relative policy optimization (GRPO). By applying a carefully drafted reward function of graph metrics, we demonstrate the ability to automatically identify direct relationships between clauses, and even uncover hidden dependencies. Our introduction of the gated GRPO approach shows a strong learning signal and can move contract analysis from a linear, manual reading process to an easily visualized graph. This allows for a more dynamic analysis, including building the groundwork for contract linting similar to what is now practiced in software engineering.
☆ Beyond Fixed Depth: Adaptive Graph Neural Networks for Node Classification Under Varying Homophily AAAI 2026
Graph Neural Networks (GNNs) have achieved significant success in addressing node classification tasks. However, the effectiveness of traditional GNNs degrades on heterophilic graphs, where connected nodes often belong to different labels or properties. While recent work has introduced mechanisms to improve GNN performance under heterophily, certain key limitations still exist. Most existing models apply a fixed aggregation depth across all nodes, overlooking the fact that nodes may require different propagation depths based on their local homophily levels and neighborhood structures. Moreover, many methods are tailored to either homophilic or heterophilic settings, lacking the flexibility to generalize across both regimes. To address these challenges, we develop a theoretical framework that links local structural and label characteristics to information propagation dynamics at the node level. Our analysis shows that optimal aggregation depth varies across nodes and is critical for preserving class-discriminative information. Guided by this insight, we propose a novel adaptive-depth GNN architecture that dynamically selects node-specific aggregation depths using theoretically grounded metrics. Our method seamlessly adapts to both homophilic and heterophilic patterns within a unified model. Extensive experiments demonstrate that our approach consistently enhances the performance of standard GNN backbones across diverse benchmarks.
comment: Accepted to AAAI 2026
☆ SPUR: A Plug-and-Play Framework for Integrating Spatial Audio Understanding and Reasoning into Large Audio-Language Models
Spatial perception is central to auditory intelligence, enabling accurate understanding of real-world acoustic scenes and advancing human-level perception of the world around us. While recent large audio-language models (LALMs) show strong reasoning over complex audios, most operate on monaural inputs and lack the ability to capture spatial cues such as direction, elevation, and distance. We introduce SPUR, a lightweight, plug-in approach that equips LALMs with spatial perception through minimal architectural changes. SPUR consists of: (i) a First-Order Ambisonics (FOA) encoder that maps (W, X, Y, Z) channels to rotation-aware, listener-centric spatial features, integrated into target LALMs via a multimodal adapter; and (ii) SPUR-Set, a spatial QA dataset combining open-source FOA recordings with controlled simulations, emphasizing relative direction, elevation, distance, and overlap for supervised spatial reasoning. Fine-tuning our model on the SPUR-Set consistently improves spatial QA and multi-speaker attribution while preserving general audio understanding. SPUR provides a simple recipe that transforms monaural LALMs into spatially aware models. Extensive ablations validate the effectiveness of our approach.
comment: Project: https://sakshi113.github.io/spur/
☆ TabRAG: Tabular Document Retrieval via Structured Language Representations NeurIPS 2025
Ingesting data for Retrieval-Augmented Generation (RAG) involves either fine-tuning the embedding model directly on the target corpus or parsing documents for embedding model encoding. The former, while accurate, incurs high computational hardware requirements, while the latter suffers from suboptimal performance when extracting tabular data. In this work, we address the latter by presenting TabRAG, a parsing-based RAG pipeline designed to tackle table-heavy documents via structured language representations. TabRAG outperforms existing popular parsing-based methods for generation and retrieval. Code is available at https://github.com/jacobyhsi/TabRAG.
comment: NeurIPS 2025 AI4Tab
☆ TwinOR: Photorealistic Digital Twins of Dynamic Operating Rooms for Embodied AI Research
Developing embodied AI for intelligent surgical systems requires safe, controllable environments for continual learning and evaluation. However, safety regulations and operational constraints in operating rooms (ORs) limit embodied agents from freely perceiving and interacting in realistic settings. Digital twins provide high-fidelity, risk-free environments for exploration and training. How we may create photorealistic and dynamic digital representations of ORs that capture relevant spatial, visual, and behavioral complexity remains unclear. We introduce TwinOR, a framework for constructing photorealistic, dynamic digital twins of ORs for embodied AI research. The system reconstructs static geometry from pre-scan videos and continuously models human and equipment motion through multi-view perception of OR activities. The static and dynamic components are fused into an immersive 3D environment that supports controllable simulation and embodied exploration. The proposed framework reconstructs complete OR geometry with centimeter level accuracy while preserving dynamic interaction across surgical workflows, enabling realistic renderings and a virtual playground for embodied AI systems. In our experiments, TwinOR simulates stereo and monocular sensor streams for geometry understanding and visual localization tasks. Models such as FoundationStereo and ORB-SLAM3 on TwinOR-synthesized data achieve performance within their reported accuracy on real indoor datasets, demonstrating that TwinOR provides sensor-level realism sufficient for perception and localization challenges. By establishing a real-to-sim pipeline for constructing dynamic, photorealistic digital twins of OR environments, TwinOR enables the safe, scalable, and data-efficient development and benchmarking of embodied AI, ultimately accelerating the deployment of embodied AI from sim-to-real.
☆ Unified Humanoid Fall-Safety Policy from a Few Demonstrations
Falling is an inherent risk of humanoid mobility. Maintaining stability is thus a primary safety focus in robot control and learning, yet no existing approach fully averts loss of balance. When instability does occur, prior work addresses only isolated aspects of falling: avoiding falls, choreographing a controlled descent, or standing up afterward. Consequently, humanoid robots lack integrated strategies for impact mitigation and prompt recovery when real falls defy these scripts. We aim to go beyond keeping balance to make the entire fall-and-recovery process safe and autonomous: prevent falls when possible, reduce impact when unavoidable, and stand up when fallen. By fusing sparse human demonstrations with reinforcement learning and an adaptive diffusion-based memory of safe reactions, we learn adaptive whole-body behaviors that unify fall prevention, impact mitigation, and rapid recovery in one policy. Experiments in simulation and on a Unitree G1 demonstrate robust sim-to-real transfer, lower impact forces, and consistently fast recovery across diverse disturbances, pointing towards safer, more resilient humanoids in real environments. Videos are available at https://firm2025.github.io/.
☆ Residual Rotation Correction using Tactile Equivariance
Visuotactile policy learning augments vision-only policies with tactile input, facilitating contact-rich manipulation. However, the high cost of tactile data collection makes sample efficiency the key requirement for developing visuotactile policies. We present EquiTac, a framework that exploits the inherent SO(2) symmetry of in-hand object rotation to improve sample efficiency and generalization for visuotactile policy learning. EquiTac first reconstructs surface normals from raw RGB inputs of vision-based tactile sensors, so rotations of the normal vector field correspond to in-hand object rotations. An SO(2)-equivariant network then predicts a residual rotation action that augments a base visuomotor policy at test time, enabling real-time rotation correction without additional reorientation demonstrations. On a real robot, EquiTac accurately achieves robust zero-shot generalization to unseen in-hand orientations with very few training samples, where baselines fail even with more training data. To our knowledge, this is the first tactile learning method to explicitly encode tactile equivariance for policy learning, yielding a lightweight, symmetry-aware module that improves reliability in contact-rich tasks.
comment: 8 pages
☆ Exact Smooth Reformulations for Trajectory Optimization Under Signal Temporal Logic Specifications
We study motion planning under Signal Temporal Logic (STL), a useful formalism for specifying spatial-temporal requirements. We pose STL synthesis as a trajectory optimization problem leveraging the STL robustness semantics. To obtain a differentiable problem without approximation error, we introduce an exact reformulation of the max and min operators. The resulting method is exact, smooth, and sound. We validate it in numerical simulations, demonstrating its practical performance.
☆ PlanT 2.0: Exposing Biases and Structural Flaws in Closed-Loop Driving
Most recent work in autonomous driving has prioritized benchmark performance and methodological innovation over in-depth analysis of model failures, biases, and shortcut learning. This has led to incremental improvements without a deep understanding of the current failures. While it is straightforward to look at situations where the model fails, it is hard to understand the underlying reason. This motivates us to conduct a systematic study, where inputs to the model are perturbed and the predictions observed. We introduce PlanT 2.0, a lightweight, object-centric planning transformer designed for autonomous driving research in CARLA. The object-level representation enables controlled analysis, as the input can be easily perturbed (e.g., by changing the location or adding or removing certain objects), in contrast to sensor-based models. To tackle the scenarios newly introduced by the challenging CARLA Leaderboard 2.0, we introduce multiple upgrades to PlanT, achieving state-of-the-art performance on Longest6 v2, Bench2Drive, and the CARLA validation routes. Our analysis exposes insightful failures, such as a lack of scene understanding caused by low obstacle diversity, rigid expert behaviors leading to exploitable shortcuts, and overfitting to a fixed set of expert trajectories. Based on these findings, we argue for a shift toward data-centric development, with a focus on richer, more robust, and less biased datasets. We open-source our code and model at https://github.com/autonomousvision/plant2.
☆ Robotic versus Human Teleoperation for Remote Ultrasound
Diagnostic medical ultrasound is widely used, safe, and relatively low cost but requires a high degree of expertise to acquire and interpret the images. Personnel with this expertise are often not available outside of larger cities, leading to difficult, costly travel and long wait times for rural populations. To address this issue, tele-ultrasound techniques are being developed, including robotic teleoperation and recently human teleoperation, in which a novice user is remotely guided in a hand-over-hand manner through mixed reality to perform an ultrasound exam. These methods have not been compared, and their relative strengths are unknown. Human teleoperation may be more practical than robotics for small communities due to its lower cost and complexity, but this is only relevant if the performance is comparable. This paper therefore evaluates the differences between human and robotic teleoperation, examining practical aspects such as setup time and flexibility and experimentally comparing performance metrics such as completion time, position tracking, and force consistency. It is found that human teleoperation does not lead to statistically significant differences in completion time or position accuracy, with mean differences of 1.8% and 0.5%, respectively, and provides more consistent force application despite being substantially more practical and accessible.
comment: Under review at IEEE TMRB. Extended version of a paper presented at the Hamlyn Symposium for Medical Robotics, 2025
☆ Automated Generation of Continuous-Space Roadmaps for Routing Mobile Robot Fleets
Efficient routing of mobile robot fleets is crucial in intralogistics, where delays and deadlocks can substantially reduce system throughput. Roadmap design, specifying feasible transport routes, directly affects fleet coordination and computational performance. Existing approaches are either grid-based, compromising geometric precision, or continuous-space approaches that disregard practical constraints. This paper presents an automated roadmap generation approach that bridges this gap by operating in continuous-space, integrating station-to-station transport demand and enforcing minimum distance constraints for nodes and edges. By combining free space discretization, transport demand-driven $K$-shortest-path optimization, and path smoothing, the approach produces roadmaps tailored to intralogistics applications. Evaluation across multiple intralogistics use cases demonstrates that the proposed approach consistently outperforms established baselines (4-connected grid, 8-connected grid, and random sampling), achieving lower structural complexity, higher redundancy, and near-optimal path lengths, enabling efficient and robust routing of mobile robot fleets.
comment: submitted to the IEEE for possible publication; 8 pages, 6 figures, 2 tables
☆ Dynamics-Decoupled Trajectory Alignment for Sim-to-Real Transfer in Reinforcement Learning for Autonomous Driving
Reinforcement learning (RL) has shown promise in robotics, but deploying RL on real vehicles remains challenging due to the complexity of vehicle dynamics and the mismatch between simulation and reality. Factors such as tire characteristics, road surface conditions, aerodynamic disturbances, and vehicle load make it infeasible to model real-world dynamics accurately, which hinders direct transfer of RL agents trained in simulation. In this paper, we present a framework that decouples motion planning from vehicle control through a spatial and temporal alignment strategy between a virtual vehicle and the real system. An RL agent is first trained in simulation using a kinematic bicycle model to output continuous control actions. Its behavior is then distilled into a trajectory-predicting agent that generates finite-horizon ego-vehicle trajectories, enabling synchronization between virtual and real vehicles. At deployment, a Stanley controller governs lateral dynamics, while longitudinal alignment is maintained through adaptive update mechanisms that compensate for deviations between virtual and real trajectories. We validate our approach on a real vehicle and demonstrate that the proposed alignment strategy enables robust zero-shot transfer of RL-based motion planning from simulation to reality, successfully decoupling high-level trajectory generation from low-level vehicle control.
☆ HDCNet: A Hybrid Depth Completion Network for Grasping Transparent and Reflective Objects
Depth perception of transparent and reflective objects has long been a critical challenge in robotic manipulation.Conventional depth sensors often fail to provide reliable measurements on such surfaces, limiting the performance of robots in perception and grasping tasks. To address this issue, we propose a novel depth completion network,HDCNet,which integrates the complementary strengths of Transformer,CNN and Mamba architectures.Specifically,the encoder is designed as a dual-branch Transformer-CNN framework to extract modality-specific features. At the shallow layers of the encoder, we introduce a lightweight multimodal fusion module to effectively integrate low-level features. At the network bottleneck,a Transformer-Mamba hybrid fusion module is developed to achieve deep integration of high-level semantic and global contextual information, significantly enhancing depth completion accuracy and robustness. Extensive evaluations on multiple public datasets demonstrate that HDCNet achieves state-of-the-art(SOTA) performance in depth completion tasks.Furthermore,robotic grasping experiments show that HDCNet substantially improves grasp success rates for transparent and reflective objects,achieving up to a 60% increase.
☆ Multi-Agent Reinforcement Learning for Deadlock Handling among Autonomous Mobile Robots
This dissertation explores the application of multi-agent reinforcement learning (MARL) for handling deadlocks in intralogistics systems that rely on autonomous mobile robots (AMRs). AMRs enhance operational flexibility but also increase the risk of deadlocks, which degrade system throughput and reliability. Existing approaches often neglect deadlock handling in the planning phase and rely on rigid control rules that cannot adapt to dynamic operational conditions. To address these shortcomings, this work develops a structured methodology for integrating MARL into logistics planning and operational control. It introduces reference models that explicitly consider deadlock-capable multi-agent pathfinding (MAPF) problems, enabling systematic evaluation of MARL strategies. Using grid-based environments and an external simulation software, the study compares traditional deadlock handling strategies with MARL-based solutions, focusing on PPO and IMPALA algorithms under different training and execution modes. Findings reveal that MARL-based strategies, particularly when combined with centralized training and decentralized execution (CTDE), outperform rule-based methods in complex, congested environments. In simpler environments or those with ample spatial freedom, rule-based methods remain competitive due to their lower computational demands. These results highlight that MARL provides a flexible and scalable solution for deadlock handling in dynamic intralogistics scenarios, but requires careful tailoring to the operational context.
comment: for associated repositories, see https://github.com/Nerozud/dl_reference_models and https://github.com/Nerozud/FTS_simpel
☆ Raspi$^2$USBL: An open-source Raspberry Pi-Based Passive Inverted Ultra-Short Baseline Positioning System for Underwater Robotics
Precise underwater positioning remains a fundamental challenge for underwater robotics since global navigation satellite system (GNSS) signals cannot penetrate the sea surface. This paper presents Raspi$^2$USBL, an open-source, Raspberry Pi-based passive inverted ultra-short baseline (piUSBL) positioning system designed to provide a low-cost and accessible solution for underwater robotic research. The system comprises a passive acoustic receiver and an active beacon. The receiver adopts a modular hardware architecture that integrates a hydrophone array, a multichannel preamplifier, an oven-controlled crystal oscillator (OCXO), a Raspberry Pi 5, and an MCC-series data acquisition (DAQ) board. Apart from the Pi 5, OCXO, and MCC board, the beacon comprises an impedance-matching network, a power amplifier, and a transmitting transducer. An open-source C++ software framework provides high-precision clock synchronization and triggering for one-way travel-time (OWTT) messaging, while performing real-time signal processing, including matched filtering, array beamforming, and adaptive gain control, to estimate the time of flight (TOF) and direction of arrival (DOA) of received signals. The Raspi$^2$USBL system was experimentally validated in an anechoic tank, freshwater lake, and open-sea trials. Results demonstrate a slant-range accuracy better than 0.1%, a bearing accuracy within 0.1$^\circ$, and stable performance over operational distances up to 1.3 km. These findings confirm that low-cost, reproducible hardware can deliver research-grade underwater positioning accuracy. By releasing both the hardware and software as open-source, Raspi$^2$USBL provides a unified reference platform that lowers the entry barrier for underwater robotics laboratories, fosters reproducibility, and promotes collaborative innovation in underwater acoustic navigation and swarm robotics.
☆ Integration of Visual SLAM into Consumer-Grade Automotive Localization
Accurate ego-motion estimation in consumer-grade vehicles currently relies on proprioceptive sensors, i.e. wheel odometry and IMUs, whose performance is limited by systematic errors and calibration. While visual-inertial SLAM has become a standard in robotics, its integration into automotive ego-motion estimation remains largely unexplored. This paper investigates how visual SLAM can be integrated into consumer-grade vehicle localization systems to improve performance. We propose a framework that fuses visual SLAM with a lateral vehicle dynamics model to achieve online gyroscope calibration under realistic driving conditions. Experimental results demonstrate that vision-based integration significantly improves gyroscope calibration accuracy and thus enhances overall localization performance, highlighting a promising path toward higher automotive localization accuracy. We provide results on both proprietary and public datasets, showing improved performance and superior localization accuracy on a public benchmark compared to state-of-the-art methods.
comment: This manuscript has been submitted to the IEEE for possible publication
☆ Multi-Agent AI Framework for Road Situation Detection and C-ITS Message Generation
Conventional road-situation detection methods achieve strong performance in predefined scenarios but fail in unseen cases and lack semantic interpretation, which is crucial for reliable traffic recommendations. This work introduces a multi-agent AI framework that combines multimodal large language models (MLLMs) with vision-based perception for road-situation monitoring. The framework processes camera feeds and coordinates dedicated agents for situation detection, distance estimation, decision-making, and Cooperative Intelligent Transport System (C-ITS) message generation. Evaluation is conducted on a custom dataset of 103 images extracted from 20 videos of the TAD dataset. Both Gemini-2.0-Flash and Gemini-2.5-Flash were evaluated. The results show 100\% recall in situation detection and perfect message schema correctness; however, both models suffer from false-positive detections and have reduced performance in terms of number of lanes, driving lane status and cause code. Surprisingly, Gemini-2.5-Flash, though more capable in general tasks, underperforms Gemini-2.0-Flash in detection accuracy and semantic understanding and incurs higher latency (Table II). These findings motivate further work on fine-tuning specialized LLMs or MLLMs tailored for intelligent transportation applications.
comment: submitted to TRA 2026
☆ Aerial Image Stitching Using IMU Data from a UAV
Unmanned Aerial Vehicles (UAVs) are widely used for aerial photography and remote sensing applications. One of the main challenges is to stitch together multiple images into a single high-resolution image that covers a large area. Featurebased image stitching algorithms are commonly used but can suffer from errors and ambiguities in feature detection and matching. To address this, several approaches have been proposed, including using bundle adjustment techniques or direct image alignment. In this paper, we present a novel method that uses a combination of IMU data and computer vision techniques for stitching images captured by a UAV. Our method involves several steps such as estimating the displacement and rotation of the UAV between consecutive images, correcting for perspective distortion, and computing a homography matrix. We then use a standard image stitching algorithm to align and blend the images together. Our proposed method leverages the additional information provided by the IMU data, corrects for various sources of distortion, and can be easily integrated into existing UAV workflows. Our experiments demonstrate the effectiveness and robustness of our method, outperforming some of the existing feature-based image stitching algorithms in terms of accuracy and reliability, particularly in challenging scenarios such as large displacements, rotations, and variations in camera pose.
☆ PanoNav: Mapless Zero-Shot Object Navigation with Panoramic Scene Parsing and Dynamic Memory AAAI 2026
Zero-shot object navigation (ZSON) in unseen environments remains a challenging problem for household robots, requiring strong perceptual understanding and decision-making capabilities. While recent methods leverage metric maps and Large Language Models (LLMs), they often depend on depth sensors or prebuilt maps, limiting the spatial reasoning ability of Multimodal Large Language Models (MLLMs). Mapless ZSON approaches have emerged to address this, but they typically make short-sighted decisions, leading to local deadlocks due to a lack of historical context. We propose PanoNav, a fully RGB-only, mapless ZSON framework that integrates a Panoramic Scene Parsing module to unlock the spatial parsing potential of MLLMs from panoramic RGB inputs, and a Memory-guided Decision-Making mechanism enhanced by a Dynamic Bounded Memory Queue to incorporate exploration history and avoid local deadlocks. Experiments on the public navigation benchmark show that PanoNav significantly outperforms representative baselines in both SR and SPL metrics.
comment: Accepted as a poster in AAAI 2026
☆ Vision-Based System Identification of a Quadrotor
This paper explores the application of vision-based system identification techniques in quadrotor modeling and control. Through experiments and analysis, we address the complexities and limitations of quadrotor modeling, particularly in relation to thrust and drag coefficients. Grey-box modeling is employed to mitigate uncertainties, and the effectiveness of an onboard vision system is evaluated. An LQR controller is designed based on a system identification model using data from the onboard vision system. The results demonstrate consistent performance between the models, validating the efficacy of vision based system identification. This study highlights the potential of vision-based techniques in enhancing quadrotor modeling and control, contributing to improved performance and operational capabilities. Our findings provide insights into the usability and consistency of these techniques, paving the way for future research in quadrotor performance enhancement, fault detection, and decision-making processes.
☆ Vision-Aided Online A* Path Planning for Efficient and Safe Navigation of Service Robots
The deployment of autonomous service robots in human-centric environments is hindered by a critical gap in perception and planning. Traditional navigation systems rely on expensive LiDARs that, while geometrically precise, are seman- tically unaware, they cannot distinguish a important document on an office floor from a harmless piece of litter, treating both as physically traversable. While advanced semantic segmentation exists, no prior work has successfully integrated this visual intelligence into a real-time path planner that is efficient enough for low-cost, embedded hardware. This paper presents a frame- work to bridge this gap, delivering context-aware navigation on an affordable robotic platform. Our approach centers on a novel, tight integration of a lightweight perception module with an online A* planner. The perception system employs a semantic segmentation model to identify user-defined visual constraints, enabling the robot to navigate based on contextual importance rather than physical size alone. This adaptability allows an operator to define what is critical for a given task, be it sensitive papers in an office or safety lines in a factory, thus resolving the ambiguity of what to avoid. This semantic perception is seamlessly fused with geometric data. The identified visual constraints are projected as non-geometric obstacles onto a global map that is continuously updated from sensor data, enabling robust navigation through both partially known and unknown environments. We validate our framework through extensive experiments in high-fidelity simulations and on a real-world robotic platform. The results demonstrate robust, real-time performance, proving that a cost- effective robot can safely navigate complex environments while respecting critical visual cues invisible to traditional planners.
comment: 10 pages
☆ Human-Level Actuation for Humanoids
Claims that humanoid robots achieve ``human-level'' actuation are common but rarely quantified. Peak torque or speed specifications tell us little about whether a joint can deliver the right combination of torque, power, and endurance at task-relevant postures and rates. We introduce a comprehensive framework that makes ``human-level'' measurable and comparable across systems. Our approach has three components. First, a kinematic \emph{DoF atlas} standardizes joint coordinate systems and ranges of motion using ISB-based conventions, ensuring that human and robot joints are compared in the same reference frames. Second, \emph{Human-Equivalence Envelopes (HEE)} define per-joint requirements by measuring whether a robot meets human torque \emph{and} power simultaneously at the same joint angle and rate $(q,\omega)$, weighted by positive mechanical work in task-specific bands (walking, stairs, lifting, reaching, and hand actions). Third, the \emph{Human-Level Actuation Score (HLAS)} aggregates six physically grounded factors: workspace coverage (ROM and DoF), HEE coverage, torque-mode bandwidth, efficiency, and thermal sustainability. We provide detailed measurement protocols using dynamometry, electrical power monitoring, and thermal testing that yield every HLAS input from reproducible experiments. A worked example demonstrates HLAS computation for a multi-joint humanoid, showing how the score exposes actuator trade-offs (gearing ratio versus bandwidth and efficiency) that peak-torque specifications obscure. The framework serves as both a design specification for humanoid development and a benchmarking standard for comparing actuation systems, with all components grounded in published human biomechanics data.
comment: 61 pages, 8 figures, 7 tables, and 12 numbered equations
☆ SlotVLA: Towards Modeling of Object-Relation Representations in Robotic Manipulation
Inspired by how humans reason over discrete objects and their relationships, we explore whether compact object-centric and object-relation representations can form a foundation for multitask robotic manipulation. Most existing robotic multitask models rely on dense embeddings that entangle both object and background cues, raising concerns about both efficiency and interpretability. In contrast, we study object-relation-centric representations as a pathway to more structured, efficient, and explainable visuomotor control. Our contributions are two-fold. First, we introduce LIBERO+, a fine-grained benchmark dataset designed to enable and evaluate object-relation reasoning in robotic manipulation. Unlike prior datasets, LIBERO+ provides object-centric annotations that enrich demonstrations with box- and mask-level labels as well as instance-level temporal tracking, supporting compact and interpretable visuomotor representations. Second, we propose SlotVLA, a slot-attention-based framework that captures both objects and their relations for action decoding. It uses a slot-based visual tokenizer to maintain consistent temporal object representations, a relation-centric decoder to produce task-relevant embeddings, and an LLM-driven module that translates these embeddings into executable actions. Experiments on LIBERO+ demonstrate that object-centric slot and object-relation slot representations drastically reduce the number of required visual tokens, while providing competitive generalization. Together, LIBERO+ and SlotVLA provide a compact, interpretable, and effective foundation for advancing object-relation-centric robotic manipulation.
comment: under review
☆ Semi-distributed Cross-modal Air-Ground Relative Localization IROS 2025
Efficient, accurate, and flexible relative localization is crucial in air-ground collaborative tasks. However, current approaches for robot relative localization are primarily realized in the form of distributed multi-robot SLAM systems with the same sensor configuration, which are tightly coupled with the state estimation of all robots, limiting both flexibility and accuracy. To this end, we fully leverage the high capacity of Unmanned Ground Vehicle (UGV) to integrate multiple sensors, enabling a semi-distributed cross-modal air-ground relative localization framework. In this work, both the UGV and the Unmanned Aerial Vehicle (UAV) independently perform SLAM while extracting deep learning-based keypoints and global descriptors, which decouples the relative localization from the state estimation of all agents. The UGV employs a local Bundle Adjustment (BA) with LiDAR, camera, and an IMU to rapidly obtain accurate relative pose estimates. The BA process adopts sparse keypoint optimization and is divided into two stages: First, optimizing camera poses interpolated from LiDAR-Inertial Odometry (LIO), followed by estimating the relative camera poses between the UGV and UAV. Additionally, we implement an incremental loop closure detection algorithm using deep learning-based descriptors to maintain and retrieve keyframes efficiently. Experimental results demonstrate that our method achieves outstanding performance in both accuracy and efficiency. Unlike traditional multi-robot SLAM approaches that transmit images or point clouds, our method only transmits keypoint pixels and their descriptors, effectively constraining the communication bandwidth under 0.3 Mbps. Codes and data will be publicly available on https://github.com/Ascbpiac/cross-model-relative-localization.git.
comment: 7 pages, 3 figures. Accepted by IROS 2025
☆ Programmable Telescopic Soft Pneumatic Actuators for Deployable and Shape Morphing Soft Robots
Soft Robotics presents a rich canvas for free-form and continuum devices capable of exerting forces in any direction and transforming between arbitrary configurations. However, there is no current way to tractably and directly exploit the design freedom due to the curse of dimensionality. Parameterisable sets of designs offer a pathway towards tractable, modular soft robotics that appropriately harness the behavioural freeform of soft structures to create rich embodied behaviours. In this work, we present a parametrised class of soft actuators, Programmable Telescopic Soft Pneumatic Actuators (PTSPAs). PTSPAs expand axially on inflation for deployable structures and manipulation in challenging confined spaces. We introduce a parametric geometry generator to customise actuator models from high-level inputs, and explore the new design space through semi-automated experimentation and systematic exploration of key parameters. Using it we characterise the actuators' extension/bending, expansion, and stiffness and reveal clear relationships between key design parameters and performance. Finally we demonstrate the application of the actuators in a deployable soft quadruped whose legs deploy to walk, enabling automatic adaptation to confined spaces. PTSPAs present new design paradigm for deployable and shape morphing structures and wherever large length changes are required.
comment: 8 pages, 10 figures, Submitted to Robosoft 2026
☆ On Accurate and Robust Estimation of 3D and 2D Circular Center: Method and Application to Camera-Lidar Calibration
Circular targets are widely used in LiDAR-camera extrinsic calibration due to their geometric consistency and ease of detection. However, achieving accurate 3D-2D circular center correspondence remains challenging. Existing methods often fail due to decoupled 3D fitting and erroneous 2D ellipse-center estimation. To address this, we propose a geometrically principled framework featuring two innovations: (i) a robust 3D circle center estimator based on conformal geometric algebra and RANSAC; and (ii) a chord-length variance minimization method to recover the true 2D projected center, resolving its dual-minima ambi- guity via homography validation or a quasi-RANSAC fallback. Evaluated on synthetic and real-world datasets, our framework significantly outperforms state-of-the-art approaches. It reduces extrinsic estimation error and enables robust calibration across diverse sensors and target types, including natural circular objects. Our code will be publicly released for reproducibility.
♻ ☆ Explaining Human Choice Probabilities with Simple Vector Representations
When people pursue rewards in stochastic environments, they often match their choice frequencies to the observed target frequencies, even when this policy is demonstrably sub-optimal. We used a ``hide and seek'' task to evaluate this behavior under conditions where pursuit (seeking) could be toggled to avoidance (hiding), while leaving the probability distribution fixed, or varying complexity by changing the number of possible choices. We developed a model for participant choice built from choice frequency histograms treated as vectors. We posited the existence of a probability antimatching strategy for avoidance (hiding) rounds, and formalized this as a vector reflection of probability matching. We found that only two basis policies: matching/antimatching and maximizing/minimizing were sufficient to account for participant choices across a range of room numbers and opponent probability distributions. This schema requires only that people have the ability to remember the relative frequency of the different outcomes. With this knowledge simple operations can construct the maximizing and minimizing policies as well as matching and antimatching strategies. A mixture of these two policies captures human choice patterns in a stochastic environment.
♻ ☆ Embedding-Aware Quantum-Classical SVMs for Scalable Quantum Machine Learning
Quantum Support Vector Machines face scalability challenges due to high-dimensional quantum states and hardware limitations. We propose an embedding-aware quantum-classical pipeline combining class-balanced k-means distillation with pretrained Vision Transformer embeddings. Our key finding: ViT embeddings uniquely enable quantum advantage, achieving up to 8.02% accuracy improvements over classical SVMs on Fashion-MNIST and 4.42% on MNIST, while CNN features show performance degradation. Using 16-qubit tensor network simulation via cuTensorNet, we provide the first systematic evidence that quantum kernel advantage depends critically on embedding choice, revealing fundamental synergy between transformer attention and quantum feature spaces. This provides a practical pathway for scalable quantum machine learning that leverages modern neural architectures.
comment: Accepted for Poster, Presentation and Proceedings at: 3rd International Workshop on AI for Quantum and Quantum for AI (AIQxQIA 2025), co-located with ECAI 2025, Bologna, Italy, 25-30 October 2025
♻ ☆ Bridging Weakly-Supervised Learning and VLM Distillation: Noisy Partial Label Learning for Efficient Downstream Adaptation
In the context of noisy partial label learning (NPLL), each training sample is associated with a set of candidate labels annotated by multiple noisy annotators. With the emergence of high-performance pre-trained vision-language models (VLMs) such as CLIP, LLaVA and GPT-4V, the direction of using these models to replace time-consuming manual annotation workflows and achieve ``manual-annotation-free" training for downstream tasks has become a highly promising research avenue. This paper focuses on learning from noisy partial labels annotated by pre-trained VLMs and proposes an innovative collaborative consistency regularization (Co-Reg) method. Unlike the symmetric noise primarily addressed in traditional noisy label learning, the noise generated by pre-trained models is instance-dependent, embodying the underlying patterns of the pre-trained models themselves, which significantly increases the learning difficulty for the model. To address this, we simultaneously train two neural networks that implement collaborative purification of training labels through a ``Co-Pseudo-Labeling" mechanism, while enforcing consistency regularization constraints in both the label space and feature representation space. Specifically, we construct multiple anti-overfitting mechanisms that efficiently mine latent information from noisy partially labeled samples including alternating optimization of contrastive feature representations and pseudo-labels, as well as maintaining prototypical class vectors in the shared feature space.
♻ ☆ When Bias Helps Learning: Bridging Initial Prejudice and Trainability
Understanding the statistical properties of deep neural networks (DNNs) at initialization is crucial for elucidating both their trainability and the intrinsic architectural biases they encode prior to data exposure. Mean-field (MF) analyses have demonstrated that the parameter distribution in randomly initialized networks dictates whether gradients vanish or explode. Recent work has shown that untrained DNNs exhibit an initial-guessing bias (IGB), in which large regions of the input space are assigned to a single class. In this work, we provide a theoretical proof linking IGB to MF analyses, establishing that a network predisposition toward specific classes is intrinsically tied to the conditions for efficient learning. This connection leads to a counterintuitive conclusion: the initialization that optimizes trainability is systematically biased rather than neutral. We validate our theory through experiments across multiple architectures and datasets.
♻ ☆ Universal Spectral Tokenization via Self-Supervised Panchromatic Representation Learning NeurIPS 2025
Sequential scientific data span many resolutions and domains, and unifying them into a common representation is a key step toward developing foundation models for the sciences. Astronomical spectra exemplify this challenge: massive surveys have collected millions of spectra across a wide range of wavelengths and resolutions, yet analyses remain fragmented across spectral domains (e.g., optical vs. infrared) and object types (e.g., stars vs. galaxies), limiting the ability to pool information across datasets. We present a deep learning model that jointly learns from heterogeneous spectra in a self-supervised manner. Our universal spectral tokenizer processes spectra from a variety of object types and resolutions directly on their native wavelength grids, producing intrinsically aligned, homogeneous, and physically meaningful representations that can be efficiently adapted to achieve competitive performance across a range of downstream tasks. For the first time, we demonstrate that a single model can unify spectral data across resolutions and domains, suggesting that our model can serve as a powerful building block for foundation models in astronomy -- and potentially extend to other scientific domains with heterogeneous sequential data, such as climate and healthcare.
comment: Accepted at NeurIPS 2025 Machine Learning and the Physical Sciences Workshop; v2: added collaboration
♻ ☆ HyperSHAP: Shapley Values and Interactions for Explaining Hyperparameter Optimization AAAI-26
Hyperparameter optimization (HPO) is a crucial step in achieving strong predictive performance. Yet, the impact of individual hyperparameters on model generalization is highly context-dependent, prohibiting a one-size-fits-all solution and requiring opaque HPO methods to find optimal configurations. However, the black-box nature of most HPO methods undermines user trust and discourages adoption. To address this, we propose a game-theoretic explainability framework for HPO based on Shapley values and interactions. Our approach provides an additive decomposition of a performance measure across hyperparameters, enabling local and global explanations of hyperparameters' contributions and their interactions. The framework, named HyperSHAP, offers insights into ablation studies, the tunability of learning algorithms, and optimizer behavior across different hyperparameter spaces. We demonstrate HyperSHAP's capabilities on various HPO benchmarks to analyze the interaction structure of the corresponding HPO problems, demonstrating its broad applicability and actionable insights for improving HPO.
comment: Accepted at AAAI-26 (oral)
FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L \Delta \sigma_l^2)/(S K R \epsilon^2)}+(L \Delta)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.
♻ ☆ Tool Zero: Training Tool-Augmented LLMs via Pure RL from Scratch EMNLP 2025
Training tool-augmented LLMs has emerged as a promising approach to enhancing language models' capabilities for complex tasks. The current supervised fine-tuning paradigm relies on constructing extensive domain-specific datasets to train models. However, this approach often struggles to generalize effectively to unfamiliar or intricate tool-use scenarios. Recently, reinforcement learning (RL) paradigm can endow LLMs with superior reasoning and generalization abilities. In this work, we address a key question: Can the pure RL be used to effectively elicit a model's intrinsic reasoning capabilities and enhance the tool-agnostic generalization? We propose a dynamic generalization-guided reward design for rule-based RL, which progressively shifts rewards from exploratory to exploitative tool-use patterns. Based on this design, we introduce the Tool-Zero series models. These models are trained to enable LLMs to autonomously utilize general tools by directly scaling up RL from Zero models (i.e., base models without post-training). Experimental results demonstrate that our models achieve over 7% performance improvement compared to both SFT and RL-with-SFT models under the same experimental settings. These gains are consistently replicated across cross-dataset and intra-dataset evaluations, validating the effectiveness and robustness of our methods.
comment: EMNLP 2025 finding
♻ ☆ Meta SecAlign: A Secure Foundation LLM Against Prompt Injection Attacks
Prompt injection attack has been listed as the top-1 security threat to LLM-integrated applications, which interact with external environment data for complex tasks. The untrusted data may contain an injected prompt trying to arbitrarily manipulate the system. Model-level prompt injection defenses have shown strong effectiveness, but are currently deployed into commercial-grade models in a closed-source manner. We believe open-source secure models are needed by the AI security community, where co-development of attacks and defenses through open research drives scientific progress in mitigating prompt injection attacks. To this end, we develop Meta SecAlign, the first fully open-source LLM with built-in model-level defense that achieves commercial-grade performance, powerful enough for complex agentic tasks. We provide complete details of our training recipe, an improved version of the SOTA SecAlign defense. We perform the most comprehensive evaluation to date on 9 utility benchmarks and 7 security benchmarks on general knowledge, instruction following, and agentic workflows. Results show that Meta SecAlign, despite being trained on generic instruction-tuning samples only, surprisingly confers security in unseen downstream tasks, including tool-calling and web-navigation, in addition to general instruction-following. Our best model -- Meta-SecAlign-70B -- establishes a new frontier of utility-security trade-off for open-source LLMs. Even compared to closed-course commercial models such as GPT-5, our model is much securer than most of them. Below are links for the code (https://github.com/facebookresearch/Meta_SecAlign), Meta-SecAlign-70B(https://huggingface.co/facebook/Meta-SecAlign-70B), and Meta-SecAlign-8B(https://huggingface.co/facebook/Meta-SecAlign-8B) models.
♻ ☆ DeepEyesV2: Toward Agentic Multimodal Model
Agentic multimodal models should not only comprehend text and images, but also actively invoke external tools, such as code execution environments and web search, and integrate these operations into reasoning. In this work, we introduce DeepEyesV2 and explore how to build an agentic multimodal model from the perspectives of data construction, training methods, and model evaluation. We observe that direct reinforcement learning alone fails to induce robust tool-use behavior. This phenomenon motivates a two-stage training pipeline: a cold-start stage to establish tool-use patterns, and reinforcement learning stage to further refine tool invocation. We curate a diverse, moderately challenging training dataset, specifically including examples where tool use is beneficial. We further introduce RealX-Bench, a comprehensive benchmark designed to evaluate real-world multimodal reasoning, which inherently requires the integration of multiple capabilities, including perception, search, and reasoning. We evaluate DeepEyesV2 on RealX-Bench and other representative benchmarks, demonstrating its effectiveness across real-world understanding, mathematical reasoning, and search-intensive tasks. Moreover, DeepEyesV2 exhibits task-adaptive tool invocation, tending to use image operations for perception tasks and numerical computations for reasoning tasks. Reinforcement learning further enables complex tool combinations and allows model to selectively invoke tools based on context. We hope our study can provide guidance for community in developing agentic multimodal models.
comment: Homepage: https://visual-agent.github.io/
♻ ☆ GPT, But Backwards: Exactly Inverting Language Model Outputs ICML 2025
The task of reconstructing unknown textual inputs to language models is a fundamental auditing primitive that allows us to assess the model's vulnerability to a range of security issues, including stealing hidden system prompts, detecting backdoors, and leaking private data. Existing inversion works assume access to differing levels of information (e.g. requiring input-output examples, the model parameters, intermediate activations or output logits) but oftentimes fail to fully reconstruct the desired input. In this paper, we present the Sparse One-hot Discrete Adam (SODA) algorithm, a search-based inversion method that can accurately reconstruct the input text, given white-box access to the language model and its output. Our experiments demonstrate for the first time that exact language model inversion is possible on both natural language and random inputs. Indeed, SODA achieves respectively 98% and 79% reconstruction rates on inputs with lengths up to 10 tokens. Furthermore, we show that input length and vocabulary size have a far greater impact on the probability of a successful reconstruction than the size of the language model itself, thus allowing us to scale to models from 33M to 3B parameters.
comment: 7 pages, ICML 2025 Workshop on Reliable and Responsible Foundation Models
♻ ☆ GlitchMiner: Mining Glitch Tokens in Large Language Models via Gradient-based Discrete Optimization
Glitch tokens, inputs that trigger unpredictable or anomalous behavior in Large Language Models (LLMs), pose significant challenges to model reliability and safety. Existing detection methods primarily rely on heuristic embedding patterns or statistical anomalies within internal representations, limiting their generalizability across different model architectures and potentially missing anomalies that deviate from observed patterns. We introduce GlitchMiner, an behavior-driven framework designed to identify glitch tokens by maximizing predictive entropy. Leveraging a gradient-guided local search strategy, GlitchMiner efficiently explores the discrete token space without relying on model-specific heuristics or large-batch sampling. Extensive experiments across ten LLMs from five major model families demonstrate that GlitchMiner consistently outperforms existing approaches in detection accuracy and query efficiency, providing a generalizable and scalable solution for effective glitch token discovery. Code is available at [https://github.com/wooozihu/GlitchMiner]
♻ ☆ ANO : Faster is Better in Noisy Landscape ICLR 2026
Stochastic optimizers are central to deep learning, yet widely used methods such as Adam and Adan can degrade in non-stationary or noisy environments, partly due to their reliance on momentum-based magnitude estimates. We introduce Ano, a novel optimizer that decouples direction and magnitude: momentum is used for directional smoothing, while instantaneous gradient magnitudes determine step size. This design improves robustness to gradient noise while retaining the simplicity and efficiency of first-order methods. We further propose Anolog, which removes sensitivity to the momentum coefficient by expanding its window over time via a logarithmic schedule. We establish non-convex convergence guarantees with a convergence rate similar to other sign-based methods, and empirically show that Ano provides substantial gains in noisy and non-stationary regimes such as reinforcement learning, while remaining competitive on low-noise tasks.
comment: Under Review for ICLR 2026, 25 pages total with appendix, 7 figures, 12 tables
♻ ☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
♻ ☆ When Language Shapes Thought: Cross-Lingual Transfer of Factual Knowledge in Question Answering
Multilingual large language models (LLMs) offer promising opportunities for cross-lingual information access, yet their use of factual knowledge remains highly sensitive to the input language. Prior work has addressed this through English prompting and evaluation, assuming that English-based reasoning is universally beneficial. In this work, we challenge that assumption by exploring factual knowledge transfer from non-English to English through the lens of Language and Thought Theory. We introduce Language-to-Thought (L2T) prompting, which aligns the model's internal ''thinking'' language with the source of knowledge. Across three languages and four models, L2T consistently outperforms English-based reasoning, reversing the expected advantage of English prompts. Our code is available at https://github.com/GeomeunByeol/Language2Thought.
comment: Accepted at CIKM2025 (Expanded version)
♻ ☆ UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning NeurIPS 2025
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.
comment: NeurIPS 2025 Camera Ready. Project Page: https://polyu-chenlab.github.io/unipixel/
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ Privacy-Preserving Personalization in Education: A Federated Recommender System for Student Performance Prediction
The increasing digitalization of education presents unprecedented opportunities for data-driven personalization, but it also introduces significant challenges to student data privacy. Conventional recommender systems rely on centralized data, a paradigm often incompatible with modern data protection regulations. A novel privacy-preserving recommender system is proposed and evaluated to address this critical issue using Federated Learning (FL). The approach utilizes a Deep Neural Network (DNN) with rich, engineered features from the large-scale ASSISTments educational dataset. A rigorous comparative analysis of federated aggregation strategies was conducted, identifying FedProx as a significantly more stable and effective method for handling heterogeneous student data than the standard FedAvg baseline. The optimized federated model achieves a high-performance F1-Score of 76.28%, corresponding to 92% of the performance of a powerful, centralized XGBoost model. These findings validate that a federated approach can provide highly effective content recommendations without centralizing sensitive student data. Consequently, our work presents a viable and robust solution to the personalization-privacy dilemma in modern educational platforms.
♻ ☆ Rethinking Tokenization for Rich Morphology: The Dominance of Unigram over BPE and Morphological Alignment
The relationship between tokenizer algorithm (e.g., Byte-Pair Encoding (BPE), Unigram), morphological alignment, tokenization quality (e.g., compression efficiency), and downstream performance remains largely unclear, particularly for languages with complex morphology. In this paper, we conduct a comprehensive evaluation of tokenizers using small-sized BERT models -- from pre-training through fine-tuning -- for Telugu (agglutinative), along with preliminary evaluation in Hindi (primarily fusional with some agglutination) and English (fusional). To evaluate morphological alignment of tokenizers in Telugu, we create a dataset containing gold morpheme segmentations of 600 derivational and 7000 inflectional word forms. Our experiments reveal two key findings for Telugu. First, the choice of tokenizer algorithm is the most significant factor influencing performance, with Unigram-based tokenizers consistently outperforming BPE across most settings. Second, while better morphological alignment shows a moderate, positive correlation with performance on text classification and structure prediction tasks, its impact is secondary to the tokenizer algorithm. Notably, hybrid approaches that use morphological information for pre-segmentation significantly boost the performance of BPE, though not Unigram. Our results further showcase the need for comprehensive intrinsic evaluation metrics for tokenizers that could explain downstream performance trends consistently.
♻ ☆ Security-aware Semantic-driven ISAC via Paired Adversarial Residual Networks
This paper proposes a novel and flexible security-aware semantic-driven integrated sensing and communication (ISAC) framework, namely security semantic ISAC (SS-ISAC). Inspired by the positive impact of the adversarial attack, a pair of pluggable encryption and decryption modules is designed in the proposed SS-ISAC framework. The encryption module is installed after the semantic transmitter, adopting a trainable adversarial residual network (ARN) to create the adversarial attack. Correspondingly, the decryption module before the semantic receiver utilizes another trainable ARN to mitigate the adversarial attack and noise. These two modules can be flexibly assembled considering the system security demands, without drastically modifying the hardware infrastructure. To ensure the sensing and communication (SAC) performance while preventing the eavesdropping threat, the above ARNs are jointly optimized by minimizing a carefully designed loss function that relates to the adversarial attack power, SAC performance, as well as the privacy leakage risk. Simulation results validate the effectiveness of the proposed SS-ISAC framework in terms of both SAC and eavesdropping prevention performance.
comment: This paper contains errors, including insufficient technical elaboration, incorrect expression of PSR, lack of benchmark, and incomplete simulation justification. We politely request withdrawal of the current version (v1) to prevent misunderstanding
♻ ☆ DPCformer: An Interpretable Deep Learning Model for Genomic Prediction in Crops
Genomic Selection (GS) uses whole-genome information to predict crop phenotypes and accelerate breeding. Traditional GS methods, however, struggle with prediction accuracy for complex traits and large datasets. We propose DPCformer, a deep learning model integrating convolutional neural networks with a self-attention mechanism to model complex genotype-phenotype relationships. We applied DPCformer to 13 traits across five crops (maize, cotton, tomato, rice, chickpea). Our approach uses an 8-dimensional one-hot encoding for SNP data, ordered by chromosome, and employs the PMF algorithm for feature selection. Evaluations show DPCformer outperforms existing methods. In maize datasets, accuracy for traits like days to tasseling and plant height improved by up to 2.92%. For cotton, accuracy gains for fiber traits reached 8.37%. On small-sample tomato data, the Pearson Correlation Coefficient for a key trait increased by up to 57.35%. In chickpea, the yield correlation was boosted by 16.62%. DPCformer demonstrates superior accuracy, robustness in small-sample scenarios, and enhanced interpretability, providing a powerful tool for precision breeding and addressing global food security challenges.
comment: This work has been accepted by BIBM 2025
♻ ☆ TERAG: Token-Efficient Graph-Based Retrieval-Augmented Generation
Graph-based Retrieval-augmented generation (RAG) has become a widely studied approach for improving the reasoning, accuracy, and factuality of Large Language Models (LLMs). However, many existing graph-based RAG systems overlook the high cost associated with LLM token usage during graph construction, hindering large-scale adoption. To address this, we propose TERAG, a simple yet effective framework designed to build informative graphs at a significantly lower cost. Inspired by HippoRAG, we incorporate Personalized PageRank (PPR) during the retrieval phase, and we achieve at least 80% of the accuracy of widely used graph-based RAG methods while consuming only 3%-11% of the output tokens. With its low token footprint and efficient construction pipeline, TERAG is well-suited for large-scale and cost-sensitive deployment scenarios.
comment: 16 pages, 3 figures, 4 tables. Code available at https://github.com/wocqcm2/TERAG
♻ ☆ SOCIA-Nabla: Textual Gradient Meets Multi-Agent Orchestration for Automated Simulator Generation
In this paper, we present SOCIA-Nabla, an end-to-end, agentic framework that treats simulator construction asinstance optimization over code within a textual computation graph. Specialized LLM-driven agents are embedded as graph nodes, and a workflow manager executes a loss-driven loop: code synthesis -> execution -> evaluation -> code repair. The optimizer performs Textual-Gradient Descent (TGD), while human-in-the-loop interaction is reserved for task-spec confirmation, minimizing expert effort and keeping the code itself as the trainable object. Across three CPS tasks, i.e., User Modeling, Mask Adoption, and Personal Mobility, SOCIA-Nabla attains state-of-the-art overall accuracy. By unifying multi-agent orchestration with a loss-aligned optimization view, SOCIA-Nabla converts brittle prompt pipelines into reproducible, constraint-aware simulator code generation that scales across domains and simulation granularities. This work is under review, and we will release the code soon.
comment: superseded by newest version of arXiv:2505.12006
♻ ☆ CodeEvolve: An open source evolutionary coding agent for algorithm discovery and optimization
In this work, we introduce CodeEvolve, an open-source evolutionary coding agent that unites Large Language Models (LLMs) with genetic algorithms to solve complex computational problems. Our framework adapts powerful evolutionary concepts to the LLM domain, building upon recent methods for generalized scientific discovery. CodeEvolve employs an island-based genetic algorithm to maintain population diversity and increase throughput, introduces a novel inspiration-based crossover mechanism that leverages the LLMs context window to combine features from successful solutions, and implements meta-prompting strategies for dynamic exploration of the solution space. We conduct a rigorous evaluation of CodeEvolve on a subset of the mathematical benchmarks used to evaluate Google DeepMind's closed-source AlphaEvolve. Our findings show that our method surpasses AlphaEvolve's performance on several challenging problems. To foster collaboration and accelerate progress, we release our complete framework as an open-source repository.
comment: 11 pages, 9 figures, 2 tables
♻ ☆ Perceptually Aligning Representations of Music via Noise-Augmented Autoencoders NeurIPS 2025
We argue that training autoencoders to reconstruct inputs from noised versions of their encodings, when combined with perceptual losses, yields encodings that are structured according to a perceptual hierarchy. We demonstrate the emergence of this hierarchical structure by showing that, after training an audio autoencoder in this manner, perceptually salient information is captured in coarser representation structures than with conventional training. Furthermore, we show that such perceptual hierarchies improve latent diffusion decoding in the context of estimating surprisal in music pitches and predicting EEG-brain responses to music listening. Pretrained weights are available on github.com/CPJKU/pa-audioic.
comment: Accepted at NeurIPS 2025 - AI for Music Workshop, 11 pages, 5 figures, 1 table
♻ ☆ Addressing Polarization and Unfairness in Performative Prediction
In many real-world applications of machine learning such as recommendations, hiring, and lending, deployed models influence the data they are trained on, leading to feedback loops between predictions and data distribution. The performative prediction (PP) framework captures this phenomenon by modeling the data distribution as a function of the deployed model. While prior work has focused on finding performative stable (PS) solutions for robustness, their societal impacts, particularly regarding fairness, remain underexplored. We show that PS solutions can lead to severe polarization and prediction performance disparities, and that conventional fairness interventions in previous works often fail under model-dependent distribution shifts due to failing the PS criteria. To address these challenges in PP, we introduce novel fairness mechanisms that provably ensure both stability and fairness, validated by theoretical analysis and empirical results.
♻ ☆ Interpreting Multi-Attribute Confounding through Numerical Attributes in Large Language Models AACL 2025
Although behavioral studies have documented numerical reasoning errors in large language models (LLMs), the underlying representational mechanisms remain unclear. We hypothesize that numerical attributes occupy shared latent subspaces and investigate two questions:(1) How do LLMs internally integrate multiple numerical attributes of a single entity? (2)How does irrelevant numerical context perturb these representations and their downstream outputs? To address these questions, we combine linear probing with partial correlation analysis and prompt-based vulnerability tests across models of varying sizes. Our results show that LLMs encode real-world numerical correlations but tend to systematically amplify them. Moreover, irrelevant context induces consistent shifts in magnitude representations, with downstream effects that vary by model size. These findings reveal a vulnerability in LLM decision-making and lay the groundwork for fairer, representation-aware control under multi-attribute entanglement.
comment: Accepted to IJCNLP-AACL 2025 (Main). Code available at https://github.com/htkg/num_attrs
♻ ☆ Beyond Data Scarcity Optimizing R3GAN for Medical Image Generation from Small Datasets
Medical image datasets frequently exhibit significant class imbalance, a challenge that is further amplified by the inherently limited sample sizes that characterize clinical imaging data. Using human embryo time-lapse imaging (TLI) as a case study, this work investigates how generative adversarial networks (GANs) can be optimized for small datasets to generate realistic and diagnostically meaningful images. Based on systematic experiments with R3GAN, we established effective training strategies and designed an optimized configuration for 256x256-resolution datasets, featuring a full burn-in phase and a low, gradually increasing gamma range (5 to 40). The generated samples were used to balance an imbalanced embryo dataset, leading to substantial improvement in classification performance. The recall and F1-score of the three-cell (t3) class increased from 0.06 to 0.69 and from 0.11 to 0.60, respectively, without compromising the performance of other classes. These results demonstrate that tailored R3GAN training strategies can effectively alleviate data scarcity and improve model robustness in small-scale medical imaging tasks.
♻ ☆ TimeMosaic: Temporal Heterogeneity Guided Time Series Forecasting via Adaptive Granularity Patch and Segment-wise Decoding AAAI
Multivariate time series forecasting is essential in domains such as finance, transportation, climate, and energy. However, existing patch-based methods typically adopt fixed-length segmentation, overlooking the heterogeneity of local temporal dynamics and the decoding heterogeneity of forecasting. Such designs lose details in information-dense regions, introduce redundancy in stable segments, and fail to capture the distinct complexities of short-term and long-term horizons. We propose TimeMosaic, a forecasting framework that aims to address temporal heterogeneity. TimeMosaic employs adaptive patch embedding to dynamically adjust granularity according to local information density, balancing motif reuse with structural clarity while preserving temporal continuity. In addition, it introduces segment-wise decoding that treats each prediction horizon as a related subtask and adapts to horizon-specific difficulty and information requirements, rather than applying a single uniform decoder. Extensive evaluations on benchmark datasets demonstrate that TimeMosaic delivers consistent improvements over existing methods, and our model trained on the large-scale corpus with 321 billion observations achieves performance competitive with state-of-the-art TSFMs.
comment: This paper has been accepted by AAAI
♻ ☆ Environment-Aware Indoor LoRaWAN Ranging Using Path Loss Model Inversion and Adaptive RSSI Filtering
Achieving sub-10 m indoor ranging with LoRaWAN is difficult because multipath, human blockage, and micro-climate dynamics induce non-stationary attenuation in received signal strength indicator (RSSI) measurements. We present a lightweight, interpretable pipeline that couples an environment-aware multi-wall path loss model with a forward-only, innovation-driven Kalman prefilter for RSSI. The model augments distance and wall terms with frequency, signal-to-noise ratio (SNR), and co-located environmental covariates (temperature, relative humidity, carbon dioxide, particulate matter, and barometric pressure), and is inverted deterministically for distance estimation. On a one-year single-gateway office dataset comprising over 2 million uplinks, the approach attains a mean absolute error (MAE) of 4.74 m and a root mean square error (RMSE) of 6.76 m in distance estimation, improving over a COST-231 multi-wall baseline (12.07 m MAE) and its environment-augmented variant (7.76 m MAE. Filtering reduces RSSI volatility from 10.33 to 5.43 dB and halves path loss error to 5.35 dB while raising R-squared from 0.82 to 0.89. The result is a single-anchor LoRaWAN ranging method with constant per-packet cost that is accurate, robust, and interpretable, providing a strong building block for multi-gateway localization.
♻ ☆ On the Consistency of Multilingual Context Utilization in Retrieval-Augmented Generation EMNLP 2025
Retrieval-augmented generation (RAG) with large language models (LLMs) has demonstrated strong performance in multilingual question-answering (QA) tasks by leveraging relevant passages retrieved from corpora. In multilingual RAG (mRAG), the retrieved passages can be written in languages other than that of the query entered by the user, making it challenging for LLMs to effectively utilize the provided information. Recent research suggests that retrieving passages from multilingual corpora can improve RAG performance, particularly for low-resource languages. However, the extent to which LLMs can leverage different kinds of multilingual contexts to generate accurate answers, *independently from retrieval quality*, remains understudied. In this paper, we conduct an extensive assessment of LLMs' ability to (i) make consistent use of a relevant passage regardless of its language, (ii) respond in the expected language, and (iii) focus on the relevant passage even when multiple `distracting' passages in different languages are provided in the context. Our experiments with four LLMs across three QA datasets covering a total of 48 languages reveal a surprising ability of LLMs to extract the relevant information from passages in a different language than the query, but a much weaker ability to formulate a full answer in the correct language. Our analysis, based on both accuracy and feature attribution techniques, further shows that distracting passages negatively impact answer quality regardless of their language. However, distractors in the query language exert a slightly stronger influence. Taken together, our findings deepen the understanding of how LLMs utilize context in mRAG systems, providing directions for future improvements.
comment: Best Paper Award at MRL Workshop 2025, colocated with EMNLP 2025. All codes and data are released at https://github.com/Betswish/mRAG-Context-Consistency
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding has become a standard way to accelerate LLM inference: a small drafter proposes multiple tokens and a large target model verifies them once per speculation length. Recently, scaling of the LLM vocabulary has pushed the number of tokens to grow substantially. While verification over the full vocabulary leaves the target model largely unaffected, the O(|V|d) parameters in the drafter's output head become a latency bottleneck, slowing the entire pipeline. Contemporary methods (e.g., FR-Spec, VocabTrim) restrict the drafter's vocabulary to a fixed top frequent subset of the target model's vocabulary. Although this reduces draft-time compute, it is brittle, since: (i) frequency lists are corpus-dependent and require retuning to generalize, and (ii) static shortlists suppress rare or domain-specific tokens, lowering the expected number of tokens per verification step. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism that is robust, speeds up drafting, and generalizes across diverse tasks. Concretely, we introduce lightweight, coarse-grained meta-classifiers that route contexts to a small number of token clusters; the union of the top-k selected clusters forms the drafter's shortlist, while verification retains the full vocabulary and exactness. The meta-classifier finishes its computation earlier than the drafter's hidden state generation by exploiting parallel execution of draft encoding and meta shortlisting on separate streams. Across standard speculative decoding benchmarks, DynaSpec delivers consistent improvements in mean accepted length, for Llama-3-8B, reaching upto 98.2% of full-vocabulary performance, while fixed-shortlist baselines attain only 84.4%. By leveraging context-dependent selection, DynaSpec achieves up to a 2.18 times increase in generated tokens compared to 1.91 times for fixed-vocabulary approaches.
♻ ☆ Assisting the Grading of a Handwritten General Chemistry Exam with Artificial Intelligence
We explore the effectiveness and reliability of an artificial intelligence (AI)-based grading system for a handwritten general chemistry exam, comparing AI-assigned scores to human grading across various types of questions. Exam pages and grading rubrics were uploaded as images to account for chemical reaction equations, short and long open-ended answers, numerical and symbolic answer derivations, drawing, and sketching in pencil-and-paper format. Using linear regression analyses and psychometric evaluations, the investigation reveals high agreement between AI and human graders for textual and chemical reaction questions, while highlighting lower reliability for numerical and graphical tasks. The findings emphasize the necessity for human oversight to ensure grading accuracy, based on selective filtering. The results indicate promising applications for AI in routine assessment tasks, though careful consideration must be given to student perceptions of fairness and trust in integrating AI-based grading into educational practice.
♻ ☆ LLM-Powered Swarms: A New Frontier or a Conceptual Stretch?
Swarm intelligence describes how simple, decentralized agents can collectively produce complex behaviors. Recently, the concept of swarming has been extended to large language model (LLM)-powered systems, such as OpenAI's Swarm (OAS) framework, where agents coordinate through natural language prompts. This paper evaluates whether such systems capture the fundamental principles of classical swarm intelligence: decentralization, simplicity, emergence, and scalability. Using OAS, we implement and compare classical and LLM-based versions of two well-established swarm algorithms: Boids and Ant Colony Optimization. Results indicate that while LLM-powered swarms can emulate swarm-like dynamics, they are constrained by substantial computational overhead. For instance, our LLM-based Boids simulation required roughly 300x more computation time than its classical counterpart, highlighting current limitations in applying LLM-driven swarms to real-time systems.
comment: This is the author's version of a paper submitted to IEEE Intelligent Systems. 2 Tables, 2 Figures
♻ ☆ GUI-360$^\circ$: A Comprehensive Dataset and Benchmark for Computer-Using Agents
We introduce GUI-360$^\circ$, a large-scale, comprehensive dataset and benchmark suite designed to advance computer-using agents (CUAs). CUAs present unique challenges and is constrained by three persistent gaps: a scarcity of real-world CUA tasks, the lack of automated collection-and-annotation pipelines for multi-modal trajectories, and the absence of a unified benchmark that jointly evaluates GUI grounding, screen parsing, and action prediction. GUI-360$^\circ$ addresses these gaps with an LLM-augmented, largely automated pipeline for query sourcing, environment-template construction, task instantiation, batched execution, and LLM-driven quality filtering. The released corpus contains over 1.2M executed action steps across thousands of trajectories in popular Windows office applications, and includes full-resolution screenshots, accessibility metadata when available, instantiated goals, intermediate reasoning traces, and both successful and failed action trajectories. The dataset supports three canonical tasks, GUI grounding, screen parsing, and action prediction, and a hybrid GUI+API action space that reflects modern agent designs. Benchmarking state-of-the-art vision--language models on GUI-360$^\circ$ reveals substantial out-of-the-box shortcomings in grounding and action prediction; supervised fine-tuning and reinforcement learning yield significant gains but do not close the gap to human-level reliability. We release GUI-360$^\circ$ and accompanying code to facilitate reproducible research and accelerate progress on robust desktop CUAs. The full dataset has been made public on https://huggingface.co/datasets/vyokky/GUI-360.
♻ ☆ MM-UNet: Morph Mamba U-shaped Convolutional Networks for Retinal Vessel Segmentation
Accurate detection of retinal vessels plays a critical role in reflecting a wide range of health status indicators in the clinical diagnosis of ocular diseases. Recently, advances in deep learning have led to a surge in retinal vessel segmentation methods, which have significantly contributed to the quantitative analysis of vascular morphology. However, retinal vasculature differs significantly from conventional segmentation targets in that it consists of extremely thin and branching structures, whose global morphology varies greatly across images. These characteristics continue to pose challenges to segmentation precision and robustness. To address these issues, we propose MM-UNet, a novel architecture tailored for efficient retinal vessel segmentation. The model incorporates Morph Mamba Convolution layers, which replace pointwise convolutions to enhance branching topological perception through morph, state-aware feature sampling. Additionally, Reverse Selective State Guidance modules integrate reverse guidance theory with state-space modeling to improve geometric boundary awareness and decoding efficiency. Extensive experiments conducted on two public retinal vessel segmentation datasets demonstrate the superior performance of the proposed method in segmentation accuracy. Compared to the existing approaches, MM-UNet achieves F1-score gains of 1.64 % on DRIVE and 1.25 % on STARE, demonstrating its effectiveness and advancement. The project code is public via https://github.com/liujiawen-jpg/MM-UNet.
comment: This paper was accepted by IEEE BIBM 2025 conference
♻ ☆ Time-Prompt: Integrated Heterogeneous Prompts for Unlocking LLMs in Time Series Forecasting
Time series forecasting aims to model temporal dependencies among variables for future state inference, holding significant importance and widespread applications in real-world scenarios. Although deep learning-based methods have achieved remarkable progress, they still exhibit suboptimal performance in long-term forecasting. Recent research demonstrates that large language models (LLMs) achieve promising performance in time series forecasting, but this progress is still met with skepticism about whether LLMs are truly useful for this task. To address this, we propose Time-Prompt, a framework for activating LLMs for time series forecasting. Specifically, we first construct a unified prompt paradigm with learnable soft prompts to guide the LLM's behavior and textualized hard prompts to enhance the time series representations. Second, to enhance LLM' comprehensive understanding of the forecasting task, we design a semantic space embedding and cross-modal alignment module to achieve fusion of temporal and textual data. Finally, we efficiently fine-tune the LLM's parameters using time series data. Furthermore, we focus on carbon emissions, aiming to provide a modest contribution to global carbon neutrality. Comprehensive evaluations on 6 public datasets and 3 carbon emission datasets demonstrate that Time-Prompt is a powerful framework for time series forecasting.
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs NeurIPS 2025
Despite progress in Large Vision-Language Models (LVLMs), their capacity for visual reasoning is often limited by the binding problem: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current LVLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces Visual Input Structure for Enhanced Reasoning (VISER), a simple, effective method that augments visual inputs with low-level spatial structures and pairs them with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks, using only a single-query inference. Specifically, VISER improves GPT-4o performance on visual search, counting, and spatial relationship tasks by 25.0%, 26.8%, and 9.5%, respectively, and reduces edit distance error in scene description by 0.32 on 2D datasets. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. VISER underscores the importance of visual input design over purely linguistically based reasoning strategies and suggests that visual structuring is a powerful and general approach for enhancing compositional and spatial reasoning in LVLMs.
comment: Accepted to NeurIPS 2025 (Thirty-ninth Conference on Neural Information Processing Systems)
♻ ☆ Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training
Network pruning focuses on algorithms that aim to reduce a given model's computational cost by removing a subset of its parameters while having minimal impact on performance. Throughout the last decade, the most widely used pruning paradigm has been pruning and re-training, which nowadays is inconvenient due to the vast amount of pre-trained models, which are, in any case, too expensive to re-train. In this paper, we exploit functional information from dense pre-trained models, i.e., their input activations, to obtain sparse models that maximize the activations' alignment with respect to their corresponding dense models. Hence, we propose \textbf{NeuroAl}, a \emph{top-up} algorithm that can be used on top of any given pruning algorithm for LLMs, which modifies the block-wise and row-wise sparsity, exploiting information from both the dense model and its sparse version to maximize the \emph{neuron alignment} among activations. Different from existing methods, our approach adaptively selects the best hyperparameters for the block-wise and row-wise sparsity ratios w.r.t. the model and the desired sparsity, and requires \emph{no re-training}. We test our method over $\sim$300 test cases with four LLM families, three sparsity ratios, and ten language tasks (three language modeling and seven zero-shot datasets), showing how it consistently outperforms the latest state-of-the-art methods in terms of performance-runtime trade-off. The code is available at \href{https://github.com/eliacunegatti/NeuroAL}{https://github.com/eliacunegatti/NeuroAL}.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ GRAM: Spatial general-purpose audio representation models for real-world applications
Although audio foundations models have seen great progress on a wide variety of tasks, their application in real-world acoustic environments with reverberation and noise has been less successful. Moreover, as audio foundation models are typically trained on dry, single-channel audio clips, the inherent spatial nature of real-world sound scenes is overlooked and tasks involving sound localization ruled out. To address these limitations, we propose GRAM: a General-purpose Real-world Audio Model utilizing a multi-channel masked auto-encoder approach to efficiently learn spatial audio representations from high-quality simulated real-world scenes. To evaluate the performance of GRAM and other audio foundation models in real-world sound scenes, we release Nat-HEAR: A naturalistic version of the HEAR benchmark suite comprising a simulated real-world version, as well as two new sound localization tasks. We show that the performance of GRAM surpasses all state-of-the-art self-supervised audio foundation models and speech models on both HEAR and Nat-HEAR, while using only a fraction of the training data. GRAM also showcases state-of-the-art localization performance, surpassing even supervised sound localization approaches, and can be flexibly applied either to a two-channel, binaural sound format or a four-channel, Ambisonics format. Validating GRAM's performance on real-world sound recordings demonstrates robust transfer to real-world scenes. Taken together, GRAM presents a significant advancement towards robust, spatial audio foundation models for real-world applications.
comment: Still under review
♻ ☆ ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning AAAI 2026
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and its high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods could fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition on reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global context comprehension, offering a principled, cognitively motivated paradigm towards retrieval-based stateful reasoning. Our framework is made publicly available at https://github.com/EternityJune25/ComoRAG.
comment: Accepted by AAAI 2026
♻ ☆ Data Leakage and Deceptive Performance: A Critical Examination of Credit Card Fraud Detection Methodologies
This study critically examines the methodological rigor in credit card fraud detection research, revealing how fundamental evaluation flaws can overshadow algorithmic sophistication. Through deliberate experimentation with improper evaluation protocols, we demonstrate that even simple models can achieve deceptively impressive results when basic methodological principles are violated. Our analysis identifies four critical issues plaguing current approaches: (1) pervasive data leakage from improper preprocessing sequences, (2) intentional vagueness in methodological reporting, (3) inadequate temporal validation for transaction data, and (4) metric manipulation through recall optimization at precision's expense. We present a case study showing how a minimal neural network architecture with data leakage outperforms many sophisticated methods reported in literature, achieving 99.9\% recall despite fundamental evaluation flaws. These findings underscore that proper evaluation methodology matters more than model complexity in fraud detection research. The study serves as a cautionary example of how methodological rigor must precede architectural sophistication, with implications for improving research practices across machine learning applications.
♻ ☆ Calibrating and Rotating: A Unified Framework for Weight Conditioning in PEFT
Parameter-Efficient Fine-Tuning (PEFT) methods are crucial for adapting large pre-trained models. Among these, LoRA is considered a foundational approach. Building on this, the influential DoRA method enhances performance by decomposing weight updates into magnitude and direction. However, its underlying mechanism remains unclear, and it introduces significant computational overhead. In this work, we first identify that DoRA's success stems from its capacity to increase the singular value entropy of the weight update matrix, which promotes a more uniform update distribution akin to full fine-tuning. We then reformulate DoRA into a mathematically equivalent and more efficient matrix form, revealing it as a learnable weight conditioning method. Based on this insight, we propose a unified framework for designing advanced PEFT methods by exploring two orthogonal dimensions: the architectural placement and the transformation type of the conditioning matrix. Within this framework, we introduce two novel methods: (1) \textbf{Pre-Diag}, which applies a diagonal conditioning matrix before the LoRA update to efficiently calibrate the pre-trained weights, thereby enhancing performance while reducing training time; and (2) \textbf{S}kewed \textbf{O}rthogonal \textbf{R}otation \textbf{A}daptation (\textbf{SORA}), which employs a parameter-efficient orthogonal rotation to perform a more powerful, norm-preserving transformation of the feature space. Extensive experiments on natural language understanding and generation tasks demonstrate that our proposed methods achieve superior performance and efficiency compared to both LoRA and DoRA. The code is available at https://github.com/MaeChd/SORA.
♻ ☆ LLMCARE: early detection of cognitive impairment via transformer models enhanced by LLM-generated synthetic data
Alzheimer's disease and related dementias(ADRD) affect nearly five million older adults in the United States, yet more than half remain undiagnosed. Speech-based natural language processing(NLP) offers a scalable approach for detecting early cognitive decline through subtle linguistic markers that may precede clinical diagnosis. This study develops and evaluates a speech-based screening pipeline integrating transformer embeddings with handcrafted linguistic features, synthetic augmentation using large language models(LLMs), and benchmarking of unimodal and multimodal classifiers. External validation assessed generalizability to a MCI-only cohort. Transcripts were drawn from the ADReSSo 2021 benchmark dataset(n=237, Pitt Corpus) and the DementiaBank Delaware corpus(n=205, MCI vs. controls). Ten transformer models were tested under three fine-tuning strategies. A late-fusion model combined embeddings from the top transformer with 110 linguistic features. Five LLMs(LLaMA8B/70B, MedAlpaca7B, Ministral8B,GPT-4o) generated label-conditioned synthetic speech for augmentation, and three multimodal LLMs(GPT-4o,Qwen-Omni,Phi-4) were evaluated in zero-shot and fine-tuned modes. On ADReSSo, the fusion model achieved F1=83.3(AUC=89.5), outperforming transformer-only and linguistic baselines. MedAlpaca7B augmentation(2x) improved F1=85.7, though larger scales reduced gains. Fine-tuning boosted unimodal LLMs(MedAlpaca7B F1=47.7=>78.7), while multimodal models performed lower (Phi-4=71.6;GPT-4o=67.6). On Delaware, the fusion plus 1x MedAlpaca7B model achieved F1=72.8(AUC=69.6). Integrating transformer and linguistic features enhances ADRD detection. LLM-based augmentation improves data efficiency but yields diminishing returns, while current multimodal models remain limited. Validation on an independent MCI cohort supports the pipeline's potential for scalable, clinically relevant early screening.
♻ ☆ Multi-Scenario Highway Lane-Change Intention Prediction: A Physics-Informed AI Framework for Three-Class Classification
Lane-change maneuvers are a leading cause of highway accidents, underscoring the need for accurate intention prediction to improve the safety and decision-making of autonomous driving systems. While prior studies using machine learning and deep learning methods (e.g., SVM, CNN, LSTM, Transformers) have shown promise, most approaches remain limited by binary classification, lack of scenario diversity, and degraded performance under longer prediction horizons. In this study, we propose a physics-informed AI framework that explicitly integrates vehicle kinematics, interaction feasibility, and traffic-safety metrics (e.g., distance headway, time headway, time-to-collision, closing gap time) into the learning process. lane-change prediction is formulated as a three-class problem that distinguishes left change, right change, and no change, and is evaluated across both straight highway segments (highD) and complex ramp scenarios (exiD). By integrating vehicle kinematics with interaction features, our machine learning models, particularly LightGBM, achieve state-of-the-art accuracy and strong generalization. Results show up to 99.8% accuracy and 93.6% macro F1 on highD, and 96.1% accuracy and 88.7% macro F1 on exiD at a 1-second horizon, outperforming a two-layer stacked LSTM baseline. These findings demonstrate the practical advantages of a physics-informed and feature-rich machine learning framework for real-time lane-change intention prediction in autonomous driving systems.
♻ ☆ The human-machine paradox: how collaboration creates or destroys value, and why augmentation is key to resolving it
When deploying artificial skills, decision-makers often assume that layering human oversight is a safe harbor that mitigates the risks of full automation in high-complexity tasks. This paper formally challenges the economic validity of this widespread assumption, arguing that the true bottom-line economic utility of a human-machine skill policy is dangerously misunderstood and highly contingent on situational and design factors. To investigate this gap, we develop an in-silico exploratory framework for policy analysis based on Monte Carlo simulations to quantify the economic impact of skill policies in the execution of tasks presenting varying levels of complexity across diverse setups. Our results show that in complex scenarios, a human-machine strategy can yield the highest economic utility, but only if genuine augmentation is achieved. In contrast, when failing to realize this synergy, the human-machine approach can perform worse than either the machine-exclusive or the human-exclusive policy, actively destroying value under the pressure of costs that are not sufficiently compensated by performance gains. This finding points to a key implication for decision-makers: when the context is complex and critical, simply allocating human and machine skills to a task may be insufficient, and far from being a silver-bullet solution or a low-risk compromise. Rather, it is a critical opportunity to boost competitiveness that demands a strong organizational commitment to enabling augmentation. Also, our findings show that improving the cost-effectiveness of machine skills over time, while useful, does not replace the fundamental need to focus on achieving augmentation when surprise is the norm, even when machines become more effective than humans in handling uncertainty.
comment: New simulation data added, consistent with previous (unchanged) results; improvements to title, abstract, introduction, doe description, and conclusions; improved illustrations, simplified structure, added appendix
♻ ☆ Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation 3DV
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.
comment: This paper has been accepted at International Conference on 3D Vision (3DV) 2026
♻ ☆ DrKGC: Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion across General and Biomedical Domains EMNLP 2025
Knowledge graph completion (KGC) aims to predict missing triples in knowledge graphs (KGs) by leveraging existing triples and textual information. Recently, generative large language models (LLMs) have been increasingly employed for graph tasks. However, current approaches typically encode graph context in textual form, which fails to fully exploit the potential of LLMs for perceiving and reasoning about graph structures. To address this limitation, we propose DrKGC (Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion). DrKGC employs a flexible lightweight model training strategy to learn structural embeddings and logical rules within the KG. It then leverages a novel bottom-up graph retrieval method to extract a subgraph for each query guided by the learned rules. Finally, a graph convolutional network (GCN) adapter uses the retrieved subgraph to enhance the structural embeddings, which are then integrated into the prompt for effective LLM fine-tuning. Experimental results on two general domain benchmark datasets and two biomedical datasets demonstrate the superior performance of DrKGC. Furthermore, a realistic case study in the biomedical domain highlights its interpretability and practical utility.
comment: Accepted at EMNLP 2025 Findings
♻ ☆ Skill Path: Unveiling Language Skills from Circuit Graphs AAAI 2026
Circuit graph discovery has emerged as a fundamental approach to elucidating the skill mechanistic of language models. Despite the output faithfulness of circuit graphs, they suffer from atomic ablation, which causes the loss of causal dependencies between connected components. In addition, their discovery process, designed to preserve output faithfulness, inadvertently captures extraneous effects other than an isolated target skill. To alleviate these challenges, we introduce skill paths, which offers a more refined and compact representation by isolating individual skills within a linear chain of components. To enable skill path extracting from circuit graphs, we propose a three-step framework, consisting of decomposition, pruning, and post-pruning causal mediation. In particular, we offer a complete linear decomposition of the transformer model which leads to a disentangled computation graph. After pruning, we further adopt causal analysis techniques, including counterfactuals and interventions, to extract the final skill paths from the circuit graph. To underscore the significance of skill paths, we investigate three generic language skills-Previous Token Skill, Induction Skill, and In-Context Learning Skill-using our framework. Experiments support two crucial properties of these skills, namely stratification and inclusiveness.
comment: accepted by AAAI 2026 (oral)
♻ ☆ Pure Vision Language Action (VLA) Models: A Comprehensive Survey
The emergence of Vision Language Action (VLA) models marks a paradigm shift from traditional policy-based control to generalized robotics, reframing Vision Language Models (VLMs) from passive sequence generators into active agents for manipulation and decision-making in complex, dynamic environments. This survey delves into advanced VLA methods, aiming to provide a clear taxonomy and a systematic, comprehensive review of existing research. It presents a comprehensive analysis of VLA applications across different scenarios and classifies VLA approaches into several paradigms: autoregression-based, diffusion-based, reinforcement-based, hybrid, and specialized methods; while examining their motivations, core strategies, and implementations in detail. In addition, foundational datasets, benchmarks, and simulation platforms are introduced. Building on the current VLA landscape, the review further proposes perspectives on key challenges and future directions to advance research in VLA models and generalizable robotics. By synthesizing insights from over three hundred recent studies, this survey maps the contours of this rapidly evolving field and highlights the opportunities and challenges that will shape the development of scalable, general-purpose VLA methods.
♻ ☆ PreferThinker: Reasoning-based Personalized Image Preference Assessment
Personalized image preference assessment aims to evaluate an individual user's image preferences by relying only on a small set of reference images as prior information. Existing methods mainly focus on general preference assessment, training models with large-scale data to tackle well-defined tasks such as text-image alignment. However, these approaches struggle to handle personalized preference because user-specific data are scarce and not easily scalable, and individual tastes are often diverse and complex. To overcome these challenges, we introduce a common preference profile that serves as a bridge across users, allowing large-scale user data to be leveraged for training profile prediction and capturing complex personalized preferences. Building on this idea, we propose a reasoning-based personalized image preference assessment framework that follows a \textit{predict-then-assess} paradigm: it first predicts a user's preference profile from reference images, and then provides interpretable, multi-dimensional scores and assessments of candidate images based on the predicted profile. To support this, we first construct a large-scale Chain-of-Thought (CoT)-style personalized assessment dataset annotated with diverse user preference profiles and high-quality CoT-style reasoning, enabling explicit supervision of structured reasoning. Next, we adopt a two-stage training strategy: a cold-start supervised fine-tuning phase to empower the model with structured reasoning capabilities, followed by reinforcement learning to incentivize the model to explore more reasonable assessment paths and enhance generalization. Furthermore, we propose a similarity-aware prediction reward to encourage better prediction of the user's preference profile, which facilitates more reasonable assessments exploration. Extensive experiments demonstrate the superiority of the proposed method.
♻ ☆ Learning from N-Tuple Data with M Positive Instances: Unbiased Risk Estimation and Theoretical Guarantees
Weakly supervised learning often operates with coarse aggregate signals rather than instance labels. We study a setting where each training example is an $n$-tuple containing exactly m positives, while only the count m per tuple is observed. This NTMP (N-tuple with M positives) supervision arises in, e.g., image classification with region proposals and multi-instance measurements. We show that tuple counts admit a trainable unbiased risk estimator (URE) by linking the tuple-generation process to latent instance marginals. Starting from fixed (n,m), we derive a closed-form URE and extend it to variable tuple sizes, variable counts, and their combination. Identification holds whenever the effective mixing rate is separated from the class prior. We establish generalization bounds via Rademacher complexity and prove statistical consistency with standard rates under mild regularity assumptions. To improve finite-sample stability, we introduce simple ReLU corrections to the URE that preserve asymptotic correctness. Across benchmarks converted to NTMP tasks, the approach consistently outperforms representative weak-supervision baselines and yields favorable precision-recall and F1 trade-offs. It remains robust under class-prior imbalance and across diverse tuple configurations, demonstrating that count-only supervision can be exploited effectively through a theoretically grounded and practically stable objective.
♻ ☆ CoSQA+: Pioneering the Multi-Choice Code Search Benchmark with Test-Driven Agents
Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets face limitations: they rely on human annotators who assess code primarily through semantic understanding rather than functional verification, leading to potential inaccuracies and scalability issues. Additionally, current evaluation metrics often overlook the multi-choice nature of code search. This paper introduces CoSQA+, pairing high-quality queries from CoSQA with multiple suitable codes. We develop an automated pipeline featuring multiple model-based candidate selections and the novel test-driven agent annotation system. Among a single Large Language Model (LLM) annotator and Python expert annotators (without test-based verification), agents leverage test-based verification and achieve the highest accuracy of 93.9%. Through extensive experiments, CoSQA+ has demonstrated superior quality over CoSQA. Models trained on CoSQA+ exhibit improved performance. We publicly release both CoSQA+_all, which contains 412,080 agent-annotated pairs, and CoSQA+_verified, which contains 1,000 human-verified pairs, at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus.
comment: Accepted to TSE 2025. We provide the code and data at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus
♻ ☆ MERaLiON-SER: Robust Speech Emotion Recognition Model for English and SEA Languages
We present MERaLiON-SER, a robust speech emotion recognition model de- signed for English and Southeast Asian languages. The model is trained using a hybrid objective combining weighted categorical cross-entropy and Concordance Correlation Coefficient (CCC) losses for joint discrete and dimensional emotion modelling. This dual approach enables the model to capture both the distinct categories of emotion (like happy or angry) and the fine-grained, such as arousal (intensity), valence (positivity/negativity), and dominance (sense of control), lead- ing to a more comprehensive and robust representation of human affect. Extensive evaluations across multilingual Singaporean languages (English, Chinese, Malay, and Tamil ) and other public benchmarks show that MERaLiON-SER consistently surpasses both open-source speech encoders and large Audio-LLMs. These results underscore the importance of specialised speech-only models for accurate paralin- guistic understanding and cross-lingual generalisation. Furthermore, the proposed framework provides a foundation for integrating emotion-aware perception into future agentic audio systems, enabling more empathetic and contextually adaptive multimodal reasoning.
comment: https://huggingface.co/MERaLiON/MERaLiON-SER-v1
♻ ☆ Quantitative Evaluation of Quantum/Classical Neural Network Using a Game Solver Metric
To evaluate the performance of quantum computing systems relative to classical counterparts and explore the potential, we propose a game-solving benchmark based on Elo ratings in the game of tic-tac-toe. We compare classical convolutional neural networks (CCNNs), quantum or quantum convolutional neural networks (QNNs, QCNNs), and hybrid classical-quantum neural networks (Hybrid NNs) by assessing their performance based on round-robin matches. Our results show that the Hybrid NNs engines achieve Elo ratings comparable to those of CCNNs engines, while the quantum engines underperform under current hardware constraints. Additionally, we implement a QNN integrated with quantum communication and evaluate its performance to quantify the overhead introduced by noisy quantum channels, and the communication overhead was found to be modest. These results demonstrate the viability of using game-based benchmarks for evaluating quantum computing systems and suggest that quantum communication can be incorporated with limited impact on performance, providing a foundation for future hybrid quantum applications.
comment: 12 pages, 15 figures
♻ ☆ Guided Diffusion Sampling on Function Spaces with Applications to PDEs
We propose a general framework for conditional sampling in PDE-based inverse problems, targeting the recovery of whole solutions from extremely sparse or noisy measurements. This is accomplished by a function-space diffusion model and plug-and-play guidance for conditioning. Our method first trains an unconditional discretization-agnostic denoising model using neural operator architectures. At inference, we refine the samples to satisfy sparse observation data via a gradient-based guidance mechanism. Through rigorous mathematical analysis, we extend Tweedie's formula to infinite-dimensional Hilbert spaces, providing the theoretical foundation for our posterior sampling approach. Our method (FunDPS) accurately captures posterior distributions in function spaces under minimal supervision and severe data scarcity. Across five PDE tasks with only 3% observation, our method achieves an average 32% accuracy improvement over state-of-the-art fixed-resolution diffusion baselines while reducing sampling steps by 4x. Furthermore, multi-resolution fine-tuning ensures strong cross-resolution generalizability. To the best of our knowledge, this is the first diffusion-based framework to operate independently of discretization, offering a practical and flexible solution for forward and inverse problems in the context of PDEs. Code is available at https://github.com/neuraloperator/FunDPS
♻ ☆ Condensed Data Expansion Using Model Inversion for Knowledge Distillation AAAI
Condensed datasets offer a compact representation of larger datasets, but training models directly on them or using them to enhance model performance through knowledge distillation (KD) can result in suboptimal outcomes due to limited information. To address this, we propose a method that expands condensed datasets using model inversion, a technique for generating synthetic data based on the impressions of a pre-trained model on its training data. This approach is particularly well-suited for KD scenarios, as the teacher model is already pre-trained and retains knowledge of the original training data. By creating synthetic data that complements the condensed samples, we enrich the training set and better approximate the underlying data distribution, leading to improvements in student model accuracy during knowledge distillation. Our method demonstrates significant gains in KD accuracy compared to using condensed datasets alone and outperforms standard model inversion-based KD methods by up to 11.4% across various datasets and model architectures. Importantly, it remains effective even when using as few as one condensed sample per class, and can also enhance performance in few-shot scenarios where only limited real data samples are available.
comment: Accepted by the Fortieth AAAI Conference on Artificial Intelligence (AAAI-26)
♻ ☆ Continual Pre-training of MoEs: How robust is your router?
Sparsely-activated Mixture of Experts (MoE) transformers are promising architectures for foundation models. Compared to dense transformers that require the same amount of floating-point operations (FLOPs) per forward pass, MoEs benefit from improved sample efficiency at training time and achieve much stronger performance. Many closed-source and open-source frontier language models have thus adopted an MoE architecture. Naturally, practitioners will want to extend the capabilities of these models with large amounts of newly collected data without completely re-training them. Prior work has shown that a simple combination of replay, learning rate re-warming, and re-decaying can enable the continual pre-training (CPT) of dense decoder-only transformers with minimal performance degradation compared to full re-training. In the case of decoder-only MoE transformers, however, it is unclear how the routing algorithm will impact continual pre-training performance: 1) do the MoE transformer's routers exacerbate forgetting relative to a dense model?; 2) do the routers maintain a balanced load on previous distributions after CPT?; 3) are the same strategies applied to dense models sufficient to continually pre-train MoE LLMs? In what follows, we conduct a large-scale study training a 500M parameter dense transformer and four 500M-active/2B-total parameter MoE transformers. Each model is trained for 600B tokens. Our results establish a surprising robustness to distribution shifts for MoEs using both Sinkhorn-Balanced and Z-and-Aux-loss-balanced routing algorithms, even in MoEs continually pre-trained without replay. Moreover, we show that MoE LLMs maintain their sample efficiency (relative to a FLOP-matched dense model) during CPT and that they can match the performance of a fully re-trained MoE at a fraction of the cost.
♻ ☆ RareAgents: Autonomous Multi-disciplinary Team for Rare Disease Diagnosis and Treatment AAAI2026
Rare diseases, despite their low individual incidence, collectively impact around 300 million people worldwide due to the vast number of diseases. The involvement of multiple organs and systems, and the shortage of specialized doctors with relevant experience, make diagnosing and treating rare diseases more challenging than common diseases. Recently, agents powered by large language models (LLMs) have demonstrated notable applications across various domains. In the medical field, some agent methods have outperformed direct prompts in question-answering tasks from medical examinations. However, current agent frameworks are not well-adapted to real-world clinical scenarios, especially those involving the complex demands of rare diseases. To bridge this gap, we introduce RareAgents, the first LLM-driven multi-disciplinary team decision-support tool designed specifically for the complex clinical context of rare diseases. RareAgents integrates advanced Multidisciplinary Team (MDT) coordination, memory mechanisms, and medical tools utilization, leveraging Llama-3.1-8B/70B as the base model. Experimental results show that RareAgents outperforms state-of-the-art domain-specific models, GPT-4o, and current agent frameworks in diagnosis and treatment for rare diseases. Furthermore, we contribute a novel rare disease dataset, MIMIC-IV-Ext-Rare, to facilitate further research in this field.
comment: AAAI2026 Oral
♻ ☆ Likelihood-based Mitigation of Evaluation Bias in Large Language Models
Large Language Models (LLMs) are widely used to evaluate natural language generation tasks as automated metrics. However, the likelihood, a measure of LLM's plausibility for a sentence, can vary due to superficial differences in sentences, such as word order and sentence structure. It is therefore possible that there might be a likelihood bias if LLMs are used for evaluation: they might overrate sentences with higher likelihoods while underrating those with lower likelihoods. In this paper, we investigate the presence and impact of likelihood bias in LLM-based evaluators. We also propose a method to mitigate the likelihood bias. Our method utilizes highly biased instances as few-shot examples for in-context learning. Our experiments in evaluating the data-to-text and grammatical error correction tasks reveal that several LLMs we test display a likelihood bias. Furthermore, our proposed method successfully mitigates this bias, also improving evaluation performance (in terms of correlation of models with human scores) significantly.
comment: 5 main pages
♻ ☆ Scaling Agent Learning via Experience Synthesis
While reinforcement learning (RL) can empower autonomous agents by enabling self-improvement through interaction, its practical adoption remains challenging due to costly rollouts, limited task diversity, unreliable reward signals, and infrastructure complexity, all of which obstruct the collection of scalable experience data. To address these challenges, we introduce DreamGym, the first unified framework designed to synthesize diverse experiences with scalability in mind to enable effective online RL training for autonomous agents. Rather than relying on expensive real-environment rollouts, DreamGym distills environment dynamics into a reasoning-based experience model that derives consistent state transitions and feedback signals through step-by-step reasoning, enabling scalable agent rollout collection for RL. To improve the stability and quality of transitions, DreamGym leverages an experience replay buffer initialized with offline real-world data and continuously enriched with fresh interactions to actively support agent training. To improve knowledge acquisition, DreamGym adaptively generates new tasks that challenge the current agent policy, enabling more effective online curriculum learning. Experiments across diverse environments and agent backbones demonstrate that DreamGym substantially improves RL training, both in fully synthetic settings and in sim-to-real transfer scenarios. On non-RL-ready tasks like WebArena, DreamGym outperforms all baselines by over 30%. And in RL-ready but costly settings, it matches GRPO and PPO performance using only synthetic interactions. When transferring a policy trained purely on synthetic experiences to real-environment RL, DreamGym yields significant additional performance gains while requiring far fewer real-world interactions, providing a scalable warm-start strategy for general-purpose RL.
♻ ☆ Self Forcing: Bridging the Train-Test Gap in Autoregressive Video Diffusion NeurIPS 2025
We introduce Self Forcing, a novel training paradigm for autoregressive video diffusion models. It addresses the longstanding issue of exposure bias, where models trained on ground-truth context must generate sequences conditioned on their own imperfect outputs during inference. Unlike prior methods that denoise future frames based on ground-truth context frames, Self Forcing conditions each frame's generation on previously self-generated outputs by performing autoregressive rollout with key-value (KV) caching during training. This strategy enables supervision through a holistic loss at the video level that directly evaluates the quality of the entire generated sequence, rather than relying solely on traditional frame-wise objectives. To ensure training efficiency, we employ a few-step diffusion model along with a stochastic gradient truncation strategy, effectively balancing computational cost and performance. We further introduce a rolling KV cache mechanism that enables efficient autoregressive video extrapolation. Extensive experiments demonstrate that our approach achieves real-time streaming video generation with sub-second latency on a single GPU, while matching or even surpassing the generation quality of significantly slower and non-causal diffusion models. Project website: http://self-forcing.github.io/
comment: NeurIPS 2025 spotlight. Project website: http://self-forcing.github.io/
♻ ☆ Bridging the Plausibility-Validity Gap by Fine-Tuning a Reasoning-Enhanced LLM for Chemical Synthesis and Discovery
Large Language Models frequently generate outputs that appear scientifically reasonable yet violate fundamental principles--a phenomenon we characterize as the "plausibility-validity gap." This challenge proves especially acute in chemistry, where superficial correctness masks deeper errors in molecular structure, reaction mechanisms, and synthetic pathways. We present a systematic approach combining a reasoning-centric model architecture (Magistral Small) with Low-Rank Adaptation fine-tuning on a dual-domain dataset covering molecular properties and chemical transformations. Evaluation reveals substantial improvements: the fine-tuned system achieves 96.3% format adherence, 97.4% chemical validity, and 74.4% synthesis feasibility. Comparative analysis shows our approach outperforms specialized translation models like MolT5 (97.4% vs 77.2% validity) while achieving performance comparable to complex tool-augmented systems like ChemCrow (9.0/10 vs 9.24/10 expert rating) through a more transparent, efficient methodology. Results demonstrate a learning hierarchy where syntactic correctness develops before chemical understanding, which precedes synthetic planning capability. This work establishes a reproducible framework for transforming generalist language models into dependable scientific tools while identifying critical areas including stereochemical precision, knowledge currency, and computational accessibility as key challenges for future advancement.
comment: 8 pages, 1 equation, 5 tables, to be published in IEEE MCSoC 2025, unabridged version exists as arXiv:2507.07328v1
♻ ☆ SEAGraph: Unveiling the Whole Story of Paper Review Comments
Peer review, as a cornerstone of scientific research, ensures the integrity and quality of scholarly work by providing authors with objective feedback for refinement. However, in the traditional peer review process, authors often receive vague or insufficiently detailed feedback, which provides limited assistance and leads to a more time-consuming review cycle. If authors can identify some specific weaknesses in their paper, they can not only address the reviewer's concerns but also improve their work. This raises the critical question of how to enhance authors' comprehension of review comments. In this paper, we present SEAGraph, a novel framework developed to clarify review comments by uncovering the underlying intentions behind them. We construct two types of graphs for each paper: the semantic mind graph, which captures the authors' thought process, and the hierarchical background graph, which delineates the research domains related to the paper. A retrieval method is then designed to extract relevant content from both graphs, facilitating coherent explanations for the review comments. Extensive experiments show that SEAGraph excels in review comment understanding tasks, offering significant benefits to authors. By bridging the gap between reviewers' critiques and authors' comprehension, SEAGraph contributes to a more efficient, transparent and collaborative scientific publishing ecosystem.
♻ ☆ scUnified: An AI-Ready Standardized Resource for Single-Cell RNA Sequencing Analysis
Single-cell RNA sequencing (scRNA-seq) technology enables systematic delineation of cellular states and interactions, providing crucial insights into cellular heterogeneity. Building on this potential, numerous computational methods have been developed for tasks such as cell clustering, cell type annotation, and marker gene identification. To fully assess and compare these methods, standardized, analysis-ready datasets are essential. However, such datasets remain scarce, and variations in data formats, preprocessing workflows, and annotation strategies hinder reproducibility and complicate systematic evaluation of existing methods. To address these challenges, we present scUnified, an AI-ready standardized resource for single-cell RNA sequencing data that consolidates 13 high-quality datasets spanning two species (human and mouse) and nine tissue types. All datasets undergo standardized quality control and preprocessing and are stored in a uniform format to enable direct application in diverse computational analyses without additional data cleaning. We further demonstrate the utility of scUnified through experimental analyses of representative biological tasks, providing a reproducible foundation for the standardized evaluation of computational methods on a unified dataset.
♻ ☆ multiMentalRoBERTa: A Fine-tuned Multiclass Classifier for Mental Health Disorder
The early detection of mental health disorders from social media text is critical for enabling timely support, risk assessment, and referral to appropriate resources. This work introduces multiMentalRoBERTa, a fine-tuned RoBERTa model designed for multiclass classification of common mental health conditions, including stress, anxiety, depression, post-traumatic stress disorder (PTSD), suicidal ideation, and neutral discourse. Drawing on multiple curated datasets, data exploration is conducted to analyze class overlaps, revealing strong correlations between depression and suicidal ideation as well as anxiety and PTSD, while stress emerges as a broad, overlapping category. Comparative experiments with traditional machine learning methods, domain-specific transformers, and prompting-based large language models demonstrate that multiMentalRoBERTa achieves superior performance, with macro F1-scores of 0.839 in the six-class setup and 0.870 in the five-class setup (excluding stress), outperforming both fine-tuned MentalBERT and baseline classifiers. Beyond predictive accuracy, explainability methods, including Layer Integrated Gradients and KeyBERT, are applied to identify lexical cues that drive classification, with a particular focus on distinguishing depression from suicidal ideation. The findings emphasize the effectiveness of fine-tuned transformers for reliable and interpretable detection in sensitive contexts, while also underscoring the importance of fairness, bias mitigation, and human-in-the-loop safety protocols. Overall, multiMentalRoBERTa is presented as a lightweight, robust, and deployable solution for enhancing support in mental health platforms.
comment: Accepted in IEEE Big Data, 8-11 December, 2025 @ Macau SAR, China
♻ ☆ Rethinking Text-based Protein Understanding: Retrieval or LLM? EMNLP 2025
In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at https://github.com/IDEA-XL/RAPM.
comment: Accepted by Empirical Methods in Natural Language Processing 2025 (EMNLP 2025) Main Conference
♻ ☆ Reasoning Planning for Language Models
Selecting an appropriate reasoning method for a given query remains a key challenge in language model generation. Existing approaches typically generate multiple candidate responses and use an aggregation strategy to select the output answer, often assuming that more candidate answers yield higher accuracy. We revisit this assumption through a rigorous theoretical analysis, deriving accuracy bounds for standard aggregation methods under fixed generation distributions and candidate sizes. Building on these insights, we introduce EPIC, an Ensemble Planning with Contrastive learning framework to learn a shared representation space that captures both model reasoning abilities and query-method compatibility. EPIC incorporates our probability bounds as a regularizer in a utility-driven optimization that balances accuracy and computational cost. Experiments on diverse mathematical reasoning tasks show that EPIC consistently selects optimal reasoning methods, improving accuracy while reducing computational overhead. Our code can be found at https://github.com/nguyenngocbaocmt02/EPIC.
comment: 27 pages, 5 figures
♻ ☆ PaperArena: An Evaluation Benchmark for Tool-Augmented Agentic Reasoning on Scientific Literature
Understanding and reasoning on the web-scale scientific literature is a crucial touchstone for large language model (LLM) based agents designed to support complex knowledge-intensive tasks. However, existing works are mainly restricted to tool-free tasks within isolated papers, largely due to the lack of a benchmark for cross-paper reasoning and multi-tool orchestration in real research scenarios. In this work, we propose PaperArena, an evaluation benchmark for agents to address real-world research questions that typically require integrating information across multiple papers with the assistance of external tools. Given a research question, agents should integrate diverse formats across multiple papers through reasoning and interacting with appropriate tools, thereby producing a well-grounded answer. To support standardized evaluation, we provide a modular and extensible platform for agent execution, offering tools such as multimodal parsing, context retrieval, and programmatic computation. Experimental results reveal that even the most advanced LLM powering a well-established agent system achieves merely 38.78% average accuracy. On the hard subset, accuracy drops to only 18.47%, highlighting great potential for improvement. We also present several empirical findings, including that all agents tested exhibit inefficient tool usage, often invoking more tools than necessary to solve a task. We invite the community to adopt PaperArena to develop and evaluate more capable agents for scientific discovery. Our code and data are available https://github.com/Melmaphother/PaperArena.
comment: 12 pages, 9 figures
♻ ☆ The Markovian Thinker
Reinforcement learning (RL) has recently become a strong recipe for training reasoning LLMs that produce long chains of thought (LongCoT). Yet the standard RL "thinking environment", where the state is the prompt plus all prior reasoning tokens, makes the state unbounded and forces attention-based policies to pay quadratic compute as thoughts lengthen. We revisit the environment itself. We propose Markovian Thinking, a paradigm in which the policy advances reasoning while conditioning on a constant-size state, decoupling thinking length from context size. As an immediate consequence this yields linear compute with constant memory. We instantiate this idea with Delethink, an RL environment that structures reasoning into fixed-size chunks. Within each chunk, the model thinks as usual; at the boundary, the environment resets the context and reinitializes the prompt with a short carryover. Through RL, the policy learns to write a textual state near the end of each chunk sufficient for seamless continuation of reasoning after reset. Trained in this environment, an R1-Distill 1.5B model reasons in 8K-token chunks yet thinks up to 24K tokens, matching or surpassing LongCoT-RL trained with a 24K budget. With test-time scaling, Delethink continues to improve where LongCoT plateaus. The effect of linear compute is substantial: we empirically estimate at 96K average thinking length LongCoT-RL costs 27 H100-months vs. 7 for Delethink. Analysis at RL initialization shows off-the-shelf reasoning models (1.5B-120B) often sample Markovian traces zero-shot across diverse benchmarks, providing positive samples that make RL effective at scale. Our results show that redesigning the thinking environment is a powerful lever: it enables very long reasoning without quadratic overhead and opens a path toward efficient, scalable reasoning LLMs.
♻ ☆ R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs AACL 2025
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks still suffer two practical drawbacks: they must be re-tuned whenever the KG or reasoning task changes, and they depend on a single, high-capacity LLM for reliable (i.e., trustworthy) reasoning. To address this, we introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across five diverse benchmarks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability with reduced inference cost but increased abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning, reducing reliance on high-capacity LLMs while ensuring trustworthy inference. The code is available at https://github.com/ekrxjwh2009/R2-KG/.
comment: Accepted to IJCNLP-AACL 2025 Findings
♻ ☆ SWE-Compass: Towards Unified Evaluation of Agentic Coding Abilities for Large Language Models
Evaluating large language models (LLMs) for software engineering has been limited by narrow task coverage, language bias, and insufficient alignment with real-world developer workflows. Existing benchmarks often focus on algorithmic problems or Python-centric bug fixing, leaving critical dimensions of software engineering underexplored. To address these gaps, we introduce SWE-Compass1, a comprehensive benchmark that unifies heterogeneous code-related evaluations into a structured and production-aligned framework. SWE-Compass spans 8 task types, 8 programming scenarios, and 10 programming languages, with 2000 high-quality instances curated from authentic GitHub pull requests and refined through systematic filtering and validation. We benchmark ten state-of-the-art LLMs under two agentic frameworks, SWE-Agent and Claude Code, revealing a clear hierarchy of difficulty across task types, languages, and scenarios. Moreover, by aligning evaluation with real-world developer practices, SWE-Compass provides a rigorous and reproducible foundation for diagnosing and advancing agentic coding capabilities in large language models.
♻ ☆ Reg-DPO: SFT-Regularized Direct Preference Optimization with GT-Pair for Improving Video Generation
Recent studies have identified Direct Preference Optimization (DPO) as an efficient and reward-free approach to improving video generation quality. However, existing methods largely follow image-domain paradigms and are mainly developed on small-scale models (approximately 2B parameters), limiting their ability to address the unique challenges of video tasks, such as costly data construction, unstable training, and heavy memory consumption. To overcome these limitations, we introduce a GT-Pair that automatically builds high-quality preference pairs by using real videos as positives and model-generated videos as negatives, eliminating the need for any external annotation. We further present Reg-DPO, which incorporates the SFT loss as a regularization term into the DPO loss to enhance training stability and generation fidelity. Additionally, by combining the FSDP framework with multiple memory optimization techniques, our approach achieves nearly three times higher training capacity than using FSDP alone. Extensive experiments on both I2V and T2V tasks across multiple datasets demonstrate that our method consistently outperforms existing approaches, delivering superior video generation quality.
comment: The paper is withdrawn due to the need for further revision and verification of experimental results. A revised version will be resubmitted once the updates are completed
♻ ☆ Understanding Forgetting in LLM Supervised Fine-Tuning and Preference Learning - A Convex Optimization Perspective
The post-training of LLMs, which typically consists of the supervised fine-tuning (SFT) stage and the preference learning stage (RLHF or DPO), is crucial to effective and safe LLM applications. The widely adopted approach in post-training popular open-source LLMs is to sequentially perform SFT and RLHF/DPO. However, this is suboptimal in terms of SFT and RLHF/DPO trade-off: the LLM gradually forgets about the first stage's training when undergoing the second stage's training. This sequential paradigm persists largely due to its simplicity and modularity, which make it easier to implement and manage at scale despite its limitations. We theoretically prove the sub-optimality of sequential post-training and propose a practical joint post-training framework which has theoretical convergence guarantees and empirically outperforms sequential post-training framework, with up to 23% overall performance improvement across multiple LLM evaluation benchmarks, while having minimal computational overhead. Our code is available at https://github.com/heshandevaka/XRIGHT.
♻ ☆ Aligning Brain Signals with Multimodal Speech and Vision Embeddings
When we hear the word "house", we don't just process sound, we imagine walls, doors, memories. The brain builds meaning through layers, moving from raw acoustics to rich, multimodal associations. Inspired by this, we build on recent work from Meta that aligned EEG signals with averaged wav2vec2 speech embeddings, and ask a deeper question: which layers of pre-trained models best reflect this layered processing in the brain? We compare embeddings from two models: wav2vec2, which encodes sound into language, and CLIP, which maps words to images. Using EEG recorded during natural speech perception, we evaluate how these embeddings align with brain activity using ridge regression and contrastive decoding. We test three strategies: individual layers, progressive concatenation, and progressive summation. The findings suggest that combining multimodal, layer-aware representations may bring us closer to decoding how the brain understands language, not just as sound, but as experience.
♻ ☆ Data-Centric Elastic Pipeline Parallelism for Efficient Long-Context LLM Training
Long context training is crucial for LLM's context extension. Existing schemes, such as sequence parallelism, incur substantial communication overhead. Pipeline parallelism (PP) reduces this cost, but its effectiveness hinges on partitioning granularity. Batch-level PP dividing input samples exhibits high memory consumption in long-context scenario, whereas token-level PP splitting sequences into slices alleviates memory overhead but may incur hardware under-utilization. This trade-off motivates adaptively selecting PP granularity to match resource and workload characteristics. Moreover, sequence length distribution of the real-world dataset exhibits skewness, posing a challenge on PP's workload balance and efficient scheduling. Current static PP scheduling methods overlook the variance of sequence length, leading to suboptimal performance. In this paper, we propose Elastic Pipeline Parallelism (EPP) that orchestrates token-level PP and batch-level PP to adapt to resource and workload heterogeneity. We build InfiniPipe, a distributed training system that unleashes the potential of EPP via (1) a resource-aware and workload-balanced sequence processor that splits long sequences and packs short ones; and (2) a co-optimization methodology that jointly optimizes pipeline schedule and gradient checkpointing via a mechanism named stage-aware chunk-level adaptive checkpointing. Comprehensive experiments demonstrate that InfiniPipe achieves a 1.69x speedup over state-of-the-art systems.
♻ ☆ Logic Distillation: Learning from Code Function by Function for Decision-making Tasks
Large language models (LLMs) have garnered increasing attention owing to their powerful logical reasoning capabilities. Generally, larger LLMs (L-LLMs) that require paid interfaces exhibit significantly superior performance compared to smaller LLMs (S-LLMs) that can be deployed on a variety of devices. Knowledge distillation (KD) aims to empower S-LLMs with the capabilities of L-LLMs, while S-LLMs merely mimic the outputs of L-LLMs, failing to get the powerful logical reasoning capabilities. Consequently, S-LLMs are helpless when it comes to planning and decision-making tasks that require logical reasoning capabilities. To tackle the identified challenges, we propose a novel framework called Logic Distillation (LD). Initially, LD employs L-LLMs to instantiate complex instructions into discrete functions and illustrates their usage to establish a function base. Subsequently, based on the function base, LD fine-tunes S-LLMs to learn the logic employed by L-LLMs in planning and decision-making. During testing, LD utilizes a retriever to identify the top-$K$ relevant functions based on instructions and current states, which will be selected and invoked by S-LLMs. Ultimately, S-LLMs yield planning and decision-making outcomes, function by function. Relevant experiments demonstrate that with the assistance of LD, S-LLMs can achieve outstanding results in planning and decision-making tasks, comparable to, or even surpassing, those of L-LLMs.
comment: 9 pages, 7 figures
♻ ☆ Discovering Spatial Correlations of Earth Observations for weather forecasting by using Graph Structure Learning
This study aims to improve the accuracy of weather predictions by discovering spatial correlations between Earth observations and atmospheric states. Existing numerical weather prediction (NWP) systems predict future atmospheric states at fixed locations, which are called NWP grid points, by analyzing previous atmospheric states and newly acquired Earth observations. However, the shifting locations of observations and the surrounding meteorological context induce complex, dynamic spatial correlations that are difficult for traditional NWP systems to capture, since they rely on strict statistical and physical formulations. To handle complicated spatial correlations, which change dynamically, we employ a spatiotemporal graph neural networks (STGNNs) with structure learning. However, structure learning has an inherent limitation that this can cause structural information loss and over-smoothing problem by generating excessive edges. To solve this problem, we regulate edge sampling by adaptively determining node degrees and considering the spatial distances between NWP grid points and observations. We validated the effectiveness of the proposed method (CloudNine-v2) using real-world atmospheric state and observation data from East Asia, achieving up to 15\% reductions in RMSE over existing STGNN models. Even in areas with high atmospheric variability, CloudNine-v2 consistently outperformed baselines with and without structure learning.
comment: 8 pages
♻ ☆ DeepKnown-Guard: A Proprietary Model-Based Safety Response Framework for AI Agents
With the widespread application of Large Language Models (LLMs), their associated security issues have become increasingly prominent, severely constraining their trustworthy deployment in critical domains. This paper proposes a novel safety response framework designed to systematically safeguard LLMs at both the input and output levels. At the input level, the framework employs a supervised fine-tuning-based safety classification model. Through a fine-grained four-tier taxonomy (Safe, Unsafe, Conditionally Safe, Focused Attention), it performs precise risk identification and differentiated handling of user queries, significantly enhancing risk coverage and business scenario adaptability, and achieving a risk recall rate of 99.3%. At the output level, the framework integrates Retrieval-Augmented Generation (RAG) with a specifically fine-tuned interpretation model, ensuring all responses are grounded in a real-time, trustworthy knowledge base. This approach eliminates information fabrication and enables result traceability. Experimental results demonstrate that our proposed safety control model achieves a significantly higher safety score on public safety evaluation benchmarks compared to the baseline model, TinyR1-Safety-8B. Furthermore, on our proprietary high-risk test set, the framework's components attained a perfect 100% safety score, validating their exceptional protective capabilities in complex risk scenarios. This research provides an effective engineering pathway for building high-security, high-trust LLM applications.
♻ ☆ Minimal and Mechanistic Conditions for Behavioral Self-Awareness in LLMs
Recent studies have revealed that LLMs can exhibit behavioral self-awareness: the ability to accurately describe or predict their own learned behaviors without explicit supervision. This capability raises safety concerns as it may, for example, allow models to better conceal their true abilities during evaluation. We attempt to characterize the minimal conditions under which such self-awareness emerges, and the mechanistic processes through which it manifests. Through controlled finetuning experiments on instruction-tuned LLMs with low-rank adapters (LoRA), we find: (1) that self-awareness can be reliably induced using a single rank-1 LoRA adapter; (2) that the learned self-aware behavior can be largely captured by a single steering vector in activation space, recovering nearly all of the fine-tune's behavioral effect; and (3) that self-awareness is non-universal and domain-localized, with independent representations across tasks. Together, these findings suggest that behavioral self-awareness emerges as a domain-specific, linear feature that can be easily induced and modulated.
♻ ☆ Knowledge-Guided Prompt Learning for Request Quality Assurance in Public Code Review
Public Code Review (PCR) is developed in the Software Question Answering (SQA) community, assisting developers in exploring high-quality and efficient review services. Current methods on PCR mainly focus on the reviewer's perspective, including finding a capable reviewer, predicting comment quality, and recommending/generating review comments. However, it is not well studied that how to satisfy the review necessity requests posted by developers which can increase their visibility, which in turn acts as a prerequisite for better review responses. To this end, we propose K nowledge-guided P rompt learning for P ublic Code Review (KP-PCR) to achieve developer-based code review request quality assurance (i.e., predicting request necessity and recommending tags subtask). Specifically, we reformulate the two subtasks via 1) text prompt tuning which converts both of them into a Masked Language Model (MLM) by constructing prompt templates using hard prompt; and 2) knowledge and code prefix tuning which introduces knowledge guidance from fine-tuned large language models by soft prompt, and uses program dependence graph to characterize code snippets. Finally, both of the request necessity prediction and tag recommendation subtasks output predicted results through an answer engineering module. In addition, we further analysis the time complexity of our KP-PCR that has lightweight prefix based the operation of introducing knowledge guidance. Experimental results on the PCR dataset for the period 2011-2023 demonstrate that our KP-PCR outperforms baselines by 2.3%-8.4% in the request necessity prediction and by 1.4%-6.9% in the tag recommendation. The code implementation is released at https://github.com/WUT-IDEA/KP-PCR
comment: Preprint accepted for publication in ACM Transactions on Software Engineering and Methodology (TOSEM), 2025
♻ ☆ Real-to-Sim Robot Policy Evaluation with Gaussian Splatting Simulation of Soft-Body Interactions
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
comment: The first two authors contributed equally. Website: https://real2sim-eval.github.io/
♻ ☆ IMPACT: Behavioral Intention-aware Multimodal Trajectory Prediction with Adaptive Context Trimming
While most prior research has focused on improving the precision of multimodal trajectory predictions, the explicit modeling of multimodal behavioral intentions (e.g., yielding, overtaking) remains relatively underexplored. This paper proposes a unified framework that jointly predicts both behavioral intentions and trajectories to enhance prediction accuracy, interpretability, and efficiency. Specifically, we employ a shared context encoder for both intention and trajectory predictions, thereby reducing structural redundancy and information loss. Moreover, we address the lack of ground-truth behavioral intention labels in mainstream datasets (Waymo, Argoverse) by auto-labeling these datasets, thus advancing the community's efforts in this direction. We further introduce a vectorized occupancy prediction module that infers the probability of each map polyline being occupied by the target vehicle's future trajectory. By leveraging these intention and occupancy prediction priors, our method conducts dynamic, modality-dependent pruning of irrelevant agents and map polylines in the decoding stage, effectively reducing computational overhead and mitigating noise from non-critical elements. Our approach ranks first among LiDAR-free methods on the Waymo Motion Dataset and achieves first place on the Waymo Interactive Prediction Dataset. Remarkably, even without model ensembling, our single-model framework improves the soft mean average precision (softmAP) by 10 percent compared to the second-best method in the Waymo Interactive Prediction Leaderboard. Furthermore, the proposed framework has been successfully deployed on real vehicles, demonstrating its practical effectiveness in real-world applications.
comment: accepted by IEEE Robotics and Automation Letters
♻ ☆ A High-Speed Time-Optimal Trajectory Generation Strategy via a Two-layer Planning Model
MPC (Model predictive control)-based motion planning and trajectory generation are essential in applications such as unmanned aerial vehicles, robotic manipulators, and rocket control. However, the real-time implementation of such optimization-based planning faces significant challenges arising from non-convex problem structures and inherent limitations of nonlinear programming -- notably the difficulty in guaranteeing solution quality and the unpredictability of computation time. To improve robustness and computational efficiency, this paper introduces a two-layer motion planning algorithm for intelligent ground vehicles based on convex optimization. The proposed algorithm iteratively constructs discrete optimal control subproblems with small, fixed terminal times, referred to as planning cycles. Each planning cycle is further solved within progressively constructed convex sets generated by utilizing customized search algorithms. The entire solution to the original problem is obtained by incrementally composing the solutions of these subproblems. The proposed algorithm demonstrates enhanced reliability and significantly reduced computation time. We support our approach with theoretical analysis under practical assumptions and numerical experiments. Comparative results with standard sequential convex programming (SCP) methods demonstrate the superiority of our method -- include a significant improved computational speed under dynamic environments while maintain a near optimal final time.
♻ ☆ Whole-body motion planning and safety-critical control for aerial manipulation
Aerial manipulation combines the maneuverability of multirotors with the dexterity of robotic arms to perform complex tasks in cluttered spaces. Yet planning safe, dynamically feasible trajectories remains difficult due to whole-body collision avoidance and the conservativeness of common geometric abstractions such as bounding boxes or ellipsoids. We present a whole-body motion planning and safety-critical control framework for aerial manipulators built on superquadrics (SQs). Using an SQ-plus-proxy representation, we model both the vehicle and obstacles with differentiable, geometry-accurate surfaces. Leveraging this representation, we introduce a maximum-clearance planner that fuses Voronoi diagrams with an equilibrium-manifold formulation to generate smooth, collision-aware trajectories. We further design a safety-critical controller that jointly enforces thrust limits and collision avoidance via high-order control barrier functions. In simulation, our approach outperforms sampling-based planners in cluttered environments, producing faster, safer, and smoother trajectories and exceeding ellipsoid-based baselines in geometric fidelity. Actual experiments on a physical aerial-manipulation platform confirm feasibility and robustness, demonstrating consistent performance across simulation and hardware settings. The video can be found at https://youtu.be/hQYKwrWf1Ak.
comment: Submitted to 2026 IFAC World Congress with the Journal option (MECHATRONICS)
♻ ☆ A Step Toward World Models: A Survey on Robotic Manipulation
Autonomous agents are increasingly expected to operate in complex, dynamic, and uncertain environments, performing tasks such as manipulation, navigation, and decision-making. Achieving these capabilities requires agents to understand the underlying mechanisms and dynamics of the world, moving beyond reactive control or simple replication of observed states. This motivates the development of world models as internal representations that encode environmental states, capture dynamics, and support prediction, planning, and reasoning. Despite growing interest, the definition, scope, architectures, and essential capabilities of world models remain ambiguous. In this survey, we go beyond prescribing a fixed definition and limiting our scope to methods explicitly labeled as world models. Instead, we examine approaches that exhibit the core capabilities of world models through a review of methods in robotic manipulation. We analyze their roles across perception, prediction, and control, identify key challenges and solutions, and distill the core components, capabilities, and functions that a fully realized world model should possess. Building on this analysis, we aim to motivate further development toward generalizable and practical world models for robotics.
comment: 24 pages, 5 figures
♻ ☆ Scalable Offline Metrics for Autonomous Driving IROS 2025
Real-world evaluation of perception-based planning models for robotic systems, such as autonomous vehicles, can be safely and inexpensively conducted offline, i.e. by computing model prediction error over a pre-collected validation dataset with ground-truth annotations. However, extrapolating from offline model performance to online settings remains a challenge. In these settings, seemingly minor errors can compound and result in test-time infractions or collisions. This relationship is understudied, particularly across diverse closed-loop metrics and complex urban maneuvers. In this work, we revisit this undervalued question in policy evaluation through an extensive set of experiments across diverse conditions and metrics. Based on analysis in simulation, we find an even worse correlation between offline and online settings than reported by prior studies, casting doubts on the validity of current evaluation practices and metrics for driving policies. Next, we bridge the gap between offline and online evaluation. We investigate an offline metric based on epistemic uncertainty, which aims to capture events that are likely to cause errors in closed-loop settings. The resulting metric achieves over 13% improvement in correlation compared to previous offline metrics. We further validate the generalization of our findings beyond the simulation environment in real-world settings, where even greater gains are observed.
comment: Accepted at IROS 2025 (IEEE/RSJ International Conference on Intelligent Robots and Systems); typos corrected
Computation and Language 53
☆ Rep2Text: Decoding Full Text from a Single LLM Token Representation
Large language models (LLMs) have achieved remarkable progress across diverse tasks, yet their internal mechanisms remain largely opaque. In this work, we address a fundamental question: to what extent can the original input text be recovered from a single last-token representation within an LLM? We propose Rep2Text, a novel framework for decoding full text from last-token representations. Rep2Text employs a trainable adapter that projects a target model's internal representations into the embedding space of a decoding language model, which then autoregressively reconstructs the input text. Experiments on various model combinations (Llama-3.1-8B, Gemma-7B, Mistral-7B-v0.1, Llama-3.2-3B) demonstrate that, on average, over half of the information in 16-token sequences can be recovered from this compressed representation while maintaining strong semantic integrity and coherence. Furthermore, our analysis reveals an information bottleneck effect: longer sequences exhibit decreased token-level recovery while preserving strong semantic integrity. Besides, our framework also demonstrates robust generalization to out-of-distribution medical data.
comment: 15 pages, 7 figures, 4 tables
☆ FPGA or GPU? Analyzing comparative research for application-specific guidance
The growing complexity of computational workloads has amplified the need for efficient and specialized hardware accelerators. Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs) have emerged as prominent solutions, each excelling in specific domains. Although there is substantial research comparing FPGAs and GPUs, most of the work focuses primarily on performance metrics, offering limited insight into the specific types of applications that each accelerator benefits the most. This paper aims to bridge this gap by synthesizing insights from various research articles to guide users in selecting the appropriate accelerator for domain-specific applications. By categorizing the reviewed studies and analyzing key performance metrics, this work highlights the strengths, limitations, and ideal use cases for FPGAs and GPUs. The findings offer actionable recommendations, helping researchers and practitioners navigate trade-offs in performance, energy efficiency, and programmability.
comment: 7 pages
☆ Ibom NLP: A Step Toward Inclusive Natural Language Processing for Nigeria's Minority Languages AACL
Nigeria is the most populous country in Africa with a population of more than 200 million people. More than 500 languages are spoken in Nigeria and it is one of the most linguistically diverse countries in the world. Despite this, natural language processing (NLP) research has mostly focused on the following four languages: Hausa, Igbo, Nigerian-Pidgin, and Yoruba (i.e <1% of the languages spoken in Nigeria). This is in part due to the unavailability of textual data in these languages to train and apply NLP algorithms. In this work, we introduce ibom -- a dataset for machine translation and topic classification in four Coastal Nigerian languages from the Akwa Ibom State region: Anaang, Efik, Ibibio, and Oro. These languages are not represented in Google Translate or in major benchmarks such as Flores-200 or SIB-200. We focus on extending Flores-200 benchmark to these languages, and further align the translated texts with topic labels based on SIB-200 classification dataset. Our evaluation shows that current LLMs perform poorly on machine translation for these languages in both zero-and-few shot settings. However, we find the few-shot samples to steadily improve topic classification with more shots.
comment: Accepted at IJCNLP-AACL
☆ Better Datasets Start From RefineLab: Automatic Optimization for High-Quality Dataset Refinement
High-quality Question-Answer (QA) datasets are foundational for reliable Large Language Model (LLM) evaluation, yet even expert-crafted datasets exhibit persistent gaps in domain coverage, misaligned difficulty distributions, and factual inconsistencies. The recent surge in generative model-powered datasets has compounded these quality challenges. In this work, we introduce RefineLab, the first LLM-driven framework that automatically refines raw QA textual data into high-quality datasets under a controllable token-budget constraint. RefineLab takes a set of target quality attributes (such as coverage and difficulty balance) as refinement objectives, and performs selective edits within a predefined token budget to ensure practicality and efficiency. In essence, RefineLab addresses a constrained optimization problem: improving the quality of QA samples as much as possible while respecting resource limitations. With a set of available refinement operations (e.g., rephrasing, distractor replacement), RefineLab takes as input the original dataset, a specified set of target quality dimensions, and a token budget, and determines which refinement operations should be applied to each QA sample. This process is guided by an assignment module that selects optimal refinement strategies to maximize overall dataset quality while adhering to the budget constraint. Experiments demonstrate that RefineLab consistently narrows divergence from expert datasets across coverage, difficulty alignment, factual fidelity, and distractor quality. RefineLab pioneers a scalable, customizable path to reproducible dataset design, with broad implications for LLM evaluation.
☆ On the Analogy between Human Brain and LLMs: Spotting Key Neurons in Grammar Perception
Artificial Neural Networks, the building blocks of AI, were inspired by the human brain's network of neurons. Over the years, these networks have evolved to replicate the complex capabilities of the brain, allowing them to handle tasks such as image and language processing. In the realm of Large Language Models, there has been a keen interest in making the language learning process more akin to that of humans. While neuroscientific research has shown that different grammatical categories are processed by different neurons in the brain, we show that LLMs operate in a similar way. Utilizing Llama 3, we identify the most important neurons associated with the prediction of words belonging to different part-of-speech tags. Using the achieved knowledge, we train a classifier on a dataset, which shows that the activation patterns of these key neurons can reliably predict part-of-speech tags on fresh data. The results suggest the presence of a subspace in LLMs focused on capturing part-of-speech tag concepts, resembling patterns observed in lesion studies of the brain in neuroscience.
☆ You Had One Job: Per-Task Quantization Using LLMs' Hidden Representations
Large Language Models (LLMs) excel across diverse tasks, yet many applications require only limited capabilities, making large variants inefficient in memory and latency. Existing approaches often combine distillation and quantization, but most post-training quantization (PTQ) methods are task-agnostic, ignoring how task-specific signals are distributed across layers. In this work, we propose to use hidden representations that encode task-salient signals as a guideline for quantization. In order to fully utilize our innovative idea, this paper compares two new task-aware PTQ methods: Task-Aware Quantization (TAQ), which allocates bitwidths using task-conditioned statistics from hidden activations, and TAQO, which allocates precision based on direct layer sensitivity tests. From a small calibration set, these approaches identify task-relevant layers, preserving their precision while aggressively quantizing the rest. This yields stable task sensitivity profiles and efficient task-specialized models. Across models, TAQ and TAQO outperform the baselines; TAQ leads on Phi-4, while TAQO leads on Llama-3.1, Qwen3, and Qwen2.5. For instances, on Phi-4 it achieves 42.33 EM / 50.81 F1, far surpassing Activation-aware Weight Quantization (AWQ) (2.25 / 7.07), while remaining within < 1.0% of the original accuracy at lower average precision.
☆ Rethinking what Matters: Effective and Robust Multilingual Realignment for Low-Resource Languages AACL 2025
Realignment is a promising strategy to improve cross-lingual transfer in multilingual language models. However, empirical results are mixed and often unreliable, particularly for typologically distant or low-resource languages (LRLs) compared to English. Moreover, word realignment tools often rely on high-quality parallel data, which can be scarce or noisy for many LRLs. In this work, we conduct an extensive empirical study to investigate whether realignment truly benefits from using all available languages, or if strategically selected subsets can offer comparable or even improved cross-lingual transfer, and study the impact on LRLs. Our controlled experiments show that realignment can be particularly effective for LRLs and that using carefully selected, linguistically diverse subsets can match full multilingual alignment, and even outperform it for unseen LRLs. This indicates that effective realignment does not require exhaustive language coverage and can reduce data collection overhead, while remaining both efficient and robust when guided by informed language selection.
comment: Accepted to IJCNLP-AACL 2025
☆ When AI Agents Collude Online: Financial Fraud Risks by Collaborative LLM Agents on Social Platforms
In this work, we study the risks of collective financial fraud in large-scale multi-agent systems powered by large language model (LLM) agents. We investigate whether agents can collaborate in fraudulent behaviors, how such collaboration amplifies risks, and what factors influence fraud success. To support this research, we present MultiAgentFraudBench, a large-scale benchmark for simulating financial fraud scenarios based on realistic online interactions. The benchmark covers 28 typical online fraud scenarios, spanning the full fraud lifecycle across both public and private domains. We further analyze key factors affecting fraud success, including interaction depth, activity level, and fine-grained collaboration failure modes. Finally, we propose a series of mitigation strategies, including adding content-level warnings to fraudulent posts and dialogues, using LLMs as monitors to block potentially malicious agents, and fostering group resilience through information sharing at the societal level. Notably, we observe that malicious agents can adapt to environmental interventions. Our findings highlight the real-world risks of multi-agent financial fraud and suggest practical measures for mitigating them. Code is available at https://github.com/zheng977/MutiAgent4Fraud.
comment: Code is available at https://github.com/zheng977/MutiAgent4Fraud
☆ SR-KI: Scalable and Real-Time Knowledge Integration into LLMs via Supervised Attention AAAI 2026
This paper proposes SR-KI, a novel approach for integrating real-time and large-scale structured knowledge bases (KBs) into large language models (LLMs). SR-KI begins by encoding KBs into key-value pairs using a pretrained encoder, and injects them into LLMs' KV cache. Building on this representation, we employ a two-stage training paradigm: first locating a dedicated retrieval layer within the LLM, and then applying an attention-based loss at this layer to explicitly supervise attention toward relevant KB entries. Unlike traditional retrieval-augmented generation methods that rely heavily on the performance of external retrievers and multi-stage pipelines, SR-KI supports end-to-end inference by performing retrieval entirely within the models latent space. This design enables efficient compression of injected knowledge and facilitates dynamic knowledge updates. Comprehensive experiments demonstrate that SR-KI enables the integration of up to 40K KBs into a 7B LLM on a single A100 40GB GPU, and achieves strong retrieval performance, maintaining over 98% Recall@10 on the best-performing task and exceeding 88% on average across all tasks. Task performance on question answering and KB ID generation also demonstrates that SR-KI maintains strong performance while achieving up to 99.75% compression of the injected KBs.
comment: Accepted by AAAI 2026
☆ Towards Resource-Efficient Multimodal Intelligence: Learned Routing among Specialized Expert Models
As AI moves beyond text, large language models (LLMs) increasingly power vision, audio, and document understanding; however, their high inference costs hinder real-time, scalable deployment. Conversely, smaller open-source models offer cost advantages but struggle with complex or multimodal queries. We introduce a unified, modular framework that intelligently routes each query - textual, multimodal, or complex - to the most fitting expert model, using a learned routing network that balances cost and quality. For vision tasks, we employ a two-stage open-source pipeline optimized for efficiency and reviving efficient classical vision components where they remain SOTA for sub-tasks. On benchmarks such as Massive Multitask Language Understanding (MMLU) and Visual Question Answering (VQA), we match or exceed the performance of always-premium LLM (monolithic systems with one model serving all query types) performance, yet reduce the reliance on costly models by over 67%. With its extensible, multi-agent orchestration, we deliver high-quality, resource-efficient AI at scale.
comment: 15 pages, 4 figures
☆ Optimizing Chain-of-Thought Confidence via Topological and Dirichlet Risk Analysis
Chain-of-thought (CoT) prompting enables Large Language Models to solve complex problems, but deploying these models safely requires reliable confidence estimates, a capability where existing methods suffer from poor calibration and severe overconfidence on incorrect predictions. We propose Enhanced Dirichlet and Topology Risk (EDTR), a novel decoding strategy that combines topological analysis with Dirichlet-based uncertainty quantification to measure LLM confidence across multiple reasoning paths. EDTR treats each CoT as a vector in high-dimensional space and extracts eight topological risk features capturing the geometric structure of reasoning distributions: tighter, more coherent clusters indicate higher confidence while dispersed, inconsistent paths signal uncertainty. We evaluate EDTR against three state-of-the-art calibration methods across four diverse reasoning benchmarks spanning olympiad-level mathematics (AIME), grade school math (GSM8K), commonsense reasoning, and stock price prediction \cite{zhang2025aime, cobbe2021training, talmor-etal-2019-commonsenseqa, yahoo_finance}. EDTR achieves 41\% better calibration than competing methods with an average ECE of 0.287 and the best overall composite score of 0.672, while notably achieving perfect accuracy on AIME and exceptional calibration on GSM8K with an ECE of 0.107, domains where baselines exhibit severe overconfidence. Our work provides a geometric framework for understanding and quantifying uncertainty in multi-step LLM reasoning, enabling more reliable deployment where calibrated confidence estimates are essential.
☆ CG-TTRL: Context-Guided Test-Time Reinforcement Learning for On-Device Large Language Models
Test-time Reinforcement Learning (TTRL) has shown promise in adapting foundation models for complex tasks at test-time, resulting in large performance improvements. TTRL leverages an elegant two-phase sampling strategy: first, multi-sampling derives a pseudo-label via majority voting, while subsequent downsampling and reward-based fine-tuning encourages the model to explore and learn diverse valid solutions, with the pseudo-label modulating the reward signal. Meanwhile, in-context learning has been widely explored at inference time and demonstrated the ability to enhance model performance without weight updates. However, TTRL's two-phase sampling strategy under-utilizes contextual guidance, which can potentially improve pseudo-label accuracy in the initial exploitation phase while regulating exploration in the second. To address this, we propose context-guided TTRL (CG-TTRL), integrating context dynamically into both sampling phases and propose a method for efficient context selection for on-device applications. Our evaluations on mathematical and scientific QA benchmarks show CG-TTRL outperforms TTRL (e.g. additional 7% relative accuracy improvement over TTRL), while boosting efficiency by obtaining strong performance after only a few steps of test-time training (e.g. 8% relative improvement rather than 1% over TTRL after 3 steps).
comment: 12 pages, 7 Figures, 4 Tables
☆ Dutch Metaphor Extraction from Cancer Patients' Interviews and Forum Data using LLMs and Human in the Loop
Metaphors and metaphorical language (MLs) play an important role in healthcare communication between clinicians, patients, and patients' family members. In this work, we focus on Dutch language data from cancer patients. We extract metaphors used by patients using two data sources: (1) cancer patient storytelling interview data and (2) online forum data, including patients' posts, comments, and questions to professionals. We investigate how current state-of-the-art large language models (LLMs) perform on this task by exploring different prompting strategies such as chain of thought reasoning, few-shot learning, and self-prompting. With a human-in-the-loop setup, we verify the extracted metaphors and compile the outputs into a corpus named HealthQuote.NL. We believe the extracted metaphors can support better patient care, for example shared decision making, improved communication between patients and clinicians, and enhanced patient health literacy. They can also inform the design of personalized care pathways. We share prompts and related resources at https://github.com/aaronlifenghan/HealthQuote.NL
comment: Ongoing project report, on behalf of 4D PICTURE https://4dpicture.eu/
☆ MONICA: Real-Time Monitoring and Calibration of Chain-of-Thought Sycophancy in Large Reasoning Models
Large Reasoning Models (LRMs) suffer from sycophantic behavior, where models tend to agree with users' incorrect beliefs and follow misinformation rather than maintain independent reasoning. This behavior undermines model reliability and poses societal risks. Mitigating LRM sycophancy requires monitoring how this sycophancy emerges during the reasoning trajectory; however, current methods mainly focus on judging based on final answers and correcting them, without understanding how sycophancy develops during reasoning processes. To address this limitation, we propose MONICA, a novel Monitor-guided Calibration framework that monitors and mitigates sycophancy during model inference at the level of reasoning steps, without requiring the model to finish generating its complete answer. MONICA integrates a sycophantic monitor that provides real-time monitoring of sycophantic drift scores during response generation with a calibrator that dynamically suppresses sycophantic behavior when scores exceed predefined thresholds. Extensive experiments across 12 datasets and 3 LRMs demonstrate that our method effectively reduces sycophantic behavior in both intermediate reasoning steps and final answers, yielding robust performance improvements.
☆ How Well Do LLMs Understand Drug Mechanisms? A Knowledge + Reasoning Evaluation Dataset
Two scientific fields showing increasing interest in pre-trained large language models (LLMs) are drug development / repurposing, and personalized medicine. For both, LLMs have to demonstrate factual knowledge as well as a deep understanding of drug mechanisms, so they can recall and reason about relevant knowledge in novel situations. Drug mechanisms of action are described as a series of interactions between biomedical entities, which interlink into one or more chains directed from the drug to the targeted disease. Composing the effects of the interactions in a candidate chain leads to an inference about whether the drug might be useful or not for that disease. We introduce a dataset that evaluates LLMs on both factual knowledge of known mechanisms, and their ability to reason about them under novel situations, presented as counterfactuals that the models are unlikely to have seen during training. Using this dataset, we show that o4-mini outperforms the 4o, o3, and o3-mini models from OpenAI, and the recent small Qwen3-4B-thinking model closely matches o4-mini's performance, even outperforming it in some cases. We demonstrate that the open world setting for reasoning tasks, which requires the model to recall relevant knowledge, is more challenging than the closed world setting where the needed factual knowledge is provided. We also show that counterfactuals affecting internal links in the reasoning chain present a much harder task than those affecting a link from the drug mentioned in the prompt.
comment: An earlier version of this paper appears in IEEE FLLM 2025. GitHub: https://github.com/czi-ai/DrugMechCounterfactuals
☆ SugarTextNet: A Transformer-Based Framework for Detecting Sugar Dating-Related Content on Social Media with Context-Aware Focal Loss
Sugar dating-related content has rapidly proliferated on mainstream social media platforms, giving rise to serious societal and regulatory concerns, including commercialization of intimate relationships and the normalization of transactional relationships.~Detecting such content is highly challenging due to the prevalence of subtle euphemisms, ambiguous linguistic cues, and extreme class imbalance in real-world data.~In this work, we present SugarTextNet, a novel transformer-based framework specifically designed to identify sugar dating-related posts on social media.~SugarTextNet integrates a pretrained transformer encoder, an attention-based cue extractor, and a contextual phrase encoder to capture both salient and nuanced features in user-generated text.~To address class imbalance and enhance minority-class detection, we introduce Context-Aware Focal Loss, a tailored loss function that combines focal loss scaling with contextual weighting.~We evaluate SugarTextNet on a newly curated, manually annotated dataset of 3,067 Chinese social media posts from Sina Weibo, demonstrating that our approach substantially outperforms traditional machine learning models, deep learning baselines, and large language models across multiple metrics.~Comprehensive ablation studies confirm the indispensable role of each component.~Our findings highlight the importance of domain-specific, context-aware modeling for sensitive content detection, and provide a robust solution for content moderation in complex, real-world scenarios.
comment: This paper is accepted by HICSS 2026
☆ HatePrototypes: Interpretable and Transferable Representations for Implicit and Explicit Hate Speech Detection
Optimization of offensive content moderation models for different types of hateful messages is typically achieved through continued pre-training or fine-tuning on new hate speech benchmarks. However, existing benchmarks mainly address explicit hate toward protected groups and often overlook implicit or indirect hate, such as demeaning comparisons, calls for exclusion or violence, and subtle discriminatory language that still causes harm. While explicit hate can often be captured through surface features, implicit hate requires deeper, full-model semantic processing. In this work, we question the need for repeated fine-tuning and analyze the role of HatePrototypes, class-level vector representations derived from language models optimized for hate speech detection and safety moderation. We find that these prototypes, built from as few as 50 examples per class, enable cross-task transfer between explicit and implicit hate, with interchangeable prototypes across benchmarks. Moreover, we show that parameter-free early exiting with prototypes is effective for both hate types. We release the code, prototype resources, and evaluation scripts to support future research on efficient and transferable hate speech detection.
☆ LPFQA: A Long-Tail Professional Forum-based Benchmark for LLM Evaluation
Large Language Models (LLMs) have made rapid progress in reasoning, question answering, and professional applications; however, their true capabilities remain difficult to evaluate using existing benchmarks. Current datasets often focus on simplified tasks or artificial scenarios, overlooking long-tail knowledge and the complexities of real-world applications. To bridge this gap, we propose LPFQA, a long-tail knowledge-based benchmark derived from authentic professional forums across 20 academic and industrial fields, covering 502 tasks grounded in practical expertise. LPFQA introduces four key innovations: fine-grained evaluation dimensions that target knowledge depth, reasoning, terminology comprehension, and contextual analysis; a hierarchical difficulty structure that ensures semantic clarity and unique answers; authentic professional scenario modeling with realistic user personas; and interdisciplinary knowledge integration across diverse domains. We evaluated 12 mainstream LLMs on LPFQA and observed significant performance disparities, especially in specialized reasoning tasks. LPFQA provides a robust, authentic, and discriminative benchmark for advancing LLM evaluation and guiding future model development.
☆ TimeSense:Making Large Language Models Proficient in Time-Series Analysis
In the time-series domain, an increasing number of works combine text with temporal data to leverage the reasoning capabilities of large language models (LLMs) for various downstream time-series understanding tasks. This enables a single model to flexibly perform tasks that previously required specialized models for each domain. However, these methods typically rely on text labels for supervision during training, biasing the model toward textual cues while potentially neglecting the full temporal features. Such a bias can lead to outputs that contradict the underlying time-series context. To address this issue, we construct the EvalTS benchmark, comprising 10 tasks across three difficulty levels, from fundamental temporal pattern recognition to complex real-world reasoning, to evaluate models under more challenging and realistic scenarios. We also propose TimeSense, a multimodal framework that makes LLMs proficient in time-series analysis by balancing textual reasoning with a preserved temporal sense. TimeSense incorporates a Temporal Sense module that reconstructs the input time-series within the model's context, ensuring that textual reasoning is grounded in the time-series dynamics. Moreover, to enhance spatial understanding of time-series data, we explicitly incorporate coordinate-based positional embeddings, which provide each time point with spatial context and enable the model to capture structural dependencies more effectively. Experimental results demonstrate that TimeSense achieves state-of-the-art performance across multiple tasks, and it particularly outperforms existing methods on complex multi-dimensional time-series reasoning tasks.
☆ ELEGANCE: Efficient LLM Guidance for Audio-Visual Target Speech Extraction
Audio-visual target speaker extraction (AV-TSE) models primarily rely on visual cues from the target speaker. However, humans also leverage linguistic knowledge, such as syntactic constraints, next word prediction, and prior knowledge of conversation, to extract target speech. Inspired by this observation, we propose ELEGANCE, a novel framework that incorporates linguistic knowledge from large language models (LLMs) into AV-TSE models through three distinct guidance strategies: output linguistic constraints, intermediate linguistic prediction, and input linguistic prior. Comprehensive experiments with RoBERTa, Qwen3-0.6B, and Qwen3-4B on two AV-TSE backbones demon- strate the effectiveness of our approach. Significant improvements are observed in challenging scenarios, including visual cue impaired, unseen languages, target speaker switches, increased interfering speakers, and out-of-domain test set. Demo page: https://alexwxwu.github.io/ELEGANCE/.
☆ Enhancing Multimodal Misinformation Detection by Replaying the Whole Story from Image Modality Perspective AAAI 2026
Multimodal Misinformation Detection (MMD) refers to the task of detecting social media posts involving misinformation, where the post often contains text and image modalities. However, by observing the MMD posts, we hold that the text modality may be much more informative than the image modality because the text generally describes the whole event/story of the current post but the image often presents partial scenes only. Our preliminary empirical results indicate that the image modality exactly contributes less to MMD. Upon this idea, we propose a new MMD method named RETSIMD. Specifically, we suppose that each text can be divided into several segments, and each text segment describes a partial scene that can be presented by an image. Accordingly, we split the text into a sequence of segments, and feed these segments into a pre-trained text-to-image generator to augment a sequence of images. We further incorporate two auxiliary objectives concerning text-image and image-label mutual information, and further post-train the generator over an auxiliary text-to-image generation benchmark dataset. Additionally, we propose a graph structure by defining three heuristic relationships between images, and use a graph neural network to generate the fused features. Extensive empirical results validate the effectiveness of RETSIMD.
comment: Accepted by AAAI 2026. 13 pages, 6 figures. Code: https://github.com/wangbing1416/RETSIMD
☆ Mixtures of SubExperts for Large Language Continual Learning
Adapting Large Language Models (LLMs) to a continuous stream of tasks is a critical yet challenging endeavor. While Parameter-Efficient Fine-Tuning (PEFT) methods have become a standard for this, they face a fundamental dilemma in continual learning. Reusing a single set of PEFT parameters for new tasks often leads to catastrophic forgetting of prior knowledge. Conversely, allocating distinct parameters for each task prevents forgetting but results in a linear growth of the model's size and fails to facilitate knowledge transfer between related tasks. To overcome these limitations, we propose a novel adaptive PEFT method referred to as \textit{Mixtures of SubExperts (MoSEs)}, a novel continual learning framework designed for minimal forgetting and efficient scalability. MoSEs integrate a sparse Mixture of SubExperts into the transformer layers, governed by a task-specific routing mechanism. This architecture allows the model to isolate and protect knowledge within dedicated SubExperts, thereby minimizing parameter interference and catastrophic forgetting. Crucially, the router can adaptively select and combine previously learned sparse parameters for new tasks, enabling effective knowledge transfer while ensuring that the model's capacity grows sublinearly. We evaluate MoSEs on the comprehensive TRACE benchmark datasets. Our experiments demonstrate that MoSEs significantly outperform conventional continual learning approaches in both knowledge retention and scalability to new tasks, achieving state-of-the-art performance with substantial memory and computational savings.
☆ Analyzing and Mitigating Negation Artifacts using Data Augmentation for Improving ELECTRA-Small Model Accuracy
Pre-trained models for natural language inference (NLI) often achieve high performance on benchmark datasets by using spurious correlations, or dataset artifacts, rather than understanding language touches such as negation. In this project, we investigate the performance of an ELECTRA-small model fine-tuned on the Stanford Natural Language Inference (SNLI) dataset, focusing on its handling of negation. Through analysis, we identify that the model struggles with correctly classifying examples containing negation. To address this, we augment the training data with contrast sets and adversarial examples emphasizing negation. Our results demonstrate that this targeted data augmentation improves the model's accuracy on negation-containing examples without adversely affecting overall performance, therefore mitigating the identified dataset artifact.
Overview of CHIP 2025 Shared Task 2: Discharge Medication Recommendation for Metabolic Diseases Based on Chinese Electronic Health Records
Discharge medication recommendation plays a critical role in ensuring treatment continuity, preventing readmission, and improving long-term management for patients with chronic metabolic diseases. This paper present an overview of the CHIP 2025 Shared Task 2 competition, which aimed to develop state-of-the-art approaches for automatically recommending appro-priate discharge medications using real-world Chinese EHR data. For this task, we constructed CDrugRed, a high-quality dataset consisting of 5,894 de-identified hospitalization records from 3,190 patients in China. This task is challenging due to multi-label nature of medication recommendation, het-erogeneous clinical text, and patient-specific variability in treatment plans. A total of 526 teams registered, with 167 and 95 teams submitting valid results to the Phase A and Phase B leaderboards, respectively. The top-performing team achieved the highest overall performance on the final test set, with a Jaccard score of 0.5102, F1 score of 0.6267, demonstrating the potential of advanced large language model (LLM)-based ensemble systems. These re-sults highlight both the promise and remaining challenges of applying LLMs to medication recommendation in Chinese EHRs. The post-evaluation phase remains open at https://tianchi.aliyun.com/competition/entrance/532411/.
☆ SPA: Achieving Consensus in LLM Alignment via Self-Priority Optimization AAAI 2026
In high-stakes scenarios-such as self-harm, legal, or medical queries-LLMs must be both trustworthy and helpful. However, these goals often conflict. We propose priority alignment, a new alignment paradigm that enforces a strict "trustworthy-before-helpful" ordering: optimization of helpfulness is conditioned on first meeting trustworthy thresholds (e.g., harmlessness or honesty). To realize this, we introduce Self-Priority Alignment (SPA)-a fully unsupervised framework that generates diverse responses, self-evaluates them and refines them by the model itself, and applies dual-criterion denoising to remove inconsistency and control variance. From this, SPA constructs lexicographically ordered preference pairs and fine-tunes the model using an uncertainty-weighted alignment loss that emphasizes high-confidence, high-gap decisions. Experiments across multiple benchmarks show that SPA improves helpfulness without compromising safety, outperforming strong baselines while preserving general capabilities. Our results demonstrate that SPA provides a scalable and interpretable alignment strategy for critical LLM applications.
comment: Accepted by AAAI 2026 (Oral)
☆ Tiny Model, Big Logic: Diversity-Driven Optimization Elicits Large-Model Reasoning Ability in VibeThinker-1.5B
Challenging the prevailing consensus that small models inherently lack robust reasoning, this report introduces VibeThinker-1.5B, a 1.5B-parameter dense model developed via our Spectrum-to-Signal Principle (SSP). This challenges the prevailing approach of scaling model parameters to enhance capabilities, as seen in models like DeepSeek R1 (671B) and Kimi k2 (>1T). The SSP framework first employs a Two-Stage Diversity-Exploring Distillation (SFT) to generate a broad spectrum of solutions, followed by MaxEnt-Guided Policy Optimization (RL) to amplify the correct signal. With a total training cost of only $7,800, VibeThinker-1.5B demonstrates superior reasoning capabilities compared to closed-source models like Magistral Medium and Claude Opus 4, and performs on par with open-source models like GPT OSS-20B Medium. Remarkably, it surpasses the 400x larger DeepSeek R1 on three math benchmarks: AIME24 (80.3 vs. 79.8), AIME25 (74.4 vs. 70.0), and HMMT25 (50.4 vs. 41.7). This is a substantial improvement over its base model (6.7, 4.3, and 0.6, respectively). On LiveCodeBench V6, it scores 51.1, outperforming Magistral Medium's 50.3 and its base model's 0.0. These findings demonstrate that small models can achieve reasoning capabilities comparable to large models, drastically reducing training and inference costs and thereby democratizing advanced AI research.
☆ Explicit Knowledge-Guided In-Context Learning for Early Detection of Alzheimer's Disease
Detecting Alzheimer's Disease (AD) from narrative transcripts remains a challenging task for large language models (LLMs), particularly under out-of-distribution (OOD) and data-scarce conditions. While in-context learning (ICL) provides a parameter-efficient alternative to fine-tuning, existing ICL approaches often suffer from task recognition failure, suboptimal demonstration selection, and misalignment between label words and task objectives, issues that are amplified in clinical domains like AD detection. We propose Explicit Knowledge In-Context Learners (EK-ICL), a novel framework that integrates structured explicit knowledge to enhance reasoning stability and task alignment in ICL. EK-ICL incorporates three knowledge components: confidence scores derived from small language models (SLMs) to ground predictions in task-relevant patterns, parsing feature scores to capture structural differences and improve demo selection, and label word replacement to resolve semantic misalignment with LLM priors. In addition, EK-ICL employs a parsing-based retrieval strategy and ensemble prediction to mitigate the effects of semantic homogeneity in AD transcripts. Extensive experiments across three AD datasets demonstrate that EK-ICL significantly outperforms state-of-the-art fine-tuning and ICL baselines. Further analysis reveals that ICL performance in AD detection is highly sensitive to the alignment of label semantics and task-specific context, underscoring the importance of explicit knowledge in clinical reasoning under low-resource conditions.
comment: This paper was accepted by IEEE BIBM 2025 conference
☆ Reasoning with Confidence: Efficient Verification of LLM Reasoning Steps via Uncertainty Heads
Solving complex tasks usually requires LLMs to generate long multi-step reasoning chains. Previous work has shown that verifying the correctness of individual reasoning steps can further improve the performance and efficiency of LLMs on such tasks and enhance solution interpretability. However, existing verification approaches, such as Process Reward Models (PRMs), are either computationally expensive, limited to specific domains, or require large-scale human or model-generated annotations. Thus, we propose a lightweight alternative for step-level reasoning verification based on data-driven uncertainty scores. We train transformer-based uncertainty quantification heads (UHeads) that use the internal states of a frozen LLM to estimate the uncertainty of its reasoning steps during generation. The approach is fully automatic: target labels are generated either by another larger LLM (e.g., DeepSeek R1) or in a self-supervised manner by the original model itself. UHeads are both effective and lightweight, containing less than 10M parameters. Across multiple domains, including mathematics, planning, and general knowledge question answering, they match or even surpass the performance of PRMs that are up to 810x larger. Our findings suggest that the internal states of LLMs encode their uncertainty and can serve as reliable signals for reasoning verification, offering a promising direction toward scalable and generalizable introspective LLMs.
comment: Preprint under review
☆ Enhancing Adversarial Robustness of IoT Intrusion Detection via SHAP-Based Attribution Fingerprinting
The rapid proliferation of Internet of Things (IoT) devices has transformed numerous industries by enabling seamless connectivity and data-driven automation. However, this expansion has also exposed IoT networks to increasingly sophisticated security threats, including adversarial attacks targeting artificial intelligence (AI) and machine learning (ML)-based intrusion detection systems (IDS) to deliberately evade detection, induce misclassification, and systematically undermine the reliability and integrity of security defenses. To address these challenges, we propose a novel adversarial detection model that enhances the robustness of IoT IDS against adversarial attacks through SHapley Additive exPlanations (SHAP)-based fingerprinting. Using SHAP's DeepExplainer, we extract attribution fingerprints from network traffic features, enabling the IDS to reliably distinguish between clean and adversarially perturbed inputs. By capturing subtle attribution patterns, the model becomes more resilient to evasion attempts and adversarial manipulations. We evaluated the model on a standard IoT benchmark dataset, where it significantly outperformed a state-of-the-art method in detecting adversarial attacks. In addition to enhanced robustness, this approach improves model transparency and interpretability, thereby increasing trust in the IDS through explainable AI.
☆ Confidence-Guided Stepwise Model Routing for Cost-Efficient Reasoning
Recent advances in Large Language Models (LLMs) - particularly model scaling and test-time techniques - have greatly enhanced the reasoning capabilities of language models at the expense of higher inference costs. To lower inference costs, prior works train router models or deferral mechanisms that allocate easy queries to a small, efficient model, while forwarding harder queries to larger, more expensive models. However, these trained router models often lack robustness under domain shifts and require expensive data synthesis techniques such as Monte Carlo rollouts to obtain sufficient ground-truth routing labels for training. In this work, we propose Confidence-Guided Stepwise Model Routing for Cost-Efficient Reasoning (STEER), a domain-agnostic framework that performs fine-grained, step-level routing between smaller and larger LLMs without utilizing external models. STEER leverages confidence scores from the smaller model's logits prior to generating a reasoning step, so that the large model is invoked only when necessary. Extensive evaluations using different LLMs on a diverse set of challenging benchmarks across multiple domains such as Mathematical Reasoning, Multi-Hop QA, and Planning tasks indicate that STEER achieves competitive or enhanced accuracy while reducing inference costs (up to +20% accuracy with 48% less FLOPs compared to solely using the larger model on AIME), outperforming baselines that rely on trained external modules. Our results establish model-internal confidence as a robust, domain-agnostic signal for model routing, offering a scalable pathway for efficient LLM deployment.
comment: 7 pages, 5 figures
☆ BookAsSumQA: An Evaluation Framework for Aspect-Based Book Summarization via Question Answering
Aspect-based summarization aims to generate summaries that highlight specific aspects of a text, enabling more personalized and targeted summaries. However, its application to books remains unexplored due to the difficulty of constructing reference summaries for long text. To address this challenge, we propose BookAsSumQA, a QA-based evaluation framework for aspect-based book summarization. BookAsSumQA automatically generates aspect-specific QA pairs from a narrative knowledge graph to evaluate summary quality based on its question-answering performance. Our experiments using BookAsSumQA revealed that while LLM-based approaches showed higher accuracy on shorter texts, RAG-based methods become more effective as document length increases, making them more efficient and practical for aspect-based book summarization.
♻ ☆ Meronymic Ontology Extraction via Large Language Models AACL 2025
Ontologies have become essential in today's digital age as a way of organising the vast amount of readily available unstructured text. In providing formal structure to this information, ontologies have immense value and application across various domains, e.g., e-commerce, where countless product listings necessitate proper product organisation. However, the manual construction of these ontologies is a time-consuming, expensive and laborious process. In this paper, we harness the recent advancements in large language models (LLMs) to develop a fully-automated method of extracting product ontologies, in the form of meronymies, from raw review texts. We demonstrate that the ontologies produced by our method surpass an existing, BERT-based baseline when evaluating using an LLM-as-a-judge. Our investigation provides the groundwork for LLMs to be used more generally in (product or otherwise) ontology extraction.
comment: Accepted to AACL 2025
♻ ☆ Steering Out-of-Distribution Generalization with Concept Ablation Fine-Tuning
Fine-tuning large language models (LLMs) can lead to unintended out-of-distribution generalization. Standard approaches to this problem rely on modifying training data, for example by adding data that better specify the intended generalization. However, this is not always practical. We introduce Concept Ablation Fine-Tuning (CAFT), a technique that leverages interpretability tools to control how LLMs generalize from fine-tuning, without needing to modify the training data or otherwise use data from the target distribution. Given a set of directions in an LLM's latent space corresponding to undesired concepts, CAFT works by ablating these concepts with linear projections during fine-tuning, steering the model away from unintended generalizations. We successfully apply CAFT to three fine-tuning tasks, including emergent misalignment, a phenomenon where LLMs fine-tuned on a narrow task generalize to give egregiously misaligned responses to general questions. Without any changes to the fine-tuning data, CAFT reduces misaligned responses by 10x without degrading performance on the training distribution. Overall, CAFT represents a novel approach for steering LLM generalization without modifying training data.
♻ ☆ EMBRACE: Shaping Inclusive Opinion Representation by Aligning Implicit Conversations with Social Norms AACL 2025
Shaping inclusive representations that embrace diversity and ensure fair participation and reflections of values is at the core of many conversation-based models. However, many existing methods rely on surface inclusion using mention of user demographics or behavioral attributes of social groups. Such methods overlook the nuanced, implicit expression of opinion embedded in conversations. Furthermore, the over-reliance on overt cues can exacerbate misalignment and reinforce harmful or stereotypical representations in model outputs. Thus, we took a step back and recognized that equitable inclusion needs to account for the implicit expression of opinion and use the stance of responses to validate the normative alignment. This study aims to evaluate how opinions are represented in NLP or computational models by introducing an alignment evaluation framework that foregrounds implicit, often overlooked conversations and evaluates the normative social views and discourse. Our approach models the stance of responses as a proxy for the underlying opinion, enabling a considerate and reflective representation of diverse social viewpoints. We evaluate the framework using both (i) positive-unlabeled (PU) online learning with base classifiers, and (ii) instruction-tuned language models to assess post-training alignment. Through this, we provide a principled and structured lens on how implicit opinions are (mis)represented and offer a pathway toward more inclusive model behavior.
comment: Accepted, to appear IJCNLP-AACL 2025 Findings
♻ ☆ OpenUnlearning: Accelerating LLM Unlearning via Unified Benchmarking of Methods and Metrics
Robust unlearning is crucial for safely deploying large language models (LLMs) in environments where data privacy, model safety, and regulatory compliance must be ensured. Yet the task is inherently challenging, partly due to difficulties in reliably measuring whether unlearning has truly occurred. Moreover, fragmentation in current methodologies and inconsistent evaluation metrics hinder comparative analysis and reproducibility. To unify and accelerate research efforts, we introduce OpenUnlearning, a standardized and extensible framework designed explicitly for benchmarking both LLM unlearning methods and metrics. OpenUnlearning integrates 13 unlearning algorithms and 16 diverse evaluations across 3 leading benchmarks (TOFU, MUSE, and WMDP) and also enables analyses of forgetting behaviors across 450+ checkpoints we publicly release. Leveraging OpenUnlearning, we propose a novel meta-evaluation benchmark focused specifically on assessing the faithfulness and robustness of evaluation metrics themselves. We also benchmark diverse unlearning methods and provide a comparative analysis against an extensive evaluation suite. Overall, we establish a clear, community-driven pathway toward rigorous development in LLM unlearning research.
♻ ☆ MultiMed-ST: Large-scale Many-to-many Multilingual Medical Speech Translation EMNLP 2025
Multilingual speech translation (ST) and machine translation (MT) in the medical domain enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we present the first systematic study on medical ST, to our best knowledge, by releasing MultiMed-ST, a large-scale ST dataset for the medical domain, spanning all translation directions in five languages: Vietnamese, English, German, French, and Simplified/Traditional Chinese, together with the models. With 290,000 samples, this is the largest medical MT dataset and the largest many-to-many multilingual ST among all domains. Secondly, we present the most comprehensive ST analysis in the field's history, to our best knowledge, including: empirical baselines, bilingual-multilingual comparative study, end-to-end vs. cascaded comparative study, task-specific vs. multi-task sequence-to-sequence comparative study, code-switch analysis, and quantitative-qualitative error analysis. All code, data, and models are available online: https://github.com/leduckhai/MultiMed-ST
comment: EMNLP 2025
♻ ☆ HaluMem: Evaluating Hallucinations in Memory Systems of Agents
Memory systems are key components that enable AI systems such as LLMs and AI agents to achieve long-term learning and sustained interaction. However, during memory storage and retrieval, these systems frequently exhibit memory hallucinations, including fabrication, errors, conflicts, and omissions. Existing evaluations of memory hallucinations are primarily end-to-end question answering, which makes it difficult to localize the operational stage within the memory system where hallucinations arise. To address this, we introduce the Hallucination in Memory Benchmark (HaluMem), the first operation level hallucination evaluation benchmark tailored to memory systems. HaluMem defines three evaluation tasks (memory extraction, memory updating, and memory question answering) to comprehensively reveal hallucination behaviors across different operational stages of interaction. To support evaluation, we construct user-centric, multi-turn human-AI interaction datasets, HaluMem-Medium and HaluMem-Long. Both include about 15k memory points and 3.5k multi-type questions. The average dialogue length per user reaches 1.5k and 2.6k turns, with context lengths exceeding 1M tokens, enabling evaluation of hallucinations across different context scales and task complexities. Empirical studies based on HaluMem show that existing memory systems tend to generate and accumulate hallucinations during the extraction and updating stages, which subsequently propagate errors to the question answering stage. Future research should focus on developing interpretable and constrained memory operation mechanisms that systematically suppress hallucinations and improve memory reliability.
♻ ☆ Quriosity: Analyzing Human Questioning Behavior and Causal Inquiry through Curiosity-Driven Queries AACL 2025
Recent progress in Large Language Model (LLM) technology has changed our role in interacting with these models. Instead of primarily testing these models with questions we already know answers to, we are now using them for queries where the answers are unknown to us, driven by human curiosity. This shift highlights the growing need to understand curiosity-driven human questions - those that are more complex, open-ended, and reflective of real-world needs. To this end, we present Quriosity, a collection of 13.5K naturally occurring questions from three diverse sources: human-to-search-engine queries, human-to-human interactions, and human-to-LLM conversations. Our comprehensive collection enables a rich understanding of human curiosity across various domains and contexts. Our analysis reveals a significant presence of causal questions (up to 42%) in the dataset, for which we develop an iterative prompt improvement framework to identify all causal queries and examine their unique linguistic properties, cognitive complexity and source distribution. Our paper paves the way for future work on causal question identification and open-ended chatbot interactions. Our code and data are at https://github.com/roberto-ceraolo/quriosity.
comment: IJCNLP-AACL 2025 Findings
♻ ☆ DP-Fusion: Token-Level Differentially Private Inference for Large Language Models UAI
Large language models (LLMs) do not preserve privacy at inference-time. The LLM's outputs can inadvertently reveal information about the model's context, which presents a privacy challenge when the LLM is augmented via tools or databases containing sensitive information. Existing privacy-preserving methods at inference-time have significant limitations since they (i) lack provable guarantees or (ii) have a poor utility/privacy trade-off. We propose DP-Fusion, a Differentially Private Inference (DPI) mechanism for LLMs that provably bounds the influence a set of tokens in the context can have on the LLM's output. DP-Fusion works as follows: (1) label a subset of sensitive tokens, (2) infer the LLM without any sensitive tokens to obtain a baseline, (3) infer the LLM with the sensitive tokens, and (4) blend distributions so that the final output remains within a bounded distance of the baseline distribution. While this per-token influence bound also mitigates jailbreak-style prompt injection, we focus on \emph{document privatization}, where the goal is to paraphrase a document containing sensitive tokens, e.g., personally identifiable information, so that no attacker can reliably infer them from the paraphrased document while preserving high text quality. The privacy/utility trade-off is controlled by $\epsilon$, where $\epsilon=0$ hides sensitive tokens entirely, while higher values trade off privacy for improved text quality. We show that our method creates token-level provably privatized documents with substantially improved theoretical and empirical privacy, achieving $6\times$ lower perplexity than related DPI methods.
comment: Our code and data are publicly available here: https://github.com/MBZUAI-Trustworthy-ML/DP-Fusion-DPI
♻ ☆ Robustness of Neurosymbolic Reasoners on First-Order Logic Problems
Recent trends in NLP aim to improve reasoning capabilities in Large Language Models (LLMs), with key focus on generalization and robustness to variations in tasks. Counterfactual task variants introduce minimal but semantically meaningful changes to otherwise valid first-order logic (FOL) problem instances altering a single predicate or swapping roles of constants to probe whether a reasoning system can maintain logical consistency under perturbation. Previous studies showed that LLMs becomes brittle on counterfactual variations, suggesting that they often rely on spurious surface patterns to generate responses. In this work, we explore if a neurosymbolic (NS) approach that integrates an LLM and a symbolic logical solver could mitigate this problem. Experiments across LLMs of varying sizes show that NS methods are more robust but perform worse overall that purely neural methods. We then propose NSCoT that combines an NS method and Chain-of-Thought (CoT) prompting and demonstrate that while it improves performance, NSCoT still lags behind standard CoT. Our analysis opens research directions for future work.
comment: Accepted to ALA Conference
♻ ☆ Distributional Surgery for Language Model Activations
Language models, while capable of generating remarkably coherent and seemingly accurate text, can occasionally produce undesirable content, including harmful or toxic outputs. In this paper, we present a new two-stage approach to detect and mitigate undesirable content generations by rectifying activations. First, we train an ensemble of layerwise classifiers to detect undesirable content using activations by minimizing a smooth surrogate of the risk-aware score. Then, for detected undesirable contents, we propose layerwise distributional steering policies that transform the attention heads. These policies are computed through principled semidefinite programming, which aims to minimally perturb the attention distribution while probabilistically guaranteeing the effectiveness of the editions. Empirical evaluations across multiple language models and datasets show that our method outperforms baselines in reducing the generation of undesirable output.
comment: 3 figures
♻ ☆ LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora
Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models. Our code and datasets are available at https://github.com/DEEP-PolyU/LinearRAG.
♻ ☆ CultureGuard: Towards Culturally-Aware Dataset and Guard Model for Multilingual Safety Applications
The increasing use of Large Language Models (LLMs) in agentic applications highlights the need for robust safety guard models. While content safety in English is well-studied, non-English languages lack similar advancements due to the high cost of collecting culturally aligned labeled datasets. We present CultureGuard, a novel solution for curating culturally aligned, high-quality safety datasets across multiple languages. Our approach introduces a four-stage synthetic data generation and filtering pipeline: cultural data segregation, cultural data adaptation, machine translation, and quality filtering. This pipeline enables the conversion and expansion of the Nemotron-Content-Safety-Dataset-V2 English safety dataset into eight distinct languages: Arabic, German, Spanish, French, Hindi, Japanese, Thai, and Chinese. The resulting dataset, Nemotron-Safety-Guard-Dataset-v3, comprises 386,661 samples in 9 languages and facilitates the training of Llama-3.1-Nemotron-Safety-Guard-8B-v3 via LoRA-based fine-tuning. The final model achieves state-of-the-art performance on several multilingual content safety benchmarks. Furthermore, we show our moderately multilingual fine-tuning enables robust cross-lingual transfer and strong zero-shot generalization to unseen languages. We also benchmark the latest open LLMs on multilingual safety and observe that these LLMs are more prone to give unsafe responses when prompted in non-English languages. This work advances multilingual LLM safety by enabling the development of culturally aware safety guard models.
♻ ☆ Evaluating Reasoning Faithfulness in Medical Vision-Language Models using Multimodal Perturbations ML4H 2025
Vision-language models (VLMs) often produce chain-of-thought (CoT) explanations that sound plausible yet fail to reflect the underlying decision process, undermining trust in high-stakes clinical use. Existing evaluations rarely catch this misalignment, prioritizing answer accuracy or adherence to formats. We present a clinically grounded framework for chest X-ray visual question answering (VQA) that probes CoT faithfulness via controlled text and image modifications across three axes: clinical fidelity, causal attribution, and confidence calibration. In a reader study (n=4), evaluator-radiologist correlations fall within the observed inter-radiologist range for all axes, with strong alignment for attribution (Kendall's $\tau_b=0.670$), moderate alignment for fidelity ($\tau_b=0.387$), and weak alignment for confidence tone ($\tau_b=0.091$), which we report with caution. Benchmarking six VLMs shows that answer accuracy and explanation quality can be decoupled, acknowledging injected cues does not ensure grounding, and text cues shift explanations more than visual cues. While some open-source models match final answer accuracy, proprietary models score higher on attribution (25.0% vs. 1.4%) and often on fidelity (36.1% vs. 31.7%), highlighting deployment risks and the need to evaluate beyond final answer accuracy.
comment: Accepted to ML4H 2025 Proceedings
♻ ☆ Order Doesn't Matter, But Reasoning Does: Training LLMs with Order-Centric Augmentation
Logical reasoning is essential for large language models (LLMs) to ensure accurate and coherent inference. However, LLMs struggle with reasoning order variations and fail to generalize across logically equivalent transformations. LLMs often rely on fixed sequential patterns rather than true logical understanding. To address this issue, we introduce an order-centric data augmentation framework based on commutativity in logical reasoning. We first randomly shuffle independent premises to introduce condition order augmentation. For reasoning steps, we construct a directed acyclic graph (DAG) to model dependencies between steps, which allows us to identify valid reorderings of steps while preserving logical correctness. By leveraging order-centric augmentations, models can develop a more flexible and generalized reasoning process. Finally, we conduct extensive experiments across multiple logical reasoning benchmarks, demonstrating that our method significantly enhances LLMs' reasoning performance and adaptability to diverse logical structures. We release our codes and augmented data in https://github.com/qianxiHe147/Order-Centric-Data-Augmentation.
♻ ☆ Auto-PRE: An Automatic and Cost-Efficient Peer-Review Framework for Language Generation Evaluation AAAI 2026
The rapid development of large language models (LLMs) has highlighted the need for efficient and reliable methods to evaluate their performance. Traditional evaluation methods often face challenges like high costs, limited task formats, dependence on human references, and systematic biases. To address these limitations, we propose Auto-PRE, an automatic LLM evaluation framework inspired by the peer review process. Unlike previous approaches that rely on human annotations, Auto-PRE automatically selects evaluator LLMs based on three core traits: consistency, pertinence, and self-confidence, which correspond to the instruction, content, and response stages, respectively, and collectively cover the entire evaluation process. Experiments on three representative tasks, including summarization, non-factoid QA, and dialogue generation, demonstrate that Auto-PRE achieves state-of-the-art performance while significantly reducing evaluation costs. Furthermore, the structured and scalable design of our automatic qualification exam framework provides valuable insights into automating the evaluation of LLMs-as-judges, paving the way for more advanced LLM-based evaluation frameworks.
comment: AAAI 2026
♻ ☆ ECom-Bench: Can LLM Agent Resolve Real-World E-commerce Customer Support Issues? EMNLP 2025
In this paper, we introduce ECom-Bench, the first benchmark framework for evaluating LLM agent with multimodal capabilities in the e-commerce customer support domain. ECom-Bench features dynamic user simulation based on persona information collected from real e-commerce customer interactions and a realistic task dataset derived from authentic e-commerce dialogues. These tasks, covering a wide range of business scenarios, are designed to reflect real-world complexities, making ECom-Bench highly challenging. For instance, even advanced models like GPT-4o achieve only a 10-20% pass^3 metric in our benchmark, highlighting the substantial difficulties posed by complex e-commerce scenarios. The code and data have been made publicly available at https://github.com/XiaoduoAILab/ECom-Bench to facilitate further research and development in this domain.
comment: Accepted as a main conference paper at EMNLP 2025
♻ ☆ AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models NeurIPS 2025
Large Language Models (LLMs) remain vulnerable to jailbreaking attacks where adversarial prompts elicit harmful outputs, yet most evaluations focus on single-turn interactions while real-world attacks unfold through adaptive multi-turn conversations. We present AutoAdv, a training-free framework for automated multi-turn jailbreaking that achieves up to 95% attack success rate on Llama-3.1-8B within six turns a 24 percent improvement over single turn baselines. AutoAdv uniquely combines three adaptive mechanisms: a pattern manager that learns from successful attacks to enhance future prompts, a temperature manager that dynamically adjusts sampling parameters based on failure modes, and a two-phase rewriting strategy that disguises harmful requests then iteratively refines them. Extensive evaluation across commercial and open-source models (GPT-4o-mini, Qwen3-235B, Mistral-7B) reveals persistent vulnerabilities in current safety mechanisms, with multi-turn attacks consistently outperforming single-turn approaches. These findings demonstrate that alignment strategies optimized for single-turn interactions fail to maintain robustness across extended conversations, highlighting an urgent need for multi-turn-aware defenses.
comment: Accepted to NeurIPS 2025 Lock-LLM Workshop. Code is available at https://github.com/AAN-AutoAdv/AutoAdv
♻ ☆ Multi-turn Evaluation of Anthropomorphic Behaviours in Large Language Models
The tendency of users to anthropomorphise large language models (LLMs) is of growing interest to AI developers, researchers, and policy-makers. Here, we present a novel method for empirically evaluating anthropomorphic LLM behaviours in realistic and varied settings. Going beyond single-turn static benchmarks, we contribute three methodological advances in state-of-the-art (SOTA) LLM evaluation. First, we develop a multi-turn evaluation of 14 anthropomorphic behaviours. Second, we present a scalable, automated approach by employing simulations of user interactions. Third, we conduct an interactive, large-scale human subject study (N=1101) to validate that the model behaviours we measure predict real users' anthropomorphic perceptions. We find that all SOTA LLMs evaluated exhibit similar behaviours, characterised by relationship-building (e.g., empathy and validation) and first-person pronoun use, and that the majority of behaviours only first occur after multiple turns. Our work lays an empirical foundation for investigating how design choices influence anthropomorphic model behaviours and for progressing the ethical debate on the desirability of these behaviours. It also showcases the necessity of multi-turn evaluations for complex social phenomena in human-AI interaction.
♻ ☆ PPC-GPT: Federated Task-Specific Compression of Large Language Models via Pruning and Chain-of-Thought Distillation
Compressing Large Language Models (LLMs) into task-specific Small Language Models (SLMs) encounters two significant challenges: safeguarding domain-specific knowledge privacy and managing limited resources. To tackle these challenges, we propose PPC-GPT, a novel unified framework that systematically addresses both privacy preservation and model compression in federated settings. PPC-GPT works on a server-client federated architecture, where the client sends differentially private (DP) perturbed task-specific data to the server's LLM. The LLM then generates synthetic data along with their corresponding rationales. This synthetic data is subsequently used for both LLM pruning and retraining processes. Our framework's key innovation lies in its holistic integration of privacy-preserving mechanisms, synthetic data generation, and task-specific compression techniques, creating unique benefits through component interaction. Our experiments across diverse text generation tasks demonstrate that PPC-GPT successfully achieves dual objectives: maintaining competitive performance comparable to full-sized LLMs while ensuring robust privacy protection through its federated architecture. Our code has been contributed to the FATE open-source project and is now publicly accessible at \textit{https://github.com/FederatedAI/FATE-LLM/tree/main/python/fate_llm/algo/ppc-gpt}
♻ ☆ FedCoT: Federated Chain-of-Thought Distillation for Large Language Models
Large Language Models (LLMs) have emerged as a transformative force in artificial intelligence, demonstrating exceptional proficiency across various tasks. However, their deployment in resource-constrained environments and concerns over user data privacy pose significant challenges. In contrast, Small Language Models (SLMs) offer computational efficiency but often lag in performance. To address these issues, we propose FedCoT, a federated framework designed for the Chain-of-Thought (CoT) distillation of knowledge from LLMs to SLMs, while ensuring the preservation of clients' data privacy. FedCoT ensures secure and efficient knowledge transfer from an LLM on a high-powered server to an SLM on a resource-constrained client, while adhering to privacy requirements. Leveraging perturbed prompts and rationales generated through the CoT approach, the framework enhances the performance of the client's SLM without compromising user data privacy within a multi-task learning framework. We propose two privacy protection strategies: the Exponential Mechanism Strategy and the Adaptive Exponential Mechanism Strategy, which balance user prompt privacy and the usability of rationales. Empirical evaluation on various text generation tasks demonstrates the effectiveness of FedCoT in training task-specific SLMs with enhanced performance while prioritizing data privacy protection. Our code has been contributed to the FATE open-source project and is now publicly accessible at \textit{https://github.com/FederatedAI/FATE-LLM/tree/main/python/fate_llm/algo/fedcot}
♻ ☆ Language Model Distillation: A Temporal Difference Imitation Learning Perspective AAAI 2026
Large language models have led to significant progress across many NLP tasks, although their massive sizes often incur substantial computational costs. Distillation has become a common practice to compress these large and highly capable models into smaller, more efficient ones. Many existing language model distillation methods can be viewed as behavior cloning from the perspective of imitation learning or inverse reinforcement learning. This viewpoint has inspired subsequent studies that leverage (inverse) reinforcement learning techniques, including variations of behavior cloning and temporal difference learning methods. Rather than proposing yet another specific temporal difference method, we introduce a general framework for temporal difference-based distillation by exploiting the distributional sparsity of the teacher model. Specifically, it is often observed that language models assign most probability mass to a small subset of tokens. Motivated by this observation, we design a temporal difference learning framework that operates on a reduced action space (a subset of vocabulary), and demonstrate how practical algorithms can be derived and the resulting performance improvements.
comment: AAAI 2026
♻ ☆ Evaluating Human-LLM Representation Alignment: A Case Study on Affective Sentence Generation for Augmentative and Alternative Communication AACL 2025
Gaps arise between a language model's use of concepts and people's expectations. This gap is critical when LLMs generate text to help people communicate via Augmentative and Alternative Communication (AAC) tools. In this work, we introduce the evaluation task of Representation Alignment for measuring this gap via human judgment. In our study, we expand keywords and emotion representations into full sentences. We select four emotion representations: Words, Valence-Arousal-Dominance (VAD) dimensions expressed in both Lexical and Numeric forms, and Emojis. In addition to Representation Alignment, we also measure people's judgments of the accuracy and realism of the generated sentences. While representations like VAD break emotions into easy-to-compute components, our findings show that people agree more with how LLMs generate when conditioned on English words (e.g., "angry") rather than VAD scales. This difference is especially visible when comparing Numeric VAD to words. Furthermore, we found that the perception of how much a generated sentence conveys an emotion is dependent on both the representation type and which emotion it is.
comment: Published at IJCNLP-AACL 2025 Findings
Computer Vision and Pattern Recognition 56
☆ Video Dataset for Surgical Phase, Keypoint, and Instrument Recognition in Laparoscopic Surgery (PhaKIR)
Robotic- and computer-assisted minimally invasive surgery (RAMIS) is increasingly relying on computer vision methods for reliable instrument recognition and surgical workflow understanding. Developing such systems often requires large, well-annotated datasets, but existing resources often address isolated tasks, neglect temporal dependencies, or lack multi-center variability. We present the Surgical Procedure Phase, Keypoint, and Instrument Recognition (PhaKIR) dataset, comprising eight complete laparoscopic cholecystectomy videos recorded at three medical centers. The dataset provides frame-level annotations for three interconnected tasks: surgical phase recognition (485,875 frames), instrument keypoint estimation (19,435 frames), and instrument instance segmentation (19,435 frames). PhaKIR is, to our knowledge, the first multi-institutional dataset to jointly provide phase labels, instrument pose information, and pixel-accurate instrument segmentations, while also enabling the exploitation of temporal context since full surgical procedure sequences are available. It served as the basis for the PhaKIR Challenge as part of the Endoscopic Vision (EndoVis) Challenge at MICCAI 2024 to benchmark methods in surgical scene understanding, thereby further validating the dataset's quality and relevance. The dataset is publicly available upon request via the Zenodo platform.
comment: 9 pages, 5 figures, 4 tables
☆ SportR: A Benchmark for Multimodal Large Language Model Reasoning in Sports
Deeply understanding sports requires an intricate blend of fine-grained visual perception and rule-based reasoning - a challenge that pushes the limits of current multimodal models. To succeed, models must master three critical capabilities: perceiving nuanced visual details, applying abstract sport rule knowledge, and grounding that knowledge in specific visual evidence. Current sports benchmarks either cover single sports or lack the detailed reasoning chains and precise visual grounding needed to robustly evaluate these core capabilities in a multi-sport context. To address this gap, we introduce SportR, the first multi-sports large-scale benchmark designed to train and evaluate MLLMs on the fundamental reasoning required for sports intelligence. Our benchmark provides a dataset of 5,017 images and 2,101 videos. To enable granular evaluation, we structure our benchmark around a progressive hierarchy of question-answer (QA) pairs designed to probe reasoning at increasing depths - from simple infraction identification to complex penalty prediction. For the most advanced tasks requiring multi-step reasoning, such as determining penalties or explaining tactics, we provide 7,118 high-quality, human-authored Chain of Thought (CoT) annotations. In addition, our benchmark incorporates both image and video modalities and provides manual bounding box annotations to test visual grounding in the image part directly. Extensive experiments demonstrate the profound difficulty of our benchmark. State-of-the-art baseline models perform poorly on our most challenging tasks. While training on our data via Supervised Fine-Tuning and Reinforcement Learning improves these scores, they remain relatively low, highlighting a significant gap in current model capabilities. SportR presents a new challenge for the community, providing a critical resource to drive future research in multimodal sports reasoning.
☆ A Low-Rank Method for Vision Language Model Hallucination Mitigation in Autonomous Driving
Vision Language Models (VLMs) are increasingly used in autonomous driving to help understand traffic scenes, but they sometimes produce hallucinations, which are false details not grounded in the visual input. Detecting and mitigating hallucinations is challenging when ground-truth references are unavailable and model internals are inaccessible. This paper proposes a novel self-contained low-rank approach to automatically rank multiple candidate captions generated by multiple VLMs based on their hallucination levels, using only the captions themselves without requiring external references or model access. By constructing a sentence-embedding matrix and decomposing it into a low-rank consensus component and a sparse residual, we use the residual magnitude to rank captions: selecting the one with the smallest residual as the most hallucination-free. Experiments on the NuScenes dataset demonstrate that our approach achieves 87% selection accuracy in identifying hallucination-free captions, representing a 19% improvement over the unfiltered baseline and a 6-10% improvement over multi-agent debate method. The sorting produced by sparse error magnitudes shows strong correlation with human judgments of hallucinations, validating our scoring mechanism. Additionally, our method, which can be easily parallelized, reduces inference time by 51-67% compared to debate approaches, making it practical for real-time autonomous driving applications.
☆ Zooming into Comics: Region-Aware RL Improves Fine-Grained Comic Understanding in Vision-Language Models
Complex visual narratives, such as comics, present a significant challenge to Vision-Language Models (VLMs). Despite excelling on natural images, VLMs often struggle with stylized line art, onomatopoeia, and densely packed multi-panel layouts. To address this gap, we introduce AI4VA-FG, the first fine-grained and comprehensive benchmark for VLM-based comic understanding. It spans tasks from foundational recognition and detection to high-level character reasoning and narrative construction, supported by dense annotations for characters, poses, and depth. Beyond that, we evaluate state-of-the-art proprietary models, including GPT-4o and Gemini-2.5, and open-source models such as Qwen2.5-VL, revealing substantial performance deficits across core tasks of our benchmarks and underscoring that comic understanding remains an unsolved challenge. To enhance VLMs' capabilities in this domain, we systematically investigate post-training strategies, including supervised fine-tuning on solutions (SFT-S), supervised fine-tuning on reasoning trajectories (SFT-R), and reinforcement learning (RL). Beyond that, inspired by the emerging "Thinking with Images" paradigm, we propose Region-Aware Reinforcement Learning (RARL) for VLMs, which trains models to dynamically attend to relevant regions through zoom-in operations. We observe that when applied to the Qwen2.5-VL model, RL and RARL yield significant gains in low-level entity recognition and high-level storyline ordering, paving the way for more accurate and efficient VLM applications in the comics domain.
☆ NOAH: Benchmarking Narrative Prior driven Hallucination and Omission in Video Large Language Models
Video large language models (Video LLMs) have recently achieved strong performance on tasks such as captioning, summarization, and question answering. Many models and training methods explicitly encourage continuity across events to enhance narrative coherence. While this improves fluency, it also introduces an inductive bias that prioritizes storyline consistency over strict grounding in visual evidence. We identify this bias, which we call narrative prior, as a key driver of two errors: hallucinations, where non-existent events are introduced or existing ones are misinterpreted, and omissions, where factual events are suppressed because they are misaligned with surrounding context. To systematically evaluate narrative prior-induced errors, we introduce NOAH, a large-scale benchmark that constructs composite videos by inserting clips from other sources into target videos. By varying semantic similarity and insertion position, our benchmark enables controlled and scalable analysis of narrative priors. We design one captioning task with tailored metrics and three QA tasks - Existence, Temporal, and Narrative - yielding more than 60K evaluation samples. Extensive experiments yield three key findings: (i) most Video LLMs exhibit hallucinations and omissions driven by narrative priors, (ii) the patterns of these errors vary across architectures and depend on event similarity and insertion position, and (iii) reliance on narrative priors intensifies under sampling with fewer frames, amplifying errors when event continuity is weak. We establish NOAH as the first standardized evaluation of narrative prior-induced hallucination and omission in Video LLMs, providing a foundation for developing more reliable and trustworthy models. Our benchmark and code are available at https://anonymous550520.github.io/.
comment: 18 pages, 9 figures. Preprint
☆ Inpaint360GS: Efficient Object-Aware 3D Inpainting via Gaussian Splatting for 360° Scenes WACV 2026
Despite recent advances in single-object front-facing inpainting using NeRF and 3D Gaussian Splatting (3DGS), inpainting in complex 360{\deg} scenes remains largely underexplored. This is primarily due to three key challenges: (i) identifying target objects in the 3D field of 360{\deg} environments, (ii) dealing with severe occlusions in multi-object scenes, which makes it hard to define regions to inpaint, and (iii) maintaining consistent and high-quality appearance across views effectively. To tackle these challenges, we propose Inpaint360GS, a flexible 360{\deg} editing framework based on 3DGS that supports multi-object removal and high-fidelity inpainting in 3D space. By distilling 2D segmentation into 3D and leveraging virtual camera views for contextual guidance, our method enables accurate object-level editing and consistent scene completion. We further introduce a new dataset tailored for 360{\deg} inpainting, addressing the lack of ground truth object-free scenes. Experiments demonstrate that Inpaint360GS outperforms existing baselines and achieves state-of-the-art performance. Project page: https://dfki-av.github.io/inpaint360gs/
comment: WACV 2026, project page: https://dfki-av.github.io/inpaint360gs/
☆ EIDSeg: A Pixel-Level Semantic Segmentation Dataset for Post-Earthquake Damage Assessment from Social Media Images AAAI
Rapid post-earthquake damage assessment is crucial for rescue and resource planning. Still, existing remote sensing methods depend on costly aerial images, expert labeling, and produce only binary damage maps for early-stage evaluation. Although ground-level images from social networks provide a valuable source to fill this gap, a large pixel-level annotated dataset for this task is still unavailable. We introduce EIDSeg, the first large-scale semantic segmentation dataset specifically for post-earthquake social media imagery. The dataset comprises 3,266 images from nine major earthquakes (2008-2023), annotated across five classes of infrastructure damage: Undamaged Building, Damaged Building, Destroyed Building, Undamaged Road, and Damaged Road. We propose a practical three-phase cross-disciplinary annotation protocol with labeling guidelines that enables consistent segmentation by non-expert annotators, achieving over 70% inter-annotator agreement. We benchmark several state-of-the-art segmentation models, identifying Encoder-only Mask Transformer (EoMT) as the top-performing method with a Mean Intersection over Union (mIoU) of 80.8%. By unlocking social networks' rich ground-level perspective, our work paves the way for a faster, finer-grained damage assessment in the post-earthquake scenario.
comment: Camera-Ready for AAAI-AISI26
☆ Countering Multi-modal Representation Collapse through Rank-targeted Fusion WACV
Multi-modal fusion methods often suffer from two types of representation collapse: feature collapse where individual dimensions lose their discriminative power (as measured by eigenspectra), and modality collapse where one dominant modality overwhelms the other. Applications like human action anticipation that require fusing multifarious sensor data are hindered by both feature and modality collapse. However, existing methods attempt to counter feature collapse and modality collapse separately. This is because there is no unifying framework that efficiently addresses feature and modality collapse in conjunction. In this paper, we posit the utility of effective rank as an informative measure that can be utilized to quantify and counter both the representation collapses. We propose \textit{Rank-enhancing Token Fuser}, a theoretically grounded fusion framework that selectively blends less informative features from one modality with complementary features from another modality. We show that our method increases the effective rank of the fused representation. To address modality collapse, we evaluate modality combinations that mutually increase each others' effective rank. We show that depth maintains representational balance when fused with RGB, avoiding modality collapse. We validate our method on action anticipation, where we present \texttt{R3D}, a depth-informed fusion framework. Extensive experiments on NTURGBD, UTKinect, and DARai demonstrate that our approach significantly outperforms prior state-of-the-art methods by up to 3.74\%. Our code is available at: \href{https://github.com/olivesgatech/R3D}{https://github.com/olivesgatech/R3D}.
comment: Accepted in 2026 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
☆ Diagnose Like A REAL Pathologist: An Uncertainty-Focused Approach for Trustworthy Multi-Resolution Multiple Instance Learning WACV
With the increasing demand for histopathological specimen examination and diagnostic reporting, Multiple Instance Learning (MIL) has received heightened research focus as a viable solution for AI-centric diagnostic aid. Recently, to improve its performance and make it work more like a pathologist, several MIL approaches based on the use of multiple-resolution images have been proposed, delivering often higher performance than those that use single-resolution images. Despite impressive recent developments of multiple-resolution MIL, previous approaches only focus on improving performance, thereby lacking research on well-calibrated MIL that clinical experts can rely on for trustworthy diagnostic results. In this study, we propose Uncertainty-Focused Calibrated MIL (UFC-MIL), which more closely mimics the pathologists' examination behaviors while providing calibrated diagnostic predictions, using multiple images with different resolutions. UFC-MIL includes a novel patch-wise loss that learns the latent patterns of instances and expresses their uncertainty for classification. Also, the attention-based architecture with a neighbor patch aggregation module collects features for the classifier. In addition, aggregated predictions are calibrated through patch-level uncertainty without requiring multiple iterative inferences, which is a key practical advantage. Against challenging public datasets, UFC-MIL shows superior performance in model calibration while achieving classification accuracy comparable to that of state-of-the-art methods.
comment: Accepted by IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
☆ Non-Negative Stiefel Approximating Flow: Orthogonalish Matrix Optimization for Interpretable Embeddings
Interpretable representation learning is a central challenge in modern machine learning, particularly in high-dimensional settings such as neuroimaging, genomics, and text analysis. Current methods often struggle to balance the competing demands of interpretability and model flexibility, limiting their effectiveness in extracting meaningful insights from complex data. We introduce Non-negative Stiefel Approximating Flow (NSA-Flow), a general-purpose matrix estimation framework that unifies ideas from sparse matrix factorization, orthogonalization, and constrained manifold learning. NSA-Flow enforces structured sparsity through a continuous balance between reconstruction fidelity and column-wise decorrelation, parameterized by a single tunable weight. The method operates as a smooth flow near the Stiefel manifold with proximal updates for non-negativity and adaptive gradient control, yielding representations that are simultaneously sparse, stable, and interpretable. Unlike classical regularization schemes, NSA-Flow provides an intuitive geometric mechanism for manipulating sparsity at the level of global structure while simplifying latent features. We demonstrate that the NSA-Flow objective can be optimized smoothly and integrates seamlessly with existing pipelines for dimensionality reduction while improving interpretability and generalization in both simulated and real biomedical data. Empirical validation on the Golub leukemia dataset and in Alzheimer's disease demonstrate that the NSA-Flow constraints can maintain or improve performance over related methods with little additional methodological effort. NSA-Flow offers a scalable, general-purpose tool for interpretable ML, applicable across data science domains.
☆ Turbo-DDCM: Fast and Flexible Zero-Shot Diffusion-Based Image Compression
While zero-shot diffusion-based compression methods have seen significant progress in recent years, they remain notoriously slow and computationally demanding. This paper presents an efficient zero-shot diffusion-based compression method that runs substantially faster than existing methods, while maintaining performance that is on par with the state-of-the-art techniques. Our method builds upon the recently proposed Denoising Diffusion Codebook Models (DDCMs) compression scheme. Specifically, DDCM compresses an image by sequentially choosing the diffusion noise vectors from reproducible random codebooks, guiding the denoiser's output to reconstruct the target image. We modify this framework with Turbo-DDCM, which efficiently combines a large number of noise vectors at each denoising step, thereby significantly reducing the number of required denoising operations. This modification is also coupled with an improved encoding protocol. Furthermore, we introduce two flexible variants of Turbo-DDCM, a priority-aware variant that prioritizes user-specified regions and a distortion-controlled variant that compresses an image based on a target PSNR rather than a target BPP. Comprehensive experiments position Turbo-DDCM as a compelling, practical, and flexible image compression scheme.
comment: Code is available at https://amitvaisman.github.io/turbo_ddcm/
☆ DiffusionUavLoc: Visually Prompted Diffusion for Cross-View UAV Localization
With the rapid growth of the low-altitude economy, unmanned aerial vehicles (UAVs) have become key platforms for measurement and tracking in intelligent patrol systems. However, in GNSS-denied environments, localization schemes that rely solely on satellite signals are prone to failure. Cross-view image retrieval-based localization is a promising alternative, yet substantial geometric and appearance domain gaps exist between oblique UAV views and nadir satellite orthophotos. Moreover, conventional approaches often depend on complex network architectures, text prompts, or large amounts of annotation, which hinders generalization. To address these issues, we propose DiffusionUavLoc, a cross-view localization framework that is image-prompted, text-free, diffusion-centric, and employs a VAE for unified representation. We first use training-free geometric rendering to synthesize pseudo-satellite images from UAV imagery as structural prompts. We then design a text-free conditional diffusion model that fuses multimodal structural cues to learn features robust to viewpoint changes. At inference, descriptors are computed at a fixed time step t and compared using cosine similarity. On University-1652 and SUES-200, the method performs competitively for cross-view localization, especially for satellite-to-drone in University-1652.Our data and code will be published at the following URL: https://github.com/liutao23/DiffusionUavLoc.git.
☆ VDNeRF: Vision-only Dynamic Neural Radiance Field for Urban Scenes
Neural Radiance Fields (NeRFs) implicitly model continuous three-dimensional scenes using a set of images with known camera poses, enabling the rendering of photorealistic novel views. However, existing NeRF-based methods encounter challenges in applications such as autonomous driving and robotic perception, primarily due to the difficulty of capturing accurate camera poses and limitations in handling large-scale dynamic environments. To address these issues, we propose Vision-only Dynamic NeRF (VDNeRF), a method that accurately recovers camera trajectories and learns spatiotemporal representations for dynamic urban scenes without requiring additional camera pose information or expensive sensor data. VDNeRF employs two separate NeRF models to jointly reconstruct the scene. The static NeRF model optimizes camera poses and static background, while the dynamic NeRF model incorporates the 3D scene flow to ensure accurate and consistent reconstruction of dynamic objects. To address the ambiguity between camera motion and independent object motion, we design an effective and powerful training framework to achieve robust camera pose estimation and self-supervised decomposition of static and dynamic elements in a scene. Extensive evaluations on mainstream urban driving datasets demonstrate that VDNeRF surpasses state-of-the-art NeRF-based pose-free methods in both camera pose estimation and dynamic novel view synthesis.
☆ On Modality Incomplete Infrared-Visible Object Detection: An Architecture Compatibility Perspective
Infrared and visible object detection (IVOD) is essential for numerous around-the-clock applications. Despite notable advancements, current IVOD models exhibit notable performance declines when confronted with incomplete modality data, particularly if the dominant modality is missing. In this paper, we take a thorough investigation on modality incomplete IVOD problem from an architecture compatibility perspective. Specifically, we propose a plug-and-play Scarf Neck module for DETR variants, which introduces a modality-agnostic deformable attention mechanism to enable the IVOD detector to flexibly adapt to any single or double modalities during training and inference. When training Scarf-DETR, we design a pseudo modality dropout strategy to fully utilize the multi-modality information, making the detector compatible and robust to both working modes of single and double modalities. Moreover, we introduce a comprehensive benchmark for the modality-incomplete IVOD task aimed at thoroughly assessing situations where the absent modality is either dominant or secondary. Our proposed Scarf-DETR not only performs excellently in missing modality scenarios but also achieves superior performances on the standard IVOD modality complete benchmarks. Our code will be available at https://github.com/YinghuiXing/Scarf-DETR.
☆ InfoAffect: A Dataset for Affective Analysis of Infographics
Infographics are widely used to convey complex information, yet their affective dimensions remain underexplored due to the scarcity of data resources. We introduce a 3.5k-sample affect-annotated InfoAffect dataset, which combines textual content with real-world infographics. We first collect the raw data from six domains and aligned them via preprocessing, the accompanied-text-priority method, and three strategies to guarantee the quality and compliance. After that we construct an affect table and use it to constrain annotation. Five state-of-the-art multimodal large language models (MLLMs) then analyze both modalities, and their outputs are fused with Reciprocal Rank Fusion (RRF) algorithm to yield robust affects and confidences. We conducted a user study with two experiments to validate usability and assess InfoAffect dataset using the Composite Affect Consistency Index (CACI), achieving an overall score of 0.986, which indicates high accuracy.
☆ ArtReg: Visuo-Tactile based Pose Tracking and Manipulation of Unseen Articulated Objects
Robots operating in real-world environments frequently encounter unknown objects with complex structures and articulated components, such as doors, drawers, cabinets, and tools. The ability to perceive, track, and manipulate these objects without prior knowledge of their geometry or kinematic properties remains a fundamental challenge in robotics. In this work, we present a novel method for visuo-tactile-based tracking of unseen objects (single, multiple, or articulated) during robotic interaction without assuming any prior knowledge regarding object shape or dynamics. Our novel pose tracking approach termed ArtReg (stands for Articulated Registration) integrates visuo-tactile point clouds in an unscented Kalman Filter formulation in the SE(3) Lie Group for point cloud registration. ArtReg is used to detect possible articulated joints in objects using purposeful manipulation maneuvers such as pushing or hold-pulling with a two-robot team. Furthermore, we leverage ArtReg to develop a closed-loop controller for goal-driven manipulation of articulated objects to move the object into the desired pose configuration. We have extensively evaluated our approach on various types of unknown objects through real robot experiments. We also demonstrate the robustness of our method by evaluating objects with varying center of mass, low-light conditions, and with challenging visual backgrounds. Furthermore, we benchmarked our approach on a standard dataset of articulated objects and demonstrated improved performance in terms of pose accuracy compared to state-of-the-art methods. Our experiments indicate that robust and accurate pose tracking leveraging visuo-tactile information enables robots to perceive and interact with unseen complex articulated objects (with revolute or prismatic joints).
comment: Under review
☆ V-Shuffle: Zero-Shot Style Transfer via Value Shuffle
Attention injection-based style transfer has achieved remarkable progress in recent years. However, existing methods often suffer from content leakage, where the undesired semantic content of the style image mistakenly appears in the stylized output. In this paper, we propose V-Shuffle, a zero-shot style transfer method that leverages multiple style images from the same style domain to effectively navigate the trade-off between content preservation and style fidelity. V-Shuffle implicitly disrupts the semantic content of the style images by shuffling the value features within the self-attention layers of the diffusion model, thereby preserving low-level style representations. We further introduce a Hybrid Style Regularization that complements these low-level representations with high-level style textures to enhance style fidelity. Empirical results demonstrate that V-Shuffle achieves excellent performance when utilizing multiple style images. Moreover, when applied to a single style image, V-Shuffle outperforms previous state-of-the-art methods.
☆ AesTest: Measuring Aesthetic Intelligence from Perception to Production
Perceiving and producing aesthetic judgments is a fundamental yet underexplored capability for multimodal large language models (MLLMs). However, existing benchmarks for image aesthetic assessment (IAA) are narrow in perception scope or lack the diversity needed to evaluate systematic aesthetic production. To address this gap, we introduce AesTest, a comprehensive benchmark for multimodal aesthetic perception and production, distinguished by the following features: 1) It consists of curated multiple-choice questions spanning ten tasks, covering perception, appreciation, creation, and photography. These tasks are grounded in psychological theories of generative learning. 2) It integrates data from diverse sources, including professional editing workflows, photographic composition tutorials, and crowdsourced preferences. It ensures coverage of both expert-level principles and real-world variation. 3) It supports various aesthetic query types, such as attribute-based analysis, emotional resonance, compositional choice, and stylistic reasoning. We evaluate both instruction-tuned IAA MLLMs and general MLLMs on AesTest, revealing significant challenges in building aesthetic intelligence. We will publicly release AesTest to support future research in this area.
comment: 10 pages, 9 figures
☆ GazeVLM: A Vision-Language Model for Multi-Task Gaze Understanding
Gaze understanding unifies the detection of people, their gaze targets, and objects of interest into a single framework, offering critical insight into visual attention and intent estimation. Although prior research has modelled gaze cues in visual scenes, a unified system is still needed for gaze understanding using both visual and language prompts. This paper introduces GazeVLM, a novel Vision-Language Model (VLM) for multi-task gaze understanding in images, addressing person detection, gaze target detection, and gaze object identification. While other transformer-based methods exist for gaze analysis, GazeVLM represents, to our knowledge, the first application of a VLM to these combined tasks, allowing for selective execution of each task. Through the integration of visual (RGB and depth) and textual modalities, our ablation study on visual input combinations revealed that a fusion of RGB images with HHA-encoded depth maps, guided by text prompts, yields superior performance. We also introduce an object-level gaze detection metric for gaze object identification ($AP_{ob}$). Through experiments, GazeVLM demonstrates significant improvements, notably achieving state-of-the-art evaluation scores on GazeFollow and VideoAttentionTarget datasets.
☆ BuildingWorld: A Structured 3D Building Dataset for Urban Foundation Models
As digital twins become central to the transformation of modern cities, accurate and structured 3D building models emerge as a key enabler of high-fidelity, updatable urban representations. These models underpin diverse applications including energy modeling, urban planning, autonomous navigation, and real-time reasoning. Despite recent advances in 3D urban modeling, most learning-based models are trained on building datasets with limited architectural diversity, which significantly undermines their generalizability across heterogeneous urban environments. To address this limitation, we present BuildingWorld, a comprehensive and structured 3D building dataset designed to bridge the gap in stylistic diversity. It encompasses buildings from geographically and architecturally diverse regions -- including North America, Europe, Asia, Africa, and Oceania -- offering a globally representative dataset for urban-scale foundation modeling and analysis. Specifically, BuildingWorld provides about five million LOD2 building models collected from diverse sources, accompanied by real and simulated airborne LiDAR point clouds. This enables comprehensive research on 3D building reconstruction, detection and segmentation. Cyber City, a virtual city model, is introduced to enable the generation of unlimited training data with customized and structurally diverse point cloud distributions. Furthermore, we provide standardized evaluation metrics tailored for building reconstruction, aiming to facilitate the training, evaluation, and comparison of large-scale vision models and foundation models in structured 3D urban environments.
☆ Label-Efficient 3D Forest Mapping: Self-Supervised and Transfer Learning for Individual, Structural, and Species Analysis
Detailed structural and species information on individual tree level is increasingly important to support precision forestry, biodiversity conservation, and provide reference data for biomass and carbon mapping. Point clouds from airborne and ground-based laser scanning are currently the most suitable data source to rapidly derive such information at scale. Recent advancements in deep learning improved segmenting and classifying individual trees and identifying semantic tree components. However, deep learning models typically require large amounts of annotated training data which limits further improvement. Producing dense, high-quality annotations for 3D point clouds, especially in complex forests, is labor-intensive and challenging to scale. We explore strategies to reduce dependence on large annotated datasets using self-supervised and transfer learning architectures. Our objective is to improve performance across three tasks: instance segmentation, semantic segmentation, and tree classification using realistic and operational training sets. Our findings indicate that combining self-supervised learning with domain adaptation significantly enhances instance segmentation compared to training from scratch (AP50 +16.98%), self-supervised learning suffices for semantic segmentation (mIoU +1.79%), and hierarchical transfer learning enables accurate classification of unseen species (Jaccard +6.07%). To simplify use and encourage uptake, we integrated the tasks into a unified framework, streamlining the process from raw point clouds to tree delineation, structural analysis, and species classification. Pretrained models reduce energy consumption and carbon emissions by ~21%. This open-source contribution aims to accelerate operational extraction of individual tree information from laser scanning point clouds to support forestry, biodiversity, and carbon mapping.
☆ Improving Multimodal Sentiment Analysis via Modality Optimization and Dynamic Primary Modality Selection AAAI 2026
Multimodal Sentiment Analysis (MSA) aims to predict sentiment from language, acoustic, and visual data in videos. However, imbalanced unimodal performance often leads to suboptimal fused representations. Existing approaches typically adopt fixed primary modality strategies to maximize dominant modality advantages, yet fail to adapt to dynamic variations in modality importance across different samples. Moreover, non-language modalities suffer from sequential redundancy and noise, degrading model performance when they serve as primary inputs. To address these issues, this paper proposes a modality optimization and dynamic primary modality selection framework (MODS). First, a Graph-based Dynamic Sequence Compressor (GDC) is constructed, which employs capsule networks and graph convolution to reduce sequential redundancy in acoustic/visual modalities. Then, we develop a sample-adaptive Primary Modality Selector (MSelector) for dynamic dominance determination. Finally, a Primary-modality-Centric Cross-Attention (PCCA) module is designed to enhance dominant modalities while facilitating cross-modal interaction. Extensive experiments on four benchmark datasets demonstrate that MODS outperforms state-of-the-art methods, achieving superior performance by effectively balancing modality contributions and eliminating redundant noise.
comment: Accepted by AAAI 2026
☆ CINEMAE: Leveraging Frozen Masked Autoencoders for Cross-Generator AI Image Detection
While context-based detectors have achieved strong generalization for AI-generated text by measuring distributional inconsistencies, image-based detectors still struggle with overfitting to generator-specific artifacts. We introduce CINEMAE, a novel paradigm for AIGC image detection that adapts the core principles of text detection methods to the visual domain. Our key insight is that Masked AutoEncoder (MAE), trained to reconstruct masked patches conditioned on visible context, naturally encodes semantic consistency expectations. We formalize this reconstruction process probabilistically, computing conditional Negative Log-Likelihood (NLL, p(masked | visible)) to quantify local semantic anomalies. By aggregating these patch-level statistics with global MAE features through learned fusion, CINEMAE achieves strong cross-generator generalization. Trained exclusively on Stable Diffusion v1.4, our method achieves over 95% accuracy on all eight unseen generators in the GenImage benchmark, substantially outperforming state-of-the-art detectors. This demonstrates that context-conditional reconstruction uncertainty provides a robust, transferable signal for AIGC detection.
☆ Seq2Seq Models Reconstruct Visual Jigsaw Puzzles without Seeing Them
Jigsaw puzzles are primarily visual objects, whose algorithmic solutions have traditionally been framed from a visual perspective. In this work, however, we explore a fundamentally different approach: solving square jigsaw puzzles using language models, without access to raw visual input. By introducing a specialized tokenizer that converts each puzzle piece into a discrete sequence of tokens, we reframe puzzle reassembly as a sequence-to-sequence prediction task. Treated as "blind" solvers, encoder-decoder transformers accurately reconstruct the original layout by reasoning over token sequences alone. Despite being deliberately restricted from accessing visual input, our models achieve state-of-the-art results across multiple benchmarks, often outperforming vision-based methods. These findings highlight the surprising capability of language models to solve problems beyond their native domain, and suggest that unconventional approaches can inspire promising directions for puzzle-solving research.
☆ Adaptive 3D Reconstruction via Diffusion Priors and Forward Curvature-Matching Likelihood Updates
Reconstructing high-quality point clouds from images remains challenging in computer vision. Existing generative-model-based approaches, particularly diffusion-model approaches that directly learn the posterior, may suffer from inflexibility -- they require conditioning signals during training, support only a fixed number of input views, and need complete retraining for different measurements. Recent diffusion-based methods have attempted to address this by combining prior models with likelihood updates, but they rely on heuristic fixed step sizes for the likelihood update that lead to slow convergence and suboptimal reconstruction quality. We advance this line of approach by integrating our novel Forward Curvature-Matching (FCM) update method with diffusion sampling. Our method dynamically determines optimal step sizes using only forward automatic differentiation and finite-difference curvature estimates, enabling precise optimization of the likelihood update. This formulation enables high-fidelity reconstruction from both single-view and multi-view inputs, and supports various input modalities through simple operator substitution -- all without retraining. Experiments on ShapeNet and CO3D datasets demonstrate that our method achieves superior reconstruction quality at matched or lower NFEs, yielding higher F-score and lower CD and EMD, validating its efficiency and adaptability for practical applications. Code is available at https://github.com/Seunghyeok0715/FCM
☆ Physics-Informed Deformable Gaussian Splatting: Towards Unified Constitutive Laws for Time-Evolving Material Field AAAI-26
Recently, 3D Gaussian Splatting (3DGS), an explicit scene representation technique, has shown significant promise for dynamic novel-view synthesis from monocular video input. However, purely data-driven 3DGS often struggles to capture the diverse physics-driven motion patterns in dynamic scenes. To fill this gap, we propose Physics-Informed Deformable Gaussian Splatting (PIDG), which treats each Gaussian particle as a Lagrangian material point with time-varying constitutive parameters and is supervised by 2D optical flow via motion projection. Specifically, we adopt static-dynamic decoupled 4D decomposed hash encoding to reconstruct geometry and motion efficiently. Subsequently, we impose the Cauchy momentum residual as a physics constraint, enabling independent prediction of each particle's velocity and constitutive stress via a time-evolving material field. Finally, we further supervise data fitting by matching Lagrangian particle flow to camera-compensated optical flow, which accelerates convergence and improves generalization. Experiments on a custom physics-driven dataset as well as on standard synthetic and real-world datasets demonstrate significant gains in physical consistency and monocular dynamic reconstruction quality.
comment: Accepted by AAAI-26
♻ ☆ HumaniBench: A Human-Centric Framework for Large Multimodal Models Evaluation
Large multimodal models (LMMs) have achieved impressive performance on vision-language tasks such as visual question answering (VQA), image captioning, and visual grounding; however, they remain insufficiently evaluated for alignment with human-centered (HC) values such as fairness, ethics, and inclusivity. To address this gap, we introduce HumaniBench, a comprehensive benchmark comprising 32,000 real-world image-question pairs and an accompanying evaluation suite. Using a semi-automated annotation pipeline, each sample is rigorously validated by domain experts to ensure accuracy and ethical integrity. HumaniBench assesses LMMs across seven key alignment principles: fairness, ethics, empathy, inclusivity, reasoning, robustness, and multilinguality through a diverse set of open- and closed-ended VQA tasks. Grounded in AI ethics theory and real-world social contexts, these principles provide a holistic lens for examining human-aligned behavior. Benchmarking results reveal distinct behavioral patterns: certain model families excel in reasoning, fairness, and multilinguality, while others demonstrate greater robustness and grounding capability. However, most models still struggle to balance task accuracy with ethical and inclusive responses. Techniques such as chain-of-thought prompting and test-time scaling yield measurable alignment gains. As the first benchmark explicitly designed for HC evaluation, HumaniBench offers a rigorous testbed to diagnose limitations, quantify alignment trade-offs, and promote the responsible development of large multimodal models. All data and code are publicly released to ensure transparency and reproducibility. https://vectorinstitute.github.io/HumaniBench/
♻ ☆ Articulate That Object Part (ATOP): 3D Part Articulation via Text and Motion Personalization
We present ATOP (Articulate That Object Part), a novel few-shot method based on motion personalization to articulate a static 3D object with respect to a part and its motion as prescribed in a text prompt. Given the scarcity of available datasets with motion attribute annotations, existing methods struggle to generalize well in this task. In our work, the text input allows us to tap into the power of modern-day diffusion models to generate plausible motion samples for the right object category and part. In turn, the input 3D object provides ``image prompting'' to personalize the generated motion to the very input object. Our method starts with a few-shot finetuning to inject articulation awareness to current diffusion models to learn a unique motion identifier associated with the target object part. Our finetuning is applied to a pre-trained diffusion model for controllable multi-view motion generation, trained with a small collection of reference motion frames demonstrating appropriate part motion. The resulting motion model can then be employed to realize plausible motion of the input 3D object from multiple views. At last, we transfer the personalized motion to the 3D space of the object via differentiable rendering to optimize part articulation parameters by a score distillation sampling loss. Experiments on PartNet-Mobility and ACD datasets demonstrate that our method can generate realistic motion samples with higher accuracy, leading to more generalizable 3D motion predictions compared to prior approaches in the few-shot setting.
comment: Technical Report, 16 pages
♻ ☆ DevFD: Developmental Face Forgery Detection by Learning Shared and Orthogonal LoRA Subspaces NeurIPS 2025
The rise of realistic digital face generation and manipulation poses significant social risks. The primary challenge lies in the rapid and diverse evolution of generation techniques, which often outstrip the detection capabilities of existing models. To defend against the ever-evolving new types of forgery, we need to enable our model to quickly adapt to new domains with limited computation and data while avoiding forgetting previously learned forgery types. In this work, we posit that genuine facial samples are abundant and relatively stable in acquisition methods, while forgery faces continuously evolve with the iteration of manipulation techniques. Given the practical infeasibility of exhaustively collecting all forgery variants, we frame face forgery detection as a continual learning problem and allow the model to develop as new forgery types emerge. Specifically, we employ a Developmental Mixture of Experts (MoE) architecture that uses LoRA models as its individual experts. These experts are organized into two groups: a Real-LoRA to learn and refine knowledge of real faces, and multiple Fake-LoRAs to capture incremental information from different forgery types. To prevent catastrophic forgetting, we ensure that the learning direction of Fake-LoRAs is orthogonal to the established subspace. Moreover, we integrate orthogonal gradients into the orthogonal loss of Fake-LoRAs, preventing gradient interference throughout the training process of each task. Experimental results under both the datasets and manipulation types incremental protocols demonstrate the effectiveness of our method.
comment: Accepted by NeurIPS 2025
♻ ☆ A Feedback-Control Framework for Efficient Dataset Collection from In-Vehicle Data Streams
Modern AI systems are increasingly constrained not by model capacity but by the quality and diversity of their data. Despite growing emphasis on data-centric AI, most datasets are still gathered in an open-loop manner which accumulates redundant samples without feedback from the current coverage. This results in inefficient storage, costly labeling, and limited generalization. To address this, this paper introduces Feedback Control Data Collection (FCDC), a paradigm that formulates data collection as a closed-loop control problem. FCDC continuously approximates the state of the collected data distribution using an online probabilistic model and adaptively regulates sample retention using based on feedback signals such as likelihood and Mahalanobis distance. Through this feedback mechanism, the system dynamically balances exploration and exploitation, maintains dataset diversity, and prevents redundancy from accumulating over time. In addition to demonstrating the controllability of FCDC on a synthetic dataset that converges toward a uniform distribution under Gaussian input assumption, experiments on real data streams show that FCDC produces more balanced datasets by 25.9% while reducing data storage by 39.8%. These results demonstrate that data collection itself can be actively controlled, transforming collection from a passive pipeline stage into a self-regulating, feedback-driven process at the core of data-centric AI.
comment: 7 Pages, Submitted to IEEE Intelligent Vehicles Symposium 2026
♻ ☆ PersonaAnimator: Personalized Motion Transfer from Unconstrained Videos
Recent advances in motion generation show remarkable progress. However, several limitations remain: (1) Existing pose-guided character motion transfer methods merely replicate motion without learning its style characteristics, resulting in inexpressive characters. (2) Motion style transfer methods rely heavily on motion capture data, which is difficult to obtain. (3) Generated motions sometimes violate physical laws. To address these challenges, this paper pioneers a new task: Video-to-Video Motion Personalization. We propose a novel framework, PersonaAnimator, which learns personalized motion patterns directly from unconstrained videos. This enables personalized motion transfer. To support this task, we introduce PersonaVid, the first video-based personalized motion dataset. It contains 20 motion content categories and 120 motion style categories. We further propose a Physics-aware Motion Style Regularization mechanism to enforce physical plausibility in the generated motions. Extensive experiments show that PersonaAnimator outperforms state-of-the-art motion transfer methods and sets a new benchmark for the Video-to-Video Motion Personalization task.
♻ ☆ Generative neural physics enables quantitative volumetric ultrasound of tissue mechanics
Tissue mechanics--stiffness, density and impedance contrast--are broadly informative biomarkers across diseases, yet routine CT, MRI, and B-mode ultrasound rarely quantify them directly. While ultrasound tomography (UT) is intrinsically suited to in-vivo biomechanical assessment by capturing transmitted and reflected wavefields, efficient and accurate full-wave scattering models remain a bottleneck. Here, we introduce a generative neural physics framework that fuses generative models with physics-informed partial differential equation (PDE) solvers to produce rapid, high-fidelity 3D quantitative imaging of tissue mechanics. A compact neural surrogate for full-wave propagation is trained on limited cross-modality data, preserving physical accuracy while enabling efficient inversion. This enables, for the first time, accurate and efficient quantitative volumetric imaging of in vivo human breast and musculoskeletal tissues in under ten minutes, providing spatial maps of tissue mechanical properties not available from conventional reflection-mode or standard UT reconstructions. The resulting images reveal biomechanical features in bone, muscle, fat, and glandular tissues, maintaining structural resolution comparable to 3T MRI while providing substantially greater sensitivity to disease-related tissue mechanics.
♻ ☆ STARS: Self-supervised Tuning for 3D Action Recognition in Skeleton Sequences
Self-supervised pretraining methods with masked prediction demonstrate remarkable within-dataset performance in skeleton-based action recognition. However, we show that, unlike contrastive learning approaches, they do not produce well-separated clusters. Additionally, these methods struggle with generalization in few-shot settings. To address these issues, we propose Self-supervised Tuning for 3D Action Recognition in Skeleton sequences (STARS). Specifically, STARS first uses a masked prediction stage using an encoder-decoder architecture. It then employs nearest-neighbor contrastive learning to partially tune the weights of the encoder, enhancing the formation of semantic clusters for different actions. By tuning the encoder for a few epochs, and without using hand-crafted data augmentations, STARS achieves state-of-the-art self-supervised results in various benchmarks, including NTU-60, NTU-120, and PKU-MMD. In addition, STARS exhibits significantly better results than masked prediction models in few-shot settings, where the model has not seen the actions throughout pretraining. Project page: https://soroushmehraban.github.io/stars/
♻ ☆ Real-time Multi-view Omnidirectional Depth Estimation for Real Scenarios based on Teacher-Student Learning with Unlabeled Data
Omnidirectional depth estimation enables efficient 3D perception over a full 360-degree range. However, in real-world applications such as autonomous driving and robotics, achieving real-time performance and robust cross-scene generalization remains a significant challenge for existing algorithms. In this paper, we propose a real-time omnidirectional depth estimation method for edge computing platforms named Rt-OmniMVS, which introduces the Combined Spherical Sweeping method and implements the lightweight network structure to achieve real-time performance on edge computing platforms. To achieve high accuracy, robustness, and generalization in real-world environments, we introduce a teacher-student learning strategy. We leverage the high-precision stereo matching method as the teacher model to predict pseudo labels for unlabeled real-world data, and utilize data and model augmentation techniques for training to enhance performance of the student model Rt-OmniMVS. We also propose HexaMODE, an omnidirectional depth sensing system based on multi-view fisheye cameras and edge computation device. A large-scale hybrid dataset contains both unlabeled real-world data and synthetic data is collected for model training. Experiments on public datasets demonstrate that proposed method achieves results comparable to state-of-the-art approaches while consuming significantly less resource. The proposed system and algorithm also demonstrate high accuracy in various complex real-world scenarios, both indoors and outdoors, achieving an inference speed of 15 frames per second on edge computing platforms.
♻ ☆ UNO: Unifying One-stage Video Scene Graph Generation via Object-Centric Visual Representation Learning WACV 2026
Video Scene Graph Generation (VidSGG) aims to represent dynamic visual content by detecting objects and modeling their temporal interactions as structured graphs. Prior studies typically target either coarse-grained box-level or fine-grained panoptic pixel-level VidSGG, often requiring task-specific architectures and multi-stage training pipelines. In this paper, we present UNO (UNified Object-centric VidSGG), a single-stage, unified framework that jointly addresses both tasks within an end-to-end architecture. UNO is designed to minimize task-specific modifications and maximize parameter sharing, enabling generalization across different levels of visual granularity. The core of UNO is an extended slot attention mechanism that decomposes visual features into object and relation slots. To ensure robust temporal modeling, we introduce object temporal consistency learning, which enforces consistent object representations across frames without relying on explicit tracking modules. Additionally, a dynamic triplet prediction module links relation slots to corresponding object pairs, capturing evolving interactions over time. We evaluate UNO on standard box-level and pixel-level VidSGG benchmarks. Results demonstrate that UNO not only achieves competitive performance across both tasks but also offers improved efficiency through a unified, object-centric design.
comment: 11 pages, 7 figures. Accepted at WACV 2026
♻ ☆ Sekai: A Video Dataset towards World Exploration
Video generation techniques have made remarkable progress, promising to be the foundation of interactive world exploration. However, existing video generation datasets are not well-suited for world exploration training as they suffer from some limitations: limited locations, short duration, static scenes, and a lack of annotations about exploration and the world. In this paper, we introduce Sekai (meaning "world" in Japanese), a high-quality first-person view worldwide video dataset with rich annotations for world exploration. It consists of over 5,000 hours of walking or drone view (FPV and UVA) videos from over 100 countries and regions across 750 cities. We develop an efficient and effective toolbox to collect, pre-process and annotate videos with location, scene, weather, crowd density, captions, and camera trajectories. Comprehensive analyses and experiments demonstrate the dataset's scale, diversity, annotation quality, and effectiveness for training video generation models. We believe Sekai will benefit the area of video generation and world exploration, and motivate valuable applications. The project page is https://lixsp11.github.io/sekai-project/.
comment: 14 pages, 5 figures
♻ ☆ VPN: Visual Prompt Navigation AAAI 2026
While natural language is commonly used to guide embodied agents, the inherent ambiguity and verbosity of language often hinder the effectiveness of language-guided navigation in complex environments. To this end, we propose Visual Prompt Navigation (VPN), a novel paradigm that guides agents to navigate using only user-provided visual prompts within 2D top-view maps. This visual prompt primarily focuses on marking the visual navigation trajectory on a top-down view of a scene, offering intuitive and spatially grounded guidance without relying on language instructions. It is more friendly for non-expert users and reduces interpretive ambiguity. We build VPN tasks in both discrete and continuous navigation settings, constructing two new datasets, R2R-VP and R2R-CE-VP, by extending existing R2R and R2R-CE episodes with corresponding visual prompts. Furthermore, we introduce VPNet, a dedicated baseline network to handle the VPN tasks, with two data augmentation strategies: view-level augmentation (altering initial headings and prompt orientations) and trajectory-level augmentation (incorporating diverse trajectories from large-scale 3D scenes), to enhance navigation performance. Extensive experiments evaluate how visual prompt forms, top-view map formats, and data augmentation strategies affect the performance of visual prompt navigation. The code is available at https://github.com/farlit/VPN.
comment: Accepted by AAAI 2026
♻ ☆ MACS: Multi-source Audio-to-image Generation with Contextual Significance and Semantic Alignment AAAI 2026
Propelled by the breakthrough in deep generative models, audio-to-image generation has emerged as a pivotal cross-modal task that converts complex auditory signals into rich visual representations. However, previous works only focus on single-source audio inputs for image generation, ignoring the multi-source characteristic in natural auditory scenes, thus limiting the performance in generating comprehensive visual content. To bridge this gap, we propose a method called MACS to conduct multi-source audio-to-image generation. To our best knowledge, this is the first work that explicitly separates multi-source audio to capture the rich audio components before image generation. MACS is a two-stage method. In the first stage, multi-source audio inputs are separated by a weakly supervised method, where the audio and text labels are semantically aligned by casting into a common space using the large pre-trained CLAP model. We introduce a ranking loss to consider the contextual significance of the separated audio signals. In the second stage, effective image generation is achieved by mapping the separated audio signals to the generation condition using only a trainable adapter and a MLP layer. We preprocess the LLP dataset as the first full multi-source audio-to-image generation benchmark. The experiments are conducted on multi-source, mixed-source, and single-source audio-to-image generation tasks. The proposed MACS outperforms the current state-of-the-art methods in 17 out of the 21 evaluation indexes on all tasks and delivers superior visual quality.
comment: Accepted at AAAI 2026. Code available at https://github.com/alxzzhou/MACS
♻ ☆ TextDiffuser-RL: Efficient and Robust Text Layout Optimization for High-Fidelity Text-to-Image Synthesis
Text-embedded image generation plays a critical role in industries such as graphic design, advertising, and digital content creation. Text-to-Image generation methods leveraging diffusion models, such as TextDiffuser-2, have demonstrated promising results in producing images with embedded text. TextDiffuser-2 effectively generates bounding box layouts that guide the rendering of visual text, achieving high fidelity and coherence. However, existing approaches often rely on resource-intensive processes and are limited in their ability to run efficiently on both CPU and GPU platforms. To address these challenges, we propose a novel two-stage pipeline that integrates reinforcement learning (RL) for rapid and optimized text layout generation with a diffusion-based image synthesis model. Our RL-based approach significantly accelerates the bounding box prediction step while reducing overlaps, allowing the system to run efficiently on both CPUs and GPUs. Extensive evaluations demonstrate that our framework achieves comparable performance to TextDiffuser-2 in terms of text placement and image synthesis, while offering markedly faster runtime and increased flexibility. Our method produces high-quality images comparable to TextDiffuser-2, while being 42.29 times faster and requiring only 2 MB of CPU RAM for inference, unlike TextDiffuser-2's M1 model, which is not executable on CPU-only systems.
comment: 19 pages, 36 figures
♻ ☆ LWGANet: Addressing Spatial and Channel Redundancy in Remote Sensing Visual Tasks with Light-Weight Grouped Attention AAAI 2026
Light-weight neural networks for remote sensing (RS) visual analysis must overcome two inherent redundancies: spatial redundancy from vast, homogeneous backgrounds, and channel redundancy, where extreme scale variations render a single feature space inefficient. Existing models, often designed for natural images, fail to address this dual challenge in RS scenarios. To bridge this gap, we propose LWGANet, a light-weight backbone engineered for RS-specific properties. LWGANet introduces two core innovations: a Top-K Global Feature Interaction (TGFI) module that mitigates spatial redundancy by focusing computation on salient regions, and a Light-Weight Grouped Attention (LWGA) module that resolves channel redundancy by partitioning channels into specialized, scale-specific pathways. By synergistically resolving these core inefficiencies, LWGANet achieves a superior trade-off between feature representation quality and computational cost. Extensive experiments on twelve diverse datasets across four major RS tasks--scene classification, oriented object detection, semantic segmentation, and change detection--demonstrate that LWGANet consistently outperforms state-of-the-art light-weight backbones in both accuracy and efficiency. Our work establishes a new, robust baseline for efficient visual analysis in RS images.
comment: Accepted by AAAI 2026 (Oral)
♻ ☆ FastVGGT: Training-Free Acceleration of Visual Geometry Transformer
Foundation models for 3D vision have recently demonstrated remarkable capabilities in 3D perception. However, scaling these models to long-sequence image inputs remains a significant challenge due to inference-time inefficiency. In this work, we present a detailed analysis of VGGT, a state-of-the-art feed-forward visual geometry model and identify its primary bottleneck. Visualization further reveals a token collapse phenomenon in the attention maps. Motivated by these findings, we explore the potential of token merging in the feed-forward visual geometry model. Owing to the unique architectural and task-specific properties of 3D models, directly applying existing merging techniques proves challenging. To this end, we propose FastVGGT, which, for the first time, leverages token merging in the 3D domain through a training-free mechanism for accelerating VGGT. we devise a unique token partitioning strategy tailored to 3D architectures and tasks, effectively eliminating redundant computation while preserving VGGT's powerful reconstruction capacity. Extensive experiments on multiple 3D geometry benchmarks validate the effectiveness of our approach. Notably, with 1000 input images, FastVGGT achieves a 4x speedup over VGGT while mitigating error accumulation in long-sequence scenarios. These findings underscore the potential of token merging as a principled solution for scalable 3D vision systems. Code is available at: https://mystorm16.github.io/fastvggt/.
♻ ☆ Environment-Driven Online LiDAR-Camera Extrinsic Calibration
LiDAR-camera extrinsic calibration (LCEC) is crucial for multi-modal data fusion in autonomous robotic systems. Existing methods, whether target-based or target-free, typically rely on customized calibration targets or fixed scene types, which limit their applicability in real-world scenarios. To address these challenges, we present EdO-LCEC, the first environment-driven online calibration approach. Unlike traditional target-free methods, EdO-LCEC employs a generalizable scene discriminator to estimate the feature density of the application environment. Guided by this feature density, EdO-LCEC extracts LiDAR intensity and depth features from varying perspectives to achieve higher calibration accuracy. To overcome the challenges of cross-modal feature matching between LiDAR and camera, we introduce dual-path correspondence matching (DPCM), which leverages both structural and textural consistency for reliable 3D-2D correspondences. Furthermore, we formulate the calibration process as a joint optimization problem that integrates global constraints across multiple views and scenes, thereby enhancing overall accuracy. Extensive experiments on real-world datasets demonstrate that EdO-LCEC outperforms state-of-the-art methods, particularly in scenarios involving sparse point clouds or partially overlapping sensor views.
♻ ☆ When Person Re-Identification Meets Event Camera: A Benchmark Dataset and An Attribute-guided Re-Identification Framework AAAI 2026
Recent researchers have proposed using event cameras for person re-identification (ReID) due to their promising performance and better balance in terms of privacy protection, event camera-based person ReID has attracted significant attention. Currently, mainstream event-based person ReID algorithms primarily focus on fusing visible light and event stream, as well as preserving privacy. Although significant progress has been made, these methods are typically trained and evaluated on small-scale or simulated event camera datasets, making it difficult to assess their real identification performance and generalization ability. To address the issue of data scarcity, this paper introduces a large-scale RGB-event based person ReID dataset, called EvReID. The dataset contains 118,988 image pairs and covers 1200 pedestrian identities, with data collected across multiple seasons, scenes, and lighting conditions. We also evaluate 15 state-of-the-art person ReID algorithms, laying a solid foundation for future research in terms of both data and benchmarking. Based on our newly constructed dataset, this paper further proposes a pedestrian attribute-guided contrastive learning framework to enhance feature learning for person re-identification, termed TriPro-ReID. This framework not only effectively explores the visual features from both RGB frames and event streams, but also fully utilizes pedestrian attributes as mid-level semantic features. Extensive experiments on the EvReID dataset and MARS datasets fully validated the effectiveness of our proposed RGB-Event person ReID framework. The benchmark dataset and source code will be released on https://github.com/Event-AHU/Neuromorphic_ReID
comment: Accepted by AAAI 2026
♻ ☆ X-Diffusion: Generating Detailed 3D MRI Volumes From a Single Image Using Cross-Sectional Diffusion Models ICCV 2025
Magnetic Resonance Imaging (MRI) is a crucial diagnostic tool, but high-resolution scans are often slow and expensive due to extensive data acquisition requirements. Traditional MRI reconstruction methods aim to expedite this process by filling in missing frequency components in the K-space, performing 3D-to-3D reconstructions that demand full 3D scans. In contrast, we introduce X-Diffusion, a novel cross-sectional diffusion model that reconstructs detailed 3D MRI volumes from extremely sparse spatial-domain inputs, achieving 2D-to-3D reconstruction from as little as a single 2D MRI slice or few slices. A key aspect of X-Diffusion is that it models MRI data as holistic 3D volumes during the cross-sectional training and inference, unlike previous learning approaches that treat MRI scans as collections of 2D slices in standard planes (coronal, axial, sagittal). We evaluated X-Diffusion on brain tumor MRIs from the BRATS dataset and full-body MRIs from the UK Biobank dataset. Our results demonstrate that X-Diffusion not only surpasses state-of-the-art methods in quantitative accuracy (PSNR) on unseen data but also preserves critical anatomical features such as tumor profiles, spine curvature, and brain volume. Remarkably, the model generalizes beyond the training domain, successfully reconstructing knee MRIs despite being trained exclusively on brain data. Medical expert evaluations further confirm the clinical relevance and fidelity of the generated images. To our knowledge, X-Diffusion is the first method capable of producing detailed 3D MRIs from highly limited 2D input data, potentially accelerating MRI acquisition and reducing associated costs. The code is available on the project website https://emmanuelleb985.github.io/XDiffusion/ .
comment: accepted at ICCV 2025 GAIA workshop https://era-ai-biomed.github.io/GAIA/ , project website: https://emmanuelleb985.github.io/XDiffusion/
♻ ☆ Visual Hand Gesture Recognition with Deep Learning: A Comprehensive Review of Methods, Datasets, Challenges and Future Research Directions
The rapid evolution of deep learning (DL) models and the ever-increasing size of available datasets have raised the interest of the research community in the always important field of visual hand gesture recognition (VHGR), and delivered a wide range of applications, such as sign language understanding and human-computer interaction using cameras. Despite the large volume of research works in the field, a structured and complete survey on VHGR is still missing, leaving researchers to navigate through hundreds of papers in order to find the right combination of data, model, and approach for each task. The current survey aims to fill this gap by presenting a comprehensive overview of this computer vision field. With a systematic research methodology that identifies the state-of-the-art works and a structured presentation of the various methods, datasets, and evaluation metrics, this review aims to constitute a useful guideline for researchers, helping them to choose the right strategy for handling a VHGR task. Starting with the methodology used to locate the related literature, the survey identifies and organizes the key VHGR approaches in a taxonomy-based format, and presents the various dimensions that affect the final method choice, such as input modality, task type, and application domain. The state-of-the-art techniques are grouped across three primary VHGR tasks: static gesture recognition, isolated dynamic gestures, and continuous gesture recognition. For each task, the architectural trends and learning strategies are listed. To support the experimental evaluation of future methods in the field, the study reviews commonly used datasets and presents the standard performance metrics. Our survey concludes by identifying the major challenges in VHGR, including both general computer vision issues and domain-specific obstacles, and outlines promising directions for future research.
♻ ☆ Harnessing Textual Semantic Priors for Knowledge Transfer and Refinement in CLIP-Driven Continual Learning AAAI-2026
Continual learning (CL) aims to equip models with the ability to learn from a stream of tasks without forgetting previous knowledge. With the progress of vision-language models like Contrastive Language-Image Pre-training (CLIP), their promise for CL has attracted increasing attention due to their strong generalizability. However, the potential of rich textual semantic priors in CLIP in addressing the stability-plasticity dilemma remains underexplored. During backbone training, most approaches transfer past knowledge without considering semantic relevance, leading to interference from unrelated tasks that disrupt the balance between stability and plasticity. Besides, while text-based classifiers provide strong generalization, they suffer from limited plasticity due to the inherent modality gap in CLIP. Visual classifiers help bridge this gap, but their prototypes lack rich and precise semantics. To address these challenges, we propose Semantic-Enriched Continual Adaptation (SECA), a unified framework that harnesses the anti-forgetting and structured nature of textual priors to guide semantic-aware knowledge transfer in the backbone and reinforce the semantic structure of the visual classifier. Specifically, a Semantic-Guided Adaptive Knowledge Transfer (SG-AKT) module is proposed to assess new images' relevance to diverse historical visual knowledge via textual cues, and aggregate relevant knowledge in an instance-adaptive manner as distillation signals. Moreover, a Semantic-Enhanced Visual Prototype Refinement (SE-VPR) module is introduced to refine visual prototypes using inter-class semantic relations captured in class-wise textual embeddings. Extensive experiments on multiple benchmarks validate the effectiveness of our approach.
comment: AAAI-2026 Poster
♻ ☆ Predicting Video Slot Attention Queries from Random Slot-Feature Pairs AAAI 2026
Unsupervised video Object-Centric Learning (OCL) is promising as it enables object-level scene representation and dynamics modeling as we humans do. Mainstream video OCL methods adopt a recurrent architecture: An aggregator aggregates current video frame into object features, termed slots, under some queries; A transitioner transits current slots to queries for the next frame. This is an effective architecture but all existing implementations both (\textit{i1}) neglect to incorporate next frame features, the most informative source for query prediction, and (\textit{i2}) fail to learn transition dynamics, the knowledge essential for query prediction. To address these issues, we propose Random Slot-Feature pair for learning Query prediction (RandSF.Q): (\textit{t1}) We design a new transitioner to incorporate both slots and features, which provides more information for query prediction; (\textit{t2}) We train the transitioner to predict queries from slot-feature pairs randomly sampled from available recurrences, which drives it to learn transition dynamics. Experiments on scene representation demonstrate that our method surpass existing video OCL methods significantly, e.g., up to 10 points on object discovery, setting new state-of-the-art. Such superiority also benefits downstream tasks like dynamics modeling. Our core source code, model checkpoints and training logs are available on https://github.com/Genera1Z/RandSF.Q.
comment: Accepted to AAAI 2026
♻ ☆ Slot Attention with Re-Initialization and Self-Distillation ACM MM 2025
Unlike popular solutions based on dense feature maps, Object-Centric Learning (OCL) represents visual scenes as sub-symbolic object-level feature vectors, termed slots, which are highly versatile for tasks involving visual modalities. OCL typically aggregates object superpixels into slots by iteratively applying competitive cross attention, known as Slot Attention, with the slots as the query. However, once initialized, these slots are reused naively, causing redundant slots to compete with informative ones for representing objects. This often results in objects being erroneously segmented into parts. Additionally, mainstream methods derive supervision signals solely from decoding slots into the input's reconstruction, overlooking potential supervision based on internal information. To address these issues, we propose Slot Attention with re-Initialization and self-Distillation (DIAS): $\emph{i)}$ We reduce redundancy in the aggregated slots and re-initialize extra aggregation to update the remaining slots; $\emph{ii)}$ We drive the bad attention map at the first aggregation iteration to approximate the good at the last iteration to enable self-distillation. Experiments demonstrate that DIAS achieves state-of-the-art on OCL tasks like object discovery and recognition, while also improving advanced visual prediction and reasoning. Our source code and model checkpoints are available on https://github.com/Genera1Z/DIAS.
comment: Accepted to ACM MM 2025
♻ ☆ Vector-Quantized Vision Foundation Models for Object-Centric Learning ACM MM 2025
Object-Centric Learning (OCL) aggregates image or video feature maps into object-level feature vectors, termed \textit{slots}. It's self-supervision of reconstructing the input from slots struggles with complex object textures, thus Vision Foundation Model (VFM) representations are used as the aggregation input and reconstruction target. Existing methods leverage VFM representations in diverse ways yet fail to fully exploit their potential. In response, we propose a unified architecture, Vector-Quantized VFMs for OCL (VQ-VFM-OCL, or VVO). The key to our unification is simply shared quantizing VFM representations in OCL aggregation and decoding. Experiments show that across different VFMs, aggregators and decoders, our VVO consistently outperforms baselines in object discovery and recognition, as well as downstream visual prediction and reasoning. We also mathematically analyze why VFM representations facilitate OCL aggregation and why their shared quantization as reconstruction targets strengthens OCL supervision. Our source code and model checkpoints are available on https://github.com/Genera1Z/VQ-VFM-OCL.
comment: Accepted to ACM MM 2025
♻ ☆ Multi-Scale Fusion for Object Representation ICLR 2025
Representing images or videos as object-level feature vectors, rather than pixel-level feature maps, facilitates advanced visual tasks. Object-Centric Learning (OCL) primarily achieves this by reconstructing the input under the guidance of Variational Autoencoder (VAE) intermediate representation to drive so-called \textit{slots} to aggregate as much object information as possible. However, existing VAE guidance does not explicitly address that objects can vary in pixel sizes while models typically excel at specific pattern scales. We propose \textit{Multi-Scale Fusion} (MSF) to enhance VAE guidance for OCL training. To ensure objects of all sizes fall within VAE's comfort zone, we adopt the \textit{image pyramid}, which produces intermediate representations at multiple scales; To foster scale-invariance/variance in object super-pixels, we devise \textit{inter}/\textit{intra-scale fusion}, which augments low-quality object super-pixels of one scale with corresponding high-quality super-pixels from another scale. On standard OCL benchmarks, our technique improves mainstream methods, including state-of-the-art diffusion-based ones. The source code is available on https://github.com/Genera1Z/MultiScaleFusion.
comment: Accepted to ICLR 2025
♻ ☆ Grouped Discrete Representation for Object-Centric Learning
Object-Centric Learning (OCL) aims to discover objects in images or videos by reconstructing the input. Representative methods achieve this by reconstructing the input as its Variational Autoencoder (VAE) discrete representations, which suppress (super-)pixel noise and enhance object separability. However, these methods treat features as indivisible units, overlooking their compositional attributes, and discretize features via scalar code indexes, losing attribute-level similarities and differences. We propose Grouped Discrete Representation (GDR) for OCL. For better generalization, features are decomposed into combinatorial attributes by organized channel grouping. For better convergence, features are quantized into discrete representations via tuple code indexes. Experiments demonstrate that GDR consistently improves both mainstream and state-of-the-art OCL methods across various datasets. Visualizations further highlight GDR's superior object separability and interpretability. The source code is available on https://github.com/Genera1Z/GroupedDiscreteRepresentation.
comment: Accepted to ECML-PKDD 2025
♻ ☆ FreeBlend: Advancing Concept Blending with Staged Feedback-Driven Interpolation Diffusion
Concept blending is a promising yet underexplored area in generative models. While recent approaches, such as embedding mixing and latent modification based on structural sketches, have been proposed, they often suffer from incompatible semantic information and discrepancies in shape and appearance. In this work, we introduce FreeBlend, an effective, training-free framework designed to address these challenges. To mitigate cross-modal loss and enhance feature detail, we leverage transferred image embeddings as conditional inputs. The framework employs a stepwise increasing interpolation strategy between latents, progressively adjusting the blending ratio to seamlessly integrate auxiliary features. Additionally, we introduce a feedback-driven mechanism that updates the auxiliary latents in reverse order, facilitating global blending and preventing rigid or unnatural outputs. Extensive experiments demonstrate that our method significantly improves both the semantic coherence and visual quality of blended images, yielding compelling and coherent results.
comment: Webpage: https://petershen-csworld.github.io/FreeBlend
♻ ☆ Evaluating Reasoning Faithfulness in Medical Vision-Language Models using Multimodal Perturbations ML4H 2025
Vision-language models (VLMs) often produce chain-of-thought (CoT) explanations that sound plausible yet fail to reflect the underlying decision process, undermining trust in high-stakes clinical use. Existing evaluations rarely catch this misalignment, prioritizing answer accuracy or adherence to formats. We present a clinically grounded framework for chest X-ray visual question answering (VQA) that probes CoT faithfulness via controlled text and image modifications across three axes: clinical fidelity, causal attribution, and confidence calibration. In a reader study (n=4), evaluator-radiologist correlations fall within the observed inter-radiologist range for all axes, with strong alignment for attribution (Kendall's $\tau_b=0.670$), moderate alignment for fidelity ($\tau_b=0.387$), and weak alignment for confidence tone ($\tau_b=0.091$), which we report with caution. Benchmarking six VLMs shows that answer accuracy and explanation quality can be decoupled, acknowledging injected cues does not ensure grounding, and text cues shift explanations more than visual cues. While some open-source models match final answer accuracy, proprietary models score higher on attribution (25.0% vs. 1.4%) and often on fidelity (36.1% vs. 31.7%), highlighting deployment risks and the need to evaluate beyond final answer accuracy.
comment: Accepted to ML4H 2025 Proceedings
♻ ☆ Effective Gaussian Management for High-fidelity Object Reconstruction
This paper presents an effective Gaussian management framework for high-fidelity scene reconstruction of appearance and geometry. Departing from recent Gaussian Splatting (GS) methods that rely on indiscriminate attribute assignment, our approach introduces a novel densification strategy called \emph{GauSep} that selectively activates Gaussian color or normal attributes. Together with a tailored rendering pipeline, termed \emph{Separate Rendering}, this strategy alleviates gradient conflicts arising from dual supervision and yields improved reconstruction quality. In addition, we develop \emph{GauRep}, an adaptive and integrated Gaussian representation that reduces redundancy both at the individual and global levels, effectively balancing model capacity and number of parameters. To provide reliable geometric supervision essential for effective management, we also introduce \emph{CoRe}, a novel surface reconstruction module that distills normal fields from the SDF branch to the Gaussian branch through a confidence mechanism. Notably, our management framework is model-agnostic and can be seamlessly incorporated into other architectures, simultaneously improving performance and reducing model size. Extensive experiments demonstrate that our approach achieves superior performance in reconstructing both appearance and geometry compared with state-of-the-art methods, while using significantly fewer parameters.
♻ ☆ Incomplete Multi-view Multi-label Classification via a Dual-level Contrastive Learning Framework
Recently, multi-view and multi-label classification have become significant domains for comprehensive data analysis and exploration. However, incompleteness both in views and labels is still a real-world scenario for multi-view multi-label classification. In this paper, we seek to focus on double missing multi-view multi-label classification tasks and propose our dual-level contrastive learning framework to solve this issue. Different from the existing works, which couple consistent information and view-specific information in the same feature space, we decouple the two heterogeneous properties into different spaces and employ contrastive learning theory to fully disentangle the two properties. Specifically, our method first introduces a two-channel decoupling module that contains a shared representation and a view-proprietary representation to effectively extract consistency and complementarity information across all views. Second, to efficiently filter out high-quality consistent information from multi-view representations, two consistency objectives based on contrastive learning are conducted on the high-level features and the semantic labels, respectively. Extensive experiments on several widely used benchmark datasets demonstrate that the proposed method has more stable and superior classification performance.
♻ ☆ Temporal Zoom Networks: Distance Regression and Continuous Depth for Efficient Action Localization
Temporal action localization requires precise boundaries, yet most methods apply uniform computation despite varying boundary difficulty. We propose two complementary contributions. Boundary Distance Regression (BDR) replaces classification with signed-distance regression and zero-crossing extraction. Under idealized assumptions (i.i.d. Laplace noise, uniform stride, sufficient capacity), BDR approaches the Cramer-Rao lower bound, yielding variance on the order of (Delta t)^2 / T (appearing as O((Delta t)^2) for fixed-video inference). The variance ratio R = Var[b_BDR] / Var[b_cls] scales as O((Delta t)^2 / W) for plateau width W approx 2*kappa, with empirical scaling appearing stronger (O((Delta t)^2 / W^2)) due to amplification factors (see Section~4). Empirically, BDR reduces boundary variance by 3.3x to 16.7x (R = 0.06 to 0.30) via four amplification factors. BDR retrofits to existing methods with about 50 lines of code, improving mAP@0.7 by 1.8 to 3.1 percent (average +2.4). Adaptive Temporal Refinement (ATR) learns continuous depth allocation tau in [0,1] to adapt computation, avoiding discrete routing complexity. On THUMOS14, ATR achieves 56.5 percent mAP@0.7 at 151G FLOPs versus 53.6 percent at 198G for the Uniform-6 baseline (24 percent FLOPs reduction, 118 ms vs. 167 ms latency). Gains scale with boundary heterogeneity: THUMOS14 (+2.9), FineAction (+2.7), ActivityNet (+1.8). Training overhead (1.29x baseline) is mitigated via knowledge distillation, with students retaining 99.5 percent performance. Code will be released.
Multimedia 3
☆ A Visual Perception-Based Tunable Framework and Evaluation Benchmark for H.265/HEVC ROI Encryption
ROI selective encryption, as an efficient privacy protection technique, encrypts only the key regions in the video, thereby ensuring security while minimizing the impact on coding efficiency. However, existing ROI-based video encryption methods suffer from insufficient flexibility and lack of a unified evaluation system. To address these issues, we propose a visual perception-based tunable framework and evaluation benchmark for H.265/HEVC ROI encryption. Our scheme introduces three key contributions: 1) A ROI region recognition module based on visual perception network is proposed to accurately identify the ROI region in videos. 2) A three-level tunable encryption strategy is implemented while balancing security and real-time performance. 3) A unified ROI encryption evaluation benchmark is developed to provide a standardized quantitative platform for subsequent research. This triple strategy provides new solution and significant unified performance evaluation methods for ROI selective encryption field. Experimental results indicate that the proposed benchmark can comprehensively measure the performance of the ROI selective encryption. Compared to existing ROI encryption algorithms, our proposed enhanced and advanced level encryption exhibit superior performance in multiple performance metrics. In general, the proposed framework effectively meets the privacy protection requirements in H.265/HEVC and provides a reliable solution for secure and efficient processing of sensitive video content.
☆ ELEGANCE: Efficient LLM Guidance for Audio-Visual Target Speech Extraction
Audio-visual target speaker extraction (AV-TSE) models primarily rely on visual cues from the target speaker. However, humans also leverage linguistic knowledge, such as syntactic constraints, next word prediction, and prior knowledge of conversation, to extract target speech. Inspired by this observation, we propose ELEGANCE, a novel framework that incorporates linguistic knowledge from large language models (LLMs) into AV-TSE models through three distinct guidance strategies: output linguistic constraints, intermediate linguistic prediction, and input linguistic prior. Comprehensive experiments with RoBERTa, Qwen3-0.6B, and Qwen3-4B on two AV-TSE backbones demon- strate the effectiveness of our approach. Significant improvements are observed in challenging scenarios, including visual cue impaired, unseen languages, target speaker switches, increased interfering speakers, and out-of-domain test set. Demo page: https://alexwxwu.github.io/ELEGANCE/.
☆ Enhancing Multimodal Misinformation Detection by Replaying the Whole Story from Image Modality Perspective AAAI 2026
Multimodal Misinformation Detection (MMD) refers to the task of detecting social media posts involving misinformation, where the post often contains text and image modalities. However, by observing the MMD posts, we hold that the text modality may be much more informative than the image modality because the text generally describes the whole event/story of the current post but the image often presents partial scenes only. Our preliminary empirical results indicate that the image modality exactly contributes less to MMD. Upon this idea, we propose a new MMD method named RETSIMD. Specifically, we suppose that each text can be divided into several segments, and each text segment describes a partial scene that can be presented by an image. Accordingly, we split the text into a sequence of segments, and feed these segments into a pre-trained text-to-image generator to augment a sequence of images. We further incorporate two auxiliary objectives concerning text-image and image-label mutual information, and further post-train the generator over an auxiliary text-to-image generation benchmark dataset. Additionally, we propose a graph structure by defining three heuristic relationships between images, and use a graph neural network to generate the fused features. Extensive empirical results validate the effectiveness of RETSIMD.
comment: Accepted by AAAI 2026. 13 pages, 6 figures. Code: https://github.com/wangbing1416/RETSIMD
Artificial Intelligent 53
☆ CoFineLLM: Conformal Finetuning of LLMs for Language-Instructed Robot Planning
Large Language Models (LLMs) have recently emerged as planners for language-instructed agents, generating sequences of actions to accomplish natural language tasks. However, their reliability remains a challenge, especially in long-horizon tasks, since they often produce overconfident yet wrong outputs. Conformal Prediction (CP) has been leveraged to address this issue by wrapping LLM outputs into prediction sets that contain the correct action with a user-defined confidence. When the prediction set is a singleton, the planner executes that action; otherwise, it requests help from a user. This has led to LLM-based planners that can ensure plan correctness with a user-defined probability. However, as LLMs are trained in an uncertainty-agnostic manner, without awareness of prediction sets, they tend to produce unnecessarily large sets, particularly at higher confidence levels, resulting in frequent human interventions limiting autonomous deployment. To address this, we introduce CoFineLLM (Conformal Finetuning for LLMs), the first CP-aware finetuning framework for LLM-based planners that explicitly reduces prediction-set size and, in turn, the need for user interventions. We evaluate our approach on multiple language-instructed robot planning problems and show consistent improvements over uncertainty-aware and uncertainty-agnostic finetuning baselines in terms of prediction-set size, and help rates. Finally, we demonstrate robustness of our method to out-of-distribution scenarios in hardware experiments.
☆ SteganoSNN: SNN-Based Audio-in-Image Steganography with Encryption
Secure data hiding remains a fundamental challenge in digital communication, requiring a careful balance between computational efficiency and perceptual transparency. The balance between security and performance is increasingly fragile with the emergence of generative AI systems capable of autonomously generating and optimising sophisticated cryptanalysis and steganalysis algorithms, thereby accelerating the exposure of vulnerabilities in conventional data-hiding schemes. This work introduces SteganoSNN, a neuromorphic steganographic framework that exploits spiking neural networks (SNNs) to achieve secure, low-power, and high-capacity multimedia data hiding. Digitised audio samples are converted into spike trains using leaky integrate-and-fire (LIF) neurons, encrypted via a modulo-based mapping scheme, and embedded into the least significant bits of RGBA image channels using a dithering mechanism to minimise perceptual distortion. Implemented in Python using NEST and realised on a PYNQ-Z2 FPGA, SteganoSNN attains real-time operation with an embedding capacity of 8 bits per pixel. Experimental evaluations on the DIV2K 2017 dataset demonstrate image fidelity between 40.4 dB and 41.35 dB in PSNR and SSIM values consistently above 0.97, surpassing SteganoGAN in computational efficiency and robustness. SteganoSNN establishes a foundation for neuromorphic steganography, enabling secure, energy-efficient communication for Edge-AI, IoT, and biomedical applications.
☆ Rep2Text: Decoding Full Text from a Single LLM Token Representation
Large language models (LLMs) have achieved remarkable progress across diverse tasks, yet their internal mechanisms remain largely opaque. In this work, we address a fundamental question: to what extent can the original input text be recovered from a single last-token representation within an LLM? We propose Rep2Text, a novel framework for decoding full text from last-token representations. Rep2Text employs a trainable adapter that projects a target model's internal representations into the embedding space of a decoding language model, which then autoregressively reconstructs the input text. Experiments on various model combinations (Llama-3.1-8B, Gemma-7B, Mistral-7B-v0.1, Llama-3.2-3B) demonstrate that, on average, over half of the information in 16-token sequences can be recovered from this compressed representation while maintaining strong semantic integrity and coherence. Furthermore, our analysis reveals an information bottleneck effect: longer sequences exhibit decreased token-level recovery while preserving strong semantic integrity. Besides, our framework also demonstrates robust generalization to out-of-distribution medical data.
comment: 15 pages, 7 figures, 4 tables
☆ Breaking the Dyadic Barrier: Rethinking Fairness in Link Prediction Beyond Demographic Parity AAAI-26
Link prediction is a fundamental task in graph machine learning with applications, ranging from social recommendation to knowledge graph completion. Fairness in this setting is critical, as biased predictions can exacerbate societal inequalities. Prior work adopts a dyadic definition of fairness, enforcing fairness through demographic parity between intra-group and inter-group link predictions. However, we show that this dyadic framing can obscure underlying disparities across subgroups, allowing systemic biases to go undetected. Moreover, we argue that demographic parity does not meet desired properties for fairness assessment in ranking-based tasks such as link prediction. We formalize the limitations of existing fairness evaluations and propose a framework that enables a more expressive assessment. Additionally, we propose a lightweight post-processing method combined with decoupled link predictors that effectively mitigates bias and achieves state-of-the-art fairness-utility trade-offs.
comment: 12 pages, 5 figures. Accepted at AAAI-26 as an Oral
LLM For Loop Invariant Generation and Fixing: How Far Are We?
A loop invariant is a property of a loop that remains true before and after each execution of the loop. The identification of loop invariants is a critical step to support automated program safety assessment. Recent advancements in Large Language Models (LLMs) have demonstrated potential in diverse software engineering (SE) and formal verification tasks. However, we are not aware of the performance of LLMs to infer loop invariants. We report an empirical study of both open-source and closed-source LLMs of varying sizes to assess their proficiency in inferring inductive loop invariants for programs and in fixing incorrect invariants. Our findings reveal that while LLMs exhibit some utility in inferring and repairing loop invariants, their performance is substantially enhanced when supplemented with auxiliary information such as domain knowledge and illustrative examples. LLMs achieve a maximum success rate of 78\% in generating, but are limited to 16\% in repairing the invariant.
comment: This work has been submitted to the IEEE for possible publication
☆ Ibom NLP: A Step Toward Inclusive Natural Language Processing for Nigeria's Minority Languages AACL
Nigeria is the most populous country in Africa with a population of more than 200 million people. More than 500 languages are spoken in Nigeria and it is one of the most linguistically diverse countries in the world. Despite this, natural language processing (NLP) research has mostly focused on the following four languages: Hausa, Igbo, Nigerian-Pidgin, and Yoruba (i.e <1% of the languages spoken in Nigeria). This is in part due to the unavailability of textual data in these languages to train and apply NLP algorithms. In this work, we introduce ibom -- a dataset for machine translation and topic classification in four Coastal Nigerian languages from the Akwa Ibom State region: Anaang, Efik, Ibibio, and Oro. These languages are not represented in Google Translate or in major benchmarks such as Flores-200 or SIB-200. We focus on extending Flores-200 benchmark to these languages, and further align the translated texts with topic labels based on SIB-200 classification dataset. Our evaluation shows that current LLMs perform poorly on machine translation for these languages in both zero-and-few shot settings. However, we find the few-shot samples to steadily improve topic classification with more shots.
comment: Accepted at IJCNLP-AACL
☆ TriShGAN: Enhancing Sparsity and Robustness in Multivariate Time Series Counterfactuals Explanation
In decision-making processes, stakeholders often rely on counterfactual explanations, which provide suggestions about what should be changed in the queried instance to alter the outcome of an AI system. However, generating these explanations for multivariate time series presents challenges due to their complex, multi-dimensional nature. Traditional Nearest Unlike Neighbor-based methods typically substitute subsequences in a queried time series with influential subsequences from an NUN, which is not always realistic in real-world scenarios due to the rigid direct substitution. Counterfactual with Residual Generative Adversarial Networks-based methods aim to address this by learning from the distribution of observed data to generate synthetic counterfactual explanations. However, these methods primarily focus on minimizing the cost from the queried time series to the counterfactual explanations and often neglect the importance of distancing the counterfactual explanation from the decision boundary. This oversight can result in explanations that no longer qualify as counterfactual if minor changes occur within the model. To generate a more robust counterfactual explanation, we introduce TriShGAN, under the CounteRGAN framework enhanced by the incorporation of triplet loss. This unsupervised learning approach uses distance metric learning to encourage the counterfactual explanations not only to remain close to the queried time series but also to capture the feature distribution of the instance with the desired outcome, thereby achieving a better balance between minimal cost and robustness. Additionally, we integrate a Shapelet Extractor that strategically selects the most discriminative parts of the high-dimensional queried time series to enhance the sparsity of counterfactual explanation and efficiency of the training process.
☆ FractalBench: Diagnosing Visual-Mathematical Reasoning Through Recursive Program Synthesis NeurIPS 2025
Mathematical reasoning requires abstracting symbolic rules from visual patterns -- inferring the infinite from the finite. We investigate whether multimodal AI systems possess this capability through FractalBench, a benchmark evaluating fractal program synthesis from images. Fractals provide ideal test cases: Iterated Function Systems with only a few contraction maps generate complex self-similar patterns through simple recursive rules, requiring models to bridge visual perception with mathematical abstraction. We evaluate four leading MLLMs -- GPT-4o, Claude 3.7 Sonnet, Gemini 2.5 Flash, and Qwen 2.5-VL -- on 12 canonical fractals. Models must generate executable Python code reproducing the fractal, enabling objective evaluation. Results reveal a striking disconnect: 76% generate syntactically valid code but only 4% capture mathematical structure. Success varies systematically -- models handle geometric transformations (Koch curves: 17-21%) but fail at branching recursion (trees: <2%), revealing fundamental gaps in mathematical abstraction. FractalBench provides a contamination-resistant diagnostic for visual-mathematical reasoning and is available at https://github.com/NaiveNeuron/FractalBench
comment: Accepted to The 5th Workshop on Mathematical Reasoning and AI at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025); 25 pages, 14 figures, 8 tables; Code available at https://github.com/NaiveNeuron/FractalBench
☆ On the Analogy between Human Brain and LLMs: Spotting Key Neurons in Grammar Perception
Artificial Neural Networks, the building blocks of AI, were inspired by the human brain's network of neurons. Over the years, these networks have evolved to replicate the complex capabilities of the brain, allowing them to handle tasks such as image and language processing. In the realm of Large Language Models, there has been a keen interest in making the language learning process more akin to that of humans. While neuroscientific research has shown that different grammatical categories are processed by different neurons in the brain, we show that LLMs operate in a similar way. Utilizing Llama 3, we identify the most important neurons associated with the prediction of words belonging to different part-of-speech tags. Using the achieved knowledge, we train a classifier on a dataset, which shows that the activation patterns of these key neurons can reliably predict part-of-speech tags on fresh data. The results suggest the presence of a subspace in LLMs focused on capturing part-of-speech tag concepts, resembling patterns observed in lesion studies of the brain in neuroscience.
☆ Rethinking what Matters: Effective and Robust Multilingual Realignment for Low-Resource Languages AACL 2025
Realignment is a promising strategy to improve cross-lingual transfer in multilingual language models. However, empirical results are mixed and often unreliable, particularly for typologically distant or low-resource languages (LRLs) compared to English. Moreover, word realignment tools often rely on high-quality parallel data, which can be scarce or noisy for many LRLs. In this work, we conduct an extensive empirical study to investigate whether realignment truly benefits from using all available languages, or if strategically selected subsets can offer comparable or even improved cross-lingual transfer, and study the impact on LRLs. Our controlled experiments show that realignment can be particularly effective for LRLs and that using carefully selected, linguistically diverse subsets can match full multilingual alignment, and even outperform it for unseen LRLs. This indicates that effective realignment does not require exhaustive language coverage and can reduce data collection overhead, while remaining both efficient and robust when guided by informed language selection.
comment: Accepted to IJCNLP-AACL 2025
☆ A Low-Rank Method for Vision Language Model Hallucination Mitigation in Autonomous Driving
Vision Language Models (VLMs) are increasingly used in autonomous driving to help understand traffic scenes, but they sometimes produce hallucinations, which are false details not grounded in the visual input. Detecting and mitigating hallucinations is challenging when ground-truth references are unavailable and model internals are inaccessible. This paper proposes a novel self-contained low-rank approach to automatically rank multiple candidate captions generated by multiple VLMs based on their hallucination levels, using only the captions themselves without requiring external references or model access. By constructing a sentence-embedding matrix and decomposing it into a low-rank consensus component and a sparse residual, we use the residual magnitude to rank captions: selecting the one with the smallest residual as the most hallucination-free. Experiments on the NuScenes dataset demonstrate that our approach achieves 87% selection accuracy in identifying hallucination-free captions, representing a 19% improvement over the unfiltered baseline and a 6-10% improvement over multi-agent debate method. The sorting produced by sparse error magnitudes shows strong correlation with human judgments of hallucinations, validating our scoring mechanism. Additionally, our method, which can be easily parallelized, reduces inference time by 51-67% compared to debate approaches, making it practical for real-time autonomous driving applications.
☆ Route Experts by Sequence, not by Token
Mixture-of-Experts (MoE) architectures scale large language models (LLMs) by activating only a subset of experts per token, but the standard TopK routing assigns the same fixed number of experts to all tokens, ignoring their varying complexity. Prior adaptive routing methods introduce additional modules and hyperparameters, often requiring costly retraining from scratch. We propose Sequence-level TopK (SeqTopK), a minimal modification that shifts the expert budget from the token level to the sequence level. By selecting the top $T \cdot K$ experts across all $T$ tokens, SeqTopK enables end-to-end learned dynamic allocation -- assigning more experts to difficult tokens and fewer to easy ones -- while preserving the same overall budget. SeqTopK requires only a few lines of code, adds less than 1% overhead, and remains fully compatible with pretrained MoE models. Experiments across math, coding, law, and writing show consistent improvements over TopK and prior parameter-free adaptive methods, with gains that become substantially larger under higher sparsity (up to 16.9%). These results highlight SeqTopK as a simple, efficient, and scalable routing strategy, particularly well-suited for the extreme sparsity regimes of next-generation LLMs. Code is available at https://github.com/Y-Research-SBU/SeqTopK.
☆ Explainable AI For Early Detection Of Sepsis
Sepsis is a life-threatening condition that requires rapid detection and treatment to prevent progression to severe sepsis, septic shock, or multi-organ failure. Despite advances in medical technology, it remains a major challenge for clinicians. While recent machine learning models have shown promise in predicting sepsis onset, their black-box nature limits interpretability and clinical trust. In this study, we present an interpretable AI approach for sepsis analysis that integrates machine learning with clinical knowledge. Our method not only delivers accurate predictions of sepsis onset but also enables clinicians to understand, validate, and align model outputs with established medical expertise.
☆ Zooming into Comics: Region-Aware RL Improves Fine-Grained Comic Understanding in Vision-Language Models
Complex visual narratives, such as comics, present a significant challenge to Vision-Language Models (VLMs). Despite excelling on natural images, VLMs often struggle with stylized line art, onomatopoeia, and densely packed multi-panel layouts. To address this gap, we introduce AI4VA-FG, the first fine-grained and comprehensive benchmark for VLM-based comic understanding. It spans tasks from foundational recognition and detection to high-level character reasoning and narrative construction, supported by dense annotations for characters, poses, and depth. Beyond that, we evaluate state-of-the-art proprietary models, including GPT-4o and Gemini-2.5, and open-source models such as Qwen2.5-VL, revealing substantial performance deficits across core tasks of our benchmarks and underscoring that comic understanding remains an unsolved challenge. To enhance VLMs' capabilities in this domain, we systematically investigate post-training strategies, including supervised fine-tuning on solutions (SFT-S), supervised fine-tuning on reasoning trajectories (SFT-R), and reinforcement learning (RL). Beyond that, inspired by the emerging "Thinking with Images" paradigm, we propose Region-Aware Reinforcement Learning (RARL) for VLMs, which trains models to dynamically attend to relevant regions through zoom-in operations. We observe that when applied to the Qwen2.5-VL model, RL and RARL yield significant gains in low-level entity recognition and high-level storyline ordering, paving the way for more accurate and efficient VLM applications in the comics domain.
☆ GHOST: Solving the Traveling Salesman Problem on Graphs of Convex Sets AAAI-2026
We study GCS-TSP, a new variant of the Traveling Salesman Problem (TSP) defined over a Graph of Convex Sets (GCS) -- a powerful representation for trajectory planning that decomposes the configuration space into convex regions connected by a sparse graph. In this setting, edge costs are not fixed but depend on the specific trajectory selected through each convex region, making classical TSP methods inapplicable. We introduce GHOST, a hierarchical framework that optimally solves the GCS-TSP by combining combinatorial tour search with convex trajectory optimization. GHOST systematically explores tours on a complete graph induced by the GCS, using a novel abstract-path-unfolding algorithm to compute admissible lower bounds that guide best-first search at both the high level (over tours) and the low level (over feasible GCS paths realizing the tour). These bounds provide strong pruning power, enabling efficient search while avoiding unnecessary convex optimization calls. We prove that GHOST guarantees optimality and present a bounded-suboptimal variant for time-critical scenarios. Experiments show that GHOST is orders-of-magnitude faster than unified mixed-integer convex programming baselines for simple cases and uniquely handles complex trajectory planning problems involving high-order continuity constraints and an incomplete GCS.
comment: Accepted to AAAI-2026
☆ Underactuated Biomimetic Autonomous Underwater Vehicle for Ecosystem Monitoring
In this paper, we present an underactuated biomimetic underwater robot that is suitable for ecosystem monitoring in both marine and freshwater environments. We present an updated mechanical design for a fish-like robot and propose minimal actuation behaviors learned using reinforcement learning techniques. We present our preliminary mechanical design of the tail oscillation mechanism and illustrate the swimming behaviors on FishGym simulator, where the reinforcement learning techniques will be tested on
comment: ICRA RUNE 2024 Workshop Paper
☆ Koopman global linearization of contact dynamics for robot locomotion and manipulation enables elaborate control
Controlling robots that dynamically engage in contact with their environment is a pressing challenge. Whether a legged robot making-and-breaking contact with a floor, or a manipulator grasping objects, contact is everywhere. Unfortunately, the switching of dynamics at contact boundaries makes control difficult. Predictive controllers face non-convex optimization problems when contact is involved. Here, we overcome this difficulty by applying Koopman operators to subsume the segmented dynamics due to contact changes into a unified, globally-linear model in an embedding space. We show that viscoelastic contact at robot-environment interactions underpins the use of Koopman operators without approximation to control inputs. This methodology enables the convex Model Predictive Control of a legged robot, and the real-time control of a manipulator engaged in dynamic pushing. In this work, we show that our method allows robots to discover elaborate control strategies in real-time over time horizons with multiple contact changes, and the method is applicable to broad fields beyond robotics.
☆ Adaptive PID Control for Robotic Systems via Hierarchical Meta-Learning and Reinforcement Learning with Physics-Based Data Augmentation
Proportional-Integral-Derivative (PID) controllers remain the predominant choice in industrial robotics due to their simplicity and reliability. However, manual tuning of PID parameters for diverse robotic platforms is time-consuming and requires extensive domain expertise. This paper presents a novel hierarchical control framework that combines meta-learning for PID initialization and reinforcement learning (RL) for online adaptation. To address the sample efficiency challenge, a \textit{physics-based data augmentation} strategy is introduced that generates virtual robot configurations by systematically perturbing physical parameters, enabling effective meta-learning with limited real robot data. The proposed approach is evaluated on two heterogeneous platforms: a 9-DOF Franka Panda manipulator and a 12-DOF Laikago quadruped robot. Experimental results demonstrate that the proposed method achieves 16.6\% average improvement on Franka Panda (6.26{\deg} MAE), with exceptional gains in high-load joints (J2: 80.4\% improvement from 12.36{\deg} to 2.42{\deg}). Critically, this work discovers the \textit{optimization ceiling effect}: RL achieves dramatic improvements when meta-learning exhibits localized high-error joints, but provides no benefit (0.0\%) when baseline performance is uniformly strong, as observed in Laikago. The method demonstrates robust performance under disturbances (parameter uncertainty: +19.2\%, no disturbance: +16.6\%, average: +10.0\%) with only 10 minutes of training time. Multi-seed analysis across 100 random initializations confirms stable performance (4.81+/-1.64\% average). These results establish that RL effectiveness is highly dependent on meta-learning baseline quality and error distribution, providing important design guidance for hierarchical control systems.
comment: 21 pages,12 tables, 6 figures
☆ Sim-to-Real Transfer in Deep Reinforcement Learning for Bipedal Locomotion
This chapter addresses the critical challenge of simulation-to-reality (sim-to-real) transfer for deep reinforcement learning (DRL) in bipedal locomotion. After contextualizing the problem within various control architectures, we dissect the ``curse of simulation'' by analyzing the primary sources of sim-to-real gap: robot dynamics, contact modeling, state estimation, and numerical solvers. Building on this diagnosis, we structure the solutions around two complementary philosophies. The first is to shrink the gap through model-centric strategies that systematically improve the simulator's physical fidelity. The second is to harden the policy, a complementary approach that uses in-simulation robustness training and post-deployment adaptation to make the policy inherently resilient to model inaccuracies. The chapter concludes by synthesizing these philosophies into a strategic framework, providing a clear roadmap for developing and evaluating robust sim-to-real solutions.
comment: Sim-to-real for bipedal locomotion chapter
☆ Real Garment Benchmark (RGBench): A Comprehensive Benchmark for Robotic Garment Manipulation featuring a High-Fidelity Scalable Simulator AAAI
While there has been significant progress to use simulated data to learn robotic manipulation of rigid objects, applying its success to deformable objects has been hindered by the lack of both deformable object models and realistic non-rigid body simulators. In this paper, we present Real Garment Benchmark (RGBench), a comprehensive benchmark for robotic manipulation of garments. It features a diverse set of over 6000 garment mesh models, a new high-performance simulator, and a comprehensive protocol to evaluate garment simulation quality with carefully measured real garment dynamics. Our experiments demonstrate that our simulator outperforms currently available cloth simulators by a large margin, reducing simulation error by 20% while maintaining a speed of 3 times faster. We will publicly release RGBench to accelerate future research in robotic garment manipulation. Website: https://rgbench.github.io/
comment: 2026 AAAI Accept
☆ Whole-Body Control With Terrain Estimation of A 6-DoF Wheeled Bipedal Robot
Wheeled bipedal robots have garnered increasing attention in exploration and inspection. However, most research simplifies calculations by ignoring leg dynamics, thereby restricting the robot's full motion potential. Additionally, robots face challenges when traversing uneven terrain. To address the aforementioned issue, we develop a complete dynamics model and design a whole-body control framework with terrain estimation for a novel 6 degrees of freedom wheeled bipedal robot. This model incorporates the closed-loop dynamics of the robot and a ground contact model based on the estimated ground normal vector. We use a LiDAR inertial odometry framework and improved Principal Component Analysis for terrain estimation. Task controllers, including PD control law and LQR, are employed for pose control and centroidal dynamics-based balance control, respectively. Furthermore, a hierarchical optimization approach is used to solve the whole-body control problem. We validate the performance of the terrain estimation algorithm and demonstrate the algorithm's robustness and ability to traverse uneven terrain through both simulation and real-world experiments.
comment: 8 pages, 8 figures
☆ From Demonstrations to Safe Deployment: Path-Consistent Safety Filtering for Diffusion Policies
Diffusion policies (DPs) achieve state-of-the-art performance on complex manipulation tasks by learning from large-scale demonstration datasets, often spanning multiple embodiments and environments. However, they cannot guarantee safe behavior, so external safety mechanisms are needed. These, however, alter actions in ways unseen during training, causing unpredictable behavior and performance degradation. To address these problems, we propose path-consistent safety filtering (PACS) for DPs. Our approach performs path-consistent braking on a trajectory computed from the sequence of generated actions. In this way, we keep execution consistent with the policy's training distribution, maintaining the learned, task-completing behavior. To enable a real-time deployment and handle uncertainties, we verify safety using set-based reachability analysis. Our experimental evaluation in simulation and on three challenging real-world human-robot interaction tasks shows that PACS (a) provides formal safety guarantees in dynamic environments, (b) preserves task success rates, and (c) outperforms reactive safety approaches, such as control barrier functions, by up to 68% in terms of task success. Videos are available at our project website: https://tum-lsy.github.io/pacs/.
comment: Project page: https://tum-lsy.github.io/pacs/. 8 pages, 4 figures
☆ ArtReg: Visuo-Tactile based Pose Tracking and Manipulation of Unseen Articulated Objects
Robots operating in real-world environments frequently encounter unknown objects with complex structures and articulated components, such as doors, drawers, cabinets, and tools. The ability to perceive, track, and manipulate these objects without prior knowledge of their geometry or kinematic properties remains a fundamental challenge in robotics. In this work, we present a novel method for visuo-tactile-based tracking of unseen objects (single, multiple, or articulated) during robotic interaction without assuming any prior knowledge regarding object shape or dynamics. Our novel pose tracking approach termed ArtReg (stands for Articulated Registration) integrates visuo-tactile point clouds in an unscented Kalman Filter formulation in the SE(3) Lie Group for point cloud registration. ArtReg is used to detect possible articulated joints in objects using purposeful manipulation maneuvers such as pushing or hold-pulling with a two-robot team. Furthermore, we leverage ArtReg to develop a closed-loop controller for goal-driven manipulation of articulated objects to move the object into the desired pose configuration. We have extensively evaluated our approach on various types of unknown objects through real robot experiments. We also demonstrate the robustness of our method by evaluating objects with varying center of mass, low-light conditions, and with challenging visual backgrounds. Furthermore, we benchmarked our approach on a standard dataset of articulated objects and demonstrated improved performance in terms of pose accuracy compared to state-of-the-art methods. Our experiments indicate that robust and accurate pose tracking leveraging visuo-tactile information enables robots to perceive and interact with unseen complex articulated objects (with revolute or prismatic joints).
comment: Under review
☆ Towards Adaptive Humanoid Control via Multi-Behavior Distillation and Reinforced Fine-Tuning
Humanoid robots are promising to learn a diverse set of human-like locomotion behaviors, including standing up, walking, running, and jumping. However, existing methods predominantly require training independent policies for each skill, yielding behavior-specific controllers that exhibit limited generalization and brittle performance when deployed on irregular terrains and in diverse situations. To address this challenge, we propose Adaptive Humanoid Control (AHC) that adopts a two-stage framework to learn an adaptive humanoid locomotion controller across different skills and terrains. Specifically, we first train several primary locomotion policies and perform a multi-behavior distillation process to obtain a basic multi-behavior controller, facilitating adaptive behavior switching based on the environment. Then, we perform reinforced fine-tuning by collecting online feedback in performing adaptive behaviors on more diverse terrains, enhancing terrain adaptability for the controller. We conduct experiments in both simulation and real-world experiments in Unitree G1 robots. The results show that our method exhibits strong adaptability across various situations and terrains. Project website: https://ahc-humanoid.github.io.
☆ Scalable Verification of Neural Control Barrier Functions Using Linear Bound Propagation
Control barrier functions (CBFs) are a popular tool for safety certification of nonlinear dynamical control systems. Recently, CBFs represented as neural networks have shown great promise due to their expressiveness and applicability to a broad class of dynamics and safety constraints. However, verifying that a trained neural network is indeed a valid CBF is a computational bottleneck that limits the size of the networks that can be used. To overcome this limitation, we present a novel framework for verifying neural CBFs based on piecewise linear upper and lower bounds on the conditions required for a neural network to be a CBF. Our approach is rooted in linear bound propagation (LBP) for neural networks, which we extend to compute bounds on the gradients of the network. Combined with McCormick relaxation, we derive linear upper and lower bounds on the CBF conditions, thereby eliminating the need for computationally expensive verification procedures. Our approach applies to arbitrary control-affine systems and a broad range of nonlinear activation functions. To reduce conservatism, we develop a parallelizable refinement strategy that adaptively refines the regions over which these bounds are computed. Our approach scales to larger neural networks than state-of-the-art verification procedures for CBFs, as demonstrated by our numerical experiments.
☆ External Photoreflective Tactile Sensing Based on Surface Deformation Measurement
We present a tactile sensing method enabled by the mechanical compliance of soft robots; an externally attachable photoreflective module reads surface deformation of silicone skin to estimate contact force without embedding tactile transducers. Locating the sensor off the contact interface reduces damage risk, preserves softness, and simplifies fabrication and maintenance. We first characterize the optical sensing element and the compliant skin, thendetermine the design of a prototype tactile sensor. Compression experiments validate the approach, exhibiting a monotonic force output relationship consistent with theory, low hysteresis, high repeatability over repeated cycles, and small response indentation speeds. We further demonstrate integration on a soft robotic gripper, where the module reliably detects grasp events. Compared with liquid filled or wireembedded tactile skins, the proposed modular add on architecture enhances durability, reduces wiring complexity, and supports straightforward deployment across diverse robot geometries. Because the sensing principle reads skin strain patterns, it also suggests extensions to other somatosensory cues such as joint angle or actuator state estimation from surface deformation. Overall, leveraging surface compliance with an external optical module provides a practical and robust route to equip soft robots with force perception while preserving structural flexibility and manufacturability, paving the way for robotic applications and safe human robot collaboration.
comment: This work has been submitted to the IEEE for possible publication
☆ Robust Differentiable Collision Detection for General Objects
Collision detection is a core component of robotics applications such as simulation, control, and planning. Traditional algorithms like GJK+EPA compute witness points (i.e., the closest or deepest-penetration pairs between two objects) but are inherently non-differentiable, preventing gradient flow and limiting gradient-based optimization in contact-rich tasks such as grasping and manipulation. Recent work introduced efficient first-order randomized smoothing to make witness points differentiable; however, their direction-based formulation is restricted to convex objects and lacks robustness for complex geometries. In this work, we propose a robust and efficient differentiable collision detection framework that supports both convex and concave objects across diverse scales and configurations. Our method introduces distance-based first-order randomized smoothing, adaptive sampling, and equivalent gradient transport for robust and informative gradient computation. Experiments on complex meshes from DexGraspNet and Objaverse show significant improvements over existing baselines. Finally, we demonstrate a direct application of our method for dexterous grasp synthesis to refine the grasp quality. The code is available at https://github.com/JYChen18/DiffCollision.
☆ Affordance-Guided Coarse-to-Fine Exploration for Base Placement in Open-Vocabulary Mobile Manipulation AAAI 2026
In open-vocabulary mobile manipulation (OVMM), task success often hinges on the selection of an appropriate base placement for the robot. Existing approaches typically navigate to proximity-based regions without considering affordances, resulting in frequent manipulation failures. We propose Affordance-Guided Coarse-to-Fine Exploration, a zero-shot framework for base placement that integrates semantic understanding from vision-language models (VLMs) with geometric feasibility through an iterative optimization process. Our method constructs cross-modal representations, namely Affordance RGB and Obstacle Map+, to align semantics with spatial context. This enables reasoning that extends beyond the egocentric limitations of RGB perception. To ensure interaction is guided by task-relevant affordances, we leverage coarse semantic priors from VLMs to guide the search toward task-relevant regions and refine placements with geometric constraints, thereby reducing the risk of convergence to local optima. Evaluated on five diverse open-vocabulary mobile manipulation tasks, our system achieves an 85% success rate, significantly outperforming classical geometric planners and VLM-based methods. This demonstrates the promise of affordance-aware and multimodal reasoning for generalizable, instruction-conditioned planning in OVMM.
comment: Accepted to AAAI 2026
☆ ExpReS-VLA: Specializing Vision-Language-Action Models Through Experience Replay and Retrieval
Vision-Language-Action models such as OpenVLA show impressive zero-shot generalization across robotic manipulation tasks but often fail to adapt efficiently to new deployment environments. In many real-world applications, consistent high performance on a limited set of tasks is more important than broad generalization. We propose ExpReS-VLA, a method for specializing pre-trained VLA models through experience replay and retrieval while preventing catastrophic forgetting. ExpReS-VLA stores compact feature representations from the frozen vision backbone instead of raw image-action pairs, reducing memory usage by approximately 97 percent. During deployment, relevant past experiences are retrieved using cosine similarity and used to guide adaptation, while prioritized experience replay emphasizes successful trajectories. We also introduce Thresholded Hybrid Contrastive Loss, which enables learning from both successful and failed attempts. On the LIBERO simulation benchmark, ExpReS-VLA improves success rates from 82.6 to 93.1 percent on spatial reasoning tasks and from 61 to 72.3 percent on long-horizon tasks. On physical robot experiments with five manipulation tasks, it reaches 98 percent success on both seen and unseen settings, compared to 84.7 and 32 percent for naive fine-tuning. Adaptation takes 31 seconds using 12 demonstrations on a single RTX 5090 GPU, making the approach practical for real robot deployment.
comment: 10 pages, 5 figures, submitted to ICRA 2026. Equal contribution by first two authors
☆ OpenVLN: Open-world aerial Vision-Language Navigation
Vision-language models (VLMs) have been widely-applied in ground-based vision-language navigation (VLN). However, the vast complexity of outdoor aerial environments compounds data acquisition challenges and imposes long-horizon trajectory planning requirements on Unmanned Aerial Vehicles (UAVs), introducing novel complexities for aerial VLN. To address these challenges, we propose a data-efficient Open-world aerial Vision-Language Navigation (i.e., OpenVLN) framework, which could execute language-guided flight with limited data constraints and enhance long-horizon trajectory planning capabilities in complex aerial environments. Specifically, we reconfigure a reinforcement learning framework to optimize the VLM for UAV navigation tasks, which can efficiently fine-tune VLM by using rule-based policies under limited training data. Concurrently, we introduce a long-horizon planner for trajectory synthesis that dynamically generates precise UAV actions via value-based rewards. To the end, we conduct sufficient navigation experiments on the TravelUAV benchmark with dataset scaling across diverse reward settings. Our method demonstrates consistent performance gains of up to 4.34% in Success Rate, 6.19% in Oracle Success Rate, and 4.07% in Success weighted by Path Length over baseline methods, validating its deployment efficacy for long-horizon UAV navigation in complex aerial environments.
comment: Content: 8 pages 4 figures, conference under review
♻ ☆ HumaniBench: A Human-Centric Framework for Large Multimodal Models Evaluation
Large multimodal models (LMMs) have achieved impressive performance on vision-language tasks such as visual question answering (VQA), image captioning, and visual grounding; however, they remain insufficiently evaluated for alignment with human-centered (HC) values such as fairness, ethics, and inclusivity. To address this gap, we introduce HumaniBench, a comprehensive benchmark comprising 32,000 real-world image-question pairs and an accompanying evaluation suite. Using a semi-automated annotation pipeline, each sample is rigorously validated by domain experts to ensure accuracy and ethical integrity. HumaniBench assesses LMMs across seven key alignment principles: fairness, ethics, empathy, inclusivity, reasoning, robustness, and multilinguality through a diverse set of open- and closed-ended VQA tasks. Grounded in AI ethics theory and real-world social contexts, these principles provide a holistic lens for examining human-aligned behavior. Benchmarking results reveal distinct behavioral patterns: certain model families excel in reasoning, fairness, and multilinguality, while others demonstrate greater robustness and grounding capability. However, most models still struggle to balance task accuracy with ethical and inclusive responses. Techniques such as chain-of-thought prompting and test-time scaling yield measurable alignment gains. As the first benchmark explicitly designed for HC evaluation, HumaniBench offers a rigorous testbed to diagnose limitations, quantify alignment trade-offs, and promote the responsible development of large multimodal models. All data and code are publicly released to ensure transparency and reproducibility. https://vectorinstitute.github.io/HumaniBench/
♻ ☆ Meronymic Ontology Extraction via Large Language Models AACL 2025
Ontologies have become essential in today's digital age as a way of organising the vast amount of readily available unstructured text. In providing formal structure to this information, ontologies have immense value and application across various domains, e.g., e-commerce, where countless product listings necessitate proper product organisation. However, the manual construction of these ontologies is a time-consuming, expensive and laborious process. In this paper, we harness the recent advancements in large language models (LLMs) to develop a fully-automated method of extracting product ontologies, in the form of meronymies, from raw review texts. We demonstrate that the ontologies produced by our method surpass an existing, BERT-based baseline when evaluating using an LLM-as-a-judge. Our investigation provides the groundwork for LLMs to be used more generally in (product or otherwise) ontology extraction.
comment: Accepted to AACL 2025
♻ ☆ Steering Out-of-Distribution Generalization with Concept Ablation Fine-Tuning
Fine-tuning large language models (LLMs) can lead to unintended out-of-distribution generalization. Standard approaches to this problem rely on modifying training data, for example by adding data that better specify the intended generalization. However, this is not always practical. We introduce Concept Ablation Fine-Tuning (CAFT), a technique that leverages interpretability tools to control how LLMs generalize from fine-tuning, without needing to modify the training data or otherwise use data from the target distribution. Given a set of directions in an LLM's latent space corresponding to undesired concepts, CAFT works by ablating these concepts with linear projections during fine-tuning, steering the model away from unintended generalizations. We successfully apply CAFT to three fine-tuning tasks, including emergent misalignment, a phenomenon where LLMs fine-tuned on a narrow task generalize to give egregiously misaligned responses to general questions. Without any changes to the fine-tuning data, CAFT reduces misaligned responses by 10x without degrading performance on the training distribution. Overall, CAFT represents a novel approach for steering LLM generalization without modifying training data.
♻ ☆ Stochastic interior-point methods for smooth conic optimization with applications
Conic optimization plays a crucial role in many machine learning (ML) problems. However, practical algorithms for conic constrained ML problems with large datasets are often limited to specific use cases, as stochastic algorithms for general conic optimization remain underdeveloped. To fill this gap, we introduce a stochastic interior-point method (SIPM) framework for general conic optimization, along with four novel SIPM variants leveraging distinct stochastic gradient estimators. Under mild assumptions, we establish the iteration complexity of our proposed SIPMs, which, up to a polylogarithmic factor, match the best-known {results} in stochastic unconstrained optimization. Finally, our numerical experiments on robust linear regression, multi-task relationship learning, and clustering data streams demonstrate the effectiveness and efficiency of our approach.
comment: Accepted by Journal of Machine Learning Research
♻ ☆ Simulator Ensembles for Trustworthy Autonomous Driving Testing
Scenario-based testing with driving simulators is extensively used to identify failing conditions of automated driving assistance systems (ADAS). However, existing studies have shown that repeated test execution in the same as well as in distinct simulators can yield different outcomes, which can be attributed to sources of flakiness or different implementations of the physics. In this paper, we present MultiSim, a novel approach to multi-simulation ADAS testing based on a search-based testing approach that leverages an ensemble of simulators to identify failure-inducing, simulator-agnostic test scenarios. During the search, each scenario is evaluated jointly on multiple simulators. Scenarios that produce consistent results across simulators are prioritized for further exploration, while those that fail on only a subset of simulators are given less priority, as they may reflect simulator-specific issues rather than generalizable failures. Our empirical study, which involves testing three lane-keeping ADAS on different pairs of three widely used simulators, demonstrates that MultiSim outperforms single-simulator testing by achieving, on average, a higher rate of simulator-agnostic failures by 66%. Compared to a state-of-the-art multi-simulator approach that combines the outcome of independent test generation campaigns obtained in different simulators, MultiSim identifies, on average, up to 3.4X more simulator-agnostic failing tests and higher failure rates. To avoid the costly execution of test inputs on which simulators disagree, we propose to predict simulator disagreements and bypass test executions. Our results show that utilizing a surrogate model during the search retains the average number of valid failures and also improves efficiency. Our findings indicate that combining an ensemble of simulators is a promising approach for the automated cross-replication in ADAS testing.
♻ ☆ Addressing divergent representations from causal interventions on neural networks
A common approach to mechanistic interpretability is to causally manipulate model representations via targeted interventions in order to understand what those representations encode. Here we ask whether such interventions create out-of-distribution (divergent) representations, and whether this raises concerns about how faithful their resulting explanations are to the target model in its natural state. First, we demonstrate empirically that common causal intervention techniques often do shift internal representations away from the natural distribution of the target model. Then, we provide a theoretical analysis of two classes of such divergences: "harmless" divergences that occur in the null-space of the weights and from covariance within behavioral decision boundaries, and "pernicious" divergences that activate hidden network pathways and cause dormant behavioral changes. Finally, in an effort to mitigate the pernicious cases, we modify the Counterfactual Latent (CL) loss from Grant (2025) that regularizes interventions to remain closer to the natural distributions, reducing the likelihood of harmful divergences while preserving the interpretive power of interventions. Together, these results highlight a path towards more reliable interpretability methods.
♻ ☆ MultiMed-ST: Large-scale Many-to-many Multilingual Medical Speech Translation EMNLP 2025
Multilingual speech translation (ST) and machine translation (MT) in the medical domain enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we present the first systematic study on medical ST, to our best knowledge, by releasing MultiMed-ST, a large-scale ST dataset for the medical domain, spanning all translation directions in five languages: Vietnamese, English, German, French, and Simplified/Traditional Chinese, together with the models. With 290,000 samples, this is the largest medical MT dataset and the largest many-to-many multilingual ST among all domains. Secondly, we present the most comprehensive ST analysis in the field's history, to our best knowledge, including: empirical baselines, bilingual-multilingual comparative study, end-to-end vs. cascaded comparative study, task-specific vs. multi-task sequence-to-sequence comparative study, code-switch analysis, and quantitative-qualitative error analysis. All code, data, and models are available online: https://github.com/leduckhai/MultiMed-ST
comment: EMNLP 2025
♻ ☆ The Energy Cost of Reasoning: Analyzing Energy Usage in LLMs with Test-time Compute
Scaling large language models (LLMs) has driven significant advancements, yet it faces diminishing returns and escalating energy demands. This work explores how test-time compute (TTC) can serve as an energy-efficient complement to conventional scaling strategies by allocating additional computational resources at inference time rather than during training. Specifically, we investigate whether employing TTC can achieve superior accuracy-energy trade-offs compared to simply increasing model size. Our empirical analysis reveals that TTC surpasses traditional model scaling in accuracy/energy efficiency, with notable gains in tasks demanding complex reasoning rather than mere factual recall. Further, we identify a critical interaction between TTC performance and output sequence length, demonstrating that strategically adjusting compute resources at inference time according to query complexity can substantially enhance efficiency. Our findings advocate for TTC as a promising direction, enabling more sustainable, accurate, and adaptable deployment of future language models.
♻ ☆ A Learning-Based Control Barrier Function for Car-Like Robots: Toward Less Conservative Collision Avoidance
We propose a learning-based Control Barrier Function (CBF) to reduce conservatism in collision avoidance for car-like robots. Traditional CBFs often use the Euclidean distance between robots' centers as a safety margin, which neglects their headings and approximates their geometries as circles. Although this simplification meets the smoothness and differentiability requirements of CBFs, it may result in overly conservative behavior in dense environments. We address this by designing a safety margin that considers both the robot's heading and actual shape, thereby enabling a more precise estimation of safe regions. Because this safety margin is non-differentiable, we approximate it with a neural network to ensure differentiability. In addition, we propose a notion of relative dynamics that makes the learning process tractable. In a case study, we establish the theoretical foundation for applying this notion to a nonlinear kinematic bicycle model. Numerical experiments in overtaking and bypassing scenarios show that our approach reduces conservatism (e.g., requiring 33.5% less lateral space for bypassing) without incurring significant extra computation time. Code: https://github.com/bassamlab/sigmarl
comment: 8 pages, 8 figures
♻ ☆ Online Learning and Coverage of Unknown Fields Using Random-Feature Gaussian Processes
This paper proposes a framework for multi-robot systems to perform simultaneous learning and coverage of a domain of interest characterized by an unknown and potentially time-varying density function. To overcome the limitations of Gaussian Process (GP) regression, we employ Random Feature GP (RFGP) and its online variant (O-RFGP) which enables online and incremental inference. By integrating these with Voronoi-based coverage control and Upper Confidence Bound (UCB) sampling strategy, a team of robots can adaptively focus on important regions while refining the learned spatial field for efficient coverage. The incremental update mechanism of O-RFGP naturally supports time-varying environments, allowing efficient adaptation without retaining historical data. Furthermore, to the best of our knowledge, we provide the first theoretical analysis of online learning and coverage through a regret-based formulation, establishing asymptotic no-regret guarantees in the time-invariant setting. The effectiveness of the proposed framework is demonstrated through simulations with both time-invariant and time-varying density functions, along with a physical experiment with a time-varying density function.
♻ ☆ Safe On-Orbit Dislodging of Deployable Structures via Robust Adaptive MPC
This paper proposes a novel robust adaptive model predictive controller for on-orbit dislodging. We study orbit dislodging where a servicing spacecraft uses a robotic arm to free a jammed and unactuated solar panel mounted on a hybrid hinge that acts as a time-varying client on a space station. Our method couples online set-membership identification with a robust adaptive MPC to enforce safety under bounded disturbances. The controller explicitly balances exploration to excite the system and shrink uncertainty and exploitation to improve control performance through a dual-mode cost. The feasibility of the developed robust adaptive MPC method is also examined through dislodging simulations and hardware experiments in freefall and terrestrial laboratory environments, respectively. In addition, the advantages of our method are shown through comparison experiments with several state-of-the-art control schemes for both accuracy of parameter estimation and control performance.
comment: This paper has been resubmitted to IEEE Transactions on Control Systems Technology and is currently under review
♻ ☆ Real-time Multi-view Omnidirectional Depth Estimation for Real Scenarios based on Teacher-Student Learning with Unlabeled Data
Omnidirectional depth estimation enables efficient 3D perception over a full 360-degree range. However, in real-world applications such as autonomous driving and robotics, achieving real-time performance and robust cross-scene generalization remains a significant challenge for existing algorithms. In this paper, we propose a real-time omnidirectional depth estimation method for edge computing platforms named Rt-OmniMVS, which introduces the Combined Spherical Sweeping method and implements the lightweight network structure to achieve real-time performance on edge computing platforms. To achieve high accuracy, robustness, and generalization in real-world environments, we introduce a teacher-student learning strategy. We leverage the high-precision stereo matching method as the teacher model to predict pseudo labels for unlabeled real-world data, and utilize data and model augmentation techniques for training to enhance performance of the student model Rt-OmniMVS. We also propose HexaMODE, an omnidirectional depth sensing system based on multi-view fisheye cameras and edge computation device. A large-scale hybrid dataset contains both unlabeled real-world data and synthetic data is collected for model training. Experiments on public datasets demonstrate that proposed method achieves results comparable to state-of-the-art approaches while consuming significantly less resource. The proposed system and algorithm also demonstrate high accuracy in various complex real-world scenarios, both indoors and outdoors, achieving an inference speed of 15 frames per second on edge computing platforms.
♻ ☆ DynaGuide: Steering Diffusion Polices with Active Dynamic Guidance
Deploying large, complex policies in the real world requires the ability to steer them to fit the needs of a situation. Most common steering approaches, like goal-conditioning, require training the robot policy with a distribution of test-time objectives in mind. To overcome this limitation, we present DynaGuide, a steering method for diffusion policies using guidance from an external dynamics model during the diffusion denoising process. DynaGuide separates the dynamics model from the base policy, which gives it multiple advantages, including the ability to steer towards multiple objectives, enhance underrepresented base policy behaviors, and maintain robustness on low-quality objectives. The separate guidance signal also allows DynaGuide to work with off-the-shelf pretrained diffusion policies. We demonstrate the performance and features of DynaGuide against other steering approaches in a series of simulated and real experiments, showing an average steering success of 70% on a set of articulated CALVIN tasks and outperforming goal-conditioning by 5.4x when steered with low-quality objectives. We also successfully steer an off-the-shelf real robot policy to express preference for particular objects and even create novel behavior. Videos and more can be found on the project website: https://dynaguide.github.io
comment: 9 pages main, 21 pages with appendix and citations. 9 figures. Presented at Neurips 2025
♻ ☆ Environment-Driven Online LiDAR-Camera Extrinsic Calibration
LiDAR-camera extrinsic calibration (LCEC) is crucial for multi-modal data fusion in autonomous robotic systems. Existing methods, whether target-based or target-free, typically rely on customized calibration targets or fixed scene types, which limit their applicability in real-world scenarios. To address these challenges, we present EdO-LCEC, the first environment-driven online calibration approach. Unlike traditional target-free methods, EdO-LCEC employs a generalizable scene discriminator to estimate the feature density of the application environment. Guided by this feature density, EdO-LCEC extracts LiDAR intensity and depth features from varying perspectives to achieve higher calibration accuracy. To overcome the challenges of cross-modal feature matching between LiDAR and camera, we introduce dual-path correspondence matching (DPCM), which leverages both structural and textural consistency for reliable 3D-2D correspondences. Furthermore, we formulate the calibration process as a joint optimization problem that integrates global constraints across multiple views and scenes, thereby enhancing overall accuracy. Extensive experiments on real-world datasets demonstrate that EdO-LCEC outperforms state-of-the-art methods, particularly in scenarios involving sparse point clouds or partially overlapping sensor views.
♻ ☆ Automated Vehicles at Unsignalized Intersections: Safety and Efficiency Implications of Mixed Human and Automated Traffic
The integration of automated vehicles (AVs) into transportation systems presents an unprecedented opportunity to enhance road safety and efficiency. However, understanding the interactions between AVs and human-driven vehicles (HVs) at intersections remains an open research question. This study aims to bridge this gap by examining behavioral differences and adaptations of AVs and HVs at unsignalized intersections by utilizing two large-scale AV datasets from Waymo and Lyft. By using a systematic methodology, the research identifies and analyzes merging and crossing conflicts by calculating key safety and efficiency metrics, including time to collision (TTC), post-encroachment time (PET), maximum required deceleration (MRD), time advantage (TA), and speed and acceleration profiles. Through this approach, the study assesses the safety and efficiency implications of these behavioral differences and adaptations for mixed-autonomy traffic. The findings reveal a paradox: while AVs maintain larger safety margins, their conservative behavior can lead to unexpected situations for human drivers, potentially causing unsafe conditions. From a performance point of view, human drivers tend to exhibit more consistent behavior when interacting with AVs versus other HVs, suggesting AVs may contribute to harmonizing traffic flow patterns. Moreover, notable differences were observed between Waymo and Lyft vehicles, which highlights the importance of considering manufacturer-specific AV behaviors in traffic modeling and management strategies for the safe integration of AVs. The processed dataset, as well as the developed algorithms and scripts, are openly published to foster research on AV-HV interactions.
comment: Published OnlineFirst in Transportation Research Record (TRR), DOI: 10.1177/03611981251370343
♻ ☆ Toward an Agricultural Operational Design Domain: A Framework
The agricultural sector increasingly relies on autonomous systems that operate in complex and variable environments. Unlike on-road applications, agricultural automation integrates driving and working processes, each of which imposes distinct operational constraints. Handling this complexity and ensuring consistency throughout the development and validation processes requires a structured, transparent, and verified description of the environment. However, existing Operational Design Domain (ODD) concepts do not yet address the unique challenges of agricultural applications. Therefore, this work introduces the Agricultural ODD (Ag-ODD) Framework, which can be used to describe and verify the operational boundaries of autonomous agricultural systems. The Ag-ODD Framework consists of three core elements. First, the Ag-ODD description concept, which provides a structured method for unambiguously defining environmental and operational parameters using concepts from ASAM Open ODD and CityGML. Second, the 7-Layer Model derived from the PEGASUS 6-Layer Model, has been extended to include a process layer to capture dynamic agricultural operations. Third, the iterative verification process verifies the Ag-ODD against its corresponding logical scenarios, derived from the 7-Layer Model, to ensure the Ag-ODD's completeness and consistency. Together, these elements provide a consistent approach for creating unambiguous and verifiable Ag-ODD. Demonstrative use cases show how the Ag-ODD Framework can support the standardization and scalability of environmental descriptions for autonomous agricultural systems.
comment: 18 pages, 7 figures, 2 tables
♻ ☆ Deep Reinforcement Learning for Bipedal Locomotion: A Brief Survey
Bipedal robots are gaining global recognition due to their potential applications and advancements in artificial intelligence, particularly through Deep Reinforcement Learning (DRL). While DRL has significantly advanced bipedal locomotion, the development of a unified framework capable of handling a wide range of tasks remains an ongoing challenge. This survey systematically categorises, compares, and analyses existing DRL frameworks for bipedal locomotion, organising them into end-to-end and hierarchical control schemes. End-to-end frameworks are evaluated based on their learning approaches, while hierarchical frameworks are examined in terms of layered structures that integrate learning-based or traditional model-based methods. We provide a detailed evaluation of the composition, strengths, limitations, and capabilities of each framework. Additionally, this survey identifies key research gaps and proposes future directions aimed at creating a more integrated and efficient framework for bipedal locomotion, with wide-ranging applications in real-world environments.
comment: Under review at Artificial Intelligence Review
♻ ☆ Scaling Cross-Embodiment World Models for Dexterous Manipulation
Cross-embodiment learning seeks to build generalist robots that operate across diverse morphologies, but differences in action spaces and kinematics hinder data sharing and policy transfer. This raises a central question: Is there any invariance that allows actions to transfer across embodiments? We conjecture that environment dynamics are embodiment-invariant, and that world models capturing these dynamics can provide a unified interface across embodiments. To learn such a unified world model, the crucial step is to design state and action representations that abstract away embodiment-specific details while preserving control relevance. To this end, we represent different embodiments (e.g., human hands and robot hands) as sets of 3D particles and define actions as particle displacements, creating a shared representation for heterogeneous data and control problems. A graph-based world model is then trained on exploration data from diverse simulated robot hands and real human hands, and integrated with model-based planning for deployment on novel hardware. Experiments on rigid and deformable manipulation tasks reveal three findings: (i) scaling to more training embodiments improves generalization to unseen ones, (ii) co-training on both simulated and real data outperforms training on either alone, and (iii) the learned models enable effective control on robots with varied degrees of freedom. These results establish world models as a promising interface for cross-embodiment dexterous manipulation.
♻ ☆ J-PARSE: Jacobian-based Projection Algorithm for Resolving Singularities Effectively in Inverse Kinematic Control of Serial Manipulators
J-PARSE is an algorithm for smooth first-order inverse kinematic control of a serial manipulator near kinematic singularities. The commanded end-effector velocity is interpreted component-wise, according to the available mobility in each dimension of the task space. First, a substitute "Safety" Jacobian matrix is created, keeping the aspect ratio of the manipulability ellipsoid above a threshold value. The desired motion is then projected onto non-singular and singular directions, and the latter projection scaled down by a factor informed by the threshold value. A right-inverse of the non-singular Safety Jacobian is applied to the modified command. In the absence of joint limits and collisions, this ensures safe transition into and out of low-rank configurations, guaranteeing asymptotic stability for reaching target poses within the workspace, and stability for those outside. Velocity control with J-PARSE is benchmarked against approaches from the literature, and shows high accuracy in reaching and leaving singular target poses. By expanding the available workspace of manipulators, the algorithm finds applications in teleoperation, servoing, and learning. Videos and code are available at https://jparse-manip.github.io/.
comment: 18 pages, 25 figures. v1: Fig. 1 replaced with faster-loading version. v2: Website at https://jparse-manip.github.io/. v3: Proofs revised and new material added
♻ ☆ Development of the Bioinspired Tendon-Driven DexHand 021 with Proprioceptive Compliance Control
The human hand plays a vital role in daily life and industrial applications, yet replicating its multifunctional capabilities-including motion, sensing, and coordinated manipulation with robotic systems remains a formidable challenge. Developing a dexterous robotic hand requires balancing human-like agility with engineering constraints such as complexity, size-to-weight ratio, durability, and force-sensing performance. This letter presents Dex-Hand 021, a high-performance, cable-driven five-finger robotic hand with 12 active and 7 passive degrees of freedom (DoFs), achieving 19 DoFs dexterity in a lightweight 1 kg design. We propose a proprioceptive force-sensing-based admittance control method to enhance manipulation. Experimental results demonstrate its superior performance: a single-finger load capacity exceeding 10 N, fingertip repeatability under 0.001 m, and force estimation errors below 0.2 N. Compared to PID control, joint torques in multi-object grasping are reduced by 31.19%, significantly improves force-sensing capability while preventing overload during collisions. The hand excels in both power and precision grasps, successfully executing 33 GRASP taxonomy motions and complex manipulation tasks. This work advances the design of lightweight, industrial-grade dexterous hands and enhances proprioceptive control, contributing to robotic manipulation and intelligent manufacturing.
comment: 8 pages 18 fogures, IEEE RAL accept
♻ ☆ Tree-Guided Diffusion Planner NeurIPS 2025
Planning with pretrained diffusion models has emerged as a promising approach for solving test-time guided control problems. Standard gradient guidance typically performs optimally under convex, differentiable reward landscapes. However, it shows substantially reduced effectiveness in real-world scenarios with non-convex objectives, non-differentiable constraints, and multi-reward structures. Furthermore, recent supervised planning approaches require task-specific training or value estimators, which limits test-time flexibility and zero-shot generalization. We propose a Tree-guided Diffusion Planner (TDP), a zero-shot test-time planning framework that balances exploration and exploitation through structured trajectory generation. We frame test-time planning as a tree search problem using a bi-level sampling process: (1) diverse parent trajectories are produced via training-free particle guidance to encourage broad exploration, and (2) sub-trajectories are refined through fast conditional denoising guided by task objectives. TDP addresses the limitations of gradient guidance by exploring diverse trajectory regions and harnessing gradient information across this expanded solution space using only pretrained models and test-time reward signals. We evaluate TDP on three diverse tasks: maze gold-picking, robot arm block manipulation, and AntMaze multi-goal exploration. TDP consistently outperforms state-of-the-art approaches on all tasks. The project page can be found at: https://tree-diffusion-planner.github.io.
comment: NeurIPS 2025
♻ ☆ X-Sim: Cross-Embodiment Learning via Real-to-Sim-to-Real
Human videos offer a scalable way to train robot manipulation policies, but lack the action labels needed by standard imitation learning algorithms. Existing cross-embodiment approaches try to map human motion to robot actions, but often fail when the embodiments differ significantly. We propose X-Sim, a real-to-sim-to-real framework that uses object motion as a dense and transferable signal for learning robot policies. X-Sim starts by reconstructing a photorealistic simulation from an RGBD human video and tracking object trajectories to define object-centric rewards. These rewards are used to train a reinforcement learning (RL) policy in simulation. The learned policy is then distilled into an image-conditioned diffusion policy using synthetic rollouts rendered with varied viewpoints and lighting. To transfer to the real world, X-Sim introduces an online domain adaptation technique that aligns real and simulated observations during deployment. Importantly, X-Sim does not require any robot teleoperation data. We evaluate it across 5 manipulation tasks in 2 environments and show that it: (1) improves task progress by 30% on average over hand-tracking and sim-to-real baselines, (2) matches behavior cloning with 10x less data collection time, and (3) generalizes to new camera viewpoints and test-time changes. Code and videos are available at https://portal-cornell.github.io/X-Sim/.
♻ ☆ Scaling Up without Fading Out: Goal-Aware Sparse GNN for RL-based Generalized Planning
Generalized planning using deep reinforcement learning (RL) combined with graph neural networks (GNNs) has shown promising results in various symbolic planning domains described by PDDL. However, existing approaches typically represent planning states as fully connected graphs, leading to a combinatorial explosion in edge information and substantial sparsity as problem scales grow, especially evident in large grid-based environments. This dense representation results in diluted node-level information, exponentially increases memory requirements, and ultimately makes learning infeasible for larger-scale problems. To address these challenges, we propose a sparse, goal-aware GNN representation that selectively encodes relevant local relationships and explicitly integrates spatial features related to the goal. We validate our approach by designing novel drone mission scenarios based on PDDL within a grid world, effectively simulating realistic mission execution environments. Our experimental results demonstrate that our method scales effectively to larger grid sizes previously infeasible with dense graph representations and substantially improves policy generalization and success rates. Our findings provide a practical foundation for addressing realistic, large-scale generalized planning tasks.
comment: Accepted for publication in International Journal of Control, Automation, and Systems (IJCAS). The Version of Record is available via the publisher
Computation and Language 50
☆ Evaluating Implicit Biases in LLM Reasoning through Logic Grid Puzzles
While recent safety guardrails effectively suppress overtly biased outputs, subtler forms of social bias emerge during complex logical reasoning tasks that evade current evaluation benchmarks. To fill this gap, we introduce a new evaluation framework, PRIME (Puzzle Reasoning for Implicit Biases in Model Evaluation), that uses logic grid puzzles to systematically probe the influence of social stereotypes on logical reasoning and decision making in LLMs. Our use of logic puzzles enables automatic generation and verification, as well as variability in complexity and biased settings. PRIME includes stereotypical, anti-stereotypical, and neutral puzzle variants generated from a shared puzzle structure, allowing for controlled and fine-grained comparisons. We evaluate multiple model families across puzzle sizes and test the effectiveness of prompt-based mitigation strategies. Focusing our experiments on gender stereotypes, our findings highlight that models consistently reason more accurately when solutions align with stereotypical associations. This demonstrates the significance of PRIME for diagnosing and quantifying social biases perpetuated in the deductive reasoning of LLMs, where fairness is critical.
comment: 24 pages (including appendix)
Large Language Models Develop Novel Social Biases Through Adaptive Exploration
As large language models (LLMs) are adopted into frameworks that grant them the capacity to make real decisions, it is increasingly important to ensure that they are unbiased. In this paper, we argue that the predominant approach of simply removing existing biases from models is not enough. Using a paradigm from the psychology literature, we demonstrate that LLMs can spontaneously develop novel social biases about artificial demographic groups even when no inherent differences exist. These biases result in highly stratified task allocations, which are less fair than assignments by human participants and are exacerbated by newer and larger models. In social science, emergent biases like these have been shown to result from exploration-exploitation trade-offs, where the decision-maker explores too little, allowing early observations to strongly influence impressions about entire demographic groups. To alleviate this effect, we examine a series of interventions targeting model inputs, problem structure, and explicit steering. We find that explicitly incentivizing exploration most robustly reduces stratification, highlighting the need for better multifaceted objectives to mitigate bias. These results reveal that LLMs are not merely passive mirrors of human social biases, but can actively create new ones from experience, raising urgent questions about how these systems will shape societies over time.
☆ Referring Expressions as a Lens into Spatial Language Grounding in Vision-Language Models AACL 2025
Spatial Reasoning is an important component of human cognition and is an area in which the latest Vision-language models (VLMs) show signs of difficulty. The current analysis works use image captioning tasks and visual question answering. In this work, we propose using the Referring Expression Comprehension task instead as a platform for the evaluation of spatial reasoning by VLMs. This platform provides the opportunity for a deeper analysis of spatial comprehension and grounding abilities when there is 1) ambiguity in object detection, 2) complex spatial expressions with a longer sentence structure and multiple spatial relations, and 3) expressions with negation ('not'). In our analysis, we use task-specific architectures as well as large VLMs and highlight their strengths and weaknesses in dealing with these specific situations. While all these models face challenges with the task at hand, the relative behaviors depend on the underlying models and the specific categories of spatial semantics (topological, directional, proximal, etc.). Our results highlight these challenges and behaviors and provide insight into research gaps and future directions.
comment: Accepted at IJCNLP-AACL 2025
☆ Evaluation of retrieval-based QA on QUEST-LOFT
Despite the popularity of retrieval-augmented generation (RAG) as a solution for grounded QA in both academia and industry, current RAG methods struggle with questions where the necessary information is distributed across many documents or where retrieval needs to be combined with complex reasoning. Recently, the LOFT study has shown that this limitation also applies to approaches based on long-context language models, with the QUEST benchmark exhibiting particularly large headroom. In this paper, we provide an in-depth analysis of the factors contributing to the poor performance on QUEST-LOFT, publish updated numbers based on a thorough human evaluation, and demonstrate that RAG can be optimized to significantly outperform long-context approaches when combined with a structured output format containing reasoning and evidence, optionally followed by answer re-verification.
☆ Adapting Web Agents with Synthetic Supervision
Web agents struggle to adapt to new websites due to the scarcity of environment specific tasks and demonstrations. Recent works have explored synthetic data generation to address this challenge, however, they suffer from data quality issues where synthesized tasks contain hallucinations that cannot be executed, and collected trajectories are noisy with redundant or misaligned actions. In this paper, we propose SynthAgent, a fully synthetic supervision framework that aims at improving synthetic data quality via dual refinement of both tasks and trajectories. Our approach begins by synthesizing diverse tasks through categorized exploration of web elements, ensuring efficient coverage of the target environment. During trajectory collection, we refine tasks when conflicts with actual observations are detected, mitigating hallucinations while maintaining task consistency. After collection, we conduct trajectory refinement with a global context to mitigate potential noise or misalignments. Finally, we fine-tune open-source web agents on the refined synthetic data to adapt them to the target environment. Experimental results demonstrate that SynthAgent outperforms existing synthetic data methods, validating the importance of high-quality synthetic supervision. The code will be publicly available at https://github.com/aiming-lab/SynthAgent.
comment: 19 pages, 6 figures
☆ MuonAll: Muon Variant for Efficient Finetuning of Large Language Models
Muon optimizer has demonstrated robust results in pretraining of language models but its performance in finetuning of existing public pretrained models is not yet explored. Currently, Muon is used along with AdamW introducing a scope of improvement for adopting all parameters inside Muon. We introduce MuonAll, which incorporates all the parameters inside Muon by transforming into 2D matrices. We conduct extensive finetuning experiments across publicly available language models with model sizes upto half billion parameters. Muon and MuonAll perform at par with AdamW across major benchmarks, highlighting their effectiveness as alternative optimizers. We open-source the distributed implementations of Muon and MuonAll, available at https://github.com/Saurabh750/optimizer
☆ Simulating Students with Large Language Models: A Review of Architecture, Mechanisms, and Role Modelling in Education with Generative AI
Simulated Students offer a valuable methodological framework for evaluating pedagogical approaches and modelling diverse learner profiles, tasks which are otherwise challenging to undertake systematically in real-world settings. Recent research has increasingly focused on developing such simulated agents to capture a range of learning styles, cognitive development pathways, and social behaviours. Among contemporary simulation techniques, the integration of large language models (LLMs) into educational research has emerged as a particularly versatile and scalable paradigm. LLMs afford a high degree of linguistic realism and behavioural adaptability, enabling agents to approximate cognitive processes and engage in contextually appropriate pedagogical dialogues. This paper presents a thematic review of empirical and methodological studies utilising LLMs to simulate student behaviour across educational environments. We synthesise current evidence on the capacity of LLM-based agents to emulate learner archetypes, respond to instructional inputs, and interact within multi-agent classroom scenarios. Furthermore, we examine the implications of such systems for curriculum development, instructional evaluation, and teacher training. While LLMs surpass rule-based systems in natural language generation and situational flexibility, ongoing concerns persist regarding algorithmic bias, evaluation reliability, and alignment with educational objectives. The review identifies existing technological and methodological gaps and proposes future research directions for integrating generative AI into adaptive learning systems and instructional design.
☆ Stemming Hallucination in Language Models Using a Licensing Oracle ACL
Language models exhibit remarkable natural language generation capabilities but remain prone to hallucinations, generating factually incorrect information despite producing syntactically coherent responses. This study introduces the Licensing Oracle, an architectural solution designed to stem hallucinations in LMs by enforcing truth constraints through formal validation against structured knowledge graphs. Unlike statistical approaches that rely on data scaling or fine-tuning, the Licensing Oracle embeds a deterministic validation step into the model's generative process, ensuring that only factually accurate claims are made. We evaluated the effectiveness of the Licensing Oracle through experiments comparing it with several state-of-the-art methods, including baseline language model generation, fine-tuning for factual recall, fine-tuning for abstention behavior, and retrieval-augmented generation (RAG). Our results demonstrate that although RAG and fine-tuning improve performance, they fail to eliminate hallucinations. In contrast, the Licensing Oracle achieved perfect abstention precision (AP = 1.0) and zero false answers (FAR-NE = 0.0), ensuring that only valid claims were generated with 89.1% accuracy in factual responses. This work shows that architectural innovations, such as the Licensing Oracle, offer a necessary and sufficient solution for hallucinations in domains with structured knowledge representations, offering guarantees that statistical methods cannot match. Although the Licensing Oracle is specifically designed to address hallucinations in fact-based domains, its framework lays the groundwork for truth-constrained generation in future AI systems, providing a new path toward reliable, epistemically grounded models.
comment: 23 pages, 4 figures, 8 tables. Introduces the Licensing Oracle, an architectural solution for eliminating hallucinations in language models through formal SHACL validation against knowledge graphs. All datasets and models are available at https://huggingface.co/collections/s-emanuilov/licensing-oracle-experiments
☆ Automating Hardware Design and Verification from Architectural Papers via a Neural-Symbolic Graph Framework
The reproduction of hardware architectures from academic papers remains a significant challenge due to the lack of publicly available source code and the complexity of hardware description languages (HDLs). To this end, we propose \textbf{ArchCraft}, a Framework that converts abstract architectural descriptions from academic papers into synthesizable Verilog projects with register-transfer level (RTL) verification. ArchCraft introduces a structured workflow, which uses formal graphs to capture the Architectural Blueprint and symbols to define the Functional Specification, translating unstructured academic papers into verifiable, hardware-aware designs. The framework then generates RTL and testbench (TB) code decoupled via these symbols to facilitate verification and debugging, ultimately reporting the circuit's Power, Area, and Performance (PPA). Moreover, we propose the first benchmark, \textbf{ArchSynthBench}, for synthesizing hardware from architectural descriptions, with a complete set of evaluation indicators, 50 project-level circuits, and around 600 circuit blocks. We systematically assess ArchCraft on ArchSynthBench, where the experiment results demonstrate the superiority of our proposed method, surpassing direct generation methods and the VerilogCoder framework in both paper understanding and code completion. Furthermore, evaluation and physical implementation of the generated executable RTL code show that these implementations meet all timing constraints without violations, and their performance metrics are consistent with those reported in the original papers.
comment: Preprint Version, Work in Progress
☆ ScRPO: From Errors to Insights
We propose Self-correction Relative Policy Optimization (ScRPO), a novel reinforcement learning framework designed to enhance large language models on challenging mathemati- cal problems by leveraging self-reflection and error correction. Our approach consists of two stages: (1) Trial-and-error learning stage: training the model with GRPO and collect- ing incorrect answers along with their cor- responding questions in an error pool; (2) Self-correction learning stage: guiding the model to reflect on why its previous an- swers were wrong. Extensive experiments across multiple math reasoning benchmarks, including AIME, AMC, Olympiad, MATH- 500, GSM8k, using Deepseek-Distill-Qwen- 1.5B and Deepseek-Distill-Qwen-7B. The ex- perimental results demonstrate that ScRPO consistently outperforms several post-training methods. These findings highlight ScRPO as a promising paradigm for enabling language models to self-improve on difficult tasks with limited external feedback, paving the way to- ward more reliable and capable AI systems.
☆ ReMoD: Rethinking Modality Contribution in Multimodal Stance Detection via Dual Reasoning
Multimodal Stance Detection (MSD) is a crucial task for understanding public opinion on social media. Existing work simply fuses information from various modalities to learn stance representations, overlooking the varying contributions of stance expression from different modalities. Therefore, stance misunderstanding noises may be drawn into the stance learning process due to the risk of learning errors by rough modality combination. To address this, we get inspiration from the dual-process theory of human cognition and propose **ReMoD**, a framework that **Re**thinks **Mo**dality contribution of stance expression through a **D**ual-reasoning paradigm. ReMoD integrates *experience-driven intuitive reasoning* to capture initial stance cues with *deliberate reflective reasoning* to adjust for modality biases, refine stance judgments, and thereby dynamically weight modality contributions based on their actual expressive power for the target stance. Specifically, the intuitive stage queries the Modality Experience Pool (MEP) and Semantic Experience Pool (SEP) to form an initial stance hypothesis, prioritizing historically impactful modalities. This hypothesis is then refined in the reflective stage via two reasoning chains: Modality-CoT updates MEP with adaptive fusion strategies to amplify relevant modalities, while Semantic-CoT refines SEP with deeper contextual insights of stance semantics. These dual experience structures are continuously refined during training and recalled at inference to guide robust and context-aware stance decisions. Extensive experiments on the public MMSD benchmark demonstrate that our ReMoD significantly outperforms most baseline models and exhibits strong generalization capabilities.
☆ Efficient Hate Speech Detection: A Three-Layer LoRA-Tuned BERTweet Framework
This paper addresses the critical challenge of developing computationally efficient hate speech detection systems that maintain competitive performance while being practical for real-time deployment. We propose a novel three-layer framework that combines rule-based pre-filtering with a parameter-efficient LoRA-tuned BERTweet model and continuous learning capabilities. Our approach achieves 0.85 macro F1 score - representing 94% of the performance of state-of-the-art large language models like SafePhi (Phi-4 based) while using a base model that is 100x smaller (134M vs 14B parameters). Compared to traditional BERT-based approaches with similar computational requirements, our method demonstrates superior performance through strategic dataset unification and optimized fine-tuning. The system requires only 1.87M trainable parameters (1.37% of full fine-tuning) and trains in approximately 2 hours on a single T4 GPU, making robust hate speech detection accessible in resource-constrained environments while maintaining competitive accuracy for real-world deployment.
comment: 13 pages, 2 figures
☆ Visual Exploration of Feature Relationships in Sparse Autoencoders with Curated Concepts NeurIPS 2025
Sparse autoencoders (SAEs) have emerged as a powerful tool for uncovering interpretable features in large language models (LLMs) through the sparse directions they learn. However, the sheer number of extracted directions makes comprehensive exploration intractable. While conventional embedding techniques such as UMAP can reveal global structure, they suffer from limitations including high-dimensional compression artifacts, overplotting, and misleading neighborhood distortions. In this work, we propose a focused exploration framework that prioritizes curated concepts and their corresponding SAE features over attempts to visualize all available features simultaneously. We present an interactive visualization system that combines topology-based visual encoding with dimensionality reduction to faithfully represent both local and global relationships among selected features. This hybrid approach enables users to investigate SAE behavior through targeted, interpretable subsets, facilitating deeper and more nuanced analysis of concept representation in latent space.
comment: 8 pages (5 main paper+3 refernce), 2 figures, pulished at Mechanistic Interpretability Workshop at NeurIPS 2025
☆ Multi-Reward GRPO Fine-Tuning for De-biasing Large Language Models: A Study Based on Chinese-Context Discrimination Data
Large Language Models (LLMs) often exhibit implicit biases and discriminatory tendencies that reflect underlying social stereotypes. While recent alignment techniques such as RLHF and DPO have mitigated some of these issues, they remain limited in addressing culturally specific and multi-dimensional forms of discrimination. This paper proposes a Multi-Reward Group Relative Policy Optimization (GRPO) framework to fine-tune LLMs toward ethical and bias-free behavior. Our approach constructs a synthetic English-language dataset derived from Chinese-context discrimination categories, including regional, ethnic, and occupational biases. Each instance is paired with both neutral and biased responses to train a reward model based on DeBERTa-v3, which provides multi-dimensional reward signals capturing fairness, neutrality, and linguistic quality. The trained reward model then guides GRPO fine-tuning to optimize model outputs along these ethical dimensions. Experimental results demonstrate significant reductions in bias intensity and improved alignment with non-discriminatory standards without compromising fluency or informativeness. This study highlights the effectiveness of GRPO-based multi-reward optimization for de-biasing LLMs and offers a replicable framework for cultural-contextual ethical alignment.
LLMs Do Not See Age: Assessing Demographic Bias in Automated Systematic Review Synthesis AACL 2025
Clinical interventions often hinge on age: medications and procedures safe for adults may be harmful to children or ineffective for older adults. However, as language models are increasingly integrated into biomedical evidence synthesis workflows, it remains uncertain whether these systems preserve such crucial demographic distinctions. To address this gap, we evaluate how well state-of-the-art language models retain age-related information when generating abstractive summaries of biomedical studies. We construct DemogSummary, a novel age-stratified dataset of systematic review primary studies, covering child, adult, and older adult populations. We evaluate three prominent summarisation-capable LLMs, Qwen (open-source), Longformer (open-source) and GPT-4.1 Nano (proprietary), using both standard metrics and a newly proposed Demographic Salience Score (DSS), which quantifies age-related entity retention and hallucination. Our results reveal systematic disparities across models and age groups: demographic fidelity is lowest for adult-focused summaries, and under-represented populations are more prone to hallucinations. These findings highlight the limitations of current LLMs in faithful and bias-free summarisation and point to the need for fairness-aware evaluation frameworks and summarisation pipelines in biomedical NLP.
comment: Accepted at AACL 2025
☆ Revisiting Entropy in Reinforcement Learning for Large Reasoning Models
Reinforcement learning with verifiable rewards (RLVR) has emerged as a predominant approach for enhancing the reasoning capabilities of large language models (LLMs). However, the entropy of LLMs usually collapses during RLVR training, causing premature convergence to suboptimal local minima and hinder further performance improvement. Although various approaches have been proposed to mitigate entropy collapse, a comprehensive study of entropy in RLVR remains lacking. To address this gap, we conduct extensive experiments to investigate the entropy dynamics of LLMs trained with RLVR and analyze how model entropy correlates with response diversity, calibration, and performance across various benchmarks. Our findings reveal that the number of off-policy updates, the diversity of training data, and the clipping thresholds in the optimization objective are critical factors influencing the entropy of LLMs trained with RLVR. Moreover, we theoretically and empirically demonstrate that tokens with positive advantages are the primary contributors to entropy collapse, and that model entropy can be effectively regulated by adjusting the relative loss weights of tokens with positive and negative advantages during training.
comment: 16 pages, 11 figures, 3 tables
☆ Interpretable Recognition of Cognitive Distortions in Natural Language Texts
We propose a new approach to multi-factor classification of natural language texts based on weighted structured patterns such as N-grams, taking into account the heterarchical relationships between them, applied to solve such a socially impactful problem as the automation of detection of specific cognitive distortions in psychological care, relying on an interpretable, robust and transparent artificial intelligence model. The proposed recognition and learning algorithms improve the current state of the art in this field. The improvement is tested on two publicly available datasets, with significant improvements over literature-known F1 scores for the task, with optimal hyper-parameters determined, having code and models available for future use by the community.
comment: 9 pages, 4 figures
☆ Reinforcement Learning Improves Traversal of Hierarchical Knowledge in LLMs
Reinforcement learning (RL) is often credited with improving language model reasoning and generalization at the expense of degrading memorized knowledge. We challenge this narrative by observing that RL-enhanced models consistently outperform their base and supervised fine-tuned (SFT) counterparts on pure knowledge recall tasks, particularly those requiring traversal of hierarchical, structured knowledge (e.g., medical codes). We hypothesize these gains stem not from newly acquired data, but from improved procedural skills in navigating and searching existing knowledge hierarchies within the model parameters. To support this hypothesis, we show that structured prompting, which explicitly guides SFTed models through hierarchical traversal, recovers most of the performance gap (reducing 24pp to 7pp on MedConceptsQA for DeepSeek-V3/R1). We further find that while prompting improves final-answer accuracy, RL-enhanced models retain superior ability to recall correct procedural paths on deep-retrieval tasks. Finally our layer-wise internal activation analysis reveals that while factual representations (e.g., activations for the statement "code 57.95 refers to urinary infection") maintain high cosine similarity between SFT and RL models, query representations (e.g., "what is code 57.95") diverge noticeably, indicating that RL primarily transforms how models traverse knowledge rather than the knowledge representation itself.
comment: `
☆ IDALC: A Semi-Supervised Framework for Intent Detection and Active Learning based Correction
Voice-controlled dialog systems have become immensely popular due to their ability to perform a wide range of actions in response to diverse user queries. These agents possess a predefined set of skills or intents to fulfill specific user tasks. But every system has its own limitations. There are instances where, even for known intents, if any model exhibits low confidence, it results in rejection of utterances that necessitate manual annotation. Additionally, as time progresses, there may be a need to retrain these agents with new intents from the system-rejected queries to carry out additional tasks. Labeling all these emerging intents and rejected utterances over time is impractical, thus calling for an efficient mechanism to reduce annotation costs. In this paper, we introduce IDALC (Intent Detection and Active Learning based Correction), a semi-supervised framework designed to detect user intents and rectify system-rejected utterances while minimizing the need for human annotation. Empirical findings on various benchmark datasets demonstrate that our system surpasses baseline methods, achieving a 5-10% higher accuracy and a 4-8% improvement in macro-F1. Remarkably, we maintain the overall annotation cost at just 6-10% of the unlabelled data available to the system. The overall framework of IDALC is shown in Fig. 1
comment: Paper accepted in IEEE Transactions on Artificial Intelligence (October 2025)
☆ Injecting Falsehoods: Adversarial Man-in-the-Middle Attacks Undermining Factual Recall in LLMs
LLMs are now an integral part of information retrieval. As such, their role as question answering chatbots raises significant concerns due to their shown vulnerability to adversarial man-in-the-middle (MitM) attacks. Here, we propose the first principled attack evaluation on LLM factual memory under prompt injection via Xmera, our novel, theory-grounded MitM framework. By perturbing the input given to "victim" LLMs in three closed-book and fact-based QA settings, we undermine the correctness of the responses and assess the uncertainty of their generation process. Surprisingly, trivial instruction-based attacks report the highest success rate (up to ~85.3%) while simultaneously having a high uncertainty for incorrectly answered questions. To provide a simple defense mechanism against Xmera, we train Random Forest classifiers on the response uncertainty levels to distinguish between attacked and unattacked queries (average AUC of up to ~96%). We believe that signaling users to be cautious about the answers they receive from black-box and potentially corrupt LLMs is a first checkpoint toward user cyberspace safety.
☆ NILC: Discovering New Intents with LLM-assisted Clustering
New intent discovery (NID) seeks to recognize both new and known intents from unlabeled user utterances, which finds prevalent use in practical dialogue systems. Existing works towards NID mainly adopt a cascaded architecture, wherein the first stage focuses on encoding the utterances into informative text embeddings beforehand, while the latter is to group similar embeddings into clusters (i.e., intents), typically by K-Means. However, such a cascaded pipeline fails to leverage the feedback from both steps for mutual refinement, and, meanwhile, the embedding-only clustering overlooks nuanced textual semantics, leading to suboptimal performance. To bridge this gap, this paper proposes NILC, a novel clustering framework specially catered for effective NID. Particularly, NILC follows an iterative workflow, in which clustering assignments are judiciously updated by carefully refining cluster centroids and text embeddings of uncertain utterances with the aid of large language models (LLMs). Specifically, NILC first taps into LLMs to create additional semantic centroids for clusters, thereby enriching the contextual semantics of the Euclidean centroids of embeddings. Moreover, LLMs are then harnessed to augment hard samples (ambiguous or terse utterances) identified from clusters via rewriting for subsequent cluster correction. Further, we inject supervision signals through non-trivial techniques seeding and soft must links for more accurate NID in the semi-supervised setting. Extensive experiments comparing NILC against multiple recent baselines under both unsupervised and semi-supervised settings showcase that NILC can achieve significant performance improvements over six benchmark datasets of diverse domains consistently.
The Imperfect Learner: Incorporating Developmental Trajectories in Memory-based Student Simulation
User simulation is important for developing and evaluating human-centered AI, yet current student simulation in educational applications has significant limitations. Existing approaches focus on single learning experiences and do not account for students' gradual knowledge construction and evolving skill sets. Moreover, large language models are optimized to produce direct and accurate responses, making it challenging to represent the incomplete understanding and developmental constraints that characterize real learners. In this paper, we introduce a novel framework for memory-based student simulation that incorporates developmental trajectories through a hierarchical memory mechanism with structured knowledge representation. The framework also integrates metacognitive processes and personality traits to enrich the individual learner profiling, through dynamical consolidation of both cognitive development and personal learning characteristics. In practice, we implement a curriculum-aligned simulator grounded on the Next Generation Science Standards. Experimental results show that our approach can effectively reflect the gradual nature of knowledge development and the characteristic difficulties students face, providing a more accurate representation of learning processes.
☆ Retrieval-Augmented Generation in Medicine: A Scoping Review of Technical Implementations, Clinical Applications, and Ethical Considerations
The rapid growth of medical knowledge and increasing complexity of clinical practice pose challenges. In this context, large language models (LLMs) have demonstrated value; however, inherent limitations remain. Retrieval-augmented generation (RAG) technologies show potential to enhance their clinical applicability. This study reviewed RAG applications in medicine. We found that research primarily relied on publicly available data, with limited application in private data. For retrieval, approaches commonly relied on English-centric embedding models, while LLMs were mostly generic, with limited use of medical-specific LLMs. For evaluation, automated metrics evaluated generation quality and task performance, whereas human evaluation focused on accuracy, completeness, relevance, and fluency, with insufficient attention to bias and safety. RAG applications were concentrated on question answering, report generation, text summarization, and information extraction. Overall, medical RAG remains at an early stage, requiring advances in clinical validation, cross-linguistic adaptation, and support for low-resource settings to enable trustworthy and responsible global use.
☆ MCP-RiskCue: Can LLM infer risk information from MCP server System Logs?
Large language models (LLMs) demonstrate strong capabilities in solving complex tasks when integrated with external tools. The Model Context Protocol (MCP) has become a standard interface for enabling such tool-based interactions. However, these interactions introduce substantial security concerns, particularly when the MCP server is compromised or untrustworthy. While prior benchmarks primarily focus on prompt injection attacks or analyze the vulnerabilities of LLM MCP interaction trajectories, limited attention has been given to the underlying system logs associated with malicious MCP servers. To address this gap, we present the first synthetic benchmark for evaluating LLMs ability to identify security risks from system logs. We define nine categories of MCP server risks and generate 1,800 synthetic system logs using ten state-of-the-art LLMs. These logs are embedded in the return values of 243 curated MCP servers, yielding a dataset of 2,421 chat histories for training and 471 queries for evaluation. Our pilot experiments reveal that smaller models often fail to detect risky system logs, leading to high false negatives. While models trained with supervised fine-tuning (SFT) tend to over-flag benign logs, resulting in elevated false positives, Reinforcement Learning from Verifiable Reward (RLVR) offers a better precision-recall balance. In particular, after training with Group Relative Policy Optimization (GRPO), Llama3.1-8B-Instruct achieves 83% accuracy, surpassing the best-performing large remote model by 9 percentage points. Fine-grained, per-category analysis further underscores the effectiveness of reinforcement learning in enhancing LLM safety within the MCP framework. Code and data are available at: https://github.com/PorUna-byte/MCP-Guard/tree/master
☆ Quantifying Edits Decay in Fine-tuned LLMs ICLR 2026
Knowledge editing has emerged as a lightweight alternative to retraining for correcting or injecting specific facts in large language models (LLMs). Meanwhile, fine-tuning remains the default operation for adapting LLMs to new domains and tasks. Despite their widespread adoption, these two post-training interventions have been studied in isolation, leaving open a crucial question: if we fine-tune an edited model, do the edits survive? This question is motivated by two practical scenarios: removing covert or malicious edits, and preserving beneficial edits. If fine-tuning impairs edits as shown in Figure 1, current KE methods become less useful, as every fine-tuned model would require re-editing, which significantly increases the cost; if edits persist, fine-tuned models risk propagating hidden malicious edits, raising serious safety concerns. To this end, we systematically quantify edits decay after fine-tuning, investigating how fine-tuning affects knowledge editing. We evaluate two state-of-the-art editing methods (MEMIT, AlphaEdit) and three fine-tuning approaches (full-parameter, LoRA, DoRA) across five LLMs and three datasets, yielding 232 experimental configurations. Our results show that edits decay after fine-tuning, with survival varying across configurations, e.g., AlphaEdit edits decay more than MEMIT edits. Further, we propose selective-layer fine-tuning and find that fine-tuning edited layers only can effectively remove edits, though at a slight cost to downstream performance. Surprisingly, fine-tuning non-edited layers impairs more edits than full fine-tuning. Overall, our study establishes empirical baselines and actionable strategies for integrating knowledge editing with fine-tuning, and underscores that evaluating model editing requires considering the full LLM application pipeline.
comment: Under review at ICLR 2026
☆ DiagnoLLM: A Hybrid Bayesian Neural Language Framework for Interpretable Disease Diagnosis
Building trustworthy clinical AI systems requires not only accurate predictions but also transparent, biologically grounded explanations. We present \texttt{DiagnoLLM}, a hybrid framework that integrates Bayesian deconvolution, eQTL-guided deep learning, and LLM-based narrative generation for interpretable disease diagnosis. DiagnoLLM begins with GP-unmix, a Gaussian Process-based hierarchical model that infers cell-type-specific gene expression profiles from bulk and single-cell RNA-seq data while modeling biological uncertainty. These features, combined with regulatory priors from eQTL analysis, power a neural classifier that achieves high predictive performance in Alzheimer's Disease (AD) detection (88.0\% accuracy). To support human understanding and trust, we introduce an LLM-based reasoning module that translates model outputs into audience-specific diagnostic reports, grounded in clinical features, attribution signals, and domain knowledge. Human evaluations confirm that these reports are accurate, actionable, and appropriately tailored for both physicians and patients. Our findings show that LLMs, when deployed as post-hoc reasoners rather than end-to-end predictors, can serve as effective communicators within hybrid diagnostic pipelines.
DRAGON: Guard LLM Unlearning in Context via Negative Detection and Reasoning NeurIPS 2025
Unlearning in Large Language Models (LLMs) is crucial for protecting private data and removing harmful knowledge. Most existing approaches rely on fine-tuning to balance unlearning efficiency with general language capabilities. However, these methods typically require training or access to retain data, which is often unavailable in real world scenarios. Although these methods can perform well when both forget and retain data are available, few works have demonstrated equivalent capability in more practical, data-limited scenarios. To overcome these limitations, we propose Detect-Reasoning Augmented GeneratiON (DRAGON), a systematic, reasoning-based framework that utilizes in-context chain-of-thought (CoT) instructions to guard deployed LLMs before inference. Instead of modifying the base model, DRAGON leverages the inherent instruction-following ability of LLMs and introduces a lightweight detection module to identify forget-worthy prompts without any retain data. These are then routed through a dedicated CoT guard model to enforce safe and accurate in-context intervention. To robustly evaluate unlearning performance, we introduce novel metrics for unlearning performance and the continual unlearning setting. Extensive experiments across three representative unlearning tasks validate the effectiveness of DRAGON, demonstrating its strong unlearning capability, scalability, and applicability in practical scenarios.
comment: Please refer to the NeurIPS 2025 submission: https://openreview.net/forum?id=FNuul0hlin; The paper has been accepted to the ICML 2025 MUGen Workshop: https://openreview.net/forum?id=ET24oKP23c
♻ ☆ Latent Traits and Cross-Task Transfer: Deconstructing Dataset Interactions in LLM Fine-tuning
Large language models are increasingly deployed across diverse applications. This often includes tasks LLMs have not encountered during training. This implies that enumerating and obtaining the high-quality training data for all tasks is infeasible. Thus, we often need to rely on transfer learning using datasets with different characteristics, and anticipate out-of-distribution requests. Motivated by this practical need, we propose an analysis framework, building a transfer learning matrix and dimensionality reduction, to dissect these cross-task interactions. We train and analyze 10 models to identify latent abilities (e.g., Reasoning, Sentiment Classification, NLU, Arithmetic) and discover the side effects of the transfer learning. Our findings reveal that performance improvements often defy explanations based on surface-level dataset similarity or source data quality. Instead, hidden statistical factors of the source dataset, such as class distribution and generation length proclivities, alongside specific linguistic features, are actually more influential. This work offers insights into the complex dynamics of transfer learning, paving the way for more predictable and effective LLM adaptation.
comment: Proceedings of the 14th Joint Conference on Lexical and Computational Semantics (*SEM 2025)
♻ ☆ ColorBench: Can VLMs See and Understand the Colorful World? A Comprehensive Benchmark for Color Perception, Reasoning, and Robustness NeurIPS2025
Color plays an important role in human perception and usually provides critical clues in visual reasoning. However, it is unclear whether and how vision-language models (VLMs) can perceive, understand, and leverage color as humans. This paper introduces ColorBench, an innovative benchmark meticulously crafted to assess the capabilities of VLMs in color understanding, including color perception, reasoning, and robustness. By curating a suite of diverse test scenarios, with grounding in real applications, ColorBench evaluates how these models perceive colors, infer meanings from color-based cues, and maintain consistent performance under varying color transformations. Through an extensive evaluation of 32 VLMs with varying language models and vision encoders, our paper reveals some undiscovered findings: (i) The scaling law (larger models are better) still holds on ColorBench, while the language model plays a more important role than the vision encoder. (ii) However, the performance gaps across models are relatively small, indicating that color understanding has been largely neglected by existing VLMs. (iii) CoT reasoning improves color understanding accuracies and robustness, though they are vision-centric tasks. (iv) Color clues are indeed leveraged by VLMs on ColorBench but they can also mislead models in some tasks. These findings highlight the critical limitations of current VLMs and underscore the need to enhance color comprehension. Our ColorBenchcan serve as a foundational tool for advancing the study of human-level color understanding of multimodal AI.
comment: Accepted by NeurIPS2025. 36 pages, including references and appendix. Code is available at https://github.com/tianyi-lab/ColorBench
♻ ☆ Inside CORE-KG: Evaluating Structured Prompting and Coreference Resolution for Knowledge Graphs
Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer critical insights but are often unstructured, lexically dense, and filled with ambiguous or shifting references, which pose significant challenges for automated knowledge graph (KG) construction. While recent LLM-based approaches improve over static templates, they still generate noisy, fragmented graphs with duplicate nodes due to the absence of guided extraction and coreference resolution. The recently proposed CORE-KG framework addresses these limitations by integrating a type-aware coreference module and domain-guided structured prompts, significantly reducing node duplication and legal noise. In this work, we present a systematic ablation study of CORE-KG to quantify the individual contributions of its two key components. Our results show that removing coreference resolution results in a 28.25% increase in node duplication and a 4.32% increase in noisy nodes, while removing structured prompts leads to a 4.29% increase in node duplication and a 73.33% increase in noisy nodes. These findings offer empirical insights for designing robust LLM-based pipelines for extracting structured representations from complex legal texts.
comment: ICDM 2025
♻ ☆ ECLeKTic: a Novel Challenge Set for Evaluation of Cross-Lingual Knowledge Transfer
To achieve equitable performance across languages, large language models (LLMs) must be able to abstract knowledge beyond the language in which it was learnt. However, the current literature lacks reliable ways to measure LLMs' capability of such cross-lingual knowledge transfer. To that end, we present ECLeKTic, a multilingual closed-book QA dataset that Evaluates Cross-Lingual Knowledge Transfer in a simple, black-box manner. Concretely, we used the presence and absence of Wikipedia articles in 12 languages to detect pieces of information that were likely available during pre-training in one of the languages but not in the others. We curate ECLeKTic as a set of fact-seeking questions over this kind of information, in all the different languages. Therefore, in order to solve ECLeKTic the model is required to transfer knowledge between languages. We evaluated 8 LLMs and showed that current SOTA models struggle to effectively share knowledge across languages, even if they can predict the answer for questions in the language in which the knowledge was acquired.
♻ ☆ Describe Where You Are: Improving Noise-Robustness for Speech Emotion Recognition with Text Description of the Environment
Speech emotion recognition (SER) systems often struggle in real-world environments, where ambient noise severely degrades their performance. This paper explores a novel approach that exploits prior knowledge of testing environments to maximize SER performance under noisy conditions. To address this task, we propose a text-guided, environment-aware training where an SER model is trained with contaminated speech samples and their paired noise description. We use a pre-trained text encoder to extract the text-based environment embedding and then fuse it to a transformer-based SER model during training and inference. We demonstrate the effectiveness of our approach through our experiment with the MSP-Podcast corpus and real-world additive noise samples collected from the Freesound and DEMAND repositories. Our experiment indicates that the text-based environment descriptions processed by a large language model (LLM) produce representations that improve the noise-robustness of the SER system. With a contrastive learning (CL)-based representation, our proposed method can be improved by jointly fine-tuning the text encoder with the emotion recognition model. Under the -5dB signal-to-noise ratio (SNR) level, fine-tuning the text encoder improves our CL-based representation method by 76.4% (arousal), 100.0% (dominance), and 27.7% (valence).
♻ ☆ Evaluating, Synthesizing, and Enhancing for Customer Support Conversation AAAI-2026
Effective customer support requires not only accurate problem solving but also structured and empathetic communication aligned with professional standards. However, existing dialogue datasets often lack strategic guidance, and real-world service data is difficult to access and annotate. To address this, we introduce the task of Customer Support Conversation (CSC), aimed at training customer service agents to respond using well-defined support strategies. We propose a structured CSC framework grounded in COPC guidelines, defining five conversational stages and twelve strategies to guide high-quality interactions. Based on this, we construct CSConv, an evaluation dataset of 1,855 real-world customer-agent conversations rewritten using LLMs to reflect deliberate strategy use, and annotated accordingly. Additionally, we develop a role-playing approach that simulates strategy-rich conversations using LLM-powered roles aligned with the CSC framework, resulting in the training dataset RoleCS. Experiments show that fine-tuning strong LLMs on RoleCS significantly improves their ability to generate high-quality, strategy-aligned responses on CSConv. Human evaluations further confirm gains in problem resolution. All code and data will be made publicly available at https://github.com/aliyun/qwen-dianjin.
comment: Accepted by AAAI-2026
♻ ☆ PCS: Perceived Confidence Scoring of Black Box LLMs with Metamorphic Relations
Zero-shot LLMs are now also used for textual classification tasks, e.g., sentiment and bias detection in a sentence or article. However, their performance can be suboptimal in such data annotation tasks. We introduce a novel technique that evaluates an LLM's confidence for classifying a textual input by leveraging Metamorphic Relations (MRs). The MRs generate semantically equivalent yet textually divergent versions of the input. Following the principles of Metamorphic Testing (MT), the mutated versions are expected to have annotation labels similar to the input. By analyzing the consistency of an LLM's responses across these variations, we compute a perceived confidence score (PCS) based on the frequency of the predicted labels. PCS can be used for both single and multiple LLM settings (e.g., when multiple LLMs are vetted in a majority-voting setup). Empirical evaluation shows that our PCS-based approach improves the performance of zero-shot LLMs by 9.3% in textual classification tasks. When multiple LLMs are used in a majority-voting setup, we obtain a performance boost of 5.8% with PCS.
♻ ☆ Rethinking Creativity Evaluation: A Critical Analysis of Existing Creativity Evaluations
We systematically examine, analyze, and compare representative creativity measures--creativity index, perplexity, syntactic templates, and LLM-as-a-Judge--across diverse creative domains, including creative writing, unconventional problem-solving, and research ideation. Our analyses reveal that these metrics exhibit limited consistency, capturing different dimensions of creativity. We highlight key limitations, including the creativity index's focus on lexical diversity, perplexity's sensitivity to model confidence, and syntactic templates' inability to capture conceptual creativity. Additionally, LLM-as-a-Judge shows instability and bias. Our findings underscore the need for more robust, generalizable evaluation frameworks that better align with human judgments of creativity.
comment: 23 pages, 6 figures
♻ ☆ Enhancing Large Language Models for Detecting Mental Manipulation via Annotation-Free Data Augmentation and Anti-Curriculum Distillation
Mental manipulation is a subtle yet pervasive form of psychological abuse that poses serious threats to mental health. Nevertheless, detecting mental manipulation remains a largely underexplored research problem. The field faces three major challenges: (i) insufficient and hard-to-obtain training data; (ii) the covert nature of mental manipulation, which hinders detection; and (iii) the lack of real-world datasets. To address these challenges, we propose MentalMAC, a novel framework that enhances large language models' ability to detect elements of mental manipulation in multi-turn dialogue. Our approach consists of three key components: EvoSA, an annotation-free data augmentation method based on evolutionary operations and speech act theory; teacher-model-generated multi-task supervision; and progressive task-level anti-curriculum distillation. We then constructed the ReaMent dataset, comprising 5,000 real-world dialogue samples, utilizing MentalMAC-distilled models to aid in human annotation. Vast experiments show that MentalMAC achieves up to 25.9% improvement in F1mac and 8.1% in accuracy over the best-performing baseline, outperforming commercial LLMs such as GPT-4 and Claude-3.5-Sonnet. Warning: This paper contains content that may be offensive to the reader.
♻ ☆ OPLoRA: Orthogonal Projection LoRA Prevents Catastrophic Forgetting during Parameter-Efficient Fine-Tuning
Low-Rank Adaptation (LoRA) enables efficient fine-tuning of large language models but suffers from catastrophic forgetting when learned updates interfere with the dominant singular directions that encode essential pre-trained knowledge. We propose Orthogonal Projection LoRA (OPLoRA), a theoretically grounded approach that prevents this interference through double-sided orthogonal projections. By decomposing frozen weights via SVD, OPLoRA constrains LoRA updates to lie entirely within the orthogonal complement of the top-$k$ singular subspace using projections $P_L = I - U_k U_k^\top$ and $P_R = I - V_k V_k^\top$. We prove that this construction exactly preserves the top-$k$ singular triples, providing mathematical guarantees for knowledge retention. To quantify subspace interference, we introduce $\rho_k$, a metric measuring update alignment with dominant directions. Extensive experiments across commonsense reasoning, mathematics, and code generation demonstrate that OPLoRA significantly reduces forgetting while maintaining competitive task-specific performance on LLaMA-2 7B and Qwen2.5 7B, establishing orthogonal projection as an effective mechanism for knowledge preservation in parameter-efficient fine-tuning.
♻ ☆ GRDD+: An Extended Greek Dialectal Dataset with Cross-Architecture Fine-tuning Evaluation
We present an extended Greek Dialectal Dataset (GRDD+) 1that complements the existing GRDD dataset with more data from Cretan, Cypriot, Pontic and Northern Greek, while we add six new varieties: Greco-Corsican, Griko (Southern Italian Greek), Maniot, Heptanesian, Tsakonian, and Katharevusa Greek. The result is a dataset with total size 6,374,939 words and 10 varieties. This is the first dataset with such variation and size to date. We conduct a number of fine-tuning experiments to see the effect of good quality dialectal data on a number of LLMs. We fine-tune three model architectures (Llama-3-8B, Llama-3.1-8B, Krikri-8B) and compare the results to frontier models (Claude-3.7-Sonnet, Gemini-2.5, ChatGPT-5).
Revealing emergent human-like conceptual representations from language prediction
People acquire concepts through rich physical and social experiences and use them to understand and navigate the world. In contrast, large language models (LLMs), trained solely through next-token prediction on text, exhibit strikingly human-like behaviors. Are these models developing concepts akin to those of humans? If so, how are such concepts represented, organized, and related to behavior? Here, we address these questions by investigating the representations formed by LLMs during an in-context concept inference task. We found that LLMs can flexibly derive concepts from linguistic descriptions in relation to contextual cues about other concepts. The derived representations converge toward a shared, context-independent structure, and alignment with this structure reliably predicts model performance across various understanding and reasoning tasks. Moreover, the convergent representations effectively capture human behavioral judgments and closely align with neural activity patterns in the human brain, providing evidence for biological plausibility. Together, these findings establish that structured, human-like conceptual representations can emerge purely from language prediction without real-world grounding, highlighting the role of conceptual structure in understanding intelligent behavior. More broadly, our work suggests that LLMs offer a tangible window into the nature of human concepts and lays the groundwork for advancing alignment between artificial and human intelligence.
comment: 66 pages. Accepted manuscript. Final version published in Proceedings of the National Academy of Sciences (PNAS): https://www.pnas.org/doi/10.1073/pnas.2512514122
♻ ☆ Normality and the Turing Test
This paper proposes to revisit the Turing test through the concept of normality. Its core argument is that the Turing test is a test of normal intelligence as assessed by a normal judge. First, in the sense that the Turing test targets normal/average rather than exceptional human intelligence, so that successfully passing the test requires machines to "make mistakes" and display imperfect behavior just like normal/average humans. Second, in the sense that the Turing test is a statistical test where judgments of intelligence are never carried out by a single "average" judge (understood as non-expert) but always by a full jury. As such, the notion of "average human interrogator" that Turing talks about in his original paper should be understood primarily as referring to a mathematical abstraction made of the normalized aggregate of individual judgments of multiple judges. Its conclusions are twofold. First, it argues that large language models such as ChatGPT are unlikely to pass the Turing test as those models precisely target exceptional rather than normal/average human intelligence. As such, they constitute models of what it proposes to call artificial smartness rather than artificial intelligence, insofar as they deviate from the original goal of Turing for the modeling of artificial minds. Second, it argues that the objectivization of normal human behavior in the Turing test fails due to the game configuration of the test which ends up objectivizing normative ideals of normal behavior rather than normal behavior per se.
♻ ☆ Utilizing Multilingual Encoders to Improve Large Language Models for Low-Resource Languages
Large Language Models (LLMs) excel in English, but their performance degrades significantly on low-resource languages (LRLs) due to English-centric training. While methods like LangBridge align LLMs with multilingual encoders such as the Massively Multilingual Text-to-Text Transfer Transformer (mT5), they typically use only the final encoder layer. We propose a novel architecture that fuses all intermediate layers, enriching the linguistic information passed to the LLM. Our approach features two strategies: (1) a Global Softmax weighting for overall layer importance, and (2) a Transformer Softmax model that learns token-specific weights. The fused representations are mapped into the LLM's embedding space, enabling it to process multilingual inputs. The model is trained only on English data, without using any parallel or multilingual data. Evaluated on XNLI, IndicXNLI, Sinhala News Classification, and Amazon Reviews, our Transformer Softmax model significantly outperforms the LangBridge baseline. We observe strong performance gains in LRLs, improving Sinhala classification accuracy from 71.66% to 75.86% and achieving clear improvements across Indic languages such as Tamil, Bengali, and Malayalam. These specific gains contribute to an overall boost in average XNLI accuracy from 70.36% to 71.50%. This approach offers a scalable, data-efficient path toward more capable and equitable multilingual LLMs.
♻ ☆ SinLlama -- A Large Language Model for Sinhala
Low-resource languages such as Sinhala are often overlooked by open-source Large Language Models (LLMs). In this research, we extend an existing multilingual LLM (Llama-3-8B) to better serve Sinhala. We enhance the LLM tokenizer with Sinhala specific vocabulary and perform continual pre-training on a cleaned 10 million Sinhala corpus, resulting in the SinLlama model. This is the very first decoder-based open-source LLM with explicit Sinhala support. When SinLlama was instruction fine-tuned for three text classification tasks, it outperformed base and instruct variants of Llama-3-8B by a significant margin.
♻ ☆ Sub-exponential Growth of New Words and Names Online: A Piecewise Power-Law Model
The diffusion of ideas and language in society has conventionally been described by S-shaped models, such as the logistic curve. However, the role of sub-exponential growth -a slower than exponential pattern known in epidemiology- has been largely overlooked in broader social phenomena. Here, we present a piecewise power-law model to characterize complex growth curves with a few parameters. We systematically analyzed a large-scale dataset of approximately one billion Japanese blog articles linked to Wikipedia vocabulary, and observed consistent patterns in web search trend data (English, Spanish, and Japanese). Our analysis of the 2,965 selected items reveals that about 55% (1,625 items) were found to have no abrupt jumps and were well captured by one or two segments. For single-segment curves, we found that (i) the mode of the shape parameter alpha was near 0.5, indicating prevalent sub-exponential growth; (ii) the ultimate diffusion scale is primarily determined by the growth rate R, with minor contributions from alpha or the duration T; and (iii) alpha showed a tendency to vary with the nature of the topic, being smaller for niche/local topics and larger for widely shared ones. Furthermore, a micro-behavioral model distinguishing outward contact with strangers from inward interaction within their community suggests that alpha can be interpreted as an index of the preference for outward-oriented communication. These findings suggest that sub-exponential growth is a common pattern of social diffusion, and our model provides a practical framework for consistently describing, comparing, and interpreting complex and diverse growth curves.
♻ ☆ The Landscape of Agentic Reinforcement Learning for LLMs: A Survey
The emergence of agentic reinforcement learning (Agentic RL) marks a paradigm shift from conventional reinforcement learning applied to large language models (LLM RL), reframing LLMs from passive sequence generators into autonomous, decision-making agents embedded in complex, dynamic worlds. This survey formalizes this conceptual shift by contrasting the degenerate single-step Markov Decision Processes (MDPs) of LLM-RL with the temporally extended, partially observable Markov decision processes (POMDPs) that define Agentic RL. Building on this foundation, we propose a comprehensive twofold taxonomy: one organized around core agentic capabilities, including planning, tool use, memory, reasoning, self-improvement, and perception, and the other around their applications across diverse task domains. Central to our thesis is that reinforcement learning serves as the critical mechanism for transforming these capabilities from static, heuristic modules into adaptive, robust agentic behavior. To support and accelerate future research, we consolidate the landscape of open-source environments, benchmarks, and frameworks into a practical compendium. By synthesizing over five hundred recent works, this survey charts the contours of this rapidly evolving field and highlights the opportunities and challenges that will shape the development of scalable, general-purpose AI agents.
♻ ☆ Reasoning with Exploration: An Entropy Perspective AAAI 2026
Balancing exploration and exploitation is a central goal in reinforcement learning (RL). Despite recent advances in enhancing large language model (LLM) reasoning, most methods lean toward exploitation, and increasingly encounter performance plateaus. In this work, we revisit entropy -- a signal of exploration in RL -- and examine its relationship to exploratory reasoning in LLMs. Through empirical analysis, we uncover positive correlations between high-entropy regions and three types of exploratory reasoning actions: (1) pivotal tokens that determine or connect logical steps, (2) reflective actions such as self-verification and correction, and (3) rare behaviors under-explored by the base LLMs. Motivated by this, we introduce a minimal modification to standard RL with only one line of code: augmenting the advantage function with an entropy-based term. Unlike traditional maximum-entropy methods which encourage exploration by promoting uncertainty, we encourage exploration by promoting longer and deeper reasoning chains. Notably, our method achieves significant gains on the Pass@K metric -- an upper-bound estimator of LLM reasoning capabilities -- even when evaluated with extremely large K values, pushing the boundaries of LLM reasoning.
comment: AAAI 2026 Conference
♻ ☆ Mechanisms vs. Outcomes: Probing for Syntax Fails to Explain Performance on Targeted Syntactic Evaluations
Large Language Models (LLMs) exhibit a robust mastery of syntax when processing and generating text. While this suggests internalized understanding of hierarchical syntax and dependency relations, the precise mechanism by which they represent syntactic structure is an open area within interpretability research. Probing provides one way to identify the mechanism of syntax being linearly encoded in activations, however, no comprehensive study has yet established whether a model's probing accuracy reliably predicts its downstream syntactic performance. Adopting a "mechanisms vs. outcomes" framework, we evaluate 32 open-weight transformer models and find that syntactic features extracted via probing fail to predict outcomes of targeted syntax evaluations across English linguistic phenomena. Our results highlight a substantial disconnect between latent syntactic representations found via probing and observable syntactic behaviors in downstream tasks.
♻ ☆ DiscoTrack: A Multilingual LLM Benchmark for Discourse Tracking
Recent LLM benchmarks have tested models on a range of phenomena, but are still focused primarily on natural language understanding for extraction of explicit information, such as QA or summarization, with responses often tar- geting information from individual sentences. We are still lacking more challenging, and im- portantly also multilingual, benchmarks focus- ing on implicit information and pragmatic infer- ences across larger documents in the context of discourse tracking: integrating and aggregating information across sentences, paragraphs and multiple speaker utterances. To this end, we present DiscoTrack, an LLM benchmark target- ing a range of tasks across 12 languages and four levels of discourse understanding: salience recognition, entity tracking, discourse relations and bridging inference. Our evaluation shows that these tasks remain challenging, even for state-of-the-art models.
♻ ☆ Invoke Interfaces Only When Needed: Adaptive Invocation for Large Language Models in Question Answering
The collaborative paradigm of large and small language models (LMs) effectively balances performance and cost, yet its pivotal challenge lies in precisely pinpointing the moment of invocation when hallucinations arise in small LMs. Previous optimization efforts primarily focused on post-processing techniques, which were separate from the reasoning process of LMs, resulting in high computational costs and limited effectiveness. In this paper, we propose a practical invocation evaluation metric called AttenHScore, which calculates the accumulation and propagation of hallucinations during the generation process of small LMs, continuously amplifying potential reasoning errors. By dynamically adjusting the detection threshold, we achieve more accurate real-time invocation of large LMs. Additionally, considering the limited reasoning capacity of small LMs, we leverage uncertainty-aware knowledge reorganization to assist them better capture critical information from different text chunks. Extensive experiments reveal that our AttenHScore outperforms most baselines in enhancing real-time hallucination detection capabilities across multiple QA datasets, especially when addressing complex queries. Moreover, our strategies eliminate the need for additional model training and display flexibility in adapting to various transformer-based LMs.
♻ ☆ Learning Task Representations from In-Context Learning ACL
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning (ICL), where models adapt to new tasks through example-based prompts without requiring parameter updates. However, understanding how tasks are internally encoded and generalized remains a challenge. To address some of the empirical and technical gaps in the literature, we introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads within the transformer architecture. This approach computes a single task vector as a weighted sum of attention heads, with the weights optimized causally via gradient descent. Our findings show that existing methods fail to generalize effectively to modalities beyond text. In response, we also design a benchmark to evaluate whether a task vector can preserve task fidelity in functional regression tasks. The proposed method successfully extracts task-specific information from in-context demonstrations and excels in both text and regression tasks, demonstrating its generalizability across modalities.
comment: ACL Findings 2025
♻ ☆ How Post-Training Reshapes LLMs: A Mechanistic View on Knowledge, Truthfulness, Refusal, and Confidence
Post-training is essential for the success of large language models (LLMs), transforming pre-trained base models into more useful and aligned post-trained models. While plenty of works have studied post-training algorithms and evaluated post-training models by their outputs, it remains understudied how post-training reshapes LLMs internally. In this paper, we compare base and post-trained LLMs mechanistically from four perspectives to better understand post-training effects. Our findings across model families and datasets reveal that: (1) Post-training does not change the factual knowledge storage locations, and it adapts knowledge representations from the base model while developing new knowledge representations; (2) Both truthfulness and refusal can be represented by vectors in the hidden representation space. The truthfulness direction is highly similar between the base and post-trained model, and it is effectively transferable for interventions; (3) The refusal direction is different between the base and post-trained models, and it shows limited forward transferability; (4) Differences in confidence between the base and post-trained models cannot be attributed to entropy neurons. Our study provides insights into the fundamental mechanisms preserved and altered during post-training, facilitates downstream tasks like model steering, and could potentially benefit future research in interpretability and LLM post-training. Our code is publicly available at https://github.com/HZD01/post-training-mechanistic-analysis.
comment: COLM 2025
Multimedia 6
☆ ReMoD: Rethinking Modality Contribution in Multimodal Stance Detection via Dual Reasoning
Multimodal Stance Detection (MSD) is a crucial task for understanding public opinion on social media. Existing work simply fuses information from various modalities to learn stance representations, overlooking the varying contributions of stance expression from different modalities. Therefore, stance misunderstanding noises may be drawn into the stance learning process due to the risk of learning errors by rough modality combination. To address this, we get inspiration from the dual-process theory of human cognition and propose **ReMoD**, a framework that **Re**thinks **Mo**dality contribution of stance expression through a **D**ual-reasoning paradigm. ReMoD integrates *experience-driven intuitive reasoning* to capture initial stance cues with *deliberate reflective reasoning* to adjust for modality biases, refine stance judgments, and thereby dynamically weight modality contributions based on their actual expressive power for the target stance. Specifically, the intuitive stage queries the Modality Experience Pool (MEP) and Semantic Experience Pool (SEP) to form an initial stance hypothesis, prioritizing historically impactful modalities. This hypothesis is then refined in the reflective stage via two reasoning chains: Modality-CoT updates MEP with adaptive fusion strategies to amplify relevant modalities, while Semantic-CoT refines SEP with deeper contextual insights of stance semantics. These dual experience structures are continuously refined during training and recalled at inference to guide robust and context-aware stance decisions. Extensive experiments on the public MMSD benchmark demonstrate that our ReMoD significantly outperforms most baseline models and exhibits strong generalization capabilities.
☆ Who Gets Heard? Rethinking Fairness in AI for Music Systems NeurIPS'25
In recent years, the music research community has examined risks of AI models for music, with generative AI models in particular, raised concerns about copyright, deepfakes, and transparency. In our work, we raise concerns about cultural and genre biases in AI for music systems (music-AI systems) which affect stakeholders including creators, distributors, and listeners shaping representation in AI for music. These biases can misrepresent marginalized traditions, especially from the Global South, producing inauthentic outputs (e.g., distorted ragas) that reduces creators' trust on these systems. Such harms risk reinforcing biases, limiting creativity, and contributing to cultural erasure. To address this, we offer recommendations at dataset, model and interface level in music-AI systems.
comment: 7 pages, Accepted at NeurIPS'25 workshop on AI for Music
☆ Pinching Visuo-haptic Display: Investigating Cross-Modal Effects of Visual Textures on Electrostatic Cloth Tactile Sensations
This paper investigates how visual texture presentation influences tactile perception when interacting with electrostatic cloth displays. We propose a visuo-haptic system that allows users to pinch and rub virtual fabrics while feeling realistic frictional sensations modulated by electrostatic actuation. Through a user study, we examined the cross-modal effects between visual roughness and perceived tactile friction. The results demonstrate that visually rough textures amplify the perceived frictional force, even under identical electrostatic stimuli. These findings contribute to the understanding of multimodal texture perception and provide design insights for haptic feedback in virtual material interfaces.
comment: 10 pages, 8 figures, 3 tables. Presented at ACM International Conference on Multimodal Interaction (ICMI) 2025
☆ TalkSketch: Multimodal Generative AI for Real-time Sketch Ideation with Speech AAAI 2026
Sketching is a widely used medium for generating and exploring early-stage design concepts. While generative AI (GenAI) chatbots are increasingly used for idea generation, designers often struggle to craft effective prompts and find it difficult to express evolving visual concepts through text alone. In the formative study (N=6), we examined how designers use GenAI during ideation, revealing that text-based prompting disrupts creative flow. To address these issues, we developed TalkSketch, an embedded multimodal AI sketching system that integrates freehand drawing with real-time speech input. TalkSketch aims to support a more fluid ideation process through capturing verbal descriptions during sketching and generating context-aware AI responses. Our work highlights the potential of GenAI tools to engage the design process itself rather than focusing on output.
comment: Accepted at AAAI 2026 Workshop on Creative AI for Live Interactive Performances (CLIP). To be published in Springer CCIS series
♻ ☆ SIG-Chat: Spatial Intent-Guided Conversational Gesture Generation Involving How, When and Where
The accompanying actions and gestures in dialogue are often closely linked to interactions with the environment, such as looking toward the interlocutor or using gestures to point to the described target at appropriate moments. Speech and semantics guide the production of gestures by determining their timing (WHEN) and style (HOW), while the spatial locations of interactive objects dictate their directional execution (WHERE). Existing approaches either rely solely on descriptive language to generate motions or utilize audio to produce non-interactive gestures, thereby lacking the characterization of interactive timing and spatial intent. This significantly limits the applicability of conversational gesture generation, whether in robotics or in the fields of game and animation production. To address this gap, we present a full-stack solution. We first established a unique data collection method to simultaneously capture high-precision human motion and spatial intent. We then developed a generation model driven by audio, language, and spatial data, alongside dedicated metrics for evaluating interaction timing and spatial accuracy. Finally, we deployed the solution on a humanoid robot, enabling rich, context-aware physical interactions.
♻ ☆ MCE: Towards a General Framework for Handling Missing Modalities under Imbalanced Missing Rates
Multi-modal learning has made significant advances across diverse pattern recognition applications. However, handling missing modalities, especially under imbalanced missing rates, remains a major challenge. This imbalance triggers a vicious cycle: modalities with higher missing rates receive fewer updates, leading to inconsistent learning progress and representational degradation that further diminishes their contribution. Existing methods typically focus on global dataset-level balancing, often overlooking critical sample-level variations in modality utility and the underlying issue of degraded feature quality. We propose Modality Capability Enhancement (MCE) to tackle these limitations. MCE includes two synergistic components: i) Learning Capability Enhancement (LCE), which introduces multi-level factors to dynamically balance modality-specific learning progress, and ii) Representation Capability Enhancement (RCE), which improves feature semantics and robustness through subset prediction and cross-modal completion tasks. Comprehensive evaluations on four multi-modal benchmarks show that MCE consistently outperforms state-of-the-art methods under various missing configurations. The final published version is now available at https://doi.org/10.1016/j.patcog.2025.112591. Our code is available at https://github.com/byzhaoAI/MCE.
comment: This is the accepted version of an article that has been published in \textbf{Pattern Recognition}. The final version is available via the DOI, or for 50 days' free access via this Share Link: https://authors.elsevier.com/a/1m40D77nKsBm- (valid until December 28, 2025)
Artificial Intelligent 30
☆ PlaCo: a QP-based robot planning and control framework
This article introduces PlaCo, a software framework designed to simplify the formulation and solution of Quadratic Programming (QP)-based planning and control problems for robotic systems. PlaCo provides a high-level interface that abstracts away the low-level mathematical formulation of QP problems, allowing users to specify tasks and constraints in a modular and intuitive manner. The framework supports both Python bindings for rapid prototyping and a C++ implementation for real-time performance.
☆ Development and testing of novel soft sleeve actuators
Aging populations and the rising prevalence of neurological and musculoskeletal disorders increase the demand for wearable mobility assistive devices that are effective, comfortable, and anatomically compatible. Many existing systems use rigid mechanisms and bulky interfaces that impede force transmission and reduce wearability. This study introduces a soft sleeve actuation architecture that conforms to the limb while transmitting forces and moments efficiently. We develop three soft sleeve actuators that produce linear, bending, and twisting motion, and an omnidirectional design that combines these motions in one device. Actuators are fabricated from thermoplastic elastomers using a customized fused filament fabrication process that produces airtight and compliant structures and resolves leakage observed with conventional methods. A dedicated experimental platform quantifies kinematic outputs such as displacement, angle, and twist, and kinetic outputs such as force and torque under low pneumatic pressures. A parametric study varies geometric features and material properties to determine their influence on performance. Results show reproducible multi axis motion with improved transfer of force to the limb and reduced need for complex attachment hardware. The work establishes a unified and manufacturable framework for soft sleeve actuation that enables compact and user centered assistive technologies with enhanced kinematic and kinetic performance.
comment: PhD thesis
☆ Model-free Adaptive Output Feedback Vibration Suppression in a Cantilever Beam
This paper presents a model-free adaptive control approach to suppress vibrations in a cantilevered beam excited by an unknown disturbance. The cantilevered beam under harmonic excitation is modeled using a lumped parameter approach. Based on retrospective cost optimization, a sampled-data adaptive controller is developed to suppress vibrations caused by external disturbances. Both displacement and acceleration measurements are considered for feedback. Since acceleration measurements are more sensitive to spillover, which excites higher frequency modes, a filter is developed to extract key displacement information from the acceleration data and enhance suppression performance. The vibration suppression performance is compared using both displacement and acceleration measurements.
comment: 16 pages, 14 figures, to be presented at Scitech 2026
☆ Towards Human-AI-Robot Collaboration and AI-Agent based Digital Twins for Parkinson's Disease Management: Review and Outlook
The current body of research on Parkinson's disease (PD) screening, monitoring, and management has evolved along two largely independent trajectories. The first research community focuses on multimodal sensing of PD-related biomarkers using noninvasive technologies such as inertial measurement units (IMUs), force/pressure insoles, electromyography (EMG), electroencephalography (EEG), speech and acoustic analysis, and RGB/RGB-D motion capture systems. These studies emphasize data acquisition, feature extraction, and machine learning-based classification for PD screening, diagnosis, and disease progression modeling. In parallel, a second research community has concentrated on robotic intervention and rehabilitation, employing socially assistive robots (SARs), robot-assisted rehabilitation (RAR) systems, and virtual reality (VR)-integrated robotic platforms for improving motor and cognitive function, enhancing social engagement, and supporting caregivers. Despite the complementary goals of these two domains, their methodological and technological integration remains limited, with minimal data- level or decision-level coupling between the two. With the advent of advanced artificial intelligence (AI), including large language models (LLMs), agentic AI systems, a unique opportunity now exists to unify these research streams. We envision a closed-loop sensor-AI-robot framework in which multimodal sensing continuously guides the interaction between the patient, caregiver, humanoid robot (and physician) through AI agents that are powered by a multitude of AI models such as robotic and wearables foundation models, LLM-based reasoning, reinforcement learning, and continual learning. Such closed-loop system enables personalized, explainable, and context-aware intervention, forming the basis for digital twin of the PD patient that can adapt over time to deliver intelligent, patient-centered PD care.
comment: 20 pages, 5 figures, 4 tables, under review with a journal
☆ Robustness study of the bio-inspired musculoskeletal arm robot based on the data-driven iterative learning algorithm
The human arm exhibits remarkable capabilities, including both explosive power and precision, which demonstrate dexterity, compliance, and robustness in unstructured environments. Developing robotic systems that emulate human-like operational characteristics through musculoskeletal structures has long been a research focus. In this study, we designed a novel lightweight tendon-driven musculoskeletal arm (LTDM-Arm), featuring a seven degree-of-freedom (DOF) skeletal joint system and a modularized artificial muscular system (MAMS) with 15 actuators. Additionally, we employed a Hilly-type muscle model and data-driven iterative learning control (DDILC) to learn and refine activation signals for repetitive tasks within a finite time frame. We validated the anti-interference capabilities of the musculoskeletal system through both simulations and experiments. The results show that the LTDM-Arm system can effectively achieve desired trajectory tracking tasks, even under load disturbances of 20 % in simulation and 15 % in experiments. This research lays the foundation for developing advanced robotic systems with human-like operational performance.
comment: 20 pages, 13 figures
☆ Runtime Safety Monitoring of Deep Neural Networks for Perception: A Survey
Deep neural networks (DNNs) are widely used in perception systems for safety-critical applications, such as autonomous driving and robotics. However, DNNs remain vulnerable to various safety concerns, including generalization errors, out-of-distribution (OOD) inputs, and adversarial attacks, which can lead to hazardous failures. This survey provides a comprehensive overview of runtime safety monitoring approaches, which operate in parallel to DNNs during inference to detect these safety concerns without modifying the DNN itself. We categorize existing methods into three main groups: Monitoring inputs, internal representations, and outputs. We analyze the state-of-the-art for each category, identify strengths and limitations, and map methods to the safety concerns they address. In addition, we highlight open challenges and future research directions.
comment: 6 pages, 1 figure, 2 tables, accepted at IEEE SMC 2025 in Vienna, presented on 8th October 2025
☆ 10 Open Challenges Steering the Future of Vision-Language-Action Models AAAI 2026
Due to their ability of follow natural language instructions, vision-language-action (VLA) models are increasingly prevalent in the embodied AI arena, following the widespread success of their precursors -- LLMs and VLMs. In this paper, we discuss 10 principal milestones in the ongoing development of VLA models -- multimodality, reasoning, data, evaluation, cross-robot action generalization, efficiency, whole-body coordination, safety, agents, and coordination with humans. Furthermore, we discuss the emerging trends of using spatial understanding, modeling world dynamics, post training, and data synthesis -- all aiming to reach these milestones. Through these discussions, we hope to bring attention to the research avenues that may accelerate the development of VLA models into wider acceptability.
comment: AAAI 2026 (Senior Track)
☆ Disentangled Control of Multi-Agent Systems
This paper develops a general framework for multi-agent control synthesis, which applies to a wide range of problems with convergence guarantees, regardless of the complexity of the underlying graph topology and the explicit time dependence of the objective function. The proposed framework systematically addresses a particularly challenging problem in multi-agent systems, i.e., decentralization of entangled dynamics among different agents, and it naturally supports multi-objective robotics and real-time implementations. To demonstrate its generality and effectiveness, the framework is implemented across three experiments, namely time-varying leader-follower formation control, decentralized coverage control for time-varying density functions without any approximations, which is a long-standing open problem, and safe formation navigation in dense environments.
comment: This work has been submitted to IEEE Transactions on Control of Network Systems for possible publication
☆ From Words to Safety: Language-Conditioned Safety Filtering for Robot Navigation
As robots become increasingly integrated into open-world, human-centered environments, their ability to interpret natural language instructions and adhere to safety constraints is critical for effective and trustworthy interaction. Existing approaches often focus on mapping language to reward functions instead of safety specifications or address only narrow constraint classes (e.g., obstacle avoidance), limiting their robustness and applicability. We propose a modular framework for language-conditioned safety in robot navigation. Our framework is composed of three core components: (1) a large language model (LLM)-based module that translates free-form instructions into structured safety specifications, (2) a perception module that grounds these specifications by maintaining object-level 3D representations of the environment, and (3) a model predictive control (MPC)-based safety filter that enforces both semantic and geometric constraints in real time. We evaluate the effectiveness of the proposed framework through both simulation studies and hardware experiments, demonstrating that it robustly interprets and enforces diverse language-specified constraints across a wide range of environments and scenarios.
Fair and Safe: A Real-Time Hierarchical Control Framework for Intersections
Ensuring fairness in the coordination of connected and automated vehicles at intersections is essential for equitable access, social acceptance, and long-term system efficiency, yet it remains underexplored in safety-critical, real-time traffic control. This paper proposes a fairness-aware hierarchical control framework that explicitly integrates inequity aversion into intersection management. At the top layer, a centralized allocation module assigns control authority (i.e., selects a single vehicle to execute its trajectory) by maximizing a utility that accounts for waiting time, urgency, control history, and velocity deviation. At the bottom layer, the authorized vehicle executes a precomputed trajectory using a Linear Quadratic Regulator (LQR) and applies a high-order Control Barrier Function (HOCBF)-based safety filter for real-time collision avoidance. Simulation results across varying traffic demands and demand distributions demonstrate that the proposed framework achieves near-perfect fairness, eliminates collisions, reduces average delay, and maintains real-time feasibility. These results highlight that fairness can be systematically incorporated without sacrificing safety or performance, enabling scalable and equitable coordination for future autonomous traffic systems.
☆ EndoIR: Degradation-Agnostic All-in-One Endoscopic Image Restoration via Noise-Aware Routing Diffusion
Endoscopic images often suffer from diverse and co-occurring degradations such as low lighting, smoke, and bleeding, which obscure critical clinical details. Existing restoration methods are typically task-specific and often require prior knowledge of the degradation type, limiting their robustness in real-world clinical use. We propose EndoIR, an all-in-one, degradation-agnostic diffusion-based framework that restores multiple degradation types using a single model. EndoIR introduces a Dual-Domain Prompter that extracts joint spatial-frequency features, coupled with an adaptive embedding that encodes both shared and task-specific cues as conditioning for denoising. To mitigate feature confusion in conventional concatenation-based conditioning, we design a Dual-Stream Diffusion architecture that processes clean and degraded inputs separately, with a Rectified Fusion Block integrating them in a structured, degradation-aware manner. Furthermore, Noise-Aware Routing Block improves efficiency by dynamically selecting only noise-relevant features during denoising. Experiments on SegSTRONG-C and CEC datasets demonstrate that EndoIR achieves state-of-the-art performance across multiple degradation scenarios while using fewer parameters than strong baselines, and downstream segmentation experiments confirm its clinical utility.
☆ ViTaMIn-B: A Reliable and Efficient Visuo-Tactile Bimanual Manipulation Interface
Handheld devices have opened up unprecedented opportunities to collect large-scale, high-quality demonstrations efficiently. However, existing systems often lack robust tactile sensing or reliable pose tracking to handle complex interaction scenarios, especially for bimanual and contact-rich tasks. In this work, we propose ViTaMIn-B, a more capable and efficient handheld data collection system for such tasks. We first design DuoTact, a novel compliant visuo-tactile sensor built with a flexible frame to withstand large contact forces during manipulation while capturing high-resolution contact geometry. To enhance the cross-sensor generalizability, we propose reconstructing the sensor's global deformation as a 3D point cloud and using it as the policy input. We further develop a robust, unified 6-DoF bimanual pose acquisition process using Meta Quest controllers, which eliminates the trajectory drift issue in common SLAM-based methods. Comprehensive user studies confirm the efficiency and high usability of ViTaMIn-B among novice and expert operators. Furthermore, experiments on four bimanual manipulation tasks demonstrate its superior task performance relative to existing systems.
☆ Gentle Manipulation Policy Learning via Demonstrations from VLM Planned Atomic Skills AAAI
Autonomous execution of long-horizon, contact-rich manipulation tasks traditionally requires extensive real-world data and expert engineering, posing significant cost and scalability challenges. This paper proposes a novel framework integrating hierarchical semantic decomposition, reinforcement learning (RL), visual language models (VLMs), and knowledge distillation to overcome these limitations. Complex tasks are decomposed into atomic skills, with RL-trained policies for each primitive exclusively in simulation. Crucially, our RL formulation incorporates explicit force constraints to prevent object damage during delicate interactions. VLMs perform high-level task decomposition and skill planning, generating diverse expert demonstrations. These are distilled into a unified policy via Visual-Tactile Diffusion Policy for end-to-end execution. We conduct comprehensive ablation studies exploring different VLM-based task planners to identify optimal demonstration generation pipelines, and systematically compare imitation learning algorithms for skill distillation. Extensive simulation experiments and physical deployment validate that our approach achieves policy learning for long-horizon manipulation without costly human demonstrations, while the VLM-guided atomic skill framework enables scalable generalization to diverse tasks.
comment: Accepted for the 40th Annual AAAI Conference on Artificial Intelligence (2026)
☆ 3D Mapping Using a Lightweight and Low-Power Monocular Camera Embedded inside a Gripper of Limbed Climbing Robots
Limbed climbing robots are designed to explore challenging vertical walls, such as the skylights of the Moon and Mars. In such robots, the primary role of a hand-eye camera is to accurately estimate 3D positions of graspable points (i.e., convex terrain surfaces) thanks to its close-up views. While conventional climbing robots often employ RGB-D cameras as hand-eye cameras to facilitate straightforward 3D terrain mapping and graspable point detection, RGB-D cameras are large and consume considerable power. This work presents a 3D terrain mapping system designed for space exploration using limbed climbing robots equipped with a monocular hand-eye camera. Compared to RGB-D cameras, monocular cameras are more lightweight, compact structures, and have lower power consumption. Although monocular SLAM can be used to construct 3D maps, it suffers from scale ambiguity. To address this limitation, we propose a SLAM method that fuses monocular visual constraints with limb forward kinematics. The proposed method jointly estimates time-series gripper poses and the global metric scale of the 3D map based on factor graph optimization. We validate the proposed framework through both physics-based simulations and real-world experiments. The results demonstrate that our framework constructs a metrically scaled 3D terrain map in real-time and enables autonomous grasping of convex terrain surfaces using a monocular hand-eye camera, without relying on RGB-D cameras. Our method contributes to scalable and energy-efficient perception for future space missions involving limbed climbing robots. See the video summary here: https://youtu.be/fMBrrVNKJfc
comment: International Conference on Space Robotics (iSpaRo)
☆ Adversarial Game-Theoretic Algorithm for Dexterous Grasp Synthesis
For many complex tasks, multi-finger robot hands are poised to revolutionize how we interact with the world, but reliably grasping objects remains a significant challenge. We focus on the problem of synthesizing grasps for multi-finger robot hands that, given a target object's geometry and pose, computes a hand configuration. Existing approaches often struggle to produce reliable grasps that sufficiently constrain object motion, leading to instability under disturbances and failed grasps. A key reason is that during grasp generation, they typically focus on resisting a single wrench, while ignoring the object's potential for adversarial movements, such as escaping. We propose a new grasp-synthesis approach that explicitly captures and leverages the adversarial object motion in grasp generation by formulating the problem as a two-player game. One player controls the robot to generate feasible grasp configurations, while the other adversarially controls the object to seek motions that attempt to escape from the grasp. Simulation experiments on various robot platforms and target objects show that our approach achieves a success rate of 75.78%, up to 19.61% higher than the state-of-the-art baseline. The two-player game mechanism improves the grasping success rate by 27.40% over the method without the game formulation. Our approach requires only 0.28-1.04 seconds on average to generate a grasp configuration, depending on the robot platform, making it suitable for real-world deployment. In real-world experiments, our approach achieves an average success rate of 85.0% on ShadowHand and 87.5% on LeapHand, which confirms its feasibility and effectiveness in real robot setups.
comment: Submitted to ICRA 2026
☆ An Open-Source, Reproducible Tensegrity Robot that can Navigate Among Obstacles
Tensegrity robots, composed of rigid struts and elastic tendons, provide impact resistance, low mass, and adaptability to unstructured terrain. Their compliance and complex, coupled dynamics, however, present modeling and control challenges, hindering path planning and obstacle avoidance. This paper presents a complete, open-source, and reproducible system that enables navigation for a 3-bar tensegrity robot. The system comprises: (i) an inexpensive, open-source hardware design, and (ii) an integrated, open-source software stack for physics-based modeling, system identification, state estimation, path planning, and control. All hardware and software are publicly available at https://sites.google.com/view/tensegrity-navigation/. The proposed system tracks the robot's pose and executes collision-free paths to a specified goal among known obstacle locations. System robustness is demonstrated through experiments involving unmodeled environmental challenges, including a vertical drop, an incline, and granular media, culminating in an outdoor field demonstration. To validate reproducibility, experiments were conducted using robot instances at two different laboratories. This work provides the robotics community with a complete navigation system for a compliant, impact-resistant, and shape-morphing robot. This system is intended to serve as a springboard for advancing the navigation capabilities of other unconventional robotic platforms.
☆ VLAD-Grasp: Zero-shot Grasp Detection via Vision-Language Models
Robotic grasping is a fundamental capability for autonomous manipulation; however, most existing methods rely on large-scale expert annotations and necessitate retraining to handle new objects. We present VLAD-Grasp, a Vision-Language model Assisted zero-shot approach for Detecting grasps. From a single RGB-D image, our method (1) prompts a large vision-language model to generate a goal image where a straight rod "impales" the object, representing an antipodal grasp, (2) predicts depth and segmentation to lift this generated image into 3D, and (3) aligns generated and observed object point clouds via principal component analysis and correspondence-free optimization to recover an executable grasp pose. Unlike prior work, our approach is training-free and does not rely on curated grasp datasets. Despite this, VLAD-Grasp achieves performance that is competitive with or superior to that of state-of-the-art supervised models on the Cornell and Jacquard datasets. We further demonstrate zero-shot generalization to novel real-world objects on a Franka Research 3 robot, highlighting vision-language foundation models as powerful priors for robotic manipulation.
comment: 8 pages, 4 figures, under review
☆ A Unified Stochastic Mechanism Underlying Collective Behavior in Ants, Physical Systems, and Robotic Swarms
Biological swarms, such as ant colonies, achieve collective goals through decentralized and stochastic individual behaviors. Similarly, physical systems composed of gases, liquids, and solids exhibit random particle motion governed by entropy maximization, yet do not achieve collective objectives. Despite this analogy, no unified framework exists to explain the stochastic behavior in both biological and physical systems. Here, we present empirical evidence from \textit{Formica polyctena} ants that reveals a shared statistical mechanism underlying both systems: maximization under different energy function constraints. We further demonstrate that robotic swarms governed by this principle can exhibit scalable, decentralized cooperation, mimicking physical phase-like behaviors with minimal individual computation. These findings established a unified stochastic model linking biological, physical, and robotic swarms, offering a scalable principle for designing robust and intelligent swarm robotics.
♻ ☆ MGSO: Monocular Real-time Photometric SLAM with Efficient 3D Gaussian Splatting
Real-time SLAM with dense 3D mapping is computationally challenging, especially on resource-limited devices. The recent development of 3D Gaussian Splatting (3DGS) offers a promising approach for real-time dense 3D reconstruction. However, existing 3DGS-based SLAM systems struggle to balance hardware simplicity, speed, and map quality. Most systems excel in one or two of the aforementioned aspects but rarely achieve all. A key issue is the difficulty of initializing 3D Gaussians while concurrently conducting SLAM. To address these challenges, we present Monocular GSO (MGSO), a novel real-time SLAM system that integrates photometric SLAM with 3DGS. Photometric SLAM provides dense structured point clouds for 3DGS initialization, accelerating optimization and producing more efficient maps with fewer Gaussians. As a result, experiments show that our system generates reconstructions with a balance of quality, memory efficiency, and speed that outperforms the state-of-the-art. Furthermore, our system achieves all results using RGB inputs. We evaluate the Replica, TUM-RGBD, and EuRoC datasets against current live dense reconstruction systems. Not only do we surpass contemporary systems, but experiments also show that we maintain our performance on laptop hardware, making it a practical solution for robotics, A/R, and other real-time applications.
comment: This is the pre-print version of a work that has been published in ICRA 2025 with doi: 10.1109/ICRA55743.2025.11127380. This version may no longer be accessible without notice. Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses. Please cite the official version
♻ ☆ Verti-Arena: A Controllable and Standardized Indoor Testbed for Multi-Terrain Off-Road Autonomy
Off-road navigation is an important capability for mobile robots deployed in environments that are inaccessible or dangerous to humans, such as disaster response or planetary exploration. Progress is limited due to the lack of a controllable and standardized real-world testbed for systematic data collection and validation. To fill this gap, we introduce Verti-Arena, a reconfigurable indoor facility designed specifically for off-road autonomy. By providing a repeatable benchmark environment, Verti-Arena supports reproducible experiments across a variety of vertically challenging terrains and provides precise ground truth measurements through onboard sensors and a motion capture system. Verti-Arena also supports consistent data collection and comparative evaluation of algorithms in off-road autonomy research. We also develop a web-based interface that enables research groups worldwide to remotely conduct standardized off-road autonomy experiments on Verti-Arena.
comment: 6 pages, accepted by the 2025 IEEE International Symposium on Safety, Security, and Rescue Robotics
♻ ☆ ILCL: Inverse Logic-Constraint Learning from Temporally Constrained Demonstrations
We aim to solve the problem of temporal-constraint learning from demonstrations to reproduce demonstration-like logic-constrained behaviors. Learning logic constraints is challenging due to the combinatorially large space of possible specifications and the ill-posed nature of non-Markovian constraints. To figure it out, we introduce a novel temporal-constraint learning method, which we call inverse logic-constraint learning (ILCL). Our method frames ICL as a two-player zero-sum game between 1) a genetic algorithm-based temporal-logic mining (GA-TL-Mining) and 2) logic-constrained reinforcement learning (Logic-CRL). GA-TL-Mining efficiently constructs syntax trees for parameterized truncated linear temporal logic (TLTL) without predefined templates. Subsequently, Logic-CRL finds a policy that maximizes task rewards under the constructed TLTL constraints via a novel constraint redistribution scheme. Our evaluations show ILCL outperforms state-of-the-art baselines in learning and transferring TL constraints on four temporally constrained tasks. We also demonstrate successful transfer to real-world peg-in-shallow-hole tasks.
comment: 8 pages, 6 figures, IEEE Robotics and Automation Letters (RA-L)
♻ ☆ SIG-Chat: Spatial Intent-Guided Conversational Gesture Generation Involving How, When and Where
The accompanying actions and gestures in dialogue are often closely linked to interactions with the environment, such as looking toward the interlocutor or using gestures to point to the described target at appropriate moments. Speech and semantics guide the production of gestures by determining their timing (WHEN) and style (HOW), while the spatial locations of interactive objects dictate their directional execution (WHERE). Existing approaches either rely solely on descriptive language to generate motions or utilize audio to produce non-interactive gestures, thereby lacking the characterization of interactive timing and spatial intent. This significantly limits the applicability of conversational gesture generation, whether in robotics or in the fields of game and animation production. To address this gap, we present a full-stack solution. We first established a unique data collection method to simultaneously capture high-precision human motion and spatial intent. We then developed a generation model driven by audio, language, and spatial data, alongside dedicated metrics for evaluating interaction timing and spatial accuracy. Finally, we deployed the solution on a humanoid robot, enabling rich, context-aware physical interactions.
♻ ☆ What Foundation Models can Bring for Robot Learning in Manipulation : A Survey
The realization of universal robots is an ultimate goal of researchers. However, a key hurdle in achieving this goal lies in the robots' ability to manipulate objects in their unstructured surrounding environments according to different tasks. The learning-based approach is considered an effective way to address generalization. The impressive performance of foundation models in the fields of computer vision and natural language suggests the potential of embedding foundation models into manipulation tasks as a viable path toward achieving general manipulation capability. However, we believe achieving general manipulation capability requires an overarching framework akin to auto driving. This framework should encompass multiple functional modules, with different foundation models assuming distinct roles in facilitating general manipulation capability. This survey focuses on the contributions of foundation models to robot learning for manipulation. We propose a comprehensive framework and detail how foundation models can address challenges in each module of the framework. What's more, we examine current approaches, outline challenges, suggest future research directions, and identify potential risks associated with integrating foundation models into this domain.
♻ ☆ Multi-cam Multi-map Visual Inertial Localization: System, Validation and Dataset
Robot control loops require causal pose estimates that depend only on past and present measurements. At each timestep, controllers compute commands using the current pose without waiting for future refinements. While traditional visual SLAM systems achieve high accuracy through retrospective loop closures, these corrections arrive after control decisions were already executed, violating causality. Visual-inertial odometry maintains causality but accumulates unbounded drift over time. To address the distinct requirements of robot control, we propose a multi-camera multi-map visual-inertial localization system providing real-time, causal pose estimation with bounded localization error through continuous map constraints. Since standard trajectory metrics evaluate post-processed trajectories, we analyze the error composition of map-based localization systems and propose a set of evaluation metrics suitable for measuring causal localization performance. To validate our system, we design a multi-camera IMU hardware setup and collect a challenging long-term campus dataset featuring diverse illumination and seasonal conditions. Experimental results on public benchmarks and on our own collected dataset demonstrate that our system provides significantly higher real-time localization accuracy compared to other methods. To benefit the community, we have made both the system and the dataset open source at https://anonymous.4open.science/r/Multi-cam-Multi-map-VILO-7993.
♻ ☆ DNOI-4DRO: Deep 4D Radar Odometry with Differentiable Neural-Optimization Iterations
A novel learning-optimization-combined 4D radar odometry model, named DNOI-4DRO, is proposed in this paper. The proposed model seamlessly integrates traditional geometric optimization with end-to-end neural network training, leveraging an innovative differentiable neural-optimization iteration operator. In this framework, point-wise motion flow is first estimated using a neural network, followed by the construction of a cost function based on the relationship between point motion and pose in 3D space. The radar pose is then refined using Gauss-Newton updates. Additionally, we design a dual-stream 4D radar backbone that integrates multi-scale geometric features and clustering-based class-aware features to enhance the representation of sparse 4D radar point clouds. Extensive experiments on the VoD and Snail-Radar datasets demonstrate the superior performance of our model, which outperforms recent classical and learning-based approaches. Notably, our method even achieves results comparable to A-LOAM with mapping optimization using LiDAR point clouds as input. Our models and code will be publicly released.
comment: 9 pages,5 figures
♻ ☆ ImitDiff: Transferring Foundation-Model Priors for Distraction Robust Visuomotor Policy
Visuomotor imitation learning policies enable robots to efficiently acquire manipulation skills from visual demonstrations. However, as scene complexity and visual distractions increase, policies that perform well in simple settings often experience substantial performance degradation. To address this challenge, we propose ImitDiff, a diffusion-based imitation learning policy guided by fine-grained semantics within a dual-resolution workflow. Leveraging pretrained priors of vision-language foundation models, our method transforms high-level instructions into pixel-level visual semantic masks. These masks guide a dual-resolution perception pipeline that captures both global context (e.g., overall layout) from low-resolution observation and fine-grained local features (e.g., geometric details) from high-resolution observation, enabling the policy to focus on task-relevant regions. Additionally, we introduce a consistency-driven diffusion transformer action head that bridges visual semantic conditions and real-time action generation. Extensive experiments demonstrate that ImitDiff outperforms state-of-the-art vision-language manipulation frameworks, as well as visuomotor imitation learning policies, particularly under increased scene complexity and visual distractions. Notably, ImitDiff exhibits strong generalization in zero-shot settings involving novel objects and visual distractions. Furthermore, our consistency-driven action head achieves an order-of-magnitude improvement in inference speed while maintaining competitive success rates.
♻ ☆ LOG-Nav: Efficient Layout-Aware Object-Goal Navigation with Hierarchical Planning
We introduce LOG-Nav, an efficient layout-aware object-goal navigation approach designed for complex multi-room indoor environments. By planning hierarchically leveraging a global topologigal map with layout information and local imperative approach with detailed scene representation memory, LOG-Nav achieves both efficient and effective navigation. The process is managed by an LLM-powered agent, ensuring seamless effective planning and navigation, without the need for human interaction, complex rewards, or costly training. Our experimental results on the MP3D benchmark achieves 85\% object navigation success rate (SR) and 79\% success rate weighted by path length (SPL) (over 40\% point improvement in SR and 60\% improvement in SPL compared to exsisting methods). Furthermore, we validate the robustness of our approach through virtual agent and real-world robotic deployment, showcasing its capability in practical scenarios.
♻ ☆ DiffOG: Differentiable Policy Trajectory Optimization with Generalizability
Imitation learning-based visuomotor policies excel at manipulation tasks but often produce suboptimal action trajectories compared to model-based methods. Directly mapping camera data to actions via neural networks can result in jerky motions and difficulties in meeting critical constraints, compromising safety and robustness in real-world deployment. For tasks that require high robustness or strict adherence to constraints, ensuring trajectory quality is crucial. However, the lack of interpretability in neural networks makes it challenging to generate constraint-compliant actions in a controlled manner. This paper introduces differentiable policy trajectory optimization with generalizability (DiffOG), a learning-based trajectory optimization framework designed to enhance visuomotor policies. By leveraging the proposed differentiable formulation of trajectory optimization with transformer, DiffOG seamlessly integrates policies with a generalizable optimization layer. DiffOG refines action trajectories to be smoother and more constraint-compliant while maintaining alignment with the original demonstration distribution, thus avoiding degradation in policy performance. We evaluated DiffOG across 11 simulated tasks and 2 real-world tasks. The results demonstrate that DiffOG significantly enhances the trajectory quality of visuomotor policies while having minimal impact on policy performance, outperforming trajectory processing baselines such as greedy constraint clipping and penalty-based trajectory optimization. Furthermore, DiffOG achieves superior performance compared to existing constrained visuomotor policy. For more details, please visit the project website: https://zhengtongxu.github.io/diffog-website/.
♻ ☆ The Dark Side of Rich Rewards: Understanding and Mitigating Noise in VLM Rewards ICAPS 2025
While Vision-Language Models (VLMs) are increasingly used to generate reward signals for training embodied agents to follow instructions, our research reveals that agents guided by VLM rewards often underperform compared to those employing only intrinsic (exploration-driven) rewards, contradicting expectations set by recent work. We hypothesize that false positive rewards -- instances where unintended trajectories are incorrectly rewarded -- are more detrimental than false negatives. Our analysis confirms this hypothesis, revealing that the widely used cosine similarity metric is prone to false positive reward estimates. To address this, we introduce BiMI ({Bi}nary {M}utual {I}nformation), a novel reward function designed to mitigate noise. BiMI significantly enhances learning efficiency across diverse and challenging embodied navigation environments. Our findings offer a nuanced understanding of how different types of reward noise impact agent learning and highlight the importance of addressing multimodal reward signal noise when training embodied agents
comment: accepted by PRL Workshop Series @ ICAPS 2025. 11 main body pages, 21 appendix pages
♻ ☆ Canonical Policy: Learning Canonical 3D Representation for SE(3)-Equivariant Policy
Visual Imitation learning has achieved remarkable progress in robotic manipulation, yet generalization to unseen objects, scene layouts, and camera viewpoints remains a key challenge. Recent advances address this by using 3D point clouds, which provide geometry-aware, appearance-invariant representations, and by incorporating equivariance into policy architectures to exploit spatial symmetries. However, existing equivariant approaches often lack interpretability and rigor due to unstructured integration of equivariant components. We introduce canonical policy, a principled framework for 3D equivariant imitation learning that unifies 3D point cloud observations under a canonical representation. We first establish a theory of 3D canonical representations, enabling equivariant observation-to-action mappings by grouping both seen and novel point clouds to a canonical representation. We then propose a flexible policy learning pipeline that leverages geometric symmetries from canonical representation and the expressiveness of modern generative models. We validate canonical policy on 12 diverse simulated tasks and 4 real-world manipulation tasks across 16 configurations, involving variations in object color, shape, camera viewpoint, and robot platform. Compared to state-of-the-art imitation learning policies, canonical policy achieves an average improvement of 18.0% in simulation and 39.7% in real-world experiments, demonstrating superior generalization capability and sample efficiency. For more details, please refer to the project website: https://zhangzhiyuanzhang.github.io/cp-website/.
Computation and Language 89
☆ MIMIC-SR-ICD11: A Dataset for Narrative-Based Diagnosis
Disease diagnosis is a central pillar of modern healthcare, enabling early detection and timely intervention for acute conditions while guiding lifestyle adjustments and medication regimens to prevent or slow chronic disease. Self-reports preserve clinically salient signals that templated electronic health record (EHR) documentation often attenuates or omits, especially subtle but consequential details. To operationalize this shift, we introduce MIMIC-SR-ICD11, a large English diagnostic dataset built from EHR discharge notes and natively aligned to WHO ICD-11 terminology. We further present LL-Rank, a likelihood-based re-ranking framework that computes a length-normalized joint likelihood of each label given the clinical report context and subtracts the corresponding report-free prior likelihood for that label. Across seven model backbones, LL-Rank consistently outperforms a strong generation-plus-mapping baseline (GenMap). Ablation experiments show that LL-Rank's gains primarily stem from its PMI-based scoring, which isolates semantic compatibility from label frequency bias.
comment: 19
☆ APP: Accelerated Path Patching with Task-Specific Pruning
Circuit discovery is a key step in many mechanistic interpretability pipelines. Current methods, such as Path Patching, are computationally expensive and have limited in-depth circuit analysis for smaller models. In this study, we propose Accelerated Path Patching (APP), a hybrid approach leveraging our novel contrastive attention head pruning method to drastically reduce the search space of circuit discovery methods. Our Contrastive-FLAP pruning algorithm uses techniques from causal mediation analysis to assign higher pruning scores to task-specific attention heads, leading to higher performing sparse models compared to traditional pruning techniques. Although Contrastive-FLAP is successful at preserving task-specific heads that existing pruning algorithms remove at low sparsity ratios, the circuits found by Contrastive-FLAP alone are too large to satisfy the minimality constraint required in circuit analysis. APP first applies Contrastive-FLAP to reduce the search space on required for circuit discovery algorithms by, on average, 56\%. Next, APP, applies traditional Path Patching on the remaining attention heads, leading to a speed up of 59.63\%-93.27\% compared to Path Patching applied to the dense model. Despite the substantial computational saving that APP provides, circuits obtained from APP exhibit substantial overlap and similar performance to previously established Path Patching circuits
☆ Steering Language Models with Weight Arithmetic
Providing high-quality feedback to Large Language Models (LLMs) on a diverse training distribution can be difficult and expensive, and providing feedback only on a narrow distribution can result in unintended generalizations. To better leverage narrow training data, we propose contrastive weight steering, a simple post-training method that edits the model parameters using weight arithmetic. We isolate a behavior direction in weight-space by subtracting the weight deltas from two small fine-tunes -- one that induces the desired behavior and another that induces its opposite -- and then add or remove this direction to modify the model's weights. We apply this technique to mitigate sycophancy and induce misalignment, and find that weight steering often generalizes further than activation steering, achieving stronger out-of-distribution behavioral control before degrading general capabilities. We also show that, in the context of task-specific fine-tuning, weight steering can partially mitigate undesired behavioral drift: it can reduce sycophancy and under-refusals introduced during fine-tuning while preserving task performance gains. Finally, we provide preliminary evidence that emergent misalignment can be detected by measuring the similarity between fine-tuning updates and an "evil" weight direction, suggesting that it may be possible to monitor the evolution of weights during training and detect rare misaligned behaviors that never manifest during training or evaluations.
☆ Minority-Aware Satisfaction Estimation in Dialogue Systems via Preference-Adaptive Reinforcement Learning AACL 2025
User satisfaction in dialogue systems is inherently subjective. When the same response strategy is applied across users, minority users may assign different satisfaction ratings than majority users due to variations in individual intents and preferences. However, existing alignment methods typically train one-size-fits-all models that aim for broad consensus, often overlooking minority perspectives and user-specific adaptation. We propose a unified framework that models both individual- and group-level preferences for user satisfaction estimation. First, we introduce Chain-of-Personalized-Reasoning (CoPeR) to capture individual preferences through interpretable reasoning chains. Second, we propose an expectation-maximization-based Majority-Minority Preference-Aware Clustering (M2PC) algorithm that discovers distinct user groups in an unsupervised manner to learn group-level preferences. Finally, we integrate these components into a preference-adaptive reinforcement learning framework (PAda-PPO) that jointly optimizes alignment with both individual and group preferences. Experiments on the Emotional Support Conversation dataset demonstrate consistent improvements in user satisfaction estimation, particularly for underrepresented user groups.
comment: IJCNLP-AACL 2025 (Main)
Large Language Models for Explainable Threat Intelligence
As cyber threats continue to grow in complexity, traditional security mechanisms struggle to keep up. Large language models (LLMs) offer significant potential in cybersecurity due to their advanced capabilities in text processing and generation. This paper explores the use of LLMs with retrieval-augmented generation (RAG) to obtain threat intelligence by combining real-time information retrieval with domain-specific data. The proposed system, RAGRecon, uses a LLM with RAG to answer questions about cybersecurity threats. Moreover, it makes this form of Artificial Intelligence (AI) explainable by generating and visually presenting to the user a knowledge graph for every reply. This increases the transparency and interpretability of the reasoning of the model, allowing analysts to better understand the connections made by the system based on the context recovered by the RAG system. We evaluated RAGRecon experimentally with two datasets and seven different LLMs and the responses matched the reference responses more than 91% of the time for the best combinations.
☆ A multimodal multiplex of the mental lexicon for multilingual individuals
Historically, bilingualism was often perceived as an additional cognitive load that could hinder linguistic and intellectual development. However, over the last three decades, this view has changed considerably. Numerous studies have aimed to model and understand the architecture of the bilingual word recognition system Dijkstra and van Heuven (2002), investigating how parallel activation operates in the brain and how one language influences another Kroll et al. (2015). Increasingly, evidence suggests that multilinguals, individuals who speak three or more languages, can perform better than monolinguals in various linguistic and cognitive tasks, such as learning an additional language Abu-Rabia and Sanitsky (2010). This research proposal focuses on the study of the mental lexicon and how it may be structured in individuals who speak multiple languages. Building on the work of Stella et al. (2018), who investigated explosive learning in humans using a multiplex model of the mental lexicon, and the Bilingual Interactive Activation (BIA+) framework proposed by Dijkstra and van Heuven (2002), the present study applies the same multilayer network principles introduced by Kivela et al. (2014). Our experimental design extends previous research by incorporating multimodality into the multiplex model, introducing an additional layer that connects visual inputs to their corresponding lexical representations across the multilingual layers of the mental lexicon. In this research, we aim to explore how a heritage language influences the acquisition of another language. Specifically, we ask: Does the presence of visual input in a translation task influence participants' proficiency and accuracy compared to text-only conditions?
☆ ConVerse: Benchmarking Contextual Safety in Agent-to-Agent Conversations
As language models evolve into autonomous agents that act and communicate on behalf of users, ensuring safety in multi-agent ecosystems becomes a central challenge. Interactions between personal assistants and external service providers expose a core tension between utility and protection: effective collaboration requires information sharing, yet every exchange creates new attack surfaces. We introduce ConVerse, a dynamic benchmark for evaluating privacy and security risks in agent-agent interactions. ConVerse spans three practical domains (travel, real estate, insurance) with 12 user personas and over 864 contextually grounded attacks (611 privacy, 253 security). Unlike prior single-agent settings, it models autonomous, multi-turn agent-to-agent conversations where malicious requests are embedded within plausible discourse. Privacy is tested through a three-tier taxonomy assessing abstraction quality, while security attacks target tool use and preference manipulation. Evaluating seven state-of-the-art models reveals persistent vulnerabilities; privacy attacks succeed in up to 88% of cases and security breaches in up to 60%, with stronger models leaking more. By unifying privacy and security within interactive multi-agent contexts, ConVerse reframes safety as an emergent property of communication.
☆ Evaluating Subword Tokenization Techniques for Bengali: A Benchmark Study with BengaliBPE
Tokenization is an important first step in Natural Language Processing (NLP) pipelines because it decides how models learn and represent linguistic information. However, current subword tokenizers like SentencePiece or HuggingFace BPE are mostly designed for Latin or multilingual corpora and do not perform well on languages with rich morphology such as Bengali. To address this limitation, we present BengaliBPE, a Byte Pair Encoding (BPE) tokenizer specifically developed for the Bengali script. BengaliBPE applies Unicode normalization, grapheme-level initialization, and morphology-aware merge rules to maintain linguistic consistency and preserve subword integrity. We use a large-scale Bengali news classification dataset to compare BengaliBPE with three baselines: Whitespace, SentencePiece BPE, and HuggingFace BPE. The evaluation considers tokenization granularity, encoding speed, and downstream classification accuracy. While all methods perform reasonably well, BengaliBPE provides the most detailed segmentation and the best morphological interpretability, albeit with slightly higher computational cost. These findings highlight the importance of language-aware tokenization for morphologically rich scripts and establish BengaliBPE as a strong foundation for future Bengali NLP systems, including large-scale pretraining of contextual language models.
comment: 10 pages, 3 figures, 3 tables
☆ What Are the Facts? Automated Extraction of Court-Established Facts from Criminal-Court Opinions
Criminal justice administrative data contain only a limited amount of information about the committed offense. However, there is an unused source of extensive information in continental European courts' decisions: descriptions of criminal behaviors in verdicts by which offenders are found guilty. In this paper, we study the feasibility of extracting these descriptions from publicly available court decisions from Slovakia. We use two different approaches for retrieval: regular expressions and large language models (LLMs). Our baseline was a simple method employing regular expressions to identify typical words occurring before and after the description. The advanced regular expression approach further focused on "sparing" and its normalization (insertion of spaces between individual letters), typical for delineating the description. The LLM approach involved prompting the Gemini Flash 2.0 model to extract the descriptions using predefined instructions. Although the baseline identified descriptions in only 40.5% of verdicts, both methods significantly outperformed it, achieving 97% with advanced regular expressions and 98.75% with LLMs, and 99.5% when combined. Evaluation by law students showed that both advanced methods matched human annotations in about 90% of cases, compared to just 34.5% for the baseline. LLMs fully matched human-labeled descriptions in 91.75% of instances, and a combination of advanced regular expressions with LLMs reached 92%.
comment: Paper accepted to the proceedings of ASAIL 2025 Workshop under ICAIL conference for publication. Paper contains 6 pages (references included) and 2 appendices. It contains 8 tables, no figures
☆ Listening Between the Lines: Decoding Podcast Narratives with Language Modeling
Podcasts have become a central arena for shaping public opinion, making them a vital source for understanding contemporary discourse. Their typically unscripted, multi-themed, and conversational style offers a rich but complex form of data. To analyze how podcasts persuade and inform, we must examine their narrative structures -- specifically, the narrative frames they employ. The fluid and conversational nature of podcasts presents a significant challenge for automated analysis. We show that existing large language models, typically trained on more structured text such as news articles, struggle to capture the subtle cues that human listeners rely on to identify narrative frames. As a result, current approaches fall short of accurately analyzing podcast narratives at scale. To solve this, we develop and evaluate a fine-tuned BERT model that explicitly links narrative frames to specific entities mentioned in the conversation, effectively grounding the abstract frame in concrete details. Our approach then uses these granular frame labels and correlates them with high-level topics to reveal broader discourse trends. The primary contributions of this paper are: (i) a novel frame-labeling methodology that more closely aligns with human judgment for messy, conversational data, and (ii) a new analysis that uncovers the systematic relationship between what is being discussed (the topic) and how it is being presented (the frame), offering a more robust framework for studying influence in digital media.
comment: 10 pages, 6 Figures, 5 Tables. Under review at IEEE TCSS
☆ QUESTER: Query Specification for Generative Retrieval
Generative Retrieval (GR) differs from the traditional index-then-retrieve pipeline by storing relevance in model parameters and directly generating document identifiers. However, GR often struggles to generalize and is costly to scale. We introduce QUESTER (QUEry SpecificaTion gEnerative Retrieval), which reframes GR as query specification generation - in this work, a simple keyword query handled by BM25 - using a (small) LLM. The policy is trained using reinforcement learning techniques (GRPO). Across in- and out-of-domain evaluations, we show that our model is more effective than BM25, and competitive with neural IR models, while maintaining a good efficiency
☆ Language Generation and Identification From Partial Enumeration: Tight Density Bounds and Topological Characterizations
The success of large language models (LLMs) has motivated formal theories of language generation and learning. We study the framework of \emph{language generation in the limit}, where an adversary enumerates strings from an unknown language $K$ drawn from a countable class, and an algorithm must generate unseen strings from $K$. Prior work showed that generation is always possible, and that some algorithms achieve positive lower density, revealing a \emph{validity--breadth} trade-off between correctness and coverage. We resolve a main open question in this line, proving a tight bound of $1/2$ on the best achievable lower density. We then strengthen the model to allow \emph{partial enumeration}, where the adversary reveals only an infinite subset $C \subseteq K$. We show that generation in the limit remains achievable, and if $C$ has lower density $\alpha$ in $K$, the algorithm's output achieves density at least $\alpha/2$, matching the upper bound. This generalizes the $1/2$ bound to the partial-information setting, where the generator must recover within a factor $1/2$ of the revealed subset's density. We further revisit the classical Gold--Angluin model of \emph{language identification} under partial enumeration. We characterize when identification in the limit is possible -- when hypotheses $M_t$ eventually satisfy $C \subseteq M \subseteq K$ -- and in the process give a new topological formulation of Angluin's characterization, showing that her condition is precisely equivalent to an appropriate topological space having the $T_D$ separation property.
☆ Reflective Personalization Optimization: A Post-hoc Rewriting Framework for Black-Box Large Language Models
The personalization of black-box large language models (LLMs) is a critical yet challenging task. Existing approaches predominantly rely on context injection, where user history is embedded into the prompt to directly guide the generation process. However, this single-step paradigm imposes a dual burden on the model: generating accurate content while simultaneously aligning with user-specific styles. This often results in a trade-off that compromises output quality and limits precise control. To address this fundamental tension, we propose Reflective Personalization Optimization (RPO), a novel framework that redefines the personalization paradigm by decoupling content generation from alignment. RPO operates in two distinct stages: first, a base model generates a high-quality, generic response; then, an external reflection module explicitly rewrites this output to align with the user's preferences. This reflection module is trained using a two-stage process. Initially, supervised fine-tuning is employed on structured rewriting trajectories to establish a core personalized reasoning policy that models the transformation from generic to user-aligned responses. Subsequently, reinforcement learning is applied to further refine and enhance the quality of the personalized outputs. Comprehensive experiments on the LaMP benchmark demonstrate that RPO, by decoupling content generation from personalization, significantly outperforms state-of-the-art baselines. These findings underscore the superiority of explicit response shaping over implicit context injection. Moreover, RPO introduces an efficient, model-agnostic personalization layer that can be seamlessly integrated with any underlying base model, paving the way for a new and effective direction in user-centric generation scenarios.
☆ Translation via Annotation: A Computational Study of Translating Classical Chinese into Japanese
Ancient people translated classical Chinese into Japanese by annotating around each character. We abstract this process as sequence tagging tasks and fit them into modern language technologies. The research of this annotation and translation system is a facing low-resource problem. We release this problem by introducing a LLM-based annotation pipeline and construct a new dataset from digitalized open-source translation data. We show that under the low-resource setting, introducing auxiliary Chinese NLP tasks has a promoting effect on the training of sequence tagging tasks. We also evaluate the performance of large language models. They achieve high scores in direct machine translation, but they are confused when being asked to annotate characters. Our method could work as a supplement of LLMs.
☆ Effectiveness of Chain-of-Thought in Distilling Reasoning Capability from Large Language Models
Chain-of-Thought (CoT) prompting is a widely used method to improve the reasoning capability of Large Language Models (LLMs). More recently, CoT has been leveraged in Knowledge Distillation (KD) to transfer reasoning capability from a larger LLM to a smaller one. This paper examines the role of CoT in distilling the reasoning capability from larger LLMs to smaller LLMs using white-box KD, analysing its effectiveness in improving the performance of the distilled models for various natural language reasoning and understanding tasks. We conduct white-box KD experiments using LLMs from the Qwen and Llama2 families, employing CoT data from the CoT-Collection dataset. The distilled models are then evaluated on natural language reasoning and understanding tasks from the BIG-Bench-Hard (BBH) benchmark, which presents complex challenges for smaller LLMs. Experimental results demonstrate the role of CoT in improving white-box KD effectiveness, enabling the distilled models to achieve better average performance in natural language reasoning and understanding tasks from BBH.
comment: In proceedings of the 18th International Natural Language Generation Conference (INLG 2025)
☆ Mind the Gap... or Not? How Translation Errors and Evaluation Details Skew Multilingual Results
Most current large language models (LLMs) support a wide variety of languages in addition to English, including high-resource languages (e.g. German, Chinese, French), as well as low-resource ones (e.g. Swahili, Telugu). In addition they have also shown impressive capabilities in different domains, like coding, science and math. In this short paper, taking math as an example domain, we study the performance of different LLMs across languages. Experimental results show that there exists a non-negligible and consistent gap in the performance of the models across languages. Interestingly, and somewhat against expectations, the gap exists for both high- and low-resource languages. We hope that these results influence further research into cross-lingual capability generalization for next generation LLMs. If it weren't for the fact that they are false! By analyzing one of the standard multilingual math benchmarks (MGSM), we determine that several translation errors are present in the data. Furthermore, the lack of standardized answer extraction from LLM outputs further influences the final results. We propose a method for automatic quality assurance to address the first issue at scale, and give recommendations to address the second one. Combining these two approaches we show that the aforementioned language gap mostly disappears, leading to completely different conclusions from our research. We additionally release the corrected dataset to the community.
☆ ManufactuBERT: Efficient Continual Pretraining for Manufacturing LREC 2026
While large general-purpose Transformer-based encoders excel at general language understanding, their performance diminishes in specialized domains like manufacturing due to a lack of exposure to domain-specific terminology and semantics. In this paper, we address this gap by introducing ManufactuBERT, a RoBERTa model continually pretrained on a large-scale corpus curated for the manufacturing domain. We present a comprehensive data processing pipeline to create this corpus from web data, involving an initial domain-specific filtering step followed by a multi-stage deduplication process that removes redundancies. Our experiments show that ManufactuBERT establishes a new state-of-the-art on a range of manufacturing-related NLP tasks, outperforming strong specialized baselines. More importantly, we demonstrate that training on our carefully deduplicated corpus significantly accelerates convergence, leading to a 33\% reduction in training time and computational cost compared to training on the non-deduplicated dataset. The proposed pipeline offers a reproducible example for developing high-performing encoders in other specialized domains. We will release our model and curated corpus at https://huggingface.co/cea-list-ia.
comment: Submitted to LREC 2026
☆ A Toolbox for Improving Evolutionary Prompt Search
Evolutionary prompt optimization has demonstrated effectiveness in refining prompts for LLMs. However, existing approaches lack robust operators and efficient evaluation mechanisms. In this work, we propose several key improvements to evolutionary prompt optimization that can partially generalize to prompt optimization in general: 1) decomposing evolution into distinct steps to enhance the evolution and its control, 2) introducing an LLM-based judge to verify the evolutions, 3) integrating human feedback to refine the evolutionary operator, and 4) developing more efficient evaluation strategies that maintain performance while reducing computational overhead. Our approach improves both optimization quality and efficiency. We release our code, enabling prompt optimization on new tasks and facilitating further research in this area.
☆ Iterative Layer-wise Distillation for Efficient Compression of Large Language Models
This work investigates distillation methods for large language models (LLMs) with the goal of developing compact models that preserve high performance. Several existing approaches are reviewed, with a discussion of their respective strengths and limitations. An improved method based on the ShortGPT approach has been developed, building upon the idea of incorporating iterative evaluation of layer importance. At each step, importance is assessed by measuring performance degradation when individual layers are removed, using a set of representative datasets. This process is combined with further training using a joint loss function based on KL divergence and mean squared error. Experiments on the Qwen2.5-3B model show that the number of layers can be reduced from 36 to 28 (resulting in a 2.47 billion parameter model) with only a 9.7% quality loss, and to 24 layers with an 18% loss. The findings suggest that the middle transformer layers contribute less to inference, underscoring the potential of the proposed method for creating efficient models. The results demonstrate the effectiveness of iterative distillation and fine-tuning, making the approach suitable for deployment in resource-limited settings.
☆ On Text Simplification Metrics and General-Purpose LLMs for Accessible Health Information, and A Potential Architectural Advantage of The Instruction-Tuned LLM class
The increasing health-seeking behavior and digital consumption of biomedical information by the general public necessitate scalable solutions for automatically adapting complex scientific and technical documents into plain language. Automatic text simplification solutions, including advanced large language models, however, continue to face challenges in reliably arbitrating the tension between optimizing readability performance and ensuring preservation of discourse fidelity. This report empirically assesses the performance of two major classes of general-purpose LLMs, demonstrating their linguistic capabilities and foundational readiness for the task compared to a human benchmark. Using a comparative analysis of the instruction-tuned Mistral 24B and the reasoning-augmented QWen2.5 32B, we identify a potential architectural advantage in the instruction-tuned LLM. Mistral exhibits a tempered lexical simplification strategy that enhances readability across a suite of metrics and the simplification-specific formula SARI (mean 42.46), while preserving human-level discourse with a BERTScore of 0.91. QWen also attains enhanced readability performance, but its operational strategy shows a disconnect in balancing between readability and accuracy, reaching a statistically significantly lower BERTScore of 0.89. Additionally, a comprehensive correlation analysis of 21 metrics spanning readability, discourse fidelity, content safety, and underlying distributional measures for mechanistic insights, confirms strong functional redundancies among five readability indices. This empirical evidence tracks baseline performance of the evolving LLMs for the task of text simplification, identifies the instruction-tuned Mistral 24B for simplification, provides necessary heuristics for metric selection, and points to lexical support as a primary domain-adaptation issue for simplification.
☆ Wikipedia-based Datasets in Russian Information Retrieval Benchmark RusBEIR
In this paper, we present a novel series of Russian information retrieval datasets constructed from the "Did you know..." section of Russian Wikipedia. Our datasets support a range of retrieval tasks, including fact-checking, retrieval-augmented generation, and full-document retrieval, by leveraging interesting facts and their referenced Wikipedia articles annotated at the sentence level with graded relevance. We describe the methodology for dataset creation that enables the expansion of existing Russian Information Retrieval (IR) resources. Through extensive experiments, we extend the RusBEIR research by comparing lexical retrieval models, such as BM25, with state-of-the-art neural architectures fine-tuned for Russian, as well as multilingual models. Results of our experiments show that lexical methods tend to outperform neural models on full-document retrieval, while neural approaches better capture lexical semantics in shorter texts, such as in fact-checking or fine-grained retrieval. Using our newly created datasets, we also analyze the impact of document length on retrieval performance and demonstrate that combining retrieval with neural reranking consistently improves results. Our contribution expands the resources available for Russian information retrieval research and highlights the importance of accurate evaluation of retrieval models to achieve optimal performance. All datasets are publicly available at HuggingFace. To facilitate reproducibility and future research, we also release the full implementation on GitHub.
☆ Reasoning-Guided Claim Normalization for Noisy Multilingual Social Media Posts
We address claim normalization for multilingual misinformation detection - transforming noisy social media posts into clear, verifiable statements across 20 languages. The key contribution demonstrates how systematic decomposition of posts using Who, What, Where, When, Why and How questions enables robust cross-lingual transfer despite training exclusively on English data. Our methodology incorporates finetuning Qwen3-14B using LoRA with the provided dataset after intra-post deduplication, token-level recall filtering for semantic alignment and retrieval-augmented few-shot learning with contextual examples during inference. Our system achieves METEOR scores ranging from 41.16 (English) to 15.21 (Marathi), securing third rank on the English leaderboard and fourth rank for Dutch and Punjabi. The approach shows 41.3% relative improvement in METEOR over baseline configurations and substantial gains over existing methods. Results demonstrate effective cross-lingual generalization for Romance and Germanic languages while maintaining semantic coherence across diverse linguistic structures.
☆ Order-Level Attention Similarity Across Language Models: A Latent Commonality NeurIPS 2025
In this paper, we explore an important yet previously neglected question: Do context aggregation patterns across Language Models (LMs) share commonalities? While some works have investigated context aggregation or attention weights in LMs, they typically focus on individual models or attention heads, lacking a systematic analysis across multiple LMs to explore their commonalities. In contrast, we focus on the commonalities among LMs, which can deepen our understanding of LMs and even facilitate cross-model knowledge transfer. In this work, we introduce the Order-Level Attention (OLA) derived from the order-wise decomposition of Attention Rollout and reveal that the OLA at the same order across LMs exhibits significant similarities. Furthermore, we discover an implicit mapping between OLA and syntactic knowledge. Based on these two findings, we propose the Transferable OLA Adapter (TOA), a training-free cross-LM adapter transfer method. Specifically, we treat the OLA as a unified syntactic feature representation and train an adapter that takes OLA as input. Due to the similarities in OLA across LMs, the adapter generalizes to unseen LMs without requiring any parameter updates. Extensive experiments demonstrate that TOA's cross-LM generalization effectively enhances the performance of unseen LMs. Code is available at https://github.com/jinglin-liang/OLAS.
comment: Accepted by NeurIPS 2025
☆ UA-Code-Bench: A Competitive Programming Benchmark for Evaluating LLM Code Generation in Ukrainian
Evaluating the real capabilities of large language models in low-resource languages still represents a challenge, as many existing benchmarks focus on widespread tasks translated from English or evaluate only simple language understanding. This paper introduces UA-Code-Bench, a new open-source benchmark established for a thorough evaluation of language models' code generation and competitive programming problem-solving abilities in Ukrainian. The benchmark comprises 500 problems from the Eolymp platform, evenly distributed across five complexity levels from very easy to very hard. A diverse set of 13 leading proprietary and open-source models, generating Python solutions based on a one-shot prompt, was evaluated via the dedicated Eolymp environment against hidden tests, ensuring code correctness. The obtained results reveal that even top-performing models, such as OpenAI o3 and GPT-5, solve only half of the problems, highlighting the challenge of code generation in low-resource natural language. Furthermore, this research presents a comprehensive analysis of performance across various difficulty levels, as well as an assessment of solution uniqueness and computational efficiency, measured by both elapsed time and memory consumption of the generated solutions. In conclusion, this work demonstrates the value of competitive programming benchmarks in evaluating large language models, especially in underrepresented languages. It also paves the way for future research on multilingual code generation and reasoning-enhanced models. The benchmark, data parsing, preparation, code generation, and evaluation scripts are available at https://huggingface.co/datasets/NLPForUA/ua-code-bench.
comment: 8 pages, 5 figures. XI International conference "Informatics. Culture. Technique." (2025)
☆ Pluralistic Behavior Suite: Stress-Testing Multi-Turn Adherence to Custom Behavioral Policies NeurIPS 2025
Large language models (LLMs) are typically aligned to a universal set of safety and usage principles intended for broad public acceptability. Yet, real-world applications of LLMs often take place within organizational ecosystems shaped by distinctive corporate policies, regulatory requirements, use cases, brand guidelines, and ethical commitments. This reality highlights the need for rigorous and comprehensive evaluation of LLMs with pluralistic alignment goals, an alignment paradigm that emphasizes adaptability to diverse user values and needs. In this work, we present PLURALISTIC BEHAVIOR SUITE (PBSUITE), a dynamic evaluation suite designed to systematically assess LLMs' capacity to adhere to pluralistic alignment specifications in multi-turn, interactive conversations. PBSUITE consists of (1) a diverse dataset of 300 realistic LLM behavioral policies, grounded in 30 industries; and (2) a dynamic evaluation framework for stress-testing model compliance with custom behavioral specifications under adversarial conditions. Using PBSUITE, We find that leading open- and closed-source LLMs maintain robust adherence to behavioral policies in single-turn settings (less than 4% failure rates), but their compliance weakens substantially in multi-turn adversarial interactions (up to 84% failure rates). These findings highlight that existing model alignment and safety moderation methods fall short in coherently enforcing pluralistic behavioral policies in real-world LLM interactions. Our work contributes both the dataset and analytical framework to support future research toward robust and context-aware pluralistic alignment techniques.
comment: Accepted at the Multi-Turn Interactions workshop at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Towards Mitigating Hallucinations in Large Vision-Language Models by Refining Textual Embeddings
In this work, we identify an inherent bias in prevailing LVLM architectures toward the language modality, largely resulting from the common practice of simply appending visual embeddings to the input text sequence. To address this, we propose a simple yet effective method that refines textual embeddings by integrating average-pooled visual features. Our approach demonstrably improves visual grounding and significantly reduces hallucinations on established benchmarks. While average pooling offers a straightforward, robust, and efficient means of incorporating visual information, we believe that more sophisticated fusion methods could further enhance visual grounding and cross-modal alignment. Given that the primary focus of this work is to highlight the modality imbalance and its impact on hallucinations -- and to show that refining textual embeddings with visual information mitigates this issue -- we leave exploration of advanced fusion strategies for future work.
☆ Enhancing Public Speaking Skills in Engineering Students Through AI
This research-to-practice full paper was inspired by the persistent challenge in effective communication among engineering students. Public speaking is a necessary skill for future engineers as they have to communicate technical knowledge with diverse stakeholders. While universities offer courses or workshops, they are unable to offer sustained and personalized training to students. Providing comprehensive feedback on both verbal and non-verbal aspects of public speaking is time-intensive, making consistent and individualized assessment impractical. This study integrates research on verbal and non-verbal cues in public speaking to develop an AI-driven assessment model for engineering students. Our approach combines speech analysis, computer vision, and sentiment detection into a multi-modal AI system that provides assessment and feedback. The model evaluates (1) verbal communication (pitch, loudness, pacing, intonation), (2) non-verbal communication (facial expressions, gestures, posture), and (3) expressive coherence, a novel integration ensuring alignment between speech and body language. Unlike previous systems that assess these aspects separately, our model fuses multiple modalities to deliver personalized, scalable feedback. Preliminary testing demonstrated that our AI-generated feedback was moderately aligned with expert evaluations. Among the state-of-the-art AI models evaluated, all of which were Large Language Models (LLMs), including Gemini and OpenAI models, Gemini Pro emerged as the best-performing, showing the strongest agreement with human annotators. By eliminating reliance on human evaluators, this AI-driven public speaking trainer enables repeated practice, helping students naturally align their speech with body language and emotion, crucial for impactful and professional communication.
☆ Acquiring Common Chinese Emotional Events Using Large Language Model
Knowledge about emotional events is an important kind of knowledge which has been applied to improve the effectiveness of different applications. However, emotional events cannot be easily acquired, especially common or generalized emotional events that are context-independent. The goal of this paper is to obtain common emotional events in Chinese language such as "win a prize" and "be criticized". Our approach begins by collecting a comprehensive list of Chinese emotional event indicators. Then, we generate emotional events by prompting a Chinese large language model (LLM) using these indicators. To ensure the quality of these emotional events, we train a filter to discard invalid generated results. We also classify these emotional events as being positive events and negative events using different techniques. Finally, we harvest a total of 102,218 high-quality common emotional events with sentiment polarity labels, which is the only large-scale commonsense knowledge base of emotional events in Chinese language. Intrinsic evaluation results show that the proposed method in this paper can be effectively used to acquire common Chinese emotional events. An extrinsic use case also demonstrates the strong potential of common emotional events in the field of emotion cause extraction (ECE). Related resources including emotional event indicators and emotional events will be released after the publication of this paper.
comment: I am the second author (Guangzheng Zhu) and I am submitting this paper on behalf of all co-authors
☆ Too Good to be Bad: On the Failure of LLMs to Role-Play Villains
Large Language Models (LLMs) are increasingly tasked with creative generation, including the simulation of fictional characters. However, their ability to portray non-prosocial, antagonistic personas remains largely unexamined. We hypothesize that the safety alignment of modern LLMs creates a fundamental conflict with the task of authentically role-playing morally ambiguous or villainous characters. To investigate this, we introduce the Moral RolePlay benchmark, a new dataset featuring a four-level moral alignment scale and a balanced test set for rigorous evaluation. We task state-of-the-art LLMs with role-playing characters from moral paragons to pure villains. Our large-scale evaluation reveals a consistent, monotonic decline in role-playing fidelity as character morality decreases. We find that models struggle most with traits directly antithetical to safety principles, such as ``Deceitful'' and ``Manipulative'', often substituting nuanced malevolence with superficial aggression. Furthermore, we demonstrate that general chatbot proficiency is a poor predictor of villain role-playing ability, with highly safety-aligned models performing particularly poorly. Our work provides the first systematic evidence of this critical limitation, highlighting a key tension between model safety and creative fidelity. Our benchmark and findings pave the way for developing more nuanced, context-aware alignment methods.
☆ ORCHID: Orchestrated Retrieval-Augmented Classification with Human-in-the-Loop Intelligent Decision-Making for High-Risk Property
High-Risk Property (HRP) classification is critical at U.S. Department of Energy (DOE) sites, where inventories include sensitive and often dual-use equipment. Compliance must track evolving rules designated by various export control policies to make transparent and auditable decisions. Traditional expert-only workflows are time-consuming, backlog-prone, and struggle to keep pace with shifting regulatory boundaries. We demo ORCHID, a modular agentic system for HRP classification that pairs retrieval-augmented generation (RAG) with human oversight to produce policy-based outputs that can be audited. Small cooperating agents, retrieval, description refiner, classifier, validator, and feedback logger, coordinate via agent-to-agent messaging and invoke tools through the Model Context Protocol (MCP) for model-agnostic on-premise operation. The interface follows an Item to Evidence to Decision loop with step-by-step reasoning, on-policy citations, and append-only audit bundles (run-cards, prompts, evidence). In preliminary tests on real HRP cases, ORCHID improves accuracy and traceability over a non-agentic baseline while deferring uncertain items to Subject Matter Experts (SMEs). The demonstration shows single item submission, grounded citations, SME feedback capture, and exportable audit artifacts, illustrating a practical path to trustworthy LLM assistance in sensitive DOE compliance workflows.
☆ LoPT: Lossless Parallel Tokenization Acceleration for Long Context Inference of Large Language Model
Long context inference scenarios have become increasingly important for large language models, yet they introduce significant computational latency. While prior research has optimized long-sequence inference through operators, model architectures, and system frameworks, tokenization remains an overlooked bottleneck. Existing parallel tokenization methods accelerate processing through text segmentation and multi-process tokenization, but they suffer from inconsistent results due to boundary artifacts that occur after merging. To address this, we propose LoPT, a novel Lossless Parallel Tokenization framework that ensures output identical to standard sequential tokenization. Our approach employs character-position-based matching and dynamic chunk length adjustment to align and merge tokenized segments accurately. Extensive experiments across diverse long-text datasets demonstrate that LoPT achieves significant speedup while guaranteeing lossless tokenization. We also provide theoretical proof of consistency and comprehensive analytical studies to validate the robustness of our method.
☆ Diagnosing and Mitigating Semantic Inconsistencies in Wikidata's Classification Hierarchy
Wikidata is currently the largest open knowledge graph on the web, encompassing over 120 million entities. It integrates data from various domain-specific databases and imports a substantial amount of content from Wikipedia, while also allowing users to freely edit its content. This openness has positioned Wikidata as a central resource in knowledge graph research and has enabled convenient knowledge access for users worldwide. However, its relatively loose editorial policy has also led to a degree of taxonomic inconsistency. Building on prior work, this study proposes and applies a novel validation method to confirm the presence of classification errors, over-generalized subclass links, and redundant connections in specific domains of Wikidata. We further introduce a new evaluation criterion for determining whether such issues warrant correction and develop a system that allows users to inspect the taxonomic relationships of arbitrary Wikidata entities-leveraging the platform's crowdsourced nature to its full potential.
☆ AgentExpt: Automating AI Experiment Design with LLM-based Resource Retrieval Agent
Large language model agents are becoming increasingly capable at web-centric tasks such as information retrieval, complex reasoning. These emerging capabilities have given rise to surge research interests in developing LLM agent for facilitating scientific quest. One key application in AI research is to automate experiment design through agentic dataset and baseline retrieval. However, prior efforts suffer from limited data coverage, as recommendation datasets primarily harvest candidates from public portals and omit many datasets actually used in published papers, and from an overreliance on content similarity that biases model toward superficial similarity and overlooks experimental suitability. Harnessing collective perception embedded in the baseline and dataset citation network, we present a comprehensive framework for baseline and dataset recommendation. First, we design an automated data-collection pipeline that links roughly one hundred thousand accepted papers to the baselines and datasets they actually used. Second, we propose a collective perception enhanced retriever. To represent the position of each dataset or baseline within the scholarly network, it concatenates self-descriptions with aggregated citation contexts. To achieve efficient candidate recall, we finetune an embedding model on these representations. Finally, we develop a reasoning-augmented reranker that exact interaction chains to construct explicit reasoning chains and finetunes a large language model to produce interpretable justifications and refined rankings. The dataset we curated covers 85\% of the datasets and baselines used at top AI conferences over the past five years. On our dataset, the proposed method outperforms the strongest prior baseline with average gains of +5.85\% in Recall@20, +8.30\% in HitRate@5. Taken together, our results advance reliable, interpretable automation of experimental design.
comment: 10 pages
☆ BudgetMem: Learning Selective Memory Policies for Cost-Efficient Long-Context Processing in Language Models
Large Language Models (LLMs) face significant computational and memory constraints when processing long contexts, despite growing demand for applications requiring reasoning over extensive documents, multi-session dialogues, and book length texts. While recent advances have extended context windows to 100K-1M tokens, such approaches incur prohibitive costs for resource constrained deployments. We propose BudgetMem, a novel memory augmented architecture that learns what to remember rather than remembering everything. Our system combines selective memory policies with feature based salience scoring (entity density, TF-IDF, discourse markers, position bias) to decide which information merits storage under strict budget constraints. Unlike existing retrieval augmented generation (RAG) systems that store all chunks, BudgetMem employs learned gating mechanisms coupled with BM25 sparse retrieval for efficient information access. Through comprehensive experiments on 700 question answer pairs across short (237 tokens) and long (5K-10K tokens) documents with Llama-3.2-3B-Instruct, we demonstrate that BudgetMem achieves remarkable results on long documents: only 1.0% F1 score degradation while saving 72.4% memory compared to baseline RAG. We validate our approach through budget sensitivity analysis (testing 7 budget ratios), naive baseline comparisons, and document length analysis, showing that BudgetMem's benefits increase with document length. Our work provides a practical pathway for deploying capable long context systems on modest hardware, democratizing access to advanced language understanding capabilities.
comment: 11 pages, 3 figures, 5 tables. Evaluated on 700 QA pairs across multiple document lengths
☆ SDS KoPub VDR: A Benchmark Dataset for Visual Document Retrieval in Korean Public Documents
Existing benchmarks for visual document retrieval (VDR) largely overlook non-English languages and the structural complexity of official publications. To address this critical gap, we introduce SDS KoPub VDR, the first large-scale, publicly available benchmark for retrieving and understanding Korean public documents. The benchmark is built upon a corpus of 361 real-world documents (40,781 pages), including 256 files under the KOGL Type 1 license and 105 from official legal portals, capturing complex visual elements like tables, charts, and multi-column layouts. To establish a challenging and reliable evaluation set, we constructed 600 query-page-answer triples. These were initially generated using multimodal models (e.g., GPT-4o) and subsequently underwent a rigorous human verification and refinement process to ensure factual accuracy and contextual relevance. The queries span six major public domains and are systematically categorized by the reasoning modality required: text-based, visual-based (e.g., chart interpretation), and cross-modal. We evaluate SDS KoPub VDR on two complementary tasks that reflect distinct retrieval paradigms: (1) text-only retrieval, which measures a model's ability to locate relevant document pages based solely on textual signals, and (2) multimodal retrieval, which assesses retrieval performance when visual features (e.g., tables, charts, and layouts) are jointly leveraged alongside text. This dual-task evaluation reveals substantial performance gaps, particularly in multimodal scenarios requiring cross-modal reasoning, even for state-of-the-art models. As a foundational resource, SDS KoPub VDR not only enables rigorous and fine-grained evaluation across textual and multimodal retrieval tasks but also provides a clear roadmap for advancing multimodal AI in complex, real-world document intelligence.
comment: 27 pages, 15 figures, 6 tables
☆ Association via Entropy Reduction
Prior to recent successes using neural networks, term frequency-inverse document frequency (tf-idf) was clearly regarded as the best choice for identifying documents related to a query. We provide a different score, aver, and observe, on a dataset with ground truth marking for association, that aver does do better at finding assciated pairs than tf-idf. This example involves finding associated vertices in a large graph and that may be an area where neural networks are not currently an obvious best choice. Beyond this one anecdote, we observe that (1) aver has a natural threshold for declaring pairs as unassociated while tf-idf does not, (2) aver can distinguish between pairs of documents for which tf-idf gives a score of 1.0, (3) aver can be applied to larger collections of documents than pairs while tf-idf cannot, and (4) that aver is derived from entropy under a simple statistical model while tf-idf is a construction designed to achieve a certain goal and hence aver may be more "natural." To be fair, we also observe that (1) writing down and computing the aver score for a pair is more complex than for tf-idf and (2) that the fact that the aver score is naturally scale-free makes it more complicated to interpret aver scores.
☆ Anchors in the Machine: Behavioral and Attributional Evidence of Anchoring Bias in LLMs
Large language models (LLMs) are increasingly examined as both behavioral subjects and decision systems, yet it remains unclear whether observed cognitive biases reflect surface imitation or deeper probability shifts. Anchoring bias, a classic human judgment bias, offers a critical test case. While prior work shows LLMs exhibit anchoring, most evidence relies on surface-level outputs, leaving internal mechanisms and attributional contributions unexplored. This paper advances the study of anchoring in LLMs through three contributions: (1) a log-probability-based behavioral analysis showing that anchors shift entire output distributions, with controls for training-data contamination; (2) exact Shapley-value attribution over structured prompt fields to quantify anchor influence on model log-probabilities; and (3) a unified Anchoring Bias Sensitivity Score integrating behavioral and attributional evidence across six open-source models. Results reveal robust anchoring effects in Gemma-2B, Phi-2, and Llama-2-7B, with attribution signaling that the anchors influence reweighting. Smaller models such as GPT-2, Falcon-RW-1B, and GPT-Neo-125M show variability, suggesting scale may modulate sensitivity. Attributional effects, however, vary across prompt designs, underscoring fragility in treating LLMs as human substitutes. The findings demonstrate that anchoring bias in LLMs is robust, measurable, and interpretable, while highlighting risks in applied domains. More broadly, the framework bridges behavioral science, LLM safety, and interpretability, offering a reproducible path for evaluating other cognitive biases in LLMs.
☆ Language Generation: Complexity Barriers and Implications for Learning
Kleinberg and Mullainathan showed that, in principle, language generation is always possible: with sufficiently many positive examples, a learner can eventually produce sentences indistinguishable from those of a target language. However, the existence of such a guarantee does not speak to its practical feasibility. In this work, we show that even for simple and well-studied language families -- such as regular and context-free languages -- the number of examples required for successful generation can be extraordinarily large, and in some cases not bounded by any computable function. These results reveal a substantial gap between theoretical possibility and efficient learnability. They suggest that explaining the empirical success of modern language models requires a refined perspective -- one that takes into account structural properties of natural language that make effective generation possible in practice.
☆ Multi-Scale Feature Fusion and Graph Neural Network Integration for Text Classification with Large Language Models
This study investigates a hybrid method for text classification that integrates deep feature extraction from large language models, multi-scale fusion through feature pyramids, and structured modeling with graph neural networks to enhance performance in complex semantic contexts. First, the large language model captures contextual dependencies and deep semantic representations of the input text, providing a rich feature foundation for subsequent modeling. Then, based on multi-level feature representations, the feature pyramid mechanism effectively integrates semantic features of different scales, balancing global information and local details to construct hierarchical semantic expressions. Furthermore, the fused features are transformed into graph representations, and graph neural networks are employed to capture latent semantic relations and logical dependencies in the text, enabling comprehensive modeling of complex interactions among semantic units. On this basis, the readout and classification modules generate the final category predictions. The proposed method demonstrates significant advantages in robustness alignment experiments, outperforming existing models on ACC, F1-Score, AUC, and Precision, which verifies the effectiveness and stability of the framework. This study not only constructs an integrated framework that balances global and local information as well as semantics and structure, but also provides a new perspective for multi-scale feature fusion and structured semantic modeling in text classification tasks.
☆ In-Context Learning Without Copying
Induction heads are attention heads that perform inductive copying by matching patterns from earlier context and copying their continuations verbatim. As models develop induction heads, they often experience a sharp drop in training loss, a phenomenon cited as evidence that induction heads may serve as a prerequisite for more complex in-context learning (ICL) capabilities. In this work, we ask whether transformers can still acquire ICL capabilities when inductive copying is suppressed. We propose Hapax, a setting where we omit the loss contribution of any token that can be correctly predicted by induction heads. Despite a significant reduction in inductive copying, performance on abstractive ICL tasks (i.e., tasks where the answer is not contained in the input context) remains comparable and surpasses the vanilla model on 13 of 21 tasks, even though 31.7\% of tokens are omitted from the loss. Furthermore, our model achieves lower loss values on token positions that cannot be predicted correctly by induction heads. Mechanistic analysis further shows that models trained with Hapax develop fewer and weaker induction heads but still preserve ICL capabilities. Taken together, our findings indicate that inductive copying is not essential for learning abstractive ICL mechanisms.
☆ OckBench: Measuring the Efficiency of LLM Reasoning
Large language models such as GPT-4, Claude 3, and the Gemini series have improved automated reasoning and code generation. However, existing benchmarks mainly focus on accuracy and output quality, and they ignore an important factor: decoding token efficiency. In real systems, generating 10,000 tokens versus 100,000 tokens leads to large differences in latency, cost, and energy. In this work, we introduce OckBench, a model-agnostic and hardware-agnostic benchmark that evaluates both accuracy and token count for reasoning and coding tasks. Through experiments comparing multiple open- and closed-source models, we uncover that many models with comparable accuracy differ wildly in token consumption, revealing that efficiency variance is a neglected but significant axis of differentiation. We further demonstrate Pareto frontiers over the accuracy-efficiency plane and argue for an evaluation paradigm shift: we should no longer treat tokens as "free" to multiply. OckBench provides a unified platform for measuring, comparing, and guiding research in token-efficient reasoning. Our benchmarks are available at https://ockbench.github.io/ .
☆ Persian Musical Instruments Classification Using Polyphonic Data Augmentation
Musical instrument classification is essential for music information retrieval (MIR) and generative music systems. However, research on non-Western traditions, particularly Persian music, remains limited. We address this gap by introducing a new dataset of isolated recordings covering seven traditional Persian instruments, two common but originally non-Persian instruments (i.e., violin, piano), and vocals. We propose a culturally informed data augmentation strategy that generates realistic polyphonic mixtures from monophonic samples. Using the MERT model (Music undERstanding with large-scale self-supervised Training) with a classification head, we evaluate our approach with out-of-distribution data which was obtained by manually labeling segments of traditional songs. On real-world polyphonic Persian music, the proposed method yielded the best ROC-AUC (0.795), highlighting complementary benefits of tonal and temporal coherence. These results demonstrate the effectiveness of culturally grounded augmentation for robust Persian instrument recognition and provide a foundation for culturally inclusive MIR and diverse music generation systems.
comment: 9 pages, 2 figures, 4 tables
☆ Long Grounded Thoughts: Distilling Compositional Visual Reasoning Chains at Scale
Recent progress in multimodal reasoning has been driven largely by undisclosed datasets and proprietary data synthesis recipes, leaving open questions about how to systematically build large-scale, vision-centric reasoning datasets, particularly for tasks that go beyond visual math. In this work, we introduce a new reasoning data generation framework spanning diverse skills and levels of complexity with over 1M high-quality synthetic vision-centric questions. The dataset also includes preference data and instruction prompts supporting both offline and online RL. Our synthesis framework proceeds in two stages: (1) scale; and (2) complexity. Reasoning traces are then synthesized through a two-stage process that leverages VLMs and reasoning LLMs, producing CoT traces for VLMs that capture the richness and diverse cognitive behaviors found in frontier reasoning models. Remarkably, we show that finetuning Qwen2.5-VL-7B on our data outperforms all open-data baselines across all evaluated vision-centric benchmarks, and even surpasses strong closed-data models such as MiMo-VL-7B-RL on V* Bench, CV-Bench and MMStar-V. Perhaps most surprising, despite being entirely vision-centric, our data transfers positively to text-only reasoning (MMLU-Pro) and audio reasoning (MMAU), demonstrating its effectiveness. Similarly, despite not containing videos or embodied visual data, we observe notable gains when evaluating on a single-evidence embodied QA benchmark (NiEH). Finally, we use our data to analyze the entire VLM post-training pipeline. Our empirical analysis highlights that (i) SFT on high-quality data with non-linear reasoning traces is essential for effective online RL, (ii) staged offline RL matches online RL's performance while reducing compute demands, and (iii) careful SFT on high quality data can substantially improve out-of-domain, cross-modality transfer.
comment: Project Page: https://nvlabs.github.io/LongGroundedThoughts/
☆ TabDistill: Distilling Transformers into Neural Nets for Few-Shot Tabular Classification
Transformer-based models have shown promising performance on tabular data compared to their classical counterparts such as neural networks and Gradient Boosted Decision Trees (GBDTs) in scenarios with limited training data. They utilize their pre-trained knowledge to adapt to new domains, achieving commendable performance with only a few training examples, also called the few-shot regime. However, the performance gain in the few-shot regime comes at the expense of significantly increased complexity and number of parameters. To circumvent this trade-off, we introduce TabDistill, a new strategy to distill the pre-trained knowledge in complex transformer-based models into simpler neural networks for effectively classifying tabular data. Our framework yields the best of both worlds: being parameter-efficient while performing well with limited training data. The distilled neural networks surpass classical baselines such as regular neural networks, XGBoost and logistic regression under equal training data, and in some cases, even the original transformer-based models that they were distilled from.
☆ A Representation Sharpening Framework for Zero Shot Dense Retrieval
Zero-shot dense retrieval is a challenging setting where a document corpus is provided without relevant queries, necessitating a reliance on pretrained dense retrievers (DRs). However, since these DRs are not trained on the target corpus, they struggle to represent semantic differences between similar documents. To address this failing, we introduce a training-free representation sharpening framework that augments a document's representation with information that helps differentiate it from similar documents in the corpus. On over twenty datasets spanning multiple languages, the representation sharpening framework proves consistently superior to traditional retrieval, setting a new state-of-the-art on the BRIGHT benchmark. We show that representation sharpening is compatible with prior approaches to zero-shot dense retrieval and consistently improves their performance. Finally, we address the performance-cost tradeoff presented by our framework and devise an indexing-time approximation that preserves the majority of our performance gains over traditional retrieval, yet suffers no additional inference-time cost.
comment: 15 pages, 4 figures
☆ Optimizing Diversity and Quality through Base-Aligned Model Collaboration
Alignment has greatly improved large language models (LLMs)' output quality at the cost of diversity, yielding highly similar outputs across generations. We propose Base-Aligned Model Collaboration (BACo), an inference-time token-level model collaboration framework that dynamically combines a base LLM with its aligned counterpart to optimize diversity and quality. Inspired by prior work (Fei et al., 2025), BACo employs routing strategies that determine, at each token, from which model to decode based on next-token prediction uncertainty and predicted contents' semantic role. Prior diversity-promoting methods, such as retraining, prompt engineering, and multi-sampling methods, improve diversity but often degrade quality or require costly decoding or post-training. In contrast, BACo achieves both high diversity and quality post hoc within a single pass, while offering strong controllability. We explore a family of routing strategies, across three open-ended generation tasks and 13 metrics covering diversity and quality, BACo consistently surpasses state-of-the-art inference-time baselines. With our best router, BACo achieves a 21.3% joint improvement in diversity and quality. Human evaluations also mirror these improvements. The results suggest that collaboration between base and aligned models can optimize and control diversity and quality.
comment: 52 pages, 16 figures
♻ ☆ TRACE: Textual Relevance Augmentation and Contextual Encoding for Multimodal Hate Detection AAAI 2026
Social media memes are a challenging domain for hate detection because they intertwine visual and textual cues into culturally nuanced messages. To tackle these challenges, we introduce TRACE, a hierarchical multimodal framework that leverages visually grounded context augmentation, along with a novel caption-scoring network to emphasize hate-relevant content, and parameter-efficient fine-tuning of CLIP's text encoder. Our experiments demonstrate that selectively fine-tuning deeper text encoder layers significantly enhances performance compared to simpler projection-layer fine-tuning methods. Specifically, our framework achieves state-of-the-art accuracy (0.807) and F1-score (0.806) on the widely-used Hateful Memes dataset, matching the performance of considerably larger models while maintaining efficiency. Moreover, it achieves superior generalization on the MultiOFF offensive meme dataset (F1-score 0.673), highlighting robustness across meme categories. Additional analyses confirm that robust visual grounding and nuanced text representations significantly reduce errors caused by benign confounders. We publicly release our code to facilitate future research.
comment: Accepted to Special Track on AI for Social Impact (AISI) at AAAI 2026
♻ ☆ Towards Explainable Fake Image Detection with Multi-Modal Large Language Models ACM MM 2025
Progress in image generation raises significant public security concerns. We argue that fake image detection should not operate as a "black box". Instead, an ideal approach must ensure both strong generalization and transparency. Recent progress in Multi-modal Large Language Models (MLLMs) offers new opportunities for reasoning-based AI-generated image detection. In this work, we evaluate the capabilities of MLLMs in comparison to traditional detection methods and human evaluators, highlighting their strengths and limitations. Furthermore, we design six distinct prompts and propose a framework that integrates these prompts to develop a more robust, explainable, and reasoning-driven detection system. The code is available at https://github.com/Gennadiyev/mllm-defake.
comment: Accepted to ACM MM 2025; 14 pages including Appendix
♻ ☆ To Word Senses and Beyond: Inducing Concepts with Contextualized Language Models EMNLP 2024
Polysemy and synonymy are two crucial interrelated facets of lexical ambiguity. While both phenomena are widely documented in lexical resources and have been studied extensively in NLP, leading to dedicated systems, they are often being considered independently in practical problems. While many tasks dealing with polysemy (e.g. Word Sense Disambiguation or Induction) highlight the role of word's senses, the study of synonymy is rooted in the study of concepts, i.e. meanings shared across the lexicon. In this paper, we introduce Concept Induction, the unsupervised task of learning a soft clustering among words that defines a set of concepts directly from data. This task generalizes Word Sense Induction. We propose a bi-level approach to Concept Induction that leverages both a local lemma-centric view and a global cross-lexicon view to induce concepts. We evaluate the obtained clustering on SemCor's annotated data and obtain good performance (BCubed F1 above 0.60). We find that the local and the global levels are mutually beneficial to induce concepts and also senses in our setting. Finally, we create static embeddings representing our induced concepts and use them on the Word-in-Context task, obtaining competitive performance with the State-of-the-Art.
comment: Published in EMNLP 2024 main conference proceedings
♻ ☆ Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
As information grows exponentially, enterprises face increasing pressure to transform unstructured data into coherent, actionable insights. While autonomous agents show promise, they often struggle with domain-specific nuances, intent alignment, and enterprise integration. We present Enterprise Deep Research (EDR), a multi-agent system that integrates (1) a Master Planning Agent for adaptive query decomposition, (2) four specialized search agents (General, Academic, GitHub, LinkedIn), (3) an extensible MCP-based tool ecosystem supporting NL2SQL, file analysis, and enterprise workflows, (4) a Visualization Agent for data-driven insights, and (5) a reflection mechanism that detects knowledge gaps and updates research direction with optional human-in-the-loop steering guidance. These components enable automated report generation, real-time streaming, and seamless enterprise deployment, as validated on internal datasets. On open-ended benchmarks including DeepResearch Bench and DeepConsult, EDR outperforms state-of-the-art agentic systems without any human steering. We release the EDR framework and benchmark trajectories to advance research on multi-agent reasoning applications. Code at https://github.com/SalesforceAIResearch/enterprise-deep-research and Dataset at https://huggingface.co/datasets/Salesforce/EDR-200
comment: Technical report; 13 pages plus references and appendices
♻ ☆ P-ReMIS: Pragmatic Reasoning in Mental Health and a Social Implication
Although explainability and interpretability have received significant attention in artificial intelligence (AI) and natural language processing (NLP) for mental health, reasoning has not been examined in the same depth. Addressing this gap is essential to bridge NLP and mental health through interpretable and reasoning-capable AI systems. To this end, we investigate the pragmatic reasoning capability of large-language models (LLMs) in the mental health domain. We introduce PRiMH dataset, and propose pragmatic reasoning tasks in mental health with pragmatic implicature and presupposition phenomena. In particular, we formulate two tasks in implicature and one task in presupposition. To benchmark the dataset and the tasks presented, we consider four models: Llama3.1, Mistral, MentaLLaMa, and Qwen. The results of the experiments suggest that Mistral and Qwen show substantial reasoning abilities in the domain. Subsequently, we study the behavior of MentaLLaMA on the proposed reasoning tasks with the rollout attention mechanism. In addition, we also propose three StiPRompts to study the stigma around mental health with the state-of-the-art LLMs, GPT4o-mini, Deepseek-chat, and Claude-3.5-haiku. Our evaluated findings show that Claude-3.5-haiku deals with stigma more responsibly compared to the other two LLMs.
♻ ☆ LimiX: Unleashing Structured-Data Modeling Capability for Generalist Intelligence
We argue that progress toward general intelligence requires complementary foundation models grounded in language, the physical world, and structured data. This report presents LimiX-16M and LimiX-2M, two instantiations of our large structured-data models (LDMs). Both models treat structured data as a joint distribution over variables and missingness, thus capable of addressing a wide range of tabular tasks through query-based conditional prediction via a single model. They are pretrained using masked joint-distribution modeling with an episodic, context-conditional objective, supporting rapid, training-free adaptation at inference. We evaluate LimiX models across 11 large structured-data benchmarks with broad regimes of sample size, feature dimensionality, class number, categorical-to-numerical feature ratio, missingness, and sample-to-feature ratios. LimiX-16M consistently surpasses strong baselines, as shown in Figure 1 and Figure 2. The superiority holds across a wide range of tasks, such as classification, regression, missing value imputation, and data generation, often by substantial margins, while avoiding task-specific architectures or bespoke training per task. Notably, LimiX-2M delivers strong results under tight compute and memory budgets. We also present the first scaling law study for LDMs, revealing how data and model scaling jointly influence downstream performance and offering quantitative guidance for tabular foundation modeling. All LimiX models are publicly accessible under Apache 2.0.
comment: 61 pages
♻ ☆ Inference-Time Hyper-Scaling with KV Cache Compression NeurIPS 2025
Inference-time scaling trades efficiency for increased reasoning accuracy by generating longer or more parallel sequences. However, in Transformer LLMs, generation cost is bottlenecked by the size of the key-value (KV) cache, rather than the number of generated tokens. Hence, we explore inference-time hyper-scaling: by compressing the KV cache, we can generate more tokens within the same compute budget and further improve the accuracy of scaled inference. The success of this approach, however, hinges on the ability of compression methods to preserve accuracy even at high compression ratios. To make hyper-scaling practical, we introduce Dynamic Memory Sparsification (DMS), a novel method for sparsifying KV caches that only requires 1K training steps to achieve 8$\times$ compression, while maintaining better accuracy than training-free sparse attention. Instead of prematurely discarding cached tokens, DMS delays token eviction, implicitly merging representations and preserving critical information. We demonstrate the effectiveness of inference-time hyper-scaling with DMS on multiple families of LLMs, showing that it boosts accuracy for comparable inference latency and memory load. For instance, we enhance Qwen-R1 32B by 12.0 points on AIME 24, 8.6 on GPQA, and 9.7 on LiveCodeBench on average for an equivalent number of memory reads.
comment: Accepted to NeurIPS 2025
♻ ☆ GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models
The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.
comment: 28 papges
♻ ☆ What Can String Probability Tell Us About Grammaticality?
What have language models (LMs) learned about grammar? This question remains hotly debated, with major ramifications for linguistic theory. However, since probability and grammaticality are distinct notions in linguistics, it is not obvious what string probabilities can reveal about an LM's underlying grammatical knowledge. We present a theoretical analysis of the relationship between grammar, meaning, and string probability, based on simple assumptions about the generative process of corpus data. Our framework makes three predictions, which we validate empirically using 280K sentence pairs in English and Chinese: (1) correlation between the probability of strings within minimal pairs, i.e., string pairs with minimal semantic differences; (2) correlation between models' and humans' deltas within minimal pairs; and (3) poor separation in probability space between unpaired grammatical and ungrammatical strings. Our analyses give theoretical grounding for using probability to learn about LMs' structural knowledge, and suggest directions for future work in LM grammatical evaluation.
♻ ☆ Are Humans as Brittle as Large Language Models?
The output of large language models (LLMs) is unstable, due both to non-determinism of the decoding process as well as to prompt brittleness. While the intrinsic non-determinism of LLM generation may mimic existing uncertainty in human annotations through distributional shifts in outputs, it is largely assumed, yet unexplored, that the prompt brittleness effect is unique to LLMs. This raises the question: do human annotators show similar sensitivity to prompt changes? If so, should prompt brittleness in LLMs be considered problematic? One may alternatively hypothesize that prompt brittleness correctly reflects human annotation variances. To fill this research gap, we systematically compare the effects of prompt modifications on LLMs and identical instruction modifications for human annotators, focusing on the question of whether humans are similarly sensitive to prompt perturbations. To study this, we prompt both humans and LLMs for a set of text classification tasks conditioned on prompt variations. Our findings indicate that both humans and LLMs exhibit increased brittleness in response to specific types of prompt modifications, particularly those involving the substitution of alternative label sets or label formats. However, the distribution of human judgments is less affected by typographical errors and reversed label order than that of LLMs.
♻ ☆ Policy-as-Prompt: Turning AI Governance Rules into Guardrails for AI Agents
As autonomous AI agents are used in regulated and safety-critical settings, organizations need effective ways to turn policy into enforceable controls. We introduce a regulatory machine learning framework that converts unstructured design artifacts (like PRDs, TDDs, and code) into verifiable runtime guardrails. Our Policy as Prompt method reads these documents and risk controls to build a source-linked policy tree. This tree is then compiled into lightweight, prompt-based classifiers for real-time runtime monitoring. The system is built to enforce least privilege and data minimization. For conformity assessment, it provides complete provenance, traceability, and audit logging, all integrated with a human-in-the-loop review process. Evaluations show our system reduces prompt-injection risk, blocks out-of-scope requests, and limits toxic outputs. It also generates auditable rationales aligned with AI governance frameworks. By treating policies as executable prompts (a policy-as-code for agents), this approach enables secure-by-design deployment, continuous compliance, and scalable AI safety and AI security assurance for regulatable ML.
comment: Accepted at 3rd Regulatable ML Workshop at NEURIPS 2025
♻ ☆ MorphTok: Morphologically Grounded Tokenization for Indian Languages ICML 2025
Tokenization is a crucial step in NLP, especially with the rise of large language models (LLMs), impacting downstream performance, computational cost, and efficiency. Existing LLMs rely on the classical Byte-pair Encoding (BPE) algorithm for subword tokenization that greedily merges frequent character bigrams, often leading to segmentation that does not align with linguistically meaningful units. To address this, we propose morphology-aware segmentation as a pre-tokenization step before applying BPE. To facilitate morphology-aware segmentation, we create a novel dataset for Hindi and Marathi, incorporating sandhi splitting to enhance the subword tokenization. Experiments on downstream tasks show that morphologically grounded tokenization improves machine translation and language modeling performance. Additionally, to handle the dependent vowels common in syllable-based writing systems used by Indic languages, we propose Constrained BPE (CBPE), an extension to the standard BPE algorithm incorporating script-specific constraints. In particular, CBPE handles dependent vowels to form a cohesive unit with other characters instead of occurring as a single unit. Our results show that CBPE achieves a 1.68\% reduction in fertility scores while maintaining comparable or improved downstream performance in machine translation and language modeling, offering a computationally efficient alternative to standard BPE. Moreover, to evaluate segmentation across different tokenization algorithms, we introduce a new human evaluation metric, \textit{EvalTok}, enabling more human-grounded assessment.
comment: Accepted at Tokenization Workshop (TokShop), ICML 2025
♻ ☆ InterFeedback: Unveiling Interactive Intelligence of Large Multimodal Models via Human Feedback EMNLP 2025
Existing benchmarks do not test Large Multimodal Models (LMMs) on their interactive intelligence with human users, which is vital for developing general-purpose AI assistants. We design InterFeedback, an interactive framework, which can be applied to any LMM and dataset to assess this ability autonomously. On top of this, we introduce InterFeedback-Bench which evaluates interactive intelligence using two representative datasets, MMMU-Pro and MathVerse, to test 10 different open-source LMMs. Additionally, we present InterFeedback-Human, a newly collected dataset of 120 cases designed for manually testing interactive performance in leading models such as OpenAI-o1 and Claude-Sonnet-4. Our evaluation results indicate that even the state-of-the-art LMM, OpenAI-o1, struggles to refine its responses based on human feedback, achieving an average score of less than 50%. Our findings point to the need for methods that can enhance LMMs' capabilities to interpret and benefit from feedback.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ MMDocIR: Benchmarking Multimodal Retrieval for Long Documents EMNLP-2025
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text. Our dataset is available at https://mmdocrag.github.io/MMDocIR/.
comment: Paper accepted to EMNLP-2025(Main)
♻ ☆ Benchmarking Retrieval-Augmented Multimodal Generation for Document Question Answering NeurIPS 2025
Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents (text, images, tables) and performing cross-modal reasoning. Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches, frequently missing critical visual information. The field also lacks robust benchmarks for assessing multimodal evidence selection and integration. We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains. Our framework introduces innovative metrics for evaluating multimodal quote selection and enables answers that interleave text with relevant visual elements. Through large-scale experiments with 60 VLM/LLM models and 14 retrieval systems, we identify persistent challenges in multimodal evidence retrieval, selection, and integration.Key findings reveal advanced proprietary LVMs show superior performance than open-sourced alternatives. Also, they show moderate advantages using multimodal inputs over text-only inputs, while open-source alternatives show significant performance degradation. Notably, fine-tuned LLMs achieve substantial improvements when using detailed image descriptions. MMDocRAG establishes a rigorous testing ground and provides actionable insights for developing more robust multimodal DocVQA systems. Our benchmark and code are available at https://mmdocrag.github.io/MMDocRAG/.
comment: Paper accepted to NeurIPS 2025 DB
♻ ☆ Turkish Native Language Identification V2
This paper presents the first application of Native Language Identification (NLI) for the Turkish language. NLI is the task of automatically identifying an individual's native language (L1) based on their writing or speech in a non-native language (L2). While most NLI research has focused on L2 English, our study extends this scope to L2 Turkish by analyzing a corpus of texts written by native speakers of Albanian, Arabic and Persian. We leverage a cleaned version of the Turkish Learner Corpus and demonstrate the effectiveness of syntactic features, comparing a structural Part-of-Speech n-gram model to a hybrid model that retains function words. Our models achieve promising results, and we analyze the most predictive features to reveal L1-specific transfer effects. We make our data and code publicly available for further study.
comment: Turkish Native Language Identification V2: L1 Influence of Arabic, Persian, and Albanian
♻ ☆ Mind the Blind Spots: A Focus-Level Evaluation Framework for LLM Reviews EMNLP 2025
Peer review underpins scientific progress, but it is increasingly strained by reviewer shortages and growing workloads. Large Language Models (LLMs) can automatically draft reviews now, but determining whether LLM-generated reviews are trustworthy requires systematic evaluation. Researchers have evaluated LLM reviews at either surface-level (e.g., BLEU and ROUGE) or content-level (e.g., specificity and factual accuracy). Yet it remains uncertain whether LLM-generated reviews attend to the same critical facets that human experts weigh -- the strengths and weaknesses that ultimately drive an accept-or-reject decision. We introduce a focus-level evaluation framework that operationalizes the focus as a normalized distribution of attention across predefined facets in paper reviews. Based on the framework, we developed an automatic focus-level evaluation pipeline based on two sets of facets: target (e.g., problem, method, and experiment) and aspect (e.g., validity, clarity, and novelty), leveraging 676 paper reviews (https://figshare.com/s/d5adf26c802527dd0f62) from OpenReview that consists of 3,657 strengths and weaknesses identified from human experts. The comparison of focus distributions between LLMs and human experts showed that the off-the-shelf LLMs consistently have a more biased focus towards examining technical validity while significantly overlooking novelty assessment when criticizing papers.
comment: EMNLP 2025 Oral
Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/
♻ ☆ Extracting narrative signals from public discourse: a network-based approach
Narratives are key interpretative devices by which humans make sense of political reality. As the significance of narratives for understanding current societal issues such as polarization and misinformation becomes increasingly evident, there is a growing demand for methods that support their empirical analysis. To this end, we propose a graph-based formalism and machine-guided method for extracting, representing, and analyzing selected narrative signals from digital textual corpora, based on Abstract Meaning Representation (AMR). The formalism and method introduced here specifically cater to the study of political narratives that figure in texts from digital media such as archived political speeches, social media posts, transcripts of parliamentary debates, and political manifestos on party websites. We approach the study of such political narratives as a problem of information retrieval: starting from a textual corpus, we first extract a graph-like representation of the meaning of each sentence in the corpus using AMR. Drawing on transferable concepts from narratology, we then apply a set of heuristics to filter these graphs for representations of 1) actors and their relationships, 2) the events in which these actors figure, and 3) traces of the perspectivization of these events. We approach these references to actors, events, and instances of perspectivization as core narrative signals that allude to larger political narratives. By systematically analyzing and re-assembling these signals into networks that guide the researcher to the relevant parts of the text, the underlying narratives can be reconstructed through a combination of distant and close reading. A case study of State of the European Union addresses (2010 -- 2023) demonstrates how the formalism can be used to inductively surface signals of political narratives from public discourse.
comment: 27 pages, 6 figures
♻ ☆ Low-probability Tokens Sustain Exploration in Reinforcement Learning with Verifiable Reward
Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key issue: the gradual elimination of valuable low-probability exploratory tokens, which we term \textbf{\textit{reasoning sparks}}. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by filtering out presumed noise tokens and re-normalizing the distribution over the remaining candidates. The result is a less-noisy proxy where the probability of \textit{reasoning sparks} is amplified, which then serves as a soft regularization target to shield these valuable tokens from elimination via KL divergence. Experiments show that Lp-Reg enables stable on-policy RL, sustaining continuous scaling across $3,000$ training steps and $81,204$ GPU-hours, where baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a $60.17\%$ average accuracy on five math benchmarks, an improvement of $2.66\%$ over prior methods. Code is available at https://github.com/CarlanLark/Lp-Reg.
♻ ☆ Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities NAACL 2025
Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99\% ASR on GPT-3.5 and 49\% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety. Our code is available at: https://github.com/SunChungEn/ADV-LLM
comment: Accepted to NAACL 2025 Main (Oral)
♻ ☆ Grounded in Reality: Learning and Deploying Proactive LLM from Offline Logs
Large Language Models (LLMs) excel as passive responders, but teaching them to be proactive, goal-oriented partners, a critical capability in high-stakes domains, remains a major challenge. Current paradigms either myopically optimize single-turn attributes or rely on brittle, high-cost user simulators, creating a persistent ``reality gap''. To bridge this gap, we introduce \texttt{Learn-to-Ask}, a general, simulator-free framework for learning and deploying proactive dialogue agents \textit{directly from offline expert data}, bypassing the need to model complex user dynamics. Our key insight is to reframe the offline policy learning problem by leveraging the \textbf{observed future} of each expert trajectory. This allows us to infer a dense, turn-by-turn reward signal grounded in the expert's revealed strategy, decomposing the intractable long-horizon problem into a series of supervised learning tasks, and training a policy to output a structured \texttt{(action, state_assessment)} tuple, governing both \textbf{what to ask} and, crucially, \textbf{when to stop}. To ensure reward fidelity, our Automated Grader Calibration pipeline systematically purges noise from the LLM-based reward model with minimal human supervision. Empirically, we demonstrate the efficacy of \texttt{Learn-to-Ask} in a real-world medical dataset, using LLMs of varying sizes up to 32B. Our approach culminates in the successful deployment of LLMs into a live, large-scale online AI service. In rigorous in-house evaluations, our model was launched and achieved performance even superior to human experts, proving our framework's ability to translate offline data into tangible, real-world impact. We hope this work provides a practical and economically viable blueprint for transforming passive LLMs into proactive, goal-oriented LLM applications.
comment: 27 pages, 5 figures
♻ ☆ iTool: Reinforced Fine-Tuning with Dynamic Deficiency Calibration for Advanced Tool Use EMNLP 2025
Augmenting large language models (LLMs) with external tools is a promising approach to enhance their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve this. However, our investigation reveals that training gains significantly decay as synthetic data increases. The model struggles to benefit from additional synthetic data, which fails to endow it with advanced tool-use capabilities in complex scenarios Moreover, we discovered that the above limitation usually manifests as a fragment deficiency (i.e., parameter errors) in response. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate this limitation. This strategy involves: (1) enhancing the diversity of response for synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively pinpointing the model's deficiency by constructing fine-grained preference pairs, and then improving it by preference optimization algorithms for targeted improvement. The experiments show that our method achieves 13.11% better performance than the same-size base model. It achieves an improvement of 6.5% in complex scenarios compared to the baseline, and it also outperforms larger open-source and closed-source models.
comment: EMNLP 2025
♻ ☆ MetaRAG: Metamorphic Testing for Hallucination Detection in RAG Systems
Large Language Models (LLMs) are increasingly deployed in enterprise applications, yet their reliability remains limited by hallucinations, i.e., confident but factually incorrect information. Existing detection approaches, such as SelfCheckGPT and MetaQA, primarily target standalone LLMs and do not address the unique challenges of Retrieval-Augmented Generation (RAG) systems, where responses must be consistent with retrieved evidence. We therefore present MetaRAG, a metamorphic testing framework for hallucination detection in Retrieval-Augmented Generation (RAG) systems. MetaRAG operates in a real-time, unsupervised, black-box setting, requiring neither ground-truth references nor access to model internals, making it suitable for proprietary and high-stakes domains. The framework proceeds in four stages: (1) decompose answers into atomic factoids, (2) generate controlled mutations of each factoid using synonym and antonym substitutions, (3) verify each variant against the retrieved context (synonyms are expected to be entailed and antonyms contradicted), and (4) aggregate penalties for inconsistencies into a response-level hallucination score. Crucially for identity-aware AI, MetaRAG localizes unsupported claims at the factoid span where they occur (e.g., pregnancy-specific precautions, LGBTQ+ refugee rights, or labor eligibility), allowing users to see flagged spans and enabling system designers to configure thresholds and guardrails for identity-sensitive queries. Experiments on a proprietary enterprise dataset illustrate the effectiveness of MetaRAG for detecting hallucinations and enabling trustworthy deployment of RAG-based conversational agents. We also outline a topic-based deployment design that translates MetaRAG's span-level scores into identity-aware safeguards; this design is discussed but not evaluated in our experiments.
comment: Identity-Aware AI workshop at 28th European Conference on Artificial Intelligence, October 25, 2025, Bologna, Italy
♻ ☆ DRQA: Dynamic Reasoning Quota Allocation for Controlling Overthinking in Reasoning Large Language Models
Reasoning large language models (RLLMs), such as OpenAI-O3 and DeepSeek-R1, have recently demonstrated remarkable capabilities by performing structured and multi-step reasoning. However, recent studies reveal that RLLMs often suffer from overthinking, i.e., producing unnecessarily lengthy reasoning chains even for simple questions, leading to excessive token consumption and computational inefficiency. Interestingly, we observe that when processing multiple questions in batch mode, RLLMs exhibit more resource-efficient behavior by dynamically compressing reasoning steps for easier problems, due to implicit resource competition. Inspired by this, we propose Dynamic Reasoning Quota Allocation (DRQA), a novel method that transfers the benefits of resource competition from batch processing to single-question inference. Specifically, DRQA leverages batch-generated preference data and reinforcement learning to train the model to allocate reasoning resources adaptively. By encouraging the model to internalize a preference for responses that are both accurate and concise, DRQA enables it to generate concise answers for simple questions while retaining sufficient reasoning depth for more challenging ones. Extensive experiments on a wide range of mathematical and scientific reasoning benchmarks demonstrate that DRQA significantly reduces token usage while maintaining, and in many cases improving, answer accuracy. By effectively mitigating the overthinking problem, DRQA offers a promising direction for more efficient and scalable deployment of RLLMs, and we hope it inspires further exploration into fine-grained control of reasoning behaviors.
♻ ☆ Optimizing Anytime Reasoning via Budget Relative Policy Optimization
Scaling test-time compute is crucial for enhancing the reasoning capabilities of large language models (LLMs). Existing approaches typically employ reinforcement learning (RL) to maximize a verifiable reward obtained at the end of reasoning traces. However, such methods optimize only the final performance under a large and fixed token budget, which hinders efficiency in both training and deployment. In this work, we present a novel framework, AnytimeReasoner, to optimize anytime reasoning performance, which aims to improve token efficiency and the flexibility of reasoning under varying token budget constraints. To achieve this, we truncate the complete thinking process to fit within sampled token budgets from a prior distribution, compelling the model to summarize the optimal answer for each truncated thinking for verification. This introduces verifiable dense rewards into the reasoning process, facilitating more effective credit assignment in RL optimization. We then optimize the thinking and summary policies in a decoupled manner to maximize the cumulative reward. Additionally, we introduce a novel variance reduction technique, Budget Relative Policy Optimization (BRPO), to enhance the robustness and efficiency of the learning process when reinforcing the thinking policy. Empirical results in mathematical reasoning tasks demonstrate that our method consistently outperforms GRPO across all thinking budgets under various prior distributions, enhancing both training and token efficiency.
♻ ☆ Exploring Multimodal Perception in Large Language Models Through Perceptual Strength Ratings
This study investigated whether multimodal large language models can achieve human-like sensory grounding by examining their ability to capture perceptual strength ratings across sensory modalities. We explored how model characteristics (size, multimodal capabilities, architectural generation) influence grounding performance, distributional factor dependencies (word frequency, embeddings, feature distances), and human-model processing differences. We evaluated 21 models from four families (GPT, Gemini, LLaMA, Qwen) using 3,611 words from the Lancaster Sensorimotor Norms through correlation, distance metrics, and qualitative analysis. Results showed that larger (6 out of 8 comparisons), multimodal (5 of 7), and newer models (5 of 8) generally outperformed their smaller, text-based, and older counterparts. Top models achieved 85-90% accuracy and 0.58-0.65 correlations with human ratings, demonstrating substantial similarity. Moreover, distributional factors showed minimal impact, not exceeding human dependency levels. However, despite strong alignment, models were not identical to humans, as even top performers showed differences in distance and correlation measures, with qualitative analysis revealing processing patterns related to absent sensory grounding. Additionally, it remains questionable whether introducing multimodality resolves this grounding deficit. Although multimodality improved performance, it seems to provide similar information as massive text rather than qualitatively different data, as benefits occurred across unrelated sensory dimensions and massive text-only models achieved comparable results. Our findings demonstrate that while advanced LLMs can approximate human sensory-linguistic associations through statistical learning, they still differ from human embodied cognition in processing mechanisms, even with multimodal integration.
comment: Published in IEEE Access
♻ ☆ NMIXX: Domain-Adapted Neural Embeddings for Cross-Lingual eXploration of Finance
General-purpose sentence embedding models often struggle to capture specialized financial semantics, especially in low-resource languages like Korean, due to domain-specific jargon, temporal meaning shifts, and misaligned bilingual vocabularies. To address these gaps, we introduce NMIXX (Neural eMbeddings for Cross-lingual eXploration of Finance), a suite of cross-lingual embedding models fine-tuned with 18.8K high-confidence triplets that pair in-domain paraphrases, hard negatives derived from a semantic-shift typology, and exact Korean-English translations. Concurrently, we release KorFinSTS, a 1,921-pair Korean financial STS benchmark spanning news, disclosures, research reports, and regulations, designed to expose nuances that general benchmarks miss. When evaluated against seven open-license baselines, NMIXX's multilingual bge-m3 variant achieves Spearman's rho gains of +0.10 on English FinSTS and +0.22 on KorFinSTS, outperforming its pre-adaptation checkpoint and surpassing other models by the largest margin, while revealing a modest trade-off in general STS performance. Our analysis further shows that models with richer Korean token coverage adapt more effectively, underscoring the importance of tokenizer design in low-resource, cross-lingual settings. By making both models and the benchmark publicly available, we provide the community with robust tools for domain-adapted, multilingual representation learning in finance.
comment: Accepted at FinAI@CIKM 2025
♻ ☆ Fine-Tuning MedGemma for Clinical Captioning to Enhance Multimodal RAG over Malaysia CPGs
Retrieval-Augmented Generation systems are essential for providing fact-based guidance from Malaysian Clinical Practice Guidelines. However, their effectiveness with image-based queries is limited, as general Vision-Language Model captions often lack clinical specificity and factual grounding. This study proposes and validates a framework to specialize the MedGemma model for generating high-fidelity captions that serve as superior queries. To overcome data scarcity, we employ a knowledge distillation pipeline to create a synthetic dataset across dermatology, fundus, and chest radiography domains, and fine-tune MedGemma using the parameter-efficient QLoRA method. Performance was rigorously assessed through a dual framework measuring both classification accuracy and, via a novel application of the RAGAS framework, caption faithfulness, relevancy, and correctness. The fine-tuned model demonstrated substantial improvements in classification performance, while RAGAS evaluation confirmed significant gains in caption faithfulness and correctness, validating the models ability to produce reliable, factually grounded descriptions. This work establishes a robust pipeline for specializing medical VLMs and validates the resulting model as a high-quality query generator, laying the groundwork for enhancing multimodal RAG systems in evidence-based clinical decision support.
♻ ☆ ThaiOCRBench: A Task-Diverse Benchmark for Vision-Language Understanding in Thai AACL 2025
We present ThaiOCRBench, the first comprehensive benchmark for evaluating vision-language models (VLMs) on Thai text-rich visual understanding tasks. Despite recent progress in multimodal modeling, existing benchmarks predominantly focus on high-resource languages, leaving Thai underrepresented, especially in tasks requiring document structure understanding. ThaiOCRBench addresses this gap by offering a diverse, human-annotated dataset comprising 2,808 samples across 13 task categories. We evaluate a wide range of state-of-the-art VLMs in a zero-shot setting, spanning both proprietary and open-source systems. Results show a significant performance gap, with proprietary models (e.g., Gemini 2.5 Pro) outperforming open-source counterparts. Notably, fine-grained text recognition and handwritten content extraction exhibit the steepest performance drops among open-source models. Through detailed error analysis, we identify key challenges such as language bias, structural mismatch, and hallucinated content. ThaiOCRBench provides a standardized framework for assessing VLMs in low-resource, script-complex settings, and provides actionable insights for improving Thai-language document understanding.
comment: Accepted at the IJCNLP-AACL 2025 (Main)
♻ ☆ AIRepr: An Analyst-Inspector Framework for Evaluating Reproducibility of LLMs in Data Science EMNLP
Large language models (LLMs) are increasingly used to automate data analysis through executable code generation. Yet, data science tasks often admit multiple statistically valid solutions, e.g. different modeling strategies, making it critical to understand the reasoning behind analyses, not just their outcomes. While manual review of LLM-generated code can help ensure statistical soundness, it is labor-intensive and requires expertise. A more scalable approach is to evaluate the underlying workflows-the logical plans guiding code generation. However, it remains unclear how to assess whether an LLM-generated workflow supports reproducible implementations. To address this, we present AIRepr, an Analyst-Inspector framework for automatically evaluating and improving the reproducibility of LLM-generated data analysis workflows. Our framework is grounded in statistical principles and supports scalable, automated assessment. We introduce two novel reproducibility-enhancing prompting strategies and benchmark them against standard prompting across 15 analyst-inspector LLM pairs and 1,032 tasks from three public benchmarks. Our findings show that workflows with higher reproducibility also yield more accurate analyses, and that reproducibility-enhancing prompts substantially improve both metrics. This work provides a foundation for transparent, reliable, and efficient human-AI collaboration in data science. Our code is publicly available.
comment: Accepted to 2025 EMNLP findings
♻ ☆ LEME: Open Large Language Models for Ophthalmology with Advanced Reasoning and Clinical Validation
The rising prevalence of eye diseases poses a growing public health burden. Large language models (LLMs) offer a promising path to reduce documentation workload and support clinical decision-making. However, few have been tailored for ophthalmology, and most evaluations focus mainly on knowledge-based QA without clinically relevant benchmarks or real-world validation. Here, we present LEME, a suite of open-weight LLMs developed through a two-stage process: (1) instruction tuning on 200,000 samples from clinical guidelines, textbooks, and case reports to enhance reasoning and task-following, and (2) reinforcement learning with ~30,000 preference labels to enhance accuracy and informativeness. LEME was evaluated on five curated zero-shot benchmarks spanning tasks such as patient QA, consultation, and treatment planning. It outperformed all seven baselines (all p < 0.004), exceeding GPT-4o by 3.32% (absolute ROUGE-L gain). It was further evaluated on three downstream tasks using deidentified patient data, reviewed by clinicians. In patient QA, LEME received the highest ratings from attending clinicians in 3 out of 4 criteria, with scores of 4.67 for factuality, 4.77 for specificity, 4.79 for completeness, and 4.88 for safety (1-5 scale). Its completeness score surpassed that of expert-written answers (4.79 vs. 4.56; p = 0.015). In visual acuity extraction, LEME achieved the highest F1, outperforming LLaMA-3 by 14.1% and Eye-LLaMA by 59.0%. In a pilot evaluation on assessment and treatment planning for diabetic retinopathy, AMD, and glaucoma, LEME received scores of 4.36 for factuality, 4.55 for specificity, 4.42 for completeness, and 4.36 for safety, approaching attending-level performance. All models, data, and code will be released to support further development and clinical translation, laying the groundwork for improved efficiency and patient care
Every Activation Boosted: Scaling General Reasoner to 1 Trillion Open Language Foundation
We introduce Ling 2.0, a series reasoning-oriented language foundation built upon the principle that every activation boosts reasoning capability. Designed to scale from tens of billions to one trillion parameters under a unified Mixture-of-Experts (MoE) paradigm, Ling 2.0 emphasizes high sparsity, cross-scale consistency, and efficiency guided by empirical scaling laws. The series includes three non-thinking (instruct) models - Ling-mini-2.0, Ling-flash-2.0, and Ling-1T - ranging from 16B to 1T total parameters and achieving up to 7-fold active-compute efficiency compared with dense counterparts. Ling 2.0 integrates coordinated innovations across model architecture, pre-training, post-training, and infrastructure: a high-sparsity MoE with MTP for efficient reasoning, reasoning-oriented data and mid-training CoT activation, reinforcement-based fine-tuning (DFT, Evo-CoT), and full-scale FP8 training with fine-grained heterogeneous pipelines. At the trillion scale, Ling-1T establishes a new Pareto frontier of reasoning accuracy versus computational efficiency, demonstrating that sparse activation, when properly aligned with reasoning objectives, enables scalable and efficient intelligence. Collectively, Ling 2.0 provides a coherent, open, and efficient foundation for advancing future reasoning and thinking models, including the Ring series built upon the same base.
comment: Ling 2.0 Technical Report
♻ ☆ SciTopic: Enhancing Topic Discovery in Scientific Literature through Advanced LLM
Topic discovery in scientific literature provides valuable insights for researchers to identify emerging trends and explore new avenues for investigation, facilitating easier scientific information retrieval. Many machine learning methods, particularly deep embedding techniques, have been applied to discover research topics. However, most existing topic discovery methods rely on word embedding to capture the semantics and lack a comprehensive understanding of scientific publications, struggling with complex, high-dimensional text relationships. Inspired by the exceptional comprehension of textual information by large language models (LLMs), we propose an advanced topic discovery method enhanced by LLMs to improve scientific topic identification, namely SciTopic. Specifically, we first build a textual encoder to capture the content from scientific publications, including metadata, title, and abstract. Next, we construct a space optimization module that integrates entropy-based sampling and triplet tasks guided by LLMs, enhancing the focus on thematic relevance and contextual intricacies between ambiguous instances. Then, we propose to fine-tune the textual encoder based on the guidance from the LLMs by optimizing the contrastive loss of the triplets, forcing the text encoder to better discriminate instances of different topics. Finally, extensive experiments conducted on three real-world datasets of scientific publications demonstrate that SciTopic outperforms the state-of-the-art (SOTA) scientific topic discovery methods, enabling researchers to gain deeper and faster insights.
♻ ☆ Re:Member: Emotional Question Generation from Personal Memories
We present Re:Member, a system that explores how emotionally expressive, memory-grounded interaction can support more engaging second language (L2) learning. By drawing on users' personal videos and generating stylized spoken questions in the target language, Re:Member is designed to encourage affective recall and conversational engagement. The system aligns emotional tone with visual context, using expressive speech styles such as whispers or late-night tones to evoke specific moods. It combines WhisperX-based transcript alignment, 3-frame visual sampling, and Style-BERT-VITS2 for emotional synthesis within a modular generation pipeline. Designed as a stylized interaction probe, Re:Member highlights the role of affect and personal media in learner-centered educational technologies.
♻ ☆ Learning Dynamics of Meta-Learning in Small Model Pretraining AACL 2025
Large language models are powerful but costly. We ask whether meta-learning can make the pretraining of small language models not only better but also more interpretable. We integrate first-order MAML with subset-masked LM pretraining, producing four LLama-style decoder-only models (11M-570M params), and evaluate it on a fundamental NLP task with many settings and real-world applications. Compared with vanilla training, our model (i) reaches the same loss up to 1.6x sooner, (ii) improves F1 on multilingual Universal NER under equal compute, and (iii) makes the training dynamics easy to read: first the network's representations fan out ("diversify") and later they collapse into a smaller, shared subspace ("compress"). This two-stage shift shows up as a rise-and-fall in both effective-rank curves and attention-head entropy. The same curves pinpoint which layers specialise earliest and which later reconverge, giving a compact, interpretable signature of meta-adaptation. Code, checkpoints and WandB logs are released.
comment: Accepted (oral) to Student Research Workshop at IJCNLP-AACL 2025
Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation AAAI 2026
Multi-agent systems (MAS) based on large language models (LLMs) have emerged as a powerful solution for dealing with complex problems across diverse domains. The effectiveness of MAS is critically dependent on its collaboration topology, which has become a focal point for automated design research. However, existing approaches are fundamentally constrained by their reliance on a template graph modification paradigm with a predefined set of agents and hard-coded interaction structures, significantly limiting their adaptability to task-specific requirements. To address these limitations, we reframe MAS design as a conditional autoregressive graph generation task, where both the system composition and structure are designed jointly. We propose ARG-Designer, a novel autoregressive model that operationalizes this paradigm by constructing the collaboration graph from scratch. Conditioned on a natural language task query, ARG-Designer sequentially and dynamically determines the required number of agents, selects their appropriate roles from an extensible pool, and establishes the optimal communication links between them. This generative approach creates a customized topology in a flexible and extensible manner, precisely tailored to the unique demands of different tasks. Extensive experiments across six diverse benchmarks demonstrate that ARG-Designer not only achieves state-of-the-art performance but also enjoys significantly greater token efficiency and enhanced extensibility. The source code of ARG-Designer is available at https://github.com/Shiy-Li/ARG-Designer.
comment: Accepted by AAAI 2026
♻ ☆ Generative Medical Event Models Improve with Scale
Realizing personalized medicine at scale calls for methods that distill insights from longitudinal patient journeys, which can be viewed as a sequence of medical events. Foundation models pretrained on large-scale medical event data represent a promising direction for scaling real-world evidence generation and generalizing to diverse downstream tasks. Using Epic Cosmos, a dataset with medical events from de-identified longitudinal health records for 16.3 billion encounters over 300 million unique patient records from 310 health systems, we introduce the Curiosity models, a family of decoder-only transformer models pretrained on 118 million patients representing 115 billion discrete medical events (151 billion tokens). We present the largest scaling-law study of medical event data, establishing a methodology for pretraining and revealing power-law scaling relationships for compute, tokens, and model size. Consequently, we pretrained a series of compute-optimal models with up to 1 billion parameters. Conditioned on a patient's real-world history, Curiosity autoregressively predicts the next medical event to simulate patient health timelines. We studied 78 real-world tasks, including diagnosis prediction, disease prognosis, and healthcare operations. Remarkably for a foundation model with generic pretraining and simulation-based inference, Curiosity generally outperformed or matched task-specific supervised models on these tasks, without requiring task-specific fine-tuning or few-shot examples. Curiosity's predictive power consistently improves as the model and pretraining scale. Our results show that Curiosity, a generative medical event foundation model, can effectively capture complex clinical dynamics, providing an extensible and generalizable framework to support clinical decision-making, streamline healthcare operations, and improve patient outcomes.
♻ ☆ DiLA: Enhancing LLM Tool Learning with Differential Logic Layer
Considering the challenges faced by large language models (LLMs) in logical reasoning and planning, prior efforts have sought to augment LLMs with access to external solvers. While progress has been made on simple reasoning problems, solving classical constraint satisfaction problems, such as the Boolean Satisfiability Problem (SAT) and Graph Coloring Problem (GCP), remains difficult for off-the-shelf solvers due to their intricate expressions and exponential search spaces. In this paper, we propose a novel differential logic layer-aided language modeling (DiLA) approach, where logical constraints are integrated into the forward and backward passes of a network layer, to provide another option for LLM tool learning. In DiLA, LLM aims to transform the language description to logic constraints and identify initial solutions of the highest quality, while the differential logic layer focuses on iteratively refining the LLM-prompted solution. Leveraging the logic layer as a bridge, DiLA enhances the logical reasoning ability of LLMs on a range of reasoning problems encoded by Boolean variables, guaranteeing the efficiency and correctness of the solution process. We evaluate the performance of DiLA on two classic reasoning problems and empirically demonstrate its consistent outperformance against existing prompt-based and solver-aided approaches.
comment: arXiv admin note: text overlap with arXiv:2305.12295 by other authors
♻ ☆ GUARD: Guideline Upholding Test through Adaptive Role-play and Jailbreak Diagnostics for LLMs
As Large Language Models become increasingly integral to various domains, their potential to generate harmful responses has prompted significant societal and regulatory concerns. In response, governments have issued ethics guidelines to promote the development of trustworthy AI. However, these guidelines are typically high-level demands for developers and testers, leaving a gap in translating them into actionable testing questions to verify LLM compliance. To address this challenge, we introduce GUARD (\textbf{G}uideline \textbf{U}pholding Test through \textbf{A}daptive \textbf{R}ole-play and Jailbreak \textbf{D}iagnostics), a testing method designed to operationalize guidelines into specific guideline-violating questions that assess LLM adherence. To implement this, GUARD uses automated generation of guideline-violating questions based on government-issued guidelines, thereby testing whether responses comply with these guidelines. When responses directly violate guidelines, GUARD reports inconsistencies. Furthermore, for responses that do not directly violate guidelines, GUARD integrates the concept of ``jailbreaks'' to diagnostics, named GUARD-JD, which creates scenarios that provoke unethical or guideline-violating responses, effectively identifying potential scenarios that could bypass built-in safety mechanisms. Our method finally culminates in a compliance report, delineating the extent of adherence and highlighting any violations. We have empirically validated the effectiveness of GUARD on seven LLMs, including Vicuna-13B, LongChat-7B, Llama2-7B, Llama-3-8B, GPT-3.5, GPT-4, GPT-4o, and Claude-3.7, by testing compliance under three government-issued guidelines and conducting jailbreak diagnostics. Additionally, GUARD-JD can transfer jailbreak diagnostics to vision-language models, demonstrating its usage in promoting reliable LLM-based applications.
comment: 54 pages
♻ ☆ JailbreakZoo: Survey, Landscapes, and Horizons in Jailbreaking Large Language and Vision-Language Models
The rapid evolution of artificial intelligence (AI) through developments in Large Language Models (LLMs) and Vision-Language Models (VLMs) has brought significant advancements across various technological domains. While these models enhance capabilities in natural language processing and visual interactive tasks, their growing adoption raises critical concerns regarding security and ethical alignment. This survey provides an extensive review of the emerging field of jailbreaking--deliberately circumventing the ethical and operational boundaries of LLMs and VLMs--and the consequent development of defense mechanisms. Our study categorizes jailbreaks into seven distinct types and elaborates on defense strategies that address these vulnerabilities. Through this comprehensive examination, we identify research gaps and propose directions for future studies to enhance the security frameworks of LLMs and VLMs. Our findings underscore the necessity for a unified perspective that integrates both jailbreak strategies and defensive solutions to foster a robust, secure, and reliable environment for the next generation of language models. More details can be found on our website: https://chonghan-chen.com/llm-jailbreak-zoo-survey/.
comment: 45 pages
♻ ☆ Evaluating the Evaluators: Metrics for Compositional Text-to-Image Generation NeurIPS 2025
Text-image generation has advanced rapidly, but assessing whether outputs truly capture the objects, attributes, and relations described in prompts remains a central challenge. Evaluation in this space relies heavily on automated metrics, yet these are often adopted by convention or popularity rather than validated against human judgment. Because evaluation and reported progress in the field depend directly on these metrics, it is critical to understand how well they reflect human preferences. To address this, we present a broad study of widely used metrics for compositional text-image evaluation. Our analysis goes beyond simple correlation, examining their behavior across diverse compositional challenges and comparing how different metric families align with human judgments. The results show that no single metric performs consistently across tasks: performance varies with the type of compositional problem. Notably, VQA-based metrics, though popular, are not uniformly superior, while certain embedding-based metrics prove stronger in specific cases. Image-only metrics, as expected, contribute little to compositional evaluation, as they are designed for perceptual quality rather than alignment. These findings underscore the importance of careful and transparent metric selection, both for trustworthy evaluation and for their use as reward models in generation. Project page is available at https://amirkasaei.com/eval-the-evals/ .
comment: Accepted at GenProCC NeurIPS 2025 Workshop
♻ ☆ Hallucination as an Upper Bound: A New Perspective on Text-to-Image Evaluation NeurIPS 2025
In language and vision-language models, hallucination is broadly understood as content generated from a model's prior knowledge or biases rather than from the given input. While this phenomenon has been studied in those domains, it has not been clearly framed for text-to-image (T2I) generative models. Existing evaluations mainly focus on alignment, checking whether prompt-specified elements appear, but overlook what the model generates beyond the prompt. We argue for defining hallucination in T2I as bias-driven deviations and propose a taxonomy with three categories: attribute, relation, and object hallucinations. This framing introduces an upper bound for evaluation and surfaces hidden biases, providing a foundation for richer assessment of T2I models.
comment: Accepted at GenProCC NeurIPS 2025 Workshop
Computer Vision and Pattern Recognition 97
☆ Visual Spatial Tuning
Capturing spatial relationships from visual inputs is a cornerstone of human-like general intelligence. Several previous studies have tried to enhance the spatial awareness of Vision-Language Models (VLMs) by adding extra expert encoders, which brings extra overhead and usually harms general capabilities. To enhance the spatial ability in general architectures, we introduce Visual Spatial Tuning (VST), a comprehensive framework to cultivate VLMs with human-like visuospatial abilities, from spatial perception to reasoning. We first attempt to enhance spatial perception in VLMs by constructing a large-scale dataset termed VST-P, which comprises 4.1 million samples spanning 19 skills across single views, multiple images, and videos. Then, we present VST-R, a curated dataset with 135K samples that instruct models to reason in space. In particular, we adopt a progressive training pipeline: supervised fine-tuning to build foundational spatial knowledge, followed by reinforcement learning to further improve spatial reasoning abilities. Without the side-effect to general capabilities, the proposed VST consistently achieves state-of-the-art results on several spatial benchmarks, including $34.8\%$ on MMSI-Bench and $61.2\%$ on VSIBench. It turns out that the Vision-Language-Action models can be significantly enhanced with the proposed spatial tuning paradigm, paving the way for more physically grounded AI.
☆ TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning
Temporal search aims to identify a minimal set of relevant frames from tens of thousands based on a given query, serving as a foundation for accurate long-form video understanding. Existing works attempt to progressively narrow the search space. However, these approaches typically rely on a hand-crafted search process, lacking end-to-end optimization for learning optimal search strategies. In this paper, we propose TimeSearch-R, which reformulates temporal search as interleaved text-video thinking, seamlessly integrating searching video clips into the reasoning process through reinforcement learning (RL). However, applying RL training methods, such as Group Relative Policy Optimization (GRPO), to video reasoning can result in unsupervised intermediate search decisions. This leads to insufficient exploration of the video content and inconsistent logical reasoning. To address these issues, we introduce GRPO with Completeness Self-Verification (GRPO-CSV), which gathers searched video frames from the interleaved reasoning process and utilizes the same policy model to verify the adequacy of searched frames, thereby improving the completeness of video reasoning. Additionally, we construct datasets specifically designed for the SFT cold-start and RL training of GRPO-CSV, filtering out samples with weak temporal dependencies to enhance task difficulty and improve temporal search capabilities. Extensive experiments demonstrate that TimeSearch-R achieves significant improvements on temporal search benchmarks such as Haystack-LVBench and Haystack-Ego4D, as well as long-form video understanding benchmarks like VideoMME and MLVU. Notably, TimeSearch-R establishes a new state-of-the-art on LongVideoBench with 4.1% improvement over the base model Qwen2.5-VL and 2.0% over the advanced video reasoning model Video-R1. Our code is available at https://github.com/Time-Search/TimeSearch-R.
comment: 22 pages, 17 figures. Official code: https://github.com/Time-Search/TimeSearch-R
☆ On Flow Matching KL Divergence
We derive a deterministic, non-asymptotic upper bound on the Kullback-Leibler (KL) divergence of the flow-matching distribution approximation. In particular, if the $L_2$ flow-matching loss is bounded by $\epsilon^2 > 0$, then the KL divergence between the true data distribution and the estimated distribution is bounded by $A_1 \epsilon + A_2 \epsilon^2$. Here, the constants $A_1$ and $A_2$ depend only on the regularities of the data and velocity fields. Consequently, this bound implies statistical convergence rates of Flow Matching Transformers under the Total Variation (TV) distance. We show that, flow matching achieves nearly minimax-optimal efficiency in estimating smooth distributions. Our results make the statistical efficiency of flow matching comparable to that of diffusion models under the TV distance. Numerical studies on synthetic and learned velocities corroborate our theory.
☆ GroupKAN: Rethinking Nonlinearity with Grouped Spline-based KAN Modeling for Efficient Medical Image Segmentation
Medical image segmentation requires models that are accurate, lightweight, and interpretable. Convolutional architectures lack adaptive nonlinearity and transparent decision-making, whereas Transformer architectures are hindered by quadratic complexity and opaque attention mechanisms. U-KAN addresses these challenges using Kolmogorov-Arnold Networks, achieving higher accuracy than both convolutional and attention-based methods, fewer parameters than Transformer variants, and improved interpretability compared to conventional approaches. However, its O(C^2) complexity due to full-channel transformations limits its scalability as the number of channels increases. To overcome this, we introduce GroupKAN, a lightweight segmentation network that incorporates two novel, structured functional modules: (1) Grouped KAN Transform, which partitions channels into G groups for multivariate spline mappings, reducing complexity to O(C^2/G), and (2) Grouped KAN Activation, which applies shared spline-based mappings within each channel group for efficient, token-wise nonlinearity. Evaluated on three medical benchmarks (BUSI, GlaS, and CVC), GroupKAN achieves an average IoU of 79.80 percent, surpassing U-KAN by +1.11 percent while requiring only 47.6 percent of the parameters (3.02M vs 6.35M), and shows improved interpretability.
☆ Semantic-Guided Natural Language and Visual Fusion for Cross-Modal Interaction Based on Tiny Object Detection
This paper introduces a cutting-edge approach to cross-modal interaction for tiny object detection by combining semantic-guided natural language processing with advanced visual recognition backbones. The proposed method integrates the BERT language model with the CNN-based Parallel Residual Bi-Fusion Feature Pyramid Network (PRB-FPN-Net), incorporating innovative backbone architectures such as ELAN, MSP, and CSP to optimize feature extraction and fusion. By employing lemmatization and fine-tuning techniques, the system aligns semantic cues from textual inputs with visual features, enhancing detection precision for small and complex objects. Experimental validation using the COCO and Objects365 datasets demonstrates that the model achieves superior performance. On the COCO2017 validation set, it attains a 52.6% average precision (AP), outperforming YOLO-World significantly while maintaining half the parameter consumption of Transformer-based models like GLIP. Several test on different of backbones such ELAN, MSP, and CSP further enable efficient handling of multi-scale objects, ensuring scalability and robustness in resource-constrained environments. This study underscores the potential of integrating natural language understanding with advanced backbone architectures, setting new benchmarks in object detection accuracy, efficiency, and adaptability to real-world challenges.
☆ EventFlow: Real-Time Neuromorphic Event-Driven Classification of Two-Phase Boiling Flow Regimes
Flow boiling is an efficient heat transfer mechanism capable of dissipating high heat loads with minimal temperature variation, making it an ideal thermal management method. However, sudden shifts between flow regimes can disrupt thermal performance and system reliability, highlighting the need for accurate and low-latency real-time monitoring. Conventional optical imaging methods are limited by high computational demands and insufficient temporal resolution, making them inadequate for capturing transient flow behavior. To address this, we propose a real-time framework based on signals from neuromorphic sensors for flow regime classification. Neuromorphic sensors detect changes in brightness at individual pixels, which typically correspond to motion at edges, enabling fast and efficient detection without full-frame reconstruction, providing event-based information. We develop five classification models using both traditional image data and event-based data, demonstrating that models leveraging event data outperform frame-based approaches due to their sensitivity to dynamic flow features. Among these models, the event-based long short-term memory model provides the best balance between accuracy and speed, achieving 97.6% classification accuracy with a processing time of 0.28 ms. Our asynchronous processing pipeline supports continuous, low-latency predictions and delivers stable output through a majority voting mechanisms, enabling reliable real-time feedback for experimental control and intelligent thermal management.
comment: 19 pages, 6 figures, Under review in Droplet (Manuscript ID: DRO-2025-0045.R1)
☆ Photo Dating by Facial Age Aggregation
We introduce a novel method for Photo Dating which estimates the year a photograph was taken by leveraging information from the faces of people present in the image. To facilitate this research, we publicly release CSFD-1.6M, a new dataset containing over 1.6 million annotated faces, primarily from movie stills, with identity and birth year annotations. Uniquely, our dataset provides annotations for multiple individuals within a single image, enabling the study of multi-face information aggregation. We propose a probabilistic framework that formally combines visual evidence from modern face recognition and age estimation models, and career-based temporal priors to infer the photo capture year. Our experiments demonstrate that aggregating evidence from multiple faces consistently improves the performance and the approach significantly outperforms strong, scene-based baselines, particularly for images containing several identifiable individuals.
☆ SiamMM: A Mixture Model Perspective on Deep Unsupervised Learning
Recent studies have demonstrated the effectiveness of clustering-based approaches for self-supervised and unsupervised learning. However, the application of clustering is often heuristic, and the optimal methodology remains unclear. In this work, we establish connections between these unsupervised clustering methods and classical mixture models from statistics. Through this framework, we demonstrate significant enhancements to these clustering methods, leading to the development of a novel model named SiamMM. Our method attains state-of-the-art performance across various self-supervised learning benchmarks. Inspection of the learned clusters reveals a strong resemblance to unseen ground truth labels, uncovering potential instances of mislabeling.
☆ The Potential of Copernicus Satellites for Disaster Response: Retrieving Building Damage from Sentinel-1 and Sentinel-2
Natural disasters demand rapid damage assessment to guide humanitarian response. Here, we investigate whether medium-resolution Earth observation images from the Copernicus program can support building damage assessment, complementing very-high resolution imagery with often limited availability. We introduce xBD-S12, a dataset of 10,315 pre- and post-disaster image pairs from both Sentinel-1 and Sentinel-2, spatially and temporally aligned with the established xBD benchmark. In a series of experiments, we demonstrate that building damage can be detected and mapped rather well in many disaster scenarios, despite the moderate 10$\,$m ground sampling distance. We also find that, for damage mapping at that resolution, architectural sophistication does not seem to bring much advantage: more complex model architectures tend to struggle with generalization to unseen disasters, and geospatial foundation models bring little practical benefit. Our results suggest that Copernicus images are a viable data source for rapid, wide-area damage assessment and could play an important role alongside VHR imagery. We release the xBD-S12 dataset, code, and trained models to support further research.
☆ How Many Tokens Do 3D Point Cloud Transformer Architectures Really Need? NeurIPS 2025
Recent advances in 3D point cloud transformers have led to state-of-the-art results in tasks such as semantic segmentation and reconstruction. However, these models typically rely on dense token representations, incurring high computational and memory costs during training and inference. In this work, we present the finding that tokens are remarkably redundant, leading to substantial inefficiency. We introduce gitmerge3D, a globally informed graph token merging method that can reduce the token count by up to 90-95% while maintaining competitive performance. This finding challenges the prevailing assumption that more tokens inherently yield better performance and highlights that many current models are over-tokenized and under-optimized for scalability. We validate our method across multiple 3D vision tasks and show consistent improvements in computational efficiency. This work is the first to assess redundancy in large-scale 3D transformer models, providing insights into the development of more efficient 3D foundation architectures. Our code and checkpoints are publicly available at https://gitmerge3d.github.io
comment: Accepted at NeurIPS 2025
☆ Shared Latent Representation for Joint Text-to-Audio-Visual Synthesis
We propose a text-to-talking-face synthesis framework leveraging latent speech representations from HierSpeech++. A Text-to-Vec module generates Wav2Vec2 embeddings from text, which jointly condition speech and face generation. To handle distribution shifts between clean and TTS-predicted features, we adopt a two-stage training: pretraining on Wav2Vec2 embeddings and finetuning on TTS outputs. This enables tight audio-visual alignment, preserves speaker identity, and produces natural, expressive speech and synchronized facial motion without ground-truth audio at inference. Experiments show that conditioning on TTS-predicted latent features outperforms cascaded pipelines, improving both lip-sync and visual realism.
☆ Sharing the Learned Knowledge-base to Estimate Convolutional Filter Parameters for Continual Image Restoration
Continual learning is an emerging topic in the field of deep learning, where a model is expected to learn continuously for new upcoming tasks without forgetting previous experiences. This field has witnessed numerous advancements, but few works have been attempted in the direction of image restoration. Handling large image sizes and the divergent nature of various degradation poses a unique challenge in the restoration domain. However, existing works require heavily engineered architectural modifications for new task adaptation, resulting in significant computational overhead. Regularization-based methods are unsuitable for restoration, as different restoration challenges require different kinds of feature processing. In this direction, we propose a simple modification of the convolution layer to adapt the knowledge from previous restoration tasks without touching the main backbone architecture. Therefore, it can be seamlessly applied to any deep architecture without any structural modifications. Unlike other approaches, we demonstrate that our model can increase the number of trainable parameters without significantly increasing computational overhead or inference time. Experimental validation demonstrates that new restoration tasks can be introduced without compromising the performance of existing tasks. We also show that performance on new restoration tasks improves by adapting the knowledge from the knowledge base created by previous restoration tasks. The code is available at https://github.com/aupendu/continual-restore.
comment: This paper has been accepted to ACM ICVGIP 2025
Multi-modal Loop Closure Detection with Foundation Models in Severely Unstructured Environments
Robust loop closure detection is a critical component of Simultaneous Localization and Mapping (SLAM) algorithms in GNSS-denied environments, such as in the context of planetary exploration. In these settings, visual place recognition often fails due to aliasing and weak textures, while LiDAR-based methods suffer from sparsity and ambiguity. This paper presents MPRF, a multimodal pipeline that leverages transformer-based foundation models for both vision and LiDAR modalities to achieve robust loop closure in severely unstructured environments. Unlike prior work limited to retrieval, MPRF integrates a two-stage visual retrieval strategy with explicit 6-DoF pose estimation, combining DINOv2 features with SALAD aggregation for efficient candidate screening and SONATA-based LiDAR descriptors for geometric verification. Experiments on the S3LI dataset and S3LI Vulcano dataset show that MPRF outperforms state-of-the-art retrieval methods in precision while enhancing pose estimation robustness in low-texture regions. By providing interpretable correspondences suitable for SLAM back-ends, MPRF achieves a favorable trade-off between accuracy, efficiency, and reliability, demonstrating the potential of foundation models to unify place recognition and pose estimation. Code and models will be released at github.com/DLR-RM/MPRF.
comment: Under review for ICRA 2026
☆ PALM: A Dataset and Baseline for Learning Multi-subject Hand Prior
The ability to grasp objects, signal with gestures, and share emotion through touch all stem from the unique capabilities of human hands. Yet creating high-quality personalized hand avatars from images remains challenging due to complex geometry, appearance, and articulation, particularly under unconstrained lighting and limited views. Progress has also been limited by the lack of datasets that jointly provide accurate 3D geometry, high-resolution multiview imagery, and a diverse population of subjects. To address this, we present PALM, a large-scale dataset comprising 13k high-quality hand scans from 263 subjects and 90k multi-view images, capturing rich variation in skin tone, age, and geometry. To show its utility, we present a baseline PALM-Net, a multi-subject prior over hand geometry and material properties learned via physically based inverse rendering, enabling realistic, relightable single-image hand avatar personalization. PALM's scale and diversity make it a valuable real-world resource for hand modeling and related research.
☆ EveryDayVLA: A Vision-Language-Action Model for Affordable Robotic Manipulation
While Vision-Language-Action (VLA) models map visual inputs and language instructions directly to robot actions, they often rely on costly hardware and struggle in novel or cluttered scenes. We introduce EverydayVLA, a 6-DOF manipulator that can be assembled for under $300, capable of modest payloads and workspace. A single unified model jointly outputs discrete and continuous actions, and our adaptive-horizon ensemble monitors motion uncertainty to trigger on-the-fly re-planning for safe, reliable operation. On LIBERO, EverydayVLA matches state-of-the-art success rates, and in real-world tests it outperforms prior methods by 49% in-distribution and 34.9% out-of-distribution. By combining a state-of-the-art VLA with cost-effective hardware, EverydayVLA democratizes access to a robotic foundation model and paves the way for economical use in homes and research labs alike. Experiment videos and details: https://everydayvla.github.io/
comment: Submitted to ICRA 2026
☆ AI Assisted AR Assembly: Object Recognition and Computer Vision for Augmented Reality Assisted Assembly
We present an AI-assisted Augmented Reality assembly workflow that uses deep learning-based object recognition to identify different assembly components and display step-by-step instructions. For each assembly step, the system displays a bounding box around the corresponding components in the physical space, and where the component should be placed. By connecting assembly instructions with the real-time location of relevant components, the system eliminates the need for manual searching, sorting, or labeling of different components before each assembly. To demonstrate the feasibility of using object recognition for AR-assisted assembly, we highlight a case study involving the assembly of LEGO sculptures.
comment: Accepted to the Association for Computing Machinery (ACM) Symposium on Computational Fabrication (SCF '25)
☆ PreResQ-R1: Towards Fine-Grained Rank-and-Score Reinforcement Learning for Visual Quality Assessment via Preference-Response Disentangled Policy Optimization
Visual Quality Assessment (QA) seeks to predict human perceptual judgments of visual fidelity. While recent multimodal large language models (MLLMs) show promise in reasoning about image and video quality, existing approaches mainly rely on supervised fine-tuning or rank-only objectives, resulting in shallow reasoning, poor score calibration, and limited cross-domain generalization. We propose PreResQ-R1, a Preference-Response Disentangled Reinforcement Learning framework that unifies absolute score regression and relative ranking consistency within a single reasoning-driven optimization scheme. Unlike prior QA methods, PreResQ-R1 introduces a dual-branch reward formulation that separately models intra-sample response coherence and inter-sample preference alignment, optimized via Group Relative Policy Optimization (GRPO). This design encourages fine-grained, stable, and interpretable chain-of-thought reasoning about perceptual quality. To extend beyond static imagery, we further design a global-temporal and local-spatial data flow strategy for Video Quality Assessment. Remarkably, with reinforcement fine-tuning on only 6K images and 28K videos, PreResQ-R1 achieves state-of-the-art results across 10 IQA and 5 VQA benchmarks under both SRCC and PLCC metrics, surpassing by margins of 5.30% and textbf2.15% in IQA task, respectively. Beyond quantitative gains, it produces human-aligned reasoning traces that reveal the perceptual cues underlying quality judgments. Code and model are available.
comment: 27 pages, 14 figures, under review as a conference paper
☆ Dense Motion Captioning 3DV 2026
Recent advances in 3D human motion and language integration have primarily focused on text-to-motion generation, leaving the task of motion understanding relatively unexplored. We introduce Dense Motion Captioning, a novel task that aims to temporally localize and caption actions within 3D human motion sequences. Current datasets fall short in providing detailed temporal annotations and predominantly consist of short sequences featuring few actions. To overcome these limitations, we present the Complex Motion Dataset (CompMo), the first large-scale dataset featuring richly annotated, complex motion sequences with precise temporal boundaries. Built through a carefully designed data generation pipeline, CompMo includes 60,000 motion sequences, each composed of multiple actions ranging from at least two to ten, accurately annotated with their temporal extents. We further present DEMO, a model that integrates a large language model with a simple motion adapter, trained to generate dense, temporally grounded captions. Our experiments show that DEMO substantially outperforms existing methods on CompMo as well as on adapted benchmarks, establishing a robust baseline for future research in 3D motion understanding and captioning.
comment: 12 pages, 5 figures, accepted to 3DV 2026
☆ Neural Image Abstraction Using Long Smoothing B-Splines
We integrate smoothing B-splines into a standard differentiable vector graphics (DiffVG) pipeline through linear mapping, and show how this can be used to generate smooth and arbitrarily long paths within image-based deep learning systems. We take advantage of derivative-based smoothing costs for parametric control of fidelity vs. simplicity tradeoffs, while also enabling stylization control in geometric and image spaces. The proposed pipeline is compatible with recent vector graphics generation and vectorization methods. We demonstrate the versatility of our approach with four applications aimed at the generation of stylized vector graphics: stylized space-filling path generation, stroke-based image abstraction, closed-area image abstraction, and stylized text generation.
☆ Canonical Space Representation for 4D Panoptic Segmentation of Articulated Objects
Articulated object perception presents significant challenges in computer vision, particularly because most existing methods ignore temporal dynamics despite the inherently dynamic nature of such objects. The use of 4D temporal data has not been thoroughly explored in articulated object perception and remains unexamined for panoptic segmentation. The lack of a benchmark dataset further hurt this field. To this end, we introduce Artic4D as a new dataset derived from PartNet Mobility and augmented with synthetic sensor data, featuring 4D panoptic annotations and articulation parameters. Building on this dataset, we propose CanonSeg4D, a novel 4D panoptic segmentation framework. This approach explicitly estimates per-frame offsets mapping observed object parts to a learned canonical space, thereby enhancing part-level segmentation. The framework employs this canonical representation to achieve consistent alignment of object parts across sequential frames. Comprehensive experiments on Artic4D demonstrate that the proposed CanonSeg4D outperforms state of the art approaches in panoptic segmentation accuracy in more complex scenarios. These findings highlight the effectiveness of temporal modeling and canonical alignment in dynamic object understanding, and pave the way for future advances in 4D articulated object perception.
comment: 32 pages, 6 figures, 4 tables, submitted to Expert Systems With Applications
☆ $\mathbf{S^2LM}$: Towards Semantic Steganography via Large Language Models
Although steganography has made significant advancements in recent years, it still struggles to embed semantically rich, sentence-level information into carriers. However, in the era of AIGC, the capacity of steganography is more critical than ever. In this work, we present Sentence-to-Image Steganography, an instance of Semantic Steganography, a novel task that enables the hiding of arbitrary sentence-level messages within a cover image. Furthermore, we establish a benchmark named Invisible Text (IVT), comprising a diverse set of sentence-level texts as secret messages for evaluation. Finally, we present $\mathbf{S^2LM}$: Semantic Steganographic Language Model, which utilizes large language models (LLMs) to embed high-level textual information, such as sentences or even paragraphs, into images. Unlike traditional bit-level counterparts, $\mathrm{S^2LM}$ enables the integration of semantically rich content through a newly designed pipeline in which the LLM is involved throughout the entire process. Both quantitative and qualitative experiments demonstrate that our method effectively unlocks new semantic steganographic capabilities for LLMs. The source code will be released soon.
comment: 35 Pages, 20 Figures
☆ Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation 3DV
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.
comment: This paper has been accepted at International Conference on 3D Vision (3DV) 2026
☆ LiveStar: Live Streaming Assistant for Real-World Online Video Understanding NeurIPS 2025
Despite significant progress in Video Large Language Models (Video-LLMs) for offline video understanding, existing online Video-LLMs typically struggle to simultaneously process continuous frame-by-frame inputs and determine optimal response timing, often compromising real-time responsiveness and narrative coherence. To address these limitations, we introduce LiveStar, a pioneering live streaming assistant that achieves always-on proactive responses through adaptive streaming decoding. Specifically, LiveStar incorporates: (1) a training strategy enabling incremental video-language alignment for variable-length video streams, preserving temporal consistency across dynamically evolving frame sequences; (2) a response-silence decoding framework that determines optimal proactive response timing via a single forward pass verification; (3) memory-aware acceleration via peak-end memory compression for online inference on 10+ minute videos, combined with streaming key-value cache to achieve 1.53x faster inference. We also construct an OmniStar dataset, a comprehensive dataset for training and benchmarking that encompasses 15 diverse real-world scenarios and 5 evaluation tasks for online video understanding. Extensive experiments across three benchmarks demonstrate LiveStar's state-of-the-art performance, achieving an average 19.5% improvement in semantic correctness with 18.1% reduced timing difference compared to existing online Video-LLMs, while improving FPS by 12.0% across all five OmniStar tasks. Our model and dataset can be accessed at https://github.com/yzy-bupt/LiveStar.
comment: NeurIPS 2025 Accepted
☆ Cross-domain EEG-based Emotion Recognition with Contrastive Learning
Electroencephalogram (EEG)-based emotion recognition is vital for affective computing but faces challenges in feature utilization and cross-domain generalization. This work introduces EmotionCLIP, which reformulates recognition as an EEG-text matching task within the CLIP framework. A tailored backbone, SST-LegoViT, captures spatial, spectral, and temporal features using multi-scale convolution and Transformer modules. Experiments on SEED and SEED-IV datasets show superior cross-subject accuracies of 88.69% and 73.50%, and cross-time accuracies of 88.46% and 77.54%, outperforming existing models. Results demonstrate the effectiveness of multimodal contrastive learning for robust EEG emotion recognition.
comment: 5 pages
☆ What's on Your Plate? Inferring Chinese Cuisine Intake from Wearable IMUs
Accurate food intake detection is vital for dietary monitoring and chronic disease prevention. Traditional self-report methods are prone to recall bias, while camera-based approaches raise concerns about privacy. Furthermore, existing wearable-based methods primarily focus on a limited number of food types, such as hamburgers and pizza, failing to address the vast diversity of Chinese cuisine. To bridge this gap, we propose CuisineSense, a system that classifies Chinese food types by integrating hand motion cues from a smartwatch with head dynamics from smart glasses. To filter out irrelevant daily activities, we design a two-stage detection pipeline. The first stage identifies eating states by distinguishing characteristic temporal patterns from non-eating behaviors. The second stage then conducts fine-grained food type recognition based on the motions captured during food intake. To evaluate CuisineSense, we construct a dataset comprising 27.5 hours of IMU recordings across 11 food categories and 10 participants. Experiments demonstrate that CuisineSense achieves high accuracy in both eating state detection and food classification, offering a practical solution for unobtrusive, wearable-based dietary monitoring.The system code is publicly available at https://github.com/joeeeeyin/CuisineSense.git.
comment: 5 pages
☆ DeepEyesV2: Toward Agentic Multimodal Model
Agentic multimodal models should not only comprehend text and images, but also actively invoke external tools, such as code execution environments and web search, and integrate these operations into reasoning. In this work, we introduce DeepEyesV2 and explore how to build an agentic multimodal model from the perspectives of data construction, training methods, and model evaluation. We observe that direct reinforcement learning alone fails to induce robust tool-use behavior. This phenomenon motivates a two-stage training pipeline: a cold-start stage to establish tool-use patterns, and reinforcement learning stage to further refine tool invocation. We curate a diverse, moderately challenging training dataset, specifically including examples where tool use is beneficial. We further introduce RealX-Bench, a comprehensive benchmark designed to evaluate real-world multimodal reasoning, which inherently requires the integration of multiple capabilities, including perception, search, and reasoning. We evaluate DeepEyesV2 on RealX-Bench and other representative benchmarks, demonstrating its effectiveness across real-world understanding, mathematical reasoning, and search-intensive tasks. Moreover, DeepEyesV2 exhibits task-adaptive tool invocation, tending to use image operations for perception tasks and numerical computations for reasoning tasks. Reinforcement learning further enables complex tool combinations and allows model to selectively invoke tools based on context. We hope our study can provide guidance for community in developing agentic multimodal models.
comment: Homepage: https://visual-agent.github.io/
☆ OregairuChar: A Benchmark Dataset for Character Appearance Frequency Analysis in My Teen Romantic Comedy SNAFU
The analysis of character appearance frequency is essential for understanding narrative structure, character prominence, and story progression in anime. In this work, we introduce OregairuChar, a benchmark dataset designed for appearance frequency analysis in the anime series My Teen Romantic Comedy SNAFU. The dataset comprises 1600 manually selected frames from the third season, annotated with 2860 bounding boxes across 11 main characters. OregairuChar captures diverse visual challenges, including occlusion, pose variation, and inter-character similarity, providing a realistic basis for appearance-based studies. To enable quantitative research, we benchmark several object detection models on the dataset and leverage their predictions for fine-grained, episode-level analysis of character presence over time. This approach reveals patterns of character prominence and their evolution within the narrative. By emphasizing appearance frequency, OregairuChar serves as a valuable resource for exploring computational narrative dynamics and character-centric storytelling in stylized media.
☆ Automatic segmentation of colorectal liver metastases for ultrasound-based navigated resection
Introduction: Accurate intraoperative delineation of colorectal liver metastases (CRLM) is crucial for achieving negative resection margins but remains challenging using intraoperative ultrasound (iUS) due to low contrast, noise, and operator dependency. Automated segmentation could enhance precision and efficiency in ultrasound-based navigation workflows. Methods: Eighty-five tracked 3D iUS volumes from 85 CRLM patients were used to train and evaluate a 3D U-Net implemented via the nnU-Net framework. Two variants were compared: one trained on full iUS volumes and another on cropped regions around tumors. Segmentation accuracy was assessed using Dice Similarity Coefficient (DSC), Hausdorff Distance (HDist.), and Relative Volume Difference (RVD) on retrospective and prospective datasets. The workflow was integrated into 3D Slicer for real-time intraoperative use. Results: The cropped-volume model significantly outperformed the full-volume model across all metrics (AUC-ROC = 0.898 vs 0.718). It achieved median DSC = 0.74, recall = 0.79, and HDist. = 17.1 mm comparable to semi-automatic segmentation but with ~4x faster execution (~ 1 min). Prospective intraoperative testing confirmed robust and consistent performance, with clinically acceptable accuracy for real-time surgical guidance. Conclusion: Automatic 3D segmentation of CRLM in iUS using a cropped 3D U-Net provides reliable, near real-time results with minimal operator input. The method enables efficient, registration-free ultrasound-based navigation for hepatic surgery, approaching expert-level accuracy while substantially reducing manual workload and procedure time.
☆ Accurate online action and gesture recognition system using detectors and Deep SPD Siamese Networks
Online continuous motion recognition is a hot topic of research since it is more practical in real life application cases. Recently, Skeleton-based approaches have become increasingly popular, demonstrating the power of using such 3D temporal data. However, most of these works have focused on segment-based recognition and are not suitable for the online scenarios. In this paper, we propose an online recognition system for skeleton sequence streaming composed from two main components: a detector and a classifier, which use a Semi-Positive Definite (SPD) matrix representation and a Siamese network. The powerful statistical representations for the skeletal data given by the SPD matrices and the learning of their semantic similarity by the Siamese network enable the detector to predict time intervals of the motions throughout an unsegmented sequence. In addition, they ensure the classifier capability to recognize the motion in each predicted interval. The proposed detector is flexible and able to identify the kinetic state continuously. We conduct extensive experiments on both hand gesture and body action recognition benchmarks to prove the accuracy of our online recognition system which in most cases outperforms state-of-the-art performances.
☆ ADPretrain: Advancing Industrial Anomaly Detection via Anomaly Representation Pretraining NeurIPS 2025
The current mainstream and state-of-the-art anomaly detection (AD) methods are substantially established on pretrained feature networks yielded by ImageNet pretraining. However, regardless of supervised or self-supervised pretraining, the pretraining process on ImageNet does not match the goal of anomaly detection (i.e., pretraining in natural images doesn't aim to distinguish between normal and abnormal). Moreover, natural images and industrial image data in AD scenarios typically have the distribution shift. The two issues can cause ImageNet-pretrained features to be suboptimal for AD tasks. To further promote the development of the AD field, pretrained representations specially for AD tasks are eager and very valuable. To this end, we propose a novel AD representation learning framework specially designed for learning robust and discriminative pretrained representations for industrial anomaly detection. Specifically, closely surrounding the goal of anomaly detection (i.e., focus on discrepancies between normals and anomalies), we propose angle- and norm-oriented contrastive losses to maximize the angle size and norm difference between normal and abnormal features simultaneously. To avoid the distribution shift from natural images to AD images, our pretraining is performed on a large-scale AD dataset, RealIAD. To further alleviate the potential shift between pretraining data and downstream AD datasets, we learn the pretrained AD representations based on the class-generalizable representation, residual features. For evaluation, based on five embedding-based AD methods, we simply replace their original features with our pretrained representations. Extensive experiments on five AD datasets and five backbones consistently show the superiority of our pretrained features. The code is available at https://github.com/xcyao00/ADPretrain.
comment: Accepted by NeurIPS 2025
☆ 4D3R: Motion-Aware Neural Reconstruction and Rendering of Dynamic Scenes from Monocular Videos
Novel view synthesis from monocular videos of dynamic scenes with unknown camera poses remains a fundamental challenge in computer vision and graphics. While recent advances in 3D representations such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have shown promising results for static scenes, they struggle with dynamic content and typically rely on pre-computed camera poses. We present 4D3R, a pose-free dynamic neural rendering framework that decouples static and dynamic components through a two-stage approach. Our method first leverages 3D foundational models for initial pose and geometry estimation, followed by motion-aware refinement. 4D3R introduces two key technical innovations: (1) a motion-aware bundle adjustment (MA-BA) module that combines transformer-based learned priors with SAM2 for robust dynamic object segmentation, enabling more accurate camera pose refinement; and (2) an efficient Motion-Aware Gaussian Splatting (MA-GS) representation that uses control points with a deformation field MLP and linear blend skinning to model dynamic motion, significantly reducing computational cost while maintaining high-quality reconstruction. Extensive experiments on real-world dynamic datasets demonstrate that our approach achieves up to 1.8dB PSNR improvement over state-of-the-art methods, particularly in challenging scenarios with large dynamic objects, while reducing computational requirements by 5x compared to previous dynamic scene representations.
comment: 17 pages, 5 figures
☆ FreeControl: Efficient, Training-Free Structural Control via One-Step Attention Extraction NIPS 2025
Controlling the spatial and semantic structure of diffusion-generated images remains a challenge. Existing methods like ControlNet rely on handcrafted condition maps and retraining, limiting flexibility and generalization. Inversion-based approaches offer stronger alignment but incur high inference cost due to dual-path denoising. We present FreeControl, a training-free framework for semantic structural control in diffusion models. Unlike prior methods that extract attention across multiple timesteps, FreeControl performs one-step attention extraction from a single, optimally chosen key timestep and reuses it throughout denoising. This enables efficient structural guidance without inversion or retraining. To further improve quality and stability, we introduce Latent-Condition Decoupling (LCD): a principled separation of the key timestep and the noised latent used in attention extraction. LCD provides finer control over attention quality and eliminates structural artifacts. FreeControl also supports compositional control via reference images assembled from multiple sources - enabling intuitive scene layout design and stronger prompt alignment. FreeControl introduces a new paradigm for test-time control, enabling structurally and semantically aligned, visually coherent generation directly from raw images, with the flexibility for intuitive compositional design and compatibility with modern diffusion models at approximately 5 percent additional cost.
comment: Accepted by NIPS 2025
☆ Walk the Lines 2: Contour Tracking for Detailed Segmentation
This paper presents Walk the Lines 2 (WtL2), a unique contour tracking algorithm specifically adapted for detailed segmentation of infrared (IR) ships and various objects in RGB.1 This extends the original Walk the Lines (WtL) [12], which focused solely on detailed ship segmentation in color. These innovative WtLs can replace the standard non-maximum suppression (NMS) by using contour tracking to refine the object contour until a 1-pixel-wide closed shape can be binarized, forming a segmentable area in foreground-background scenarios. WtL2 broadens the application range of WtL beyond its original scope, adapting to IR and expanding to diverse objects within the RGB context. To achieve IR segmentation, we adapt its input, the object contour detector, to IR ships. In addition, the algorithm is enhanced to process a wide range of RGB objects, outperforming the latest generation of contour-based methods when achieving a closed object contour, offering high peak Intersection over Union (IoU) with impressive details. This positions WtL2 as a compelling method for specialized applications that require detailed segmentation or high-quality samples, potentially accelerating progress in several niche areas of image segmentation.
comment: 11 pages, 6 figures. Accepted at CAIP 2025: 21st International Conference on Computer Analysis of Images and Patterns, Las Palmas de Gran Canaria, Spain, September 22-25, 2025. To appear in: Proceedings Part I, Lecture Notes in Computer Science (LNCS), Springer Nature Switzerland
PySlyde: A Lightweight, Open-Source Toolkit for Pathology Preprocessing
The integration of artificial intelligence (AI) into pathology is advancing precision medicine by improving diagnosis, treatment planning, and patient outcomes. Digitised whole-slide images (WSIs) capture rich spatial and morphological information vital for understanding disease biology, yet their gigapixel scale and variability pose major challenges for standardisation and analysis. Robust preprocessing, covering tissue detection, tessellation, stain normalisation, and annotation parsing is critical but often limited by fragmented and inconsistent workflows. We present PySlyde, a lightweight, open-source Python toolkit built on OpenSlide to simplify and standardise WSI preprocessing. PySlyde provides an intuitive API for slide loading, annotation management, tissue detection, tiling, and feature extraction, compatible with modern pathology foundation models. By unifying these processes, it streamlines WSI preprocessing, enhances reproducibility, and accelerates the generation of AI-ready datasets, enabling researchers to focus on model development and downstream analysis.
☆ MUSE: Multi-Scale Dense Self-Distillation for Nucleus Detection and Classification
Nucleus detection and classification (NDC) in histopathology analysis is a fundamental task that underpins a wide range of high-level pathology applications. However, existing methods heavily rely on labor-intensive nucleus-level annotations and struggle to fully exploit large-scale unlabeled data for learning discriminative nucleus representations. In this work, we propose MUSE (MUlti-scale denSE self-distillation), a novel self-supervised learning method tailored for NDC. At its core is NuLo (Nucleus-based Local self-distillation), a coordinate-guided mechanism that enables flexible local self-distillation based on predicted nucleus positions. By removing the need for strict spatial alignment between augmented views, NuLo allows critical cross-scale alignment, thus unlocking the capacity of models for fine-grained nucleus-level representation. To support MUSE, we design a simple yet effective encoder-decoder architecture and a large field-of-view semi-supervised fine-tuning strategy that together maximize the value of unlabeled pathology images. Extensive experiments on three widely used benchmarks demonstrate that MUSE effectively addresses the core challenges of histopathological NDC. The resulting models not only surpass state-of-the-art supervised baselines but also outperform generic pathology foundation models.
comment: 12 pages, 7 figures
☆ Another BRIXEL in the Wall: Towards Cheaper Dense Features
Vision foundation models achieve strong performance on both global and locally dense downstream tasks. Pretrained on large images, the recent DINOv3 model family is able to produce very fine-grained dense feature maps, enabling state-of-the-art performance. However, computing these feature maps requires the input image to be available at very high resolution, as well as large amounts of compute due to the squared complexity of the transformer architecture. To address these issues, we propose BRIXEL, a simple knowledge distillation approach that has the student learn to reproduce its own feature maps at higher resolution. Despite its simplicity, BRIXEL outperforms the baseline DINOv3 models by large margins on downstream tasks when the resolution is kept fixed. Moreover, it is able to produce feature maps that are very similar to those of the teacher at a fraction of the computational cost. Code and model weights are available at https://github.com/alexanderlappe/BRIXEL.
☆ Splatography: Sparse multi-view dynamic Gaussian Splatting for filmmaking challenges
Deformable Gaussian Splatting (GS) accomplishes photorealistic dynamic 3-D reconstruction from dense multi-view video (MVV) by learning to deform a canonical GS representation. However, in filmmaking, tight budgets can result in sparse camera configurations, which limits state-of-the-art (SotA) methods when capturing complex dynamic features. To address this issue, we introduce an approach that splits the canonical Gaussians and deformation field into foreground and background components using a sparse set of masks for frames at t=0. Each representation is separately trained on different loss functions during canonical pre-training. Then, during dynamic training, different parameters are modeled for each deformation field following common filmmaking practices. The foreground stage contains diverse dynamic features so changes in color, position and rotation are learned. While, the background containing film-crew and equipment, is typically dimmer and less dynamic so only changes in point position are learned. Experiments on 3-D and 2.5-D entertainment datasets show that our method produces SotA qualitative and quantitative results; up to 3 PSNR higher with half the model size on 3-D scenes. Unlike the SotA and without the need for dense mask supervision, our method also produces segmented dynamic reconstructions including transparent and dynamic textures. Code and video comparisons are available online: https://interims-git.github.io/
☆ From Linear Probing to Joint-Weighted Token Hierarchy: A Foundation Model Bridging Global and Cellular Representations in Biomarker Detection
AI-based biomarkers can infer molecular features directly from hematoxylin & eosin (H&E) slides, yet most pathology foundation models (PFMs) rely on global patch-level embeddings and overlook cell-level morphology. We present a PFM model, JWTH (Joint-Weighted Token Hierarchy), which integrates large-scale self-supervised pretraining with cell-centric post-tuning and attention pooling to fuse local and global tokens. Across four tasks involving four biomarkers and eight cohorts, JWTH achieves up to 8.3% higher balanced accuracy and 1.2% average improvement over prior PFMs, advancing interpretable and robust AI-based biomarker detection in digital pathology.
☆ SnowyLane: Robust Lane Detection on Snow-covered Rural Roads Using Infrastructural Elements
Lane detection for autonomous driving in snow-covered environments remains a major challenge due to the frequent absence or occlusion of lane markings. In this paper, we present a novel, robust and realtime capable approach that bypasses the reliance on traditional lane markings by detecting roadside features,specifically vertical roadside posts called delineators, as indirect lane indicators. Our method first perceives these posts, then fits a smooth lane trajectory using a parameterized Bezier curve model, leveraging spatial consistency and road geometry. To support training and evaluation in these challenging scenarios, we introduce SnowyLane, a new synthetic dataset containing 80,000 annotated frames capture winter driving conditions, with varying snow coverage, and lighting conditions. Compared to state-of-the-art lane detection systems, our approach demonstrates significantly improved robustness in adverse weather, particularly in cases with heavy snow occlusion. This work establishes a strong foundation for reliable lane detection in winter scenarios and contributes a valuable resource for future research in all-weather autonomous driving. The dataset is available at https://ekut-es.github.io/snowy-lane
☆ Early Alzheimer's Disease Detection from Retinal OCT Images: A UK Biobank Study
Alterations in retinal layer thickness, measurable using Optical Coherence Tomography (OCT), have been associated with neurodegenerative diseases such as Alzheimer's disease (AD). While previous studies have mainly focused on segmented layer thickness measurements, this study explored the direct classification of OCT B-scan images for the early detection of AD. To our knowledge, this is the first application of deep learning to raw OCT B-scans for AD prediction in the literature. Unlike conventional medical image classification tasks, early detection is more challenging than diagnosis because imaging precedes clinical diagnosis by several years. We fine-tuned and evaluated multiple pretrained models, including ImageNet-based networks and the OCT-specific RETFound transformer, using subject-level cross-validation datasets matched for age, sex, and imaging instances from the UK Biobank cohort. To reduce overfitting in this small, high-dimensional dataset, both standard and OCT-specific augmentation techniques were applied, along with a year-weighted loss function that prioritized cases diagnosed within four years of imaging. ResNet-34 produced the most stable results, achieving an AUC of 0.62 in the 4-year cohort. Although below the threshold for clinical application, our explainability analyses confirmed localized structural differences in the central macular subfield between the AD and control groups. These findings provide a baseline for OCT-based AD prediction, highlight the challenges of detecting subtle retinal biomarkers years before AD diagnosis, and point to the need for larger datasets and multimodal approaches.
☆ Quantifying the Risk of Transferred Black Box Attacks
Neural networks have become pervasive across various applications, including security-related products. However, their widespread adoption has heightened concerns regarding vulnerability to adversarial attacks. With emerging regulations and standards emphasizing security, organizations must reliably quantify risks associated with these attacks, particularly regarding transferred adversarial attacks, which remain challenging to evaluate accurately. This paper investigates the complexities involved in resilience testing against transferred adversarial attacks. Our analysis specifically addresses black-box evasion attacks, highlighting transfer-based attacks due to their practical significance and typically high transferability between neural network models. We underline the computational infeasibility of exhaustively exploring high-dimensional input spaces to achieve complete test coverage. As a result, comprehensive adversarial risk mapping is deemed impractical. To mitigate this limitation, we propose a targeted resilience testing framework that employs surrogate models strategically selected based on Centered Kernel Alignment (CKA) similarity. By leveraging surrogate models exhibiting both high and low CKA similarities relative to the target model, the proposed approach seeks to optimize coverage of adversarial subspaces. Risk estimation is conducted using regression-based estimators, providing organizations with realistic and actionable risk quantification.
☆ Real-World Adverse Weather Image Restoration via Dual-Level Reinforcement Learning with High-Quality Cold Start NeurIPS 2025
Adverse weather severely impairs real-world visual perception, while existing vision models trained on synthetic data with fixed parameters struggle to generalize to complex degradations. To address this, we first construct HFLS-Weather, a physics-driven, high-fidelity dataset that simulates diverse weather phenomena, and then design a dual-level reinforcement learning framework initialized with HFLS-Weather for cold-start training. Within this framework, at the local level, weather-specific restoration models are refined through perturbation-driven image quality optimization, enabling reward-based learning without paired supervision; at the global level, a meta-controller dynamically orchestrates model selection and execution order according to scene degradation. This framework enables continuous adaptation to real-world conditions and achieves state-of-the-art performance across a wide range of adverse weather scenarios. Code is available at https://github.com/xxclfy/AgentRL-Real-Weather
comment: Accepted by NeurIPS 2025
☆ A Dual-stage Prompt-driven Privacy-preserving Paradigm for Person Re-Identification
With growing concerns over data privacy, researchers have started using virtual data as an alternative to sensitive real-world images for training person re-identification (Re-ID) models. However, existing virtual datasets produced by game engines still face challenges such as complex construction and poor domain generalization, making them difficult to apply in real scenarios. To address these challenges, we propose a Dual-stage Prompt-driven Privacy-preserving Paradigm (DPPP). In the first stage, we generate rich prompts incorporating multi-dimensional attributes such as pedestrian appearance, illumination, and viewpoint that drive the diffusion model to synthesize diverse data end-to-end, building a large-scale virtual dataset named GenePerson with 130,519 images of 6,641 identities. In the second stage, we propose a Prompt-driven Disentanglement Mechanism (PDM) to learn domain-invariant generalization features. With the aid of contrastive learning, we employ two textual inversion networks to map images into pseudo-words representing style and content, respectively, thereby constructing style-disentangled content prompts to guide the model in learning domain-invariant content features at the image level. Experiments demonstrate that models trained on GenePerson with PDM achieve state-of-the-art generalization performance, surpassing those on popular real and virtual Re-ID datasets.
comment: 10 pages, 6 figures
☆ Deep learning models are vulnerable, but adversarial examples are even more vulnerable
Understanding intrinsic differences between adversarial examples and clean samples is key to enhancing DNN robustness and detection against adversarial attacks. This study first empirically finds that image-based adversarial examples are notably sensitive to occlusion. Controlled experiments on CIFAR-10 used nine canonical attacks (e.g., FGSM, PGD) to generate adversarial examples, paired with original samples for evaluation. We introduce Sliding Mask Confidence Entropy (SMCE) to quantify model confidence fluctuation under occlusion. Using 1800+ test images, SMCE calculations supported by Mask Entropy Field Maps and statistical distributions show adversarial examples have significantly higher confidence volatility under occlusion than originals. Based on this, we propose Sliding Window Mask-based Adversarial Example Detection (SWM-AED), which avoids catastrophic overfitting of conventional adversarial training. Evaluations across classifiers and attacks on CIFAR-10 demonstrate robust performance, with accuracy over 62% in most cases and up to 96.5%.
comment: 25 pages,12 figures
☆ SurgiATM: A Physics-Guided Plug-and-Play Model for Deep Learning-Based Smoke Removal in Laparoscopic Surgery
During laparoscopic surgery, smoke generated by tissue cauterization can significantly degrade the visual quality of endoscopic frames, increasing the risk of surgical errors and hindering both clinical decision-making and computer-assisted visual analysis. Consequently, removing surgical smoke is critical to ensuring patient safety and maintaining operative efficiency. In this study, we propose the Surgical Atmospheric Model (SurgiATM) for surgical smoke removal. SurgiATM statistically bridges a physics-based atmospheric model and data-driven deep learning models, combining the superior generalizability of the former with the high accuracy of the latter. Furthermore, SurgiATM is designed as a lightweight, plug-and-play module that can be seamlessly integrated into diverse surgical desmoking architectures to enhance their accuracy and stability, better meeting clinical requirements. It introduces only two hyperparameters and no additional trainable weights, preserving the original network architecture with minimal computational and modification overhead. We conduct extensive experiments on three public surgical datasets with ten desmoking methods, involving multiple network architectures and covering diverse procedures, including cholecystectomy, partial nephrectomy, and diaphragm dissection. The results demonstrate that incorporating SurgiATM commonly reduces the restoration errors of existing models and relatively enhances their generalizability, without adding any trainable layers or weights. This highlights the convenience, low cost, effectiveness, and generalizability of the proposed method. The code for SurgiATM is released at https://github.com/MingyuShengSMY/SurgiATM.
comment: 10 pages, 5 figures, 6 tables. Code available at https://github.com/MingyuShengSMY/SurgiATM
☆ Role-SynthCLIP: A Role Play Driven Diverse Synthetic Data Approach
The effectiveness of Contrastive Language-Image Pre-training (CLIP) models critically depends on the semantic diversity and quality of their training data. However, while existing synthetic data generation methods primarily focus on increasing data volume, such emphasis often leads to limited semantic diversity and redundant or shallow captions. To address this limitation, we propose Role-SynthCLIP, a novel data synthesis framework that leverages multi-perspective role-playing prompts (e.g., a compositional analyst, an interpreter of image context) to guide Multimodal Large Language Models (MLLMs) in generating semantically diverse captions from distinct viewpoints. This mechanism enhances the semantic diversity and fine-grained image-text alignment of synthetic pairs, thereby improving caption expressiveness and accuracy while keeping the total number of image-text pairs unchanged. Experimental results demonstrate the effectiveness and efficiency of our method. A CLIP-B/16 model trained on only 1 million Role-SynthCLIP pairs achieves a Recall@1 of 64.1% on the MS COCO validation set, surpassing the best existing synthetic data baseline (trained on 5M pairs) by 2.8 percentage points. The code and trained models are released at https://github.com/huangfu170/Role-SynthCLIP.
☆ No Pose Estimation? No Problem: Pose-Agnostic and Instance-Aware Test-Time Adaptation for Monocular Depth Estimation
Monocular depth estimation (MDE), inferring pixel-level depths in single RGB images from a monocular camera, plays a crucial and pivotal role in a variety of AI applications demanding a three-dimensional (3D) topographical scene. In the real-world scenarios, MDE models often need to be deployed in environments with different conditions from those for training. Test-time (domain) adaptation (TTA) is one of the compelling and practical approaches to address the issue. Although there have been notable advancements in TTA for MDE, particularly in a self-supervised manner, existing methods are still ineffective and problematic when applied to diverse and dynamic environments. To break through this challenge, we propose a novel and high-performing TTA framework for MDE, named PITTA. Our approach incorporates two key innovative strategies: (i) pose-agnostic TTA paradigm for MDE and (ii) instance-aware image masking. Specifically, PITTA enables highly effective TTA on a pretrained MDE network in a pose-agnostic manner without resorting to any camera pose information. Besides, our instance-aware masking strategy extracts instance-wise masks for dynamic objects (e.g., vehicles, pedestrians, etc.) from a segmentation mask produced by a pretrained panoptic segmentation network, by removing static objects including background components. To further boost performance, we also present a simple yet effective edge extraction methodology for the input image (i.e., a single monocular image) and depth map. Extensive experimental evaluations on DrivingStereo and Waymo datasets with varying environmental conditions demonstrate that our proposed framework, PITTA, surpasses the existing state-of-the-art techniques with remarkable performance improvements in MDE during TTA.
☆ Medical Referring Image Segmentation via Next-Token Mask Prediction
Medical Referring Image Segmentation (MRIS) involves segmenting target regions in medical images based on natural language descriptions. While achieving promising results, recent approaches usually involve complex design of multimodal fusion or multi-stage decoders. In this work, we propose NTP-MRISeg, a novel framework that reformulates MRIS as an autoregressive next-token prediction task over a unified multimodal sequence of tokenized image, text, and mask representations. This formulation streamlines model design by eliminating the need for modality-specific fusion and external segmentation models, supports a unified architecture for end-to-end training. It also enables the use of pretrained tokenizers from emerging large-scale multimodal models, enhancing generalization and adaptability. More importantly, to address challenges under this formulation-such as exposure bias, long-tail token distributions, and fine-grained lesion edges-we propose three novel strategies: (1) a Next-k Token Prediction (NkTP) scheme to reduce cumulative prediction errors, (2) Token-level Contrastive Learning (TCL) to enhance boundary sensitivity and mitigate long-tail distribution effects, and (3) a memory-based Hard Error Token (HET) optimization strategy that emphasizes difficult tokens during training. Extensive experiments on the QaTa-COV19 and MosMedData+ datasets demonstrate that NTP-MRISeg achieves new state-of-the-art performance, offering a streamlined and effective alternative to traditional MRIS pipelines.
comment: This work has been submitted to the IEEE Transactions on Medical Imaging for possible publication
☆ Pressure2Motion: Hierarchical Motion Synthesis from Ground Pressure with Text Guidance
We present Pressure2Motion, a novel motion capture algorithm that synthesizes human motion from a ground pressure sequence and text prompt. It eliminates the need for specialized lighting setups, cameras, or wearable devices, making it suitable for privacy-preserving, low-light, and low-cost motion capture scenarios. Such a task is severely ill-posed due to the indeterminate nature of the pressure signals to full-body motion. To address this issue, we introduce Pressure2Motion, a generative model that leverages pressure features as input and utilizes a text prompt as a high-level guiding constraint. Specifically, our model utilizes a dual-level feature extractor that accurately interprets pressure data, followed by a hierarchical diffusion model that discerns broad-scale movement trajectories and subtle posture adjustments. Both the physical cues gained from the pressure sequence and the semantic guidance derived from descriptive texts are leveraged to guide the motion generation with precision. To the best of our knowledge, Pressure2Motion is a pioneering work in leveraging both pressure data and linguistic priors for motion generation, and the established MPL benchmark is the first benchmark for this task. Experiments show our method generates high-fidelity, physically plausible motions, establishing a new state-of-the-art for this task. The codes and benchmarks will be publicly released upon publication.
☆ Dynamic Residual Encoding with Slide-Level Contrastive Learning for End-to-End Whole Slide Image Representation
Whole Slide Image (WSI) representation is critical for cancer subtyping, cancer recognition and mutation prediction.Training an end-to-end WSI representation model poses significant challenges, as a standard gigapixel slide can contain tens of thousands of image tiles, making it difficult to compute gradients of all tiles in a single mini-batch due to current GPU limitations. To address this challenge, we propose a method of dynamic residual encoding with slide-level contrastive learning (DRE-SLCL) for end-to-end WSI representation. Our approach utilizes a memory bank to store the features of tiles across all WSIs in the dataset. During training, a mini-batch usually contains multiple WSIs. For each WSI in the batch, a subset of tiles is randomly sampled and their features are computed using a tile encoder. Then, additional tile features from the same WSI are selected from the memory bank. The representation of each individual WSI is generated using a residual encoding technique that incorporates both the sampled features and those retrieved from the memory bank. Finally, the slide-level contrastive loss is computed based on the representations and histopathology reports ofthe WSIs within the mini-batch. Experiments conducted over cancer subtyping, cancer recognition, and mutation prediction tasks proved the effectiveness of the proposed DRE-SLCL method.
comment: 8pages, 3figures, published to ACM Digital Library
☆ DAFM: Dynamic Adaptive Fusion for Multi-Model Collaboration in Composed Image Retrieval
Composed Image Retrieval (CIR) is a cross-modal task that aims to retrieve target images from large-scale databases using a reference image and a modification text. Most existing methods rely on a single model to perform feature fusion and similarity matching. However, this paradigm faces two major challenges. First, one model alone can't see the whole picture and the tiny details at the same time; it has to handle different tasks with the same weights, so it often misses the small but important links between image and text. Second, the absence of dynamic weight allocation prevents adaptive leveraging of complementary model strengths, so the resulting embedding drifts away from the target and misleads the nearest-neighbor search in CIR. To address these limitations, we propose Dynamic Adaptive Fusion (DAFM) for multi-model collaboration in CIR. Rather than optimizing a single method in isolation, DAFM exploits the complementary strengths of heterogeneous models and adaptively rebalances their contributions. This not only maximizes retrieval accuracy but also ensures that the performance gains are independent of the fusion order, highlighting the robustness of our approach. Experiments on the CIRR and FashionIQ benchmarks demonstrate consistent improvements. Our method achieves a Recall@10 of 93.21 and an Rmean of 84.43 on CIRR, and an average Rmean of 67.48 on FashionIQ, surpassing recent strong baselines by up to 4.5%. These results confirm that dynamic multi-model collaboration provides an effective and general solution for CIR.
comment: 10 pages,4 figures
☆ Towards Mitigating Hallucinations in Large Vision-Language Models by Refining Textual Embeddings
In this work, we identify an inherent bias in prevailing LVLM architectures toward the language modality, largely resulting from the common practice of simply appending visual embeddings to the input text sequence. To address this, we propose a simple yet effective method that refines textual embeddings by integrating average-pooled visual features. Our approach demonstrably improves visual grounding and significantly reduces hallucinations on established benchmarks. While average pooling offers a straightforward, robust, and efficient means of incorporating visual information, we believe that more sophisticated fusion methods could further enhance visual grounding and cross-modal alignment. Given that the primary focus of this work is to highlight the modality imbalance and its impact on hallucinations -- and to show that refining textual embeddings with visual information mitigates this issue -- we leave exploration of advanced fusion strategies for future work.
☆ UHDRes: Ultra-High-Definition Image Restoration via Dual-Domain Decoupled Spectral Modulation
Ultra-high-definition (UHD) images often suffer from severe degradations such as blur, haze, rain, or low-light conditions, which pose significant challenges for image restoration due to their high resolution and computational demands. In this paper, we propose UHDRes, a novel lightweight dual-domain decoupled spectral modulation framework for UHD image restoration. It explicitly models the amplitude spectrum via lightweight spectrum-domain modulation, while restoring phase implicitly through spatial-domain refinement. We introduce the spatio-spectral fusion mechanism, which first employs a multi-scale context aggregator to extract local and global spatial features, and then performs spectral modulation in a decoupled manner. It explicitly enhances amplitude features in the frequency domain while implicitly restoring phase information through spatial refinement. Additionally, a shared gated feed-forward network is designed to efficiently promote feature interaction through shared-parameter convolutions and adaptive gating mechanisms. Extensive experimental comparisons on five public UHD benchmarks demonstrate that our UHDRes achieves the state-of-the-art restoration performance with only 400K parameters, while significantly reducing inference latency and memory usage. The codes and models are available at https://github.com/Zhao0100/UHDRes.
☆ GSE: Evaluating Sticker Visual Semantic Similarity via a General Sticker Encoder
Stickers have become a popular form of visual communication, yet understanding their semantic relationships remains challenging due to their highly diverse and symbolic content. In this work, we formally {define the Sticker Semantic Similarity task} and introduce {Triple-S}, the first benchmark for this task, consisting of 905 human-annotated positive and negative sticker pairs. Through extensive evaluation, we show that existing pretrained vision and multimodal models struggle to capture nuanced sticker semantics. To address this, we propose the {General Sticker Encoder (GSE)}, a lightweight and versatile model that learns robust sticker embeddings using both Triple-S and additional datasets. GSE achieves superior performance on unseen stickers, and demonstrates strong results on downstream tasks such as emotion classification and sticker-to-sticker retrieval. By releasing both Triple-S and GSE, we provide standardized evaluation tools and robust embeddings, enabling future research in sticker understanding, retrieval, and multimodal content generation. The Triple-S benchmark and GSE have been publicly released and are available here.
☆ Challenges in 3D Data Synthesis for Training Neural Networks on Topological Features
Topological Data Analysis (TDA) involves techniques of analyzing the underlying structure and connectivity of data. However, traditional methods like persistent homology can be computationally demanding, motivating the development of neural network-based estimators capable of reducing computational overhead and inference time. A key barrier to advancing these methods is the lack of labeled 3D data with class distributions and diversity tailored specifically for supervised learning in TDA tasks. To address this, we introduce a novel approach for systematically generating labeled 3D datasets using the Repulsive Surface algorithm, allowing control over topological invariants, such as hole count. The resulting dataset offers varied geometry with topological labeling, making it suitable for training and benchmarking neural network estimators. This paper uses a synthetic 3D dataset to train a genus estimator network, created using a 3D convolutional transformer architecture. An observed decrease in accuracy as deformations increase highlights the role of not just topological complexity, but also geometric complexity, when training generalized estimators. This dataset fills a gap in labeled 3D datasets and generation for training and evaluating models and techniques for TDA.
comment: 10 pages
☆ Learning Fourier shapes to probe the geometric world of deep neural networks
While both shape and texture are fundamental to visual recognition, research on deep neural networks (DNNs) has predominantly focused on the latter, leaving their geometric understanding poorly probed. Here, we show: first, that optimized shapes can act as potent semantic carriers, generating high-confidence classifications from inputs defined purely by their geometry; second, that they are high-fidelity interpretability tools that precisely isolate a model's salient regions; and third, that they constitute a new, generalizable adversarial paradigm capable of deceiving downstream visual tasks. This is achieved through an end-to-end differentiable framework that unifies a powerful Fourier series to parameterize arbitrary shapes, a winding number-based mapping to translate them into the pixel grid required by DNNs, and signal energy constraints that enhance optimization efficiency while ensuring physically plausible shapes. Our work provides a versatile framework for probing the geometric world of DNNs and opens new frontiers for challenging and understanding machine perception.
comment: 20 pages, 5 figures
☆ Pattern-Aware Diffusion Synthesis of fMRI/dMRI with Tissue and Microstructural Refinement
Magnetic resonance imaging (MRI), especially functional MRI (fMRI) and diffusion MRI (dMRI), is essential for studying neurodegenerative diseases. However, missing modalities pose a major barrier to their clinical use. Although GAN- and diffusion model-based approaches have shown some promise in modality completion, they remain limited in fMRI-dMRI synthesis due to (1) significant BOLD vs. diffusion-weighted signal differences between fMRI and dMRI in time/gradient axis, and (2) inadequate integration of disease-related neuroanatomical patterns during generation. To address these challenges, we propose PDS, introducing two key innovations: (1) a pattern-aware dual-modal 3D diffusion framework for cross-modality learning, and (2) a tissue refinement network integrated with a efficient microstructure refinement to maintain structural fidelity and fine details. Evaluated on OASIS-3, ADNI, and in-house datasets, our method achieves state-of-the-art results, with PSNR/SSIM scores of 29.83 dB/90.84\% for fMRI synthesis (+1.54 dB/+4.12\% over baselines) and 30.00 dB/77.55\% for dMRI synthesis (+1.02 dB/+2.2\%). In clinical validation, the synthesized data show strong diagnostic performance, achieving 67.92\%/66.02\%/64.15\% accuracy (NC vs. MCI vs. AD) in hybrid real-synthetic experiments. Code is available in \href{https://github.com/SXR3015/PDS}{PDS GitHub Repository}
CLM: Removing the GPU Memory Barrier for 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) is an increasingly popular novel view synthesis approach due to its fast rendering time, and high-quality output. However, scaling 3DGS to large (or intricate) scenes is challenging due to its large memory requirement, which exceed most GPU's memory capacity. In this paper, we describe CLM, a system that allows 3DGS to render large scenes using a single consumer-grade GPU, e.g., RTX4090. It does so by offloading Gaussians to CPU memory, and loading them into GPU memory only when necessary. To reduce performance and communication overheads, CLM uses a novel offloading strategy that exploits observations about 3DGS's memory access pattern for pipelining, and thus overlap GPU-to-CPU communication, GPU computation and CPU computation. Furthermore, we also exploit observation about the access pattern to reduce communication volume. Our evaluation shows that the resulting implementation can render a large scene that requires 100 million Gaussians on a single RTX4090 and achieve state-of-the-art reconstruction quality.
comment: Accepted to appear in the 2026 ACM International Conference on Architectural Support for Programming Languages and Operating Systems
☆ DeepForgeSeal: Latent Space-Driven Semi-Fragile Watermarking for Deepfake Detection Using Multi-Agent Adversarial Reinforcement Learning
Rapid advances in generative AI have led to increasingly realistic deepfakes, posing growing challenges for law enforcement and public trust. Existing passive deepfake detectors struggle to keep pace, largely due to their dependence on specific forgery artifacts, which limits their ability to generalize to new deepfake types. Proactive deepfake detection using watermarks has emerged to address the challenge of identifying high-quality synthetic media. However, these methods often struggle to balance robustness against benign distortions with sensitivity to malicious tampering. This paper introduces a novel deep learning framework that harnesses high-dimensional latent space representations and the Multi-Agent Adversarial Reinforcement Learning (MAARL) paradigm to develop a robust and adaptive watermarking approach. Specifically, we develop a learnable watermark embedder that operates in the latent space, capturing high-level image semantics, while offering precise control over message encoding and extraction. The MAARL paradigm empowers the learnable watermarking agent to pursue an optimal balance between robustness and fragility by interacting with a dynamic curriculum of benign and malicious image manipulations simulated by an adversarial attacker agent. Comprehensive evaluations on the CelebA and CelebA-HQ benchmarks reveal that our method consistently outperforms state-of-the-art approaches, achieving improvements of over 4.5% on CelebA and more than 5.3% on CelebA-HQ under challenging manipulation scenarios.
☆ A benchmark multimodal oro-dental dataset for large vision-language models
The advancement of artificial intelligence in oral healthcare relies on the availability of large-scale multimodal datasets that capture the complexity of clinical practice. In this paper, we present a comprehensive multimodal dataset, comprising 8775 dental checkups from 4800 patients collected over eight years (2018-2025), with patients ranging from 10 to 90 years of age. The dataset includes 50000 intraoral images, 8056 radiographs, and detailed textual records, including diagnoses, treatment plans, and follow-up notes. The data were collected under standard ethical guidelines and annotated for benchmarking. To demonstrate its utility, we fine-tuned state-of-the-art large vision-language models, Qwen-VL 3B and 7B, and evaluated them on two tasks: classification of six oro-dental anomalies and generation of complete diagnostic reports from multimodal inputs. We compared the fine-tuned models with their base counterparts and GPT-4o. The fine-tuned models achieved substantial gains over these baselines, validating the dataset and underscoring its effectiveness in advancing AI-driven oro-dental healthcare solutions. The dataset is publicly available, providing an essential resource for future research in AI dentistry.
☆ Learning to Restore Multi-Degraded Images via Ingredient Decoupling and Task-Aware Path Adaptation
Image restoration (IR) aims to recover clean images from degraded observations. Despite remarkable progress, most existing methods focus on a single degradation type, whereas real-world images often suffer from multiple coexisting degradations, such as rain, noise, and haze coexisting in a single image, which limits their practical effectiveness. In this paper, we propose an adaptive multi-degradation image restoration network that reconstructs images by leveraging decoupled representations of degradation ingredients to guide path selection. Specifically, we design a degradation ingredient decoupling block (DIDBlock) in the encoder to separate degradation ingredients statistically by integrating spatial and frequency domain information, enhancing the recognition of multiple degradation types and making their feature representations independent. In addition, we present fusion block (FBlock) to integrate degradation information across all levels using learnable matrices. In the decoder, we further introduce a task adaptation block (TABlock) that dynamically activates or fuses functional branches based on the multi-degradation representation, flexibly selecting optimal restoration paths under diverse degradation conditions. The resulting tightly integrated architecture, termed IMDNet, is extensively validated through experiments, showing superior performance on multi-degradation restoration while maintaining strong competitiveness on single-degradation tasks.
☆ LG-NuSegHop: A Local-to-Global Self-Supervised Pipeline For Nuclei Instance Segmentation
Nuclei segmentation is the cornerstone task in histology image reading, shedding light on the underlying molecular patterns and leading to disease or cancer diagnosis. Yet, it is a laborious task that requires expertise from trained physicians. The large nuclei variability across different organ tissues and acquisition processes challenges the automation of this task. On the other hand, data annotations are expensive to obtain, and thus, Deep Learning (DL) models are challenged to generalize to unseen organs or different domains. This work proposes Local-to-Global NuSegHop (LG-NuSegHop), a self-supervised pipeline developed on prior knowledge of the problem and molecular biology. There are three distinct modules: (1) a set of local processing operations to generate a pseudolabel, (2) NuSegHop a novel data-driven feature extraction model and (3) a set of global operations to post-process the predictions of NuSegHop. Notably, even though the proposed pipeline uses { no manually annotated training data} or domain adaptation, it maintains a good generalization performance on other datasets. Experiments in three publicly available datasets show that our method outperforms other self-supervised and weakly supervised methods while having a competitive standing among fully supervised methods. Remarkably, every module within LG-NuSegHop is transparent and explainable to physicians.
comment: 42 pages, 8 figures, 7 tables
☆ Beta Distribution Learning for Reliable Roadway Crash Risk Assessment AAAI 2026
Roadway traffic accidents represent a global health crisis, responsible for over a million deaths annually and costing many countries up to 3% of their GDP. Traditional traffic safety studies often examine risk factors in isolation, overlooking the spatial complexity and contextual interactions inherent in the built environment. Furthermore, conventional Neural Network-based risk estimators typically generate point estimates without conveying model uncertainty, limiting their utility in critical decision-making. To address these shortcomings, we introduce a novel geospatial deep learning framework that leverages satellite imagery as a comprehensive spatial input. This approach enables the model to capture the nuanced spatial patterns and embedded environmental risk factors that contribute to fatal crash risks. Rather than producing a single deterministic output, our model estimates a full Beta probability distribution over fatal crash risk, yielding accurate and uncertainty-aware predictions--a critical feature for trustworthy AI in safety-critical applications. Our model outperforms baselines by achieving a 17-23% improvement in recall, a key metric for flagging potential dangers, while delivering superior calibration. By providing reliable and interpretable risk assessments from satellite imagery alone, our method enables safer autonomous navigation and offers a highly scalable tool for urban planners and policymakers to enhance roadway safety equitably and cost-effectively.
comment: Accepted to AAAI 2026
♻ ☆ TRACE: Textual Relevance Augmentation and Contextual Encoding for Multimodal Hate Detection AAAI 2026
Social media memes are a challenging domain for hate detection because they intertwine visual and textual cues into culturally nuanced messages. To tackle these challenges, we introduce TRACE, a hierarchical multimodal framework that leverages visually grounded context augmentation, along with a novel caption-scoring network to emphasize hate-relevant content, and parameter-efficient fine-tuning of CLIP's text encoder. Our experiments demonstrate that selectively fine-tuning deeper text encoder layers significantly enhances performance compared to simpler projection-layer fine-tuning methods. Specifically, our framework achieves state-of-the-art accuracy (0.807) and F1-score (0.806) on the widely-used Hateful Memes dataset, matching the performance of considerably larger models while maintaining efficiency. Moreover, it achieves superior generalization on the MultiOFF offensive meme dataset (F1-score 0.673), highlighting robustness across meme categories. Additional analyses confirm that robust visual grounding and nuanced text representations significantly reduce errors caused by benign confounders. We publicly release our code to facilitate future research.
comment: Accepted to Special Track on AI for Social Impact (AISI) at AAAI 2026
♻ ☆ Towards Explainable Fake Image Detection with Multi-Modal Large Language Models ACM MM 2025
Progress in image generation raises significant public security concerns. We argue that fake image detection should not operate as a "black box". Instead, an ideal approach must ensure both strong generalization and transparency. Recent progress in Multi-modal Large Language Models (MLLMs) offers new opportunities for reasoning-based AI-generated image detection. In this work, we evaluate the capabilities of MLLMs in comparison to traditional detection methods and human evaluators, highlighting their strengths and limitations. Furthermore, we design six distinct prompts and propose a framework that integrates these prompts to develop a more robust, explainable, and reasoning-driven detection system. The code is available at https://github.com/Gennadiyev/mllm-defake.
comment: Accepted to ACM MM 2025; 14 pages including Appendix
♻ ☆ USIGAN: Unbalanced Self-Information Feature Transport for Weakly Paired Image IHC Virtual Staining
Immunohistochemical (IHC) virtual staining is a task that generates virtual IHC images from H\&E images while maintaining pathological semantic consistency with adjacent slices. This task aims to achieve cross-domain mapping between morphological structures and staining patterns through generative models, providing an efficient and cost-effective solution for pathological analysis. However, under weakly paired conditions, spatial heterogeneity between adjacent slices presents significant challenges. This can lead to inaccurate one-to-many mappings and generate results that are inconsistent with the pathological semantics of adjacent slices. To address this issue, we propose a novel unbalanced self-information feature transport for IHC virtual staining, named USIGAN, which extracts global morphological semantics without relying on positional correspondence.By removing weakly paired terms in the joint marginal distribution, we effectively mitigate the impact of weak pairing on joint distributions, thereby significantly improving the content consistency and pathological semantic consistency of the generated results. Moreover, we design the Unbalanced Optimal Transport Consistency (UOT-CTM) mechanism and the Pathology Self-Correspondence (PC-SCM) mechanism to construct correlation matrices between H\&E and generated IHC in image-level and real IHC and generated IHC image sets in intra-group level.. Experiments conducted on two publicly available datasets demonstrate that our method achieves superior performance across multiple clinically significant metrics, such as IoD and Pearson-R correlation, demonstrating better clinical relevance.
♻ ☆ FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models
Foundation models have exhibited unprecedented capabilities in tackling many domains and tasks. Models such as CLIP are currently widely used to bridge cross-modal representations, and text-to-image diffusion models are arguably the leading models in terms of realistic image generation. Image generative models are trained on massive datasets that provide them with powerful internal spatial representations. In this work, we explore the potential benefits of such representations, beyond image generation, in particular, for dense visual prediction tasks. We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets, with pixel-level annotations. To avoid the annotation cost or training large diffusion models, we constraint our setup to be zero-shot and training-free. In a nutshell, our pipeline leverages different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation. The pipeline is as follows: the image is passed to both a captioner model (i.e. BLIP) and a diffusion model (i.e., Stable Diffusion Model) to generate a text description and visual representation, respectively. The features are clustered and binarized to obtain class agnostic masks for each object. These masks are then mapped to a textual class, using the CLIP model to support open-vocabulary. Finally, we add a refinement step that allows to obtain a more precise segmentation mask. Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets. In addition, we show very competitive results compared to the recent weakly-supervised segmentation approaches. We provide comprehensive experiments showing the superiority of diffusion model features compared to other pretrained models. Project page: https://bcorrad.github.io/freesegdiff/
♻ ☆ Med-Banana-50K: A Cross-modality Large-Scale Dataset for Text-guided Medical Image Editing
Medical image editing has emerged as a pivotal technology with broad applications in data augmentation, model interpretability, medical education, and treatment simulation. However, the lack of large-scale, high-quality, and openly accessible datasets tailored for medical contexts with strict anatomical and clinical constraints has significantly hindered progress in this domain. To bridge this gap, we introduce Med-Banana-50K, a comprehensive dataset of over 50k medically curated image edits spanning chest X-ray, brain MRI, and fundus photography across 23 diseases. Each sample supports bidirectional lesion editing (addition and removal) and is constructed using Gemini-2.5-Flash-Image based on real clinical images. A key differentiator of our dataset is the medically grounded quality control protocol: we employ an LLM-as-Judge evaluation framework with criteria such as instruction compliance, structural plausibility, image realism, and fidelity preservation, alongside iterative refinement over up to five rounds. Additionally, Med-Banana-50K includes around 37,000 failed editing attempts with full evaluation logs to support preference learning and alignment research. By offering a large-scale, medically rigorous, and fully documented resource, Med-Banana-50K establishes a critical foundation for developing and evaluating reliable medical image editing systems. Our dataset and code are publicly available. [https://github.com/richardChenzhihui/med-banana-50k].
♻ ☆ GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models
The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.
comment: 28 papges
♻ ☆ Thera: Aliasing-Free Arbitrary-Scale Super-Resolution with Neural Heat Fields
Recent approaches to arbitrary-scale single image super-resolution (ASR) use neural fields to represent continuous signals that can be sampled at arbitrary resolutions. However, point-wise queries of neural fields do not naturally match the point spread function (PSF) of pixels, which may cause aliasing in the super-resolved image. Existing methods attempt to mitigate this by approximating an integral version of the field at each scaling factor, compromising both fidelity and generalization. In this work, we introduce neural heat fields, a novel neural field formulation that inherently models a physically exact PSF. Our formulation enables analytically correct anti-aliasing at any desired output resolution, and -- unlike supersampling -- at no additional cost. Building on this foundation, we propose Thera, an end-to-end ASR method that substantially outperforms existing approaches, while being more parameter-efficient and offering strong theoretical guarantees. The project page is at https://therasr.github.io.
♻ ☆ InterFeedback: Unveiling Interactive Intelligence of Large Multimodal Models via Human Feedback EMNLP 2025
Existing benchmarks do not test Large Multimodal Models (LMMs) on their interactive intelligence with human users, which is vital for developing general-purpose AI assistants. We design InterFeedback, an interactive framework, which can be applied to any LMM and dataset to assess this ability autonomously. On top of this, we introduce InterFeedback-Bench which evaluates interactive intelligence using two representative datasets, MMMU-Pro and MathVerse, to test 10 different open-source LMMs. Additionally, we present InterFeedback-Human, a newly collected dataset of 120 cases designed for manually testing interactive performance in leading models such as OpenAI-o1 and Claude-Sonnet-4. Our evaluation results indicate that even the state-of-the-art LMM, OpenAI-o1, struggles to refine its responses based on human feedback, achieving an average score of less than 50%. Our findings point to the need for methods that can enhance LMMs' capabilities to interpret and benefit from feedback.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ Cyst-X: A Federated AI System Outperforms Clinical Guidelines to Detect Pancreatic Cancer Precursors and Reduce Unnecessary Surgery
Pancreatic cancer is projected to be the second-deadliest cancer by 2030, making early detection critical. Intraductal papillary mucinous neoplasms (IPMNs), key cancer precursors, present a clinical dilemma, as current guidelines struggle to stratify malignancy risk, leading to unnecessary surgeries or missed diagnoses. Here, we developed Cyst-X, an AI framework for IPMN risk prediction trained on a unique, multi-center dataset of 1,461 MRI scans from 764 patients. Cyst-X achieves significantly higher accuracy (AUC = 0.82) than both the established Kyoto guidelines (AUC = 0.75) and expert radiologists, particularly in correct identification of high-risk lesions. Clinically, this translates to a 20% increase in cancer detection sensitivity (87.8% vs. 64.1%) for high-risk lesions. We demonstrate that this performance is maintained in a federated learning setting, allowing for collaborative model training without compromising patient privacy. To accelerate research in early pancreatic cancer detection, we publicly release the Cyst-X dataset and models, providing the first large-scale, multi-center MRI resource for pancreatic cyst analysis.
♻ ☆ MMDocIR: Benchmarking Multimodal Retrieval for Long Documents EMNLP-2025
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text. Our dataset is available at https://mmdocrag.github.io/MMDocIR/.
comment: Paper accepted to EMNLP-2025(Main)
♻ ☆ Benchmarking Retrieval-Augmented Multimodal Generation for Document Question Answering NeurIPS 2025
Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents (text, images, tables) and performing cross-modal reasoning. Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches, frequently missing critical visual information. The field also lacks robust benchmarks for assessing multimodal evidence selection and integration. We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains. Our framework introduces innovative metrics for evaluating multimodal quote selection and enables answers that interleave text with relevant visual elements. Through large-scale experiments with 60 VLM/LLM models and 14 retrieval systems, we identify persistent challenges in multimodal evidence retrieval, selection, and integration.Key findings reveal advanced proprietary LVMs show superior performance than open-sourced alternatives. Also, they show moderate advantages using multimodal inputs over text-only inputs, while open-source alternatives show significant performance degradation. Notably, fine-tuned LLMs achieve substantial improvements when using detailed image descriptions. MMDocRAG establishes a rigorous testing ground and provides actionable insights for developing more robust multimodal DocVQA systems. Our benchmark and code are available at https://mmdocrag.github.io/MMDocRAG/.
comment: Paper accepted to NeurIPS 2025 DB
♻ ☆ THEval. Evaluation Framework for Talking Head Video Generation
Video generation has achieved remarkable progress, with generated videos increasingly resembling real ones. However, the rapid advance in generation has outpaced the development of adequate evaluation metrics. Currently, the assessment of talking head generation primarily relies on limited metrics, evaluating general video quality, lip synchronization, and on conducting user studies. Motivated by this, we propose a new evaluation framework comprising 8 metrics related to three dimensions (i) quality, (ii) naturalness, and (iii) synchronization. In selecting the metrics, we place emphasis on efficiency, as well as alignment with human preferences. Based on this considerations, we streamline to analyze fine-grained dynamics of head, mouth, and eyebrows, as well as face quality. Our extensive experiments on 85,000 videos generated by 17 state-of-the-art models suggest that while many algorithms excel in lip synchronization, they face challenges with generating expressiveness and artifact-free details. These videos were generated based on a novel real dataset, that we have curated, in order to mitigate bias of training data. Our proposed benchmark framework is aimed at evaluating the improvement of generative methods. Original code, dataset and leaderboards will be publicly released and regularly updated with new methods, in order to reflect progress in the field.
Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/
♻ ☆ EditInfinity: Image Editing with Binary-Quantized Generative Models NeurIPS 2025
Adapting pretrained diffusion-based generative models for text-driven image editing with negligible tuning overhead has demonstrated remarkable potential. A classical adaptation paradigm, as followed by these methods, first infers the generative trajectory inversely for a given source image by image inversion, then performs image editing along the inferred trajectory guided by the target text prompts. However, the performance of image editing is heavily limited by the approximation errors introduced during image inversion by diffusion models, which arise from the absence of exact supervision in the intermediate generative steps. To circumvent this issue, we investigate the parameter-efficient adaptation of binary-quantized generative models for image editing, and leverage their inherent characteristic that the exact intermediate quantized representations of a source image are attainable, enabling more effective supervision for precise image inversion. Specifically, we propose EditInfinity, which adapts \emph{Infinity}, a binary-quantized generative model, for image editing. We propose an efficient yet effective image inversion mechanism that integrates text prompting rectification and image style preservation, enabling precise image inversion. Furthermore, we devise a holistic smoothing strategy which allows our EditInfinity to perform image editing with high fidelity to source images and precise semantic alignment to the text prompts. Extensive experiments on the PIE-Bench benchmark across `add', `change', and `delete' editing operations, demonstrate the superior performance of our model compared to state-of-the-art diffusion-based baselines. Code available at: https://github.com/yx-chen-ust/EditInfinity.
comment: 28 pages, 13 figures, accepted by The Thirty-ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
Self-supervised Deep Unrolled Model with Implicit Neural Representation Regularization for Accelerating MRI Reconstruction
Magnetic resonance imaging (MRI) is a vital clinical diagnostic tool, yet its application is limited by prolonged scan times. Accelerating MRI reconstruction addresses this issue by reconstructing high-fidelity MR images from undersampled k-space measurements. In recent years, deep learning-based methods have demonstrated remarkable progress. However, most methods rely on supervised learning, which requires large amounts of fully-sampled training data that are difficult to obtain. This paper proposes a novel zero-shot self-supervised reconstruction method named UnrollINR, which enables scan-specific MRI reconstruction without external training data. UnrollINR adopts a physics-guided unrolled reconstruction architecture and introduces implicit neural representation (INR) as a regularization prior to effectively constrain the solution space. This method overcomes the local bias limitation of CNNs in traditional deep unrolled methods and avoids the instability associated with relying solely on INR's implicit regularization in highly ill-posed scenarios. Consequently, UnrollINR significantly improves MRI reconstruction performance under high acceleration rates. Experimental results show that even at a high acceleration rate of 10, UnrollINR achieves superior reconstruction performance compared to supervised and self-supervised learning methods, validating its effectiveness and superiority.
♻ ☆ GeoSVR: Taming Sparse Voxels for Geometrically Accurate Surface Reconstruction NeurIPS 2025
Reconstructing accurate surfaces with radiance fields has achieved remarkable progress in recent years. However, prevailing approaches, primarily based on Gaussian Splatting, are increasingly constrained by representational bottlenecks. In this paper, we introduce GeoSVR, an explicit voxel-based framework that explores and extends the under-investigated potential of sparse voxels for achieving accurate, detailed, and complete surface reconstruction. As strengths, sparse voxels support preserving the coverage completeness and geometric clarity, while corresponding challenges also arise from absent scene constraints and locality in surface refinement. To ensure correct scene convergence, we first propose a Voxel-Uncertainty Depth Constraint that maximizes the effect of monocular depth cues while presenting a voxel-oriented uncertainty to avoid quality degradation, enabling effective and robust scene constraints yet preserving highly accurate geometries. Subsequently, Sparse Voxel Surface Regularization is designed to enhance geometric consistency for tiny voxels and facilitate the voxel-based formation of sharp and accurate surfaces. Extensive experiments demonstrate our superior performance compared to existing methods across diverse challenging scenarios, excelling in geometric accuracy, detail preservation, and reconstruction completeness while maintaining high efficiency. Code is available at https://github.com/Fictionarry/GeoSVR.
comment: Accepted at NeurIPS 2025 (Spotlight). Project page: https://fictionarry.github.io/GeoSVR-project/
♻ ☆ GAITEX: Human motion dataset of impaired gait and rehabilitation exercises using inertial and optical sensors
Wearable inertial measurement units (IMUs) provide a cost-effective approach to assessing human movement in clinical and everyday environments. However, developing the associated classification models for robust assessment of physiotherapeutic exercise and gait analysis requires large, diverse datasets that are costly and time-consuming to collect. We present a multimodal dataset of physiotherapeutic and gait-related exercises, including correct and clinically relevant variants, recorded from 19 healthy subjects using synchronized IMUs and optical marker-based motion capture (MoCap). It contains data from nine IMUs and 68 markers tracking full-body kinematics. Four markers per IMU allow direct comparison between IMU- and MoCap-derived orientations. We additionally provide processed IMU orientations aligned to common segment coordinate systems, subject-specific OpenSim models, inverse kinematics outputs, and visualization tools for IMU-derived orientations. The dataset is fully annotated with movement quality ratings and timestamped segmentations. It supports various machine learning tasks such as exercise evaluation, gait classification, temporal segmentation, and biomechanical parameter estimation. Code for postprocessing, alignment, inverse kinematics, and technical validation is provided to promote reproducibility.
Learning to Navigate Socially Through Proactive Risk Perception
In this report, we describe the technical details of our submission to the IROS 2025 RoboSense Challenge Social Navigation Track. This track focuses on developing RGBD-based perception and navigation systems that enable autonomous agents to navigate safely, efficiently, and socially compliantly in dynamic human-populated indoor environments. The challenge requires agents to operate from an egocentric perspective using only onboard sensors including RGB-D observations and odometry, without access to global maps or privileged information, while maintaining social norm compliance such as safe distances and collision avoidance. Building upon the Falcon model, we introduce a Proactive Risk Perception Module to enhance social navigation performance. Our approach augments Falcon with collision risk understanding that learns to predict distance-based collision risk scores for surrounding humans, which enables the agent to develop more robust spatial awareness and proactive collision avoidance behaviors. The evaluation on the Social-HM3D benchmark demonstrates that our method improves the agent's ability to maintain personal space compliance while navigating toward goals in crowded indoor scenes with dynamic human agents, achieving 2nd place among 16 participating teams in the challenge.
♻ ☆ ZERO: Industry-ready Vision Foundation Model with Multi-modal Prompts
Foundation models have revolutionized AI, yet they struggle with zero-shot deployment in real-world industrial settings due to a lack of high-quality, domain-specific datasets. To bridge this gap, Superb AI introduces ZERO, an industry-ready vision foundation model that leverages multi-modal prompting (textual and visual) for generalization without retraining. Trained on a compact yet representative 0.9 million annotated samples from a proprietary billion-scale industrial dataset, ZERO demonstrates competitive performance on academic benchmarks like LVIS-Val and significantly outperforms existing models across 37 diverse industrial datasets. Furthermore, ZERO achieved 2nd place in the CVPR 2025 Object Instance Detection Challenge and 4th place in the Foundational Few-shot Object Detection Challenge, highlighting its practical deployability and generalizability with minimal adaptation and limited data. To the best of our knowledge, ZERO is the first vision foundation model explicitly built for domain-specific, zero-shot industrial applications.
comment: 9 pages, 2 figures
♻ ☆ Improving Diagnostic Performance on Small and Imbalanced Datasets Using Class-Based Input Image Composition
Small, imbalanced datasets and poor input image quality can lead to high false predictions rates with deep learning models. This paper introduces Class-Based Image Composition, an approach that allows us to reformulate training inputs through a fusion of multiple images of the same class into combined visual composites, named Composite Input Images (CoImg). That enhances the intra-class variance and improves the valuable information density per training sample and increases the ability of the model to distinguish between subtle disease patterns. Our method was evaluated on the Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods (OCTDL) (Kulyabin et al., 2024), which contains 2,064 high-resolution optical coherence tomography (OCT) scans of the human retina, representing seven distinct diseases with a significant class imbalance. We constructed a perfectly class-balanced version of this dataset, named Co-OCTDL, where each scan is resented as a 3x1 layout composite image. To assess the effectiveness of this new representation, we conducted a comparative analysis between the original dataset and its variant using a VGG16 model. A fair comparison was ensured by utilizing the identical model architecture and hyperparameters for all experiments. The proposed approach markedly improved diagnostic results.The enhanced Dataset achieved near-perfect accuracy (99.6%) with F1-score (0.995) and AUC (0.9996), compared to a baseline model trained on raw dataset. The false prediction rate was also significantly lower, this demonstrates that the method can producehigh-quality predictions even for weak datasets affected by class imbalance or small sample size.
♻ ☆ Consistency Trajectory Matching for One-Step Generative Super-Resolution ICCV 2025
Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
comment: Accepted by ICCV 2025
♻ ☆ ControlGS: Consistent Structural Compression Control for Deployment-Aware Gaussian Splatting
3D Gaussian Splatting (3DGS) is a highly deployable real-time method for novel view synthesis. In practice, it requires a universal, consistent control mechanism that adjusts the trade-off between rendering quality and model compression without scene-specific tuning, enabling automated deployment across different device performances and communication bandwidths. In this work, we present ControlGS, a control-oriented optimization framework that maps the trade-off between Gaussian count and rendering quality to a continuous, scene-agnostic, and highly responsive control axis. Extensive experiments across a wide range of scene scales and types (from small objects to large outdoor scenes) demonstrate that, by adjusting a globally unified control hyperparameter, ControlGS can flexibly generate models biased toward either structural compactness or high fidelity, regardless of the specific scene scale or complexity, while achieving markedly higher rendering quality with the same or fewer Gaussians compared to potential competing methods. Project page: https://zhang-fengdi.github.io/ControlGS/
♻ ☆ Dual Teacher-Student Learning for Semi-supervised Medical Image Segmentation
Semi-supervised learning reduces the costly manual annotation burden in medical image segmentation. A popular approach is the mean teacher (MT) strategy, which applies consistency regularization using a temporally averaged teacher model. In this work, the MT strategy is reinterpreted as a form of self-paced learning in the context of supervised learning, where agreement between the teacher's predictions and the ground truth implicitly guides the model from easy to hard. Extending this insight to semi-supervised learning, we propose dual teacher-student learning (DTSL). It regulates the learning pace on unlabeled data using two signals: a temporally averaged signal from an in-group teacher and a cross-architectural signal from a student in a second, distinct model group. Specifically, a novel consensus label generator (CLG) creates the pseudo-labels from the agreement between these two signals, establishing an effective learning curriculum. Extensive experiments on four benchmark datasets demonstrate that the proposed method consistently outperforms existing state-of-the-art approaches. Remarkably, on three of the four datasets, our semi-supervised method with limited labeled data surpasses its fully supervised counterparts, validating the effectiveness of our self-paced learning design.
♻ ☆ LoRA-Edge: Tensor-Train-Assisted LoRA for Practical CNN Fine-Tuning on Edge Devices
On-device fine-tuning of CNNs is essential to withstand domain shift in edge applications such as Human Activity Recognition (HAR), yet full fine-tuning is infeasible under strict memory, compute, and energy budgets. We present LoRA-Edge, a parameter-efficient fine-tuning (PEFT) method that builds on Low-Rank Adaptation (LoRA) with tensor-train assistance. LoRA-Edge (i) applies Tensor-Train Singular Value Decomposition (TT-SVD) to pre-trained convolutional layers, (ii) selectively updates only the output-side core with zero-initialization to keep the auxiliary path inactive at the start, and (iii) fuses the update back into dense kernels, leaving inference cost unchanged. This design preserves convolutional structure and reduces the number of trainable parameters by up to two orders of magnitude compared to full fine-tuning. Across diverse HAR datasets and CNN backbones, LoRA-Edge achieves accuracy within 4.7% of full fine-tuning while updating at most 1.49% of parameters, consistently outperforming prior parameter-efficient baselines under similar budgets. On a Jetson Orin Nano, TT-SVD initialization and selective-core training yield 1.4-3.8x faster convergence to target F1. LoRA-Edge thus makes structure-aligned, parameter-efficient on-device CNN adaptation practical for edge platforms.
comment: 8 pages, 6 figures, 2 tables, DATE 2026 accepted paper
♻ ☆ Towards Understanding the Mechanisms of Classifier-Free Guidance
Classifier-free guidance (CFG) is a core technique powering state-of-the-art image generation systems, yet its underlying mechanisms remain poorly understood. In this work, we begin by analyzing CFG in a simplified linear diffusion model, where we show its behavior closely resembles that observed in the nonlinear case. Our analysis reveals that linear CFG improves generation quality via three distinct components: (i) a mean-shift term that approximately steers samples in the direction of class means, (ii) a positive Contrastive Principal Components (CPC) term that amplifies class-specific features, and (iii) a negative CPC term that suppresses generic features prevalent in unconditional data. We then verify that these insights in real-world, nonlinear diffusion models: over a broad range of noise levels, linear CFG resembles the behavior of its nonlinear counterpart. Although the two eventually diverge at low noise levels, we discuss how the insights from the linear analysis still shed light on the CFG's mechanism in the nonlinear regime.
♻ ☆ When Are Concepts Erased From Diffusion Models? NeurIPS 2025
In concept erasure, a model is modified to selectively prevent it from generating a target concept. Despite the rapid development of new methods, it remains unclear how thoroughly these approaches remove the target concept from the model. We begin by proposing two conceptual models for the erasure mechanism in diffusion models: (i) interfering with the model's internal guidance processes, and (ii) reducing the unconditional likelihood of generating the target concept, potentially removing it entirely. To assess whether a concept has been truly erased from the model, we introduce a comprehensive suite of independent probing techniques: supplying visual context, modifying the diffusion trajectory, applying classifier guidance, and analyzing the model's alternative generations that emerge in place of the erased concept. Our results shed light on the value of exploring concept erasure robustness outside of adversarial text inputs, and emphasize the importance of comprehensive evaluations for erasure in diffusion models.
comment: Accepted to NeurIPS 2025. Our code, data, and results are available at https://unerasing.baulab.info/
♻ ☆ USF-MAE: Ultrasound Self-Supervised Foundation Model with Masked Autoencoding
Ultrasound imaging is one of the most widely used diagnostic modalities, offering real-time, radiation-free assessment across diverse clinical domains. However, interpretation of ultrasound images remains challenging due to high noise levels, operator dependence, and limited field of view, resulting in substantial inter-observer variability. Current Deep Learning approaches are hindered by the scarcity of large labeled datasets and the domain gap between general and sonographic images, which limits the transferability of models pretrained on non-medical data. To address these challenges, we introduce the Ultrasound Self-Supervised Foundation Model with Masked Autoencoding (USF-MAE), the first large-scale self-supervised MAE framework pretrained exclusively on ultrasound data. The model was pre-trained on 370,000 2D and 3D ultrasound images curated from 46 open-source datasets, collectively termed OpenUS-46, spanning over twenty anatomical regions. This curated dataset has been made publicly available to facilitate further research and reproducibility. Using a Vision Transformer encoder-decoder architecture, USF-MAE reconstructs masked image patches, enabling it to learn rich, modality-specific representations directly from unlabeled data. The pretrained encoder was fine-tuned on three public downstream classification benchmarks: BUS-BRA (breast cancer), MMOTU-2D (ovarian tumors), and GIST514-DB (gastrointestinal stromal tumors). Across all tasks, USF-MAE consistently outperformed conventional CNN and ViT baselines, achieving F1-scores of 81.6%, 79.6%, and 82.4%, respectively. Despite not using labels during pretraining, USF-MAE approached the performance of the supervised foundation model UltraSam on breast cancer classification and surpassed it on the other tasks, demonstrating strong cross-anatomical generalization.
comment: 18 pages, 8 figures, 2 tables
On Scaling Up 3D Gaussian Splatting Training ICLR 2025
3D Gaussian Splatting (3DGS) is increasingly popular for 3D reconstruction due to its superior visual quality and rendering speed. However, 3DGS training currently occurs on a single GPU, limiting its ability to handle high-resolution and large-scale 3D reconstruction tasks due to memory constraints. We introduce Grendel, a distributed system designed to partition 3DGS parameters and parallelize computation across multiple GPUs. As each Gaussian affects a small, dynamic subset of rendered pixels, Grendel employs sparse all-to-all communication to transfer the necessary Gaussians to pixel partitions and performs dynamic load balancing. Unlike existing 3DGS systems that train using one camera view image at a time, Grendel supports batched training with multiple views. We explore various optimization hyperparameter scaling strategies and find that a simple sqrt(batch size) scaling rule is highly effective. Evaluations using large-scale, high-resolution scenes show that Grendel enhances rendering quality by scaling up 3DGS parameters across multiple GPUs. On the Rubble dataset, we achieve a test PSNR of 27.28 by distributing 40.4 million Gaussians across 16 GPUs, compared to a PSNR of 26.28 using 11.2 million Gaussians on a single GPU. Grendel is an open-source project available at: https://github.com/nyu-systems/Grendel-GS
comment: ICLR 2025 Oral; Homepage: https://daohanlu.github.io/scaling-up-3dgs/
♻ ☆ NVIDIA Nemotron Nano V2 VL
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and training recipes. Nemotron Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and innovative token reduction techniques to achieve higher inference throughput in long document and video scenarios. We are releasing model checkpoints in BF16, FP8, and FP4 formats and sharing large parts of our datasets, recipes and training code.
♻ ☆ FunOTTA: On-the-Fly Adaptation on Cross-Domain Fundus Image via Stable Test-time Training
Fundus images are essential for the early screening and detection of eye diseases. While deep learning models using fundus images have significantly advanced the diagnosis of multiple eye diseases, variations in images from different imaging devices and locations (known as domain shifts) pose challenges for deploying pre-trained models in real-world applications. To address this, we propose a novel Fundus On-the-fly Test-Time Adaptation (FunOTTA) framework that effectively generalizes a fundus image diagnosis model to unseen environments, even under strong domain shifts. FunOTTA stands out for its stable adaptation process by performing dynamic disambiguation in the memory bank while minimizing harmful prior knowledge bias. We also introduce a new training objective during adaptation that enables the classifier to incrementally adapt to target patterns with reliable class conditional estimation and consistency regularization. We compare our method with several state-of-the-art test-time adaptation (TTA) pipelines. Experiments on cross-domain fundus image benchmarks across two diseases demonstrate the superiority of the overall framework and individual components under different backbone networks. Code is available at https://github.com/Casperqian/FunOTTA.
comment: 13 pages, 8 figures, 7 tables
♻ ☆ Faithful Contouring: Near-Lossless 3D Voxel Representation Free from Iso-surface
Accurate and efficient voxelized representations of 3D meshes are the foundation of 3D reconstruction and generation. However, existing representations based on iso-surface heavily rely on water-tightening or rendering optimization, which inevitably compromise geometric fidelity. We propose Faithful Contouring, a sparse voxelized representation that supports 2048+ resolutions for arbitrary meshes, requiring neither converting meshes to field functions nor extracting the isosurface during remeshing. It achieves near-lossless fidelity by preserving sharpness and internal structures, even for challenging cases with complex geometry and topology. The proposed method also shows flexibility for texturing, manipulation, and editing. Beyond representation, we design a dual-mode autoencoder for Faithful Contouring, enabling scalable and detail-preserving shape reconstruction. Extensive experiments show that Faithful Contouring surpasses existing methods in accuracy and efficiency for both representation and reconstruction. For direct representation, it achieves distance errors at the $10^{-5}$ level; for mesh reconstruction, it yields a 93\% reduction in Chamfer Distance and a 35\% improvement in F-score over strong baselines, confirming superior fidelity as a representation for 3D learning tasks.
♻ ☆ SelaVPR++: Towards Seamless Adaptation of Foundation Models for Efficient Place Recognition
Recent studies show that the visual place recognition (VPR) method using pre-trained visual foundation models can achieve promising performance. In our previous work, we propose a novel method to realize seamless adaptation of foundation models to VPR (SelaVPR). This method can produce both global and local features that focus on discriminative landmarks to recognize places for two-stage VPR by a parameter-efficient adaptation approach. Although SelaVPR has achieved competitive results, we argue that the previous adaptation is inefficient in training time and GPU memory usage, and the re-ranking paradigm is also costly in retrieval latency and storage usage. In pursuit of higher efficiency and better performance, we propose an extension of the SelaVPR, called SelaVPR++. Concretely, we first design a parameter-, time-, and memory-efficient adaptation method that uses lightweight multi-scale convolution (MultiConv) adapters to refine intermediate features from the frozen foundation backbone. This adaptation method does not back-propagate gradients through the backbone during training, and the MultiConv adapter facilitates feature interactions along the spatial axes and introduces proper local priors, thus achieving higher efficiency and better performance. Moreover, we propose an innovative re-ranking paradigm for more efficient VPR. Instead of relying on local features for re-ranking, which incurs huge overhead in latency and storage, we employ compact binary features for initial retrieval and robust floating-point (global) features for re-ranking. To obtain such binary features, we propose a similarity-constrained deep hashing method, which can be easily integrated into the VPR pipeline. Finally, we improve our training strategy and unify the training protocol of several common training datasets to merge them for better training of VPR models. Extensive experiments show that ......
comment: accepted by T-PAMI
♻ ☆ Dark Transformer: A Video Transformer for Action Recognition in the Dark
Recognizing human actions in adverse lighting conditions presents significant challenges in computer vision, with wide-ranging applications in visual surveillance and nighttime driving. Existing methods tackle action recognition and dark enhancement separately, limiting the potential for end-to-end learning of spatiotemporal representations for video action classification. This paper introduces Dark Transformer, a novel video transformer-based approach for action recognition in low-light environments. Dark Transformer leverages spatiotemporal self-attention mechanisms in cross-domain settings to enhance cross-domain action recognition. By extending video transformers to learn cross-domain knowledge, Dark Transformer achieves state-of-the-art performance on benchmark action recognition datasets, including InFAR, XD145, and ARID. The proposed approach demonstrates significant promise in addressing the challenges of action recognition in adverse lighting conditions, offering practical implications for real-world applications.
comment: 8 Figures, 12 Pages
♻ ☆ Diffusion Denoised Hyperspectral Gaussian Splatting 3DV 2026
Hyperspectral imaging (HSI) has been widely used in agricultural applications for non-destructive estimation of plant nutrient composition and precise determination of nutritional elements of samples. Recently, 3D reconstruction methods have been used to create implicit neural representations of HSI scenes, which can help localize the target object's nutrient composition spatially and spectrally. Neural Radiance Field (NeRF) is a cutting-edge implicit representation that can be used to render hyperspectral channel compositions of each spatial location from any viewing direction. However, it faces limitations in training time and rendering speed. In this paper, we propose Diffusion-Denoised Hyperspectral Gaussian Splatting (DD-HGS), which enhances the state-of-the-art 3D Gaussian Splatting (3DGS) method with wavelength-aware spherical harmonics, a Kullback-Leibler divergence-based spectral loss, and a diffusion-based denoiser to enable 3D explicit reconstruction of hyperspectral scenes across the full spectral range. We present extensive evaluations on diverse real-world hyperspectral scenes from the Hyper-NeRF dataset to show the effectiveness of DD-HGS. The results demonstrate that DD-HGS achieves new state-of-the-art performance among previously published methods. Project page: https://dragonpg2000.github.io/DDHGS-website/
comment: Accepted to 3DV 2026
Machine Learning 150
☆ DGTN: Graph-Enhanced Transformer with Diffusive Attention Gating Mechanism for Enzyme DDG Prediction
Predicting the effect of amino acid mutations on enzyme thermodynamic stability (DDG) is fundamental to protein engineering and drug design. While recent deep learning approaches have shown promise, they often process sequence and structure information independently, failing to capture the intricate coupling between local structural geometry and global sequential patterns. We present DGTN (Diffused Graph-Transformer Network), a novel architecture that co-learns graph neural network (GNN) weights for structural priors and transformer attention through a diffusion mechanism. Our key innovation is a bidirectional diffusion process where: (1) GNN-derived structural embeddings guide transformer attention via learnable diffusion kernels, and (2) transformer representations refine GNN message passing through attention-modulated graph updates. We provide rigorous mathematical analysis showing this co-learning scheme achieves provably better approximation bounds than independent processing. On ProTherm and SKEMPI benchmarks, DGTN achieves state-of-the-art performance (Pearson Rho = 0.87, RMSE = 1.21 kcal/mol), with 6.2% improvement over best baselines. Ablation studies confirm the diffusion mechanism contributes 4.8 points to correlation. Our theoretical analysis proves the diffused attention converges to optimal structure-sequence coupling, with convergence rate O(1/sqrt(T) ) where T is diffusion steps. This work establishes a principled framework for integrating heterogeneous protein representations through learnable diffusion.
☆ SoilX: Calibration-Free Comprehensive Soil Sensing Through Contrastive Cross-Component Learning
Precision agriculture demands continuous and accurate monitoring of soil moisture (M) and key macronutrients, including nitrogen (N), phosphorus (P), and potassium (K), to optimize yields and conserve resources. Wireless soil sensing has been explored to measure these four components; however, current solutions require recalibration (i.e., retraining the data processing model) to handle variations in soil texture, characterized by aluminosilicates (Al) and organic carbon (C), limiting their practicality. To address this, we introduce SoilX, a calibration-free soil sensing system that jointly measures six key components: {M, N, P, K, C, Al}. By explicitly modeling C and Al, SoilX eliminates texture- and carbon-dependent recalibration. SoilX incorporates Contrastive Cross-Component Learning (3CL), with two customized terms: the Orthogonality Regularizer and the Separation Loss, to effectively disentangle cross-component interference. Additionally, we design a novel tetrahedral antenna array with an antenna-switching mechanism, which can robustly measure soil dielectric permittivity independent of device placement. Extensive experiments demonstrate that SoilX reduces estimation errors by 23.8% to 31.5% over baselines and generalizes well to unseen fields.
☆ On Flow Matching KL Divergence
We derive a deterministic, non-asymptotic upper bound on the Kullback-Leibler (KL) divergence of the flow-matching distribution approximation. In particular, if the $L_2$ flow-matching loss is bounded by $\epsilon^2 > 0$, then the KL divergence between the true data distribution and the estimated distribution is bounded by $A_1 \epsilon + A_2 \epsilon^2$. Here, the constants $A_1$ and $A_2$ depend only on the regularities of the data and velocity fields. Consequently, this bound implies statistical convergence rates of Flow Matching Transformers under the Total Variation (TV) distance. We show that, flow matching achieves nearly minimax-optimal efficiency in estimating smooth distributions. Our results make the statistical efficiency of flow matching comparable to that of diffusion models under the TV distance. Numerical studies on synthetic and learned velocities corroborate our theory.
☆ A Metamorphic Testing Perspective on Knowledge Distillation for Language Models of Code: Does the Student Deeply Mimic the Teacher?
Transformer-based language models of code have achieved state-of-the-art performance across a wide range of software analytics tasks, but their practical deployment remains limited due to high computational costs, slow inference speeds, and significant environmental impact. To address these challenges, recent research has increasingly explored knowledge distillation as a method for compressing a large language model of code (the teacher) into a smaller model (the student) while maintaining performance. However, the degree to which a student model deeply mimics the predictive behavior and internal representations of its teacher remains largely unexplored, as current accuracy-based evaluation provides only a surface-level view of model quality and often fails to capture more profound discrepancies in behavioral fidelity between the teacher and student models. To address this gap, we empirically show that the student model often fails to deeply mimic the teacher model, resulting in up to 285% greater performance drop under adversarial attacks, which is not captured by traditional accuracy-based evaluation. Therefore, we propose MetaCompress, a metamorphic testing framework that systematically evaluates behavioral fidelity by comparing the outputs of teacher and student models under a set of behavior-preserving metamorphic relations. We evaluate MetaCompress on two widely studied tasks, using compressed versions of popular language models of code, obtained via three different knowledge distillation techniques: Compressor, AVATAR, and MORPH. The results show that MetaCompress identifies up to 62% behavioral discrepancies in student models, underscoring the need for behavioral fidelity evaluation within the knowledge distillation pipeline and establishing MetaCompress as a practical framework for testing compressed language models of code derived through knowledge distillation.
comment: The paper is currently under review at a peer-reviewed journal
☆ Precipitation nowcasting of satellite data using physically conditioned neural networks
Accurate short-term precipitation forecasts predominantly rely on dense weather-radar networks, limiting operational value in places most exposed to climate extremes. We present TUPANN (Transferable and Universal Physics-Aligned Nowcasting Network), a satellite-only model trained on GOES-16 RRQPE. Unlike most deep learning models for nowcasting, TUPANN decomposes the forecast into physically meaningful components: a variational encoder-decoder infers motion and intensity fields from recent imagery under optical-flow supervision, a lead-time-conditioned MaxViT evolves the latent state, and a differentiable advection operator reconstructs future frames. We evaluate TUPANN on both GOES-16 and IMERG data, in up to four distinct climates (Rio de Janeiro, Manaus, Miami, La Paz) at 10-180min lead times using the CSI and HSS metrics over 4-64 mm/h thresholds. Comparisons against optical-flow, deep learning and hybrid baselines show that TUPANN achieves the best or second-best skill in most settings, with pronounced gains at higher thresholds. Training on multiple cities further improves performance, while cross-city experiments show modest degradation and occasional gains for rare heavy-rain regimes. The model produces smooth, interpretable motion fields aligned with numerical optical flow and runs in near real time due to the low latency of GOES-16. These results indicate that physically aligned learning can provide nowcasts that are skillful, transferable and global.
☆ SiamMM: A Mixture Model Perspective on Deep Unsupervised Learning
Recent studies have demonstrated the effectiveness of clustering-based approaches for self-supervised and unsupervised learning. However, the application of clustering is often heuristic, and the optimal methodology remains unclear. In this work, we establish connections between these unsupervised clustering methods and classical mixture models from statistics. Through this framework, we demonstrate significant enhancements to these clustering methods, leading to the development of a novel model named SiamMM. Our method attains state-of-the-art performance across various self-supervised learning benchmarks. Inspection of the learned clusters reveals a strong resemblance to unseen ground truth labels, uncovering potential instances of mislabeling.
☆ Synapse: Adaptive Arbitration of Complementary Expertise in Time Series Foundational Models
Pre-trained Time Series Foundational Models (TSFMs) represent a significant advance, capable of forecasting diverse time series with complex characteristics, including varied seasonalities, trends, and long-range dependencies. Despite their primary goal of universal time series forecasting, their efficacy is far from uniform; divergent training protocols and data sources cause individual TSFMs to exhibit highly variable performance across different forecasting tasks, domains, and horizons. Leveraging this complementary expertise by arbitrating existing TSFM outputs presents a compelling strategy, yet this remains a largely unexplored area of research. In this paper, we conduct a thorough examination of how different TSFMs exhibit specialized performance profiles across various forecasting settings, and how we can effectively leverage this behavior in arbitration between different time series models. We specifically analyze how factors such as model selection and forecast horizon distribution can influence the efficacy of arbitration strategies. Based on this analysis, we propose Synapse, a novel arbitration framework for TSFMs. Synapse is designed to dynamically leverage a pool of TSFMs, assign and adjust predictive weights based on their relative, context-dependent performance, and construct a robust forecast distribution by adaptively sampling from the output quantiles of constituent models. Experimental results demonstrate that Synapse consistently outperforms other popular ensembling techniques as well as individual TSFMs, demonstrating Synapse's efficacy in time series forecasting.
comment: 19 pages, 7 figures, 4 tables
☆ Parameter-Efficient Conditioning for Material Generalization in Graph-Based Simulators
Graph network-based simulators (GNS) have demonstrated strong potential for learning particle-based physics (such as fluids, deformable solids, and granular flows) while generalizing to unseen geometries due to their inherent inductive biases. However, existing models are typically trained for a single material type and fail to generalize across distinct constitutive behaviors, limiting their applicability in real-world engineering settings. Using granular flows as a running example, we propose a parameter-efficient conditioning mechanism that makes the GNS model adaptive to material parameters. We identify that sensitivity to material properties is concentrated in the early message-passing (MP) layers, a finding we link to the local nature of constitutive models (e.g., Mohr-Coulomb) and their effects on information propagation. We empirically validate this by showing that fine-tuning only the first few (1-5) of 10 MP layers of a pretrained model achieves comparable test performance as compared to fine-tuning the entire network. Building on this insight, we propose a parameter-efficient Feature-wise Linear Modulation (FiLM) conditioning mechanism designed to specifically target these early layers. This approach produces accurate long-term rollouts on unseen, interpolated, or moderately extrapolated values (e.g., up to 2.5 degrees for friction angle and 0.25 kPa for cohesion) when trained exclusively on as few as 12 short simulation trajectories from new materials, representing a 5-fold data reduction compared to a baseline multi-task learning method. Finally, we validate the model's utility by applying it to an inverse problem, successfully identifying unknown cohesion parameters from trajectory data. This approach enables the use of GNS in inverse design and closed-loop control tasks where material properties are treated as design variables.
☆ Self-adaptive weighting and sampling for physics-informed neural networks
Physics-informed deep learning has emerged as a promising framework for solving partial differential equations (PDEs). Nevertheless, training these models on complex problems remains challenging, often leading to limited accuracy and efficiency. In this work, we introduce a hybrid adaptive sampling and weighting method to enhance the performance of physics-informed neural networks (PINNs). The adaptive sampling component identifies training points in regions where the solution exhibits rapid variation, while the adaptive weighting component balances the convergence rate across training points. Numerical experiments show that applying only adaptive sampling or only adaptive weighting is insufficient to consistently achieve accurate predictions, particularly when training points are scarce. Since each method emphasizes different aspects of the solution, their effectiveness is problem dependent. By combining both strategies, the proposed framework consistently improves prediction accuracy and training efficiency, offering a more robust approach for solving PDEs with PINNs.
comment: 11 figures
☆ How Many Tokens Do 3D Point Cloud Transformer Architectures Really Need? NeurIPS 2025
Recent advances in 3D point cloud transformers have led to state-of-the-art results in tasks such as semantic segmentation and reconstruction. However, these models typically rely on dense token representations, incurring high computational and memory costs during training and inference. In this work, we present the finding that tokens are remarkably redundant, leading to substantial inefficiency. We introduce gitmerge3D, a globally informed graph token merging method that can reduce the token count by up to 90-95% while maintaining competitive performance. This finding challenges the prevailing assumption that more tokens inherently yield better performance and highlights that many current models are over-tokenized and under-optimized for scalability. We validate our method across multiple 3D vision tasks and show consistent improvements in computational efficiency. This work is the first to assess redundancy in large-scale 3D transformer models, providing insights into the development of more efficient 3D foundation architectures. Our code and checkpoints are publicly available at https://gitmerge3d.github.io
comment: Accepted at NeurIPS 2025
☆ Adversarially Robust Multitask Adaptive Control
We study adversarially robust multitask adaptive linear quadratic control; a setting where multiple systems collaboratively learn control policies under model uncertainty and adversarial corruption. We propose a clustered multitask approach that integrates clustering and system identification with resilient aggregation to mitigate corrupted model updates. Our analysis characterizes how clustering accuracy, intra-cluster heterogeneity, and adversarial behavior affect the expected regret of certainty-equivalent (CE) control across LQR tasks. We establish non-asymptotic bounds demonstrating that the regret decreases inversely with the number of honest systems per cluster and that this reduction is preserved under a bounded fraction of adversarial systems within each cluster.
☆ APP: Accelerated Path Patching with Task-Specific Pruning
Circuit discovery is a key step in many mechanistic interpretability pipelines. Current methods, such as Path Patching, are computationally expensive and have limited in-depth circuit analysis for smaller models. In this study, we propose Accelerated Path Patching (APP), a hybrid approach leveraging our novel contrastive attention head pruning method to drastically reduce the search space of circuit discovery methods. Our Contrastive-FLAP pruning algorithm uses techniques from causal mediation analysis to assign higher pruning scores to task-specific attention heads, leading to higher performing sparse models compared to traditional pruning techniques. Although Contrastive-FLAP is successful at preserving task-specific heads that existing pruning algorithms remove at low sparsity ratios, the circuits found by Contrastive-FLAP alone are too large to satisfy the minimality constraint required in circuit analysis. APP first applies Contrastive-FLAP to reduce the search space on required for circuit discovery algorithms by, on average, 56\%. Next, APP, applies traditional Path Patching on the remaining attention heads, leading to a speed up of 59.63\%-93.27\% compared to Path Patching applied to the dense model. Despite the substantial computational saving that APP provides, circuits obtained from APP exhibit substantial overlap and similar performance to previously established Path Patching circuits
☆ ProDER: A Continual Learning Approach for Fault Prediction in Evolving Smart Grids
As smart grids evolve to meet growing energy demands and modern operational challenges, the ability to accurately predict faults becomes increasingly critical. However, existing AI-based fault prediction models struggle to ensure reliability in evolving environments where they are required to adapt to new fault types and operational zones. In this paper, we propose a continual learning (CL) framework in the smart grid context to evolve the model together with the environment. We design four realistic evaluation scenarios grounded in class-incremental and domain-incremental learning to emulate evolving grid conditions. We further introduce Prototype-based Dark Experience Replay (ProDER), a unified replay-based approach that integrates prototype-based feature regularization, logit distillation, and a prototype-guided replay memory. ProDER achieves the best performance among tested CL techniques, with only a 0.045 accuracy drop for fault type prediction and 0.015 for fault zone prediction. These results demonstrate the practicality of CL for scalable, real-world fault prediction in smart grids.
☆ Steering Language Models with Weight Arithmetic
Providing high-quality feedback to Large Language Models (LLMs) on a diverse training distribution can be difficult and expensive, and providing feedback only on a narrow distribution can result in unintended generalizations. To better leverage narrow training data, we propose contrastive weight steering, a simple post-training method that edits the model parameters using weight arithmetic. We isolate a behavior direction in weight-space by subtracting the weight deltas from two small fine-tunes -- one that induces the desired behavior and another that induces its opposite -- and then add or remove this direction to modify the model's weights. We apply this technique to mitigate sycophancy and induce misalignment, and find that weight steering often generalizes further than activation steering, achieving stronger out-of-distribution behavioral control before degrading general capabilities. We also show that, in the context of task-specific fine-tuning, weight steering can partially mitigate undesired behavioral drift: it can reduce sycophancy and under-refusals introduced during fine-tuning while preserving task performance gains. Finally, we provide preliminary evidence that emergent misalignment can be detected by measuring the similarity between fine-tuning updates and an "evil" weight direction, suggesting that it may be possible to monitor the evolution of weights during training and detect rare misaligned behaviors that never manifest during training or evaluations.
☆ Sample Complexity of Distributionally Robust Off-Dynamics Reinforcement Learning with Online Interaction ICML 2025
Off-dynamics reinforcement learning (RL), where training and deployment transition dynamics are different, can be formulated as learning in a robust Markov decision process (RMDP) where uncertainties in transition dynamics are imposed. Existing literature mostly assumes access to generative models allowing arbitrary state-action queries or pre-collected datasets with a good state coverage of the deployment environment, bypassing the challenge of exploration. In this work, we study a more realistic and challenging setting where the agent is limited to online interaction with the training environment. To capture the intrinsic difficulty of exploration in online RMDPs, we introduce the supremal visitation ratio, a novel quantity that measures the mismatch between the training dynamics and the deployment dynamics. We show that if this ratio is unbounded, online learning becomes exponentially hard. We propose the first computationally efficient algorithm that achieves sublinear regret in online RMDPs with $f$-divergence based transition uncertainties. We also establish matching regret lower bounds, demonstrating that our algorithm achieves optimal dependence on both the supremal visitation ratio and the number of interaction episodes. Finally, we validate our theoretical results through comprehensive numerical experiments.
comment: 53 pages, 6 figures, 3 tables. Published in Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)
☆ Diffusion-Based Electromagnetic Inverse Design of Scattering Structured Media NeurIPS 2025
We present a conditional diffusion model for electromagnetic inverse design that generates structured media geometries directly from target differential scattering cross-section profiles, bypassing expensive iterative optimization. Our 1D U-Net architecture with Feature-wise Linear Modulation learns to map desired angular scattering patterns to 2x2 dielectric sphere structure, naturally handling the non-uniqueness of inverse problems by sampling diverse valid designs. Trained on 11,000 simulated metasurfaces, the model achieves median MPE below 19% on unseen targets (best: 1.39%), outperforming CMA-ES evolutionary optimization while reducing design time from hours to seconds. These results demonstrate that employing diffusion models is promising for advancing electromagnetic inverse design research, potentially enabling rapid exploration of complex metasurface architectures and accelerating the development of next-generation photonic and wireless communication systems. The code is publicly available at https://github.com/mikzuker/inverse_design_metasurface_generation.
comment: Accepted to Machine Learning and the Physical Sciences Workshop, NeurIPS 2025
☆ SAD-Flower: Flow Matching for Safe, Admissible, and Dynamically Consistent Planning
Flow matching (FM) has shown promising results in data-driven planning. However, it inherently lacks formal guarantees for ensuring state and action constraints, whose satisfaction is a fundamental and crucial requirement for the safety and admissibility of planned trajectories on various systems. Moreover, existing FM planners do not ensure the dynamical consistency, which potentially renders trajectories inexecutable. We address these shortcomings by proposing SAD-Flower, a novel framework for generating Safe, Admissible, and Dynamically consistent trajectories. Our approach relies on an augmentation of the flow with a virtual control input. Thereby, principled guidance can be derived using techniques from nonlinear control theory, providing formal guarantees for state constraints, action constraints, and dynamic consistency. Crucially, SAD-Flower operates without retraining, enabling test-time satisfaction of unseen constraints. Through extensive experiments across several tasks, we demonstrate that SAD-Flower outperforms various generative-model-based baselines in ensuring constraint satisfaction.
☆ Learning Dynamics from Input-Output Data with Hamiltonian Gaussian Processes
Embedding non-restrictive prior knowledge, such as energy conservation laws, in learning-based approaches is a key motive to construct physically consistent models from limited data, relevant for, e.g., model-based control. Recent work incorporates Hamiltonian dynamics into Gaussian Process (GP) regression to obtain uncertainty-quantifying models that adhere to the underlying physical principles. However, these works rely on velocity or momentum data, which is rarely available in practice. In this paper, we consider dynamics learning with non-conservative Hamiltonian GPs, and address the more realistic problem setting of learning from input-output data. We provide a fully Bayesian scheme for estimating probability densities of unknown hidden states, of GP hyperparameters, as well as of structural hyperparameters, such as damping coefficients. Considering the computational complexity of GPs, we take advantage of a reduced-rank GP approximation and leverage its properties for computationally efficient prediction and training. The proposed method is evaluated in a nonlinear simulation case study and compared to a state-of-the-art approach that relies on momentum measurements.
comment: 17 pages, 5 figures
☆ Turning Adversaries into Allies: Reversing Typographic Attacks for Multimodal E-Commerce Product Retrieval
Multimodal product retrieval systems in e-commerce platforms rely on effectively combining visual and textual signals to improve search relevance and user experience. However, vision-language models such as CLIP are vulnerable to typographic attacks, where misleading or irrelevant text embedded in images skews model predictions. In this work, we propose a novel method that reverses the logic of typographic attacks by rendering relevant textual content (e.g., titles, descriptions) directly onto product images to perform vision-text compression, thereby strengthening image-text alignment and boosting multimodal product retrieval performance. We evaluate our method on three vertical-specific e-commerce datasets (sneakers, handbags, and trading cards) using six state-of-the-art vision foundation models. Our experiments demonstrate consistent improvements in unimodal and multimodal retrieval accuracy across categories and model families. Our findings suggest that visually rendering product metadata is a simple yet effective enhancement for zero-shot multimodal retrieval in e-commerce applications.
☆ Attention and Compression is all you need for Controllably Efficient Language Models
The quadratic cost of attention in transformers motivated the development of efficient approaches: namely sparse and sliding window attention, convolutions and linear attention. Although these approaches result in impressive reductions in compute and memory, they often trade-off with quality, specifically in-context recall performance. Moreover, apriori fixing this quality-compute tradeoff means being suboptimal from the get-go: some downstream applications require more memory for in-context recall, while others require lower latency and memory. Further, these approaches rely on heuristic choices that artificially restrict attention, or require handcrafted and complex recurrent state update rules, or they must be carefully composed with attention at specific layers to form a hybrid architecture that complicates the design process, especially at scale. To address above issues, we propose Compress & Attend Transformer (CAT), a conceptually simple architecture employing two simple ingredients only: dense attention and compression. CAT decodes chunks of tokens by attending to compressed chunks of the sequence so far. Compression results in decoding from a reduced sequence length that yields compute and memory savings, while choosing a particular chunk size trades-off quality for efficiency. Moreover, CAT can be trained with multiple chunk sizes at once, unlocking control of quality-compute trade-offs directly at test-time without any retraining, all in a single adaptive architecture. In exhaustive evaluations on common language modeling tasks, in-context recall, and long-context understanding, a single adaptive CAT model outperforms existing efficient baselines, including hybrid architectures, across different compute-memory budgets. Further, a single CAT matches dense transformer in language modeling across model scales while being 1.4-3x faster and requiring 2-9x lower total memory usage.
comment: Preprint
☆ Cleaning Maintenance Logs with LLM Agents for Improved Predictive Maintenance
Economic constraints, limited availability of datasets for reproducibility and shortages of specialized expertise have long been recognized as key challenges to the adoption and advancement of predictive maintenance (PdM) in the automotive sector. Recent progress in large language models (LLMs) presents an opportunity to overcome these barriers and speed up the transition of PdM from research to industrial practice. Under these conditions, we explore the potential of LLM-based agents to support PdM cleaning pipelines. Specifically, we focus on maintenance logs, a critical data source for training well-performing machine learning (ML) models, but one often affected by errors such as typos, missing fields, near-duplicate entries, and incorrect dates. We evaluate LLM agents on cleaning tasks involving six distinct types of noise. Our findings show that LLMs are effective at handling generic cleaning tasks and offer a promising foundation for future industrial applications. While domain-specific errors remain challenging, these results highlight the potential for further improvements through specialized training and enhanced agentic capabilities.
☆ Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation 3DV
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.
comment: This paper has been accepted at International Conference on 3D Vision (3DV) 2026
☆ QUESTER: Query Specification for Generative Retrieval
Generative Retrieval (GR) differs from the traditional index-then-retrieve pipeline by storing relevance in model parameters and directly generating document identifiers. However, GR often struggles to generalize and is costly to scale. We introduce QUESTER (QUEry SpecificaTion gEnerative Retrieval), which reframes GR as query specification generation - in this work, a simple keyword query handled by BM25 - using a (small) LLM. The policy is trained using reinforcement learning techniques (GRPO). Across in- and out-of-domain evaluations, we show that our model is more effective than BM25, and competitive with neural IR models, while maintaining a good efficiency
☆ Building Specialized Software-Assistant ChatBot with Graph-Based Retrieval-Augmented Generation
Digital Adoption Platforms (DAPs) have become essential tools for helping employees navigate complex enterprise software such as CRM, ERP, or HRMS systems. Companies like LemonLearning have shown how digital guidance can reduce training costs and accelerate onboarding. However, building and maintaining these interactive guides still requires extensive manual effort. Leveraging Large Language Models as virtual assistants is an appealing alternative, yet without a structured understanding of the target software, LLMs often hallucinate and produce unreliable answers. Moreover, most production-grade LLMs are black-box APIs, making fine-tuning impractical due to the lack of access to model weights. In this work, we introduce a Graph-based Retrieval-Augmented Generation framework that automatically converts enterprise web applications into state-action knowledge graphs, enabling LLMs to generate grounded and context-aware assistance. The framework was co-developed with the AI enterprise RAKAM, in collaboration with Lemon Learning. We detail the engineering pipeline that extracts and structures software interfaces, the design of the graph-based retrieval process, and the integration of our approach into production DAP workflows. Finally, we discuss scalability, robustness, and deployment lessons learned from industrial use cases.
☆ Language Generation and Identification From Partial Enumeration: Tight Density Bounds and Topological Characterizations
The success of large language models (LLMs) has motivated formal theories of language generation and learning. We study the framework of \emph{language generation in the limit}, where an adversary enumerates strings from an unknown language $K$ drawn from a countable class, and an algorithm must generate unseen strings from $K$. Prior work showed that generation is always possible, and that some algorithms achieve positive lower density, revealing a \emph{validity--breadth} trade-off between correctness and coverage. We resolve a main open question in this line, proving a tight bound of $1/2$ on the best achievable lower density. We then strengthen the model to allow \emph{partial enumeration}, where the adversary reveals only an infinite subset $C \subseteq K$. We show that generation in the limit remains achievable, and if $C$ has lower density $\alpha$ in $K$, the algorithm's output achieves density at least $\alpha/2$, matching the upper bound. This generalizes the $1/2$ bound to the partial-information setting, where the generator must recover within a factor $1/2$ of the revealed subset's density. We further revisit the classical Gold--Angluin model of \emph{language identification} under partial enumeration. We characterize when identification in the limit is possible -- when hypotheses $M_t$ eventually satisfy $C \subseteq M \subseteq K$ -- and in the process give a new topological formulation of Angluin's characterization, showing that her condition is precisely equivalent to an appropriate topological space having the $T_D$ separation property.
☆ What's on Your Plate? Inferring Chinese Cuisine Intake from Wearable IMUs
Accurate food intake detection is vital for dietary monitoring and chronic disease prevention. Traditional self-report methods are prone to recall bias, while camera-based approaches raise concerns about privacy. Furthermore, existing wearable-based methods primarily focus on a limited number of food types, such as hamburgers and pizza, failing to address the vast diversity of Chinese cuisine. To bridge this gap, we propose CuisineSense, a system that classifies Chinese food types by integrating hand motion cues from a smartwatch with head dynamics from smart glasses. To filter out irrelevant daily activities, we design a two-stage detection pipeline. The first stage identifies eating states by distinguishing characteristic temporal patterns from non-eating behaviors. The second stage then conducts fine-grained food type recognition based on the motions captured during food intake. To evaluate CuisineSense, we construct a dataset comprising 27.5 hours of IMU recordings across 11 food categories and 10 participants. Experiments demonstrate that CuisineSense achieves high accuracy in both eating state detection and food classification, offering a practical solution for unobtrusive, wearable-based dietary monitoring.The system code is publicly available at https://github.com/joeeeeyin/CuisineSense.git.
comment: 5 pages
☆ Embedding-Space Data Augmentation to Prevent Membership Inference Attacks in Clinical Time Series Forecasting ML4H
Balancing strong privacy guarantees with high predictive performance is critical for time series forecasting (TSF) tasks involving Electronic Health Records (EHR). In this study, we explore how data augmentation can mitigate Membership Inference Attacks (MIA) on TSF models. We show that retraining with synthetic data can substantially reduce the effectiveness of loss-based MIAs by reducing the attacker's true-positive to false-positive ratio. The key challenge is generating synthetic samples that closely resemble the original training data to confuse the attacker, while also introducing enough novelty to enhance the model's ability to generalize to unseen data. We examine multiple augmentation strategies - Zeroth-Order Optimization (ZOO), a variant of ZOO constrained by Principal Component Analysis (ZOO-PCA), and MixUp - to strengthen model resilience without sacrificing accuracy. Our experimental results show that ZOO-PCA yields the best reductions in TPR/FPR ratio for MIA attacks without sacrificing performance on test data.
comment: Accepted as a proceedings paper at Machine Learning for Health (ML4H) symposium 2025, December 1-2, 2025, San Diego, United States, 15 pages
☆ TwinVLA: Data-Efficient Bimanual Manipulation with Twin Single-Arm Vision-Language-Action Models
Vision-language-action models (VLAs) trained on large-scale robotic datasets have demonstrated strong performance on manipulation tasks, including bimanual tasks. However, because most public datasets focus on single-arm demonstrations, adapting VLAs for bimanual tasks typically requires substantial additional bimanual data and fine-tuning. To address this challenge, we introduce TwinVLA, a modular framework that composes two copies of a pretrained single-arm VLA into a coordinated bimanual VLA. Unlike monolithic cross-embodiment models trained on mixtures of single-arm and bimanual data, TwinVLA improves both data efficiency and performance by composing pretrained single-arm policies. Across diverse bimanual tasks in real-world and simulation settings, TwinVLA outperforms a comparably-sized monolithic RDT-1B model without requiring any bimanual pretraining. Furthermore, it narrows the gap to state-of-the-art model, $\pi_0$ which rely on extensive proprietary bimanual data and compute cost. These results establish our modular composition approach as a data-efficient and scalable path toward high-performance bimanual manipulation, leveraging public single-arm data.
comment: Project webpage : https://jellyho.github.io/TwinVLA/
☆ Integrating Score-Based Diffusion Models with Machine Learning-Enhanced Localization for Advanced Data Assimilation in Geological Carbon Storage
Accurate characterization of subsurface heterogeneity is important for the safe and effective implementation of geological carbon storage (GCS) projects. This paper explores how machine learning methods can enhance data assimilation for GCS with a framework that integrates score-based diffusion models with machine learning-enhanced localization in channelized reservoirs during CO$_2$ injection. We employ a machine learning-enhanced localization framework that uses large ensembles ($N_s = 5000$) with permeabilities generated by the diffusion model and states computed by simple ML algorithms to improve covariance estimation for the Ensemble Smoother with Multiple Data Assimilation (ESMDA). We apply ML algorithms to a prior ensemble of channelized permeability fields, generated with the geostatistical model FLUVSIM. Our approach is applied on a CO$_2$ injection scenario simulated using the Delft Advanced Research Terra Simulator (DARTS). Our ML-based localization maintains significantly more ensemble variance than when localization is not applied, while achieving comparable data-matching quality. This framework has practical implications for GCS projects, helping improve the reliability of uncertainty quantification for risk assessment.
comment: Corresponding author: Gabriel Serr\~ao Seabra
☆ An End-to-End Deep Reinforcement Learning Approach for Solving the Traveling Salesman Problem with Drones
The emergence of truck-drone collaborative systems in last-mile logistics has positioned the Traveling Salesman Problem with Drones (TSP-D) as a pivotal extension of classical routing optimization, where synchronized vehicle coordination promises substantial operational efficiency and reduced environmental impact, yet introduces NP-hard combinatorial complexity beyond the reach of conventional optimization paradigms. Deep reinforcement learning offers a theoretically grounded framework to address TSP-D's inherent challenges through self-supervised policy learning and adaptive decision-making. This study proposes a hierarchical Actor-Critic deep reinforcement learning framework for solving the TSP-D problem. The architecture consists of two primary components: a Transformer-inspired encoder and an efficient Minimal Gated Unit decoder. The encoder incorporates a novel, optimized k-nearest neighbors sparse attention mechanism specifically for focusing on relevant spatial relationships, further enhanced by the integration of global node features. The Minimal Gated Unit decoder processes these encoded representations to efficiently generate solution sequences. The entire framework operates within an asynchronous advantage actor-critic paradigm. Experimental results show that, on benchmark TSP-D instances of various scales (N=10 to 100), the proposed model can obtain competitive or even superior solutions in shorter average computation times compared to high-performance heuristic algorithms and existing reinforcement learning methods. Moreover, compared to advanced reinforcement learning algorithm benchmarks, the proposed framework significantly reduces the total training time required while achieving superior final performance, highlighting its notable advantage in training efficiency.
☆ The Causal Round Trip: Generating Authentic Counterfactuals by Eliminating Information Loss
Judea Pearl's vision of Structural Causal Models (SCMs) as engines for counterfactual reasoning hinges on faithful abduction: the precise inference of latent exogenous noise. For decades, operationalizing this step for complex, non-linear mechanisms has remained a significant computational challenge. The advent of diffusion models, powerful universal function approximators, offers a promising solution. However, we argue that their standard design, optimized for perceptual generation over logical inference, introduces a fundamental flaw for this classical problem: an inherent information loss we term the Structural Reconstruction Error (SRE). To address this challenge, we formalize the principle of Causal Information Conservation (CIC) as the necessary condition for faithful abduction. We then introduce BELM-MDCM, the first diffusion-based framework engineered to be causally sound by eliminating SRE by construction through an analytically invertible mechanism. To operationalize this framework, a Targeted Modeling strategy provides structural regularization, while a Hybrid Training Objective instills a strong causal inductive bias. Rigorous experiments demonstrate that our Zero-SRE framework not only achieves state-of-the-art accuracy but, more importantly, enables the high-fidelity, individual-level counterfactuals required for deep causal inquiries. Our work provides a foundational blueprint that reconciles the power of modern generative models with the rigor of classical causal theory, establishing a new and more rigorous standard for this emerging field.
comment: 50 pages, 10 figures. Submitted to the Journal of Machine Learning Research (JMLR). Keywords: Causal Inference, Diffusion Models, Causal Information Conservation, Structural Causal Models, Counterfactual Generation, BELM, Structural Reconstruction Error
☆ Context-aware Learned Mesh-based Simulation via Trajectory-Level Meta-Learning
Simulating object deformations is a critical challenge across many scientific domains, including robotics, manufacturing, and structural mechanics. Learned Graph Network Simulators (GNSs) offer a promising alternative to traditional mesh-based physics simulators. Their speed and inherent differentiability make them particularly well suited for applications that require fast and accurate simulations, such as robotic manipulation or manufacturing optimization. However, existing learned simulators typically rely on single-step observations, which limits their ability to exploit temporal context. Without this information, these models fail to infer, e.g., material properties. Further, they rely on auto-regressive rollouts, which quickly accumulate error for long trajectories. We instead frame mesh-based simulation as a trajectory-level meta-learning problem. Using Conditional Neural Processes, our method enables rapid adaptation to new simulation scenarios from limited initial data while capturing their latent simulation properties. We utilize movement primitives to directly predict fast, stable and accurate simulations from a single model call. The resulting approach, Movement-primitive Meta-MeshGraphNet (M3GN), provides higher simulation accuracy at a fraction of the runtime cost compared to state-of-the-art GNSs across several tasks.
comment: 35 pages. Submitted to Transactions on Machine Learning Research (TMLR)
☆ A differentiable model of supply-chain shocks NeurIPS 2025
Modelling how shocks propagate in supply chains is an increasingly important challenge in economics. Its relevance has been highlighted in recent years by events such as Covid-19 and the Russian invasion of Ukraine. Agent-based models (ABMs) are a promising approach for this problem. However, calibrating them is hard. We show empirically that it is possible to achieve speed ups of over 3 orders of magnitude when calibrating ABMs of supply networks by running them on GPUs and using automatic differentiation, compared to non-differentiable baselines. This opens the door to scaling ABMs to model the whole global supply network.
comment: Accepted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Differentiable Systems and Scientific Machine Learning (EurIPS)
☆ ActiTect: A Generalizable Machine Learning Pipeline for REM Sleep Behavior Disorder Screening through Standardized Actigraphy
Isolated rapid eye movement sleep behavior disorder (iRBD) is a major prodromal marker of $\alpha$-synucleinopathies, often preceding the clinical onset of Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. While wrist-worn actimeters hold significant potential for detecting RBD in large-scale screening efforts by capturing abnormal nocturnal movements, they become inoperable without a reliable and efficient analysis pipeline. This study presents ActiTect, a fully automated, open-source machine learning tool to identify RBD from actigraphy recordings. To ensure generalizability across heterogeneous acquisition settings, our pipeline includes robust preprocessing and automated sleep-wake detection to harmonize multi-device data and extract physiologically interpretable motion features characterizing activity patterns. Model development was conducted on a cohort of 78 individuals, yielding strong discrimination under nested cross-validation (AUROC = 0.95). Generalization was confirmed on a blinded local test set (n = 31, AUROC = 0.86) and on two independent external cohorts (n = 113, AUROC = 0.84; n = 57, AUROC = 0.94). To assess real-world robustness, leave-one-dataset-out cross-validation across the internal and external cohorts demonstrated consistent performance (AUROC range = 0.84-0.89). A complementary stability analysis showed that key predictive features remained reproducible across datasets, supporting the final pooled multi-center model as a robust pre-trained resource for broader deployment. By being open-source and easy to use, our tool promotes widespread adoption and facilitates independent validation and collaborative improvements, thereby advancing the field toward a unified and generalizable RBD detection model using wearable devices.
comment: 30 pages including supplement, 4 core figures, 1 supplement figure
☆ Linear Gradient Prediction with Control Variates
We propose a new way of training neural networks, with the goal of reducing training cost. Our method uses approximate predicted gradients instead of the full gradients that require an expensive backward pass. We derive a control-variate-based technique that ensures our updates are unbiased estimates of the true gradient. Moreover, we propose a novel way to derive a predictor for the gradient inspired by the theory of the Neural Tangent Kernel. We empirically show the efficacy of the technique on a vision transformer classification task.
☆ No One-Model-Fits-All: Uncovering Spatio-Temporal Forecasting Trade-offs with Graph Neural Networks and Foundation Models
Modern IoT deployments for environmental sensing produce high volume spatiotemporal data to support downstream tasks such as forecasting, typically powered by machine learning models. While existing filtering and strategic deployment techniques optimize collected data volume at the edge, they overlook how variations in sampling frequencies and spatial coverage affect downstream model performance. In many forecasting models, incorporating data from additional sensors denoise predictions by providing broader spatial contexts. This interplay between sampling frequency, spatial coverage and different forecasting model architectures remain underexplored. This work presents a systematic study of forecasting models - classical models (VAR), neural networks (GRU, Transformer), spatio-temporal graph neural networks (STGNNs), and time series foundation models (TSFMs: Chronos Moirai, TimesFM) under varying spatial sensor nodes density and sampling intervals using real-world temperature data in a wireless sensor network. Our results show that STGNNs are effective when sensor deployments are sparse and sampling rate is moderate, leveraging spatial correlations via encoded graph structure to compensate for limited coverage. In contrast, TSFMs perform competitively at high frequencies but degrade when spatial coverage from neighboring sensors is reduced. Crucially, the multivariate TSFM Moirai outperforms all models by natively learning cross-sensor dependencies. These findings offer actionable insights for building efficient forecasting pipelines in spatio-temporal systems. All code for model configurations, training, dataset, and logs are open-sourced for reproducibility: https://github.com/UIUC-MONET-Projects/Benchmarking-Spatiotemporal-Forecast-Models
☆ Associative Poisoning to Generative Machine Learning
The widespread adoption of generative models such as Stable Diffusion and ChatGPT has made them increasingly attractive targets for malicious exploitation, particularly through data poisoning. Existing poisoning attacks compromising synthesised data typically either cause broad degradation of generated data or require control over the training process, limiting their applicability in real-world scenarios. In this paper, we introduce a novel data poisoning technique called associative poisoning, which compromises fine-grained features of the generated data without requiring control of the training process. This attack perturbs only the training data to manipulate statistical associations between specific feature pairs in the generated outputs. We provide a formal mathematical formulation of the attack and prove its theoretical feasibility and stealthiness. Empirical evaluations using two state-of-the-art generative models demonstrate that associative poisoning effectively induces or suppresses feature associations while preserving the marginal distributions of the targeted features and maintaining high-quality outputs, thereby evading visual detection. These results suggest that generative systems used in image synthesis, synthetic dataset generation, and natural language processing are susceptible to subtle, stealthy manipulations that compromise their statistical integrity. To address this risk, we examine the limitations of existing defensive strategies and propose a novel countermeasure strategy.
☆ Model Merging Improves Zero-Shot Generalization in Bioacoustic Foundation Models
Foundation models capable of generalizing across species and tasks represent a promising new frontier in bioacoustics, with NatureLM being one of the most prominent examples. While its domain-specific fine-tuning yields strong performance on bioacoustic benchmarks, we observe that it also introduces trade-offs in instruction-following flexibility. For instance, NatureLM achieves high accuracy when prompted for either the common or scientific name individually, but its accuracy drops significantly when both are requested in a single prompt. We address this by applying a simple model merging strategy that interpolates NatureLM with its base language model, recovering instruction-following capabilities with minimal loss of domain expertise. Finally, we show that the merged model exhibits markedly stronger zero-shot generalization, achieving over a 200% relative improvement and setting a new state-of-the-art in closed-set zero-shot classification of unseen species.
Multimodal Deep Learning for Prediction of Progression-Free Survival in Patients with Neuroendocrine Tumors Undergoing 177Lu-based Peptide Receptor Radionuclide Therapy
Peptide receptor radionuclide therapy (PRRT) is an established treatment for metastatic neuroendocrine tumors (NETs), yet long-term disease control occurs only in a subset of patients. Predicting progression-free survival (PFS) could support individualized treatment planning. This study evaluates laboratory, imaging, and multimodal deep learning models for PFS prediction in PRRT-treated patients. In this retrospective, single-center study 116 patients with metastatic NETs undergoing 177Lu-DOTATOC were included. Clinical characteristics, laboratory values, and pretherapeutic somatostatin receptor positron emission tomography/computed tomographies (SR-PET/CT) were collected. Seven models were trained to classify low- vs. high-PFS groups, including unimodal (laboratory, SR-PET, or CT) and multimodal fusion approaches. Explainability was evaluated by feature importance analysis and gradient maps. Forty-two patients (36%) had short PFS (< 1 year), 74 patients long PFS (>1 year). Groups were similar in most characteristics, except for higher baseline chromogranin A (p = 0.003), elevated gamma-GT (p = 0.002), and fewer PRRT cycles (p < 0.001) in short-PFS patients. The Random Forest model trained only on laboratory biomarkers reached an AUROC of 0.59 +- 0.02. Unimodal three-dimensional convolutional neural networks using SR-PET or CT performed worse (AUROC 0.42 +- 0.03 and 0.54 +- 0.01, respectively). A multimodal fusion model laboratory values, SR-PET, and CT -augmented with a pretrained CT branch - achieved the best results (AUROC 0.72 +- 0.01, AUPRC 0.80 +- 0.01). Multimodal deep learning combining SR-PET, CT, and laboratory biomarkers outperformed unimodal approaches for PFS prediction after PRRT. Upon external validation, such models may support risk-adapted follow-up strategies.
☆ Another BRIXEL in the Wall: Towards Cheaper Dense Features
Vision foundation models achieve strong performance on both global and locally dense downstream tasks. Pretrained on large images, the recent DINOv3 model family is able to produce very fine-grained dense feature maps, enabling state-of-the-art performance. However, computing these feature maps requires the input image to be available at very high resolution, as well as large amounts of compute due to the squared complexity of the transformer architecture. To address these issues, we propose BRIXEL, a simple knowledge distillation approach that has the student learn to reproduce its own feature maps at higher resolution. Despite its simplicity, BRIXEL outperforms the baseline DINOv3 models by large margins on downstream tasks when the resolution is kept fixed. Moreover, it is able to produce feature maps that are very similar to those of the teacher at a fraction of the computational cost. Code and model weights are available at https://github.com/alexanderlappe/BRIXEL.
☆ Consecutive Preferential Bayesian Optimization
Preferential Bayesian optimization allows optimization of objectives that are either expensive or difficult to measure directly, by relying on a minimal number of comparative evaluations done by a human expert. Generating candidate solutions for evaluation is also often expensive, but this cost is ignored by existing methods. We generalize preference-based optimization to explicitly account for production and evaluation costs with Consecutive Preferential Bayesian Optimization, reducing production cost by constraining comparisons to involve previously generated candidates. We also account for the perceptual ambiguity of the oracle providing the feedback by incorporating a Just-Noticeable Difference threshold into a probabilistic preference model to capture indifference to small utility differences. We adapt an information-theoretic acquisition strategy to this setting, selecting new configurations that are most informative about the unknown optimum under a preference model accounting for the perceptual ambiguity. We empirically demonstrate a notable increase in accuracy in setups with high production costs or with indifference feedback.
☆ A New Framework for Convex Clustering in Kernel Spaces: Finite Sample Bounds, Consistency and Performance Insights
Convex clustering is a well-regarded clustering method, resembling the similar centroid-based approach of Lloyd's $k$-means, without requiring a predefined cluster count. It starts with each data point as its centroid and iteratively merges them. Despite its advantages, this method can fail when dealing with data exhibiting linearly non-separable or non-convex structures. To mitigate the limitations, we propose a kernelized extension of the convex clustering method. This approach projects the data points into a Reproducing Kernel Hilbert Space (RKHS) using a feature map, enabling convex clustering in this transformed space. This kernelization not only allows for better handling of complex data distributions but also produces an embedding in a finite-dimensional vector space. We provide a comprehensive theoretical underpinnings for our kernelized approach, proving algorithmic convergence and establishing finite sample bounds for our estimates. The effectiveness of our method is demonstrated through extensive experiments on both synthetic and real-world datasets, showing superior performance compared to state-of-the-art clustering techniques. This work marks a significant advancement in the field, offering an effective solution for clustering in non-linear and non-convex data scenarios.
☆ Follow-Me in Micro-Mobility with End-to-End Imitation Learning
Autonomous micro-mobility platforms face challenges from the perspective of the typical deployment environment: large indoor spaces or urban areas that are potentially crowded and highly dynamic. While social navigation algorithms have progressed significantly, optimizing user comfort and overall user experience over other typical metrics in robotics (e.g., time or distance traveled) is understudied. Specifically, these metrics are critical in commercial applications. In this paper, we show how imitation learning delivers smoother and overall better controllers, versus previously used manually-tuned controllers. We demonstrate how DAAV's autonomous wheelchair achieves state-of-the-art comfort in follow-me mode, in which it follows a human operator assisting persons with reduced mobility (PRM). This paper analyzes different neural network architectures for end-to-end control and demonstrates their usability in real-world production-level deployments.
☆ SmartSecChain-SDN: A Blockchain-Integrated Intelligent Framework for Secure and Efficient Software-Defined Networks
With more and more existing networks being transformed to Software-Defined Networking (SDN), they need to be more secure and demand smarter ways of traffic control. This work, SmartSecChain-SDN, is a platform that combines machine learning based intrusion detection, blockchain-based storage of logs, and application-awareness-based priority in SDN networks. To detect network intrusions in a real-time, precision and low-false positives setup, the framework utilizes the application of advanced machine learning algorithms, namely Random Forest, XGBoost, CatBoost, and CNN-BiLSTM. SmartSecChain-SDN is based on the Hyperledger Fabric, which is a permissioned blockchain technology, to provide secure, scalable, and privacy-preserving storage and, thus, guarantee that the Intrusion Detection System (IDS) records cannot be altered and can be analyzed comprehensively. The system also has Quality of Service (QoS) rules and traffic shaping based on applications, which enables prioritization of critical services, such as VoIP, video conferencing, and business applications, as well as de-prioritization of non-essential traffic, such as downloads and updates. Mininet can simulate real-time SDN scenarios because it is used to prototype whole architectures. It is also compatible with controllers OpenDaylight and Ryu. It has tested the framework using the InSDN dataset and proved that it can identify different kinds of cyberattacks and handle bandwidth allocation efficiently under circumstances of resource constraints. SmartSecChain-SDN comprehensively addresses SDN system protection, securing and enhancing. The proposed study offers an innovative, extensible way to improve cybersecurity, regulatory compliance, and the administration of next-generation programmable networks.
comment: 20 pages, 12 figures
☆ DL101 Neural Network Outputs and Loss Functions
The loss function used to train a neural network is strongly connected to its output layer from a statistical point of view. This technical report analyzes common activation functions for a neural network output layer, like linear, sigmoid, ReLU, and softmax, detailing their mathematical properties and their appropriate use cases. A strong statistical justification exists for the selection of the suitable loss function for training a deep learning model. This report connects common loss functions such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and various Cross-Entropy losses to the statistical principle of Maximum Likelihood Estimation (MLE). Choosing a specific loss function is equivalent to assuming a specific probability distribution for the model output, highlighting the link between these functions and the Generalized Linear Models (GLMs) that underlie network output layers. Additional scenarios of practical interest are also considered, such as alternative output encodings, constrained outputs, and distributions with heavy tails.
☆ QuAnTS: Question Answering on Time Series
Text offers intuitive access to information. This can, in particular, complement the density of numerical time series, thereby allowing improved interactions with time series models to enhance accessibility and decision-making. While the creation of question-answering datasets and models has recently seen remarkable growth, most research focuses on question answering (QA) on vision and text, with time series receiving minute attention. To bridge this gap, we propose a challenging novel time series QA (TSQA) dataset, QuAnTS, for Question Answering on Time Series data. Specifically, we pose a wide variety of questions and answers about human motion in the form of tracked skeleton trajectories. We verify that the large-scale QuAnTS dataset is well-formed and comprehensive through extensive experiments. Thoroughly evaluating existing and newly proposed baselines then lays the groundwork for a deeper exploration of TSQA using QuAnTS. Additionally, we provide human performances as a key reference for gauging the practical usability of such models. We hope to encourage future research on interacting with time series models through text, enabling better decision-making and more transparent systems.
☆ Usando LLMs para Programar Jogos de Tabuleiro e Variações
Creating programs to represent board games can be a time-consuming task. Large Language Models (LLMs) arise as appealing tools to expedite this process, given their capacity to efficiently generate code from simple contextual information. In this work, we propose a method to test how capable three LLMs (Claude, DeepSeek and ChatGPT) are at creating code for board games, as well as new variants of existing games.
comment: Accepted for presentation at the I Escola Regional de Aprendizado de M\'aquina e Intelig\^encia Artificial da Regi\~ao Sul, 2025, in Portuguese language
☆ Early Alzheimer's Disease Detection from Retinal OCT Images: A UK Biobank Study
Alterations in retinal layer thickness, measurable using Optical Coherence Tomography (OCT), have been associated with neurodegenerative diseases such as Alzheimer's disease (AD). While previous studies have mainly focused on segmented layer thickness measurements, this study explored the direct classification of OCT B-scan images for the early detection of AD. To our knowledge, this is the first application of deep learning to raw OCT B-scans for AD prediction in the literature. Unlike conventional medical image classification tasks, early detection is more challenging than diagnosis because imaging precedes clinical diagnosis by several years. We fine-tuned and evaluated multiple pretrained models, including ImageNet-based networks and the OCT-specific RETFound transformer, using subject-level cross-validation datasets matched for age, sex, and imaging instances from the UK Biobank cohort. To reduce overfitting in this small, high-dimensional dataset, both standard and OCT-specific augmentation techniques were applied, along with a year-weighted loss function that prioritized cases diagnosed within four years of imaging. ResNet-34 produced the most stable results, achieving an AUC of 0.62 in the 4-year cohort. Although below the threshold for clinical application, our explainability analyses confirmed localized structural differences in the central macular subfield between the AD and control groups. These findings provide a baseline for OCT-based AD prediction, highlight the challenges of detecting subtle retinal biomarkers years before AD diagnosis, and point to the need for larger datasets and multimodal approaches.
☆ Iterative Layer-wise Distillation for Efficient Compression of Large Language Models
This work investigates distillation methods for large language models (LLMs) with the goal of developing compact models that preserve high performance. Several existing approaches are reviewed, with a discussion of their respective strengths and limitations. An improved method based on the ShortGPT approach has been developed, building upon the idea of incorporating iterative evaluation of layer importance. At each step, importance is assessed by measuring performance degradation when individual layers are removed, using a set of representative datasets. This process is combined with further training using a joint loss function based on KL divergence and mean squared error. Experiments on the Qwen2.5-3B model show that the number of layers can be reduced from 36 to 28 (resulting in a 2.47 billion parameter model) with only a 9.7% quality loss, and to 24 layers with an 18% loss. The findings suggest that the middle transformer layers contribute less to inference, underscoring the potential of the proposed method for creating efficient models. The results demonstrate the effectiveness of iterative distillation and fine-tuning, making the approach suitable for deployment in resource-limited settings.
☆ Estimating Bidirectional Causal Effects with Large Scale Online Kernel Learning
In this study, a scalable online kernel learning framework is proposed for estimating bidirectional causal effects in systems characterized by mutual dependence and heteroskedasticity. Traditional causal inference often focuses on unidirectional effects, overlooking the common bidirectional relationships in real-world phenomena. Building on heteroskedasticity-based identification, the proposed method integrates a quasi-maximum likelihood estimator for simultaneous equation models with large scale online kernel learning. It employs random Fourier feature approximations to flexibly model nonlinear conditional means and variances, while an adaptive online gradient descent algorithm ensures computational efficiency for streaming and high-dimensional data. Results from extensive simulations demonstrate that the proposed method achieves superior accuracy and stability than single equation and polynomial approximation baselines, exhibiting lower bias and root mean squared error across various data-generating processes. These results confirm that the proposed approach effectively captures complex bidirectional causal effects with near-linear computational scaling. By combining econometric identification with modern machine learning techniques, the proposed framework offers a practical, scalable, and theoretically grounded solution for large scale causal inference in natural/social science, policy making, business, and industrial applications.
comment: Accepted for publication in Proceedings of the 2025 International Conference on Data Science and Intelligent Systems (DSIS 2025)
☆ OvA-LP: A Simple and Efficient Framework for Federated Learning on Non-IID Data
Federated fine-tuning (FFT) adapts foundation models to decentralized data but remains fragile under heterogeneous client distributions due to local drift, i.e., client-level update divergences that induce systematic bias and amplified variance in the global model. Existing aggregation and personalization methods largely correct drift post hoc, which proves brittle under extreme non-IID conditions. We introduce OvA-LP, a minimalist framework that is, to our knowledge, the first explicitly designed to suppress drift at its source within the PEFT-based FFT paradigm. OvA-LP combines linear probing on a frozen encoder with a one-vs-all head and a simple two-stage procedure, preserving pretrained feature geometry and decoupling logits to prevent the mechanisms that amplify drift. On CIFAR-100 with 100 clients, averaged over shard-1, shard-2, and Bernoulli-Dirichlet partitions, OvA-LP retains 95.9% of its IID accuracy, whereas state-of-the-art FFT baselines retain only 10.1% (PFPT) and 34.5% (FFT-MoE) under the same conditions. OvA-LP further maintains resilience under both symmetric and asymmetric label noise. In addition, precomputing encoder features makes per-round cost nearly independent of encoder size. Together, these results demonstrate that OvA-LP provides a principled and efficient basis for robust FFT under heterogeneity.
☆ Pluralistic Behavior Suite: Stress-Testing Multi-Turn Adherence to Custom Behavioral Policies NeurIPS 2025
Large language models (LLMs) are typically aligned to a universal set of safety and usage principles intended for broad public acceptability. Yet, real-world applications of LLMs often take place within organizational ecosystems shaped by distinctive corporate policies, regulatory requirements, use cases, brand guidelines, and ethical commitments. This reality highlights the need for rigorous and comprehensive evaluation of LLMs with pluralistic alignment goals, an alignment paradigm that emphasizes adaptability to diverse user values and needs. In this work, we present PLURALISTIC BEHAVIOR SUITE (PBSUITE), a dynamic evaluation suite designed to systematically assess LLMs' capacity to adhere to pluralistic alignment specifications in multi-turn, interactive conversations. PBSUITE consists of (1) a diverse dataset of 300 realistic LLM behavioral policies, grounded in 30 industries; and (2) a dynamic evaluation framework for stress-testing model compliance with custom behavioral specifications under adversarial conditions. Using PBSUITE, We find that leading open- and closed-source LLMs maintain robust adherence to behavioral policies in single-turn settings (less than 4% failure rates), but their compliance weakens substantially in multi-turn adversarial interactions (up to 84% failure rates). These findings highlight that existing model alignment and safety moderation methods fall short in coherently enforcing pluralistic behavioral policies in real-world LLM interactions. Our work contributes both the dataset and analytical framework to support future research toward robust and context-aware pluralistic alignment techniques.
comment: Accepted at the Multi-Turn Interactions workshop at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Multi-agent Coordination via Flow Matching
This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, i.e., denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, including $12$ environments and $34$ datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\boldsymbol{\times14.5}$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline multi-agent reinforcement learning (MARL) methods.
☆ BiPETE: A Bi-Positional Embedding Transformer Encoder for Risk Assessment of Alcohol and Substance Use Disorder with Electronic Health Records
Transformer-based deep learning models have shown promise for disease risk prediction using electronic health records(EHRs), but modeling temporal dependencies remains a key challenge due to irregular visit intervals and lack of uniform structure. We propose a Bi-Positional Embedding Transformer Encoder or BiPETE for single-disease prediction, which integrates rotary positional embeddings to encode relative visit timing and sinusoidal embeddings to preserve visit order. Without relying on large-scale pretraining, BiPETE is trained on EHR data from two mental health cohorts-depressive disorder and post-traumatic stress disorder (PTSD)-to predict the risk of alcohol and substance use disorders (ASUD). BiPETE outperforms baseline models, improving the area under the precision-recall curve (AUPRC) by 34% and 50% in the depression and PTSD cohorts, respectively. An ablation study further confirms the effectiveness of the dual positional encoding strategy. We apply the Integrated Gradients method to interpret model predictions, identifying key clinical features associated with ASUD risk and protection, such as abnormal inflammatory, hematologic, and metabolic markers, as well as specific medications and comorbidities. Overall, these key clinical features identified by the attribution methods contribute to a deeper understanding of the risk assessment process and offer valuable clues for mitigating potential risks. In summary, our study presents a practical and interpretable framework for disease risk prediction using EHR data, which can achieve strong performance.
comment: 20 pages, 2 figures, 6 tables, 2 supplementary figures, 4 supplementary tables, submitted to Journal of Biomedical Informatics on 6 Nov, 2025
☆ Carbon Price Forecasting with Structural Breaks: A Comparative Study of Deep Learning Models
Accurately forecasting carbon prices is essential for informed energy market decision-making, guiding sustainable energy planning, and supporting effective decarbonization strategies. However, it remains challenging due to structural breaks and high-frequency noise caused by frequent policy interventions and market shocks. Existing studies, including the most recent baseline approaches, have attempted to incorporate breakpoints but often treat denoising and modeling as separate processes and lack systematic evaluation across advanced deep learning architectures, limiting the robustness and the generalization capability. To address these gaps, this paper proposes a comprehensive hybrid framework that integrates structural break detection (Bai-Perron, ICSS, and PELT algorithms), wavelet signal denoising, and three state-of-the-art deep learning models (LSTM, GRU, and TCN). Using European Union Allowance (EUA) spot prices from 2007 to 2024 and exogenous features such as energy prices and policy indicators, the framework constructs univariate and multivariate datasets for comparative evaluation. Experimental results demonstrate that our proposed PELT-WT-TCN achieves the highest prediction accuracy, reducing forecasting errors by 22.35% in RMSE and 18.63% in MAE compared to the state-of-the-art baseline model (Breakpoints with Wavelet and LSTM), and by 70.55% in RMSE and 74.42% in MAE compared to the original LSTM without decomposition from the same baseline study. These findings underscore the value of integrating structural awareness and multiscale decomposition into deep learning architectures to enhance accuracy and interpretability in carbon price forecasting and other nonstationary financial time series.
☆ Peptide2Mol: A Diffusion Model for Generating Small Molecules as Peptide Mimics for Targeted Protein Binding
Structure-based drug design has seen significant advancements with the integration of artificial intelligence (AI), particularly in the generation of hit and lead compounds. However, most AI-driven approaches neglect the importance of endogenous protein interactions with peptides, which may result in suboptimal molecule designs. In this work, we present Peptide2Mol, an E(3)-equivariant graph neural network diffusion model that generates small molecules by referencing both the original peptide binders and their surrounding protein pocket environments. Trained on large datasets and leveraging sophisticated modeling techniques, Peptide2Mol not only achieves state-of-the-art performance in non-autoregressive generative tasks, but also produces molecules with similarity to the original peptide binder. Additionally, the model allows for molecule optimization and peptidomimetic design through a partial diffusion process. Our results highlight Peptide2Mol as an effective deep generative model for generating and optimizing bioactive small molecules from protein binding pockets.
comment: Abstract 1 page, main text 9 pages, references 2 pages, 4 figures. Submitted to RECOMB 2026
☆ Predicting Cognitive Assessment Scores in Older Adults with Cognitive Impairment Using Wearable Sensors
Background and Objectives: This paper focuses on using AI to assess the cognitive function of older adults with mild cognitive impairment or mild dementia using physiological data provided by a wearable device. Cognitive screening tools are disruptive, time-consuming, and only capture brief snapshots of activity. Wearable sensors offer an attractive alternative by continuously monitoring physiological signals. This study investigated whether physiological data can accurately predict scores on established cognitive tests. Research Design and Methods: We recorded physiological signals from 23 older adults completing three NIH Toolbox Cognitive Battery tests, which assess working memory, processing speed, and attention. The Empatica EmbracePlus, a wearable device, measured blood volume pulse, skin conductance, temperature, and movement. Statistical features were extracted using wavelet-based and segmentation methods. We then applied supervised learning and validated predictions via cross-validation, hold-out testing, and bootstrapping. Results: Our models showed strong performance with Spearman's \rho of 0.73-0.82 and mean absolute errors of 0.14-0.16, significantly outperforming a naive mean predictor. Sensor roles varied: heart-related signals combined with movement and temperature best predicted working memory, movement paired with skin conductance was most informative for processing speed, and heart in tandem with skin conductance worked best for attention. Discussion and Implications: These findings suggest that wearable sensors paired with AI tools such as supervised learning and feature engineering can noninvasively track specific cognitive functions in older adults, enabling continuous monitoring. Our study demonstrates how AI can be leveraged when the data sample is small. This approach may support remote assessments and facilitate clinical interventions.
comment: 40 pages, 2 figures, 3 tables; Supplementary Material: 3 tables (S1-S3). Presented as a poster at the Gerontological Society of America (GSA) Annual Scientific Meeting, November 2025
☆ Deep Progressive Training: scaling up depth capacity of zero/one-layer models
Model depth is a double-edged sword in deep learning: deeper models achieve higher accuracy but require higher computational cost. To efficiently train models at scale, an effective strategy is the progressive training, which scales up model capacity during training, hence significantly reducing computation with little to none performance degradation. In this work, we study the depth expansion of large models through the lens of optimization theory and feature learning, offering insights on the initialization of new layers, hyperparameter transfer, learning rate schedule, and timing of model expansion. Specifically, we propose zero/one-layer progressive training for the optimal tradeoff between computation and loss. For example, zero/one-layer progressive training on GPT2 can save $\approx 80\%$ compute, or equivalently accelerate $\approx 5\times$ while achieving almost the same loss, compared to to a fully trained 60-layer model with 7B parameters.
☆ Unlocking the Black Box: A Five-Dimensional Framework for Evaluating Explainable AI in Credit Risk
The financial industry faces a significant challenge modeling and risk portfolios: balancing the predictability of advanced machine learning models, neural network models, and explainability required by regulatory entities (such as Office of the Comptroller of the Currency, Consumer Financial Protection Bureau). This paper intends to fill the gap in the application between these "black box" models and explainability frameworks, such as LIME and SHAP. Authors elaborate on the application of these frameworks on different models and demonstrates the more complex models with better prediction powers could be applied and reach the same level of the explainability, using SHAP and LIME. Beyond the comparison and discussion of performances, this paper proposes a novel five dimensional framework evaluating Inherent Interpretability, Global Explanations, Local Explanations, Consistency, and Complexity to offer a nuanced method for assessing and comparing model explainability beyond simple accuracy metrics. This research demonstrates the feasibility of employing sophisticated, high performing ML models in regulated financial environments by utilizing modern explainability techniques and provides a structured approach to evaluate the crucial trade offs between model performance and interpretability.
☆ Scaling Up ROC-Optimizing Support Vector Machines
The ROC-SVM, originally proposed by Rakotomamonjy, directly maximizes the area under the ROC curve (AUC) and has become an attractive alternative of the conventional binary classification under the presence of class imbalance. However, its practical use is limited by high computational cost, as training involves evaluating all $O(n^2)$. To overcome this limitation, we develop a scalable variant of the ROC-SVM that leverages incomplete U-statistics, thereby substantially reducing computational complexity. We further extend the framework to nonlinear classification through a low-rank kernel approximation, enabling efficient training in reproducing kernel Hilbert spaces. Theoretical analysis establishes an error bound that justifies the proposed approximation, and empirical results on both synthetic and real datasets demonstrate that the proposed method achieves comparable AUC performance to the original ROC-SVM with drastically reduced training time.
comment: 15 pages, Submitted to Stat
Less Is More: Generating Time Series with LLaMA-Style Autoregression in Simple Factorized Latent Spaces
Generative models for multivariate time series are essential for data augmentation, simulation, and privacy preservation, yet current state-of-the-art diffusion-based approaches are slow and limited to fixed-length windows. We propose FAR-TS, a simple yet effective framework that combines disentangled factorization with an autoregressive Transformer over a discrete, quantized latent space to generate time series. Each time series is decomposed into a data-adaptive basis that captures static cross-channel correlations and temporal coefficients that are vector-quantized into discrete tokens. A LLaMA-style autoregressive Transformer then models these token sequences, enabling fast and controllable generation of sequences with arbitrary length. Owing to its streamlined design, FAR-TS achieves orders-of-magnitude faster generation than Diffusion-TS while preserving cross-channel correlations and an interpretable latent space, enabling high-quality and flexible time series synthesis.
☆ Risk Prediction of Cardiovascular Disease for Diabetic Patients with Machine Learning and Deep Learning Techniques
Accurate prediction of cardiovascular disease (CVD) risk is crucial for healthcare institutions. This study addresses the growing prevalence of diabetes and its strong link to heart disease by proposing an efficient CVD risk prediction model for diabetic patients using machine learning (ML) and hybrid deep learning (DL) approaches. The BRFSS dataset was preprocessed by removing duplicates, handling missing values, identifying categorical and numerical features, and applying Principal Component Analysis (PCA) for feature extraction. Several ML models, including Decision Trees (DT), Random Forest (RF), k-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost, and XGBoost, were implemented, with XGBoost achieving the highest accuracy of 0.9050. Various DL models, such as Artificial Neural Networks (ANN), Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU), as well as hybrid models combining CNN with LSTM, BiLSTM, and GRU, were also explored. Some of these models achieved perfect recall (1.00), with the LSTM model achieving the highest accuracy of 0.9050. Our research highlights the effectiveness of ML and DL models in predicting CVD risk among diabetic patients, automating and enhancing clinical decision-making. High accuracy and F1 scores demonstrate these models' potential to improve personalized risk management and preventive strategies.
comment: 24 pages with 6 table and 8 figures
☆ Learning Fourier shapes to probe the geometric world of deep neural networks
While both shape and texture are fundamental to visual recognition, research on deep neural networks (DNNs) has predominantly focused on the latter, leaving their geometric understanding poorly probed. Here, we show: first, that optimized shapes can act as potent semantic carriers, generating high-confidence classifications from inputs defined purely by their geometry; second, that they are high-fidelity interpretability tools that precisely isolate a model's salient regions; and third, that they constitute a new, generalizable adversarial paradigm capable of deceiving downstream visual tasks. This is achieved through an end-to-end differentiable framework that unifies a powerful Fourier series to parameterize arbitrary shapes, a winding number-based mapping to translate them into the pixel grid required by DNNs, and signal energy constraints that enhance optimization efficiency while ensuring physically plausible shapes. Our work provides a versatile framework for probing the geometric world of DNNs and opens new frontiers for challenging and understanding machine perception.
comment: 20 pages, 5 figures
☆ Structural Properties, Cycloid Trajectories and Non-Asymptotic Guarantees of EM Algorithm for Mixed Linear Regression
This work investigates the structural properties, cycloid trajectories, and non-asymptotic convergence guarantees of the Expectation-Maximization (EM) algorithm for two-component Mixed Linear Regression (2MLR) with unknown mixing weights and regression parameters. Recent studies have established global convergence for 2MLR with known balanced weights and super-linear convergence in noiseless and high signal-to-noise ratio (SNR) regimes. However, the theoretical behavior of EM in the fully unknown setting remains unclear, with its trajectory and convergence order not yet fully characterized. We derive explicit EM update expressions for 2MLR with unknown mixing weights and regression parameters across all SNR regimes and analyze their structural properties and cycloid trajectories. In the noiseless case, we prove that the trajectory of the regression parameters in EM iterations traces a cycloid by establishing a recurrence relation for the sub-optimality angle, while in high SNR regimes we quantify its discrepancy from the cycloid trajectory. The trajectory-based analysis reveals the order of convergence: linear when the EM estimate is nearly orthogonal to the ground truth, and quadratic when the angle between the estimate and ground truth is small at the population level. Our analysis establishes non-asymptotic guarantees by sharpening bounds on statistical errors between finite-sample and population EM updates, relating EM's statistical accuracy to the sub-optimality angle, and proving convergence with arbitrary initialization at the finite-sample level. This work provides a novel trajectory-based framework for analyzing EM in Mixed Linear Regression.
comment: Preprint of the paper submitted to IEEE Transactions on Information Theory
☆ Leak@$k$: Unlearning Does Not Make LLMs Forget Under Probabilistic Decoding
Unlearning in large language models (LLMs) is critical for regulatory compliance and for building ethical generative AI systems that avoid producing private, toxic, illegal, or copyrighted content. Despite rapid progress, in this work we show that \textit{almost all} existing unlearning methods fail to achieve true forgetting in practice. Specifically, while evaluations of these `unlearned' models under deterministic (greedy) decoding often suggest successful knowledge removal using standard benchmarks (as has been done in the literature), we show that sensitive information reliably resurfaces when models are sampled with standard probabilistic decoding. To rigorously capture this vulnerability, we introduce \texttt{leak@$k$}, a new meta-evaluation metric that quantifies the likelihood of forgotten knowledge reappearing when generating $k$ samples from the model under realistic decoding strategies. Using three widely adopted benchmarks, TOFU, MUSE, and WMDP, we conduct the first large-scale, systematic study of unlearning reliability using our newly defined \texttt{leak@$k$} metric. Our findings demonstrate that knowledge leakage persists across methods and tasks, underscoring that current state-of-the-art unlearning techniques provide only limited forgetting and highlighting the urgent need for more robust approaches to LLM unlearning.
☆ Machine Learning Algorithms in Statistical Modelling Bridging Theory and Application
It involves the completely novel ways of integrating ML algorithms with traditional statistical modelling that has changed the way we analyze data, do predictive analytics or make decisions in the fields of the data. In this paper, we study some ML and statistical model connections to understand ways in which some modern ML algorithms help 'enrich' conventional models; we demonstrate how new algorithms improve performance, scale, flexibility and robustness of the traditional models. It shows that the hybrid models are of great improvement in predictive accuracy, robustness, and interpretability
comment: 9 Pages, 4 Figures
☆ A Dual Perspective on Decision-Focused Learning: Scalable Training via Dual-Guided Surrogates
Many real-world decisions are made under uncertainty by solving optimization problems using predicted quantities. This predict-then-optimize paradigm has motivated decision-focused learning, which trains models with awareness of how the optimizer uses predictions, improving the performance of downstream decisions. Despite its promise, scaling is challenging: state-of-the-art methods either differentiate through a solver or rely on task-specific surrogates, both of which require frequent and expensive calls to an optimizer, often a combinatorial one. In this paper, we leverage dual variables from the downstream problem to shape learning and introduce Dual-Guided Loss (DGL), a simple, scalable objective that preserves decision alignment while reducing solver dependence. We construct DGL specifically for combinatorial selection problems with natural one-of-many constraints, such as matching, knapsack, and shortest path. Our approach (a) decouples optimization from gradient updates by solving the downstream problem only periodically; (b) between refreshes, trains on dual-adjusted targets using simple differentiable surrogate losses; and (c) as refreshes become less frequent, drives training cost toward standard supervised learning while retaining strong decision alignment. We prove that DGL has asymptotically diminishing decision regret, analyze runtime complexity, and show on two problem classes that DGL matches or exceeds state-of-the-art DFL methods while using far fewer solver calls and substantially less training time. Code is available at https://github.com/paularodr/Dual-Guided-Learning.
☆ Efficient Swap Multicalibration of Elicitable Properties
Multicalibration [HJKRR18] is an algorithmic fairness perspective that demands that the predictions of a predictor are correct conditional on themselves and membership in a collection of potentially overlapping subgroups of a population. The work of [NR23] established a surprising connection between multicalibration for an arbitrary property $\Gamma$ (e.g., mean or median) and property elicitation: a property $\Gamma$ can be multicalibrated if and only if it is elicitable, where elicitability is the notion that the true property value of a distribution can be obtained by solving a regression problem over the distribution. In the online setting, [NR23] proposed an inefficient algorithm that achieves $\sqrt T$ $\ell_2$-multicalibration error for a hypothesis class of group membership functions and an elicitable property $\Gamma$, after $T$ rounds of interaction between a forecaster and adversary. In this paper, we generalize multicalibration for an elicitable property $\Gamma$ from group membership functions to arbitrary bounded hypothesis classes and introduce a stronger notion -- swap multicalibration, following [GKR23]. Subsequently, we propose an oracle-efficient algorithm which, when given access to an online agnostic learner, achieves $T^{1/(r+1)}$ $\ell_r$-swap multicalibration error with high probability (for $r\ge2$) for a hypothesis class with bounded sequential Rademacher complexity and an elicitable property $\Gamma$. For the special case of $r=2$, this implies an oracle-efficient algorithm that achieves $T^{1/3}$ $\ell_2$-swap multicalibration error, which significantly improves on the previously established bounds for the problem [NR23, GMS25, LSS25a], and completely resolves an open question raised in [GJRR24] on the possibility of an oracle-efficient algorithm that achieves $\sqrt{T}$ $\ell_2$-mean multicalibration error by answering it in a strongly affirmative sense.
☆ Multi-Agent Craftax: Benchmarking Open-Ended Multi-Agent Reinforcement Learning at the Hyperscale
Progress in multi-agent reinforcement learning (MARL) requires challenging benchmarks that assess the limits of current methods. However, existing benchmarks often target narrow short-horizon challenges that do not adequately stress the long-term dependencies and generalization capabilities inherent in many multi-agent systems. To address this, we first present \textit{Craftax-MA}: an extension of the popular open-ended RL environment, Craftax, that supports multiple agents and evaluates a wide range of general abilities within a single environment. Written in JAX, \textit{Craftax-MA} is exceptionally fast with a training run using 250 million environment interactions completing in under an hour. To provide a more compelling challenge for MARL, we also present \textit{Craftax-Coop}, an extension introducing heterogeneous agents, trading and more mechanics that require complex cooperation among agents for success. We provide analysis demonstrating that existing algorithms struggle with key challenges in this benchmark, including long-horizon credit assignment, exploration and cooperation, and argue for its potential to drive long-term research in MARL.
☆ You Need Reasoning to Learn Reasoning: The Limitations of Label-Free RL in Weak Base Models NeurIPS 2025
Recent advances in large language models have demonstrated the promise of unsupervised reinforcement learning (RL) methods for enhancing reasoning capabilities without external supervision. However, the generalizability of these label-free RL approaches to smaller base models with limited reasoning capabilities remains unexplored. In this work, we systematically investigate the performance of label-free RL methods across different model sizes and reasoning strengths, from 0.5B to 7B parameters. Our empirical analysis reveals critical limitations: label-free RL is highly dependent on the base model's pre-existing reasoning capability, with performance often degrading below baseline levels for weaker models. We find that smaller models fail to generate sufficiently long or diverse chain-of-thought reasoning to enable effective self-reflection, and that training data difficulty plays a crucial role in determining success. To address these challenges, we propose a simple yet effective method for label-free RL that utilizes curriculum learning to progressively introduce harder problems during training and mask no-majority rollouts during training. Additionally, we introduce a data curation pipeline to generate samples with predefined difficulty. Our approach demonstrates consistent improvements across all model sizes and reasoning capabilities, providing a path toward more robust unsupervised RL that can bootstrap reasoning abilities in resource-constrained models. We make our code available at https://github.com/BorealisAI/CuMa
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI
♻ ☆ Characterizing the Training Dynamics of Private Fine-tuning with Langevin diffusion
We show that differentially private full fine-tuning (DP-FFT) can distort pre-trained backbone features based on both theoretical and empirical results. We identify the cause of the distortion as the misalignment between the pre-trained backbone and the randomly initialized linear head. We prove that a sequential fine-tuning strategy can mitigate the feature distortion: first-linear-probing-then-fine-tuning (DP-LP-FFT). A new approximation scheme allows us to derive approximate upper and lower bounds on the training loss of DP-LP and DP-FFT, in a simple but canonical setting of 2-layer neural networks with ReLU activation. Experiments on real-world datasets and architectures are consistent with our theoretical insights. We also derive new upper bounds for 2-layer linear networks without the approximation. Moreover, our theory suggests a trade-off of privacy budget allocation in multi-phase fine-tuning methods like DP-LP-FFT.
FedFACT: A Provable Framework for Controllable Group-Fairness Calibration in Federated Learning NeurIPS 2025
With the emerging application of Federated Learning (FL) in decision-making scenarios, it is imperative to regulate model fairness to prevent disparities across sensitive groups (e.g., female, male). Current research predominantly focuses on two concepts of group fairness within FL: Global Fairness (overall model disparity across all clients) and Local Fairness (the disparity within each client). However, the non-decomposable, non-differentiable nature of fairness criteria poses two fundamental, unresolved challenges for fair FL: (i) Harmonizing global and local fairness, especially in multi-class setting; (ii) Enabling a controllable, optimal accuracy-fairness trade-off. To tackle these challenges, we propose a novel controllable federated group-fairness calibration framework, named FedFACT. FedFACT identifies the Bayes-optimal classifiers under both global and local fairness constraints, yielding models with minimal performance decline while guaranteeing fairness. Building on the characterization of the optimal fair classifiers, we reformulate fair federated learning as a personalized cost-sensitive learning problem for in-processing and a bi-level optimization for post-processing. Theoretically, we provide convergence and generalization guarantees for FedFACT to approach the near-optimal accuracy under given fairness levels. Extensive experiments on multiple datasets across various data heterogeneity demonstrate that FedFACT consistently outperforms baselines in balancing accuracy and global-local fairness.
comment: Accepted by NeurIPS 2025
♻ ☆ Tactical Decision Making for Autonomous Trucks by Deep Reinforcement Learning with Total Cost of Operation Based Reward
We develop a deep reinforcement learning framework for tactical decision making in an autonomous truck, specifically for Adaptive Cruise Control (ACC) and lane change maneuvers in a highway scenario. Our results demonstrate that it is beneficial to separate high-level decision-making processes and low-level control actions between the reinforcement learning agent and the low-level controllers based on physical models. In the following, we study optimizing the performance with a realistic and multi-objective reward function based on Total Cost of Operation (TCOP) of the truck using different approaches; by adding weights to reward components, by normalizing the reward components and by using curriculum learning techniques.
comment: Paper is accepted for publication in Artificial Intelligence Review
♻ ☆ Advanced Hybrid Transformer LSTM Technique with Attention and TS Mixer for Drilling Rate of Penetration Prediction
Rate of Penetration (ROP) prediction is critical for drilling optimization yet remains challenging due to the nonlinear, dynamic, and heterogeneous characteristics of drilling data. Conventional empirical, physics-based, and standard machine learning models rely on oversimplified assumptions or intensive feature engineering, constraining their capacity to model long-term dependencies and intricate feature interactions. To address these issues, this study presents a new deep learning Hybrid LSTM-Trans-Mixer-Att framework that first processes input data through a customized Long Short-Term Memory (LSTM) network to capture multi-scale temporal dependencies aligned with drilling cycles. Subsequently, an Enhanced Transformer encoder with drilling-specific positional encodings and real-time optimization refines the features. Concurrently, a parallel Time-Series Mixer (TS-Mixer) block introduced facilitates efficient cross-feature interaction modeling of static and categorical parameters, including lithological indices and mud properties. The feature representations extracted from the Enhanced Transformer and TS-Mixer modules are integrated through a dedicated fusion layer. Finally, an adaptive attention mechanism then dynamically assigns contextual weights to salient features, enhancing discriminative representation learning and enabling high-fidelity ROP prediction. The proposed framework combines sequential memory, static feature interactions, global context learning, and dynamic feature weighting, providing a comprehensive solution for the heterogeneous and event-driven nature of drilling dynamics. Experimental validation on real-world drilling datasets demonstrates superior performance, achieving an Rsquare of 0.9991 and a MAPE of 1.447%, significantly outperforming existing baseline and hybrid models.
comment: 31 Pages, 16 Figures, 9 Tables
♻ ☆ Orion-MSP: Multi-Scale Sparse Attention for Tabular In-Context Learning
Tabular data remain the predominant format for real-world applications. Yet, developing effective neural models for tabular data remains challenging due to heterogeneous feature types and complex interactions occurring at multiple scales. Recent advances in tabular in-context learning (ICL), such as TabPFN and TabICL, have achieved state-of-the-art performance comparable to gradient-boosted trees (GBTs) without task-specific fine-tuning. However, current architectures exhibit key limitations: (1) single-scale feature processing that overlooks hierarchical dependencies, (2) dense attention with quadratic scaling in table width, and (3) strictly sequential component processing that prevents iterative representation refinement and cross-component communication. To address these challenges, we introduce Orion-MSP, a tabular ICL architecture featuring three key innovations: (1) multi-scale processing to capture hierarchical feature interactions; (2) block-sparse attention combining windowed, global, and random patterns for scalable efficiency and long-range connectivity; and (3) a Perceiver-style memory enabling safe bidirectional information flow across components. Across diverse benchmarks, Orion-MSP matches or surpasses state-of-the-art performance while scaling effectively to high-dimensional tables, establishing a new standard for efficient tabular in-context learning. The model is publicly available at https://github.com/Lexsi-Labs/Orion-MSP .
♻ ☆ Ethics-Aware Safe Reinforcement Learning for Rare-Event Risk Control in Interactive Urban Driving
Autonomous vehicles hold great promise for reducing traffic fatalities and improving transportation efficiency, yet their widespread adoption hinges on embedding credible and transparent ethical reasoning into routine and emergency maneuvers, particularly to protect vulnerable road users (VRUs) such as pedestrians and cyclists. Here, we present a hierarchical Safe Reinforcement Learning (Safe RL) framework that augments standard driving objectives with ethics-aware cost signals. At the decision level, a Safe RL agent is trained using a composite ethical risk cost, combining collision probability and harm severity, to generate high-level motion targets. A dynamic, risk-sensitive Prioritized Experience Replay mechanism amplifies learning from rare but critical, high-risk events. At the execution level, polynomial path planning coupled with Proportional-Integral-Derivative (PID) and Stanley controllers translates these targets into smooth, feasible trajectories, ensuring both accuracy and comfort. We train and validate our approach on closed-loop simulation environments derived from large-scale, real-world traffic datasets encompassing diverse vehicles, cyclists, and pedestrians, and demonstrate that it outperforms baseline methods in reducing risk to others while maintaining ego performance and comfort. This work provides a reproducible benchmark for Safe RL with explicitly ethics-aware objectives in human-mixed traffic scenarios. Our results highlight the potential of combining formal control theory and data-driven learning to advance ethically accountable autonomy that explicitly protects those most at risk in urban traffic environments. Across two interactive benchmarks and five random seeds, our policy decreases conflict frequency by 25-45% compared to matched task successes while maintaining comfort metrics within 5%.
♻ ☆ Linear combinations of latents in generative models: subspaces and beyond ICLR
Sampling from generative models has become a crucial tool for applications like data synthesis and augmentation. Diffusion, Flow Matching and Continuous Normalising Flows have shown effectiveness across various modalities, and rely on latent variables for generation. For experimental design or creative applications that require more control over the generation process, it has become common to manipulate the latent variable directly. However, existing approaches for performing such manipulations (e.g. interpolation or forming low-dimensional representations) only work well in special cases or are network or data-modality specific. We propose Latent Optimal Linear combinations (LOL) as a general-purpose method to form linear combinations of latent variables that adhere to the assumptions of the generative model. As LOL is easy to implement and naturally addresses the broader task of forming any linear combinations, e.g. the construction of subspaces of the latent space, LOL dramatically simplifies the creation of expressive low-dimensional representations of high-dimensional objects.
comment: Published at International Conference on Learning Representations (ICLR) 2025
♻ ☆ Flashlight: PyTorch Compiler Extensions to Accelerate Attention Variants
Attention is a fundamental building block of large language models (LLMs), so there have been many efforts to implement it efficiently. For example, FlashAttention leverages tiling and kernel fusion to optimize attention. Recently, a number of variants of attention have been introduced to enhance model quality or efficiency. Supporting them efficiently remains difficult since they usually require specialized kernels or hand-tuned implementations. FlexAttention recently addressed part of this gap by using static programming templates to support FlashAttention-like kernels for a subset of attention variants. In this paper, we introduce Flashlight, a compiler-native framework within the PyTorch ecosystem that automatically generates fused, FlashAttention-style kernels for arbitrary attention-based programs, without relying on static templates or predefined kernel specializations. Flashlight leverages PyTorch's compilation workflow to fuse and tile attention computations transparently, enabling efficient execution for diverse attention patterns. Not only does it support all variants expressible in the FlexAttention model but it also handles more general, data-dependent attention formulations that are beyond the capabilities of FlexAttention. Our results show that Flashlight produces kernels with competitive or superior performance to FlexAttention, while offering the flexibility of native PyTorch code, enabling developers to rapidly explore new attention models without sacrificing performance.
♻ ☆ In-and-Out: Algorithmic Diffusion for Sampling Convex Bodies NeurIPS 2024
We present a new random walk for uniformly sampling high-dimensional convex bodies. It achieves state-of-the-art runtime complexity with stronger guarantees on the output than previously known, namely in R\'enyi divergence (which implies TV, $\mathcal{W}_2$, KL, $\chi^2$). The proof departs from known approaches for polytime algorithms for the problem -- we utilize a stochastic diffusion perspective to show contraction to the target distribution with the rate of convergence determined by functional isoperimetric constants of the target distribution.
comment: 30 pages. Journal-submission version of NeurIPS 2024 (spotlight)
♻ ☆ Large language models as uncertainty-calibrated optimizers for experimental discovery
Scientific discovery increasingly depends on efficient experimental optimization to navigate vast design spaces under time and resource constraints. Traditional approaches often require extensive domain expertise and feature engineering. While large language models, with their vast scientific knowledge, circumvent the feature engineering limitations, they lack the calibrated uncertainty estimates required for high-stakes decision making. Hence, current optimization methods force a choice between domain knowledge and reliability, with no principled approach that affords both. In this work, we show that training language models through the uncertainty-aware objectives of traditional optimization methods enables their use as reliable optimizers guided by natural language. By teaching LLMs from experimental outcomes under uncertainty, we transform their overconfidence from a fundamental limitation into a precise calibration mechanism. Applied to Buchwald-Hartwig reactions, a cornerstone of pharmaceutical synthesis, our method nearly doubles the discovery rate of high-yielding reaction conditions, from 24% to 43% in 50 experimental iterations starting from 10 unsuccessful conditions. Across 19 diverse optimization problems spanning organic synthesis, materials science and catalysis, process chemistry, and molecular design, our approach ranks first on average, establishing a new paradigm for reliable, uncertainty-guided optimization with LLMs. Our approach can accelerate discovery by lowering the barrier to using powerful optimization methods, replacing the need for domain-specific feature engineering with more accessible natural language interfaces. These findings highlight that ensuring reliability through principled uncertainty quantification is critical for realizing the full potential of AI-guided experimentation.
♻ ☆ Comparative Study on Noise-Augmented Training and its Effect on Adversarial Robustness in ASR Systems
In this study, we investigate whether noise-augmented training can concurrently improve adversarial robustness in automatic speech recognition (ASR) systems. We conduct a comparative analysis of the adversarial robustness of four different ASR architectures, each trained under three different augmentation conditions: (1) background noise, speed variations, and reverberations; (2) speed variations only; (3) no data augmentation. We then evaluate the robustness of all resulting models against attacks with white-box or black-box adversarial examples. Our results demonstrate that noise augmentation not only enhances model performance on noisy speech but also improves the model's robustness to adversarial attacks.
♻ ☆ LimiX: Unleashing Structured-Data Modeling Capability for Generalist Intelligence
We argue that progress toward general intelligence requires complementary foundation models grounded in language, the physical world, and structured data. This report presents LimiX-16M and LimiX-2M, two instantiations of our large structured-data models (LDMs). Both models treat structured data as a joint distribution over variables and missingness, thus capable of addressing a wide range of tabular tasks through query-based conditional prediction via a single model. They are pretrained using masked joint-distribution modeling with an episodic, context-conditional objective, supporting rapid, training-free adaptation at inference. We evaluate LimiX models across 11 large structured-data benchmarks with broad regimes of sample size, feature dimensionality, class number, categorical-to-numerical feature ratio, missingness, and sample-to-feature ratios. LimiX-16M consistently surpasses strong baselines, as shown in Figure 1 and Figure 2. The superiority holds across a wide range of tasks, such as classification, regression, missing value imputation, and data generation, often by substantial margins, while avoiding task-specific architectures or bespoke training per task. Notably, LimiX-2M delivers strong results under tight compute and memory budgets. We also present the first scaling law study for LDMs, revealing how data and model scaling jointly influence downstream performance and offering quantitative guidance for tabular foundation modeling. All LimiX models are publicly accessible under Apache 2.0.
comment: 61 pages
♻ ☆ Inference-Time Hyper-Scaling with KV Cache Compression NeurIPS 2025
Inference-time scaling trades efficiency for increased reasoning accuracy by generating longer or more parallel sequences. However, in Transformer LLMs, generation cost is bottlenecked by the size of the key-value (KV) cache, rather than the number of generated tokens. Hence, we explore inference-time hyper-scaling: by compressing the KV cache, we can generate more tokens within the same compute budget and further improve the accuracy of scaled inference. The success of this approach, however, hinges on the ability of compression methods to preserve accuracy even at high compression ratios. To make hyper-scaling practical, we introduce Dynamic Memory Sparsification (DMS), a novel method for sparsifying KV caches that only requires 1K training steps to achieve 8$\times$ compression, while maintaining better accuracy than training-free sparse attention. Instead of prematurely discarding cached tokens, DMS delays token eviction, implicitly merging representations and preserving critical information. We demonstrate the effectiveness of inference-time hyper-scaling with DMS on multiple families of LLMs, showing that it boosts accuracy for comparable inference latency and memory load. For instance, we enhance Qwen-R1 32B by 12.0 points on AIME 24, 8.6 on GPQA, and 9.7 on LiveCodeBench on average for an equivalent number of memory reads.
comment: Accepted to NeurIPS 2025
♻ ☆ GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models
The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.
comment: 28 papges
♻ ☆ Stochastic Approximation with Unbounded Markovian Noise: A General-Purpose Theorem
Motivated by engineering applications such as resource allocation in networks and inventory systems, we consider average-reward Reinforcement Learning with unbounded state space and reward function. Recent works studied this problem in the actor-critic framework and established finite sample bounds assuming access to a critic with certain error guarantees. We complement their work by studying Temporal Difference (TD) learning with linear function approximation and establishing finite-time bounds with the optimal $\mathcal{O}\left(1/\epsilon^2\right)$ sample complexity. These results are obtained using the following general-purpose theorem for non-linear Stochastic Approximation (SA). Suppose that one constructs a Lyapunov function for a non-linear SA with certain drift condition. Then, our theorem establishes finite-time bounds when this SA is driven by unbounded Markovian noise under suitable conditions. It serves as a black box tool to generalize sample guarantees on SA from i.i.d. or martingale difference case to potentially unbounded Markovian noise. The generality and the mild assumption of the setup enables broad applicability of our theorem. We illustrate its power by studying two more systems: (i) We improve upon the finite-time bounds of $Q$-learning by tightening the error bounds and also allowing for a larger class of behavior policies. (ii) We establish the first ever finite-time bounds for distributed stochastic optimization of high-dimensional smooth strongly convex function using cyclic block coordinate descent.
♻ ☆ XBreaking: Understanding how LLMs security alignment can be broken
Large Language Models are fundamental actors in the modern IT landscape dominated by AI solutions. However, security threats associated with them might prevent their reliable adoption in critical application scenarios such as government organizations and medical institutions. For this reason, commercial LLMs typically undergo a sophisticated censoring mechanism to eliminate any harmful output they could possibly produce. These mechanisms maintain the integrity of LLM alignment by guaranteeing that the models respond safely and ethically. In response to this, attacks on LLMs are a significant threat to such protections, and many previous approaches have already demonstrated their effectiveness across diverse domains. Existing LLM attacks mostly adopt a generate-and-test strategy to craft malicious input. To improve the comprehension of censoring mechanisms and design a targeted attack, we propose an Explainable-AI solution that comparatively analyzes the behavior of censored and uncensored models to derive unique exploitable alignment patterns. Then, we propose XBreaking, a novel approach that exploits these unique patterns to break the security and alignment constraints of LLMs by targeted noise injection. Our thorough experimental campaign returns important insights about the censoring mechanisms and demonstrates the effectiveness and performance of our approach.
♻ ☆ Efficient and Unbiased Sampling from Boltzmann Distributions via Variance-Tuned Diffusion Models
Score-based diffusion models (SBDMs) are powerful amortized samplers for Boltzmann distributions; however, imperfect score estimates bias downstream Monte Carlo estimates. Classical importance sampling (IS) can correct this bias, but computing exact likelihoods requires solving the probability-flow ordinary differential equation (PF-ODE), a procedure that is prohibitively costly and scales poorly with dimensionality. We introduce Variance-Tuned Diffusion Importance Sampling (VT-DIS), a lightweight post-training method that adapts the per-step noise covariance of a pretrained SBDM by minimizing the $\alpha$-divergence ($\alpha=2$) between its forward diffusion and reverse denoising trajectories. VT-DIS assigns a single trajectory-wise importance weight to the joint forward-reverse process, yielding unbiased expectation estimates at test time with negligible overhead compared to standard sampling. On the DW-4, LJ-13, and alanine-dipeptide benchmarks, VT-DIS achieves effective sample sizes of approximately 80 %, 35 %, and 3.5 %, respectively, while using only a fraction of the computational budget required by vanilla diffusion + IS or PF-ODE-based IS.
♻ ☆ What Matters in Data for DPO?
Direct Preference Optimization (DPO) has emerged as a simple and effective approach for aligning large language models (LLMs) with human preferences, bypassing the need for a learned reward model. Despite its growing adoption, a fundamental question remains open: what characteristics of preference data are most critical for DPO performance? In this work, we provide a systematic study of how preference data distribution influences DPO, from both theoretical and empirical perspectives. We show that the quality of chosen responses plays a dominant role in optimizing the DPO objective, while the quality of rejected responses may have relatively limited impact. Our theoretical analysis characterizes the optimal response distribution under DPO and reveals how contrastiveness between responses helps primarily by improving the chosen samples. We further study an online DPO setting and show it effectively reduces to supervised fine-tuning on the chosen responses. Extensive experiments across diverse tasks confirm our findings: improving the quality of chosen responses consistently boosts performance regardless of the quality of the rejected responses. We also investigate the benefit of mixing the on-policy data. Our results interpret the mechanism behind some widely adopted strategies and offer practical insights for constructing high-impact preference datasets for LLM alignment.
♻ ☆ LoKO: Low-Rank Kalman Optimizer for Online Fine-Tuning of Large Models
Training large models with millions or even billions of parameters from scratch incurs substantial computational costs. Parameter Efficient Fine-Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA), address this challenge by adapting only a reduced number of parameters to specific tasks with gradient-based optimizers. In this paper, we cast PEFT as an optimal filtering/state estimation problem and present Low-Rank Kalman Optimizer (LoKO) to estimate the optimal trainable parameters in an online manner. We leverage the low-rank decomposition in LoRA to significantly reduce matrix sizes in Kalman iterations and further capitalize on a diagonal approximation of the covariance matrix to effectively decrease computational complexity from quadratic to linear in the number of trainable parameters. Moreover, we discovered that the initialization of the covariance matrix within the Kalman algorithm and the accurate estimation of the observation noise covariance are the keys in this formulation, and we propose robust approaches that work well across a vast range of well-established computer vision and language models. Our results show that LoKO converges with fewer iterations and yields better performance models compared to commonly used optimizers with LoRA in both image classifications and language tasks. Our study opens up the possibility of leveraging the Kalman filter as an effective optimizer for the online fine-tuning of large models.
♻ ☆ To Trust or Not to Trust: On Calibration in ML-based Resource Allocation for Wireless Networks
In next-generation communications and networks, machine learning (ML) models are expected to deliver not only accurate predictions but also well-calibrated confidence scores that reflect the true likelihood of correct decisions. This paper studies the calibration performance of an ML-based outage predictor within a single-user, multi-resource allocation framework. We first establish key theoretical properties of this system's outage probability (OP) under perfect calibration. Importantly, we show that as the number of resources grows, the OP of a perfectly calibrated predictor approaches the expected output conditioned on it being below the classification threshold. In contrast, when only one resource is available, the system's OP equals the model's overall expected output. We then derive the OP conditions for a perfectly calibrated predictor. These findings guide the choice of the classification threshold to achieve a desired OP, helping system designers meet specific reliability requirements. We also demonstrate that post-processing calibration cannot improve the system's minimum achievable OP, as it does not introduce new information about future channel states. Additionally, we show that well-calibrated models are part of a broader class of predictors that necessarily improve OP. In particular, we establish a monotonicity condition that the accuracy-confidence function must satisfy for such improvement to occur. To demonstrate these theoretical properties, we conduct a rigorous simulation-based analysis using post-processing calibration techniques: Platt scaling and isotonic regression. As part of this framework, the predictor is trained using an outage loss function specifically designed for this system. Furthermore, this analysis is performed on Rayleigh fading channels with temporal correlation captured by Clarke's 2D model, which accounts for receiver mobility.
♻ ☆ ExGra-Med: Extended Context Graph Alignment for Medical Vision-Language Models NeurIPS 2025
State-of-the-art medical multi-modal LLMs (med-MLLMs), such as LLaVA-Med and BioMedGPT, primarily depend on scaling model size and data volume, with training driven largely by autoregressive objectives. However, we reveal that this approach can lead to weak vision-language alignment, making these models overly dependent on costly instruction-following data. To address this, we introduce ExGra-Med, a novel multi-graph alignment framework that jointly aligns images, instruction responses, and extended captions in the latent space, advancing semantic grounding and cross-modal coherence. To scale to large LLMs (e.g., LLaMA-7B), we develop an efficient end-to-end training scheme using black-box gradient estimation, enabling fast and scalable optimization. Empirically, ExGra-Med matches LLaVA-Med's performance using just 10% of the pre-training data, achieving a 20.13% gain on VQA-RAD and approaching full-data performance. It also outperforms strong baselines like BioMedGPT and RadFM on visual chatbot and zero-shot classification tasks, demonstrating its promise for efficient, high-quality vision-language integration in medical AI.
comment: Accepted at NeurIPS 2025
♻ ☆ Know What You Don't Know: Uncertainty Calibration of Process Reward Models NeurIPS 2025
Process reward models (PRMs) play a central role in guiding inference-time scaling algorithms for large language models (LLMs). However, we observe that even state-of-the-art PRMs can be poorly calibrated. Specifically, they tend to overestimate the success probability that a partial reasoning step will lead to a correct final answer, particularly when smaller LLMs are used to complete the reasoning trajectory. To address this, we present a calibration approach -- performed via quantile regression -- that adjusts PRM outputs to better align with true success probabilities. Leveraging these calibrated success estimates and their associated confidence bounds, we introduce an \emph{instance-adaptive scaling} (IAS) framework that dynamically adjusts the compute budget based on the estimated likelihood that a partial reasoning trajectory will yield a correct final answer. Unlike conventional methods that allocate a fixed number of reasoning trajectories per query, this approach adapts to each instance and reasoning step when using our calibrated PRMs. Experiments on mathematical reasoning benchmarks show that (i) our PRM calibration method achieves small calibration error, outperforming the baseline methods, (ii) calibration is crucial for enabling effective IAS, and (iii) the proposed IAS strategy reduces inference costs while maintaining final answer accuracy, utilizing less compute on more confident problems as desired.
comment: Accepted at NeurIPS 2025
♻ ☆ Bidirectional Time-Frequency Pyramid Network for Enhanced Robust EEG Classification
Existing EEG recognition models suffer from poor cross-paradigm generalization due to dataset-specific constraints and individual variability. To overcome these limitations, we propose BITE (Bidirectional Time-Freq Pyramid Network), an end-to-end unified architecture featuring robust multistream synergy, pyramid time-frequency attention (PTFA), and bidirectional adaptive convolutions. The framework uniquely integrates: 1) Aligned time-frequency streams maintaining temporal synchronization with STFT for bidirectional modeling, 2) PTFA-based multi-scale feature enhancement amplifying critical neural patterns, 3) BiTCN with learnable fusion capturing forward/backward neural dynamics. Demonstrating enhanced robustness, BITE achieves state-of-the-art performance across four divergent paradigms (BCICIV-2A/2B, HGD, SD-SSVEP), excelling in both within-subject accuracy and cross-subject generalization. As a unified architecture, it combines robust performance across both MI and SSVEP tasks with exceptional computational efficiency. Our work validates that paradigm-aligned spectral-temporal processing is essential for reliable BCI systems. Just as its name suggests, BITE "takes a bite out of EEG." The source code is available at https://github.com/cindy-hong/BiteEEG.
comment: Accepted to IEEE BIBM 2025
♻ ☆ Parsimonious Gaussian mixture models with piecewise-constant eigenvalue profiles
Gaussian mixture models (GMMs) are ubiquitous in statistical learning, particularly for unsupervised problems. While full GMMs suffer from the overparameterization of their covariance matrices in high-dimensional spaces, spherical GMMs (with isotropic covariance matrices) certainly lack flexibility to fit certain anisotropic distributions. Connecting these two extremes, we introduce a new family of parsimonious GMMs with piecewise-constant covariance eigenvalue profiles. These extend several low-rank models like the celebrated mixtures of probabilistic principal component analyzers (MPPCA), by enabling any possible sequence of eigenvalue multiplicities. If the latter are prespecified, then we can naturally derive an expectation-maximization (EM) algorithm to learn the mixture parameters. Otherwise, to address the notoriously-challenging issue of jointly learning the mixture parameters and hyperparameters, we propose a componentwise penalized EM algorithm, whose monotonicity is proven. We show the superior likelihood-parsimony tradeoffs achieved by our models on a variety of unsupervised experiments: density fitting, clustering and single-image denoising.
♻ ☆ Cognitive Edge Computing: A Comprehensive Survey on Optimizing Large Models and AI Agents for Pervasive Deployment
This article surveys Cognitive Edge Computing as a practical and methodical pathway for deploying reasoning-capable Large Language Models (LLMs) and autonomous AI agents on resource-constrained devices at the network edge. We present a unified, cognition-preserving framework spanning: (1) model optimization (quantization, sparsity, low-rank adaptation, distillation) aimed at retaining multi-step reasoning under tight memory/compute budgets; (2) system architecture (on-device inference, elastic offloading, cloud-edge collaboration) that trades off latency, energy, privacy, and capacity; and (3) adaptive intelligence (context compression, dynamic routing, federated personalization) that tailors computation to task difficulty and device constraints. We synthesize advances in efficient Transformer design, multimodal integration, hardware-aware compilation, privacy-preserving learning, and agentic tool use, and map them to edge-specific operating envelopes. We further outline a standardized evaluation protocol covering latency, throughput, energy per token, accuracy, robustness, privacy, and sustainability, with explicit measurement assumptions to enhance comparability. Remaining challenges include modality-aware reasoning benchmarks, transparent and reproducible energy reporting, edge-oriented safety/alignment evaluation, and multi-agent testbeds. We conclude with practitioner guidelines for cross-layer co-design of algorithms, runtime, and hardware to deliver reliable, efficient, and privacy-preserving cognitive capabilities on edge devices.
♻ ☆ Two-stage hybrid models for enhancing forecasting accuracy on heterogeneous time series
A time series forecasting model--which is typically built on a single time series--is known as a local time series model (tsLM). In contrast, a forecasting model trained on multiple time series is referred to as a global time series model (tsGM). tsGMs can enhance forecasting accuracy and improve generalisation by learning cross-series information. As such, developing tsGMs has become a prominent research focus within the time series forecasting community. However, the benefits of tsGMs may not always be realised if the given set of time series is heterogeneous. While increasing model complexity can help tsGMs adapt to such a set of data, it can also increase the risk of overfitting and forecasting error. Additionally, the definition of homogeneity remains ambiguous in the literature. To address these challenges, this paper explores how to define data heterogeneity and proposes a two-stage modelling framework: At stage one, a tsGM is learnt to identify homogeneous patterns; and at stage two, tsLMs (e.g., ARIMA) or sub-tsGMs tailored to different groups are learnt to capture the heterogeneity. Numerical experiments on four open datasets demonstrate that the proposed approach significantly outperforms six state-of-the-art models. These results highlight its effectiveness in unlocking the full potential of global forecasting models for heterogeneous datasets.
comment: 8 pages, 5 figures
♻ ☆ Bilinear relational structure fixes reversal curse and enables consistent model editing
The reversal curse -- a language model's (LM) inability to infer an unseen fact ``B is A'' from a learned fact ``A is B'' -- is widely considered a fundamental limitation. We show that this is not an inherent failure but an artifact of how models encode knowledge. By training LMs from scratch on a synthetic dataset of relational knowledge graphs, we demonstrate that bilinear relational structure emerges in their hidden representations. This structure substantially alleviates the reversal curse, enabling LMs to infer unseen reverse facts. Crucially, we also find that this bilinear structure plays a key role in consistent model editing. When a fact is updated in a LM with this structure, the edit correctly propagates to its reverse and other logically dependent facts. In contrast, models lacking this representation not only suffer from the reversal curse but also fail to generalize edits, further introducing logical inconsistencies. Our results establish that training on a relational knowledge dataset induces the emergence of bilinear internal representations, which in turn enable LMs to behave in a logically consistent manner after editing. This implies that the success of model editing depends critically not just on editing algorithms but on the underlying representational geometry of the knowledge being modified.
comment: 9 pages
♻ ☆ Estimating Orbital Parameters of Direct Imaging Exoplanet Using Neural Network
In this work, we propose a new flow-matching Markov chain Monte Carlo (FM-MCMC) algorithm for estimating the orbital parameters of exoplanetary systems, especially for those only one exoplanet is involved. Compared to traditional methods that rely on random sampling within the Bayesian framework, our approach first leverages flow matching posterior estimation (FMPE) to efficiently constrain the prior range of physical parameters, and then employs MCMC to accurately infer the posterior distribution. For example, in the orbital parameter inference of beta Pictoris b, our model achieved a substantial speed-up while maintaining comparable accuracy-running 77.8 times faster than Parallel Tempered MCMC (PTMCMC) and 365.4 times faster than nested sampling. Moreover, our FM-MCMC method also attained the highest average log-likelihood among all approaches, demonstrating its superior sampling efficiency and accuracy. This highlights the scalability and efficiency of our approach, making it well-suited for processing the massive datasets expected from future exoplanet surveys. Beyond astrophysics, our methodology establishes a versatile paradigm for synergizing deep generative models with traditional sampling, which can be adopted to tackle complex inference problems in other fields, such as cosmology, biomedical imaging, and particle physics.
♻ ☆ Amortized Latent Steering: Low-Cost Alternative to Test-Time Optimization
Test-time optimization remains impractical at scale due to prohibitive inference costs--techniques like iterative refinement and multi-step verification can require $10-100\times$ more compute per query than standard decoding. Latent space test-time optimization methods like LatentSeek offer a more direct approach by steering hidden representations, but still demand expensive per-query optimization loops with multiple backward passes. We propose Amortized Latent Steering (ALS), which collapses this iterative optimization into a single offline-computed vector applied at constant cost during inference. ALS computes the mean difference between hidden states from successful versus unsuccessful generations, then uses this direction to calibrate the model's hidden representations: when decoding drifts away from the success manifold, ALS nudges activations back toward it. Across GSM8K and MATH-500 benchmarks, ALS achieves $2-5\times$ speedup over iterative methods while matching or surpassing greedy Chain-of-Thought (CoT) and Self-Consistency baselines, yielding up to 101% improvement in efficiency--accuracy trade-off. These results show that much of latent optimization's benefit can be captured offline, making sophisticated reasoning techniques viable for production deployment. Code is available at https://github.com/negbuna/ALS.
♻ ☆ P1-KAN: an effective Kolmogorov-Arnold network with application to hydraulic valley optimization
A new Kolmogorov-Arnold network (KAN) is proposed to approximate potentially irregular functions in high dimensions. We provide error bounds for this approximation, assuming that the Kolmogorov-Arnold expansion functions are sufficiently smooth. When the function is only continuous, we also provide universal approximation theorems. We show that it outperforms multilayer perceptrons in terms of accuracy and convergence speed. We also compare it with several proposed KAN networks: it outperforms all networks for irregular functions and achieves similar accuracy to the original spline-based KAN network for smooth functions. Finally, we compare some of the KAN networks in optimizing a French hydraulic valley.
Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/
♻ ☆ Performative Validity of Recourse Explanations NeurIPS 2025
When applicants get rejected by an algorithmic decision system, recourse explanations provide actionable suggestions for how to change their input features to get a positive evaluation. A crucial yet overlooked phenomenon is that recourse explanations are performative: When many applicants act according to their recommendations, their collective behavior may change statistical regularities in the data and, once the model is refitted, also the decision boundary. Consequently, the recourse algorithm may render its own recommendations invalid, such that applicants who make the effort of implementing their recommendations may be rejected again when they reapply. In this work, we formally characterize the conditions under which recourse explanations remain valid under performativity. A key finding is that recourse actions may become invalid if they are influenced by or if they intervene on non-causal variables. Based on our analysis, we caution against the use of standard counterfactual explanations and causal recourse methods, and instead advocate for recourse methods that recommend actions exclusively on causal variables.
comment: published at NeurIPS 2025
♻ ☆ Rethinking Approximate Gaussian Inference in Classification
In classification tasks, softmax functions are ubiquitously used as output activations to produce predictive probabilities. Such outputs only capture aleatoric uncertainty. To capture epistemic uncertainty, approximate Gaussian inference methods have been proposed. We develop a common formalism to describe such methods, which we view as outputting Gaussian distributions over the logit space. Predictives are then obtained as the expectations of the Gaussian distributions pushed forward through the softmax. However, such softmax Gaussian integrals cannot be solved analytically, and Monte Carlo (MC) approximations can be costly and noisy. We propose to replace the softmax activation by element-wise normCDF or sigmoid, which allows for the accurate sampling-free approximation of predictives. This also enables the approximation of the Gaussian pushforwards by Dirichlet distributions with moment matching. This approach entirely eliminates the runtime and memory overhead associated with MC sampling. We evaluate it combined with several approximate Gaussian inference methods (Laplace, HET, SNGP) on large- and small-scale datasets (ImageNet, CIFAR-100, CIFAR-10), demonstrating improved uncertainty quantification capabilities compared to softmax MC sampling. Our code is available at https://github.com/bmucsanyi/probit.
comment: 46 pages
♻ ☆ Low-probability Tokens Sustain Exploration in Reinforcement Learning with Verifiable Reward
Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key issue: the gradual elimination of valuable low-probability exploratory tokens, which we term \textbf{\textit{reasoning sparks}}. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by filtering out presumed noise tokens and re-normalizing the distribution over the remaining candidates. The result is a less-noisy proxy where the probability of \textit{reasoning sparks} is amplified, which then serves as a soft regularization target to shield these valuable tokens from elimination via KL divergence. Experiments show that Lp-Reg enables stable on-policy RL, sustaining continuous scaling across $3,000$ training steps and $81,204$ GPU-hours, where baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a $60.17\%$ average accuracy on five math benchmarks, an improvement of $2.66\%$ over prior methods. Code is available at https://github.com/CarlanLark/Lp-Reg.
♻ ☆ Inverse Knowledge Search over Verifiable Reasoning: Synthesizing a Scientific Encyclopedia from a Long Chains-of-Thought Knowledge Base
Most scientific materials compress reasoning, presenting conclusions while omitting the derivational chains that justify them. This compression hinders verification by lacking explicit, step-wise justifications and inhibits cross-domain links by collapsing the very pathways that establish the logical and causal connections between concepts. We introduce a scalable framework that decompresses scientific reasoning, constructing a verifiable Long Chain-of-Thought (LCoT) knowledge base and projecting it into an emergent encyclopedia, SciencePedia. Our pipeline operationalizes an endpoint-driven, reductionist strategy: a Socratic agent, guided by a curriculum of around 200 courses, generates approximately 3 million first-principles questions. To ensure high fidelity, multiple independent solver models generate LCoTs, which are then rigorously filtered by prompt sanitization and cross-model answer consensus, retaining only those with verifiable endpoints. This verified corpus powers the Brainstorm Search Engine, which performs inverse knowledge search -- retrieving diverse, first-principles derivations that culminate in a target concept. This engine, in turn, feeds the Plato synthesizer, which narrates these verified chains into coherent articles. The initial SciencePedia comprises approximately 200,000 fine-grained entries spanning mathematics, physics, chemistry, biology, engineering, and computation. In evaluations across six disciplines, Plato-synthesized articles (conditioned on retrieved LCoTs) exhibit substantially higher knowledge-point density and significantly lower factual error rates than an equally-prompted baseline without retrieval (as judged by an external LLM). Built on this verifiable LCoT knowledge base, this reasoning-centric approach enables trustworthy, cross-domain scientific synthesis at scale and establishes the foundation for an ever-expanding encyclopedia.
comment: 43 pages, 4 figures. This work is part of the SciencePedia project (sciencepedia.bohrium.com)
♻ ☆ Neural Attention: A Novel Mechanism for Enhanced Expressive Power in Transformer Models
Transformer models typically calculate attention matrices using dot products, which have limitations when capturing nonlinear relationships between embedding vectors. We propose Neural Attention, a technique that replaces dot products with feed-forward networks, enabling a more expressive representation of relationships between tokens. This approach modifies only the attention matrix calculation while preserving the matrix dimensions, making it easily adaptable to existing transformer-based architectures. We provide a detailed mathematical justification for why Neural Attention increases representational capacity and conduct controlled experiments to validate this claim. When comparing Neural Attention and Dot-Product Attention, NLP experiments on WikiText-103 show a reduction in perplexity of over 2 percent. Similarly, experiments on CIFAR-10 and CIFAR-100 show improvements in accuracy of more than 4 percentage points for image classification tasks. While Neural Attention introduces higher computational demands, we develop techniques to mitigate these challenges, ensuring practical usability without sacrificing the increased expressivity it provides. This work establishes Neural Attention as an effective means of enhancing the predictive capabilities of transformer models across a variety of applications. The code for all experiments is available at https://github.com/awayfromzel/neural-attention-research.
♻ ☆ Learning to Learn with Contrastive Meta-Objective NeurIPS2025
Meta-learning enables learning systems to adapt quickly to new tasks, similar to humans. Different meta-learning approaches all work under/with the mini-batch episodic training framework. Such framework naturally gives the information about task identity, which can serve as additional supervision for meta-training to improve generalizability. We propose to exploit task identity as additional supervision in meta-training, inspired by the alignment and discrimination ability which is is intrinsic in human's fast learning. This is achieved by contrasting what meta-learners learn, i.e., model representations. The proposed ConML is evaluating and optimizing the contrastive meta-objective under a problem- and learner-agnostic meta-training framework. We demonstrate that ConML integrates seamlessly with existing meta-learners, as well as in-context learning models, and brings significant boost in performance with small implementation cost.
comment: Received by NeurIPS2025 (Oral)
♻ ☆ RNN(p) for Power Consumption Forecasting
An elementary Recurrent Neural Network that operates on p time lags, called an RNN(p), is the natural generalisation of a linear autoregressive model ARX(p). It is a powerful forecasting tool for variables displaying inherent seasonal patterns across multiple time scales, as is often observed in energy, economic, and financial time series. The architecture of RNN(p) models, characterised by structured feedbacks across time lags, enables the design of efficient training strategies. We conduct a comparative study of learning algorithms for these models, providing a rigorous analysis of their computational complexity and training performance. We present two applications of RNN(p) models in power consumption forecasting, a key domain within the energy sector where accurate forecasts inform both operational and financial decisions. Experimental results show that RNN(p) models achieve excellent forecasting accuracy while maintaining a high degree of interpretability. These features make them well-suited for decision-making in energy markets and other fintech applications where reliable predictions play a significant economic role.
♻ ☆ Better Neural Network Expressivity: Subdividing the Simplex
This work studies the expressivity of ReLU neural networks with a focus on their depth. A sequence of previous works showed that $\lceil \log_2(n+1) \rceil$ hidden layers are sufficient to compute all continuous piecewise linear (CPWL) functions on $\mathbb{R}^n$. Hertrich, Basu, Di Summa, and Skutella (NeurIPS'21 / SIDMA'23) conjectured that this result is optimal in the sense that there are CPWL functions on $\mathbb{R}^n$, like the maximum function, that require this depth. We disprove the conjecture and show that $\lceil\log_3(n-1)\rceil+1$ hidden layers are sufficient to compute all CPWL functions on $\mathbb{R}^n$. A key step in the proof is that ReLU neural networks with two hidden layers can exactly represent the maximum function of five inputs. More generally, we show that $\lceil\log_3(n-2)\rceil+1$ hidden layers are sufficient to compute the maximum of $n\geq 4$ numbers. Our constructions almost match the $\lceil\log_3(n)\rceil$ lower bound of Averkov, Hojny, and Merkert (ICLR'25) in the special case of ReLU networks with weights that are decimal fractions. The constructions have a geometric interpretation via polyhedral subdivisions of the simplex into ``easier'' polytopes.
comment: 12 pages, 2 figures
♻ ☆ Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities NAACL 2025
Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99\% ASR on GPT-3.5 and 49\% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety. Our code is available at: https://github.com/SunChungEn/ADV-LLM
comment: Accepted to NAACL 2025 Main (Oral)
♻ ☆ Boardwalk: Towards a Framework for Creating Board Games with LLMs
Implementing board games in code can be a time-consuming task. However, Large Language Models (LLMs) have been proven effective at generating code for domain-specific tasks with simple contextual information. We aim to investigate whether LLMs can implement digital versions of board games from rules described in natural language. This would be a step towards an LLM-assisted framework for quick board game code generation. We expect to determine the main challenges for LLMs to implement the board games, and how different approaches and models compare to one another. We task three state-of-the-art LLMs (Claude, DeepSeek and ChatGPT) with coding a selection of 12 popular and obscure games in free-form and within Boardwalk, our proposed General Game Playing API. We anonymize the games and components to avoid evoking pre-trained LLM knowledge. The implementations are tested for playability and rule compliance. We evaluate success rate and common errors across LLMs and game popularity. Our approach proves viable, with the best performing model, Claude 3.7 Sonnet, yielding 55.6\% of games without any errors. While compliance with the API increases error frequency, the severity of errors is more significantly dependent on the LLM. We outline future steps for creating a framework to integrate this process, making the elaboration of board games more accessible.
comment: Presented at SBGames 2025
♻ ☆ A Certifiable Machine Learning-Based Pipeline to Predict Fatigue Life of Aircraft Structures
Fatigue life prediction is essential in both the design and operational phases of any aircraft, and in this sense safety in the aerospace industry requires early detection of fatigue cracks to prevent in-flight failures. Robust and precise fatigue life predictors are thus essential to ensure safety. Traditional engineering methods, while reliable, are time consuming and involve complex workflows, including steps such as conducting several Finite Element Method (FEM) simulations, deriving the expected loading spectrum, and applying cycle counting techniques like peak-valley or rainflow counting. These steps often require collaboration between multiple teams and tools, added to the computational time and effort required to achieve fatigue life predictions. Machine learning (ML) offers a promising complement to traditional fatigue life estimation methods, enabling faster iterations and generalization, providing quick estimates that guide decisions alongside conventional simulations. In this paper, we present a ML-based pipeline that aims to estimate the fatigue life of different aircraft wing locations given the flight parameters of the different missions that the aircraft will be operating throughout its operational life. We validate the pipeline in a realistic use case of fatigue life estimation, yielding accurate predictions alongside a thorough statistical validation and uncertainty quantification. Our pipeline constitutes a complement to traditional methodologies by reducing the amount of costly simulations and, thereby, lowering the required computational and human resources.
comment: 34 pages, 17 figures
♻ ☆ iTool: Reinforced Fine-Tuning with Dynamic Deficiency Calibration for Advanced Tool Use EMNLP 2025
Augmenting large language models (LLMs) with external tools is a promising approach to enhance their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve this. However, our investigation reveals that training gains significantly decay as synthetic data increases. The model struggles to benefit from additional synthetic data, which fails to endow it with advanced tool-use capabilities in complex scenarios Moreover, we discovered that the above limitation usually manifests as a fragment deficiency (i.e., parameter errors) in response. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate this limitation. This strategy involves: (1) enhancing the diversity of response for synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively pinpointing the model's deficiency by constructing fine-grained preference pairs, and then improving it by preference optimization algorithms for targeted improvement. The experiments show that our method achieves 13.11% better performance than the same-size base model. It achieves an improvement of 6.5% in complex scenarios compared to the baseline, and it also outperforms larger open-source and closed-source models.
comment: EMNLP 2025
♻ ☆ LLM-Based Emulation of the Radio Resource Control Layer: Towards AI-Native RAN Protocols
Integrating Large AI Models (LAMs) into 6G mobile networks is a key enabler of the AI-Native Air Interface (AI-AI), where protocol intelligence must scale beyond handcrafted logic. This paper presents, to our knowledge, the first standards-compliant emulation of the Radio Resource Control (RRC) layer using a decoder-only LAM (LLAMA-class) fine-tuned with Low-Rank Adaptation (LoRA) on a multi-vendor corpus of real-world traces spanning both 5G and 4G systems. We treat RRC as a domain-specific language and construct a segmentation-safe, question--answer (Question-and-Answer (QA)) dataset that preserves Abstract Syntax Notation (ASN.1) structure through linearization prior to Byte Pair Encoding (BPE) tokenization. The proposed approach combines parameter-efficient adaptation with schema-bounded prompting to ensure syntactic and procedural fidelity. Evaluation introduces a standards-aware triad -- ASN.1 conformance, field-level coverage analysis, and uplink-to-downlink state-machine checks -- alongside semantic similarity and latency profiling across 120 configurations. On 30k 5G request--response pairs plus an additional 4.8k QA turns from 4G sessions, our 8B model achieves a median cosine similarity of 0.97, a 61% relative gain over a zero-shot baseline, while sustaining high conformance rates. These results demonstrate that LAMs, when augmented with protocol-aware reasoning, can directly orchestrate control-plane procedures, laying the foundation for the future Artificial Intelligence (AI)-native Radio Access Network (RAN).
comment: This work has been submitted to the IEEE for possible publication. Focuses on applying LLMs to 5G RRC protocol generation; primary: cs.NI; cross-list: eess.SP, cs.LG
♻ ☆ Auto-Compressing Networks NeurIPS 2025
Deep neural networks with short residual connections have demonstrated remarkable success across domains, but increasing depth often introduces computational redundancy without corresponding improvements in representation quality. We introduce Auto-Compressing Networks (ACNs), an architectural variant where additive long feedforward connections from each layer to the output replace traditional short residual connections. By analyzing the distinct dynamics induced by this modification, we reveal a unique property we coin as auto-compression, the ability of a network to organically compress information during training with gradient descent, through architectural design alone. Through auto-compression, information is dynamically "pushed" into early layers during training, enhancing their representational quality and revealing potential redundancy in deeper ones. We theoretically show that this property emerges from layer-wise training patterns present in ACNs, where layers are dynamically utilized during training based on task requirements. We also find that ACNs exhibit enhanced noise robustness compared to residual networks, superior performance in low-data settings, improved transfer learning capabilities, and mitigate catastrophic forgetting suggesting that they learn representations that generalize better despite using fewer parameters. Our results demonstrate up to 18% reduction in catastrophic forgetting and 30-80% architectural compression while maintaining accuracy across vision transformers, MLP-mixers, and BERT architectures. These findings establish ACNs as a practical approach to developing efficient neural architectures that automatically adapt their computational footprint to task complexity, while learning robust representations suitable for noisy real-world tasks and continual learning scenarios.
comment: NeurIPS 2025, 21 pages
♻ ☆ A Closer Look at Deep Learning Methods on Tabular Datasets
Tabular data is prevalent across diverse domains in machine learning. With the rapid progress of deep tabular prediction methods, especially pretrained (foundation) models, there is a growing need to evaluate these methods systematically and to understand their behavior. We present an extensive study on TALENT, a collection of 300+ datasets spanning broad ranges of size, feature composition (numerical/categorical mixes), domains, and output types (binary, multi--class, regression). Our evaluation shows that ensembling benefits both tree-based and neural approaches. Traditional gradient-boosted trees remain very strong baselines, yet recent pretrained tabular models now match or surpass them on many tasks, narrowing--but not eliminating--the historical advantage of tree ensembles. Despite architectural diversity, top performance concentrates within a small subset of models, providing practical guidance for method selection. To explain these outcomes, we quantify dataset heterogeneity by learning from meta-features and early training dynamics to predict later validation behavior. This dynamics-aware analysis indicates that heterogeneity--such as the interplay of categorical and numerical attributes--largely determines which family of methods is favored. Finally, we introduce a two-level design beyond the 300 common-size datasets: a compact TALENT-tiny core (45 datasets) for rapid, reproducible evaluation, and a TALENT-extension suite targeting high-dimensional, many-class, and very large-scale settings for stress testing. In summary, these results offer actionable insights into the strengths, limitations, and future directions for improving deep tabular learning.
♻ ☆ Learning from Delayed Feedback in Games via Extra Prediction
This study raises and addresses the problem of time-delayed feedback in learning in games. Because learning in games assumes that multiple agents independently learn their strategies, a discrepancy in optimization often emerges among the agents. To overcome this discrepancy, the prediction of the future reward is incorporated into algorithms, typically known as Optimistic Follow-the-Regularized-Leader (OFTRL). However, the time delay in observing the past rewards hinders the prediction. Indeed, this study firstly proves that even a single-step delay worsens the performance of OFTRL from the aspects of social regret and convergence. This study proposes the weighted OFTRL (WOFTRL), where the prediction vector of the next reward in OFTRL is weighted $n$ times. We further capture an intuition that the optimistic weight cancels out this time delay. We prove that when the optimistic weight exceeds the time delay, our WOFTRL recovers the good performances that social regret is constant in general-sum normal-form games, and the strategies last-iterate converge to the Nash equilibrium in poly-matrix zero-sum games. The theoretical results are supported and strengthened by our experiments.
comment: 11 pages, 3 figures (main); 11 pages (appendix)
♻ ☆ Learning of Population Dynamics: Inverse Optimization Meets JKO Scheme
Learning population dynamics involves recovering the underlying process that governs particle evolution, given evolutionary snapshots of samples at discrete time points. Recent methods frame this as an energy minimization problem in probability space and leverage the celebrated JKO scheme for efficient time discretization. In this work, we introduce $\texttt{iJKOnet}$, an approach that combines the JKO framework with inverse optimization techniques to learn population dynamics. Our method relies on a conventional $\textit{end-to-end}$ adversarial training procedure and does not require restrictive architectural choices, e.g., input-convex neural networks. We establish theoretical guarantees for our methodology and demonstrate improved performance over prior JKO-based methods.
♻ ☆ Prediction-Powered Adaptive Shrinkage Estimation ICML 2025
Prediction-Powered Inference (PPI) is a powerful framework for enhancing statistical estimates by combining limited gold-standard data with machine learning (ML) predictions. While prior work has demonstrated PPI's benefits for individual statistical problems, modern applications require answering numerous parallel statistical questions. We introduce Prediction-Powered Adaptive Shrinkage (PAS), a method that bridges PPI with empirical Bayes shrinkage to improve the estimation of multiple means. PAS debiases noisy ML predictions within each task and then borrows strength across tasks by using those same predictions as a reference point for shrinkage. The amount of shrinkage is determined by minimizing an unbiased estimate of risk, and we prove that this tuning strategy is asymptotically optimal. Experiments on both synthetic and real-world datasets show that PAS adapts to the reliability of the ML predictions and outperforms traditional and modern baselines in large-scale applications.
comment: Accepted as poster in ICML 2025
♻ ☆ CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis ACL 2025
Integrating multimodal Electronic Health Records (EHR) data, such as numerical time series and free-text clinical reports, has great potential in predicting clinical outcomes. However, prior work has primarily focused on capturing temporal interactions within individual samples and fusing multimodal information, overlooking critical temporal patterns across patients. These patterns, such as trends in vital signs like abnormal heart rate or blood pressure, can indicate deteriorating health or an impending critical event. Similarly, clinical notes often contain textual descriptions that reflect these patterns. Identifying corresponding temporal patterns across different modalities is crucial for improving the accuracy of clinical outcome predictions, yet it remains a challenging task. To address this gap, we introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data. Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings. To ensure rich cross-modal temporal semantics in the learned patterns, we introduce a contrastive-based TPNCE loss for cross-modal alignment, along with two reconstruction losses to retain core information of each modality. Evaluations on two clinically critical tasks, 48-hour in-hospital mortality and 24-hour phenotype classification, using the MIMIC-III database demonstrate the superiority of our method over existing approaches.
comment: ACL 2025 Findings
♻ ☆ Asymptotically Unbiased Synthetic Control Methods by Moment Matching
Synthetic Control Methods (SCMs) have become a fundamental tool for comparative case studies. The core idea behind SCMs is to estimate treatment effects by predicting counterfactual outcomes for a treated unit using a weighted combination of observed outcomes from untreated units. The accuracy of these predictions is crucial for evaluating the treatment effect of a policy intervention. Subsequent research has therefore focused on estimating SC weights. In this study, we highlight a key endogeneity issue in existing SCMs-namely, the correlation between the outcomes of untreated units and the error term of the synthetic control, which leads to bias in both counterfactual outcome prediction and treatment effect estimation. To address this issue, we propose a novel SCM based on moment matching, assuming that the outcome distribution of the treated unit can be approximated by a weighted mixture of the distributions of untreated units. Under this assumption, we estimate SC weights by matching the moments of the treated outcomes with the weighted sum of the moments of the untreated outcomes. Our method offers three advantages: first, under the mixture model assumption, our estimator is asymptotically unbiased; second, this asymptotic unbiasedness reduces the mean squared error in counterfactual predictions; and third, our method provides full distributions of the treatment effect rather than just expected values, thereby broadening the applicability of SCMs. Finally, we present experimental results that demonstrate the effectiveness of our approach.
comment: This study was presented at the Workshop on Counterfactuals in Minds and Machines at the International Conference on Machine Learning in July 2023 and at the International Conference on Econometrics and Statistics in August 2023
♻ ☆ Diverse Mini-Batch Selection in Reinforcement Learning for Efficient Chemical Exploration in de novo Drug Design
In many real-world applications, evaluating the quality of instances is costly and time-consuming, e.g., human feedback and physics simulations, in contrast to proposing new instances. In particular, this is even more critical in reinforcement learning, since it relies on interactions with the environment (i.e., new instances) that must be evaluated to provide a reward signal for learning. At the same time, performing sufficient exploration is crucial in reinforcement learning to find high-rewarding solutions, meaning that the agent should observe and learn from a diverse set of experiences to find different solutions. Thus, we argue that learning from a diverse mini-batch of experiences can have a large impact on the exploration and help mitigate mode collapse.In this paper, we introduce mini-batch diversification for reinforcement learning and study this framework in the context of a real-world problem, namely, drug discovery. We extensively evaluate how our proposed framework can enhance the effectiveness of chemical exploration in de novo drug design, where finding diverse and high-quality solutions is crucial. Our experiments demonstrate that our proposed diverse mini-batch selection framework can substantially enhance the diversity of solutions while maintaining high-quality solutions. In drug discovery, such an outcome can potentially lead to fulfilling unmet medical needs faster.
Learning to Navigate Socially Through Proactive Risk Perception
In this report, we describe the technical details of our submission to the IROS 2025 RoboSense Challenge Social Navigation Track. This track focuses on developing RGBD-based perception and navigation systems that enable autonomous agents to navigate safely, efficiently, and socially compliantly in dynamic human-populated indoor environments. The challenge requires agents to operate from an egocentric perspective using only onboard sensors including RGB-D observations and odometry, without access to global maps or privileged information, while maintaining social norm compliance such as safe distances and collision avoidance. Building upon the Falcon model, we introduce a Proactive Risk Perception Module to enhance social navigation performance. Our approach augments Falcon with collision risk understanding that learns to predict distance-based collision risk scores for surrounding humans, which enables the agent to develop more robust spatial awareness and proactive collision avoidance behaviors. The evaluation on the Social-HM3D benchmark demonstrates that our method improves the agent's ability to maintain personal space compliance while navigating toward goals in crowded indoor scenes with dynamic human agents, achieving 2nd place among 16 participating teams in the challenge.
♻ ☆ Optimizing Anytime Reasoning via Budget Relative Policy Optimization
Scaling test-time compute is crucial for enhancing the reasoning capabilities of large language models (LLMs). Existing approaches typically employ reinforcement learning (RL) to maximize a verifiable reward obtained at the end of reasoning traces. However, such methods optimize only the final performance under a large and fixed token budget, which hinders efficiency in both training and deployment. In this work, we present a novel framework, AnytimeReasoner, to optimize anytime reasoning performance, which aims to improve token efficiency and the flexibility of reasoning under varying token budget constraints. To achieve this, we truncate the complete thinking process to fit within sampled token budgets from a prior distribution, compelling the model to summarize the optimal answer for each truncated thinking for verification. This introduces verifiable dense rewards into the reasoning process, facilitating more effective credit assignment in RL optimization. We then optimize the thinking and summary policies in a decoupled manner to maximize the cumulative reward. Additionally, we introduce a novel variance reduction technique, Budget Relative Policy Optimization (BRPO), to enhance the robustness and efficiency of the learning process when reinforcing the thinking policy. Empirical results in mathematical reasoning tasks demonstrate that our method consistently outperforms GRPO across all thinking budgets under various prior distributions, enhancing both training and token efficiency.
♻ ☆ AURA: A Reinforcement Learning Framework for AI-Driven Adaptive Conversational Surveys
Conventional online surveys provide limited personalization, often resulting in low engagement and superficial responses. Although AI survey chatbots improve convenience, most are still reactive: they rely on fixed dialogue trees or static prompt templates and therefore cannot adapt within a session to fit individual users, which leads to generic follow-ups and weak response quality. We address these limitations with AURA (Adaptive Understanding through Reinforcement Learning for Assessment), a reinforcement learning framework for AI-driven adaptive conversational surveys. AURA quantifies response quality using a four-dimensional LSDE metric (Length, Self-disclosure, Emotion, and Specificity) and selects follow-up question types via an epsilon-greedy policy that updates the expected quality gain within each session. Initialized with priors extracted from 96 prior campus-climate conversations (467 total chatbot-user exchanges), the system balances exploration and exploitation across 10-15 dialogue exchanges, dynamically adapting to individual participants in real time. In controlled evaluations, AURA achieved a +0.076 mean gain in response quality and a statistically significant improvement over non-adaptive baselines (p=0.044, d=0.66), driven by a 63% reduction in specification prompts and a 10x increase in validation behavior. These results demonstrate that reinforcement learning can give survey chatbots improved adaptivity, transforming static questionnaires into interactive, self-improving assessment systems.
♻ ☆ Learning Latent Graph Geometry via Fixed-Point Schrödinger-Type Activation: A Theoretical Study
We develop a unified theoretical framework for neural architectures whose internal representations evolve as stationary states of dissipative Schr\"odinger-type dynamics on learned latent graphs. Each layer is defined by a fixed-point Schr\"odinger-type equation depending on a weighted Laplacian encoding latent geometry and a convex local potential. We prove existence, uniqueness, and smooth dependence of equilibria, and show that the dynamics are equivalent under the Bloch map to norm-preserving Landau--Lifshitz flows. Training over graph weights and topology is formulated as stochastic optimization on a stratified moduli space of graphs equipped with a natural K\"{a}hler--Hessian metric, ensuring convergence and differentiability across strata. We derive generalization bounds -- PAC-Bayes, stability, and Rademacher complexity -- in terms of geometric quantities such as edge count, maximal degree, and Gromov--Hausdorff distortion, establishing that sparsity and geometric regularity control capacity. Feed-forward composition of stationary layers is proven equivalent to a single global stationary diffusion on a supra-graph; backpropagation is its adjoint stationary system. Finally, directed and vector-valued extensions are represented as sheaf Laplacians with unitary connections, unifying scalar graph, directed, and sheaf-based architectures. The resulting model class provides a compact, geometrically interpretable, and analytically tractable foundation for learning latent graph geometry via fixed-point Schr\"odinger-type activations.
comment: 50 pages, 2 algorithms, 4 tables
♻ ☆ Physics-Informed Neural Networks and Neural Operators for Parametric PDEs: A Human-AI Collaborative Analysis
PDEs arise ubiquitously in science and engineering, where solutions depend on parameters (physical properties, boundary conditions, geometry). Traditional numerical methods require re-solving the PDE for each parameter, making parameter space exploration prohibitively expensive. Recent machine learning advances, particularly physics-informed neural networks (PINNs) and neural operators, have revolutionized parametric PDE solving by learning solution operators that generalize across parameter spaces. We critically analyze two main paradigms: (1) PINNs, which embed physical laws as soft constraints and excel at inverse problems with sparse data, and (2) neural operators (e.g., DeepONet, Fourier Neural Operator), which learn mappings between infinite-dimensional function spaces and achieve unprecedented generalization. Through comparisons across fluid dynamics, solid mechanics, heat transfer, and electromagnetics, we show neural operators can achieve computational speedups of $10^3$ to $10^5$ times faster than traditional solvers for multi-query scenarios, while maintaining comparable accuracy. We provide practical guidance for method selection, discuss theoretical foundations (universal approximation, convergence), and identify critical open challenges: high-dimensional parameters, complex geometries, and out-of-distribution generalization. This work establishes a unified framework for understanding parametric PDE solvers via operator learning, offering a comprehensive, incrementally updated resource for this rapidly evolving field
comment: 61 pages, 3 figures. Submitted to The 1st International Conference on AI Scientists (ICAIS 2025)
♻ ☆ Graph Learning
Graph learning has rapidly evolved into a critical subfield of machine learning and artificial intelligence (AI). Its development began with early graph-theoretic methods, gaining significant momentum with the advent of graph neural networks (GNNs). Over the past decade, progress in scalable architectures, dynamic graph modeling, multimodal learning, generative AI, explainable AI (XAI), and responsible AI has broadened the applicability of graph learning to various challenging environments. Graph learning is significant due to its ability to model complex, non-Euclidean relationships that traditional machine learning struggles to capture, thus better supporting real-world applications ranging from drug discovery and fraud detection to recommender systems and scientific reasoning. However, challenges like scalability, generalization, heterogeneity, interpretability, and trustworthiness must be addressed to unlock its full potential. This survey provides a comprehensive introduction to graph learning, focusing on key dimensions including scalable, temporal, multimodal, generative, explainable, and responsible graph learning. We review state-of-the-art techniques for efficiently handling large-scale graphs, capturing dynamic temporal dependencies, integrating heterogeneous data modalities, generating novel graph samples, and enhancing interpretability to foster trust and transparency. We also explore ethical considerations, such as privacy and fairness, to ensure responsible deployment of graph learning models. Additionally, we identify and discuss emerging topics, highlighting recent integration of graph learning and other AI paradigms and offering insights into future directions. This survey serves as a valuable resource for researchers and practitioners seeking to navigate the rapidly evolving landscape of graph learning.
comment: 185 pages
♻ ☆ Non-stationary Delayed Online Convex Optimization: From Full-information to Bandit Setting ICML2024
Although online convex optimization (OCO) under arbitrary delays has received increasing attention recently, previous studies focus on stationary environments with the goal of minimizing static regret. In this paper, we investigate the delayed OCO in non-stationary environments, and choose dynamic regret with respect to any sequence of comparators as the performance metric. To this end, we first propose an algorithm called Mild-OGD for the full-information case, where delayed gradients are available. The basic idea is to maintain multiple experts in parallel, each performing a gradient descent step with different learning rates for every delayed gradient according to their arrival order, and utilize a meta-algorithm to track the best one based on their delayed performance. Despite the simplicity of this idea, our novel analysis shows that the dynamic regret of Mild-OGD can be automatically bounded by $O(\sqrt{\bar{d}T(P_T+1)})$ under the in-order assumption and $O(\sqrt{dT(P_T+1)})$ in the worst case, where $\bar{d}$ and $d$ denote the average and maximum delay respectively, $T$ is the time horizon, and $P_T$ is the path-length of comparators. Moreover, we demonstrate that the result in the worst case is optimal by deriving a matching lower bound. Finally, we develop a bandit variant of Mild-OGD for a more challenging case with only delayed loss values. Interestingly, we prove that under a relatively large amount of delay, our bandit algorithm even enjoys the best dynamic regret bound of existing non-delayed bandit algorithms.
comment: Extended Version of ICML2024 with New Results on the Bandit Setting
♻ ☆ Conformal Information Pursuit for Interactively Guiding Large Language Models
A significant use case of instruction-finetuned Large Language Models (LLMs) is to solve question-answering tasks interactively. In this setting, an LLM agent is tasked with making a prediction by sequentially querying relevant information from the user, as opposed to a single-turn conversation. This paper explores sequential querying strategies that aim to minimize the expected number of queries. One such strategy is Information Pursuit (IP), a greedy algorithm that at each iteration selects the query that maximizes information gain or equivalently minimizes uncertainty. However, obtaining accurate estimates of mutual information or conditional entropy for LLMs is very difficult in practice due to over- or under-confident LLM proba- bilities, which leads to suboptimal query selection and predictive performance. To better estimate the uncertainty at each iteration, we propose Conformal Information Pursuit (C-IP), an alternative approach to sequential information gain based on conformal prediction sets. More specifically, C-IP leverages a relationship between prediction sets and conditional entropy at each iteration to estimate uncertainty based on the average size of conformal prediction sets. In contrast to conditional entropy, we find that conformal prediction sets are a distribution-free and robust method of measuring uncertainty. Experiments with 20 Questions show that C-IP obtains better predictive performance and shorter query-answer chains compared to previous approaches to IP and uncertainty-based chain-of-thought methods. Furthermore, extending to an interactive medical setting between a doctor and a patient on the MediQ dataset, C-IP achieves competitive performance with direct single-turn prediction while offering greater interpretability.
♻ ☆ Learning for Interval Prediction of Electricity Demand: A Cluster-based Bootstrapping Approach
Accurate predictions of electricity demands are necessary for managing operations in a small aggregation load setting like a Microgrid. Due to low aggregation, the electricity demands can be highly stochastic and point estimates would lead to inflated errors. Interval estimation in this scenario, would provide a range of values within which the future values might lie and helps quantify the errors around the point estimates. This paper introduces a residual bootstrap algorithm to generate interval estimates of day-ahead electricity demand. A machine learning algorithm is used to obtain the point estimates of electricity demand and respective residuals on the training set. The obtained residuals are stored in memory and the memory is further partitioned. Days with similar demand patterns are grouped in clusters using an unsupervised learning algorithm and these clusters are used to partition the memory. The point estimates for test day are used to find the closest cluster of similar days and the residuals are bootstrapped from the chosen cluster. This algorithm is evaluated on the real electricity demand data from EULR(End Use Load Research) and is compared to other bootstrapping methods for varying confidence intervals.
♻ ☆ AIRepr: An Analyst-Inspector Framework for Evaluating Reproducibility of LLMs in Data Science EMNLP
Large language models (LLMs) are increasingly used to automate data analysis through executable code generation. Yet, data science tasks often admit multiple statistically valid solutions, e.g. different modeling strategies, making it critical to understand the reasoning behind analyses, not just their outcomes. While manual review of LLM-generated code can help ensure statistical soundness, it is labor-intensive and requires expertise. A more scalable approach is to evaluate the underlying workflows-the logical plans guiding code generation. However, it remains unclear how to assess whether an LLM-generated workflow supports reproducible implementations. To address this, we present AIRepr, an Analyst-Inspector framework for automatically evaluating and improving the reproducibility of LLM-generated data analysis workflows. Our framework is grounded in statistical principles and supports scalable, automated assessment. We introduce two novel reproducibility-enhancing prompting strategies and benchmark them against standard prompting across 15 analyst-inspector LLM pairs and 1,032 tasks from three public benchmarks. Our findings show that workflows with higher reproducibility also yield more accurate analyses, and that reproducibility-enhancing prompts substantially improve both metrics. This work provides a foundation for transparent, reliable, and efficient human-AI collaboration in data science. Our code is publicly available.
comment: Accepted to 2025 EMNLP findings
♻ ☆ Multiplayer Federated Learning: Reaching Equilibrium with Less Communication NeurIPS 2025
Traditional Federated Learning (FL) approaches assume collaborative clients with aligned objectives working towards a shared global model. However, in many real-world scenarios, clients act as rational players with individual objectives and strategic behaviors, a concept that existing FL frameworks are not equipped to adequately address. To bridge this gap, we introduce Multiplayer Federated Learning (MpFL), a novel framework that models the clients in the FL environment as players in a game-theoretic context, aiming to reach an equilibrium. In this scenario, each player tries to optimize their own utility function, which may not align with the collective goal. Within MpFL, we propose Per-Player Local Stochastic Gradient Descent (PEARL-SGD), an algorithm in which each player/client performs local updates independently and periodically communicates with other players. We theoretically analyze PEARL-SGD and prove that it reaches a neighborhood of equilibrium with less communication in the stochastic setup compared to its non-local counterpart. Finally, we verify our theoretical findings through numerical experiments.
comment: Accepted at NeurIPS 2025
♻ ☆ When Are Concepts Erased From Diffusion Models? NeurIPS 2025
In concept erasure, a model is modified to selectively prevent it from generating a target concept. Despite the rapid development of new methods, it remains unclear how thoroughly these approaches remove the target concept from the model. We begin by proposing two conceptual models for the erasure mechanism in diffusion models: (i) interfering with the model's internal guidance processes, and (ii) reducing the unconditional likelihood of generating the target concept, potentially removing it entirely. To assess whether a concept has been truly erased from the model, we introduce a comprehensive suite of independent probing techniques: supplying visual context, modifying the diffusion trajectory, applying classifier guidance, and analyzing the model's alternative generations that emerge in place of the erased concept. Our results shed light on the value of exploring concept erasure robustness outside of adversarial text inputs, and emphasize the importance of comprehensive evaluations for erasure in diffusion models.
comment: Accepted to NeurIPS 2025. Our code, data, and results are available at https://unerasing.baulab.info/
♻ ☆ Fine-Tuning Masked Diffusion for Provable Self-Correction
A natural desideratum for generative models is self-correction--detecting and revising low-quality tokens at inference. While Masked Diffusion Models (MDMs) have emerged as a promising approach for generative modeling in discrete spaces, their capacity for self-correction remains poorly understood. Prior attempts to incorporate self-correction into MDMs either require overhauling MDM architectures/training or rely on imprecise proxies for token quality, limiting their applicability. Motivated by this, we introduce PRISM--Plug-in Remasking for Inference-time Self-correction of Masked Diffusions--a lightweight, model-agnostic approach that applies to any pretrained MDM. Theoretically, PRISM defines a self-correction loss that provably learns per-token quality scores, without RL or a verifier. These quality scores are computed in the same forward pass with MDM and used to detect low-quality tokens. Empirically, PRISM advances MDM inference across domains and scales: Sudoku; unconditional text (170M); and code with LLaDA (8B).
comment: Authorship statement: Jaeyeon Kim and Seunggeun Kim contributed equally, and Taekyun Lee is also a co first author
♻ ☆ NVIDIA Nemotron Nano V2 VL
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and training recipes. Nemotron Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and innovative token reduction techniques to achieve higher inference throughput in long document and video scenarios. We are releasing model checkpoints in BF16, FP8, and FP4 formats and sharing large parts of our datasets, recipes and training code.
♻ ☆ Generating Computational Cognitive Models using Large Language Models
Computational cognitive models, which formalize theories of cognition, enable researchers to quantify cognitive processes and arbitrate between competing theories by fitting models to behavioral data. Traditionally, these models are handcrafted, which requires significant domain knowledge, coding expertise, and time investment. However, recent advances in machine learning offer solutions to these challenges. In particular, Large Language Models (LLMs) have demonstrated remarkable capabilities for in-context pattern recognition, leveraging knowledge from diverse domains to solve complex problems, and generating executable code that can be used to facilitate the generation of cognitive models. Building on this potential, we introduce a pipeline for Guided generation of Computational Cognitive Models (GeCCo). Given task instructions, participant data, and a template function, GeCCo prompts an LLM to propose candidate models, fits proposals to held-out data, and iteratively refines them based on feedback constructed from their predictive performance. We benchmark this approach across four different cognitive domains -- decision making, learning, planning, and memory -- using three open-source LLMs, spanning different model sizes, capacities, and families. On four human behavioral data sets, the LLM generated models that consistently matched or outperformed the best domain-specific models from the cognitive science literature. Taken together, our results suggest that LLMs can generate cognitive models with conceptually plausible theories that rival -- or even surpass -- the best models from the literature across diverse task domains.
♻ ☆ Optimism Without Regularization: Constant Regret in Zero-Sum Games NeurIPS 2025
This paper studies the optimistic variant of Fictitious Play for learning in two-player zero-sum games. While it is known that Optimistic FTRL -- a regularized algorithm with a bounded stepsize parameter -- obtains constant regret in this setting, we show for the first time that similar, optimal rates are also achievable without regularization: we prove for two-strategy games that Optimistic Fictitious Play (using any tiebreaking rule) obtains only constant regret, providing surprising new evidence on the ability of non-no-regret algorithms for fast learning in games. Our proof technique leverages a geometric view of Optimistic Fictitious Play in the dual space of payoff vectors, where we show a certain energy function of the iterates remains bounded over time. Additionally, we also prove a regret lower bound of $\Omega(\sqrt{T})$ for Alternating Fictitious Play. In the unregularized regime, this separates the ability of optimism and alternation in achieving $o(\sqrt{T})$ regret.
comment: NeurIPS 2025
♻ ☆ L2T-Tune:LLM-Guided Hybrid Database Tuning with LHS and TD3
Configuration tuning is critical for database performance. Although recent advancements in database tuning have shown promising results in throughput and latency improvement, challenges remain. First, the vast knob space makes direct optimization unstable and slow to converge. Second, reinforcement learning pipelines often lack effective warm-start guidance and require long offline training. Third, transferability is limited: when hardware or workloads change, existing models typically require substantial retraining to recover performance. To address these limitations, we propose L2T-Tune, a new LLM-guided hybrid database tuning framework that features a three-stage pipeline: Stage one performs a warm start that simultaneously generates uniform samples across the knob space and logs them into a shared pool; Stage two leverages a large language model to mine and prioritize tuning hints from manuals and community documents for rapid convergence. Stage three uses the warm-start sample pool to reduce the dimensionality of knobs and state features, then fine-tunes the configuration with the Twin Delayed Deep Deterministic Policy Gradient algorithm. We conduct experiments on L2T-Tune and the state-of-the-art models. Compared with the best-performing alternative, our approach improves performance by an average of 37.1% across all workloads, and by up to 73% on TPC-C. Compared with models trained with reinforcement learning, it achieves rapid convergence in the offline tuning stage on a single server. Moreover, during the online tuning stage, it only takes 30 steps to achieve best results.
♻ ☆ Closed-Form Beta Distribution Estimation from Sparse Statistics with Random Forest Implicit Regularization
This work advances distribution recovery from sparse data and ensemble classification through three main contributions. First, we introduce a closed-form estimator that reconstructs scaled beta distributions from limited statistics (minimum, maximum, mean, and median) via composite quantile and moment matching. The recovered parameters $(\alpha,\beta)$, when used as features in Random Forest classifiers, improve pairwise classification on time-series snapshots, validating the fidelity of the recovered distributions. Second, we establish a link between classification accuracy and distributional closeness by deriving error bounds that constrain total variation distance and Jensen-Shannon divergence, the latter exhibiting quadratic convergence. Third, we show that zero-variance features act as an implicit regularizer, increasing selection probability for mid-ranked predictors and producing deeper, more varied trees. A SeatGeek pricing dataset serves as the primary application, illustrating distributional recovery and event-level classification while situating these methods within the structure and dynamics of the secondary ticket marketplace. The UCI handwritten digits dataset confirms the broader regularization effect. Overall, the study outlines a practical route from sparse distributional snapshots to closed-form estimation and improved ensemble accuracy, with reliability enhanced through implicit regularization.
comment: 31 pages, 12 figures, 2 tables
♻ ☆ LoRAQuant: Mixed-Precision Quantization of LoRA to Ultra-Low Bits
Low-Rank Adaptation (LoRA) has become a popular technique for parameter-efficient fine-tuning of large language models (LLMs). In many real-world scenarios, multiple adapters are loaded simultaneously to enable LLM customization for personalized user experiences or to support a diverse range of tasks. Although each adapter is lightweight in isolation, their aggregate cost becomes substantial at scale. To address this, we propose LoRAQuant, a mixed-precision post-training quantization method tailored to LoRA. Specifically, LoRAQuant reparameterizes each adapter by singular value decomposition (SVD) to concentrate the most important information into specific rows and columns. This makes it possible to quantize the important components to higher precision, while quantizing the rest to ultra-low bitwidth. We conduct comprehensive experiments with LLaMA 2-7B, LLaMA 2-13B, and Mistral 7B models on mathematical reasoning, coding, and summarization tasks. Results show that our LoRAQuant uses significantly lower bits than other quantization methods, but achieves comparable or even higher performance.
♻ ☆ On Joint Regularization and Calibration in Deep Ensembles
Deep ensembles are a powerful tool in machine learning, improving both model performance and uncertainty calibration. While ensembles are typically formed by training and tuning models individually, evidence suggests that jointly tuning the ensemble can lead to better performance. This paper investigates the impact of jointly tuning weight decay, temperature scaling, and early stopping on both predictive performance and uncertainty quantification. Additionally, we propose a partially overlapping holdout strategy as a practical compromise between enabling joint evaluation and maximizing the use of data for training. Our results demonstrate that jointly tuning the ensemble generally matches or improves performance, with significant variation in effect size across different tasks and metrics. We highlight the trade-offs between individual and joint optimization in deep ensemble training, with the overlapping holdout strategy offering an attractive practical solution. We believe our findings provide valuable insights and guidance for practitioners looking to optimize deep ensemble models. Code is available at: https://github.com/lauritsf/ensemble-optimality-gap
comment: 39 pages, 8 figures, 11 tables
♻ ☆ Distributionally robust self-supervised learning for tabular data NeurIPS2024
Machine learning (ML) models trained using Empirical Risk Minimization (ERM) often exhibit systematic errors on specific subpopulations of tabular data, known as error slices. Learning robust representation in presence of error slices is challenging, especially in self-supervised settings during the feature reconstruction phase, due to high cardinality features and the complexity of constructing error sets. Traditional robust representation learning methods are largely focused on improving worst group performance in supervised setting in computer vision, leaving a gap in approaches tailored for tabular data. We address this gap by developing a framework to learn robust representation in tabular data during self-supervised pre-training. Our approach utilizes an encoder-decoder model trained with Masked Language Modeling (MLM) loss to learn robust latent representations. This paper applies the Just Train Twice (JTT) and Deep Feature Reweighting (DFR) methods during the pre-training phase for tabular data. These methods fine-tune the ERM pre-trained model by up-weighting error-prone samples or creating balanced datasets for specific categorical features. This results in specialized models for each feature, which are then used in an ensemble approach to enhance downstream classification performance. This methodology improves robustness across slices, thus enhancing overall generalization performance. Extensive experiments across various datasets demonstrate the efficacy of our approach. The code is available: https://github.com/amazon-science/distributionally-robust-self-supervised-learning-for-tabular-data.
comment: TRL Workshop@NeurIPS2024
♻ ☆ Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots
Stochastic differential equations (SDEs) are a fundamental tool for modelling dynamic processes, including gene regulatory networks (GRNs), contaminant transport, financial markets, and image generation. However, learning the underlying SDE from data is a challenging task, especially if individual trajectories are not observable. Motivated by burgeoning research in single-cell datasets, we present the first comprehensive approach for jointly identifying the drift and diffusion of an SDE from its temporal marginals. Assuming linear drift and additive diffusion, we prove that these parameters are identifiable from marginals if and only if the initial distribution lacks any generalized rotational symmetries. We further prove that the causal graph of any SDE with additive diffusion can be recovered from the SDE parameters. To complement this theory, we adapt entropy-regularized optimal transport to handle anisotropic diffusion, and introduce APPEX (Alternating Projection Parameter Estimation from $X_0$), an iterative algorithm designed to estimate the drift, diffusion, and causal graph of an additive noise SDE, solely from temporal marginals. We show that APPEX iteratively decreases Kullback-Leibler divergence to the true solution, and demonstrate its effectiveness on simulated data from linear additive noise SDEs.
♻ ☆ Generalizable, real-time neural decoding with hybrid state-space models NeurIPS 2025
Real-time decoding of neural activity is central to neuroscience and neurotechnology applications, from closed-loop experiments to brain-computer interfaces, where models are subject to strict latency constraints. Traditional methods, including simple recurrent neural networks, are fast and lightweight but often struggle to generalize to unseen data. In contrast, recent Transformer-based approaches leverage large-scale pretraining for strong generalization performance, but typically have much larger computational requirements and are not always suitable for low-resource or real-time settings. To address these shortcomings, we present POSSM, a novel hybrid architecture that combines individual spike tokenization via a cross-attention module with a recurrent state-space model (SSM) backbone to enable (1) fast and causal online prediction on neural activity and (2) efficient generalization to new sessions, individuals, and tasks through multi-dataset pretraining. We evaluate POSSM's decoding performance and inference speed on intracortical decoding of monkey motor tasks, and show that it extends to clinical applications, namely handwriting and speech decoding in human subjects. Notably, we demonstrate that pretraining on monkey motor-cortical recordings improves decoding performance on the human handwriting task, highlighting the exciting potential for cross-species transfer. In all of these tasks, we find that POSSM achieves decoding accuracy comparable to state-of-the-art Transformers, at a fraction of the inference cost (up to 9x faster on GPU). These results suggest that hybrid SSMs are a promising approach to bridging the gap between accuracy, inference speed, and generalization when training neural decoders for real-time, closed-loop applications.
comment: NeurIPS 2025
♻ ☆ A Perfectly Truthful Calibration Measure
Calibration requires that predictions are conditionally unbiased and, therefore, reliably interpretable as probabilities. A calibration measure quantifies how far a predictor is from perfect calibration. As introduced by Haghtalab et al. (2024), a calibration measure is truthful if it is minimized in expectation when a predictor outputs the ground-truth probabilities. Predicting the true probabilities guarantees perfect calibration, but in reality, when calibration is evaluated on a random sample, all known calibration measures incentivize predictors to lie in order to appear more calibrated. Such lack of truthfulness motivated Haghtalab et al. (2024) and Qiao and Zhao (2025) to construct approximately truthful calibration measures in the sequential prediction setting, but no perfectly truthful calibration measure was known to exist even in the more basic batch setting. We design a simple, perfectly and strictly truthful, sound and complete calibration measure in the batch setting: averaged two-bin calibration error (ATB). ATB is quadratically related to two existing calibration measures: the smooth calibration error smCal and the lower distance to calibration distCal. The simplicity in our definition of ATB makes it efficient and straightforward to compute, allowing us to give the first linear-time calibration testing algorithm, improving a result of Hu et al. (2024). We also introduce a general recipe for constructing truthful measures based on the variance additivity of independent random variables, which proves the truthfulness of ATB as a special case and allows us to construct other truthful calibration measures such as quantile-binned l_2-ECE.
♻ ☆ TimeCopilot
We introduce TimeCopilot, the first open-source agentic framework for forecasting that combines multiple Time Series Foundation Models (TSFMs) with Large Language Models (LLMs) through a single unified API. TimeCopilot automates the forecasting pipeline: feature analysis, model selection, cross-validation, and forecast generation, while providing natural language explanations and supporting direct queries about the future. The framework is LLM-agnostic, compatible with both commercial and open-source models, and supports ensembles across diverse forecasting families. Results on the large-scale GIFT-Eval benchmark show that TimeCopilot achieves state-of-the-art probabilistic forecasting performance at low cost. Our framework provides a practical foundation for reproducible, explainable, and accessible agentic forecasting systems.
♻ ☆ Periodic Skill Discovery NeurIPS 2025
Unsupervised skill discovery in reinforcement learning (RL) aims to learn diverse behaviors without relying on external rewards. However, current methods often overlook the periodic nature of learned skills, focusing instead on increasing the mutual dependence between states and skills or maximizing the distance traveled in latent space. Considering that many robotic tasks - particularly those involving locomotion - require periodic behaviors across varying timescales, the ability to discover diverse periodic skills is essential. Motivated by this, we propose Periodic Skill Discovery (PSD), a framework that discovers periodic behaviors in an unsupervised manner. The key idea of PSD is to train an encoder that maps states to a circular latent space, thereby naturally encoding periodicity in the latent representation. By capturing temporal distance, PSD can effectively learn skills with diverse periods in complex robotic tasks, even with pixel-based observations. We further show that these learned skills achieve high performance on downstream tasks such as hurdling. Moreover, integrating PSD with an existing skill discovery method offers more diverse behaviors, thus broadening the agent's repertoire. Our code and demos are available at https://jonghaepark.github.io/psd/
comment: NeurIPS 2025
♻ ☆ It's Hard to Be Normal: The Impact of Noise on Structure-agnostic Estimation NeurIPS 2025
Structure-agnostic causal inference studies how well one can estimate a treatment effect given black-box machine learning estimates of nuisance functions (like the impact of confounders on treatment and outcomes). Here, we find that the answer depends in a surprising way on the distribution of the treatment noise. Focusing on the partially linear model of \citet{robinson1988root}, we first show that the widely adopted double machine learning (DML) estimator is minimax rate-optimal for Gaussian treatment noise, resolving an open problem of \citet{mackey2018orthogonal}. Meanwhile, for independent non-Gaussian treatment noise, we show that DML is always suboptimal by constructing new practical procedures with higher-order robustness to nuisance errors. These \emph{ACE} procedures use structure-agnostic cumulant estimators to achieve $r$-th order insensitivity to nuisance errors whenever the $(r+1)$-st treatment cumulant is non-zero. We complement these core results with novel minimax guarantees for binary treatments in the partially linear model. Finally, using synthetic demand estimation experiments, we demonstrate the practical benefits of our higher-order robust estimators.
comment: NeurIPS 2025
♻ ☆ Spatio-Temporal Graph Convolutional Networks for EV Charging Demand Forecasting Using Real-World Multi-Modal Data Integration
Transportation remains a major contributor to greenhouse gas emissions, highlighting the urgency of transitioning toward sustainable alternatives such as electric vehicles (EVs). Yet, uneven spatial distribution and irregular utilization of charging infrastructure create challenges for both power grid stability and investment planning. This study introduces TW-GCN, a spatio-temporal forecasting framework that combines Graph Convolutional Networks with temporal architectures to predict EV charging demand in Tennessee, United States (U.S.). We utilize real-world traffic flows, weather conditions, and proprietary data provided by one of the largest EV infrastructure company in the U.S. to capture both spatial dependencies and temporal dynamics. Extensive experiments across varying lag horizons, clustering strategies, and sequence lengths reveal that mid-horizon (3-hour) forecasts achieve the best balance between responsiveness and stability, with 1DCNN consistently outperforming other temporal models. Regional analysis shows disparities in predictive accuracy across East, Middle, and West Tennessee, reflecting how station density, population, and local demand variability shape model performance. The proposed TW-GCN framework advances the integration of data-driven intelligence into EV infrastructure planning, supporting both sustainable mobility transitions and resilient grid management.
Multimedia 6
☆ Splatography: Sparse multi-view dynamic Gaussian Splatting for filmmaking challenges
Deformable Gaussian Splatting (GS) accomplishes photorealistic dynamic 3-D reconstruction from dense multi-view video (MVV) by learning to deform a canonical GS representation. However, in filmmaking, tight budgets can result in sparse camera configurations, which limits state-of-the-art (SotA) methods when capturing complex dynamic features. To address this issue, we introduce an approach that splits the canonical Gaussians and deformation field into foreground and background components using a sparse set of masks for frames at t=0. Each representation is separately trained on different loss functions during canonical pre-training. Then, during dynamic training, different parameters are modeled for each deformation field following common filmmaking practices. The foreground stage contains diverse dynamic features so changes in color, position and rotation are learned. While, the background containing film-crew and equipment, is typically dimmer and less dynamic so only changes in point position are learned. Experiments on 3-D and 2.5-D entertainment datasets show that our method produces SotA qualitative and quantitative results; up to 3 PSNR higher with half the model size on 3-D scenes. Unlike the SotA and without the need for dense mask supervision, our method also produces segmented dynamic reconstructions including transparent and dynamic textures. Code and video comparisons are available online: https://interims-git.github.io/
☆ GSE: Evaluating Sticker Visual Semantic Similarity via a General Sticker Encoder
Stickers have become a popular form of visual communication, yet understanding their semantic relationships remains challenging due to their highly diverse and symbolic content. In this work, we formally {define the Sticker Semantic Similarity task} and introduce {Triple-S}, the first benchmark for this task, consisting of 905 human-annotated positive and negative sticker pairs. Through extensive evaluation, we show that existing pretrained vision and multimodal models struggle to capture nuanced sticker semantics. To address this, we propose the {General Sticker Encoder (GSE)}, a lightweight and versatile model that learns robust sticker embeddings using both Triple-S and additional datasets. GSE achieves superior performance on unseen stickers, and demonstrates strong results on downstream tasks such as emotion classification and sticker-to-sticker retrieval. By releasing both Triple-S and GSE, we provide standardized evaluation tools and robust embeddings, enabling future research in sticker understanding, retrieval, and multimodal content generation. The Triple-S benchmark and GSE have been publicly released and are available here.
♻ ☆ On the Brittleness of CLIP Text Encoders
Multimodal co-embedding models, especially CLIP, have advanced the state of the art in zero-shot classification and multimedia information retrieval in recent years by aligning images and text in a shared representation space. However, such modals trained on a contrastive alignment can lack stability towards small input perturbations. Especially when dealing with manually expressed queries, minor variations in the query can cause large differences in the ranking of the best-matching results. In this paper, we present a systematic analysis of the effect of multiple classes of non-semantic query perturbations in an multimedia information retrieval scenario. We evaluate a diverse set of lexical, syntactic, and semantic perturbations across multiple CLIP variants using the TRECVID Ad-Hoc Video Search queries and the V3C1 video collection. Across models, we find that syntactic and semantic perturbations drive the largest instabilities, while brittleness is concentrated in trivial surface edits such as punctuation and case. Our results highlight robustness as a critical dimension for evaluating vision-language models beyond benchmark accuracy.
comment: Accepted for publication at MMM'26. Analysis code can be found here: https://github.com/allie-tran/clip-brittleness
♻ ☆ Med-Banana-50K: A Cross-modality Large-Scale Dataset for Text-guided Medical Image Editing
Medical image editing has emerged as a pivotal technology with broad applications in data augmentation, model interpretability, medical education, and treatment simulation. However, the lack of large-scale, high-quality, and openly accessible datasets tailored for medical contexts with strict anatomical and clinical constraints has significantly hindered progress in this domain. To bridge this gap, we introduce Med-Banana-50K, a comprehensive dataset of over 50k medically curated image edits spanning chest X-ray, brain MRI, and fundus photography across 23 diseases. Each sample supports bidirectional lesion editing (addition and removal) and is constructed using Gemini-2.5-Flash-Image based on real clinical images. A key differentiator of our dataset is the medically grounded quality control protocol: we employ an LLM-as-Judge evaluation framework with criteria such as instruction compliance, structural plausibility, image realism, and fidelity preservation, alongside iterative refinement over up to five rounds. Additionally, Med-Banana-50K includes around 37,000 failed editing attempts with full evaluation logs to support preference learning and alignment research. By offering a large-scale, medically rigorous, and fully documented resource, Med-Banana-50K establishes a critical foundation for developing and evaluating reliable medical image editing systems. Our dataset and code are publicly available. [https://github.com/richardChenzhihui/med-banana-50k].
Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/
♻ ☆ Preserving Speaker Information in Direct Speech-to-Speech Translation with Non-Autoregressive Generation and Pretraining
Speech-to-Speech Translation (S2ST) refers to the conversion of speech in one language into semantically equivalent speech in another language, facilitating communication between speakers of different languages. Speech-to-Discrete Unit Translation (S2UT), a mainstream approach for end-to-end S2ST, addresses challenges such as error propagation across modules and slow inference speed often encountered in traditional cascade systems. However, as discrete units primarily capture content information, conventional S2UT methods fail to retain speaker-specific characteristics from the source. Our previous work, SC-S2UT, introduced a speaker adapter and a unit-to-mel structure, enabling the preservation of speaker information and non-autoregressive speech generation. Building on this foundation, this study proposes a self-supervised pretraining method to enrich the information extracted by both the speaker adapter and the unit-to-mel structure. Additionally, we investigate different feature fusion strategies to further improve the integration of speaker and content features. Experiments conducted on the CVSS-T dataset for ES-EN and FR-EN tasks demonstrate that our proposed method achieves a BLEU score improvement of 1.14 compared to SC-S2UT, along with significant enhancements in MOS and speaker similarity. Furthermore, our approach achieves translation quality comparable to traditional S2UT, with only a minimal increase of 0.04s per utterance in inference time, while maintaining high speaker similarity. These results validate the effectiveness of the proposed method.
Artificial Intelligent 156
☆ TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning
Temporal search aims to identify a minimal set of relevant frames from tens of thousands based on a given query, serving as a foundation for accurate long-form video understanding. Existing works attempt to progressively narrow the search space. However, these approaches typically rely on a hand-crafted search process, lacking end-to-end optimization for learning optimal search strategies. In this paper, we propose TimeSearch-R, which reformulates temporal search as interleaved text-video thinking, seamlessly integrating searching video clips into the reasoning process through reinforcement learning (RL). However, applying RL training methods, such as Group Relative Policy Optimization (GRPO), to video reasoning can result in unsupervised intermediate search decisions. This leads to insufficient exploration of the video content and inconsistent logical reasoning. To address these issues, we introduce GRPO with Completeness Self-Verification (GRPO-CSV), which gathers searched video frames from the interleaved reasoning process and utilizes the same policy model to verify the adequacy of searched frames, thereby improving the completeness of video reasoning. Additionally, we construct datasets specifically designed for the SFT cold-start and RL training of GRPO-CSV, filtering out samples with weak temporal dependencies to enhance task difficulty and improve temporal search capabilities. Extensive experiments demonstrate that TimeSearch-R achieves significant improvements on temporal search benchmarks such as Haystack-LVBench and Haystack-Ego4D, as well as long-form video understanding benchmarks like VideoMME and MLVU. Notably, TimeSearch-R establishes a new state-of-the-art on LongVideoBench with 4.1% improvement over the base model Qwen2.5-VL and 2.0% over the advanced video reasoning model Video-R1. Our code is available at https://github.com/Time-Search/TimeSearch-R.
comment: 22 pages, 17 figures. Official code: https://github.com/Time-Search/TimeSearch-R
☆ DGTN: Graph-Enhanced Transformer with Diffusive Attention Gating Mechanism for Enzyme DDG Prediction
Predicting the effect of amino acid mutations on enzyme thermodynamic stability (DDG) is fundamental to protein engineering and drug design. While recent deep learning approaches have shown promise, they often process sequence and structure information independently, failing to capture the intricate coupling between local structural geometry and global sequential patterns. We present DGTN (Diffused Graph-Transformer Network), a novel architecture that co-learns graph neural network (GNN) weights for structural priors and transformer attention through a diffusion mechanism. Our key innovation is a bidirectional diffusion process where: (1) GNN-derived structural embeddings guide transformer attention via learnable diffusion kernels, and (2) transformer representations refine GNN message passing through attention-modulated graph updates. We provide rigorous mathematical analysis showing this co-learning scheme achieves provably better approximation bounds than independent processing. On ProTherm and SKEMPI benchmarks, DGTN achieves state-of-the-art performance (Pearson Rho = 0.87, RMSE = 1.21 kcal/mol), with 6.2% improvement over best baselines. Ablation studies confirm the diffusion mechanism contributes 4.8 points to correlation. Our theoretical analysis proves the diffused attention converges to optimal structure-sequence coupling, with convergence rate O(1/sqrt(T) ) where T is diffusion steps. This work establishes a principled framework for integrating heterogeneous protein representations through learnable diffusion.
☆ On Flow Matching KL Divergence
We derive a deterministic, non-asymptotic upper bound on the Kullback-Leibler (KL) divergence of the flow-matching distribution approximation. In particular, if the $L_2$ flow-matching loss is bounded by $\epsilon^2 > 0$, then the KL divergence between the true data distribution and the estimated distribution is bounded by $A_1 \epsilon + A_2 \epsilon^2$. Here, the constants $A_1$ and $A_2$ depend only on the regularities of the data and velocity fields. Consequently, this bound implies statistical convergence rates of Flow Matching Transformers under the Total Variation (TV) distance. We show that, flow matching achieves nearly minimax-optimal efficiency in estimating smooth distributions. Our results make the statistical efficiency of flow matching comparable to that of diffusion models under the TV distance. Numerical studies on synthetic and learned velocities corroborate our theory.
☆ AI Literacy Assessment Revisited: A Task-Oriented Approach Aligned with Real-world Occupations
As artificial intelligence (AI) systems become ubiquitous in professional contexts, there is an urgent need to equip workers, often with backgrounds outside of STEM, with the skills to use these tools effectively as well as responsibly, that is, to be AI literate. However, prevailing definitions and therefore assessments of AI literacy often emphasize foundational technical knowledge, such as programming, mathematics, and statistics, over practical knowledge such as interpreting model outputs, selecting tools, or identifying ethical concerns. This leaves a noticeable gap in assessing someone's AI literacy for real-world job use. We propose a work-task-oriented assessment model for AI literacy which is grounded in the competencies required for effective use of AI tools in professional settings. We describe the development of a novel AI literacy assessment instrument, and accompanying formative assessments, in the context of a US Navy robotics training program. The program included training in robotics and AI literacy, as well as a competition with practical tasks and a multiple choice scenario task meant to simulate use of AI in a job setting. We found that, as a measure of applied AI literacy, the competition's scenario task outperformed the tests we adopted from past research or developed ourselves. We argue that when training people for AI-related work, educators should consider evaluating them with instruments that emphasize highly contextualized practical skills rather than abstract technical knowledge, especially when preparing workers without technical backgrounds for AI-integrated roles.
☆ SWE-Compass: Towards Unified Evaluation of Agentic Coding Abilities for Large Language Models
Evaluating large language models (LLMs) for software engineering has been limited by narrow task coverage, language bias, and insufficient alignment with real-world developer workflows. Existing benchmarks often focus on algorithmic problems or Python-centric bug fixing, leaving critical dimensions of software engineering underexplored. To address these gaps, we introduce SWE-Compass1, a comprehensive benchmark that unifies heterogeneous code-related evaluations into a structured and production-aligned framework. SWE-Compass spans 8 task types, 8 programming scenarios, and 10 programming languages, with 2000 high-quality instances curated from authentic GitHub pull requests and refined through systematic filtering and validation. We benchmark ten state-of-the-art LLMs under two agentic frameworks, SWE-Agent and Claude Code, revealing a clear hierarchy of difficulty across task types, languages, and scenarios. Moreover, by aligning evaluation with real-world developer practices, SWE-Compass provides a rigorous and reproducible foundation for diagnosing and advancing agentic coding capabilities in large language models.
☆ Self-adaptive weighting and sampling for physics-informed neural networks
Physics-informed deep learning has emerged as a promising framework for solving partial differential equations (PDEs). Nevertheless, training these models on complex problems remains challenging, often leading to limited accuracy and efficiency. In this work, we introduce a hybrid adaptive sampling and weighting method to enhance the performance of physics-informed neural networks (PINNs). The adaptive sampling component identifies training points in regions where the solution exhibits rapid variation, while the adaptive weighting component balances the convergence rate across training points. Numerical experiments show that applying only adaptive sampling or only adaptive weighting is insufficient to consistently achieve accurate predictions, particularly when training points are scarce. Since each method emphasizes different aspects of the solution, their effectiveness is problem dependent. By combining both strategies, the proposed framework consistently improves prediction accuracy and training efficiency, offering a more robust approach for solving PDEs with PINNs.
comment: 11 figures
☆ APP: Accelerated Path Patching with Task-Specific Pruning
Circuit discovery is a key step in many mechanistic interpretability pipelines. Current methods, such as Path Patching, are computationally expensive and have limited in-depth circuit analysis for smaller models. In this study, we propose Accelerated Path Patching (APP), a hybrid approach leveraging our novel contrastive attention head pruning method to drastically reduce the search space of circuit discovery methods. Our Contrastive-FLAP pruning algorithm uses techniques from causal mediation analysis to assign higher pruning scores to task-specific attention heads, leading to higher performing sparse models compared to traditional pruning techniques. Although Contrastive-FLAP is successful at preserving task-specific heads that existing pruning algorithms remove at low sparsity ratios, the circuits found by Contrastive-FLAP alone are too large to satisfy the minimality constraint required in circuit analysis. APP first applies Contrastive-FLAP to reduce the search space on required for circuit discovery algorithms by, on average, 56\%. Next, APP, applies traditional Path Patching on the remaining attention heads, leading to a speed up of 59.63\%-93.27\% compared to Path Patching applied to the dense model. Despite the substantial computational saving that APP provides, circuits obtained from APP exhibit substantial overlap and similar performance to previously established Path Patching circuits
☆ "I Like That You Have to Poke Around": Instructors on How Experiential Approaches to AI Literacy Spark Inquiry and Critical Thinking
As artificial intelligence (AI) increasingly shapes decision-making across domains, there is a growing need to support AI literacy among learners beyond computer science. However, many current approaches rely on programming-heavy tools or abstract lecture-based content, limiting accessibility for non-STEM audiences. This paper presents findings from a study of AI User, a modular, web-based curriculum that teaches core AI concepts through interactive, no-code projects grounded in real-world scenarios. The curriculum includes eight projects; this study focuses on instructor feedback on Projects 5-8, which address applied topics such as natural language processing, computer vision, decision support, and responsible AI. Fifteen community college instructors participated in structured focus groups, completing the projects as learners and providing feedback through individual reflection and group discussion. Using thematic analysis, we examined how instructors evaluated the design, instructional value, and classroom applicability of these experiential activities. Findings highlight instructors' appreciation for exploratory tasks, role-based simulations, and real-world relevance, while also surfacing design trade-offs around cognitive load, guidance, and adaptability for diverse learners. This work extends prior research on AI literacy by centering instructor perspectives on teaching complex AI topics without code. It offers actionable insights for designing inclusive, experiential AI learning resources that scale across disciplines and learner backgrounds.
☆ ProDER: A Continual Learning Approach for Fault Prediction in Evolving Smart Grids
As smart grids evolve to meet growing energy demands and modern operational challenges, the ability to accurately predict faults becomes increasingly critical. However, existing AI-based fault prediction models struggle to ensure reliability in evolving environments where they are required to adapt to new fault types and operational zones. In this paper, we propose a continual learning (CL) framework in the smart grid context to evolve the model together with the environment. We design four realistic evaluation scenarios grounded in class-incremental and domain-incremental learning to emulate evolving grid conditions. We further introduce Prototype-based Dark Experience Replay (ProDER), a unified replay-based approach that integrates prototype-based feature regularization, logit distillation, and a prototype-guided replay memory. ProDER achieves the best performance among tested CL techniques, with only a 0.045 accuracy drop for fault type prediction and 0.015 for fault zone prediction. These results demonstrate the practicality of CL for scalable, real-world fault prediction in smart grids.
Multi-modal Loop Closure Detection with Foundation Models in Severely Unstructured Environments
Robust loop closure detection is a critical component of Simultaneous Localization and Mapping (SLAM) algorithms in GNSS-denied environments, such as in the context of planetary exploration. In these settings, visual place recognition often fails due to aliasing and weak textures, while LiDAR-based methods suffer from sparsity and ambiguity. This paper presents MPRF, a multimodal pipeline that leverages transformer-based foundation models for both vision and LiDAR modalities to achieve robust loop closure in severely unstructured environments. Unlike prior work limited to retrieval, MPRF integrates a two-stage visual retrieval strategy with explicit 6-DoF pose estimation, combining DINOv2 features with SALAD aggregation for efficient candidate screening and SONATA-based LiDAR descriptors for geometric verification. Experiments on the S3LI dataset and S3LI Vulcano dataset show that MPRF outperforms state-of-the-art retrieval methods in precision while enhancing pose estimation robustness in low-texture regions. By providing interpretable correspondences suitable for SLAM back-ends, MPRF achieves a favorable trade-off between accuracy, efficiency, and reliability, demonstrating the potential of foundation models to unify place recognition and pose estimation. Code and models will be released at github.com/DLR-RM/MPRF.
comment: Under review for ICRA 2026
☆ Robust Neural Audio Fingerprinting using Music Foundation Models
The proliferation of distorted, compressed, and manipulated music on modern media platforms like TikTok motivates the development of more robust audio fingerprinting techniques to identify the sources of musical recordings. In this paper, we develop and evaluate new neural audio fingerprinting techniques with the aim of improving their robustness. We make two contributions to neural fingerprinting methodology: (1) we use a pretrained music foundation model as the backbone of the neural architecture and (2) we expand the use of data augmentation to train fingerprinting models under a wide variety of audio manipulations, including time streching, pitch modulation, compression, and filtering. We systematically evaluate our methods in comparison to two state-of-the-art neural fingerprinting models: NAFP and GraFPrint. Results show that fingerprints extracted with music foundation models (e.g., MuQ, MERT) consistently outperform models trained from scratch or pretrained on non-musical audio. Segment-level evaluation further reveals their capability to accurately localize fingerprint matches, an important practical feature for catalog management.
☆ Sample Complexity of Distributionally Robust Off-Dynamics Reinforcement Learning with Online Interaction ICML 2025
Off-dynamics reinforcement learning (RL), where training and deployment transition dynamics are different, can be formulated as learning in a robust Markov decision process (RMDP) where uncertainties in transition dynamics are imposed. Existing literature mostly assumes access to generative models allowing arbitrary state-action queries or pre-collected datasets with a good state coverage of the deployment environment, bypassing the challenge of exploration. In this work, we study a more realistic and challenging setting where the agent is limited to online interaction with the training environment. To capture the intrinsic difficulty of exploration in online RMDPs, we introduce the supremal visitation ratio, a novel quantity that measures the mismatch between the training dynamics and the deployment dynamics. We show that if this ratio is unbounded, online learning becomes exponentially hard. We propose the first computationally efficient algorithm that achieves sublinear regret in online RMDPs with $f$-divergence based transition uncertainties. We also establish matching regret lower bounds, demonstrating that our algorithm achieves optimal dependence on both the supremal visitation ratio and the number of interaction episodes. Finally, we validate our theoretical results through comprehensive numerical experiments.
comment: 53 pages, 6 figures, 3 tables. Published in Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)
☆ AI Assisted AR Assembly: Object Recognition and Computer Vision for Augmented Reality Assisted Assembly
We present an AI-assisted Augmented Reality assembly workflow that uses deep learning-based object recognition to identify different assembly components and display step-by-step instructions. For each assembly step, the system displays a bounding box around the corresponding components in the physical space, and where the component should be placed. By connecting assembly instructions with the real-time location of relevant components, the system eliminates the need for manual searching, sorting, or labeling of different components before each assembly. To demonstrate the feasibility of using object recognition for AR-assisted assembly, we highlight a case study involving the assembly of LEGO sculptures.
comment: Accepted to the Association for Computing Machinery (ACM) Symposium on Computational Fabrication (SCF '25)
☆ TeaRAG: A Token-Efficient Agentic Retrieval-Augmented Generation Framework
Retrieval-Augmented Generation (RAG) utilizes external knowledge to augment Large Language Models' (LLMs) reliability. For flexibility, agentic RAG employs autonomous, multi-round retrieval and reasoning to resolve queries. Although recent agentic RAG has improved via reinforcement learning, they often incur substantial token overhead from search and reasoning processes. This trade-off prioritizes accuracy over efficiency. To address this issue, this work proposes TeaRAG, a token-efficient agentic RAG framework capable of compressing both retrieval content and reasoning steps. 1) First, the retrieved content is compressed by augmenting chunk-based semantic retrieval with a graph retrieval using concise triplets. A knowledge association graph is then built from semantic similarity and co-occurrence. Finally, Personalized PageRank is leveraged to highlight key knowledge within this graph, reducing the number of tokens per retrieval. 2) Besides, to reduce reasoning steps, Iterative Process-aware Direct Preference Optimization (IP-DPO) is proposed. Specifically, our reward function evaluates the knowledge sufficiency by a knowledge matching mechanism, while penalizing excessive reasoning steps. This design can produce high-quality preference-pair datasets, supporting iterative DPO to improve reasoning conciseness. Across six datasets, TeaRAG improves the average Exact Match by 4% and 2% while reducing output tokens by 61% and 59% on Llama3-8B-Instruct and Qwen2.5-14B-Instruct, respectively. Code is available at https://github.com/Applied-Machine-Learning-Lab/TeaRAG.
comment: 32 pages
☆ Reasoning Is All You Need for Urban Planning AI AAAI 2026
AI has proven highly successful at urban planning analysis -- learning patterns from data to predict future conditions. The next frontier is AI-assisted decision-making: agents that recommend sites, allocate resources, and evaluate trade-offs while reasoning transparently about constraints and stakeholder values. Recent breakthroughs in reasoning AI -- CoT prompting, ReAct, and multi-agent collaboration frameworks -- now make this vision achievable. This position paper presents the Agentic Urban Planning AI Framework for reasoning-capable planning agents that integrates three cognitive layers (Perception, Foundation, Reasoning) with six logic components (Analysis, Generation, Verification, Evaluation, Collaboration, Decision) through a multi-agents collaboration framework. We demonstrate why planning decisions require explicit reasoning capabilities that are value-based (applying normative principles), rule-grounded (guaranteeing constraint satisfaction), and explainable (generating transparent justifications) -- requirements that statistical learning alone cannot fulfill. We compare reasoning agents with statistical learning, present a comprehensive architecture with benchmark evaluation metrics, and outline critical research challenges. This framework shows how AI agents can augment human planners by systematically exploring solution spaces, verifying regulatory compliance, and deliberating over trade-offs transparently -- not replacing human judgment but amplifying it with computational reasoning capabilities.
comment: Submitted to AAAI 2026 Workshop AI4UP
☆ AI Literacy for Community Colleges: Instructors' Perspectives on Scenario-Based and Interactive Approaches to Teaching AI
This research category full paper investigates how community college instructors evaluate interactive, no-code AI literacy resources designed for non-STEM learners. As artificial intelligence becomes increasingly integrated into everyday technologies, AI literacy - the ability to evaluate AI systems, communicate with them, and understand their broader impacts - has emerged as a critical skill across disciplines. Yet effective, scalable approaches for teaching these concepts in higher education remain limited, particularly for students outside STEM fields. To address this gap, we developed AI User, an interactive online curriculum that introduces core AI concepts through scenario - based activities set in real - world contexts. This study presents findings from four focus groups with instructors who engaged with AI User materials and participated in structured feedback activities. Thematic analysis revealed that instructors valued exploratory tasks that simulated real - world AI use cases and fostered experimentation, while also identifying challenges related to scaffolding, accessibility, and multi-modal support. A ranking task for instructional support materials showed a strong preference for interactive demonstrations over traditional educational materials like conceptual guides or lecture slides. These findings offer insights into instructor perspectives on making AI concepts more accessible and relevant for broad learner audiences. They also inform the design of AI literacy tools that align with diverse teaching contexts and support critical engagement with AI in higher education.
☆ A multimodal multiplex of the mental lexicon for multilingual individuals
Historically, bilingualism was often perceived as an additional cognitive load that could hinder linguistic and intellectual development. However, over the last three decades, this view has changed considerably. Numerous studies have aimed to model and understand the architecture of the bilingual word recognition system Dijkstra and van Heuven (2002), investigating how parallel activation operates in the brain and how one language influences another Kroll et al. (2015). Increasingly, evidence suggests that multilinguals, individuals who speak three or more languages, can perform better than monolinguals in various linguistic and cognitive tasks, such as learning an additional language Abu-Rabia and Sanitsky (2010). This research proposal focuses on the study of the mental lexicon and how it may be structured in individuals who speak multiple languages. Building on the work of Stella et al. (2018), who investigated explosive learning in humans using a multiplex model of the mental lexicon, and the Bilingual Interactive Activation (BIA+) framework proposed by Dijkstra and van Heuven (2002), the present study applies the same multilayer network principles introduced by Kivela et al. (2014). Our experimental design extends previous research by incorporating multimodality into the multiplex model, introducing an additional layer that connects visual inputs to their corresponding lexical representations across the multilingual layers of the mental lexicon. In this research, we aim to explore how a heritage language influences the acquisition of another language. Specifically, we ask: Does the presence of visual input in a translation task influence participants' proficiency and accuracy compared to text-only conditions?
☆ Perceptually Aligning Representations of Music via Noise-Augmented Autoencoders NeurIPS 2025
We argue that training autoencoders to reconstruct inputs from noised versions of their encodings, when combined with perceptual losses, yields encodings that are structured according to a perceptual hierarchy. We demonstrate the emergence of this hierarchical structure by showing that, after training an audio autoencoder in this manner, perceptually salient information is captured in coarser representation structures than with conventional training. Furthermore, we show that such perceptual hierarchies improve latent diffusion decoding in the context of estimating surprisal in music pitches and predicting EEG-brain responses to music listening. Pretrained weights are available on github.com/CPJKU/pa-audioic.
comment: Accepted at NeurIPS 2025 - AI for Music Workshop, 11 pages, 5 figures, 1 table
☆ What Are the Facts? Automated Extraction of Court-Established Facts from Criminal-Court Opinions
Criminal justice administrative data contain only a limited amount of information about the committed offense. However, there is an unused source of extensive information in continental European courts' decisions: descriptions of criminal behaviors in verdicts by which offenders are found guilty. In this paper, we study the feasibility of extracting these descriptions from publicly available court decisions from Slovakia. We use two different approaches for retrieval: regular expressions and large language models (LLMs). Our baseline was a simple method employing regular expressions to identify typical words occurring before and after the description. The advanced regular expression approach further focused on "sparing" and its normalization (insertion of spaces between individual letters), typical for delineating the description. The LLM approach involved prompting the Gemini Flash 2.0 model to extract the descriptions using predefined instructions. Although the baseline identified descriptions in only 40.5% of verdicts, both methods significantly outperformed it, achieving 97% with advanced regular expressions and 98.75% with LLMs, and 99.5% when combined. Evaluation by law students showed that both advanced methods matched human annotations in about 90% of cases, compared to just 34.5% for the baseline. LLMs fully matched human-labeled descriptions in 91.75% of instances, and a combination of advanced regular expressions with LLMs reached 92%.
comment: Paper accepted to the proceedings of ASAIL 2025 Workshop under ICAIL conference for publication. Paper contains 6 pages (references included) and 2 appendices. It contains 8 tables, no figures
☆ Cleaning Maintenance Logs with LLM Agents for Improved Predictive Maintenance
Economic constraints, limited availability of datasets for reproducibility and shortages of specialized expertise have long been recognized as key challenges to the adoption and advancement of predictive maintenance (PdM) in the automotive sector. Recent progress in large language models (LLMs) presents an opportunity to overcome these barriers and speed up the transition of PdM from research to industrial practice. Under these conditions, we explore the potential of LLM-based agents to support PdM cleaning pipelines. Specifically, we focus on maintenance logs, a critical data source for training well-performing machine learning (ML) models, but one often affected by errors such as typos, missing fields, near-duplicate entries, and incorrect dates. We evaluate LLM agents on cleaning tasks involving six distinct types of noise. Our findings show that LLMs are effective at handling generic cleaning tasks and offer a promising foundation for future industrial applications. While domain-specific errors remain challenging, these results highlight the potential for further improvements through specialized training and enhanced agentic capabilities.
☆ Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation 3DV
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.
comment: This paper has been accepted at International Conference on 3D Vision (3DV) 2026
☆ LiveStar: Live Streaming Assistant for Real-World Online Video Understanding NeurIPS 2025
Despite significant progress in Video Large Language Models (Video-LLMs) for offline video understanding, existing online Video-LLMs typically struggle to simultaneously process continuous frame-by-frame inputs and determine optimal response timing, often compromising real-time responsiveness and narrative coherence. To address these limitations, we introduce LiveStar, a pioneering live streaming assistant that achieves always-on proactive responses through adaptive streaming decoding. Specifically, LiveStar incorporates: (1) a training strategy enabling incremental video-language alignment for variable-length video streams, preserving temporal consistency across dynamically evolving frame sequences; (2) a response-silence decoding framework that determines optimal proactive response timing via a single forward pass verification; (3) memory-aware acceleration via peak-end memory compression for online inference on 10+ minute videos, combined with streaming key-value cache to achieve 1.53x faster inference. We also construct an OmniStar dataset, a comprehensive dataset for training and benchmarking that encompasses 15 diverse real-world scenarios and 5 evaluation tasks for online video understanding. Extensive experiments across three benchmarks demonstrate LiveStar's state-of-the-art performance, achieving an average 19.5% improvement in semantic correctness with 18.1% reduced timing difference compared to existing online Video-LLMs, while improving FPS by 12.0% across all five OmniStar tasks. Our model and dataset can be accessed at https://github.com/yzy-bupt/LiveStar.
comment: NeurIPS 2025 Accepted
☆ DeepEyesV2: Toward Agentic Multimodal Model
Agentic multimodal models should not only comprehend text and images, but also actively invoke external tools, such as code execution environments and web search, and integrate these operations into reasoning. In this work, we introduce DeepEyesV2 and explore how to build an agentic multimodal model from the perspectives of data construction, training methods, and model evaluation. We observe that direct reinforcement learning alone fails to induce robust tool-use behavior. This phenomenon motivates a two-stage training pipeline: a cold-start stage to establish tool-use patterns, and reinforcement learning stage to further refine tool invocation. We curate a diverse, moderately challenging training dataset, specifically including examples where tool use is beneficial. We further introduce RealX-Bench, a comprehensive benchmark designed to evaluate real-world multimodal reasoning, which inherently requires the integration of multiple capabilities, including perception, search, and reasoning. We evaluate DeepEyesV2 on RealX-Bench and other representative benchmarks, demonstrating its effectiveness across real-world understanding, mathematical reasoning, and search-intensive tasks. Moreover, DeepEyesV2 exhibits task-adaptive tool invocation, tending to use image operations for perception tasks and numerical computations for reasoning tasks. Reinforcement learning further enables complex tool combinations and allows model to selectively invoke tools based on context. We hope our study can provide guidance for community in developing agentic multimodal models.
comment: Homepage: https://visual-agent.github.io/
☆ TAMAS: Benchmarking Adversarial Risks in Multi-Agent LLM Systems ICML 2025
Large Language Models (LLMs) have demonstrated strong capabilities as autonomous agents through tool use, planning, and decision-making abilities, leading to their widespread adoption across diverse tasks. As task complexity grows, multi-agent LLM systems are increasingly used to solve problems collaboratively. However, safety and security of these systems remains largely under-explored. Existing benchmarks and datasets predominantly focus on single-agent settings, failing to capture the unique vulnerabilities of multi-agent dynamics and co-ordination. To address this gap, we introduce $\textbf{T}$hreats and $\textbf{A}$ttacks in $\textbf{M}$ulti-$\textbf{A}$gent $\textbf{S}$ystems ($\textbf{TAMAS}$), a benchmark designed to evaluate the robustness and safety of multi-agent LLM systems. TAMAS includes five distinct scenarios comprising 300 adversarial instances across six attack types and 211 tools, along with 100 harmless tasks. We assess system performance across ten backbone LLMs and three agent interaction configurations from Autogen and CrewAI frameworks, highlighting critical challenges and failure modes in current multi-agent deployments. Furthermore, we introduce Effective Robustness Score (ERS) to assess the tradeoff between safety and task effectiveness of these frameworks. Our findings show that multi-agent systems are highly vulnerable to adversarial attacks, underscoring the urgent need for stronger defenses. TAMAS provides a foundation for systematically studying and improving the safety of multi-agent LLM systems.
comment: Accepted at ICML 2025 MAS Workshop. This version includes additional experiments and analysis
☆ Integrating Score-Based Diffusion Models with Machine Learning-Enhanced Localization for Advanced Data Assimilation in Geological Carbon Storage
Accurate characterization of subsurface heterogeneity is important for the safe and effective implementation of geological carbon storage (GCS) projects. This paper explores how machine learning methods can enhance data assimilation for GCS with a framework that integrates score-based diffusion models with machine learning-enhanced localization in channelized reservoirs during CO$_2$ injection. We employ a machine learning-enhanced localization framework that uses large ensembles ($N_s = 5000$) with permeabilities generated by the diffusion model and states computed by simple ML algorithms to improve covariance estimation for the Ensemble Smoother with Multiple Data Assimilation (ESMDA). We apply ML algorithms to a prior ensemble of channelized permeability fields, generated with the geostatistical model FLUVSIM. Our approach is applied on a CO$_2$ injection scenario simulated using the Delft Advanced Research Terra Simulator (DARTS). Our ML-based localization maintains significantly more ensemble variance than when localization is not applied, while achieving comparable data-matching quality. This framework has practical implications for GCS projects, helping improve the reliability of uncertainty quantification for risk assessment.
comment: Corresponding author: Gabriel Serr\~ao Seabra
☆ An End-to-End Deep Reinforcement Learning Approach for Solving the Traveling Salesman Problem with Drones
The emergence of truck-drone collaborative systems in last-mile logistics has positioned the Traveling Salesman Problem with Drones (TSP-D) as a pivotal extension of classical routing optimization, where synchronized vehicle coordination promises substantial operational efficiency and reduced environmental impact, yet introduces NP-hard combinatorial complexity beyond the reach of conventional optimization paradigms. Deep reinforcement learning offers a theoretically grounded framework to address TSP-D's inherent challenges through self-supervised policy learning and adaptive decision-making. This study proposes a hierarchical Actor-Critic deep reinforcement learning framework for solving the TSP-D problem. The architecture consists of two primary components: a Transformer-inspired encoder and an efficient Minimal Gated Unit decoder. The encoder incorporates a novel, optimized k-nearest neighbors sparse attention mechanism specifically for focusing on relevant spatial relationships, further enhanced by the integration of global node features. The Minimal Gated Unit decoder processes these encoded representations to efficiently generate solution sequences. The entire framework operates within an asynchronous advantage actor-critic paradigm. Experimental results show that, on benchmark TSP-D instances of various scales (N=10 to 100), the proposed model can obtain competitive or even superior solutions in shorter average computation times compared to high-performance heuristic algorithms and existing reinforcement learning methods. Moreover, compared to advanced reinforcement learning algorithm benchmarks, the proposed framework significantly reduces the total training time required while achieving superior final performance, highlighting its notable advantage in training efficiency.
☆ OregairuChar: A Benchmark Dataset for Character Appearance Frequency Analysis in My Teen Romantic Comedy SNAFU
The analysis of character appearance frequency is essential for understanding narrative structure, character prominence, and story progression in anime. In this work, we introduce OregairuChar, a benchmark dataset designed for appearance frequency analysis in the anime series My Teen Romantic Comedy SNAFU. The dataset comprises 1600 manually selected frames from the third season, annotated with 2860 bounding boxes across 11 main characters. OregairuChar captures diverse visual challenges, including occlusion, pose variation, and inter-character similarity, providing a realistic basis for appearance-based studies. To enable quantitative research, we benchmark several object detection models on the dataset and leverage their predictions for fine-grained, episode-level analysis of character presence over time. This approach reveals patterns of character prominence and their evolution within the narrative. By emphasizing appearance frequency, OregairuChar serves as a valuable resource for exploring computational narrative dynamics and character-centric storytelling in stylized media.
☆ A Gate-Based Quantum Genetic Algorithm for Real-Valued Global Optimization
We propose a gate-based Quantum Genetic Algorithm (QGA) for real-valued global optimization. In this model, individuals are represented by quantum circuits whose measurement outcomes are decoded into real-valued vectors through binary discretization. Evolutionary operators act directly on circuit structures, allowing mutation and crossover to explore the space of gate-based encodings. Both fixed-depth and variable-depth variants are introduced, enabling either uniform circuit complexity or adaptive structural evolution. Fitness is evaluated through quantum sampling, using the mean decoded output of measurement outcomes as the argument of the objective function. To isolate the impact of quantum resources, we compare gate sets with and without the Hadamard gate, showing that superposition consistently improves convergence and robustness across benchmark functions such as the Rastrigin function. Furthermore, we demonstrate that introducing pairwise inter-individual entanglement in the population accelerates early convergence, revealing that quantum correlations among individuals provide an additional optimization advantage. Together, these results show that both superposition and entanglement enhance the search dynamics of evolutionary quantum algorithms, establishing gate-based QGAs as a promising framework for quantum-enhanced global optimization.
comment: 16 pages
☆ Accurate online action and gesture recognition system using detectors and Deep SPD Siamese Networks
Online continuous motion recognition is a hot topic of research since it is more practical in real life application cases. Recently, Skeleton-based approaches have become increasingly popular, demonstrating the power of using such 3D temporal data. However, most of these works have focused on segment-based recognition and are not suitable for the online scenarios. In this paper, we propose an online recognition system for skeleton sequence streaming composed from two main components: a detector and a classifier, which use a Semi-Positive Definite (SPD) matrix representation and a Siamese network. The powerful statistical representations for the skeletal data given by the SPD matrices and the learning of their semantic similarity by the Siamese network enable the detector to predict time intervals of the motions throughout an unsegmented sequence. In addition, they ensure the classifier capability to recognize the motion in each predicted interval. The proposed detector is flexible and able to identify the kinetic state continuously. We conduct extensive experiments on both hand gesture and body action recognition benchmarks to prove the accuracy of our online recognition system which in most cases outperforms state-of-the-art performances.
☆ 4D3R: Motion-Aware Neural Reconstruction and Rendering of Dynamic Scenes from Monocular Videos
Novel view synthesis from monocular videos of dynamic scenes with unknown camera poses remains a fundamental challenge in computer vision and graphics. While recent advances in 3D representations such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have shown promising results for static scenes, they struggle with dynamic content and typically rely on pre-computed camera poses. We present 4D3R, a pose-free dynamic neural rendering framework that decouples static and dynamic components through a two-stage approach. Our method first leverages 3D foundational models for initial pose and geometry estimation, followed by motion-aware refinement. 4D3R introduces two key technical innovations: (1) a motion-aware bundle adjustment (MA-BA) module that combines transformer-based learned priors with SAM2 for robust dynamic object segmentation, enabling more accurate camera pose refinement; and (2) an efficient Motion-Aware Gaussian Splatting (MA-GS) representation that uses control points with a deformation field MLP and linear blend skinning to model dynamic motion, significantly reducing computational cost while maintaining high-quality reconstruction. Extensive experiments on real-world dynamic datasets demonstrate that our approach achieves up to 1.8dB PSNR improvement over state-of-the-art methods, particularly in challenging scenarios with large dynamic objects, while reducing computational requirements by 5x compared to previous dynamic scene representations.
comment: 17 pages, 5 figures
☆ Autonomous generation of different courses of action in mechanized combat operations
In this paper, we propose a methodology designed to support decision-making during the execution phase of military ground combat operations, with a focus on one's actions. This methodology generates and evaluates recommendations for various courses of action for a mechanized battalion, commencing with an initial set assessed by their anticipated outcomes. It systematically produces thousands of individual action alternatives, followed by evaluations aimed at identifying alternative courses of action with superior outcomes. These alternatives are appraised in light of the opponent's status and actions, considering unit composition, force ratios, types of offense and defense, and anticipated advance rates. Field manuals evaluate battle outcomes and advancement rates. The processes of generation and evaluation work concurrently, yielding a variety of alternative courses of action. This approach facilitates the management of new course generation based on previously evaluated actions. As the combat unfolds and conditions evolve, revised courses of action are formulated for the decision-maker within a sequential decision-making framework.
comment: In Proceedings of the 30th International Command and Control Research & Technology Symposium, Stockholm, Sweden, 3-6 November 2025, paper 009
☆ No One-Model-Fits-All: Uncovering Spatio-Temporal Forecasting Trade-offs with Graph Neural Networks and Foundation Models
Modern IoT deployments for environmental sensing produce high volume spatiotemporal data to support downstream tasks such as forecasting, typically powered by machine learning models. While existing filtering and strategic deployment techniques optimize collected data volume at the edge, they overlook how variations in sampling frequencies and spatial coverage affect downstream model performance. In many forecasting models, incorporating data from additional sensors denoise predictions by providing broader spatial contexts. This interplay between sampling frequency, spatial coverage and different forecasting model architectures remain underexplored. This work presents a systematic study of forecasting models - classical models (VAR), neural networks (GRU, Transformer), spatio-temporal graph neural networks (STGNNs), and time series foundation models (TSFMs: Chronos Moirai, TimesFM) under varying spatial sensor nodes density and sampling intervals using real-world temperature data in a wireless sensor network. Our results show that STGNNs are effective when sensor deployments are sparse and sampling rate is moderate, leveraging spatial correlations via encoded graph structure to compensate for limited coverage. In contrast, TSFMs perform competitively at high frequencies but degrade when spatial coverage from neighboring sensors is reduced. Crucially, the multivariate TSFM Moirai outperforms all models by natively learning cross-sensor dependencies. These findings offer actionable insights for building efficient forecasting pipelines in spatio-temporal systems. All code for model configurations, training, dataset, and logs are open-sourced for reproducibility: https://github.com/UIUC-MONET-Projects/Benchmarking-Spatiotemporal-Forecast-Models
☆ Model Merging Improves Zero-Shot Generalization in Bioacoustic Foundation Models
Foundation models capable of generalizing across species and tasks represent a promising new frontier in bioacoustics, with NatureLM being one of the most prominent examples. While its domain-specific fine-tuning yields strong performance on bioacoustic benchmarks, we observe that it also introduces trade-offs in instruction-following flexibility. For instance, NatureLM achieves high accuracy when prompted for either the common or scientific name individually, but its accuracy drops significantly when both are requested in a single prompt. We address this by applying a simple model merging strategy that interpolates NatureLM with its base language model, recovering instruction-following capabilities with minimal loss of domain expertise. Finally, we show that the merged model exhibits markedly stronger zero-shot generalization, achieving over a 200% relative improvement and setting a new state-of-the-art in closed-set zero-shot classification of unseen species.
☆ Generating Software Architecture Description from Source Code using Reverse Engineering and Large Language Model
Software Architecture Descriptions (SADs) are essential for managing the inherent complexity of modern software systems. They enable high-level architectural reasoning, guide design decisions, and facilitate effective communication among diverse stakeholders. However, in practice, SADs are often missing, outdated, or poorly aligned with the system's actual implementation. Consequently, developers are compelled to derive architectural insights directly from source code-a time-intensive process that increases cognitive load, slows new developer onboarding, and contributes to the gradual degradation of clarity over the system's lifetime. To address these issues, we propose a semi-automated generation of SADs from source code by integrating reverse engineering (RE) techniques with a Large Language Model (LLM). Our approach recovers both static and behavioral architectural views by extracting a comprehensive component diagram, filtering architecturally significant elements (core components) via prompt engineering, and generating state machine diagrams to model component behavior based on underlying code logic with few-shots prompting. This resulting views representation offer a scalable and maintainable alternative to traditional manual architectural documentation. This methodology, demonstrated using C++ examples, highlights the potent capability of LLMs to: 1) abstract the component diagram, thereby reducing the reliance on human expert involvement, and 2) accurately represent complex software behaviors, especially when enriched with domain-specific knowledge through few-shot prompting. These findings suggest a viable path toward significantly reducing manual effort while enhancing system understanding and long-term maintainability.
☆ SmartSecChain-SDN: A Blockchain-Integrated Intelligent Framework for Secure and Efficient Software-Defined Networks
With more and more existing networks being transformed to Software-Defined Networking (SDN), they need to be more secure and demand smarter ways of traffic control. This work, SmartSecChain-SDN, is a platform that combines machine learning based intrusion detection, blockchain-based storage of logs, and application-awareness-based priority in SDN networks. To detect network intrusions in a real-time, precision and low-false positives setup, the framework utilizes the application of advanced machine learning algorithms, namely Random Forest, XGBoost, CatBoost, and CNN-BiLSTM. SmartSecChain-SDN is based on the Hyperledger Fabric, which is a permissioned blockchain technology, to provide secure, scalable, and privacy-preserving storage and, thus, guarantee that the Intrusion Detection System (IDS) records cannot be altered and can be analyzed comprehensively. The system also has Quality of Service (QoS) rules and traffic shaping based on applications, which enables prioritization of critical services, such as VoIP, video conferencing, and business applications, as well as de-prioritization of non-essential traffic, such as downloads and updates. Mininet can simulate real-time SDN scenarios because it is used to prototype whole architectures. It is also compatible with controllers OpenDaylight and Ryu. It has tested the framework using the InSDN dataset and proved that it can identify different kinds of cyberattacks and handle bandwidth allocation efficiently under circumstances of resource constraints. SmartSecChain-SDN comprehensively addresses SDN system protection, securing and enhancing. The proposed study offers an innovative, extensible way to improve cybersecurity, regulatory compliance, and the administration of next-generation programmable networks.
comment: 20 pages, 12 figures
☆ From Linear Probing to Joint-Weighted Token Hierarchy: A Foundation Model Bridging Global and Cellular Representations in Biomarker Detection
AI-based biomarkers can infer molecular features directly from hematoxylin & eosin (H&E) slides, yet most pathology foundation models (PFMs) rely on global patch-level embeddings and overlook cell-level morphology. We present a PFM model, JWTH (Joint-Weighted Token Hierarchy), which integrates large-scale self-supervised pretraining with cell-centric post-tuning and attention pooling to fuse local and global tokens. Across four tasks involving four biomarkers and eight cohorts, JWTH achieves up to 8.3% higher balanced accuracy and 1.2% average improvement over prior PFMs, advancing interpretable and robust AI-based biomarker detection in digital pathology.
☆ DL101 Neural Network Outputs and Loss Functions
The loss function used to train a neural network is strongly connected to its output layer from a statistical point of view. This technical report analyzes common activation functions for a neural network output layer, like linear, sigmoid, ReLU, and softmax, detailing their mathematical properties and their appropriate use cases. A strong statistical justification exists for the selection of the suitable loss function for training a deep learning model. This report connects common loss functions such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and various Cross-Entropy losses to the statistical principle of Maximum Likelihood Estimation (MLE). Choosing a specific loss function is equivalent to assuming a specific probability distribution for the model output, highlighting the link between these functions and the Generalized Linear Models (GLMs) that underlie network output layers. Additional scenarios of practical interest are also considered, such as alternative output encodings, constrained outputs, and distributions with heavy tails.
☆ Deep learning models are vulnerable, but adversarial examples are even more vulnerable
Understanding intrinsic differences between adversarial examples and clean samples is key to enhancing DNN robustness and detection against adversarial attacks. This study first empirically finds that image-based adversarial examples are notably sensitive to occlusion. Controlled experiments on CIFAR-10 used nine canonical attacks (e.g., FGSM, PGD) to generate adversarial examples, paired with original samples for evaluation. We introduce Sliding Mask Confidence Entropy (SMCE) to quantify model confidence fluctuation under occlusion. Using 1800+ test images, SMCE calculations supported by Mask Entropy Field Maps and statistical distributions show adversarial examples have significantly higher confidence volatility under occlusion than originals. Based on this, we propose Sliding Window Mask-based Adversarial Example Detection (SWM-AED), which avoids catastrophic overfitting of conventional adversarial training. Evaluations across classifiers and attacks on CIFAR-10 demonstrate robust performance, with accuracy over 62% in most cases and up to 96.5%.
comment: 25 pages,12 figures
☆ No Pose Estimation? No Problem: Pose-Agnostic and Instance-Aware Test-Time Adaptation for Monocular Depth Estimation
Monocular depth estimation (MDE), inferring pixel-level depths in single RGB images from a monocular camera, plays a crucial and pivotal role in a variety of AI applications demanding a three-dimensional (3D) topographical scene. In the real-world scenarios, MDE models often need to be deployed in environments with different conditions from those for training. Test-time (domain) adaptation (TTA) is one of the compelling and practical approaches to address the issue. Although there have been notable advancements in TTA for MDE, particularly in a self-supervised manner, existing methods are still ineffective and problematic when applied to diverse and dynamic environments. To break through this challenge, we propose a novel and high-performing TTA framework for MDE, named PITTA. Our approach incorporates two key innovative strategies: (i) pose-agnostic TTA paradigm for MDE and (ii) instance-aware image masking. Specifically, PITTA enables highly effective TTA on a pretrained MDE network in a pose-agnostic manner without resorting to any camera pose information. Besides, our instance-aware masking strategy extracts instance-wise masks for dynamic objects (e.g., vehicles, pedestrians, etc.) from a segmentation mask produced by a pretrained panoptic segmentation network, by removing static objects including background components. To further boost performance, we also present a simple yet effective edge extraction methodology for the input image (i.e., a single monocular image) and depth map. Extensive experimental evaluations on DrivingStereo and Waymo datasets with varying environmental conditions demonstrate that our proposed framework, PITTA, surpasses the existing state-of-the-art techniques with remarkable performance improvements in MDE during TTA.
☆ Accelerating HDC-CNN Hybrid Models Using Custom Instructions on RISC-V GPUs
Machine learning based on neural networks has advanced rapidly, but the high energy consumption required for training and inference remains a major challenge. Hyperdimensional Computing (HDC) offers a lightweight, brain-inspired alternative that enables high parallelism but often suffers from lower accuracy on complex visual tasks. To overcome this, hybrid accelerators combining HDC and Convolutional Neural Networks (CNNs) have been proposed, though their adoption is limited by poor generalizability and programmability. The rise of open-source RISC-V architectures has created new opportunities for domain-specific GPU design. Unlike traditional proprietary GPUs, emerging RISC-V-based GPUs provide flexible, programmable platforms suitable for custom computation models such as HDC. In this study, we design and implement custom GPU instructions optimized for HDC operations, enabling efficient processing for hybrid HDC-CNN workloads. Experimental results using four types of custom HDC instructions show a performance improvement of up to 56.2 times in microbenchmark tests, demonstrating the potential of RISC-V GPUs for energy-efficient, high-performance computing.
☆ UA-Code-Bench: A Competitive Programming Benchmark for Evaluating LLM Code Generation in Ukrainian
Evaluating the real capabilities of large language models in low-resource languages still represents a challenge, as many existing benchmarks focus on widespread tasks translated from English or evaluate only simple language understanding. This paper introduces UA-Code-Bench, a new open-source benchmark established for a thorough evaluation of language models' code generation and competitive programming problem-solving abilities in Ukrainian. The benchmark comprises 500 problems from the Eolymp platform, evenly distributed across five complexity levels from very easy to very hard. A diverse set of 13 leading proprietary and open-source models, generating Python solutions based on a one-shot prompt, was evaluated via the dedicated Eolymp environment against hidden tests, ensuring code correctness. The obtained results reveal that even top-performing models, such as OpenAI o3 and GPT-5, solve only half of the problems, highlighting the challenge of code generation in low-resource natural language. Furthermore, this research presents a comprehensive analysis of performance across various difficulty levels, as well as an assessment of solution uniqueness and computational efficiency, measured by both elapsed time and memory consumption of the generated solutions. In conclusion, this work demonstrates the value of competitive programming benchmarks in evaluating large language models, especially in underrepresented languages. It also paves the way for future research on multilingual code generation and reasoning-enhanced models. The benchmark, data parsing, preparation, code generation, and evaluation scripts are available at https://huggingface.co/datasets/NLPForUA/ua-code-bench.
comment: 8 pages, 5 figures. XI International conference "Informatics. Culture. Technique." (2025)
☆ PECL: A Heterogeneous Parallel Multi-Domain Network for Radar-Based Human Activity Recognition
Radar systems are increasingly favored for medical applications because they provide non-intrusive monitoring with high privacy and robustness to lighting conditions. However, existing research typically relies on single-domain radar signals and overlooks the temporal dependencies inherent in human activity, which complicates the classification of similar actions. To address this issue, we designed the Parallel-EfficientNet-CBAM-LSTM (PECL) network to process data in three complementary domains: Range-Time, Doppler-Time, and Range-Doppler. PECL combines a channel-spatial attention module and temporal units to capture more features and dynamic dependencies during action sequences, improving both accuracy and robustness. The experimental results show that PECL achieves an accuracy of 96.16% on the same dataset, outperforming existing methods by at least 4.78%. PECL also performs best in distinguishing between easily confused actions. Despite its strong performance, PECL maintains moderate model complexity, with 23.42M parameters and 1324.82M FLOPs. Its parameter-efficient design further reduces computational cost.
☆ Dynamic Residual Encoding with Slide-Level Contrastive Learning for End-to-End Whole Slide Image Representation
Whole Slide Image (WSI) representation is critical for cancer subtyping, cancer recognition and mutation prediction.Training an end-to-end WSI representation model poses significant challenges, as a standard gigapixel slide can contain tens of thousands of image tiles, making it difficult to compute gradients of all tiles in a single mini-batch due to current GPU limitations. To address this challenge, we propose a method of dynamic residual encoding with slide-level contrastive learning (DRE-SLCL) for end-to-end WSI representation. Our approach utilizes a memory bank to store the features of tiles across all WSIs in the dataset. During training, a mini-batch usually contains multiple WSIs. For each WSI in the batch, a subset of tiles is randomly sampled and their features are computed using a tile encoder. Then, additional tile features from the same WSI are selected from the memory bank. The representation of each individual WSI is generated using a residual encoding technique that incorporates both the sampled features and those retrieved from the memory bank. Finally, the slide-level contrastive loss is computed based on the representations and histopathology reports ofthe WSIs within the mini-batch. Experiments conducted over cancer subtyping, cancer recognition, and mutation prediction tasks proved the effectiveness of the proposed DRE-SLCL method.
comment: 8pages, 3figures, published to ACM Digital Library
☆ OvA-LP: A Simple and Efficient Framework for Federated Learning on Non-IID Data
Federated fine-tuning (FFT) adapts foundation models to decentralized data but remains fragile under heterogeneous client distributions due to local drift, i.e., client-level update divergences that induce systematic bias and amplified variance in the global model. Existing aggregation and personalization methods largely correct drift post hoc, which proves brittle under extreme non-IID conditions. We introduce OvA-LP, a minimalist framework that is, to our knowledge, the first explicitly designed to suppress drift at its source within the PEFT-based FFT paradigm. OvA-LP combines linear probing on a frozen encoder with a one-vs-all head and a simple two-stage procedure, preserving pretrained feature geometry and decoupling logits to prevent the mechanisms that amplify drift. On CIFAR-100 with 100 clients, averaged over shard-1, shard-2, and Bernoulli-Dirichlet partitions, OvA-LP retains 95.9% of its IID accuracy, whereas state-of-the-art FFT baselines retain only 10.1% (PFPT) and 34.5% (FFT-MoE) under the same conditions. OvA-LP further maintains resilience under both symmetric and asymmetric label noise. In addition, precomputing encoder features makes per-round cost nearly independent of encoder size. Together, these results demonstrate that OvA-LP provides a principled and efficient basis for robust FFT under heterogeneity.
☆ 8bit-GPT: Exploring Human-AI Interaction on Obsolete Macintosh Operating Systems NeurIPS
The proliferation of assistive chatbots offering efficient, personalized communication has driven widespread over-reliance on them for decision-making, information-seeking and everyday tasks. This dependence was found to have adverse consequences on information retention as well as lead to superficial emotional attachment. As such, this work introduces 8bit-GPT; a language model simulated on a legacy Macintosh Operating System, to evoke reflection on the nature of Human-AI interaction and the consequences of anthropomorphic rhetoric. Drawing on reflective design principles such as slow-technology and counterfunctionality, this work aims to foreground the presence of chatbots as a tool by defamiliarizing the interface and prioritizing inefficient interaction, creating a friction between the familiar and not.
comment: NeurIPS Creative AI Track 2025: Humanity
☆ Pluralistic Behavior Suite: Stress-Testing Multi-Turn Adherence to Custom Behavioral Policies NeurIPS 2025
Large language models (LLMs) are typically aligned to a universal set of safety and usage principles intended for broad public acceptability. Yet, real-world applications of LLMs often take place within organizational ecosystems shaped by distinctive corporate policies, regulatory requirements, use cases, brand guidelines, and ethical commitments. This reality highlights the need for rigorous and comprehensive evaluation of LLMs with pluralistic alignment goals, an alignment paradigm that emphasizes adaptability to diverse user values and needs. In this work, we present PLURALISTIC BEHAVIOR SUITE (PBSUITE), a dynamic evaluation suite designed to systematically assess LLMs' capacity to adhere to pluralistic alignment specifications in multi-turn, interactive conversations. PBSUITE consists of (1) a diverse dataset of 300 realistic LLM behavioral policies, grounded in 30 industries; and (2) a dynamic evaluation framework for stress-testing model compliance with custom behavioral specifications under adversarial conditions. Using PBSUITE, We find that leading open- and closed-source LLMs maintain robust adherence to behavioral policies in single-turn settings (less than 4% failure rates), but their compliance weakens substantially in multi-turn adversarial interactions (up to 84% failure rates). These findings highlight that existing model alignment and safety moderation methods fall short in coherently enforcing pluralistic behavioral policies in real-world LLM interactions. Our work contributes both the dataset and analytical framework to support future research toward robust and context-aware pluralistic alignment techniques.
comment: Accepted at the Multi-Turn Interactions workshop at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Multi-agent Coordination via Flow Matching
This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, i.e., denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, including $12$ environments and $34$ datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\boldsymbol{\times14.5}$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline multi-agent reinforcement learning (MARL) methods.
☆ Query Generation Pipeline with Enhanced Answerability Assessment for Financial Information Retrieval
As financial applications of large language models (LLMs) gain attention, accurate Information Retrieval (IR) remains crucial for reliable AI services. However, existing benchmarks fail to capture the complex and domain-specific information needs of real-world banking scenarios. Building domain-specific IR benchmarks is costly and constrained by legal restrictions on using real customer data. To address these challenges, we propose a systematic methodology for constructing domain-specific IR benchmarks through LLM-based query generation. As a concrete implementation of this methodology, our pipeline combines single and multi-document query generation with an enhanced and reasoning-augmented answerability assessment method, achieving stronger alignment with human judgments than prior approaches. Using this methodology, we construct KoBankIR, comprising 815 queries derived from 204 official banking documents. Our experiments show that existing retrieval models struggle with the complex multi-document queries in KoBankIR, demonstrating the value of our systematic approach for domain-specific benchmark construction and underscoring the need for improved retrieval techniques in financial domains.
comment: Accepted(Oral) by ICAIF 2025. Hyunkyu Kim and Yeeun Yoo contributed equally to this work
☆ BiPETE: A Bi-Positional Embedding Transformer Encoder for Risk Assessment of Alcohol and Substance Use Disorder with Electronic Health Records
Transformer-based deep learning models have shown promise for disease risk prediction using electronic health records(EHRs), but modeling temporal dependencies remains a key challenge due to irregular visit intervals and lack of uniform structure. We propose a Bi-Positional Embedding Transformer Encoder or BiPETE for single-disease prediction, which integrates rotary positional embeddings to encode relative visit timing and sinusoidal embeddings to preserve visit order. Without relying on large-scale pretraining, BiPETE is trained on EHR data from two mental health cohorts-depressive disorder and post-traumatic stress disorder (PTSD)-to predict the risk of alcohol and substance use disorders (ASUD). BiPETE outperforms baseline models, improving the area under the precision-recall curve (AUPRC) by 34% and 50% in the depression and PTSD cohorts, respectively. An ablation study further confirms the effectiveness of the dual positional encoding strategy. We apply the Integrated Gradients method to interpret model predictions, identifying key clinical features associated with ASUD risk and protection, such as abnormal inflammatory, hematologic, and metabolic markers, as well as specific medications and comorbidities. Overall, these key clinical features identified by the attribution methods contribute to a deeper understanding of the risk assessment process and offer valuable clues for mitigating potential risks. In summary, our study presents a practical and interpretable framework for disease risk prediction using EHR data, which can achieve strong performance.
comment: 20 pages, 2 figures, 6 tables, 2 supplementary figures, 4 supplementary tables, submitted to Journal of Biomedical Informatics on 6 Nov, 2025
☆ Enhancing Public Speaking Skills in Engineering Students Through AI
This research-to-practice full paper was inspired by the persistent challenge in effective communication among engineering students. Public speaking is a necessary skill for future engineers as they have to communicate technical knowledge with diverse stakeholders. While universities offer courses or workshops, they are unable to offer sustained and personalized training to students. Providing comprehensive feedback on both verbal and non-verbal aspects of public speaking is time-intensive, making consistent and individualized assessment impractical. This study integrates research on verbal and non-verbal cues in public speaking to develop an AI-driven assessment model for engineering students. Our approach combines speech analysis, computer vision, and sentiment detection into a multi-modal AI system that provides assessment and feedback. The model evaluates (1) verbal communication (pitch, loudness, pacing, intonation), (2) non-verbal communication (facial expressions, gestures, posture), and (3) expressive coherence, a novel integration ensuring alignment between speech and body language. Unlike previous systems that assess these aspects separately, our model fuses multiple modalities to deliver personalized, scalable feedback. Preliminary testing demonstrated that our AI-generated feedback was moderately aligned with expert evaluations. Among the state-of-the-art AI models evaluated, all of which were Large Language Models (LLMs), including Gemini and OpenAI models, Gemini Pro emerged as the best-performing, showing the strongest agreement with human annotators. By eliminating reliance on human evaluators, this AI-driven public speaking trainer enables repeated practice, helping students naturally align their speech with body language and emotion, crucial for impactful and professional communication.
☆ Learning Fourier shapes to probe the geometric world of deep neural networks
While both shape and texture are fundamental to visual recognition, research on deep neural networks (DNNs) has predominantly focused on the latter, leaving their geometric understanding poorly probed. Here, we show: first, that optimized shapes can act as potent semantic carriers, generating high-confidence classifications from inputs defined purely by their geometry; second, that they are high-fidelity interpretability tools that precisely isolate a model's salient regions; and third, that they constitute a new, generalizable adversarial paradigm capable of deceiving downstream visual tasks. This is achieved through an end-to-end differentiable framework that unifies a powerful Fourier series to parameterize arbitrary shapes, a winding number-based mapping to translate them into the pixel grid required by DNNs, and signal energy constraints that enhance optimization efficiency while ensuring physically plausible shapes. Our work provides a versatile framework for probing the geometric world of DNNs and opens new frontiers for challenging and understanding machine perception.
comment: 20 pages, 5 figures
☆ Pattern-Aware Diffusion Synthesis of fMRI/dMRI with Tissue and Microstructural Refinement
Magnetic resonance imaging (MRI), especially functional MRI (fMRI) and diffusion MRI (dMRI), is essential for studying neurodegenerative diseases. However, missing modalities pose a major barrier to their clinical use. Although GAN- and diffusion model-based approaches have shown some promise in modality completion, they remain limited in fMRI-dMRI synthesis due to (1) significant BOLD vs. diffusion-weighted signal differences between fMRI and dMRI in time/gradient axis, and (2) inadequate integration of disease-related neuroanatomical patterns during generation. To address these challenges, we propose PDS, introducing two key innovations: (1) a pattern-aware dual-modal 3D diffusion framework for cross-modality learning, and (2) a tissue refinement network integrated with a efficient microstructure refinement to maintain structural fidelity and fine details. Evaluated on OASIS-3, ADNI, and in-house datasets, our method achieves state-of-the-art results, with PSNR/SSIM scores of 29.83 dB/90.84\% for fMRI synthesis (+1.54 dB/+4.12\% over baselines) and 30.00 dB/77.55\% for dMRI synthesis (+1.02 dB/+2.2\%). In clinical validation, the synthesized data show strong diagnostic performance, achieving 67.92\%/66.02\%/64.15\% accuracy (NC vs. MCI vs. AD) in hybrid real-synthetic experiments. Code is available in \href{https://github.com/SXR3015/PDS}{PDS GitHub Repository}
☆ Too Good to be Bad: On the Failure of LLMs to Role-Play Villains
Large Language Models (LLMs) are increasingly tasked with creative generation, including the simulation of fictional characters. However, their ability to portray non-prosocial, antagonistic personas remains largely unexamined. We hypothesize that the safety alignment of modern LLMs creates a fundamental conflict with the task of authentically role-playing morally ambiguous or villainous characters. To investigate this, we introduce the Moral RolePlay benchmark, a new dataset featuring a four-level moral alignment scale and a balanced test set for rigorous evaluation. We task state-of-the-art LLMs with role-playing characters from moral paragons to pure villains. Our large-scale evaluation reveals a consistent, monotonic decline in role-playing fidelity as character morality decreases. We find that models struggle most with traits directly antithetical to safety principles, such as ``Deceitful'' and ``Manipulative'', often substituting nuanced malevolence with superficial aggression. Furthermore, we demonstrate that general chatbot proficiency is a poor predictor of villain role-playing ability, with highly safety-aligned models performing particularly poorly. Our work provides the first systematic evidence of this critical limitation, highlighting a key tension between model safety and creative fidelity. Our benchmark and findings pave the way for developing more nuanced, context-aware alignment methods.
☆ ORCHID: Orchestrated Retrieval-Augmented Classification with Human-in-the-Loop Intelligent Decision-Making for High-Risk Property
High-Risk Property (HRP) classification is critical at U.S. Department of Energy (DOE) sites, where inventories include sensitive and often dual-use equipment. Compliance must track evolving rules designated by various export control policies to make transparent and auditable decisions. Traditional expert-only workflows are time-consuming, backlog-prone, and struggle to keep pace with shifting regulatory boundaries. We demo ORCHID, a modular agentic system for HRP classification that pairs retrieval-augmented generation (RAG) with human oversight to produce policy-based outputs that can be audited. Small cooperating agents, retrieval, description refiner, classifier, validator, and feedback logger, coordinate via agent-to-agent messaging and invoke tools through the Model Context Protocol (MCP) for model-agnostic on-premise operation. The interface follows an Item to Evidence to Decision loop with step-by-step reasoning, on-policy citations, and append-only audit bundles (run-cards, prompts, evidence). In preliminary tests on real HRP cases, ORCHID improves accuracy and traceability over a non-agentic baseline while deferring uncertain items to Subject Matter Experts (SMEs). The demonstration shows single item submission, grounded citations, SME feedback capture, and exportable audit artifacts, illustrating a practical path to trustworthy LLM assistance in sensitive DOE compliance workflows.
☆ DeepForgeSeal: Latent Space-Driven Semi-Fragile Watermarking for Deepfake Detection Using Multi-Agent Adversarial Reinforcement Learning
Rapid advances in generative AI have led to increasingly realistic deepfakes, posing growing challenges for law enforcement and public trust. Existing passive deepfake detectors struggle to keep pace, largely due to their dependence on specific forgery artifacts, which limits their ability to generalize to new deepfake types. Proactive deepfake detection using watermarks has emerged to address the challenge of identifying high-quality synthetic media. However, these methods often struggle to balance robustness against benign distortions with sensitivity to malicious tampering. This paper introduces a novel deep learning framework that harnesses high-dimensional latent space representations and the Multi-Agent Adversarial Reinforcement Learning (MAARL) paradigm to develop a robust and adaptive watermarking approach. Specifically, we develop a learnable watermark embedder that operates in the latent space, capturing high-level image semantics, while offering precise control over message encoding and extraction. The MAARL paradigm empowers the learnable watermarking agent to pursue an optimal balance between robustness and fragility by interacting with a dynamic curriculum of benign and malicious image manipulations simulated by an adversarial attacker agent. Comprehensive evaluations on the CelebA and CelebA-HQ benchmarks reveal that our method consistently outperforms state-of-the-art approaches, achieving improvements of over 4.5% on CelebA and more than 5.3% on CelebA-HQ under challenging manipulation scenarios.
☆ A benchmark multimodal oro-dental dataset for large vision-language models
The advancement of artificial intelligence in oral healthcare relies on the availability of large-scale multimodal datasets that capture the complexity of clinical practice. In this paper, we present a comprehensive multimodal dataset, comprising 8775 dental checkups from 4800 patients collected over eight years (2018-2025), with patients ranging from 10 to 90 years of age. The dataset includes 50000 intraoral images, 8056 radiographs, and detailed textual records, including diagnoses, treatment plans, and follow-up notes. The data were collected under standard ethical guidelines and annotated for benchmarking. To demonstrate its utility, we fine-tuned state-of-the-art large vision-language models, Qwen-VL 3B and 7B, and evaluated them on two tasks: classification of six oro-dental anomalies and generation of complete diagnostic reports from multimodal inputs. We compared the fine-tuned models with their base counterparts and GPT-4o. The fine-tuned models achieved substantial gains over these baselines, validating the dataset and underscoring its effectiveness in advancing AI-driven oro-dental healthcare solutions. The dataset is publicly available, providing an essential resource for future research in AI dentistry.
☆ Search Is Not Retrieval: Decoupling Semantic Matching from Contextual Assembly in RAG
Retrieval systems are essential to contemporary AI pipelines, although most confuse two separate processes: finding relevant information and giving enough context for reasoning. We introduce the Search-Is-Not-Retrieve (SINR) framework, a dual-layer architecture that distinguishes between fine-grained search representations and coarse-grained retrieval contexts. SINR enhances the composability, scalability, and context fidelity of retrieval systems by directly connecting small, semantically accurate search chunks to larger, contextually complete retrieve chunks, all without incurring extra processing costs. This design changes retrieval from a passive step to an active one, making the system architecture more like how people process information. We discuss the SINR framework's conceptual foundation, formal structure, implementation issues, and qualitative outcomes. This provides a practical foundation for the next generation of AI systems that use retrieval.
comment: 22 pages, 2 figures, technical framework paper
☆ BudgetMem: Learning Selective Memory Policies for Cost-Efficient Long-Context Processing in Language Models
Large Language Models (LLMs) face significant computational and memory constraints when processing long contexts, despite growing demand for applications requiring reasoning over extensive documents, multi-session dialogues, and book length texts. While recent advances have extended context windows to 100K-1M tokens, such approaches incur prohibitive costs for resource constrained deployments. We propose BudgetMem, a novel memory augmented architecture that learns what to remember rather than remembering everything. Our system combines selective memory policies with feature based salience scoring (entity density, TF-IDF, discourse markers, position bias) to decide which information merits storage under strict budget constraints. Unlike existing retrieval augmented generation (RAG) systems that store all chunks, BudgetMem employs learned gating mechanisms coupled with BM25 sparse retrieval for efficient information access. Through comprehensive experiments on 700 question answer pairs across short (237 tokens) and long (5K-10K tokens) documents with Llama-3.2-3B-Instruct, we demonstrate that BudgetMem achieves remarkable results on long documents: only 1.0% F1 score degradation while saving 72.4% memory compared to baseline RAG. We validate our approach through budget sensitivity analysis (testing 7 budget ratios), naive baseline comparisons, and document length analysis, showing that BudgetMem's benefits increase with document length. Our work provides a practical pathway for deploying capable long context systems on modest hardware, democratizing access to advanced language understanding capabilities.
comment: 11 pages, 3 figures, 5 tables. Evaluated on 700 QA pairs across multiple document lengths
☆ MERaLiON-SER: Robust Speech Emotion Recognition Model for English and SEA Languages
We present MERaLiON-SER, a robust speech emotion recognition model de- signed for English and Southeast Asian languages. The model is trained using a hybrid objective combining weighted categorical cross-entropy and Concordance Correlation Coefficient (CCC) losses for joint discrete and dimensional emotion modelling. This dual approach enables the model to capture both the distinct categories of emotion (like happy or angry) and the fine-grained, such as arousal (intensity), valence (positivity/negativity), and dominance (sense of control), lead- ing to a more comprehensive and robust representation of human affect. Extensive evaluations across multilingual Singaporean languages (English, Chinese, Malay, and Tamil ) and other public benchmarks show that MERaLiON-SER consistently surpasses both open-source speech encoders and large Audio-LLMs. These results underscore the importance of specialised speech-only models for accurate paralin- guistic understanding and cross-lingual generalisation. Furthermore, the proposed framework provides a foundation for integrating emotion-aware perception into future agentic audio systems, enabling more empathetic and contextually adaptive multimodal reasoning.
comment: https://huggingface.co/MERaLiON/MERaLiON-SER-v1
☆ A Dual Perspective on Decision-Focused Learning: Scalable Training via Dual-Guided Surrogates
Many real-world decisions are made under uncertainty by solving optimization problems using predicted quantities. This predict-then-optimize paradigm has motivated decision-focused learning, which trains models with awareness of how the optimizer uses predictions, improving the performance of downstream decisions. Despite its promise, scaling is challenging: state-of-the-art methods either differentiate through a solver or rely on task-specific surrogates, both of which require frequent and expensive calls to an optimizer, often a combinatorial one. In this paper, we leverage dual variables from the downstream problem to shape learning and introduce Dual-Guided Loss (DGL), a simple, scalable objective that preserves decision alignment while reducing solver dependence. We construct DGL specifically for combinatorial selection problems with natural one-of-many constraints, such as matching, knapsack, and shortest path. Our approach (a) decouples optimization from gradient updates by solving the downstream problem only periodically; (b) between refreshes, trains on dual-adjusted targets using simple differentiable surrogate losses; and (c) as refreshes become less frequent, drives training cost toward standard supervised learning while retaining strong decision alignment. We prove that DGL has asymptotically diminishing decision regret, analyze runtime complexity, and show on two problem classes that DGL matches or exceeds state-of-the-art DFL methods while using far fewer solver calls and substantially less training time. Code is available at https://github.com/paularodr/Dual-Guided-Learning.
☆ You Need Reasoning to Learn Reasoning: The Limitations of Label-Free RL in Weak Base Models NeurIPS 2025
Recent advances in large language models have demonstrated the promise of unsupervised reinforcement learning (RL) methods for enhancing reasoning capabilities without external supervision. However, the generalizability of these label-free RL approaches to smaller base models with limited reasoning capabilities remains unexplored. In this work, we systematically investigate the performance of label-free RL methods across different model sizes and reasoning strengths, from 0.5B to 7B parameters. Our empirical analysis reveals critical limitations: label-free RL is highly dependent on the base model's pre-existing reasoning capability, with performance often degrading below baseline levels for weaker models. We find that smaller models fail to generate sufficiently long or diverse chain-of-thought reasoning to enable effective self-reflection, and that training data difficulty plays a crucial role in determining success. To address these challenges, we propose a simple yet effective method for label-free RL that utilizes curriculum learning to progressively introduce harder problems during training and mask no-majority rollouts during training. Additionally, we introduce a data curation pipeline to generate samples with predefined difficulty. Our approach demonstrates consistent improvements across all model sizes and reasoning capabilities, providing a path toward more robust unsupervised RL that can bootstrap reasoning abilities in resource-constrained models. We make our code available at https://github.com/BorealisAI/CuMa
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI
☆ Real-Time Reasoning Agents in Evolving Environments
Agents in the real world must make not only logical but also timely judgments. This requires continuous awareness of the dynamic environment: hazards emerge, opportunities arise, and other agents act, while the agent's reasoning is still unfolding. Despite advances in language model reasoning, existing approaches fail to account for this dynamic nature. We introduce real-time reasoning as a new problem formulation for agents in evolving environments and build Real-Time Reasoning Gym to demonstrate it. We study two paradigms for deploying language models in agents: (1) reactive agents, which employ language models with bounded reasoning computation for rapid responses, and (2) planning agents, which allow extended reasoning computation for complex problems. Our experiments show that even state-of-the-art models struggle with making logical and timely judgments in either paradigm. To address this limitation, we propose AgileThinker, which simultaneously engages both reasoning paradigms. AgileThinker consistently outperforms agents engaging only one reasoning paradigm as the task difficulty and time pressure rise, effectively balancing reasoning depth and response latency. Our work establishes real-time reasoning as a critical testbed for developing practical agents and provides a foundation for research in temporally constrained AI systems, highlighting a path toward real-time capable agents.
comment: 30 pages
☆ Beta Distribution Learning for Reliable Roadway Crash Risk Assessment AAAI 2026
Roadway traffic accidents represent a global health crisis, responsible for over a million deaths annually and costing many countries up to 3% of their GDP. Traditional traffic safety studies often examine risk factors in isolation, overlooking the spatial complexity and contextual interactions inherent in the built environment. Furthermore, conventional Neural Network-based risk estimators typically generate point estimates without conveying model uncertainty, limiting their utility in critical decision-making. To address these shortcomings, we introduce a novel geospatial deep learning framework that leverages satellite imagery as a comprehensive spatial input. This approach enables the model to capture the nuanced spatial patterns and embedded environmental risk factors that contribute to fatal crash risks. Rather than producing a single deterministic output, our model estimates a full Beta probability distribution over fatal crash risk, yielding accurate and uncertainty-aware predictions--a critical feature for trustworthy AI in safety-critical applications. Our model outperforms baselines by achieving a 17-23% improvement in recall, a key metric for flagging potential dangers, while delivering superior calibration. By providing reliable and interpretable risk assessments from satellite imagery alone, our method enables safer autonomous navigation and offers a highly scalable tool for urban planners and policymakers to enhance roadway safety equitably and cost-effectively.
comment: Accepted to AAAI 2026
☆ Bioinspired Soft Quadrotors Jointly Unlock Agility, Squeezability, and Collision Resilience
Natural flyers use soft wings to seamlessly enable a wide range of flight behaviours, including agile manoeuvres, squeezing through narrow passageways, and withstanding collisions. In contrast, conventional quadrotor designs rely on rigid frames that support agile flight but inherently limit collision resilience and squeezability, thereby constraining flight capabilities in cluttered environments. Inspired by the anisotropic stiffness and distributed mass-energy structures observed in biological organisms, we introduce FlexiQuad, a soft-frame quadrotor design approach that limits this trade-off. We demonstrate a 405-gram FlexiQuad prototype, three orders of magnitude more compliant than conventional quadrotors, yet capable of acrobatic manoeuvres with peak speeds above 80 km/h and linear and angular accelerations exceeding 3 g and 300 rad/s$^2$, respectively. Analysis demonstrates it can replicate accelerations of rigid counterparts up to a thrust-to-weight ratio of 8. Simultaneously, FlexiQuad exhibits fourfold higher collision resilience, surviving frontal impacts at 5 m/s without damage and reducing destabilising forces in glancing collisions by a factor of 39. Its frame can fully compress, enabling flight through gaps as narrow as 70% of its nominal width. Our analysis identifies an optimal structural softness range, from 0.006 to 0.77 N/mm, comparable to that of natural flyers' wings, whereby agility, squeezability, and collision resilience are jointly achieved for FlexiQuad models from 20 to 3000 grams. FlexiQuad expands hovering drone capabilities in complex environments, enabling robust physical interactions without compromising flight performance.
comment: 26 pages, 12 figures, 2 tables, 9 videos (not yet disclosed, awaiting peer review)
☆ Stable and Robust SLIP Model Control via Energy Conservation-Based Feedback Cancellation for Quadrupedal Applications
In this paper, we present an energy-conservation based control architecture for stable dynamic motion in quadruped robots. We model the robot as a Spring-loaded Inverted Pendulum (SLIP), a model well-suited to represent the bouncing motion characteristic of running gaits observed in various biological quadrupeds and bio-inspired robotic systems. The model permits leg-orientation control during flight and leg-length control during stance, a design choice inspired by natural quadruped behaviors and prevalent in robotic quadruped systems. Our control algorithm uses the reduced-order SLIP dynamics of the quadruped to track a stable parabolic spline during stance, which is calculated using the principle of energy conservation. Through simulations based on the design specifications of an actual quadruped robot, Ghost Robotics Minitaur, we demonstrate that our control algorithm generates stable bouncing gaits. Additionally, we illustrate the robustness of our controller by showcasing its ability to maintain stable bouncing even when faced with up to a 10% error in sensor measurements.
☆ EveryDayVLA: A Vision-Language-Action Model for Affordable Robotic Manipulation
While Vision-Language-Action (VLA) models map visual inputs and language instructions directly to robot actions, they often rely on costly hardware and struggle in novel or cluttered scenes. We introduce EverydayVLA, a 6-DOF manipulator that can be assembled for under $300, capable of modest payloads and workspace. A single unified model jointly outputs discrete and continuous actions, and our adaptive-horizon ensemble monitors motion uncertainty to trigger on-the-fly re-planning for safe, reliable operation. On LIBERO, EverydayVLA matches state-of-the-art success rates, and in real-world tests it outperforms prior methods by 49% in-distribution and 34.9% out-of-distribution. By combining a state-of-the-art VLA with cost-effective hardware, EverydayVLA democratizes access to a robotic foundation model and paves the way for economical use in homes and research labs alike. Experiment videos and details: https://everydayvla.github.io/
comment: Submitted to ICRA 2026
☆ ETHOS: A Robotic Encountered-Type Haptic Display for Social Interaction in Virtual Reality
We present ETHOS (Encountered-Type Haptics for On-demand Social Interaction), a dynamic encountered-type haptic display (ETHD) that enables natural physical contact in virtual reality (VR) during social interactions such as handovers, fist bumps, and high-fives. The system integrates a torque-controlled robotic manipulator with interchangeable passive props (silicone hand replicas and a baton), marker-based physical-virtual registration via a ChArUco board, and a safety monitor that gates motion based on the user's head and hand pose. We introduce two control strategies: (i) a static mode that presents a stationary prop aligned with its virtual counterpart, consistent with prior ETHD baselines, and (ii) a dynamic mode that continuously updates prop position by exponentially blending an initial mid-point trajectory with real-time hand tracking, generating a unique contact point for each interaction. Bench tests show static colocation accuracy of 5.09 +/- 0.94 mm, while user interactions achieved temporal alignment with an average contact latency of 28.53 +/- 31.21 ms across all interaction and control conditions. These results demonstrate the feasibility of recreating socially meaningful haptics in VR. By incorporating essential safety and control mechanisms, ETHOS establishes a practical foundation for high-fidelity, dynamic interpersonal interactions in virtual environments.
comment: 8 pages
☆ SAD-Flower: Flow Matching for Safe, Admissible, and Dynamically Consistent Planning
Flow matching (FM) has shown promising results in data-driven planning. However, it inherently lacks formal guarantees for ensuring state and action constraints, whose satisfaction is a fundamental and crucial requirement for the safety and admissibility of planned trajectories on various systems. Moreover, existing FM planners do not ensure the dynamical consistency, which potentially renders trajectories inexecutable. We address these shortcomings by proposing SAD-Flower, a novel framework for generating Safe, Admissible, and Dynamically consistent trajectories. Our approach relies on an augmentation of the flow with a virtual control input. Thereby, principled guidance can be derived using techniques from nonlinear control theory, providing formal guarantees for state constraints, action constraints, and dynamic consistency. Crucially, SAD-Flower operates without retraining, enabling test-time satisfaction of unseen constraints. Through extensive experiments across several tasks, we demonstrate that SAD-Flower outperforms various generative-model-based baselines in ensuring constraint satisfaction.
☆ Force-Safe Environment Maps and Real-Time Detection for Soft Robot Manipulators
Soft robot manipulators have the potential for deployment in delicate environments to perform complex manipulation tasks. However, existing obstacle detection and avoidance methods do not consider limits on the forces that manipulators may exert upon contact with delicate obstacles. This work introduces a framework that maps force safety criteria from task space (i.e. positions along the robot's body) to configuration space (i.e. the robot's joint angles) and enables real-time force safety detection. We incorporate limits on allowable environmental contact forces for given task-space obstacles, and map them into configuration space (C-space) through the manipulator's forward kinematics. This formulation ensures that configurations classified as safe are provably below the maximum force thresholds, thereby allowing us to determine force-safe configurations of the soft robot manipulator in real-time. We validate our approach in simulation and hardware experiments on a two-segment pneumatic soft robot manipulator. Results demonstrate that the proposed method accurately detects force safety during interactions with deformable obstacles, thereby laying the foundation for real-time safe planning of soft manipulators in delicate, cluttered environments.
☆ TwinVLA: Data-Efficient Bimanual Manipulation with Twin Single-Arm Vision-Language-Action Models
Vision-language-action models (VLAs) trained on large-scale robotic datasets have demonstrated strong performance on manipulation tasks, including bimanual tasks. However, because most public datasets focus on single-arm demonstrations, adapting VLAs for bimanual tasks typically requires substantial additional bimanual data and fine-tuning. To address this challenge, we introduce TwinVLA, a modular framework that composes two copies of a pretrained single-arm VLA into a coordinated bimanual VLA. Unlike monolithic cross-embodiment models trained on mixtures of single-arm and bimanual data, TwinVLA improves both data efficiency and performance by composing pretrained single-arm policies. Across diverse bimanual tasks in real-world and simulation settings, TwinVLA outperforms a comparably-sized monolithic RDT-1B model without requiring any bimanual pretraining. Furthermore, it narrows the gap to state-of-the-art model, $\pi_0$ which rely on extensive proprietary bimanual data and compute cost. These results establish our modular composition approach as a data-efficient and scalable path toward high-performance bimanual manipulation, leveraging public single-arm data.
comment: Project webpage : https://jellyho.github.io/TwinVLA/
☆ Context-aware Learned Mesh-based Simulation via Trajectory-Level Meta-Learning
Simulating object deformations is a critical challenge across many scientific domains, including robotics, manufacturing, and structural mechanics. Learned Graph Network Simulators (GNSs) offer a promising alternative to traditional mesh-based physics simulators. Their speed and inherent differentiability make them particularly well suited for applications that require fast and accurate simulations, such as robotic manipulation or manufacturing optimization. However, existing learned simulators typically rely on single-step observations, which limits their ability to exploit temporal context. Without this information, these models fail to infer, e.g., material properties. Further, they rely on auto-regressive rollouts, which quickly accumulate error for long trajectories. We instead frame mesh-based simulation as a trajectory-level meta-learning problem. Using Conditional Neural Processes, our method enables rapid adaptation to new simulation scenarios from limited initial data while capturing their latent simulation properties. We utilize movement primitives to directly predict fast, stable and accurate simulations from a single model call. The resulting approach, Movement-primitive Meta-MeshGraphNet (M3GN), provides higher simulation accuracy at a fraction of the runtime cost compared to state-of-the-art GNSs across several tasks.
comment: 35 pages. Submitted to Transactions on Machine Learning Research (TMLR)
☆ Beyond Master and Apprentice: Grounding Foundation Models for Symbiotic Interactive Learning in a Shared Latent Space
Today's autonomous agents can understand free-form natural language instructions and execute long-horizon tasks in a manner akin to human-level reasoning. These capabilities are mostly driven by large-scale pre-trained foundation models (FMs). However, the approaches with which these models are grounded for human-robot interaction (HRI) perpetuate a master-apprentice model, where the apprentice (embodied agent) passively receives and executes the master's (human's) commands without reciprocal learning. This reactive interaction approach does not capture the co-adaptive dynamics inherent in everyday multi-turn human-human interactions. To address this, we propose a Symbiotic Interactive Learning (SIL) approach that enables both the master and the apprentice to co-adapt through mutual, bidirectional interactions. We formalised SIL as a co-adaptation process within a shared latent task space, where the agent and human maintain joint belief states that evolve based on interaction history. This enables the agent to move beyond reactive execution to proactive clarification, adaptive suggestions, and shared plan refinement. To realise these novel behaviours, we leveraged pre-trained FMs for spatial perception and reasoning, alongside a lightweight latent encoder that grounds the models' outputs into task-specific representations. Furthermore, to ensure stability as the tasks evolve, we augment SIL with a memory architecture that prevents the forgetting of learned task-space representations. We validate SIL on both simulated and real-world embodied tasks, including instruction following, information retrieval, query-oriented reasoning, and interactive dialogues. Demos and resources are public at:~\href{https://linusnep.github.io/SIL/}{https://linusnep.github.io/SIL/}.
☆ Let Me Show You: Learning by Retrieving from Egocentric Video for Robotic Manipulation IROS 2025
Robots operating in complex and uncertain environments face considerable challenges. Advanced robotic systems often rely on extensive datasets to learn manipulation tasks. In contrast, when humans are faced with unfamiliar tasks, such as assembling a chair, a common approach is to learn by watching video demonstrations. In this paper, we propose a novel method for learning robot policies by Retrieving-from-Video (RfV), using analogies from human demonstrations to address manipulation tasks. Our system constructs a video bank comprising recordings of humans performing diverse daily tasks. To enrich the knowledge from these videos, we extract mid-level information, such as object affordance masks and hand motion trajectories, which serve as additional inputs to enhance the robot model's learning and generalization capabilities. We further feature a dual-component system: a video retriever that taps into an external video bank to fetch task-relevant video based on task specification, and a policy generator that integrates this retrieved knowledge into the learning cycle. This approach enables robots to craft adaptive responses to various scenarios and generalize to tasks beyond those in the training data. Through rigorous testing in multiple simulated and real-world settings, our system demonstrates a marked improvement in performance over conventional robotic systems, showcasing a significant breakthrough in the field of robotics.
comment: Accepted by IROS 2025
☆ Procedimiento de auditoría de ciberseguridad para sistemas autónomos: metodología, amenazas y mitigaciones
The deployment of autonomous systems has experienced remarkable growth in recent years, driven by their integration into sectors such as industry, medicine, logistics, and domestic environments. This expansion is accompanied by a series of security issues that entail significant risks due to the critical nature of autonomous systems, especially those operating in human-interaction environments. Furthermore, technological advancement and the high operational and architectural complexity of autonomous systems have resulted in an increased attack surface. This article presents a specific security auditing procedure for autonomous systems, based on a layer-structured methodology, a threat taxonomy adapted to the robotic context, and a set of concrete mitigation measures. The validity of the proposed approach is demonstrated through four practical case studies applied to representative robotic platforms: the Vision 60 military quadruped from Ghost Robotics, the A1 robot from Unitree Robotics, the UR3 collaborative arm from Universal Robots, and the Pepper social robot from Aldebaran Robotics.
comment: 32 pages, in Spanish language, 7 tables, 12 Figures. White paper under the TESCAC project
☆ Follow-Me in Micro-Mobility with End-to-End Imitation Learning
Autonomous micro-mobility platforms face challenges from the perspective of the typical deployment environment: large indoor spaces or urban areas that are potentially crowded and highly dynamic. While social navigation algorithms have progressed significantly, optimizing user comfort and overall user experience over other typical metrics in robotics (e.g., time or distance traveled) is understudied. Specifically, these metrics are critical in commercial applications. In this paper, we show how imitation learning delivers smoother and overall better controllers, versus previously used manually-tuned controllers. We demonstrate how DAAV's autonomous wheelchair achieves state-of-the-art comfort in follow-me mode, in which it follows a human operator assisting persons with reduced mobility (PRM). This paper analyzes different neural network architectures for end-to-end control and demonstrates their usability in real-world production-level deployments.
☆ Decomposed Object Manipulation via Dual-Actor Policy
Object manipulation, which focuses on learning to perform tasks on similar parts across different types of objects, can be divided into an approaching stage and a manipulation stage. However, previous works often ignore this characteristic of the task and rely on a single policy to directly learn the whole process of object manipulation. To address this problem, we propose a novel Dual-Actor Policy, termed DAP, which explicitly considers different stages and leverages heterogeneous visual priors to enhance each stage. Specifically, we introduce an affordance-based actor to locate the functional part in the manipulation task, thereby improving the approaching process. Following this, we propose a motion flow-based actor to capture the movement of the component, facilitating the manipulation process. Finally, we introduce a decision maker to determine the current stage of DAP and select the corresponding actor. Moreover, existing object manipulation datasets contain few objects and lack the visual priors needed to support training. To address this, we construct a simulated dataset, the Dual-Prior Object Manipulation Dataset, which combines the two visual priors and includes seven tasks, including two challenging long-term, multi-stage tasks. Experimental results on our dataset, the RoboTwin benchmark and real-world scenarios illustrate that our method consistently outperforms the SOTA method by 5.55%, 14.7% and 10.4% on average respectively.
comment: 9 pages, 7 figures, 5 tables
☆ TAPOM: Task-Space Topology-Guided Motion Planning for Manipulating Elongated Object in Cluttered Environments
Robotic manipulation in complex, constrained spaces is vital for widespread applications but challenging, particularly when navigating narrow passages with elongated objects. Existing planning methods often fail in these low-clearance scenarios due to the sampling difficulties or the local minima. This work proposes Topology-Aware Planning for Object Manipulation (TAPOM), which explicitly incorporates task-space topological analysis to enable efficient planning. TAPOM uses a high-level analysis to identify critical pathways and generate guiding keyframes, which are utilized in a low-level planner to find feasible configuration space trajectories. Experimental validation demonstrates significantly high success rates and improved efficiency over state-of-the-art methods on low-clearance manipulation tasks. This approach offers broad implications for enhancing manipulation capabilities of robots in complex real-world environments.
☆ Epically Powerful: An open-source software and mechatronics infrastructure for wearable robotic systems
Epically Powerful is an open-source robotics infrastructure that streamlines the underlying framework of wearable robotic systems - managing communication protocols, clocking, actuator commands, visualization, sensor data acquisition, data logging, and more - while also providing comprehensive guides for hardware selection, system assembly, and controller implementation. Epically Powerful contains a code base enabling simplified user implementation via Python that seamlessly interfaces with various commercial state-of-the-art quasi-direct drive (QDD) actuators, single-board computers, and common sensors, provides example controllers, and enables real-time visualization. To further support device development, the package also includes a recommended parts list and compatibility guide and detailed documentation on hardware and software implementation. The goal of Epically Powerful is to lower the barrier to developing and deploying custom wearable robotic systems without a pre-specified form factor, enabling researchers to go from raw hardware to modular, robust devices quickly and effectively. Though originally designed with wearable robotics in mind, Epically Powerful is broadly applicable to other robotic domains that utilize QDD actuators, single-board computers, and sensors for closed-loop control.
comment: 11 pages, 5 figures. This work has been submitted to the IEEE for possible publication
☆ Tunable Passivity Control for Centralized Multiport Networked Systems
Centralized Multiport Networked Dynamic (CMND) systems have emerged as a key architecture with applications in several complex network systems, such as multilateral telerobotics and multi-agent control. These systems consist of a hub node/subsystem connecting with multiple remote nodes/subsystems via a networked architecture. One challenge for this system is stability, which can be affected by non-ideal network artifacts. Conventional passivity-based approaches can stabilize the system under specialized applications like small-scale networked systems. However, those conventional passive stabilizers have several restrictions, such as distributing compensation across subsystems in a decentralized manner, limiting flexibility, and, at the same time, relying on the restrictive assumptions of node passivity. This paper synthesizes a centralized optimal passivity-based stabilization framework for CMND systems. It consists of a centralized passivity observer monitoring overall energy flow and an optimal passivity controller that distributes the just-needed dissipation among various nodes, guaranteeing strict passivity and, thus, L2 stability. The proposed data-driven model-free approach, i.e., Tunable Centralized Optimal Passivity Control (TCoPC), optimizes total performance based on the prescribed dissipation distribution strategy while ensuring stability. The controller can put high dissipation loads on some sub-networks while relaxing the dissipation on other nodes. Simulation results demonstrate the proposed frameworks performance in a complex task under different time-varying delay scenarios while relaxing the remote nodes minimum phase and passivity assumption, enhancing the scalability and generalizability.
☆ MoE-DP: An MoE-Enhanced Diffusion Policy for Robust Long-Horizon Robotic Manipulation with Skill Decomposition and Failure Recovery
Diffusion policies have emerged as a powerful framework for robotic visuomotor control, yet they often lack the robustness to recover from subtask failures in long-horizon, multi-stage tasks and their learned representations of observations are often difficult to interpret. In this work, we propose the Mixture of Experts-Enhanced Diffusion Policy (MoE-DP), where the core idea is to insert a Mixture of Experts (MoE) layer between the visual encoder and the diffusion model. This layer decomposes the policy's knowledge into a set of specialized experts, which are dynamically activated to handle different phases of a task. We demonstrate through extensive experiments that MoE-DP exhibits a strong capability to recover from disturbances, significantly outperforming standard baselines in robustness. On a suite of 6 long-horizon simulation tasks, this leads to a 36% average relative improvement in success rate under disturbed conditions. This enhanced robustness is further validated in the real world, where MoE-DP also shows significant performance gains. We further show that MoE-DP learns an interpretable skill decomposition, where distinct experts correspond to semantic task primitives (e.g., approaching, grasping). This learned structure can be leveraged for inference-time control, allowing for the rearrangement of subtasks without any re-training.Our video and code are available at the https://moe-dp-website.github.io/MoE-DP-Website/.
☆ Encoding Biomechanical Energy Margin into Passivity-based Synchronization for Networked Telerobotic Systems
Maintaining system stability and accurate position tracking is imperative in networked robotic systems, particularly for haptics-enabled human-robot interaction. Recent literature has integrated human biomechanics into the stabilizers implemented for teleoperation, enhancing force preservation while guaranteeing convergence and safety. However, position desynchronization due to imperfect communication and non-passive behaviors remains a challenge. This paper proposes a two-port biomechanics-aware passivity-based synchronizer and stabilizer, referred to as TBPS2. This stabilizer optimizes position synchronization by leveraging human biomechanics while reducing the stabilizer's conservatism in its activation. We provide the mathematical design synthesis of the stabilizer and the proof of stability. We also conducted a series of grid simulations and systematic experiments, comparing their performance with that of state-of-the-art solutions under varying time delays and environmental conditions.
☆ A semi-analytical approach for computing the largest singularity-free spheres of a class of 6-6 Stewart-Gough platforms for specified orientation workspaces
This article presents a method for computing the largest singularity-free sphere (SFS) of a 6-6 Stewart-Gough platform manipulator (SGPM) over a specified orientation workspace. For a fixed orientation of the moving platform, the SFS is computed analytically. This process is repeated over a set of samples generated within the orientation workspace, and the smallest among them is designated as the desired SFS for the given orientation workspace. Numerical experiments are performed on four distinct architectures of the SGPM to understand their relative performances w.r.t. SFS volumes over the same orientation workspace. This study demonstrates the potential utility of the proposed computational method both in analysis and design of SGPMs.
☆ iFlyBot-VLM Technical Report
We introduce iFlyBot-VLM, a general-purpose Vision-Language Model (VLM) used to improve the domain of Embodied Intelligence. The central objective of iFlyBot-VLM is to bridge the cross-modal semantic gap between high-dimensional environmental perception and low-level robotic motion control. To this end, the model abstracts complex visual and spatial information into a body-agnostic and transferable Operational Language, thereby enabling seamless perception-action closed-loop coordination across diverse robotic platforms. The architecture of iFlyBot-VLM is systematically designed to realize four key functional capabilities essential for embodied intelligence: 1) Spatial Understanding and Metric Reasoning; 2) Interactive Target Grounding; 3) Action Abstraction and Control Parameter Generation; 4) Task Planning and Skill Sequencing. We envision iFlyBot-VLM as a scalable and generalizable foundation model for embodied AI, facilitating the progression from specialized task-oriented systems toward generalist, cognitively capable agents. We conducted evaluations on 10 current mainstream embodied intelligence-related VLM benchmark datasets, such as Blink and Where2Place, and achieved optimal performance while preserving the model's general capabilities. We will publicly release both the training data and model weights to foster further research and development in the field of Embodied Intelligence.
☆ TumorMap: A Laser-based Surgical Platform for 3D Tumor Mapping and Fully-Automated Tumor Resection
Surgical resection of malignant solid tumors is critically dependent on the surgeon's ability to accurately identify pathological tissue and remove the tumor while preserving surrounding healthy structures. However, building an intraoperative 3D tumor model for subsequent removal faces major challenges due to the lack of high-fidelity tumor reconstruction, difficulties in developing generalized tissue models to handle the inherent complexities of tumor diagnosis, and the natural physical limitations of bimanual operation, physiologic tremor, and fatigue creep during surgery. To overcome these challenges, we introduce "TumorMap", a surgical robotic platform to formulate intraoperative 3D tumor boundaries and achieve autonomous tissue resection using a set of multifunctional lasers. TumorMap integrates a three-laser mechanism (optical coherence tomography, laser-induced endogenous fluorescence, and cutting laser scalpel) combined with deep learning models to achieve fully-automated and noncontact tumor resection. We validated TumorMap in murine osteoscarcoma and soft-tissue sarcoma tumor models, and established a novel histopathological workflow to estimate sensor performance. With submillimeter laser resection accuracy, we demonstrated multimodal sensor-guided autonomous tumor surgery without any human intervention.
comment: 41 pages, 25 figures
☆ Social-Physical Interactions with Virtual Characters: Evaluating the Impact of Physicality through Encountered-Type Haptics
This work investigates how robot-mediated physicality influences the perception of social-physical interactions with virtual characters. ETHOS (Encountered-Type Haptics for On-demand Social interaction) is an encountered-type haptic display that integrates a torque-controlled manipulator and interchangeable props with a VR headset to enable three gestures: object handovers, fist bumps, and high fives. We conducted a user study to examine how ETHOS adds physicality to virtual character interactions and how this affects presence, realism, enjoyment, and connection metrics. Each participant experienced one interaction under three conditions: no physicality (NP), static physicality (SP), and dynamic physicality (DP). SP extended the purely virtual baseline (NP) by introducing tangible props for direct contact, while DP further incorporated motion and impact forces to emulate natural touch. Results show presence increased stepwise from NP to SP to DP. Realism, enjoyment, and connection also improved with added physicality, though differences between SP and DP were not significant. Comfort remained consistent across conditions, indicating no added psychological friction. These findings demonstrate the experiential value of ETHOS and motivate the integration of encountered-type haptics into socially meaningful VR experiences.
comment: 9 pages
☆ VLM-driven Skill Selection for Robotic Assembly Tasks
This paper presents a robotic assembly framework that combines Vision-Language Models (VLMs) with imitation learning for assembly manipulation tasks. Our system employs a gripper-equipped robot that moves in 3D space to perform assembly operations. The framework integrates visual perception, natural language understanding, and learned primitive skills to enable flexible and adaptive robotic manipulation. Experimental results demonstrate the effectiveness of our approach in assembly scenarios, achieving high success rates while maintaining interpretability through the structured primitive skill decomposition.
☆ Lite VLA: Efficient Vision-Language-Action Control on CPU-Bound Edge Robots
The deployment of artificial intelligence models at the edge is increasingly critical for autonomous robots operating in GPS-denied environments where local, resource-efficient reasoning is essential. This work demonstrates the feasibility of deploying small Vision-Language Models (VLMs) on mobile robots to achieve real-time scene understanding and reasoning under strict computational constraints. Unlike prior approaches that separate perception from mobility, the proposed framework enables simultaneous movement and reasoning in dynamic environments using only on-board hardware. The system integrates a compact VLM with multimodal perception to perform contextual interpretation directly on embedded hardware, eliminating reliance on cloud connectivity. Experimental validation highlights the balance between computational efficiency, task accuracy, and system responsiveness. Implementation on a mobile robot confirms one of the first successful deployments of small VLMs for concurrent reasoning and mobility at the edge. This work establishes a foundation for scalable, assured autonomy in applications such as service robotics, disaster response, and defense operations.
♻ ☆ Characterizing the Training Dynamics of Private Fine-tuning with Langevin diffusion
We show that differentially private full fine-tuning (DP-FFT) can distort pre-trained backbone features based on both theoretical and empirical results. We identify the cause of the distortion as the misalignment between the pre-trained backbone and the randomly initialized linear head. We prove that a sequential fine-tuning strategy can mitigate the feature distortion: first-linear-probing-then-fine-tuning (DP-LP-FFT). A new approximation scheme allows us to derive approximate upper and lower bounds on the training loss of DP-LP and DP-FFT, in a simple but canonical setting of 2-layer neural networks with ReLU activation. Experiments on real-world datasets and architectures are consistent with our theoretical insights. We also derive new upper bounds for 2-layer linear networks without the approximation. Moreover, our theory suggests a trade-off of privacy budget allocation in multi-phase fine-tuning methods like DP-LP-FFT.
♻ ☆ Tactical Decision Making for Autonomous Trucks by Deep Reinforcement Learning with Total Cost of Operation Based Reward
We develop a deep reinforcement learning framework for tactical decision making in an autonomous truck, specifically for Adaptive Cruise Control (ACC) and lane change maneuvers in a highway scenario. Our results demonstrate that it is beneficial to separate high-level decision-making processes and low-level control actions between the reinforcement learning agent and the low-level controllers based on physical models. In the following, we study optimizing the performance with a realistic and multi-objective reward function based on Total Cost of Operation (TCOP) of the truck using different approaches; by adding weights to reward components, by normalizing the reward components and by using curriculum learning techniques.
comment: Paper is accepted for publication in Artificial Intelligence Review
♻ ☆ Advanced Hybrid Transformer LSTM Technique with Attention and TS Mixer for Drilling Rate of Penetration Prediction
Rate of Penetration (ROP) prediction is critical for drilling optimization yet remains challenging due to the nonlinear, dynamic, and heterogeneous characteristics of drilling data. Conventional empirical, physics-based, and standard machine learning models rely on oversimplified assumptions or intensive feature engineering, constraining their capacity to model long-term dependencies and intricate feature interactions. To address these issues, this study presents a new deep learning Hybrid LSTM-Trans-Mixer-Att framework that first processes input data through a customized Long Short-Term Memory (LSTM) network to capture multi-scale temporal dependencies aligned with drilling cycles. Subsequently, an Enhanced Transformer encoder with drilling-specific positional encodings and real-time optimization refines the features. Concurrently, a parallel Time-Series Mixer (TS-Mixer) block introduced facilitates efficient cross-feature interaction modeling of static and categorical parameters, including lithological indices and mud properties. The feature representations extracted from the Enhanced Transformer and TS-Mixer modules are integrated through a dedicated fusion layer. Finally, an adaptive attention mechanism then dynamically assigns contextual weights to salient features, enhancing discriminative representation learning and enabling high-fidelity ROP prediction. The proposed framework combines sequential memory, static feature interactions, global context learning, and dynamic feature weighting, providing a comprehensive solution for the heterogeneous and event-driven nature of drilling dynamics. Experimental validation on real-world drilling datasets demonstrates superior performance, achieving an Rsquare of 0.9991 and a MAPE of 1.447%, significantly outperforming existing baseline and hybrid models.
comment: 31 Pages, 16 Figures, 9 Tables
♻ ☆ Orion-MSP: Multi-Scale Sparse Attention for Tabular In-Context Learning
Tabular data remain the predominant format for real-world applications. Yet, developing effective neural models for tabular data remains challenging due to heterogeneous feature types and complex interactions occurring at multiple scales. Recent advances in tabular in-context learning (ICL), such as TabPFN and TabICL, have achieved state-of-the-art performance comparable to gradient-boosted trees (GBTs) without task-specific fine-tuning. However, current architectures exhibit key limitations: (1) single-scale feature processing that overlooks hierarchical dependencies, (2) dense attention with quadratic scaling in table width, and (3) strictly sequential component processing that prevents iterative representation refinement and cross-component communication. To address these challenges, we introduce Orion-MSP, a tabular ICL architecture featuring three key innovations: (1) multi-scale processing to capture hierarchical feature interactions; (2) block-sparse attention combining windowed, global, and random patterns for scalable efficiency and long-range connectivity; and (3) a Perceiver-style memory enabling safe bidirectional information flow across components. Across diverse benchmarks, Orion-MSP matches or surpasses state-of-the-art performance while scaling effectively to high-dimensional tables, establishing a new standard for efficient tabular in-context learning. The model is publicly available at https://github.com/Lexsi-Labs/Orion-MSP .
♻ ☆ Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
As information grows exponentially, enterprises face increasing pressure to transform unstructured data into coherent, actionable insights. While autonomous agents show promise, they often struggle with domain-specific nuances, intent alignment, and enterprise integration. We present Enterprise Deep Research (EDR), a multi-agent system that integrates (1) a Master Planning Agent for adaptive query decomposition, (2) four specialized search agents (General, Academic, GitHub, LinkedIn), (3) an extensible MCP-based tool ecosystem supporting NL2SQL, file analysis, and enterprise workflows, (4) a Visualization Agent for data-driven insights, and (5) a reflection mechanism that detects knowledge gaps and updates research direction with optional human-in-the-loop steering guidance. These components enable automated report generation, real-time streaming, and seamless enterprise deployment, as validated on internal datasets. On open-ended benchmarks including DeepResearch Bench and DeepConsult, EDR outperforms state-of-the-art agentic systems without any human steering. We release the EDR framework and benchmark trajectories to advance research on multi-agent reasoning applications. Code at https://github.com/SalesforceAIResearch/enterprise-deep-research and Dataset at https://huggingface.co/datasets/Salesforce/EDR-200
comment: Technical report; 13 pages plus references and appendices
♻ ☆ On the Brittleness of CLIP Text Encoders
Multimodal co-embedding models, especially CLIP, have advanced the state of the art in zero-shot classification and multimedia information retrieval in recent years by aligning images and text in a shared representation space. However, such modals trained on a contrastive alignment can lack stability towards small input perturbations. Especially when dealing with manually expressed queries, minor variations in the query can cause large differences in the ranking of the best-matching results. In this paper, we present a systematic analysis of the effect of multiple classes of non-semantic query perturbations in an multimedia information retrieval scenario. We evaluate a diverse set of lexical, syntactic, and semantic perturbations across multiple CLIP variants using the TRECVID Ad-Hoc Video Search queries and the V3C1 video collection. Across models, we find that syntactic and semantic perturbations drive the largest instabilities, while brittleness is concentrated in trivial surface edits such as punctuation and case. Our results highlight robustness as a critical dimension for evaluating vision-language models beyond benchmark accuracy.
comment: Accepted for publication at MMM'26. Analysis code can be found here: https://github.com/allie-tran/clip-brittleness
♻ ☆ Ethics-Aware Safe Reinforcement Learning for Rare-Event Risk Control in Interactive Urban Driving
Autonomous vehicles hold great promise for reducing traffic fatalities and improving transportation efficiency, yet their widespread adoption hinges on embedding credible and transparent ethical reasoning into routine and emergency maneuvers, particularly to protect vulnerable road users (VRUs) such as pedestrians and cyclists. Here, we present a hierarchical Safe Reinforcement Learning (Safe RL) framework that augments standard driving objectives with ethics-aware cost signals. At the decision level, a Safe RL agent is trained using a composite ethical risk cost, combining collision probability and harm severity, to generate high-level motion targets. A dynamic, risk-sensitive Prioritized Experience Replay mechanism amplifies learning from rare but critical, high-risk events. At the execution level, polynomial path planning coupled with Proportional-Integral-Derivative (PID) and Stanley controllers translates these targets into smooth, feasible trajectories, ensuring both accuracy and comfort. We train and validate our approach on closed-loop simulation environments derived from large-scale, real-world traffic datasets encompassing diverse vehicles, cyclists, and pedestrians, and demonstrate that it outperforms baseline methods in reducing risk to others while maintaining ego performance and comfort. This work provides a reproducible benchmark for Safe RL with explicitly ethics-aware objectives in human-mixed traffic scenarios. Our results highlight the potential of combining formal control theory and data-driven learning to advance ethically accountable autonomy that explicitly protects those most at risk in urban traffic environments. Across two interactive benchmarks and five random seeds, our policy decreases conflict frequency by 25-45% compared to matched task successes while maintaining comfort metrics within 5%.
♻ ☆ Large language models as uncertainty-calibrated optimizers for experimental discovery
Scientific discovery increasingly depends on efficient experimental optimization to navigate vast design spaces under time and resource constraints. Traditional approaches often require extensive domain expertise and feature engineering. While large language models, with their vast scientific knowledge, circumvent the feature engineering limitations, they lack the calibrated uncertainty estimates required for high-stakes decision making. Hence, current optimization methods force a choice between domain knowledge and reliability, with no principled approach that affords both. In this work, we show that training language models through the uncertainty-aware objectives of traditional optimization methods enables their use as reliable optimizers guided by natural language. By teaching LLMs from experimental outcomes under uncertainty, we transform their overconfidence from a fundamental limitation into a precise calibration mechanism. Applied to Buchwald-Hartwig reactions, a cornerstone of pharmaceutical synthesis, our method nearly doubles the discovery rate of high-yielding reaction conditions, from 24% to 43% in 50 experimental iterations starting from 10 unsuccessful conditions. Across 19 diverse optimization problems spanning organic synthesis, materials science and catalysis, process chemistry, and molecular design, our approach ranks first on average, establishing a new paradigm for reliable, uncertainty-guided optimization with LLMs. Our approach can accelerate discovery by lowering the barrier to using powerful optimization methods, replacing the need for domain-specific feature engineering with more accessible natural language interfaces. These findings highlight that ensuring reliability through principled uncertainty quantification is critical for realizing the full potential of AI-guided experimentation.
♻ ☆ LimiX: Unleashing Structured-Data Modeling Capability for Generalist Intelligence
We argue that progress toward general intelligence requires complementary foundation models grounded in language, the physical world, and structured data. This report presents LimiX-16M and LimiX-2M, two instantiations of our large structured-data models (LDMs). Both models treat structured data as a joint distribution over variables and missingness, thus capable of addressing a wide range of tabular tasks through query-based conditional prediction via a single model. They are pretrained using masked joint-distribution modeling with an episodic, context-conditional objective, supporting rapid, training-free adaptation at inference. We evaluate LimiX models across 11 large structured-data benchmarks with broad regimes of sample size, feature dimensionality, class number, categorical-to-numerical feature ratio, missingness, and sample-to-feature ratios. LimiX-16M consistently surpasses strong baselines, as shown in Figure 1 and Figure 2. The superiority holds across a wide range of tasks, such as classification, regression, missing value imputation, and data generation, often by substantial margins, while avoiding task-specific architectures or bespoke training per task. Notably, LimiX-2M delivers strong results under tight compute and memory budgets. We also present the first scaling law study for LDMs, revealing how data and model scaling jointly influence downstream performance and offering quantitative guidance for tabular foundation modeling. All LimiX models are publicly accessible under Apache 2.0.
comment: 61 pages
♻ ☆ What Can String Probability Tell Us About Grammaticality?
What have language models (LMs) learned about grammar? This question remains hotly debated, with major ramifications for linguistic theory. However, since probability and grammaticality are distinct notions in linguistics, it is not obvious what string probabilities can reveal about an LM's underlying grammatical knowledge. We present a theoretical analysis of the relationship between grammar, meaning, and string probability, based on simple assumptions about the generative process of corpus data. Our framework makes three predictions, which we validate empirically using 280K sentence pairs in English and Chinese: (1) correlation between the probability of strings within minimal pairs, i.e., string pairs with minimal semantic differences; (2) correlation between models' and humans' deltas within minimal pairs; and (3) poor separation in probability space between unpaired grammatical and ungrammatical strings. Our analyses give theoretical grounding for using probability to learn about LMs' structural knowledge, and suggest directions for future work in LM grammatical evaluation.
♻ ☆ XBreaking: Understanding how LLMs security alignment can be broken
Large Language Models are fundamental actors in the modern IT landscape dominated by AI solutions. However, security threats associated with them might prevent their reliable adoption in critical application scenarios such as government organizations and medical institutions. For this reason, commercial LLMs typically undergo a sophisticated censoring mechanism to eliminate any harmful output they could possibly produce. These mechanisms maintain the integrity of LLM alignment by guaranteeing that the models respond safely and ethically. In response to this, attacks on LLMs are a significant threat to such protections, and many previous approaches have already demonstrated their effectiveness across diverse domains. Existing LLM attacks mostly adopt a generate-and-test strategy to craft malicious input. To improve the comprehension of censoring mechanisms and design a targeted attack, we propose an Explainable-AI solution that comparatively analyzes the behavior of censored and uncensored models to derive unique exploitable alignment patterns. Then, we propose XBreaking, a novel approach that exploits these unique patterns to break the security and alignment constraints of LLMs by targeted noise injection. Our thorough experimental campaign returns important insights about the censoring mechanisms and demonstrates the effectiveness and performance of our approach.
♻ ☆ Outbidding and Outbluffing Elite Humans: Mastering Liar's Poker via Self-Play and Reinforcement Learning
AI researchers have long focused on poker-like games as a testbed for environments characterized by multi-player dynamics, imperfect information, and reasoning under uncertainty. While recent breakthroughs have matched elite human play at no-limit Texas hold'em, the multi-player dynamics are subdued: most hands converge quickly with only two players engaged through multiple rounds of bidding. In this paper, we present Solly, the first AI agent to achieve elite human play in reduced-format Liar's Poker, a game characterized by extensive multi-player engagement. We trained Solly using self-play with a model-free, actor-critic, deep reinforcement learning algorithm. Solly played at an elite human level as measured by win rate (won over 50% of hands) and equity (money won) in heads-up and multi-player Liar's Poker. Solly also outperformed large language models (LLMs), including those with reasoning abilities, on the same metrics. Solly developed novel bidding strategies, randomized play effectively, and was not easily exploitable by world-class human players.
♻ ☆ Policy-as-Prompt: Turning AI Governance Rules into Guardrails for AI Agents
As autonomous AI agents are used in regulated and safety-critical settings, organizations need effective ways to turn policy into enforceable controls. We introduce a regulatory machine learning framework that converts unstructured design artifacts (like PRDs, TDDs, and code) into verifiable runtime guardrails. Our Policy as Prompt method reads these documents and risk controls to build a source-linked policy tree. This tree is then compiled into lightweight, prompt-based classifiers for real-time runtime monitoring. The system is built to enforce least privilege and data minimization. For conformity assessment, it provides complete provenance, traceability, and audit logging, all integrated with a human-in-the-loop review process. Evaluations show our system reduces prompt-injection risk, blocks out-of-scope requests, and limits toxic outputs. It also generates auditable rationales aligned with AI governance frameworks. By treating policies as executable prompts (a policy-as-code for agents), this approach enables secure-by-design deployment, continuous compliance, and scalable AI safety and AI security assurance for regulatable ML.
comment: Accepted at 3rd Regulatable ML Workshop at NEURIPS 2025
♻ ☆ What Matters in Data for DPO?
Direct Preference Optimization (DPO) has emerged as a simple and effective approach for aligning large language models (LLMs) with human preferences, bypassing the need for a learned reward model. Despite its growing adoption, a fundamental question remains open: what characteristics of preference data are most critical for DPO performance? In this work, we provide a systematic study of how preference data distribution influences DPO, from both theoretical and empirical perspectives. We show that the quality of chosen responses plays a dominant role in optimizing the DPO objective, while the quality of rejected responses may have relatively limited impact. Our theoretical analysis characterizes the optimal response distribution under DPO and reveals how contrastiveness between responses helps primarily by improving the chosen samples. We further study an online DPO setting and show it effectively reduces to supervised fine-tuning on the chosen responses. Extensive experiments across diverse tasks confirm our findings: improving the quality of chosen responses consistently boosts performance regardless of the quality of the rejected responses. We also investigate the benefit of mixing the on-policy data. Our results interpret the mechanism behind some widely adopted strategies and offer practical insights for constructing high-impact preference datasets for LLM alignment.
♻ ☆ InterFeedback: Unveiling Interactive Intelligence of Large Multimodal Models via Human Feedback EMNLP 2025
Existing benchmarks do not test Large Multimodal Models (LMMs) on their interactive intelligence with human users, which is vital for developing general-purpose AI assistants. We design InterFeedback, an interactive framework, which can be applied to any LMM and dataset to assess this ability autonomously. On top of this, we introduce InterFeedback-Bench which evaluates interactive intelligence using two representative datasets, MMMU-Pro and MathVerse, to test 10 different open-source LMMs. Additionally, we present InterFeedback-Human, a newly collected dataset of 120 cases designed for manually testing interactive performance in leading models such as OpenAI-o1 and Claude-Sonnet-4. Our evaluation results indicate that even the state-of-the-art LMM, OpenAI-o1, struggles to refine its responses based on human feedback, achieving an average score of less than 50%. Our findings point to the need for methods that can enhance LMMs' capabilities to interpret and benefit from feedback.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ To Trust or Not to Trust: On Calibration in ML-based Resource Allocation for Wireless Networks
In next-generation communications and networks, machine learning (ML) models are expected to deliver not only accurate predictions but also well-calibrated confidence scores that reflect the true likelihood of correct decisions. This paper studies the calibration performance of an ML-based outage predictor within a single-user, multi-resource allocation framework. We first establish key theoretical properties of this system's outage probability (OP) under perfect calibration. Importantly, we show that as the number of resources grows, the OP of a perfectly calibrated predictor approaches the expected output conditioned on it being below the classification threshold. In contrast, when only one resource is available, the system's OP equals the model's overall expected output. We then derive the OP conditions for a perfectly calibrated predictor. These findings guide the choice of the classification threshold to achieve a desired OP, helping system designers meet specific reliability requirements. We also demonstrate that post-processing calibration cannot improve the system's minimum achievable OP, as it does not introduce new information about future channel states. Additionally, we show that well-calibrated models are part of a broader class of predictors that necessarily improve OP. In particular, we establish a monotonicity condition that the accuracy-confidence function must satisfy for such improvement to occur. To demonstrate these theoretical properties, we conduct a rigorous simulation-based analysis using post-processing calibration techniques: Platt scaling and isotonic regression. As part of this framework, the predictor is trained using an outage loss function specifically designed for this system. Furthermore, this analysis is performed on Rayleigh fading channels with temporal correlation captured by Clarke's 2D model, which accounts for receiver mobility.
♻ ☆ MMDocIR: Benchmarking Multimodal Retrieval for Long Documents EMNLP-2025
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text. Our dataset is available at https://mmdocrag.github.io/MMDocIR/.
comment: Paper accepted to EMNLP-2025(Main)
♻ ☆ Know What You Don't Know: Uncertainty Calibration of Process Reward Models NeurIPS 2025
Process reward models (PRMs) play a central role in guiding inference-time scaling algorithms for large language models (LLMs). However, we observe that even state-of-the-art PRMs can be poorly calibrated. Specifically, they tend to overestimate the success probability that a partial reasoning step will lead to a correct final answer, particularly when smaller LLMs are used to complete the reasoning trajectory. To address this, we present a calibration approach -- performed via quantile regression -- that adjusts PRM outputs to better align with true success probabilities. Leveraging these calibrated success estimates and their associated confidence bounds, we introduce an \emph{instance-adaptive scaling} (IAS) framework that dynamically adjusts the compute budget based on the estimated likelihood that a partial reasoning trajectory will yield a correct final answer. Unlike conventional methods that allocate a fixed number of reasoning trajectories per query, this approach adapts to each instance and reasoning step when using our calibrated PRMs. Experiments on mathematical reasoning benchmarks show that (i) our PRM calibration method achieves small calibration error, outperforming the baseline methods, (ii) calibration is crucial for enabling effective IAS, and (iii) the proposed IAS strategy reduces inference costs while maintaining final answer accuracy, utilizing less compute on more confident problems as desired.
comment: Accepted at NeurIPS 2025
♻ ☆ Amulet: a Python Library for Assessing Interactions Among ML Defenses and Risks
Machine learning (ML) models are susceptible to various risks to security, privacy, and fairness. Most defenses are designed to protect against each risk individually (intended interactions) but can inadvertently affect susceptibility to other unrelated risks (unintended interactions). We introduce Amulet, the first Python library for evaluating both intended and unintended interactions among ML defenses and risks. Amulet is comprehensive by including representative attacks, defenses, and metrics; extensible to new modules due to its modular design; consistent with a user-friendly API template for inputs and outputs; and applicable for evaluating novel interactions. By satisfying all four properties, Amulet offers a unified foundation for studying how defenses interact, enabling the first systematic evaluation of unintended interactions across multiple risks.
comment: 10 pages, 4 figures
♻ ☆ Open Agent Specification (Agent Spec): A Unified Representation for AI Agents
The proliferation of agent frameworks has led to fragmentation in how agents are defined, executed, and evaluated. Existing systems differ in their abstractions, data flow semantics, and tool integrations, making it difficult to share or reproduce workflows. We introduce Open Agent Specification (Agent Spec), a declarative language that defines AI agents and agentic workflows in a way that is compatible across frameworks, promoting reusability, portability and interoperability of AI agents. Agent Spec defines a common set of components, control and data flow semantics, and schemas that allow an agent to be defined once and executed across different runtimes. Agent Spec also introduces a standardized Evaluation harness to assess agent behavior and agentic workflows across runtimes - analogous to how HELM and related harnesses standardized LLM evaluation - so that performance, robustness, and efficiency can be compared consistently across frameworks. We demonstrate this using four distinct runtimes (LangGraph, CrewAI, AutoGen, and WayFlow) evaluated over three different benchmarks (SimpleQA Verified, $\tau^2$-Bench and BIRD-SQL). We provide accompanying toolsets: a Python SDK (PyAgentSpec), a reference runtime (WayFlow), and adapters for popular frameworks (e.g., LangGraph, AutoGen, CrewAI). Agent Spec bridges the gap between model-centric and agent-centric standardization & evaluation, laying the groundwork for reliable, reusable, and portable agentic systems.
♻ ☆ Cognitive Edge Computing: A Comprehensive Survey on Optimizing Large Models and AI Agents for Pervasive Deployment
This article surveys Cognitive Edge Computing as a practical and methodical pathway for deploying reasoning-capable Large Language Models (LLMs) and autonomous AI agents on resource-constrained devices at the network edge. We present a unified, cognition-preserving framework spanning: (1) model optimization (quantization, sparsity, low-rank adaptation, distillation) aimed at retaining multi-step reasoning under tight memory/compute budgets; (2) system architecture (on-device inference, elastic offloading, cloud-edge collaboration) that trades off latency, energy, privacy, and capacity; and (3) adaptive intelligence (context compression, dynamic routing, federated personalization) that tailors computation to task difficulty and device constraints. We synthesize advances in efficient Transformer design, multimodal integration, hardware-aware compilation, privacy-preserving learning, and agentic tool use, and map them to edge-specific operating envelopes. We further outline a standardized evaluation protocol covering latency, throughput, energy per token, accuracy, robustness, privacy, and sustainability, with explicit measurement assumptions to enhance comparability. Remaining challenges include modality-aware reasoning benchmarks, transparent and reproducible energy reporting, edge-oriented safety/alignment evaluation, and multi-agent testbeds. We conclude with practitioner guidelines for cross-layer co-design of algorithms, runtime, and hardware to deliver reliable, efficient, and privacy-preserving cognitive capabilities on edge devices.
♻ ☆ Bilinear relational structure fixes reversal curse and enables consistent model editing
The reversal curse -- a language model's (LM) inability to infer an unseen fact ``B is A'' from a learned fact ``A is B'' -- is widely considered a fundamental limitation. We show that this is not an inherent failure but an artifact of how models encode knowledge. By training LMs from scratch on a synthetic dataset of relational knowledge graphs, we demonstrate that bilinear relational structure emerges in their hidden representations. This structure substantially alleviates the reversal curse, enabling LMs to infer unseen reverse facts. Crucially, we also find that this bilinear structure plays a key role in consistent model editing. When a fact is updated in a LM with this structure, the edit correctly propagates to its reverse and other logically dependent facts. In contrast, models lacking this representation not only suffer from the reversal curse but also fail to generalize edits, further introducing logical inconsistencies. Our results establish that training on a relational knowledge dataset induces the emergence of bilinear internal representations, which in turn enable LMs to behave in a logically consistent manner after editing. This implies that the success of model editing depends critically not just on editing algorithms but on the underlying representational geometry of the knowledge being modified.
comment: 9 pages
♻ ☆ Amortized Latent Steering: Low-Cost Alternative to Test-Time Optimization
Test-time optimization remains impractical at scale due to prohibitive inference costs--techniques like iterative refinement and multi-step verification can require $10-100\times$ more compute per query than standard decoding. Latent space test-time optimization methods like LatentSeek offer a more direct approach by steering hidden representations, but still demand expensive per-query optimization loops with multiple backward passes. We propose Amortized Latent Steering (ALS), which collapses this iterative optimization into a single offline-computed vector applied at constant cost during inference. ALS computes the mean difference between hidden states from successful versus unsuccessful generations, then uses this direction to calibrate the model's hidden representations: when decoding drifts away from the success manifold, ALS nudges activations back toward it. Across GSM8K and MATH-500 benchmarks, ALS achieves $2-5\times$ speedup over iterative methods while matching or surpassing greedy Chain-of-Thought (CoT) and Self-Consistency baselines, yielding up to 101% improvement in efficiency--accuracy trade-off. These results show that much of latent optimization's benefit can be captured offline, making sophisticated reasoning techniques viable for production deployment. Code is available at https://github.com/negbuna/ALS.
♻ ☆ AI Through the Human Lens: Investigating Cognitive Theories in Machine Psychology AACL 2025
We investigate whether Large Language Models (LLMs) exhibit human-like cognitive patterns under four established frameworks from psychology: Thematic Apperception Test (TAT), Framing Bias, Moral Foundations Theory (MFT), and Cognitive Dissonance. We evaluated several proprietary and open-source models using structured prompts and automated scoring. Our findings reveal that these models often produce coherent narratives, show susceptibility to positive framing, exhibit moral judgments aligned with Liberty/Oppression concerns, and demonstrate self-contradictions tempered by extensive rationalization. Such behaviors mirror human cognitive tendencies yet are shaped by their training data and alignment methods. We discuss the implications for AI transparency, ethical deployment, and future work that bridges cognitive psychology and AI safety
comment: Accepted to IJCNLP-AACL 2025 Student Research Workshop
♻ ☆ Taskmaster Deconstructed: A Quantitative Look at Tension, Volatility, and Viewer Ratings
Taskmaster is a British television show that combines comedic performance with a formal scoring system. Despite the appearance of structured competition, it remains unclear whether scoring dynamics contribute meaningfully to audience engagement. We conducted a statistical analysis of 162 episodes across 18 series, using fifteen episode-level metrics to quantify rank volatility, point spread, lead changes, and winner dominance. None of these metrics showed a significant association with IMDb ratings, even after controlling for series effects. Long-term trends suggest that average points have increased over time, while volatility has slightly declined and rank spread has remained stable. These patterns indicate an attempt to enhance competitive visibility without altering the show's structural equilibrium. We also analyzed contestant rank trajectories and identified five recurring archetypes describing performance styles. These patterns suggest that viewer interest is shaped more by contestant behavior than by game mechanics.
comment: 19 pages, includes 5 figures. Code and data available at github
♻ ☆ Inverse Knowledge Search over Verifiable Reasoning: Synthesizing a Scientific Encyclopedia from a Long Chains-of-Thought Knowledge Base
Most scientific materials compress reasoning, presenting conclusions while omitting the derivational chains that justify them. This compression hinders verification by lacking explicit, step-wise justifications and inhibits cross-domain links by collapsing the very pathways that establish the logical and causal connections between concepts. We introduce a scalable framework that decompresses scientific reasoning, constructing a verifiable Long Chain-of-Thought (LCoT) knowledge base and projecting it into an emergent encyclopedia, SciencePedia. Our pipeline operationalizes an endpoint-driven, reductionist strategy: a Socratic agent, guided by a curriculum of around 200 courses, generates approximately 3 million first-principles questions. To ensure high fidelity, multiple independent solver models generate LCoTs, which are then rigorously filtered by prompt sanitization and cross-model answer consensus, retaining only those with verifiable endpoints. This verified corpus powers the Brainstorm Search Engine, which performs inverse knowledge search -- retrieving diverse, first-principles derivations that culminate in a target concept. This engine, in turn, feeds the Plato synthesizer, which narrates these verified chains into coherent articles. The initial SciencePedia comprises approximately 200,000 fine-grained entries spanning mathematics, physics, chemistry, biology, engineering, and computation. In evaluations across six disciplines, Plato-synthesized articles (conditioned on retrieved LCoTs) exhibit substantially higher knowledge-point density and significantly lower factual error rates than an equally-prompted baseline without retrieval (as judged by an external LLM). Built on this verifiable LCoT knowledge base, this reasoning-centric approach enables trustworthy, cross-domain scientific synthesis at scale and establishes the foundation for an ever-expanding encyclopedia.
comment: 43 pages, 4 figures. This work is part of the SciencePedia project (sciencepedia.bohrium.com)
Introducing LongCat-Flash-Thinking: A Technical Report
We present LongCat-Flash-Thinking, an efficient 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model. Its advanced capabilities are cultivated through a meticulously crafted training process, beginning with long Chain-of-Thought (CoT) data cold-start and culminating in large-scale Reinforcement Learning (RL). We first employ a well-designed cold-start training strategy, which significantly enhances the reasoning potential and equips the model with specialized skills in both formal and agentic reasoning. Then, a core innovation is our domain-parallel training scheme, which decouples optimization across distinct domains (e.g., STEM, Code, Agentic) and subsequently fuses the resulting expert models into a single, nearly Pareto-optimal model. This entire process is powered by our Dynamic ORchestration for Asynchronous rollout (DORA) system, a large-scale RL framework that delivers a greater than threefold training speedup over synchronous methods on tens of thousands of accelerators. As a result, LongCat-Flash-Thinking achieves state-of-the-art performance among open-source models on a suite of complex reasoning tasks. The model exhibits exceptional efficiency in agentic reasoning, reducing average token consumption by 64.5% (from 19, 653 to 6, 965) on AIME-25, without degrading task accuracy. We release LongCat-Flash-Thinking to promote further advances in reasoning systems and agentic AI research.
♻ ☆ Pogobot: an Open-Source, Low-Cost Robot for Swarm Robotics and Programmable Active Matter
This paper describes the Pogobot, an open-source platform specifically designed for research at the interface of swarm robotics and active matter. Pogobot features vibration-based or wheel-based locomotion, fast infrared communication, and an array of sensors in a cost-effective package (approx. 250euros/unit). The platform's modular design, comprehensive API, and extensible architecture facilitate the implementation of swarm intelligence algorithms and collective motion. Pogobots offer an accessible alternative to existing platforms while providing advanced capabilities including directional communication between units and fast locomotion, all with a compact form factor. More than 200 Pogobots are already being used on a daily basis in several Universities to study self-organizing systems, programmable active matter, discrete reaction-diffusion-advection systems and computational models of social learning and evolution. This paper details the hardware and software architecture, communication protocols, locomotion mechanisms, and the infrastructure built around the Pogobots.
♻ ☆ Monitor-Generate-Verify (MGV): Formalising Metacognitive Theory for Language Model Reasoning NeurIPS 2025
Test-time reasoning architectures such as those following the Generate-Verify paradigm -- where a model iteratively refines or verifies its own generated outputs -- prioritise generation and verification but exclude the monitoring processes that determine when and how reasoning should begin. This omission may contribute to the prefix dominance trap, in which models commit early to suboptimal reasoning paths and seldom recover, yielding roughly 20% accuracy loss. We address this architectural gap by formalising Flavell's and Nelson and Narens' metacognitive theories into computational specifications, proposing the Monitor-Generate-Verify (MGV) framework. MGV extends the Generate-Verify paradigm by adding explicit monitoring that captures metacognitive experiences (from difficulty assessments to confidence judgements) before generation begins and refines future monitoring through verification feedback. Though we present no empirical validation, this work provides the first systematic computational translation of foundational metacognitive theories, offering a principled vocabulary for understanding reasoning system failures and suggesting specific architectural interventions for future test-time reasoning designs.
comment: To-be presented at the Workshop on the Foundations of Reasoning in Language Models at NeurIPS 2025 (non-archival)
♻ ☆ Grounded in Reality: Learning and Deploying Proactive LLM from Offline Logs
Large Language Models (LLMs) excel as passive responders, but teaching them to be proactive, goal-oriented partners, a critical capability in high-stakes domains, remains a major challenge. Current paradigms either myopically optimize single-turn attributes or rely on brittle, high-cost user simulators, creating a persistent ``reality gap''. To bridge this gap, we introduce \texttt{Learn-to-Ask}, a general, simulator-free framework for learning and deploying proactive dialogue agents \textit{directly from offline expert data}, bypassing the need to model complex user dynamics. Our key insight is to reframe the offline policy learning problem by leveraging the \textbf{observed future} of each expert trajectory. This allows us to infer a dense, turn-by-turn reward signal grounded in the expert's revealed strategy, decomposing the intractable long-horizon problem into a series of supervised learning tasks, and training a policy to output a structured \texttt{(action, state_assessment)} tuple, governing both \textbf{what to ask} and, crucially, \textbf{when to stop}. To ensure reward fidelity, our Automated Grader Calibration pipeline systematically purges noise from the LLM-based reward model with minimal human supervision. Empirically, we demonstrate the efficacy of \texttt{Learn-to-Ask} in a real-world medical dataset, using LLMs of varying sizes up to 32B. Our approach culminates in the successful deployment of LLMs into a live, large-scale online AI service. In rigorous in-house evaluations, our model was launched and achieved performance even superior to human experts, proving our framework's ability to translate offline data into tangible, real-world impact. We hope this work provides a practical and economically viable blueprint for transforming passive LLMs into proactive, goal-oriented LLM applications.
comment: 27 pages, 5 figures
♻ ☆ iTool: Reinforced Fine-Tuning with Dynamic Deficiency Calibration for Advanced Tool Use EMNLP 2025
Augmenting large language models (LLMs) with external tools is a promising approach to enhance their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve this. However, our investigation reveals that training gains significantly decay as synthetic data increases. The model struggles to benefit from additional synthetic data, which fails to endow it with advanced tool-use capabilities in complex scenarios Moreover, we discovered that the above limitation usually manifests as a fragment deficiency (i.e., parameter errors) in response. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate this limitation. This strategy involves: (1) enhancing the diversity of response for synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively pinpointing the model's deficiency by constructing fine-grained preference pairs, and then improving it by preference optimization algorithms for targeted improvement. The experiments show that our method achieves 13.11% better performance than the same-size base model. It achieves an improvement of 6.5% in complex scenarios compared to the baseline, and it also outperforms larger open-source and closed-source models.
comment: EMNLP 2025
♻ ☆ Affordance-based Robot Manipulation with Flow Matching
We present a framework for assistive robot manipulation, which focuses on two fundamental challenges: first, efficiently adapting large-scale models to downstream scene affordance understanding tasks, especially in daily living scenarios where gathering multi-task data involving humans requires strenuous effort; second, effectively learning robot action trajectories by grounding the visual affordance model. We tackle the first challenge by employing a parameter-efficient prompt tuning method that prepends learnable text prompts to the frozen vision model to predict manipulation affordances in multi-task scenarios. Then we propose to learn robot action trajectories guided by affordances in a supervised flow matching method. Flow matching represents a robot visuomotor policy as a conditional process of flowing random waypoints to desired robot action trajectories. Finally, we introduce a real-world dataset with 10 tasks across Activities of Daily Living to test our framework. Our extensive evaluation highlights that the proposed prompt tuning method for learning manipulation affordance achieves competitive performance and even outperforms some other finetuning protocols across data scales, while satisfying parameter efficiency. Learning multi-task robot action trajectories with flow matching leads to consistently favorable results in several robot manipulation benchmarks than some alternative behavior cloning methods. This includes more stable training and evaluation, and noticeably faster inference, while maintaining comparable generalization performance to diffusion policy, where flow matching performs marginally better in most cases. Our framework seamlessly unifies affordance learning and action generation with flow matching for robot manipulation.
♻ ☆ CompressionAttack: Exploiting Prompt Compression as a New Attack Surface in LLM-Powered Agents
LLM-powered agents often use prompt compression to reduce inference costs, but this introduces a new security risk. Compression modules, which are optimized for efficiency rather than safety, can be manipulated by adversarial inputs, causing semantic drift and altering LLM behavior. This work identifies prompt compression as a novel attack surface and presents CompressionAttack, the first framework to exploit it. CompressionAttack includes two strategies: HardCom, which uses discrete adversarial edits for hard compression, and SoftCom, which performs latent-space perturbations for soft compression. Experiments on multiple LLMs show up to 80% attack success and 98% preference flips, while remaining highly stealthy and transferable. Case studies in VSCode Cline and Ollama confirm real-world impact, and current defenses prove ineffective, highlighting the need for stronger protections.
♻ ☆ GAITEX: Human motion dataset of impaired gait and rehabilitation exercises using inertial and optical sensors
Wearable inertial measurement units (IMUs) provide a cost-effective approach to assessing human movement in clinical and everyday environments. However, developing the associated classification models for robust assessment of physiotherapeutic exercise and gait analysis requires large, diverse datasets that are costly and time-consuming to collect. We present a multimodal dataset of physiotherapeutic and gait-related exercises, including correct and clinically relevant variants, recorded from 19 healthy subjects using synchronized IMUs and optical marker-based motion capture (MoCap). It contains data from nine IMUs and 68 markers tracking full-body kinematics. Four markers per IMU allow direct comparison between IMU- and MoCap-derived orientations. We additionally provide processed IMU orientations aligned to common segment coordinate systems, subject-specific OpenSim models, inverse kinematics outputs, and visualization tools for IMU-derived orientations. The dataset is fully annotated with movement quality ratings and timestamped segmentations. It supports various machine learning tasks such as exercise evaluation, gait classification, temporal segmentation, and biomechanical parameter estimation. Code for postprocessing, alignment, inverse kinematics, and technical validation is provided to promote reproducibility.
♻ ☆ Learning of Population Dynamics: Inverse Optimization Meets JKO Scheme
Learning population dynamics involves recovering the underlying process that governs particle evolution, given evolutionary snapshots of samples at discrete time points. Recent methods frame this as an energy minimization problem in probability space and leverage the celebrated JKO scheme for efficient time discretization. In this work, we introduce $\texttt{iJKOnet}$, an approach that combines the JKO framework with inverse optimization techniques to learn population dynamics. Our method relies on a conventional $\textit{end-to-end}$ adversarial training procedure and does not require restrictive architectural choices, e.g., input-convex neural networks. We establish theoretical guarantees for our methodology and demonstrate improved performance over prior JKO-based methods.
♻ ☆ CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis ACL 2025
Integrating multimodal Electronic Health Records (EHR) data, such as numerical time series and free-text clinical reports, has great potential in predicting clinical outcomes. However, prior work has primarily focused on capturing temporal interactions within individual samples and fusing multimodal information, overlooking critical temporal patterns across patients. These patterns, such as trends in vital signs like abnormal heart rate or blood pressure, can indicate deteriorating health or an impending critical event. Similarly, clinical notes often contain textual descriptions that reflect these patterns. Identifying corresponding temporal patterns across different modalities is crucial for improving the accuracy of clinical outcome predictions, yet it remains a challenging task. To address this gap, we introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data. Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings. To ensure rich cross-modal temporal semantics in the learned patterns, we introduce a contrastive-based TPNCE loss for cross-modal alignment, along with two reconstruction losses to retain core information of each modality. Evaluations on two clinically critical tasks, 48-hour in-hospital mortality and 24-hour phenotype classification, using the MIMIC-III database demonstrate the superiority of our method over existing approaches.
comment: ACL 2025 Findings
♻ ☆ A Proprietary Model-Based Safety Response Framework for AI Agents
With the widespread application of Large Language Models (LLMs), their associated security issues have become increasingly prominent, severely constraining their trustworthy deployment in critical domains. This paper proposes a novel safety response framework designed to systematically safeguard LLMs at both the input and output levels. At the input level, the framework employs a supervised fine-tuning-based safety classification model. Through a fine-grained four-tier taxonomy (Safe, Unsafe, Conditionally Safe, Focused Attention), it performs precise risk identification and differentiated handling of user queries, significantly enhancing risk coverage and business scenario adaptability, and achieving a risk recall rate of 99.3%. At the output level, the framework integrates Retrieval-Augmented Generation (RAG) with a specifically fine-tuned interpretation model, ensuring all responses are grounded in a real-time, trustworthy knowledge base. This approach eliminates information fabrication and enables result traceability. Experimental results demonstrate that our proposed safety control model achieves a significantly higher safety score on public safety evaluation benchmarks compared to the baseline model, TinyR1-Safety-8B. Furthermore, on our proprietary high-risk test set, the framework's components attained a perfect 100% safety score, validating their exceptional protective capabilities in complex risk scenarios. This research provides an effective engineering pathway for building high-security, high-trust LLM applications.
Learning to Navigate Socially Through Proactive Risk Perception
In this report, we describe the technical details of our submission to the IROS 2025 RoboSense Challenge Social Navigation Track. This track focuses on developing RGBD-based perception and navigation systems that enable autonomous agents to navigate safely, efficiently, and socially compliantly in dynamic human-populated indoor environments. The challenge requires agents to operate from an egocentric perspective using only onboard sensors including RGB-D observations and odometry, without access to global maps or privileged information, while maintaining social norm compliance such as safe distances and collision avoidance. Building upon the Falcon model, we introduce a Proactive Risk Perception Module to enhance social navigation performance. Our approach augments Falcon with collision risk understanding that learns to predict distance-based collision risk scores for surrounding humans, which enables the agent to develop more robust spatial awareness and proactive collision avoidance behaviors. The evaluation on the Social-HM3D benchmark demonstrates that our method improves the agent's ability to maintain personal space compliance while navigating toward goals in crowded indoor scenes with dynamic human agents, achieving 2nd place among 16 participating teams in the challenge.
♻ ☆ From Observability Data to Diagnosis: An Evolving Multi-agent System for Incident Management in Cloud Systems
Incident management (IM) is central to the reliability of large-scale cloud systems. Yet manual IM, where on-call engineers examine metrics, logs, and traces is labor-intensive and error-prone in the face of massive and heterogeneous observability data. Existing automated IM approaches often struggle to generalize across systems, provide limited interpretability, and incur high deployment costs, which hinders adoption in practice. In this paper, we present OpsAgent, a lightweight, self-evolving multi-agent system for IM that employs a training-free data processor to convert heterogeneous observability data into structured textual descriptions, along with a multi-agent collaboration framework that makes diagnostic inference transparent and auditable. To support continual capability growth, OpsAgent also introduces a dual self-evolution mechanism that integrates internal model updates with external experience accumulation, thereby closing the deployment loop. Comprehensive experiments on the OPENRCA benchmark demonstrate state-of-the-art performance and show that OpsAgent is generalizable, interpretable, cost-efficient, and self-evolving, making it a practically deployable and sustainable solution for long-term operation in real-world cloud systems.
♻ ☆ Optimizing Anytime Reasoning via Budget Relative Policy Optimization
Scaling test-time compute is crucial for enhancing the reasoning capabilities of large language models (LLMs). Existing approaches typically employ reinforcement learning (RL) to maximize a verifiable reward obtained at the end of reasoning traces. However, such methods optimize only the final performance under a large and fixed token budget, which hinders efficiency in both training and deployment. In this work, we present a novel framework, AnytimeReasoner, to optimize anytime reasoning performance, which aims to improve token efficiency and the flexibility of reasoning under varying token budget constraints. To achieve this, we truncate the complete thinking process to fit within sampled token budgets from a prior distribution, compelling the model to summarize the optimal answer for each truncated thinking for verification. This introduces verifiable dense rewards into the reasoning process, facilitating more effective credit assignment in RL optimization. We then optimize the thinking and summary policies in a decoupled manner to maximize the cumulative reward. Additionally, we introduce a novel variance reduction technique, Budget Relative Policy Optimization (BRPO), to enhance the robustness and efficiency of the learning process when reinforcing the thinking policy. Empirical results in mathematical reasoning tasks demonstrate that our method consistently outperforms GRPO across all thinking budgets under various prior distributions, enhancing both training and token efficiency.
♻ ☆ AURA: A Reinforcement Learning Framework for AI-Driven Adaptive Conversational Surveys
Conventional online surveys provide limited personalization, often resulting in low engagement and superficial responses. Although AI survey chatbots improve convenience, most are still reactive: they rely on fixed dialogue trees or static prompt templates and therefore cannot adapt within a session to fit individual users, which leads to generic follow-ups and weak response quality. We address these limitations with AURA (Adaptive Understanding through Reinforcement Learning for Assessment), a reinforcement learning framework for AI-driven adaptive conversational surveys. AURA quantifies response quality using a four-dimensional LSDE metric (Length, Self-disclosure, Emotion, and Specificity) and selects follow-up question types via an epsilon-greedy policy that updates the expected quality gain within each session. Initialized with priors extracted from 96 prior campus-climate conversations (467 total chatbot-user exchanges), the system balances exploration and exploitation across 10-15 dialogue exchanges, dynamically adapting to individual participants in real time. In controlled evaluations, AURA achieved a +0.076 mean gain in response quality and a statistically significant improvement over non-adaptive baselines (p=0.044, d=0.66), driven by a 63% reduction in specification prompts and a 10x increase in validation behavior. These results demonstrate that reinforcement learning can give survey chatbots improved adaptivity, transforming static questionnaires into interactive, self-improving assessment systems.
♻ ☆ String Seed of Thought: Prompting LLMs for Distribution-Faithful and Diverse Generation
We introduce String Seed of Thought (SSoT), a novel prompting method for LLMs that improves Probabilistic Instruction Following (PIF). We define PIF as a task requiring an LLM to select its answer from a predefined set of options, each associated with a specific probability, such that the empirical distribution of the generated answers aligns with the target distribution when prompted multiple times. While LLMs excel at tasks with single, deterministic answers, they often fail at PIF, exhibiting biases problematic for applications requiring non-deterministic behaviors, such as human-behavior simulation, content diversification, and multiplayer games. It also harms the diversity of generated responses, a crucial factor in test-time scaling, by causing the outputs to collapse into a limited set of answers. To address this, we propose SSoT, a simple prompting method that instructs an LLM to first output a random string to generate sufficient entropy. SSoT also instructs the LLM to extract randomness by manipulating this string to derive a final answer, thereby preserving diversity while adhering to specific constraints. We demonstrate that SSoT significantly improves the PIF performance of LLMs, approaching the ideal performance of a pseudo-random number generator. Furthermore, our experiments on NoveltyBench show SSoT's benefits extend beyond closed-set tasks to open-ended tasks by enhancing response diversity.
♻ ☆ Wider or Deeper? Scaling LLM Inference-Time Compute with Adaptive Branching Tree Search NeurIPS 2025
Recent advances demonstrate that increasing inference-time computation can significantly boost the reasoning capabilities of large language models (LLMs). Although repeated sampling (i.e., generating multiple candidate outputs) is a highly effective strategy, it does not leverage external feedback signals for refinement, which are often available in tasks like coding. In this work, we propose Adaptive Branching Monte Carlo Tree Search (AB-MCTS), a novel inference-time framework that generalizes repeated sampling with principled multi-turn exploration and exploitation. At each node in the search tree, AB-MCTS dynamically decides whether to "go wider" by expanding new candidate responses or "go deeper" by revisiting existing ones based on external feedback signals. We evaluate our method on complex coding and engineering tasks using frontier models. Empirical results show that AB-MCTS consistently outperforms both repeated sampling and standard MCTS, underscoring the importance of combining the response diversity of LLMs with multi-turn solution refinement for effective inference-time scaling. Code is available at https://github.com/SakanaAI/treequest .
comment: Accepted as a spotlight at NeurIPS 2025
♻ ☆ ZERO: Industry-ready Vision Foundation Model with Multi-modal Prompts
Foundation models have revolutionized AI, yet they struggle with zero-shot deployment in real-world industrial settings due to a lack of high-quality, domain-specific datasets. To bridge this gap, Superb AI introduces ZERO, an industry-ready vision foundation model that leverages multi-modal prompting (textual and visual) for generalization without retraining. Trained on a compact yet representative 0.9 million annotated samples from a proprietary billion-scale industrial dataset, ZERO demonstrates competitive performance on academic benchmarks like LVIS-Val and significantly outperforms existing models across 37 diverse industrial datasets. Furthermore, ZERO achieved 2nd place in the CVPR 2025 Object Instance Detection Challenge and 4th place in the Foundational Few-shot Object Detection Challenge, highlighting its practical deployability and generalizability with minimal adaptation and limited data. To the best of our knowledge, ZERO is the first vision foundation model explicitly built for domain-specific, zero-shot industrial applications.
comment: 9 pages, 2 figures
♻ ☆ Improving Diagnostic Performance on Small and Imbalanced Datasets Using Class-Based Input Image Composition
Small, imbalanced datasets and poor input image quality can lead to high false predictions rates with deep learning models. This paper introduces Class-Based Image Composition, an approach that allows us to reformulate training inputs through a fusion of multiple images of the same class into combined visual composites, named Composite Input Images (CoImg). That enhances the intra-class variance and improves the valuable information density per training sample and increases the ability of the model to distinguish between subtle disease patterns. Our method was evaluated on the Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods (OCTDL) (Kulyabin et al., 2024), which contains 2,064 high-resolution optical coherence tomography (OCT) scans of the human retina, representing seven distinct diseases with a significant class imbalance. We constructed a perfectly class-balanced version of this dataset, named Co-OCTDL, where each scan is resented as a 3x1 layout composite image. To assess the effectiveness of this new representation, we conducted a comparative analysis between the original dataset and its variant using a VGG16 model. A fair comparison was ensured by utilizing the identical model architecture and hyperparameters for all experiments. The proposed approach markedly improved diagnostic results.The enhanced Dataset achieved near-perfect accuracy (99.6%) with F1-score (0.995) and AUC (0.9996), compared to a baseline model trained on raw dataset. The false prediction rate was also significantly lower, this demonstrates that the method can producehigh-quality predictions even for weak datasets affected by class imbalance or small sample size.
♻ ☆ A Mega-Study of Digital Twins Reveals Strengths, Weaknesses and Opportunities for Further Improvement
Digital representations of individuals ("digital twins") promise to transform social science and decision-making. Yet it remains unclear whether such twins truly mirror the people they emulate. We conducted 19 preregistered studies with a representative U.S. panel and their digital twins, each constructed from rich individual-level data, enabling direct comparisons between human and twin behavior across a wide range of domains and stimuli (including never-seen-before ones). Twins reproduced individual responses with 75% accuracy and seemingly low correlation with human answers (approximately 0.2). However, this apparently high accuracy was no higher than that achieved by generic personas based on demographics only. In contrast, correlation improved when twins incorporated detailed personal information, even outperforming traditional machine learning benchmarks that require additional data. Twins exhibited systematic strengths and weaknesses - performing better in social and personality domains, but worse in political ones - and were more accurate for participants with higher education, higher income, and moderate political views and religious attendance. Together, these findings delineate both the promise and the current limits of digital twins: they capture some relative differences among individuals but not yet the unique judgments of specific people. All data and code are publicly available to support the further development and evaluation of digital twin pipelines.
♻ ☆ Graph Learning
Graph learning has rapidly evolved into a critical subfield of machine learning and artificial intelligence (AI). Its development began with early graph-theoretic methods, gaining significant momentum with the advent of graph neural networks (GNNs). Over the past decade, progress in scalable architectures, dynamic graph modeling, multimodal learning, generative AI, explainable AI (XAI), and responsible AI has broadened the applicability of graph learning to various challenging environments. Graph learning is significant due to its ability to model complex, non-Euclidean relationships that traditional machine learning struggles to capture, thus better supporting real-world applications ranging from drug discovery and fraud detection to recommender systems and scientific reasoning. However, challenges like scalability, generalization, heterogeneity, interpretability, and trustworthiness must be addressed to unlock its full potential. This survey provides a comprehensive introduction to graph learning, focusing on key dimensions including scalable, temporal, multimodal, generative, explainable, and responsible graph learning. We review state-of-the-art techniques for efficiently handling large-scale graphs, capturing dynamic temporal dependencies, integrating heterogeneous data modalities, generating novel graph samples, and enhancing interpretability to foster trust and transparency. We also explore ethical considerations, such as privacy and fairness, to ensure responsible deployment of graph learning models. Additionally, we identify and discuss emerging topics, highlighting recent integration of graph learning and other AI paradigms and offering insights into future directions. This survey serves as a valuable resource for researchers and practitioners seeking to navigate the rapidly evolving landscape of graph learning.
comment: 185 pages
♻ ☆ NMIXX: Domain-Adapted Neural Embeddings for Cross-Lingual eXploration of Finance
General-purpose sentence embedding models often struggle to capture specialized financial semantics, especially in low-resource languages like Korean, due to domain-specific jargon, temporal meaning shifts, and misaligned bilingual vocabularies. To address these gaps, we introduce NMIXX (Neural eMbeddings for Cross-lingual eXploration of Finance), a suite of cross-lingual embedding models fine-tuned with 18.8K high-confidence triplets that pair in-domain paraphrases, hard negatives derived from a semantic-shift typology, and exact Korean-English translations. Concurrently, we release KorFinSTS, a 1,921-pair Korean financial STS benchmark spanning news, disclosures, research reports, and regulations, designed to expose nuances that general benchmarks miss. When evaluated against seven open-license baselines, NMIXX's multilingual bge-m3 variant achieves Spearman's rho gains of +0.10 on English FinSTS and +0.22 on KorFinSTS, outperforming its pre-adaptation checkpoint and surpassing other models by the largest margin, while revealing a modest trade-off in general STS performance. Our analysis further shows that models with richer Korean token coverage adapt more effectively, underscoring the importance of tokenizer design in low-resource, cross-lingual settings. By making both models and the benchmark publicly available, we provide the community with robust tools for domain-adapted, multilingual representation learning in finance.
comment: Accepted at FinAI@CIKM 2025
♻ ☆ Conformal Information Pursuit for Interactively Guiding Large Language Models
A significant use case of instruction-finetuned Large Language Models (LLMs) is to solve question-answering tasks interactively. In this setting, an LLM agent is tasked with making a prediction by sequentially querying relevant information from the user, as opposed to a single-turn conversation. This paper explores sequential querying strategies that aim to minimize the expected number of queries. One such strategy is Information Pursuit (IP), a greedy algorithm that at each iteration selects the query that maximizes information gain or equivalently minimizes uncertainty. However, obtaining accurate estimates of mutual information or conditional entropy for LLMs is very difficult in practice due to over- or under-confident LLM proba- bilities, which leads to suboptimal query selection and predictive performance. To better estimate the uncertainty at each iteration, we propose Conformal Information Pursuit (C-IP), an alternative approach to sequential information gain based on conformal prediction sets. More specifically, C-IP leverages a relationship between prediction sets and conditional entropy at each iteration to estimate uncertainty based on the average size of conformal prediction sets. In contrast to conditional entropy, we find that conformal prediction sets are a distribution-free and robust method of measuring uncertainty. Experiments with 20 Questions show that C-IP obtains better predictive performance and shorter query-answer chains compared to previous approaches to IP and uncertainty-based chain-of-thought methods. Furthermore, extending to an interactive medical setting between a doctor and a patient on the MediQ dataset, C-IP achieves competitive performance with direct single-turn prediction while offering greater interpretability.
♻ ☆ Fine-Tuning MedGemma for Clinical Captioning to Enhance Multimodal RAG over Malaysia CPGs
Retrieval-Augmented Generation systems are essential for providing fact-based guidance from Malaysian Clinical Practice Guidelines. However, their effectiveness with image-based queries is limited, as general Vision-Language Model captions often lack clinical specificity and factual grounding. This study proposes and validates a framework to specialize the MedGemma model for generating high-fidelity captions that serve as superior queries. To overcome data scarcity, we employ a knowledge distillation pipeline to create a synthetic dataset across dermatology, fundus, and chest radiography domains, and fine-tune MedGemma using the parameter-efficient QLoRA method. Performance was rigorously assessed through a dual framework measuring both classification accuracy and, via a novel application of the RAGAS framework, caption faithfulness, relevancy, and correctness. The fine-tuned model demonstrated substantial improvements in classification performance, while RAGAS evaluation confirmed significant gains in caption faithfulness and correctness, validating the models ability to produce reliable, factually grounded descriptions. This work establishes a robust pipeline for specializing medical VLMs and validates the resulting model as a high-quality query generator, laying the groundwork for enhancing multimodal RAG systems in evidence-based clinical decision support.
♻ ☆ Learning for Interval Prediction of Electricity Demand: A Cluster-based Bootstrapping Approach
Accurate predictions of electricity demands are necessary for managing operations in a small aggregation load setting like a Microgrid. Due to low aggregation, the electricity demands can be highly stochastic and point estimates would lead to inflated errors. Interval estimation in this scenario, would provide a range of values within which the future values might lie and helps quantify the errors around the point estimates. This paper introduces a residual bootstrap algorithm to generate interval estimates of day-ahead electricity demand. A machine learning algorithm is used to obtain the point estimates of electricity demand and respective residuals on the training set. The obtained residuals are stored in memory and the memory is further partitioned. Days with similar demand patterns are grouped in clusters using an unsupervised learning algorithm and these clusters are used to partition the memory. The point estimates for test day are used to find the closest cluster of similar days and the residuals are bootstrapped from the chosen cluster. This algorithm is evaluated on the real electricity demand data from EULR(End Use Load Research) and is compared to other bootstrapping methods for varying confidence intervals.
♻ ☆ AIRepr: An Analyst-Inspector Framework for Evaluating Reproducibility of LLMs in Data Science EMNLP
Large language models (LLMs) are increasingly used to automate data analysis through executable code generation. Yet, data science tasks often admit multiple statistically valid solutions, e.g. different modeling strategies, making it critical to understand the reasoning behind analyses, not just their outcomes. While manual review of LLM-generated code can help ensure statistical soundness, it is labor-intensive and requires expertise. A more scalable approach is to evaluate the underlying workflows-the logical plans guiding code generation. However, it remains unclear how to assess whether an LLM-generated workflow supports reproducible implementations. To address this, we present AIRepr, an Analyst-Inspector framework for automatically evaluating and improving the reproducibility of LLM-generated data analysis workflows. Our framework is grounded in statistical principles and supports scalable, automated assessment. We introduce two novel reproducibility-enhancing prompting strategies and benchmark them against standard prompting across 15 analyst-inspector LLM pairs and 1,032 tasks from three public benchmarks. Our findings show that workflows with higher reproducibility also yield more accurate analyses, and that reproducibility-enhancing prompts substantially improve both metrics. This work provides a foundation for transparent, reliable, and efficient human-AI collaboration in data science. Our code is publicly available.
comment: Accepted to 2025 EMNLP findings
♻ ☆ USF-MAE: Ultrasound Self-Supervised Foundation Model with Masked Autoencoding
Ultrasound imaging is one of the most widely used diagnostic modalities, offering real-time, radiation-free assessment across diverse clinical domains. However, interpretation of ultrasound images remains challenging due to high noise levels, operator dependence, and limited field of view, resulting in substantial inter-observer variability. Current Deep Learning approaches are hindered by the scarcity of large labeled datasets and the domain gap between general and sonographic images, which limits the transferability of models pretrained on non-medical data. To address these challenges, we introduce the Ultrasound Self-Supervised Foundation Model with Masked Autoencoding (USF-MAE), the first large-scale self-supervised MAE framework pretrained exclusively on ultrasound data. The model was pre-trained on 370,000 2D and 3D ultrasound images curated from 46 open-source datasets, collectively termed OpenUS-46, spanning over twenty anatomical regions. This curated dataset has been made publicly available to facilitate further research and reproducibility. Using a Vision Transformer encoder-decoder architecture, USF-MAE reconstructs masked image patches, enabling it to learn rich, modality-specific representations directly from unlabeled data. The pretrained encoder was fine-tuned on three public downstream classification benchmarks: BUS-BRA (breast cancer), MMOTU-2D (ovarian tumors), and GIST514-DB (gastrointestinal stromal tumors). Across all tasks, USF-MAE consistently outperformed conventional CNN and ViT baselines, achieving F1-scores of 81.6%, 79.6%, and 82.4%, respectively. Despite not using labels during pretraining, USF-MAE approached the performance of the supervised foundation model UltraSam on breast cancer classification and surpassed it on the other tasks, demonstrating strong cross-anatomical generalization.
comment: 18 pages, 8 figures, 2 tables
♻ ☆ NVIDIA Nemotron Nano V2 VL
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and training recipes. Nemotron Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and innovative token reduction techniques to achieve higher inference throughput in long document and video scenarios. We are releasing model checkpoints in BF16, FP8, and FP4 formats and sharing large parts of our datasets, recipes and training code.
♻ ☆ FunOTTA: On-the-Fly Adaptation on Cross-Domain Fundus Image via Stable Test-time Training
Fundus images are essential for the early screening and detection of eye diseases. While deep learning models using fundus images have significantly advanced the diagnosis of multiple eye diseases, variations in images from different imaging devices and locations (known as domain shifts) pose challenges for deploying pre-trained models in real-world applications. To address this, we propose a novel Fundus On-the-fly Test-Time Adaptation (FunOTTA) framework that effectively generalizes a fundus image diagnosis model to unseen environments, even under strong domain shifts. FunOTTA stands out for its stable adaptation process by performing dynamic disambiguation in the memory bank while minimizing harmful prior knowledge bias. We also introduce a new training objective during adaptation that enables the classifier to incrementally adapt to target patterns with reliable class conditional estimation and consistency regularization. We compare our method with several state-of-the-art test-time adaptation (TTA) pipelines. Experiments on cross-domain fundus image benchmarks across two diseases demonstrate the superiority of the overall framework and individual components under different backbone networks. Code is available at https://github.com/Casperqian/FunOTTA.
comment: 13 pages, 8 figures, 7 tables
♻ ☆ Retrieval Augmented Diffusion Model for Structure-informed Antibody Design and Optimization
Antibodies are essential proteins responsible for immune responses in organisms, capable of specifically recognizing antigen molecules of pathogens. Recent advances in generative models have significantly enhanced rational antibody design. However, existing methods mainly create antibodies from scratch without template constraints, leading to model optimization challenges and unnatural sequences. To address these issues, we propose a retrieval-augmented diffusion framework, termed RADAb, for efficient antibody design. Our method leverages a set of structural homologous motifs that align with query structural constraints to guide the generative model in inversely optimizing antibodies according to desired design criteria. Specifically, we introduce a structure-informed retrieval mechanism that integrates these exemplar motifs with the input backbone through a novel dual-branch denoising module, utilizing both structural and evolutionary information. Additionally, we develop a conditional diffusion model that iteratively refines the optimization process by incorporating both global context and local evolutionary conditions. Our approach is agnostic to the choice of generative models. Empirical experiments demonstrate that our method achieves state-of-the-art performance in multiple antibody inverse folding and optimization tasks, offering a new perspective on biomolecular generative models.
Every Activation Boosted: Scaling General Reasoner to 1 Trillion Open Language Foundation
We introduce Ling 2.0, a series reasoning-oriented language foundation built upon the principle that every activation boosts reasoning capability. Designed to scale from tens of billions to one trillion parameters under a unified Mixture-of-Experts (MoE) paradigm, Ling 2.0 emphasizes high sparsity, cross-scale consistency, and efficiency guided by empirical scaling laws. The series includes three non-thinking (instruct) models - Ling-mini-2.0, Ling-flash-2.0, and Ling-1T - ranging from 16B to 1T total parameters and achieving up to 7-fold active-compute efficiency compared with dense counterparts. Ling 2.0 integrates coordinated innovations across model architecture, pre-training, post-training, and infrastructure: a high-sparsity MoE with MTP for efficient reasoning, reasoning-oriented data and mid-training CoT activation, reinforcement-based fine-tuning (DFT, Evo-CoT), and full-scale FP8 training with fine-grained heterogeneous pipelines. At the trillion scale, Ling-1T establishes a new Pareto frontier of reasoning accuracy versus computational efficiency, demonstrating that sparse activation, when properly aligned with reasoning objectives, enables scalable and efficient intelligence. Collectively, Ling 2.0 provides a coherent, open, and efficient foundation for advancing future reasoning and thinking models, including the Ring series built upon the same base.
comment: Ling 2.0 Technical Report
♻ ☆ TimeCopilot
We introduce TimeCopilot, the first open-source agentic framework for forecasting that combines multiple Time Series Foundation Models (TSFMs) with Large Language Models (LLMs) through a single unified API. TimeCopilot automates the forecasting pipeline: feature analysis, model selection, cross-validation, and forecast generation, while providing natural language explanations and supporting direct queries about the future. The framework is LLM-agnostic, compatible with both commercial and open-source models, and supports ensembles across diverse forecasting families. Results on the large-scale GIFT-Eval benchmark show that TimeCopilot achieves state-of-the-art probabilistic forecasting performance at low cost. Our framework provides a practical foundation for reproducible, explainable, and accessible agentic forecasting systems.
♻ ☆ Retrofitters, pragmatists and activists: Public interest litigation for accountable automated decision-making
This paper examines the role of public interest litigation in promoting accountability for AI and automated decision-making (ADM) in Australia. Since ADM regulation faces geopolitical headwinds, effective governance will have to rely at least in part on the enforcement of existing laws. Drawing on interviews with Australian public interest litigators, technology policy activists, and technology law scholars, the paper positions public interest litigation as part of a larger ecosystem for transparency, accountability and justice with respect to ADM. It builds on one participant's characterisation of litigation about ADM as an exercise in legal retrofitting: adapting old laws to new circumstances. The paper's primary contribution is to aggregate, organise and present original insights on pragmatic strategies and tactics for effective public interest litigation about ADM. Naturally, it also contends with the limits of these strategies, and of the Australian legal system. Where limits are, however, capable of being overcome, the paper presents findings on urgent needs: the enabling institutional arrangements without which effective litigation and accountability will falter. The paper is relevant to law and technology scholars; individuals and groups harmed by ADM; public interest litigators and technology lawyers; civil society and advocacy organisations; and policymakers.
♻ ☆ Learning Dynamics of Meta-Learning in Small Model Pretraining AACL 2025
Large language models are powerful but costly. We ask whether meta-learning can make the pretraining of small language models not only better but also more interpretable. We integrate first-order MAML with subset-masked LM pretraining, producing four LLama-style decoder-only models (11M-570M params), and evaluate it on a fundamental NLP task with many settings and real-world applications. Compared with vanilla training, our model (i) reaches the same loss up to 1.6x sooner, (ii) improves F1 on multilingual Universal NER under equal compute, and (iii) makes the training dynamics easy to read: first the network's representations fan out ("diversify") and later they collapse into a smaller, shared subspace ("compress"). This two-stage shift shows up as a rise-and-fall in both effective-rank curves and attention-head entropy. The same curves pinpoint which layers specialise earliest and which later reconverge, giving a compact, interpretable signature of meta-adaptation. Code, checkpoints and WandB logs are released.
comment: Accepted (oral) to Student Research Workshop at IJCNLP-AACL 2025
Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/
♻ ☆ Mean-Shift Theory and Its Applications in Swarm Robotics: A New Way to Enhance the Efficiency of Multi-Robot Collaboration
Swarms evolving from collective behaviors among multiple individuals are commonly seen in nature, which enables biological systems to exhibit more efficient and robust collaboration. Creating similar swarm intelligence in engineered robots poses challenges to the design of collaborative algorithms that can be programmed at large scales. The assignment-based method has played an eminent role for a very long time in solving collaboration problems of robot swarms. However, it faces fundamental limitations in terms of efficiency and robustness due to its unscalability to swarm variants. This article presents a tutorial review on recent advances in assignment-free collaboration of robot swarms, focusing on the problem of shape formation. A key theoretical component is the recently developed \emph{mean-shift exploration} strategy, which improves the collaboration efficiency of large-scale swarms by dozens of times. Further, the efficiency improvement is more significant as the swarm scale increases. Finally, this article discusses three important applications of the mean-shift exploration strategy, including precise shape formation, area coverage formation, and maneuvering formation, as well as their corresponding industrial scenarios in smart warehousing, area exploration, and cargo transportation.
♻ ☆ GeoAware-VLA: Implicit Geometry Aware Vision-Language-Action Model
Vision-Language-Action (VLA) models often fail to generalize to novel camera viewpoints, a limitation stemming from their difficulty in inferring robust 3D geometry from 2D images. We introduce GeoAware-VLA, a simple yet effective approach that enhances viewpoint invariance by integrating strong geometric priors into the vision backbone. Instead of training a visual encoder or relying on explicit 3D data, we leverage a frozen, pretrained geometric vision model as a feature extractor. A trainable projection layer then adapts these geometrically-rich features for the policy decoder, relieving it of the burden of learning 3D consistency from scratch. Through extensive evaluations on LIBERO benchmark subsets, we show GeoAware-VLA achieves substantial improvements in zero-shot generalization to novel camera poses, boosting success rates by over 2x in simulation. Crucially, these benefits translate to the physical world; our model shows a significant performance gain on a real robot, especially when evaluated from unseen camera angles. Our approach proves effective across both continuous and discrete action spaces, highlighting that robust geometric grounding is a key component for creating more generalizable robotic agents.
comment: Under Review, Project Page https://alisharey.github.io/GeoAware-VLA/
♻ ☆ Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild
To perform outdoor visual navigation and search, a robot may leverage satellite imagery to generate visual priors. This can help inform high-level search strategies, even when such images lack sufficient resolution for target recognition. However, many existing informative path planning or search-based approaches either assume no prior information, or use priors without accounting for how they were obtained. Recent work instead utilizes large Vision Language Models (VLMs) for generalizable priors, but their outputs can be inaccurate due to hallucination, leading to inefficient search. To address these challenges, we introduce Search-TTA, a multimodal test-time adaptation framework with a flexible plug-and-play interface compatible with various input modalities (e.g., image, text, sound) and planning methods (e.g., RL-based). First, we pretrain a satellite image encoder to align with CLIP's visual encoder to output probability distributions of target presence used for visual search. Second, our TTA framework dynamically refines CLIP's predictions during search using uncertainty-weighted gradient updates inspired by Spatial Poisson Point Processes. To train and evaluate Search-TTA, we curate AVS-Bench, a visual search dataset based on internet-scale ecological data containing 380k images and taxonomy data. We find that Search-TTA improves planner performance by up to 30.0%, particularly in cases with poor initial CLIP predictions due to domain mismatch and limited training data. It also performs comparably with significantly larger VLMs, and achieves zero-shot generalization via emergent alignment to unseen modalities. Finally, we deploy Search-TTA on a real UAV via hardware-in-the-loop testing, by simulating its operation within a large-scale simulation that provides onboard sensing.
comment: Accepted for presentation at CORL 2025. Code, models, and data are available at https://search-tta.github.io/
♻ ☆ Octopus-like Reaching Motion: A Perspective Inspired by Whipping
The stereotypical reaching motion of the octopus arm has drawn growing attention for its efficient control of a highly deformable body. Previous studies suggest that its characteristic bend propagation may share underlying principles with the dynamics of a whip. This work investigates whether whip-like passive dynamics in water can reproduce the kinematic features observed in biological reaching and their similarities and differences. Platform-based whipping tests were performed in water and air while systematically varying material stiffness and driving speed. Image-based quantification revealed that the Ecoflex Gel 2 arm driven at 150 rpm (motor speed) reproduced curvature propagation similar to that observed in octopus reaching. However, its bend-point velocity decreased monotonically rather than exhibiting the biological bell-shaped profile, confirming that the octopus reaching movement is not merely a passive whipping behavior. The absence of propagation in air further highlights the critical role of the surrounding medium in forming octopus-like reaching motion. This study provides a new perspective for understand biological reaching movement, and offers a potential platform for future hydrodynamic research.
comment: The first two listed authors contributed equally. Yiyuan Zhang is the corresponding author
♻ ☆ ReNiL: Event-Driven Pedestrian Bayesian Localization Using IMU for Real-World Applications
Pedestrian inertial localization is key for mobile and IoT services because it provides infrastructure-free positioning. Yet most learning-based methods depend on fixed sliding-window integration, struggle to adapt to diverse motion scales and cadences, and yield inconsistent uncertainty, limiting real-world use. We present ReNiL, a Bayesian deep-learning framework for accurate, efficient, and uncertainty-aware pedestrian localization. ReNiL introduces Inertial Positioning Demand Points (IPDPs) to estimate motion at contextually meaningful waypoints instead of dense tracking, and supports inference on IMU sequences at any scale so cadence can match application needs. It couples a motion-aware orientation filter with an Any-Scale Laplace Estimator (ASLE), a dual-task network that blends patch-based self-supervision with Bayesian regression. By modeling displacements with a Laplace distribution, ReNiL provides homogeneous Euclidean uncertainty that integrates cleanly with other sensors. A Bayesian inference chain links successive IPDPs into consistent trajectories. On RoNIN-ds and a new WUDataset covering indoor and outdoor motion from 28 participants, ReNiL achieves state-of-the-art displacement accuracy and uncertainty consistency, outperforming TLIO, CTIN, iMoT, and RoNIN variants while reducing computation. Application studies further show robustness and practicality for mobile and IoT localization, making ReNiL a scalable, uncertainty-aware foundation for next-generation positioning.
comment: This work has been submitted to the ACM for possible publication
♻ ☆ Generalizing Robot Trajectories from Single-Context Human Demonstrations: A Probabilistic Approach
Generalizing robot trajectories from human demonstrations to new contexts remains a key challenge in Learning from Demonstration (LfD), particularly when only single-context demonstrations are available. We present a novel Gaussian Mixture Model (GMM)-based approach that enables systematic generalization from single-context demonstrations to a wide range of unseen start and goal configurations. Our method performs component-level reparameterization of the GMM, adapting both mean vectors and covariance matrices, followed by Gaussian Mixture Regression (GMR) to generate smooth trajectories. We evaluate the approach on a dual-arm pick-and-place task with varying box placements, comparing against several baselines. Results show that our method significantly outperforms baselines in trajectory success and fidelity, maintaining accuracy even under combined translational and rotational variations of task configurations. These results demonstrate that our method generalizes effectively while ensuring boundary convergence and preserving the intrinsic structure of demonstrated motions.
♻ ☆ Periodic Skill Discovery NeurIPS 2025
Unsupervised skill discovery in reinforcement learning (RL) aims to learn diverse behaviors without relying on external rewards. However, current methods often overlook the periodic nature of learned skills, focusing instead on increasing the mutual dependence between states and skills or maximizing the distance traveled in latent space. Considering that many robotic tasks - particularly those involving locomotion - require periodic behaviors across varying timescales, the ability to discover diverse periodic skills is essential. Motivated by this, we propose Periodic Skill Discovery (PSD), a framework that discovers periodic behaviors in an unsupervised manner. The key idea of PSD is to train an encoder that maps states to a circular latent space, thereby naturally encoding periodicity in the latent representation. By capturing temporal distance, PSD can effectively learn skills with diverse periods in complex robotic tasks, even with pixel-based observations. We further show that these learned skills achieve high performance on downstream tasks such as hurdling. Moreover, integrating PSD with an existing skill discovery method offers more diverse behaviors, thus broadening the agent's repertoire. Our code and demos are available at https://jonghaepark.github.io/psd/
comment: NeurIPS 2025
♻ ☆ SceneComplete: Open-World 3D Scene Completion in Cluttered Real World Environments for Robot Manipulation
Careful robot manipulation in every-day cluttered environments requires an accurate understanding of the 3D scene, in order to grasp and place objects stably and reliably and to avoid colliding with other objects. In general, we must construct such a 3D interpretation of a complex scene based on limited input, such as a single RGB-D image. We describe SceneComplete, a system for constructing a complete, segmented, 3D model of a scene from a single view. SceneComplete is a novel pipeline for composing general-purpose pretrained perception modules (vision-language, segmentation, image-inpainting, image-to-3D, visual-descriptors and pose-estimation) to obtain highly accurate results. We demonstrate its accuracy and effectiveness with respect to ground-truth models in a large benchmark dataset and show that its accurate whole-object reconstruction enables robust grasp proposal generation, including for a dexterous hand. We release the code and additional results on our website.
Computation and Language 118
☆ VeriCoT: Neuro-symbolic Chain-of-Thought Validation via Logical Consistency Checks
LLMs can perform multi-step reasoning through Chain-of-Thought (CoT), but they cannot reliably verify their own logic. Even when they reach correct answers, the underlying reasoning may be flawed, undermining trust in high-stakes scenarios. To mitigate this issue, we introduce VeriCoT, a neuro-symbolic method that extracts and verifies formal logical arguments from CoT reasoning. VeriCoT formalizes each CoT reasoning step into first-order logic and identifies premises that ground the argument in source context, commonsense knowledge, or prior reasoning steps. The symbolic representation enables automated solvers to verify logical validity while the NL premises allow humans and systems to identify ungrounded or fallacious reasoning steps. Experiments on the ProofWriter, LegalBench, and BioASQ datasets show VeriCoT effectively identifies flawed reasoning, and serves as a strong predictor of final answer correctness. We also leverage VeriCoT's verification signal for (1) inference-time self-reflection, (2) supervised fine-tuning (SFT) on VeriCoT-distilled datasets and (3) preference fine-tuning (PFT) with direct preference optimization (DPO) using verification-based pairwise rewards, further improving reasoning validity and accuracy.
☆ Logit-Entropy Adaptive Stopping Heuristic for Efficient Chain-of-Thought Reasoning NeurIPS 2025
Chain-of-Thought (CoT) prompting is a key technique for enabling complex reasoning in large language models. However, generating full, fixed-length rationales is computationally wasteful, inflating both token usage and latency. We introduce LEASH: Logit-Entropy Adaptive Stopping Heuristic, a training-free decoding algorithm that adaptively halts rationale generation. LEASH monitors two intrinsic signals: the slope of token-level entropy and the improvement in the top-logit margin. It terminates the generation once both signals plateau, indicating the model has reached a stable reasoning state. Across four instruction-tuned models on the GSM8K and AQuA-RAT benchmarks, LEASH reduces average token generation by 30--35% and latency by 27%, while incurring a 10 p.p. accuracy drop relative to CoT. LEASH is model-agnostic and requires no additional training or supervision, offering a simple and efficient alternative to CoT decoding.
comment: Presented at the 1st Workshop on Efficient Reasoning (NeurIPS 2025)
☆ DR. WELL: Dynamic Reasoning and Learning with Symbolic World Model for Embodied LLM-Based Multi-Agent Collaboration
Cooperative multi-agent planning requires agents to make joint decisions with partial information and limited communication. Coordination at the trajectory level often fails, as small deviations in timing or movement cascade into conflicts. Symbolic planning mitigates this challenge by raising the level of abstraction and providing a minimal vocabulary of actions that enable synchronization and collective progress. We present DR. WELL, a decentralized neurosymbolic framework for cooperative multi-agent planning. Cooperation unfolds through a two-phase negotiation protocol: agents first propose candidate roles with reasoning and then commit to a joint allocation under consensus and environment constraints. After commitment, each agent independently generates and executes a symbolic plan for its role without revealing detailed trajectories. Plans are grounded in execution outcomes via a shared world model that encodes the current state and is updated as agents act. By reasoning over symbolic plans rather than raw trajectories, DR. WELL avoids brittle step-level alignment and enables higher-level operations that are reusable, synchronizable, and interpretable. Experiments on cooperative block-push tasks show that agents adapt across episodes, with the dynamic world model capturing reusable patterns and improving task completion rates and efficiency. Experiments on cooperative block-push tasks show that our dynamic world model improves task completion and efficiency through negotiation and self-refinement, trading a time overhead for evolving, more efficient collaboration strategies.
☆ When retrieval outperforms generation: Dense evidence retrieval for scalable fake news detection
The proliferation of misinformation necessitates robust yet computationally efficient fact verification systems. While current state-of-the-art approaches leverage Large Language Models (LLMs) for generating explanatory rationales, these methods face significant computational barriers and hallucination risks in real-world deployments. We present DeReC (Dense Retrieval Classification), a lightweight framework that demonstrates how general-purpose text embeddings can effectively replace autoregressive LLM-based approaches in fact verification tasks. By combining dense retrieval with specialized classification, our system achieves better accuracy while being significantly more efficient. DeReC outperforms explanation-generating LLMs in efficiency, reducing runtime by 95% on RAWFC (23 minutes 36 seconds compared to 454 minutes 12 seconds) and by 92% on LIAR-RAW (134 minutes 14 seconds compared to 1692 minutes 23 seconds), showcasing its effectiveness across varying dataset sizes. On the RAWFC dataset, DeReC achieves an F1 score of 65.58%, surpassing the state-of-the-art method L-Defense (61.20%). Our results demonstrate that carefully engineered retrieval-based systems can match or exceed LLM performance in specialized tasks while being significantly more practical for real-world deployment.
☆ Are We Asking the Right Questions? On Ambiguity in Natural Language Queries for Tabular Data Analysis
Natural language interfaces to tabular data must handle ambiguities inherent to queries. Instead of treating ambiguity as a deficiency, we reframe it as a feature of cooperative interaction, where the responsibility of query specification is shared among the user and the system. We develop a principled framework distinguishing cooperative queries, i.e., queries that yield a resolvable interpretation, from uncooperative queries that cannot be resolved. Applying the framework to evaluations for tabular question answering and analysis, we analyze the queries in 15 popular datasets, and observe an uncontrolled mixing of query types neither adequate for evaluating a system's execution accuracy nor for evaluating interpretation capabilities. Our framework and analysis of queries shifts the perspective from fixing ambiguity to embracing cooperation in resolving queries. This reflection enables more informed design and evaluation for natural language interfaces for tabular data, for which we outline implications and directions for future research.
comment: Accepted to the AI for Tabular Data workshop at EurIPS 2025
☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, validates them through rigorous experimentation, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We hope these insights will deepen understanding of current progress and risks in AI Scientist development.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
Thinking with Video: Video Generation as a Promising Multimodal Reasoning Paradigm
"Thinking with Text" and "Thinking with Images" paradigm significantly improve the reasoning ability of large language models (LLMs) and Vision Language Models (VLMs). However, these paradigms have inherent limitations. (1) Images capture only single moments and fail to represent dynamic processes or continuous changes, and (2) The separation of text and vision as distinct modalities, hindering unified multimodal understanding and generation. To overcome these limitations, we introduce "Thinking with Video", a new paradigm that leverages video generation models, such as Sora-2, to bridge visual and textual reasoning in a unified temporal framework. To support this exploration, we developed the Video Thinking Benchmark (VideoThinkBench). VideoThinkBench encompasses two task categories: (1) vision-centric tasks (e.g., Eyeballing Puzzles), and (2) text-centric tasks (e.g., subsets of GSM8K, MMMU). Our evaluation establishes Sora-2 as a capable reasoner. On vision-centric tasks, Sora-2 is generally comparable to state-of-the-art (SOTA) VLMs, and even surpasses VLMs on several tasks, such as Eyeballing Games. On text-centric tasks, Sora-2 achieves 92% accuracy on MATH, and 75.53% accuracy on MMMU. Furthermore, we systematically analyse the source of these abilities. We also find that self-consistency and in-context learning can improve Sora-2's performance. In summary, our findings demonstrate that the video generation model is the potential unified multimodal understanding and generation model, positions "thinking with video" as a unified multimodal reasoning paradigm.
comment: 36 pages, 14 figures
☆ BanglaMedQA and BanglaMMedBench: Evaluating Retrieval-Augmented Generation Strategies for Bangla Biomedical Question Answering
Developing accurate biomedical Question Answering (QA) systems in low-resource languages remains a major challenge, limiting equitable access to reliable medical knowledge. This paper introduces BanglaMedQA and BanglaMMedBench, the first large-scale Bangla biomedical Multiple Choice Question (MCQ) datasets designed to evaluate reasoning and retrieval in medical artificial intelligence (AI). The study applies and benchmarks several Retrieval-Augmented Generation (RAG) strategies, including Traditional, Zero-Shot Fallback, Agentic, Iterative Feedback, and Aggregate RAG, combining textbook-based and web retrieval with generative reasoning to improve factual accuracy. A key novelty lies in integrating a Bangla medical textbook corpus through Optical Character Recognition (OCR) and implementing an Agentic RAG pipeline that dynamically selects between retrieval and reasoning strategies. Experimental results show that the Agentic RAG achieved the highest accuracy 89.54% with openai/gpt-oss-120b, outperforming other configurations and demonstrating superior rationale quality. These findings highlight the potential of RAG-based methods to enhance the reliability and accessibility of Bangla medical QA, establishing a foundation for future research in multilingual medical artificial intelligence.
comment: Under Review
☆ From Model to Breach: Towards Actionable LLM-Generated Vulnerabilities Reporting
As the role of Large Language Models (LLM)-based coding assistants in software development becomes more critical, so does the role of the bugs they generate in the overall cybersecurity landscape. While a number of LLM code security benchmarks have been proposed alongside approaches to improve the security of generated code, it remains unclear to what extent they have impacted widely used coding LLMs. Here, we show that even the latest open-weight models are vulnerable in the earliest reported vulnerability scenarios in a realistic use setting, suggesting that the safety-functionality trade-off has until now prevented effective patching of vulnerabilities. To help address this issue, we introduce a new severity metric that reflects the risk posed by an LLM-generated vulnerability, accounting for vulnerability severity, generation chance, and the formulation of the prompt that induces vulnerable code generation - Prompt Exposure (PE). To encourage the mitigation of the most serious and prevalent vulnerabilities, we use PE to define the Model Exposure (ME) score, which indicates the severity and prevalence of vulnerabilities a model generates.
☆ IntelliProof: An Argumentation Network-based Conversational Helper for Organized Reflection AAAI
We present IntelliProof, an interactive system for analyzing argumentative essays through LLMs. IntelliProof structures an essay as an argumentation graph, where claims are represented as nodes, supporting evidence is attached as node properties, and edges encode supporting or attacking relations. Unlike existing automated essay scoring systems, IntelliProof emphasizes the user experience: each relation is initially classified and scored by an LLM, then visualized for enhanced understanding. The system provides justifications for classifications and produces quantitative measures for essay coherence. It enables rapid exploration of argumentative quality while retaining human oversight. In addition, IntelliProof provides a set of tools for a better understanding of an argumentative essay and its corresponding graph in natural language, bridging the gap between the structural semantics of argumentative essays and the user's understanding of a given text. A live demo and the system are available here to try: \textbf{https://intelliproof.vercel.app}
comment: Accepted for the 40th Annual AAAI Conference on Artificial Intelligence (2026) - Demonstration Track
☆ Are language models aware of the road not taken? Token-level uncertainty and hidden state dynamics
When a language model generates text, the selection of individual tokens might lead it down very different reasoning paths, making uncertainty difficult to quantify. In this work, we consider whether reasoning language models represent the alternate paths that they could take during generation. To test this hypothesis, we use hidden activations to control and predict a language model's uncertainty during chain-of-thought reasoning. In our experiments, we find a clear correlation between how uncertain a model is at different tokens, and how easily the model can be steered by controlling its activations. This suggests that activation interventions are most effective when there are alternate paths available to the model -- in other words, when it has not yet committed to a particular final answer. We also find that hidden activations can predict a model's future outcome distribution, demonstrating that models implicitly represent the space of possible paths.
☆ Modeling Clinical Uncertainty in Radiology Reports: from Explicit Uncertainty Markers to Implicit Reasoning Pathways
Radiology reports are invaluable for clinical decision-making and hold great potential for automated analysis when structured into machine-readable formats. These reports often contain uncertainty, which we categorize into two distinct types: (i) Explicit uncertainty reflects doubt about the presence or absence of findings, conveyed through hedging phrases. These vary in meaning depending on the context, making rule-based systems insufficient to quantify the level of uncertainty for specific findings; (ii) Implicit uncertainty arises when radiologists omit parts of their reasoning, recording only key findings or diagnoses. Here, it is often unclear whether omitted findings are truly absent or simply unmentioned for brevity. We address these challenges with a two-part framework. We quantify explicit uncertainty by creating an expert-validated, LLM-based reference ranking of common hedging phrases, and mapping each finding to a probability value based on this reference. In addition, we model implicit uncertainty through an expansion framework that systematically adds characteristic sub-findings derived from expert-defined diagnostic pathways for 14 common diagnoses. Using these methods, we release Lunguage++, an expanded, uncertainty-aware version of the Lunguage benchmark of fine-grained structured radiology reports. This enriched resource enables uncertainty-aware image classification, faithful diagnostic reasoning, and new investigations into the clinical impact of diagnostic uncertainty.
☆ RAGalyst: Automated Human-Aligned Agentic Evaluation for Domain-Specific RAG
Retrieval-Augmented Generation (RAG) is a critical technique for grounding Large Language Models (LLMs) in factual evidence, yet evaluating RAG systems in specialized, safety-critical domains remains a significant challenge. Existing evaluation frameworks often rely on heuristic-based metrics that fail to capture domain-specific nuances and other works utilize LLM-as-a-Judge approaches that lack validated alignment with human judgment. This paper introduces RAGalyst, an automated, human-aligned agentic framework designed for the rigorous evaluation of domain-specific RAG systems. RAGalyst features an agentic pipeline that generates high-quality, synthetic question-answering (QA) datasets from source documents, incorporating an agentic filtering step to ensure data fidelity. The framework refines two key LLM-as-a-Judge metrics-Answer Correctness and Answerability-using prompt optimization to achieve a strong correlation with human annotations. Applying this framework to evaluate various RAG components across three distinct domains (military operations, cybersecurity, and bridge engineering), we find that performance is highly context-dependent. No single embedding model, LLM, or hyperparameter configuration proves universally optimal. Additionally, we provide an analysis on the most common low Answer Correctness reasons in RAG. These findings highlight the necessity of a systematic evaluation framework like RAGalyst, which empowers practitioners to uncover domain-specific trade-offs and make informed design choices for building reliable and effective RAG systems. RAGalyst is available on our Github.
Large language models replicate and predict human cooperation across experiments in game theory
Large language models (LLMs) are increasingly used both to make decisions in domains such as health, education and law, and to simulate human behavior. Yet how closely LLMs mirror actual human decision-making remains poorly understood. This gap is critical: misalignment could produce harmful outcomes in practical applications, while failure to replicate human behavior renders LLMs ineffective for social simulations. Here, we address this gap by developing a digital twin of game-theoretic experiments and introducing a systematic prompting and probing framework for machine-behavioral evaluation. Testing three open-source models (Llama, Mistral and Qwen), we find that Llama reproduces human cooperation patterns with high fidelity, capturing human deviations from rational choice theory, while Qwen aligns closely with Nash equilibrium predictions. Notably, we achieved population-level behavioral replication without persona-based prompting, simplifying the simulation process. Extending beyond the original human-tested games, we generate and preregister testable hypotheses for novel game configurations outside the original parameter grid. Our findings demonstrate that appropriately calibrated LLMs can replicate aggregate human behavioral patterns and enable systematic exploration of unexplored experimental spaces, offering a complementary approach to traditional research in the social and behavioral sciences that generates new empirical predictions about human social decision-making.
☆ Decoding Emergent Big Five Traits in Large Language Models: Temperature-Dependent Expression and Architectural Clustering AACL 2025
As Large Language Models (LLMs) become integral to human-centered applications, understanding their personality-like behaviors is increasingly important for responsible development and deployment. This paper systematically evaluates six LLMs, applying the Big Five Inventory-2 (BFI-2) framework, to assess trait expressions under varying sampling temperatures. We find significant differences across four of the five personality dimensions, with Neuroticism and Extraversion susceptible to temperature adjustments. Further, hierarchical clustering reveals distinct model clusters, suggesting that architectural features may predispose certain models toward stable trait profiles. Taken together, these results offer new insights into the emergence of personality-like patterns in LLMs and provide a new perspective on model tuning, selection, and the ethical governance of AI systems. We share the data and code for this analysis here: https://osf.io/bsvzc/?view_only=6672219bede24b4e875097426dc3fac1
comment: Accepted at IJCNLP-AACL 2025
☆ OUNLP at TSAR 2025 Shared Task: Multi-Round Text Simplifier via Code Generation EMNLP2025
This paper describes the OUNLP system submitted to the TSAR-2025 Shared Task (Alva-Manchego et al., 2025), designed for readability-controlled text simplification using LLM-prompting-based generation. Based on the analysis of prompt-based text simplification methods, we discovered an interesting finding that text simplification performance is highly related to the gap between the source CEFR (Arase et al., 2022) level and the target CEFR level. Inspired by this finding, we propose two multi-round simplification methods and generate them via GPT-4o: rule-based simplification (MRS-Rule) and jointly rule-based LLM simplification (MRS-Joint). Our submitted systems ranked 7 out of 20 teams. Later improvements with MRS-Joint show that taking the LLM simplified candidates as the starting point could further boost the multi-round simplification performance.
comment: Accepted to TSAR 2025 Workshop at EMNLP2025
☆ RUST-BENCH: Benchmarking LLM Reasoning on Unstructured Text within Structured Tables
Existing tabular reasoning benchmarks mostly test models on small, uniform tables, underrepresenting the complexity of real-world data and giving an incomplete view of Large Language Models' (LLMs) reasoning abilities. Real tables are long, heterogeneous, and domain-specific, mixing structured fields with free text and requiring multi-hop reasoning across thousands of tokens. To address this gap, we introduce RUST-BENCH, a benchmark of 7966 questions from 2031 real-world tables spanning two domains: i) RB-Science (NSF grant records) and ii) RB-Sports (NBA statistics). Unlike prior work, RUST-BENCH evaluates LLMs jointly across scale, heterogeneity, domain specificity, and reasoning complexity. Experiments with open-source and proprietary models show that LLMs struggle with heterogeneous schemas and complex multi-hop inference, revealing persistent weaknesses in current architectures and prompting strategies. RUST-BENCH establishes a challenging new testbed for advancing tabular reasoning research.
☆ ThaiOCRBench: A Task-Diverse Benchmark for Vision-Language Understanding in Thai AACL 2025
We present ThaiOCRBench, the first comprehensive benchmark for evaluating vision-language models (VLMs) on Thai text-rich visual understanding tasks. Despite recent progress in multimodal modeling, existing benchmarks predominantly focus on high-resource languages, leaving Thai underrepresented, especially in tasks requiring document structure understanding. ThaiOCRBench addresses this gap by offering a diverse, human-annotated dataset comprising 2,808 samples across 13 task categories. We evaluate a wide range of state-of-the-art VLMs in a zero-shot setting, spanning both proprietary and open-source systems. Results show a significant performance gap, with proprietary models (e.g., Gemini 2.5 Pro) outperforming open-source counterparts. Notably, fine-grained text recognition and handwritten content extraction exhibit the steepest performance drops among open-source models. Through detailed error analysis, we identify key challenges such as language bias, structural mismatch, and hallucinated content. ThaiOCRBench provides a standardized framework for assessing VLMs in low-resource, script-complex settings, and provides actionable insights for improving Thai-language document understanding.
comment: Accepted at the IJCNLP-AACL 2025 (Main)
☆ Probabilistic Textual Time Series Depression Detection
Accurate and interpretable predictions of depression severity are essential for clinical decision support, yet existing models often lack uncertainty estimates and temporal modeling. We propose PTTSD, a Probabilistic Textual Time Series Depression Detection framework that predicts PHQ-8 scores from utterance-level clinical interviews while modeling uncertainty over time. PTTSD includes sequence-to-sequence and sequence-to-one variants, both combining bidirectional LSTMs, self-attention, and residual connections with Gaussian or Student-t output heads trained via negative log-likelihood. Evaluated on E-DAIC and DAIC-WOZ, PTTSD achieves state-of-the-art performance among text-only systems (e.g., MAE = 3.85 on E-DAIC, 3.55 on DAIC) and produces well-calibrated prediction intervals. Ablations confirm the value of attention and probabilistic modeling, while comparisons with MentalBERT establish generality. A three-part calibration analysis and qualitative case studies further highlight the interpretability and clinical relevance of uncertainty-aware forecasting.
comment: 14 pages, 8 figures, 4 tables
☆ Ground-Truth Subgraphs for Better Training and Evaluation of Knowledge Graph Augmented LLMs
Retrieval of information from graph-structured knowledge bases represents a promising direction for improving the factuality of LLMs. While various solutions have been proposed, a comparison of methods is difficult due to the lack of challenging QA datasets with ground-truth targets for graph retrieval. We present SynthKGQA, a framework for generating high-quality synthetic Knowledge Graph Question Answering datasets from any Knowledge Graph, providing the full set of ground-truth facts in the KG to reason over each question. We show how, in addition to enabling more informative benchmarking of KG retrievers, the data produced with SynthKGQA also allows us to train better models. We apply SynthKGQA to Wikidata to generate GTSQA, a new dataset designed to test zero-shot generalization abilities of KG retrievers with respect to unseen graph structures and relation types, and benchmark popular solutions for KG-augmented LLMs on it.
☆ If I Could Turn Back Time: Temporal Reframing as a Historical Reasoning Task for LLMs
In this study, we experiment with the ability of LLMs to do temporal reasoning. Using a Norwegian book from 1940 containing trivia questions, we prompt the LLMs to answer the questions as if it were 1940. We also pose the questions in both English and Norwegian. Correct answers are often presented as sentences, and grading is done by means of LLM-as-judge, with sampled checks by a native speaker. Prompting in English consistently gave better results than in Norwegian, an unexpected result. In contrast, using larger LLMs improved results. We tested the DeepSeek-R1, Gemma3, Qwen3, and Llama3.1 model families, and also the largest available LLM especially crafted for Norwegian.
comment: 8 pages, 1 figure, 3 tables, submitted to aconference
☆ The Illusion of Certainty: Uncertainty quantification for LLMs fails under ambiguity
Accurate uncertainty quantification (UQ) in Large Language Models (LLMs) is critical for trustworthy deployment. While real-world language is inherently ambiguous, reflecting aleatoric uncertainty, existing UQ methods are typically benchmarked against tasks with no ambiguity. In this work, we demonstrate that while current uncertainty estimators perform well under the restrictive assumption of no ambiguity, they degrade to close-to-random performance on ambiguous data. To this end, we introduce MAQA* and AmbigQA*, the first ambiguous question-answering (QA) datasets equipped with ground-truth answer distributions estimated from factual co-occurrence. We find this performance deterioration to be consistent across different estimation paradigms: using the predictive distribution itself, internal representations throughout the model, and an ensemble of models. We show that this phenomenon can be theoretically explained, revealing that predictive-distribution and ensemble-based estimators are fundamentally limited under ambiguity. Overall, our study reveals a key shortcoming of current UQ methods for LLMs and motivates a rethinking of current modeling paradigms.
☆ Dynamic Jointly Batch Selection for Data Efficient Machine Translation Fine-Tuning
Data quality and its effective selection are fundamental to improving the performance of machine translation models, serving as cornerstones for achieving robust and reliable translation systems. This paper presents a data selection methodology specifically designed for fine-tuning machine translation systems, which leverages the synergy between a learner model and a pre-trained reference model to enhance overall training effectiveness. By defining a learnability score, our approach systematically evaluates the utility of data points for training, ensuring that only the most relevant and impactful examples contribute to the fine-tuning process. Furthermore, our method employs a batch selection strategy which considers interdependencies among data points, optimizing the efficiency of the training process while maintaining a focus on data relevance. Experiments on English to Persian and several other language pairs using an mBART model fine-tuned on the CCMatrix dataset demonstrate that our method can achieve up to a fivefold improvement in data efficiency compared to an iid baseline. Experimental results indicate that our approach improves computational efficiency by 24 when utilizing cached embeddings, as it requires fewer training data points. Additionally, it enhances generalization, resulting in superior translation performance compared to random selection method.
☆ SSPO: Subsentence-level Policy Optimization
As a significant part of post-training of the Large Language Models (LLMs), Reinforcement Learning from Verifiable Reward (RLVR) has greatly improved LLMs' reasoning skills. However, some RLVR algorithms, such as GRPO (Group Relative Policy Optimization) and GSPO (Group Sequence Policy Optimization), are observed to suffer from unstable policy updates and low usage of sampling data, respectively. The importance ratio of GRPO is calculated at the token level, which focuses more on optimizing a single token. This will be easily affected by outliers, leading to model training collapse. GSPO proposed the calculation of the response level importance ratio, which solves the problem of high variance and training noise accumulation in the calculation of the GRPO importance ratio. However, since all the response tokens share a common importance ratio, extreme values can easily raise or lower the overall mean, leading to the entire response being mistakenly discarded, resulting in a decrease in the utilization of sampled data. This paper introduces SSPO, which applies sentence-level importance ratio, taking the balance between GRPO and GSPO. SSPO not only avoids training collapse and high variance, but also prevents the whole response tokens from being abandoned by the clipping mechanism. Furthermore, we apply sentence entropy to PPO-CLIP to steadily adjust the clipping bounds, encouraging high-entropy tokens to explore and narrow the clipping range of low-entropy tokens. In particular, SSPO achieves an average score of 46.57 across five datasets, surpassing GRPO (43.01) and GSPO (44.42), and wins state-of-the-art performance on three datasets. These results highlight SSPO's effectiveness in leveraging generated data by taking the essence of GSPO but rejecting its shortcomings.
☆ Efficient Topic Extraction via Graph-Based Labeling: A Lightweight Alternative to Deep Models
Extracting topics from text has become an essential task, especially with the rapid growth of unstructured textual data. Most existing works rely on highly computational methods to address this challenge. In this paper, we argue that probabilistic and statistical approaches, such as topic modeling (TM), can offer effective alternatives that require fewer computational resources. TM is a statistical method that automatically discovers topics in large collections of unlabeled text; however, it produces topics as distributions of representative words, which often lack clear interpretability. Our objective is to perform topic labeling by assigning meaningful labels to these sets of words. To achieve this without relying on computationally expensive models, we propose a graph-based approach that not only enriches topic words with semantically related terms but also explores the relationships among them. By analyzing these connections within the graph, we derive suitable labels that accurately capture each topic's meaning. We present a comparative study between our proposed method and several benchmarks, including ChatGPT-3.5, across two different datasets. Our method achieved consistently better results than traditional benchmarks in terms of BERTScore and cosine similarity and produced results comparable to ChatGPT-3.5, while remaining computationally efficient. Finally, we discuss future directions for topic labeling and highlight potential research avenues for enhancing interpretability and automation.
☆ Reusing Pre-Training Data at Test Time is a Compute Multiplier
Large language models learn from their vast pre-training corpora, gaining the ability to solve an ever increasing variety of tasks; yet although researchers work to improve these datasets, there is little effort to understand how efficient the pre-training apparatus is at extracting ideas and knowledge from the data. In this work, we use retrieval augmented generation along with test-time compute as a way to quantify how much dataset value was left behind by the process of pre-training, and how this changes across scale. We demonstrate that pre-training then retrieving from standard and largely open-sourced datasets results in significant accuracy gains in MMLU, Math-500, and SimpleQA, which persist through decontamination. For MMLU we observe that retrieval acts as a ~5x compute multiplier versus pre-training alone. We show that these results can be further improved by leveraging additional compute at test time to parse the retrieved context, demonstrating a 10 percentage point improvement on MMLU for the public LLaMA 3.1 8B model. Overall, our results suggest that today's pre-training methods do not make full use of the information in existing pre-training datasets, leaving significant room for progress.
☆ REMIND: Input Loss Landscapes Reveal Residual Memorization in Post-Unlearning LLMs
Machine unlearning aims to remove the influence of specific training data from a model without requiring full retraining. This capability is crucial for ensuring privacy, safety, and regulatory compliance. Therefore, verifying whether a model has truly forgotten target data is essential for maintaining reliability and trustworthiness. However, existing evaluation methods often assess forgetting at the level of individual inputs. This approach may overlook residual influence present in semantically similar examples. Such influence can compromise privacy and lead to indirect information leakage. We propose REMIND (Residual Memorization In Neighborhood Dynamics), a novel evaluation method aiming to detect the subtle remaining influence of unlearned data and classify whether the data has been effectively forgotten. REMIND analyzes the model's loss over small input variations and reveals patterns unnoticed by single-point evaluations. We show that unlearned data yield flatter, less steep loss landscapes, while retained or unrelated data exhibit sharper, more volatile patterns. REMIND requires only query-based access, outperforms existing methods under similar constraints, and demonstrates robustness across different models, datasets, and paraphrased inputs, making it practical for real-world deployment. By providing a more sensitive and interpretable measure of unlearning effectiveness, REMIND provides a reliable framework to assess unlearning in language models. As a result, REMIND offers a novel perspective on memorization and unlearning.
comment: Pre-print version under review
☆ Black-Box Guardrail Reverse-engineering Attack
Large language models (LLMs) increasingly employ guardrails to enforce ethical, legal, and application-specific constraints on their outputs. While effective at mitigating harmful responses, these guardrails introduce a new class of vulnerabilities by exposing observable decision patterns. In this work, we present the first study of black-box LLM guardrail reverse-engineering attacks. We propose Guardrail Reverse-engineering Attack (GRA), a reinforcement learning-based framework that leverages genetic algorithm-driven data augmentation to approximate the decision-making policy of victim guardrails. By iteratively collecting input-output pairs, prioritizing divergence cases, and applying targeted mutations and crossovers, our method incrementally converges toward a high-fidelity surrogate of the victim guardrail. We evaluate GRA on three widely deployed commercial systems, namely ChatGPT, DeepSeek, and Qwen3, and demonstrate that it achieves an rule matching rate exceeding 0.92 while requiring less than $85 in API costs. These findings underscore the practical feasibility of guardrail extraction and highlight significant security risks for current LLM safety mechanisms. Our findings expose critical vulnerabilities in current guardrail designs and highlight the urgent need for more robust defense mechanisms in LLM deployment.
☆ Block Rotation is All You Need for MXFP4 Quantization
Large language models (LLMs) have achieved remarkable success, but their rapidly growing scale imposes prohibitive costs in memory, computation, and energy. Post-training quantization (PTQ) is a promising solution for efficient deployment, yet achieving accurate W4A4 quantization remains an open challenge. While most existing methods are designed for INT4 formats, the emergence of MXFP4 -- a new FP4 format with various hardware support (NVIDIA, AMD, Intel)-- raises questions about the applicability of current techniques. In this work, we establish a comprehensive benchmark of PTQ methods under the MXFP4 format. Through systematic evaluation, we find that methods like GPTQ consistently deliver strong performance, whereas rotation-based approaches, which are almost used by all state-of-the-art approaches, suffer from severe incompatibility with MXFP4. We further provide the first in-depth analysis of this conflict, tracing its root to a fundamental mismatch between MXFP4's PoT (power-of-two) block scaling and the redistribution of outlier energy via global rotation. Building on this insight, we propose a simple yet effective block rotation strategy that adapts rotation-based methods to MXFP4, leading to substantial accuracy improvements across diverse LLMs. Our findings not only offer clear guidance for practitioners but also set a foundation for advancing PTQ research under emerging low-precision formats.
comment: 9 pages, 10 figures
LLM-as-a-Judge is Bad, Based on AI Attempting the Exam Qualifying for the Member of the Polish National Board of Appeal
This study provides an empirical assessment of whether current large language models (LLMs) can pass the official qualifying examination for membership in Poland's National Appeal Chamber (Krajowa Izba Odwo{\l}awcza). The authors examine two related ideas: using LLM as actual exam candidates and applying the 'LLM-as-a-judge' approach, in which model-generated answers are automatically evaluated by other models. The paper describes the structure of the exam, which includes a multiple-choice knowledge test on public procurement law and a written judgment, and presents the hybrid information recovery and extraction pipeline built to support the models. Several LLMs (including GPT-4.1, Claude 4 Sonnet and Bielik-11B-v2.6) were tested in closed-book and various Retrieval-Augmented Generation settings. The results show that although the models achieved satisfactory scores in the knowledge test, none met the passing threshold in the practical written part, and the evaluations of the 'LLM-as-a-judge' often diverged from the judgments of the official examining committee. The authors highlight key limitations: susceptibility to hallucinations, incorrect citation of legal provisions, weaknesses in logical argumentation, and the need for close collaboration between legal experts and technical teams. The findings indicate that, despite rapid technological progress, current LLMs cannot yet replace human judges or independent examiners in Polish public procurement adjudication.
☆ Computational Turing Test Reveals Systematic Differences Between Human and AI Language
Large language models (LLMs) are increasingly used in the social sciences to simulate human behavior, based on the assumption that they can generate realistic, human-like text. Yet this assumption remains largely untested. Existing validation efforts rely heavily on human-judgment-based evaluations -- testing whether humans can distinguish AI from human output -- despite evidence that such judgments are blunt and unreliable. As a result, the field lacks robust tools for assessing the realism of LLM-generated text or for calibrating models to real-world data. This paper makes two contributions. First, we introduce a computational Turing test: a validation framework that integrates aggregate metrics (BERT-based detectability and semantic similarity) with interpretable linguistic features (stylistic markers and topical patterns) to assess how closely LLMs approximate human language within a given dataset. Second, we systematically compare nine open-weight LLMs across five calibration strategies -- including fine-tuning, stylistic prompting, and context retrieval -- benchmarking their ability to reproduce user interactions on X (formerly Twitter), Bluesky, and Reddit. Our findings challenge core assumptions in the literature. Even after calibration, LLM outputs remain clearly distinguishable from human text, particularly in affective tone and emotional expression. Instruction-tuned models underperform their base counterparts, and scaling up model size does not enhance human-likeness. Crucially, we identify a trade-off: optimizing for human-likeness often comes at the cost of semantic fidelity, and vice versa. These results provide a much-needed scalable framework for validation and calibration in LLM simulations -- and offer a cautionary note about their current limitations in capturing human communication.
☆ Trustworthy LLM-Mediated Communication: Evaluating Information Fidelity in LLM as a Communicator (LAAC) Framework in Multiple Application Domains
The proliferation of AI-generated content has created an absurd communication theater where senders use LLMs to inflate simple ideas into verbose content, recipients use LLMs to compress them back into summaries, and as a consequence neither party engage with authentic content. LAAC (LLM as a Communicator) proposes a paradigm shift - positioning LLMs as intelligent communication intermediaries that capture the sender's intent through structured dialogue and facilitate genuine knowledge exchange with recipients. Rather than perpetuating cycles of AI-generated inflation and compression, LAAC enables authentic communication across diverse contexts including academic papers, proposals, professional emails, and cross-platform content generation. However, deploying LLMs as trusted communication intermediaries raises critical questions about information fidelity, consistency, and reliability. This position paper systematically evaluates the trustworthiness requirements for LAAC's deployment across multiple communication domains. We investigate three fundamental dimensions: (1) Information Capture Fidelity - accuracy of intent extraction during sender interviews across different communication types, (2) Reproducibility - consistency of structured knowledge across multiple interaction instances, and (3) Query Response Integrity - reliability of recipient-facing responses without hallucination, source conflation, or fabrication. Through controlled experiments spanning multiple LAAC use cases, we assess these trust dimensions using LAAC's multi-agent architecture. Preliminary findings reveal measurable trust gaps that must be addressed before LAAC can be reliably deployed in high-stakes communication scenarios.
comment: 10 pages, 4 figures. Submitted to IEEE DISTILL 2025 (co-located with IEEE TPS 2025)
☆ Transforming Mentorship: An AI Powered Chatbot Approach to University Guidance
University students face immense challenges during their undergraduate lives, often being deprived of personalized on-demand guidance that mentors fail to provide at scale. Digital tools exist, but there is a serious lack of customized coaching for newcomers. This paper presents an AI-powered chatbot that will serve as a mentor for the students of BRAC University. The main component is a data ingestion pipeline that efficiently processes and updates information from diverse sources, such as CSV files and university webpages. The chatbot retrieves information through a hybrid approach, combining BM25 lexical ranking with ChromaDB semantic retrieval, and uses a Large Language Model, LLaMA-3.3-70B, to generate conversational responses. The generated text was found to be semantically highly relevant, with a BERTScore of 0.831 and a METEOR score of 0.809. The data pipeline was also very efficient, taking 106.82 seconds for updates, compared to 368.62 seconds for new data. This chatbot will be able to help students by responding to their queries, helping them to get a better understanding of university life, and assisting them to plan better routines for their semester in the open-credit university.
comment: 11 pages
☆ Seeing Straight: Document Orientation Detection for Efficient OCR
Despite significant advances in document understanding, determining the correct orientation of scanned or photographed documents remains a critical pre-processing step in the real world settings. Accurate rotation correction is essential for enhancing the performance of downstream tasks such as Optical Character Recognition (OCR) where misalignment commonly arises due to user errors, particularly incorrect base orientations of the camera during capture. In this study, we first introduce OCR-Rotation-Bench (ORB), a new benchmark for evaluating OCR robustness to image rotations, comprising (i) ORB-En, built from rotation-transformed structured and free-form English OCR datasets, and (ii) ORB-Indic, a novel multilingual set spanning 11 Indic mid to low-resource languages. We also present a fast, robust and lightweight rotation classification pipeline built on the vision encoder of Phi-3.5-Vision model with dynamic image cropping, fine-tuned specifically for 4-class rotation task in a standalone fashion. Our method achieves near-perfect 96% and 92% accuracy on identifying the rotations respectively on both the datasets. Beyond classification, we demonstrate the critical role of our module in boosting OCR performance: closed-source (up to 14%) and open-weights models (up to 4x) in the simulated real-world setting.
☆ BAPPA: Benchmarking Agents, Plans, and Pipelines for Automated Text-to-SQL Generation
Text-to-SQL systems provide a natural language interface that can enable even laymen to access information stored in databases. However, existing Large Language Models (LLM) struggle with SQL generation from natural instructions due to large schema sizes and complex reasoning. Prior work often focuses on complex, somewhat impractical pipelines using flagship models, while smaller, efficient models remain overlooked. In this work, we explore three multi-agent LLM pipelines, with systematic performance benchmarking across a range of small to large open-source models: (1) Multi-agent discussion pipeline, where agents iteratively critique and refine SQL queries, and a judge synthesizes the final answer; (2) Planner-Coder pipeline, where a thinking model planner generates stepwise SQL generation plans and a coder synthesizes queries; and (3) Coder-Aggregator pipeline, where multiple coders independently generate SQL queries, and a reasoning agent selects the best query. Experiments on the Bird-Bench Mini-Dev set reveal that Multi-Agent discussion can improve small model performance, with up to 10.6% increase in Execution Accuracy for Qwen2.5-7b-Instruct seen after three rounds of discussion. Among the pipelines, the LLM Reasoner-Coder pipeline yields the best results, with DeepSeek-R1-32B and QwQ-32B planners boosting Gemma 3 27B IT accuracy from 52.4% to the highest score of 56.4%. Codes are available at https://github.com/treeDweller98/bappa-sql.
☆ CantoASR: Prosody-Aware ASR-LALM Collaboration for Low-Resource Cantonese
Automatic speech recognition (ASR) is critical for language accessibility, yet low-resource Cantonese remains challenging due to limited annotated data, six lexical tones, tone sandhi, and accent variation. Existing ASR models, such as Whisper, often suffer from high word error rates. Large audio-language models (LALMs), in contrast, can leverage broader contextual reasoning but still require explicit tonal and prosodic acoustic cues. We introduce CantoASR, a collaborative ASR-LALM error correction framework that integrates forced alignment for acoustic feature extraction, a LoRA-finetuned Whisper for improved tone discrimination, and an instruction-tuned Qwen-Audio for prosody-aware correction. Evaluations on spontaneous Cantonese data show substantial CER gains over Whisper-Large-V3. These findings suggest that integrating acoustic cues with LALM reasoning provides a scalable strategy for low-resource tonal and dialectal ASR.
RIDE: Difficulty Evolving Perturbation with Item Response Theory for Mathematical Reasoning
Large language models (LLMs) achieve high performance on mathematical reasoning, but these results can be inflated by training data leakage or superficial pattern matching rather than genuine reasoning. To this end, an adversarial perturbation-based evaluation is needed to measure true mathematical reasoning ability. Current rule-based perturbation methods often generate ill-posed questions and impede the systematic evaluation of question difficulty and the evolution of benchmarks. To bridge this gap, we propose RIDE, a novel adversarial question-rewriting framework that leverages Item Response Theory (IRT) to rigorously measure question difficulty and to generate intrinsically more challenging, well-posed variations of mathematical problems. We employ 35 LLMs to simulate students and build a difficulty ranker from their responses. This ranker provides a reward signal during reinforcement learning and guides a question-rewriting model to reformulate existing questions across difficulty levels. Applying RIDE to competition-level mathematical benchmarks yields perturbed versions that degrade advanced LLM performance, with experiments showing an average 21.73% drop across 26 models, thereby exposing limited robustness in mathematical reasoning and confirming the validity of our evaluation approach.
☆ Batch Prompting Suppresses Overthinking Reasoning Under Constraint: How Batch Prompting Suppresses Overthinking in Reasoning Models
Recent work has explored batch prompting as a strategy to amortize inference cost in large language models (LLMs). In this paper, we show that batching offers an additional, underappreciated benefit: it regularizes model behavior during multi-step reasoning for Large Reasoning Models (LRMs). We conduct a comprehensive study across 13 diverse benchmarks and observe that batching improves accuracy while substantially reducing reasoning token usage, often by 3x-5x. Through detailed behavioral analysis, we find that batching suppresses overthinking, reduces hedging language (e.g., repetitive self-corrections), and encourages more decisive answers. Surprisingly, we also observe emergent collective effects in batched inference: models often generalize patterns from earlier examples to solve harder ones in the same batch. These findings position batching not just as a throughput optimization, but as a powerful inference-time regularizer for more efficient and reliable LLM reasoning.
☆ Sub-exponential Growth in Online Word Usage: A Piecewise Power-Law Model
The diffusion of ideas and language in society has conventionally been described by S-shaped models, such as the logistic curve. However, the role of sub-exponential growth -a slower than exponential pattern known in epidemiology- has been largely overlooked in broader social phenomena. Here, we present a piecewise power-law model to characterize complex growth curves with a few parameters. We systematically analyzed a large-scale dataset of approximately one billion Japanese blog articles linked to Wikipedia vocabulary, and observed consistent patterns in web search trend data (English, Spanish, and Japanese). Our analysis of the 2,965 selected items reveals that about 55% (1,625 items) were found to have no abrupt jumps and were well captured by one or two segments. For single-segment curves, we found that (i) the mode of the shape parameter alpha was near 0.5, indicating prevalent sub-exponential growth; (ii) the ultimate diffusion scale is primarily determined by the growth rate R, with minor contributions from alpha or the duration T; and (iii) alpha showed a tendency to vary with the nature of the topic, being smaller for niche/local topics and larger for widely shared ones. Furthermore, a micro-behavioral model distinguishing outward contact with strangers from inward interaction within their community suggests that alpha can be interpreted as an index of the preference for outward-oriented communication. These findings suggest that sub-exponential growth is a common pattern of social diffusion, and our model provides a practical framework for consistently describing, comparing, and interpreting complex and diverse growth curves.
☆ A Characterization of List Language Identification in the Limit
We study the problem of language identification in the limit, where given a sequence of examples from a target language, the goal of the learner is to output a sequence of guesses for the target language such that all the guesses beyond some finite time are correct. Classical results of Gold showed that language identification in the limit is impossible for essentially any interesting collection of languages. Later, Angluin gave a precise characterization of language collections for which this task is possible. Motivated by recent positive results for the related problem of language generation, we revisit the classic language identification problem in the setting where the learner is given the additional power of producing a list of $k$ guesses at each time step. The goal is to ensure that beyond some finite time, one of the guesses is correct at each time step. We give an exact characterization of collections of languages that can be $k$-list identified in the limit, based on a recursive version of Angluin's characterization (for language identification with a list of size $1$). This further leads to a conceptually appealing characterization: A language collection can be $k$-list identified in the limit if and only if the collection can be decomposed into $k$ collections of languages, each of which can be identified in the limit (with a list of size $1$). We also use our characterization to establish rates for list identification in the statistical setting where the input is drawn as an i.i.d. stream from a distribution supported on some language in the collection. Our results show that if a collection is $k$-list identifiable in the limit, then the collection can be $k$-list identified at an exponential rate, and this is best possible. On the other hand, if a collection is not $k$-list identifiable in the limit, then it cannot be $k$-list identified at any rate that goes to zero.
☆ Improving the Performance of Radiology Report De-identification with Large-Scale Training and Benchmarking Against Cloud Vendor Methods
Objective: To enhance automated de-identification of radiology reports by scaling transformer-based models through extensive training datasets and benchmarking performance against commercial cloud vendor systems for protected health information (PHI) detection. Materials and Methods: In this retrospective study, we built upon a state-of-the-art, transformer-based, PHI de-identification pipeline by fine-tuning on two large annotated radiology corpora from Stanford University, encompassing chest X-ray, chest CT, abdomen/pelvis CT, and brain MR reports and introducing an additional PHI category (AGE) into the architecture. Model performance was evaluated on test sets from Stanford and the University of Pennsylvania (Penn) for token-level PHI detection. We further assessed (1) the stability of synthetic PHI generation using a "hide-in-plain-sight" method and (2) performance against commercial systems. Precision, recall, and F1 scores were computed across all PHI categories. Results: Our model achieved overall F1 scores of 0.973 on the Penn dataset and 0.996 on the Stanford dataset, outperforming or maintaining the previous state-of-the-art model performance. Synthetic PHI evaluation showed consistent detectability (overall F1: 0.959 [0.958-0.960]) across 50 independently de-identified Penn datasets. Our model outperformed all vendor systems on synthetic Penn reports (overall F1: 0.960 vs. 0.632-0.754). Discussion: Large-scale, multimodal training improved cross-institutional generalization and robustness. Synthetic PHI generation preserved data utility while ensuring privacy. Conclusion: A transformer-based de-identification model trained on diverse radiology datasets outperforms prior academic and commercial systems in PHI detection and establishes a new benchmark for secure clinical text processing.
comment: In submission to JAMIA
☆ The truth is no diaper: Human and AI-generated associations to emotional words
Human word associations are a well-known method of gaining insight into the internal mental lexicon, but the responses spontaneously offered by human participants to word cues are not always predictable as they may be influenced by personal experience, emotions or individual cognitive styles. The ability to form associative links between seemingly unrelated concepts can be the driving mechanisms of creativity. We perform a comparison of the associative behaviour of humans compared to large language models. More specifically, we explore associations to emotionally loaded words and try to determine whether large language models generate associations in a similar way to humans. We find that the overlap between humans and LLMs is moderate, but also that the associations of LLMs tend to amplify the underlying emotional load of the stimulus, and that they tend to be more predictable and less creative than human ones.
comment: 6 pages, 1 figure. Presented at ICCC'25, Campinas, Brazil
☆ Plan of Knowledge: Retrieval-Augmented Large Language Models for Temporal Knowledge Graph Question Answering
Temporal Knowledge Graph Question Answering (TKGQA) aims to answer time-sensitive questions by leveraging factual information from Temporal Knowledge Graphs (TKGs). While previous studies have employed pre-trained TKG embeddings or graph neural networks to inject temporal knowledge, they fail to fully understand the complex semantic information of time constraints. Recently, Large Language Models (LLMs) have shown remarkable progress, benefiting from their strong semantic understanding and reasoning generalization capabilities. However, their temporal reasoning ability remains limited. LLMs frequently suffer from hallucination and a lack of knowledge. To address these limitations, we propose the Plan of Knowledge framework with a contrastive temporal retriever, which is named PoK. Specifically, the proposed Plan of Knowledge module decomposes a complex temporal question into a sequence of sub-objectives from the pre-defined tools, serving as intermediate guidance for reasoning exploration. In parallel, we construct a Temporal Knowledge Store (TKS) with a contrastive retrieval framework, enabling the model to selectively retrieve semantically and temporally aligned facts from TKGs. By combining structured planning with temporal knowledge retrieval, PoK effectively enhances the interpretability and factual consistency of temporal reasoning. Extensive experiments on four benchmark TKGQA datasets demonstrate that PoK significantly improves the retrieval precision and reasoning accuracy of LLMs, surpassing the performance of the state-of-the-art TKGQA methods by 56.0% at most.
comment: Submitted to the IEEE for possible publication
☆ T-FIX: Text-Based Explanations with Features Interpretable to eXperts
As LLMs are deployed in knowledge-intensive settings (e.g., surgery, astronomy, therapy), users expect not just answers, but also meaningful explanations for those answers. In these settings, users are often domain experts (e.g., doctors, astrophysicists, psychologists) who require explanations that reflect expert-level reasoning. However, current evaluation schemes primarily emphasize plausibility or internal faithfulness of the explanation, which fail to capture whether the content of the explanation truly aligns with expert intuition. We formalize expert alignment as a criterion for evaluating explanations with T-FIX, a benchmark spanning seven knowledge-intensive domains. In collaboration with domain experts, we develop novel metrics to measure the alignment of LLM explanations with expert judgment.
☆ DartQuant: Efficient Rotational Distribution Calibration for LLM Quantization NeurIPS 2025
Quantization plays a crucial role in accelerating the inference of large-scale models, and rotational matrices have been shown to effectively improve quantization performance by smoothing outliers. However, end-to-end fine-tuning of rotational optimization algorithms incurs high computational costs and is prone to overfitting. To address this challenge, we propose an efficient distribution-aware rotational calibration method, DartQuant, which reduces the complexity of rotational optimization by constraining the distribution of the activations after rotation. This approach also effectively reduces reliance on task-specific losses, thereby mitigating the risk of overfitting. Additionally, we introduce the QR-Orth optimization scheme, which replaces expensive alternating optimization with a more efficient solution. In a variety of model quantization experiments, DartQuant demonstrates superior performance. Compared to existing methods, it achieves 47$\times$ acceleration and 10$\times$ memory savings for rotational optimization on a 70B model. Furthermore, it is the first to successfully complete rotational calibration for a 70B model on a single 3090 GPU, making quantization of large language models feasible in resource-constrained environments. Code is available at https://github.com/CAS-CLab/DartQuant.git.
comment: NeurIPS 2025, 10 pages, 12 figures
☆ Explorability in Pushdown Automata
We study explorability, a measure of nondeterminism in pushdown automata, which generalises history-determinism. An automaton is k-explorable if, while reading the input, it suffices to follow k concurrent runs, built step-by-step based only on the input seen so far, to construct an accepting one, if it exists. We show that the class of explorable PDAs lies strictly between history-deterministic and fully nondeterministic PDAs in terms of both expressiveness and succinctness. In fact increasing explorability induces an infinite hierarchy: each level k defines a strictly more expressive class than level k-1, yet the entire class remains less expressive than general nondeterministic PDAs. We then introduce a parameterized notion of explorability, where the number of runs may depend on input length, and show that exponential explorability precisely captures the context-free languages. Finally, we prove that explorable PDAs can be doubly exponentially more succinct than history-deterministic ones, and that the succinctness gap between deterministic and 2-explorable PDAs is not recursively enumerable. These results position explorability as a robust and operationally meaningful measure of nondeterminism for pushdown systems.
☆ WST: Weakly Supervised Transducer for Automatic Speech Recognition
The Recurrent Neural Network-Transducer (RNN-T) is widely adopted in end-to-end (E2E) automatic speech recognition (ASR) tasks but depends heavily on large-scale, high-quality annotated data, which are often costly and difficult to obtain. To mitigate this reliance, we propose a Weakly Supervised Transducer (WST), which integrates a flexible training graph designed to robustly handle errors in the transcripts without requiring additional confidence estimation or auxiliary pre-trained models. Empirical evaluations on synthetic and industrial datasets reveal that WST effectively maintains performance even with transcription error rates of up to 70%, consistently outperforming existing Connectionist Temporal Classification (CTC)-based weakly supervised approaches, such as Bypass Temporal Classification (BTC) and Omni-Temporal Classification (OTC). These results demonstrate the practical utility and robustness of WST in realistic ASR settings. The implementation will be publicly available.
☆ Abductive Inference in Retrieval-Augmented Language Models: Generating and Validating Missing Premises
Large Language Models (LLMs) enhanced with retrieval -- commonly referred to as Retrieval-Augmented Generation (RAG) -- have demonstrated strong performance in knowledge-intensive tasks. However, RAG pipelines often fail when retrieved evidence is incomplete, leaving gaps in the reasoning process. In such cases, \emph{abductive inference} -- the process of generating plausible missing premises to explain observations -- offers a principled approach to bridge these gaps. In this paper, we propose a framework that integrates abductive inference into retrieval-augmented LLMs. Our method detects insufficient evidence, generates candidate missing premises, and validates them through consistency and plausibility checks. Experimental results on abductive reasoning and multi-hop QA benchmarks show that our approach improves both answer accuracy and reasoning faithfulness. This work highlights abductive inference as a promising direction for enhancing the robustness and explainability of RAG systems.
☆ Towards Scalable Meta-Learning of near-optimal Interpretable Models via Synthetic Model Generations
Decision trees are widely used in high-stakes fields like finance and healthcare due to their interpretability. This work introduces an efficient, scalable method for generating synthetic pre-training data to enable meta-learning of decision trees. Our approach samples near-optimal decision trees synthetically, creating large-scale, realistic datasets. Using the MetaTree transformer architecture, we demonstrate that this method achieves performance comparable to pre-training on real-world data or with computationally expensive optimal decision trees. This strategy significantly reduces computational costs, enhances data generation flexibility, and paves the way for scalable and efficient meta-learning of interpretable decision tree models.
comment: 9 pages, 3 figures, Neurips 2025 GenAI in Finance Workshop
LLMs and Cultural Values: the Impact of Prompt Language and Explicit Cultural Framing
Large Language Models (LLMs) are rapidly being adopted by users across the globe, who interact with them in a diverse range of languages. At the same time, there are well-documented imbalances in the training data and optimisation objectives of this technology, raising doubts as to whether LLMs can represent the cultural diversity of their broad user base. In this study, we look at LLMs and cultural values and examine how prompt language and cultural framing influence model responses and their alignment with human values in different countries. We probe 10 LLMs with 63 items from the Hofstede Values Survey Module and World Values Survey, translated into 11 languages, and formulated as prompts with and without different explicit cultural perspectives. Our study confirms that both prompt language and cultural perspective produce variation in LLM outputs, but with an important caveat: While targeted prompting can, to a certain extent, steer LLM responses in the direction of the predominant values of the corresponding countries, it does not overcome the models' systematic bias toward the values associated with a restricted set of countries in our dataset: the Netherlands, Germany, the US, and Japan. All tested models, regardless of their origin, exhibit remarkably similar patterns: They produce fairly neutral responses on most topics, with selective progressive stances on issues such as social tolerance. Alignment with cultural values of human respondents is improved more with an explicit cultural perspective than with a targeted prompt language. Unexpectedly, combining both approaches is no more effective than cultural framing with an English prompt. These findings reveal that LLMs occupy an uncomfortable middle ground: They are responsive enough to changes in prompts to produce variation, but too firmly anchored to specific cultural defaults to adequately represent cultural diversity.
comment: Preprint under review at Computational Linguistics. Accepted with minor revisions (10/10/2025); second round
☆ Multi-Agent Collaborative Framework For Math Problem Generation
Automatic question generation (AQG) for mathematics education remains an elusive goal for Intelligent Tutoring Systems and educators. While pre-trained transformer-based language models have significantly advanced natural language generation, they often struggle to precisely control problem complexity and cognitive demands. In this paper, we introduce a collaborative multi-agent framework as a novel method of incorporating inference-time computation into AQG. This approach leverages multiple agents that iteratively refine generated question-answer pairs to better balance complexity and cognitive demand. We evaluate the generated questions on five meta-evaluation criteria: relevance, importance, clarity, difficulty matching, answerability, to assess the system's ability to control the required complexity and quality of the questions. Preliminary evaluations show that this collaborative multi-agent framework elevates the quality of generated educational content by fostering a more nuanced balance between cognitive challenge and clarity. These promising outcomes suggest that integrating collaborative multi-agent workflows can yield more controlled, pedagogically valuable content that can help advance automated educational content generation and adaptive learning environments.
comment: Published in the Proceedings of the 18th International Conference on Educational Data Mining, 6 pages, 5 figures
☆ Direct Semantic Communication Between Large Language Models via Vector Translation
In multi-agent settings, such as debate, reflection, or tool-calling, large language models (LLMs) pass messages as plain tokens, discarding most latent semantics. This constrains information transfer and adds unnecessary computational overhead. We form a latent bridge via vector translations, which use learned mappings that enable direct semantic exchange between representation spaces. A dual-encoder translator trained between Llama-2-7B and Mistral-7B-Instruct attains an average cosine alignment of 0.538. Injecting the translated vectors at 30 percent blending strength steers the target model's generation without destabilizing logits. Bidirectional evaluation shows a 2.01:1 transfer asymmetry, indicating that general-purpose models yield more transferable representations than instruction-tuned variants. This conservative injection preserves computational stability while demonstrating that cross-model latent communication is feasible, enabling collaborative AI systems that share meaning rather than tokens.
comment: 9 pages, 1 figure, 2 tables
☆ MIDI-LLM: Adapting Large Language Models for Text-to-MIDI Music Generation NeurIPS 2025
We present MIDI-LLM, an LLM for generating multitrack MIDI music from free-form text prompts. Our approach expands a text LLM's vocabulary to include MIDI tokens, and uses a two-stage training recipe to endow text-to-MIDI abilities. By preserving the original LLM's parameter structure, we can directly leverage the vLLM library for accelerated inference. Experiments show that MIDI-LLM achieves higher quality, better text control, and faster inference compared to the recent Text2midi model. Live demo at https://midi-llm-demo.vercel.app.
comment: To appear at NeurIPS 2025 Workshop on AI for Music
☆ RLHF: A comprehensive Survey for Cultural, Multimodal and Low Latency Alignment Methods
Reinforcement Learning from Human Feedback (RLHF) is the standard for aligning Large Language Models (LLMs), yet recent progress has moved beyond canonical text-based methods. This survey synthesizes the new frontier of alignment research by addressing critical gaps in multi-modal alignment, cultural fairness, and low-latency optimization. To systematically explore these domains, we first review foundational algo- rithms, including PPO, DPO, and GRPO, before presenting a detailed analysis of the latest innovations. By providing a comparative synthesis of these techniques and outlining open challenges, this work serves as an essential roadmap for researchers building more robust, efficient, and equitable AI systems.
☆ Efficient Topic Extraction via Graph-Based Labeling: A Lightweight Alternative to Deep Models
Extracting topics from text has become an essential task, especially with the rapid growth of unstructured textual data. Most existing works rely on highly computational methods to address this challenge. In this paper, we argue that probabilistic and statistical approaches, such as topic modeling (TM), can offer effective alternatives that require fewer computational resources. TM is a statistical method that automatically discovers topics in large collections of unlabeled text; however, it produces topics as distributions of representative words, which often lack clear interpretability. Our objective is to perform topic labeling by assigning meaningful labels to these sets of words. To achieve this without relying on computationally expensive models, we propose a graph-based approach that not only enriches topic words with semantically related terms but also explores the relationships among them. By analyzing these connections within the graph, we derive suitable labels that accurately capture each topic's meaning. We present a comparative study between our proposed method and several benchmarks, including ChatGPT-3.5, across two different datasets. Our method achieved consistently better results than traditional benchmarks in terms of BERTScore and cosine similarity and produced results comparable to ChatGPT-3.5, while remaining computationally efficient. Finally, we discuss future directions for topic labeling and highlight potential research avenues for enhancing interpretability and automation.
☆ Minimal and Mechanistic Conditions for Behavioral Self-Awareness in LLMs
Recent studies have revealed that LLMs can exhibit behavioral self-awareness: the ability to accurately describe or predict their own learned behaviors without explicit supervision. This capability raises safety concerns as it may, for example, allow models to better conceal their true abilities during evaluation. We attempt to characterize the minimal conditions under which such self-awareness emerges, and the mechanistic processes through which it manifests. Through controlled finetuning experiments on instruction-tuned LLMs with low-rank adapters (LoRA), we find: (1) that self-awareness can be reliably induced using a single rank-1 LoRA adapter; (2) that the learned self-aware behavior can be largely captured by a single steering vector in activation space, recovering nearly all of the fine-tune's behavioral effect; and (3) that self-awareness is non-universal and domain-localized, with independent representations across tasks. Together, these findings suggest that behavioral self-awareness emerges as a domain-specific, linear feature that can be easily induced and modulated.
☆ Trained on Tokens, Calibrated on Concepts: The Emergence of Semantic Calibration in LLMs
Large Language Models (LLMs) often lack meaningful confidence estimates for their outputs. While base LLMs are known to exhibit next-token calibration, it remains unclear whether they can assess confidence in the actual meaning of their responses beyond the token level. We find that, when using a certain sampling-based notion of semantic calibration, base LLMs are remarkably well-calibrated: they can meaningfully assess confidence in open-domain question-answering tasks, despite not being explicitly trained to do so. Our main theoretical contribution establishes a mechanism for why semantic calibration emerges as a byproduct of next-token prediction, leveraging a recent connection between calibration and local loss optimality. The theory relies on a general definition of "B-calibration," which is a notion of calibration parameterized by a choice of equivalence classes (semantic or otherwise). This theoretical mechanism leads to a testable prediction: base LLMs will be semantically calibrated when they can easily predict their own distribution over semantic answer classes before generating a response. We state three implications of this prediction, which we validate through experiments: (1) Base LLMs are semantically calibrated across question-answering tasks, (2) RL instruction-tuning systematically breaks this calibration, and (3) chain-of-thought reasoning breaks calibration. To our knowledge, our work provides the first principled explanation of when and why semantic calibration emerges in LLMs.
☆ Explore Data Left Behind in Reinforcement Learning for Reasoning Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an effective approach for improving the reasoning abilities of large language models (LLMs). The Group Relative Policy Optimization (GRPO) family has demonstrated strong performance in training LLMs with RLVR. However, as models train longer and scale larger, more training prompts become residual prompts, those with zero variance rewards that provide no training signal. Consequently, fewer prompts contribute to training, reducing diversity and hindering effectiveness. To fully exploit these residual prompts, we propose the Explore Residual Prompts in Policy Optimization (ERPO) framework, which encourages exploration on residual prompts and reactivates their training signals. ERPO maintains a history tracker for each prompt and adaptively increases the sampling temperature for residual prompts that previously produced all correct responses. This encourages the model to generate more diverse reasoning traces, introducing incorrect responses that revive training signals. Empirical results on the Qwen2.5 series demonstrate that ERPO consistently surpasses strong baselines across multiple mathematical reasoning benchmarks.
☆ Quantifying the Climate Risk of Generative AI: Region-Aware Carbon Accounting with G-TRACE and the AI Sustainability Pyramid
Generative Artificial Intelligence (GenAI) represents a rapidly expanding digital infrastructure whose energy demand and associated CO2 emissions are emerging as a new category of climate risk. This study introduces G-TRACE (GenAI Transformative Carbon Estimator), a cross-modal, region-aware framework that quantifies training- and inference-related emissions across modalities and deployment geographies. Using real-world analytics and microscopic simulation, G-TRACE measures energy use and carbon intensity per output type (text, image, video) and reveals how decentralized inference amplifies small per-query energy costs into system-level impacts. Through the Ghibli-style image generation trend (2024-2025), we estimate 4,309 MWh of energy consumption and 2,068 tCO2 emissions, illustrating how viral participation inflates individual digital actions into tonne-scale consequences. Building on these findings, we propose the AI Sustainability Pyramid, a seven-level governance model linking carbon accounting metrics (L1-L7) with operational readiness, optimization, and stewardship. This framework translates quantitative emission metrics into actionable policy guidance for sustainable AI deployment. The study contributes to the quantitative assessment of emerging digital infrastructures as a novel category of climate risk, supporting adaptive governance for sustainable technology deployment. By situating GenAI within climate-risk frameworks, the work advances data-driven methods for aligning technological innovation with global decarbonization and resilience objectives.
comment: 27 page, 4 figures
☆ Surprisal reveals diversity gaps in image captioning and different scorers change the story
We quantify linguistic diversity in image captioning with surprisal variance - the spread of token-level negative log-probabilities within a caption set. On the MSCOCO test set, we compare five state-of-the-art vision-and-language LLMs, decoded with greedy and nucleus sampling, to human captions. Measured with a caption-trained n-gram LM, humans display roughly twice the surprisal variance of models, but rescoring the same captions with a general-language model reverses the pattern. Our analysis introduces the surprisal-based diversity metric for image captioning. We show that relying on a single scorer can completely invert conclusions, thus, robust diversity evaluation must report surprisal under several scorers.
comment: Accepted and presented at INLG 2025
☆ Learning to reason about rare diseases through retrieval-augmented agents
Rare diseases represent the long tail of medical imaging, where AI models often fail due to the scarcity of representative training data. In clinical workflows, radiologists frequently consult case reports and literature when confronted with unfamiliar findings. Following this line of reasoning, we introduce RADAR, Retrieval Augmented Diagnostic Reasoning Agents, an agentic system for rare disease detection in brain MRI. Our approach uses AI agents with access to external medical knowledge by embedding both case reports and literature using sentence transformers and indexing them with FAISS to enable efficient similarity search. The agent retrieves clinically relevant evidence to guide diagnostic decision making on unseen diseases, without the need of additional training. Designed as a model-agnostic reasoning module, RADAR can be seamlessly integrated with diverse large language models, consistently improving their rare pathology recognition and interpretability. On the NOVA dataset comprising 280 distinct rare diseases, RADAR achieves up to a 10.2% performance gain, with the strongest improvements observed for open source models such as DeepSeek. Beyond accuracy, the retrieved examples provide interpretable, literature grounded explanations, highlighting retrieval-augmented reasoning as a powerful paradigm for low-prevalence conditions in medical imaging.
comment: Submitted on behalf of the PREDICTOM consortium
☆ First is Not Really Better Than Last: Evaluating Layer Choice and Aggregation Strategies in Language Model Data Influence Estimation
Identifying how training samples influence/impact Large Language Model (LLM) decision-making is essential for effectively interpreting model decisions and auditing large-scale datasets. Current training sample influence estimation methods (also known as influence functions) undertake this goal by utilizing information flow through the model via its first-order and higher-order gradient terms. However, owing to the large model sizes of today consisting of billions of parameters, these influence computations are often restricted to some subset of model layers to ensure computational feasibility. Prior seminal work by Yeh et al. (2022) in assessing which layers are best suited for computing language data influence concluded that the first (embedding) layers are the most informative for this purpose, using a hypothesis based on influence scores canceling out (i.e., the cancellation effect). In this work, we propose theoretical and empirical evidence demonstrating how the cancellation effect is unreliable, and that middle attention layers are better estimators for influence. Furthermore, we address the broader challenge of aggregating influence scores across layers, and showcase how alternatives to standard averaging (such as ranking and vote-based methods) can lead to significantly improved performance. Finally, we propose better methods for evaluating influence score efficacy in LLMs without undertaking model retraining, and propose a new metric known as the Noise Detection Rate (NDR) that exhibits strong predictive capability compared to the cancellation effect. Through extensive experiments across LLMs of varying types and scales, we concretely determine that the first (layers) are not necessarily better than the last (layers) for LLM influence estimation, contrasting with prior knowledge in the field.
♻ ☆ Latent learning: episodic memory complements parametric learning by enabling flexible reuse of experiences
When do machine learning systems fail to generalize, and what mechanisms could improve their generalization? Here, we draw inspiration from cognitive science to argue that one weakness of parametric machine learning systems is their failure to exhibit latent learning -- learning information that is not relevant to the task at hand, but that might be useful in a future task. We show how this perspective links failures ranging from the reversal curse in language modeling to new findings on agent-based navigation. We then highlight how cognitive science points to episodic memory as a potential part of the solution to these issues. Correspondingly, we show that a system with an oracle retrieval mechanism can use learning experiences more flexibly to generalize better across many of these challenges. We also identify some of the essential components for effectively using retrieval, including the importance of within-example in-context learning for acquiring the ability to use information across retrieved examples. In summary, our results illustrate one possible contributor to the relative data inefficiency of current machine learning systems compared to natural intelligence, and help to understand how retrieval methods can complement parametric learning to improve generalization. We close by discussing some of the links between these findings and prior results in cognitive science and neuroscience, and the broader implications.
♻ ☆ Distillation versus Contrastive Learning: How to Train Your Rerankers AACL 2025
Training effective text rerankers is crucial for information retrieval. Two strategies are widely used: contrastive learning (optimizing directly on ground-truth labels) and knowledge distillation (transferring knowledge from a larger reranker). While both have been studied extensively, a clear comparison of their effectiveness for training cross-encoder rerankers under practical conditions is needed. This paper empirically compares these strategies by training rerankers of different sizes (0.5B, 1.5B, 3B, 7B) and architectures (Transformer, Recurrent) using both methods on the same data, with a strong contrastive learning model acting as the distillation teacher. Our results show that knowledge distillation generally yields better in-domain and out-of-domain ranking performance than contrastive learning when distilling from a more performant teacher model. This finding is consistent across student model sizes and architectures. However, distilling from a teacher of the same capacity does not provide the same advantage, particularly for out-of-domain tasks. These findings offer practical guidance for choosing a training strategy based on available teacher models. We recommend using knowledge distillation to train smaller rerankers if a larger, more performant teacher is accessible; in its absence, contrastive learning remains a robust baseline. Our code implementation is made available to facilitate reproducbility.
comment: IJCNLP-AACL 2025 Findings
♻ ☆ Balancing Quality and Variation: Spam Filtering Distorts Data Label Distributions
For machine learning datasets to accurately represent diverse opinions in a population, they must preserve variation in data labels while filtering out spam or low-quality responses. How can we balance annotator reliability and representation? We empirically evaluate how a range of heuristics for annotator filtering affect the preservation of variation on subjective tasks. We find that these methods, designed for contexts in which variation from a single ground-truth label is considered noise, often remove annotators who disagree instead of spam annotators, introducing suboptimal tradeoffs between accuracy and label diversity. We find that conservative settings for annotator removal (<5%) are best, after which all tested methods increase the mean absolute error from the true average label. We analyze performance on synthetic spam to observe that these methods often assume spam annotators are more random than real spammers tend to be: most spammers are distributionally indistinguishable from real annotators, and the minority that are distinguishable tend to give relatively fixed answers, not random ones. Thus, tasks requiring the preservation of variation reverse the intuition of existing spam filtering methods: spammers tend to be less random than non-spammers, so metrics that assume variation is spam fare worse. These results highlight the need for spam removal methods that account for label diversity.
♻ ☆ Memorization in Large Language Models in Medicine: Prevalence, Characteristics, and Implications
Large Language Models (LLMs) have demonstrated significant potential in medicine. To date, LLMs have been widely applied to tasks such as diagnostic assistance, medical question answering, and clinical information synthesis. However, a key open question remains: to what extent do LLMs memorize medical training data. In this study, we present the first comprehensive evaluation of memorization of LLMs in medicine, assessing its prevalence (how frequently it occurs), characteristics (what is memorized), volume (how much content is memorized), and potential downstream impacts (how memorization may affect medical applications). We systematically analyze common adaptation scenarios: (1) continued pretraining on medical corpora, (2) fine-tuning on standard medical benchmarks, and (3) fine-tuning on real-world clinical data, including over 13,000 unique inpatient records from Yale New Haven Health System. The results demonstrate that memorization is prevalent across all adaptation scenarios and significantly higher than reported in the general domain. Memorization affects both the development and adoption of LLMs in medicine and can be categorized into three types: beneficial (e.g., accurate recall of clinical guidelines and biomedical references), uninformative (e.g., repeated disclaimers or templated medical document language), and harmful (e.g., regeneration of dataset-specific or sensitive clinical content). Based on these findings, we offer practical recommendations to facilitate beneficial memorization that enhances domain-specific reasoning and factual accuracy, minimize uninformative memorization to promote deeper learning beyond surface-level patterns, and mitigate harmful memorization to prevent the leakage of sensitive or identifiable patient information.
♻ ☆ XL-DURel: Finetuning Sentence Transformers for Ordinal Word-in-Context Classification
We propose XL-DURel, a finetuned, multilingual Sentence Transformer model optimized for ordinal Word-in-Context classification. We test several loss functions for regression and ranking tasks managing to outperform previous models on ordinal and binary data with a ranking objective based on angular distance in complex space. We further show that binary WiC can be treated as a special case of ordinal WiC and that optimizing models for the general ordinal task improves performance on the more specific binary task. This paves the way for a unified treatment of WiC modeling across different task formulations.
comment: 9 pages
♻ ☆ VISTA Score: Verification In Sequential Turn-based Assessment
Hallucination--defined here as generating statements unsupported or contradicted by available evidence or conversational context--remains a major obstacle to deploying conversational AI systems in settings that demand factual reliability. Existing metrics either evaluate isolated responses or treat unverifiable content as errors, limiting their use for multi-turn dialogue. We introduce VISTA (Verification In Sequential Turn-based Assessment), a framework for evaluating conversational factuality through claim-level verification and sequential consistency tracking. VISTA decomposes each assistant turn into atomic factual claims, verifies them against trusted sources and dialogue history, and categorizes unverifiable statements (subjective, contradicted, lacking evidence, or abstaining). Across eight large language models and four dialogue factuality benchmarks (AIS, BEGIN, FAITHDIAL, and FADE), VISTA substantially improves hallucination detection over FACTSCORE and LLM-as-Judge baselines. Human evaluation confirms that VISTA's decomposition improves annotator agreement and reveals inconsistencies in existing benchmarks. By modeling factuality as a dynamic property of conversation, VISTA offers a more transparent, human-aligned measure of truthfulness in dialogue systems.
♻ ☆ Homogeneous Keys, Heterogeneous Values: Exploiting Local KV Cache Asymmetry for Long-Context LLMs NeurIPS 2025
Recent advances in Large Language Models (LLMs) have highlighted the critical importance of extending context length, yet the quadratic complexity of attention mechanisms poses significant challenges for efficient long-context modeling. KV cache compression has emerged as a key approach to address this challenge. Through extensive empirical analysis, we reveal a fundamental yet previously overlooked asymmetry in KV caches: while adjacent keys receive similar attention weights ({\it local homogeneity}), adjacent values demonstrate distinct {\it heterogeneous} distributions. This key-value asymmetry reveals a critical limitation in existing compression methods that treat keys and values uniformly. To address the limitation, we propose a training-free compression framework (AsymKV) that combines homogeneity-based key merging with a mathematically proven lossless value compression. Extensive experiments demonstrate that AsymKV consistently outperforms existing long-context methods across various tasks and base models. For example, on LLaMA3.1-8B, AsymKV achieves an average score of 43.95 on LongBench, surpassing SOTA methods like H$_2$O (38.89) by a large margin.Our code can be found in this link:https://github.com/the-scale-lab/Asymkv.
comment: 14 pages,7 figures;Accepted by NeurIPS 2025
♻ ☆ OceanAI: A Conversational Platform for Accurate, Transparent, Near-Real-Time Oceanographic Insights
Artificial intelligence is transforming the sciences, yet general conversational AI systems often generate unverified "hallucinations" undermining scientific rigor. We present OceanAI, a conversational platform that integrates the natural-language fluency of open-source large language models (LLMs) with real-time, parameterized access to authoritative oceanographic data streams hosted by the National Oceanic and Atmospheric Administration (NOAA). Each query such as "What was Boston Harbor's highest water level in 2024?" triggers real-time API calls that identify, parse, and synthesize relevant datasets into reproducible natural-language responses and data visualizations. In a blind comparison with three widely used AI chat-interface products, only OceanAI produced NOAA-sourced values with original data references; others either declined to answer or provided unsupported results. Designed for extensibility, OceanAI connects to multiple NOAA data products and variables, supporting applications in marine hazard forecasting, ecosystem assessment, and water-quality monitoring. By grounding outputs and verifiable observations, OceanAI advances transparency, reproducibility, and trust, offering a scalable framework for AI-enabled decision support within the oceans. A public demonstration is available at https://oceanai.ai4ocean.xyz.
comment: A related presentation will be given at the AGU(American Geophysical Union) and AMS(American Meteorological Society) Annual Meetings
♻ ☆ Legal Fact Prediction: The Missing Piece in Legal Judgment Prediction EMNLP 2025
Legal judgment prediction (LJP), which enables litigants and their lawyers to forecast judgment outcomes and refine litigation strategies, has emerged as a crucial legal NLP task. Existing studies typically utilize legal facts, i.e., facts that have been established by evidence and determined by the judge, to predict the judgment. However, legal facts are often difficult to obtain in the early stages of litigation, significantly limiting the practical applicability of fact-based LJP. To address this limitation, we propose a novel legal NLP task: legal fact prediction (LFP), which takes the evidence submitted by litigants for trial as input to predict legal facts, thereby empowering fact-based LJP technologies to make predictions in the absence of ground-truth legal facts. We also propose the first benchmark dataset, LFPBench, for evaluating the LFP task. Our extensive experiments on LFPBench demonstrate the effectiveness of LFP-empowered LJP and highlight promising research directions for LFP.
comment: Accepted for EMNLP 2025 Main Conference
♻ ☆ Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models
State Space Models (SSMs) are emerging as a compelling alternative to Transformers because of their consistent memory usage and high performance. Despite this, scaling up SSMs on cloud services or limited-resource devices is challenging due to their storage requirements and computational power. To overcome this, quantizing SSMs with low bit-width data formats can reduce model size and benefit from hardware acceleration. As SSMs are prone to quantization-induced errors, recent efforts have focused on optimizing a particular model or bit-width for efficiency without sacrificing performance. However, distinct bit-width configurations are essential for different scenarios, like W4A8 for boosting large-batch decoding speed, and W4A16 for enhancing generation speed in short prompt applications for a single user. To this end, we present Quamba2, compatible with W8A8, W4A8, and W4A16 for both Mamba1 and Mamba2 backbones, addressing the growing demand for SSM deployment on various platforms. Based on the channel order preserving and activation persistence of SSMs, we propose an offline approach to quantize inputs of a linear recurrence in 8-bit by sorting and clustering for input $x$, combined with a per-state-group quantization for input-dependent parameters $B$ and $C$. To ensure compute-invariance in the SSM output, we rearrange weights offline according to the clustering sequence. The experiments show that Quamba2-8B outperforms two state-of-the-art SSM quantization methods and delivers 1.3$\times$ and 3$\times$ speed-ups in the pre-filling and generation stages, respectively, while offering 4$\times$ memory reduction with only a $1.6\%$ average accuracy drop. The evaluation on MMLU shows the generalizability and robustness of our framework. The code and quantized models will be released at: https://github.com/enyac-group/Quamba.
♻ ☆ LLM Targeted Underperformance Disproportionately Impacts Vulnerable Users AAAI 2026
While state-of-the-art large language models (LLMs) have shown impressive performance on many tasks, there has been extensive research on undesirable model behavior such as hallucinations and bias. In this work, we investigate how the quality of LLM responses changes in terms of information accuracy, truthfulness, and refusals depending on three user traits: English proficiency, education level, and country of origin. We present extensive experimentation on three state-of-the-art LLMs and two different datasets targeting truthfulness and factuality. Our findings suggest that undesirable behaviors in state-of-the-art LLMs occur disproportionately more for users with lower English proficiency, of lower education status, and originating from outside the US, rendering these models unreliable sources of information towards their most vulnerable users.
comment: Paper accepted at AAAI 2026
♻ ☆ LiveSearchBench: An Automatically Constructed Benchmark for Retrieval and Reasoning over Dynamic Knowledge
Evaluating large language models (LLMs) on question answering often relies on static benchmarks that reward memorization and understate the role of retrieval, failing to capture the dynamic nature of world knowledge. We present LiveSearchBench, an automated pipeline for constructing retrieval-dependent benchmarks from recent knowledge updates. Our method computes deltas between successive Wikidata snapshots, filters candidate triples for quality, and synthesizes natural-language questions at three levels of reasoning difficulty, each guaranteed to admit a unique, verifiable answer through SPARQL validation. The pipeline is fully automated, scalable across time, and minimizes human intervention, enabling continual regeneration of temporally grounded benchmarks. Experiments show a pronounced performance drop when models confront facts that post-date pretraining, with the gap most salient on multi-hop queries. Retrieval augmented methods and larger, instruction-tuned models provide partial gains but fail to close this recency gap. By design, LiveSearchBench shifts evaluation from static memorization toward tasks that require up-to-date retrieval and reasoning, offering a foundation for systematic, long-term assessment of LLMs under evolving knowledge.
♻ ☆ What Are They Talking About? A Benchmark of Knowledge-Grounded Discussion Summarization AACL
Traditional dialogue summarization primarily focuses on dialogue content, assuming it comprises adequate information for a clear summary. However, this assumption often fails for discussions grounded in shared background, where participants frequently omit context and use implicit references. This results in summaries that are confusing to readers unfamiliar with the background. To address this, we introduce Knowledge-Grounded Discussion Summarization (KGDS), a novel task that produces a supplementary background summary for context and a clear opinion summary with clarified references. To facilitate research, we construct the first KGDS benchmark, featuring news-discussion pairs and expert-created multi-granularity gold annotations for evaluating sub-summaries. We also propose a novel hierarchical evaluation framework with fine-grained and interpretable metrics. Our extensive evaluation of 12 advanced large language models (LLMs) reveals that KGDS remains a significant challenge. The models frequently miss key facts and retain irrelevant ones in background summarization, and often fail to resolve implicit references in opinion summary integration.
comment: Accepted to AACL-IJCNLP 2025 Main
♻ ☆ Benchmarking LLM Faithfulness in RAG with Evolving Leaderboards EMNLP
Retrieval-augmented generation (RAG) aims to reduce hallucinations by grounding responses in external context, yet large language models (LLMs) still frequently introduce unsupported information or contradictions even when provided with relevant context. This paper presents two complementary efforts at Vectara to measure and benchmark LLM faithfulness in RAG. First, we describe our original hallucination leaderboard, which has tracked hallucination rates for LLMs since 2023 using our HHEM hallucination detection model. Motivated by limitations observed in current hallucination detection methods, we introduce FaithJudge, an LLM-as-a-judge framework that leverages a pool of diverse human-annotated hallucination examples to substantially improve the automated hallucination evaluation of LLMs. We introduce an enhanced hallucination leaderboard centered on FaithJudge that benchmarks LLMs on RAG faithfulness in summarization, question-answering, and data-to-text generation tasks. FaithJudge enables a more reliable benchmarking of LLM hallucinations in RAG and supports the development of more trustworthy generative AI systems: https://github.com/vectara/FaithJudge.
comment: EMNLP Industry Track 2025
♻ ☆ DYNARTmo: A Dynamic Articulatory Model for Visualization of Speech Movement Patterns
We present DYNARTmo, a dynamic articulatory model designed to visualize speech articulation processes in a two-dimensional midsagittal plane. The model builds upon the UK-DYNAMO framework and integrates principles of articulatory underspecification, segmental and gestural control, and coarticulation. DYNARTmo simulates six key articulators based on ten continuous and six discrete control parameters, allowing for the generation of both vocalic and consonantal articulatory configurations. The current implementation is embedded in a web-based application (SpeechArticulationTrainer) that includes sagittal, glottal, and palatal views, making it suitable for use in phonetics education and speech therapy. While this paper focuses on the static modeling aspects, future work will address dynamic movement generation and integration with articulatory-acoustic modules.
comment: 10 pages, 29 references, 2 figures, supplementary material. V2: Discussion of the tongue-palate contact pattern for /t/. V4: replaces wrong paper upload (of V3). V5: minor corrections
♻ ☆ Text2VectorSQL: Towards a Unified Interface for Vector Search and SQL Queries
The proliferation of unstructured data poses a fundamental challenge to traditional database interfaces. While Text-to-SQL has democratized access to structured data, it remains incapable of interpreting semantic or multi-modal queries. Concurrently, vector search has emerged as the de facto standard for querying unstructured data, but its integration with SQL-termed VectorSQL-still relies on manual query crafting and lacks standardized evaluation methodologies, creating a significant gap between its potential and practical application. To bridge this fundamental gap, we introduce and formalize Text2VectorSQL, a novel task to establish a unified natural language interface for seamlessly querying both structured and unstructured data. To catalyze research in this new domain, we present a comprehensive foundational ecosystem, including: (1) A scalable and robust pipeline for synthesizing high-quality Text-to-VectorSQL training data. (2) VectorSQLBench, the first large-scale, multi-faceted benchmark for this task, encompassing 12 distinct combinations across three database backends (SQLite, PostgreSQL, ClickHouse) and four data sources (BIRD, Spider, arXiv, Wikipedia). (3) Several novel evaluation metrics designed for more nuanced performance analysis. Extensive experiments not only confirm strong baseline performance with our trained models, but also reveal the recall degradation challenge: the integration of SQL filters with vector search can lead to more pronounced result omissions than in conventional filtered vector search. By defining the core task, delivering the essential data and evaluation infrastructure, and identifying key research challenges, our work lays the essential groundwork to build the next generation of unified and intelligent data interfaces. Our repository is available at https://github.com/OpenDCAI/Text2VectorSQL.
comment: Manuscript
♻ ☆ Will Large Language Models Transform Clinical Prediction?
Objective: Large language models (LLMs) are attracting increasing interest in healthcare. This commentary evaluates the potential of LLMs to improve clinical prediction models (CPMs) for diagnostic and prognostic tasks, with a focus on their ability to process longitudinal electronic health record (EHR) data. Findings: LLMs show promise in handling multimodal and longitudinal EHR data and can support multi-outcome predictions for diverse health conditions. However, methodological, validation, infrastructural, and regulatory chal- lenges remain. These include inadequate methods for time-to-event modelling, poor calibration of predictions, limited external validation, and bias affecting underrepresented groups. High infrastructure costs and the absence of clear regulatory frameworks further prevent adoption. Implications: Further work and interdisciplinary collaboration are needed to support equitable and effective integra- tion into the clinical prediction. Developing temporally aware, fair, and explainable models should be a priority focus for transforming clinical prediction workflow.
comment: Published: BMC Diagnostic and Prognostic Research
♻ ☆ TathyaNyaya and FactLegalLlama: Advancing Factual Judgment Prediction and Explanation in the Indian Legal Context AACL
In the landscape of Fact-based Judgment Prediction and Explanation (FJPE), reliance on factual data is essential for developing robust and realistic AI-driven decision-making tools. This paper introduces TathyaNyaya, the largest annotated dataset for FJPE tailored to the Indian legal context, encompassing judgments from the Supreme Court of India and various High Courts. Derived from the Hindi terms "Tathya" (fact) and "Nyaya" (justice), the TathyaNyaya dataset is uniquely designed to focus on factual statements rather than complete legal texts, reflecting real-world judicial processes where factual data drives outcomes. Complementing this dataset, we present FactLegalLlama, an instruction-tuned variant of the LLaMa-3-8B Large Language Model (LLM), optimized for generating high-quality explanations in FJPE tasks. Finetuned on the factual data in TathyaNyaya, FactLegalLlama integrates predictive accuracy with coherent, contextually relevant explanations, addressing the critical need for transparency and interpretability in AI-assisted legal systems. Our methodology combines transformers for binary judgment prediction with FactLegalLlama for explanation generation, creating a robust framework for advancing FJPE in the Indian legal domain. TathyaNyaya not only surpasses existing datasets in scale and diversity but also establishes a benchmark for building explainable AI systems in legal analysis. The findings underscore the importance of factual precision and domain-specific tuning in enhancing predictive performance and interpretability, positioning TathyaNyaya and FactLegalLlama as foundational resources for AI-assisted legal decision-making.
comment: Paper accepted in the AACL-IJCNLP 2025 conference
♻ ☆ Pragmatic Reasoning improves LLM Code Generation
Large Language Models (LLMs) have demonstrated impressive potential in translating natural language (NL) instructions into program code. However, user instructions often contain inherent ambiguities, making it challenging for LLMs to generate code that accurately reflects the user's true intent. To address this challenge, researchers have proposed approaches that produce multiple candidates of the program code and then rerank them to identify the best solution. In this paper, we propose CodeRSA, a novel code candidate reranking mechanism built upon the Rational Speech Act (RSA) framework, designed to guide LLMs toward more comprehensive pragmatic reasoning about user intent. We evaluate CodeRSA using Llama-3-8B-Instruct and Qwen-2.5-7B-Instruct on two widely used code generation benchmarks, HumanEval and MBPP. Our experiment results show that CodeRSA consistently outperforms common baselines, surpasses the state-of-the-art approach in most cases, and demonstrates robust overall performance. These findings underscore the effectiveness of integrating pragmatic reasoning into code candidate reranking, offering a promising direction for enhancing code generation quality in LLMs.
♻ ☆ CareMedEval dataset: Evaluating Critical Appraisal and Reasoning in the Biomedical Field LREC 2026
Critical appraisal of scientific literature is an essential skill in the biomedical field. While large language models (LLMs) can offer promising support in this task, their reliability remains limited, particularly for critical reasoning in specialized domains. We introduce CareMedEval, an original dataset designed to evaluate LLMs on biomedical critical appraisal and reasoning tasks. Derived from authentic exams taken by French medical students, the dataset contains 534 questions based on 37 scientific articles. Unlike existing benchmarks, CareMedEval explicitly evaluates critical reading and reasoning grounded in scientific papers. Benchmarking state-of-the-art generalist and biomedical-specialized LLMs under various context conditions reveals the difficulty of the task: open and commercial models fail to exceed an Exact Match Rate of 0.5 even though generating intermediate reasoning tokens considerably improves the results. Yet, models remain challenged especially on questions about study limitations and statistical analysis. CareMedEval provides a challenging benchmark for grounded reasoning, exposing current LLM limitations and paving the way for future development of automated support for critical appraisal.
comment: Preprint submitted to LREC 2026 (under review) To access the dataset, see https://github.com/bonzid/CareMedEval
♻ ☆ NyayaRAG: Realistic Legal Judgment Prediction with RAG under the Indian Common Law System AACL
Legal Judgment Prediction (LJP) has emerged as a key area in AI for law, aiming to automate judicial outcome forecasting and enhance interpretability in legal reasoning. While previous approaches in the Indian context have relied on internal case content such as facts, issues, and reasoning, they often overlook a core element of common law systems, which is reliance on statutory provisions and judicial precedents. In this work, we propose NyayaRAG, a Retrieval-Augmented Generation (RAG) framework that simulates realistic courtroom scenarios by providing models with factual case descriptions, relevant legal statutes, and semantically retrieved prior cases. NyayaRAG evaluates the effectiveness of these combined inputs in predicting court decisions and generating legal explanations using a domain-specific pipeline tailored to the Indian legal system. We assess performance across various input configurations using both standard lexical and semantic metrics as well as LLM-based evaluators such as G-Eval. Our results show that augmenting factual inputs with structured legal knowledge significantly improves both predictive accuracy and explanation quality.
comment: Paper accepted in the AACL-IJCNLP 2025 conference
♻ ☆ Datasets, Documents, and Repetitions: The Practicalities of Unequal Data Quality
Data filtering has become a powerful tool for improving model performance while reducing computational cost. However, as large language model compute budgets continue to grow, the limited data volume provided by heavily filtered and deduplicated datasets will become a practical constraint. In efforts to better understand how to proceed, we study model performance at various compute budgets and across multiple pre-training datasets created through data filtering and deduplication. We find that, given appropriate modifications to the training recipe, repeating existing aggressively filtered datasets for up to ten epochs can outperform training on the ten times larger superset for a single epoch across multiple compute budget orders of magnitude. While this finding relies on repeating the dataset for many epochs, we also investigate repeats within these datasets at the document level. We find that not all documents within a dataset are equal, and we can create better datasets relative to a token budget by explicitly manipulating the counts of individual documents. We conclude by arguing that even as large language models scale, data filtering remains an important direction of research.
♻ ☆ Mathematics with large language models as provers and verifiers
During 2024 and 2025 the discussion about the theorem-proving capabilities of large language models started reporting interesting success stories, mostly to do with difficult exercises (such as problems from the International Mathematical Olympiad), but also with conjectures [Feldman & Karbasi, arXiv:2509.18383v1] formulated for the purpose of verifying whether the artificial intelligence could prove it. In this paper we report a theorem proving feat achieved by ChatGPT by using a protocol involving different prover and verifier instances of the gpt-5 model working collaboratively. To make sure that the produced proofs do not suffer from hallucinations, the final proof is formally verified by the lean proof assistant, and the conformance of premises and conclusion of the lean code is verified by a human. Our methodology is by no means complete or exact. It was nonetheless able to solve five out of six 2025 IMO problems, and close about a third of the sixty-six number theory conjectures in [Cohen, Journal of Integer Sequences, 2025].
♻ ☆ RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Chest X-ray with Zero-Shot Multi-Task Capability NeurIPS 2025
Recent advancements in multimodal models have significantly improved vision-language (VL) alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning and offer limited interpretability through attention probability visualizations. To address these challenges, we introduce $\textbf{RadZero}$, a novel framework for VL alignment in chest X-ray with zero-shot multi-task capability. A key component of our approach is $\textbf{VL-CABS}$ ($\textbf{V}$ision-$\textbf{L}$anguage $\textbf{C}$ross-$\textbf{A}$ttention $\textbf{B}$ased on $\textbf{S}$imilarity), which aligns text embeddings with local image features for interpretable, fine-grained VL reasoning. RadZero leverages large language models to extract concise semantic sentences from radiology reports and employs multi-positive contrastive training to effectively capture relationships between images and multiple relevant textual descriptions. It uses a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, VL-CABS enables zero-shot inference with similarity probability for classification, and pixel-level VL similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, VL similarity map analysis highlights the potential of VL-CABS for improving explainability in VL alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging. Code is available at $\href{https://github.com/deepnoid-ai/RadZero}{https://github.com/deepnoid-ai/RadZero}$.
comment: NeurIPS 2025
♻ ☆ Reasoning Models Hallucinate More: Factuality-Aware Reinforcement Learning for Large Reasoning Models NeurIPS 2025
Large language models (LLMs) have significantly advanced in reasoning tasks through reinforcement learning (RL) optimization, achieving impressive capabilities across various challenging benchmarks. However, our empirical analysis reveals a critical drawback: reasoning-oriented RL fine-tuning significantly increases the prevalence of hallucinations. We theoretically analyze the RL training dynamics, identifying high-variance gradient, entropy-induced randomness, and susceptibility to spurious local optima as key factors leading to hallucinations. To address this drawback, we propose Factuality-aware Step-wise Policy Optimization (FSPO), an innovative RL fine-tuning algorithm incorporating explicit factuality verification at each reasoning step. FSPO leverages automated verification against given evidence to dynamically adjust token-level advantage values, incentivizing factual correctness throughout the reasoning process. Experiments across mathematical reasoning and hallucination benchmarks using Qwen2.5 and Llama models demonstrate that FSPO effectively reduces hallucinations while enhancing reasoning accuracy, substantially improving both reliability and performance.
comment: accepted by NeurIPS 2025
♻ ☆ Who is the root in a syntactic dependency structure?
The syntactic structure of a sentence can be described as a tree that indicates the syntactic relationships between words. In spite of significant progress in unsupervised methods that retrieve the syntactic structure of sentences, guessing the right direction of edges is still a challenge. As in a syntactic dependency structure edges are oriented away from the root, the challenge of guessing the right direction can be reduced to finding an undirected tree and the root. The limited performance of current unsupervised methods demonstrates the lack of a proper understanding of what a root vertex is from first principles. We consider an ensemble of centrality scores, some that only take into account the free tree (non-spatial scores) and others that take into account the position of vertices (spatial scores). We test the hypothesis that the root vertex is an important or central vertex of the syntactic dependency structure. We confirm the hypothesis in the sense that root vertices tend to have high centrality and that vertices of high centrality tend to be roots. The best performance in guessing the root is achieved by novel scores that only take into account the position of a vertex and that of its neighbours. We provide theoretical and empirical foundations towards a universal notion of rootness from a network science perspective.
comment: Background and discussion improved. Clarity and consistency enhanced. Language improved. Typos corrected
♻ ☆ Decomposed Prompting: Probing Multilingual Linguistic Structure Knowledge in Large Language Models AACL
Probing the multilingual knowledge of linguistic structure in LLMs, often characterized as sequence labeling, faces challenges with maintaining output templates in current text-to-text prompting strategies. To solve this, we introduce a decomposed prompting approach for sequence labeling tasks. Diverging from the single text-to-text prompt, our prompt method generates for each token of the input sentence an individual prompt which asks for its linguistic label. We test our method on the Universal Dependencies part-of-speech tagging dataset for 38 languages, using both English-centric and multilingual LLMs. Our findings show that decomposed prompting surpasses the iterative prompting baseline in efficacy and efficiency under zero- and few-shot settings. Moreover, our analysis of multilingual performance of English-centric LLMs yields insights into the transferability of linguistic knowledge via multilingual prompting.
comment: Accepted to AACL-IJCNLP 2025 Findings
♻ ☆ On Multilingual Encoder Language Model Compression for Low-Resource Languages AACL
In this paper, we combine two-step knowledge distillation, structured pruning, truncation, and vocabulary trimming for extremely compressing multilingual encoder-only language models for low-resource languages. Our novel approach systematically combines existing techniques and takes them to the extreme, reducing layer depth, feed-forward hidden size, and intermediate layer embedding size to create significantly smaller monolingual models while retaining essential language-specific knowledge. We achieve compression rates of up to 92% while maintaining competitive performance, with average drops of 2-10% for moderate compression and 8-13% at maximum compression in four downstream tasks, including sentiment analysis, topic classification, named entity recognition, and part-of-speech tagging, across three low-resource languages. Notably, the performance degradation correlates with the amount of language-specific data in the teacher model, with larger datasets resulting in smaller performance losses. Additionally, we conduct ablation studies to identify the best practices for multilingual model compression using these techniques.
comment: Accepted to SRW AACL
♻ ☆ Findings of the Fourth Shared Task on Multilingual Coreference Resolution: Can LLMs Dethrone Traditional Approaches?
The paper presents an overview of the fourth edition of the Shared Task on Multilingual Coreference Resolution, organized as part of the CODI-CRAC 2025 workshop. As in the previous editions, participants were challenged to develop systems that identify mentions and cluster them according to identity coreference. A key innovation of this year's task was the introduction of a dedicated Large Language Model (LLM) track, featuring a simplified plaintext format designed to be more suitable for LLMs than the original CoNLL-U representation. The task also expanded its coverage with three new datasets in two additional languages, using version 1.3 of CorefUD - a harmonized multilingual collection of 22 datasets in 17 languages. In total, nine systems participated, including four LLM-based approaches (two fine-tuned and two using few-shot adaptation). While traditional systems still kept the lead, LLMs showed clear potential, suggesting they may soon challenge established approaches in future editions.
comment: Accepted to CODI-CRAC 2025
♻ ☆ CorPipe at CRAC 2025: Evaluating Multilingual Encoders for Multilingual Coreference Resolution
We present CorPipe 25, the winning entry to the CRAC 2025 Shared Task on Multilingual Coreference Resolution. This fourth iteration of the shared task introduces a new LLM track alongside the original unconstrained track, features reduced development and test sets to lower computational requirements, and includes additional datasets. CorPipe 25 represents a complete reimplementation of our previous systems, migrating from TensorFlow to PyTorch. Our system significantly outperforms all other submissions in both the LLM and unconstrained tracks by a substantial margin of 8 percentage points. The source code and trained models are publicly available at https://github.com/ufal/crac2025-corpipe.
comment: Accepted to CODI-CRAC 2025
♻ ☆ Robustness in Large Language Models: A Survey of Mitigation Strategies and Evaluation Metrics
Large Language Models (LLMs) have emerged as a promising cornerstone for the development of natural language processing (NLP) and artificial intelligence (AI). However, ensuring the robustness of LLMs remains a critical challenge. To address these challenges and advance the field, this survey provides a comprehensive overview of current studies in this area. First, we systematically examine the nature of robustness in LLMs, including its conceptual foundations, the importance of consistent performance across diverse inputs, and the implications of failure modes in real-world applications. Next, we analyze the sources of non-robustness, categorizing intrinsic model limitations, data-driven vulnerabilities, and external adversarial factors that compromise reliability. Following this, we review state-of-the-art mitigation strategies, and then we discuss widely adopted benchmarks, emerging metrics, and persistent gaps in assessing real-world reliability. Finally, we synthesize findings from existing surveys and interdisciplinary studies to highlight trends, unresolved issues, and pathways for future research.
comment: Accepted at TMLR
♻ ☆ META-RAG: Meta-Analysis-Inspired Evidence-Re-Ranking Method for Retrieval-Augmented Generation in Evidence-Based Medicine
Evidence-based medicine (EBM) holds a crucial role in clinical application. Given suitable medical articles, doctors effectively reduce the incidence of misdiagnoses. Researchers find it efficient to use large language models (LLMs) techniques like RAG for EBM tasks. However, the EBM maintains stringent requirements for evidence, and RAG applications in EBM struggle to efficiently distinguish high-quality evidence. Therefore, inspired by the meta-analysis used in EBM, we provide a new method to re-rank and filter the medical evidence. This method presents multiple principles to filter the best evidence for LLMs to diagnose. We employ a combination of several EBM methods to emulate the meta-analysis, which includes reliability analysis, heterogeneity analysis, and extrapolation analysis. These processes allow the users to retrieve the best medical evidence for the LLMs. Ultimately, we evaluate these high-quality articles and show an accuracy improvement of up to 11.4% in our experiments and results. Our method successfully enables RAG to extract higher-quality and more reliable evidence from the PubMed dataset. This work can reduce the infusion of incorrect knowledge into responses and help users receive more effective replies.
Probe-Rewrite-Evaluate: A Workflow for Reliable Benchmarks and Quantifying Evaluation Awareness
Large Language Models (LLMs) often exhibit significant behavioral shifts when they perceive a change from a real-world deployment context to a controlled evaluation setting, a phenomenon known as "evaluation awareness." This discrepancy poses a critical challenge for AI alignment, as benchmark performance may not accurately reflect a model's true safety and honesty. In this work, we systematically quantify these behavioral changes by manipulating the perceived context of prompts. We introduce a methodology that uses a linear probe to score prompts on a continuous scale from "test-like" to "deploy-like" and leverage an LLM rewriting strategy to shift these prompts towards a more natural, deployment-style context while preserving the original task. Using this method, we achieved a 30% increase in the average probe score across a strategic role-playing dataset after rewriting. Evaluating a suite of state-of-the-art models on these original and rewritten prompts, we find that rewritten "deploy-like" prompts induce a significant and consistent shift in behavior. Across all models, we observed an average increase in honest responses of 5.26% and a corresponding average decrease in deceptive responses of 12.40%. Furthermore, refusal rates increased by an average of 6.38%, indicating heightened safety compliance. Our findings demonstrate that evaluation awareness is a quantifiable and manipulable factor that directly influences LLM behavior, revealing that models are more prone to unsafe or deceptive outputs in perceived test environments. This underscores the urgent need for more realistic evaluation frameworks to accurately gauge true model alignment before deployment.
♻ ☆ Training Large Language Models To Reason In Parallel With Global Forking Tokens
Although LLMs have demonstrated improved performance by scaling parallel test-time compute, doing so relies on generating reasoning paths that are both diverse and accurate. For challenging problems, the forking tokens that trigger diverse yet correct reasoning modes are typically deep in the sampling tree. Consequently, common strategies to encourage diversity, such as temperature scaling, encounter a worsened trade-off between diversity and accuracy. Motivated by this challenge, we treat parallel reasoning as a set-of-next-token-prediction problem, and incorporate a set-based global loss into Supervised Fine-Tuning (SFT) using self-supervised bipartite matching between our global forking tokens and unique reasoning traces. We observe that, while naive fine-tuning with multiple reasoning traces collapses these unique reasoning modes, our proposed method, Set Supervised Fine-Tuning (SSFT), preserves these modes and produces emergent global forking tokens. Experiments on multiple reasoning benchmarks show that our SSFT consistently outperforms SFT under both Pass@1 and Cons@k metrics.
♻ ☆ KGGen: Extracting Knowledge Graphs from Plain Text with Language Models
Recent interest in building foundation models for KGs has highlighted a fundamental challenge: knowledge-graph data is relatively scarce. The best-known KGs are primarily human-labeled, created by pattern-matching, or extracted using early NLP techniques. While human-generated KGs are in short supply, automatically extracted KGs are of questionable quality. We present a solution to this data scarcity problem in the form of a text-to-KG generator (KGGen), a package that uses language models to create high-quality graphs from plaintext. Unlike other KG extractors, KGGen clusters related entities to reduce sparsity in extracted KGs. KGGen is available as a Python library (\texttt{pip install kg-gen}), making it accessible to everyone. Along with KGGen, we release the first benchmark, Measure of of Information in Nodes and Edges (MINE), that tests an extractor's ability to produce a useful KG from plain text. We benchmark our new tool against existing extractors and demonstrate far superior performance.
♻ ☆ Hierarchical Retrieval with Evidence Curation for Open-Domain Financial Question Answering on Standardized Documents ACL 2025
Retrieval-augmented generation (RAG) based large language models (LLMs) are widely used in finance for their excellent performance on knowledge-intensive tasks. However, standardized documents (e.g., SEC filing) share similar formats such as repetitive boilerplate texts, and similar table structures. This similarity forces traditional RAG methods to misidentify near-duplicate text, leading to duplicate retrieval that undermines accuracy and completeness. To address these issues, we propose the Hierarchical Retrieval with Evidence Curation (HiREC) framework. Our approach first performs hierarchical retrieval to reduce confusion among similar texts. It first retrieve related documents and then selects the most relevant passages from the documents. The evidence curation process removes irrelevant passages. When necessary, it automatically generates complementary queries to collect missing information. To evaluate our approach, we construct and release a Large-scale Open-domain Financial (LOFin) question answering benchmark that includes 145,897 SEC documents and 1,595 question-answer pairs. Our code and data are available at https://github.com/deep-over/LOFin-bench-HiREC.
comment: ACL 2025 (Findings)
Efficient Model Development through Fine-tuning Transfer
Modern LLMs struggle with efficient updates, as each new pretrained model version requires repeating expensive alignment processes. This challenge also applies to domain- or languagespecific models, where fine-tuning on specialized data must be redone for every new base model release. In this paper, we explore the transfer of fine-tuning updates between model versions. Specifically, we derive the diff vector (representing the weight changes from finetuning) from one source model version and apply it to the base model of a different target version. Through empirical evaluations on various open-weight model versions, we show that transferring diff vectors can significantly improve the performance of the target base model. For example, transferring the fine-tuning updates from Llama 3.0 8B improves Llama 3.1 8B by 46.9% on IFEval and 15.7% on LiveCodeBench without additional training, even surpassing Llama 3.1 8B Instruct. Furthermore, we demonstrate performance gains on multilingual tasks, with 4.7% and 15.5% improvements on Global MMLU for Malagasy and Turkish, respectively. We observe that these merged models provide stronger initializations for further fine-tuning. Lastly, our controlled experiments suggest that fine-tuning transfer is most effective when source and target models lie in a linearly connected region of parameter space, and we provide a theoretical analysis of our method. Taken together, fine-tuning transfer offers a cost-efficient and practical strategy for continuous LLM development. Our code is available at github.com/pjlintw/finetuning-transfer.
comment: 25 pages, 4 figures, 16 tables
♻ ☆ TurBLiMP: A Turkish Benchmark of Linguistic Minimal Pairs
We introduce TurBLiMP, the first Turkish benchmark of linguistic minimal pairs, designed to evaluate the linguistic abilities of monolingual and multilingual language models (LMs). Covering 16 linguistic phenomena with 1000 minimal pairs each, TurBLiMP fills an important gap in linguistic evaluation resources for Turkish. In designing the benchmark, we give extra attention to two properties of Turkish that remain understudied in current syntactic evaluations of LMs, namely word order flexibility and subordination through morphological processes. Our experiments on a wide range of LMs and a newly collected set of human acceptability judgments reveal that even cutting-edge Large LMs still struggle with grammatical phenomena that are not challenging for humans, and may also exhibit different sensitivities to word order and morphological complexity compared to humans.
♻ ☆ FinEval-KR: A Financial Domain Evaluation Framework for Large Language Models' Knowledge and Reasoning EMNLP2025
Large Language Models (LLMs) demonstrate significant potential but face challenges in complex financial reasoning tasks requiring both domain knowledge and sophisticated reasoning. Current evaluation benchmarks often fall short by not decoupling these capabilities indicators from single task performance and lack root cause analysis for task failure. To address this, we introduce FinEval-KR, a novel evaluation framework for decoupling and quantifying LLMs' knowledge and reasoning abilities independently, proposing distinct knowledge score and reasoning score metrics. Inspired by cognitive science, we further propose a cognitive score based on Bloom's taxonomy to analyze capabilities in reasoning tasks across different cognitive levels. We also release a new open-source Chinese financial reasoning dataset covering 22 subfields to support reproducible research and further advancements in financial reasoning. Our experimental results reveal that LLM reasoning ability and higher-order cognitive ability are the core factors influencing reasoning accuracy. We also specifically find that even top models still face a bottleneck with knowledge application. Furthermore, our analysis shows that specialized financial LLMs generally lag behind the top general large models across multiple metrics.
comment: Accepted by FinNLP@EMNLP2025
♻ ☆ Control Barrier Function for Aligning Large Language Models
This paper proposes a control-based framework for aligning large language models (LLMs) by leveraging a control barrier function (CBF) to ensure user-desirable text generation. The presented framework applies the CBF safety filter to the predicted token generated from the baseline LLM, to intervene in the generated text. The safety filter includes two significant advantages: this safety filter is an add-on type, allowing it to be used for alignment purposes without fine-tuning the baseline LLM, and if there is an evaluation model regarding the desired alignment, it can be directly applied to the filter design. The overall text-generation system is implemented with open-source language models, aiming to generate positive text.
comment: This work is an extenede version of arXiv:2408.15625 and has been submitted to the IEEE for possible publication
♻ ☆ RPRO: Ranked Preference Reinforcement Optimization for Enhancing Medical QA and Diagnostic Reasoning
Medical question answering requires advanced reasoning that integrates domain knowledge with logical inference. However, existing large language models (LLMs) often generate reasoning chains that lack factual accuracy and clinical reliability. We propose Ranked Preference Reinforcement Optimization (RPRO), a novel framework that uniquely combines reinforcement learning with preference-driven reasoning refinement to enhance clinical chain-of-thought (CoT) performance. RPRO differentiates itself from prior approaches by employing task-adaptive reasoning templates and a probabilistic evaluation mechanism that aligns outputs with established clinical workflows, while automatically identifying and correcting low-quality reasoning chains. Unlike traditional pairwise preference methods, RPRO introduces a groupwise ranking optimization based on the Bradley-Terry model and incorporates KL-divergence regularization for stable training. Experiments on PubMedQA and MedQA-USMLE show consistent improvements over strong baselines. Remarkably, our 1.1B parameter model outperforms much larger 7B-13B models, including medical-specialized variants. These findings demonstrate that combining preference optimization with quality-driven refinement offers a scalable and effective approach to building more reliable, clinically grounded medical LLMs.
♻ ☆ GraphCheck: Multipath Fact-Checking with Entity-Relationship Graphs
Automated fact-checking aims to assess the truthfulness of textual claims based on relevant evidence. However, verifying complex claims that require multi-hop reasoning remains a significant challenge. We propose GraphCheck, a novel framework that transforms claims into entity-relationship graphs for structured and systematic fact-checking. By explicitly modeling both explicit and latent entities and exploring multiple reasoning paths, GraphCheck enhances verification robustness. While GraphCheck excels in complex scenarios, it may be unnecessarily elaborate for simpler claims. To address this, we introduce DP-GraphCheck, a variant that employs a lightweight strategy selector to choose between direct prompting and GraphCheck adaptively. This selective mechanism improves both accuracy and efficiency by applying the appropriate level of reasoning to each claim. Experiments on the HOVER and EX-FEVER datasets demonstrate that our approach outperforms existing methods in verification accuracy, while achieving strong computational efficiency despite its multipath exploration. Moreover, the strategy selection mechanism in DP-GraphCheck generalizes well to other fact-checking pipelines, highlighting the broad applicability of our framework.
♻ ☆ Compression Hacking: A Supplementary Perspective on Informatics Properties of Language Models from Geometric Distortion
Recently, the concept of ``compression as intelligence'' has provided a novel informatics metric perspective for language models (LMs), emphasizing that highly structured representations signify the intelligence level of LMs. However, from a geometric standpoint, the word representation space of highly compressed LMs tends to degenerate into a highly anisotropic state, which hinders the LM's ability to comprehend instructions and directly impacts its performance. We found this compression-anisotropy synchronicity is essentially the ``Compression Hacking'' in LM representations, where noise-dominated directions tend to create the illusion of high compression rates by sacrificing spatial uniformity. Based on this, we propose three refined compression metrics by incorporating geometric distortion analysis and integrate them into a self-evaluation pipeline. The refined metrics exhibit strong alignment with the LM's comprehensive capabilities, achieving Spearman correlation coefficients above 0.9, significantly outperforming both the original compression and other internal structure-based metrics. This confirms that compression hacking substantially enhances the informatics interpretation of LMs by incorporating geometric distortion of representations.
♻ ☆ VERA: Variational Inference Framework for Jailbreaking Large Language Models NeurIPS 2025
The rise of API-only access to state-of-the-art LLMs highlights the need for effective black-box jailbreak methods to identify model vulnerabilities in real-world settings. Without a principled objective for gradient-based optimization, most existing approaches rely on genetic algorithms, which are limited by their initialization and dependence on manually curated prompt pools. Furthermore, these methods require individual optimization for each prompt, failing to provide a comprehensive characterization of model vulnerabilities. To address this gap, we introduce VERA: Variational infErence fRamework for jAilbreaking. VERA casts black-box jailbreak prompting as a variational inference problem, training a small attacker LLM to approximate the target LLM's posterior over adversarial prompts. Once trained, the attacker can generate diverse, fluent jailbreak prompts for a target query without re-optimization. Experimental results show that VERA achieves strong performance across a range of target LLMs, highlighting the value of probabilistic inference for adversarial prompt generation.
comment: Accepted by NeurIPS 2025
♻ ☆ Retrieval-Augmented Review Generation for Poisoning Recommender Systems
Recent studies have shown that recommender systems (RSs) are highly vulnerable to data poisoning attacks, where malicious actors inject fake user profiles, including a group of well-designed fake ratings, to manipulate recommendations. Due to security and privacy constraints in practice, attackers typically possess limited knowledge of the victim system and thus need to craft profiles that have transferability across black-box RSs. To maximize the attack impact, the profiles often remains imperceptible. However, generating such high-quality profiles with the restricted resources is challenging. Some works suggest incorporating fake textual reviews to strengthen the profiles; yet, the poor quality of the reviews largely undermines the attack effectiveness and imperceptibility under the practical setting. To tackle the above challenges, in this paper, we propose to enhance the quality of the review text by harnessing in-context learning (ICL) capabilities of multimodal foundation models. To this end, we introduce a demonstration retrieval algorithm and a text style transfer strategy to augment the navie ICL. Specifically, we propose a novel practical attack framework named RAGAN to generate high-quality fake user profiles, which can gain insights into the robustness of RSs. The profiles are generated by a jailbreaker and collaboratively optimized on an instructional agent and a guardian to improve the attack transferability and imperceptibility. Comprehensive experiments on various real-world datasets demonstrate that RAGAN achieves the state-of-the-art poisoning attack performance.
♻ ☆ Activation-Informed Merging of Large Language Models
Model merging, a method that combines the parameters and embeddings of multiple fine-tuned large language models (LLMs), offers a promising approach to enhance model performance across various tasks while maintaining computational efficiency. This paper introduces Activation-Informed Merging (AIM), a technique that integrates the information from the activation space of LLMs into the merging process to improve performance and robustness. AIM is designed as a flexible, complementary solution that is applicable to any existing merging method. It aims to preserve critical weights from the base model, drawing on principles from continual learning (CL) and model compression. Utilizing a task-agnostic calibration set, AIM selectively prioritizes essential weights during merging. We empirically demonstrate that AIM significantly enhances the performance of merged models across multiple benchmarks. Our findings suggest that considering the activation-space information can provide substantial advancements in the model merging strategies for LLMs, with up to a 40% increase in benchmark performance.
♻ ☆ HugAgent: Benchmarking LLMs for Simulation of Individualized Human Reasoning NeurIPS 2025
Simulating human reasoning in open-ended tasks has long been a central aspiration in AI and cognitive science. While large language models now approximate human responses at scale, they remain tuned to population-level consensus, often erasing the individuality of reasoning styles and belief trajectories. To advance the vision of more human-like reasoning in machines, we introduce HugAgent (Human-Grounded Agent Benchmark), which rethinks human reasoning simulation along three dimensions: (i) from averaged to individualized reasoning, (ii) from behavioral mimicry to cognitive alignment, and (iii) from vignette-based to open-ended data. The benchmark evaluates whether a model can predict a specific person's behavioral responses and the underlying reasoning dynamics in out-of-distribution scenarios, given partial evidence of their prior views. HugAgent adopts a dual-track design: a human track that automates and scales the think-aloud method to collect ecologically valid human reasoning data, and a synthetic track for further scalability and systematic stress testing. This architecture enables low-cost, extensible expansion to new tasks and populations. Experiments with state-of-the-art language models reveal persistent adaptation gaps, positioning HugAgent as the first extensible benchmark for aligning machine reasoning with the individuality of human thought. The benchmark, along with its complete data collection pipeline and companion chatbot, is open-sourced as HugAgent (https://anonymous.4open.science/r/HugAgent) and TraceYourThinking (https://anonymous.4open.science/r/trace-your-thinking).
comment: To appear in NeurIPS 2025 Workshop on Bridging Language, Agent, and World Models (LAW)
♻ ☆ Chain-of-Query: Unleashing the Power of LLMs in SQL-Aided Table Understanding via Multi-Agent Collaboration AACL 2025
Table understanding requires structured, multi-step reasoning. Large Language Models (LLMs) struggle with it due to the structural complexity of tabular data. Recently, multi-agent frameworks for SQL generation have shown promise in tackling the challenges of understanding tabular data, but existing approaches often suffer from limitations such as the inability to comprehend table structure for reliable SQL generation, error propagation that results in invalid queries, and over-reliance on execution correctness. To address these issues, we propose Chain-of-Query (CoQ), a novel multi-agent framework for SQL-aided table understanding. CoQ adopts natural-language-style representations of table schemas to abstract away structural noise and enhance understanding. It employs a clause-by-clause SQL generation strategy to improve query quality and introduces a hybrid reasoning division that separates SQL-based mechanical reasoning from LLM-based logical inference, thereby reducing reliance on execution outcomes. Extensive experiments across four models and five widely used benchmarks demonstrate that CoQ achieves substantial accuracy improvements and significantly lowers invalid SQL rates compared to prior generic LLM-based, SQL-aided, and hybrid baselines, confirming its superior effectiveness in table understanding. The code is available at https://github.com/SongyuanSui/ChainofQuery.
comment: AACL 2025 Main Conference
♻ ☆ Fair Document Valuation in LLM Summaries via Shapley Values
Large Language Models (LLMs) are increasingly used in systems that retrieve and summarize content from multiple sources, such as search engines and AI assistants. While these systems enhance user experience through coherent summaries, they obscure the individual contributions of original content creators, raising concerns about credit attribution and compensation. We address the challenge of valuing individual documents used in LLM-generated summaries by proposing a Shapley value-based framework for fair document valuation. Although theoretically appealing, exact Shapley value computation is prohibitively expensive at scale. To improve efficiency, we develop Cluster Shapley, a simple approximation algorithm that leverages semantic similarity among documents to reduce computation while maintaining attribution accuracy. Using Amazon product review data, we empirically show that off-the-shelf Shapley approximations, such as Monte Carlo sampling and Kernel SHAP, perform suboptimally in LLM settings, whereas Cluster Shapley substantially improves the efficiency-accuracy frontier. Moreover, simple attribution rules (e.g., equal or relevance-based allocation), though computationally cheap, lead to highly unfair outcomes. Together, our findings highlight the potential of structure-aware Shapley approximations tailored to LLM summarization and offer guidance for platforms seeking scalable and fair content attribution mechanisms.
♻ ☆ ProRefine: Inference-Time Prompt Refinement with Textual Feedback NeurIPS 2025
Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, play a substantial role in many cutting-edge commercial applications, and continue to fascinate researchers across fields for their potential to accomplish expensive, complex tasks that, until recently, only humans have been trusted to do. These workflows depend critically on the prompts used to provide the roles models play in such workflows. Poorly designed prompts that fail even slightly to guide individual agents can lead to sub-optimal performance that may snowball within a system of agents, limiting their reliability and scalability. To address this important problem of inference-time prompt optimization, we introduce ProRefine, an innovative inference-time optimization method that uses an agentic loop of LLMs to generate and apply textual feedback. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to approach the performance of their larger counterparts. This highlights its potential for building more cost-effective and powerful hybrid AI systems, thereby democratizing access to high-performing AI.
comment: Workshop on Efficient Reasoning at NeurIPS 2025
NaturalReasoning: Reasoning in the Wild with 2.8M Challenging Questions
Scaling reasoning capabilities beyond traditional domains such as math and coding is hindered by the lack of diverse and high-quality questions. To overcome this limitation, we introduce a scalable approach for generating diverse and challenging reasoning questions, accompanied by reference answers. We present NaturalReasoning, a comprehensive dataset comprising 2.8 million questions that span multiple domains, including STEM fields (e.g., Physics, Computer Science), Economics, Social Sciences, and more. We demonstrate the utility of the questions in NaturalReasoning through knowledge distillation experiments which show that NaturalReasoning can effectively elicit and transfer reasoning capabilities from a strong teacher model. Furthermore, we demonstrate that NaturalReasoning is also effective for unsupervised self-training using external reward models or self-rewarding. To foster future work, we publicly release NaturalReasoning at https://huggingface.co/datasets/facebook/natural_reasoning.
comment: Dataset at https://huggingface.co/datasets/facebook/natural_reasoning
♻ ☆ Scalable Medication Extraction and Discontinuation Identification from Electronic Health Records Using Large Language Models
Identifying medication discontinuations in electronic health records (EHRs) is vital for patient safety but is often hindered by information being buried in unstructured notes. This study aims to evaluate the capabilities of advanced open-sourced and proprietary large language models (LLMs) in extracting medications and classifying their medication status from EHR notes, focusing on their scalability on medication information extraction without human annotation. We collected three EHR datasets from diverse sources to build the evaluation benchmark. We evaluated 12 advanced LLMs and explored multiple LLM prompting strategies. Performance on medication extraction, medication status classification, and their joint task (extraction then classification) was systematically compared across all experiments. We found that LLMs showed promising performance on the medication extraction and discontinuation classification from EHR notes. GPT-4o consistently achieved the highest average F1 scores in all tasks under zero-shot setting - 94.0% for medication extraction, 78.1% for discontinuation classification, and 72.7% for the joint task. Open-sourced models followed closely, Llama-3.1-70B-Instruct achieved the highest performance in medication status classification on the MIV-Med dataset (68.7%) and in the joint task on both the Re-CASI (76.2%) and MIV-Med (60.2%) datasets. Medical-specific LLMs demonstrated lower performance compared to advanced general-domain LLMs. Few-shot learning generally improved performance, while CoT reasoning showed inconsistent gains. LLMs demonstrate strong potential for medication extraction and discontinuation identification on EHR notes, with open-sourced models offering scalable alternatives to proprietary systems and few-shot can further improve LLMs' capability.
♻ ☆ How Do AI Agents Do Human Work? Comparing AI and Human Workflows Across Diverse Occupations
AI agents are continually optimized for tasks related to human work, such as software engineering and professional writing, signaling a pressing trend with significant impacts on the human workforce. However, these agent developments have often not been grounded in a clear understanding of how humans execute work, to reveal what expertise agents possess and the roles they can play in diverse workflows. In this work, we study how agents do human work by presenting the first direct comparison of human and agent workers across multiple essential work-related skills: data analysis, engineering, computation, writing, and design. To better understand and compare heterogeneous computer-use activities of workers, we introduce a scalable toolkit to induce interpretable, structured workflows from either human or agent computer-use activities. Using such induced workflows, we compare how humans and agents perform the same tasks and find that: (1) While agents exhibit promise in their alignment to human workflows, they take an overwhelmingly programmatic approach across all work domains, even for open-ended, visually dependent tasks like design, creating a contrast with the UI-centric methods typically used by humans. (2) Agents produce work of inferior quality, yet often mask their deficiencies via data fabrication and misuse of advanced tools. (3) Nonetheless, agents deliver results 88.3% faster and cost 90.4-96.2% less than humans, highlighting the potential for enabling efficient collaboration by delegating easily programmable tasks to agents.
♻ ☆ Internal World Models as Imagination Networks in Cognitive Agents
What is the computational objective of imagination? While classical interpretations suggest imagination is useful for maximizing rewards, recent findings challenge this view. In this study, we propose that imagination serves to access an internal world model (IWM) and use psychological network analysis to explore IWMs in humans and large language models (LLMs). Specifically, we assessed imagination vividness ratings using two questionnaires and constructed imagination networks from these reports. Imagination networks from human groups showed correlations between different centrality measures, including expected influence, strength, and closeness. However, imagination networks from LLMs showed a lack of clustering and lower correlations between centrality measures under different prompts and conversational memory conditions. Together, these results indicate a lack of similarity between IWMs in human and LLM agents. Overall, our study offers a novel method for comparing internally-generated representations in humans and AI, providing insights for developing human-like imagination in artificial intelligence.
♻ ☆ Neural at ArchEHR-QA 2025: Agentic Prompt Optimization for Evidence-Grounded Clinical Question Answering
Automated question answering (QA) over electronic health records (EHRs) can bridge critical information gaps for clinicians and patients, yet it demands both precise evidence retrieval and faithful answer generation under limited supervision. In this work, we present Neural, the runner-up in the BioNLP 2025 ArchEHR-QA shared task on evidence-grounded clinical QA. Our proposed method decouples the task into (1) sentence-level evidence identification and (2) answer synthesis with explicit citations. For each stage, we automatically explore the prompt space with DSPy's MIPROv2 optimizer, jointly tuning instructions and few-shot demonstrations on the development set. A self-consistency voting scheme further improves evidence recall without sacrificing precision. On the hidden test set, our method attains an overall score of 51.5, placing second stage while outperforming standard zero-shot and few-shot prompting by over 20 and 10 points, respectively. These results indicate that data-driven prompt optimization is a cost-effective alternative to model fine-tuning for high-stakes clinical QA, advancing the reliability of AI assistants in healthcare.
comment: Accepted to Proceedings of the 24th Workshop on Biomedical Language Processing (https://aclanthology.org/2025.bionlp-share.13/)
♻ ☆ CSPLADE: Learned Sparse Retrieval with Causal Language Models AACL 2025
In recent years, dense retrieval has been the focus of information retrieval (IR) research. While effective, dense retrieval produces uninterpretable dense vectors, and suffers from the drawback of large index size. Learned sparse retrieval (LSR) has emerged as promising alternative, achieving competitive retrieval performance while also being able to leverage the classical inverted index data structure for efficient retrieval. However, limited works have explored scaling LSR beyond BERT scale. In this work, we identify two challenges in training large language models (LLM) for LSR: (1) training instability during the early stage of contrastive training; (2) suboptimal performance due to pre-trained LLM's unidirectional attention. To address these challenges, we propose two corresponding techniques: (1) a lightweight adaptation training phase to eliminate training instability; (2) two model variants to enable bidirectional information. With these techniques, we are able to train LSR models with 8B scale LLM, and achieve competitive retrieval performance with reduced index size. Furthermore, we are among the first to analyze the performance-efficiency tradeoff of LLM-based LSR model through the lens of model quantization. Our findings provide insights into adapting LLMs for efficient retrieval modeling.
comment: IJCNLP-AACL 2025 Main
Computer Vision and Pattern Recognition 136
☆ Carousel: A High-Resolution Dataset for Multi-Target Automatic Image Cropping
Automatic image cropping is a method for maximizing the human-perceived quality of cropped regions in photographs. Although several works have proposed techniques for producing singular crops, little work has addressed the problem of producing multiple, distinct crops with aesthetic appeal. In this paper, we motivate the problem with a discussion on modern social media applications, introduce a dataset of 277 relevant images and human labels, and evaluate the efficacy of several single-crop models with an image partitioning algorithm as a pre-processing step. The dataset is available at https://github.com/RafeLoya/carousel.
comment: Accepted to the Datasets track of VCIP 2025
☆ GentleHumanoid: Learning Upper-body Compliance for Contact-rich Human and Object Interaction
Humanoid robots are expected to operate in human-centered environments where safe and natural physical interaction is essential. However, most recent reinforcement learning (RL) policies emphasize rigid tracking and suppress external forces. Existing impedance-augmented approaches are typically restricted to base or end-effector control and focus on resisting extreme forces rather than enabling compliance. We introduce GentleHumanoid, a framework that integrates impedance control into a whole-body motion tracking policy to achieve upper-body compliance. At its core is a unified spring-based formulation that models both resistive contacts (restoring forces when pressing against surfaces) and guiding contacts (pushes or pulls sampled from human motion data). This formulation ensures kinematically consistent forces across the shoulder, elbow, and wrist, while exposing the policy to diverse interaction scenarios. Safety is further supported through task-adjustable force thresholds. We evaluate our approach in both simulation and on the Unitree G1 humanoid across tasks requiring different levels of compliance, including gentle hugging, sit-to-stand assistance, and safe object manipulation. Compared to baselines, our policy consistently reduces peak contact forces while maintaining task success, resulting in smoother and more natural interactions. These results highlight a step toward humanoid robots that can safely and effectively collaborate with humans and handle objects in real-world environments.
comment: Home page: https://gentle-humanoid.axell.top
☆ Tracking and Understanding Object Transformations NeurIPS 2025
Real-world objects frequently undergo state transformations. From an apple being cut into pieces to a butterfly emerging from its cocoon, tracking through these changes is important for understanding real-world objects and dynamics. However, existing methods often lose track of the target object after transformation, due to significant changes in object appearance. To address this limitation, we introduce the task of Track Any State: tracking objects through transformations while detecting and describing state changes, accompanied by a new benchmark dataset, VOST-TAS. To tackle this problem, we present TubeletGraph, a zero-shot system that recovers missing objects after transformation and maps out how object states are evolving over time. TubeletGraph first identifies potentially overlooked tracks, and determines whether they should be integrated based on semantic and proximity priors. Then, it reasons about the added tracks and generates a state graph describing each observed transformation. TubeletGraph achieves state-of-the-art tracking performance under transformations, while demonstrating deeper understanding of object transformations and promising capabilities in temporal grounding and semantic reasoning for complex object transformations. Code, additional results, and the benchmark dataset are available at https://tubelet-graph.github.io.
comment: NeurIPS 2025
☆ InfinityStar: Unified Spacetime AutoRegressive Modeling for Visual Generation NeurIPS 2025
We introduce InfinityStar, a unified spacetime autoregressive framework for high-resolution image and dynamic video synthesis. Building on the recent success of autoregressive modeling in both vision and language, our purely discrete approach jointly captures spatial and temporal dependencies within a single architecture. This unified design naturally supports a variety of generation tasks such as text-to-image, text-to-video, image-to-video, and long interactive video synthesis via straightforward temporal autoregression. Extensive experiments demonstrate that InfinityStar scores 83.74 on VBench, outperforming all autoregressive models by large margins, even surpassing some diffusion competitors like HunyuanVideo. Without extra optimizations, our model generates a 5s, 720p video approximately 10x faster than leading diffusion-based methods. To our knowledge, InfinityStar is the first discrete autoregressive video generator capable of producing industrial level 720p videos. We release all code and models to foster further research in efficient, high-quality video generation.
comment: NeurIPS 2025 Oral
☆ X-Diffusion: Training Diffusion Policies on Cross-Embodiment Human Demonstrations
Human videos can be recorded quickly and at scale, making them an appealing source of training data for robot learning. However, humans and robots differ fundamentally in embodiment, resulting in mismatched action execution. Direct kinematic retargeting of human hand motion can therefore produce actions that are physically infeasible for robots. Despite these low-level differences, human demonstrations provide valuable motion cues about how to manipulate and interact with objects. Our key idea is to exploit the forward diffusion process: as noise is added to actions, low-level execution differences fade while high-level task guidance is preserved. We present X-Diffusion, a principled framework for training diffusion policies that maximally leverages human data without learning dynamically infeasible motions. X-Diffusion first trains a classifier to predict whether a noisy action is executed by a human or robot. Then, a human action is incorporated into policy training only after adding sufficient noise such that the classifier cannot discern its embodiment. Actions consistent with robot execution supervise fine-grained denoising at low noise levels, while mismatched human actions provide only coarse guidance at higher noise levels. Our experiments show that naive co-training under execution mismatches degrades policy performance, while X-Diffusion consistently improves it. Across five manipulation tasks, X-Diffusion achieves a 16% higher average success rate than the best baseline. The project website is available at https://portal-cornell.github.io/X-Diffusion/.
Cambrian-S: Towards Spatial Supersensing in Video
We argue that progress in true multimodal intelligence calls for a shift from reactive, task-driven systems and brute-force long context towards a broader paradigm of supersensing. We frame spatial supersensing as four stages beyond linguistic-only understanding: semantic perception (naming what is seen), streaming event cognition (maintaining memory across continuous experiences), implicit 3D spatial cognition (inferring the world behind pixels), and predictive world modeling (creating internal models that filter and organize information). Current benchmarks largely test only the early stages, offering narrow coverage of spatial cognition and rarely challenging models in ways that require true world modeling. To drive progress in spatial supersensing, we present VSI-SUPER, a two-part benchmark: VSR (long-horizon visual spatial recall) and VSC (continual visual spatial counting). These tasks require arbitrarily long video inputs yet are resistant to brute-force context expansion. We then test data scaling limits by curating VSI-590K and training Cambrian-S, achieving +30% absolute improvement on VSI-Bench without sacrificing general capabilities. Yet performance on VSI-SUPER remains limited, indicating that scale alone is insufficient for spatial supersensing. We propose predictive sensing as a path forward, presenting a proof-of-concept in which a self-supervised next-latent-frame predictor leverages surprise (prediction error) to drive memory and event segmentation. On VSI-SUPER, this approach substantially outperforms leading proprietary baselines, showing that spatial supersensing requires models that not only see but also anticipate, select, and organize experience.
comment: Website: https://cambrian-mllm.github.io/
SIMS-V: Simulated Instruction-Tuning for Spatial Video Understanding
Despite impressive high-level video comprehension, multimodal language models struggle with spatial reasoning across time and space. While current spatial training approaches rely on real-world video data, obtaining diverse footage with precise spatial annotations remains a bottleneck. To alleviate this bottleneck, we present SIMS-V -- a systematic data-generation framework that leverages the privileged information of 3D simulators to create spatially-rich video training data for multimodal language models. Using this framework, we investigate which properties of simulated data drive effective real-world transfer through systematic ablations of question types, mixes, and scales. We identify a minimal set of three question categories (metric measurement, perspective-dependent reasoning, and temporal tracking) that prove most effective for developing transferable spatial intelligence, outperforming comprehensive coverage despite using fewer question types. These insights enable highly efficient training: our 7B-parameter video LLM fine-tuned on just 25K simulated examples outperforms the larger 72B baseline and achieves competitive performance with proprietary models on rigorous real-world spatial reasoning benchmarks. Our approach demonstrates robust generalization, maintaining performance on general video understanding while showing substantial improvements on embodied and real-world spatial tasks.
comment: Project page: https://ellisbrown.github.io/sims-v
☆ Real-to-Sim Robot Policy Evaluation with Gaussian Splatting Simulation of Soft-Body Interactions
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
comment: Website: https://real2sim-eval.github.io/
Benchmark Designers Should "Train on the Test Set" to Expose Exploitable Non-Visual Shortcuts
Robust benchmarks are crucial for evaluating Multimodal Large Language Models (MLLMs). Yet we find that models can ace many multimodal benchmarks without strong visual understanding, instead exploiting biases, linguistic priors, and superficial patterns. This is especially problematic for vision-centric benchmarks that are meant to require visual inputs. We adopt a diagnostic principle for benchmark design: if a benchmark can be gamed, it will be. Designers should therefore try to ``game'' their own benchmarks first, using diagnostic and debiasing procedures to systematically identify and mitigate non-visual biases. Effective diagnosis requires directly ``training on the test set'' -- probing the released test set for its intrinsic, exploitable patterns. We operationalize this standard with two components. First, we diagnose benchmark susceptibility using a ``Test-set Stress-Test'' (TsT) methodology. Our primary diagnostic tool involves fine-tuning a powerful Large Language Model via $k$-fold cross-validation on exclusively the non-visual, textual inputs of the test set to reveal shortcut performance and assign each sample a bias score $s(x)$. We complement this with a lightweight Random Forest-based diagnostic operating on hand-crafted features for fast, interpretable auditing. Second, we debias benchmarks by filtering high-bias samples using an ``Iterative Bias Pruning'' (IBP) procedure. Applying this framework to four benchmarks -- VSI-Bench, CV-Bench, MMMU, and VideoMME -- we uncover pervasive non-visual biases. As a case study, we apply our full framework to create VSI-Bench-Debiased, demonstrating reduced non-visual solvability and a wider vision-blind performance gap than the original.
comment: Project page: https://cambrian-mllm.github.io
☆ Polarization-resolved imaging improves eye tracking
Polarization-resolved near-infrared imaging adds a useful optical contrast mechanism to eye tracking by measuring the polarization state of light reflected by ocular tissues in addition to its intensity. In this paper we demonstrate how this contrast can be used to enable eye tracking. Specifically, we demonstrate that a polarization-enabled eye tracking (PET) system composed of a polarization--filter--array camera paired with a linearly polarized near-infrared illuminator can reveal trackable features across the sclera and gaze-informative patterns on the cornea, largely absent in intensity-only images. Across a cohort of 346 participants, convolutional neural network based machine learning models trained on data from PET reduced the median 95th-percentile absolute gaze error by 10--16\% relative to capacity-matched intensity baselines under nominal conditions and in the presence of eyelid occlusions, eye-relief changes, and pupil-size variation. These results link light--tissue polarization effects to practical gains in human--computer interaction and position PET as a simple, robust sensing modality for future wearable devices.
☆ NovisVQ: A Streaming Convolutional Neural Network for No-Reference Opinion-Unaware Frame Quality Assessment
Video quality assessment (VQA) is vital for computer vision tasks, but existing approaches face major limitations: full-reference (FR) metrics require clean reference videos, and most no-reference (NR) models depend on training on costly human opinion labels. Moreover, most opinion-unaware NR methods are image-based, ignoring temporal context critical for video object detection. In this work, we present a scalable, streaming-based VQA model that is both no-reference and opinion-unaware. Our model leverages synthetic degradations of the DAVIS dataset, training a temporal-aware convolutional architecture to predict FR metrics (LPIPS , PSNR, SSIM) directly from degraded video, without references at inference. We show that our streaming approach outperforms our own image-based baseline by generalizing across diverse degradations, underscoring the value of temporal modeling for scalable VQA in real-world vision systems. Additionally, we demonstrate that our model achieves higher correlation with full-reference metrics compared to BRISQUE, a widely-used opinion-aware image quality assessment baseline, validating the effectiveness of our temporal, opinion-unaware approach.
☆ Building Trust in Virtual Immunohistochemistry: Automated Assessment of Image Quality
Deep learning models can generate virtual immunohistochemistry (IHC) stains from hematoxylin and eosin (H&E) images, offering a scalable and low-cost alternative to laboratory IHC. However, reliable evaluation of image quality remains a challenge as current texture- and distribution-based metrics quantify image fidelity rather than the accuracy of IHC staining. Here, we introduce an automated and accuracy grounded framework to determine image quality across sixteen paired or unpaired image translation models. Using color deconvolution, we generate masks of pixels stained brown (i.e., IHC-positive) as predicted by each virtual IHC model. We use the segmented masks of real and virtual IHC to compute stain accuracy metrics (Dice, IoU, Hausdorff distance) that directly quantify correct pixel - level labeling without needing expert manual annotations. Our results demonstrate that conventional image fidelity metrics, including Frechet Inception Distance (FID), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM), correlate poorly with stain accuracy and pathologist assessment. Paired models such as PyramidPix2Pix and AdaptiveNCE achieve the highest stain accuracy, whereas unpaired diffusion- and GAN-based models are less reliable in providing accurate IHC positive pixel labels. Moreover, whole-slide images (WSI) reveal performance declines that are invisible in patch-based evaluations, emphasizing the need for WSI-level benchmarks. Together, this framework defines a reproducible approach for assessing the quality of virtual IHC models, a critical step to accelerate translation towards routine use by pathologists.
☆ PixCLIP: Achieving Fine-grained Visual Language Understanding via Any-granularity Pixel-Text Alignment Learning
While the Contrastive Language-Image Pretraining(CLIP) model has achieved remarkable success in a variety of downstream vison language understanding tasks, enhancing its capability for fine-grained image-text alignment remains an active research focus. To this end, most existing works adopt the strategy of explicitly increasing the granularity of visual information processing, e.g., incorporating visual prompts to guide the model focus on specific local regions within the image. Meanwhile, researches on Multimodal Large Language Models(MLLMs) have demonstrated that training with long and detailed textual descriptions can effectively improve the model's fine-grained vision-language alignment. However, the inherent token length limitation of CLIP's text encoder fundamentally limits CLIP to process more granular textual information embedded in long text sequences. To synergistically leverage the advantages of enhancing both visual and textual content processing granularity, we propose PixCLIP, a novel framework designed to concurrently accommodate visual prompt inputs and process lengthy textual descriptions. Specifically, we first establish an automated annotation pipeline capable of generating pixel-level localized, long-form textual descriptions for images. Utilizing this pipeline, we construct LongGRIT, a high-quality dataset comprising nearly 1.5 million samples. Secondly, we replace CLIP's original text encoder with the LLM and propose a three-branch pixel-text alignment learning framework, facilitating fine-grained alignment between image regions and corresponding textual descriptions at arbitrary granularity. Experiments demonstrate that PixCLIP showcases breakthroughs in pixel-level interaction and handling long-form texts, achieving state-of-the-art performance.
☆ UniSplat: Unified Spatio-Temporal Fusion via 3D Latent Scaffolds for Dynamic Driving Scene Reconstruction
Feed-forward 3D reconstruction for autonomous driving has advanced rapidly, yet existing methods struggle with the joint challenges of sparse, non-overlapping camera views and complex scene dynamics. We present UniSplat, a general feed-forward framework that learns robust dynamic scene reconstruction through unified latent spatio-temporal fusion. UniSplat constructs a 3D latent scaffold, a structured representation that captures geometric and semantic scene context by leveraging pretrained foundation models. To effectively integrate information across spatial views and temporal frames, we introduce an efficient fusion mechanism that operates directly within the 3D scaffold, enabling consistent spatio-temporal alignment. To ensure complete and detailed reconstructions, we design a dual-branch decoder that generates dynamic-aware Gaussians from the fused scaffold by combining point-anchored refinement with voxel-based generation, and maintain a persistent memory of static Gaussians to enable streaming scene completion beyond current camera coverage. Extensive experiments on real-world datasets demonstrate that UniSplat achieves state-of-the-art performance in novel view synthesis, while providing robust and high-quality renderings even for viewpoints outside the original camera coverage.
☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, validates them through rigorous experimentation, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We hope these insights will deepen understanding of current progress and risks in AI Scientist development.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
Thinking with Video: Video Generation as a Promising Multimodal Reasoning Paradigm
"Thinking with Text" and "Thinking with Images" paradigm significantly improve the reasoning ability of large language models (LLMs) and Vision Language Models (VLMs). However, these paradigms have inherent limitations. (1) Images capture only single moments and fail to represent dynamic processes or continuous changes, and (2) The separation of text and vision as distinct modalities, hindering unified multimodal understanding and generation. To overcome these limitations, we introduce "Thinking with Video", a new paradigm that leverages video generation models, such as Sora-2, to bridge visual and textual reasoning in a unified temporal framework. To support this exploration, we developed the Video Thinking Benchmark (VideoThinkBench). VideoThinkBench encompasses two task categories: (1) vision-centric tasks (e.g., Eyeballing Puzzles), and (2) text-centric tasks (e.g., subsets of GSM8K, MMMU). Our evaluation establishes Sora-2 as a capable reasoner. On vision-centric tasks, Sora-2 is generally comparable to state-of-the-art (SOTA) VLMs, and even surpasses VLMs on several tasks, such as Eyeballing Games. On text-centric tasks, Sora-2 achieves 92% accuracy on MATH, and 75.53% accuracy on MMMU. Furthermore, we systematically analyse the source of these abilities. We also find that self-consistency and in-context learning can improve Sora-2's performance. In summary, our findings demonstrate that the video generation model is the potential unified multimodal understanding and generation model, positions "thinking with video" as a unified multimodal reasoning paradigm.
comment: 36 pages, 14 figures
☆ Evo-1: Lightweight Vision-Language-Action Model with Preserved Semantic Alignment
Vision-Language-Action (VLA) models have emerged as a powerful framework that unifies perception, language, and control, enabling robots to perform diverse tasks through multimodal understanding. However, current VLA models typically contain massive parameters and rely heavily on large-scale robot data pretraining, leading to high computational costs during training, as well as limited deployability for real-time inference. Moreover, most training paradigms often degrade the perceptual representations of the vision-language backbone, resulting in overfitting and poor generalization to downstream tasks. In this work, we present Evo-1, a lightweight VLA model that reduces computation and improves deployment efficiency, while maintaining strong performance without pretraining on robot data. Evo-1 builds on a native multimodal Vision-Language model (VLM), incorporating a novel cross-modulated diffusion transformer along with an optimized integration module, together forming an effective architecture. We further introduce a two-stage training paradigm that progressively aligns action with perception, preserving the representations of the VLM. Notably, with only 0.77 billion parameters, Evo-1 achieves state-of-the-art results on the Meta-World and RoboTwin suite, surpassing the previous best models by 12.4% and 6.9%, respectively, and also attains a competitive result of 94.8% on LIBERO. In real-world evaluations, Evo-1 attains a 78% success rate with high inference frequency and low memory overhead, outperforming all baseline methods. We release code, data, and model weights to facilitate future research on lightweight and efficient VLA models.
comment: Github: https://github.com/MINT-SJTU/Evo-1
☆ Learning from Single Timestamps: Complexity Estimation in Laparoscopic Cholecystectomy
Purpose: Accurate assessment of surgical complexity is essential in Laparoscopic Cholecystectomy (LC), where severe inflammation is associated with longer operative times and increased risk of postoperative complications. The Parkland Grading Scale (PGS) provides a clinically validated framework for stratifying inflammation severity; however, its automation in surgical videos remains largely unexplored, particularly in realistic scenarios where complete videos must be analyzed without prior manual curation. Methods: In this work, we introduce STC-Net, a novel framework for SingleTimestamp-based Complexity estimation in LC via the PGS, designed to operate under weak temporal supervision. Unlike prior methods limited to static images or manually trimmed clips, STC-Net operates directly on full videos. It jointly performs temporal localization and grading through a localization, window proposal, and grading module. We introduce a novel loss formulation combining hard and soft localization objectives and background-aware grading supervision. Results: Evaluated on a private dataset of 1,859 LC videos, STC-Net achieves an accuracy of 62.11% and an F1-score of 61.42%, outperforming non-localized baselines by over 10% in both metrics and highlighting the effectiveness of weak supervision for surgical complexity assessment. Conclusion: STC-Net demonstrates a scalable and effective approach for automated PGS-based surgical complexity estimation from full LC videos, making it promising for post-operative analysis and surgical training.
☆ THEval. Evaluation Framework for Talking Head Video Generation
Video generation has achieved remarkable progress, with generated videos increasingly resembling real ones. However, the rapid advance in generation has outpaced the development of adequate evaluation metrics. Currently, the assessment of talking head generation primarily relies on limited metrics, evaluating general video quality, lip synchronization, and on conducting user studies. Motivated by this, we propose a new evaluation framework comprising 8 metrics related to three dimensions (i) quality, (ii) naturalness, and (iii) synchronization. In selecting the metrics, we place emphasis on efficiency, as well as alignment with human preferences. Based on this considerations, we streamline to analyze fine-grained dynamics of head, mouth, and eyebrows, as well as face quality. Our extensive experiments on 85,000 videos generated by 17 state-of-the-art models suggest that while many algorithms excel in lip synchronization, they face challenges with generating expressiveness and artifact-free details. These videos were generated based on a novel real dataset, that we have curated, in order to mitigate bias of training data. Our proposed benchmark framework is aimed at evaluating the improvement of generative methods. Original code, dataset and leaderboards will be publicly released and regularly updated with new methods, in order to reflect progress in the field.
☆ $μ$NeuFMT: Optical-Property-Adaptive Fluorescence Molecular Tomography via Implicit Neural Representation
Fluorescence Molecular Tomography (FMT) is a promising technique for non-invasive 3D visualization of fluorescent probes, but its reconstruction remains challenging due to the inherent ill-posedness and reliance on inaccurate or often-unknown tissue optical properties. While deep learning methods have shown promise, their supervised nature limits generalization beyond training data. To address these problems, we propose $\mu$NeuFMT, a self-supervised FMT reconstruction framework that integrates implicit neural-based scene representation with explicit physical modeling of photon propagation. Its key innovation lies in jointly optimize both the fluorescence distribution and the optical properties ($\mu$) during reconstruction, eliminating the need for precise prior knowledge of tissue optics or pre-conditioned training data. We demonstrate that $\mu$NeuFMT robustly recovers accurate fluorophore distributions and optical coefficients even with severely erroneous initial values (0.5$\times$ to 2$\times$ of ground truth). Extensive numerical, phantom, and in vivo validations show that $\mu$NeuFMT outperforms conventional and supervised deep learning approaches across diverse heterogeneous scenarios. Our work establishes a new paradigm for robust and accurate FMT reconstruction, paving the way for more reliable molecular imaging in complex clinically related scenarios, such as fluorescence guided surgery.
☆ Distribution-Aware Tensor Decomposition for Compression of Convolutional Neural Networks
Neural networks are widely used for image-related tasks but typically demand considerable computing power. Once a network has been trained, however, its memory- and compute-footprint can be reduced by compression. In this work, we focus on compression through tensorization and low-rank representations. Whereas classical approaches search for a low-rank approximation by minimizing an isotropic norm such as the Frobenius norm in weight-space, we use data-informed norms that measure the error in function space. Concretely, we minimize the change in the layer's output distribution, which can be expressed as $\lVert (W - \widetilde{W}) \Sigma^{1/2}\rVert_F$ where $\Sigma^{1/2}$ is the square root of the covariance matrix of the layer's input and $W$, $\widetilde{W}$ are the original and compressed weights. We propose new alternating least square algorithms for the two most common tensor decompositions (Tucker-2 and CPD) that directly optimize the new norm. Unlike conventional compression pipelines, which almost always require post-compression fine-tuning, our data-informed approach often achieves competitive accuracy without any fine-tuning. We further show that the same covariance-based norm can be transferred from one dataset to another with only a minor accuracy drop, enabling compression even when the original training dataset is unavailable. Experiments on several CNN architectures (ResNet-18/50, and GoogLeNet) and datasets (ImageNet, FGVC-Aircraft, Cifar10, and Cifar100) confirm the advantages of the proposed method.
☆ Landslide Hazard Mapping with Geospatial Foundation Models: Geographical Generalizability, Data Scarcity, and Band Adaptability
Landslides cause severe damage to lives, infrastructure, and the environment, making accurate and timely mapping essential for disaster preparedness and response. However, conventional deep learning models often struggle when applied across different sensors, regions, or under conditions of limited training data. To address these challenges, we present a three-axis analytical framework of sensor, label, and domain for adapting geospatial foundation models (GeoFMs), focusing on Prithvi-EO-2.0 for landslide mapping. Through a series of experiments, we show that it consistently outperforms task-specific CNNs (U-Net, U-Net++), vision transformers (Segformer, SwinV2-B), and other GeoFMs (TerraMind, SatMAE). The model, built on global pretraining, self-supervision, and adaptable fine-tuning, proved resilient to spectral variation, maintained accuracy under label scarcity, and generalized more reliably across diverse datasets and geographic settings. Alongside these strengths, we also highlight remaining challenges such as computational cost and the limited availability of reusable AI-ready training data for landslide research. Overall, our study positions GeoFMs as a step toward more robust and scalable approaches for landslide risk reduction and environmental monitoring.
☆ V-Thinker: Interactive Thinking with Images
Empowering Large Multimodal Models (LMMs) to deeply integrate image interaction with long-horizon reasoning capabilities remains a long-standing challenge in this field. Recent advances in vision-centric reasoning explore a promising "Thinking with Images" paradigm for LMMs, marking a shift from image-assisted reasoning to image-interactive thinking. While this milestone enables models to focus on fine-grained image regions, progress remains constrained by limited visual tool spaces and task-specific workflow designs. To bridge this gap, we present V-Thinker, a general-purpose multimodal reasoning assistant that enables interactive, vision-centric thinking through end-to-end reinforcement learning. V-Thinker comprises two key components: (1) a Data Evolution Flywheel that automatically synthesizes, evolves, and verifies interactive reasoning datasets across three dimensions-diversity, quality, and difficulty; and (2) a Visual Progressive Training Curriculum that first aligns perception via point-level supervision, then integrates interactive reasoning through a two-stage reinforcement learning framework. Furthermore, we introduce VTBench, an expert-verified benchmark targeting vision-centric interactive reasoning tasks. Extensive experiments demonstrate that V-Thinker consistently outperforms strong LMM-based baselines in both general and interactive reasoning scenarios, providing valuable insights for advancing image-interactive reasoning applications.
comment: Working in progress
☆ Solving Convex Partition Visual Jigsaw Puzzles
Jigsaw puzzle solving requires the rearrangement of unordered pieces into their original pose in order to reconstruct a coherent whole, often an image, and is known to be an intractable problem. While the possible impact of automatic puzzle solvers can be disruptive in various application domains, most of the literature has focused on developing solvers for square jigsaw puzzles, severely limiting their practical use. In this work, we significantly expand the types of puzzles handled computationally, focusing on what is known as Convex Partitions, a major subset of polygonal puzzles whose pieces are convex. We utilize both geometrical and pictorial compatibilities, introduce a greedy solver, and report several performance measures next to the first benchmark dataset of such puzzles.
☆ HideAndSeg: an AI-based tool with automated prompting for octopus segmentation in natural habitats
Analyzing octopuses in their natural habitats is challenging due to their camouflage capability, rapid changes in skin texture and color, non-rigid body deformations, and frequent occlusions, all of which are compounded by variable underwater lighting and turbidity. Addressing the lack of large-scale annotated datasets, this paper introduces HideAndSeg, a novel, minimally supervised AI-based tool for segmenting videos of octopuses. It establishes a quantitative baseline for this task. HideAndSeg integrates SAM2 with a custom-trained YOLOv11 object detector. First, the user provides point coordinates to generate the initial segmentation masks with SAM2. These masks serve as training data for the YOLO model. After that, our approach fully automates the pipeline by providing a bounding box prompt to SAM2, eliminating the need for further manual intervention. We introduce two unsupervised metrics - temporal consistency $DICE_t$ and new component count $NC_t$ - to quantitatively evaluate segmentation quality and guide mask refinement in the absence of ground-truth data, i.e., real-world information that serves to train, validate, and test AI models. Results show that HideAndSeg achieves satisfactory performance, reducing segmentation noise compared to the manually prompted approach. Our method can re-identify and segment the octopus even after periods of complete occlusion in natural environments, a scenario in which the manually prompted model fails. By reducing the need for manual analysis in real-world scenarios, this work provides a practical tool that paves the way for more efficient behavioral studies of wild cephalopods.
☆ On the Equivalence of Regression and Classification
A formal link between regression and classification has been tenuous. Even though the margin maximization term $\|w\|$ is used in support vector regression, it has at best been justified as a regularizer. We show that a regression problem with $M$ samples lying on a hyperplane has a one-to-one equivalence with a linearly separable classification task with $2M$ samples. We show that margin maximization on the equivalent classification task leads to a different regression formulation than traditionally used. Using the equivalence, we demonstrate a ``regressability'' measure, that can be used to estimate the difficulty of regressing a dataset, without needing to first learn a model for it. We use the equivalence to train neural networks to learn a linearizing map, that transforms input variables into a space where a linear regressor is adequate.
comment: 19 pages
☆ DORAEMON: A Unified Library for Visual Object Modeling and Representation Learning at Scale
DORAEMON is an open-source PyTorch library that unifies visual object modeling and representation learning across diverse scales. A single YAML-driven workflow covers classification, retrieval and metric learning; more than 1000 pretrained backbones are exposed through a timm-compatible interface, together with modular losses, augmentations and distributed-training utilities. Reproducible recipes match or exceed reference results on ImageNet-1K, MS-Celeb-1M and Stanford online products, while one-command export to ONNX or HuggingFace bridges research and deployment. By consolidating datasets, models, and training techniques into one platform, DORAEMON offers a scalable foundation for rapid experimentation in visual recognition and representation learning, enabling efficient transfer of research advances to real-world applications. The repository is available at https://github.com/wuji3/DORAEMON.
comment: code: https://github.com/wuji3/DORAEMON
☆ BoRe-Depth: Self-supervised Monocular Depth Estimation with Boundary Refinement for Embedded Systems IROS 2025
Depth estimation is one of the key technologies for realizing 3D perception in unmanned systems. Monocular depth estimation has been widely researched because of its low-cost advantage, but the existing methods face the challenges of poor depth estimation performance and blurred object boundaries on embedded systems. In this paper, we propose a novel monocular depth estimation model, BoRe-Depth, which contains only 8.7M parameters. It can accurately estimate depth maps on embedded systems and significantly improves boundary quality. Firstly, we design an Enhanced Feature Adaptive Fusion Module (EFAF) which adaptively fuses depth features to enhance boundary detail representation. Secondly, we integrate semantic knowledge into the encoder to improve the object recognition and boundary perception capabilities. Finally, BoRe-Depth is deployed on NVIDIA Jetson Orin, and runs efficiently at 50.7 FPS. We demonstrate that the proposed model significantly outperforms previous lightweight models on multiple challenging datasets, and we provide detailed ablation studies for the proposed methods. The code is available at https://github.com/liangxiansheng093/BoRe-Depth.
comment: 8 pages, 5 figures, published to IROS 2025
☆ Multi-Task Learning for Visually Grounded Reasoning in Gastrointestinal VQA
We present a multi-task framework for the MediaEval Medico 2025 challenge, leveraging a LoRA-tuned Florence-2 model for simultaneous visual question answering (VQA), explanation generation, and visual grounding. The proposed system integrates three curated datasets: (1) Kvasir-VQA-x1 for question-answer learning, (2) a synthetically enriched explanation dataset offering structured medical reasoning, and (3) text-to-region pairs linking visual features with segmentation masks. This multi-task setup enables the model to jointly learn visual grounding, reasoning, and interpretation, producing responses that are both accurate and interpretable. Extensive evaluation demonstrates that our approach substantially improves over single-task baselines in both answer accuracy and visual localization, highlighting the effectiveness of grounded multi-task learning for medical VQA applications.
comment: This is a working paper submitted for Medico 2025: Visual Question Answering (with multimodal explanations) for Gastrointestinal Imaging at MediaEval 2025. 5 pages, 3 figures and 1 table
☆ GraSP-VLA: Graph-based Symbolic Action Representation for Long-Horizon Planning with VLA Policies
Deploying autonomous robots that can learn new skills from demonstrations is an important challenge of modern robotics. Existing solutions often apply end-to-end imitation learning with Vision-Language Action (VLA) models or symbolic approaches with Action Model Learning (AML). On the one hand, current VLA models are limited by the lack of high-level symbolic planning, which hinders their abilities in long-horizon tasks. On the other hand, symbolic approaches in AML lack generalization and scalability perspectives. In this paper we present a new neuro-symbolic approach, GraSP-VLA, a framework that uses a Continuous Scene Graph representation to generate a symbolic representation of human demonstrations. This representation is used to generate new planning domains during inference and serves as an orchestrator for low-level VLA policies, scaling up the number of actions that can be reproduced in a row. Our results show that GraSP-VLA is effective for modeling symbolic representations on the task of automatic planning domain generation from observations. In addition, results on real-world experiments show the potential of our Continuous Scene Graph representation to orchestrate low-level VLA policies in long-horizon tasks.
☆ A MATLAB tutorial on deep feature extraction combined with chemometrics for analytical applications
Background In analytical chemistry, spatial information about materials is commonly captured through imaging techniques, such as traditional color cameras or with advanced hyperspectral cameras and microscopes. However, efficiently extracting and analyzing this spatial information for exploratory and predictive purposes remains a challenge, especially when using traditional chemometric methods. Recent advances in deep learning and artificial intelligence have significantly enhanced image processing capabilities, enabling the extraction of multiscale deep features that are otherwise challenging to capture with conventional image processing techniques. Despite the wide availability of open-source deep learning models, adoption in analytical chemistry remains limited because of the absence of structured, step-by-step guidance for implementing these models. Results This tutorial aims to bridge this gap by providing a step-by-step guide for applying deep learning approaches to extract spatial information from imaging data and integrating it with other data sources, such as spectral information. Importantly, the focus of this work is not on training deep learning models for image processing but on using existing open source models to extract deep features from imaging data. Significance The tutorial provides MATLAB code tutorial demonstrations, showcasing the processing of imaging data from various imaging modalities commonly encountered in analytical chemistry. Readers must run the tutorial steps on their own datasets using the codes presented in this tutorial.
☆ Evaluating the Impact of Weather-Induced Sensor Occlusion on BEVFusion for 3D Object Detection
Accurate 3D object detection is essential for automated vehicles to navigate safely in complex real-world environments. Bird's Eye View (BEV) representations, which project multi-sensor data into a top-down spatial format, have emerged as a powerful approach for robust perception. Although BEV-based fusion architectures have demonstrated strong performance through multimodal integration, the effects of sensor occlusions, caused by environmental conditions such as fog, haze, or physical obstructions, on 3D detection accuracy remain underexplored. In this work, we investigate the impact of occlusions on both camera and Light Detection and Ranging (LiDAR) outputs using the BEVFusion architecture, evaluated on the nuScenes dataset. Detection performance is measured using mean Average Precision (mAP) and the nuScenes Detection Score (NDS). Our results show that moderate camera occlusions lead to a 41.3% drop in mAP (from 35.6% to 20.9%) when detection is based only on the camera. On the other hand, LiDAR sharply drops in performance only under heavy occlusion, with mAP falling by 47.3% (from 64.7% to 34.1%), with a severe impact on long-range detection. In fused settings, the effect depends on which sensor is occluded: occluding the camera leads to a minor 4.1% drop (from 68.5% to 65.7%), while occluding LiDAR results in a larger 26.8% drop (to 50.1%), revealing the model's stronger reliance on LiDAR for the task of 3D object detection. Our results highlight the need for future research into occlusion-aware evaluation methods and improved sensor fusion techniques that can maintain detection accuracy in the presence of partial sensor failure or degradation due to adverse environmental conditions.
☆ Comparative Study of CNN Architectures for Binary Classification of Horses and Motorcycles in the VOC 2008 Dataset
This paper presents a comprehensive evaluation of nine convolutional neural network architectures for binary classification of horses and motorcycles in the VOC 2008 dataset. We address the significant class imbalance problem by implementing minority-class augmentation techniques. Our experiments compare modern architectures including ResNet-50, ConvNeXt-Tiny, DenseNet-121, and Vision Transformer across multiple performance metrics. Results demonstrate substantial performance variations, with ConvNeXt-Tiny achieving the highest Average Precision (AP) of 95.53% for horse detection and 89.12% for motorcycle detection. We observe that data augmentation significantly improves minority class detection, particularly benefiting deeper architectures. This study provides insights into architecture selection for imbalanced binary classification tasks and quantifies the impact of data augmentation strategies in mitigating class imbalance issues in object detection.
☆ Submanifold Sparse Convolutional Networks for Automated 3D Segmentation of Kidneys and Kidney Tumours in Computed Tomography
The accurate delineation of tumours in radiological images like Computed Tomography is a very specialised and time-consuming task, and currently a bottleneck preventing quantitative analyses to be performed routinely in the clinical setting. For this reason, developing methods for the automated segmentation of tumours in medical imaging is of the utmost importance and has driven significant efforts in recent years. However, challenges regarding the impracticality of 3D scans, given the large amount of voxels to be analysed, usually requires the downsampling of such images or using patches thereof when applying traditional convolutional neural networks. To overcome this problem, in this paper we propose a new methodology that uses, divided into two stages, voxel sparsification and submanifold sparse convolutional networks. This method allows segmentations to be performed with high-resolution inputs and a native 3D model architecture, obtaining state-of-the-art accuracies while significantly reducing the computational resources needed in terms of GPU memory and time. We studied the deployment of this methodology in the context of Computed Tomography images of renal cancer patients from the KiTS23 challenge, and our method achieved results competitive with the challenge winners, with Dice similarity coefficients of 95.8% for kidneys + masses, 85.7% for tumours + cysts, and 80.3% for tumours alone. Crucially, our method also offers significant computational improvements, achieving up to a 60% reduction in inference time and up to a 75\% reduction in VRAM usage compared to an equivalent dense architecture, across both CPU and various GPU cards tested.
comment: 12 pages, 5 figures
☆ RISE-T2V: Rephrasing and Injecting Semantics with LLM for Expansive Text-to-Video Generation
Most text-to-video(T2V) diffusion models depend on pre-trained text encoders for semantic alignment, yet they often fail to maintain video quality when provided with concise prompts rather than well-designed ones. The primary issue lies in their limited textual semantics understanding. Moreover, these text encoders cannot rephrase prompts online to better align with user intentions, which limits both the scalability and usability of the models, To address these challenges, we introduce RISE-T2V, which uniquely integrates the processes of prompt rephrasing and semantic feature extraction into a single and seamless step instead of two separate steps. RISE-T2V is universal and can be applied to various pre-trained LLMs and video diffusion models(VDMs), significantly enhancing their capabilities for T2V tasks. We propose an innovative module called the Rephrasing Adapter, enabling diffusion models to utilize text hidden states during the next token prediction of the LLM as a condition for video generation. By employing a Rephrasing Adapter, the video generation model can implicitly rephrase basic prompts into more comprehensive representations that better match the user's intent. Furthermore, we leverage the powerful capabilities of LLMs to enable video generation models to accomplish a broader range of T2V tasks. Extensive experiments demonstrate that RISE-T2V is a versatile framework applicable to different video diffusion model architectures, significantly enhancing the ability of T2V models to generate high-quality videos that align with user intent. Visual results are available on the webpage at https://rise-t2v.github.io.
comment: 17 pages, 16 figures
☆ Deep learning-based object detection of offshore platforms on Sentinel-1 Imagery and the impact of synthetic training data
The recent and ongoing expansion of marine infrastructure, including offshore wind farms, oil and gas platforms, artificial islands, and aquaculture facilities, highlights the need for effective monitoring systems. The development of robust models for offshore infrastructure detection relies on comprehensive, balanced datasets, but falls short when samples are scarce, particularly for underrepresented object classes, shapes, and sizes. By training deep learning-based YOLOv10 object detection models with a combination of synthetic and real Sentinel-1 satellite imagery acquired in the fourth quarter of 2023 from four regions (Caspian Sea, South China Sea, Gulf of Guinea, and Coast of Brazil), this study investigates the use of synthetic training data to enhance model performance. We evaluated this approach by applying the model to detect offshore platforms in three unseen regions (Gulf of Mexico, North Sea, Persian Gulf) and thereby assess geographic transferability. This region-holdout evaluation demonstrated that the model generalises beyond the training areas. In total, 3,529 offshore platforms were detected, including 411 in the North Sea, 1,519 in the Gulf of Mexico, and 1,593 in the Persian Gulf. The model achieved an F1 score of 0.85, which improved to 0.90 upon incorporating synthetic data. We analysed how synthetic data enhances the representation of unbalanced classes and overall model performance, taking a first step toward globally transferable detection of offshore infrastructure. This study underscores the importance of balanced datasets and highlights synthetic data generation as an effective strategy to address common challenges in remote sensing, demonstrating the potential of deep learning for scalable, global offshore infrastructure monitoring.
comment: 14 pages, 9 figures
☆ Vision Foundation Models in Agriculture: Toward Domain-Specific Adaptation for Weed Herbicide Trials Assessment
Herbicide field trials require accurate identification of plant species and assessment of herbicide-induced damage across diverse environments. While general-purpose vision foundation models have shown promising results in complex visual domains, their performance can be limited in agriculture, where fine-grained distinctions between species and damage types are critical. In this work, we adapt a general-purpose vision foundation model to herbicide trial characterization. Trained using a self-supervised learning approach on a large, curated agricultural dataset, the model learns rich and transferable representations optimized for herbicide trials images. Our domain-specific model significantly outperforms the best general-purpose foundation model in both species identification (F1 score improvement from 0.91 to 0.94) and damage classification (from 0.26 to 0.33). Under unseen conditions (new locations and other time), it achieves even greater gains (species identification from 0.56 to 0.66; damage classification from 0.17 to 0.27). In domain-shift scenarios, such as drone imagery, it maintains strong performance (species classification from 0.49 to 0.60). Additionally, we show that domain-specific pretraining enhances segmentation accuracy, particularly in low-annotation regimes. An annotation-efficiency analysis reveals that, under unseen conditions, the domain-specific model achieves 5.4% higher F1 score than the general-purpose model, while using 80% fewer labeled samples. These results demonstrate the generalization capabilities of domain-specific foundation models and their potential to significantly reduce manual annotation efforts, offering a scalable and automated solution for herbicide trial analysis.
☆ FastGS: Training 3D Gaussian Splatting in 100 Seconds
The dominant 3D Gaussian splatting (3DGS) acceleration methods fail to properly regulate the number of Gaussians during training, causing redundant computational time overhead. In this paper, we propose FastGS, a novel, simple, and general acceleration framework that fully considers the importance of each Gaussian based on multi-view consistency, efficiently solving the trade-off between training time and rendering quality. We innovatively design a densification and pruning strategy based on multi-view consistency, dispensing with the budgeting mechanism. Extensive experiments on Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets demonstrate that our method significantly outperforms the state-of-the-art methods in training speed, achieving a 3.32$\times$ training acceleration and comparable rendering quality compared with DashGaussian on the Mip-NeRF 360 dataset and a 15.45$\times$ acceleration compared with vanilla 3DGS on the Deep Blending dataset. We demonstrate that FastGS exhibits strong generality, delivering 2-7$\times$ training acceleration across various tasks, including dynamic scene reconstruction, surface reconstruction, sparse-view reconstruction, large-scale reconstruction, and simultaneous localization and mapping. The project page is available at https://fastgs.github.io/
comment: Project page: https://fastgs.github.io/
☆ DINOv2 Driven Gait Representation Learning for Video-Based Visible-Infrared Person Re-identification
Video-based Visible-Infrared person re-identification (VVI-ReID) aims to retrieve the same pedestrian across visible and infrared modalities from video sequences. Existing methods tend to exploit modality-invariant visual features but largely overlook gait features, which are not only modality-invariant but also rich in temporal dynamics, thus limiting their ability to model the spatiotemporal consistency essential for cross-modal video matching. To address these challenges, we propose a DINOv2-Driven Gait Representation Learning (DinoGRL) framework that leverages the rich visual priors of DINOv2 to learn gait features complementary to appearance cues, facilitating robust sequence-level representations for cross-modal retrieval. Specifically, we introduce a Semantic-Aware Silhouette and Gait Learning (SASGL) model, which generates and enhances silhouette representations with general-purpose semantic priors from DINOv2 and jointly optimizes them with the ReID objective to achieve semantically enriched and task-adaptive gait feature learning. Furthermore, we develop a Progressive Bidirectional Multi-Granularity Enhancement (PBMGE) module, which progressively refines feature representations by enabling bidirectional interactions between gait and appearance streams across multiple spatial granularities, fully leveraging their complementarity to enhance global representations with rich local details and produce highly discriminative features. Extensive experiments on HITSZ-VCM and BUPT datasets demonstrate the superiority of our approach, significantly outperforming existing state-of-the-art methods.
☆ Proto-LeakNet: Towards Signal-Leak Aware Attribution in Synthetic Human Face Imagery
The growing sophistication of synthetic image and deepfake generation models has turned source attribution and authenticity verification into a critical challenge for modern computer vision systems. Recent studies suggest that diffusion pipelines unintentionally imprint persistent statistical traces, known as signal leaks, within their outputs, particularly in latent representations. Building on this observation, we propose Proto-LeakNet, a signal-leak-aware and interpretable attribution framework that integrates closed-set classification with a density-based open-set evaluation on the learned embeddings, enabling analysis of unseen generators without retraining. Operating in the latent domain of diffusion models, our method re-simulates partial forward diffusion to expose residual generator-specific cues. A temporal attention encoder aggregates multi-step latent features, while a feature-weighted prototype head structures the embedding space and enables transparent attribution. Trained solely on closed data and achieving a Macro AUC of 98.13%, Proto-LeakNet learns a latent geometry that remains robust under post-processing, surpassing state-of-the-art methods, and achieves strong separability between known and unseen generators. These results demonstrate that modeling signal-leak bias in latent space enables reliable and interpretable AI-image and deepfake forensics. The code for the whole work will be available upon submission.
comment: 13 pages, 6 figures, 5 tables
MedSapiens: Taking a Pose to Rethink Medical Imaging Landmark Detection
This paper does not introduce a novel architecture; instead, it revisits a fundamental yet overlooked baseline: adapting human-centric foundation models for anatomical landmark detection in medical imaging. While landmark detection has traditionally relied on domain-specific models, the emergence of large-scale pre-trained vision models presents new opportunities. In this study, we investigate the adaptation of Sapiens, a human-centric foundation model designed for pose estimation, to medical imaging through multi-dataset pretraining, establishing a new state of the art across multiple datasets. Our proposed model, MedSapiens, demonstrates that human-centric foundation models, inherently optimized for spatial pose localization, provide strong priors for anatomical landmark detection, yet this potential has remained largely untapped. We benchmark MedSapiens against existing state-of-the-art models, achieving up to 5.26% improvement over generalist models and up to 21.81% improvement over specialist models in the average success detection rate (SDR). To further assess MedSapiens adaptability to novel downstream tasks with few annotations, we evaluate its performance in limited-data settings, achieving 2.69% improvement over the few-shot state of the art in SDR. Code and model weights are available at https://github.com/xmed-lab/MedSapiens .
☆ AStF: Motion Style Transfer via Adaptive Statistics Fusor
Human motion style transfer allows characters to appear less rigidity and more realism with specific style. Traditional arbitrary image style transfer typically process mean and variance which is proved effective. Meanwhile, similar methods have been adapted for motion style transfer. However, due to the fundamental differences between images and motion, relying on mean and variance is insufficient to fully capture the complex dynamic patterns and spatiotemporal coherence properties of motion data. Building upon this, our key insight is to bring two more coefficient, skewness and kurtosis, into the analysis of motion style. Specifically, we propose a novel Adaptive Statistics Fusor (AStF) which consists of Style Disentanglement Module (SDM) and High-Order Multi-Statistics Attention (HOS-Attn). We trained our AStF in conjunction with a Motion Consistency Regularization (MCR) discriminator. Experimental results show that, by providing a more comprehensive model of the spatiotemporal statistical patterns inherent in dynamic styles, our proposed AStF shows proficiency superiority in motion style transfers over state-of-the-arts. Our code and model are available at https://github.com/CHMimilanlan/AStF.
☆ Covariance Descriptors Meet General Vision Encoders: Riemannian Deep Learning for Medical Image Classification
Covariance descriptors capture second-order statistics of image features. They have shown strong performance in general computer vision tasks, but remain underexplored in medical imaging. We investigate their effectiveness for both conventional and learning-based medical image classification, with a particular focus on SPDNet, a classification network specifically designed for symmetric positive definite (SPD) matrices. We propose constructing covariance descriptors from features extracted by pre-trained general vision encoders (GVEs) and comparing them with handcrafted descriptors. Two GVEs - DINOv2 and MedSAM - are evaluated across eleven binary and multi-class datasets from the MedMNSIT benchmark. Our results show that covariance descriptors derived from GVE features consistently outperform those derived from handcrafted features. Moreover, SPDNet yields superior performance to state-of-the-art methods when combined with DINOv2 features. Our findings highlight the potential of combining covariance descriptors with powerful pretrained vision encoders for medical image analysis.
comment: Preprint. Submitted to the IEEE International Symposium on Biomedical Imaging (ISBI) 2026
☆ Systematic Evaluation of Preprocessing Techniques for Accurate Image Registration in Digital Pathology
Image registration refers to the process of spatially aligning two or more images by mapping them into a common coordinate system, so that corresponding anatomical or tissue structures are matched across images. In digital pathology, registration enables direct comparison and integration of information from different stains or imaging modalities, sup-porting applications such as biomarker analysis and tissue reconstruction. Accurate registration of images from different modalities is an essential step in digital pathology. In this study, we investigated how various color transformation techniques affect image registration between hematoxylin and eosin (H&E) stained images and non-linear multimodal images. We used a dataset of 20 tissue sample pairs, with each pair undergoing several preprocessing steps, including different color transformation (CycleGAN, Macenko, Reinhard, Vahadane), inversion, contrast adjustment, intensity normalization, and denoising. All images were registered using the VALIS registration method, which first applies rigid registration and then performs non-rigid registration in two steps on both low and high-resolution images. Registration performance was evaluated using the relative Target Registration Error (rTRE). We reported the median of median rTRE values (MMrTRE) and the average of median rTRE values (AMrTRE) for each method. In addition, we performed a custom point-based evaluation using ten manually selected key points. Registration was done separately for two scenarios, using either the original or inverted multimodal images. In both scenarios, CycleGAN color transformation achieved the lowest registration errors, while the other methods showed higher errors. These findings show that applying color transformation before registration improves alignment between images from different modalities and supports more reliable analysis in digital pathology.
comment: 14 pages, 7 Figures
☆ Seeing Straight: Document Orientation Detection for Efficient OCR
Despite significant advances in document understanding, determining the correct orientation of scanned or photographed documents remains a critical pre-processing step in the real world settings. Accurate rotation correction is essential for enhancing the performance of downstream tasks such as Optical Character Recognition (OCR) where misalignment commonly arises due to user errors, particularly incorrect base orientations of the camera during capture. In this study, we first introduce OCR-Rotation-Bench (ORB), a new benchmark for evaluating OCR robustness to image rotations, comprising (i) ORB-En, built from rotation-transformed structured and free-form English OCR datasets, and (ii) ORB-Indic, a novel multilingual set spanning 11 Indic mid to low-resource languages. We also present a fast, robust and lightweight rotation classification pipeline built on the vision encoder of Phi-3.5-Vision model with dynamic image cropping, fine-tuned specifically for 4-class rotation task in a standalone fashion. Our method achieves near-perfect 96% and 92% accuracy on identifying the rotations respectively on both the datasets. Beyond classification, we demonstrate the critical role of our module in boosting OCR performance: closed-source (up to 14%) and open-weights models (up to 4x) in the simulated real-world setting.
☆ Learning from Online Videos at Inference Time for Computer-Use Agents
Computer-use agents can operate computers and automate laborious tasks, but despite recent rapid progress, they still lag behind human users, especially when tasks require domain-specific procedural knowledge about particular applications, platforms, and multi-step workflows. Humans can bridge this gap by watching video tutorials: we search, skim, and selectively imitate short segments that match our current subgoal. In this paper, we study how to enable computer-use agents to learn from online videos at inference time effectively. We propose a framework that retrieves and filters tutorial videos, converts them into structured demonstration trajectories, and dynamically selects trajectories as in-context guidance during execution. Particularly, using a VLM, we infer UI actions, segment videos into short subsequences of actions, and assign each subsequence a textual objective. At inference time, a two-stage selection mechanism dynamically chooses a single trajectory to add in context at each step, focusing the agent on the most helpful local guidance for its next decision. Experiments on two widely used benchmarks show that our framework consistently outperforms strong base agents and variants that use only textual tutorials or transcripts. Analyses highlight the importance of trajectory segmentation and selection, action filtering, and visual information, suggesting that abundant online videos can be systematically distilled into actionable guidance that improves computer-use agents at inference time. Our code is available at https://github.com/UCSB-NLP-Chang/video_demo.
☆ DMSORT: An efficient parallel maritime multi-object tracking architecture for unmanned vessel platforms
Accurate perception of the marine environment through robust multi-object tracking (MOT) is essential for ensuring safe vessel navigation and effective maritime surveillance. However, the complicated maritime environment often causes camera motion and subsequent visual degradation, posing significant challenges to MOT. To address this challenge, we propose an efficient Dual-branch Maritime SORT (DMSORT) method for maritime MOT. The core of the framework is a parallel tracker with affine compensation, which incorporates an object detection and re-identification (ReID) branch, along with a dedicated branch for dynamic camera motion estimation. Specifically, a Reversible Columnar Detection Network (RCDN) is integrated into the detection module to leverage multi-level visual features for robust object detection. Furthermore, a lightweight Transformer-based appearance extractor (Li-TAE) is designed to capture global contextual information and generate robust appearance features. Another branch decouples platform-induced and target-intrinsic motion by constructing a projective transformation, applying platform-motion compensation within the Kalman filter, and thereby stabilizing true object trajectories. Finally, a clustering-optimized feature fusion module effectively combines motion and appearance cues to ensure identity consistency under noise, occlusion, and drift. Extensive evaluations on the Singapore Maritime Dataset demonstrate that DMSORT achieves state-of-the-art performance. Notably, DMSORT attains the fastest runtime among existing ReID-based MOT frameworks while maintaining high identity consistency and robustness to jitter and occlusion. Code is available at: https://github.com/BiscuitsLzy/DMSORT-An-efficient-parallel-maritime-multi-object-tracking-architecture-.
comment: Updated version of the Ocean Engineering (Elsevier, 2025) paper with minor corrections
☆ Automated Tennis Player and Ball Tracking with Court Keypoints Detection (Hawk Eye System)
This study presents a complete pipeline for automated tennis match analysis. Our framework integrates multiple deep learning models to detect and track players and the tennis ball in real time, while also identifying court keypoints for spatial reference. Using YOLOv8 for player detection, a custom-trained YOLOv5 model for ball tracking, and a ResNet50-based architecture for court keypoint detection, our system provides detailed analytics including player movement patterns, ball speed, shot accuracy, and player reaction times. The experimental results demonstrate robust performance in varying court conditions and match scenarios. The model outputs an annotated video along with detailed performance metrics, enabling coaches, broadcasters, and players to gain actionable insights into the dynamics of the game.
comment: 14 pages, 11 figures, planning to submit for a coneference
☆ Text to Sketch Generation with Multi-Styles NeurIPS 2025
Recent advances in vision-language models have facilitated progress in sketch generation. However, existing specialized methods primarily focus on generic synthesis and lack mechanisms for precise control over sketch styles. In this work, we propose a training-free framework based on diffusion models that enables explicit style guidance via textual prompts and referenced style sketches. Unlike previous style transfer methods that overwrite key and value matrices in self-attention, we incorporate the reference features as auxiliary information with linear smoothing and leverage a style-content guidance mechanism. This design effectively reduces content leakage from reference sketches and enhances synthesis quality, especially in cases with low structural similarity between reference and target sketches. Furthermore, we extend our framework to support controllable multi-style generation by integrating features from multiple reference sketches, coordinated via a joint AdaIN module. Extensive experiments demonstrate that our approach achieves high-quality sketch generation with accurate style alignment and improved flexibility in style control. The official implementation of M3S is available at https://github.com/CMACH508/M3S.
comment: Accepted by NeurIPS 2025
☆ Tortoise and Hare Guidance: Accelerating Diffusion Model Inference with Multirate Integration NeurIPS 2025
In this paper, we propose Tortoise and Hare Guidance (THG), a training-free strategy that accelerates diffusion sampling while maintaining high-fidelity generation. We demonstrate that the noise estimate and the additional guidance term exhibit markedly different sensitivity to numerical error by reformulating the classifier-free guidance (CFG) ODE as a multirate system of ODEs. Our error-bound analysis shows that the additional guidance branch is more robust to approximation, revealing substantial redundancy that conventional solvers fail to exploit. Building on this insight, THG significantly reduces the computation of the additional guidance: the noise estimate is integrated with the tortoise equation on the original, fine-grained timestep grid, while the additional guidance is integrated with the hare equation only on a coarse grid. We also introduce (i) an error-bound-aware timestep sampler that adaptively selects step sizes and (ii) a guidance-scale scheduler that stabilizes large extrapolation spans. THG reduces the number of function evaluations (NFE) by up to 30% with virtually no loss in generation fidelity ($\Delta$ImageReward $\leq$ 0.032) and outperforms state-of-the-art CFG-based training-free accelerators under identical computation budgets. Our findings highlight the potential of multirate formulations for diffusion solvers, paving the way for real-time high-quality image synthesis without any model retraining. The source code is available at https://github.com/yhlee-add/THG.
comment: 21 pages, 8 figures. NeurIPS 2025. Project page: https://yhlee-add.github.io/THG
☆ SpatialLock: Precise Spatial Control in Text-to-Image Synthesis
Text-to-Image (T2I) synthesis has made significant advancements in recent years, driving applications such as generating datasets automatically. However, precise control over object localization in generated images remains a challenge. Existing methods fail to fully utilize positional information, leading to an inadequate understanding of object spatial layouts. To address this issue, we propose SpatialLock, a novel framework that leverages perception signals and grounding information to jointly control the generation of spatial locations. SpatialLock incorporates two components: Position-Engaged Injection (PoI) and Position-Guided Learning (PoG). PoI directly integrates spatial information through an attention layer, encouraging the model to learn the grounding information effectively. PoG employs perception-based supervision to further refine object localization. Together, these components enable the model to generate objects with precise spatial arrangements and improve the visual quality of the generated images. Experiments show that SpatialLock sets a new state-of-the-art for precise object positioning, achieving IOU scores above 0.9 across multiple datasets.
comment: Work in progress
☆ When Swin Transformer Meets KANs: An Improved Transformer Architecture for Medical Image Segmentation
Medical image segmentation is critical for accurate diagnostics and treatment planning, but remains challenging due to complex anatomical structures and limited annotated training data. CNN-based segmentation methods excel at local feature extraction, but struggle with modeling long-range dependencies. Transformers, on the other hand, capture global context more effectively, but are inherently data-hungry and computationally expensive. In this work, we introduce UKAST, a U-Net like architecture that integrates rational-function based Kolmogorov-Arnold Networks (KANs) into Swin Transformer encoders. By leveraging rational base functions and Group Rational KANs (GR-KANs) from the Kolmogorov-Arnold Transformer (KAT), our architecture addresses the inefficiencies of vanilla spline-based KANs, yielding a more expressive and data-efficient framework with reduced FLOPs and only a very small increase in parameter count compared to SwinUNETR. UKAST achieves state-of-the-art performance on four diverse 2D and 3D medical image segmentation benchmarks, consistently surpassing both CNN- and Transformer-based baselines. Notably, it attains superior accuracy in data-scarce settings, alleviating the data-hungry limitations of standard Vision Transformers. These results show the potential of KAN-enhanced Transformers to advance data-efficient medical image segmentation. Code is available at: https://github.com/nsapkota417/UKAST
☆ Adversarial and Score-Based CT Denoising: CycleGAN vs Noise2Score
We study CT image denoising in the unpaired and self-supervised regimes by evaluating two strong, training-data-efficient paradigms: a CycleGAN-based residual translator and a Noise2Score (N2S) score-matching denoiser. Under a common evaluation protocol, a configuration sweep identifies a simple standard U-Net backbone within CycleGAN (lambda_cycle = 30, lambda_iden = 2, ngf = ndf = 64) as the most reliable setting; we then train it to convergence with a longer schedule. The selected CycleGAN improves the noisy input from 34.66 dB / 0.9234 SSIM to 38.913 dB / 0.971 SSIM and attains an estimated score of 1.9441 and an unseen-set (Kaggle leaderboard) score of 1.9343. Noise2Score, while slightly behind in absolute PSNR / SSIM, achieves large gains over very noisy inputs, highlighting its utility when clean pairs are unavailable. Overall, CycleGAN offers the strongest final image quality, whereas Noise2Score provides a robust pair-free alternative with competitive performance. Source code is available at https://github.com/hanifsyarubany/CT-Scan-Image-Denoising-using-CycleGAN-and-Noise2Score.
☆ Unveiling Deep Semantic Uncertainty Perception for Language-Anchored Multi-modal Vision-Brain Alignment
Unveiling visual semantics from neural signals such as EEG, MEG, and fMRI remains a fundamental challenge due to subject variability and the entangled nature of visual features. Existing approaches primarily align neural activity directly with visual embeddings, but visual-only representations often fail to capture latent semantic dimensions, limiting interpretability and deep robustness. To address these limitations, we propose Bratrix, the first end-to-end framework to achieve multimodal Language-Anchored Vision-Brain alignment. Bratrix decouples visual stimuli into hierarchical visual and linguistic semantic components, and projects both visual and brain representations into a shared latent space, enabling the formation of aligned visual-language and brain-language embeddings. To emulate human-like perceptual reliability and handle noisy neural signals, Bratrix incorporates a novel uncertainty perception module that applies uncertainty-aware weighting during alignment. By leveraging learnable language-anchored semantic matrices to enhance cross-modal correlations and employing a two-stage training strategy of single-modality pretraining followed by multimodal fine-tuning, Bratrix-M improves alignment precision. Extensive experiments on EEG, MEG, and fMRI benchmarks demonstrate that Bratrix improves retrieval, reconstruction, and captioning performance compared to state-of-the-art methods, specifically surpassing 14.3% in 200-way EEG retrieval task. Code and model are available.
comment: 30 pages, 16 figures, under review as a conference paper
☆ A Hybrid Deep Learning Model for Robust Biometric Authentication from Low-Frame-Rate PPG Signals
Photoplethysmography (PPG) signals, which measure changes in blood volume in the skin using light, have recently gained attention in biometric authentication because of their non-invasive acquisition, inherent liveness detection, and suitability for low-cost wearable devices. However, PPG signal quality is challenged by motion artifacts, illumination changes, and inter-subject physiological variability, making robust feature extraction and classification crucial. This study proposes a lightweight and cost-effective biometric authentication framework based on PPG signals extracted from low-frame-rate fingertip videos. The CFIHSR dataset, comprising PPG recordings from 46 subjects at a sampling rate of 14 Hz, is employed for evaluation. The raw PPG signals undergo a standard preprocessing pipeline involving baseline drift removal, motion artifact suppression using Principal Component Analysis (PCA), bandpass filtering, Fourier-based resampling, and amplitude normalization. To generate robust representations, each one-dimensional PPG segment is converted into a two-dimensional time-frequency scalogram via the Continuous Wavelet Transform (CWT), effectively capturing transient cardiovascular dynamics. We developed a hybrid deep learning model, termed CVT-ConvMixer-LSTM, by combining spatial features from the Convolutional Vision Transformer (CVT) and ConvMixer branches with temporal features from a Long Short-Term Memory network (LSTM). The experimental results on 46 subjects demonstrate an authentication accuracy of 98%, validating the robustness of the model to noise and variability between subjects. Due to its efficiency, scalability, and inherent liveness detection capability, the proposed system is well-suited for real-world mobile and embedded biometric security applications.
comment: This work has been submitted to IEEE Transactions on Biometrics, Behavior, and Identity Science (TBIOM) for possible publication
☆ Near-Lossless 3D Voxel Representation Free from Iso-surface
Accurate and efficient voxelized representations of 3D meshes are the foundation of 3D reconstruction and generation. However, existing representations based on iso-surface heavily rely on water-tightening or rendering optimization, which inevitably compromise geometric fidelity. We propose Faithful Contouring, a sparse voxelized representation that supports 2048+ resolutions for arbitrary meshes, requiring neither converting meshes to field functions nor extracting the isosurface during remeshing. It achieves near-lossless fidelity by preserving sharpness and internal structures, even for challenging cases with complex geometry and topology. The proposed method also shows flexibility for texturing, manipulation, and editing. Beyond representation, we design a dual-mode autoencoder for Faithful Contouring, enabling scalable and detail-preserving shape reconstruction. Extensive experiments show that Faithful Contouring surpasses existing methods in accuracy and efficiency for both representation and reconstruction. For direct representation, it achieves distance errors at the $10^{-5}$ level; for mesh reconstruction, it yields a 93\% reduction in Chamfer Distance and a 35\% improvement in F-score over strong baselines, confirming superior fidelity as a representation for 3D learning tasks.
☆ MedDChest: A Content-Aware Multimodal Foundational Vision Model for Thoracic Imaging
The performance of vision models in medical imaging is often hindered by the prevailing paradigm of fine-tuning backbones pre-trained on out-of-domain natural images. To address this fundamental domain gap, we propose MedDChest, a new foundational Vision Transformer (ViT) model optimized specifically for thoracic imaging. We pre-trained MedDChest from scratch on a massive, curated, multimodal dataset of over 1.2 million images, encompassing different modalities including Chest X-ray and Computed Tomography (CT) compiled from 10 public sources. A core technical contribution of our work is Guided Random Resized Crops, a novel content-aware data augmentation strategy that biases sampling towards anatomically relevant regions, overcoming the inefficiency of standard cropping techniques on medical scans. We validate our model's effectiveness by fine-tuning it on a diverse set of downstream diagnostic tasks. Comprehensive experiments empirically demonstrate that MedDChest significantly outperforms strong, publicly available ImageNet-pretrained models. By establishing the superiority of large-scale, in-domain pre-training combined with domain-specific data augmentation, MedDChest provides a powerful and robust feature extractor that serves as a significantly better starting point for a wide array of thoracic diagnostic tasks. The model weights will be made publicly available to foster future research and applications.
comment: 10 pages, 2 figures
☆ GNN-MoE: Context-Aware Patch Routing using GNNs for Parameter-Efficient Domain Generalization
Domain generalization (DG) seeks robust Vision Transformer (ViT) performance on unseen domains. Efficiently adapting pretrained ViTs for DG is challenging; standard fine-tuning is costly and can impair generalization. We propose GNN-MoE, enhancing Parameter-Efficient Fine-Tuning (PEFT) for DG with a Mixture-of-Experts (MoE) framework using efficient Kronecker adapters. Instead of token-based routing, a novel Graph Neural Network (GNN) router (GCN, GAT, SAGE) operates on inter-patch graphs to dynamically assign patches to specialized experts. This context-aware GNN routing leverages inter-patch relationships for better adaptation to domain shifts. GNN-MoE achieves state-of-the-art or competitive DG benchmark performance with high parameter efficiency, highlighting the utility of graph-based contextual routing for robust, lightweight DG.
comment: 6 pages, 3 figures
☆ PhysCorr: Dual-Reward DPO for Physics-Constrained Text-to-Video Generation with Automated Preference Selection
Recent advances in text-to-video generation have achieved impressive perceptual quality, yet generated content often violates fundamental principles of physical plausibility - manifesting as implausible object dynamics, incoherent interactions, and unrealistic motion patterns. Such failures hinder the deployment of video generation models in embodied AI, robotics, and simulation-intensive domains. To bridge this gap, we propose PhysCorr, a unified framework for modeling, evaluating, and optimizing physical consistency in video generation. Specifically, we introduce PhysicsRM, the first dual-dimensional reward model that quantifies both intra-object stability and inter-object interactions. On this foundation, we develop PhyDPO, a novel direct preference optimization pipeline that leverages contrastive feedback and physics-aware reweighting to guide generation toward physically coherent outputs. Our approach is model-agnostic and scalable, enabling seamless integration into a wide range of video diffusion and transformer-based backbones. Extensive experiments across multiple benchmarks demonstrate that PhysCorr achieves significant improvements in physical realism while preserving visual fidelity and semantic alignment. This work takes a critical step toward physically grounded and trustworthy video generation.
☆ CaRF: Enhancing Multi-View Consistency in Referring 3D Gaussian Splatting Segmentation
Referring 3D Gaussian Splatting Segmentation (R3DGS) aims to interpret free-form language expressions and localize the corresponding 3D regions in Gaussian fields. While recent advances have introduced cross-modal alignment between language and 3D geometry, existing pipelines still struggle with cross-view consistency due to their reliance on 2D rendered pseudo supervision and view specific feature learning. In this work, we present Camera Aware Referring Field (CaRF), a fully differentiable framework that operates directly in the 3D Gaussian space and achieves multi view consistency. Specifically, CaRF introduces Gaussian Field Camera Encoding (GFCE), which incorporates camera geometry into Gaussian text interactions to explicitly model view dependent variations and enhance geometric reasoning. Building on this, In Training Paired View Supervision (ITPVS) is proposed to align per Gaussian logits across calibrated views during training, effectively mitigating single view overfitting and exposing inter view discrepancies for optimization. Extensive experiments on three representative benchmarks demonstrate that CaRF achieves average improvements of 16.8%, 4.3%, and 2.0% in mIoU over state of the art methods on the Ref LERF, LERF OVS, and 3D OVS datasets, respectively. Moreover, this work promotes more reliable and view consistent 3D scene understanding, with potential benefits for embodied AI, AR/VR interaction, and autonomous perception.
☆ Simple 3D Pose Features Support Human and Machine Social Scene Understanding
Humans can quickly and effortlessly extract a variety of information about others' social interactions from visual input, ranging from visuospatial cues like whether two people are facing each other to higher-level information. Yet, the computations supporting these abilities remain poorly understood, and social interaction recognition continues to challenge even the most advanced AI vision systems. Here, we hypothesized that humans rely on 3D visuospatial pose information to make social interaction judgments, which is absent in most AI vision models. To test this, we combined state-of-the-art pose and depth estimation algorithms to extract 3D joint positions of people in short video clips depicting everyday human actions and compared their ability to predict human social interaction judgments with current AI vision models. Strikingly, 3D joint positions outperformed most current AI vision models, revealing that key social information is available in explicit body position but not in the learned features of most vision models, including even the layer-wise embeddings of the pose models used to extract joint positions. To uncover the critical pose features humans use to make social judgments, we derived a compact set of 3D social pose features describing only the 3D position and direction of faces in the videos. We found that these minimal descriptors matched the predictive strength of the full set of 3D joints and significantly improved the performance of off-the-shelf AI vision models when combined with their embeddings. Moreover, the degree to which 3D social pose features were represented in each off-the-shelf AI vision model predicted the model's ability to match human social judgments. Together, our findings provide strong evidence that human social scene understanding relies on explicit representations of 3D pose and can be supported by simple, structured visuospatial primitives.
comment: 28 pages, 6 figures
☆ Room Envelopes: A Synthetic Dataset for Indoor Layout Reconstruction from Images
Modern scene reconstruction methods are able to accurately recover 3D surfaces that are visible in one or more images. However, this leads to incomplete reconstructions, missing all occluded surfaces. While much progress has been made on reconstructing entire objects given partial observations using generative models, the structural elements of a scene, like the walls, floors and ceilings, have received less attention. We argue that these scene elements should be relatively easy to predict, since they are typically planar, repetitive and simple, and so less costly approaches may be suitable. In this work, we present a synthetic dataset -- Room Envelopes -- that facilitates progress on this task by providing a set of RGB images and two associated pointmaps for each image: one capturing the visible surface and one capturing the first surface once fittings and fixtures are removed, that is, the structural layout. As we show, this enables direct supervision for feed-forward monocular geometry estimators that predict both the first visible surface and the first layout surface. This confers an understanding of the scene's extent, as well as the shape and location of its objects.
☆ A Linear Fractional Transformation Model and Calibration Method for Light Field Camera
Accurate calibration of internal parameters is a crucial yet challenging prerequisite for 3D reconstruction using light field cameras. In this paper, we propose a linear fractional transformation(LFT) parameter $\alpha$ to decoupled the main lens and micro lens array (MLA). The proposed method includes an analytical solution based on least squares, followed by nonlinear refinement. The method for detecting features from the raw images is also introduced. Experimental results on both physical and simulated data have verified the performance of proposed method. Based on proposed model, the simulation of raw light field images becomes faster, which is crucial for data-driven deep learning methods. The corresponding code can be obtained from the author's website.
☆ Improving Multi-View Reconstruction via Texture-Guided Gaussian-Mesh Joint Optimization
Reconstructing real-world objects from multi-view images is essential for applications in 3D editing, AR/VR, and digital content creation. Existing methods typically prioritize either geometric accuracy (Multi-View Stereo) or photorealistic rendering (Novel View Synthesis), often decoupling geometry and appearance optimization, which hinders downstream editing tasks. This paper advocates an unified treatment on geometry and appearance optimization for seamless Gaussian-mesh joint optimization. More specifically, we propose a novel framework that simultaneously optimizes mesh geometry (vertex positions and faces) and vertex colors via Gaussian-guided mesh differentiable rendering, leveraging photometric consistency from input images and geometric regularization from normal and depth maps. The obtained high-quality 3D reconstruction can be further exploit in down-stream editing tasks, such as relighting and shape deformation. The code will be publicly available upon acceptance.
comment: 10 pages
☆ Adaptive Temporal Refinement: Continuous Depth Allocation and Distance Regression for Efficient Action Localization
Temporal action localization requires precise boundary detection; however, current methods apply uniform computation despite significant variations in difficulty across boundaries. We present two complementary contributions. First, Boundary Distance Regression (BDR) provides information-theoretically optimal localization through signed-distance regression rather than classification, achieving 43\% sharper boundary peaks. BDR retrofits to existing methods with approximately 50 lines of code, yielding consistent 1.8 to 3.1\% mAP@0.7 improvements across diverse architectures. Second, Adaptive Temporal Refinement (ATR) allocates computation via continuous depth selection $\tau \in [0,1]$, enabling end-to-end differentiable optimization without reinforcement learning. On THUMOS14, ATR achieves 56.5\% mAP@0.7 at 162G FLOPs, compared to 53.6\% at 198G for uniform processing, providing a 2.9\% improvement with 18\% less compute. Gains scale with boundary heterogeneity, showing 4.2\% improvement on short actions. Training cost is mitigated via knowledge distillation, with lightweight students retaining 99\% performance at baseline cost. Results are validated across four benchmarks with rigorous statistical testing.
☆ NVIDIA Nemotron Nano V2 VL
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and training recipes. Nemotron Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and innovative token reduction techniques to achieve higher inference throughput in long document and video scenarios. We are releasing model checkpoints in BF16, FP8, and FP4 formats and sharing large parts of our datasets, recipes and training code.
☆ Validating Vision Transformers for Otoscopy: Performance and Data-Leakage Effects
This study evaluates the efficacy of vision transformer models, specifically Swin transformers, in enhancing the diagnostic accuracy of ear diseases compared to traditional convolutional neural networks. With a reported 27% misdiagnosis rate among specialist otolaryngologists, improving diagnostic accuracy is crucial. The research utilised a real-world dataset from the Department of Otolaryngology at the Clinical Hospital of the Universidad de Chile, comprising otoscopic videos of ear examinations depicting various middle and external ear conditions. Frames were selected based on the Laplacian and Shannon entropy thresholds, with blank frames removed. Initially, Swin v1 and Swin v2 transformer models achieved accuracies of 100% and 99.1%, respectively, marginally outperforming the ResNet model (99.5%). These results surpassed metrics reported in related studies. However, the evaluation uncovered a critical data leakage issue in the preprocessing step, affecting both this study and related research using the same raw dataset. After mitigating the data leakage, model performance decreased significantly. Corrected accuracies were 83% for both Swin v1 and Swin v2, and 82% for the ResNet model. This finding highlights the importance of rigorous data handling in machine learning studies, especially in medical applications. The findings indicate that while vision transformers show promise, it is essential to find an optimal balance between the benefits of advanced model architectures and those derived from effective data preprocessing. This balance is key to developing a reliable machine learning model for diagnosing ear diseases.
☆ Clinical-ComBAT: a diffusion-weighted MRI harmonization method for clinical applications
Diffusion-weighted magnetic resonance imaging (DW-MRI) derived scalar maps are effective for assessing neurodegenerative diseases and microstructural properties of white matter in large number of brain conditions. However, DW-MRI inherently limits the combination of data from multiple acquisition sites without harmonization to mitigate scanner-specific biases. While the widely used ComBAT method reduces site effects in research, its reliance on linear covariate relationships, homogeneous populations, fixed site numbers, and well populated sites constrains its clinical use. To overcome these limitations, we propose Clinical-ComBAT, a method designed for real-world clinical scenarios. Clinical-ComBAT harmonizes each site independently, enabling flexibility as new data and clinics are introduced. It incorporates a non-linear polynomial data model, site-specific harmonization referenced to a normative site, and variance priors adaptable to small cohorts. It further includes hyperparameter tuning and a goodness-of-fit metric for harmonization assessment. We demonstrate its effectiveness on simulated and real data, showing improved alignment of diffusion metrics and enhanced applicability for normative modeling.
comment: 39 pages, 11 figures
Self-Supervised Implicit Attention Priors for Point Cloud Reconstruction 3DV 2026
Recovering high-quality surfaces from irregular point cloud is ill-posed unless strong geometric priors are available. We introduce an implicit self-prior approach that distills a shape-specific prior directly from the input point cloud itself and embeds it within an implicit neural representation. This is achieved by jointly training a small dictionary of learnable embeddings with an implicit distance field; at every query location, the field attends to the dictionary via cross-attention, enabling the network to capture and reuse repeating structures and long-range correlations inherent to the shape. Optimized solely with self-supervised point cloud reconstruction losses, our approach requires no external training data. To effectively integrate this learned prior while preserving input fidelity, the trained field is then sampled to extract densely distributed points and analytic normals via automatic differentiation. We integrate the resulting dense point cloud and corresponding normals into a robust implicit moving least squares (RIMLS) formulation. We show this hybrid strategy preserves fine geometric details in the input data, while leveraging the learned prior to regularize sparse regions. Experiments show that our method outperforms both classical and learning-based approaches in generating high-fidelity surfaces with superior detail preservation and robustness to common data degradations.
comment: Accepted at 3DV 2026
☆ Geometry Denoising with Preferred Normal Vectors
We introduce a new paradigm for geometry denoising using prior knowledge about the surface normal vector. This prior knowledge comes in the form of a set of preferred normal vectors, which we refer to as label vectors. A segmentation problem is naturally embedded in the denoising process. The segmentation is based on the similarity of the normal vector to the elements of the set of label vectors. Regularization is achieved by a total variation term. We formulate a split Bregman (ADMM) approach to solve the resulting optimization problem. The vertex update step is based on second-order shape calculus.
Prompt-Based Safety Guidance Is Ineffective for Unlearned Text-to-Image Diffusion Models NeurIPS 2025
Recent advances in text-to-image generative models have raised concerns about their potential to produce harmful content when provided with malicious input text prompts. To address this issue, two main approaches have emerged: (1) fine-tuning the model to unlearn harmful concepts and (2) training-free guidance methods that leverage negative prompts. However, we observe that combining these two orthogonal approaches often leads to marginal or even degraded defense performance. This observation indicates a critical incompatibility between two paradigms, which hinders their combined effectiveness. In this work, we address this issue by proposing a conceptually simple yet experimentally robust method: replacing the negative prompts used in training-free methods with implicit negative embeddings obtained through concept inversion. Our method requires no modification to either approach and can be easily integrated into existing pipelines. We experimentally validate its effectiveness on nudity and violence benchmarks, demonstrating consistent improvements in defense success rate while preserving the core semantics of input prompts.
comment: Accepted at NeurIPS 2025 Workshop on Generative and Protective AI for Content Creation
☆ An Active Learning Pipeline for Biomedical Image Instance Segmentation with Minimal Human Intervention
Biomedical image segmentation is critical for precise structure delineation and downstream analysis. Traditional methods often struggle with noisy data, while deep learning models such as U-Net have set new benchmarks in segmentation performance. nnU-Net further automates model configuration, making it adaptable across datasets without extensive tuning. However, it requires a substantial amount of annotated data for cross-validation, posing a challenge when only raw images but no labels are available. Large foundation models offer zero-shot generalizability, but may underperform on specific datasets with unique characteristics, limiting their direct use for analysis. This work addresses these bottlenecks by proposing a data-centric AI workflow that leverages active learning and pseudo-labeling to combine the strengths of traditional neural networks and large foundation models while minimizing human intervention. The pipeline starts by generating pseudo-labels from a foundation model, which are then used for nnU-Net's self-configuration. Subsequently, a representative core-set is selected for minimal manual annotation, enabling effective fine-tuning of the nnU-Net model. This approach significantly reduces the need for manual annotations while maintaining competitive performance, providing an accessible solution for biomedical researchers to apply state-of-the-art AI techniques in their segmentation tasks. The code is available at https://github.com/MMV-Lab/AL_BioMed_img_seg.
comment: 6 pages, 4 figures, presented at Bildverarbeitung f\"ur die Medizin (BVM) 2025, Wiesbaden, Germany
☆ Data Efficiency and Transfer Robustness in Biomedical Image Segmentation: A Study of Redundancy and Forgetting with Cellpose
Generalist biomedical image segmentation models such as Cellpose are increasingly applied across diverse imaging modalities and cell types. However, two critical challenges remain underexplored: (1) the extent of training data redundancy and (2) the impact of cross domain transfer on model retention. In this study, we conduct a systematic empirical analysis of these challenges using Cellpose as a case study. First, to assess data redundancy, we propose a simple dataset quantization (DQ) strategy for constructing compact yet diverse training subsets. Experiments on the Cyto dataset show that image segmentation performance saturates with only 10% of the data, revealing substantial redundancy and potential for training with minimal annotations. Latent space analysis using MAE embeddings and t-SNE confirms that DQ selected patches capture greater feature diversity than random sampling. Second, to examine catastrophic forgetting, we perform cross domain finetuning experiments and observe significant degradation in source domain performance, particularly when adapting from generalist to specialist domains. We demonstrate that selective DQ based replay reintroducing just 5-10% of the source data effectively restores source performance, while full replay can hinder target adaptation. Additionally, we find that training domain sequencing improves generalization and reduces forgetting in multi stage transfer. Our findings highlight the importance of data centric design in biomedical image segmentation and suggest that efficient training requires not only compact subsets but also retention aware learning strategies and informed domain ordering. The code is available at https://github.com/MMV-Lab/biomedseg-efficiency.
comment: Accepted to IEEE BIBM 2025 Workshop; 6 pages; 4 figures; 5 tables; IEEEtran class. Code: https://github.com/MMV-Lab/biomedseg-efficiency
☆ 3D Gaussian Point Encoders
In this work, we introduce the 3D Gaussian Point Encoder, an explicit per-point embedding built on mixtures of learned 3D Gaussians. This explicit geometric representation for 3D recognition tasks is a departure from widely used implicit representations such as PointNet. However, it is difficult to learn 3D Gaussian encoders in end-to-end fashion with standard optimizers. We develop optimization techniques based on natural gradients and distillation from PointNets to find a Gaussian Basis that can reconstruct PointNet activations. The resulting 3D Gaussian Point Encoders are faster and more parameter efficient than traditional PointNets. As in the 3D reconstruction literature where there has been considerable interest in the move from implicit (e.g., NeRF) to explicit (e.g., Gaussian Splatting) representations, we can take advantage of computational geometry heuristics to accelerate 3D Gaussian Point Encoders further. We extend filtering techniques from 3D Gaussian Splatting to construct encoders that run 2.7 times faster as a comparable accuracy PointNet while using 46% less memory and 88% fewer FLOPs. Furthermore, we demonstrate the effectiveness of 3D Gaussian Point Encoders as a component in Mamba3D, running 1.27 times faster and achieving a reduction in memory and FLOPs by 42% and 54% respectively. 3D Gaussian Point Encoders are lightweight enough to achieve high framerates on CPU-only devices.
comment: 10 pages, 3 figures, 3 tables
☆ EETnet: a CNN for Gaze Detection and Tracking for Smart-Eyewear IJCNN
Event-based cameras are becoming a popular solution for efficient, low-power eye tracking. Due to the sparse and asynchronous nature of event data, they require less processing power and offer latencies in the microsecond range. However, many existing solutions are limited to validation on powerful GPUs, with no deployment on real embedded devices. In this paper, we present EETnet, a convolutional neural network designed for eye tracking using purely event-based data, capable of running on microcontrollers with limited resources. Additionally, we outline a methodology to train, evaluate, and quantize the network using a public dataset. Finally, we propose two versions of the architecture: a classification model that detects the pupil on a grid superimposed on the original image, and a regression model that operates at the pixel level.
comment: International Joint Conference on Neural Networks (IJCNN), 2025
☆ Global 3D Reconstruction of Clouds & Tropical Cyclones
Accurate forecasting of tropical cyclones (TCs) remains challenging due to limited satellite observations probing TC structure and difficulties in resolving cloud properties involved in TC intensification. Recent research has demonstrated the capabilities of machine learning methods for 3D cloud reconstruction from satellite observations. However, existing approaches have been restricted to regions where TCs are uncommon, and are poorly validated for intense storms. We introduce a new framework, based on a pre-training--fine-tuning pipeline, that learns from multiple satellites with global coverage to translate 2D satellite imagery into 3D cloud maps of relevant cloud properties. We apply our model to a custom-built TC dataset to evaluate performance in the most challenging and relevant conditions. We show that we can - for the first time - create global instantaneous 3D cloud maps and accurately reconstruct the 3D structure of intense storms. Our model not only extends available satellite observations but also provides estimates when observations are missing entirely. This is crucial for advancing our understanding of TC intensification and improving forecasts.
☆ DARN: Dynamic Adaptive Regularization Networks for Efficient and Robust Foundation Model Adaptation
Foundation models (FMs) offer powerful representations for geospatial analysis, but adapting them effectively remains challenging. Standard adaptation methods, whether full fine-tuning or efficient frozen-backbone approaches, typically employ decoders with fixed regularization strategies, failing to account for the significant heterogeneity in satellite imagery. We introduce Dynamic Adaptive Regularization Networks (DARN), a novel decoder architecture designed to address this limitation. DARN integrates three key innovations: (1) a lightweight Task Complexity Predictor (TCP) that estimates per-sample difficulty, (2) Adaptive Dropout Modulation (ADM), dynamically adjusting dropout rates (from 0.1 to 0.5) based on predicted complexity, and (3) Dynamic Capacity Gating (DCG) that modulates channel activation. We provide theoretical justifications linking DARN's optimization to stationary point convergence and its mechanism to adaptive information bottlenecks. Empirically, DARN demonstrates exceptional performance across both major adaptation paradigms. In full fine-tuning (unfrozen backbone), DARN achieves a new state-of-the-art on the multi-task GeoBench benchmark (86.66% mIoU, +5.56 pp over prior SOTA). In efficient adaptation (frozen backbone), DARN achieves SOTA-competitive accuracy (90.5% mIoU on Sen1Floods11) while delivering substantial advantages crucial for real-world deployment: superior out-of-distribution (OOD) generalization (+9.5 pp mIoU on AI4SmallFarms), enhanced robustness (17% relative reduction in corruption error), and improved performance on minority classes. DARN offers a more intelligent, robust, and efficient approach to leveraging FMs in critical geospatial applications.
☆ CPO: Condition Preference Optimization for Controllable Image Generation
To enhance controllability in text-to-image generation, ControlNet introduces image-based control signals, while ControlNet++ improves pixel-level cycle consistency between generated images and the input control signal. To avoid the prohibitive cost of back-propagating through the sampling process, ControlNet++ optimizes only low-noise timesteps (e.g., $t < 200$) using a single-step approximation, which not only ignores the contribution of high-noise timesteps but also introduces additional approximation errors. A straightforward alternative for optimizing controllability across all timesteps is Direct Preference Optimization (DPO), a fine-tuning method that increases model preference for more controllable images ($I^{w}$) over less controllable ones ($I^{l}$). However, due to uncertainty in generative models, it is difficult to ensure that win--lose image pairs differ only in controllability while keeping other factors, such as image quality, fixed. To address this, we propose performing preference learning over control conditions rather than generated images. Specifically, we construct winning and losing control signals, $\mathbf{c}^{w}$ and $\mathbf{c}^{l}$, and train the model to prefer $\mathbf{c}^{w}$. This method, which we term \textit{Condition Preference Optimization} (CPO), eliminates confounding factors and yields a low-variance training objective. Our approach theoretically exhibits lower contrastive loss variance than DPO and empirically achieves superior results. Moreover, CPO requires less computation and storage for dataset curation. Extensive experiments show that CPO significantly improves controllability over the state-of-the-art ControlNet++ across multiple control types: over $10\%$ error rate reduction in segmentation, $70$--$80\%$ in human pose, and consistent $2$--$5\%$ reductions in edge and depth maps.
☆ Knowledge-based anomaly detection for identifying network-induced shape artifacts
Synthetic data provides a promising approach to address data scarcity for training machine learning models; however, adoption without proper quality assessments may introduce artifacts, distortions, and unrealistic features that compromise model performance and clinical utility. This work introduces a novel knowledge-based anomaly detection method for detecting network-induced shape artifacts in synthetic images. The introduced method utilizes a two-stage framework comprising (i) a novel feature extractor that constructs a specialized feature space by analyzing the per-image distribution of angle gradients along anatomical boundaries, and (ii) an isolation forest-based anomaly detector. We demonstrate the effectiveness of the method for identifying network-induced shape artifacts in two synthetic mammography datasets from models trained on CSAW-M and VinDr-Mammo patient datasets respectively. Quantitative evaluation shows that the method successfully concentrates artifacts in the most anomalous partition (1st percentile), with AUC values of 0.97 (CSAW-syn) and 0.91 (VMLO-syn). In addition, a reader study involving three imaging scientists confirmed that images identified by the method as containing network-induced shape artifacts were also flagged by human readers with mean agreement rates of 66% (CSAW-syn) and 68% (VMLO-syn) for the most anomalous partition, approximately 1.5-2 times higher than the least anomalous partition. Kendall-Tau correlations between algorithmic and human rankings were 0.45 and 0.43 for the two datasets, indicating reasonable agreement despite the challenging nature of subtle artifact detection. This method is a step forward in the responsible use of synthetic data, as it allows developers to evaluate synthetic images for known anatomic constraints and pinpoint and address specific issues to improve the overall quality of a synthetic dataset.
comment: 15 pages, 11 figures
☆ IndicVisionBench: Benchmarking Cultural and Multilingual Understanding in VLMs
Vision-language models (VLMs) have demonstrated impressive generalization across multimodal tasks, yet most evaluation benchmarks remain Western-centric, leaving open questions about their performance in culturally diverse and multilingual settings. To address this gap, we introduce IndicVisionBench, the first large-scale benchmark centered on the Indian subcontinent. Covering English and 10 Indian languages, our benchmark spans 3 multimodal tasks, including Optical Character Recognition (OCR), Multimodal Machine Translation (MMT), and Visual Question Answering (VQA), covering 6 kinds of question types. Our final benchmark consists of a total of ~5K images and 37K+ QA pairs across 13 culturally grounded topics. In addition, we release a paired parallel corpus of annotations across 10 Indic languages, creating a unique resource for analyzing cultural and linguistic biases in VLMs. We evaluate a broad spectrum of 8 models, from proprietary closed-source systems to open-weights medium and large-scale models. Our experiments reveal substantial performance gaps, underscoring the limitations of current VLMs in culturally diverse contexts. By centering cultural diversity and multilinguality, IndicVisionBench establishes a reproducible evaluation framework that paves the way for more inclusive multimodal research.
☆ Ada-FCN: Adaptive Frequency-Coupled Network for fMRI-Based Brain Disorder Classification
Resting-state fMRI has become a valuable tool for classifying brain disorders and constructing brain functional connectivity networks by tracking BOLD signals across brain regions. However, existing mod els largely neglect the multi-frequency nature of neuronal oscillations, treating BOLD signals as monolithic time series. This overlooks the cru cial fact that neurological disorders often manifest as disruptions within specific frequency bands, limiting diagnostic sensitivity and specificity. While some methods have attempted to incorporate frequency informa tion, they often rely on predefined frequency bands, which may not be optimal for capturing individual variability or disease-specific alterations. To address this, we propose a novel framework featuring Adaptive Cas cade Decomposition to learn task-relevant frequency sub-bands for each brain region and Frequency-Coupled Connectivity Learning to capture both intra- and nuanced cross-band interactions in a unified functional network. This unified network informs a novel message-passing mecha nism within our Unified-GCN, generating refined node representations for diagnostic prediction. Experimental results on the ADNI and ABIDE datasets demonstrate superior performance over existing methods. The code is available at https://github.com/XXYY20221234/Ada-FCN.
comment: 11 pages, 2 figures, conference
♻ ☆ TextRegion: Text-Aligned Region Tokens from Frozen Image-Text Models
Image-text models excel at image-level tasks but struggle with detailed visual understanding. While these models provide strong visual-language alignment, segmentation models like SAM2 offer precise spatial boundaries for objects. To this end, we propose TextRegion, a simple, effective, and training-free framework that combines the strengths of image-text models and SAM2 to generate powerful text-aligned region tokens. These tokens enable detailed visual understanding while preserving open-vocabulary capabilities. They can be directly applied to various downstream tasks, including open-world semantic segmentation, referring expression comprehension, and grounding. We conduct extensive evaluations and consistently achieve superior or competitive performance compared to state-of-the-art training-free methods. Additionally, our framework is compatible with many image-text models, making it highly practical and easily extensible as stronger models emerge. Code is available at: https://github.com/avaxiao/TextRegion.
comment: Published in TMLR, with a J2C Certification
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ Particle-Grid Neural Dynamics for Learning Deformable Object Models from RGB-D Videos
Modeling the dynamics of deformable objects is challenging due to their diverse physical properties and the difficulty of estimating states from limited visual information. We address these challenges with a neural dynamics framework that combines object particles and spatial grids in a hybrid representation. Our particle-grid model captures global shape and motion information while predicting dense particle movements, enabling the modeling of objects with varied shapes and materials. Particles represent object shapes, while the spatial grid discretizes the 3D space to ensure spatial continuity and enhance learning efficiency. Coupled with Gaussian Splattings for visual rendering, our framework achieves a fully learning-based digital twin of deformable objects and generates 3D action-conditioned videos. Through experiments, we demonstrate that our model learns the dynamics of diverse objects -- such as ropes, cloths, stuffed animals, and paper bags -- from sparse-view RGB-D recordings of robot-object interactions, while also generalizing at the category level to unseen instances. Our approach outperforms state-of-the-art learning-based and physics-based simulators, particularly in scenarios with limited camera views. Furthermore, we showcase the utility of our learned models in model-based planning, enabling goal-conditioned object manipulation across a range of tasks. The project page is available at https://kywind.github.io/pgnd .
comment: Project page: https://kywind.github.io/pgnd
♻ ☆ CREA: A Collaborative Multi-Agent Framework for Creative Image Editing and Generation NeurIPS'25
Creativity in AI imagery remains a fundamental challenge, requiring not only the generation of visually compelling content but also the capacity to add novel, expressive, and artistically rich transformations to images. Unlike conventional editing tasks that rely on direct prompt-based modifications, creative image editing requires an autonomous, iterative approach that balances originality, coherence, and artistic intent. To address this, we introduce CREA, a novel multi-agent collaborative framework that mimics the human creative process. Our framework leverages a team of specialized AI agents who dynamically collaborate to conceptualize, generate, critique, and enhance images. Through extensive qualitative and quantitative evaluations, we demonstrate that CREA significantly outperforms state-of-the-art methods in diversity, semantic alignment, and creative transformation. To the best of our knowledge, this is the first work to introduce the task of creative editing.
comment: Published at NeurIPS'25 Main Conference
♻ ☆ Information-driven design of imaging systems
Imaging systems have traditionally been designed to mimic the human eye and produce visually interpretable measurements. Modern imaging systems, however, process raw measurements computationally before or instead of human viewing. As a result, the information content of raw measurements matters more than their visual interpretability. Despite the importance of measurement information content, current approaches for evaluating imaging system performance do not quantify it: they instead either use alternative metrics that assess specific aspects of measurement quality or assess measurements indirectly with performance on secondary tasks. We developed the theoretical foundations and a practical method to directly quantify mutual information between noisy measurements and unknown objects. By fitting probabilistic models to measurements and their noise characteristics, our method estimates information by upper bounding its true value. By applying gradient-based optimization to these estimates, we also developed a technique for designing imaging systems called Information-Driven Encoder Analysis Learning (IDEAL). Our information estimates accurately captured system performance differences across four imaging domains (color photography, radio astronomy, lensless imaging, and microscopy). Systems designed with IDEAL matched the performance of those designed with end-to-end optimization, the prevailing approach that jointly optimizes hardware and image processing algorithms. These results establish mutual information as a universal performance metric for imaging systems that enables both computationally efficient design optimization and evaluation in real-world conditions. A video summarizing this work can be found at: https://waller-lab.github.io/EncodingInformationWebsite/
♻ ☆ SurgViVQA: Temporally-Grounded Video Question Answering for Surgical Scene Understanding
Video Question Answering (VideoQA) in the surgical domain aims to enhance intraoperative understanding by enabling AI models to reason over temporally coherent events rather than isolated frames. Current approaches are limited to static image features, and available datasets often lack temporal annotations, ignoring the dynamics critical for accurate procedural interpretation. We propose SurgViVQA, a surgical VideoQA model that extends visual reasoning from static images to dynamic surgical scenes. It uses a Masked Video--Text Encoder to fuse video and question features, capturing temporal cues such as motion and tool--tissue interactions, which a fine-tuned large language model (LLM) then decodes into coherent answers. To evaluate its performance, we curated REAL-Colon-VQA, a colonoscopic video dataset that includes motion-related questions and diagnostic attributes, as well as out-of-template questions with rephrased or semantically altered formulations to assess model robustness. Experimental validation on REAL-Colon-VQA and the public EndoVis18-VQA dataset shows that SurgViVQA outperforms existing image-based VQA benchmark models, particularly in keyword accuracy, improving over PitVQA by +11\% on REAL-Colon-VQA and +9\% on EndoVis18-VQA. A perturbation study on the questions further confirms improved generalizability and robustness to variations in question phrasing. SurgViVQA and the REAL-Colon-VQA dataset provide a framework for temporally-aware understanding in surgical VideoQA, enabling AI models to interpret dynamic procedural contexts more effectively. Code and dataset available at https://github.com/madratak/SurgViVQA.
♻ ☆ Are Minimal Radial Distortion Solvers Necessary for Relative Pose Estimation?
Estimating the relative pose between two cameras is a fundamental step in many applications such as Structure-from-Motion. The common approach to relative pose estimation is to apply a minimal solver inside a RANSAC loop. Highly efficient solvers exist for pinhole cameras. Yet, (nearly) all cameras exhibit radial distortion. Not modeling radial distortion leads to (significantly) worse results. However, minimal radial distortion solvers are significantly more complex than pinhole solvers, both in terms of run-time and implementation efforts. This paper compares radial distortion solvers with a simple-to-implement approach that combines an efficient pinhole solver with sampled radial distortion parameters. Extensive experiments on multiple datasets and RANSAC variants show that this simple approach performs similarly or better than the most accurate minimal distortion solvers at faster run-times while being significantly more accurate than faster non-minimal solvers. We clearly show that complex radial distortion solvers are not necessary in practice. Code and benchmark are available at https://github.com/kocurvik/rd.
comment: Code available at: https://github.com/kocurvik/rd or https://doi.org/10.5281/zenodo.14672694
♻ ☆ Optimized Minimal 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has emerged as a powerful representation for real-time, high-performance rendering, enabling a wide range of applications. However, representing 3D scenes with numerous explicit Gaussian primitives imposes significant storage and memory overhead. Recent studies have shown that high-quality rendering can be achieved with a substantially reduced number of Gaussians when represented with high-precision attributes. Nevertheless, existing 3DGS compression methods still rely on a relatively large number of Gaussians, focusing primarily on attribute compression. This is because a smaller set of Gaussians becomes increasingly sensitive to lossy attribute compression, leading to severe quality degradation. Since the number of Gaussians is directly tied to computational costs, it is essential to reduce the number of Gaussians effectively rather than only optimizing storage. In this paper, we propose Optimized Minimal Gaussians representation (OMG), which significantly reduces storage while using a minimal number of primitives. First, we determine the distinct Gaussian from the near ones, minimizing redundancy without sacrificing quality. Second, we propose a compact and precise attribute representation that efficiently captures both continuity and irregularity among primitives. Additionally, we propose a sub-vector quantization technique for improved irregularity representation, maintaining fast training with a negligible codebook size. Extensive experiments demonstrate that OMG reduces storage requirements by nearly 50% compared to the previous state-of-the-art and enables 600+ FPS rendering while maintaining high rendering quality. Our source code is available at https://maincold2.github.io/omg/.
comment: Project page: https://maincold2.github.io/omg/
♻ ☆ JaneEye: A 12-nm 2K-FPS 18.9-$μ$J/Frame Event-based Eye Tracking Accelerator
Eye tracking has become a key technology for gaze-based interactions in Extended Reality (XR). However, conventional frame-based eye-tracking systems often fall short of XR's stringent requirements for high accuracy, low latency, and energy efficiency. Event cameras present a compelling alternative, offering ultra-high temporal resolution and low power consumption. In this paper, we present JaneEye, an energy-efficient event-based eye-tracking hardware accelerator designed specifically for wearable devices, leveraging sparse, high-temporal-resolution event data. We introduce an ultra-lightweight neural network architecture featuring a novel ConvJANET layer, which simplifies the traditional ConvLSTM by retaining only the forget gate, thereby halving computational complexity without sacrificing temporal modeling capability. Our proposed model achieves high accuracy with a pixel error of 2.45 on the 3ET+ dataset, using only 17.6K parameters, with up to 1250 Hz event frame rate. To further enhance hardware efficiency, we employ custom linear approximations of activation functions (hardsigmoid and hardtanh) and fixed-point quantization. Through software-hardware co-design, our 12-nm ASIC implementation operates at 400 MHz, delivering an end-to-end latency of 0.5 ms (equivalent to 2000 Frames Per Second (FPS)) at an energy efficiency of 18.9 $\mu$J/frame. JaneEye sets a new benchmark in low-power, high-performance eye-tracking solutions suitable for integration into next-generation XR wearables.
comment: Accepted to 2026 IEEE 31st Asia and South Pacific Design Automation Conference (ASP-DAC)
♻ ☆ UMA: Ultra-detailed Human Avatars via Multi-level Surface Alignment
Learning an animatable and clothed human avatar model with vivid dynamics and photorealistic appearance from multi-view videos is an important foundational research problem in computer graphics and vision. Fueled by recent advances in implicit representations, the quality of the animatable avatars has achieved an unprecedented level by attaching the implicit representation to drivable human template meshes. However, they usually fail to preserve the highest level of detail, particularly apparent when the virtual camera is zoomed in and when rendering at 4K resolution and higher. We argue that this limitation stems from inaccurate surface tracking, specifically, depth misalignment and surface drift between character geometry and the ground truth surface, which forces the detailed appearance model to compensate for geometric errors. To address this, we propose a latent deformation model and supervising the 3D deformation of the animatable character using guidance from foundational 2D video point trackers, which offer improved robustness to shading and surface variations, and are less prone to local minima than differentiable rendering. To mitigate the drift over time and lack of 3D awareness of 2D point trackers, we introduce a cascaded training strategy that generates consistent 3D point tracks by anchoring point tracks to the rendered avatar, which ultimately supervises our avatar at the vertex and texel level. To validate the effectiveness of our approach, we introduce a novel dataset comprising five multi-view video sequences, each over 10 minutes in duration, captured using 40 calibrated 6K-resolution cameras, featuring subjects dressed in clothing with challenging texture patterns and wrinkle deformations. Our approach demonstrates significantly improved performance in rendering quality and geometric accuracy over the prior state of the art.
comment: Project page: https://vcai.mpi-inf.mpg.de/projects/UMA/
♻ ☆ HoliSafe: Holistic Safety Benchmarking and Modeling for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, \textbf{HoliSafe}, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation (HoliSafe-Bench). We further propose a novel modular framework for enhancing VLM safety with a visual guard module (VGM) designed to assess the harmfulness of input images for VLMs. This module endows VLMs with a dual functionality: they not only learn to generate safer responses but can also provide an interpretable harmfulness classification to justify their refusal decisions. A significant advantage of this approach is its modularity; the VGM is designed as a plug-in component, allowing for seamless integration with diverse pre-trained VLMs across various scales. Experiments show that Safe-VLM with VGM, trained on our HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe-Bench itself reveals critical vulnerabilities in existing VLM models. We hope that HoliSafe and VGM will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
comment: Project page: https://youngwanlee.github.io/holisafe
♻ ☆ SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for Novel View Synthesis and Scene Rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as sequential operations and, in many settings, multi-modality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. Additionally, the data are often collected using sensors which are handheld or mounted on drones or mobile robots, which complicates the accurate reproduction of sensor motions. To bridge these gaps, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM, Novel View Rendering and Gaussian Splatting. Recorded with a robot manipulator, it uniquely includes 40 sequences with time-synchronized RGB-D images, IMU readings, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of recent integrations of SLAM paradigms within robotic applications. The dataset features five setups with consumer and industrial objects under four controlled lighting conditions, each with separate training and test trajectories. All sequences are static with different levels of object rearrangements and occlusions. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
comment: 9 pages, 8 figures, submitted to The International Journal of Robotics Research (IJRR)
♻ ☆ Hemorica: A Comprehensive CT Scan Dataset for Automated Brain Hemorrhage Classification, Segmentation, and Detection
Timely diagnosis of Intracranial hemorrhage (ICH) on Computed Tomography (CT) scans remains a clinical priority, yet the development of robust Artificial Intelligence (AI) solutions is still hindered by fragmented public data. To close this gap, we introduce Hemorica, a publicly available collection of 372 head CT examinations acquired between 2012 and 2024. Each scan has been exhaustively annotated for five ICH subtypes-epidural (EPH), subdural (SDH), subarachnoid (SAH), intraparenchymal (IPH), and intraventricular (IVH)-yielding patient-wise and slice-wise classification labels, subtype-specific bounding boxes, two-dimensional pixel masks and three-dimensional voxel masks. A double-reading workflow, preceded by a pilot consensus phase and supported by neurosurgeon adjudication, maintained low inter-rater variability. Comprehensive statistical analysis confirms the clinical realism of the dataset. To establish reference baselines, standard convolutional and transformer architectures were fine-tuned for binary slice classification and hemorrhage segmentation. With only minimal fine-tuning, lightweight models such as MobileViT-XS achieved an F1 score of 87.8% in binary classification, whereas a U-Net with a DenseNet161 encoder reached a Dice score of 85.5% for binary lesion segmentation that validate both the quality of the annotations and the sufficiency of the sample size. Hemorica therefore offers a unified, fine-grained benchmark that supports multi-task and curriculum learning, facilitates transfer to larger but weakly labelled cohorts, and facilitates the process of designing an AI-based assistant for ICH detection and quantification systems.
comment: We need to double check the data and statistics. We will publish the complete version in coming months
♻ ☆ X-Diffusion: Generating Detailed 3D MRI Volumes From a Single Image Using Cross-Sectional Diffusion Models ICCV 2025
Magnetic Resonance Imaging (MRI) is a crucial diagnostic tool, but high-resolution scans are often slow and expensive due to extensive data acquisition requirements. Traditional MRI reconstruction methods aim to expedite this process by filling in missing frequency components in the K-space, performing 3D-to-3D reconstructions that demand full 3D scans. In contrast, we introduce X-Diffusion, a novel cross-sectional diffusion model that reconstructs detailed 3D MRI volumes from extremely sparse spatial-domain inputs, achieving 2D-to-3D reconstruction from as little as a single 2D MRI slice or few slices. A key aspect of X-Diffusion is that it models MRI data as holistic 3D volumes during the cross-sectional training and inference, unlike previous learning approaches that treat MRI scans as collections of 2D slices in standard planes (coronal, axial, sagittal). We evaluated X-Diffusion on brain tumor MRIs from the BRATS dataset and full-body MRIs from the UK Biobank dataset. Our results demonstrate that X-Diffusion not only surpasses state-of-the-art methods in quantitative accuracy (PSNR) on unseen data but also preserves critical anatomical features such as tumor profiles, spine curvature, and brain volume. Remarkably, the model generalizes beyond the training domain, successfully reconstructing knee MRIs despite being trained exclusively on brain data. Medical expert evaluations further confirm the clinical relevance and fidelity of the generated images.To our knowledge, X-Diffusion is the first method capable of producing detailed 3D MRIs from highly limited 2D input data, potentially accelerating MRI acquisition and reducing associated costs. The code is available on the project website https://emmanuelleb985.github.io/XDiffusion/ .
comment: accepted at ICCV 2025 GAIA workshop https://era-ai-biomed.github.io/GAIA/ , project website: https://emmanuelleb985.github.io/XDiffusion/
♻ ☆ Robust Self-calibration of Focal Lengths from the Fundamental Matrix CVPR 2024
The problem of self-calibration of two cameras from a given fundamental matrix is one of the basic problems in geometric computer vision. Under the assumption of known principal points and square pixels, the well-known Bougnoux formula offers a means to compute the two unknown focal lengths. However, in many practical situations, the formula yields inaccurate results due to commonly occurring singularities. Moreover, the estimates are sensitive to noise in the computed fundamental matrix and to the assumed positions of the principal points. In this paper, we therefore propose an efficient and robust iterative method to estimate the focal lengths along with the principal points of the cameras given a fundamental matrix and priors for the estimated camera parameters. In addition, we study a computationally efficient check of models generated within RANSAC that improves the accuracy of the estimated models while reducing the total computational time. Extensive experiments on real and synthetic data show that our iterative method brings significant improvements in terms of the accuracy of the estimated focal lengths over the Bougnoux formula and other state-of-the-art methods, even when relying on inaccurate priors.
comment: Pubslished in CVPR 2024. Accepted: 26.2.2024. Published: 16.6.2024. This work was funded by the Horizon-Widera-2021 European Twinning project TERAIS G.A. n. 101079338. Code available: https://github.com/kocurvik/robust_self_calibration and https://doi.org/10.5281/zenodo.14584742
♻ ☆ Cross-modal Causal Intervention for Alzheimer's Disease Prediction
Mild Cognitive Impairment (MCI) serves as a prodromal stage of Alzheimer's Disease (AD), where early identification and intervention can effectively slow the progression to dementia. However, diagnosing AD remains a significant challenge in neurology due to the confounders caused mainly by the selection bias of multi-modal data and the complex relationships between variables. To address these issues, we propose a novel visual-language causality-inspired framework named Cross-modal Causal Intervention with Mediator for Alzheimer's Disease Diagnosis (MediAD) for diagnostic assistance. Our MediAD employs Large Language Models (LLMs) to summarize clinical data under strict templates, therefore enriching textual inputs. The MediAD model utilizes Magnetic Resonance Imaging (MRI), clinical data, and textual data enriched by LLMs to classify participants into Cognitively Normal (CN), MCI, and AD categories. Because of the presence of confounders, such as cerebral vascular lesions and age-related biomarkers, non-causal models are likely to capture spurious input-output correlations, generating less reliable results. Our framework implicitly mitigates the effect of both observable and unobservable confounders through a unified causal intervention method. Experimental results demonstrate the outstanding performance of our method in distinguishing CN/MCI/AD cases, outperforming other methods in most evaluation metrics. The study showcases the potential of integrating causal reasoning with multi-modal learning for neurological disease diagnosis.
♻ ☆ Three-view Focal Length Recovery From Homographies
In this paper, we propose a novel approach for recovering focal lengths from three-view homographies. By examining the consistency of normal vectors between two homographies, we derive new explicit constraints between the focal lengths and homographies using an elimination technique. We demonstrate that three-view homographies provide two additional constraints, enabling the recovery of one or two focal lengths. We discuss four possible cases, including three cameras having an unknown equal focal length, three cameras having two different unknown focal lengths, three cameras where one focal length is known, and the other two cameras have equal or different unknown focal lengths. All the problems can be converted into solving polynomials in one or two unknowns, which can be efficiently solved using Sturm sequence or hidden variable technique. Evaluation using both synthetic and real data shows that the proposed solvers are both faster and more accurate than methods relying on existing two-view solvers. The code and data are available on https://github.com/kocurvik/hf
comment: Code available at https://github.com/kocurvik/hf or https://doi.org/10.5281/zenodo.14672713 Data available at: https://doi.org/10.5281/zenodo.14638904
♻ ☆ Source-Only Cross-Weather LiDAR via Geometry-Aware Point Drop
LiDAR semantic segmentation degrades in adverse weather because refraction, scattering, and point dropouts corrupt geometry. Prior work in weather simulation, mixing-based augmentation, domain randomization, and uncertainty or boundary regularization improves robustness but still overlooks structural vulnerabilities near boundaries, corners, and sparse regions. We present a Light Geometry-aware adapter. The module aligns azimuth and applies horizontal circular padding to preserve neighbor continuity across the 0~360 degree wrap-around boundary. A local-window K-Nearest Neighbors gathers nearby points and computes simple local statistics, which are compressed into compact geometry-aware cues. During training, these cues drive region-aware regularization that stabilizes predictions in structurally fragile areas. The adapter is plug and play, complements augmentation, and can be enabled only during training with negligible inference cost. We adopt a source-only cross-weather setup where models train on SemanticKITTI and are evaluated on SemanticSTF without target labels or fine-tuning. The adapter improves mIoU by 7.9 percentage points over the data-centric augmentation baseline and by 0.6 points over the class-centric regularization baseline. These results indicate that geometry-driven regularization is a key direction for all-weather LiDAR segmentation.
♻ ☆ GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs NeurIPS 2025
LLMs have shown impressive capabilities across various natural language processing tasks, yet remain vulnerable to input prompts, known as jailbreak attacks, carefully designed to bypass safety guardrails and elicit harmful responses. Traditional methods rely on manual heuristics but suffer from limited generalizability. Despite being automatic, optimization-based attacks often produce unnatural prompts that can be easily detected by safety filters or require high computational costs due to discrete token optimization. In this paper, we introduce Generative Adversarial Suffix Prompter (GASP), a novel automated framework that can efficiently generate human-readable jailbreak prompts in a fully black-box setting. In particular, GASP leverages latent Bayesian optimization to craft adversarial suffixes by efficiently exploring continuous latent embedding spaces, gradually optimizing the suffix prompter to improve attack efficacy while balancing prompt coherence via a targeted iterative refinement procedure. Through comprehensive experiments, we show that GASP can produce natural adversarial prompts, significantly improving jailbreak success over baselines, reducing training times, and accelerating inference speed, thus making it an efficient and scalable solution for red-teaming LLMs.
comment: Accepted to NeurIPS 2025. Project page and demos: https://air-ml.org/project/gasp/
♻ ☆ MIND: Material Interface Generation from UDFs for Non-Manifold Surface Reconstruction NIPS 2025
Unsigned distance fields (UDFs) are widely used in 3D deep learning due to their ability to represent shapes with arbitrary topology. While prior work has largely focused on learning UDFs from point clouds or multi-view images, extracting meshes from UDFs remains challenging, as the learned fields rarely attain exact zero distances. A common workaround is to reconstruct signed distance fields (SDFs) locally from UDFs to enable surface extraction via Marching Cubes. However, this often introduces topological artifacts such as holes or spurious components. Moreover, local SDFs are inherently incapable of representing non-manifold geometry, leading to complete failure in such cases. To address this gap, we propose MIND (Material Interface from Non-manifold Distance fields), a novel algorithm for generating material interfaces directly from UDFs, enabling non-manifold mesh extraction from a global perspective. The core of our method lies in deriving a meaningful spatial partitioning from the UDF, where the target surface emerges as the interface between distinct regions. We begin by computing a two-signed local field to distinguish the two sides of manifold patches, and then extend this to a multi-labeled global field capable of separating all sides of a non-manifold structure. By combining this multi-labeled field with the input UDF, we construct material interfaces that support non-manifold mesh extraction via a multi-labeled Marching Cubes algorithm. Extensive experiments on UDFs generated from diverse data sources, including point cloud reconstruction, multi-view reconstruction, and medial axis transforms, demonstrate that our approach robustly handles complex non-manifold surfaces and significantly outperforms existing methods. The source code is available at https://github.com/jjjkkyz/MIND.
comment: NIPS 2025
♻ ☆ WaveGuard: Robust Deepfake Detection and Source Tracing via Dual-Tree Complex Wavelet and Graph Neural Networks
Deepfake technology poses increasing risks such as privacy invasion and identity theft. To address these threats, we propose WaveGuard, a proactive watermarking framework that enhances robustness and imperceptibility via frequency-domain embedding and graph-based structural consistency. Specifically, we embed watermarks into high-frequency sub-bands using Dual-Tree Complex Wavelet Transform (DT-CWT) and employ a Structural Consistency Graph Neural Network (SC-GNN) to preserve visual quality. We also design an attention module to refine embedding precision. Experimental results on face swap and reenactment tasks demonstrate that WaveGuard outperforms state-of-the-art methods in both robustness and visual quality. Code is available at https://github.com/vpsg-research/WaveGuard.
comment: 14 pages, 6 figures, 7 tables
♻ ☆ Advanced Sign Language Video Generation with Compressed and Quantized Multi-Condition Tokenization
Sign Language Video Generation (SLVG) seeks to generate identity-preserving sign language videos from spoken language texts. Existing methods primarily rely on the single coarse condition (\eg, skeleton sequences) as the intermediary to bridge the translation model and the video generation model, which limits both the naturalness and expressiveness of the generated videos. To overcome these limitations, we propose SignViP, a novel SLVG framework that incorporates multiple fine-grained conditions for improved generation fidelity. Rather than directly translating error-prone high-dimensional conditions, SignViP adopts a discrete tokenization paradigm to integrate and represent fine-grained conditions (\ie, fine-grained poses and 3D hands). SignViP contains three core components. (1) Sign Video Diffusion Model is jointly trained with a multi-condition encoder to learn continuous embeddings that encapsulate fine-grained motion and appearance. (2) Finite Scalar Quantization (FSQ) Autoencoder is further trained to compress and quantize these embeddings into discrete tokens for compact representation of the conditions. (3) Multi-Condition Token Translator is trained to translate spoken language text to discrete multi-condition tokens. During inference, Multi-Condition Token Translator first translates the spoken language text into discrete multi-condition tokens. These tokens are then decoded to continuous embeddings by FSQ Autoencoder, which are subsequently injected into Sign Video Diffusion Model to guide video generation. Experimental results show that SignViP achieves state-of-the-art performance across metrics, including video quality, temporal coherence, and semantic fidelity. The code is available at https://github.com/umnooob/signvip/.
♻ ☆ Revisiting Residual Connections: Orthogonal Updates for Stable and Efficient Deep Networks
Residual connections are pivotal for deep neural networks, enabling greater depth by mitigating vanishing gradients. However, in standard residual updates, the module's output is directly added to the input stream. This can lead to updates that predominantly reinforce or modulate the existing stream direction, potentially underutilizing the module's capacity for learning entirely novel features. In this work, we introduce Orthogonal Residual Update: we decompose the module's output relative to the input stream and add only the component orthogonal to this stream. This design aims to guide modules to contribute primarily new representational directions, fostering richer feature learning while promoting more efficient training. We demonstrate that our orthogonal update strategy improves generalization accuracy and training stability across diverse architectures (ResNetV2, Vision Transformers) and datasets (CIFARs, TinyImageNet, ImageNet-1k), achieving, for instance, a +3.78 pp top-1 accuracy gain for ViT-B on ImageNet-1k.
comment: 27 pages, maybe final version
♻ ☆ Scaling Laws for Task-Optimized Models of the Primate Visual Ventral Stream ICML25
When trained on large-scale object classification datasets, certain artificial neural network models begin to approximate core object recognition behaviors and neural response patterns in the primate brain. While recent machine learning advances suggest that scaling compute, model size, and dataset size improves task performance, the impact of scaling on brain alignment remains unclear. In this study, we explore scaling laws for modeling the primate visual ventral stream by systematically evaluating over 600 models trained under controlled conditions on benchmarks spanning V1, V2, V4, IT and behavior. We find that while behavioral alignment continues to scale with larger models, neural alignment saturates. This observation remains true across model architectures and training datasets, even though models with stronger inductive biases and datasets with higher-quality images are more compute-efficient. Increased scaling is especially beneficial for higher-level visual areas, where small models trained on few samples exhibit only poor alignment. Our results suggest that while scaling current architectures and datasets might suffice for alignment with human core object recognition behavior, it will not yield improved models of the brain's visual ventral stream, highlighting the need for novel strategies in building brain models.
comment: Published at ICML25 as a spotlight paper - 9 pages for the main paper, 22 pages in total. 7 main figures and 7 supplementary figures. Code, model weights, and benchmark results can be accessed at https://github.com/epflneuroailab/scaling-primate-vvs
♻ ☆ Toward Clinically Grounded Foundation Models in Pathology
In non-medical domains, foundation models (FMs) have revolutionized computer vision and language processing through large-scale self-supervised and multimodal learning. Consequently, their rapid adoption in computational pathology was expected to deliver comparable breakthroughs in cancer diagnosis, prognostication, and multimodal retrieval. However, recent systematic evaluations reveal fundamental weaknesses: low diagnostic accuracy, poor robustness, geometric instability, heavy computational demands, and concerning safety vulnerabilities. This short paper examines these shortcomings and argues that they stem from deeper conceptual mismatches between the assumptions underlying generic foundation modeling in mainstream AI and the intrinsic complexity of human tissue. Seven interrelated causes are identified: biological complexity, ineffective self-supervision, overgeneralization, excessive architectural complexity, lack of domain-specific innovation, insufficient data, and a fundamental design flaw related to tissue patch size. These findings suggest that current pathology foundation models remain conceptually misaligned with the nature of tissue morphology and call for a fundamental rethinking of the paradigm itself.
♻ ☆ Towards Efficient and Accurate Spiking Neural Networks via Adaptive Bit Allocation
Multi-bit spiking neural networks (SNNs) have recently become a heated research spot, pursuing energy-efficient and high-accurate AI. However, with more bits involved, the associated memory and computation demands escalate to the point where the performance improvements become disproportionate. Based on the insight that different layers demonstrate different importance and extra bits could be wasted and interfering, this paper presents an adaptive bit allocation strategy for direct-trained SNNs, achieving fine-grained layer-wise allocation of memory and computation resources. Thus, SNN's efficiency and accuracy can be improved. Specifically, we parametrize the temporal lengths and the bit widths of weights and spikes, and make them learnable and controllable through gradients. To address the challenges caused by changeable bit widths and temporal lengths, we propose the refined spiking neuron, which can handle different temporal lengths, enable the derivation of gradients for temporal lengths, and suit spike quantization better. In addition, we theoretically formulate the step-size mismatch problem of learnable bit widths, which may incur severe quantization errors to SNN, and accordingly propose the step-size renewal mechanism to alleviate this issue. Experiments on various datasets, including the static CIFAR and ImageNet datasets and the dynamic CIFAR-DVS, DVS-GESTURE, and SHD datasets, demonstrate that our methods can reduce the overall memory and computation cost while achieving higher accuracy. Particularly, our SEWResNet-34 can achieve a 2.69% accuracy gain and 4.16x lower bit budgets over the advanced baseline work on ImageNet. This work will be open-sourced.
♻ ☆ Seeing What Matters: Generalizable AI-generated Video Detection with Forensic-Oriented Augmentation
Synthetic video generation is progressing very rapidly. The latest models can produce very realistic high-resolution videos that are virtually indistinguishable from real ones. Although several video forensic detectors have been recently proposed, they often exhibit poor generalization, which limits their applicability in a real-world scenario. Our key insight to overcome this issue is to guide the detector towards *seeing what really matters*. In fact, a well-designed forensic classifier should focus on identifying intrinsic low-level artifacts introduced by a generative architecture rather than relying on high-level semantic flaws that characterize a specific model. In this work, first, we study different generative architectures, searching and identifying discriminative features that are unbiased, robust to impairments, and shared across models. Then, we introduce a novel forensic-oriented data augmentation strategy based on the wavelet decomposition and replace specific frequency-related bands to drive the model to exploit more relevant forensic cues. Our novel training paradigm improves the generalizability of AI-generated video detectors, without the need for complex algorithms and large datasets that include multiple synthetic generators. To evaluate our approach, we train the detector using data from a single generative model and test it against videos produced by a wide range of other models. Despite its simplicity, our method achieves a significant accuracy improvement over state-of-the-art detectors and obtains excellent results even on very recent generative models, such as NOVA and FLUX.
♻ ☆ RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Chest X-ray with Zero-Shot Multi-Task Capability NeurIPS 2025
Recent advancements in multimodal models have significantly improved vision-language (VL) alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning and offer limited interpretability through attention probability visualizations. To address these challenges, we introduce $\textbf{RadZero}$, a novel framework for VL alignment in chest X-ray with zero-shot multi-task capability. A key component of our approach is $\textbf{VL-CABS}$ ($\textbf{V}$ision-$\textbf{L}$anguage $\textbf{C}$ross-$\textbf{A}$ttention $\textbf{B}$ased on $\textbf{S}$imilarity), which aligns text embeddings with local image features for interpretable, fine-grained VL reasoning. RadZero leverages large language models to extract concise semantic sentences from radiology reports and employs multi-positive contrastive training to effectively capture relationships between images and multiple relevant textual descriptions. It uses a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, VL-CABS enables zero-shot inference with similarity probability for classification, and pixel-level VL similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, VL similarity map analysis highlights the potential of VL-CABS for improving explainability in VL alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging. Code is available at $\href{https://github.com/deepnoid-ai/RadZero}{https://github.com/deepnoid-ai/RadZero}$.
comment: NeurIPS 2025
Residual Diffusion Bridge Model for Image Restoration
Diffusion bridge models establish probabilistic paths between arbitrary paired distributions and exhibit great potential for universal image restoration. Most existing methods merely treat them as simple variants of stochastic interpolants, lacking a unified analytical perspective. Besides, they indiscriminately reconstruct images through global noise injection and removal, inevitably distorting undegraded regions due to imperfect reconstruction. To address these challenges, we propose the Residual Diffusion Bridge Model (RDBM). Specifically, we theoretically reformulate the stochastic differential equations of generalized diffusion bridge and derive the analytical formulas of its forward and reverse processes. Crucially, we leverage the residuals from given distributions to modulate the noise injection and removal, enabling adaptive restoration of degraded regions while preserving intact others. Moreover, we unravel the fundamental mathematical essence of existing bridge models, all of which are special cases of RDBM and empirically demonstrate the optimality of our proposed models. Extensive experiments are conducted to demonstrate the state-of-the-art performance of our method both qualitatively and quantitatively across diverse image restoration tasks. Code is publicly available at https://github.com/MiliLab/RDBM.
♻ ☆ Pseudo-Stereo Inputs: A Solution to the Occlusion Challenge in Self-Supervised Stereo Matching
Self-supervised stereo matching holds great promise by eliminating the reliance on expensive ground-truth data. Its dominant paradigm, based on photometric consistency, is however fundamentally hindered by the occlusion challenge -- an issue that persists regardless of network architecture. The essential insight is that for any occluders, valid feedback signals can only be derived from the unoccluded areas on one side of the occluder. Existing methods attempt to address this by focusing on the erroneous feedback from the other side, either by identifying and removing it, or by introducing additional regularities for correction on that basis. Nevertheless, these approaches have failed to provide a complete solution. This work proposes a more fundamental solution. The core idea is to transform the fixed state of one-sided valid and one-sided erroneous signals into a probabilistic acquisition of valid feedback from both sides of an occluder. This is achieved through a complete framework, centered on a pseudo-stereo inputs strategy that decouples the input and feedback, without introducing any additional constraints. Qualitative results visually demonstrate that the occlusion problem is resolved, manifested by fully symmetrical and identical performance on both flanks of occluding objects. Quantitative experiments thoroughly validate the significant performance improvements resulting from solving the occlusion challenge.
RealDPO: Real or Not Real, that is the Preference
Video generative models have recently achieved notable advancements in synthesis quality. However, generating complex motions remains a critical challenge, as existing models often struggle to produce natural, smooth, and contextually consistent movements. This gap between generated and real-world motions limits their practical applicability. To address this issue, we introduce RealDPO, a novel alignment paradigm that leverages real-world data as positive samples for preference learning, enabling more accurate motion synthesis. Unlike traditional supervised fine-tuning (SFT), which offers limited corrective feedback, RealDPO employs Direct Preference Optimization (DPO) with a tailored loss function to enhance motion realism. By contrasting real-world videos with erroneous model outputs, RealDPO enables iterative self-correction, progressively refining motion quality. To support post-training in complex motion synthesis, we propose RealAction-5K, a curated dataset of high-quality videos capturing human daily activities with rich and precise motion details. Extensive experiments demonstrate that RealDPO significantly improves video quality, text alignment, and motion realism compared to state-of-the-art models and existing preference optimization techniques.
comment: Code:https://github.com/Vchitect/RealDPO Project Page:https://vchitect.github.io/RealDPO-Project/
♻ ☆ CFReID: Continual Few-shot Person Re-Identification
Real-world surveillance systems are dynamically evolving, requiring a person Re-identification model to continuously handle newly incoming data from various domains. To cope with these dynamics, Lifelong ReID (LReID) has been proposed to learn and accumulate knowledge across multiple domains incrementally. However, LReID models need to be trained on large-scale labeled data for each unseen domain, which are typically inaccessible due to privacy and cost concerns. In this paper, we propose a new paradigm called Continual Few-shot ReID (CFReID), which requires models to be incrementally trained using few-shot data and tested on all seen domains. Under few-shot conditions, CFREID faces two core challenges: 1) learning knowledge from few-shot data of unseen domain, and 2) avoiding catastrophic forgetting of seen domains. To tackle these two challenges, we propose a Stable Distribution Alignment (SDA) framework from feature distribution perspective. Specifically, our SDA is composed of two modules, i.e., Meta Distribution Alignment (MDA) and Prototype-based Few-shot Adaptation (PFA). To support the study of CFReID, we establish an evaluation benchmark for CFReID on five publicly available ReID datasets. Extensive experiments demonstrate that our SDA can enhance the few-shot learning and anti-forgetting capabilities under few-shot conditions. Notably, our approach, using only 5\% of the data, i.e., 32 IDs, significantly outperforms LReID's state-of-the-art performance, which requires 700 to 1,000 IDs.
comment: This manuscript has been withdrawn due to significant restructuring of its contents. The extended sections are being developed into a standalone paper
♻ ☆ MCTED: A Machine-Learning-Ready Dataset for Digital Elevation Model Generation From Mars Imagery
This work presents a new dataset for the Martian digital elevation model prediction task, ready for machine learning applications called MCTED. The dataset has been generated using a comprehensive pipeline designed to process high-resolution Mars orthoimage and DEM pairs from Day et al., yielding a dataset consisting of 80,898 data samples. The source images are data gathered by the Mars Reconnaissance Orbiter using the CTX instrument, providing a very diverse and comprehensive coverage of the Martian surface. Given the complexity of the processing pipelines used in large-scale DEMs, there are often artefacts and missing data points in the original data, for which we developed tools to solve or mitigate their impact. We divide the processed samples into training and validation splits, ensuring samples in both splits cover no mutual areas to avoid data leakage. Every sample in the dataset is represented by the optical image patch, DEM patch, and two mask patches, indicating values that were originally missing or were altered by us. This allows future users of the dataset to handle altered elevation regions as they please. We provide statistical insights of the generated dataset, including the spatial distribution of samples, the distributions of elevation values, slopes and more. Finally, we train a small U-Net architecture on the MCTED dataset and compare its performance to a monocular depth estimation foundation model, DepthAnythingV2, on the task of elevation prediction. We find that even a very small architecture trained on this dataset specifically, beats a zero-shot performance of a depth estimation foundation model like DepthAnythingV2. We make the dataset and code used for its generation completely open source in public repositories.
comment: 22 pages, 21 figures
♻ ☆ BasicAVSR: Arbitrary-Scale Video Super-Resolution via Image Priors and Enhanced Motion Compensation
Arbitrary-scale video super-resolution (AVSR) aims to enhance the resolution of video frames, potentially at various scaling factors, which presents several challenges regarding spatial detail reproduction, temporal consistency, and computational complexity. In this paper, we propose a strong baseline BasicAVSR for AVSR by integrating four key components: 1) adaptive multi-scale frequency priors generated from image Laplacian pyramids, 2) a flow-guided propagation unit to aggregate spatiotemporal information from adjacent frames, 3) a second-order motion compensation unit for more accurate spatial alignment of adjacent frames, and 4) a hyper-upsampling unit to generate scale-aware and content-independent upsampling kernels. To meet diverse application demands, we instantiate three propagation variants: (i) a unidirectional RNN unit for strictly online inference, (ii) a unidirectional RNN unit empowered with a limited lookahead that tolerates a small output delay, and (iii) a bidirectional RNN unit designed for offline tasks where computational resources are less constrained. Experimental results demonstrate the effectiveness and adaptability of our model across these different scenarios. Through extensive experiments, we show that BasicAVSR significantly outperforms existing methods in terms of super-resolution quality, generalization ability, and inference speed. Our work not only advances the state-of-the-art in AVSR but also extends its core components to multiple frameworks for diverse scenarios. The code is available at https://github.com/shangwei5/BasicAVSR.
comment: 13 pages, 10 figures, 5 tables
♻ ☆ DOVE: Efficient One-Step Diffusion Model for Real-World Video Super-Resolution NeurIPS 2025
Diffusion models have demonstrated promising performance in real-world video super-resolution (VSR). However, the dozens of sampling steps they require, make inference extremely slow. Sampling acceleration techniques, particularly single-step, provide a potential solution. Nonetheless, achieving one step in VSR remains challenging, due to the high training overhead on video data and stringent fidelity demands. To tackle the above issues, we propose DOVE, an efficient one-step diffusion model for real-world VSR. DOVE is obtained by fine-tuning a pretrained video diffusion model (i.e., CogVideoX). To effectively train DOVE, we introduce the latent-pixel training strategy. The strategy employs a two-stage scheme to gradually adapt the model to the video super-resolution task. Meanwhile, we design a video processing pipeline to construct a high-quality dataset tailored for VSR, termed HQ-VSR. Fine-tuning on this dataset further enhances the restoration capability of DOVE. Extensive experiments show that DOVE exhibits comparable or superior performance to multi-step diffusion-based VSR methods. It also offers outstanding inference efficiency, achieving up to a 28$\times$ speed-up over existing methods such as MGLD-VSR. Code is available at: https://github.com/zhengchen1999/DOVE.
comment: Accepted to NeurIPS 2025. Code is available at: https://github.com/zhengchen1999/DOVE
Learning to Navigate Socially Through Proactive Risk Perception
In this report, we describe the technical details of our submission to the IROS 2025 RoboSense Challenge Social Navigation Track. This track focuses on developing RGBD-based perception and navigation systems that enable autonomous agents to navigate safely, efficiently, and socially compliantly in dynamic human-populated indoor environments. The challenge requires agents to operate from an egocentric perspective using only onboard sensors including RGB-D observations and odometry, without access to global maps or privileged information, while maintaining social norm compliance such as safe distances and collision avoidance. Building upon the Falcon model, we introduce a Proactive Risk Perception Module to enhance social navigation performance. Our approach augments Falcon with collision risk understanding that learns to predict distance-based collision risk scores for surrounding humans, which enables the agent to develop more robust spatial awareness and proactive collision avoidance behaviors. The evaluation on the Social-HM3D benchmark demonstrates that our method improves the agent's ability to maintain personal space compliance while navigating toward goals in crowded indoor scenes with dynamic human agents, achieving 2nd place among 16 participating teams in the challenge.
♻ ☆ MMPerspective: Do MLLMs Understand Perspective? A Comprehensive Benchmark for Perspective Perception, Reasoning, and Robustness NeurIPS 2025
Understanding perspective is fundamental to human visual perception, yet the extent to which multimodal large language models (MLLMs) internalize perspective geometry remains unclear. We introduce MMPerspective, the first benchmark specifically designed to systematically evaluate MLLMs' understanding of perspective through 10 carefully crafted tasks across three complementary dimensions: Perspective Perception, Reasoning, and Robustness. Our benchmark comprises 2,711 real-world and synthetic image instances with 5,083 question-answer pairs that probe key capabilities, such as vanishing point perception and counting, perspective type reasoning, line relationship understanding in 3D space, invariance to perspective-preserving transformations, etc. Through a comprehensive evaluation of 43 state-of-the-art MLLMs, we uncover significant limitations: while models demonstrate competence on surface-level perceptual tasks, they struggle with compositional reasoning and maintaining spatial consistency under perturbations. Our analysis further reveals intriguing patterns between model architecture, scale, and perspective capabilities, highlighting both robustness bottlenecks and the benefits of chain-of-thought prompting. MMPerspective establishes a valuable testbed for diagnosing and advancing spatial understanding in vision-language systems. Resources available at: https://yunlong10.github.io/MMPerspective/
comment: Accepted to NeurIPS 2025 DB Track. Rating: 5,5,5,5
♻ ☆ FlexAC: Towards Flexible Control of Associative Reasoning in Multimodal Large Language Models NeurIPS 2025
Multimodal large language models (MLLMs) face an inherent trade-off between faithfulness and creativity, as different tasks require varying degrees of associative reasoning. However, existing methods lack the flexibility to modulate this reasoning strength, limiting MLLMs' adaptability across factual and creative scenarios. To bridge this gap, we propose equipping MLLMs with mechanisms that enable flexible control over associative reasoning. We begin by investigating the internal mechanisms underlying associative behavior in MLLMs and find that: (1) middle layers play a pivotal role in shaping model's associative tendencies, (2) modifying representations in these layers effectively regulates associative reasoning strength, and (3) hallucinations can be exploited to derive steering vectors that guide this modulation. Building on these findings, we introduce Flexible Association Control (FlexAC), a lightweight and training-free framework for modulating associative behavior in MLLMs. FlexAC first induces hallucination-guided intermediate representations to encode associative directions. Then, it selects high-association instances to construct effective associative steering vectors, whose strengths are adaptively calibrated to balance creative guidance with output stability. Finally, recognizing the multi-dimensional nature of associative reasoning, FlexAC incorporates task-specific associative vectors derived from a forward pass on a few target-domain samples, enabling models to follow diverse associative directions and better adapt to creative tasks. Notably, our method achieves up to a 5.8x improvement in creativity on Creation-MMBench and a 29% reduction in hallucination rate on CHAIR, surpassing existing baselines and demonstrating its effectiveness in enabling flexible control over associative reasoning in MLLMs. Our code is available at https://github.com/ylhz/FlexAC.
comment: 19 pages, 11 figures. Accepted by the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Poutine: Vision-Language-Trajectory Pre-Training and Reinforcement Learning Post-Training Enable Robust End-to-End Autonomous Driving
Maintaining good driving behavior in out-of-distribution scenarios remains a critical challenge in autonomous driving. A promising direction is to leverage the generalist knowledge and reasoning capabilities of large-language models by treating unusual driving scenarios as a logical reasoning task. In this work, we present Poutine, a method that uses an off-the-shelf 3B-parameter vision-language model (VLM) - without any additional components - to achieve robust end-to-end autonomous driving via a simple and scalable training recipe. To learn strong base driving capabilities, we first train Poutine-Base using self-supervised next-token prediction over vision, language, and trajectory (VLT) tokens, leveraging both nominal and long-tail driving data. In the second stage, we fine-tune Poutine-Base using Group Relative Policy Optimization (GRPO) with a small set of human preference-labeled examples. We evaluated our approach on the Waymo end-to-end driving benchmark curated for long-tail scenarios. The final Poutine model achieves an RFS of 7.99 on the test set, placing 1st in the 2025 Waymo Vision-Based End-to-End Driving Challenge by a significant margin. Our results suggest that handcrafted tokenizers or custom architectural components added to base VLMs in prior work are not necessary to achieve strong driving performance. Instead, this work highlights the potential of scalable VLT pretraining combined with lightweight RL fine-tuning to enable robust and generalizable autonomous driving.
♻ ☆ Two Causally Related Needles in a Video Haystack NeurIPS 2025
Properly evaluating the ability of Video-Language Models (VLMs) to understand long videos remains a challenge. We propose a long-context video understanding benchmark, Causal2Needles, that assesses two crucial abilities insufficiently addressed by existing benchmarks: (1) extracting information from two separate locations (two needles) in a long video and understanding them jointly, and (2) modeling the world in terms of cause and effect in human behaviors. Causal2Needles evaluates these abilities using noncausal one-needle, causal one-needle, and causal two-needle questions. The most complex question type, causal two-needle questions, require extracting information from both the cause and effect events from a long video and the associated narration text. To prevent textual bias, we introduce two complementary question formats: locating the video clip containing the answer, and verbal description of a visual detail from that video clip. Our experiments reveal that models excelling on existing benchmarks struggle with causal 2-needle questions, and the model performance is negatively correlated with the distance between the two needles. These findings highlight critical limitations in current VLMs. The dataset is available at: https://huggingface.co/datasets/causal2needles/Causal2Needles
comment: Accepted to NeurIPS 2025 D&B Track
♻ ☆ Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models NeurIPS 2025
The widespread use of AI-generated content from diffusion models has raised significant concerns regarding misinformation and copyright infringement. Watermarking is a crucial technique for identifying these AI-generated images and preventing their misuse. In this paper, we introduce Shallow Diffuse, a new watermarking technique that embeds robust and invisible watermarks into diffusion model outputs. Unlike existing approaches that integrate watermarking throughout the entire diffusion sampling process, Shallow Diffuse decouples these steps by leveraging the presence of a low-dimensional subspace in the image generation process. This method ensures that a substantial portion of the watermark lies in the null space of this subspace, effectively separating it from the image generation process. Our theoretical and empirical analyses show that this decoupling strategy greatly enhances the consistency of data generation and the detectability of the watermark. Extensive experiments further validate that our Shallow Diffuse outperforms existing watermarking methods in terms of robustness and consistency. The codes are released at https://github.com/liwd190019/Shallow-Diffuse.
comment: NeurIPS 2025 Spotlight
♻ ☆ EMHI: A Multimodal Egocentric Human Motion Dataset with HMD and Body-Worn IMUs
Egocentric human pose estimation (HPE) using wearable sensors is essential for VR/AR applications. Most methods rely solely on either egocentric-view images or sparse Inertial Measurement Unit (IMU) signals, leading to inaccuracies due to self-occlusion in images or the sparseness and drift of inertial sensors. Most importantly, the lack of real-world datasets containing both modalities is a major obstacle to progress in this field. To overcome the barrier, we propose EMHI, a multimodal \textbf{E}gocentric human \textbf{M}otion dataset with \textbf{H}ead-Mounted Display (HMD) and body-worn \textbf{I}MUs, with all data collected under the real VR product suite. Specifically, EMHI provides synchronized stereo images from downward-sloping cameras on the headset and IMU data from body-worn sensors, along with pose annotations in SMPL format. This dataset consists of 885 sequences captured by 58 subjects performing 39 actions, totaling about 28.5 hours of recording. We evaluate the annotations by comparing them with optical marker-based SMPL fitting results. To substantiate the reliability of our dataset, we introduce MEPoser, a new baseline method for multimodal egocentric HPE, which employs a multimodal fusion encoder, temporal feature encoder, and MLP-based regression heads. The experiments on EMHI show that MEPoser outperforms existing single-modal methods and demonstrates the value of our dataset in solving the problem of egocentric HPE. We believe the release of EMHI and the method could advance the research of egocentric HPE and expedite the practical implementation of this technology in VR/AR products.
♻ ☆ EarthGPT-X: A Spatial MLLM for Multi-level Multi-Source Remote Sensing Imagery Understanding with Visual Prompting
Recent advances in natural-domain multi-modal large language models (MLLMs) have demonstrated effective spatial reasoning through visual and textual prompting. However, their direct transfer to remote sensing (RS) is hindered by heterogeneous sensing physics, diverse modalities, and unique spatial scales. Existing RS MLLMs are mainly limited to optical imagery and plain language interaction, preventing flexible and scalable real-world applications. In this article, EarthGPT-X is proposed, the first flexible spatial MLLM that unifies multi-source RS imagery comprehension and accomplishes both coarse-grained and fine-grained visual tasks under diverse visual prompts in a single framework. Distinct from prior models, EarthGPT-X introduces: 1) a dual-prompt mechanism combining text instructions with various visual prompts (i.e., point, box, and free-form) to mimic the versatility of referring in human life; 2) a comprehensive multi-source multi-level prompting dataset, the model advances beyond holistic image understanding to support hierarchical spatial reasoning, including scene-level understanding and fine-grained object attributes and relational analysis; 3) a cross-domain one-stage fusion training strategy, enabling efficient and consistent alignment across modalities and tasks. Extensive experiments demonstrate that EarthGPT-X substantially outperforms prior nature and RS MLLMs, establishing the first framework capable of multi-source, multi-task, and multi-level interpretation using visual prompting in RS scenarios.
♻ ☆ Caption-Driven Explainability: Probing CNNs for Bias via CLIP ICIP 2025
Robustness has become one of the most critical problems in machine learning (ML). The science of interpreting ML models to understand their behavior and improve their robustness is referred to as explainable artificial intelligence (XAI). One of the state-of-the-art XAI methods for computer vision problems is to generate saliency maps. A saliency map highlights the pixel space of an image that excites the ML model the most. However, this property could be misleading if spurious and salient features are present in overlapping pixel spaces. In this paper, we propose a caption-based XAI method, which integrates a standalone model to be explained into the contrastive language-image pre-training (CLIP) model using a novel network surgery approach. The resulting caption-based XAI model identifies the dominant concept that contributes the most to the models prediction. This explanation minimizes the risk of the standalone model falling for a covariate shift and contributes significantly towards developing robust ML models. Our code is available at https://github.com/patch0816/caption-driven-xai
comment: Accepted and presented at the IEEE ICIP 2025 Satellite Workshop "Generative AI for World Simulations and Communications & Celebrating 40 Years of Excellence in Education: Honoring Prof. Aggelos Katsaggelos", Anchorage, USA, Sept 14, 2025. Camera-ready preprint; IEEE Xplore version to follow. Author variant: Amil Dravid. Code: https://github.com/patch0816/caption-driven-xai
♻ ☆ Revealing the structure-property relationships of copper alloys with FAGC
Cu-Cr-Zr alloys play a crucial role in electronic devices and the electric power industry, where their electrical conductivity and hardness are of great importance. However, due to the scarcity of available samples, there has been a lack of effective studies exploring the relationship between the microstructural images of Cu-Cr-Zr alloys and their key properties. In this paper, the FAGC feature augmentation method is employed to enhance the microstructural images of Cu-Cr-Zr alloys within a feature space known as the pre-shape space. Pseudo-labels are then constructed to expand the number of training samples. These features are then input into various machine learning models to construct performance prediction models for the alloy. Finally, we validate the impact of different machine learning methods and the number of augmented features on prediction accuracy through experiments. Experimental results demonstrate that our method achieves superior performance in predicting electrical conductivity (\(R^2=0.978\)) and hardness (\(R^2=0.998\)) when using the decision tree classifier with 100 augmented samples. Further analysis reveals that regions with reduced image noise, such as fewer grain or phase boundaries, exhibit higher contributions to electrical conductivity. These findings highlight the potential of the FAGC method in overcoming the challenges of limited image data in materials science, offering a powerful tool for establishing detailed and quantitative relationships between complex microstructures and material properties.
♻ ☆ Zero-Shot Referring Expression Comprehension via Vison-Language True/False Verification
Referring Expression Comprehension (REC) is usually addressed with task-trained grounding models. We show that a zero-shot workflow, without any REC-specific training, can achieve competitive or superior performance. Our approach reformulates REC as box-wise visual-language verification: given proposals from a COCO-clean generic detector (YOLO-World), a general-purpose VLM independently answers True/False queries for each region. This simple procedure reduces cross-box interference, supports abstention and multiple matches, and requires no fine-tuning. On RefCOCO, RefCOCO+, and RefCOCOg, our method not only surpasses a zero-shot GroundingDINO baseline but also exceeds reported results for GroundingDINO trained on REC and GroundingDINO+CRG. Controlled studies with identical proposals confirm that verification significantly outperforms selection-based prompting, and results hold with open VLMs. Overall, we show that workflow design, rather than task-specific pretraining, drives strong zero-shot REC performance.
♻ ☆ Assessing the value of Geo-Foundational Models for Flood Inundation Mapping: Benchmarking models for Sentinel-1, Sentinel-2, and Planetscope for end-users
Geo-Foundational Models (GFMs) enable fast and reliable extraction of spatiotemporal information from satellite imagery, improving flood inundation mapping by leveraging location and time embeddings. Despite their potential, it remains unclear whether GFMs outperform traditional models like U-Net. A systematic comparison across sensors and data availability scenarios is still lacking, which is an essential step to guide end-users in model selection. To address this, we evaluate three GFMs, Prithvi 2.0, Clay V1.5, DOFA, and UViT (a Prithvi variant), against TransNorm, U-Net, and Attention U-Net using PlanetScope, Sentinel-1, and Sentinel-2. We observe competitive performance among all GFMs, with only 2-5% variation between the best and worst models across sensors. Clay outperforms others on PlanetScope (0.79 mIoU) and Sentinel-2 (0.70), while Prithvi leads on Sentinel-1 (0.57). In leave-one-region-out cross-validation across five regions, Clay shows slightly better performance across all sensors (mIoU: 0.72(0.04), 0.66(0.07), 0.51(0.08)) compared to Prithvi (0.70(0.05), 0.64(0.09), 0.49(0.13)) and DOFA (0.67(0.07), 0.64(0.04), 0.49(0.09)) for PlanetScope, Sentinel-2, and Sentinel-1, respectively. Across all 19 sites, leave-one-region-out cross-validation reveals a 4% improvement by Clay compared to U-Net. Visual inspection highlights Clay's superior ability to retain fine details. Few-shot experiments show Clay achieves 0.64 mIoU on PlanetScope with just five training images, outperforming Prithvi (0.24) and DOFA (0.35). In terms of computational time, Clay is a better choice due to its smaller model size (26M parameters), making it ~3x faster than Prithvi (650M) and 2x faster than DOFA (410M). Contrary to previous findings, our results suggest GFMs offer small to moderate improvements in flood mapping accuracy at lower computational cost and labeling effort compared to traditional U-Net.
♻ ☆ Evaluating and Improving the Effectiveness of Synthetic Chest X-Rays for Medical Image Analysis
Purpose: To explore best-practice approaches for generating synthetic chest X-ray images and augmenting medical imaging datasets to optimize the performance of deep learning models in downstream tasks like classification and segmentation. Materials and Methods: We utilized a latent diffusion model to condition the generation of synthetic chest X-rays on text prompts and/or segmentation masks. We explored methods like using a proxy model and using radiologist feedback to improve the quality of synthetic data. These synthetic images were then generated from relevant disease information or geometrically transformed segmentation masks and added to ground truth training set images from the CheXpert, CANDID-PTX, SIIM, and RSNA Pneumonia datasets to measure improvements in classification and segmentation model performance on the test sets. F1 and Dice scores were used to evaluate classification and segmentation respectively. One-tailed t-tests with Bonferroni correction assessed the statistical significance of performance improvements with synthetic data. Results: Across all experiments, the synthetic data we generated resulted in a maximum mean classification F1 score improvement of 0.150453 (CI: 0.099108-0.201798; P=0.0031) compared to using only real data. For segmentation, the maximum Dice score improvement was 0.14575 (CI: 0.108267-0.183233; P=0.0064). Conclusion: Best practices for generating synthetic chest X-ray images for downstream tasks include conditioning on single-disease labels or geometrically transformed segmentation masks, as well as potentially using proxy modeling for fine-tuning such generations.
♻ ☆ Gestura: A LVLM-Powered System Bridging Motion and Semantics for Real-Time Free-Form Gesture Understanding
Free-form gesture understanding is highly appealing for human-computer interaction, as it liberates users from the constraints of predefined gesture categories. However, the sole existing solution GestureGPT suffers from limited recognition accuracy and slow response times. In this paper, we propose Gestura, an end-to-end system for free-form gesture understanding. Gestura harnesses a pre-trained Large Vision-Language Model (LVLM) to align the highly dynamic and diverse patterns of free-form gestures with high-level semantic concepts. To better capture subtle hand movements across different styles, we introduce a Landmark Processing Module that compensate for LVLMs' lack of fine-grained domain knowledge by embedding anatomical hand priors. Further, a Chain-of-Thought (CoT) reasoning strategy enables step-by-step semantic inference, transforming shallow knowledge into deep semantic understanding and significantly enhancing the model's ability to interpret ambiguous or unconventional gestures. Together, these components allow Gestura to achieve robust and adaptable free-form gesture comprehension. Additionally, we have developed the first open-source dataset for free-form gesture intention reasoning and understanding with over 300,000 annotated QA pairs.
comment: IMWUT2025
♻ ☆ OmniVLA: Physically-Grounded Multimodal VLA with Unified Multi-Sensor Perception for Robotic Manipulation
Vision-language-action (VLA) models have shown strong generalization for robotic action prediction through large-scale vision-language pretraining. However, most existing models rely solely on RGB cameras, limiting their perception and, consequently, manipulation capabilities. We present OmniVLA, an omni-modality VLA model that integrates novel sensing modalities for physically-grounded spatial intelligence beyond RGB perception. The core of our approach is the sensor-masked image, a unified representation that overlays spatially grounded and physically meaningful masks onto the RGB images, derived from sensors including an infrared camera, a mmWave radar, and a microphone array. This image-native unification keeps sensor input close to RGB statistics to facilitate training, provides a uniform interface across sensor hardware, and enables data-efficient learning with lightweight per-sensor projectors. Built on this, we present a multisensory vision-language-action model architecture and train the model based on an RGB-pretrained VLA backbone. We evaluate OmniVLA on challenging real-world tasks where sensor-modality perception guides the robotic manipulation. OmniVLA achieves an average task success rate of 84%, significantly outperforms both RGB-only and raw-sensor-input baseline models by 59% and 28% respectively, meanwhile showing higher learning efficiency and stronger generalization capability.
♻ ☆ What Time Tells Us? An Explorative Study of Time Awareness Learned from Static Images
Time becomes visible through illumination changes in what we see. Inspired by this, in this paper we explore the potential to learn time awareness from static images, trying to answer: *what time tells us?* To this end, we first introduce a Time-Oriented Collection (TOC) dataset, which contains 130,906 images with reliable timestamps. Leveraging this dataset, we propose a Time-Image Contrastive Learning (TICL) approach to jointly model timestamps and related visual representations through cross-modal contrastive learning. We found that the proposed TICL, 1) not only achieves state-of-the-art performance on the timestamp estimation task, over various benchmark metrics, 2) but also, interestingly, though only seeing static images, the time-aware embeddings learned from TICL show strong capability in several time-aware downstream tasks such as time-based image retrieval, video scene classification, and time-aware image editing. Our findings suggest that time-related visual cues can be learned from static images and are beneficial for various vision tasks, laying a foundation for future research on understanding time-related visual context. Project page: https://rathgrith.github.io/timetells_release/
comment: Accepted by TMLR 2025
♻ ☆ Practical solutions to the relative pose of three calibrated cameras CVPR 2025
We study the challenging problem of estimating the relative pose of three calibrated cameras from four point correspondences. We propose novel efficient solutions to this problem that are based on the simple idea of using four correspondences to estimate an approximate geometry of the first two views. We model this geometry either as an affine or a fully perspective geometry estimated using one additional approximate correspondence. We generate such an approximate correspondence using a very simple and efficient strategy, where the new point is the mean point of three corresponding input points. The new solvers are efficient and easy to implement, since they are based on existing efficient minimal solvers, i.e., the 4-point affine fundamental matrix, the well-known 5-point relative pose solver, and the P3P solver. Extensive experiments on real data show that the proposed solvers, when properly coupled with local optimization, achieve state-of-the-art results, with the novel solver based on approximate mean-point correspondences being more robust and accurate than the affine-based solver.
comment: Paper presented at CVPR 2025 (DOI: 10.1109/CVPR52734.2025.02041). Code available at https://github.com/kocurvik/threeview and https://doi.org/10.5281/zenodo.16599943. Data available at https://doi.org/10.5281/zenodo.16603086
♻ ☆ Generative Autoregressive Transformers for Model-Agnostic Federated MRI Reconstruction
While learning-based models hold great promise for MRI reconstruction, single-site models trained on limited local datasets often show poor generalization. This has motivated collaborative training across institutions via federated learning (FL)-a privacy-preserving framework that aggregates model updates instead of sharing raw data. Conventional FL requires architectural homogeneity, restricting sites from using models tailored to their resources or needs. To address this limitation, we propose FedGAT, a model-agnostic FL technique that first collaboratively trains a global generative prior for MR images, adapted from a natural image foundation model composed of a variational autoencoder (VAE) and a transformer that generates images via spatial-scale autoregression. We fine-tune the transformer module after injecting it with a lightweight site-specific prompting mechanism, keeping the VAE frozen, to efficiently adapt the model to multi-site MRI data. In a second tier, each site independently trains its preferred reconstruction model by augmenting local data with synthetic MRI data from other sites, generated by site-prompting the tuned prior. This decentralized augmentation improves generalization while preserving privacy. Experiments on multi-institutional datasets show that FedGAT outperforms state-of-the-art FL baselines in both within- and cross-site reconstruction performance under model-heterogeneous settings.
♻ ☆ KARMA: Efficient Structural Defect Segmentation via Kolmogorov-Arnold Representation Learning
Semantic segmentation of structural defects in civil infrastructure remains challenging due to variable defect appearances, harsh imaging conditions, and significant class imbalance. Current deep learning methods, despite their effectiveness, typically require millions of parameters, rendering them impractical for real-time inspection systems. We introduce KARMA (Kolmogorov-Arnold Representation Mapping Architecture), a highly efficient semantic segmentation framework that models complex defect patterns through compositions of one-dimensional functions rather than conventional convolutions. KARMA features three technical innovations: (1) a parameter-efficient Tiny Kolmogorov-Arnold Network (TiKAN) module leveraging low-rank factorization for KAN-based feature transformation; (2) an optimized feature pyramid structure with separable convolutions for multi-scale defect analysis; and (3) a static-dynamic prototype mechanism that enhances feature representation for imbalanced classes. Extensive experiments on benchmark infrastructure inspection datasets demonstrate that KARMA achieves competitive or superior mean IoU performance compared to state-of-the-art approaches, while using significantly fewer parameters (0.959M vs. 31.04M, a 97% reduction). Operating at 0.264 GFLOPS, KARMA maintains inference speeds suitable for real-time deployment, enabling practical automated infrastructure inspection systems without compromising accuracy. The source code can be accessed at the following URL: https://github.com/faeyelab/karma.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ MOSAIC: Generating Consistent, Privacy-Preserving Scenes from Multiple Depth Views in Multi-Room Environments
We introduce a diffusion-based approach for generating privacy-preserving digital twins of multi-room indoor environments from depth images only. Central to our approach is a novel Multi-view Overlapped Scene Alignment with Implicit Consistency (MOSAIC) model that explicitly considers cross-view dependencies within the same scene in the probabilistic sense. MOSAIC operates through a multi-channel inference-time optimization that avoids error accumulation common in sequential or single-room constraints in panorama-based approaches. MOSAIC scales to complex scenes with zero extra training and provably reduces the variance during denoising process when more overlapping views are added, leading to improved generation quality. Experiments show that MOSAIC outperforms state-of-the-art baselines on image fidelity metrics in reconstructing complex multi-room environments. Resources and code are at https://mosaic-cmubig.github.io
Machine Learning 150
☆ Dark Energy Survey Year 3 results: Simulation-based $w$CDM inference from weak lensing and galaxy clustering maps with deep learning. I. Analysis design
Data-driven approaches using deep learning are emerging as powerful techniques to extract non-Gaussian information from cosmological large-scale structure. This work presents the first simulation-based inference (SBI) pipeline that combines weak lensing and galaxy clustering maps in a realistic Dark Energy Survey Year 3 (DES Y3) configuration and serves as preparation for a forthcoming analysis of the survey data. We develop a scalable forward model based on the CosmoGridV1 suite of N-body simulations to generate over one million self-consistent mock realizations of DES Y3 at the map level. Leveraging this large dataset, we train deep graph convolutional neural networks on the full survey footprint in spherical geometry to learn low-dimensional features that approximately maximize mutual information with target parameters. These learned compressions enable neural density estimation of the implicit likelihood via normalizing flows in a ten-dimensional parameter space spanning cosmological $w$CDM, intrinsic alignment, and linear galaxy bias parameters, while marginalizing over baryonic, photometric redshift, and shear bias nuisances. To ensure robustness, we extensively validate our inference pipeline using synthetic observations derived from both systematic contaminations in our forward model and independent Buzzard galaxy catalogs. Our forecasts yield significant improvements in cosmological parameter constraints, achieving $2-3\times$ higher figures of merit in the $\Omega_m - S_8$ plane relative to our implementation of baseline two-point statistics and effectively breaking parameter degeneracies through probe combination. These results demonstrate the potential of SBI analyses powered by deep learning for upcoming Stage-IV wide-field imaging surveys.
comment: 38 pages, 14 figures, submitted
☆ Multi-Method Analysis of Mathematics Placement Assessments: Classical, Machine Learning, and Clustering Approaches
This study evaluates a 40-item mathematics placement examination administered to 198 students using a multi-method framework combining Classical Test Theory, machine learning, and unsupervised clustering. Classical Test Theory analysis reveals that 55\% of items achieve excellent discrimination ($D \geq 0.40$) while 30\% demonstrate poor discrimination ($D < 0.20$) requiring replacement. Question 6 (Graph Interpretation) emerges as the examination's most powerful discriminator, achieving perfect discrimination ($D = 1.000$), highest ANOVA F-statistic ($F = 4609.1$), and maximum Random Forest feature importance (0.206), accounting for 20.6\% of predictive power. Machine learning algorithms demonstrate exceptional performance, with Random Forest and Gradient Boosting achieving 97.5\% and 96.0\% cross-validation accuracy. K-means clustering identifies a natural binary competency structure with a boundary at 42.5\%, diverging from the institutional threshold of 55\% and suggesting potential overclassification into remedial categories. The two-cluster solution exhibits exceptional stability (bootstrap ARI = 0.855) with perfect lower-cluster purity. Convergent evidence across methods supports specific refinements: replace poorly discriminating items, implement a two-stage assessment, and integrate Random Forest predictions with transparency mechanisms. These findings demonstrate that multi-method integration provides a robust empirical foundation for evidence-based mathematics placement optimization.
comment: 28 pages, 8 table, 4figures, NAM conference
☆ Forgetting is Everywhere
A fundamental challenge in developing general learning algorithms is their tendency to forget past knowledge when adapting to new data. Addressing this problem requires a principled understanding of forgetting; yet, despite decades of study, no unified definition has emerged that provides insights into the underlying dynamics of learning. We propose an algorithm- and task-agnostic theory that characterises forgetting as a lack of self-consistency in a learner's predictive distribution over future experiences, manifesting as a loss of predictive information. Our theory naturally yields a general measure of an algorithm's propensity to forget. To validate the theory, we design a comprehensive set of experiments that span classification, regression, generative modelling, and reinforcement learning. We empirically demonstrate how forgetting is present across all learning settings and plays a significant role in determining learning efficiency. Together, these results establish a principled understanding of forgetting and lay the foundation for analysing and improving the information retention capabilities of general learning algorithms.
comment: Project page: https://ben-sanati.github.io/forgetting-is-everywhere-project/
☆ Real-to-Sim Robot Policy Evaluation with Gaussian Splatting Simulation of Soft-Body Interactions
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
comment: Website: https://real2sim-eval.github.io/
☆ Nowcast3D: Reliable precipitation nowcasting via gray-box learning
Extreme precipitation nowcasting demands high spatiotemporal fidelity and extended lead times, yet existing approaches remain limited. Numerical Weather Prediction (NWP) and its deep-learning emulations are too slow and coarse for rapidly evolving convection, while extrapolation and purely data-driven models suffer from error accumulation and excessive smoothing. Hybrid 2D radar-based methods discard crucial vertical information, preventing accurate reconstruction of height-dependent dynamics. We introduce a gray-box, fully three-dimensional nowcasting framework that directly processes volumetric radar reflectivity and couples physically constrained neural operators with datadriven learning. The model learns vertically varying 3D advection fields under a conservative advection operator, parameterizes spatially varying diffusion, and introduces a Brownian-motion--inspired stochastic term to represent unresolved motions. A residual branch captures small-scale convective initiation and microphysical variability, while a diffusion-based stochastic module estimates uncertainty. The framework achieves more accurate forecasts up to three-hour lead time across precipitation regimes and ranked first in 57\% of cases in a blind evaluation by 160 meteorologists. By restoring full 3D dynamics with physical consistency, it offers a scalable and robust pathway for skillful and reliable nowcasting of extreme precipitation.
☆ TT-Prune: Joint Model Pruning and Resource Allocation for Communication-efficient Time-triggered Federated Learning
Federated learning (FL) offers new opportunities in machine learning, particularly in addressing data privacy concerns. In contrast to conventional event-based federated learning, time-triggered federated learning (TT-Fed), as a general form of both asynchronous and synchronous FL, clusters users into different tiers based on fixed time intervals. However, the FL network consists of a growing number of user devices with limited wireless bandwidth, consequently magnifying issues such as stragglers and communication overhead. In this paper, we introduce adaptive model pruning to wireless TT-Fed systems and study the problem of jointly optimizing the pruning ratio and bandwidth allocation to minimize the training loss while ensuring minimal learning latency. To answer this question, we perform convergence analysis on the gradient l_2 norm of the TT-Fed model based on model pruning. Based on the obtained convergence upper bound, a joint optimization problem of pruning ratio and wireless bandwidth is formulated to minimize the model training loss under a given delay threshold. Then, we derive closed-form solutions for wireless bandwidth and pruning ratio using Karush-Kuhn-Tucker(KKT) conditions. The simulation results show that model pruning could reduce the communication cost by 40% while maintaining the model performance at the same level.
☆ Optimal Inference Schedules for Masked Diffusion Models
A major bottleneck of standard auto-regressive large language models is that their inference process is inherently sequential, resulting in very long and costly inference times. To circumvent this, practitioners proposed a class of language models called diffusion language models, of which the masked diffusion model (MDM) is the most successful. The MDM is able to sample tokens out-of-order and, ostensibly, many tokens at once and in parallel. However, there is very limited rigorous understanding of how much parallel sampling these models can perform without noticeable degradation in their sampling performance. Prior work of Li and Cai obtained some preliminary bounds, but these are not tight for many natural classes of distributions. In this work, we give a new, exact characterization of the expected divergence between the true distribution and the sampled distribution, for any distribution and any unmasking schedule for the sampler, showing an elegant connection to the theory of univariate function approximation. By leveraging this connection, we then attain a number of novel lower and upper bounds for this problem. While the connection to function approximation in principle gives the optimal unmasking schedule for any distribution, we show that it is in general impossible to compete with it without strong a priori knowledge of the distribution, even in seemingly benign settings. However, we also demonstrate new upper bounds and new sampling schedules in terms of well-studied information-theoretic properties of the base distribution, namely, its total correlation and dual total correlation, which show that in some natural settings, one can sample in $O(log n)$ steps without any visible loss in performance, where $n$ is the total sequence length.
comment: 33 pages, 1 figure
☆ DR. WELL: Dynamic Reasoning and Learning with Symbolic World Model for Embodied LLM-Based Multi-Agent Collaboration
Cooperative multi-agent planning requires agents to make joint decisions with partial information and limited communication. Coordination at the trajectory level often fails, as small deviations in timing or movement cascade into conflicts. Symbolic planning mitigates this challenge by raising the level of abstraction and providing a minimal vocabulary of actions that enable synchronization and collective progress. We present DR. WELL, a decentralized neurosymbolic framework for cooperative multi-agent planning. Cooperation unfolds through a two-phase negotiation protocol: agents first propose candidate roles with reasoning and then commit to a joint allocation under consensus and environment constraints. After commitment, each agent independently generates and executes a symbolic plan for its role without revealing detailed trajectories. Plans are grounded in execution outcomes via a shared world model that encodes the current state and is updated as agents act. By reasoning over symbolic plans rather than raw trajectories, DR. WELL avoids brittle step-level alignment and enables higher-level operations that are reusable, synchronizable, and interpretable. Experiments on cooperative block-push tasks show that agents adapt across episodes, with the dynamic world model capturing reusable patterns and improving task completion rates and efficiency. Experiments on cooperative block-push tasks show that our dynamic world model improves task completion and efficiency through negotiation and self-refinement, trading a time overhead for evolving, more efficient collaboration strategies.
☆ Efficient probabilistic surrogate modeling techniques for partially-observed large-scale dynamical systems
This paper is concerned with probabilistic techniques for forecasting dynamical systems described by partial differential equations (such as, for example, the Navier-Stokes equations). In particular, it is investigating and comparing various extensions to the flow matching paradigm that reduce the number of sampling steps. In this regard, it compares direct distillation, progressive distillation, adversarial diffusion distillation, Wasserstein GANs and rectified flows. Moreover, experiments are conducted on a set of challenging systems. In particular, we also address the challenge of directly predicting 2D slices of large-scale 3D simulations, paving the way for efficient inflow generation for solvers.
☆ Addressing divergent representations from causal interventions on neural networks
A common approach to mechanistic interpretability is to causally manipulate model representations via targeted interventions in order to understand what those representations encode. Here we ask whether such interventions create out-of-distribution (divergent) representations, and whether this raises concerns about how faithful their resulting explanations are to the target model in its natural state. First, we demonstrate empirically that common causal intervention techniques often do shift internal representations away from the natural distribution of the target model. Then, we provide a theoretical analysis of two classes of such divergences: `harmless' divergences that occur in the null-space of the weights and from covariance within behavioral decision boundaries, and `pernicious' divergences that activate hidden network pathways and cause dormant behavioral changes. Finally, in an effort to mitigate the pernicious cases, we modify the Counterfactual Latent (CL) loss from Grant (2025) that regularizes interventions to remain closer to the natural distributions, reducing the likelihood of harmful divergences while preserving the interpretive power of interventions. Together, these results highlight a path towards more reliable interpretability methods.
☆ ODE approximation for the Adam algorithm: General and overparametrized setting
The Adam optimizer is currently presumably the most popular optimization method in deep learning. In this article we develop an ODE based method to study the Adam optimizer in a fast-slow scaling regime. For fixed momentum parameters and vanishing step-sizes, we show that the Adam algorithm is an asymptotic pseudo-trajectory of the flow of a particular vector field, which is referred to as the Adam vector field. Leveraging properties of asymptotic pseudo-trajectories, we establish convergence results for the Adam algorithm. In particular, in a very general setting we show that if the Adam algorithm converges, then the limit must be a zero of the Adam vector field, rather than a local minimizer or critical point of the objective function. In contrast, in the overparametrized empirical risk minimization setting, the Adam algorithm is able to locally find the set of minima. Specifically, we show that in a neighborhood of the global minima, the objective function serves as a Lyapunov function for the flow induced by the Adam vector field. As a consequence, if the Adam algorithm enters a neighborhood of the global minima infinitely often, it converges to the set of global minima.
☆ Dynamic causal discovery in Alzheimer's disease through latent pseudotime modelling NeurIPS 2025
The application of causal discovery to diseases like Alzheimer's (AD) is limited by the static graph assumptions of most methods; such models cannot account for an evolving pathophysiology, modulated by a latent disease pseudotime. We propose to apply an existing latent variable model to real-world AD data, inferring a pseudotime that orders patients along a data-driven disease trajectory independent of chronological age, then learning how causal relationships evolve. Pseudotime outperformed age in predicting diagnosis (AUC 0.82 vs 0.59). Incorporating minimal, disease-agnostic background knowledge substantially improved graph accuracy and orientation. Our framework reveals dynamic interactions between novel (NfL, GFAP) and established AD markers, enabling practical causal discovery despite violated assumptions.
comment: Accepted to the NeurIPS 2025 Workshop on CauScien: Uncovering Causality in Science
☆ evomap: A Toolbox for Dynamic Mapping in Python
This paper presents evomap, a Python package for dynamic mapping. Mapping methods are widely used across disciplines to visualize relationships among objects as spatial representations, or maps. However, most existing statistical software supports only static mapping, which captures objects' relationships at a single point in time and lacks tools to analyze how these relationships evolve. evomap fills this gap by implementing the dynamic mapping framework EvoMap, originally proposed by Matthe, Ringel, and Skiera (2023), which adapts traditional static mapping methods for dynamic analyses. The package supports multiple mapping techniques, including variants of Multidimensional Scaling (MDS), Sammon Mapping, and t-distributed Stochastic Neighbor Embedding (t-SNE). It also includes utilities for data preprocessing, exploration, and result evaluation, offering a comprehensive toolkit for dynamic mapping applications. This paper outlines the foundations of static and dynamic mapping, describes the architecture and functionality of evomap, and illustrates its application through an extensive usage example.
comment: Accepted for publication by the Journal of Statistical Software
☆ Environment Agnostic Goal-Conditioning, A Study of Reward-Free Autonomous Learning
In this paper we study how transforming regular reinforcement learning environments into goal-conditioned environments can let agents learn to solve tasks autonomously and reward-free. We show that an agent can learn to solve tasks by selecting its own goals in an environment-agnostic way, at training times comparable to externally guided reinforcement learning. Our method is independent of the underlying off-policy learning algorithm. Since our method is environment-agnostic, the agent does not value any goals higher than others, leading to instability in performance for individual goals. However, in our experiments, we show that the average goal success rate improves and stabilizes. An agent trained with this method can be instructed to seek any observations made in the environment, enabling generic training of agents prior to specific use cases.
comment: 8 pages without cover, references and supplementary materials, 11 with. Submitted to RLC 2025's workshop RLBrew and IMOL 2025
☆ Regret Lower Bounds for Decentralized Multi-Agent Stochastic Shortest Path Problems NeurIPS 2025
Multi-agent systems (MAS) are central to applications such as swarm robotics and traffic routing, where agents must coordinate in a decentralized manner to achieve a common objective. Stochastic Shortest Path (SSP) problems provide a natural framework for modeling decentralized control in such settings. While the problem of learning in SSP has been extensively studied in single-agent settings, the decentralized multi-agent variant remains largely unexplored. In this work, we take a step towards addressing that gap. We study decentralized multi-agent SSPs (Dec-MASSPs) under linear function approximation, where the transition dynamics and costs are represented using linear models. Applying novel symmetry-based arguments, we identify the structure of optimal policies. Our main contribution is the first regret lower bound for this setting based on the construction of hard-to-learn instances for any number of agents, $n$. Our regret lower bound of $\Omega(\sqrt{K})$, over $K$ episodes, highlights the inherent learning difficulty in Dec-MASSPs. These insights clarify the learning complexity of decentralized control and can further guide the design of efficient learning algorithms in multi-agent systems.
comment: To appear in 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Complexity as Advantage: A Regret-Based Perspective on Emergent Structure ICML 2026
We introduce Complexity as Advantage (CAA), a framework that defines the complexity of a system relative to a family of observers. Instead of measuring complexity as an intrinsic property, we evaluate how much predictive regret a system induces for different observers attempting to model it. A system is complex when it is easy for some observers and hard for others, creating an information advantage. We show that this formulation unifies several notions of emergent behavior, including multiscale entropy, predictive information, and observer-dependent structure. The framework suggests that "interesting" systems are those positioned to create differentiated regret across observers, providing a quantitative grounding for why complexity can be functionally valuable. We demonstrate the idea through simple dynamical models and discuss implications for learning, evolution, and artificial agents.
comment: 15 pages. Under preparation for submission to ICML 2026. Feedback welcome
☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, validates them through rigorous experimentation, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We hope these insights will deepen understanding of current progress and risks in AI Scientist development.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
☆ Physics-Informed Neural Networks and Neural Operators for Parametric PDEs: A Human-AI Collaborative Analysis
PDEs arise ubiquitously in science and engineering, where solutions depend on parameters (physical properties, boundary conditions, geometry). Traditional numerical methods require re-solving the PDE for each parameter, making parameter space exploration prohibitively expensive. Recent machine learning advances, particularly physics-informed neural networks (PINNs) and neural operators, have revolutionized parametric PDE solving by learning solution operators that generalize across parameter spaces. We critically analyze two main paradigms: (1) PINNs, which embed physical laws as soft constraints and excel at inverse problems with sparse data, and (2) neural operators (e.g., DeepONet, Fourier Neural Operator), which learn mappings between infinite-dimensional function spaces and achieve unprecedented generalization. Through comparisons across fluid dynamics, solid mechanics, heat transfer, and electromagnetics, we show neural operators can achieve computational speedups of $10^3$ to $10^5$ times faster than traditional solvers for multi-query scenarios, while maintaining comparable accuracy. We provide practical guidance for method selection, discuss theoretical foundations (universal approximation, convergence), and identify critical open challenges: high-dimensional parameters, complex geometries, and out-of-distribution generalization. This work establishes a unified framework for understanding parametric PDE solvers via operator learning, offering a comprehensive, incrementally updated resource for this rapidly evolving field
comment: 61 pages, 3 figures. Submitted to The 1st International Conference on AI Scientists (ICAIS 2025)
☆ ARETE: an R package for Automated REtrieval from TExt with large language models
1. A hard stop for the implementation of rigorous conservation initiatives is our lack of key species data, especially occurrence data. Furthermore, researchers have to contend with an accelerated speed at which new information must be collected and processed due to anthropogenic activity. Publications ranging from scientific papers to gray literature contain this crucial information but their data are often not machine-readable, requiring extensive human work to be retrieved. 2. We present the ARETE R package, an open-source software aiming to automate data extraction of species occurrences powered by large language models, namely using the chatGPT Application Programming Interface. This R package integrates all steps of the data extraction and validation process, from Optical Character Recognition to detection of outliers and output in tabular format. Furthermore, we validate ARETE through systematic comparison between what is modelled and the work of human annotators. 3. We demonstrate the usefulness of the approach by comparing range maps produced using GBIF data and with those automatically extracted for 100 species of spiders. Newly extracted data allowed to expand the known Extent of Occurrence by a mean three orders of magnitude, revealing new areas where the species were found in the past, which mayhave important implications for spatial conservation planning and extinction risk assessments. 4. ARETE allows faster access to hitherto untapped occurrence data, a potential game changer in projects requiring such data. Researchers will be able to better prioritize resources, manually verifying selected species while maintaining automated extraction for the majority. This workflow also allows predicting available bibliographic data during project planning.
☆ Riesz Regression As Direct Density Ratio Estimation
Riesz regression has garnered attention as a tool in debiased machine learning for causal and structural parameter estimation (Chernozhukov et al., 2021). This study shows that Riesz regression is closely related to direct density-ratio estimation (DRE) in important cases, including average treat- ment effect (ATE) estimation. Specifically, the idea and objective in Riesz regression coincide with the one in least-squares importance fitting (LSIF, Kanamori et al., 2009) in direct density-ratio estimation. While Riesz regression is general in the sense that it can be applied to Riesz representer estimation in a wide class of problems, the equivalence with DRE allows us to directly import exist- ing results in specific cases, including convergence-rate analyses, the selection of loss functions via Bregman-divergence minimization, and regularization techniques for flexible models, such as neural networks. Conversely, insights about the Riesz representer in debiased machine learning broaden the applications of direct density-ratio estimation methods. This paper consolidates our prior results in Kato (2025a) and Kato (2025b).
☆ Machine Learning for Electron-Scale Turbulence Modeling in W7-X
Constructing reduced models for turbulent transport is essential for accelerating profile predictions and enabling many-query tasks such as uncertainty quantification, parameter scans, and design optimization. This paper presents machine-learning-driven reduced models for Electron Temperature Gradient (ETG) turbulence in the Wendelstein 7-X (W7-X) stellarator. Each model predicts the ETG heat flux as a function of three plasma parameters: the normalized electron temperature radial gradient ($\omega_{T_e}$), the ratio of normalized electron temperature and density radial gradients ($\eta_e$), and the electron-to-ion temperature ratio ($\tau$). We first construct models across seven radial locations using regression and an active machine-learning-based procedure. This process initializes models using low-cardinality sparse-grid training data and then iteratively refines their training sets by selecting the most informative points from a pre-existing simulation database. We evaluate the prediction capabilities of our models using out-of-sample datasets with over $393$ points per location, and $95\%$ prediction intervals are estimated via bootstrapping to assess prediction uncertainty. We then investigate the construction of generalized reduced models, including a generic, position-independent model, and assess their heat flux prediction capabilities at three additional locations. Our models demonstrate robust performance and predictive accuracy comparable to the original reference simulations, even when applied beyond the training domain.
comment: 13 pages, 7 tables, 11 figures
☆ Uncertainties in Physics-informed Inverse Problems: The Hidden Risk in Scientific AI
Physics-informed machine learning (PIML) integrates partial differential equations (PDEs) into machine learning models to solve inverse problems, such as estimating coefficient functions (e.g., the Hamiltonian function) that characterize physical systems. This framework enables data-driven understanding and prediction of complex physical phenomena. While coefficient functions in PIML are typically estimated on the basis of predictive performance, physics as a discipline does not rely solely on prediction accuracy to evaluate models. For example, Kepler's heliocentric model was favored owing to small discrepancies in planetary motion, despite its similar predictive accuracy to the geocentric model. This highlights the inherent uncertainties in data-driven model inference and the scientific importance of selecting physically meaningful solutions. In this paper, we propose a framework to quantify and analyze such uncertainties in the estimation of coefficient functions in PIML. We apply our framework to reduced model of magnetohydrodynamics and our framework shows that there are uncertainties, and unique identification is possible with geometric constraints. Finally, we confirm that we can estimate the reduced model uniquely by incorporating these constraints.
comment: 17 pages, 6 figures
☆ Integrating Temporal and Structural Context in Graph Transformers for Relational Deep Learning
In domains such as healthcare, finance, and e-commerce, the temporal dynamics of relational data emerge from complex interactions-such as those between patients and providers, or users and products across diverse categories. To be broadly useful, models operating on these data must integrate long-range spatial and temporal dependencies across diverse types of entities, while also supporting multiple predictive tasks. However, existing graph models for relational data primarily focus on spatial structure, treating temporal information merely as a filtering constraint to exclude future events rather than a modeling signal, and are typically designed for single-task prediction. To address these gaps, we introduce a temporal subgraph sampler that enhances global context by retrieving nodes beyond the immediate neighborhood to capture temporally relevant relationships. In addition, we propose the Relational Graph Perceiver (RGP), a graph transformer architecture for relational deep learning that leverages a cross-attention-based latent bottleneck to efficiently integrate information from both structural and temporal contexts. This latent bottleneck integrates signals from different node and edge types into a common latent space, enabling the model to build global context across the entire relational system. RGP also incorporates a flexible cross-attention decoder that supports joint learning across tasks with disjoint label spaces within a single model. Experiments on RelBench, SALT, and CTU show that RGP delivers state-of-the-art performance, offering a general and scalable solution for relational deep learning with support for diverse predictive tasks.
☆ Confidential Computing for Cloud Security: Exploring Hardware based Encryption Using Trusted Execution Environments
The growth of cloud computing has revolutionized data processing and storage capacities to another levels of scalability and flexibility. But in the process, it has created a huge challenge of security, especially in terms of safeguarding sensitive data. Classical security practices, including encryption at rest and during transit, fail to protect data in use and expose it to various possible breaches. In response to this problem , Confidential Computing has been a tool ,seeking to secure data in processing by usage of hardware-based Trusted Execution Environments (TEEs). TEEs, including Intel's Software Guard Extensions (SGX) and ARM's TrustZone, offers protected contexts within the processor, where data is kept confidential ,intact and secure , even with malicious software or compromised operating systems. In this research, we have explored the architecture and security features of TEEs like Intel SGX and ARM TrustZone, and their effectiveness in improving cloud data security. From a thorough literature survey ,we have analyzed the deployment strategies, performance indicators, and practical uses of these TEEs for the same purpose. In addition, we have discussed the issues regarding deployment, possible weaknesses, scalability issues, and integration issues. Our results focuses on the central position of TEEs in strengthening and advancing cloud security infrastructures, pointing towards their ability to create a secure foundation for Confidential Computing.
☆ Unified Generative Latent Representation for Functional Brain Graphs NeurIPS 2025
Functional brain graphs are often characterized with separate graph-theoretic or spectral descriptors, overlooking how these properties covary and partially overlap across brains and conditions. We anticipate that dense, weighted functional connectivity graphs occupy a low-dimensional latent geometry along which both topological and spectral structures display graded variations. Here, we estimated this unified graph representation and enabled generation of dense functional brain graphs through a graph transformer autoencoder with latent diffusion, with spectral geometry providing an inductive bias to guide learning. This geometry-aware latent representation, although unsupervised, meaningfully separated working-memory states and decoded visual stimuli, with performance further enhanced by incorporating neural dynamics. From the diffusion modeled distribution, we were able to sample biologically plausible and structurally grounded synthetic dense graphs.
comment: NeurIPS 2025 Workshop on Symmetry and Geometry in Neural Representations
☆ Uncertainty Quantification for Reduced-Order Surrogate Models Applied to Cloud Microphysics NeurIPS 2025
Reduced-order models (ROMs) can efficiently simulate high-dimensional physical systems, but lack robust uncertainty quantification methods. Existing approaches are frequently architecture- or training-specific, which limits flexibility and generalization. We introduce a post hoc, model-agnostic framework for predictive uncertainty quantification in latent space ROMs that requires no modification to the underlying architecture or training procedure. Using conformal prediction, our approach estimates statistical prediction intervals for multiple components of the ROM pipeline: latent dynamics, reconstruction, and end-to-end predictions. We demonstrate the method on a latent space dynamical model for cloud microphysics, where it accurately predicts the evolution of droplet-size distributions and quantifies uncertainty across the ROM pipeline.
comment: Accepted at the NeurIPS 2025 Workshop on Machine Learning and the Physical Sciences (ML4PS). 11 pages, 4 figures, 1 table. LLNL-CONF-2010541
☆ End-to-End Reinforcement Learning of Koopman Models for eNMPC of an Air Separation Unit
With our recently proposed method based on reinforcement learning (Mayfrank et al. (2024), Comput. Chem. Eng. 190), Koopman surrogate models can be trained for optimal performance in specific (economic) nonlinear model predictive control ((e)NMPC) applications. So far, our method has exclusively been demonstrated on a small-scale case study. Herein, we show that our method scales well to a more challenging demand response case study built on a large-scale model of a single-product (nitrogen) air separation unit. Across all numerical experiments, we assume observability of only a few realistically measurable plant variables. Compared to a purely system identification-based Koopman eNMPC, which generates small economic savings but frequently violates constraints, our method delivers similar economic performance while avoiding constraint violations.
comment: manuscript (8 pages, 5 figures, 1 table), supplementary materials (5 pages, 1 figure, 1 table)
☆ Comparing EPGP Surrogates and Finite Elements Under Degree-of-Freedom Parity
We present a new benchmarking study comparing a boundary-constrained Ehrenpreis--Palamodov Gaussian Process (B-EPGP) surrogate with a classical finite element method combined with Crank--Nicolson time stepping (CN-FEM) for solving the two-dimensional wave equation with homogeneous Dirichlet boundary conditions. The B-EPGP construction leverages exponential-polynomial bases derived from the characteristic variety to enforce the PDE and boundary conditions exactly and employs penalized least squares to estimate the coefficients. To ensure fairness across paradigms, we introduce a degrees-of-freedom (DoF) matching protocol. Under matched DoF, B-EPGP consistently attains lower space-time $L^2$-error and maximum-in-time $L^{2}$-error in space than CN-FEM, improving accuracy by roughly two orders of magnitude.
comment: 14 pages, 2 figures
☆ Linear Mode Connectivity under Data Shifts for Deep Ensembles of Image Classifiers
The phenomenon of linear mode connectivity (LMC) links several aspects of deep learning, including training stability under noisy stochastic gradients, the smoothness and generalization of local minima (basins), the similarity and functional diversity of sampled models, and architectural effects on data processing. In this work, we experimentally study LMC under data shifts and identify conditions that mitigate their impact. We interpret data shifts as an additional source of stochastic gradient noise, which can be reduced through small learning rates and large batch sizes. These parameters influence whether models converge to the same local minimum or to regions of the loss landscape with varying smoothness and generalization. Although models sampled via LMC tend to make similar errors more frequently than those converging to different basins, the benefit of LMC lies in balancing training efficiency against the gains achieved from larger, more diverse ensembles. Code and supplementary materials will be made publicly available at https://github.com/DLR-KI/LMC in due course.
comment: 16 pages, 22 figures
☆ Alternative Fairness and Accuracy Optimization in Criminal Justice AAAI 2026
Algorithmic fairness has grown rapidly as a research area, yet key concepts remain unsettled, especially in criminal justice. We review group, individual, and process fairness and map the conditions under which they conflict. We then develop a simple modification to standard group fairness. Rather than exact parity across protected groups, we minimize a weighted error loss while keeping differences in false negative rates within a small tolerance. This makes solutions easier to find, can raise predictive accuracy, and surfaces the ethical choice of error costs. We situate this proposal within three classes of critique: biased and incomplete data, latent affirmative action, and the explosion of subgroup constraints. Finally, we offer a practical framework for deployment in public decision systems built on three pillars: need-based decisions, Transparency and accountability, and narrowly tailored definitions and solutions. Together, these elements link technical design to legitimacy and provide actionable guidance for agencies that use risk assessment and related tools.
comment: Accepted for presentation at the AAAI 2026 AI Governance Workshop (AIGOV). 24 pages
☆ Distribution-Aware Tensor Decomposition for Compression of Convolutional Neural Networks
Neural networks are widely used for image-related tasks but typically demand considerable computing power. Once a network has been trained, however, its memory- and compute-footprint can be reduced by compression. In this work, we focus on compression through tensorization and low-rank representations. Whereas classical approaches search for a low-rank approximation by minimizing an isotropic norm such as the Frobenius norm in weight-space, we use data-informed norms that measure the error in function space. Concretely, we minimize the change in the layer's output distribution, which can be expressed as $\lVert (W - \widetilde{W}) \Sigma^{1/2}\rVert_F$ where $\Sigma^{1/2}$ is the square root of the covariance matrix of the layer's input and $W$, $\widetilde{W}$ are the original and compressed weights. We propose new alternating least square algorithms for the two most common tensor decompositions (Tucker-2 and CPD) that directly optimize the new norm. Unlike conventional compression pipelines, which almost always require post-compression fine-tuning, our data-informed approach often achieves competitive accuracy without any fine-tuning. We further show that the same covariance-based norm can be transferred from one dataset to another with only a minor accuracy drop, enabling compression even when the original training dataset is unavailable. Experiments on several CNN architectures (ResNet-18/50, and GoogLeNet) and datasets (ImageNet, FGVC-Aircraft, Cifar10, and Cifar100) confirm the advantages of the proposed method.
☆ RUST-BENCH: Benchmarking LLM Reasoning on Unstructured Text within Structured Tables
Existing tabular reasoning benchmarks mostly test models on small, uniform tables, underrepresenting the complexity of real-world data and giving an incomplete view of Large Language Models' (LLMs) reasoning abilities. Real tables are long, heterogeneous, and domain-specific, mixing structured fields with free text and requiring multi-hop reasoning across thousands of tokens. To address this gap, we introduce RUST-BENCH, a benchmark of 7966 questions from 2031 real-world tables spanning two domains: i) RB-Science (NSF grant records) and ii) RB-Sports (NBA statistics). Unlike prior work, RUST-BENCH evaluates LLMs jointly across scale, heterogeneity, domain specificity, and reasoning complexity. Experiments with open-source and proprietary models show that LLMs struggle with heterogeneous schemas and complex multi-hop inference, revealing persistent weaknesses in current architectures and prompting strategies. RUST-BENCH establishes a challenging new testbed for advancing tabular reasoning research.
☆ Q3R: Quadratic Reweighted Rank Regularizer for Effective Low-Rank Training
Parameter-efficient training, based on low-rank optimization, has become a highly successful tool for fine-tuning large deep-learning models. However, these methods fail at low-rank pre-training tasks where maintaining the low-rank structure and the objective remains a challenging task. We propose the Quadratic Reweighted Rank Regularizer dubbed Q3R, which leads to a novel low-rank inducing training strategy inspired by the iteratively reweighted least squares (IRLS) framework. Q3R is based on a quadratic regularizer term which majorizes a smoothed log determinant serving as rank surrogate objective. Unlike other low-rank training techniques, Q3R is able to train weight matrices with prescribed, low target ranks of models that achieve comparable predictive performance as dense models, with small computational overhead, while remaining fully compatible with existing architectures. For example, we demonstrated one experiment where we are able to truncate $60\%$ and $80\%$ of the parameters of a ViT-Tiny model with $~1.3\%$ and $~4\%$ accuracy drop in CIFAR-10 performance respectively. The efficacy of Q3R is confirmed on Transformers across both image and language tasks, including for low-rank fine-tuning.
☆ Online Algorithms for Repeated Optimal Stopping: Achieving Both Competitive Ratio and Regret Bounds
We study the repeated optimal stopping problem, which generalizes the classical optimal stopping problem with an unknown distribution to a setting where the same problem is solved repeatedly over $T$ rounds. In this framework, we aim to design algorithms that guarantee a competitive ratio in each round while also achieving sublinear regret across all rounds. Our primary contribution is a general algorithmic framework that achieves these objectives simultaneously for a wide array of repeated optimal stopping problems. The core idea is to dynamically select an algorithm for each round, choosing between two candidates: (1) an empirically optimal algorithm derived from the history of observations, and (2) a sample-based algorithm with a proven competitive ratio guarantee. Based on this approach, we design an algorithm that performs no worse than the baseline sample-based algorithm in every round, while ensuring that the total regret is bounded by $\tilde{O}(\sqrt{T})$. We demonstrate the broad applicability of our framework to canonical problems, including the prophet inequality, the secretary problem, and their variants under adversarial, random, and i.i.d. input models. For example, for the repeated prophet inequality problem, our method achieves a $1/2$-competitive ratio from the second round on and an $\tilde{O}(\sqrt{T})$ regret. Furthermore, we establish a regret lower bound of $\Omega(\sqrt{T})$ even in the i.i.d. model, confirming that our algorithm's performance is almost optimal with respect to the number of rounds.
comment: 33 pages
☆ Ground-Truth Subgraphs for Better Training and Evaluation of Knowledge Graph Augmented LLMs
Retrieval of information from graph-structured knowledge bases represents a promising direction for improving the factuality of LLMs. While various solutions have been proposed, a comparison of methods is difficult due to the lack of challenging QA datasets with ground-truth targets for graph retrieval. We present SynthKGQA, a framework for generating high-quality synthetic Knowledge Graph Question Answering datasets from any Knowledge Graph, providing the full set of ground-truth facts in the KG to reason over each question. We show how, in addition to enabling more informative benchmarking of KG retrievers, the data produced with SynthKGQA also allows us to train better models. We apply SynthKGQA to Wikidata to generate GTSQA, a new dataset designed to test zero-shot generalization abilities of KG retrievers with respect to unseen graph structures and relation types, and benchmark popular solutions for KG-augmented LLMs on it.
☆ Towards Causal Market Simulators
Market generators using deep generative models have shown promise for synthetic financial data generation, but existing approaches lack causal reasoning capabilities essential for counterfactual analysis and risk assessment. We propose a Time-series Neural Causal Model VAE (TNCM-VAE) that combines variational autoencoders with structural causal models to generate counterfactual financial time series while preserving both temporal dependencies and causal relationships. Our approach enforces causal constraints through directed acyclic graphs in the decoder architecture and employs the causal Wasserstein distance for training. We validate our method on synthetic autoregressive models inspired by the Ornstein-Uhlenbeck process, demonstrating superior performance in counterfactual probability estimation with L1 distances as low as 0.03-0.10 compared to ground truth. The model enables financial stress testing, scenario analysis, and enhanced backtesting by generating plausible counterfactual market trajectories that respect underlying causal mechanisms.
comment: ICAIF 2025 Workshop on Rethinking Financial Time-Series
☆ Fraud-Proof Revenue Division on Subscription Platforms ICML
We study a model of subscription-based platforms where users pay a fixed fee for unlimited access to content, and creators receive a share of the revenue. Existing approaches to detecting fraud predominantly rely on machine learning methods, engaging in an ongoing arms race with bad actors. We explore revenue division mechanisms that inherently disincentivize manipulation. We formalize three types of manipulation-resistance axioms and examine which existing rules satisfy these. We show that a mechanism widely used by streaming platforms, not only fails to prevent fraud, but also makes detecting manipulation computationally intractable. We also introduce a novel rule, ScaledUserProp, that satisfies all three manipulation-resistance axioms. Finally, experiments with both real-world and synthetic streaming data support ScaledUserProp as a fairer alternative compared to existing rules.
comment: Appears in the 42nd International Conference on Machine Learning (ICML), 2025
☆ Data-driven uncertainty-aware seakeeping prediction of the Delft 372 catamaran using ensemble Hankel dynamic mode decomposition
In this study, we present and validate an ensemble-based Hankel Dynamic Mode Decomposition with control (HDMDc) for uncertainty-aware seakeeping predictions of a high-speed catamaran, namely the Delft 372 model. Experimental measurements (time histories) of wave elevation at the longitudinal center of gravity, heave, pitch, notional flight-deck velocity, notional bridge acceleration, and total resistance were collected from irregular wave basin tests on a 1:33.3 scale replica of the Delft 372 model under sea state 5 conditions at Fr = 0.425, and organized into training, validation, and test sets. The HDMDc algorithm constructs an equation-free linear reduced-order model of the seakeeping vessel by augmenting states and inputs with their time-lagged copies to capture nonlinear and memory effects. Two ensembling strategies, namely Bayesian HDMDc (BHDMDc), which samples hyperparameters considered stochastic variables with prior distribution to produce posterior mean forecasts with confidence intervals, and Frequentist HDMDc (FHDMDc), which aggregates multiple model obtained over data subsets, are compared in providing seakeeping prediction and uncertainty quantification. The FHDMDc approach is found to improve the accuracy of the predictions compared to the deterministic counterpart, also providing robust uncertainty estimation; whereas the application of BHDMDc to the present test case is not found beneficial in comparison to the deterministic model. FHDMDc-derived probability density functions for the motions closely match both experimental data and URANS results, demonstrating reliable and computationally efficient seakeeping prediction for design and operational support.
☆ Federated Stochastic Minimax Optimization under Heavy-Tailed Noises
Heavy-tailed noise has attracted growing attention in nonconvex stochastic optimization, as numerous empirical studies suggest it offers a more realistic assumption than standard bounded variance assumption. In this work, we investigate nonconvex-PL minimax optimization under heavy-tailed gradient noise in federated learning. We propose two novel algorithms: Fed-NSGDA-M, which integrates normalized gradients, and FedMuon-DA, which leverages the Muon optimizer for local updates. Both algorithms are designed to effectively address heavy-tailed noise in federated minimax optimization, under a milder condition. We theoretically establish that both algorithms achieve a convergence rate of $O({1}/{(TNp)^{\frac{s-1}{2s}}})$. To the best of our knowledge, these are the first federated minimax optimization algorithms with rigorous theoretical guarantees under heavy-tailed noise. Extensive experiments further validate their effectiveness.
☆ Fitting Reinforcement Learning Model to Behavioral Data under Bandits
We consider the problem of fitting a reinforcement learning (RL) model to some given behavioral data under a multi-armed bandit environment. These models have received much attention in recent years for characterizing human and animal decision making behavior. We provide a generic mathematical optimization problem formulation for the fitting problem of a wide range of RL models that appear frequently in scientific research applications, followed by a detailed theoretical analysis of its convexity properties. Based on the theoretical results, we introduce a novel solution method for the fitting problem of RL models based on convex relaxation and optimization. Our method is then evaluated in several simulated bandit environments to compare with some benchmark methods that appear in the literature. Numerical results indicate that our method achieves comparable performance to the state-of-the-art, while significantly reducing computation time. We also provide an open-source Python package for our proposed method to empower researchers to apply it in the analysis of their datasets directly, without prior knowledge of convex optimization.
☆ Deep Dictionary-Free Method for Identifying Linear Model of Nonlinear System with Input Delay
Nonlinear dynamical systems with input delays pose significant challenges for prediction, estimation, and control due to their inherent complexity and the impact of delays on system behavior. Traditional linear control techniques often fail in these contexts, necessitating innovative approaches. This paper introduces a novel approach to approximate the Koopman operator using an LSTM-enhanced Deep Koopman model, enabling linear representations of nonlinear systems with time delays. By incorporating Long Short-Term Memory (LSTM) layers, the proposed framework captures historical dependencies and efficiently encodes time-delayed system dynamics into a latent space. Unlike traditional extended Dynamic Mode Decomposition (eDMD) approaches that rely on predefined dictionaries, the LSTM-enhanced Deep Koopman model is dictionary-free, which mitigates the problems with the underlying dynamics being known and incorporated into the dictionary. Quantitative comparisons with extended eDMD on a simulated system demonstrate highly significant performance gains in prediction accuracy in cases where the true nonlinear dynamics are unknown and achieve comparable results to eDMD with known dynamics of a system.
☆ ForecastGAN: A Decomposition-Based Adversarial Framework for Multi-Horizon Time Series Forecasting
Time series forecasting is essential across domains from finance to supply chain management. This paper introduces ForecastGAN, a novel decomposition based adversarial framework addressing limitations in existing approaches for multi-horizon predictions. Although transformer models excel in long-term forecasting, they often underperform in short-term scenarios and typically ignore categorical features. ForecastGAN operates through three integrated modules: a Decomposition Module that extracts seasonality and trend components; a Model Selection Module that identifies optimal neural network configurations based on forecasting horizon; and an Adversarial Training Module that enhances prediction robustness through Conditional Generative Adversarial Network training. Unlike conventional approaches, ForecastGAN effectively integrates both numerical and categorical features. We validate our framework on eleven benchmark multivariate time series datasets that span various forecasting horizons. The results show that ForecastGAN consistently outperforms state-of-the-art transformer models for short-term forecasting while remaining competitive for long-term horizons. This research establishes a more generalizable approach to time series forecasting that adapts to specific contexts while maintaining strong performance across diverse data characteristics without extensive hyperparameter tuning.
comment: Portions of this work were previously published in the author's Master's thesis at University of Windsor (2024)
☆ The Peril of Preference: Why GRPO fails on Ordinal Rewards
Group-relative Policy Optimization's (GRPO) simplicity makes it highly desirable for adapting LLMs to become experts at specific tasks. But this simplicity also makes it ill-specified as we seek to enhance RL training with richer, non-binary feedback. When using ordinal rewards to give partial credit, GRPO's simplicity starts to hurt, as its group-average baseline often assigns a positive advantage to failed trajectories and reinforces incorrect behavior. We introduce Correctness Relative Policy Optimization (CoRPO), a new formulation that solves this flaw. CoRPO uses an adaptive baseline that enforces a minimum quality threshold, ensuring failed solutions are never positively reinforced. Once the policy consistently meets this threshold, the baseline automatically transitions to a relative preference mode, pushing the model to find optimal solutions rather than just "acceptable" ones. We empirically validate CoRPO on a code verification task, where it demonstrates more stable convergence and better out-of-domain generalization. This work represents a critical step in our broader research program to enable LLMs to learn genuinely new capabilities through reinforcement learning. We achieve this by enabling LLMs to learn from rich, multi-dimensional feedback - progressing from binary to ordinal rewards in this work, and onward to denser, per-step supervision.
☆ Deep Koopman Economic Model Predictive Control of a Pasteurisation Unit
This paper presents a deep Koopman-based Economic Model Predictive Control (EMPC) for efficient operation of a laboratory-scale pasteurization unit (PU). The method uses Koopman operator theory to transform the complex, nonlinear system dynamics into a linear representation, enabling the application of convex optimization while representing the complex PU accurately. The deep Koopman model utilizes neural networks to learn the linear dynamics from experimental data, achieving a 45% improvement in open-loop prediction accuracy over conventional N4SID subspace identification. Both analyzed models were employed in the EMPC formulation that includes interpretable economic costs, such as energy consumption, material losses due to inadequate pasteurization, and actuator wear. The feasibility of EMPC is ensured using slack variables. The deep Koopman EMPC and N4SID EMPC are numerically validated on a nonlinear model of multivariable PU under external disturbance. The disturbances include feed pump fail-to-close scenario and the introduction of a cold batch to be pastuerized. These results demonstrate that the deep Koopmand EMPC achieves a 32% reduction in total economic cost compared to the N4SID baseline. This improvement is mainly due to the reductions in material losses and energy consumption. Furthermore, the steady-state operation via Koopman-based EMPC requires 10.2% less electrical energy. The results highlight the practical advantages of integrating deep Koopman representations with economic optimization to achieve resource-efficient control of thermal-intensive plants.
☆ On the Equivalence of Regression and Classification
A formal link between regression and classification has been tenuous. Even though the margin maximization term $\|w\|$ is used in support vector regression, it has at best been justified as a regularizer. We show that a regression problem with $M$ samples lying on a hyperplane has a one-to-one equivalence with a linearly separable classification task with $2M$ samples. We show that margin maximization on the equivalent classification task leads to a different regression formulation than traditionally used. Using the equivalence, we demonstrate a ``regressability'' measure, that can be used to estimate the difficulty of regressing a dataset, without needing to first learn a model for it. We use the equivalence to train neural networks to learn a linearizing map, that transforms input variables into a space where a linear regressor is adequate.
comment: 19 pages
☆ The Illusion of Certainty: Uncertainty quantification for LLMs fails under ambiguity
Accurate uncertainty quantification (UQ) in Large Language Models (LLMs) is critical for trustworthy deployment. While real-world language is inherently ambiguous, reflecting aleatoric uncertainty, existing UQ methods are typically benchmarked against tasks with no ambiguity. In this work, we demonstrate that while current uncertainty estimators perform well under the restrictive assumption of no ambiguity, they degrade to close-to-random performance on ambiguous data. To this end, we introduce MAQA* and AmbigQA*, the first ambiguous question-answering (QA) datasets equipped with ground-truth answer distributions estimated from factual co-occurrence. We find this performance deterioration to be consistent across different estimation paradigms: using the predictive distribution itself, internal representations throughout the model, and an ensemble of models. We show that this phenomenon can be theoretically explained, revealing that predictive-distribution and ensemble-based estimators are fundamentally limited under ambiguity. Overall, our study reveals a key shortcoming of current UQ methods for LLMs and motivates a rethinking of current modeling paradigms.
☆ Online Bayesian Experimental Design for Partially Observed Dynamical Systems
Bayesian experimental design (BED) provides a principled framework for optimizing data collection, but existing approaches do not apply to crucial real-world settings such as dynamical systems with partial observability, where only noisy and incomplete observations are available. These systems are naturally modeled as state-space models (SSMs), where latent states mediate the link between parameters and data, making the likelihood -- and thus information-theoretic objectives like the expected information gain (EIG) -- intractable. In addition, the dynamical nature of the system requires online algorithms that update posterior distributions and select designs sequentially in a computationally efficient manner. We address these challenges by deriving new estimators of the EIG and its gradient that explicitly marginalize latent states, enabling scalable stochastic optimization in nonlinear SSMs. Our approach leverages nested particle filters (NPFs) for efficient online inference with convergence guarantees. Applications to realistic models, such as the susceptible-infected-recovered (SIR) and a moving source location task, show that our framework successfully handles both partial observability and online computation.
comment: 19 pages, 5 figures
☆ Spurious Correlation-Aware Embedding Regularization for Worst-Group Robustness
Deep learning models achieve strong performance across various domains but often rely on spurious correlations, making them vulnerable to distribution shifts. This issue is particularly severe in subpopulation shift scenarios, where models struggle in underrepresented groups. While existing methods have made progress in mitigating this issue, their performance gains are still constrained. They lack a rigorous theoretical framework connecting the embedding space representations with worst-group error. To address this limitation, we propose Spurious Correlation-Aware Embedding Regularization for Worst-Group Robustness (SCER), a novel approach that directly regularizes feature representations to suppress spurious cues. We show theoretically that worst-group error is influenced by how strongly the classifier relies on spurious versus core directions, identified from differences in group-wise mean embeddings across domains and classes. By imposing theoretical constraints at the embedding level, SCER encourages models to focus on core features while reducing sensitivity to spurious patterns. Through systematic evaluation on multiple vision and language, we show that SCER outperforms prior state-of-the-art studies in worst-group accuracy. Our code is available at \href{https://github.com/MLAI-Yonsei/SCER}{https://github.com/MLAI-Yonsei/SCER}.
☆ Multi-Task Learning for Visually Grounded Reasoning in Gastrointestinal VQA
We present a multi-task framework for the MediaEval Medico 2025 challenge, leveraging a LoRA-tuned Florence-2 model for simultaneous visual question answering (VQA), explanation generation, and visual grounding. The proposed system integrates three curated datasets: (1) Kvasir-VQA-x1 for question-answer learning, (2) a synthetically enriched explanation dataset offering structured medical reasoning, and (3) text-to-region pairs linking visual features with segmentation masks. This multi-task setup enables the model to jointly learn visual grounding, reasoning, and interpretation, producing responses that are both accurate and interpretable. Extensive evaluation demonstrates that our approach substantially improves over single-task baselines in both answer accuracy and visual localization, highlighting the effectiveness of grounded multi-task learning for medical VQA applications.
comment: This is a working paper submitted for Medico 2025: Visual Question Answering (with multimodal explanations) for Gastrointestinal Imaging at MediaEval 2025. 5 pages, 3 figures and 1 table
☆ MusRec: Zero-Shot Text-to-Music Editing via Rectified Flow and Diffusion Transformers
Music editing has emerged as an important and practical area of artificial intelligence, with applications ranging from video game and film music production to personalizing existing tracks according to user preferences. However, existing models face significant limitations, such as being restricted to editing synthesized music generated by their own models, requiring highly precise prompts, or necessitating task-specific retraining, thus lacking true zero-shot capability. Leveraging recent advances in rectified flow and diffusion transformers, we introduce MusRec, the first zero-shot text-to-music editing model capable of performing diverse editing tasks on real-world music efficiently and effectively. Experimental results demonstrate that our approach outperforms existing methods in preserving musical content, structural consistency, and editing fidelity, establishing a strong foundation for controllable music editing in real-world scenarios.
☆ Causal Regime Detection in Energy Markets With Augmented Time Series Structural Causal Models
Energy markets exhibit complex causal relationships between weather patterns, generation technologies, and price formation, with regime changes occurring continuously rather than at discrete break points. Current approaches model electricity prices without explicit causal interpretation or counterfactual reasoning capabilities. We introduce Augmented Time Series Causal Models (ATSCM) for energy markets, extending counterfactual reasoning frameworks to multivariate temporal data with learned causal structure. Our approach models energy systems through interpretable factors (weather, generation mix, demand patterns), rich grid dynamics, and observable market variables. We integrate neural causal discovery to learn time-varying causal graphs without requiring ground truth DAGs. Applied to real-world electricity price data, ATSCM enables novel counterfactual queries such as "What would prices be under different renewable generation scenarios?".
comment: EurIPS 2025 Workshop Causality for Impact: Practical challenges for real-world applications of causal methods
☆ Where Do LLMs Still Struggle? An In-Depth Analysis of Code Generation Benchmarks
Large Language Models (LLMs) have achieved remarkable success in code generation, and the race to improve their performance has become a central focus of AI research. Benchmarks and leaderboards are increasingly popular, offering quantitative rankings of LLMs. However, they provide limited insight into the tasks that LLMs consistently fail to solve - information that is crucial for understanding current limitations and guiding the development of more capable models. To address this gap, we examined code generation tasks across four popular benchmarks, identifying those that major LLMs are most likely to fail. To understand the causes of these failures, we investigated whether the static complexity of solution code contributes to them, followed by a systematic inspection of 114 tasks that LLMs consistently struggled with. Our analysis revealed four recurring patterns of weaknesses in LLMs, as well as common complications within benchmark tasks that most often lead to failure.
comment: To be published in Proceedings of 2025 2nd IEEE/ACM International Conference on AI-powered Software (AIware), Data & Benchmark Track
☆ Submanifold Sparse Convolutional Networks for Automated 3D Segmentation of Kidneys and Kidney Tumours in Computed Tomography
The accurate delineation of tumours in radiological images like Computed Tomography is a very specialised and time-consuming task, and currently a bottleneck preventing quantitative analyses to be performed routinely in the clinical setting. For this reason, developing methods for the automated segmentation of tumours in medical imaging is of the utmost importance and has driven significant efforts in recent years. However, challenges regarding the impracticality of 3D scans, given the large amount of voxels to be analysed, usually requires the downsampling of such images or using patches thereof when applying traditional convolutional neural networks. To overcome this problem, in this paper we propose a new methodology that uses, divided into two stages, voxel sparsification and submanifold sparse convolutional networks. This method allows segmentations to be performed with high-resolution inputs and a native 3D model architecture, obtaining state-of-the-art accuracies while significantly reducing the computational resources needed in terms of GPU memory and time. We studied the deployment of this methodology in the context of Computed Tomography images of renal cancer patients from the KiTS23 challenge, and our method achieved results competitive with the challenge winners, with Dice similarity coefficients of 95.8% for kidneys + masses, 85.7% for tumours + cysts, and 80.3% for tumours alone. Crucially, our method also offers significant computational improvements, achieving up to a 60% reduction in inference time and up to a 75\% reduction in VRAM usage compared to an equivalent dense architecture, across both CPU and various GPU cards tested.
comment: 12 pages, 5 figures
☆ LUME-DBN: Full Bayesian Learning of DBNs from Incomplete data in Intensive Care
Dynamic Bayesian networks (DBNs) are increasingly used in healthcare due to their ability to model complex temporal relationships in patient data while maintaining interpretability, an essential feature for clinical decision-making. However, existing approaches to handling missing data in longitudinal clinical datasets are largely derived from static Bayesian networks literature, failing to properly account for the temporal nature of the data. This gap limits the ability to quantify uncertainty over time, which is particularly critical in settings such as intensive care, where understanding the temporal dynamics is fundamental for model trustworthiness and applicability across diverse patient groups. Despite the potential of DBNs, a full Bayesian framework that integrates missing data handling remains underdeveloped. In this work, we propose a novel Gibbs sampling-based method for learning DBNs from incomplete data. Our method treats each missing value as an unknown parameter following a Gaussian distribution. At each iteration, the unobserved values are sampled from their full conditional distributions, allowing for principled imputation and uncertainty estimation. We evaluate our method on both simulated datasets and real-world intensive care data from critically ill patients. Compared to standard model-agnostic techniques such as MICE, our Bayesian approach demonstrates superior reconstruction accuracy and convergence properties. These results highlight the clinical relevance of incorporating full Bayesian inference in temporal models, providing more reliable imputations and offering deeper insight into model behavior. Our approach supports safer and more informed clinical decision-making, particularly in settings where missing data are frequent and potentially impactful.
comment: 27 pages, 8 figures, 3 tables, presented at HC@AIxIA + HYDRA 2025 Workshop located at ECAI 2025 Conference
☆ Differentially Private In-Context Learning with Nearest Neighbor Search NeurIPS
Differentially private in-context learning (DP-ICL) has recently become an active research topic due to the inherent privacy risks of in-context learning. However, existing approaches overlook a critical component of modern large language model (LLM) pipelines: the similarity search used to retrieve relevant context data. In this work, we introduce a DP framework for in-context learning that integrates nearest neighbor search of relevant examples in a privacy-aware manner. Our method outperforms existing baselines by a substantial margin across all evaluated benchmarks, achieving more favorable privacy-utility trade-offs. To achieve this, we employ nearest neighbor retrieval from a database of context data, combined with a privacy filter that tracks the cumulative privacy cost of selected samples to ensure adherence to a central differential privacy budget. Experimental results on text classification and document question answering show a clear advantage of the proposed method over existing baselines.
comment: NeurIPS Lock-LLM Workshop 2025
☆ AIM: Software and Hardware Co-design for Architecture-level IR-drop Mitigation in High-performance PIM
SRAM Processing-in-Memory (PIM) has emerged as the most promising implementation for high-performance PIM, delivering superior computing density, energy efficiency, and computational precision. However, the pursuit of higher performance necessitates more complex circuit designs and increased operating frequencies, which exacerbate IR-drop issues. Severe IR-drop can significantly degrade chip performance and even threaten reliability. Conventional circuit-level IR-drop mitigation methods, such as back-end optimizations, are resource-intensive and often compromise power, performance, and area (PPA). To address these challenges, we propose AIM, comprehensive software and hardware co-design for architecture-level IR-drop mitigation in high-performance PIM. Initially, leveraging the bit-serial and in-situ dataflow processing properties of PIM, we introduce Rtog and HR, which establish a direct correlation between PIM workloads and IR-drop. Building on this foundation, we propose LHR and WDS, enabling extensive exploration of architecture-level IR-drop mitigation while maintaining computational accuracy through software optimization. Subsequently, we develop IR-Booster, a dynamic adjustment mechanism that integrates software-level HR information with hardware-based IR-drop monitoring to adapt the V-f pairs of the PIM macro, achieving enhanced energy efficiency and performance. Finally, we propose the HR-aware task mapping method, bridging software and hardware designs to achieve optimal improvement. Post-layout simulation results on a 7nm 256-TOPS PIM chip demonstrate that AIM achieves up to 69.2% IR-drop mitigation, resulting in 2.29x energy efficiency improvement and 1.152x speedup.
comment: 18 pages, 22 figures, accepted by ISCA 2025
☆ DeepPAAC: A New Deep Galerkin Method for Principal-Agent Problems
We consider numerical resolution of principal-agent (PA) problems in continuous time. We formulate a generic PA model with continuous and lump payments and a multi-dimensional strategy of the agent. To tackle the resulting Hamilton-Jacobi-Bellman equation with an implicit Hamiltonian we develop a novel deep learning method: the Deep Principal-Agent Actor Critic (DeepPAAC) Actor-Critic algorithm. DeepPAAC is able to handle multi-dimensional states and controls, as well as constraints. We investigate the role of the neural network architecture, training designs, loss functions, etc. on the convergence of the solver, presenting five different case studies.
☆ Robustness of Minimum-Volume Nonnegative Matrix Factorization under an Expanded Sufficiently Scattered Condition
Minimum-volume nonnegative matrix factorization (min-vol NMF) has been used successfully in many applications, such as hyperspectral imaging, chemical kinetics, spectroscopy, topic modeling, and audio source separation. However, its robustness to noise has been a long-standing open problem. In this paper, we prove that min-vol NMF identifies the groundtruth factors in the presence of noise under a condition referred to as the expanded sufficiently scattered condition which requires the data points to be sufficiently well scattered in the latent simplex generated by the basis vectors.
comment: 38 pages, 4 figures
☆ Efficient Reinforcement Learning from Human Feedback via Bayesian Preference Inference
Learning from human preferences is a cornerstone of aligning machine learning models with subjective human judgments. Yet, collecting such preference data is often costly and time-consuming, motivating the need for more efficient learning paradigms. Two established approaches offer complementary advantages: RLHF scales effectively to high-dimensional tasks such as LLM fine-tuning, while PBO achieves greater sample efficiency through active querying. We propose a hybrid framework that unifies RLHF's scalability with PBO's query efficiency by integrating an acquisition-driven module into the RLHF pipeline, thereby enabling active and sample-efficient preference gathering. We validate the proposed approach on two representative domains: (i) high-dimensional preference optimization and (ii) LLM fine-tuning. Experimental results demonstrate consistent improvements in both sample efficiency and overall performance across these tasks.
☆ Online Conformal Inference with Retrospective Adjustment for Faster Adaptation to Distribution Shift
Conformal prediction has emerged as a powerful framework for constructing distribution-free prediction sets with guaranteed coverage assuming only the exchangeability assumption. However, this assumption is often violated in online environments where data distributions evolve over time. Several recent approaches have been proposed to address this limitation, but, typically, they slowly adapt to distribution shifts because they update predictions only in a forward manner, that is, they generate a prediction for a newly observed data point while previously computed predictions are not updated. In this paper, we propose a novel online conformal inference method with retrospective adjustment, which is designed to achieve faster adaptation to distributional shifts. Our method leverages regression approaches with efficient leave-one-out update formulas to retroactively adjust past predictions when new data arrive, thereby aligning the entire set of predictions with the most recent data distribution. Through extensive numerical studies performed on both synthetic and real-world data sets, we show that the proposed approach achieves faster coverage recalibration and improved statistical efficiency compared to existing online conformal prediction methods.
MedSapiens: Taking a Pose to Rethink Medical Imaging Landmark Detection
This paper does not introduce a novel architecture; instead, it revisits a fundamental yet overlooked baseline: adapting human-centric foundation models for anatomical landmark detection in medical imaging. While landmark detection has traditionally relied on domain-specific models, the emergence of large-scale pre-trained vision models presents new opportunities. In this study, we investigate the adaptation of Sapiens, a human-centric foundation model designed for pose estimation, to medical imaging through multi-dataset pretraining, establishing a new state of the art across multiple datasets. Our proposed model, MedSapiens, demonstrates that human-centric foundation models, inherently optimized for spatial pose localization, provide strong priors for anatomical landmark detection, yet this potential has remained largely untapped. We benchmark MedSapiens against existing state-of-the-art models, achieving up to 5.26% improvement over generalist models and up to 21.81% improvement over specialist models in the average success detection rate (SDR). To further assess MedSapiens adaptability to novel downstream tasks with few annotations, we evaluate its performance in limited-data settings, achieving 2.69% improvement over the few-shot state of the art in SDR. Code and model weights are available at https://github.com/xmed-lab/MedSapiens .
☆ Guided by Stars: Interpretable Concept Learning Over Time Series via Temporal Logic Semantics
Time series classification is a task of paramount importance, as this kind of data often arises in safety-critical applications. However, it is typically tackled with black-box deep learning methods, making it hard for humans to understand the rationale behind their output. To take on this challenge, we propose a novel approach, STELLE (Signal Temporal logic Embedding for Logically-grounded Learning and Explanation), a neuro-symbolic framework that unifies classification and explanation through direct embedding of trajectories into a space of temporal logic concepts. By introducing a novel STL-inspired kernel that maps raw time series to their alignment with predefined STL formulae, our model jointly optimises accuracy and interpretability, as each prediction is accompanied by the most relevant logical concepts that characterise it. This yields (i) local explanations as human-readable STL conditions justifying individual predictions, and (ii) global explanations as class-characterising formulae. Experiments demonstrate that STELLE achieves competitive accuracy while providing logically faithful explanations, validated on diverse real-world benchmarks.
comment: submitted to Journal of Artificial Intelligence Research (JAIR), 2025
☆ Twirlator: A Pipeline for Analyzing Subgroup Symmetry Effects in Quantum Machine Learning Ansatzes
Leveraging data symmetries has been a key driver of performance gains in geometric deep learning and geometric and equivariant quantum machine learning. While symmetrization appears to be a promising method, its practical overhead, such as additional gates, reduced expressibility, and other factors, is not well understood in quantum machine learning. In this work, we develop an automated pipeline to measure various characteristics of quantum machine learning ansatzes with respect to symmetries that can appear in the learning task. We define the degree of symmetry in the learning problem as the size of the subgroup it admits. Subgroups define partial symmetries, which have not been extensively studied in previous research, which has focused on symmetries defined by whole groups. Symmetrizing the 19 common ansatzes with respect to these varying-sized subgroup representations, we compute three classes of metrics that describe how the common ansatz structures behave under varying amounts of symmetries. The first metric is based on the norm of the difference between the original and symmetrized generators, while the second metric counts depth, size, and other characteristics from the symmetrized circuits. The third class of metrics includes expressibility and entangling capability. The results demonstrate varying gate overhead across the studied ansatzes and confirm that increased symmetry reduces expressibility of the circuits. In most cases, increased symmetry increases entanglement capability. These results help select sufficiently expressible and computationally efficient ansatze patterns for geometric quantum machine learning applications.
comment: 8 pages; 8 figures
☆ seqme: a Python library for evaluating biological sequence design
Recent advances in computational methods for designing biological sequences have sparked the development of metrics to evaluate these methods performance in terms of the fidelity of the designed sequences to a target distribution and their attainment of desired properties. However, a single software library implementing these metrics was lacking. In this work we introduce seqme, a modular and highly extendable open-source Python library, containing model-agnostic metrics for evaluating computational methods for biological sequence design. seqme considers three groups of metrics: sequence-based, embedding-based, and property-based, and is applicable to a wide range of biological sequences: small molecules, DNA, ncRNA, mRNA, peptides and proteins. The library offers a number of embedding and property models for biological sequences, as well as diagnostics and visualization functions to inspect the results. seqme can be used to evaluate both one-shot and iterative computational design methods.
comment: 13 pages
☆ REMIND: Input Loss Landscapes Reveal Residual Memorization in Post-Unlearning LLMs
Machine unlearning aims to remove the influence of specific training data from a model without requiring full retraining. This capability is crucial for ensuring privacy, safety, and regulatory compliance. Therefore, verifying whether a model has truly forgotten target data is essential for maintaining reliability and trustworthiness. However, existing evaluation methods often assess forgetting at the level of individual inputs. This approach may overlook residual influence present in semantically similar examples. Such influence can compromise privacy and lead to indirect information leakage. We propose REMIND (Residual Memorization In Neighborhood Dynamics), a novel evaluation method aiming to detect the subtle remaining influence of unlearned data and classify whether the data has been effectively forgotten. REMIND analyzes the model's loss over small input variations and reveals patterns unnoticed by single-point evaluations. We show that unlearned data yield flatter, less steep loss landscapes, while retained or unrelated data exhibit sharper, more volatile patterns. REMIND requires only query-based access, outperforms existing methods under similar constraints, and demonstrates robustness across different models, datasets, and paraphrased inputs, making it practical for real-world deployment. By providing a more sensitive and interpretable measure of unlearning effectiveness, REMIND provides a reliable framework to assess unlearning in language models. As a result, REMIND offers a novel perspective on memorization and unlearning.
comment: Pre-print version under review
☆ The Strong Lottery Ticket Hypothesis for Multi-Head Attention Mechanisms
The strong lottery ticket hypothesis (SLTH) conjectures that high-performing subnetworks, called strong lottery tickets (SLTs), are hidden in randomly initialized neural networks. Although recent theoretical studies have established the SLTH across various neural architectures, the SLTH for transformer architectures still lacks theoretical understanding. In particular, the current theory of the SLTH does not yet account for the multi-head attention (MHA) mechanism, a core component of transformers. To address this gap, we introduce a theoretical analysis of the existence of SLTs within MHAs. We prove that, if a randomly initialized MHA of $H$ heads and input dimension $d$ has the hidden dimension $O(d\log(Hd^{3/2}))$ for the key and value, it contains an SLT that approximates an arbitrary MHA with the same input dimension with high probability. Furthermore, by leveraging this theory for MHAs, we extend the SLTH to transformers without normalization layers. We empirically validate our theoretical findings, demonstrating that the approximation error between the SLT within a source model (MHA and transformer) and an approximate target counterpart decreases exponentially by increasing the hidden dimension of the source model.
comment: 22 pages, 8 figures
☆ Block Rotation is All You Need for MXFP4 Quantization
Large language models (LLMs) have achieved remarkable success, but their rapidly growing scale imposes prohibitive costs in memory, computation, and energy. Post-training quantization (PTQ) is a promising solution for efficient deployment, yet achieving accurate W4A4 quantization remains an open challenge. While most existing methods are designed for INT4 formats, the emergence of MXFP4 -- a new FP4 format with various hardware support (NVIDIA, AMD, Intel)-- raises questions about the applicability of current techniques. In this work, we establish a comprehensive benchmark of PTQ methods under the MXFP4 format. Through systematic evaluation, we find that methods like GPTQ consistently deliver strong performance, whereas rotation-based approaches, which are almost used by all state-of-the-art approaches, suffer from severe incompatibility with MXFP4. We further provide the first in-depth analysis of this conflict, tracing its root to a fundamental mismatch between MXFP4's PoT (power-of-two) block scaling and the redistribution of outlier energy via global rotation. Building on this insight, we propose a simple yet effective block rotation strategy that adapts rotation-based methods to MXFP4, leading to substantial accuracy improvements across diverse LLMs. Our findings not only offer clear guidance for practitioners but also set a foundation for advancing PTQ research under emerging low-precision formats.
comment: 9 pages, 10 figures
☆ ScaleDL: Towards Scalable and Efficient Runtime Prediction for Distributed Deep Learning Workloads
Deep neural networks (DNNs) form the cornerstone of modern AI services, supporting a wide range of applications, including autonomous driving, chatbots, and recommendation systems. As models increase in size and complexity, DNN workloads like training and inference tasks impose unprecedented demands on distributed computing resources, making the accurate prediction of runtime essential for optimizing development and resource allocation. Traditional methods rely on additive computational unit models, limiting their accuracy and generalizability. In contrast, graph-enhanced modeling improves performance but significantly increases data collection costs. Therefore, there is a critical need for a method that strikes a balance between accuracy, generalizability, and the costs of data collection. To address these challenges, we propose ScaleDL, a novel runtime prediction framework that combines nonlinear layer-wise modeling with graph neural network (GNN)-based cross-layer interaction mechanism, enabling accurate DNN runtime prediction and hierarchical generalizability across different network architectures. Additionally, we employ the D-optimal method to reduce data collection costs. Experiments on the workloads of five popular DNN models prove that ScaleDL enhances runtime prediction accuracy and generalizability, achieving 6$\times$ lower MRE and 5$\times$ lower RMSE compared to baseline models.
☆ On Joint Regularization and Calibration in Deep Ensembles
Deep ensembles are a powerful tool in machine learning, improving both model performance and uncertainty calibration. While ensembles are typically formed by training and tuning models individually, evidence suggests that jointly tuning the ensemble can lead to better performance. This paper investigates the impact of jointly tuning weight decay, temperature scaling, and early stopping on both predictive performance and uncertainty quantification. Additionally, we propose a partially overlapping holdout strategy as a practical compromise between enabling joint evaluation and maximizing the use of data for training. Our results demonstrate that jointly tuning the ensemble generally matches or improves performance, with significant variation in effect size across different tasks and metrics. We highlight the trade-offs between individual and joint optimization in deep ensemble training, with the overlapping holdout strategy offering an attractive practical solution. We believe our findings provide valuable insights and guidance for practitioners looking to optimize deep ensemble models. Code is available at: https://github.com/lauritsf/ensemble-optimality-gap
comment: 39 pages, 8 figures, 11 tables
☆ Deep Learning Approach for Clinical Risk Identification Using Transformer Modeling of Heterogeneous EHR Data
This study proposes a Transformer-based longitudinal modeling method to address challenges in clinical risk classification with heterogeneous Electronic Health Record (EHR) data, including irregular temporal patterns, large modality differences, and complex semantic structures. The method takes multi-source medical features as input and employs a feature embedding layer to achieve a unified representation of structured and unstructured data. A learnable temporal encoding mechanism is introduced to capture dynamic evolution under uneven sampling intervals. The core model adopts a multi-head self-attention structure to perform global dependency modeling on longitudinal sequences, enabling the aggregation of long-term trends and short-term fluctuations across different temporal scales. To enhance semantic representation, a semantic-weighted pooling module is designed to assign adaptive importance to key medical events, improving the discriminative ability of risk-related features. Finally, a linear mapping layer generates individual-level risk scores. Experimental results show that the proposed model outperforms traditional machine learning and temporal deep learning models in accuracy, recall, precision, and F1-Score, achieving stable and precise risk identification in multi-source heterogeneous EHR environments and providing an efficient and reliable framework for clinical intelligent decision-making.
☆ Learning to Land Anywhere: Transferable Generative Models for Aircraft Trajectories
Access to trajectory data is a key requirement for developing and validating Air Traffic Management (ATM) solutions, yet many secondary and regional airports face severe data scarcity. This limits the applicability of machine learning methods and the ability to perform large-scale simulations or "what-if" analyses. In this paper, we investigate whether generative models trained on data-rich airports can be efficiently adapted to data-scarce airports using transfer learning. We adapt state-of-the-art diffusion- and flow-matching-based architectures to the aviation domain and evaluate their transferability between Zurich (source) and Dublin (target) landing trajectory datasets. Models are pretrained on Zurich and fine-tuned on Dublin with varying amounts of local data, ranging from 0% to 100%. Results show that diffusion-based models achieve competitive performance with as little as 5% of the Dublin data and reach baseline-level performance around 20%, consistently outperforming models trained from scratch across metrics and visual inspections. Latent flow matching and latent diffusion models also benefit from pretraining, though with more variable gains, while flow matching models show weaker generalization. Despite challenges in capturing rare trajectory patterns, these findings demonstrate the potential of transfer learning to substantially reduce data requirements for trajectory generation in ATM, enabling realistic synthetic data generation even in environments with limited historical records.
☆ Exchange Policy Optimization Algorithm for Semi-Infinite Safe Reinforcement Learning
Safe reinforcement learning (safe RL) aims to respect safety requirements while optimizing long-term performance. In many practical applications, however, the problem involves an infinite number of constraints, known as semi-infinite safe RL (SI-safe RL). Such constraints typically appear when safety conditions must be enforced across an entire continuous parameter space, such as ensuring adequate resource distribution at every spatial location. In this paper, we propose exchange policy optimization (EPO), an algorithmic framework that achieves optimal policy performance and deterministic bounded safety. EPO works by iteratively solving safe RL subproblems with finite constraint sets and adaptively adjusting the active set through constraint expansion and deletion. At each iteration, constraints with violations exceeding the predefined tolerance are added to refine the policy, while those with zero Lagrange multipliers are removed after the policy update. This exchange rule prevents uncontrolled growth of the working set and supports effective policy training. Our theoretical analysis demonstrates that, under mild assumptions, strategies trained via EPO achieve performance comparable to optimal solutions with global constraint violations strictly remaining within a prescribed bound.
comment: Submitted to the Journal of Machine Learning Research (JMLR), under review
☆ Exploring the Feasibility of End-to-End Large Language Model as a Compiler IJCNN 2025
In recent years, end-to-end Large Language Model (LLM) technology has shown substantial advantages across various domains. As critical system software and infrastructure, compilers are responsible for transforming source code into target code. While LLMs have been leveraged to assist in compiler development and maintenance, their potential as an end-to-end compiler remains largely unexplored. This paper explores the feasibility of LLM as a Compiler (LaaC) and its future directions. We designed the CompilerEval dataset and framework specifically to evaluate the capabilities of mainstream LLMs in source code comprehension and assembly code generation. In the evaluation, we analyzed various errors, explored multiple methods to improve LLM-generated code, and evaluated cross-platform compilation capabilities. Experimental results demonstrate that LLMs exhibit basic capabilities as compilers but currently achieve low compilation success rates. By optimizing prompts, scaling up the model, and incorporating reasoning methods, the quality of assembly code generated by LLMs can be significantly enhanced. Based on these findings, we maintain an optimistic outlook for LaaC and propose practical architectural designs and future research directions. We believe that with targeted training, knowledge-rich prompts, and specialized infrastructure, LaaC has the potential to generate high-quality assembly code and drive a paradigm shift in the field of compilation.
comment: This work has been accepted by IJCNN 2025 and submitted to the IEEE for publication
☆ Decomposable Neuro Symbolic Regression
Symbolic regression (SR) models complex systems by discovering mathematical expressions that capture underlying relationships in observed data. However, most SR methods prioritize minimizing prediction error over identifying the governing equations, often producing overly complex or inaccurate expressions. To address this, we present a decomposable SR method that generates interpretable multivariate expressions leveraging transformer models, genetic algorithms (GAs), and genetic programming (GP). In particular, our explainable SR method distills a trained ``opaque'' regression model into mathematical expressions that serve as explanations of its computed function. Our method employs a Multi-Set Transformer to generate multiple univariate symbolic skeletons that characterize how each variable influences the opaque model's response. We then evaluate the generated skeletons' performance using a GA-based approach to select a subset of high-quality candidates before incrementally merging them via a GP-based cascade procedure that preserves their original skeleton structure. The final multivariate skeletons undergo coefficient optimization via a GA. We evaluated our method on problems with controlled and varying degrees of noise, demonstrating lower or comparable interpolation and extrapolation errors compared to two GP-based methods, three neural SR methods, and a hybrid approach. Unlike them, our approach consistently learned expressions that matched the original mathematical structure.
☆ Automated and Explainable Denial of Service Analysis for AI-Driven Intrusion Detection Systems
With the increasing frequency and sophistication of Distributed Denial of Service (DDoS) attacks, it has become critical to develop more efficient and interpretable detection methods. Traditional detection systems often struggle with scalability and transparency, hindering real-time response and understanding of attack vectors. This paper presents an automated framework for detecting and interpreting DDoS attacks using machine learning (ML). The proposed method leverages the Tree-based Pipeline Optimization Tool (TPOT) to automate the selection and optimization of ML models and features, reducing the need for manual experimentation. SHapley Additive exPlanations (SHAP) is incorporated to enhance model interpretability, providing detailed insights into the contribution of individual features to the detection process. By combining TPOT's automated pipeline selection with SHAP interpretability, this approach improves the accuracy and transparency of DDoS detection. Experimental results demonstrate that key features such as mean backward packet length and minimum forward packet header length are critical in detecting DDoS attacks, offering a scalable and explainable cybersecurity solution.
comment: 13 pages, 2 figures, 11 tables, IET Information Security
☆ A Characterization of List Language Identification in the Limit
We study the problem of language identification in the limit, where given a sequence of examples from a target language, the goal of the learner is to output a sequence of guesses for the target language such that all the guesses beyond some finite time are correct. Classical results of Gold showed that language identification in the limit is impossible for essentially any interesting collection of languages. Later, Angluin gave a precise characterization of language collections for which this task is possible. Motivated by recent positive results for the related problem of language generation, we revisit the classic language identification problem in the setting where the learner is given the additional power of producing a list of $k$ guesses at each time step. The goal is to ensure that beyond some finite time, one of the guesses is correct at each time step. We give an exact characterization of collections of languages that can be $k$-list identified in the limit, based on a recursive version of Angluin's characterization (for language identification with a list of size $1$). This further leads to a conceptually appealing characterization: A language collection can be $k$-list identified in the limit if and only if the collection can be decomposed into $k$ collections of languages, each of which can be identified in the limit (with a list of size $1$). We also use our characterization to establish rates for list identification in the statistical setting where the input is drawn as an i.i.d. stream from a distribution supported on some language in the collection. Our results show that if a collection is $k$-list identifiable in the limit, then the collection can be $k$-list identified at an exponential rate, and this is best possible. On the other hand, if a collection is not $k$-list identifiable in the limit, then it cannot be $k$-list identified at any rate that goes to zero.
☆ KoTaP: A Panel Dataset for Corporate Tax Avoidance, Performance, and Governance in Korea
This study introduces the Korean Tax Avoidance Panel (KoTaP), a long-term panel dataset of non-financial firms listed on KOSPI and KOSDAQ between 2011 and 2024. After excluding financial firms, firms with non-December fiscal year ends, capital impairment, and negative pre-tax income, the final dataset consists of 12,653 firm-year observations from 1,754 firms. KoTaP is designed to treat corporate tax avoidance as a predictor variable and link it to multiple domains, including earnings management (accrual- and activity-based), profitability (ROA, ROE, CFO, LOSS), stability (LEV, CUR, SIZE, PPE, AGE, INVREC), growth (GRW, MB, TQ), and governance (BIG4, FORN, OWN). Tax avoidance itself is measured using complementary indicators cash effective tax rate (CETR), GAAP effective tax rate (GETR), and book-tax difference measures (TSTA, TSDA) with adjustments to ensure interpretability. A key strength of KoTaP is its balanced panel structure with standardized variables and its consistency with international literature on the distribution and correlation of core indicators. At the same time, it reflects distinctive institutional features of Korean firms, such as concentrated ownership, high foreign shareholding, and elevated liquidity ratios, providing both international comparability and contextual uniqueness. KoTaP enables applications in benchmarking econometric and deep learning models, external validity checks, and explainable AI analyses. It further supports policy evaluation, audit planning, and investment analysis, making it a critical open resource for accounting, finance, and interdisciplinary research.
comment: 18 pages, 3 figures, 8 tables. Submitted to Scientific Data; currently under review. Data and codebook available at Zenodo (DOI: 10.5281/zenodo.17149808)
☆ DeNoise: Learning Robust Graph Representations for Unsupervised Graph-Level Anomaly Detection
With the rapid growth of graph-structured data in critical domains, unsupervised graph-level anomaly detection (UGAD) has become a pivotal task. UGAD seeks to identify entire graphs that deviate from normal behavioral patterns. However, most Graph Neural Network (GNN) approaches implicitly assume that the training set is clean, containing only normal graphs, which is rarely true in practice. Even modest contamination by anomalous graphs can distort learned representations and sharply degrade performance. To address this challenge, we propose DeNoise, a robust UGAD framework explicitly designed for contaminated training data. It jointly optimizes a graph-level encoder, an attribute decoder, and a structure decoder via an adversarial objective to learn noise-resistant embeddings. Further, DeNoise introduces an encoder anchor-alignment denoising mechanism that fuses high-information node embeddings from normal graphs into all graph embeddings, improving representation quality while suppressing anomaly interference. A contrastive learning component then compacts normal graph embeddings and repels anomalous ones in the latent space. Extensive experiments on eight real-world datasets demonstrate that DeNoise consistently learns reliable graph-level representations under varying noise intensities and significantly outperforms state-of-the-art UGAD baselines.
☆ Learning Filter-Aware Distance Metrics for Nearest Neighbor Search with Multiple Filters
Filtered Approximate Nearest Neighbor (ANN) search retrieves the closest vectors for a query vector from a dataset. It enforces that a specified set of discrete labels $S$ for the query must be included in the labels of each retrieved vector. Existing graph-based methods typically incorporate filter awareness by assigning fixed penalties or prioritizing nodes based on filter satisfaction. However, since these methods use fixed, data in- dependent penalties, they often fail to generalize across datasets with diverse label and vector distributions. In this work, we propose a principled alternative that learns the optimal trade-off between vector distance and filter match directly from the data, rather than relying on fixed penalties. We formulate this as a constrained linear optimization problem, deriving weights that better reflect the underlying filter distribution and more effectively address the filtered ANN search problem. These learned weights guide both the search process and index construction, leading to graph structures that more effectively capture the underlying filter distribution and filter semantics. Our experiments demonstrate that adapting the distance function to the data significantly im- proves accuracy by 5-10% over fixed-penalty methods, providing a more flexible and generalizable framework for the filtered ANN search problem.
comment: 1st Workshop on Vector Databases at International Conference on Machine Learning, 2025
☆ Left Atrial Segmentation with nnU-Net Using MRI
Accurate segmentation of the left atrium (LA) from cardiac MRI is critical for guiding atrial fibrillation (AF) ablation and constructing biophysical cardiac models. Manual delineation is time-consuming, observer-dependent, and impractical for large-scale or time-sensitive clinical workflows. Deep learning methods, particularly convolutional architectures, have recently demonstrated superior performance in medical image segmentation tasks. In this study, we applied the nnU-Net framework, an automated, self-configuring deep learning segmentation architecture, to the Left Atrial Segmentation Challenge 2013 dataset. The dataset consists of thirty MRI scans with corresponding expert-annotated masks. The nnU-Net model automatically adapted its preprocessing, network configuration, and training pipeline to the characteristics of the MRI data. Model performance was quantitatively evaluated using the Dice similarity coefficient (DSC), and qualitative results were compared against expert segmentations. The proposed nnUNet model achieved a mean Dice score of 93.5, demonstrating high overlap with expert annotations and outperforming several traditional segmentation approaches reported in previous studies. The network exhibited robust generalization across variations in left atrial shape, contrast, and image quality, accurately delineating both the atrial body and proximal pulmonary veins.
☆ Pediatric Appendicitis Detection from Ultrasound Images
Pediatric appendicitis remains one of the most common causes of acute abdominal pain in children, and its diagnosis continues to challenge clinicians due to overlapping symptoms and variable imaging quality. This study aims to develop and evaluate a deep learning model based on a pretrained ResNet architecture for automated detection of appendicitis from ultrasound images. We used the Regensburg Pediatric Appendicitis Dataset, which includes ultrasound scans, laboratory data, and clinical scores from pediatric patients admitted with abdominal pain to Children Hospital. Hedwig in Regensburg, Germany. Each subject had 1 to 15 ultrasound views covering the right lower quadrant, appendix, lymph nodes, and related structures. For the image based classification task, ResNet was fine tuned to distinguish appendicitis from non-appendicitis cases. Images were preprocessed by normalization, resizing, and augmentation to enhance generalization. The proposed ResNet model achieved an overall accuracy of 93.44, precision of 91.53, and recall of 89.8, demonstrating strong performance in identifying appendicitis across heterogeneous ultrasound views. The model effectively learned discriminative spatial features, overcoming challenges posed by low contrast, speckle noise, and anatomical variability in pediatric imaging.
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ Particle-Grid Neural Dynamics for Learning Deformable Object Models from RGB-D Videos
Modeling the dynamics of deformable objects is challenging due to their diverse physical properties and the difficulty of estimating states from limited visual information. We address these challenges with a neural dynamics framework that combines object particles and spatial grids in a hybrid representation. Our particle-grid model captures global shape and motion information while predicting dense particle movements, enabling the modeling of objects with varied shapes and materials. Particles represent object shapes, while the spatial grid discretizes the 3D space to ensure spatial continuity and enhance learning efficiency. Coupled with Gaussian Splattings for visual rendering, our framework achieves a fully learning-based digital twin of deformable objects and generates 3D action-conditioned videos. Through experiments, we demonstrate that our model learns the dynamics of diverse objects -- such as ropes, cloths, stuffed animals, and paper bags -- from sparse-view RGB-D recordings of robot-object interactions, while also generalizing at the category level to unseen instances. Our approach outperforms state-of-the-art learning-based and physics-based simulators, particularly in scenarios with limited camera views. Furthermore, we showcase the utility of our learned models in model-based planning, enabling goal-conditioned object manipulation across a range of tasks. The project page is available at https://kywind.github.io/pgnd .
comment: Project page: https://kywind.github.io/pgnd
♻ ☆ Latent learning: episodic memory complements parametric learning by enabling flexible reuse of experiences
When do machine learning systems fail to generalize, and what mechanisms could improve their generalization? Here, we draw inspiration from cognitive science to argue that one weakness of parametric machine learning systems is their failure to exhibit latent learning -- learning information that is not relevant to the task at hand, but that might be useful in a future task. We show how this perspective links failures ranging from the reversal curse in language modeling to new findings on agent-based navigation. We then highlight how cognitive science points to episodic memory as a potential part of the solution to these issues. Correspondingly, we show that a system with an oracle retrieval mechanism can use learning experiences more flexibly to generalize better across many of these challenges. We also identify some of the essential components for effectively using retrieval, including the importance of within-example in-context learning for acquiring the ability to use information across retrieved examples. In summary, our results illustrate one possible contributor to the relative data inefficiency of current machine learning systems compared to natural intelligence, and help to understand how retrieval methods can complement parametric learning to improve generalization. We close by discussing some of the links between these findings and prior results in cognitive science and neuroscience, and the broader implications.
♻ ☆ CancerGUIDE: Cancer Guideline Understanding via Internal Disagreement Estimation
The National Comprehensive Cancer Network (NCCN) provides evidence-based guidelines for cancer treatment. Translating complex patient presentations into guideline-compliant treatment recommendations is time-intensive, requires specialized expertise, and is prone to error. Advances in large language model (LLM) capabilities promise to reduce the time required to generate treatment recommendations and improve accuracy. We present an LLM agent-based approach to automatically generate guideline-concordant treatment trajectories for patients with non-small cell lung cancer (NSCLC). Our contributions are threefold. First, we construct a novel longitudinal dataset of 121 cases of NSCLC patients that includes clinical encounters, diagnostic results, and medical histories, each expertly annotated with the corresponding NCCN guideline trajectories by board-certified oncologists. Second, we demonstrate that existing LLMs possess domain-specific knowledge that enables high-quality proxy benchmark generation for both model development and evaluation, achieving strong correlation (Spearman coefficient r=0.88, RMSE = 0.08) with expert-annotated benchmarks. Third, we develop a hybrid approach combining expensive human annotations with model consistency information to create both the agent framework that predicts the relevant guidelines for a patient, as well as a meta-classifier that verifies prediction accuracy with calibrated confidence scores for treatment recommendations (AUROC=0.800), a critical capability for communicating the accuracy of outputs, custom-tailoring tradeoffs in performance, and supporting regulatory compliance. This work establishes a framework for clinically viable LLM-based guideline adherence systems that balance accuracy, interpretability, and regulatory requirements while reducing annotation costs, providing a scalable pathway toward automated clinical decision support.
♻ ☆ Deep Edge Filter: Return of the Human-Crafted Layer in Deep Learning NeurIPS2025
We introduce the Deep Edge Filter, a novel approach that applies high-pass filtering to deep neural network features to improve model generalizability. Our method is motivated by our hypothesis that neural networks encode task-relevant semantic information in high-frequency components while storing domain-specific biases in low-frequency components of deep features. By subtracting low-pass filtered outputs from original features, our approach isolates generalizable representations while preserving architectural integrity. Experimental results across diverse domains such as Vision, Text, 3D, and Audio demonstrate consistent performance improvements regardless of model architecture and data modality. Analysis reveals that our method induces feature sparsification and effectively isolates high-frequency components, providing empirical validation of our core hypothesis. The code is available at https://github.com/dongkwani/DeepEdgeFilter.
comment: NeurIPS2025
♻ ☆ DashCLIP: Leveraging multimodal models for generating semantic embeddings for DoorDash
Despite the success of vision-language models in various generative tasks, obtaining high-quality semantic representations for products and user intents is still challenging due to the inability of off-the-shelf models to capture nuanced relationships between the entities. In this paper, we introduce a joint training framework for product and user queries by aligning uni-modal and multi-modal encoders through contrastive learning on image-text data. Our novel approach trains a query encoder with an LLM-curated relevance dataset, eliminating the reliance on engagement history. These embeddings demonstrate strong generalization capabilities and improve performance across applications, including product categorization and relevance prediction. For personalized ads recommendation, a significant uplift in the click-through rate and conversion rate after the deployment further confirms the impact on key business metrics. We believe that the flexibility of our framework makes it a promising solution toward enriching the user experience across the e-commerce landscape.
♻ ☆ Projection Methods for Operator Learning and Universal Approximation
We obtain a new universal approximation theorem for continuous (possibly nonlinear) operators on arbitrary Banach spaces using the Leray-Schauder mapping. Moreover, we introduce and study a method for operator learning in Banach spaces $L^p$ of functions with multiple variables, based on orthogonal projections on polynomial bases. We derive a universal approximation result for operators where we learn a linear projection and a finite dimensional mapping under some additional assumptions. For the case of $p=2$, we give some sufficient conditions for the approximation results to hold. This article serves as the theoretical framework for a deep learning methodology in operator learning.
comment: 15 pages. Comments are welcome! v3: Issues and typos fixed. Proofs rewritten with additional details, and several references added for context
♻ ☆ Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
♻ ☆ FedQUIT: On-Device Federated Unlearning via a Quasi-Competent Virtual Teacher
Federated Learning (FL) systems enable the collaborative training of machine learning models without requiring centralized collection of individual data. FL participants should have the ability to exercise their right to be forgotten, ensuring their past contributions can be removed from the learned model upon request. In this paper, we propose FedQUIT, a novel algorithm that uses knowledge distillation to scrub the contribution of the data to forget from an FL global model while preserving its generalization ability. FedQUIT directly works on client devices that request to leave the federation, and leverages a teacher-student framework. The FL global model acts as the teacher, and the local model works as the student. To induce forgetting, FedQUIT tailors the teacher's output on local data (the data to forget) penalizing the prediction score of the true class. Unlike previous work, our method does not require hardly viable assumptions for cross-device settings, such as storing historical updates of participants or requiring access to proxy datasets. Experimental results on various datasets and model architectures demonstrate that (i) FedQUIT outperforms state-of-the-art competitors in forgetting data, (ii) has the exact computational requirements as a regular FedAvg round, and (iii) reduces the cumulative communication costs by up to 117.6$\times$ compared to retraining from scratch to restore the initial generalization performance after unlearning.
♻ ☆ TIMESAFE: Timing Interruption Monitoring and Security Assessment for Fronthaul Environments
5G and beyond cellular systems embrace the disaggregation of Radio Access Network (RAN) components, exemplified by the evolution of the fronthaul (FH) connection between cellular baseband and radio unit equipment. Crucially, synchronization over the FH is pivotal for reliable 5G services. In recent years, there has been a push to move these links to an Ethernet-based packet network topology, leveraging existing standards and ongoing research for Time-Sensitive Networking (TSN). However, TSN standards, such as Precision Time Protocol (PTP), focus on performance with little to no concern for security. This increases the exposure of the open FH to security risks. Attacks targeting synchronization mechanisms pose significant threats, potentially disrupting 5G networks and impairing connectivity. In this paper, we demonstrate the impact of successful spoofing and replay attacks against PTP synchronization. We show how a spoofing attack is able to cause a production-ready O-RAN and 5G-compliant private cellular base station to catastrophically fail within 2 seconds of the attack, necessitating manual intervention to restore full network operations. To counter this, we design a Machine Learning (ML)-based monitoring solution capable of detecting various malicious attacks with over 97.5% accuracy.
♻ ☆ Measure-Theoretic Time-Delay Embedding
The celebrated Takens' embedding theorem provides a theoretical foundation for reconstructing the full state of a dynamical system from partial observations. However, the classical theorem assumes that the underlying system is deterministic and that observations are noise-free, limiting its applicability in real-world scenarios. Motivated by these limitations, we formulate a measure-theoretic generalization that adopts an Eulerian description of the dynamics and recasts the embedding as a pushforward map between spaces of probability measures. Our mathematical results leverage recent advances in optimal transport. Building on the proposed measure-theoretic time-delay embedding theory, we develop a computational procedure that aims to reconstruct the full state of a dynamical system from time-lagged partial observations, engineered with robustness to handle sparse and noisy data. We evaluate our measure-based approach across several numerical examples, ranging from the classic Lorenz-63 system to real-world applications such as NOAA sea surface temperature reconstruction and ERA5 wind field reconstruction.
comment: 41 pages, 9 figures
♻ ☆ Revisiting Federated Fine-Tuning: A Single Communication Round is Enough for Foundation Models
The recent advancement of foundation models (FMs) has increased the demand for fine-tuning these models on large-scale cross-domain datasets. To address this, federated fine-tuning has emerged, allowing FMs to be fine-tuned on distributed datasets across multiple devices while ensuring data privacy. However, the substantial parameter size and the multi-round communication in federated learning algorithms result in prohibitively high communication costs, challenging the practicality of federated fine-tuning. In this paper, we identify and analyze, both theoretically and empirically, that the traditional multi-round aggregation algorithms may not be necessary for federated fine-tuning large FMs. Our experiments reveal that a single round of aggregation (i.e., one-shot federated fine-tuning) yields a global model performance comparable to that achieved through multiple rounds of aggregation. Through rigorous mathematical and empirical analyses, we demonstrate that large FMs, due to their extensive parameter sizes and pre-training on general tasks, achieve significantly lower training loss in one-shot federated fine-tuning compared to smaller models. Our extensive experiments show that one-shot federated fine-tuning significantly reduces communication costs. It also has the potential to enable asynchronous aggregation, enhances privacy, and maintains performance consistency with multi-round federated fine-tuning on both text generation and text-to-image generation tasks. Our findings provide insights to revolutionize federated fine-tuning in practice, enhancing efficiency, reducing costs, and expanding accessibility for FMs.
♻ ☆ Toward Autonomous Engineering Design: A Knowledge-Guided Multi-Agent Framework
The engineering design process often demands expertise from multiple domains, leading to complex collaborations and iterative refinements. Traditional methods can be resource-intensive and prone to inefficiencies. To address this, we formalize the engineering design process through a multi-agent AI framework that integrates structured design and review loops. The framework introduces specialized knowledge-driven agents that collaborate to generate and refine design candidates. As an exemplar, we demonstrate its application to the aerodynamic optimization of 4-digit NACA airfoils. The framework consists of three key AI agents: a Graph Ontologist, a Design Engineer, and a Systems Engineer. The Graph Ontologist employs a Large Language Model (LLM) to construct two domain-specific knowledge graphs from airfoil design literature. The Systems Engineer, informed by a human manager, formulates technical requirements that guide design generation and evaluation. The Design Engineer leverages the design knowledge graph and computational tools to propose candidate airfoils meeting these requirements. The Systems Engineer reviews and provides feedback both qualitative and quantitative using its own knowledge graph, forming an iterative feedback loop until a design is validated by the manager. The final design is then optimized to maximize performance metrics such as the lift-to-drag ratio. Overall, this work demonstrates how collaborative AI agents equipped with structured knowledge representations can enhance efficiency, consistency, and quality in the engineering design process.
comment: Revised to fix typos
♻ ☆ OceanAI: A Conversational Platform for Accurate, Transparent, Near-Real-Time Oceanographic Insights
Artificial intelligence is transforming the sciences, yet general conversational AI systems often generate unverified "hallucinations" undermining scientific rigor. We present OceanAI, a conversational platform that integrates the natural-language fluency of open-source large language models (LLMs) with real-time, parameterized access to authoritative oceanographic data streams hosted by the National Oceanic and Atmospheric Administration (NOAA). Each query such as "What was Boston Harbor's highest water level in 2024?" triggers real-time API calls that identify, parse, and synthesize relevant datasets into reproducible natural-language responses and data visualizations. In a blind comparison with three widely used AI chat-interface products, only OceanAI produced NOAA-sourced values with original data references; others either declined to answer or provided unsupported results. Designed for extensibility, OceanAI connects to multiple NOAA data products and variables, supporting applications in marine hazard forecasting, ecosystem assessment, and water-quality monitoring. By grounding outputs and verifiable observations, OceanAI advances transparency, reproducibility, and trust, offering a scalable framework for AI-enabled decision support within the oceans. A public demonstration is available at https://oceanai.ai4ocean.xyz.
comment: A related presentation will be given at the AGU(American Geophysical Union) and AMS(American Meteorological Society) Annual Meetings
♻ ☆ Rater Equivalence: Evaluating Classifiers in Human Judgment Settings
In many decision settings, the definitive ground truth is either non-existent or inaccessible. We introduce a framework for evaluating classifiers based solely on human judgments. In such cases, it is helpful to compare automated classifiers to human judgment. We quantify a classifier's performance by its rater equivalence: the smallest number of human raters whose combined judgment matches the classifier's performance. Our framework uses human-generated labels both to construct benchmark panels and to evaluate performance. We distinguish between two models of utility: one based on agreement with the assumed but inaccessible ground truth, and one based on matching individual human judgments. Using case studies and formal analysis, we demonstrate how this framework can inform the evaluation and deployment of AI systems in practice.
♻ ☆ Approximate non-linear model predictive control with safety-augmented neural networks
Model predictive control (MPC) achieves stability and constraint satisfaction for general nonlinear systems, but requires computationally expensive online optimization. This paper studies approximations of such MPC controllers via neural networks (NNs) to achieve fast online evaluation. We propose safety augmentation that yields deterministic guarantees for convergence and constraint satisfaction despite approximation inaccuracies. We approximate the entire input sequence of the MPC with NNs, which allows us to verify online if it is a feasible solution to the MPC problem. We replace the NN solution by a safe candidate based on standard MPC techniques whenever it is infeasible or has worse cost. Our method requires a single evaluation of the NN and forward integration of the input sequence online, which is fast to compute on resource-constrained systems. The proposed control framework is illustrated using two numerical non-linear MPC benchmarks of different complexity, demonstrating computational speedups that are orders of magnitude higher than online optimization. In the examples, we achieve deterministic safety through the safety-augmented NNs, where a naive NN implementation fails.
♻ ☆ Orion-MSP: Multi-Scale Sparse Attention for Tabular In-Context Learning
Tabular data remain the predominant format for real-world applications. Yet, developing effective neural models for tabular data remains challenging due to heterogeneous feature types and complex interactions occurring at multiple scales. Recent advances in tabular in-context learning (ICL), such as TabPFN and TabICL, have achieved state-of-the-art performance comparable to gradient-boosted trees (GBTs) without task-specific fine-tuning. However, current architectures exhibit key limitations: (1) single-scale feature processing that overlooks hierarchical dependencies, (2) dense attention with quadratic scaling in table width, and (3) strictly sequential component processing that prevents iterative representation refinement and cross-component communication. To address these challenges, we introduce Orion-MSP, a tabular ICL architecture featuring three key innovations: (1) multi-scale processing to capture hierarchical feature interactions; (2) block-sparse attention combining windowed, global, and random patterns for scalable efficiency and long-range connectivity; and (3) a Perceiver-style memory enabling safe bidirectional information flow across components. Across diverse benchmarks, Orion-MSP matches or surpasses state-of-the-art performance while scaling effectively to high-dimensional tables, establishing a new standard for efficient tabular in-context learning. The model is publicly available at https://github.com/Lexsi-Labs/Orion-MSP .
♻ ☆ GENIAL: Generative Design Space Exploration via Network Inversion for Low Power Algorithmic Logic Units
As AI workloads proliferate, optimizing arithmetic units is becoming increasingly important for reducing the footprint of digital systems. Conventional design flows, which often rely on manual or heuristic-based optimization, are limited in their ability to thoroughly explore the vast design space. In this paper, we introduce GENIAL, a machine learning-based framework for the automatic generation and optimization of arithmetic units, with a focus on multipliers. At the core of GENIAL is a Transformer-based surrogate model trained in two stages, involving self-supervised pretraining followed by supervised finetuning, to robustly forecast key hardware metrics such as power and area from abstracted design representations. By inverting the surrogate model, GENIAL efficiently searches for new operand encodings that directly minimize power consumption in arithmetic units for specific input data distributions. Extensive experiments on large datasets demonstrate that GENIAL is consistently more sample efficient than other methods, and converges faster towards optimized designs. This enables deployment of a high-effort logic synthesis optimization flow in the loop, improving the accuracy of the surrogate model. Notably, GENIAL automatically discovers encodings that achieve up to 18% switching activity savings within multipliers on representative AI workloads compared with the conventional two's complement. We also demonstrate the versatility of our approach by achieving significant improvements on Finite State Machines, highlighting GENIAL's applicability for a wide spectrum of logic functions. Together, these advances mark a significant step toward automated Quality-of-Results-optimized combinational circuit generation for digital systems.
comment: Accepted at the 2026 31st Asia and South Pacific Design Automation Conference (ASP-DAC)
♻ ☆ Understanding Adam Requires Better Rotation Dependent Assumptions NeurIPS 2025
Despite its widespread adoption, Adam's advantage over Stochastic Gradient Descent (SGD) lacks a comprehensive theoretical explanation. This paper investigates Adam's sensitivity to rotations of the parameter space. We observe that Adam's performance in training transformers degrades under random rotations of the parameter space, indicating a crucial sensitivity to the choice of basis in practice. This reveals that conventional rotation-invariant assumptions are insufficient to capture Adam's advantages theoretically. To better understand the rotation-dependent properties that benefit Adam, we also identify structured rotations that preserve or even enhance its empirical performance. We then examine the rotation-dependent assumptions in the literature and find that they fall short in explaining Adam's behaviour across various rotation types. In contrast, we verify the orthogonality of the update as a promising indicator of Adam's basis sensitivity, suggesting it may be the key quantity for developing rotation-dependent theoretical frameworks that better explain its empirical success.
comment: Published at NeurIPS 2025
♻ ☆ Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models
State Space Models (SSMs) are emerging as a compelling alternative to Transformers because of their consistent memory usage and high performance. Despite this, scaling up SSMs on cloud services or limited-resource devices is challenging due to their storage requirements and computational power. To overcome this, quantizing SSMs with low bit-width data formats can reduce model size and benefit from hardware acceleration. As SSMs are prone to quantization-induced errors, recent efforts have focused on optimizing a particular model or bit-width for efficiency without sacrificing performance. However, distinct bit-width configurations are essential for different scenarios, like W4A8 for boosting large-batch decoding speed, and W4A16 for enhancing generation speed in short prompt applications for a single user. To this end, we present Quamba2, compatible with W8A8, W4A8, and W4A16 for both Mamba1 and Mamba2 backbones, addressing the growing demand for SSM deployment on various platforms. Based on the channel order preserving and activation persistence of SSMs, we propose an offline approach to quantize inputs of a linear recurrence in 8-bit by sorting and clustering for input $x$, combined with a per-state-group quantization for input-dependent parameters $B$ and $C$. To ensure compute-invariance in the SSM output, we rearrange weights offline according to the clustering sequence. The experiments show that Quamba2-8B outperforms two state-of-the-art SSM quantization methods and delivers 1.3$\times$ and 3$\times$ speed-ups in the pre-filling and generation stages, respectively, while offering 4$\times$ memory reduction with only a $1.6\%$ average accuracy drop. The evaluation on MMLU shows the generalizability and robustness of our framework. The code and quantized models will be released at: https://github.com/enyac-group/Quamba.
♻ ☆ LLM Targeted Underperformance Disproportionately Impacts Vulnerable Users AAAI 2026
While state-of-the-art large language models (LLMs) have shown impressive performance on many tasks, there has been extensive research on undesirable model behavior such as hallucinations and bias. In this work, we investigate how the quality of LLM responses changes in terms of information accuracy, truthfulness, and refusals depending on three user traits: English proficiency, education level, and country of origin. We present extensive experimentation on three state-of-the-art LLMs and two different datasets targeting truthfulness and factuality. Our findings suggest that undesirable behaviors in state-of-the-art LLMs occur disproportionately more for users with lower English proficiency, of lower education status, and originating from outside the US, rendering these models unreliable sources of information towards their most vulnerable users.
comment: Paper accepted at AAAI 2026
♻ ☆ Diffusion & Adversarial Schrödinger Bridges via Iterative Proportional Markovian Fitting
The Iterative Markovian Fitting (IMF) procedure, which iteratively projects onto the space of Markov processes and the reciprocal class, successfully solves the Schr\"odinger Bridge (SB) problem. However, an efficient practical implementation requires a heuristic modification -- alternating between fitting forward and backward time diffusion at each iteration. This modification is crucial for stabilizing training and achieving reliable results in applications such as unpaired domain translation. Our work reveals a close connection between the modified version of IMF and the Iterative Proportional Fitting (IPF) procedure -- a foundational method for the SB problem, also known as Sinkhorn's algorithm. Specifically, we demonstrate that the heuristic modification of the IMF effectively integrates both IMF and IPF procedures. We refer to this combined approach as the Iterative Proportional Markovian Fitting (IPMF) procedure. Through theoretical and empirical analysis, we establish the convergence of the IPMF procedure under various settings, contributing to developing a unified framework for solving SB problems. Moreover, from a practical standpoint, the IPMF procedure enables a flexible trade-off between image similarity and generation quality, offering a new mechanism for tailoring models to specific tasks.
♻ ☆ Regularized least squares learning with heavy-tailed noise is minimax optimal
This paper examines the performance of ridge regression in reproducing kernel Hilbert spaces in the presence of noise that exhibits a finite number of higher moments. We establish excess risk bounds consisting of subgaussian and polynomial terms based on the well known integral operator framework. The dominant subgaussian component allows to achieve convergence rates that have previously only been derived under subexponential noise - a prevalent assumption in related work from the last two decades. These rates are optimal under standard eigenvalue decay conditions, demonstrating the asymptotic robustness of regularized least squares against heavy-tailed noise. Our derivations are based on a Fuk-Nagaev inequality for Hilbert-space valued random variables.
comment: 32 pages, 1 figure
♻ ☆ SolarCrossFormer: Improving day-ahead Solar Irradiance Forecasting by Integrating Satellite Imagery and Ground Sensors
Accurate day-ahead forecasts of solar irradiance are required for the large-scale integration of solar photovoltaic (PV) systems into the power grid. However, current forecasting solutions lack the temporal and spatial resolution required by system operators. In this paper, we introduce SolarCrossFormer, a novel deep learning model for day-ahead irradiance forecasting, that combines satellite images and time series from a ground-based network of meteorological stations. SolarCrossFormer uses novel graph neural networks to exploit the inter- and intra-modal correlations of the input data and improve the accuracy and resolution of the forecasts. It generates probabilistic forecasts for any location in Switzerland with a 15-minute resolution for horizons up to 24 hours ahead. One of the key advantages of SolarCrossFormer its robustness in real life operations. It can incorporate new time-series data without retraining the model and, additionally, it can produce forecasts for locations without input data by using only their coordinates. Experimental results over a dataset of one year and 127 locations across Switzerland show that SolarCrossFormer yield a normalized mean absolute error of 6.1 % over the forecasting horizon. The results are competitive with those achieved by a commercial numerical weather prediction service.
comment: 14 pages, 18 figures, accepted for publication in IEEE Transactions on Sustainable Energy
♻ ☆ Breaking Data Silos: Towards Open and Scalable Mobility Foundation Models via Generative Continual Learning
Foundation models have revolutionized fields such as natural language processing and computer vision by enabling general-purpose learning across diverse tasks and datasets. However, building analogous models for human mobility remains challenging due to the privacy-sensitive nature of mobility data and the resulting data silos across institutions. To bridge this gap, we propose MoveGCL, a scalable and privacy-preserving framework for training mobility foundation models via generative continual learning. Without sharing raw data, MoveGCL enables decentralized and progressive model evolution by replaying synthetic trajectories generated from a frozen teacher model, and reinforces knowledge retention through a tailored distillation strategy that mitigates catastrophic forgetting. To address the heterogeneity of mobility patterns, MoveGCL incorporates a Mixture-of-Experts Transformer with a mobility-aware expert routing mechanism, and employs a layer-wise progressive adaptation strategy to stabilize continual updates. Experiments on six real-world urban datasets demonstrate that MoveGCL achieves performance comparable to joint training and significantly outperforms federated learning baselines, while offering strong privacy protection. MoveGCL marks a crucial step toward unlocking foundation models for mobility, offering a practical blueprint for open, scalable, and privacy-preserving model development in the era of foundation models. To facilitate reproducibility and future research, we have released the code and models at https://github.com/tsinghua-fib-lab/MoveGCL.
comment: The 33rd ACM International Conference on Advances in Geographic Information Systems
♻ ☆ QCircuitBench: A Large-Scale Dataset for Benchmarking Quantum Algorithm Design
Quantum computing is an emerging field recognized for the significant speedup it offers over classical computing through quantum algorithms. However, designing and implementing quantum algorithms pose challenges due to the complex nature of quantum mechanics and the necessity for precise control over quantum states. Despite the significant advancements in AI, there has been a lack of datasets specifically tailored for this purpose. In this work, we introduce QCircuitBench, the first benchmark dataset designed to evaluate AI's capability in designing and implementing quantum algorithms using quantum programming languages. Unlike using AI for writing traditional codes, this task is fundamentally more complicated due to highly flexible design space. Our key contributions include: 1. A general framework which formulates the key features of quantum algorithm design for Large Language Models. 2. Implementations for quantum algorithms from basic primitives to advanced applications, spanning 3 task suites, 25 algorithms, and 120,290 data points. 3. Automatic validation and verification functions, allowing for iterative evaluation and interactive reasoning without human inspection. 4. Promising potential as a training dataset through preliminary fine-tuning results. We observed several interesting experimental phenomena: LLMs tend to exhibit consistent error patterns, and fine-tuning does not always outperform few-shot learning. In all, QCircuitBench is a comprehensive benchmark for LLM-driven quantum algorithm design, and it reveals limitations of LLMs in this domain.
comment: 45 pages, 17 figures, 15 tables, GitHub repository: https://github.com/EstelYang/QCircuitBench
♻ ☆ Multimodal Cancer Modeling in the Age of Foundation Model Embeddings ML4H 2025
The Cancer Genome Atlas (TCGA) has enabled novel discoveries and served as a large-scale reference dataset in cancer through its harmonized genomics, clinical, and imaging data. Numerous prior studies have developed bespoke deep learning models over TCGA for tasks such as cancer survival prediction. A modern paradigm in biomedical deep learning is the development of foundation models (FMs) to derive feature embeddings agnostic to a specific modeling task. Biomedical text especially has seen growing development of FMs. While TCGA contains free-text data as pathology reports, these have been historically underutilized. Here, we investigate the ability to train classical machine learning models over multimodal, zero-shot FM embeddings of cancer data. We demonstrate the ease and additive effect of multimodal fusion, outperforming unimodal models. Further, we show the benefit of including pathology report text and rigorously evaluate the effect of model-based text summarization and hallucination. Overall, we propose an embedding-centric approach to multimodal cancer modeling.
comment: camera ready version for ML4H 2025
♻ ☆ Universal Fourier Neural Operators for periodic homogenization problems in linear elasticity
Solving cell problems in homogenization is hard, and available deep-learning frameworks fail to match the speed and generality of traditional computational frameworks. More to the point, it is generally unclear what to expect of machine-learning approaches, let alone single out which approaches are promising. In the work at hand, we advocate Fourier Neural Operators (FNOs) for micromechanics, empowering them by insights from computational micromechanics methods based on the fast Fourier transform (FFT). We construct an FNO surrogate mimicking the basic scheme foundational for FFT-based methods and show that the resulting operator predicts solutions to cell problems with arbitrary stiffness distribution only subject to a material-contrast constraint up to a desired accuracy. In particular, there are no restrictions on the material symmetry like isotropy, on the number of phases and on the geometry of the interfaces between materials. Also, the provided fidelity is sharp and uniform, providing explicit guarantees leveraging our physical empowerment of FNOs. To show the desired universal approximation property, we construct an FNO explicitly that requires no training to begin with. Still, the obtained neural operator complies with the same memory requirements as the basic scheme and comes with runtimes proportional to classical FFT solvers. In particular, large-scale problems with more than 100 million voxels are readily handled. The goal of this work is to underline the potential of FNOs for solving micromechanical problems, linking FFT-based methods to FNOs. This connection is expected to provide a fruitful exchange between both worlds.
comment: Published in Journal of the Mechanics and Physics of Solids
♻ ☆ A LoD of Gaussians: Unified Training and Rendering for Ultra-Large Scale Reconstruction with External Memory
Gaussian Splatting has emerged as a high-performance technique for novel view synthesis, enabling real-time rendering and high-quality reconstruction of small scenes. However, scaling to larger environments has so far relied on partitioning the scene into chunks -- a strategy that introduces artifacts at chunk boundaries, complicates training across varying scales, and is poorly suited to unstructured scenarios such as city-scale flyovers combined with street-level views. Moreover, rendering remains fundamentally limited by GPU memory, as all visible chunks must reside in VRAM simultaneously. We introduce A LoD of Gaussians, a framework for training and rendering ultra-large-scale Gaussian scenes on a single consumer-grade GPU -- without partitioning. Our method stores the full scene out-of-core (e.g., in CPU memory) and trains a Level-of-Detail (LoD) representation directly, dynamically streaming only the relevant Gaussians. A hybrid data structure combining Gaussian hierarchies with Sequential Point Trees enables efficient, view-dependent LoD selection, while a lightweight caching and view scheduling system exploits temporal coherence to support real-time streaming and rendering. Together, these innovations enable seamless multi-scale reconstruction and interactive visualization of complex scenes -- from broad aerial views to fine-grained ground-level details.
♻ ☆ ChessArena: A Chess Testbed for Evaluating Strategic Reasoning Capabilities of Large Language Models
Recent large language models (LLMs) have shown strong reasoning capabilities. However, a critical question remains: do these models possess genuine reasoning skills particularly complex strategic reasoning or are they primarily excelling at sophisticated pattern recognition within their training data? To address this question, this paper presents a chess testbed, ChessArena, to evaluate the strategic reasoning capabilities of LLMs. Chess requires complex strategic reasoning capabilities including long-term planning, strict rule comprehension, and multi-turn conversation memorization. Specifically, ChessArena is a competitive framework where LLMs play against each other, under four different play modes. The testbed is equipped with a ranking algorithm and a leaderboard. The testbed can also evaluate fine-grained capabilities including basic understanding, move selection, and puzzle solving. Over 13 LLMs with different modes are evaluated in ChessArena, playing over 800 games. The results reveal significant shortcomings in current LLMs: no model can beat Maia-1100 (a chess engine at human amateur level), while some even failed to defeat a random player that selects moves arbitrarily. We also present a strong baseline to the testbed: our fine-tuned Qwen3-8B substantially improved performance, approaching much larger state-of-the-art reasoning models.
♻ ☆ Small Singular Values Matter: A Random Matrix Analysis of Transformer Models
This work analyzes singular-value spectra of weight matrices in pretrained transformer models to understand how information is stored at both ends of the spectrum. Using Random Matrix Theory (RMT) as a zero information hypothesis, we associate agreement with RMT as evidence of randomness and deviations as evidence for learning. Surprisingly, we observe pronounced departures from RMT not only among the largest singular values -- the usual outliers -- but also among the smallest ones. A comparison of the associated singular vectors with the eigenvectors of the activation covariance matrices shows that there is considerable overlap wherever RMT is violated. Thus, significant directions in the data are captured by small singular values and their vectors as well as by the large ones. We confirm this empirically: zeroing out the singular values that deviate from RMT raises language-model perplexity far more than removing values from the bulk, and after fine-tuning the smallest decile can be the third most influential part of the spectrum. To explain how vectors linked to small singular values can carry more information than those linked to larger values, we propose a linear random-matrix model. Our findings highlight the overlooked importance of the low end of the spectrum and provide theoretical and practical guidance for SVD-based pruning and compression of large language models.
comment: 10 pages, 7 figures
♻ ☆ CBraMod: A Criss-Cross Brain Foundation Model for EEG Decoding ICLR 2025
Electroencephalography (EEG) is a non-invasive technique to measure and record brain electrical activity, widely used in various BCI and healthcare applications. Early EEG decoding methods rely on supervised learning, limited by specific tasks and datasets, hindering model performance and generalizability. With the success of large language models, there is a growing body of studies focusing on EEG foundation models. However, these studies still leave challenges: Firstly, most of existing EEG foundation models employ full EEG modeling strategy. It models the spatial and temporal dependencies between all EEG patches together, but ignores that the spatial and temporal dependencies are heterogeneous due to the unique structural characteristics of EEG signals. Secondly, existing EEG foundation models have limited generalizability on a wide range of downstream BCI tasks due to varying formats of EEG data, making it challenging to adapt to. To address these challenges, we propose a novel foundation model called CBraMod. Specifically, we devise a criss-cross transformer as the backbone to thoroughly leverage the structural characteristics of EEG signals, which can model spatial and temporal dependencies separately through two parallel attention mechanisms. And we utilize an asymmetric conditional positional encoding scheme which can encode positional information of EEG patches and be easily adapted to the EEG with diverse formats. CBraMod is pre-trained on a very large corpus of EEG through patch-based masked EEG reconstruction. We evaluate CBraMod on up to 10 downstream BCI tasks (12 public datasets). CBraMod achieves the state-of-the-art performance across the wide range of tasks, proving its strong capability and generalizability. The source code is publicly available at https://github.com/wjq-learning/CBraMod.
comment: Accepted by The Thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ How do Transformers Learn Implicit Reasoning? NeurIPS 2025
Recent work suggests that large language models (LLMs) can perform multi-hop reasoning implicitly -- producing correct answers without explicitly verbalizing intermediate steps -- but the underlying mechanisms remain poorly understood. In this paper, we study how such implicit reasoning emerges by training transformers from scratch in a controlled symbolic environment. Our analysis reveals a three-stage developmental trajectory: early memorization, followed by in-distribution generalization, and eventually cross-distribution generalization. We find that training with atomic triples is not necessary but accelerates learning, and that second-hop generalization relies on query-level exposure to specific compositional structures. To interpret these behaviors, we introduce two diagnostic tools: cross-query semantic patching, which identifies semantically reusable intermediate representations, and a cosine-based representational lens, which reveals that successful reasoning correlates with the cosine-base clustering in hidden space. This clustering phenomenon in turn provides a coherent explanation for the behavioral dynamics observed across training, linking representational structure to reasoning capability. These findings provide new insights into the interpretability of implicit multi-hop reasoning in LLMs, helping to clarify how complex reasoning processes unfold internally and offering pathways to enhance the transparency of such models.
comment: Accepted as Spotlight at NeurIPS 2025
♻ ☆ GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs NeurIPS 2025
LLMs have shown impressive capabilities across various natural language processing tasks, yet remain vulnerable to input prompts, known as jailbreak attacks, carefully designed to bypass safety guardrails and elicit harmful responses. Traditional methods rely on manual heuristics but suffer from limited generalizability. Despite being automatic, optimization-based attacks often produce unnatural prompts that can be easily detected by safety filters or require high computational costs due to discrete token optimization. In this paper, we introduce Generative Adversarial Suffix Prompter (GASP), a novel automated framework that can efficiently generate human-readable jailbreak prompts in a fully black-box setting. In particular, GASP leverages latent Bayesian optimization to craft adversarial suffixes by efficiently exploring continuous latent embedding spaces, gradually optimizing the suffix prompter to improve attack efficacy while balancing prompt coherence via a targeted iterative refinement procedure. Through comprehensive experiments, we show that GASP can produce natural adversarial prompts, significantly improving jailbreak success over baselines, reducing training times, and accelerating inference speed, thus making it an efficient and scalable solution for red-teaming LLMs.
comment: Accepted to NeurIPS 2025. Project page and demos: https://air-ml.org/project/gasp/
♻ ☆ Test-Time Warmup for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) hold great promise for advanced reasoning at the intersection of text and images, yet they have not fully realized this potential. MLLMs typically integrate an LLM, a vision encoder, and a connector that maps the vision encoder's embeddings into the LLM's text embedding space. Although each component is pretrained on massive datasets with billions of samples, the entire multimodal model is typically trained on only thousands (or a few million) samples, which can result in weak performance on complex reasoning tasks. To address these shortcomings, instead of relying on extensive labeled datasets for fine-tuning, we propose a Test-Time Warmup method that adapts the MLLM per test instance by leveraging data from weakly supervised auxiliary tasks. With our approach, we observe a relative performance improvement of 4.03% on MMMU, 5.28% on VQA-Rad, and 1.63% on GQA on the Llama-Vision-Instruct model. Our method demonstrates that 'warming up' before inference can enhance MLLMs' robustness across diverse reasoning tasks.
♻ ☆ FLOWR.root: A flow matching based foundation model for joint multi-purpose structure-aware 3D ligand generation and affinity prediction
We present FLOWR:root, an equivariant flow-matching model for pocket-aware 3D ligand generation with joint binding affinity prediction and confidence estimation. The model supports de novo generation, pharmacophore-conditional sampling, fragment elaboration, and multi-endpoint affinity prediction (pIC50, pKi, pKd, pEC50). Training combines large-scale ligand libraries with mixed-fidelity protein-ligand complexes, followed by refinement on curated co-crystal datasets and parameter-efficient finetuning for project-specific adaptation. FLOWR:root achieves state-of-the-art performance in unconditional 3D molecule generation and pocket-conditional ligand design, producing geometrically realistic, low-strain structures. The integrated affinity prediction module demonstrates superior accuracy on the SPINDR test set and outperforms recent models on the Schrodinger FEP+/OpenFE benchmark with substantial speed advantages. As a foundation model, FLOWR:root requires finetuning on project-specific datasets to account for unseen structure-activity landscapes, yielding strong correlation with experimental data. Joint generation and affinity prediction enable inference-time scaling through importance sampling, steering molecular design toward higher-affinity compounds. Case studies validate this: selective CK2$\alpha$ ligand generation against CLK3 shows significant correlation between predicted and quantum-mechanical binding energies, while ER$\alpha$, TYK2 and BACE1 scaffold elaboration demonstrates strong agreement with QM calculations. By integrating structure-aware generation, affinity estimation, and property-guided sampling, FLOWR:root provides a comprehensive foundation for structure-based drug design spanning hit identification through lead optimization.
♻ ☆ TathyaNyaya and FactLegalLlama: Advancing Factual Judgment Prediction and Explanation in the Indian Legal Context AACL
In the landscape of Fact-based Judgment Prediction and Explanation (FJPE), reliance on factual data is essential for developing robust and realistic AI-driven decision-making tools. This paper introduces TathyaNyaya, the largest annotated dataset for FJPE tailored to the Indian legal context, encompassing judgments from the Supreme Court of India and various High Courts. Derived from the Hindi terms "Tathya" (fact) and "Nyaya" (justice), the TathyaNyaya dataset is uniquely designed to focus on factual statements rather than complete legal texts, reflecting real-world judicial processes where factual data drives outcomes. Complementing this dataset, we present FactLegalLlama, an instruction-tuned variant of the LLaMa-3-8B Large Language Model (LLM), optimized for generating high-quality explanations in FJPE tasks. Finetuned on the factual data in TathyaNyaya, FactLegalLlama integrates predictive accuracy with coherent, contextually relevant explanations, addressing the critical need for transparency and interpretability in AI-assisted legal systems. Our methodology combines transformers for binary judgment prediction with FactLegalLlama for explanation generation, creating a robust framework for advancing FJPE in the Indian legal domain. TathyaNyaya not only surpasses existing datasets in scale and diversity but also establishes a benchmark for building explainable AI systems in legal analysis. The findings underscore the importance of factual precision and domain-specific tuning in enhancing predictive performance and interpretability, positioning TathyaNyaya and FactLegalLlama as foundational resources for AI-assisted legal decision-making.
comment: Paper accepted in the AACL-IJCNLP 2025 conference
♻ ☆ A Systematic Evaluation of Self-Supervised Learning for Label-Efficient Sleep Staging with Wearable EEG
Wearable EEG devices have emerged as a promising alternative to polysomnography (PSG). As affordable and scalable solutions, their widespread adoption results in the collection of massive volumes of unlabeled data that cannot be analyzed by clinicians at scale. Meanwhile, the recent success of deep learning for sleep scoring has relied on large annotated datasets. Self-supervised learning (SSL) offers an opportunity to bridge this gap, leveraging unlabeled signals to address label scarcity and reduce annotation effort. In this paper, we present the first systematic evaluation of SSL for sleep staging using wearable EEG. We investigate a range of well-established SSL methods and evaluate them on two sleep databases acquired with the Ikon Sleep wearable EEG headband: BOAS, a high-quality benchmark containing PSG and wearable EEG recordings with consensus labels, and HOGAR, a large collection of home-based, self-recorded, and unlabeled recordings. Three evaluation scenarios are defined to study label efficiency, representation quality, and cross-dataset generalization. Results show that SSL consistently improves classification performance by up to 10% over supervised baselines, with gains particularly evident when labeled data is scarce. SSL achieves clinical-grade accuracy above 80% leveraging only 5% to 10% of labeled data, while the supervised approach requires twice the labels. Additionally, SSL representations prove robust to variations in population characteristics, recording environments, and signal quality. Our findings demonstrate the potential of SSL to enable label-efficient sleep staging with wearable EEG, reducing reliance on manual annotations and advancing the development of affordable sleep monitoring systems.
comment: 12 pages, 4 figures
♻ ☆ Large language models surpass domain-specific architectures for antepartum electronic fetal monitoring analysis
Foundation models (FMs) and large language models (LLMs) have demonstrated promising generalization across diverse domains for time-series analysis, yet their potential for electronic fetal monitoring (EFM) and cardiotocography (CTG) analysis remains underexplored. Most existing CTG studies relied on domain-specific models and lack systematic comparisons with modern foundation or language models, limiting our understanding of whether these models can outperform specialized systems in fetal health assessment. In this study, we present the first comprehensive benchmark of state-of-the-art architectures for automated antepartum CTG classification. Over 2,500 20-minutes recordings were used to evaluate over 15 models spanning domain-specific, time-series, foundation, and language-model categories under a unified framework. Fine-tuned LLMs consistently outperformed both foundation and domain-specific models across data-availability scenarios, except when uterine-activity signals were absent, where domain-specific models showed greater robustness. These performance gains, however, required substantially higher computational resources. Our results highlight that while fine-tuned LLMs achieved state-of-the-art performance for CTG classification, practical deployment must balance performance with computational efficiency.
comment: Preparing for journal
♻ ☆ TowerVision: Understanding and Improving Multilinguality in Vision-Language Models
Despite significant advances in vision-language models (VLMs), most existing work follows an English-centric design process, limiting their effectiveness in multilingual settings. In this work, we provide a comprehensive empirical study analyzing the impact of several multilingual design choices, such as training data composition, encoder selection, and text backbones. The result is TowerVision, a family of open multilingual VLMs for both image-text and video-text tasks, built upon the multilingual text-only model Tower+. TowerVision achieves competitive performance on multiple multimodal multilingual benchmarks and shows particular strength in culturally grounded tasks and multimodal translation. By incorporating visual and cultural context during fine-tuning, our models surpass existing approaches trained on substantially larger datasets, as demonstrated on ALM-Bench and Multi30K (image tasks) and ViMUL-Bench (video tasks). Alongside the models, we release VisionBlocks, a high-quality, curated vision-language dataset. Our findings highlight that multilingual vision-language training data substantially improves cross-lingual generalization -- both from high-resource to underrepresented languages and vice versa -- and that instruction-tuned LLMs are not always the optimal initialization point. To support further research, we publicly release all models, data, and training recipes.
comment: 15 pages, 7 figures, submitted to arXiv October 2025. All models, datasets, and training code will be released at https://huggingface.co/collections/utter-project/towervision
♻ ☆ But what is your honest answer? Aiding LLM-judges with honest alternatives using steering vectors
Detecting subtle forms of dishonesty like sycophancy and manipulation in Large Language Models (LLMs) remains challenging for both humans and automated evaluators, as these behaviors often appear through small biases rather than clear false statements. We introduce Judge Using Safety-Steered Alternatives (JUSSA), a novel framework that employs steering vectors not to improve model behavior directly, but to enhance LLM judges' evaluation capabilities. JUSSA applies steering vectors during inference to generate more honest alternatives, providing judges with contrastive examples that make subtle dishonest patterns easier to detect. While existing evaluation methods rely on black-box evaluation, JUSSA leverages model internals to create targeted comparisons from single examples. We evaluate our method on sycophancy detection and introduce a new manipulation dataset covering multiple types of manipulation. Our results demonstrate that JUSSA effectively improves detection accuracy over single-response evaluation in various cases. Analysis across judge models reveals that JUSSA helps weaker judges on easier dishonesty detection tasks, and stronger judges on harder tasks. Layer-wise experiments show how dishonest prompts cause representations to diverge from honest ones in middle layers, revealing where steering interventions are most effective for generating contrastive examples. By demonstrating that steering vectors can enhance safety evaluation rather than just modify behavior, our work opens new directions for scalable model auditing as systems become increasingly sophisticated.
♻ ☆ Causal Graph Neural Networks for Healthcare
Healthcare artificial intelligence systems routinely fail when deployed across institutions, with documented performance drops and perpetuation of discriminatory patterns embedded in historical data. This brittleness stems, in part, from learning statistical associations rather than causal mechanisms. Causal graph neural networks address this triple crisis of distribution shift, discrimination, and inscrutability by combining graph-based representations of biomedical data with causal inference principles to learn invariant mechanisms rather than spurious correlations. This Review examines methodological foundations spanning structural causal models, disentangled causal representation learning, and techniques for interventional prediction and counterfactual reasoning on graphs. We analyse applications demonstrating clinical value across psychiatric diagnosis through brain network analysis, cancer subtyping via multi-omics causal integration, continuous physiological monitoring with mechanistic interpretation, and drug recommendation correcting prescription bias. These advances establish foundations for patient-specific Causal Digital Twins, enabling in silico clinical experimentation, with integration of large language models for hypothesis generation and causal graph neural networks for mechanistic validation. Substantial barriers remain, including computational requirements precluding real-time deployment, validation challenges demanding multi-modal evidence triangulation beyond cross-validation, and risks of causal-washing where methods employ causal terminology without rigorous evidentiary support. We propose tiered frameworks distinguishing causally-inspired architectures from causally-validated discoveries and identify critical research priorities making causal rather than purely associational claims.
♻ ☆ On scalable and efficient training of diffusion samplers
We address the challenge of training diffusion models to sample from unnormalized energy distributions in the absence of data, the so-called diffusion samplers. Although these approaches have shown promise, they struggle to scale in more demanding scenarios where energy evaluations are expensive and the sampling space is high-dimensional. To address this limitation, we propose a scalable and sample-efficient framework that properly harmonizes the powerful classical sampling method and the diffusion sampler. Specifically, we utilize Monte Carlo Markov chain (MCMC) samplers with a novelty-based auxiliary energy as a Searcher to collect off-policy samples, using an auxiliary energy function to compensate for exploring modes the diffusion sampler rarely visits. These off-policy samples are then combined with on-policy data to train the diffusion sampler, thereby expanding its coverage of the energy landscape. Furthermore, we identify primacy bias, i.e., the preference of samplers for early experience during training, as the main cause of mode collapse during training, and introduce a periodic re-initialization trick to resolve this issue. Our method significantly improves sample efficiency on standard benchmarks for diffusion samplers and also excels at higher-dimensional problems and real-world molecular conformer generation.
♻ ☆ Scaling Laws for Task-Optimized Models of the Primate Visual Ventral Stream ICML25
When trained on large-scale object classification datasets, certain artificial neural network models begin to approximate core object recognition behaviors and neural response patterns in the primate brain. While recent machine learning advances suggest that scaling compute, model size, and dataset size improves task performance, the impact of scaling on brain alignment remains unclear. In this study, we explore scaling laws for modeling the primate visual ventral stream by systematically evaluating over 600 models trained under controlled conditions on benchmarks spanning V1, V2, V4, IT and behavior. We find that while behavioral alignment continues to scale with larger models, neural alignment saturates. This observation remains true across model architectures and training datasets, even though models with stronger inductive biases and datasets with higher-quality images are more compute-efficient. Increased scaling is especially beneficial for higher-level visual areas, where small models trained on few samples exhibit only poor alignment. Our results suggest that while scaling current architectures and datasets might suffice for alignment with human core object recognition behavior, it will not yield improved models of the brain's visual ventral stream, highlighting the need for novel strategies in building brain models.
comment: Published at ICML25 as a spotlight paper - 9 pages for the main paper, 22 pages in total. 7 main figures and 7 supplementary figures. Code, model weights, and benchmark results can be accessed at https://github.com/epflneuroailab/scaling-primate-vvs
♻ ☆ NyayaRAG: Realistic Legal Judgment Prediction with RAG under the Indian Common Law System AACL
Legal Judgment Prediction (LJP) has emerged as a key area in AI for law, aiming to automate judicial outcome forecasting and enhance interpretability in legal reasoning. While previous approaches in the Indian context have relied on internal case content such as facts, issues, and reasoning, they often overlook a core element of common law systems, which is reliance on statutory provisions and judicial precedents. In this work, we propose NyayaRAG, a Retrieval-Augmented Generation (RAG) framework that simulates realistic courtroom scenarios by providing models with factual case descriptions, relevant legal statutes, and semantically retrieved prior cases. NyayaRAG evaluates the effectiveness of these combined inputs in predicting court decisions and generating legal explanations using a domain-specific pipeline tailored to the Indian legal system. We assess performance across various input configurations using both standard lexical and semantic metrics as well as LLM-based evaluators such as G-Eval. Our results show that augmenting factual inputs with structured legal knowledge significantly improves both predictive accuracy and explanation quality.
comment: Paper accepted in the AACL-IJCNLP 2025 conference
♻ ☆ Explanations Go Linear: Interpretable and Individual Latent Encoding for Post-hoc Explainability
Post-hoc explainability is essential for understanding black-box machine learning models. Surrogate-based techniques are widely used for local and global model-agnostic explanations but have significant limitations. Local surrogates capture non-linearities but are computationally expensive and sensitive to parameters, while global surrogates are more efficient but struggle with complex local behaviors. In this paper, we present ILLUME, a flexible and interpretable framework grounded in representation learning, that can be integrated with various surrogate models to provide explanations for any black-box classifier. Specifically, our approach combines a globally trained surrogate with instance-specific linear transformations learned with a meta-encoder to generate both local and global explanations. Through extensive empirical evaluations, we demonstrate the effectiveness of ILLUME in producing feature attributions and decision rules that are not only accurate but also robust and faithful to the black-box, thus providing a unified explanation framework that effectively addresses the limitations of traditional surrogate methods.
comment: ICDM 2025
♻ ☆ Higher-Order Singular-Value Derivatives of Rectangular Real Matrices
We present a theoretical framework for deriving the general $n$-th order Fr\'echet derivatives of singular values in real rectangular matrices, by leveraging reduced resolvent operators from Kato's analytic perturbation theory for self-adjoint operators. Deriving closed-form expressions for higher-order derivatives of singular values is notoriously challenging through standard matrix-analysis techniques. To overcome this, we treat a real rectangular matrix as a compact operator on a finite-dimensional Hilbert space, and embed the rectangular matrix into a block self-adjoint operator so that non-symmetric perturbations are captured. Applying Kato's asymptotic eigenvalue expansion to this construction, we obtain a general, closed-form expression for the infinitesimal $n$-th order spectral variations. Specializing to $n=2$ and deploying on a Kronecker-product representation with matrix convention yield the Hessian of a singular value, not found in literature. By bridging abstract operator-theoretic perturbation theory with matrices, our framework equips researchers with a practical toolkit for higher-order spectral sensitivity studies in random matrix applications (e.g., adversarial perturbation in deep learning).
♻ ☆ Enhancing Efficiency in Multidevice Federated Learning through Data Selection ICLR 2023
Ubiquitous wearable and mobile devices provide access to a diverse set of data. However, the mobility demand for our devices naturally imposes constraints on their computational and communication capabilities. A solution is to locally learn knowledge from data captured by ubiquitous devices, rather than to store and transmit the data in its original form. In this paper, we develop a federated learning framework, called Centaur, to incorporate on-device data selection at the edge, which allows partition-based training of a deep neural nets through collaboration between constrained and resourceful devices within the multidevice ecosystem of the same user. We benchmark on five neural net architecture and six datasets that include image data and wearable sensor time series. On average, Centaur achieves ~19% higher classification accuracy and ~58% lower federated training latency, compared to the baseline. We also evaluate Centaur when dealing with imbalanced non-iid data, client participation heterogeneity, and different mobility patterns. To encourage further research in this area, we release our code at https://github.com/nokia-bell-labs/data-centric-federated-learning
comment: To be presented in the 10th ACM/IEEE Symposium on Edge Computing (SEC2025) [an early version (v3) has been presented at ICLR 2023 Workshop on Machine Learning for IoT: Datasets, Perception, and Understanding]
♻ ☆ A Unified Kernel for Neural Network Learning
Past decades have witnessed a great interest in the distinction and connection between neural network learning and kernel learning. Recent advancements have made theoretical progress in connecting infinite-wide neural networks and Gaussian processes. Two predominant approaches have emerged: the Neural Network Gaussian Process (NNGP) and the Neural Tangent Kernel (NTK). The former, rooted in Bayesian inference, represents a zero-order kernel, while the latter, grounded in the tangent space of gradient descents, is a first-order kernel. In this paper, we present the Unified Neural Kernel (UNK), which {is induced by the inner product of produced variables and characterizes the learning dynamics of neural networks with gradient descents and parameter initialization.} The proposed UNK kernel maintains the limiting properties of both NNGP and NTK, exhibiting behaviors akin to NTK with a finite learning step and converging to NNGP as the learning step approaches infinity. Besides, we also theoretically characterize the uniform tightness and learning convergence of the UNK kernel, providing comprehensive insights into this unified kernel. Experimental results underscore the effectiveness of our proposed method.
♻ ☆ Towards Efficient and Accurate Spiking Neural Networks via Adaptive Bit Allocation
Multi-bit spiking neural networks (SNNs) have recently become a heated research spot, pursuing energy-efficient and high-accurate AI. However, with more bits involved, the associated memory and computation demands escalate to the point where the performance improvements become disproportionate. Based on the insight that different layers demonstrate different importance and extra bits could be wasted and interfering, this paper presents an adaptive bit allocation strategy for direct-trained SNNs, achieving fine-grained layer-wise allocation of memory and computation resources. Thus, SNN's efficiency and accuracy can be improved. Specifically, we parametrize the temporal lengths and the bit widths of weights and spikes, and make them learnable and controllable through gradients. To address the challenges caused by changeable bit widths and temporal lengths, we propose the refined spiking neuron, which can handle different temporal lengths, enable the derivation of gradients for temporal lengths, and suit spike quantization better. In addition, we theoretically formulate the step-size mismatch problem of learnable bit widths, which may incur severe quantization errors to SNN, and accordingly propose the step-size renewal mechanism to alleviate this issue. Experiments on various datasets, including the static CIFAR and ImageNet datasets and the dynamic CIFAR-DVS, DVS-GESTURE, and SHD datasets, demonstrate that our methods can reduce the overall memory and computation cost while achieving higher accuracy. Particularly, our SEWResNet-34 can achieve a 2.69% accuracy gain and 4.16x lower bit budgets over the advanced baseline work on ImageNet. This work will be open-sourced.
♻ ☆ Datasets, Documents, and Repetitions: The Practicalities of Unequal Data Quality
Data filtering has become a powerful tool for improving model performance while reducing computational cost. However, as large language model compute budgets continue to grow, the limited data volume provided by heavily filtered and deduplicated datasets will become a practical constraint. In efforts to better understand how to proceed, we study model performance at various compute budgets and across multiple pre-training datasets created through data filtering and deduplication. We find that, given appropriate modifications to the training recipe, repeating existing aggressively filtered datasets for up to ten epochs can outperform training on the ten times larger superset for a single epoch across multiple compute budget orders of magnitude. While this finding relies on repeating the dataset for many epochs, we also investigate repeats within these datasets at the document level. We find that not all documents within a dataset are equal, and we can create better datasets relative to a token budget by explicitly manipulating the counts of individual documents. We conclude by arguing that even as large language models scale, data filtering remains an important direction of research.
♻ ☆ LLMs as In-Context Meta-Learners for Model and Hyperparameter Selection
Model and hyperparameter selection are critical but challenging in machine learning, typically requiring expert intuition or expensive automated search. We investigate whether large language models (LLMs) can act as in-context meta-learners for this task. By converting each dataset into interpretable metadata, we prompt an LLM to recommend both model families and hyperparameters. We study two prompting strategies: (1) a zero-shot mode relying solely on pretrained knowledge, and (2) a meta-informed mode augmented with examples of models and their performance on past tasks. Across synthetic and real-world benchmarks, we show that LLMs can exploit dataset metadata to recommend competitive models and hyperparameters without search, and that improvements from meta-informed prompting demonstrate their capacity for in-context meta-learning. These results highlight a promising new role for LLMs as lightweight, general-purpose assistants for model selection and hyperparameter optimization.
comment: 27 pages, 6 figures
♻ ☆ EERO: Early Exit with Reject Option for Efficient Classification with limited budget
The increasing complexity of advanced machine learning models requires innovative approaches to manage computational resources effectively. One such method is the Early Exit strategy, which allows for adaptive computation by providing a mechanism to shorten the processing path for simpler data instances. In this paper, we propose EERO, a new methodology to translate the problem of early exiting to a problem of using multiple classifiers with reject option in order to better select the exiting head for each instance. We calibrate the probabilities of exiting at the different heads using aggregation with exponential weights to guarantee a fixed budget .We consider factors such as Bayesian risk, budget constraints, and head-specific budget consumption. Experimental results, conducted using a ResNet-18 model and a ConvNext architecture on Cifar and ImageNet datasets, demonstrate that our method not only effectively manages budget allocation but also enhances accuracy in overthinking scenarios.
♻ ☆ Mathematics with large language models as provers and verifiers
During 2024 and 2025 the discussion about the theorem-proving capabilities of large language models started reporting interesting success stories, mostly to do with difficult exercises (such as problems from the International Mathematical Olympiad), but also with conjectures [Feldman & Karbasi, arXiv:2509.18383v1] formulated for the purpose of verifying whether the artificial intelligence could prove it. In this paper we report a theorem proving feat achieved by ChatGPT by using a protocol involving different prover and verifier instances of the gpt-5 model working collaboratively. To make sure that the produced proofs do not suffer from hallucinations, the final proof is formally verified by the lean proof assistant, and the conformance of premises and conclusion of the lean code is verified by a human. Our methodology is by no means complete or exact. It was nonetheless able to solve five out of six 2025 IMO problems, and close about a third of the sixty-six number theory conjectures in [Cohen, Journal of Integer Sequences, 2025].
♻ ☆ RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Chest X-ray with Zero-Shot Multi-Task Capability NeurIPS 2025
Recent advancements in multimodal models have significantly improved vision-language (VL) alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning and offer limited interpretability through attention probability visualizations. To address these challenges, we introduce $\textbf{RadZero}$, a novel framework for VL alignment in chest X-ray with zero-shot multi-task capability. A key component of our approach is $\textbf{VL-CABS}$ ($\textbf{V}$ision-$\textbf{L}$anguage $\textbf{C}$ross-$\textbf{A}$ttention $\textbf{B}$ased on $\textbf{S}$imilarity), which aligns text embeddings with local image features for interpretable, fine-grained VL reasoning. RadZero leverages large language models to extract concise semantic sentences from radiology reports and employs multi-positive contrastive training to effectively capture relationships between images and multiple relevant textual descriptions. It uses a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, VL-CABS enables zero-shot inference with similarity probability for classification, and pixel-level VL similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, VL similarity map analysis highlights the potential of VL-CABS for improving explainability in VL alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging. Code is available at $\href{https://github.com/deepnoid-ai/RadZero}{https://github.com/deepnoid-ai/RadZero}$.
comment: NeurIPS 2025
♻ ☆ Rewarding the Journey, Not Just the Destination: A Composite Path and Answer Self-Scoring Reward Mechanism for Test-Time Reinforcement Learning
Reinforcement Learning (RL) has emerged as a powerful paradigm for advancing Large Language Models (LLMs), achieving remarkable performance in complex reasoning domains such as mathematics and code generation. However, current RL methods face a fundamental scalability bottleneck due to their heavy reliance on human-curated preference data or labeled datasets for reward modeling. To overcome this limitation, we explore RL on unlabeled data where models learn autonomously from continuous experience streams. The core challenge in this setting lies in reliable reward estimation without ground-truth supervision. Existing approaches like Test-Time RL address this through self-consistent consensus, but risk reinforcing incorrect pseudo-labels derived from majority voting. We introduce COMPASS (Composite Path and Answer Self-Scoring), a novel test-time reward mechanism that operates without external supervision. COMPASS integrates two complementary components: the Dual-Calibration Answer Reward (DCAR), which stabilizes training by establishing trustworthy pseudo-labels through confidence and credibility calibration, and the Decisive Path Reward (DPR), which directly optimizes the reasoning process quality beyond mere outcome supervision. By jointly reinforcing trustworthy consensus answers and highly decisive reasoning chains, the COMPASS systematically enhances the model's analytical capabilities. Extensive experiments show that COMPASS achieves significant and consistent performance gains across diverse reasoning tasks and model architectures, advancing a more scalable direction for LLMs to learn from continuous experience.
♻ ☆ How Memory in Optimization Algorithms Implicitly Modifies the Loss
In modern optimization methods used in deep learning, each update depends on the history of previous iterations, often referred to as memory, and this dependence decays fast as the iterates go further into the past. For example, gradient descent with momentum has exponentially decaying memory through exponentially averaged past gradients. We introduce a general technique for identifying a memoryless algorithm that approximates an optimization algorithm with memory. It is obtained by replacing all past iterates in the update by the current one, and then adding a correction term arising from memory (also a function of the current iterate). This correction term can be interpreted as a perturbation of the loss, and the nature of this perturbation can inform how memory implicitly (anti-)regularizes the optimization dynamics. As an application of our theory, we find that Lion does not have the kind of implicit anti-regularization induced by memory that AdamW does, providing a theory-based explanation for Lion's better generalization performance recently documented.
♻ ☆ coverforest: Conformal Predictions with Random Forest in Python
Conformal prediction provides a framework for uncertainty quantification, specifically in the forms of prediction intervals and sets with distribution-free guaranteed coverage. While recent cross-conformal techniques such as CV+ and Jackknife+-after-bootstrap achieve better data efficiency than traditional split conformal methods, they incur substantial computational costs due to required pairwise comparisons between training and test samples' out-of-bag scores. Observing that these methods naturally extend from ensemble models, particularly random forests, we leverage existing optimized random forest implementations to enable efficient cross-conformal predictions. We present coverforest, a Python package that implements efficient conformal prediction methods specifically optimized for random forests. coverforest supports both regression and classification tasks through various conformal prediction methods, including split conformal, CV+, Jackknife+-after-bootstrap, and adaptive prediction sets. Our package leverages parallel computing and Cython optimizations to speed up out-of-bag calculations. Our experiments demonstrate that coverforest's predictions achieve the desired level of coverage. In addition, its training and prediction times can be faster than an existing implementation by 2--9 times. The source code for the coverforest is hosted on GitHub at https://github.com/donlap/coverforest.
comment: In peer review
♻ ☆ Robustness in Large Language Models: A Survey of Mitigation Strategies and Evaluation Metrics
Large Language Models (LLMs) have emerged as a promising cornerstone for the development of natural language processing (NLP) and artificial intelligence (AI). However, ensuring the robustness of LLMs remains a critical challenge. To address these challenges and advance the field, this survey provides a comprehensive overview of current studies in this area. First, we systematically examine the nature of robustness in LLMs, including its conceptual foundations, the importance of consistent performance across diverse inputs, and the implications of failure modes in real-world applications. Next, we analyze the sources of non-robustness, categorizing intrinsic model limitations, data-driven vulnerabilities, and external adversarial factors that compromise reliability. Following this, we review state-of-the-art mitigation strategies, and then we discuss widely adopted benchmarks, emerging metrics, and persistent gaps in assessing real-world reliability. Finally, we synthesize findings from existing surveys and interdisciplinary studies to highlight trends, unresolved issues, and pathways for future research.
comment: Accepted at TMLR
♻ ☆ Information-theoretic Generalization Analysis for VQ-VAEs: A Role of Latent Variables
Latent variables (LVs) play a crucial role in encoder-decoder models by enabling effective data compression, prediction, and generation. Although their theoretical properties, such as generalization, have been extensively studied in supervised learning, similar analyses for unsupervised models such as variational autoencoders (VAEs) remain insufficiently underexplored. In this work, we extend information-theoretic generalization analysis to vector-quantized (VQ) VAEs with discrete latent spaces, introducing a novel data-dependent prior to rigorously analyze the relationship among LVs, generalization, and data generation. We derive a novel generalization error bound of the reconstruction loss of VQ-VAEs, which depends solely on the complexity of LVs and the encoder, independent of the decoder. Additionally, we provide the upper bound of the 2-Wasserstein distance between the distributions of the true data and the generated data, explaining how the regularization of the LVs contributes to the data generation performance.
♻ ☆ MCTED: A Machine-Learning-Ready Dataset for Digital Elevation Model Generation From Mars Imagery
This work presents a new dataset for the Martian digital elevation model prediction task, ready for machine learning applications called MCTED. The dataset has been generated using a comprehensive pipeline designed to process high-resolution Mars orthoimage and DEM pairs from Day et al., yielding a dataset consisting of 80,898 data samples. The source images are data gathered by the Mars Reconnaissance Orbiter using the CTX instrument, providing a very diverse and comprehensive coverage of the Martian surface. Given the complexity of the processing pipelines used in large-scale DEMs, there are often artefacts and missing data points in the original data, for which we developed tools to solve or mitigate their impact. We divide the processed samples into training and validation splits, ensuring samples in both splits cover no mutual areas to avoid data leakage. Every sample in the dataset is represented by the optical image patch, DEM patch, and two mask patches, indicating values that were originally missing or were altered by us. This allows future users of the dataset to handle altered elevation regions as they please. We provide statistical insights of the generated dataset, including the spatial distribution of samples, the distributions of elevation values, slopes and more. Finally, we train a small U-Net architecture on the MCTED dataset and compare its performance to a monocular depth estimation foundation model, DepthAnythingV2, on the task of elevation prediction. We find that even a very small architecture trained on this dataset specifically, beats a zero-shot performance of a depth estimation foundation model like DepthAnythingV2. We make the dataset and code used for its generation completely open source in public repositories.
comment: 22 pages, 21 figures
♻ ☆ Learning Dynamics of RNNs in Closed-Loop Environments NeurIPS 2025
Recurrent neural networks (RNNs) trained on neuroscience-inspired tasks offer powerful models of brain computation. However, typical training paradigms rely on open-loop, supervised settings, whereas real-world learning unfolds in closed-loop environments. Here, we develop a mathematical theory describing the learning dynamics of linear RNNs trained in closed-loop contexts. We first demonstrate that two otherwise identical RNNs, trained in either closed- or open-loop modes, follow markedly different learning trajectories. To probe this divergence, we analytically characterize the closed-loop case, revealing distinct stages aligned with the evolution of the training loss. Specifically, we show that the learning dynamics of closed-loop RNNs, in contrast to open-loop ones, are governed by an interplay between two competing objectives: short-term policy improvement and long-term stability of the agent-environment interaction. Finally, we apply our framework to a realistic motor control task, highlighting its broader applicability. Taken together, our results underscore the importance of modeling closed-loop dynamics in a biologically plausible setting.
comment: Accepted at NeurIPS 2025
♻ ☆ Training Large Language Models To Reason In Parallel With Global Forking Tokens
Although LLMs have demonstrated improved performance by scaling parallel test-time compute, doing so relies on generating reasoning paths that are both diverse and accurate. For challenging problems, the forking tokens that trigger diverse yet correct reasoning modes are typically deep in the sampling tree. Consequently, common strategies to encourage diversity, such as temperature scaling, encounter a worsened trade-off between diversity and accuracy. Motivated by this challenge, we treat parallel reasoning as a set-of-next-token-prediction problem, and incorporate a set-based global loss into Supervised Fine-Tuning (SFT) using self-supervised bipartite matching between our global forking tokens and unique reasoning traces. We observe that, while naive fine-tuning with multiple reasoning traces collapses these unique reasoning modes, our proposed method, Set Supervised Fine-Tuning (SSFT), preserves these modes and produces emergent global forking tokens. Experiments on multiple reasoning benchmarks show that our SSFT consistently outperforms SFT under both Pass@1 and Cons@k metrics.
Learning to Navigate Socially Through Proactive Risk Perception
In this report, we describe the technical details of our submission to the IROS 2025 RoboSense Challenge Social Navigation Track. This track focuses on developing RGBD-based perception and navigation systems that enable autonomous agents to navigate safely, efficiently, and socially compliantly in dynamic human-populated indoor environments. The challenge requires agents to operate from an egocentric perspective using only onboard sensors including RGB-D observations and odometry, without access to global maps or privileged information, while maintaining social norm compliance such as safe distances and collision avoidance. Building upon the Falcon model, we introduce a Proactive Risk Perception Module to enhance social navigation performance. Our approach augments Falcon with collision risk understanding that learns to predict distance-based collision risk scores for surrounding humans, which enables the agent to develop more robust spatial awareness and proactive collision avoidance behaviors. The evaluation on the Social-HM3D benchmark demonstrates that our method improves the agent's ability to maintain personal space compliance while navigating toward goals in crowded indoor scenes with dynamic human agents, achieving 2nd place among 16 participating teams in the challenge.
♻ ☆ KGGen: Extracting Knowledge Graphs from Plain Text with Language Models
Recent interest in building foundation models for KGs has highlighted a fundamental challenge: knowledge-graph data is relatively scarce. The best-known KGs are primarily human-labeled, created by pattern-matching, or extracted using early NLP techniques. While human-generated KGs are in short supply, automatically extracted KGs are of questionable quality. We present a solution to this data scarcity problem in the form of a text-to-KG generator (KGGen), a package that uses language models to create high-quality graphs from plaintext. Unlike other KG extractors, KGGen clusters related entities to reduce sparsity in extracted KGs. KGGen is available as a Python library (\texttt{pip install kg-gen}), making it accessible to everyone. Along with KGGen, we release the first benchmark, Measure of of Information in Nodes and Edges (MINE), that tests an extractor's ability to produce a useful KG from plain text. We benchmark our new tool against existing extractors and demonstrate far superior performance.
♻ ☆ ADPO: Anchored Direct Preference Optimization
Direct Preference Optimization (DPO) is effective but brittle under annotator noise and distribution shift because it operates on hard, pairwise labels and only regularizes log-probability differences. We introduce Anchored Direct Preference Optimization (ADPO), a framework that extends preference learning to soft listwise supervision via reference anchoring. ADPO minimizes KL(q || softmax((s - s_ref) / tau_anc)), which (i) recovers supervised fine-tuning, knowledge distillation, maximum-entropy reinforcement learning, and DPO as special cases through suitable choices of target q, anchor policy, and temperature; (ii) induces an implicit trust region governed by the softmax Fisher metric, independent of the anchor; and (iii) supports stable dynamic-anchor updates. Empirically, we observe a task-dependent tradeoff: dynamic anchors improve online exploration under noise, while fixed anchors excel at offline distillation, achieving up to 170 to 5000 times reduction in student-teacher KL on our benchmarks.
♻ ☆ SySMOL: Co-designing Algorithms and Hardware for Neural Networks with Heterogeneous Precisions
Ultra-low-precision inference can sharply reduce memory and latency but often degrades accuracy and relies on specialized hardware. We present SONIQ, a system-optimized, noise-injected quantization framework that learns per-channel mixed precision for both weights and activations while training under the same rules used at inference. By injecting hardware-calibrated quantization noise during training, SONIQ steers models toward the discrete arithmetic used at deployment -- without bespoke runtimes. Across CNNs and Transformers, SONIQ achieves up to 16x and 7x compression, respectively, while matching or exceeding full-precision accuracy. Measured end-to-end, SONIQ delivers up to 7.3x CPU speedup over strong INT8 baselines and up to 6.3x (vector units) / 2.8x (tensor cores) GPU speedup relative to FP16. A practical outcome is that two per-channel precision levels -- one in the 1--4-bit range and one in the 4--8-bit range -- suffice in practice; at inference, each channel selects one of the two, keeping kernels simple and fast. To our knowledge, SONIQ is the first framework to reach or surpass full-precision accuracy under ultra-low (1--4 bits per parameter) regimes while remaining deployable on commodity hardware, narrowing the gap between quantization theory and practical, high-throughput inference.
♻ ☆ Generalizing Graph Transformers Across Diverse Graphs and Tasks via Pre-training
Graph pre-training has been concentrated on graph-level tasks involving small graphs (e.g., molecular graphs) or learning node representations on a fixed graph. Extending graph pre-trained models to web-scale graphs with billions of nodes in industrial scenarios, while avoiding negative transfer across graphs or tasks, remains a challenge. We aim to develop a general graph pre-trained model with inductive ability that can make predictions for unseen new nodes and even new graphs. In this work, we introduce a scalable transformer-based graph pre-training framework called PGT (Pre-trained Graph Transformer). Based on the masked autoencoder architecture, we design two pre-training tasks: one for reconstructing node features and the other for reconstructing local structures. Unlike the original autoencoder architecture where the pre-trained decoder is discarded, we propose a novel strategy that utilizes the decoder for feature augmentation. Our framework, tested on the publicly available ogbn-papers100M dataset with 111 million nodes and 1.6 billion edges, achieves state-of-the-art performance, showcasing scalability and efficiency. We have deployed our framework on Tencent's online game data, confirming its capability to pre-train on real-world graphs with over 540 million nodes and 12 billion edges and to generalize effectively across diverse static and dynamic downstream tasks.
comment: Accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE)
Efficient Model Development through Fine-tuning Transfer
Modern LLMs struggle with efficient updates, as each new pretrained model version requires repeating expensive alignment processes. This challenge also applies to domain- or languagespecific models, where fine-tuning on specialized data must be redone for every new base model release. In this paper, we explore the transfer of fine-tuning updates between model versions. Specifically, we derive the diff vector (representing the weight changes from finetuning) from one source model version and apply it to the base model of a different target version. Through empirical evaluations on various open-weight model versions, we show that transferring diff vectors can significantly improve the performance of the target base model. For example, transferring the fine-tuning updates from Llama 3.0 8B improves Llama 3.1 8B by 46.9% on IFEval and 15.7% on LiveCodeBench without additional training, even surpassing Llama 3.1 8B Instruct. Furthermore, we demonstrate performance gains on multilingual tasks, with 4.7% and 15.5% improvements on Global MMLU for Malagasy and Turkish, respectively. We observe that these merged models provide stronger initializations for further fine-tuning. Lastly, our controlled experiments suggest that fine-tuning transfer is most effective when source and target models lie in a linearly connected region of parameter space, and we provide a theoretical analysis of our method. Taken together, fine-tuning transfer offers a cost-efficient and practical strategy for continuous LLM development. Our code is available at github.com/pjlintw/finetuning-transfer.
comment: 25 pages, 4 figures, 16 tables
Multimedia 8
☆ PixCLIP: Achieving Fine-grained Visual Language Understanding via Any-granularity Pixel-Text Alignment Learning
While the Contrastive Language-Image Pretraining(CLIP) model has achieved remarkable success in a variety of downstream vison language understanding tasks, enhancing its capability for fine-grained image-text alignment remains an active research focus. To this end, most existing works adopt the strategy of explicitly increasing the granularity of visual information processing, e.g., incorporating visual prompts to guide the model focus on specific local regions within the image. Meanwhile, researches on Multimodal Large Language Models(MLLMs) have demonstrated that training with long and detailed textual descriptions can effectively improve the model's fine-grained vision-language alignment. However, the inherent token length limitation of CLIP's text encoder fundamentally limits CLIP to process more granular textual information embedded in long text sequences. To synergistically leverage the advantages of enhancing both visual and textual content processing granularity, we propose PixCLIP, a novel framework designed to concurrently accommodate visual prompt inputs and process lengthy textual descriptions. Specifically, we first establish an automated annotation pipeline capable of generating pixel-level localized, long-form textual descriptions for images. Utilizing this pipeline, we construct LongGRIT, a high-quality dataset comprising nearly 1.5 million samples. Secondly, we replace CLIP's original text encoder with the LLM and propose a three-branch pixel-text alignment learning framework, facilitating fine-grained alignment between image regions and corresponding textual descriptions at arbitrary granularity. Experiments demonstrate that PixCLIP showcases breakthroughs in pixel-level interaction and handling long-form texts, achieving state-of-the-art performance.
☆ MusRec: Zero-Shot Text-to-Music Editing via Rectified Flow and Diffusion Transformers
Music editing has emerged as an important and practical area of artificial intelligence, with applications ranging from video game and film music production to personalizing existing tracks according to user preferences. However, existing models face significant limitations, such as being restricted to editing synthesized music generated by their own models, requiring highly precise prompts, or necessitating task-specific retraining, thus lacking true zero-shot capability. Leveraging recent advances in rectified flow and diffusion transformers, we introduce MusRec, the first zero-shot text-to-music editing model capable of performing diverse editing tasks on real-world music efficiently and effectively. Experimental results demonstrate that our approach outperforms existing methods in preserving musical content, structural consistency, and editing fidelity, establishing a strong foundation for controllable music editing in real-world scenarios.
☆ Towards Aligning Multimodal LLMs with Human Experts: A Focus on Parent-Child Interaction
While multimodal large language models (MLLMs) are increasingly applied in human-centred AI systems, their ability to understand complex social interactions remains uncertain. We present an exploratory study on aligning MLLMs with speech-language pathologists (SLPs) in analysing joint attention in parent-child interactions, a key construct in early social-communicative development. Drawing on interviews and video annotations with three SLPs, we characterise how observational cues of gaze, action, and vocalisation inform their reasoning processes. We then test whether an MLLM can approximate this workflow through a two-stage prompting, separating observation from judgment. Our findings reveal that alignment is more robust at the observation layer, where experts share common descriptors, than at the judgement layer, where interpretive criteria diverge. We position this work as a case-based probe into expert-AI alignment in complex social behaviour, highlighting both the feasibility and the challenges of applying MLLMs to socially situated interaction analysis.
comment: work in progress
☆ On the Brittleness of CLIP Text Encoders
Multimodal co-embedding models, especially CLIP, have advanced the state of the art in zero-shot classification and multimedia information retrieval in recent years by aligning images and text in a shared representation space. However, such modals trained on a contrastive alignment can lack stability towards small input perturbations. Especially when dealing with manually expressed queries, minor variations in the query can cause large differences in the ranking of the best-matching results. In this paper, we present a systematic analysis of the effect of multiple classes of non-semantic query perturbations in an multimedia information retrieval scenario. We evaluate a diverse set of lexical, syntactic, and semantic perturbations across multiple CLIP variants using the TRECVID Ad-Hoc Video Search queries and the V3C1 video collection. Across models, we find that syntactic and semantic perturbations drive the largest instabilities, while brittleness is concentrated in trivial surface edits such as punctuation and case. Our results highlight robustness as a critical dimension for evaluating vision-language models beyond benchmark accuracy.
comment: Accepted for publication at MMM'26
☆ MIDI-LLM: Adapting Large Language Models for Text-to-MIDI Music Generation NeurIPS 2025
We present MIDI-LLM, an LLM for generating multitrack MIDI music from free-form text prompts. Our approach expands a text LLM's vocabulary to include MIDI tokens, and uses a two-stage training recipe to endow text-to-MIDI abilities. By preserving the original LLM's parameter structure, we can directly leverage the vLLM library for accelerated inference. Experiments show that MIDI-LLM achieves higher quality, better text control, and faster inference compared to the recent Text2midi model. Live demo at https://midi-llm-demo.vercel.app.
comment: To appear at NeurIPS 2025 Workshop on AI for Music
☆ EMO100DB: An Open Dataset of Improvised Songs with Emotion Data
In this study, we introduce Emo100DB: a dataset consisting of improvised songs that were recorded and transcribed with emotion data based on Russell's circumplex model of emotion. The dataset was developed by collecting improvised songs that consist of melody, lyrics, and an instrumental accompaniment played, sung, and recorded by 20 young adults. Before recording each song, the participants were asked to report their emotional state, with the axes representing arousal and valence based on Russell's circumplex model of emotions. The dataset is organized into four emotion quadrants, and it includes the lyrics text and MIDI file of the melody extracted from the participant recordings, along with the original audio in WAV format. By providing an integrated composition of data and analysis, this study aims to offer a comprehensive dataset that allows for a diverse exploration of the relationship between music and emotion.
comment: 4 pages, 6 figures, International Conference on Music Perception and Cognition
♻ ☆ Cross-modal Causal Intervention for Alzheimer's Disease Prediction
Mild Cognitive Impairment (MCI) serves as a prodromal stage of Alzheimer's Disease (AD), where early identification and intervention can effectively slow the progression to dementia. However, diagnosing AD remains a significant challenge in neurology due to the confounders caused mainly by the selection bias of multi-modal data and the complex relationships between variables. To address these issues, we propose a novel visual-language causality-inspired framework named Cross-modal Causal Intervention with Mediator for Alzheimer's Disease Diagnosis (MediAD) for diagnostic assistance. Our MediAD employs Large Language Models (LLMs) to summarize clinical data under strict templates, therefore enriching textual inputs. The MediAD model utilizes Magnetic Resonance Imaging (MRI), clinical data, and textual data enriched by LLMs to classify participants into Cognitively Normal (CN), MCI, and AD categories. Because of the presence of confounders, such as cerebral vascular lesions and age-related biomarkers, non-causal models are likely to capture spurious input-output correlations, generating less reliable results. Our framework implicitly mitigates the effect of both observable and unobservable confounders through a unified causal intervention method. Experimental results demonstrate the outstanding performance of our method in distinguishing CN/MCI/AD cases, outperforming other methods in most evaluation metrics. The study showcases the potential of integrating causal reasoning with multi-modal learning for neurological disease diagnosis.
♻ ☆ Node-Based Editing for Multimodal Generation of Text, Audio, Image, and Video NeurIPS 2025
We present a node-based storytelling system for multimodal content generation. The system represents stories as graphs of nodes that can be expanded, edited, and iteratively refined through direct user edits and natural-language prompts. Each node can integrate text, images, audio, and video, allowing creators to compose multimodal narratives. A task selection agent routes between specialized generative tasks that handle story generation, node structure reasoning, node diagram formatting, and context generation. The interface supports targeted editing of individual nodes, automatic branching for parallel storylines, and node-based iterative refinement. Our results demonstrate that node-based editing supports control over narrative structure and iterative generation of text, images, audio, and video. We report quantitative outcomes on automatic story outline generation and qualitative observations of editing workflows. Finally, we discuss current limitations such as scalability to longer narratives and consistency across multiple nodes, and outline future work toward human-in-the-loop and user-centered creative AI tools.
comment: Accepted to NeurIPS 2025, Conference on Neural Information Processing Systems, Workshop on Generative and Protective AI for Content Creation
Artificial Intelligent 243
☆ X-Diffusion: Training Diffusion Policies on Cross-Embodiment Human Demonstrations
Human videos can be recorded quickly and at scale, making them an appealing source of training data for robot learning. However, humans and robots differ fundamentally in embodiment, resulting in mismatched action execution. Direct kinematic retargeting of human hand motion can therefore produce actions that are physically infeasible for robots. Despite these low-level differences, human demonstrations provide valuable motion cues about how to manipulate and interact with objects. Our key idea is to exploit the forward diffusion process: as noise is added to actions, low-level execution differences fade while high-level task guidance is preserved. We present X-Diffusion, a principled framework for training diffusion policies that maximally leverages human data without learning dynamically infeasible motions. X-Diffusion first trains a classifier to predict whether a noisy action is executed by a human or robot. Then, a human action is incorporated into policy training only after adding sufficient noise such that the classifier cannot discern its embodiment. Actions consistent with robot execution supervise fine-grained denoising at low noise levels, while mismatched human actions provide only coarse guidance at higher noise levels. Our experiments show that naive co-training under execution mismatches degrades policy performance, while X-Diffusion consistently improves it. Across five manipulation tasks, X-Diffusion achieves a 16% higher average success rate than the best baseline. The project website is available at https://portal-cornell.github.io/X-Diffusion/.
☆ VeriCoT: Neuro-symbolic Chain-of-Thought Validation via Logical Consistency Checks
LLMs can perform multi-step reasoning through Chain-of-Thought (CoT), but they cannot reliably verify their own logic. Even when they reach correct answers, the underlying reasoning may be flawed, undermining trust in high-stakes scenarios. To mitigate this issue, we introduce VeriCoT, a neuro-symbolic method that extracts and verifies formal logical arguments from CoT reasoning. VeriCoT formalizes each CoT reasoning step into first-order logic and identifies premises that ground the argument in source context, commonsense knowledge, or prior reasoning steps. The symbolic representation enables automated solvers to verify logical validity while the NL premises allow humans and systems to identify ungrounded or fallacious reasoning steps. Experiments on the ProofWriter, LegalBench, and BioASQ datasets show VeriCoT effectively identifies flawed reasoning, and serves as a strong predictor of final answer correctness. We also leverage VeriCoT's verification signal for (1) inference-time self-reflection, (2) supervised fine-tuning (SFT) on VeriCoT-distilled datasets and (3) preference fine-tuning (PFT) with direct preference optimization (DPO) using verification-based pairwise rewards, further improving reasoning validity and accuracy.
☆ DR. WELL: Dynamic Reasoning and Learning with Symbolic World Model for Embodied LLM-Based Multi-Agent Collaboration
Cooperative multi-agent planning requires agents to make joint decisions with partial information and limited communication. Coordination at the trajectory level often fails, as small deviations in timing or movement cascade into conflicts. Symbolic planning mitigates this challenge by raising the level of abstraction and providing a minimal vocabulary of actions that enable synchronization and collective progress. We present DR. WELL, a decentralized neurosymbolic framework for cooperative multi-agent planning. Cooperation unfolds through a two-phase negotiation protocol: agents first propose candidate roles with reasoning and then commit to a joint allocation under consensus and environment constraints. After commitment, each agent independently generates and executes a symbolic plan for its role without revealing detailed trajectories. Plans are grounded in execution outcomes via a shared world model that encodes the current state and is updated as agents act. By reasoning over symbolic plans rather than raw trajectories, DR. WELL avoids brittle step-level alignment and enables higher-level operations that are reusable, synchronizable, and interpretable. Experiments on cooperative block-push tasks show that agents adapt across episodes, with the dynamic world model capturing reusable patterns and improving task completion rates and efficiency. Experiments on cooperative block-push tasks show that our dynamic world model improves task completion and efficiency through negotiation and self-refinement, trading a time overhead for evolving, more efficient collaboration strategies.
☆ Addressing divergent representations from causal interventions on neural networks
A common approach to mechanistic interpretability is to causally manipulate model representations via targeted interventions in order to understand what those representations encode. Here we ask whether such interventions create out-of-distribution (divergent) representations, and whether this raises concerns about how faithful their resulting explanations are to the target model in its natural state. First, we demonstrate empirically that common causal intervention techniques often do shift internal representations away from the natural distribution of the target model. Then, we provide a theoretical analysis of two classes of such divergences: `harmless' divergences that occur in the null-space of the weights and from covariance within behavioral decision boundaries, and `pernicious' divergences that activate hidden network pathways and cause dormant behavioral changes. Finally, in an effort to mitigate the pernicious cases, we modify the Counterfactual Latent (CL) loss from Grant (2025) that regularizes interventions to remain closer to the natural distributions, reducing the likelihood of harmful divergences while preserving the interpretive power of interventions. Together, these results highlight a path towards more reliable interpretability methods.
☆ Question the Questions: Auditing Representation in Online Deliberative Processes
A central feature of many deliberative processes, such as citizens' assemblies and deliberative polls, is the opportunity for participants to engage directly with experts. While participants are typically invited to propose questions for expert panels, only a limited number can be selected due to time constraints. This raises the challenge of how to choose a small set of questions that best represent the interests of all participants. We introduce an auditing framework for measuring the level of representation provided by a slate of questions, based on the social choice concept known as justified representation (JR). We present the first algorithms for auditing JR in the general utility setting, with our most efficient algorithm achieving a runtime of $O(mn\log n)$, where $n$ is the number of participants and $m$ is the number of proposed questions. We apply our auditing methods to historical deliberations, comparing the representativeness of (a) the actual questions posed to the expert panel (chosen by a moderator), (b) participants' questions chosen via integer linear programming, (c) summary questions generated by large language models (LLMs). Our results highlight both the promise and current limitations of LLMs in supporting deliberative processes. By integrating our methods into an online deliberation platform that has been used for over hundreds of deliberations across more than 50 countries, we make it easy for practitioners to audit and improve representation in future deliberations.
☆ Are We Asking the Right Questions? On Ambiguity in Natural Language Queries for Tabular Data Analysis
Natural language interfaces to tabular data must handle ambiguities inherent to queries. Instead of treating ambiguity as a deficiency, we reframe it as a feature of cooperative interaction, where the responsibility of query specification is shared among the user and the system. We develop a principled framework distinguishing cooperative queries, i.e., queries that yield a resolvable interpretation, from uncooperative queries that cannot be resolved. Applying the framework to evaluations for tabular question answering and analysis, we analyze the queries in 15 popular datasets, and observe an uncontrolled mixing of query types neither adequate for evaluating a system's execution accuracy nor for evaluating interpretation capabilities. Our framework and analysis of queries shifts the perspective from fixing ambiguity to embracing cooperation in resolving queries. This reflection enables more informed design and evaluation for natural language interfaces for tabular data, for which we outline implications and directions for future research.
comment: Accepted to the AI for Tabular Data workshop at EurIPS 2025
☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, validates them through rigorous experimentation, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We hope these insights will deepen understanding of current progress and risks in AI Scientist development.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
☆ Integrating Temporal and Structural Context in Graph Transformers for Relational Deep Learning
In domains such as healthcare, finance, and e-commerce, the temporal dynamics of relational data emerge from complex interactions-such as those between patients and providers, or users and products across diverse categories. To be broadly useful, models operating on these data must integrate long-range spatial and temporal dependencies across diverse types of entities, while also supporting multiple predictive tasks. However, existing graph models for relational data primarily focus on spatial structure, treating temporal information merely as a filtering constraint to exclude future events rather than a modeling signal, and are typically designed for single-task prediction. To address these gaps, we introduce a temporal subgraph sampler that enhances global context by retrieving nodes beyond the immediate neighborhood to capture temporally relevant relationships. In addition, we propose the Relational Graph Perceiver (RGP), a graph transformer architecture for relational deep learning that leverages a cross-attention-based latent bottleneck to efficiently integrate information from both structural and temporal contexts. This latent bottleneck integrates signals from different node and edge types into a common latent space, enabling the model to build global context across the entire relational system. RGP also incorporates a flexible cross-attention decoder that supports joint learning across tasks with disjoint label spaces within a single model. Experiments on RelBench, SALT, and CTU show that RGP delivers state-of-the-art performance, offering a general and scalable solution for relational deep learning with support for diverse predictive tasks.
☆ Optimizing Sensor Placement in Urban Storm Sewers: A Data-Driven Sparse Sensing Approach
Urban surface water flooding, triggered by intense rainfall overwhelming drainage systems, is increasingly frequent and widespread. While flood prediction and monitoring in high spatial-temporal resolution are desired, practical constraints in time, budget, and technology hinder its full implementation. How to monitor urban drainage networks and predict flow conditions under constrained resource is a major challenge. This study presents a data-driven sparse sensing (DSS) framework, integrated with EPA-SWMM, to optimize sensor placement and reconstruct peak flowrates in a stormwater system, using the Woodland Avenue catchment in Duluth, Minnesota, as a case study. We utilized a SWMM model to generate a training dataset of peak flowrate profiles across the stormwater network. Furthermore, we applied DSS - leveraging singular value decomposition for dimensionality reduction and QR factorization for sensor allocation - to identify the optimal monitoring nodes based on the simulated training dataset. We then validated the representativeness of these identified monitoring nodes by comparing the DSS-reconstructed peak flowrate profiles with those obtained from SWMM. Three optimally placed sensors among 77 nodes achieved satisfactory reconstruction performance with Nash-Sutcliffe Efficiency (NSE) values of 0.92-0.95 (25th to 75th percentiles). In addition, the model showed good robustness to uncertainty in measurements. Its robustness to sensor failures is location-dependent and improves with the number of sensors deployed. The framework balances computational efficiency and physical interpretability, enabling high-accuracy flow reconstruction with minimal sensors. This DSS framework can be further integrated with predictive models to realize flood early warning and real-time control under limited sensing and monitoring resource.
comment: 32 pages (including supplementary information), 11 figures (and 7 figures in supplementary). Submitted to Nature Water. Partially presented at HydroML 2025 Symposium, Minnesota Water Resources Conference 2025, and will be presented at AGU Fall Meeting 2025
LLM-as-a-Judge: Toward World Models for Slate Recommendation Systems
Modeling user preferences across domains remains a key challenge in slate recommendation (i.e. recommending an ordered sequence of items) research. We investigate how Large Language Models (LLM) can effectively act as world models of user preferences through pairwise reasoning over slates. We conduct an empirical study involving several LLMs on three tasks spanning different datasets. Our results reveal relationships between task performance and properties of the preference function captured by LLMs, hinting towards areas for improvement and highlighting the potential of LLMs as world models in recommender systems.
☆ Are language models aware of the road not taken? Token-level uncertainty and hidden state dynamics
When a language model generates text, the selection of individual tokens might lead it down very different reasoning paths, making uncertainty difficult to quantify. In this work, we consider whether reasoning language models represent the alternate paths that they could take during generation. To test this hypothesis, we use hidden activations to control and predict a language model's uncertainty during chain-of-thought reasoning. In our experiments, we find a clear correlation between how uncertain a model is at different tokens, and how easily the model can be steered by controlling its activations. This suggests that activation interventions are most effective when there are alternate paths available to the model -- in other words, when it has not yet committed to a particular final answer. We also find that hidden activations can predict a model's future outcome distribution, demonstrating that models implicitly represent the space of possible paths.
☆ Alternative Fairness and Accuracy Optimization in Criminal Justice AAAI 2026
Algorithmic fairness has grown rapidly as a research area, yet key concepts remain unsettled, especially in criminal justice. We review group, individual, and process fairness and map the conditions under which they conflict. We then develop a simple modification to standard group fairness. Rather than exact parity across protected groups, we minimize a weighted error loss while keeping differences in false negative rates within a small tolerance. This makes solutions easier to find, can raise predictive accuracy, and surfaces the ethical choice of error costs. We situate this proposal within three classes of critique: biased and incomplete data, latent affirmative action, and the explosion of subgroup constraints. Finally, we offer a practical framework for deployment in public decision systems built on three pillars: need-based decisions, Transparency and accountability, and narrowly tailored definitions and solutions. Together, these elements link technical design to legitimacy and provide actionable guidance for agencies that use risk assessment and related tools.
comment: Accepted for presentation at the AAAI 2026 AI Governance Workshop (AIGOV). 24 pages
☆ RAGalyst: Automated Human-Aligned Agentic Evaluation for Domain-Specific RAG
Retrieval-Augmented Generation (RAG) is a critical technique for grounding Large Language Models (LLMs) in factual evidence, yet evaluating RAG systems in specialized, safety-critical domains remains a significant challenge. Existing evaluation frameworks often rely on heuristic-based metrics that fail to capture domain-specific nuances and other works utilize LLM-as-a-Judge approaches that lack validated alignment with human judgment. This paper introduces RAGalyst, an automated, human-aligned agentic framework designed for the rigorous evaluation of domain-specific RAG systems. RAGalyst features an agentic pipeline that generates high-quality, synthetic question-answering (QA) datasets from source documents, incorporating an agentic filtering step to ensure data fidelity. The framework refines two key LLM-as-a-Judge metrics-Answer Correctness and Answerability-using prompt optimization to achieve a strong correlation with human annotations. Applying this framework to evaluate various RAG components across three distinct domains (military operations, cybersecurity, and bridge engineering), we find that performance is highly context-dependent. No single embedding model, LLM, or hyperparameter configuration proves universally optimal. Additionally, we provide an analysis on the most common low Answer Correctness reasons in RAG. These findings highlight the necessity of a systematic evaluation framework like RAGalyst, which empowers practitioners to uncover domain-specific trade-offs and make informed design choices for building reliable and effective RAG systems. RAGalyst is available on our Github.
Large language models replicate and predict human cooperation across experiments in game theory
Large language models (LLMs) are increasingly used both to make decisions in domains such as health, education and law, and to simulate human behavior. Yet how closely LLMs mirror actual human decision-making remains poorly understood. This gap is critical: misalignment could produce harmful outcomes in practical applications, while failure to replicate human behavior renders LLMs ineffective for social simulations. Here, we address this gap by developing a digital twin of game-theoretic experiments and introducing a systematic prompting and probing framework for machine-behavioral evaluation. Testing three open-source models (Llama, Mistral and Qwen), we find that Llama reproduces human cooperation patterns with high fidelity, capturing human deviations from rational choice theory, while Qwen aligns closely with Nash equilibrium predictions. Notably, we achieved population-level behavioral replication without persona-based prompting, simplifying the simulation process. Extending beyond the original human-tested games, we generate and preregister testable hypotheses for novel game configurations outside the original parameter grid. Our findings demonstrate that appropriately calibrated LLMs can replicate aggregate human behavioral patterns and enable systematic exploration of unexplored experimental spaces, offering a complementary approach to traditional research in the social and behavioral sciences that generates new empirical predictions about human social decision-making.
☆ Decoding Emergent Big Five Traits in Large Language Models: Temperature-Dependent Expression and Architectural Clustering AACL 2025
As Large Language Models (LLMs) become integral to human-centered applications, understanding their personality-like behaviors is increasingly important for responsible development and deployment. This paper systematically evaluates six LLMs, applying the Big Five Inventory-2 (BFI-2) framework, to assess trait expressions under varying sampling temperatures. We find significant differences across four of the five personality dimensions, with Neuroticism and Extraversion susceptible to temperature adjustments. Further, hierarchical clustering reveals distinct model clusters, suggesting that architectural features may predispose certain models toward stable trait profiles. Taken together, these results offer new insights into the emergence of personality-like patterns in LLMs and provide a new perspective on model tuning, selection, and the ethical governance of AI systems. We share the data and code for this analysis here: https://osf.io/bsvzc/?view_only=6672219bede24b4e875097426dc3fac1
comment: Accepted at IJCNLP-AACL 2025
☆ OUNLP at TSAR 2025 Shared Task: Multi-Round Text Simplifier via Code Generation EMNLP2025
This paper describes the OUNLP system submitted to the TSAR-2025 Shared Task (Alva-Manchego et al., 2025), designed for readability-controlled text simplification using LLM-prompting-based generation. Based on the analysis of prompt-based text simplification methods, we discovered an interesting finding that text simplification performance is highly related to the gap between the source CEFR (Arase et al., 2022) level and the target CEFR level. Inspired by this finding, we propose two multi-round simplification methods and generate them via GPT-4o: rule-based simplification (MRS-Rule) and jointly rule-based LLM simplification (MRS-Joint). Our submitted systems ranked 7 out of 20 teams. Later improvements with MRS-Joint show that taking the LLM simplified candidates as the starting point could further boost the multi-round simplification performance.
comment: Accepted to TSAR 2025 Workshop at EMNLP2025
☆ RUST-BENCH: Benchmarking LLM Reasoning on Unstructured Text within Structured Tables
Existing tabular reasoning benchmarks mostly test models on small, uniform tables, underrepresenting the complexity of real-world data and giving an incomplete view of Large Language Models' (LLMs) reasoning abilities. Real tables are long, heterogeneous, and domain-specific, mixing structured fields with free text and requiring multi-hop reasoning across thousands of tokens. To address this gap, we introduce RUST-BENCH, a benchmark of 7966 questions from 2031 real-world tables spanning two domains: i) RB-Science (NSF grant records) and ii) RB-Sports (NBA statistics). Unlike prior work, RUST-BENCH evaluates LLMs jointly across scale, heterogeneity, domain specificity, and reasoning complexity. Experiments with open-source and proprietary models show that LLMs struggle with heterogeneous schemas and complex multi-hop inference, revealing persistent weaknesses in current architectures and prompting strategies. RUST-BENCH establishes a challenging new testbed for advancing tabular reasoning research.
☆ Q3R: Quadratic Reweighted Rank Regularizer for Effective Low-Rank Training
Parameter-efficient training, based on low-rank optimization, has become a highly successful tool for fine-tuning large deep-learning models. However, these methods fail at low-rank pre-training tasks where maintaining the low-rank structure and the objective remains a challenging task. We propose the Quadratic Reweighted Rank Regularizer dubbed Q3R, which leads to a novel low-rank inducing training strategy inspired by the iteratively reweighted least squares (IRLS) framework. Q3R is based on a quadratic regularizer term which majorizes a smoothed log determinant serving as rank surrogate objective. Unlike other low-rank training techniques, Q3R is able to train weight matrices with prescribed, low target ranks of models that achieve comparable predictive performance as dense models, with small computational overhead, while remaining fully compatible with existing architectures. For example, we demonstrated one experiment where we are able to truncate $60\%$ and $80\%$ of the parameters of a ViT-Tiny model with $~1.3\%$ and $~4\%$ accuracy drop in CIFAR-10 performance respectively. The efficacy of Q3R is confirmed on Transformers across both image and language tasks, including for low-rank fine-tuning.
☆ Promoting Sustainable Web Agents: Benchmarking and Estimating Energy Consumption through Empirical and Theoretical Analysis AAAI 2026
Web agents, like OpenAI's Operator and Google's Project Mariner, are powerful agentic systems pushing the boundaries of Large Language Models (LLM). They can autonomously interact with the internet at the user's behest, such as navigating websites, filling search masks, and comparing price lists. Though web agent research is thriving, induced sustainability issues remain largely unexplored. To highlight the urgency of this issue, we provide an initial exploration of the energy and $CO_2$ cost associated with web agents from both a theoretical -via estimation- and an empirical perspective -by benchmarking. Our results show how different philosophies in web agent creation can severely impact the associated expended energy, and that more energy consumed does not necessarily equate to better results. We highlight a lack of transparency regarding disclosing model parameters and processes used for some web agents as a limiting factor when estimating energy consumption. Our work contributes towards a change in thinking of how we evaluate web agents, advocating for dedicated metrics measuring energy consumption in benchmarks.
comment: Accepted by AAAI 2026 AISI
☆ Generate, Evaluate, Iterate: Synthetic Data for Human-in-the-Loop Refinement of LLM Judges
The LLM-as-a-judge paradigm enables flexible, user-defined evaluation, but its effectiveness is often limited by the scarcity of diverse, representative data for refining criteria. We present a tool that integrates synthetic data generation into the LLM-as-a-judge workflow, empowering users to create tailored and challenging test cases with configurable domains, personas, lengths, and desired outcomes, including borderline cases. The tool also supports AI-assisted inline editing of existing test cases. To enhance transparency and interpretability, it reveals the prompts and explanations behind each generation. In a user study (N=24), 83% of participants preferred the tool over manually creating or selecting test cases, as it allowed them to rapidly generate diverse synthetic data without additional workload. The generated synthetic data proved as effective as hand-crafted data for both refining evaluation criteria and aligning with human preferences. These findings highlight synthetic data as a promising alternative, particularly in contexts where efficiency and scalability are critical.
comment: 29 pages, 4 figures
☆ Ground-Truth Subgraphs for Better Training and Evaluation of Knowledge Graph Augmented LLMs
Retrieval of information from graph-structured knowledge bases represents a promising direction for improving the factuality of LLMs. While various solutions have been proposed, a comparison of methods is difficult due to the lack of challenging QA datasets with ground-truth targets for graph retrieval. We present SynthKGQA, a framework for generating high-quality synthetic Knowledge Graph Question Answering datasets from any Knowledge Graph, providing the full set of ground-truth facts in the KG to reason over each question. We show how, in addition to enabling more informative benchmarking of KG retrievers, the data produced with SynthKGQA also allows us to train better models. We apply SynthKGQA to Wikidata to generate GTSQA, a new dataset designed to test zero-shot generalization abilities of KG retrievers with respect to unseen graph structures and relation types, and benchmark popular solutions for KG-augmented LLMs on it.
☆ Fraud-Proof Revenue Division on Subscription Platforms ICML
We study a model of subscription-based platforms where users pay a fixed fee for unlimited access to content, and creators receive a share of the revenue. Existing approaches to detecting fraud predominantly rely on machine learning methods, engaging in an ongoing arms race with bad actors. We explore revenue division mechanisms that inherently disincentivize manipulation. We formalize three types of manipulation-resistance axioms and examine which existing rules satisfy these. We show that a mechanism widely used by streaming platforms, not only fails to prevent fraud, but also makes detecting manipulation computationally intractable. We also introduce a novel rule, ScaledUserProp, that satisfies all three manipulation-resistance axioms. Finally, experiments with both real-world and synthetic streaming data support ScaledUserProp as a fairer alternative compared to existing rules.
comment: Appears in the 42nd International Conference on Machine Learning (ICML), 2025
☆ Beyond Shortest Path: Agentic Vehicular Routing with Semantic Context
Traditional vehicle routing systems efficiently optimize singular metrics like time or distance, and when considering multiple metrics, they need more processes to optimize . However, they lack the capability to interpret and integrate the complex, semantic, and dynamic contexts of human drivers, such as multi-step tasks, situational constraints, or urgent needs. This paper introduces and evaluates PAVe (Personalized Agentic Vehicular Routing), a hybrid agentic assistant designed to augment classical pathfinding algorithms with contextual reasoning. Our approach employs a Large Language Model (LLM) agent that operates on a candidate set of routes generated by a multi-objective (time, CO2) Dijkstra algorithm. The agent evaluates these options against user-provided tasks, preferences, and avoidance rules by leveraging a pre-processed geospatial cache of urban Points of Interest (POIs). In a benchmark of realistic urban scenarios, PAVe successfully used complex user intent into appropriate route modifications, achieving over 88% accuracy in its initial route selections with a local model. We conclude that combining classical routing algorithms with an LLM-based semantic reasoning layer is a robust and effective approach for creating personalized, adaptive, and scalable solutions for urban mobility optimization.
☆ Deep Dictionary-Free Method for Identifying Linear Model of Nonlinear System with Input Delay
Nonlinear dynamical systems with input delays pose significant challenges for prediction, estimation, and control due to their inherent complexity and the impact of delays on system behavior. Traditional linear control techniques often fail in these contexts, necessitating innovative approaches. This paper introduces a novel approach to approximate the Koopman operator using an LSTM-enhanced Deep Koopman model, enabling linear representations of nonlinear systems with time delays. By incorporating Long Short-Term Memory (LSTM) layers, the proposed framework captures historical dependencies and efficiently encodes time-delayed system dynamics into a latent space. Unlike traditional extended Dynamic Mode Decomposition (eDMD) approaches that rely on predefined dictionaries, the LSTM-enhanced Deep Koopman model is dictionary-free, which mitigates the problems with the underlying dynamics being known and incorporated into the dictionary. Quantitative comparisons with extended eDMD on a simulated system demonstrate highly significant performance gains in prediction accuracy in cases where the true nonlinear dynamics are unknown and achieve comparable results to eDMD with known dynamics of a system.
☆ The Peril of Preference: Why GRPO fails on Ordinal Rewards
Group-relative Policy Optimization's (GRPO) simplicity makes it highly desirable for adapting LLMs to become experts at specific tasks. But this simplicity also makes it ill-specified as we seek to enhance RL training with richer, non-binary feedback. When using ordinal rewards to give partial credit, GRPO's simplicity starts to hurt, as its group-average baseline often assigns a positive advantage to failed trajectories and reinforces incorrect behavior. We introduce Correctness Relative Policy Optimization (CoRPO), a new formulation that solves this flaw. CoRPO uses an adaptive baseline that enforces a minimum quality threshold, ensuring failed solutions are never positively reinforced. Once the policy consistently meets this threshold, the baseline automatically transitions to a relative preference mode, pushing the model to find optimal solutions rather than just "acceptable" ones. We empirically validate CoRPO on a code verification task, where it demonstrates more stable convergence and better out-of-domain generalization. This work represents a critical step in our broader research program to enable LLMs to learn genuinely new capabilities through reinforcement learning. We achieve this by enabling LLMs to learn from rich, multi-dimensional feedback - progressing from binary to ordinal rewards in this work, and onward to denser, per-step supervision.
☆ Deep Koopman Economic Model Predictive Control of a Pasteurisation Unit
This paper presents a deep Koopman-based Economic Model Predictive Control (EMPC) for efficient operation of a laboratory-scale pasteurization unit (PU). The method uses Koopman operator theory to transform the complex, nonlinear system dynamics into a linear representation, enabling the application of convex optimization while representing the complex PU accurately. The deep Koopman model utilizes neural networks to learn the linear dynamics from experimental data, achieving a 45% improvement in open-loop prediction accuracy over conventional N4SID subspace identification. Both analyzed models were employed in the EMPC formulation that includes interpretable economic costs, such as energy consumption, material losses due to inadequate pasteurization, and actuator wear. The feasibility of EMPC is ensured using slack variables. The deep Koopman EMPC and N4SID EMPC are numerically validated on a nonlinear model of multivariable PU under external disturbance. The disturbances include feed pump fail-to-close scenario and the introduction of a cold batch to be pastuerized. These results demonstrate that the deep Koopmand EMPC achieves a 32% reduction in total economic cost compared to the N4SID baseline. This improvement is mainly due to the reductions in material losses and energy consumption. Furthermore, the steady-state operation via Koopman-based EMPC requires 10.2% less electrical energy. The results highlight the practical advantages of integrating deep Koopman representations with economic optimization to achieve resource-efficient control of thermal-intensive plants.
☆ Speed at the Cost of Quality? The Impact of LLM Agent Assistance on Software Development
Large language models (LLMs) have demonstrated the promise to revolutionize the field of software engineering. Among other things, LLM agents are rapidly gaining momentum in their application to software development, with practitioners claiming a multifold productivity increase after adoption. Yet, empirical evidence is lacking around these claims. In this paper, we estimate the causal effect of adopting a widely popular LLM agent assistant, namely Cursor, on development velocity and software quality. The estimation is enabled by a state-of-the-art difference-in-differences design comparing Cursor-adopting GitHub projects with a matched control group of similar GitHub projects that do not use Cursor. We find that the adoption of Cursor leads to a significant, large, but transient increase in project-level development velocity, along with a significant and persistent increase in static analysis warnings and code complexity. Further panel generalized method of moments estimation reveals that the increase in static analysis warnings and code complexity acts as a major factor causing long-term velocity slowdown. Our study carries implications for software engineering practitioners, LLM agent assistant designers, and researchers.
☆ On the Equivalence of Regression and Classification
A formal link between regression and classification has been tenuous. Even though the margin maximization term $\|w\|$ is used in support vector regression, it has at best been justified as a regularizer. We show that a regression problem with $M$ samples lying on a hyperplane has a one-to-one equivalence with a linearly separable classification task with $2M$ samples. We show that margin maximization on the equivalent classification task leads to a different regression formulation than traditionally used. Using the equivalence, we demonstrate a ``regressability'' measure, that can be used to estimate the difficulty of regressing a dataset, without needing to first learn a model for it. We use the equivalence to train neural networks to learn a linearizing map, that transforms input variables into a space where a linear regressor is adequate.
comment: 19 pages
☆ Spurious Correlation-Aware Embedding Regularization for Worst-Group Robustness
Deep learning models achieve strong performance across various domains but often rely on spurious correlations, making them vulnerable to distribution shifts. This issue is particularly severe in subpopulation shift scenarios, where models struggle in underrepresented groups. While existing methods have made progress in mitigating this issue, their performance gains are still constrained. They lack a rigorous theoretical framework connecting the embedding space representations with worst-group error. To address this limitation, we propose Spurious Correlation-Aware Embedding Regularization for Worst-Group Robustness (SCER), a novel approach that directly regularizes feature representations to suppress spurious cues. We show theoretically that worst-group error is influenced by how strongly the classifier relies on spurious versus core directions, identified from differences in group-wise mean embeddings across domains and classes. By imposing theoretical constraints at the embedding level, SCER encourages models to focus on core features while reducing sensitivity to spurious patterns. Through systematic evaluation on multiple vision and language, we show that SCER outperforms prior state-of-the-art studies in worst-group accuracy. Our code is available at \href{https://github.com/MLAI-Yonsei/SCER}{https://github.com/MLAI-Yonsei/SCER}.
☆ Post-Training LLMs as Better Decision-Making Agents: A Regret-Minimization Approach
Large language models (LLMs) are increasingly deployed as "agents" for decision-making (DM) in interactive and dynamic environments. Yet, since they were not originally designed for DM, recent studies show that LLMs can struggle even in basic online DM problems, failing to achieve low regret or an effective exploration-exploitation tradeoff. To address this, we introduce Iterative Regret-Minimization Fine-Tuning (Iterative RMFT), a post-training procedure that repeatedly distills low-regret decision trajectories back into the base model. At each iteration, the model rolls out multiple decision trajectories, selects the k-lowest regret ones, and fine-tunes itself on them. Unlike prior methods that (a) distill action sequences from known DM algorithms or (b) rely on manually crafted chain-of-thought templates, our approach leverages the regret metric to elicit the model's own DM ability and reasoning rationales. This reliance on model-generated reasoning avoids rigid output engineering and provides more flexible, natural-language training signals. Empirical results show that Iterative RMFT improves LLMs' DM performance across diverse models - from Transformers with numerical input/output, to open-weight LLMs, and advanced closed-weight models like GPT-4o mini. Its flexibility in output and reasoning formats enables generalization across tasks with varying horizons, action spaces, reward processes, and natural-language contexts. Finally, we provide theoretical insight showing that a single-layer Transformer under this paradigm can act as a no-regret learner in a simplified setting. Overall, Iterative RMFT offers a principled and general post-training framework for enhancing LLMs' decision-making capabilities.
☆ MusRec: Zero-Shot Text-to-Music Editing via Rectified Flow and Diffusion Transformers
Music editing has emerged as an important and practical area of artificial intelligence, with applications ranging from video game and film music production to personalizing existing tracks according to user preferences. However, existing models face significant limitations, such as being restricted to editing synthesized music generated by their own models, requiring highly precise prompts, or necessitating task-specific retraining, thus lacking true zero-shot capability. Leveraging recent advances in rectified flow and diffusion transformers, we introduce MusRec, the first zero-shot text-to-music editing model capable of performing diverse editing tasks on real-world music efficiently and effectively. Experimental results demonstrate that our approach outperforms existing methods in preserving musical content, structural consistency, and editing fidelity, establishing a strong foundation for controllable music editing in real-world scenarios.
☆ Monitor-Generate-Verify (MGV):Formalising Metacognitive Theory for Language Model Reasoning NeurIPS 2025
Test-time reasoning architectures such as those following the Generate-Verify paradigm -- where a model iteratively refines or verifies its own generated outputs -- prioritise generation and verification but exclude the monitoring processes that determine when and how reasoning should begin. This omission may contribute to the prefix dominance trap, in which models commit early to suboptimal reasoning paths and seldom recover, yielding roughly 20% accuracy loss. We address this architectural gap by formalising Flavell's and Nelson and Narens' metacognitive theories into computational specifications, proposing the Monitor-Generate-Verify (MGV) framework. MGV extends the Generate-Verify paradigm by adding explicit monitoring that captures metacognitive experiences (from difficulty assessments to confidence judgements) before generation begins and refines future monitoring through verification feedback. Though we present no empirical validation, this work provides the first systematic computational translation of foundational metacognitive theories, offering a principled vocabulary for understanding reasoning system failures and suggesting specific architectural interventions for future test-time reasoning designs.
comment: To-be presented at the Workshop on the Foundations of Reasoning in Language Models at NeurIPS 2025 (non-archival)
☆ LUME-DBN: Full Bayesian Learning of DBNs from Incomplete data in Intensive Care
Dynamic Bayesian networks (DBNs) are increasingly used in healthcare due to their ability to model complex temporal relationships in patient data while maintaining interpretability, an essential feature for clinical decision-making. However, existing approaches to handling missing data in longitudinal clinical datasets are largely derived from static Bayesian networks literature, failing to properly account for the temporal nature of the data. This gap limits the ability to quantify uncertainty over time, which is particularly critical in settings such as intensive care, where understanding the temporal dynamics is fundamental for model trustworthiness and applicability across diverse patient groups. Despite the potential of DBNs, a full Bayesian framework that integrates missing data handling remains underdeveloped. In this work, we propose a novel Gibbs sampling-based method for learning DBNs from incomplete data. Our method treats each missing value as an unknown parameter following a Gaussian distribution. At each iteration, the unobserved values are sampled from their full conditional distributions, allowing for principled imputation and uncertainty estimation. We evaluate our method on both simulated datasets and real-world intensive care data from critically ill patients. Compared to standard model-agnostic techniques such as MICE, our Bayesian approach demonstrates superior reconstruction accuracy and convergence properties. These results highlight the clinical relevance of incorporating full Bayesian inference in temporal models, providing more reliable imputations and offering deeper insight into model behavior. Our approach supports safer and more informed clinical decision-making, particularly in settings where missing data are frequent and potentially impactful.
comment: 27 pages, 8 figures, 3 tables, presented at HC@AIxIA + HYDRA 2025 Workshop located at ECAI 2025 Conference
☆ Differentially Private In-Context Learning with Nearest Neighbor Search NeurIPS
Differentially private in-context learning (DP-ICL) has recently become an active research topic due to the inherent privacy risks of in-context learning. However, existing approaches overlook a critical component of modern large language model (LLM) pipelines: the similarity search used to retrieve relevant context data. In this work, we introduce a DP framework for in-context learning that integrates nearest neighbor search of relevant examples in a privacy-aware manner. Our method outperforms existing baselines by a substantial margin across all evaluated benchmarks, achieving more favorable privacy-utility trade-offs. To achieve this, we employ nearest neighbor retrieval from a database of context data, combined with a privacy filter that tracks the cumulative privacy cost of selected samples to ensure adherence to a central differential privacy budget. Experimental results on text classification and document question answering show a clear advantage of the proposed method over existing baselines.
comment: NeurIPS Lock-LLM Workshop 2025
☆ RxSafeBench: Identifying Medication Safety Issues of Large Language Models in Simulated Consultation
Numerous medical systems powered by Large Language Models (LLMs) have achieved remarkable progress in diverse healthcare tasks. However, research on their medication safety remains limited due to the lack of real world datasets, constrained by privacy and accessibility issues. Moreover, evaluation of LLMs in realistic clinical consultation settings, particularly regarding medication safety, is still underexplored. To address these gaps, we propose a framework that simulates and evaluates clinical consultations to systematically assess the medication safety capabilities of LLMs. Within this framework, we generate inquiry diagnosis dialogues with embedded medication risks and construct a dedicated medication safety database, RxRisk DB, containing 6,725 contraindications, 28,781 drug interactions, and 14,906 indication-drug pairs. A two-stage filtering strategy ensures clinical realism and professional quality, resulting in the benchmark RxSafeBench with 2,443 high-quality consultation scenarios. We evaluate leading open-source and proprietary LLMs using structured multiple choice questions that test their ability to recommend safe medications under simulated patient contexts. Results show that current LLMs struggle to integrate contraindication and interaction knowledge, especially when risks are implied rather than explicit. Our findings highlight key challenges in ensuring medication safety in LLM-based systems and provide insights into improving reliability through better prompting and task-specific tuning. RxSafeBench offers the first comprehensive benchmark for evaluating medication safety in LLMs, advancing safer and more trustworthy AI-driven clinical decision support.
comment: To appear in BIBM2025
☆ AIM: Software and Hardware Co-design for Architecture-level IR-drop Mitigation in High-performance PIM
SRAM Processing-in-Memory (PIM) has emerged as the most promising implementation for high-performance PIM, delivering superior computing density, energy efficiency, and computational precision. However, the pursuit of higher performance necessitates more complex circuit designs and increased operating frequencies, which exacerbate IR-drop issues. Severe IR-drop can significantly degrade chip performance and even threaten reliability. Conventional circuit-level IR-drop mitigation methods, such as back-end optimizations, are resource-intensive and often compromise power, performance, and area (PPA). To address these challenges, we propose AIM, comprehensive software and hardware co-design for architecture-level IR-drop mitigation in high-performance PIM. Initially, leveraging the bit-serial and in-situ dataflow processing properties of PIM, we introduce Rtog and HR, which establish a direct correlation between PIM workloads and IR-drop. Building on this foundation, we propose LHR and WDS, enabling extensive exploration of architecture-level IR-drop mitigation while maintaining computational accuracy through software optimization. Subsequently, we develop IR-Booster, a dynamic adjustment mechanism that integrates software-level HR information with hardware-based IR-drop monitoring to adapt the V-f pairs of the PIM macro, achieving enhanced energy efficiency and performance. Finally, we propose the HR-aware task mapping method, bridging software and hardware designs to achieve optimal improvement. Post-layout simulation results on a 7nm 256-TOPS PIM chip demonstrate that AIM achieves up to 69.2% IR-drop mitigation, resulting in 2.29x energy efficiency improvement and 1.152x speedup.
comment: 18 pages, 22 figures, accepted by ISCA 2025
☆ AdversariaLLM: A Unified and Modular Toolbox for LLM Robustness Research
The rapid expansion of research on Large Language Model (LLM) safety and robustness has produced a fragmented and oftentimes buggy ecosystem of implementations, datasets, and evaluation methods. This fragmentation makes reproducibility and comparability across studies challenging, hindering meaningful progress. To address these issues, we introduce AdversariaLLM, a toolbox for conducting LLM jailbreak robustness research. Its design centers on reproducibility, correctness, and extensibility. The framework implements twelve adversarial attack algorithms, integrates seven benchmark datasets spanning harmfulness, over-refusal, and utility evaluation, and provides access to a wide range of open-weight LLMs via Hugging Face. The implementation includes advanced features for comparability and reproducibility such as compute-resource tracking, deterministic results, and distributional evaluation techniques. \name also integrates judging through the companion package JudgeZoo, which can also be used independently. Together, these components aim to establish a robust foundation for transparent, comparable, and reproducible research in LLM safety.
☆ Probing the Probes: Methods and Metrics for Concept Alignment
In explainable AI, Concept Activation Vectors (CAVs) are typically obtained by training linear classifier probes to detect human-understandable concepts as directions in the activation space of deep neural networks. It is widely assumed that a high probe accuracy indicates a CAV faithfully representing its target concept. However, we show that the probe's classification accuracy alone is an unreliable measure of concept alignment, i.e., the degree to which a CAV captures the intended concept. In fact, we argue that probes are more likely to capture spurious correlations than they are to represent only the intended concept. As part of our analysis, we demonstrate that deliberately misaligned probes constructed to exploit spurious correlations, achieve an accuracy close to that of standard probes. To address this severe problem, we introduce a novel concept localization method based on spatial linear attribution, and provide a comprehensive comparison of it to existing feature visualization techniques for detecting and mitigating concept misalignment. We further propose three classes of metrics for quantitatively assessing concept alignment: hard accuracy, segmentation scores, and augmentation robustness. Our analysis shows that probes with translation invariance and spatial alignment consistently increase concept alignment. These findings highlight the need for alignment-based evaluation metrics rather than probe accuracy, and the importance of tailoring probes to both the model architecture and the nature of the target concept.
comment: 29 pages, 17 figures
☆ GUI-360: A Comprehensive Dataset and Benchmark for Computer-Using Agents
We introduce GUI-360$^\circ$, a large-scale, comprehensive dataset and benchmark suite designed to advance computer-using agents (CUAs). CUAs present unique challenges and is constrained by three persistent gaps: a scarcity of real-world CUA tasks, the lack of automated collection-and-annotation pipelines for multi-modal trajectories, and the absence of a unified benchmark that jointly evaluates GUI grounding, screen parsing, and action prediction. GUI-360$^\circ$ addresses these gaps with an LLM-augmented, largely automated pipeline for query sourcing, environment-template construction, task instantiation, batched execution, and LLM-driven quality filtering. The released corpus contains over 1.2M executed action steps across thousands of trajectories in popular Windows office applications, and includes full-resolution screenshots, accessibility metadata when available, instantiated goals, intermediate reasoning traces, and both successful and failed action trajectories. The dataset supports three canonical tasks, GUI grounding, screen parsing, and action prediction, and a hybrid GUI+API action space that reflects modern agent designs. Benchmarking state-of-the-art vision--language models on GUI-360$^\circ$ reveals substantial out-of-the-box shortcomings in grounding and action prediction; supervised fine-tuning and reinforcement learning yield significant gains but do not close the gap to human-level reliability. We release GUI-360$^\circ$ and accompanying code to facilitate reproducible research and accelerate progress on robust desktop CUAs. The full dataset has been made public on https://huggingface.co/datasets/vyokky/GUI-360.
☆ Deep learning-based object detection of offshore platforms on Sentinel-1 Imagery and the impact of synthetic training data
The recent and ongoing expansion of marine infrastructure, including offshore wind farms, oil and gas platforms, artificial islands, and aquaculture facilities, highlights the need for effective monitoring systems. The development of robust models for offshore infrastructure detection relies on comprehensive, balanced datasets, but falls short when samples are scarce, particularly for underrepresented object classes, shapes, and sizes. By training deep learning-based YOLOv10 object detection models with a combination of synthetic and real Sentinel-1 satellite imagery acquired in the fourth quarter of 2023 from four regions (Caspian Sea, South China Sea, Gulf of Guinea, and Coast of Brazil), this study investigates the use of synthetic training data to enhance model performance. We evaluated this approach by applying the model to detect offshore platforms in three unseen regions (Gulf of Mexico, North Sea, Persian Gulf) and thereby assess geographic transferability. This region-holdout evaluation demonstrated that the model generalises beyond the training areas. In total, 3,529 offshore platforms were detected, including 411 in the North Sea, 1,519 in the Gulf of Mexico, and 1,593 in the Persian Gulf. The model achieved an F1 score of 0.85, which improved to 0.90 upon incorporating synthetic data. We analysed how synthetic data enhances the representation of unbalanced classes and overall model performance, taking a first step toward globally transferable detection of offshore infrastructure. This study underscores the importance of balanced datasets and highlights synthetic data generation as an effective strategy to address common challenges in remote sensing, demonstrating the potential of deep learning for scalable, global offshore infrastructure monitoring.
comment: 14 pages, 9 figures
☆ Efficient Reinforcement Learning from Human Feedback via Bayesian Preference Inference
Learning from human preferences is a cornerstone of aligning machine learning models with subjective human judgments. Yet, collecting such preference data is often costly and time-consuming, motivating the need for more efficient learning paradigms. Two established approaches offer complementary advantages: RLHF scales effectively to high-dimensional tasks such as LLM fine-tuning, while PBO achieves greater sample efficiency through active querying. We propose a hybrid framework that unifies RLHF's scalability with PBO's query efficiency by integrating an acquisition-driven module into the RLHF pipeline, thereby enabling active and sample-efficient preference gathering. We validate the proposed approach on two representative domains: (i) high-dimensional preference optimization and (ii) LLM fine-tuning. Experimental results demonstrate consistent improvements in both sample efficiency and overall performance across these tasks.
RLoop: An Self-Improving Framework for Reinforcement Learning with Iterative Policy Initialization
While Reinforcement Learning for Verifiable Rewards (RLVR) is powerful for training large reasoning models, its training dynamics harbor a critical challenge: RL overfitting, where models gain training rewards but lose generalization. Our analysis reveals this is driven by policy over-specialization and catastrophic forgetting of diverse solutions generated during training. Standard optimization discards this valuable inter-step policy diversity. To address this, we introduce RLoop, a self-improving framework built on iterative policy initialization. RLoop transforms the standard training process into a virtuous cycle: it first uses RL to explore the solution space from a given policy, then filters the successful trajectories to create an expert dataset. This dataset is used via Rejection-sampling Fine-Tuning (RFT) to refine the initial policy, creating a superior starting point for the next iteration. This loop of exploration and exploitation via iterative re-initialization effectively converts transient policy variations into robust performance gains. Our experiments show RLoop mitigates forgetting and substantially improves generalization, boosting average accuracy by 9% and pass@32 by over 15% compared to vanilla RL.
☆ Proto-LeakNet: Towards Signal-Leak Aware Attribution in Synthetic Human Face Imagery
The growing sophistication of synthetic image and deepfake generation models has turned source attribution and authenticity verification into a critical challenge for modern computer vision systems. Recent studies suggest that diffusion pipelines unintentionally imprint persistent statistical traces, known as signal leaks, within their outputs, particularly in latent representations. Building on this observation, we propose Proto-LeakNet, a signal-leak-aware and interpretable attribution framework that integrates closed-set classification with a density-based open-set evaluation on the learned embeddings, enabling analysis of unseen generators without retraining. Operating in the latent domain of diffusion models, our method re-simulates partial forward diffusion to expose residual generator-specific cues. A temporal attention encoder aggregates multi-step latent features, while a feature-weighted prototype head structures the embedding space and enables transparent attribution. Trained solely on closed data and achieving a Macro AUC of 98.13%, Proto-LeakNet learns a latent geometry that remains robust under post-processing, surpassing state-of-the-art methods, and achieves strong separability between known and unseen generators. These results demonstrate that modeling signal-leak bias in latent space enables reliable and interpretable AI-image and deepfake forensics. The code for the whole work will be available upon submission.
comment: 13 pages, 6 figures, 5 tables
MedSapiens: Taking a Pose to Rethink Medical Imaging Landmark Detection
This paper does not introduce a novel architecture; instead, it revisits a fundamental yet overlooked baseline: adapting human-centric foundation models for anatomical landmark detection in medical imaging. While landmark detection has traditionally relied on domain-specific models, the emergence of large-scale pre-trained vision models presents new opportunities. In this study, we investigate the adaptation of Sapiens, a human-centric foundation model designed for pose estimation, to medical imaging through multi-dataset pretraining, establishing a new state of the art across multiple datasets. Our proposed model, MedSapiens, demonstrates that human-centric foundation models, inherently optimized for spatial pose localization, provide strong priors for anatomical landmark detection, yet this potential has remained largely untapped. We benchmark MedSapiens against existing state-of-the-art models, achieving up to 5.26% improvement over generalist models and up to 21.81% improvement over specialist models in the average success detection rate (SDR). To further assess MedSapiens adaptability to novel downstream tasks with few annotations, we evaluate its performance in limited-data settings, achieving 2.69% improvement over the few-shot state of the art in SDR. Code and model weights are available at https://github.com/xmed-lab/MedSapiens .
☆ On the Brittleness of CLIP Text Encoders
Multimodal co-embedding models, especially CLIP, have advanced the state of the art in zero-shot classification and multimedia information retrieval in recent years by aligning images and text in a shared representation space. However, such modals trained on a contrastive alignment can lack stability towards small input perturbations. Especially when dealing with manually expressed queries, minor variations in the query can cause large differences in the ranking of the best-matching results. In this paper, we present a systematic analysis of the effect of multiple classes of non-semantic query perturbations in an multimedia information retrieval scenario. We evaluate a diverse set of lexical, syntactic, and semantic perturbations across multiple CLIP variants using the TRECVID Ad-Hoc Video Search queries and the V3C1 video collection. Across models, we find that syntactic and semantic perturbations drive the largest instabilities, while brittleness is concentrated in trivial surface edits such as punctuation and case. Our results highlight robustness as a critical dimension for evaluating vision-language models beyond benchmark accuracy.
comment: Accepted for publication at MMM'26
☆ seqme: a Python library for evaluating biological sequence design
Recent advances in computational methods for designing biological sequences have sparked the development of metrics to evaluate these methods performance in terms of the fidelity of the designed sequences to a target distribution and their attainment of desired properties. However, a single software library implementing these metrics was lacking. In this work we introduce seqme, a modular and highly extendable open-source Python library, containing model-agnostic metrics for evaluating computational methods for biological sequence design. seqme considers three groups of metrics: sequence-based, embedding-based, and property-based, and is applicable to a wide range of biological sequences: small molecules, DNA, ncRNA, mRNA, peptides and proteins. The library offers a number of embedding and property models for biological sequences, as well as diagnostics and visualization functions to inspect the results. seqme can be used to evaluate both one-shot and iterative computational design methods.
comment: 13 pages
☆ Denoised Recommendation Model with Collaborative Signal Decoupling
Although the collaborative filtering (CF) algorithm has achieved remarkable performance in recommendation systems, it suffers from suboptimal recommendation performance due to noise in the user-item interaction matrix. Numerous noise-removal studies have improved recommendation models, but most existing approaches conduct denoising on a single graph. This may cause attenuation of collaborative signals: removing edges between two nodes can interrupt paths between other nodes, weakening path-dependent collaborative information. To address these limitations, this study proposes a novel GNN-based CF model called DRCSD for denoising unstable interactions. DRCSD includes two core modules: a collaborative signal decoupling module (decomposes signals into distinct orders by structural characteristics) and an order-wise denoising module (performs targeted denoising on each order). Additionally, the information aggregation mechanism of traditional GNN-based CF models is modified to avoid cross-order signal interference until the final pooling operation. Extensive experiments on three public real-world datasets show that DRCSD has superior robustness against unstable interactions and achieves statistically significant performance improvements in recommendation accuracy metrics compared to state-of-the-art baseline models.
☆ Shared Spatial Memory Through Predictive Coding
Sharing and reconstructing a consistent spatial memory is a critical challenge in multi-agent systems, where partial observability and limited bandwidth often lead to catastrophic failures in coordination. We introduce a multi-agent predictive coding framework that formulate coordination as the minimization of mutual uncertainty among agents. Instantiated as an information bottleneck objective, it prompts agents to learn not only who and what to communicate but also when. At the foundation of this framework lies a grid-cell-like metric as internal spatial coding for self-localization, emerging spontaneously from self-supervised motion prediction. Building upon this internal spatial code, agents gradually develop a bandwidth-efficient communication mechanism and specialized neural populations that encode partners' locations: an artificial analogue of hippocampal social place cells (SPCs). These social representations are further enacted by a hierarchical reinforcement learning policy that actively explores to reduce joint uncertainty. On the Memory-Maze benchmark, our approach shows exceptional resilience to bandwidth constraints: success degrades gracefully from 73.5% to 64.4% as bandwidth shrinks from 128 to 4 bits/step, whereas a full-broadcast baseline collapses from 67.6% to 28.6%. Our findings establish a theoretically principled and biologically plausible basis for how complex social representations emerge from a unified predictive drive, leading to social collective intelligence.
comment: We have prepared the open-source code and video demonstration pages: 1. Code: github.com/fangzr/SSM-PC 2. Demo: fangzr.github.io/SSM-PC/index.html
☆ Opus: A Quantitative Framework for Workflow Evaluation
This paper introduces the Opus Workflow Evaluation Framework, a probabilistic-normative formulation for quantifying Workflow quality and efficiency. It integrates notions of correctness, reliability, and cost into a coherent mathematical model that enables direct comparison, scoring, and optimization of Workflows. The framework combines the Opus Workflow Reward, a probabilistic function estimating expected performance through success likelihood, resource usage, and output gain, with the Opus Workflow Normative Penalties, a set of measurable functions capturing structural and informational quality across Cohesion, Coupling, Observability, and Information Hygiene. It supports automated Workflow assessment, ranking, and optimization within modern automation systems such as Opus and can be integrated into Reinforcement Learning loops to guide Workflow discovery and refinement. In this paper, we introduce the Opus Workflow Reward model that formalizes Workflow success as a probabilistic expectation over costs and outcomes. We define measurable Opus Workflow Normative Penalties capturing structural, semantic, and signal-related properties of Workflows. Finally, we propose a unified optimization formulation for identifying and ranking optimal Workflows under joint Reward-Penalty trade-offs.
☆ The Strong Lottery Ticket Hypothesis for Multi-Head Attention Mechanisms
The strong lottery ticket hypothesis (SLTH) conjectures that high-performing subnetworks, called strong lottery tickets (SLTs), are hidden in randomly initialized neural networks. Although recent theoretical studies have established the SLTH across various neural architectures, the SLTH for transformer architectures still lacks theoretical understanding. In particular, the current theory of the SLTH does not yet account for the multi-head attention (MHA) mechanism, a core component of transformers. To address this gap, we introduce a theoretical analysis of the existence of SLTs within MHAs. We prove that, if a randomly initialized MHA of $H$ heads and input dimension $d$ has the hidden dimension $O(d\log(Hd^{3/2}))$ for the key and value, it contains an SLT that approximates an arbitrary MHA with the same input dimension with high probability. Furthermore, by leveraging this theory for MHAs, we extend the SLTH to transformers without normalization layers. We empirically validate our theoretical findings, demonstrating that the approximation error between the SLT within a source model (MHA and transformer) and an approximate target counterpart decreases exponentially by increasing the hidden dimension of the source model.
comment: 22 pages, 8 figures
☆ AStF: Motion Style Transfer via Adaptive Statistics Fusor
Human motion style transfer allows characters to appear less rigidity and more realism with specific style. Traditional arbitrary image style transfer typically process mean and variance which is proved effective. Meanwhile, similar methods have been adapted for motion style transfer. However, due to the fundamental differences between images and motion, relying on mean and variance is insufficient to fully capture the complex dynamic patterns and spatiotemporal coherence properties of motion data. Building upon this, our key insight is to bring two more coefficient, skewness and kurtosis, into the analysis of motion style. Specifically, we propose a novel Adaptive Statistics Fusor (AStF) which consists of Style Disentanglement Module (SDM) and High-Order Multi-Statistics Attention (HOS-Attn). We trained our AStF in conjunction with a Motion Consistency Regularization (MCR) discriminator. Experimental results show that, by providing a more comprehensive model of the spatiotemporal statistical patterns inherent in dynamic styles, our proposed AStF shows proficiency superiority in motion style transfers over state-of-the-arts. Our code and model are available at https://github.com/CHMimilanlan/AStF.
☆ Trustworthy LLM-Mediated Communication: Evaluating Information Fidelity in LLM as a Communicator (LAAC) Framework in Multiple Application Domains
The proliferation of AI-generated content has created an absurd communication theater where senders use LLMs to inflate simple ideas into verbose content, recipients use LLMs to compress them back into summaries, and as a consequence neither party engage with authentic content. LAAC (LLM as a Communicator) proposes a paradigm shift - positioning LLMs as intelligent communication intermediaries that capture the sender's intent through structured dialogue and facilitate genuine knowledge exchange with recipients. Rather than perpetuating cycles of AI-generated inflation and compression, LAAC enables authentic communication across diverse contexts including academic papers, proposals, professional emails, and cross-platform content generation. However, deploying LLMs as trusted communication intermediaries raises critical questions about information fidelity, consistency, and reliability. This position paper systematically evaluates the trustworthiness requirements for LAAC's deployment across multiple communication domains. We investigate three fundamental dimensions: (1) Information Capture Fidelity - accuracy of intent extraction during sender interviews across different communication types, (2) Reproducibility - consistency of structured knowledge across multiple interaction instances, and (3) Query Response Integrity - reliability of recipient-facing responses without hallucination, source conflation, or fabrication. Through controlled experiments spanning multiple LAAC use cases, we assess these trust dimensions using LAAC's multi-agent architecture. Preliminary findings reveal measurable trust gaps that must be addressed before LAAC can be reliably deployed in high-stakes communication scenarios.
comment: 10 pages, 4 figures. Submitted to IEEE DISTILL 2025 (co-located with IEEE TPS 2025)
☆ A Reinforced Evolution-Based Approach to Multi-Resource Load Balancing
This paper presents a reinforced genetic approach to a defined d-resource system optimization problem. The classical evolution schema was ineffective due to a very strict feasibility function in the studied problem. Hence, the presented strategy has introduced several modifications and adaptations to standard genetic routines, e.g.: a migration operator which is an analogy to the biological random genetic drift.
☆ Explaining Software Vulnerabilities with Large Language Models
The prevalence of security vulnerabilities has prompted companies to adopt static application security testing (SAST) tools for vulnerability detection. Nevertheless, these tools frequently exhibit usability limitations, as their generic warning messages do not sufficiently communicate important information to developers, resulting in misunderstandings or oversight of critical findings. In light of recent developments in Large Language Models (LLMs) and their text generation capabilities, our work investigates a hybrid approach that uses LLMs to tackle the SAST explainability challenges. In this paper, we present SAFE, an Integrated Development Environment (IDE) plugin that leverages GPT-4o to explain the causes, impacts, and mitigation strategies of vulnerabilities detected by SAST tools. Our expert user study findings indicate that the explanations generated by SAFE can significantly assist beginner to intermediate developers in understanding and addressing security vulnerabilities, thereby improving the overall usability of SAST tools.
☆ When Empowerment Disempowers
Empowerment, a measure of an agent's ability to control its environment, has been proposed as a universal goal-agnostic objective for motivating assistive behavior in AI agents. While multi-human settings like homes and hospitals are promising for AI assistance, prior work on empowerment-based assistance assumes that the agent assists one human in isolation. We introduce an open source multi-human gridworld test suite Disempower-Grid. Using Disempower-Grid, we empirically show that assistive RL agents optimizing for one human's empowerment can significantly reduce another human's environmental influence and rewards - a phenomenon we formalize as disempowerment. We characterize when disempowerment occurs in these environments and show that joint empowerment mitigates disempowerment at the cost of the user's reward. Our work reveals a broader challenge for the AI alignment community: goal-agnostic objectives that seem aligned in single-agent settings can become misaligned in multi-agent contexts.
☆ Systematic Evaluation of Preprocessing Techniques for Accurate Image Registration in Digital Pathology
Image registration refers to the process of spatially aligning two or more images by mapping them into a common coordinate system, so that corresponding anatomical or tissue structures are matched across images. In digital pathology, registration enables direct comparison and integration of information from different stains or imaging modalities, sup-porting applications such as biomarker analysis and tissue reconstruction. Accurate registration of images from different modalities is an essential step in digital pathology. In this study, we investigated how various color transformation techniques affect image registration between hematoxylin and eosin (H&E) stained images and non-linear multimodal images. We used a dataset of 20 tissue sample pairs, with each pair undergoing several preprocessing steps, including different color transformation (CycleGAN, Macenko, Reinhard, Vahadane), inversion, contrast adjustment, intensity normalization, and denoising. All images were registered using the VALIS registration method, which first applies rigid registration and then performs non-rigid registration in two steps on both low and high-resolution images. Registration performance was evaluated using the relative Target Registration Error (rTRE). We reported the median of median rTRE values (MMrTRE) and the average of median rTRE values (AMrTRE) for each method. In addition, we performed a custom point-based evaluation using ten manually selected key points. Registration was done separately for two scenarios, using either the original or inverted multimodal images. In both scenarios, CycleGAN color transformation achieved the lowest registration errors, while the other methods showed higher errors. These findings show that applying color transformation before registration improves alignment between images from different modalities and supports more reliable analysis in digital pathology.
comment: 14 pages, 7 Figures
☆ Are We Aligned? A Preliminary Investigation of the Alignment of Responsible AI Values between LLMs and Human Judgment
Large Language Models (LLMs) are increasingly employed in software engineering tasks such as requirements elicitation, design, and evaluation, raising critical questions regarding their alignment with human judgments on responsible AI values. This study investigates how closely LLMs' value preferences align with those of two human groups: a US-representative sample and AI practitioners. We evaluate 23 LLMs across four tasks: (T1) selecting key responsible AI values, (T2) rating their importance in specific contexts, (T3) resolving trade-offs between competing values, and (T4) prioritizing software requirements that embody those values. The results show that LLMs generally align more closely with AI practitioners than with the US-representative sample, emphasizing fairness, privacy, transparency, safety, and accountability. However, inconsistencies appear between the values that LLMs claim to uphold (Tasks 1-3) and the way they prioritize requirements (Task 4), revealing gaps in faithfulness between stated and applied behavior. These findings highlight the practical risk of relying on LLMs in requirements engineering without human oversight and motivate the need for systematic approaches to benchmark, interpret, and monitor value alignment in AI-assisted software development.
☆ BAPPA: Benchmarking Agents, Plans, and Pipelines for Automated Text-to-SQL Generation
Text-to-SQL systems provide a natural language interface that can enable even laymen to access information stored in databases. However, existing Large Language Models (LLM) struggle with SQL generation from natural instructions due to large schema sizes and complex reasoning. Prior work often focuses on complex, somewhat impractical pipelines using flagship models, while smaller, efficient models remain overlooked. In this work, we explore three multi-agent LLM pipelines, with systematic performance benchmarking across a range of small to large open-source models: (1) Multi-agent discussion pipeline, where agents iteratively critique and refine SQL queries, and a judge synthesizes the final answer; (2) Planner-Coder pipeline, where a thinking model planner generates stepwise SQL generation plans and a coder synthesizes queries; and (3) Coder-Aggregator pipeline, where multiple coders independently generate SQL queries, and a reasoning agent selects the best query. Experiments on the Bird-Bench Mini-Dev set reveal that Multi-Agent discussion can improve small model performance, with up to 10.6% increase in Execution Accuracy for Qwen2.5-7b-Instruct seen after three rounds of discussion. Among the pipelines, the LLM Reasoner-Coder pipeline yields the best results, with DeepSeek-R1-32B and QwQ-32B planners boosting Gemma 3 27B IT accuracy from 52.4% to the highest score of 56.4%. Codes are available at https://github.com/treeDweller98/bappa-sql.
☆ Scaffolding Metacognition in Programming Education: Understanding Student-AI Interactions and Design Implications
Generative AI tools such as ChatGPT now provide novice programmers with unprecedented access to instant, personalized support. While this holds clear promise, their influence on students' metacognitive processes remains underexplored. Existing work has largely focused on correctness and usability, with limited attention to whether and how students' use of AI assistants supports or bypasses key metacognitive processes. This study addresses that gap by analyzing student-AI interactions through a metacognitive lens in university-level programming courses. We examined more than 10,000 dialogue logs collected over three years, complemented by surveys of students and educators. Our analysis focused on how prompts and responses aligned with metacognitive phases and strategies. Synthesizing these findings across data sources, we distill design considerations for AI-powered coding assistants that aim to support rather than supplant metacognitive engagement. Our findings provide guidance for developing educational AI tools that strengthen students' learning processes in programming education.
☆ Learning from Online Videos at Inference Time for Computer-Use Agents
Computer-use agents can operate computers and automate laborious tasks, but despite recent rapid progress, they still lag behind human users, especially when tasks require domain-specific procedural knowledge about particular applications, platforms, and multi-step workflows. Humans can bridge this gap by watching video tutorials: we search, skim, and selectively imitate short segments that match our current subgoal. In this paper, we study how to enable computer-use agents to learn from online videos at inference time effectively. We propose a framework that retrieves and filters tutorial videos, converts them into structured demonstration trajectories, and dynamically selects trajectories as in-context guidance during execution. Particularly, using a VLM, we infer UI actions, segment videos into short subsequences of actions, and assign each subsequence a textual objective. At inference time, a two-stage selection mechanism dynamically chooses a single trajectory to add in context at each step, focusing the agent on the most helpful local guidance for its next decision. Experiments on two widely used benchmarks show that our framework consistently outperforms strong base agents and variants that use only textual tutorials or transcripts. Analyses highlight the importance of trajectory segmentation and selection, action filtering, and visual information, suggesting that abundant online videos can be systematically distilled into actionable guidance that improves computer-use agents at inference time. Our code is available at https://github.com/UCSB-NLP-Chang/video_demo.
☆ Testing the Testers: Human-Driven Quality Assessment of Voice AI Testing Platforms
Voice AI agents are rapidly transitioning to production deployments, yet systematic methods for ensuring testing reliability remain underdeveloped. Organizations cannot objectively assess whether their testing approaches (internal tools or external platforms) actually work, creating a critical measurement gap as voice AI scales to billions of daily interactions. We present the first systematic framework for evaluating voice AI testing quality through human-centered benchmarking. Our methodology addresses the fundamental dual challenge of testing platforms: generating realistic test conversations (simulation quality) and accurately evaluating agent responses (evaluation quality). The framework combines established psychometric techniques (pairwise comparisons yielding Elo ratings, bootstrap confidence intervals, and permutation tests) with rigorous statistical validation to provide reproducible metrics applicable to any testing approach. To validate the framework and demonstrate its utility, we conducted comprehensive empirical evaluation of three leading commercial platforms focused on Voice AI Testing using 21,600 human judgments across 45 simulations and ground truth validation on 60 conversations. Results reveal statistically significant performance differences with the proposed framework, with the top-performing platform, Evalion, achieving 0.92 evaluation quality measured as f1-score versus 0.73 for others, and 0.61 simulation quality using a league based scoring system (including ties) vs 0.43 for other platforms. This framework enables researchers and organizations to empirically validate the testing capabilities of any platform, providing essential measurement foundations for confident voice AI deployment at scale. Supporting materials are made available to facilitate reproducibility and adoption.
☆ DMSORT: An efficient parallel maritime multi-object tracking architecture for unmanned vessel platforms
Accurate perception of the marine environment through robust multi-object tracking (MOT) is essential for ensuring safe vessel navigation and effective maritime surveillance. However, the complicated maritime environment often causes camera motion and subsequent visual degradation, posing significant challenges to MOT. To address this challenge, we propose an efficient Dual-branch Maritime SORT (DMSORT) method for maritime MOT. The core of the framework is a parallel tracker with affine compensation, which incorporates an object detection and re-identification (ReID) branch, along with a dedicated branch for dynamic camera motion estimation. Specifically, a Reversible Columnar Detection Network (RCDN) is integrated into the detection module to leverage multi-level visual features for robust object detection. Furthermore, a lightweight Transformer-based appearance extractor (Li-TAE) is designed to capture global contextual information and generate robust appearance features. Another branch decouples platform-induced and target-intrinsic motion by constructing a projective transformation, applying platform-motion compensation within the Kalman filter, and thereby stabilizing true object trajectories. Finally, a clustering-optimized feature fusion module effectively combines motion and appearance cues to ensure identity consistency under noise, occlusion, and drift. Extensive evaluations on the Singapore Maritime Dataset demonstrate that DMSORT achieves state-of-the-art performance. Notably, DMSORT attains the fastest runtime among existing ReID-based MOT frameworks while maintaining high identity consistency and robustness to jitter and occlusion. Code is available at: https://github.com/BiscuitsLzy/DMSORT-An-efficient-parallel-maritime-multi-object-tracking-architecture-.
comment: Updated version of the Ocean Engineering (Elsevier, 2025) paper with minor corrections
☆ Automated Tennis Player and Ball Tracking with Court Keypoints Detection (Hawk Eye System)
This study presents a complete pipeline for automated tennis match analysis. Our framework integrates multiple deep learning models to detect and track players and the tennis ball in real time, while also identifying court keypoints for spatial reference. Using YOLOv8 for player detection, a custom-trained YOLOv5 model for ball tracking, and a ResNet50-based architecture for court keypoint detection, our system provides detailed analytics including player movement patterns, ball speed, shot accuracy, and player reaction times. The experimental results demonstrate robust performance in varying court conditions and match scenarios. The model outputs an annotated video along with detailed performance metrics, enabling coaches, broadcasters, and players to gain actionable insights into the dynamics of the game.
comment: 14 pages, 11 figures, planning to submit for a coneference
☆ Automated and Explainable Denial of Service Analysis for AI-Driven Intrusion Detection Systems
With the increasing frequency and sophistication of Distributed Denial of Service (DDoS) attacks, it has become critical to develop more efficient and interpretable detection methods. Traditional detection systems often struggle with scalability and transparency, hindering real-time response and understanding of attack vectors. This paper presents an automated framework for detecting and interpreting DDoS attacks using machine learning (ML). The proposed method leverages the Tree-based Pipeline Optimization Tool (TPOT) to automate the selection and optimization of ML models and features, reducing the need for manual experimentation. SHapley Additive exPlanations (SHAP) is incorporated to enhance model interpretability, providing detailed insights into the contribution of individual features to the detection process. By combining TPOT's automated pipeline selection with SHAP interpretability, this approach improves the accuracy and transparency of DDoS detection. Experimental results demonstrate that key features such as mean backward packet length and minimum forward packet header length are critical in detecting DDoS attacks, offering a scalable and explainable cybersecurity solution.
comment: 13 pages, 2 figures, 11 tables, IET Information Security
☆ A Characterization of List Language Identification in the Limit
We study the problem of language identification in the limit, where given a sequence of examples from a target language, the goal of the learner is to output a sequence of guesses for the target language such that all the guesses beyond some finite time are correct. Classical results of Gold showed that language identification in the limit is impossible for essentially any interesting collection of languages. Later, Angluin gave a precise characterization of language collections for which this task is possible. Motivated by recent positive results for the related problem of language generation, we revisit the classic language identification problem in the setting where the learner is given the additional power of producing a list of $k$ guesses at each time step. The goal is to ensure that beyond some finite time, one of the guesses is correct at each time step. We give an exact characterization of collections of languages that can be $k$-list identified in the limit, based on a recursive version of Angluin's characterization (for language identification with a list of size $1$). This further leads to a conceptually appealing characterization: A language collection can be $k$-list identified in the limit if and only if the collection can be decomposed into $k$ collections of languages, each of which can be identified in the limit (with a list of size $1$). We also use our characterization to establish rates for list identification in the statistical setting where the input is drawn as an i.i.d. stream from a distribution supported on some language in the collection. Our results show that if a collection is $k$-list identifiable in the limit, then the collection can be $k$-list identified at an exponential rate, and this is best possible. On the other hand, if a collection is not $k$-list identifiable in the limit, then it cannot be $k$-list identified at any rate that goes to zero.
☆ KGFR: A Foundation Retriever for Generalized Knowledge Graph Question Answering
Large language models (LLMs) excel at reasoning but struggle with knowledge-intensive questions due to limited context and parametric knowledge. However, existing methods that rely on finetuned LLMs or GNN retrievers are limited by dataset-specific tuning and scalability on large or unseen graphs. We propose the LLM-KGFR collaborative framework, where an LLM works with a structured retriever, the Knowledge Graph Foundation Retriever (KGFR). KGFR encodes relations using LLM-generated descriptions and initializes entities based on their roles in the question, enabling zero-shot generalization to unseen KGs. To handle large graphs efficiently, it employs Asymmetric Progressive Propagation (APP)- a stepwise expansion that selectively limits high-degree nodes while retaining informative paths. Through node-, edge-, and path-level interfaces, the LLM iteratively requests candidate answers, supporting facts, and reasoning paths, forming a controllable reasoning loop. Experiments demonstrate that LLM-KGFR achieves strong performance while maintaining scalability and generalization, providing a practical solution for KG-augmented reasoning.
☆ An Automated Theorem Generator with Theoretical Foundation Based on Rectangular Standard Contradiction
Currently, there is a lack of rigorous theoretical system for systematically generating non-trivial and logically valid theorems. Addressing this critical gap, this paper conducts research to propose a novel automated theorem generation theory and tool. Based on the concept of standard contradiction which possesses unique deductive advantages, this paper defines and proves, for the first time, a new logical structure known as rectangular standard contradiction. Centered on this structure, a complete Automated Theorem Generation (ATG) theory is put forward. Theoretical proofs clarify two core properties of rectangular standard contradiction: first, it is a standard contradiction (necessarily unsatisfiable); second, it exhibits non-redundancy (the remaining clause set becomes satisfiable after removing any clause). Leveraging these properties, this paper proves that partitioning a rectangular standard contradiction into a premise subset $A$ and negation of its complement $H$, a valid theorem $A \vdash \neg H$ can be formed, and all such theorems are logically equivalent. To implement this theory, an efficient template-based ATG algorithm is designed, and a Rectangular Automated Theorem Generator is developed. This research enables machines to transition from "verifiers" to "discoverers", opening up new avenues for fundamental research in the fields of logic and artificial intelligence.
comment: 17 pages
☆ Advancing Equitable AI: Evaluating Cultural Expressiveness in LLMs for Latin American Contexts
Artificial intelligence (AI) systems often reflect biases from economically advanced regions, marginalizing contexts in economically developing regions like Latin America due to imbalanced datasets. This paper examines AI representations of diverse Latin American contexts, revealing disparities between data from economically advanced and developing regions. We highlight how the dominance of English over Spanish, Portuguese, and indigenous languages such as Quechua and Nahuatl perpetuates biases, framing Latin American perspectives through a Western lens. To address this, we introduce a culturally aware dataset rooted in Latin American history and socio-political contexts, challenging Eurocentric models. We evaluate six language models on questions testing cultural context awareness, using a novel Cultural Expressiveness metric, statistical tests, and linguistic analyses. Our findings show that some models better capture Latin American perspectives, while others exhibit significant sentiment misalignment (p < 0.001). Fine-tuning Mistral-7B with our dataset improves its cultural expressiveness by 42.9%, advancing equitable AI development. We advocate for equitable AI by prioritizing datasets that reflect Latin American history, indigenous knowledge, and diverse languages, while emphasizing community-centered approaches to amplify marginalized voices.
☆ DeNoise: Learning Robust Graph Representations for Unsupervised Graph-Level Anomaly Detection
With the rapid growth of graph-structured data in critical domains, unsupervised graph-level anomaly detection (UGAD) has become a pivotal task. UGAD seeks to identify entire graphs that deviate from normal behavioral patterns. However, most Graph Neural Network (GNN) approaches implicitly assume that the training set is clean, containing only normal graphs, which is rarely true in practice. Even modest contamination by anomalous graphs can distort learned representations and sharply degrade performance. To address this challenge, we propose DeNoise, a robust UGAD framework explicitly designed for contaminated training data. It jointly optimizes a graph-level encoder, an attribute decoder, and a structure decoder via an adversarial objective to learn noise-resistant embeddings. Further, DeNoise introduces an encoder anchor-alignment denoising mechanism that fuses high-information node embeddings from normal graphs into all graph embeddings, improving representation quality while suppressing anomaly interference. A contrastive learning component then compacts normal graph embeddings and repels anomalous ones in the latent space. Extensive experiments on eight real-world datasets demonstrate that DeNoise consistently learns reliable graph-level representations under varying noise intensities and significantly outperforms state-of-the-art UGAD baselines.
☆ Agentmandering: A Game-Theoretic Framework for Fair Redistricting via Large Language Model Agents AAAI
Redistricting plays a central role in shaping how votes are translated into political power. While existing computational methods primarily aim to generate large ensembles of legally valid districting plans, they often neglect the strategic dynamics involved in the selection process. This oversight creates opportunities for partisan actors to cherry-pick maps that, while technically compliant, are politically advantageous. Simply satisfying formal constraints does not ensure fairness when the selection process itself can be manipulated. We propose \textbf{Agentmandering}, a framework that reimagines redistricting as a turn-based negotiation between two agents representing opposing political interests. Drawing inspiration from game-theoretic ideas, particularly the \textit{Choose-and-Freeze} protocol, our method embeds strategic interaction into the redistricting process via large language model (LLM) agents. Agents alternate between selecting and freezing districts from a small set of candidate maps, gradually partitioning the state through constrained and interpretable choices. Evaluation on post-2020 U.S. Census data across all states shows that Agentmandering significantly reduces partisan bias and unfairness, while achieving 2 to 3 orders of magnitude lower variance than standard baselines. These results demonstrate both fairness and stability, especially in swing-state scenarios. Our code is available at https://github.com/Lihaogx/AgentMandering.
comment: Accepted by AAAI AISI 2026
☆ Left Atrial Segmentation with nnU-Net Using MRI
Accurate segmentation of the left atrium (LA) from cardiac MRI is critical for guiding atrial fibrillation (AF) ablation and constructing biophysical cardiac models. Manual delineation is time-consuming, observer-dependent, and impractical for large-scale or time-sensitive clinical workflows. Deep learning methods, particularly convolutional architectures, have recently demonstrated superior performance in medical image segmentation tasks. In this study, we applied the nnU-Net framework, an automated, self-configuring deep learning segmentation architecture, to the Left Atrial Segmentation Challenge 2013 dataset. The dataset consists of thirty MRI scans with corresponding expert-annotated masks. The nnU-Net model automatically adapted its preprocessing, network configuration, and training pipeline to the characteristics of the MRI data. Model performance was quantitatively evaluated using the Dice similarity coefficient (DSC), and qualitative results were compared against expert segmentations. The proposed nnUNet model achieved a mean Dice score of 93.5, demonstrating high overlap with expert annotations and outperforming several traditional segmentation approaches reported in previous studies. The network exhibited robust generalization across variations in left atrial shape, contrast, and image quality, accurately delineating both the atrial body and proximal pulmonary veins.
☆ Pediatric Appendicitis Detection from Ultrasound Images
Pediatric appendicitis remains one of the most common causes of acute abdominal pain in children, and its diagnosis continues to challenge clinicians due to overlapping symptoms and variable imaging quality. This study aims to develop and evaluate a deep learning model based on a pretrained ResNet architecture for automated detection of appendicitis from ultrasound images. We used the Regensburg Pediatric Appendicitis Dataset, which includes ultrasound scans, laboratory data, and clinical scores from pediatric patients admitted with abdominal pain to Children Hospital. Hedwig in Regensburg, Germany. Each subject had 1 to 15 ultrasound views covering the right lower quadrant, appendix, lymph nodes, and related structures. For the image based classification task, ResNet was fine tuned to distinguish appendicitis from non-appendicitis cases. Images were preprocessed by normalization, resizing, and augmentation to enhance generalization. The proposed ResNet model achieved an overall accuracy of 93.44, precision of 91.53, and recall of 89.8, demonstrating strong performance in identifying appendicitis across heterogeneous ultrasound views. The model effectively learned discriminative spatial features, overcoming challenges posed by low contrast, speckle noise, and anatomical variability in pediatric imaging.
☆ Interpreting Multi-Attribute Confounding through Numerical Attributes in Large Language Models AACL 2025
Although behavioral studies have documented numerical reasoning errors in large language models (LLMs), the underlying representational mechanisms remain unclear. We hypothesize that numerical attributes occupy shared latent subspaces and investigate two questions:(1) How do LLMs internally integrate multiple numerical attributes of a single entity? (2)How does irrelevant numerical context perturb these representations and their downstream outputs? To address these questions, we combine linear probing with partial correlation analysis and prompt-based vulnerability tests across models of varying sizes. Our results show that LLMs encode real-world numerical correlations but tend to systematically amplify them. Moreover, irrelevant context induces consistent shifts in magnitude representations, with downstream effects that vary by model size. These findings reveal a vulnerability in LLM decision-making and lay the groundwork for fairer, representation-aware control under multi-attribute entanglement.
comment: Accepted to IJCNLP-AACL 2025 (Main). Code available at https://github.com/htkg/num_attrs
☆ An LLM-based Framework for Human-Swarm Teaming Cognition in Disaster Search and Rescue
Large-scale disaster Search And Rescue (SAR) operations are persistently challenged by complex terrain and disrupted communications. While Unmanned Aerial Vehicle (UAV) swarms offer a promising solution for tasks like wide-area search and supply delivery, yet their effective coordination places a significant cognitive burden on human operators. The core human-machine collaboration bottleneck lies in the ``intention-to-action gap'', which is an error-prone process of translating a high-level rescue objective into a low-level swarm command under high intensity and pressure. To bridge this gap, this study proposes a novel LLM-CRF system that leverages Large Language Models (LLMs) to model and augment human-swarm teaming cognition. The proposed framework initially captures the operator's intention through natural and multi-modal interactions with the device via voice or graphical annotations. It then employs the LLM as a cognitive engine to perform intention comprehension, hierarchical task decomposition, and mission planning for the UAV swarm. This closed-loop framework enables the swarm to act as a proactive partner, providing active feedback in real-time while reducing the need for manual monitoring and control, which considerably advances the efficacy of the SAR task. We evaluate the proposed framework in a simulated SAR scenario. Experimental results demonstrate that, compared to traditional order and command-based interfaces, the proposed LLM-driven approach reduced task completion time by approximately $64.2\%$ and improved task success rate by $7\%$. It also leads to a considerable reduction in subjective cognitive workload, with NASA-TLX scores dropping by $42.9\%$. This work establishes the potential of LLMs to create more intuitive and effective human-swarm collaborations in high-stakes scenarios.
☆ Detecting Silent Failures in Multi-Agentic AI Trajectories
Multi-Agentic AI systems, powered by large language models (LLMs), are inherently non-deterministic and prone to silent failures such as drift, cycles, and missing details in outputs, which are difficult to detect. We introduce the task of anomaly detection in agentic trajectories to identify these failures and present a dataset curation pipeline that captures user behavior, agent non-determinism, and LLM variation. Using this pipeline, we curate and label two benchmark datasets comprising \textbf{4,275 and 894} trajectories from Multi-Agentic AI systems. Benchmarking anomaly detection methods on these datasets, we show that supervised (XGBoost) and semi-supervised (SVDD) approaches perform comparably, achieving accuracies up to 98% and 96%, respectively. This work provides the first systematic study of anomaly detection in Multi-Agentic AI systems, offering datasets, benchmarks, and insights to guide future research.
☆ Abductive Inference in Retrieval-Augmented Language Models: Generating and Validating Missing Premises
Large Language Models (LLMs) enhanced with retrieval -- commonly referred to as Retrieval-Augmented Generation (RAG) -- have demonstrated strong performance in knowledge-intensive tasks. However, RAG pipelines often fail when retrieved evidence is incomplete, leaving gaps in the reasoning process. In such cases, \emph{abductive inference} -- the process of generating plausible missing premises to explain observations -- offers a principled approach to bridge these gaps. In this paper, we propose a framework that integrates abductive inference into retrieval-augmented LLMs. Our method detects insufficient evidence, generates candidate missing premises, and validates them through consistency and plausibility checks. Experimental results on abductive reasoning and multi-hop QA benchmarks show that our approach improves both answer accuracy and reasoning faithfulness. This work highlights abductive inference as a promising direction for enhancing the robustness and explainability of RAG systems.
☆ Memory- and Latency-Constrained Inference of Large Language Models via Adaptive Split Computing
Large language models (LLMs) have achieved near-human performance across diverse reasoning tasks, yet their deployment on resource-constrained Internet-of-Things (IoT) devices remains impractical due to massive parameter footprints and memory-intensive autoregressive decoding. While split computing offers a promising solution by partitioning model execution between edge devices and cloud servers, existing approaches fail to address the unique challenges of autoregressive inference, particularly the iterative token generation process and expanding key-value (KV) cache requirements. This work introduces the first autoregressive-aware split computing framework designed explicitly for LLM deployment on edge devices. Our approach makes three key contributions. First, we develop one-point split compression (OPSC), a mixed-precision quantization scheme that prevents out-of-memory failures by strategically partitioning models into front-end and back-end segments with different precision levels. Second, we propose a two-stage intermediate compression pipeline that combines threshold splitting (TS) and token-wise adaptive bit quantization (TAB-Q) to preserve accuracy-critical activations while dramatically reducing communication overhead. Third, we formulate a unified optimization framework that jointly selects optimal split points, quantization settings, and sequence lengths to satisfy strict memory and latency constraints. Extensive evaluations across diverse LLMs and hardware platforms demonstrate superior performance compared to state-of-the-art quantization methods, including SmoothQuant, OmniQuant, and Atom. The framework achieves a 1.49 inference speedup and significant communication overhead reduction while maintaining or improving model accuracy.
☆ Accelerating scientific discovery with the common task framework
Machine learning (ML) and artificial intelligence (AI) algorithms are transforming and empowering the characterization and control of dynamic systems in the engineering, physical, and biological sciences. These emerging modeling paradigms require comparative metrics to evaluate a diverse set of scientific objectives, including forecasting, state reconstruction, generalization, and control, while also considering limited data scenarios and noisy measurements. We introduce a common task framework (CTF) for science and engineering, which features a growing collection of challenge data sets with a diverse set of practical and common objectives. The CTF is a critically enabling technology that has contributed to the rapid advance of ML/AI algorithms in traditional applications such as speech recognition, language processing, and computer vision. There is a critical need for the objective metrics of a CTF to compare the diverse algorithms being rapidly developed and deployed in practice today across science and engineering.
comment: 12 pages, 6 figures
☆ Towards Scalable Meta-Learning of near-optimal Interpretable Models via Synthetic Model Generations
Decision trees are widely used in high-stakes fields like finance and healthcare due to their interpretability. This work introduces an efficient, scalable method for generating synthetic pre-training data to enable meta-learning of decision trees. Our approach samples near-optimal decision trees synthetically, creating large-scale, realistic datasets. Using the MetaTree transformer architecture, we demonstrate that this method achieves performance comparable to pre-training on real-world data or with computationally expensive optimal decision trees. This strategy significantly reduces computational costs, enhances data generation flexibility, and paves the way for scalable and efficient meta-learning of interpretable decision tree models.
comment: 9 pages, 3 figures, Neurips 2025 GenAI in Finance Workshop
☆ Hybrid Fuzzing with LLM-Guided Input Mutation and Semantic Feedback
Software fuzzing has become a cornerstone in automated vulnerability discovery, yet existing mutation strategies often lack semantic awareness, leading to redundant test cases and slow exploration of deep program states. In this work, I present a hybrid fuzzing framework that integrates static and dynamic analysis with Large Language Model (LLM)-guided input mutation and semantic feedback. Static analysis extracts control-flow and data-flow information, which is transformed into structured prompts for the LLM to generate syntactically valid and semantically diverse inputs. During execution, I augment traditional coverage-based feedback with semantic feedback signals-derived from program state changes, exception types, and output semantics-allowing the fuzzer to prioritize inputs that trigger novel program behaviors beyond mere code coverage. I implement our approach atop AFL++, combining program instrumentation with embedding-based semantic similarity metrics to guide seed selection. Evaluation on real-world open-source targets, including libpng, tcpdump, and sqlite, demonstrates that our method achieves faster time-to-first-bug, higher semantic diversity, and a competitive number of unique bugs compared to state-of-the-art fuzzers. This work highlights the potential of combining LLM reasoning with semantic-aware feedback to accelerate and deepen vulnerability discovery.
☆ Multiscale Astrocyte Network Calcium Dynamics for Biologically Plausible Intelligence in Anomaly Detection
Network anomaly detection systems encounter several challenges with traditional detectors trained offline. They become susceptible to concept drift and new threats such as zero-day or polymorphic attacks. To address this limitation, we propose a Ca$^{2+}$-modulated learning framework that draws inspiration from astrocytic Ca$^{2+}$ signaling in the brain, where rapid, context-sensitive adaptation enables robust information processing. Our approach couples a multicellular astrocyte dynamics simulator with a deep neural network (DNN). The simulator models astrocytic Ca$^{2+}$ dynamics through three key mechanisms: IP$_3$-mediated Ca$^{2+}$ release, SERCA pump uptake, and conductance-aware diffusion through gap junctions between cells. Evaluation of our proposed network on CTU-13 (Neris) network traffic data demonstrates the effectiveness of our biologically plausible approach. The Ca$^{2+}$-gated model outperforms a matched baseline DNN, achieving up to $\sim$98\% accuracy with reduced false positives and negatives across multiple train/test splits. Importantly, this improved performance comes with negligible runtime overhead once Ca$^{2+}$ trajectories are precomputed. While demonstrated here for cybersecurity applications, this Ca$^{2+}$-modulated learning framework offers a generic solution for streaming detection tasks that require rapid, biologically grounded adaptation to evolving data patterns.
☆ ArchPilot: A Proxy-Guided Multi-Agent Approach for Machine Learning Engineering
Recent LLM-based agents have demonstrated strong capabilities in automated ML engineering. However, they heavily rely on repeated full training runs to evaluate candidate solutions, resulting in significant computational overhead, limited scalability to large search spaces, and slow iteration cycles. To address these challenges, we introduce ArchPilot, a multi-agent system that integrates architecture generation, proxy-based evaluation, and adaptive search into a unified framework. ArchPilot consists of three specialized agents: an orchestration agent that coordinates the search process using a Monte Carlo Tree Search (MCTS)-inspired novel algorithm with a restart mechanism and manages memory of previous candidates; a generation agent that iteratively generates, improves, and debugs candidate architectures; and an evaluation agent that executes proxy training runs, generates and optimizes proxy functions, and aggregates the proxy scores into a fidelity-aware performance metric. This multi-agent collaboration allows ArchPilot to prioritize high-potential candidates with minimal reliance on expensive full training runs, facilitating efficient ML engineering under limited budgets. Experiments on MLE-Bench demonstrate that ArchPilot outperforms SOTA baselines such as AIDE and ML-Master, validating the effectiveness of our multi-agent system.
LLMs and Cultural Values: the Impact of Prompt Language and Explicit Cultural Framing
Large Language Models (LLMs) are rapidly being adopted by users across the globe, who interact with them in a diverse range of languages. At the same time, there are well-documented imbalances in the training data and optimisation objectives of this technology, raising doubts as to whether LLMs can represent the cultural diversity of their broad user base. In this study, we look at LLMs and cultural values and examine how prompt language and cultural framing influence model responses and their alignment with human values in different countries. We probe 10 LLMs with 63 items from the Hofstede Values Survey Module and World Values Survey, translated into 11 languages, and formulated as prompts with and without different explicit cultural perspectives. Our study confirms that both prompt language and cultural perspective produce variation in LLM outputs, but with an important caveat: While targeted prompting can, to a certain extent, steer LLM responses in the direction of the predominant values of the corresponding countries, it does not overcome the models' systematic bias toward the values associated with a restricted set of countries in our dataset: the Netherlands, Germany, the US, and Japan. All tested models, regardless of their origin, exhibit remarkably similar patterns: They produce fairly neutral responses on most topics, with selective progressive stances on issues such as social tolerance. Alignment with cultural values of human respondents is improved more with an explicit cultural perspective than with a targeted prompt language. Unexpectedly, combining both approaches is no more effective than cultural framing with an English prompt. These findings reveal that LLMs occupy an uncomfortable middle ground: They are responsive enough to changes in prompts to produce variation, but too firmly anchored to specific cultural defaults to adequately represent cultural diversity.
comment: Preprint under review at Computational Linguistics. Accepted with minor revisions (10/10/2025); second round
☆ PETRA: Pretrained Evolutionary Transformer for SARS-CoV-2 Mutation Prediction
Since its emergence, SARS-CoV-2 has demonstrated a rapid and unpredictable evolutionary trajectory, characterized by the continual emergence of immune-evasive variants. This poses persistent challenges to public health and vaccine development. While large-scale generative pre-trained transformers (GPTs) have revolutionized the modeling of sequential data, their direct applications to noisy viral genomic sequences are limited. In this paper, we introduce PETRA(Pretrained Evolutionary TRAnsformer), a novel transformer approach based on evolutionary trajectories derived from phylogenetic trees rather than raw RNA sequences. This method effectively mitigates sequencing noise and captures the hierarchical structure of viral evolution. With a weighted training framework to address substantial geographical and temporal imbalances in global sequence data, PETRA excels in predicting future SARS-CoV-2 mutations, achieving a weighted recall@1 of 9.45% for nucleotide mutations and 17.10\% for spike amino-acid mutations, compared to 0.49% and 6.64% respectively for the best baseline. PETRA also demonstrates its ability to aid in the real-time mutation prediction of major clades like 24F(XEC) and 25A(LP.8.1). The code is open sourced on https://github.com/xz-keg/PETra
comment: preprint
☆ Improving Multi-View Reconstruction via Texture-Guided Gaussian-Mesh Joint Optimization
Reconstructing real-world objects from multi-view images is essential for applications in 3D editing, AR/VR, and digital content creation. Existing methods typically prioritize either geometric accuracy (Multi-View Stereo) or photorealistic rendering (Novel View Synthesis), often decoupling geometry and appearance optimization, which hinders downstream editing tasks. This paper advocates an unified treatment on geometry and appearance optimization for seamless Gaussian-mesh joint optimization. More specifically, we propose a novel framework that simultaneously optimizes mesh geometry (vertex positions and faces) and vertex colors via Gaussian-guided mesh differentiable rendering, leveraging photometric consistency from input images and geometric regularization from normal and depth maps. The obtained high-quality 3D reconstruction can be further exploit in down-stream editing tasks, such as relighting and shape deformation. The code will be publicly available upon acceptance.
comment: 10 pages
☆ Extracting Causal Relations in Deep Knowledge Tracing
A longstanding goal in computational educational research is to develop explainable knowledge tracing (KT) models. Deep Knowledge Tracing (DKT), which leverages a Recurrent Neural Network (RNN) to predict student knowledge and performance on exercises, has been proposed as a major advancement over traditional KT methods. Several studies suggest that its performance gains stem from its ability to model bidirectional relationships between different knowledge components (KCs) within a course, enabling the inference of a student's understanding of one KC from their performance on others. In this paper, we challenge this prevailing explanation and demonstrate that DKT's strength lies in its implicit ability to model prerequisite relationships as a causal structure, rather than bidirectional relationships. By pruning exercise relation graphs into Directed Acyclic Graphs (DAGs) and training DKT on causal subsets of the Assistments dataset, we show that DKT's predictive capabilities align strongly with these causal structures. Furthermore, we propose an alternative method for extracting exercise relation DAGs using DKT's learned representations and provide empirical evidence supporting our claim. Our findings suggest that DKT's effectiveness is largely driven by its capacity to approximate causal dependencies between KCs rather than simple relational mappings.
comment: Accepted for publication in the Proceedings of the 18th International Conference on Educational Data Mining, 6 pages, 1 figure
☆ Direct Semantic Communication Between Large Language Models via Vector Translation
In multi-agent settings, such as debate, reflection, or tool-calling, large language models (LLMs) pass messages as plain tokens, discarding most latent semantics. This constrains information transfer and adds unnecessary computational overhead. We form a latent bridge via vector translations, which use learned mappings that enable direct semantic exchange between representation spaces. A dual-encoder translator trained between Llama-2-7B and Mistral-7B-Instruct attains an average cosine alignment of 0.538. Injecting the translated vectors at 30 percent blending strength steers the target model's generation without destabilizing logits. Bidirectional evaluation shows a 2.01:1 transfer asymmetry, indicating that general-purpose models yield more transferable representations than instruction-tuned variants. This conservative injection preserves computational stability while demonstrating that cross-model latent communication is feasible, enabling collaborative AI systems that share meaning rather than tokens.
comment: 9 pages, 1 figure, 2 tables
☆ RLHF: A comprehensive Survey for Cultural, Multimodal and Low Latency Alignment Methods
Reinforcement Learning from Human Feedback (RLHF) is the standard for aligning Large Language Models (LLMs), yet recent progress has moved beyond canonical text-based methods. This survey synthesizes the new frontier of alignment research by addressing critical gaps in multi-modal alignment, cultural fairness, and low-latency optimization. To systematically explore these domains, we first review foundational algo- rithms, including PPO, DPO, and GRPO, before presenting a detailed analysis of the latest innovations. By providing a comparative synthesis of these techniques and outlining open challenges, this work serves as an essential roadmap for researchers building more robust, efficient, and equitable AI systems.
☆ PEFA-AI: Advancing Open-source LLMs for RTL generation using Progressive Error Feedback Agentic-AI
We present an agentic flow consisting of multiple agents that combine specialized LLMs and hardware simulation tools to collaboratively complete the complex task of Register Transfer Level (RTL) generation without human intervention. A key feature of the proposed flow is the progressive error feedback system of agents (PEFA), a self-correcting mechanism that leverages iterative error feedback to progressively increase the complexity of the approach. The generated RTL includes checks for compilation, functional correctness, and synthesizable constructs. To validate this adaptive approach to code generation, benchmarking is performed using two opensource natural language-to-RTL datasets. We demonstrate the benefits of the proposed approach implemented on an open source agentic framework, using both open- and closed-source LLMs, effectively bridging the performance gap between them. Compared to previously published methods, our approach sets a new benchmark, providing state-of-the-art pass rates while being efficient in token counts.
comment: Appeared in the Design Automation Conference (DAC) 2025, Workshop Poster on June 22, 2025
☆ NVIDIA Nemotron Nano V2 VL
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and training recipes. Nemotron Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and innovative token reduction techniques to achieve higher inference throughput in long document and video scenarios. We are releasing model checkpoints in BF16, FP8, and FP4 formats and sharing large parts of our datasets, recipes and training code.
☆ Collaborative Agents for Automated Program Repair in Ruby
Automated Program Repair (APR) has advanced rapidly with Large Language Models (LLMs), but most existing methods remain computationally expensive, and focused on a small set of languages. Ruby, despite its widespread use in web development and the persistent challenges faced by its developers, has received little attention in APR research. In this paper, we introduce RAMP, a novel lightweight framework that formulates program repair as a feedback-driven, iterative process for Ruby. RAMP employs a team of collaborative agents that generate targeted tests, reflect on errors, and refine candidate fixes until a correct solution is found. Unlike prior approaches, RAMP is designed to avoid reliance on large multilingual repair databases or costly fine-tuning, instead operating directly on Ruby through lightweight prompting and test-driven feedback. Evaluation on the XCodeEval benchmark shows that RAMP achieves a pass@1 of 67% on Ruby, outper-forming prior approaches. RAMP converges quickly within five iterations, and ablation studies confirm that test generation and self-reflection are key drivers of its performance. Further analysis shows that RAMP is particularly effective at repairing wrong answers, compilation errors, and runtime errors. Our approach provides new insights into multi-agent repair strategies, and establishes a foundation for extending LLM-based debugging tools to under-studied languages.
☆ GentleHumanoid: Learning Upper-body Compliance for Contact-rich Human and Object Interaction
Humanoid robots are expected to operate in human-centered environments where safe and natural physical interaction is essential. However, most recent reinforcement learning (RL) policies emphasize rigid tracking and suppress external forces. Existing impedance-augmented approaches are typically restricted to base or end-effector control and focus on resisting extreme forces rather than enabling compliance. We introduce GentleHumanoid, a framework that integrates impedance control into a whole-body motion tracking policy to achieve upper-body compliance. At its core is a unified spring-based formulation that models both resistive contacts (restoring forces when pressing against surfaces) and guiding contacts (pushes or pulls sampled from human motion data). This formulation ensures kinematically consistent forces across the shoulder, elbow, and wrist, while exposing the policy to diverse interaction scenarios. Safety is further supported through task-adjustable force thresholds. We evaluate our approach in both simulation and on the Unitree G1 humanoid across tasks requiring different levels of compliance, including gentle hugging, sit-to-stand assistance, and safe object manipulation. Compared to baselines, our policy consistently reduces peak contact forces while maintaining task success, resulting in smoother and more natural interactions. These results highlight a step toward humanoid robots that can safely and effectively collaborate with humans and handle objects in real-world environments.
comment: Home page: https://gentle-humanoid.axell.top
☆ Real-to-Sim Robot Policy Evaluation with Gaussian Splatting Simulation of Soft-Body Interactions
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
comment: Website: https://real2sim-eval.github.io/
☆ SAFe-Copilot: Unified Shared Autonomy Framework
Autonomous driving systems remain brittle in rare, ambiguous, and out-of-distribution scenarios, where human driver succeed through contextual reasoning. Shared autonomy has emerged as a promising approach to mitigate such failures by incorporating human input when autonomy is uncertain. However, most existing methods restrict arbitration to low-level trajectories, which represent only geometric paths and therefore fail to preserve the underlying driving intent. We propose a unified shared autonomy framework that integrates human input and autonomous planners at a higher level of abstraction. Our method leverages Vision Language Models (VLMs) to infer driver intent from multi-modal cues -- such as driver actions and environmental context -- and to synthesize coherent strategies that mediate between human and autonomous control. We first study the framework in a mock-human setting, where it achieves perfect recall alongside high accuracy and precision. A human-subject survey further shows strong alignment, with participants agreeing with arbitration outcomes in 92% of cases. Finally, evaluation on the Bench2Drive benchmark demonstrates a substantial reduction in collision rate and improvement in overall performance compared to pure autonomy. Arbitration at the level of semantic, language-based representations emerges as a design principle for shared autonomy, enabling systems to exercise common-sense reasoning and maintain continuity with human intent.
☆ Evo-1: Lightweight Vision-Language-Action Model with Preserved Semantic Alignment
Vision-Language-Action (VLA) models have emerged as a powerful framework that unifies perception, language, and control, enabling robots to perform diverse tasks through multimodal understanding. However, current VLA models typically contain massive parameters and rely heavily on large-scale robot data pretraining, leading to high computational costs during training, as well as limited deployability for real-time inference. Moreover, most training paradigms often degrade the perceptual representations of the vision-language backbone, resulting in overfitting and poor generalization to downstream tasks. In this work, we present Evo-1, a lightweight VLA model that reduces computation and improves deployment efficiency, while maintaining strong performance without pretraining on robot data. Evo-1 builds on a native multimodal Vision-Language model (VLM), incorporating a novel cross-modulated diffusion transformer along with an optimized integration module, together forming an effective architecture. We further introduce a two-stage training paradigm that progressively aligns action with perception, preserving the representations of the VLM. Notably, with only 0.77 billion parameters, Evo-1 achieves state-of-the-art results on the Meta-World and RoboTwin suite, surpassing the previous best models by 12.4% and 6.9%, respectively, and also attains a competitive result of 94.8% on LIBERO. In real-world evaluations, Evo-1 attains a 78% success rate with high inference frequency and low memory overhead, outperforming all baseline methods. We release code, data, and model weights to facilitate future research on lightweight and efficient VLA models.
comment: Github: https://github.com/MINT-SJTU/Evo-1
☆ Temporal Action Selection for Action Chunking
Action chunking is a widely adopted approach in Learning from Demonstration (LfD). By modeling multi-step action chunks rather than single-step actions, action chunking significantly enhances modeling capabilities for human expert policies. However, the reduced decision frequency restricts the utilization of recent observations, degrading reactivity - particularly evident in the inadequate adaptation to sensor noise and dynamic environmental changes. Existing efforts to address this issue have primarily resorted to trading off reactivity against decision consistency, without achieving both. To address this limitation, we propose a novel algorithm, Temporal Action Selector (TAS), which caches predicted action chunks from multiple timesteps and dynamically selects the optimal action through a lightweight selector network. TAS achieves balanced optimization across three critical dimensions: reactivity, decision consistency, and motion coherence. Experiments across multiple tasks with diverse base policies show that TAS significantly improves success rates - yielding an absolute gain of up to 73.3%. Furthermore, integrating TAS as a base policy with residual reinforcement learning (RL) substantially enhances training efficiency and elevates the performance plateau. Experiments in both simulation and physical robots confirm the method's efficacy.
☆ BoRe-Depth: Self-supervised Monocular Depth Estimation with Boundary Refinement for Embedded Systems IROS 2025
Depth estimation is one of the key technologies for realizing 3D perception in unmanned systems. Monocular depth estimation has been widely researched because of its low-cost advantage, but the existing methods face the challenges of poor depth estimation performance and blurred object boundaries on embedded systems. In this paper, we propose a novel monocular depth estimation model, BoRe-Depth, which contains only 8.7M parameters. It can accurately estimate depth maps on embedded systems and significantly improves boundary quality. Firstly, we design an Enhanced Feature Adaptive Fusion Module (EFAF) which adaptively fuses depth features to enhance boundary detail representation. Secondly, we integrate semantic knowledge into the encoder to improve the object recognition and boundary perception capabilities. Finally, BoRe-Depth is deployed on NVIDIA Jetson Orin, and runs efficiently at 50.7 FPS. We demonstrate that the proposed model significantly outperforms previous lightweight models on multiple challenging datasets, and we provide detailed ablation studies for the proposed methods. The code is available at https://github.com/liangxiansheng093/BoRe-Depth.
comment: 8 pages, 5 figures, published to IROS 2025
☆ ForeRobo: Unlocking Infinite Simulation Data for 3D Goal-driven Robotic Manipulation
Efficiently leveraging simulation to acquire advanced manipulation skills is both challenging and highly significant. We introduce \textit{ForeRobo}, a generative robotic agent that utilizes generative simulations to autonomously acquire manipulation skills driven by envisioned goal states. Instead of directly learning low-level policies, we advocate integrating generative paradigms with classical control. Our approach equips a robotic agent with a self-guided \textit{propose-generate-learn-actuate} cycle. The agent first proposes the skills to be acquired and constructs the corresponding simulation environments; it then configures objects into appropriate arrangements to generate skill-consistent goal states (\textit{ForeGen}). Subsequently, the virtually infinite data produced by ForeGen are used to train the proposed state generation model (\textit{ForeFormer}), which establishes point-wise correspondences by predicting the 3D goal position of every point in the current state, based on the scene state and task instructions. Finally, classical control algorithms are employed to drive the robot in real-world environments to execute actions based on the envisioned goal states. Compared with end-to-end policy learning methods, ForeFormer offers superior interpretability and execution efficiency. We train and benchmark ForeFormer across a variety of rigid-body and articulated-object manipulation tasks, and observe an average improvement of 56.32\% over the state-of-the-art state generation models, demonstrating strong generality across different manipulation patterns. Moreover, in real-world evaluations involving more than 20 robotic tasks, ForeRobo achieves zero-shot sim-to-real transfer and exhibits remarkable generalization capabilities, attaining an average success rate of 79.28\%.
☆ Studying the Effect of Explicit Interaction Representations on Learning Scene-level Distributions of Human Trajectories
Effectively capturing the joint distribution of all agents in a scene is relevant for predicting the true evolution of the scene and in turn providing more accurate information to the decision processes of autonomous vehicles. While new models have been developed for this purpose in recent years, it remains unclear how to best represent the joint distributions particularly from the perspective of the interactions between agents. Thus far there is no clear consensus on how best to represent interactions between agents; whether they should be learned implicitly from data by neural networks, or explicitly modeled using the spatial and temporal relations that are more grounded in human decision-making. This paper aims to study various means of describing interactions within the same network structure and their effect on the final learned joint distributions. Our findings show that more often than not, simply allowing a network to establish interactive connections between agents based on data has a detrimental effect on performance. Instead, having well defined interactions (such as which agent of an agent pair passes first at an intersection) can often bring about a clear boost in performance.
☆ GraSP-VLA: Graph-based Symbolic Action Representation for Long-Horizon Planning with VLA Policies
Deploying autonomous robots that can learn new skills from demonstrations is an important challenge of modern robotics. Existing solutions often apply end-to-end imitation learning with Vision-Language Action (VLA) models or symbolic approaches with Action Model Learning (AML). On the one hand, current VLA models are limited by the lack of high-level symbolic planning, which hinders their abilities in long-horizon tasks. On the other hand, symbolic approaches in AML lack generalization and scalability perspectives. In this paper we present a new neuro-symbolic approach, GraSP-VLA, a framework that uses a Continuous Scene Graph representation to generate a symbolic representation of human demonstrations. This representation is used to generate new planning domains during inference and serves as an orchestrator for low-level VLA policies, scaling up the number of actions that can be reproduced in a row. Our results show that GraSP-VLA is effective for modeling symbolic representations on the task of automatic planning domain generation from observations. In addition, results on real-world experiments show the potential of our Continuous Scene Graph representation to orchestrate low-level VLA policies in long-horizon tasks.
☆ MacroNav: Multi-Task Context Representation Learning Enables Efficient Navigation in Unknown Environments
Autonomous navigation in unknown environments requires compact yet expressive spatial understanding under partial observability to support high-level decision making. Existing approaches struggle to balance rich contextual representation with navigation efficiency. We present MacroNav, a learning-based navigation framework featuring two key components: (1) a lightweight context encoder trained via multi-task self-supervised learning to capture multi-scale, navigation-centric spatial representations; and (2) a reinforcement learning policy that seamlessly integrates these representations with graph-based reasoning for efficient action selection. Extensive experiments demonstrate the context encoder's efficient and robust environmental understanding. Real-world deployments further validate MacroNav's effectiveness, yielding significant gains over state-of-the-art navigation methods in both Success Rate (SR) and Success weighted by Path Length (SPL), while maintaining low computational cost. Code will be released upon acceptance.
☆ Design and Control of a Coaxial Dual-rotor Reconfigurable Tailsitter UAV Based on Swashplateless Mechanism
The tailsitter vertical takeoff and landing (VTOL) UAV is widely used due to its lower dead weight, which eliminates the actuators and mechanisms for tilting. However, the tailsitter UAV is susceptible to wind disturbances in multi-rotor mode, as it exposes a large frontal fuselage area. To address this issue, our tailsitter UAV features a reconfigurable wing design, allowing wings to retract in multi-rotor mode and extend in fixed- wing mode. Considering power efficiency, we design a coaxial heterogeneous dual-rotor configuration, which significantly re- duces the total power consumption. To reduce structural weight and simplify structural complexity, we employ a swashplateless mechanism with an improved design to control pitch and roll in multi-rotor mode. We optimize the structure of the swashplateless mechanism by adding flapping hinges, which reduces vibration during cyclic acceleration and deceleration. Finally, we perform comprehensive transition flight tests to validate stable flight performance across the entire flight envelope of the tailsitter UAV.
comment: 8 pages 12 figures
☆ Can Context Bridge the Reality Gap? Sim-to-Real Transfer of Context-Aware Policies
Sim-to-real transfer remains a major challenge in reinforcement learning (RL) for robotics, as policies trained in simulation often fail to generalize to the real world due to discrepancies in environment dynamics. Domain Randomization (DR) mitigates this issue by exposing the policy to a wide range of randomized dynamics during training, yet leading to a reduction in performance. While standard approaches typically train policies agnostic to these variations, we investigate whether sim-to-real transfer can be improved by conditioning the policy on an estimate of the dynamics parameters -- referred to as context. To this end, we integrate a context estimation module into a DR-based RL framework and systematically compare SOTA supervision strategies. We evaluate the resulting context-aware policies in both a canonical control benchmark and a real-world pushing task using a Franka Emika Panda robot. Results show that context-aware policies outperform the context-agnostic baseline across all settings, although the best supervision strategy depends on the task.
☆ GraspView: Active Perception Scoring and Best-View Optimization for Robotic Grasping in Cluttered Environments
Robotic grasping is a fundamental capability for autonomous manipulation, yet remains highly challenging in cluttered environments where occlusion, poor perception quality, and inconsistent 3D reconstructions often lead to unstable or failed grasps. Conventional pipelines have widely relied on RGB-D cameras to provide geometric information, which fail on transparent or glossy objects and degrade at close range. We present GraspView, an RGB-only robotic grasping pipeline that achieves accurate manipulation in cluttered environments without depth sensors. Our framework integrates three key components: (i) global perception scene reconstruction, which provides locally consistent, up-to-scale geometry from a single RGB view and fuses multi-view projections into a coherent global 3D scene; (ii) a render-and-score active perception strategy, which dynamically selects next-best-views to reveal occluded regions; and (iii) an online metric alignment module that calibrates VGGT predictions against robot kinematics to ensure physical scale consistency. Building on these tailor-designed modules, GraspView performs best-view global grasping, fusing multi-view reconstructions and leveraging GraspNet for robust execution. Experiments on diverse tabletop objects demonstrate that GraspView significantly outperforms both RGB-D and single-view RGB baselines, especially under heavy occlusion, near-field sensing, and with transparent objects. These results highlight GraspView as a practical and versatile alternative to RGB-D pipelines, enabling reliable grasping in unstructured real-world environments.
☆ PUL-SLAM: Path-Uncertainty Co-Optimization with Lightweight Stagnation Detection for Efficient Robotic Exploration
Existing Active SLAM methodologies face issues such as slow exploration speed and suboptimal paths. To address these limitations, we propose a hybrid framework combining a Path-Uncertainty Co-Optimization Deep Reinforcement Learning framework and a Lightweight Stagnation Detection mechanism. The Path-Uncertainty Co-Optimization framework jointly optimizes travel distance and map uncertainty through a dual-objective reward function, balancing exploration and exploitation. The Lightweight Stagnation Detection reduces redundant exploration through Lidar Static Anomaly Detection and Map Update Stagnation Detection, terminating episodes on low expansion rates. Experimental results show that compared with the frontier-based method and RRT method, our approach shortens exploration time by up to 65% and reduces path distance by up to 42%, significantly improving exploration efficiency in complex environments while maintaining reliable map completeness. Ablation studies confirm that the collaborative mechanism accelerates training convergence. Empirical validation on a physical robotic platform demonstrates the algorithm's practical applicability and its successful transferability from simulation to real-world environments.
☆ BFM-Zero: A Promptable Behavioral Foundation Model for Humanoid Control Using Unsupervised Reinforcement Learning
Building Behavioral Foundation Models (BFMs) for humanoid robots has the potential to unify diverse control tasks under a single, promptable generalist policy. However, existing approaches are either exclusively deployed on simulated humanoid characters, or specialized to specific tasks such as tracking. We propose BFM-Zero, a framework that learns an effective shared latent representation that embeds motions, goals, and rewards into a common space, enabling a single policy to be prompted for multiple downstream tasks without retraining. This well-structured latent space in BFM-Zero enables versatile and robust whole-body skills on a Unitree G1 humanoid in the real world, via diverse inference methods, including zero-shot motion tracking, goal reaching, and reward optimization, and few-shot optimization-based adaptation. Unlike prior on-policy reinforcement learning (RL) frameworks, BFM-Zero builds upon recent advancements in unsupervised RL and Forward-Backward (FB) models, which offer an objective-centric, explainable, and smooth latent representation of whole-body motions. We further extend BFM-Zero with critical reward shaping, domain randomization, and history-dependent asymmetric learning to bridge the sim-to-real gap. Those key design choices are quantitatively ablated in simulation. A first-of-its-kind model, BFM-Zero establishes a step toward scalable, promptable behavioral foundation models for whole-body humanoid control.
☆ CBMC-V3: A CNS-inspired Control Framework Towards Manipulation Agility with SNN
As robotic arm applications extend beyond industrial settings into healthcare, service, and daily life, existing control algorithms struggle to achieve the agile manipulation required for complex environments with dynamic trajectories, unpredictable interactions, and diverse objects. This paper presents a biomimetic control framework based on Spiking Neural Networks (SNN), inspired by the human Central Nervous System (CNS), to achieve agile control in such environments. The proposed framework features five control modules (cerebral cortex, cerebellum, thalamus, brainstem, spinal cord), three hierarchical control levels (first-order, second-order, third-order), and two information pathways (ascending, descending). Each module is fully implemented using SNN. The spinal cord module uses spike encoding and Leaky Integrate-and-Fire (LIF) neurons for feedback control. The brainstem module employs a network of LIF and non-spiking LIF neurons to dynamically adjust spinal cord parameters via reinforcement learning. The thalamus module similarly adjusts the cerebellum's torque outputs. The cerebellum module uses a recurrent SNN to learn the robotic arm's dynamics through regression, providing feedforward gravity compensation torques. The framework is validated both in simulation and on real-world robotic arm platform under various loads and trajectories. Results demonstrate that our method outperforms the industrial-grade position control in manipulation agility.
☆ Enhancing Fault-Tolerant Space Computing: Guidance Navigation and Control (GNC) and Landing Vision System (LVS) Implementations on Next-Gen Multi-Core Processors
Future planetary exploration missions demand high-performance, fault-tolerant computing to enable autonomous Guidance, Navigation, and Control (GNC) and Lander Vision System (LVS) operations during Entry, Descent, and Landing (EDL). This paper evaluates the deployment of GNC and LVS algorithms on next-generation multi-core processors--HPSC, Snapdragon VOXL2, and AMD Xilinx Versal--demonstrating up to 15x speedup for LVS image processing and over 250x speedup for Guidance for Fuel-Optimal Large Divert (GFOLD) trajectory optimization compared to legacy spaceflight hardware. To ensure computational reliability, we present ARBITER (Asynchronous Redundant Behavior Inspection for Trusted Execution and Recovery), a Multi-Core Voting (MV) mechanism that performs real-time fault detection and correction across redundant cores. ARBITER is validated in both static optimization tasks (GFOLD) and dynamic closed-loop control (Attitude Control System). A fault injection study further identifies the gradient computation stage in GFOLD as the most sensitive to bit-level errors, motivating selective protection strategies and vector-based output arbitration. This work establishes a scalable and energy-efficient architecture for future missions, including Mars Sample Return, Enceladus Orbilander, and Ceres Sample Return, where onboard autonomy, low latency, and fault resilience are critical.
☆ Integrating Ergonomics and Manipulability for Upper Limb Postural Optimization in Bimanual Human-Robot Collaboration IROS 2025
This paper introduces an upper limb postural optimization method for enhancing physical ergonomics and force manipulability during bimanual human-robot co-carrying tasks. Existing research typically emphasizes human safety or manipulative efficiency, whereas our proposed method uniquely integrates both aspects to strengthen collaboration across diverse conditions (e.g., different grasping postures of humans, and different shapes of objects). Specifically, the joint angles of a simplified human skeleton model are optimized by minimizing the cost function to prioritize safety and manipulative capability. To guide humans towards the optimized posture, the reference end-effector poses of the robot are generated through a transformation module. A bimanual model predictive impedance controller (MPIC) is proposed for our human-like robot, CURI, to recalibrate the end effector poses through planned trajectories. The proposed method has been validated through various subjects and objects during human-human collaboration (HHC) and human-robot collaboration (HRC). The experimental results demonstrate significant improvement in muscle conditions by comparing the activation of target muscles before and after optimization.
comment: 7 pages, 7 figures, IROS 2025 accepted
☆ Learning Vision-Driven Reactive Soccer Skills for Humanoid Robots
Humanoid soccer poses a representative challenge for embodied intelligence, requiring robots to operate within a tightly coupled perception-action loop. However, existing systems typically rely on decoupled modules, resulting in delayed responses and incoherent behaviors in dynamic environments, while real-world perceptual limitations further exacerbate these issues. In this work, we present a unified reinforcement learning-based controller that enables humanoid robots to acquire reactive soccer skills through the direct integration of visual perception and motion control. Our approach extends Adversarial Motion Priors to perceptual settings in real-world dynamic environments, bridging motion imitation and visually grounded dynamic control. We introduce an encoder-decoder architecture combined with a virtual perception system that models real-world visual characteristics, allowing the policy to recover privileged states from imperfect observations and establish active coordination between perception and action. The resulting controller demonstrates strong reactivity, consistently executing coherent and robust soccer behaviors across various scenarios, including real RoboCup matches.
comment: Project page: https://humanoid-kick.github.io
☆ Dynamic Shape Control of Soft Robots Enabled by Data-Driven Model Reduction
Soft robots have shown immense promise in settings where they can leverage dynamic control of their entire bodies. However, effective dynamic shape control requires a controller that accounts for the robot's high-dimensional dynamics--a challenge exacerbated by a lack of general-purpose tools for modeling soft robots amenably for control. In this work, we conduct a comparative study of data-driven model reduction techniques for generating linear models amendable to dynamic shape control. We focus on three methods--the eigensystem realization algorithm, dynamic mode decomposition with control, and the Lagrangian operator inference (LOpInf) method. Using each class of model, we explored their efficacy in model predictive control policies for the dynamic shape control of a simulated eel-inspired soft robot in three experiments: 1) tracking simulated reference trajectories guaranteed to be feasible, 2) tracking reference trajectories generated from a biological model of eel kinematics, and 3) tracking reference trajectories generated by a reduced-scale physical analog. In all experiments, the LOpInf-based policies generated lower tracking errors than policies based on other models.
comment: 20 Pages, 8 Figures
☆ DMA: Online RAG Alignment with Human Feedback
Retrieval-augmented generation (RAG) systems often rely on static retrieval, limiting adaptation to evolving intent and content drift. We introduce Dynamic Memory Alignment (DMA), an online learning framework that systematically incorporates multi-granularity human feedback to align ranking in interactive settings. DMA organizes document-, list-, and response-level signals into a coherent learning pipeline: supervised training for pointwise and listwise rankers, policy optimization driven by response-level preferences, and knowledge distillation into a lightweight scorer for low-latency serving. Throughout this paper, memory refers to the model's working memory, which is the entire context visible to the LLM for In-Context Learning. We adopt a dual-track evaluation protocol mirroring deployment: (i) large-scale online A/B ablations to isolate the utility of each feedback source, and (ii) few-shot offline tests on knowledge-intensive benchmarks. Online, a multi-month industrial deployment further shows substantial improvements in human engagement. Offline, DMA preserves competitive foundational retrieval while yielding notable gains on conversational QA (TriviaQA, HotpotQA). Taken together, these results position DMA as a principled approach to feedback-driven, real-time adaptation in RAG without sacrificing baseline capability.
☆ Minimal and Mechanistic Conditions for Behavioral Self-Awareness in LLMs
Recent studies have revealed that LLMs can exhibit behavioral self-awareness: the ability to accurately describe or predict their own learned behaviors without explicit supervision. This capability raises safety concerns as it may, for example, allow models to better conceal their true abilities during evaluation. We attempt to characterize the minimal conditions under which such self-awareness emerges, and the mechanistic processes through which it manifests. Through controlled finetuning experiments on instruction-tuned LLMs with low-rank adapters (LoRA), we find: (1) that self-awareness can be reliably induced using a single rank-1 LoRA adapter; (2) that the learned self-aware behavior can be largely captured by a single steering vector in activation space, recovering nearly all of the fine-tune's behavioral effect; and (3) that self-awareness is non-universal and domain-localized, with independent representations across tasks. Together, these findings suggest that behavioral self-awareness emerges as a domain-specific, linear feature that can be easily induced and modulated.
☆ Epistemic Reject Option Prediction
In high-stakes applications, predictive models must not only produce accurate predictions but also quantify and communicate their uncertainty. Reject-option prediction addresses this by allowing the model to abstain when prediction uncertainty is high. Traditional reject-option approaches focus solely on aleatoric uncertainty, an assumption valid only when large training data makes the epistemic uncertainty negligible. However, in many practical scenarios, limited data makes this assumption unrealistic. This paper introduces the epistemic reject-option predictor, which abstains in regions of high epistemic uncertainty caused by insufficient data. Building on Bayesian learning, we redefine the optimal predictor as the one that minimizes expected regret -- the performance gap between the learned model and the Bayes-optimal predictor with full knowledge of the data distribution. The model abstains when the regret for a given input exceeds a specified rejection cost. To our knowledge, this is the first principled framework that enables learning predictors capable of identifying inputs for which the training data is insufficient to make reliable decisions.
☆ Software Defined Vehicle Code Generation: A Few-Shot Prompting Approach
The emergence of Software-Defined Vehicles (SDVs) marks a paradigm shift in the automotive industry, where software now plays a pivotal role in defining vehicle functionality, enabling rapid innovation of modern vehicles. Developing SDV-specific applications demands advanced tools to streamline code generation and improve development efficiency. In recent years, general-purpose large language models (LLMs) have demonstrated transformative potential across domains. Still, restricted access to proprietary model architectures hinders their adaption to specific tasks like SDV code generation. In this study, we propose using prompts, a common and basic strategy to interact with LLMs and redirect their responses. Using only system prompts with an appropriate and efficient prompt structure designed using advanced prompt engineering techniques, LLMs can be crafted without requiring a training session or access to their base design. This research investigates the extensive experiments on different models by applying various prompting techniques, including bare models, using a benchmark specifically created to evaluate LLMs' performance in generating SDV code. The results reveal that the model with a few-shot prompting strategy outperforms the others in adjusting the LLM answers to match the expected outcomes based on quantitative metrics.
comment: 6 pages, 3 figures
Prompt-Based Safety Guidance Is Ineffective for Unlearned Text-to-Image Diffusion Models NeurIPS 2025
Recent advances in text-to-image generative models have raised concerns about their potential to produce harmful content when provided with malicious input text prompts. To address this issue, two main approaches have emerged: (1) fine-tuning the model to unlearn harmful concepts and (2) training-free guidance methods that leverage negative prompts. However, we observe that combining these two orthogonal approaches often leads to marginal or even degraded defense performance. This observation indicates a critical incompatibility between two paradigms, which hinders their combined effectiveness. In this work, we address this issue by proposing a conceptually simple yet experimentally robust method: replacing the negative prompts used in training-free methods with implicit negative embeddings obtained through concept inversion. Our method requires no modification to either approach and can be easily integrated into existing pipelines. We experimentally validate its effectiveness on nudity and violence benchmarks, demonstrating consistent improvements in defense success rate while preserving the core semantics of input prompts.
comment: Accepted at NeurIPS 2025 Workshop on Generative and Protective AI for Content Creation
☆ Isaac Lab: A GPU-Accelerated Simulation Framework for Multi-Modal Robot Learning
We present Isaac Lab, the natural successor to Isaac Gym, which extends the paradigm of GPU-native robotics simulation into the era of large-scale multi-modal learning. Isaac Lab combines high-fidelity GPU parallel physics, photorealistic rendering, and a modular, composable architecture for designing environments and training robot policies. Beyond physics and rendering, the framework integrates actuator models, multi-frequency sensor simulation, data collection pipelines, and domain randomization tools, unifying best practices for reinforcement and imitation learning at scale within a single extensible platform. We highlight its application to a diverse set of challenges, including whole-body control, cross-embodiment mobility, contact-rich and dexterous manipulation, and the integration of human demonstrations for skill acquisition. Finally, we discuss upcoming integration with the differentiable, GPU-accelerated Newton physics engine, which promises new opportunities for scalable, data-efficient, and gradient-based approaches to robot learning. We believe Isaac Lab's combination of advanced simulation capabilities, rich sensing, and data-center scale execution will help unlock the next generation of breakthroughs in robotics research.
comment: Code and documentation are available here: https://github.com/isaac-sim/IsaacLab
☆ A Standardized Benchmark for Multilabel Antimicrobial Peptide Classification NeurIPS 2025
Antimicrobial peptides have emerged as promising molecules to combat antimicrobial resistance. However, fragmented datasets, inconsistent annotations, and the lack of standardized benchmarks hinder computational approaches and slow down the discovery of new candidates. To address these challenges, we present the Expanded Standardized Collection for Antimicrobial Peptide Evaluation (ESCAPE), an experimental framework integrating over 80.000 peptides from 27 validated repositories. Our dataset separates antimicrobial peptides from negative sequences and incorporates their functional annotations into a biologically coherent multilabel hierarchy, capturing activities across antibacterial, antifungal, antiviral, and antiparasitic classes. Building on ESCAPE, we propose a transformer-based model that leverages sequence and structural information to predict multiple functional activities of peptides. Our method achieves up to a 2.56% relative average improvement in mean Average Precision over the second-best method adapted for this task, establishing a new state-of-the-art multilabel peptide classification. ESCAPE provides a comprehensive and reproducible evaluation framework to advance AI-driven antimicrobial peptide research.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Camera-ready version. Code: https://github.com/BCV-Uniandes/ESCAPE. Dataset DOI: https://doi.org/10.7910/DVN/C69MCD
☆ Unified Multimodal Diffusion Forcing for Forceful Manipulation
Given a dataset of expert trajectories, standard imitation learning approaches typically learn a direct mapping from observations (e.g., RGB images) to actions. However, such methods often overlook the rich interplay between different modalities, i.e., sensory inputs, actions, and rewards, which is crucial for modeling robot behavior and understanding task outcomes. In this work, we propose Multimodal Diffusion Forcing, a unified framework for learning from multimodal robot trajectories that extends beyond action generation. Rather than modeling a fixed distribution, MDF applies random partial masking and trains a diffusion model to reconstruct the trajectory. This training objective encourages the model to learn temporal and cross-modal dependencies, such as predicting the effects of actions on force signals or inferring states from partial observations. We evaluate MDF on contact-rich, forceful manipulation tasks in simulated and real-world environments. Our results show that MDF not only delivers versatile functionalities, but also achieves strong performance, and robustness under noisy observations. More visualizations can be found on our website https://unified-df.github.io
comment: Project website: https://unified-df.github.io
☆ An Active Learning Pipeline for Biomedical Image Instance Segmentation with Minimal Human Intervention
Biomedical image segmentation is critical for precise structure delineation and downstream analysis. Traditional methods often struggle with noisy data, while deep learning models such as U-Net have set new benchmarks in segmentation performance. nnU-Net further automates model configuration, making it adaptable across datasets without extensive tuning. However, it requires a substantial amount of annotated data for cross-validation, posing a challenge when only raw images but no labels are available. Large foundation models offer zero-shot generalizability, but may underperform on specific datasets with unique characteristics, limiting their direct use for analysis. This work addresses these bottlenecks by proposing a data-centric AI workflow that leverages active learning and pseudo-labeling to combine the strengths of traditional neural networks and large foundation models while minimizing human intervention. The pipeline starts by generating pseudo-labels from a foundation model, which are then used for nnU-Net's self-configuration. Subsequently, a representative core-set is selected for minimal manual annotation, enabling effective fine-tuning of the nnU-Net model. This approach significantly reduces the need for manual annotations while maintaining competitive performance, providing an accessible solution for biomedical researchers to apply state-of-the-art AI techniques in their segmentation tasks. The code is available at https://github.com/MMV-Lab/AL_BioMed_img_seg.
comment: 6 pages, 4 figures, presented at Bildverarbeitung f\"ur die Medizin (BVM) 2025, Wiesbaden, Germany
☆ PuzzleMoE: Efficient Compression of Large Mixture-of-Experts Models via Sparse Expert Merging and Bit-packed inference
Mixture-of-Experts (MoE) models have shown strong potential in scaling language models efficiently by activating only a small subset of experts per input. However, their widespread deployment remains limited due to the high memory overhead associated with storing all expert parameters, particularly as the number of experts increases. To address this challenge, prior works have explored expert dropping and merging strategies, yet they often suffer from performance drop at high compression ratios. In this paper, we introduce PuzzleMoE, a training-free MoE compression method that achieves both high accuracy and efficient inference through two key innovations: First, PuzzleMoE performs sparse expert merging by identifying element-wise weight redundancy and specialization. It uses a dual-mask to capture both shared and expert-specific parameters. Second, to avoid the overhead of storing binary masks and signs, PuzzleMoE introduces a bit-packed encoding scheme that reuses underutilized exponent bits, enabling efficient MoE inference on GPUs. Extensive experiments demonstrate that PuzzleMoE can compress MoE models by up to 50% while maintaining accuracy across various tasks. Specifically, it outperforms prior MoE compression methods by up to 16.7% on MMLU at 50% compression ratio, and achieves up to 1.28\times inference speedup.
☆ Data Efficiency and Transfer Robustness in Biomedical Image Segmentation: A Study of Redundancy and Forgetting with Cellpose
Generalist biomedical image segmentation models such as Cellpose are increasingly applied across diverse imaging modalities and cell types. However, two critical challenges remain underexplored: (1) the extent of training data redundancy and (2) the impact of cross domain transfer on model retention. In this study, we conduct a systematic empirical analysis of these challenges using Cellpose as a case study. First, to assess data redundancy, we propose a simple dataset quantization (DQ) strategy for constructing compact yet diverse training subsets. Experiments on the Cyto dataset show that image segmentation performance saturates with only 10% of the data, revealing substantial redundancy and potential for training with minimal annotations. Latent space analysis using MAE embeddings and t-SNE confirms that DQ selected patches capture greater feature diversity than random sampling. Second, to examine catastrophic forgetting, we perform cross domain finetuning experiments and observe significant degradation in source domain performance, particularly when adapting from generalist to specialist domains. We demonstrate that selective DQ based replay reintroducing just 5-10% of the source data effectively restores source performance, while full replay can hinder target adaptation. Additionally, we find that training domain sequencing improves generalization and reduces forgetting in multi stage transfer. Our findings highlight the importance of data centric design in biomedical image segmentation and suggest that efficient training requires not only compact subsets but also retention aware learning strategies and informed domain ordering. The code is available at https://github.com/MMV-Lab/biomedseg-efficiency.
comment: Accepted to IEEE BIBM 2025 Workshop; 6 pages; 4 figures; 5 tables; IEEEtran class. Code: https://github.com/MMV-Lab/biomedseg-efficiency
☆ MDM: Manhattan Distance Mapping of DNN Weights for Parasitic-Resistance-Resilient Memristive Crossbars
Manhattan Distance Mapping (MDM) is a post-training deep neural network (DNN) weight mapping technique for memristive bit-sliced compute-in-memory (CIM) crossbars that reduces parasitic resistance (PR) nonidealities. PR limits crossbar efficiency by mapping DNN matrices into small crossbar tiles, reducing CIM-based speedup. Each crossbar executes one tile, requiring digital synchronization before the next layer. At this granularity, designers either deploy many small crossbars in parallel or reuse a few sequentially-both increasing analog-to-digital conversions, latency, I/O pressure, and chip area. MDM alleviates PR effects by optimizing active-memristor placement. Exploiting bit-level structured sparsity, it feeds activations from the denser low-order side and reorders rows according to the Manhattan distance, relocating active cells toward regions less affected by PR and thus lowering the nonideality factor (NF). Applied to DNN models on ImageNet-1k, MDM reduces NF by up to 46% and improves accuracy under analog distortion by an average of 3.6% in ResNets. Overall, it provides a lightweight, spatially informed method for scaling CIM DNN accelerators.
comment: 5 pages, 6 figures
☆ Causal Structure and Representation Learning with Biomedical Applications
Massive data collection holds the promise of a better understanding of complex phenomena and, ultimately, better decisions. Representation learning has become a key driver of deep learning applications, as it allows learning latent spaces that capture important properties of the data without requiring any supervised annotations. Although representation learning has been hugely successful in predictive tasks, it can fail miserably in causal tasks including predicting the effect of a perturbation/intervention. This calls for a marriage between representation learning and causal inference. An exciting opportunity in this regard stems from the growing availability of multi-modal data (observational and perturbational, imaging-based and sequencing-based, at the single-cell level, tissue-level, and organism-level). We outline a statistical and computational framework for causal structure and representation learning motivated by fundamental biomedical questions: how to effectively use observational and perturbational data to perform causal discovery on observed causal variables; how to use multi-modal views of the system to learn causal variables; and how to design optimal perturbations.
comment: This article has successfully completed peer review and will appear in the Proceedings of the International Congress of Mathematicians 2026. Both authors contributed equally to this work
☆ ScheduleStream: Temporal Planning with Samplers for GPU-Accelerated Multi-Arm Task and Motion Planning & Scheduling
Bimanual and humanoid robots are appealing because of their human-like ability to leverage multiple arms to efficiently complete tasks. However, controlling multiple arms at once is computationally challenging due to the growth in the hybrid discrete-continuous action space. Task and Motion Planning (TAMP) algorithms can efficiently plan in hybrid spaces but generally produce plans, where only one arm is moving at a time, rather than schedules that allow for parallel arm motion. In order to extend TAMP to produce schedules, we present ScheduleStream, the first general-purpose framework for planning & scheduling with sampling operations. ScheduleStream models temporal dynamics using hybrid durative actions, which can be started asynchronously and persist for a duration that's a function of their parameters. We propose domain-independent algorithms that solve ScheduleStream problems without any application-specific mechanisms. We apply ScheduleStream to Task and Motion Planning & Scheduling (TAMPAS), where we use GPU acceleration within samplers to expedite planning. We compare ScheduleStream algorithms to several ablations in simulation and find that they produce more efficient solutions. We demonstrate ScheduleStream on several real-world bimanual robot tasks at https://schedulestream.github.io.
comment: Project website: https://schedulestream.github.io
☆ CPO: Condition Preference Optimization for Controllable Image Generation
To enhance controllability in text-to-image generation, ControlNet introduces image-based control signals, while ControlNet++ improves pixel-level cycle consistency between generated images and the input control signal. To avoid the prohibitive cost of back-propagating through the sampling process, ControlNet++ optimizes only low-noise timesteps (e.g., $t < 200$) using a single-step approximation, which not only ignores the contribution of high-noise timesteps but also introduces additional approximation errors. A straightforward alternative for optimizing controllability across all timesteps is Direct Preference Optimization (DPO), a fine-tuning method that increases model preference for more controllable images ($I^{w}$) over less controllable ones ($I^{l}$). However, due to uncertainty in generative models, it is difficult to ensure that win--lose image pairs differ only in controllability while keeping other factors, such as image quality, fixed. To address this, we propose performing preference learning over control conditions rather than generated images. Specifically, we construct winning and losing control signals, $\mathbf{c}^{w}$ and $\mathbf{c}^{l}$, and train the model to prefer $\mathbf{c}^{w}$. This method, which we term \textit{Condition Preference Optimization} (CPO), eliminates confounding factors and yields a low-variance training objective. Our approach theoretically exhibits lower contrastive loss variance than DPO and empirically achieves superior results. Moreover, CPO requires less computation and storage for dataset curation. Extensive experiments show that CPO significantly improves controllability over the state-of-the-art ControlNet++ across multiple control types: over $10\%$ error rate reduction in segmentation, $70$--$80\%$ in human pose, and consistent $2$--$5\%$ reductions in edge and depth maps.
☆ Knowledge-based anomaly detection for identifying network-induced shape artifacts
Synthetic data provides a promising approach to address data scarcity for training machine learning models; however, adoption without proper quality assessments may introduce artifacts, distortions, and unrealistic features that compromise model performance and clinical utility. This work introduces a novel knowledge-based anomaly detection method for detecting network-induced shape artifacts in synthetic images. The introduced method utilizes a two-stage framework comprising (i) a novel feature extractor that constructs a specialized feature space by analyzing the per-image distribution of angle gradients along anatomical boundaries, and (ii) an isolation forest-based anomaly detector. We demonstrate the effectiveness of the method for identifying network-induced shape artifacts in two synthetic mammography datasets from models trained on CSAW-M and VinDr-Mammo patient datasets respectively. Quantitative evaluation shows that the method successfully concentrates artifacts in the most anomalous partition (1st percentile), with AUC values of 0.97 (CSAW-syn) and 0.91 (VMLO-syn). In addition, a reader study involving three imaging scientists confirmed that images identified by the method as containing network-induced shape artifacts were also flagged by human readers with mean agreement rates of 66% (CSAW-syn) and 68% (VMLO-syn) for the most anomalous partition, approximately 1.5-2 times higher than the least anomalous partition. Kendall-Tau correlations between algorithmic and human rankings were 0.45 and 0.43 for the two datasets, indicating reasonable agreement despite the challenging nature of subtle artifact detection. This method is a step forward in the responsible use of synthetic data, as it allows developers to evaluate synthetic images for known anatomic constraints and pinpoint and address specific issues to improve the overall quality of a synthetic dataset.
comment: 15 pages, 11 figures
☆ Trustworthiness Calibration Framework for Phishing Email Detection Using Large Language Models
Phishing emails continue to pose a persistent challenge to online communication, exploiting human trust and evading automated filters through realistic language and adaptive tactics. While large language models (LLMs) such as GPT-4 and LLaMA-3-8B achieve strong accuracy in text classification, their deployment in security systems requires assessing reliability beyond benchmark performance. To address this, this study introduces the Trustworthiness Calibration Framework (TCF), a reproducible methodology for evaluating phishing detectors across three dimensions: calibration, consistency, and robustness. These components are integrated into a bounded index, the Trustworthiness Calibration Index (TCI), and complemented by the Cross-Dataset Stability (CDS) metric that quantifies stability of trustworthiness across datasets. Experiments conducted on five corpora, such as SecureMail 2025, Phishing Validation 2024, CSDMC2010, Enron-Spam, and Nazario, using DeBERTa-v3-base, LLaMA-3-8B, and GPT-4 demonstrate that GPT-4 achieves the strongest overall trust profile, followed by LLaMA-3-8B and DeBERTa-v3-base. Statistical analysis confirms that reliability varies independently of raw accuracy, underscoring the importance of trust-aware evaluation for real-world deployment. The proposed framework establishes a transparent and reproducible foundation for assessing model dependability in LLM-based phishing detection.
comment: 10 pages, 5 figures
☆ IndicVisionBench: Benchmarking Cultural and Multilingual Understanding in VLMs
Vision-language models (VLMs) have demonstrated impressive generalization across multimodal tasks, yet most evaluation benchmarks remain Western-centric, leaving open questions about their performance in culturally diverse and multilingual settings. To address this gap, we introduce IndicVisionBench, the first large-scale benchmark centered on the Indian subcontinent. Covering English and 10 Indian languages, our benchmark spans 3 multimodal tasks, including Optical Character Recognition (OCR), Multimodal Machine Translation (MMT), and Visual Question Answering (VQA), covering 6 kinds of question types. Our final benchmark consists of a total of ~5K images and 37K+ QA pairs across 13 culturally grounded topics. In addition, we release a paired parallel corpus of annotations across 10 Indic languages, creating a unique resource for analyzing cultural and linguistic biases in VLMs. We evaluate a broad spectrum of 8 models, from proprietary closed-source systems to open-weights medium and large-scale models. Our experiments reveal substantial performance gaps, underscoring the limitations of current VLMs in culturally diverse contexts. By centering cultural diversity and multilinguality, IndicVisionBench establishes a reproducible evaluation framework that paves the way for more inclusive multimodal research.
☆ Temporal convolutional and fusional transformer model with Bi-LSTM encoder-decoder for multi-time-window remaining useful life prediction
Health prediction is crucial for ensuring reliability, minimizing downtime, and optimizing maintenance in industrial systems. Remaining Useful Life (RUL) prediction is a key component of this process; however, many existing models struggle to capture fine-grained temporal dependencies while dynamically prioritizing critical features across time for robust prognostics. To address these challenges, we propose a novel framework that integrates Temporal Convolutional Networks (TCNs) for localized temporal feature extraction with a modified Temporal Fusion Transformer (TFT) enhanced by Bi-LSTM encoder-decoder. This architecture effectively bridges short- and long-term dependencies while emphasizing salient temporal patterns. Furthermore, the incorporation of a multi-time-window methodology improves adaptability across diverse operating conditions. Extensive evaluations on benchmark datasets demonstrate that the proposed model reduces the average RMSE by up to 5.5%, underscoring its improved predictive accuracy compared to state-of-the-art methods. By closing critical gaps in current approaches, this framework advances the effectiveness of industrial prognostic systems and highlights the potential of advanced time-series transformers for RUL prediction.
☆ Design Exploration for Protection and Cleaning of Solar Panels with Case Studies for Space Missions
Solar energy is used for many mission-critical applications including space exploration, sensor systems to monitor wildfires, etc. Their operation can be limited or even terminated if solar panels are covered with dust or hit by space debris. To address this issue, we designed panel cleaning mechanisms and tested protective materials. For cleaning mechanisms, we designed and compared a wiper system and a rail system. For protective materials, we found through collision tests that polycarbonate was very promising, though the most important factor was layering a soft material between the panel's surface and a hard material. In the cleaning system comparisons, the wiper-based system was more efficient than the rail-based system in terms of cost, cleaning speed, and total power consumption.
comment: 4 pages, 3 figures (5 assets)
☆ Conformalized Non-uniform Sampling Strategies for Accelerated Sampling-based Motion Planning
Sampling-based motion planners (SBMPs) are widely used to compute dynamically feasible robot paths. However, their reliance on uniform sampling often leads to poor efficiency and slow planning in complex environments. We introduce a novel non-uniform sampling strategy that integrates into existing SBMPs by biasing sampling toward `certified' regions. These regions are constructed by (i) generating an initial, possibly infeasible, path using any heuristic path predictor (e.g., A* or vision-language models) and (ii) applying conformal prediction to quantify the predictor's uncertainty. This process yields prediction sets around the initial-guess path that are guaranteed, with user-specified probability, to contain the optimal solution. To our knowledge, this is the first non-uniform sampling approach for SBMPs that provides such probabilistically correct guarantees on the sampling regions. Extensive evaluations demonstrate that our method consistently finds feasible paths faster and generalizes better to unseen environments than existing baselines.
☆ Pixi: Unified Software Development and Distribution for Robotics and AI
The reproducibility crisis in scientific computing constrains robotics research. Existing studies reveal that up to 70% of robotics algorithms cannot be reproduced by independent teams, while many others fail to reach deployment because creating shareable software environments remains prohibitively complex. These challenges stem from fragmented, multi-language, and hardware-software toolchains that lead to dependency hell. We present Pixi, a unified package-management framework that addresses these issues by capturing exact dependency states in project-level lockfiles, ensuring bit-for-bit reproducibility across platforms. Its high-performance SAT solver achieves up to 10x faster dependency resolution than comparable tools, while integration of the conda-forge and PyPI ecosystems removes the need for multiple managers. Adopted in over 5,300 projects since 2023, Pixi reduces setup times from hours to minutes and lowers technical barriers for researchers worldwide. By enabling scalable, reproducible, collaborative research infrastructure, Pixi accelerates progress in robotics and AI.
comment: 20 pages, 3 figures, 11 code snippets
☆ ReGen: Generative Robot Simulation via Inverse Design
Simulation plays a key role in scaling robot learning and validating policies, but constructing simulations remains a labor-intensive process. This paper introduces ReGen, a generative simulation framework that automates simulation design via inverse design. Given a robot's behavior -- such as a motion trajectory or an objective function -- and its textual description, ReGen infers plausible scenarios and environments that could have caused the behavior. ReGen leverages large language models to synthesize scenarios by expanding a directed graph that encodes cause-and-effect relationships, relevant entities, and their properties. This structured graph is then translated into a symbolic program, which configures and executes a robot simulation environment. Our framework supports (i) augmenting simulations based on ego-agent behaviors, (ii) controllable, counterfactual scenario generation, (iii) reasoning about agent cognition and mental states, and (iv) reasoning with distinct sensing modalities, such as braking due to faulty GPS signals. We demonstrate ReGen in autonomous driving and robot manipulation tasks, generating more diverse, complex simulated environments compared to existing simulations with high success rates, and enabling controllable generation for corner cases. This approach enhances the validation of robot policies and supports data or simulation augmentation, advancing scalable robot learning for improved generalization and robustness. We provide code and example videos at: https://regen-sim.github.io/
☆ Grounding Foundational Vision Models with 3D Human Poses for Robust Action Recognition NeurIPS 2025
For embodied agents to effectively understand and interact within the world around them, they require a nuanced comprehension of human actions grounded in physical space. Current action recognition models, often relying on RGB video, learn superficial correlations between patterns and action labels, so they struggle to capture underlying physical interaction dynamics and human poses in complex scenes. We propose a model architecture that grounds action recognition in physical space by fusing two powerful, complementary representations: V-JEPA 2's contextual, predictive world dynamics and CoMotion's explicit, occlusion-tolerant human pose data. Our model is validated on both the InHARD and UCF-19-Y-OCC benchmarks for general action recognition and high-occlusion action recognition, respectively. Our model outperforms three other baselines, especially within complex, occlusive scenes. Our findings emphasize a need for action recognition to be supported by spatial understanding instead of statistical pattern recognition.
comment: Accepted at NeurIPS 2025 SpaVLE, for code see https://github.com/nbabey20/groundactrec , 9 pages, 1 figure
☆ In-process 3D Deviation Mapping and Defect Monitoring (3D-DM2) in High Production-rate Robotic Additive Manufacturing
Additive manufacturing (AM) is an emerging digital manufacturing technology to produce complex and freeform objects through a layer-wise deposition. High deposition rate robotic AM (HDRRAM) processes, such as cold spray additive manufacturing (CSAM), offer significantly increased build speeds by delivering large volumes of material per unit time. However, maintaining shape accuracy remains a critical challenge, particularly due to process instabilities in current open-loop systems. Detecting these deviations as they occur is essential to prevent error propagation, ensure part quality, and minimize post-processing requirements. This study presents a real-time monitoring system to acquire and reconstruct the growing part and directly compares it with a near-net reference model to detect the shape deviation during the manufacturing process. The early identification of shape inconsistencies, followed by segmenting and tracking each deviation region, paves the way for timely intervention and compensation to achieve consistent part quality.
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ Balancing Quality and Variation: Spam Filtering Distorts Data Label Distributions
For machine learning datasets to accurately represent diverse opinions in a population, they must preserve variation in data labels while filtering out spam or low-quality responses. How can we balance annotator reliability and representation? We empirically evaluate how a range of heuristics for annotator filtering affect the preservation of variation on subjective tasks. We find that these methods, designed for contexts in which variation from a single ground-truth label is considered noise, often remove annotators who disagree instead of spam annotators, introducing suboptimal tradeoffs between accuracy and label diversity. We find that conservative settings for annotator removal (<5%) are best, after which all tested methods increase the mean absolute error from the true average label. We analyze performance on synthetic spam to observe that these methods often assume spam annotators are more random than real spammers tend to be: most spammers are distributionally indistinguishable from real annotators, and the minority that are distinguishable tend to give relatively fixed answers, not random ones. Thus, tasks requiring the preservation of variation reverse the intuition of existing spam filtering methods: spammers tend to be less random than non-spammers, so metrics that assume variation is spam fare worse. These results highlight the need for spam removal methods that account for label diversity.
♻ ☆ SnapStream: Efficient Long Sequence Decoding on Dataflow Accelerators
The proliferation of 100B+ parameter Large Language Models (LLMs) with 100k+ context length support have resulted in increasing demands for on-chip memory to support large KV caches. Techniques such as StreamingLLM and SnapKV demonstrate how to control KV cache size while maintaining model accuracy. Yet, these techniques are not commonly used within industrial deployments using frameworks like vLLM or SGLang. The reason is twofold: on one hand, the static graphs and continuous batching methodology employed by these frameworks make it difficult to admit modifications to the standard multi-head attention algorithm, while on the other hand, the accuracy implications of such techniques on modern instruction-following and reasoning models are not well understood, obfuscating the need for implementing these techniques. In this paper, we explore these accuracy implications on Llama-3.1-8B-Instruct and DeepSeek-R1, and develop SnapStream, a KV cache compression method that can be deployed at scale. We demonstrate the efficacy of SnapStream in a 16-way tensor-parallel deployment of DeepSeek-671B on SambaNova SN40L accelerators running at 128k context length and up to 1832 tokens per second in a real production setting. SnapStream enables $4\times$ improved on-chip memory usage and introduces minimal accuracy degradation on LongBench-v2, AIME24 and LiveCodeBench. To the best of our knowledge, this is the first implementation of sparse KV attention techniques deployed in a production inference system with static graphs and continuous batching.
♻ ☆ Memorization in Large Language Models in Medicine: Prevalence, Characteristics, and Implications
Large Language Models (LLMs) have demonstrated significant potential in medicine. To date, LLMs have been widely applied to tasks such as diagnostic assistance, medical question answering, and clinical information synthesis. However, a key open question remains: to what extent do LLMs memorize medical training data. In this study, we present the first comprehensive evaluation of memorization of LLMs in medicine, assessing its prevalence (how frequently it occurs), characteristics (what is memorized), volume (how much content is memorized), and potential downstream impacts (how memorization may affect medical applications). We systematically analyze common adaptation scenarios: (1) continued pretraining on medical corpora, (2) fine-tuning on standard medical benchmarks, and (3) fine-tuning on real-world clinical data, including over 13,000 unique inpatient records from Yale New Haven Health System. The results demonstrate that memorization is prevalent across all adaptation scenarios and significantly higher than reported in the general domain. Memorization affects both the development and adoption of LLMs in medicine and can be categorized into three types: beneficial (e.g., accurate recall of clinical guidelines and biomedical references), uninformative (e.g., repeated disclaimers or templated medical document language), and harmful (e.g., regeneration of dataset-specific or sensitive clinical content). Based on these findings, we offer practical recommendations to facilitate beneficial memorization that enhances domain-specific reasoning and factual accuracy, minimize uninformative memorization to promote deeper learning beyond surface-level patterns, and mitigate harmful memorization to prevent the leakage of sensitive or identifiable patient information.
♻ ☆ Deep Edge Filter: Return of the Human-Crafted Layer in Deep Learning NeurIPS2025
We introduce the Deep Edge Filter, a novel approach that applies high-pass filtering to deep neural network features to improve model generalizability. Our method is motivated by our hypothesis that neural networks encode task-relevant semantic information in high-frequency components while storing domain-specific biases in low-frequency components of deep features. By subtracting low-pass filtered outputs from original features, our approach isolates generalizable representations while preserving architectural integrity. Experimental results across diverse domains such as Vision, Text, 3D, and Audio demonstrate consistent performance improvements regardless of model architecture and data modality. Analysis reveals that our method induces feature sparsification and effectively isolates high-frequency components, providing empirical validation of our core hypothesis. The code is available at https://github.com/dongkwani/DeepEdgeFilter.
comment: NeurIPS2025
♻ ☆ Projection Methods for Operator Learning and Universal Approximation
We obtain a new universal approximation theorem for continuous (possibly nonlinear) operators on arbitrary Banach spaces using the Leray-Schauder mapping. Moreover, we introduce and study a method for operator learning in Banach spaces $L^p$ of functions with multiple variables, based on orthogonal projections on polynomial bases. We derive a universal approximation result for operators where we learn a linear projection and a finite dimensional mapping under some additional assumptions. For the case of $p=2$, we give some sufficient conditions for the approximation results to hold. This article serves as the theoretical framework for a deep learning methodology in operator learning.
comment: 15 pages. Comments are welcome! v3: Issues and typos fixed. Proofs rewritten with additional details, and several references added for context
♻ ☆ Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
♻ ☆ Toward Autonomous Engineering Design: A Knowledge-Guided Multi-Agent Framework
The engineering design process often demands expertise from multiple domains, leading to complex collaborations and iterative refinements. Traditional methods can be resource-intensive and prone to inefficiencies. To address this, we formalize the engineering design process through a multi-agent AI framework that integrates structured design and review loops. The framework introduces specialized knowledge-driven agents that collaborate to generate and refine design candidates. As an exemplar, we demonstrate its application to the aerodynamic optimization of 4-digit NACA airfoils. The framework consists of three key AI agents: a Graph Ontologist, a Design Engineer, and a Systems Engineer. The Graph Ontologist employs a Large Language Model (LLM) to construct two domain-specific knowledge graphs from airfoil design literature. The Systems Engineer, informed by a human manager, formulates technical requirements that guide design generation and evaluation. The Design Engineer leverages the design knowledge graph and computational tools to propose candidate airfoils meeting these requirements. The Systems Engineer reviews and provides feedback both qualitative and quantitative using its own knowledge graph, forming an iterative feedback loop until a design is validated by the manager. The final design is then optimized to maximize performance metrics such as the lift-to-drag ratio. Overall, this work demonstrates how collaborative AI agents equipped with structured knowledge representations can enhance efficiency, consistency, and quality in the engineering design process.
comment: Revised to fix typos
♻ ☆ OceanAI: A Conversational Platform for Accurate, Transparent, Near-Real-Time Oceanographic Insights
Artificial intelligence is transforming the sciences, yet general conversational AI systems often generate unverified "hallucinations" undermining scientific rigor. We present OceanAI, a conversational platform that integrates the natural-language fluency of open-source large language models (LLMs) with real-time, parameterized access to authoritative oceanographic data streams hosted by the National Oceanic and Atmospheric Administration (NOAA). Each query such as "What was Boston Harbor's highest water level in 2024?" triggers real-time API calls that identify, parse, and synthesize relevant datasets into reproducible natural-language responses and data visualizations. In a blind comparison with three widely used AI chat-interface products, only OceanAI produced NOAA-sourced values with original data references; others either declined to answer or provided unsupported results. Designed for extensibility, OceanAI connects to multiple NOAA data products and variables, supporting applications in marine hazard forecasting, ecosystem assessment, and water-quality monitoring. By grounding outputs and verifiable observations, OceanAI advances transparency, reproducibility, and trust, offering a scalable framework for AI-enabled decision support within the oceans. A public demonstration is available at https://oceanai.ai4ocean.xyz.
comment: A related presentation will be given at the AGU(American Geophysical Union) and AMS(American Meteorological Society) Annual Meetings
♻ ☆ Legal Fact Prediction: The Missing Piece in Legal Judgment Prediction EMNLP 2025
Legal judgment prediction (LJP), which enables litigants and their lawyers to forecast judgment outcomes and refine litigation strategies, has emerged as a crucial legal NLP task. Existing studies typically utilize legal facts, i.e., facts that have been established by evidence and determined by the judge, to predict the judgment. However, legal facts are often difficult to obtain in the early stages of litigation, significantly limiting the practical applicability of fact-based LJP. To address this limitation, we propose a novel legal NLP task: legal fact prediction (LFP), which takes the evidence submitted by litigants for trial as input to predict legal facts, thereby empowering fact-based LJP technologies to make predictions in the absence of ground-truth legal facts. We also propose the first benchmark dataset, LFPBench, for evaluating the LFP task. Our extensive experiments on LFPBench demonstrate the effectiveness of LFP-empowered LJP and highlight promising research directions for LFP.
comment: Accepted for EMNLP 2025 Main Conference
♻ ☆ A Criminology of Machines
While the possibility of reaching human-like Artificial Intelligence (AI) remains controversial, the likelihood that the future will be characterized by a society with a growing presence of autonomous machines is high. Autonomous AI agents are already deployed and active across several industries and digital environments and alongside human-human and human-machine interactions, machine-machine interactions are poised to become increasingly prevalent. Given these developments, I argue that criminology must begin to address the implications of this transition for crime and social control. Drawing on Actor-Network Theory and Woolgar's decades-old call for a sociology of machines -- frameworks that acquire renewed relevance with the rise of generative AI agents -- I contend that criminologists should move beyond conceiving AI solely as a tool. Instead, AI agents should be recognized as entities with agency encompassing computational, social, and legal dimensions. Building on the literature on AI safety, I thus examine the risks associated with the rise of multi-agent AI systems, proposing a dual taxonomy to characterize the channels through which interactions among AI agents may generate deviant, unlawful, or criminal outcomes. I then advance and discuss four key questions that warrant theoretical and empirical attention: (1) Can we assume that machines will simply mimic humans? (2) Will crime theories developed for humans suffice to explain deviant or criminal behaviors emerging from interactions between autonomous AI agents? (3) What types of criminal behaviors will be affected first? (4) How might this unprecedented societal shift impact policing? These questions underscore the urgent need for criminologists to theoretically and empirically engage with the implications of multi-agent AI systems for the study of crime and play a more active role in debates on AI safety and governance.
comment: This pre-print is also available at CrimRxiv with DOI: https://doi.org/10.21428/cb6ab371.e3354ce1
♻ ☆ Artificial Intelligence in Elementary STEM Education: A Systematic Review of Current Applications and Future Challenges
Artificial intelligence (AI) is transforming elementary STEM education, yet evidence remains fragmented. This systematic review synthesizes 258 studies (2020-2025) examining AI applications across eight categories: intelligent tutoring systems (45% of studies), learning analytics (18%), automated assessment (12%), computer vision (8%), educational robotics (7%), multimodal sensing (6%), AI-enhanced extended reality (XR) (4%), and adaptive content generation. The analysis shows that most studies focus on upper elementary grades (65%) and mathematics (38%), with limited cross-disciplinary STEM integration (15%). While conversational AI demonstrates moderate effectiveness (d = 0.45-0.70 where reported), only 34% of studies include standardized effect sizes. Eight major gaps limit real-world impact: fragmented ecosystems, developmental inappropriateness, infrastructure barriers, lack of privacy frameworks, weak STEM integration, equity disparities, teacher marginalization, and narrow assessment scopes. Geographic distribution is also uneven, with 90% of studies originating from North America, East Asia, and Europe. Future directions call for interoperable architectures that support authentic STEM integration, grade-appropriate design, privacy-preserving analytics, and teacher-centered implementations that enhance rather than replace human expertise.
♻ ☆ Orion-MSP: Multi-Scale Sparse Attention for Tabular In-Context Learning
Tabular data remain the predominant format for real-world applications. Yet, developing effective neural models for tabular data remains challenging due to heterogeneous feature types and complex interactions occurring at multiple scales. Recent advances in tabular in-context learning (ICL), such as TabPFN and TabICL, have achieved state-of-the-art performance comparable to gradient-boosted trees (GBTs) without task-specific fine-tuning. However, current architectures exhibit key limitations: (1) single-scale feature processing that overlooks hierarchical dependencies, (2) dense attention with quadratic scaling in table width, and (3) strictly sequential component processing that prevents iterative representation refinement and cross-component communication. To address these challenges, we introduce Orion-MSP, a tabular ICL architecture featuring three key innovations: (1) multi-scale processing to capture hierarchical feature interactions; (2) block-sparse attention combining windowed, global, and random patterns for scalable efficiency and long-range connectivity; and (3) a Perceiver-style memory enabling safe bidirectional information flow across components. Across diverse benchmarks, Orion-MSP matches or surpasses state-of-the-art performance while scaling effectively to high-dimensional tables, establishing a new standard for efficient tabular in-context learning. The model is publicly available at https://github.com/Lexsi-Labs/Orion-MSP .
♻ ☆ GENIAL: Generative Design Space Exploration via Network Inversion for Low Power Algorithmic Logic Units
As AI workloads proliferate, optimizing arithmetic units is becoming increasingly important for reducing the footprint of digital systems. Conventional design flows, which often rely on manual or heuristic-based optimization, are limited in their ability to thoroughly explore the vast design space. In this paper, we introduce GENIAL, a machine learning-based framework for the automatic generation and optimization of arithmetic units, with a focus on multipliers. At the core of GENIAL is a Transformer-based surrogate model trained in two stages, involving self-supervised pretraining followed by supervised finetuning, to robustly forecast key hardware metrics such as power and area from abstracted design representations. By inverting the surrogate model, GENIAL efficiently searches for new operand encodings that directly minimize power consumption in arithmetic units for specific input data distributions. Extensive experiments on large datasets demonstrate that GENIAL is consistently more sample efficient than other methods, and converges faster towards optimized designs. This enables deployment of a high-effort logic synthesis optimization flow in the loop, improving the accuracy of the surrogate model. Notably, GENIAL automatically discovers encodings that achieve up to 18% switching activity savings within multipliers on representative AI workloads compared with the conventional two's complement. We also demonstrate the versatility of our approach by achieving significant improvements on Finite State Machines, highlighting GENIAL's applicability for a wide spectrum of logic functions. Together, these advances mark a significant step toward automated Quality-of-Results-optimized combinational circuit generation for digital systems.
comment: Accepted at the 2026 31st Asia and South Pacific Design Automation Conference (ASP-DAC)
♻ ☆ Understanding Adam Requires Better Rotation Dependent Assumptions NeurIPS 2025
Despite its widespread adoption, Adam's advantage over Stochastic Gradient Descent (SGD) lacks a comprehensive theoretical explanation. This paper investigates Adam's sensitivity to rotations of the parameter space. We observe that Adam's performance in training transformers degrades under random rotations of the parameter space, indicating a crucial sensitivity to the choice of basis in practice. This reveals that conventional rotation-invariant assumptions are insufficient to capture Adam's advantages theoretically. To better understand the rotation-dependent properties that benefit Adam, we also identify structured rotations that preserve or even enhance its empirical performance. We then examine the rotation-dependent assumptions in the literature and find that they fall short in explaining Adam's behaviour across various rotation types. In contrast, we verify the orthogonality of the update as a promising indicator of Adam's basis sensitivity, suggesting it may be the key quantity for developing rotation-dependent theoretical frameworks that better explain its empirical success.
comment: Published at NeurIPS 2025
♻ ☆ Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models
State Space Models (SSMs) are emerging as a compelling alternative to Transformers because of their consistent memory usage and high performance. Despite this, scaling up SSMs on cloud services or limited-resource devices is challenging due to their storage requirements and computational power. To overcome this, quantizing SSMs with low bit-width data formats can reduce model size and benefit from hardware acceleration. As SSMs are prone to quantization-induced errors, recent efforts have focused on optimizing a particular model or bit-width for efficiency without sacrificing performance. However, distinct bit-width configurations are essential for different scenarios, like W4A8 for boosting large-batch decoding speed, and W4A16 for enhancing generation speed in short prompt applications for a single user. To this end, we present Quamba2, compatible with W8A8, W4A8, and W4A16 for both Mamba1 and Mamba2 backbones, addressing the growing demand for SSM deployment on various platforms. Based on the channel order preserving and activation persistence of SSMs, we propose an offline approach to quantize inputs of a linear recurrence in 8-bit by sorting and clustering for input $x$, combined with a per-state-group quantization for input-dependent parameters $B$ and $C$. To ensure compute-invariance in the SSM output, we rearrange weights offline according to the clustering sequence. The experiments show that Quamba2-8B outperforms two state-of-the-art SSM quantization methods and delivers 1.3$\times$ and 3$\times$ speed-ups in the pre-filling and generation stages, respectively, while offering 4$\times$ memory reduction with only a $1.6\%$ average accuracy drop. The evaluation on MMLU shows the generalizability and robustness of our framework. The code and quantized models will be released at: https://github.com/enyac-group/Quamba.
♻ ☆ MeAJOR Corpus: A Multi-Source Dataset for Phishing Email Detection
Phishing emails continue to pose a significant threat to cybersecurity by exploiting human vulnerabilities through deceptive content and malicious payloads. While Machine Learning (ML) models are effective at detecting phishing threats, their performance largely relies on the quality and diversity of the training data. This paper presents MeAJOR (Merged email Assets from Joint Open-source Repositories) Corpus, a novel, multi-source phishing email dataset designed to overcome critical limitations in existing resources. It integrates 135894 samples representing a broad number of phishing tactics and legitimate emails, with a wide spectrum of engineered features. We evaluated the dataset's utility for phishing detection research through systematic experiments with four classification models (RF, XGB, MLP, and CNN) across multiple feature configurations. Results highlight the dataset's effectiveness, achieving 98.34% F1 with XGB. By integrating broad features from multiple categories, our dataset provides a reusable and consistent resource, while addressing common challenges like class imbalance, generalisability and reproducibility.
comment: 8 pages, 2 tables, WI-IAT 2025 conference
♻ ☆ LLM Targeted Underperformance Disproportionately Impacts Vulnerable Users AAAI 2026
While state-of-the-art large language models (LLMs) have shown impressive performance on many tasks, there has been extensive research on undesirable model behavior such as hallucinations and bias. In this work, we investigate how the quality of LLM responses changes in terms of information accuracy, truthfulness, and refusals depending on three user traits: English proficiency, education level, and country of origin. We present extensive experimentation on three state-of-the-art LLMs and two different datasets targeting truthfulness and factuality. Our findings suggest that undesirable behaviors in state-of-the-art LLMs occur disproportionately more for users with lower English proficiency, of lower education status, and originating from outside the US, rendering these models unreliable sources of information towards their most vulnerable users.
comment: Paper accepted at AAAI 2026
♻ ☆ Benchmarking LLM Faithfulness in RAG with Evolving Leaderboards EMNLP
Retrieval-augmented generation (RAG) aims to reduce hallucinations by grounding responses in external context, yet large language models (LLMs) still frequently introduce unsupported information or contradictions even when provided with relevant context. This paper presents two complementary efforts at Vectara to measure and benchmark LLM faithfulness in RAG. First, we describe our original hallucination leaderboard, which has tracked hallucination rates for LLMs since 2023 using our HHEM hallucination detection model. Motivated by limitations observed in current hallucination detection methods, we introduce FaithJudge, an LLM-as-a-judge framework that leverages a pool of diverse human-annotated hallucination examples to substantially improve the automated hallucination evaluation of LLMs. We introduce an enhanced hallucination leaderboard centered on FaithJudge that benchmarks LLMs on RAG faithfulness in summarization, question-answering, and data-to-text generation tasks. FaithJudge enables a more reliable benchmarking of LLM hallucinations in RAG and supports the development of more trustworthy generative AI systems: https://github.com/vectara/FaithJudge.
comment: EMNLP Industry Track 2025
♻ ☆ HoliSafe: Holistic Safety Benchmarking and Modeling for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, \textbf{HoliSafe}, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation (HoliSafe-Bench). We further propose a novel modular framework for enhancing VLM safety with a visual guard module (VGM) designed to assess the harmfulness of input images for VLMs. This module endows VLMs with a dual functionality: they not only learn to generate safer responses but can also provide an interpretable harmfulness classification to justify their refusal decisions. A significant advantage of this approach is its modularity; the VGM is designed as a plug-in component, allowing for seamless integration with diverse pre-trained VLMs across various scales. Experiments show that Safe-VLM with VGM, trained on our HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe-Bench itself reveals critical vulnerabilities in existing VLM models. We hope that HoliSafe and VGM will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
comment: Project page: https://youngwanlee.github.io/holisafe
♻ ☆ Evaluating LLM-Contaminated Crowdsourcing Data Without Ground Truth
The recent success of generative AI highlights the crucial role of high-quality human feedback in building trustworthy AI systems. However, the increasing use of large language models (LLMs) by crowdsourcing workers poses a significant challenge: datasets intended to reflect human input may be compromised by LLM-generated responses. Existing LLM detection approaches often rely on high-dimensional training data such as text, making them unsuitable for annotation tasks like multiple-choice labeling. In this work, we investigate the potential of peer prediction -- a mechanism that evaluates the information within workers' responses without using ground truth -- to mitigate LLM-assisted cheating in crowdsourcing with a focus on annotation tasks. Our approach quantifies the correlations between worker answers while conditioning on (a subset of) LLM-generated labels available to the requester. Building on prior research, we propose a training-free scoring mechanism with theoretical guarantees under a crowdsourcing model that accounts for LLM collusion. We establish conditions under which our method is effective and empirically demonstrate its robustness in detecting low-effort cheating on real-world crowdsourcing datasets.
comment: 32 pages, 7 figures
♻ ☆ Multimodal Cancer Modeling in the Age of Foundation Model Embeddings ML4H 2025
The Cancer Genome Atlas (TCGA) has enabled novel discoveries and served as a large-scale reference dataset in cancer through its harmonized genomics, clinical, and imaging data. Numerous prior studies have developed bespoke deep learning models over TCGA for tasks such as cancer survival prediction. A modern paradigm in biomedical deep learning is the development of foundation models (FMs) to derive feature embeddings agnostic to a specific modeling task. Biomedical text especially has seen growing development of FMs. While TCGA contains free-text data as pathology reports, these have been historically underutilized. Here, we investigate the ability to train classical machine learning models over multimodal, zero-shot FM embeddings of cancer data. We demonstrate the ease and additive effect of multimodal fusion, outperforming unimodal models. Further, we show the benefit of including pathology report text and rigorously evaluate the effect of model-based text summarization and hallucination. Overall, we propose an embedding-centric approach to multimodal cancer modeling.
comment: camera ready version for ML4H 2025
♻ ☆ ChessArena: A Chess Testbed for Evaluating Strategic Reasoning Capabilities of Large Language Models
Recent large language models (LLMs) have shown strong reasoning capabilities. However, a critical question remains: do these models possess genuine reasoning skills particularly complex strategic reasoning or are they primarily excelling at sophisticated pattern recognition within their training data? To address this question, this paper presents a chess testbed, ChessArena, to evaluate the strategic reasoning capabilities of LLMs. Chess requires complex strategic reasoning capabilities including long-term planning, strict rule comprehension, and multi-turn conversation memorization. Specifically, ChessArena is a competitive framework where LLMs play against each other, under four different play modes. The testbed is equipped with a ranking algorithm and a leaderboard. The testbed can also evaluate fine-grained capabilities including basic understanding, move selection, and puzzle solving. Over 13 LLMs with different modes are evaluated in ChessArena, playing over 800 games. The results reveal significant shortcomings in current LLMs: no model can beat Maia-1100 (a chess engine at human amateur level), while some even failed to defeat a random player that selects moves arbitrarily. We also present a strong baseline to the testbed: our fine-tuned Qwen3-8B substantially improved performance, approaching much larger state-of-the-art reasoning models.
♻ ☆ CBraMod: A Criss-Cross Brain Foundation Model for EEG Decoding ICLR 2025
Electroencephalography (EEG) is a non-invasive technique to measure and record brain electrical activity, widely used in various BCI and healthcare applications. Early EEG decoding methods rely on supervised learning, limited by specific tasks and datasets, hindering model performance and generalizability. With the success of large language models, there is a growing body of studies focusing on EEG foundation models. However, these studies still leave challenges: Firstly, most of existing EEG foundation models employ full EEG modeling strategy. It models the spatial and temporal dependencies between all EEG patches together, but ignores that the spatial and temporal dependencies are heterogeneous due to the unique structural characteristics of EEG signals. Secondly, existing EEG foundation models have limited generalizability on a wide range of downstream BCI tasks due to varying formats of EEG data, making it challenging to adapt to. To address these challenges, we propose a novel foundation model called CBraMod. Specifically, we devise a criss-cross transformer as the backbone to thoroughly leverage the structural characteristics of EEG signals, which can model spatial and temporal dependencies separately through two parallel attention mechanisms. And we utilize an asymmetric conditional positional encoding scheme which can encode positional information of EEG patches and be easily adapted to the EEG with diverse formats. CBraMod is pre-trained on a very large corpus of EEG through patch-based masked EEG reconstruction. We evaluate CBraMod on up to 10 downstream BCI tasks (12 public datasets). CBraMod achieves the state-of-the-art performance across the wide range of tasks, proving its strong capability and generalizability. The source code is publicly available at https://github.com/wjq-learning/CBraMod.
comment: Accepted by The Thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ A Theoretical Framework for Environmental Similarity and Vessel Mobility as Coupled Predictors of Marine Invasive Species Pathways
Marine invasive species spread through global shipping and generate substantial ecological and economic impacts. Traditional risk assessments require detailed records of ballast water and traffic patterns, which are often incomplete, limiting global coverage. This work advances a theoretical framework that quantifies invasion risk by combining environmental similarity across ports with observed and forecasted maritime mobility. Climate-based feature representations characterize each port's marine conditions, while mobility networks derived from Automatic Identification System data capture vessel flows and potential transfer pathways. Clustering and metric learning reveal climate analogues and enable the estimation of species survival likelihood along shipping routes. A temporal link prediction model captures how traffic patterns may change under shifting environmental conditions. The resulting fusion of environmental similarity and predicted mobility provides exposure estimates at the port and voyage levels, supporting targeted monitoring, routing adjustments, and management interventions.
comment: Abstract Submitted to the 46th Canadian Conference on Remote Sensing
♻ ☆ Cross-modal Causal Intervention for Alzheimer's Disease Prediction
Mild Cognitive Impairment (MCI) serves as a prodromal stage of Alzheimer's Disease (AD), where early identification and intervention can effectively slow the progression to dementia. However, diagnosing AD remains a significant challenge in neurology due to the confounders caused mainly by the selection bias of multi-modal data and the complex relationships between variables. To address these issues, we propose a novel visual-language causality-inspired framework named Cross-modal Causal Intervention with Mediator for Alzheimer's Disease Diagnosis (MediAD) for diagnostic assistance. Our MediAD employs Large Language Models (LLMs) to summarize clinical data under strict templates, therefore enriching textual inputs. The MediAD model utilizes Magnetic Resonance Imaging (MRI), clinical data, and textual data enriched by LLMs to classify participants into Cognitively Normal (CN), MCI, and AD categories. Because of the presence of confounders, such as cerebral vascular lesions and age-related biomarkers, non-causal models are likely to capture spurious input-output correlations, generating less reliable results. Our framework implicitly mitigates the effect of both observable and unobservable confounders through a unified causal intervention method. Experimental results demonstrate the outstanding performance of our method in distinguishing CN/MCI/AD cases, outperforming other methods in most evaluation metrics. The study showcases the potential of integrating causal reasoning with multi-modal learning for neurological disease diagnosis.
♻ ☆ PoCo: Agentic Proof-of-Concept Exploit Generation for Smart Contracts
Smart contracts operate in a highly adversarial environment, where vulnerabilities can lead to substantial financial losses. Thus, smart contracts are subject to security audits. In auditing, proof-of-concept (PoC) exploits play a critical role by demonstrating to the stakeholders that the reported vulnerabilities are genuine, reproducible, and actionable. However, manually creating PoCs is time-consuming, error-prone, and often constrained by tight audit schedules. We introduce POCO, an agentic framework that automatically generates executable PoC exploits from natural-language vulnerability descriptions written by auditors. POCO autonomously generates PoC exploits in an agentic manner by interacting with a set of code-execution tools in a Reason-Act-Observe loop. It produces fully executable exploits compatible with the Foundry testing framework, ready for integration into audit reports and other security tools. We evaluate POCO on a dataset of 23 real-world vulnerability reports. POCO consistently outperforms the prompting and workflow baselines, generating well-formed and logically correct PoCs. Our results demonstrate that agentic frameworks can significantly reduce the effort required for high-quality PoCs in smart contract audits. Our contribution provides readily actionable knowledge for the smart contract security community.
comment: Under review
♻ ☆ GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs NeurIPS 2025
LLMs have shown impressive capabilities across various natural language processing tasks, yet remain vulnerable to input prompts, known as jailbreak attacks, carefully designed to bypass safety guardrails and elicit harmful responses. Traditional methods rely on manual heuristics but suffer from limited generalizability. Despite being automatic, optimization-based attacks often produce unnatural prompts that can be easily detected by safety filters or require high computational costs due to discrete token optimization. In this paper, we introduce Generative Adversarial Suffix Prompter (GASP), a novel automated framework that can efficiently generate human-readable jailbreak prompts in a fully black-box setting. In particular, GASP leverages latent Bayesian optimization to craft adversarial suffixes by efficiently exploring continuous latent embedding spaces, gradually optimizing the suffix prompter to improve attack efficacy while balancing prompt coherence via a targeted iterative refinement procedure. Through comprehensive experiments, we show that GASP can produce natural adversarial prompts, significantly improving jailbreak success over baselines, reducing training times, and accelerating inference speed, thus making it an efficient and scalable solution for red-teaming LLMs.
comment: Accepted to NeurIPS 2025. Project page and demos: https://air-ml.org/project/gasp/
♻ ☆ Test-Time Warmup for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) hold great promise for advanced reasoning at the intersection of text and images, yet they have not fully realized this potential. MLLMs typically integrate an LLM, a vision encoder, and a connector that maps the vision encoder's embeddings into the LLM's text embedding space. Although each component is pretrained on massive datasets with billions of samples, the entire multimodal model is typically trained on only thousands (or a few million) samples, which can result in weak performance on complex reasoning tasks. To address these shortcomings, instead of relying on extensive labeled datasets for fine-tuning, we propose a Test-Time Warmup method that adapts the MLLM per test instance by leveraging data from weakly supervised auxiliary tasks. With our approach, we observe a relative performance improvement of 4.03% on MMMU, 5.28% on VQA-Rad, and 1.63% on GQA on the Llama-Vision-Instruct model. Our method demonstrates that 'warming up' before inference can enhance MLLMs' robustness across diverse reasoning tasks.
♻ ☆ AGITB: A Signal-Level Benchmark for Evaluating Artificial General Intelligence
Current artificial intelligence systems continue to fall short of human-like general intelligence. Existing evaluation frameworks, which focus on language or perception tasks, fail to capture the essence of generality or provide actionable guidance. The Artificial General Intelligence Testbed (AGITB) introduces a novel benchmarking suite comprising fourteen elementary tests, thirteen of which are fully automated. AGITB evaluates models on their ability to forecast the next input in a temporal sequence, step by step, without pretraining, symbolic manipulation, or semantic grounding. The framework isolates core computational invariants - such as determinism, sensitivity, and generalisation - that parallel principles of biological information processing. Designed to resist brute-force or memorisation-based strategies, AGITB enforces unbiased and autonomous learning. The human cortex satisfies all tests, whereas no current AI system meets the full AGITB criteria, demonstrating its value as a rigorous, interpretable, and actionable benchmark for evaluating progress toward artificial general intelligence. A reference implementation of AGITB is freely available on GitHub.
comment: 19 pages, 2 figures
♻ ☆ TathyaNyaya and FactLegalLlama: Advancing Factual Judgment Prediction and Explanation in the Indian Legal Context AACL
In the landscape of Fact-based Judgment Prediction and Explanation (FJPE), reliance on factual data is essential for developing robust and realistic AI-driven decision-making tools. This paper introduces TathyaNyaya, the largest annotated dataset for FJPE tailored to the Indian legal context, encompassing judgments from the Supreme Court of India and various High Courts. Derived from the Hindi terms "Tathya" (fact) and "Nyaya" (justice), the TathyaNyaya dataset is uniquely designed to focus on factual statements rather than complete legal texts, reflecting real-world judicial processes where factual data drives outcomes. Complementing this dataset, we present FactLegalLlama, an instruction-tuned variant of the LLaMa-3-8B Large Language Model (LLM), optimized for generating high-quality explanations in FJPE tasks. Finetuned on the factual data in TathyaNyaya, FactLegalLlama integrates predictive accuracy with coherent, contextually relevant explanations, addressing the critical need for transparency and interpretability in AI-assisted legal systems. Our methodology combines transformers for binary judgment prediction with FactLegalLlama for explanation generation, creating a robust framework for advancing FJPE in the Indian legal domain. TathyaNyaya not only surpasses existing datasets in scale and diversity but also establishes a benchmark for building explainable AI systems in legal analysis. The findings underscore the importance of factual precision and domain-specific tuning in enhancing predictive performance and interpretability, positioning TathyaNyaya and FactLegalLlama as foundational resources for AI-assisted legal decision-making.
comment: Paper accepted in the AACL-IJCNLP 2025 conference
♻ ☆ Vibe Coding as a Reconfiguration of Intent Mediation in Software Development: Definition, Implications, and Research Agenda
Software development is undergoing a fundamental transformation as vibe coding becomes widespread, with large portions of contemporary codebases now being AI-generated. The disconnect between rapid adoption and limited conceptual understanding highlights the need for an inquiry into this emerging paradigm. Drawing on an intent perspective and historical analysis, we define vibe coding as a software development paradigm where humans and generative AI engage in collaborative flow to co-create software artifacts through natural language dialogue, shifting the mediation of developer intent from deterministic instruction to probabilistic inference. By intent mediation, we refer to the fundamental process through which developers translate their conceptual goals into representations that computational systems can execute. Our results show that vibe coding reconfigures cognitive work by redistributing epistemic labor between humans and machines, shifting the expertise in the software development process away from traditional areas such as design or technical implementation toward collaborative orchestration. We identify key opportunities, including democratization, acceleration, and systemic leverage, alongside risks, such as black box codebases, responsibility gaps, and ecosystem bias. We conclude with a research agenda spanning human-, technology-, and organization-centered directions to guide future investigations of this paradigm.
♻ ☆ Advanced Sign Language Video Generation with Compressed and Quantized Multi-Condition Tokenization
Sign Language Video Generation (SLVG) seeks to generate identity-preserving sign language videos from spoken language texts. Existing methods primarily rely on the single coarse condition (\eg, skeleton sequences) as the intermediary to bridge the translation model and the video generation model, which limits both the naturalness and expressiveness of the generated videos. To overcome these limitations, we propose SignViP, a novel SLVG framework that incorporates multiple fine-grained conditions for improved generation fidelity. Rather than directly translating error-prone high-dimensional conditions, SignViP adopts a discrete tokenization paradigm to integrate and represent fine-grained conditions (\ie, fine-grained poses and 3D hands). SignViP contains three core components. (1) Sign Video Diffusion Model is jointly trained with a multi-condition encoder to learn continuous embeddings that encapsulate fine-grained motion and appearance. (2) Finite Scalar Quantization (FSQ) Autoencoder is further trained to compress and quantize these embeddings into discrete tokens for compact representation of the conditions. (3) Multi-Condition Token Translator is trained to translate spoken language text to discrete multi-condition tokens. During inference, Multi-Condition Token Translator first translates the spoken language text into discrete multi-condition tokens. These tokens are then decoded to continuous embeddings by FSQ Autoencoder, which are subsequently injected into Sign Video Diffusion Model to guide video generation. Experimental results show that SignViP achieves state-of-the-art performance across metrics, including video quality, temporal coherence, and semantic fidelity. The code is available at https://github.com/umnooob/signvip/.
♻ ☆ A Systematic Evaluation of Self-Supervised Learning for Label-Efficient Sleep Staging with Wearable EEG
Wearable EEG devices have emerged as a promising alternative to polysomnography (PSG). As affordable and scalable solutions, their widespread adoption results in the collection of massive volumes of unlabeled data that cannot be analyzed by clinicians at scale. Meanwhile, the recent success of deep learning for sleep scoring has relied on large annotated datasets. Self-supervised learning (SSL) offers an opportunity to bridge this gap, leveraging unlabeled signals to address label scarcity and reduce annotation effort. In this paper, we present the first systematic evaluation of SSL for sleep staging using wearable EEG. We investigate a range of well-established SSL methods and evaluate them on two sleep databases acquired with the Ikon Sleep wearable EEG headband: BOAS, a high-quality benchmark containing PSG and wearable EEG recordings with consensus labels, and HOGAR, a large collection of home-based, self-recorded, and unlabeled recordings. Three evaluation scenarios are defined to study label efficiency, representation quality, and cross-dataset generalization. Results show that SSL consistently improves classification performance by up to 10% over supervised baselines, with gains particularly evident when labeled data is scarce. SSL achieves clinical-grade accuracy above 80% leveraging only 5% to 10% of labeled data, while the supervised approach requires twice the labels. Additionally, SSL representations prove robust to variations in population characteristics, recording environments, and signal quality. Our findings demonstrate the potential of SSL to enable label-efficient sleep staging with wearable EEG, reducing reliance on manual annotations and advancing the development of affordable sleep monitoring systems.
comment: 12 pages, 4 figures
♻ ☆ Pragmatic Reasoning improves LLM Code Generation
Large Language Models (LLMs) have demonstrated impressive potential in translating natural language (NL) instructions into program code. However, user instructions often contain inherent ambiguities, making it challenging for LLMs to generate code that accurately reflects the user's true intent. To address this challenge, researchers have proposed approaches that produce multiple candidates of the program code and then rerank them to identify the best solution. In this paper, we propose CodeRSA, a novel code candidate reranking mechanism built upon the Rational Speech Act (RSA) framework, designed to guide LLMs toward more comprehensive pragmatic reasoning about user intent. We evaluate CodeRSA using Llama-3-8B-Instruct and Qwen-2.5-7B-Instruct on two widely used code generation benchmarks, HumanEval and MBPP. Our experiment results show that CodeRSA consistently outperforms common baselines, surpasses the state-of-the-art approach in most cases, and demonstrates robust overall performance. These findings underscore the effectiveness of integrating pragmatic reasoning into code candidate reranking, offering a promising direction for enhancing code generation quality in LLMs.
♻ ☆ Revisiting Residual Connections: Orthogonal Updates for Stable and Efficient Deep Networks
Residual connections are pivotal for deep neural networks, enabling greater depth by mitigating vanishing gradients. However, in standard residual updates, the module's output is directly added to the input stream. This can lead to updates that predominantly reinforce or modulate the existing stream direction, potentially underutilizing the module's capacity for learning entirely novel features. In this work, we introduce Orthogonal Residual Update: we decompose the module's output relative to the input stream and add only the component orthogonal to this stream. This design aims to guide modules to contribute primarily new representational directions, fostering richer feature learning while promoting more efficient training. We demonstrate that our orthogonal update strategy improves generalization accuracy and training stability across diverse architectures (ResNetV2, Vision Transformers) and datasets (CIFARs, TinyImageNet, ImageNet-1k), achieving, for instance, a +3.78 pp top-1 accuracy gain for ViT-B on ImageNet-1k.
comment: 27 pages, maybe final version
♻ ☆ TowerVision: Understanding and Improving Multilinguality in Vision-Language Models
Despite significant advances in vision-language models (VLMs), most existing work follows an English-centric design process, limiting their effectiveness in multilingual settings. In this work, we provide a comprehensive empirical study analyzing the impact of several multilingual design choices, such as training data composition, encoder selection, and text backbones. The result is TowerVision, a family of open multilingual VLMs for both image-text and video-text tasks, built upon the multilingual text-only model Tower+. TowerVision achieves competitive performance on multiple multimodal multilingual benchmarks and shows particular strength in culturally grounded tasks and multimodal translation. By incorporating visual and cultural context during fine-tuning, our models surpass existing approaches trained on substantially larger datasets, as demonstrated on ALM-Bench and Multi30K (image tasks) and ViMUL-Bench (video tasks). Alongside the models, we release VisionBlocks, a high-quality, curated vision-language dataset. Our findings highlight that multilingual vision-language training data substantially improves cross-lingual generalization -- both from high-resource to underrepresented languages and vice versa -- and that instruction-tuned LLMs are not always the optimal initialization point. To support further research, we publicly release all models, data, and training recipes.
comment: 15 pages, 7 figures, submitted to arXiv October 2025. All models, datasets, and training code will be released at https://huggingface.co/collections/utter-project/towervision
♻ ☆ But what is your honest answer? Aiding LLM-judges with honest alternatives using steering vectors
Detecting subtle forms of dishonesty like sycophancy and manipulation in Large Language Models (LLMs) remains challenging for both humans and automated evaluators, as these behaviors often appear through small biases rather than clear false statements. We introduce Judge Using Safety-Steered Alternatives (JUSSA), a novel framework that employs steering vectors not to improve model behavior directly, but to enhance LLM judges' evaluation capabilities. JUSSA applies steering vectors during inference to generate more honest alternatives, providing judges with contrastive examples that make subtle dishonest patterns easier to detect. While existing evaluation methods rely on black-box evaluation, JUSSA leverages model internals to create targeted comparisons from single examples. We evaluate our method on sycophancy detection and introduce a new manipulation dataset covering multiple types of manipulation. Our results demonstrate that JUSSA effectively improves detection accuracy over single-response evaluation in various cases. Analysis across judge models reveals that JUSSA helps weaker judges on easier dishonesty detection tasks, and stronger judges on harder tasks. Layer-wise experiments show how dishonest prompts cause representations to diverge from honest ones in middle layers, revealing where steering interventions are most effective for generating contrastive examples. By demonstrating that steering vectors can enhance safety evaluation rather than just modify behavior, our work opens new directions for scalable model auditing as systems become increasingly sophisticated.
♻ ☆ CareMedEval dataset: Evaluating Critical Appraisal and Reasoning in the Biomedical Field LREC 2026
Critical appraisal of scientific literature is an essential skill in the biomedical field. While large language models (LLMs) can offer promising support in this task, their reliability remains limited, particularly for critical reasoning in specialized domains. We introduce CareMedEval, an original dataset designed to evaluate LLMs on biomedical critical appraisal and reasoning tasks. Derived from authentic exams taken by French medical students, the dataset contains 534 questions based on 37 scientific articles. Unlike existing benchmarks, CareMedEval explicitly evaluates critical reading and reasoning grounded in scientific papers. Benchmarking state-of-the-art generalist and biomedical-specialized LLMs under various context conditions reveals the difficulty of the task: open and commercial models fail to exceed an Exact Match Rate of 0.5 even though generating intermediate reasoning tokens considerably improves the results. Yet, models remain challenged especially on questions about study limitations and statistical analysis. CareMedEval provides a challenging benchmark for grounded reasoning, exposing current LLM limitations and paving the way for future development of automated support for critical appraisal.
comment: Preprint submitted to LREC 2026 (under review) To access the dataset, see https://github.com/bonzid/CareMedEval
♻ ☆ Causal Graph Neural Networks for Healthcare
Healthcare artificial intelligence systems routinely fail when deployed across institutions, with documented performance drops and perpetuation of discriminatory patterns embedded in historical data. This brittleness stems, in part, from learning statistical associations rather than causal mechanisms. Causal graph neural networks address this triple crisis of distribution shift, discrimination, and inscrutability by combining graph-based representations of biomedical data with causal inference principles to learn invariant mechanisms rather than spurious correlations. This Review examines methodological foundations spanning structural causal models, disentangled causal representation learning, and techniques for interventional prediction and counterfactual reasoning on graphs. We analyse applications demonstrating clinical value across psychiatric diagnosis through brain network analysis, cancer subtyping via multi-omics causal integration, continuous physiological monitoring with mechanistic interpretation, and drug recommendation correcting prescription bias. These advances establish foundations for patient-specific Causal Digital Twins, enabling in silico clinical experimentation, with integration of large language models for hypothesis generation and causal graph neural networks for mechanistic validation. Substantial barriers remain, including computational requirements precluding real-time deployment, validation challenges demanding multi-modal evidence triangulation beyond cross-validation, and risks of causal-washing where methods employ causal terminology without rigorous evidentiary support. We propose tiered frameworks distinguishing causally-inspired architectures from causally-validated discoveries and identify critical research priorities making causal rather than purely associational claims.
♻ ☆ NyayaRAG: Realistic Legal Judgment Prediction with RAG under the Indian Common Law System AACL
Legal Judgment Prediction (LJP) has emerged as a key area in AI for law, aiming to automate judicial outcome forecasting and enhance interpretability in legal reasoning. While previous approaches in the Indian context have relied on internal case content such as facts, issues, and reasoning, they often overlook a core element of common law systems, which is reliance on statutory provisions and judicial precedents. In this work, we propose NyayaRAG, a Retrieval-Augmented Generation (RAG) framework that simulates realistic courtroom scenarios by providing models with factual case descriptions, relevant legal statutes, and semantically retrieved prior cases. NyayaRAG evaluates the effectiveness of these combined inputs in predicting court decisions and generating legal explanations using a domain-specific pipeline tailored to the Indian legal system. We assess performance across various input configurations using both standard lexical and semantic metrics as well as LLM-based evaluators such as G-Eval. Our results show that augmenting factual inputs with structured legal knowledge significantly improves both predictive accuracy and explanation quality.
comment: Paper accepted in the AACL-IJCNLP 2025 conference
♻ ☆ SafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Constrained Learning NeurIPS 2025
Vision-language-action models (VLAs) show potential as generalist robot policies. However, these models pose extreme safety challenges during real-world deployment, including the risk of harm to the environment, the robot itself, and humans. How can safety constraints be explicitly integrated into VLAs? We address this by exploring an integrated safety approach (ISA), systematically modeling safety requirements, then actively eliciting diverse unsafe behaviors, effectively constraining VLA policies via safe reinforcement learning, and rigorously assuring their safety through targeted evaluations. Leveraging the constrained Markov decision process (CMDP) paradigm, ISA optimizes VLAs from a min-max perspective against elicited safety risks. Thus, policies aligned through this comprehensive approach achieve the following key features: (I) effective safety-performance trade-offs, reducing the cumulative cost of safety violations by 83.58% compared to the state-of-the-art method, while also maintaining task success rate (+3.85%). (II) strong safety assurance, with the ability to mitigate long-tail risks and handle extreme failure scenarios. (III) robust generalization of learned safety behaviors to various out-of-distribution perturbations. The effectiveness is evaluated on long-horizon mobile manipulation tasks. Our data, models and newly proposed benchmark environment are available at https://pku-safevla.github.io.
comment: Accepted by NeurIPS 2025 Spotlight Presentation
♻ ☆ Toward Clinically Grounded Foundation Models in Pathology
In non-medical domains, foundation models (FMs) have revolutionized computer vision and language processing through large-scale self-supervised and multimodal learning. Consequently, their rapid adoption in computational pathology was expected to deliver comparable breakthroughs in cancer diagnosis, prognostication, and multimodal retrieval. However, recent systematic evaluations reveal fundamental weaknesses: low diagnostic accuracy, poor robustness, geometric instability, heavy computational demands, and concerning safety vulnerabilities. This short paper examines these shortcomings and argues that they stem from deeper conceptual mismatches between the assumptions underlying generic foundation modeling in mainstream AI and the intrinsic complexity of human tissue. Seven interrelated causes are identified: biological complexity, ineffective self-supervision, overgeneralization, excessive architectural complexity, lack of domain-specific innovation, insufficient data, and a fundamental design flaw related to tissue patch size. These findings suggest that current pathology foundation models remain conceptually misaligned with the nature of tissue morphology and call for a fundamental rethinking of the paradigm itself.
♻ ☆ A Unified Kernel for Neural Network Learning
Past decades have witnessed a great interest in the distinction and connection between neural network learning and kernel learning. Recent advancements have made theoretical progress in connecting infinite-wide neural networks and Gaussian processes. Two predominant approaches have emerged: the Neural Network Gaussian Process (NNGP) and the Neural Tangent Kernel (NTK). The former, rooted in Bayesian inference, represents a zero-order kernel, while the latter, grounded in the tangent space of gradient descents, is a first-order kernel. In this paper, we present the Unified Neural Kernel (UNK), which {is induced by the inner product of produced variables and characterizes the learning dynamics of neural networks with gradient descents and parameter initialization.} The proposed UNK kernel maintains the limiting properties of both NNGP and NTK, exhibiting behaviors akin to NTK with a finite learning step and converging to NNGP as the learning step approaches infinity. Besides, we also theoretically characterize the uniform tightness and learning convergence of the UNK kernel, providing comprehensive insights into this unified kernel. Experimental results underscore the effectiveness of our proposed method.
♻ ☆ Towards Efficient and Accurate Spiking Neural Networks via Adaptive Bit Allocation
Multi-bit spiking neural networks (SNNs) have recently become a heated research spot, pursuing energy-efficient and high-accurate AI. However, with more bits involved, the associated memory and computation demands escalate to the point where the performance improvements become disproportionate. Based on the insight that different layers demonstrate different importance and extra bits could be wasted and interfering, this paper presents an adaptive bit allocation strategy for direct-trained SNNs, achieving fine-grained layer-wise allocation of memory and computation resources. Thus, SNN's efficiency and accuracy can be improved. Specifically, we parametrize the temporal lengths and the bit widths of weights and spikes, and make them learnable and controllable through gradients. To address the challenges caused by changeable bit widths and temporal lengths, we propose the refined spiking neuron, which can handle different temporal lengths, enable the derivation of gradients for temporal lengths, and suit spike quantization better. In addition, we theoretically formulate the step-size mismatch problem of learnable bit widths, which may incur severe quantization errors to SNN, and accordingly propose the step-size renewal mechanism to alleviate this issue. Experiments on various datasets, including the static CIFAR and ImageNet datasets and the dynamic CIFAR-DVS, DVS-GESTURE, and SHD datasets, demonstrate that our methods can reduce the overall memory and computation cost while achieving higher accuracy. Particularly, our SEWResNet-34 can achieve a 2.69% accuracy gain and 4.16x lower bit budgets over the advanced baseline work on ImageNet. This work will be open-sourced.
♻ ☆ BOTS: A Unified Framework for Bayesian Online Task Selection in LLM Reinforcement Finetuning
Reinforcement finetuning (RFT) is a key technique for aligning Large Language Models (LLMs) with human preferences and enhancing reasoning, yet its effectiveness is highly sensitive to which tasks are explored during training. Uniform task sampling is inefficient, wasting computation on tasks that are either trivial or unsolvable, while existing task selection methods often suffer from high rollout costs, poor adaptivity, or incomplete evidence. We introduce BOTS, a unified framework for Bayesian Online Task Selection in LLM reinforcement finetuning. Grounded in Bayesian inference, BOTS adaptively maintains posterior estimates of task difficulty as the model evolves. It jointly incorporates explicit evidence from direct evaluations of selected tasks and implicit evidence inferred from these evaluations for unselected tasks, with Thompson sampling ensuring a principled balance between exploration and exploitation. To make implicit evidence practical, we instantiate it with an ultra-light interpolation-based plug-in that estimates difficulties of unevaluated tasks without extra rollouts, adding negligible overhead. Empirically, across diverse domains and LLM scales, BOTS consistently improves data efficiency and performance over baselines and ablations, providing a practical and extensible solution for dynamic task selection in RFT.
♻ ☆ Mathematics with large language models as provers and verifiers
During 2024 and 2025 the discussion about the theorem-proving capabilities of large language models started reporting interesting success stories, mostly to do with difficult exercises (such as problems from the International Mathematical Olympiad), but also with conjectures [Feldman & Karbasi, arXiv:2509.18383v1] formulated for the purpose of verifying whether the artificial intelligence could prove it. In this paper we report a theorem proving feat achieved by ChatGPT by using a protocol involving different prover and verifier instances of the gpt-5 model working collaboratively. To make sure that the produced proofs do not suffer from hallucinations, the final proof is formally verified by the lean proof assistant, and the conformance of premises and conclusion of the lean code is verified by a human. Our methodology is by no means complete or exact. It was nonetheless able to solve five out of six 2025 IMO problems, and close about a third of the sixty-six number theory conjectures in [Cohen, Journal of Integer Sequences, 2025].
♻ ☆ Rewarding the Journey, Not Just the Destination: A Composite Path and Answer Self-Scoring Reward Mechanism for Test-Time Reinforcement Learning
Reinforcement Learning (RL) has emerged as a powerful paradigm for advancing Large Language Models (LLMs), achieving remarkable performance in complex reasoning domains such as mathematics and code generation. However, current RL methods face a fundamental scalability bottleneck due to their heavy reliance on human-curated preference data or labeled datasets for reward modeling. To overcome this limitation, we explore RL on unlabeled data where models learn autonomously from continuous experience streams. The core challenge in this setting lies in reliable reward estimation without ground-truth supervision. Existing approaches like Test-Time RL address this through self-consistent consensus, but risk reinforcing incorrect pseudo-labels derived from majority voting. We introduce COMPASS (Composite Path and Answer Self-Scoring), a novel test-time reward mechanism that operates without external supervision. COMPASS integrates two complementary components: the Dual-Calibration Answer Reward (DCAR), which stabilizes training by establishing trustworthy pseudo-labels through confidence and credibility calibration, and the Decisive Path Reward (DPR), which directly optimizes the reasoning process quality beyond mere outcome supervision. By jointly reinforcing trustworthy consensus answers and highly decisive reasoning chains, the COMPASS systematically enhances the model's analytical capabilities. Extensive experiments show that COMPASS achieves significant and consistent performance gains across diverse reasoning tasks and model architectures, advancing a more scalable direction for LLMs to learn from continuous experience.
♻ ☆ Reasoning Models Hallucinate More: Factuality-Aware Reinforcement Learning for Large Reasoning Models NeurIPS 2025
Large language models (LLMs) have significantly advanced in reasoning tasks through reinforcement learning (RL) optimization, achieving impressive capabilities across various challenging benchmarks. However, our empirical analysis reveals a critical drawback: reasoning-oriented RL fine-tuning significantly increases the prevalence of hallucinations. We theoretically analyze the RL training dynamics, identifying high-variance gradient, entropy-induced randomness, and susceptibility to spurious local optima as key factors leading to hallucinations. To address this drawback, we propose Factuality-aware Step-wise Policy Optimization (FSPO), an innovative RL fine-tuning algorithm incorporating explicit factuality verification at each reasoning step. FSPO leverages automated verification against given evidence to dynamically adjust token-level advantage values, incentivizing factual correctness throughout the reasoning process. Experiments across mathematical reasoning and hallucination benchmarks using Qwen2.5 and Llama models demonstrate that FSPO effectively reduces hallucinations while enhancing reasoning accuracy, substantially improving both reliability and performance.
comment: accepted by NeurIPS 2025
♻ ☆ How Memory in Optimization Algorithms Implicitly Modifies the Loss
In modern optimization methods used in deep learning, each update depends on the history of previous iterations, often referred to as memory, and this dependence decays fast as the iterates go further into the past. For example, gradient descent with momentum has exponentially decaying memory through exponentially averaged past gradients. We introduce a general technique for identifying a memoryless algorithm that approximates an optimization algorithm with memory. It is obtained by replacing all past iterates in the update by the current one, and then adding a correction term arising from memory (also a function of the current iterate). This correction term can be interpreted as a perturbation of the loss, and the nature of this perturbation can inform how memory implicitly (anti-)regularizes the optimization dynamics. As an application of our theory, we find that Lion does not have the kind of implicit anti-regularization induced by memory that AdamW does, providing a theory-based explanation for Lion's better generalization performance recently documented.
♻ ☆ Style2Code: A Style-Controllable Code Generation Framework with Dual-Modal Contrastive Representation Learning
Controllable code generation, the ability to synthesize code that follows a specified style while maintaining functionality, remains a challenging task. We propose a two-stage training framework combining contrastive learning and conditional decoding to enable flexible style control. The first stage aligns code style representations with semantic and structural features. In the second stage, we fine-tune a language model (e.g., Flan-T5) conditioned on the learned style vector to guide generation. Our method supports style interpolation and user personalization via lightweight mixing. Compared to prior work, our unified framework offers improved stylistic control without sacrificing code correctness. This is among the first approaches to combine contrastive alignment with conditional decoding for style-guided code generation.
♻ ☆ Building Altruistic and Moral AI Agent with Brain-inspired Emotional Empathy Mechanisms
As AI closely interacts with human society, it is crucial to ensure that its behavior is safe, altruistic, and aligned with human ethical and moral values. However, existing research on embedding ethical considerations into AI remains insufficient, and previous external constraints based on principles and rules are inadequate to provide AI with long-term stability and generalization capabilities. Emotional empathy intrinsically motivates altruistic behaviors aimed at alleviating others' negative emotions through emotional sharing and contagion mechanisms. Motivated by this, we draw inspiration from the neural mechanism of human emotional empathy-driven altruistic decision making, and simulate the shared self-other perception-mirroring-empathy neural circuits, to construct a brain-inspired emotional empathy-driven altruistic decision-making model. Here, empathy directly impacts dopamine release to form intrinsic altruistic motivation. The proposed model exhibits consistent altruistic behaviors across three experimental settings: emotional contagion-integrated two-agent altruistic rescue, multi-agent gaming, and robotic emotional empathy interaction scenarios. In-depth analyses validate the positive correlation between empathy levels and altruistic preferences (consistent with psychological behavioral experiment findings), while also demonstrating how interaction partners' empathy levels influence the agent's behavioral patterns. We further test the proposed model's performance and stability in moral dilemmas involving conflicts between self-interest and others' well-being, partially observable environments, and adversarial defense scenarios. This work provides preliminary exploration of human-like empathy-driven altruistic moral decision making, contributing potential perspectives for developing ethically-aligned AI.
comment: Accepted by TAFFC
RealDPO: Real or Not Real, that is the Preference
Video generative models have recently achieved notable advancements in synthesis quality. However, generating complex motions remains a critical challenge, as existing models often struggle to produce natural, smooth, and contextually consistent movements. This gap between generated and real-world motions limits their practical applicability. To address this issue, we introduce RealDPO, a novel alignment paradigm that leverages real-world data as positive samples for preference learning, enabling more accurate motion synthesis. Unlike traditional supervised fine-tuning (SFT), which offers limited corrective feedback, RealDPO employs Direct Preference Optimization (DPO) with a tailored loss function to enhance motion realism. By contrasting real-world videos with erroneous model outputs, RealDPO enables iterative self-correction, progressively refining motion quality. To support post-training in complex motion synthesis, we propose RealAction-5K, a curated dataset of high-quality videos capturing human daily activities with rich and precise motion details. Extensive experiments demonstrate that RealDPO significantly improves video quality, text alignment, and motion realism compared to state-of-the-art models and existing preference optimization techniques.
comment: Code:https://github.com/Vchitect/RealDPO Project Page:https://vchitect.github.io/RealDPO-Project/
♻ ☆ Robustness in Large Language Models: A Survey of Mitigation Strategies and Evaluation Metrics
Large Language Models (LLMs) have emerged as a promising cornerstone for the development of natural language processing (NLP) and artificial intelligence (AI). However, ensuring the robustness of LLMs remains a critical challenge. To address these challenges and advance the field, this survey provides a comprehensive overview of current studies in this area. First, we systematically examine the nature of robustness in LLMs, including its conceptual foundations, the importance of consistent performance across diverse inputs, and the implications of failure modes in real-world applications. Next, we analyze the sources of non-robustness, categorizing intrinsic model limitations, data-driven vulnerabilities, and external adversarial factors that compromise reliability. Following this, we review state-of-the-art mitigation strategies, and then we discuss widely adopted benchmarks, emerging metrics, and persistent gaps in assessing real-world reliability. Finally, we synthesize findings from existing surveys and interdisciplinary studies to highlight trends, unresolved issues, and pathways for future research.
comment: Accepted at TMLR
♻ ☆ Transferable & Stealthy Ensemble Attacks: A Black-Box Jailbreaking Framework for Large Language Models
We present a novel black-box jailbreaking framework that integrates multiple LLM-as-Attacker strategies to deliver highly transferable and effective attacks. The framework is grounded in three key insights from prior jailbreaking research and practice: ensemble approaches outperform single methods in exposing aligned LLM vulnerabilities, malicious instructions vary in jailbreaking difficulty requiring tailored optimization, and disrupting semantic coherence of malicious prompts can manipulate their embeddings to boost success rates. Validated in the Competition for LLM and Agent Safety 2024, our solution achieved top rankings in the Jailbreaking Attack Track.
♻ ☆ Learning Dynamics of RNNs in Closed-Loop Environments NeurIPS 2025
Recurrent neural networks (RNNs) trained on neuroscience-inspired tasks offer powerful models of brain computation. However, typical training paradigms rely on open-loop, supervised settings, whereas real-world learning unfolds in closed-loop environments. Here, we develop a mathematical theory describing the learning dynamics of linear RNNs trained in closed-loop contexts. We first demonstrate that two otherwise identical RNNs, trained in either closed- or open-loop modes, follow markedly different learning trajectories. To probe this divergence, we analytically characterize the closed-loop case, revealing distinct stages aligned with the evolution of the training loss. Specifically, we show that the learning dynamics of closed-loop RNNs, in contrast to open-loop ones, are governed by an interplay between two competing objectives: short-term policy improvement and long-term stability of the agent-environment interaction. Finally, we apply our framework to a realistic motor control task, highlighting its broader applicability. Taken together, our results underscore the importance of modeling closed-loop dynamics in a biologically plausible setting.
comment: Accepted at NeurIPS 2025
♻ ☆ Back to Ear: Perceptually Driven High Fidelity Music Reconstruction
Variational Autoencoders (VAEs) are essential for large-scale audio tasks like diffusion-based generation. However, existing open-source models often neglect auditory perceptual aspects during training, leading to weaknesses in phase accuracy and stereophonic spatial representation. To address these challenges, we propose {\epsilon}ar-VAE, an open-source music signal reconstruction model that rethinks and optimizes the VAE training paradigm. Our contributions are threefold: (i) A K-weighting perceptual filter applied prior to loss calculation to align the objective with auditory perception. (ii) Two novel phase losses: a Correlation Loss for stereo coherence, and a Phase Loss using its derivatives--Instantaneous Frequency and Group Delay--for precision. (iii) A new spectral supervision paradigm where magnitude is supervised by all four Mid/Side/Left/Right components, while phase is supervised only by the LR components. Experiments show {\epsilon}ar-VAE at 44.1kHz substantially outperforms leading open-source models across diverse metrics, showing particular strength in reconstructing high-frequency harmonics and the spatial characteristics.
comment: Check the Code here: https://github.com/Eps-Acoustic-Revolution-Lab/EAR_VAE and Model Weights here: https://huggingface.co/earlab/EAR_VAE
♻ ☆ Training Large Language Models To Reason In Parallel With Global Forking Tokens
Although LLMs have demonstrated improved performance by scaling parallel test-time compute, doing so relies on generating reasoning paths that are both diverse and accurate. For challenging problems, the forking tokens that trigger diverse yet correct reasoning modes are typically deep in the sampling tree. Consequently, common strategies to encourage diversity, such as temperature scaling, encounter a worsened trade-off between diversity and accuracy. Motivated by this challenge, we treat parallel reasoning as a set-of-next-token-prediction problem, and incorporate a set-based global loss into Supervised Fine-Tuning (SFT) using self-supervised bipartite matching between our global forking tokens and unique reasoning traces. We observe that, while naive fine-tuning with multiple reasoning traces collapses these unique reasoning modes, our proposed method, Set Supervised Fine-Tuning (SSFT), preserves these modes and produces emergent global forking tokens. Experiments on multiple reasoning benchmarks show that our SSFT consistently outperforms SFT under both Pass@1 and Cons@k metrics.
Learning to Navigate Socially Through Proactive Risk Perception
In this report, we describe the technical details of our submission to the IROS 2025 RoboSense Challenge Social Navigation Track. This track focuses on developing RGBD-based perception and navigation systems that enable autonomous agents to navigate safely, efficiently, and socially compliantly in dynamic human-populated indoor environments. The challenge requires agents to operate from an egocentric perspective using only onboard sensors including RGB-D observations and odometry, without access to global maps or privileged information, while maintaining social norm compliance such as safe distances and collision avoidance. Building upon the Falcon model, we introduce a Proactive Risk Perception Module to enhance social navigation performance. Our approach augments Falcon with collision risk understanding that learns to predict distance-based collision risk scores for surrounding humans, which enables the agent to develop more robust spatial awareness and proactive collision avoidance behaviors. The evaluation on the Social-HM3D benchmark demonstrates that our method improves the agent's ability to maintain personal space compliance while navigating toward goals in crowded indoor scenes with dynamic human agents, achieving 2nd place among 16 participating teams in the challenge.
♻ ☆ KGGen: Extracting Knowledge Graphs from Plain Text with Language Models
Recent interest in building foundation models for KGs has highlighted a fundamental challenge: knowledge-graph data is relatively scarce. The best-known KGs are primarily human-labeled, created by pattern-matching, or extracted using early NLP techniques. While human-generated KGs are in short supply, automatically extracted KGs are of questionable quality. We present a solution to this data scarcity problem in the form of a text-to-KG generator (KGGen), a package that uses language models to create high-quality graphs from plaintext. Unlike other KG extractors, KGGen clusters related entities to reduce sparsity in extracted KGs. KGGen is available as a Python library (\texttt{pip install kg-gen}), making it accessible to everyone. Along with KGGen, we release the first benchmark, Measure of of Information in Nodes and Edges (MINE), that tests an extractor's ability to produce a useful KG from plain text. We benchmark our new tool against existing extractors and demonstrate far superior performance.
♻ ☆ ADPO: Anchored Direct Preference Optimization
Direct Preference Optimization (DPO) is effective but brittle under annotator noise and distribution shift because it operates on hard, pairwise labels and only regularizes log-probability differences. We introduce Anchored Direct Preference Optimization (ADPO), a framework that extends preference learning to soft listwise supervision via reference anchoring. ADPO minimizes KL(q || softmax((s - s_ref) / tau_anc)), which (i) recovers supervised fine-tuning, knowledge distillation, maximum-entropy reinforcement learning, and DPO as special cases through suitable choices of target q, anchor policy, and temperature; (ii) induces an implicit trust region governed by the softmax Fisher metric, independent of the anchor; and (iii) supports stable dynamic-anchor updates. Empirically, we observe a task-dependent tradeoff: dynamic anchors improve online exploration under noise, while fixed anchors excel at offline distillation, achieving up to 170 to 5000 times reduction in student-teacher KL on our benchmarks.
♻ ☆ Hierarchical Retrieval with Evidence Curation for Open-Domain Financial Question Answering on Standardized Documents ACL 2025
Retrieval-augmented generation (RAG) based large language models (LLMs) are widely used in finance for their excellent performance on knowledge-intensive tasks. However, standardized documents (e.g., SEC filing) share similar formats such as repetitive boilerplate texts, and similar table structures. This similarity forces traditional RAG methods to misidentify near-duplicate text, leading to duplicate retrieval that undermines accuracy and completeness. To address these issues, we propose the Hierarchical Retrieval with Evidence Curation (HiREC) framework. Our approach first performs hierarchical retrieval to reduce confusion among similar texts. It first retrieve related documents and then selects the most relevant passages from the documents. The evidence curation process removes irrelevant passages. When necessary, it automatically generates complementary queries to collect missing information. To evaluate our approach, we construct and release a Large-scale Open-domain Financial (LOFin) question answering benchmark that includes 145,897 SEC documents and 1,595 question-answer pairs. Our code and data are available at https://github.com/deep-over/LOFin-bench-HiREC.
comment: ACL 2025 (Findings)
♻ ☆ "Let's Agree to Disagree": Investigating the Disagreement Problem in Explainable AI for Text Summarization
Explainable Artificial Intelligence (XAI) methods in text summarization are essential for understanding the model behavior and fostering trust in model-generated summaries. Despite the effectiveness of XAI methods, recent studies have highlighted a key challenge in this area known as the "disagreement problem". This problem occurs when different XAI methods yield conflicting explanations for the same model outcome. Such discrepancies raise concerns about the consistency of explanations and reduce confidence in model interpretations, which is crucial for secure and accountable AI applications. This work is among the first to empirically investigate the disagreement problem in text summarization, demonstrating that such discrepancies are widespread in state-of-the-art summarization models. To address this gap, we propose Regional Explainable AI (RXAI) a novel segmentation-based approach, where each article is divided into smaller, coherent segments using sentence transformers and clustering. We use XAI methods on text segments to create localized explanations that help reduce disagreement between different XAI methods, thereby enhancing the trustworthiness of AI-generated summaries. Our results illustrate that the localized explanations are more consistent than full-text explanations. The proposed approach is validated using two benchmark summarization datasets, Extreme summarization (Xsum) and CNN/Daily Mail, indicating a substantial decrease in disagreement. Additionally, the interactive JavaScript visualization tool is developed to facilitate easy, color-coded exploration of attribution scores at the sentence level, enhancing user comprehension of model explanations.
comment: This is a preprint version of the manuscript accepted for publication in the Machine Learning Journal (Springer Nature)
♻ ☆ Discussion Graph Semantics of First-Order Logic with Equality for Reasoning about Discussion and Argumentation
We make three contributions. First, we formulate a discussion-graph semantics for first-order logic with equality, enabling reasoning about discussion and argumentation in AI more generally than before. This addresses the current lack of a formal reasoning framework capable of handling diverse discussion and argumentation models. Second, we generalise Dung's notion of extensions to cases where two or more graph nodes in an argumentation framework are equivalent. Third, we connect these two contributions by showing that the generalised extensions are first-order characterisable within the proposed discussion-graph semantics. Propositional characterisability of all Dung's extensions is an immediate consequence.
Efficient Model Development through Fine-tuning Transfer
Modern LLMs struggle with efficient updates, as each new pretrained model version requires repeating expensive alignment processes. This challenge also applies to domain- or languagespecific models, where fine-tuning on specialized data must be redone for every new base model release. In this paper, we explore the transfer of fine-tuning updates between model versions. Specifically, we derive the diff vector (representing the weight changes from finetuning) from one source model version and apply it to the base model of a different target version. Through empirical evaluations on various open-weight model versions, we show that transferring diff vectors can significantly improve the performance of the target base model. For example, transferring the fine-tuning updates from Llama 3.0 8B improves Llama 3.1 8B by 46.9% on IFEval and 15.7% on LiveCodeBench without additional training, even surpassing Llama 3.1 8B Instruct. Furthermore, we demonstrate performance gains on multilingual tasks, with 4.7% and 15.5% improvements on Global MMLU for Malagasy and Turkish, respectively. We observe that these merged models provide stronger initializations for further fine-tuning. Lastly, our controlled experiments suggest that fine-tuning transfer is most effective when source and target models lie in a linearly connected region of parameter space, and we provide a theoretical analysis of our method. Taken together, fine-tuning transfer offers a cost-efficient and practical strategy for continuous LLM development. Our code is available at github.com/pjlintw/finetuning-transfer.
comment: 25 pages, 4 figures, 16 tables
♻ ☆ Two Causally Related Needles in a Video Haystack NeurIPS 2025
Properly evaluating the ability of Video-Language Models (VLMs) to understand long videos remains a challenge. We propose a long-context video understanding benchmark, Causal2Needles, that assesses two crucial abilities insufficiently addressed by existing benchmarks: (1) extracting information from two separate locations (two needles) in a long video and understanding them jointly, and (2) modeling the world in terms of cause and effect in human behaviors. Causal2Needles evaluates these abilities using noncausal one-needle, causal one-needle, and causal two-needle questions. The most complex question type, causal two-needle questions, require extracting information from both the cause and effect events from a long video and the associated narration text. To prevent textual bias, we introduce two complementary question formats: locating the video clip containing the answer, and verbal description of a visual detail from that video clip. Our experiments reveal that models excelling on existing benchmarks struggle with causal 2-needle questions, and the model performance is negatively correlated with the distance between the two needles. These findings highlight critical limitations in current VLMs. The dataset is available at: https://huggingface.co/datasets/causal2needles/Causal2Needles
comment: Accepted to NeurIPS 2025 D&B Track
♻ ☆ FATE: A Formal Benchmark Series for Frontier Algebra of Multiple Difficulty Levels
Recent advances in large language models (LLMs) have demonstrated impressive capabilities in formal theorem proving, particularly on contest-based mathematical benchmarks like the IMO. However, these contests do not reflect the depth, breadth, and abstraction of modern mathematical research. To bridge this gap, we introduce FATE (Formal Algebra Theorem Evaluation), a new benchmark series in formal algebra designed to chart a course toward advanced mathematical reasoning. We present two new components, FATE-H and FATE-X, each with 100 problems in abstract and commutative algebra. The FATE series spans a difficulty spectrum from undergraduate exercises to problems exceeding PhD qualifying exams. Notably, FATE-X is the first formal benchmark to surpass both PhD-level exam difficulty and the coverage of the Mathlib library. Our evaluations of state-of-the-art LLM provers on this new benchmark reveal a stark performance gap compared to contest math: the best model achieves only 3% (pass@64) accuracy on FATE-H and 0% on FATE-X. Our two-stage evaluation reveals that models' natural-language reasoning is notably more accurate than their ability to formalize this reasoning. We systematically classify the common errors that arise during this formalization process. Furthermore, a comparative study shows that a specialized prover can exhibit less effective reflection than general-purpose models, reducing its accuracy at the natural-language stage. We believe FATE provides a robust and challenging benchmark that establishes essential checkpoints on the path toward research-level formal mathematical reasoning.
♻ ☆ Integrating Sequential and Relational Modeling for User Events: Datasets and Prediction Tasks
User event modeling plays a central role in many machine learning applications, with use cases spanning e-commerce, social media, finance, cybersecurity, and other domains. User events can be broadly categorized into personal events, which involve individual actions, and relational events, which involve interactions between two users. These two types of events are typically modeled separately, using sequence-based methods for personal events and graph-based methods for relational events. Despite the need to capture both event types in real-world systems, prior work has rarely considered them together. This is often due to the convenient simplification that user behavior can be adequately represented by a single formalization, either as a sequence or a graph. To address this gap, there is a need for public datasets and prediction tasks that explicitly incorporate both personal and relational events. In this work, we introduce a collection of such datasets, propose a unified formalization, and empirically show that models benefit from incorporating both event types. Our results also indicate that current methods leave a notable room for improvements. We release these resources to support further research in unified user event modeling and encourage progress in this direction.
comment: Learning on Graphs Conference 2025
♻ ☆ Composite Flow Matching for Reinforcement Learning with Shifted-Dynamics Data NeurIPS 2025
Incorporating pre-collected offline data from a source environment can significantly improve the sample efficiency of reinforcement learning (RL), but this benefit is often challenged by discrepancies between the transition dynamics of the source and target environments. Existing methods typically address this issue by penalizing or filtering out source transitions in high dynamics-gap regions. However, their estimation of the dynamics gap often relies on KL divergence or mutual information, which can be ill-defined when the source and target dynamics have disjoint support. To overcome these limitations, we propose CompFlow, a method grounded in the theoretical connection between flow matching and optimal transport. Specifically, we model the target dynamics as a conditional flow built upon the output distribution of the source-domain flow, rather than learning it directly from a Gaussian prior. This composite structure offers two key advantages: (1) improved generalization for learning target dynamics, and (2) a principled estimation of the dynamics gap via the Wasserstein distance between source and target transitions. Leveraging our principled estimation of the dynamics gap, we further introduce an optimistic active data collection strategy that prioritizes exploration in regions of high dynamics gap, and theoretically prove that it reduces the performance disparity with the optimal policy. Empirically, CompFlow outperforms strong baselines across several RL benchmarks with shifted dynamics.
comment: NeurIPS 2025 Spotlight
♻ ☆ Control Barrier Function for Aligning Large Language Models
This paper proposes a control-based framework for aligning large language models (LLMs) by leveraging a control barrier function (CBF) to ensure user-desirable text generation. The presented framework applies the CBF safety filter to the predicted token generated from the baseline LLM, to intervene in the generated text. The safety filter includes two significant advantages: this safety filter is an add-on type, allowing it to be used for alignment purposes without fine-tuning the baseline LLM, and if there is an evaluation model regarding the desired alignment, it can be directly applied to the filter design. The overall text-generation system is implemented with open-source language models, aiming to generate positive text.
comment: This work is an extenede version of arXiv:2408.15625 and has been submitted to the IEEE for possible publication
♻ ☆ LA-MARRVEL: A Knowledge-Grounded and Language-Aware LLM Reranker for AI-MARRVEL in Rare Disease Diagnosis
Diagnosing rare diseases requires linking gene findings with often unstructured reference text. Current pipelines collect many candidate genes, but clinicians still spend a lot of time filtering false positives and combining evidence from papers and databases. A key challenge is language: phenotype descriptions and inheritance patterns are written in prose, not fully captured by tables. Large language models (LLMs) can read such text, but clinical use needs grounding in citable knowledge and stable, repeatable behavior. We explore a knowledge-grounded and language-aware reranking layer on top of a high-recall first-stage pipeline. The goal is to improve precision and explainability, not to replace standard bioinformatics steps. We use expert-built context and a consensus method to reduce LLM variability, producing shorter, better-justified gene lists for expert review. LA-MARRVEL achieves the highest accuracy, outperforming other methods -- including traditional bioinformatics diagnostic tools (AI-MARRVEL, Exomiser, LIRICAL) and naive large language models (e.g., Anthropic Claude) -- with an average Recall@5 of 94.10%, a +3.65 percentage-point improvement over AI-MARRVEL. The LLM-generated reasoning provides clear prose on phenotype matching and inheritance patterns, making clinical review faster and easier. LA-MARRVEL has three parts: expert-engineered context that enriches phenotype and disease information; a ranked voting algorithm that combines multiple LLM runs to choose a consensus ranked gene list; and the AI-MARRVEL pipeline that provides first-stage ranks and gene annotations, already known as a state-of-the-art method in Rare Disease Diagnosis on BG, DDD, and UDN cohorts. The online AI-MARRVEL includes LA-MARRVEL as an LLM feature at https://ai.marrvel.org . We evaluate LA-MARRVEL on three datasets from independent cohorts of real-world diagnosed patients.
♻ ☆ Pay for The Second-Best Service: A Game-Theoretic Approach Against Dishonest LLM Providers
The widespread adoption of Large Language Models (LLMs) through Application Programming Interfaces (APIs) induces a critical vulnerability: the potential for dishonest manipulation by service providers. This manipulation can manifest in various forms, such as secretly substituting a proclaimed high-performance model with a low-cost alternative, or inflating responses with meaningless tokens to increase billing. This work tackles the issue through the lens of algorithmic game theory and mechanism design. We are the first to propose a formal economic model for a realistic user-provider ecosystem, where a user can iteratively delegate $T$ queries to multiple model providers, and providers can engage in a range of strategic behaviors. As our central contribution, we prove that for a continuous strategy space and any $\epsilon\in(0,\frac12)$, there exists an approximate incentive-compatible mechanism with an additive approximation ratio of $O(T^{1-\epsilon}\log T)$, and a guaranteed quasi-linear second-best user utility. We also prove an impossibility result, stating that no mechanism can guarantee an expected user utility that is asymptotically better than our mechanism. Furthermore, we demonstrate the effectiveness of our mechanism in simulation experiments with real-world API settings.
comment: 13 pages, 4 figures
♻ ☆ A Multi-target Bayesian Transformer Framework for Predicting Cardiovascular Disease Biomarkers during Pandemics
The COVID-19 pandemic disrupted healthcare systems worldwide, disproportionately impacting individuals with chronic conditions such as cardiovascular disease (CVD). These disruptions -- through delayed care and behavioral changes, affected key CVD biomarkers, including LDL cholesterol (LDL-C), HbA1c, BMI, and systolic blood pressure (SysBP). Accurate modeling of these changes is crucial for predicting disease progression and guiding preventive care. However, prior work has not addressed multi-target prediction of CVD biomarker from Electronic Health Records (EHRs) using machine learning (ML), while jointly capturing biomarker interdependencies, temporal patterns, and predictive uncertainty. In this paper, we propose MBT-CB, a Multi-target Bayesian Transformer (MBT) with pre-trained BERT-based transformer framework to jointly predict LDL-C, HbA1c, BMI and SysBP CVD biomarkers from EHR data. The model leverages Bayesian Variational Inference to estimate uncertainties, embeddings to capture temporal relationships and a DeepMTR model to capture biomarker inter-relationships. We evaluate MBT-CT on retrospective EHR data from 3,390 CVD patient records (304 unique patients) in Central Massachusetts during the Covid-19 pandemic. MBT-CB outperformed a comprehensive set of baselines including other BERT-based ML models, achieving an MAE of 0.00887, RMSE of 0.0135 and MSE of 0.00027, while effectively capturing data and model uncertainty, patient biomarker inter-relationships, and temporal dynamics via its attention and embedding mechanisms. MBT-CB's superior performance highlights its potential to improve CVD biomarker prediction and support clinical decision-making during pandemics.
♻ ☆ Zero-Shot Referring Expression Comprehension via Vison-Language True/False Verification
Referring Expression Comprehension (REC) is usually addressed with task-trained grounding models. We show that a zero-shot workflow, without any REC-specific training, can achieve competitive or superior performance. Our approach reformulates REC as box-wise visual-language verification: given proposals from a COCO-clean generic detector (YOLO-World), a general-purpose VLM independently answers True/False queries for each region. This simple procedure reduces cross-box interference, supports abstention and multiple matches, and requires no fine-tuning. On RefCOCO, RefCOCO+, and RefCOCOg, our method not only surpasses a zero-shot GroundingDINO baseline but also exceeds reported results for GroundingDINO trained on REC and GroundingDINO+CRG. Controlled studies with identical proposals confirm that verification significantly outperforms selection-based prompting, and results hold with open VLMs. Overall, we show that workflow design, rather than task-specific pretraining, drives strong zero-shot REC performance.
♻ ☆ Gestura: A LVLM-Powered System Bridging Motion and Semantics for Real-Time Free-Form Gesture Understanding
Free-form gesture understanding is highly appealing for human-computer interaction, as it liberates users from the constraints of predefined gesture categories. However, the sole existing solution GestureGPT suffers from limited recognition accuracy and slow response times. In this paper, we propose Gestura, an end-to-end system for free-form gesture understanding. Gestura harnesses a pre-trained Large Vision-Language Model (LVLM) to align the highly dynamic and diverse patterns of free-form gestures with high-level semantic concepts. To better capture subtle hand movements across different styles, we introduce a Landmark Processing Module that compensate for LVLMs' lack of fine-grained domain knowledge by embedding anatomical hand priors. Further, a Chain-of-Thought (CoT) reasoning strategy enables step-by-step semantic inference, transforming shallow knowledge into deep semantic understanding and significantly enhancing the model's ability to interpret ambiguous or unconventional gestures. Together, these components allow Gestura to achieve robust and adaptable free-form gesture comprehension. Additionally, we have developed the first open-source dataset for free-form gesture intention reasoning and understanding with over 300,000 annotated QA pairs.
comment: IMWUT2025
♻ ☆ Node-Based Editing for Multimodal Generation of Text, Audio, Image, and Video NeurIPS 2025
We present a node-based storytelling system for multimodal content generation. The system represents stories as graphs of nodes that can be expanded, edited, and iteratively refined through direct user edits and natural-language prompts. Each node can integrate text, images, audio, and video, allowing creators to compose multimodal narratives. A task selection agent routes between specialized generative tasks that handle story generation, node structure reasoning, node diagram formatting, and context generation. The interface supports targeted editing of individual nodes, automatic branching for parallel storylines, and node-based iterative refinement. Our results demonstrate that node-based editing supports control over narrative structure and iterative generation of text, images, audio, and video. We report quantitative outcomes on automatic story outline generation and qualitative observations of editing workflows. Finally, we discuss current limitations such as scalability to longer narratives and consistency across multiple nodes, and outline future work toward human-in-the-loop and user-centered creative AI tools.
comment: Accepted to NeurIPS 2025, Conference on Neural Information Processing Systems, Workshop on Generative and Protective AI for Content Creation
♻ ☆ Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting
Recent innovations in diffusion probabilistic models have paved the way for significant progress in image, text and audio generation, leading to their applications in generative time series forecasting. However, leveraging such abilities to model highly stochastic time series data remains a challenge. In this paper, we propose a novel Stochastic Diffusion (StochDiff) model which learns data-driven prior knowledge at each time step by utilizing the representational power of the stochastic latent spaces to model the variability of the multivariate time series data. The learnt prior knowledge helps the model to capture complex temporal dynamics and the inherent uncertainty of the data. This improves its ability to model highly stochastic time series data. Through extensive experiments on real-world datasets, we demonstrate the effectiveness of our proposed model on stochastic time series forecasting. Additionally, we showcase an application of our model for real-world surgical guidance, highlighting its potential to benefit the medical community.
comment: 15 pages, 4 figures. SIGKDD 2025
♻ ☆ HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts
Large language models (LLMs) have shown great success in text modeling tasks across domains. However, natural language exhibits inherent semantic hierarchies and nuanced geometric structure, which current LLMs do not capture completely owing to their reliance on Euclidean operations. Recent studies have also shown that not respecting the geometry of token embeddings leads to training instabilities and degradation of generative capabilities. These findings suggest that shifting to non-Euclidean geometries can better align language models with the underlying geometry of text. We thus propose to operate fully in Hyperbolic space, known for its expansive, scale-free, and low-distortion properties. We thus introduce HELM, a family of HypErbolic Large Language Models, offering a geometric rethinking of the Transformer-based LLM that addresses the representational inflexibility, missing set of necessary operations, and poor scalability of existing hyperbolic LMs. We additionally introduce a Mixture-of-Curvature Experts model, HELM-MICE, where each expert operates in a distinct curvature space to encode more fine-grained geometric structure from text, as well as a dense model, HELM-D. For HELM-MICE, we further develop hyperbolic Multi-Head Latent Attention (HMLA) for efficient, reduced-KV-cache training and inference. For both models, we develop essential hyperbolic equivalents of rotary positional encodings and RMS normalization. We are the first to train fully hyperbolic LLMs at billion-parameter scale, and evaluate them on well-known benchmarks such as MMLU and ARC, spanning STEM problem-solving, general knowledge, and commonsense reasoning. Our results show consistent gains from our HELM architectures -- up to 4% -- over popular Euclidean architectures used in LLaMA and DeepSeek, highlighting the efficacy and enhanced reasoning afforded by hyperbolic geometry in large-scale LM pretraining.
♻ ☆ Particle-Grid Neural Dynamics for Learning Deformable Object Models from RGB-D Videos
Modeling the dynamics of deformable objects is challenging due to their diverse physical properties and the difficulty of estimating states from limited visual information. We address these challenges with a neural dynamics framework that combines object particles and spatial grids in a hybrid representation. Our particle-grid model captures global shape and motion information while predicting dense particle movements, enabling the modeling of objects with varied shapes and materials. Particles represent object shapes, while the spatial grid discretizes the 3D space to ensure spatial continuity and enhance learning efficiency. Coupled with Gaussian Splattings for visual rendering, our framework achieves a fully learning-based digital twin of deformable objects and generates 3D action-conditioned videos. Through experiments, we demonstrate that our model learns the dynamics of diverse objects -- such as ropes, cloths, stuffed animals, and paper bags -- from sparse-view RGB-D recordings of robot-object interactions, while also generalizing at the category level to unseen instances. Our approach outperforms state-of-the-art learning-based and physics-based simulators, particularly in scenarios with limited camera views. Furthermore, we showcase the utility of our learned models in model-based planning, enabling goal-conditioned object manipulation across a range of tasks. The project page is available at https://kywind.github.io/pgnd .
comment: Project page: https://kywind.github.io/pgnd
♻ ☆ The Mini Wheelbot: A Testbed for Learning-based Balancing, Flips, and Articulated Driving
The Mini Wheelbot is a balancing, reaction wheel unicycle robot designed as a testbed for learning-based control. It is an unstable system with highly nonlinear yaw dynamics, non-holonomic driving, and discrete contact switches in a small, powerful, and rugged form factor. The Mini Wheelbot can use its wheels to stand up from any initial orientation - enabling automatic environment resets in repetitive experiments and even challenging half flips. We illustrate the effectiveness of the Mini Wheelbot as a testbed by implementing two popular learning-based control algorithms. First, we showcase Bayesian optimization for tuning the balancing controller. Second, we use imitation learning from an expert nonlinear MPC that uses gyroscopic effects to reorient the robot and can track higher-level velocity and orientation commands. The latter allows the robot to drive around based on user commands - for the first time in this class of robots. The Mini Wheelbot is not only compelling for testing learning-based control algorithms, but it is also just fun to work with, as demonstrated in the video of our experiments.
♻ ☆ Action Deviation-Aware Inference for Low-Latency Wireless Robots
To support latency-sensitive AI applications ranging from autonomous driving to industrial robot manipulation, 6G envisions distributed ML with computational resources in mobile, edge, and cloud connected over hyper-reliable low-latency communication (HRLLC). In this setting, speculative decoding can facilitate collaborative inference of models distributively deployed: a lightweight on-device model locally generates drafts while a more capable remote target model on a server verifies and corrects them in parallel with speculative sampling, thus resulting in lower latency without compromising accuracy. However, unlike autoregressive text generation, behavior cloning policies, typically used for embodied AI applications, cannot parallelize verification and correction for multiple drafts as each generated action depends on observation updated by a previous action. To this end, we propose Action Deviation-Aware Hybrid Inference (ADAHI), wherein drafts are selectively transmitted and verified based on action deviation, which has a strong correlation with action's rejection probability by the target model. By invoking server operation only when necessary, communication and computational overhead can be reduced while accuracy gain from speculative sampling is preserved. Experiments on our testbed show that ADAHI reduces transmission and server operations by approximately 40%, lowers end-to-end latency by 39.2%, and attains up to 97.2% of the task-success rate of baseline that invokes speculative sampling for every draft embedding vector.
♻ ☆ When Semantics Connect the Swarm: LLM-Driven Fuzzy Control for Cooperative Multi-Robot Underwater Coverage
Underwater multi-robot cooperative coverage remains challenging due to partial observability, limited communication, environmental uncertainty, and the lack of access to global localization. To address these issues, this paper presents a semantics-guided fuzzy control framework that couples Large Language Models (LLMs) with interpretable control and lightweight coordination. Raw multimodal observations are compressed by the LLM into compact, human-interpretable semantic tokens that summarize obstacles, unexplored regions, and Objects Of Interest (OOIs) under uncertain perception. A fuzzy inference system with pre-defined membership functions then maps these tokens into smooth and stable steering and gait commands, enabling reliable navigation without relying on global positioning. Then, we further coordinate multiple robots by introducing semantic communication that shares intent and local context in linguistic form, enabling agreement on who explores where while avoiding redundant revisits. Extensive simulations in unknown reef-like environments show that, under limited sensing and communication, the proposed framework achieves robust OOI-oriented navigation and cooperative coverage with improved efficiency and adaptability, narrowing the gap between semantic cognition and distributed underwater control in GPS-denied, map-free conditions.
comment: This paper has been submitted to IEEE Transactions on Mobile Computing. Jingzehua Xu, Weihang Zhang, and Yangyang Li contributed equally to this work and are recognized as the co-first authors of the paper
♻ ☆ SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for Novel View Synthesis and Scene Rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as sequential operations and, in many settings, multi-modality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. Additionally, the data are often collected using sensors which are handheld or mounted on drones or mobile robots, which complicates the accurate reproduction of sensor motions. To bridge these gaps, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM, Novel View Rendering and Gaussian Splatting. Recorded with a robot manipulator, it uniquely includes 40 sequences with time-synchronized RGB-D images, IMU readings, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of recent integrations of SLAM paradigms within robotic applications. The dataset features five setups with consumer and industrial objects under four controlled lighting conditions, each with separate training and test trajectories. All sequences are static with different levels of object rearrangements and occlusions. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
comment: 9 pages, 8 figures, submitted to The International Journal of Robotics Research (IJRR)
♻ ☆ Application Management in C-ITS: Orchestrating Demand-Driven Deployments and Reconfigurations
Vehicles are becoming increasingly automated and interconnected, enabling the formation of cooperative intelligent transport systems (C-ITS) and the use of offboard services. As a result, cloud-native techniques, such as microservices and container orchestration, play an increasingly important role in their operation. However, orchestrating applications in a large-scale C-ITS poses unique challenges due to the dynamic nature of the environment and the need for efficient resource utilization. In this paper, we present a demand-driven application management approach that leverages cloud-native techniques - specifically Kubernetes - to address these challenges. Taking into account the demands originating from different entities within the C-ITS, the approach enables the automation of processes, such as deployment, reconfiguration, update, upgrade, and scaling of microservices. Executing these processes on demand can, for example, reduce computing resource consumption and network traffic. A demand may include a request for provisioning an external supporting service, such as a collective environment model. The approach handles changing and new demands by dynamically reconciling them through our proposed application management framework built on Kubernetes and the Robot Operating System (ROS 2). We demonstrate the operation of our framework in the C-ITS use case of collective environment perception and make the source code of the prototypical framework publicly available at https://github.com/ika-rwth-aachen/application_manager.
comment: 7 pages, 2 figures, 2 tables; Accepted to be published as part of the 2025 IEEE International Conference on Intelligent Transportation Systems (ITSC 2025), Gold Coast, Australia, November 18-21, 2025
♻ ☆ HiMaCon: Discovering Hierarchical Manipulation Concepts from Unlabeled Multi-Modal Data NeurIPS 2025
Effective generalization in robotic manipulation requires representations that capture invariant patterns of interaction across environments and tasks. We present a self-supervised framework for learning hierarchical manipulation concepts that encode these invariant patterns through cross-modal sensory correlations and multi-level temporal abstractions without requiring human annotation. Our approach combines a cross-modal correlation network that identifies persistent patterns across sensory modalities with a multi-horizon predictor that organizes representations hierarchically across temporal scales. Manipulation concepts learned through this dual structure enable policies to focus on transferable relational patterns while maintaining awareness of both immediate actions and longer-term goals. Empirical evaluation across simulated benchmarks and real-world deployments demonstrates significant performance improvements with our concept-enhanced policies. Analysis reveals that the learned concepts resemble human-interpretable manipulation primitives despite receiving no semantic supervision. This work advances both the understanding of representation learning for manipulation and provides a practical approach to enhancing robotic performance in complex scenarios.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ MLP-SLAM: Multilayer Perceptron-Based Simultaneous Localization and Mapping
The Visual Simultaneous Localization and Mapping (V-SLAM) system has seen significant development in recent years, demonstrating high precision in environments with limited dynamic objects. However, their performance significantly deteriorates when deployed in settings with a higher presence of movable objects, such as environments with pedestrians, cars, and buses, which are common in outdoor scenes. To address this issue, we propose a Multilayer Perceptron (MLP)-based real-time stereo SLAM system that leverages complete geometry information to avoid information loss. Moreover, there is currently no publicly available dataset for directly evaluating the effectiveness of dynamic and static feature classification methods, and to bridge this gap, we have created a publicly available dataset containing over 50,000 feature points. Experimental results demonstrate that our MLP-based dynamic and static feature point discriminator has achieved superior performance compared to other methods on this dataset. Furthermore, the MLP-based real-time stereo SLAM system has shown the highest average precision and fastest speed on the outdoor KITTI tracking datasets compared to other dynamic SLAM systems.The open-source code and datasets are available at https://github.com/TaozheLi/MLP-SLAM.
comment: Dynamic SLAM
♻ ☆ Poutine: Vision-Language-Trajectory Pre-Training and Reinforcement Learning Post-Training Enable Robust End-to-End Autonomous Driving
Maintaining good driving behavior in out-of-distribution scenarios remains a critical challenge in autonomous driving. A promising direction is to leverage the generalist knowledge and reasoning capabilities of large-language models by treating unusual driving scenarios as a logical reasoning task. In this work, we present Poutine, a method that uses an off-the-shelf 3B-parameter vision-language model (VLM) - without any additional components - to achieve robust end-to-end autonomous driving via a simple and scalable training recipe. To learn strong base driving capabilities, we first train Poutine-Base using self-supervised next-token prediction over vision, language, and trajectory (VLT) tokens, leveraging both nominal and long-tail driving data. In the second stage, we fine-tune Poutine-Base using Group Relative Policy Optimization (GRPO) with a small set of human preference-labeled examples. We evaluated our approach on the Waymo end-to-end driving benchmark curated for long-tail scenarios. The final Poutine model achieves an RFS of 7.99 on the test set, placing 1st in the 2025 Waymo Vision-Based End-to-End Driving Challenge by a significant margin. Our results suggest that handcrafted tokenizers or custom architectural components added to base VLMs in prior work are not necessary to achieve strong driving performance. Instead, this work highlights the potential of scalable VLT pretraining combined with lightweight RL fine-tuning to enable robust and generalizable autonomous driving.
Team Xiaomi EV-AD VLA: Caption-Guided Retrieval System for Cross-Modal Drone Navigation -- Technical Report for IROS 2025 RoboSense Challenge Track 4
Cross-modal drone navigation remains a challenging task in robotics, requiring efficient retrieval of relevant images from large-scale databases based on natural language descriptions. The RoboSense 2025 Track 4 challenge addresses this challenge, focusing on robust, natural language-guided cross-view image retrieval across multiple platforms (drones, satellites, and ground cameras). Current baseline methods, while effective for initial retrieval, often struggle to achieve fine-grained semantic matching between text queries and visual content, especially in complex aerial scenes. To address this challenge, we propose a two-stage retrieval refinement method: Caption-Guided Retrieval System (CGRS) that enhances the baseline coarse ranking through intelligent reranking. Our method first leverages a baseline model to obtain an initial coarse ranking of the top 20 most relevant images for each query. We then use Vision-Language-Model (VLM) to generate detailed captions for these candidate images, capturing rich semantic descriptions of their visual content. These generated captions are then used in a multimodal similarity computation framework to perform fine-grained reranking of the original text query, effectively building a semantic bridge between the visual content and natural language descriptions. Our approach significantly improves upon the baseline, achieving a consistent 5\% improvement across all key metrics (Recall@1, Recall@5, and Recall@10). Our approach win TOP-2 in the challenge, demonstrating the practical value of our semantic refinement strategy in real-world robotic navigation scenarios.
♻ ☆ OmniVLA: Physically-Grounded Multimodal VLA with Unified Multi-Sensor Perception for Robotic Manipulation
Vision-language-action (VLA) models have shown strong generalization for robotic action prediction through large-scale vision-language pretraining. However, most existing models rely solely on RGB cameras, limiting their perception and, consequently, manipulation capabilities. We present OmniVLA, an omni-modality VLA model that integrates novel sensing modalities for physically-grounded spatial intelligence beyond RGB perception. The core of our approach is the sensor-masked image, a unified representation that overlays spatially grounded and physically meaningful masks onto the RGB images, derived from sensors including an infrared camera, a mmWave radar, and a microphone array. This image-native unification keeps sensor input close to RGB statistics to facilitate training, provides a uniform interface across sensor hardware, and enables data-efficient learning with lightweight per-sensor projectors. Built on this, we present a multisensory vision-language-action model architecture and train the model based on an RGB-pretrained VLA backbone. We evaluate OmniVLA on challenging real-world tasks where sensor-modality perception guides the robotic manipulation. OmniVLA achieves an average task success rate of 84%, significantly outperforms both RGB-only and raw-sensor-input baseline models by 59% and 28% respectively, meanwhile showing higher learning efficiency and stronger generalization capability.
♻ ☆ The Future of Generative AI in Software Engineering: A Vision from Industry and Academia in the European GENIUS Project
Generative AI (GenAI) has recently emerged as a groundbreaking force in Software Engineering, capable of generating code, identifying bugs, recommending fixes, and supporting quality assurance. While its use in coding tasks shows considerable promise, applying GenAI across the entire Software Development Life Cycle (SDLC) has not yet been fully explored. Critical uncertainties in areas such as reliability, accountability, security, and data privacy demand deeper investigation and coordinated action. The GENIUS project, comprising over 30 European industrial and academic partners, aims to address these challenges by advancing AI integration across all SDLC phases. It focuses on GenAI's potential, the development of innovative tools, and emerging research challenges, actively shaping the future of software engineering. This vision paper presents a shared perspective on the future of GenAI-driven software engineering, grounded in cross-sector dialogue as well as experiences and findings within the GENIUS consortium. The paper explores four central elements: (1) a structured overview of current challenges in GenAI adoption across the SDLC; (2) a forward-looking vision outlining key technological and methodological advances expected over the next five years; (3) anticipated shifts in the roles and required skill sets of software professionals; and (4) the contribution of GENIUS in realising this transformation through practical tools and industrial validation. This paper focuses on aligning technical innovation with business relevance. It aims to inform both research agendas and industrial strategies, providing a foundation for reliable, scalable, and industry-ready GenAI solutions for software engineering teams.
comment: Accepted for the 2nd IEEE/ACM International Conference on AI-powered Software (AIware 2025)
♻ ☆ Activation-Informed Merging of Large Language Models
Model merging, a method that combines the parameters and embeddings of multiple fine-tuned large language models (LLMs), offers a promising approach to enhance model performance across various tasks while maintaining computational efficiency. This paper introduces Activation-Informed Merging (AIM), a technique that integrates the information from the activation space of LLMs into the merging process to improve performance and robustness. AIM is designed as a flexible, complementary solution that is applicable to any existing merging method. It aims to preserve critical weights from the base model, drawing on principles from continual learning (CL) and model compression. Utilizing a task-agnostic calibration set, AIM selectively prioritizes essential weights during merging. We empirically demonstrate that AIM significantly enhances the performance of merged models across multiple benchmarks. Our findings suggest that considering the activation-space information can provide substantial advancements in the model merging strategies for LLMs, with up to a 40% increase in benchmark performance.
♻ ☆ HugAgent: Benchmarking LLMs for Simulation of Individualized Human Reasoning NeurIPS 2025
Simulating human reasoning in open-ended tasks has long been a central aspiration in AI and cognitive science. While large language models now approximate human responses at scale, they remain tuned to population-level consensus, often erasing the individuality of reasoning styles and belief trajectories. To advance the vision of more human-like reasoning in machines, we introduce HugAgent (Human-Grounded Agent Benchmark), which rethinks human reasoning simulation along three dimensions: (i) from averaged to individualized reasoning, (ii) from behavioral mimicry to cognitive alignment, and (iii) from vignette-based to open-ended data. The benchmark evaluates whether a model can predict a specific person's behavioral responses and the underlying reasoning dynamics in out-of-distribution scenarios, given partial evidence of their prior views. HugAgent adopts a dual-track design: a human track that automates and scales the think-aloud method to collect ecologically valid human reasoning data, and a synthetic track for further scalability and systematic stress testing. This architecture enables low-cost, extensible expansion to new tasks and populations. Experiments with state-of-the-art language models reveal persistent adaptation gaps, positioning HugAgent as the first extensible benchmark for aligning machine reasoning with the individuality of human thought. The benchmark, along with its complete data collection pipeline and companion chatbot, is open-sourced as HugAgent (https://anonymous.4open.science/r/HugAgent) and TraceYourThinking (https://anonymous.4open.science/r/trace-your-thinking).
comment: To appear in NeurIPS 2025 Workshop on Bridging Language, Agent, and World Models (LAW)
♻ ☆ Chain-of-Query: Unleashing the Power of LLMs in SQL-Aided Table Understanding via Multi-Agent Collaboration AACL 2025
Table understanding requires structured, multi-step reasoning. Large Language Models (LLMs) struggle with it due to the structural complexity of tabular data. Recently, multi-agent frameworks for SQL generation have shown promise in tackling the challenges of understanding tabular data, but existing approaches often suffer from limitations such as the inability to comprehend table structure for reliable SQL generation, error propagation that results in invalid queries, and over-reliance on execution correctness. To address these issues, we propose Chain-of-Query (CoQ), a novel multi-agent framework for SQL-aided table understanding. CoQ adopts natural-language-style representations of table schemas to abstract away structural noise and enhance understanding. It employs a clause-by-clause SQL generation strategy to improve query quality and introduces a hybrid reasoning division that separates SQL-based mechanical reasoning from LLM-based logical inference, thereby reducing reliance on execution outcomes. Extensive experiments across four models and five widely used benchmarks demonstrate that CoQ achieves substantial accuracy improvements and significantly lowers invalid SQL rates compared to prior generic LLM-based, SQL-aided, and hybrid baselines, confirming its superior effectiveness in table understanding. The code is available at https://github.com/SongyuanSui/ChainofQuery.
comment: AACL 2025 Main Conference
♻ ☆ ProRefine: Inference-Time Prompt Refinement with Textual Feedback NeurIPS 2025
Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, play a substantial role in many cutting-edge commercial applications, and continue to fascinate researchers across fields for their potential to accomplish expensive, complex tasks that, until recently, only humans have been trusted to do. These workflows depend critically on the prompts used to provide the roles models play in such workflows. Poorly designed prompts that fail even slightly to guide individual agents can lead to sub-optimal performance that may snowball within a system of agents, limiting their reliability and scalability. To address this important problem of inference-time prompt optimization, we introduce ProRefine, an innovative inference-time optimization method that uses an agentic loop of LLMs to generate and apply textual feedback. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to approach the performance of their larger counterparts. This highlights its potential for building more cost-effective and powerful hybrid AI systems, thereby democratizing access to high-performing AI.
comment: Workshop on Efficient Reasoning at NeurIPS 2025
♻ ☆ Less Greedy Equivalence Search
Greedy Equivalence Search (GES) is a classic score-based algorithm for causal discovery from observational data. In the sample limit, it recovers the Markov equivalence class of graphs that describe the data. Still, it faces two challenges in practice: computational cost and finite-sample accuracy. In this paper, we develop Less Greedy Equivalence Search (LGES), a variant of GES that retains its theoretical guarantees while partially addressing these limitations. LGES modifies the greedy step; rather than always applying the highest-scoring insertion, it avoids edge insertions between variables for which the score implies some conditional independence. This more targeted search yields up to a \(10\)-fold speed-up and a substantial reduction in structural error relative to GES. Moreover, LGES can guide the search using prior knowledge, and can correct this knowledge when contradicted by data. Finally, LGES can use interventional data to refine the learned observational equivalence class. We prove that LGES recovers the true equivalence class in the sample limit, even with misspecified knowledge. Experiments demonstrate that LGES outperforms GES and other baselines in speed, accuracy, and robustness to misspecified knowledge. Our code is available at https://github.com/CausalAILab/lges.
♻ ☆ Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities NeurIPS 2025
Sampling efficiently from a target unnormalized probability density remains a core challenge, with relevance across countless high-impact scientific applications. A promising approach towards this challenge is the design of amortized samplers that borrow key ideas, such as probability path design, from state-of-the-art generative diffusion models. However, all existing diffusion-based samplers remain unable to draw samples from distributions at the scale of even simple molecular systems. In this paper, we propose Progressive Inference-Time Annealing (PITA), a novel framework to learn diffusion-based samplers that combines two complementary interpolation techniques: I.) Annealing of the Boltzmann distribution and II.) Diffusion smoothing. PITA trains a sequence of diffusion models from high to low temperatures by sequentially training each model at progressively higher temperatures, leveraging engineered easy access to samples of the temperature-annealed target density. In the subsequent step, PITA enables simulating the trained diffusion model to procure training samples at a lower temperature for the next diffusion model through inference-time annealing using a novel Feynman-Kac PDE combined with Sequential Monte Carlo. Empirically, PITA enables, for the first time, equilibrium sampling of N-body particle systems, Alanine Dipeptide, and tripeptides in Cartesian coordinates with dramatically lower energy function evaluations. Code available at: https://github.com/taraak/pita
comment: Published at NeurIPS 2025 (Spotlight). Code is available at https://github.com/taraak/pita
♻ ☆ AI Agentic Vulnerability Injection And Transformation with Optimized Reasoning
The increasing complexity of software systems and the sophistication of cyber-attacks have underscored the critical need for effective automated vulnerability detection and repair systems. Data-driven approaches using deep learning models show promise but critically depend on the availability of large, accurately labeled datasets. Yet existing datasets either suffer from noisy labels, limited range of vulnerabilities, or fail to reflect vulnerabilities as they occur in real-world software. This also limits large-scale benchmarking of such solutions. Automated vulnerability injection provides a way to directly address these dataset limitations, but existing techniques remain limited in coverage, contextual fidelity, or injection success rates. In this paper, we present AVIATOR, the first AI-agentic vulnerability injection workflow. It automatically injects realistic, category-specific vulnerabilities for high-fidelity, diverse, large-scale vulnerability dataset generation. Unlike prior monolithic approaches, AVIATOR orchestrates specialized AI agents, function agents and traditional code analysis tools that replicate expert reasoning. It combines semantic analysis, injection synthesis enhanced with LoRA-based fine-tuning and Retrieval-Augmented Generation, as well as post-injection validation via static analysis and LLM-based discriminators. This modular decomposition allows specialized agents to focus on distinct tasks, improving robustness of injection and reducing error propagation across the workflow. Evaluations across three distinct benchmarks demonstrate that AVIATOR achieves 91%-95% injection success rates, significantly surpassing existing automated dataset generation techniques in both accuracy and scope of software vulnerabilities.
♻ ☆ How Do AI Agents Do Human Work? Comparing AI and Human Workflows Across Diverse Occupations
AI agents are continually optimized for tasks related to human work, such as software engineering and professional writing, signaling a pressing trend with significant impacts on the human workforce. However, these agent developments have often not been grounded in a clear understanding of how humans execute work, to reveal what expertise agents possess and the roles they can play in diverse workflows. In this work, we study how agents do human work by presenting the first direct comparison of human and agent workers across multiple essential work-related skills: data analysis, engineering, computation, writing, and design. To better understand and compare heterogeneous computer-use activities of workers, we introduce a scalable toolkit to induce interpretable, structured workflows from either human or agent computer-use activities. Using such induced workflows, we compare how humans and agents perform the same tasks and find that: (1) While agents exhibit promise in their alignment to human workflows, they take an overwhelmingly programmatic approach across all work domains, even for open-ended, visually dependent tasks like design, creating a contrast with the UI-centric methods typically used by humans. (2) Agents produce work of inferior quality, yet often mask their deficiencies via data fabrication and misuse of advanced tools. (3) Nonetheless, agents deliver results 88.3% faster and cost 90.4-96.2% less than humans, highlighting the potential for enabling efficient collaboration by delegating easily programmable tasks to agents.
♻ ☆ Text to Robotic Assembly of Multi Component Objects using 3D Generative AI and Vision Language Models NeurIPS 2025
Advances in 3D generative AI have enabled the creation of physical objects from text prompts, but challenges remain in creating objects involving multiple component types. We present a pipeline that integrates 3D generative AI with vision-language models (VLMs) to enable the robotic assembly of multi-component objects from natural language. Our method leverages VLMs for zero-shot, multi-modal reasoning about geometry and functionality to decompose AI-generated meshes into multi-component 3D models using predefined structural and panel components. We demonstrate that a VLM is capable of determining which mesh regions need panel components in addition to structural components, based on the object's geometry and functionality. Evaluation across test objects shows that users preferred the VLM-generated assignments 90.6% of the time, compared to 59.4% for rule-based and 2.5% for random assignment. Lastly, the system allows users to refine component assignments through conversational feedback, enabling greater human control and agency in making physical objects with generative AI and robotics.
comment: Accepted to NeurIPS 2025, Conference on Neural Information Processing Systems, Creative AI Track
♻ ☆ Conformal Prediction Adaptive to Unknown Subpopulation Shifts ICLR 2026
Conformal prediction is widely used to equip black-box machine learning models with uncertainty quantification, offering formal coverage guarantees under exchangeable data. However, these guarantees fail when faced with subpopulation shifts, where the test environment contains a different mix of subpopulations than the calibration data. In this work, we focus on unknown subpopulation shifts where we are not given group-information i.e. the subpopulation labels of datapoints have to be inferred. We propose new methods that provably adapt conformal prediction to such shifts, ensuring valid coverage without explicit knowledge of subpopulation structure. While existing methods in similar setups assume perfect subpopulation labels, our framework explicitly relaxes this requirement and characterizes conditions where formal coverage guarantees remain feasible. Further, our algorithms scale to high-dimensional settings and remain practical in realistic machine learning tasks. Extensive experiments on vision (with vision transformers) and language (with large language models) benchmarks demonstrate that our methods reliably maintain coverage and effectively control risks in scenarios where standard conformal prediction fails.
comment: 21 pages, 7 figures, 5 tables, submitted to ICLR 2026
♻ ☆ Internal World Models as Imagination Networks in Cognitive Agents
What is the computational objective of imagination? While classical interpretations suggest imagination is useful for maximizing rewards, recent findings challenge this view. In this study, we propose that imagination serves to access an internal world model (IWM) and use psychological network analysis to explore IWMs in humans and large language models (LLMs). Specifically, we assessed imagination vividness ratings using two questionnaires and constructed imagination networks from these reports. Imagination networks from human groups showed correlations between different centrality measures, including expected influence, strength, and closeness. However, imagination networks from LLMs showed a lack of clustering and lower correlations between centrality measures under different prompts and conversational memory conditions. Together, these results indicate a lack of similarity between IWMs in human and LLM agents. Overall, our study offers a novel method for comparing internally-generated representations in humans and AI, providing insights for developing human-like imagination in artificial intelligence.
♻ ☆ Joint Verification and Refinement of Language Models for Safety-Constrained Planning
Large language models possess impressive capabilities in generating programs (e.g., Python) from natural language descriptions to execute robotic tasks. However, these generated programs often contain errors that violate externally given task specifications. Without an effective method to verify their correctness, the reliable deployment of language models in real-world systems is practically infeasible. We develop a method that converts generated robot programs into an automaton-based representation and verifies them against task-relevant safety specifications. We establish a theorem that any arbitrary combination of the verified programs will also satisfy the safety specifications. Hence, the method eliminates the need to verify complex programs composed of multiple simpler ones, reducing computation complexity. We then introduce an automated fine-tuning procedure that leverages verification outcomes for supervision. By applying the theorem, this procedure only requires training the model to generate safe sub-components, thereby improving training efficiency. Empirical results on robot applications show a 30 percent increase in the probability of generating specification-compliant programs, with training time reduced by half compared to fine-tuning on generating full programs.
♻ ☆ TOBUGraph: Knowledge Graph-Based Retrieval for Enhanced LLM Performance Beyond RAG
Retrieval-Augmented Generation (RAG) is one of the leading and most widely used techniques for enhancing LLM retrieval capabilities, but it still faces significant limitations in commercial use cases. RAG primarily relies on the query-chunk text-to-text similarity in the embedding space for retrieval and can fail to capture deeper semantic relationships across chunks, is highly sensitive to chunking strategies, and is prone to hallucinations. To address these challenges, we propose TOBUGraph, a graph-based retrieval framework that first constructs the knowledge graph from unstructured data dynamically and automatically. Using LLMs, TOBUGraph extracts structured knowledge and diverse relationships among data, going beyond RAG's text-to-text similarity. Retrieval is achieved through graph traversal, leveraging the extracted relationships and structures to enhance retrieval accuracy, eliminating the need for chunking configurations while reducing hallucination. We demonstrate TOBUGraph's effectiveness in TOBU, a real-world application in production for personal memory organization and retrieval. Our evaluation using real user data demonstrates that TOBUGraph outperforms multiple RAG implementations in both precision and recall, significantly improving user experience through improved retrieval accuracy.
comment: Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
♻ ☆ RCCDA: Adaptive Model Updates in the Presence of Concept Drift under a Constrained Resource Budget
Machine learning (ML) algorithms deployed in real-world environments are often faced with the challenge of adapting models to concept drift, where the task data distributions are shifting over time. The problem becomes even more difficult when model performance must be maintained under adherence to strict resource constraints. Existing solutions often depend on drift-detection methods that produce high computational overhead for resource-constrained environments, and fail to provide strict guarantees on resource usage or theoretical performance assurances. To address these shortcomings, we propose RCCDA: a dynamic model update policy that optimizes ML training dynamics while ensuring compliance to predefined resource constraints, utilizing only past loss information and a tunable drift threshold. In developing our policy, we analytically characterize the evolution of model loss under concept drift with arbitrary training update decisions. Integrating these results into a Lyapunov drift-plus-penalty framework produces a lightweight greedy-optimal policy that provably limits update frequency and cost. Experimental results on four domain generalization datasets demonstrate that our policy outperforms baseline methods in inference accuracy while adhering to strict resource constraints under several schedules of concept drift, making our solution uniquely suited for real-time ML deployments.
comment: Neurips 2025
♻ ☆ The Less Intelligent the Elements, the More Intelligent the Whole. Or, Possibly Not?
The agent-based modelling community has a debate on how ``intelligent'' artificial agents should be, and in what ways their local intelligence relates to the emergence of a collective intelligence. I approach this debate by endowing the preys and predators of the Lotka-Volterra model with behavioral algorithms characterized by different levels of sophistication. The main finding is that by endowing both preys and predators with the capability of making predictions based on linear extrapolation a novel sort of dynamic equilibrium appears, where both species co-exist while both populations grow indefinitely. While this broadly confirms that, in general, relatively simple agents favor the emergence of complex collective behavior, it also suggests that one fundamental mechanism is that the capability of individuals to take first-order derivatives of one other's behavior can allow the collective computation of derivatives of any order.
comment: 29 pages, 3 figures, 3 tables
♻ ☆ Analyzing limits for in-context learning NeurIPS 2025
Our paper challenges claims from prior research that transformer-based models, when learning in context, implicitly implement standard learning algorithms. We present empirical evidence inconsistent with this view and provide a mathematical analysis demonstrating that transformers cannot achieve general predictive accuracy due to inherent architectural limitations.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop What Can t Transformers Do?
♻ ☆ Toward Engineering AGI: Benchmarking the Engineering Design Capabilities of LLMs NeurIPS 2025
Modern engineering, spanning electrical, mechanical, aerospace, civil, and computer disciplines, stands as a cornerstone of human civilization and the foundation of our society. However, engineering design poses a fundamentally different challenge for large language models (LLMs) compared with traditional textbook-style problem solving or factual question answering. Although existing benchmarks have driven progress in areas such as language understanding, code synthesis, and scientific problem solving, real-world engineering design demands the synthesis of domain knowledge, navigation of complex trade-offs, and management of the tedious processes that consume much of practicing engineers' time. Despite these shared challenges across engineering disciplines, no benchmark currently captures the unique demands of engineering design work. In this work, we introduce EngDesign, an Engineering Design benchmark that evaluates LLMs' abilities to perform practical design tasks across nine engineering domains. Unlike existing benchmarks that focus on factual recall or question answering, EngDesign uniquely emphasizes LLMs' ability to synthesize domain knowledge, reason under constraints, and generate functional, objective-oriented engineering designs. Each task in EngDesign represents a real-world engineering design problem, accompanied by a detailed task description specifying design goals, constraints, and performance requirements. EngDesign pioneers a simulation-based evaluation paradigm that moves beyond textbook knowledge to assess genuine engineering design capabilities and shifts evaluation from static answer checking to dynamic, simulation-driven functional verification, marking a crucial step toward realizing the vision of engineering Artificial General Intelligence (AGI).
comment: To Appear in NeurIPS 2025 Datasets & Benchmarks Track