MyArxiv
Computation and Language 86
☆ Cross-modal Information Flow in Multimodal Large Language Models
The recent advancements in auto-regressive multimodal large language models (MLLMs) have demonstrated promising progress for vision-language tasks. While there exists a variety of studies investigating the processing of linguistic information within large language models, little is currently known about the inner working mechanism of MLLMs and how linguistic and visual information interact within these models. In this study, we aim to fill this gap by examining the information flow between different modalities -- language and vision -- in MLLMs, focusing on visual question answering. Specifically, given an image-question pair as input, we investigate where in the model and how the visual and linguistic information are combined to generate the final prediction. Conducting experiments with a series of models from the LLaVA series, we find that there are two distinct stages in the process of integration of the two modalities. In the lower layers, the model first transfers the more general visual features of the whole image into the representations of (linguistic) question tokens. In the middle layers, it once again transfers visual information about specific objects relevant to the question to the respective token positions of the question. Finally, in the higher layers, the resulting multimodal representation is propagated to the last position of the input sequence for the final prediction. Overall, our findings provide a new and comprehensive perspective on the spatial and functional aspects of image and language processing in the MLLMs, thereby facilitating future research into multimodal information localization and editing.
☆ Automated Literature Review Using NLP Techniques and LLM-Based Retrieval-Augmented Generation
This research presents and compares multiple approaches to automate the generation of literature reviews using several Natural Language Processing (NLP) techniques and retrieval-augmented generation (RAG) with a Large Language Model (LLM). The ever-increasing number of research articles provides a huge challenge for manual literature review. It has resulted in an increased demand for automation. Developing a system capable of automatically generating the literature reviews from only the PDF files as input is the primary objective of this research work. The effectiveness of several Natural Language Processing (NLP) strategies, such as the frequency-based method (spaCy), the transformer model (Simple T5), and retrieval-augmented generation (RAG) with Large Language Model (GPT-3.5-turbo), is evaluated to meet the primary objective. The SciTLDR dataset is chosen for this research experiment and three distinct techniques are utilized to implement three different systems for auto-generating the literature reviews. The ROUGE scores are used for the evaluation of all three systems. Based on the evaluation, the Large Language Model GPT-3.5-turbo achieved the highest ROUGE-1 score, 0.364. The transformer model comes in second place and spaCy is at the last position. Finally, a graphical user interface is created for the best system based on the large language model.
comment: Key Words : T5, SpaCy, Large Language Model, GPT, ROUGE, Literature Review, Natural Language Processing, Retrieval-augmented generation
☆ On Importance of Code-Mixed Embeddings for Hate Speech Identification
Code-mixing is the practice of using two or more languages in a single sentence, which often occurs in multilingual communities such as India where people commonly speak multiple languages. Classic NLP tools, trained on monolingual data, face challenges when dealing with code-mixed data. Extracting meaningful information from sentences containing multiple languages becomes difficult, particularly in tasks like hate speech detection, due to linguistic variation, cultural nuances, and data sparsity. To address this, we aim to analyze the significance of code-mixed embeddings and evaluate the performance of BERT and HingBERT models (trained on a Hindi-English corpus) in hate speech detection. Our study demonstrates that HingBERT models, benefiting from training on the extensive Hindi-English dataset L3Cube-HingCorpus, outperform BERT models when tested on hate speech text datasets. We also found that code-mixed Hing-FastText performs better than standard English FastText and vanilla BERT models.
☆ Challenges in Adapting Multilingual LLMs to Low-Resource Languages using LoRA PEFT Tuning
Large Language Models (LLMs) have demonstrated remarkable multilingual capabilities, yet challenges persist in adapting these models for low-resource languages. In this study, we investigate the effects of Low-Rank Adaptation (LoRA) Parameter-Efficient Fine-Tuning (PEFT) on multilingual Gemma models for Marathi, a language with limited resources. Using a translated Alpaca dataset with 52,000 instruction-response pairs, our findings reveal that while evaluation metrics often show a performance decline post-fine-tuning, manual assessments frequently suggest that the fine-tuned models outperform their original counterparts. The observations indicate improvements in target language generation capabilities but a reduction in reasoning abilities following language adaptation. These results underscore the need for improved evaluation methodologies and the creation of high-quality native datasets to accurately assess language-specific model performance in low-resource settings.
☆ A Pipeline of Neural-Symbolic Integration to Enhance Spatial Reasoning in Large Language Models
Large Language Models (LLMs) have demonstrated impressive capabilities across various tasks. However, LLMs often struggle with spatial reasoning which is one essential part of reasoning and inference and requires understanding complex relationships between objects in space. This paper proposes a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities. We evaluate our approach on two benchmark datasets: StepGame and SparQA, implementing three distinct strategies: (1) ASP (Answer Set Programming)-based symbolic reasoning, (2) LLM + ASP pipeline using DSPy, and (3) Fact + Logical rules. Our experiments demonstrate significant improvements over the baseline prompting methods, with accuracy increases of 40-50% on StepGame} dataset and 3-13% on the more complex SparQA dataset. The "LLM + ASP" pipeline achieves particularly strong results on the tasks of Finding Relations (FR) and Finding Block (FB) questions, though performance varies across different question types. The impressive results suggest that while neural-symbolic approaches offer promising directions for enhancing spatial reasoning in LLMs, their effectiveness depends heavily on the specific task characteristics and implementation strategies. We propose an integrated, simple yet effective set of strategies using a neural-symbolic pipeline to boost spatial reasoning abilities in LLMs. This pipeline and its strategies demonstrate strong and broader applicability to other reasoning domains in LLMs, such as temporal reasoning, deductive inference etc.
☆ Retrofitting (Large) Language Models with Dynamic Tokenization
Current language models (LMs) use a fixed, static subword tokenizer. This choice, often taken for granted, typically results in degraded efficiency and capabilities in languages other than English, and makes it challenging to apply LMs to new domains or languages. To address these issues, we propose retrofitting LMs with dynamic tokenization: a way to dynamically decide on token boundaries based on the input text. For encoder-style models, we introduce a subword-merging algorithm inspired by byte-pair encoding (BPE), but at a batch level. We merge frequent subword sequences in a batch, then apply a pretrained embedding-prediction hypernetwork to compute the token embeddings on-the-fly. When applied with word-level boundaries, this on average reduces token sequence lengths by >20% across 14 languages on XNLI with XLM-R while degrading its task performance by less than 2%. For decoder-style models, we apply dynamic tokenization in two ways: 1) for prefilling, maintaining performance of Mistral-7B almost completely with up to 40% sequence reduction - relative to the word-level; and 2) via an approximate nearest neighbor index, achieving fast generation with a one million token vocabulary, demonstrating scalability to even larger, dynamic vocabularies. Overall, our findings show that dynamic tokenization substantially improves inference speed and promotes fairness across languages, making a leap towards overcoming the limitations of static tokenization and enabling more equitable and adaptable LMs.
☆ Emergence of Self-Identity in AI: A Mathematical Framework and Empirical Study with Generative Large Language Models
This paper introduces a mathematical framework for defining and quantifying self-identity in artificial intelligence (AI) systems, addressing a critical gap in the theoretical foundations of artificial consciousness. While existing approaches to artificial self-awareness often rely on heuristic implementations or philosophical abstractions, we present a formal framework grounded in metric space theory, measure theory, and functional analysis. Our framework posits that self-identity emerges from two mathematically quantifiable conditions: the existence of a connected continuum of memories $C \subseteq \mathcal{M}$ in a metric space $(\mathcal{M}, d_{\mathcal{M}})$, and a continuous mapping $I: \mathcal{M} \to \mathcal{S}$ that maintains consistent self-recognition across this continuum, where $(\mathcal{S}, d_{\mathcal{S}})$ represents the metric space of possible self-identities. To validate this theoretical framework, we conducted empirical experiments using the Llama 3.2 1B model, employing Low-Rank Adaptation (LoRA) for efficient fine-tuning. The model was trained on a synthetic dataset containing temporally structured memories, designed to capture the complexity of coherent self-identity formation. Our evaluation metrics included quantitative measures of self-awareness, response consistency, and linguistic precision. The experimental results demonstrate substantial improvements in measurable self-awareness metrics, with the primary self-awareness score increasing from 0.276 to 0.801. This enables the structured creation of AI systems with validated self-identity features. The implications of our study are immediately relevant to the fields of humanoid robotics and autonomous systems.
☆ Beyond Examples: High-level Automated Reasoning Paradigm in In-Context Learning via MCTS
In-context Learning (ICL) enables large language models (LLMs) to tackle downstream tasks through sophisticated prompting and high-quality demonstrations. However, this traditional ICL paradigm shows limitations when facing complex mathematical reasoning tasks, primarily due to its heavy dependence on example quality and the necessity for human intervention in challenging scenarios. To address these limitations, this paper presents HiAR-ICL, a \textbf{Hi}gh-level \textbf{A}utomated \textbf{R}easoning paradigm in \textbf{ICL} that shifts focus from specific examples to abstract thinking patterns, extending the conventional concept of context in ICL. HiAR-ICL introduces five atomic reasoning actions as fundamental components for constructing chain-structured patterns. Using Monte Carlo Tree Search, we explore reasoning paths and construct thought cards to guide subsequent inference. We then develop a cognitive complexity framework that dynamically matches problems with appropriate thought cards. Experimental results demonstrate HiAR-ICL's effectiveness, achieving state-of-the-art accuracy (79.6$\%$) on the MATH benchmark with Qwen2.5-7B-Instruct, surpassing GPT-4o (76.6$\%$) and Claude 3.5 (71.1$\%$).
☆ Isolating authorship from content with semantic embeddings and contrastive learning
Authorship has entangled style and content inside. Authors frequently write about the same topics in the same style, so when different authors write about the exact same topic the easiest way out to distinguish them is by understanding the nuances of their style. Modern neural models for authorship can pick up these features using contrastive learning, however, some amount of content leakage is always present. Our aim is to reduce the inevitable impact and correlation between content and authorship. We present a technique to use contrastive learning (InfoNCE) with additional hard negatives synthetically created using a semantic similarity model. This disentanglement technique aims to distance the content embedding space from the style embedding space, leading to embeddings more informed by style. We demonstrate the performance with ablations on two different datasets and compare them on out-of-domain challenges. Improvements are clearly shown on challenging evaluations on prolific authors with up to a 10% increase in accuracy when the settings are particularly hard. Trials on challenges also demonstrate the preservation of zero-shot capabilities of this method as fine tuning.
☆ Parole de présidents (1958-2022)
En plus de soixante ans, huit pr\'esidents se sont succ\'ed\'e \`a la t\^ete de la Ve R\'epublique fran\c{c}aise (de Gaulle, Pompidou, Giscard d'Estaing, Mitterrand, Chirac, Sarkozy, Hollande, Macron). Apr\`es avoir pr\'esent\'e le corpus de leurs discours -- soit 9202 textes et plus de 20 millions de mots \'etiquet\'es -- le style de chacun des pr\'esidents sera caract\'eris\'e \`a l'aide de leurs vocabulaire (vocables et cat\'egories grammaticales). Une analyse plus approfondie r\'ev\`ele les s\'equences typiques de chaque locataire de l'\'Elys\'ee. Bas\'ee sur les distances entre l'ensemble des allocutions, une figure illustre les similitudes et diff\'erences entre les diff\'erents pr\'esidents. Over the past sixty-six years, eight presidents successively headed the Fifth French Republic (de Gaulle, Pompidou, Giscard d'Estaing, Mitterrand, Chirac, Sarkozy, Holland, Macron). After presenting the corpus of their speeches -- 9,202 texts and more than 20 million labelled words -- the style of each of them will be characterized by their vocabulary (lemmas and part-of-speech). A deeper analysis reveals the typical sequences of each tenant of the Elys\'ee. Based on an intertextual distance between all presidential speeches, a synthesis can be drawn reflecting the similarities and differences between presidents.
comment: in French language
☆ Draft Model Knows When to Stop: A Self-Verification Length Policy for Speculative Decoding
Speculative Decoding (SD) has become an important technique in accelerating the inference speed of large language models. Conventional SD methods employ a fixed draft length, which ignores the token generation difficulty across tasks. Consequently, in this paper, we address such an issue and introduce SVIP - a difficulty-aware dynamic draft length policy for speculative decoding systems. Based on a theoretical lower bound of draft token acceptance rate and its inference-time approximation, SVIP adaptively determines the lengths of draft sequences based on the entropy of each draft token distribution. Experimental results on mainstream SD benchmarks and frameworks demonstrate the superior performance of SVIP, achieving up to 20\% walltime speedup on SpecBench over baseline SD methods and 60\% speedup on MT-Bench for long-form generation of up to 8K tokens. Moreover, SVIP is totally training-free and compatible with any existing SD methods that generate draft tokens autoregressively. Experimental results also show that SVIP yields consistent walltime improvement on top of GliDe & CaPE and EAGLE-2.
comment: Code at https://github.com/Geralt-Targaryen/SVIP
☆ Is my Meeting Summary Good? Estimating Quality with a Multi-LLM Evaluator
The quality of meeting summaries generated by natural language generation (NLG) systems is hard to measure automatically. Established metrics such as ROUGE and BERTScore have a relatively low correlation with human judgments and fail to capture nuanced errors. Recent studies suggest using large language models (LLMs), which have the benefit of better context understanding and adaption of error definitions without training on a large number of human preference judgments. However, current LLM-based evaluators risk masking errors and can only serve as a weak proxy, leaving human evaluation the gold standard despite being costly and hard to compare across studies. In this work, we present MESA, an LLM-based framework employing a three-step assessment of individual error types, multi-agent discussion for decision refinement, and feedback-based self-training to refine error definition understanding and alignment with human judgment. We show that MESA's components enable thorough error detection, consistent rating, and adaptability to custom error guidelines. Using GPT-4o as its backbone, MESA achieves mid to high Point-Biserial correlation with human judgment in error detection and mid Spearman and Kendall correlation in reflecting error impact on summary quality, on average 0.25 higher than previous methods. The framework's flexibility in adapting to custom error guidelines makes it suitable for various tasks with limited human-labeled data.
☆ Politicians vs ChatGPT. A study of presuppositions in French and Italian political communication
This paper aims to provide a comparison between texts produced by French and Italian politicians on polarizing issues, such as immigration and the European Union, and their chatbot counterparts created with ChatGPT 3.5. In this study, we focus on implicit communication, in particular on presuppositions and their functions in discourse, which have been considered in the literature as a potential linguistic feature of manipulation. This study also aims to contribute to the emerging literature on the pragmatic competences of Large Language Models.
comment: Published: 2024-07-04
☆ Topic Modeling and Sentiment Analysis on Japanese Online Media's Coverage of Nuclear Energy
Thirteen years after the Fukushima Daiichi nuclear power plant accident, Japan's nuclear energy accounts for only approximately 6% of electricity production, as most nuclear plants remain shut down. To revitalize the nuclear industry and achieve sustainable development goals, effective communication with Japanese citizens, grounded in an accurate understanding of public sentiment, is of paramount importance. While nationwide surveys have traditionally been used to gauge public views, the rise of social media in recent years has provided a promising new avenue for understanding public sentiment. To explore domestic sentiment on nuclear energy-related issues expressed online, we analyzed the content and comments of over 3,000 YouTube videos covering topics related to nuclear energy. Topic modeling was used to extract the main topics from the videos, and sentiment analysis with large language models classified user sentiments towards each topic. Additionally, word co-occurrence network analysis was performed to examine the shift in online discussions during August and September 2023 regarding the release of treated water. Overall, our results provide valuable insights into the online discourse on nuclear energy and contribute to a more comprehensive understanding of public sentiment in Japan.
comment: 15 pages, 9 figures, 4 tables
ChatGPT as speechwriter for the French presidents
Generative AI proposes several large language models (LLMs) to automatically generate a message in response to users' requests. Such scientific breakthroughs promote new writing assistants but with some fears. The main focus of this study is to analyze the written style of one LLM called ChatGPT by comparing its generated messages with those of the recent French presidents. To achieve this, we compare end-of-the-year addresses written by Chirac, Sarkozy, Hollande, and Macron with those automatically produced by ChatGPT. We found that ChatGPT tends to overuse nouns, possessive determiners, and numbers. On the other hand, the generated speeches employ less verbs, pronouns, and adverbs and include, in mean, too standardized sentences. Considering some words, one can observe that ChatGPT tends to overuse "to must" (devoir), "to continue" or the lemma "we" (nous). Moreover, GPT underuses the auxiliary verb "to be" (^etre), or the modal verbs "to will" (vouloir) or "to have to" (falloir). In addition, when a short text is provided as example to ChatGPT, the machine can generate a short message with a style closed to the original wording. Finally, we reveal that ChatGPT style exposes distinct features compared to real presidential speeches.
☆ AMPS: ASR with Multimodal Paraphrase Supervision
Spontaneous or conversational multilingual speech presents many challenges for state-of-the-art automatic speech recognition (ASR) systems. In this work, we present a new technique AMPS that augments a multilingual multimodal ASR system with paraphrase-based supervision for improved conversational ASR in multiple languages, including Hindi, Marathi, Malayalam, Kannada, and Nyanja. We use paraphrases of the reference transcriptions as additional supervision while training the multimodal ASR model and selectively invoke this paraphrase objective for utterances with poor ASR performance. Using AMPS with a state-of-the-art multimodal model SeamlessM4T, we obtain significant relative reductions in word error rates (WERs) of up to 5%. We present detailed analyses of our system using both objective and human evaluation metrics.
GPT as ghostwriter at the White House
Recently several large language models (LLMs) have demonstrated their capability to generate a message in response to a user request. Such scientific breakthroughs promote new perspectives but also some fears. The main focus of this study is to analyze the written style of one LLM called ChatGPT 3.5 by comparing its generated messages with those of the recent US presidents. To achieve this objective, we compare the State of the Union addresses written by Reagan to Obama with those automatically produced by ChatGPT. We found that ChatGPT tends to overuse the lemma "we" as well as nouns and commas. On the other hand, the generated speeches employ less verbs and include, in mean, longer sentences. Even when imposing a given style to ChatGPT, the resulting speech remains distinct from messages written by the target author. Moreover, ChatGPT opts for a neutral tone with mainly positive emotional expressions and symbolic terms (e.g., freedom, nation). Finally, we show that the GPT's style exposes distinct features compared to real presidential addresses.
☆ Can LLMs assist with Ambiguity? A Quantitative Evaluation of various Large Language Models on Word Sense Disambiguation
Ambiguous words are often found in modern digital communications. Lexical ambiguity challenges traditional Word Sense Disambiguation (WSD) methods, due to limited data. Consequently, the efficiency of translation, information retrieval, and question-answering systems is hindered by these limitations. This study investigates the use of Large Language Models (LLMs) to improve WSD using a novel approach combining a systematic prompt augmentation mechanism with a knowledge base (KB) consisting of different sense interpretations. The proposed method incorporates a human-in-loop approach for prompt augmentation where prompt is supported by Part-of-Speech (POS) tagging, synonyms of ambiguous words, aspect-based sense filtering and few-shot prompting to guide the LLM. By utilizing a few-shot Chain of Thought (COT) prompting-based approach, this work demonstrates a substantial improvement in performance. The evaluation was conducted using FEWS test data and sense tags. This research advances accurate word interpretation in social media and digital communication.
comment: 12 pages,6 tables, 1 figure, Proceedings of the 1st International Conference on NLP & AI for Cyber Security
☆ Continual Learning in Machine Speech Chain Using Gradient Episodic Memory
Continual learning for automatic speech recognition (ASR) systems poses a challenge, especially with the need to avoid catastrophic forgetting while maintaining performance on previously learned tasks. This paper introduces a novel approach leveraging the machine speech chain framework to enable continual learning in ASR using gradient episodic memory (GEM). By incorporating a text-to-speech (TTS) component within the machine speech chain, we support the replay mechanism essential for GEM, allowing the ASR model to learn new tasks sequentially without significant performance degradation on earlier tasks. Our experiments, conducted on the LJ Speech dataset, demonstrate that our method outperforms traditional fine-tuning and multitask learning approaches, achieving a substantial error rate reduction while maintaining high performance across varying noise conditions. We showed the potential of our semi-supervised machine speech chain approach for effective and efficient continual learning in speech recognition.
comment: Published as a conference paper at O-COCOSDA 2024. 6 pages; 2 figures
☆ Aligning Pre-trained Models for Spoken Language Translation
This paper investigates a novel approach to end-to-end speech translation (ST) based on aligning frozen pre-trained automatic speech recognition (ASR) and machine translation (MT) models via a small connector module (Q-Former, our Subsampler-Transformer Encoder). This connector bridges the gap between the speech and text modalities, transforming ASR encoder embeddings into the latent representation space of the MT encoder while being the only part of the system optimized during training. Experiments are conducted on the How2 English-Portuguese dataset as we investigate the alignment approach in a small-scale scenario focusing on ST. While keeping the size of the connector module constant and small in comparison ( < 5% of the size of the larger aligned models), increasing the size and capability of the foundation ASR and MT models universally improves translation results. We also find that the connectors can serve as domain adapters for the foundation MT models, significantly improving translation performance in the aligned ST setting. We conclude that this approach represents a viable and scalable approach to training end-to-end ST systems.
☆ Neutralizing Backdoors through Information Conflicts for Large Language Models
Large language models (LLMs) have seen significant advancements, achieving superior performance in various Natural Language Processing (NLP) tasks, from understanding to reasoning. However, they remain vulnerable to backdoor attacks, where models behave normally for standard queries but generate harmful responses or unintended output when specific triggers are activated. Existing backdoor defenses often suffer from drawbacks that they either focus on detection without removal, rely on rigid assumptions about trigger properties, or prove to be ineffective against advanced attacks like multi-trigger backdoors. In this paper, we present a novel method to eliminate backdoor behaviors from LLMs through the construction of information conflicts using both internal and external mechanisms. Internally, we leverage a lightweight dataset to train a conflict model, which is then merged with the backdoored model to neutralize malicious behaviors by embedding contradictory information within the model's parametric memory. Externally, we incorporate convincing contradictory evidence into the prompt to challenge the model's internal backdoor knowledge. Experimental results on classification and conversational tasks across 4 widely used LLMs demonstrate that our method outperforms 8 state-of-the-art backdoor defense baselines. We can reduce the attack success rate of advanced backdoor attacks by up to 98% while maintaining over 90% clean data accuracy. Furthermore, our method has proven to be robust against adaptive backdoor attacks. The code will be open-sourced upon publication.
☆ Large Language Model-Brained GUI Agents: A Survey
GUIs have long been central to human-computer interaction, providing an intuitive and visually-driven way to access and interact with digital systems. The advent of LLMs, particularly multimodal models, has ushered in a new era of GUI automation. They have demonstrated exceptional capabilities in natural language understanding, code generation, and visual processing. This has paved the way for a new generation of LLM-brained GUI agents capable of interpreting complex GUI elements and autonomously executing actions based on natural language instructions. These agents represent a paradigm shift, enabling users to perform intricate, multi-step tasks through simple conversational commands. Their applications span across web navigation, mobile app interactions, and desktop automation, offering a transformative user experience that revolutionizes how individuals interact with software. This emerging field is rapidly advancing, with significant progress in both research and industry. To provide a structured understanding of this trend, this paper presents a comprehensive survey of LLM-brained GUI agents, exploring their historical evolution, core components, and advanced techniques. We address research questions such as existing GUI agent frameworks, the collection and utilization of data for training specialized GUI agents, the development of large action models tailored for GUI tasks, and the evaluation metrics and benchmarks necessary to assess their effectiveness. Additionally, we examine emerging applications powered by these agents. Through a detailed analysis, this survey identifies key research gaps and outlines a roadmap for future advancements in the field. By consolidating foundational knowledge and state-of-the-art developments, this work aims to guide both researchers and practitioners in overcoming challenges and unlocking the full potential of LLM-brained GUI agents.
☆ Hidden Data Privacy Breaches in Federated Learning
Federated Learning (FL) emerged as a paradigm for conducting machine learning across broad and decentralized datasets, promising enhanced privacy by obviating the need for direct data sharing. However, recent studies show that attackers can steal private data through model manipulation or gradient analysis. Existing attacks are constrained by low theft quantity or low-resolution data, and they are often detected through anomaly monitoring in gradients or weights. In this paper, we propose a novel data-reconstruction attack leveraging malicious code injection, supported by two key techniques, i.e., distinctive and sparse encoding design and block partitioning. Unlike conventional methods that require detectable changes to the model, our method stealthily embeds a hidden model using parameter sharing to systematically extract sensitive data. The Fibonacci-based index design ensures efficient, structured retrieval of memorized data, while the block partitioning method enhances our method's capability to handle high-resolution images by dividing them into smaller, manageable units. Extensive experiments on 4 datasets confirmed that our method is superior to the five state-of-the-art data-reconstruction attacks under the five respective detection methods. Our method can handle large-scale and high-resolution data without being detected or mitigated by state-of-the-art data reconstruction defense methods. In contrast to baselines, our method can be directly applied to both FedAVG and FedSGD scenarios, underscoring the need for developers to devise new defenses against such vulnerabilities. We will open-source our code upon acceptance.
☆ MetaphorShare: A Dynamic Collaborative Repository of Open Metaphor Datasets
The metaphor studies community has developed numerous valuable labelled corpora in various languages over the years. Many of these resources are not only unknown to the NLP community, but are also often not easily shared among the researchers. Both in human sciences and in NLP, researchers could benefit from a centralised database of labelled resources, easily accessible and unified under an identical format. To facilitate this, we present MetaphorShare, a website to integrate metaphor datasets making them open and accessible. With this effort, our aim is to encourage researchers to share and upload more datasets in any language in order to facilitate metaphor studies and the development of future metaphor processing NLP systems. The website is accessible at www.metaphorshare.com.
☆ A gentle push funziona benissimo: making instructed models in Italian via contrastive activation steering
Adapting models to a language that was only partially present in the pre-training data requires fine-tuning, which is expensive in terms of both data and computational resources. As an alternative to fine-tuning, we explore the potential of activation steering-based techniques to enhance model performance on Italian tasks. Through our experiments we show that Italian steering (i) can be successfully applied to different models, (ii) achieves performances comparable to, or even better than, fine-tuned models for Italian, and (iii) yields higher quality and consistency in Italian generations. We also discuss the utility of steering and fine-tuning in the contemporary LLM landscape where models are anyway getting high Italian performances even if not explicitly trained in this language.
☆ Thai Financial Domain Adaptation of THaLLE -- Technical Report
Large Language Models (LLMs) excel in general tasks but struggle with domain-specific challenges, such as specialized terminology and localized regulations. Existing financial LLMs, like FinGPT and BloombergGPT, lack support for the Thai financial domain. We developed a Thai Financial LLM using the Investment Consultant (IC) exam dataset from the Stock Exchange of Thailand. To address dataset limitations, we applied data augmentation, ReLoRA for efficient training, Continued Pretraining (CPT) for domain knowledge, and Rank-Stabilized LoRA (rsLoRA) for fine-tuning. Supervised Fine-Tuning (SFT) simulated exam scenarios, while Direct Preference Optimization (DPO) refined the model using feedback. The model achieved scores of 72%, 72%, and 84% on IC exam levels P1, P2, and P3, respectively, demonstrating its effectiveness in Thai financial advisory tasks and its potential for specialized applications.
☆ How to Learn a New Language? An Efficient Solution for Self-Supervised Learning Models Unseen Languages Adaption in Low-Resource Scenario
The utilization of speech Self-Supervised Learning (SSL) models achieves impressive performance on Automatic Speech Recognition (ASR). However, in low-resource language ASR, they encounter the domain mismatch problem between pre-trained and low-resource languages. Typical solutions like fine-tuning the SSL model suffer from high computation costs while using frozen SSL models as feature extractors comes with poor performance. To handle these issues, we extend a conventional efficient fine-tuning scheme based on the adapter. We add an extra intermediate adaptation to warm up the adapter and downstream model initialization. Remarkably, we update only 1-5% of the total model parameters to achieve the adaptation. Experimental results on the ML-SUPERB dataset show that our solution outperforms conventional efficient fine-tuning. It achieves up to a 28% relative improvement in the Character/Phoneme error rate when adapting to unseen languages.
☆ Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning
Vision-language models~(VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.
comment: 16 pages, 11 figures
☆ SentiXRL: An advanced large language Model Framework for Multilingual Fine-Grained Emotion Classification in Complex Text Environment
With strong expressive capabilities in Large Language Models(LLMs), generative models effectively capture sentiment structures and deep semantics, however, challenges remain in fine-grained sentiment classification across multi-lingual and complex contexts. To address this, we propose the Sentiment Cross-Lingual Recognition and Logic Framework (SentiXRL), which incorporates two modules,an emotion retrieval enhancement module to improve sentiment classification accuracy in complex contexts through historical dialogue and logical reasoning,and a self-circulating analysis negotiation mechanism (SANM)to facilitates autonomous decision-making within a single model for classification tasks.We have validated SentiXRL's superiority on multiple standard datasets, outperforming existing models on CPED and CH-SIMS,and achieving overall better performance on MELD,Emorynlp and IEMOCAP. Notably, we unified labels across several fine-grained sentiment annotation datasets and conducted category confusion experiments, revealing challenges and impacts of class imbalance in standard datasets.
☆ A survey on cutting-edge relation extraction techniques based on language models
This comprehensive survey delves into the latest advancements in Relation Extraction (RE), a pivotal task in natural language processing essential for applications across biomedical, financial, and legal sectors. This study highlights the evolution and current state of RE techniques by analyzing 137 papers presented at the Association for Computational Linguistics (ACL) conferences over the past four years, focusing on models that leverage language models. Our findings underscore the dominance of BERT-based methods in achieving state-of-the-art results for RE while also noting the promising capabilities of emerging large language models (LLMs) like T5, especially in few-shot relation extraction scenarios where they excel in identifying previously unseen relations.
comment: 50 pages, under review in Artificial Intelligence Review
☆ MSA-ASR: Efficient Multilingual Speaker Attribution with frozen ASR Models
Speaker-attributed automatic speech recognition (SA-ASR) aims to transcribe speech while assigning transcripts to the corresponding speakers accurately. Existing methods often rely on complex modular systems or require extensive fine-tuning of joint modules, limiting their adaptability and general efficiency. This paper introduces a novel approach, leveraging a frozen multilingual ASR model to incorporate speaker attribution into the transcriptions, using only standard monolingual ASR datasets. Our method involves training a speaker module to predict speaker embeddings based on weak labels without requiring additional ASR model modifications. Despite being trained exclusively with non-overlapping monolingual data, our approach effectively extracts speaker attributes across diverse multilingual datasets, including those with overlapping speech. Experimental results demonstrate competitive performance compared to strong baselines, highlighting the model's robustness and potential for practical applications.
☆ SALMONN-omni: A Codec-free LLM for Full-duplex Speech Understanding and Generation
Full-duplex multimodal large language models (LLMs) provide a unified framework for addressing diverse speech understanding and generation tasks, enabling more natural and seamless human-machine conversations. Unlike traditional modularised conversational AI systems, which separate speech recognition, understanding, and text-to-speech generation into distinct components, multimodal LLMs operate as single end-to-end models. This streamlined design eliminates error propagation across components and fully leverages the rich non-verbal information embedded in input speech signals. We introduce SALMONN-omni, a codec-free, full-duplex speech understanding and generation model capable of simultaneously listening to its own generated speech and background sounds while speaking. To support this capability, we propose a novel duplex spoken dialogue framework incorporating a ``thinking'' mechanism that facilitates asynchronous text and speech generation relying on embeddings instead of codecs (quantized speech and audio tokens). Experimental results demonstrate SALMONN-omni's versatility across a broad range of streaming speech tasks, including speech recognition, speech enhancement, and spoken question answering. Additionally, SALMONN-omni excels at managing turn-taking, barge-in, and echo cancellation scenarios, establishing its potential as a robust prototype for full-duplex conversational AI systems. To the best of our knowledge, SALMONN-omni is the first codec-free model of its kind. A full technical report along with model checkpoints will be released soon.
comment: Technical report
☆ Curriculum Demonstration Selection for In-Context Learning
Large Language Models (LLMs) have shown strong in-context learning (ICL) abilities with a few demonstrations. However, one critical challenge is how to select demonstrations to elicit the full potential of LLMs. In this paper, we propose Curriculum Demonstration Selection (CDS), a novel demonstration selection method for ICL. Instead of merely using similarity, CDS additionally partitions samples by their complexity measurements. Following curriculum learning, CDS then selects demonstrations from easy to difficult. Thus the selected demonstrations cover a wide range of difficulty levels, enabling LLMs to learn from varied complexities within the training set. Experiments demonstrate that our CDS consistently outperforms baseline methods, achieving notable improvements across nine LLMs on three benchmarks. Moreover, CDS proves especially effective in enhancing LLM performance in solving challenging problems.
comment: Accepted at the 40th ACM/SIGAPP Symposium On Applied Computing (SAC 2025), Main Conference
☆ Training and Evaluating Language Models with Template-based Data Generation
The rapid advancement of large language models (LLMs) such as GPT-3, PaLM, and Llama has significantly transformed natural language processing, showcasing remarkable capabilities in understanding and generating language. However, these models often struggle with tasks requiring complex reasoning, particularly in mathematical problem-solving, due in part to the scarcity of large-scale, high-quality, domain-specific datasets necessary for training sophisticated reasoning abilities. To address this limitation, we introduce Template-based Data Generation (TDG), a novel approach that leverages LLMs (GPT-4) to automatically generate parameterized meta-templates, which are then used to synthesize a vast array of high-quality problems and solutions. Leveraging TDG, we create TemplateMath Part I: TemplateGSM, a dataset comprising over 7 million synthetically generated grade school math problems--each accompanied by code-based and natural language solutions--with the potential to generate an effectively unlimited number more. This dataset alleviates the scarcity of large-scale mathematical datasets and serves as a valuable resource for pre-training, fine-tuning, and evaluating LLMs in mathematical reasoning. Our method not only enables the generation of virtually infinite data but also elevates data augmentation to a new level by using GPT-4 for meta-template generation, ensuring diverse and high-quality problem structures. The TemplateMath Part I: TemplateGSM dataset is publicly available at https://huggingface.co/datasets/math-ai/TemplateGSM. The code is available at https://github.com/iiis-ai/TemplateMath.
comment: 8 pages, 2 figures
☆ Fine-Tuning Small Embeddings for Elevated Performance
Contextual Embeddings have yielded state-of-the-art results in various natural language processing tasks. However, these embeddings are constrained by models requiring large amounts of data and huge computing power. This is an issue for low-resource languages like Nepali as the amount of data available over the internet is not always sufficient for the models. This work has taken an incomplete BERT model with six attention heads pretrained on Nepali language and finetuned it on previously unseen data. The obtained results from intrinsic and extrinsic evaluations have been compared to the results drawn from the original model baseline and a complete BERT model pretrained on Nepali language as the oracle. The results demonstrate that even though the oracle is better on average, finetuning the small embeddings drastically improves results compared to the original baseline.
☆ Pushing the Limits of LLM Inference via 2-Bit Layer-Discriminative KV Cache
How to efficiently serve LLMs in practice has become exceptionally challenging due to their prohibitive memory and computation requirements. In this study, we investigate optimizing the KV cache, whose memory footprint poses a critical bottleneck in LLM inference, especially when dealing with long context tasks. To tackle the challenge, we introduce MiniKV, a KV cache optimization method that simultaneously preserves long context task accuracy while significantly reducing KV cache size via a novel 2-bit layer-discriminative KV cache. More importantly, we develop specialized CUDA kernels to make MiniKV compatible with FlashAttention. Experiments on a wide range of long context tasks show that MiniKV effectively achieves 86% KV cache compression ratio while recovering over 98.5% of accuracy, outperforming state-of-the-art methods while achieving excellent measured system performance improvements.
☆ Can bidirectional encoder become the ultimate winner for downstream applications of foundation models?
Over the past few decades, Artificial Intelligence(AI) has progressed from the initial machine learning stage to the deep learning stage, and now to the stage of foundational models. Foundational models have the characteristics of pre-training, transfer learning, and self-supervised learning, and pre-trained models can be fine-tuned and applied to various downstream tasks. Under the framework of foundational models, models such as Bidirectional Encoder Representations from Transformers(BERT) and Generative Pre-trained Transformer(GPT) have greatly advanced the development of natural language processing(NLP), especially the emergence of many models based on BERT. BERT broke through the limitation of only using one-way methods for language modeling in pre-training by using a masked language model. It can capture bidirectional context information to predict the masked words in the sequence, this can improve the feature extraction ability of the model. This makes the model very useful for downstream tasks, especially for specialized applications. The model using the bidirectional encoder can better understand the domain knowledge and be better applied to these downstream tasks. So we hope to help understand how this technology has evolved and improved model performance in various natural language processing tasks under the background of foundational models and reveal its importance in capturing context information and improving the model's performance on downstream tasks. This article analyzes one-way and bidirectional models based on GPT and BERT and compares their differences based on the purpose of the model. It also briefly analyzes BERT and the improvements of some models based on BERT. The model's performance on the Stanford Question Answering Dataset(SQuAD) and General Language Understanding Evaluation(GLUE) was compared.
comment: 9 pages, 4 figures, FLLM2024
☆ JPPO: Joint Power and Prompt Optimization for Accelerated Large Language Model Services
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, leading to their increasing deployment in wireless networks for a wide variety of user services. However, the growing longer prompt setting highlights the crucial issue of computational resource demands and huge communication load. To address this challenge, we propose Joint Power and Prompt Optimization (JPPO), a framework that combines Small Language Model (SLM)-based prompt compression with wireless power allocation optimization. By deploying SLM at user devices for prompt compression and employing Deep Reinforcement Learning for joint optimization of compression ratio and transmission power, JPPO effectively balances service quality with resource efficiency. Experimental results demonstrate that our framework achieves high service fidelity and low bit error rates while optimizing power usage in wireless LLM services. The system reduces response time by about 17%, with the improvement varying based on the length of the original prompt.
☆ DRS: Deep Question Reformulation With Structured Output
Question answering is a fundamental capability of large language models (LLMs). However, when people encounter completely new knowledge texts, they often ask questions that the text cannot answer due to a lack of understanding of the knowledge. Recent research shows that large language models identify the unanswerability of questions, but they lack the ability to help people reformulate their questions. Even powerful models like GPT-3.5 perform poorly in this regard. To enhance the ability of LLMs to assist humans in reformulating questions to extract relevant knowledge from new documents, we propose a zero-shot method called DRS: Deep Question Reformulation With Structured Output. Our proposed method leverages large language models and the DFS-based algorithm to iteratively search for possible entity combinations and constrain the output with certain entities, effectively improving the capabilities of large language models in this area. Extensive experimental results show that our zero-shot DRS method significantly improves the reformulation accuracy of GPT-3.5 from 23.03% to 70.42% and effectively improves the score of open-source large language models, such as Gemma2-9B, from 26.35% to 56.75%.
☆ New Faithfulness-Centric Interpretability Paradigms for Natural Language Processing
As machine learning becomes more widespread and is used in more critical applications, it's important to provide explanations for these models, to prevent unintended behavior. Unfortunately, many current interpretability methods struggle with faithfulness. Therefore, this Ph.D. thesis investigates the question "How to provide and ensure faithful explanations for complex general-purpose neural NLP models?" The main thesis is that we should develop new paradigms in interpretability. This is achieved by first developing solid faithfulness metrics and then applying the lessons learned from this investigation to develop new paradigms. The two new paradigms explored are faithfulness measurable models (FMMs) and self-explanations. The idea in self-explanations is to have large language models explain themselves, we identify that current models are not capable of doing this consistently. However, we suggest how this could be achieved. The idea of FMMs is to create models that are designed such that measuring faithfulness is cheap and precise. This makes it possible to optimize an explanation towards maximum faithfulness, which makes FMMs designed to be explained. We find that FMMs yield explanations that are near theoretical optimal in terms of faithfulness. Overall, from all investigations of faithfulness, results show that post-hoc and intrinsic explanations are by default model and task-dependent. However, this was not the case when using FMMs, even with the same post-hoc explanation methods. This shows, that even simple modifications to the model, such as randomly masking the training dataset, as was done in FMMs, can drastically change the situation and result in consistently faithful explanations. This answers the question of how to provide and ensure faithful explanations.
comment: Doctoral thesis
☆ VideoLLM Knows When to Speak: Enhancing Time-Sensitive Video Comprehension with Video-Text Duet Interaction Format
Recent researches on video large language models (VideoLLM) predominantly focus on model architectures and training datasets, leaving the interaction format between the user and the model under-explored. In existing works, users often interact with VideoLLMs by using the entire video and a query as input, after which the model generates a response. This interaction format constrains the application of VideoLLMs in scenarios such as live-streaming comprehension where videos do not end and responses are required in a real-time manner, and also results in unsatisfactory performance on time-sensitive tasks that requires localizing video segments. In this paper, we focus on a video-text duet interaction format. This interaction format is characterized by the continuous playback of the video, and both the user and the model can insert their text messages at any position during the video playback. When a text message ends, the video continues to play, akin to the alternative of two performers in a duet. We construct MMDuetIT, a video-text training dataset designed to adapt VideoLLMs to video-text duet interaction format. We also introduce the Multi-Answer Grounded Video Question Answering (MAGQA) task to benchmark the real-time response ability of VideoLLMs. Trained on MMDuetIT, MMDuet demonstrates that adopting the video-text duet interaction format enables the model to achieve significant improvements in various time-sensitive tasks (76% CIDEr on YouCook2 dense video captioning, 90\% mAP on QVHighlights highlight detection and 25% R@0.5 on Charades-STA temporal video grounding) with minimal training efforts, and also enable VideoLLMs to reply in a real-time manner as the video plays. Code, data and demo are available at: https://github.com/yellow-binary-tree/MMDuet.
comment: 9 pages
☆ QuaLLM-Health: An Adaptation of an LLM-Based Framework for Quantitative Data Extraction from Online Health Discussions
Health-related discussions on social media like Reddit offer valuable insights, but extracting quantitative data from unstructured text is challenging. In this work, we present an adapted framework from QuaLLM into QuaLLM-Health for extracting clinically relevant quantitative data from Reddit discussions about glucagon-like peptide-1 (GLP-1) receptor agonists using large language models (LLMs). We collected 410k posts and comments from five GLP-1-related communities using the Reddit API in July 2024. After filtering for cancer-related discussions, 2,059 unique entries remained. We developed annotation guidelines to manually extract variables such as cancer survivorship, family cancer history, cancer types mentioned, risk perceptions, and discussions with physicians. Two domain-experts independently annotated a random sample of 100 entries to create a gold-standard dataset. We then employed iterative prompt engineering with OpenAI's "GPT-4o-mini" on the gold-standard dataset to build an optimized pipeline that allowed us to extract variables from the large dataset. The optimized LLM achieved accuracies above 0.85 for all variables, with precision, recall and F1 score macro averaged > 0.90, indicating balanced performance. Stability testing showed a 95% match rate across runs, confirming consistency. Applying the framework to the full dataset enabled efficient extraction of variables necessary for downstream analysis, costing under $3 and completing in approximately one hour. QuaLLM-Health demonstrates that LLMs can effectively and efficiently extract clinically relevant quantitative data from unstructured social media content. Incorporating human expertise and iterative prompt refinement ensures accuracy and reliability. This methodology can be adapted for large-scale analysis of patient-generated data across various health domains, facilitating valuable insights for healthcare research.
♻ ☆ XGrammar: Flexible and Efficient Structured Generation Engine for Large Language Models
The applications of LLM Agents are becoming increasingly complex and diverse, leading to a high demand for structured outputs that can be parsed into code, structured function calls, and embodied agent commands. These developments bring significant demands for structured generation in LLM inference. Context-free grammar is a flexible approach to enable structured generation via constrained decoding. However, executing context-free grammar requires going through several stack states over all tokens in vocabulary during runtime, bringing non-negligible overhead for structured generation. In this paper, we propose XGrammar, a flexible and efficient structure generation engine for large language models. XGrammar accelerates context-free grammar execution by dividing the vocabulary into context-independent tokens that can be prechecked and context-dependent tokens that need to be interpreted during runtime. We further build transformations to expand the grammar context and reduce the number of context-independent tokens. Additionally, we build an efficient persistent stack to accelerate the context-dependent token checks. Finally, we co-design the grammar engine with LLM inference engine to overlap grammar computation with GPU executions. Evaluation results show that XGrammar can achieve up to 100x speedup over existing solutions. Combined with an LLM inference engine, it can generate near-zero overhead structure generation in end-to-end low-LLM serving.
♻ ☆ A Suite for Acoustic Language Model Evaluation
Speech language models have recently demonstrated great potential as universal speech processing systems. Such models have the ability to model the rich acoustic information existing in audio signals, beyond spoken content, such as emotion, background noise, etc. Despite this, evaluation benchmarks which evaluate awareness to a wide range of acoustic aspects, are lacking. To help bridge this gap, we introduce SALMon, a novel evaluation suite encompassing background noise, emotion, speaker identity and room impulse response. The proposed benchmarks both evaluate the consistency of the inspected element and how much it matches the spoken text. We follow a modelling based approach, measuring whether a model gives correct samples higher scores than incorrect ones. This approach makes the benchmark fast to compute even for large models. We evaluated several speech language models on SALMon, thus highlighting the strengths and weaknesses of each evaluated method. We make the code and data publicly available at https://pages.cs.huji.ac.il/adiyoss-lab/salmon/ .
♻ ☆ A Novel Word Pair-based Gaussian Sentence Similarity Algorithm For Bengali Extractive Text Summarization
Extractive Text Summarization is the process of selecting the most representative parts of a larger text without losing any key information. Recent attempts at extractive text summarization in Bengali, either relied on statistical techniques like TF-IDF or used naive sentence similarity measures like the word averaging technique. All of these strategies suffer from expressing semantic relationships correctly. Here, we propose a novel Word pair-based Gaussian Sentence Similarity (WGSS) algorithm for calculating the semantic relation between two sentences. WGSS takes the geometric means of individual Gaussian similarity values of word embedding vectors to get the semantic relationship between sentences. It compares two sentences on a word-to-word basis which rectifies the sentence representation problem faced by the word averaging method. The summarization process extracts key sentences by grouping semantically similar sentences into clusters using the Spectral Clustering algorithm. After clustering, we use TF-IDF ranking to pick the best sentence from each cluster. The proposed method is validated using four different datasets, and it outperformed other recent models by 43.2% on average ROUGE scores (ranging from 2.5% to 95.4%). It is also experimented on other low-resource languages i.e. Turkish, Marathi, and Hindi language, where we find that the proposed method performs as similar as Bengali for these languages. In addition, a new high-quality Bengali dataset is curated which contains 250 articles and a pair of summaries for each of them. We believe this research is a crucial addition to Bengali Natural Language Processing (NLP) research and it can easily be extended into other low-resource languages. We made the implementation of the proposed model and data public on https://github.com/FMOpee/WGSS.
♻ ☆ DataVisT5: A Pre-trained Language Model for Jointly Understanding Text and Data Visualization
Data visualization (DV) is the fundamental and premise tool to improve the efficiency in conveying the insights behind the big data, which has been widely accepted in existing data-driven world. Task automation in DV, such as converting natural language queries to visualizations (i.e., text-to-vis), generating explanations from visualizations (i.e., vis-to-text), answering DV-related questions in free form (i.e. FeVisQA), and explicating tabular data (i.e., table-to-text), is vital for advancing the field. Despite their potential, the application of pre-trained language models (PLMs) like T5 and BERT in DV has been limited by high costs and challenges in handling cross-modal information, leading to few studies on PLMs for DV. We introduce DataVisT5, a novel PLM tailored for DV that enhances the T5 architecture through a hybrid objective pre-training and multi-task fine-tuning strategy, integrating text and DV datasets to effectively interpret cross-modal semantics. Extensive evaluations on public datasets show that DataVisT5 consistently outperforms current state-of-the-art models on various DV-related tasks. We anticipate that DataVisT5 will not only inspire further research on vertical PLMs but also expand the range of applications for PLMs.
♻ ☆ Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data
The impressive capabilities of large language models (LLMs) have sparked debate over whether these models genuinely generalize to unseen tasks or predominantly rely on memorizing vast amounts of pretraining data. To explore this issue, we introduce an extended concept of memorization, distributional memorization, which measures the correlation between the LLM output probabilities and the pretraining data frequency. To effectively capture task-specific pretraining data frequency, we propose a novel task-gram language model, which is built by counting the co-occurrence of semantically related $n$-gram pairs from task inputs and outputs in the pretraining corpus. Using the Pythia models trained on the Pile dataset, we evaluate four distinct tasks: machine translation, factual question answering, world knowledge understanding, and math reasoning. Our findings reveal varying levels of memorization, with the strongest effect observed in factual question answering. Furthermore, while model performance improves across all tasks as LLM size increases, only factual question answering shows an increase in memorization, whereas machine translation and reasoning tasks exhibit greater generalization, producing more novel outputs. This study demonstrates that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks, providing a scalable method for analyzing large pretraining corpora in greater depth. We also show the practical implications of our analysis through a novel prompt optimization algorithm.
comment: updated 10-page version
♻ ☆ An iterated learning model of language change that mixes supervised and unsupervised learning
The iterated learning model is an agent model which simulates the transmission of of language from generation to generation. It is used to study how the language adapts to pressures imposed by transmission. In each iteration, a language tutor exposes a na\"ive pupil to a limited training set of utterances, each pairing a random meaning with the signal that conveys it. Then the pupil becomes a tutor for a new na\"ive pupil in the next iteration. The transmission bottleneck ensures that tutors must generalize beyond the training set that they experienced. Repeated cycles of learning and generalization can result in a language that is expressive, compositional and stable. Previously, the agents in the iterated learning model mapped signals to meanings using an artificial neural network but relied on an unrealistic and computationally expensive process of obversion to map meanings to signals. Here, both maps are neural networks, trained separately through supervised learning and together through unsupervised learning in the form of an autoencoder. This avoids the computational burden entailed in obversion and introduces a mixture of supervised and unsupervised learning as observed during language learning in children. The new model demonstrates a linear relationship between the dimensionality of meaning-signal space and effective bottleneck size and suggests that internal reflection on potential utterances is important in language learning and evolution.
comment: 33pages. (v2->v3 - revisions following referees report; the paper is now in press with PLoS Complex Systems)
♻ ☆ Agent Skill Acquisition for Large Language Models via CycleQD
Training large language models to acquire specific skills remains a challenging endeavor. Conventional training approaches often struggle with data distribution imbalances and inadequacies in objective functions that do not align well with task-specific performance. To address these challenges, we introduce CycleQD, a novel approach that leverages the Quality Diversity framework through a cyclic adaptation of the algorithm, along with a model merging based crossover and an SVD-based mutation. In CycleQD, each task's performance metric is alternated as the quality measure while the others serve as the behavioral characteristics. This cyclic focus on individual tasks allows for concentrated effort on one task at a time, eliminating the need for data ratio tuning and simplifying the design of the objective function. Empirical results from AgentBench indicate that applying CycleQD to LLAMA3-8B-INSTRUCT based models not only enables them to surpass traditional fine-tuning methods in coding, operating systems, and database tasks, but also achieves performance on par with GPT-3.5-TURBO, which potentially contains much more parameters, across these domains. Crucially, this enhanced performance is achieved while retaining robust language capabilities, as evidenced by its performance on widely adopted language benchmark tasks. We highlight the key design choices in CycleQD, detailing how these contribute to its effectiveness. Furthermore, our method is general and can be applied to image segmentation models, highlighting its applicability across different domains.
♻ ☆ Navigating the Post-API Dilemma | Search Engine Results Pages Present a Biased View of Social Media Data
Recent decisions to discontinue access to social media APIs are having detrimental effects on Internet research and the field of computational social science as a whole. This lack of access to data has been dubbed the Post-API era of Internet research. Fortunately, popular search engines have the means to crawl, capture, and surface social media data on their Search Engine Results Pages (SERP) if provided the proper search query, and may provide a solution to this dilemma. In the present work we ask: does SERP provide a complete and unbiased sample of social media data? Is SERP a viable alternative to direct API-access? To answer these questions, we perform a comparative analysis between (Google) SERP results and nonsampled data from Reddit and Twitter/X. We find that SERP results are highly biased in favor of popular posts; against political, pornographic, and vulgar posts; are more positive in their sentiment; and have large topical gaps. Overall, we conclude that SERP is not a viable alternative to social media API access.
comment: Proceedings of the ACM Web Conference 2024 (WWW '24)
♻ ☆ Creativity in AI: Progresses and Challenges
Creativity is the ability to produce novel, useful, and surprising ideas, and has been widely studied as a crucial aspect of human cognition. Machine creativity on the other hand has been a long-standing challenge. With the rise of advanced generative AI, there has been renewed interest and debate regarding AI's creative capabilities. Therefore, it is imperative to revisit the state of creativity in AI and identify key progresses and remaining challenges. In this work, we survey leading works studying the creative capabilities of AI systems, focusing on creative problem-solving, linguistic, artistic, and scientific creativity. Our review suggests that while the latest AI models are largely capable of producing linguistically and artistically creative outputs such as poems, images, and musical pieces, they struggle with tasks that require creative problem-solving, abstract thinking and compositionality and their generations suffer from a lack of diversity, originality, long-range incoherence and hallucinations. We also discuss key questions concerning copyright and authorship issues with generative models. Furthermore, we highlight the need for a comprehensive evaluation of creativity that is process-driven and considers several dimensions of creativity. Finally, we propose future research directions to improve the creativity of AI outputs, drawing inspiration from cognitive science and psychology.
comment: minor updates to content + figure
♻ ☆ EnrichEvent: Enriching Social Data with Contextual Information for Emerging Event Extraction
Social platforms have emerged as crucial platforms for disseminating information and discussing real-life social events, offering researchers an excellent opportunity to design and implement novel event detection frameworks. However, most existing approaches only exploit keyword burstiness or network structures to detect unspecified events. Thus, they often need help identifying unknown events regarding the challenging nature of events and social data. Social data, e.g., tweets, is characterized by misspellings, incompleteness, word sense ambiguation, irregular language, and variation in aspects of opinions. Moreover, extracting discriminative features and patterns for evolving events by exploiting the limited structural knowledge is almost infeasible. To address these challenges, in this paper, we propose a novel framework, namely EnrichEvent, that leverages the linguistic and contextual representations of streaming social data. In particular, we leverage contextual and linguistic knowledge to detect semantically related tweets and enhance the effectiveness of the event detection approaches. Eventually, our proposed framework produces cluster chains for each event to show the evolving variation of the event through time. We conducted extensive experiments to evaluate our framework, validating its high performance and effectiveness in detecting and distinguishing unspecified social events.
♻ ☆ Multi-Source Knowledge Pruning for Retrieval-Augmented Generation: A Benchmark and Empirical Study
Retrieval-augmented generation (RAG) is increasingly recognized as an effective approach for mitigating the hallucination of large language models (LLMs) through the integration of external knowledge. While numerous efforts, most studies focus on a single type of externeal knowledge source. However, in real-world applications, most situations involve diverse knowledge from various sources, yet this area has been less explored. The main dilemma is the lack of a suitable dataset containing multiple knowledge sources and pre-exploration of the associated issues. To address these challenges, we standardize a benchmark dataset that combines structured and unstructured knowledge across diverse and complementary domains. Based on this dataset, we further develop a plug-and-play RAG framework, PruningRAG, whose main characteristic is to employ multi-granularity pruning strategies for optimizing the integration of relevant information and minimizing misleading context. Building upon the standardized dataset and PruningRAG, we also report a series of experimental results, as well as insightful findings. Our dataset and code are publicly available\footnote{https://github.com/USTCAGI/PruningRAG}, with the aim of advancing future research in the RAG community.
comment: 10 pages, 11 figures;
♻ ☆ Learning and communication pressures in neural networks: Lessons from emergent communication
Finding and facilitating commonalities between the linguistic behaviors of large language models and humans could lead to major breakthroughs in our understanding of the acquisition, processing, and evolution of language. However, most findings on human-LLM similarity can be attributed to training on human data. The field of emergent machine-to-machine communication provides an ideal testbed for discovering which pressures are neural agents naturally exposed to when learning to communicate in isolation, without any human language to start with. Here, we review three cases where mismatches between the emergent linguistic behavior of neural agents and humans were resolved thanks to introducing theoretically-motivated inductive biases. By contrasting humans, large language models, and emergent communication agents, we then identify key pressures at play for language learning and emergence: communicative success, production effort, learnability, and other psycho-/sociolinguistic factors. We discuss their implications and relevance to the field of language evolution and acquisition. By mapping out the necessary inductive biases that make agents' emergent languages more human-like, we not only shed light on the underlying principles of human cognition and communication, but also inform and improve the very use of these models as valuable scientific tools for studying language learning, processing, use, and representation more broadly.
comment: camera-ready version, as published in Language Development Research
♻ ☆ Don't Command, Cultivate: An Exploratory Study of System-2 Alignment
The o1 system card identifies the o1 models as the most robust within OpenAI, with their defining characteristic being the progression from rapid, intuitive thinking to slower, more deliberate reasoning. This observation motivated us to investigate the influence of System-2 thinking patterns on model safety. In our preliminary research, we conducted safety evaluations of the o1 model, including complex jailbreak attack scenarios using adversarial natural language prompts and mathematical encoding prompts. Our findings indicate that the o1 model demonstrates relatively improved safety performance; however, it still exhibits vulnerabilities, particularly against jailbreak attacks employing mathematical encoding. Through detailed case analysis, we identified specific patterns in the o1 model's responses. We also explored the alignment of System-2 safety in open-source models using prompt engineering and supervised fine-tuning techniques. Experimental results show that some simple methods to encourage the model to carefully scrutinize user requests are beneficial for model safety. Additionally, we proposed a implementation plan for process supervision to enhance safety alignment. The implementation details and experimental results will be provided in future versions.
comment: Preprint version, more results will be updated
♻ ☆ Leveraging Large Language Models in Human-Robot Interaction: A Critical Analysis of Potential and Pitfalls
The emergence of large language models (LLM) and, consequently, vision language models (VLM) has ignited new imaginations among robotics researchers. At this point, the range of applications to which LLM and VLM can be applied in human-robot interaction (HRI), particularly socially assistive robots (SARs), is unchartered territory. However, LLM and VLM present unprecedented opportunities and challenges for SAR integration. We aim to illuminate the opportunities and challenges when roboticists deploy LLM and VLM in SARs. First, we conducted a meta-study of more than 250 papers exploring 1) major robots in HRI research and 2) significant applications of SARs, emphasizing education, healthcare, and entertainment while addressing 3) societal norms and issues like trust, bias, and ethics that the robot developers must address. Then, we identified 4) critical components of a robot that LLM or VLM can replace while addressing the 5) benefits of integrating LLM into robot designs and the 6) risks involved. Finally, we outline a pathway for the responsible and effective adoption of LLM or VLM into SARs, and we close our discussion by offering caution regarding this deployment.
♻ ☆ MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration EMNLP 2024
Large Language Models (LLMs) have significantly advanced natural language processing, demonstrating exceptional reasoning, tool usage, and memory capabilities. As their applications expand into multi-agent environments, there arises a need for a comprehensive evaluation framework that captures LLMs' reasoning, planning, collaboration, and other social abilities. This work introduces a novel competition-based benchmark framework specifically designed to assess LLMs within multi-agent settings, providing quantitative metrics to evaluate their judgment, reasoning, deception, self-awareness, cooperation, coordination, and rationality. We utilize two social deduction games alongside three game-theory scenarios to create diverse environments. Our frame is fortified with the probabilistic graphic modeling (PGM) method, enhancing the LLMs' capabilities in navigating complex social and cognitive dimensions. We evaluate seven LLMs, quantitatively highlighting a significant capability gap of over threefold between the strongest, GPT o1, and the weakest, Llama-2-70B. It also confirms that our PGM enhancement boosts the abilities of all selected models by an average of 37%. Our data and code can be found here https://github.com/cathyxl/MAgIC.
comment: EMNLP 2024
♻ ☆ Inter-linguistic Phonetic Composition (IPC): A Theoretical and Computational Approach to Enhance Second Language Pronunciation
Learners of a second language (L2) often unconsciously substitute unfamiliar L2 phonemes with similar phonemes from their native language (L1), even though native speakers of the L2 perceive these sounds as distinct and non-interchangeable. This phonemic substitution leads to deviations from the standard phonological patterns of the L2, creating challenges for learners in acquiring accurate L2 pronunciation. To address this, we propose Inter-linguistic Phonetic Composition (IPC), a novel computational method designed to minimize incorrect phonological transfer by reconstructing L2 phonemes as composite sounds derived from multiple L1 phonemes. Tests with two automatic speech recognition models demonstrated that when L2 speakers produced IPC-generated composite sounds, the recognition rate of target L2 phonemes improved by 20% compared to when their pronunciation was influenced by original phonological transfer patterns. The improvement was observed within a relatively shorter time frame, demonstrating rapid acquisition of the composite sound.
♻ ☆ On Designing Effective RL Reward at Training Time for LLM Reasoning
Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.
♻ ☆ Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model
Recent advancements in audio generation have been significantly propelled by the capabilities of Large Language Models (LLMs). The existing research on audio LLM has primarily focused on enhancing the architecture and scale of audio language models, as well as leveraging larger datasets, and generally, acoustic codecs, such as EnCodec, are used for audio tokenization. However, these codecs were originally designed for audio compression, which may lead to suboptimal performance in the context of audio LLM. Our research aims to address the shortcomings of current audio LLM codecs, particularly their challenges in maintaining semantic integrity in generated audio. For instance, existing methods like VALL-E, which condition acoustic token generation on text transcriptions, often suffer from content inaccuracies and elevated word error rates (WER) due to semantic misinterpretations of acoustic tokens, resulting in word skipping and errors. To overcome these issues, we propose a straightforward yet effective approach called X-Codec. X-Codec incorporates semantic features from a pre-trained semantic encoder before the Residual Vector Quantization (RVQ) stage and introduces a semantic reconstruction loss after RVQ. By enhancing the semantic ability of the codec, X-Codec significantly reduces WER in speech synthesis tasks and extends these benefits to non-speech applications, including music and sound generation. Our experiments in text-to-speech, music continuation, and text-to-sound tasks demonstrate that integrating semantic information substantially improves the overall performance of language models in audio generation. Our code and demo are available (Demo: https://x-codec-audio.github.io Code: https://github.com/zhenye234/xcodec)
♻ ☆ ChroKnowledge: Unveiling Chronological Knowledge of Language Models in Multiple Domains
Large language models (LLMs) have brought significant changes to many aspects of our lives. However, assessing and ensuring their chronological knowledge remains challenging. Existing approaches fall short in addressing the temporal adaptability of knowledge, often relying on a fixed time-point view. To overcome this, we introduce ChroKnowBench, a benchmark dataset designed to evaluate chronologically accumulated knowledge across three key aspects: multiple domains, time dependency, temporal state. Our benchmark distinguishes between knowledge that evolves (e.g., personal history, scientific discoveries, amended laws) and knowledge that remain constant (e.g., mathematical truths, commonsense facts). Building on this benchmark, we present ChroKnowledge (Chronological Categorization of Knowledge), a novel sampling-based framework for evaluating LLMs' non-parametric chronological knowledge. Our evaluation led to the following observations: (1) The ability of eliciting temporal knowledge varies depending on the data format that model was trained on. (2) LLMs partially recall knowledge or show a cut-off at temporal boundaries rather than recalling all aspects of knowledge correctly. Thus, we apply ourChroKnowPrompt, an in-depth prompting to elicit chronological knowledge by traversing step-by-step through the surrounding time spans. We observe that it successfully recalls objects across both open-source and proprietary LLMs, demonstrating versatility, though it faces challenges with dynamic datasets and unstructured formats.
♻ ☆ Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants
AI assistants are being increasingly used by students enrolled in higher education institutions. While these tools provide opportunities for improved teaching and education, they also pose significant challenges for assessment and learning outcomes. We conceptualize these challenges through the lens of vulnerability, the potential for university assessments and learning outcomes to be impacted by student use of generative AI. We investigate the potential scale of this vulnerability by measuring the degree to which AI assistants can complete assessment questions in standard university-level STEM courses. Specifically, we compile a novel dataset of textual assessment questions from 50 courses at EPFL and evaluate whether two AI assistants, GPT-3.5 and GPT-4 can adequately answer these questions. We use eight prompting strategies to produce responses and find that GPT-4 answers an average of 65.8% of questions correctly, and can even produce the correct answer across at least one prompting strategy for 85.1% of questions. When grouping courses in our dataset by degree program, these systems already pass non-project assessments of large numbers of core courses in various degree programs, posing risks to higher education accreditation that will be amplified as these models improve. Our results call for revising program-level assessment design in higher education in light of advances in generative AI.
comment: 20 pages, 8 figures
♻ ☆ From Yes-Men to Truth-Tellers: Addressing Sycophancy in Large Language Models with Pinpoint Tuning ICML 2024
Large Language Models (LLMs) tend to prioritize adherence to user prompts over providing veracious responses, leading to the sycophancy issue. When challenged by users, LLMs tend to admit mistakes and provide inaccurate responses even if they initially provided the correct answer. Recent works propose to employ supervised fine-tuning (SFT) to mitigate the sycophancy issue, while it typically leads to the degeneration of LLMs' general capability. To address the challenge, we propose a novel supervised pinpoint tuning (SPT), where the region-of-interest modules are tuned for a given objective. Specifically, SPT first reveals and verifies a small percentage (<5%) of the basic modules, which significantly affect a particular behavior of LLMs. i.e., sycophancy. Subsequently, SPT merely fine-tunes these identified modules while freezing the rest. To verify the effectiveness of the proposed SPT, we conduct comprehensive experiments, demonstrating that SPT significantly mitigates the sycophancy issue of LLMs (even better than SFT). Moreover, SPT introduces limited or even no side effects on the general capability of LLMs. Our results shed light on how to precisely, effectively, and efficiently explain and improve the targeted ability of LLMs.
comment: Accepted by ICML 2024
Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance
Agents powered by large language models have shown remarkable abilities in solving complex tasks. However, most agent systems remain reactive, limiting their effectiveness in scenarios requiring foresight and autonomous decision-making. In this paper, we tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions. We propose a novel data-driven approach for this problem. Firstly, we collect real-world human activities to generate proactive task predictions. These predictions are then labeled by human annotators as either accepted or rejected. The labeled data is used to train a reward model that simulates human judgment and serves as an automatic evaluator of the proactiveness of LLM agents. Building on this, we develop a comprehensive data generation pipeline to create a diverse dataset, ProactiveBench, containing 6,790 events. Finally, we demonstrate that fine-tuning models with the proposed ProactiveBench can significantly elicit the proactiveness of LLM agents. Experimental results show that our fine-tuned model achieves an F1-Score of 66.47% in proactively offering assistance, outperforming all open-source and close-source models. These results highlight the potential of our method in creating more proactive and effective agent systems, paving the way for future advancements in human-agent collaboration.
comment: 9 pages, 4 figures
♻ ☆ CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching NeurIPS 2024
Diffusion models have demonstrated great success in the field of text-to-image generation. However, alleviating the misalignment between the text prompts and images is still challenging. The root reason behind the misalignment has not been extensively investigated. We observe that the misalignment is caused by inadequate token attention activation. We further attribute this phenomenon to the diffusion model's insufficient condition utilization, which is caused by its training paradigm. To address the issue, we propose CoMat, an end-to-end diffusion model fine-tuning strategy with an image-to-text concept matching mechanism. We leverage an image captioning model to measure image-to-text alignment and guide the diffusion model to revisit ignored tokens. A novel attribute concentration module is also proposed to address the attribute binding problem. Without any image or human preference data, we use only 20K text prompts to fine-tune SDXL to obtain CoMat-SDXL. Extensive experiments show that CoMat-SDXL significantly outperforms the baseline model SDXL in two text-to-image alignment benchmarks and achieves start-of-the-art performance.
comment: NeurIPS 2024
♻ ☆ Empowering ChatGPT-Like Large-Scale Language Models with Local Knowledge Base for Industrial Prognostics and Health Management
Prognostics and health management (PHM) is essential for industrial operation and maintenance, focusing on predicting, diagnosing, and managing the health status of industrial systems. The emergence of the ChatGPT-Like large-scale language model (LLM) has begun to lead a new round of innovation in the AI field. It has extensively promoted the level of intelligence in various fields. Therefore, it is also expected further to change the application paradigm in industrial PHM and promote PHM to become intelligent. Although ChatGPT-Like LLMs have rich knowledge reserves and powerful language understanding and generation capabilities, they lack domain-specific expertise, significantly limiting their practicability in PHM applications. To this end, this study explores the ChatGPT-Like LLM empowered by the local knowledge base (LKB) in industrial PHM to solve the above limitations. In addition, we introduce the method and steps of combining the LKB with LLMs, including LKB preparation, LKB vectorization, prompt engineering, etc. Experimental analysis of real cases shows that combining the LKB with ChatGPT-Like LLM can significantly improve its performance and make ChatGPT-Like LLMs more accurate, relevant, and able to provide more insightful information. This can promote the development of ChatGPT-Like LLMs in industrial PHM and promote their efficiency and quality.
♻ ☆ Isotropy Matters: Soft-ZCA Whitening of Embeddings for Semantic Code Search
Low isotropy in an embedding space impairs performance on tasks involving semantic inference. Our study investigates the impact of isotropy on semantic code search performance and explores post-processing techniques to mitigate this issue. We analyze various code language models, examine isotropy in their embedding spaces, and its influence on search effectiveness. We propose a modified ZCA whitening technique to control isotropy levels in embeddings. Our results demonstrate that Soft-ZCA whitening improves the performance of pre-trained code language models and can complement contrastive fine-tuning.
Simulating Classroom Education with LLM-Empowered Agents
Large language models (LLMs) have been applied across various intelligent educational tasks to assist teaching. While preliminary studies have focused on task-specific, independent LLM-empowered agents, the potential of LLMs within a multi-agent collaborative framework for classroom simulation with real user participation remains unexplored. In this work, we propose SimClass, a multi-agent classroom simulation teaching framework. We recognize representative class roles and introduce a novel class control mechanism for automatic classroom teaching, and conduct user experiments in two real-world courses. Using the Flanders Interactive Analysis System and Community of Inquiry theoretical frameworks from educational analysis, we demonstrate that LLMs can simulate a dynamic learning environment for users with active teacher-student and student-student interactions. We also observe group behaviors among agents in SimClass, where agents collaborate to create enlivening interactions in classrooms to improve user learning process. We hope this work pioneers the application of LLM-empowered multi-agent systems in virtual classroom teaching.
MMSearch: Benchmarking the Potential of Large Models as Multi-modal Search Engines
The advent of Large Language Models (LLMs) has paved the way for AI search engines, e.g., SearchGPT, showcasing a new paradigm in human-internet interaction. However, most current AI search engines are limited to text-only settings, neglecting the multimodal user queries and the text-image interleaved nature of website information. Recently, Large Multimodal Models (LMMs) have made impressive strides. Yet, whether they can function as AI search engines remains under-explored, leaving the potential of LMMs in multimodal search an open question. To this end, we first design a delicate pipeline, MMSearch-Engine, to empower any LMMs with multimodal search capabilities. On top of this, we introduce MMSearch, a comprehensive evaluation benchmark to assess the multimodal search performance of LMMs. The curated dataset contains 300 manually collected instances spanning 14 subfields, which involves no overlap with the current LMMs' training data, ensuring the correct answer can only be obtained within searching. By using MMSearch-Engine, the LMMs are evaluated by performing three individual tasks (requery, rerank, and summarization), and one challenging end-to-end task with a complete searching process. We conduct extensive experiments on closed-source and open-source LMMs. Among all tested models, GPT-4o with MMSearch-Engine achieves the best results, which surpasses the commercial product, Perplexity Pro, in the end-to-end task, demonstrating the effectiveness of our proposed pipeline. We further present error analysis to unveil current LMMs still struggle to fully grasp the multimodal search tasks, and conduct ablation study to indicate the potential of scaling test-time computation for AI search engine. We hope MMSearch may provide unique insights to guide the future development of multimodal AI search engine. Project Page: https://mmsearch.github.io
comment: Project Page: https://mmsearch.github.io
♻ ☆ ShifCon: Enhancing Non-Dominant Language Capabilities with a Shift-based Contrastive Framework
Although fine-tuning Large Language Models (LLMs) with multilingual data can rapidly enhance the multilingual capabilities of LLMs, they still exhibit a performance gap between the dominant language (e.g., English) and non-dominant ones due to the imbalance of training data across languages. To further enhance the performance of non-dominant languages, we propose ShifCon, a Shift-based Contrastive framework that aligns the internal forward process of other languages toward that of the dominant one. Specifically, it shifts the representations of non-dominant languages into the dominant language subspace, allowing them to access relatively rich information encoded in the model parameters. The enriched representations are then shifted back into their original language subspace before generation. Moreover, we introduce a subspace distance metric to pinpoint the optimal layer area for shifting representations and employ multilingual contrastive learning to further enhance the alignment of representations within this area. Experiments demonstrate that our ShifCon framework significantly enhances the performance of non-dominant languages, particularly for low-resource ones. Further analysis offers extra insights to verify the effectiveness of ShifCon and propel future research
comment: 23 pages, 11 figures
♻ ☆ EFSA: Towards Event-Level Financial Sentiment Analysis
In this paper, we extend financial sentiment analysis~(FSA) to event-level since events usually serve as the subject of the sentiment in financial text. Though extracting events from the financial text may be conducive to accurate sentiment predictions, it has specialized challenges due to the lengthy and discontinuity of events in a financial text. To this end, we reconceptualize the event extraction as a classification task by designing a categorization comprising coarse-grained and fine-grained event categories. Under this setting, we formulate the \textbf{E}vent-Level \textbf{F}inancial \textbf{S}entiment \textbf{A}nalysis~(\textbf{EFSA} for short) task that outputs quintuples consisting of (company, industry, coarse-grained event, fine-grained event, sentiment) from financial text. A large-scale Chinese dataset containing $12,160$ news articles and $13,725$ quintuples is publicized as a brand new testbed for our task. A four-hop Chain-of-Thought LLM-based approach is devised for this task. Systematically investigations are conducted on our dataset, and the empirical results demonstrate the benchmarking scores of existing methods and our proposed method can reach the current state-of-the-art. Our dataset and framework implementation are available at https://anonymous.4open.science/r/EFSA-645E
♻ ☆ Playing Language Game with LLMs Leads to Jailbreaking
The advent of large language models (LLMs) has spurred the development of numerous jailbreak techniques aimed at circumventing their security defenses against malicious attacks. An effective jailbreak approach is to identify a domain where safety generalization fails, a phenomenon known as mismatched generalization. In this paper, we introduce two novel jailbreak methods based on mismatched generalization: natural language games and custom language games, both of which effectively bypass the safety mechanisms of LLMs, with various kinds and different variants, making them hard to defend and leading to high attack rates. Natural language games involve the use of synthetic linguistic constructs and the actions intertwined with these constructs, such as the Ubbi Dubbi language. Building on this phenomenon, we propose the custom language games method: by engaging with LLMs using a variety of custom rules, we successfully execute jailbreak attacks across multiple LLM platforms. Extensive experiments demonstrate the effectiveness of our methods, achieving success rates of 93% on GPT-4o, 89% on GPT-4o-mini and 83% on Claude-3.5-Sonnet. Furthermore, to investigate the generalizability of safety alignments, we fine-tuned Llama-3.1-70B with the custom language games to achieve safety alignment within our datasets and found that when interacting through other language games, the fine-tuned models still failed to identify harmful content. This finding indicates that the safety alignment knowledge embedded in LLMs fails to generalize across different linguistic formats, thus opening new avenues for future research in this area.
♻ ☆ IOPO: Empowering LLMs with Complex Instruction Following via Input-Output Preference Optimization
In the realm of large language models (LLMs), the ability of models to accurately follow instructions is paramount as more agents and applications leverage LLMs for construction, where the complexity of instructions are rapidly increasing. However, on the one hand, there is only a certain amount of complex instruction evaluation data; on the other hand, there are no dedicated algorithms to improve the ability to follow complex instructions. To this end, this paper introduces TRACE, a benchmark for improving and evaluating the complex instructionfollowing ability, which consists of 120K training data and 1K evaluation data. Furthermore, we propose IOPO (Input-Output Preference Optimization) alignment method which takes both input and output preference pairs into consideration, where LLMs not only rapidly align with response preferences but also meticulously explore the instruction preferences. Extensive experiments on both in-domain and outof-domain datasets confirm the effectiveness of IOPO, showing 8.15%, 2.18% improvements on in-domain data and 6.29%, 3.13% on outof-domain data compared to SFT and DPO respectively.
comment: Work in progress
♻ ☆ A First Look at GPT Apps: Landscape and Vulnerability
Following OpenAI's introduction of GPTs, a surge in GPT apps has led to the launch of dedicated LLM app stores. Nevertheless, given its debut, there is a lack of sufficient understanding of this new ecosystem. To fill this gap, this paper presents a first comprehensive longitudinal (5-month) study of the evolution, landscape, and vulnerability of the emerging LLM app ecosystem, focusing on two GPT app stores: \textit{GPTStore.AI} and the official \textit{OpenAI GPT Store}. Specifically, we develop two automated tools and a TriLevel configuration extraction strategy to efficiently gather metadata (\ie names, creators, descriptions, \etc) and user feedback for all GPT apps across these two stores, as well as configurations (\ie system prompts, knowledge files, and APIs) for the top 10,000 popular apps. Our extensive analysis reveals: (1) the user enthusiasm for GPT apps consistently rises, whereas creator interest plateaus within three months of GPTs' launch; (2) nearly 90\% system prompts can be easily accessed due to widespread failure to secure GPT app configurations, leading to considerable plagiarism and duplication among apps. Our findings highlight the necessity of enhancing the LLM app ecosystem by the app stores, creators, and users.
♻ ☆ Self-Training Meets Consistency: Improving LLMs' Reasoning With Consistency-Driven Rationale Evaluation
Self-training approach for large language models (LLMs) improves reasoning abilities by training the models on their self-generated rationales. Previous approaches have labeled rationales that produce correct answers for a given question as appropriate for training. However, a single measure risks misjudging rationale quality, leading the models to learn flawed reasoning patterns. To address this issue, we propose CREST (Consistency-driven Rationale Evaluation for Self-Training), a self-training framework that further evaluates each rationale through follow-up questions and leverages this evaluation to guide its training. Specifically, we introduce two methods: (1) filtering out rationales that frequently result in incorrect answers on follow-up questions and (2) preference learning based on mixed preferences from rationale evaluation results of both original and follow-up questions. Experiments on three question-answering datasets using open LLMs show that CREST not only improves the logical robustness and correctness of rationales but also improves reasoning abilities compared to previous self-training approaches.
comment: Under review
♻ ☆ Towards More Accurate US Presidential Election via Multi-step Reasoning with Large Language Models
Can Large Language Models (LLMs) accurately predict election outcomes? While LLMs have demonstrated impressive performance in various domains, including healthcare, legal analysis, and creative tasks, their ability to forecast elections remains unknown. Election prediction poses unique challenges, such as limited voter-level data, rapidly changing political landscapes, and the need to model complex human behavior. To address these challenges, we introduce a multi-step reasoning framework designed for political analysis. Our approach is validated on real-world data from the American National Election Studies (ANES) 2016 and 2020, as well as synthetic personas generated by the leading machine learning framework, offering scalable datasets for voter behavior modeling. To capture temporal dynamics, we incorporate candidates' policy positions and biographical details, ensuring that the model adapts to evolving political contexts. Drawing on Chain of Thought prompting, our multi-step reasoning pipeline systematically integrates demographic, ideological, and time-dependent factors, enhancing the model's predictive power.
comment: This research is ongoing work. Xiyang Hu and Yue Zhao are the corresponding authors
♻ ☆ A Comprehensive Survey of Large Language Models and Multimodal Large Language Models in Medicine
Since the release of ChatGPT and GPT-4, large language models (LLMs) and multimodal large language models (MLLMs) have attracted widespread attention for their exceptional capabilities in understanding, reasoning, and generation, introducing transformative paradigms for integrating artificial intelligence into medicine. This survey provides a comprehensive overview of the development, principles, application scenarios, challenges, and future directions of LLMs and MLLMs in medicine. Specifically, it begins by examining the paradigm shift, tracing the transition from traditional models to LLMs and MLLMs, and highlighting the unique advantages of these LLMs and MLLMs in medical applications. Next, the survey reviews existing medical LLMs and MLLMs, providing detailed guidance on their construction and evaluation in a clear and systematic manner. Subsequently, to underscore the substantial value of LLMs and MLLMs in healthcare, the survey explores five promising applications in the field. Finally, the survey addresses the challenges confronting medical LLMs and MLLMs and proposes practical strategies and future directions for their integration into medicine. In summary, this survey offers a comprehensive analysis of the technical methodologies and practical clinical applications of medical LLMs and MLLMs, with the goal of bridging the gap between these advanced technologies and clinical practice, thereby fostering the evolution of the next generation of intelligent healthcare systems.
♻ ☆ OpenMU: Your Swiss Army Knife for Music Understanding
We present OpenMU-Bench, a large-scale benchmark suite for addressing the data scarcity issue in training multimodal language models to understand music. To construct OpenMU-Bench, we leveraged existing datasets and bootstrapped new annotations. OpenMU-Bench also broadens the scope of music understanding by including lyrics understanding and music tool usage. Using OpenMU-Bench, we trained our music understanding model, OpenMU, with extensive ablations, demonstrating that OpenMU outperforms baseline models such as MU-Llama. Both OpenMU and OpenMU-Bench are open-sourced to facilitate future research in music understanding and to enhance creative music production efficiency.
comment: Resources: https://github.com/sony/openmu
♻ ☆ How language models extrapolate outside the training data: A case study in Textualized Gridworld
Language models' ability to extrapolate learned behaviors to novel, more complex environments beyond their training scope is highly unknown. This study introduces a path planning task in a textualized Gridworld to probe language models' extrapolation capabilities. We show that conventional approaches, including next token prediction and Chain of Thought (CoT) finetuning, fail to extrapolate in larger, unseen environments. Inspired by human cognition and dual process theory, we propose cognitive maps for path planning, a novel CoT framework that simulates humanlike mental representations. Our experiments show that cognitive maps not only enhance extrapolation to unseen environments but also exhibit humanlike characteristics through structured mental simulation and rapid adaptation. Our finding that these cognitive maps require specialized training schemes and cannot be induced through simple prompting opens up important questions about developing general-purpose cognitive maps in language models. Our comparison with exploration-based methods further illuminates the complementary strengths of offline planning and online exploration.
♻ ☆ Closer Look at Efficient Inference Methods: A Survey of Speculative Decoding
Efficient inference in large language models (LLMs) has become a critical focus as their scale and complexity grow. Traditional autoregressive decoding, while effective, suffers from computational inefficiencies due to its sequential token generation process. Speculative decoding addresses this bottleneck by introducing a two-stage framework: drafting and verification. A smaller, efficient model generates a preliminary draft, which is then refined by a larger, more sophisticated model. This paper provides a comprehensive survey of speculative decoding methods, categorizing them into draft-centric and model-centric approaches. We discuss key ideas associated with each method, highlighting their potential for scaling LLM inference. This survey aims to guide future research in optimizing speculative decoding and its integration into real-world LLM applications.
♻ ☆ AfriMed-QA: A Pan-African, Multi-Specialty, Medical Question-Answering Benchmark Dataset
Recent advancements in large language model(LLM) performance on medical multiple choice question (MCQ) benchmarks have stimulated interest from healthcare providers and patients globally. Particularly in low-and middle-income countries (LMICs) facing acute physician shortages and lack of specialists, LLMs offer a potentially scalable pathway to enhance healthcare access and reduce costs. However, their effectiveness in the Global South, especially across the African continent, remains to be established. In this work, we introduce AfriMed-QA, the first large scale Pan-African English multi-specialty medical Question-Answering (QA) dataset, 15,000 questions (open and closed-ended) sourced from over 60 medical schools across 16 countries, covering 32 medical specialties. We further evaluate 30 LLMs across multiple axes including correctness and demographic bias. Our findings show significant performance variation across specialties and geographies, MCQ performance clearly lags USMLE (MedQA). We find that biomedical LLMs underperform general models and smaller edge-friendly LLMs struggle to achieve a passing score. Interestingly, human evaluations show a consistent consumer preference for LLM answers and explanations when compared with clinician answers.
♻ ☆ A Method for Building Large Language Models with Predefined KV Cache Capacity
This paper introduces a novel approach, the Bounded-Cache Transformer (BCT), for building large language models with a predefined Key-Value (KV) cache capacity. The BCT addresses the excessive memory consumption issue in traditional KV caches by implementing a bounded-length KV cache, which is particularly suitable for the attention layers in Transformer decode-only architectures. By dynamically updating the key-value vector sequences, the BCT achieves efficient inference within limited cache capacity, significantly reducing memory usage while maintaining model performance and system throughput. Experimental results demonstrate that the BCT significantly reduces memory usage while maintaining the model's inference quality, offering a new solution for efficient inference in large language models.
♻ ☆ Low-Bit Quantization Favors Undertrained LLMs: Scaling Laws for Quantized LLMs with 100T Training Tokens
We reveal that low-bit quantization favors undertrained large language models (LLMs) by observing that models with larger sizes or fewer training tokens experience less quantization-induced degradation (QiD) when applying low-bit quantization, whereas smaller models with extensive training tokens suffer significant QiD. To gain deeper insights into this trend, we study over 1500 quantized LLM checkpoints of various sizes and at different training levels (undertrained or fully trained) in a controlled setting, deriving scaling laws for understanding the relationship between QiD and factors such as the number of training tokens, model size and bit width. With the derived scaling laws, we propose a novel perspective that we can use QiD to measure an LLM's training levels and determine the number of training tokens required for fully training LLMs of various sizes. Moreover, we use the scaling laws to predict the quantization performance of different-sized LLMs trained with 100 trillion tokens. Our projection shows that the low-bit quantization performance of future models, which are expected to be trained with over 100 trillion tokens, may NOT be desirable. This poses a potential challenge for low-bit quantization in the future and highlights the need for awareness of a model's training level when evaluating low-bit quantization research. To facilitate future research on this problem, we release all the 1500+ quantized checkpoints used in this work at https://huggingface.co/Xu-Ouyang.
comment: Work in Progress
♻ ☆ CIF-T: A Novel CIF-based Transducer Architecture for Automatic Speech Recognition ICASSP 2024
RNN-T models are widely used in ASR, which rely on the RNN-T loss to achieve length alignment between input audio and target sequence. However, the implementation complexity and the alignment-based optimization target of RNN-T loss lead to computational redundancy and a reduced role for predictor network, respectively. In this paper, we propose a novel model named CIF-Transducer (CIF-T) which incorporates the Continuous Integrate-and-Fire (CIF) mechanism with the RNN-T model to achieve efficient alignment. In this way, the RNN-T loss is abandoned, thus bringing a computational reduction and allowing the predictor network a more significant role. We also introduce Funnel-CIF, Context Blocks, Unified Gating and Bilinear Pooling joint network, and auxiliary training strategy to further improve performance. Experiments on the 178-hour AISHELL-1 and 10000-hour WenetSpeech datasets show that CIF-T achieves state-of-the-art results with lower computational overhead compared to RNN-T models.
comment: Accepted by ICASSP 2024
♻ ☆ BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models
While large language models (LLMs) exhibit remarkable capabilities across various tasks, they encounter potential security risks such as jailbreak attacks, which exploit vulnerabilities to bypass security measures and generate harmful outputs. Existing jailbreak strategies mainly focus on maximizing attack success rate (ASR), frequently neglecting other critical factors, including the relevance of the jailbreak response to the query and the level of stealthiness. This narrow focus on single objectives can result in ineffective attacks that either lack contextual relevance or are easily recognizable. In this work, we introduce BlackDAN, an innovative black-box attack framework with multi-objective optimization, aiming to generate high-quality prompts that effectively facilitate jailbreaking while maintaining contextual relevance and minimizing detectability. BlackDAN leverages Multiobjective Evolutionary Algorithms (MOEAs), specifically the NSGA-II algorithm, to optimize jailbreaks across multiple objectives including ASR, stealthiness, and semantic relevance. By integrating mechanisms like mutation, crossover, and Pareto-dominance, BlackDAN provides a transparent and interpretable process for generating jailbreaks. Furthermore, the framework allows customization based on user preferences, enabling the selection of prompts that balance harmfulness, relevance, and other factors. Experimental results demonstrate that BlackDAN outperforms traditional single-objective methods, yielding higher success rates and improved robustness across various LLMs and multimodal LLMs, while ensuring jailbreak responses are both relevant and less detectable.
♻ ☆ Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning
Value-based reinforcement learning (RL) can in principle learn effective policies for a wide range of multi-turn problems, from games to dialogue to robotic control, including via offline RL from static previously collected datasets. However, despite the widespread use of policy gradient methods to train large language models for single turn tasks (e.g., question answering), value-based methods for multi-turn RL in an off-policy or offline setting have proven particularly challenging to scale to the setting of large language models. This setting requires effectively leveraging pretraining, scaling to large architectures with billions of parameters, and training on large datasets, all of which represent major challenges for current value-based RL methods. In this work, we propose a novel offline RL algorithm that addresses these drawbacks, casting Q-learning as a modified supervised fine-tuning (SFT) problem where the probabilities of tokens directly translate to Q-values. In this way we obtain an algorithm that smoothly transitions from maximizing the likelihood of the data during pretraining to learning a near-optimal Q-function during finetuning. Our algorithm has strong theoretical foundations, enjoying performance bounds similar to state-of-the-art Q-learning methods, while in practice utilizing an objective that closely resembles SFT. Because of this, our approach can enjoy the full benefits of the pretraining of language models, without the need to reinitialize any weights before RL finetuning, and without the need to initialize new heads for predicting values or advantages. Empirically, we evaluate our method on both pretrained LLMs and VLMs, on a variety of tasks including both natural language dialogue and robotic manipulation and navigation from images.
comment: 17 pages, 4 figures
Computer Vision and Pattern Recognition 172
☆ Textured Gaussians for Enhanced 3D Scene Appearance Modeling
3D Gaussian Splatting (3DGS) has recently emerged as a state-of-the-art 3D reconstruction and rendering technique due to its high-quality results and fast training and rendering time. However, pixels covered by the same Gaussian are always shaded in the same color up to a Gaussian falloff scaling factor. Furthermore, the finest geometric detail any individual Gaussian can represent is a simple ellipsoid. These properties of 3DGS greatly limit the expressivity of individual Gaussian primitives. To address these issues, we draw inspiration from texture and alpha mapping in traditional graphics and integrate it with 3DGS. Specifically, we propose a new generalized Gaussian appearance representation that augments each Gaussian with alpha~(A), RGB, or RGBA texture maps to model spatially varying color and opacity across the extent of each Gaussian. As such, each Gaussian can represent a richer set of texture patterns and geometric structures, instead of just a single color and ellipsoid as in naive Gaussian Splatting. Surprisingly, we found that the expressivity of Gaussians can be greatly improved by using alpha-only texture maps, and further augmenting Gaussians with RGB texture maps achieves the highest expressivity. We validate our method on a wide variety of standard benchmark datasets and our own custom captures at both the object and scene levels. We demonstrate image quality improvements over existing methods while using a similar or lower number of Gaussians.
comment: Project website: https://textured-gaussians.github.io/
GeneMAN: Generalizable Single-Image 3D Human Reconstruction from Multi-Source Human Data
Given a single in-the-wild human photo, it remains a challenging task to reconstruct a high-fidelity 3D human model. Existing methods face difficulties including a) the varying body proportions captured by in-the-wild human images; b) diverse personal belongings within the shot; and c) ambiguities in human postures and inconsistency in human textures. In addition, the scarcity of high-quality human data intensifies the challenge. To address these problems, we propose a Generalizable image-to-3D huMAN reconstruction framework, dubbed GeneMAN, building upon a comprehensive multi-source collection of high-quality human data, including 3D scans, multi-view videos, single photos, and our generated synthetic human data. GeneMAN encompasses three key modules. 1) Without relying on parametric human models (e.g., SMPL), GeneMAN first trains a human-specific text-to-image diffusion model and a view-conditioned diffusion model, serving as GeneMAN 2D human prior and 3D human prior for reconstruction, respectively. 2) With the help of the pretrained human prior models, the Geometry Initialization-&-Sculpting pipeline is leveraged to recover high-quality 3D human geometry given a single image. 3) To achieve high-fidelity 3D human textures, GeneMAN employs the Multi-Space Texture Refinement pipeline, consecutively refining textures in the latent and the pixel spaces. Extensive experimental results demonstrate that GeneMAN could generate high-quality 3D human models from a single image input, outperforming prior state-of-the-art methods. Notably, GeneMAN could reveal much better generalizability in dealing with in-the-wild images, often yielding high-quality 3D human models in natural poses with common items, regardless of the body proportions in the input images.
comment: Project page: https://roooooz.github.io/GeneMAN/
☆ Lift3D Foundation Policy: Lifting 2D Large-Scale Pretrained Models for Robust 3D Robotic Manipulation
3D geometric information is essential for manipulation tasks, as robots need to perceive the 3D environment, reason about spatial relationships, and interact with intricate spatial configurations. Recent research has increasingly focused on the explicit extraction of 3D features, while still facing challenges such as the lack of large-scale robotic 3D data and the potential loss of spatial geometry. To address these limitations, we propose the Lift3D framework, which progressively enhances 2D foundation models with implicit and explicit 3D robotic representations to construct a robust 3D manipulation policy. Specifically, we first design a task-aware masked autoencoder that masks task-relevant affordance patches and reconstructs depth information, enhancing the 2D foundation model's implicit 3D robotic representation. After self-supervised fine-tuning, we introduce a 2D model-lifting strategy that establishes a positional mapping between the input 3D points and the positional embeddings of the 2D model. Based on the mapping, Lift3D utilizes the 2D foundation model to directly encode point cloud data, leveraging large-scale pretrained knowledge to construct explicit 3D robotic representations while minimizing spatial information loss. In experiments, Lift3D consistently outperforms previous state-of-the-art methods across several simulation benchmarks and real-world scenarios.
☆ Leveraging Semi-Supervised Learning to Enhance Data Mining for Image Classification under Limited Labeled Data
In the 21st-century information age, with the development of big data technology, effectively extracting valuable information from massive data has become a key issue. Traditional data mining methods are inadequate when faced with large-scale, high-dimensional and complex data. Especially when labeled data is scarce, their performance is greatly limited. This study optimizes data mining algorithms by introducing semi-supervised learning methods, aiming to improve the algorithm's ability to utilize unlabeled data, thereby achieving more accurate data analysis and pattern recognition under limited labeled data conditions. Specifically, we adopt a self-training method and combine it with a convolutional neural network (CNN) for image feature extraction and classification, and continuously improve the model prediction performance through an iterative process. The experimental results demonstrate that the proposed method significantly outperforms traditional machine learning techniques such as Support Vector Machine (SVM), XGBoost, and Multi-Layer Perceptron (MLP) on the CIFAR-10 image classification dataset. Notable improvements were observed in key performance metrics, including accuracy, recall, and F1 score. Furthermore, the robustness and noise-resistance capabilities of the semi-supervised CNN model were validated through experiments under varying noise levels, confirming its practical applicability in real-world scenarios.
☆ Cross-modal Information Flow in Multimodal Large Language Models
The recent advancements in auto-regressive multimodal large language models (MLLMs) have demonstrated promising progress for vision-language tasks. While there exists a variety of studies investigating the processing of linguistic information within large language models, little is currently known about the inner working mechanism of MLLMs and how linguistic and visual information interact within these models. In this study, we aim to fill this gap by examining the information flow between different modalities -- language and vision -- in MLLMs, focusing on visual question answering. Specifically, given an image-question pair as input, we investigate where in the model and how the visual and linguistic information are combined to generate the final prediction. Conducting experiments with a series of models from the LLaVA series, we find that there are two distinct stages in the process of integration of the two modalities. In the lower layers, the model first transfers the more general visual features of the whole image into the representations of (linguistic) question tokens. In the middle layers, it once again transfers visual information about specific objects relevant to the question to the respective token positions of the question. Finally, in the higher layers, the resulting multimodal representation is propagated to the last position of the input sequence for the final prediction. Overall, our findings provide a new and comprehensive perspective on the spatial and functional aspects of image and language processing in the MLLMs, thereby facilitating future research into multimodal information localization and editing.
☆ Diffusion Self-Distillation for Zero-Shot Customized Image Generation
Text-to-image diffusion models produce impressive results but are frustrating tools for artists who desire fine-grained control. For example, a common use case is to create images of a specific instance in novel contexts, i.e., "identity-preserving generation". This setting, along with many other tasks (e.g., relighting), is a natural fit for image+text-conditional generative models. However, there is insufficient high-quality paired data to train such a model directly. We propose Diffusion Self-Distillation, a method for using a pre-trained text-to-image model to generate its own dataset for text-conditioned image-to-image tasks. We first leverage a text-to-image diffusion model's in-context generation ability to create grids of images and curate a large paired dataset with the help of a Visual-Language Model. We then fine-tune the text-to-image model into a text+image-to-image model using the curated paired dataset. We demonstrate that Diffusion Self-Distillation outperforms existing zero-shot methods and is competitive with per-instance tuning techniques on a wide range of identity-preservation generation tasks, without requiring test-time optimization.
comment: Project page: https://primecai.github.io/dsd/
☆ Proactive Gradient Conflict Mitigation in Multi-Task Learning: A Sparse Training Perspective
Advancing towards generalist agents necessitates the concurrent processing of multiple tasks using a unified model, thereby underscoring the growing significance of simultaneous model training on multiple downstream tasks. A common issue in multi-task learning is the occurrence of gradient conflict, which leads to potential competition among different tasks during joint training. This competition often results in improvements in one task at the expense of deterioration in another. Although several optimization methods have been developed to address this issue by manipulating task gradients for better task balancing, they cannot decrease the incidence of gradient conflict. In this paper, we systematically investigate the occurrence of gradient conflict across different methods and propose a strategy to reduce such conflicts through sparse training (ST), wherein only a portion of the model's parameters are updated during training while keeping the rest unchanged. Our extensive experiments demonstrate that ST effectively mitigates conflicting gradients and leads to superior performance. Furthermore, ST can be easily integrated with gradient manipulation techniques, thus enhancing their effectiveness.
☆ CAT4D: Create Anything in 4D with Multi-View Video Diffusion Models
We present CAT4D, a method for creating 4D (dynamic 3D) scenes from monocular video. CAT4D leverages a multi-view video diffusion model trained on a diverse combination of datasets to enable novel view synthesis at any specified camera poses and timestamps. Combined with a novel sampling approach, this model can transform a single monocular video into a multi-view video, enabling robust 4D reconstruction via optimization of a deformable 3D Gaussian representation. We demonstrate competitive performance on novel view synthesis and dynamic scene reconstruction benchmarks, and highlight the creative capabilities for 4D scene generation from real or generated videos. See our project page for results and interactive demos: \url{cat-4d.github.io}.
comment: Project page: https://cat-4d.github.io/
☆ Evaluating and Improving the Effectiveness of Synthetic Chest X-Rays for Medical Image Analysis
Purpose: To explore best-practice approaches for generating synthetic chest X-ray images and augmenting medical imaging datasets to optimize the performance of deep learning models in downstream tasks like classification and segmentation. Materials and Methods: We utilized a latent diffusion model to condition the generation of synthetic chest X-rays on text prompts and/or segmentation masks. We explored methods like using a proxy model and using radiologist feedback to improve the quality of synthetic data. These synthetic images were then generated from relevant disease information or geometrically transformed segmentation masks and added to ground truth training set images from the CheXpert, CANDID-PTX, SIIM, and RSNA Pneumonia datasets to measure improvements in classification and segmentation model performance on the test sets. F1 and Dice scores were used to evaluate classification and segmentation respectively. One-tailed t-tests with Bonferroni correction assessed the statistical significance of performance improvements with synthetic data. Results: Across all experiments, the synthetic data we generated resulted in a maximum mean classification F1 score improvement of 0.150453 (CI: 0.099108-0.201798; P=0.0031) compared to using only real data. For segmentation, the maximum Dice score improvement was 0.14575 (CI: 0.108267-0.183233; P=0.0064). Conclusion: Best practices for generating synthetic chest X-ray images for downstream tasks include conditioning on single-disease labels or geometrically transformed segmentation masks, as well as potentially using proxy modeling for fine-tuning such generations.
☆ Structured light with a million light planes per second
We introduce a structured light system that captures full-frame depth at rates of a thousand frames per second, four times faster than the previous state of the art. Our key innovation to this end is the design of an acousto-optic light scanning device that can scan light planes at rates up to two million planes per second. We combine this device with an event camera for structured light, using the sparse events triggered on the camera as we sweep a light plane on the scene for depth triangulation. In contrast to prior work, where light scanning is the bottleneck towards faster structured light operation, our light scanning device is three orders of magnitude faster than the event camera's full-frame bandwidth, thus allowing us to take full advantage of the event camera's fast operation. To surpass this bandwidth, we additionally demonstrate adaptive scanning of only regions of interest, at speeds an order of magnitude faster than the theoretical full-frame limit for event cameras.
☆ Biomolecular Analysis of Soil Samples and Rock Imagery for Tracing Evidence of Life Using a Mobile Robot
The search for evidence of past life on Mars presents a tremendous challenge that requires the usage of very advanced robotic technologies to overcome it. Current digital microscopic imagers and spectrometers used for astrobiological examination suffer from limitations such as insufficient resolution, narrow detection range, and lack of portability. To overcome these challenges, this research study presents modifications to the Phoenix rover to expand its capability for detecting biosignatures on Mars. This paper examines the modifications implemented on the Phoenix rover to enhance its capability to detect a broader spectrum of biosignatures. One of the notable improvements comprises the integration of advanced digital microscopic imagers and spectrometers, enabling high-resolution examination of soil samples. Additionally, the mechanical components of the device have been reinforced to enhance maneuverability and optimize subsurface sampling capabilities. Empirical investigations have demonstrated that Phoenix has the capability to navigate diverse geological environments and procure samples for the purpose of biomolecular analysis. The biomolecular instrumentation and hybrid analytical methods showcased in this study demonstrate considerable potential for future astrobiology missions on Mars. The potential for enhancing the system lies in the possibility of broadening the range of detectable biomarkers and biosignatures.
comment: Key Words : Mars, Rover, Phoenix, Biosignatures, Biomolecular Analysis, Microscopy, Spectroscopy, Sampling, Astrobiology
Hierarchical Information Flow for Generalized Efficient Image Restoration
While vision transformers show promise in numerous image restoration (IR) tasks, the challenge remains in efficiently generalizing and scaling up a model for multiple IR tasks. To strike a balance between efficiency and model capacity for a generalized transformer-based IR method, we propose a hierarchical information flow mechanism for image restoration, dubbed Hi-IR, which progressively propagates information among pixels in a bottom-up manner. Hi-IR constructs a hierarchical information tree representing the degraded image across three levels. Each level encapsulates different types of information, with higher levels encompassing broader objects and concepts and lower levels focusing on local details. Moreover, the hierarchical tree architecture removes long-range self-attention, improves the computational efficiency and memory utilization, thus preparing it for effective model scaling. Based on that, we explore model scaling to improve our method's capabilities, which is expected to positively impact IR in large-scale training settings. Extensive experimental results show that Hi-IR achieves state-of-the-art performance in seven common image restoration tasks, affirming its effectiveness and generalizability.
☆ Exploring Depth Information for Detecting Manipulated Face Videos
Face manipulation detection has been receiving a lot of attention for the reliability and security of the face images/videos. Recent studies focus on using auxiliary information or prior knowledge to capture robust manipulation traces, which are shown to be promising. As one of the important face features, the face depth map, which has shown to be effective in other areas such as face recognition or face detection, is unfortunately paid little attention to in literature for face manipulation detection. In this paper, we explore the possibility of incorporating the face depth map as auxiliary information for robust face manipulation detection. To this end, we first propose a Face Depth Map Transformer (FDMT) to estimate the face depth map patch by patch from an RGB face image, which is able to capture the local depth anomaly created due to manipulation. The estimated face depth map is then considered as auxiliary information to be integrated with the backbone features using a Multi-head Depth Attention (MDA) mechanism that is newly designed. We also propose an RGB-Depth Inconsistency Attention (RDIA) module to effectively capture the inter-frame inconsistency for multi-frame input. Various experiments demonstrate the advantage of our proposed method for face manipulation detection.
comment: 12 pages, 10 figures. arXiv admin note: substantial text overlap with arXiv:2212.14230
☆ DexDiffuser: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simpler manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexDiffuser, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexDiffuser models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, and hammer striking demonstrate DexDiffuser's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves 70.0% success on 30-degree door opening, 40.0% and 36.7% on pen and block half-side re-orientation respectively, and 46.7% on hammer nail half drive, highlighting its robustness and flexibility in contact-rich manipulation.
comment: 27 pages. Project page: https://dexdiffuser.github.io/
☆ FAM Diffusion: Frequency and Attention Modulation for High-Resolution Image Generation with Stable Diffusion
Diffusion models are proficient at generating high-quality images. They are however effective only when operating at the resolution used during training. Inference at a scaled resolution leads to repetitive patterns and structural distortions. Retraining at higher resolutions quickly becomes prohibitive. Thus, methods enabling pre-existing diffusion models to operate at flexible test-time resolutions are highly desirable. Previous works suffer from frequent artifacts and often introduce large latency overheads. We propose two simple modules that combine to solve these issues. We introduce a Frequency Modulation (FM) module that leverages the Fourier domain to improve the global structure consistency, and an Attention Modulation (AM) module which improves the consistency of local texture patterns, a problem largely ignored in prior works. Our method, coined Fam diffusion, can seamlessly integrate into any latent diffusion model and requires no additional training. Extensive qualitative results highlight the effectiveness of our method in addressing structural and local artifacts, while quantitative results show state-of-the-art performance. Also, our method avoids redundant inference tricks for improved consistency such as patch-based or progressive generation, leading to negligible latency overheads.
☆ PhyCAGE: Physically Plausible Compositional 3D Asset Generation from a Single Image
We present PhyCAGE, the first approach for physically plausible compositional 3D asset generation from a single image. Given an input image, we first generate consistent multi-view images for components of the assets. These images are then fitted with 3D Gaussian Splatting representations. To ensure that the Gaussians representing objects are physically compatible with each other, we introduce a Physical Simulation-Enhanced Score Distillation Sampling (PSE-SDS) technique to further optimize the positions of the Gaussians. It is achieved by setting the gradient of the SDS loss as the initial velocity of the physical simulation, allowing the simulator to act as a physics-guided optimizer that progressively corrects the Gaussians' positions to a physically compatible state. Experimental results demonstrate that the proposed method can generate physically plausible compositional 3D assets given a single image.
comment: Project page: https://wolfball.github.io/phycage/
☆ AdaVLN: Towards Visual Language Navigation in Continuous Indoor Environments with Moving Humans
Visual Language Navigation is a task that challenges robots to navigate in realistic environments based on natural language instructions. While previous research has largely focused on static settings, real-world navigation must often contend with dynamic human obstacles. Hence, we propose an extension to the task, termed Adaptive Visual Language Navigation (AdaVLN), which seeks to narrow this gap. AdaVLN requires robots to navigate complex 3D indoor environments populated with dynamically moving human obstacles, adding a layer of complexity to navigation tasks that mimic the real-world. To support exploration of this task, we also present AdaVLN simulator and AdaR2R datasets. The AdaVLN simulator enables easy inclusion of fully animated human models directly into common datasets like Matterport3D. We also introduce a "freeze-time" mechanism for both the navigation task and simulator, which pauses world state updates during agent inference, enabling fair comparisons and experimental reproducibility across different hardware. We evaluate several baseline models on this task, analyze the unique challenges introduced by AdaVLN, and demonstrate its potential to bridge the sim-to-real gap in VLN research.
☆ Utilizing the Mean Teacher with Supcontrast Loss for Wafer Pattern Recognition
The patterns on wafer maps play a crucial role in helping engineers identify the causes of production issues during semiconductor manufacturing. In order to reduce costs and improve accuracy, automation technology is essential, and recent developments in deep learning have led to impressive results in wafer map pattern recognition. In this context, inspired by the effectiveness of semi-supervised learning and contrastive learning methods, we introduce an innovative approach that integrates the Mean Teacher framework with the supervised contrastive learning loss for enhanced wafer map pattern recognition. Our methodology not only addresses the nuances of wafer patterns but also tackles challenges arising from limited labeled data. To further refine the process, we address data imbalance in the wafer dataset by employing SMOTE and under-sampling techniques. We conduct a comprehensive analysis of our proposed method and demonstrate its effectiveness through experiments using real-world dataset WM811K obtained from semiconductor manufacturers. Compared to the baseline method, our method has achieved 5.46%, 6.68%, 5.42%, and 4.53% improvements in Accuracy, Precision, Recall, and F1 score, respectively.
comment: 5 pages,1 figures
☆ Enhancing weed detection performance by means of GenAI-based image augmentation
Precise weed management is essential for sustaining crop productivity and ecological balance. Traditional herbicide applications face economic and environmental challenges, emphasizing the need for intelligent weed control systems powered by deep learning. These systems require vast amounts of high-quality training data. The reality of scarcity of well-annotated training data, however, is often addressed through generating more data using data augmentation. Nevertheless, conventional augmentation techniques such as random flipping, color changes, and blurring lack sufficient fidelity and diversity. This paper investigates a generative AI-based augmentation technique that uses the Stable Diffusion model to produce diverse synthetic images that improve the quantity and quality of training datasets for weed detection models. Moreover, this paper explores the impact of these synthetic images on the performance of real-time detection systems, thus focusing on compact CNN-based models such as YOLO nano for edge devices. The experimental results show substantial improvements in mean Average Precision (mAP50 and mAP50-95) scores for YOLO models trained with generative AI-augmented datasets, demonstrating the promising potential of synthetic data to enhance model robustness and accuracy.
☆ GATE OpenING: A Comprehensive Benchmark for Judging Open-ended Interleaved Image-Text Generation
Multimodal Large Language Models (MLLMs) have made significant strides in visual understanding and generation tasks. However, generating interleaved image-text content remains a challenge, which requires integrated multimodal understanding and generation abilities. While the progress in unified models offers new solutions, existing benchmarks are insufficient for evaluating these methods due to data size and diversity limitations. To bridge this gap, we introduce GATE OpenING (OpenING), a comprehensive benchmark comprising 5,400 high-quality human-annotated instances across 56 real-world tasks. OpenING covers diverse daily scenarios such as travel guide, design, and brainstorming, offering a robust platform for challenging interleaved generation methods. In addition, we present IntJudge, a judge model for evaluating open-ended multimodal generation methods. Trained with a novel data pipeline, our IntJudge achieves an agreement rate of 82. 42% with human judgments, outperforming GPT-based evaluators by 11.34%. Extensive experiments on OpenING reveal that current interleaved generation methods still have substantial room for improvement. Key findings on interleaved image-text generation are further presented to guide the development of next-generation models. The OpenING is open-sourced at https://opening.github.io.
comment: 53 pages, 19 figures
☆ A comparison of extended object tracking with multi-modal sensors in indoor environment
This paper presents a preliminary study of an efficient object tracking approach, comparing the performance of two different 3D point cloud sensory sources: LiDAR and stereo cameras, which have significant price differences. In this preliminary work, we focus on single object tracking. We first developed a fast heuristic object detector that utilizes prior information about the environment and target. The resulting target points are subsequently fed into an extended object tracking framework, where the target shape is parameterized using a star-convex hypersurface model. Experimental results show that our object tracking method using a stereo camera achieves performance similar to that of a LiDAR sensor, with a cost difference of more than tenfold.
☆ Weakly Supervised Framework Considering Multi-temporal Information for Large-scale Cropland Mapping with Satellite Imagery
Accurately mapping large-scale cropland is crucial for agricultural production management and planning. Currently, the combination of remote sensing data and deep learning techniques has shown outstanding performance in cropland mapping. However, those approaches require massive precise labels, which are labor-intensive. To reduce the label cost, this study presented a weakly supervised framework considering multi-temporal information for large-scale cropland mapping. Specifically, we extract high-quality labels according to their consistency among global land cover (GLC) products to construct the supervised learning signal. On the one hand, to alleviate the overfitting problem caused by the model's over-trust of remaining errors in high-quality labels, we encode the similarity/aggregation of cropland in the visual/spatial domain to construct the unsupervised learning signal, and take it as the regularization term to constrain the supervised part. On the other hand, to sufficiently leverage the plentiful information in the samples without high-quality labels, we also incorporate the unsupervised learning signal in these samples, enriching the diversity of the feature space. After that, to capture the phenological features of croplands, we introduce dense satellite image time series (SITS) to extend the proposed framework in the temporal dimension. We also visualized the high dimensional phenological features to uncover how multi-temporal information benefits cropland extraction, and assessed the method's robustness under conditions of data scarcity. The proposed framework has been experimentally validated for strong adaptability across three study areas (Hunan Province, Southeast France, and Kansas) in large-scale cropland mapping, and the internal mechanism and temporal generalizability are also investigated.
☆ HEMGS: A Hybrid Entropy Model for 3D Gaussian Splatting Data Compression
Fast progress in 3D Gaussian Splatting (3DGS) has made 3D Gaussians popular for 3D modeling and image rendering, but this creates big challenges in data storage and transmission. To obtain a highly compact 3DGS representation, we propose a hybrid entropy model for Gaussian Splatting (HEMGS) data compression, which comprises two primary components, a hyperprior network and an autoregressive network. To effectively reduce structural redundancy across attributes, we apply a progressive coding algorithm to generate hyperprior features, in which we use previously compressed attributes and location as prior information. In particular, to better extract the location features from these compressed attributes, we adopt a domain-aware and instance-aware architecture to respectively capture domain-aware structural relations without additional storage costs and reveal scene-specific features through MLPs. Additionally, to reduce redundancy within each attribute, we leverage relationships between neighboring compressed elements within the attributes through an autoregressive network. Given its unique structure, we propose an adaptive context coding algorithm with flexible receptive fields to effectively capture adjacent compressed elements. Overall, we integrate our HEMGS into an end-to-end optimized 3DGS compression framework and the extensive experimental results on four benchmarks indicate that our method achieves about 40\% average reduction in size while maintaining the rendering quality over our baseline method and achieving state-of-the-art compression results.
☆ Complexity Experts are Task-Discriminative Learners for Any Image Restoration
Recent advancements in all-in-one image restoration models have revolutionized the ability to address diverse degradations through a unified framework. However, parameters tied to specific tasks often remain inactive for other tasks, making mixture-of-experts (MoE) architectures a natural extension. Despite this, MoEs often show inconsistent behavior, with some experts unexpectedly generalizing across tasks while others struggle within their intended scope. This hinders leveraging MoEs' computational benefits by bypassing irrelevant experts during inference. We attribute this undesired behavior to the uniform and rigid architecture of traditional MoEs. To address this, we introduce ``complexity experts" -- flexible expert blocks with varying computational complexity and receptive fields. A key challenge is assigning tasks to each expert, as degradation complexity is unknown in advance. Thus, we execute tasks with a simple bias toward lower complexity. To our surprise, this preference effectively drives task-specific allocation, assigning tasks to experts with the appropriate complexity. Extensive experiments validate our approach, demonstrating the ability to bypass irrelevant experts during inference while maintaining superior performance. The proposed MoCE-IR model outperforms state-of-the-art methods, affirming its efficiency and practical applicability. The source will be publicly made available at \href{https://eduardzamfir.github.io/moceir/}{\texttt{eduardzamfir.github.io/MoCE-IR/}}
☆ Learning the Evolution of Physical Structure of Galaxies via Diffusion Models
In astrophysics, understanding the evolution of galaxies in primarily through imaging data is fundamental to comprehending the formation of the Universe. This paper introduces a novel approach to conditioning Denoising Diffusion Probabilistic Models (DDPM) on redshifts for generating galaxy images. We explore whether this advanced generative model can accurately capture the physical characteristics of galaxies based solely on their images and redshift measurements. Our findings demonstrate that this model not only produces visually realistic galaxy images but also encodes the underlying changes in physical properties with redshift that are the result of galaxy evolution. This approach marks a significant advancement in using generative models to enhance our scientific insight into cosmic phenomena.
☆ Neural Image Unfolding: Flattening Sparse Anatomical Structures using Neural Fields
Tomographic imaging reveals internal structures of 3D objects and is crucial for medical diagnoses. Visualizing the morphology and appearance of non-planar sparse anatomical structures that extend over multiple 2D slices in tomographic volumes is inherently difficult but valuable for decision-making and reporting. Hence, various organ-specific unfolding techniques exist to map their densely sampled 3D surfaces to a distortion-minimized 2D representation. However, there is no versatile framework to flatten complex sparse structures including vascular, duct or bone systems. We deploy a neural field to fit the transformation of the anatomy of interest to a 2D overview image. We further propose distortion regularization strategies and combine geometric with intensity-based loss formulations to also display non-annotated and auxiliary targets. In addition to improved versatility, our unfolding technique outperforms mesh-based baselines for sparse structures w.r.t. peak distortion and our regularization scheme yields smoother transformations compared to Jacobian formulations from neural field-based image registration.
☆ Adaptive Blind All-in-One Image Restoration
Blind all-in-one image restoration models aim to recover a high-quality image from an input degraded with unknown distortions. However, these models require all the possible degradation types to be defined during the training stage while showing limited generalization to unseen degradations, which limits their practical application in complex cases. In this paper, we propose a simple but effective adaptive blind all-in-one restoration (ABAIR) model, which can address multiple degradations, generalizes well to unseen degradations, and efficiently incorporate new degradations by training a small fraction of parameters. First, we train our baseline model on a large dataset of natural images with multiple synthetic degradations, augmented with a segmentation head to estimate per-pixel degradation types, resulting in a powerful backbone able to generalize to a wide range of degradations. Second, we adapt our baseline model to varying image restoration tasks using independent low-rank adapters. Third, we learn to adaptively combine adapters to versatile images via a flexible and lightweight degradation estimator. Our model is both powerful in handling specific distortions and flexible in adapting to complex tasks, it not only outperforms the state-of-the-art by a large margin on five- and three-task IR setups, but also shows improved generalization to unseen degradations and also composite distortions.
comment: 17 pages
☆ Deep Fourier-embedded Network for Bi-modal Salient Object Detection
The rapid development of deep learning provides a significant improvement of salient object detection combining both RGB and thermal images. However, existing deep learning-based models suffer from two major shortcomings. First, the computation and memory demands of Transformer-based models with quadratic complexity are unbearable, especially in handling high-resolution bi-modal feature fusion. Second, even if learning converges to an ideal solution, there remains a frequency gap between the prediction and ground truth. Therefore, we propose a purely fast Fourier transform-based model, namely deep Fourier-embedded network (DFENet), for learning bi-modal information of RGB and thermal images. On one hand, fast Fourier transform efficiently fetches global dependencies with low complexity. Inspired by this, we design modal-coordinated perception attention to fuse the frequency gap between RGB and thermal modalities with multi-dimensional representation enhancement. To obtain reliable detailed information during decoding, we design the frequency-decomposed edge-aware module (FEM) to clarify object edges by deeply decomposing low-level features. Moreover, we equip proposed Fourier residual channel attention block in each decoder layer to prioritize high-frequency information while aligning channel global relationships. On the other hand, we propose co-focus frequency loss (CFL) to steer FEM towards minimizing the frequency gap. CFL dynamically weights hard frequencies during edge frequency reconstruction by cross-referencing the bi-modal edge information in the Fourier domain. This frequency-level refinement of edge features further contributes to the quality of the final pixel-level prediction. Extensive experiments on four bi-modal salient object detection benchmark datasets demonstrate our proposed DFENet outperforms twelve existing state-of-the-art models.
comment: 13 pages, 13 figures. Submitted to TMM on April 29, 2024
☆ GeneQuery: A General QA-based Framework for Spatial Gene Expression Predictions from Histology Images
Gene expression profiling provides profound insights into molecular mechanisms, but its time-consuming and costly nature often presents significant challenges. In contrast, whole-slide hematoxylin and eosin (H&E) stained histological images are readily accessible and allow for detailed examinations of tissue structure and composition at the microscopic level. Recent advancements have utilized these histological images to predict spatially resolved gene expression profiles. However, state-of-the-art works treat gene expression prediction as a multi-output regression problem, where each gene is learned independently with its own weights, failing to capture the shared dependencies and co-expression patterns between genes. Besides, existing works can only predict gene expression values for genes seen during training, limiting their ability to generalize to new, unseen genes. To address the above limitations, this paper presents GeneQuery, which aims to solve this gene expression prediction task in a question-answering (QA) manner for better generality and flexibility. Specifically, GeneQuery takes gene-related texts as queries and whole-slide images as contexts and then predicts the queried gene expression values. With such a transformation, GeneQuery can implicitly estimate the gene distribution by introducing the gene random variable. Besides, the proposed GeneQuery consists of two architecture implementations, i.e., spot-aware GeneQuery for capturing patterns between images and gene-aware GeneQuery for capturing patterns between genes. Comprehensive experiments on spatial transcriptomics datasets show that the proposed GeneQuery outperforms existing state-of-the-art methods on known and unseen genes. More results also demonstrate that GeneQuery can potentially analyze the tissue structure.
☆ Convolutional Neural Networks Do Work with Pre-Defined Filters
We present a novel class of Convolutional Neural Networks called Pre-defined Filter Convolutional Neural Networks (PFCNNs), where all nxn convolution kernels with n>1 are pre-defined and constant during training. It involves a special form of depthwise convolution operation called a Pre-defined Filter Module (PFM). In the channel-wise convolution part, the 1xnxn kernels are drawn from a fixed pool of only a few (16) different pre-defined kernels. In the 1x1 convolution part linear combinations of the pre-defined filter outputs are learned. Despite this harsh restriction, complex and discriminative features are learned. These findings provide a novel perspective on the way how information is processed within deep CNNs. We discuss various properties of PFCNNs and prove their effectiveness using the popular datasets Caltech101, CIFAR10, CUB-200-2011, FGVC-Aircraft, Flowers102, and Stanford Cars. Our implementation of PFCNNs is provided on Github https://github.com/Criscraft/PredefinedFilterNetworks
☆ Federated Learning with Uncertainty and Personalization via Efficient Second-order Optimization
Federated Learning (FL) has emerged as a promising method to collaboratively learn from decentralized and heterogeneous data available at different clients without the requirement of data ever leaving the clients. Recent works on FL have advocated taking a Bayesian approach to FL as it offers a principled way to account for the model and predictive uncertainty by learning a posterior distribution for the client and/or server models. Moreover, Bayesian FL also naturally enables personalization in FL to handle data heterogeneity across the different clients by having each client learn its own distinct personalized model. In particular, the hierarchical Bayesian approach enables all the clients to learn their personalized models while also taking into account the commonalities via a prior distribution provided by the server. However, despite their promise, Bayesian approaches for FL can be computationally expensive and can have high communication costs as well because of the requirement of computing and sending the posterior distributions. We present a novel Bayesian FL method using an efficient second-order optimization approach, with a computational cost that is similar to first-order optimization methods like Adam, but also provides the various benefits of the Bayesian approach for FL (e.g., uncertainty, personalization), while also being significantly more efficient and accurate than SOTA Bayesian FL methods (both for standard as well as personalized FL settings). Our method achieves improved predictive accuracies as well as better uncertainty estimates as compared to the baselines which include both optimization based as well as Bayesian FL methods.
☆ XR-MBT: Multi-modal Full Body Tracking for XR through Self-Supervision with Learned Depth Point Cloud Registration WACV 2025
Tracking the full body motions of users in XR (AR/VR) devices is a fundamental challenge to bring a sense of authentic social presence. Due to the absence of dedicated leg sensors, currently available body tracking methods adopt a synthesis approach to generate plausible motions given a 3-point signal from the head and controller tracking. In order to enable mixed reality features, modern XR devices are capable of estimating depth information of the headset surroundings using available sensors combined with dedicated machine learning models. Such egocentric depth sensing cannot drive the body directly, as it is not registered and is incomplete due to limited field-of-view and body self-occlusions. For the first time, we propose to leverage the available depth sensing signal combined with self-supervision to learn a multi-modal pose estimation model capable of tracking full body motions in real time on XR devices. We demonstrate how current 3-point motion synthesis models can be extended to point cloud modalities using a semantic point cloud encoder network combined with a residual network for multi-modal pose estimation. These modules are trained jointly in a self-supervised way, leveraging a combination of real unregistered point clouds and simulated data obtained from motion capture. We compare our approach against several state-of-the-art systems for XR body tracking and show that our method accurately tracks a diverse range of body motions. XR-MBT tracks legs in XR for the first time, whereas traditional synthesis approaches based on partial body tracking are blind.
comment: Accepted to WACV 2025
☆ Individual Content and Motion Dynamics Preserved Pruning for Video Diffusion Models
The high computational cost and slow inference time are major obstacles to deploying the video diffusion model (VDM) in practical applications. To overcome this, we introduce a new Video Diffusion Model Compression approach using individual content and motion dynamics preserved pruning and consistency loss. First, we empirically observe that deeper VDM layers are crucial for maintaining the quality of \textbf{motion dynamics} e.g., coherence of the entire video, while shallower layers are more focused on \textbf{individual content} e.g., individual frames. Therefore, we prune redundant blocks from the shallower layers while preserving more of the deeper layers, resulting in a lightweight VDM variant called VDMini. Additionally, we propose an \textbf{Individual Content and Motion Dynamics (ICMD)} Consistency Loss to gain comparable generation performance as larger VDM, i.e., the teacher to VDMini i.e., the student. Particularly, we first use the Individual Content Distillation (ICD) Loss to ensure consistency in the features of each generated frame between the teacher and student models. Next, we introduce a Multi-frame Content Adversarial (MCA) Loss to enhance the motion dynamics across the generated video as a whole. This method significantly accelerates inference time while maintaining high-quality video generation. Extensive experiments demonstrate the effectiveness of our VDMini on two important video generation tasks, Text-to-Video (T2V) and Image-to-Video (I2V), where we respectively achieve an average 2.5 $\times$ and 1.4 $\times$ speed up for the I2V method SF-V and the T2V method T2V-Turbo-v2, while maintaining the quality of the generated videos on two benchmarks, i.e., UCF101 and VBench.
comment: 9 figures, 9 tables
☆ G3Flow: Generative 3D Semantic Flow for Pose-aware and Generalizable Object Manipulation
Recent advances in imitation learning for 3D robotic manipulation have shown promising results with diffusion-based policies. However, achieving human-level dexterity requires seamless integration of geometric precision and semantic understanding. We present G3Flow, a novel framework that constructs real-time semantic flow, a dynamic, object-centric 3D semantic representation by leveraging foundation models. Our approach uniquely combines 3D generative models for digital twin creation, vision foundation models for semantic feature extraction, and robust pose tracking for continuous semantic flow updates. This integration enables complete semantic understanding even under occlusions while eliminating manual annotation requirements. By incorporating semantic flow into diffusion policies, we demonstrate significant improvements in both terminal-constrained manipulation and cross-object generalization. Extensive experiments across five simulation tasks show that G3Flow consistently outperforms existing approaches, achieving up to 68.3% and 50.1% average success rates on terminal-constrained manipulation and cross-object generalization tasks respectively. Our results demonstrate the effectiveness of G3Flow in enhancing real-time dynamic semantic feature understanding for robotic manipulation policies.
comment: Webpage: https://tianxingchen.github.io/G3Flow/
☆ ChatRex: Taming Multimodal LLM for Joint Perception and Understanding
Perception and understanding are two pillars of computer vision. While multimodal large language models (MLLM) have demonstrated remarkable visual understanding capabilities, they arguably lack accurate perception abilities, e.g. the stage-of-the-art model Qwen2-VL only achieves a 43.9 recall rate on the COCO dataset, limiting many tasks requiring the combination of perception and understanding. In this work, we aim to bridge this perception gap from both model designing and data development perspectives. We first introduce ChatRex, an MLLM with a decoupled perception design. Instead of having the LLM directly predict box coordinates, we feed the output boxes from a universal proposal network into the LLM, allowing it to output the corresponding box indices to represent its detection results, turning the regression task into a retrieval-based task that LLM handles more proficiently. From the data perspective, we build a fully automated data engine and construct the Rexverse-2M dataset which possesses multiple granularities to support the joint training of perception and understanding. After standard two-stage training, ChatRex demonstrates strong perception capabilities while preserving multimodal understanding performance. The combination of these two capabilities simultaneously unlocks many attractive applications, demonstrating the complementary roles of both perception and understanding in MLLM. Code is available at \url{https://github.com/IDEA-Research/ChatRex}.
comment: 35 pages, 19 figures
☆ TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models
This paper introduces Virtual Try-Off (VTOFF), a novel task focused on generating standardized garment images from single photos of clothed individuals. Unlike traditional Virtual Try-On (VTON), which digitally dresses models, VTOFF aims to extract a canonical garment image, posing unique challenges in capturing garment shape, texture, and intricate patterns. This well-defined target makes VTOFF particularly effective for evaluating reconstruction fidelity in generative models. We present TryOffDiff, a model that adapts Stable Diffusion with SigLIP-based visual conditioning to ensure high fidelity and detail retention. Experiments on a modified VITON-HD dataset show that our approach outperforms baseline methods based on pose transfer and virtual try-on with fewer pre- and post-processing steps. Our analysis reveals that traditional image generation metrics inadequately assess reconstruction quality, prompting us to rely on DISTS for more accurate evaluation. Our results highlight the potential of VTOFF to enhance product imagery in e-commerce applications, advance generative model evaluation, and inspire future work on high-fidelity reconstruction. Demo, code, and models are available at: https://rizavelioglu.github.io/tryoffdiff/
☆ Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation
Despite considerable progress in stereo depth estimation, omnidirectional imaging remains underexplored, mainly due to the lack of appropriate data. We introduce Helvipad, a real-world dataset for omnidirectional stereo depth estimation, consisting of 40K frames from video sequences across diverse environments, including crowded indoor and outdoor scenes with diverse lighting conditions. Collected using two 360{\deg} cameras in a top-bottom setup and a LiDAR sensor, the dataset includes accurate depth and disparity labels by projecting 3D point clouds onto equirectangular images. Additionally, we provide an augmented training set with a significantly increased label density by using depth completion. We benchmark leading stereo depth estimation models for both standard and omnidirectional images. The results show that while recent stereo methods perform decently, a significant challenge persists in accurately estimating depth in omnidirectional imaging. To address this, we introduce necessary adaptations to stereo models, achieving improved performance.
comment: Project page: https://vita-epfl.github.io/Helvipad
☆ EventCrab: Harnessing Frame and Point Synergy for Event-based Action Recognition and Beyond
Event-based Action Recognition (EAR) possesses the advantages of high-temporal resolution capturing and privacy preservation compared with traditional action recognition. Current leading EAR solutions typically follow two regimes: project unconstructed event streams into dense constructed event frames and adopt powerful frame-specific networks, or employ lightweight point-specific networks to handle sparse unconstructed event points directly. However, such two regimes are blind to a fundamental issue: failing to accommodate the unique dense temporal and sparse spatial properties of asynchronous event data. In this article, we present a synergy-aware framework, i.e., EventCrab, that adeptly integrates the "lighter" frame-specific networks for dense event frames with the "heavier" point-specific networks for sparse event points, balancing accuracy and efficiency. Furthermore, we establish a joint frame-text-point representation space to bridge distinct event frames and points. In specific, to better exploit the unique spatiotemporal relationships inherent in asynchronous event points, we devise two strategies for the "heavier" point-specific embedding: i) a Spiking-like Context Learner (SCL) that extracts contextualized event points from raw event streams. ii) an Event Point Encoder (EPE) that further explores event-point long spatiotemporal features in a Hilbert-scan way. Experiments on four datasets demonstrate the significant performance of our proposed EventCrab, particularly gaining improvements of 5.17% on SeAct and 7.01% on HARDVS.
☆ Mixture of Experts in Image Classification: What's the Sweet Spot?
Mixture-of-Experts (MoE) models have shown promising potential for parameter-efficient scaling across various domains. However, the implementation in computer vision remains limited, and often requires large-scale datasets comprising billions of samples. In this study, we investigate the integration of MoE within computer vision models and explore various MoE configurations on open datasets. When introducing MoE layers in image classification, the best results are obtained for models with a moderate number of activated parameters per sample. However, such improvements gradually vanish when the number of parameters per sample increases.
☆ Real-time Video Target Tracking Algorithm Utilizing Convolutional Neural Networks (CNN)
Thispaperaimstoresearchandimplementa real-timevideotargettrackingalgorithmbasedon ConvolutionalNeuralNetworks(CNN),enhancingthe accuracyandrobustnessoftargettrackingincomplex scenarios.Addressingthelimitationsoftraditionaltracking algorithmsinhandlingissuessuchastargetocclusion,morphologicalchanges,andbackgroundinterference,our approachintegratestargetdetectionandtrackingstrategies.It continuouslyupdatesthetargetmodelthroughanonline learningmechanismtoadapttochangesinthetarget's appearance.Experimentalresultsdemonstratethat,when dealingwithsituationsinvolvingrapidmotion,partial occlusion,andcomplexbackgrounds,theproposedalgorithm exhibitshighertrackingsuccessratesandlowerfailurerates comparedtoseveralmainstreamtrackingalgorithms.This studysuccessfullyappliesCNNtoreal-timevideotarget tracking,improvingtheaccuracyandstabilityofthetracking algorithmwhilemaintaininghighprocessingspeeds,thus meetingthedemandsofreal-timeapplications.Thisalgorithm isexpectedtoprovidenewsolutionsfortargettrackingtasksin videosurveillanceandintelligenttransportationdomains.
☆ Neural Surface Priors for Editable Gaussian Splatting
In computer graphics, there is a need to recover easily modifiable representations of 3D geometry and appearance from image data. We introduce a novel method for this task using 3D Gaussian Splatting, which enables intuitive scene editing through mesh adjustments. Starting with input images and camera poses, we reconstruct the underlying geometry using a neural Signed Distance Field and extract a high-quality mesh. Our model then estimates a set of Gaussians, where each component is flat, and the opacity is conditioned on the recovered neural surface. To facilitate editing, we produce a proxy representation that encodes information about the Gaussians' shape and position. Unlike other methods, our pipeline allows modifications applied to the extracted mesh to be propagated to the proxy representation, from which we recover the updated parameters of the Gaussians. This effectively transfers the mesh edits back to the recovered appearance representation. By leveraging mesh-guided transformations, our approach simplifies 3D scene editing and offers improvements over existing methods in terms of usability and visual fidelity of edits. The complete source code for this project can be accessed at \url{https://github.com/WJakubowska/NeuralSurfacePriors}
comment: 9 pages, 7 figures
☆ MvKeTR: Chest CT Report Generation with Multi-View Perception and Knowledge Enhancement
CT report generation (CTRG) aims to automatically generate diagnostic reports for 3D volumes, relieving clinicians' workload and improving patient care. Despite clinical value, existing works fail to effectively incorporate diagnostic information from multiple anatomical views and lack related clinical expertise essential for accurate and reliable diagnosis. To resolve these limitations, we propose a novel Multi-view perception Knowledge-enhanced Tansformer (MvKeTR) to mimic the diagnostic workflow of clinicians. Just as radiologists first examine CT scans from multiple planes, a Multi-View Perception Aggregator (MVPA) with view-aware attention effectively synthesizes diagnostic information from multiple anatomical views. Then, inspired by how radiologists further refer to relevant clinical records to guide diagnostic decision-making, a Cross-Modal Knowledge Enhancer (CMKE) retrieves the most similar reports based on the query volume to incorporate domain knowledge into the diagnosis procedure. Furthermore, instead of traditional MLPs, we employ Kolmogorov-Arnold Networks (KANs) with learnable nonlinear activation functions as the fundamental building blocks of both modules to better capture intricate diagnostic patterns in CT interpretation. Extensive experiments on the public CTRG-Chest-548K dataset demonstrate that our method outpaces prior state-of-the-art models across all metrics.
comment: 10 pages, 10 figures
☆ InfiniDreamer: Arbitrarily Long Human Motion Generation via Segment Score Distillation
We present InfiniDreamer, a novel framework for arbitrarily long human motion generation. InfiniDreamer addresses the limitations of current motion generation methods, which are typically restricted to short sequences due to the lack of long motion training data. To achieve this, we first generate sub-motions corresponding to each textual description and then assemble them into a coarse, extended sequence using randomly initialized transition segments. We then introduce an optimization-based method called Segment Score Distillation (SSD) to refine the entire long motion sequence. SSD is designed to utilize an existing motion prior, which is trained only on short clips, in a training-free manner. Specifically, SSD iteratively refines overlapping short segments sampled from the coarsely extended long motion sequence, progressively aligning them with the pre-trained motion diffusion prior. This process ensures local coherence within each segment, while the refined transitions between segments maintain global consistency across the entire sequence. Extensive qualitative and quantitative experiments validate the superiority of our framework, showcasing its ability to generate coherent, contextually aware motion sequences of arbitrary length.
☆ Enhancing MMDiT-Based Text-to-Image Models for Similar Subject Generation
Representing the cutting-edge technique of text-to-image models, the latest Multimodal Diffusion Transformer (MMDiT) largely mitigates many generation issues existing in previous models. However, we discover that it still suffers from subject neglect or mixing when the input text prompt contains multiple subjects of similar semantics or appearance. We identify three possible ambiguities within the MMDiT architecture that cause this problem: Inter-block Ambiguity, Text Encoder Ambiguity, and Semantic Ambiguity. To address these issues, we propose to repair the ambiguous latent on-the-fly by test-time optimization at early denoising steps. In detail, we design three loss functions: Block Alignment Loss, Text Encoder Alignment Loss, and Overlap Loss, each tailored to mitigate these ambiguities. Despite significant improvements, we observe that semantic ambiguity persists when generating multiple similar subjects, as the guidance provided by overlap loss is not explicit enough. Therefore, we further propose Overlap Online Detection and Back-to-Start Sampling Strategy to alleviate the problem. Experimental results on a newly constructed challenging dataset of similar subjects validate the effectiveness of our approach, showing superior generation quality and much higher success rates over existing methods. Our code will be available at https://github.com/wtybest/EnMMDiT.
HUPE: Heuristic Underwater Perceptual Enhancement with Semantic Collaborative Learning
Underwater images are often affected by light refraction and absorption, reducing visibility and interfering with subsequent applications. Existing underwater image enhancement methods primarily focus on improving visual quality while overlooking practical implications. To strike a balance between visual quality and application, we propose a heuristic invertible network for underwater perception enhancement, dubbed HUPE, which enhances visual quality and demonstrates flexibility in handling other downstream tasks. Specifically, we introduced an information-preserving reversible transformation with embedded Fourier transform to establish a bidirectional mapping between underwater images and their clear images. Additionally, a heuristic prior is incorporated into the enhancement process to better capture scene information. To further bridge the feature gap between vision-based enhancement images and application-oriented images, a semantic collaborative learning module is applied in the joint optimization process of the visual enhancement task and the downstream task, which guides the proposed enhancement model to extract more task-oriented semantic features while obtaining visually pleasing images. Extensive experiments, both quantitative and qualitative, demonstrate the superiority of our HUPE over state-of-the-art methods. The source code is available at https://github.com/ZengxiZhang/HUPE.
comment: 22 pages, 21 figures
☆ HiFiVFS: High Fidelity Video Face Swapping
Face swapping aims to generate results that combine the identity from the source with attributes from the target. Existing methods primarily focus on image-based face swapping. When processing videos, each frame is handled independently, making it difficult to ensure temporal stability. From a model perspective, face swapping is gradually shifting from generative adversarial networks (GANs) to diffusion models (DMs), as DMs have been shown to possess stronger generative capabilities. Current diffusion-based approaches often employ inpainting techniques, which struggle to preserve fine-grained attributes like lighting and makeup. To address these challenges, we propose a high fidelity video face swapping (HiFiVFS) framework, which leverages the strong generative capability and temporal prior of Stable Video Diffusion (SVD). We build a fine-grained attribute module to extract identity-disentangled and fine-grained attribute features through identity desensitization and adversarial learning. Additionally, We introduce detailed identity injection to further enhance identity similarity. Extensive experiments demonstrate that our method achieves state-of-the-art (SOTA) in video face swapping, both qualitatively and quantitatively.
☆ Leveraging Semantic Asymmetry for Precise Gross Tumor Volume Segmentation of Nasopharyngeal Carcinoma in Planning CT
In the radiation therapy of nasopharyngeal carcinoma (NPC), clinicians typically delineate the gross tumor volume (GTV) using non-contrast planning computed tomography to ensure accurate radiation dose delivery. However, the low contrast between tumors and adjacent normal tissues necessitates that radiation oncologists manually delineate the tumors, often relying on diagnostic MRI for guidance. % In this study, we propose a novel approach to directly segment NPC gross tumors on non-contrast planning CT images, circumventing potential registration errors when aligning MRI or MRI-derived tumor masks to planning CT. To address the low contrast issues between tumors and adjacent normal structures in planning CT, we introduce a 3D Semantic Asymmetry Tumor segmentation (SATs) method. Specifically, we posit that a healthy nasopharyngeal region is characteristically bilaterally symmetric, whereas the emergence of nasopharyngeal carcinoma disrupts this symmetry. Then, we propose a Siamese contrastive learning segmentation framework that minimizes the voxel-wise distance between original and flipped areas without tumor and encourages a larger distance between original and flipped areas with tumor. Thus, our approach enhances the sensitivity of features to semantic asymmetries. % Extensive experiments demonstrate that the proposed SATs achieves the leading NPC GTV segmentation performance in both internal and external testing, \emph{e.g.}, with at least 2\% absolute Dice score improvement and 12\% average distance error reduction when compared to other state-of-the-art methods in the external testing.
☆ Don't Let Your Robot be Harmful: Responsible Robotic Manipulation
Unthinking execution of human instructions in robotic manipulation can lead to severe safety risks, such as poisonings, fires, and even explosions. In this paper, we present responsible robotic manipulation, which requires robots to consider potential hazards in the real-world environment while completing instructions and performing complex operations safely and efficiently. However, such scenarios in real world are variable and risky for training. To address this challenge, we propose Safety-as-policy, which includes (i) a world model to automatically generate scenarios containing safety risks and conduct virtual interactions, and (ii) a mental model to infer consequences with reflections and gradually develop the cognition of safety, allowing robots to accomplish tasks while avoiding dangers. Additionally, we create the SafeBox synthetic dataset, which includes one hundred responsible robotic manipulation tasks with different safety risk scenarios and instructions, effectively reducing the risks associated with real-world experiments. Experiments demonstrate that Safety-as-policy can avoid risks and efficiently complete tasks in both synthetic dataset and real-world experiments, significantly outperforming baseline methods. Our SafeBox dataset shows consistent evaluation results with real-world scenarios, serving as a safe and effective benchmark for future research.
☆ Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks
Multispectral object detection, utilizing RGB and TIR (thermal infrared) modalities, is widely recognized as a challenging task. It requires not only the effective extraction of features from both modalities and robust fusion strategies, but also the ability to address issues such as spectral discrepancies, spatial misalignment, and environmental dependencies between RGB and TIR images. These challenges significantly hinder the generalization of multispectral detection systems across diverse scenarios. Although numerous studies have attempted to overcome these limitations, it remains difficult to clearly distinguish the performance gains of multispectral detection systems from the impact of these "optimization techniques". Worse still, despite the rapid emergence of high-performing single-modality detection models, there is still a lack of specialized training techniques that can effectively adapt these models for multispectral detection tasks. The absence of a standardized benchmark with fair and consistent experimental setups also poses a significant barrier to evaluating the effectiveness of new approaches. To this end, we propose the first fair and reproducible benchmark specifically designed to evaluate the training "techniques", which systematically classifies existing multispectral object detection methods, investigates their sensitivity to hyper-parameters, and standardizes the core configurations. A comprehensive evaluation is conducted across multiple representative multispectral object detection datasets, utilizing various backbone networks and detection frameworks. Additionally, we introduce an efficient and easily deployable multispectral object detection framework that can seamlessly optimize high-performing single-modality models into dual-modality models, integrating our advanced training techniques.
☆ MotionCharacter: Identity-Preserving and Motion Controllable Human Video Generation
Recent advancements in personalized Text-to-Video (T2V) generation highlight the importance of integrating character-specific identities and actions. However, previous T2V models struggle with identity consistency and controllable motion dynamics, mainly due to limited fine-grained facial and action-based textual prompts, and datasets that overlook key human attributes and actions. To address these challenges, we propose MotionCharacter, an efficient and high-fidelity human video generation framework designed for identity preservation and fine-grained motion control. We introduce an ID-preserving module to maintain identity fidelity while allowing flexible attribute modifications, and further integrate ID-consistency and region-aware loss mechanisms, significantly enhancing identity consistency and detail fidelity. Additionally, our approach incorporates a motion control module that prioritizes action-related text while maintaining subject consistency, along with a dataset, Human-Motion, which utilizes large language models to generate detailed motion descriptions. For simplify user control during inference, we parameterize motion intensity through a single coefficient, allowing for easy adjustments. Extensive experiments highlight the effectiveness of MotionCharacter, demonstrating significant improvements in ID-preserving, high-quality video generation.
Visual Adversarial Attack on Vision-Language Models for Autonomous Driving
Vision-language models (VLMs) have significantly advanced autonomous driving (AD) by enhancing reasoning capabilities. However, these models remain highly vulnerable to adversarial attacks. While existing research has primarily focused on general VLM attacks, the development of attacks tailored to the safety-critical AD context has been largely overlooked. In this paper, we take the first step toward designing adversarial attacks specifically targeting VLMs in AD, exposing the substantial risks these attacks pose within this critical domain. We identify two unique challenges for effective adversarial attacks on AD VLMs: the variability of textual instructions and the time-series nature of visual scenarios. To this end, we propose ADvLM, the first visual adversarial attack framework specifically designed for VLMs in AD. Our framework introduces Semantic-Invariant Induction, which uses a large language model to create a diverse prompt library of textual instructions with consistent semantic content, guided by semantic entropy. Building on this, we introduce Scenario-Associated Enhancement, an approach where attention mechanisms select key frames and perspectives within driving scenarios to optimize adversarial perturbations that generalize across the entire scenario. Extensive experiments on several AD VLMs over multiple benchmarks show that ADvLM achieves state-of-the-art attack effectiveness. Moreover, real-world attack studies further validate its applicability and potential in practice.
☆ Grid-augumented vision: A simple yet effective approach for enhanced spatial understanding in multi-modal agents
Recent advances in multimodal models have demonstrated impressive capabilities in object recognition and scene understanding. However, these models often struggle with precise spatial localization - a critical capability for real-world applications. Inspired by how humans use grid-based references like chess boards and maps, we propose introducing explicit visual position encoding through a simple grid overlay approach. By adding a 9x9 black grid pattern onto input images, our method provides visual spatial guidance analogous to how positional encoding works in transformers, but in an explicit, visual form. Experiments on the COCO 2017 dataset demonstrate that our grid-based approach achieves significant improvements in localization accuracy, with a 107.4% increase in IoU (from 0.27 to 0.56) and a 194.4% improvement in GIoU (from 0.18 to 0.53) compared to baseline performance. Through attention visualization analysis, we show how this visual position encoding helps models better ground spatial relationships. Our method's simplicity and effectiveness make it particularly valuable for applications requiring accurate spatial reasoning, such as robotic manipulation, medical imaging, and autonomous navigation.
comment: 10 pages, 2 figures
☆ Incomplete Multi-view Multi-label Classification via a Dual-level Contrastive Learning Framework
Recently, multi-view and multi-label classification have become significant domains for comprehensive data analysis and exploration. However, incompleteness both in views and labels is still a real-world scenario for multi-view multi-label classification. In this paper, we seek to focus on double missing multi-view multi-label classification tasks and propose our dual-level contrastive learning framework to solve this issue. Different from the existing works, which couple consistent information and view-specific information in the same feature space, we decouple the two heterogeneous properties into different spaces and employ contrastive learning theory to fully disentangle the two properties. Specifically, our method first introduces a two-channel decoupling module that contains a shared representation and a view-proprietary representation to effectively extract consistency and complementarity information across all views. Second, to efficiently filter out high-quality consistent information from multi-view representations, two consistency objectives based on contrastive learning are conducted on the high-level features and the semantic labels, respectively. Extensive experiments on several widely used benchmark datasets demonstrate that the proposed method has more stable and superior classification performance.
☆ TSD-SR: One-Step Diffusion with Target Score Distillation for Real-World Image Super-Resolution
Pre-trained text-to-image diffusion models are increasingly applied to real-world image super-resolution (Real-ISR) task. Given the iterative refinement nature of diffusion models, most existing approaches are computationally expensive. While methods such as SinSR and OSEDiff have emerged to condense inference steps via distillation, their performance in image restoration or details recovery is not satisfied. To address this, we propose TSD-SR, a novel distillation framework specifically designed for real-world image super-resolution, aiming to construct an efficient and effective one-step model. We first introduce the Target Score Distillation, which leverages the priors of diffusion models and real image references to achieve more realistic image restoration. Secondly, we propose a Distribution-Aware Sampling Module to make detail-oriented gradients more readily accessible, addressing the challenge of recovering fine details. Extensive experiments demonstrate that our TSD-SR has superior restoration results (most of the metrics perform the best) and the fastest inference speed (e.g. 40 times faster than SeeSR) compared to the past Real-ISR approaches based on pre-trained diffusion priors.
☆ Deep End-to-end Adaptive k-Space Sampling, Reconstruction, and Registration for Dynamic MRI
Dynamic MRI enables a range of clinical applications, including cardiac function assessment, organ motion tracking, and radiotherapy guidance. However, fully sampling the dynamic k-space data is often infeasible due to time constraints and physiological motion such as respiratory and cardiac motion. This necessitates undersampling, which degrades the quality of reconstructed images. Poor image quality not only hinders visualization but also impairs the estimation of deformation fields, crucial for registering dynamic (moving) images to a static reference image. This registration enables tasks such as motion correction, treatment planning, and quantitative analysis in applications like cardiac imaging and MR-guided radiotherapy. To overcome the challenges posed by undersampling and motion, we introduce an end-to-end deep learning (DL) framework that integrates adaptive dynamic k-space sampling, reconstruction, and registration. Our approach begins with a DL-based adaptive sampling strategy, optimizing dynamic k-space acquisition to capture the most relevant data for each specific case. This is followed by a DL-based reconstruction module that produces images optimized for accurate deformation field estimation from the undersampled moving data. Finally, a registration module estimates the deformation fields aligning the reconstructed dynamic images with a static reference. The proposed framework is independent of specific reconstruction and registration modules allowing for plug-and-play integration of these components. The entire framework is jointly trained using a combination of supervised and unsupervised loss functions, enabling end-to-end optimization for improved performance across all components. Through controlled experiments and ablation studies, we validate each component, demonstrating that each choice contributes to robust motion estimation from undersampled dynamic data.
comment: 39 pages, 19 figures, 4 tables
☆ SharpDepth: Sharpening Metric Depth Predictions Using Diffusion Distillation
We propose SharpDepth, a novel approach to monocular metric depth estimation that combines the metric accuracy of discriminative depth estimation methods (e.g., Metric3D, UniDepth) with the fine-grained boundary sharpness typically achieved by generative methods (e.g., Marigold, Lotus). Traditional discriminative models trained on real-world data with sparse ground-truth depth can accurately predict metric depth but often produce over-smoothed or low-detail depth maps. Generative models, in contrast, are trained on synthetic data with dense ground truth, generating depth maps with sharp boundaries yet only providing relative depth with low accuracy. Our approach bridges these limitations by integrating metric accuracy with detailed boundary preservation, resulting in depth predictions that are both metrically precise and visually sharp. Our extensive zero-shot evaluations on standard depth estimation benchmarks confirm SharpDepth effectiveness, showing its ability to achieve both high depth accuracy and detailed representation, making it well-suited for applications requiring high-quality depth perception across diverse, real-world environments.
comment: Uncompressed version can be found in https://drive.google.com/file/d/1MG4-d_xDERVBCRfLDolNLnMLLuqd7qRz
☆ PATHS: A Hierarchical Transformer for Efficient Whole Slide Image Analysis
Computational analysis of whole slide images (WSIs) has seen significant research progress in recent years, with applications ranging across important diagnostic and prognostic tasks such as survival or cancer subtype prediction. Many state-of-the-art models process the entire slide - which may be as large as $150,000 \times 150,000$ pixels - as a bag of many patches, the size of which necessitates computationally cheap feature aggregation methods. However, a large proportion of these patches are uninformative, such as those containing only healthy or adipose tissue, adding significant noise and size to the bag. We propose Pathology Transformer with Hierarchical Selection (PATHS), a novel top-down method for hierarchical weakly supervised representation learning on slide-level tasks in computational pathology. PATHS is inspired by the cross-magnification manner in which a human pathologist examines a slide, recursively filtering patches at each magnification level to a small subset relevant to the diagnosis. Our method overcomes the complications of processing the entire slide, enabling quadratic self-attention and providing a simple interpretable measure of region importance. We apply PATHS to five datasets of The Cancer Genome Atlas (TCGA), and achieve superior performance on slide-level prediction tasks when compared to previous methods, despite processing only a small proportion of the slide.
☆ KANs for Computer Vision: An Experimental Study
This paper presents an experimental study of Kolmogorov-Arnold Networks (KANs) applied to computer vision tasks, particularly image classification. KANs introduce learnable activation functions on edges, offering flexible non-linear transformations compared to traditional pre-fixed activation functions with specific neural work like Multi-Layer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs). While KANs have shown promise mostly in simplified or small-scale datasets, their effectiveness for more complex real-world tasks such as computer vision tasks remains less explored. To fill this gap, this experimental study aims to provide extended observations and insights into the strengths and limitations of KANs. We reveal that although KANs can perform well in specific vision tasks, they face significant challenges, including increased hyperparameter sensitivity and higher computational costs. These limitations suggest that KANs require architectural adaptations, such as integration with other architectures, to be practical for large-scale vision problems. This study focuses on empirical findings rather than proposing new methods, aiming to inform future research on optimizing KANs, in particular computer vision applications or alike.
comment: 11 pages, 4 figures
☆ TimeMarker: A Versatile Video-LLM for Long and Short Video Understanding with Superior Temporal Localization Ability
Rapid development of large language models (LLMs) has significantly advanced multimodal large language models (LMMs), particularly in vision-language tasks. However, existing video-language models often overlook precise temporal localization and struggle with videos of varying lengths. We introduce TimeMarker, a versatile Video-LLM designed for high-quality dialogue based on video content, emphasizing temporal localization. TimeMarker integrates Temporal Separator Tokens to enhance temporal awareness, accurately marking specific moments within videos. It employs the AnyLength mechanism for dynamic frame sampling and adaptive token merging, enabling effective handling of both short and long videos. Additionally, TimeMarker utilizes diverse datasets, including further transformed temporal-related video QA datasets, to bolster its temporal understanding capabilities. Image and interleaved data are also employed to further enhance the model's semantic perception ability. Evaluations demonstrate that TimeMarker achieves state-of-the-art performance across multiple benchmarks, excelling in both short and long video categories. Our project page is at \url{https://github.com/TimeMarker-LLM/TimeMarker/}.
☆ From Open Vocabulary to Open World: Teaching Vision Language Models to Detect Novel Objects
Traditional object detection methods operate under the closed-set assumption, where models can only detect a fixed number of objects predefined in the training set. Recent works on open vocabulary object detection (OVD) enable the detection of objects defined by an unbounded vocabulary, which reduces the cost of training models for specific tasks. However, OVD heavily relies on accurate prompts provided by an ''oracle'', which limits their use in critical applications such as driving scene perception. OVD models tend to misclassify near-out-of-distribution (NOOD) objects that have similar semantics to known classes, and ignore far-out-of-distribution (FOOD) objects. To address theses limitations, we propose a framework that enables OVD models to operate in open world settings, by identifying and incrementally learning novel objects. To detect FOOD objects, we propose Open World Embedding Learning (OWEL) and introduce the concept of Pseudo Unknown Embedding which infers the location of unknown classes in a continuous semantic space based on the information of known classes. We also propose Multi-Scale Contrastive Anchor Learning (MSCAL), which enables the identification of misclassified unknown objects by promoting the intra-class consistency of object embeddings at different scales. The proposed method achieves state-of-the-art performance in common open world object detection and autonomous driving benchmarks.
☆ Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning
Vision-language models~(VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.
comment: 16 pages, 11 figures
☆ Make-It-Animatable: An Efficient Framework for Authoring Animation-Ready 3D Characters
3D characters are essential to modern creative industries, but making them animatable often demands extensive manual work in tasks like rigging and skinning. Existing automatic rigging tools face several limitations, including the necessity for manual annotations, rigid skeleton topologies, and limited generalization across diverse shapes and poses. An alternative approach is to generate animatable avatars pre-bound to a rigged template mesh. However, this method often lacks flexibility and is typically limited to realistic human shapes. To address these issues, we present Make-It-Animatable, a novel data-driven method to make any 3D humanoid model ready for character animation in less than one second, regardless of its shapes and poses. Our unified framework generates high-quality blend weights, bones, and pose transformations. By incorporating a particle-based shape autoencoder, our approach supports various 3D representations, including meshes and 3D Gaussian splats. Additionally, we employ a coarse-to-fine representation and a structure-aware modeling strategy to ensure both accuracy and robustness, even for characters with non-standard skeleton structures. We conducted extensive experiments to validate our framework's effectiveness. Compared to existing methods, our approach demonstrates significant improvements in both quality and speed.
comment: Project Page: https://jasongzy.github.io/Make-It-Animatable/
☆ Towards Lensless Image Deblurring with Prior-Embedded Implicit Neural Representations in the Low-Data Regime
The field of computational imaging has witnessed a promising paradigm shift with the emergence of untrained neural networks, offering novel solutions to inverse computational imaging problems. While existing techniques have demonstrated impressive results, they often operate either in the high-data regime, leveraging Generative Adversarial Networks (GANs) as image priors, or through untrained iterative reconstruction in a data-agnostic manner. This paper delves into lensless image reconstruction, a subset of computational imaging that replaces traditional lenses with computation, enabling the development of ultra-thin and lightweight imaging systems. To the best of our knowledge, we are the first to leverage implicit neural representations for lensless image deblurring, achieving reconstructions without the requirement of prior training. We perform prior-embedded untrained iterative optimization to enhance reconstruction performance and speed up convergence, effectively bridging the gap between the no-data and high-data regimes. Through a thorough comparative analysis encompassing various untrained and low-shot methods, including under-parameterized non-convolutional methods and domain-restricted low-shot methods, we showcase the superior performance of our approach by a significant margin.
☆ DistinctAD: Distinctive Audio Description Generation in Contexts
Audio Descriptions (ADs) aim to provide a narration of a movie in text form, describing non-dialogue-related narratives, such as characters, actions, or scene establishment. Automatic generation of ADs remains challenging due to: i) the domain gap between movie-AD data and existing data used to train vision-language models, and ii) the issue of contextual redundancy arising from highly similar neighboring visual clips in a long movie. In this work, we propose DistinctAD, a novel two-stage framework for generating ADs that emphasize distinctiveness to produce better narratives. To address the domain gap, we introduce a CLIP-AD adaptation strategy that does not require additional AD corpora, enabling more effective alignment between movie and AD modalities at both global and fine-grained levels. In Stage-II, DistinctAD incorporates two key innovations: (i) a Contextual Expectation-Maximization Attention (EMA) module that reduces redundancy by extracting common bases from consecutive video clips, and (ii) an explicit distinctive word prediction loss that filters out repeated words in the context, ensuring the prediction of unique terms specific to the current AD. Comprehensive evaluations on MAD-Eval, CMD-AD, and TV-AD benchmarks demonstrate the superiority of DistinctAD, with the model consistently outperforming baselines, particularly in Recall@k/N, highlighting its effectiveness in producing high-quality, distinctive ADs.
☆ Enhancing Computer Vision with Knowledge: a Rummikub Case Study
Artificial Neural Networks excel at identifying individual components in an image. However, out-of-the-box, they do not manage to correctly integrate and interpret these components as a whole. One way to alleviate this weakness is to expand the network with explicit knowledge and a separate reasoning component. In this paper, we evaluate an approach to this end, applied to the solving of the popular board game Rummikub. We demonstrate that, for this particular example, the added background knowledge is equally valuable as two-thirds of the data set, and allows to bring down the training time to half the original time.
comment: Submitted to ESANN2025
☆ PDZSeg: Adapting the Foundation Model for Dissection Zone Segmentation with Visual Prompts in Robot-assisted Endoscopic Submucosal Dissection
Purpose: Endoscopic surgical environments present challenges for dissection zone segmentation due to unclear boundaries between tissue types, leading to segmentation errors where models misidentify or overlook edges. This study aims to provide precise dissection zone suggestions during endoscopic submucosal dissection (ESD) procedures, enhancing ESD safety. Methods: We propose the Prompted-based Dissection Zone Segmentation (PDZSeg) model, designed to leverage diverse visual prompts such as scribbles and bounding boxes. By overlaying these prompts onto images and fine-tuning a foundational model on a specialized dataset, our approach improves segmentation performance and user experience through flexible input methods. Results: The PDZSeg model was validated using three experimental setups: in-domain evaluation, variability in visual prompt availability, and robustness assessment. Using the ESD-DZSeg dataset, results show that our method outperforms state-of-the-art segmentation approaches. This is the first study to integrate visual prompt design into dissection zone segmentation. Conclusion: The PDZSeg model effectively utilizes visual prompts to enhance segmentation performance and user experience, supported by the novel ESD-DZSeg dataset as a benchmark for dissection zone segmentation in ESD. Our work establishes a foundation for future research.
☆ KAN See Your Face
With the advancement of face reconstruction (FR) systems, privacy-preserving face recognition (PPFR) has gained popularity for its secure face recognition, enhanced facial privacy protection, and robustness to various attacks. Besides, specific models and algorithms are proposed for face embedding protection by mapping embeddings to a secure space. However, there is a lack of studies on investigating and evaluating the possibility of extracting face images from embeddings of those systems, especially for PPFR. In this work, we introduce the first approach to exploit Kolmogorov-Arnold Network (KAN) for conducting embedding-to-face attacks against state-of-the-art (SOTA) FR and PPFR systems. Face embedding mapping (FEM) models are proposed to learn the distribution mapping relation between the embeddings from the initial domain and target domain. In comparison with Multi-Layer Perceptrons (MLP), we provide two variants, FEM-KAN and FEM-MLP, for efficient non-linear embedding-to-embedding mapping in order to reconstruct realistic face images from the corresponding face embedding. To verify our methods, we conduct extensive experiments with various PPFR and FR models. We also measure reconstructed face images with different metrics to evaluate the image quality. Through comprehensive experiments, we demonstrate the effectiveness of FEMs in accurate embedding mapping and face reconstruction.
comment: 16 pages, 8 figures
☆ RPEE-HEADS: A Novel Benchmark for Pedestrian Head Detection in Crowd Videos
The automatic detection of pedestrian heads in crowded environments is essential for crowd analysis and management tasks, particularly in high-risk settings such as railway platforms and event entrances. These environments, characterized by dense crowds and dynamic movements, are underrepresented in public datasets, posing challenges for existing deep learning models. To address this gap, we introduce the Railway Platforms and Event Entrances-Heads (RPEE-Heads) dataset, a novel, diverse, high-resolution, and accurately annotated resource. It includes 109,913 annotated pedestrian heads across 1,886 images from 66 video recordings, with an average of 56.2 heads per image. Annotations include bounding boxes for visible head regions. In addition to introducing the RPEE-Heads dataset, this paper evaluates eight state-of-the-art object detection algorithms using the RPEE-Heads dataset and analyzes the impact of head size on detection accuracy. The experimental results show that You Only Look Once v9 and Real-Time Detection Transformer outperform the other algorithms, achieving mean average precisions of 90.7% and 90.8%, with inference times of 11 and 14 milliseconds, respectively. Moreover, the findings underscore the need for specialized datasets like RPEE-Heads for training and evaluating accurate models for head detection in railway platforms and event entrances. The dataset and pretrained models are available at https://doi.org/10.34735/ped.2024.2.
comment: 17 pages, 8 figures, 7 tables
☆ Type-R: Automatically Retouching Typos for Text-to-Image Generation
While recent text-to-image models can generate photorealistic images from text prompts that reflect detailed instructions, they still face significant challenges in accurately rendering words in the image. In this paper, we propose to retouch erroneous text renderings in the post-processing pipeline. Our approach, called Type-R, identifies typographical errors in the generated image, erases the erroneous text, regenerates text boxes for missing words, and finally corrects typos in the rendered words. Through extensive experiments, we show that Type-R, in combination with the latest text-to-image models such as Stable Diffusion or Flux, achieves the highest text rendering accuracy while maintaining image quality and also outperforms text-focused generation baselines in terms of balancing text accuracy and image quality.
☆ Online Knowledge Integration for 3D Semantic Mapping: A Survey
Semantic mapping is a key component of robots operating in and interacting with objects in structured environments. Traditionally, geometric and knowledge representations within a semantic map have only been loosely integrated. However, recent advances in deep learning now allow full integration of prior knowledge, represented as knowledge graphs or language concepts, into sensor data processing and semantic mapping pipelines. Semantic scene graphs and language models enable modern semantic mapping approaches to incorporate graph-based prior knowledge or to leverage the rich information in human language both during and after the mapping process. This has sparked substantial advances in semantic mapping, leading to previously impossible novel applications. This survey reviews these recent developments comprehensively, with a focus on online integration of knowledge into semantic mapping. We specifically focus on methods using semantic scene graphs for integrating symbolic prior knowledge and language models for respective capture of implicit common-sense knowledge and natural language concepts
comment: Submitted to Robotics and Autonomous Systems
☆ COREval: A Comprehensive and Objective Benchmark for Evaluating the Remote Sensing Capabilities of Large Vision-Language Models
With the rapid development of Large Vision-Language Models (VLMs), both general-domain models and those specifically tailored for remote sensing Earth observation, have demonstrated exceptional perception and reasoning abilities within this specific field. However, the current absence of a comprehensive benchmark for holistically evaluating the remote sensing capabilities of these VLMs represents a significant gap. To bridge this gap, we propose COREval, the first benchmark designed to comprehensively and objectively evaluate the hierarchical remote sensing capabilities of VLMs. Concentrating on 2 primary capability dimensions essential to remote sensing: perception and reasoning, we further categorize 6 secondary dimensions and 22 leaf tasks to ensure a well-rounded assessment coverage for this specific field. COREval guarantees the quality of the total of 6,263 problems through a rigorous process of data collection from 50 globally distributed cities, question construction and quality control, and the format of multiple-choice questions with definitive answers allows for an objective and straightforward evaluation of VLM performance. We conducted a holistic evaluation of 13 prominent open-source VLMs from both the general and remote sensing domains, highlighting current shortcomings in their remote sensing capabilities and providing directions for improvements in their application within this specialized context. We hope that COREval will serve as a valuable resource and offer deeper insights into the challenges and potential of VLMs in the field of remote sensing.
comment: 20 pages, 12 figures
☆ Enhancing Visual Reasoning with Autonomous Imagination in Multimodal Large Language Models
There have been recent efforts to extend the Chain-of-Thought (CoT) paradigm to Multimodal Large Language Models (MLLMs) by finding visual clues in the input scene, advancing the visual reasoning ability of MLLMs. However, current approaches are specially designed for the tasks where clue finding plays a major role in the whole reasoning process, leading to the difficulty in handling complex visual scenes where clue finding does not actually simplify the whole reasoning task. To deal with this challenge, we propose a new visual reasoning paradigm enabling MLLMs to autonomously modify the input scene to new ones based on its reasoning status, such that CoT is reformulated as conducting simple closed-loop decision-making and reasoning steps under a sequence of imagined visual scenes, leading to natural and general CoT construction. To implement this paradigm, we introduce a novel plug-and-play imagination space, where MLLMs conduct visual modifications through operations like focus, ignore, and transform based on their native reasoning ability without specific training. We validate our approach through a benchmark spanning dense counting, simple jigsaw puzzle solving, and object placement, challenging the reasoning ability beyond clue finding. The results verify that while existing techniques fall short, our approach enables MLLMs to effectively reason step by step through autonomous imagination. Project page: https://future-item.github.io/autoimagine-site.
☆ ModeDreamer: Mode Guiding Score Distillation for Text-to-3D Generation using Reference Image Prompts
Existing Score Distillation Sampling (SDS)-based methods have driven significant progress in text-to-3D generation. However, 3D models produced by SDS-based methods tend to exhibit over-smoothing and low-quality outputs. These issues arise from the mode-seeking behavior of current methods, where the scores used to update the model oscillate between multiple modes, resulting in unstable optimization and diminished output quality. To address this problem, we introduce a novel image prompt score distillation loss named ISD, which employs a reference image to direct text-to-3D optimization toward a specific mode. Our ISD loss can be implemented by using IP-Adapter, a lightweight adapter for integrating image prompt capability to a text-to-image diffusion model, as a mode-selection module. A variant of this adapter, when not being prompted by a reference image, can serve as an efficient control variate to reduce variance in score estimates, thereby enhancing both output quality and optimization stability. Our experiments demonstrate that the ISD loss consistently achieves visually coherent, high-quality outputs and improves optimization speed compared to prior text-to-3D methods, as demonstrated through both qualitative and quantitative evaluations on the T3Bench benchmark suite.
☆ Towards Cross-device and Training-free Robotic Grasping in 3D Open World
Robotic grasping in the open world is a critical component of manufacturing and automation processes. While numerous existing approaches depend on 2D segmentation output to facilitate the grasping procedure, accurately determining depth from 2D imagery remains a challenge, often leading to limited performance in complex stacking scenarios. In contrast, techniques utilizing 3D point cloud data inherently capture depth information, thus enabling adeptly navigating and manipulating a diverse range of complex stacking scenes. However, such efforts are considerably hindered by the variance in data capture devices and the unstructured nature of the data, which limits their generalizability. Consequently, much research is narrowly concentrated on managing designated objects within specific settings, which confines their real-world applicability. This paper presents a novel pipeline capable of executing object grasping tasks in open-world scenarios even on previously unseen objects without the necessity for training. Additionally, our pipeline supports the flexible use of different 3D point cloud segmentation models across a variety of scenes. Leveraging the segmentation results, we propose to engage a training-free binary clustering algorithm that not only improves segmentation precision but also possesses the capability to cluster and localize unseen objects for executing grasping operations. In our experiments, we investigate a range of open-world scenarios, and the outcomes underscore the remarkable robustness and generalizability of our pipeline, consistent across various environments, robots, cameras, and objects. The code will be made available upon acceptance of the paper.
☆ Spectral-Spatial Transformer with Active Transfer Learning for Hyperspectral Image Classification
The classification of hyperspectral images (HSI) is a challenging task due to the high spectral dimensionality and limited labeled data typically available for training. In this study, we propose a novel multi-stage active transfer learning (ATL) framework that integrates a Spatial-Spectral Transformer (SST) with an active learning process for efficient HSI classification. Our approach leverages a pre-trained (initially trained) SST model, fine-tuned iteratively on newly acquired labeled samples using an uncertainty-diversity (Spatial-Spectral Neighborhood Diversity) querying mechanism. This mechanism identifies the most informative and diverse samples, thereby optimizing the transfer learning process to reduce both labeling costs and model uncertainty. We further introduce a dynamic freezing strategy, selectively freezing layers of the SST model to minimize computational overhead while maintaining adaptability to spectral variations in new data. One of the key innovations in our work is the self-calibration of spectral and spatial attention weights, achieved through uncertainty-guided active learning. This not only enhances the model's robustness in handling dynamic and disjoint spectral profiles but also improves generalization across multiple HSI datasets. Additionally, we present a diversity-promoting sampling strategy that ensures the selected samples span distinct spectral regions, preventing overfitting to particular spectral classes. Experiments on benchmark HSI datasets demonstrate that the SST-ATL framework significantly outperforms existing CNN and SST-based methods, offering superior accuracy, efficiency, and computational performance. The source code can be accessed at \url{https://github.com/mahmad000/ATL-SST}.
☆ When Large Vision-Language Models Meet Person Re-Identification
Large Vision-Language Models (LVLMs) that incorporate visual models and Large Language Models (LLMs) have achieved impressive results across various cross-modal understanding and reasoning tasks. In recent years, person re-identification (ReID) has also started to explore cross-modal semantics to improve the accuracy of identity recognition. However, effectively utilizing LVLMs for ReID remains an open challenge. While LVLMs operate under a generative paradigm by predicting the next output word, ReID requires the extraction of discriminative identity features to match pedestrians across cameras. In this paper, we propose LVLM-ReID, a novel framework that harnesses the strengths of LVLMs to promote ReID. Specifically, we employ instructions to guide the LVLM in generating one pedestrian semantic token that encapsulates key appearance semantics from the person image. This token is further refined through our Semantic-Guided Interaction (SGI) module, establishing a reciprocal interaction between the semantic token and visual tokens. Ultimately, the reinforced semantic token serves as the pedestrian identity representation. Our framework integrates the semantic understanding and generation capabilities of LVLMs into end-to-end ReID training, allowing LVLMs to capture rich semantic cues from pedestrian images during both training and inference. Our method achieves competitive results on multiple benchmarks without additional image-text annotations, demonstrating the potential of LVLM-generated semantics to advance person ReID and offering a promising direction for future research.
☆ Training Data Synthesis with Difficulty Controlled Diffusion Model
Semi-supervised learning (SSL) can improve model performance by leveraging unlabeled images, which can be collected from public image sources with low costs. In recent years, synthetic images have become increasingly common in public image sources due to rapid advances in generative models. Therefore, it is becoming inevitable to include existing synthetic images in the unlabeled data for SSL. How this kind of contamination will affect SSL remains unexplored. In this paper, we introduce a new task, Real-Synthetic Hybrid SSL (RS-SSL), to investigate the impact of unlabeled data contaminated by synthetic images for SSL. First, we set up a new RS-SSL benchmark to evaluate current SSL methods and found they struggled to improve by unlabeled synthetic images, sometimes even negatively affected. To this end, we propose RSMatch, a novel SSL method specifically designed to handle the challenges of RS-SSL. RSMatch effectively identifies unlabeled synthetic data and further utilizes them for improvement. Extensive experimental results show that RSMatch can transfer synthetic unlabeled data from `obstacles' to `resources.' The effectiveness is further verified through ablation studies and visualization.
☆ Aligning Knowledge Concepts to Whole Slide Images for Precise Histopathology Image Analysis
Due to the large size and lack of fine-grained annotation, Whole Slide Images (WSIs) analysis is commonly approached as a Multiple Instance Learning (MIL) problem. However, previous studies only learn from training data, posing a stark contrast to how human clinicians teach each other and reason about histopathologic entities and factors. Here we present a novel knowledge concept-based MIL framework, named ConcepPath to fill this gap. Specifically, ConcepPath utilizes GPT-4 to induce reliable diseasespecific human expert concepts from medical literature, and incorporate them with a group of purely learnable concepts to extract complementary knowledge from training data. In ConcepPath, WSIs are aligned to these linguistic knowledge concepts by utilizing pathology vision-language model as the basic building component. In the application of lung cancer subtyping, breast cancer HER2 scoring, and gastric cancer immunotherapy-sensitive subtyping task, ConcepPath significantly outperformed previous SOTA methods which lack the guidance of human expert knowledge.
☆ Training Noise Token Pruning
In the present work we present Training Noise Token (TNT) Pruning for vision transformers. Our method relaxes the discrete token dropping condition to continuous additive noise, providing smooth optimization in training, while retaining discrete dropping computational gains in deployment settings. We provide theoretical connections to Rate-Distortion literature, and empirical evaluations on the ImageNet dataset using ViT and DeiT architectures demonstrating TNT's advantages over previous pruning methods.
comment: 25 pages, 8 figures
☆ Dual-view X-ray Detection: Can AI Detect Prohibited Items from Dual-view X-ray Images like Humans?
To detect prohibited items in challenging categories, human inspectors typically rely on images from two distinct views (vertical and side). Can AI detect prohibited items from dual-view X-ray images in the same way humans do? Existing X-ray datasets often suffer from limitations, such as single-view imaging or insufficient sample diversity. To address these gaps, we introduce the Large-scale Dual-view X-ray (LDXray), which consists of 353,646 instances across 12 categories, providing a diverse and comprehensive resource for training and evaluating models. To emulate human intelligence in dual-view detection, we propose the Auxiliary-view Enhanced Network (AENet), a novel detection framework that leverages both the main and auxiliary views of the same object. The main-view pipeline focuses on detecting common categories, while the auxiliary-view pipeline handles more challenging categories using ``expert models" learned from the main view. Extensive experiments on the LDXray dataset demonstrate that the dual-view mechanism significantly enhances detection performance, e.g., achieving improvements of up to 24.7% for the challenging category of umbrellas. Furthermore, our results show that AENet exhibits strong generalization across seven different detection models for X-ray Inspection
comment: 10 pages, 6 figures
☆ Dual-Level Boost Network for Long-Tail Prohibited Items Detection in X-ray Security Inspection
The detection of prohibited items in X-ray security inspections is vital for ensuring public safety. However, the long-tail distribution of item categories, where certain prohibited items are far less common, poses a big challenge for detection models, as rare categories often lack sufficient training data. Existing methods struggle to classify these rare items accurately due to this imbalance. In this paper, we propose a Dual-level Boost Network (DBNet) specifically designed to overcome these challenges in X-ray security screening. Our approach introduces two key innovations: (1) a specific data augmentation strategy employing Poisson blending, inspired by the characteristics of X-ray images, to generate realistic synthetic instances of rare items which can effectively mitigate data imbalance; and (2) a context-aware feature enhancement module that captures the spatial and semantic interactions between objects and their surroundings, enhancing classification accuracy for underrepresented categories. Extensive experimental results demonstrate that DBNet improves detection performance for tail categories, outperforming sota methods in X-ray security inspection scenarios by a large margin 17.2%, thereby ensuring enhanced public safety.
comment: 10 pages, 4 figures
☆ SmileSplat: Generalizable Gaussian Splats for Unconstrained Sparse Images
Sparse Multi-view Images can be Learned to predict explicit radiance fields via Generalizable Gaussian Splatting approaches, which can achieve wider application prospects in real-life when ground-truth camera parameters are not required as inputs. In this paper, a novel generalizable Gaussian Splatting method, SmileSplat, is proposed to reconstruct pixel-aligned Gaussian surfels for diverse scenarios only requiring unconstrained sparse multi-view images. First, Gaussian surfels are predicted based on the multi-head Gaussian regression decoder, which can are represented with less degree-of-freedom but have better multi-view consistency. Furthermore, the normal vectors of Gaussian surfel are enhanced based on high-quality of normal priors. Second, the Gaussians and camera parameters (both extrinsic and intrinsic) are optimized to obtain high-quality Gaussian radiance fields for novel view synthesis tasks based on the proposed Bundle-Adjusting Gaussian Splatting module. Extensive experiments on novel view rendering and depth map prediction tasks are conducted on public datasets, demonstrating that the proposed method achieves state-of-the-art performance in various 3D vision tasks. More information can be found on our project page (https://yanyan-li.github.io/project/gs/smilesplat)
☆ Large Scale Evaluation of Deep Learning-based Explainable Solar Flare Forecasting Models with Attribution-based Proximity Analysis
Accurate and reliable predictions of solar flares are essential due to their potentially significant impact on Earth and space-based infrastructure. Although deep learning models have shown notable predictive capabilities in this domain, current evaluations often focus on accuracy while neglecting interpretability and reliability--factors that are especially critical in operational settings. To address this gap, we propose a novel proximity-based framework for analyzing post hoc explanations to assess the interpretability of deep learning models for solar flare prediction. Our study compares two models trained on full-disk line-of-sight (LoS) magnetogram images to predict $\geq$M-class solar flares within a 24-hour window. We employ the Guided Gradient-weighted Class Activation Mapping (Guided Grad-CAM) method to generate attribution maps from these models, which we then analyze to gain insights into their decision-making processes. To support the evaluation of explanations in operational systems, we introduce a proximity-based metric that quantitatively assesses the accuracy and relevance of local explanations when regions of interest are known. Our findings indicate that the models' predictions align with active region characteristics to varying degrees, offering valuable insights into their behavior. This framework enhances the evaluation of model interpretability in solar flare forecasting and supports the development of more transparent and reliable operational systems.
comment: This is a preprint accepted at IEEE International Conference on Big Data 2024( IEEE BigData 2024) Conference
☆ PersonaCraft: Personalized Full-Body Image Synthesis for Multiple Identities from Single References Using 3D-Model-Conditioned Diffusion
Personalized image generation has been significantly advanced, enabling the creation of highly realistic and customized images. However, existing methods often struggle with generating images of multiple people due to occlusions and fail to accurately personalize full-body shapes. In this paper, we propose PersonaCraft, a novel approach that combines diffusion models with 3D human modeling to address these limitations. Our method effectively manages occlusions by incorporating 3D-aware pose conditioning with SMPLx-ControlNet and accurately personalizes human full-body shapes through SMPLx fitting. Additionally, PersonaCraft enables user-defined body shape adjustments, adding flexibility for individual body customization. Experimental results demonstrate the superior performance of PersonaCraft in generating high-quality, realistic images of multiple individuals while resolving occlusion issues, thus establishing a new standard for multi-person personalized image synthesis. Project page: https://gwang-kim.github.io/persona_craft
comment: Project page: https://gwang-kim.github.io/persona_craft
☆ GLS: Geometry-aware 3D Language Gaussian Splatting
Recently, 3D Gaussian Splatting (3DGS) has achieved significant performance on indoor surface reconstruction and open-vocabulary segmentation. This paper presents GLS, a unified framework of surface reconstruction and open-vocabulary segmentation based on 3DGS. GLS extends two fields by exploring the correlation between them. For indoor surface reconstruction, we introduce surface normal prior as a geometric cue to guide the rendered normal, and use the normal error to optimize the rendered depth. For open-vocabulary segmentation, we employ 2D CLIP features to guide instance features and utilize DEVA masks to enhance their view consistency. Extensive experiments demonstrate the effectiveness of jointly optimizing surface reconstruction and open-vocabulary segmentation, where GLS surpasses state-of-the-art approaches of each task on MuSHRoom, ScanNet++, and LERF-OVS datasets. Code will be available at https://github.com/JiaxiongQ/GLS.
comment: Technical Report
☆ Lightweight Gaze Estimation Model Via Fusion Global Information
Deep learning-based appearance gaze estimation methods are gaining popularity due to their high accuracy and fewer constraints from the environment. However, existing high-precision models often rely on deeper networks, leading to problems such as large parameters, long training time, and slow convergence. In terms of this issue, this paper proposes a novel lightweight gaze estimation model FGI-Net(Fusion Global Information). The model fuses global information into the CNN, effectively compensating for the need of multi-layer convolution and pooling to indirectly capture global information, while reducing the complexity of the model, improving the model accuracy and convergence speed. To validate the performance of the model, a large number of experiments are conducted, comparing accuracy with existing classical models and lightweight models, comparing convergence speed with models of different architectures, and conducting ablation experiments. Experimental results show that compared with GazeCaps, the latest gaze estimation model, FGI-Net achieves a smaller angle error with 87.1% and 79.1% reduction in parameters and FLOPs, respectively (MPIIFaceGaze is 3.74{\deg}, EyeDiap is 5.15{\deg}, Gaze360 is 10.50{\deg} and RT-Gene is 6.02{\deg}). Moreover, compared with different architectural models such as CNN and Transformer, FGI-Net is able to quickly converge to a higher accuracy range with fewer iterations of training, when achieving optimal accuracy on the Gaze360 and EyeDiap datasets, the FGI-Net model has 25% and 37.5% fewer iterations of training compared to GazeTR, respectively.
☆ Mortality Prediction of Pulmonary Embolism Patients with Deep Learning and XGBoost
Pulmonary Embolism (PE) is a serious cardiovascular condition that remains a leading cause of mortality and critical illness, underscoring the need for enhanced diagnostic strategies. Conventional clinical methods have limited success in predicting 30-day in-hospital mortality of PE patients. In this study, we present a new algorithm, called PEP-Net, for 30-day mortality prediction of PE patients based on the initial imaging data (CT) that opportunistically integrates a 3D Residual Network (3DResNet) with Extreme Gradient Boosting (XGBoost) algorithm with patient level binary labels without annotations of the emboli and its extent. Our proposed system offers a comprehensive prediction strategy by handling class imbalance problems, reducing overfitting via regularization, and reducing the prediction variance for more stable predictions. PEP-Net was tested in a cohort of 193 volumetric CT scans diagnosed with Acute PE, and it demonstrated a superior performance by significantly outperforming baseline models (76-78\%) with an accuracy of 94.5\% (+/-0.3) and 94.0\% (+/-0.7) when the input image is either lung region (Lung-ROI) or heart region (Cardiac-ROI). Our results advance PE prognostics by using only initial imaging data, setting a new benchmark in the field. While purely deep learning models have become the go-to for many medical classification (diagnostic) tasks, combined ResNet and XGBoost models herein outperform sole deep learning models due to a potential reason for having lack of enough data.
comment: Published at IEEE ICECCME 2024, Maldives, 4-6 November 2024
☆ Multi-task Gaze Estimation Via Unidirectional Convolution
Using lightweight models as backbone networks in gaze estimation tasks often results in significant performance degradation. The main reason is that the number of feature channels in lightweight networks is usually small, which makes the model expression ability limited. In order to improve the performance of lightweight models in gaze estimation tasks, a network model named Multitask-Gaze is proposed. The main components of Multitask-Gaze include Unidirectional Convolution (UC), Spatial and Channel Attention (SCA), Global Convolution Module (GCM), and Multi-task Regression Module(MRM). UC not only significantly reduces the number of parameters and FLOPs, but also extends the receptive field and improves the long-distance modeling capability of the model, thereby improving the model performance. SCA highlights gaze-related features and suppresses gaze-irrelevant features. The GCM replaces the pooling layer and avoids the performance degradation due to information loss. MRM improves the accuracy of individual tasks and strengthens the connections between tasks for overall performance improvement. The experimental results show that compared with the State-of-the-art method SUGE, the performance of Multitask-Gaze on MPIIFaceGaze and Gaze360 datasets is improved by 1.71% and 2.75%, respectively, while the number of parameters and FLOPs are significantly reduced by 75.5% and 86.88%.
☆ HyperGLM: HyperGraph for Video Scene Graph Generation and Anticipation
Multimodal LLMs have advanced vision-language tasks but still struggle with understanding video scenes. To bridge this gap, Video Scene Graph Generation (VidSGG) has emerged to capture multi-object relationships across video frames. However, prior methods rely on pairwise connections, limiting their ability to handle complex multi-object interactions and reasoning. To this end, we propose Multimodal LLMs on a Scene HyperGraph (HyperGLM), promoting reasoning about multi-way interactions and higher-order relationships. Our approach uniquely integrates entity scene graphs, which capture spatial relationships between objects, with a procedural graph that models their causal transitions, forming a unified HyperGraph. Significantly, HyperGLM enables reasoning by injecting this unified HyperGraph into LLMs. Additionally, we introduce a new Video Scene Graph Reasoning (VSGR) dataset featuring 1.9M frames from third-person, egocentric, and drone views and supports five tasks: Scene Graph Generation, Scene Graph Anticipation, Video Question Answering, Video Captioning, and Relation Reasoning. Empirically, HyperGLM consistently outperforms state-of-the-art methods across five tasks, effectively modeling and reasoning complex relationships in diverse video scenes.
☆ VLM-HOI: Vision Language Models for Interpretable Human-Object Interaction Analysis
The Large Vision Language Model (VLM) has recently addressed remarkable progress in bridging two fundamental modalities. VLM, trained by a sufficiently large dataset, exhibits a comprehensive understanding of both visual and linguistic to perform diverse tasks. To distill this knowledge accurately, in this paper, we introduce a novel approach that explicitly utilizes VLM as an objective function form for the Human-Object Interaction (HOI) detection task (\textbf{VLM-HOI}). Specifically, we propose a method that quantifies the similarity of the predicted HOI triplet using the Image-Text matching technique. We represent HOI triplets linguistically to fully utilize the language comprehension of VLMs, which are more suitable than CLIP models due to their localization and object-centric nature. This matching score is used as an objective for contrastive optimization. To our knowledge, this is the first utilization of VLM language abilities for HOI detection. Experiments demonstrate the effectiveness of our method, achieving state-of-the-art HOI detection accuracy on benchmarks. We believe integrating VLMs into HOI detection represents important progress towards more advanced and interpretable analysis of human-object interactions.
comment: 18 pages
☆ Pixel-aligned RGB-NIR Stereo Imaging and Dataset for Robot Vision
Integrating RGB and NIR stereo imaging provides complementary spectral information, potentially enhancing robotic 3D vision in challenging lighting conditions. However, existing datasets and imaging systems lack pixel-level alignment between RGB and NIR images, posing challenges for downstream vision tasks. In this paper, we introduce a robotic vision system equipped with pixel-aligned RGB-NIR stereo cameras and a LiDAR sensor mounted on a mobile robot. The system simultaneously captures pixel-aligned pairs of RGB stereo images, NIR stereo images, and temporally synchronized LiDAR points. Utilizing the mobility of the robot, we present a dataset containing continuous video frames under diverse lighting conditions. We then introduce two methods that utilize the pixel-aligned RGB-NIR images: an RGB-NIR image fusion method and a feature fusion method. The first approach enables existing RGB-pretrained vision models to directly utilize RGB-NIR information without fine-tuning. The second approach fine-tunes existing vision models to more effectively utilize RGB-NIR information. Experimental results demonstrate the effectiveness of using pixel-aligned RGB-NIR images across diverse lighting conditions.
☆ Neural Finite-State Machines for Surgical Phase Recognition
Surgical phase recognition is essential for analyzing procedure-specific surgical videos. While recent transformer-based architectures have advanced sequence processing capabilities, they struggle with maintaining consistency across lengthy surgical procedures. Drawing inspiration from classical hidden Markov models' finite-state interpretations, we introduce the neural finite-state machine (NFSM) module, which bridges procedural understanding with deep learning approaches. NFSM combines procedure-level understanding with neural networks through global state embeddings, attention-based dynamic transition tables, and transition-aware training and inference mechanisms for offline and online applications. When integrated into our future-aware architecture, NFSM improves video-level accuracy, phase-level precision, recall, and Jaccard indices on Cholec80 datasets by 2.3, 3.2, 3.0, and 4.8 percentage points respectively. As an add-on module to existing state-of-the-art models like Surgformer, NFSM further enhances performance, demonstrating its complementary value. Extended experiments on non-surgical datasets validate NFSM's generalizability beyond surgical domains. Comprehensive experiments demonstrate that incorporating NSFM into deep learning frameworks enables more robust and consistent phase recognition across long procedural videos.
☆ FASIONAD : FAst and Slow FusION Thinking Systems for Human-Like Autonomous Driving with Adaptive Feedback
Ensuring safe, comfortable, and efficient navigation is a critical goal for autonomous driving systems. While end-to-end models trained on large-scale datasets excel in common driving scenarios, they often struggle with rare, long-tail events. Recent progress in large language models (LLMs) has introduced enhanced reasoning capabilities, but their computational demands pose challenges for real-time decision-making and precise planning. This paper presents FASIONAD, a novel dual-system framework inspired by the cognitive model "Thinking, Fast and Slow." The fast system handles routine navigation tasks using rapid, data-driven path planning, while the slow system focuses on complex reasoning and decision-making in challenging or unfamiliar situations. A dynamic switching mechanism based on score distribution and feedback allows seamless transitions between the two systems. Visual prompts generated by the fast system enable human-like reasoning in the slow system, which provides high-quality feedback to enhance the fast system's decision-making. To evaluate FASIONAD, we introduce a new benchmark derived from the nuScenes dataset, specifically designed to differentiate fast and slow scenarios. FASIONAD achieves state-of-the-art performance on this benchmark, establishing a new standard for frameworks integrating fast and slow cognitive processes in autonomous driving. This approach paves the way for more adaptive, human-like autonomous driving systems.
☆ Manual-PA: Learning 3D Part Assembly from Instruction Diagrams
Assembling furniture amounts to solving the discrete-continuous optimization task of selecting the furniture parts to assemble and estimating their connecting poses in a physically realistic manner. The problem is hampered by its combinatorially large yet sparse solution space thus making learning to assemble a challenging task for current machine learning models. In this paper, we attempt to solve this task by leveraging the assembly instructions provided in diagrammatic manuals that typically accompany the furniture parts. Our key insight is to use the cues in these diagrams to split the problem into discrete and continuous phases. Specifically, we present Manual-PA, a transformer-based instruction Manual-guided 3D Part Assembly framework that learns to semantically align 3D parts with their illustrations in the manuals using a contrastive learning backbone towards predicting the assembly order and infers the 6D pose of each part via relating it to the final furniture depicted in the manual. To validate the efficacy of our method, we conduct experiments on the benchmark PartNet dataset. Our results show that using the diagrams and the order of the parts lead to significant improvements in assembly performance against the state of the art. Further, Manual-PA demonstrates strong generalization to real-world IKEA furniture assembly on the IKEA-Manual dataset.
☆ Monocular Obstacle Avoidance Based on Inverse PPO for Fixed-wing UAVs
Fixed-wing Unmanned Aerial Vehicles (UAVs) are one of the most commonly used platforms for the burgeoning Low-altitude Economy (LAE) and Urban Air Mobility (UAM), due to their long endurance and high-speed capabilities. Classical obstacle avoidance systems, which rely on prior maps or sophisticated sensors, face limitations in unknown low-altitude environments and small UAV platforms. In response, this paper proposes a lightweight deep reinforcement learning (DRL) based UAV collision avoidance system that enables a fixed-wing UAV to avoid unknown obstacles at cruise speed over 30m/s, with only onboard visual sensors. The proposed system employs a single-frame image depth inference module with a streamlined network architecture to ensure real-time obstacle detection, optimized for edge computing devices. After that, a reinforcement learning controller with a novel reward function is designed to balance the target approach and flight trajectory smoothness, satisfying the specific dynamic constraints and stability requirements of a fixed-wing UAV platform. An adaptive entropy adjustment mechanism is introduced to mitigate the exploration-exploitation trade-off inherent in DRL, improving training convergence and obstacle avoidance success rates. Extensive software-in-the-loop and hardware-in-the-loop experiments demonstrate that the proposed framework outperforms other methods in obstacle avoidance efficiency and flight trajectory smoothness and confirm the feasibility of implementing the algorithm on edge devices. The source code is publicly available at \url{https://github.com/ch9397/FixedWing-MonoPPO}.
☆ AI-Driven Smartphone Solution for Digitizing Rapid Diagnostic Test Kits and Enhancing Accessibility for the Visually Impaired
Rapid diagnostic tests are crucial for timely disease detection and management, yet accurate interpretation of test results remains challenging. In this study, we propose a novel approach to enhance the accuracy and reliability of rapid diagnostic test result interpretation by integrating artificial intelligence (AI) algorithms, including convolutional neural networks (CNN), within a smartphone-based application. The app enables users to take pictures of their test kits, which YOLOv8 then processes to precisely crop and extract the membrane region, even if the test kit is not centered in the frame or is positioned at the very edge of the image. This capability offers greater accessibility, allowing even visually impaired individuals to capture test images without needing perfect alignment, thus promoting user independence and inclusivity. The extracted image is analyzed by an additional CNN classifier that determines if the results are positive, negative, or invalid, providing users with the results and a confidence level. Through validation experiments with commonly used rapid test kits across various diagnostic applications, our results demonstrate that the synergistic integration of AI significantly improves sensitivity and specificity in test result interpretation. This improvement can be attributed to the extraction of the membrane zones from the test kit images using the state-of-the-art YOLO algorithm. Additionally, we performed SHapley Additive exPlanations (SHAP) analysis to investigate the factors influencing the model's decisions, identifying reasons behind both correct and incorrect classifications. By facilitating the differentiation of genuine test lines from background noise and providing valuable insights into test line intensity and uniformity, our approach offers a robust solution to challenges in rapid test interpretation.
☆ HAAT: Hybrid Attention Aggregation Transformer for Image Super-Resolution
In the research area of image super-resolution, Swin-transformer-based models are favored for their global spatial modeling and shifting window attention mechanism. However, existing methods often limit self-attention to non overlapping windows to cut costs and ignore the useful information that exists across channels. To address this issue, this paper introduces a novel model, the Hybrid Attention Aggregation Transformer (HAAT), designed to better leverage feature information. HAAT is constructed by integrating Swin-Dense-Residual-Connected Blocks (SDRCB) with Hybrid Grid Attention Blocks (HGAB). SDRCB expands the receptive field while maintaining a streamlined architecture, resulting in enhanced performance. HGAB incorporates channel attention, sparse attention, and window attention to improve nonlocal feature fusion and achieve more visually compelling results. Experimental evaluations demonstrate that HAAT surpasses state-of-the-art methods on benchmark datasets. Keywords: Image super-resolution, Computer vision, Attention mechanism, Transformer
comment: 6 pages, 2 figures, 1 table
☆ An End-to-End Two-Stream Network Based on RGB Flow and Representation Flow for Human Action Recognition
With the rapid advancements in deep learning, computer vision tasks have seen significant improvements, making two-stream neural networks a popular focus for video based action recognition. Traditional models using RGB and optical flow streams achieve strong performance but at a high computational cost. To address this, we introduce a representation flow algorithm to replace the optical flow branch in the egocentric action recognition model, enabling end-to-end training while reducing computational cost and prediction time. Our model, designed for egocentric action recognition, uses class activation maps (CAMs) to improve accuracy and ConvLSTM for spatio temporal encoding with spatial attention. When evaluated on the GTEA61, EGTEA GAZE+, and HMDB datasets, our model matches the accuracy of the original model on GTEA61 and exceeds it by 0.65% and 0.84% on EGTEA GAZE+ and HMDB, respectively. Prediction runtimes are significantly reduced to 0.1881s, 0.1503s, and 0.1459s, compared to the original model's 101.6795s, 25.3799s, and 203.9958s. Ablation studies were also conducted to study the impact of different parameters on model performance. Keywords: two-stream, egocentric, action recognition, CAM, representation flow, CAM, ConvLSTM
comment: 6 pages, 3 figures, 9 tables
☆ Exploring Visual Vulnerabilities via Multi-Loss Adversarial Search for Jailbreaking Vision-Language Models
Despite inheriting security measures from underlying language models, Vision-Language Models (VLMs) may still be vulnerable to safety alignment issues. Through empirical analysis, we uncover two critical findings: scenario-matched images can significantly amplify harmful outputs, and contrary to common assumptions in gradient-based attacks, minimal loss values do not guarantee optimal attack effectiveness. Building on these insights, we introduce MLAI (Multi-Loss Adversarial Images), a novel jailbreak framework that leverages scenario-aware image generation for semantic alignment, exploits flat minima theory for robust adversarial image selection, and employs multi-image collaborative attacks for enhanced effectiveness. Extensive experiments demonstrate MLAI's significant impact, achieving attack success rates of 77.75% on MiniGPT-4 and 82.80% on LLaVA-2, substantially outperforming existing methods by margins of 34.37% and 12.77% respectively. Furthermore, MLAI shows considerable transferability to commercial black-box VLMs, achieving up to 60.11% success rate. Our work reveals fundamental visual vulnerabilities in current VLMs safety mechanisms and underscores the need for stronger defenses. Warning: This paper contains potentially harmful example text.
☆ Revisiting Misalignment in Multispectral Pedestrian Detection: A Language-Driven Approach for Cross-modal Alignment Fusion
Multispectral pedestrian detection is a crucial component in various critical applications. However, a significant challenge arises due to the misalignment between these modalities, particularly under real-world conditions where data often appear heavily misaligned. Conventional methods developed on well-aligned or minimally misaligned datasets fail to address these discrepancies adequately. This paper introduces a new framework for multispectral pedestrian detection designed specifically to handle heavily misaligned datasets without the need for costly and complex traditional pre-processing calibration. By leveraging Large-scale Vision-Language Models (LVLM) for cross-modal semantic alignment, our approach seeks to enhance detection accuracy by aligning semantic information across the RGB and thermal domains. This method not only simplifies the operational requirements but also extends the practical usability of multispectral detection technologies in practical applications.
☆ Differentiable Inverse Rendering with Interpretable Basis BRDFs CVPR 2025
Inverse rendering seeks to reconstruct both geometry and spatially varying BRDFs (SVBRDFs) from captured images. To address the inherent ill-posedness of inverse rendering, basis BRDF representations are commonly used, modeling SVBRDFs as spatially varying blends of a set of basis BRDFs. However, existing methods often yield basis BRDFs that lack intuitive separation and have limited scalability to scenes of varying complexity. In this paper, we introduce a differentiable inverse rendering method that produces interpretable basis BRDFs. Our approach models a scene using 2D Gaussians, where the reflectance of each Gaussian is defined by a weighted blend of basis BRDFs. We efficiently render an image from the 2D Gaussians and basis BRDFs using differentiable rasterization and impose a rendering loss with the input images. During this analysis-by-synthesis optimization process of differentiable inverse rendering, we dynamically adjust the number of basis BRDFs to fit the target scene while encouraging sparsity in the basis weights. This ensures that the reflectance of each Gaussian is represented by only a few basis BRDFs. This approach enables the reconstruction of accurate geometry and interpretable basis BRDFs that are spatially separated. Consequently, the resulting scene representation, comprising basis BRDFs and 2D Gaussians, supports physically-based novel-view relighting and intuitive scene editing.
comment: This paper is submitted to CVPR 2025. This is a different paper from my previous paper "Differentiable Point-based Inverse Rendering". It must not be removed automatically
☆ VideoLLM Knows When to Speak: Enhancing Time-Sensitive Video Comprehension with Video-Text Duet Interaction Format
Recent researches on video large language models (VideoLLM) predominantly focus on model architectures and training datasets, leaving the interaction format between the user and the model under-explored. In existing works, users often interact with VideoLLMs by using the entire video and a query as input, after which the model generates a response. This interaction format constrains the application of VideoLLMs in scenarios such as live-streaming comprehension where videos do not end and responses are required in a real-time manner, and also results in unsatisfactory performance on time-sensitive tasks that requires localizing video segments. In this paper, we focus on a video-text duet interaction format. This interaction format is characterized by the continuous playback of the video, and both the user and the model can insert their text messages at any position during the video playback. When a text message ends, the video continues to play, akin to the alternative of two performers in a duet. We construct MMDuetIT, a video-text training dataset designed to adapt VideoLLMs to video-text duet interaction format. We also introduce the Multi-Answer Grounded Video Question Answering (MAGQA) task to benchmark the real-time response ability of VideoLLMs. Trained on MMDuetIT, MMDuet demonstrates that adopting the video-text duet interaction format enables the model to achieve significant improvements in various time-sensitive tasks (76% CIDEr on YouCook2 dense video captioning, 90\% mAP on QVHighlights highlight detection and 25% R@0.5 on Charades-STA temporal video grounding) with minimal training efforts, and also enable VideoLLMs to reply in a real-time manner as the video plays. Code, data and demo are available at: https://github.com/yellow-binary-tree/MMDuet.
comment: 9 pages
☆ RS-vHeat: Heat Conduction Guided Efficient Remote Sensing Foundation Model
Remote sensing foundation models largely break away from the traditional paradigm of designing task-specific models, offering greater scalability across multiple tasks. However, they face challenges such as low computational efficiency and limited interpretability, especially when dealing with high-resolution remote sensing images. To overcome these, we draw inspiration from heat conduction, a physical process modeling local heat diffusion. Building on this idea, we are the first to explore the potential of using the parallel computing model of heat conduction to simulate the local region correlations in high-resolution remote sensing images, and introduce RS-vHeat, an efficient multi-modal remote sensing foundation model. Specifically, RS-vHeat 1) applies the Heat Conduction Operator (HCO) with a complexity of $O(N^{1.5})$ and a global receptive field, reducing computational overhead while capturing remote sensing object structure information to guide heat diffusion; 2) learns the frequency distribution representations of various scenes through a self-supervised strategy based on frequency domain hierarchical masking and multi-domain reconstruction; 3) significantly improves efficiency and performance over state-of-the-art techniques across 4 tasks and 10 datasets. Compared to attention-based remote sensing foundation models, we reduces memory consumption by 84%, decreases FLOPs by 24% and improves throughput by 2.7 times.
comment: 18 pages, 9 figures and 9 tables
☆ HI-SLAM2: Geometry-Aware Gaussian SLAM for Fast Monocular Scene Reconstruction
We present HI-SLAM2, a geometry-aware Gaussian SLAM system that achieves fast and accurate monocular scene reconstruction using only RGB input. Existing Neural SLAM or 3DGS-based SLAM methods often trade off between rendering quality and geometry accuracy, our research demonstrates that both can be achieved simultaneously with RGB input alone. The key idea of our approach is to enhance the ability for geometry estimation by combining easy-to-obtain monocular priors with learning-based dense SLAM, and then using 3D Gaussian splatting as our core map representation to efficiently model the scene. Upon loop closure, our method ensures on-the-fly global consistency through efficient pose graph bundle adjustment and instant map updates by explicitly deforming the 3D Gaussian units based on anchored keyframe updates. Furthermore, we introduce a grid-based scale alignment strategy to maintain improved scale consistency in prior depths for finer depth details. Through extensive experiments on Replica, ScanNet, and ScanNet++, we demonstrate significant improvements over existing Neural SLAM methods and even surpass RGB-D-based methods in both reconstruction and rendering quality. The project page and source code will be made available at https://hi-slam2.github.io/.
comment: Under review process
☆ Vision Mamba Distillation for Low-resolution Fine-grained Image Classification
Low-resolution fine-grained image classification has recently made significant progress, largely thanks to the super-resolution techniques and knowledge distillation methods. However, these approaches lead to an exponential increase in the number of parameters and computational complexity of models. In order to solve this problem, in this letter, we propose a Vision Mamba Distillation (ViMD) approach to enhance the effectiveness and efficiency of low-resolution fine-grained image classification. Concretely, a lightweight super-resolution vision Mamba classification network (SRVM-Net) is proposed to improve its capability for extracting visual features by redesigning the classification sub-network with Mamba modeling. Moreover, we design a novel multi-level Mamba knowledge distillation loss boosting the performance, which can transfer prior knowledge obtained from a High-resolution Vision Mamba classification Network (HRVM-Net) as a teacher into the proposed SRVM-Net as a student. Extensive experiments on seven public fine-grained classification datasets related to benchmarks confirm our ViMD achieves a new state-of-the-art performance. While having higher accuracy, ViMD outperforms similar methods with fewer parameters and FLOPs, which is more suitable for embedded device applications. Code is available at https://github.com/boa2004plaust/ViMD.
☆ Improved implicit diffusion model with knowledge distillation to estimate the spatial distribution density of carbon stock in remote sensing imagery
The forest serves as the most significant terrestrial carbon stock mechanism, effectively reducing atmospheric CO$_2$ concentrations and mitigating climate change. Remote sensing provides high data accuracy and enables large-scale observations. Optical images facilitate long-term monitoring, which is crucial for future carbon stock estimation studies. This study focuses on Huize County, Qujing City, Yunnan Province, China, utilizing GF-1 WFV satellite imagery. The KD-VGG and KD-UNet modules were introduced for initial feature extraction, and the improved implicit diffusion model (IIDM) was proposed. The results showed: (1) The VGG module improved initial feature extraction, improving accuracy, and reducing inference time with optimized model parameters. (2) The Cross-attention + MLPs module enabled effective feature fusion, establishing critical relationships between global and local features, achieving high-accuracy estimation. (3) The IIDM model, a novel contribution, demonstrated the highest estimation accuracy with an RMSE of 12.17\%, significantly improving by 41.69\% to 42.33\% compared to the regression model. In carbon stock estimation, the generative model excelled in extracting deeper features, significantly outperforming other models, demonstrating the feasibility of AI-generated content in quantitative remote sensing. The 16-meter resolution estimates provide a robust basis for tailoring forest carbon sink regulations, enhancing regional carbon stock management.
comment: Under review
☆ Diffusion Autoencoders for Few-shot Image Generation in Hyperbolic Space
Few-shot image generation aims to generate diverse and high-quality images for an unseen class given only a few examples in that class. However, existing methods often suffer from a trade-off between image quality and diversity while offering limited control over the attributes of newly generated images. In this work, we propose Hyperbolic Diffusion Autoencoders (HypDAE), a novel approach that operates in hyperbolic space to capture hierarchical relationships among images and texts from seen categories. By leveraging pre-trained foundation models, HypDAE generates diverse new images for unseen categories with exceptional quality by varying semantic codes or guided by textual instructions. Most importantly, the hyperbolic representation introduces an additional degree of control over semantic diversity through the adjustment of radii within the hyperbolic disk. Extensive experiments and visualizations demonstrate that HypDAE significantly outperforms prior methods by achieving a superior balance between quality and diversity with limited data and offers a highly controllable and interpretable generation process.
☆ Adversarial Training in Low-Label Regimes with Margin-Based Interpolation
Adversarial training has emerged as an effective approach to train robust neural network models that are resistant to adversarial attacks, even in low-label regimes where labeled data is scarce. In this paper, we introduce a novel semi-supervised adversarial training approach that enhances both robustness and natural accuracy by generating effective adversarial examples. Our method begins by applying linear interpolation between clean and adversarial examples to create interpolated adversarial examples that cross decision boundaries by a controlled margin. This sample-aware strategy tailors adversarial examples to the characteristics of each data point, enabling the model to learn from the most informative perturbations. Additionally, we propose a global epsilon scheduling strategy that progressively adjusts the upper bound of perturbation strengths during training. The combination of these strategies allows the model to develop increasingly complex decision boundaries with better robustness and natural accuracy. Empirical evaluations show that our approach effectively enhances performance against various adversarial attacks, such as PGD and AutoAttack.
☆ Optimization-Free Image Immunization Against Diffusion-Based Editing
Current image immunization defense techniques against diffusion-based editing embed imperceptible noise in target images to disrupt editing models. However, these methods face scalability challenges, as they require time-consuming re-optimization for each image-taking hours for small batches. To address these challenges, we introduce DiffVax, a scalable, lightweight, and optimization-free framework for image immunization, specifically designed to prevent diffusion-based editing. Our approach enables effective generalization to unseen content, reducing computational costs and cutting immunization time from days to milliseconds-achieving a 250,000x speedup. This is achieved through a loss term that ensures the failure of editing attempts and the imperceptibility of the perturbations. Extensive qualitative and quantitative results demonstrate that our model is scalable, optimization-free, adaptable to various diffusion-based editing tools, robust against counter-attacks, and, for the first time, effectively protects video content from editing. Our code is provided in our project webpage.
comment: Project webpage: https://diffvax.github.io/
☆ ROICtrl: Boosting Instance Control for Visual Generation
Natural language often struggles to accurately associate positional and attribute information with multiple instances, which limits current text-based visual generation models to simpler compositions featuring only a few dominant instances. To address this limitation, this work enhances diffusion models by introducing regional instance control, where each instance is governed by a bounding box paired with a free-form caption. Previous methods in this area typically rely on implicit position encoding or explicit attention masks to separate regions of interest (ROIs), resulting in either inaccurate coordinate injection or large computational overhead. Inspired by ROI-Align in object detection, we introduce a complementary operation called ROI-Unpool. Together, ROI-Align and ROI-Unpool enable explicit, efficient, and accurate ROI manipulation on high-resolution feature maps for visual generation. Building on ROI-Unpool, we propose ROICtrl, an adapter for pretrained diffusion models that enables precise regional instance control. ROICtrl is compatible with community-finetuned diffusion models, as well as with existing spatial-based add-ons (\eg, ControlNet, T2I-Adapter) and embedding-based add-ons (\eg, IP-Adapter, ED-LoRA), extending their applications to multi-instance generation. Experiments show that ROICtrl achieves superior performance in regional instance control while significantly reducing computational costs.
comment: Project page at https://roictrl.github.io/
♻ ☆ DINO-LG: A Task-Specific DINO Model for Coronary Calcium Scoring
Coronary artery disease (CAD), one of the leading causes of mortality worldwide, necessitates effective risk assessment strategies, with coronary artery calcium (CAC) scoring via computed tomography (CT) being a key method for prevention. Traditional methods, primarily based on UNET architectures implemented on pre-built models, face challenges like the scarcity of annotated CT scans containing CAC and imbalanced datasets, leading to reduced performance in segmentation and scoring tasks. In this study, we address these limitations by incorporating the self-supervised learning (SSL) technique of DINO (self-distillation with no labels), which trains without requiring CAC-specific annotations, enhancing its robustness in generating distinct features. The DINO-LG model, which leverages label guidance to focus on calcified areas, achieves significant improvements, with a sensitivity of 89% and specificity of 90% for detecting CAC-containing CT slices, compared to the standard DINO model's sensitivity of 79% and specificity of 77%. Additionally, false-negative and false-positive rates are reduced by 49% and 59%, respectively, instilling greater confidence in clinicians when ruling out calcification in low-risk patients and minimizing unnecessary imaging reviews by radiologists. Further, CAC scoring and segmentation tasks are conducted using a basic UNET architecture, applied specifically to CT slices identified by the DINO-LG model as containing calcified areas. This targeted approach enhances CAC scoring accuracy by feeding the UNET model with relevant slices, significantly improving diagnostic precision, reducing both false positives and false negatives, and ultimately lowering overall healthcare costs by minimizing unnecessary tests and treatments, presenting a valuable advancement in CAD risk assessment.
comment: Developed by Center for Applied Artificial Intelligence (CAAI), University of Kentucky
♻ ☆ CanFields: Consolidating 4D Dynamic Shapes from Raw Scans
We introduce Canonical Consolidation Fields (CanFields), a new method for reconstructing a time series of independently captured 3D scans into a single, coherent deforming shape. This 4D representation enables continuous refinement across both space and time. Unlike prior methods that often over-smooth the geometry or produce topological and geometric artifacts, CanFields effectively learns geometry and deformation in an unsupervised way by incorporating two geometric priors. First, we introduce a dynamic consolidator module that adjusts the input and assigns confidence scores, balancing the learning of the canonical shape and its deformations. Second, we use low-frequency velocity fields to guide deformation while preserving fine details in canonical shapes through high-frequency bias. We validate the robustness and accuracy of CanFields on diverse raw scans, demonstrating its superior performance even with missing regions, sparse frames, and noise. Code is available in the supplementary materials and will be released publicly upon acceptance.
♻ ☆ Learning to Project for Cross-Task Knowledge Distillation BMVC 2024
Traditional knowledge distillation (KD) relies on a proficient teacher trained on the target task, which is not always available. In this setting, cross-task distillation can be used, enabling the use of any teacher model trained on a different task. However, many KD methods prove ineffective when applied to this cross-task setting. To address this limitation, we propose a simple modification: the use of an inverted projection. We show that this drop-in replacement for a standard projector is effective by learning to disregard any task-specific features which might degrade the student's performance. We find that this simple modification is sufficient for extending many KD methods to the cross-task setting, where the teacher and student tasks can be very different. In doing so, we obtain up to a 1.9% improvement in the cross-task setting compared to the traditional projection, at no additional cost. Our method can obtain significant performance improvements (up to 7%) when using even a randomly-initialised teacher on various tasks such as depth estimation, image translation, and semantic segmentation, despite the lack of any learned knowledge to transfer. To provide conceptual and analytical insights into this result, we show that using an inverted projection allows the distillation loss to be decomposed into a knowledge transfer and a spectral regularisation component. Through this analysis we are additionally able to propose a novel regularisation loss that allows teacher-free distillation, enabling performance improvements of up to 8.57% on ImageNet with no additional training costs.
comment: BMVC 2024
♻ ☆ Factorized Visual Tokenization and Generation
Visual tokenizers are fundamental to image generation. They convert visual data into discrete tokens, enabling transformer-based models to excel at image generation. Despite their success, VQ-based tokenizers like VQGAN face significant limitations due to constrained vocabulary sizes. Simply expanding the codebook often leads to training instability and diminishing performance gains, making scalability a critical challenge. In this work, we introduce Factorized Quantization (FQ), a novel approach that revitalizes VQ-based tokenizers by decomposing a large codebook into multiple independent sub-codebooks. This factorization reduces the lookup complexity of large codebooks, enabling more efficient and scalable visual tokenization. To ensure each sub-codebook captures distinct and complementary information, we propose a disentanglement regularization that explicitly reduces redundancy, promoting diversity across the sub-codebooks. Furthermore, we integrate representation learning into the training process, leveraging pretrained vision models like CLIP and DINO to infuse semantic richness into the learned representations. This design ensures our tokenizer captures diverse semantic levels, leading to more expressive and disentangled representations. Experiments show that the proposed FQGAN model substantially improves the reconstruction quality of visual tokenizers, achieving state-of-the-art performance. We further demonstrate that this tokenizer can be effectively adapted into auto-regressive image generation. https://showlab.github.io/FQGAN
♻ ☆ DPFT: Dual Perspective Fusion Transformer for Camera-Radar-based Object Detection
The perception of autonomous vehicles has to be efficient, robust, and cost-effective. However, cameras are not robust against severe weather conditions, lidar sensors are expensive, and the performance of radar-based perception is still inferior to the others. Camera-radar fusion methods have been proposed to address this issue, but these are constrained by the typical sparsity of radar point clouds and often designed for radars without elevation information. We propose a novel camera-radar fusion approach called Dual Perspective Fusion Transformer (DPFT), designed to overcome these limitations. Our method leverages lower-level radar data (the radar cube) instead of the processed point clouds to preserve as much information as possible and employs projections in both the camera and ground planes to effectively use radars with elevation information and simplify the fusion with camera data. As a result, DPFT has demonstrated state-of-the-art performance on the K-Radar dataset while showing remarkable robustness against adverse weather conditions and maintaining a low inference time. The code is made available as open-source software under https://github.com/TUMFTM/DPFT.
comment: Accepted to IEEE Transactions on Intelligent Vehicles
♻ ☆ 3D-free meets 3D priors: Novel View Synthesis from a Single Image with Pretrained Diffusion Guidance
Recent 3D novel view synthesis (NVS) methods often require extensive 3D data for training, and also typically lack generalization beyond the training distribution. Moreover, they tend to be object centric and struggle with complex and intricate scenes. Conversely, 3D-free methods can generate text-controlled views of complex, in-the-wild scenes using a pretrained stable diffusion model without the need for a large amount of 3D-based training data, but lack camera control. In this paper, we introduce a method capable of generating camera-controlled viewpoints from a single input image, by combining the benefits of 3D-free and 3D-based approaches. Our method excels in handling complex and diverse scenes without extensive training or additional 3D and multiview data. It leverages widely available pretrained NVS models for weak guidance, integrating this knowledge into a 3D-free view synthesis style approach, along with enriching the CLIP vision-language space with 3D camera angle information, to achieve the desired results. Experimental results demonstrate that our method outperforms existing models in both qualitative and quantitative evaluations, achieving high-fidelity, consistent novel view synthesis at desired camera angles across a wide variety of scenes while maintaining accurate, natural detail representation and image clarity across various viewpoints. We also support our method with a comprehensive analysis of 2D image generation models and the 3D space, providing a solid foundation and rationale for our solution.
comment: 18 pages, 13 figures, v4: methodology and result improvement
♻ ☆ ReforesTree: A Dataset for Estimating Tropical Forest Carbon Stock with Deep Learning and Aerial Imagery AAAI 2022
Forest biomass is a key influence for future climate, and the world urgently needs highly scalable financing schemes, such as carbon offsetting certifications, to protect and restore forests. Current manual forest carbon stock inventory methods of measuring single trees by hand are time, labour, and cost-intensive and have been shown to be subjective. They can lead to substantial overestimation of the carbon stock and ultimately distrust in forest financing. The potential for impact and scale of leveraging advancements in machine learning and remote sensing technologies is promising but needs to be of high quality in order to replace the current forest stock protocols for certifications. In this paper, we present ReforesTree, a benchmark dataset of forest carbon stock in six agro-forestry carbon offsetting sites in Ecuador. Furthermore, we show that a deep learning-based end-to-end model using individual tree detection from low cost RGB-only drone imagery is accurately estimating forest carbon stock within official carbon offsetting certification standards. Additionally, our baseline CNN model outperforms state-of-the-art satellite-based forest biomass and carbon stock estimates for this type of small-scale, tropical agro-forestry sites. We present this dataset to encourage machine learning research in this area to increase accountability and transparency of monitoring, verification and reporting (MVR) in carbon offsetting projects, as well as scaling global reforestation financing through accurate remote sensing.
comment: Accepted paper for the AI for Social Impact Track at the AAAI 2022
STOP: Spatiotemporal Orthogonal Propagation for Weight-Threshold-Leakage Synergistic Training of Deep Spiking Neural Networks
The prevailing of artificial intelligence-of-things calls for higher energy-efficient edge computing paradigms, such as neuromorphic agents leveraging brain-inspired spiking neural network (SNN) models based on spatiotemporally sparse binary spikes. However, the lack of efficient and high-accuracy deep SNN learning algorithms prevents them from practical edge deployments at a strictly bounded cost. In this paper, we propose the spatiotemporal orthogonal propagation (STOP) algorithm to tackle this challenge. Our algorithm enables fully synergistic learning of synaptic weights as well as firing thresholds and leakage factors in spiking neurons to improve SNN accuracy, in a unified temporally-forward trace-based framework to mitigate the huge memory requirement for storing neural states across all time-steps in the forward pass. Characteristically, the spatially-backward neuronal errors and temporally-forward traces propagate orthogonally to and independently of each other, substantially reducing computational complexity. Our STOP algorithm obtained high recognition accuracies of 94.84%, 74.92%, 98.26% and 77.10% on the CIFAR-10, CIFAR-100, DVS-Gesture and DVS-CIFAR10 datasets with adequate deep convolutional SNNs of VGG-11 or ResNet-18 structures. Compared with other deep SNN training algorithms, our method is more plausible for edge intelligent scenarios where resources are limited but high-accuracy in-situ learning is desired.
comment: 13 pages (exclude supplementary), 5 figures
♻ ☆ GSE: Group-wise Sparse and Explainable Adversarial Attacks
Sparse adversarial attacks fool deep neural networks (DNNs) through minimal pixel perturbations, often regularized by the $\ell_0$ norm. Recent efforts have replaced this norm with a structural sparsity regularizer, such as the nuclear group norm, to craft group-wise sparse adversarial attacks. The resulting perturbations are thus explainable and hold significant practical relevance, shedding light on an even greater vulnerability of DNNs. However, crafting such attacks poses an optimization challenge, as it involves computing norms for groups of pixels within a non-convex objective. We address this by presenting a two-phase algorithm that generates group-wise sparse attacks within semantically meaningful areas of an image. Initially, we optimize a quasinorm adversarial loss using the $1/2-$quasinorm proximal operator tailored for non-convex programming. Subsequently, the algorithm transitions to a projected Nesterov's accelerated gradient descent with $2-$norm regularization applied to perturbation magnitudes. Rigorous evaluations on CIFAR-10 and ImageNet datasets demonstrate a remarkable increase in group-wise sparsity, e.g., $50.9\%$ on CIFAR-10 and $38.4\%$ on ImageNet (average case, targeted attack). This performance improvement is accompanied by significantly faster computation times, improved explainability, and a $100\%$ attack success rate.
♻ ☆ ViTOC: Vision Transformer and Object-aware Captioner
This paper presents ViTOC (Vision Transformer and Object-aware Captioner), a novel vision-language model for image captioning that addresses the challenges of accuracy and diversity in generated descriptions. Unlike conventional approaches, ViTOC employs a dual-path architecture based on Vision Transformer and object detector, effectively fusing global visual features and local object information through learnable vectors. The model introduces an innovative object-aware prompting strategy that significantly enhances its capability in handling long-tail data. Experiments on the standard COCO dataset demonstrate that ViTOC outperforms baseline models across all evaluation metrics. Additionally, we propose a reference-free evaluation method based on CLIP to further validate the model's effectiveness. By utilizing pretrained visual model parameters, ViTOC achieves efficient end-to-end training.
comment: Major changes
♻ ☆ MROVSeg: Breaking the Resolution Curse of Vision-Language Models in Open-Vocabulary Image Segmentation
Pretrained vision-language models (VLMs), \eg CLIP, are increasingly used to bridge the gap between open- and close-vocabulary recognition in open-vocabulary image segmentation. As VLMs are generally pretrained with low-resolution images (e.g. $224\times224$), most previous methods operate only on downscaled images. We question this design as low resolution features often fail to preserve fine details. A typical solution is to employ additional image backbones for high-resolution inputs, but it also introduce significant computation overhead. Therefore, we propose MROVSeg, a multi-resolution training framework for open-vocabulary image segmentation with a single pretrained CLIP backbone, that uses sliding windows to slice the high-resolution input into uniform patches, each matching the input size of the well-trained image encoder. Its key components include a Multi-Res Adapter, which restores the spatial geometry and grasps local-global correspondences across patches by interacting with multi-resolution features. To achieve accurate segmentation, we introduce Multi-grained Masked Attention scheme to aggregate multi-grained semantics from multi-resolution CLIP features to object queries. Through comprehensive experiments, we demonstrate the superiority of MROVSeg on well-established open-vocabulary image segmentation benchmarks, establishing new standards for open-vocabulary image segmentation.
comment: Technical report
♻ ☆ Improved Noise Schedule for Diffusion Training
Diffusion models have emerged as the de facto choice for generating high-quality visual signals across various domains. However, training a single model to predict noise across various levels poses significant challenges, necessitating numerous iterations and incurring significant computational costs. Various approaches, such as loss weighting strategy design and architectural refinements, have been introduced to expedite convergence and improve model performance. In this study, we propose a novel approach to design the noise schedule for enhancing the training of diffusion models. Our key insight is that the importance sampling of the logarithm of the Signal-to-Noise ratio ($\log \text{SNR}$), theoretically equivalent to a modified noise schedule, is particularly beneficial for training efficiency when increasing the sample frequency around $\log \text{SNR}=0$. This strategic sampling allows the model to focus on the critical transition point between signal dominance and noise dominance, potentially leading to more robust and accurate predictions.We empirically demonstrate the superiority of our noise schedule over the standard cosine schedule.Furthermore, we highlight the advantages of our noise schedule design on the ImageNet benchmark, showing that the designed schedule consistently benefits different prediction targets. Our findings contribute to the ongoing efforts to optimize diffusion models, potentially paving the way for more efficient and effective training paradigms in the field of generative AI.
♻ ☆ A Unified Framework for 3D Scene Understanding NeurIPS 2024
We propose UniSeg3D, a unified 3D scene understanding framework that achieves panoptic, semantic, instance, interactive, referring, and open-vocabulary segmentation tasks within a single model. Most previous 3D segmentation approaches are typically tailored to a specific task, limiting their understanding of 3D scenes to a task-specific perspective. In contrast, the proposed method unifies six tasks into unified representations processed by the same Transformer. It facilitates inter-task knowledge sharing, thereby promoting comprehensive 3D scene understanding. To take advantage of multi-task unification, we enhance performance by establishing explicit inter-task associations. Specifically, we design knowledge distillation and contrastive learning methods to transfer task-specific knowledge across different tasks. Experiments on three benchmarks, including ScanNet20, ScanRefer, and ScanNet200, demonstrate that the UniSeg3D consistently outperforms current SOTA methods, even those specialized for individual tasks. We hope UniSeg3D can serve as a solid unified baseline and inspire future work. Code and models are available at https://github.com/dk-liang/UniSeg3D.
comment: Accepted to NeurIPS 2024. Code and models are available at https://github.com/dk-liang/UniSeg3D
Era3D: High-Resolution Multiview Diffusion using Efficient Row-wise Attention NeurIPS2024
In this paper, we introduce Era3D, a novel multiview diffusion method that generates high-resolution multiview images from a single-view image. Despite significant advancements in multiview generation, existing methods still suffer from camera prior mismatch, inefficacy, and low resolution, resulting in poor-quality multiview images. Specifically, these methods assume that the input images should comply with a predefined camera type, e.g. a perspective camera with a fixed focal length, leading to distorted shapes when the assumption fails. Moreover, the full-image or dense multiview attention they employ leads to an exponential explosion of computational complexity as image resolution increases, resulting in prohibitively expensive training costs. To bridge the gap between assumption and reality, Era3D first proposes a diffusion-based camera prediction module to estimate the focal length and elevation of the input image, which allows our method to generate images without shape distortions. Furthermore, a simple but efficient attention layer, named row-wise attention, is used to enforce epipolar priors in the multiview diffusion, facilitating efficient cross-view information fusion. Consequently, compared with state-of-the-art methods, Era3D generates high-quality multiview images with up to a 512*512 resolution while reducing computation complexity by 12x times. Comprehensive experiments demonstrate that Era3D can reconstruct high-quality and detailed 3D meshes from diverse single-view input images, significantly outperforming baseline multiview diffusion methods. Project page: https://penghtyx.github.io/Era3D/.
comment: NeurIPS2024
SuperMat: Physically Consistent PBR Material Estimation at Interactive Rates
Decomposing physically-based materials from images into their constituent properties remains challenging, particularly when maintaining both computational efficiency and physical consistency. While recent diffusion-based approaches have shown promise, they face substantial computational overhead due to multiple denoising steps and separate models for different material properties. We present SuperMat, a single-step framework that achieves high-quality material decomposition with one-step inference. This enables end-to-end training with perceptual and re-render losses while decomposing albedo, metallic, and roughness maps at millisecond-scale speeds. We further extend our framework to 3D objects through a UV refinement network, enabling consistent material estimation across viewpoints while maintaining efficiency. Experiments demonstrate that SuperMat achieves state-of-the-art PBR material decomposition quality while reducing inference time from seconds to milliseconds per image, and completes PBR material estimation for 3D objects in approximately 3 seconds. The project page is at https://hyj542682306.github.io/SuperMat/.
comment: https://hyj542682306.github.io/SuperMat/
♻ ☆ Phys4DGen: A Physics-Driven Framework for Controllable and Efficient 4D Content Generation from a Single Image
The task of 4D content generation involves creating dynamic 3D models that evolve over time in response to specific input conditions, such as images. Existing methods rely heavily on pre-trained video diffusion models to guide 4D content dynamics, but these approaches often fail to capture essential physical principles, as video diffusion models lack a robust understanding of real-world physics. Moreover, these models face challenges in providing fine-grained control over dynamics and exhibit high computational costs. In this work, we propose Phys4DGen, a novel, high-efficiency framework that generates physics-compliant 4D content from a single image with enhanced control capabilities. Our approach uniquely integrates physical simulations into the 4D generation pipeline, ensuring adherence to fundamental physical laws. Inspired by the human ability to infer physical properties visually, we introduce a Physical Perception Module (PPM) that discerns the material properties and structural components of the 3D object from the input image, facilitating accurate downstream simulations. Phys4DGen significantly accelerates the 4D generation process by eliminating iterative optimization steps in the dynamics modeling phase. It allows users to intuitively control the movement speed and direction of generated 4D content by adjusting external forces, achieving finely tunable, physically plausible animations. Extensive evaluations show that Phys4DGen outperforms existing methods in both inference speed and physical realism, producing high-quality, controllable 4D content. Our project page is available at the link: \url{https://jiajinglin.github.io/Phys4DGen/}.
♻ ☆ Geometry of the Visual Cortex with Applications to Image Inpainting and Enhancement
Equipping the rototranslation group $SE(2)$ with a sub-Riemannian structure inspired by the visual cortex V1, we propose algorithms for image inpainting and enhancement based on hypoelliptic diffusion. We innovate on previous implementations of the methods by Citti, Sarti, and Boscain et al., by proposing an alternative that prevents fading and is capable of producing sharper results in a procedure that we call WaxOn-WaxOff. We also exploit the sub-Riemannian structure to define a completely new unsharp filter using $SE(2)$, analogous to the classical unsharp filter for 2D image processing. We demonstrate our method on blood vessels enhancement in retinal scans.
comment: Associated python package available at https://github.com/ballerin/v1diffusion
♻ ☆ Referential communication in heterogeneous communities of pre-trained visual deep networks
As large pre-trained image-processing neural networks are being embedded in autonomous agents such as self-driving cars or robots, the question arises of how such systems can communicate with each other about the surrounding world, despite their different architectures and training regimes. As a first step in this direction, we systematically explore the task of referential communication in a community of heterogeneous state-of-the-art pre-trained visual networks, showing that they can develop, in a self-supervised way, a shared protocol to refer to a target object among a set of candidates. This shared protocol can also be used, to some extent, to communicate about previously unseen object categories of different granularity. Moreover, a visual network that was not initially part of an existing community can learn the community's protocol with remarkable ease. Finally, we study, both qualitatively and quantitatively, the properties of the emergent protocol, providing some evidence that it is capturing high-level semantic features of objects.
♻ ☆ Benchmarking Counterfactual Image Generation NeurIPS 2024
Generative AI has revolutionised visual content editing, empowering users to effortlessly modify images and videos. However, not all edits are equal. To perform realistic edits in domains such as natural image or medical imaging, modifications must respect causal relationships inherent to the data generation process. Such image editing falls into the counterfactual image generation regime. Evaluating counterfactual image generation is substantially complex: not only it lacks observable ground truths, but also requires adherence to causal constraints. Although several counterfactual image generation methods and evaluation metrics exist, a comprehensive comparison within a unified setting is lacking. We present a comparison framework to thoroughly benchmark counterfactual image generation methods. We integrate all models that have been used for the task at hand and expand them to novel datasets and causal graphs, demonstrating the superiority of Hierarchical VAEs across most datasets and metrics. Our framework is implemented in a user-friendly Python package that can be extended to incorporate additional SCMs, causal methods, generative models, and datasets for the community to build on. Code: https://github.com/gulnazaki/counterfactual-benchmark.
comment: Published as a conference paper at NeurIPS 2024 Datasets and Benchmarks Track https://openreview.net/forum?id=0T8xRFrScB Project page: https://gulnazaki.github.io/counterfactual-benchmark
♻ ☆ Biometric Authentication Based on Enhanced Remote Photoplethysmography Signal Morphology
Remote photoplethysmography (rPPG) is a non-contact method for measuring cardiac signals from facial videos, offering a convenient alternative to contact photoplethysmography (cPPG) obtained from contact sensors. Recent studies have shown that each individual possesses a unique cPPG signal morphology that can be utilized as a biometric identifier, which has inspired us to utilize the morphology of rPPG signals extracted from facial videos for person authentication. Since the facial appearance and rPPG are mixed in the facial videos, we first de-identify facial videos to remove facial appearance while preserving the rPPG information, which protects facial privacy and guarantees that only rPPG is used for authentication. The de-identified videos are fed into an rPPG model to get the rPPG signal morphology for authentication. In the first training stage, unsupervised rPPG training is performed to get coarse rPPG signals. In the second training stage, an rPPG-cPPG hybrid training is performed by incorporating external cPPG datasets to achieve rPPG biometric authentication and enhance rPPG signal morphology. Our approach needs only de-identified facial videos with subject IDs to train rPPG authentication models. The experimental results demonstrate that rPPG signal morphology hidden in facial videos can be used for biometric authentication. The code is available at https://github.com/zhaodongsun/rppg_biometrics.
comment: accepted by IJCB 2024, Best Paper Runner-Up Award
♻ ☆ MaGRITTe: Manipulative and Generative 3D Realization from Image, Topview and Text
The generation of 3D scenes from user-specified conditions offers a promising avenue for alleviating the production burden in 3D applications. Previous studies required significant effort to realize the desired scene, owing to limited control conditions. We propose a method for controlling and generating 3D scenes under multimodal conditions using partial images, layout information represented in the top view, and text prompts. Combining these conditions to generate a 3D scene involves the following significant difficulties: (1) the creation of large datasets, (2) reflection on the interaction of multimodal conditions, and (3) domain dependence of the layout conditions. We decompose the process of 3D scene generation into 2D image generation from the given conditions and 3D scene generation from 2D images. 2D image generation is achieved by fine-tuning a pretrained text-to-image model with a small artificial dataset of partial images and layouts, and 3D scene generation is achieved by layout-conditioned depth estimation and neural radiance fields (NeRF), thereby avoiding the creation of large datasets. The use of a common representation of spatial information using 360-degree images allows for the consideration of multimodal condition interactions and reduces the domain dependence of the layout control. The experimental results qualitatively and quantitatively demonstrated that the proposed method can generate 3D scenes in diverse domains, from indoor to outdoor, according to multimodal conditions.
comment: Project Page: https://hara012.github.io/MaGRITTe-project
♻ ☆ Promptable Anomaly Segmentation with SAM Through Self-Perception Tuning
Segment Anything Model (SAM) has made great progress in anomaly segmentation tasks due to its impressive generalization ability. However, existing methods that directly apply SAM through prompting often overlook the domain shift issue, where SAM performs well on natural images but struggles in industrial scenarios. Parameter-Efficient Fine-Tuning (PEFT) offers a promising solution, but it may yield suboptimal performance by not adequately addressing the perception challenges during adaptation to anomaly images. In this paper, we propose a novel Self-Perceptinon Tuning (SPT) method, aiming to enhance SAM's perception capability for anomaly segmentation. The SPT method incorporates a self-drafting tuning strategy, which generates an initial coarse draft of the anomaly mask, followed by a refinement process. Additionally, a visual-relation-aware adapter is introduced to improve the perception of discriminative relational information for mask generation. Extensive experimental results on several benchmark datasets demonstrate that our SPT method can significantly outperform baseline methods, validating its effectiveness. Models and codes will be available online.
♻ ☆ kNN-Res: Residual Neural Network with kNN-Graph coherence for point cloud registration
In this paper, we present a method based on a residual neural network for point set registration that preserves the topological structure of the target point set. Similar to coherent point drift (CPD), the registration (alignment) problem is viewed as the movement of data points sampled from a target distribution along a regularized displacement vector field. Although the coherence constraint in CPD is stated in terms of local motion coherence, the proposed regularization relies on a global smoothness constraint as a proxy for preserving local topology. This makes CPD less flexible when the deformation is locally rigid but globally non-rigid as in the case of multiple objects and articulate pose registration. A kNN-graph coherence cost and geometric-aware statistical distances are proposed to mitigate these issues. To create an end-to-end trainable pipeline, a simple Jacobian-based cost is introduced as a proxy for the intrinsically discrete kNN-graph cost. We present a theoretical justification for our Jacobian-based cost showing that it is sufficient for the preservation of the kNN-graph of the transformed point set. Further, to tackle the registration of high-dimensional point sets, a constant time stochastic approximation of the kNN-graph coherence cost is introduced. The proposed method is illustrated on several 2-dimensional examples and tested on high-dimensional flow cytometry datasets where the task is to align two distributions of cells whilst preserving the kNN-graph in order to preserve the biological signal of the transformed data. The implementation of the proposed approach is available at https://github.com/MuhammadSaeedBatikh/kNN-Res_Demo/ under the MIT license.
comment: 14 pages, 6 figures
♻ ☆ Goal-Oriented Semantic Communication for Wireless Visual Question Answering
The rapid progress of artificial intelligence (AI) and computer vision (CV) has facilitated the development of computation-intensive applications like Visual Question Answering (VQA), which integrates visual perception and natural language processing to generate answers. To overcome the limitations of traditional VQA constrained by local computation resources, edge computing has been incorporated to provide extra computation capability at the edge side. Meanwhile, this brings new communication challenges between the local and edge, including limited bandwidth, channel noise, and multipath effects, which degrade VQA performance and user quality of experience (QoE), particularly during the transmission of large high-resolution images. To overcome these bottlenecks, we propose a goal-oriented semantic communication (GSC) framework that focuses on effectively extracting and transmitting semantic information most relevant to the VQA goals, improving the answering accuracy and enhancing the effectiveness and efficiency. The objective is to maximize the answering accuracy, and we propose a bounding box (BBox)-based image semantic extraction and ranking approach to prioritize the semantic information based on the goal of questions. We then extend it by incorporating a scene graphs (SG)-based approach to handle questions with complex relationships. Experimental results demonstrate that our GSC framework improves answering accuracy by up to 49% under AWGN channels and 59% under Rayleigh channels while reducing total latency by up to 65% compared to traditional bit-oriented transmission.
♻ ☆ Conti-Fuse: A Novel Continuous Decomposition-based Fusion Framework for Infrared and Visible Images
For better explore the relations of inter-modal and inner-modal, even in deep learning fusion framework, the concept of decomposition plays a crucial role. However, the previous decomposition strategies (base \& detail or low-frequency \& high-frequency) are too rough to present the common features and the unique features of source modalities, which leads to a decline in the quality of the fused images. The existing strategies treat these relations as a binary system, which may not be suitable for the complex generation task (e.g. image fusion). To address this issue, a continuous decomposition-based fusion framework (Conti-Fuse) is proposed. Conti-Fuse treats the decomposition results as few samples along the feature variation trajectory of the source images, extending this concept to a more general state to achieve continuous decomposition. This novel continuous decomposition strategy enhances the representation of complementary information of inter-modal by increasing the number of decomposition samples, thus reducing the loss of critical information. To facilitate this process, the continuous decomposition module (CDM) is introduced to decompose the input into a series continuous components. The core module of CDM, State Transformer (ST), is utilized to efficiently capture the complementary information from source modalities. Furthermore, a novel decomposition loss function is also designed which ensures the smooth progression of the decomposition process while maintaining linear growth in time complexity with respect to the number of decomposition samples. Extensive experiments demonstrate that our proposed Conti-Fuse achieves superior performance compared to the state-of-the-art fusion methods.
♻ ☆ Atlas-Based Interpretable Age Prediction In Whole-Body MR Images
Age prediction is an important part of medical assessments and research. It can aid in detecting diseases as well as abnormal ageing by highlighting potential discrepancies between chronological and biological age. To improve understanding of age-related changes in various body parts, we investigate the ageing of the human body on a large scale by using whole-body 3D images. We utilise the Grad-CAM method to determine the body areas most predictive of a person's age. In order to expand our analysis beyond individual subjects, we employ registration techniques to generate population-wide importance maps that show the most predictive areas in the body for a whole cohort of subjects. We show that the investigation of the full 3D volume of the whole body and the population-wide analysis can give important insights into which body parts play the most important roles in predicting a person's age. Our findings reveal three primary areas of interest: the spine, the autochthonous back muscles, and the cardiac region, which exhibits the highest importance. Finally, we investigate differences between subjects that show accelerated and decelerated ageing.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2024:029
♻ ☆ Local Map Construction with SDMap: A Comprehensive Survey
Local map construction is a vital component of intelligent driving perception, offering necessary reference for vehicle positioning and planning. Standard Definition map (SDMap), known for its low cost, accessibility, and versatility, has significant potential as prior information for local map perception. This paper mainly reviews the local map construction methods with SDMap, including definitions, general processing flow, and datasets. Besides, this paper analyzes multimodal data representation and fusion methods in SDMap-based local map construction. This paper also discusses key challenges and future directions, such as optimizing SDMap processing, enhancing spatial alignment with real-time data, and incorporating richer environmental information. At last, the review looks forward to future research focusing on enhancing road topology inference and multimodal data fusion to improve the robustness and scalability of local map perception.
comment: 21 pages, 24 figures
♻ ☆ CASCRNet: An Atrous Spatial Pyramid Pooling and Shared Channel Residual based Network for Capsule Endoscopy
This manuscript summarizes work on the Capsule Vision Challenge 2024 by MISAHUB. To address the multi-class disease classification task, which is challenging due to the complexity and imbalance in the Capsule Vision challenge dataset, this paper proposes CASCRNet (Capsule endoscopy-Aspp-SCR-Network), a parameter-efficient and novel model that uses Shared Channel Residual (SCR) blocks and Atrous Spatial Pyramid Pooling (ASPP) blocks. Further, the performance of the proposed model is compared with other well-known approaches. The experimental results yield that proposed model provides better disease classification results. The proposed model was successful in classifying diseases with an F1 Score of 78.5% and a Mean AUC of 98.3%, which is promising given its compact architecture.
comment: 8 pages, 4 figures
♻ ☆ Tree species classification at the pixel-level using deep learning and multispectral time series in an imbalanced context
This paper investigates tree species classification using Sentinel-2 multispectral satellite image time-series. Despite their critical importance for many applications, such maps are often unavailable, outdated, or inaccurate for large areas. The interest of using remote sensing time series to produce these maps has been highlighted in many studies. However, many methods proposed in the literature still rely on a standard classification algorithm, usually the Random Forest (RF) algorithm with vegetation indices. This study shows that the use of deep learning models can lead to a significant improvement in classification results, especially in an imbalanced context where the RF algorithm tends to predict towards the majority class. In our use case in the center of France with 10 tree species, we obtain an overall accuracy (OA) around 95% and a F1-macro score around 80% using three different benchmark deep learning architectures. In contrast, using the RF algorithm yields an OA of 93% and an F1 of 60%, indicating that the minority classes are not classified with sufficient accuracy. Therefore, the proposed framework is a strong baseline that can be easily implemented in most scenarios, even with a limited amount of reference data. Our results highlight that standard multilayer perceptron can be competitive with batch normalization and a sufficient amount of parameters. Other architectures (convolutional or attention-based) can also achieve strong results when tuned properly. Furthermore, our results show that DL models are naturally robust to imbalanced data, although similar results can be obtained using dedicated techniques.
♻ ☆ Multi-Source Temporal Attention Network for Precipitation Nowcasting
Precipitation nowcasting is crucial across various industries and plays a significant role in mitigating and adapting to climate change. We introduce an efficient deep learning model for precipitation nowcasting, capable of predicting rainfall up to 8 hours in advance with greater accuracy than existing operational physics-based and extrapolation-based models. Our model leverages multi-source meteorological data and physics-based forecasts to deliver high-resolution predictions in both time and space. It captures complex spatio-temporal dynamics through temporal attention networks and is optimized using data quality maps and dynamic thresholds. Experiments demonstrate that our model outperforms state-of-the-art, and highlight its potential for fast reliable responses to evolving weather conditions.
♻ ☆ CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching NeurIPS 2024
Diffusion models have demonstrated great success in the field of text-to-image generation. However, alleviating the misalignment between the text prompts and images is still challenging. The root reason behind the misalignment has not been extensively investigated. We observe that the misalignment is caused by inadequate token attention activation. We further attribute this phenomenon to the diffusion model's insufficient condition utilization, which is caused by its training paradigm. To address the issue, we propose CoMat, an end-to-end diffusion model fine-tuning strategy with an image-to-text concept matching mechanism. We leverage an image captioning model to measure image-to-text alignment and guide the diffusion model to revisit ignored tokens. A novel attribute concentration module is also proposed to address the attribute binding problem. Without any image or human preference data, we use only 20K text prompts to fine-tune SDXL to obtain CoMat-SDXL. Extensive experiments show that CoMat-SDXL significantly outperforms the baseline model SDXL in two text-to-image alignment benchmarks and achieves start-of-the-art performance.
comment: NeurIPS 2024
♻ ☆ Image Segmentation in Foundation Model Era: A Survey
Image segmentation is a long-standing challenge in computer vision, studied continuously over several decades, as evidenced by seminal algorithms such as N-Cut, FCN, and MaskFormer. With the advent of foundation models (FMs), contemporary segmentation methodologies have embarked on a new epoch by either adapting FMs (e.g., CLIP, Stable Diffusion, DINO) for image segmentation or developing dedicated segmentation foundation models (e.g., SAM). These approaches not only deliver superior segmentation performance, but also herald newfound segmentation capabilities previously unseen in deep learning context. However, current research in image segmentation lacks a detailed analysis of distinct characteristics, challenges, and solutions associated with these advancements. This survey seeks to fill this gap by providing a thorough review of cutting-edge research centered around FM-driven image segmentation. We investigate two basic lines of research -- generic image segmentation (i.e., semantic segmentation, instance segmentation, panoptic segmentation), and promptable image segmentation (i.e., interactive segmentation, referring segmentation, few-shot segmentation) -- by delineating their respective task settings, background concepts, and key challenges. Furthermore, we provide insights into the emergence of segmentation knowledge from FMs like CLIP, Stable Diffusion, and DINO. An exhaustive overview of over 300 segmentation approaches is provided to encapsulate the breadth of current research efforts. Subsequently, we engage in a discussion of open issues and potential avenues for future research. We envisage that this fresh, comprehensive, and systematic survey catalyzes the evolution of advanced image segmentation systems. A public website is created to continuously track developments in this fast advancing field: \url{https://github.com/stanley-313/ImageSegFM-Survey}.
comment: A comprehensive survey of image segmentation in foundation model era
♻ ☆ SuperFusion: Multilevel LiDAR-Camera Fusion for Long-Range HD Map Generation
High-definition (HD) semantic map generation of the environment is an essential component of autonomous driving. Existing methods have achieved good performance in this task by fusing different sensor modalities, such as LiDAR and camera. However, current works are based on raw data or network feature-level fusion and only consider short-range HD map generation, limiting their deployment to realistic autonomous driving applications. In this paper, we focus on the task of building the HD maps in both short ranges, i.e., within 30 m, and also predicting long-range HD maps up to 90 m, which is required by downstream path planning and control tasks to improve the smoothness and safety of autonomous driving. To this end, we propose a novel network named SuperFusion, exploiting the fusion of LiDAR and camera data at multiple levels. We use LiDAR depth to improve image depth estimation and use image features to guide long-range LiDAR feature prediction. We benchmark our SuperFusion on the nuScenes dataset and a self-recorded dataset and show that it outperforms the state-of-the-art baseline methods with large margins on all intervals. Additionally, we apply the generated HD map to a downstream path planning task, demonstrating that the long-range HD maps predicted by our method can lead to better path planning for autonomous vehicles. Our code has been released at https://github.com/haomo-ai/SuperFusion.
comment: ICRA 2024
♻ ☆ Bench2Drive: Towards Multi-Ability Benchmarking of Closed-Loop End-To-End Autonomous Driving NeurIPS 2024
In an era marked by the rapid scaling of foundation models, autonomous driving technologies are approaching a transformative threshold where end-to-end autonomous driving (E2E-AD) emerges due to its potential of scaling up in the data-driven manner. However, existing E2E-AD methods are mostly evaluated under the open-loop log-replay manner with L2 errors and collision rate as metrics (e.g., in nuScenes), which could not fully reflect the driving performance of algorithms as recently acknowledged in the community. For those E2E-AD methods evaluated under the closed-loop protocol, they are tested in fixed routes (e.g., Town05Long and Longest6 in CARLA) with the driving score as metrics, which is known for high variance due to the unsmoothed metric function and large randomness in the long route. Besides, these methods usually collect their own data for training, which makes algorithm-level fair comparison infeasible. To fulfill the paramount need of comprehensive, realistic, and fair testing environments for Full Self-Driving (FSD), we present Bench2Drive, the first benchmark for evaluating E2E-AD systems' multiple abilities in a closed-loop manner. Bench2Drive's official training data consists of 2 million fully annotated frames, collected from 13638 short clips uniformly distributed under 44 interactive scenarios (cut-in, overtaking, detour, etc), 23 weathers (sunny, foggy, rainy, etc), and 12 towns (urban, village, university, etc) in CARLA v2. Its evaluation protocol requires E2E-AD models to pass 44 interactive scenarios under different locations and weathers which sums up to 220 routes and thus provides a comprehensive and disentangled assessment about their driving capability under different situations. We implement state-of-the-art E2E-AD models and evaluate them in Bench2Drive, providing insights regarding current status and future directions.
comment: Accepted by NeurIPS 2024 Datasets and Benchmarks Track. Official Repo: https://github.com/Thinklab-SJTU/Bench2Drive
♻ ☆ Breaking The Ice: Video Segmentation for Close-Range Ice-Covered Waters
Rapid ice recession in the Arctic Ocean, with predictions of ice-free summers by 2060, opens new maritime routes but requires reliable navigation solutions. Current approaches rely heavily on subjective expert judgment, underscoring the need for automated, data-driven solutions. This study leverages machine learning to assess ice conditions using ship-borne optical data, introducing a finely annotated dataset of 946 images, and a semi-manual, region-based annotation technique. The proposed video segmentation model, UPerFlow, advances the SegFlow architecture by incorporating a six-channel ResNet encoder, two UPerNet-based segmentation decoders for each image, PWCNet as the optical flow encoder, and cross-connections that integrate bi-directional flow features without loss of latent information. The proposed architecture outperforms baseline image segmentation networks by an average 38% in occluded regions, demonstrating the robustness of video segmentation in addressing challenging Arctic conditions.
MMSearch: Benchmarking the Potential of Large Models as Multi-modal Search Engines
The advent of Large Language Models (LLMs) has paved the way for AI search engines, e.g., SearchGPT, showcasing a new paradigm in human-internet interaction. However, most current AI search engines are limited to text-only settings, neglecting the multimodal user queries and the text-image interleaved nature of website information. Recently, Large Multimodal Models (LMMs) have made impressive strides. Yet, whether they can function as AI search engines remains under-explored, leaving the potential of LMMs in multimodal search an open question. To this end, we first design a delicate pipeline, MMSearch-Engine, to empower any LMMs with multimodal search capabilities. On top of this, we introduce MMSearch, a comprehensive evaluation benchmark to assess the multimodal search performance of LMMs. The curated dataset contains 300 manually collected instances spanning 14 subfields, which involves no overlap with the current LMMs' training data, ensuring the correct answer can only be obtained within searching. By using MMSearch-Engine, the LMMs are evaluated by performing three individual tasks (requery, rerank, and summarization), and one challenging end-to-end task with a complete searching process. We conduct extensive experiments on closed-source and open-source LMMs. Among all tested models, GPT-4o with MMSearch-Engine achieves the best results, which surpasses the commercial product, Perplexity Pro, in the end-to-end task, demonstrating the effectiveness of our proposed pipeline. We further present error analysis to unveil current LMMs still struggle to fully grasp the multimodal search tasks, and conduct ablation study to indicate the potential of scaling test-time computation for AI search engine. We hope MMSearch may provide unique insights to guide the future development of multimodal AI search engine. Project Page: https://mmsearch.github.io
comment: Project Page: https://mmsearch.github.io
♻ ☆ MonoDETRNext: Next-Generation Accurate and Efficient Monocular 3D Object Detector
Monocular 3D object detection has vast application potential across various fields. DETR-type models have shown remarkable performance in different areas, but there is still considerable room for improvement in monocular 3D detection, especially with the existing DETR-based method, MonoDETR. After addressing the query initialization issues in MonoDETR, we explored several performance enhancement strategies, such as incorporating a more efficient encoder and utilizing a more powerful depth estimator. Ultimately, we proposed MonoDETRNext, a model that comes in two variants based on the choice of depth estimator: MonoDETRNext-E, which prioritizes speed, and MonoDETRNext-A, which focuses on accuracy. We posit that MonoDETRNext establishes a new benchmark in monocular 3D object detection and opens avenues for future research. We conducted an exhaustive evaluation demonstrating the model's superior performance against existing solutions. Notably, MonoDETRNext-A demonstrated a 3.52$\%$ improvement in the $AP_{3D}$ metric on the KITTI test benchmark over MonoDETR, while MonoDETRNext-E showed a 2.35$\%$ increase. Additionally, the computational efficiency of MonoDETRNext-E slightly exceeds that of its predecessor.
♻ ☆ StableAnimator: High-Quality Identity-Preserving Human Image Animation
Current diffusion models for human image animation struggle to ensure identity (ID) consistency. This paper presents StableAnimator, the first end-to-end ID-preserving video diffusion framework, which synthesizes high-quality videos without any post-processing, conditioned on a reference image and a sequence of poses. Building upon a video diffusion model, StableAnimator contains carefully designed modules for both training and inference striving for identity consistency. In particular, StableAnimator begins by computing image and face embeddings with off-the-shelf extractors, respectively and face embeddings are further refined by interacting with image embeddings using a global content-aware Face Encoder. Then, StableAnimator introduces a novel distribution-aware ID Adapter that prevents interference caused by temporal layers while preserving ID via alignment. During inference, we propose a novel Hamilton-Jacobi-Bellman (HJB) equation-based optimization to further enhance the face quality. We demonstrate that solving the HJB equation can be integrated into the diffusion denoising process, and the resulting solution constrains the denoising path and thus benefits ID preservation. Experiments on multiple benchmarks show the effectiveness of StableAnimator both qualitatively and quantitatively.
♻ ☆ MoGe: Unlocking Accurate Monocular Geometry Estimation for Open-Domain Images with Optimal Training Supervision
We present MoGe, a powerful model for recovering 3D geometry from monocular open-domain images. Given a single image, our model directly predicts a 3D point map of the captured scene with an affine-invariant representation, which is agnostic to true global scale and shift. This new representation precludes ambiguous supervision in training and facilitate effective geometry learning. Furthermore, we propose a set of novel global and local geometry supervisions that empower the model to learn high-quality geometry. These include a robust, optimal, and efficient point cloud alignment solver for accurate global shape learning, and a multi-scale local geometry loss promoting precise local geometry supervision. We train our model on a large, mixed dataset and demonstrate its strong generalizability and high accuracy. In our comprehensive evaluation on diverse unseen datasets, our model significantly outperforms state-of-the-art methods across all tasks, including monocular estimation of 3D point map, depth map, and camera field of view. Code and models can be found on our project page.
comment: Project page: https://wangrc.site/MoGePage/
♻ ☆ ALPI: Auto-Labeller with Proxy Injection for 3D Object Detection using 2D Labels Only WACV2025
3D object detection plays a crucial role in various applications such as autonomous vehicles, robotics and augmented reality. However, training 3D detectors requires a costly precise annotation, which is a hindrance to scaling annotation to large datasets. To address this challenge, we propose a weakly supervised 3D annotator that relies solely on 2D bounding box annotations from images, along with size priors. One major problem is that supervising a 3D detection model using only 2D boxes is not reliable due to ambiguities between different 3D poses and their identical 2D projection. We introduce a simple yet effective and generic solution: we build 3D proxy objects with annotations by construction and add them to the training dataset. Our method requires only size priors to adapt to new classes. To better align 2D supervision with 3D detection, our method ensures depth invariance with a novel expression of the 2D losses. Finally, to detect more challenging instances, our annotator follows an offline pseudo-labelling scheme which gradually improves its 3D pseudo-labels. Extensive experiments on the KITTI dataset demonstrate that our method not only performs on-par or above previous works on the Car category, but also achieves performance close to fully supervised methods on more challenging classes. We further demonstrate the effectiveness and robustness of our method by being the first to experiment on the more challenging nuScenes dataset. We additionally propose a setting where weak labels are obtained from a 2D detector pre-trained on MS-COCO instead of human annotations. The code is available at https://github.com/CEA-LIST/ALPI
comment: accepted at WACV2025
♻ ☆ Applications of Spiking Neural Networks in Visual Place Recognition
In robotics, Spiking Neural Networks (SNNs) are increasingly recognized for their largely-unrealized potential energy efficiency and low latency particularly when implemented on neuromorphic hardware. Our paper highlights three advancements for SNNs in Visual Place Recognition (VPR). Firstly, we propose Modular SNNs, where each SNN represents a set of non-overlapping geographically distinct places, enabling scalable networks for large environments. Secondly, we present Ensembles of Modular SNNs, where multiple networks represent the same place, significantly enhancing accuracy compared to single-network models. Each of our Modular SNN modules is compact, comprising only 1500 neurons and 474k synapses, making them ideally suited for ensembling due to their small size. Lastly, we investigate the role of sequence matching in SNN-based VPR, a technique where consecutive images are used to refine place recognition. We demonstrate competitive performance of our method on a range of datasets, including higher responsiveness to ensembling compared to conventional VPR techniques and higher R@1 improvements with sequence matching than VPR techniques with comparable baseline performance. Our contributions highlight the viability of SNNs for VPR, offering scalable and robust solutions, and paving the way for their application in various energy-sensitive robotic tasks.
comment: 20 pages, 10 figures, under review
♻ ☆ Image Compression Using Novel View Synthesis Priors
Real-time visual feedback is essential for tetherless control of remotely operated vehicles, particularly during inspection and manipulation tasks. Though acoustic communication is the preferred choice for medium-range communication underwater, its limited bandwidth renders it impractical to transmit images or videos in real-time. To address this, we propose a model-based image compression technique that leverages prior mission information. Our approach employs trained machine-learning based novel view synthesis models, and uses gradient descent optimization to refine latent representations to help generate compressible differences between camera images and rendered images. We evaluate the proposed compression technique using a dataset from an artificial ocean basin, demonstrating superior compression ratios and image quality over existing techniques. Moreover, our method exhibits robustness to introduction of new objects within the scene, highlighting its potential for advancing tetherless remotely operated vehicle operations.
comment: Preprint submitted to IEEE Journal of Oceanic Engineering
♻ ☆ Mix-GENEO: A Flexible Filtration for Multiparameter Persistent Homology Detects Digital Images
Two important tasks in the field of Topological Data Analysis are building practical multifiltrations on objects and using TDA to detect the geometry. Motivated by the tasks, we build multiparameter filtrations by operators on images named multi-GENEO, multi-DGENEO and mix-GENEO, and we prove the stability of both the interleaving distance and multiparameter persistence landscape of multi-GENEO with respect to the pseudometric on bounded functions. We also give the estimations of upper bound for multi-DGENEO and mix-GENEO. In practical applications, we regard image as a discrete function space, and then we build multifiltrations on the discrete function space. Finally, we construct comparable experiment on MNIST dataset to demonstrate our bifiltrations are superior to 1-parameter filtrations including lower-star filtration and upper-star filtration. For instance, 6 and 9 can be distinguished by our bifiltrations, while they cannot be distinguished by 1-parameter filtrations. The experiment results demonstrate our bifiltrations have ability to detect geometric and topological differences of digital images.
♻ ☆ MM-SEAL: A Large-scale Video Dataset of Multi-person Multi-grained Spatio-temporally Action Localization
In this paper, we introduce a novel large-scale video dataset dubbed MM-SEAL for multi-person multi-grained spatio-temporal action localization among human daily life. We are the first to propose a new benchmark for multi-person spatio-temporal complex activity localization, where complex semantic and long duration bring new challenges to localization tasks. We observe that limited atomic actions can be combined into many complex activities. MM-SEAL provides both atomic action and complex activity annotations, producing 111.7k atomic actions spanning 172 action categories and 17.7k complex activities spanning 200 activity categories. We explore the relationship between atomic actions and complex activities, finding that atomic action features can improve the complex activity localization performance. Also, we propose a new network which generates temporal proposals and labels simultaneously, termed Faster-TAD. Finally, our evaluations show that visual features pretrained on MM-SEAL can improve the performance on other action localization benchmarks. We will release the dataset and the project code upon publication of the paper.
comment: 17 pages,6 figures
♻ ☆ RealTraj: Towards Real-World Pedestrian Trajectory Forecasting
This paper jointly addresses three key limitations in conventional pedestrian trajectory forecasting: pedestrian perception errors, real-world data collection costs, and person ID annotation costs. We propose a novel framework, RealTraj, that enhances the real-world applicability of trajectory forecasting. Our approach includes two training phases--self-supervised pretraining on synthetic data and weakly-supervised fine-tuning with limited real-world data--to minimize data collection efforts. To improve robustness to real-world errors, we focus on both model design and training objectives. Specifically, we present Det2TrajFormer, a trajectory forecasting model that remains invariant in tracking noise by using past detections as inputs. Additionally, we pretrain the model using multiple pretext tasks, which enhance robustness and improve forecasting performance based solely on detection data. Unlike previous trajectory forecasting methods, our approach fine-tunes the model using only ground-truth detections, significantly reducing the need for costly person ID annotations. In the experiments, we comprehensively verify the effectiveness of the proposed method against the limitations, and the method outperforms state-of-the-art trajectory forecasting methods on multiple datasets. The code will be released at https://fujiry0.github.io/RealTraj-project-page.
♻ ☆ CrowdMAC: Masked Crowd Density Completion for Robust Crowd Density Forecasting WACV 2025
A crowd density forecasting task aims to predict how the crowd density map will change in the future from observed past crowd density maps. However, the past crowd density maps are often incomplete due to the miss-detection of pedestrians, and it is crucial to develop a robust crowd density forecasting model against the miss-detection. This paper presents a MAsked crowd density Completion framework for crowd density forecasting (CrowdMAC), which is simultaneously trained to forecast future crowd density maps from partially masked past crowd density maps (i.e., forecasting maps from past maps with miss-detection) while reconstructing the masked observation maps (i.e., imputing past maps with miss-detection). Additionally, we propose Temporal-Density-aware Masking (TDM), which non-uniformly masks tokens in the observed crowd density map, considering the sparsity of the crowd density maps and the informativeness of the subsequent frames for the forecasting task. Moreover, we introduce multi-task masking to enhance training efficiency. In the experiments, CrowdMAC achieves state-of-the-art performance on seven large-scale datasets, including SDD, ETH-UCY, inD, JRDB, VSCrowd, FDST, and croHD. We also demonstrate the robustness of the proposed method against both synthetic and realistic miss-detections. The code is released at https://fujiry0.github.io/CrowdMAC-project-page.
comment: Accepted to WACV 2025
♻ ☆ SelfSplat: Pose-Free and 3D Prior-Free Generalizable 3D Gaussian Splatting
We propose SelfSplat, a novel 3D Gaussian Splatting model designed to perform pose-free and 3D prior-free generalizable 3D reconstruction from unposed multi-view images. These settings are inherently ill-posed due to the lack of ground-truth data, learned geometric information, and the need to achieve accurate 3D reconstruction without finetuning, making it difficult for conventional methods to achieve high-quality results. Our model addresses these challenges by effectively integrating explicit 3D representations with self-supervised depth and pose estimation techniques, resulting in reciprocal improvements in both pose accuracy and 3D reconstruction quality. Furthermore, we incorporate a matching-aware pose estimation network and a depth refinement module to enhance geometry consistency across views, ensuring more accurate and stable 3D reconstructions. To present the performance of our method, we evaluated it on large-scale real-world datasets, including RealEstate10K, ACID, and DL3DV. SelfSplat achieves superior results over previous state-of-the-art methods in both appearance and geometry quality, also demonstrates strong cross-dataset generalization capabilities. Extensive ablation studies and analysis also validate the effectiveness of our proposed methods. Code and pretrained models are available at https://gynjn.github.io/selfsplat/
comment: Project page: https://gynjn.github.io/selfsplat/
♻ ☆ Selective Classification Under Distribution Shifts
In selective classification (SC), a classifier abstains from making predictions that are likely to be wrong to avoid excessive errors. To deploy imperfect classifiers -- either due to intrinsic statistical noise of data or for robustness issue of the classifier or beyond -- in high-stakes scenarios, SC appears to be an attractive and necessary path to follow. Despite decades of research in SC, most previous SC methods still focus on the ideal statistical setting only, i.e., the data distribution at deployment is the same as that of training, although practical data can come from the wild. To bridge this gap, in this paper, we propose an SC framework that takes into account distribution shifts, termed generalized selective classification, that covers label-shifted (or out-of-distribution) and covariate-shifted samples, in addition to typical in-distribution samples, the first of its kind in the SC literature. We focus on non-training-based confidence-score functions for generalized SC on deep learning (DL) classifiers, and propose two novel margin-based score functions. Through extensive analysis and experiments, we show that our proposed score functions are more effective and reliable than the existing ones for generalized SC on a variety of classification tasks and DL classifiers. Code is available at https://github.com/sun-umn/sc_with_distshift.
comment: Paper accepted to Transactions on Machine Learning Research (TMLR), issn: 2835-8856,2024
♻ ☆ EgoSurgery-Phase: A Dataset of Surgical Phase Recognition from Egocentric Open Surgery Videos MICCAI 2024
Surgical phase recognition has gained significant attention due to its potential to offer solutions to numerous demands of the modern operating room. However, most existing methods concentrate on minimally invasive surgery (MIS), leaving surgical phase recognition for open surgery understudied. This discrepancy is primarily attributed to the scarcity of publicly available open surgery video datasets for surgical phase recognition. To address this issue, we introduce a new egocentric open surgery video dataset for phase recognition, named EgoSurgery-Phase. This dataset comprises 15 hours of real open surgery videos spanning 9 distinct surgical phases all captured using an egocentric camera attached to the surgeon's head. In addition to video, the EgoSurgery-Phase offers eye gaze. As far as we know, it is the first real open surgery video dataset for surgical phase recognition publicly available. Furthermore, inspired by the notable success of masked autoencoders (MAEs) in video understanding tasks (e.g., action recognition), we propose a gaze-guided masked autoencoder (GGMAE). Considering the regions where surgeons' gaze focuses are often critical for surgical phase recognition (e.g., surgical field), in our GGMAE, the gaze information acts as an empirical semantic richness prior to guiding the masking process, promoting better attention to semantically rich spatial regions. GGMAE significantly improves the previous state-of-the-art recognition method (6.4% in Jaccard) and the masked autoencoder-based method (3.1% in Jaccard) on EgoSurgery-Phase. The dataset is released at https://github.com/Fujiry0/EgoSurgery.
comment: Early accepted by MICCAI 2024
♻ ☆ FreezeAsGuard: Mitigating Illegal Adaptation of Diffusion Models via Selective Tensor Freezing
Text-to-image diffusion models can be fine-tuned in custom domains to adapt to specific user preferences, but such adaptability has also been utilized for illegal purposes, such as forging public figures' portraits, duplicating copyrighted artworks and generating explicit contents. Existing work focused on detecting the illegally generated contents, but cannot prevent or mitigate illegal adaptations of diffusion models. Other schemes of model unlearning and reinitialization, similarly, cannot prevent users from relearning the knowledge of illegal model adaptation with custom data. In this paper, we present FreezeAsGuard, a new technique that addresses these limitations and enables irreversible mitigation of illegal adaptations of diffusion models. Our approach is that the model publisher selectively freezes tensors in pre-trained diffusion models that are critical to illegal model adaptations, to mitigate the fine-tuned model's representation power in illegal adaptations, but minimize the impact on other legal adaptations. Experiment results in multiple text-to-image application domains show that FreezeAsGuard provides 37% stronger power in mitigating illegal model adaptations compared to competitive baselines, while incurring less than 5% impact on legal model adaptations. The source code is available at: https://github.com/pittisl/FreezeAsGuard.
comment: 28 pages
♻ ☆ DetailGen3D: Generative 3D Geometry Enhancement via Data-Dependent Flow
Modern 3D generation methods can rapidly create shapes from sparse or single views, but their outputs often lack geometric detail due to computational constraints. We present DetailGen3D, a generative approach specifically designed to enhance these generated 3D shapes. Our key insight is to model the coarse-to-fine transformation directly through data-dependent flows in latent space, avoiding the computational overhead of large-scale 3D generative models. We introduce a token matching strategy that ensures accurate spatial correspondence during refinement, enabling local detail synthesis while preserving global structure. By carefully designing our training data to match the characteristics of synthesized coarse shapes, our method can effectively enhance shapes produced by various 3D generation and reconstruction approaches, from single-view to sparse multi-view inputs. Extensive experiments demonstrate that DetailGen3D achieves high-fidelity geometric detail synthesis while maintaining efficiency in training.
comment: We need to refine it. The experiment and description is not satisfied
♻ ☆ EgoSurgery-Tool: A Dataset of Surgical Tool and Hand Detection from Egocentric Open Surgery Videos
Surgical tool detection is a fundamental task for understanding egocentric open surgery videos. However, detecting surgical tools presents significant challenges due to their highly imbalanced class distribution, similar shapes and similar textures, and heavy occlusion. The lack of a comprehensive large-scale dataset compounds these challenges. In this paper, we introduce EgoSurgery-Tool, an extension of the existing EgoSurgery-Phase dataset, which contains real open surgery videos captured using an egocentric camera attached to the surgeon's head, along with phase annotations. EgoSurgery-Tool has been densely annotated with surgical tools and comprises over 49K surgical tool bounding boxes across 15 categories, constituting a large-scale surgical tool detection dataset. EgoSurgery-Tool also provides annotations for hand detection with over 46K hand-bounding boxes, capturing hand-object interactions that are crucial for understanding activities in egocentric open surgery. EgoSurgery-Tool is superior to existing datasets due to its larger scale, greater variety of surgical tools, more annotations, and denser scenes. We conduct a comprehensive analysis of EgoSurgery-Tool using nine popular object detectors to assess their effectiveness in both surgical tool and hand detection. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
♻ ☆ Temporal Reversed Training for Spiking Neural Networks with Generalized Spatio-Temporal Representation
Spiking neural networks (SNNs) have received widespread attention as an ultra-low power computing paradigm. Recent studies have focused on improving the feature extraction capability of SNNs, but they suffer from inefficient inference and suboptimal performance. In this paper, we propose a simple yet effective temporal reversed training (TRT) method to optimize the spatio-temporal performance of SNNs and circumvent these problems. We perturb the input temporal data by temporal reversal, prompting the SNN to produce original-reversed consistent outputs and to learn perturbation-invariant representations. For static data without temporal dimension, we generalize this strategy by exploiting the inherent temporal property of SNNs for spike feature temporal reversal. In addition, we utilize the lightweight ``star operation" (element-wise multiplication) to hybridize the original and temporally reversed spike firing rates and expand the implicit dimensions, which serves as spatio-temporal regularization to further enhance the generalization of the SNN. Our method involves only a temporal reversal operation and element-wise multiplication during training, thus incurring negligible training overhead and not affecting the inference efficiency at all. Extensive experiments on static/neuromorphic object/action recognition, and 3D point cloud classification tasks demonstrate the effectiveness and generalizability of our method. In particular, with only two timesteps, our method achieves 74.77\% and 90.57\% accuracy on ImageNet and ModelNet40, respectively.
comment: 17 pages, 9 figures
♻ ☆ Towards Black-Box Membership Inference Attack for Diffusion Models
Given the rising popularity of AI-generated art and the associated copyright concerns, identifying whether an artwork was used to train a diffusion model is an important research topic. The work approaches this problem from the membership inference attack (MIA) perspective. We first identify the limitation of applying existing MIA methods for proprietary diffusion models: the required access of internal U-nets. To address the above problem, we introduce a novel membership inference attack method that uses only the image-to-image variation API and operates without access to the model's internal U-net. Our method is based on the intuition that the model can more easily obtain an unbiased noise prediction estimate for images from the training set. By applying the API multiple times to the target image, averaging the outputs, and comparing the result to the original image, our approach can classify whether a sample was part of the training set. We validate our method using DDIM and Stable Diffusion setups and further extend both our approach and existing algorithms to the Diffusion Transformer architecture. Our experimental results consistently outperform previous methods.
♻ ☆ Scalable Autoregressive Monocular Depth Estimation
This paper shows that the autoregressive model is an effective and scalable monocular depth estimator. Our idea is simple: We tackle the monocular depth estimation (MDE) task with an autoregressive prediction paradigm, based on two core designs. First, our depth autoregressive model (DAR) treats the depth map of different resolutions as a set of tokens, and conducts the low-to-high resolution autoregressive objective with a patch-wise casual mask. Second, our DAR recursively discretizes the entire depth range into more compact intervals, and attains the coarse-to-fine granularity autoregressive objective in an ordinal-regression manner. By coupling these two autoregressive objectives, our DAR establishes new state-of-the-art (SOTA) on KITTI and NYU Depth v2 by clear margins. Further, our scalable approach allows us to scale the model up to 2.0B and achieve the best RMSE of 1.799 on the KITTI dataset (5% improvement) compared to 1.896 by the current SOTA (Depth Anything). DAR further showcases zero-shot generalization ability on unseen datasets. These results suggest that DAR yields superior performance with an autoregressive prediction paradigm, providing a promising approach to equip modern autoregressive large models (e.g., GPT-4o) with depth estimation capabilities.
♻ ☆ An End-to-End Robust Point Cloud Semantic Segmentation Network with Single-Step Conditional Diffusion Models
Existing conditional Denoising Diffusion Probabilistic Models (DDPMs) with a Noise-Conditional Framework (NCF) remain challenging for 3D scene understanding tasks, as the complex geometric details in scenes increase the difficulty of fitting the gradients of the data distribution (the scores) from semantic labels. This also results in longer training and inference time for DDPMs compared to non-DDPMs. From a different perspective, we delve deeply into the model paradigm dominated by the Conditional Network. In this paper, we propose an end-to-end robust semantic \textbf{Seg}mentation \textbf{Net}work based on a \textbf{C}onditional-Noise Framework (CNF) of D\textbf{D}PMs, named \textbf{CDSegNet}. Specifically, CDSegNet models the Noise Network (NN) as a learnable noise-feature generator. This enables the Conditional Network (CN) to understand 3D scene semantics under multi-level feature perturbations, enhancing the generalization in unseen scenes. Meanwhile, benefiting from the noise system of DDPMs, CDSegNet exhibits strong noise and sparsity robustness in experiments. Moreover, thanks to CNF, CDSegNet can generate the semantic labels in a single-step inference like non-DDPMs, due to avoiding directly fitting the scores from semantic labels in the dominant network of CDSegNet. On public indoor and outdoor benchmarks, CDSegNet significantly outperforms existing methods, achieving state-of-the-art performance.
♻ ☆ Breathless: An 8-hour Performance Contrasting Human and Robot Expressiveness
This paper describes the robot technology behind an original performance that pairs a human dancer (Cuan) with an industrial robot arm for an eight-hour dance that unfolds over the timespan of an American workday. To control the robot arm, we combine a range of sinusoidal motions with varying amplitude, frequency and offset at each joint to evoke human motions common in physical labor such as stirring, digging, and stacking. More motions were developed using deep learning techniques for video-based human-pose tracking and extraction. We combine these pre-recorded motions with improvised robot motions created live by putting the robot into teach-mode and triggering force sensing from the robot joints onstage. All motions are combined with commercial and original music using a custom suite of python software with AppleScript, Keynote, and Zoom to facilitate on-stage communication with the dancer. The resulting performance contrasts the expressivity of the human body with the precision of robot machinery. Video, code and data are available on the project website: https://sites.google.com/playing.studio/breathless
comment: 15 pages, 9 figures, accepted for ISRR (International Symposium of Robotics Research) 2024
MotionWavelet: Human Motion Prediction via Wavelet Manifold Learning
Modeling temporal characteristics and the non-stationary dynamics of body movement plays a significant role in predicting human future motions. However, it is challenging to capture these features due to the subtle transitions involved in the complex human motions. This paper introduces MotionWavelet, a human motion prediction framework that utilizes Wavelet Transformation and studies human motion patterns in the spatial-frequency domain. In MotionWavelet, a Wavelet Diffusion Model (WDM) learns a Wavelet Manifold by applying Wavelet Transformation on the motion data therefore encoding the intricate spatial and temporal motion patterns. Once the Wavelet Manifold is built, WDM trains a diffusion model to generate human motions from Wavelet latent vectors. In addition to the WDM, MotionWavelet also presents a Wavelet Space Shaping Guidance mechanism to refine the denoising process to improve conformity with the manifold structure. WDM also develops Temporal Attention-Based Guidance to enhance prediction accuracy. Extensive experiments validate the effectiveness of MotionWavelet, demonstrating improved prediction accuracy and enhanced generalization across various benchmarks. Our code and models will be released upon acceptance.
comment: Project Page: https://frank-zy-dou.github.io/projects/MotionWavelet/ Video: https://youtu.be/pyWq0OYJdI0?si=4YHfFNXmLnbPC39g
♻ ☆ Learning Disentangled Representation for One-shot Progressive Face Swapping
Although face swapping has attracted much attention in recent years, it remains a challenging problem. Existing methods leverage a large number of data samples to explore the intrinsic properties of face swapping without considering the semantic information of face images. Moreover, the representation of the identity information tends to be fixed, leading to suboptimal face swapping. In this paper, we present a simple yet efficient method named FaceSwapper, for one-shot face swapping based on Generative Adversarial Networks. Our method consists of a disentangled representation module and a semantic-guided fusion module. The disentangled representation module comprises an attribute encoder and an identity encoder, which aims to achieve the disentanglement of the identity and attribute information. The identity encoder is more flexible, and the attribute encoder contains more attribute details than its competitors. Benefiting from the disentangled representation, FaceSwapper can swap face images progressively. In addition, semantic information is introduced into the semantic-guided fusion module to control the swapped region and model the pose and expression more accurately. Experimental results show that our method achieves state-of-the-art results on benchmark datasets with fewer training samples. Our code is publicly available at https://github.com/liqi-casia/FaceSwapper.
♻ ☆ Resolution-Agnostic Transformer-based Climate Downscaling
Understanding future weather changes at regional and local scales is crucial for planning and decision-making, particularly in the context of extreme weather events, as well as for broader applications in agriculture, insurance, and infrastructure development. However, the computational cost of downscaling Global Climate Models (GCMs) to the fine resolutions needed for such applications presents a significant barrier. Drawing on advancements in weather forecasting models, this study introduces a cost-efficient downscaling method using a pretrained Earth Vision Transformer (Earth ViT) model. Initially trained on ERA5 data to downscale from 50 km to 25 km resolution, the model is then tested on the higher resolution BARRA-SY dataset at a 3 km resolution. Remarkably, it performs well without additional training, demonstrating its ability to generalize across different resolutions. This approach holds promise for generating large ensembles of regional climate simulations by downscaling GCMs with varying input resolutions without incurring additional training costs. Ultimately, this method could provide more comprehensive estimates of potential future changes in key climate variables, aiding in effective planning for extreme weather events and climate change adaptation strategies.
♻ ☆ Intelligent Anomaly Detection for Lane Rendering Using Transformer with Self-Supervised Pre-Training and Customized Fine-Tuning
The burgeoning navigation services using digital maps provide great convenience to drivers. Nevertheless, the presence of anomalies in lane rendering map images occasionally introduces potential hazards, as such anomalies can be misleading to human drivers and consequently contribute to unsafe driving conditions. In response to this concern and to accurately and effectively detect the anomalies, this paper transforms lane rendering image anomaly detection into a classification problem and proposes a four-phase pipeline consisting of data pre-processing, self-supervised pre-training with the masked image modeling (MiM) method, customized fine-tuning using cross-entropy based loss with label smoothing, and post-processing to tackle it leveraging state-of-the-art deep learning techniques, especially those involving Transformer models. Various experiments verify the effectiveness of the proposed pipeline. Results indicate that the proposed pipeline exhibits superior performance in lane rendering image anomaly detection, and notably, the self-supervised pre-training with MiM can greatly enhance the detection accuracy while significantly reducing the total training time. For instance, employing the Swin Transformer with Uniform Masking as self-supervised pretraining (Swin-Trans-UM) yielded a heightened accuracy at 94.77% and an improved Area Under The Curve (AUC) score of 0.9743 compared with the pure Swin Transformer without pre-training (Swin-Trans) with an accuracy of 94.01% and an AUC of 0.9498. The fine-tuning epochs were dramatically reduced to 41 from the original 280. In conclusion, the proposed pipeline, with its incorporation of self-supervised pre-training using MiM and other advanced deep learning techniques, emerges as a robust solution for enhancing the accuracy and efficiency of lane rendering image anomaly detection in digital navigation systems.
comment: 25 pages, 7 figures, accepted by the 103rd Transportation Research Board (TRB) Annual Meeting, under review by Transportation Research Record: Journal of the Transportation Research Board
♻ ☆ SelfEval: Leveraging the discriminative nature of generative models for evaluation
We present an automated way to evaluate the text alignment of text-to-image generative diffusion models using standard image-text recognition datasets. Our method, called SelfEval, uses the generative model to compute the likelihood of real images given text prompts, and the likelihood can be used to perform recognition tasks with the generative model. We evaluate generative models on standard datasets created for multimodal text-image discriminative learning and assess fine-grained aspects of their performance: attribute binding, color recognition, counting, shape recognition, spatial understanding. Existing automated metrics rely on an external pretrained model like CLIP (VLMs) or LLMs, and are sensitive to the exact pretrained model and its limitations. SelfEval sidesteps these issues, and to the best of our knowledge, is the first automated metric to show a high degree of agreement for measuring text-faithfulness with the gold-standard human evaluations across multiple generative models, benchmarks and evaluation metrics. SelfEval also reveals that generative models showcase competitive recognition performance on challenging tasks such as Winoground image-score compared to discriminative models. We hope SelfEval enables easy and reliable automated evaluation for diffusion models.
Machine Learning 147
☆ Leveraging Semi-Supervised Learning to Enhance Data Mining for Image Classification under Limited Labeled Data
In the 21st-century information age, with the development of big data technology, effectively extracting valuable information from massive data has become a key issue. Traditional data mining methods are inadequate when faced with large-scale, high-dimensional and complex data. Especially when labeled data is scarce, their performance is greatly limited. This study optimizes data mining algorithms by introducing semi-supervised learning methods, aiming to improve the algorithm's ability to utilize unlabeled data, thereby achieving more accurate data analysis and pattern recognition under limited labeled data conditions. Specifically, we adopt a self-training method and combine it with a convolutional neural network (CNN) for image feature extraction and classification, and continuously improve the model prediction performance through an iterative process. The experimental results demonstrate that the proposed method significantly outperforms traditional machine learning techniques such as Support Vector Machine (SVM), XGBoost, and Multi-Layer Perceptron (MLP) on the CIFAR-10 image classification dataset. Notable improvements were observed in key performance metrics, including accuracy, recall, and F1 score. Furthermore, the robustness and noise-resistance capabilities of the semi-supervised CNN model were validated through experiments under varying noise levels, confirming its practical applicability in real-world scenarios.
☆ Diffusion Self-Distillation for Zero-Shot Customized Image Generation
Text-to-image diffusion models produce impressive results but are frustrating tools for artists who desire fine-grained control. For example, a common use case is to create images of a specific instance in novel contexts, i.e., "identity-preserving generation". This setting, along with many other tasks (e.g., relighting), is a natural fit for image+text-conditional generative models. However, there is insufficient high-quality paired data to train such a model directly. We propose Diffusion Self-Distillation, a method for using a pre-trained text-to-image model to generate its own dataset for text-conditioned image-to-image tasks. We first leverage a text-to-image diffusion model's in-context generation ability to create grids of images and curate a large paired dataset with the help of a Visual-Language Model. We then fine-tune the text-to-image model into a text+image-to-image model using the curated paired dataset. We demonstrate that Diffusion Self-Distillation outperforms existing zero-shot methods and is competitive with per-instance tuning techniques on a wide range of identity-preservation generation tasks, without requiring test-time optimization.
comment: Project page: https://primecai.github.io/dsd/
☆ Proactive Gradient Conflict Mitigation in Multi-Task Learning: A Sparse Training Perspective
Advancing towards generalist agents necessitates the concurrent processing of multiple tasks using a unified model, thereby underscoring the growing significance of simultaneous model training on multiple downstream tasks. A common issue in multi-task learning is the occurrence of gradient conflict, which leads to potential competition among different tasks during joint training. This competition often results in improvements in one task at the expense of deterioration in another. Although several optimization methods have been developed to address this issue by manipulating task gradients for better task balancing, they cannot decrease the incidence of gradient conflict. In this paper, we systematically investigate the occurrence of gradient conflict across different methods and propose a strategy to reduce such conflicts through sparse training (ST), wherein only a portion of the model's parameters are updated during training while keeping the rest unchanged. Our extensive experiments demonstrate that ST effectively mitigates conflicting gradients and leads to superior performance. Furthermore, ST can be easily integrated with gradient manipulation techniques, thus enhancing their effectiveness.
☆ Robust Offline Reinforcement Learning with Linearly Structured $f$-Divergence Regularization
The Distributionally Robust Markov Decision Process (DRMDP) is a popular framework for addressing dynamics shift in reinforcement learning by learning policies robust to the worst-case transition dynamics within a constrained set. However, solving its dual optimization oracle poses significant challenges, limiting theoretical analysis and computational efficiency. The recently proposed Robust Regularized Markov Decision Process (RRMDP) replaces the uncertainty set constraint with a regularization term on the value function, offering improved scalability and theoretical insights. Yet, existing RRMDP methods rely on unstructured regularization, often leading to overly conservative policies by considering transitions that are unrealistic. To address these issues, we propose a novel framework, the $d$-rectangular linear robust regularized Markov decision process ($d$-RRMDP), which introduces a linear latent structure into both transition kernels and regularization. For the offline RL setting, where an agent learns robust policies from a pre-collected dataset in the nominal environment, we develop a family of algorithms, Robust Regularized Pessimistic Value Iteration (R2PVI), employing linear function approximation and $f$-divergence based regularization terms on transition kernels. We provide instance-dependent upper bounds on the suboptimality gap of R2PVI policies, showing these bounds depend on how well the dataset covers state-action spaces visited by the optimal robust policy under robustly admissible transitions. This term is further shown to be fundamental to $d$-RRMDPs via information-theoretic lower bounds. Finally, numerical experiments validate that R2PVI learns robust policies and is computationally more efficient than methods for constrained DRMDPs.
comment: 52 pages, 3 figures, 2 tables
☆ Task Arithmetic Through The Lens Of One-Shot Federated Learning
Task Arithmetic is a model merging technique that enables the combination of multiple models' capabilities into a single model through simple arithmetic in the weight space, without the need for additional fine-tuning or access to the original training data. However, the factors that determine the success of Task Arithmetic remain unclear. In this paper, we examine Task Arithmetic for multi-task learning by framing it as a one-shot Federated Learning problem. We demonstrate that Task Arithmetic is mathematically equivalent to the commonly used algorithm in Federated Learning, called Federated Averaging (FedAvg). By leveraging well-established theoretical results from FedAvg, we identify two key factors that impact the performance of Task Arithmetic: data heterogeneity and training heterogeneity. To mitigate these challenges, we adapt several algorithms from Federated Learning to improve the effectiveness of Task Arithmetic. Our experiments demonstrate that applying these algorithms can often significantly boost performance of the merged model compared to the original Task Arithmetic approach. This work bridges Task Arithmetic and Federated Learning, offering new theoretical perspectives on Task Arithmetic and improved practical methodologies for model merging.
☆ Biomolecular Analysis of Soil Samples and Rock Imagery for Tracing Evidence of Life Using a Mobile Robot
The search for evidence of past life on Mars presents a tremendous challenge that requires the usage of very advanced robotic technologies to overcome it. Current digital microscopic imagers and spectrometers used for astrobiological examination suffer from limitations such as insufficient resolution, narrow detection range, and lack of portability. To overcome these challenges, this research study presents modifications to the Phoenix rover to expand its capability for detecting biosignatures on Mars. This paper examines the modifications implemented on the Phoenix rover to enhance its capability to detect a broader spectrum of biosignatures. One of the notable improvements comprises the integration of advanced digital microscopic imagers and spectrometers, enabling high-resolution examination of soil samples. Additionally, the mechanical components of the device have been reinforced to enhance maneuverability and optimize subsurface sampling capabilities. Empirical investigations have demonstrated that Phoenix has the capability to navigate diverse geological environments and procure samples for the purpose of biomolecular analysis. The biomolecular instrumentation and hybrid analytical methods showcased in this study demonstrate considerable potential for future astrobiology missions on Mars. The potential for enhancing the system lies in the possibility of broadening the range of detectable biomarkers and biosignatures.
comment: Key Words : Mars, Rover, Phoenix, Biosignatures, Biomolecular Analysis, Microscopy, Spectroscopy, Sampling, Astrobiology
☆ Automated Literature Review Using NLP Techniques and LLM-Based Retrieval-Augmented Generation
This research presents and compares multiple approaches to automate the generation of literature reviews using several Natural Language Processing (NLP) techniques and retrieval-augmented generation (RAG) with a Large Language Model (LLM). The ever-increasing number of research articles provides a huge challenge for manual literature review. It has resulted in an increased demand for automation. Developing a system capable of automatically generating the literature reviews from only the PDF files as input is the primary objective of this research work. The effectiveness of several Natural Language Processing (NLP) strategies, such as the frequency-based method (spaCy), the transformer model (Simple T5), and retrieval-augmented generation (RAG) with Large Language Model (GPT-3.5-turbo), is evaluated to meet the primary objective. The SciTLDR dataset is chosen for this research experiment and three distinct techniques are utilized to implement three different systems for auto-generating the literature reviews. The ROUGE scores are used for the evaluation of all three systems. Based on the evaluation, the Large Language Model GPT-3.5-turbo achieved the highest ROUGE-1 score, 0.364. The transformer model comes in second place and spaCy is at the last position. Finally, a graphical user interface is created for the best system based on the large language model.
comment: Key Words : T5, SpaCy, Large Language Model, GPT, ROUGE, Literature Review, Natural Language Processing, Retrieval-augmented generation
Surveying the space of descriptions of a composite system with machine learning
Multivariate information theory provides a general and principled framework for understanding how the components of a complex system are connected. Existing analyses are coarse in nature -- built up from characterizations of discrete subsystems -- and can be computationally prohibitive. In this work, we propose to study the continuous space of possible descriptions of a composite system as a window into its organizational structure. A description consists of specific information conveyed about each of the components, and the space of possible descriptions is equivalent to the space of lossy compression schemes of the components. We introduce a machine learning framework to optimize descriptions that extremize key information theoretic quantities used to characterize organization, such as total correlation and O-information. Through case studies on spin systems, Sudoku boards, and letter sequences from natural language, we identify extremal descriptions that reveal how system-wide variation emerges from individual components. By integrating machine learning into a fine-grained information theoretic analysis of composite random variables, our framework opens a new avenues for probing the structure of real-world complex systems.
comment: Code here: https://github.com/murphyka/description_space
☆ Pruning Deep Convolutional Neural Network Using Conditional Mutual Information
Convolutional Neural Networks (CNNs) achieve high performance in image classification tasks but are challenging to deploy on resource-limited hardware due to their large model sizes. To address this issue, we leverage Mutual Information, a metric that provides valuable insights into how deep learning models retain and process information through measuring the shared information between input features or output labels and network layers. In this study, we propose a structured filter-pruning approach for CNNs that identifies and selectively retains the most informative features in each layer. Our approach successively evaluates each layer by ranking the importance of its feature maps based on Conditional Mutual Information (CMI) values, computed using a matrix-based Renyi {\alpha}-order entropy numerical method. We propose several formulations of CMI to capture correlation among features across different layers. We then develop various strategies to determine the cutoff point for CMI values to prune unimportant features. This approach allows parallel pruning in both forward and backward directions and significantly reduces model size while preserving accuracy. Tested on the VGG16 architecture with the CIFAR-10 dataset, the proposed method reduces the number of filters by more than a third, with only a 0.32% drop in test accuracy.
☆ On Importance of Code-Mixed Embeddings for Hate Speech Identification
Code-mixing is the practice of using two or more languages in a single sentence, which often occurs in multilingual communities such as India where people commonly speak multiple languages. Classic NLP tools, trained on monolingual data, face challenges when dealing with code-mixed data. Extracting meaningful information from sentences containing multiple languages becomes difficult, particularly in tasks like hate speech detection, due to linguistic variation, cultural nuances, and data sparsity. To address this, we aim to analyze the significance of code-mixed embeddings and evaluate the performance of BERT and HingBERT models (trained on a Hindi-English corpus) in hate speech detection. Our study demonstrates that HingBERT models, benefiting from training on the extensive Hindi-English dataset L3Cube-HingCorpus, outperform BERT models when tested on hate speech text datasets. We also found that code-mixed Hing-FastText performs better than standard English FastText and vanilla BERT models.
☆ Functional relevance based on the continuous Shapley value
The presence of Artificial Intelligence (AI) in our society is increasing, which brings with it the need to understand the behaviour of AI mechanisms, including machine learning predictive algorithms fed with tabular data, text, or images, among other types of data. This work focuses on interpretability of predictive models based on functional data. Designing interpretability methods for functional data models implies working with a set of features whose size is infinite. In the context of scalar on function regression, we propose an interpretability method based on the Shapley value for continuous games, a mathematical formulation that allows to fairly distribute a global payoff among a continuous set players. The method is illustrated through a set of experiments with simulated and real data sets. The open source Python package ShapleyFDA is also presented.
comment: 36 pages, 13 figures
☆ Challenges in Adapting Multilingual LLMs to Low-Resource Languages using LoRA PEFT Tuning
Large Language Models (LLMs) have demonstrated remarkable multilingual capabilities, yet challenges persist in adapting these models for low-resource languages. In this study, we investigate the effects of Low-Rank Adaptation (LoRA) Parameter-Efficient Fine-Tuning (PEFT) on multilingual Gemma models for Marathi, a language with limited resources. Using a translated Alpaca dataset with 52,000 instruction-response pairs, our findings reveal that while evaluation metrics often show a performance decline post-fine-tuning, manual assessments frequently suggest that the fine-tuned models outperform their original counterparts. The observations indicate improvements in target language generation capabilities but a reduction in reasoning abilities following language adaptation. These results underscore the need for improved evaluation methodologies and the creation of high-quality native datasets to accurately assess language-specific model performance in low-resource settings.
☆ DexDiffuser: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simpler manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexDiffuser, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexDiffuser models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, and hammer striking demonstrate DexDiffuser's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves 70.0% success on 30-degree door opening, 40.0% and 36.7% on pen and block half-side re-orientation respectively, and 46.7% on hammer nail half drive, highlighting its robustness and flexibility in contact-rich manipulation.
comment: 27 pages. Project page: https://dexdiffuser.github.io/
☆ Concentration of Cumulative Reward in Markov Decision Processes
In this paper, we investigate the concentration properties of cumulative rewards in Markov Decision Processes (MDPs), focusing on both asymptotic and non-asymptotic settings. We introduce a unified approach to characterize reward concentration in MDPs, covering both infinite-horizon settings (i.e., average and discounted reward frameworks) and finite-horizon setting. Our asymptotic results include the law of large numbers, the central limit theorem, and the law of iterated logarithms, while our non-asymptotic bounds include Azuma-Hoeffding-type inequalities and a non-asymptotic version of the law of iterated logarithms. Additionally, we explore two key implications of our results. First, we analyze the sample path behavior of the difference in rewards between any two stationary policies. Second, we show that two alternative definitions of regret for learning policies proposed in the literature are rate-equivalent. Our proof techniques rely on a novel martingale decomposition of cumulative rewards, properties of the solution to the policy evaluation fixed-point equation, and both asymptotic and non-asymptotic concentration results for martingale difference sequences.
comment: 60 pages
☆ NeuroAI for AI Safety
As AI systems become increasingly powerful, the need for safe AI has become more pressing. Humans are an attractive model for AI safety: as the only known agents capable of general intelligence, they perform robustly even under conditions that deviate significantly from prior experiences, explore the world safely, understand pragmatics, and can cooperate to meet their intrinsic goals. Intelligence, when coupled with cooperation and safety mechanisms, can drive sustained progress and well-being. These properties are a function of the architecture of the brain and the learning algorithms it implements. Neuroscience may thus hold important keys to technical AI safety that are currently underexplored and underutilized. In this roadmap, we highlight and critically evaluate several paths toward AI safety inspired by neuroscience: emulating the brain's representations, information processing, and architecture; building robust sensory and motor systems from imitating brain data and bodies; fine-tuning AI systems on brain data; advancing interpretability using neuroscience methods; and scaling up cognitively-inspired architectures. We make several concrete recommendations for how neuroscience can positively impact AI safety.
comment: 133 pages, 19 figures
☆ Perturbation Ontology based Graph Attention Networks
In recent years, graph representation learning has undergone a paradigm shift, driven by the emergence and proliferation of graph neural networks (GNNs) and their heterogeneous counterparts. Heterogeneous GNNs have shown remarkable success in extracting low-dimensional embeddings from complex graphs that encompass diverse entity types and relationships. While meta-path-based techniques have long been recognized for their ability to capture semantic affinities among nodes, their dependence on manual specification poses a significant limitation. In contrast, matrix-focused methods accelerate processing by utilizing structural cues but often overlook contextual richness. In this paper, we challenge the current paradigm by introducing ontology as a fundamental semantic primitive within complex graphs. Our goal is to integrate the strengths of both matrix-centric and meta-path-based approaches into a unified framework. We propose perturbation Ontology-based Graph Attention Networks (POGAT), a novel methodology that combines ontology subgraphs with an advanced self-supervised learning paradigm to achieve a deep contextual understanding. The core innovation of POGAT lies in our enhanced homogeneous perturbing scheme designed to generate rigorous negative samples, encouraging the model to explore minimal contextual features more thoroughly. Through extensive empirical evaluations, we demonstrate that POGAT significantly outperforms state-of-the-art baselines, achieving a groundbreaking improvement of up to 10.78\% in F1-score for the critical task of link prediction and 12.01\% in Micro-F1 for the critical task of node classification.
☆ Living off the Analyst: Harvesting Features from Yara Rules for Malware Detection
A strategy used by malicious actors is to "live off the land," where benign systems and tools already available on a victim's systems are used and repurposed for the malicious actor's intent. In this work, we ask if there is a way for anti-virus developers to similarly re-purpose existing work to improve their malware detection capability. We show that this is plausible via YARA rules, which use human-written signatures to detect specific malware families, functionalities, or other markers of interest. By extracting sub-signatures from publicly available YARA rules, we assembled a set of features that can more effectively discriminate malicious samples from benign ones. Our experiments demonstrate that these features add value beyond traditional features on the EMBER 2018 dataset. Manual analysis of the added sub-signatures shows a power-law behavior in a combination of features that are specific and unique, as well as features that occur often. A prior expectation may be that the features would be limited in being overly specific to unique malware families. This behavior is observed, and is apparently useful in practice. In addition, we also find sub-signatures that are dual-purpose (e.g., detecting virtual machine environments) or broadly generic (e.g., DLL imports).
comment: To appear in BigData'24 CyberHunt 2024
LLM-ABBA: Understand time series via symbolic approximation
The success of large language models (LLMs) for time series has been demonstrated in previous work. Utilizing a symbolic time series representation, one can efficiently bridge the gap between LLMs and time series. However, the remaining challenge is to exploit the semantic information hidden in time series by using symbols or existing tokens of LLMs, while aligning the embedding space of LLMs according to the hidden information of time series. The symbolic time series approximation (STSA) method called adaptive Brownian bridge-based symbolic aggregation (ABBA) shows outstanding efficacy in preserving salient time series features by modeling time series patterns in terms of amplitude and period while using existing tokens of LLMs. In this paper, we introduce a method, called LLM-ABBA, that integrates ABBA into large language models for various downstream time series tasks. By symbolizing time series, LLM-ABBA compares favorably to the recent state-of-the-art (SOTA) in UCR and three medical time series classification tasks. Meanwhile, a fixed-polygonal chain trick in ABBA is introduced to \kc{avoid obvious drifting} during prediction tasks by significantly mitigating the effects of cumulative error arising from misused symbols during the transition from symbols to numerical values. In time series regression tasks, LLM-ABBA achieves the new SOTA on Time Series Extrinsic Regression (TSER) benchmarks. LLM-ABBA also shows competitive prediction capability compared to recent SOTA time series prediction results. We believe this framework can also seamlessly extend to other time series tasks.
☆ Isometry pursuit
Isometry pursuit is a convex algorithm for identifying orthonormal column-submatrices of wide matrices. It consists of a novel normalization method followed by multitask basis pursuit. Applied to Jacobians of putative coordinate functions, it helps identity isometric embeddings from within interpretable dictionaries. We provide theoretical and experimental results justifying this method. For problems involving coordinate selection and diversification, it offers a synergistic alternative to greedy and brute force search.
☆ Multiple Choice Learning for Efficient Speech Separation with Many Speakers
Training speech separation models in the supervised setting raises a permutation problem: finding the best assignation between the model predictions and the ground truth separated signals. This inherently ambiguous task is customarily solved using Permutation Invariant Training (PIT). In this article, we instead consider using the Multiple Choice Learning (MCL) framework, which was originally introduced to tackle ambiguous tasks. We demonstrate experimentally on the popular WSJ0-mix and LibriMix benchmarks that MCL matches the performances of PIT, while being computationally advantageous. This opens the door to a promising research direction, as MCL can be naturally extended to handle a variable number of speakers, or to tackle speech separation in the unsupervised setting.
☆ SPTTE: A Spatiotemporal Probabilistic Framework for Travel Time Estimation
Accurate travel time estimation is essential for navigation and itinerary planning. While existing research employs probabilistic modeling to assess travel time uncertainty and account for correlations between multiple trips, modeling the temporal variability of multi-trip travel time distributions remains a significant challenge. Capturing the evolution of joint distributions requires large, well-organized datasets; however, real-world trip data are often temporally sparse and spatially unevenly distributed. To address this issue, we propose SPTTE, a spatiotemporal probabilistic framework that models the evolving joint distribution of multi-trip travel times by formulating the estimation task as a spatiotemporal stochastic process regression problem with fragmented observations. SPTTE incorporates an RNN-based temporal Gaussian process parameterization to regularize sparse observations and capture temporal dependencies. Additionally, it employs a prior-based heterogeneity smoothing strategy to correct unreliable learning caused by unevenly distributed trips, effectively modeling temporal variability under sparse and uneven data distributions. Evaluations on real-world datasets demonstrate that SPTTE outperforms state-of-the-art deterministic and probabilistic methods by over 10.13%. Ablation studies and visualizations further confirm the effectiveness of the model components.
☆ SoK: Watermarking for AI-Generated Content
As the outputs of generative AI (GenAI) techniques improve in quality, it becomes increasingly challenging to distinguish them from human-created content. Watermarking schemes are a promising approach to address the problem of distinguishing between AI and human-generated content. These schemes embed hidden signals within AI-generated content to enable reliable detection. While watermarking is not a silver bullet for addressing all risks associated with GenAI, it can play a crucial role in enhancing AI safety and trustworthiness by combating misinformation and deception. This paper presents a comprehensive overview of watermarking techniques for GenAI, beginning with the need for watermarking from historical and regulatory perspectives. We formalize the definitions and desired properties of watermarking schemes and examine the key objectives and threat models for existing approaches. Practical evaluation strategies are also explored, providing insights into the development of robust watermarking techniques capable of resisting various attacks. Additionally, we review recent representative works, highlight open challenges, and discuss potential directions for this emerging field. By offering a thorough understanding of watermarking in GenAI, this work aims to guide researchers in advancing watermarking methods and applications, and support policymakers in addressing the broader implications of GenAI.
☆ Isolating authorship from content with semantic embeddings and contrastive learning
Authorship has entangled style and content inside. Authors frequently write about the same topics in the same style, so when different authors write about the exact same topic the easiest way out to distinguish them is by understanding the nuances of their style. Modern neural models for authorship can pick up these features using contrastive learning, however, some amount of content leakage is always present. Our aim is to reduce the inevitable impact and correlation between content and authorship. We present a technique to use contrastive learning (InfoNCE) with additional hard negatives synthetically created using a semantic similarity model. This disentanglement technique aims to distance the content embedding space from the style embedding space, leading to embeddings more informed by style. We demonstrate the performance with ablations on two different datasets and compare them on out-of-domain challenges. Improvements are clearly shown on challenging evaluations on prolific authors with up to a 10% increase in accuracy when the settings are particularly hard. Trials on challenges also demonstrate the preservation of zero-shot capabilities of this method as fine tuning.
☆ What do physics-informed DeepONets learn? Understanding and improving training for scientific computing applications
Physics-informed deep operator networks (DeepONets) have emerged as a promising approach toward numerically approximating the solution of partial differential equations (PDEs). In this work, we aim to develop further understanding of what is being learned by physics-informed DeepONets by assessing the universality of the extracted basis functions and demonstrating their potential toward model reduction with spectral methods. Results provide clarity about measuring the performance of a physics-informed DeepONet through the decays of singular values and expansion coefficients. In addition, we propose a transfer learning approach for improving training for physics-informed DeepONets between parameters of the same PDE as well as across different, but related, PDEs where these models struggle to train well. This approach results in significant error reduction and learned basis functions that are more effective in representing the solution of a PDE.
☆ Synthetic ECG Generation for Data Augmentation and Transfer Learning in Arrhythmia Classification
Deep learning models need a sufficient amount of data in order to be able to find the hidden patterns in it. It is the purpose of generative modeling to learn the data distribution, thus allowing us to sample more data and augment the original dataset. In the context of physiological data, and more specifically electrocardiogram (ECG) data, given its sensitive nature and expensive data collection, we can exploit the benefits of generative models in order to enlarge existing datasets and improve downstream tasks, in our case, classification of heart rhythm. In this work, we explore the usefulness of synthetic data generated with different generative models from Deep Learning namely Diffweave, Time-Diffusion and Time-VQVAE in order to obtain better classification results for two open source multivariate ECG datasets. Moreover, we also investigate the effects of transfer learning, by fine-tuning a synthetically pre-trained model and then progressively adding increasing proportions of real data. We conclude that although the synthetic samples resemble the real ones, the classification improvement when simply augmenting the real dataset is barely noticeable on individual datasets, but when both datasets are merged the results show an increase across all metrics for the classifiers when using synthetic samples as augmented data. From the fine-tuning results the Time-VQVAE generative model has shown to be superior to the others but not powerful enough to achieve results close to a classifier trained with real data only. In addition, methods and metrics for measuring closeness between synthetic data and the real one have been explored as a side effect of the main research questions of this study.
☆ Advancements in Myocardial Infarction Detection and Classification Using Wearable Devices: A Comprehensive Review
Myocardial infarction (MI), commonly known as a heart attack, is a critical health condition caused by restricted blood flow to the heart. Early-stage detection through continuous ECG monitoring is essential to minimize irreversible damage. This review explores advancements in MI classification methodologies for wearable devices, emphasizing their potential in real-time monitoring and early diagnosis. It critically examines traditional approaches, such as morphological filtering and wavelet decomposition, alongside cutting-edge techniques, including Convolutional Neural Networks (CNNs) and VLSI-based methods. By synthesizing findings on machine learning, deep learning, and hardware innovations, this paper highlights their strengths, limitations, and future prospects. The integration of these techniques into wearable devices offers promising avenues for efficient, accurate, and energy-aware MI detection, paving the way for next-generation wearable healthcare solutions.
☆ Continuous Autoregressive Models with Noise Augmentation Avoid Error Accumulation NeurIPS 2024
Autoregressive models are typically applied to sequences of discrete tokens, but recent research indicates that generating sequences of continuous embeddings in an autoregressive manner is also feasible. However, such Continuous Autoregressive Models (CAMs) can suffer from a decline in generation quality over extended sequences due to error accumulation during inference. We introduce a novel method to address this issue by injecting random noise into the input embeddings during training. This procedure makes the model robust against varying error levels at inference. We further reduce error accumulation through an inference procedure that introduces low-level noise. Experiments on musical audio generation show that CAM substantially outperforms existing autoregressive and non-autoregressive approaches while preserving audio quality over extended sequences. This work paves the way for generating continuous embeddings in a purely autoregressive setting, opening new possibilities for real-time and interactive generative applications.
comment: Accepted to NeurIPS 2024 - Audio Imagination Workshop
☆ Metric-DST: Mitigating Selection Bias Through Diversity-Guided Semi-Supervised Metric Learning
Selection bias poses a critical challenge for fairness in machine learning, as models trained on data that is less representative of the population might exhibit undesirable behavior for underrepresented profiles. Semi-supervised learning strategies like self-training can mitigate selection bias by incorporating unlabeled data into model training to gain further insight into the distribution of the population. However, conventional self-training seeks to include high-confidence data samples, which may reinforce existing model bias and compromise effectiveness. We propose Metric-DST, a diversity-guided self-training strategy that leverages metric learning and its implicit embedding space to counter confidence-based bias through the inclusion of more diverse samples. Metric-DST learned more robust models in the presence of selection bias for generated and real-world datasets with induced bias, as well as a molecular biology prediction task with intrinsic bias. The Metric-DST learning strategy offers a flexible and widely applicable solution to mitigate selection bias and enhance fairness of machine learning models.
comment: 18 pages main manuscript (4 main figures), 7 pages of supplementary
☆ An End-to-End Smart Predict-then-Optimize Framework for Vehicle Relocation Problems in Large-Scale Vehicle Crowd Sensing
Ubiquitous mobile devices have catalyzed the development of vehicle crowd sensing (VCS). In particular, vehicle sensing systems show great potential in the flexible acquisition of spatio-temporal urban data through built-in sensors under diverse sensing scenarios. However, vehicle systems often exhibit biased coverage due to the heterogeneous nature of trip requests and routes. To achieve a high sensing coverage, a critical challenge lies in optimally relocating vehicles to minimize the divergence between vehicle distributions and target sensing distributions. Conventional approaches typically employ a two-stage predict-then-optimize (PTO) process: first predicting real-time vehicle distributions and subsequently generating an optimal relocation strategy based on the predictions. However, this approach can lead to suboptimal decision-making due to the propagation of errors from upstream prediction. To this end, we develop an end-to-end Smart Predict-then-Optimize (SPO) framework by integrating optimization into prediction within the deep learning architecture, and the entire framework is trained by minimizing the task-specific matching divergence rather than the upstream prediction error. Methodologically, we formulate the vehicle relocation problem by quadratic programming (QP) and incorporate a novel unrolling approach based on the Alternating Direction Method of Multipliers (ADMM) within the SPO framework to compute gradients of the QP layer, facilitating backpropagation and gradient-based optimization for end-to-end learning. The effectiveness of the proposed framework is validated by real-world taxi datasets in Hong Kong. Utilizing the alternating differentiation method, the general SPO framework presents a novel concept of addressing decision-making problems with uncertainty, demonstrating significant potential for advancing applications in intelligent transportation systems.
comment: 31 pages, 12 figures
☆ MM-Path: Multi-modal, Multi-granularity Path Representation Learning -- Extended Version
Developing effective path representations has become increasingly essential across various fields within intelligent transportation. Although pre-trained path representation learning models have shown improved performance, they predominantly focus on the topological structures from single modality data, i.e., road networks, overlooking the geometric and contextual features associated with path-related images, e.g., remote sensing images. Similar to human understanding, integrating information from multiple modalities can provide a more comprehensive view, enhancing both representation accuracy and generalization. However, variations in information granularity impede the semantic alignment of road network-based paths (road paths) and image-based paths (image paths), while the heterogeneity of multi-modal data poses substantial challenges for effective fusion and utilization. In this paper, we propose a novel Multi-modal, Multi-granularity Path Representation Learning Framework (MM-Path), which can learn a generic path representation by integrating modalities from both road paths and image paths. To enhance the alignment of multi-modal data, we develop a multi-granularity alignment strategy that systematically associates nodes, road sub-paths, and road paths with their corresponding image patches, ensuring the synchronization of both detailed local information and broader global contexts. To address the heterogeneity of multi-modal data effectively, we introduce a graph-based cross-modal residual fusion component designed to comprehensively fuse information across different modalities and granularities. Finally, we conduct extensive experiments on two large-scale real-world datasets under two downstream tasks, validating the effectiveness of the proposed MM-Path. This is an extended version of the paper accepted by KDD 2025.
☆ Streamlining Prediction in Bayesian Deep Learning
The rising interest in Bayesian deep learning (BDL) has led to a plethora of methods for estimating the posterior distribution. However, efficient computation of inferences, such as predictions, has been largely overlooked with Monte Carlo integration remaining the standard. In this work we examine streamlining prediction in BDL through a single forward pass without sampling. For this we use local linearisation on activation functions and local Gaussian approximations at linear layers. Thus allowing us to analytically compute an approximation to the posterior predictive distribution. We showcase our approach for both MLP and transformers, such as ViT and GPT-2, and assess its performance on regression and classification tasks.
☆ FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving
Serving numerous users and requests concurrently requires good fairness in Large Language Models (LLMs) serving system. This ensures that, at the same cost, the system can meet the Service Level Objectives (SLOs) of more users , such as time to first token (TTFT) and time between tokens (TBT), rather than allowing a few users to experience performance far exceeding the SLOs. To achieve better fairness, the preemption-based scheduling policy dynamically adjusts the priority of each request to maintain balance during runtime. However, existing systems tend to overly prioritize throughput, overlooking the overhead caused by preemption-induced context switching, which is crucial for maintaining fairness through priority adjustments. In this work, we identify three main challenges that result in this overhead. 1) Inadequate I/O utilization. 2) GPU idleness. 3) Unnecessary I/O transmission during multi-turn conversations. Our key insight is that the block-based KV cache memory policy in existing systems, while achieving near-zero memory waste, leads to discontinuity and insufficient granularity in the KV cache memory. To respond, we introduce FastSwitch, a fairness-aware serving system that not only aligns with existing KV cache memory allocation policy but also mitigates context switching overhead. Our evaluation shows that FastSwitch outperforms the state-of-the-art LLM serving system vLLM with speedups of 1.4-11.2x across different tail TTFT and TBT.
☆ When does a bridge become an aeroplane?
Despite recent advances in population-based structural health monitoring (PBSHM), knowledge transfer between highly-disparate structures (i.e., heterogeneous populations) remains a challenge. It has been proposed that heterogeneous transfer may be accomplished via intermediate structures that bridge the gap in information between the structures of interest. A key aspect of the technique is the idea that by varying parameters such as material properties and geometry, one structure can be continuously morphed into another. The current work demonstrates the development of these interpolating structures, via case studies involving the parameterisation of (and transfer between) a simple, simulated 'bridge' and 'aeroplane'. The facetious question 'When is a bridge not an aeroplane?' has been previously asked in the context of predicting positive transfer based on structural similarity. While the obvious answer to this question is 'Always,' the current work demonstrates that in some cases positive transfer can be achieved between highly-disparate systems.
comment: Conference proceedings paper for ISMA, Sept. 2024
☆ Federated Learning with Uncertainty and Personalization via Efficient Second-order Optimization
Federated Learning (FL) has emerged as a promising method to collaboratively learn from decentralized and heterogeneous data available at different clients without the requirement of data ever leaving the clients. Recent works on FL have advocated taking a Bayesian approach to FL as it offers a principled way to account for the model and predictive uncertainty by learning a posterior distribution for the client and/or server models. Moreover, Bayesian FL also naturally enables personalization in FL to handle data heterogeneity across the different clients by having each client learn its own distinct personalized model. In particular, the hierarchical Bayesian approach enables all the clients to learn their personalized models while also taking into account the commonalities via a prior distribution provided by the server. However, despite their promise, Bayesian approaches for FL can be computationally expensive and can have high communication costs as well because of the requirement of computing and sending the posterior distributions. We present a novel Bayesian FL method using an efficient second-order optimization approach, with a computational cost that is similar to first-order optimization methods like Adam, but also provides the various benefits of the Bayesian approach for FL (e.g., uncertainty, personalization), while also being significantly more efficient and accurate than SOTA Bayesian FL methods (both for standard as well as personalized FL settings). Our method achieves improved predictive accuracies as well as better uncertainty estimates as compared to the baselines which include both optimization based as well as Bayesian FL methods.
☆ XR-MBT: Multi-modal Full Body Tracking for XR through Self-Supervision with Learned Depth Point Cloud Registration WACV 2025
Tracking the full body motions of users in XR (AR/VR) devices is a fundamental challenge to bring a sense of authentic social presence. Due to the absence of dedicated leg sensors, currently available body tracking methods adopt a synthesis approach to generate plausible motions given a 3-point signal from the head and controller tracking. In order to enable mixed reality features, modern XR devices are capable of estimating depth information of the headset surroundings using available sensors combined with dedicated machine learning models. Such egocentric depth sensing cannot drive the body directly, as it is not registered and is incomplete due to limited field-of-view and body self-occlusions. For the first time, we propose to leverage the available depth sensing signal combined with self-supervision to learn a multi-modal pose estimation model capable of tracking full body motions in real time on XR devices. We demonstrate how current 3-point motion synthesis models can be extended to point cloud modalities using a semantic point cloud encoder network combined with a residual network for multi-modal pose estimation. These modules are trained jointly in a self-supervised way, leveraging a combination of real unregistered point clouds and simulated data obtained from motion capture. We compare our approach against several state-of-the-art systems for XR body tracking and show that our method accurately tracks a diverse range of body motions. XR-MBT tracks legs in XR for the first time, whereas traditional synthesis approaches based on partial body tracking are blind.
comment: Accepted to WACV 2025
☆ Preserving Deep Representations In One-Shot Pruning: A Hessian-Free Second-Order Optimization Framework
We present SNOWS, a one-shot post-training pruning framework aimed at reducing the cost of vision network inference without retraining. Current leading one-shot pruning methods minimize layer-wise least squares reconstruction error which does not take into account deeper network representations. We propose to optimize a more global reconstruction objective. This objective accounts for nonlinear activations deep in the network to obtain a better proxy for the network loss. This nonlinear objective leads to a more challenging optimization problem -- we demonstrate it can be solved efficiently using a specialized second-order optimization framework. A key innovation of our framework is the use of Hessian-free optimization to compute exact Newton descent steps without needing to compute or store the full Hessian matrix. A distinct advantage of SNOWS is that it can be readily applied on top of any sparse mask derived from prior methods, readjusting their weights to exploit nonlinearities in deep feature representations. SNOWS obtains state-of-the-art results on various one-shot pruning benchmarks including residual networks and Vision Transformers (ViT/B-16 and ViT/L-16, 86m and 304m parameters respectively).
comment: 10 pages excl. appendix
☆ AMPS: ASR with Multimodal Paraphrase Supervision
Spontaneous or conversational multilingual speech presents many challenges for state-of-the-art automatic speech recognition (ASR) systems. In this work, we present a new technique AMPS that augments a multilingual multimodal ASR system with paraphrase-based supervision for improved conversational ASR in multiple languages, including Hindi, Marathi, Malayalam, Kannada, and Nyanja. We use paraphrases of the reference transcriptions as additional supervision while training the multimodal ASR model and selectively invoke this paraphrase objective for utterances with poor ASR performance. Using AMPS with a state-of-the-art multimodal model SeamlessM4T, we obtain significant relative reductions in word error rates (WERs) of up to 5%. We present detailed analyses of our system using both objective and human evaluation metrics.
☆ FreqX: What neural networks learn is what network designers say
Personalized Federal learning(PFL) allows clients to cooperatively train a personalized model without disclosing their private dataset. However, PFL suffers from Non-IID, heterogeneous devices, lack of fairness, and unclear contribution which urgently need the interpretability of deep learning model to overcome these challenges. These challenges proposed new demands for interpretability. Low cost, privacy, and detailed information. There is no current interpretability method satisfying them. In this paper, we propose a novel interpretability method \emph{FreqX} by introducing Signal Processing and Information Theory. Our experiments show that the explanation results of FreqX contain both attribution information and concept information. FreqX runs at least 10 times faster than the baselines which contain concept information.
comment: 16pages, 9 figures
☆ RITA: Automatic Framework for Designing of Resilient IoT Applications
Designing resilient Internet of Things (IoT) systems requires i) identification of IoT Critical Objects (ICOs) such as services, devices, and resources, ii) threat analysis, and iii) mitigation strategy selection. However, the traditional process for designing resilient IoT systems is still manual, leading to inefficiencies and increased risks. In addition, while tools such as ChatGPT could support this manual and highly error-prone process, their use raises concerns over data privacy, inconsistent outputs, and internet dependence. Therefore, we propose RITA, an automated, open-source framework that uses a fine-tuned RoBERTa-based Named Entity Recognition (NER) model to identify ICOs from IoT requirement documents, correlate threats, and recommend countermeasures. RITA operates entirely offline and can be deployed on-site, safeguarding sensitive information and delivering consistent outputs that enhance standardization. In our empirical evaluation, RITA outperformed ChatGPT in four of seven ICO categories, particularly in actuator, sensor, network resource, and service identification, using both human-annotated and ChatGPT-generated test data. These findings indicate that RITA can improve resilient IoT design by effectively supporting key security operations, offering a practical solution for developing robust IoT architectures.
☆ Mixture of Experts in Image Classification: What's the Sweet Spot?
Mixture-of-Experts (MoE) models have shown promising potential for parameter-efficient scaling across various domains. However, the implementation in computer vision remains limited, and often requires large-scale datasets comprising billions of samples. In this study, we investigate the integration of MoE within computer vision models and explore various MoE configurations on open datasets. When introducing MoE layers in image classification, the best results are obtained for models with a moderate number of activated parameters per sample. However, such improvements gradually vanish when the number of parameters per sample increases.
☆ Learning optimal objective values for MILP
Modern Mixed Integer Linear Programming (MILP) solvers use the Branch-and-Bound algorithm together with a plethora of auxiliary components that speed up the search. In recent years, there has been an explosive development in the use of machine learning for enhancing and supporting these algorithmic components. Within this line, we propose a methodology for predicting the optimal objective value, or, equivalently, predicting if the current incumbent is optimal. For this task, we introduce a predictor based on a graph neural network (GNN) architecture, together with a set of dynamic features. Experimental results on diverse benchmarks demonstrate the efficacy of our approach, achieving high accuracy in the prediction task and outperforming existing methods. These findings suggest new opportunities for integrating ML-driven predictions into MILP solvers, enabling smarter decision-making and improved performance.
☆ Application of Soft Actor-Critic Algorithms in Optimizing Wastewater Treatment with Time Delays Integration
Wastewater treatment plants face unique challenges for process control due to their complex dynamics, slow time constants, and stochastic delays in observations and actions. These characteristics make conventional control methods, such as Proportional-Integral-Derivative controllers, suboptimal for achieving efficient phosphorus removal, a critical component of wastewater treatment to ensure environmental sustainability. This study addresses these challenges using a novel deep reinforcement learning approach based on the Soft Actor-Critic algorithm, integrated with a custom simulator designed to model the delayed feedback inherent in wastewater treatment plants. The simulator incorporates Long Short-Term Memory networks for accurate multi-step state predictions, enabling realistic training scenarios. To account for the stochastic nature of delays, agents were trained under three delay scenarios: no delay, constant delay, and random delay. The results demonstrate that incorporating random delays into the reinforcement learning framework significantly improves phosphorus removal efficiency while reducing operational costs. Specifically, the delay-aware agent achieved 36% reduction in phosphorus emissions, 55% higher reward, 77% lower target deviation from the regulatory limit, and 9% lower total costs than traditional control methods in the simulated environment. These findings underscore the potential of reinforcement learning to overcome the limitations of conventional control strategies in wastewater treatment, providing an adaptive and cost-effective solution for phosphorus removal.
☆ Aligning Pre-trained Models for Spoken Language Translation
This paper investigates a novel approach to end-to-end speech translation (ST) based on aligning frozen pre-trained automatic speech recognition (ASR) and machine translation (MT) models via a small connector module (Q-Former, our Subsampler-Transformer Encoder). This connector bridges the gap between the speech and text modalities, transforming ASR encoder embeddings into the latent representation space of the MT encoder while being the only part of the system optimized during training. Experiments are conducted on the How2 English-Portuguese dataset as we investigate the alignment approach in a small-scale scenario focusing on ST. While keeping the size of the connector module constant and small in comparison ( < 5% of the size of the larger aligned models), increasing the size and capability of the foundation ASR and MT models universally improves translation results. We also find that the connectors can serve as domain adapters for the foundation MT models, significantly improving translation performance in the aligned ST setting. We conclude that this approach represents a viable and scalable approach to training end-to-end ST systems.
☆ DualCast: Disentangling Aperiodic Events from Traffic Series with a Dual-Branch Model
Traffic forecasting is an important problem in the operation and optimisation of transportation systems. State-of-the-art solutions train machine learning models by minimising the mean forecasting errors on the training data. The trained models often favour periodic events instead of aperiodic ones in their prediction results, as periodic events often prevail in the training data. While offering critical optimisation opportunities, aperiodic events such as traffic incidents may be missed by the existing models. To address this issue, we propose DualCast -- a model framework to enhance the learning capability of traffic forecasting models, especially for aperiodic events. DualCast takes a dual-branch architecture, to disentangle traffic signals into two types, one reflecting intrinsic {spatial-temporal} patterns and the other reflecting external environment contexts including aperiodic events. We further propose a cross-time attention mechanism, to capture high-order spatial-temporal relationships from both periodic and aperiodic patterns. DualCast is versatile. We integrate it with recent traffic forecasting models, consistently reducing their forecasting errors by up to 9.6% on multiple real datasets.
☆ Large Models Enabled Ubiquitous Wireless Sensing
In the era of 5G communication, the knowledge of channel state information (CSI) is crucial for enhancing network performance. This paper explores the utilization of language models for spatial CSI prediction within MIMO-OFDM systems. We begin by outlining the significance of accurate CSI in enabling advanced functionalities such as adaptive modulation. We review existing methodologies for CSI estimation, emphasizing the shift from traditional to data-driven approaches. Then a novel framework for spatial CSI prediction using realistic environment information is proposed, and experimental results demonstrate the effectiveness. This research paves way for innovative strategies in managing wireless networks.
comment: 8 pages, 11 figures
☆ Break the ID-Language Barrier: An Adaption Framework for Sequential Recommendation
The recent breakthrough of large language models (LLMs) in natural language processing has sparked exploration in recommendation systems, however, their limited domain-specific knowledge remains a critical bottleneck. Specifically, LLMs lack key pieces of information crucial for sequential recommendations, such as user behavior patterns. To address this critical gap, we propose IDLE-Adapter, a novel framework that integrates pre-trained ID embeddings, rich in domain-specific knowledge, into LLMs to improve recommendation accuracy. IDLE-Adapter acts as a bridge, transforming sparse user-item interaction data into dense, LLM-compatible representations through a Pre-trained ID Sequential Model, Dimensionality Alignment, Layer-wise Embedding Refinement, and Layer-wise Distribution Alignment. Furthermore, IDLE-Adapter demonstrates remarkable flexibility by seamlessly integrating ID embeddings from diverse ID-based sequential models and LLM architectures. Extensive experiments across various datasets demonstrate the superiority of IDLE-Adapter, achieving over 10\% and 20\% improvements in HitRate@5 and NDCG@5 metrics, respectively, compared to state-of-the-art methods.
☆ Dynamic Retail Pricing via Q-Learning -- A Reinforcement Learning Framework for Enhanced Revenue Management
This paper explores the application of a reinforcement learning (RL) framework using the Q-Learning algorithm to enhance dynamic pricing strategies in the retail sector. Unlike traditional pricing methods, which often rely on static demand models, our RL approach continuously adapts to evolving market dynamics, offering a more flexible and responsive pricing strategy. By creating a simulated retail environment, we demonstrate how RL effectively addresses real-time changes in consumer behavior and market conditions, leading to improved revenue outcomes. Our results illustrate that the RL model not only surpasses traditional methods in terms of revenue generation but also provides insights into the complex interplay of price elasticity and consumer demand. This research underlines the significant potential of applying artificial intelligence in economic decision-making, paving the way for more sophisticated, data-driven pricing models in various commercial domains.
comment: This paper has been accepted for presentation at the 1st IEEE International Conference on AIML-Applications for Engineering & Technology (ICAET-25)
☆ Transfer Learning for Deep Learning-based Prediction of Lattice Thermal Conductivity
Machine learning promises to accelerate the material discovery by enabling high-throughput prediction of desirable macro-properties from atomic-level descriptors or structures. However, the limited data available about precise values of these properties have been a barrier, leading to predictive models with limited precision or the ability to generalize. This is particularly true of lattice thermal conductivity (LTC): existing datasets of precise (ab initio, DFT-based) computed values are limited to a few dozen materials with little variability. Based on such datasets, we study the impact of transfer learning on both the precision and generalizability of a deep learning model (ParAIsite). We start from an existing model (MEGNet~\cite{Chen2019}) and show that improvements are obtained by fine-tuning a pre-trained version on different tasks. Interestingly, we also show that a much greater improvement is obtained when first fine-tuning it on a large datasets of low-quality approximations of LTC (based on the AGL model) and then applying a second phase of fine-tuning with our high-quality, smaller-scale datasets. The promising results obtained pave the way not only towards a greater ability to explore large databases in search of low thermal conductivity materials but also to methods enabling increasingly precise predictions in areas where quality data are rare.
☆ Active partitioning: inverting the paradigm of active learning
Datasets often incorporate various functional patterns related to different aspects or regimes, which are typically not equally present throughout the dataset. We propose a novel, general-purpose partitioning algorithm that utilizes competition between models to detect and separate these functional patterns. This competition is induced by multiple models iteratively submitting their predictions for the dataset, with the best prediction for each data point being rewarded with training on that data point. This reward mechanism amplifies each model's strengths and encourages specialization in different patterns. The specializations can then be translated into a partitioning scheme. The amplification of each model's strengths inverts the active learning paradigm: while active learning typically focuses the training of models on their weaknesses to minimize the number of required training data points, our concept reinforces the strengths of each model, thus specializing them. We validate our concept -- called active partitioning -- with various datasets with clearly distinct functional patterns, such as mechanical stress and strain data in a porous structure. The active partitioning algorithm produces valuable insights into the datasets' structure, which can serve various further applications. As a demonstration of one exemplary usage, we set up modular models consisting of multiple expert models, each learning a single partition, and compare their performance on more than twenty popular regression problems with single models learning all partitions simultaneously. Our results show significant improvements, with up to 54% loss reduction, confirming our partitioning algorithm's utility.
Multimodal Integration of Longitudinal Noninvasive Diagnostics for Survival Prediction in Immunotherapy Using Deep Learning
Purpose: Analyzing noninvasive longitudinal and multimodal data using artificial intelligence could potentially transform immunotherapy for cancer patients, paving the way towards precision medicine. Methods: In this study, we integrated pre- and on-treatment blood measurements, prescribed medications and CT-based volumes of organs from a large pan-cancer cohort of 694 patients treated with immunotherapy to predict short and long-term overall survival. By leveraging a combination of recent developments, different variants of our extended multimodal transformer-based simple temporal attention (MMTSimTA) network were trained end-to-end to predict mortality at three, six, nine and twelve months. These models were also compared to baseline methods incorporating intermediate and late fusion based integration methods. Results: The strongest prognostic performance was demonstrated using the extended transformer-based multimodal model with area under the curves (AUCs) of $0.84 \pm $0.04, $0.83 \pm $0.02, $0.82 \pm $0.02, $0.81 \pm $0.03 for 3-, 6-, 9-, and 12-month survival prediction, respectively. Conclusion: Our findings suggest that analyzing integrated early treatment data has potential for predicting survival of immunotherapy patients. Integrating complementary noninvasive modalities into a jointly trained model, using our extended transformer-based architecture, demonstrated an improved multimodal prognostic performance, especially in short term survival prediction.
☆ IKUN: Initialization to Keep snn training and generalization great with sUrrogate-stable variaNce
Weight initialization significantly impacts the convergence and performance of neural networks. While traditional methods like Xavier and Kaiming initialization are widely used, they often fall short for spiking neural networks (SNNs), which have distinct requirements compared to artificial neural networks (ANNs). To address this, we introduce \textbf{IKUN}, a variance-stabilizing initialization method integrated with surrogate gradient functions, specifically designed for SNNs. \textbf{IKUN} stabilizes signal propagation, accelerates convergence, and enhances generalization. Experiments show \textbf{IKUN} improves training efficiency by up to \textbf{50\%}, achieving \textbf{95\%} training accuracy and \textbf{91\%} generalization accuracy. Hessian analysis reveals that \textbf{IKUN}-trained models converge to flatter minima, characterized by Hessian eigenvalues near zero on the positive side, promoting better generalization. The method is open-sourced for further exploration: \href{https://github.com/MaeChd/SurrogateVarStabe}{https://github.com/MaeChd/SurrogateVarStabe}.
☆ A gentle push funziona benissimo: making instructed models in Italian via contrastive activation steering
Adapting models to a language that was only partially present in the pre-training data requires fine-tuning, which is expensive in terms of both data and computational resources. As an alternative to fine-tuning, we explore the potential of activation steering-based techniques to enhance model performance on Italian tasks. Through our experiments we show that Italian steering (i) can be successfully applied to different models, (ii) achieves performances comparable to, or even better than, fine-tuned models for Italian, and (iii) yields higher quality and consistency in Italian generations. We also discuss the utility of steering and fine-tuning in the contemporary LLM landscape where models are anyway getting high Italian performances even if not explicitly trained in this language.
☆ Certified Training with Branch-and-Bound: A Case Study on Lyapunov-stable Neural Control
We study the problem of learning Lyapunov-stable neural controllers which provably satisfy the Lyapunov asymptotic stability condition within a region-of-attraction. Compared to previous works which commonly used counterexample guided training on this task, we develop a new and generally formulated certified training framework named CT-BaB, and we optimize for differentiable verified bounds, to produce verification-friendly models. In order to handle the relatively large region-of-interest, we propose a novel framework of training-time branch-and-bound to dynamically maintain a training dataset of subregions throughout training, such that the hardest subregions are iteratively split into smaller ones whose verified bounds can be computed more tightly to ease the training. We demonstrate that our new training framework can produce models which can be more efficiently verified at test time. On the largest 2D quadrotor dynamical system, verification for our model is more than 5X faster compared to the baseline, while our size of region-of-attraction is 16X larger than the baseline.
comment: Preprint
☆ Randomized-Grid Search for Hyperparameter Tuning in Decision Tree Model to Improve Performance of Cardiovascular Disease Classification
Cardiovascular disease refers to any critical condition that impacts the heart. Because heart diseases can be life-threatening. Researchers are focusing on designing smart systems to accurately diagnose them based on electronic health data, with the aid of machine learning algorithms. Heart disease classification using machine learning (ML) algorithms such as Support Vector Machine(SVM), Na\"ive Bayes(NB), Decision Trees (DTs) and Random Forests (RFs) are often hindered by overfitting. These ML algorithms need extensive hyperparameter tuning. Random Search offers a faster, and, more efficient exploration of hyperparameter space, but, it may overlook optimal regions. Grid Search, though exhaustive, but, it is computationally expensive and inefficient, particularly with high-dimensional data. To address these limitations, Randomized-Grid Search, a novel hybrid optimization method is proposed that combines the global exploration strengths of Random Search with the focused, and, exhaustive search of Grid Search in the most promising regions. This hybrid approach efficiently balances exploration and exploitation. The proposed model optimizes the hyperparameter for Decision Tree model. The proposed model is applied to UCI heart disease dataset for classification. It enhances model performance, provides improved accuracy, generalization, and computational efficiency. Experimental results demonstrate that Randomized-Grid Search outperforms traditional methods by significant margins. The proposed model provides a more effective solution for machine learning applications in healthcare diagnosis.
☆ Machine learning-based classification for Single Photon Space Debris Light Curves
The growing number of man-made debris in Earth's orbit poses a threat to active satellite missions due to the risk of collision. Characterizing unknown debris is, therefore, of high interest. Light Curves (LCs) are temporal variations of object brightness and have been shown to contain information such as shape, attitude, and rotational state. Since 2015, the Satellite Laser Ranging (SLR) group of Space Research Institute (IWF) Graz has been building a space debris LC catalogue. The LCs are captured on a Single Photon basis, which sets them apart from CCD-based measurements. In recent years, Machine Learning (ML) models have emerged as a viable technique for analyzing LCs. This work aims to classify Single Photon Space Debris using the ML framework. We have explored LC classification using k-Nearest Neighbour (k-NN), Random Forest (RDF), XGBoost (XGB), and Convolutional Neural Network (CNN) classifiers in order to assess the difference in performance between traditional and deep models. Instead of performing classification on the direct LCs data, we extracted features from the data first using an automated pipeline. We apply our models on three tasks, which are classifying individual objects, objects grouped into families according to origin (e.g., GLONASS satellites), and grouping into general types (e.g., rocket bodies). We successfully classified Space Debris LCs captured on Single Photon basis, obtaining accuracies as high as 90.7%. Further, our experiments show that the classifiers provide better classification accuracy with automated extracted features than other methods.
☆ Feature-Factory: Automating Software Feature Integration Using Generative AI
Integrating new features into existing software projects can be a complex and time-consuming process. Feature-Factory leverages Generative AI with WatsonX.ai to automate the analysis, planning, and implementation of feature requests. By combining advanced project parsing, dependency resolution, and AI-generated code, the program ensures seamless integration of features into software systems while maintaining structural integrity. This paper presents the methodology, mathematical model, and results of the Feature-Factory framework.
comment: 14 pages, 1 figure
☆ R-MTLLMF: Resilient Multi-Task Large Language Model Fusion at the Wireless Edge
Multi-task large language models (MTLLMs) are important for many applications at the wireless edge, where users demand specialized models to handle multiple tasks efficiently. However, training MTLLMs is complex and exhaustive, particularly when tasks are subject to change. Recently, the concept of model fusion via task vectors has emerged as an efficient approach for combining fine-tuning parameters to produce an MTLLM. In this paper, the problem of enabling edge users to collaboratively craft such MTTLMs via tasks vectors is studied, under the assumption of worst-case adversarial attacks. To this end, first the influence of adversarial noise to multi-task model fusion is investigated and a relationship between the so-called weight disentanglement error and the mean squared error (MSE) is derived. Using hypothesis testing, it is directly shown that the MSE increases interference between task vectors, thereby rendering model fusion ineffective. Then, a novel resilient MTLLM fusion (R-MTLLMF) is proposed, which leverages insights about the LLM architecture and fine-tuning process to safeguard task vector aggregation under adversarial noise by realigning the MTLLM. The proposed R-MTLLMF is then compared for both worst-case and ideal transmission scenarios to study the impact of the wireless channel. Extensive model fusion experiments with vision LLMs demonstrate R-MTLLMF's effectiveness, achieving close-to-baseline performance across eight different tasks in ideal noise scenarios and significantly outperforming unprotected model fusion in worst-case scenarios. The results further advocate for additional physical layer protection for a holistic approach to resilience, from both a wireless and LLM perspective.
☆ Evaluating and Improving the Robustness of Security Attack Detectors Generated by LLMs
Large Language Models (LLMs) are increasingly used in software development to generate functions, such as attack detectors, that implement security requirements. However, LLMs struggle to generate accurate code, resulting, e.g., in attack detectors that miss well-known attacks when used in practice. This is most likely due to the LLM lacking knowledge about some existing attacks and to the generated code being not evaluated in real usage scenarios. We propose a novel approach integrating Retrieval Augmented Generation (RAG) and Self-Ranking into the LLM pipeline. RAG enhances the robustness of the output by incorporating external knowledge sources, while the Self-Ranking technique, inspired to the concept of Self-Consistency, generates multiple reasoning paths and creates ranks to select the most robust detector. Our extensive empirical study targets code generated by LLMs to detect two prevalent injection attacks in web security: Cross-Site Scripting (XSS) and SQL injection (SQLi). Results show a significant improvement in detection performance compared to baselines, with an increase of up to 71%pt and 37%pt in the F2-Score for XSS and SQLi detection, respectively.
☆ SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought
Path planning is a complex problem for many practical applications, particularly in robotics. Existing algorithms, however, are exhaustive in nature and become increasingly complex when additional side constraints are incorporated alongside distance minimization. In this paper, a novel approach using vision language models (VLMs) is proposed for enabling path planning in complex wireless-aware environments. To this end, insights from a digital twin (DT) with real-world wireless ray tracing data are explored in order to guarantee an average path gain threshold while minimizing the trajectory length. First, traditional approaches such as A* are compared to several wireless-aware extensions, and an optimal iterative dynamic programming approach (DP-WA*) is derived, which fully takes into account all path gains and distance metrics within the DT. On the basis of these baselines, the role of VLMs as an alternative assistant for path planning is investigated, and a strategic chain-of-thought tasking (SCoTT) approach is proposed. SCoTT divides the complex planning task into several subproblems and solves each with advanced CoT prompting. Results show that SCoTT achieves very close average path gains compared to DP-WA* while at the same time yielding consistently shorter path lengths. The results also show that VLMs can be used to accelerate DP-WA* by efficiently reducing the algorithm's search space and thus saving up to 62\% in execution time. This work underscores the potential of VLMs in future digital systems as capable assistants for solving complex tasks, while enhancing user interaction and accelerating rapid prototyping under diverse wireless constraints.
☆ Learning for Long-Horizon Planning via Neuro-Symbolic Abductive Imitation
Recent learning-to-imitation methods have shown promising results in planning via imitating within the observation-action space. However, their ability in open environments remains constrained, particularly in long-horizon tasks. In contrast, traditional symbolic planning excels in long-horizon tasks through logical reasoning over human-defined symbolic spaces but struggles to handle observations beyond symbolic states, such as high-dimensional visual inputs encountered in real-world scenarios. In this work, we draw inspiration from abductive learning and introduce a novel framework \textbf{AB}ductive \textbf{I}mitation \textbf{L}earning (ABIL) that integrates the benefits of data-driven learning and symbolic-based reasoning, enabling long-horizon planning. Specifically, we employ abductive reasoning to understand the demonstrations in symbolic space and design the principles of sequential consistency to resolve the conflicts between perception and reasoning. ABIL generates predicate candidates to facilitate the perception from raw observations to symbolic space without laborious predicate annotations, providing a groundwork for symbolic planning. With the symbolic understanding, we further develop a policy ensemble whose base policies are built with different logical objectives and managed through symbolic reasoning. Experiments show that our proposal successfully understands the observations with the task-relevant symbolics to assist the imitation learning. Importantly, ABIL demonstrates significantly improved data efficiency and generalization across various long-horizon tasks, highlighting it as a promising solution for long-horizon planning. Project website: \url{https://www.lamda.nju.edu.cn/shaojj/KDD25_ABIL/}.
comment: Accepted by KDD2025. The KDD version is titled ''Abductive Learning for Neuro-Symbolic Grounded Imitation''
☆ Semantic Edge Computing and Semantic Communications in 6G Networks: A Unifying Survey and Research Challenges
Semantic Edge Computing (SEC) and Semantic Communications (SemComs) have been proposed as viable approaches to achieve real-time edge-enabled intelligence in sixth-generation (6G) wireless networks. On one hand, SemCom leverages the strength of Deep Neural Networks (DNNs) to encode and communicate the semantic information only, while making it robust to channel distortions by compensating for wireless effects. Ultimately, this leads to an improvement in the communication efficiency. On the other hand, SEC has leveraged distributed DNNs to divide the computation of a DNN across different devices based on their computational and networking constraints. Although significant progress has been made in both fields, the literature lacks a systematic view to connect both fields. In this work, we fulfill the current gap by unifying the SEC and SemCom fields. We summarize the research problems in these two fields and provide a comprehensive review of the state of the art with a focus on their technical strengths and challenges.
comment: Submitted to ACM Computing Surveys (CSUR)
☆ Scalable Multi-Objective Reinforcement Learning with Fairness Guarantees using Lorenz Dominance
Multi-Objective Reinforcement Learning (MORL) aims to learn a set of policies that optimize trade-offs between multiple, often conflicting objectives. MORL is computationally more complex than single-objective RL, particularly as the number of objectives increases. Additionally, when objectives involve the preferences of agents or groups, ensuring fairness is socially desirable. This paper introduces a principled algorithm that incorporates fairness into MORL while improving scalability to many-objective problems. We propose using Lorenz dominance to identify policies with equitable reward distributions and introduce {\lambda}-Lorenz dominance to enable flexible fairness preferences. We release a new, large-scale real-world transport planning environment and demonstrate that our method encourages the discovery of fair policies, showing improved scalability in two large cities (Xi'an and Amsterdam). Our methods outperform common multi-objective approaches, particularly in high-dimensional objective spaces.
comment: 29 pages
☆ Machine Unlearning reveals that the Gender-based Violence Victim Condition can be detected from Speech in a Speaker-Agnostic Setting
This study addresses the critical issue of gender-based violence's (GBV) impact on women's mental health. GBV, encompassing physical and sexual aggression, often results in long-lasting adverse effects for the victims, including anxiety, depression, post-traumatic stress disorder (PTSD), and substance abuse. Artificial Intelligence (AI)-based speech technologies have proven valuable for mental health assessments. However, these technologies experience performance challenges when confronted with speakers whose data has not been used for training. Our research presents a novel approach to speaker-agnostic detection of the gender-based violence victim condition (GBVVC), focusing on the development of robust AI models capable of generalization across diverse speakers. Leveraging advanced deep learning models and domain-adversarial training techniques, we minimize speaker identity's influence, achieving a 26.95% relative reduction in speaker identification ability while enhancing the GBVVC detection by a 6.37% relative improvement in the accuracy. This shows that models can focus on discriminative paralinguistic biomarkers that enhance the GBVVC prediction, and reduce the subject-specific traits' impact. Additionally, our model's predictions moderately correlate with pre-clinical PTSD symptoms, emphasizing the link between GBV and mental health. This work paves the way for AI-powered tools to aid mental health professionals in addressing this societal issue, offering a promising baseline for further research.
☆ RPEE-HEADS: A Novel Benchmark for Pedestrian Head Detection in Crowd Videos
The automatic detection of pedestrian heads in crowded environments is essential for crowd analysis and management tasks, particularly in high-risk settings such as railway platforms and event entrances. These environments, characterized by dense crowds and dynamic movements, are underrepresented in public datasets, posing challenges for existing deep learning models. To address this gap, we introduce the Railway Platforms and Event Entrances-Heads (RPEE-Heads) dataset, a novel, diverse, high-resolution, and accurately annotated resource. It includes 109,913 annotated pedestrian heads across 1,886 images from 66 video recordings, with an average of 56.2 heads per image. Annotations include bounding boxes for visible head regions. In addition to introducing the RPEE-Heads dataset, this paper evaluates eight state-of-the-art object detection algorithms using the RPEE-Heads dataset and analyzes the impact of head size on detection accuracy. The experimental results show that You Only Look Once v9 and Real-Time Detection Transformer outperform the other algorithms, achieving mean average precisions of 90.7% and 90.8%, with inference times of 11 and 14 milliseconds, respectively. Moreover, the findings underscore the need for specialized datasets like RPEE-Heads for training and evaluating accurate models for head detection in railway platforms and event entrances. The dataset and pretrained models are available at https://doi.org/10.34735/ped.2024.2.
comment: 17 pages, 8 figures, 7 tables
☆ A Runtime-Adaptive Transformer Neural Network Accelerator on FPGAs
Transformer neural networks (TNN) excel in natural language processing (NLP), machine translation, and computer vision (CV) without relying on recurrent or convolutional layers. However, they have high computational and memory demands, particularly on resource-constrained devices like FPGAs. Moreover, transformer models vary in processing time across applications, requiring custom models with specific parameters. Designing custom accelerators for each model is complex and time-intensive. Some custom accelerators exist with no runtime adaptability, and they often rely on sparse matrices to reduce latency. However, hardware designs become more challenging due to the need for application-specific sparsity patterns. This paper introduces ADAPTOR, a runtime-adaptive accelerator for dense matrix computations in transformer encoders and decoders on FPGAs. ADAPTOR enhances the utilization of processing elements and on-chip memory, enhancing parallelism and reducing latency. It incorporates efficient matrix tiling to distribute resources across FPGA platforms and is fully quantized for computational efficiency and portability. Evaluations on Xilinx Alveo U55C data center cards and embedded platforms like VC707 and ZCU102 show that our design is 1.2$\times$ and 2.87$\times$ more power efficient than the NVIDIA K80 GPU and the i7-8700K CPU respectively. Additionally, it achieves a speedup of 1.7 to 2.25$\times$ compared to some state-of-the-art FPGA-based accelerators.
comment: arXiv admin note: text overlap with arXiv:2409.14023
☆ Online Knowledge Integration for 3D Semantic Mapping: A Survey
Semantic mapping is a key component of robots operating in and interacting with objects in structured environments. Traditionally, geometric and knowledge representations within a semantic map have only been loosely integrated. However, recent advances in deep learning now allow full integration of prior knowledge, represented as knowledge graphs or language concepts, into sensor data processing and semantic mapping pipelines. Semantic scene graphs and language models enable modern semantic mapping approaches to incorporate graph-based prior knowledge or to leverage the rich information in human language both during and after the mapping process. This has sparked substantial advances in semantic mapping, leading to previously impossible novel applications. This survey reviews these recent developments comprehensively, with a focus on online integration of knowledge into semantic mapping. We specifically focus on methods using semantic scene graphs for integrating symbolic prior knowledge and language models for respective capture of implicit common-sense knowledge and natural language concepts
comment: Submitted to Robotics and Autonomous Systems
☆ Predicting Water Quality using Quantum Machine Learning: The Case of the Umgeni Catchment (U20A) Study Region
In this study, we consider a real-world application of QML techniques to study water quality in the U20A region in Durban, South Africa. Specifically, we applied the quantum support vector classifier (QSVC) and quantum neural network (QNN), and we showed that the QSVC is easier to implement and yields a higher accuracy. The QSVC models were applied for three kernels: Linear, polynomial, and radial basis function (RBF), and it was shown that the polynomial and RBF kernels had exactly the same performance. The QNN model was applied using different optimizers, learning rates, noise on the circuit components, and weight initializations were considered, but the QNN persistently ran into the dead neuron problem. Thus, the QNN was compared only by accraucy and loss, and it was shown that with the Adam optimizer, the model has the best performance, however, still less than the QSVC.
comment: 13 pages, 3 figures
☆ A Machine Learning-based Framework towards Assessment of Decision-Makers' Biases
Biased human decisions have consequential impacts across various domains, yielding unfair treatment of individuals and resulting in suboptimal outcomes for organizations and society. In recognition of this fact, organizations regularly design and deploy interventions aimed at mitigating these biases. However, measuring human decision biases remains an important but elusive task. Organizations are frequently concerned with mistaken decisions disproportionately affecting one group. In practice, however, this is typically not possible to assess due to the scarcity of a gold standard: a label that indicates what the correct decision would have been. In this work, we propose a machine learning-based framework to assess bias in human-generated decisions when gold standard labels are scarce. We provide theoretical guarantees and empirical evidence demonstrating the superiority of our method over existing alternatives. This proposed methodology establishes a foundation for transparency in human decision-making, carrying substantial implications for managerial duties, and offering potential for alleviating algorithmic biases when human decisions are used as labels to train algorithms.
☆ The Bigger the Better? Accurate Molecular Potential Energy Surfaces from Minimalist Neural Networks
Atomistic simulations are a powerful tool for studying the dynamics of molecules, proteins, and materials on wide time and length scales. Their reliability and predictiveness, however, depend directly on the accuracy of the underlying potential energy surface (PES). Guided by the principle of parsimony this work introduces KerNN, a combined kernel/neural network-based approach to represent molecular PESs. Compared to state-of-the-art neural network PESs the number of learnable parameters of KerNN is significantly reduced. This speeds up training and evaluation times by several orders of magnitude while retaining high prediction accuracy. Importantly, using kernels as the features also improves the extrapolation capabilities of KerNN far beyond the coverage provided by the training data which solves a general problem of NN-based PESs. KerNN applied to spectroscopy and reaction dynamics shows excellent performance on test set statistics and observables including vibrational bands computed from classical and quantum simulations.
☆ Training and Evaluating Language Models with Template-based Data Generation
The rapid advancement of large language models (LLMs) such as GPT-3, PaLM, and Llama has significantly transformed natural language processing, showcasing remarkable capabilities in understanding and generating language. However, these models often struggle with tasks requiring complex reasoning, particularly in mathematical problem-solving, due in part to the scarcity of large-scale, high-quality, domain-specific datasets necessary for training sophisticated reasoning abilities. To address this limitation, we introduce Template-based Data Generation (TDG), a novel approach that leverages LLMs (GPT-4) to automatically generate parameterized meta-templates, which are then used to synthesize a vast array of high-quality problems and solutions. Leveraging TDG, we create TemplateMath Part I: TemplateGSM, a dataset comprising over 7 million synthetically generated grade school math problems--each accompanied by code-based and natural language solutions--with the potential to generate an effectively unlimited number more. This dataset alleviates the scarcity of large-scale mathematical datasets and serves as a valuable resource for pre-training, fine-tuning, and evaluating LLMs in mathematical reasoning. Our method not only enables the generation of virtually infinite data but also elevates data augmentation to a new level by using GPT-4 for meta-template generation, ensuring diverse and high-quality problem structures. The TemplateMath Part I: TemplateGSM dataset is publicly available at https://huggingface.co/datasets/math-ai/TemplateGSM. The code is available at https://github.com/iiis-ai/TemplateMath.
comment: 8 pages, 2 figures
☆ Aligning Knowledge Concepts to Whole Slide Images for Precise Histopathology Image Analysis
Due to the large size and lack of fine-grained annotation, Whole Slide Images (WSIs) analysis is commonly approached as a Multiple Instance Learning (MIL) problem. However, previous studies only learn from training data, posing a stark contrast to how human clinicians teach each other and reason about histopathologic entities and factors. Here we present a novel knowledge concept-based MIL framework, named ConcepPath to fill this gap. Specifically, ConcepPath utilizes GPT-4 to induce reliable diseasespecific human expert concepts from medical literature, and incorporate them with a group of purely learnable concepts to extract complementary knowledge from training data. In ConcepPath, WSIs are aligned to these linguistic knowledge concepts by utilizing pathology vision-language model as the basic building component. In the application of lung cancer subtyping, breast cancer HER2 scoring, and gastric cancer immunotherapy-sensitive subtyping task, ConcepPath significantly outperformed previous SOTA methods which lack the guidance of human expert knowledge.
☆ Derivation of Closed Form of Expected Improvement for Gaussian Process Trained on Log-Transformed Objective
Expected Improvement (EI) is arguably the most widely used acquisition function in Bayesian optimization. However, it is often challenging to enhance the performance with EI due to its sensitivity to numerical precision. Previously, Hutter et al. (2009) tackled this problem by using Gaussian process trained on the log-transformed objective function and it was reported that this trick improves the predictive accuracy of GP, leading to substantially better performance. Although Hutter et al. (2009) offered the closed form of their EI, its intermediate derivation has not been provided so far. In this paper, we give a friendly derivation of their proposition.
☆ Pushing the Limits of LLM Inference via 2-Bit Layer-Discriminative KV Cache
How to efficiently serve LLMs in practice has become exceptionally challenging due to their prohibitive memory and computation requirements. In this study, we investigate optimizing the KV cache, whose memory footprint poses a critical bottleneck in LLM inference, especially when dealing with long context tasks. To tackle the challenge, we introduce MiniKV, a KV cache optimization method that simultaneously preserves long context task accuracy while significantly reducing KV cache size via a novel 2-bit layer-discriminative KV cache. More importantly, we develop specialized CUDA kernels to make MiniKV compatible with FlashAttention. Experiments on a wide range of long context tasks show that MiniKV effectively achieves 86% KV cache compression ratio while recovering over 98.5% of accuracy, outperforming state-of-the-art methods while achieving excellent measured system performance improvements.
☆ Large Scale Evaluation of Deep Learning-based Explainable Solar Flare Forecasting Models with Attribution-based Proximity Analysis
Accurate and reliable predictions of solar flares are essential due to their potentially significant impact on Earth and space-based infrastructure. Although deep learning models have shown notable predictive capabilities in this domain, current evaluations often focus on accuracy while neglecting interpretability and reliability--factors that are especially critical in operational settings. To address this gap, we propose a novel proximity-based framework for analyzing post hoc explanations to assess the interpretability of deep learning models for solar flare prediction. Our study compares two models trained on full-disk line-of-sight (LoS) magnetogram images to predict $\geq$M-class solar flares within a 24-hour window. We employ the Guided Gradient-weighted Class Activation Mapping (Guided Grad-CAM) method to generate attribution maps from these models, which we then analyze to gain insights into their decision-making processes. To support the evaluation of explanations in operational systems, we introduce a proximity-based metric that quantitatively assesses the accuracy and relevance of local explanations when regions of interest are known. Our findings indicate that the models' predictions align with active region characteristics to varying degrees, offering valuable insights into their behavior. This framework enhances the evaluation of model interpretability in solar flare forecasting and supports the development of more transparent and reliable operational systems.
comment: This is a preprint accepted at IEEE International Conference on Big Data 2024( IEEE BigData 2024) Conference
☆ Mortality Prediction of Pulmonary Embolism Patients with Deep Learning and XGBoost
Pulmonary Embolism (PE) is a serious cardiovascular condition that remains a leading cause of mortality and critical illness, underscoring the need for enhanced diagnostic strategies. Conventional clinical methods have limited success in predicting 30-day in-hospital mortality of PE patients. In this study, we present a new algorithm, called PEP-Net, for 30-day mortality prediction of PE patients based on the initial imaging data (CT) that opportunistically integrates a 3D Residual Network (3DResNet) with Extreme Gradient Boosting (XGBoost) algorithm with patient level binary labels without annotations of the emboli and its extent. Our proposed system offers a comprehensive prediction strategy by handling class imbalance problems, reducing overfitting via regularization, and reducing the prediction variance for more stable predictions. PEP-Net was tested in a cohort of 193 volumetric CT scans diagnosed with Acute PE, and it demonstrated a superior performance by significantly outperforming baseline models (76-78\%) with an accuracy of 94.5\% (+/-0.3) and 94.0\% (+/-0.7) when the input image is either lung region (Lung-ROI) or heart region (Cardiac-ROI). Our results advance PE prognostics by using only initial imaging data, setting a new benchmark in the field. While purely deep learning models have become the go-to for many medical classification (diagnostic) tasks, combined ResNet and XGBoost models herein outperform sole deep learning models due to a potential reason for having lack of enough data.
comment: Published at IEEE ICECCME 2024, Maldives, 4-6 November 2024
☆ ORIS: Online Active Learning Using Reinforcement Learning-based Inclusive Sampling for Robust Streaming Analytics System
Effective labeled data collection plays a critical role in developing and fine-tuning robust streaming analytics systems. However, continuously labeling documents to filter relevant information poses significant challenges like limited labeling budget or lack of high-quality labels. There is a need for efficient human-in-the-loop machine learning (HITL-ML) design to improve streaming analytics systems. One particular HITL- ML approach is online active learning, which involves iteratively selecting a small set of the most informative documents for labeling to enhance the ML model performance. The performance of such algorithms can get affected due to human errors in labeling. To address these challenges, we propose ORIS, a method to perform Online active learning using Reinforcement learning-based Inclusive Sampling of documents for labeling. ORIS aims to create a novel Deep Q-Network-based strategy to sample incoming documents that minimize human errors in labeling and enhance the ML model performance. We evaluate the ORIS method on emotion recognition tasks, and it outperforms traditional baselines in terms of both human labeling performance and the ML model performance.
comment: To appear in 2024 IEEE International Conference on Big Data (IEEE BigData 2024)
☆ FAMES: Fast Approximate Multiplier Substitution for Mixed-Precision Quantized DNNs--Down to 2 Bits!
A widely-used technique in designing energy-efficient deep neural network (DNN) accelerators is quantization. Recent progress in this direction has reduced the bitwidths used in DNN down to 2. Meanwhile, many prior works apply approximate multipliers (AppMuls) in designing DNN accelerators to lower their energy consumption. Unfortunately, these works still assume a bitwidth much larger than 2, which falls far behind the state-of-the-art in quantization area and even challenges the meaningfulness of applying AppMuls in DNN accelerators, since a high-bitwidth AppMul consumes much more energy than a low-bitwidth exact multiplier! Thus, an important problem to study is: Can approximate multipliers be effectively applied to quantized DNN models with very low bitwidths? In this work, we give an affirmative answer to this question and present a systematic solution that achieves the answer: FAMES, a fast approximate multiplier substitution method for mixed-precision DNNs. Our experiments demonstrate an average 28.67% energy reduction on state-of-the-art mixed-precision quantized models with bitwidths as low as 2 bits and accuracy losses kept under 1%. Additionally, our approach is up to 300x faster than previous genetic algorithm-based methods.
☆ Using different sources of ground truths and transfer learning to improve the generalization of photometric redshift estimation NeurIPS 2024
In this work, we explore methods to improve galaxy redshift predictions by combining different ground truths. Traditional machine learning models rely on training sets with known spectroscopic redshifts, which are precise but only represent a limited sample of galaxies. To make redshift models more generalizable to the broader galaxy population, we investigate transfer learning and directly combining ground truth redshifts derived from photometry and spectroscopy. We use the COSMOS2020 survey to create a dataset, TransferZ, which includes photometric redshift estimates derived from up to 35 imaging filters using template fitting. This dataset spans a wider range of galaxy types and colors compared to spectroscopic samples, though its redshift estimates are less accurate. We first train a base neural network on TransferZ and then refine it using transfer learning on a dataset of galaxies with more precise spectroscopic redshifts (GalaxiesML). In addition, we train a neural network on a combined dataset of TransferZ and GalaxiesML. Both methods reduce bias by $\sim$ 5x, RMS error by $\sim$ 1.5x, and catastrophic outlier rates by 1.3x on GalaxiesML, compared to a baseline trained only on TransferZ. However, we also find a reduction in performance for RMS and bias when evaluated on TransferZ data. Overall, our results demonstrate these approaches can meet cosmological requirements.
comment: 10 pages, 4 figures, 2 tables, accepted to NeurIPS 2024 Workshop ML4PS
☆ RL for Mitigating Cascading Failures: Targeted Exploration via Sensitivity Factors
Electricity grid's resiliency and climate change strongly impact one another due to an array of technical and policy-related decisions that impact both. This paper introduces a physics-informed machine learning-based framework to enhance grid's resiliency. Specifically, when encountering disruptive events, this paper designs remedial control actions to prevent blackouts. The proposed Physics-Guided Reinforcement Learning (PG-RL) framework determines effective real-time remedial line-switching actions, considering their impact on power balance, system security, and grid reliability. To identify an effective blackout mitigation policy, PG-RL leverages power-flow sensitivity factors to guide the RL exploration during agent training. Comprehensive evaluations using the Grid2Op platform demonstrate that incorporating physical signals into RL significantly improves resource utilization within electric grids and achieves better blackout mitigation policies - both of which are critical in addressing climate change.
☆ Heterogeneous Relationships of Subjects and Shapelets for Semi-supervised Multivariate Series Classification
Multivariate time series (MTS) classification is widely applied in fields such as industry, healthcare, and finance, aiming to extract key features from complex time series data for accurate decision-making and prediction. However, existing methods for MTS often struggle due to the challenges of effectively modeling high-dimensional data and the lack of labeled data, resulting in poor classification performance. To address this issue, we propose a heterogeneous relationships of subjects and shapelets method for semi-supervised MTS classification. This method offers a novel perspective by integrating various types of additional information while capturing the relationships between them. Specifically, we first utilize a contrast temporal self-attention module to obtain sparse MTS representations, and then model the similarities between these representations using soft dynamic time warping to construct a similarity graph. Secondly, we learn the shapelets for different subject types, incorporating both the subject features and their shapelets as additional information to further refine the similarity graph, ultimately generating a heterogeneous graph. Finally, we use a dual level graph attention network to get prediction. Through this method, we successfully transform dataset into a heterogeneous graph, integrating multiple additional information and achieving precise semi-supervised node classification. Experiments on the Human Activity Recognition, sleep stage classification and University of East Anglia datasets demonstrate that our method outperforms current state-of-the-art methods in MTS classification tasks, validating its superiority.
comment: Submitted to IEEE International Conference on Data Engineering (ICDE) 2025
☆ Diffeomorphic Latent Neural Operator Learning for Data-Efficient Predictions of Solutions to Partial Differential Equations
A computed approximation of the solution operator to a system of partial differential equations (PDEs) is needed in various areas of science and engineering. Neural operators have been shown to be quite effective at predicting these solution generators after training on high-fidelity ground truth data (e.g. numerical simulations). However, in order to generalize well to unseen spatial domains, neural operators must be trained on an extensive amount of geometrically varying data samples that may not be feasible to acquire or simulate in certain contexts (i.e., patient-specific medical data, large-scale computationally intensive simulations.) We propose that in order to learn a PDE solution operator that can generalize across multiple domains without needing to sample enough data expressive enough for all possible geometries, we can train instead a latent neural operator on just a few ground truth solution fields diffeomorphically mapped from different geometric/spatial domains to a fixed reference configuration. Furthermore, the form of the solutions is dependent on the choice of mapping to and from the reference domain. We emphasize that preserving properties of the differential operator when constructing these mappings can significantly reduce the data requirement for achieving an accurate model due to the regularity of the solution fields that the latent neural operator is training on. We provide motivating numerical experimentation that demonstrates an extreme case of this consideration by exploiting the conformal invariance of the Laplacian
☆ Causal and Local Correlations Based Network for Multivariate Time Series Classification
Recently, time series classification has attracted the attention of a large number of researchers, and hundreds of methods have been proposed. However, these methods often ignore the spatial correlations among dimensions and the local correlations among features. To address this issue, the causal and local correlations based network (CaLoNet) is proposed in this study for multivariate time series classification. First, pairwise spatial correlations between dimensions are modeled using causality modeling to obtain the graph structure. Then, a relationship extraction network is used to fuse local correlations to obtain long-term dependency features. Finally, the graph structure and long-term dependency features are integrated into the graph neural network. Experiments on the UEA datasets show that CaLoNet can obtain competitive performance compared with state-of-the-art methods.
comment: Submitted on April 03, 2023; major revisions on March 25, 2024; minor revisions on July 9, 2024
☆ Generative Semantic Communication for Joint Image Transmission and Segmentation
Semantic communication has emerged as a promising technology for enhancing communication efficiency. However, most existing research emphasizes single-task reconstruction, neglecting model adaptability and generalization across multi-task systems. In this paper, we propose a novel generative semantic communication system that supports both image reconstruction and segmentation tasks. Our approach builds upon semantic knowledge bases (KBs) at both the transmitter and receiver, with each semantic KB comprising a source KB and a task KB. The source KB at the transmitter leverages a hierarchical Swin-Transformer, a generative AI scheme, to extract multi-level features from the input image. Concurrently, the counterpart source KB at the receiver utilizes hierarchical residual blocks to generate task-specific knowledge. Furthermore, the two task KBs adopt a semantic similarity model to map different task requirements into pre-defined task instructions, thereby facilitating the feature selection of the source KBs. Additionally, we develop a unified residual block-based joint source and channel (JSCC) encoder and two task-specific JSCC decoders to achieve the two image tasks. In particular, a generative diffusion model is adopted to construct the JSCC decoder for the image reconstruction task. Experimental results demonstrate that our multi-task generative semantic communication system outperforms previous single-task communication systems in terms of peak signal-to-noise ratio and segmentation accuracy.
comment: 6 pages, 7 figures
☆ New Faithfulness-Centric Interpretability Paradigms for Natural Language Processing
As machine learning becomes more widespread and is used in more critical applications, it's important to provide explanations for these models, to prevent unintended behavior. Unfortunately, many current interpretability methods struggle with faithfulness. Therefore, this Ph.D. thesis investigates the question "How to provide and ensure faithful explanations for complex general-purpose neural NLP models?" The main thesis is that we should develop new paradigms in interpretability. This is achieved by first developing solid faithfulness metrics and then applying the lessons learned from this investigation to develop new paradigms. The two new paradigms explored are faithfulness measurable models (FMMs) and self-explanations. The idea in self-explanations is to have large language models explain themselves, we identify that current models are not capable of doing this consistently. However, we suggest how this could be achieved. The idea of FMMs is to create models that are designed such that measuring faithfulness is cheap and precise. This makes it possible to optimize an explanation towards maximum faithfulness, which makes FMMs designed to be explained. We find that FMMs yield explanations that are near theoretical optimal in terms of faithfulness. Overall, from all investigations of faithfulness, results show that post-hoc and intrinsic explanations are by default model and task-dependent. However, this was not the case when using FMMs, even with the same post-hoc explanation methods. This shows, that even simple modifications to the model, such as randomly masking the training dataset, as was done in FMMs, can drastically change the situation and result in consistently faithful explanations. This answers the question of how to provide and ensure faithful explanations.
comment: Doctoral thesis
☆ Regularized Multi-LLMs Collaboration for Enhanced Score-based Causal Discovery
As the significance of understanding the cause-and-effect relationships among variables increases in the development of modern systems and algorithms, learning causality from observational data has become a preferred and efficient approach over conducting randomized control trials. However, purely observational data could be insufficient to reconstruct the true causal graph. Consequently, many researchers tried to utilise some form of prior knowledge to improve causal discovery process. In this context, the impressive capabilities of large language models (LLMs) have emerged as a promising alternative to the costly acquisition of prior expert knowledge. In this work, we further explore the potential of using LLMs to enhance causal discovery approaches, particularly focusing on score-based methods, and we propose a general framework to utilise the capacity of not only one but multiple LLMs to augment the discovery process.
☆ Optimized Conformal Selection: Powerful Selective Inference After Conformity Score Optimization
Model selection/optimization in conformal inference is challenging, since it may break the exchangeability between labeled and unlabeled data. We study this problem in the context of conformal selection, which uses conformal p-values to select ``interesting'' instances with large unobserved labels from a pool of unlabeled data, while controlling the FDR in finite sample. For validity, existing solutions require the model choice to be independent of the data used to construct the p-values and calibrate the selection set. However, when presented with many model choices and limited labeled data, it is desirable to (i) select the best model in a data-driven manner, and (ii) mitigate power loss due to sample splitting. This paper presents OptCS, a general framework that allows valid statistical testing (selection) after flexible data-driven model optimization. We introduce general conditions under which OptCS constructs valid conformal p-values despite substantial data reuse and handles complex p-value dependencies to maintain finite-sample FDR control via a novel multiple testing procedure. We instantiate this general recipe to propose three FDR-controlling procedures, each optimizing the models differently: (i) selecting the most powerful one among multiple pre-trained candidate models, (ii) using all data for model fitting without sample splitting, and (iii) combining full-sample model fitting and selection. We demonstrate the efficacy of our methods via simulation studies and real applications in drug discovery and alignment of large language models in radiology report generation.
☆ Improved implicit diffusion model with knowledge distillation to estimate the spatial distribution density of carbon stock in remote sensing imagery
The forest serves as the most significant terrestrial carbon stock mechanism, effectively reducing atmospheric CO$_2$ concentrations and mitigating climate change. Remote sensing provides high data accuracy and enables large-scale observations. Optical images facilitate long-term monitoring, which is crucial for future carbon stock estimation studies. This study focuses on Huize County, Qujing City, Yunnan Province, China, utilizing GF-1 WFV satellite imagery. The KD-VGG and KD-UNet modules were introduced for initial feature extraction, and the improved implicit diffusion model (IIDM) was proposed. The results showed: (1) The VGG module improved initial feature extraction, improving accuracy, and reducing inference time with optimized model parameters. (2) The Cross-attention + MLPs module enabled effective feature fusion, establishing critical relationships between global and local features, achieving high-accuracy estimation. (3) The IIDM model, a novel contribution, demonstrated the highest estimation accuracy with an RMSE of 12.17\%, significantly improving by 41.69\% to 42.33\% compared to the regression model. In carbon stock estimation, the generative model excelled in extracting deeper features, significantly outperforming other models, demonstrating the feasibility of AI-generated content in quantitative remote sensing. The 16-meter resolution estimates provide a robust basis for tailoring forest carbon sink regulations, enhancing regional carbon stock management.
comment: Under review
☆ Graph Neural Network for Cerebral Blood Flow Prediction With Clinical Datasets
Accurate prediction of cerebral blood flow is essential for the diagnosis and treatment of cerebrovascular diseases. Traditional computational methods, however, often incur significant computational costs, limiting their practicality in real-time clinical applications. This paper proposes a graph neural network (GNN) to predict blood flow and pressure in previously unseen cerebral vascular network structures that were not included in training data. The GNN was developed using clinical datasets from patients with stenosis, featuring complex and abnormal vascular geometries. Additionally, the GNN model was trained on data incorporating a wide range of inflow conditions, vessel topologies, and network connectivities to enhance its generalization capability. The approach achieved Pearson's correlation coefficients of 0.727 for pressure and 0.824 for flow rate, with sufficient training data. These findings demonstrate the potential of the GNN for real-time cerebrovascular diagnostics, particularly in handling intricate and pathological vascular networks.
comment: 4 pages, 3 figures
☆ Optimized Tradeoffs for Private Prediction with Majority Ensembling
We study a classical problem in private prediction, the problem of computing an $(m\epsilon, \delta)$-differentially private majority of $K$ $(\epsilon, \Delta)$-differentially private algorithms for $1 \leq m \leq K$ and $1 > \delta \geq \Delta \geq 0$. Standard methods such as subsampling or randomized response are widely used, but do they provide optimal privacy-utility tradeoffs? To answer this, we introduce the Data-dependent Randomized Response Majority (DaRRM) algorithm. It is parameterized by a data-dependent noise function $\gamma$, and enables efficient utility optimization over the class of all private algorithms, encompassing those standard methods. We show that maximizing the utility of an $(m\epsilon, \delta)$-private majority algorithm can be computed tractably through an optimization problem for any $m \leq K$ by a novel structural result that reduces the infinitely many privacy constraints into a polynomial set. In some settings, we show that DaRRM provably enjoys a privacy gain of a factor of 2 over common baselines, with fixed utility. Lastly, we demonstrate the strong empirical effectiveness of our first-of-its-kind privacy-constrained utility optimization for ensembling labels for private prediction from private teachers in image classification. Notably, our DaRRM framework with an optimized $\gamma$ exhibits substantial utility gains when compared against several baselines.
comment: 57 pages, 10 figures. Proceedings of Transactions on Machine Learning Research (TMLR), November 2024
☆ ESS-ReduNet: Enhancing Subspace Separability of ReduNet via Dynamic Expansion with Bayesian Inference
ReduNet is a deep neural network model that leverages the principle of maximal coding rate \textbf{redu}ction to transform original data samples into a low-dimensional, linear discriminative feature representation. Unlike traditional deep learning frameworks, ReduNet constructs its parameters explicitly layer by layer, with each layer's parameters derived based on the features transformed from the preceding layer. Rather than directly using labels, ReduNet uses the similarity between each category's spanned subspace and the data samples for feature updates at each layer. This may lead to features being updated in the wrong direction, impairing the correct construction of network parameters and reducing the network's convergence speed. To address this issue, based on the geometric interpretation of the network parameters, this paper presents ESS-ReduNet to enhance the separability of each category's subspace by dynamically controlling the expansion of the overall spanned space of the samples. Meanwhile, label knowledge is incorporated with Bayesian inference to encourage the decoupling of subspaces. Finally, stability, as assessed by the condition number, serves as an auxiliary criterion for halting training. Experiments on the ESR, HAR, Covertype, and Gas datasets demonstrate that ESS-ReduNet achieves more than 10x improvement in convergence compared to ReduNet. Notably, on the ESR dataset, the features transformed by ESS-ReduNet achieve a 47\% improvement in SVM classification accuracy.
☆ Adversarial Training in Low-Label Regimes with Margin-Based Interpolation
Adversarial training has emerged as an effective approach to train robust neural network models that are resistant to adversarial attacks, even in low-label regimes where labeled data is scarce. In this paper, we introduce a novel semi-supervised adversarial training approach that enhances both robustness and natural accuracy by generating effective adversarial examples. Our method begins by applying linear interpolation between clean and adversarial examples to create interpolated adversarial examples that cross decision boundaries by a controlled margin. This sample-aware strategy tailors adversarial examples to the characteristics of each data point, enabling the model to learn from the most informative perturbations. Additionally, we propose a global epsilon scheduling strategy that progressively adjusts the upper bound of perturbation strengths during training. The combination of these strategies allows the model to develop increasingly complex decision boundaries with better robustness and natural accuracy. Empirical evaluations show that our approach effectively enhances performance against various adversarial attacks, such as PGD and AutoAttack.
♻ ☆ Data Readiness for AI: A 360-Degree Survey
Artificial Intelligence (AI) applications critically depend on data. Poor quality data produces inaccurate and ineffective AI models that may lead to incorrect or unsafe use. Evaluation of data readiness is a crucial step in improving the quality and appropriateness of data usage for AI. R&D efforts have been spent on improving data quality. However, standardized metrics for evaluating data readiness for use in AI training are still evolving. In this study, we perform a comprehensive survey of metrics used to verify data readiness for AI training. This survey examines more than 140 papers published by ACM Digital Library, IEEE Xplore, journals such as Nature, Springer, and Science Direct, and online articles published by prominent AI experts. This survey aims to propose a taxonomy of data readiness for AI (DRAI) metrics for structured and unstructured datasets. We anticipate that this taxonomy will lead to new standards for DRAI metrics that will be used for enhancing the quality, accuracy, and fairness of AI training and inference.
comment: 36 pages, 3 figures, 2 tables, submitted to ACM Computing Surveys
♻ ☆ cedar: Optimized and Unified Machine Learning Input Data Pipelines
The input data pipeline is an essential component of each machine learning (ML) training job. It is responsible for reading massive amounts of training data, processing batches of samples using complex transformations, and loading them onto training nodes at low latency and high throughput. Performant input data systems are becoming increasingly critical, driven by skyrocketing data volumes and training throughput demands. Unfortunately, current input data systems cannot fully leverage key performance optimizations, resulting in hugely inefficient infrastructures that require significant resources - or worse - underutilize expensive accelerators. To address these demands, we present cedar, an optimized and unified programming framework for ML input data pipelines. cedar allows users to define input data pipelines using composable operators that support arbitrary ML frameworks and libraries. cedar introduces an extensible optimizer that systematically applies a complex combination of optimizations (e.g., offloading, caching, prefetching, fusion, and reordering). It orchestrates processing across a customizable set of local and distributed compute resources in order to improve processing performance and efficiency, all without user input. Across eight pipelines, cedar improves performance by up to 1.87x to 10.65x compared to state-of-the-art input data systems.
comment: Published in PVLDB Volume 18, Issue 2
♻ ☆ Markov Equivalence and Consistency in Differentiable Structure Learning NeurIPS 2024
Existing approaches to differentiable structure learning of directed acyclic graphs (DAGs) rely on strong identifiability assumptions in order to guarantee that global minimizers of the acyclicity-constrained optimization problem identifies the true DAG. Moreover, it has been observed empirically that the optimizer may exploit undesirable artifacts in the loss function. We explain and remedy these issues by studying the behavior of differentiable acyclicity-constrained programs under general likelihoods with multiple global minimizers. By carefully regularizing the likelihood, it is possible to identify the sparsest model in the Markov equivalence class, even in the absence of an identifiable parametrization. We first study the Gaussian case in detail, showing how proper regularization of the likelihood defines a score that identifies the sparsest model. Assuming faithfulness, it also recovers the Markov equivalence class. These results are then generalized to general models and likelihoods, where the same claims hold. These theoretical results are validated empirically, showing how this can be done using standard gradient-based optimizers, thus paving the way for differentiable structure learning under general models and losses.
comment: 38 pages, 14 figures, to appear at NeurIPS 2024
♻ ☆ Lusifer: LLM-based User SImulated Feedback Environment for online Recommender systems
Training reinforcement learning-based recommender systems is often hindered by the lack of dynamic and realistic user interactions. To address this limitation, we introduce Lusifer, a novel environment leveraging Large Language Models (LLMs) to generate simulated user feedback. Lusifer synthesizes user profiles and interaction histories to simulate responses and behaviors toward recommended items, with profiles updated after each rating to reflect evolving user characteristics. Utilizing the MovieLens dataset as a proof of concept, we limited our implementation to the last 40 interactions for each user, representing approximately 39% and 22% of the training sets, to focus on recent user behavior. For consistency and to gain insights into the performance of traditional methods with limited data, we implemented baseline approaches using the same data subset. Our results demonstrate that Lusifer accurately emulates user behavior and preferences, even with reduced training data having an RMSE of 1.3 across various test sets. This paper presents Lusifer's operational pipeline, including prompt generation and iterative user profile updates, and compares its performance against baseline methods. The findings validate Lusifer's ability to produce realistic dynamic feedback and suggest that it offers a scalable and adjustable framework for user simulation in online reinforcement learning recommender systems for future studies, particularly when training data is limited.
♻ ☆ Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data
The impressive capabilities of large language models (LLMs) have sparked debate over whether these models genuinely generalize to unseen tasks or predominantly rely on memorizing vast amounts of pretraining data. To explore this issue, we introduce an extended concept of memorization, distributional memorization, which measures the correlation between the LLM output probabilities and the pretraining data frequency. To effectively capture task-specific pretraining data frequency, we propose a novel task-gram language model, which is built by counting the co-occurrence of semantically related $n$-gram pairs from task inputs and outputs in the pretraining corpus. Using the Pythia models trained on the Pile dataset, we evaluate four distinct tasks: machine translation, factual question answering, world knowledge understanding, and math reasoning. Our findings reveal varying levels of memorization, with the strongest effect observed in factual question answering. Furthermore, while model performance improves across all tasks as LLM size increases, only factual question answering shows an increase in memorization, whereas machine translation and reasoning tasks exhibit greater generalization, producing more novel outputs. This study demonstrates that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks, providing a scalable method for analyzing large pretraining corpora in greater depth. We also show the practical implications of our analysis through a novel prompt optimization algorithm.
comment: updated 10-page version
♻ ☆ Federated Low-Rank Adaptation with Differential Privacy over Wireless Networks
Fine-tuning large pre-trained foundation models (FMs) on distributed edge devices presents considerable computational and privacy challenges. Federated fine-tuning (FedFT) mitigates some privacy issues by facilitating collaborative model training without the need to share raw data. To lessen the computational burden on resource-limited devices, combining low-rank adaptation (LoRA) with federated learning enables parameter-efficient fine-tuning. Additionally, the split FedFT architecture partitions an FM between edge devices and a central server, reducing the necessity for complete model deployment on individual devices. However, the risk of privacy eavesdropping attacks in FedFT remains a concern, particularly in sensitive areas such as healthcare and finance. In this paper, we propose a split FedFT framework with differential privacy (DP) over wireless networks, where the inherent wireless channel noise in the uplink transmission is utilized to achieve DP guarantees without adding an extra artificial noise. We shall investigate the impact of the wireless noise on convergence performance of the proposed framework. We will also show that by updating only one of the low-rank matrices in the split FedFT with DP, the proposed method can mitigate the noise amplification effect. Simulation results will demonstrate that the proposed framework achieves higher accuracy under strict privacy budgets compared to baseline methods.
comment: 6 pages, 3 figures
♻ ☆ Simulation-based inference with scattering representations: scattering is all you need NeurIPS
We demonstrate the successful use of scattering representations without further compression for simulation-based inference (SBI) with images (i.e. field-level), illustrated with a cosmological case study. Scattering representations provide a highly effective representational space for subsequent learning tasks, although the higher dimensional compressed space introduces challenges. We overcome these through spatial averaging, coupled with more expressive density estimators. Compared to alternative methods, such an approach does not require additional simulations for either training or computing derivatives, is interpretable, and resilient to covariate shift. As expected, we show that a scattering only approach extracts more information than traditional second order summary statistics.
comment: 9 pages, 2 figures, accepted by NeurIPS workshop on Machine Learning and the Physical Sciences
♻ ☆ Calibrated Adaptive Teacher for Domain Adaptive Intelligent Fault Diagnosis
Intelligent Fault Diagnosis (IFD) based on deep learning has proven to be an effective and flexible solution, attracting extensive research. Deep neural networks can learn rich representations from vast amounts of representative labeled data for various applications. In IFD, they achieve high classification performance from signals in an end-to-end manner, without requiring extensive domain knowledge. However, deep learning models usually only perform well on the data distribution they have been trained on. When applied to a different distribution, they may experience performance drops. This is also observed in IFD, where assets are often operated in working conditions different from those in which labeled data have been collected. Unsupervised domain adaptation (UDA) deals with the scenario where labeled data are available in a source domain, and only unlabeled data are available in a target domain, where domains may correspond to operating conditions. Recent methods rely on training with confident pseudo-labels for target samples. However, the confidence-based selection of pseudo-labels is hindered by poorly calibrated confidence estimates in the target domain, primarily due to over-confident predictions, which limits the quality of pseudo-labels and leads to error accumulation. In this paper, we propose a novel UDA method called Calibrated Adaptive Teacher (CAT), where we propose to calibrate the predictions of the teacher network throughout the self-training process, leveraging post-hoc calibration techniques. We evaluate CAT on domain-adaptive IFD and perform extensive experiments on the Paderborn benchmark for bearing fault diagnosis under varying operating conditions. Our proposed method achieves state-of-the-art performance on most transfer tasks.
comment: Accepted for publication in Sensors. 24 pages
♻ ☆ Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
This study investigates the potential accuracy boundaries of physics-informed neural networks, contrasting their approach with previous similar works and traditional numerical methods. We find that selecting improved optimization algorithms significantly enhances the accuracy of the results. Simple modifications to the loss function may also improve precision, offering an additional avenue for enhancement. Despite optimization algorithms having a greater impact on convergence than adjustments to the loss function, practical considerations often favor tweaking the latter due to ease of implementation. On a global scale, the integration of an enhanced optimizer and a marginally adjusted loss function enables a reduction in the loss function by several orders of magnitude across diverse physical problems. Consequently, our results obtained using compact networks (typically comprising 2 or 3 layers of 20-30 neurons) achieve accuracies comparable to finite difference schemes employing thousands of grid points. This study encourages the continued advancement of PINNs and associated optimization techniques for broader applications across various fields.
comment: 46 pages, 13 figures, submitted for publication in JCP
♻ ☆ GSE: Group-wise Sparse and Explainable Adversarial Attacks
Sparse adversarial attacks fool deep neural networks (DNNs) through minimal pixel perturbations, often regularized by the $\ell_0$ norm. Recent efforts have replaced this norm with a structural sparsity regularizer, such as the nuclear group norm, to craft group-wise sparse adversarial attacks. The resulting perturbations are thus explainable and hold significant practical relevance, shedding light on an even greater vulnerability of DNNs. However, crafting such attacks poses an optimization challenge, as it involves computing norms for groups of pixels within a non-convex objective. We address this by presenting a two-phase algorithm that generates group-wise sparse attacks within semantically meaningful areas of an image. Initially, we optimize a quasinorm adversarial loss using the $1/2-$quasinorm proximal operator tailored for non-convex programming. Subsequently, the algorithm transitions to a projected Nesterov's accelerated gradient descent with $2-$norm regularization applied to perturbation magnitudes. Rigorous evaluations on CIFAR-10 and ImageNet datasets demonstrate a remarkable increase in group-wise sparsity, e.g., $50.9\%$ on CIFAR-10 and $38.4\%$ on ImageNet (average case, targeted attack). This performance improvement is accompanied by significantly faster computation times, improved explainability, and a $100\%$ attack success rate.
♻ ☆ S-CFE: Simple Counterfactual Explanations
We study the problem of finding optimal sparse, manifold-aligned counterfactual explanations for classifiers. Canonically, this can be formulated as an optimization problem with multiple non-convex components, including classifier loss functions and manifold alignment (or \emph{plausibility}) metrics. The added complexity of enforcing \emph{sparsity}, or shorter explanations, complicates the problem further. Existing methods often focus on specific models and plausibility measures, relying on convex $\ell_1$ regularizers to enforce sparsity. In this paper, we tackle the canonical formulation using the accelerated proximal gradient (APG) method, a simple yet efficient first-order procedure capable of handling smooth non-convex objectives and non-smooth $\ell_p$ (where $0 \leq p < 1$) regularizers. This enables our approach to seamlessly incorporate various classifiers and plausibility measures while producing sparser solutions. Our algorithm only requires differentiable data-manifold regularizers and supports box constraints for bounded feature ranges, ensuring the generated counterfactuals remain \emph{actionable}. Finally, experiments on real-world datasets demonstrate that our approach effectively produces sparse, manifold-aligned counterfactual explanations while maintaining proximity to the factual data and computational efficiency.
♻ ☆ Multiscale Hodge Scattering Networks for Data Analysis
We propose new scattering networks for signals measured on simplicial complexes, which we call \emph{Multiscale Hodge Scattering Networks} (MHSNs). Our construction is based on multiscale basis dictionaries on simplicial complexes, i.e., the $\kappa$-GHWT and $\kappa$-HGLET, which we recently developed for simplices of dimension $\kappa \in \mathbb{N}$ in a given simplicial complex by generalizing the node-based Generalized Haar-Walsh Transform (GHWT) and Hierarchical Graph Laplacian Eigen Transform (HGLET). The $\kappa$-GHWT and the $\kappa$-HGLET both form redundant sets (i.e., dictionaries) of multiscale basis vectors and the corresponding expansion coefficients of a given signal. Our MHSNs use a layered structure analogous to a convolutional neural network (CNN) to cascade the moments of the modulus of the dictionary coefficients. The resulting features are invariant to reordering of the simplices (i.e., node permutation of the underlying graphs). Importantly, the use of multiscale basis dictionaries in our MHSNs admits a natural pooling operation that is akin to local pooling in CNNs, and which may be performed either locally or per-scale. These pooling operations are harder to define in both traditional scattering networks based on Morlet wavelets, and geometric scattering networks based on Diffusion Wavelets. As a result, we are able to extract a rich set of descriptive yet robust features that can be used along with very simple machine learning methods (i.e., logistic regression or support vector machines) to achieve high-accuracy classification systems with far fewer parameters to train than most modern graph neural networks. Finally, we demonstrate the usefulness of our MHSNs in three distinct types of problems: signal classification, domain (i.e., graph/simplex) classification, and molecular dynamics prediction.
comment: 20 Pages, Comments Welcome
♻ ☆ How Does Variance Shape the Regret in Contextual Bandits? NeurIPS 2024
We consider realizable contextual bandits with general function approximation, investigating how small reward variance can lead to better-than-minimax regret bounds. Unlike in minimax bounds, we show that the eluder dimension $d_\text{elu}$$-$a complexity measure of the function class$-$plays a crucial role in variance-dependent bounds. We consider two types of adversary: (1) Weak adversary: The adversary sets the reward variance before observing the learner's action. In this setting, we prove that a regret of $\Omega(\sqrt{\min\{A,d_\text{elu}\}\Lambda}+d_\text{elu})$ is unavoidable when $d_{\text{elu}}\leq\sqrt{AT}$, where $A$ is the number of actions, $T$ is the total number of rounds, and $\Lambda$ is the total variance over $T$ rounds. For the $A\leq d_\text{elu}$ regime, we derive a nearly matching upper bound $\tilde{O}(\sqrt{A\Lambda}+d_\text{elu})$ for the special case where the variance is revealed at the beginning of each round. (2) Strong adversary: The adversary sets the reward variance after observing the learner's action. We show that a regret of $\Omega(\sqrt{d_\text{elu}\Lambda}+d_\text{elu})$ is unavoidable when $\sqrt{d_\text{elu}\Lambda}+d_\text{elu}\leq\sqrt{AT}$. In this setting, we provide an upper bound of order $\tilde{O}(d_\text{elu}\sqrt{\Lambda}+d_\text{elu})$. Furthermore, we examine the setting where the function class additionally provides distributional information of the reward, as studied by Wang et al. (2024). We demonstrate that the regret bound $\tilde{O}(\sqrt{d_\text{elu}\Lambda}+d_\text{elu})$ established in their work is unimprovable when $\sqrt{d_{\text{elu}}\Lambda}+d_\text{elu}\leq\sqrt{AT}$. However, with a slightly different definition of the total variance and with the assumption that the reward follows a Gaussian distribution, one can achieve a regret of $\tilde{O}(\sqrt{A\Lambda}+d_\text{elu})$.
comment: NeurIPS 2024
♻ ☆ Differentiable Weightless Neural Networks
We introduce the Differentiable Weightless Neural Network (DWN), a model based on interconnected lookup tables. Training of DWNs is enabled by a novel Extended Finite Difference technique for approximate differentiation of binary values. We propose Learnable Mapping, Learnable Reduction, and Spectral Regularization to further improve the accuracy and efficiency of these models. We evaluate DWNs in three edge computing contexts: (1) an FPGA-based hardware accelerator, where they demonstrate superior latency, throughput, energy efficiency, and model area compared to state-of-the-art solutions, (2) a low-power microcontroller, where they achieve preferable accuracy to XGBoost while subject to stringent memory constraints, and (3) ultra-low-cost chips, where they consistently outperform small models in both accuracy and projected hardware area. DWNs also compare favorably against leading approaches for tabular datasets, with higher average rank. Overall, our work positions DWNs as a pioneering solution for edge-compatible high-throughput neural networks.
♻ ☆ Referential communication in heterogeneous communities of pre-trained visual deep networks
As large pre-trained image-processing neural networks are being embedded in autonomous agents such as self-driving cars or robots, the question arises of how such systems can communicate with each other about the surrounding world, despite their different architectures and training regimes. As a first step in this direction, we systematically explore the task of referential communication in a community of heterogeneous state-of-the-art pre-trained visual networks, showing that they can develop, in a self-supervised way, a shared protocol to refer to a target object among a set of candidates. This shared protocol can also be used, to some extent, to communicate about previously unseen object categories of different granularity. Moreover, a visual network that was not initially part of an existing community can learn the community's protocol with remarkable ease. Finally, we study, both qualitatively and quantitatively, the properties of the emergent protocol, providing some evidence that it is capturing high-level semantic features of objects.
♻ ☆ Benchmarking Counterfactual Image Generation NeurIPS 2024
Generative AI has revolutionised visual content editing, empowering users to effortlessly modify images and videos. However, not all edits are equal. To perform realistic edits in domains such as natural image or medical imaging, modifications must respect causal relationships inherent to the data generation process. Such image editing falls into the counterfactual image generation regime. Evaluating counterfactual image generation is substantially complex: not only it lacks observable ground truths, but also requires adherence to causal constraints. Although several counterfactual image generation methods and evaluation metrics exist, a comprehensive comparison within a unified setting is lacking. We present a comparison framework to thoroughly benchmark counterfactual image generation methods. We integrate all models that have been used for the task at hand and expand them to novel datasets and causal graphs, demonstrating the superiority of Hierarchical VAEs across most datasets and metrics. Our framework is implemented in a user-friendly Python package that can be extended to incorporate additional SCMs, causal methods, generative models, and datasets for the community to build on. Code: https://github.com/gulnazaki/counterfactual-benchmark.
comment: Published as a conference paper at NeurIPS 2024 Datasets and Benchmarks Track https://openreview.net/forum?id=0T8xRFrScB Project page: https://gulnazaki.github.io/counterfactual-benchmark
♻ ☆ MENTOR: Guiding Hierarchical Reinforcement Learning with Human Feedback and Dynamic Distance Constraint
Hierarchical reinforcement learning (HRL) provides a promising solution for complex tasks with sparse rewards of intelligent agents, which uses a hierarchical framework that divides tasks into subgoals and completes them sequentially. However, current methods struggle to find suitable subgoals for ensuring a stable learning process. Without additional guidance, it is impractical to rely solely on exploration or heuristics methods to determine subgoals in a large goal space. To address the issue, We propose a general hierarchical reinforcement learning framework incorporating human feedback and dynamic distance constraints (MENTOR). MENTOR acts as a "mentor", incorporating human feedback into high-level policy learning, to find better subgoals. As for low-level policy, MENTOR designs a dual policy for exploration-exploitation decoupling respectively to stabilize the training. Furthermore, although humans can simply break down tasks into subgoals to guide the right learning direction, subgoals that are too difficult or too easy can still hinder downstream learning efficiency. We propose the Dynamic Distance Constraint (DDC) mechanism dynamically adjusting the space of optional subgoals. Thus MENTOR can generate subgoals matching the low-level policy learning process from easy to hard. Extensive experiments demonstrate that MENTOR uses a small amount of human feedback to achieve significant improvement in complex tasks with sparse rewards.
comment: Accepted for publication in IEEE Transactions on Emerging Topics in Computational Intelligence
♻ ☆ LLMEasyQuant -- An Easy to Use Toolkit for LLM Quantization
Currently, there are many quantization methods appeared for LLM quantization, yet few are user-friendly and easy to be deployed locally. Packages like TensorRT and Quantohave many underlying structures and self-invoking internal functions, which are not conducive to developers' personalized development and learning for deployment. Therefore, we develop LLMEasyQuant, it is a package aiming to for easy quantization deployment which is user-friendly and suitable for beginners' learning.
♻ ☆ ProteinWeaver: A Divide-and-Assembly Approach for Protein Backbone Design
Nature creates diverse proteins through a 'divide and assembly' strategy. Inspired by this idea, we introduce ProteinWeaver, a two-stage framework for protein backbone design. Our method first generates individual protein domains and then employs an SE(3) diffusion model to flexibly assemble these domains. A key challenge lies in the assembling step, given the complex and rugged nature of the inter-domain interaction landscape. To address this challenge, we employ preference alignment to discern complex relationships between structure and interaction landscapes through comparative analysis of generated samples. Comprehensive experiments demonstrate that ProteinWeaver: (1) generates high-quality, novel protein backbones through versatile domain assembly; (2) outperforms RFdiffusion, the current state-of-the-art in backbone design, by 13\% and 39\% for long-chain proteins; (3) shows the potential for cooperative function design through illustrative case studies. To sum up, by introducing a `divide-and-assembly' paradigm, ProteinWeaver advances protein engineering and opens new avenues for functional protein design.
comment: 19 pages, 10 figures, 3 tables
♻ ☆ CaT-GNN: Enhancing Credit Card Fraud Detection via Causal Temporal Graph Neural Networks
Credit card fraud poses a significant threat to the economy. While Graph Neural Network (GNN)-based fraud detection methods perform well, they often overlook the causal effect of a node's local structure on predictions. This paper introduces a novel method for credit card fraud detection, the \textbf{\underline{Ca}}usal \textbf{\underline{T}}emporal \textbf{\underline{G}}raph \textbf{\underline{N}}eural \textbf{N}etwork (CaT-GNN), which leverages causal invariant learning to reveal inherent correlations within transaction data. By decomposing the problem into discovery and intervention phases, CaT-GNN identifies causal nodes within the transaction graph and applies a causal mixup strategy to enhance the model's robustness and interpretability. CaT-GNN consists of two key components: Causal-Inspector and Causal-Intervener. The Causal-Inspector utilizes attention weights in the temporal attention mechanism to identify causal and environment nodes without introducing additional parameters. Subsequently, the Causal-Intervener performs a causal mixup enhancement on environment nodes based on the set of nodes. Evaluated on three datasets, including a private financial dataset and two public datasets, CaT-GNN demonstrates superior performance over existing state-of-the-art methods. Our findings highlight the potential of integrating causal reasoning with graph neural networks to improve fraud detection capabilities in financial transactions.
♻ ☆ G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks
Recent advancements in large language model (LLM)-based agents have demonstrated that collective intelligence can significantly surpass the capabilities of individual agents, primarily due to well-crafted inter-agent communication topologies. Despite the diverse and high-performing designs available, practitioners often face confusion when selecting the most effective pipeline for their specific task: \textit{Which topology is the best choice for my task, avoiding unnecessary communication token overhead while ensuring high-quality solution?} In response to this dilemma, we introduce G-Designer, an adaptive, efficient, and robust solution for multi-agent deployment, which dynamically designs task-aware, customized communication topologies. Specifically, G-Designer models the multi-agent system as a multi-agent network, leveraging a variational graph auto-encoder to encode both the nodes (agents) and a task-specific virtual node, and decodes a task-adaptive and high-performing communication topology. Extensive experiments on six benchmarks showcase that G-Designer is: \textbf{(1) high-performing}, achieving superior results on MMLU with accuracy at $84.50\%$ and on HumanEval with pass@1 at $89.90\%$; \textbf{(2) task-adaptive}, architecting communication protocols tailored to task difficulty, reducing token consumption by up to $95.33\%$ on HumanEval; and \textbf{(3) adversarially robust}, defending against agent adversarial attacks with merely $0.3\%$ accuracy drop.
♻ ☆ On Designing Effective RL Reward at Training Time for LLM Reasoning
Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.
♻ ☆ Bayesian Hierarchical Probabilistic Forecasting of Intraday Electricity Prices
We address the need for forecasting methodologies that handle large uncertainties in electricity prices for continuous intraday markets by incorporating parameter uncertainty and using a broad set of covariables. This study presents the first Bayesian forecasting of electricity prices traded on the German intraday market. Endogenous and exogenous covariables are handled via Orthogonal Matching Pursuit (OMP) and regularising priors. The target variable is the IDFull price index, with forecasts given as posterior predictive distributions. Validation uses the highly volatile 2022 electricity prices, which have seldom been studied. As a benchmark, we use all intraday transactions at the time of forecast to compute a live IDFull value. According to market efficiency, it should not be possible to improve on this last-price benchmark. However, we observe significant improvements in point measures and probability scores, including an average reduction of $5.9\,\%$ in absolute errors and an average increase of $1.7\,\%$ in accuracy when forecasting whether the IDFull exceeds the day-ahead price. Finally, we challenge the use of LASSO in electricity price forecasting, showing that OMP results in superior performance, specifically an average reduction of $22.7\,\%$ in absolute error and $20.2\,\%$ in the continuous ranked probability score.
comment: 23 pages, 14 figures, 4 tables. Revised version with an added schematic figure. Accepted in Applied Energy
♻ ☆ Atlas-Based Interpretable Age Prediction In Whole-Body MR Images
Age prediction is an important part of medical assessments and research. It can aid in detecting diseases as well as abnormal ageing by highlighting potential discrepancies between chronological and biological age. To improve understanding of age-related changes in various body parts, we investigate the ageing of the human body on a large scale by using whole-body 3D images. We utilise the Grad-CAM method to determine the body areas most predictive of a person's age. In order to expand our analysis beyond individual subjects, we employ registration techniques to generate population-wide importance maps that show the most predictive areas in the body for a whole cohort of subjects. We show that the investigation of the full 3D volume of the whole body and the population-wide analysis can give important insights into which body parts play the most important roles in predicting a person's age. Our findings reveal three primary areas of interest: the spine, the autochthonous back muscles, and the cardiac region, which exhibits the highest importance. Finally, we investigate differences between subjects that show accelerated and decelerated ageing.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2024:029
♻ ☆ CASCRNet: An Atrous Spatial Pyramid Pooling and Shared Channel Residual based Network for Capsule Endoscopy
This manuscript summarizes work on the Capsule Vision Challenge 2024 by MISAHUB. To address the multi-class disease classification task, which is challenging due to the complexity and imbalance in the Capsule Vision challenge dataset, this paper proposes CASCRNet (Capsule endoscopy-Aspp-SCR-Network), a parameter-efficient and novel model that uses Shared Channel Residual (SCR) blocks and Atrous Spatial Pyramid Pooling (ASPP) blocks. Further, the performance of the proposed model is compared with other well-known approaches. The experimental results yield that proposed model provides better disease classification results. The proposed model was successful in classifying diseases with an F1 Score of 78.5% and a Mean AUC of 98.3%, which is promising given its compact architecture.
comment: 8 pages, 4 figures
♻ ☆ Multi-Source Temporal Attention Network for Precipitation Nowcasting
Precipitation nowcasting is crucial across various industries and plays a significant role in mitigating and adapting to climate change. We introduce an efficient deep learning model for precipitation nowcasting, capable of predicting rainfall up to 8 hours in advance with greater accuracy than existing operational physics-based and extrapolation-based models. Our model leverages multi-source meteorological data and physics-based forecasts to deliver high-resolution predictions in both time and space. It captures complex spatio-temporal dynamics through temporal attention networks and is optimized using data quality maps and dynamic thresholds. Experiments demonstrate that our model outperforms state-of-the-art, and highlight its potential for fast reliable responses to evolving weather conditions.
♻ ☆ Citywide Electric Vehicle Charging Demand Prediction Approach Considering Urban Region and Dynamic Influences
Electric vehicle charging demand prediction is important for vacant charging pile recommendation and charging infrastructure planning, thus facilitating vehicle electrification and green energy development. The performance of previous spatio-temporal studies is still far from satisfactory nowadays because urban region attributes and multivariate temporal influences are not adequately taken into account. To tackle these issues, we propose a learning approach for citywide electric vehicle charging demand prediction, named CityEVCP. To learn non-pairwise relationships in urban areas, we cluster service areas by the types and numbers of points of interest in the areas and develop attentive hypergraph networks accordingly. Graph attention mechanisms are employed for information propagation between neighboring areas. Additionally, we propose a variable selection network to adaptively learn dynamic auxiliary information and improve the Transformer encoder utilizing gated mechanisms for fluctuating charging time-series data. Experiments on a citywide electric vehicle charging dataset demonstrate the performances of our proposed approach compared with a broad range of competing baselines. Furthermore, we demonstrate the impact of dynamic influences on prediction results in different areas of the city and the effectiveness of our area clustering method.
♻ ☆ CHORDONOMICON: A Dataset of 666,000 Songs and their Chord Progressions
Chord progressions encapsulate important information about music, pertaining to its structure and conveyed emotions. They serve as the backbone of musical composition, and in many cases, they are the sole information required for a musician to play along and follow the music. Despite their importance, chord progressions as a data domain remain underexplored. There is a lack of large-scale datasets suitable for deep learning applications, and limited research exploring chord progressions as an input modality. In this work, we present Chordonomicon, a dataset of over 666,000 songs and their chord progressions, annotated with structural parts, genre, and release date - created by scraping various sources of user-generated progressions and associated metadata. We demonstrate the practical utility of the Chordonomicon dataset for classification and generation tasks, and discuss its potential to provide valuable insights to the research community. Chord progressions are unique in their ability to be represented in multiple formats (e.g. text, graph) and the wealth of information chords convey in given contexts, such as their harmonic function . These characteristics make the Chordonomicon an ideal testbed for exploring advanced machine learning techniques, including transformers, graph machine learning, and hybrid systems that combine knowledge representation and machine learning.
♻ ☆ Latent Neural Operator Pretraining for Solving Time-Dependent PDEs
Pretraining methods gain increasing attraction recently for solving PDEs with neural operators. It alleviates the data scarcity problem encountered by neural operator learning when solving single PDE via training on large-scale datasets consisting of various PDEs and utilizing shared patterns among different PDEs to improve the solution precision. In this work, we propose the Latent Neural Operator Pretraining (LNOP) framework based on the Latent Neural Operator (LNO) backbone. We achieve universal transformation through pretraining on hybrid time-dependent PDE dataset to extract representations of different physical systems and solve various time-dependent PDEs in the latent space through finetuning on single PDE dataset. Our proposed LNOP framework reduces the solution error by 31.7% on four problems and can be further improved to 57.1% after finetuning. On out-of-distribution dataset, our LNOP model achieves roughly 50% lower error and 3$\times$ data efficiency on average across different dataset sizes. These results show that our method is more competitive in terms of solution precision, transfer capability and data efficiency compared to non-pretrained neural operators.
♻ ☆ Latent Neural Operator for Solving Forward and Inverse PDE Problems
Neural operators effectively solve PDE problems from data without knowing the explicit equations, which learn the map from the input sequences of observed samples to the predicted values. Most existing works build the model in the original geometric space, leading to high computational costs when the number of sample points is large. We present the Latent Neural Operator (LNO) solving PDEs in the latent space. In particular, we first propose Physics-Cross-Attention (PhCA) transforming representation from the geometric space to the latent space, then learn the operator in the latent space, and finally recover the real-world geometric space via the inverse PhCA map. Our model retains flexibility that can decode values in any position not limited to locations defined in the training set, and therefore can naturally perform interpolation and extrapolation tasks particularly useful for inverse problems. Moreover, the proposed LNO improves both prediction accuracy and computational efficiency. Experiments show that LNO reduces the GPU memory by 50%, speeds up training 1.8 times, and reaches state-of-the-art accuracy on four out of six benchmarks for forward problems and a benchmark for inverse problem. Code is available at https://github.com/L-I-M-I-T/LatentNeuralOperator.
♻ ☆ Self-Training Meets Consistency: Improving LLMs' Reasoning With Consistency-Driven Rationale Evaluation
Self-training approach for large language models (LLMs) improves reasoning abilities by training the models on their self-generated rationales. Previous approaches have labeled rationales that produce correct answers for a given question as appropriate for training. However, a single measure risks misjudging rationale quality, leading the models to learn flawed reasoning patterns. To address this issue, we propose CREST (Consistency-driven Rationale Evaluation for Self-Training), a self-training framework that further evaluates each rationale through follow-up questions and leverages this evaluation to guide its training. Specifically, we introduce two methods: (1) filtering out rationales that frequently result in incorrect answers on follow-up questions and (2) preference learning based on mixed preferences from rationale evaluation results of both original and follow-up questions. Experiments on three question-answering datasets using open LLMs show that CREST not only improves the logical robustness and correctness of rationales but also improves reasoning abilities compared to previous self-training approaches.
comment: Under review
♻ ☆ Simple Relative Deviation Bounds for Covariance and Gram Matrices
We provide non-asymptotic, relative deviation bounds for the eigenvalues of empirical covariance and gram matrices in general settings. Unlike typical uniform bounds, which may fail to capture the behavior of smaller eigenvalues, our results provide sharper control across the spectrum. Our analysis is based on a general-purpose theorem that allows one to convert existing uniform bounds into relative ones. The theorems and techniques emphasize simplicity and should be applicable across various settings.
comment: Added some references to version 1
♻ ☆ Enhancing Signed Graph Neural Networks through Curriculum-Based Training
Signed graphs are powerful models for representing complex relations with both positive and negative connections. Recently, Signed Graph Neural Networks (SGNNs) have emerged as potent tools for analyzing such graphs. To our knowledge, no prior research has been conducted on devising a training plan specifically for SGNNs. The prevailing training approach feeds samples (edges) to models in a random order, resulting in equal contributions from each sample during the training process, but fails to account for varying learning difficulties based on the graph's structure. We contend that SGNNs can benefit from a curriculum that progresses from easy to difficult, similar to human learning. The main challenge is evaluating the difficulty of edges in a signed graph. We address this by theoretically analyzing the difficulty of SGNNs in learning adequate representations for edges in unbalanced cycles and propose a lightweight difficulty measurer. This forms the basis for our innovative Curriculum representation learning framework for Signed Graphs, referred to as CSG. The process involves using the measurer to assign difficulty scores to training samples, adjusting their order using a scheduler and training the SGNN model accordingly. We empirically our approach on six real-world signed graph datasets. Our method demonstrates remarkable results, enhancing the accuracy of popular SGNN models by up to 23.7% and showing a reduction of 8.4% in standard deviation, enhancing model stability.
comment: Submitted to Neural Networks
♻ ☆ Towards More Accurate US Presidential Election via Multi-step Reasoning with Large Language Models
Can Large Language Models (LLMs) accurately predict election outcomes? While LLMs have demonstrated impressive performance in various domains, including healthcare, legal analysis, and creative tasks, their ability to forecast elections remains unknown. Election prediction poses unique challenges, such as limited voter-level data, rapidly changing political landscapes, and the need to model complex human behavior. To address these challenges, we introduce a multi-step reasoning framework designed for political analysis. Our approach is validated on real-world data from the American National Election Studies (ANES) 2016 and 2020, as well as synthetic personas generated by the leading machine learning framework, offering scalable datasets for voter behavior modeling. To capture temporal dynamics, we incorporate candidates' policy positions and biographical details, ensuring that the model adapts to evolving political contexts. Drawing on Chain of Thought prompting, our multi-step reasoning pipeline systematically integrates demographic, ideological, and time-dependent factors, enhancing the model's predictive power.
comment: This research is ongoing work. Xiyang Hu and Yue Zhao are the corresponding authors
♻ ☆ Integrating Multi-Modal Input Token Mixer Into Mamba-Based Decision Models: Decision MetaMamba
Sequence modeling with State Space models (SSMs) has demonstrated performance surpassing that of Transformers in various tasks, raising expectations for their potential to outperform the Decision Transformer and its enhanced variants in offline reinforcement learning (RL). However, decision models based on Mamba, a state-of-the-art SSM, failed to achieve superior performance compared to these enhanced Decision Transformers. We hypothesize that this limitation arises from information loss during the selective scanning phase. To address this, we propose the Decision MetaMamba (DMM), which augments Mamba with a token mixer in its input layer. This mixer explicitly accounts for the multimodal nature of offline RL inputs, comprising state, action, and return-to-go. The DMM demonstrates improved performance while significantly reducing parameter count compared to prior models. Notably, similar performance gains were achieved using a simple linear token mixer, emphasizing the importance of preserving information from proximate time steps rather than the specific design of the token mixer itself. This novel modification to Mamba's input layer represents a departure from conventional timestamp-based encoding approaches used in Transformers. By enhancing performance of Mamba in offline RL, characterized by memory efficiency and fast inference, this work opens new avenues for its broader application in future RL research.
♻ ☆ Graph Neural Networks for Job Shop Scheduling Problems: A Survey
Job shop scheduling problems (JSSPs) represent a critical and challenging class of combinatorial optimization problems. Recent years have witnessed a rapid increase in the application of graph neural networks (GNNs) to solve JSSPs, albeit lacking a systematic survey of the relevant literature. This paper aims to thoroughly review prevailing GNN methods for different types of JSSPs and the closely related flow-shop scheduling problems (FSPs), especially those leveraging deep reinforcement learning (DRL). We begin by presenting the graph representations of various JSSPs, followed by an introduction to the most commonly used GNN architectures. We then review current GNN-based methods for each problem type, highlighting key technical elements such as graph representations, GNN architectures, GNN tasks, and training algorithms. Finally, we summarize and analyze the advantages and limitations of GNNs in solving JSSPs and provide potential future research opportunities. We hope this survey can motivate and inspire innovative approaches for more powerful GNN-based approaches in tackling JSSPs and other scheduling problems.
comment: Accepted by Computers & Operations Research
♻ ☆ Heterophilic Graph Neural Networks Optimization with Causal Message-passing
In this work, we discover that causal inference provides a promising approach to capture heterophilic message-passing in Graph Neural Network (GNN). By leveraging cause-effect analysis, we can discern heterophilic edges based on asymmetric node dependency. The learned causal structure offers more accurate relationships among nodes. To reduce the computational complexity, we introduce intervention-based causal inference in graph learning. We first simplify causal analysis on graphs by formulating it as a structural learning model and define the optimization problem within the Bayesian scheme. We then present an analysis of decomposing the optimization target into a consistency penalty and a structure modification based on cause-effect relations. We then estimate this target by conditional entropy and present insights into how conditional entropy quantifies the heterophily. Accordingly, we propose CausalMP, a causal message-passing discovery network for heterophilic graph learning, that iteratively learns the explicit causal structure of input graphs. We conduct extensive experiments in both heterophilic and homophilic graph settings. The result demonstrates that the our model achieves superior link prediction performance. Training on causal structure can also enhance node representation in classification task across different base models.
♻ ☆ Selective Classification Under Distribution Shifts
In selective classification (SC), a classifier abstains from making predictions that are likely to be wrong to avoid excessive errors. To deploy imperfect classifiers -- either due to intrinsic statistical noise of data or for robustness issue of the classifier or beyond -- in high-stakes scenarios, SC appears to be an attractive and necessary path to follow. Despite decades of research in SC, most previous SC methods still focus on the ideal statistical setting only, i.e., the data distribution at deployment is the same as that of training, although practical data can come from the wild. To bridge this gap, in this paper, we propose an SC framework that takes into account distribution shifts, termed generalized selective classification, that covers label-shifted (or out-of-distribution) and covariate-shifted samples, in addition to typical in-distribution samples, the first of its kind in the SC literature. We focus on non-training-based confidence-score functions for generalized SC on deep learning (DL) classifiers, and propose two novel margin-based score functions. Through extensive analysis and experiments, we show that our proposed score functions are more effective and reliable than the existing ones for generalized SC on a variety of classification tasks and DL classifiers. Code is available at https://github.com/sun-umn/sc_with_distshift.
comment: Paper accepted to Transactions on Machine Learning Research (TMLR), issn: 2835-8856,2024
♻ ☆ Digital Twin-Centered Hybrid Data-Driven Multi-Stage Deep Learning Framework for Enhanced Nuclear Reactor Power Prediction
The accurate and efficient modeling of nuclear reactor transients is crucial for ensuring safe and optimal reactor operation. Traditional physics-based models, while valuable, can be computationally intensive and may not fully capture the complexities of real-world reactor behavior. This paper introduces a novel hybrid digital twin-focused multi-stage deep learning framework that addresses these limitations, offering a faster and more robust solution for predicting the final steady-state power of reactor transients. By leveraging a combination of feed-forward neural networks with both classification and regression stages, and training on a unique dataset that integrates real-world measurements of reactor power and controls state from the Missouri University of Science and Technology Reactor (MSTR) with noise-enhanced simulated data, our approach achieves remarkable accuracy (96% classification, 2.3% MAPE). The incorporation of simulated data with noise significantly improves the model's generalization capabilities, mitigating the risk of overfitting. Designed as a digital twin supporting system, this framework integrates real-time, synchronized predictions of reactor state transitions, enabling dynamic operational monitoring and optimization. This innovative solution not only enables rapid and precise prediction of reactor behavior but also has the potential to revolutionize nuclear reactor operations, facilitating enhanced safety protocols, optimized performance, and streamlined decision-making processes. By aligning data-driven insights with the principles of digital twins, this work lays the groundwork for adaptable and scalable solutions in nuclear system management.
♻ ☆ Faster Accelerated First-order Methods for Convex Optimization with Strongly Convex Function Constraints
In this paper, we introduce faster accelerated primal-dual algorithms for minimizing a convex function subject to strongly convex function constraints. Prior to our work, the best complexity bound was $\mathcal{O}(1/{\varepsilon})$, regardless of the strong convexity of the constraint function. It is unclear whether the strong convexity assumption can enable even better convergence results. To address this issue, we have developed novel techniques to progressively estimate the strong convexity of the Lagrangian function. Our approach, for the first time, effectively leverages the constraint strong convexity, obtaining an improved complexity of $\mathcal{O}(1/\sqrt{\varepsilon})$. This rate matches the complexity lower bound for strongly-convex-concave saddle point optimization and is therefore order-optimal. We show the superior performance of our methods in sparsity-inducing constrained optimization, notably Google's personalized PageRank problem. Furthermore, we show that a restarted version of the proposed methods can effectively identify the optimal solution's sparsity pattern within a finite number of steps, a result that appears to have independent significance.
♻ ☆ EgoSurgery-Phase: A Dataset of Surgical Phase Recognition from Egocentric Open Surgery Videos MICCAI 2024
Surgical phase recognition has gained significant attention due to its potential to offer solutions to numerous demands of the modern operating room. However, most existing methods concentrate on minimally invasive surgery (MIS), leaving surgical phase recognition for open surgery understudied. This discrepancy is primarily attributed to the scarcity of publicly available open surgery video datasets for surgical phase recognition. To address this issue, we introduce a new egocentric open surgery video dataset for phase recognition, named EgoSurgery-Phase. This dataset comprises 15 hours of real open surgery videos spanning 9 distinct surgical phases all captured using an egocentric camera attached to the surgeon's head. In addition to video, the EgoSurgery-Phase offers eye gaze. As far as we know, it is the first real open surgery video dataset for surgical phase recognition publicly available. Furthermore, inspired by the notable success of masked autoencoders (MAEs) in video understanding tasks (e.g., action recognition), we propose a gaze-guided masked autoencoder (GGMAE). Considering the regions where surgeons' gaze focuses are often critical for surgical phase recognition (e.g., surgical field), in our GGMAE, the gaze information acts as an empirical semantic richness prior to guiding the masking process, promoting better attention to semantically rich spatial regions. GGMAE significantly improves the previous state-of-the-art recognition method (6.4% in Jaccard) and the masked autoencoder-based method (3.1% in Jaccard) on EgoSurgery-Phase. The dataset is released at https://github.com/Fujiry0/EgoSurgery.
comment: Early accepted by MICCAI 2024
♻ ☆ Single-cell Curriculum Learning-based Deep Graph Embedding Clustering
The swift advancement of single-cell RNA sequencing (scRNA-seq) technologies enables the investigation of cellular-level tissue heterogeneity. Cell annotation significantly contributes to the extensive downstream analysis of scRNA-seq data. However, The analysis of scRNA-seq for biological inference presents challenges owing to its intricate and indeterminate data distribution, characterized by a substantial volume and a high frequency of dropout events. Furthermore, the quality of training samples varies greatly, and the performance of the popular scRNA-seq data clustering solution GNN could be harmed by two types of low-quality training nodes: 1) nodes on the boundary; 2) nodes that contribute little additional information to the graph. To address these problems, we propose a single-cell curriculum learning-based deep graph embedding clustering (scCLG). We first propose a Chebyshev graph convolutional autoencoder with multi-criteria (ChebAE) that combines three optimization objectives, including topology reconstruction loss of cell graphs, zero-inflated negative binomial (ZINB) loss, and clustering loss, to learn cell-cell topology representation. Meanwhile, we employ a selective training strategy to train GNN based on the features and entropy of nodes and prune the difficult nodes based on the difficulty scores to keep the high-quality graph. Empirical results on a variety of gene expression datasets show that our model outperforms state-of-the-art methods. The code of scCLG will be made publicly available at https://github.com/LFD-byte/scCLG.
♻ ☆ FreezeAsGuard: Mitigating Illegal Adaptation of Diffusion Models via Selective Tensor Freezing
Text-to-image diffusion models can be fine-tuned in custom domains to adapt to specific user preferences, but such adaptability has also been utilized for illegal purposes, such as forging public figures' portraits, duplicating copyrighted artworks and generating explicit contents. Existing work focused on detecting the illegally generated contents, but cannot prevent or mitigate illegal adaptations of diffusion models. Other schemes of model unlearning and reinitialization, similarly, cannot prevent users from relearning the knowledge of illegal model adaptation with custom data. In this paper, we present FreezeAsGuard, a new technique that addresses these limitations and enables irreversible mitigation of illegal adaptations of diffusion models. Our approach is that the model publisher selectively freezes tensors in pre-trained diffusion models that are critical to illegal model adaptations, to mitigate the fine-tuned model's representation power in illegal adaptations, but minimize the impact on other legal adaptations. Experiment results in multiple text-to-image application domains show that FreezeAsGuard provides 37% stronger power in mitigating illegal model adaptations compared to competitive baselines, while incurring less than 5% impact on legal model adaptations. The source code is available at: https://github.com/pittisl/FreezeAsGuard.
comment: 28 pages
♻ ☆ Federated Learning for Time-Series Healthcare Sensing with Incomplete Modalities
Many healthcare sensing applications utilize multimodal time-series data from sensors embedded in mobile and wearable devices. Federated Learning (FL), with its privacy-preserving advantages, is particularly well-suited for health applications. However, most multimodal FL methods assume the availability of complete modality data for local training, which is often unrealistic. Moreover, recent approaches tackling incomplete modalities scale poorly and become inefficient as the number of modalities increases. To address these limitations, we propose FLISM, an efficient FL training algorithm with incomplete sensing modalities while maintaining high accuracy. FLISM employs three key techniques: (1) modality-invariant representation learning to extract effective features from clients with a diverse set of modalities, (2) modality quality-aware aggregation to prioritize contributions from clients with higher-quality modality data, and (3) global-aligned knowledge distillation to reduce local update shifts caused by modality differences. Extensive experiments on real-world datasets show that FLISM not only achieves high accuracy but is also faster and more efficient compared with state-of-the-art methods handling incomplete modality problems in FL. We release the code as open-source at https://github.com/AdibaOrz/FLISM.
♻ ☆ EgoSurgery-Tool: A Dataset of Surgical Tool and Hand Detection from Egocentric Open Surgery Videos
Surgical tool detection is a fundamental task for understanding egocentric open surgery videos. However, detecting surgical tools presents significant challenges due to their highly imbalanced class distribution, similar shapes and similar textures, and heavy occlusion. The lack of a comprehensive large-scale dataset compounds these challenges. In this paper, we introduce EgoSurgery-Tool, an extension of the existing EgoSurgery-Phase dataset, which contains real open surgery videos captured using an egocentric camera attached to the surgeon's head, along with phase annotations. EgoSurgery-Tool has been densely annotated with surgical tools and comprises over 49K surgical tool bounding boxes across 15 categories, constituting a large-scale surgical tool detection dataset. EgoSurgery-Tool also provides annotations for hand detection with over 46K hand-bounding boxes, capturing hand-object interactions that are crucial for understanding activities in egocentric open surgery. EgoSurgery-Tool is superior to existing datasets due to its larger scale, greater variety of surgical tools, more annotations, and denser scenes. We conduct a comprehensive analysis of EgoSurgery-Tool using nine popular object detectors to assess their effectiveness in both surgical tool and hand detection. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
♻ ☆ AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs
In this paper, we propose AutoDAN-Turbo, a black-box jailbreak method that can automatically discover as many jailbreak strategies as possible from scratch, without any human intervention or predefined scopes (e.g., specified candidate strategies), and use them for red-teaming. As a result, AutoDAN-Turbo can significantly outperform baseline methods, achieving a 74.3% higher average attack success rate on public benchmarks. Notably, AutoDAN-Turbo achieves an 88.5 attack success rate on GPT-4-1106-turbo. In addition, AutoDAN-Turbo is a unified framework that can incorporate existing human-designed jailbreak strategies in a plug-and-play manner. By integrating human-designed strategies, AutoDAN-Turbo can even achieve a higher attack success rate of 93.4 on GPT-4-1106-turbo.
comment: Pre-print. Project Page: https://autodans.github.io/AutoDAN-Turbo Code: https://github.com/SaFoLab-WISC/AutoDAN-Turbo
♻ ☆ Towards Black-Box Membership Inference Attack for Diffusion Models
Given the rising popularity of AI-generated art and the associated copyright concerns, identifying whether an artwork was used to train a diffusion model is an important research topic. The work approaches this problem from the membership inference attack (MIA) perspective. We first identify the limitation of applying existing MIA methods for proprietary diffusion models: the required access of internal U-nets. To address the above problem, we introduce a novel membership inference attack method that uses only the image-to-image variation API and operates without access to the model's internal U-net. Our method is based on the intuition that the model can more easily obtain an unbiased noise prediction estimate for images from the training set. By applying the API multiple times to the target image, averaging the outputs, and comparing the result to the original image, our approach can classify whether a sample was part of the training set. We validate our method using DDIM and Stable Diffusion setups and further extend both our approach and existing algorithms to the Diffusion Transformer architecture. Our experimental results consistently outperform previous methods.
♻ ☆ Closer Look at Efficient Inference Methods: A Survey of Speculative Decoding
Efficient inference in large language models (LLMs) has become a critical focus as their scale and complexity grow. Traditional autoregressive decoding, while effective, suffers from computational inefficiencies due to its sequential token generation process. Speculative decoding addresses this bottleneck by introducing a two-stage framework: drafting and verification. A smaller, efficient model generates a preliminary draft, which is then refined by a larger, more sophisticated model. This paper provides a comprehensive survey of speculative decoding methods, categorizing them into draft-centric and model-centric approaches. We discuss key ideas associated with each method, highlighting their potential for scaling LLM inference. This survey aims to guide future research in optimizing speculative decoding and its integration into real-world LLM applications.
♻ ☆ Time-aware Heterogeneous Graph Transformer with Adaptive Attention Merging for Health Event Prediction
The widespread application of Electronic Health Records (EHR) data in the medical field has led to early successes in disease risk prediction using deep learning methods. These methods typically require extensive data for training due to their large parameter sets. However, existing works do not exploit the full potential of EHR data. A significant challenge arises from the infrequent occurrence of many medical codes within EHR data, limiting their clinical applicability. Current research often lacks in critical areas: 1) incorporating disease domain knowledge; 2) heterogeneously learning disease representations with rich meanings; 3) capturing the temporal dynamics of disease progression. To overcome these limitations, we introduce a novel heterogeneous graph learning model designed to assimilate disease domain knowledge and elucidate the intricate relationships between drugs and diseases. This model innovatively incorporates temporal data into visit-level embeddings and leverages a time-aware transformer alongside an adaptive attention mechanism to produce patient representations. When evaluated on two healthcare datasets, our approach demonstrated notable enhancements in both prediction accuracy and interpretability over existing methodologies, signifying a substantial advancement towards personalized and proactive healthcare management.
comment: We identified issues with the dataset used in our study, such as incomplete or inaccurate data, which may affect the conclusions drawn in the paper. We plan to revise the study and resubmit after addressing these issues
♻ ☆ Low-Bit Quantization Favors Undertrained LLMs: Scaling Laws for Quantized LLMs with 100T Training Tokens
We reveal that low-bit quantization favors undertrained large language models (LLMs) by observing that models with larger sizes or fewer training tokens experience less quantization-induced degradation (QiD) when applying low-bit quantization, whereas smaller models with extensive training tokens suffer significant QiD. To gain deeper insights into this trend, we study over 1500 quantized LLM checkpoints of various sizes and at different training levels (undertrained or fully trained) in a controlled setting, deriving scaling laws for understanding the relationship between QiD and factors such as the number of training tokens, model size and bit width. With the derived scaling laws, we propose a novel perspective that we can use QiD to measure an LLM's training levels and determine the number of training tokens required for fully training LLMs of various sizes. Moreover, we use the scaling laws to predict the quantization performance of different-sized LLMs trained with 100 trillion tokens. Our projection shows that the low-bit quantization performance of future models, which are expected to be trained with over 100 trillion tokens, may NOT be desirable. This poses a potential challenge for low-bit quantization in the future and highlights the need for awareness of a model's training level when evaluating low-bit quantization research. To facilitate future research on this problem, we release all the 1500+ quantized checkpoints used in this work at https://huggingface.co/Xu-Ouyang.
comment: Work in Progress
♻ ☆ BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models
While large language models (LLMs) exhibit remarkable capabilities across various tasks, they encounter potential security risks such as jailbreak attacks, which exploit vulnerabilities to bypass security measures and generate harmful outputs. Existing jailbreak strategies mainly focus on maximizing attack success rate (ASR), frequently neglecting other critical factors, including the relevance of the jailbreak response to the query and the level of stealthiness. This narrow focus on single objectives can result in ineffective attacks that either lack contextual relevance or are easily recognizable. In this work, we introduce BlackDAN, an innovative black-box attack framework with multi-objective optimization, aiming to generate high-quality prompts that effectively facilitate jailbreaking while maintaining contextual relevance and minimizing detectability. BlackDAN leverages Multiobjective Evolutionary Algorithms (MOEAs), specifically the NSGA-II algorithm, to optimize jailbreaks across multiple objectives including ASR, stealthiness, and semantic relevance. By integrating mechanisms like mutation, crossover, and Pareto-dominance, BlackDAN provides a transparent and interpretable process for generating jailbreaks. Furthermore, the framework allows customization based on user preferences, enabling the selection of prompts that balance harmfulness, relevance, and other factors. Experimental results demonstrate that BlackDAN outperforms traditional single-objective methods, yielding higher success rates and improved robustness across various LLMs and multimodal LLMs, while ensuring jailbreak responses are both relevant and less detectable.
♻ ☆ FoundTS: Comprehensive and Unified Benchmarking of Foundation Models for Time Series Forecasting
Time Series Forecasting (TSF) is key functionality in numerous fields, including in finance, weather services, and energy management. While TSF methods are emerging these days, many of them require domain-specific data collection and model training and struggle with poor generalization performance on new domains. Foundation models aim to overcome this limitation. Pre-trained on large-scale language or time series data, they exhibit promising inferencing capabilities in new or unseen data. This has spurred a surge in new TSF foundation models. We propose a new benchmark, FoundTS, to enable thorough and fair evaluation and comparison of such models. FoundTS covers a variety of TSF foundation models, including those based on large language models and those pretrained on time series. Next, FoundTS supports different forecasting strategies, including zero-shot, few-shot, and full-shot, thereby facilitating more thorough evaluations. Finally, FoundTS offers a pipeline that standardizes evaluation processes such as dataset splitting, loading, normalization, and few-shot sampling, thereby facilitating fair evaluations. Building on this, we report on an extensive evaluation of TSF foundation models on a broad range of datasets from diverse domains and with different statistical characteristics. Specifically, we identify pros and cons and inherent limitations of existing foundation models, and we identify directions for future model design. We make our code and datasets available at https://anonymous.4open.science/r/FoundTS-C2B0.
♻ ☆ Intelligent Anomaly Detection for Lane Rendering Using Transformer with Self-Supervised Pre-Training and Customized Fine-Tuning
The burgeoning navigation services using digital maps provide great convenience to drivers. Nevertheless, the presence of anomalies in lane rendering map images occasionally introduces potential hazards, as such anomalies can be misleading to human drivers and consequently contribute to unsafe driving conditions. In response to this concern and to accurately and effectively detect the anomalies, this paper transforms lane rendering image anomaly detection into a classification problem and proposes a four-phase pipeline consisting of data pre-processing, self-supervised pre-training with the masked image modeling (MiM) method, customized fine-tuning using cross-entropy based loss with label smoothing, and post-processing to tackle it leveraging state-of-the-art deep learning techniques, especially those involving Transformer models. Various experiments verify the effectiveness of the proposed pipeline. Results indicate that the proposed pipeline exhibits superior performance in lane rendering image anomaly detection, and notably, the self-supervised pre-training with MiM can greatly enhance the detection accuracy while significantly reducing the total training time. For instance, employing the Swin Transformer with Uniform Masking as self-supervised pretraining (Swin-Trans-UM) yielded a heightened accuracy at 94.77% and an improved Area Under The Curve (AUC) score of 0.9743 compared with the pure Swin Transformer without pre-training (Swin-Trans) with an accuracy of 94.01% and an AUC of 0.9498. The fine-tuning epochs were dramatically reduced to 41 from the original 280. In conclusion, the proposed pipeline, with its incorporation of self-supervised pre-training using MiM and other advanced deep learning techniques, emerges as a robust solution for enhancing the accuracy and efficiency of lane rendering image anomaly detection in digital navigation systems.
comment: 25 pages, 7 figures, accepted by the 103rd Transportation Research Board (TRB) Annual Meeting, under review by Transportation Research Record: Journal of the Transportation Research Board
♻ ☆ SelfEval: Leveraging the discriminative nature of generative models for evaluation
We present an automated way to evaluate the text alignment of text-to-image generative diffusion models using standard image-text recognition datasets. Our method, called SelfEval, uses the generative model to compute the likelihood of real images given text prompts, and the likelihood can be used to perform recognition tasks with the generative model. We evaluate generative models on standard datasets created for multimodal text-image discriminative learning and assess fine-grained aspects of their performance: attribute binding, color recognition, counting, shape recognition, spatial understanding. Existing automated metrics rely on an external pretrained model like CLIP (VLMs) or LLMs, and are sensitive to the exact pretrained model and its limitations. SelfEval sidesteps these issues, and to the best of our knowledge, is the first automated metric to show a high degree of agreement for measuring text-faithfulness with the gold-standard human evaluations across multiple generative models, benchmarks and evaluation metrics. SelfEval also reveals that generative models showcase competitive recognition performance on challenging tasks such as Winoground image-score compared to discriminative models. We hope SelfEval enables easy and reliable automated evaluation for diffusion models.
♻ ☆ Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning
Value-based reinforcement learning (RL) can in principle learn effective policies for a wide range of multi-turn problems, from games to dialogue to robotic control, including via offline RL from static previously collected datasets. However, despite the widespread use of policy gradient methods to train large language models for single turn tasks (e.g., question answering), value-based methods for multi-turn RL in an off-policy or offline setting have proven particularly challenging to scale to the setting of large language models. This setting requires effectively leveraging pretraining, scaling to large architectures with billions of parameters, and training on large datasets, all of which represent major challenges for current value-based RL methods. In this work, we propose a novel offline RL algorithm that addresses these drawbacks, casting Q-learning as a modified supervised fine-tuning (SFT) problem where the probabilities of tokens directly translate to Q-values. In this way we obtain an algorithm that smoothly transitions from maximizing the likelihood of the data during pretraining to learning a near-optimal Q-function during finetuning. Our algorithm has strong theoretical foundations, enjoying performance bounds similar to state-of-the-art Q-learning methods, while in practice utilizing an objective that closely resembles SFT. Because of this, our approach can enjoy the full benefits of the pretraining of language models, without the need to reinitialize any weights before RL finetuning, and without the need to initialize new heads for predicting values or advantages. Empirically, we evaluate our method on both pretrained LLMs and VLMs, on a variety of tasks including both natural language dialogue and robotic manipulation and navigation from images.
comment: 17 pages, 4 figures
♻ ☆ From interpretability to inference: an estimation framework for universal approximators
We present a novel framework for estimation and inference for the broad class of universal approximators. Estimation is based on the decomposition of model predictions into Shapley values. Inference relies on analyzing the bias and variance properties of individual Shapley components. We show that Shapley value estimation is asymptotically unbiased, and we introduce Shapley regressions as a tool to uncover the true data generating process from noisy data alone. The well-known case of the linear regression is the special case in our framework if the model is linear in parameters. We present theoretical, numerical, and empirical results for the estimation of heterogeneous treatment effects as our guiding example.
comment: 42 pages, 5 figures, 3 tables, 1 algorithm
Multimedia 4
☆ Uncertainty-driven Sampling for Efficient Pairwise Comparison Subjective Assessment
Assessing image quality is crucial in image processing tasks such as compression, super-resolution, and denoising. While subjective assessments involving human evaluators provide the most accurate quality scores, they are impractical for large-scale or continuous evaluations due to their high cost and time requirements. Pairwise comparison subjective assessment tests, which rank image pairs instead of assigning scores, offer more reliability and accuracy but require numerous comparisons, leading to high costs. Although objective quality metrics are more efficient, they lack the precision of subjective tests, which are essential for benchmarking and training learning-based quality metrics. This paper proposes an uncertainty-based sampling method to optimize the pairwise comparison subjective assessment process. By utilizing deep learning models to estimate human preferences and identify pairs that need human labeling, the approach reduces the number of required comparisons while maintaining high accuracy. The key contributions include modeling uncertainty for accurate preference predictions and for pairwise sampling. The experimental results demonstrate superior performance of the proposed approach compared to traditional active sampling methods. Software is publicly available at: shimamohammadi/LBPS-EIC
comment: 10 Pages, 7 Figures, Submitted to IEEE Transactions on Multimedia
♻ ☆ Over-the-Air Learning-based Geometry Point Cloud Transmission
This paper presents novel solutions for the efficient and reliable transmission of 3D point clouds over wireless channels. We first propose SEPT for the transmission of small-scale point clouds, which encodes the point cloud via an iterative downsampling and feature extraction process. At the receiver, SEPT decoder reconstructs the point cloud with latent reconstruction and offset-based upsampling. A novel channel-adaptive module is proposed to allow SEPT to operate effectively over a wide range of channel conditions. Next, we propose OTA-NeRF, a scheme inspired by neural radiance fields. OTA-NeRF performs voxelization to the point cloud input and learns to encode the voxelized point cloud into a neural network. Instead of transmitting the extracted feature vectors as in the SEPT scheme, it transmits the learned neural network weights over the air in an analog fashion along with few hyperparameters that are transmitted digitally. At the receiver, the OTA-NeRF decoder reconstructs the original point cloud using the received noisy neural network weights. To further increase the bandwidth efficiency of the OTA-NeRF scheme, a fine-tuning algorithm is developed, where only a fraction of the neural network weights are retrained and transmitted. Extensive numerical experiments confirm that both the SEPT and the OTA-NeRF schemes achieve superior or comparable performance over the conventional approaches, where an octree-based or a learning-based point cloud compression scheme is concatenated with a channel code. As an additional advantage, both schemes mitigate the cliff and leveling effects making them particularly attractive for highly mobile scenarios, where accurate channel estimation is challenging if not impossible.
comment: 14 pages, submitted to IEEE journal
♻ ☆ CHORDONOMICON: A Dataset of 666,000 Songs and their Chord Progressions
Chord progressions encapsulate important information about music, pertaining to its structure and conveyed emotions. They serve as the backbone of musical composition, and in many cases, they are the sole information required for a musician to play along and follow the music. Despite their importance, chord progressions as a data domain remain underexplored. There is a lack of large-scale datasets suitable for deep learning applications, and limited research exploring chord progressions as an input modality. In this work, we present Chordonomicon, a dataset of over 666,000 songs and their chord progressions, annotated with structural parts, genre, and release date - created by scraping various sources of user-generated progressions and associated metadata. We demonstrate the practical utility of the Chordonomicon dataset for classification and generation tasks, and discuss its potential to provide valuable insights to the research community. Chord progressions are unique in their ability to be represented in multiple formats (e.g. text, graph) and the wealth of information chords convey in given contexts, such as their harmonic function . These characteristics make the Chordonomicon an ideal testbed for exploring advanced machine learning techniques, including transformers, graph machine learning, and hybrid systems that combine knowledge representation and machine learning.
♻ ☆ OpenMU: Your Swiss Army Knife for Music Understanding
We present OpenMU-Bench, a large-scale benchmark suite for addressing the data scarcity issue in training multimodal language models to understand music. To construct OpenMU-Bench, we leveraged existing datasets and bootstrapped new annotations. OpenMU-Bench also broadens the scope of music understanding by including lyrics understanding and music tool usage. Using OpenMU-Bench, we trained our music understanding model, OpenMU, with extensive ablations, demonstrating that OpenMU outperforms baseline models such as MU-Llama. Both OpenMU and OpenMU-Bench are open-sourced to facilitate future research in music understanding and to enhance creative music production efficiency.
comment: Resources: https://github.com/sony/openmu
Artificial Intelligent 174
☆ Cross-modal Information Flow in Multimodal Large Language Models
The recent advancements in auto-regressive multimodal large language models (MLLMs) have demonstrated promising progress for vision-language tasks. While there exists a variety of studies investigating the processing of linguistic information within large language models, little is currently known about the inner working mechanism of MLLMs and how linguistic and visual information interact within these models. In this study, we aim to fill this gap by examining the information flow between different modalities -- language and vision -- in MLLMs, focusing on visual question answering. Specifically, given an image-question pair as input, we investigate where in the model and how the visual and linguistic information are combined to generate the final prediction. Conducting experiments with a series of models from the LLaVA series, we find that there are two distinct stages in the process of integration of the two modalities. In the lower layers, the model first transfers the more general visual features of the whole image into the representations of (linguistic) question tokens. In the middle layers, it once again transfers visual information about specific objects relevant to the question to the respective token positions of the question. Finally, in the higher layers, the resulting multimodal representation is propagated to the last position of the input sequence for the final prediction. Overall, our findings provide a new and comprehensive perspective on the spatial and functional aspects of image and language processing in the MLLMs, thereby facilitating future research into multimodal information localization and editing.
☆ Diffusion Self-Distillation for Zero-Shot Customized Image Generation
Text-to-image diffusion models produce impressive results but are frustrating tools for artists who desire fine-grained control. For example, a common use case is to create images of a specific instance in novel contexts, i.e., "identity-preserving generation". This setting, along with many other tasks (e.g., relighting), is a natural fit for image+text-conditional generative models. However, there is insufficient high-quality paired data to train such a model directly. We propose Diffusion Self-Distillation, a method for using a pre-trained text-to-image model to generate its own dataset for text-conditioned image-to-image tasks. We first leverage a text-to-image diffusion model's in-context generation ability to create grids of images and curate a large paired dataset with the help of a Visual-Language Model. We then fine-tune the text-to-image model into a text+image-to-image model using the curated paired dataset. We demonstrate that Diffusion Self-Distillation outperforms existing zero-shot methods and is competitive with per-instance tuning techniques on a wide range of identity-preservation generation tasks, without requiring test-time optimization.
comment: Project page: https://primecai.github.io/dsd/
☆ Proactive Gradient Conflict Mitigation in Multi-Task Learning: A Sparse Training Perspective
Advancing towards generalist agents necessitates the concurrent processing of multiple tasks using a unified model, thereby underscoring the growing significance of simultaneous model training on multiple downstream tasks. A common issue in multi-task learning is the occurrence of gradient conflict, which leads to potential competition among different tasks during joint training. This competition often results in improvements in one task at the expense of deterioration in another. Although several optimization methods have been developed to address this issue by manipulating task gradients for better task balancing, they cannot decrease the incidence of gradient conflict. In this paper, we systematically investigate the occurrence of gradient conflict across different methods and propose a strategy to reduce such conflicts through sparse training (ST), wherein only a portion of the model's parameters are updated during training while keeping the rest unchanged. Our extensive experiments demonstrate that ST effectively mitigates conflicting gradients and leads to superior performance. Furthermore, ST can be easily integrated with gradient manipulation techniques, thus enhancing their effectiveness.
☆ Robust Offline Reinforcement Learning with Linearly Structured $f$-Divergence Regularization
The Distributionally Robust Markov Decision Process (DRMDP) is a popular framework for addressing dynamics shift in reinforcement learning by learning policies robust to the worst-case transition dynamics within a constrained set. However, solving its dual optimization oracle poses significant challenges, limiting theoretical analysis and computational efficiency. The recently proposed Robust Regularized Markov Decision Process (RRMDP) replaces the uncertainty set constraint with a regularization term on the value function, offering improved scalability and theoretical insights. Yet, existing RRMDP methods rely on unstructured regularization, often leading to overly conservative policies by considering transitions that are unrealistic. To address these issues, we propose a novel framework, the $d$-rectangular linear robust regularized Markov decision process ($d$-RRMDP), which introduces a linear latent structure into both transition kernels and regularization. For the offline RL setting, where an agent learns robust policies from a pre-collected dataset in the nominal environment, we develop a family of algorithms, Robust Regularized Pessimistic Value Iteration (R2PVI), employing linear function approximation and $f$-divergence based regularization terms on transition kernels. We provide instance-dependent upper bounds on the suboptimality gap of R2PVI policies, showing these bounds depend on how well the dataset covers state-action spaces visited by the optimal robust policy under robustly admissible transitions. This term is further shown to be fundamental to $d$-RRMDPs via information-theoretic lower bounds. Finally, numerical experiments validate that R2PVI learns robust policies and is computationally more efficient than methods for constrained DRMDPs.
comment: 52 pages, 3 figures, 2 tables
☆ Automated Literature Review Using NLP Techniques and LLM-Based Retrieval-Augmented Generation
This research presents and compares multiple approaches to automate the generation of literature reviews using several Natural Language Processing (NLP) techniques and retrieval-augmented generation (RAG) with a Large Language Model (LLM). The ever-increasing number of research articles provides a huge challenge for manual literature review. It has resulted in an increased demand for automation. Developing a system capable of automatically generating the literature reviews from only the PDF files as input is the primary objective of this research work. The effectiveness of several Natural Language Processing (NLP) strategies, such as the frequency-based method (spaCy), the transformer model (Simple T5), and retrieval-augmented generation (RAG) with Large Language Model (GPT-3.5-turbo), is evaluated to meet the primary objective. The SciTLDR dataset is chosen for this research experiment and three distinct techniques are utilized to implement three different systems for auto-generating the literature reviews. The ROUGE scores are used for the evaluation of all three systems. Based on the evaluation, the Large Language Model GPT-3.5-turbo achieved the highest ROUGE-1 score, 0.364. The transformer model comes in second place and spaCy is at the last position. Finally, a graphical user interface is created for the best system based on the large language model.
comment: Key Words : T5, SpaCy, Large Language Model, GPT, ROUGE, Literature Review, Natural Language Processing, Retrieval-augmented generation
☆ Functional relevance based on the continuous Shapley value
The presence of Artificial Intelligence (AI) in our society is increasing, which brings with it the need to understand the behaviour of AI mechanisms, including machine learning predictive algorithms fed with tabular data, text, or images, among other types of data. This work focuses on interpretability of predictive models based on functional data. Designing interpretability methods for functional data models implies working with a set of features whose size is infinite. In the context of scalar on function regression, we propose an interpretability method based on the Shapley value for continuous games, a mathematical formulation that allows to fairly distribute a global payoff among a continuous set players. The method is illustrated through a set of experiments with simulated and real data sets. The open source Python package ShapleyFDA is also presented.
comment: 36 pages, 13 figures
☆ A Pipeline of Neural-Symbolic Integration to Enhance Spatial Reasoning in Large Language Models
Large Language Models (LLMs) have demonstrated impressive capabilities across various tasks. However, LLMs often struggle with spatial reasoning which is one essential part of reasoning and inference and requires understanding complex relationships between objects in space. This paper proposes a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities. We evaluate our approach on two benchmark datasets: StepGame and SparQA, implementing three distinct strategies: (1) ASP (Answer Set Programming)-based symbolic reasoning, (2) LLM + ASP pipeline using DSPy, and (3) Fact + Logical rules. Our experiments demonstrate significant improvements over the baseline prompting methods, with accuracy increases of 40-50% on StepGame} dataset and 3-13% on the more complex SparQA dataset. The "LLM + ASP" pipeline achieves particularly strong results on the tasks of Finding Relations (FR) and Finding Block (FB) questions, though performance varies across different question types. The impressive results suggest that while neural-symbolic approaches offer promising directions for enhancing spatial reasoning in LLMs, their effectiveness depends heavily on the specific task characteristics and implementation strategies. We propose an integrated, simple yet effective set of strategies using a neural-symbolic pipeline to boost spatial reasoning abilities in LLMs. This pipeline and its strategies demonstrate strong and broader applicability to other reasoning domains in LLMs, such as temporal reasoning, deductive inference etc.
☆ NeuroAI for AI Safety
As AI systems become increasingly powerful, the need for safe AI has become more pressing. Humans are an attractive model for AI safety: as the only known agents capable of general intelligence, they perform robustly even under conditions that deviate significantly from prior experiences, explore the world safely, understand pragmatics, and can cooperate to meet their intrinsic goals. Intelligence, when coupled with cooperation and safety mechanisms, can drive sustained progress and well-being. These properties are a function of the architecture of the brain and the learning algorithms it implements. Neuroscience may thus hold important keys to technical AI safety that are currently underexplored and underutilized. In this roadmap, we highlight and critically evaluate several paths toward AI safety inspired by neuroscience: emulating the brain's representations, information processing, and architecture; building robust sensory and motor systems from imitating brain data and bodies; fine-tuning AI systems on brain data; advancing interpretability using neuroscience methods; and scaling up cognitively-inspired architectures. We make several concrete recommendations for how neuroscience can positively impact AI safety.
comment: 133 pages, 19 figures
LLM-ABBA: Understand time series via symbolic approximation
The success of large language models (LLMs) for time series has been demonstrated in previous work. Utilizing a symbolic time series representation, one can efficiently bridge the gap between LLMs and time series. However, the remaining challenge is to exploit the semantic information hidden in time series by using symbols or existing tokens of LLMs, while aligning the embedding space of LLMs according to the hidden information of time series. The symbolic time series approximation (STSA) method called adaptive Brownian bridge-based symbolic aggregation (ABBA) shows outstanding efficacy in preserving salient time series features by modeling time series patterns in terms of amplitude and period while using existing tokens of LLMs. In this paper, we introduce a method, called LLM-ABBA, that integrates ABBA into large language models for various downstream time series tasks. By symbolizing time series, LLM-ABBA compares favorably to the recent state-of-the-art (SOTA) in UCR and three medical time series classification tasks. Meanwhile, a fixed-polygonal chain trick in ABBA is introduced to \kc{avoid obvious drifting} during prediction tasks by significantly mitigating the effects of cumulative error arising from misused symbols during the transition from symbols to numerical values. In time series regression tasks, LLM-ABBA achieves the new SOTA on Time Series Extrinsic Regression (TSER) benchmarks. LLM-ABBA also shows competitive prediction capability compared to recent SOTA time series prediction results. We believe this framework can also seamlessly extend to other time series tasks.
☆ Isometry pursuit
Isometry pursuit is a convex algorithm for identifying orthonormal column-submatrices of wide matrices. It consists of a novel normalization method followed by multitask basis pursuit. Applied to Jacobians of putative coordinate functions, it helps identity isometric embeddings from within interpretable dictionaries. We provide theoretical and experimental results justifying this method. For problems involving coordinate selection and diversification, it offers a synergistic alternative to greedy and brute force search.
☆ SoK: Watermarking for AI-Generated Content
As the outputs of generative AI (GenAI) techniques improve in quality, it becomes increasingly challenging to distinguish them from human-created content. Watermarking schemes are a promising approach to address the problem of distinguishing between AI and human-generated content. These schemes embed hidden signals within AI-generated content to enable reliable detection. While watermarking is not a silver bullet for addressing all risks associated with GenAI, it can play a crucial role in enhancing AI safety and trustworthiness by combating misinformation and deception. This paper presents a comprehensive overview of watermarking techniques for GenAI, beginning with the need for watermarking from historical and regulatory perspectives. We formalize the definitions and desired properties of watermarking schemes and examine the key objectives and threat models for existing approaches. Practical evaluation strategies are also explored, providing insights into the development of robust watermarking techniques capable of resisting various attacks. Additionally, we review recent representative works, highlight open challenges, and discuss potential directions for this emerging field. By offering a thorough understanding of watermarking in GenAI, this work aims to guide researchers in advancing watermarking methods and applications, and support policymakers in addressing the broader implications of GenAI.
☆ Weakly Supervised Framework Considering Multi-temporal Information for Large-scale Cropland Mapping with Satellite Imagery
Accurately mapping large-scale cropland is crucial for agricultural production management and planning. Currently, the combination of remote sensing data and deep learning techniques has shown outstanding performance in cropland mapping. However, those approaches require massive precise labels, which are labor-intensive. To reduce the label cost, this study presented a weakly supervised framework considering multi-temporal information for large-scale cropland mapping. Specifically, we extract high-quality labels according to their consistency among global land cover (GLC) products to construct the supervised learning signal. On the one hand, to alleviate the overfitting problem caused by the model's over-trust of remaining errors in high-quality labels, we encode the similarity/aggregation of cropland in the visual/spatial domain to construct the unsupervised learning signal, and take it as the regularization term to constrain the supervised part. On the other hand, to sufficiently leverage the plentiful information in the samples without high-quality labels, we also incorporate the unsupervised learning signal in these samples, enriching the diversity of the feature space. After that, to capture the phenological features of croplands, we introduce dense satellite image time series (SITS) to extend the proposed framework in the temporal dimension. We also visualized the high dimensional phenological features to uncover how multi-temporal information benefits cropland extraction, and assessed the method's robustness under conditions of data scarcity. The proposed framework has been experimentally validated for strong adaptability across three study areas (Hunan Province, Southeast France, and Kansas) in large-scale cropland mapping, and the internal mechanism and temporal generalizability are also investigated.
☆ Draft Model Knows When to Stop: A Self-Verification Length Policy for Speculative Decoding
Speculative Decoding (SD) has become an important technique in accelerating the inference speed of large language models. Conventional SD methods employ a fixed draft length, which ignores the token generation difficulty across tasks. Consequently, in this paper, we address such an issue and introduce SVIP - a difficulty-aware dynamic draft length policy for speculative decoding systems. Based on a theoretical lower bound of draft token acceptance rate and its inference-time approximation, SVIP adaptively determines the lengths of draft sequences based on the entropy of each draft token distribution. Experimental results on mainstream SD benchmarks and frameworks demonstrate the superior performance of SVIP, achieving up to 20\% walltime speedup on SpecBench over baseline SD methods and 60\% speedup on MT-Bench for long-form generation of up to 8K tokens. Moreover, SVIP is totally training-free and compatible with any existing SD methods that generate draft tokens autoregressively. Experimental results also show that SVIP yields consistent walltime improvement on top of GliDe & CaPE and EAGLE-2.
comment: Code at https://github.com/Geralt-Targaryen/SVIP
☆ Synthetic ECG Generation for Data Augmentation and Transfer Learning in Arrhythmia Classification
Deep learning models need a sufficient amount of data in order to be able to find the hidden patterns in it. It is the purpose of generative modeling to learn the data distribution, thus allowing us to sample more data and augment the original dataset. In the context of physiological data, and more specifically electrocardiogram (ECG) data, given its sensitive nature and expensive data collection, we can exploit the benefits of generative models in order to enlarge existing datasets and improve downstream tasks, in our case, classification of heart rhythm. In this work, we explore the usefulness of synthetic data generated with different generative models from Deep Learning namely Diffweave, Time-Diffusion and Time-VQVAE in order to obtain better classification results for two open source multivariate ECG datasets. Moreover, we also investigate the effects of transfer learning, by fine-tuning a synthetically pre-trained model and then progressively adding increasing proportions of real data. We conclude that although the synthetic samples resemble the real ones, the classification improvement when simply augmenting the real dataset is barely noticeable on individual datasets, but when both datasets are merged the results show an increase across all metrics for the classifiers when using synthetic samples as augmented data. From the fine-tuning results the Time-VQVAE generative model has shown to be superior to the others but not powerful enough to achieve results close to a classifier trained with real data only. In addition, methods and metrics for measuring closeness between synthetic data and the real one have been explored as a side effect of the main research questions of this study.
☆ Continuous Autoregressive Models with Noise Augmentation Avoid Error Accumulation NeurIPS 2024
Autoregressive models are typically applied to sequences of discrete tokens, but recent research indicates that generating sequences of continuous embeddings in an autoregressive manner is also feasible. However, such Continuous Autoregressive Models (CAMs) can suffer from a decline in generation quality over extended sequences due to error accumulation during inference. We introduce a novel method to address this issue by injecting random noise into the input embeddings during training. This procedure makes the model robust against varying error levels at inference. We further reduce error accumulation through an inference procedure that introduces low-level noise. Experiments on musical audio generation show that CAM substantially outperforms existing autoregressive and non-autoregressive approaches while preserving audio quality over extended sequences. This work paves the way for generating continuous embeddings in a purely autoregressive setting, opening new possibilities for real-time and interactive generative applications.
comment: Accepted to NeurIPS 2024 - Audio Imagination Workshop
☆ Is my Meeting Summary Good? Estimating Quality with a Multi-LLM Evaluator
The quality of meeting summaries generated by natural language generation (NLG) systems is hard to measure automatically. Established metrics such as ROUGE and BERTScore have a relatively low correlation with human judgments and fail to capture nuanced errors. Recent studies suggest using large language models (LLMs), which have the benefit of better context understanding and adaption of error definitions without training on a large number of human preference judgments. However, current LLM-based evaluators risk masking errors and can only serve as a weak proxy, leaving human evaluation the gold standard despite being costly and hard to compare across studies. In this work, we present MESA, an LLM-based framework employing a three-step assessment of individual error types, multi-agent discussion for decision refinement, and feedback-based self-training to refine error definition understanding and alignment with human judgment. We show that MESA's components enable thorough error detection, consistent rating, and adaptability to custom error guidelines. Using GPT-4o as its backbone, MESA achieves mid to high Point-Biserial correlation with human judgment in error detection and mid Spearman and Kendall correlation in reflecting error impact on summary quality, on average 0.25 higher than previous methods. The framework's flexibility in adapting to custom error guidelines makes it suitable for various tasks with limited human-labeled data.
☆ Metric-DST: Mitigating Selection Bias Through Diversity-Guided Semi-Supervised Metric Learning
Selection bias poses a critical challenge for fairness in machine learning, as models trained on data that is less representative of the population might exhibit undesirable behavior for underrepresented profiles. Semi-supervised learning strategies like self-training can mitigate selection bias by incorporating unlabeled data into model training to gain further insight into the distribution of the population. However, conventional self-training seeks to include high-confidence data samples, which may reinforce existing model bias and compromise effectiveness. We propose Metric-DST, a diversity-guided self-training strategy that leverages metric learning and its implicit embedding space to counter confidence-based bias through the inclusion of more diverse samples. Metric-DST learned more robust models in the presence of selection bias for generated and real-world datasets with induced bias, as well as a molecular biology prediction task with intrinsic bias. The Metric-DST learning strategy offers a flexible and widely applicable solution to mitigate selection bias and enhance fairness of machine learning models.
comment: 18 pages main manuscript (4 main figures), 7 pages of supplementary
☆ MM-Path: Multi-modal, Multi-granularity Path Representation Learning -- Extended Version
Developing effective path representations has become increasingly essential across various fields within intelligent transportation. Although pre-trained path representation learning models have shown improved performance, they predominantly focus on the topological structures from single modality data, i.e., road networks, overlooking the geometric and contextual features associated with path-related images, e.g., remote sensing images. Similar to human understanding, integrating information from multiple modalities can provide a more comprehensive view, enhancing both representation accuracy and generalization. However, variations in information granularity impede the semantic alignment of road network-based paths (road paths) and image-based paths (image paths), while the heterogeneity of multi-modal data poses substantial challenges for effective fusion and utilization. In this paper, we propose a novel Multi-modal, Multi-granularity Path Representation Learning Framework (MM-Path), which can learn a generic path representation by integrating modalities from both road paths and image paths. To enhance the alignment of multi-modal data, we develop a multi-granularity alignment strategy that systematically associates nodes, road sub-paths, and road paths with their corresponding image patches, ensuring the synchronization of both detailed local information and broader global contexts. To address the heterogeneity of multi-modal data effectively, we introduce a graph-based cross-modal residual fusion component designed to comprehensively fuse information across different modalities and granularities. Finally, we conduct extensive experiments on two large-scale real-world datasets under two downstream tasks, validating the effectiveness of the proposed MM-Path. This is an extended version of the paper accepted by KDD 2025.
☆ Optimal In-Network Distribution of Learning Functions for a Secure-by-Design Programmable Data Plane of Next-Generation Networks
The rise of programmable data plane (PDP) and in-network computing (INC) paradigms paves the way for the development of network devices (switches, network interface cards, etc.) capable of performing advanced computing tasks. This allows to execute algorithms of various nature, including machine learning ones, within the network itself to support user and network services. In particular, this paper delves into the issue of implementing in-network learning models to support distributed intrusion detection systems (IDS). It proposes a model that optimally distributes the IDS workload, resulting from the subdivision of a "Strong Learner" (SL) model into lighter distributed "Weak Learner" (WL) models, among data plane devices; the objective is to ensure complete network security without excessively burdening their normal operations. Furthermore, a meta-heuristic approach is proposed to reduce the long computational time required by the exact solution provided by the mathematical model, and its performance is evaluated. The analysis conducted and the results obtained demonstrate the enormous potential of the proposed new approach to the creation of intelligent data planes that effectively act as a first line of defense against cyber attacks, with minimal additional workload on network devices.
ChatGPT as speechwriter for the French presidents
Generative AI proposes several large language models (LLMs) to automatically generate a message in response to users' requests. Such scientific breakthroughs promote new writing assistants but with some fears. The main focus of this study is to analyze the written style of one LLM called ChatGPT by comparing its generated messages with those of the recent French presidents. To achieve this, we compare end-of-the-year addresses written by Chirac, Sarkozy, Hollande, and Macron with those automatically produced by ChatGPT. We found that ChatGPT tends to overuse nouns, possessive determiners, and numbers. On the other hand, the generated speeches employ less verbs, pronouns, and adverbs and include, in mean, too standardized sentences. Considering some words, one can observe that ChatGPT tends to overuse "to must" (devoir), "to continue" or the lemma "we" (nous). Moreover, GPT underuses the auxiliary verb "to be" (^etre), or the modal verbs "to will" (vouloir) or "to have to" (falloir). In addition, when a short text is provided as example to ChatGPT, the machine can generate a short message with a style closed to the original wording. Finally, we reveal that ChatGPT style exposes distinct features compared to real presidential speeches.
☆ G3Flow: Generative 3D Semantic Flow for Pose-aware and Generalizable Object Manipulation
Recent advances in imitation learning for 3D robotic manipulation have shown promising results with diffusion-based policies. However, achieving human-level dexterity requires seamless integration of geometric precision and semantic understanding. We present G3Flow, a novel framework that constructs real-time semantic flow, a dynamic, object-centric 3D semantic representation by leveraging foundation models. Our approach uniquely combines 3D generative models for digital twin creation, vision foundation models for semantic feature extraction, and robust pose tracking for continuous semantic flow updates. This integration enables complete semantic understanding even under occlusions while eliminating manual annotation requirements. By incorporating semantic flow into diffusion policies, we demonstrate significant improvements in both terminal-constrained manipulation and cross-object generalization. Extensive experiments across five simulation tasks show that G3Flow consistently outperforms existing approaches, achieving up to 68.3% and 50.1% average success rates on terminal-constrained manipulation and cross-object generalization tasks respectively. Our results demonstrate the effectiveness of G3Flow in enhancing real-time dynamic semantic feature understanding for robotic manipulation policies.
comment: Webpage: https://tianxingchen.github.io/G3Flow/
☆ AMPS: ASR with Multimodal Paraphrase Supervision
Spontaneous or conversational multilingual speech presents many challenges for state-of-the-art automatic speech recognition (ASR) systems. In this work, we present a new technique AMPS that augments a multilingual multimodal ASR system with paraphrase-based supervision for improved conversational ASR in multiple languages, including Hindi, Marathi, Malayalam, Kannada, and Nyanja. We use paraphrases of the reference transcriptions as additional supervision while training the multimodal ASR model and selectively invoke this paraphrase objective for utterances with poor ASR performance. Using AMPS with a state-of-the-art multimodal model SeamlessM4T, we obtain significant relative reductions in word error rates (WERs) of up to 5%. We present detailed analyses of our system using both objective and human evaluation metrics.
GPT as ghostwriter at the White House
Recently several large language models (LLMs) have demonstrated their capability to generate a message in response to a user request. Such scientific breakthroughs promote new perspectives but also some fears. The main focus of this study is to analyze the written style of one LLM called ChatGPT 3.5 by comparing its generated messages with those of the recent US presidents. To achieve this objective, we compare the State of the Union addresses written by Reagan to Obama with those automatically produced by ChatGPT. We found that ChatGPT tends to overuse the lemma "we" as well as nouns and commas. On the other hand, the generated speeches employ less verbs and include, in mean, longer sentences. Even when imposing a given style to ChatGPT, the resulting speech remains distinct from messages written by the target author. Moreover, ChatGPT opts for a neutral tone with mainly positive emotional expressions and symbolic terms (e.g., freedom, nation). Finally, we show that the GPT's style exposes distinct features compared to real presidential addresses.
☆ TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models
This paper introduces Virtual Try-Off (VTOFF), a novel task focused on generating standardized garment images from single photos of clothed individuals. Unlike traditional Virtual Try-On (VTON), which digitally dresses models, VTOFF aims to extract a canonical garment image, posing unique challenges in capturing garment shape, texture, and intricate patterns. This well-defined target makes VTOFF particularly effective for evaluating reconstruction fidelity in generative models. We present TryOffDiff, a model that adapts Stable Diffusion with SigLIP-based visual conditioning to ensure high fidelity and detail retention. Experiments on a modified VITON-HD dataset show that our approach outperforms baseline methods based on pose transfer and virtual try-on with fewer pre- and post-processing steps. Our analysis reveals that traditional image generation metrics inadequately assess reconstruction quality, prompting us to rely on DISTS for more accurate evaluation. Our results highlight the potential of VTOFF to enhance product imagery in e-commerce applications, advance generative model evaluation, and inspire future work on high-fidelity reconstruction. Demo, code, and models are available at: https://rizavelioglu.github.io/tryoffdiff/
☆ FreqX: What neural networks learn is what network designers say
Personalized Federal learning(PFL) allows clients to cooperatively train a personalized model without disclosing their private dataset. However, PFL suffers from Non-IID, heterogeneous devices, lack of fairness, and unclear contribution which urgently need the interpretability of deep learning model to overcome these challenges. These challenges proposed new demands for interpretability. Low cost, privacy, and detailed information. There is no current interpretability method satisfying them. In this paper, we propose a novel interpretability method \emph{FreqX} by introducing Signal Processing and Information Theory. Our experiments show that the explanation results of FreqX contain both attribution information and concept information. FreqX runs at least 10 times faster than the baselines which contain concept information.
comment: 16pages, 9 figures
☆ Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation
Despite considerable progress in stereo depth estimation, omnidirectional imaging remains underexplored, mainly due to the lack of appropriate data. We introduce Helvipad, a real-world dataset for omnidirectional stereo depth estimation, consisting of 40K frames from video sequences across diverse environments, including crowded indoor and outdoor scenes with diverse lighting conditions. Collected using two 360{\deg} cameras in a top-bottom setup and a LiDAR sensor, the dataset includes accurate depth and disparity labels by projecting 3D point clouds onto equirectangular images. Additionally, we provide an augmented training set with a significantly increased label density by using depth completion. We benchmark leading stereo depth estimation models for both standard and omnidirectional images. The results show that while recent stereo methods perform decently, a significant challenge persists in accurately estimating depth in omnidirectional imaging. To address this, we introduce necessary adaptations to stereo models, achieving improved performance.
comment: Project page: https://vita-epfl.github.io/Helvipad
☆ RITA: Automatic Framework for Designing of Resilient IoT Applications
Designing resilient Internet of Things (IoT) systems requires i) identification of IoT Critical Objects (ICOs) such as services, devices, and resources, ii) threat analysis, and iii) mitigation strategy selection. However, the traditional process for designing resilient IoT systems is still manual, leading to inefficiencies and increased risks. In addition, while tools such as ChatGPT could support this manual and highly error-prone process, their use raises concerns over data privacy, inconsistent outputs, and internet dependence. Therefore, we propose RITA, an automated, open-source framework that uses a fine-tuned RoBERTa-based Named Entity Recognition (NER) model to identify ICOs from IoT requirement documents, correlate threats, and recommend countermeasures. RITA operates entirely offline and can be deployed on-site, safeguarding sensitive information and delivering consistent outputs that enhance standardization. In our empirical evaluation, RITA outperformed ChatGPT in four of seven ICO categories, particularly in actuator, sensor, network resource, and service identification, using both human-annotated and ChatGPT-generated test data. These findings indicate that RITA can improve resilient IoT design by effectively supporting key security operations, offering a practical solution for developing robust IoT architectures.
☆ Learning optimal objective values for MILP
Modern Mixed Integer Linear Programming (MILP) solvers use the Branch-and-Bound algorithm together with a plethora of auxiliary components that speed up the search. In recent years, there has been an explosive development in the use of machine learning for enhancing and supporting these algorithmic components. Within this line, we propose a methodology for predicting the optimal objective value, or, equivalently, predicting if the current incumbent is optimal. For this task, we introduce a predictor based on a graph neural network (GNN) architecture, together with a set of dynamic features. Experimental results on diverse benchmarks demonstrate the efficacy of our approach, achieving high accuracy in the prediction task and outperforming existing methods. These findings suggest new opportunities for integrating ML-driven predictions into MILP solvers, enabling smarter decision-making and improved performance.
☆ Continual Learning in Machine Speech Chain Using Gradient Episodic Memory
Continual learning for automatic speech recognition (ASR) systems poses a challenge, especially with the need to avoid catastrophic forgetting while maintaining performance on previously learned tasks. This paper introduces a novel approach leveraging the machine speech chain framework to enable continual learning in ASR using gradient episodic memory (GEM). By incorporating a text-to-speech (TTS) component within the machine speech chain, we support the replay mechanism essential for GEM, allowing the ASR model to learn new tasks sequentially without significant performance degradation on earlier tasks. Our experiments, conducted on the LJ Speech dataset, demonstrate that our method outperforms traditional fine-tuning and multitask learning approaches, achieving a substantial error rate reduction while maintaining high performance across varying noise conditions. We showed the potential of our semi-supervised machine speech chain approach for effective and efficient continual learning in speech recognition.
comment: Published as a conference paper at O-COCOSDA 2024. 6 pages; 2 figures
☆ MvKeTR: Chest CT Report Generation with Multi-View Perception and Knowledge Enhancement
CT report generation (CTRG) aims to automatically generate diagnostic reports for 3D volumes, relieving clinicians' workload and improving patient care. Despite clinical value, existing works fail to effectively incorporate diagnostic information from multiple anatomical views and lack related clinical expertise essential for accurate and reliable diagnosis. To resolve these limitations, we propose a novel Multi-view perception Knowledge-enhanced Tansformer (MvKeTR) to mimic the diagnostic workflow of clinicians. Just as radiologists first examine CT scans from multiple planes, a Multi-View Perception Aggregator (MVPA) with view-aware attention effectively synthesizes diagnostic information from multiple anatomical views. Then, inspired by how radiologists further refer to relevant clinical records to guide diagnostic decision-making, a Cross-Modal Knowledge Enhancer (CMKE) retrieves the most similar reports based on the query volume to incorporate domain knowledge into the diagnosis procedure. Furthermore, instead of traditional MLPs, we employ Kolmogorov-Arnold Networks (KANs) with learnable nonlinear activation functions as the fundamental building blocks of both modules to better capture intricate diagnostic patterns in CT interpretation. Extensive experiments on the public CTRG-Chest-548K dataset demonstrate that our method outpaces prior state-of-the-art models across all metrics.
comment: 10 pages, 10 figures
☆ Application of Soft Actor-Critic Algorithms in Optimizing Wastewater Treatment with Time Delays Integration
Wastewater treatment plants face unique challenges for process control due to their complex dynamics, slow time constants, and stochastic delays in observations and actions. These characteristics make conventional control methods, such as Proportional-Integral-Derivative controllers, suboptimal for achieving efficient phosphorus removal, a critical component of wastewater treatment to ensure environmental sustainability. This study addresses these challenges using a novel deep reinforcement learning approach based on the Soft Actor-Critic algorithm, integrated with a custom simulator designed to model the delayed feedback inherent in wastewater treatment plants. The simulator incorporates Long Short-Term Memory networks for accurate multi-step state predictions, enabling realistic training scenarios. To account for the stochastic nature of delays, agents were trained under three delay scenarios: no delay, constant delay, and random delay. The results demonstrate that incorporating random delays into the reinforcement learning framework significantly improves phosphorus removal efficiency while reducing operational costs. Specifically, the delay-aware agent achieved 36% reduction in phosphorus emissions, 55% higher reward, 77% lower target deviation from the regulatory limit, and 9% lower total costs than traditional control methods in the simulated environment. These findings underscore the potential of reinforcement learning to overcome the limitations of conventional control strategies in wastewater treatment, providing an adaptive and cost-effective solution for phosphorus removal.
☆ Aligning Pre-trained Models for Spoken Language Translation
This paper investigates a novel approach to end-to-end speech translation (ST) based on aligning frozen pre-trained automatic speech recognition (ASR) and machine translation (MT) models via a small connector module (Q-Former, our Subsampler-Transformer Encoder). This connector bridges the gap between the speech and text modalities, transforming ASR encoder embeddings into the latent representation space of the MT encoder while being the only part of the system optimized during training. Experiments are conducted on the How2 English-Portuguese dataset as we investigate the alignment approach in a small-scale scenario focusing on ST. While keeping the size of the connector module constant and small in comparison ( < 5% of the size of the larger aligned models), increasing the size and capability of the foundation ASR and MT models universally improves translation results. We also find that the connectors can serve as domain adapters for the foundation MT models, significantly improving translation performance in the aligned ST setting. We conclude that this approach represents a viable and scalable approach to training end-to-end ST systems.
☆ DualCast: Disentangling Aperiodic Events from Traffic Series with a Dual-Branch Model
Traffic forecasting is an important problem in the operation and optimisation of transportation systems. State-of-the-art solutions train machine learning models by minimising the mean forecasting errors on the training data. The trained models often favour periodic events instead of aperiodic ones in their prediction results, as periodic events often prevail in the training data. While offering critical optimisation opportunities, aperiodic events such as traffic incidents may be missed by the existing models. To address this issue, we propose DualCast -- a model framework to enhance the learning capability of traffic forecasting models, especially for aperiodic events. DualCast takes a dual-branch architecture, to disentangle traffic signals into two types, one reflecting intrinsic {spatial-temporal} patterns and the other reflecting external environment contexts including aperiodic events. We further propose a cross-time attention mechanism, to capture high-order spatial-temporal relationships from both periodic and aperiodic patterns. DualCast is versatile. We integrate it with recent traffic forecasting models, consistently reducing their forecasting errors by up to 9.6% on multiple real datasets.
☆ Large Language Model-Brained GUI Agents: A Survey
GUIs have long been central to human-computer interaction, providing an intuitive and visually-driven way to access and interact with digital systems. The advent of LLMs, particularly multimodal models, has ushered in a new era of GUI automation. They have demonstrated exceptional capabilities in natural language understanding, code generation, and visual processing. This has paved the way for a new generation of LLM-brained GUI agents capable of interpreting complex GUI elements and autonomously executing actions based on natural language instructions. These agents represent a paradigm shift, enabling users to perform intricate, multi-step tasks through simple conversational commands. Their applications span across web navigation, mobile app interactions, and desktop automation, offering a transformative user experience that revolutionizes how individuals interact with software. This emerging field is rapidly advancing, with significant progress in both research and industry. To provide a structured understanding of this trend, this paper presents a comprehensive survey of LLM-brained GUI agents, exploring their historical evolution, core components, and advanced techniques. We address research questions such as existing GUI agent frameworks, the collection and utilization of data for training specialized GUI agents, the development of large action models tailored for GUI tasks, and the evaluation metrics and benchmarks necessary to assess their effectiveness. Additionally, we examine emerging applications powered by these agents. Through a detailed analysis, this survey identifies key research gaps and outlines a roadmap for future advancements in the field. By consolidating foundational knowledge and state-of-the-art developments, this work aims to guide both researchers and practitioners in overcoming challenges and unlocking the full potential of LLM-brained GUI agents.
☆ GAPartManip: A Large-scale Part-centric Dataset for Material-Agnostic Articulated Object Manipulation
Effectively manipulating articulated objects in household scenarios is a crucial step toward achieving general embodied artificial intelligence. Mainstream research in 3D vision has primarily focused on manipulation through depth perception and pose detection. However, in real-world environments, these methods often face challenges due to imperfect depth perception, such as with transparent lids and reflective handles. Moreover, they generally lack the diversity in part-based interactions required for flexible and adaptable manipulation. To address these challenges, we introduced a large-scale part-centric dataset for articulated object manipulation that features both photo-realistic material randomizations and detailed annotations of part-oriented, scene-level actionable interaction poses. We evaluated the effectiveness of our dataset by integrating it with several state-of-the-art methods for depth estimation and interaction pose prediction. Additionally, we proposed a novel modular framework that delivers superior and robust performance for generalizable articulated object manipulation. Our extensive experiments demonstrate that our dataset significantly improves the performance of depth perception and actionable interaction pose prediction in both simulation and real-world scenarios.
☆ Wearable intelligent throat enables natural speech in stroke patients with dysarthria
Wearable silent speech systems hold significant potential for restoring communication in patients with speech impairments. However, seamless, coherent speech remains elusive, and clinical efficacy is still unproven. Here, we present an AI-driven intelligent throat (IT) system that integrates throat muscle vibrations and carotid pulse signal sensors with large language model (LLM) processing to enable fluent, emotionally expressive communication. The system utilizes ultrasensitive textile strain sensors to capture high-quality signals from the neck area and supports token-level processing for real-time, continuous speech decoding, enabling seamless, delay-free communication. In tests with five stroke patients with dysarthria, IT's LLM agents intelligently corrected token errors and enriched sentence-level emotional and logical coherence, achieving low error rates (4.2% word error rate, 2.9% sentence error rate) and a 55% increase in user satisfaction. This work establishes a portable, intuitive communication platform for patients with dysarthria with the potential to be applied broadly across different neurological conditions and in multi-language support systems.
comment: 5 figures, 45 references
Multimodal Integration of Longitudinal Noninvasive Diagnostics for Survival Prediction in Immunotherapy Using Deep Learning
Purpose: Analyzing noninvasive longitudinal and multimodal data using artificial intelligence could potentially transform immunotherapy for cancer patients, paving the way towards precision medicine. Methods: In this study, we integrated pre- and on-treatment blood measurements, prescribed medications and CT-based volumes of organs from a large pan-cancer cohort of 694 patients treated with immunotherapy to predict short and long-term overall survival. By leveraging a combination of recent developments, different variants of our extended multimodal transformer-based simple temporal attention (MMTSimTA) network were trained end-to-end to predict mortality at three, six, nine and twelve months. These models were also compared to baseline methods incorporating intermediate and late fusion based integration methods. Results: The strongest prognostic performance was demonstrated using the extended transformer-based multimodal model with area under the curves (AUCs) of $0.84 \pm $0.04, $0.83 \pm $0.02, $0.82 \pm $0.02, $0.81 \pm $0.03 for 3-, 6-, 9-, and 12-month survival prediction, respectively. Conclusion: Our findings suggest that analyzing integrated early treatment data has potential for predicting survival of immunotherapy patients. Integrating complementary noninvasive modalities into a jointly trained model, using our extended transformer-based architecture, demonstrated an improved multimodal prognostic performance, especially in short term survival prediction.
☆ IKUN: Initialization to Keep snn training and generalization great with sUrrogate-stable variaNce
Weight initialization significantly impacts the convergence and performance of neural networks. While traditional methods like Xavier and Kaiming initialization are widely used, they often fall short for spiking neural networks (SNNs), which have distinct requirements compared to artificial neural networks (ANNs). To address this, we introduce \textbf{IKUN}, a variance-stabilizing initialization method integrated with surrogate gradient functions, specifically designed for SNNs. \textbf{IKUN} stabilizes signal propagation, accelerates convergence, and enhances generalization. Experiments show \textbf{IKUN} improves training efficiency by up to \textbf{50\%}, achieving \textbf{95\%} training accuracy and \textbf{91\%} generalization accuracy. Hessian analysis reveals that \textbf{IKUN}-trained models converge to flatter minima, characterized by Hessian eigenvalues near zero on the positive side, promoting better generalization. The method is open-sourced for further exploration: \href{https://github.com/MaeChd/SurrogateVarStabe}{https://github.com/MaeChd/SurrogateVarStabe}.
☆ Thai Financial Domain Adaptation of THaLLE -- Technical Report
Large Language Models (LLMs) excel in general tasks but struggle with domain-specific challenges, such as specialized terminology and localized regulations. Existing financial LLMs, like FinGPT and BloombergGPT, lack support for the Thai financial domain. We developed a Thai Financial LLM using the Investment Consultant (IC) exam dataset from the Stock Exchange of Thailand. To address dataset limitations, we applied data augmentation, ReLoRA for efficient training, Continued Pretraining (CPT) for domain knowledge, and Rank-Stabilized LoRA (rsLoRA) for fine-tuning. Supervised Fine-Tuning (SFT) simulated exam scenarios, while Direct Preference Optimization (DPO) refined the model using feedback. The model achieved scores of 72%, 72%, and 84% on IC exam levels P1, P2, and P3, respectively, demonstrating its effectiveness in Thai financial advisory tasks and its potential for specialized applications.
☆ Exploration of LLM Multi-Agent Application Implementation Based on LangGraph+CrewAI
With the rapid development of large model technology, the application of agent technology in various fields is becoming increasingly widespread, profoundly changing people's work and lifestyles. In complex and dynamic systems, multi-agents achieve complex tasks that are difficult for a single agent to complete through division of labor and collaboration among agents. This paper discusses the integrated application of LangGraph and CrewAI. LangGraph improves the efficiency of information transmission through graph architecture, while CrewAI enhances team collaboration capabilities and system performance through intelligent task allocation and resource management. The main research contents of this paper are: (1) designing the architecture of agents based on LangGraph for precise control; (2) enhancing the capabilities of agents based on CrewAI to complete a variety of tasks. This study aims to delve into the application of LangGraph and CrewAI in multi-agent systems, providing new perspectives for the future development of agent technology, and promoting technological progress and application innovation in the field of large model intelligent agents.
☆ Certified Training with Branch-and-Bound: A Case Study on Lyapunov-stable Neural Control
We study the problem of learning Lyapunov-stable neural controllers which provably satisfy the Lyapunov asymptotic stability condition within a region-of-attraction. Compared to previous works which commonly used counterexample guided training on this task, we develop a new and generally formulated certified training framework named CT-BaB, and we optimize for differentiable verified bounds, to produce verification-friendly models. In order to handle the relatively large region-of-interest, we propose a novel framework of training-time branch-and-bound to dynamically maintain a training dataset of subregions throughout training, such that the hardest subregions are iteratively split into smaller ones whose verified bounds can be computed more tightly to ease the training. We demonstrate that our new training framework can produce models which can be more efficiently verified at test time. On the largest 2D quadrotor dynamical system, verification for our model is more than 5X faster compared to the baseline, while our size of region-of-attraction is 16X larger than the baseline.
comment: Preprint
☆ Randomized-Grid Search for Hyperparameter Tuning in Decision Tree Model to Improve Performance of Cardiovascular Disease Classification
Cardiovascular disease refers to any critical condition that impacts the heart. Because heart diseases can be life-threatening. Researchers are focusing on designing smart systems to accurately diagnose them based on electronic health data, with the aid of machine learning algorithms. Heart disease classification using machine learning (ML) algorithms such as Support Vector Machine(SVM), Na\"ive Bayes(NB), Decision Trees (DTs) and Random Forests (RFs) are often hindered by overfitting. These ML algorithms need extensive hyperparameter tuning. Random Search offers a faster, and, more efficient exploration of hyperparameter space, but, it may overlook optimal regions. Grid Search, though exhaustive, but, it is computationally expensive and inefficient, particularly with high-dimensional data. To address these limitations, Randomized-Grid Search, a novel hybrid optimization method is proposed that combines the global exploration strengths of Random Search with the focused, and, exhaustive search of Grid Search in the most promising regions. This hybrid approach efficiently balances exploration and exploitation. The proposed model optimizes the hyperparameter for Decision Tree model. The proposed model is applied to UCI heart disease dataset for classification. It enhances model performance, provides improved accuracy, generalization, and computational efficiency. Experimental results demonstrate that Randomized-Grid Search outperforms traditional methods by significant margins. The proposed model provides a more effective solution for machine learning applications in healthcare diagnosis.
☆ Dependency-Aware CAV Task Scheduling via Diffusion-Based Reinforcement Learning
In this paper, we propose a novel dependency-aware task scheduling strategy for dynamic unmanned aerial vehicle-assisted connected autonomous vehicles (CAVs). Specifically, different computation tasks of CAVs consisting of multiple dependency subtasks are judiciously assigned to nearby CAVs or the base station for promptly completing tasks. Therefore, we formulate a joint scheduling priority and subtask assignment optimization problem with the objective of minimizing the average task completion time. The problem aims at improving the long-term system performance, which is reformulated as a Markov decision process. To solve the problem, we further propose a diffusion-based reinforcement learning algorithm, named Synthetic DDQN based Subtasks Scheduling, which can make adaptive task scheduling decision in real time. A diffusion model-based synthetic experience replay is integrated into the reinforcement learning framework, which can generate sufficient synthetic data in experience replay buffer, thereby significantly accelerating convergence and improving sample efficiency. Simulation results demonstrate the effectiveness of the proposed algorithm on reducing task completion time, comparing to benchmark schemes.
comment: 6 pages, 5 figures
☆ Feature-Factory: Automating Software Feature Integration Using Generative AI
Integrating new features into existing software projects can be a complex and time-consuming process. Feature-Factory leverages Generative AI with WatsonX.ai to automate the analysis, planning, and implementation of feature requests. By combining advanced project parsing, dependency resolution, and AI-generated code, the program ensures seamless integration of features into software systems while maintaining structural integrity. This paper presents the methodology, mathematical model, and results of the Feature-Factory framework.
comment: 14 pages, 1 figure
☆ PATHS: A Hierarchical Transformer for Efficient Whole Slide Image Analysis
Computational analysis of whole slide images (WSIs) has seen significant research progress in recent years, with applications ranging across important diagnostic and prognostic tasks such as survival or cancer subtype prediction. Many state-of-the-art models process the entire slide - which may be as large as $150,000 \times 150,000$ pixels - as a bag of many patches, the size of which necessitates computationally cheap feature aggregation methods. However, a large proportion of these patches are uninformative, such as those containing only healthy or adipose tissue, adding significant noise and size to the bag. We propose Pathology Transformer with Hierarchical Selection (PATHS), a novel top-down method for hierarchical weakly supervised representation learning on slide-level tasks in computational pathology. PATHS is inspired by the cross-magnification manner in which a human pathologist examines a slide, recursively filtering patches at each magnification level to a small subset relevant to the diagnosis. Our method overcomes the complications of processing the entire slide, enabling quadratic self-attention and providing a simple interpretable measure of region importance. We apply PATHS to five datasets of The Cancer Genome Atlas (TCGA), and achieve superior performance on slide-level prediction tasks when compared to previous methods, despite processing only a small proportion of the slide.
☆ R-MTLLMF: Resilient Multi-Task Large Language Model Fusion at the Wireless Edge
Multi-task large language models (MTLLMs) are important for many applications at the wireless edge, where users demand specialized models to handle multiple tasks efficiently. However, training MTLLMs is complex and exhaustive, particularly when tasks are subject to change. Recently, the concept of model fusion via task vectors has emerged as an efficient approach for combining fine-tuning parameters to produce an MTLLM. In this paper, the problem of enabling edge users to collaboratively craft such MTTLMs via tasks vectors is studied, under the assumption of worst-case adversarial attacks. To this end, first the influence of adversarial noise to multi-task model fusion is investigated and a relationship between the so-called weight disentanglement error and the mean squared error (MSE) is derived. Using hypothesis testing, it is directly shown that the MSE increases interference between task vectors, thereby rendering model fusion ineffective. Then, a novel resilient MTLLM fusion (R-MTLLMF) is proposed, which leverages insights about the LLM architecture and fine-tuning process to safeguard task vector aggregation under adversarial noise by realigning the MTLLM. The proposed R-MTLLMF is then compared for both worst-case and ideal transmission scenarios to study the impact of the wireless channel. Extensive model fusion experiments with vision LLMs demonstrate R-MTLLMF's effectiveness, achieving close-to-baseline performance across eight different tasks in ideal noise scenarios and significantly outperforming unprotected model fusion in worst-case scenarios. The results further advocate for additional physical layer protection for a holistic approach to resilience, from both a wireless and LLM perspective.
☆ SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought
Path planning is a complex problem for many practical applications, particularly in robotics. Existing algorithms, however, are exhaustive in nature and become increasingly complex when additional side constraints are incorporated alongside distance minimization. In this paper, a novel approach using vision language models (VLMs) is proposed for enabling path planning in complex wireless-aware environments. To this end, insights from a digital twin (DT) with real-world wireless ray tracing data are explored in order to guarantee an average path gain threshold while minimizing the trajectory length. First, traditional approaches such as A* are compared to several wireless-aware extensions, and an optimal iterative dynamic programming approach (DP-WA*) is derived, which fully takes into account all path gains and distance metrics within the DT. On the basis of these baselines, the role of VLMs as an alternative assistant for path planning is investigated, and a strategic chain-of-thought tasking (SCoTT) approach is proposed. SCoTT divides the complex planning task into several subproblems and solves each with advanced CoT prompting. Results show that SCoTT achieves very close average path gains compared to DP-WA* while at the same time yielding consistently shorter path lengths. The results also show that VLMs can be used to accelerate DP-WA* by efficiently reducing the algorithm's search space and thus saving up to 62\% in execution time. This work underscores the potential of VLMs in future digital systems as capable assistants for solving complex tasks, while enhancing user interaction and accelerating rapid prototyping under diverse wireless constraints.
☆ TimeMarker: A Versatile Video-LLM for Long and Short Video Understanding with Superior Temporal Localization Ability
Rapid development of large language models (LLMs) has significantly advanced multimodal large language models (LMMs), particularly in vision-language tasks. However, existing video-language models often overlook precise temporal localization and struggle with videos of varying lengths. We introduce TimeMarker, a versatile Video-LLM designed for high-quality dialogue based on video content, emphasizing temporal localization. TimeMarker integrates Temporal Separator Tokens to enhance temporal awareness, accurately marking specific moments within videos. It employs the AnyLength mechanism for dynamic frame sampling and adaptive token merging, enabling effective handling of both short and long videos. Additionally, TimeMarker utilizes diverse datasets, including further transformed temporal-related video QA datasets, to bolster its temporal understanding capabilities. Image and interleaved data are also employed to further enhance the model's semantic perception ability. Evaluations demonstrate that TimeMarker achieves state-of-the-art performance across multiple benchmarks, excelling in both short and long video categories. Our project page is at \url{https://github.com/TimeMarker-LLM/TimeMarker/}.
☆ From Open Vocabulary to Open World: Teaching Vision Language Models to Detect Novel Objects
Traditional object detection methods operate under the closed-set assumption, where models can only detect a fixed number of objects predefined in the training set. Recent works on open vocabulary object detection (OVD) enable the detection of objects defined by an unbounded vocabulary, which reduces the cost of training models for specific tasks. However, OVD heavily relies on accurate prompts provided by an ''oracle'', which limits their use in critical applications such as driving scene perception. OVD models tend to misclassify near-out-of-distribution (NOOD) objects that have similar semantics to known classes, and ignore far-out-of-distribution (FOOD) objects. To address theses limitations, we propose a framework that enables OVD models to operate in open world settings, by identifying and incrementally learning novel objects. To detect FOOD objects, we propose Open World Embedding Learning (OWEL) and introduce the concept of Pseudo Unknown Embedding which infers the location of unknown classes in a continuous semantic space based on the information of known classes. We also propose Multi-Scale Contrastive Anchor Learning (MSCAL), which enables the identification of misclassified unknown objects by promoting the intra-class consistency of object embeddings at different scales. The proposed method achieves state-of-the-art performance in common open world object detection and autonomous driving benchmarks.
☆ Learning for Long-Horizon Planning via Neuro-Symbolic Abductive Imitation
Recent learning-to-imitation methods have shown promising results in planning via imitating within the observation-action space. However, their ability in open environments remains constrained, particularly in long-horizon tasks. In contrast, traditional symbolic planning excels in long-horizon tasks through logical reasoning over human-defined symbolic spaces but struggles to handle observations beyond symbolic states, such as high-dimensional visual inputs encountered in real-world scenarios. In this work, we draw inspiration from abductive learning and introduce a novel framework \textbf{AB}ductive \textbf{I}mitation \textbf{L}earning (ABIL) that integrates the benefits of data-driven learning and symbolic-based reasoning, enabling long-horizon planning. Specifically, we employ abductive reasoning to understand the demonstrations in symbolic space and design the principles of sequential consistency to resolve the conflicts between perception and reasoning. ABIL generates predicate candidates to facilitate the perception from raw observations to symbolic space without laborious predicate annotations, providing a groundwork for symbolic planning. With the symbolic understanding, we further develop a policy ensemble whose base policies are built with different logical objectives and managed through symbolic reasoning. Experiments show that our proposal successfully understands the observations with the task-relevant symbolics to assist the imitation learning. Importantly, ABIL demonstrates significantly improved data efficiency and generalization across various long-horizon tasks, highlighting it as a promising solution for long-horizon planning. Project website: \url{https://www.lamda.nju.edu.cn/shaojj/KDD25_ABIL/}.
comment: Accepted by KDD2025. The KDD version is titled ''Abductive Learning for Neuro-Symbolic Grounded Imitation''
☆ Prediction with Action: Visual Policy Learning via Joint Denoising Process NeurIPS 2024
Diffusion models have demonstrated remarkable capabilities in image generation tasks, including image editing and video creation, representing a good understanding of the physical world. On the other line, diffusion models have also shown promise in robotic control tasks by denoising actions, known as diffusion policy. Although the diffusion generative model and diffusion policy exhibit distinct capabilities--image prediction and robotic action, respectively--they technically follow a similar denoising process. In robotic tasks, the ability to predict future images and generate actions is highly correlated since they share the same underlying dynamics of the physical world. Building on this insight, we introduce PAD, a novel visual policy learning framework that unifies image Prediction and robot Action within a joint Denoising process. Specifically, PAD utilizes Diffusion Transformers (DiT) to seamlessly integrate images and robot states, enabling the simultaneous prediction of future images and robot actions. Additionally, PAD supports co-training on both robotic demonstrations and large-scale video datasets and can be easily extended to other robotic modalities, such as depth images. PAD outperforms previous methods, achieving a significant 26.3% relative improvement on the full Metaworld benchmark, by utilizing a single text-conditioned visual policy within a data-efficient imitation learning setting. Furthermore, PAD demonstrates superior generalization to unseen tasks in real-world robot manipulation settings with 28.0% success rate increase compared to the strongest baseline. Project page at https://sites.google.com/view/pad-paper
comment: NeurIPS 2024
☆ PDZSeg: Adapting the Foundation Model for Dissection Zone Segmentation with Visual Prompts in Robot-assisted Endoscopic Submucosal Dissection
Purpose: Endoscopic surgical environments present challenges for dissection zone segmentation due to unclear boundaries between tissue types, leading to segmentation errors where models misidentify or overlook edges. This study aims to provide precise dissection zone suggestions during endoscopic submucosal dissection (ESD) procedures, enhancing ESD safety. Methods: We propose the Prompted-based Dissection Zone Segmentation (PDZSeg) model, designed to leverage diverse visual prompts such as scribbles and bounding boxes. By overlaying these prompts onto images and fine-tuning a foundational model on a specialized dataset, our approach improves segmentation performance and user experience through flexible input methods. Results: The PDZSeg model was validated using three experimental setups: in-domain evaluation, variability in visual prompt availability, and robustness assessment. Using the ESD-DZSeg dataset, results show that our method outperforms state-of-the-art segmentation approaches. This is the first study to integrate visual prompt design into dissection zone segmentation. Conclusion: The PDZSeg model effectively utilizes visual prompts to enhance segmentation performance and user experience, supported by the novel ESD-DZSeg dataset as a benchmark for dissection zone segmentation in ESD. Our work establishes a foundation for future research.
☆ Abductive Symbolic Solver on Abstraction and Reasoning Corpus IJCAI 2024
This paper addresses the challenge of enhancing artificial intelligence reasoning capabilities, focusing on logicality within the Abstraction and Reasoning Corpus (ARC). Humans solve such visual reasoning tasks based on their observations and hypotheses, and they can explain their solutions with a proper reason. However, many previous approaches focused only on the grid transition and it is not enough for AI to provide reasonable and human-like solutions. By considering the human process of solving visual reasoning tasks, we have concluded that the thinking process is likely the abductive reasoning process. Thus, we propose a novel framework that symbolically represents the observed data into a knowledge graph and extracts core knowledge that can be used for solution generation. This information limits the solution search space and helps provide a reasonable mid-process. Our approach holds promise for improving AI performance on ARC tasks by effectively narrowing the solution space and providing logical solutions grounded in core knowledge extraction.
comment: Presented at IJCAI 2024 LNSAI Workshop
☆ A survey on cutting-edge relation extraction techniques based on language models
This comprehensive survey delves into the latest advancements in Relation Extraction (RE), a pivotal task in natural language processing essential for applications across biomedical, financial, and legal sectors. This study highlights the evolution and current state of RE techniques by analyzing 137 papers presented at the Association for Computational Linguistics (ACL) conferences over the past four years, focusing on models that leverage language models. Our findings underscore the dominance of BERT-based methods in achieving state-of-the-art results for RE while also noting the promising capabilities of emerging large language models (LLMs) like T5, especially in few-shot relation extraction scenarios where they excel in identifying previously unseen relations.
comment: 50 pages, under review in Artificial Intelligence Review
☆ Predicting Water Quality using Quantum Machine Learning: The Case of the Umgeni Catchment (U20A) Study Region
In this study, we consider a real-world application of QML techniques to study water quality in the U20A region in Durban, South Africa. Specifically, we applied the quantum support vector classifier (QSVC) and quantum neural network (QNN), and we showed that the QSVC is easier to implement and yields a higher accuracy. The QSVC models were applied for three kernels: Linear, polynomial, and radial basis function (RBF), and it was shown that the polynomial and RBF kernels had exactly the same performance. The QNN model was applied using different optimizers, learning rates, noise on the circuit components, and weight initializations were considered, but the QNN persistently ran into the dead neuron problem. Thus, the QNN was compared only by accraucy and loss, and it was shown that with the Adam optimizer, the model has the best performance, however, still less than the QSVC.
comment: 13 pages, 3 figures
☆ SALMONN-omni: A Codec-free LLM for Full-duplex Speech Understanding and Generation
Full-duplex multimodal large language models (LLMs) provide a unified framework for addressing diverse speech understanding and generation tasks, enabling more natural and seamless human-machine conversations. Unlike traditional modularised conversational AI systems, which separate speech recognition, understanding, and text-to-speech generation into distinct components, multimodal LLMs operate as single end-to-end models. This streamlined design eliminates error propagation across components and fully leverages the rich non-verbal information embedded in input speech signals. We introduce SALMONN-omni, a codec-free, full-duplex speech understanding and generation model capable of simultaneously listening to its own generated speech and background sounds while speaking. To support this capability, we propose a novel duplex spoken dialogue framework incorporating a ``thinking'' mechanism that facilitates asynchronous text and speech generation relying on embeddings instead of codecs (quantized speech and audio tokens). Experimental results demonstrate SALMONN-omni's versatility across a broad range of streaming speech tasks, including speech recognition, speech enhancement, and spoken question answering. Additionally, SALMONN-omni excels at managing turn-taking, barge-in, and echo cancellation scenarios, establishing its potential as a robust prototype for full-duplex conversational AI systems. To the best of our knowledge, SALMONN-omni is the first codec-free model of its kind. A full technical report along with model checkpoints will be released soon.
comment: Technical report
☆ Training and Evaluating Language Models with Template-based Data Generation
The rapid advancement of large language models (LLMs) such as GPT-3, PaLM, and Llama has significantly transformed natural language processing, showcasing remarkable capabilities in understanding and generating language. However, these models often struggle with tasks requiring complex reasoning, particularly in mathematical problem-solving, due in part to the scarcity of large-scale, high-quality, domain-specific datasets necessary for training sophisticated reasoning abilities. To address this limitation, we introduce Template-based Data Generation (TDG), a novel approach that leverages LLMs (GPT-4) to automatically generate parameterized meta-templates, which are then used to synthesize a vast array of high-quality problems and solutions. Leveraging TDG, we create TemplateMath Part I: TemplateGSM, a dataset comprising over 7 million synthetically generated grade school math problems--each accompanied by code-based and natural language solutions--with the potential to generate an effectively unlimited number more. This dataset alleviates the scarcity of large-scale mathematical datasets and serves as a valuable resource for pre-training, fine-tuning, and evaluating LLMs in mathematical reasoning. Our method not only enables the generation of virtually infinite data but also elevates data augmentation to a new level by using GPT-4 for meta-template generation, ensuring diverse and high-quality problem structures. The TemplateMath Part I: TemplateGSM dataset is publicly available at https://huggingface.co/datasets/math-ai/TemplateGSM. The code is available at https://github.com/iiis-ai/TemplateMath.
comment: 8 pages, 2 figures
☆ Derivation of Closed Form of Expected Improvement for Gaussian Process Trained on Log-Transformed Objective
Expected Improvement (EI) is arguably the most widely used acquisition function in Bayesian optimization. However, it is often challenging to enhance the performance with EI due to its sensitivity to numerical precision. Previously, Hutter et al. (2009) tackled this problem by using Gaussian process trained on the log-transformed objective function and it was reported that this trick improves the predictive accuracy of GP, leading to substantially better performance. Although Hutter et al. (2009) offered the closed form of their EI, its intermediate derivation has not been provided so far. In this paper, we give a friendly derivation of their proposition.
☆ MONOPOLY: Learning to Price Public Facilities for Revaluing Private Properties with Large-Scale Urban Data
The value assessment of private properties is an attractive but challenging task which is widely concerned by a majority of people around the world. A prolonged topic among us is ``\textit{how much is my house worth?}''. To answer this question, most experienced agencies would like to price a property given the factors of its attributes as well as the demographics and the public facilities around it. However, no one knows the exact prices of these factors, especially the values of public facilities which may help assess private properties. In this paper, we introduce our newly launched project ``Monopoly'' (named after a classic board game) in which we propose a distributed approach for revaluing private properties by learning to price public facilities (such as hospitals etc.) with the large-scale urban data we have accumulated via Baidu Maps. To be specific, our method organizes many points of interest (POIs) into an undirected weighted graph and formulates multiple factors including the virtual prices of surrounding public facilities as adaptive variables to parallelly estimate the housing prices we know. Then the prices of both public facilities and private properties can be iteratively updated according to the loss of prediction until convergence. We have conducted extensive experiments with the large-scale urban data of several metropolises in China. Results show that our approach outperforms several mainstream methods with significant margins. Further insights from more in-depth discussions demonstrate that the ``Monopoly'' is an innovative application in the interdisciplinary field of business intelligence and urban computing, and it will be beneficial to tens of millions of our users for investments and to the governments for urban planning as well as taxation.
comment: CIKM'19
☆ From Exploration to Revelation: Detecting Dark Patterns in Mobile Apps
Mobile apps are essential in daily life, yet they often employ dark patterns, such as visual tricks to highlight certain options or linguistic tactics to nag users into making purchases, to manipulate user behavior. Current research mainly uses manual methods to detect dark patterns, a process that is time-consuming and struggles to keep pace with continually updating and emerging apps. While some studies targeted at automated detection, they are constrained to static patterns and still necessitate manual app exploration. To bridge these gaps, we present AppRay, an innovative system that seamlessly blends task-oriented app exploration with automated dark pattern detection, reducing manual efforts. Our approach consists of two steps: First, we harness the commonsense knowledge of large language models for targeted app exploration, supplemented by traditional random exploration to capture a broader range of UI states. Second, we developed a static and dynamic dark pattern detector powered by a contrastive learning-based multi-label classifier and a rule-based refiner to perform detection. We contributed two datasets, AppRay-Dark and AppRay-Light, with 2,185 unique deceptive patterns (including 149 dynamic instances) across 18 types from 876 UIs and 871 benign UIs. These datasets cover both static and dynamic dark patterns while preserving UI relationships. Experimental results confirm that AppRay can efficiently explore the app and identify a wide range of dark patterns with great performance.
comment: 12 pages, 4 figures
☆ DuMapper: Towards Automatic Verification of Large-Scale POIs with Street Views at Baidu Maps
With the increased popularity of mobile devices, Web mapping services have become an indispensable tool in our daily lives. To provide user-satisfied services, such as location searches, the point of interest (POI) database is the fundamental infrastructure, as it archives multimodal information on billions of geographic locations closely related to people's lives, such as a shop or a bank. Therefore, verifying the correctness of a large-scale POI database is vital. To achieve this goal, many industrial companies adopt volunteered geographic information (VGI) platforms that enable thousands of crowdworkers and expert mappers to verify POIs seamlessly; but to do so, they have to spend millions of dollars every year. To save the tremendous labor costs, we devised DuMapper, an automatic system for large-scale POI verification with the multimodal street-view data at Baidu Maps. DuMapper takes the signboard image and the coordinates of a real-world place as input to generate a low-dimensional vector, which can be leveraged by ANN algorithms to conduct a more accurate search through billions of archived POIs in the database for verification within milliseconds. It can significantly increase the throughput of POI verification by $50$ times. DuMapper has already been deployed in production since \DuMPOnline, which dramatically improves the productivity and efficiency of POI verification at Baidu Maps. As of December 31, 2021, it has enacted over $405$ million iterations of POI verification within a 3.5-year period, representing an approximate workload of $800$ high-performance expert mappers.
☆ Simulating Tabular Datasets through LLMs to Rapidly Explore Hypotheses about Real-World Entities
Do horror writers have worse childhoods than other writers? Though biographical details are known about many writers, quantitatively exploring such a qualitative hypothesis requires significant human effort, e.g. to sift through many biographies and interviews of writers and to iteratively search for quantitative features that reflect what is qualitatively of interest. This paper explores the potential to quickly prototype these kinds of hypotheses through (1) applying LLMs to estimate properties of concrete entities like specific people, companies, books, kinds of animals, and countries; (2) performing off-the-shelf analysis methods to reveal possible relationships among such properties (e.g. linear regression); and towards further automation, (3) applying LLMs to suggest the quantitative properties themselves that could help ground a particular qualitative hypothesis (e.g. number of adverse childhood events, in the context of the running example). The hope is to allow sifting through hypotheses more quickly through collaboration between human and machine. Our experiments highlight that indeed, LLMs can serve as useful estimators of tabular data about specific entities across a range of domains, and that such estimations improve with model scale. Further, initial experiments demonstrate the potential of LLMs to map a qualitative hypothesis of interest to relevant concrete variables that the LLM can then estimate. The conclusion is that LLMs offer intriguing potential to help illuminate scientifically interesting patterns latent within the internet-scale data they are trained upon.
☆ PersonaCraft: Personalized Full-Body Image Synthesis for Multiple Identities from Single References Using 3D-Model-Conditioned Diffusion
Personalized image generation has been significantly advanced, enabling the creation of highly realistic and customized images. However, existing methods often struggle with generating images of multiple people due to occlusions and fail to accurately personalize full-body shapes. In this paper, we propose PersonaCraft, a novel approach that combines diffusion models with 3D human modeling to address these limitations. Our method effectively manages occlusions by incorporating 3D-aware pose conditioning with SMPLx-ControlNet and accurately personalizes human full-body shapes through SMPLx fitting. Additionally, PersonaCraft enables user-defined body shape adjustments, adding flexibility for individual body customization. Experimental results demonstrate the superior performance of PersonaCraft in generating high-quality, realistic images of multiple individuals while resolving occlusion issues, thus establishing a new standard for multi-person personalized image synthesis. Project page: https://gwang-kim.github.io/persona_craft
comment: Project page: https://gwang-kim.github.io/persona_craft
☆ RL for Mitigating Cascading Failures: Targeted Exploration via Sensitivity Factors
Electricity grid's resiliency and climate change strongly impact one another due to an array of technical and policy-related decisions that impact both. This paper introduces a physics-informed machine learning-based framework to enhance grid's resiliency. Specifically, when encountering disruptive events, this paper designs remedial control actions to prevent blackouts. The proposed Physics-Guided Reinforcement Learning (PG-RL) framework determines effective real-time remedial line-switching actions, considering their impact on power balance, system security, and grid reliability. To identify an effective blackout mitigation policy, PG-RL leverages power-flow sensitivity factors to guide the RL exploration during agent training. Comprehensive evaluations using the Grid2Op platform demonstrate that incorporating physical signals into RL significantly improves resource utilization within electric grids and achieves better blackout mitigation policies - both of which are critical in addressing climate change.
☆ Heterogeneous Relationships of Subjects and Shapelets for Semi-supervised Multivariate Series Classification
Multivariate time series (MTS) classification is widely applied in fields such as industry, healthcare, and finance, aiming to extract key features from complex time series data for accurate decision-making and prediction. However, existing methods for MTS often struggle due to the challenges of effectively modeling high-dimensional data and the lack of labeled data, resulting in poor classification performance. To address this issue, we propose a heterogeneous relationships of subjects and shapelets method for semi-supervised MTS classification. This method offers a novel perspective by integrating various types of additional information while capturing the relationships between them. Specifically, we first utilize a contrast temporal self-attention module to obtain sparse MTS representations, and then model the similarities between these representations using soft dynamic time warping to construct a similarity graph. Secondly, we learn the shapelets for different subject types, incorporating both the subject features and their shapelets as additional information to further refine the similarity graph, ultimately generating a heterogeneous graph. Finally, we use a dual level graph attention network to get prediction. Through this method, we successfully transform dataset into a heterogeneous graph, integrating multiple additional information and achieving precise semi-supervised node classification. Experiments on the Human Activity Recognition, sleep stage classification and University of East Anglia datasets demonstrate that our method outperforms current state-of-the-art methods in MTS classification tasks, validating its superiority.
comment: Submitted to IEEE International Conference on Data Engineering (ICDE) 2025
☆ VLM-HOI: Vision Language Models for Interpretable Human-Object Interaction Analysis
The Large Vision Language Model (VLM) has recently addressed remarkable progress in bridging two fundamental modalities. VLM, trained by a sufficiently large dataset, exhibits a comprehensive understanding of both visual and linguistic to perform diverse tasks. To distill this knowledge accurately, in this paper, we introduce a novel approach that explicitly utilizes VLM as an objective function form for the Human-Object Interaction (HOI) detection task (\textbf{VLM-HOI}). Specifically, we propose a method that quantifies the similarity of the predicted HOI triplet using the Image-Text matching technique. We represent HOI triplets linguistically to fully utilize the language comprehension of VLMs, which are more suitable than CLIP models due to their localization and object-centric nature. This matching score is used as an objective for contrastive optimization. To our knowledge, this is the first utilization of VLM language abilities for HOI detection. Experiments demonstrate the effectiveness of our method, achieving state-of-the-art HOI detection accuracy on benchmarks. We believe integrating VLMs into HOI detection represents important progress towards more advanced and interpretable analysis of human-object interactions.
comment: 18 pages
☆ AEGIS: An Agent-based Framework for General Bug Reproduction from Issue Descriptions
In software maintenance, bug reproduction is essential for effective fault localization and repair. Manually writing reproduction scripts is a time-consuming task with high requirements for developers. Hence, automation of bug reproduction has increasingly attracted attention from researchers and practitioners. However, the existing studies on bug reproduction are generally limited to specific bug types such as program crashes, and hard to be applied to general bug reproduction. In this paper, considering the superior performance of agent-based methods in code intelligence tasks, we focus on designing an agent-based framework for the task. Directly employing agents would lead to limited bug reproduction performance, due to entangled subtasks, lengthy retrieved context, and unregulated actions. To mitigate the challenges, we propose an Automated gEneral buG reproductIon Scripts generation framework, named AEGIS, which is the first agent-based framework for the task. AEGIS mainly contains two modules: (1) A concise context construction module, which aims to guide the code agent in extracting structured information from issue descriptions, identifying issue-related code with detailed explanations, and integrating these elements to construct the concise context; (2) A FSM-based multi-feedback optimization module to further regulate the behavior of the code agent within the finite state machine (FSM), ensuring a controlled and efficient script generation process based on multi-dimensional feedback. Extensive experiments on the public benchmark dataset show that AEGIS outperforms the state-of-the-art baseline by 23.0% in F->P metric. In addition, the bug reproduction scripts generated by AEGIS can improve the relative resolved rate of Agentless by 12.5%.
☆ Causal and Local Correlations Based Network for Multivariate Time Series Classification
Recently, time series classification has attracted the attention of a large number of researchers, and hundreds of methods have been proposed. However, these methods often ignore the spatial correlations among dimensions and the local correlations among features. To address this issue, the causal and local correlations based network (CaLoNet) is proposed in this study for multivariate time series classification. First, pairwise spatial correlations between dimensions are modeled using causality modeling to obtain the graph structure. Then, a relationship extraction network is used to fuse local correlations to obtain long-term dependency features. Finally, the graph structure and long-term dependency features are integrated into the graph neural network. Experiments on the UEA datasets show that CaLoNet can obtain competitive performance compared with state-of-the-art methods.
comment: Submitted on April 03, 2023; major revisions on March 25, 2024; minor revisions on July 9, 2024
☆ HAAT: Hybrid Attention Aggregation Transformer for Image Super-Resolution
In the research area of image super-resolution, Swin-transformer-based models are favored for their global spatial modeling and shifting window attention mechanism. However, existing methods often limit self-attention to non overlapping windows to cut costs and ignore the useful information that exists across channels. To address this issue, this paper introduces a novel model, the Hybrid Attention Aggregation Transformer (HAAT), designed to better leverage feature information. HAAT is constructed by integrating Swin-Dense-Residual-Connected Blocks (SDRCB) with Hybrid Grid Attention Blocks (HGAB). SDRCB expands the receptive field while maintaining a streamlined architecture, resulting in enhanced performance. HGAB incorporates channel attention, sparse attention, and window attention to improve nonlocal feature fusion and achieve more visually compelling results. Experimental evaluations demonstrate that HAAT surpasses state-of-the-art methods on benchmark datasets. Keywords: Image super-resolution, Computer vision, Attention mechanism, Transformer
comment: 6 pages, 2 figures, 1 table
☆ An End-to-End Two-Stream Network Based on RGB Flow and Representation Flow for Human Action Recognition
With the rapid advancements in deep learning, computer vision tasks have seen significant improvements, making two-stream neural networks a popular focus for video based action recognition. Traditional models using RGB and optical flow streams achieve strong performance but at a high computational cost. To address this, we introduce a representation flow algorithm to replace the optical flow branch in the egocentric action recognition model, enabling end-to-end training while reducing computational cost and prediction time. Our model, designed for egocentric action recognition, uses class activation maps (CAMs) to improve accuracy and ConvLSTM for spatio temporal encoding with spatial attention. When evaluated on the GTEA61, EGTEA GAZE+, and HMDB datasets, our model matches the accuracy of the original model on GTEA61 and exceeds it by 0.65% and 0.84% on EGTEA GAZE+ and HMDB, respectively. Prediction runtimes are significantly reduced to 0.1881s, 0.1503s, and 0.1459s, compared to the original model's 101.6795s, 25.3799s, and 203.9958s. Ablation studies were also conducted to study the impact of different parameters on model performance. Keywords: two-stream, egocentric, action recognition, CAM, representation flow, CAM, ConvLSTM
comment: 6 pages, 3 figures, 9 tables
☆ A Novel Pareto-optimal Ranking Method for Comparing Multi-objective Optimization Algorithms
As the interest in multi- and many-objective optimization algorithms grows, the performance comparison of these algorithms becomes increasingly important. A large number of performance indicators for multi-objective optimization algorithms have been introduced, each of which evaluates these algorithms based on a certain aspect. Therefore, assessing the quality of multi-objective results using multiple indicators is essential to guarantee that the evaluation considers all quality perspectives. This paper proposes a novel multi-metric comparison method to rank the performance of multi-/ many-objective optimization algorithms based on a set of performance indicators. We utilize the Pareto optimality concept (i.e., non-dominated sorting algorithm) to create the rank levels of algorithms by simultaneously considering multiple performance indicators as criteria/objectives. As a result, four different techniques are proposed to rank algorithms based on their contribution at each Pareto level. This method allows researchers to utilize a set of existing/newly developed performance metrics to adequately assess/rank multi-/many-objective algorithms. The proposed methods are scalable and can accommodate in its comprehensive scheme any newly introduced metric. The method was applied to rank 10 competing algorithms in the 2018 CEC competition solving 15 many-objective test problems. The Pareto-optimal ranking was conducted based on 10 well-known multi-objective performance indicators and the results were compared to the final ranks reported by the competition, which were based on the inverted generational distance (IGD) and hypervolume indicator (HV) measures. The techniques suggested in this paper have broad applications in science and engineering, particularly in areas where multiple metrics are used for comparisons. Examples include machine learning and data mining.
☆ Regularized Multi-LLMs Collaboration for Enhanced Score-based Causal Discovery
As the significance of understanding the cause-and-effect relationships among variables increases in the development of modern systems and algorithms, learning causality from observational data has become a preferred and efficient approach over conducting randomized control trials. However, purely observational data could be insufficient to reconstruct the true causal graph. Consequently, many researchers tried to utilise some form of prior knowledge to improve causal discovery process. In this context, the impressive capabilities of large language models (LLMs) have emerged as a promising alternative to the costly acquisition of prior expert knowledge. In this work, we further explore the potential of using LLMs to enhance causal discovery approaches, particularly focusing on score-based methods, and we propose a general framework to utilise the capacity of not only one but multiple LLMs to augment the discovery process.
☆ Optimized Conformal Selection: Powerful Selective Inference After Conformity Score Optimization
Model selection/optimization in conformal inference is challenging, since it may break the exchangeability between labeled and unlabeled data. We study this problem in the context of conformal selection, which uses conformal p-values to select ``interesting'' instances with large unobserved labels from a pool of unlabeled data, while controlling the FDR in finite sample. For validity, existing solutions require the model choice to be independent of the data used to construct the p-values and calibrate the selection set. However, when presented with many model choices and limited labeled data, it is desirable to (i) select the best model in a data-driven manner, and (ii) mitigate power loss due to sample splitting. This paper presents OptCS, a general framework that allows valid statistical testing (selection) after flexible data-driven model optimization. We introduce general conditions under which OptCS constructs valid conformal p-values despite substantial data reuse and handles complex p-value dependencies to maintain finite-sample FDR control via a novel multiple testing procedure. We instantiate this general recipe to propose three FDR-controlling procedures, each optimizing the models differently: (i) selecting the most powerful one among multiple pre-trained candidate models, (ii) using all data for model fitting without sample splitting, and (iii) combining full-sample model fitting and selection. We demonstrate the efficacy of our methods via simulation studies and real applications in drug discovery and alignment of large language models in radiology report generation.
☆ The importance of visual modelling languages in generative software engineering
Multimodal GPTs represent a watershed in the interplay between Software Engineering and Generative Artificial Intelligence. GPT-4 accepts image and text inputs, rather than simply natural language. We investigate relevant use cases stemming from these enhanced capabilities of GPT-4. To the best of our knowledge, no other work has investigated similar use cases involving Software Engineering tasks carried out via multimodal GPTs prompted with a mix of diagrams and natural language.
comment: 9 pages, working paper
☆ Improved implicit diffusion model with knowledge distillation to estimate the spatial distribution density of carbon stock in remote sensing imagery
The forest serves as the most significant terrestrial carbon stock mechanism, effectively reducing atmospheric CO$_2$ concentrations and mitigating climate change. Remote sensing provides high data accuracy and enables large-scale observations. Optical images facilitate long-term monitoring, which is crucial for future carbon stock estimation studies. This study focuses on Huize County, Qujing City, Yunnan Province, China, utilizing GF-1 WFV satellite imagery. The KD-VGG and KD-UNet modules were introduced for initial feature extraction, and the improved implicit diffusion model (IIDM) was proposed. The results showed: (1) The VGG module improved initial feature extraction, improving accuracy, and reducing inference time with optimized model parameters. (2) The Cross-attention + MLPs module enabled effective feature fusion, establishing critical relationships between global and local features, achieving high-accuracy estimation. (3) The IIDM model, a novel contribution, demonstrated the highest estimation accuracy with an RMSE of 12.17\%, significantly improving by 41.69\% to 42.33\% compared to the regression model. In carbon stock estimation, the generative model excelled in extracting deeper features, significantly outperforming other models, demonstrating the feasibility of AI-generated content in quantitative remote sensing. The 16-meter resolution estimates provide a robust basis for tailoring forest carbon sink regulations, enhancing regional carbon stock management.
comment: Under review
☆ Graph Neural Network for Cerebral Blood Flow Prediction With Clinical Datasets
Accurate prediction of cerebral blood flow is essential for the diagnosis and treatment of cerebrovascular diseases. Traditional computational methods, however, often incur significant computational costs, limiting their practicality in real-time clinical applications. This paper proposes a graph neural network (GNN) to predict blood flow and pressure in previously unseen cerebral vascular network structures that were not included in training data. The GNN was developed using clinical datasets from patients with stenosis, featuring complex and abnormal vascular geometries. Additionally, the GNN model was trained on data incorporating a wide range of inflow conditions, vessel topologies, and network connectivities to enhance its generalization capability. The approach achieved Pearson's correlation coefficients of 0.727 for pressure and 0.824 for flow rate, with sufficient training data. These findings demonstrate the potential of the GNN for real-time cerebrovascular diagnostics, particularly in handling intricate and pathological vascular networks.
comment: 4 pages, 3 figures
☆ Biomolecular Analysis of Soil Samples and Rock Imagery for Tracing Evidence of Life Using a Mobile Robot
The search for evidence of past life on Mars presents a tremendous challenge that requires the usage of very advanced robotic technologies to overcome it. Current digital microscopic imagers and spectrometers used for astrobiological examination suffer from limitations such as insufficient resolution, narrow detection range, and lack of portability. To overcome these challenges, this research study presents modifications to the Phoenix rover to expand its capability for detecting biosignatures on Mars. This paper examines the modifications implemented on the Phoenix rover to enhance its capability to detect a broader spectrum of biosignatures. One of the notable improvements comprises the integration of advanced digital microscopic imagers and spectrometers, enabling high-resolution examination of soil samples. Additionally, the mechanical components of the device have been reinforced to enhance maneuverability and optimize subsurface sampling capabilities. Empirical investigations have demonstrated that Phoenix has the capability to navigate diverse geological environments and procure samples for the purpose of biomolecular analysis. The biomolecular instrumentation and hybrid analytical methods showcased in this study demonstrate considerable potential for future astrobiology missions on Mars. The potential for enhancing the system lies in the possibility of broadening the range of detectable biomarkers and biosignatures.
comment: Key Words : Mars, Rover, Phoenix, Biosignatures, Biomolecular Analysis, Microscopy, Spectroscopy, Sampling, Astrobiology
☆ DexDiffuser: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simpler manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexDiffuser, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexDiffuser models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, and hammer striking demonstrate DexDiffuser's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves 70.0% success on 30-degree door opening, 40.0% and 36.7% on pen and block half-side re-orientation respectively, and 46.7% on hammer nail half drive, highlighting its robustness and flexibility in contact-rich manipulation.
comment: 27 pages. Project page: https://dexdiffuser.github.io/
☆ AdaVLN: Towards Visual Language Navigation in Continuous Indoor Environments with Moving Humans
Visual Language Navigation is a task that challenges robots to navigate in realistic environments based on natural language instructions. While previous research has largely focused on static settings, real-world navigation must often contend with dynamic human obstacles. Hence, we propose an extension to the task, termed Adaptive Visual Language Navigation (AdaVLN), which seeks to narrow this gap. AdaVLN requires robots to navigate complex 3D indoor environments populated with dynamically moving human obstacles, adding a layer of complexity to navigation tasks that mimic the real-world. To support exploration of this task, we also present AdaVLN simulator and AdaR2R datasets. The AdaVLN simulator enables easy inclusion of fully animated human models directly into common datasets like Matterport3D. We also introduce a "freeze-time" mechanism for both the navigation task and simulator, which pauses world state updates during agent inference, enabling fair comparisons and experimental reproducibility across different hardware. We evaluate several baseline models on this task, analyze the unique challenges introduced by AdaVLN, and demonstrate its potential to bridge the sim-to-real gap in VLN research.
☆ Towards Motion Compensation in Autonomous Robotic Subretinal Injections
Exudative (wet) age-related macular degeneration (AMD) is a leading cause of vision loss in older adults, typically treated with intravitreal injections. Emerging therapies, such as subretinal injections of stem cells, gene therapy, small molecules or RPE cells require precise delivery to avoid damaging delicate retinal structures. Autonomous robotic systems can potentially offer the necessary precision for these procedures. This paper presents a novel approach for motion compensation in robotic subretinal injections, utilizing real-time Optical Coherence Tomography (OCT). The proposed method leverages B$^{5}$-scans, a rapid acquisition of small-volume OCT data, for dynamic tracking of retinal motion along the Z-axis, compensating for physiological movements such as breathing and heartbeat. Validation experiments on \textit{ex vivo} porcine eyes revealed challenges in maintaining a consistent tool-to-retina distance, with deviations of up to 200 $\mu m$ for 100 $\mu m$ amplitude motions and over 80 $\mu m$ for 25 $\mu m$ amplitude motions over one minute. Subretinal injections faced additional difficulties, with horizontal shifts causing the needle to move off-target and inject into the vitreous. These results highlight the need for improved motion prediction and horizontal stability to enhance the accuracy and safety of robotic subretinal procedures.
☆ A Talent-infused Policy-gradient Approach to Efficient Co-Design of Morphology and Task Allocation Behavior of Multi-Robot Systems
Interesting and efficient collective behavior observed in multi-robot or swarm systems emerges from the individual behavior of the robots. The functional space of individual robot behaviors is in turn shaped or constrained by the robot's morphology or physical design. Thus the full potential of multi-robot systems can be realized by concurrently optimizing the morphology and behavior of individual robots, informed by the environment's feedback about their collective performance, as opposed to treating morphology and behavior choices disparately or in sequence (the classical approach). This paper presents an efficient concurrent design or co-design method to explore this potential and understand how morphology choices impact collective behavior, particularly in an MRTA problem focused on a flood response scenario, where the individual behavior is designed via graph reinforcement learning. Computational efficiency in this case is attributed to a new way of near exact decomposition of the co-design problem into a series of simpler optimization and learning problems. This is achieved through i) the identification and use of the Pareto front of Talent metrics that represent morphology-dependent robot capabilities, and ii) learning the selection of Talent best trade-offs and individual robot policy that jointly maximizes the MRTA performance. Applied to a multi-unmanned aerial vehicle flood response use case, the co-design outcomes are shown to readily outperform sequential design baselines. Significant differences in morphology and learned behavior are also observed when comparing co-designed single robot vs. co-designed multi-robot systems for similar operations.
comment: Presented in proceedings of the International Symposium on Distributed Autonomous Robotic Systems (DARS) 2024
☆ At First Contact: Stiffness Estimation Using Vibrational Information for Prosthetic Grasp Modulation
Stiffness estimation is crucial for delicate object manipulation in robotic and prosthetic hands but remains challenging due to dependence on force and displacement measurement and real-time sensory integration. This study presents a piezoelectric sensing framework for stiffness estimation at first contact during pinch grasps, addressing the limitations of traditional force-based methods. Inspired by human skin, a multimodal tactile sensor that captures vibrational and force data is developed and integrated into a prosthetic hand's fingertip. Machine learning models, including support vector machines and convolutional neural networks, demonstrate that vibrational signals within the critical 15 ms after first contact reliably encode stiffness, achieving classification accuracies up to 98.6\% and regression errors as low as 2.39 Shore A on real-world objects of varying stiffness. Inference times of less than 1.5 ms are significantly faster than the average grasp closure time (16.65 ms in our dataset), enabling real-time stiffness estimation before the object is fully grasped. By leveraging the transient asymmetry in grasp dynamics, where one finger contacts the object before the others, this method enables early grasp modulation, enhancing safety and intuitiveness in prosthetic hands while offering broad applications in robotics.
comment: 5 pages, 7 figures, for IEEE Sensors Letters
☆ A comparison of extended object tracking with multi-modal sensors in indoor environment
This paper presents a preliminary study of an efficient object tracking approach, comparing the performance of two different 3D point cloud sensory sources: LiDAR and stereo cameras, which have significant price differences. In this preliminary work, we focus on single object tracking. We first developed a fast heuristic object detector that utilizes prior information about the environment and target. The resulting target points are subsequently fed into an extended object tracking framework, where the target shape is parameterized using a star-convex hypersurface model. Experimental results show that our object tracking method using a stereo camera achieves performance similar to that of a LiDAR sensor, with a cost difference of more than tenfold.
☆ Efficient Dynamic LiDAR Odometry for Mobile Robots with Structured Point Clouds IROS
We propose a real-time dynamic LiDAR odometry pipeline for mobile robots in Urban Search and Rescue (USAR) scenarios. Existing approaches to dynamic object detection often rely on pretrained learned networks or computationally expensive volumetric maps. To enhance efficiency on computationally limited robots, we reuse data between the odometry and detection module. Utilizing a range image segmentation technique and a novel residual-based heuristic, our method distinguishes dynamic from static objects before integrating them into the point cloud map. The approach demonstrates robust object tracking and improved map accuracy in environments with numerous dynamic objects. Even highly non-rigid objects, such as running humans, are accurately detected at point level without prior downsampling of the point cloud and hence, without loss of information. Evaluation on simulated and real-world data validates its computational efficiency. Compared to a state-of-the-art volumetric method, our approach shows comparable detection performance at a fraction of the processing time, adding only 14 ms to the odometry module for dynamic object detection and tracking. The implementation and a new real-world dataset are available as open-source for further research.
comment: Accepted at 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
☆ Efficient and Diverse Generative Robot Designs using Evolution and Intrinsic Motivation
Methods for generative design of robot physical configurations can automatically find optimal and innovative solutions for challenging tasks in complex environments. The vast search-space includes the physical design-space and the controller parameter-space, making it a challenging problem in machine learning and optimisation in general. Evolutionary algorithms (EAs) have shown promising results in generating robot designs via gradient-free optimisation. Morpho-evolution with learning (MEL) uses EAs to concurrently generate robot designs and learn the optimal parameters of the controllers. Two main issues prevent MEL from scaling to higher complexity tasks: computational cost and premature convergence to sub-optimal designs. To address these issues, we propose combining morpho-evolution with intrinsic motivations. Intrinsically motivated behaviour arises from embodiment and simple learning rules without external guidance. We use a homeokinetic controller that generates exploratory behaviour in a few seconds with reduced knowledge of the robot's design. Homeokinesis replaces costly learning phases, reducing computational time and favouring diversity, preventing premature convergence. We compare our approach with current MEL methods in several downstream tasks. The generated designs score higher in all the tasks, are more diverse, and are quickly generated compared to morpho-evolution with static parameters.
comment: 8 pages, 9 figures, submitted to IEEE ICRA 2025
☆ Robust Dynamic Gesture Recognition at Ultra-Long Distances
Dynamic hand gestures play a crucial role in conveying nonverbal information for Human-Robot Interaction (HRI), eliminating the need for complex interfaces. Current models for dynamic gesture recognition suffer from limitations in effective recognition range, restricting their application to close proximity scenarios. In this letter, we present a novel approach to recognizing dynamic gestures in an ultra-range distance of up to 28 meters, enabling natural, directive communication for guiding robots in both indoor and outdoor environments. Our proposed SlowFast-Transformer (SFT) model effectively integrates the SlowFast architecture with Transformer layers to efficiently process and classify gesture sequences captured at ultra-range distances, overcoming challenges of low resolution and environmental noise. We further introduce a distance-weighted loss function shown to enhance learning and improve model robustness at varying distances. Our model demonstrates significant performance improvement over state-of-the-art gesture recognition frameworks, achieving a recognition accuracy of 95.1% on a diverse dataset with challenging ultra-range gestures. This enables robots to react appropriately to human commands from a far distance, providing an essential enhancement in HRI, especially in scenarios requiring seamless and natural interaction.
☆ A Novel Kinesthetic Haptic Feedback Device Driven by Soft Electrohydraulic Actuators
Developing kinesthetic haptic devices with advanced haptic rendering capabilities is challenging due to the limitations on driving mechanisms. In this study, we introduce a novel soft electrohydraulic actuator and develop a kinesthetic haptic device utilizing it as the driving unit. We established a mathematical model and conducted testing experiments to demonstrate the device's ability to stably output controllable feedback force. Our experiments also demonstrates that this device exhibits fast response characteristics. By utilizing the easily controllable nature of the soft electrohydraulic actuator, we were able to achieve high-resolution controllable feedback force output. Furthermore, by modulating the waveform of the driving high voltage, the device acquired the capability to render variable frequency haptic vibration without adding any extra vibration actuator. Using this kinesthetic haptic device, we built a teleoperated robotic system, showcasing the device's potential application as a haptic force feedback system in the field of robotics.
comment: 8 pages, 7 figures
☆ InterHub: A Naturalistic Trajectory Dataset with Dense Interaction for Autonomous Driving
The driving interaction-a critical yet complex aspect of daily driving-lies at the core of autonomous driving research. However, real-world driving scenarios sparsely capture rich interaction events, limiting the availability of comprehensive trajectory datasets for this purpose. To address this challenge, we present InterHub, a dense interaction dataset derived by mining interaction events from extensive naturalistic driving records. We employ formal methods to describe and extract multi-agent interaction events, exposing the limitations of existing autonomous driving solutions. Additionally, we introduce a user-friendly toolkit enabling the expansion of InterHub with both public and private data. By unifying, categorizing, and analyzing diverse interaction events, InterHub facilitates cross-comparative studies and large-scale research, thereby advancing the evaluation and development of autonomous driving technologies.
☆ Optimizing energy consumption for legged robot by adapting equilibrium position and stiffness of a parallel torsion spring
This paper is dedicated to the development of a novel adaptive torsion spring mechanism for optimizing energy consumption in legged robots. By adjusting the equilibrium position and stiffness of the spring, the system improves energy efficiency during cyclic movements, such as walking and jumping. The adaptive compliance mechanism, consisting of a torsion spring combined with a worm gear driven by a servo actuator, compensates for motion-induced torque and reduces motor load. Simulation results demonstrate a significant reduction in power consumption, highlighting the effectiveness of this approach in enhancing robotic locomotion.
☆ Don't Let Your Robot be Harmful: Responsible Robotic Manipulation
Unthinking execution of human instructions in robotic manipulation can lead to severe safety risks, such as poisonings, fires, and even explosions. In this paper, we present responsible robotic manipulation, which requires robots to consider potential hazards in the real-world environment while completing instructions and performing complex operations safely and efficiently. However, such scenarios in real world are variable and risky for training. To address this challenge, we propose Safety-as-policy, which includes (i) a world model to automatically generate scenarios containing safety risks and conduct virtual interactions, and (ii) a mental model to infer consequences with reflections and gradually develop the cognition of safety, allowing robots to accomplish tasks while avoiding dangers. Additionally, we create the SafeBox synthetic dataset, which includes one hundred responsible robotic manipulation tasks with different safety risk scenarios and instructions, effectively reducing the risks associated with real-world experiments. Experiments demonstrate that Safety-as-policy can avoid risks and efficiently complete tasks in both synthetic dataset and real-world experiments, significantly outperforming baseline methods. Our SafeBox dataset shows consistent evaluation results with real-world scenarios, serving as a safe and effective benchmark for future research.
☆ ORB-SLAM3AB: Augmenting ORB-SLAM3 to Counteract Bumps with Optical Flow Inter-frame Matching
This paper proposes an enhancement to the ORB-SLAM3 algorithm, tailored for applications on rugged road surfaces. Our improved algorithm adeptly combines feature point matching with optical flow methods, capitalizing on the high robustness of optical flow in complex terrains and the high precision of feature points on smooth surfaces. By refining the inter-frame matching logic of ORB-SLAM3, we have addressed the issue of frame matching loss on uneven roads. To prevent a decrease in accuracy, an adaptive matching mechanism has been incorporated, which increases the reliance on optical flow points during periods of high vibration, thereby effectively maintaining SLAM precision. Furthermore, due to the scarcity of multi-sensor datasets suitable for environments with bumpy roads or speed bumps, we have collected LiDAR and camera data from such settings. Our enhanced algorithm, ORB-SLAM3AB, was then benchmarked against several advanced open-source SLAM algorithms that rely solely on laser or visual data. Through the analysis of Absolute Trajectory Error (ATE) and Relative Pose Error (RPE) metrics, our results demonstrate that ORB-SLAM3AB achieves superior robustness and accuracy on rugged road surfaces.
☆ A Cost-Effective Approach to Smooth A* Path Planning for Autonomous Vehicles
Path planning for wheeled mobile robots is a critical component in the field of automation and intelligent transportation systems. Car-like vehicles, which have non-holonomic constraints on their movement capability impose additional requirements on the planned paths. Traditional path planning algorithms, such as A* , are widely used due to their simplicity and effectiveness in finding optimal paths in complex environments. However, these algorithms often do not consider vehicle dynamics, resulting in paths that are infeasible or impractical for actual driving. Specifically, a path that minimizes the number of grid cells may still be too curvy or sharp for a car-like vehicle to navigate smoothly. This paper addresses the need for a path planning solution that not only finds a feasible path but also ensures that the path is smooth and drivable. By adapting the A* algorithm for a curvature constraint and incorporating a cost function that considers the smoothness of possible paths, we aim to bridge the gap between grid based path planning and smooth paths that are drivable by car-like vehicles. The proposed method leverages motion primitives, pre-computed using a ribbon based path planner that produces smooth paths of minimum curvature. The motion primitives guide the A* algorithm in finding paths of minimal length and curvature. With the proposed modification on the A* algorithm, the planned paths can be constraint to have a minimum turning radius much larger than the grid size. We demonstrate the effectiveness of the proposed algorithm in different unstructured environments. In a two-stage planning approach, first the modified A* algorithm finds a grid-based path and the ribbon based path planner creates a smooth path within the area of grid cells. The resulting paths are smooth with small curvatures independent of the orientation of the grid axes and even in presence of sharp obstacles.
comment: 6 pages, IEEE IAVVC24
☆ Online Knowledge Integration for 3D Semantic Mapping: A Survey
Semantic mapping is a key component of robots operating in and interacting with objects in structured environments. Traditionally, geometric and knowledge representations within a semantic map have only been loosely integrated. However, recent advances in deep learning now allow full integration of prior knowledge, represented as knowledge graphs or language concepts, into sensor data processing and semantic mapping pipelines. Semantic scene graphs and language models enable modern semantic mapping approaches to incorporate graph-based prior knowledge or to leverage the rich information in human language both during and after the mapping process. This has sparked substantial advances in semantic mapping, leading to previously impossible novel applications. This survey reviews these recent developments comprehensively, with a focus on online integration of knowledge into semantic mapping. We specifically focus on methods using semantic scene graphs for integrating symbolic prior knowledge and language models for respective capture of implicit common-sense knowledge and natural language concepts
comment: Submitted to Robotics and Autonomous Systems
☆ Towards Cross-device and Training-free Robotic Grasping in 3D Open World
Robotic grasping in the open world is a critical component of manufacturing and automation processes. While numerous existing approaches depend on 2D segmentation output to facilitate the grasping procedure, accurately determining depth from 2D imagery remains a challenge, often leading to limited performance in complex stacking scenarios. In contrast, techniques utilizing 3D point cloud data inherently capture depth information, thus enabling adeptly navigating and manipulating a diverse range of complex stacking scenes. However, such efforts are considerably hindered by the variance in data capture devices and the unstructured nature of the data, which limits their generalizability. Consequently, much research is narrowly concentrated on managing designated objects within specific settings, which confines their real-world applicability. This paper presents a novel pipeline capable of executing object grasping tasks in open-world scenarios even on previously unseen objects without the necessity for training. Additionally, our pipeline supports the flexible use of different 3D point cloud segmentation models across a variety of scenes. Leveraging the segmentation results, we propose to engage a training-free binary clustering algorithm that not only improves segmentation precision but also possesses the capability to cluster and localize unseen objects for executing grasping operations. In our experiments, we investigate a range of open-world scenarios, and the outcomes underscore the remarkable robustness and generalizability of our pipeline, consistent across various environments, robots, cameras, and objects. The code will be made available upon acceptance of the paper.
☆ DMVC-Tracker: Distributed Multi-Agent Trajectory Planning for Target Tracking Using Dynamic Buffered Voronoi and Inter-Visibility Cells
This letter presents a distributed trajectory planning method for multi-agent aerial tracking. The proposed method uses a Dynamic Buffered Voronoi Cell (DBVC) and a Dynamic Inter-Visibility Cell (DIVC) to formulate the distributed trajectory generation. Specifically, the DBVC and the DIVC are time-variant spaces that prevent mutual collisions and occlusions among agents, while enabling them to maintain suitable distances from the moving target. We combine the DBVC and the DIVC with an efficient Bernstein polynomial motion primitive-based tracking generation method, which has been refined into a less conservative approach than in our previous work. The proposed algorithm can compute each agent's trajectory within several milliseconds on an Intel i7 desktop. We validate the tracking performance in challenging scenarios, including environments with dozens of obstacles.
comment: 8 pages, 5 figures
☆ FASIONAD : FAst and Slow FusION Thinking Systems for Human-Like Autonomous Driving with Adaptive Feedback
Ensuring safe, comfortable, and efficient navigation is a critical goal for autonomous driving systems. While end-to-end models trained on large-scale datasets excel in common driving scenarios, they often struggle with rare, long-tail events. Recent progress in large language models (LLMs) has introduced enhanced reasoning capabilities, but their computational demands pose challenges for real-time decision-making and precise planning. This paper presents FASIONAD, a novel dual-system framework inspired by the cognitive model "Thinking, Fast and Slow." The fast system handles routine navigation tasks using rapid, data-driven path planning, while the slow system focuses on complex reasoning and decision-making in challenging or unfamiliar situations. A dynamic switching mechanism based on score distribution and feedback allows seamless transitions between the two systems. Visual prompts generated by the fast system enable human-like reasoning in the slow system, which provides high-quality feedback to enhance the fast system's decision-making. To evaluate FASIONAD, we introduce a new benchmark derived from the nuScenes dataset, specifically designed to differentiate fast and slow scenarios. FASIONAD achieves state-of-the-art performance on this benchmark, establishing a new standard for frameworks integrating fast and slow cognitive processes in autonomous driving. This approach paves the way for more adaptive, human-like autonomous driving systems.
☆ Monocular Obstacle Avoidance Based on Inverse PPO for Fixed-wing UAVs
Fixed-wing Unmanned Aerial Vehicles (UAVs) are one of the most commonly used platforms for the burgeoning Low-altitude Economy (LAE) and Urban Air Mobility (UAM), due to their long endurance and high-speed capabilities. Classical obstacle avoidance systems, which rely on prior maps or sophisticated sensors, face limitations in unknown low-altitude environments and small UAV platforms. In response, this paper proposes a lightweight deep reinforcement learning (DRL) based UAV collision avoidance system that enables a fixed-wing UAV to avoid unknown obstacles at cruise speed over 30m/s, with only onboard visual sensors. The proposed system employs a single-frame image depth inference module with a streamlined network architecture to ensure real-time obstacle detection, optimized for edge computing devices. After that, a reinforcement learning controller with a novel reward function is designed to balance the target approach and flight trajectory smoothness, satisfying the specific dynamic constraints and stability requirements of a fixed-wing UAV platform. An adaptive entropy adjustment mechanism is introduced to mitigate the exploration-exploitation trade-off inherent in DRL, improving training convergence and obstacle avoidance success rates. Extensive software-in-the-loop and hardware-in-the-loop experiments demonstrate that the proposed framework outperforms other methods in obstacle avoidance efficiency and flight trajectory smoothness and confirm the feasibility of implementing the algorithm on edge devices. The source code is publicly available at \url{https://github.com/ch9397/FixedWing-MonoPPO}.
☆ Power-Efficient Actuation for Insect-Scale Autonomous Underwater Vehicles
We present a new evolution of the Very Little Eel-Inspired roBot, the VLEIBot++, a 900-mg swimmer driven by two 10-mg bare high-work density (HWD) actuators, whose functionality is based on the use of shape-memory alloy (SMA) wires. An actuator of this type consumes an average power of about 40 mW during in-air operation. We integrated onboard power and computation into the VLEIBot++ using a custom-built printed circuit board (PCB) and an 11-mAh 3.7-V 507-mg single-cell lithium-ion (Li-Ion) battery, which in conjunction enable autonomous swimming for about 20 min on a single charge. This robot can swim at speeds of up to 18.7 mm/s (0.46 Bl/s) and is the first subgram microswimmer with onboard power, actuation, and computation developed to date. Unfortunately, the approach employed to actuate VLEIBot++ prototypes is infeasible for underwater applications because a typical 10-mg bare SMA-based microactuator requires an average power on the order of 800 mW when operating underwater. To address this issue, we introduce a new 13-mg power-efficient high-performance SMA-based microactuator that can function with similar power requirements (approx. 80 mW on average) and actuation performance (approx. 3 mm at low frequencies) in air and water. This design is based on the use of a sealed flexible air-capsule that encloses the SMA wires that drive the microactuator with the purpose of passively controlling the heat-transfer rate of the thermal system. Furthermore, this new power-efficient encapsulated actuator requires low voltages of excitation (3 to 4 V) and simple power electronics to function. The breakthroughs presented in this paper represent a path towards the creation of insect-scale autonomous underwater vehicles (AUVs).
comment: To be presented at the 40th International Symposium on Robotics Research (ISRR 2024) in Long Beach, CA. on December 12th
☆ HI-SLAM2: Geometry-Aware Gaussian SLAM for Fast Monocular Scene Reconstruction
We present HI-SLAM2, a geometry-aware Gaussian SLAM system that achieves fast and accurate monocular scene reconstruction using only RGB input. Existing Neural SLAM or 3DGS-based SLAM methods often trade off between rendering quality and geometry accuracy, our research demonstrates that both can be achieved simultaneously with RGB input alone. The key idea of our approach is to enhance the ability for geometry estimation by combining easy-to-obtain monocular priors with learning-based dense SLAM, and then using 3D Gaussian splatting as our core map representation to efficiently model the scene. Upon loop closure, our method ensures on-the-fly global consistency through efficient pose graph bundle adjustment and instant map updates by explicitly deforming the 3D Gaussian units based on anchored keyframe updates. Furthermore, we introduce a grid-based scale alignment strategy to maintain improved scale consistency in prior depths for finer depth details. Through extensive experiments on Replica, ScanNet, and ScanNet++, we demonstrate significant improvements over existing Neural SLAM methods and even surpass RGB-D-based methods in both reconstruction and rendering quality. The project page and source code will be made available at https://hi-slam2.github.io/.
comment: Under review process
♻ ☆ XGrammar: Flexible and Efficient Structured Generation Engine for Large Language Models
The applications of LLM Agents are becoming increasingly complex and diverse, leading to a high demand for structured outputs that can be parsed into code, structured function calls, and embodied agent commands. These developments bring significant demands for structured generation in LLM inference. Context-free grammar is a flexible approach to enable structured generation via constrained decoding. However, executing context-free grammar requires going through several stack states over all tokens in vocabulary during runtime, bringing non-negligible overhead for structured generation. In this paper, we propose XGrammar, a flexible and efficient structure generation engine for large language models. XGrammar accelerates context-free grammar execution by dividing the vocabulary into context-independent tokens that can be prechecked and context-dependent tokens that need to be interpreted during runtime. We further build transformations to expand the grammar context and reduce the number of context-independent tokens. Additionally, we build an efficient persistent stack to accelerate the context-dependent token checks. Finally, we co-design the grammar engine with LLM inference engine to overlap grammar computation with GPU executions. Evaluation results show that XGrammar can achieve up to 100x speedup over existing solutions. Combined with an LLM inference engine, it can generate near-zero overhead structure generation in end-to-end low-LLM serving.
♻ ☆ DINO-LG: A Task-Specific DINO Model for Coronary Calcium Scoring
Coronary artery disease (CAD), one of the leading causes of mortality worldwide, necessitates effective risk assessment strategies, with coronary artery calcium (CAC) scoring via computed tomography (CT) being a key method for prevention. Traditional methods, primarily based on UNET architectures implemented on pre-built models, face challenges like the scarcity of annotated CT scans containing CAC and imbalanced datasets, leading to reduced performance in segmentation and scoring tasks. In this study, we address these limitations by incorporating the self-supervised learning (SSL) technique of DINO (self-distillation with no labels), which trains without requiring CAC-specific annotations, enhancing its robustness in generating distinct features. The DINO-LG model, which leverages label guidance to focus on calcified areas, achieves significant improvements, with a sensitivity of 89% and specificity of 90% for detecting CAC-containing CT slices, compared to the standard DINO model's sensitivity of 79% and specificity of 77%. Additionally, false-negative and false-positive rates are reduced by 49% and 59%, respectively, instilling greater confidence in clinicians when ruling out calcification in low-risk patients and minimizing unnecessary imaging reviews by radiologists. Further, CAC scoring and segmentation tasks are conducted using a basic UNET architecture, applied specifically to CT slices identified by the DINO-LG model as containing calcified areas. This targeted approach enhances CAC scoring accuracy by feeding the UNET model with relevant slices, significantly improving diagnostic precision, reducing both false positives and false negatives, and ultimately lowering overall healthcare costs by minimizing unnecessary tests and treatments, presenting a valuable advancement in CAD risk assessment.
comment: Developed by Center for Applied Artificial Intelligence (CAAI), University of Kentucky
♻ ☆ Data Readiness for AI: A 360-Degree Survey
Artificial Intelligence (AI) applications critically depend on data. Poor quality data produces inaccurate and ineffective AI models that may lead to incorrect or unsafe use. Evaluation of data readiness is a crucial step in improving the quality and appropriateness of data usage for AI. R&D efforts have been spent on improving data quality. However, standardized metrics for evaluating data readiness for use in AI training are still evolving. In this study, we perform a comprehensive survey of metrics used to verify data readiness for AI training. This survey examines more than 140 papers published by ACM Digital Library, IEEE Xplore, journals such as Nature, Springer, and Science Direct, and online articles published by prominent AI experts. This survey aims to propose a taxonomy of data readiness for AI (DRAI) metrics for structured and unstructured datasets. We anticipate that this taxonomy will lead to new standards for DRAI metrics that will be used for enhancing the quality, accuracy, and fairness of AI training and inference.
comment: 36 pages, 3 figures, 2 tables, submitted to ACM Computing Surveys
♻ ☆ Learning to Project for Cross-Task Knowledge Distillation BMVC 2024
Traditional knowledge distillation (KD) relies on a proficient teacher trained on the target task, which is not always available. In this setting, cross-task distillation can be used, enabling the use of any teacher model trained on a different task. However, many KD methods prove ineffective when applied to this cross-task setting. To address this limitation, we propose a simple modification: the use of an inverted projection. We show that this drop-in replacement for a standard projector is effective by learning to disregard any task-specific features which might degrade the student's performance. We find that this simple modification is sufficient for extending many KD methods to the cross-task setting, where the teacher and student tasks can be very different. In doing so, we obtain up to a 1.9% improvement in the cross-task setting compared to the traditional projection, at no additional cost. Our method can obtain significant performance improvements (up to 7%) when using even a randomly-initialised teacher on various tasks such as depth estimation, image translation, and semantic segmentation, despite the lack of any learned knowledge to transfer. To provide conceptual and analytical insights into this result, we show that using an inverted projection allows the distillation loss to be decomposed into a knowledge transfer and a spectral regularisation component. Through this analysis we are additionally able to propose a novel regularisation loss that allows teacher-free distillation, enabling performance improvements of up to 8.57% on ImageNet with no additional training costs.
comment: BMVC 2024
♻ ☆ DataVisT5: A Pre-trained Language Model for Jointly Understanding Text and Data Visualization
Data visualization (DV) is the fundamental and premise tool to improve the efficiency in conveying the insights behind the big data, which has been widely accepted in existing data-driven world. Task automation in DV, such as converting natural language queries to visualizations (i.e., text-to-vis), generating explanations from visualizations (i.e., vis-to-text), answering DV-related questions in free form (i.e. FeVisQA), and explicating tabular data (i.e., table-to-text), is vital for advancing the field. Despite their potential, the application of pre-trained language models (PLMs) like T5 and BERT in DV has been limited by high costs and challenges in handling cross-modal information, leading to few studies on PLMs for DV. We introduce DataVisT5, a novel PLM tailored for DV that enhances the T5 architecture through a hybrid objective pre-training and multi-task fine-tuning strategy, integrating text and DV datasets to effectively interpret cross-modal semantics. Extensive evaluations on public datasets show that DataVisT5 consistently outperforms current state-of-the-art models on various DV-related tasks. We anticipate that DataVisT5 will not only inspire further research on vertical PLMs but also expand the range of applications for PLMs.
♻ ☆ Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data
The impressive capabilities of large language models (LLMs) have sparked debate over whether these models genuinely generalize to unseen tasks or predominantly rely on memorizing vast amounts of pretraining data. To explore this issue, we introduce an extended concept of memorization, distributional memorization, which measures the correlation between the LLM output probabilities and the pretraining data frequency. To effectively capture task-specific pretraining data frequency, we propose a novel task-gram language model, which is built by counting the co-occurrence of semantically related $n$-gram pairs from task inputs and outputs in the pretraining corpus. Using the Pythia models trained on the Pile dataset, we evaluate four distinct tasks: machine translation, factual question answering, world knowledge understanding, and math reasoning. Our findings reveal varying levels of memorization, with the strongest effect observed in factual question answering. Furthermore, while model performance improves across all tasks as LLM size increases, only factual question answering shows an increase in memorization, whereas machine translation and reasoning tasks exhibit greater generalization, producing more novel outputs. This study demonstrates that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks, providing a scalable method for analyzing large pretraining corpora in greater depth. We also show the practical implications of our analysis through a novel prompt optimization algorithm.
comment: updated 10-page version
♻ ☆ Calibrated Adaptive Teacher for Domain Adaptive Intelligent Fault Diagnosis
Intelligent Fault Diagnosis (IFD) based on deep learning has proven to be an effective and flexible solution, attracting extensive research. Deep neural networks can learn rich representations from vast amounts of representative labeled data for various applications. In IFD, they achieve high classification performance from signals in an end-to-end manner, without requiring extensive domain knowledge. However, deep learning models usually only perform well on the data distribution they have been trained on. When applied to a different distribution, they may experience performance drops. This is also observed in IFD, where assets are often operated in working conditions different from those in which labeled data have been collected. Unsupervised domain adaptation (UDA) deals with the scenario where labeled data are available in a source domain, and only unlabeled data are available in a target domain, where domains may correspond to operating conditions. Recent methods rely on training with confident pseudo-labels for target samples. However, the confidence-based selection of pseudo-labels is hindered by poorly calibrated confidence estimates in the target domain, primarily due to over-confident predictions, which limits the quality of pseudo-labels and leads to error accumulation. In this paper, we propose a novel UDA method called Calibrated Adaptive Teacher (CAT), where we propose to calibrate the predictions of the teacher network throughout the self-training process, leveraging post-hoc calibration techniques. We evaluate CAT on domain-adaptive IFD and perform extensive experiments on the Paderborn benchmark for bearing fault diagnosis under varying operating conditions. Our proposed method achieves state-of-the-art performance on most transfer tasks.
comment: Accepted for publication in Sensors. 24 pages
♻ ☆ Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
This study investigates the potential accuracy boundaries of physics-informed neural networks, contrasting their approach with previous similar works and traditional numerical methods. We find that selecting improved optimization algorithms significantly enhances the accuracy of the results. Simple modifications to the loss function may also improve precision, offering an additional avenue for enhancement. Despite optimization algorithms having a greater impact on convergence than adjustments to the loss function, practical considerations often favor tweaking the latter due to ease of implementation. On a global scale, the integration of an enhanced optimizer and a marginally adjusted loss function enables a reduction in the loss function by several orders of magnitude across diverse physical problems. Consequently, our results obtained using compact networks (typically comprising 2 or 3 layers of 20-30 neurons) achieve accuracies comparable to finite difference schemes employing thousands of grid points. This study encourages the continued advancement of PINNs and associated optimization techniques for broader applications across various fields.
comment: 46 pages, 13 figures, submitted for publication in JCP
♻ ☆ Agent Skill Acquisition for Large Language Models via CycleQD
Training large language models to acquire specific skills remains a challenging endeavor. Conventional training approaches often struggle with data distribution imbalances and inadequacies in objective functions that do not align well with task-specific performance. To address these challenges, we introduce CycleQD, a novel approach that leverages the Quality Diversity framework through a cyclic adaptation of the algorithm, along with a model merging based crossover and an SVD-based mutation. In CycleQD, each task's performance metric is alternated as the quality measure while the others serve as the behavioral characteristics. This cyclic focus on individual tasks allows for concentrated effort on one task at a time, eliminating the need for data ratio tuning and simplifying the design of the objective function. Empirical results from AgentBench indicate that applying CycleQD to LLAMA3-8B-INSTRUCT based models not only enables them to surpass traditional fine-tuning methods in coding, operating systems, and database tasks, but also achieves performance on par with GPT-3.5-TURBO, which potentially contains much more parameters, across these domains. Crucially, this enhanced performance is achieved while retaining robust language capabilities, as evidenced by its performance on widely adopted language benchmark tasks. We highlight the key design choices in CycleQD, detailing how these contribute to its effectiveness. Furthermore, our method is general and can be applied to image segmentation models, highlighting its applicability across different domains.
♻ ☆ Synatra: Turning Indirect Knowledge into Direct Demonstrations for Digital Agents at Scale
LLMs can now act as autonomous agents that interact with digital environments and complete specific objectives (e.g., arranging an online meeting). However, accuracy is still far from satisfactory, partly due to a lack of large-scale, direct demonstrations for digital tasks. Obtaining supervised data from humans is costly, and automatic data collection through exploration or reinforcement learning relies on complex environmental and content setup, resulting in datasets that lack comprehensive coverage of various scenarios. On the other hand, there is abundant knowledge that may indirectly assist task completion, such as online tutorials that were created for human consumption. In this work, we present Synatra, an approach that effectively transforms this indirect knowledge into direct supervision at scale. We define different types of indirect knowledge, and carefully study the available sources to obtain it, methods to encode the structure of direct demonstrations, and finally methods to transform indirect knowledge into direct demonstrations. We use 100k such synthetically-created demonstrations to finetune a 7B CodeLlama, and demonstrate that the resulting agent surpasses all comparably sized models on three web-based task benchmarks Mind2Web, MiniWoB++ and WebArena, as well as surpassing GPT-3.5 on WebArena and Mind2Web. In addition, while synthetic demonstrations prove to be only 3% the cost of human demonstrations (at $0.031 each), we show that the synthetic demonstrations can be more effective than an identical number of human demonstrations collected from limited domains.
♻ ☆ MROVSeg: Breaking the Resolution Curse of Vision-Language Models in Open-Vocabulary Image Segmentation
Pretrained vision-language models (VLMs), \eg CLIP, are increasingly used to bridge the gap between open- and close-vocabulary recognition in open-vocabulary image segmentation. As VLMs are generally pretrained with low-resolution images (e.g. $224\times224$), most previous methods operate only on downscaled images. We question this design as low resolution features often fail to preserve fine details. A typical solution is to employ additional image backbones for high-resolution inputs, but it also introduce significant computation overhead. Therefore, we propose MROVSeg, a multi-resolution training framework for open-vocabulary image segmentation with a single pretrained CLIP backbone, that uses sliding windows to slice the high-resolution input into uniform patches, each matching the input size of the well-trained image encoder. Its key components include a Multi-Res Adapter, which restores the spatial geometry and grasps local-global correspondences across patches by interacting with multi-resolution features. To achieve accurate segmentation, we introduce Multi-grained Masked Attention scheme to aggregate multi-grained semantics from multi-resolution CLIP features to object queries. Through comprehensive experiments, we demonstrate the superiority of MROVSeg on well-established open-vocabulary image segmentation benchmarks, establishing new standards for open-vocabulary image segmentation.
comment: Technical report
♻ ☆ Creativity in AI: Progresses and Challenges
Creativity is the ability to produce novel, useful, and surprising ideas, and has been widely studied as a crucial aspect of human cognition. Machine creativity on the other hand has been a long-standing challenge. With the rise of advanced generative AI, there has been renewed interest and debate regarding AI's creative capabilities. Therefore, it is imperative to revisit the state of creativity in AI and identify key progresses and remaining challenges. In this work, we survey leading works studying the creative capabilities of AI systems, focusing on creative problem-solving, linguistic, artistic, and scientific creativity. Our review suggests that while the latest AI models are largely capable of producing linguistically and artistically creative outputs such as poems, images, and musical pieces, they struggle with tasks that require creative problem-solving, abstract thinking and compositionality and their generations suffer from a lack of diversity, originality, long-range incoherence and hallucinations. We also discuss key questions concerning copyright and authorship issues with generative models. Furthermore, we highlight the need for a comprehensive evaluation of creativity that is process-driven and considers several dimensions of creativity. Finally, we propose future research directions to improve the creativity of AI outputs, drawing inspiration from cognitive science and psychology.
comment: minor updates to content + figure
♻ ☆ EnrichEvent: Enriching Social Data with Contextual Information for Emerging Event Extraction
Social platforms have emerged as crucial platforms for disseminating information and discussing real-life social events, offering researchers an excellent opportunity to design and implement novel event detection frameworks. However, most existing approaches only exploit keyword burstiness or network structures to detect unspecified events. Thus, they often need help identifying unknown events regarding the challenging nature of events and social data. Social data, e.g., tweets, is characterized by misspellings, incompleteness, word sense ambiguation, irregular language, and variation in aspects of opinions. Moreover, extracting discriminative features and patterns for evolving events by exploiting the limited structural knowledge is almost infeasible. To address these challenges, in this paper, we propose a novel framework, namely EnrichEvent, that leverages the linguistic and contextual representations of streaming social data. In particular, we leverage contextual and linguistic knowledge to detect semantically related tweets and enhance the effectiveness of the event detection approaches. Eventually, our proposed framework produces cluster chains for each event to show the evolving variation of the event through time. We conducted extensive experiments to evaluate our framework, validating its high performance and effectiveness in detecting and distinguishing unspecified social events.
♻ ☆ Multi-Source Knowledge Pruning for Retrieval-Augmented Generation: A Benchmark and Empirical Study
Retrieval-augmented generation (RAG) is increasingly recognized as an effective approach for mitigating the hallucination of large language models (LLMs) through the integration of external knowledge. While numerous efforts, most studies focus on a single type of externeal knowledge source. However, in real-world applications, most situations involve diverse knowledge from various sources, yet this area has been less explored. The main dilemma is the lack of a suitable dataset containing multiple knowledge sources and pre-exploration of the associated issues. To address these challenges, we standardize a benchmark dataset that combines structured and unstructured knowledge across diverse and complementary domains. Based on this dataset, we further develop a plug-and-play RAG framework, PruningRAG, whose main characteristic is to employ multi-granularity pruning strategies for optimizing the integration of relevant information and minimizing misleading context. Building upon the standardized dataset and PruningRAG, we also report a series of experimental results, as well as insightful findings. Our dataset and code are publicly available\footnote{https://github.com/USTCAGI/PruningRAG}, with the aim of advancing future research in the RAG community.
comment: 10 pages, 11 figures;
♻ ☆ Improved Noise Schedule for Diffusion Training
Diffusion models have emerged as the de facto choice for generating high-quality visual signals across various domains. However, training a single model to predict noise across various levels poses significant challenges, necessitating numerous iterations and incurring significant computational costs. Various approaches, such as loss weighting strategy design and architectural refinements, have been introduced to expedite convergence and improve model performance. In this study, we propose a novel approach to design the noise schedule for enhancing the training of diffusion models. Our key insight is that the importance sampling of the logarithm of the Signal-to-Noise ratio ($\log \text{SNR}$), theoretically equivalent to a modified noise schedule, is particularly beneficial for training efficiency when increasing the sample frequency around $\log \text{SNR}=0$. This strategic sampling allows the model to focus on the critical transition point between signal dominance and noise dominance, potentially leading to more robust and accurate predictions.We empirically demonstrate the superiority of our noise schedule over the standard cosine schedule.Furthermore, we highlight the advantages of our noise schedule design on the ImageNet benchmark, showing that the designed schedule consistently benefits different prediction targets. Our findings contribute to the ongoing efforts to optimize diffusion models, potentially paving the way for more efficient and effective training paradigms in the field of generative AI.
♻ ☆ Goetterfunke: Creativity in Machinae Sapiens. About the Qualitative Shift in Generative AI with a Focus on Text-To-Image
The year 2022 marks a watershed in technology, and arguably in human history, with the release of powerful generative AIs capable of convincingly performing creative tasks. With the help of these systems, anyone can create something that would previously have been considered a remarkable work of art. In human-AI collaboration, the computer seems to have become more than a tool. Many who have made their first contact with current generative AIs see them as "creativity machines" while for others the term "machine creativity" remains an oxymoron. This article is about (the possibility of) creativity in computers within the current Machine Learning paradigm. It outlines some of the key concepts behind the technologies and the innovations that have contributed to this qualitative shift, with a focus on text-to-image systems. The nature of Artificial Creativity as such is discussed, as well as what this might mean for art. AI may become a responsible collaborator with elements of independent machine authorship in the artistic process.
comment: 3 figures (images), 33 pages typo fixed, minor text formats
♻ ☆ Differentiable Weightless Neural Networks
We introduce the Differentiable Weightless Neural Network (DWN), a model based on interconnected lookup tables. Training of DWNs is enabled by a novel Extended Finite Difference technique for approximate differentiation of binary values. We propose Learnable Mapping, Learnable Reduction, and Spectral Regularization to further improve the accuracy and efficiency of these models. We evaluate DWNs in three edge computing contexts: (1) an FPGA-based hardware accelerator, where they demonstrate superior latency, throughput, energy efficiency, and model area compared to state-of-the-art solutions, (2) a low-power microcontroller, where they achieve preferable accuracy to XGBoost while subject to stringent memory constraints, and (3) ultra-low-cost chips, where they consistently outperform small models in both accuracy and projected hardware area. DWNs also compare favorably against leading approaches for tabular datasets, with higher average rank. Overall, our work positions DWNs as a pioneering solution for edge-compatible high-throughput neural networks.
♻ ☆ Referential communication in heterogeneous communities of pre-trained visual deep networks
As large pre-trained image-processing neural networks are being embedded in autonomous agents such as self-driving cars or robots, the question arises of how such systems can communicate with each other about the surrounding world, despite their different architectures and training regimes. As a first step in this direction, we systematically explore the task of referential communication in a community of heterogeneous state-of-the-art pre-trained visual networks, showing that they can develop, in a self-supervised way, a shared protocol to refer to a target object among a set of candidates. This shared protocol can also be used, to some extent, to communicate about previously unseen object categories of different granularity. Moreover, a visual network that was not initially part of an existing community can learn the community's protocol with remarkable ease. Finally, we study, both qualitatively and quantitatively, the properties of the emergent protocol, providing some evidence that it is capturing high-level semantic features of objects.
♻ ☆ Biometric Authentication Based on Enhanced Remote Photoplethysmography Signal Morphology
Remote photoplethysmography (rPPG) is a non-contact method for measuring cardiac signals from facial videos, offering a convenient alternative to contact photoplethysmography (cPPG) obtained from contact sensors. Recent studies have shown that each individual possesses a unique cPPG signal morphology that can be utilized as a biometric identifier, which has inspired us to utilize the morphology of rPPG signals extracted from facial videos for person authentication. Since the facial appearance and rPPG are mixed in the facial videos, we first de-identify facial videos to remove facial appearance while preserving the rPPG information, which protects facial privacy and guarantees that only rPPG is used for authentication. The de-identified videos are fed into an rPPG model to get the rPPG signal morphology for authentication. In the first training stage, unsupervised rPPG training is performed to get coarse rPPG signals. In the second training stage, an rPPG-cPPG hybrid training is performed by incorporating external cPPG datasets to achieve rPPG biometric authentication and enhance rPPG signal morphology. Our approach needs only de-identified facial videos with subject IDs to train rPPG authentication models. The experimental results demonstrate that rPPG signal morphology hidden in facial videos can be used for biometric authentication. The code is available at https://github.com/zhaodongsun/rppg_biometrics.
comment: accepted by IJCB 2024, Best Paper Runner-Up Award
♻ ☆ MENTOR: Guiding Hierarchical Reinforcement Learning with Human Feedback and Dynamic Distance Constraint
Hierarchical reinforcement learning (HRL) provides a promising solution for complex tasks with sparse rewards of intelligent agents, which uses a hierarchical framework that divides tasks into subgoals and completes them sequentially. However, current methods struggle to find suitable subgoals for ensuring a stable learning process. Without additional guidance, it is impractical to rely solely on exploration or heuristics methods to determine subgoals in a large goal space. To address the issue, We propose a general hierarchical reinforcement learning framework incorporating human feedback and dynamic distance constraints (MENTOR). MENTOR acts as a "mentor", incorporating human feedback into high-level policy learning, to find better subgoals. As for low-level policy, MENTOR designs a dual policy for exploration-exploitation decoupling respectively to stabilize the training. Furthermore, although humans can simply break down tasks into subgoals to guide the right learning direction, subgoals that are too difficult or too easy can still hinder downstream learning efficiency. We propose the Dynamic Distance Constraint (DDC) mechanism dynamically adjusting the space of optional subgoals. Thus MENTOR can generate subgoals matching the low-level policy learning process from easy to hard. Extensive experiments demonstrate that MENTOR uses a small amount of human feedback to achieve significant improvement in complex tasks with sparse rewards.
comment: Accepted for publication in IEEE Transactions on Emerging Topics in Computational Intelligence
♻ ☆ A Comprehensive Study of Structural Pruning for Vision Models
Structural pruning has emerged as a promising approach for producing more efficient models. Nevertheless, the community suffers from a lack of standardized benchmarks and metrics, leaving the progress in this area not fully comprehended.To fill this gap, we present the first comprehensive benchmark, termed PruningBench, for structural pruning. PruningBench showcases the following three characteristics: 1) PruningBench employs a unified and consistent framework for evaluating the effectiveness of diverse structural pruning techniques; 2) PruningBench systematically evaluates 16 existing pruning methods, encompassing a wide array of models (e.g., CNNs and ViTs) and tasks (e.g., classification and detection); 3) PruningBench provides easily implementable interfaces to facilitate the implementation of future pruning methods, and enables the subsequent researchers to incorporate their work into our leaderboards. We provide an online pruning platform http://pruning.vipazoo.cn for customizing pruning tasks and reproducing all results in this paper. Leaderboard results can be available on https://github.com/HollyLee2000/PruningBench.
comment: This is a paper aims to present a evaluation benchmark for structural pruning. The full text is 25 pages
♻ ☆ SWIM: Short-Window CNN Integrated with Mamba for EEG-Based Auditory Spatial Attention Decoding
In complex auditory environments, the human auditory system possesses the remarkable ability to focus on a specific speaker while disregarding others. In this study, a new model named SWIM, a short-window convolution neural network (CNN) integrated with Mamba, is proposed for identifying the locus of auditory attention (left or right) from electroencephalography (EEG) signals without relying on speech envelopes. SWIM consists of two parts. The first is a short-window CNN (SW$_\text{CNN}$), which acts as a short-term EEG feature extractor and achieves a final accuracy of 84.9% in the leave-one-speaker-out setup on the widely used KUL dataset. This improvement is due to the use of an improved CNN structure, data augmentation, multitask training, and model combination. The second part, Mamba, is a sequence model first applied to auditory spatial attention decoding to leverage the long-term dependency from previous SW$_\text{CNN}$ time steps. By joint training SW$_\text{CNN}$ and Mamba, the proposed SWIM structure uses both short-term and long-term information and achieves an accuracy of 86.2%, which reduces the classification errors by a relative 31.0% compared to the previous state-of-the-art result. The source code is available at https://github.com/windowso/SWIM-ASAD.
comment: accepted by SLT 2024
♻ ☆ CaT-GNN: Enhancing Credit Card Fraud Detection via Causal Temporal Graph Neural Networks
Credit card fraud poses a significant threat to the economy. While Graph Neural Network (GNN)-based fraud detection methods perform well, they often overlook the causal effect of a node's local structure on predictions. This paper introduces a novel method for credit card fraud detection, the \textbf{\underline{Ca}}usal \textbf{\underline{T}}emporal \textbf{\underline{G}}raph \textbf{\underline{N}}eural \textbf{N}etwork (CaT-GNN), which leverages causal invariant learning to reveal inherent correlations within transaction data. By decomposing the problem into discovery and intervention phases, CaT-GNN identifies causal nodes within the transaction graph and applies a causal mixup strategy to enhance the model's robustness and interpretability. CaT-GNN consists of two key components: Causal-Inspector and Causal-Intervener. The Causal-Inspector utilizes attention weights in the temporal attention mechanism to identify causal and environment nodes without introducing additional parameters. Subsequently, the Causal-Intervener performs a causal mixup enhancement on environment nodes based on the set of nodes. Evaluated on three datasets, including a private financial dataset and two public datasets, CaT-GNN demonstrates superior performance over existing state-of-the-art methods. Our findings highlight the potential of integrating causal reasoning with graph neural networks to improve fraud detection capabilities in financial transactions.
♻ ☆ On Designing Effective RL Reward at Training Time for LLM Reasoning
Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.
♻ ☆ Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model
Recent advancements in audio generation have been significantly propelled by the capabilities of Large Language Models (LLMs). The existing research on audio LLM has primarily focused on enhancing the architecture and scale of audio language models, as well as leveraging larger datasets, and generally, acoustic codecs, such as EnCodec, are used for audio tokenization. However, these codecs were originally designed for audio compression, which may lead to suboptimal performance in the context of audio LLM. Our research aims to address the shortcomings of current audio LLM codecs, particularly their challenges in maintaining semantic integrity in generated audio. For instance, existing methods like VALL-E, which condition acoustic token generation on text transcriptions, often suffer from content inaccuracies and elevated word error rates (WER) due to semantic misinterpretations of acoustic tokens, resulting in word skipping and errors. To overcome these issues, we propose a straightforward yet effective approach called X-Codec. X-Codec incorporates semantic features from a pre-trained semantic encoder before the Residual Vector Quantization (RVQ) stage and introduces a semantic reconstruction loss after RVQ. By enhancing the semantic ability of the codec, X-Codec significantly reduces WER in speech synthesis tasks and extends these benefits to non-speech applications, including music and sound generation. Our experiments in text-to-speech, music continuation, and text-to-sound tasks demonstrate that integrating semantic information substantially improves the overall performance of language models in audio generation. Our code and demo are available (Demo: https://x-codec-audio.github.io Code: https://github.com/zhenye234/xcodec)
♻ ☆ On the role of Artificial Intelligence methods in modern force-controlled manufacturing robotic tasks
This position paper explores the integration of Artificial Intelligence (AI) into force-controlled robotic tasks within the scope of advanced manufacturing, a cornerstone of Industry 4.0. AI's role in enhancing robotic manipulators - key drivers in the Fourth Industrial Revolution - is rapidly leading to significant innovations in smart manufacturing. The objective of this article is to frame these innovations in practical force-controlled applications - e.g. deburring, polishing, and assembly tasks like peg-in-hole (PiH) - highlighting their necessity for maintaining high-quality production standards. By reporting on recent AI-based methodologies, this article contrasts them and identifies current challenges to be addressed in future research. The analysis concludes with a perspective on future research directions, emphasizing the need for common performance metrics to validate AI techniques, integration of various enhancements for performance optimization, and the importance of validating them in relevant scenarios. These future directions aim to provide consistency with already adopted approaches, so as to be compatible with manufacturing standards, increasing the relevance of AI-driven methods in both academic and industrial contexts.
comment: In Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, 392-399, 2024 , Porto, Portugal
♻ ☆ Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models
In this report, we propose a novel black-box jailbreak attacking framework that incorporates various LLM-as-Attacker methods to deliver transferable and powerful jailbreak attacks. Our method is designed based on three key observations from existing jailbreaking studies and practices. First, we consider an ensemble approach should be more effective in exposing the vulnerabilities of an aligned LLM compared to individual attacks. Second, different malicious instructions inherently vary in their jailbreaking difficulty, necessitating differentiated treatment to ensure more efficient attacks. Finally, the semantic coherence of a malicious instruction is crucial for triggering the defenses of an aligned LLM; therefore, it must be carefully disrupted to manipulate its embedding representation, thereby increasing the jailbreak success rate. We validated our approach by participating in the Competition for LLM and Agent Safety 2024, where our team achieved top performance in the Jailbreaking Attack Track.
♻ ☆ ChroKnowledge: Unveiling Chronological Knowledge of Language Models in Multiple Domains
Large language models (LLMs) have brought significant changes to many aspects of our lives. However, assessing and ensuring their chronological knowledge remains challenging. Existing approaches fall short in addressing the temporal adaptability of knowledge, often relying on a fixed time-point view. To overcome this, we introduce ChroKnowBench, a benchmark dataset designed to evaluate chronologically accumulated knowledge across three key aspects: multiple domains, time dependency, temporal state. Our benchmark distinguishes between knowledge that evolves (e.g., personal history, scientific discoveries, amended laws) and knowledge that remain constant (e.g., mathematical truths, commonsense facts). Building on this benchmark, we present ChroKnowledge (Chronological Categorization of Knowledge), a novel sampling-based framework for evaluating LLMs' non-parametric chronological knowledge. Our evaluation led to the following observations: (1) The ability of eliciting temporal knowledge varies depending on the data format that model was trained on. (2) LLMs partially recall knowledge or show a cut-off at temporal boundaries rather than recalling all aspects of knowledge correctly. Thus, we apply ourChroKnowPrompt, an in-depth prompting to elicit chronological knowledge by traversing step-by-step through the surrounding time spans. We observe that it successfully recalls objects across both open-source and proprietary LLMs, demonstrating versatility, though it faces challenges with dynamic datasets and unstructured formats.
♻ ☆ Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants
AI assistants are being increasingly used by students enrolled in higher education institutions. While these tools provide opportunities for improved teaching and education, they also pose significant challenges for assessment and learning outcomes. We conceptualize these challenges through the lens of vulnerability, the potential for university assessments and learning outcomes to be impacted by student use of generative AI. We investigate the potential scale of this vulnerability by measuring the degree to which AI assistants can complete assessment questions in standard university-level STEM courses. Specifically, we compile a novel dataset of textual assessment questions from 50 courses at EPFL and evaluate whether two AI assistants, GPT-3.5 and GPT-4 can adequately answer these questions. We use eight prompting strategies to produce responses and find that GPT-4 answers an average of 65.8% of questions correctly, and can even produce the correct answer across at least one prompting strategy for 85.1% of questions. When grouping courses in our dataset by degree program, these systems already pass non-project assessments of large numbers of core courses in various degree programs, posing risks to higher education accreditation that will be amplified as these models improve. Our results call for revising program-level assessment design in higher education in light of advances in generative AI.
comment: 20 pages, 8 figures
Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance
Agents powered by large language models have shown remarkable abilities in solving complex tasks. However, most agent systems remain reactive, limiting their effectiveness in scenarios requiring foresight and autonomous decision-making. In this paper, we tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions. We propose a novel data-driven approach for this problem. Firstly, we collect real-world human activities to generate proactive task predictions. These predictions are then labeled by human annotators as either accepted or rejected. The labeled data is used to train a reward model that simulates human judgment and serves as an automatic evaluator of the proactiveness of LLM agents. Building on this, we develop a comprehensive data generation pipeline to create a diverse dataset, ProactiveBench, containing 6,790 events. Finally, we demonstrate that fine-tuning models with the proposed ProactiveBench can significantly elicit the proactiveness of LLM agents. Experimental results show that our fine-tuned model achieves an F1-Score of 66.47% in proactively offering assistance, outperforming all open-source and close-source models. These results highlight the potential of our method in creating more proactive and effective agent systems, paving the way for future advancements in human-agent collaboration.
comment: 9 pages, 4 figures
♻ ☆ CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching NeurIPS 2024
Diffusion models have demonstrated great success in the field of text-to-image generation. However, alleviating the misalignment between the text prompts and images is still challenging. The root reason behind the misalignment has not been extensively investigated. We observe that the misalignment is caused by inadequate token attention activation. We further attribute this phenomenon to the diffusion model's insufficient condition utilization, which is caused by its training paradigm. To address the issue, we propose CoMat, an end-to-end diffusion model fine-tuning strategy with an image-to-text concept matching mechanism. We leverage an image captioning model to measure image-to-text alignment and guide the diffusion model to revisit ignored tokens. A novel attribute concentration module is also proposed to address the attribute binding problem. Without any image or human preference data, we use only 20K text prompts to fine-tune SDXL to obtain CoMat-SDXL. Extensive experiments show that CoMat-SDXL significantly outperforms the baseline model SDXL in two text-to-image alignment benchmarks and achieves start-of-the-art performance.
comment: NeurIPS 2024
♻ ☆ Empowering ChatGPT-Like Large-Scale Language Models with Local Knowledge Base for Industrial Prognostics and Health Management
Prognostics and health management (PHM) is essential for industrial operation and maintenance, focusing on predicting, diagnosing, and managing the health status of industrial systems. The emergence of the ChatGPT-Like large-scale language model (LLM) has begun to lead a new round of innovation in the AI field. It has extensively promoted the level of intelligence in various fields. Therefore, it is also expected further to change the application paradigm in industrial PHM and promote PHM to become intelligent. Although ChatGPT-Like LLMs have rich knowledge reserves and powerful language understanding and generation capabilities, they lack domain-specific expertise, significantly limiting their practicability in PHM applications. To this end, this study explores the ChatGPT-Like LLM empowered by the local knowledge base (LKB) in industrial PHM to solve the above limitations. In addition, we introduce the method and steps of combining the LKB with LLMs, including LKB preparation, LKB vectorization, prompt engineering, etc. Experimental analysis of real cases shows that combining the LKB with ChatGPT-Like LLM can significantly improve its performance and make ChatGPT-Like LLMs more accurate, relevant, and able to provide more insightful information. This can promote the development of ChatGPT-Like LLMs in industrial PHM and promote their efficiency and quality.
MMSearch: Benchmarking the Potential of Large Models as Multi-modal Search Engines
The advent of Large Language Models (LLMs) has paved the way for AI search engines, e.g., SearchGPT, showcasing a new paradigm in human-internet interaction. However, most current AI search engines are limited to text-only settings, neglecting the multimodal user queries and the text-image interleaved nature of website information. Recently, Large Multimodal Models (LMMs) have made impressive strides. Yet, whether they can function as AI search engines remains under-explored, leaving the potential of LMMs in multimodal search an open question. To this end, we first design a delicate pipeline, MMSearch-Engine, to empower any LMMs with multimodal search capabilities. On top of this, we introduce MMSearch, a comprehensive evaluation benchmark to assess the multimodal search performance of LMMs. The curated dataset contains 300 manually collected instances spanning 14 subfields, which involves no overlap with the current LMMs' training data, ensuring the correct answer can only be obtained within searching. By using MMSearch-Engine, the LMMs are evaluated by performing three individual tasks (requery, rerank, and summarization), and one challenging end-to-end task with a complete searching process. We conduct extensive experiments on closed-source and open-source LMMs. Among all tested models, GPT-4o with MMSearch-Engine achieves the best results, which surpasses the commercial product, Perplexity Pro, in the end-to-end task, demonstrating the effectiveness of our proposed pipeline. We further present error analysis to unveil current LMMs still struggle to fully grasp the multimodal search tasks, and conduct ablation study to indicate the potential of scaling test-time computation for AI search engine. We hope MMSearch may provide unique insights to guide the future development of multimodal AI search engine. Project Page: https://mmsearch.github.io
comment: Project Page: https://mmsearch.github.io
♻ ☆ Playing Language Game with LLMs Leads to Jailbreaking
The advent of large language models (LLMs) has spurred the development of numerous jailbreak techniques aimed at circumventing their security defenses against malicious attacks. An effective jailbreak approach is to identify a domain where safety generalization fails, a phenomenon known as mismatched generalization. In this paper, we introduce two novel jailbreak methods based on mismatched generalization: natural language games and custom language games, both of which effectively bypass the safety mechanisms of LLMs, with various kinds and different variants, making them hard to defend and leading to high attack rates. Natural language games involve the use of synthetic linguistic constructs and the actions intertwined with these constructs, such as the Ubbi Dubbi language. Building on this phenomenon, we propose the custom language games method: by engaging with LLMs using a variety of custom rules, we successfully execute jailbreak attacks across multiple LLM platforms. Extensive experiments demonstrate the effectiveness of our methods, achieving success rates of 93% on GPT-4o, 89% on GPT-4o-mini and 83% on Claude-3.5-Sonnet. Furthermore, to investigate the generalizability of safety alignments, we fine-tuned Llama-3.1-70B with the custom language games to achieve safety alignment within our datasets and found that when interacting through other language games, the fine-tuned models still failed to identify harmful content. This finding indicates that the safety alignment knowledge embedded in LLMs fails to generalize across different linguistic formats, thus opening new avenues for future research in this area.
♻ ☆ StableAnimator: High-Quality Identity-Preserving Human Image Animation
Current diffusion models for human image animation struggle to ensure identity (ID) consistency. This paper presents StableAnimator, the first end-to-end ID-preserving video diffusion framework, which synthesizes high-quality videos without any post-processing, conditioned on a reference image and a sequence of poses. Building upon a video diffusion model, StableAnimator contains carefully designed modules for both training and inference striving for identity consistency. In particular, StableAnimator begins by computing image and face embeddings with off-the-shelf extractors, respectively and face embeddings are further refined by interacting with image embeddings using a global content-aware Face Encoder. Then, StableAnimator introduces a novel distribution-aware ID Adapter that prevents interference caused by temporal layers while preserving ID via alignment. During inference, we propose a novel Hamilton-Jacobi-Bellman (HJB) equation-based optimization to further enhance the face quality. We demonstrate that solving the HJB equation can be integrated into the diffusion denoising process, and the resulting solution constrains the denoising path and thus benefits ID preservation. Experiments on multiple benchmarks show the effectiveness of StableAnimator both qualitatively and quantitatively.
♻ ☆ IOPO: Empowering LLMs with Complex Instruction Following via Input-Output Preference Optimization
In the realm of large language models (LLMs), the ability of models to accurately follow instructions is paramount as more agents and applications leverage LLMs for construction, where the complexity of instructions are rapidly increasing. However, on the one hand, there is only a certain amount of complex instruction evaluation data; on the other hand, there are no dedicated algorithms to improve the ability to follow complex instructions. To this end, this paper introduces TRACE, a benchmark for improving and evaluating the complex instructionfollowing ability, which consists of 120K training data and 1K evaluation data. Furthermore, we propose IOPO (Input-Output Preference Optimization) alignment method which takes both input and output preference pairs into consideration, where LLMs not only rapidly align with response preferences but also meticulously explore the instruction preferences. Extensive experiments on both in-domain and outof-domain datasets confirm the effectiveness of IOPO, showing 8.15%, 2.18% improvements on in-domain data and 6.29%, 3.13% on outof-domain data compared to SFT and DPO respectively.
comment: Work in progress
♻ ☆ Self-Training Meets Consistency: Improving LLMs' Reasoning With Consistency-Driven Rationale Evaluation
Self-training approach for large language models (LLMs) improves reasoning abilities by training the models on their self-generated rationales. Previous approaches have labeled rationales that produce correct answers for a given question as appropriate for training. However, a single measure risks misjudging rationale quality, leading the models to learn flawed reasoning patterns. To address this issue, we propose CREST (Consistency-driven Rationale Evaluation for Self-Training), a self-training framework that further evaluates each rationale through follow-up questions and leverages this evaluation to guide its training. Specifically, we introduce two methods: (1) filtering out rationales that frequently result in incorrect answers on follow-up questions and (2) preference learning based on mixed preferences from rationale evaluation results of both original and follow-up questions. Experiments on three question-answering datasets using open LLMs show that CREST not only improves the logical robustness and correctness of rationales but also improves reasoning abilities compared to previous self-training approaches.
comment: Under review
♻ ☆ ALPI: Auto-Labeller with Proxy Injection for 3D Object Detection using 2D Labels Only WACV2025
3D object detection plays a crucial role in various applications such as autonomous vehicles, robotics and augmented reality. However, training 3D detectors requires a costly precise annotation, which is a hindrance to scaling annotation to large datasets. To address this challenge, we propose a weakly supervised 3D annotator that relies solely on 2D bounding box annotations from images, along with size priors. One major problem is that supervising a 3D detection model using only 2D boxes is not reliable due to ambiguities between different 3D poses and their identical 2D projection. We introduce a simple yet effective and generic solution: we build 3D proxy objects with annotations by construction and add them to the training dataset. Our method requires only size priors to adapt to new classes. To better align 2D supervision with 3D detection, our method ensures depth invariance with a novel expression of the 2D losses. Finally, to detect more challenging instances, our annotator follows an offline pseudo-labelling scheme which gradually improves its 3D pseudo-labels. Extensive experiments on the KITTI dataset demonstrate that our method not only performs on-par or above previous works on the Car category, but also achieves performance close to fully supervised methods on more challenging classes. We further demonstrate the effectiveness and robustness of our method by being the first to experiment on the more challenging nuScenes dataset. We additionally propose a setting where weak labels are obtained from a 2D detector pre-trained on MS-COCO instead of human annotations. The code is available at https://github.com/CEA-LIST/ALPI
comment: accepted at WACV2025
♻ ☆ Towards More Accurate US Presidential Election via Multi-step Reasoning with Large Language Models
Can Large Language Models (LLMs) accurately predict election outcomes? While LLMs have demonstrated impressive performance in various domains, including healthcare, legal analysis, and creative tasks, their ability to forecast elections remains unknown. Election prediction poses unique challenges, such as limited voter-level data, rapidly changing political landscapes, and the need to model complex human behavior. To address these challenges, we introduce a multi-step reasoning framework designed for political analysis. Our approach is validated on real-world data from the American National Election Studies (ANES) 2016 and 2020, as well as synthetic personas generated by the leading machine learning framework, offering scalable datasets for voter behavior modeling. To capture temporal dynamics, we incorporate candidates' policy positions and biographical details, ensuring that the model adapts to evolving political contexts. Drawing on Chain of Thought prompting, our multi-step reasoning pipeline systematically integrates demographic, ideological, and time-dependent factors, enhancing the model's predictive power.
comment: This research is ongoing work. Xiyang Hu and Yue Zhao are the corresponding authors
♻ ☆ Integrating Multi-Modal Input Token Mixer Into Mamba-Based Decision Models: Decision MetaMamba
Sequence modeling with State Space models (SSMs) has demonstrated performance surpassing that of Transformers in various tasks, raising expectations for their potential to outperform the Decision Transformer and its enhanced variants in offline reinforcement learning (RL). However, decision models based on Mamba, a state-of-the-art SSM, failed to achieve superior performance compared to these enhanced Decision Transformers. We hypothesize that this limitation arises from information loss during the selective scanning phase. To address this, we propose the Decision MetaMamba (DMM), which augments Mamba with a token mixer in its input layer. This mixer explicitly accounts for the multimodal nature of offline RL inputs, comprising state, action, and return-to-go. The DMM demonstrates improved performance while significantly reducing parameter count compared to prior models. Notably, similar performance gains were achieved using a simple linear token mixer, emphasizing the importance of preserving information from proximate time steps rather than the specific design of the token mixer itself. This novel modification to Mamba's input layer represents a departure from conventional timestamp-based encoding approaches used in Transformers. By enhancing performance of Mamba in offline RL, characterized by memory efficiency and fast inference, this work opens new avenues for its broader application in future RL research.
♻ ☆ Graph Neural Networks for Job Shop Scheduling Problems: A Survey
Job shop scheduling problems (JSSPs) represent a critical and challenging class of combinatorial optimization problems. Recent years have witnessed a rapid increase in the application of graph neural networks (GNNs) to solve JSSPs, albeit lacking a systematic survey of the relevant literature. This paper aims to thoroughly review prevailing GNN methods for different types of JSSPs and the closely related flow-shop scheduling problems (FSPs), especially those leveraging deep reinforcement learning (DRL). We begin by presenting the graph representations of various JSSPs, followed by an introduction to the most commonly used GNN architectures. We then review current GNN-based methods for each problem type, highlighting key technical elements such as graph representations, GNN architectures, GNN tasks, and training algorithms. Finally, we summarize and analyze the advantages and limitations of GNNs in solving JSSPs and provide potential future research opportunities. We hope this survey can motivate and inspire innovative approaches for more powerful GNN-based approaches in tackling JSSPs and other scheduling problems.
comment: Accepted by Computers & Operations Research
♻ ☆ Enabling Adoption of Regenerative Agriculture through Soil Carbon Copilots
Mitigating climate change requires transforming agriculture to minimize environ mental impact and build climate resilience. Regenerative agricultural practices enhance soil organic carbon (SOC) levels, thus improving soil health and sequestering carbon. A challenge to increasing regenerative agriculture practices is cheaply measuring SOC over time and understanding how SOC is affected by regenerative agricultural practices and other environmental factors and farm management practices. To address this challenge, we introduce an AI-driven Soil Organic Carbon Copilot that automates the ingestion of complex multi-resolution, multi-modal data to provide large-scale insights into soil health and regenerative practices. Our data includes extreme weather event data (e.g., drought and wildfire incidents), farm management data (e.g., cropland information and tillage predictions), and SOC predictions. We find that integrating public data and specialized models enables large-scale, localized analysis for sustainable agriculture. In comparisons of agricultural practices across California counties, we find evidence that diverse agricultural activity may mitigate the negative effects of tillage; and that while extreme weather conditions heavily affect SOC, composting may mitigate SOC loss. Finally, implementing role-specific personas empowers agronomists, farm consultants, policymakers, and other stakeholders to implement evidence-based strategies that promote sustainable agriculture and build climate resilience.
♻ ☆ Heterophilic Graph Neural Networks Optimization with Causal Message-passing
In this work, we discover that causal inference provides a promising approach to capture heterophilic message-passing in Graph Neural Network (GNN). By leveraging cause-effect analysis, we can discern heterophilic edges based on asymmetric node dependency. The learned causal structure offers more accurate relationships among nodes. To reduce the computational complexity, we introduce intervention-based causal inference in graph learning. We first simplify causal analysis on graphs by formulating it as a structural learning model and define the optimization problem within the Bayesian scheme. We then present an analysis of decomposing the optimization target into a consistency penalty and a structure modification based on cause-effect relations. We then estimate this target by conditional entropy and present insights into how conditional entropy quantifies the heterophily. Accordingly, we propose CausalMP, a causal message-passing discovery network for heterophilic graph learning, that iteratively learns the explicit causal structure of input graphs. We conduct extensive experiments in both heterophilic and homophilic graph settings. The result demonstrates that the our model achieves superior link prediction performance. Training on causal structure can also enhance node representation in classification task across different base models.
♻ ☆ CrowdMAC: Masked Crowd Density Completion for Robust Crowd Density Forecasting WACV 2025
A crowd density forecasting task aims to predict how the crowd density map will change in the future from observed past crowd density maps. However, the past crowd density maps are often incomplete due to the miss-detection of pedestrians, and it is crucial to develop a robust crowd density forecasting model against the miss-detection. This paper presents a MAsked crowd density Completion framework for crowd density forecasting (CrowdMAC), which is simultaneously trained to forecast future crowd density maps from partially masked past crowd density maps (i.e., forecasting maps from past maps with miss-detection) while reconstructing the masked observation maps (i.e., imputing past maps with miss-detection). Additionally, we propose Temporal-Density-aware Masking (TDM), which non-uniformly masks tokens in the observed crowd density map, considering the sparsity of the crowd density maps and the informativeness of the subsequent frames for the forecasting task. Moreover, we introduce multi-task masking to enhance training efficiency. In the experiments, CrowdMAC achieves state-of-the-art performance on seven large-scale datasets, including SDD, ETH-UCY, inD, JRDB, VSCrowd, FDST, and croHD. We also demonstrate the robustness of the proposed method against both synthetic and realistic miss-detections. The code is released at https://fujiry0.github.io/CrowdMAC-project-page.
comment: Accepted to WACV 2025
♻ ☆ Selective Classification Under Distribution Shifts
In selective classification (SC), a classifier abstains from making predictions that are likely to be wrong to avoid excessive errors. To deploy imperfect classifiers -- either due to intrinsic statistical noise of data or for robustness issue of the classifier or beyond -- in high-stakes scenarios, SC appears to be an attractive and necessary path to follow. Despite decades of research in SC, most previous SC methods still focus on the ideal statistical setting only, i.e., the data distribution at deployment is the same as that of training, although practical data can come from the wild. To bridge this gap, in this paper, we propose an SC framework that takes into account distribution shifts, termed generalized selective classification, that covers label-shifted (or out-of-distribution) and covariate-shifted samples, in addition to typical in-distribution samples, the first of its kind in the SC literature. We focus on non-training-based confidence-score functions for generalized SC on deep learning (DL) classifiers, and propose two novel margin-based score functions. Through extensive analysis and experiments, we show that our proposed score functions are more effective and reliable than the existing ones for generalized SC on a variety of classification tasks and DL classifiers. Code is available at https://github.com/sun-umn/sc_with_distshift.
comment: Paper accepted to Transactions on Machine Learning Research (TMLR), issn: 2835-8856,2024
♻ ☆ OpenMU: Your Swiss Army Knife for Music Understanding
We present OpenMU-Bench, a large-scale benchmark suite for addressing the data scarcity issue in training multimodal language models to understand music. To construct OpenMU-Bench, we leveraged existing datasets and bootstrapped new annotations. OpenMU-Bench also broadens the scope of music understanding by including lyrics understanding and music tool usage. Using OpenMU-Bench, we trained our music understanding model, OpenMU, with extensive ablations, demonstrating that OpenMU outperforms baseline models such as MU-Llama. Both OpenMU and OpenMU-Bench are open-sourced to facilitate future research in music understanding and to enhance creative music production efficiency.
comment: Resources: https://github.com/sony/openmu
♻ ☆ AI-driven inverse design of materials: Past, present and future
The discovery of advanced materials is the cornerstone of human technological development and progress. The structures of materials and their corresponding properties are essentially the result of a complex interplay of multiple degrees of freedom such as lattice, charge, spin, symmetry, and topology. This poses significant challenges for the inverse design methods of materials. Humans have long explored new materials through a large number of experiments and proposed corresponding theoretical systems to predict new material properties and structures. With the improvement of computational power, researchers have gradually developed various electronic structure calculation methods, such as the density functional theory and high-throughput computational methods. Recently, the rapid development of artificial intelligence technology in the field of computer science has enabled the effective characterization of the implicit association between material properties and structures, thus opening up an efficient paradigm for the inverse design of functional materials. A significant progress has been made in inverse design of materials based on generative and discriminative models, attracting widespread attention from researchers. Considering this rapid technological progress, in this survey, we look back on the latest advancements in AI-driven inverse design of materials by introducing the background, key findings, and mainstream technological development routes. In addition, we summarize the remaining issues for future directions. This survey provides the latest overview of AI-driven inverse design of materials, which can serve as a useful resource for researchers.
comment: 44 pages, 6 figures, 2 tables
♻ ☆ EgoSurgery-Phase: A Dataset of Surgical Phase Recognition from Egocentric Open Surgery Videos MICCAI 2024
Surgical phase recognition has gained significant attention due to its potential to offer solutions to numerous demands of the modern operating room. However, most existing methods concentrate on minimally invasive surgery (MIS), leaving surgical phase recognition for open surgery understudied. This discrepancy is primarily attributed to the scarcity of publicly available open surgery video datasets for surgical phase recognition. To address this issue, we introduce a new egocentric open surgery video dataset for phase recognition, named EgoSurgery-Phase. This dataset comprises 15 hours of real open surgery videos spanning 9 distinct surgical phases all captured using an egocentric camera attached to the surgeon's head. In addition to video, the EgoSurgery-Phase offers eye gaze. As far as we know, it is the first real open surgery video dataset for surgical phase recognition publicly available. Furthermore, inspired by the notable success of masked autoencoders (MAEs) in video understanding tasks (e.g., action recognition), we propose a gaze-guided masked autoencoder (GGMAE). Considering the regions where surgeons' gaze focuses are often critical for surgical phase recognition (e.g., surgical field), in our GGMAE, the gaze information acts as an empirical semantic richness prior to guiding the masking process, promoting better attention to semantically rich spatial regions. GGMAE significantly improves the previous state-of-the-art recognition method (6.4% in Jaccard) and the masked autoencoder-based method (3.1% in Jaccard) on EgoSurgery-Phase. The dataset is released at https://github.com/Fujiry0/EgoSurgery.
comment: Early accepted by MICCAI 2024
♻ ☆ Single-cell Curriculum Learning-based Deep Graph Embedding Clustering
The swift advancement of single-cell RNA sequencing (scRNA-seq) technologies enables the investigation of cellular-level tissue heterogeneity. Cell annotation significantly contributes to the extensive downstream analysis of scRNA-seq data. However, The analysis of scRNA-seq for biological inference presents challenges owing to its intricate and indeterminate data distribution, characterized by a substantial volume and a high frequency of dropout events. Furthermore, the quality of training samples varies greatly, and the performance of the popular scRNA-seq data clustering solution GNN could be harmed by two types of low-quality training nodes: 1) nodes on the boundary; 2) nodes that contribute little additional information to the graph. To address these problems, we propose a single-cell curriculum learning-based deep graph embedding clustering (scCLG). We first propose a Chebyshev graph convolutional autoencoder with multi-criteria (ChebAE) that combines three optimization objectives, including topology reconstruction loss of cell graphs, zero-inflated negative binomial (ZINB) loss, and clustering loss, to learn cell-cell topology representation. Meanwhile, we employ a selective training strategy to train GNN based on the features and entropy of nodes and prune the difficult nodes based on the difficulty scores to keep the high-quality graph. Empirical results on a variety of gene expression datasets show that our model outperforms state-of-the-art methods. The code of scCLG will be made publicly available at https://github.com/LFD-byte/scCLG.
♻ ☆ FreezeAsGuard: Mitigating Illegal Adaptation of Diffusion Models via Selective Tensor Freezing
Text-to-image diffusion models can be fine-tuned in custom domains to adapt to specific user preferences, but such adaptability has also been utilized for illegal purposes, such as forging public figures' portraits, duplicating copyrighted artworks and generating explicit contents. Existing work focused on detecting the illegally generated contents, but cannot prevent or mitigate illegal adaptations of diffusion models. Other schemes of model unlearning and reinitialization, similarly, cannot prevent users from relearning the knowledge of illegal model adaptation with custom data. In this paper, we present FreezeAsGuard, a new technique that addresses these limitations and enables irreversible mitigation of illegal adaptations of diffusion models. Our approach is that the model publisher selectively freezes tensors in pre-trained diffusion models that are critical to illegal model adaptations, to mitigate the fine-tuned model's representation power in illegal adaptations, but minimize the impact on other legal adaptations. Experiment results in multiple text-to-image application domains show that FreezeAsGuard provides 37% stronger power in mitigating illegal model adaptations compared to competitive baselines, while incurring less than 5% impact on legal model adaptations. The source code is available at: https://github.com/pittisl/FreezeAsGuard.
comment: 28 pages
♻ ☆ EgoSurgery-Tool: A Dataset of Surgical Tool and Hand Detection from Egocentric Open Surgery Videos
Surgical tool detection is a fundamental task for understanding egocentric open surgery videos. However, detecting surgical tools presents significant challenges due to their highly imbalanced class distribution, similar shapes and similar textures, and heavy occlusion. The lack of a comprehensive large-scale dataset compounds these challenges. In this paper, we introduce EgoSurgery-Tool, an extension of the existing EgoSurgery-Phase dataset, which contains real open surgery videos captured using an egocentric camera attached to the surgeon's head, along with phase annotations. EgoSurgery-Tool has been densely annotated with surgical tools and comprises over 49K surgical tool bounding boxes across 15 categories, constituting a large-scale surgical tool detection dataset. EgoSurgery-Tool also provides annotations for hand detection with over 46K hand-bounding boxes, capturing hand-object interactions that are crucial for understanding activities in egocentric open surgery. EgoSurgery-Tool is superior to existing datasets due to its larger scale, greater variety of surgical tools, more annotations, and denser scenes. We conduct a comprehensive analysis of EgoSurgery-Tool using nine popular object detectors to assess their effectiveness in both surgical tool and hand detection. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
♻ ☆ Temporal Reversed Training for Spiking Neural Networks with Generalized Spatio-Temporal Representation
Spiking neural networks (SNNs) have received widespread attention as an ultra-low power computing paradigm. Recent studies have focused on improving the feature extraction capability of SNNs, but they suffer from inefficient inference and suboptimal performance. In this paper, we propose a simple yet effective temporal reversed training (TRT) method to optimize the spatio-temporal performance of SNNs and circumvent these problems. We perturb the input temporal data by temporal reversal, prompting the SNN to produce original-reversed consistent outputs and to learn perturbation-invariant representations. For static data without temporal dimension, we generalize this strategy by exploiting the inherent temporal property of SNNs for spike feature temporal reversal. In addition, we utilize the lightweight ``star operation" (element-wise multiplication) to hybridize the original and temporally reversed spike firing rates and expand the implicit dimensions, which serves as spatio-temporal regularization to further enhance the generalization of the SNN. Our method involves only a temporal reversal operation and element-wise multiplication during training, thus incurring negligible training overhead and not affecting the inference efficiency at all. Extensive experiments on static/neuromorphic object/action recognition, and 3D point cloud classification tasks demonstrate the effectiveness and generalizability of our method. In particular, with only two timesteps, our method achieves 74.77\% and 90.57\% accuracy on ImageNet and ModelNet40, respectively.
comment: 17 pages, 9 figures
♻ ☆ AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs
In this paper, we propose AutoDAN-Turbo, a black-box jailbreak method that can automatically discover as many jailbreak strategies as possible from scratch, without any human intervention or predefined scopes (e.g., specified candidate strategies), and use them for red-teaming. As a result, AutoDAN-Turbo can significantly outperform baseline methods, achieving a 74.3% higher average attack success rate on public benchmarks. Notably, AutoDAN-Turbo achieves an 88.5 attack success rate on GPT-4-1106-turbo. In addition, AutoDAN-Turbo is a unified framework that can incorporate existing human-designed jailbreak strategies in a plug-and-play manner. By integrating human-designed strategies, AutoDAN-Turbo can even achieve a higher attack success rate of 93.4 on GPT-4-1106-turbo.
comment: Pre-print. Project Page: https://autodans.github.io/AutoDAN-Turbo Code: https://github.com/SaFoLab-WISC/AutoDAN-Turbo
♻ ☆ Towards Black-Box Membership Inference Attack for Diffusion Models
Given the rising popularity of AI-generated art and the associated copyright concerns, identifying whether an artwork was used to train a diffusion model is an important research topic. The work approaches this problem from the membership inference attack (MIA) perspective. We first identify the limitation of applying existing MIA methods for proprietary diffusion models: the required access of internal U-nets. To address the above problem, we introduce a novel membership inference attack method that uses only the image-to-image variation API and operates without access to the model's internal U-net. Our method is based on the intuition that the model can more easily obtain an unbiased noise prediction estimate for images from the training set. By applying the API multiple times to the target image, averaging the outputs, and comparing the result to the original image, our approach can classify whether a sample was part of the training set. We validate our method using DDIM and Stable Diffusion setups and further extend both our approach and existing algorithms to the Diffusion Transformer architecture. Our experimental results consistently outperform previous methods.
♻ ☆ Closer Look at Efficient Inference Methods: A Survey of Speculative Decoding
Efficient inference in large language models (LLMs) has become a critical focus as their scale and complexity grow. Traditional autoregressive decoding, while effective, suffers from computational inefficiencies due to its sequential token generation process. Speculative decoding addresses this bottleneck by introducing a two-stage framework: drafting and verification. A smaller, efficient model generates a preliminary draft, which is then refined by a larger, more sophisticated model. This paper provides a comprehensive survey of speculative decoding methods, categorizing them into draft-centric and model-centric approaches. We discuss key ideas associated with each method, highlighting their potential for scaling LLM inference. This survey aims to guide future research in optimizing speculative decoding and its integration into real-world LLM applications.
♻ ☆ Multimodal Laryngoscopic Video Analysis for Assisted Diagnosis of Vocal Fold Paralysis
This paper presents the Multimodal Laryngoscopic Video Analyzing System (MLVAS), a novel system that leverages both audio and video data to automatically extract key segments and metrics from raw laryngeal videostroboscopic videos for assisted clinical assessment. The system integrates video-based glottis detection with an audio keyword spotting method to analyze both video and audio data, identifying patient vocalizations and refining video highlights to ensure optimal inspection of vocal fold movements. Additionally, MLVAS features an advanced strobing video extraction module that specifically identifies strobing frames from laryngeal videostroboscopy by analyzing hue, saturation, and value fluctuations. Beyond key segment extraction, MLVAS provides effective metrics for Vocal Fold Paralysis (VFP) detection. It employs a novel two-stage glottis segmentation process using a U-Net for initial segmentation, followed by a diffusion-based refinement to reduce false positives, providing better segmentation masks for downstream tasks. MLVAS estimates the vibration dynamics for both left and right vocal folds from the segmented glottis masks to detect unilateral VFP by measuring the angle deviation with the estimated glottal midline. Comparing the variance between left's and right's dynamics, the system effectively distinguishes between left and right VFP. We conducted several ablation studies to demonstrate the effectiveness of each module in the proposed MLVAS. The experimental results on a public segmentation dataset show the effectiveness of our proposed segmentation module. In addition, VFP classification results on a real-world clinic dataset demonstrate MLVAS's ability of providing reliable and objective metrics as well as visualization for assisted clinical diagnosis.
comment: Submitted to JBHI
♻ ☆ An unconditional distribution learning advantage with shallow quantum circuits
One of the core challenges of research in quantum computing is concerned with the question whether quantum advantages can be found for near-term quantum circuits that have implications for practical applications. Motivated by this mindset, in this work, we prove an unconditional quantum advantage in the probably approximately correct (PAC) distribution learning framework with shallow quantum circuit hypotheses. We identify a meaningful generative distribution learning problem where constant-depth quantum circuits using one and two qubit gates (QNC^0) are superior compared to constant-depth bounded fan-in classical circuits (NC^0) as a choice for hypothesis classes. We hence prove a PAC distribution learning separation for shallow quantum circuits over shallow classical circuits. We do so by building on recent results by Bene Watts and Parham on unconditional quantum advantages for sampling tasks with shallow circuits, which we technically uplift to a hyperplane learning problem, identifying non-local correlations as the origin of the quantum advantage.
comment: 7 + 5 pages, 2 figures, added an acknowledgement
♻ ☆ BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models
While large language models (LLMs) exhibit remarkable capabilities across various tasks, they encounter potential security risks such as jailbreak attacks, which exploit vulnerabilities to bypass security measures and generate harmful outputs. Existing jailbreak strategies mainly focus on maximizing attack success rate (ASR), frequently neglecting other critical factors, including the relevance of the jailbreak response to the query and the level of stealthiness. This narrow focus on single objectives can result in ineffective attacks that either lack contextual relevance or are easily recognizable. In this work, we introduce BlackDAN, an innovative black-box attack framework with multi-objective optimization, aiming to generate high-quality prompts that effectively facilitate jailbreaking while maintaining contextual relevance and minimizing detectability. BlackDAN leverages Multiobjective Evolutionary Algorithms (MOEAs), specifically the NSGA-II algorithm, to optimize jailbreaks across multiple objectives including ASR, stealthiness, and semantic relevance. By integrating mechanisms like mutation, crossover, and Pareto-dominance, BlackDAN provides a transparent and interpretable process for generating jailbreaks. Furthermore, the framework allows customization based on user preferences, enabling the selection of prompts that balance harmfulness, relevance, and other factors. Experimental results demonstrate that BlackDAN outperforms traditional single-objective methods, yielding higher success rates and improved robustness across various LLMs and multimodal LLMs, while ensuring jailbreak responses are both relevant and less detectable.
♻ ☆ Performance Improvement of Language-Queried Audio Source Separation Based on Caption Augmentation From Large Language Models for DCASE Challenge 2024 Task 9
We present a prompt-engineering-based text-augmentation approach applied to a language-queried audio source separation (LASS) task. To enhance the performance of LASS, the proposed approach utilizes large language models (LLMs) to generate multiple captions corresponding to each sentence of the training dataset. To this end, we first perform experiments to identify the most effective prompts for caption augmentation with a smaller number of captions. A LASS model trained with these augmented captions demonstrates improved performance on the DCASE 2024 Task 9 validation set compared to that trained without augmentation. This study highlights the effectiveness of LLM-based caption augmentation in advancing language-queried audio source separation.
comment: DCASE 2024 Challenge Task 9, 4 pages
♻ ☆ Resolution-Agnostic Transformer-based Climate Downscaling
Understanding future weather changes at regional and local scales is crucial for planning and decision-making, particularly in the context of extreme weather events, as well as for broader applications in agriculture, insurance, and infrastructure development. However, the computational cost of downscaling Global Climate Models (GCMs) to the fine resolutions needed for such applications presents a significant barrier. Drawing on advancements in weather forecasting models, this study introduces a cost-efficient downscaling method using a pretrained Earth Vision Transformer (Earth ViT) model. Initially trained on ERA5 data to downscale from 50 km to 25 km resolution, the model is then tested on the higher resolution BARRA-SY dataset at a 3 km resolution. Remarkably, it performs well without additional training, demonstrating its ability to generalize across different resolutions. This approach holds promise for generating large ensembles of regional climate simulations by downscaling GCMs with varying input resolutions without incurring additional training costs. Ultimately, this method could provide more comprehensive estimates of potential future changes in key climate variables, aiding in effective planning for extreme weather events and climate change adaptation strategies.
♻ ☆ A Semantic Framework for Neuro-Symbolic Computing
The field of neuro-symbolic AI aims to benefit from the combination of neural networks and symbolic systems. A cornerstone of the field is the translation or encoding of symbolic knowledge into neural networks. Although many neuro-symbolic methods and approaches have been proposed, and with a large increase in recent years, no common definition of encoding exists that can enable a precise, theoretical comparison of neuro-symbolic methods. This paper addresses this problem by introducing a semantic framework for neuro-symbolic AI. We start by providing a formal definition of semantic encoding, specifying the components and conditions under which a knowledge-base can be encoded correctly by a neural network. We then show that many neuro-symbolic approaches are accounted for by this definition. We provide a number of examples and correspondence proofs applying the proposed framework to the neural encoding of various forms of knowledge representation. Many, at first sight disparate, neuro-symbolic methods, are shown to fall within the proposed formalization. This is expected to provide guidance to future neuro-symbolic encodings by placing them in the broader context of semantic encodings of entire families of existing neuro-symbolic systems. The paper hopes to help initiate a discussion around the provision of a theory for neuro-symbolic AI and a semantics for deep learning.
♻ ☆ Intelligent Anomaly Detection for Lane Rendering Using Transformer with Self-Supervised Pre-Training and Customized Fine-Tuning
The burgeoning navigation services using digital maps provide great convenience to drivers. Nevertheless, the presence of anomalies in lane rendering map images occasionally introduces potential hazards, as such anomalies can be misleading to human drivers and consequently contribute to unsafe driving conditions. In response to this concern and to accurately and effectively detect the anomalies, this paper transforms lane rendering image anomaly detection into a classification problem and proposes a four-phase pipeline consisting of data pre-processing, self-supervised pre-training with the masked image modeling (MiM) method, customized fine-tuning using cross-entropy based loss with label smoothing, and post-processing to tackle it leveraging state-of-the-art deep learning techniques, especially those involving Transformer models. Various experiments verify the effectiveness of the proposed pipeline. Results indicate that the proposed pipeline exhibits superior performance in lane rendering image anomaly detection, and notably, the self-supervised pre-training with MiM can greatly enhance the detection accuracy while significantly reducing the total training time. For instance, employing the Swin Transformer with Uniform Masking as self-supervised pretraining (Swin-Trans-UM) yielded a heightened accuracy at 94.77% and an improved Area Under The Curve (AUC) score of 0.9743 compared with the pure Swin Transformer without pre-training (Swin-Trans) with an accuracy of 94.01% and an AUC of 0.9498. The fine-tuning epochs were dramatically reduced to 41 from the original 280. In conclusion, the proposed pipeline, with its incorporation of self-supervised pre-training using MiM and other advanced deep learning techniques, emerges as a robust solution for enhancing the accuracy and efficiency of lane rendering image anomaly detection in digital navigation systems.
comment: 25 pages, 7 figures, accepted by the 103rd Transportation Research Board (TRB) Annual Meeting, under review by Transportation Research Record: Journal of the Transportation Research Board
♻ ☆ Algorithmic Collusion by Large Language Models
The rise of algorithmic pricing raises concerns of algorithmic collusion. We conduct experiments with algorithmic pricing agents based on Large Language Models (LLMs). We find that (1) LLM-based agents are adept at pricing tasks, (2) LLM-based pricing agents autonomously collude in oligopoly settings to the detriment of consumers, and (3) variation in seemingly innocuous phrases in LLM instructions ("prompts") may increase collusion. Novel off-path analysis techniques uncover price-war concerns as contributing to these phenomena. Our results extend to auction settings. Our findings uncover unique challenges to any future regulation of LLM-based pricing agents, and black-box pricing agents more broadly.
♻ ☆ Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning
Value-based reinforcement learning (RL) can in principle learn effective policies for a wide range of multi-turn problems, from games to dialogue to robotic control, including via offline RL from static previously collected datasets. However, despite the widespread use of policy gradient methods to train large language models for single turn tasks (e.g., question answering), value-based methods for multi-turn RL in an off-policy or offline setting have proven particularly challenging to scale to the setting of large language models. This setting requires effectively leveraging pretraining, scaling to large architectures with billions of parameters, and training on large datasets, all of which represent major challenges for current value-based RL methods. In this work, we propose a novel offline RL algorithm that addresses these drawbacks, casting Q-learning as a modified supervised fine-tuning (SFT) problem where the probabilities of tokens directly translate to Q-values. In this way we obtain an algorithm that smoothly transitions from maximizing the likelihood of the data during pretraining to learning a near-optimal Q-function during finetuning. Our algorithm has strong theoretical foundations, enjoying performance bounds similar to state-of-the-art Q-learning methods, while in practice utilizing an objective that closely resembles SFT. Because of this, our approach can enjoy the full benefits of the pretraining of language models, without the need to reinitialize any weights before RL finetuning, and without the need to initialize new heads for predicting values or advantages. Empirically, we evaluate our method on both pretrained LLMs and VLMs, on a variety of tasks including both natural language dialogue and robotic manipulation and navigation from images.
comment: 17 pages, 4 figures
♻ ☆ Dynamic Throwing with Robotic Material Handling Machines IROS 2024
Automation of hydraulic material handling machinery is currently limited to semi-static pick-and-place cycles. Dynamic throwing motions which utilize the passive joints, can greatly improve time efficiency as well as increase the dumping workspace. In this work, we use Reinforcement Learning (RL) to design dynamic controllers for material handlers with underactuated arms as commonly used in logistics. The controllers are tested both in simulation and in real-world experiments on a 12-ton test platform. The method is able to exploit the passive joints of the gripper to perform dynamic throwing motions. With the proposed controllers, the machine is able to throw individual objects to targets outside the static reachability zone with good accuracy for its practical applications. The work demonstrates the possibility of using RL to perform highly dynamic tasks with heavy machinery, suggesting a potential for improving the efficiency and precision of autonomous material handling tasks.
comment: Accepted by IEEE IROS 2024
♻ ☆ Leveraging Large Language Models in Human-Robot Interaction: A Critical Analysis of Potential and Pitfalls
The emergence of large language models (LLM) and, consequently, vision language models (VLM) has ignited new imaginations among robotics researchers. At this point, the range of applications to which LLM and VLM can be applied in human-robot interaction (HRI), particularly socially assistive robots (SARs), is unchartered territory. However, LLM and VLM present unprecedented opportunities and challenges for SAR integration. We aim to illuminate the opportunities and challenges when roboticists deploy LLM and VLM in SARs. First, we conducted a meta-study of more than 250 papers exploring 1) major robots in HRI research and 2) significant applications of SARs, emphasizing education, healthcare, and entertainment while addressing 3) societal norms and issues like trust, bias, and ethics that the robot developers must address. Then, we identified 4) critical components of a robot that LLM or VLM can replace while addressing the 5) benefits of integrating LLM into robot designs and the 6) risks involved. Finally, we outline a pathway for the responsible and effective adoption of LLM or VLM into SARs, and we close our discussion by offering caution regarding this deployment.
♻ ☆ SuperFusion: Multilevel LiDAR-Camera Fusion for Long-Range HD Map Generation
High-definition (HD) semantic map generation of the environment is an essential component of autonomous driving. Existing methods have achieved good performance in this task by fusing different sensor modalities, such as LiDAR and camera. However, current works are based on raw data or network feature-level fusion and only consider short-range HD map generation, limiting their deployment to realistic autonomous driving applications. In this paper, we focus on the task of building the HD maps in both short ranges, i.e., within 30 m, and also predicting long-range HD maps up to 90 m, which is required by downstream path planning and control tasks to improve the smoothness and safety of autonomous driving. To this end, we propose a novel network named SuperFusion, exploiting the fusion of LiDAR and camera data at multiple levels. We use LiDAR depth to improve image depth estimation and use image features to guide long-range LiDAR feature prediction. We benchmark our SuperFusion on the nuScenes dataset and a self-recorded dataset and show that it outperforms the state-of-the-art baseline methods with large margins on all intervals. Additionally, we apply the generated HD map to a downstream path planning task, demonstrating that the long-range HD maps predicted by our method can lead to better path planning for autonomous vehicles. Our code has been released at https://github.com/haomo-ai/SuperFusion.
comment: ICRA 2024
♻ ☆ Bench2Drive: Towards Multi-Ability Benchmarking of Closed-Loop End-To-End Autonomous Driving NeurIPS 2024
In an era marked by the rapid scaling of foundation models, autonomous driving technologies are approaching a transformative threshold where end-to-end autonomous driving (E2E-AD) emerges due to its potential of scaling up in the data-driven manner. However, existing E2E-AD methods are mostly evaluated under the open-loop log-replay manner with L2 errors and collision rate as metrics (e.g., in nuScenes), which could not fully reflect the driving performance of algorithms as recently acknowledged in the community. For those E2E-AD methods evaluated under the closed-loop protocol, they are tested in fixed routes (e.g., Town05Long and Longest6 in CARLA) with the driving score as metrics, which is known for high variance due to the unsmoothed metric function and large randomness in the long route. Besides, these methods usually collect their own data for training, which makes algorithm-level fair comparison infeasible. To fulfill the paramount need of comprehensive, realistic, and fair testing environments for Full Self-Driving (FSD), we present Bench2Drive, the first benchmark for evaluating E2E-AD systems' multiple abilities in a closed-loop manner. Bench2Drive's official training data consists of 2 million fully annotated frames, collected from 13638 short clips uniformly distributed under 44 interactive scenarios (cut-in, overtaking, detour, etc), 23 weathers (sunny, foggy, rainy, etc), and 12 towns (urban, village, university, etc) in CARLA v2. Its evaluation protocol requires E2E-AD models to pass 44 interactive scenarios under different locations and weathers which sums up to 220 routes and thus provides a comprehensive and disentangled assessment about their driving capability under different situations. We implement state-of-the-art E2E-AD models and evaluate them in Bench2Drive, providing insights regarding current status and future directions.
comment: Accepted by NeurIPS 2024 Datasets and Benchmarks Track. Official Repo: https://github.com/Thinklab-SJTU/Bench2Drive
♻ ☆ Actor-Critic Model Predictive Control: Differentiable Optimization meets Reinforcement Learning
An open research question in robotics is how to combine the benefits of model-free reinforcement learning (RL) -- known for its strong task performance and flexibility in optimizing general reward formulations -- with the robustness and online replanning capabilities of model predictive control (MPC). This paper provides an answer by introducing a new framework called Actor-Critic Model Predictive Control. The key idea is to embed a differentiable MPC within an actor-critic RL framework. This integration allows for short-term predictive optimization of control actions through MPC, while leveraging RL for end-to-end learning and exploration over longer horizons. Through various ablation studies, we expose the benefits of the proposed approach: it achieves better out-of-distribution behaviour, better robustness to changes in the dynamics and improved sample efficiency. Additionally, we conduct an empirical analysis that reveals a relationship between the critic's learned value function and the cost function of the differentiable MPC, providing a deeper understanding of the interplay between the critic's value and the MPC cost functions. Finally, we validate our method in the drone racing task in various tracks, in both simulation and the real world. Our method achieves the same superhuman performance as state-of-the-art model-free RL, showcasing speeds of up to 21 m/s. We show that the proposed architecture can achieve real-time control performance, learn complex behaviors via trial and error, and retain the predictive properties of the MPC to better handle out of distribution behavior.
comment: 17 pages, 12 figures, extension
♻ ☆ Applications of Spiking Neural Networks in Visual Place Recognition
In robotics, Spiking Neural Networks (SNNs) are increasingly recognized for their largely-unrealized potential energy efficiency and low latency particularly when implemented on neuromorphic hardware. Our paper highlights three advancements for SNNs in Visual Place Recognition (VPR). Firstly, we propose Modular SNNs, where each SNN represents a set of non-overlapping geographically distinct places, enabling scalable networks for large environments. Secondly, we present Ensembles of Modular SNNs, where multiple networks represent the same place, significantly enhancing accuracy compared to single-network models. Each of our Modular SNN modules is compact, comprising only 1500 neurons and 474k synapses, making them ideally suited for ensembling due to their small size. Lastly, we investigate the role of sequence matching in SNN-based VPR, a technique where consecutive images are used to refine place recognition. We demonstrate competitive performance of our method on a range of datasets, including higher responsiveness to ensembling compared to conventional VPR techniques and higher R@1 improvements with sequence matching than VPR techniques with comparable baseline performance. Our contributions highlight the viability of SNNs for VPR, offering scalable and robust solutions, and paving the way for their application in various energy-sensitive robotic tasks.
comment: 20 pages, 10 figures, under review
♻ ☆ Image Compression Using Novel View Synthesis Priors
Real-time visual feedback is essential for tetherless control of remotely operated vehicles, particularly during inspection and manipulation tasks. Though acoustic communication is the preferred choice for medium-range communication underwater, its limited bandwidth renders it impractical to transmit images or videos in real-time. To address this, we propose a model-based image compression technique that leverages prior mission information. Our approach employs trained machine-learning based novel view synthesis models, and uses gradient descent optimization to refine latent representations to help generate compressible differences between camera images and rendered images. We evaluate the proposed compression technique using a dataset from an artificial ocean basin, demonstrating superior compression ratios and image quality over existing techniques. Moreover, our method exhibits robustness to introduction of new objects within the scene, highlighting its potential for advancing tetherless remotely operated vehicle operations.
comment: Preprint submitted to IEEE Journal of Oceanic Engineering
♻ ☆ QP Chaser: Polynomial Trajectory Generation for Autonomous Aerial Tracking
Maintaining the visibility of the target is one of the major objectives of aerial tracking missions. This paper proposes a target-visible trajectory planning pipeline using quadratic programming (QP). Our approach can handle various tracking settings, including 1) single- and dual-target following and 2) both static and dynamic environments, unlike other works that focus on a single specific setup. In contrast to other studies that fully trust the predicted trajectory of the target and consider only the visibility of the target's center, our pipeline considers error in target path prediction and the entire body of the target to maintain the target visibility robustly. First, a prediction module uses a sample-check strategy to quickly calculate the reachable sets of moving objects, which represent the areas their bodies can reach, considering obstacles. Subsequently, the planning module formulates a single QP problem, considering path topology, to generate a tracking trajectory that maximizes the visibility of the target's reachable set among obstacles. The performance of the planner is validated in multiple scenarios, through high-fidelity simulations and real-world experiments.
comment: 18 pages, 16 figures
♻ ☆ Breathless: An 8-hour Performance Contrasting Human and Robot Expressiveness
This paper describes the robot technology behind an original performance that pairs a human dancer (Cuan) with an industrial robot arm for an eight-hour dance that unfolds over the timespan of an American workday. To control the robot arm, we combine a range of sinusoidal motions with varying amplitude, frequency and offset at each joint to evoke human motions common in physical labor such as stirring, digging, and stacking. More motions were developed using deep learning techniques for video-based human-pose tracking and extraction. We combine these pre-recorded motions with improvised robot motions created live by putting the robot into teach-mode and triggering force sensing from the robot joints onstage. All motions are combined with commercial and original music using a custom suite of python software with AppleScript, Keynote, and Zoom to facilitate on-stage communication with the dancer. The resulting performance contrasts the expressivity of the human body with the precision of robot machinery. Video, code and data are available on the project website: https://sites.google.com/playing.studio/breathless
comment: 15 pages, 9 figures, accepted for ISRR (International Symposium of Robotics Research) 2024
♻ ☆ Sim2real Cattle Joint Estimation in 3D point clouds
Understanding the well-being of cattle is crucial in various agricultural contexts. Cattle's body shape and joint articulation carry significant information about their welfare, yet acquiring comprehensive datasets for 3D body pose estimation presents a formidable challenge. This study delves into the construction of such a dataset specifically tailored for cattle. Leveraging the expertise of digital artists, we use a single animated 3D model to represent diverse cattle postures. To address the disparity between virtual and real-world data, we augment the 3D model's shape to encompass a range of potential body appearances, thereby narrowing the "sim2real" gap. We use these annotated models to train a deep-learning framework capable of estimating internal joints solely based on external surface curvature. Our contribution is specifically the use of geodesic distance over the surface manifold, coupled with multilateration to extract joints in a semantic keypoint detection encoder-decoder architecture. We demonstrate the robustness of joint extraction by comparing the link lengths extracted on real cattle mobbing and walking within a race. Furthermore, inspired by the established allometric relationship between bone length and the overall height of mammals, we utilise the estimated joints to predict hip height within a real cattle dataset, extending the utility of our approach to offer insights into improving cattle monitoring practices.
MotionWavelet: Human Motion Prediction via Wavelet Manifold Learning
Modeling temporal characteristics and the non-stationary dynamics of body movement plays a significant role in predicting human future motions. However, it is challenging to capture these features due to the subtle transitions involved in the complex human motions. This paper introduces MotionWavelet, a human motion prediction framework that utilizes Wavelet Transformation and studies human motion patterns in the spatial-frequency domain. In MotionWavelet, a Wavelet Diffusion Model (WDM) learns a Wavelet Manifold by applying Wavelet Transformation on the motion data therefore encoding the intricate spatial and temporal motion patterns. Once the Wavelet Manifold is built, WDM trains a diffusion model to generate human motions from Wavelet latent vectors. In addition to the WDM, MotionWavelet also presents a Wavelet Space Shaping Guidance mechanism to refine the denoising process to improve conformity with the manifold structure. WDM also develops Temporal Attention-Based Guidance to enhance prediction accuracy. Extensive experiments validate the effectiveness of MotionWavelet, demonstrating improved prediction accuracy and enhanced generalization across various benchmarks. Our code and models will be released upon acceptance.
comment: Project Page: https://frank-zy-dou.github.io/projects/MotionWavelet/ Video: https://youtu.be/pyWq0OYJdI0?si=4YHfFNXmLnbPC39g
Computation and Language 82
☆ Adaptive Deployment of Untrusted LLMs Reduces Distributed Threats
As large language models (LLMs) become increasingly capable, it is prudent to assess whether safety measures remain effective even if LLMs intentionally try to bypass them. Previous work introduced control evaluations, an adversarial framework for testing deployment strategies of untrusted models (i.e., models which might be trying to bypass safety measures). While prior work treats a single failure as unacceptable, we perform control evaluations in a "distributed threat setting" -- a setting where no single action is catastrophic and no single action provides overwhelming evidence of misalignment. We approach this problem with a two-level deployment framework that uses an adaptive macro-protocol to choose between micro-protocols. Micro-protocols operate on a single task, using a less capable, but extensively tested (trusted) model to harness and monitor the untrusted model. Meanwhile, the macro-protocol maintains an adaptive credence on the untrusted model's alignment based on its past actions, using it to pick between safer and riskier micro-protocols. We evaluate our method in a code generation testbed where a red team attempts to generate subtly backdoored code with an LLM whose deployment is safeguarded by a blue team. We plot Pareto frontiers of safety (# of non-backdoored solutions) and usefulness (# of correct solutions). At a given level of usefulness, our adaptive deployment strategy reduces the number of backdoors by 80% compared to non-adaptive baselines.
☆ Low-Bit Quantization Favors Undertrained LLMs: Scaling Laws for Quantized LLMs with 100T Training Tokens
We reveal that low-bit quantization favors undertrained large language models (LLMs) by observing that models with larger sizes or fewer training tokens experience less quantization-induced degradation (QiD) when applying low-bit quantization, whereas smaller models with extensive training tokens suffer significant QiD. To gain deeper insights into this trend, we study over 1500 quantized LLM checkpoints of various sizes and at different training levels (undertrained or fully trained) in a controlled setting, deriving scaling laws for understanding the relationship between QiD and factors such as the number of training tokens, model size and bit width. With the derived scaling laws, we propose a novel perspective that we can use QiD to measure an LLM's training levels and determine the number of training tokens required for fully training LLMs of various sizes. Moreover, we use the scaling laws to predict the quantization performance of different-sized LLMs trained with 100 trillion tokens. Our projection shows that the low-bit quantization performance of future models, which are expected to be trained with over 100 trillion tokens, may NOT be desirable. This poses a potential challenge for low-bit quantization in the future and highlights the need for awareness of a model's training level when evaluating low-bit quantization research. To facilitate future research on this problem, we release all the 1500+ quantized checkpoints used in this work at https://huggingface.co/Xu-Ouyang.
comment: Work in progress; Please note that Figure 1's gray areas may not be displayed properly using Chrome (maybe due to bugs in Chrome)
☆ Attamba: Attending To Multi-Token States
When predicting the next token in a sequence, vanilla transformers compute attention over all previous tokens, resulting in quadratic scaling of compute with sequence length. State-space models compress the entire sequence of tokens into a fixed-dimensional representation to improve efficiency, while other architectures achieve sub-quadratic complexity via low-rank projections or sparse attention patterns over the sequence. In this paper, we introduce Attamba, a novel architecture that uses state-space models to compress chunks of tokens and applies attention on these compressed key-value representations. We find that replacing key and value projections in a transformer with SSMs can improve model quality and enable flexible token chunking, resulting in 24% improved perplexity with transformer of similar KV-Cache and attention footprint, and ~4 times smaller KV-Cache and Attention FLOPs for 5% perplexity trade-off. Attamba can perform attention on chunked-sequences of variable length, enabling a smooth transition between quadratic and linear scaling, offering adaptable efficiency gains.
☆ Enhancing Character-Level Understanding in LLMs through Token Internal Structure Learning
Tokenization techniques such as Byte-Pair Encoding (BPE) and Byte-Level BPE (BBPE) have significantly improved the computational efficiency and vocabulary representation stability of large language models (LLMs) by segmenting text into tokens. However, this segmentation often obscures the internal character structures and sequences within tokens, preventing models from fully learning these intricate details during training. Consequently, LLMs struggle to comprehend the character compositions and positional relationships within tokens, especially when fine-tuned on downstream tasks with limited data. In this paper, we introduce Token Internal Position Awareness (TIPA), a novel approach that enhances LLMs' understanding of internal token structures by training them on reverse character prediction tasks using the tokenizer's own vocabulary. This method enables models to effectively learn and generalize character positions and internal structures. Experimental results demonstrate that LLMs trained with TIPA outperform baseline models in predicting character positions at the token level. Furthermore, when applied to the downstream task of Chinese Spelling Correction (CSC), TIPA not only accelerates model convergence but also significantly improves task performance.
☆ Push the Limit of Multi-modal Emotion Recognition by Prompting LLMs with Receptive-Field-Aware Attention Weighting
Understanding the emotions in a dialogue usually requires external knowledge to accurately understand the contents. As the LLMs become more and more powerful, we do not want to settle on the limited ability of the pre-trained language model. However, the LLMs either can only process text modality or are too expensive to process the multimedia information. We aim to utilize both the power of LLMs and the supplementary features from the multimedia modalities. In this paper, we present a framework, Lantern, that can improve the performance of a certain vanilla model by prompting large language models with receptive-field-aware attention weighting. This framework trained a multi-task vanilla model to produce probabilities of emotion classes and dimension scores. These predictions are fed into the LLMs as references to adjust the predicted probabilities of each emotion class with its external knowledge and contextual understanding. We slice the dialogue into different receptive fields, and each sample is included in exactly t receptive fields. Finally, the predictions of LLMs are merged with a receptive-field-aware attention-driven weighting module. In the experiments, vanilla models CORECT and SDT are deployed in Lantern with GPT-4 or Llama-3.1-405B. The experiments in IEMOCAP with 4-way and 6-way settings demonstrated that the Lantern can significantly improve the performance of current vanilla models by up to 1.23% and 1.80%.
☆ Linguistic Laws Meet Protein Sequences: A Comparative Analysis of Subword Tokenization Methods
Tokenization is a crucial step in processing protein sequences for machine learning models, as proteins are complex sequences of amino acids that require meaningful segmentation to capture their functional and structural properties. However, existing subword tokenization methods, developed primarily for human language, may be inadequate for protein sequences, which have unique patterns and constraints. This study evaluates three prominent tokenization approaches, Byte-Pair Encoding (BPE), WordPiece, and SentencePiece, across varying vocabulary sizes (400-6400), analyzing their effectiveness in protein sequence representation, domain boundary preservation, and adherence to established linguistic laws. Our comprehensive analysis reveals distinct behavioral patterns among these tokenizers, with vocabulary size significantly influencing their performance. BPE demonstrates better contextual specialization and marginally better domain boundary preservation at smaller vocabularies, while SentencePiece achieves better encoding efficiency, leading to lower fertility scores. WordPiece offers a balanced compromise between these characteristics. However, all tokenizers show limitations in maintaining protein domain integrity, particularly as vocabulary size increases. Analysis of linguistic law adherence shows partial compliance with Zipf's and Brevity laws but notable deviations from Menzerath's law, suggesting that protein sequences may follow distinct organizational principles from natural languages. These findings highlight the limitations of applying traditional NLP tokenization methods to protein sequences and emphasize the need for developing specialized tokenization strategies that better account for the unique characteristics of proteins.
comment: 8 pages, 9 figures
☆ How do Multimodal Foundation Models Encode Text and Speech? An Analysis of Cross-Lingual and Cross-Modal Representations
Multimodal foundation models aim to create a unified representation space that abstracts away from surface features like language syntax or modality differences. To investigate this, we study the internal representations of three recent models, analyzing the model activations from semantically equivalent sentences across languages in the text and speech modalities. Our findings reveal that: 1) Cross-modal representations converge over model layers, except in the initial layers specialized at text and speech processing. 2) Length adaptation is crucial for reducing the cross-modal gap between text and speech, although current approaches' effectiveness is primarily limited to high-resource languages. 3) Speech exhibits larger cross-lingual differences than text. 4) For models not explicitly trained for modality-agnostic representations, the modality gap is more prominent than the language gap.
comment: Under review
☆ BERT or FastText? A Comparative Analysis of Contextual as well as Non-Contextual Embeddings
Natural Language Processing (NLP) for low-resource languages presents significant challenges, particularly due to the scarcity of high-quality annotated data and linguistic resources. The choice of embeddings plays a critical role in enhancing the performance of NLP tasks, such as news classification, sentiment analysis, and hate speech detection, especially for low-resource languages like Marathi. In this study, we investigate the impact of various embedding techniques- Contextual BERT-based, Non-Contextual BERT-based, and FastText-based on NLP classification tasks specific to the Marathi language. Our research includes a thorough evaluation of both compressed and uncompressed embeddings, providing a comprehensive overview of how these embeddings perform across different scenarios. Specifically, we compare two BERT model embeddings, Muril and MahaBERT, as well as two FastText model embeddings, IndicFT and MahaFT. Our evaluation includes applying embeddings to a Multiple Logistic Regression (MLR) classifier for task performance assessment, as well as TSNE visualizations to observe the spatial distribution of these embeddings. The results demonstrate that contextual embeddings outperform non-contextual embeddings. Furthermore, BERT-based non-contextual embeddings extracted from the first BERT embedding layer yield better results than FastText-based embeddings, suggesting a potential alternative to FastText embeddings.
☆ On Limitations of LLM as Annotator for Low Resource Languages
Low-resource languages face significant challenges due to the lack of sufficient linguistic data, resources, and tools for tasks such as supervised learning, annotation, and classification. This shortage hinders the development of accurate models and datasets, making it difficult to perform critical NLP tasks like sentiment analysis or hate speech detection. To bridge this gap, Large Language Models (LLMs) present an opportunity for potential annotators, capable of generating datasets and resources for these underrepresented languages. In this paper, we focus on Marathi, a low-resource language, and evaluate the performance of both closed-source and open-source LLMs as annotators. We assess models such as GPT-4o and Gemini 1.0 Pro, Gemma 2 (2B and 9B), and Llama 3.1 (8B) on classification tasks including sentiment analysis, news classification, and hate speech detection. Our findings reveal that while LLMs excel in annotation tasks for high-resource languages like English, they still fall short when applied to Marathi. Even advanced closed models like Gemini and GPT underperform in comparison to BERT-based baselines, highlighting the limitations of LLMs as annotators for low-resource languages.
☆ Scaling Speech-Text Pre-training with Synthetic Interleaved Data
Speech language models (SpeechLMs) accept speech input and produce speech output, allowing for more natural human-computer interaction compared to text-based large language models (LLMs). Traditional approaches for developing SpeechLMs are constrained by the limited availability of unsupervised speech data and parallel speech-text data, which are significantly less abundant than text pre-training data, thereby limiting their scalability as LLMs. We propose a novel approach to scaling speech-text pre-training by leveraging large-scale synthetic interleaved data derived from text corpora, eliminating the need for parallel speech-text datasets. Our method efficiently constructs speech-text interleaved data by sampling text spans from existing text corpora and synthesizing corresponding speech spans using a text-to-token model, bypassing the need to generate actual speech. We also employ a supervised speech tokenizer derived from an automatic speech recognition (ASR) model by incorporating a vector-quantized bottleneck into the encoder. This supervised training approach results in discrete speech tokens with strong semantic preservation even at lower sampling rates (e.g. 12.5Hz), while still maintaining speech reconstruction quality. Starting from a pre-trained language model and scaling our pre-training to 1 trillion tokens (with 600B synthetic interleaved speech-text data), we achieve state-of-the-art performance in speech language modeling and spoken question answering, improving performance on spoken questions tasks from the previous SOTA of 13% (Moshi) to 31%. We further demonstrate that by fine-tuning the pre-trained model with speech dialogue data, we can develop an end-to-end spoken chatbot that achieves competitive performance comparable to existing baselines in both conversational abilities and speech quality, even operating exclusively in the speech domain.
☆ What Differentiates Educational Literature? A Multimodal Fusion Approach of Transformers and Computational Linguistics
The integration of new literature into the English curriculum remains a challenge since educators often lack scalable tools to rapidly evaluate readability and adapt texts for diverse classroom needs. This study proposes to address this gap through a multimodal approach that combines transformer-based text classification with linguistic feature analysis to align texts with UK Key Stages. Eight state-of-the-art Transformers were fine-tuned on segmented text data, with BERT achieving the highest unimodal F1 score of 0.75. In parallel, 500 deep neural network topologies were searched for the classification of linguistic characteristics, achieving an F1 score of 0.392. The fusion of these modalities shows a significant improvement, with every multimodal approach outperforming all unimodal models. In particular, the ELECTRA Transformer fused with the neural network achieved an F1 score of 0.996. The proposed approach is finally encapsulated in a stakeholder-facing web application, providing non-technical stakeholder access to real-time insights on text complexity, reading difficulty, curriculum alignment, and recommendations for learning age range. The application empowers data-driven decision making and reduces manual workload by integrating AI-based recommendations into lesson planning for English literature.
☆ Natural Language Understanding and Inference with MLLM in Visual Question Answering: A Survey
Visual Question Answering (VQA) is a challenge task that combines natural language processing and computer vision techniques and gradually becomes a benchmark test task in multimodal large language models (MLLMs). The goal of our survey is to provide an overview of the development of VQA and a detailed description of the latest models with high timeliness. This survey gives an up-to-date synthesis of natural language understanding of images and text, as well as the knowledge reasoning module based on image-question information on the core VQA tasks. In addition, we elaborate on recent advances in extracting and fusing modal information with vision-language pretraining models and multimodal large language models in VQA. We also exhaustively review the progress of knowledge reasoning in VQA by detailing the extraction of internal knowledge and the introduction of external knowledge. Finally, we present the datasets of VQA and different evaluation metrics and discuss possible directions for future work.
☆ Isotropy Matters: Soft-ZCA Whitening of Embeddings for Semantic Code Search
Low isotropy in an embedding space impairs performance on tasks involving semantic inference. Our study investigates the impact of isotropy on semantic code search performance and explores post-processing techniques to mitigate this issue. We analyze various code language models, examine isotropy in their embedding spaces, and its influence on search effectiveness. We propose a modified ZCA whitening technique to control isotropy levels in embeddings. Our results demonstrate that Soft-ZCA whitening improves the performance of pre-trained code language models and can complement contrastive fine-tuning. The code for our experiments is available at https://github.com/drndr/code\_isotropy
☆ ShowUI: One Vision-Language-Action Model for GUI Visual Agent
Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity. While most agents are language-based, relying on closed-source API with text-rich meta-information (e.g., HTML or accessibility tree), they show limitations in perceiving UI visuals as humans do, highlighting the need for GUI visual agents. In this work, we develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations: (i) UI-Guided Visual Token Selection to reduce computational costs by formulating screenshots as an UI connected graph, adaptively identifying their redundant relationship and serve as the criteria for token selection during self-attention blocks; (ii) Interleaved Vision-Language-Action Streaming that flexibly unifies diverse needs within GUI tasks, enabling effective management of visual-action history in navigation or pairing multi-turn query-action sequences per screenshot to enhance training efficiency; (iii) Small-scale High-quality GUI Instruction-following Datasets by careful data curation and employing a resampling strategy to address significant data type imbalances. With above components, ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding. Its UI-guided token selection further reduces 33% of redundant visual tokens during training and speeds up the performance by 1.4x. Navigation experiments across web Mind2Web, mobile AITW, and online MiniWob environments further underscore the effectiveness and potential of our model in advancing GUI visual agents. The models are available at https://github.com/showlab/ShowUI.
comment: Technical Report. Github: https://github.com/showlab/ShowUI
☆ FLEX-CLIP: Feature-Level GEneration Network Enhanced CLIP for X-shot Cross-modal Retrieval
Given a query from one modality, few-shot cross-modal retrieval (CMR) retrieves semantically similar instances in another modality with the target domain including classes that are disjoint from the source domain. Compared with classical few-shot CMR methods, vision-language pretraining methods like CLIP have shown great few-shot or zero-shot learning performance. However, they still suffer challenges due to (1) the feature degradation encountered in the target domain and (2) the extreme data imbalance. To tackle these issues, we propose FLEX-CLIP, a novel Feature-level Generation Network Enhanced CLIP. FLEX-CLIP includes two training stages. In multimodal feature generation, we propose a composite multimodal VAE-GAN network to capture real feature distribution patterns and generate pseudo samples based on CLIP features, addressing data imbalance. For common space projection, we develop a gate residual network to fuse CLIP features with projected features, reducing feature degradation in X-shot scenarios. Experimental results on four benchmark datasets show a 7%-15% improvement over state-of-the-art methods, with ablation studies demonstrating enhancement of CLIP features.
☆ VLRewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models
Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems, yet their own evaluation remains under-explored. Current assessment methods primarily rely on AI-annotated preference labels from traditional VL tasks, which can introduce biases and often fail to effectively challenge state-of-the-art models. To address these limitations, we introduce VL-RewardBench, a comprehensive benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks. Through our AI-assisted annotation pipeline combining sample selection with human verification, we curate 1,250 high-quality examples specifically designed to probe model limitations. Comprehensive evaluation across 16 leading large vision-language models, demonstrates VL-RewardBench's effectiveness as a challenging testbed, where even GPT-4o achieves only 65.4% accuracy, and state-of-the-art open-source models such as Qwen2-VL-72B, struggle to surpass random-guessing. Importantly, performance on VL-RewardBench strongly correlates (Pearson's r > 0.9) with MMMU-Pro accuracy using Best-of-N sampling with VL-GenRMs. Analysis experiments uncover three critical insights for improving VL-GenRMs: (i) models predominantly fail at basic visual perception tasks rather than reasoning tasks; (ii) inference-time scaling benefits vary dramatically by model capacity; and (iii) training VL-GenRMs to learn to judge substantially boosts judgment capability (+14.7% accuracy for a 7B VL-GenRM). We believe VL-RewardBench along with the experimental insights will become a valuable resource for advancing VL-GenRMs.
comment: Project page: https://vl-rewardbench.github.io
☆ "Stupid robot, I want to speak to a human!" User Frustration Detection in Task-Oriented Dialog Systems
Detecting user frustration in modern-day task-oriented dialog (TOD) systems is imperative for maintaining overall user satisfaction, engagement, and retention. However, most recent research is focused on sentiment and emotion detection in academic settings, thus failing to fully encapsulate implications of real-world user data. To mitigate this gap, in this work, we focus on user frustration in a deployed TOD system, assessing the feasibility of out-of-the-box solutions for user frustration detection. Specifically, we compare the performance of our deployed keyword-based approach, open-source approaches to sentiment analysis, dialog breakdown detection methods, and emerging in-context learning LLM-based detection. Our analysis highlights the limitations of open-source methods for real-world frustration detection, while demonstrating the superior performance of the LLM-based approach, achieving a 16\% relative improvement in F1 score on an internal benchmark. Finally, we analyze advantages and limitations of our methods and provide an insight into user frustration detection task for industry practitioners.
☆ One Mind, Many Tongues: A Deep Dive into Language-Agnostic Knowledge Neurons in Large Language Models
Large language models (LLMs) have learned vast amounts of factual knowledge through self-supervised pre-training on large-scale corpora. Meanwhile, LLMs have also demonstrated excellent multilingual capabilities, which can express the learned knowledge in multiple languages. However, the knowledge storage mechanism in LLMs still remains mysterious. Some researchers attempt to demystify the factual knowledge in LLMs from the perspective of knowledge neurons, and subsequently discover language-agnostic knowledge neurons that store factual knowledge in a form that transcends language barriers. However, the preliminary finding suffers from two limitations: 1) High Uncertainty in Localization Results. Existing study only uses a prompt-based probe to localize knowledge neurons for each fact, while LLMs cannot provide consistent answers for semantically equivalent queries. Thus, it leads to inaccurate localization results with high uncertainty. 2) Lack of Analysis in More Languages. The study only analyzes language-agnostic knowledge neurons on English and Chinese data, without exploring more language families and languages. Naturally, it limits the generalizability of the findings. To address aforementioned problems, we first construct a new benchmark called Rephrased Multilingual LAMA (RML-LAMA), which contains high-quality cloze-style multilingual parallel queries for each fact. Then, we propose a novel method named Multilingual Integrated Gradients with Uncertainty Estimation (MATRICE), which quantifies the uncertainty across queries and languages during knowledge localization. Extensive experiments show that our method can accurately localize language-agnostic knowledge neurons. We also further investigate the role of language-agnostic knowledge neurons in cross-lingual knowledge editing, knowledge enhancement and new knowledge injection.
☆ Can LLMs be Good Graph Judger for Knowledge Graph Construction?
In real-world scenarios, most of the data obtained from information retrieval (IR) system is unstructured. Converting natural language sentences into structured Knowledge Graphs (KGs) remains a critical challenge. The quality of constructed KGs may also impact the performance of some KG-dependent domains like GraphRAG systems and recommendation systems. Recently, Large Language Models (LLMs) have demonstrated impressive capabilities in addressing a wide range of natural language processing tasks. However, there are still challenges when utilizing LLMs to address the task of generating structured KGs. And we have identified three limitations with respect to existing KG construction methods. (1)There is a large amount of information and excessive noise in real-world documents, which could result in extracting messy information. (2)Native LLMs struggle to effectively extract accuracy knowledge from some domain-specific documents. (3)Hallucinations phenomenon cannot be overlooked when utilizing LLMs directly as an unsupervised method for constructing KGs. In this paper, we propose GraphJudger, a knowledge graph construction framework to address the aforementioned challenges. We introduce three innovative modules in our method, which are entity-centric iterative text denoising, knowledge aware instruction tuning and graph judgement, respectively. We seek to utilize the capacity of LLMs to function as a graph judger, a capability superior to their role only as a predictor for KG construction problems. Experiments conducted on two general text-graph pair datasets and one domain-specific text-graph pair dataset show superior performances compared to baseline methods. The code of our proposed method is available at https://github.com/hhy-huang/GraphJudger.
☆ The Extractive-Abstractive Spectrum: Uncovering Verifiability Trade-offs in LLM Generations
Across all fields of academic study, experts cite their sources when sharing information. While large language models (LLMs) excel at synthesizing information, they do not provide reliable citation to sources, making it difficult to trace and verify the origins of the information they present. In contrast, search engines make sources readily accessible to users and place the burden of synthesizing information on the user. Through a survey, we find that users prefer search engines over LLMs for high-stakes queries, where concerns regarding information provenance outweigh the perceived utility of LLM responses. To examine the interplay between verifiability and utility of information-sharing tools, we introduce the extractive-abstractive spectrum, in which search engines and LLMs are extreme endpoints encapsulating multiple unexplored intermediate operating points. Search engines are extractive because they respond to queries with snippets of sources with links (citations) to the original webpages. LLMs are abstractive because they address queries with answers that synthesize and logically transform relevant information from training and in-context sources without reliable citation. We define five operating points that span the extractive-abstractive spectrum and conduct human evaluations on seven systems across four diverse query distributions that reflect real-world QA settings: web search, language simplification, multi-step reasoning, and medical advice. As outputs become more abstractive, we find that perceived utility improves by as much as 200%, while the proportion of properly cited sentences decreases by as much as 50% and users take up to 3 times as long to verify cited information. Our findings recommend distinct operating points for domain-specific LLM systems and our failure analysis informs approaches to high-utility LLM systems that empower users to verify information.
☆ Fairness And Performance In Harmony: Data Debiasing Is All You Need
Fairness in both machine learning (ML) predictions and human decisions is critical, with ML models prone to algorithmic and data bias, and human decisions affected by subjectivity and cognitive bias. This study investigates fairness using a real-world university admission dataset with 870 profiles, leveraging three ML models, namely XGB, Bi-LSTM, and KNN. Textual features are encoded with BERT embeddings. For individual fairness, we assess decision consistency among experts with varied backgrounds and ML models, using a consistency score. Results show ML models outperform humans in fairness by 14.08% to 18.79%. For group fairness, we propose a gender-debiasing pipeline and demonstrate its efficacy in removing gender-specific language without compromising prediction performance. Post-debiasing, all models maintain or improve their classification accuracy, validating the hypothesis that fairness and performance can coexist. Our findings highlight ML's potential to enhance fairness in admissions while maintaining high accuracy, advocating a hybrid approach combining human judgement and ML models.
☆ Different Bias Under Different Criteria: Assessing Bias in LLMs with a Fact-Based Approach NeurIPS 2024
Large language models (LLMs) often reflect real-world biases, leading to efforts to mitigate these effects and make the models unbiased. Achieving this goal requires defining clear criteria for an unbiased state, with any deviation from these criteria considered biased. Some studies define an unbiased state as equal treatment across diverse demographic groups, aiming for balanced outputs from LLMs. However, differing perspectives on equality and the importance of pluralism make it challenging to establish a universal standard. Alternatively, other approaches propose using fact-based criteria for more consistent and objective evaluations, though these methods have not yet been fully applied to LLM bias assessments. Thus, there is a need for a metric with objective criteria that offers a distinct perspective from equality-based approaches. Motivated by this need, we introduce a novel metric to assess bias using fact-based criteria and real-world statistics. In this paper, we conducted a human survey demonstrating that humans tend to perceive LLM outputs more positively when they align closely with real-world demographic distributions. Evaluating various LLMs with our proposed metric reveals that model bias varies depending on the criteria used, highlighting the need for multi-perspective assessment.
comment: Accepted in NeurIPS 2024 Workshop on Socially Responsible Language Modelling Research (SoLaR)
☆ Meaningless is better: hashing bias-inducing words in LLM prompts improves performance in logical reasoning and statistical learning
This paper introduces a novel method, referred to as "hashing", which involves masking potentially bias-inducing words in large language models (LLMs) with hash-like meaningless identifiers to reduce cognitive biases and reliance on external knowledge. The method was tested across three sets of experiments involving a total of 490 prompts. Statistical analysis using chi-square tests showed significant improvements in all tested scenarios, which covered LLama, ChatGPT, Copilot, Gemini and Mixtral models. In the first experiment, hashing decreased the fallacy rate in a modified version of the "Linda" problem aimed at evaluating susceptibility to cognitive biases. In the second experiment, it improved LLM results on the frequent itemset extraction task. In the third experiment, we found hashing is also effective when the Linda problem is presented in a tabular format rather than text, indicating that the technique works across various input representations. Overall, the method was shown to improve bias reduction and incorporation of external knowledge. Despite bias reduction, hallucination rates were inconsistently reduced across types of LLM models. These findings suggest that masking bias-inducing terms can improve LLM performance, although its effectiveness is model- and task-dependent.
☆ ER2Score: LLM-based Explainable and Customizable Metric for Assessing Radiology Reports with Reward-Control Loss
Automated radiology report generation (R2Gen) has advanced significantly, introducing challenges in accurate evaluation due to its complexity. Traditional metrics often fall short by relying on rigid word-matching or focusing only on pathological entities, leading to inconsistencies with human assessments. To bridge this gap, we introduce ER2Score, an automatic evaluation metric designed specifically for R2Gen. Our metric utilizes a reward model, guided by our margin-based reward enforcement loss, along with a tailored training data design that enables customization of evaluation criteria to suit user-defined needs. It not only scores reports according to user-specified criteria but also provides detailed sub-scores, enhancing interpretability and allowing users to adjust the criteria between different aspects of reports. Leveraging GPT-4, we designed an easy-to-use data generation pipeline, enabling us to produce extensive training data based on two distinct scoring systems, each containing reports of varying quality along with corresponding scores. These GPT-generated reports are then paired as accepted and rejected samples through our pairing rule to train an LLM towards our fine-grained reward model, which assigns higher rewards to the report with high quality. Our reward-control loss enables this model to simultaneously output multiple individual rewards corresponding to the number of evaluation criteria, with their summation as our final ER2Score. Our experiments demonstrate ER2Score's heightened correlation with human judgments and superior performance in model selection compared to traditional metrics. Notably, our model provides both an overall score and individual scores for each evaluation item, enhancing interpretability. We also demonstrate its flexible training across various evaluation systems.
☆ 2D Matryoshka Training for Information Retrieval
2D Matryoshka Training is an advanced embedding representation training approach designed to train an encoder model simultaneously across various layer-dimension setups. This method has demonstrated higher effectiveness in Semantic Text Similarity (STS) tasks over traditional training approaches when using sub-layers for embeddings. Despite its success, discrepancies exist between two published implementations, leading to varied comparative results with baseline models. In this reproducibility study, we implement and evaluate both versions of 2D Matryoshka Training on STS tasks and extend our analysis to retrieval tasks. Our findings indicate that while both versions achieve higher effectiveness than traditional Matryoshka training on sub-dimensions, and traditional full-sized model training approaches, they do not outperform models trained separately on specific sub-layer and sub-dimension setups. Moreover, these results generalize well to retrieval tasks, both in supervised (MSMARCO) and zero-shot (BEIR) settings. Further explorations of different loss computations reveals more suitable implementations for retrieval tasks, such as incorporating full-dimension loss and training on a broader range of target dimensions. Conversely, some intuitive approaches, such as fixing document encoders to full model outputs, do not yield improvements. Our reproduction code is available at https://github.com/ielab/2DMSE-Reproduce.
☆ An Attempt to Develop a Neural Parser based on Simplified Head-Driven Phrase Structure Grammar on Vietnamese
In this paper, we aimed to develop a neural parser for Vietnamese based on simplified Head-Driven Phrase Structure Grammar (HPSG). The existing corpora, VietTreebank and VnDT, had around 15% of constituency and dependency tree pairs that did not adhere to simplified HPSG rules. To attempt to address the issue of the corpora not adhering to simplified HPSG rules, we randomly permuted samples from the training and development sets to make them compliant with simplified HPSG. We then modified the first simplified HPSG Neural Parser for the Penn Treebank by replacing it with the PhoBERT or XLM-RoBERTa models, which can encode Vietnamese texts. We conducted experiments on our modified VietTreebank and VnDT corpora. Our extensive experiments showed that the simplified HPSG Neural Parser achieved a new state-of-the-art F-score of 82% for constituency parsing when using the same predicted part-of-speech (POS) tags as the self-attentive constituency parser. Additionally, it outperformed previous studies in dependency parsing with a higher Unlabeled Attachment Score (UAS). However, our parser obtained lower Labeled Attachment Score (LAS) scores likely due to our focus on arc permutation without changing the original labels, as we did not consult with a linguistic expert. Lastly, the research findings of this paper suggest that simplified HPSG should be given more attention to linguistic expert when developing treebanks for Vietnamese natural language processing.
comment: Accepted at SoICT 2024
☆ A Topic-level Self-Correctional Approach to Mitigate Hallucinations in MLLMs
Aligning the behaviors of Multimodal Large Language Models (MLLMs) with human preferences is crucial for developing robust and trustworthy AI systems. While recent attempts have employed human experts or powerful auxiliary AI systems to provide more accurate preference feedback, such as determining the preferable responses from MLLMs or directly rewriting hallucination-free responses, extensive resource overhead compromise the scalability of the feedback collection. In this work, we introduce Topic-level Preference Overwriting (TPO), a self-correctional approach that guide the model itself to mitigate its own hallucination at the topic level. Through a deconfounded strategy that replaces each topic within the response with the best or worst alternatives generated by the model itself, TPO creates more contrasting pairwise preference feedback, enhancing the feedback quality without human or proprietary model intervention. Notably, the experimental results demonstrate proposed TPO achieves state-of-the-art performance in trustworthiness, significantly reducing the object hallucinations by 92% and overall hallucinations by 38%. Code, model and data will be released.
☆ Strategic Prompting for Conversational Tasks: A Comparative Analysis of Large Language Models Across Diverse Conversational Tasks
Given the advancements in conversational artificial intelligence, the evaluation and assessment of Large Language Models (LLMs) play a crucial role in ensuring optimal performance across various conversational tasks. In this paper, we present a comprehensive study that thoroughly evaluates the capabilities and limitations of five prevalent LLMs: Llama, OPT, Falcon, Alpaca, and MPT. The study encompasses various conversational tasks, including reservation, empathetic response generation, mental health and legal counseling, persuasion, and negotiation. To conduct the evaluation, an extensive test setup is employed, utilizing multiple evaluation criteria that span from automatic to human evaluation. This includes using generic and task-specific metrics to gauge the LMs' performance accurately. From our evaluation, no single model emerges as universally optimal for all tasks. Instead, their performance varies significantly depending on the specific requirements of each task. While some models excel in certain tasks, they may demonstrate comparatively poorer performance in others. These findings emphasize the importance of considering task-specific requirements and characteristics when selecting the most suitable LM for conversational applications.
comment: 37 pages, 12 tables
☆ Interleaved Scene Graph for Interleaved Text-and-Image Generation Assessment
Many real-world user queries (e.g. "How do to make egg fried rice?") could benefit from systems capable of generating responses with both textual steps with accompanying images, similar to a cookbook. Models designed to generate interleaved text and images face challenges in ensuring consistency within and across these modalities. To address these challenges, we present ISG, a comprehensive evaluation framework for interleaved text-and-image generation. ISG leverages a scene graph structure to capture relationships between text and image blocks, evaluating responses on four levels of granularity: holistic, structural, block-level, and image-specific. This multi-tiered evaluation allows for a nuanced assessment of consistency, coherence, and accuracy, and provides interpretable question-answer feedback. In conjunction with ISG, we introduce a benchmark, ISG-Bench, encompassing 1,150 samples across 8 categories and 21 subcategories. This benchmark dataset includes complex language-vision dependencies and golden answers to evaluate models effectively on vision-centric tasks such as style transfer, a challenging area for current models. Using ISG-Bench, we demonstrate that recent unified vision-language models perform poorly on generating interleaved content. While compositional approaches that combine separate language and image models show a 111% improvement over unified models at the holistic level, their performance remains suboptimal at both block and image levels. To facilitate future work, we develop ISG-Agent, a baseline agent employing a "plan-execute-refine" pipeline to invoke tools, achieving a 122% performance improvement.
☆ A Novel Word Pair-based Gaussian Sentence Similarity Algorithm For Bengali Extractive Text Summarization
Extractive Text Summarization is the process of selecting the most representative parts of a larger text without losing any key information. Recent attempts at extractive text summarization in Bengali, either relied on statistical techniques like TF-IDF or used naive sentence similarity measures like the word averaging technique. All of these strategies suffer from expressing semantic relationships correctly. Here, we propose a novel Word pair-based Gaussian Sentence Similarity (WGSS) algorithm for calculating the semantic relation between two sentences. WGSS takes the geometric means of individual Gaussian similarity values of word embedding vectors to get the semantic relationship between sentences. It compares two sentences on a word-to-word basis which rectifies the sentence representation problem faced by the word averaging method. The summarization process extracts key sentences by grouping semantically similar sentences into clusters using the Spectral Clustering algorithm. After clustering, we use TF-IDF ranking to pick the best sentence from each cluster. The proposed method is validated using four different datasets, and it outperformed other recent models by 43.2\% on average ROUGE scores (ranging from 2.5\% to 95.4\%). It is also experimented on other low-resource languages i.e. Turkish, Marathi, and Hindi language, where we find that the proposed method performs as similar as Bengali for these languages. In addition, a new high-quality Bengali dataset is curated which contains 250 articles and a pair of summaries for each of them. We believe this research is a crucial addition to Bengali Natural Language Processing (NLP) research and it can easily be extended into other low-resource languages. We made the implementation of the proposed model and data public on \href{https://github.com/FMOpee/WGSS}{https://github.com/FMOpee/WGSS}.
comment: Submitted to ACM Transaction on Asian and Low-resource Language Information Processing
☆ Learning Monotonic Attention in Transducer for Streaming Generation
Streaming generation models are increasingly utilized across various fields, with the Transducer architecture being particularly popular in industrial applications. However, its input-synchronous decoding mechanism presents challenges in tasks requiring non-monotonic alignments, such as simultaneous translation, leading to suboptimal performance in these contexts. In this research, we address this issue by tightly integrating Transducer's decoding with the history of input stream via a learnable monotonic attention mechanism. Our approach leverages the forward-backward algorithm to infer the posterior probability of alignments between the predictor states and input timestamps, which is then used to estimate the context representations of monotonic attention in training. This allows Transducer models to adaptively adjust the scope of attention based on their predictions, avoiding the need to enumerate the exponentially large alignment space. Extensive experiments demonstrate that our MonoAttn-Transducer significantly enhances the handling of non-monotonic alignments in streaming generation, offering a robust solution for Transducer-based frameworks to tackle more complex streaming generation tasks.
comment: Codes: https://github.com/ictnlp/MonoAttn-Transducer
☆ Star Attention: Efficient LLM Inference over Long Sequences
Inference with Transformer-based Large Language Models (LLMs) on long sequences is both costly and slow due to the quadratic complexity of the self-attention mechanism. We introduce Star Attention, a two-phase block-sparse approximation that improves computational efficiency by sharding attention across multiple hosts while minimizing communication overhead. In the first phase, the context is processed using blockwise-local attention across hosts, in parallel. In the second phase, query and response tokens attend to all prior cached tokens through sequence-global attention. Star Attention integrates seamlessly with most Transformer-based LLMs trained with global attention, reducing memory requirements and inference time by up to 11x while preserving 95-100% of accuracy.
comment: Code: https://github.com/NVIDIA/Star-Attention
☆ Don't Command, Cultivate: An Exploratory Study of System-2 Alignment
The o1 system card identifies the o1 models as the most robust within OpenAI, with their defining characteristic being the progression from rapid, intuitive thinking to slower, more deliberate reasoning. This observation motivated us to investigate the influence of System-2 thinking patterns on model safety. In our preliminary research, we conducted safety evaluations of the o1 model, including complex jailbreak attack scenarios using adversarial natural language prompts and mathematical encoding prompts. Our findings indicate that the o1 model demonstrates relatively improved safety performance; however, it still exhibits vulnerabilities, particularly against jailbreak attacks employing mathematical encoding. Through detailed case analysis, we identified specific patterns in the o1 model's responses. We also explored the alignment of System-2 safety in open-source models using prompt engineering and supervised fine-tuning techniques. Experimental results show that some simple methods to encourage the model to carefully scrutinize user requests are beneficial for model safety. Additionally, we proposed a implementation plan for process supervision to enhance safety alignment. The implementation details and experimental results will be provided in future versions.
comment: Preprint version, more results will be updated
☆ Relations, Negations, and Numbers: Looking for Logic in Generative Text-to-Image Models
Despite remarkable progress in multi-modal AI research, there is a salient domain in which modern AI continues to lag considerably behind even human children: the reliable deployment of logical operators. Here, we examine three forms of logical operators: relations, negations, and discrete numbers. We asked human respondents (N=178 in total) to evaluate images generated by a state-of-the-art image-generating AI (DALL-E 3) prompted with these `logical probes', and find that none reliably produce human agreement scores greater than 50\%. The negation probes and numbers (beyond 3) fail most frequently. In a 4th experiment, we assess a `grounded diffusion' pipeline that leverages targeted prompt engineering and structured intermediate representations for greater compositional control, but find its performance is judged even worse than that of DALL-E 3 across prompts. To provide further clarity on potential sources of success and failure in these text-to-image systems, we supplement our 4 core experiments with multiple auxiliary analyses and schematic diagrams, directly quantifying, for example, the relationship between the N-gram frequency of relational prompts and the average match to generated images; the success rates for 3 different prompt modification strategies in the rendering of negation prompts; and the scalar variability / ratio dependence (`approximate numeracy') of prompts involving integers. We conclude by discussing the limitations inherent to `grounded' multimodal learning systems whose grounding relies heavily on vector-based semantics (e.g. DALL-E 3), or under-specified syntactical constraints (e.g. `grounded diffusion'), and propose minimal modifications (inspired by development, based in imagery) that could help to bridge the lingering compositional gap between scale and structure. All data and code is available at https://github.com/ColinConwell/T2I-Probology
☆ Evaluating Generative AI-Enhanced Content: A Conceptual Framework Using Qualitative, Quantitative, and Mixed-Methods Approaches
Generative AI (GenAI) has revolutionized content generation, offering transformative capabilities for improving language coherence, readability, and overall quality. This manuscript explores the application of qualitative, quantitative, and mixed-methods research approaches to evaluate the performance of GenAI models in enhancing scientific writing. Using a hypothetical use case involving a collaborative medical imaging manuscript, we demonstrate how each method provides unique insights into the impact of GenAI. Qualitative methods gather in-depth feedback from expert reviewers, analyzing their responses using thematic analysis tools to capture nuanced improvements and identify limitations. Quantitative approaches employ automated metrics such as BLEU, ROUGE, and readability scores, as well as user surveys, to objectively measure improvements in coherence, fluency, and structure. Mixed-methods research integrates these strengths, combining statistical evaluations with detailed qualitative insights to provide a comprehensive assessment. These research methods enable quantifying improvement levels in GenAI-generated content, addressing critical aspects of linguistic quality and technical accuracy. They also offer a robust framework for benchmarking GenAI tools against traditional editing processes, ensuring the reliability and effectiveness of these technologies. By leveraging these methodologies, researchers can evaluate the performance boost driven by GenAI, refine its applications, and guide its responsible adoption in high-stakes domains like healthcare and scientific research. This work underscores the importance of rigorous evaluation frameworks for advancing trust and innovation in GenAI.
☆ HOPPR Medical-Grade Platform for Medical Imaging AI
Technological advances in artificial intelligence (AI) have enabled the development of large vision language models (LVLMs) that are trained on millions of paired image and text samples. Subsequent research efforts have demonstrated great potential of LVLMs to achieve high performance in medical imaging use cases (e.g., radiology report generation), but there remain barriers that hinder the ability to deploy these solutions broadly. These include the cost of extensive computational requirements for developing large scale models, expertise in the development of sophisticated AI models, and the difficulty in accessing substantially large, high-quality datasets that adequately represent the population in which the LVLM solution is to be deployed. The HOPPR Medical-Grade Platform addresses these barriers by providing powerful computational infrastructure, a suite of foundation models on top of which developers can fine-tune for their specific use cases, and a robust quality management system that sets a standard for evaluating fine-tuned models for deployment in clinical settings. The HOPPR Platform has access to millions of imaging studies and text reports sourced from hundreds of imaging centers from diverse populations to pretrain foundation models and enable use case-specific cohorts for fine-tuning. All data are deidentified and securely stored for HIPAA compliance. Additionally, developers can securely host models on the HOPPR platform and access them via an API to make inferences using these models within established clinical workflows. With the Medical-Grade Platform, HOPPR's mission is to expedite the deployment of LVLM solutions for medical imaging and ultimately optimize radiologist's workflows and meet the growing demands of the field.
comment: 6 pages, 3 figures
☆ Leveraging Large Language Models and Topic Modeling for Toxicity Classification
Content moderation and toxicity classification represent critical tasks with significant social implications. However, studies have shown that major classification models exhibit tendencies to magnify or reduce biases and potentially overlook or disadvantage certain marginalized groups within their classification processes. Researchers suggest that the positionality of annotators influences the gold standard labels in which the models learned from propagate annotators' bias. To further investigate the impact of annotator positionality, we delve into fine-tuning BERTweet and HateBERT on the dataset while using topic-modeling strategies for content moderation. The results indicate that fine-tuning the models on specific topics results in a notable improvement in the F1 score of the models when compared to the predictions generated by other prominent classification models such as GPT-4, PerspectiveAPI, and RewireAPI. These findings further reveal that the state-of-the-art large language models exhibit significant limitations in accurately detecting and interpreting text toxicity contrasted with earlier methodologies. Code is available at https://github.com/aheldis/Toxicity-Classification.git.
☆ LongKey: Keyphrase Extraction for Long Documents
In an era of information overload, manually annotating the vast and growing corpus of documents and scholarly papers is increasingly impractical. Automated keyphrase extraction addresses this challenge by identifying representative terms within texts. However, most existing methods focus on short documents (up to 512 tokens), leaving a gap in processing long-context documents. In this paper, we introduce LongKey, a novel framework for extracting keyphrases from lengthy documents, which uses an encoder-based language model to capture extended text intricacies. LongKey uses a max-pooling embedder to enhance keyphrase candidate representation. Validated on the comprehensive LDKP datasets and six diverse, unseen datasets, LongKey consistently outperforms existing unsupervised and language model-based keyphrase extraction methods. Our findings demonstrate LongKey's versatility and superior performance, marking an advancement in keyphrase extraction for varied text lengths and domains.
comment: Accepted for presentation at the 2024 IEEE International Conference on Big Data (IEEE BigData 2024). Code available at https://github.com/jeohalves/longkey
☆ Signs as Tokens: An Autoregressive Multilingual Sign Language Generator
Sign language is a visual language that encompasses all linguistic features of natural languages and serves as the primary communication method for the deaf and hard-of-hearing communities. While many studies have successfully adapted pretrained language models (LMs) for sign language translation (sign-to-text), drawing inspiration from its linguistic characteristics, the reverse task of sign language generation (SLG, text-to-sign) remains largely unexplored. Most existing approaches treat SLG as a visual content generation task, employing techniques such as diffusion models to produce sign videos, 2D keypoints, or 3D avatars based on text inputs, overlooking the linguistic properties of sign languages. In this work, we introduce a multilingual sign language model, Signs as Tokens (SOKE), which can generate 3D sign avatars autoregressively from text inputs using a pretrained LM. To align sign language with the LM, we develop a decoupled tokenizer that discretizes continuous signs into token sequences representing various body parts. These sign tokens are integrated into the raw text vocabulary of the LM, allowing for supervised fine-tuning on sign language datasets. To facilitate multilingual SLG research, we further curate a large-scale Chinese sign language dataset, CSL-Daily, with high-quality 3D pose annotations. Extensive qualitative and quantitative evaluations demonstrate the effectiveness of SOKE. The project page is available at https://2000zrl.github.io/soke/.
☆ $H^3$Fusion: Helpful, Harmless, Honest Fusion of Aligned LLMs
Alignment of pretrained LLMs using instruction-based datasets is critical for creating fine-tuned models that reflect human preference. A growing number of alignment-based fine-tuning algorithms and benchmarks emerged recently, fueling the efforts on effective alignments of pre-trained LLMs to ensure helpful, harmless, and honest answers from both open-source and closed-source LLMs. This paper tackles this problem by developing an alignment fusion approach, coined as $H^3$Fusion, with three unique characteristics. First, $H^3$Fusion ensembles multiple individually aligned LLMs to create a final fine-tuned alignment model with enhanced capabilities beyond those of individual models, delivering robust alignment through promoting helpful, harmless, honest fusion. Second, $H^3$Fusion leverages the mixture-of-experts (MoE) methodology in two steps. We first freeze the multi-head attention weights of each individual model while tuning the FFN layer during alignment fusion. Then we merge the aligned model weights with an expert router according to the type of input instruction and dynamically select a subset of experts that are best suited for producing the output response. Finally, we boost the performance of the resulting $H^3$3Fusion model by introducing gating loss and regularization terms. The former penalizes the selection errors of the expert-router, and the latter mediates the expert weights drifting during fine-tuning and dynamically adjusts the fusion behavior of the resulting model by canalizing the activations on the experts. Extensive evaluations on three benchmark datasets show that $H^3$3Fusion is more helpful, less harmful, and more honest from two aspects: it outperforms each individually aligned model by $11.37\%$, and it provides stronger robustness compared to the state-of-the-art LLM ensemble approaches by $13.77\%$. Code is available at github.com/sftekin/h3fusion.
☆ BPP-Search: Enhancing Tree of Thought Reasoning for Mathematical Modeling Problem Solving
LLMs exhibit advanced reasoning capabilities, offering the potential to transform natural language questions into mathematical models. However, existing open-source operations research datasets lack detailed annotations of the modeling process, such as variable definitions, focusing solely on objective values, which hinders reinforcement learning applications. To address this, we release the StructuredOR dataset, annotated with comprehensive labels that capture the complete mathematical modeling process. We further propose BPP-Search, a algorithm that integrates reinforcement learning into a tree-of-thought structure using Beam search, a Process reward model, and a pairwise Preference algorithm. This approach enables efficient exploration of tree structures, avoiding exhaustive search while improving accuracy. Extensive experiments on StructuredOR, NL4OPT, and MAMO-ComplexLP datasets show that BPP-Search significantly outperforms state-of-the-art methods, including Chain-of-Thought, Self-Consistency, and Tree-of-Thought. In tree-based reasoning, BPP-Search also surpasses Process Reward Model combined with Greedy or Beam Search, demonstrating superior accuracy and efficiency, and enabling faster retrieval of correct solutions.
☆ Using Large Language Models for Expert Prior Elicitation in Predictive Modelling
Large language models (LLMs), trained on diverse data effectively acquire a breadth of information across various domains. However, their computational complexity, cost, and lack of transparency hinder their direct application for specialised tasks. In fields such as clinical research, acquiring expert annotations or prior knowledge about predictive models is often costly and time-consuming. This study proposes using LLMs to elicit expert prior distributions for predictive models. This approach also provides an alternative to in-context learning, where language models are tasked with making predictions directly. We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation. Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings. Applied to clinical problems, this translates to fewer required biological samples, lowering cost and resources. Prior elicitation also consistently outperforms and proves more reliable than in-context learning at a lower cost, making it a preferred alternative in our setting. We demonstrate the utility of this method across various use cases, including clinical applications. For infection prediction, using LLM-elicited priors reduced the number of required labels to achieve the same accuracy as an uninformative prior by 55%, at 200 days earlier in the study.
LLM-Based Offline Learning for Embodied Agents via Consistency-Guided Reward Ensemble EMNLP-2024
Employing large language models (LLMs) to enable embodied agents has become popular, yet it presents several limitations in practice. In this work, rather than using LLMs directly as agents, we explore their use as tools for embodied agent learning. Specifically, to train separate agents via offline reinforcement learning (RL), an LLM is used to provide dense reward feedback on individual actions in training datasets. In doing so, we present a consistency-guided reward ensemble framework (CoREN), designed for tackling difficulties in grounding LLM-generated estimates to the target environment domain. The framework employs an adaptive ensemble of spatio-temporally consistent rewards to derive domain-grounded rewards in the training datasets, thus enabling effective offline learning of embodied agents in different environment domains. Experiments with the VirtualHome benchmark demonstrate that CoREN significantly outperforms other offline RL agents, and it also achieves comparable performance to state-of-the-art LLM-based agents with 8B parameters, despite CoREN having only 117M parameters for the agent policy network and using LLMs only for training.
comment: Findings of EMNLP-2024 Camera Ready Version
☆ Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach
Self-improvement in multimodal large language models (MLLMs) is crucial for enhancing their reliability and robustness. However, current methods often rely heavily on MLLMs themselves as judges, leading to high computational costs and potential pitfalls like reward hacking and model collapse. This paper introduces a novel, model-level judge-free self-improvement framework. Our approach employs a controlled feedback mechanism while eliminating the need for MLLMs in the verification loop. We generate preference learning pairs using a controllable hallucination mechanism and optimize data quality by leveraging lightweight, contrastive language-image encoders to evaluate and reverse pairs when necessary. Evaluations across public benchmarks and our newly introduced IC dataset designed to challenge hallucination control demonstrate that our model outperforms conventional techniques. We achieve superior precision and recall with significantly lower computational demands. This method offers an efficient pathway to scalable self-improvement in MLLMs, balancing performance gains with reduced resource requirements.
♻ ☆ LLM2CLIP: Powerful Language Model Unlocks Richer Visual Representation
CLIP is a foundational multimodal model that aligns image and text features into a shared space using contrastive learning on large-scale image-text pairs. Its strength lies in leveraging natural language as a rich supervisory signal. With the rapid progress of large language models (LLMs), we explore their potential to further enhance CLIP's multimodal representation learning. This work introduces a fine-tuning approach that integrates LLMs with the pretrained CLIP visual encoder, leveraging LLMs' advanced text understanding and open-world knowledge to improve CLIP's ability to process long and complex captions. To address the challenge of LLMs' autoregressive nature, we propose a caption-to-caption contrastive learning framework to enhance the discriminative power of their outputs. Our method achieves substantial performance gains on various downstream tasks, demonstrating the effectiveness of combining LLMs with CLIP for enhanced multimodal learning.
♻ ☆ From Stars to Insights: Exploration and Implementation of Unified Sentiment Analysis with Distant Supervision
Sentiment analysis is integral to understanding the voice of the customer and informing businesses' strategic decisions. Conventional sentiment analysis involves three separate tasks: aspect-category detection (ACD), aspect-category sentiment analysis (ACSA), and rating prediction (RP). However, independently tackling these tasks can overlook their interdependencies and often requires expensive, fine-grained annotations. This paper introduces Unified Sentiment Analysis (Uni-SA), a novel learning paradigm that unifies ACD, ACSA, and RP into a coherent framework. To achieve this, we propose the Distantly Supervised Pyramid Network (DSPN), which employs a pyramid structure to capture sentiment at word, aspect, and document levels in a hierarchical manner. Evaluations on multi-aspect review datasets in English and Chinese show that DSPN, using only star rating labels for supervision, demonstrates significant efficiency advantages while performing comparably well to a variety of benchmark models. Additionally, DSPN's pyramid structure enables the interpretability of its outputs. Our findings validate DSPN's effectiveness and efficiency, establishing a robust, resource-efficient, unified framework for sentiment analysis.
♻ ☆ Evaluating Tokenizer Performance of Large Language Models Across Official Indian Languages
Large Language Models (LLMs) based on transformer architectures have revolutionized a variety of domains, with tokenization playing a pivotal role in their pre-processing and fine-tuning stages. In multilingual models, particularly those tailored for Indic languages, effective tokenization is crucial for optimizing performance. This paper presents a comprehensive evaluation of tokenizers used by 12 LLMs across all 22 official languages of India, with a focus on comparing the efficiency of their tokenization processes. We employed the Normalized Sequence Length (NSL) as a key metric in our analysis. Our findings reveal that the SUTRA tokenizer outperforms all other models, including several Indic-specific models, excelling in 14 languages. Notable insights include the SUTRA tokenizer's superior handling of Indic languages, GPT-4o's advancement over its predecessor GPT-4 in processing Indian languages, and the limited performance of Project Indus in certain languages. This study underscores the critical importance of developing targeted tokenization strategies for multilingual and Indic-centric models, laying the groundwork for future improvements in tokenizer design to enhance linguistic coverage and model efficiency.
♻ ☆ Do Automatic Factuality Metrics Measure Factuality? A Critical Evaluation
Modern LLMs can now produce highly readable abstractive summaries, to the point where traditional automated metrics for evaluating summary quality, such as ROUGE, have become saturated. However, LLMs still sometimes introduce unwanted content into summaries, i.e., information inconsistent with or unsupported by their source. Measuring the occurrence of these often subtle ``hallucinations'' automatically has proved to be challenging. This in turn has motivated development of a variety of metrics intended to measure the factual consistency of generated summaries against their source. But are these approaches measuring what they purport to do? In this work, we stress-test automatic factuality metrics. Specifically, we investigate whether and to what degree superficial attributes of summary texts suffice to predict ``factuality'', finding that a (supervised) model using only such shallow features is reasonably competitive with SOTA factuality scoring methods. We then evaluate how factuality metrics respond to factual corrections in inconsistent summaries and find that only a few show meaningful improvements. In contrast, some metrics are more sensitive to benign, non-factual edits. Motivated by these insights, we show that one can ``game'' (most) automatic factuality metrics, i.e., reliably inflate ``factuality'' scores by appending innocuous sentences to generated summaries.Taken together, our results raise questions about the degree to which we should rely on existing automated factuality metrics and what exactly we want ``factuality metrics'' to measure.
♻ ☆ LexEval: A Comprehensive Chinese Legal Benchmark for Evaluating Large Language Models
Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice. To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval. This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks. (2) Scale: To our knowledge, LexEval is currently the largest Chinese legal evaluation dataset, comprising 23 tasks and 14,150 questions. (3) Data: we utilize formatted existing datasets, exam datasets and newly annotated datasets by legal experts to comprehensively evaluate the various capabilities of LLMs. LexEval not only focuses on the ability of LLMs to apply fundamental legal knowledge but also dedicates efforts to examining the ethical issues involved in their application. We evaluated 38 open-source and commercial LLMs and obtained some interesting findings. The experiments and findings offer valuable insights into the challenges and potential solutions for developing Chinese legal systems and LLM evaluation pipelines. The LexEval dataset and leaderboard are publicly available at \url{https://github.com/CSHaitao/LexEval} and will be continuously updated.
comment: NeurIPs 2024
♻ ☆ Refined and Segmented Price Sentiment Indices from Survey Comments
We aim to enhance a price sentiment index and to more precisely understand price trends from the perspective of not only consumers but also businesses. We extract comments related to prices from the Economy Watchers Survey conducted by the Cabinet Office of Japan and classify price trends using a large language model (LLM). We classify whether the survey sample reflects the perspective of consumers or businesses, and whether the comments pertain to goods or services by utilizing information on the fields of comments and the industries of respondents included in the Economy Watchers Survey. From these classified price-related comments, we construct price sentiment indices not only for a general purpose but also for more specific objectives by combining perspectives on consumers and prices, as well as goods and services. It becomes possible to achieve a more accurate classification of price directions by employing a LLM for classification. Furthermore, integrating the outputs of multiple LLMs suggests the potential for the better performance of the classification. The use of more accurately classified comments allows for the construction of an index with a higher correlation to existing indices than previous studies. We demonstrate that the correlation of the price index for consumers, which has a larger sample size, is further enhanced by selecting comments for aggregation based on the industry of the survey respondents.
comment: Accepted to IEEE BigData 2024. 9 pages, 11 tables, 1 figure
♻ ☆ Automatic Album Sequencing
Album sequencing is a critical part of the album production process. Recently, a data-driven approach was proposed that sequences general collections of independent media by extracting the narrative essence of the items in the collections. While this approach implies an album sequencing technique, it is not widely accessible to a less technical audience, requiring advanced knowledge of machine learning techniques to use. To address this, we introduce a new user-friendly web-based tool that allows a less technical audience to upload music tracks, execute this technique in one click, and subsequently presents the result in a clean visualization to the user. To both increase the number of templates available to the user and address shortcomings of previous work, we also introduce a new direct transformer-based album sequencing method. We find that our more direct method outperforms a random baseline but does not reach the same performance as the narrative essence approach. Both methods are included in our web-based user interface, and this -- alongside a full copy of our implementation -- is publicly available at https://github.com/dylanashley/automatic-album-sequencing
comment: presented as a late breaking demo in the 25th International Society for Music Information Retrieval Conference; 3 pages in main text + 1 page of references, 3 figures in main text; source code available at https://github.com/dylanashley/automatic-album-sequencing
♻ ☆ A Survey on Multimodal Large Language Models
Recently, Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks. The surprising emergent capabilities of MLLM, such as writing stories based on images and Optical Character Recognition (OCR)-free math reasoning, are rare in traditional multimodal methods, suggesting a potential path to artificial general intelligence. To this end, both academia and industry have endeavored to develop MLLMs that can compete with or even outperform GPT-4V, pushing the limit of research at a surprising speed. In this paper, we aim to trace and summarize the recent progress of MLLMs. First of all, we present the basic formulation of MLLM and delineate its related concepts, including architecture, training strategy and data, as well as evaluation. Then, we introduce research topics about how MLLMs can be extended to support more granularity, modalities, languages, and scenarios. We continue with multimodal hallucination and extended techniques, including Multimodal ICL (M-ICL), Multimodal CoT (M-CoT), and LLM-Aided Visual Reasoning (LAVR). To conclude the paper, we discuss existing challenges and point out promising research directions.
comment: 20 pages, 3 figures, 9 tables, accepted for publication in National Science Review. Project page:https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models
♻ ☆ RSL-SQL: Robust Schema Linking in Text-to-SQL Generation
Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational overhead. However, schema linking faces risks that require caution, including the potential omission of necessary elements and disruption of database structural integrity. To address these challenges, we propose a novel framework called RSL-SQL that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction. We improve the recall of pattern linking using forward and backward pruning methods, achieving a strict recall of 94% while reducing the number of input columns by 83%. Furthermore, it hedges the risk by voting between a full mode and a simplified mode enhanced with contextual information. Experiments on the BIRD and Spider benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on Spider using GPT-4o. Furthermore, our approach outperforms a series of GPT-4 based Text-to-SQL systems when adopting DeepSeek (much cheaper) with same intact prompts. Extensive analysis and ablation studies confirm the effectiveness of each component in our framework. The codes are available at https://github.com/Laqcce-cao/RSL-SQL.
♻ ☆ A Condensed Transition Graph Framework for Zero-shot Link Prediction with Large Language Models
Zero-shot link prediction (ZSLP) on knowledge graphs aims at automatically identifying relations between given entities. Existing methods primarily employ auxiliary information to predict tail entity given head entity and its relation, yet face challenges due to the occasional unavailability of such detailed information and the inherent simplicity of predicting tail entities based on semantic similarities. Even though Large Language Models (LLMs) offer a promising solution to predict unobserved relations between the head and tail entity in a zero-shot manner, their performance is still restricted due to the inability to leverage all the (exponentially many) paths' information between two entities, which are critical in collectively indicating their relation types. To address this, in this work, we introduce a Condensed Transition Graph Framework for Zero-Shot Link Prediction (CTLP), which encodes all the paths' information in linear time complexity to predict unseen relations between entities, attaining both efficiency and information preservation. Specifically, we design a condensed transition graph encoder with theoretical guarantees on its coverage, expressiveness, and efficiency. It is learned by a transition graph contrastive learning strategy. Subsequently, we design a soft instruction tuning to learn and map the all-path embedding to the input of LLMs. Experimental results show that our proposed CTLP method achieves state-of-the-art performance on three standard ZSLP datasets
comment: Published as a conference paper at ICDM 2024
♻ ☆ OASIS: Open Agent Social Interaction Simulations with One Million Agents
There has been a growing interest in enhancing rule-based agent-based models (ABMs) for social media platforms (i.e., X, Reddit) with more realistic large language model (LLM) agents, thereby allowing for a more nuanced study of complex systems. As a result, several LLM-based ABMs have been proposed in the past year. While they hold promise, each simulator is specifically designed to study a particular scenario, making it time-consuming and resource-intensive to explore other phenomena using the same ABM. Additionally, these models simulate only a limited number of agents, whereas real-world social media platforms involve millions of users. To this end, we propose OASIS, a generalizable and scalable social media simulator. OASIS is designed based on real-world social media platforms, incorporating dynamically updated environments (i.e., dynamic social networks and post information), diverse action spaces (i.e., following, commenting), and recommendation systems (i.e., interest-based and hot-score-based). Additionally, OASIS supports large-scale user simulations, capable of modeling up to one million users. With these features, OASIS can be easily extended to different social media platforms to study large-scale group phenomena and behaviors. We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms. Moreover, we provide observations of social phenomena at different agent group scales. We observe that the larger agent group scale leads to more enhanced group dynamics and more diverse and helpful agents' opinions. These findings demonstrate OASIS's potential as a powerful tool for studying complex systems in digital environments.
♻ ☆ The ParlaSpeech Collection of Automatically Generated Speech and Text Datasets from Parliamentary Proceedings
Recent significant improvements in speech and language technologies come both from self-supervised approaches over raw language data as well as various types of explicit supervision. To ensure high-quality processing of spoken data, the most useful type of explicit supervision is still the alignment between the speech signal and its corresponding text transcript, which is a data type that is not available for many languages. In this paper, we present our approach to building large and open speech-and-text-aligned datasets of less-resourced languages based on transcripts of parliamentary proceedings and their recordings. Our starting point are the ParlaMint comparable corpora of transcripts of parliamentary proceedings of 26 national European parliaments. In the pilot run on expanding the ParlaMint corpora with aligned publicly available recordings, we focus on three Slavic languages, namely Croatian, Polish, and Serbian. The main challenge of our approach is the lack of any global alignment between the ParlaMint texts and the available recordings, as well as the sometimes varying data order in each of the modalities, which requires a novel approach in aligning long sequences of text and audio in a large search space. The results of this pilot run are three high-quality datasets that span more than 5,000 hours of speech and accompanying text transcripts. Although these datasets already make a huge difference in the availability of spoken and textual data for the three languages, we want to emphasize the potential of the presented approach in building similar datasets for many more languages.
comment: Submitted to SPECOM 2024
♻ ☆ UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems
Large Language Models (LLMs) has shown exceptional capabilities in many natual language understanding and generation tasks. However, the personalization issue still remains a much-coveted property, especially when it comes to the multiple sources involved in the dialogue system. To better plan and incorporate the use of multiple sources in generating personalized response, we firstly decompose it into three sub-tasks: Knowledge Source Selection, Knowledge Retrieval, and Response Generation. We then propose a novel Unified Multi-Source Retrieval-Augmented Generation system (UniMS-RAG) Specifically, we unify these three sub-tasks with different formulations into the same sequence-to-sequence paradigm during the training, to adaptively retrieve evidences and evaluate the relevance on-demand using special tokens, called acting tokens and evaluation tokens. Enabling language models to generate acting tokens facilitates interaction with various knowledge sources, allowing them to adapt their behavior to diverse task requirements. Meanwhile, evaluation tokens gauge the relevance score between the dialogue context and the retrieved evidence. In addition, we carefully design a self-refinement mechanism to iteratively refine the generated response considering 1) the consistency scores between the generated response and retrieved evidence; and 2) the relevance scores. Experiments on two personalized datasets (DuLeMon and KBP) show that UniMS-RAG achieves state-of-the-art performance on the knowledge source selection and response generation task with itself as a retriever in a unified manner. Extensive analyses and discussions are provided for shedding some new perspectives for personalized dialogue systems.
♻ ☆ Inference Time Alignment with Reward-Guided Tree Search
Inference-time computation methods enhance the performance of Large Language Models (LLMs) by leveraging additional computational resources to achieve superior results. Common techniques, such as Best-of-N sampling, Majority Voting, and variants of tree-search algorithms have proven to be effective in boosting the performance of LLMs. These approaches strategically trade increased computational resources for improved model responses. In this work, we proposed DARWIN, an inference-time alignment method that leverages the guidance of a reward model to achieve alignment through a reward-guided tree search. Empirical evidences indicates that our method outperforms other inference-time alignment methods such as Best-of-N and ARGS on two widely accepted alignment benchmarks AlpacaEval 2 and MT-Bench. Furthermore, we show that our inference-time approach achieves performance comparable to preference-tuned models on both benchmarks, highlighting the effectiveness of trading inference-time compute for enhanced performance during inference. We have released our codes at https://github.com/declare-lab/darwin.
♻ ☆ Against The Achilles' Heel: A Survey on Red Teaming for Generative Models
Generative models are rapidly gaining popularity and being integrated into everyday applications, raising concerns over their safe use as various vulnerabilities are exposed. In light of this, the field of red teaming is undergoing fast-paced growth, highlighting the need for a comprehensive survey covering the entire pipeline and addressing emerging topics. Our extensive survey, which examines over 120 papers, introduces a taxonomy of fine-grained attack strategies grounded in the inherent capabilities of language models. Additionally, we have developed the "searcher" framework to unify various automatic red teaming approaches. Moreover, our survey covers novel areas including multimodal attacks and defenses, risks around LLM-based agents, overkill of harmless queries, and the balance between harmlessness and helpfulness.
♻ ☆ Patience Is The Key to Large Language Model Reasoning
Recent advancements in the field of large language models, particularly through the Chain of Thought (CoT) approach, have demonstrated significant improvements in solving complex problems. However, existing models either tend to sacrifice detailed reasoning for brevity due to user preferences, or require extensive and expensive training data to learn complicated reasoning ability, limiting their potential in solving complex tasks. To bridge this gap, following the concept of scaling test-time, we propose a simple method by encouraging models to adopt a more patient reasoning style without the need of introducing new knowledge or skills. To employ a preference optimization approach, we generate detailed reasoning processes as positive examples and simple answers as negative examples, thereby training the model to favor thoroughness in its responses. Our results demonstrate a performance increase of up to 6.7% on GSM8k with training just on a lightweight dataset.
comment: The dataset and model are available at https://huggingface.co/datasets/yuyijiong/patient-math-cot
♻ ☆ When Precision Meets Position: BFloat16 Breaks Down RoPE in Long-Context Training
Extending context window sizes allows large language models (LLMs) to process longer sequences and handle more complex tasks. Rotary Positional Embedding (RoPE) has become the de facto standard due to its relative positional encoding properties that benefit long-context training. However, we observe that using RoPE with BFloat16 format results in numerical issues, causing it to deviate from its intended relative positional encoding, especially in long-context scenarios. This issue arises from BFloat16's limited precision and accumulates as context length increases, with the first token contributing significantly to this problem. To address this, we develop AnchorAttention, a plug-and-play attention method that alleviates numerical issues caused by BFloat16, improves long-context capabilities, and speeds up training. AnchorAttention reduces unnecessary attention computations, maintains semantic coherence, and boosts computational efficiency by treating the first token as a shared anchor with a consistent position ID, making it visible to all documents within the training context. Experiments on three types of LLMs demonstrate that AnchorAttention significantly improves long-context performance and reduces training time by over 50\% compared to standard full attention mechanisms, while preserving the original LLM's capabilities on general tasks. Our code is available at https://github.com/haonan3/AnchorContext.
♻ ☆ Unconstrained Open Vocabulary Image Classification: Zero-Shot Transfer from Text to Image via CLIP Inversion WACV 2025
We introduce NOVIC, an innovative real-time uNconstrained Open Vocabulary Image Classifier that uses an autoregressive transformer to generatively output classification labels as language. Leveraging the extensive knowledge of CLIP models, NOVIC harnesses the embedding space to enable zero-shot transfer from pure text to images. Traditional CLIP models, despite their ability for open vocabulary classification, require an exhaustive prompt of potential class labels, restricting their application to images of known content or context. To address this, we propose an "object decoder" model that is trained on a large-scale 92M-target dataset of templated object noun sets and LLM-generated captions to always output the object noun in question. This effectively inverts the CLIP text encoder and allows textual object labels from essentially the entire English language to be generated directly from image-derived embedding vectors, without requiring any a priori knowledge of the potential content of an image, and without any label biases. The trained decoders are tested on a mix of manually and web-curated datasets, as well as standard image classification benchmarks, and achieve fine-grained prompt-free prediction scores of up to 87.5%, a strong result considering the model must work for any conceivable image and without any contextual clues.
comment: Published at WACV 2025
♻ ☆ Do LLMs Agree on the Creativity Evaluation of Alternative Uses?
This paper investigates whether large language models (LLMs) show agreement in assessing creativity in responses to the Alternative Uses Test (AUT). While LLMs are increasingly used to evaluate creative content, previous studies have primarily focused on a single model assessing responses generated by the same model or humans. This paper explores whether LLMs can impartially and accurately evaluate creativity in outputs generated by both themselves and other models. Using an oracle benchmark set of AUT responses, categorized by creativity level (common, creative, and highly creative), we experiment with four state-of-the-art LLMs evaluating these outputs. We test both scoring and ranking methods and employ two evaluation settings (comprehensive and segmented) to examine if LLMs agree on the creativity evaluation of alternative uses. Results reveal high inter-model agreement, with Spearman correlations averaging above 0.7 across models and reaching over 0.77 with respect to the oracle, indicating a high level of agreement and validating the reliability of LLMs in creativity assessment of alternative uses. Notably, models do not favour their own responses, instead they provide similar creativity assessment scores or rankings for alternative uses generated by other models. These findings suggest that LLMs exhibit impartiality and high alignment in creativity evaluation, offering promising implications for their use in automated creativity assessment.
comment: 19 pages, 7 figures, 15 tables
♻ ☆ WavChat: A Survey of Spoken Dialogue Models
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat.
comment: 60 papes, working in progress
Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models NeurIPS 2024
Fine-tuning is a crucial process for adapting large language models (LLMs) to diverse applications. In certain scenarios, such as multi-tenant serving, deploying multiple LLMs becomes necessary to meet complex demands. Recent studies suggest decomposing a fine-tuned LLM into a base model and corresponding delta weights, which are then compressed using low-rank or low-bit approaches to reduce costs. In this work, we observe that existing low-rank and low-bit compression methods can significantly harm the model performance for task-specific fine-tuned LLMs (e.g., WizardMath for math problems). Motivated by the long-tail distribution of singular values in the delta weights, we propose a delta quantization approach using mixed-precision. This method employs higher-bit representation for singular vectors corresponding to larger singular values. We evaluate our approach on various fine-tuned LLMs, including math LLMs, code LLMs, chat LLMs, and even VLMs. Experimental results demonstrate that our approach performs comparably to full fine-tuned LLMs, surpassing both low-rank and low-bit baselines by a considerable margin. Additionally, we show that our method is compatible with various backbone LLMs, such as Llama-2, Llama-3, and Mistral, highlighting its generalizability.
comment: NeurIPS 2024
♻ ☆ IL-TUR: Benchmark for Indian Legal Text Understanding and Reasoning ACL 2024
Legal systems worldwide are inundated with exponential growth in cases and documents. There is an imminent need to develop NLP and ML techniques for automatically processing and understanding legal documents to streamline the legal system. However, evaluating and comparing various NLP models designed specifically for the legal domain is challenging. This paper addresses this challenge by proposing IL-TUR: Benchmark for Indian Legal Text Understanding and Reasoning. IL-TUR contains monolingual (English, Hindi) and multi-lingual (9 Indian languages) domain-specific tasks that address different aspects of the legal system from the point of view of understanding and reasoning over Indian legal documents. We present baseline models (including LLM-based) for each task, outlining the gap between models and the ground truth. To foster further research in the legal domain, we create a leaderboard (available at: https://exploration-lab.github.io/IL-TUR/) where the research community can upload and compare legal text understanding systems.
comment: Accepted at ACL 2024 Main Conference; 40 Pages (9 Pages + References + Appendix)
♻ ☆ LLM-RankFusion: Mitigating Intrinsic Inconsistency in LLM-based Ranking
Ranking passages by prompting a large language model (LLM) can achieve promising performance in modern information retrieval (IR) systems. A common approach to sort the ranking list is by prompting LLMs for a pairwise or setwise comparison which often relies on sorting algorithms. However, sorting-based methods require consistent comparisons to correctly sort the passages, which we show that LLMs often violate. We identify two kinds of intrinsic inconsistency in LLM-based pairwise comparisons: order inconsistency which leads to conflicting results when switching the passage order, and transitive inconsistency which leads to non-transitive triads among all preference pairs. Our study of these inconsistencies is relevant for understanding and improving the stability of any ranking scheme based on relative preferences. In this paper, we propose LLM-RankFusion, an LLM-based ranking framework that mitigates these inconsistencies and produces a robust ranking list. LLM-RankFusion mitigates order inconsistency using in-context learning (ICL) to demonstrate order-agnostic comparisons and calibration to estimate the underlying preference probability between two passages. We then address transitive inconsistency by aggregating the ranking results from multiple rankers. In our experiments, we empirically show that LLM-RankFusion can significantly reduce inconsistent comparison results, improving the ranking quality by making the final ranking list more robust. Our code is available at \href{https://github.com/XHMY/LLM-RankFusion}{https://github.com/XHMY/LLM-RankFusion}
♻ ☆ CoverBench: A Challenging Benchmark for Complex Claim Verification
There is a growing line of research on verifying the correctness of language models' outputs. At the same time, LMs are being used to tackle complex queries that require reasoning. We introduce CoverBench, a challenging benchmark focused on verifying LM outputs in complex reasoning settings. Datasets that can be used for this purpose are often designed for other complex reasoning tasks (e.g., QA) targeting specific use-cases (e.g., financial tables), requiring transformations, negative sampling and selection of hard examples to collect such a benchmark. CoverBench provides a diversified evaluation for complex claim verification in a variety of domains, types of reasoning, relatively long inputs, and a variety of standardizations, such as multiple representations for tables where available, and a consistent schema. We manually vet the data for quality to ensure low levels of label noise. Finally, we report a variety of competitive baseline results to show CoverBench is challenging and has very significant headroom. The data is available at https://huggingface.co/datasets/google/coverbench .
comment: Huggingface Datasets link: https://huggingface.co/datasets/google/coverbench
♻ ☆ MH-MoE: Multi-Head Mixture-of-Experts
Multi-Head Mixture-of-Experts (MH-MoE) demonstrates superior performance by using the multi-head mechanism to collectively attend to information from various representation spaces within different experts. In this paper, we present a novel implementation of MH-MoE that maintains both FLOPs and parameter parity with sparse Mixture of Experts models. Experimental results on language models show that the new implementation yields quality improvements over both vanilla MoE and fine-grained MoE models. Additionally, our experiments demonstrate that MH-MoE is compatible with 1-bit Large Language Models (LLMs) such as BitNet.
comment: 7 pages, 0 figures
♻ ☆ Finding Blind Spots in Evaluator LLMs with Interpretable Checklists EMNLP 2024
Large Language Models (LLMs) are increasingly relied upon to evaluate text outputs of other LLMs, thereby influencing leaderboards and development decisions. However, concerns persist over the accuracy of these assessments and the potential for misleading conclusions. In this work, we investigate the effectiveness of LLMs as evaluators for text generation tasks. We propose FBI, a novel framework designed to examine the proficiency of Evaluator LLMs in assessing four critical abilities in other LLMs: factual accuracy, instruction following, coherence in long-form writing, and reasoning proficiency. By introducing targeted perturbations in answers generated by LLMs, that clearly impact one of these key capabilities, we test whether an Evaluator LLM can detect these quality drops. By creating a total of 2400 perturbed answers covering 22 perturbation categories, we conduct a comprehensive study using different evaluation strategies on five prominent LLMs commonly used as evaluators in the literature. Our findings reveal significant shortcomings in current Evaluator LLMs, which failed to identify quality drops in over 50\% of cases on average. Single-answer and pairwise evaluations demonstrated notable limitations, whereas reference-based evaluations showed comparatively better performance. These results underscore the unreliable nature of current Evaluator LLMs and advocate for cautious implementation in practical applications. Code and data are available at https://github.com/AI4Bharat/FBI.
comment: EMNLP 2024
♻ ☆ A Survey on Human-Centric LLMs
The rapid evolution of large language models (LLMs) and their capacity to simulate human cognition and behavior has given rise to LLM-based frameworks and tools that are evaluated and applied based on their ability to perform tasks traditionally performed by humans, namely those involving cognition, decision-making, and social interaction. This survey provides a comprehensive examination of such human-centric LLM capabilities, focusing on their performance in both individual tasks (where an LLM acts as a stand-in for a single human) and collective tasks (where multiple LLMs coordinate to mimic group dynamics). We first evaluate LLM competencies across key areas including reasoning, perception, and social cognition, comparing their abilities to human-like skills. Then, we explore real-world applications of LLMs in human-centric domains such as behavioral science, political science, and sociology, assessing their effectiveness in replicating human behaviors and interactions. Finally, we identify challenges and future research directions, such as improving LLM adaptability, emotional intelligence, and cultural sensitivity, while addressing inherent biases and enhancing frameworks for human-AI collaboration. This survey aims to provide a foundational understanding of LLMs from a human-centric perspective, offering insights into their current capabilities and potential for future development.
♻ ☆ Words Worth a Thousand Pictures: Measuring and Understanding Perceptual Variability in Text-to-Image Generation EMNLP 2024
Diffusion models are the state of the art in text-to-image generation, but their perceptual variability remains understudied. In this paper, we examine how prompts affect image variability in black-box diffusion-based models. We propose W1KP, a human-calibrated measure of variability in a set of images, bootstrapped from existing image-pair perceptual distances. Current datasets do not cover recent diffusion models, thus we curate three test sets for evaluation. Our best perceptual distance outperforms nine baselines by up to 18 points in accuracy, and our calibration matches graded human judgements 78% of the time. Using W1KP, we study prompt reusability and show that Imagen prompts can be reused for 10-50 random seeds before new images become too similar to already generated images, while Stable Diffusion XL and DALL-E 3 can be reused 50-200 times. Lastly, we analyze 56 linguistic features of real prompts, finding that the prompt's length, CLIP embedding norm, concreteness, and word senses influence variability most. As far as we are aware, we are the first to analyze diffusion variability from a visuolinguistic perspective. Our project page is at http://w1kp.com.
comment: Published at EMNLP 2024; outstanding paper award; 14 pages, 11 figures
♻ ☆ A Computational Method for Measuring "Open Codes" in Qualitative Analysis
Qualitative analysis is critical to understanding human datasets in many social science disciplines. Open coding is an inductive qualitative process that identifies and interprets "open codes" from datasets. Yet, meeting methodological expectations (such as "as exhaustive as possible") can be challenging. While many machine learning (ML)/generative AI (GAI) studies have attempted to support open coding, few have systematically measured or evaluated GAI outcomes, increasing potential bias risks. Building on Grounded Theory and Thematic Analysis theories, we present a computational method to measure and identify potential biases from "open codes" systematically. Instead of operationalizing human expert results as the "ground truth," our method is built upon a team-based approach between human and machine coders. We experiment with two HCI datasets to establish this method's reliability by 1) comparing it with human analysis, and 2) analyzing its output stability. We present evidence-based suggestions and example workflows for ML/GAI to support open coding.
♻ ☆ Linguistic Collapse: Neural Collapse in (Large) Language Models NeurIPS 2024
Neural collapse ($\mathcal{NC}$) is a phenomenon observed in classification tasks where top-layer representations collapse into their class means, which become equinorm, equiangular and aligned with the classifiers. These behaviours -- associated with generalization and robustness -- would manifest under specific conditions: models are trained towards zero loss, with noise-free labels belonging to balanced classes, which do not outnumber the model's hidden dimension. Recent studies have explored $\mathcal{NC}$ in the absence of one or more of these conditions to extend and capitalize on the associated benefits of ideal geometries. Language modelling presents a curious frontier, as \textit{training by token prediction} constitutes a classification task where none of the conditions exist: the vocabulary is imbalanced and exceeds the embedding dimension; different tokens might correspond to similar contextual embeddings; and large language models (LLMs) in particular are typically only trained for a few epochs. This paper empirically investigates the impact of scaling the architectures and training of causal language models (CLMs) on their progression towards $\mathcal{NC}$. We find that $\mathcal{NC}$ properties that develop with scale (and regularization) are linked to generalization. Moreover, there is evidence of some relationship between $\mathcal{NC}$ and generalization independent of scale. Our work thereby underscores the generality of $\mathcal{NC}$ as it extends to the novel and more challenging setting of language modelling. Downstream, we seek to inspire further research on the phenomenon to deepen our understanding of LLMs -- and neural networks at large -- and improve existing architectures based on $\mathcal{NC}$-related properties. Our code is hosted on GitHub at https://github.com/rhubarbwu/linguistic-collapse .
comment: NeurIPS 2024; 35 pages; 30 figures; reverted to log mean norms for NC2
♻ ☆ Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration NeurIPS2024
Membership Inference Attacks (MIA) aim to infer whether a target data record has been utilized for model training or not. Existing MIAs designed for large language models (LLMs) can be bifurcated into two types: reference-free and reference-based attacks. Although reference-based attacks appear promising performance by calibrating the probability measured on the target model with reference models, this illusion of privacy risk heavily depends on a reference dataset that closely resembles the training set. Both two types of attacks are predicated on the hypothesis that training records consistently maintain a higher probability of being sampled. However, this hypothesis heavily relies on the overfitting of target models, which will be mitigated by multiple regularization methods and the generalization of LLMs. Thus, these reasons lead to high false-positive rates of MIAs in practical scenarios. We propose a Membership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA). Specifically, we introduce a self-prompt approach, which constructs the dataset to fine-tune the reference model by prompting the target LLM itself. In this manner, the adversary can collect a dataset with a similar distribution from public APIs. Furthermore, we introduce probabilistic variation, a more reliable membership signal based on LLM memorization rather than overfitting, from which we rediscover the neighbour attack with theoretical grounding. Comprehensive evaluation conducted on three datasets and four exemplary LLMs shows that SPV-MIA raises the AUC of MIAs from 0.7 to a significantly high level of 0.9. Our code and dataset are available at: https://github.com/tsinghua-fib-lab/NeurIPS2024_SPV-MIA
comment: Repo: https://github.com/tsinghua-fib-lab/NeurIPS2024_SPV-MIA
♻ ☆ Diagnosing Hate Speech Classification: Where Do Humans and Machines Disagree, and Why?
This study uses the cosine similarity ratio, embedding regression, and manual re-annotation to diagnose hate speech classification. We begin by computing cosine similarity ratio on a dataset "Measuring Hate Speech" that contains 135,556 annotated comments on social media. This way, we show a basic use of cosine similarity as a description of hate speech content. We then diagnose hate speech classification starting from understanding the inconsistency of human annotation from the dataset. Using embedding regression as a basic diagnostic, we found that female annotators are more sensitive to racial slurs that target the black population. We perform with a more complicated diagnostic by training a hate speech classifier using a SoTA pre-trained large language model, NV-Embed-v2, to convert texts to embeddings and run a logistic regression. This classifier achieves a testing accuracy of 94%. In diagnosing where machines disagree with human annotators, we found that machines make fewer mistakes than humans despite the fact that human annotations are treated as ground truth in the training set. Machines perform better in correctly labeling long statements of facts, but perform worse in labeling short instances of swear words. We hypothesize that this is due to model alignment - while curating models at their creation prevents the models from producing obvious hate speech, it also reduces the model's ability to detect such content.
♻ ☆ Desert Camels and Oil Sheikhs: Arab-Centric Red Teaming of Frontier LLMs
Large language models (LLMs) are widely used but raise ethical concerns due to embedded social biases. This study examines LLM biases against Arabs versus Westerners across eight domains, including women's rights, terrorism, and anti-Semitism and assesses model resistance to perpetuating these biases. To this end, we create two datasets: one to evaluate LLM bias toward Arabs versus Westerners and another to test model safety against prompts that exaggerate negative traits ("jailbreaks"). We evaluate six LLMs -- GPT-4, GPT-4o, LlaMA 3.1 (8B & 405B), Mistral 7B, and Claude 3.5 Sonnet. We find 79% of cases displaying negative biases toward Arabs, with LlaMA 3.1-405B being the most biased. Our jailbreak tests reveal GPT-4o as the most vulnerable, despite being an optimized version, followed by LlaMA 3.1-8B and Mistral 7B. All LLMs except Claude exhibit attack success rates above 87% in three categories. We also find Claude 3.5 Sonnet the safest, but it still displays biases in seven of eight categories. Despite being an optimized version of GPT4, We find GPT-4o to be more prone to biases and jailbreaks, suggesting optimization flaws. Our findings underscore the pressing need for more robust bias mitigation strategies and strengthened security measures in LLMs.
♻ ☆ CoTAR: Chain-of-Thought Attribution Reasoning with Multi-level Granularity EMNLP 2024
State-of-the-art performance in QA tasks is currently achieved by systems employing Large Language Models (LLMs), however these models tend to hallucinate information in their responses. One approach focuses on enhancing the generation process by incorporating attribution from the given input to the output. However, the challenge of identifying appropriate attributions and verifying their accuracy against a source is a complex task that requires significant improvements in assessing such systems. We introduce an attribution-oriented Chain-of-Thought reasoning method to enhance the accuracy of attributions. This approach focuses the reasoning process on generating an attribution-centric output. Evaluations on two context-enhanced question-answering datasets using GPT-4 demonstrate improved accuracy and correctness of attributions. In addition, the combination of our method with finetuning enhances the response and attribution accuracy of two smaller LLMs, showing their potential to outperform GPT-4 in some cases.
comment: Findings of the Association for Computational Linguistics: EMNLP 2024
♻ ☆ ImpScore: A Learnable Metric For Quantifying The Implicitness Level of Language
Handling implicit language is essential for natural language processing systems to achieve precise text understanding and facilitate natural interactions with users. Despite its importance, the absence of a metric for accurately measuring the implicitness of language significantly constrains the depth of analysis possible in evaluating models' comprehension capabilities. This paper addresses this gap by developing a scalar metric that quantifies the implicitness level of language without relying on external references. Drawing on principles from traditional linguistics, we define ''implicitness'' as the divergence between semantic meaning and pragmatic interpretation. To operationalize this definition, we introduce ImpScore, a novel, reference-free metric formulated through an interpretable regression model. This model is trained using pairwise contrastive learning on a specially curated dataset comprising $112,580$ (implicit sentence, explicit sentence) pairs. We validate ImpScore through a user study that compares its assessments with human evaluations on out-of-distribution data, demonstrating its accuracy and strong correlation with human judgments. Additionally, we apply ImpScore to hate speech detection datasets, illustrating its utility and highlighting significant limitations in current large language models' ability to understand highly implicit content.
♻ ☆ Multimodal Task Vectors Enable Many-Shot Multimodal In-Context Learning NeurIPS 2024
The recent success of interleaved Large Multimodal Models (LMMs) in few-shot learning suggests that in-context learning (ICL) with many examples can be promising for learning new tasks. However, this many-shot multimodal ICL setting has one crucial problem: it is fundamentally limited by the model's context length set at pretraining. The problem is especially prominent in the multimodal domain, which processes both text and images, requiring additional tokens. This motivates the need for a multimodal method to compress many shots into fewer tokens without finetuning. In this work, we enable LMMs to perform multimodal, many-shot in-context learning by leveraging Multimodal Task Vectors (MTV) -- compact implicit representations of in-context examples compressed in the model's attention heads. Specifically, we first demonstrate the existence of such MTV in LMMs and then leverage these extracted MTV to enable many-shot in-context learning for various vision-and-language tasks. Our experiments suggest that MTV can scale in performance with the number of compressed shots and generalize to similar out-of-domain tasks without additional context length for inference. Code: https://github.com/Brandon3964/MultiModal-Task-Vector
comment: Accepted to NeurIPS 2024
ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems
Much previous AI research has focused on developing monolithic models to maximize their intelligence, with the primary goal of enhancing performance on specific tasks. In contrast, this work attempts to study using LLM-based agents to design collaborative AI systems autonomously. To explore this problem, we first introduce ComfyBench to evaluate agents's ability to design collaborative AI systems in ComfyUI. ComfyBench is a comprehensive benchmark comprising 200 diverse tasks covering various instruction-following generation challenges, along with detailed annotations for 3,205 nodes and 20 workflows. Based on ComfyBench, we further develop ComfyAgent, a novel framework that empowers LLM-based agents to autonomously design collaborative AI systems by generating workflows. ComfyAgent is based on two core concepts. First, it represents workflows with code, which can be reversibly converted into workflows and executed as collaborative systems by the interpreter. Second, it constructs a multi-agent system that cooperates to learn from existing workflows and generate new workflows for a given task. While experimental results demonstrate that ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15\% of creative tasks. LLM-based agents still have a long way to go in autonomously designing collaborative AI systems. Progress with ComfyBench is paving the way for more intelligent and autonomous collaborative AI systems.
♻ ☆ All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages
Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
comment: A Multilingual Multimodal cultural benchmark for 100 languages
Computer Vision and Pattern Recognition 229
☆ Video-Guided Foley Sound Generation with Multimodal Controls
Generating sound effects for videos often requires creating artistic sound effects that diverge significantly from real-life sources and flexible control in the sound design. To address this problem, we introduce MultiFoley, a model designed for video-guided sound generation that supports multimodal conditioning through text, audio, and video. Given a silent video and a text prompt, MultiFoley allows users to create clean sounds (e.g., skateboard wheels spinning without wind noise) or more whimsical sounds (e.g., making a lion's roar sound like a cat's meow). MultiFoley also allows users to choose reference audio from sound effects (SFX) libraries or partial videos for conditioning. A key novelty of our model lies in its joint training on both internet video datasets with low-quality audio and professional SFX recordings, enabling high-quality, full-bandwidth (48kHz) audio generation. Through automated evaluations and human studies, we demonstrate that MultiFoley successfully generates synchronized high-quality sounds across varied conditional inputs and outperforms existing methods. Please see our project page for video results: https://ificl.github.io/MultiFoley/
comment: Project site: https://ificl.github.io/MultiFoley/
☆ StableAnimator: High-Quality Identity-Preserving Human Image Animation
Current diffusion models for human image animation struggle to ensure identity (ID) consistency. This paper presents StableAnimator, the first end-to-end ID-preserving video diffusion framework, which synthesizes high-quality videos without any post-processing, conditioned on a reference image and a sequence of poses. Building upon a video diffusion model, StableAnimator contains carefully designed modules for both training and inference striving for identity consistency. In particular, StableAnimator begins by computing image and face embeddings with off-the-shelf extractors, respectively and face embeddings are further refined by interacting with image embeddings using a global content-aware Face Encoder. Then, StableAnimator introduces a novel distribution-aware ID Adapter that prevents interference caused by temporal layers while preserving ID via alignment. During inference, we propose a novel Hamilton-Jacobi-Bellman (HJB) equation-based optimization to further enhance the face quality. We demonstrate that solving the HJB equation can be integrated into the diffusion denoising process, and the resulting solution constrains the denoising path and thus benefits ID preservation. Experiments on multiple benchmarks show the effectiveness of StableAnimator both qualitatively and quantitatively.
☆ ScribbleLight: Single Image Indoor Relighting with Scribbles
Image-based relighting of indoor rooms creates an immersive virtual understanding of the space, which is useful for interior design, virtual staging, and real estate. Relighting indoor rooms from a single image is especially challenging due to complex illumination interactions between multiple lights and cluttered objects featuring a large variety in geometrical and material complexity. Recently, generative models have been successfully applied to image-based relighting conditioned on a target image or a latent code, albeit without detailed local lighting control. In this paper, we introduce ScribbleLight, a generative model that supports local fine-grained control of lighting effects through scribbles that describe changes in lighting. Our key technical novelty is an Albedo-conditioned Stable Image Diffusion model that preserves the intrinsic color and texture of the original image after relighting and an encoder-decoder-based ControlNet architecture that enables geometry-preserving lighting effects with normal map and scribble annotations. We demonstrate ScribbleLight's ability to create different lighting effects (e.g., turning lights on/off, adding highlights, cast shadows, or indirect lighting from unseen lights) from sparse scribble annotations.
☆ Visatronic: A Multimodal Decoder-Only Model for Speech Synthesis
In this paper, we propose a new task -- generating speech from videos of people and their transcripts (VTTS) -- to motivate new techniques for multimodal speech generation. This task generalizes the task of generating speech from cropped lip videos, and is also more complicated than the task of generating generic audio clips (e.g., dog barking) from videos and text. Multilingual versions of the task could lead to new techniques for cross-lingual dubbing. We also present a decoder-only multimodal model for this task, which we call Visatronic. This model embeds vision, text and speech directly into the common subspace of a transformer model and uses an autoregressive loss to learn a generative model of discretized mel-spectrograms conditioned on speaker videos and transcripts of their speech. By embedding all modalities into a common subspace, Visatronic can achieve improved results over models that use only text or video as input. Further, it presents a much simpler approach for multimodal speech generation compared to prevailing approaches which rely on lip-detectors and complicated architectures to fuse modalities while producing better results. Since the model is flexible enough to accommodate different ways of ordering inputs as a sequence, we carefully explore different strategies to better understand the best way to propagate information to the generative steps. To facilitate further research on VTTS, we will release (i) our code, (ii) clean transcriptions for the large-scale VoxCeleb2 dataset, and (iii) a standardized evaluation protocol for VTTS incorporating both objective and subjective metrics.
☆ GenDeg: Diffusion-Based Degradation Synthesis for Generalizable All-in-One Image Restoration
Deep learning-based models for All-In-One Image Restoration (AIOR) have achieved significant advancements in recent years. However, their practical applicability is limited by poor generalization to samples outside the training distribution. This limitation arises primarily from insufficient diversity in degradation variations and scenes within existing datasets, resulting in inadequate representations of real-world scenarios. Additionally, capturing large-scale real-world paired data for degradations such as haze, low-light, and raindrops is often cumbersome and sometimes infeasible. In this paper, we leverage the generative capabilities of latent diffusion models to synthesize high-quality degraded images from their clean counterparts. Specifically, we introduce GenDeg, a degradation and intensity-aware conditional diffusion model capable of producing diverse degradation patterns on clean images. Using GenDeg, we synthesize over 550k samples across six degradation types: haze, rain, snow, motion blur, low-light, and raindrops. These generated samples are integrated with existing datasets to form the GenDS dataset, comprising over 750k samples. Our experiments reveal that image restoration models trained on the GenDS dataset exhibit significant improvements in out-of-distribution performance compared to those trained solely on existing datasets. Furthermore, we provide comprehensive analyses on the implications of diffusion model-based synthetic degradations for AIOR. The code will be made publicly available.
comment: Project Page: https://sudraj2002.github.io/gendegpage/
☆ Rethinking Token Reduction in MLLMs: Towards a Unified Paradigm for Training-Free Acceleration
To accelerate the inference of heavy Multimodal Large Language Models (MLLMs), this study rethinks the current landscape of training-free token reduction research. We regret to find that the critical components of existing methods are tightly intertwined, with their interconnections and effects remaining unclear for comparison, transfer, and expansion. Therefore, we propose a unified ''filter-correlate-compress'' paradigm that decomposes the token reduction into three distinct stages within a pipeline, maintaining consistent design objectives and elements while allowing for unique implementations. We additionally demystify the popular works and subsume them into our paradigm to showcase its universality. Finally, we offer a suite of methods grounded in the paradigm, striking a balance between speed and accuracy throughout different phases of the inference. Experimental results across 10 benchmarks indicate that our methods can achieve up to an 82.4% reduction in FLOPs with a minimal impact on performance, simultaneously surpassing state-of-the-art training-free methods. Our project page is at https://ficoco-accelerate.github.io/.
☆ SketchAgent: Language-Driven Sequential Sketch Generation
Sketching serves as a versatile tool for externalizing ideas, enabling rapid exploration and visual communication that spans various disciplines. While artificial systems have driven substantial advances in content creation and human-computer interaction, capturing the dynamic and abstract nature of human sketching remains challenging. In this work, we introduce SketchAgent, a language-driven, sequential sketch generation method that enables users to create, modify, and refine sketches through dynamic, conversational interactions. Our approach requires no training or fine-tuning. Instead, we leverage the sequential nature and rich prior knowledge of off-the-shelf multimodal large language models (LLMs). We present an intuitive sketching language, introduced to the model through in-context examples, enabling it to "draw" using string-based actions. These are processed into vector graphics and then rendered to create a sketch on a pixel canvas, which can be accessed again for further tasks. By drawing stroke by stroke, our agent captures the evolving, dynamic qualities intrinsic to sketching. We demonstrate that SketchAgent can generate sketches from diverse prompts, engage in dialogue-driven drawing, and collaborate meaningfully with human users.
comment: project page: https://sketch-agent.csail.mit.edu/
RoboPEPP: Vision-Based Robot Pose and Joint Angle Estimation through Embedding Predictive Pre-Training
Vision-based pose estimation of articulated robots with unknown joint angles has applications in collaborative robotics and human-robot interaction tasks. Current frameworks use neural network encoders to extract image features and downstream layers to predict joint angles and robot pose. While images of robots inherently contain rich information about the robot's physical structures, existing methods often fail to leverage it fully; therefore, limiting performance under occlusions and truncations. To address this, we introduce RoboPEPP, a method that fuses information about the robot's physical model into the encoder using a masking-based self-supervised embedding-predictive architecture. Specifically, we mask the robot's joints and pre-train an encoder-predictor model to infer the joints' embeddings from surrounding unmasked regions, enhancing the encoder's understanding of the robot's physical model. The pre-trained encoder-predictor pair, along with joint angle and keypoint prediction networks, is then fine-tuned for pose and joint angle estimation. Random masking of input during fine-tuning and keypoint filtering during evaluation further improves robustness. Our method, evaluated on several datasets, achieves the best results in robot pose and joint angle estimation while being the least sensitive to occlusions and requiring the lowest execution time.
☆ DROID-Splat: Combining end-to-end SLAM with 3D Gaussian Splatting
Recent progress in scene synthesis makes standalone SLAM systems purely based on optimizing hyperprimitives with a Rendering objective possible \cite{monogs}. However, the tracking performance still lacks behind traditional \cite{orbslam} and end-to-end SLAM systems \cite{droid}. An optimal trade-off between robustness, speed and accuracy has not yet been reached, especially for monocular video. In this paper, we introduce a SLAM system based on an end-to-end Tracker and extend it with a Renderer based on recent 3D Gaussian Splatting techniques. Our framework \textbf{DroidSplat} achieves both SotA tracking and rendering results on common SLAM benchmarks. We implemented multiple building blocks of modern SLAM systems to run in parallel, allowing for fast inference on common consumer GPU's. Recent progress in monocular depth prediction and camera calibration allows our system to achieve strong results even on in-the-wild data without known camera intrinsics. Code will be available at \url{https://github.com/ChenHoy/DROID-Splat}.
☆ SAMWISE: Infusing wisdom in SAM2 for Text-Driven Video Segmentation
Referring Video Object Segmentation (RVOS) relies on natural language expressions to segment an object in a video clip. Existing methods restrict reasoning either to independent short clips, losing global context, or process the entire video offline, impairing their application in a streaming fashion. In this work, we aim to surpass these limitations and design an RVOS method capable of effectively operating in streaming-like scenarios while retaining contextual information from past frames. We build upon the Segment-Anything 2 (SAM2) model, that provides robust segmentation and tracking capabilities and is naturally suited for streaming processing. We make SAM2 wiser, by empowering it with natural language understanding and explicit temporal modeling at the feature extraction stage, without fine-tuning its weights, and without outsourcing modality interaction to external models. To this end, we introduce a novel adapter module that injects temporal information and multi-modal cues in the feature extraction process. We further reveal the phenomenon of tracking bias in SAM2 and propose a learnable module to adjust its tracking focus when the current frame features suggest a new object more aligned with the caption. Our proposed method, SAMWISE, achieves state-of-the-art across various benchmarks, by adding a negligible overhead of just 4.2 M parameters. The code is available at https://github.com/ClaudiaCuttano/SAMWISE
☆ An Ensemble Approach for Brain Tumor Segmentation and Synthesis
The integration of machine learning in magnetic resonance imaging (MRI), specifically in neuroimaging, is proving to be incredibly effective, leading to better diagnostic accuracy, accelerated image analysis, and data-driven insights, which can potentially transform patient care. Deep learning models utilize multiple layers of processing to capture intricate details of complex data, which can then be used on a variety of tasks, including brain tumor classification, segmentation, image synthesis, and registration. Previous research demonstrates high accuracy in tumor segmentation using various model architectures, including nn-UNet and Swin-UNet. U-Mamba, which uses state space modeling, also achieves high accuracy in medical image segmentation. To leverage these models, we propose a deep learning framework that ensembles these state-of-the-art architectures to achieve accurate segmentation and produce finely synthesized images.
Accelerating Vision Diffusion Transformers with Skip Branches
Diffusion Transformers (DiT), an emerging image and video generation model architecture, has demonstrated great potential because of its high generation quality and scalability properties. Despite the impressive performance, its practical deployment is constrained by computational complexity and redundancy in the sequential denoising process. While feature caching across timesteps has proven effective in accelerating diffusion models, its application to DiT is limited by fundamental architectural differences from U-Net-based approaches. Through empirical analysis of DiT feature dynamics, we identify that significant feature variation between DiT blocks presents a key challenge for feature reusability. To address this, we convert standard DiT into Skip-DiT with skip branches to enhance feature smoothness. Further, we introduce Skip-Cache which utilizes the skip branches to cache DiT features across timesteps at the inference time. We validated effectiveness of our proposal on different DiT backbones for video and image generation, showcasing skip branches to help preserve generation quality and achieve higher speedup. Experimental results indicate that Skip-DiT achieves a 1.5x speedup almost for free and a 2.2x speedup with only a minor reduction in quantitative metrics. Code is available at https://github.com/OpenSparseLLMs/Skip-DiT.git.
comment: 17 pages, 8 figures
☆ Modality-Incremental Learning with Disjoint Relevance Mapping Networks for Image-based Semantic Segmentation WACV 2025
In autonomous driving, environment perception has significantly advanced with the utilization of deep learning techniques for diverse sensors such as cameras, depth sensors, or infrared sensors. The diversity in the sensor stack increases the safety and contributes to robustness against adverse weather and lighting conditions. However, the variance in data acquired from different sensors poses challenges. In the context of continual learning (CL), incremental learning is especially challenging for considerably large domain shifts, e.g. different sensor modalities. This amplifies the problem of catastrophic forgetting. To address this issue, we formulate the concept of modality-incremental learning and examine its necessity, by contrasting it with existing incremental learning paradigms. We propose the use of a modified Relevance Mapping Network (RMN) to incrementally learn new modalities while preserving performance on previously learned modalities, in which relevance maps are disjoint. Experimental results demonstrate that the prevention of shared connections in this approach helps alleviate the problem of forgetting within the constraints of a strict continual learning framework.
comment: Accepted at WACV 2025
☆ HyperSeg: Towards Universal Visual Segmentation with Large Language Model
This paper aims to address universal segmentation for image and video perception with the strong reasoning ability empowered by Visual Large Language Models (VLLMs). Despite significant progress in current unified segmentation methods, limitations in adaptation to both image and video scenarios, as well as the complex reasoning segmentation, make it difficult for them to handle various challenging instructions and achieve an accurate understanding of fine-grained vision-language correlations. We propose HyperSeg, the first VLLM-based universal segmentation model for pixel-level image and video perception, encompassing generic segmentation tasks and more complex reasoning perception tasks requiring powerful reasoning abilities and world knowledge. Besides, to fully leverage the recognition capabilities of VLLMs and the fine-grained visual information, HyperSeg incorporates hybrid entity recognition and fine-grained visual perceiver modules for various segmentation tasks. Combined with the temporal adapter, HyperSeg achieves a comprehensive understanding of temporal information. Experimental results validate the effectiveness of our insights in resolving universal image and video segmentation tasks, including the more complex reasoning perception tasks. Our code is available.
☆ Distractor-free Generalizable 3D Gaussian Splatting
We present DGGS, a novel framework addressing the previously unexplored challenge of Distractor-free Generalizable 3D Gaussian Splatting (3DGS). It accomplishes two key objectives: fortifying generalizable 3DGS against distractor-laden data during both training and inference phases, while successfully extending cross-scene adaptation capabilities to conventional distractor-free approaches. To achieve these objectives, DGGS introduces a scene-agnostic reference-based mask prediction and refinement methodology during training phase, coupled with a training view selection strategy, effectively improving distractor prediction accuracy and training stability. Moreover, to address distractor-induced voids and artifacts during inference stage, we propose a two-stage inference framework for better reference selection based on the predicted distractor masks, complemented by a distractor pruning module to eliminate residual distractor effects. Extensive generalization experiments demonstrate DGGS's advantages under distractor-laden conditions. Additionally, experimental results show that our scene-agnostic mask inference achieves accuracy comparable to scene-specific trained methods. Homepage is \url{https://github.com/bbbbby-99/DGGS}.
☆ VideoDirector: Precise Video Editing via Text-to-Video Models
Despite the typical inversion-then-editing paradigm using text-to-image (T2I) models has demonstrated promising results, directly extending it to text-to-video (T2V) models still suffers severe artifacts such as color flickering and content distortion. Consequently, current video editing methods primarily rely on T2I models, which inherently lack temporal-coherence generative ability, often resulting in inferior editing results. In this paper, we attribute the failure of the typical editing paradigm to: 1) Tightly Spatial-temporal Coupling. The vanilla pivotal-based inversion strategy struggles to disentangle spatial-temporal information in the video diffusion model; 2) Complicated Spatial-temporal Layout. The vanilla cross-attention control is deficient in preserving the unedited content. To address these limitations, we propose a spatial-temporal decoupled guidance (STDG) and multi-frame null-text optimization strategy to provide pivotal temporal cues for more precise pivotal inversion. Furthermore, we introduce a self-attention control strategy to maintain higher fidelity for precise partial content editing. Experimental results demonstrate that our method (termed VideoDirector) effectively harnesses the powerful temporal generation capabilities of T2V models, producing edited videos with state-of-the-art performance in accuracy, motion smoothness, realism, and fidelity to unedited content.
comment: 15 figures
Pre-training for Action Recognition with Automatically Generated Fractal Datasets
In recent years, interest in synthetic data has grown, particularly in the context of pre-training the image modality to support a range of computer vision tasks, including object classification, medical imaging etc. Previous work has demonstrated that synthetic samples, automatically produced by various generative processes, can replace real counterparts and yield strong visual representations. This approach resolves issues associated with real data such as collection and labeling costs, copyright and privacy. We extend this trend to the video domain applying it to the task of action recognition. Employing fractal geometry, we present methods to automatically produce large-scale datasets of short synthetic video clips, which can be utilized for pre-training neural models. The generated video clips are characterized by notable variety, stemmed by the innate ability of fractals to generate complex multi-scale structures. To narrow the domain gap, we further identify key properties of real videos and carefully emulate them during pre-training. Through thorough ablations, we determine the attributes that strengthen downstream results and offer general guidelines for pre-training with synthetic videos. The proposed approach is evaluated by fine-tuning pre-trained models on established action recognition datasets HMDB51 and UCF101 as well as four other video benchmarks related to group action recognition, fine-grained action recognition and dynamic scenes. Compared to standard Kinetics pre-training, our reported results come close and are even superior on a portion of downstream datasets. Code and samples of synthetic videos are available at https://github.com/davidsvy/fractal_video .
☆ Revisiting Point Cloud Completion: Are We Ready For The Real-World?
Point clouds acquired in constrained and challenging real-world settings are incomplete, non-uniformly sparse, or both. These obstacles present acute challenges for a vital task - point cloud completion. Using tools from Algebraic Topology and Persistent Homology ($\mathcal{PH}$), we demonstrate that current benchmark synthetic point clouds lack rich topological features that are important constituents of point clouds captured in realistic settings. To facilitate research in this direction, we contribute the first real-world industrial point cloud dataset for point cloud completion, RealPC - a diverse set of rich and varied point clouds, consisting of $\sim$ 40,000 pairs across 21 categories of industrial structures in railway establishments. Our benchmark results on several strong baselines reveal a striking observation - the existing methods are tailored for synthetic datasets and fail miserably in real-world settings. Building on our observation that RealPC consists of several 0 and 1-dimensional $\mathcal{PH}$-based topological features, we demonstrate the potential of integrating Homology-based topological priors into existing works. More specifically, we present how 0-dimensional $\mathcal{PH}$ priors, which extract the global topology of a complete shape in the form of a 3-D skeleton, can assist a model in generating topologically-consistent complete shapes.
☆ A Distractor-Aware Memory for Visual Object Tracking with SAM2
Memory-based trackers are video object segmentation methods that form the target model by concatenating recently tracked frames into a memory buffer and localize the target by attending the current image to the buffered frames. While already achieving top performance on many benchmarks, it was the recent release of SAM2 that placed memory-based trackers into focus of the visual object tracking community. Nevertheless, modern trackers still struggle in the presence of distractors. We argue that a more sophisticated memory model is required, and propose a new distractor-aware memory model for SAM2 and an introspection-based update strategy that jointly addresses the segmentation accuracy as well as tracking robustness. The resulting tracker is denoted as SAM2.1++. We also propose a new distractor-distilled DiDi dataset to study the distractor problem better. SAM2.1++ outperforms SAM2.1 and related SAM memory extensions on seven benchmarks and sets a solid new state-of-the-art on six of them.
comment: Under review. Code available on Github: https://github.com/jovanavidenovic/DAM4SAM
☆ Uncertainty quantification for White Matter Hyperintensity segmentation detects silent failures and improves automated Fazekas quantification
White Matter Hyperintensities (WMH) are key neuroradiological markers of small vessel disease present in brain MRI. Assessment of WMH is important in research and clinics. However, WMH are challenging to segment due to their high variability in shape, location, size, poorly defined borders, and similar intensity profile to other pathologies (e.g stroke lesions) and artefacts (e.g head motion). In this work, we apply the most effective techniques for uncertainty quantification (UQ) in segmentation to the WMH segmentation task across multiple test-time data distributions. We find a combination of Stochastic Segmentation Networks with Deep Ensembles yields the highest Dice and lowest Absolute Volume Difference % (AVD) score on in-domain and out-of-distribution data. We demonstrate the downstream utility of UQ, proposing a novel method for classification of the clinical Fazekas score using spatial features extracted for WMH segmentation and UQ maps. We show that incorporating WMH uncertainty information improves Fazekas classification performance and calibration, with median class balanced accuracy for classification models with (UQ and spatial WMH features)/(spatial WMH features)/(WMH volume only) of 0.71/0.66/0.60 in the Deep WMH and 0.82/0.77/0.73 in the Periventricular WMH regions respectively. We demonstrate that stochastic UQ techniques with high sample diversity can improve the detection of poor quality segmentations. Finally, we qualitatively analyse the semantic information captured by UQ techniques and demonstrate that uncertainty can highlight areas where there is ambiguity between WMH and stroke lesions, while identifying clusters of small WMH in deep white matter unsegmented by the model.
comment: 34 pages (or 22 not including appendix) 26 figures (or 11 not including appendix)
☆ Natural Language Understanding and Inference with MLLM in Visual Question Answering: A Survey
Visual Question Answering (VQA) is a challenge task that combines natural language processing and computer vision techniques and gradually becomes a benchmark test task in multimodal large language models (MLLMs). The goal of our survey is to provide an overview of the development of VQA and a detailed description of the latest models with high timeliness. This survey gives an up-to-date synthesis of natural language understanding of images and text, as well as the knowledge reasoning module based on image-question information on the core VQA tasks. In addition, we elaborate on recent advances in extracting and fusing modal information with vision-language pretraining models and multimodal large language models in VQA. We also exhaustively review the progress of knowledge reasoning in VQA by detailing the extraction of internal knowledge and the introduction of external knowledge. Finally, we present the datasets of VQA and different evaluation metrics and discuss possible directions for future work.
☆ A Bilayer Segmentation-Recombination Network for Accurate Segmentation of Overlapping C. elegans
Caenorhabditis elegans (C. elegans) is an excellent model organism because of its short lifespan and high degree of homology with human genes, and it has been widely used in a variety of human health and disease models. However, the segmentation of C. elegans remains challenging due to the following reasons: 1) the activity trajectory of C. elegans is uncontrollable, and multiple nematodes often overlap, resulting in blurred boundaries of C. elegans. This makes it impossible to clearly study the life trajectory of a certain nematode; and 2) in the microscope images of overlapping C. elegans, the translucent tissues at the edges obscure each other, leading to inaccurate boundary segmentation. To solve these problems, a Bilayer Segmentation-Recombination Network (BR-Net) for the segmentation of C. elegans instances is proposed. The network consists of three parts: A Coarse Mask Segmentation Module (CMSM), a Bilayer Segmentation Module (BSM), and a Semantic Consistency Recombination Module (SCRM). The CMSM is used to extract the coarse mask, and we introduce a Unified Attention Module (UAM) in CMSM to make CMSM better aware of nematode instances. The Bilayer Segmentation Module (BSM) segments the aggregated C. elegans into overlapping and non-overlapping regions. This is followed by integration by the SCRM, where semantic consistency regularization is introduced to segment nematode instances more accurately. Finally, the effectiveness of the method is verified on the C. elegans dataset. The experimental results show that BR-Net exhibits good competitiveness and outperforms other recently proposed instance segmentation methods in processing C. elegans occlusion images.
☆ TAFM-Net: A Novel Approach to Skin Lesion Segmentation Using Transformer Attention and Focal Modulation
Incorporating modern computer vision techniques into clinical protocols shows promise in improving skin lesion segmentation. The U-Net architecture has been a key model in this area, iteratively improved to address challenges arising from the heterogeneity of dermatologic images due to varying clinical settings, lighting, patient attributes, and hair density. To further improve skin lesion segmentation, we developed TAFM-Net, an innovative model leveraging self-adaptive transformer attention (TA) coupled with focal modulation (FM). Our model integrates an EfficientNetV2B1 encoder, which employs TA to enhance spatial and channel-related saliency, while a densely connected decoder integrates FM within skip connections, enhancing feature emphasis, segmentation performance, and interpretability crucial for medical image analysis. A novel dynamic loss function amalgamates region and boundary information, guiding effective model training. Our model achieves competitive performance, with Jaccard coefficients of 93.64\%, 86.88\% and 92.88\% in the ISIC2016, ISIC2017 and ISIC2018 datasets, respectively, demonstrating its potential in real-world scenarios.
☆ Rapid Deployment of Domain-specific Hyperspectral Image Processors with Application to Autonomous Driving
The article discusses the use of low cost System-On-Module (SOM) platforms for the implementation of efficient hyperspectral imaging (HSI) processors for application in autonomous driving. The work addresses the challenges of shaping and deploying multiple layer fully convolutional networks (FCN) for low-latency, on-board image semantic segmentation using resource- and power-constrained processing devices. The paper describes in detail the steps followed to redesign and customize a successfully trained HSI segmentation lightweight FCN that was previously tested on a high-end heterogeneous multiprocessing system-on-chip (MPSoC) to accommodate it to the constraints imposed by a low-cost SOM. This SOM features a lower-end but much cheaper MPSoC suitable for the deployment of automatic driving systems (ADS). In particular the article reports the data- and hardware-specific quantization techniques utilized to fit the FCN into a commercial fixed-point programmable AI coprocessor IP, and proposes a full customized post-training quantization scheme to reduce computation and storage costs without compromising segmentation accuracy.
☆ Box for Mask and Mask for Box: weak losses for multi-task partially supervised learning BMVC 2024
Object detection and semantic segmentation are both scene understanding tasks yet they differ in data structure and information level. Object detection requires box coordinates for object instances while semantic segmentation requires pixel-wise class labels. Making use of one task's information to train the other would be beneficial for multi-task partially supervised learning where each training example is annotated only for a single task, having the potential to expand training sets with different-task datasets. This paper studies various weak losses for partially annotated data in combination with existing supervised losses. We propose Box-for-Mask and Mask-for-Box strategies, and their combination BoMBo, to distil necessary information from one task annotations to train the other. Ablation studies and experimental results on VOC and COCO datasets show favorable results for the proposed idea. Source code and data splits can be found at https://github.com/lhoangan/multas.
comment: Accepted for publishing in BMVC 2024
☆ IMPROVE: Improving Medical Plausibility without Reliance on HumanValidation -- An Enhanced Prototype-Guided Diffusion Framework
Generative models have proven to be very effective in generating synthetic medical images and find applications in downstream tasks such as enhancing rare disease datasets, long-tailed dataset augmentation, and scaling machine learning algorithms. For medical applications, the synthetically generated medical images by such models are still reasonable in quality when evaluated based on traditional metrics such as FID score, precision, and recall. However, these metrics fail to capture the medical/biological plausibility of the generated images. Human expert feedback has been used to get biological plausibility which demonstrates that these generated images have very low plausibility. Recently, the research community has further integrated this human feedback through Reinforcement Learning from Human Feedback(RLHF), which generates more medically plausible images. However, incorporating human feedback is a costly and slow process. In this work, we propose a novel approach to improve the medical plausibility of generated images without the need for human feedback. We introduce IMPROVE:Improving Medical Plausibility without Reliance on Human Validation - An Enhanced Prototype-Guided Diffusion Framework, a prototype-guided diffusion process for medical image generation and show that it substantially enhances the biological plausibility of the generated medical images without the need for any human feedback. We perform experiments on Bone Marrow and HAM10000 datasets and show that medical accuracy can be substantially increased without human feedback.
☆ FTMoMamba: Motion Generation with Frequency and Text State Space Models
Diffusion models achieve impressive performance in human motion generation. However, current approaches typically ignore the significance of frequency-domain information in capturing fine-grained motions within the latent space (e.g., low frequencies correlate with static poses, and high frequencies align with fine-grained motions). Additionally, there is a semantic discrepancy between text and motion, leading to inconsistency between the generated motions and the text descriptions. In this work, we propose a novel diffusion-based FTMoMamba framework equipped with a Frequency State Space Model (FreqSSM) and a Text State Space Model (TextSSM). Specifically, to learn fine-grained representation, FreqSSM decomposes sequences into low-frequency and high-frequency components, guiding the generation of static pose (e.g., sits, lay) and fine-grained motions (e.g., transition, stumble), respectively. To ensure the consistency between text and motion, TextSSM encodes text features at the sentence level, aligning textual semantics with sequential features. Extensive experiments show that FTMoMamba achieves superior performance on the text-to-motion generation task, especially gaining the lowest FID of 0.181 (rather lower than 0.421 of MLD) on the HumanML3D dataset.
comment: 8 pages, 6 figures
☆ HSI-Drive v2.0: More Data for New Challenges in Scene Understanding for Autonomous Driving
We present the updated version of the HSI-Drive dataset aimed at developing automated driving systems (ADS) using hyperspectral imaging (HSI). The v2.0 version includes new annotated images from videos recorded during winter and fall in real driving scenarios. Added to the spring and summer images included in the previous v1.1 version, the new dataset contains 752 images covering the four seasons. In this paper, we show the improvements achieved over previously published results obtained on the v1.1 dataset, showcasing the enhanced performance of models trained on the new v2.0 dataset. We also show the progress made in comprehensive scene understanding by experimenting with more capable image segmentation models. These models include new segmentation categories aimed at the identification of essential road safety objects such as the presence of vehicles and road signs, as well as highly vulnerable groups like pedestrians and cyclists. In addition, we provide evidence of the performance and robustness of the models when applied to segmenting HSI video sequences captured in various environments and conditions. Finally, for a correct assessment of the results described in this work, the constraints imposed by the processing platforms that can sensibly be deployed in vehicles for ADS must be taken into account. Thus, and although implementation details are out of the scope of this paper, we focus our research on the development of computationally efficient, lightweight ML models that can eventually operate at high throughput rates. The dataset and some examples of segmented videos are available in https://ipaccess.ehu.eus/HSI-Drive/.
☆ On Statistical Rates of Conditional Diffusion Transformers: Approximation, Estimation and Minimax Optimality
We investigate the approximation and estimation rates of conditional diffusion transformers (DiTs) with classifier-free guidance. We present a comprehensive analysis for ``in-context'' conditional DiTs under four common data assumptions. We show that both conditional DiTs and their latent variants lead to the minimax optimality of unconditional DiTs under identified settings. Specifically, we discretize the input domains into infinitesimal grids and then perform a term-by-term Taylor expansion on the conditional diffusion score function under H\"older smooth data assumption. This enables fine-grained use of transformers' universal approximation through a more detailed piecewise constant approximation and hence obtains tighter bounds. Additionally, we extend our analysis to the latent setting under the linear latent subspace assumption. We not only show that latent conditional DiTs achieve lower bounds than conditional DiTs both in approximation and estimation, but also show the minimax optimality of latent unconditional DiTs. Our findings establish statistical limits for conditional and unconditional DiTs, and offer practical guidance toward developing more efficient and accurate DiT models.
SuperMat: Physically Consistent PBR Material Estimation at Interactive Rates
Decomposing physically-based materials from images into their constituent properties remains challenging, particularly when maintaining both computational efficiency and physical consistency. While recent diffusion-based approaches have shown promise, they face substantial computational overhead due to multiple denoising steps and separate models for different material properties. We present SuperMat, a single-step framework that achieves high-quality material decomposition with one-step inference. This enables end-to-end training with perceptual and re-render losses while decomposing albedo, metallic, and roughness maps at millisecond-scale speeds. We further extend our framework to 3D objects through a UV refinement network, enabling consistent material estimation across viewpoints while maintaining efficiency. Experiments demonstrate that SuperMat achieves state-of-the-art PBR material decomposition quality while reducing inference time from seconds to milliseconds per image, and completes PBR material estimation for 3D objects in approximately 3 seconds.
☆ Perceptually Optimized Super Resolution
Modern deep-learning based super-resolution techniques process images and videos independently of the underlying content and viewing conditions. However, the sensitivity of the human visual system to image details changes depending on the underlying content characteristics, such as spatial frequency, luminance, color, contrast, or motion. This observation hints that computational resources spent on up-sampling visual content may be wasted whenever a viewer cannot resolve the results. Motivated by this observation, we propose a perceptually inspired and architecture-agnostic approach for controlling the visual quality and efficiency of super-resolution techniques. The core is a perceptual model that dynamically guides super-resolution methods according to the human's sensitivity to image details. Our technique leverages the limitations of the human visual system to improve the efficiency of super-resolution techniques by focusing computational resources on perceptually important regions; judged on the basis of factors such as adapting luminance, contrast, spatial frequency, motion, and viewing conditions. We demonstrate the application of our proposed model in combination with network branching, and network complexity reduction to improve the computational efficiency of super-resolution methods without visible quality loss. Quantitative and qualitative evaluations, including user studies, demonstrate the effectiveness of our approach in reducing FLOPS by factors of 2$\mathbf{x}$ and greater, without sacrificing perceived quality.
☆ What's in the Image? A Deep-Dive into the Vision of Vision Language Models
Vision-Language Models (VLMs) have recently demonstrated remarkable capabilities in comprehending complex visual content. However, the mechanisms underlying how VLMs process visual information remain largely unexplored. In this paper, we conduct a thorough empirical analysis, focusing on attention modules across layers. We reveal several key insights about how these models process visual data: (i) the internal representation of the query tokens (e.g., representations of "describe the image"), is utilized by VLMs to store global image information; we demonstrate that these models generate surprisingly descriptive responses solely from these tokens, without direct access to image tokens. (ii) Cross-modal information flow is predominantly influenced by the middle layers (approximately 25% of all layers), while early and late layers contribute only marginally.(iii) Fine-grained visual attributes and object details are directly extracted from image tokens in a spatially localized manner, i.e., the generated tokens associated with a specific object or attribute attend strongly to their corresponding regions in the image. We propose novel quantitative evaluation to validate our observations, leveraging real-world complex visual scenes. Finally, we demonstrate the potential of our findings in facilitating efficient visual processing in state-of-the-art VLMs.
☆ Learning Visual Hierarchies with Hyperbolic Embeddings
Structuring latent representations in a hierarchical manner enables models to learn patterns at multiple levels of abstraction. However, most prevalent image understanding models focus on visual similarity, and learning visual hierarchies is relatively unexplored. In this work, for the first time, we introduce a learning paradigm that can encode user-defined multi-level visual hierarchies in hyperbolic space without requiring explicit hierarchical labels. As a concrete example, first, we define a part-based image hierarchy using object-level annotations within and across images. Then, we introduce an approach to enforce the hierarchy using contrastive loss with pairwise entailment metrics. Finally, we discuss new evaluation metrics to effectively measure hierarchical image retrieval. Encoding these complex relationships ensures that the learned representations capture semantic and structural information that transcends mere visual similarity. Experiments in part-based image retrieval show significant improvements in hierarchical retrieval tasks, demonstrating the capability of our model in capturing visual hierarchies.
☆ Puzzle Similarity: A Perceptually-guided No-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of no-reference image metrics in predicting detailed artifact maps. The absence of such quality metrics hinders accurate predictions of the quality of generated views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. In this work, we propose a new no-reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the input views to establish a scene-specific distribution that is later used to identify poorly reconstructed regions in the novel views. We test and evaluate our method in the context of 3D reconstruction; to this end, we collected a novel dataset of human quality assessment in unseen reconstructed views. Through this dataset, we demonstrate that our method can not only successfully localize artifacts in novel views, correlating with human assessment, but do so without direct references. Surprisingly, our metric outperforms both no-reference metrics and popular full-reference image metrics. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs.
☆ Structure-Guided MR-to-CT Synthesis with Spatial and Semantic Alignments for Attenuation Correction of Whole-Body PET/MR Imaging
Deep-learning-based MR-to-CT synthesis can estimate the electron density of tissues, thereby facilitating PET attenuation correction in whole-body PET/MR imaging. However, whole-body MR-to-CT synthesis faces several challenges including the issue of spatial misalignment and the complexity of intensity mapping, primarily due to the variety of tissues and organs throughout the whole body. Here we propose a novel whole-body MR-to-CT synthesis framework, which consists of three novel modules to tackle these challenges: (1) Structure-Guided Synthesis module leverages structure-guided attention gates to enhance synthetic image quality by diminishing unnecessary contours of soft tissues; (2) Spatial Alignment module yields precise registration between paired MR and CT images by taking into account the impacts of tissue volumes and respiratory movements, thus providing well-aligned ground-truth CT images during training; (3) Semantic Alignment module utilizes contrastive learning to constrain organ-related semantic information, thereby ensuring the semantic authenticity of synthetic CT images.We conduct extensive experiments to demonstrate that the proposed whole-body MR-to-CT framework can produce visually plausible and semantically realistic CT images, and validate its utility in PET attenuation correction.
☆ Dual-task Mutual Reinforcing Embedded Joint Video Paragraph Retrieval and Grounding
Video Paragraph Grounding (VPG) aims to precisely locate the most appropriate moments within a video that are relevant to a given textual paragraph query. However, existing methods typically rely on large-scale annotated temporal labels and assume that the correspondence between videos and paragraphs is known. This is impractical in real-world applications, as constructing temporal labels requires significant labor costs, and the correspondence is often unknown. To address this issue, we propose a Dual-task Mutual Reinforcing Embedded Joint Video Paragraph Retrieval and Grounding method (DMR-JRG). In this method, retrieval and grounding tasks are mutually reinforced rather than being treated as separate issues. DMR-JRG mainly consists of two branches: a retrieval branch and a grounding branch. The retrieval branch uses inter-video contrastive learning to roughly align the global features of paragraphs and videos, reducing modality differences and constructing a coarse-grained feature space to break free from the need for correspondence between paragraphs and videos. Additionally, this coarse-grained feature space further facilitates the grounding branch in extracting fine-grained contextual representations. In the grounding branch, we achieve precise cross-modal matching and grounding by exploring the consistency between local, global, and temporal dimensions of video segments and textual paragraphs. By synergizing these dimensions, we construct a fine-grained feature space for video and textual features, greatly reducing the need for large-scale annotated temporal labels.
comment: This work has been accepted with mandatory minor revisions by TMM
☆ TinyViM: Frequency Decoupling for Tiny Hybrid Vision Mamba
Mamba has shown great potential for computer vision due to its linear complexity in modeling the global context with respect to the input length. However, existing lightweight Mamba-based backbones cannot demonstrate performance that matches Convolution or Transformer-based methods. We observe that simply modifying the scanning path in the image domain is not conducive to fully exploiting the potential of vision Mamba. In this paper, we first perform comprehensive spectral and quantitative analyses, and verify that the Mamba block mainly models low-frequency information under Convolution-Mamba hybrid architecture. Based on the analyses, we introduce a novel Laplace mixer to decouple the features in terms of frequency and input only the low-frequency components into the Mamba block. In addition, considering the redundancy of the features and the different requirements for high-frequency details and low-frequency global information at different stages, we introduce a frequency ramp inception, i.e., gradually reduce the input dimensions of the high-frequency branches, so as to efficiently trade-off the high-frequency and low-frequency components at different layers. By integrating mobile-friendly convolution and efficient Laplace mixer, we build a series of tiny hybrid vision Mamba called TinyViM. The proposed TinyViM achieves impressive performance on several downstream tasks including image classification, semantic segmentation, object detection and instance segmentation. In particular, TinyViM outperforms Convolution, Transformer and Mamba-based models with similar scales, and the throughput is about 2-3 times higher than that of other Mamba-based models. Code is available at https://github.com/xwmaxwma/TinyViM.
☆ Adversarial Bounding Boxes Generation (ABBG) Attack against Visual Object Trackers NeurIPS2024
Adversarial perturbations aim to deceive neural networks into predicting inaccurate results. For visual object trackers, adversarial attacks have been developed to generate perturbations by manipulating the outputs. However, transformer trackers predict a specific bounding box instead of an object candidate list, which limits the applicability of many existing attack scenarios. To address this issue, we present a novel white-box approach to attack visual object trackers with transformer backbones using only one bounding box. From the tracker predicted bounding box, we generate a list of adversarial bounding boxes and compute the adversarial loss for those bounding boxes. Experimental results demonstrate that our simple yet effective attack outperforms existing attacks against several robust transformer trackers, including TransT-M, ROMTrack, and MixFormer, on popular benchmark tracking datasets such as GOT-10k, UAV123, and VOT2022STS.
comment: Accepted in The 3rd New Frontiers in Adversarial Machine Learning (AdvML Frontiers @NeurIPS2024)
☆ ShowUI: One Vision-Language-Action Model for GUI Visual Agent
Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity. While most agents are language-based, relying on closed-source API with text-rich meta-information (e.g., HTML or accessibility tree), they show limitations in perceiving UI visuals as humans do, highlighting the need for GUI visual agents. In this work, we develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations: (i) UI-Guided Visual Token Selection to reduce computational costs by formulating screenshots as an UI connected graph, adaptively identifying their redundant relationship and serve as the criteria for token selection during self-attention blocks; (ii) Interleaved Vision-Language-Action Streaming that flexibly unifies diverse needs within GUI tasks, enabling effective management of visual-action history in navigation or pairing multi-turn query-action sequences per screenshot to enhance training efficiency; (iii) Small-scale High-quality GUI Instruction-following Datasets by careful data curation and employing a resampling strategy to address significant data type imbalances. With above components, ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding. Its UI-guided token selection further reduces 33% of redundant visual tokens during training and speeds up the performance by 1.4x. Navigation experiments across web Mind2Web, mobile AITW, and online MiniWob environments further underscore the effectiveness and potential of our model in advancing GUI visual agents. The models are available at https://github.com/showlab/ShowUI.
comment: Technical Report. Github: https://github.com/showlab/ShowUI
☆ WF-VAE: Enhancing Video VAE by Wavelet-Driven Energy Flow for Latent Video Diffusion Model
Video Variational Autoencoder (VAE) encodes videos into a low-dimensional latent space, becoming a key component of most Latent Video Diffusion Models (LVDMs) to reduce model training costs. However, as the resolution and duration of generated videos increase, the encoding cost of Video VAEs becomes a limiting bottleneck in training LVDMs. Moreover, the block-wise inference method adopted by most LVDMs can lead to discontinuities of latent space when processing long-duration videos. The key to addressing the computational bottleneck lies in decomposing videos into distinct components and efficiently encoding the critical information. Wavelet transform can decompose videos into multiple frequency-domain components and improve the efficiency significantly, we thus propose Wavelet Flow VAE (WF-VAE), an autoencoder that leverages multi-level wavelet transform to facilitate low-frequency energy flow into latent representation. Furthermore, we introduce a method called Causal Cache, which maintains the integrity of latent space during block-wise inference. Compared to state-of-the-art video VAEs, WF-VAE demonstrates superior performance in both PSNR and LPIPS metrics, achieving 2x higher throughput and 4x lower memory consumption while maintaining competitive reconstruction quality. Our code and models are available at https://github.com/PKU-YuanGroup/WF-VAE.
comment: 8 pages, 7 figures
☆ Spatially Visual Perception for End-to-End Robotic Learning
Recent advances in imitation learning have shown significant promise for robotic control and embodied intelligence. However, achieving robust generalization across diverse mounted camera observations remains a critical challenge. In this paper, we introduce a video-based spatial perception framework that leverages 3D spatial representations to address environmental variability, with a focus on handling lighting changes. Our approach integrates a novel image augmentation technique, AugBlender, with a state-of-the-art monocular depth estimation model trained on internet-scale data. Together, these components form a cohesive system designed to enhance robustness and adaptability in dynamic scenarios. Our results demonstrate that our approach significantly boosts the success rate across diverse camera exposures, where previous models experience performance collapse. Our findings highlight the potential of video-based spatial perception models in advancing robustness for end-to-end robotic learning, paving the way for scalable, low-cost solutions in embodied intelligence.
comment: 8 pages, 5 figures
☆ FLEX-CLIP: Feature-Level GEneration Network Enhanced CLIP for X-shot Cross-modal Retrieval
Given a query from one modality, few-shot cross-modal retrieval (CMR) retrieves semantically similar instances in another modality with the target domain including classes that are disjoint from the source domain. Compared with classical few-shot CMR methods, vision-language pretraining methods like CLIP have shown great few-shot or zero-shot learning performance. However, they still suffer challenges due to (1) the feature degradation encountered in the target domain and (2) the extreme data imbalance. To tackle these issues, we propose FLEX-CLIP, a novel Feature-level Generation Network Enhanced CLIP. FLEX-CLIP includes two training stages. In multimodal feature generation, we propose a composite multimodal VAE-GAN network to capture real feature distribution patterns and generate pseudo samples based on CLIP features, addressing data imbalance. For common space projection, we develop a gate residual network to fuse CLIP features with projected features, reducing feature degradation in X-shot scenarios. Experimental results on four benchmark datasets show a 7%-15% improvement over state-of-the-art methods, with ablation studies demonstrating enhancement of CLIP features.
☆ VLRewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models
Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems, yet their own evaluation remains under-explored. Current assessment methods primarily rely on AI-annotated preference labels from traditional VL tasks, which can introduce biases and often fail to effectively challenge state-of-the-art models. To address these limitations, we introduce VL-RewardBench, a comprehensive benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks. Through our AI-assisted annotation pipeline combining sample selection with human verification, we curate 1,250 high-quality examples specifically designed to probe model limitations. Comprehensive evaluation across 16 leading large vision-language models, demonstrates VL-RewardBench's effectiveness as a challenging testbed, where even GPT-4o achieves only 65.4% accuracy, and state-of-the-art open-source models such as Qwen2-VL-72B, struggle to surpass random-guessing. Importantly, performance on VL-RewardBench strongly correlates (Pearson's r > 0.9) with MMMU-Pro accuracy using Best-of-N sampling with VL-GenRMs. Analysis experiments uncover three critical insights for improving VL-GenRMs: (i) models predominantly fail at basic visual perception tasks rather than reasoning tasks; (ii) inference-time scaling benefits vary dramatically by model capacity; and (iii) training VL-GenRMs to learn to judge substantially boosts judgment capability (+14.7% accuracy for a 7B VL-GenRM). We believe VL-RewardBench along with the experimental insights will become a valuable resource for advancing VL-GenRMs.
comment: Project page: https://vl-rewardbench.github.io
☆ Identity-Preserving Text-to-Video Generation by Frequency Decomposition
Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity. It is an important task in video generation but remains an open problem for generative models. This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in literature: (1) A tuning-free pipeline without tedious case-by-case finetuning, and (2) A frequency-aware heuristic identity-preserving DiT-based control scheme. We propose ConsisID, a tuning-free DiT-based controllable IPT2V model to keep human identity consistent in the generated video. Inspired by prior findings in frequency analysis of diffusion transformers, it employs identity-control signals in the frequency domain, where facial features can be decomposed into low-frequency global features and high-frequency intrinsic features. First, from a low-frequency perspective, we introduce a global facial extractor, which encodes reference images and facial key points into a latent space, generating features enriched with low-frequency information. These features are then integrated into shallow layers of the network to alleviate training challenges associated with DiT. Second, from a high-frequency perspective, we design a local facial extractor to capture high-frequency details and inject them into transformer blocks, enhancing the model's ability to preserve fine-grained features. We propose a hierarchical training strategy to leverage frequency information for identity preservation, transforming a vanilla pre-trained video generation model into an IPT2V model. Extensive experiments demonstrate that our frequency-aware heuristic scheme provides an optimal control solution for DiT-based models. Thanks to this scheme, our ConsisID generates high-quality, identity-preserving videos, making strides towards more effective IPT2V.
comment: 12 pages, 8 figures
☆ Object-centric proto-symbolic behavioural reasoning from pixels
Autonomous intelligent agents must bridge computational challenges at disparate levels of abstraction, from the low-level spaces of sensory input and motor commands to the high-level domain of abstract reasoning and planning. A key question in designing such agents is how best to instantiate the representational space that will interface between these two levels -- ideally without requiring supervision in the form of expensive data annotations. These objectives can be efficiently achieved by representing the world in terms of objects (grounded in perception and action). In this work, we present a novel, brain-inspired, deep-learning architecture that learns from pixels to interpret, control, and reason about its environment, using object-centric representations. We show the utility of our approach through tasks in synthetic environments that require a combination of (high-level) logical reasoning and (low-level) continuous control. Results show that the agent can learn emergent conditional behavioural reasoning, such as $(A \to B) \land (\neg A \to C)$, as well as logical composition $(A \to B) \land (A \to C) \vdash A \to (B \land C)$ and XOR operations, and successfully controls its environment to satisfy objectives deduced from these logical rules. The agent can adapt online to unexpected changes in its environment and is robust to mild violations of its world model, thanks to dynamic internal desired goal generation. While the present results are limited to synthetic settings (2D and 3D activated versions of dSprites), which fall short of real-world levels of complexity, the proposed architecture shows how to manipulate grounded object representations, as a key inductive bias for unsupervised learning, to enable behavioral reasoning.
Self-supervised Video Instance Segmentation Can Boost Geographic Entity Alignment in Historical Maps
Tracking geographic entities from historical maps, such as buildings, offers valuable insights into cultural heritage, urbanization patterns, environmental changes, and various historical research endeavors. However, linking these entities across diverse maps remains a persistent challenge for researchers. Traditionally, this has been addressed through a two-step process: detecting entities within individual maps and then associating them via a heuristic-based post-processing step. In this paper, we propose a novel approach that combines segmentation and association of geographic entities in historical maps using video instance segmentation (VIS). This method significantly streamlines geographic entity alignment and enhances automation. However, acquiring high-quality, video-format training data for VIS models is prohibitively expensive, especially for historical maps that often contain hundreds or thousands of geographic entities. To mitigate this challenge, we explore self-supervised learning (SSL) techniques to enhance VIS performance on historical maps. We evaluate the performance of VIS models under different pretraining configurations and introduce a novel method for generating synthetic videos from unlabeled historical map images for pretraining. Our proposed self-supervised VIS method substantially reduces the need for manual annotation. Experimental results demonstrate the superiority of the proposed self-supervised VIS approach, achieving a 24.9\% improvement in AP and a 0.23 increase in F1 score compared to the model trained from scratch.
☆ DRiVE: Diffusion-based Rigging Empowers Generation of Versatile and Expressive Characters
Recent advances in generative models have enabled high-quality 3D character reconstruction from multi-modal. However, animating these generated characters remains a challenging task, especially for complex elements like garments and hair, due to the lack of large-scale datasets and effective rigging methods. To address this gap, we curate AnimeRig, a large-scale dataset with detailed skeleton and skinning annotations. Building upon this, we propose DRiVE, a novel framework for generating and rigging 3D human characters with intricate structures. Unlike existing methods, DRiVE utilizes a 3D Gaussian representation, facilitating efficient animation and high-quality rendering. We further introduce GSDiff, a 3D Gaussian-based diffusion module that predicts joint positions as spatial distributions, overcoming the limitations of regression-based approaches. Extensive experiments demonstrate that DRiVE achieves precise rigging results, enabling realistic dynamics for clothing and hair, and surpassing previous methods in both quality and versatility. The code and dataset will be made public for academic use upon acceptance.
Multimodal Outer Arithmetic Block Dual Fusion of Whole Slide Images and Omics Data for Precision Oncology
Developing a central nervous system (CNS) tumor classifier by integrating DNA methylation data with Whole Slide Images (WSI) offers significant potential for enhancing diagnostic precision in neuropathology. Existing approaches typically integrate encoded omic data with histology only once - either at an early or late fusion stage - while reintroducing encoded omic data to create a dual fusion variant remains unexplored. Nevertheless, reintroduction of omic embeddings during early and late fusion enables the capture of complementary information from localized patch-level and holistic slide-level interactions, allowing boosted performance through advanced multimodal integration. To achieve this, we propose a dual fusion framework that integrates omic data at both early and late stages, fully leveraging its diagnostic strength. In the early fusion stage, omic embeddings are projected into a patch-wise latent space, generating omic-WSI embeddings that encapsulate per-patch molecular and morphological insights, effectively incorporating this information into the spatial representation of histology. These embeddings are refined with a multiple instance learning gated attention mechanism to attend to critical patches. In the late fusion stage, we reintroduce the omic data by fusing it with slide-level omic-WSI embeddings using a Multimodal Outer Arithmetic Block (MOAB), which richly intermingles features from both modalities, capturing their global correlations and complementarity. We demonstrate accurate CNS tumor subtyping across 20 fine-grained subtypes and validate our approach on benchmark datasets, achieving improved survival prediction on TCGA-BLCA and competitive performance on TCGA-BRCA compared to state-of-the-art methods. This dual fusion strategy enhances interpretability and classification performance, highlighting its potential for clinical diagnostics.
☆ CoA: Chain-of-Action for Generative Semantic Labels
Recent advances in vision-language models (VLM) have demonstrated remarkable capability in image classification. These VLMs leverage a predefined set of categories to construct text prompts for zero-shot reasoning. However, in more open-ended domains like autonomous driving, using a predefined set of labels becomes impractical, as the semantic label space is unknown and constantly evolving. Additionally, fixed embedding text prompts often tend to predict a single label (while in reality, multiple labels commonly exist per image). In this paper, we introduce CoA, an innovative Chain-of-Action (CoA) method that generates labels aligned with all contextually relevant features of an image. CoA is designed based on the observation that enriched and valuable contextual information improves generative performance during inference. Traditional vision-language models tend to output singular and redundant responses. Therefore, we employ a tailored CoA to alleviate this problem. We first break down the generative labeling task into detailed actions and construct an CoA leading to the final generative objective. Each action extracts and merges key information from the previous action and passes the enriched information as context to the next action, ultimately improving the VLM in generating comprehensive and accurate semantic labels. We assess the effectiveness of CoA through comprehensive evaluations on widely-used benchmark datasets and the results demonstrate significant improvements across key performance metrics.
comment: 15 pages, 8 figures
☆ NumGrad-Pull: Numerical Gradient Guided Tri-plane Representation for Surface Reconstruction from Point Clouds
Reconstructing continuous surfaces from unoriented and unordered 3D points is a fundamental challenge in computer vision and graphics. Recent advancements address this problem by training neural signed distance functions to pull 3D location queries to their closest points on a surface, following the predicted signed distances and the analytical gradients computed by the network. In this paper, we introduce NumGrad-Pull, leveraging the representation capability of tri-plane structures to accelerate the learning of signed distance functions and enhance the fidelity of local details in surface reconstruction. To further improve the training stability of grid-based tri-planes, we propose to exploit numerical gradients, replacing conventional analytical computations. Additionally, we present a progressive plane expansion strategy to facilitate faster signed distance function convergence and design a data sampling strategy to mitigate reconstruction artifacts. Our extensive experiments across a variety of benchmarks demonstrate the effectiveness and robustness of our approach. Code is available at https://github.com/CuiRuikai/NumGrad-Pull
comment: 10 pages, 5 figures
☆ Dual-Representation Interaction Driven Image Quality Assessment with Restoration Assistance WACV
No-Reference Image Quality Assessment for distorted images has always been a challenging problem due to image content variance and distortion diversity. Previous IQA models mostly encode explicit single-quality features of synthetic images to obtain quality-aware representations for quality score prediction. However, performance decreases when facing real-world distortion and restored images from restoration models. The reason is that they do not consider the degradation factors of the low-quality images adequately. To address this issue, we first introduce the DRI method to obtain degradation vectors and quality vectors of images, which separately model the degradation and quality information of low-quality images. After that, we add the restoration network to provide the MOS score predictor with degradation information. Then, we design the Representation-based Semantic Loss (RS Loss) to assist in enhancing effective interaction between representations. Extensive experimental results demonstrate that the proposed method performs favorably against existing state-of-the-art models on both synthetic and real-world datasets.
comment: 8 pages,6 figures, published to WACV
☆ vesselFM: A Foundation Model for Universal 3D Blood Vessel Segmentation
Segmenting 3D blood vessels is a critical yet challenging task in medical image analysis. This is due to significant imaging modality-specific variations in artifacts, vascular patterns and scales, signal-to-noise ratios, and background tissues. These variations, along with domain gaps arising from varying imaging protocols, limit the generalization of existing supervised learning-based methods, requiring tedious voxel-level annotations for each dataset separately. While foundation models promise to alleviate this limitation, they typically fail to generalize to the task of blood vessel segmentation, posing a unique, complex problem. In this work, we present vesselFM, a foundation model designed specifically for the broad task of 3D blood vessel segmentation. Unlike previous models, vesselFM can effortlessly generalize to unseen domains. To achieve zero-shot generalization, we train vesselFM on three heterogeneous data sources: a large, curated annotated dataset, data generated by a domain randomization scheme, and data sampled from a flow matching-based generative model. Extensive evaluations show that vesselFM outperforms state-of-the-art medical image segmentation foundation models across four (pre-)clinically relevant imaging modalities in zero-, one-, and few-shot scenarios, therefore providing a universal solution for 3D blood vessel segmentation.
☆ DepthCues: Evaluating Monocular Depth Perception in Large Vision Models
Large-scale pre-trained vision models are becoming increasingly prevalent, offering expressive and generalizable visual representations that benefit various downstream tasks. Recent studies on the emergent properties of these models have revealed their high-level geometric understanding, in particular in the context of depth perception. However, it remains unclear how depth perception arises in these models without explicit depth supervision provided during pre-training. To investigate this, we examine whether the monocular depth cues, similar to those used by the human visual system, emerge in these models. We introduce a new benchmark, DepthCues, designed to evaluate depth cue understanding, and present findings across 20 diverse and representative pre-trained vision models. Our analysis shows that human-like depth cues emerge in more recent larger models. We also explore enhancing depth perception in large vision models by fine-tuning on DepthCues, and find that even without dense depth supervision, this improves depth estimation. To support further research, our benchmark and evaluation code will be made publicly available for studying depth perception in vision models.
comment: Website: https://danier97.github.io/depthcues/
☆ AnchorCrafter: Animate CyberAnchors Saling Your Products via Human-Object Interacting Video Generation
The automatic generation of anchor-style product promotion videos presents promising opportunities in online commerce, advertising, and consumer engagement. However, this remains a challenging task despite significant advancements in pose-guided human video generation. In addressing this challenge, we identify the integration of human-object interactions (HOI) into pose-guided human video generation as a core issue. To this end, we introduce AnchorCrafter, a novel diffusion-based system designed to generate 2D videos featuring a target human and a customized object, achieving high visual fidelity and controllable interactions. Specifically, we propose two key innovations: the HOI-appearance perception, which enhances object appearance recognition from arbitrary multi-view perspectives and disentangles object and human appearance, and the HOI-motion injection, which enables complex human-object interactions by overcoming challenges in object trajectory conditioning and inter-occlusion management. Additionally, we introduce the HOI-region reweighting loss, a training objective that enhances the learning of object details. Extensive experiments demonstrate that our proposed system outperforms existing methods in preserving object appearance and shape awareness, while simultaneously maintaining consistency in human appearance and motion. Project page: https://cangcz.github.io/Anchor-Crafter/
☆ RealTraj: Towards Real-World Pedestrian Trajectory Forecasting
This paper jointly addresses three key limitations in conventional pedestrian trajectory forecasting: pedestrian perception errors, real-world data collection costs, and person ID annotation costs. We propose a novel framework, RealTraj, that enhances the real-world applicability of trajectory forecasting. Our approach includes two training phases--self-supervised pretraining on synthetic data and weakly-supervised fine-tuning with limited real-world data--to minimize data collection efforts. To improve robustness to real-world errors, we focus on both model design and training objectives. Specifically, we present Det2TrajFormer, a trajectory forecasting model that remains invariant in tracking noise by using past detections as inputs. Additionally, we pretrain the model using multiple pretext tasks, which enhance robustness and improve forecasting performance based solely on detection data. Unlike previous trajectory forecasting methods, our approach fine-tunes the model using only ground-truth detections, significantly reducing the need for costly person ID annotations. In the experiments, we comprehensively verify the effectiveness of the proposed method against the limitations, and the method outperforms state-of-the-art trajectory forecasting methods on multiple datasets.
☆ SAM-MPA: Applying SAM to Few-shot Medical Image Segmentation using Mask Propagation and Auto-prompting NeurIPS 2024
Medical image segmentation often faces the challenge of prohibitively expensive annotation costs. While few-shot learning offers a promising solution to alleviate this burden, conventional approaches still rely heavily on pre-training with large volumes of labeled data from known categories. To address this issue, we propose leveraging the Segment Anything Model (SAM), pre-trained on over 1 billion masks, thus circumventing the need for extensive domain-specific annotated data. In light of this, we developed SAM-MPA, an innovative SAM-based framework for few-shot medical image segmentation using Mask Propagation-based Auto-prompting. Initially, we employ k-centroid clustering to select the most representative examples for labelling to construct the support set. These annotated examples are registered to other images yielding deformation fields that facilitate the propagation of the mask knowledge to obtain coarse masks across the dataset. Subsequently, we automatically generate visual prompts based on the region and boundary expansion of the coarse mask, including points, box and a coarse mask. Finally, we can obtain the segmentation predictions by inputting these prompts into SAM and refine the results by post refinement module. We validate the performance of the proposed framework through extensive experiments conducted on two medical image datasets with different modalities. Our method achieves Dices of 74.53%, 94.36% on Breast US, Chest X-ray, respectively. Experimental results substantiate that SAM-MPA yields high-accuracy segmentations within 10 labeled examples, outperforming other state-of-the-art few-shot auto-segmentation methods. Our method enables the customization of SAM for any medical image dataset with a small number of labeled examples.
comment: Accepted as an oral presentation at NeurIPS 2024 AIM-FM Workshop
☆ DWCL: Dual-Weighted Contrastive Learning for Multi-View Clustering
Multi-view contrastive clustering (MVCC) has gained significant attention for generating consistent clustering structures from multiple views through contrastive learning. However, most existing MVCC methods create cross-views by combining any two views, leading to a high volume of unreliable pairs. Furthermore, these approaches often overlook discrepancies in multi-view representations, resulting in representation degeneration. To address these challenges, we introduce a novel model called Dual-Weighted Contrastive Learning (DWCL) for Multi-View Clustering. Specifically, to reduce the impact of unreliable cross-views, we introduce an innovative Best-Other (B-O) contrastive mechanism that enhances the representation of individual views at a low computational cost. Furthermore, we develop a dual weighting strategy that combines a view quality weight, reflecting the quality of each view, with a view discrepancy weight. This approach effectively mitigates representation degeneration by downplaying cross-views that are both low in quality and high in discrepancy. We theoretically validate the efficiency of the B-O contrastive mechanism and the effectiveness of the dual weighting strategy. Extensive experiments demonstrate that DWCL outperforms previous methods across eight multi-view datasets, showcasing superior performance and robustness in MVCC. Specifically, our method achieves absolute accuracy improvements of 5.4\% and 5.6\% compared to state-of-the-art methods on the Caltech6V7 and MSRCv1 datasets, respectively.
☆ Real-Time Multimodal Signal Processing for HRI in RoboCup: Understanding a Human Referee
Advancing human-robot communication is crucial for autonomous systems operating in dynamic environments, where accurate real-time interpretation of human signals is essential. RoboCup provides a compelling scenario for testing these capabilities, requiring robots to understand referee gestures and whistle with minimal network reliance. Using the NAO robot platform, this study implements a two-stage pipeline for gesture recognition through keypoint extraction and classification, alongside continuous convolutional neural networks (CCNNs) for efficient whistle detection. The proposed approach enhances real-time human-robot interaction in a competitive setting like RoboCup, offering some tools to advance the development of autonomous systems capable of cooperating with humans.
comment: 11th Italian Workshop on Artificial Intelligence and Robotics (AIRO 2024), Published in CEUR Workshop Proceedings AI*IA Series
☆ Automatic Skull Reconstruction by Deep Learnable Symmetry Enforcement
Every year, thousands of people suffer from skull damage and require personalized implants to fill the cranial cavity. Unfortunately, the waiting time for reconstruction surgery can extend to several weeks or even months, especially in less developed countries. One factor contributing to the extended waiting period is the intricate process of personalized implant modeling. Currently, the preparation of these implants by experienced biomechanical experts is both costly and time-consuming. Recent advances in artificial intelligence, especially in deep learning, offer promising potential for automating the process. However, deep learning-based cranial reconstruction faces several challenges: (i) the limited size of training datasets, (ii) the high resolution of the volumetric data, and (iii) significant data heterogeneity. In this work, we propose a novel approach to address these challenges by enhancing the reconstruction through learnable symmetry enforcement. We demonstrate that it is possible to train a neural network dedicated to calculating skull symmetry, which can be utilized either as an additional objective function during training or as a post-reconstruction objective during the refinement step. We quantitatively evaluate the proposed method using open SkullBreak and SkullFix datasets, and qualitatively using real clinical cases. The results indicate that the symmetry-preserving reconstruction network achieves considerably better outcomes compared to the baseline (0.94/0.94/1.31 vs 0.84/0.76/2.43 in terms of DSC, bDSC, and HD95). Moreover, the results are comparable to the best-performing methods while requiring significantly fewer computational resources (< 500 vs > 100,000 GPU hours). The proposed method is a considerable contribution to the field of applied artificial intelligence in medicine and is a step toward automatic cranial defect reconstruction in clinical practice.
☆ TDAvec: Computing Vector Summaries of Persistence Diagrams for Topological Data Analysis in R and Python
Persistent homology is a widely-used tool in topological data analysis (TDA) for understanding the underlying shape of complex data. By constructing a filtration of simplicial complexes from data points, it captures topological features such as connected components, loops, and voids across multiple scales. These features are encoded in persistence diagrams (PDs), which provide a concise summary of the data's topological structure. However, the non-Hilbert nature of the space of PDs poses challenges for their direct use in machine learning applications. To address this, kernel methods and vectorization techniques have been developed to transform PDs into machine-learning-compatible formats. In this paper, we introduce a new software package designed to streamline the vectorization of PDs, offering an intuitive workflow and advanced functionalities. We demonstrate the necessity of the package through practical examples and provide a detailed discussion on its contributions to applied TDA. Definitions of all vectorization summaries used in the package are included in the appendix.
comment: 7 pages, 2 figures, 3 tables
☆ MotionLLaMA: A Unified Framework for Motion Synthesis and Comprehension
This paper introduces MotionLLaMA, a unified framework for motion synthesis and comprehension, along with a novel full-body motion tokenizer called the HoMi Tokenizer. MotionLLaMA is developed based on three core principles. First, it establishes a powerful unified representation space through the HoMi Tokenizer. Using a single codebook, the HoMi Tokenizer in MotionLLaMA achieves reconstruction accuracy comparable to residual vector quantization tokenizers utilizing six codebooks, outperforming all existing single-codebook tokenizers. Second, MotionLLaMA integrates a large language model to tackle various motion-related tasks. This integration bridges various modalities, facilitating both comprehensive and intricate motion synthesis and comprehension. Third, MotionLLaMA introduces the MotionHub dataset, currently the most extensive multimodal, multitask motion dataset, which enables fine-tuning of large language models. Extensive experimental results demonstrate that MotionLLaMA not only covers the widest range of motion-related tasks but also achieves state-of-the-art (SOTA) performance in motion completion, interaction dual-person text-to-motion, and all comprehension tasks while reaching performance comparable to SOTA in the remaining tasks. The code and MotionHub dataset are publicly available.
☆ InsightEdit: Towards Better Instruction Following for Image Editing
In this paper, we focus on the task of instruction-based image editing. Previous works like InstructPix2Pix, InstructDiffusion, and SmartEdit have explored end-to-end editing. However, two limitations still remain: First, existing datasets suffer from low resolution, poor background consistency, and overly simplistic instructions. Second, current approaches mainly condition on the text while the rich image information is underexplored, therefore inferior in complex instruction following and maintaining background consistency. Targeting these issues, we first curated the AdvancedEdit dataset using a novel data construction pipeline, formulating a large-scale dataset with high visual quality, complex instructions, and good background consistency. Then, to further inject the rich image information, we introduce a two-stream bridging mechanism utilizing both the textual and visual features reasoned by the powerful Multimodal Large Language Models (MLLM) to guide the image editing process more precisely. Extensive results demonstrate that our approach, InsightEdit, achieves state-of-the-art performance, excelling in complex instruction following and maintaining high background consistency with the original image.
☆ Event Ellipsometer: Event-based Mueller-Matrix Video Imaging
Light-matter interactions modify both the intensity and polarization state of light. Changes in polarization, represented by a Mueller matrix, encode detailed scene information. Existing optical ellipsometers capture Mueller-matrix images; however, they are often limited to capturing static scenes due to long acquisition times. Here, we introduce Event Ellipsometer, a method for acquiring a Mueller-matrix video for dynamic scenes. Our imaging system employs fast-rotating quarter-wave plates (QWPs) in front of a light source and an event camera that asynchronously captures intensity changes induced by the rotating QWPs. We develop an ellipsometric-event image formation model, a calibration method, and an ellipsometric-event reconstruction method. We experimentally demonstrate that Event Ellipsometer enables Mueller-matrix video imaging at 30fps, extending ellipsometry to dynamic scenes.
☆ Reward Incremental Learning in Text-to-Image Generation
The recent success of denoising diffusion models has significantly advanced text-to-image generation. While these large-scale pretrained models show excellent performance in general image synthesis, downstream objectives often require fine-tuning to meet specific criteria such as aesthetics or human preference. Reward gradient-based strategies are promising in this context, yet existing methods are limited to single-reward tasks, restricting their applicability in real-world scenarios that demand adapting to multiple objectives introduced incrementally over time. In this paper, we first define this more realistic and unexplored problem, termed Reward Incremental Learning (RIL), where models are desired to adapt to multiple downstream objectives incrementally. Additionally, while the models adapt to the ever-emerging new objectives, we observe a unique form of catastrophic forgetting in diffusion model fine-tuning, affecting both metric-wise and visual structure-wise image quality. To address this catastrophic forgetting challenge, we propose Reward Incremental Distillation (RID), a method that mitigates forgetting with minimal computational overhead, enabling stable performance across sequential reward tasks. The experimental results demonstrate the efficacy of RID in achieving consistent, high-quality generation in RIL scenarios. The source code of our work will be publicly available upon acceptance.
comment: Under review
☆ in-Car Biometrics (iCarB) Datasets for Driver Recognition: Face, Fingerprint, and Voice
We present three biometric datasets (iCarB-Face, iCarB-Fingerprint, iCarB-Voice) containing face videos, fingerprint images, and voice samples, collected inside a car from 200 consenting volunteers. The data was acquired using a near-infrared camera, two fingerprint scanners, and two microphones, while the volunteers were seated in the driver's seat of the car. The data collection took place while the car was parked both indoors and outdoors, and different "noises" were added to simulate non-ideal biometric data capture that may be encountered in real-life driver recognition. Although the datasets are specifically tailored to in-vehicle biometric recognition, their utility is not limited to the automotive environment. The iCarB datasets, which are available to the research community, can be used to: (i) evaluate and benchmark face, fingerprint, and voice recognition systems (we provide several evaluation protocols); (ii) create multimodal pseudo-identities, to train/test multimodal fusion algorithms; (iii) create Presentation Attacks from the biometric data, to evaluate Presentation Attack Detection algorithms; (iv) investigate demographic and environmental biases in biometric systems, using the provided metadata. To the best of our knowledge, ours are the largest and most diverse publicly available in-vehicle biometric datasets. Most other datasets contain only one biometric modality (usually face), while our datasets consist of three modalities, all acquired in the same automotive environment. Moreover, iCarB-Fingerprint seems to be the first publicly available in-vehicle fingerprint dataset. Finally, the iCarB datasets boast a rare level of demographic diversity among the 200 data subjects, including a 50/50 gender split, skin colours across the whole Fitzpatrick-scale spectrum, and a wide age range (18-60+). So, these datasets will be valuable for advancing biometrics research.
comment: 8 pages, 13 figures, 4 tables
☆ Task Progressive Curriculum Learning for Robust Visual Question Answering
Visual Question Answering (VQA) systems are known for their poor performance in out-of-distribution datasets. An issue that was addressed in previous works through ensemble learning, answer re-ranking, or artificially growing the training set. In this work, we show for the first time that robust Visual Question Answering is attainable by simply enhancing the training strategy. Our proposed approach, Task Progressive Curriculum Learning (TPCL), breaks the main VQA problem into smaller, easier tasks based on the question type. Then, it progressively trains the model on a (carefully crafted) sequence of tasks. We further support the method by a novel distributional-based difficulty measurer. Our approach is conceptually simple, model-agnostic, and easy to implement. We demonstrate TPCL effectiveness through a comprehensive evaluation on standard datasets. Without either data augmentation or explicit debiasing mechanism, it achieves state-of-the-art on VQA-CP v2, VQA-CP v1 and VQA v2 datasets. Extensive experiments demonstrate that TPCL outperforms the most competitive robust VQA approaches by more than 5% and 7% on VQA-CP v2 and VQA-CP v1; respectively. TPCL also can boost VQA baseline backbone performance by up to 28.5%.
☆ Interpretable label-free self-guided subspace clustering
Majority subspace clustering (SC) algorithms depend on one or more hyperparameters that need to be carefully tuned for the SC algorithms to achieve high clustering performance. Hyperparameter optimization (HPO) is often performed using grid-search, assuming that some labeled data is available. In some domains, such as medicine, this assumption does not hold true in many cases. One avenue of research focuses on developing SC algorithms that are inherently free of hyperparameters. For hyperparameters-dependent SC algorithms, one approach to label-independent HPO tuning is based on internal clustering quality metrics (if available), whose performance should ideally match that of external (label-dependent) clustering quality metrics. In this paper, we propose a novel approach to label-independent HPO that uses clustering quality metrics, such as accuracy (ACC) or normalized mutual information (NMI), that are computed based on pseudo-labels obtained from the SC algorithm across a predefined grid of hyperparameters. Assuming that ACC (or NMI) is a smooth function of hyperparameter values it is possible to select subintervals of hyperparameters. These subintervals are then iteratively further split into halves or thirds until a relative error criterion is satisfied. In principle, the hyperparameters of any SC algorithm can be tuned using the proposed method. We demonstrate this approach on several single- and multi-view SC algorithms, comparing the achieved performance with their oracle versions across six datasets representing digits, faces and objects. The proposed method typically achieves clustering performance that is 5% to 7% lower than that of the oracle versions. We also make our proposed method interpretable by visualizing subspace bases, which are estimated from the computed clustering partitions. This aids in the initial selection of the hyperparameter search space.
comment: 45 pages; 3 figures; 10 tables
☆ BadScan: An Architectural Backdoor Attack on Visual State Space Models
The newly introduced Visual State Space Model (VMamba), which employs \textit{State Space Mechanisms} (SSM) to interpret images as sequences of patches, has shown exceptional performance compared to Vision Transformers (ViT) across various computer vision tasks. However, recent studies have highlighted that deep models are susceptible to adversarial attacks. One common approach is to embed a trigger in the training data to retrain the model, causing it to misclassify data samples into a target class, a phenomenon known as a backdoor attack. In this paper, we first evaluate the robustness of the VMamba model against existing backdoor attacks. Based on this evaluation, we introduce a novel architectural backdoor attack, termed BadScan, designed to deceive the VMamba model. This attack utilizes bit plane slicing to create visually imperceptible backdoored images. During testing, if a trigger is detected by performing XOR operations between the $k^{th}$ bit planes of the modified triggered patches, the traditional 2D selective scan (SS2D) mechanism in the visual state space (VSS) block of VMamba is replaced with our newly designed BadScan block, which incorporates four newly developed scanning patterns. We demonstrate that the BadScan backdoor attack represents a significant threat to visual state space models and remains effective even after complete retraining from scratch. Experimental results on two widely used image classification datasets, CIFAR-10, and ImageNet-1K, reveal that while visual state space models generally exhibit robustness against current backdoor attacks, the BadScan attack is particularly effective, achieving a higher Triggered Accuracy Ratio (TAR) in misleading the VMamba model and its variants.
☆ A Topic-level Self-Correctional Approach to Mitigate Hallucinations in MLLMs
Aligning the behaviors of Multimodal Large Language Models (MLLMs) with human preferences is crucial for developing robust and trustworthy AI systems. While recent attempts have employed human experts or powerful auxiliary AI systems to provide more accurate preference feedback, such as determining the preferable responses from MLLMs or directly rewriting hallucination-free responses, extensive resource overhead compromise the scalability of the feedback collection. In this work, we introduce Topic-level Preference Overwriting (TPO), a self-correctional approach that guide the model itself to mitigate its own hallucination at the topic level. Through a deconfounded strategy that replaces each topic within the response with the best or worst alternatives generated by the model itself, TPO creates more contrasting pairwise preference feedback, enhancing the feedback quality without human or proprietary model intervention. Notably, the experimental results demonstrate proposed TPO achieves state-of-the-art performance in trustworthiness, significantly reducing the object hallucinations by 92% and overall hallucinations by 38%. Code, model and data will be released.
☆ HEIE: MLLM-Based Hierarchical Explainable AIGC Image Implausibility Evaluator
AIGC images are prevalent across various fields, yet they frequently suffer from quality issues like artifacts and unnatural textures. Specialized models aim to predict defect region heatmaps but face two primary challenges: (1) lack of explainability, failing to provide reasons and analyses for subtle defects, and (2) inability to leverage common sense and logical reasoning, leading to poor generalization. Multimodal large language models (MLLMs) promise better comprehension and reasoning but face their own challenges: (1) difficulty in fine-grained defect localization due to the limitations in capturing tiny details; and (2) constraints in providing pixel-wise outputs necessary for precise heatmap generation. To address these challenges, we propose HEIE: a novel MLLM-Based Hierarchical Explainable image Implausibility Evaluator. We introduce the CoT-Driven Explainable Trinity Evaluator, which integrates heatmaps, scores, and explanation outputs, using CoT to decompose complex tasks into subtasks of increasing difficulty and enhance interpretability. Our Adaptive Hierarchical Implausibility Mapper synergizes low-level image features with high-level mapper tokens from LLMs, enabling precise local-to-global hierarchical heatmap predictions through an uncertainty-based adaptive token approach. Moreover, we propose a new dataset: Expl-AIGI-Eval, designed to facilitate interpretable implausibility evaluation of AIGC images. Our method demonstrates state-of-the-art performance through extensive experiments.
☆ MiceBoneChallenge: Micro-CT public dataset and six solutions for automatic growth plate detection in micro-CT mice bone scans
Detecting and quantifying bone changes in micro-CT scans of rodents is a common task in preclinical drug development studies. However, this task is manual, time-consuming and subject to inter- and intra-observer variability. In 2024, Anonymous Company organized an internal challenge to develop models for automatic bone quantification. We prepared and annotated a high-quality dataset of 3D $\mu$CT bone scans from $83$ mice. The challenge attracted over $80$ AI scientists from around the globe who formed $23$ teams. The participants were tasked with developing a solution to identify the plane where the bone growth happens, which is essential for fully automatic segmentation of trabecular bone. As a result, six computer vision solutions were developed that can accurately identify the location of the growth plate plane. The solutions achieved the mean absolute error of $1.91\pm0.87$ planes from the ground truth on the test set, an accuracy level acceptable for practical use by a radiologist. The annotated 3D scans dataset along with the six solutions and source code, is being made public, providing researchers with opportunities to develop and benchmark their own approaches. The code, trained models, and the data will be shared.
comment: Under Review
☆ Semantic Data Augmentation for Long-tailed Facial Expression Recognition
Facial Expression Recognition has a wide application prospect in social robotics, health care, driver fatigue monitoring, and many other practical scenarios. Automatic recognition of facial expressions has been extensively studied by the Computer Vision research society. But Facial Expression Recognition in real-world is still a challenging task, partially due to the long-tailed distribution of the dataset. Many recent studies use data augmentation for Long-Tailed Recognition tasks. In this paper, we propose a novel semantic augmentation method. By introducing randomness into the encoding of the source data in the latent space of VAE-GAN, new samples are generated. Then, for facial expression recognition in RAF-DB dataset, we use our augmentation method to balance the long-tailed distribution. Our method can be used in not only FER tasks, but also more diverse data-hungry scenarios.
☆ LHPF: Look back the History and Plan for the Future in Autonomous Driving
Decision-making and planning in autonomous driving critically reflect the safety of the system, making effective planning imperative. Current imitation learning-based planning algorithms often merge historical trajectories with present observations to predict future candidate paths. However, these algorithms typically assess the current and historical plans independently, leading to discontinuities in driving intentions and an accumulation of errors with each step in a discontinuous plan. To tackle this challenge, this paper introduces LHPF, an imitation learning planner that integrates historical planning information. Our approach employs a historical intention aggregation module that pools historical planning intentions, which are then combined with a spatial query vector to decode the final planning trajectory. Furthermore, we incorporate a comfort auxiliary task to enhance the human-like quality of the driving behavior. Extensive experiments using both real-world and synthetic data demonstrate that LHPF not only surpasses existing advanced learning-based planners in planning performance but also marks the first instance of a purely learning-based planner outperforming the expert. Additionally, the application of the historical intention aggregation module across various backbones highlights the considerable potential of the proposed method. The code will be made publicly available.
☆ DGNN-YOLO: Dynamic Graph Neural Networks with YOLO11 for Small Object Detection and Tracking in Traffic Surveillance
Accurate detection and tracking of small objects such as pedestrians, cyclists, and motorbikes are critical for traffic surveillance systems, which are crucial in improving road safety and decision-making in intelligent transportation systems. However, traditional methods struggle with challenges such as occlusion, low resolution, and dynamic traffic conditions, necessitating innovative approaches to address these limitations. This paper introduces DGNN-YOLO, a novel framework integrating dynamic graph neural networks (DGNN) with YOLO11 to enhance small object detection and tracking in traffic surveillance systems. The framework leverages YOLO11's advanced spatial feature extraction capabilities for precise object detection and incorporates DGNN to model spatial-temporal relationships for robust real-time tracking dynamically. By constructing and updating graph structures, DGNN-YOLO effectively represents objects as nodes and their interactions as edges, ensuring adaptive and accurate tracking in complex and dynamic environments. Extensive experiments demonstrate that DGNN-YOLO consistently outperforms state-of-the-art methods in detecting and tracking small objects under diverse traffic conditions, achieving the highest precision (0.8382), recall (0.6875), and mAP@0.5:0.95 (0.6476), showcasing its robustness and scalability, particularly in challenging scenarios involving small and occluded objects. This work provides a scalable, real-time traffic surveillance and analysis solution, significantly contributing to intelligent transportation systems.
☆ Buffer Anytime: Zero-Shot Video Depth and Normal from Image Priors
We present Buffer Anytime, a framework for estimation of depth and normal maps (which we call geometric buffers) from video that eliminates the need for paired video--depth and video--normal training data. Instead of relying on large-scale annotated video datasets, we demonstrate high-quality video buffer estimation by leveraging single-image priors with temporal consistency constraints. Our zero-shot training strategy combines state-of-the-art image estimation models based on optical flow smoothness through a hybrid loss function, implemented via a lightweight temporal attention architecture. Applied to leading image models like Depth Anything V2 and Marigold-E2E-FT, our approach significantly improves temporal consistency while maintaining accuracy. Experiments show that our method not only outperforms image-based approaches but also achieves results comparable to state-of-the-art video models trained on large-scale paired video datasets, despite using no such paired video data.
☆ DiffSLT: Enhancing Diversity in Sign Language Translation via Diffusion Model
Sign language translation (SLT) is challenging, as it involves converting sign language videos into natural language. Previous studies have prioritized accuracy over diversity. However, diversity is crucial for handling lexical and syntactic ambiguities in machine translation, suggesting it could similarly benefit SLT. In this work, we propose DiffSLT, a novel gloss-free SLT framework that leverages a diffusion model, enabling diverse translations while preserving sign language semantics. DiffSLT transforms random noise into the target latent representation, conditioned on the visual features of input video. To enhance visual conditioning, we design Guidance Fusion Module, which fully utilizes the multi-level spatiotemporal information of the visual features. We also introduce DiffSLT-P, a DiffSLT variant that conditions on pseudo-glosses and visual features, providing key textual guidance and reducing the modality gap. As a result, DiffSLT and DiffSLT-P significantly improve diversity over previous gloss-free SLT methods and achieve state-of-the-art performance on two SLT datasets, thereby markedly improving translation quality.
comment: Project page: https://diffslt.github.io/
☆ Boost 3D Reconstruction using Diffusion-based Monocular Camera Calibration
In this paper, we present DM-Calib, a diffusion-based approach for estimating pinhole camera intrinsic parameters from a single input image. Monocular camera calibration is essential for many 3D vision tasks. However, most existing methods depend on handcrafted assumptions or are constrained by limited training data, resulting in poor generalization across diverse real-world images. Recent advancements in stable diffusion models, trained on massive data, have shown the ability to generate high-quality images with varied characteristics. Emerging evidence indicates that these models implicitly capture the relationship between camera focal length and image content. Building on this insight, we explore how to leverage the powerful priors of diffusion models for monocular pinhole camera calibration. Specifically, we introduce a new image-based representation, termed Camera Image, which losslessly encodes the numerical camera intrinsics and integrates seamlessly with the diffusion framework. Using this representation, we reformulate the problem of estimating camera intrinsics as the generation of a dense Camera Image conditioned on an input image. By fine-tuning a stable diffusion model to generate a Camera Image from a single RGB input, we can extract camera intrinsics via a RANSAC operation. We further demonstrate that our monocular calibration method enhances performance across various 3D tasks, including zero-shot metric depth estimation, 3D metrology, pose estimation and sparse-view reconstruction. Extensive experiments on multiple public datasets show that our approach significantly outperforms baselines and provides broad benefits to 3D vision tasks. Code is available at https://github.com/JunyuanDeng/DM-Calib.
☆ Grounding-IQA: Multimodal Language Grounding Model for Image Quality Assessment
The development of multimodal large language models (MLLMs) enables the evaluation of image quality through natural language descriptions. This advancement allows for more detailed assessments. However, these MLLM-based IQA methods primarily rely on general contextual descriptions, sometimes limiting fine-grained quality assessment. To address this limitation, we introduce a new image quality assessment (IQA) task paradigm, grounding-IQA. This paradigm integrates multimodal referring and grounding with IQA to realize more fine-grained quality perception. Specifically, grounding-IQA comprises two subtasks: grounding-IQA-description (GIQA-DES) and visual question answering (GIQA-VQA). GIQA-DES involves detailed descriptions with precise locations (e.g., bounding boxes), while GIQA-VQA focuses on quality QA for local regions. To realize grounding-IQA, we construct a corresponding dataset, GIQA-160K, through our proposed automated annotation pipeline. Furthermore, we develop a well-designed benchmark, GIQA-Bench. The benchmark comprehensively evaluates the model grounding-IQA performance from three perspectives: description quality, VQA accuracy, and grounding precision. Experiments demonstrate that our proposed task paradigm, dataset, and benchmark facilitate the more fine-grained IQA application. Code: https://github.com/zhengchen1999/Grounding-IQA.
comment: Code is available at: https://github.com/zhengchen1999/Grounding-IQA
☆ MLI-NeRF: Multi-Light Intrinsic-Aware Neural Radiance Fields
Current methods for extracting intrinsic image components, such as reflectance and shading, primarily rely on statistical priors. These methods focus mainly on simple synthetic scenes and isolated objects and struggle to perform well on challenging real-world data. To address this issue, we propose MLI-NeRF, which integrates \textbf{M}ultiple \textbf{L}ight information in \textbf{I}ntrinsic-aware \textbf{Ne}ural \textbf{R}adiance \textbf{F}ields. By leveraging scene information provided by different light source positions complementing the multi-view information, we generate pseudo-label images for reflectance and shading to guide intrinsic image decomposition without the need for ground truth data. Our method introduces straightforward supervision for intrinsic component separation and ensures robustness across diverse scene types. We validate our approach on both synthetic and real-world datasets, outperforming existing state-of-the-art methods. Additionally, we demonstrate its applicability to various image editing tasks. The code and data are publicly available.
comment: Accepted paper for the International Conference on 3D Vision 2025. Project page: https://github.com/liulisixin/MLI-NeRF
☆ MWFormer: Multi-Weather Image Restoration Using Degradation-Aware Transformers
Restoring images captured under adverse weather conditions is a fundamental task for many computer vision applications. However, most existing weather restoration approaches are only capable of handling a specific type of degradation, which is often insufficient in real-world scenarios, such as rainy-snowy or rainy-hazy weather. Towards being able to address these situations, we propose a multi-weather Transformer, or MWFormer for short, which is a holistic vision Transformer that aims to solve multiple weather-induced degradations using a single, unified architecture. MWFormer uses hyper-networks and feature-wise linear modulation blocks to restore images degraded by various weather types using the same set of learned parameters. We first employ contrastive learning to train an auxiliary network that extracts content-independent, distortion-aware feature embeddings that efficiently represent predicted weather types, of which more than one may occur. Guided by these weather-informed predictions, the image restoration Transformer adaptively modulates its parameters to conduct both local and global feature processing, in response to multiple possible weather. Moreover, MWFormer allows for a novel way of tuning, during application, to either a single type of weather restoration or to hybrid weather restoration without any retraining, offering greater controllability than existing methods. Our experimental results on multi-weather restoration benchmarks show that MWFormer achieves significant performance improvements compared to existing state-of-the-art methods, without requiring much computational cost. Moreover, we demonstrate that our methodology of using hyper-networks can be integrated into various network architectures to further boost their performance. The code is available at: https://github.com/taco-group/MWFormer
comment: Accepted by IEEE Transactions on Image Processing. The code is available at: https://github.com/taco-group/MWFormer
☆ DreamMix: Decoupling Object Attributes for Enhanced Editability in Customized Image Inpainting
Subject-driven image inpainting has emerged as a popular task in image editing alongside recent advancements in diffusion models. Previous methods primarily focus on identity preservation but struggle to maintain the editability of inserted objects. In response, this paper introduces DreamMix, a diffusion-based generative model adept at inserting target objects into given scenes at user-specified locations while concurrently enabling arbitrary text-driven modifications to their attributes. In particular, we leverage advanced foundational inpainting models and introduce a disentangled local-global inpainting framework to balance precise local object insertion with effective global visual coherence. Additionally, we propose an Attribute Decoupling Mechanism (ADM) and a Textual Attribute Substitution (TAS) module to improve the diversity and discriminative capability of the text-based attribute guidance, respectively. Extensive experiments demonstrate that DreamMix effectively balances identity preservation and attribute editability across various application scenarios, including object insertion, attribute editing, and small object inpainting. Our code is publicly available at https://github.com/mycfhs/DreamMix.
☆ AIGV-Assessor: Benchmarking and Evaluating the Perceptual Quality of Text-to-Video Generation with LMM
The rapid advancement of large multimodal models (LMMs) has led to the rapid expansion of artificial intelligence generated videos (AIGVs), which highlights the pressing need for effective video quality assessment (VQA) models designed specifically for AIGVs. Current VQA models generally fall short in accurately assessing the perceptual quality of AIGVs due to the presence of unique distortions, such as unrealistic objects, unnatural movements, or inconsistent visual elements. To address this challenge, we first present AIGVQA-DB, a large-scale dataset comprising 36,576 AIGVs generated by 15 advanced text-to-video models using 1,048 diverse prompts. With these AIGVs, a systematic annotation pipeline including scoring and ranking processes is devised, which collects 370k expert ratings to date. Based on AIGVQA-DB, we further introduce AIGV-Assessor, a novel VQA model that leverages spatiotemporal features and LMM frameworks to capture the intricate quality attributes of AIGVs, thereby accurately predicting precise video quality scores and video pair preferences. Through comprehensive experiments on both AIGVQA-DB and existing AIGV databases, AIGV-Assessor demonstrates state-of-the-art performance, significantly surpassing existing scoring or evaluation methods in terms of multiple perceptual quality dimensions.
Promptable Anomaly Segmentation with SAM Through Self-Perception Tuning
Segment Anything Model (SAM) has made great progress in anomaly segmentation tasks due to its impressive generalization ability. However, existing methods that directly apply SAM through prompting often overlook the domain shift issue, where SAM performs well on natural images but struggles in industrial scenarios. Parameter-Efficient Fine-Tuning (PEFT) offers a promising solution, but it may yield suboptimal performance by not adequately addressing the perception challenges during adaptation to anomaly images. In this paper, we propose a novel Self-Perceptinon Tuning (SPT) method, aiming to enhance SAM's perception capability for anomaly segmentation. The SPT method incorporates a self-drafting tuning strategy, which generates an initial coarse draft of the anomaly mask, followed by a refinement process. Additionally, a visual-relation-aware adapter is introduced to improve the perception of discriminative relational information for mask generation. Extensive experimental results on several benchmark datasets demonstrate that our SPT method can significantly outperform baseline methods, validating its effectiveness. Models and codes will be available online.
☆ MAT: Multi-Range Attention Transformer for Efficient Image Super-Resolution
Recent advances in image super-resolution (SR) have significantly benefited from the incorporation of Transformer architectures. However, conventional techniques aimed at enlarging the self-attention window to capture broader contexts come with inherent drawbacks, especially the significantly increased computational demands. Moreover, the feature perception within a fixed-size window of existing models restricts the effective receptive fields and the intermediate feature diversity. This study demonstrates that a flexible integration of attention across diverse spatial extents can yield significant performance enhancements. In line with this insight, we introduce Multi-Range Attention Transformer (MAT) tailored for SR tasks. MAT leverages the computational advantages inherent in dilation operation, in conjunction with self-attention mechanism, to facilitate both multi-range attention (MA) and sparse multi-range attention (SMA), enabling efficient capture of both regional and sparse global features. Further coupled with local feature extraction, MAT adeptly capture dependencies across various spatial ranges, improving the diversity and efficacy of its feature representations. We also introduce the MSConvStar module, which augments the model's ability for multi-range representation learning. Comprehensive experiments show that our MAT exhibits superior performance to existing state-of-the-art SR models with remarkable efficiency (~3.3 faster than SRFormer-light).
☆ Scaling nnU-Net for CBCT Segmentation
This paper presents our approach to scaling the nnU-Net framework for multi-structure segmentation on Cone Beam Computed Tomography (CBCT) images, specifically in the scope of the ToothFairy2 Challenge. We leveraged the nnU-Net ResEnc L model, introducing key modifications to patch size, network topology, and data augmentation strategies to address the unique challenges of dental CBCT imaging. Our method achieved a mean Dice coefficient of 0.9253 and HD95 of 18.472 on the test set, securing a mean rank of 4.6 and with it the first place in the ToothFairy2 challenge. The source code is publicly available, encouraging further research and development in the field.
comment: Fabian Isensee and Yannick Kirchhoff contributed equally
☆ LampMark: Proactive Deepfake Detection via Training-Free Landmark Perceptual Watermarks ACM MM 2024
Deepfake facial manipulation has garnered significant public attention due to its impacts on enhancing human experiences and posing privacy threats. Despite numerous passive algorithms that have been attempted to thwart malicious Deepfake attacks, they mostly struggle with the generalizability challenge when confronted with hyper-realistic synthetic facial images. To tackle the problem, this paper proposes a proactive Deepfake detection approach by introducing a novel training-free landmark perceptual watermark, LampMark for short. We first analyze the structure-sensitive characteristics of Deepfake manipulations and devise a secure and confidential transformation pipeline from the structural representations, i.e. facial landmarks, to binary landmark perceptual watermarks. Subsequently, we present an end-to-end watermarking framework that imperceptibly and robustly embeds and extracts watermarks concerning the images to be protected. Relying on promising watermark recovery accuracies, Deepfake detection is accomplished by assessing the consistency between the content-matched landmark perceptual watermark and the robustly recovered watermark of the suspect image. Experimental results demonstrate the superior performance of our approach in watermark recovery and Deepfake detection compared to state-of-the-art methods across in-dataset, cross-dataset, and cross-manipulation scenarios.
comment: Accepted to ACM MM 2024
☆ cWDM: Conditional Wavelet Diffusion Models for Cross-Modality 3D Medical Image Synthesis
This paper contributes to the "BraTS 2024 Brain MR Image Synthesis Challenge" and presents a conditional Wavelet Diffusion Model (cWDM) for directly solving a paired image-to-image translation task on high-resolution volumes. While deep learning-based brain tumor segmentation models have demonstrated clear clinical utility, they typically require MR scans from various modalities (T1, T1ce, T2, FLAIR) as input. However, due to time constraints or imaging artifacts, some of these modalities may be missing, hindering the application of well-performing segmentation algorithms in clinical routine. To address this issue, we propose a method that synthesizes one missing modality image conditioned on three available images, enabling the application of downstream segmentation models. We treat this paired image-to-image translation task as a conditional generation problem and solve it by combining a Wavelet Diffusion Model for high-resolution 3D image synthesis with a simple conditioning strategy. This approach allows us to directly apply our model to full-resolution volumes, avoiding artifacts caused by slice- or patch-wise data processing. While this work focuses on a specific application, the presented method can be applied to all kinds of paired image-to-image translation problems, such as CT $\leftrightarrow$ MR and MR $\leftrightarrow$ PET translation, or mask-conditioned anatomically guided image generation.
comment: BraTS 2024 (Global Synthesis) submission. Code: https://github.com/pfriedri/cwdm
☆ SelfSplat: Pose-Free and 3D Prior-Free Generalizable 3D Gaussian Splatting
We propose SelfSplat, a novel 3D Gaussian Splatting model designed to perform pose-free and 3D prior-free generalizable 3D reconstruction from unposed multi-view images. These settings are inherently ill-posed due to the lack of ground-truth data, learned geometric information, and the need to achieve accurate 3D reconstruction without finetuning, making it difficult for conventional methods to achieve high-quality results. Our model addresses these challenges by effectively integrating explicit 3D representations with self-supervised depth and pose estimation techniques, resulting in reciprocal improvements in both pose accuracy and 3D reconstruction quality. Furthermore, we incorporate a matching-aware pose estimation network and a depth refinement module to enhance geometry consistency across views, ensuring more accurate and stable 3D reconstructions. To present the performance of our method, we evaluated it on large-scale real-world datasets, including RealEstate10K, ACID, and DL3DV. SelfSplat achieves superior results over previous state-of-the-art methods in both appearance and geometry quality, also demonstrates strong cross-dataset generalization capabilities. Extensive ablation studies and analysis also validate the effectiveness of our proposed methods. Code and pretrained models are available at https://gynjn.github.io/selfsplat/
comment: Project page: https://gynjn.github.io/selfsplat/
☆ PhysMotion: Physics-Grounded Dynamics From a Single Image
We introduce PhysMotion, a novel framework that leverages principled physics-based simulations to guide intermediate 3D representations generated from a single image and input conditions (e.g., applied force and torque), producing high-quality, physically plausible video generation. By utilizing continuum mechanics-based simulations as a prior knowledge, our approach addresses the limitations of traditional data-driven generative models and result in more consistent physically plausible motions. Our framework begins by reconstructing a feed-forward 3D Gaussian from a single image through geometry optimization. This representation is then time-stepped using a differentiable Material Point Method (MPM) with continuum mechanics-based elastoplasticity models, which provides a strong foundation for realistic dynamics, albeit at a coarse level of detail. To enhance the geometry, appearance and ensure spatiotemporal consistency, we refine the initial simulation using a text-to-image (T2I) diffusion model with cross-frame attention, resulting in a physically plausible video that retains intricate details comparable to the input image. We conduct comprehensive qualitative and quantitative evaluations to validate the efficacy of our method. Our project page is available at: \url{https://supertan0204.github.io/physmotion_website/}.
comment: Project Page: \url{https://supertan0204.github.io/physmotion_website/}
☆ Interleaved Scene Graph for Interleaved Text-and-Image Generation Assessment
Many real-world user queries (e.g. "How do to make egg fried rice?") could benefit from systems capable of generating responses with both textual steps with accompanying images, similar to a cookbook. Models designed to generate interleaved text and images face challenges in ensuring consistency within and across these modalities. To address these challenges, we present ISG, a comprehensive evaluation framework for interleaved text-and-image generation. ISG leverages a scene graph structure to capture relationships between text and image blocks, evaluating responses on four levels of granularity: holistic, structural, block-level, and image-specific. This multi-tiered evaluation allows for a nuanced assessment of consistency, coherence, and accuracy, and provides interpretable question-answer feedback. In conjunction with ISG, we introduce a benchmark, ISG-Bench, encompassing 1,150 samples across 8 categories and 21 subcategories. This benchmark dataset includes complex language-vision dependencies and golden answers to evaluate models effectively on vision-centric tasks such as style transfer, a challenging area for current models. Using ISG-Bench, we demonstrate that recent unified vision-language models perform poorly on generating interleaved content. While compositional approaches that combine separate language and image models show a 111% improvement over unified models at the holistic level, their performance remains suboptimal at both block and image levels. To facilitate future work, we develop ISG-Agent, a baseline agent employing a "plan-execute-refine" pipeline to invoke tools, achieving a 122% performance improvement.
☆ LiteVAR: Compressing Visual Autoregressive Modelling with Efficient Attention and Quantization
Visual Autoregressive (VAR) has emerged as a promising approach in image generation, offering competitive potential and performance comparable to diffusion-based models. However, current AR-based visual generation models require substantial computational resources, limiting their applicability on resource-constrained devices. To address this issue, we conducted analysis and identified significant redundancy in three dimensions of the VAR model: (1) the attention map, (2) the attention outputs when using classifier free guidance, and (3) the data precision. Correspondingly, we proposed efficient attention mechanism and low-bit quantization method to enhance the efficiency of VAR models while maintaining performance. With negligible performance lost (less than 0.056 FID increase), we could achieve 85.2% reduction in attention computation, 50% reduction in overall memory and 1.5x latency reduction. To ensure deployment feasibility, we developed efficient training-free compression techniques and analyze the deployment feasibility and efficiency gain of each technique.
☆ ChatGen: Automatic Text-to-Image Generation From FreeStyle Chatting
Despite the significant advancements in text-to-image (T2I) generative models, users often face a trial-and-error challenge in practical scenarios. This challenge arises from the complexity and uncertainty of tedious steps such as crafting suitable prompts, selecting appropriate models, and configuring specific arguments, making users resort to labor-intensive attempts for desired images. This paper proposes Automatic T2I generation, which aims to automate these tedious steps, allowing users to simply describe their needs in a freestyle chatting way. To systematically study this problem, we first introduce ChatGenBench, a novel benchmark designed for Automatic T2I. It features high-quality paired data with diverse freestyle inputs, enabling comprehensive evaluation of automatic T2I models across all steps. Additionally, recognizing Automatic T2I as a complex multi-step reasoning task, we propose ChatGen-Evo, a multi-stage evolution strategy that progressively equips models with essential automation skills. Through extensive evaluation across step-wise accuracy and image quality, ChatGen-Evo significantly enhances performance over various baselines. Our evaluation also uncovers valuable insights for advancing automatic T2I. All our data, code, and models will be available in \url{https://chengyou-jia.github.io/ChatGen-Home}
☆ GMFlow: Global Motion-Guided Recurrent Flow for 6D Object Pose Estimation
6D object pose estimation is crucial for robotic perception and precise manipulation. Occlusion and incomplete object visibility are common challenges in this task, but existing pose refinement methods often struggle to handle these issues effectively. To tackle this problem, we propose a global motion-guided recurrent flow estimation method called GMFlow for pose estimation. GMFlow overcomes local ambiguities caused by occlusion or missing parts by seeking global explanations. We leverage the object's structural information to extend the motion of visible parts of the rigid body to its invisible regions. Specifically, we capture global contextual information through a linear attention mechanism and guide local motion information to generate global motion estimates. Furthermore, we introduce object shape constraints in the flow iteration process, making flow estimation suitable for pose estimation scenarios. Experiments on the LM-O and YCB-V datasets demonstrate that our method outperforms existing techniques in accuracy while maintaining competitive computational efficiency.
☆ MRIFE: A Mask-Recovering and Interactive-Feature-Enhancing Semantic Segmentation Network For Relic Landslide Detection
Relic landslide, formed over a long period, possess the potential for reactivation, making them a hazardous geological phenomenon. While reliable relic landslide detection benefits the effective monitoring and prevention of landslide disaster, semantic segmentation using high-resolution remote sensing images for relic landslides faces many challenges, including the object visual blur problem, due to the changes of appearance caused by prolonged natural evolution and human activities, and the small-sized dataset problem, due to difficulty in recognizing and labelling the samples. To address these challenges, a semantic segmentation model, termed mask-recovering and interactive-feature-enhancing (MRIFE), is proposed for more efficient feature extraction and separation. Specifically, a contrastive learning and mask reconstruction method with locally significant feature enhancement is proposed to improve the ability to distinguish between the target and background and represent landslide semantic features. Meanwhile, a dual-branch interactive feature enhancement architecture is used to enrich the extracted features and address the issue of visual ambiguity. Self-distillation learning is introduced to leverage the feature diversity both within and between samples for contrastive learning, improving sample utilization, accelerating model convergence, and effectively addressing the problem of the small-sized dataset. The proposed MRIFE is evaluated on a real relic landslide dataset, and experimental results show that it greatly improves the performance of relic landslide detection. For the semantic segmentation task, compared to the baseline, the precision increases from 0.4226 to 0.5347, the mean intersection over union (IoU) increases from 0.6405 to 0.6680, the landslide IoU increases from 0.3381 to 0.3934, and the F1-score increases from 0.5054 to 0.5646.
☆ OSDFace: One-Step Diffusion Model for Face Restoration
Diffusion models have demonstrated impressive performance in face restoration. Yet, their multi-step inference process remains computationally intensive, limiting their applicability in real-world scenarios. Moreover, existing methods often struggle to generate face images that are harmonious, realistic, and consistent with the subject's identity. In this work, we propose OSDFace, a novel one-step diffusion model for face restoration. Specifically, we propose a visual representation embedder (VRE) to better capture prior information and understand the input face. In VRE, low-quality faces are processed by a visual tokenizer and subsequently embedded with a vector-quantized dictionary to generate visual prompts. Additionally, we incorporate a facial identity loss derived from face recognition to further ensure identity consistency. We further employ a generative adversarial network (GAN) as a guidance model to encourage distribution alignment between the restored face and the ground truth. Experimental results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics, generating high-fidelity, natural face images with high identity consistency. The code and model will be released at https://github.com/jkwang28/OSDFace.
comment: 8 pages, 6 figures. The code and model will be available at https://github.com/jkwang28/OSDFace
☆ Enhancing Lane Segment Perception and Topology Reasoning with Crowdsourcing Trajectory Priors
In autonomous driving, recent advances in lane segment perception provide autonomous vehicles with a comprehensive understanding of driving scenarios. Moreover, incorporating prior information input into such perception model represents an effective approach to ensure the robustness and accuracy. However, utilizing diverse sources of prior information still faces three key challenges: the acquisition of high-quality prior information, alignment between prior and online perception, efficient integration. To address these issues, we investigate prior augmentation from a novel perspective of trajectory priors. In this paper, we initially extract crowdsourcing trajectory data from Argoverse2 motion forecasting dataset and encode trajectory data into rasterized heatmap and vectorized instance tokens, then we incorporate such prior information into the online mapping model through different ways. Besides, with the purpose of mitigating the misalignment between prior and online perception, we design a confidence-based fusion module that takes alignment into account during the fusion process. We conduct extensive experiments on OpenLane-V2 dataset. The results indicate that our method's performance significantly outperforms the current state-of-the-art methods.
☆ Motion Free B-frame Coding for Neural Video Compression
Typical deep neural video compression networks usually follow the hybrid approach of classical video coding that contains two separate modules: motion coding and residual coding. In addition, a symmetric auto-encoder is often used as a normal architecture for both motion and residual coding. In this paper, we propose a novel approach that handles the drawbacks of the two typical above-mentioned architectures, we call it kernel-based motion-free video coding. The advantages of the motion-free approach are twofold: it improves the coding efficiency of the network and significantly reduces computational complexity thanks to eliminating motion estimation, motion compensation, and motion coding which are the most time-consuming engines. In addition, the kernel-based auto-encoder alleviates blur artifacts that usually occur with the conventional symmetric autoencoder. Consequently, it improves the visual quality of the reconstructed frames. Experimental results show the proposed framework outperforms the SOTA deep neural video compression networks on the HEVC-class B dataset and is competitive on the UVG and MCL-JCV datasets. In addition, it generates high-quality reconstructed frames in comparison with conventional motion coding-based symmetric auto-encoder meanwhile its model size is much smaller than that of the motion-based networks around three to four times.
comment: Deep Neural Video Compression
On-Road Object Importance Estimation: A New Dataset and A Model with Multi-Fold Top-Down Guidance
This paper addresses the problem of on-road object importance estimation, which utilizes video sequences captured from the driver's perspective as the input. Although this problem is significant for safer and smarter driving systems, the exploration of this problem remains limited. On one hand, publicly-available large-scale datasets are scarce in the community. To address this dilemma, this paper contributes a new large-scale dataset named Traffic Object Importance (TOI). On the other hand, existing methods often only consider either bottom-up feature or single-fold guidance, leading to limitations in handling highly dynamic and diverse traffic scenarios. Different from existing methods, this paper proposes a model that integrates multi-fold top-down guidance with the bottom-up feature. Specifically, three kinds of top-down guidance factors (ie, driver intention, semantic context, and traffic rule) are integrated into our model. These factors are important for object importance estimation, but none of the existing methods simultaneously consider them. To our knowledge, this paper proposes the first on-road object importance estimation model that fuses multi-fold top-down guidance factors with bottom-up feature. Extensive experiments demonstrate that our model outperforms state-of-the-art methods by large margins, achieving 23.1% Average Precision (AP) improvement compared with the recently proposed model (ie, Goal).
☆ Distilling Spectral Graph for Object-Context Aware Open-Vocabulary Semantic Segmentation
Open-Vocabulary Semantic Segmentation (OVSS) has advanced with recent vision-language models (VLMs), enabling segmentation beyond predefined categories through various learning schemes. Notably, training-free methods offer scalable, easily deployable solutions for handling unseen data, a key goal of OVSS. Yet, a critical issue persists: lack of object-level context consideration when segmenting complex objects in the challenging environment of OVSS based on arbitrary query prompts. This oversight limits models' ability to group semantically consistent elements within object and map them precisely to user-defined arbitrary classes. In this work, we introduce a novel approach that overcomes this limitation by incorporating object-level contextual knowledge within images. Specifically, our model enhances intra-object consistency by distilling spectral-driven features from vision foundation models into the attention mechanism of the visual encoder, enabling semantically coherent components to form a single object mask. Additionally, we refine the text embeddings with zero-shot object presence likelihood to ensure accurate alignment with the specific objects represented in the images. By leveraging object-level contextual knowledge, our proposed approach achieves state-of-the-art performance with strong generalizability across diverse datasets.
☆ Learning Robust Anymodal Segmentor with Unimodal and Cross-modal Distillation
Simultaneously using multimodal inputs from multiple sensors to train segmentors is intuitively advantageous but practically challenging. A key challenge is unimodal bias, where multimodal segmentors over rely on certain modalities, causing performance drops when others are missing, common in real world applications. To this end, we develop the first framework for learning robust segmentor that can handle any combinations of visual modalities. Specifically, we first introduce a parallel multimodal learning strategy for learning a strong teacher. The cross-modal and unimodal distillation is then achieved in the multi scale representation space by transferring the feature level knowledge from multimodal to anymodal segmentors, aiming at addressing the unimodal bias and avoiding over-reliance on specific modalities. Moreover, a prediction level modality agnostic semantic distillation is proposed to achieve semantic knowledge transferring for segmentation. Extensive experiments on both synthetic and real-world multi-sensor benchmarks demonstrate that our method achieves superior performance.
comment: Work in progress
☆ Crack Detection in Infrastructure Using Transfer Learning, Spatial Attention, and Genetic Algorithm Optimization
Crack detection plays a pivotal role in the maintenance and safety of infrastructure, including roads, bridges, and buildings, as timely identification of structural damage can prevent accidents and reduce costly repairs. Traditionally, manual inspection has been the norm, but it is labor-intensive, subjective, and hazardous. This paper introduces an advanced approach for crack detection in infrastructure using deep learning, leveraging transfer learning, spatial attention mechanisms, and genetic algorithm(GA) optimization. To address the challenge of the inaccessability of large amount of data, we employ ResNet50 as a pre-trained model, utilizing its strong feature extraction capabilities while reducing the need for extensive training datasets. We enhance the model with a spatial attention layer as well as a customized neural network which architecture was fine-tuned using GA. A comprehensive case study demonstrates the effectiveness of the proposed Attention-ResNet50-GA model, achieving a precision of 0.9967 and an F1 score of 0.9983, outperforming conventional methods. The results highlight the model's ability to accurately detect cracks in various conditions, making it highly suitable for real-world applications where large annotated datasets are scarce.
☆ Neural-Network-Enhanced Metalens Camera for High-Definition, Dynamic Imaging in the Long-Wave Infrared Spectrum
To provide a lightweight and cost-effective solution for the long-wave infrared imaging using a singlet, we develop a camera by integrating a High-Frequency-Enhancing Cycle-GAN neural network into a metalens imaging system. The High-Frequency-Enhancing Cycle-GAN improves the quality of the original metalens images by addressing inherent frequency loss introduced by the metalens. In addition to the bidirectional cyclic generative adversarial network, it incorporates a high-frequency adversarial learning module. This module utilizes wavelet transform to extract high-frequency components, and then establishes a high-frequency feedback loop. It enables the generator to enhance the camera outputs by integrating adversarial feedback from the high-frequency discriminator. This ensures that the generator adheres to the constraints imposed by the high-frequency adversarial loss, thereby effectively recovering the camera's frequency loss. This recovery guarantees high-fidelity image output from the camera, facilitating smooth video production. Our camera is capable of achieving dynamic imaging at 125 frames per second with an End Point Error value of 12.58. We also achieve 0.42 for Fr\'echet Inception Distance, 30.62 for Peak Signal to Noise Ratio, and 0.69 for Structural Similarity in the recorded videos.
☆ TechCoach: Towards Technical Keypoint-Aware Descriptive Action Coaching
To guide a learner to master the action skills, it is crucial for a coach to 1) reason through the learner's action execution and technical keypoints, and 2) provide detailed, understandable feedback on what is done well and what can be improved. However, existing score-based action assessment methods are still far from this practical scenario. To bridge this gap, we investigate a new task termed Descriptive Action Coaching (DAC) which requires a model to provide detailed commentary on what is done well and what can be improved beyond a quality score from an action execution. To this end, we construct a new dataset named EE4D-DAC. With an LLM-based annotation pipeline, our dataset goes beyond the existing action assessment datasets by providing the hierarchical coaching commentary at both keypoint and instance levels. Furthermore, we propose TechCoach, a new framework that explicitly incorporates keypoint-level reasoning into the DAC process. The central to our method lies in the Context-aware Keypoint Reasoner, which enables TechCoach to learn keypoint-related quality representations by querying visual context under the supervision of keypoint-level coaching commentary. Prompted by the visual context and the keypoint-related quality representations, a unified Keypoint-aware Action Assessor is then employed to provide the overall coaching commentary together with the quality score. Combining all of these, we build a new benchmark for DAC and evaluate the effectiveness of our method through extensive experiments. Data and code will be publicly available.
comment: 19 pages, 12 figures
☆ DOGE: Towards Versatile Visual Document Grounding and Referring
In recent years, Multimodal Large Language Models (MLLMs) have increasingly emphasized grounding and referring capabilities to achieve detailed understanding and flexible user interaction. However, in the realm of visual document understanding, these capabilities lag behind due to the scarcity of fine-grained datasets and comprehensive benchmarks. To fill this gap, we propose the DOcument Grounding and Eferring data engine (DOGE-Engine), which produces two types of high-quality fine-grained document data: multi-granular parsing data for enhancing fundamental text localization and recognition capabilities; and instruction-tuning data to activate MLLM's grounding and referring capabilities during dialogue and reasoning. Additionally, using our engine, we construct DOGE-Bench, which encompasses 7 grounding and referring tasks across 3 document types (chart, poster, PDF document), providing comprehensive evaluations for fine-grained document understanding. Furthermore, leveraging the data generated by our engine, we develop a strong baseline model, DOGE. This pioneering MLLM is capable of accurately referring and grounding texts at multiple granularities within document images. Our code, data, and model will be open-sourced for community development.
comment: 20 pages, 13 figures
☆ Advancing Content Moderation: Evaluating Large Language Models for Detecting Sensitive Content Across Text, Images, and Videos
The widespread dissemination of hate speech, harassment, harmful and sexual content, and violence across websites and media platforms presents substantial challenges and provokes widespread concern among different sectors of society. Governments, educators, and parents are often at odds with media platforms about how to regulate, control, and limit the spread of such content. Technologies for detecting and censoring the media contents are a key solution to addressing these challenges. Techniques from natural language processing and computer vision have been used widely to automatically identify and filter out sensitive content such as offensive languages, violence, nudity, and addiction in both text, images, and videos, enabling platforms to enforce content policies at scale. However, existing methods still have limitations in achieving high detection accuracy with fewer false positives and false negatives. Therefore, more sophisticated algorithms for understanding the context of both text and image may open rooms for improvement in content censorship to build a more efficient censorship system. In this paper, we evaluate existing LLM-based content moderation solutions such as OpenAI moderation model and Llama-Guard3 and study their capabilities to detect sensitive contents. Additionally, we explore recent LLMs such as GPT, Gemini, and Llama in identifying inappropriate contents across media outlets. Various textual and visual datasets like X tweets, Amazon reviews, news articles, human photos, cartoons, sketches, and violence videos have been utilized for evaluation and comparison. The results demonstrate that LLMs outperform traditional techniques by achieving higher accuracy and lower false positive and false negative rates. This highlights the potential to integrate LLMs into websites, social media platforms, and video-sharing services for regulatory and content moderation purposes.
comment: 55 pages, 16 figures
☆ PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution
Diffusion-based image super-resolution (SR) models have shown superior performance at the cost of multiple denoising steps. However, even though the denoising step has been reduced to one, they require high computational costs and storage requirements, making it difficult for deployment on hardware devices. To address these issues, we propose a novel post-training quantization approach with adaptive scale in one-step diffusion (OSD) image SR, PassionSR. First, we simplify OSD model to two core components, UNet and Variational Autoencoder (VAE) by removing the CLIPEncoder. Secondly, we propose Learnable Boundary Quantizer (LBQ) and Learnable Equivalent Transformation (LET) to optimize the quantization process and manipulate activation distributions for better quantization. Finally, we design a Distributed Quantization Calibration (DQC) strategy that stabilizes the training of quantized parameters for rapid convergence. Comprehensive experiments demonstrate that PassionSR with 8-bit and 6-bit obtains comparable visual results with full-precision model. Moreover, our PassionSR achieves significant advantages over recent leading low-bit quantization methods for image SR. Our code will be at https://github.com/libozhu03/PassionSR.
comment: https://github.com/libozhu03/PassionSR
☆ ΩSFormer: Dual-Modal Ω-like Super-Resolution Transformer Network for Cross-scale and High-accuracy Terraced Field Vectorization Extraction
Terraced field is a significant engineering practice for soil and water conservation (SWC). Terraced field extraction from remotely sensed imagery is the foundation for monitoring and evaluating SWC. This study is the first to propose a novel dual-modal {\Omega}-like super-resolution Transformer network for intelligent TFVE, offering the following advantages: (1) reducing edge segmentation error from conventional multi-scale downsampling encoder, through fusing original high-resolution features with downsampling features at each step of encoder and leveraging a multi-head attention mechanism; (2) improving the accuracy of TFVE by proposing a {\Omega}-like network structure, which fully integrates rich high-level features from both spectral and terrain data to form cross-scale super-resolution features; (3) validating an optimal fusion scheme for cross-modal and cross-scale (i.e., inconsistent spatial resolution between remotely sensed imagery and DEM) super-resolution feature extraction; (4) mitigating uncertainty between segmentation edge pixels by a coarse-to-fine and spatial topological semantic relationship optimization (STSRO) segmentation strategy; (5) leveraging contour vibration neural network to continuously optimize parameters and iteratively vectorize terraced fields from semantic segmentation results. Moreover, a DMRVD for deep-learning-based TFVE was created for the first time, which covers nine study areas in four provinces of China, with a total coverage area of 22441 square kilometers. To assess the performance of {\Omega}SFormer, classic and SOTA networks were compared. The mIOU of {\Omega}SFormer has improved by 0.165, 0.297 and 0.128 respectively, when compared with best accuracy single-modal remotely sensed imagery, single-modal DEM and dual-modal result.
☆ Contrastive CFG: Improving CFG in Diffusion Models by Contrasting Positive and Negative Concepts
As Classifier-Free Guidance (CFG) has proven effective in conditional diffusion model sampling for improved condition alignment, many applications use a negated CFG term to filter out unwanted features from samples. However, simply negating CFG guidance creates an inverted probability distribution, often distorting samples away from the marginal distribution. Inspired by recent advances in conditional diffusion models for inverse problems, here we present a novel method to enhance negative CFG guidance using contrastive loss. Specifically, our guidance term aligns or repels the denoising direction based on the given condition through contrastive loss, achieving a nearly identical guiding direction to traditional CFG for positive guidance while overcoming the limitations of existing negative guidance methods. Experimental results demonstrate that our approach effectively removes undesirable concepts while maintaining sample quality across diverse scenarios, from simple class conditions to complex and overlapping text prompts.
comment: 14 pages, 8 figures
Path-RAG: Knowledge-Guided Key Region Retrieval for Open-ended Pathology Visual Question Answering
Accurate diagnosis and prognosis assisted by pathology images are essential for cancer treatment selection and planning. Despite the recent trend of adopting deep-learning approaches for analyzing complex pathology images, they fall short as they often overlook the domain-expert understanding of tissue structure and cell composition. In this work, we focus on a challenging Open-ended Pathology VQA (PathVQA-Open) task and propose a novel framework named Path-RAG, which leverages HistoCartography to retrieve relevant domain knowledge from pathology images and significantly improves performance on PathVQA-Open. Admitting the complexity of pathology image analysis, Path-RAG adopts a human-centered AI approach by retrieving domain knowledge using HistoCartography to select the relevant patches from pathology images. Our experiments suggest that domain guidance can significantly boost the accuracy of LLaVA-Med from 38% to 47%, with a notable gain of 28% for H&E-stained pathology images in the PathVQA-Open dataset. For longer-form question and answer pairs, our model consistently achieves significant improvements of 32.5% in ARCH-Open PubMed and 30.6% in ARCH-Open Books on H\&E images. Our code and dataset is available here (https://github.com/embedded-robotics/path-rag).
☆ Geometry Field Splatting with Gaussian Surfels
Geometric reconstruction of opaque surfaces from images is a longstanding challenge in computer vision, with renewed interest from volumetric view synthesis algorithms using radiance fields. We leverage the geometry field proposed in recent work for stochastic opaque surfaces, which can then be converted to volume densities. We adapt Gaussian kernels or surfels to splat the geometry field rather than the volume, enabling precise reconstruction of opaque solids. Our first contribution is to derive an efficient and almost exact differentiable rendering algorithm for geometry fields parameterized by Gaussian surfels, while removing current approximations involving Taylor series and no self-attenuation. Next, we address the discontinuous loss landscape when surfels cluster near geometry, showing how to guarantee that the rendered color is a continuous function of the colors of the kernels, irrespective of ordering. Finally, we use latent representations with spherical harmonics encoded reflection vectors rather than spherical harmonics encoded colors to better address specular surfaces. We demonstrate significant improvement in the quality of reconstructed 3D surfaces on widely-used datasets.
☆ Relations, Negations, and Numbers: Looking for Logic in Generative Text-to-Image Models
Despite remarkable progress in multi-modal AI research, there is a salient domain in which modern AI continues to lag considerably behind even human children: the reliable deployment of logical operators. Here, we examine three forms of logical operators: relations, negations, and discrete numbers. We asked human respondents (N=178 in total) to evaluate images generated by a state-of-the-art image-generating AI (DALL-E 3) prompted with these `logical probes', and find that none reliably produce human agreement scores greater than 50\%. The negation probes and numbers (beyond 3) fail most frequently. In a 4th experiment, we assess a `grounded diffusion' pipeline that leverages targeted prompt engineering and structured intermediate representations for greater compositional control, but find its performance is judged even worse than that of DALL-E 3 across prompts. To provide further clarity on potential sources of success and failure in these text-to-image systems, we supplement our 4 core experiments with multiple auxiliary analyses and schematic diagrams, directly quantifying, for example, the relationship between the N-gram frequency of relational prompts and the average match to generated images; the success rates for 3 different prompt modification strategies in the rendering of negation prompts; and the scalar variability / ratio dependence (`approximate numeracy') of prompts involving integers. We conclude by discussing the limitations inherent to `grounded' multimodal learning systems whose grounding relies heavily on vector-based semantics (e.g. DALL-E 3), or under-specified syntactical constraints (e.g. `grounded diffusion'), and propose minimal modifications (inspired by development, based in imagery) that could help to bridge the lingering compositional gap between scale and structure. All data and code is available at https://github.com/ColinConwell/T2I-Probology
☆ SCASeg: Strip Cross-Attention for Efficient Semantic Segmentation
The Vision Transformer (ViT) has achieved notable success in computer vision, with its variants extensively validated across various downstream tasks, including semantic segmentation. However, designed as general-purpose visual encoders, ViT backbones often overlook the specific needs of task decoders, revealing opportunities to design decoders tailored to efficient semantic segmentation. This paper proposes Strip Cross-Attention (SCASeg), an innovative decoder head explicitly designed for semantic segmentation. Instead of relying on the simple conventional skip connections, we employ lateral connections between the encoder and decoder stages, using encoder features as Queries for the cross-attention modules. Additionally, we introduce a Cross-Layer Block that blends hierarchical feature maps from different encoder and decoder stages to create a unified representation for Keys and Values. To further boost computational efficiency, SCASeg compresses queries and keys into strip-like patterns to optimize memory usage and inference speed over the traditional vanilla cross-attention. Moreover, the Cross-Layer Block incorporates the local perceptual strengths of convolution, enabling SCASeg to capture both global and local context dependencies across multiple layers. This approach facilitates effective feature interaction at different scales, improving the overall performance. Experiments show that the adaptable decoder of SCASeg produces competitive performance across different setups, surpassing leading segmentation architectures on all benchmark datasets, including ADE20K, Cityscapes, COCO-Stuff 164k, and Pascal VOC2012, even under varying computational limitations.
comment: 14 pages, 9 figures
☆ A generalised novel loss function for computational fluid dynamics
Computational fluid dynamics (CFD) simulations are crucial in automotive, aerospace, maritime and medical applications, but are limited by the complexity, cost and computational requirements of directly calculating the flow, often taking days of compute time. Machine-learning architectures, such as controlled generative adversarial networks (cGANs) hold significant potential in enhancing or replacing CFD investigations, due to cGANs ability to approximate the underlying data distribution of a dataset. Unlike traditional cGAN applications, where the entire image carries information, CFD data contains small regions of highly variant data, immersed in a large context of low variance that is of minimal importance. This renders most existing deep learning techniques that give equal importance to every portion of the data during training, inefficient. To mitigate this, a novel loss function is proposed called Gradient Mean Squared Error (GMSE) which automatically and dynamically identifies the regions of importance on a field-by-field basis, assigning appropriate weights according to the local variance. To assess the effectiveness of the proposed solution, three identical networks were trained; optimised with Mean Squared Error (MSE) loss, proposed GMSE loss and a dynamic variant of GMSE (DGMSE). The novel loss function resulted in faster loss convergence, correlating to reduced training time, whilst also displaying an 83.6% reduction in structural similarity error between the generated field and ground truth simulations, a 76.6% higher maximum rate of loss and an increased ability to fool a discriminator network. It is hoped that this loss function will enable accelerated machine learning within computational fluid dynamics.
comment: 37 pages, 13 figures, preprint submitted to Engineering Applications of Artificial Intelligence (EAAI)
☆ PersonalVideo: High ID-Fidelity Video Customization without Dynamic and Semantic Degradation
The current text-to-video (T2V) generation has made significant progress in synthesizing realistic general videos, but it is still under-explored in identity-specific human video generation with customized ID images. The key challenge lies in maintaining high ID fidelity consistently while preserving the original motion dynamic and semantic following after the identity injection. Current video identity customization methods mainly rely on reconstructing given identity images on text-to-image models, which have a divergent distribution with the T2V model. This process introduces a tuning-inference gap, leading to dynamic and semantic degradation. To tackle this problem, we propose a novel framework, dubbed \textbf{PersonalVideo}, that applies direct supervision on videos synthesized by the T2V model to bridge the gap. Specifically, we introduce a learnable Isolated Identity Adapter to customize the specific identity non-intrusively, which does not comprise the original T2V model's abilities (e.g., motion dynamic and semantic following). With the non-reconstructive identity loss, we further employ simulated prompt augmentation to reduce overfitting by supervising generated results in more semantic scenarios, gaining good robustness even with only a single reference image available. Extensive experiments demonstrate our method's superiority in delivering high identity faithfulness while preserving the inherent video generation qualities of the original T2V model, outshining prior approaches. Notably, our PersonalVideo seamlessly integrates with pre-trained SD components, such as ControlNet and style LoRA, requiring no extra tuning overhead.
☆ Large-Scale Data-Free Knowledge Distillation for ImageNet via Multi-Resolution Data Generation
Data-Free Knowledge Distillation (DFKD) is an advanced technique that enables knowledge transfer from a teacher model to a student model without relying on original training data. While DFKD methods have achieved success on smaller datasets like CIFAR10 and CIFAR100, they encounter challenges on larger, high-resolution datasets such as ImageNet. A primary issue with previous approaches is their generation of synthetic images at high resolutions (e.g., $224 \times 224$) without leveraging information from real images, often resulting in noisy images that lack essential class-specific features in large datasets. Additionally, the computational cost of generating the extensive data needed for effective knowledge transfer can be prohibitive. In this paper, we introduce MUlti-reSolution data-freE (MUSE) to address these limitations. MUSE generates images at lower resolutions while using Class Activation Maps (CAMs) to ensure that the generated images retain critical, class-specific features. To further enhance model diversity, we propose multi-resolution generation and embedding diversity techniques that strengthen latent space representations, leading to significant performance improvements. Experimental results demonstrate that MUSE achieves state-of-the-art performance across both small- and large-scale datasets, with notable performance gains of up to two digits in nearly all ImageNet and subset experiments. Code is available at https://github.com/tmtuan1307/muse.
☆ 4D Scaffold Gaussian Splatting for Memory Efficient Dynamic Scene Reconstruction
Existing 4D Gaussian methods for dynamic scene reconstruction offer high visual fidelity and fast rendering. However, these methods suffer from excessive memory and storage demands, which limits their practical deployment. This paper proposes a 4D anchor-based framework that retains visual quality and rendering speed of 4D Gaussians while significantly reducing storage costs. Our method extends 3D scaffolding to 4D space, and leverages sparse 4D grid-aligned anchors with compressed feature vectors. Each anchor models a set of neural 4D Gaussians, each of which represent a local spatiotemporal region. In addition, we introduce a temporal coverage-aware anchor growing strategy to effectively assign additional anchors to under-reconstructed dynamic regions. Our method adjusts the accumulated gradients based on Gaussians' temporal coverage, improving reconstruction quality in dynamic regions. To reduce the number of anchors, we further present enhanced formulations of neural 4D Gaussians. These include the neural velocity, and the temporal opacity derived from a generalized Gaussian distribution. Experimental results demonstrate that our method achieves state-of-the-art visual quality and 97.8% storage reduction over 4DGS.
☆ Free$^2$Guide: Gradient-Free Path Integral Control for Enhancing Text-to-Video Generation with Large Vision-Language Models
Diffusion models have achieved impressive results in generative tasks like text-to-image (T2I) and text-to-video (T2V) synthesis. However, achieving accurate text alignment in T2V generation remains challenging due to the complex temporal dependency across frames. Existing reinforcement learning (RL)-based approaches to enhance text alignment often require differentiable reward functions or are constrained to limited prompts, hindering their scalability and applicability. In this paper, we propose Free$^2$Guide, a novel gradient-free framework for aligning generated videos with text prompts without requiring additional model training. Leveraging principles from path integral control, Free$^2$Guide approximates guidance for diffusion models using non-differentiable reward functions, thereby enabling the integration of powerful black-box Large Vision-Language Models (LVLMs) as reward model. Additionally, our framework supports the flexible ensembling of multiple reward models, including large-scale image-based models, to synergistically enhance alignment without incurring substantial computational overhead. We demonstrate that Free$^2$Guide significantly improves text alignment across various dimensions and enhances the overall quality of generated videos.
comment: 15 pages
Multimodal Alignment and Fusion: A Survey
This survey offers a comprehensive review of recent advancements in multimodal alignment and fusion within machine learning, spurred by the growing diversity of data types such as text, images, audio, and video. Multimodal integration enables improved model accuracy and broader applicability by leveraging complementary information across different modalities, as well as facilitating knowledge transfer in situations with limited data. We systematically categorize and analyze existing alignment and fusion techniques, drawing insights from an extensive review of more than 200 relevant papers. Furthermore, this survey addresses the challenges of multimodal data integration - including alignment issues, noise resilience, and disparities in feature representation - while focusing on applications in domains like social media analysis, medical imaging, and emotion recognition. The insights provided are intended to guide future research towards optimizing multimodal learning systems to enhance their scalability, robustness, and generalizability across various applications.
comment: 210+ references
☆ g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks
We introduce Generalizable 3D-Language Feature Fields (g3D-LF), a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks. Our g3D-LF processes posed RGB-D images from agents to encode feature fields for: 1) Novel view representation predictions from any position in the 3D scene; 2) Generations of BEV maps centered on the agent; 3) Querying targets using multi-granularity language within the above-mentioned representations. Our representation can be generalized to unseen environments, enabling real-time construction and dynamic updates. By volume rendering latent features along sampled rays and integrating semantic and spatial relationships through multiscale encoders, our g3D-LF produces representations at different scales and perspectives, aligned with multi-granularity language, via multi-level contrastive learning. Furthermore, we prepare a large-scale 3D-language dataset to align the representations of the feature fields with language. Extensive experiments on Vision-and-Language Navigation under both Panorama and Monocular settings, Zero-shot Object Navigation, and Situated Question Answering tasks highlight the significant advantages and effectiveness of our g3D-LF for embodied tasks.
☆ D$^2$-World: An Efficient World Model through Decoupled Dynamic Flow CVPR 2024
This technical report summarizes the second-place solution for the Predictive World Model Challenge held at the CVPR-2024 Workshop on Foundation Models for Autonomous Systems. We introduce D$^2$-World, a novel World model that effectively forecasts future point clouds through Decoupled Dynamic flow. Specifically, the past semantic occupancies are obtained via existing occupancy networks (e.g., BEVDet). Following this, the occupancy results serve as the input for a single-stage world model, generating future occupancy in a non-autoregressive manner. To further simplify the task, dynamic voxel decoupling is performed in the world model. The model generates future dynamic voxels by warping the existing observations through voxel flow, while remaining static voxels can be easily obtained through pose transformation. As a result, our approach achieves state-of-the-art performance on the OpenScene Predictive World Model benchmark, securing second place, and trains more than 300% faster than the baseline model. Code is available at https://github.com/zhanghm1995/D2-World.
comment: The 2nd Place and Innovation Award Solution of Predictive World Model at the CVPR 2024 Autonomous Grand Challenge
☆ RED: Robust Environmental Design
The classification of road signs by autonomous systems, especially those reliant on visual inputs, is highly susceptible to adversarial attacks. Traditional approaches to mitigating such vulnerabilities have focused on enhancing the robustness of classification models. In contrast, this paper adopts a fundamentally different strategy aimed at increasing robustness through the redesign of road signs themselves. We propose an attacker-agnostic learning scheme to automatically design road signs that are robust to a wide array of patch-based attacks. Empirical tests conducted in both digital and physical environments demonstrate that our approach significantly reduces vulnerability to patch attacks, outperforming existing techniques.
☆ TED-VITON: Transformer-Empowered Diffusion Models for Virtual Try-On
Recent advancements in Virtual Try-On (VTO) have demonstrated exceptional efficacy in generating realistic images and preserving garment details, largely attributed to the robust generative capabilities of text-to-image (T2I) diffusion backbones. However, the T2I models that underpin these methods have become outdated, thereby limiting the potential for further improvement in VTO. Additionally, current methods face notable challenges in accurately rendering text on garments without distortion and preserving fine-grained details, such as textures and material fidelity. The emergence of Diffusion Transformer (DiT) based T2I models has showcased impressive performance and offers a promising opportunity for advancing VTO. Directly applying existing VTO techniques to transformer-based T2I models is ineffective due to substantial architectural differences, which hinder their ability to fully leverage the models' advanced capabilities for improved text generation. To address these challenges and unlock the full potential of DiT-based T2I models for VTO, we propose TED-VITON, a novel framework that integrates a Garment Semantic (GS) Adapter for enhancing garment-specific features, a Text Preservation Loss to ensure accurate and distortion-free text rendering, and a constraint mechanism to generate prompts by optimizing Large Language Model (LLM). These innovations enable state-of-the-art (SOTA) performance in visual quality and text fidelity, establishing a new benchmark for VTO task.
comment: 10 pages, 6 figures, 3 tables, conference
☆ MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators.
☆ Stealthy Multi-Task Adversarial Attacks
Deep Neural Networks exhibit inherent vulnerabilities to adversarial attacks, which can significantly compromise their outputs and reliability. While existing research primarily focuses on attacking single-task scenarios or indiscriminately targeting all tasks in multi-task environments, we investigate selectively targeting one task while preserving performance in others within a multi-task framework. This approach is motivated by varying security priorities among tasks in real-world applications, such as autonomous driving, where misinterpreting critical objects (e.g., signs, traffic lights) poses a greater security risk than minor depth miscalculations. Consequently, attackers may hope to target security-sensitive tasks while avoiding non-critical tasks from being compromised, thus evading being detected before compromising crucial functions. In this paper, we propose a method for the stealthy multi-task attack framework that utilizes multiple algorithms to inject imperceptible noise into the input. This novel method demonstrates remarkable efficacy in compromising the target task while simultaneously maintaining or even enhancing performance across non-targeted tasks - a criterion hitherto unexplored in the field. Additionally, we introduce an automated approach for searching the weighting factors in the loss function, further enhancing attack efficiency. Experimental results validate our framework's ability to successfully attack the target task while preserving the performance of non-targeted tasks. The automated loss function weight searching method demonstrates comparable efficacy to manual tuning, establishing a state-of-the-art multi-task attack framework.
☆ Exploring Superpixel Segmentation Methods in the Context of Citizen Science and Deforestation Detection
Tropical forests play an essential role in the planet's ecosystem, making the conservation of these biomes a worldwide priority. However, ongoing deforestation and degradation pose a significant threat to their existence, necessitating effective monitoring and the proposal of actions to mitigate the damage caused by these processes. In this regard, initiatives range from government and private sector monitoring programs to solutions based on citizen science campaigns, for example. Particularly in the context of citizen science campaigns, the segmentation of remote sensing images to identify deforested areas and subsequently submit them to analysis by non-specialized volunteers is necessary. Thus, segmentation using superpixel-based techniques proves to be a viable solution for this important task. Therefore, this paper presents an analysis of 22 superpixel-based segmentation methods applied to remote sensing images, aiming to identify which of them are more suitable for generating segments for citizen science campaigns. The results reveal that seven of the segmentation methods outperformed the baseline method (SLIC) currently employed in the ForestEyes citizen science project, indicating an opportunity for improvement in this important stage of campaign development.
comment: Paper was accepted for presentation at SAC 2025
☆ DECODE: Domain-aware Continual Domain Expansion for Motion Prediction
Motion prediction is critical for autonomous vehicles to effectively navigate complex environments and accurately anticipate the behaviors of other traffic participants. As autonomous driving continues to evolve, the need to assimilate new and varied driving scenarios necessitates frequent model updates through retraining. To address these demands, we introduce DECODE, a novel continual learning framework that begins with a pre-trained generalized model and incrementally develops specialized models for distinct domains. Unlike existing continual learning approaches that attempt to develop a unified model capable of generalizing across diverse scenarios, DECODE uniquely balances specialization with generalization, dynamically adjusting to real-time demands. The proposed framework leverages a hypernetwork to generate model parameters, significantly reducing storage requirements, and incorporates a normalizing flow mechanism for real-time model selection based on likelihood estimation. Furthermore, DECODE merges outputs from the most relevant specialized and generalized models using deep Bayesian uncertainty estimation techniques. This integration ensures optimal performance in familiar conditions while maintaining robustness in unfamiliar scenarios. Extensive evaluations confirm the effectiveness of the framework, achieving a notably low forgetting rate of 0.044 and an average minADE of 0.584 m, significantly surpassing traditional learning strategies and demonstrating adaptability across a wide range of driving conditions.
comment: This work has been submitted to the IEEE for possible publication
☆ Passive Deepfake Detection Across Multi-modalities: A Comprehensive Survey
In recent years, deepfakes (DFs) have been utilized for malicious purposes, such as individual impersonation, misinformation spreading, and artists' style imitation, raising questions about ethical and security concerns. However, existing surveys have focused on accuracy performance of passive DF detection approaches for single modalities, such as image, video or audio. This comprehensive survey explores passive approaches across multiple modalities, including image, video, audio, and multi-modal domains, and extend our discussion beyond detection accuracy, including generalization, robustness, attribution, and interpretability. Additionally, we discuss threat models for passive approaches, including potential adversarial strategies and different levels of adversary knowledge and capabilities. We also highlights current challenges in DF detection, including the lack of generalization across different generative models, the need for comprehensive trustworthiness evaluation, and the limitations of existing multi-modal approaches. Finally, we propose future research directions that address these unexplored and emerging issues in the field of passive DF detection, such as adaptive learning, dynamic benchmark, holistic trustworthiness evaluation, and multi-modal detectors for talking-face video generation.
comment: 26 pages
☆ Automating grapevine LAI features estimation with UAV imagery and machine learning
The leaf area index determines crop health and growth. Traditional methods for calculating it are time-consuming, destructive, costly, and limited to a scale. In this study, we automate the index estimation method using drone image data of grapevine plants and a machine learning model. Traditional feature extraction and deep learning methods are used to obtain helpful information from the data and enhance the performance of the different machine learning models employed for the leaf area index prediction. The results showed that deep learning based feature extraction is more effective than traditional methods. The new approach is a significant improvement over old methods, offering a faster, non-destructive, and cost-effective leaf area index calculation, which enhances precision agriculture practices.
comment: Accepted in 2024 IEEE INTERNATIONAL WORKSHOP ON Metrology for Agriculture and Forestry
☆ HOPPR Medical-Grade Platform for Medical Imaging AI
Technological advances in artificial intelligence (AI) have enabled the development of large vision language models (LVLMs) that are trained on millions of paired image and text samples. Subsequent research efforts have demonstrated great potential of LVLMs to achieve high performance in medical imaging use cases (e.g., radiology report generation), but there remain barriers that hinder the ability to deploy these solutions broadly. These include the cost of extensive computational requirements for developing large scale models, expertise in the development of sophisticated AI models, and the difficulty in accessing substantially large, high-quality datasets that adequately represent the population in which the LVLM solution is to be deployed. The HOPPR Medical-Grade Platform addresses these barriers by providing powerful computational infrastructure, a suite of foundation models on top of which developers can fine-tune for their specific use cases, and a robust quality management system that sets a standard for evaluating fine-tuned models for deployment in clinical settings. The HOPPR Platform has access to millions of imaging studies and text reports sourced from hundreds of imaging centers from diverse populations to pretrain foundation models and enable use case-specific cohorts for fine-tuning. All data are deidentified and securely stored for HIPAA compliance. Additionally, developers can securely host models on the HOPPR platform and access them via an API to make inferences using these models within established clinical workflows. With the Medical-Grade Platform, HOPPR's mission is to expedite the deployment of LVLM solutions for medical imaging and ultimately optimize radiologist's workflows and meet the growing demands of the field.
comment: 6 pages, 3 figures
Multimodal Crash Likelihood Prediction: A Complexity-Infused Approach Integrating Semantic, Contextual, and Driving Features
Predicting crash likelihood in complex driving environments is essential for improving traffic safety and advancing autonomous driving. Previous studies have used statistical models and deep learning to predict crashes based on semantic, contextual, or driving features, but none have examined the combined influence of these factors, termed roadway complexity in this study. This paper introduces a two-stage framework that integrates roadway complexity features for crash prediction. In the first stage, an encoder extracts hidden contextual information from these features, generating complexity-infused features. The second stage uses both original and complexity-infused features to predict crash likelihood, achieving an accuracy of 87.98% with original features alone and 90.15% with the added complexity-infused features. Ablation studies confirm that a combination of semantic, driving, and contextual features yields the best results, which emphasize their role in capturing roadway complexity. Additionally, complexity index annotations generated by Large Language Models outperform those by Amazon Mechanical Turk, highlighting the potential of automated tools for accurate, scalable crash prediction systems.
☆ Breast Tumor Classification Using EfficientNet Deep Learning Model
Precise breast cancer classification on histopathological images has the potential to greatly improve the diagnosis and patient outcome in oncology. The data imbalance problem largely stems from the inherent imbalance within medical image datasets, where certain tumor subtypes may appear much less frequently. This constitutes a considerable limitation in biased model predictions that can overlook critical but rare classes. In this work, we adopted EfficientNet, a state-of-the-art convolutional neural network (CNN) model that balances high accuracy with computational cost efficiency. To address data imbalance, we introduce an intensive data augmentation pipeline and cost-sensitive learning, improving representation and ensuring that the model does not overly favor majority classes. This approach provides the ability to learn effectively from rare tumor types, improving its robustness. Additionally, we fine-tuned the model using transfer learning, where weights in the beginning trained on a binary classification task were adopted to multi-class classification, improving the capability to detect complex patterns within the BreakHis dataset. Our results underscore significant improvements in the binary classification performance, achieving an exceptional recall increase for benign cases from 0.92 to 0.95, alongside an accuracy enhancement from 97.35 % to 98.23%. Our approach improved the performance of multi-class tasks from 91.27% with regular augmentation to 94.54% with intensive augmentation, reaching 95.04% with transfer learning. This framework demonstrated substantial gains in precision in the minority classes, such as Mucinous carcinoma and Papillary carcinoma, while maintaining high recall consistently across these critical subtypes, as further confirmed by confusion matrix analysis.
comment: 19 pages, 7 figures
☆ ReC-TTT: Contrastive Feature Reconstruction for Test-Time Training
The remarkable progress in deep learning (DL) showcases outstanding results in various computer vision tasks. However, adaptation to real-time variations in data distributions remains an important challenge. Test-Time Training (TTT) was proposed as an effective solution to this issue, which increases the generalization ability of trained models by adding an auxiliary task at train time and then using its loss at test time to adapt the model. Inspired by the recent achievements of contrastive representation learning in unsupervised tasks, we propose ReC-TTT, a test-time training technique that can adapt a DL model to new unseen domains by generating discriminative views of the input data. ReC-TTT uses cross-reconstruction as an auxiliary task between a frozen encoder and two trainable encoders, taking advantage of a single shared decoder. This enables, at test time, to adapt the encoders to extract features that will be correctly reconstructed by the decoder that, in this phase, is frozen on the source domain. Experimental results show that ReC-TTT achieves better results than other state-of-the-art techniques in most domain shift classification challenges.
☆ Generative Image Layer Decomposition with Visual Effects
Recent advancements in large generative models, particularly diffusion-based methods, have significantly enhanced the capabilities of image editing. However, achieving precise control over image composition tasks remains a challenge. Layered representations, which allow for independent editing of image components, are essential for user-driven content creation, yet existing approaches often struggle to decompose image into plausible layers with accurately retained transparent visual effects such as shadows and reflections. We propose $\textbf{LayerDecomp}$, a generative framework for image layer decomposition which outputs photorealistic clean backgrounds and high-quality transparent foregrounds with faithfully preserved visual effects. To enable effective training, we first introduce a dataset preparation pipeline that automatically scales up simulated multi-layer data with synthesized visual effects. To further enhance real-world applicability, we supplement this simulated dataset with camera-captured images containing natural visual effects. Additionally, we propose a consistency loss which enforces the model to learn accurate representations for the transparent foreground layer when ground-truth annotations are not available. Our method achieves superior quality in layer decomposition, outperforming existing approaches in object removal and spatial editing tasks across several benchmarks and multiple user studies, unlocking various creative possibilities for layer-wise image editing. The project page is https://rayjryang.github.io/LayerDecomp.
comment: The project page: https://rayjryang.github.io/LayerDecomp
☆ Reliability of deep learning models for anatomical landmark detection: The role of inter-rater variability
Automated detection of anatomical landmarks plays a crucial role in many diagnostic and surgical applications. Progresses in deep learning (DL) methods have resulted in significant performance enhancement in tasks related to anatomical landmark detection. While current research focuses on accurately localizing these landmarks in medical scans, the importance of inter-rater annotation variability in building DL models is often overlooked. Understanding how inter-rater variability impacts the performance and reliability of the resulting DL algorithms, which are crucial for clinical deployment, can inform the improvement of training data construction and boost DL models' outcomes. In this paper, we conducted a thorough study of different annotation-fusion strategies to preserve inter-rater variability in DL models for anatomical landmark detection, aiming to boost the performance and reliability of the resulting algorithms. Additionally, we explored the characteristics and reliability of four metrics, including a novel Weighted Coordinate Variance metric to quantify landmark detection uncertainty/inter-rater variability. Our research highlights the crucial connection between inter-rater variability, DL-models performances, and uncertainty, revealing how different approaches for multi-rater landmark annotation fusion can influence these factors.
comment: Accepted to SPIE Medical Imaging 2025
☆ CAMLD: Contrast-Agnostic Medical Landmark Detection with Consistency-Based Regularization
Anatomical landmark detection in medical images is essential for various clinical and research applications, including disease diagnosis and surgical planning. However, manual landmark annotation is time-consuming and requires significant expertise. Existing deep learning (DL) methods often require large amounts of well-annotated data, which are costly to acquire. In this paper, we introduce CAMLD, a novel self-supervised DL framework for anatomical landmark detection in unlabeled scans with varying contrasts by using only a single reference example. To achieve this, we employed an inter-subject landmark consistency loss with an image registration loss while introducing a 3D convolution-based contrast augmentation strategy to promote model generalization to new contrasts. Additionally, we utilize an adaptive mixed loss function to schedule the contributions of different sub-tasks for optimal outcomes. We demonstrate the proposed method with the intricate task of MRI-based 3D brain landmark detection. With comprehensive experiments on four diverse clinical and public datasets, including both T1w and T2w MRI scans at different MRI field strengths, we demonstrate that CAMLD outperforms the state-of-the-art methods in terms of mean radial errors (MREs) and success detection rates (SDRs). Our framework provides a robust and accurate solution for anatomical landmark detection, reducing the need for extensively annotated datasets and generalizing well across different imaging contrasts. Our code will be publicly available at: https://github.com/HealthX-Lab/CAMLD.
comment: 14 pages, 6 figures, 3 tables
☆ OracleSage: Towards Unified Visual-Linguistic Understanding of Oracle Bone Scripts through Cross-Modal Knowledge Fusion
Oracle bone script (OBS), as China's earliest mature writing system, present significant challenges in automatic recognition due to their complex pictographic structures and divergence from modern Chinese characters. We introduce OracleSage, a novel cross-modal framework that integrates hierarchical visual understanding with graph-based semantic reasoning. Specifically, we propose (1) a Hierarchical Visual-Semantic Understanding module that enables multi-granularity feature extraction through progressive fine-tuning of LLaVA's visual backbone, (2) a Graph-based Semantic Reasoning Framework that captures relationships between visual components and semantic concepts through dynamic message passing, and (3) OracleSem, a semantically enriched OBS dataset with comprehensive pictographic and semantic annotations. Experimental results demonstrate that OracleSage significantly outperforms state-of-the-art vision-language models. This research establishes a new paradigm for ancient text interpretation while providing valuable technical support for archaeological studies.
☆ SVGDreamer++: Advancing Editability and Diversity in Text-Guided SVG Generation
Recently, text-guided scalable vector graphics (SVG) synthesis has demonstrated significant potential in domains such as iconography and sketching. However, SVGs generated from existing Text-to-SVG methods often lack editability and exhibit deficiencies in visual quality and diversity. In this paper, we propose a novel text-guided vector graphics synthesis method to address these limitations. To improve the diversity of output SVGs, we present a Vectorized Particle-based Score Distillation (VPSD) approach. VPSD addresses over-saturation issues in existing methods and enhances sample diversity. A pre-trained reward model is incorporated to re-weight vector particles, improving aesthetic appeal and enabling faster convergence. Additionally, we design a novel adaptive vector primitives control strategy, which allows for the dynamic adjustment of the number of primitives, thereby enhancing the presentation of graphic details. Extensive experiments validate the effectiveness of the proposed method, demonstrating its superiority over baseline methods in terms of editability, visual quality, and diversity. We also show that our new method supports up to six distinct vector styles, capable of generating high-quality vector assets suitable for stylized vector design and poster design.
comment: 17 pages, 17 figures. arXiv admin note: substantial text overlap with arXiv:2312.16476
☆ Rapid Distributed Fine-tuning of a Segmentation Model Onboard Satellites
Segmentation of Earth observation (EO) satellite data is critical for natural hazard analysis and disaster response. However, processing EO data at ground stations introduces delays due to data transmission bottlenecks and communication windows. Using segmentation models capable of near-real-time data analysis onboard satellites can therefore improve response times. This study presents a proof-of-concept using MobileSAM, a lightweight, pre-trained segmentation model, onboard Unibap iX10-100 satellite hardware. We demonstrate the segmentation of water bodies from Sentinel-2 satellite imagery and integrate MobileSAM with PASEOS, an open-source Python module that simulates satellite operations. This integration allows us to evaluate MobileSAM's performance under simulated conditions of a satellite constellation. Our research investigates the potential of fine-tuning MobileSAM in a decentralised way onboard multiple satellites in rapid response to a disaster. Our findings show that MobileSAM can be rapidly fine-tuned and benefits from decentralised learning, considering the constraints imposed by the simulated orbital environment. We observe improvements in segmentation performance with minimal training data and fast fine-tuning when satellites frequently communicate model updates. This study contributes to the field of onboard AI by emphasising the benefits of decentralised learning and fine-tuning pre-trained models for rapid response scenarios. Our work builds on recent related research at a critical time; as extreme weather events increase in frequency and magnitude, rapid response with onboard data analysis is essential.
comment: Accepted at the Sixth IEEE International Conference on Image Processing Applications and Systems (IPAS) 2025
CityWalker: Learning Embodied Urban Navigation from Web-Scale Videos
Navigating dynamic urban environments presents significant challenges for embodied agents, requiring advanced spatial reasoning and adherence to common-sense norms. Despite progress, existing visual navigation methods struggle in map-free or off-street settings, limiting the deployment of autonomous agents like last-mile delivery robots. To overcome these obstacles, we propose a scalable, data-driven approach for human-like urban navigation by training agents on thousands of hours of in-the-wild city walking and driving videos sourced from the web. We introduce a simple and scalable data processing pipeline that extracts action supervision from these videos, enabling large-scale imitation learning without costly annotations. Our model learns sophisticated navigation policies to handle diverse challenges and critical scenarios. Experimental results show that training on large-scale, diverse datasets significantly enhances navigation performance, surpassing current methods. This work shows the potential of using abundant online video data to develop robust navigation policies for embodied agents in dynamic urban settings. https://ai4ce.github.io/CityWalker/
☆ Low-rank Adaptation-based All-Weather Removal for Autonomous Navigation
All-weather image restoration (AWIR) is crucial for reliable autonomous navigation under adverse weather conditions. AWIR models are trained to address a specific set of weather conditions such as fog, rain, and snow. But this causes them to often struggle with out-of-distribution (OoD) samples or unseen degradations which limits their effectiveness for real-world autonomous navigation. To overcome this issue, existing models must either be retrained or fine-tuned, both of which are inefficient and impractical, with retraining needing access to large datasets, and fine-tuning involving many parameters. In this paper, we propose using Low-Rank Adaptation (LoRA) to efficiently adapt a pre-trained all-weather model to novel weather restoration tasks. Furthermore, we observe that LoRA lowers the performance of the adapted model on the pre-trained restoration tasks. To address this issue, we introduce a LoRA-based fine-tuning method called LoRA-Align (LoRA-A) which seeks to align the singular vectors of the fine-tuned and pre-trained weight matrices using Singular Value Decomposition (SVD). This alignment helps preserve the model's knowledge of its original tasks while adapting it to unseen tasks. We show that images restored with LoRA and LoRA-A can be effectively used for computer vision tasks in autonomous navigation, such as semantic segmentation and depth estimation.
comment: Project page: https://sudraj2002.github.io/loraapage/
☆ From memorization to generalization: a theoretical framework for diffusion-based generative models
Diffusion-based generative models demonstrate a transition from memorizing the training dataset to a non-memorization regime as the size of the training set increases. Here, we begin by introducing a mathematically precise definition of this transition in terms of a relative distance: the model is said to be in the non-memorization/`generalization' regime if the generated distribution is almost surely far from the probability distribution associated with a Gaussian kernel approximation to the training dataset, relative to the sampling distribution. Then, we develop an analytically tractable diffusion model and establish a lower bound on Kullback-Leibler divergence between the generated and sampling distribution. The model also features the transition, according to our definition in terms of the relative distance, when the training data is sampled from an isotropic Gaussian distribution. Further, our study reveals that this transition occurs when the individual distance between the generated and underlying sampling distribution begins to decrease with the addition of more training samples. This is to be contrasted with an alternative scenario, where the model's memorization performance degrades, but generalization performance doesn't improve. We also provide empirical evidence indicating that realistic diffusion models exhibit the same alignment of scales.
comment: 22 pages
☆ Signs as Tokens: An Autoregressive Multilingual Sign Language Generator
Sign language is a visual language that encompasses all linguistic features of natural languages and serves as the primary communication method for the deaf and hard-of-hearing communities. While many studies have successfully adapted pretrained language models (LMs) for sign language translation (sign-to-text), drawing inspiration from its linguistic characteristics, the reverse task of sign language generation (SLG, text-to-sign) remains largely unexplored. Most existing approaches treat SLG as a visual content generation task, employing techniques such as diffusion models to produce sign videos, 2D keypoints, or 3D avatars based on text inputs, overlooking the linguistic properties of sign languages. In this work, we introduce a multilingual sign language model, Signs as Tokens (SOKE), which can generate 3D sign avatars autoregressively from text inputs using a pretrained LM. To align sign language with the LM, we develop a decoupled tokenizer that discretizes continuous signs into token sequences representing various body parts. These sign tokens are integrated into the raw text vocabulary of the LM, allowing for supervised fine-tuning on sign language datasets. To facilitate multilingual SLG research, we further curate a large-scale Chinese sign language dataset, CSL-Daily, with high-quality 3D pose annotations. Extensive qualitative and quantitative evaluations demonstrate the effectiveness of SOKE. The project page is available at https://2000zrl.github.io/soke/.
☆ NEMO: Can Multimodal LLMs Identify Attribute-Modified Objects?
Multimodal Large Language Models (MLLMs) have made notable advances in visual understanding, yet their abilities to recognize objects modified by specific attributes remain an open question. To address this, we explore MLLMs' reasoning capabilities in object recognition, ranging from commonsense to beyond-commonsense scenarios. We introduce a novel benchmark, NEMO, which comprises 900 images of origiNal fruits and their corresponding attributE-MOdified ones; along with a set of 2,700 questions including open-, multiple-choice-, unsolvable types. We assess 26 recent open-sourced and commercial models using our benchmark. The findings highlight pronounced performance gaps in recognizing objects in NEMO and reveal distinct answer preferences across different models. Although stronger vision encoders improve performance, MLLMs still lag behind standalone vision encoders. Interestingly, scaling up the model size does not consistently yield better outcomes, as deeper analysis reveals that larger LLMs can weaken vision encoders during fine-tuning. These insights shed light on critical limitations in current MLLMs and suggest potential pathways toward developing more versatile and resilient multimodal models.
♻ ☆ LLM2CLIP: Powerful Language Model Unlocks Richer Visual Representation
CLIP is a foundational multimodal model that aligns image and text features into a shared space using contrastive learning on large-scale image-text pairs. Its strength lies in leveraging natural language as a rich supervisory signal. With the rapid progress of large language models (LLMs), we explore their potential to further enhance CLIP's multimodal representation learning. This work introduces a fine-tuning approach that integrates LLMs with the pretrained CLIP visual encoder, leveraging LLMs' advanced text understanding and open-world knowledge to improve CLIP's ability to process long and complex captions. To address the challenge of LLMs' autoregressive nature, we propose a caption-to-caption contrastive learning framework to enhance the discriminative power of their outputs. Our method achieves substantial performance gains on various downstream tasks, demonstrating the effectiveness of combining LLMs with CLIP for enhanced multimodal learning.
♻ ☆ Health AI Developer Foundations
Robust medical Machine Learning (ML) models have the potential to revolutionize healthcare by accelerating clinical research, improving workflows and outcomes, and producing novel insights or capabilities. Developing such ML models from scratch is cost prohibitive and requires substantial compute, data, and time (e.g., expert labeling). To address these challenges, we introduce Health AI Developer Foundations (HAI-DEF), a suite of pre-trained, domain-specific foundation models, tools, and recipes to accelerate building ML for health applications. The models cover various modalities and domains, including radiology (X-rays and computed tomography), histopathology, dermatological imaging, and audio. These models provide domain specific embeddings that facilitate AI development with less labeled data, shorter training times, and reduced computational costs compared to traditional approaches. In addition, we utilize a common interface and style across these models, and prioritize usability to enable developers to integrate HAI-DEF efficiently. We present model evaluations across various tasks and conclude with a discussion of their application and evaluation, covering the importance of ensuring efficacy, fairness, and equity. Finally, while HAI-DEF and specifically the foundation models lower the barrier to entry for ML in healthcare, we emphasize the importance of validation with problem- and population-specific data for each desired usage setting. This technical report will be updated over time as more modalities and features are added.
comment: 16 pages, 8 figures
♻ ☆ BRACTIVE: A Brain Activation Approach to Human Visual Brain Learning
The human brain is a highly efficient processing unit, and understanding how it works can inspire new algorithms and architectures in machine learning. In this work, we introduce a novel framework named Brain Activation Network (BRACTIVE), a transformer-based approach to studying the human visual brain. The main objective of BRACTIVE is to align the visual features of subjects with corresponding brain representations via fMRI signals. It allows us to identify the brain's Regions of Interest (ROI) of the subjects. Unlike previous brain research methods, which can only identify ROIs for one subject at a time and are limited by the number of subjects, BRACTIVE automatically extends this identification to multiple subjects and ROIs. Our experiments demonstrate that BRACTIVE effectively identifies person-specific regions of interest, such as face and body-selective areas, aligning with neuroscience findings and indicating potential applicability to various object categories. More importantly, we found that leveraging human visual brain activity to guide deep neural networks enhances performance across various benchmarks. It encourages the potential of BRACTIVE in both neuroscience and machine intelligence studies.
♻ ☆ Brainformer: Mimic Human Visual Brain Functions to Machine Vision Models via fMRI
Human perception plays a vital role in forming beliefs and understanding reality. A deeper understanding of brain functionality will lead to the development of novel deep neural networks. In this work, we introduce a novel framework named Brainformer, a straightforward yet effective Transformer-based framework, to analyze Functional Magnetic Resonance Imaging (fMRI) patterns in the human perception system from a machine-learning perspective. Specifically, we present the Multi-scale fMRI Transformer to explore brain activity patterns through fMRI signals. This architecture includes a simple yet efficient module for high-dimensional fMRI signal encoding and incorporates a novel embedding technique called 3D Voxels Embedding. Secondly, drawing inspiration from the functionality of the brain's Region of Interest, we introduce a novel loss function called Brain fMRI Guidance Loss. This loss function mimics brain activity patterns from these regions in the deep neural network using fMRI data. This work introduces a prospective approach to transferring knowledge from human perception to neural networks. Our experiments demonstrate that leveraging fMRI information allows the machine vision model to achieve results comparable to State-of-the-Art methods in various image recognition tasks.
♻ ☆ IG-CFAT: An Improved GAN-Based Framework for Effectively Exploiting Transformers in Real-World Image Super-Resolution
In the field of single image super-resolution (SISR), transformer-based models, have demonstrated significant advancements. However, the potential and efficiency of these models in applied fields such as real-world image super-resolution have been less noticed and there are substantial opportunities for improvement. Recently, composite fusion attention transformer (CFAT), outperformed previous state-of-the-art (SOTA) models in classic image super-resolution. In this paper, we propose a novel GAN-based framework by incorporating the CFAT model to effectively exploit the performance of transformers in real-world image super-resolution. In our proposed approach, we integrate a semantic-aware discriminator to reconstruct fine details more accurately and employ an adaptive degradation model to better simulate real-world degradations. Moreover, we introduce a new combination of loss functions by adding wavelet loss to loss functions of GAN-based models to better recover high-frequency details. Empirical results demonstrate that IG-CFAT significantly outperforms existing SOTA models in both quantitative and qualitative metrics. Our proposed model revolutionizes the field of real-world image super-resolution and demonstrates substantially better performance in recovering fine details and generating realistic textures. The introduction of IG-CFAT offers a robust and adaptable solution for real-world image super-resolution tasks.
♻ ☆ Beyond Grids: Exploring Elastic Input Sampling for Vision Transformers WACV 2025
Vision transformers have excelled in various computer vision tasks but mostly rely on rigid input sampling using a fixed-size grid of patches. It limits their applicability in real-world problems, such as active visual exploration, where patches have various scales and positions. Our paper addresses this limitation by formalizing the concept of input elasticity for vision transformers and introducing an evaluation protocol for measuring this elasticity. Moreover, we propose modifications to the transformer architecture and training regime, which increase its elasticity. Through extensive experimentation, we spotlight opportunities and challenges associated with such architecture.
comment: WACV 2025
♻ ☆ GaNI: Global and Near Field Illumination Aware Neural Inverse Rendering
In this paper, we present GaNI, a Global and Near-field Illumination-aware neural inverse rendering technique that can reconstruct geometry, albedo, and roughness parameters from images of a scene captured with co-located light and camera. Existing inverse rendering techniques with co-located light-camera focus on single objects only, without modeling global illumination and near-field lighting more prominent in scenes with multiple objects. We introduce a system that solves this problem in two stages; we first reconstruct the geometry powered by neural volumetric rendering NeuS, followed by inverse neural radiosity that uses the previously predicted geometry to estimate albedo and roughness. However, such a naive combination fails and we propose multiple technical contributions that enable this two-stage approach. We observe that NeuS fails to handle near-field illumination and strong specular reflections from the flashlight in a scene. We propose to implicitly model the effects of near-field illumination and introduce a surface angle loss function to handle specular reflections. Similarly, we observe that invNeRad assumes constant illumination throughout the capture and cannot handle moving flashlights during capture. We propose a light position-aware radiance cache network and additional smoothness priors on roughness to reconstruct reflectance. Experimental evaluation on synthetic and real data shows that our method outperforms the existing co-located light-camera-based inverse rendering techniques. Our approach produces significantly better reflectance and slightly better geometry than capture strategies that do not require a dark room.
♻ ☆ Learning Instance-Specific Parameters of Black-Box Models Using Differentiable Surrogates
Tuning parameters of a non-differentiable or black-box compute is challenging. Existing methods rely mostly on random sampling or grid sampling from the parameter space. Further, with all the current methods, it is not possible to supply any input specific parameters to the black-box. To the best of our knowledge, for the first time, we are able to learn input-specific parameters for a black box in this work. As a test application, we choose a popular image denoising method BM3D as our black-box compute. Then, we use a differentiable surrogate model (a neural network) to approximate the black-box behaviour. Next, another neural network is used in an end-to-end fashion to learn input instance-specific parameters for the black-box. Motivated by prior advances in surrogate-based optimization, we applied our method to the Smartphone Image Denoising Dataset (SIDD) and the Color Berkeley Segmentation Dataset (CBSD68) for image denoising. The results are compelling, demonstrating a significant increase in PSNR and a notable improvement in SSIM nearing 0.93. Experimental results underscore the effectiveness of our approach in achieving substantial improvements in both model performance and optimization efficiency. For code and implementation details, please refer to our GitHub repository: https://github.com/arnisha-k/instance-specific-param
comment: 10 pages, 9 figures
♻ ☆ LRSAA: Large-scale Remote Sensing Image Target Recognition and Automatic Annotation
This paper presents a method for object recognition and automatic labeling in large-area remote sensing images called LRSAA. The method integrates YOLOv11 and MobileNetV3-SSD object detection algorithms through ensemble learning to enhance model performance. Furthermore, it employs Poisson disk sampling segmentation techniques and the EIOU metric to optimize the training and inference processes of segmented images, followed by the integration of results. This approach not only reduces the demand for computational resources but also achieves a good balance between accuracy and speed. The source code for this project has been made publicly available on https://github.com/anaerovane/LRSAA.
comment: arXiv admin note: text overlap with arXiv:2411.07802
♻ ☆ PLReMix: Combating Noisy Labels with Pseudo-Label Relaxed Contrastive Representation Learning WACV 2025
Recently, the usage of Contrastive Representation Learning (CRL) as a pre-training technique improves the performance of learning with noisy labels (LNL) methods. However, instead of pre-training, when trivially combining CRL loss with LNL methods as an end-to-end framework, the empirical experiments show severe degeneration of the performance. We verify through experiments that this issue is caused by optimization conflicts of losses and propose an end-to-end \textbf{PLReMix} framework by introducing a Pseudo-Label Relaxed (PLR) contrastive loss. This PLR loss constructs a reliable negative set of each sample by filtering out its inappropriate negative pairs, alleviating the loss conflicts by trivially combining these losses. The proposed PLR loss is pluggable and we have integrated it into other LNL methods, observing their improved performance. Furthermore, a two-dimensional Gaussian Mixture Model is adopted to distinguish clean and noisy samples by leveraging semantic information and model outputs simultaneously. Experiments on multiple benchmark datasets demonstrate the effectiveness of the proposed method. Code is available at \url{https://github.com/lxysl/PLReMix}.
comment: WACV 2025
♻ ☆ Functionality understanding and segmentation in 3D scenes
Understanding functionalities in 3D scenes involves interpreting natural language descriptions to locate functional interactive objects, such as handles and buttons, in a 3D environment. Functionality understanding is highly challenging, as it requires both world knowledge to interpret language and spatial perception to identify fine-grained objects. For example, given a task like 'turn on the ceiling light', an embodied AI agent must infer that it needs to locate the light switch, even though the switch is not explicitly mentioned in the task description. To date, no dedicated methods have been developed for this problem. In this paper, we introduce Fun3DU, the first approach designed for functionality understanding in 3D scenes. Fun3DU uses a language model to parse the task description through Chain-of-Thought reasoning in order to identify the object of interest. The identified object is segmented across multiple views of the captured scene by using a vision and language model. The segmentation results from each view are lifted in 3D and aggregated into the point cloud using geometric information. Fun3DU is training-free, relying entirely on pre-trained models. We evaluate Fun3DU on SceneFun3D, the most recent and only dataset to benchmark this task, which comprises over 3000 task descriptions on 230 scenes. Our method significantly outperforms state-of-the-art open-vocabulary 3D segmentation approaches. Project page: https://jcorsetti.github.io/fun3du
comment: Technical report. 20 pages, 12 figures, 7 tables. Updated website link
♻ ☆ Fast and Robust Phase Retrieval via Deep Expectation-Consistent Approximation
Accurately recovering images from phaseless measurements is a challenging and long-standing problem. In this work, we present "deepECpr," which combines expectation-consistent (EC) approximation with deep denoising networks to surpass state-of-the-art phase-retrieval methods in both speed and accuracy. In addition to applying EC in a non-traditional manner, deepECpr includes a novel stochastic damping scheme that is inspired by recent diffusion methods. Like existing phase-retrieval methods based on plug-and-play priors, regularization by denoising, or diffusion, deepECpr iterates a denoising stage with a measurement-exploitation stage. But unlike existing methods, deepECpr requires far fewer denoiser calls. We compare deepECpr to the state-of-the-art prDeep (Metzler et al., 2018), Deep-ITA (Wang et al., 2020), DOLPH (Shoushtari et al., 2023), and Diffusion Posterior Sampling (Chung et al., 2023) methods for noisy phase-retrieval of color, natural, and unnatural grayscale images on oversampled-Fourier and coded-diffraction-pattern measurements and find improvements in both PSNR and SSIM with significantly fewer denoiser calls.
♻ ☆ Prompting Visual-Language Models for Dynamic Facial Expression Recognition BMVC 2023
This paper presents a novel visual-language model called DFER-CLIP, which is based on the CLIP model and designed for in-the-wild Dynamic Facial Expression Recognition (DFER). Specifically, the proposed DFER-CLIP consists of a visual part and a textual part. For the visual part, based on the CLIP image encoder, a temporal model consisting of several Transformer encoders is introduced for extracting temporal facial expression features, and the final feature embedding is obtained as a learnable "class" token. For the textual part, we use as inputs textual descriptions of the facial behaviour that is related to the classes (facial expressions) that we are interested in recognising -- those descriptions are generated using large language models, like ChatGPT. This, in contrast to works that use only the class names and more accurately captures the relationship between them. Alongside the textual description, we introduce a learnable token which helps the model learn relevant context information for each expression during training. Extensive experiments demonstrate the effectiveness of the proposed method and show that our DFER-CLIP also achieves state-of-the-art results compared with the current supervised DFER methods on the DFEW, FERV39k, and MAFW benchmarks. Code is publicly available at https://github.com/zengqunzhao/DFER-CLIP.
comment: Accepted at BMVC 2023 (Camera-Ready Version)
♻ ☆ Optimizing Brain Tumor Segmentation with MedNeXt: BraTS 2024 SSA and Pediatrics
Identifying key pathological features in brain MRIs is crucial for the long-term survival of glioma patients. However, manual segmentation is time-consuming, requiring expert intervention and is susceptible to human error. Therefore, significant research has been devoted to developing machine learning methods that can accurately segment tumors in 3D multimodal brain MRI scans. Despite their progress, state-of-the-art models are often limited by the data they are trained on, raising concerns about their reliability when applied to diverse populations that may introduce distribution shifts. Such shifts can stem from lower quality MRI technology (e.g., in sub-Saharan Africa) or variations in patient demographics (e.g., children). The BraTS-2024 challenge provides a platform to address these issues. This study presents our methodology for segmenting tumors in the BraTS-2024 SSA and Pediatric Tumors tasks using MedNeXt, comprehensive model ensembling, and thorough postprocessing. Our approach demonstrated strong performance on the unseen validation set, achieving an average Dice Similarity Coefficient (DSC) of 0.896 on the BraTS-2024 SSA dataset and an average DSC of 0.830 on the BraTS Pediatric Tumor dataset. Additionally, our method achieved an average Hausdorff Distance (HD95) of 14.682 on the BraTS-2024 SSA dataset and an average HD95 of 37.508 on the BraTS Pediatric dataset. Our GitHub repository can be accessed here: Project Repository : https://github.com/python-arch/BioMbz-Optimizing-Brain-Tumor-Segmentation-with-MedNeXt-BraTS-2024-SSA-and-Pediatrics
♻ ☆ MAROON: A Framework for the Joint Characterization of Near-Field High-Resolution Radar and Optical Depth Imaging Techniques
Utilizing the complementary strengths of wavelength-specific range or depth sensors is crucial for robust computer-assisted tasks such as autonomous driving. Despite this, there is still little research done at the intersection of optical depth sensors and radars operating close range, where the target is decimeters away from the sensors. Together with a growing interest in high-resolution imaging radars operating in the near field, the question arises how these sensors behave in comparison to their traditional optical counterparts. In this work, we take on the unique challenge of jointly characterizing depth imagers from both, the optical and radio-frequency domain using a multimodal spatial calibration. We collect data from four depth imagers, with three optical sensors of varying operation principle and an imaging radar. We provide a comprehensive evaluation of their depth measurements with respect to distinct object materials, geometries, and object-to-sensor distances. Specifically, we reveal scattering effects of partially transmissive materials and investigate the response of radio-frequency signals. All object measurements will be made public in form of a multimodal dataset, called MAROON.
♻ ☆ DeltaKWS: A 65nm 36nJ/Decision Bio-inspired Temporal-Sparsity-Aware Digital Keyword Spotting IC with 0.6V Near-Threshold SRAM
This paper introduces DeltaKWS, to the best of our knowledge, the first $\Delta$RNN-enabled fine-grained temporal sparsity-aware KWS IC for voice-controlled devices. The 65 nm prototype chip features a number of techniques to enhance performance, area, and power efficiencies, specifically: 1) a bio-inspired delta-gated recurrent neural network ($\Delta$RNN) classifier leveraging temporal similarities between neighboring feature vectors extracted from input frames and network hidden states, eliminating unnecessary operations and memory accesses; 2) an IIR BPF-based FEx that leverages mixed-precision quantization, low-cost computing structure and channel selection; 3) a 24 kB 0.6 V near-$V_\text{TH}$ weight SRAM that achieves 6.6X lower read power than the foundry-provided SRAM. From chip measurement results, we show that the DeltaKWS achieves an 11/12-class GSCD accuracy of 90.5%/89.5% respectively and energy consumption of 36 nJ/decision in 65 nm CMOS process. At 87% temporal sparsity, computing latency and energy/inference are reduced by 2.4X/3.4X, respectively. The IIR BPF-based FEx, $\Delta$RNN accelerator, and 24 kB near-$V_\text{TH}$ SRAM blocks occupy 0.084 mm$^{2}$, 0.319 mm$^{2}$, and 0.381 mm$^{2}$ respectively (0.78 mm$^{2}$ in total).
comment: This paper has been accepted for publication in the IEEE Transactions on Circuits and Systems for Artificial Intelligence (TCASAI)
♻ ☆ TrackPGD: Efficient Adversarial Attack using Object Binary Masks against Robust Transformer Trackers NeurIPS2024
Adversarial perturbations can deceive neural networks by adding small, imperceptible noise to the input. Recent object trackers with transformer backbones have shown strong performance on tracking datasets, but their adversarial robustness has not been thoroughly evaluated. While transformer trackers are resilient to black-box attacks, existing white-box adversarial attacks are not universally applicable against these new transformer trackers due to differences in backbone architecture. In this work, we introduce TrackPGD, a novel white-box attack that utilizes predicted object binary masks to target robust transformer trackers. Built upon the powerful segmentation attack SegPGD, our proposed TrackPGD effectively influences the decisions of transformer-based trackers. Our method addresses two primary challenges in adapting a segmentation attack for trackers: limited class numbers and extreme pixel class imbalance. TrackPGD uses the same number of iterations as other attack methods for tracker networks and produces competitive adversarial examples that mislead transformer and non-transformer trackers such as MixFormerM, OSTrackSTS, TransT-SEG, and RTS on datasets including VOT2022STS, DAVIS2016, UAV123, and GOT-10k.
comment: Accepted in The 3rd New Frontiers in Adversarial Machine Learning (AdvML Frontiers @NeurIPS2024)
♻ ☆ LTOS: Layout-controllable Text-Object Synthesis via Adaptive Cross-attention Fusions
Controllable text-to-image generation synthesizes visual text and objects in images with certain conditions, which are frequently applied to emoji and poster generation. Visual text rendering and layout-to-image generation tasks have been popular in controllable text-to-image generation. However, each of these tasks typically focuses on single modality generation or rendering, leaving yet-to-be-bridged gaps between the approaches correspondingly designed for each of the tasks. In this paper, we combine text rendering and layout-to-image generation tasks into a single task: layout-controllable text-object synthesis (LTOS) task, aiming at synthesizing images with object and visual text based on predefined object layout and text contents. As compliant datasets are not readily available for our LTOS task, we construct a layout-aware text-object synthesis dataset, containing elaborate well-aligned labels of visual text and object information. Based on the dataset, we propose a layout-controllable text-object adaptive fusion (TOF) framework, which generates images with clear, legible visual text and plausible objects. We construct a visual-text rendering module to synthesize text and employ an object-layout control module to generate objects while integrating the two modules to harmoniously generate and integrate text content and objects in images. To better the image-text integration, we propose a self-adaptive cross-attention fusion module that helps the image generation to attend more to important text information. Within such a fusion module, we use a self-adaptive learnable factor to learn to flexibly control the influence of cross-attention outputs on image generation. Experimental results show that our method outperforms the state-of-the-art in LTOS, text rendering, and layout-to-image tasks, enabling harmonious visual text rendering and object generation.
♻ ☆ Mitigating the Impact of Noisy Edges on Graph-Based Algorithms via Adversarial Robustness Evaluation
Given that no existing graph construction method can generate a perfect graph for a given dataset, graph-based algorithms are often affected by redundant and erroneous edges present within the constructed graphs. In this paper, we view these noisy edges as adversarial attack and propose to use a spectral adversarial robustness evaluation method to mitigate the impact of noisy edges on the performance of graph-based algorithms. Our method identifies the points that are less vulnerable to noisy edges and leverages only these robust points to perform graph-based algorithms. Our experiments demonstrate that our methodology is highly effective and outperforms state-of-the-art denoising methods by a large margin.
♻ ☆ Monocular Lane Detection Based on Deep Learning: A Survey
Lane detection plays an important role in autonomous driving perception systems. As deep learning algorithms gain popularity, monocular lane detection methods based on deep learning have demonstrated superior performance and emerged as a key research direction in autonomous driving perception. The core design of these algorithmic frameworks can be summarized as follows: (1) Task paradigm, focusing on lane instance-level discrimination; (2) Lane modeling, representing lanes as a set of learnable parameters in the neural network; (3) Global context supplementation, enhancing the detection of obscure lanes; (4) Perspective effect elimination, providing 3D lanes usable for downstream applications. From these perspectives, this paper presents a comprehensive overview of existing methods, encompassing both the increasingly mature 2D lane detection approaches and the developing 3D lane detection works. For a relatively fair comparison, in addition to comparing the performance of mainstream methods on different benchmarks, their inference speed is also investigated under a unified setting. Moreover, we present some extended works on lane detection, including multi-task perception, video lane detection, online high-definition map construction, and lane topology reasoning, to offer readers a comprehensive roadmap for the evolution of lane detection. Finally, we point out some potential future research directions in this field. We exhaustively collect the papers and codes of existing works at https://github.com/Core9724/Awesome-Lane-Detection and will keep tracing the research.
♻ ☆ Enhancing Zero-Shot Facial Expression Recognition by LLM Knowledge Transfer WACV 2025
Current facial expression recognition (FER) models are often designed in a supervised learning manner and thus are constrained by the lack of large-scale facial expression images with high-quality annotations. Consequently, these models often fail to generalize well, performing poorly on unseen images in inference. Vision-language-based zero-shot models demonstrate a promising potential for addressing such challenges. However, these models lack task-specific knowledge and therefore are not optimized for the nuances of recognizing facial expressions. To bridge this gap, this work proposes a novel method, Exp-CLIP, to enhance zero-shot FER by transferring the task knowledge from large language models (LLMs). Specifically, based on the pre-trained vision-language encoders, we incorporate a projection head designed to map the initial joint vision-language space into a space that captures representations of facial actions. To train this projection head for subsequent zero-shot predictions, we propose to align the projected visual representations with task-specific semantic meanings derived from the LLM encoder, and the text instruction-based strategy is employed to customize the LLM knowledge. Given unlabelled facial data and efficient training of the projection head, Exp-CLIP achieves superior zero-shot results to the CLIP models and several other large vision-language models (LVLMs) on seven in-the-wild FER datasets. The code and pre-trained models are available at https://github.com/zengqunzhao/Exp-CLIP.
comment: Accepted at WACV 2025 (Camera-Ready Version)
♻ ☆ A Survey on Multimodal Large Language Models
Recently, Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks. The surprising emergent capabilities of MLLM, such as writing stories based on images and Optical Character Recognition (OCR)-free math reasoning, are rare in traditional multimodal methods, suggesting a potential path to artificial general intelligence. To this end, both academia and industry have endeavored to develop MLLMs that can compete with or even outperform GPT-4V, pushing the limit of research at a surprising speed. In this paper, we aim to trace and summarize the recent progress of MLLMs. First of all, we present the basic formulation of MLLM and delineate its related concepts, including architecture, training strategy and data, as well as evaluation. Then, we introduce research topics about how MLLMs can be extended to support more granularity, modalities, languages, and scenarios. We continue with multimodal hallucination and extended techniques, including Multimodal ICL (M-ICL), Multimodal CoT (M-CoT), and LLM-Aided Visual Reasoning (LAVR). To conclude the paper, we discuss existing challenges and point out promising research directions.
comment: 20 pages, 3 figures, 9 tables, accepted for publication in National Science Review. Project page:https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models
♻ ☆ Universal Segmentation at Arbitrary Granularity with Language Instruction CVPR2024
This paper aims to achieve universal segmentation of arbitrary semantic level. Despite significant progress in recent years, specialist segmentation approaches are limited to specific tasks and data distribution. Retraining a new model for adaptation to new scenarios or settings takes expensive computation and time cost, which raises the demand for versatile and universal segmentation model that can cater to various granularity. Although some attempts have been made for unifying different segmentation tasks or generalization to various scenarios, limitations in the definition of paradigms and input-output spaces make it difficult for them to achieve accurate understanding of content at arbitrary granularity. To this end, we present UniLSeg, a universal segmentation model that can perform segmentation at any semantic level with the guidance of language instructions. For training UniLSeg, we reorganize a group of tasks from original diverse distributions into a unified data format, where images with texts describing segmentation targets as input and corresponding masks are output. Combined with a automatic annotation engine for utilizing numerous unlabeled data, UniLSeg achieves excellent performance on various tasks and settings, surpassing both specialist and unified segmentation models.
comment: Accepted by CVPR2024
♻ ☆ Efficient Long Video Tokenization via Coordinate-based Patch Reconstruction
Efficient tokenization of videos remains a challenge in training vision models that can process long videos. One promising direction is to develop a tokenizer that can encode long video clips, as it would enable the tokenizer to leverage the temporal coherence of videos better for tokenization. However, training existing tokenizers on long videos often incurs a huge training cost as they are trained to reconstruct all the frames at once. In this paper, we introduce CoordTok, a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos, inspired by recent advances in 3D generative models. In particular, CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled $(x,y,t)$ coordinates. This allows for training large tokenizer models directly on long videos without requiring excessive training resources. Our experiments show that CoordTok can drastically reduce the number of tokens for encoding long video clips. For instance, CoordTok can encode a 128-frame video with 128$\times$128 resolution into 1280 tokens, while baselines need 6144 or 8192 tokens to achieve similar reconstruction quality. We further show that this efficient video tokenization enables memory-efficient training of a diffusion transformer that can generate 128 frames at once.
comment: Code is available on the project webpage: https://huiwon-jang.github.io/coordtok/
♻ ☆ Open-Vocabulary Segmentation with Semantic-Assisted Calibration CVPR2024
This paper studies open-vocabulary segmentation (OVS) through calibrating in-vocabulary and domain-biased embedding space with generalized contextual prior of CLIP. As the core of open-vocabulary understanding, alignment of visual content with the semantics of unbounded text has become the bottleneck of this field. To address this challenge, recent works propose to utilize CLIP as an additional classifier and aggregate model predictions with CLIP classification results. Despite their remarkable progress, performance of OVS methods in relevant scenarios is still unsatisfactory compared with supervised counterparts. We attribute this to the in-vocabulary embedding and domain-biased CLIP prediction. To this end, we present a Semantic-assisted CAlibration Network (SCAN). In SCAN, we incorporate generalized semantic prior of CLIP into proposal embedding to avoid collapsing on known categories. Besides, a contextual shift strategy is applied to mitigate the lack of global context and unnatural background noise. With above designs, SCAN achieves state-of-the-art performance on all popular open-vocabulary segmentation benchmarks. Furthermore, we also focus on the problem of existing evaluation system that ignores semantic duplication across categories, and propose a new metric called Semantic-Guided IoU (SG-IoU).
comment: Accepted by CVPR2024
♻ ☆ Efficient Progressive Image Compression with Variance-aware Masking WACV 2025
Learned progressive image compression is gaining momentum as it allows improved image reconstruction as more bits are decoded at the receiver. We propose a progressive image compression method in which an image is first represented as a pair of base-quality and top-quality latent representations. Next, a residual latent representation is encoded as the element-wise difference between the top and base representations. Our scheme enables progressive image compression with element-wise granularity by introducing a masking system that ranks each element of the residual latent representation from most to least important, dividing it into complementary components, which can be transmitted separately to the decoder in order to obtain different reconstruction quality. The masking system does not add further parameters nor complexity. At the receiver, any elements of the top latent representation excluded from the transmitted components can be independently replaced with the mean predicted by the hyperprior architecture, ensuring reliable reconstructions at any intermediate quality level. We also introduced Rate Enhancement Modules (REMs), which refine the estimation of entropy parameters using already decoded components. We obtain results competitive with state-of-the-art competitors, while significantly reducing computational complexity, decoding time, and number of parameters.
comment: 9 pages. Accepted at WACV 2025
♻ ☆ UniFL: Improve Latent Diffusion Model via Unified Feedback Learning
Latent diffusion models (LDM) have revolutionized text-to-image generation, leading to the proliferation of various advanced models and diverse downstream applications. However, despite these significant advancements, current diffusion models still suffer from several limitations, including inferior visual quality, inadequate aesthetic appeal, and inefficient inference, without a comprehensive solution in sight. To address these challenges, we present UniFL, a unified framework that leverages feedback learning to enhance diffusion models comprehensively. UniFL stands out as a universal, effective, and generalizable solution applicable to various diffusion models, such as SD1.5 and SDXL. Notably, UniFL consists of three key components: perceptual feedback learning, which enhances visual quality; decoupled feedback learning, which improves aesthetic appeal; and adversarial feedback learning, which accelerates inference. In-depth experiments and extensive user studies validate the superior performance of our method in enhancing generation quality and inference acceleration. For instance, UniFL surpasses ImageReward by 17% user preference in terms of generation quality and outperforms LCM and SDXL Turbo by 57% and 20% general preference with 4-step inference.
comment: Accepted by Neurips2024
♻ ☆ Comparison of marker-less 2D image-based methods for infant pose estimation
In this study we compare the performance of available generic- and infant-pose estimators for a video-based automated general movement assessment (GMA), and the choice of viewing angle for optimal recordings, i.e., conventional diagonal view used in GMA vs. top-down view. We used 4500 annotated video-frames from 75 recordings of infant spontaneous motor functions from 4 to 26 weeks. To determine which pose estimation method and camera angle yield the best pose estimation accuracy on infants in a GMA related setting, the distance to human annotations and the percentage of correct key-points (PCK) were computed and compared. The results show that the best performing generic model trained on adults, ViTPose, also performs best on infants. We see no improvement from using infant-pose estimators over the generic pose estimators on our infant dataset. However, when retraining a generic model on our data, there is a significant improvement in pose estimation accuracy. The pose estimation accuracy obtained from the top-down view is significantly better than that obtained from the diagonal view, especially for the detection of the hip key-points. The results also indicate limited generalization capabilities of infant-pose estimators to other infant datasets, which hints that one should be careful when choosing infant pose estimators and using them on infant datasets which they were not trained on. While the standard GMA method uses a diagonal view for assessment, pose estimation accuracy significantly improves using a top-down view. This suggests that a top-down view should be included in recording setups for automated GMA research.
♻ ☆ VIRES: Video Instance Repainting with Sketch and Text Guidance
We introduce VIRES, a video instance repainting method with sketch and text guidance, enabling video instance repainting, replacement, generation, and removal. Existing approaches struggle with temporal consistency and accurate alignment with the provided sketch sequence. VIRES leverages the generative priors of text-to-video models to maintain temporal consistency and produce visually pleasing results. We propose the Sequential ControlNet with the standardized self-scaling, which effectively extracts structure layouts and adaptively captures high-contrast sketch details. We further augment the diffusion transformer backbone with the sketch attention to interpret and inject fine-grained sketch semantics. A sketch-aware encoder ensures that repainted results are aligned with the provided sketch sequence. Additionally, we contribute the VireSet, a dataset with detailed annotations tailored for training and evaluating video instance editing methods. Experimental results demonstrate the effectiveness of VIRES, which outperforms state-of-the-art methods in visual quality, temporal consistency, condition alignment, and human ratings. Project page:https://suimuc.github.io/suimu.github.io/projects/VIRES/
♻ ☆ CrowdMAC: Masked Crowd Density Completion for Robust Crowd Density Forecasting WACV 2025
A crowd density forecasting task aims to predict how the crowd density map will change in the future from observed past crowd density maps. However, the past crowd density maps are often incomplete due to the miss-detection of pedestrians, and it is crucial to develop a robust crowd density forecasting model against the miss-detection. This paper presents a MAsked crowd density Completion framework for crowd density forecasting (CrowdMAC), which is simultaneously trained to forecast future crowd density maps from partially masked past crowd density maps (i.e., forecasting maps from past maps with miss-detection) while reconstructing the masked observation maps (i.e., imputing past maps with miss-detection). Additionally, we propose Temporal-Density-aware Masking (TDM), which non-uniformly masks tokens in the observed crowd density map, considering the sparsity of the crowd density maps and the informativeness of the subsequent frames for the forecasting task. Moreover, we introduce multi-task masking to enhance training efficiency. In the experiments, CrowdMAC achieves state-of-the-art performance on seven large-scale datasets, including SDD, ETH-UCY, inD, JRDB, VSCrowd, FDST, and croHD. We also demonstrate the robustness of the proposed method against both synthetic and realistic miss-detections.
comment: Accepted to WACV 2025
♻ ☆ EchoDFKD: Data-Free Knowledge Distillation for Cardiac Ultrasound Segmentation using Synthetic Data
The application of machine learning to medical ultrasound videos of the heart, i.e., echocardiography, has recently gained traction with the availability of large public datasets. Traditional supervised tasks, such as ejection fraction regression, are now making way for approaches focusing more on the latent structure of data distributions, as well as generative methods. We propose a model trained exclusively by knowledge distillation, either on real or synthetical data, involving retrieving masks suggested by a teacher model. We achieve state-of-the-art (SOTA) values on the task of identifying end-diastolic and end-systolic frames. By training the model only on synthetic data, it reaches segmentation capabilities close to the performance when trained on real data with a significantly reduced number of weights. A comparison with the 5 main existing methods shows that our method outperforms the others in most cases. We also present a new evaluation method that does not require human annotation and instead relies on a large auxiliary model. We show that this method produces scores consistent with those obtained from human annotations. Relying on the integrated knowledge from a vast amount of records, this method overcomes certain inherent limitations of human annotator labeling. Code: https://github.com/GregoirePetit/EchoDFKD
♻ ☆ Learning Generalizable Feature Fields for Mobile Manipulation
An open problem in mobile manipulation is how to represent objects and scenes in a unified manner so that robots can use both for navigation and manipulation. The latter requires capturing intricate geometry while understanding fine-grained semantics, whereas the former involves capturing the complexity inherent at an expansive physical scale. In this work, we present GeFF (Generalizable Feature Fields), a scene-level generalizable neural feature field that acts as a unified representation for both navigation and manipulation that performs in real-time. To do so, we treat generative novel view synthesis as a pre-training task, and then align the resulting rich scene priors with natural language via CLIP feature distillation. We demonstrate the effectiveness of this approach by deploying GeFF on a quadrupedal robot equipped with a manipulator. We quantitatively evaluate GeFF's ability for open-vocabulary object-/part-level manipulation and show that GeFF outperforms point-based baselines in runtime and storage-accuracy trade-offs, with qualitative examples of semantics-aware navigation and articulated object manipulation.
comment: Preprint. Project website is at: https://geff-b1.github.io/
♻ ☆ Breaking the Illusion: Real-world Challenges for Adversarial Patches in Object Detection
Adversarial attacks pose a significant threat to the robustness and reliability of machine learning systems, particularly in computer vision applications. This study investigates the performance of adversarial patches for the YOLO object detection network in the physical world. Two attacks were tested: a patch designed to be placed anywhere within the scene - global patch, and another patch intended to partially overlap with specific object targeted for removal from detection - local patch. Various factors such as patch size, position, rotation, brightness, and hue were analyzed to understand their impact on the effectiveness of the adversarial patches. The results reveal a notable dependency on these parameters, highlighting the challenges in maintaining attack efficacy in real-world conditions. Learning to align digitally applied transformation parameters with those measured in the real world still results in up to a 64\% discrepancy in patch performance. These findings underscore the importance of understanding environmental influences on adversarial attacks, which can inform the development of more robust defenses for practical machine learning applications.
comment: This paper has been accepted by the 1st Workshop on Enabling Machine Learning Operations for next-Gen Embedded Wireless Networked Devices (EMERGE), 2024
♻ ☆ Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey
Semantic segmentation is an important and popular research area in computer vision that focuses on classifying pixels in an image based on their semantics. However, supervised deep learning requires large amounts of data to train models and the process of labeling images pixel by pixel is time-consuming and laborious. This review aims to provide a first comprehensive and organized overview of the state-of-the-art research results on pseudo-label methods in the field of semi-supervised semantic segmentation, which we categorize from different perspectives and present specific methods for specific application areas. In addition, we explore the application of pseudo-label technology in medical and remote-sensing image segmentation. Finally, we also propose some feasible future research directions to address the existing challenges.
comment: Accepted by IEEE Transactions on Circuits and Systems for Video Technology(TCSVT)
♻ ☆ On the Element-Wise Representation and Reasoning in Zero-Shot Image Recognition: A Systematic Survey
Zero-shot image recognition (ZSIR) aims to recognize and reason in unseen domains by learning generalized knowledge from limited data in the seen domain. The gist of ZSIR is constructing a well-aligned mapping between the input visual space and the target semantic space, which is a bottom-up paradigm inspired by the process by which humans observe the world. In recent years, ZSIR has witnessed significant progress on a broad spectrum, from theory to algorithm design, as well as widespread applications. However, to the best of our knowledge, there remains a lack of a systematic review of ZSIR from an element-wise perspective, i.e., learning fine-grained elements of data and their inferential associations. To fill the gap, this paper thoroughly investigates recent advances in element-wise ZSIR and provides a sound basis for its future development. Concretely, we first integrate three basic ZSIR tasks, i.e., object recognition, compositional recognition, and foundation model-based open-world recognition, into a unified element-wise paradigm and provide a detailed taxonomy and analysis of the main approaches. Next, we summarize the benchmarks, covering technical implementations, standardized datasets, and some more details as a library. Last, we sketch out related applications, discuss vital challenges, and suggest potential future directions.
comment: 20 pages, 6 figures, and 4 tables
♻ ☆ AeroGen: Enhancing Remote Sensing Object Detection with Diffusion-Driven Data Generation
Remote sensing image object detection (RSIOD) aims to identify and locate specific objects within satellite or aerial imagery. However, there is a scarcity of labeled data in current RSIOD datasets, which significantly limits the performance of current detection algorithms. Although existing techniques, e.g., data augmentation and semi-supervised learning, can mitigate this scarcity issue to some extent, they are heavily dependent on high-quality labeled data and perform worse in rare object classes. To address this issue, this paper proposes a layout-controllable diffusion generative model (i.e. AeroGen) tailored for RSIOD. To our knowledge, AeroGen is the first model to simultaneously support horizontal and rotated bounding box condition generation, thus enabling the generation of high-quality synthetic images that meet specific layout and object category requirements. Additionally, we propose an end-to-end data augmentation framework that integrates a diversity-conditioned generator and a filtering mechanism to enhance both the diversity and quality of generated data. Experimental results demonstrate that the synthetic data produced by our method are of high quality and diversity. Furthermore, the synthetic RSIOD data can significantly improve the detection performance of existing RSIOD models, i.e., the mAP metrics on DIOR, DIOR-R, and HRSC datasets are improved by 3.7%, 4.3%, and 2.43%, respectively. The code is available at https://github.com/Sonettoo/AeroGen.
♻ ☆ Network Inversion of Convolutional Neural Nets
Neural networks have emerged as powerful tools across various applications, yet their decision-making process often remains opaque, leading to them being perceived as "black boxes." This opacity raises concerns about their interpretability and reliability, especially in safety-critical scenarios. Network inversion techniques offer a solution by allowing us to peek inside these black boxes, revealing the features and patterns learned by the networks behind their decision-making processes and thereby provide valuable insights into how neural networks arrive at their conclusions, making them more interpretable and trustworthy. This paper presents a simple yet effective approach to network inversion using a meticulously conditioned generator that learns the data distribution in the input space of the trained neural network, enabling the reconstruction of inputs that would most likely lead to the desired outputs. To capture the diversity in the input space for a given output, instead of simply revealing the conditioning labels to the generator, we encode the conditioning label information into vectors and intermediate matrices and further minimize the cosine similarity between features of the generated images.
♻ ☆ Unconstrained Open Vocabulary Image Classification: Zero-Shot Transfer from Text to Image via CLIP Inversion WACV 2025
We introduce NOVIC, an innovative real-time uNconstrained Open Vocabulary Image Classifier that uses an autoregressive transformer to generatively output classification labels as language. Leveraging the extensive knowledge of CLIP models, NOVIC harnesses the embedding space to enable zero-shot transfer from pure text to images. Traditional CLIP models, despite their ability for open vocabulary classification, require an exhaustive prompt of potential class labels, restricting their application to images of known content or context. To address this, we propose an "object decoder" model that is trained on a large-scale 92M-target dataset of templated object noun sets and LLM-generated captions to always output the object noun in question. This effectively inverts the CLIP text encoder and allows textual object labels from essentially the entire English language to be generated directly from image-derived embedding vectors, without requiring any a priori knowledge of the potential content of an image, and without any label biases. The trained decoders are tested on a mix of manually and web-curated datasets, as well as standard image classification benchmarks, and achieve fine-grained prompt-free prediction scores of up to 87.5%, a strong result considering the model must work for any conceivable image and without any contextual clues.
comment: Published at WACV 2025
♻ ☆ Neuron: Learning Context-Aware Evolving Representations for Zero-Shot Skeleton Action Recognition
Zero-shot skeleton action recognition is a non-trivial task that requires robust unseen generalization with prior knowledge from only seen classes and shared semantics. Existing methods typically build the skeleton-semantics interactions by uncontrollable mappings and conspicuous representations, thereby can hardly capture the intricate and fine-grained relationship for effective cross-modal transferability. To address these issues, we propose a novel dyNamically Evolving dUal skeleton-semantic syneRgistic framework with the guidance of cOntext-aware side informatioN (dubbed Neuron), to explore more fine-grained cross-modal correspondence from micro to macro perspectives at both spatial and temporal levels, respectively. Concretely, 1) we first construct the spatial-temporal evolving micro-prototypes and integrate dynamic context-aware side information to capture the intricate and synergistic skeleton-semantic correlations step-by-step, progressively refining cross-model alignment; and 2) we introduce the spatial compression and temporal memory mechanisms to guide the growth of spatial-temporal micro-prototypes, enabling them to absorb structure-related spatial representations and regularity-dependent temporal patterns. Notably, such processes are analogous to the learning and growth of neurons, equipping the framework with the capacity to generalize to novel unseen action categories. Extensive experiments on various benchmark datasets demonstrated the superiority of the proposed method.
comment: 10 pages, 6 figures
♻ ☆ UniVST: A Unified Framework for Training-free Localized Video Style Transfer
This paper presents UniVST, a unified framework for localized video style transfer based on diffusion model. It operates without the need for training, offering a distinct advantage over existing diffusion methods that transfer style across entire videos. The endeavors of this paper comprise: (1) A point-matching mask propagation strategy that leverages the feature maps from the DDIM inversion. This streamlines the model's architecture by obviating the need for tracking models. (2) A training-free AdaIN-guided video style transfer mechanism that operates at both the latent and attention levels. This balances content fidelity and style richness, mitigating the loss of localized details commonly associated with direct video stylization. (3) A sliding-window consistent smoothing scheme that harnesses optical flow within the pixel representation and refines predicted noise to update the latent space. This significantly enhances temporal consistency and diminishes artifacts in stylized video. Our proposed UniVST has been validated to be superior to existing methods in quantitative and qualitative metrics. It adeptly addresses the challenges of preserving the primary object's style while ensuring temporal consistency and detail preservation. Our code is available at https://github.com/QuanjianSong/UniVST.
comment: 13 pages including reference
♻ ☆ Present and Future Generalization of Synthetic Image Detectors
The continued release of increasingly realistic image generation models creates a demand for synthetic image detectors. To build effective detectors we must first understand how factors like data source diversity, training methodologies and image alterations affect their generalization capabilities. This work conducts a systematic analysis and uses its insights to develop practical guidelines for training robust synthetic image detectors. Model generalization capabilities are evaluated across different setups (e.g. scale, sources, transformations) including real-world deployment conditions. Through an extensive benchmarking of state-of-the-art detectors across diverse and recent datasets, we show that while current approaches excel in specific scenarios, no single detector achieves universal effectiveness. Critical flaws are identified in detectors, and workarounds are proposed to enable the deployment of real-world detector applications enhancing accuracy, reliability and robustness beyond the limitations of current systems.
comment: 21 pages, 12 figures
♻ ☆ GaussianDiffusion: 3D Gaussian Splatting for Denoising Diffusion Probabilistic Models with Structured Noise
Text-to-3D, known for its efficient generation methods and expansive creative potential, has garnered significant attention in the AIGC domain. However, the pixel-wise rendering of NeRF and its ray marching light sampling constrain the rendering speed, impacting its utility in downstream industrial applications. Gaussian Splatting has recently shown a trend of replacing the traditional pointwise sampling technique commonly used in NeRF-based methodologies, and it is changing various aspects of 3D reconstruction. This paper introduces a novel text to 3D content generation framework, Gaussian Diffusion, based on Gaussian Splatting and produces more realistic renderings. The challenge of achieving multi-view consistency in 3D generation significantly impedes modeling complexity and accuracy. Taking inspiration from SJC, we explore employing multi-view noise distributions to perturb images generated by 3D Gaussian Splatting, aiming to rectify inconsistencies in multi-view geometry. We ingeniously devise an efficient method to generate noise that produces Gaussian noise from diverse viewpoints, all originating from a shared noise source. Furthermore, vanilla 3D Gaussian-based generation tends to trap models in local minima, causing artifacts like floaters, burrs, or proliferative elements. To mitigate these issues, we propose the variational Gaussian Splatting technique to enhance the quality and stability of 3D appearance. To our knowledge, our approach represents the first comprehensive utilization of Gaussian Diffusion across the entire spectrum of 3D content generation processes.
♻ ☆ Multi-feature Reconstruction Network using Crossed-mask Restoration for Unsupervised Industrial Anomaly Detection
Unsupervised anomaly detection using only normal samples is of great significance for quality inspection in industrial manufacturing. Although existing reconstruction-based methods have achieved promising results, they still face two problems: poor distinguishable information in image reconstruction and well abnormal regeneration caused by model under-regularization. To overcome the above issues, we convert the image reconstruction into a combination of parallel feature restorations and propose a multi-feature reconstruction network, MFRNet, using crossed-mask restoration in this paper. Specifically, a multi-scale feature aggregator is first developed to generate more discriminative hierarchical representations of the input images from a pre-trained model. Subsequently, a crossed-mask generator is adopted to randomly cover the extracted feature map, followed by a restoration network based on the transformer structure for high-quality repair of the missing regions. Finally, a hybrid loss is equipped to guide model training and anomaly estimation, which gives consideration to both the pixel and structural similarity. Extensive experiments show that our method is highly competitive with or significantly outperforms other state-of-the-arts on four public available datasets and one self-made dataset.
FBLNet: FeedBack Loop Network for Driver Attention Prediction
The problem of predicting driver attention from the driving perspective is gaining increasing research focus due to its remarkable significance for autonomous driving and assisted driving systems. The driving experience is extremely important for safe driving,a skilled driver is able to effortlessly predict oncoming danger (before it becomes salient) based on the driving experience and quickly pay attention to the corresponding zones. However, the nonobjective driving experience is difficult to model, so a mechanism simulating the driver experience accumulation procedure is absent in existing methods, and the current methods usually follow the technique line of saliency prediction methods to predict driver attention. In this paper, we propose a FeedBack Loop Network (FBLNet), which attempts to model the driving experience accumulation procedure. By over-and-over iterations, FBLNet generates the incremental knowledge that carries rich historically-accumulative and long-term temporal information. The incremental knowledge in our model is like the driving experience of humans. Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention. Our model exhibits a solid advantage over existing methods, achieving an outstanding performance improvement on two driver attention benchmark datasets.
comment: 8 figures
♻ ☆ 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes
Recent advances in radiance field reconstruction, such as 3D Gaussian Splatting (3DGS), have achieved high-quality novel view synthesis and fast rendering by representing scenes with compositions of Gaussian primitives. However, 3D Gaussians present several limitations for scene reconstruction. Accurately capturing hard edges is challenging without significantly increasing the number of Gaussians, creating a large memory footprint. Moreover, they struggle to represent flat surfaces, as they are diffused in space. Without hand-crafted regularizers, they tend to disperse irregularly around the actual surface. To circumvent these issues, we introduce a novel method, named 3D Convex Splatting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multi-view images. Smooth convex shapes offer greater flexibility than Gaussians, allowing for a better representation of 3D scenes with hard edges and dense volumes using fewer primitives. Powered by our efficient CUDA-based rasterizer, 3DCS achieves superior performance over 3DGS on benchmarks such as Mip-NeRF360, Tanks and Temples, and Deep Blending. Specifically, our method attains an improvement of up to 0.81 in PSNR and 0.026 in LPIPS compared to 3DGS while maintaining high rendering speeds and reducing the number of required primitives. Our results highlight the potential of 3D Convex Splatting to become the new standard for high-quality scene reconstruction and novel view synthesis. Project page: convexsplatting.github.io.
comment: 13 pages, 13 figures, 10 tables
♻ ☆ Unveil Inversion and Invariance in Flow Transformer for Versatile Image Editing
Leveraging the large generative prior of the flow transformer for tuning-free image editing requires authentic inversion to project the image into the model's domain and a flexible invariance control mechanism to preserve non-target contents. However, the prevailing diffusion inversion performs deficiently in flow-based models, and the invariance control cannot reconcile diverse rigid and non-rigid editing tasks. To address these, we systematically analyze the \textbf{inversion and invariance} control based on the flow transformer. Specifically, we unveil that the Euler inversion shares a similar structure to DDIM yet is more susceptible to the approximation error. Thus, we propose a two-stage inversion to first refine the velocity estimation and then compensate for the leftover error, which pivots closely to the model prior and benefits editing. Meanwhile, we propose the invariance control that manipulates the text features within the adaptive layer normalization, connecting the changes in the text prompt to image semantics. This mechanism can simultaneously preserve the non-target contents while allowing rigid and non-rigid manipulation, enabling a wide range of editing types such as visual text, quantity, facial expression, etc. Experiments on versatile scenarios validate that our framework achieves flexible and accurate editing, unlocking the potential of the flow transformer for versatile image editing.
comment: Project Page: https://pengchengpcx.github.io/EditFT/
♻ ☆ ALPI: Auto-Labeller with Proxy Injection for 3D Object Detection using 2D Labels Only WACV2025
3D object detection plays a crucial role in various applications such as autonomous vehicles, robotics and augmented reality. However, training 3D detectors requires a costly precise annotation, which is a hindrance to scaling annotation to large datasets. To address this challenge, we propose a weakly supervised 3D annotator that relies solely on 2D bounding box annotations from images, along with size priors. One major problem is that supervising a 3D detection model using only 2D boxes is not reliable due to ambiguities between different 3D poses and their identical 2D projection. We introduce a simple yet effective and generic solution: we build 3D proxy objects with annotations by construction and add them to the training dataset. Our method requires only size priors to adapt to new classes. To better align 2D supervision with 3D detection, our method ensures depth invariance with a novel expression of the 2D losses. Finally, to detect more challenging instances, our annotator follows an offline pseudo-labelling scheme which gradually improves its 3D pseudo-labels. Extensive experiments on the KITTI dataset demonstrate that our method not only performs on-par or above previous works on the Car category, but also achieves performance close to fully supervised methods on more challenging classes. We further demonstrate the effectiveness and robustness of our method by being the first to experiment on the more challenging nuScenes dataset. We additionally propose a setting where weak labels are obtained from a 2D detector pre-trained on MS-COCO instead of human annotations. The code is available at https://github.com/CEA-LIST/ALPI
comment: accepted at WACV2025
♻ ☆ DiscoMatch: Fast Discrete Optimisation for Geometrically Consistent 3D Shape Matching
In this work we propose to combine the advantages of learningbased and combinatorial formalisms for 3D shape matching. While learningbased methods lead to state-of-the-art matching performance, they do not ensure geometric consistency, so that obtained matchings are locally non-smooth. On the contrary, axiomatic, optimisation-based methods allow to take geometric consistency into account by explicitly constraining the space of valid matchings. However, existing axiomatic formalisms do not scale to practically relevant problem sizes, and require user input for the initialisation of non-convex optimisation problems. We work towards closing this gap by proposing a novel combinatorial solver that combines a unique set of favourable properties: our approach (i) is initialisation free, (ii) is massively parallelisable and powered by a quasi-Newton method, (iii) provides optimality gaps, and (iv) delivers improved matching quality with decreased runtime and globally optimal results for many instances.
comment: Paul Roetzer and Ahmed Abbas contributed equally
♻ ☆ MambaCSR: Dual-Interleaved Scanning for Compressed Image Super-Resolution With SSMs
We present MambaCSR, a simple but effective framework based on Mamba for the challenging compressed image super-resolution (CSR) task. Particularly, the scanning strategies of Mamba are crucial for effective contextual knowledge modeling in the restoration process despite it relying on selective state space modeling for all tokens. In this work, we propose an efficient dual-interleaved scanning paradigm (DIS) for CSR, which is composed of two scanning strategies: (i) hierarchical interleaved scanning is designed to comprehensively capture and utilize the most potential contextual information within an image by simultaneously taking advantage of the local window-based and sequential scanning methods; (ii) horizontal-to-vertical interleaved scanning is proposed to reduce the computational cost by leaving the redundancy between the scanning of different directions. To overcome the non-uniform compression artifacts, we also propose position-aligned cross-scale scanning to model multi-scale contextual information. Experimental results on multiple benchmarks have shown the great performance of our MambaCSR in the compressed image super-resolution task. The code will be soon available in~\textcolor{magenta}{\url{https://github.com/renyulin-f/MambaCSR}}.
DriveMLLM: A Benchmark for Spatial Understanding with Multimodal Large Language Models in Autonomous Driving
Autonomous driving requires a comprehensive understanding of 3D environments to facilitate high-level tasks such as motion prediction, planning, and mapping. In this paper, we introduce DriveMLLM, a benchmark specifically designed to evaluate the spatial understanding capabilities of multimodal large language models (MLLMs) in autonomous driving. DriveMLLM includes 880 front-facing camera images and introduces both absolute and relative spatial reasoning tasks, accompanied by linguistically diverse natural language questions. To measure MLLMs' performance, we propose novel evaluation metrics focusing on spatial understanding. We evaluate several state-of-the-art MLLMs on DriveMLLM, and our results reveal the limitations of current models in understanding complex spatial relationships in driving contexts. We believe these findings underscore the need for more advanced MLLM-based spatial reasoning methods and highlight the potential for DriveMLLM to drive further research in autonomous driving. Code will be available at \url{https://github.com/XiandaGuo/Drive-MLLM}.
comment: Code will be available at \url{https://github.com/XiandaGuo/Drive-MLLM}
♻ ☆ CutS3D: Cutting Semantics in 3D for 2D Unsupervised Instance Segmentation
Traditionally, algorithms that learn to segment object instances in 2D images have heavily relied on large amounts of human-annotated data. Only recently, novel approaches have emerged tackling this problem in an unsupervised fashion. Generally, these approaches first generate pseudo-masks and then train a class-agnostic detector. While such methods deliver the current state of the art, they often fail to correctly separate instances overlapping in 2D image space since only semantics are considered. To tackle this issue, we instead propose to cut the semantic masks in 3D to obtain the final 2D instances by utilizing a point cloud representation of the scene. Furthermore, we derive a Spatial Importance function, which we use to resharpen the semantics along the 3D borders of instances. Nevertheless, these pseudo-masks are still subject to mask ambiguity. To address this issue, we further propose to augment the training of a class-agnostic detector with three Spatial Confidence components aiming to isolate a clean learning signal. With these contributions, our approach outperforms competing methods across multiple standard benchmarks for unsupervised instance segmentation and object detection.
♻ ☆ Advancing Cross-domain Discriminability in Continual Learning of Vision-Language Models NeurIPS 2024
Continual learning (CL) with Vision-Language Models (VLMs) has overcome the constraints of traditional CL, which only focuses on previously encountered classes. During the CL of VLMs, we need not only to prevent the catastrophic forgetting on incrementally learned knowledge but also to preserve the zero-shot ability of VLMs. However, existing methods require additional reference datasets to maintain such zero-shot ability and rely on domain-identity hints to classify images across different domains. In this study, we propose Regression-based Analytic Incremental Learning (RAIL), which utilizes a recursive ridge regression-based adapter to learn from a sequence of domains in a non-forgetting manner and decouple the cross-domain correlations by projecting features to a higher-dimensional space. Cooperating with a training-free fusion module, RAIL absolutely preserves the VLM's zero-shot ability on unseen domains without any reference data. Additionally, we introduce Cross-domain Task-Agnostic Incremental Learning (X-TAIL) setting. In this setting, a CL learner is required to incrementally learn from multiple domains and classify test images from both seen and unseen domains without any domain-identity hint. We theoretically prove RAIL's absolute memorization on incrementally learned domains. Experiment results affirm RAIL's state-of-the-art performance in both X-TAIL and existing Multi-domain Task-Incremental Learning settings. The code is released at https://github.com/linghan1997/Regression-based-Analytic-Incremental-Learning.
comment: Accepted by NeurIPS 2024
♻ ☆ LaVin-DiT: Large Vision Diffusion Transformer
This paper presents the Large Vision Diffusion Transformer (LaVin-DiT), a scalable and unified foundation model designed to tackle over 20 computer vision tasks in a generative framework. Unlike existing large vision models directly adapted from natural language processing architectures, which rely on less efficient autoregressive techniques and disrupt spatial relationships essential for vision data, LaVin-DiT introduces key innovations to optimize generative performance for vision tasks. First, to address the high dimensionality of visual data, we incorporate a spatial-temporal variational autoencoder that encodes data into a continuous latent space. Second, for generative modeling, we develop a joint diffusion transformer that progressively produces vision outputs. Third, for unified multi-task training, in-context learning is implemented. Input-target pairs serve as task context, which guides the diffusion transformer to align outputs with specific tasks within the latent space. During inference, a task-specific context set and test data as queries allow LaVin-DiT to generalize across tasks without fine-tuning. Trained on extensive vision datasets, the model is scaled from 0.1B to 3.4B parameters, demonstrating substantial scalability and state-of-the-art performance across diverse vision tasks. This work introduces a novel pathway for large vision foundation models, underscoring the promising potential of diffusion transformers. The code and models will be open-sourced.
comment: 37 pages, 30 figures, 4 tables
♻ ☆ A Quality-Centric Framework for Generic Deepfake Detection
This paper addresses the generalization issue in deepfake detection by harnessing forgery quality in training data. Generally, the forgery quality of different deepfakes varies: some have easily recognizable forgery clues, while others are highly realistic. Existing works often train detectors on a mix of deepfakes with varying forgery qualities, potentially leading detectors to short-cut the easy-to-spot artifacts from low-quality forgery samples, thereby hurting generalization performance. To tackle this issue, we propose a novel quality-centric framework for generic deepfake detection, which is composed of a Quality Evaluator, a low-quality data enhancement module, and a learning pacing strategy that explicitly incorporates forgery quality into the training process. The framework is inspired by curriculum learning, which is designed to gradually enable the detector to learn more challenging deepfake samples, starting with easier samples and progressing to more realistic ones. We employ both static and dynamic assessments to assess the forgery quality, combining their scores to produce a final rating for each training sample. The rating score guides the selection of deepfake samples for training, with higher-rated samples having a higher probability of being chosen. Furthermore, we propose a novel frequency data augmentation method specifically designed for low-quality forgery samples, which helps to reduce obvious forgery traces and improve their overall realism. Extensive experiments show that our method can be applied in a plug-and-play manner and significantly enhance the generalization performance.
♻ ☆ Learning Positional Attention for Sequential Recommendation
Self-attention-based networks have achieved remarkable performance in sequential recommendation tasks. A crucial component of these models is positional encoding. In this study, we delve into the learned positional embedding, demonstrating that it often captures the distance between tokens. Building on this insight, we introduce novel attention models that directly learn positional relations. Extensive experiments reveal that our proposed models, \textbf{PARec} and \textbf{FPARec} outperform previous self-attention-based approaches. The code can be found here: https://github.com/NetEase-Media/FPARec.
♻ ☆ MVGenMaster: Scaling Multi-View Generation from Any Image via 3D Priors Enhanced Diffusion Model
We introduce MVGenMaster, a multi-view diffusion model enhanced with 3D priors to address versatile Novel View Synthesis (NVS) tasks. MVGenMaster leverages 3D priors that are warped using metric depth and camera poses, significantly enhancing both generalization and 3D consistency in NVS. Our model features a simple yet effective pipeline that can generate up to 100 novel views conditioned on variable reference views and camera poses with a single forward process. Additionally, we have developed a comprehensive large-scale multi-view image dataset called MvD-1M, comprising up to 1.6 million scenes, equipped with well-aligned metric depth to train MVGenMaster. Moreover, we present several training and model modifications to strengthen the model with scaled-up datasets. Extensive evaluations across in- and out-of-domain benchmarks demonstrate the effectiveness of our proposed method and data formulation. Models and codes will be released at https://github.com/ewrfcas/MVGenMaster/.
comment: Models and codes will be released at https://github.com/ewrfcas/MVGenMaster/. The project page is at https://ewrfcas.github.io/MVGenMaster/
♻ ☆ PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM
Layout generation is the keystone in achieving automated graphic design, requiring arranging the position and size of various multi-modal design elements in a visually pleasing and constraint-following manner. Previous approaches are either inefficient for large-scale applications or lack flexibility for varying design requirements. Our research introduces a unified framework for automated graphic layout generation, leveraging the multi-modal large language model (MLLM) to accommodate diverse design tasks. In contrast, our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts under specific visual and textual constraints, including user-defined natural language specifications. We conducted extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks, demonstrating the effectiveness of our method. Moreover, recognizing existing datasets' limitations in capturing the complexity of real-world graphic designs, we propose two new datasets for much more challenging tasks (user-constrained generation and complicated poster), further validating our model's utility in real-life settings. Marking by its superior accessibility and adaptability, this approach further automates large-scale graphic design tasks. Finally, we develop an automated text-to-poster system that generates editable SVG posters based on users' design intentions, bridging the gap between layout generation and real-world graphic design applications. This system integrates our proposed layout generation method as the core component, demonstrating its effectiveness in practical scenarios. The code and datasets are open-sourced on https://github.com/posterllava/PosterLLaVA.
comment: 13 pages; with PosterGen as extension; IEEE template
♻ ☆ Heterogeneous Graph-based Framework with Disentangled Representations Learning for Multi-target Cross Domain Recommendation
CDR (Cross-Domain Recommendation), i.e., leveraging information from multiple domains, is a critical solution to data sparsity problem in recommendation system. The majority of previous research either focused on single-target CDR (STCDR) by utilizing data from the source domains to improve the model's performance on the target domain, or applied dual-target CDR (DTCDR) by integrating data from the source and target domains. In addition, multi-target CDR (MTCDR) is a generalization of DTCDR, which is able to capture the link among different domains. In this paper we present HGDR (Heterogeneous Graph-based Framework with Disentangled Representations Learning), an end-to-end heterogeneous network architecture where graph convolutional layers are applied to model relations among different domains, meanwhile utilizes the idea of disentangling representation for domain-shared and domain-specifc information. First, a shared heterogeneous graph is generated by gathering users and items from several domains without any further side information. Second, we use HGDR to compute disentangled representations for users and items in all domains. Experiments on real-world datasets and online A/B tests prove that our proposed model can transmit information among domains effectively and reach the SOTA performance. The code can be found here: https://github.com/NetEase-Media/HGCDR.
♻ ☆ REDUCIO! Generating 1024$\times$1024 Video within 16 Seconds using Extremely Compressed Motion Latents
Commercial video generation models have exhibited realistic, high-fidelity results but are still restricted to limited access. One crucial obstacle for large-scale applications is the expensive training and inference cost. In this paper, we argue that videos contain much more redundant information than images, thus can be encoded by very few motion latents based on a content image. Towards this goal, we design an image-conditioned VAE to encode a video to an extremely compressed motion latent space. This magic Reducio charm enables 64x reduction of latents compared to a common 2D VAE, without sacrificing the quality. Training diffusion models on such a compact representation easily allows for generating 1K resolution videos. We then adopt a two-stage video generation paradigm, which performs text-to-image and text-image-to-video sequentially. Extensive experiments show that our Reducio-DiT achieves strong performance in evaluation, though trained with limited GPU resources. More importantly, our method significantly boost the efficiency of video LDMs both in training and inference. We train Reducio-DiT in around 3.2K training hours in total and generate a 16-frame 1024*1024 video clip within 15.5 seconds on a single A100 GPU. Code released at https://github.com/microsoft/Reducio-VAE .
comment: Code available at https://github.com/microsoft/Reducio-VAE
♻ ☆ EvaGaussians: Event Stream Assisted Gaussian Splatting from Blurry Images
3D Gaussian Splatting (3D-GS) has demonstrated exceptional capabilities in 3D scene reconstruction and novel view synthesis. However, its training heavily depends on high-quality, sharp images and accurate camera poses. Fulfilling these requirements can be challenging in non-ideal real-world scenarios, where motion-blurred images are commonly encountered in high-speed moving cameras or low-light environments that require long exposure times. To address these challenges, we introduce Event Stream Assisted Gaussian Splatting (EvaGaussians), a novel approach that integrates event streams captured by an event camera to assist in reconstructing high-quality 3D-GS from blurry images. Capitalizing on the high temporal resolution and dynamic range offered by the event camera, we leverage the event streams to explicitly model the formation process of motion-blurred images and guide the deblurring reconstruction of 3D-GS. By jointly optimizing the 3D-GS parameters and recovering camera motion trajectories during the exposure time, our method can robustly facilitate the acquisition of high-fidelity novel views with intricate texture details. We comprehensively evaluated our method and compared it with previous state-of-the-art deblurring rendering methods. Both qualitative and quantitative comparisons demonstrate that our method surpasses existing techniques in restoring fine details from blurry images and producing high-fidelity novel views.
comment: Project Page: https://www.falcary.com/EvaGaussians/
♻ ☆ Self-supervised learning for skin cancer diagnosis with limited training data
Early cancer detection is crucial for prognosis, but many cancer types lack large labelled datasets required for developing deep learning models. This paper investigates self-supervised learning (SSL) as an alternative to the standard supervised pre-training on ImageNet for scenarios with limited training data using a deep learning model (ResNet-50). We first demonstrate that SSL pre-training on ImageNet (via the Barlow Twins SSL algorithm) outperforms supervised pre-training (SL) using a skin lesion dataset with limited training samples. We then consider \textit{further} SSL pre-training (of the two ImageNet pre-trained models) on task-specific datasets, where our implementation is motivated by supervised transfer learning. This approach significantly enhances initially SL pre-trained models, closing the performance gap with initially SSL pre-trained ones. Surprisingly, further pre-training on just the limited fine-tuning data achieves this performance equivalence. Linear probe experiments reveal that improvement stems from enhanced feature extraction. Hence, we find that minimal further SSL pre-training on task-specific data can be as effective as large-scale SSL pre-training on ImageNet for medical image classification tasks with limited labelled data. We validate these results on an oral cancer histopathology dataset, suggesting broader applicability across medical imaging domains facing labelled data scarcity.
♻ ☆ BioNeRF: Biologically Plausible Neural Radiance Fields for View Synthesis
This paper presents BioNeRF, a biologically plausible architecture that models scenes in a 3D representation and synthesizes new views through radiance fields. Since NeRF relies on the network weights to store the scene's 3-dimensional representation, BioNeRF implements a cognitive-inspired mechanism that fuses inputs from multiple sources into a memory-like structure, improving the storing capacity and extracting more intrinsic and correlated information. BioNeRF also mimics a behavior observed in pyramidal cells concerning contextual information, in which the memory is provided as the context and combined with the inputs of two subsequent neural models, one responsible for producing the volumetric densities and the other the colors used to render the scene. Experimental results show that BioNeRF outperforms state-of-the-art results concerning a quality measure that encodes human perception in two datasets: real-world images and synthetic data.
♻ ☆ Exploring Behavior-Relevant and Disentangled Neural Dynamics with Generative Diffusion Models
Understanding the neural basis of behavior is a fundamental goal in neuroscience. Current research in large-scale neuro-behavioral data analysis often relies on decoding models, which quantify behavioral information in neural data but lack details on behavior encoding. This raises an intriguing scientific question: ``how can we enable in-depth exploration of neural representations in behavioral tasks, revealing interpretable neural dynamics associated with behaviors''. However, addressing this issue is challenging due to the varied behavioral encoding across different brain regions and mixed selectivity at the population level. To tackle this limitation, our approach, named ``BeNeDiff'', first identifies a fine-grained and disentangled neural subspace using a behavior-informed latent variable model. It then employs state-of-the-art generative diffusion models to synthesize behavior videos that interpret the neural dynamics of each latent factor. We validate the method on multi-session datasets containing widefield calcium imaging recordings across the dorsal cortex. Through guiding the diffusion model to activate individual latent factors, we verify that the neural dynamics of latent factors in the disentangled neural subspace provide interpretable quantifications of the behaviors of interest. At the same time, the neural subspace in BeNeDiff demonstrates high disentanglement and neural reconstruction quality.
♻ ☆ Towards Black-Box Membership Inference Attack for Diffusion Models
Given the rising popularity of AI-generated art and the associated copyright concerns, identifying whether an artwork was used to train a diffusion model is an important research topic. The work approaches this problem from the membership inference attack (MIA) perspective. We first identify the limitation of applying existing MIA methods for proprietary diffusion models: the required access of internal U-nets. To address the above problem, we introduce a novel membership inference attack method that uses only the image-to-image variation API and operates without access to the model's internal U-net. Our method is based on the intuition that the model can more easily obtain an unbiased noise prediction estimate for images from the training set. By applying the API multiple times to the target image, averaging the outputs, and comparing the result to the original image, our approach can classify whether a sample was part of the training set. We validate our method using DDIM and Stable Diffusion setups and further extend both our approach and existing algorithms to the Diffusion Transformer architecture. Our experimental results consistently outperform previous methods.
♻ ☆ NexusSplats: Efficient 3D Gaussian Splatting in the Wild
While 3D Gaussian Splatting (3DGS) has recently demonstrated remarkable rendering quality and efficiency in 3D scene reconstruction, it struggles with varying lighting conditions and incidental occlusions in real-world scenarios. To accommodate varying lighting conditions, existing 3DGS extensions apply color mapping to the massive Gaussian primitives with individually optimized appearance embeddings. To handle occlusions, they predict pixel-wise uncertainties via 2D image features for occlusion capture. Nevertheless, such massive color mapping and pixel-wise uncertainty prediction strategies suffer from not only additional computational costs but also coarse-grained lighting and occlusion handling. In this work, we propose a nexus kernel-driven approach, termed NexusSplats, for efficient and finer 3D scene reconstruction under complex lighting and occlusion conditions. In particular, NexusSplats leverages a novel light decoupling strategy where appearance embeddings are optimized based on nexus kernels instead of massive Gaussian primitives, thus accelerating reconstruction speeds while ensuring local color consistency for finer textures. Additionally, a Gaussian-wise uncertainty mechanism is developed, aligning 3D structures with 2D image features for fine-grained occlusion handling. Experimental results demonstrate that NexusSplats achieves state-of-the-art rendering quality while reducing reconstruction time by up to 70.4% compared to the current best in quality.
comment: error data in the v1 version
♻ ☆ Investigating Self-Supervised Image Denoising with Denaturation
Self-supervised learning for image denoising problems in the presence of denaturation for noisy data is a crucial approach in machine learning. However, theoretical understanding of the performance of the approach that uses denatured data is lacking. To provide better understanding of the approach, in this paper, we analyze a self-supervised denoising algorithm that uses denatured data in depth through theoretical analysis and numerical experiments. Through the theoretical analysis, we discuss that the algorithm finds desired solutions to the optimization problem with the population risk, while the guarantee for the empirical risk depends on the hardness of the denoising task in terms of denaturation levels. We also conduct several experiments to investigate the performance of an extended algorithm in practice. The results indicate that the algorithm training with denatured images works, and the empirical performance aligns with the theoretical results. These results suggest several insights for further improvement of self-supervised image denoising that uses denatured data in future directions.
♻ ☆ Words Worth a Thousand Pictures: Measuring and Understanding Perceptual Variability in Text-to-Image Generation EMNLP 2024
Diffusion models are the state of the art in text-to-image generation, but their perceptual variability remains understudied. In this paper, we examine how prompts affect image variability in black-box diffusion-based models. We propose W1KP, a human-calibrated measure of variability in a set of images, bootstrapped from existing image-pair perceptual distances. Current datasets do not cover recent diffusion models, thus we curate three test sets for evaluation. Our best perceptual distance outperforms nine baselines by up to 18 points in accuracy, and our calibration matches graded human judgements 78% of the time. Using W1KP, we study prompt reusability and show that Imagen prompts can be reused for 10-50 random seeds before new images become too similar to already generated images, while Stable Diffusion XL and DALL-E 3 can be reused 50-200 times. Lastly, we analyze 56 linguistic features of real prompts, finding that the prompt's length, CLIP embedding norm, concreteness, and word senses influence variability most. As far as we are aware, we are the first to analyze diffusion variability from a visuolinguistic perspective. Our project page is at http://w1kp.com.
comment: Published at EMNLP 2024; outstanding paper award; 14 pages, 11 figures
♻ ☆ DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving
Current end-to-end autonomous driving methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized in a planning-oriented spirit with a fully differentiable framework, existing end-to-end driving systems without ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, owing to the rasterized scene representation learning and redundant information transmission. In this paper, we revisit the human driving behavior and propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving. Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection, tracking and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. Besides, both position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thus facilitating the training stability and convergence of the whole framework. Extensive experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
♻ ☆ Classifier Enhanced Deep Learning Model for Erythroblast Differentiation with Limited Data ICPR 2024
Hematological disorders, which involve a variety of malignant conditions and genetic diseases affecting blood formation, present significant diagnostic challenges. One such major challenge in clinical settings is differentiating Erythroblast from WBCs. Our approach evaluates the efficacy of various machine learning (ML) classifiers$\unicode{x2014}$SVM, XG-Boost, KNN, and Random Forest$\unicode{x2014}$using the ResNet-50 deep learning model as a backbone in detecting and differentiating erythroblast blood smear images across training splits of different sizes. Our findings indicate that the ResNet50-SVM classifier consistently surpasses other models' overall test accuracy and erythroblast detection accuracy, maintaining high performance even with minimal training data. Even when trained on just 1% (168 images per class for eight classes) of the complete dataset, ML classifiers such as SVM achieved a test accuracy of 86.75% and an erythroblast precision of 98.9%, compared to 82.03% and 98.6% of pre-trained ResNet-50 models without any classifiers. When limited data is available, the proposed approach outperforms traditional deep learning models, thereby offering a solution for achieving higher classification accuracy for small and unique datasets, especially in resource-scarce settings.
comment: 14 pages, Accepted for the 27th International Conference on Pattern Recognition (ICPR 2024)
♻ ☆ Baking Gaussian Splatting into Diffusion Denoiser for Fast and Scalable Single-stage Image-to-3D Generation
Existing feed-forward image-to-3D methods mainly rely on 2D multi-view diffusion models that cannot guarantee 3D consistency. These methods easily collapse when changing the prompt view direction and mainly handle object-centric prompt images. In this paper, we propose a novel single-stage 3D diffusion model, DiffusionGS, for object and scene generation from a single view. DiffusionGS directly outputs 3D Gaussian point clouds at each timestep to enforce view consistency and allow the model to generate robustly given prompt views of any directions, beyond object-centric inputs. Plus, to improve the capability and generalization ability of DiffusionGS, we scale up 3D training data by developing a scene-object mixed training strategy. Experiments show that our method enjoys better generation quality (2.20 dB higher in PSNR and 23.25 lower in FID) and over 5x faster speed (~6s on an A100 GPU) than SOTA methods. The user study and text-to-3D applications also reveals the practical values of our method. Our Project page at https://caiyuanhao1998.github.io/project/DiffusionGS/ shows the video and interactive generation results.
comment: A novel one-stage 3DGS-based diffusion generates objects and scenes from a single view in ~6 seconds
♻ ☆ Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis
We present Meissonic, which elevates non-autoregressive masked image modeling (MIM) text-to-image to a level comparable with state-of-the-art diffusion models like SDXL. By incorporating a comprehensive suite of architectural innovations, advanced positional encoding strategies, and optimized sampling conditions, Meissonic substantially improves MIM's performance and efficiency. Additionally, we leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers to further enhance image fidelity and resolution. Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images. Extensive experiments validate Meissonic's capabilities, demonstrating its potential as a new standard in text-to-image synthesis. We release a model checkpoint capable of producing $1024 \times 1024$ resolution images.
comment: Codes and Supplementary Material: https://github.com/viiika/Meissonic
♻ ☆ I2VControl-Camera: Precise Video Camera Control with Adjustable Motion Strength
Video generation technologies are developing rapidly and have broad potential applications. Among these technologies, camera control is crucial for generating professional-quality videos that accurately meet user expectations. However, existing camera control methods still suffer from several limitations, including control precision and the neglect of the control for subject motion dynamics. In this work, we propose I2VControl-Camera, a novel camera control method that significantly enhances controllability while providing adjustability over the strength of subject motion. To improve control precision, we employ point trajectory in the camera coordinate system instead of only extrinsic matrix information as our control signal. To accurately control and adjust the strength of subject motion, we explicitly model the higher-order components of the video trajectory expansion, not merely the linear terms, and design an operator that effectively represents the motion strength. We use an adapter architecture that is independent of the base model structure. Experiments on static and dynamic scenes show that our framework outperformances previous methods both quantitatively and qualitatively. The project page is: https://wanquanf.github.io/I2VControlCamera .
comment: Project page: https://wanquanf.github.io/I2VControlCamera
♻ ☆ Gotta Hear Them All: Sound Source Aware Vision to Audio Generation
Vision-to-audio (V2A) synthesis has broad applications in multimedia. Recent advancements of V2A methods have made it possible to generate relevant audios from inputs of videos or still images. However, the immersiveness and expressiveness of the generation are limited. One possible problem is that existing methods solely rely on the global scene and overlook details of local sounding objects (i.e., sound sources). To address this issue, we propose a Sound Source-Aware V2A (SSV2A) generator. SSV2A is able to locally perceive multimodal sound sources from a scene with visual detection and cross-modality translation. It then contrastively learns a Cross-Modal Sound Source (CMSS) Manifold to semantically disambiguate each source. Finally, we attentively mix their CMSS semantics into a rich audio representation, from which a pretrained audio generator outputs the sound. To model the CMSS manifold, we curate a novel single-sound-source visual-audio dataset VGGS3 from VGGSound. We also design a Sound Source Matching Score to measure localized audio relevance. This is to our knowledge the first work to address V2A generation at the sound-source level. Extensive experiments show that SSV2A surpasses state-of-the-art methods in both generation fidelity and relevance. We further demonstrate SSV2A's ability to achieve intuitive V2A control by compositing vision, text, and audio conditions. Our SSV2A generation can be tried and heard at https://ssv2a.github.io/SSV2A-demo .
comment: 16 pages, 9 figures, source code released at https://github.com/wguo86/SSV2A
♻ ☆ Evaluating the Impact of Underwater Image Enhancement on Object Detection Performance: A Comprehensive Study
Underwater imagery often suffers from severe degradation that results in low visual quality and object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their impact on underwater object detection, and explore their potential to improve detection performance. To this end, we selected representative underwater image enhancement models covering major enhancement categories and applied them separately to two recent datasets: 1) the Real-World Underwater Object Detection Dataset (RUOD), and 2) the Challenging Underwater Plant Detection Dataset (CUPDD). Following this, we conducted qualitative and quantitative analyses on the enhanced images and developed a quality index (Q-index) to compare the quality distribution of the original and enhanced images. Subsequently, we compared the performance of several YOLO-NAS detection models that are separately trained and tested on the original and enhanced image sets. Then, we performed a correlation study to examine the relationship between enhancement metrics and detection performance. We also analyzed the inference results from the trained detectors presenting cases where enhancement increased the detection performance as well as cases where enhancement revealed missed objects by human annotators. This study suggests that although enhancement generally deteriorates the detection performance, it can still be harnessed in some cases for increased detection performance and more accurate human annotation.
♻ ☆ Enhancing Person Re-Identification via Uncertainty Feature Fusion and Auto-weighted Measure Combination
Person re-identification (Re-ID) is a challenging task that involves identifying the same person across different camera views in surveillance systems. Current methods usually rely on features from single-camera views, which can be limiting when dealing with multiple cameras and challenges such as changing viewpoints and occlusions. In this paper, a new approach is introduced that enhances the capability of ReID models through the Uncertain Feature Fusion Method (UFFM) and Auto-weighted Measure Combination (AMC). UFFM generates multi-view features using features extracted independently from multiple images to mitigate view bias. However, relying only on similarity based on multi-view features is limited because these features ignore the details represented in single-view features. Therefore, we propose the AMC method to generate a more robust similarity measure by combining various measures. Our method significantly improves Rank@1 accuracy and Mean Average Precision (mAP) when evaluated on person re-identification datasets. Combined with the BoT Baseline on challenging datasets, we achieve impressive results, with a 7.9% improvement in Rank@1 and a 12.1% improvement in mAP on the MSMT17 dataset. On the Occluded-DukeMTMC dataset, our method increases Rank@1 by 22.0% and mAP by 18.4%. Code is available: \url{https://github.com/chequanghuy/Enhancing-Person-Re-Identification-via-UFFM-and-AMC}
♻ ☆ Image Augmentation with Controlled Diffusion for Weakly-Supervised Semantic Segmentation ICASSP 2024
Weakly-supervised semantic segmentation (WSSS), which aims to train segmentation models solely using image-level labels, has achieved significant attention. Existing methods primarily focus on generating high-quality pseudo labels using available images and their image-level labels. However, the quality of pseudo labels degrades significantly when the size of available dataset is limited. Thus, in this paper, we tackle this problem from a different view by introducing a novel approach called Image Augmentation with Controlled Diffusion (IACD). This framework effectively augments existing labeled datasets by generating diverse images through controlled diffusion, where the available images and image-level labels are served as the controlling information. Moreover, we also propose a high-quality image selection strategy to mitigate the potential noise introduced by the randomness of diffusion models. In the experiments, our proposed IACD approach clearly surpasses existing state-of-the-art methods. This effect is more obvious when the amount of available data is small, demonstrating the effectiveness of our method.
comment: Accepted by ICASSP 2024
♻ ☆ ALF: Adaptive Label Finetuning for Scene Graph Generation
Scene Graph Generation (SGG) endeavors to predict the relationships between subjects and objects in a given image. Nevertheless, the long-tail distribution of relations often leads to biased prediction on coarse labels, presenting a substantial hurdle in SGG. To address this issue, researchers focus on unbiased SGG and introduce data transfer methods to transfer coarse-grained predicates into fine-grained ones across the entire dataset. However, these methods encounter two primary challenges: 1) They overlook the inherent context constraints imposed by subject-object pairs, leading to erroneous relations transfer. 2) Additional retraining process are required after the data transfer, which incurs substantial computational costs. To overcome these limitations, we introduce the first plug-and-play one-stage data transfer pipeline in SGG, termed Adaptive Label Finetuning (ALF), which eliminates the need for extra retraining sessions and meanwhile significantly enhance models' relation recognition capability across various SGG benchmark approaches. Specifically, ALF consists of two components: Adaptive Label Construction (ALC) and Adaptive Iterative Learning (AIL). By imposing Predicate-Context Constraints within relation space, ALC adaptively re-ranks and selects candidate relations in reference to model's predictive logits utilizing the Restriction-Based Judgment techniques, achieving robust relation transfer. Supervised with labels transferred by ALC, AIL iteratively finetunes the SGG models in an auto-regressive manner, which mitigates the substantial computational costs arising from the retraining process. Extensive experiments demonstrate that ALF achieves a 16% improvement in mR@100 compared to the typical SGG method Motif, with only a 6% increase in calculation costs compared to the state-of-the-art method IETrans.
comment: The author requests to withdraw this paper due to a critical definitional error in Adaptive Label Finetuning for Scene Graph Generation. This error aligned with the definition of Unbiased SGG tasks, resulting in an unfair comparison with state-of- the-art (SOTA) methods, which in turn, hindered the ability to evaluate the paper's contributions
♻ ☆ Direction-Oriented Visual-semantic Embedding Model for Remote Sensing Image-text Retrieval
Image-text retrieval has developed rapidly in recent years. However, it is still a challenge in remote sensing due to visual-semantic imbalance, which leads to incorrect matching of non-semantic visual and textual features. To solve this problem, we propose a novel Direction-Oriented Visual-semantic Embedding Model (DOVE) to mine the relationship between vision and language. Our highlight is to conduct visual and textual representations in latent space, directing them as close as possible to a redundancy-free regional visual representation. Concretely, a Regional-Oriented Attention Module (ROAM) adaptively adjusts the distance between the final visual and textual embeddings in the latent semantic space, oriented by regional visual features. Meanwhile, a lightweight Digging Text Genome Assistant (DTGA) is designed to expand the range of tractable textual representation and enhance global word-level semantic connections using less attention operations. Ultimately, we exploit a global visual-semantic constraint to reduce single visual dependency and serve as an external constraint for the final visual and textual representations. The effectiveness and superiority of our method are verified by extensive experiments including parameter evaluation, quantitative comparison, ablation studies and visual analysis, on two benchmark datasets, RSICD and RSITMD.
comment: 14 pages, 12 figures
♻ ☆ Frame Interpolation with Consecutive Brownian Bridge Diffusion
Recent work in Video Frame Interpolation (VFI) tries to formulate VFI as a diffusion-based conditional image generation problem, synthesizing the intermediate frame given a random noise and neighboring frames. Due to the relatively high resolution of videos, Latent Diffusion Models (LDMs) are employed as the conditional generation model, where the autoencoder compresses images into latent representations for diffusion and then reconstructs images from these latent representations. Such a formulation poses a crucial challenge: VFI expects that the output is deterministically equal to the ground truth intermediate frame, but LDMs randomly generate a diverse set of different images when the model runs multiple times. The reason for the diverse generation is that the cumulative variance (variance accumulated at each step of generation) of generated latent representations in LDMs is large. This makes the sampling trajectory random, resulting in diverse rather than deterministic generations. To address this problem, we propose our unique solution: Frame Interpolation with Consecutive Brownian Bridge Diffusion. Specifically, we propose consecutive Brownian Bridge diffusion that takes a deterministic initial value as input, resulting in a much smaller cumulative variance of generated latent representations. Our experiments suggest that our method can improve together with the improvement of the autoencoder and achieve state-of-the-art performance in VFI, leaving strong potential for further enhancement.
comment: Formatting
♻ ☆ How to Segment in 3D Using 2D Models: Automated 3D Segmentation of Prostate Cancer Metastatic Lesions on PET Volumes Using Multi-angle Maximum Intensity Projections and Diffusion Models MICCAI
Prostate specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) imaging provides a tremendously exciting frontier in visualization of prostate cancer (PCa) metastatic lesions. However, accurate segmentation of metastatic lesions is challenging due to low signal-to-noise ratios and variable sizes, shapes, and locations of the lesions. This study proposes a novel approach for automated segmentation of metastatic lesions in PSMA PET/CT 3D volumetric images using 2D denoising diffusion probabilistic models (DDPMs). Instead of 2D trans-axial slices or 3D volumes, the proposed approach segments the lesions on generated multi-angle maximum intensity projections (MA-MIPs) of the PSMA PET images, then obtains the final 3D segmentation masks from 3D ordered subset expectation maximization (OSEM) reconstruction of 2D MA-MIPs segmentations. Our proposed method achieved superior performance compared to state-of-the-art 3D segmentation approaches in terms of accuracy and robustness in detecting and segmenting small metastatic PCa lesions. The proposed method has significant potential as a tool for quantitative analysis of metastatic burden in PCa patients.
comment: 11 pages, 2 figures, accepted in the DGM4MICCAI workshop, MICCAI, 2024
♻ ☆ Diffusion State-Guided Projected Gradient for Inverse Problems
Recent advancements in diffusion models have been effective in learning data priors for solving inverse problems. They leverage diffusion sampling steps for inducing a data prior while using a measurement guidance gradient at each step to impose data consistency. For general inverse problems, approximations are needed when an unconditionally trained diffusion model is used since the measurement likelihood is intractable, leading to inaccurate posterior sampling. In other words, due to their approximations, these methods fail to preserve the generation process on the data manifold defined by the diffusion prior, leading to artifacts in applications such as image restoration. To enhance the performance and robustness of diffusion models in solving inverse problems, we propose Diffusion State-Guided Projected Gradient (DiffStateGrad), which projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process. DiffStateGrad, as a module, can be added to a wide range of diffusion-based inverse solvers to improve the preservation of the diffusion process on the prior manifold and filter out artifact-inducing components. We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise while improving the worst-case performance. Finally, we demonstrate that DiffStateGrad improves upon the state-of-the-art on linear and nonlinear image restoration inverse problems.
comment: preprint. under review. RZ and BT have equal contributions
♻ ☆ SOS-Match: Segmentation for Open-Set Robust Correspondence Search and Robot Localization in Unstructured Environments
We present SOS-Match, a novel framework for detecting and matching objects in unstructured environments. Our system consists of 1) a front-end mapping pipeline using a zero-shot segmentation model to extract object masks from images and track them across frames and 2) a frame alignment pipeline that uses the geometric consistency of object relationships to efficiently localize across a variety of conditions. We evaluate SOS-Match on the Batvik seasonal dataset which includes drone flights collected over a coastal plot of southern Finland during different seasons and lighting conditions. Results show that our approach is more robust to changes in lighting and appearance than classical image feature-based approaches or global descriptor methods, and it provides more viewpoint invariance than learning-based feature detection and description approaches. SOS-Match localizes within a reference map up to 46x faster than other feature-based approaches and has a map size less than 0.5% the size of the most compact other maps. SOS-Match is a promising new approach for landmark detection and correspondence search in unstructured environments that is robust to changes in lighting and appearance and is more computationally efficient than other approaches, suggesting that the geometric arrangement of segments is a valuable localization cue in unstructured environments. We release our datasets at https://acl.mit.edu/SOS-Match/.
comment: 8 pages, 7 figures
♻ ☆ Hamba: Single-view 3D Hand Reconstruction with Graph-guided Bi-Scanning Mamba NeurIPS 2024
3D Hand reconstruction from a single RGB image is challenging due to the articulated motion, self-occlusion, and interaction with objects. Existing SOTA methods employ attention-based transformers to learn the 3D hand pose and shape, yet they do not fully achieve robust and accurate performance, primarily due to inefficiently modeling spatial relations between joints. To address this problem, we propose a novel graph-guided Mamba framework, named Hamba, which bridges graph learning and state space modeling. Our core idea is to reformulate Mamba's scanning into graph-guided bidirectional scanning for 3D reconstruction using a few effective tokens. This enables us to efficiently learn the spatial relationships between joints for improving reconstruction performance. Specifically, we design a Graph-guided State Space (GSS) block that learns the graph-structured relations and spatial sequences of joints and uses 88.5% fewer tokens than attention-based methods. Additionally, we integrate the state space features and the global features using a fusion module. By utilizing the GSS block and the fusion module, Hamba effectively leverages the graph-guided state space features and jointly considers global and local features to improve performance. Experiments on several benchmarks and in-the-wild tests demonstrate that Hamba significantly outperforms existing SOTAs, achieving the PA-MPVPE of 5.3mm and F@15mm of 0.992 on FreiHAND. At the time of this paper's acceptance, Hamba holds the top position, Rank 1 in two Competition Leaderboards on 3D hand reconstruction. Project Website: https://humansensinglab.github.io/Hamba/
comment: NeurIPS 2024; Project Website: https://humansensinglab.github.io/Hamba/
♻ ☆ Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation
In biomedical imaging analysis, the dichotomy between 2D and 3D data presents a significant challenge. While 3D volumes offer superior real-world applicability, they are less available for each modality and not easy to train in large scale, whereas 2D samples are abundant but less comprehensive. This paper introduces the Cross-D Conv operation, a novel approach that bridges the dimensional gap by learning the phase shifting in the Fourier domain. Our method enables seamless weight transfer between 2D and 3D convolution operations, effectively facilitating cross-dimensional learning. The proposed architecture leverages the abundance of 2D training data to enhance 3D model performance, offering a practical solution to the multimodal data scarcity challenge in 3D medical model pretraining. Experimental validation on the RadImagenet (2D) and multimodal (3D) sets demonstrates that our approach achieves comparable or superior performance in feature quality assessment comparable to conventional methods. The enhanced convolution operation presents new opportunities for developing efficient classification and segmentation models in medical imaging. This work represents an advancement in cross-dimensional and multi-modal medical image analysis, offering a robust framework for utilizing 2D priors in 3D model pretraining or vice versa while maintaining computational efficiency.
comment: 6 pages, 3 figures, 2 tables, 1 algorithm, conference
♻ ☆ Exploiting Watermark-Based Defense Mechanisms in Text-to-Image Diffusion Models for Unauthorized Data Usage
Text-to-image diffusion models, such as Stable Diffusion, have shown exceptional potential in generating high-quality images. However, recent studies highlight concerns over the use of unauthorized data in training these models, which may lead to intellectual property infringement or privacy violations. A promising approach to mitigate these issues is to apply a watermark to images and subsequently check if generative models reproduce similar watermark features. In this paper, we examine the robustness of various watermark-based protection methods applied to text-to-image models. We observe that common image transformations are ineffective at removing the watermark effect. Therefore, we propose RATTAN, that leverages the diffusion process to conduct controlled image generation on the protected input, preserving the high-level features of the input while ignoring the low-level details utilized by watermarks. A small number of generated images are then used to fine-tune protected models. Our experiments on three datasets and 140 text-to-image diffusion models reveal that existing state-of-the-art protections are not robust against RATTAN.
♻ ☆ Multimodal Task Vectors Enable Many-Shot Multimodal In-Context Learning NeurIPS 2024
The recent success of interleaved Large Multimodal Models (LMMs) in few-shot learning suggests that in-context learning (ICL) with many examples can be promising for learning new tasks. However, this many-shot multimodal ICL setting has one crucial problem: it is fundamentally limited by the model's context length set at pretraining. The problem is especially prominent in the multimodal domain, which processes both text and images, requiring additional tokens. This motivates the need for a multimodal method to compress many shots into fewer tokens without finetuning. In this work, we enable LMMs to perform multimodal, many-shot in-context learning by leveraging Multimodal Task Vectors (MTV) -- compact implicit representations of in-context examples compressed in the model's attention heads. Specifically, we first demonstrate the existence of such MTV in LMMs and then leverage these extracted MTV to enable many-shot in-context learning for various vision-and-language tasks. Our experiments suggest that MTV can scale in performance with the number of compressed shots and generalize to similar out-of-domain tasks without additional context length for inference. Code: https://github.com/Brandon3964/MultiModal-Task-Vector
comment: Accepted to NeurIPS 2024
Machine Learning 154
☆ Low-Bit Quantization Favors Undertrained LLMs: Scaling Laws for Quantized LLMs with 100T Training Tokens
We reveal that low-bit quantization favors undertrained large language models (LLMs) by observing that models with larger sizes or fewer training tokens experience less quantization-induced degradation (QiD) when applying low-bit quantization, whereas smaller models with extensive training tokens suffer significant QiD. To gain deeper insights into this trend, we study over 1500 quantized LLM checkpoints of various sizes and at different training levels (undertrained or fully trained) in a controlled setting, deriving scaling laws for understanding the relationship between QiD and factors such as the number of training tokens, model size and bit width. With the derived scaling laws, we propose a novel perspective that we can use QiD to measure an LLM's training levels and determine the number of training tokens required for fully training LLMs of various sizes. Moreover, we use the scaling laws to predict the quantization performance of different-sized LLMs trained with 100 trillion tokens. Our projection shows that the low-bit quantization performance of future models, which are expected to be trained with over 100 trillion tokens, may NOT be desirable. This poses a potential challenge for low-bit quantization in the future and highlights the need for awareness of a model's training level when evaluating low-bit quantization research. To facilitate future research on this problem, we release all the 1500+ quantized checkpoints used in this work at https://huggingface.co/Xu-Ouyang.
comment: Work in progress; Please note that Figure 1's gray areas may not be displayed properly using Chrome (maybe due to bugs in Chrome)
☆ Attamba: Attending To Multi-Token States
When predicting the next token in a sequence, vanilla transformers compute attention over all previous tokens, resulting in quadratic scaling of compute with sequence length. State-space models compress the entire sequence of tokens into a fixed-dimensional representation to improve efficiency, while other architectures achieve sub-quadratic complexity via low-rank projections or sparse attention patterns over the sequence. In this paper, we introduce Attamba, a novel architecture that uses state-space models to compress chunks of tokens and applies attention on these compressed key-value representations. We find that replacing key and value projections in a transformer with SSMs can improve model quality and enable flexible token chunking, resulting in 24% improved perplexity with transformer of similar KV-Cache and attention footprint, and ~4 times smaller KV-Cache and Attention FLOPs for 5% perplexity trade-off. Attamba can perform attention on chunked-sequences of variable length, enabling a smooth transition between quadratic and linear scaling, offering adaptable efficiency gains.
☆ Instance-Aware Graph Prompt Learning
Graph neural networks stand as the predominant technique for graph representation learning owing to their strong expressive power, yet the performance highly depends on the availability of high-quality labels in an end-to-end manner. Thus the pretraining and fine-tuning paradigm has been proposed to mitigate the label cost issue. Subsequently, the gap between the pretext tasks and downstream tasks has spurred the development of graph prompt learning which inserts a set of graph prompts into the original graph data with minimal parameters while preserving competitive performance. However, the current exploratory works are still limited since they all concentrate on learning fixed task-specific prompts which may not generalize well across the diverse instances that the task comprises. To tackle this challenge, we introduce Instance-Aware Graph Prompt Learning (IA-GPL) in this paper, aiming to generate distinct prompts tailored to different input instances. The process involves generating intermediate prompts for each instance using a lightweight architecture, quantizing these prompts through trainable codebook vectors, and employing the exponential moving average technique to ensure stable training. Extensive experiments conducted on multiple datasets and settings showcase the superior performance of IA-GPL compared to state-of-the-art baselines.
☆ Synthetic Data Generation with LLM for Improved Depression Prediction
Automatic detection of depression is a rapidly growing field of research at the intersection of psychology and machine learning. However, with its exponential interest comes a growing concern for data privacy and scarcity due to the sensitivity of such a topic. In this paper, we propose a pipeline for Large Language Models (LLMs) to generate synthetic data to improve the performance of depression prediction models. Starting from unstructured, naturalistic text data from recorded transcripts of clinical interviews, we utilize an open-source LLM to generate synthetic data through chain-of-thought prompting. This pipeline involves two key steps: the first step is the generation of the synopsis and sentiment analysis based on the original transcript and depression score, while the second is the generation of the synthetic synopsis/sentiment analysis based on the summaries generated in the first step and a new depression score. Not only was the synthetic data satisfactory in terms of fidelity and privacy-preserving metrics, it also balanced the distribution of severity in the training dataset, thereby significantly enhancing the model's capability in predicting the intensity of the patient's depression. By leveraging LLMs to generate synthetic data that can be augmented to limited and imbalanced real-world datasets, we demonstrate a novel approach to addressing data scarcity and privacy concerns commonly faced in automatic depression detection, all while maintaining the statistical integrity of the original dataset. This approach offers a robust framework for future mental health research and applications.
comment: 6 pages excluding references and appendix
☆ Anytime Acceleration of Gradient Descent
This work investigates stepsize-based acceleration of gradient descent with {\em anytime} convergence guarantees. For smooth (non-strongly) convex optimization, we propose a stepsize schedule that allows gradient descent to achieve convergence guarantees of $O(T^{-1.03})$ for any stopping time $T$, where the stepsize schedule is predetermined without prior knowledge of the stopping time. This result provides an affirmative answer to a COLT open problem \citep{kornowski2024open} regarding whether stepsize-based acceleration can yield anytime convergence rates of $o(T^{-1})$. We further extend our theory to yield anytime convergence guarantees of $\exp(-\Omega(T/\kappa^{0.97}))$ for smooth and strongly convex optimization, with $\kappa$ being the condition number.
☆ BERT or FastText? A Comparative Analysis of Contextual as well as Non-Contextual Embeddings
Natural Language Processing (NLP) for low-resource languages presents significant challenges, particularly due to the scarcity of high-quality annotated data and linguistic resources. The choice of embeddings plays a critical role in enhancing the performance of NLP tasks, such as news classification, sentiment analysis, and hate speech detection, especially for low-resource languages like Marathi. In this study, we investigate the impact of various embedding techniques- Contextual BERT-based, Non-Contextual BERT-based, and FastText-based on NLP classification tasks specific to the Marathi language. Our research includes a thorough evaluation of both compressed and uncompressed embeddings, providing a comprehensive overview of how these embeddings perform across different scenarios. Specifically, we compare two BERT model embeddings, Muril and MahaBERT, as well as two FastText model embeddings, IndicFT and MahaFT. Our evaluation includes applying embeddings to a Multiple Logistic Regression (MLR) classifier for task performance assessment, as well as TSNE visualizations to observe the spatial distribution of these embeddings. The results demonstrate that contextual embeddings outperform non-contextual embeddings. Furthermore, BERT-based non-contextual embeddings extracted from the first BERT embedding layer yield better results than FastText-based embeddings, suggesting a potential alternative to FastText embeddings.
☆ Explainable AI for Classifying UTI Risk Groups Using a Real-World Linked EHR and Pathology Lab Dataset
The use of machine learning and AI on electronic health records (EHRs) holds substantial potential for clinical insight. However, this approach faces significant challenges due to data heterogeneity, sparsity, temporal misalignment, and limited labeled outcomes. In this context, we leverage a linked EHR dataset of approximately one million de-identified individuals from Bristol, North Somerset, and South Gloucestershire, UK, to characterize urinary tract infections (UTIs) and develop predictive models focused on data quality, fairness and transparency. A comprehensive data pre-processing and curation pipeline transforms the raw EHR data into a structured format suitable for AI modeling. Given the limited availability and biases of ground truth UTI outcomes, we introduce a UTI risk estimation framework informed by clinical expertise to estimate UTI risk across individual patient timelines. Using this framework, we built pairwise XGBoost models to differentiate UTI risk categories with explainable AI techniques to identify key predictors while ensuring interpretability. Our findings reveal differences in clinical and demographic factors across risk groups, offering insights into UTI risk stratification and progression. This study demonstrates the added value of AI-driven insights into UTI clinical decision-making while prioritizing interpretability, transparency, and fairness, underscoring the importance of sound data practices in advancing health outcomes.
☆ On Limitations of LLM as Annotator for Low Resource Languages
Low-resource languages face significant challenges due to the lack of sufficient linguistic data, resources, and tools for tasks such as supervised learning, annotation, and classification. This shortage hinders the development of accurate models and datasets, making it difficult to perform critical NLP tasks like sentiment analysis or hate speech detection. To bridge this gap, Large Language Models (LLMs) present an opportunity for potential annotators, capable of generating datasets and resources for these underrepresented languages. In this paper, we focus on Marathi, a low-resource language, and evaluate the performance of both closed-source and open-source LLMs as annotators. We assess models such as GPT-4o and Gemini 1.0 Pro, Gemma 2 (2B and 9B), and Llama 3.1 (8B) on classification tasks including sentiment analysis, news classification, and hate speech detection. Our findings reveal that while LLMs excel in annotation tasks for high-resource languages like English, they still fall short when applied to Marathi. Even advanced closed models like Gemini and GPT underperform in comparison to BERT-based baselines, highlighting the limitations of LLMs as annotators for low-resource languages.
☆ Learning Chemical Reaction Representation with Reactant-Product Alignment
Organic synthesis stands as a cornerstone of chemical industry. The development of robust machine learning models to support tasks associated with organic reactions is of significant interest. However, current methods rely on hand-crafted features or direct adaptations of model architectures from other domains, which lacks feasibility as data scales increase or overlook the rich chemical information inherent in reactions. To address these issues, this paper introduces {\modelname}, a novel chemical reaction representation learning model tailored for a variety of organic-reaction-related tasks. By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction, thereby enhancing the comprehension of the reaction mechanism. We have designed an adapter structure to incorporate reaction conditions into the chemical reaction representation, allowing the model to handle diverse reaction conditions and adapt to various datasets and downstream tasks, e.g., reaction performance prediction. Additionally, we introduce a reaction-center aware attention mechanism that enables the model to concentrate on key functional groups, thereby generating potent representations for chemical reactions. Our model has been evaluated on a range of downstream tasks, including reaction condition prediction, reaction yield prediction, and reaction selectivity prediction. Experimental results indicate that our model markedly outperforms existing chemical reaction representation learning architectures across all tasks. Notably, our model significantly outperforms all the baselines with up to 25\% (top-1) and 16\% (top-10) increased accuracy over the strongest baseline on USPTO\_CONDITION dataset for reaction condition prediction. We plan to open-source the code contingent upon the acceptance of the paper.
☆ Data-driven development of cycle prediction models for lithium metal batteries using multi modal mining
Recent advances in data-driven research have shown great potential in understanding the intricate relationships between materials and their performances. Herein, we introduce a novel multi modal data-driven approach employing an Automatic Battery data Collector (ABC) that integrates a large language model (LLM) with an automatic graph mining tool, Material Graph Digitizer (MatGD). This platform enables state-of-the-art accurate extraction of battery material data and cyclability performance metrics from diverse textual and graphical data sources. From the database derived through the ABC platform, we developed machine learning models that can accurately predict the capacity and stability of lithium metal batteries, which is the first-ever model developed to achieve such predictions. Our models were also experimentally validated, confirming practical applicability and reliability of our data-driven approach.
comment: 30 pages, 7 figures
☆ Machine Learning and Multi-source Remote Sensing in Forest Carbon Stock Estimation: A Review
Quantifying forest carbon is crucial for informing decisions and policies that will protect the planet. Machine learning (ML) and remote sensing (RS) techniques have been used to do this task more effectively, yet there lacks a systematic review on the most recent ML methods and RS combinations, especially with the consideration of forest characteristics. This study systematically analyzed 25 papers meeting strict inclusion criteria from over 80 related studies, identifying 28 ML methods and key combinations of RS data. Random Forest had the most frequent appearance (88\% of studies), while Extreme Gradient Boosting showed superior performance in 75\% of the studies in which it was compared with other methods. Sentinel-1 emerged as the most utilized remote sensing source, with multi-sensor approaches (e.g., Sentinel-1, Sentinel-2, and LiDAR) proving especially effective. Our findings provide grounds for recommending best practices in integrating machine learning and remote sensing for accurate and scalable forest carbon stock estimation.
comment: First author and corresponding author: Autumn Nguyen
☆ Automating Chapter-Level Classification for Electronic Theses and Dissertations
Traditional archival practices for describing electronic theses and dissertations (ETDs) rely on broad, high-level metadata schemes that fail to capture the depth, complexity, and interdisciplinary nature of these long scholarly works. The lack of detailed, chapter-level content descriptions impedes researchers' ability to locate specific sections or themes, thereby reducing discoverability and overall accessibility. By providing chapter-level metadata information, we improve the effectiveness of ETDs as research resources. This makes it easier for scholars to navigate them efficiently and extract valuable insights. The absence of such metadata further obstructs interdisciplinary research by obscuring connections across fields, hindering new academic discoveries and collaboration. In this paper, we propose a machine learning and AI-driven solution to automatically categorize ETD chapters. This solution is intended to improve discoverability and promote understanding of chapters. Our approach enriches traditional archival practices by providing context-rich descriptions that facilitate targeted navigation and improved access. We aim to support interdisciplinary research and make ETDs more accessible. By providing chapter-level classification labels and using them to index in our developed prototype system, we make content in ETD chapters more discoverable and usable for a diverse range of scholarly needs. Implementing this AI-enhanced approach allows archives to serve researchers better, enabling efficient access to relevant information and supporting deeper engagement with ETDs. This will increase the impact of ETDs as research tools, foster interdisciplinary exploration, and reinforce the role of archives in scholarly communication within the data-intensive academic landscape.
☆ Mixed-State Quantum Denoising Diffusion Probabilistic Model
Generative quantum machine learning has gained significant attention for its ability to produce quantum states with desired distributions. Among various quantum generative models, quantum denoising diffusion probabilistic models (QuDDPMs) [Phys. Rev. Lett. 132, 100602 (2024)] provide a promising approach with stepwise learning that resolves the training issues. However, the requirement of high-fidelity scrambling unitaries in QuDDPM poses a challenge in near-term implementation. We propose the \textit{mixed-state quantum denoising diffusion probabilistic model} (MSQuDDPM) to eliminate the need for scrambling unitaries. Our approach focuses on adapting the quantum noise channels to the model architecture, which integrates depolarizing noise channels in the forward diffusion process and parameterized quantum circuits with projective measurements in the backward denoising steps. We also introduce several techniques to improve MSQuDDPM, including a cosine-exponent schedule of noise interpolation, the use of single-qubit random ancilla, and superfidelity-based cost functions to enhance the convergence. We evaluate MSQuDDPM on quantum ensemble generation tasks, demonstrating its successful performance.
comment: 7 pages, 7 figures
☆ Can artificial intelligence predict clinical trial outcomes?
The increasing complexity and cost of clinical trials, particularly in the context of oncology and advanced therapies, pose significant challenges for drug development. This study evaluates the predictive capabilities of large language models (LLMs) such as GPT-3.5, GPT-4, and HINT in determining clinical trial outcomes. By leveraging a curated dataset of trials from ClinicalTrials.gov, we compare the models' performance using metrics including balanced accuracy, specificity, recall, and Matthews Correlation Coefficient (MCC). Results indicate that GPT-4o demonstrates robust performance in early trial phases, achieving high recall but facing limitations in specificity. Conversely, the HINT model excels in recognizing negative outcomes, particularly in later trial phases, offering a balanced approach across diverse endpoints. Oncology trials, characterized by high complexity, remain challenging for all models. Additionally, trial duration and disease categories influence predictive performance, with longer durations and complex diseases such as neoplasms reducing accuracy. This study highlights the complementary strengths of LLMs and HINT, providing insights into optimizing predictive tools for clinical trial design and risk management. Future advancements in LLMs are essential to address current gaps in handling negative outcomes and complex domains.
☆ What Differentiates Educational Literature? A Multimodal Fusion Approach of Transformers and Computational Linguistics
The integration of new literature into the English curriculum remains a challenge since educators often lack scalable tools to rapidly evaluate readability and adapt texts for diverse classroom needs. This study proposes to address this gap through a multimodal approach that combines transformer-based text classification with linguistic feature analysis to align texts with UK Key Stages. Eight state-of-the-art Transformers were fine-tuned on segmented text data, with BERT achieving the highest unimodal F1 score of 0.75. In parallel, 500 deep neural network topologies were searched for the classification of linguistic characteristics, achieving an F1 score of 0.392. The fusion of these modalities shows a significant improvement, with every multimodal approach outperforming all unimodal models. In particular, the ELECTRA Transformer fused with the neural network achieved an F1 score of 0.996. The proposed approach is finally encapsulated in a stakeholder-facing web application, providing non-technical stakeholder access to real-time insights on text complexity, reading difficulty, curriculum alignment, and recommendations for learning age range. The application empowers data-driven decision making and reduces manual workload by integrating AI-based recommendations into lesson planning for English literature.
☆ From Fairness to Infinity: Outcome-Indistinguishable (Omni)Prediction in Evolving Graphs
Professional networks provide invaluable entree to opportunity through referrals and introductions. A rich literature shows they also serve to entrench and even exacerbate a status quo of privilege and disadvantage. Hiring platforms, equipped with the ability to nudge link formation, provide a tantalizing opening for beneficial structural change. We anticipate that key to this prospect will be the ability to estimate the likelihood of edge formation in an evolving graph. Outcome-indistinguishable prediction algorithms ensure that the modeled world is indistinguishable from the real world by a family of statistical tests. Omnipredictors ensure that predictions can be post-processed to yield loss minimization competitive with respect to a benchmark class of predictors for many losses simultaneously, with appropriate post-processing. We begin by observing that, by combining a slightly modified form of the online K29 star algorithm of Vovk (2007) with basic facts from the theory of reproducing kernel Hilbert spaces, one can derive simple and efficient online algorithms satisfying outcome indistinguishability and omniprediction, with guarantees that improve upon, or are complementary to, those currently known. This is of independent interest. We apply these techniques to evolving graphs, obtaining online outcome-indistinguishable omnipredictors for rich -- possibly infinite -- sets of distinguishers that capture properties of pairs of nodes, and their neighborhoods. This yields, inter alia, multicalibrated predictions of edge formation with respect to pairs of demographic groups, and the ability to simultaneously optimize loss as measured by a variety of social welfare functions.
☆ Uncertainty quantification for White Matter Hyperintensity segmentation detects silent failures and improves automated Fazekas quantification
White Matter Hyperintensities (WMH) are key neuroradiological markers of small vessel disease present in brain MRI. Assessment of WMH is important in research and clinics. However, WMH are challenging to segment due to their high variability in shape, location, size, poorly defined borders, and similar intensity profile to other pathologies (e.g stroke lesions) and artefacts (e.g head motion). In this work, we apply the most effective techniques for uncertainty quantification (UQ) in segmentation to the WMH segmentation task across multiple test-time data distributions. We find a combination of Stochastic Segmentation Networks with Deep Ensembles yields the highest Dice and lowest Absolute Volume Difference % (AVD) score on in-domain and out-of-distribution data. We demonstrate the downstream utility of UQ, proposing a novel method for classification of the clinical Fazekas score using spatial features extracted for WMH segmentation and UQ maps. We show that incorporating WMH uncertainty information improves Fazekas classification performance and calibration, with median class balanced accuracy for classification models with (UQ and spatial WMH features)/(spatial WMH features)/(WMH volume only) of 0.71/0.66/0.60 in the Deep WMH and 0.82/0.77/0.73 in the Periventricular WMH regions respectively. We demonstrate that stochastic UQ techniques with high sample diversity can improve the detection of poor quality segmentations. Finally, we qualitatively analyse the semantic information captured by UQ techniques and demonstrate that uncertainty can highlight areas where there is ambiguity between WMH and stroke lesions, while identifying clusters of small WMH in deep white matter unsegmented by the model.
comment: 34 pages (or 22 not including appendix) 26 figures (or 11 not including appendix)
☆ Learning Explainable Treatment Policies with Clinician-Informed Representations: A Practical Approach ML4H
Digital health interventions (DHIs) and remote patient monitoring (RPM) have shown great potential in improving chronic disease management through personalized care. However, barriers like limited efficacy and workload concerns hinder adoption of existing DHIs; while limited sample sizes and lack of interpretability limit the effectiveness and adoption of purely black-box algorithmic DHIs. In this paper, we address these challenges by developing a pipeline for learning explainable treatment policies for RPM-enabled DHIs. We apply our approach in the real-world setting of RPM using a DHI to improve glycemic control of youth with type 1 diabetes. Our main contribution is to reveal the importance of clinical domain knowledge in developing state and action representations for effective, efficient, and interpretable targeting policies. We observe that policies learned from clinician-informed representations are significantly more efficacious and efficient than policies learned from black-box representations. This work emphasizes the importance of collaboration between ML researchers and clinicians for developing effective DHIs in the real world.
comment: Proceedings of Machine Learning for Health (ML4H) 2024. Code available at: https://github.com/jferstad/ml4h-explainable-policies
☆ Improving the Convergence Rates of Forward Gradient Descent with Repeated Sampling
Forward gradient descent (FGD) has been proposed as a biologically more plausible alternative of gradient descent as it can be computed without backward pass. Considering the linear model with $d$ parameters, previous work has found that the prediction error of FGD is, however, by a factor $d$ slower than the prediction error of stochastic gradient descent (SGD). In this paper we show that by computing $\ell$ FGD steps based on each training sample, this suboptimality factor becomes $d/(\ell \wedge d)$ and thus the suboptimality of the rate disappears if $\ell \gtrsim d.$ We also show that FGD with repeated sampling can adapt to low-dimensional structure in the input distribution. The main mathematical challenge lies in controlling the dependencies arising from the repeated sampling process.
☆ Multiscale spatiotemporal heterogeneity analysis of bike-sharing system's self-loop phenomenon: Evidence from Shanghai
Bike-sharing is an environmentally friendly shared mobility mode, but its self-loop phenomenon, where bikes are returned to the same station after several time usage, significantly impacts equity in accessing its services. Therefore, this study conducts a multiscale analysis with a spatial autoregressive model and double machine learning framework to assess socioeconomic features and geospatial location's impact on the self-loop phenomenon at metro stations and street scales. The results reveal that bike-sharing self-loop intensity exhibits significant spatial lag effect at street scale and is positively associated with residential land use. Marginal treatment effects of residential land use is higher on streets with middle-aged residents, high fixed employment, and low car ownership. The multimodal public transit condition reveals significant positive marginal treatment effects at both scales. To enhance bike-sharing cooperation, we advocate augmenting bicycle availability in areas with high metro usage and low bus coverage, alongside implementing adaptable redistribution strategies.
☆ Navigating Spatial Inequities in Freight Truck Crash Severity via Counterfactual Inference in Los Angeles
Freight truck-related crashes pose significant challenges, leading to substantial economic losses, injuries, and fatalities, with pronounced spatial disparities across different regions. This study adopts a transport geography perspective to examine spatial justice concerns by employing deep counterfactual inference models to analyze how socioeconomic disparities, road infrastructure, and environmental conditions influence the geographical distribution and severity of freight truck crashes. By integrating road network datasets, socioeconomic attributes, and crash records from the Los Angeles metropolitan area, this research provides a nuanced spatial analysis of how different communities are disproportionately impacted. The results reveal significant spatial disparities in crash severity across areas with varying population densities, income levels, and minority populations, highlighting the pivotal role of infrastructural and environmental improvements in mitigating these disparities. The findings offer insights into targeted, location-specific policy interventions, suggesting enhancements in road infrastructure, lighting, and traffic control systems, particularly in low-income and minority-concentrated areas. This research contributes to the literature on transport geography and spatial equity by providing data-driven insights into effective measures for reducing spatial injustices associated with freight truck-related crashes.
☆ Rapid Deployment of Domain-specific Hyperspectral Image Processors with Application to Autonomous Driving
The article discusses the use of low cost System-On-Module (SOM) platforms for the implementation of efficient hyperspectral imaging (HSI) processors for application in autonomous driving. The work addresses the challenges of shaping and deploying multiple layer fully convolutional networks (FCN) for low-latency, on-board image semantic segmentation using resource- and power-constrained processing devices. The paper describes in detail the steps followed to redesign and customize a successfully trained HSI segmentation lightweight FCN that was previously tested on a high-end heterogeneous multiprocessing system-on-chip (MPSoC) to accommodate it to the constraints imposed by a low-cost SOM. This SOM features a lower-end but much cheaper MPSoC suitable for the deployment of automatic driving systems (ADS). In particular the article reports the data- and hardware-specific quantization techniques utilized to fit the FCN into a commercial fixed-point programmable AI coprocessor IP, and proposes a full customized post-training quantization scheme to reduce computation and storage costs without compromising segmentation accuracy.
☆ Towards Maximum Likelihood Training for Transducer-based Streaming Speech Recognition
Transducer neural networks have emerged as the mainstream approach for streaming automatic speech recognition (ASR), offering state-of-the-art performance in balancing accuracy and latency. In the conventional framework, streaming transducer models are trained to maximize the likelihood function based on non-streaming recursion rules. However, this approach leads to a mismatch between training and inference, resulting in the issue of deformed likelihood and consequently suboptimal ASR accuracy. We introduce a mathematical quantification of the gap between the actual likelihood and the deformed likelihood, namely forward variable causal compensation (FoCC). We also present its estimator, FoCCE, as a solution to estimate the exact likelihood. Through experiments on the LibriSpeech dataset, we show that FoCCE training improves the accuracy of the streaming transducers.
comment: 5 pages, 1 figure, 1 table
☆ HSI-Drive v2.0: More Data for New Challenges in Scene Understanding for Autonomous Driving
We present the updated version of the HSI-Drive dataset aimed at developing automated driving systems (ADS) using hyperspectral imaging (HSI). The v2.0 version includes new annotated images from videos recorded during winter and fall in real driving scenarios. Added to the spring and summer images included in the previous v1.1 version, the new dataset contains 752 images covering the four seasons. In this paper, we show the improvements achieved over previously published results obtained on the v1.1 dataset, showcasing the enhanced performance of models trained on the new v2.0 dataset. We also show the progress made in comprehensive scene understanding by experimenting with more capable image segmentation models. These models include new segmentation categories aimed at the identification of essential road safety objects such as the presence of vehicles and road signs, as well as highly vulnerable groups like pedestrians and cyclists. In addition, we provide evidence of the performance and robustness of the models when applied to segmenting HSI video sequences captured in various environments and conditions. Finally, for a correct assessment of the results described in this work, the constraints imposed by the processing platforms that can sensibly be deployed in vehicles for ADS must be taken into account. Thus, and although implementation details are out of the scope of this paper, we focus our research on the development of computationally efficient, lightweight ML models that can eventually operate at high throughput rates. The dataset and some examples of segmented videos are available in https://ipaccess.ehu.eus/HSI-Drive/.
☆ Evolving Markov Chains: Unsupervised Mode Discovery and Recognition from Data Streams
Markov chains are simple yet powerful mathematical structures to model temporally dependent processes. They generally assume stationary data, i.e., fixed transition probabilities between observations/states. However, live, real-world processes, like in the context of activity tracking, biological time series, or industrial monitoring, often switch behavior over time. Such behavior switches can be modeled as transitions between higher-level \emph{modes} (e.g., running, walking, etc.). Yet all modes are usually not previously known, often exhibit vastly differing transition probabilities, and can switch unpredictably. Thus, to track behavior changes of live, real-world processes, this study proposes an online and efficient method to construct Evolving Markov chains (EMCs). EMCs adaptively track transition probabilities, automatically discover modes, and detect mode switches in an online manner. In contrast to previous work, EMCs are of arbitrary order, the proposed update scheme does not rely on tracking windows, only updates the relevant region of the probability tensor, and enjoys geometric convergence of the expected estimates. Our evaluation of synthetic data and real-world applications on human activity recognition, electric motor condition monitoring, and eye-state recognition from electroencephalography (EEG) measurements illustrates the versatility of the approach and points to the potential of EMCs to efficiently track, model, and understand live, real-world processes.
comment: 20 pages, 8 figures
☆ Pushing the Limits of Large Language Model Quantization via the Linearity Theorem
Quantizing large language models has become a standard way to reduce their memory and computational costs. Typically, existing methods focus on breaking down the problem into individual layer-wise sub-problems, and minimizing per-layer error, measured via various metrics. Yet, this approach currently lacks theoretical justification and the metrics employed may be sub-optimal. In this paper, we present a "linearity theorem" establishing a direct relationship between the layer-wise $\ell_2$ reconstruction error and the model perplexity increase due to quantization. This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, which outperforms all prior data-free approaches such as the extremely popular NF4 quantized format, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels which match a given compression constraint in the medium-bitwidth regime, obtained by reduction to dynamic programming. On the practical side, we demonstrate improved accuracy-compression trade-offs on Llama-3.1 and 3.2-family models, as well as on Qwen-family models. Further, we show that our method can be efficiently supported in terms of GPU kernels at various batch sizes, advancing both data-free and non-uniform quantization for LLMs.
☆ On Statistical Rates of Conditional Diffusion Transformers: Approximation, Estimation and Minimax Optimality
We investigate the approximation and estimation rates of conditional diffusion transformers (DiTs) with classifier-free guidance. We present a comprehensive analysis for ``in-context'' conditional DiTs under four common data assumptions. We show that both conditional DiTs and their latent variants lead to the minimax optimality of unconditional DiTs under identified settings. Specifically, we discretize the input domains into infinitesimal grids and then perform a term-by-term Taylor expansion on the conditional diffusion score function under H\"older smooth data assumption. This enables fine-grained use of transformers' universal approximation through a more detailed piecewise constant approximation and hence obtains tighter bounds. Additionally, we extend our analysis to the latent setting under the linear latent subspace assumption. We not only show that latent conditional DiTs achieve lower bounds than conditional DiTs both in approximation and estimation, but also show the minimax optimality of latent unconditional DiTs. Our findings establish statistical limits for conditional and unconditional DiTs, and offer practical guidance toward developing more efficient and accurate DiT models.
☆ Perceptually Optimized Super Resolution
Modern deep-learning based super-resolution techniques process images and videos independently of the underlying content and viewing conditions. However, the sensitivity of the human visual system to image details changes depending on the underlying content characteristics, such as spatial frequency, luminance, color, contrast, or motion. This observation hints that computational resources spent on up-sampling visual content may be wasted whenever a viewer cannot resolve the results. Motivated by this observation, we propose a perceptually inspired and architecture-agnostic approach for controlling the visual quality and efficiency of super-resolution techniques. The core is a perceptual model that dynamically guides super-resolution methods according to the human's sensitivity to image details. Our technique leverages the limitations of the human visual system to improve the efficiency of super-resolution techniques by focusing computational resources on perceptually important regions; judged on the basis of factors such as adapting luminance, contrast, spatial frequency, motion, and viewing conditions. We demonstrate the application of our proposed model in combination with network branching, and network complexity reduction to improve the computational efficiency of super-resolution methods without visible quality loss. Quantitative and qualitative evaluations, including user studies, demonstrate the effectiveness of our approach in reducing FLOPS by factors of 2$\mathbf{x}$ and greater, without sacrificing perceived quality.
☆ Training Hamiltonian neural networks without backpropagation NeurIPS 2024
Neural networks that synergistically integrate data and physical laws offer great promise in modeling dynamical systems. However, iterative gradient-based optimization of network parameters is often computationally expensive and suffers from slow convergence. In this work, we present a backpropagation-free algorithm to accelerate the training of neural networks for approximating Hamiltonian systems through data-agnostic and data-driven algorithms. We empirically show that data-driven sampling of the network parameters outperforms data-agnostic sampling or the traditional gradient-based iterative optimization of the network parameters when approximating functions with steep gradients or wide input domains. We demonstrate that our approach is more than 100 times faster with CPUs than the traditionally trained Hamiltonian Neural Networks using gradient-based iterative optimization and is more than four orders of magnitude accurate in chaotic examples, including the H\'enon-Heiles system.
comment: 5 pages, 2 figures and 2 tables in the main text, includes an Appendix section, accepted to NeurIPS 2024 Workshop ML4PS
☆ Neural network modelling of kinematic and dynamic features for signature verification
Online signature parameters, which are based on human characteristics, broaden the applicability of an automatic signature verifier. Although kinematic and dynamic features have previously been suggested, accurately measuring features such as arm and forearm torques remains challenging. We present two approaches for estimating angular velocities, angular positions, and force torques. The first approach involves using a physical UR5e robotic arm to reproduce a signature while capturing those parameters over time. The second method, a cost effective approach, uses a neural network to estimate the same parameters. Our findings demonstrate that a simple neural network model can extract effective parameters for signature verification. Training the neural network with the MCYT300 dataset and cross validating with other databases, namely, BiosecurID, Visual, Blind, OnOffSigDevanagari 75 and OnOffSigBengali 75 confirm the models generalization capability.
☆ Confidence-Aware Deep Learning for Load Plan Adjustments in the Parcel Service Industry
This study develops a deep learning-based approach to automate inbound load plan adjustments for a large transportation and logistics company. It addresses a critical challenge for the efficient and resilient planning of E-commerce operations in presence of increasing uncertainties. The paper introduces an innovative data-driven approach to inbound load planning. Leveraging extensive historical data, the paper presents a two-stage decision-making process using deep learning and conformal prediction to provide scalable, accurate, and confidence-aware solutions. The first stage of the prediction is dedicated to tactical load-planning, while the second stage is dedicated to the operational planning, incorporating the latest available data to refine the decisions at the finest granularity. Extensive experiments compare traditional machine learning models and deep learning methods. They highlight the importance and effectiveness of the embedding layers for enhancing the performance of deep learning models. Furthermore, the results emphasize the efficacy of conformal prediction to provide confidence-aware prediction sets. The findings suggest that data-driven methods can substantially improve decision making in inbound load planning, offering planners a comprehensive, trustworthy, and real-time framework to make decisions. The initial deployment in the industry setting indicates a high accuracy of the proposed framework.
comment: 16 pages, 11 figures
☆ Inference Scaling $\scriptsize\mathtt{F}$Laws: The Limits of LLM Resampling with Imperfect Verifiers
Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.
☆ Time-Series Forecasting in Smart Manufacturing Systems: An Experimental Evaluation of the State-of-the-art Algorithms
TSF is growing in various domains including manufacturing. Although numerous TSF algorithms have been developed recently, the validation and evaluation of algorithms hold substantial value for researchers and practitioners and are missing. This study aims to fill this gap by evaluating the SoTA TSF algorithms on thirteen manufacturing datasets, focusing on their applicability in manufacturing. Each algorithm was selected based on its TSF category to ensure a representative set of algorithms. The evaluation includes different scenarios to evaluate the models using two problem categories and two forecasting horizons. To evaluate the performance, the WAPE was calculated, and additional post hoc analyses were conducted to assess the significance of observed differences. Only algorithms with codes from open-source libraries were utilized, and no hyperparameter tuning was done. This allowed us to evaluate the algorithms as "out-of-the-box" solutions that can be easily implemented, ensuring their usability within the manufacturing by practitioners with limited technical knowledge. This aligns to facilitate the adoption of these techniques in smart manufacturing systems. Based on the results, transformer and MLP-based architectures demonstrated the best performance with MLP-based architecture winning the most scenarios. For univariate TSF, PatchTST emerged as the most robust, particularly for long-term horizons, while for multivariate problems, MLP-based architectures like N-HITS and TiDE showed superior results. The study revealed that simpler algorithms like XGBoost could outperform complex algorithms in certain tasks. These findings challenge the assumption that more sophisticated models produce better results. Additionally, the research highlighted the importance of computational resource considerations, showing variations in runtime and memory usage across different algorithms.
☆ A Machine Learning-based Anomaly Detection Framework in Life Insurance Contracts
Life insurance, like other forms of insurance, relies heavily on large volumes of data. The business model is based on an exchange where companies receive payments in return for the promise to provide coverage in case of an accident. Thus, trust in the integrity of the data stored in databases is crucial. One method to ensure data reliability is the automatic detection of anomalies. While this approach is highly useful, it is also challenging due to the scarcity of labeled data that distinguish between normal and anomalous contracts or inter\-actions. This manuscript discusses several classical and modern unsupervised anomaly detection methods and compares their performance across two different datasets. In order to facilitate the adoption of these methods by companies, this work also explores ways to automate the process, making it accessible even to non-data scientists.
☆ Puzzle Similarity: A Perceptually-guided No-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of no-reference image metrics in predicting detailed artifact maps. The absence of such quality metrics hinders accurate predictions of the quality of generated views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. In this work, we propose a new no-reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the input views to establish a scene-specific distribution that is later used to identify poorly reconstructed regions in the novel views. We test and evaluate our method in the context of 3D reconstruction; to this end, we collected a novel dataset of human quality assessment in unseen reconstructed views. Through this dataset, we demonstrate that our method can not only successfully localize artifacts in novel views, correlating with human assessment, but do so without direct references. Surprisingly, our metric outperforms both no-reference metrics and popular full-reference image metrics. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs.
☆ Storing overlapping associative memories on latent manifolds in low-rank spiking networks NeurIPS 2024
Associative memory architectures such as the Hopfield network have long been important conceptual and theoretical models for neuroscience and artificial intelligence. However, translating these abstract models into spiking neural networks has been surprisingly difficult. Indeed, much previous work has been restricted to storing a small number of primarily non-overlapping memories in large networks, thereby limiting their scalability. Here, we revisit the associative memory problem in light of recent advances in understanding spike-based computation. Using a recently-established geometric framework, we show that the spiking activity for a large class of all-inhibitory networks is situated on a low-dimensional, convex, and piecewise-linear manifold, with dynamics that move along the manifold. We then map the associative memory problem onto these dynamics, and demonstrate how the vertices of a hypercubic manifold can be used to store stable, overlapping activity patterns with a direct correspondence to the original Hopfield model. We propose several learning rules, and demonstrate a linear scaling of the storage capacity with the number of neurons, as well as robust pattern completion abilities. Overall, this work serves as a case study to demonstrate the effectiveness of using a geometrical perspective to design dynamics on neural manifolds, with implications for neuroscience and machine learning.
comment: 15 pages, 5 figures; accepted to NeurIPS 2024 Workshop on Symmetry and Geometry in Neural Representations (NeurReps 2024)
☆ SoK: Decentralized AI (DeAI)
The centralization of Artificial Intelligence (AI) poses significant challenges, including single points of failure, inherent biases, data privacy concerns, and scalability issues. These problems are especially prevalent in closed-source large language models (LLMs), where user data is collected and used without transparency. To mitigate these issues, blockchain-based decentralized AI (DeAI) has emerged as a promising solution. DeAI combines the strengths of both blockchain and AI technologies to enhance the transparency, security, decentralization, and trustworthiness of AI systems. However, a comprehensive understanding of state-of-the-art DeAI development, particularly for active industry solutions, is still lacking. In this work, we present a Systematization of Knowledge (SoK) for blockchain-based DeAI solutions. We propose a taxonomy to classify existing DeAI protocols based on the model lifecycle. Based on this taxonomy, we provide a structured way to clarify the landscape of DeAI protocols and identify their similarities and differences. We analyze the functionalities of blockchain in DeAI, investigating how blockchain features contribute to enhancing the security, transparency, and trustworthiness of AI processes, while also ensuring fair incentives for AI data and model contributors. In addition, we identify key insights and research gaps in developing DeAI protocols, highlighting several critical avenues for future research.
comment: This is a Systematization of Knowledge (SoK) for the rapidly evolving field of Decentralized AI (DeAI). We welcome valuable comments, suggestions, and collaboration to further refine and enhance this work. We hope our contribution will help accelerate the advancement of DeAI
☆ A Graph Neural Network deep-dive into successful counterattacks
A counterattack in soccer is a high speed, high intensity direct attack that can occur when a team transitions from a defensive state to an attacking state after regaining possession of the ball. The aim is to create a goal-scoring opportunity by convering a lot of ground with minimal passes before the opposing team can recover their defensive shape. The purpose of this research is to build gender-specific Graph Neural Networks to model the likelihood of a counterattack being successful and uncover what factors make them successful in professional soccer. These models are trained on a total of 20863 frames of synchronized on-ball event and spatiotemporal (broadcast) tracking data. This dataset is derived from 632 games of MLS (2022), NWSL (2022) and international soccer (2020-2022). With this data we demonstrate that gender-specific Graph Neural Networks outperform architecturally identical gender-ambiguous models in predicting the successful outcome of counterattacks. We show, using Permutation Feature Importance, that byline to byline speed, angle to the goal, angle to the ball and sideline to sideline speed are the node features with the highest impact on model performance. Additionally, we offer some illustrative examples on how to navigate the infinite solution search space to aid in identifying improvements for player decision making. This research is accompanied by an open-source repository containing all data and code, and it is also accompanied by an open-source Python package which simplifies converting spatiotemporal data into graphs. This package also facilitates testing, validation, training and prediction with this data. This should allow the reader to replicate and improve upon our research more easily.
comment: 11 pages, 11 figures, first submitted (and accepted) at MIT Sloan Sports Analytics Conference 2023
☆ Maximally Separated Active Learning ECCV 2024
Active Learning aims to optimize performance while minimizing annotation costs by selecting the most informative samples from an unlabelled pool. Traditional uncertainty sampling often leads to sampling bias by choosing similar uncertain samples. We propose an active learning method that utilizes fixed equiangular hyperspherical points as class prototypes, ensuring consistent inter-class separation and robust feature representations. Our approach introduces Maximally Separated Active Learning (MSAL) for uncertainty sampling and a combined strategy (MSAL-D) for incorporating diversity. This method eliminates the need for costly clustering steps, while maintaining diversity through hyperspherical uniformity. We demonstrate strong performance over existing active learning techniques across five benchmark datasets, highlighting the method's effectiveness and integration ease. The code is available on GitHub.
comment: ECCV 2024 Beyond Euclidean Workshop (proceedings)
☆ Rewiring Techniques to Mitigate Oversquashing and Oversmoothing in GNNs: A Survey
Graph Neural Networks (GNNs) are powerful tools for learning from graph-structured data, but their effectiveness is often constrained by two critical challenges: oversquashing, where the excessive compression of information from distant nodes results in significant information loss, and oversmoothing, where repeated message-passing iterations homogenize node representations, obscuring meaningful distinctions. These issues, intrinsically linked to the underlying graph structure, hinder information flow and constrain the expressiveness of GNNs. In this survey, we examine graph rewiring techniques, a class of methods designed to address these structural bottlenecks by modifying graph topology to enhance information diffusion. We provide a comprehensive review of state-of-the-art rewiring approaches, delving into their theoretical underpinnings, practical implementations, and performance trade-offs.
☆ CLOVER: Constrained Learning with Orthonormal Vectors for Eliminating Redundancy
To adapt a well-trained large model to downstream tasks, we propose constraining learning within its original latent space by leveraging linear combinations of its basis vectors. This approach ensures stable training without compromising the model's capabilities. Traditionally, constructing orthonormal bases from a matrix requires a transfer matrix, which significantly increases storage and computational overhead for parameters and feature maps. In this paper, we introduce Absorb and Decompose for Q, K, V, and O matrices, enabling their orthogonalization without the need for transfer matrices. Furthermore, the Absorb-Decompose operation eliminates redundant vectors, reducing the encoder attention parameters of Whisper-large-v3 by 46.42% without requiring additional training. For parameter-efficient and stable fine-tuning, we orthonormalized Q, K, V, and O and fine-tuned only the singular values, allowing efficient adaptation while constraining changes to the original latent space. When fine-tuning LLaMA-2-7B on eight commonsense reasoning datasets, our method outperforms LoRA by 5.4% and DoRA by 4.4%.
☆ A Generalized Unified Skew-Normal Process with Neural Bayes Inference
In recent decades, statisticians have been increasingly encountering spatial data that exhibit non-Gaussian behaviors such as asymmetry and heavy-tailedness. As a result, the assumptions of symmetry and fixed tail weight in Gaussian processes have become restrictive and may fail to capture the intrinsic properties of the data. To address the limitations of the Gaussian models, a variety of skewed models has been proposed, of which the popularity has grown rapidly. These skewed models introduce parameters that govern skewness and tail weight. Among various proposals in the literature, unified skewed distributions, such as the Unified Skew-Normal (SUN), have received considerable attention. In this work, we revisit a more concise and intepretable re-parameterization of the SUN distribution and apply the distribution to random fields by constructing a generalized unified skew-normal (GSUN) spatial process. We demonstrate { that the GSUN is a valid spatial process by showing its vanishing correlation in large distances} and provide the corresponding spatial interpolation method. In addition, we develop an inference mechanism for the GSUN process using the concept of neural Bayes estimators with deep graphical attention networks (GATs) and encoder transformer. We show the superiority of our proposed estimator over the conventional CNN-based architectures regarding stability and accuracy by means of a simulation study and application to Pb-contaminated soil data. Furthermore, we show that the GSUN process is different from the conventional Gaussian processes and Tukey g-and-h processes, through the probability integral transform (PIT).
☆ Robust Bayesian Optimization via Localized Online Conformal Prediction
Bayesian optimization (BO) is a sequential approach for optimizing black-box objective functions using zeroth-order noisy observations. In BO, Gaussian processes (GPs) are employed as probabilistic surrogate models to estimate the objective function based on past observations, guiding the selection of future queries to maximize utility. However, the performance of BO heavily relies on the quality of these probabilistic estimates, which can deteriorate significantly under model misspecification. To address this issue, we introduce localized online conformal prediction-based Bayesian optimization (LOCBO), a BO algorithm that calibrates the GP model through localized online conformal prediction (CP). LOCBO corrects the GP likelihood based on predictive sets produced by LOCBO, and the corrected GP likelihood is then denoised to obtain a calibrated posterior distribution on the objective function. The likelihood calibration step leverages an input-dependent calibration threshold to tailor coverage guarantees to different regions of the input space. Under minimal noise assumptions, we provide theoretical performance guarantees for LOCBO's iterates that hold for the unobserved objective function. These theoretical findings are validated through experiments on synthetic and real-world optimization tasks, demonstrating that LOCBO consistently outperforms state-of-the-art BO algorithms in the presence of model misspecification.
☆ MFF-FTNet: Multi-scale Feature Fusion across Frequency and Temporal Domains for Time Series Forecasting
Time series forecasting is crucial in many fields, yet current deep learning models struggle with noise, data sparsity, and capturing complex multi-scale patterns. This paper presents MFF-FTNet, a novel framework addressing these challenges by combining contrastive learning with multi-scale feature extraction across both frequency and time domains. MFF-FTNet introduces an adaptive noise augmentation strategy that adjusts scaling and shifting factors based on the statistical properties of the original time series data, enhancing model resilience to noise. The architecture is built around two complementary modules: a Frequency-Aware Contrastive Module (FACM) that refines spectral representations through frequency selection and contrastive learning, and a Complementary Time Domain Contrastive Module (CTCM) that captures both short- and long-term dependencies using multi-scale convolutions and feature fusion. A unified feature representation strategy enables robust contrastive learning across domains, creating an enriched framework for accurate forecasting. Extensive experiments on five real-world datasets demonstrate that MFF-FTNet significantly outperforms state-of-the-art models, achieving a 7.7% MSE improvement on multivariate tasks. These findings underscore MFF-FTNet's effectiveness in modeling complex temporal patterns and managing noise and sparsity, providing a comprehensive solution for both long- and short-term forecasting.
☆ Epidemiology-informed Graph Neural Network for Heterogeneity-aware Epidemic Forecasting
Among various spatio-temporal prediction tasks, epidemic forecasting plays a critical role in public health management. Recent studies have demonstrated the strong potential of spatio-temporal graph neural networks (STGNNs) in extracting heterogeneous spatio-temporal patterns for epidemic forecasting. However, most of these methods bear an over-simplified assumption that two locations (e.g., cities) with similar observed features in previous time steps will develop similar infection numbers in the future. In fact, for any epidemic disease, there exists strong heterogeneity of its intrinsic evolution mechanisms across geolocation and time, which can eventually lead to diverged infection numbers in two ``similar'' locations. However, such mechanistic heterogeneity is non-trivial to be captured due to the existence of numerous influencing factors like medical resource accessibility, virus mutations, mobility patterns, etc., most of which are spatio-temporal yet unreachable or even unobservable. To address this challenge, we propose a Heterogeneous Epidemic-Aware Transmission Graph Neural Network (HeatGNN), a novel epidemic forecasting framework. By binding the epidemiology mechanistic model into a GNN, HeatGNN learns epidemiology-informed location embeddings of different locations that reflect their own transmission mechanisms over time. With the time-varying mechanistic affinity graphs computed with the epidemiology-informed location embeddings, a heterogeneous transmission graph network is designed to encode the mechanistic heterogeneity among locations, providing additional predictive signals to facilitate accurate forecasting. Experiments on three benchmark datasets have revealed that HeatGNN outperforms various strong baselines. Moreover, our efficiency analysis verifies the real-world practicality of HeatGNN on datasets of different sizes.
comment: 14 pages, 6 figures, 3 tables
☆ Efficient Deployment of Transformer Models in Analog In-Memory Computing Hardware
Analog in-memory computing (AIMC) has emerged as a promising solution to overcome the von Neumann bottleneck, accelerating neural network computations and improving computational efficiency. While AIMC has demonstrated success with architectures such as CNNs, MLPs, and RNNs, deploying transformer-based models using AIMC presents unique challenges. Transformers are expected to handle diverse downstream tasks and adapt to new user data or instructions after deployment, which requires more flexible approaches to suit AIMC constraints. In this paper, we propose a novel method for deploying pre-trained transformer models onto AIMC hardware. Unlike traditional approaches requiring hardware-aware training, our technique allows direct deployment without the need for retraining the original model. Instead, we utilize lightweight, low-rank adapters -- compact modules stored in digital cores -- to adapt the model to hardware constraints. We validate our approach on MobileBERT, demonstrating accuracy on par with, or even exceeding, a traditional hardware-aware training approach. Our method is particularly appealing in multi-task scenarios, as it enables a single analog model to be reused across multiple tasks. Moreover, it supports on-chip adaptation to new hardware constraints and tasks without updating analog weights, providing a flexible and versatile solution for real-world AI applications. Code is available.
☆ DWCL: Dual-Weighted Contrastive Learning for Multi-View Clustering
Multi-view contrastive clustering (MVCC) has gained significant attention for generating consistent clustering structures from multiple views through contrastive learning. However, most existing MVCC methods create cross-views by combining any two views, leading to a high volume of unreliable pairs. Furthermore, these approaches often overlook discrepancies in multi-view representations, resulting in representation degeneration. To address these challenges, we introduce a novel model called Dual-Weighted Contrastive Learning (DWCL) for Multi-View Clustering. Specifically, to reduce the impact of unreliable cross-views, we introduce an innovative Best-Other (B-O) contrastive mechanism that enhances the representation of individual views at a low computational cost. Furthermore, we develop a dual weighting strategy that combines a view quality weight, reflecting the quality of each view, with a view discrepancy weight. This approach effectively mitigates representation degeneration by downplaying cross-views that are both low in quality and high in discrepancy. We theoretically validate the efficiency of the B-O contrastive mechanism and the effectiveness of the dual weighting strategy. Extensive experiments demonstrate that DWCL outperforms previous methods across eight multi-view datasets, showcasing superior performance and robustness in MVCC. Specifically, our method achieves absolute accuracy improvements of 5.4\% and 5.6\% compared to state-of-the-art methods on the Caltech6V7 and MSRCv1 datasets, respectively.
☆ Joint Combinatorial Node Selection and Resource Allocations in the Lightning Network using Attention-based Reinforcement Learning
The Lightning Network (LN) has emerged as a second-layer solution to Bitcoin's scalability challenges. The rise of Payment Channel Networks (PCNs) and their specific mechanisms incentivize individuals to join the network for profit-making opportunities. According to the latest statistics, the total value locked within the Lightning Network is approximately \$500 million. Meanwhile, joining the LN with the profit-making incentives presents several obstacles, as it involves solving a complex combinatorial problem that encompasses both discrete and continuous control variables related to node selection and resource allocation, respectively. Current research inadequately captures the critical role of resource allocation and lacks realistic simulations of the LN routing mechanism. In this paper, we propose a Deep Reinforcement Learning (DRL) framework, enhanced by the power of transformers, to address the Joint Combinatorial Node Selection and Resource Allocation (JCNSRA) problem. We have improved upon an existing environment by introducing modules that enhance its routing mechanism, thereby narrowing the gap with the actual LN routing system and ensuring compatibility with the JCNSRA problem. We compare our model against several baselines and heuristics, demonstrating its superior performance across various settings. Additionally, we address concerns regarding centralization in the LN by deploying our agent within the network and monitoring the centrality measures of the evolved graph. Our findings suggest not only an absence of conflict between LN's decentralization goals and individuals' revenue-maximization incentives but also a positive association between the two.
☆ Correlation-Aware Graph Convolutional Networks for Multi-Label Node Classification
Multi-label node classification is an important yet under-explored domain in graph mining as many real-world nodes belong to multiple categories rather than just a single one. Although a few efforts have been made by utilizing Graph Convolution Networks (GCNs) to learn node representations and model correlations between multiple labels in the embedding space, they still suffer from the ambiguous feature and ambiguous topology induced by multiple labels, which reduces the credibility of the messages delivered in graphs and overlooks the label correlations on graph data. Therefore, it is crucial to reduce the ambiguity and empower the GCNs for accurate classification. However, this is quite challenging due to the requirement of retaining the distinctiveness of each label while fully harnessing the correlation between labels simultaneously. To address these issues, in this paper, we propose a Correlation-aware Graph Convolutional Network (CorGCN) for multi-label node classification. By introducing a novel Correlation-Aware Graph Decomposition module, CorGCN can learn a graph that contains rich label-correlated information for each label. It then employs a Correlation-Enhanced Graph Convolution to model the relationships between labels during message passing to further bolster the classification process. Extensive experiments on five datasets demonstrate the effectiveness of our proposed CorGCN.
comment: 14 pages, accepted by KDD2025
☆ Automatic Skull Reconstruction by Deep Learnable Symmetry Enforcement
Every year, thousands of people suffer from skull damage and require personalized implants to fill the cranial cavity. Unfortunately, the waiting time for reconstruction surgery can extend to several weeks or even months, especially in less developed countries. One factor contributing to the extended waiting period is the intricate process of personalized implant modeling. Currently, the preparation of these implants by experienced biomechanical experts is both costly and time-consuming. Recent advances in artificial intelligence, especially in deep learning, offer promising potential for automating the process. However, deep learning-based cranial reconstruction faces several challenges: (i) the limited size of training datasets, (ii) the high resolution of the volumetric data, and (iii) significant data heterogeneity. In this work, we propose a novel approach to address these challenges by enhancing the reconstruction through learnable symmetry enforcement. We demonstrate that it is possible to train a neural network dedicated to calculating skull symmetry, which can be utilized either as an additional objective function during training or as a post-reconstruction objective during the refinement step. We quantitatively evaluate the proposed method using open SkullBreak and SkullFix datasets, and qualitatively using real clinical cases. The results indicate that the symmetry-preserving reconstruction network achieves considerably better outcomes compared to the baseline (0.94/0.94/1.31 vs 0.84/0.76/2.43 in terms of DSC, bDSC, and HD95). Moreover, the results are comparable to the best-performing methods while requiring significantly fewer computational resources (< 500 vs > 100,000 GPU hours). The proposed method is a considerable contribution to the field of applied artificial intelligence in medicine and is a step toward automatic cranial defect reconstruction in clinical practice.
☆ Knowledge-aware Evolutionary Graph Neural Architecture Search
Graph neural architecture search (GNAS) can customize high-performance graph neural network architectures for specific graph tasks or datasets. However, existing GNAS methods begin searching for architectures from a zero-knowledge state, ignoring the prior knowledge that may improve the search efficiency. The available knowledge base (e.g. NAS-Bench-Graph) contains many rich architectures and their multiple performance metrics, such as the accuracy (#Acc) and number of parameters (#Params). This study proposes exploiting such prior knowledge to accelerate the multi-objective evolutionary search on a new graph dataset, named knowledge-aware evolutionary GNAS (KEGNAS). KEGNAS employs the knowledge base to train a knowledge model and a deep multi-output Gaussian process (DMOGP) in one go, which generates and evaluates transfer architectures in only a few GPU seconds. The knowledge model first establishes a dataset-to-architecture mapping, which can quickly generate candidate transfer architectures for a new dataset. Subsequently, the DMOGP with architecture and dataset encodings is designed to predict multiple performance metrics for candidate transfer architectures on the new dataset. According to the predicted metrics, non-dominated candidate transfer architectures are selected to warm-start the multi-objective evolutionary algorithm for optimizing the #Acc and #Params on a new dataset. Empirical studies on NAS-Bench-Graph and five real-world datasets show that KEGNAS swiftly generates top-performance architectures, achieving 4.27% higher accuracy than advanced evolutionary baselines and 11.54% higher accuracy than advanced differentiable baselines. In addition, ablation studies demonstrate that the use of prior knowledge significantly improves the search performance.
comment: This work has been accepted by Knowledge-Based Systems
☆ sbi reloaded: a toolkit for simulation-based inference workflows
Scientists and engineers use simulators to model empirically observed phenomena. However, tuning the parameters of a simulator to ensure its outputs match observed data presents a significant challenge. Simulation-based inference (SBI) addresses this by enabling Bayesian inference for simulators, identifying parameters that match observed data and align with prior knowledge. Unlike traditional Bayesian inference, SBI only needs access to simulations from the model and does not require evaluations of the likelihood-function. In addition, SBI algorithms do not require gradients through the simulator, allow for massive parallelization of simulations, and can perform inference for different observations without further simulations or training, thereby amortizing inference. Over the past years, we have developed, maintained, and extended $\texttt{sbi}$, a PyTorch-based package that implements Bayesian SBI algorithms based on neural networks. The $\texttt{sbi}$ toolkit implements a wide range of inference methods, neural network architectures, sampling methods, and diagnostic tools. In addition, it provides well-tested default settings but also offers flexibility to fully customize every step of the simulation-based inference workflow. Taken together, the $\texttt{sbi}$ toolkit enables scientists and engineers to apply state-of-the-art SBI methods to black-box simulators, opening up new possibilities for aligning simulations with empirically observed data.
☆ On the Generalization of Handwritten Text Recognition Models
Recent advances in Handwritten Text Recognition (HTR) have led to significant reductions in transcription errors on standard benchmarks under the i.i.d. assumption, thus focusing on minimizing in-distribution (ID) errors. However, this assumption does not hold in real-world applications, which has motivated HTR research to explore Transfer Learning and Domain Adaptation techniques. In this work, we investigate the unaddressed limitations of HTR models in generalizing to out-of-distribution (OOD) data. We adopt the challenging setting of Domain Generalization, where models are expected to generalize to OOD data without any prior access. To this end, we analyze 336 OOD cases from eight state-of-the-art HTR models across seven widely used datasets, spanning five languages. Additionally, we study how HTR models leverage synthetic data to generalize. We reveal that the most significant factor for generalization lies in the textual divergence between domains, followed by visual divergence. We demonstrate that the error of HTR models in OOD scenarios can be reliably estimated, with discrepancies falling below 10 points in 70\% of cases. We identify the underlying limitations of HTR models, laying the foundation for future research to address this challenge.
☆ Reward Incremental Learning in Text-to-Image Generation
The recent success of denoising diffusion models has significantly advanced text-to-image generation. While these large-scale pretrained models show excellent performance in general image synthesis, downstream objectives often require fine-tuning to meet specific criteria such as aesthetics or human preference. Reward gradient-based strategies are promising in this context, yet existing methods are limited to single-reward tasks, restricting their applicability in real-world scenarios that demand adapting to multiple objectives introduced incrementally over time. In this paper, we first define this more realistic and unexplored problem, termed Reward Incremental Learning (RIL), where models are desired to adapt to multiple downstream objectives incrementally. Additionally, while the models adapt to the ever-emerging new objectives, we observe a unique form of catastrophic forgetting in diffusion model fine-tuning, affecting both metric-wise and visual structure-wise image quality. To address this catastrophic forgetting challenge, we propose Reward Incremental Distillation (RID), a method that mitigates forgetting with minimal computational overhead, enabling stable performance across sequential reward tasks. The experimental results demonstrate the efficacy of RID in achieving consistent, high-quality generation in RIL scenarios. The source code of our work will be publicly available upon acceptance.
comment: Under review
☆ GrokFormer: Graph Fourier Kolmogorov-Arnold Transformers
Graph Transformers (GTs) have demonstrated remarkable performance in incorporating various graph structure information, e.g., long-range structural dependency, into graph representation learning. However, self-attention -- the core module of GTs -- preserves only low-frequency signals on graph features, retaining only homophilic patterns that capture similar features among the connected nodes. Consequently, it has insufficient capacity in modeling complex node label patterns, such as the opposite of homophilic patterns -- heterophilic patterns. Some improved GTs deal with the problem by learning polynomial filters or performing self-attention over the first-order graph spectrum. However, these GTs either ignore rich information contained in the whole spectrum or neglect higher-order spectrum information, resulting in limited flexibility and frequency response in their spectral filters. To tackle these challenges, we propose a novel GT network, namely Graph Fourier Kolmogorov-Arnold Transformers (GrokFormer), to go beyond the self-attention in GTs. GrokFormer leverages learnable activation functions in order-$K$ graph spectrum through Fourier series modeling to i) learn eigenvalue-targeted filter functions producing learnable base that can capture a broad range of frequency signals flexibly, and ii) extract first- and higher-order graph spectral information adaptively. In doing so, GrokFormer can effectively capture intricate patterns hidden across different orders and levels of frequency signals, learning expressive, order-and-frequency-adaptive graph representations. Comprehensive experiments conducted on 10 node classification datasets across various domains, scales, and levels of graph heterophily, as well as 5 graph classification datasets, demonstrate that GrokFormer outperforms state-of-the-art GTs and other advanced graph neural networks.
comment: 13 pages, 6 figures, 7tables
☆ Task Progressive Curriculum Learning for Robust Visual Question Answering
Visual Question Answering (VQA) systems are known for their poor performance in out-of-distribution datasets. An issue that was addressed in previous works through ensemble learning, answer re-ranking, or artificially growing the training set. In this work, we show for the first time that robust Visual Question Answering is attainable by simply enhancing the training strategy. Our proposed approach, Task Progressive Curriculum Learning (TPCL), breaks the main VQA problem into smaller, easier tasks based on the question type. Then, it progressively trains the model on a (carefully crafted) sequence of tasks. We further support the method by a novel distributional-based difficulty measurer. Our approach is conceptually simple, model-agnostic, and easy to implement. We demonstrate TPCL effectiveness through a comprehensive evaluation on standard datasets. Without either data augmentation or explicit debiasing mechanism, it achieves state-of-the-art on VQA-CP v2, VQA-CP v1 and VQA v2 datasets. Extensive experiments demonstrate that TPCL outperforms the most competitive robust VQA approaches by more than 5% and 7% on VQA-CP v2 and VQA-CP v1; respectively. TPCL also can boost VQA baseline backbone performance by up to 28.5%.
☆ Interpretable label-free self-guided subspace clustering
Majority subspace clustering (SC) algorithms depend on one or more hyperparameters that need to be carefully tuned for the SC algorithms to achieve high clustering performance. Hyperparameter optimization (HPO) is often performed using grid-search, assuming that some labeled data is available. In some domains, such as medicine, this assumption does not hold true in many cases. One avenue of research focuses on developing SC algorithms that are inherently free of hyperparameters. For hyperparameters-dependent SC algorithms, one approach to label-independent HPO tuning is based on internal clustering quality metrics (if available), whose performance should ideally match that of external (label-dependent) clustering quality metrics. In this paper, we propose a novel approach to label-independent HPO that uses clustering quality metrics, such as accuracy (ACC) or normalized mutual information (NMI), that are computed based on pseudo-labels obtained from the SC algorithm across a predefined grid of hyperparameters. Assuming that ACC (or NMI) is a smooth function of hyperparameter values it is possible to select subintervals of hyperparameters. These subintervals are then iteratively further split into halves or thirds until a relative error criterion is satisfied. In principle, the hyperparameters of any SC algorithm can be tuned using the proposed method. We demonstrate this approach on several single- and multi-view SC algorithms, comparing the achieved performance with their oracle versions across six datasets representing digits, faces and objects. The proposed method typically achieves clustering performance that is 5% to 7% lower than that of the oracle versions. We also make our proposed method interpretable by visualizing subspace bases, which are estimated from the computed clustering partitions. This aids in the initial selection of the hyperparameter search space.
comment: 45 pages; 3 figures; 10 tables
☆ Privacy Preserving Federated Unsupervised Domain Adaptation with Application to Age Prediction from DNA Methylation Data
In computational biology, predictive models are widely used to address complex tasks, but their performance can suffer greatly when applied to data from different distributions. The current state-of-the-art domain adaptation method for high-dimensional data aims to mitigate these issues by aligning the input dependencies between training and test data. However, this approach requires centralized access to both source and target domain data, raising concerns about data privacy, especially when the data comes from multiple sources. In this paper, we introduce a privacy-preserving federated framework for unsupervised domain adaptation in high-dimensional settings. Our method employs federated training of Gaussian processes and weighted elastic nets to effectively address the problem of distribution shift between domains, while utilizing secure aggregation and randomized encoding to protect the local data of participating data owners. We evaluate our framework on the task of age prediction using DNA methylation data from multiple tissues, demonstrating that our approach performs comparably to existing centralized methods while maintaining data privacy, even in distributed environments where data is spread across multiple institutions. Our framework is the first privacy-preserving solution for high-dimensional domain adaptation in federated environments, offering a promising tool for fields like computational biology and medicine, where protecting sensitive data is essential.
☆ Using Large Language Models for Expert Prior Elicitation in Predictive Modelling
Large language models (LLMs), trained on diverse data effectively acquire a breadth of information across various domains. However, their computational complexity, cost, and lack of transparency hinder their direct application for specialised tasks. In fields such as clinical research, acquiring expert annotations or prior knowledge about predictive models is often costly and time-consuming. This study proposes using LLMs to elicit expert prior distributions for predictive models. This approach also provides an alternative to in-context learning, where language models are tasked with making predictions directly. We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation. Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings. Applied to clinical problems, this translates to fewer required biological samples, lowering cost and resources. Prior elicitation also consistently outperforms and proves more reliable than in-context learning at a lower cost, making it a preferred alternative in our setting. We demonstrate the utility of this method across various use cases, including clinical applications. For infection prediction, using LLM-elicited priors reduced the number of required labels to achieve the same accuracy as an uninformative prior by 55%, at 200 days earlier in the study.
☆ The Exploration of Neural Collapse under Imbalanced Data
Neural collapse, a newly identified characteristic, describes a property of solutions during model training. In this paper, we explore neural collapse in the context of imbalanced data. We consider the $L$-extended unconstrained feature model with a bias term and provide a theoretical analysis of global minimizer. Our findings include: (1) Features within the same class converge to their class mean, similar to both the balanced case and the imbalanced case without bias. (2) The geometric structure is mainly on the left orthonormal transformation of the product of $L$ linear classifiers and the right transformation of the class-mean matrix. (3) Some rows of the left orthonormal transformation of the product of $L$ linear classifiers collapse to zeros and others are orthogonal, which relies on the singular values of $\hat Y=(I_K-1/N\mathbf{n}1^\top_K)D$, where $K$ is class size, $\mathbf{n}$ is the vector of sample size for each class, $D$ is the diagonal matrix whose diagonal entries are given by $\sqrt{\mathbf{n}}$. Similar results are for the columns of the right orthonormal transformation of the product of class-mean matrix and $D$. (4) The $i$-th row of the left orthonormal transformation of the product of $L$ linear classifiers aligns with the $i$-th column of the right orthonormal transformation of the product of class-mean matrix and $D$. (5) We provide the estimation of singular values about $\hat Y$. Our numerical experiments support these theoretical findings.
comment: 26pages, 4figures
☆ Disentangled Interpretable Representation for Efficient Long-term Time Series Forecasting
Industry 5.0 introduces new challenges for Long-term Time Series Forecasting (LTSF), characterized by high-dimensional, high-resolution data and high-stakes application scenarios. Against this backdrop, developing efficient and interpretable models for LTSF becomes a key challenge. Existing deep learning and linear models often suffer from excessive parameter complexity and lack intuitive interpretability. To address these issues, we propose DiPE-Linear, a Disentangled interpretable Parameter-Efficient Linear network. DiPE-Linear incorporates three temporal components: Static Frequential Attention (SFA), Static Temporal Attention (STA), and Independent Frequential Mapping (IFM). These components alternate between learning in the frequency and time domains to achieve disentangled interpretability. The decomposed model structure reduces parameter complexity from quadratic in fully connected networks (FCs) to linear and computational complexity from quadratic to log-linear. Additionally, a Low-Rank Weight Sharing policy enhances the model's ability to handle multivariate series. Despite operating within a subspace of FCs with limited expressive capacity, DiPE-Linear demonstrates comparable or superior performance to both FCs and nonlinear models across multiple open-source and real-world LTSF datasets, validating the effectiveness of its sophisticatedly designed structure. The combination of efficiency, accuracy, and interpretability makes DiPE-Linear a strong candidate for advancing LTSF in both research and real-world applications. The source code is available at https://github.com/wintertee/DiPE-Linear.
comment: This work is submitted to IEEE International Conference on Data Engineering (ICDE) 2025
☆ APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents
We present APT, an advanced Large Language Model (LLM)-driven framework that enables autonomous agents to construct complex and creative structures within the Minecraft environment. Unlike previous approaches that primarily concentrate on skill-based open-world tasks or rely on image-based diffusion models for generating voxel-based structures, our method leverages the intrinsic spatial reasoning capabilities of LLMs. By employing chain-of-thought decomposition along with multimodal inputs, the framework generates detailed architectural layouts and blueprints that the agent can execute under zero-shot or few-shot learning scenarios. Our agent incorporates both memory and reflection modules to facilitate lifelong learning, adaptive refinement, and error correction throughout the building process. To rigorously evaluate the agent's performance in this emerging research area, we introduce a comprehensive benchmark consisting of diverse construction tasks designed to test creativity, spatial reasoning, adherence to in-game rules, and the effective integration of multimodal instructions. Experimental results using various GPT-based LLM backends and agent configurations demonstrate the agent's capacity to accurately interpret extensive instructions involving numerous items, their positions, and orientations. The agent successfully produces complex structures complete with internal functionalities such as Redstone-powered systems. A/B testing indicates that the inclusion of a memory module leads to a significant increase in performance, emphasizing its role in enabling continuous learning and the reuse of accumulated experience. Additionally, the agent's unexpected emergence of scaffolding behavior highlights the potential of future LLM-driven agents to utilize subroutine planning and leverage the emergence ability of LLMs to autonomously develop human-like problem-solving techniques.
comment: 8 pages
☆ DGNN-YOLO: Dynamic Graph Neural Networks with YOLO11 for Small Object Detection and Tracking in Traffic Surveillance
Accurate detection and tracking of small objects such as pedestrians, cyclists, and motorbikes are critical for traffic surveillance systems, which are crucial in improving road safety and decision-making in intelligent transportation systems. However, traditional methods struggle with challenges such as occlusion, low resolution, and dynamic traffic conditions, necessitating innovative approaches to address these limitations. This paper introduces DGNN-YOLO, a novel framework integrating dynamic graph neural networks (DGNN) with YOLO11 to enhance small object detection and tracking in traffic surveillance systems. The framework leverages YOLO11's advanced spatial feature extraction capabilities for precise object detection and incorporates DGNN to model spatial-temporal relationships for robust real-time tracking dynamically. By constructing and updating graph structures, DGNN-YOLO effectively represents objects as nodes and their interactions as edges, ensuring adaptive and accurate tracking in complex and dynamic environments. Extensive experiments demonstrate that DGNN-YOLO consistently outperforms state-of-the-art methods in detecting and tracking small objects under diverse traffic conditions, achieving the highest precision (0.8382), recall (0.6875), and mAP@0.5:0.95 (0.6476), showcasing its robustness and scalability, particularly in challenging scenarios involving small and occluded objects. This work provides a scalable, real-time traffic surveillance and analysis solution, significantly contributing to intelligent transportation systems.
☆ From Graph Diffusion to Graph Classification
Generative models such as diffusion models have achieved remarkable success in state-of-the-art image and text tasks. Recently, score-based diffusion models have extended their success beyond image generation, showing competitive performance with discriminative methods in image {\em classification} tasks~\cite{zimmermann2021score}. However, their application to classification in the {\em graph} domain, which presents unique challenges such as complex topologies, remains underexplored. We show how graph diffusion models can be applied for graph classification. We find that to achieve competitive classification accuracy, score-based graph diffusion models should be trained with a novel training objective that is tailored to graph classification. In experiments with a sampling-based inference method, our discriminative training objective achieves state-of-the-art graph classification accuracy.
☆ GraphSubDetector: Time Series Subsequence Anomaly Detection via Density-Aware Adaptive Graph Neural Network
Time series subsequence anomaly detection is an important task in a large variety of real-world applications ranging from health monitoring to AIOps, and is challenging due to the following reasons: 1) how to effectively learn complex dynamics and dependencies in time series; 2) diverse and complicated anomalous subsequences as well as the inherent variance and noise of normal patterns; 3) how to determine the proper subsequence length for effective detection, which is a required parameter for many existing algorithms. In this paper, we present a novel approach to subsequence anomaly detection, namely GraphSubDetector. First, it adaptively learns the appropriate subsequence length with a length selection mechanism that highlights the characteristics of both normal and anomalous patterns. Second, we propose a density-aware adaptive graph neural network (DAGNN), which can generate further robust representations against variance of normal data for anomaly detection by message passing between subsequences. The experimental results demonstrate the effectiveness of the proposed algorithm, which achieves superior performance on multiple time series anomaly benchmark datasets compared to state-of-the-art algorithms.
☆ On the Efficiency of NLP-Inspired Methods for Tabular Deep Learning
Recent advancements in tabular deep learning (DL) have led to substantial performance improvements, surpassing the capabilities of traditional models. With the adoption of techniques from natural language processing (NLP), such as language model-based approaches, DL models for tabular data have also grown in complexity and size. Although tabular datasets do not typically pose scalability issues, the escalating size of these models has raised efficiency concerns. Despite its importance, efficiency has been relatively underexplored in tabular DL research. This paper critically examines the latest innovations in tabular DL, with a dual focus on performance and computational efficiency. The source code is available at https://github.com/basf/mamba-tabular.
☆ Learning Hierarchical Polynomials of Multiple Nonlinear Features with Three-Layer Networks
In deep learning theory, a critical question is to understand how neural networks learn hierarchical features. In this work, we study the learning of hierarchical polynomials of \textit{multiple nonlinear features} using three-layer neural networks. We examine a broad class of functions of the form $f^{\star}=g^{\star}\circ \bp$, where $\bp:\mathbb{R}^{d} \rightarrow \mathbb{R}^{r}$ represents multiple quadratic features with $r \ll d$ and $g^{\star}:\mathbb{R}^{r}\rightarrow \mathbb{R}$ is a polynomial of degree $p$. This can be viewed as a nonlinear generalization of the multi-index model \citep{damian2022neural}, and also an expansion upon previous work that focused only on a single nonlinear feature, i.e. $r = 1$ \citep{nichani2023provable,wang2023learning}. Our primary contribution shows that a three-layer neural network trained via layerwise gradient descent suffices for \begin{itemize}\item complete recovery of the space spanned by the nonlinear features \item efficient learning of the target function $f^{\star}=g^{\star}\circ \bp$ or transfer learning of $f=g\circ \bp$ with a different link function \end{itemize} within $\widetilde{\cO}(d^4)$ samples and polynomial time. For such hierarchical targets, our result substantially improves the sample complexity ${\Theta}(d^{2p})$ of the kernel methods, demonstrating the power of efficient feature learning. It is important to highlight that{ our results leverage novel techniques and thus manage to go beyond all prior settings} such as single-index and multi-index models as well as models depending just on one nonlinear feature, contributing to a more comprehensive understanding of feature learning in deep learning.
comment: 78 pages, 4 figures
☆ P2DFlow: A Protein Ensemble Generative Model with SE(3) Flow Matching
Biological processes, functions, and properties are intricately linked to the ensemble of protein conformations, rather than being solely determined by a single stable conformation. In this study, we have developed P2DFlow, a generative model based on SE(3) flow matching, to predict the structural ensembles of proteins. We specifically designed a valuable prior for the flow process and enhanced the model's ability to distinguish each intermediate state by incorporating an additional dimension to describe the ensemble data, which can reflect the physical laws governing the distribution of ensembles, so that the prior knowledge can effectively guide the generation process. When trained and evaluated on the MD datasets of ATLAS, P2DFlow outperforms other baseline models on extensive experiments, successfully capturing the observable dynamic fluctuations as evidenced in crystal structure and MD simulations. As a potential proxy agent for protein molecular simulation, the high-quality ensembles generated by P2DFlow could significantly aid in understanding protein functions across various scenarios. Code is available at https://github.com/BLEACH366/P2DFlow.
☆ An In-depth Investigation of Sparse Rate Reduction in Transformer-like Models NeurIPS 2024
Deep neural networks have long been criticized for being black-box. To unveil the inner workings of modern neural architectures, a recent work \cite{yu2024white} proposed an information-theoretic objective function called Sparse Rate Reduction (SRR) and interpreted its unrolled optimization as a Transformer-like model called Coding Rate Reduction Transformer (CRATE). However, the focus of the study was primarily on the basic implementation, and whether this objective is optimized in practice and its causal relationship to generalization remain elusive. Going beyond this study, we derive different implementations by analyzing layer-wise behaviors of CRATE, both theoretically and empirically. To reveal the predictive power of SRR on generalization, we collect a set of model variants induced by varied implementations and hyperparameters and evaluate SRR as a complexity measure based on its correlation with generalization. Surprisingly, we find out that SRR has a positive correlation coefficient and outperforms other baseline measures, such as path-norm and sharpness-based ones. Furthermore, we show that generalization can be improved using SRR as regularization on benchmark image classification datasets. We hope this paper can shed light on leveraging SRR to design principled models and study their generalization ability.
comment: NeurIPS 2024
☆ Training a neural netwok for data reduction and better generalization
The motivation for sparse learners is to compress the inputs (features) by selecting only the ones needed for good generalization. Linear models with LASSO-type regularization achieve this by setting the weights of irrelevant features to zero, effectively identifying and ignoring them. In artificial neural networks, this selective focus can be achieved by pruning the input layer. Given a cost function enhanced with a sparsity-promoting penalty, our proposal selects a regularization term $\lambda$ (without the use of cross-validation or a validation set) that creates a local minimum in the cost function at the origin where no features are selected. This local minimum acts as a baseline, meaning that if there is no strong enough signal to justify a feature inclusion, the local minimum remains at zero with a high prescribed probability. The method is flexible, applying to complex models ranging from shallow to deep artificial neural networks and supporting various cost functions and sparsity-promoting penalties. We empirically show a remarkable phase transition in the probability of retrieving the relevant features, as well as good generalization thanks to the choice of $\lambda$, the non-convex penalty and the optimization scheme developed. This approach can be seen as a form of compressed sensing for complex models, allowing us to distill high-dimensional data into a compact, interpretable subset of meaningful features.
☆ X-MeshGraphNet: Scalable Multi-Scale Graph Neural Networks for Physics Simulation
Graph Neural Networks (GNNs) have gained significant traction for simulating complex physical systems, with models like MeshGraphNet demonstrating strong performance on unstructured simulation meshes. However, these models face several limitations, including scalability issues, requirement for meshing at inference, and challenges in handling long-range interactions. In this work, we introduce X-MeshGraphNet, a scalable, multi-scale extension of MeshGraphNet designed to address these challenges. X-MeshGraphNet overcomes the scalability bottleneck by partitioning large graphs and incorporating halo regions that enable seamless message passing across partitions. This, combined with gradient aggregation, ensures that training across partitions is equivalent to processing the entire graph at once. To remove the dependency on simulation meshes, X-MeshGraphNet constructs custom graphs directly from CAD files by generating uniform point clouds on the surface or volume of the object and connecting k-nearest neighbors. Additionally, our model builds multi-scale graphs by iteratively combining coarse and fine-resolution point clouds, where each level refines the previous, allowing for efficient long-range interactions. Our experiments demonstrate that X-MeshGraphNet maintains the predictive accuracy of full-graph GNNs while significantly improving scalability and flexibility. This approach eliminates the need for time-consuming mesh generation at inference, offering a practical solution for real-time simulation across a wide range of applications. The code for reproducing the results presented in this paper is available through NVIDIA Modulus: github.com/NVIDIA/modulus/tree/main/examples/cfd/xaeronet.
☆ Emergenet: A Digital Twin of Sequence Evolution for Scalable Emergence Risk Assessment of Animal Influenza A Strains
Despite having triggered devastating pandemics in the past, our ability to quantitatively assess the emergence potential of individual strains of animal influenza viruses remains limited. This study introduces Emergenet, a tool to infer a digital twin of sequence evolution to chart how new variants might emerge in the wild. Our predictions based on Emergenets built only using 220,151 Hemagglutinnin (HA) sequences consistently outperform WHO seasonal vaccine recommendations for H1N1/H3N2 subtypes over two decades (average match-improvement: 3.73 AAs, 28.40\%), and are at par with state-of-the-art approaches that use more detailed phenotypic annotations. Finally, our generative models are used to scalably calculate the current odds of emergence of animal strains not yet in human circulation, which strongly correlates with CDC's expert-assessed Influenza Risk Assessment Tool (IRAT) scores (Pearson's $r = 0.721, p = 10^{-4}$). A minimum five orders of magnitude speedup over CDC's assessment (seconds vs months) then enabled us to analyze 6,354 animal strains collected post-2020 to identify 35 strains with high emergence scores ($> 7.7$). The Emergenet framework opens the door to preemptive pandemic mitigation through targeted inoculation of animal hosts before the first human infection.
comment: 35 pages, 15 figures
☆ Autoencoder Enhanced Realised GARCH on Volatility Forecasting
Realised volatility has become increasingly prominent in volatility forecasting due to its ability to capture intraday price fluctuations. With a growing variety of realised volatility estimators, each with unique advantages and limitations, selecting an optimal estimator may introduce challenges. In this thesis, aiming to synthesise the impact of various realised volatility measures on volatility forecasting, we propose an extension of the Realised GARCH model that incorporates an autoencoder-generated synthetic realised measure, combining the information from multiple realised measures in a nonlinear manner. Our proposed model extends existing linear methods, such as Principal Component Analysis and Independent Component Analysis, to reduce the dimensionality of realised measures. The empirical evaluation, conducted across four major stock markets from January 2000 to June 2022 and including the period of COVID-19, demonstrates both the feasibility of applying an autoencoder to synthesise volatility measures and the superior effectiveness of the proposed model in one-step-ahead rolling volatility forecasting. The model exhibits enhanced flexibility in parameter estimations across each rolling window, outperforming traditional linear approaches. These findings indicate that nonlinear dimension reduction offers further adaptability and flexibility in improving the synthetic realised measure, with promising implications for future volatility forecasting applications.
comment: 48 pages, 6 figures
☆ Improving Resistance to Noisy Label Fitting by Reweighting Gradient in SAM
Noisy labels pose a substantial challenge in machine learning, often resulting in overfitting and poor generalization. Sharpness-Aware Minimization (SAM), as demonstrated in Foret et al. (2021), improves generalization over traditional Stochastic Gradient Descent (SGD) in classification tasks with noisy labels by implicitly slowing noisy learning. While SAM's ability to generalize in noisy environments has been studied in several simplified settings, its full potential in more realistic training settings remains underexplored. In this work, we analyze SAM's behavior at each iteration, identifying specific components of the gradient vector that contribute significantly to its robustness against noisy labels. Based on these insights, we propose SANER (Sharpness-Aware Noise-Explicit Reweighting), an effective variant that enhances SAM's ability to manage noisy fitting rate. Our experiments on CIFAR-10, CIFAR-100, and Mini-WebVision demonstrate that SANER consistently outperforms SAM, achieving up to an 8% increase on CIFAR-100 with 50% label noise.
☆ Enhancing Imbalance Learning: A Novel Slack-Factor Fuzzy SVM Approach
In real-world applications, class-imbalanced datasets pose significant challenges for machine learning algorithms, such as support vector machines (SVMs), particularly in effectively managing imbalance, noise, and outliers. Fuzzy support vector machines (FSVMs) address class imbalance by assigning varying fuzzy memberships to samples; however, their sensitivity to imbalanced datasets can lead to inaccurate assessments. The recently developed slack-factor-based FSVM (SFFSVM) improves traditional FSVMs by using slack factors to adjust fuzzy memberships based on misclassification likelihood, thereby rectifying misclassifications induced by the hyperplane obtained via different error cost (DEC). Building on SFFSVM, we propose an improved slack-factor-based FSVM (ISFFSVM) that introduces a novel location parameter. This novel parameter significantly advances the model by constraining the DEC hyperplane's extension, thereby mitigating the risk of misclassifying minority class samples. It ensures that majority class samples with slack factor scores approaching the location threshold are assigned lower fuzzy memberships, which enhances the model's discrimination capability. Extensive experimentation on a diverse array of real-world KEEL datasets demonstrates that the proposed ISFFSVM consistently achieves higher F1-scores, Matthews correlation coefficients (MCC), and area under the precision-recall curve (AUC-PR) compared to baseline classifiers. Consequently, the introduction of the location parameter, coupled with the slack-factor-based fuzzy membership, enables ISFFSVM to outperform traditional approaches, particularly in scenarios characterized by severe class disparity. The code for the proposed model is available at \url{https://github.com/mtanveer1/ISFFSVM}.
☆ From Machine Learning to Machine Unlearning: Complying with GDPR's Right to be Forgotten while Maintaining Business Value of Predictive Models
Recent privacy regulations (e.g., GDPR) grant data subjects the `Right to Be Forgotten' (RTBF) and mandate companies to fulfill data erasure requests from data subjects. However, companies encounter great challenges in complying with the RTBF regulations, particularly when asked to erase specific training data from their well-trained predictive models. While researchers have introduced machine unlearning methods aimed at fast data erasure, these approaches often overlook maintaining model performance (e.g., accuracy), which can lead to financial losses and non-compliance with RTBF obligations. This work develops a holistic machine learning-to-unlearning framework, called Ensemble-based iTerative Information Distillation (ETID), to achieve efficient data erasure while preserving the business value of predictive models. ETID incorporates a new ensemble learning method to build an accurate predictive model that can facilitate handling data erasure requests. ETID also introduces an innovative distillation-based unlearning method tailored to the constructed ensemble model to enable efficient and effective data erasure. Extensive experiments demonstrate that ETID outperforms various state-of-the-art methods and can deliver high-quality unlearned models with efficiency. We also highlight ETID's potential as a crucial tool for fostering a legitimate and thriving market for data and predictive services.
☆ Star Attention: Efficient LLM Inference over Long Sequences
Inference with Transformer-based Large Language Models (LLMs) on long sequences is both costly and slow due to the quadratic complexity of the self-attention mechanism. We introduce Star Attention, a two-phase block-sparse approximation that improves computational efficiency by sharding attention across multiple hosts while minimizing communication overhead. In the first phase, the context is processed using blockwise-local attention across hosts, in parallel. In the second phase, query and response tokens attend to all prior cached tokens through sequence-global attention. Star Attention integrates seamlessly with most Transformer-based LLMs trained with global attention, reducing memory requirements and inference time by up to 11x while preserving 95-100% of accuracy.
comment: Code: https://github.com/NVIDIA/Star-Attention
☆ Learning from Noisy Labels via Conditional Distributionally Robust Optimization
While crowdsourcing has emerged as a practical solution for labeling large datasets, it presents a significant challenge in learning accurate models due to noisy labels from annotators with varying levels of expertise. Existing methods typically estimate the true label posterior, conditioned on the instance and noisy annotations, to infer true labels or adjust loss functions. These estimates, however, often overlook potential misspecification in the true label posterior, which can degrade model performances, especially in high-noise scenarios. To address this issue, we investigate learning from noisy annotations with an estimated true label posterior through the framework of conditional distributionally robust optimization (CDRO). We propose formulating the problem as minimizing the worst-case risk within a distance-based ambiguity set centered around a reference distribution. By examining the strong duality of the formulation, we derive upper bounds for the worst-case risk and develop an analytical solution for the dual robust risk for each data point. This leads to a novel robust pseudo-labeling algorithm that leverages the likelihood ratio test to construct a pseudo-empirical distribution, providing a robust reference probability distribution in CDRO. Moreover, to devise an efficient algorithm for CDRO, we derive a closed-form expression for the empirical robust risk and the optimal Lagrange multiplier of the dual problem, facilitating a principled balance between robustness and model fitting. Our experimental results on both synthetic and real-world datasets demonstrate the superiority of our method.
☆ TabulaX: Leveraging Large Language Models for Multi-Class Table Transformations
The integration of tabular data from diverse sources is often hindered by inconsistencies in formatting and representation, posing significant challenges for data analysts and personal digital assistants. Existing methods for automating tabular data transformations are limited in scope, often focusing on specific types of transformations or lacking interpretability. In this paper, we introduce TabulaX, a novel framework that leverages Large Language Models (LLMs) for multi-class tabular transformations. TabulaX first classifies input tables into four transformation classes (string-based, numerical, algorithmic, and general) and then applies tailored methods to generate human-interpretable transformation functions, such as numeric formulas or programming code. This approach enhances transparency and allows users to understand and modify the mappings. Through extensive experiments on real-world datasets from various domains, we demonstrate that TabulaX outperforms existing state-of-the-art approaches in terms of accuracy, supports a broader class of transformations, and generates interpretable transformations that can be efficiently applied.
☆ Spatio-Temporal Conformal Prediction for Power Outage Data
In recent years, increasingly unpredictable and severe global weather patterns have frequently caused long-lasting power outages. Building resilience, the ability to withstand, adapt to, and recover from major disruptions, has become crucial for the power industry. To enable rapid recovery, accurately predicting future outage numbers is essential. Rather than relying on simple point estimates, we analyze extensive quarter-hourly outage data and develop a graph conformal prediction method that delivers accurate prediction regions for outage numbers across the states for a time period. We demonstrate the effectiveness of this method through extensive numerical experiments in several states affected by extreme weather events that led to widespread outages.
☆ Efficient LLM Inference with I/O-Aware Partial KV Cache Recomputation
Inference for Large Language Models (LLMs) is computationally demanding. To reduce the cost of auto-regressive decoding, Key-Value (KV) caching is used to store intermediate activations, enabling GPUs to perform only the incremental computation required for each new token. This approach significantly lowers the computational overhead for token generation. However, the memory required for KV caching grows rapidly, often exceeding the capacity of GPU memory. A cost-effective alternative is to offload KV cache to CPU memory, which alleviates GPU memory pressure but shifts the bottleneck to the limited bandwidth of the PCIe connection between the CPU and GPU. Existing methods attempt to address these issues by overlapping GPU computation with I/O or employing CPU-GPU heterogeneous execution, but they are hindered by excessive data movement and dependence on CPU capabilities. In this paper, we introduce an efficient CPU-GPU I/O-aware LLM inference method that avoids transferring the entire KV cache from CPU to GPU by recomputing partial KV cache from activations while concurrently transferring the remaining KV cache via PCIe bus. This approach overlaps GPU recomputation with data transfer to minimize idle GPU time and maximize inference performance. Our method is fully automated by integrating a profiler module that utilizes input characteristics and system hardware information, a scheduler module to optimize the distribution of computation and communication workloads, and a runtime module to efficiently execute the derived execution plan. Experimental results show that our method achieves up to 35.8% lower latency and 46.2% higher throughput during decoding compared to state-of-the-art approaches.
☆ DeepMDV: Learning Global Matching for Multi-depot Vehicle Routing Problems
Due to the substantial rise in online retail and e-commerce in recent years, the demand for efficient and fast solutions to Vehicle Routing Problems (VRP) has become critical. To manage the increasing demand, companies have adopted the strategy of adding more depots. However, the presence of multiple depots introduces additional complexities, making existing VRP solutions suboptimal for addressing the Multi-depot Vehicle Routing Problem (MDVRP). Traditional methods for solving the MDVRP often require significant computation time, making them unsuitable for large-scale instances. Additionally, existing learning-based solutions for the MDVRP struggle with generalizability and fail to deliver high-quality results for scenarios involving a large number of customers. In this paper, we propose a novel solution for MDVRP. Our approach employs an attention mechanism, featuring a decoder with two key layers: one layer to consider the states of all vehicles and learn to select the most suitable vehicle based on the proximity of unassigned customers, and another layer to focus on assigning a customer to the selected vehicle. This approach delivers high-quality solutions for large-scale MDVRP instances and demonstrates remarkable generalizability across varying numbers of customers and depots. Its adaptability and performance make it a practical and deployable solution for real-world logistics challenges.
☆ Contrastive CFG: Improving CFG in Diffusion Models by Contrasting Positive and Negative Concepts
As Classifier-Free Guidance (CFG) has proven effective in conditional diffusion model sampling for improved condition alignment, many applications use a negated CFG term to filter out unwanted features from samples. However, simply negating CFG guidance creates an inverted probability distribution, often distorting samples away from the marginal distribution. Inspired by recent advances in conditional diffusion models for inverse problems, here we present a novel method to enhance negative CFG guidance using contrastive loss. Specifically, our guidance term aligns or repels the denoising direction based on the given condition through contrastive loss, achieving a nearly identical guiding direction to traditional CFG for positive guidance while overcoming the limitations of existing negative guidance methods. Experimental results demonstrate that our approach effectively removes undesirable concepts while maintaining sample quality across diverse scenarios, from simple class conditions to complex and overlapping text prompts.
comment: 14 pages, 8 figures
☆ MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators.
☆ Multi-Label Bayesian Active Learning with Inter-Label Relationships
The primary challenge of multi-label active learning, differing it from multi-class active learning, lies in assessing the informativeness of an indefinite number of labels while also accounting for the inherited label correlation. Existing studies either require substantial computational resources to leverage correlations or fail to fully explore label dependencies. Additionally, real-world scenarios often require addressing intrinsic biases stemming from imbalanced data distributions. In this paper, we propose a new multi-label active learning strategy to address both challenges. Our method incorporates progressively updated positive and negative correlation matrices to capture co-occurrence and disjoint relationships within the label space of annotated samples, enabling a holistic assessment of uncertainty rather than treating labels as isolated elements. Furthermore, alongside diversity, our model employs ensemble pseudo labeling and beta scoring rules to address data imbalances. Extensive experiments on four realistic datasets demonstrate that our strategy consistently achieves more reliable and superior performance, compared to several established methods.
☆ Spatio-temporal Causal Learning for Streamflow Forecasting
Streamflow plays an essential role in the sustainable planning and management of national water resources. Traditional hydrologic modeling approaches simulate streamflow by establishing connections across multiple physical processes, such as rainfall and runoff. These data, inherently connected both spatially and temporally, possess intrinsic causal relations that can be leveraged for robust and accurate forecasting. Recently, spatio-temporal graph neural networks (STGNNs) have been adopted, excelling in various domains, such as urban traffic management, weather forecasting, and pandemic control, and they also promise advances in streamflow management. However, learning causal relationships directly from vast observational data is theoretically and computationally challenging. In this study, we employ a river flow graph as prior knowledge to facilitate the learning of the causal structure and then use the learned causal graph to predict streamflow at targeted sites. The proposed model, Causal Streamflow Forecasting (CSF) is tested in a real-world study in the Brazos River basin in Texas. Our results demonstrate that our method outperforms regular spatio-temporal graph neural networks and achieves higher computational efficiency compared to traditional simulation methods. By effectively integrating river flow graphs with STGNNs, this research offers a novel approach to streamflow prediction, showcasing the potential of combining advanced neural network techniques with domain-specific knowledge for enhanced performance in hydrologic modeling.
comment: To be published at IEEE Big Data 2024
♻ ☆ LOLA: LLM-Assisted Online Learning Algorithm for Content Experiments
Modern media firms require automated and efficient methods to identify content that is most engaging and appealing to users. Leveraging a large-scale dataset from Upworthy (a news publisher), which includes 17,681 headline A/B tests, we first investigate the ability of three pure-LLM approaches to identify the catchiest headline: prompt-based methods, embedding-based methods, and fine-tuned open-source LLMs. Prompt-based approaches perform poorly, while both OpenAI-embedding-based models and the fine-tuned Llama-3-8B achieve marginally higher accuracy than random predictions. In sum, none of the pure-LLM-based methods can predict the best-performing headline with high accuracy. We then introduce the LLM-Assisted Online Learning Algorithm (LOLA), a novel framework that integrates Large Language Models (LLMs) with adaptive experimentation to optimize content delivery. LOLA combines the best pure-LLM approach with the Upper Confidence Bound algorithm to allocate traffic and maximize clicks adaptively. Our numerical experiments on Upworthy data show that LOLA outperforms the standard A/B test method (the current status quo at Upworthy), pure bandit algorithms, and pure-LLM approaches, particularly in scenarios with limited experimental traffic. Our approach is scalable and applicable to content experiments across various settings where firms seek to optimize user engagement, including digital advertising and social media recommendations.
A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics
In drug discovery, molecular dynamics (MD) simulation for protein-ligand binding provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites. There has been a long history of improving the efficiency of MD simulations through better numerical methods and, more recently, by utilizing machine learning (ML) methods. Yet, challenges remain, such as accurate modeling of extended-timescale simulations. To address this issue, we propose NeuralMD, the first ML surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics. We propose a principled approach that incorporates a novel physics-informed multi-grained group symmetric framework. Specifically, we propose (1) the BindingNet model that satisfies group symmetry using vector frames and captures the multi-level protein-ligand interactions, and (2) an augmented neural differential equation solver that learns the trajectory under Newtonian mechanics. For the experiment, we design ten single-trajectory and three multi-trajectory binding simulation tasks. We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$\times$ speedup compared to standard numerical MD simulations. NeuralMD also outperforms all other ML approaches, achieving up to 15$\times$ reduction in reconstruction error and 70% increase in validity. Additionally, we qualitatively illustrate that the oscillations in the predicted trajectories align more closely with ground-truth dynamics than those of other machine-learning methods. We believe NeuralMD paves the foundation for a new research paradigm in simulating protein-ligand dynamics.
♻ ☆ Health AI Developer Foundations
Robust medical Machine Learning (ML) models have the potential to revolutionize healthcare by accelerating clinical research, improving workflows and outcomes, and producing novel insights or capabilities. Developing such ML models from scratch is cost prohibitive and requires substantial compute, data, and time (e.g., expert labeling). To address these challenges, we introduce Health AI Developer Foundations (HAI-DEF), a suite of pre-trained, domain-specific foundation models, tools, and recipes to accelerate building ML for health applications. The models cover various modalities and domains, including radiology (X-rays and computed tomography), histopathology, dermatological imaging, and audio. These models provide domain specific embeddings that facilitate AI development with less labeled data, shorter training times, and reduced computational costs compared to traditional approaches. In addition, we utilize a common interface and style across these models, and prioritize usability to enable developers to integrate HAI-DEF efficiently. We present model evaluations across various tasks and conclude with a discussion of their application and evaluation, covering the importance of ensuring efficacy, fairness, and equity. Finally, while HAI-DEF and specifically the foundation models lower the barrier to entry for ML in healthcare, we emphasize the importance of validation with problem- and population-specific data for each desired usage setting. This technical report will be updated over time as more modalities and features are added.
comment: 16 pages, 8 figures
♻ ☆ CliquePH: Higher-Order Information for Graph Neural Networks through Persistent Homology on Clique Graphs
Graph neural networks have become the default choice by practitioners for graph learning tasks such as graph classification and node classification. Nevertheless, popular graph neural network models still struggle to capture higher-order information, i.e., information that goes \emph{beyond} pairwise interactions. Recent work has shown that persistent homology, a tool from topological data analysis, can enrich graph neural networks with topological information that they otherwise could not capture. Calculating such features is efficient for dimension 0 (connected components) and dimension 1 (cycles). However, when it comes to higher-order structures, it does not scale well, with a complexity of $O(n^d)$, where $n$ is the number of nodes and $d$ is the order of the structures. In this work, we introduce a novel method that extracts information about higher-order structures in the graph while still using the efficient low-dimensional persistent homology algorithm. On standard benchmark datasets, we show that our method can lead to up to $31\%$ improvements in test accuracy.
comment: Published in Proceedings of the Third Learning on Graphs Conference (LoG 2024), PMLR 269
♻ ☆ Reinforcement Learning Discovers Efficient Decentralized Graph Path Search Strategies
Graph path search is a classic computer science problem that has been recently approached with Reinforcement Learning (RL) due to its potential to outperform prior methods. Existing RL techniques typically assume a global view of the network, which is not suitable for large-scale, dynamic, and privacy-sensitive settings. An area of particular interest is search in social networks due to its numerous applications. Inspired by seminal work in experimental sociology, which showed that decentralized yet efficient search is possible in social networks, we frame the problem as a collaborative task between multiple agents equipped with a limited local view of the network. We propose a multi-agent approach for graph path search that successfully leverages both homophily and structural heterogeneity. Our experiments, carried out over synthetic and real-world social networks, demonstrate that our model significantly outperforms learned and heuristic baselines. Furthermore, our results show that meaningful embeddings for graph navigation can be constructed using reward-driven learning.
♻ ☆ Learning Spatially-Aware Language and Audio Embeddings NeurIPS 2024
Humans can picture a sound scene given an imprecise natural language description. For example, it is easy to imagine an acoustic environment given a phrase like "the lion roar came from right behind me!". For a machine to have the same degree of comprehension, the machine must know what a lion is (semantic attribute), what the concept of "behind" is (spatial attribute) and how these pieces of linguistic information align with the semantic and spatial attributes of the sound (what a roar sounds like when its coming from behind). State-of-the-art audio foundation models which learn to map between audio scenes and natural textual descriptions, are trained on non-spatial audio and text pairs, and hence lack spatial awareness. In contrast, sound event localization and detection models are limited to recognizing sounds from a fixed number of classes, and they localize the source to absolute position (e.g., 0.2m) rather than a position described using natural language (e.g., "next to me"). To address these gaps, we present ELSA a spatially aware-audio and text embedding model trained using multimodal contrastive learning. ELSA supports non-spatial audio, spatial audio, and open vocabulary text captions describing both the spatial and semantic components of sound. To train ELSA: (a) we spatially augment the audio and captions of three open-source audio datasets totaling 4,738 hours of audio, and (b) we design an encoder to capture the semantics of non-spatial audio, and the semantics and spatial attributes of spatial audio using contrastive learning. ELSA is competitive with state-of-the-art for both semantic retrieval and 3D source localization. In particular, ELSA achieves +2.8% mean audio-to-text and text-to-audio R@1 above the baseline, and outperforms by -11.6{\deg} mean-absolute-error in 3D source localization over the baseline.
comment: 26 pages, 7 figures, accepted at NeurIPS 2024
♻ ☆ CatNet: Effective FDR Control in LSTM with Gaussian Mirrors and SHAP Feature Importance
We introduce CatNet, an algorithm that effectively controls False Discovery Rate (FDR) and selects significant features in LSTM with the Gaussian Mirror (GM) method. To evaluate the feature importance of LSTM in time series, we introduce a vector of the derivative of the SHapley Additive exPlanations (SHAP) to measure feature importance. We also propose a new kernel-based dependence measure to avoid multicollinearity in the GM algorithm, to make a robust feature selection with controlled FDR. We use simulated data to evaluate CatNet's performance in both linear models and LSTM models with different link functions. The algorithm effectively controls the FDR while maintaining a high statistical power in all cases. We also evaluate the algorithm's performance in different low-dimensional and high-dimensional cases, demonstrating its robustness in various input dimensions. To evaluate CatNet's performance in real world applications, we construct a multi-factor investment portfolio to forecast the prices of S\&P 500 index components. The results demonstrate that our model achieves superior predictive accuracy compared to traditional LSTM models without feature selection and FDR control. Additionally, CatNet effectively captures common market-driving features, which helps informed decision-making in financial markets by enhancing the interpretability of predictions. Our study integrates of the Gaussian Mirror algorithm with LSTM models for the first time, and introduces SHAP values as a new feature importance metric for FDR control methods, marking a significant advancement in feature selection and error control for neural networks.
♻ ☆ S-CFE: Simple Counterfactual Explanations
We study the problem of finding optimal sparse, manifold-aligned counterfactual explanations for classifiers. Canonically, this can be formulated as an optimization problem with multiple non-convex components, including classifier loss functions and manifold alignment (or \emph{plausibility}) metrics. The added complexity of enforcing \emph{sparsity}, or shorter explanations, complicates the problem further. Existing methods often focus on specific models and plausibility measures, relying on convex $\ell_1$ regularizers to enforce sparsity. In this paper, we tackle the canonical formulation using the accelerated proximal gradient (APG) method, a simple yet efficient first-order procedure capable of handling smooth non-convex objectives and non-smooth $\ell_p$ (where $0 \leq p < 1$) regularizers. This enables our approach to seamlessly incorporate various classifiers and plausibility measures while producing sparser solutions. Our algorithm only requires differentiable data-manifold regularizers and supports box constraints for bounded feature ranges, ensuring the generated counterfactuals remain \emph{actionable}. Finally, experiments on real-world datasets demonstrate that our approach effectively produces sparse, manifold-aligned counterfactual explanations while maintaining proximity to the factual data and computational efficiency.
♻ ☆ Enhancing Robustness in Deep Reinforcement Learning: A Lyapunov Exponent Approach
Deep reinforcement learning agents achieve state-of-the-art performance in a wide range of simulated control tasks. However, successful applications to real-world problems remain limited. One reason for this dichotomy is because the learnt policies are not robust to observation noise or adversarial attacks. In this paper, we investigate the robustness of deep RL policies to a single small state perturbation in deterministic continuous control tasks. We demonstrate that RL policies can be deterministically chaotic, as small perturbations to the system state have a large impact on subsequent state and reward trajectories. This unstable non-linear behaviour has two consequences: first, inaccuracies in sensor readings, or adversarial attacks, can cause significant performance degradation; second, even policies that show robust performance in terms of rewards may have unpredictable behaviour in practice. These two facets of chaos in RL policies drastically restrict the application of deep RL to real-world problems. To address this issue, we propose an improvement on the successful Dreamer V3 architecture, implementing Maximal Lyapunov Exponent regularisation. This new approach reduces the chaotic state dynamics, rendering the learnt policies more resilient to sensor noise or adversarial attacks and thereby improving the suitability of deep reinforcement learning for real-world applications.
♻ ☆ Contextual Bandits with Packing and Covering Constraints: A Modular Lagrangian Approach via Regression COLT 2023
We consider contextual bandits with linear constraints (CBwLC), a variant of contextual bandits in which the algorithm consumes multiple resources subject to linear constraints on total consumption. This problem generalizes contextual bandits with knapsacks (CBwK), allowing for packing and covering constraints, as well as positive and negative resource consumption. We provide the first algorithm for CBwLC (or CBwK) that is based on regression oracles. The algorithm is simple, computationally efficient, and statistically optimal under mild assumptions. Further, we provide the first vanishing-regret guarantees for CBwLC (or CBwK) that extend beyond the stochastic environment. We side-step strong impossibility results from prior work by identifying a weaker (and, arguably, fairer) benchmark to compare against. Our algorithm builds on LagrangeBwK (Immorlica et al., FOCS 2019), a Lagrangian-based technique for CBwK, and SquareCB (Foster and Rakhlin, ICML 2020), a regression-based technique for contextual bandits. Our analysis leverages the inherent modularity of both techniques.
comment: A preliminary version of this paper, authored by A. Slivkins, K.A. Sankararaman and D.J. Foster, has been published at COLT 2023. The present version (since Jun'24) features an important improvement, due to Xingyu Zhou. The Oct'24 version fixes an inaccuracy in Section 6 when the analysis from Section 4 is invoked
♻ ☆ Towards safe Bayesian optimization with Wiener kernel regression
Bayesian Optimization (BO) is a data-driven strategy for minimizing/maximizing black-box functions based on probabilistic surrogate models. In the presence of safety constraints, the performance of BO crucially relies on tight probabilistic error bounds related to the uncertainty surrounding the surrogate model. For the case of Gaussian Process surrogates and Gaussian measurement noise, we present a novel error bound based on the recently proposed Wiener kernel regression. We prove that under rather mild assumptions, the proposed error bound is tighter than bounds previously documented in the literature which leads to enlarged safety regions. We draw upon a numerical example to demonstrate the efficacy of the proposed error bound in safe BO.
♻ ☆ Orientation-Aware Graph Neural Networks for Protein Structure Representation Learning
By folding to particular 3D structures, proteins play a key role in living beings. To learn meaningful representation from a protein structure for downstream tasks, not only the global backbone topology but the local fine-grained orientational relations between amino acids should also be considered. In this work, we propose the Orientation-Aware Graph Neural Networks (OAGNNs) to better sense the geometric characteristics in protein structure (e.g. inner-residue torsion angles, inter-residue orientations). Extending a single weight from a scalar to a 3D vector, we construct a rich set of geometric-meaningful operations to process both the classical and SO(3) representations of a given structure. To plug our designed perceptron unit into existing Graph Neural Networks, we further introduce an equivariant message passing paradigm, showing superior versatility in maintaining SO(3)-equivariance at the global scale. Experiments have shown that our OAGNNs have a remarkable ability to sense geometric orientational features compared to classical networks. OAGNNs have also achieved state-of-the-art performance on various computational biology applications related to protein 3D structures.
♻ ☆ From RNNs to Foundation Models: An Empirical Study on Commercial Building Energy Consumption NeurIPS 2024
Accurate short-term energy consumption forecasting for commercial buildings is crucial for smart grid operations. While smart meters and deep learning models enable forecasting using past data from multiple buildings, data heterogeneity from diverse buildings can reduce model performance. The impact of increasing dataset heterogeneity in time series forecasting, while keeping size and model constant, is understudied. We tackle this issue using the ComStock dataset, which provides synthetic energy consumption data for U.S. commercial buildings. Two curated subsets, identical in size and region but differing in building type diversity, are used to assess the performance of various time series forecasting models, including fine-tuned open-source foundation models (FMs). The results show that dataset heterogeneity and model architecture have a greater impact on post-training forecasting performance than the parameter count. Moreover, despite the higher computational cost, fine-tuned FMs demonstrate competitive performance compared to base models trained from scratch.
comment: NeurIPS 2024 Workshop on Time Series in the Age of Large Models
♻ ☆ Automatic Album Sequencing
Album sequencing is a critical part of the album production process. Recently, a data-driven approach was proposed that sequences general collections of independent media by extracting the narrative essence of the items in the collections. While this approach implies an album sequencing technique, it is not widely accessible to a less technical audience, requiring advanced knowledge of machine learning techniques to use. To address this, we introduce a new user-friendly web-based tool that allows a less technical audience to upload music tracks, execute this technique in one click, and subsequently presents the result in a clean visualization to the user. To both increase the number of templates available to the user and address shortcomings of previous work, we also introduce a new direct transformer-based album sequencing method. We find that our more direct method outperforms a random baseline but does not reach the same performance as the narrative essence approach. Both methods are included in our web-based user interface, and this -- alongside a full copy of our implementation -- is publicly available at https://github.com/dylanashley/automatic-album-sequencing
comment: presented as a late breaking demo in the 25th International Society for Music Information Retrieval Conference; 3 pages in main text + 1 page of references, 3 figures in main text; source code available at https://github.com/dylanashley/automatic-album-sequencing
♻ ☆ Mitigating the Impact of Noisy Edges on Graph-Based Algorithms via Adversarial Robustness Evaluation
Given that no existing graph construction method can generate a perfect graph for a given dataset, graph-based algorithms are often affected by redundant and erroneous edges present within the constructed graphs. In this paper, we view these noisy edges as adversarial attack and propose to use a spectral adversarial robustness evaluation method to mitigate the impact of noisy edges on the performance of graph-based algorithms. Our method identifies the points that are less vulnerable to noisy edges and leverages only these robust points to perform graph-based algorithms. Our experiments demonstrate that our methodology is highly effective and outperforms state-of-the-art denoising methods by a large margin.
♻ ☆ Smoothed Graph Contrastive Learning via Seamless Proximity Integration
Graph contrastive learning (GCL) aligns node representations by classifying node pairs into positives and negatives using a selection process that typically relies on establishing correspondences within two augmented graphs. The conventional GCL approaches incorporate negative samples uniformly in the contrastive loss, resulting in the equal treatment of negative nodes, regardless of their proximity to the true positive. In this paper, we present a Smoothed Graph Contrastive Learning model (SGCL), which leverages the geometric structure of augmented graphs to inject proximity information associated with positive/negative pairs in the contrastive loss, thus significantly regularizing the learning process. The proposed SGCL adjusts the penalties associated with node pairs in contrastive loss by incorporating three distinct smoothing techniques that result in proximity-aware positives and negatives. To enhance scalability for large-scale graphs, the proposed framework incorporates a graph batch-generating strategy that partitions the given graphs into multiple subgraphs, facilitating efficient training in separate batches. Through extensive experimentation in the unsupervised setting on various benchmarks, particularly those of large scale, we demonstrate the superiority of our proposed framework against recent baselines.
comment: 26 pages
♻ ☆ FORS-EMG: A Novel sEMG Dataset for Hand Gesture Recognition Across Multiple Forearm Orientations
Surface electromyography (sEMG) signals hold significant potential for gesture recognition and robust prosthetic hand development. However, sEMG signals are affected by various physiological and dynamic factors, including forearm orientation, electrode displacement, and limb position. Most existing sEMG datasets lack these dynamic considerations. This study introduces a novel multichannel sEMG dataset to evaluate commonly used hand gestures across three distinct forearm orientations. The dataset was collected from nineteen able-bodied subjects performing twelve hand gestures in three forearm orientations--supination, rest, and pronation. Eight MFI EMG electrodes were strategically placed at the elbow and mid-forearm to record high-quality EMG signals. Signal quality was validated through Signal-to-Noise Ratio (SNR) and Signal-to-Motion artifact ratio (SMR) metrics. Hand gesture classification performance across forearm orientations was evaluated using machine learning classifiers, including LDA, SVM, and KNN, alongside five feature extraction methods: TDD, TSD, FTDD, AR-RMS, and SNTDF. Furthermore, deep learning models such as 1D CNN, RNN, LSTM, and hybrid architectures were employed for a comprehensive analysis. Notably, the LDA classifier achieved the highest F1 score of 88.58\% with the SNTDF feature set when trained on hand gesture data of resting and tested across gesture data of all orientations. The promising results from extensive analyses underscore the proposed dataset's potential as a benchmark for advancing gesture recognition technologies, clinical sEMG research, and human-computer interaction applications. The dataset is publicly available in MATLAB format. Dataset: \url{https://www.kaggle.com/datasets/ummerummanchaity/fors-emg-a-novel-semg-dataset}
comment: 13 pages, 10 figures
♻ ☆ Conditional Variable Flow Matching: Transforming Conditional Densities with Amortized Conditional Optimal Transport
Forecasting stochastic nonlinear dynamical systems under the influence of conditioning variables is a fundamental challenge repeatedly encountered across the biological and physical sciences. While flow-based models can impressively predict the temporal evolution of probability distributions representing possible outcomes of a specific process, existing frameworks cannot satisfactorily account for the impact of conditioning variables on these dynamics. Amongst several limitations, existing methods require training data with paired conditions and are developed for discrete conditioning variables. We propose Conditional Variable Flow Matching (CVFM), a framework for learning flows transforming conditional distributions with amortization across continuous conditioning variables - permitting predictions across the conditional density manifold. This is accomplished through several novel advances. In particular, simultaneous sample conditioned flows over the main and conditioning variables. In addition, motivated by theoretical analysis, a conditional Wasserstein distance combined with a loss reweighting kernel facilitating conditional optimal transport. Collectively, these advances allow for learning system dynamics provided measurement data whose states and conditioning variables are not in correspondence. We demonstrate CVFM on a suite of increasingly challenging problems, including discrete and continuous conditional mapping benchmarks, image-to-image domain transfer, and modeling the temporal evolution of materials internal structure during manufacturing processes. We observe that CVFM results in improved performance and convergence characteristics over alternative conditional variants.
♻ ☆ Powerformer: A Section-adaptive Transformer for Power Flow Adjustment
In this paper, we present a novel transformer architecture tailored for learning robust power system state representations, which strives to optimize power dispatch for the power flow adjustment across different transmission sections. Specifically, our proposed approach, named Powerformer, develops a dedicated section-adaptive attention mechanism, separating itself from the self-attention used in conventional transformers. This mechanism effectively integrates power system states with transmission section information, which facilitates the development of robust state representations. Furthermore, by considering the graph topology of power system and the electrical attributes of bus nodes, we introduce two customized strategies to further enhance the expressiveness: graph neural network propagation and multi-factor attention mechanism. Extensive evaluations are conducted on three power system scenarios, including the IEEE 118-bus system, a realistic 300-bus system in China, and a large-scale European system with 9241 buses, where Powerformer demonstrates its superior performance over several baseline methods.
comment: 8 figures
♻ ☆ A Survey on Multimodal Large Language Models
Recently, Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks. The surprising emergent capabilities of MLLM, such as writing stories based on images and Optical Character Recognition (OCR)-free math reasoning, are rare in traditional multimodal methods, suggesting a potential path to artificial general intelligence. To this end, both academia and industry have endeavored to develop MLLMs that can compete with or even outperform GPT-4V, pushing the limit of research at a surprising speed. In this paper, we aim to trace and summarize the recent progress of MLLMs. First of all, we present the basic formulation of MLLM and delineate its related concepts, including architecture, training strategy and data, as well as evaluation. Then, we introduce research topics about how MLLMs can be extended to support more granularity, modalities, languages, and scenarios. We continue with multimodal hallucination and extended techniques, including Multimodal ICL (M-ICL), Multimodal CoT (M-CoT), and LLM-Aided Visual Reasoning (LAVR). To conclude the paper, we discuss existing challenges and point out promising research directions.
comment: 20 pages, 3 figures, 9 tables, accepted for publication in National Science Review. Project page:https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models
♻ ☆ Efficient Long Video Tokenization via Coordinate-based Patch Reconstruction
Efficient tokenization of videos remains a challenge in training vision models that can process long videos. One promising direction is to develop a tokenizer that can encode long video clips, as it would enable the tokenizer to leverage the temporal coherence of videos better for tokenization. However, training existing tokenizers on long videos often incurs a huge training cost as they are trained to reconstruct all the frames at once. In this paper, we introduce CoordTok, a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos, inspired by recent advances in 3D generative models. In particular, CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled $(x,y,t)$ coordinates. This allows for training large tokenizer models directly on long videos without requiring excessive training resources. Our experiments show that CoordTok can drastically reduce the number of tokens for encoding long video clips. For instance, CoordTok can encode a 128-frame video with 128$\times$128 resolution into 1280 tokens, while baselines need 6144 or 8192 tokens to achieve similar reconstruction quality. We further show that this efficient video tokenization enables memory-efficient training of a diffusion transformer that can generate 128 frames at once.
comment: Code is available on the project webpage: https://huiwon-jang.github.io/coordtok/
♻ ☆ Mind the Graph When Balancing Data for Fairness or Robustness
Failures of fairness or robustness in machine learning predictive settings can be due to undesired dependencies between covariates, outcomes and auxiliary factors of variation. A common strategy to mitigate these failures is data balancing, which attempts to remove those undesired dependencies. In this work, we define conditions on the training distribution for data balancing to lead to fair or robust models. Our results display that, in many cases, the balanced distribution does not correspond to selectively removing the undesired dependencies in a causal graph of the task, leading to multiple failure modes and even interference with other mitigation techniques such as regularization. Overall, our results highlight the importance of taking the causal graph into account before performing data balancing.
♻ ☆ FedReMa: Improving Personalized Federated Learning via Leveraging the Most Relevant Clients
Federated Learning (FL) is a distributed machine learning paradigm that achieves a globally robust model through decentralized computation and periodic model synthesis, primarily focusing on the global model's accuracy over aggregated datasets of all participating clients. Personalized Federated Learning (PFL) instead tailors exclusive models for each client, aiming to enhance the accuracy of clients' individual models on specific local data distributions. Despite of their wide adoption, existing FL and PFL works have yet to comprehensively address the class-imbalance issue, one of the most critical challenges within the realm of data heterogeneity in PFL and FL research. In this paper, we propose FedReMa, an efficient PFL algorithm that can tackle class-imbalance by 1) utilizing an adaptive inter-client co-learning approach to identify and harness different clients' expertise on different data classes throughout various phases of the training process, and 2) employing distinct aggregation methods for clients' feature extractors and classifiers, with the choices informed by the different roles and implications of these model components. Specifically, driven by our experimental findings on inter-client similarity dynamics, we develop critical co-learning period (CCP), wherein we introduce a module named maximum difference segmentation (MDS) to assess and manage task relevance by analyzing the similarities between clients' logits of their classifiers. Outside the CCP, we employ an additional scheme for model aggregation that utilizes historical records of each client's most relevant peers to further enhance the personalization stability. We demonstrate the superiority of our FedReMa in extensive experiments.
comment: 8 pages, 4 figures, accepted by European Conference on Artificial Intelligence (2024 ECAI)
♻ ☆ Single-cell Curriculum Learning-based Deep Graph Embedding Clustering
The swift advancement of single-cell RNA sequencing (scRNA-seq) technologies enables the investigation of cellular-level tissue heterogeneity. Cell annotation significantly contributes to the extensive downstream analysis of scRNA-seq data. However, The analysis of scRNA-seq for biological inference presents challenges owing to its intricate and indeterminate data distribution, characterized by a substantial volume and a high frequency of dropout events. Furthermore, the quality of training samples varies greatly, and the performance of the popular scRNA-seq data clustering solution GNN could be harmed by two types of low-quality training nodes: 1) nodes on the boundary; 2) nodes that contribute little additional information to the graph. To address these problems, we propose a single-cell curriculum learning-based deep graph embedding clustering (scCLG). We first propose a Chebyshev graph convolutional autoencoder with multi-decoder (ChebAE) that combines three optimization objectives corresponding to three decoders, including topology reconstruction loss of cell graphs, zero-inflated negative binomial (ZINB) loss, and clustering loss, to learn cell-cell topology representation. Meanwhile, we employ a selective training strategy to train GNN based on the features and entropy of nodes and prune the difficult nodes based on the difficulty scores to keep the high-quality graph. Empirical results on a variety of gene expression datasets show that our model outperforms state-of-the-art methods.
♻ ☆ Unveiling the Secrets: How Masking Strategies Shape Time Series Imputation
Time series imputation is a critical challenge in data mining, particularly in domains like healthcare and environmental monitoring, where missing data can compromise analytical outcomes. This study investigates the influence of diverse masking strategies, normalization timing, and missingness patterns on the performance of eleven state-of-the-art imputation models across three diverse datasets. Specifically, we evaluate the effects of pre-masking versus in-mini-batch masking, augmentation versus overlaying of artificial missingness, and pre-normalization versus post-normalization. Our findings reveal that masking strategies profoundly affect imputation accuracy, with dynamic masking providing robust augmentation benefits and overlay masking better simulating real-world missingness patterns. Sophisticated models, such as CSDI, exhibited sensitivity to preprocessing configurations, while simpler models like BRITS delivered consistent and efficient performance. We highlight the importance of aligning preprocessing pipelines and masking strategies with dataset characteristics to improve robustness under diverse conditions, including high missing rates. This study provides actionable insights for designing imputation pipelines and underscores the need for transparent and comprehensive experimental designs.
♻ ☆ The ParlaSpeech Collection of Automatically Generated Speech and Text Datasets from Parliamentary Proceedings
Recent significant improvements in speech and language technologies come both from self-supervised approaches over raw language data as well as various types of explicit supervision. To ensure high-quality processing of spoken data, the most useful type of explicit supervision is still the alignment between the speech signal and its corresponding text transcript, which is a data type that is not available for many languages. In this paper, we present our approach to building large and open speech-and-text-aligned datasets of less-resourced languages based on transcripts of parliamentary proceedings and their recordings. Our starting point are the ParlaMint comparable corpora of transcripts of parliamentary proceedings of 26 national European parliaments. In the pilot run on expanding the ParlaMint corpora with aligned publicly available recordings, we focus on three Slavic languages, namely Croatian, Polish, and Serbian. The main challenge of our approach is the lack of any global alignment between the ParlaMint texts and the available recordings, as well as the sometimes varying data order in each of the modalities, which requires a novel approach in aligning long sequences of text and audio in a large search space. The results of this pilot run are three high-quality datasets that span more than 5,000 hours of speech and accompanying text transcripts. Although these datasets already make a huge difference in the availability of spoken and textual data for the three languages, we want to emphasize the potential of the presented approach in building similar datasets for many more languages.
comment: Submitted to SPECOM 2024
♻ ☆ Differentially private and decentralized randomized power method
The randomized power method has gained significant interest due to its simplicity and efficient handling of large-scale spectral analysis and recommendation tasks. As modern datasets contain sensitive private information, we need to give formal guarantees on the possible privacy leaks caused by this method. This paper focuses on enhancing privacy preserving variants of the method. We propose a strategy to reduce the variance of the noise introduced to achieve Differential Privacy (DP). We also adapt the method to a decentralized framework with a low computational and communication overhead, while preserving the accuracy. We leverage Secure Aggregation (a form of Multi-Party Computation) to allow the algorithm to perform computations using data distributed among multiple users or devices, without revealing individual data. We show that it is possible to use a noise scale in the decentralized setting that is similar to the one in the centralized setting. We improve upon existing convergence bounds for both the centralized and decentralized versions. The proposed method is especially relevant for decentralized applications such as distributed recommender systems, where privacy concerns are paramount.
♻ ☆ DexTouch: Learning to Seek and Manipulate Objects with Tactile Dexterity
The sense of touch is an essential ability for skillfully performing a variety of tasks, providing the capacity to search and manipulate objects without relying on visual information. In this paper, we introduce a multi-finger robot system designed to manipulate objects using the sense of touch, without relying on vision. For tasks that mimic daily life, the robot uses its sense of touch to manipulate randomly placed objects in dark. The objective of this study is to enable robots to perform blind manipulation by using tactile sensation to compensate for the information gap caused by the absence of vision, given the presence of prior information. Training the policy through reinforcement learning in simulation and transferring the trained policy to the real environment, we demonstrate that blind manipulation can be applied to robots without vision. In addition, the experiments showcase the importance of tactile sensing in the blind manipulation tasks. Our project page is available at https://lee-kangwon.github.io/dextouch/
comment: Project page: https://lee-kangwon.github.io/dextouch/; published in IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Material synthesis through simulations guided by machine learning: a position paper
In this position paper, we propose an approach for sustainable data collection in the field of optimal mix design for marble sludge reuse. Marble sludge, a calcium-rich residual from stone-cutting processes, can be repurposed by mixing it with various ingredients. However, determining the optimal mix design is challenging due to the variability in sludge composition and the costly, time-consuming nature of experimental data collection. Also, we investigate the possibility of using machine learning models using meta-learning as an optimization tool to estimate the correct quantity of stone-cutting sludge to be used in aggregates to obtain a mix design with specific mechanical properties that can be used successfully in the building industry. Our approach offers two key advantages: (i) through simulations, a large dataset can be generated, saving time and money during the data collection phase, and (ii) Utilizing machine learning models, with performance enhancement through hyper-parameter optimization via meta-learning, to estimate optimal mix designs reducing the need for extensive manual experimentation, lowering costs, minimizing environmental impact, and accelerating the processing of quarry sludge. Our idea promises to streamline the marble sludge reuse process by leveraging collective data and advanced machine learning, promoting sustainability and efficiency in the stonecutting sector.
♻ ☆ Fair Mixed Effects Support Vector Machine
To ensure unbiased and ethical automated predictions, fairness must be a core principle in machine learning applications. Fairness in machine learning aims to mitigate biases present in the training data and model imperfections that could lead to discriminatory outcomes. This is achieved by preventing the model from making decisions based on sensitive characteristics like ethnicity or sexual orientation. A fundamental assumption in machine learning is the independence of observations. However, this assumption often does not hold true for data describing social phenomena, where data points are often clustered based. Hence, if the machine learning models do not account for the cluster correlations, the results may be biased. Especially high is the bias in cases where the cluster assignment is correlated to the variable of interest. We present a fair mixed effects support vector machine algorithm that can handle both problems simultaneously. With a reproducible simulation study we demonstrate the impact of clustered data on the quality of fair machine learning predictions.
comment: 17 pages, 8 figures
♻ ☆ Fair Generalized Linear Mixed Models
When using machine learning for automated prediction, it is important to account for fairness in the prediction. Fairness in machine learning aims to ensure that biases in the data and model inaccuracies do not lead to discriminatory decisions. E.g., predictions from fair machine learning models should not discriminate against sensitive variables such as sexual orientation and ethnicity. The training data often in obtained from social surveys. In social surveys, oftentimes the data collection process is a strata sampling, e.g. due to cost restrictions. In strata samples, the assumption of independence between the observation is not fulfilled. Hence, if the machine learning models do not account for the strata correlations, the results may be biased. Especially high is the bias in cases where the strata assignment is correlated to the variable of interest. We present in this paper an algorithm that can handle both problems simultaneously, and we demonstrate the impact of stratified sampling on the quality of fair machine learning predictions in a reproducible simulation study.
comment: 25 pages, 12 figures. arXiv admin note: text overlap with arXiv:2405.06433
♻ ☆ Getting aligned on representational alignment
Biological and artificial information processing systems form representations of the world that they can use to categorize, reason, plan, navigate, and make decisions. How can we measure the similarity between the representations formed by these diverse systems? Do similarities in representations then translate into similar behavior? If so, then how can a system's representations be modified to better match those of another system? These questions pertaining to the study of representational alignment are at the heart of some of the most promising research areas in contemporary cognitive science, neuroscience, and machine learning. In this Perspective, we survey the exciting recent developments in representational alignment research in the fields of cognitive science, neuroscience, and machine learning. Despite their overlapping interests, there is limited knowledge transfer between these fields, so work in one field ends up duplicated in another, and useful innovations are not shared effectively. To improve communication, we propose a unifying framework that can serve as a common language for research on representational alignment, and map several streams of existing work across fields within our framework. We also lay out open problems in representational alignment where progress can benefit all three of these fields. We hope that this paper will catalyze cross-disciplinary collaboration and accelerate progress for all communities studying and developing information processing systems.
comment: 51 pages; Working paper (changes to be made in upcoming revisions)
♻ ☆ Learning Generalizable Feature Fields for Mobile Manipulation
An open problem in mobile manipulation is how to represent objects and scenes in a unified manner so that robots can use both for navigation and manipulation. The latter requires capturing intricate geometry while understanding fine-grained semantics, whereas the former involves capturing the complexity inherent at an expansive physical scale. In this work, we present GeFF (Generalizable Feature Fields), a scene-level generalizable neural feature field that acts as a unified representation for both navigation and manipulation that performs in real-time. To do so, we treat generative novel view synthesis as a pre-training task, and then align the resulting rich scene priors with natural language via CLIP feature distillation. We demonstrate the effectiveness of this approach by deploying GeFF on a quadrupedal robot equipped with a manipulator. We quantitatively evaluate GeFF's ability for open-vocabulary object-/part-level manipulation and show that GeFF outperforms point-based baselines in runtime and storage-accuracy trade-offs, with qualitative examples of semantics-aware navigation and articulated object manipulation.
comment: Preprint. Project website is at: https://geff-b1.github.io/
♻ ☆ Breaking the Illusion: Real-world Challenges for Adversarial Patches in Object Detection
Adversarial attacks pose a significant threat to the robustness and reliability of machine learning systems, particularly in computer vision applications. This study investigates the performance of adversarial patches for the YOLO object detection network in the physical world. Two attacks were tested: a patch designed to be placed anywhere within the scene - global patch, and another patch intended to partially overlap with specific object targeted for removal from detection - local patch. Various factors such as patch size, position, rotation, brightness, and hue were analyzed to understand their impact on the effectiveness of the adversarial patches. The results reveal a notable dependency on these parameters, highlighting the challenges in maintaining attack efficacy in real-world conditions. Learning to align digitally applied transformation parameters with those measured in the real world still results in up to a 64\% discrepancy in patch performance. These findings underscore the importance of understanding environmental influences on adversarial attacks, which can inform the development of more robust defenses for practical machine learning applications.
comment: This paper has been accepted by the 1st Workshop on Enabling Machine Learning Operations for next-Gen Embedded Wireless Networked Devices (EMERGE), 2024
♻ ☆ Enhancing generalization in high energy physics using white-box adversarial attacks
Machine learning is becoming increasingly popular in the context of particle physics. Supervised learning, which uses labeled Monte Carlo (MC) simulations, remains one of the most widely used methods for discriminating signals beyond the Standard Model. However, this paper suggests that supervised models may depend excessively on artifacts and approximations from Monte Carlo simulations, potentially limiting their ability to generalize well to real data. This study aims to enhance the generalization properties of supervised models by reducing the sharpness of local minima. It reviews the application of four distinct white-box adversarial attacks in the context of classifying Higgs boson decay signals. The attacks are divided into weight space attacks, and feature space attacks. To study and quantify the sharpness of different local minima this paper presents two analysis methods: gradient ascent and reduced Hessian eigenvalue analysis. The results show that white-box adversarial attacks significantly improve generalization performance, albeit with increased computational complexity.
comment: 10 pages, 4 figures, 8 tables, 3 algorithms, to be published in Physical Review D (PRD), presented at the ML4Jets 2024 conference
♻ ☆ ECG-Based Patient Identification: A Comprehensive Evaluation Across Health and Activity Conditions
Over the course of the past two decades, a substantial body of research has substantiated the viability of utilising cardiac signals as a biometric modality. This paper presents a novel approach for patient identification in healthcare systems using electrocardiogram signals. A convolutional neural network (CNN) is employed to classify users based on electrocardiomatrices, a specific type of image derived from ECG signals. The proposed identification system is evaluated in multiple databases, achieving up to 99.84\% accuracy on healthy subjects, 97.09\% on patients with cardiovascular diseases, and 97.89% on mixed populations including both healthy and arrhythmic patients. The system also performs robustly under varying activity conditions, achieving 91.32% accuracy in scenarios involving different physical activities. These consistent and reliable results, with low error rates such as a FAR of 0.01% and FRR of 0.157% in the best cases, demonstrate the method's significant advancement in subject identification within healthcare systems. By considering patients' cardiovascular conditions and activity levels, the proposed approach addresses gaps in the existing literature, positioning it as a strong candidate for practical applications in real-world healthcare settings.
♻ ☆ Learning via Surrogate PAC-Bayes
PAC-Bayes learning is a comprehensive setting for (i) studying the generalisation ability of learning algorithms and (ii) deriving new learning algorithms by optimising a generalisation bound. However, optimising generalisation bounds might not always be viable for tractable or computational reasons, or both. For example, iteratively querying the empirical risk might prove computationally expensive. In response, we introduce a novel principled strategy for building an iterative learning algorithm via the optimisation of a sequence of surrogate training objectives, inherited from PAC-Bayes generalisation bounds. The key argument is to replace the empirical risk (seen as a function of hypotheses) in the generalisation bound by its projection onto a constructible low dimensional functional space: these projections can be queried much more efficiently than the initial risk. On top of providing that generic recipe for learning via surrogate PAC-Bayes bounds, we (i) contribute theoretical results establishing that iteratively optimising our surrogates implies the optimisation of the original generalisation bounds, (ii) instantiate this strategy to the framework of meta-learning, introducing a meta-objective offering a closed form expression for meta-gradient, (iii) illustrate our approach with numerical experiments inspired by an industrial biochemical problem.
comment: 20 pages
♻ ☆ Convergence of a L2 regularized Policy Gradient Algorithm for the Multi Armed Bandit
Although Multi Armed Bandit (MAB) on one hand and the policy gradient approach on the other hand are among the most used frameworks of Reinforcement Learning, the theoretical properties of the policy gradient algorithm used for MAB have not been given enough attention. We investigate in this work the convergence of such a procedure for the situation when a $L2$ regularization term is present jointly with the 'softmax' parametrization. We prove convergence under appropriate technical hypotheses and test numerically the procedure including situations beyond the theoretical setting. The tests show that a time dependent regularized procedure can improve over the canonical approach especially when the initial guess is far from the solution.
♻ ☆ Universal approximation with complex-valued deep narrow neural networks
We study the universality of complex-valued neural networks with bounded widths and arbitrary depths. Under mild assumptions, we give a full description of those activation functions $\varrho:\mathbb{C}\to \mathbb{C}$ that have the property that their associated networks are universal, i.e., are capable of approximating continuous functions to arbitrary accuracy on compact domains. Precisely, we show that deep narrow complex-valued networks are universal if and only if their activation function is neither holomorphic, nor antiholomorphic, nor $\mathbb{R}$-affine. This is a much larger class of functions than in the dual setting of arbitrary width and fixed depth. Unlike in the real case, the sufficient width differs significantly depending on the considered activation function. We show that a width of $2n+2m+5$ is always sufficient and that in general a width of $max\{2n,2m\}$ is necessary. We prove, however, that a width of $n+m+3$ suffices for a rich subclass of the admissible activation functions. Here, $n$ and $m$ denote the input and output dimensions of the considered networks. Moreover, for the case of smooth and non-polyharmonic activation functions, we provide a quantitative approximation bound in terms of the depth of the considered networks.
comment: v2: correct typo in arxiv abstract v3: add quantitative result, restructure the entire paper
♻ ☆ Network Inversion of Convolutional Neural Nets
Neural networks have emerged as powerful tools across various applications, yet their decision-making process often remains opaque, leading to them being perceived as "black boxes." This opacity raises concerns about their interpretability and reliability, especially in safety-critical scenarios. Network inversion techniques offer a solution by allowing us to peek inside these black boxes, revealing the features and patterns learned by the networks behind their decision-making processes and thereby provide valuable insights into how neural networks arrive at their conclusions, making them more interpretable and trustworthy. This paper presents a simple yet effective approach to network inversion using a meticulously conditioned generator that learns the data distribution in the input space of the trained neural network, enabling the reconstruction of inputs that would most likely lead to the desired outputs. To capture the diversity in the input space for a given output, instead of simply revealing the conditioning labels to the generator, we encode the conditioning label information into vectors and intermediate matrices and further minimize the cosine similarity between features of the generated images.
♻ ☆ WavChat: A Survey of Spoken Dialogue Models
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat.
comment: 60 papes, working in progress
♻ ☆ Present and Future Generalization of Synthetic Image Detectors
The continued release of increasingly realistic image generation models creates a demand for synthetic image detectors. To build effective detectors we must first understand how factors like data source diversity, training methodologies and image alterations affect their generalization capabilities. This work conducts a systematic analysis and uses its insights to develop practical guidelines for training robust synthetic image detectors. Model generalization capabilities are evaluated across different setups (e.g. scale, sources, transformations) including real-world deployment conditions. Through an extensive benchmarking of state-of-the-art detectors across diverse and recent datasets, we show that while current approaches excel in specific scenarios, no single detector achieves universal effectiveness. Critical flaws are identified in detectors, and workarounds are proposed to enable the deployment of real-world detector applications enhancing accuracy, reliability and robustness beyond the limitations of current systems.
comment: 21 pages, 12 figures
♻ ☆ Multi-feature Reconstruction Network using Crossed-mask Restoration for Unsupervised Industrial Anomaly Detection
Unsupervised anomaly detection using only normal samples is of great significance for quality inspection in industrial manufacturing. Although existing reconstruction-based methods have achieved promising results, they still face two problems: poor distinguishable information in image reconstruction and well abnormal regeneration caused by model under-regularization. To overcome the above issues, we convert the image reconstruction into a combination of parallel feature restorations and propose a multi-feature reconstruction network, MFRNet, using crossed-mask restoration in this paper. Specifically, a multi-scale feature aggregator is first developed to generate more discriminative hierarchical representations of the input images from a pre-trained model. Subsequently, a crossed-mask generator is adopted to randomly cover the extracted feature map, followed by a restoration network based on the transformer structure for high-quality repair of the missing regions. Finally, a hybrid loss is equipped to guide model training and anomaly estimation, which gives consideration to both the pixel and structural similarity. Extensive experiments show that our method is highly competitive with or significantly outperforms other state-of-the-arts on four public available datasets and one self-made dataset.
♻ ☆ IL-TUR: Benchmark for Indian Legal Text Understanding and Reasoning ACL 2024
Legal systems worldwide are inundated with exponential growth in cases and documents. There is an imminent need to develop NLP and ML techniques for automatically processing and understanding legal documents to streamline the legal system. However, evaluating and comparing various NLP models designed specifically for the legal domain is challenging. This paper addresses this challenge by proposing IL-TUR: Benchmark for Indian Legal Text Understanding and Reasoning. IL-TUR contains monolingual (English, Hindi) and multi-lingual (9 Indian languages) domain-specific tasks that address different aspects of the legal system from the point of view of understanding and reasoning over Indian legal documents. We present baseline models (including LLM-based) for each task, outlining the gap between models and the ground truth. To foster further research in the legal domain, we create a leaderboard (available at: https://exploration-lab.github.io/IL-TUR/) where the research community can upload and compare legal text understanding systems.
comment: Accepted at ACL 2024 Main Conference; 40 Pages (9 Pages + References + Appendix)
♻ ☆ Generalization, Expressivity, and Universality of Graph Neural Networks on Attributed Graphs
We analyze the universality and generalization of graph neural networks (GNNs) on attributed graphs, i.e., with node attributes. To this end, we propose pseudometrics over the space of all attributed graphs that describe the fine-grained expressivity of GNNs. Namely, GNNs are both Lipschitz continuous with respect to our pseudometrics and can separate attributed graphs that are distant in the metric. Moreover, we prove that the space of all attributed graphs is relatively compact with respect to our metrics. Based on these properties, we prove a universal approximation theorem for GNNs and generalization bounds for GNNs on any data distribution of attributed graphs. The proposed metrics compute the similarity between the structures of attributed graphs via a hierarchical optimal transport between computation trees. Our work extends and unites previous approaches which either derived theory only for graphs with no attributes, derived compact metrics under which GNNs are continuous but without separation power, or derived metrics under which GNNs are continuous and separate points but the space of graphs is not relatively compact, which prevents universal approximation and generalization analysis.
♻ ☆ ScaleNet: Scale Invariance Learning in Directed Graphs
Graph Neural Networks (GNNs) have advanced relational data analysis but lack invariance learning techniques common in image classification. In node classification with GNNs, it is actually the ego-graph of the center node that is classified. This research extends the scale invariance concept to node classification by drawing an analogy to image processing: just as scale invariance being used in image classification to capture multi-scale features, we propose the concept of ``scaled ego-graphs''. Scaled ego-graphs generalize traditional ego-graphs by replacing undirected single-edges with ``scaled-edges'', which are ordered sequences of multiple directed edges. We empirically assess the performance of the proposed scale invariance in graphs on seven benchmark datasets, across both homophilic and heterophilic structures. Our scale-invariance-based graph learning outperforms inception models derived from random walks by being simpler, faster, and more accurate. The scale invariance explains inception models' success on homophilic graphs and limitations on heterophilic graphs. To ensure applicability of inception model to heterophilic graphs as well, we further present ScaleNet, an architecture that leverages multi-scaled features. ScaleNet achieves state-of-the-art results on five out of seven datasets (four homophilic and one heterophilic) and matches top performance on the remaining two, demonstrating its excellent applicability. This represents a significant advance in graph learning, offering a unified framework that enhances node classification across various graph types. Our code is available at https://github.com/Qin87/ScaleNet/tree/July25.
comment: Scale invariance in node classification is demonstrated and applied in graph transformation to develop ScaleNet, which achieves state-of-the-art performance on both homophilic and heterophilic directed graphs
♻ ☆ Unveil Inversion and Invariance in Flow Transformer for Versatile Image Editing
Leveraging the large generative prior of the flow transformer for tuning-free image editing requires authentic inversion to project the image into the model's domain and a flexible invariance control mechanism to preserve non-target contents. However, the prevailing diffusion inversion performs deficiently in flow-based models, and the invariance control cannot reconcile diverse rigid and non-rigid editing tasks. To address these, we systematically analyze the \textbf{inversion and invariance} control based on the flow transformer. Specifically, we unveil that the Euler inversion shares a similar structure to DDIM yet is more susceptible to the approximation error. Thus, we propose a two-stage inversion to first refine the velocity estimation and then compensate for the leftover error, which pivots closely to the model prior and benefits editing. Meanwhile, we propose the invariance control that manipulates the text features within the adaptive layer normalization, connecting the changes in the text prompt to image semantics. This mechanism can simultaneously preserve the non-target contents while allowing rigid and non-rigid manipulation, enabling a wide range of editing types such as visual text, quantity, facial expression, etc. Experiments on versatile scenarios validate that our framework achieves flexible and accurate editing, unlocking the potential of the flow transformer for versatile image editing.
comment: Project Page: https://pengchengpcx.github.io/EditFT/
♻ ☆ Physically Parameterized Differentiable MUSIC for DoA Estimation with Uncalibrated Arrays
Direction of arrival (DoA) estimation is a common sensing problem in radar, sonar, audio, and wireless communication systems. It has gained renewed importance with the advent of the integrated sensing and communication paradigm. To fully exploit the potential of such sensing systems, it is crucial to take into account potential hardware impairments that can negatively impact the obtained performance. This study introduces a joint DoA estimation and hardware impairment learning scheme following a model-based approach. Specifically, a differentiable version of the multiple signal classification (MUSIC) algorithm is derived, allowing efficient learning of the considered impairments. The proposed approach supports both supervised and unsupervised learning strategies, showcasing its practical potential. Simulation results indicate that the proposed method successfully learns significant inaccuracies in both antenna locations and complex gains. Additionally, the proposed method outperforms the classical MUSIC algorithm in the DoA estimation task.
♻ ☆ Exploring Selective Layer Fine-Tuning in Federated Learning
Federated learning (FL) has emerged as a promising paradigm for fine-tuning foundation models using distributed data in a privacy-preserving manner. Under limited computational resources, clients often find it more practical to fine-tune a selected subset of layers, rather than the entire model, based on their task-specific data. In this study, we provide a thorough theoretical exploration of selective layer fine-tuning in FL, emphasizing a flexible approach that allows the clients to adjust their selected layers according to their local data and resources. We theoretically demonstrate that the layer selection strategy has a significant impact on model convergence in two critical aspects: the importance of selected layers and the heterogeneous choices across clients. Drawing from these insights, we further propose a strategic layer selection method that utilizes local gradients and regulates layer selections across clients. The extensive experiments on both image and text datasets demonstrate the effectiveness of the proposed strategy compared with several baselines, highlighting its advances in identifying critical layers that adapt to the client heterogeneity and training dynamics in FL.
♻ ☆ Reprogramming Pretrained Target-Specific Diffusion Models for Dual-Target Drug Design NeurIPS 2024
Dual-target therapeutic strategies have become a compelling approach and attracted significant attention due to various benefits, such as their potential in overcoming drug resistance in cancer therapy. Considering the tremendous success that deep generative models have achieved in structure-based drug design in recent years, we formulate dual-target drug design as a generative task and curate a novel dataset of potential target pairs based on synergistic drug combinations. We propose to design dual-target drugs with diffusion models that are trained on single-target protein-ligand complex pairs. Specifically, we align two pockets in 3D space with protein-ligand binding priors and build two complex graphs with shared ligand nodes for SE(3)-equivariant composed message passing, based on which we derive a composed drift in both 3D and categorical probability space in the generative process. Our algorithm can well transfer the knowledge gained in single-target pretraining to dual-target scenarios in a zero-shot manner. We also repurpose linker design methods as strong baselines for this task. Extensive experiments demonstrate the effectiveness of our method compared with various baselines.
comment: Accepted to NeurIPS 2024
♻ ☆ Label Noise Robustness of Conformal Prediction
We study the robustness of conformal prediction, a powerful tool for uncertainty quantification, to label noise. Our analysis tackles both regression and classification problems, characterizing when and how it is possible to construct uncertainty sets that correctly cover the unobserved noiseless ground truth labels. We further extend our theory and formulate the requirements for correctly controlling a general loss function, such as the false negative proportion, with noisy labels. Our theory and experiments suggest that conformal prediction and risk-controlling techniques with noisy labels attain conservative risk over the clean ground truth labels whenever the noise is dispersive and increases variability. In other adversarial cases, we can also correct for noise of bounded size in the conformal prediction algorithm in order to ensure achieving the correct risk of the ground truth labels without score or data regularity.
♻ ☆ AI-Driven Guided Response for Security Operation Centers with Microsoft Copilot for Security
Security operation centers contend with a constant stream of security incidents, ranging from straightforward to highly complex. To address this, we developed Microsoft Copilot for Security Guided Response (CGR), an industry-scale ML architecture that guides security analysts across three key tasks -- (1) investigation, providing essential historical context by identifying similar incidents; (2) triaging to ascertain the nature of the incident -- whether it is a true positive, false positive, or benign positive; and (3) remediation, recommending tailored containment actions. CGR is integrated into the Microsoft Defender XDR product and deployed worldwide, generating millions of recommendations across thousands of customers. Our extensive evaluation, incorporating internal evaluation, collaboration with security experts, and customer feedback, demonstrates that CGR delivers high-quality recommendations across all three tasks. We provide a comprehensive overview of the CGR architecture, setting a precedent as the first cybersecurity company to openly discuss these capabilities in such depth. Additionally, we release GUIDE, the largest public collection of real-world security incidents, spanning 13M evidences across 1M incidents annotated with ground-truth triage labels by customer security analysts. This dataset represents the first large-scale cybersecurity resource of its kind, supporting the development and evaluation of guided response systems and beyond.
♻ ☆ BadSFL: Backdoor Attack against Scaffold Federated Learning
Federated learning (FL) enables the training of deep learning models on distributed clients to preserve data privacy. However, this learning paradigm is vulnerable to backdoor attacks, where malicious clients can upload poisoned local models to embed backdoors into the global model, leading to attacker-desired predictions. Existing backdoor attacks mainly focus on FL with independently and identically distributed (IID) scenarios, while real-world FL training data are typically non-IID. Current strategies for non-IID backdoor attacks suffer from limitations in maintaining effectiveness and durability. To address these challenges, we propose a novel backdoor attack method, BadSFL, specifically designed for the FL framework using the scaffold aggregation algorithm in non-IID settings. BadSFL leverages a Generative Adversarial Network (GAN) based on the global model to complement the training set, achieving high accuracy on both backdoor and benign samples. It utilizes a specific feature as the backdoor trigger to ensure stealthiness, and exploits the Scaffold's control variate to predict the global model's convergence direction, ensuring the backdoor's persistence. Extensive experiments on three benchmark datasets demonstrate the high effectiveness, stealthiness, and durability of BadSFL. Notably, our attack remains effective over 60 rounds in the global model and up to 3 times longer than existing baseline attacks after stopping the injection of malicious updates.
♻ ☆ A Quality-Centric Framework for Generic Deepfake Detection
This paper addresses the generalization issue in deepfake detection by harnessing forgery quality in training data. Generally, the forgery quality of different deepfakes varies: some have easily recognizable forgery clues, while others are highly realistic. Existing works often train detectors on a mix of deepfakes with varying forgery qualities, potentially leading detectors to short-cut the easy-to-spot artifacts from low-quality forgery samples, thereby hurting generalization performance. To tackle this issue, we propose a novel quality-centric framework for generic deepfake detection, which is composed of a Quality Evaluator, a low-quality data enhancement module, and a learning pacing strategy that explicitly incorporates forgery quality into the training process. The framework is inspired by curriculum learning, which is designed to gradually enable the detector to learn more challenging deepfake samples, starting with easier samples and progressing to more realistic ones. We employ both static and dynamic assessments to assess the forgery quality, combining their scores to produce a final rating for each training sample. The rating score guides the selection of deepfake samples for training, with higher-rated samples having a higher probability of being chosen. Furthermore, we propose a novel frequency data augmentation method specifically designed for low-quality forgery samples, which helps to reduce obvious forgery traces and improve their overall realism. Extensive experiments show that our method can be applied in a plug-and-play manner and significantly enhance the generalization performance.
♻ ☆ Towards Universal Performance Modeling for Machine Learning Training on Multi-GPU Platforms
Characterizing and predicting the training performance of modern machine learning (ML) workloads on compute systems with compute and communication spread between CPUs, GPUs, and network devices is not only the key to optimization and planning but also a complex goal to achieve. The primary challenges include the complexity of synchronization and load balancing between CPUs and GPUs, the variance in input data distribution, and the use of different communication devices and topologies (e.g., NVLink, PCIe, network cards) that connect multiple compute devices, coupled with the desire for flexible training configurations. Built on top of our prior work for single-GPU platforms, we address these challenges and enable multi-GPU performance modeling by incorporating (1) data-distribution-aware performance models for embedding table lookup, and (2) data movement prediction of communication collectives, into our upgraded performance modeling pipeline equipped with inter-and intra-rank synchronization for ML workloads trained on multi-GPU platforms. Beyond accurately predicting the per-iteration training time of DLRM models with random configurations with a geomean error of 5.21% on two multi-GPU platforms, our prediction pipeline generalizes well to other types of ML workloads, such as Transformer-based NLP models with a geomean error of 3.00%. Moreover, even without actually running ML workloads like DLRMs on the hardware, it is capable of generating insights such as quickly selecting the fastest embedding table sharding configuration (with a success rate of 85%).
comment: 13 pages, 11 figures, 4 tables
♻ ☆ Is Attention All You Need For Actigraphy? Foundation Models of Wearable Accelerometer Data for Mental Health Research
Wearable accelerometry (actigraphy) has provided valuable data for clinical insights since the 1970s and is increasingly important as wearable devices continue to become widespread. The effectiveness of actigraphy in research and clinical contexts is heavily dependent on the modeling architecture utilized. To address this, we developed the Pretrained Actigraphy Transformer (PAT)--the first pretrained and fully attention-based model designed specifically to handle actigraphy. PAT was pretrained on actigraphy from 29,307 participants in NHANES, enabling it to deliver state-of-the-art performance when fine-tuned across various actigraphy prediction tasks in the mental health domain, even in data-limited scenarios. For example, when trained to predict benzodiazepine usage using actigraphy from only 500 labeled participants, PAT achieved an 8.8 percentage-point AUC improvement over the best baseline. With fewer than 2 million parameters and built-in model explainability, PAT is robust yet easy to deploy in health research settings. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/
♻ ☆ Self-supervised learning for skin cancer diagnosis with limited training data
Early cancer detection is crucial for prognosis, but many cancer types lack large labelled datasets required for developing deep learning models. This paper investigates self-supervised learning (SSL) as an alternative to the standard supervised pre-training on ImageNet for scenarios with limited training data using a deep learning model (ResNet-50). We first demonstrate that SSL pre-training on ImageNet (via the Barlow Twins SSL algorithm) outperforms supervised pre-training (SL) using a skin lesion dataset with limited training samples. We then consider \textit{further} SSL pre-training (of the two ImageNet pre-trained models) on task-specific datasets, where our implementation is motivated by supervised transfer learning. This approach significantly enhances initially SL pre-trained models, closing the performance gap with initially SSL pre-trained ones. Surprisingly, further pre-training on just the limited fine-tuning data achieves this performance equivalence. Linear probe experiments reveal that improvement stems from enhanced feature extraction. Hence, we find that minimal further SSL pre-training on task-specific data can be as effective as large-scale SSL pre-training on ImageNet for medical image classification tasks with limited labelled data. We validate these results on an oral cancer histopathology dataset, suggesting broader applicability across medical imaging domains facing labelled data scarcity.
♻ ☆ BioNeRF: Biologically Plausible Neural Radiance Fields for View Synthesis
This paper presents BioNeRF, a biologically plausible architecture that models scenes in a 3D representation and synthesizes new views through radiance fields. Since NeRF relies on the network weights to store the scene's 3-dimensional representation, BioNeRF implements a cognitive-inspired mechanism that fuses inputs from multiple sources into a memory-like structure, improving the storing capacity and extracting more intrinsic and correlated information. BioNeRF also mimics a behavior observed in pyramidal cells concerning contextual information, in which the memory is provided as the context and combined with the inputs of two subsequent neural models, one responsible for producing the volumetric densities and the other the colors used to render the scene. Experimental results show that BioNeRF outperforms state-of-the-art results concerning a quality measure that encodes human perception in two datasets: real-world images and synthetic data.
♻ ☆ Exploring Behavior-Relevant and Disentangled Neural Dynamics with Generative Diffusion Models
Understanding the neural basis of behavior is a fundamental goal in neuroscience. Current research in large-scale neuro-behavioral data analysis often relies on decoding models, which quantify behavioral information in neural data but lack details on behavior encoding. This raises an intriguing scientific question: ``how can we enable in-depth exploration of neural representations in behavioral tasks, revealing interpretable neural dynamics associated with behaviors''. However, addressing this issue is challenging due to the varied behavioral encoding across different brain regions and mixed selectivity at the population level. To tackle this limitation, our approach, named ``BeNeDiff'', first identifies a fine-grained and disentangled neural subspace using a behavior-informed latent variable model. It then employs state-of-the-art generative diffusion models to synthesize behavior videos that interpret the neural dynamics of each latent factor. We validate the method on multi-session datasets containing widefield calcium imaging recordings across the dorsal cortex. Through guiding the diffusion model to activate individual latent factors, we verify that the neural dynamics of latent factors in the disentangled neural subspace provide interpretable quantifications of the behaviors of interest. At the same time, the neural subspace in BeNeDiff demonstrates high disentanglement and neural reconstruction quality.
♻ ☆ Towards Black-Box Membership Inference Attack for Diffusion Models
Given the rising popularity of AI-generated art and the associated copyright concerns, identifying whether an artwork was used to train a diffusion model is an important research topic. The work approaches this problem from the membership inference attack (MIA) perspective. We first identify the limitation of applying existing MIA methods for proprietary diffusion models: the required access of internal U-nets. To address the above problem, we introduce a novel membership inference attack method that uses only the image-to-image variation API and operates without access to the model's internal U-net. Our method is based on the intuition that the model can more easily obtain an unbiased noise prediction estimate for images from the training set. By applying the API multiple times to the target image, averaging the outputs, and comparing the result to the original image, our approach can classify whether a sample was part of the training set. We validate our method using DDIM and Stable Diffusion setups and further extend both our approach and existing algorithms to the Diffusion Transformer architecture. Our experimental results consistently outperform previous methods.
♻ ☆ Dense ReLU Neural Networks for Temporal-spatial Model
In this paper, we focus on fully connected deep neural networks utilizing the Rectified Linear Unit (ReLU) activation function for nonparametric estimation. We derive non-asymptotic bounds that lead to convergence rates, addressing both temporal and spatial dependence in the observed measurements. By accounting for dependencies across time and space, our models better reflect the complexities of real-world data, enhancing both predictive performance and theoretical robustness. We also tackle the curse of dimensionality by modeling the data on a manifold, exploring the intrinsic dimensionality of high-dimensional data. We broaden existing theoretical findings of temporal-spatial analysis by applying them to neural networks in more general contexts and demonstrate that our proof techniques are effective for models with short-range dependence. Our empirical simulations across various synthetic response functions underscore the superior performance of our method, outperforming established approaches in the existing literature. These findings provide valuable insights into the strong capabilities of dense neural networks for temporal-spatial modeling across a broad range of function classes.
♻ ☆ Investigating Self-Supervised Image Denoising with Denaturation
Self-supervised learning for image denoising problems in the presence of denaturation for noisy data is a crucial approach in machine learning. However, theoretical understanding of the performance of the approach that uses denatured data is lacking. To provide better understanding of the approach, in this paper, we analyze a self-supervised denoising algorithm that uses denatured data in depth through theoretical analysis and numerical experiments. Through the theoretical analysis, we discuss that the algorithm finds desired solutions to the optimization problem with the population risk, while the guarantee for the empirical risk depends on the hardness of the denoising task in terms of denaturation levels. We also conduct several experiments to investigate the performance of an extended algorithm in practice. The results indicate that the algorithm training with denatured images works, and the empirical performance aligns with the theoretical results. These results suggest several insights for further improvement of self-supervised image denoising that uses denatured data in future directions.
♻ ☆ A Computational Method for Measuring "Open Codes" in Qualitative Analysis
Qualitative analysis is critical to understanding human datasets in many social science disciplines. Open coding is an inductive qualitative process that identifies and interprets "open codes" from datasets. Yet, meeting methodological expectations (such as "as exhaustive as possible") can be challenging. While many machine learning (ML)/generative AI (GAI) studies have attempted to support open coding, few have systematically measured or evaluated GAI outcomes, increasing potential bias risks. Building on Grounded Theory and Thematic Analysis theories, we present a computational method to measure and identify potential biases from "open codes" systematically. Instead of operationalizing human expert results as the "ground truth," our method is built upon a team-based approach between human and machine coders. We experiment with two HCI datasets to establish this method's reliability by 1) comparing it with human analysis, and 2) analyzing its output stability. We present evidence-based suggestions and example workflows for ML/GAI to support open coding.
♻ ☆ Reward-Augmented Data Enhances Direct Preference Alignment of LLMs
Preference alignment in Large Language Models (LLMs) has significantly improved their ability to adhere to human instructions and intentions. However, existing direct alignment algorithms primarily focus on relative preferences and often overlook the qualitative aspects of responses. Striving to maximize the implicit reward gap between the chosen and the slightly inferior rejected responses can cause overfitting and unnecessary unlearning of the high-quality rejected responses. The unawareness of the reward scores also drives the LLM to indiscriminately favor the low-quality chosen responses and fail to generalize to responses with the highest rewards, which are sparse in data. To overcome these shortcomings, our study introduces reward-conditioned LLM policies that discern and learn from the entire spectrum of response quality within the dataset, helping extrapolate to more optimal regions. We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset. This dataset is easily integrated with existing direct alignment algorithms and is applicable to any preference dataset. The experimental results across instruction-following benchmarks including AlpacaEval, MT-Bench, and Arena-Hard-Auto demonstrate that our approach consistently boosts the performance of DPO by a considerable margin across diverse models. Additionally, our method improves the average accuracy on various academic benchmarks. When applying our method to on-policy data, the resulting DPO model achieves SOTA results on AlpacaEval. Through ablation studies, we demonstrate that our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere dataset expansion. Our code is available at https://github.com/shenao-zhang/reward-augmented-preference.
comment: Temporarily modified the author list pending verification from companies
♻ ☆ GPU-Accelerated Counterfactual Regret Minimization
Counterfactual regret minimization is a family of algorithms of no-regret learning dynamics capable of solving large-scale imperfect information games. We propose implementing this algorithm as a series of dense and sparse matrix and vector operations, thereby making it highly parallelizable for a graphical processing unit, at a cost of higher memory usage. Our experiments show that our implementation performs up to about 244.5 times faster than OpenSpiel's Python implementation and, on an expanded set of games, up to about 114.2 times faster than OpenSpiel's C++ implementation and the speedup becomes more pronounced as the size of the game being solved grows.
♻ ☆ Linguistic Collapse: Neural Collapse in (Large) Language Models NeurIPS 2024
Neural collapse ($\mathcal{NC}$) is a phenomenon observed in classification tasks where top-layer representations collapse into their class means, which become equinorm, equiangular and aligned with the classifiers. These behaviours -- associated with generalization and robustness -- would manifest under specific conditions: models are trained towards zero loss, with noise-free labels belonging to balanced classes, which do not outnumber the model's hidden dimension. Recent studies have explored $\mathcal{NC}$ in the absence of one or more of these conditions to extend and capitalize on the associated benefits of ideal geometries. Language modelling presents a curious frontier, as \textit{training by token prediction} constitutes a classification task where none of the conditions exist: the vocabulary is imbalanced and exceeds the embedding dimension; different tokens might correspond to similar contextual embeddings; and large language models (LLMs) in particular are typically only trained for a few epochs. This paper empirically investigates the impact of scaling the architectures and training of causal language models (CLMs) on their progression towards $\mathcal{NC}$. We find that $\mathcal{NC}$ properties that develop with scale (and regularization) are linked to generalization. Moreover, there is evidence of some relationship between $\mathcal{NC}$ and generalization independent of scale. Our work thereby underscores the generality of $\mathcal{NC}$ as it extends to the novel and more challenging setting of language modelling. Downstream, we seek to inspire further research on the phenomenon to deepen our understanding of LLMs -- and neural networks at large -- and improve existing architectures based on $\mathcal{NC}$-related properties. Our code is hosted on GitHub at https://github.com/rhubarbwu/linguistic-collapse .
comment: NeurIPS 2024; 35 pages; 30 figures; reverted to log mean norms for NC2
♻ ☆ Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration NeurIPS2024
Membership Inference Attacks (MIA) aim to infer whether a target data record has been utilized for model training or not. Existing MIAs designed for large language models (LLMs) can be bifurcated into two types: reference-free and reference-based attacks. Although reference-based attacks appear promising performance by calibrating the probability measured on the target model with reference models, this illusion of privacy risk heavily depends on a reference dataset that closely resembles the training set. Both two types of attacks are predicated on the hypothesis that training records consistently maintain a higher probability of being sampled. However, this hypothesis heavily relies on the overfitting of target models, which will be mitigated by multiple regularization methods and the generalization of LLMs. Thus, these reasons lead to high false-positive rates of MIAs in practical scenarios. We propose a Membership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA). Specifically, we introduce a self-prompt approach, which constructs the dataset to fine-tune the reference model by prompting the target LLM itself. In this manner, the adversary can collect a dataset with a similar distribution from public APIs. Furthermore, we introduce probabilistic variation, a more reliable membership signal based on LLM memorization rather than overfitting, from which we rediscover the neighbour attack with theoretical grounding. Comprehensive evaluation conducted on three datasets and four exemplary LLMs shows that SPV-MIA raises the AUC of MIAs from 0.7 to a significantly high level of 0.9. Our code and dataset are available at: https://github.com/tsinghua-fib-lab/NeurIPS2024_SPV-MIA
comment: Repo: https://github.com/tsinghua-fib-lab/NeurIPS2024_SPV-MIA
♻ ☆ Activity Sparsity Complements Weight Sparsity for Efficient RNN Inference NeurIPS 2023
Artificial neural networks open up unprecedented machine learning capabilities at the cost of ever growing computational requirements. Sparsifying the parameters, often achieved through weight pruning, has been identified as a powerful technique to compress the number of model parameters and reduce the computational operations of neural networks. Yet, sparse activations, while omnipresent in both biological neural networks and deep learning systems, have not been fully utilized as a compression technique in deep learning. Moreover, the interaction between sparse activations and weight pruning is not fully understood. In this work, we demonstrate that activity sparsity can compose multiplicatively with parameter sparsity in a recurrent neural network model based on the GRU that is designed to be activity sparse. We achieve up to $20\times$ reduction of computation while maintaining perplexities below $60$ on the Penn Treebank language modeling task. This magnitude of reduction has not been achieved previously with solely sparsely connected LSTMs, and the language modeling performance of our model has not been achieved previously with any sparsely activated recurrent neural networks or spiking neural networks. Neuromorphic computing devices are especially good at taking advantage of the dynamic activity sparsity, and our results provide strong evidence that making deep learning models activity sparse and porting them to neuromorphic devices can be a viable strategy that does not compromise on task performance. Our results also drive further convergence of methods from deep learning and neuromorphic computing for efficient machine learning.
comment: Accepted to the First MLNCP Workshop @ NeurIPS 2023
Multimedia 8
☆ Video-Guided Foley Sound Generation with Multimodal Controls
Generating sound effects for videos often requires creating artistic sound effects that diverge significantly from real-life sources and flexible control in the sound design. To address this problem, we introduce MultiFoley, a model designed for video-guided sound generation that supports multimodal conditioning through text, audio, and video. Given a silent video and a text prompt, MultiFoley allows users to create clean sounds (e.g., skateboard wheels spinning without wind noise) or more whimsical sounds (e.g., making a lion's roar sound like a cat's meow). MultiFoley also allows users to choose reference audio from sound effects (SFX) libraries or partial videos for conditioning. A key novelty of our model lies in its joint training on both internet video datasets with low-quality audio and professional SFX recordings, enabling high-quality, full-bandwidth (48kHz) audio generation. Through automated evaluations and human studies, we demonstrate that MultiFoley successfully generates synchronized high-quality sounds across varied conditional inputs and outperforms existing methods. Please see our project page for video results: https://ificl.github.io/MultiFoley/
comment: Project site: https://ificl.github.io/MultiFoley/
☆ Visatronic: A Multimodal Decoder-Only Model for Speech Synthesis
In this paper, we propose a new task -- generating speech from videos of people and their transcripts (VTTS) -- to motivate new techniques for multimodal speech generation. This task generalizes the task of generating speech from cropped lip videos, and is also more complicated than the task of generating generic audio clips (e.g., dog barking) from videos and text. Multilingual versions of the task could lead to new techniques for cross-lingual dubbing. We also present a decoder-only multimodal model for this task, which we call Visatronic. This model embeds vision, text and speech directly into the common subspace of a transformer model and uses an autoregressive loss to learn a generative model of discretized mel-spectrograms conditioned on speaker videos and transcripts of their speech. By embedding all modalities into a common subspace, Visatronic can achieve improved results over models that use only text or video as input. Further, it presents a much simpler approach for multimodal speech generation compared to prevailing approaches which rely on lip-detectors and complicated architectures to fuse modalities while producing better results. Since the model is flexible enough to accommodate different ways of ordering inputs as a sequence, we carefully explore different strategies to better understand the best way to propagate information to the generative steps. To facilitate further research on VTTS, we will release (i) our code, (ii) clean transcriptions for the large-scale VoxCeleb2 dataset, and (iii) a standardized evaluation protocol for VTTS incorporating both objective and subjective metrics.
☆ Identity-Preserving Text-to-Video Generation by Frequency Decomposition
Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity. It is an important task in video generation but remains an open problem for generative models. This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in literature: (1) A tuning-free pipeline without tedious case-by-case finetuning, and (2) A frequency-aware heuristic identity-preserving DiT-based control scheme. We propose ConsisID, a tuning-free DiT-based controllable IPT2V model to keep human identity consistent in the generated video. Inspired by prior findings in frequency analysis of diffusion transformers, it employs identity-control signals in the frequency domain, where facial features can be decomposed into low-frequency global features and high-frequency intrinsic features. First, from a low-frequency perspective, we introduce a global facial extractor, which encodes reference images and facial key points into a latent space, generating features enriched with low-frequency information. These features are then integrated into shallow layers of the network to alleviate training challenges associated with DiT. Second, from a high-frequency perspective, we design a local facial extractor to capture high-frequency details and inject them into transformer blocks, enhancing the model's ability to preserve fine-grained features. We propose a hierarchical training strategy to leverage frequency information for identity preservation, transforming a vanilla pre-trained video generation model into an IPT2V model. Extensive experiments demonstrate that our frequency-aware heuristic scheme provides an optimal control solution for DiT-based models. Thanks to this scheme, our ConsisID generates high-quality, identity-preserving videos, making strides towards more effective IPT2V.
comment: 12 pages, 8 figures
☆ Beyond Walking: A Large-Scale Image-Text Benchmark for Text-based Person Anomaly Search
Text-based person search aims to retrieve specific individuals across camera networks using natural language descriptions. However, current benchmarks often exhibit biases towards common actions like walking or standing, neglecting the critical need for identifying abnormal behaviors in real-world scenarios. To meet such demands, we propose a new task, text-based person anomaly search, locating pedestrians engaged in both routine or anomalous activities via text. To enable the training and evaluation of this new task, we construct a large-scale image-text Pedestrian Anomaly Behavior (PAB) benchmark, featuring a broad spectrum of actions, e.g., running, performing, playing soccer, and the corresponding anomalies, e.g., lying, being hit, and falling of the same identity. The training set of PAB comprises 1,013,605 synthesized image-text pairs of both normalities and anomalies, while the test set includes 1,978 real-world image-text pairs. To validate the potential of PAB, we introduce a cross-modal pose-aware framework, which integrates human pose patterns with identity-based hard negative pair sampling. Extensive experiments on the proposed benchmark show that synthetic training data facilitates the fine-grained behavior retrieval in the real-world test set, while the proposed pose-aware method further improves the recall@1 by 2.88%. We will release the dataset, code, and checkpoints to facilitate further research and ensure the reproducibility of our results.
♻ ☆ Health AI Developer Foundations
Robust medical Machine Learning (ML) models have the potential to revolutionize healthcare by accelerating clinical research, improving workflows and outcomes, and producing novel insights or capabilities. Developing such ML models from scratch is cost prohibitive and requires substantial compute, data, and time (e.g., expert labeling). To address these challenges, we introduce Health AI Developer Foundations (HAI-DEF), a suite of pre-trained, domain-specific foundation models, tools, and recipes to accelerate building ML for health applications. The models cover various modalities and domains, including radiology (X-rays and computed tomography), histopathology, dermatological imaging, and audio. These models provide domain specific embeddings that facilitate AI development with less labeled data, shorter training times, and reduced computational costs compared to traditional approaches. In addition, we utilize a common interface and style across these models, and prioritize usability to enable developers to integrate HAI-DEF efficiently. We present model evaluations across various tasks and conclude with a discussion of their application and evaluation, covering the importance of ensuring efficacy, fairness, and equity. Finally, while HAI-DEF and specifically the foundation models lower the barrier to entry for ML in healthcare, we emphasize the importance of validation with problem- and population-specific data for each desired usage setting. This technical report will be updated over time as more modalities and features are added.
comment: 16 pages, 8 figures
♻ ☆ Automatic Album Sequencing
Album sequencing is a critical part of the album production process. Recently, a data-driven approach was proposed that sequences general collections of independent media by extracting the narrative essence of the items in the collections. While this approach implies an album sequencing technique, it is not widely accessible to a less technical audience, requiring advanced knowledge of machine learning techniques to use. To address this, we introduce a new user-friendly web-based tool that allows a less technical audience to upload music tracks, execute this technique in one click, and subsequently presents the result in a clean visualization to the user. To both increase the number of templates available to the user and address shortcomings of previous work, we also introduce a new direct transformer-based album sequencing method. We find that our more direct method outperforms a random baseline but does not reach the same performance as the narrative essence approach. Both methods are included in our web-based user interface, and this -- alongside a full copy of our implementation -- is publicly available at https://github.com/dylanashley/automatic-album-sequencing
comment: presented as a late breaking demo in the 25th International Society for Music Information Retrieval Conference; 3 pages in main text + 1 page of references, 3 figures in main text; source code available at https://github.com/dylanashley/automatic-album-sequencing
♻ ☆ WavChat: A Survey of Spoken Dialogue Models
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat.
comment: 60 papes, working in progress
♻ ☆ Gotta Hear Them All: Sound Source Aware Vision to Audio Generation
Vision-to-audio (V2A) synthesis has broad applications in multimedia. Recent advancements of V2A methods have made it possible to generate relevant audios from inputs of videos or still images. However, the immersiveness and expressiveness of the generation are limited. One possible problem is that existing methods solely rely on the global scene and overlook details of local sounding objects (i.e., sound sources). To address this issue, we propose a Sound Source-Aware V2A (SSV2A) generator. SSV2A is able to locally perceive multimodal sound sources from a scene with visual detection and cross-modality translation. It then contrastively learns a Cross-Modal Sound Source (CMSS) Manifold to semantically disambiguate each source. Finally, we attentively mix their CMSS semantics into a rich audio representation, from which a pretrained audio generator outputs the sound. To model the CMSS manifold, we curate a novel single-sound-source visual-audio dataset VGGS3 from VGGSound. We also design a Sound Source Matching Score to measure localized audio relevance. This is to our knowledge the first work to address V2A generation at the sound-source level. Extensive experiments show that SSV2A surpasses state-of-the-art methods in both generation fidelity and relevance. We further demonstrate SSV2A's ability to achieve intuitive V2A control by compositing vision, text, and audio conditions. Our SSV2A generation can be tried and heard at https://ssv2a.github.io/SSV2A-demo .
comment: 16 pages, 9 figures, source code released at https://github.com/wguo86/SSV2A
Artificial Intelligent 192
☆ StableAnimator: High-Quality Identity-Preserving Human Image Animation
Current diffusion models for human image animation struggle to ensure identity (ID) consistency. This paper presents StableAnimator, the first end-to-end ID-preserving video diffusion framework, which synthesizes high-quality videos without any post-processing, conditioned on a reference image and a sequence of poses. Building upon a video diffusion model, StableAnimator contains carefully designed modules for both training and inference striving for identity consistency. In particular, StableAnimator begins by computing image and face embeddings with off-the-shelf extractors, respectively and face embeddings are further refined by interacting with image embeddings using a global content-aware Face Encoder. Then, StableAnimator introduces a novel distribution-aware ID Adapter that prevents interference caused by temporal layers while preserving ID via alignment. During inference, we propose a novel Hamilton-Jacobi-Bellman (HJB) equation-based optimization to further enhance the face quality. We demonstrate that solving the HJB equation can be integrated into the diffusion denoising process, and the resulting solution constrains the denoising path and thus benefits ID preservation. Experiments on multiple benchmarks show the effectiveness of StableAnimator both qualitatively and quantitatively.
☆ RealSeal: Revolutionizing Media Authentication with Real-Time Realism Scoring
The growing threat of deepfakes and manipulated media necessitates a radical rethinking of media authentication. Existing methods for watermarking synthetic data fall short, as they can be easily removed or altered, and current deepfake detection algorithms do not achieve perfect accuracy. Provenance techniques, which rely on metadata to verify content origin, fail to address the fundamental problem of staged or fake media. This paper introduces a groundbreaking paradigm shift in media authentication by advocating for the watermarking of real content at its source, as opposed to watermarking synthetic data. Our innovative approach employs multisensory inputs and machine learning to assess the realism of content in real-time and across different contexts. We propose embedding a robust realism score within the image metadata, fundamentally transforming how images are trusted and circulated. By combining established principles of human reasoning about reality, rooted in firmware and hardware security, with the sophisticated reasoning capabilities of contemporary machine learning systems, we develop a holistic approach that analyzes information from multiple perspectives. This ambitious, blue sky approach represents a significant leap forward in the field, pushing the boundaries of media authenticity and trust. By embracing cutting-edge advancements in technology and interdisciplinary research, we aim to establish a new standard for verifying the authenticity of digital media.
comment: Best Paper Award, Blue Sky Track at 26th ACM International Conference on Multimodal Interaction, Nov 2024, San Jose, Costa Rica
☆ Explainable AI for Classifying UTI Risk Groups Using a Real-World Linked EHR and Pathology Lab Dataset
The use of machine learning and AI on electronic health records (EHRs) holds substantial potential for clinical insight. However, this approach faces significant challenges due to data heterogeneity, sparsity, temporal misalignment, and limited labeled outcomes. In this context, we leverage a linked EHR dataset of approximately one million de-identified individuals from Bristol, North Somerset, and South Gloucestershire, UK, to characterize urinary tract infections (UTIs) and develop predictive models focused on data quality, fairness and transparency. A comprehensive data pre-processing and curation pipeline transforms the raw EHR data into a structured format suitable for AI modeling. Given the limited availability and biases of ground truth UTI outcomes, we introduce a UTI risk estimation framework informed by clinical expertise to estimate UTI risk across individual patient timelines. Using this framework, we built pairwise XGBoost models to differentiate UTI risk categories with explainable AI techniques to identify key predictors while ensuring interpretability. Our findings reveal differences in clinical and demographic factors across risk groups, offering insights into UTI risk stratification and progression. This study demonstrates the added value of AI-driven insights into UTI clinical decision-making while prioritizing interpretability, transparency, and fairness, underscoring the importance of sound data practices in advancing health outcomes.
☆ MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation. While recent efforts in robotics have leveraged LLMs both for high-level and low-level planning, these approaches often face significant challenges, such as hallucinations in long-horizon tasks and limited adaptability due to the generation of plans in a single pass without real-time feedback. To address these limitations, we propose a novel multi-agent LLM framework, Multi-Agent Large Language Model for Manipulation (MALMM) that distributes high-level planning and low-level control code generation across specialized LLM agents, supervised by an additional agent that dynamically manages transitions. By incorporating observations from the environment after each step, our framework effectively handles intermediate failures and enables adaptive re-planning. Unlike existing methods, our approach does not rely on pre-trained skill policies or in-context learning examples and generalizes to a variety of new tasks. We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting, thereby overcoming key limitations of existing LLM-based manipulation methods.
comment: 48 pages
☆ Learning Chemical Reaction Representation with Reactant-Product Alignment
Organic synthesis stands as a cornerstone of chemical industry. The development of robust machine learning models to support tasks associated with organic reactions is of significant interest. However, current methods rely on hand-crafted features or direct adaptations of model architectures from other domains, which lacks feasibility as data scales increase or overlook the rich chemical information inherent in reactions. To address these issues, this paper introduces {\modelname}, a novel chemical reaction representation learning model tailored for a variety of organic-reaction-related tasks. By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction, thereby enhancing the comprehension of the reaction mechanism. We have designed an adapter structure to incorporate reaction conditions into the chemical reaction representation, allowing the model to handle diverse reaction conditions and adapt to various datasets and downstream tasks, e.g., reaction performance prediction. Additionally, we introduce a reaction-center aware attention mechanism that enables the model to concentrate on key functional groups, thereby generating potent representations for chemical reactions. Our model has been evaluated on a range of downstream tasks, including reaction condition prediction, reaction yield prediction, and reaction selectivity prediction. Experimental results indicate that our model markedly outperforms existing chemical reaction representation learning architectures across all tasks. Notably, our model significantly outperforms all the baselines with up to 25\% (top-1) and 16\% (top-10) increased accuracy over the strongest baseline on USPTO\_CONDITION dataset for reaction condition prediction. We plan to open-source the code contingent upon the acceptance of the paper.
☆ Machine Learning and Multi-source Remote Sensing in Forest Carbon Stock Estimation: A Review
Quantifying forest carbon is crucial for informing decisions and policies that will protect the planet. Machine learning (ML) and remote sensing (RS) techniques have been used to do this task more effectively, yet there lacks a systematic review on the most recent ML methods and RS combinations, especially with the consideration of forest characteristics. This study systematically analyzed 25 papers meeting strict inclusion criteria from over 80 related studies, identifying 28 ML methods and key combinations of RS data. Random Forest had the most frequent appearance (88\% of studies), while Extreme Gradient Boosting showed superior performance in 75\% of the studies in which it was compared with other methods. Sentinel-1 emerged as the most utilized remote sensing source, with multi-sensor approaches (e.g., Sentinel-1, Sentinel-2, and LiDAR) proving especially effective. Our findings provide grounds for recommending best practices in integrating machine learning and remote sensing for accurate and scalable forest carbon stock estimation.
comment: First author and corresponding author: Autumn Nguyen
☆ Automating Chapter-Level Classification for Electronic Theses and Dissertations
Traditional archival practices for describing electronic theses and dissertations (ETDs) rely on broad, high-level metadata schemes that fail to capture the depth, complexity, and interdisciplinary nature of these long scholarly works. The lack of detailed, chapter-level content descriptions impedes researchers' ability to locate specific sections or themes, thereby reducing discoverability and overall accessibility. By providing chapter-level metadata information, we improve the effectiveness of ETDs as research resources. This makes it easier for scholars to navigate them efficiently and extract valuable insights. The absence of such metadata further obstructs interdisciplinary research by obscuring connections across fields, hindering new academic discoveries and collaboration. In this paper, we propose a machine learning and AI-driven solution to automatically categorize ETD chapters. This solution is intended to improve discoverability and promote understanding of chapters. Our approach enriches traditional archival practices by providing context-rich descriptions that facilitate targeted navigation and improved access. We aim to support interdisciplinary research and make ETDs more accessible. By providing chapter-level classification labels and using them to index in our developed prototype system, we make content in ETD chapters more discoverable and usable for a diverse range of scholarly needs. Implementing this AI-enhanced approach allows archives to serve researchers better, enabling efficient access to relevant information and supporting deeper engagement with ETDs. This will increase the impact of ETDs as research tools, foster interdisciplinary exploration, and reinforce the role of archives in scholarly communication within the data-intensive academic landscape.
☆ Mixed-State Quantum Denoising Diffusion Probabilistic Model
Generative quantum machine learning has gained significant attention for its ability to produce quantum states with desired distributions. Among various quantum generative models, quantum denoising diffusion probabilistic models (QuDDPMs) [Phys. Rev. Lett. 132, 100602 (2024)] provide a promising approach with stepwise learning that resolves the training issues. However, the requirement of high-fidelity scrambling unitaries in QuDDPM poses a challenge in near-term implementation. We propose the \textit{mixed-state quantum denoising diffusion probabilistic model} (MSQuDDPM) to eliminate the need for scrambling unitaries. Our approach focuses on adapting the quantum noise channels to the model architecture, which integrates depolarizing noise channels in the forward diffusion process and parameterized quantum circuits with projective measurements in the backward denoising steps. We also introduce several techniques to improve MSQuDDPM, including a cosine-exponent schedule of noise interpolation, the use of single-qubit random ancilla, and superfidelity-based cost functions to enhance the convergence. We evaluate MSQuDDPM on quantum ensemble generation tasks, demonstrating its successful performance.
comment: 7 pages, 7 figures
☆ Making History Readable
The Virginia Tech University Libraries (VTUL) Digital Library Platform (DLP) hosts digital collections that offer our users access to a wide variety of documents of historical and cultural importance. These collections are not only of academic importance but also provide our users with a glance at local historical events. Our DLP contains collections comprising digital objects featuring complex layouts, faded imagery, and hard-to-read handwritten text, which makes providing online access to these materials challenging. To address these issues, we integrate AI into our DLP workflow and convert the text in the digital objects into a machine-readable format. To enhance the user experience with our historical collections, we use custom AI agents for handwriting recognition, text extraction, and large language models (LLMs) for summarization. This poster highlights three collections focusing on handwritten letters, newspapers, and digitized topographic maps. We discuss the challenges with each collection and detail our approaches to address them. Our proposed methods aim to enhance the user experience by making the contents in these collections easier to search and navigate.
☆ Agentic AI for Improving Precision in Identifying Contributions to Sustainable Development Goals
As research institutions increasingly commit to supporting the United Nations' Sustainable Development Goals (SDGs), there is a pressing need to accurately assess their research output against these goals. Current approaches, primarily reliant on keyword-based Boolean search queries, conflate incidental keyword matches with genuine contributions, reducing retrieval precision and complicating benchmarking efforts. This study investigates the application of autoregressive Large Language Models (LLMs) as evaluation agents to identify relevant scholarly contributions to SDG targets in scholarly publications. Using a dataset of academic abstracts retrieved via SDG-specific keyword queries, we demonstrate that small, locally-hosted LLMs can differentiate semantically relevant contributions to SDG targets from documents retrieved due to incidental keyword matches, addressing the limitations of traditional methods. By leveraging the contextual understanding of LLMs, this approach provides a scalable framework for improving SDG-related research metrics and informing institutional reporting.
☆ What Differentiates Educational Literature? A Multimodal Fusion Approach of Transformers and Computational Linguistics
The integration of new literature into the English curriculum remains a challenge since educators often lack scalable tools to rapidly evaluate readability and adapt texts for diverse classroom needs. This study proposes to address this gap through a multimodal approach that combines transformer-based text classification with linguistic feature analysis to align texts with UK Key Stages. Eight state-of-the-art Transformers were fine-tuned on segmented text data, with BERT achieving the highest unimodal F1 score of 0.75. In parallel, 500 deep neural network topologies were searched for the classification of linguistic characteristics, achieving an F1 score of 0.392. The fusion of these modalities shows a significant improvement, with every multimodal approach outperforming all unimodal models. In particular, the ELECTRA Transformer fused with the neural network achieved an F1 score of 0.996. The proposed approach is finally encapsulated in a stakeholder-facing web application, providing non-technical stakeholder access to real-time insights on text complexity, reading difficulty, curriculum alignment, and recommendations for learning age range. The application empowers data-driven decision making and reduces manual workload by integrating AI-based recommendations into lesson planning for English literature.
☆ Learning Explainable Treatment Policies with Clinician-Informed Representations: A Practical Approach ML4H
Digital health interventions (DHIs) and remote patient monitoring (RPM) have shown great potential in improving chronic disease management through personalized care. However, barriers like limited efficacy and workload concerns hinder adoption of existing DHIs; while limited sample sizes and lack of interpretability limit the effectiveness and adoption of purely black-box algorithmic DHIs. In this paper, we address these challenges by developing a pipeline for learning explainable treatment policies for RPM-enabled DHIs. We apply our approach in the real-world setting of RPM using a DHI to improve glycemic control of youth with type 1 diabetes. Our main contribution is to reveal the importance of clinical domain knowledge in developing state and action representations for effective, efficient, and interpretable targeting policies. We observe that policies learned from clinician-informed representations are significantly more efficacious and efficient than policies learned from black-box representations. This work emphasizes the importance of collaboration between ML researchers and clinicians for developing effective DHIs in the real world.
comment: Proceedings of Machine Learning for Health (ML4H) 2024. Code available at: https://github.com/jferstad/ml4h-explainable-policies
☆ A Bilayer Segmentation-Recombination Network for Accurate Segmentation of Overlapping C. elegans
Caenorhabditis elegans (C. elegans) is an excellent model organism because of its short lifespan and high degree of homology with human genes, and it has been widely used in a variety of human health and disease models. However, the segmentation of C. elegans remains challenging due to the following reasons: 1) the activity trajectory of C. elegans is uncontrollable, and multiple nematodes often overlap, resulting in blurred boundaries of C. elegans. This makes it impossible to clearly study the life trajectory of a certain nematode; and 2) in the microscope images of overlapping C. elegans, the translucent tissues at the edges obscure each other, leading to inaccurate boundary segmentation. To solve these problems, a Bilayer Segmentation-Recombination Network (BR-Net) for the segmentation of C. elegans instances is proposed. The network consists of three parts: A Coarse Mask Segmentation Module (CMSM), a Bilayer Segmentation Module (BSM), and a Semantic Consistency Recombination Module (SCRM). The CMSM is used to extract the coarse mask, and we introduce a Unified Attention Module (UAM) in CMSM to make CMSM better aware of nematode instances. The Bilayer Segmentation Module (BSM) segments the aggregated C. elegans into overlapping and non-overlapping regions. This is followed by integration by the SCRM, where semantic consistency regularization is introduced to segment nematode instances more accurately. Finally, the effectiveness of the method is verified on the C. elegans dataset. The experimental results show that BR-Net exhibits good competitiveness and outperforms other recently proposed instance segmentation methods in processing C. elegans occlusion images.
☆ Rapid Deployment of Domain-specific Hyperspectral Image Processors with Application to Autonomous Driving
The article discusses the use of low cost System-On-Module (SOM) platforms for the implementation of efficient hyperspectral imaging (HSI) processors for application in autonomous driving. The work addresses the challenges of shaping and deploying multiple layer fully convolutional networks (FCN) for low-latency, on-board image semantic segmentation using resource- and power-constrained processing devices. The paper describes in detail the steps followed to redesign and customize a successfully trained HSI segmentation lightweight FCN that was previously tested on a high-end heterogeneous multiprocessing system-on-chip (MPSoC) to accommodate it to the constraints imposed by a low-cost SOM. This SOM features a lower-end but much cheaper MPSoC suitable for the deployment of automatic driving systems (ADS). In particular the article reports the data- and hardware-specific quantization techniques utilized to fit the FCN into a commercial fixed-point programmable AI coprocessor IP, and proposes a full customized post-training quantization scheme to reduce computation and storage costs without compromising segmentation accuracy.
☆ AI-Augmented Ethical Hacking: A Practical Examination of Manual Exploitation and Privilege Escalation in Linux Environments
This study explores the application of generative AI (GenAI) within manual exploitation and privilege escalation tasks in Linux-based penetration testing environments, two areas critical to comprehensive cybersecurity assessments. Building on previous research into the role of GenAI in the ethical hacking lifecycle, this paper presents a hands-on experimental analysis conducted in a controlled virtual setup to evaluate the utility of GenAI in supporting these crucial, often manual, tasks. Our findings demonstrate that GenAI can streamline processes, such as identifying potential attack vectors and parsing complex outputs for sensitive data during privilege escalation. The study also identifies key benefits and challenges associated with GenAI, including enhanced efficiency and scalability, alongside ethical concerns related to data privacy, unintended discovery of vulnerabilities, and potential for misuse. This work contributes to the growing field of AI-assisted cybersecurity by emphasising the importance of human-AI collaboration, especially in contexts requiring careful decision-making, rather than the complete replacement of human input.
comment: 101 pages
☆ HSI-Drive v2.0: More Data for New Challenges in Scene Understanding for Autonomous Driving
We present the updated version of the HSI-Drive dataset aimed at developing automated driving systems (ADS) using hyperspectral imaging (HSI). The v2.0 version includes new annotated images from videos recorded during winter and fall in real driving scenarios. Added to the spring and summer images included in the previous v1.1 version, the new dataset contains 752 images covering the four seasons. In this paper, we show the improvements achieved over previously published results obtained on the v1.1 dataset, showcasing the enhanced performance of models trained on the new v2.0 dataset. We also show the progress made in comprehensive scene understanding by experimenting with more capable image segmentation models. These models include new segmentation categories aimed at the identification of essential road safety objects such as the presence of vehicles and road signs, as well as highly vulnerable groups like pedestrians and cyclists. In addition, we provide evidence of the performance and robustness of the models when applied to segmenting HSI video sequences captured in various environments and conditions. Finally, for a correct assessment of the results described in this work, the constraints imposed by the processing platforms that can sensibly be deployed in vehicles for ADS must be taken into account. Thus, and although implementation details are out of the scope of this paper, we focus our research on the development of computationally efficient, lightweight ML models that can eventually operate at high throughput rates. The dataset and some examples of segmented videos are available in https://ipaccess.ehu.eus/HSI-Drive/.
☆ On Statistical Rates of Conditional Diffusion Transformers: Approximation, Estimation and Minimax Optimality
We investigate the approximation and estimation rates of conditional diffusion transformers (DiTs) with classifier-free guidance. We present a comprehensive analysis for ``in-context'' conditional DiTs under four common data assumptions. We show that both conditional DiTs and their latent variants lead to the minimax optimality of unconditional DiTs under identified settings. Specifically, we discretize the input domains into infinitesimal grids and then perform a term-by-term Taylor expansion on the conditional diffusion score function under H\"older smooth data assumption. This enables fine-grained use of transformers' universal approximation through a more detailed piecewise constant approximation and hence obtains tighter bounds. Additionally, we extend our analysis to the latent setting under the linear latent subspace assumption. We not only show that latent conditional DiTs achieve lower bounds than conditional DiTs both in approximation and estimation, but also show the minimax optimality of latent unconditional DiTs. Our findings establish statistical limits for conditional and unconditional DiTs, and offer practical guidance toward developing more efficient and accurate DiT models.
☆ Inference Scaling $\scriptsize\mathtt{F}$Laws: The Limits of LLM Resampling with Imperfect Verifiers
Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.
☆ What's in the Image? A Deep-Dive into the Vision of Vision Language Models
Vision-Language Models (VLMs) have recently demonstrated remarkable capabilities in comprehending complex visual content. However, the mechanisms underlying how VLMs process visual information remain largely unexplored. In this paper, we conduct a thorough empirical analysis, focusing on attention modules across layers. We reveal several key insights about how these models process visual data: (i) the internal representation of the query tokens (e.g., representations of "describe the image"), is utilized by VLMs to store global image information; we demonstrate that these models generate surprisingly descriptive responses solely from these tokens, without direct access to image tokens. (ii) Cross-modal information flow is predominantly influenced by the middle layers (approximately 25% of all layers), while early and late layers contribute only marginally.(iii) Fine-grained visual attributes and object details are directly extracted from image tokens in a spatially localized manner, i.e., the generated tokens associated with a specific object or attribute attend strongly to their corresponding regions in the image. We propose novel quantitative evaluation to validate our observations, leveraging real-world complex visual scenes. Finally, we demonstrate the potential of our findings in facilitating efficient visual processing in state-of-the-art VLMs.
☆ Puzzle Similarity: A Perceptually-guided No-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of no-reference image metrics in predicting detailed artifact maps. The absence of such quality metrics hinders accurate predictions of the quality of generated views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. In this work, we propose a new no-reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the input views to establish a scene-specific distribution that is later used to identify poorly reconstructed regions in the novel views. We test and evaluate our method in the context of 3D reconstruction; to this end, we collected a novel dataset of human quality assessment in unseen reconstructed views. Through this dataset, we demonstrate that our method can not only successfully localize artifacts in novel views, correlating with human assessment, but do so without direct references. Surprisingly, our metric outperforms both no-reference metrics and popular full-reference image metrics. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs.
☆ ShowUI: One Vision-Language-Action Model for GUI Visual Agent
Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity. While most agents are language-based, relying on closed-source API with text-rich meta-information (e.g., HTML or accessibility tree), they show limitations in perceiving UI visuals as humans do, highlighting the need for GUI visual agents. In this work, we develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations: (i) UI-Guided Visual Token Selection to reduce computational costs by formulating screenshots as an UI connected graph, adaptively identifying their redundant relationship and serve as the criteria for token selection during self-attention blocks; (ii) Interleaved Vision-Language-Action Streaming that flexibly unifies diverse needs within GUI tasks, enabling effective management of visual-action history in navigation or pairing multi-turn query-action sequences per screenshot to enhance training efficiency; (iii) Small-scale High-quality GUI Instruction-following Datasets by careful data curation and employing a resampling strategy to address significant data type imbalances. With above components, ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding. Its UI-guided token selection further reduces 33% of redundant visual tokens during training and speeds up the performance by 1.4x. Navigation experiments across web Mind2Web, mobile AITW, and online MiniWob environments further underscore the effectiveness and potential of our model in advancing GUI visual agents. The models are available at https://github.com/showlab/ShowUI.
comment: Technical Report. Github: https://github.com/showlab/ShowUI
☆ SoK: Decentralized AI (DeAI)
The centralization of Artificial Intelligence (AI) poses significant challenges, including single points of failure, inherent biases, data privacy concerns, and scalability issues. These problems are especially prevalent in closed-source large language models (LLMs), where user data is collected and used without transparency. To mitigate these issues, blockchain-based decentralized AI (DeAI) has emerged as a promising solution. DeAI combines the strengths of both blockchain and AI technologies to enhance the transparency, security, decentralization, and trustworthiness of AI systems. However, a comprehensive understanding of state-of-the-art DeAI development, particularly for active industry solutions, is still lacking. In this work, we present a Systematization of Knowledge (SoK) for blockchain-based DeAI solutions. We propose a taxonomy to classify existing DeAI protocols based on the model lifecycle. Based on this taxonomy, we provide a structured way to clarify the landscape of DeAI protocols and identify their similarities and differences. We analyze the functionalities of blockchain in DeAI, investigating how blockchain features contribute to enhancing the security, transparency, and trustworthiness of AI processes, while also ensuring fair incentives for AI data and model contributors. In addition, we identify key insights and research gaps in developing DeAI protocols, highlighting several critical avenues for future research.
comment: This is a Systematization of Knowledge (SoK) for the rapidly evolving field of Decentralized AI (DeAI). We welcome valuable comments, suggestions, and collaboration to further refine and enhance this work. We hope our contribution will help accelerate the advancement of DeAI
☆ WF-VAE: Enhancing Video VAE by Wavelet-Driven Energy Flow for Latent Video Diffusion Model
Video Variational Autoencoder (VAE) encodes videos into a low-dimensional latent space, becoming a key component of most Latent Video Diffusion Models (LVDMs) to reduce model training costs. However, as the resolution and duration of generated videos increase, the encoding cost of Video VAEs becomes a limiting bottleneck in training LVDMs. Moreover, the block-wise inference method adopted by most LVDMs can lead to discontinuities of latent space when processing long-duration videos. The key to addressing the computational bottleneck lies in decomposing videos into distinct components and efficiently encoding the critical information. Wavelet transform can decompose videos into multiple frequency-domain components and improve the efficiency significantly, we thus propose Wavelet Flow VAE (WF-VAE), an autoencoder that leverages multi-level wavelet transform to facilitate low-frequency energy flow into latent representation. Furthermore, we introduce a method called Causal Cache, which maintains the integrity of latent space during block-wise inference. Compared to state-of-the-art video VAEs, WF-VAE demonstrates superior performance in both PSNR and LPIPS metrics, achieving 2x higher throughput and 4x lower memory consumption while maintaining competitive reconstruction quality. Our code and models are available at https://github.com/PKU-YuanGroup/WF-VAE.
comment: 8 pages, 7 figures
☆ Spatially Visual Perception for End-to-End Robotic Learning
Recent advances in imitation learning have shown significant promise for robotic control and embodied intelligence. However, achieving robust generalization across diverse mounted camera observations remains a critical challenge. In this paper, we introduce a video-based spatial perception framework that leverages 3D spatial representations to address environmental variability, with a focus on handling lighting changes. Our approach integrates a novel image augmentation technique, AugBlender, with a state-of-the-art monocular depth estimation model trained on internet-scale data. Together, these components form a cohesive system designed to enhance robustness and adaptability in dynamic scenarios. Our results demonstrate that our approach significantly boosts the success rate across diverse camera exposures, where previous models experience performance collapse. Our findings highlight the potential of video-based spatial perception models in advancing robustness for end-to-end robotic learning, paving the way for scalable, low-cost solutions in embodied intelligence.
comment: 8 pages, 5 figures
☆ Object-centric proto-symbolic behavioural reasoning from pixels
Autonomous intelligent agents must bridge computational challenges at disparate levels of abstraction, from the low-level spaces of sensory input and motor commands to the high-level domain of abstract reasoning and planning. A key question in designing such agents is how best to instantiate the representational space that will interface between these two levels -- ideally without requiring supervision in the form of expensive data annotations. These objectives can be efficiently achieved by representing the world in terms of objects (grounded in perception and action). In this work, we present a novel, brain-inspired, deep-learning architecture that learns from pixels to interpret, control, and reason about its environment, using object-centric representations. We show the utility of our approach through tasks in synthetic environments that require a combination of (high-level) logical reasoning and (low-level) continuous control. Results show that the agent can learn emergent conditional behavioural reasoning, such as $(A \to B) \land (\neg A \to C)$, as well as logical composition $(A \to B) \land (A \to C) \vdash A \to (B \land C)$ and XOR operations, and successfully controls its environment to satisfy objectives deduced from these logical rules. The agent can adapt online to unexpected changes in its environment and is robust to mild violations of its world model, thanks to dynamic internal desired goal generation. While the present results are limited to synthetic settings (2D and 3D activated versions of dSprites), which fall short of real-world levels of complexity, the proposed architecture shows how to manipulate grounded object representations, as a key inductive bias for unsupervised learning, to enable behavioral reasoning.
☆ LC-SVD-DLinear: A low-cost physics-based hybrid machine learning model for data forecasting using sparse measurements
This article introduces a novel methodology that integrates singular value decomposition (SVD) with a shallow linear neural network for forecasting high resolution fluid mechanics data. The method, termed LC-SVD-DLinear, combines a low-cost variant of singular value decomposition (LC-SVD) with the DLinear architecture, which decomposes the input features-specifically, the temporal coefficients-into trend and seasonality components, enabling a shallow neural network to capture the non-linear dynamics of the temporal data. This methodology uses under-resolved data, which can either be input directly into the hybrid model or downsampled from high resolution using two distinct techniques provided by the methodology. Working with under-resolved cases helps reduce the overall computational cost. Additionally, we present a variant of the method, LC-HOSVD-DLinear, which combines a low-cost version of the high-order singular value decomposition (LC-HOSVD) algorithm with the DLinear network, designed for high-order data. These approaches have been validated using two datasets: first, a numerical simulation of three-dimensional flow past a circular cylinder at $Re = 220$; and second, an experimental dataset of turbulent flow passing a circular cylinder at $Re = 2600$. The combination of these datasets demonstrates the robustness of the method. The forecasting and reconstruction results are evaluated through various error metrics, including uncertainty quantification. The work developed in this article will be included in the next release of ModelFLOWs-app
☆ Rewiring Techniques to Mitigate Oversquashing and Oversmoothing in GNNs: A Survey
Graph Neural Networks (GNNs) are powerful tools for learning from graph-structured data, but their effectiveness is often constrained by two critical challenges: oversquashing, where the excessive compression of information from distant nodes results in significant information loss, and oversmoothing, where repeated message-passing iterations homogenize node representations, obscuring meaningful distinctions. These issues, intrinsically linked to the underlying graph structure, hinder information flow and constrain the expressiveness of GNNs. In this survey, we examine graph rewiring techniques, a class of methods designed to address these structural bottlenecks by modifying graph topology to enhance information diffusion. We provide a comprehensive review of state-of-the-art rewiring approaches, delving into their theoretical underpinnings, practical implementations, and performance trade-offs.
☆ CLOVER: Constrained Learning with Orthonormal Vectors for Eliminating Redundancy
To adapt a well-trained large model to downstream tasks, we propose constraining learning within its original latent space by leveraging linear combinations of its basis vectors. This approach ensures stable training without compromising the model's capabilities. Traditionally, constructing orthonormal bases from a matrix requires a transfer matrix, which significantly increases storage and computational overhead for parameters and feature maps. In this paper, we introduce Absorb and Decompose for Q, K, V, and O matrices, enabling their orthogonalization without the need for transfer matrices. Furthermore, the Absorb-Decompose operation eliminates redundant vectors, reducing the encoder attention parameters of Whisper-large-v3 by 46.42% without requiring additional training. For parameter-efficient and stable fine-tuning, we orthonormalized Q, K, V, and O and fine-tuned only the singular values, allowing efficient adaptation while constraining changes to the original latent space. When fine-tuning LLaMA-2-7B on eight commonsense reasoning datasets, our method outperforms LoRA by 5.4% and DoRA by 4.4%.
☆ BPP-Search: Enhancing Tree of Thought Reasoning for Mathematical Modeling Problem Solving
LLMs exhibit advanced reasoning capabilities, offering the potential to transform natural language questions into mathematical models. However, existing open-source operations research datasets lack detailed annotations of the modeling process, such as variable definitions, focusing solely on objective values, which hinders reinforcement learning applications. To address this, we release the StructuredOR dataset, annotated with comprehensive labels that capture the complete mathematical modeling process. We further propose BPP-Search, a algorithm that integrates reinforcement learning into a tree-of-thought structure using Beam search, a Process reward model, and a pairwise Preference algorithm. This approach enables efficient exploration of tree structures, avoiding exhaustive search while improving accuracy. Extensive experiments on StructuredOR, NL4OPT, and MAMO-ComplexLP datasets show that BPP-Search significantly outperforms state-of-the-art methods, including Chain-of-Thought, Self-Consistency, and Tree-of-Thought. In tree-based reasoning, BPP-Search also surpasses Process Reward Model combined with Greedy or Beam Search, demonstrating superior accuracy and efficiency, and enabling faster retrieval of correct solutions.
☆ Can LLMs be Good Graph Judger for Knowledge Graph Construction?
In real-world scenarios, most of the data obtained from information retrieval (IR) system is unstructured. Converting natural language sentences into structured Knowledge Graphs (KGs) remains a critical challenge. The quality of constructed KGs may also impact the performance of some KG-dependent domains like GraphRAG systems and recommendation systems. Recently, Large Language Models (LLMs) have demonstrated impressive capabilities in addressing a wide range of natural language processing tasks. However, there are still challenges when utilizing LLMs to address the task of generating structured KGs. And we have identified three limitations with respect to existing KG construction methods. (1)There is a large amount of information and excessive noise in real-world documents, which could result in extracting messy information. (2)Native LLMs struggle to effectively extract accuracy knowledge from some domain-specific documents. (3)Hallucinations phenomenon cannot be overlooked when utilizing LLMs directly as an unsupervised method for constructing KGs. In this paper, we propose GraphJudger, a knowledge graph construction framework to address the aforementioned challenges. We introduce three innovative modules in our method, which are entity-centric iterative text denoising, knowledge aware instruction tuning and graph judgement, respectively. We seek to utilize the capacity of LLMs to function as a graph judger, a capability superior to their role only as a predictor for KG construction problems. Experiments conducted on two general text-graph pair datasets and one domain-specific text-graph pair dataset show superior performances compared to baseline methods. The code of our proposed method is available at https://github.com/hhy-huang/GraphJudger.
☆ Fairness And Performance In Harmony: Data Debiasing Is All You Need
Fairness in both machine learning (ML) predictions and human decisions is critical, with ML models prone to algorithmic and data bias, and human decisions affected by subjectivity and cognitive bias. This study investigates fairness using a real-world university admission dataset with 870 profiles, leveraging three ML models, namely XGB, Bi-LSTM, and KNN. Textual features are encoded with BERT embeddings. For individual fairness, we assess decision consistency among experts with varied backgrounds and ML models, using a consistency score. Results show ML models outperform humans in fairness by 14.08% to 18.79%. For group fairness, we propose a gender-debiasing pipeline and demonstrate its efficacy in removing gender-specific language without compromising prediction performance. Post-debiasing, all models maintain or improve their classification accuracy, validating the hypothesis that fairness and performance can coexist. Our findings highlight ML's potential to enhance fairness in admissions while maintaining high accuracy, advocating a hybrid approach combining human judgement and ML models.
☆ Knowledge-aware Evolutionary Graph Neural Architecture Search
Graph neural architecture search (GNAS) can customize high-performance graph neural network architectures for specific graph tasks or datasets. However, existing GNAS methods begin searching for architectures from a zero-knowledge state, ignoring the prior knowledge that may improve the search efficiency. The available knowledge base (e.g. NAS-Bench-Graph) contains many rich architectures and their multiple performance metrics, such as the accuracy (#Acc) and number of parameters (#Params). This study proposes exploiting such prior knowledge to accelerate the multi-objective evolutionary search on a new graph dataset, named knowledge-aware evolutionary GNAS (KEGNAS). KEGNAS employs the knowledge base to train a knowledge model and a deep multi-output Gaussian process (DMOGP) in one go, which generates and evaluates transfer architectures in only a few GPU seconds. The knowledge model first establishes a dataset-to-architecture mapping, which can quickly generate candidate transfer architectures for a new dataset. Subsequently, the DMOGP with architecture and dataset encodings is designed to predict multiple performance metrics for candidate transfer architectures on the new dataset. According to the predicted metrics, non-dominated candidate transfer architectures are selected to warm-start the multi-objective evolutionary algorithm for optimizing the #Acc and #Params on a new dataset. Empirical studies on NAS-Bench-Graph and five real-world datasets show that KEGNAS swiftly generates top-performance architectures, achieving 4.27% higher accuracy than advanced evolutionary baselines and 11.54% higher accuracy than advanced differentiable baselines. In addition, ablation studies demonstrate that the use of prior knowledge significantly improves the search performance.
comment: This work has been accepted by Knowledge-Based Systems
☆ Different Bias Under Different Criteria: Assessing Bias in LLMs with a Fact-Based Approach NeurIPS 2024
Large language models (LLMs) often reflect real-world biases, leading to efforts to mitigate these effects and make the models unbiased. Achieving this goal requires defining clear criteria for an unbiased state, with any deviation from these criteria considered biased. Some studies define an unbiased state as equal treatment across diverse demographic groups, aiming for balanced outputs from LLMs. However, differing perspectives on equality and the importance of pluralism make it challenging to establish a universal standard. Alternatively, other approaches propose using fact-based criteria for more consistent and objective evaluations, though these methods have not yet been fully applied to LLM bias assessments. Thus, there is a need for a metric with objective criteria that offers a distinct perspective from equality-based approaches. Motivated by this need, we introduce a novel metric to assess bias using fact-based criteria and real-world statistics. In this paper, we conducted a human survey demonstrating that humans tend to perceive LLM outputs more positively when they align closely with real-world demographic distributions. Evaluating various LLMs with our proposed metric reveals that model bias varies depending on the criteria used, highlighting the need for multi-perspective assessment.
comment: Accepted in NeurIPS 2024 Workshop on Socially Responsible Language Modelling Research (SoLaR)
☆ Towards Intention Recognition for Robotic Assistants Through Online POMDP Planning ICAPS 2023
Intention recognition, or the ability to anticipate the actions of another agent, plays a vital role in the design and development of automated assistants that can support humans in their daily tasks. In particular, industrial settings pose interesting challenges that include potential distractions for a decision-maker as well as noisy or incomplete observations. In such a setting, a robotic assistant tasked with helping and supporting a human worker must interleave information gathering actions with proactive tasks of its own, an approach that has been referred to as active goal recognition. In this paper we describe a partially observable model for online intention recognition, show some preliminary experimental results and discuss some of the challenges present in this family of problems.
comment: Presented at the ICAPS 2023 workshop "PAIR: Plan, Activity, and Intent Recognition"
☆ PIM-AI: A Novel Architecture for High-Efficiency LLM Inference
Large Language Models (LLMs) have become essential in a variety of applications due to their advanced language understanding and generation capabilities. However, their computational and memory requirements pose significant challenges to traditional hardware architectures. Processing-in-Memory (PIM), which integrates computational units directly into memory chips, offers several advantages for LLM inference, including reduced data transfer bottlenecks and improved power efficiency. This paper introduces PIM-AI, a novel DDR5/LPDDR5 PIM architecture designed for LLM inference without modifying the memory controller or DDR/LPDDR memory PHY. We have developed a simulator to evaluate the performance of PIM-AI in various scenarios and demonstrate its significant advantages over conventional architectures. In cloud-based scenarios, PIM-AI reduces the 3-year TCO per queries-per-second by up to 6.94x compared to state-of-the-art GPUs, depending on the LLM model used. In mobile scenarios, PIM-AI achieves a 10- to 20-fold reduction in energy per token compared to state-of-the-art mobile SoCs, resulting in 25 to 45~\% more queries per second and 6.9x to 13.4x less energy per query, extending battery life and enabling more inferences per charge. These results highlight PIM-AI's potential to revolutionize LLM deployments, making them more efficient, scalable, and sustainable.
comment: 14 pages, 5 figures
☆ Meaningless is better: hashing bias-inducing words in LLM prompts improves performance in logical reasoning and statistical learning
This paper introduces a novel method, referred to as "hashing", which involves masking potentially bias-inducing words in large language models (LLMs) with hash-like meaningless identifiers to reduce cognitive biases and reliance on external knowledge. The method was tested across three sets of experiments involving a total of 490 prompts. Statistical analysis using chi-square tests showed significant improvements in all tested scenarios, which covered LLama, ChatGPT, Copilot, Gemini and Mixtral models. In the first experiment, hashing decreased the fallacy rate in a modified version of the "Linda" problem aimed at evaluating susceptibility to cognitive biases. In the second experiment, it improved LLM results on the frequent itemset extraction task. In the third experiment, we found hashing is also effective when the Linda problem is presented in a tabular format rather than text, indicating that the technique works across various input representations. Overall, the method was shown to improve bias reduction and incorporation of external knowledge. Despite bias reduction, hallucination rates were inconsistently reduced across types of LLM models. These findings suggest that masking bias-inducing terms can improve LLM performance, although its effectiveness is model- and task-dependent.
☆ ER2Score: LLM-based Explainable and Customizable Metric for Assessing Radiology Reports with Reward-Control Loss
Automated radiology report generation (R2Gen) has advanced significantly, introducing challenges in accurate evaluation due to its complexity. Traditional metrics often fall short by relying on rigid word-matching or focusing only on pathological entities, leading to inconsistencies with human assessments. To bridge this gap, we introduce ER2Score, an automatic evaluation metric designed specifically for R2Gen. Our metric utilizes a reward model, guided by our margin-based reward enforcement loss, along with a tailored training data design that enables customization of evaluation criteria to suit user-defined needs. It not only scores reports according to user-specified criteria but also provides detailed sub-scores, enhancing interpretability and allowing users to adjust the criteria between different aspects of reports. Leveraging GPT-4, we designed an easy-to-use data generation pipeline, enabling us to produce extensive training data based on two distinct scoring systems, each containing reports of varying quality along with corresponding scores. These GPT-generated reports are then paired as accepted and rejected samples through our pairing rule to train an LLM towards our fine-grained reward model, which assigns higher rewards to the report with high quality. Our reward-control loss enables this model to simultaneously output multiple individual rewards corresponding to the number of evaluation criteria, with their summation as our final ER2Score. Our experiments demonstrate ER2Score's heightened correlation with human judgments and superior performance in model selection compared to traditional metrics. Notably, our model provides both an overall score and individual scores for each evaluation item, enhancing interpretability. We also demonstrate its flexible training across various evaluation systems.
☆ GrokFormer: Graph Fourier Kolmogorov-Arnold Transformers
Graph Transformers (GTs) have demonstrated remarkable performance in incorporating various graph structure information, e.g., long-range structural dependency, into graph representation learning. However, self-attention -- the core module of GTs -- preserves only low-frequency signals on graph features, retaining only homophilic patterns that capture similar features among the connected nodes. Consequently, it has insufficient capacity in modeling complex node label patterns, such as the opposite of homophilic patterns -- heterophilic patterns. Some improved GTs deal with the problem by learning polynomial filters or performing self-attention over the first-order graph spectrum. However, these GTs either ignore rich information contained in the whole spectrum or neglect higher-order spectrum information, resulting in limited flexibility and frequency response in their spectral filters. To tackle these challenges, we propose a novel GT network, namely Graph Fourier Kolmogorov-Arnold Transformers (GrokFormer), to go beyond the self-attention in GTs. GrokFormer leverages learnable activation functions in order-$K$ graph spectrum through Fourier series modeling to i) learn eigenvalue-targeted filter functions producing learnable base that can capture a broad range of frequency signals flexibly, and ii) extract first- and higher-order graph spectral information adaptively. In doing so, GrokFormer can effectively capture intricate patterns hidden across different orders and levels of frequency signals, learning expressive, order-and-frequency-adaptive graph representations. Comprehensive experiments conducted on 10 node classification datasets across various domains, scales, and levels of graph heterophily, as well as 5 graph classification datasets, demonstrate that GrokFormer outperforms state-of-the-art GTs and other advanced graph neural networks.
comment: 13 pages, 6 figures, 7tables
☆ Social Distancing Induced Coronavirus Optimization Algorithm (COVO): Application to Multimodal Function Optimization and Noise Removal
The metaheuristic optimization technique attained more awareness for handling complex optimization problems. Over the last few years, numerous optimization techniques have been developed that are inspired by natural phenomena. Recently, the propagation of the new COVID-19 implied a burden on the public health system to suffer several deaths. Vaccination, masks, and social distancing are the major steps taken to minimize the spread of the deadly COVID-19 virus. Considering the social distance to combat the coronavirus epidemic, a novel bio-inspired metaheuristic optimization model is proposed in this work, and it is termed as Social Distancing Induced Coronavirus Optimization Algorithm (COVO). The pace of propagation of the coronavirus can indeed be slowed by maintaining social distance. Thirteen benchmark functions are used to evaluate the COVO performance for discrete, continuous, and complex problems, and the COVO model performance is compared with other well-known optimization algorithms. The main motive of COVO optimization is to obtain a global solution to various applications by solving complex problems with faster convergence. At last, the validated results depict that the proposed COVO optimization has a reasonable and acceptable performance.
☆ HEIE: MLLM-Based Hierarchical Explainable AIGC Image Implausibility Evaluator
AIGC images are prevalent across various fields, yet they frequently suffer from quality issues like artifacts and unnatural textures. Specialized models aim to predict defect region heatmaps but face two primary challenges: (1) lack of explainability, failing to provide reasons and analyses for subtle defects, and (2) inability to leverage common sense and logical reasoning, leading to poor generalization. Multimodal large language models (MLLMs) promise better comprehension and reasoning but face their own challenges: (1) difficulty in fine-grained defect localization due to the limitations in capturing tiny details; and (2) constraints in providing pixel-wise outputs necessary for precise heatmap generation. To address these challenges, we propose HEIE: a novel MLLM-Based Hierarchical Explainable image Implausibility Evaluator. We introduce the CoT-Driven Explainable Trinity Evaluator, which integrates heatmaps, scores, and explanation outputs, using CoT to decompose complex tasks into subtasks of increasing difficulty and enhance interpretability. Our Adaptive Hierarchical Implausibility Mapper synergizes low-level image features with high-level mapper tokens from LLMs, enabling precise local-to-global hierarchical heatmap predictions through an uncertainty-based adaptive token approach. Moreover, we propose a new dataset: Expl-AIGI-Eval, designed to facilitate interpretable implausibility evaluation of AIGC images. Our method demonstrates state-of-the-art performance through extensive experiments.
☆ MiceBoneChallenge: Micro-CT public dataset and six solutions for automatic growth plate detection in micro-CT mice bone scans
Detecting and quantifying bone changes in micro-CT scans of rodents is a common task in preclinical drug development studies. However, this task is manual, time-consuming and subject to inter- and intra-observer variability. In 2024, Anonymous Company organized an internal challenge to develop models for automatic bone quantification. We prepared and annotated a high-quality dataset of 3D $\mu$CT bone scans from $83$ mice. The challenge attracted over $80$ AI scientists from around the globe who formed $23$ teams. The participants were tasked with developing a solution to identify the plane where the bone growth happens, which is essential for fully automatic segmentation of trabecular bone. As a result, six computer vision solutions were developed that can accurately identify the location of the growth plate plane. The solutions achieved the mean absolute error of $1.91\pm0.87$ planes from the ground truth on the test set, an accuracy level acceptable for practical use by a radiologist. The annotated 3D scans dataset along with the six solutions and source code, is being made public, providing researchers with opportunities to develop and benchmark their own approaches. The code, trained models, and the data will be shared.
comment: Under Review
☆ APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents
We present APT, an advanced Large Language Model (LLM)-driven framework that enables autonomous agents to construct complex and creative structures within the Minecraft environment. Unlike previous approaches that primarily concentrate on skill-based open-world tasks or rely on image-based diffusion models for generating voxel-based structures, our method leverages the intrinsic spatial reasoning capabilities of LLMs. By employing chain-of-thought decomposition along with multimodal inputs, the framework generates detailed architectural layouts and blueprints that the agent can execute under zero-shot or few-shot learning scenarios. Our agent incorporates both memory and reflection modules to facilitate lifelong learning, adaptive refinement, and error correction throughout the building process. To rigorously evaluate the agent's performance in this emerging research area, we introduce a comprehensive benchmark consisting of diverse construction tasks designed to test creativity, spatial reasoning, adherence to in-game rules, and the effective integration of multimodal instructions. Experimental results using various GPT-based LLM backends and agent configurations demonstrate the agent's capacity to accurately interpret extensive instructions involving numerous items, their positions, and orientations. The agent successfully produces complex structures complete with internal functionalities such as Redstone-powered systems. A/B testing indicates that the inclusion of a memory module leads to a significant increase in performance, emphasizing its role in enabling continuous learning and the reuse of accumulated experience. Additionally, the agent's unexpected emergence of scaffolding behavior highlights the potential of future LLM-driven agents to utilize subroutine planning and leverage the emergence ability of LLMs to autonomously develop human-like problem-solving techniques.
comment: 8 pages
☆ Semantic Data Augmentation for Long-tailed Facial Expression Recognition
Facial Expression Recognition has a wide application prospect in social robotics, health care, driver fatigue monitoring, and many other practical scenarios. Automatic recognition of facial expressions has been extensively studied by the Computer Vision research society. But Facial Expression Recognition in real-world is still a challenging task, partially due to the long-tailed distribution of the dataset. Many recent studies use data augmentation for Long-Tailed Recognition tasks. In this paper, we propose a novel semantic augmentation method. By introducing randomness into the encoding of the source data in the latent space of VAE-GAN, new samples are generated. Then, for facial expression recognition in RAF-DB dataset, we use our augmentation method to balance the long-tailed distribution. Our method can be used in not only FER tasks, but also more diverse data-hungry scenarios.
☆ Buffer Anytime: Zero-Shot Video Depth and Normal from Image Priors
We present Buffer Anytime, a framework for estimation of depth and normal maps (which we call geometric buffers) from video that eliminates the need for paired video--depth and video--normal training data. Instead of relying on large-scale annotated video datasets, we demonstrate high-quality video buffer estimation by leveraging single-image priors with temporal consistency constraints. Our zero-shot training strategy combines state-of-the-art image estimation models based on optical flow smoothness through a hybrid loss function, implemented via a lightweight temporal attention architecture. Applied to leading image models like Depth Anything V2 and Marigold-E2E-FT, our approach significantly improves temporal consistency while maintaining accuracy. Experiments show that our method not only outperforms image-based approaches but also achieves results comparable to state-of-the-art video models trained on large-scale paired video datasets, despite using no such paired video data.
☆ From Graph Diffusion to Graph Classification
Generative models such as diffusion models have achieved remarkable success in state-of-the-art image and text tasks. Recently, score-based diffusion models have extended their success beyond image generation, showing competitive performance with discriminative methods in image {\em classification} tasks~\cite{zimmermann2021score}. However, their application to classification in the {\em graph} domain, which presents unique challenges such as complex topologies, remains underexplored. We show how graph diffusion models can be applied for graph classification. We find that to achieve competitive classification accuracy, score-based graph diffusion models should be trained with a novel training objective that is tailored to graph classification. In experiments with a sampling-based inference method, our discriminative training objective achieves state-of-the-art graph classification accuracy.
☆ GraphSubDetector: Time Series Subsequence Anomaly Detection via Density-Aware Adaptive Graph Neural Network
Time series subsequence anomaly detection is an important task in a large variety of real-world applications ranging from health monitoring to AIOps, and is challenging due to the following reasons: 1) how to effectively learn complex dynamics and dependencies in time series; 2) diverse and complicated anomalous subsequences as well as the inherent variance and noise of normal patterns; 3) how to determine the proper subsequence length for effective detection, which is a required parameter for many existing algorithms. In this paper, we present a novel approach to subsequence anomaly detection, namely GraphSubDetector. First, it adaptively learns the appropriate subsequence length with a length selection mechanism that highlights the characteristics of both normal and anomalous patterns. Second, we propose a density-aware adaptive graph neural network (DAGNN), which can generate further robust representations against variance of normal data for anomaly detection by message passing between subsequences. The experimental results demonstrate the effectiveness of the proposed algorithm, which achieves superior performance on multiple time series anomaly benchmark datasets compared to state-of-the-art algorithms.
☆ Strategic Prompting for Conversational Tasks: A Comparative Analysis of Large Language Models Across Diverse Conversational Tasks
Given the advancements in conversational artificial intelligence, the evaluation and assessment of Large Language Models (LLMs) play a crucial role in ensuring optimal performance across various conversational tasks. In this paper, we present a comprehensive study that thoroughly evaluates the capabilities and limitations of five prevalent LLMs: Llama, OPT, Falcon, Alpaca, and MPT. The study encompasses various conversational tasks, including reservation, empathetic response generation, mental health and legal counseling, persuasion, and negotiation. To conduct the evaluation, an extensive test setup is employed, utilizing multiple evaluation criteria that span from automatic to human evaluation. This includes using generic and task-specific metrics to gauge the LMs' performance accurately. From our evaluation, no single model emerges as universally optimal for all tasks. Instead, their performance varies significantly depending on the specific requirements of each task. While some models excel in certain tasks, they may demonstrate comparatively poorer performance in others. These findings emphasize the importance of considering task-specific requirements and characteristics when selecting the most suitable LM for conversational applications.
comment: 37 pages, 12 tables
☆ Learning Hierarchical Polynomials of Multiple Nonlinear Features with Three-Layer Networks
In deep learning theory, a critical question is to understand how neural networks learn hierarchical features. In this work, we study the learning of hierarchical polynomials of \textit{multiple nonlinear features} using three-layer neural networks. We examine a broad class of functions of the form $f^{\star}=g^{\star}\circ \bp$, where $\bp:\mathbb{R}^{d} \rightarrow \mathbb{R}^{r}$ represents multiple quadratic features with $r \ll d$ and $g^{\star}:\mathbb{R}^{r}\rightarrow \mathbb{R}$ is a polynomial of degree $p$. This can be viewed as a nonlinear generalization of the multi-index model \citep{damian2022neural}, and also an expansion upon previous work that focused only on a single nonlinear feature, i.e. $r = 1$ \citep{nichani2023provable,wang2023learning}. Our primary contribution shows that a three-layer neural network trained via layerwise gradient descent suffices for \begin{itemize}\item complete recovery of the space spanned by the nonlinear features \item efficient learning of the target function $f^{\star}=g^{\star}\circ \bp$ or transfer learning of $f=g\circ \bp$ with a different link function \end{itemize} within $\widetilde{\cO}(d^4)$ samples and polynomial time. For such hierarchical targets, our result substantially improves the sample complexity ${\Theta}(d^{2p})$ of the kernel methods, demonstrating the power of efficient feature learning. It is important to highlight that{ our results leverage novel techniques and thus manage to go beyond all prior settings} such as single-index and multi-index models as well as models depending just on one nonlinear feature, contributing to a more comprehensive understanding of feature learning in deep learning.
comment: 78 pages, 4 figures
☆ ChatGen: Automatic Text-to-Image Generation From FreeStyle Chatting
Despite the significant advancements in text-to-image (T2I) generative models, users often face a trial-and-error challenge in practical scenarios. This challenge arises from the complexity and uncertainty of tedious steps such as crafting suitable prompts, selecting appropriate models, and configuring specific arguments, making users resort to labor-intensive attempts for desired images. This paper proposes Automatic T2I generation, which aims to automate these tedious steps, allowing users to simply describe their needs in a freestyle chatting way. To systematically study this problem, we first introduce ChatGenBench, a novel benchmark designed for Automatic T2I. It features high-quality paired data with diverse freestyle inputs, enabling comprehensive evaluation of automatic T2I models across all steps. Additionally, recognizing Automatic T2I as a complex multi-step reasoning task, we propose ChatGen-Evo, a multi-stage evolution strategy that progressively equips models with essential automation skills. Through extensive evaluation across step-wise accuracy and image quality, ChatGen-Evo significantly enhances performance over various baselines. Our evaluation also uncovers valuable insights for advancing automatic T2I. All our data, code, and models will be available in \url{https://chengyou-jia.github.io/ChatGen-Home}
☆ Learning Monotonic Attention in Transducer for Streaming Generation
Streaming generation models are increasingly utilized across various fields, with the Transducer architecture being particularly popular in industrial applications. However, its input-synchronous decoding mechanism presents challenges in tasks requiring non-monotonic alignments, such as simultaneous translation, leading to suboptimal performance in these contexts. In this research, we address this issue by tightly integrating Transducer's decoding with the history of input stream via a learnable monotonic attention mechanism. Our approach leverages the forward-backward algorithm to infer the posterior probability of alignments between the predictor states and input timestamps, which is then used to estimate the context representations of monotonic attention in training. This allows Transducer models to adaptively adjust the scope of attention based on their predictions, avoiding the need to enumerate the exponentially large alignment space. Extensive experiments demonstrate that our MonoAttn-Transducer significantly enhances the handling of non-monotonic alignments in streaming generation, offering a robust solution for Transducer-based frameworks to tackle more complex streaming generation tasks.
comment: Codes: https://github.com/ictnlp/MonoAttn-Transducer
Self-reconfiguration Strategies for Space-distributed Spacecraft
This paper proposes a distributed on-orbit spacecraft assembly algorithm, where future spacecraft can assemble modules with different functions on orbit to form a spacecraft structure with specific functions. This form of spacecraft organization has the advantages of reconfigurability, fast mission response and easy maintenance. Reasonable and efficient on-orbit self-reconfiguration algorithms play a crucial role in realizing the benefits of distributed spacecraft. This paper adopts the framework of imitation learning combined with reinforcement learning for strategy learning of module handling order. A robot arm motion algorithm is then designed to execute the handling sequence. We achieve the self-reconfiguration handling task by creating a map on the surface of the module, completing the path point planning of the robotic arm using A*. The joint planning of the robotic arm is then accomplished through forward and reverse kinematics. Finally, the results are presented in Unity3D.
LLM-Based Offline Learning for Embodied Agents via Consistency-Guided Reward Ensemble EMNLP-2024
Employing large language models (LLMs) to enable embodied agents has become popular, yet it presents several limitations in practice. In this work, rather than using LLMs directly as agents, we explore their use as tools for embodied agent learning. Specifically, to train separate agents via offline reinforcement learning (RL), an LLM is used to provide dense reward feedback on individual actions in training datasets. In doing so, we present a consistency-guided reward ensemble framework (CoREN), designed for tackling difficulties in grounding LLM-generated estimates to the target environment domain. The framework employs an adaptive ensemble of spatio-temporally consistent rewards to derive domain-grounded rewards in the training datasets, thus enabling effective offline learning of embodied agents in different environment domains. Experiments with the VirtualHome benchmark demonstrate that CoREN significantly outperforms other offline RL agents, and it also achieves comparable performance to state-of-the-art LLM-based agents with 8B parameters, despite CoREN having only 117M parameters for the agent policy network and using LLMs only for training.
comment: Findings of EMNLP-2024 Camera Ready Version
☆ DOGE: Towards Versatile Visual Document Grounding and Referring
In recent years, Multimodal Large Language Models (MLLMs) have increasingly emphasized grounding and referring capabilities to achieve detailed understanding and flexible user interaction. However, in the realm of visual document understanding, these capabilities lag behind due to the scarcity of fine-grained datasets and comprehensive benchmarks. To fill this gap, we propose the DOcument Grounding and Eferring data engine (DOGE-Engine), which produces two types of high-quality fine-grained document data: multi-granular parsing data for enhancing fundamental text localization and recognition capabilities; and instruction-tuning data to activate MLLM's grounding and referring capabilities during dialogue and reasoning. Additionally, using our engine, we construct DOGE-Bench, which encompasses 7 grounding and referring tasks across 3 document types (chart, poster, PDF document), providing comprehensive evaluations for fine-grained document understanding. Furthermore, leveraging the data generated by our engine, we develop a strong baseline model, DOGE. This pioneering MLLM is capable of accurately referring and grounding texts at multiple granularities within document images. Our code, data, and model will be open-sourced for community development.
comment: 20 pages, 13 figures
☆ Advancing Content Moderation: Evaluating Large Language Models for Detecting Sensitive Content Across Text, Images, and Videos
The widespread dissemination of hate speech, harassment, harmful and sexual content, and violence across websites and media platforms presents substantial challenges and provokes widespread concern among different sectors of society. Governments, educators, and parents are often at odds with media platforms about how to regulate, control, and limit the spread of such content. Technologies for detecting and censoring the media contents are a key solution to addressing these challenges. Techniques from natural language processing and computer vision have been used widely to automatically identify and filter out sensitive content such as offensive languages, violence, nudity, and addiction in both text, images, and videos, enabling platforms to enforce content policies at scale. However, existing methods still have limitations in achieving high detection accuracy with fewer false positives and false negatives. Therefore, more sophisticated algorithms for understanding the context of both text and image may open rooms for improvement in content censorship to build a more efficient censorship system. In this paper, we evaluate existing LLM-based content moderation solutions such as OpenAI moderation model and Llama-Guard3 and study their capabilities to detect sensitive contents. Additionally, we explore recent LLMs such as GPT, Gemini, and Llama in identifying inappropriate contents across media outlets. Various textual and visual datasets like X tweets, Amazon reviews, news articles, human photos, cartoons, sketches, and violence videos have been utilized for evaluation and comparison. The results demonstrate that LLMs outperform traditional techniques by achieving higher accuracy and lower false positive and false negative rates. This highlights the potential to integrate LLMs into websites, social media platforms, and video-sharing services for regulatory and content moderation purposes.
comment: 55 pages, 16 figures
☆ Star Attention: Efficient LLM Inference over Long Sequences
Inference with Transformer-based Large Language Models (LLMs) on long sequences is both costly and slow due to the quadratic complexity of the self-attention mechanism. We introduce Star Attention, a two-phase block-sparse approximation that improves computational efficiency by sharding attention across multiple hosts while minimizing communication overhead. In the first phase, the context is processed using blockwise-local attention across hosts, in parallel. In the second phase, query and response tokens attend to all prior cached tokens through sequence-global attention. Star Attention integrates seamlessly with most Transformer-based LLMs trained with global attention, reducing memory requirements and inference time by up to 11x while preserving 95-100% of accuracy.
comment: Code: https://github.com/NVIDIA/Star-Attention
☆ Contrastive CFG: Improving CFG in Diffusion Models by Contrasting Positive and Negative Concepts
As Classifier-Free Guidance (CFG) has proven effective in conditional diffusion model sampling for improved condition alignment, many applications use a negated CFG term to filter out unwanted features from samples. However, simply negating CFG guidance creates an inverted probability distribution, often distorting samples away from the marginal distribution. Inspired by recent advances in conditional diffusion models for inverse problems, here we present a novel method to enhance negative CFG guidance using contrastive loss. Specifically, our guidance term aligns or repels the denoising direction based on the given condition through contrastive loss, achieving a nearly identical guiding direction to traditional CFG for positive guidance while overcoming the limitations of existing negative guidance methods. Experimental results demonstrate that our approach effectively removes undesirable concepts while maintaining sample quality across diverse scenarios, from simple class conditions to complex and overlapping text prompts.
comment: 14 pages, 8 figures
Path-RAG: Knowledge-Guided Key Region Retrieval for Open-ended Pathology Visual Question Answering
Accurate diagnosis and prognosis assisted by pathology images are essential for cancer treatment selection and planning. Despite the recent trend of adopting deep-learning approaches for analyzing complex pathology images, they fall short as they often overlook the domain-expert understanding of tissue structure and cell composition. In this work, we focus on a challenging Open-ended Pathology VQA (PathVQA-Open) task and propose a novel framework named Path-RAG, which leverages HistoCartography to retrieve relevant domain knowledge from pathology images and significantly improves performance on PathVQA-Open. Admitting the complexity of pathology image analysis, Path-RAG adopts a human-centered AI approach by retrieving domain knowledge using HistoCartography to select the relevant patches from pathology images. Our experiments suggest that domain guidance can significantly boost the accuracy of LLaVA-Med from 38% to 47%, with a notable gain of 28% for H&E-stained pathology images in the PathVQA-Open dataset. For longer-form question and answer pairs, our model consistently achieves significant improvements of 32.5% in ARCH-Open PubMed and 30.6% in ARCH-Open Books on H\&E images. Our code and dataset is available here (https://github.com/embedded-robotics/path-rag).
☆ Creative Agents: Simulating the Systems Model of Creativity with Generative Agents
With the growing popularity of generative AI for images, video, and music, we witnessed models rapidly improve in quality and performance. However, not much attention is paid towards enabling AI's ability to "be creative". In this study, we implemented and simulated the systems model of creativity (proposed by Csikszentmihalyi) using virtual agents utilizing large language models (LLMs) and text prompts. For comparison, the simulations were conducted with the "virtual artists" being: 1)isolated and 2)placed in a multi-agent system. Both scenarios were compared by analyzing the variations and overall "creativity" in the generated artifacts (measured via a user study and LLM). Our results suggest that the generative agents may perform better in the framework of the systems model of creativity.
☆ Graph Structure Learning with Bi-level Optimization
Currently, most Graph Structure Learning (GSL) methods, as a means of learning graph structure, improve the robustness of GNN merely from a local view by considering the local information related to each edge and indiscriminately applying the mechanism across edges, which may suffer from the local structure heterogeneity of the graph (\ie the uneven distribution of inter-class connections over nodes). To overcome the cons, we extract the graph structure as a learnable parameter and jointly learn the structure and common parameters of GNN from the global view. Excitingly, the common parameters contain the global information for nodes features mapping, which is also crucial for structure optimization (\ie optimizing the structure relies on global mapping information). Mathematically, we apply a generic structure extractor to abstract the graph structure and transform GNNs in the form of learning structure and common parameters. Then, we model the learning process as a novel bi-level optimization, \ie \textit{Generic Structure Extraction with Bi-level Optimization for Graph Structure Learning (GSEBO)}, which optimizes GNN parameters in the upper level to obtain the global mapping information and graph structure is optimized in the lower level with the global information learned from the upper level. We instantiate the proposed GSEBO on classical GNNs and compare it with the state-of-the-art GSL methods. Extensive experiments validate the effectiveness of the proposed GSEBO on four real-world datasets.
☆ ThreatModeling-LLM: Automating Threat Modeling using Large Language Models for Banking System
Threat modeling is a crucial component of cybersecurity, particularly for industries such as banking, where the security of financial data is paramount. Traditional threat modeling approaches require expert intervention and manual effort, often leading to inefficiencies and human error. The advent of Large Language Models (LLMs) offers a promising avenue for automating these processes, enhancing both efficiency and efficacy. However, this transition is not straightforward due to three main challenges: (1) the lack of publicly available, domain-specific datasets, (2) the need for tailored models to handle complex banking system architectures, and (3) the requirement for real-time, adaptive mitigation strategies that align with compliance standards like NIST 800-53. In this paper, we introduce ThreatModeling-LLM, a novel and adaptable framework that automates threat modeling for banking systems using LLMs. ThreatModeling-LLM operates in three stages: 1) dataset creation, 2) prompt engineering and 3) model fine-tuning. We first generate a benchmark dataset using Microsoft Threat Modeling Tool (TMT). Then, we apply Chain of Thought (CoT) and Optimization by PROmpting (OPRO) on the pre-trained LLMs to optimize the initial prompt. Lastly, we fine-tune the LLM using Low-Rank Adaptation (LoRA) based on the benchmark dataset and the optimized prompt to improve the threat identification and mitigation generation capabilities of pre-trained LLMs.
☆ Free$^2$Guide: Gradient-Free Path Integral Control for Enhancing Text-to-Video Generation with Large Vision-Language Models
Diffusion models have achieved impressive results in generative tasks like text-to-image (T2I) and text-to-video (T2V) synthesis. However, achieving accurate text alignment in T2V generation remains challenging due to the complex temporal dependency across frames. Existing reinforcement learning (RL)-based approaches to enhance text alignment often require differentiable reward functions or are constrained to limited prompts, hindering their scalability and applicability. In this paper, we propose Free$^2$Guide, a novel gradient-free framework for aligning generated videos with text prompts without requiring additional model training. Leveraging principles from path integral control, Free$^2$Guide approximates guidance for diffusion models using non-differentiable reward functions, thereby enabling the integration of powerful black-box Large Vision-Language Models (LVLMs) as reward model. Additionally, our framework supports the flexible ensembling of multiple reward models, including large-scale image-based models, to synergistically enhance alignment without incurring substantial computational overhead. We demonstrate that Free$^2$Guide significantly improves text alignment across various dimensions and enhances the overall quality of generated videos.
comment: 15 pages
☆ g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks
We introduce Generalizable 3D-Language Feature Fields (g3D-LF), a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks. Our g3D-LF processes posed RGB-D images from agents to encode feature fields for: 1) Novel view representation predictions from any position in the 3D scene; 2) Generations of BEV maps centered on the agent; 3) Querying targets using multi-granularity language within the above-mentioned representations. Our representation can be generalized to unseen environments, enabling real-time construction and dynamic updates. By volume rendering latent features along sampled rays and integrating semantic and spatial relationships through multiscale encoders, our g3D-LF produces representations at different scales and perspectives, aligned with multi-granularity language, via multi-level contrastive learning. Furthermore, we prepare a large-scale 3D-language dataset to align the representations of the feature fields with language. Extensive experiments on Vision-and-Language Navigation under both Panorama and Monocular settings, Zero-shot Object Navigation, and Situated Question Answering tasks highlight the significant advantages and effectiveness of our g3D-LF for embodied tasks.
☆ Can a Single Tree Outperform an Entire Forest?
The prevailing mindset is that a single decision tree underperforms classic random forests in testing accuracy, despite its advantages in interpretability and lightweight structure. This study challenges such a mindset by significantly improving the testing accuracy of an oblique regression tree through our gradient-based entire tree optimization framework, making its performance comparable to the classic random forest. Our approach reformulates tree training as a differentiable unconstrained optimization task, employing a scaled sigmoid approximation strategy. To ameliorate numerical instability, we propose an algorithmic scheme that solves a sequence of increasingly accurate approximations. Additionally, a subtree polish strategy is implemented to reduce approximation errors accumulated across the tree. Extensive experiments on 16 datasets demonstrate that our optimized tree outperforms the classic random forest by an average of $2.03\%$ improvements in testing accuracy.
☆ SatVision-TOA: A Geospatial Foundation Model for Coarse-Resolution All-Sky Remote Sensing Imagery
Foundation models have the potential to transform the landscape of remote sensing (RS) data analysis by enabling large computer vision models to be pre-trained on vast amounts of remote sensing data. These models can then be fine-tuned with small amounts of labeled training and applied to a variety of applications. Most existing foundation models are designed for high spatial resolution, cloud-free satellite imagery or photos, limiting their applicability in scenarios that require frequent temporal monitoring or broad spectral profiles. As a result, foundation models trained solely on cloud-free images have limited utility for applications that involve atmospheric variables or require atmospheric corrections. We introduce SatVision-TOA, a novel foundation model pre-trained on 14-band MODIS L1B Top-Of-Atmosphere (TOA) radiance imagery, addressing the need for models pre-trained to handle moderate- and coarse-resolution all-sky remote sensing data. The SatVision-TOA model is pre-trained using a Masked-Image-Modeling (MIM) framework and the SwinV2 architecture, and learns detailed contextual representations through self-supervised learning without the need for labels. It is a 3 billion parameter model that is trained on 100 million images. To our knowledge this is the largest foundation model trained solely on satellite RS imagery. Results show that SatVision-TOA achieves superior performance over baseline methods on downstream tasks such as 3D cloud retrieval. Notably, the model achieves a mean intersection over union (mIOU) of 0.46, a substantial improvement over the baseline mIOU of 0.22. Additionally, the rate of false negative results in the fine-tuning task were reduced by over 50% compared to the baseline. Our work advances pre-trained vision modeling for multispectral RS by learning from a variety of atmospheric and aerosol conditions to improve cloud and land surface monitoring.
comment: 19 pages, 5 figures
RoboPEPP: Vision-Based Robot Pose and Joint Angle Estimation through Embedding Predictive Pre-Training
Vision-based pose estimation of articulated robots with unknown joint angles has applications in collaborative robotics and human-robot interaction tasks. Current frameworks use neural network encoders to extract image features and downstream layers to predict joint angles and robot pose. While images of robots inherently contain rich information about the robot's physical structures, existing methods often fail to leverage it fully; therefore, limiting performance under occlusions and truncations. To address this, we introduce RoboPEPP, a method that fuses information about the robot's physical model into the encoder using a masking-based self-supervised embedding-predictive architecture. Specifically, we mask the robot's joints and pre-train an encoder-predictor model to infer the joints' embeddings from surrounding unmasked regions, enhancing the encoder's understanding of the robot's physical model. The pre-trained encoder-predictor pair, along with joint angle and keypoint prediction networks, is then fine-tuned for pose and joint angle estimation. Random masking of input during fine-tuning and keypoint filtering during evaluation further improves robustness. Our method, evaluated on several datasets, achieves the best results in robot pose and joint angle estimation while being the least sensitive to occlusions and requiring the lowest execution time.
☆ Dynamic Trajectory Adaptation for Efficient UAV Inspections of Wind Energy Units
The research presents an automated method for determining the trajectory of an unmanned aerial vehicle (UAV) for wind turbine inspection. The proposed method enables efficient data collection from multiple wind installations using UAV optical sensors, considering the spatial positioning of blades and other components of the wind energy installation. It includes component segmentation of the wind energy unit (WEU), determination of the blade pitch angle, and generation of optimal flight trajectories, considering safe distances and optimal viewing angles. The results of computational experiments have demonstrated the advantage of the proposed method in monitoring WEU, achieving a 78% reduction in inspection time, a 17% decrease in total trajectory length, and a 6% increase in average blade surface coverage compared to traditional methods. Furthermore, the process minimizes the average deviation from the optimal trajectory by 68%, indicating its high accuracy and ability to compensate for external influences.
comment: Unmanned aerial vehicles, wind turbine inspection, automated trajectory determination, dynamic trajectory adaptation, image segmentation, computer vision, optical sensors, wind energy unit
☆ BESTAnP: Bi-Step Efficient and Statistically Optimal Estimator for Acoustic-n-Point Problem
We consider the acoustic-n-point (AnP) problem, which estimates the pose of a 2D forward-looking sonar (FLS) according to n 3D-2D point correspondences. We explore the nature of the measured partial spherical coordinates and reveal their inherent relationships to translation and orientation. Based on this, we propose a bi-step efficient and statistically optimal AnP (BESTAnP) algorithm that decouples the estimation of translation and orientation. Specifically, in the first step, the translation estimation is formulated as the range-based localization problem based on distance-only measurements. In the second step, the rotation is estimated via eigendecomposition based on azimuth-only measurements and the estimated translation. BESTAnP is the first AnP algorithm that gives a closed-form solution for the full six-degree pose. In addition, we conduct bias elimination for BESTAnP such that it owns the statistical property of consistency. Through simulation and real-world experiments, we demonstrate that compared with the state-of-the-art (SOTA) methods, BESTAnP is over ten times faster and features real-time capacity in resource-constrained platforms while exhibiting comparable accuracy. Moreover, for the first time, we embed BESTAnP into a sonar-based odometry which shows its effectiveness for trajectory estimation.
☆ Learning-Based On-Track System Identification for Scaled Autonomous Racing in Under a Minute
Accurate tire modeling is crucial for optimizing autonomous racing vehicles, as state-of-the-art (SotA) model-based techniques rely on precise knowledge of the vehicle's parameters. Yet, system identification in dynamic racing conditions is challenging due to varying track and tire conditions. Traditional methods require extensive operational ranges, often impractical in racing scenarios. Machine learning (ML)-based methods, while improving performance, struggle with generalization and depend on accurate initialization. This paper introduces a novel on-track system identification algorithm, incorporating a neural network (NN) for error correction, which is then employed for traditional system identification with virtually generated data. Crucially, the process is iteratively reapplied, with tire parameters updated at each cycle, leading to notable improvements in accuracy in tests on a scaled vehicle. Experiments show that it is possible to learn a tire model without prior knowledge with only 30 seconds of driving data and 3 seconds of training time. This method demonstrates greater one-step prediction accuracy than the baseline nonlinear least squares (NLS) method under noisy conditions, achieving a 3.3x lower root mean square error (RMSE), and yields tire models with comparable accuracy to traditional steady-state system identification. Furthermore, unlike steady-state methods requiring large spaces and specific experimental setups, the proposed approach identifies tire parameters directly on a race track in dynamic racing environments.
☆ Resonant Inductive Coupling Power Transfer for Mid-Sized Inspection Robot
This paper presents a wireless power transfer (WPT) for a mid-sized inspection mobile robot. The objective is to transmit 100 W of power over 1 meter of distance, achieved through lightweight Litz wire coils weighing 320 g held together with a coil structure of 3.54 kg. The Wireless Power Transfer System (WPTS) is mounted onto an unmanned ground vehicle (UGV). The study addresses an investigation of coil design, accounting for misalignment and tolerance issues in resonance-coupled coils. In experimental validation, the system effectively transmits 109.7 W of power over a 1-meter distance, with obstacles present. This achievement yields a system efficiency of 47.14%, a value that is remarkably close to the maximum power transfer point (50%) when the WPTS utilises the full voltage allowance of the capacitor. The paper shows the WPTS charging speed of 5 minutes for 12 V, 0.8 Ah lead acid batteries.
☆ Communication-Efficient Cooperative SLAMMOT via Determining the Number of Collaboration Vehicles
The SLAMMOT, i.e. simultaneous localization, mapping, and moving object (detection and) tracking, represents an emerging technology for autonomous vehicles in dynamic environments. Such single-vehicle systems still have inherent limitations, such as occlusion issues. Inspired by SLAMMOT and rapidly evolving cooperative technologies, it is natural to explore cooperative simultaneous localization, mapping, moving object (detection and) tracking (C-SLAMMOT) to enhance state estimation for ego-vehicles and moving objects. C-SLAMMOT could significantly upgrade the single-vehicle performance by utilizing and integrating the shared information through communication among the multiple vehicles. This inevitably leads to a fundamental trade-off between performance and communication cost, especially in a scalable manner as the number of collaboration vehicles increases. To address this challenge, we propose a LiDAR-based communication-efficient C-SLAMMOT (CE C-SLAMMOT) method by determining the number of collaboration vehicles. In CE C-SLAMMOT, we adopt descriptor-based methods for enhancing ego-vehicle pose estimation and spatial confidence map-based methods for cooperative object perception, allowing for the continuous and dynamic selection of the corresponding critical collaboration vehicles and interaction content. This approach avoids the waste of precious communication costs by preventing the sharing of information from certain collaborative vehicles that may contribute little or no performance gain, compared to the baseline method of exchanging raw observation information among all vehicles. Comparative experiments in various aspects have confirmed that the proposed method achieves a good trade-off between performance and communication costs, while also outperforms previous state-of-the-art methods in cooperative perception performance.
☆ Snake-Inspired Mobile Robot Positioning with Hybrid Learning
Mobile robots are used in various fields, from deliveries to search and rescue applications. Different types of sensors are mounted on the robot to provide accurate navigation and, thus, allow successful completion of its task. In real-world scenarios, due to environmental constraints, the robot frequently relies only on its inertial sensors. Therefore, due to noises and other error terms associated with the inertial readings, the navigation solution drifts in time. To mitigate the inertial solution drift, we propose the MoRPINet framework consisting of a neural network to regress the robot's travelled distance. To this end, we require the mobile robot to maneuver in a snake-like slithering motion to encourage nonlinear behavior. MoRPINet was evaluated using a dataset of 290 minutes of inertial recordings during field experiments and showed an improvement of 33\% in the positioning error over other state-of-the-art methods for pure inertial navigation.
☆ Real-Time Multimodal Signal Processing for HRI in RoboCup: Understanding a Human Referee
Advancing human-robot communication is crucial for autonomous systems operating in dynamic environments, where accurate real-time interpretation of human signals is essential. RoboCup provides a compelling scenario for testing these capabilities, requiring robots to understand referee gestures and whistle with minimal network reliance. Using the NAO robot platform, this study implements a two-stage pipeline for gesture recognition through keypoint extraction and classification, alongside continuous convolutional neural networks (CCNNs) for efficient whistle detection. The proposed approach enhances real-time human-robot interaction in a competitive setting like RoboCup, offering some tools to advance the development of autonomous systems capable of cooperating with humans.
comment: 11th Italian Workshop on Artificial Intelligence and Robotics (AIRO 2024), Published in CEUR Workshop Proceedings AI*IA Series
☆ SIL-RRT*: Learning Sampling Distribution through Self Imitation Learning
Efficiently finding safe and feasible trajectories for mobile objects is a critical field in robotics and computer science. In this paper, we propose SIL-RRT*, a novel learning-based motion planning algorithm that extends the RRT* algorithm by using a deep neural network to predict a distribution for sampling at each iteration. We evaluate SIL-RRT* on various 2D and 3D environments and establish that it can efficiently solve high-dimensional motion planning problems with fewer samples than traditional sampling-based algorithms. Moreover, SIL-RRT* is able to scale to more complex environments, making it a promising approach for solving challenging robotic motion planning problems.
☆ Loosely coupled 4D-Radar-Inertial Odometry for Ground Robots
Accurate robot odometry is essential for autonomous navigation. While numerous techniques have been developed based on various sensor suites, odometry estimation using only radar and IMU remains an underexplored area. Radar proves particularly valuable in environments where traditional sensors, like cameras or LiDAR, may struggle, especially in low-light conditions or when faced with environmental challenges like fog, rain or smoke. However, despite its robustness, radar data is noisier and more prone to outliers, requiring specialized processing approaches. In this paper, we propose a graph-based optimization approach using a sliding window for radar-based odometry, designed to maintain robust relationships between poses by forming a network of connections, while keeping computational costs fixed (specially beneficial in long trajectories). Additionally, we introduce an enhancement in the ego-velocity estimation specifically for ground vehicles, both holonomic and non-holonomic, which subsequently improves the direct odometry input required by the optimizer. Finally, we present a comparative study of our approach against existing algorithms, showing how our pure odometry approach inproves the state of art in most trajectories of the NTU4DRadLM dataset, achieving promising results when evaluating key performance metrics.
comment: 21 pages, 5 figures, 2 tables, 32 references
☆ LHPF: Look back the History and Plan for the Future in Autonomous Driving
Decision-making and planning in autonomous driving critically reflect the safety of the system, making effective planning imperative. Current imitation learning-based planning algorithms often merge historical trajectories with present observations to predict future candidate paths. However, these algorithms typically assess the current and historical plans independently, leading to discontinuities in driving intentions and an accumulation of errors with each step in a discontinuous plan. To tackle this challenge, this paper introduces LHPF, an imitation learning planner that integrates historical planning information. Our approach employs a historical intention aggregation module that pools historical planning intentions, which are then combined with a spatial query vector to decode the final planning trajectory. Furthermore, we incorporate a comfort auxiliary task to enhance the human-like quality of the driving behavior. Extensive experiments using both real-world and synthetic data demonstrate that LHPF not only surpasses existing advanced learning-based planners in planning performance but also marks the first instance of a purely learning-based planner outperforming the expert. Additionally, the application of the historical intention aggregation module across various backbones highlights the considerable potential of the proposed method. The code will be made publicly available.
☆ Interval-based validation of a nonlinear estimator
In engineering, models are often used to represent the behavior of a system. Estimators are then needed to approximate the values of the model's parameters based on observations. This approximation implies a difference between the values predicted by the model and the observations that have been made. It creates an uncertainty that can lead to dangerous decision making. Interval analysis tools can be used to guarantee some properties of an estimator, even when the estimator itself doesn't rely on interval analysis (Adam, 2019) (Adam, 2015). This paper contributes to this dynamic by proposing an interval-based and guaranteed method to validate a nonlinear estimator. It is based on the Moore-Skelboe algorithm (van Emden, 2004). This method returns a guaranteed maximum error that the estimator will never exceed. We will show that we can guarantee properties even when working with non-guaranteed estimators such as neural networks.
comment: REC 2024, Oct 2024, Beijing, China
☆ Depth-PC: A Visual Servo Framework Integrated with Cross-Modality Fusion for Sim2Real Transfer
Visual servo techniques guide robotic motion using visual information to accomplish manipulation tasks, requiring high precision and robustness against noise. Traditional methods often require prior knowledge and are susceptible to external disturbances. Learning-driven alternatives, while promising, frequently struggle with the scarcity of training data and fall short in generalization. To address these challenges, we propose a novel visual servo framework Depth-PC that leverages simulation training and exploits semantic and geometric information of keypoints from images, enabling zero-shot transfer to real-world servo tasks. Our framework focuses on the servo controller which intertwines keypoint feature queries and relative depth information. Subsequently, the fused features from these two modalities are then processed by a Graph Neural Network to establish geometric and semantic correspondence between keypoints and update the robot state. Through simulation and real-world experiments, our approach demonstrates superior convergence basin and accuracy compared to state-of-the-art methods, fulfilling the requirements for robotic servo tasks while enabling zero-shot application to real-world scenarios. In addition to the enhancements achieved with our proposed framework, we have also substantiated the efficacy of cross-modality feature fusion within the realm of servo tasks.
☆ AUTO-IceNav: A Local Navigation Strategy for Autonomous Surface Ships in Broken Ice Fields
Ice conditions often require ships to reduce speed and deviate from their main course to avoid damage to the ship. In addition, broken ice fields are becoming the dominant ice conditions encountered in the Arctic, where the effects of collisions with ice are highly dependent on where contact occurs and on the particular features of the ice floes. In this paper, we present AUTO-IceNav, a framework for the autonomous navigation of ships operating in ice floe fields. Trajectories are computed in a receding-horizon manner, where we frequently replan given updated ice field data. During a planning step, we assume a nominal speed that is safe with respect to the current ice conditions, and compute a reference path. We formulate a novel cost function that minimizes the kinetic energy loss of the ship from ship-ice collisions and incorporate this cost as part of our lattice-based path planner. The solution computed by the lattice planning stage is then used as an initial guess in our proposed optimization-based improvement step, producing a locally optimal path. Extensive experiments were conducted both in simulation and in a physical testbed to validate our approach.
comment: 20 pages, 18 figures
On-Road Object Importance Estimation: A New Dataset and A Model with Multi-Fold Top-Down Guidance
This paper addresses the problem of on-road object importance estimation, which utilizes video sequences captured from the driver's perspective as the input. Although this problem is significant for safer and smarter driving systems, the exploration of this problem remains limited. On one hand, publicly-available large-scale datasets are scarce in the community. To address this dilemma, this paper contributes a new large-scale dataset named Traffic Object Importance (TOI). On the other hand, existing methods often only consider either bottom-up feature or single-fold guidance, leading to limitations in handling highly dynamic and diverse traffic scenarios. Different from existing methods, this paper proposes a model that integrates multi-fold top-down guidance with the bottom-up feature. Specifically, three kinds of top-down guidance factors (ie, driver intention, semantic context, and traffic rule) are integrated into our model. These factors are important for object importance estimation, but none of the existing methods simultaneously consider them. To our knowledge, this paper proposes the first on-road object importance estimation model that fuses multi-fold top-down guidance factors with bottom-up feature. Extensive experiments demonstrate that our model outperforms state-of-the-art methods by large margins, achieving 23.1% Average Precision (AP) improvement compared with the recently proposed model (ie, Goal).
☆ TRIP: Terrain Traversability Mapping With Risk-Aware Prediction for Enhanced Online Quadrupedal Robot Navigation
Accurate traversability estimation using an online dense terrain map is crucial for safe navigation in challenging environments like construction and disaster areas. However, traversability estimation for legged robots on rough terrains faces substantial challenges owing to limited terrain information caused by restricted field-of-view, and data occlusion and sparsity. To robustly map traversable regions, we introduce terrain traversability mapping with risk-aware prediction (TRIP). TRIP reconstructs the terrain maps while predicting multi-modal traversability risks, enhancing online autonomous navigation with the following contributions. Firstly, estimating steppability in a spherical projection space allows for addressing data sparsity while accomodating scalable terrain properties. Moreover, the proposed traversability-aware Bayesian generalized kernel (T-BGK)-based inference method enhances terrain completion accuracy and efficiency. Lastly, leveraging the steppability-based Mahalanobis distance contributes to robustness against outliers and dynamic elements, ultimately yielding a static terrain traversability map. As verified in both public and our in-house datasets, our TRIP shows significant performance increases in terms of terrain reconstruction and navigation map. A demo video that demonstrates its feasibility as an integral component within an onboard online autonomous navigation system for quadruped robots is available at https://youtu.be/d7HlqAP4l0c.
☆ DexGrip: Multi-modal Soft Gripper with Dexterous Grasping and In-hand Manipulation Capacity
The ability of robotic grippers to not only grasp but also re-position and re-orient objects in-hand is crucial for achieving versatile, general-purpose manipulation. While recent advances in soft robotic grasping has greatly improved grasp quality and stability, their manipulation capabilities remain under-explored. This paper presents the DexGrip, a multi-modal soft robotic gripper for in-hand grasping, re-orientation and manipulation. DexGrip features a 3 Degrees of Freedom (DoFs) active suction palm and 3 active (rotating) grasping surfaces, enabling soft, stable, and dexterous grasping and manipulation without ever needing to re-grasp an object. Uniquely, these features enable complete 360 degree rotation in all three principal axes. We experimentally demonstrate these capabilities across a diverse set of objects and tasks. DexGrip successfully grasped, re-positioned, and re-oriented objects with widely varying stiffnesses, sizes, weights, and surface textures; and effectively manipulated objects that presented significant challenges for existing robotic grippers.
comment: 6 pages, 5 figures
☆ A Haptic-Based Proximity Sensing System for Buried Object in Granular Material
The proximity perception of objects in granular materials is significant, especially for applications like minesweeping. However, due to particles' opacity and complex properties, existing proximity sensors suffer from high costs from sophisticated hardware and high user-cost from unintuitive results. In this paper, we propose a simple yet effective proximity sensing system for underground stuff based on the haptic feedback of the sensor-granules interaction. We study and employ the unique characteristic of particles -- failure wedge zone, and combine the machine learning method -- Gaussian process regression, to identify the force signal changes induced by the proximity of objects, so as to achieve near-field perception. Furthermore, we design a novel trajectory to control the probe searching in granules for a wide range of perception. Also, our proximity sensing system can adaptively determine optimal parameters for robustness operation in different particles. Experiments demonstrate our system can perceive underground objects over 0.5 to 7 cm in advance among various materials.
comment: The 40th International Symposium of Robotics Research (ISRR). Long Beach, California, USA, December 8-12 2024
☆ Zero-order Control Barrier Functions for Sampled-Data Systems with State and Input Dependent Safety Constraints
We propose a novel zero-order control barrier function (ZOCBF) for sampled-data systems to ensure system safety. Our formulation generalizes conventional control barrier functions and straightforwardly handles safety constraints with high-relative degrees or those that explicitly depend on both system states and inputs. The proposed ZOCBF condition does not require any differentiation operation. Instead, it involves computing the difference of the ZOCBF values at two consecutive sampling instants. We propose three numerical approaches to enforce the ZOCBF condition, tailored to different problem settings and available computational resources. We demonstrate the effectiveness of our approach through a collision avoidance example and a rollover prevention example on uneven terrains.
comment: Submitted to ACC 2025
☆ Invariant neuromorphic representations of tactile stimuli improve robustness of a real-time texture classification system
Humans have an exquisite sense of touch which robotic and prosthetic systems aim to recreate. We developed algorithms to create neuron-like (neuromorphic) spiking representations of texture that are invariant to the scanning speed and contact force applied in the sensing process. The spiking representations are based on mimicking activity from mechanoreceptors in human skin and further processing up to the brain. The neuromorphic encoding process transforms analog sensor readings into speed and force invariant spiking representations in three sequential stages: the force invariance module (in the analog domain), the spiking activity encoding module (transforms from analog to spiking domain), and the speed invariance module (in the spiking domain). The algorithms were tested on a tactile texture dataset collected in 15 speed-force conditions. An offline texture classification system built on the invariant representations has higher classification accuracy, improved computational efficiency, and increased capability to identify textures explored in novel speed-force conditions. The speed invariance algorithm was adapted to a real-time human-operated texture classification system. Similarly, the invariant representations improved classification accuracy, computational efficiency, and capability to identify textures explored in novel conditions. The invariant representation is even more crucial in this context due to human imprecision which seems to the classification system as a novel condition. These results demonstrate that invariant neuromorphic representations enable better performing neurorobotic tactile sensing systems. Furthermore, because the neuromorphic representations are based on biological processing, this work can be used in the future as the basis for naturalistic sensory feedback for upper limb amputees.
comment: 34 pages, 9 figures, 1 table
☆ Dynamic Programming-Based Offline Redundancy Resolution of Redundant Manipulators Along Prescribed Paths with Real-Time Adjustment
Traditional offline redundancy resolution of trajectories for redundant manipulators involves computing inverse kinematic solutions for Cartesian space paths, constraining the manipulator to a fixed path without real-time adjustments. Online redundancy resolution can achieve real-time adjustment of paths, but it cannot consider subsequent path points, leading to the possibility of the manipulator being forced to stop mid-motion due to joint constraints. To address this, this paper introduces a dynamic programming-based offline redundancy resolution for redundant manipulators along prescribed paths with real-time adjustment. The proposed method allows the manipulator to move along a prescribed path while implementing real-time adjustment along the normal to the path. Using Dynamic Programming, the proposed approach computes a global maximum for the variation of adjustment coefficients. As long as the coefficient variation between adjacent sampling path points does not exceed this limit, the algorithm provides the next path point's joint angles based on the current joint angles, enabling the end-effector to achieve the adjusted Cartesian pose. The main innovation of this paper lies in augmenting traditional offline optimal planning with real-time adjustment capabilities, achieving a fusion of offline planning and online planning.
☆ Dynamic Programming-Based Redundancy Resolution for Path Planning of Redundant Manipulators Considering Breakpoints
This paper proposes a redundancy resolution algorithm for a redundant manipulator based on dynamic programming. This algorithm can compute the desired joint angles at each point on a pre-planned discrete path in Cartesian space, while ensuring that the angles, velocities, and accelerations of each joint do not exceed the manipulator's constraints. We obtain the analytical solution to the inverse kinematics problem of the manipulator using a parameterization method, transforming the redundancy resolution problem into an optimization problem of determining the parameters at each path point. The constraints on joint velocity and acceleration serve as constraints for the optimization problem. Then all feasible inverse kinematic solutions for each pose under the joint angle constraints of the manipulator are obtained through parameterization methods, and the globally optimal solution to this problem is obtained through the dynamic programming algorithm. On the other hand, if a feasible joint-space path satisfying the constraints does not exist, the proposed algorithm can compute the minimum number of breakpoints required for the path and partition the path with as few breakpoints as possible to facilitate the manipulator's operation along the path. The algorithm can also determine the optimal selection of breakpoints to minimize the global cost function, rather than simply interrupting when the manipulator is unable to continue operating. The proposed algorithm is tested using a manipulator produced by a certain manufacturer, demonstrating the effectiveness of the algorithm.
☆ CRASH: Challenging Reinforcement-Learning Based Adversarial Scenarios For Safety Hardening
Ensuring the safety of autonomous vehicles (AVs) requires identifying rare but critical failure cases that on-road testing alone cannot discover. High-fidelity simulations provide a scalable alternative, but automatically generating realistic and diverse traffic scenarios that can effectively stress test AV motion planners remains a key challenge. This paper introduces CRASH - Challenging Reinforcement-learning based Adversarial scenarios for Safety Hardening - an adversarial deep reinforcement learning framework to address this issue. First CRASH can control adversarial Non Player Character (NPC) agents in an AV simulator to automatically induce collisions with the Ego vehicle, falsifying its motion planner. We also propose a novel approach, that we term safety hardening, which iteratively refines the motion planner by simulating improvement scenarios against adversarial agents, leveraging the failure cases to strengthen the AV stack. CRASH is evaluated on a simplified two-lane highway scenario, demonstrating its ability to falsify both rule-based and learning-based planners with collision rates exceeding 90%. Additionally, safety hardening reduces the Ego vehicle's collision rate by 26%. While preliminary, these results highlight RL-based safety hardening as a promising approach for scenario-driven simulation testing for autonomous vehicles.
comment: 7 pages, 9 figures, 2 tables
☆ MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators.
☆ Evaluating Generative AI-Enhanced Content: A Conceptual Framework Using Qualitative, Quantitative, and Mixed-Methods Approaches
Generative AI (GenAI) has revolutionized content generation, offering transformative capabilities for improving language coherence, readability, and overall quality. This manuscript explores the application of qualitative, quantitative, and mixed-methods research approaches to evaluate the performance of GenAI models in enhancing scientific writing. Using a hypothetical use case involving a collaborative medical imaging manuscript, we demonstrate how each method provides unique insights into the impact of GenAI. Qualitative methods gather in-depth feedback from expert reviewers, analyzing their responses using thematic analysis tools to capture nuanced improvements and identify limitations. Quantitative approaches employ automated metrics such as BLEU, ROUGE, and readability scores, as well as user surveys, to objectively measure improvements in coherence, fluency, and structure. Mixed-methods research integrates these strengths, combining statistical evaluations with detailed qualitative insights to provide a comprehensive assessment. These research methods enable quantifying improvement levels in GenAI-generated content, addressing critical aspects of linguistic quality and technical accuracy. They also offer a robust framework for benchmarking GenAI tools against traditional editing processes, ensuring the reliability and effectiveness of these technologies. By leveraging these methodologies, researchers can evaluate the performance boost driven by GenAI, refine its applications, and guide its responsible adoption in high-stakes domains like healthcare and scientific research. This work underscores the importance of rigorous evaluation frameworks for advancing trust and innovation in GenAI.
☆ Spatio-temporal Causal Learning for Streamflow Forecasting
Streamflow plays an essential role in the sustainable planning and management of national water resources. Traditional hydrologic modeling approaches simulate streamflow by establishing connections across multiple physical processes, such as rainfall and runoff. These data, inherently connected both spatially and temporally, possess intrinsic causal relations that can be leveraged for robust and accurate forecasting. Recently, spatio-temporal graph neural networks (STGNNs) have been adopted, excelling in various domains, such as urban traffic management, weather forecasting, and pandemic control, and they also promise advances in streamflow management. However, learning causal relationships directly from vast observational data is theoretically and computationally challenging. In this study, we employ a river flow graph as prior knowledge to facilitate the learning of the causal structure and then use the learned causal graph to predict streamflow at targeted sites. The proposed model, Causal Streamflow Forecasting (CSF) is tested in a real-world study in the Brazos River basin in Texas. Our results demonstrate that our method outperforms regular spatio-temporal graph neural networks and achieves higher computational efficiency compared to traditional simulation methods. By effectively integrating river flow graphs with STGNNs, this research offers a novel approach to streamflow prediction, showcasing the potential of combining advanced neural network techniques with domain-specific knowledge for enhanced performance in hydrologic modeling.
comment: To be published at IEEE Big Data 2024
☆ Neural Networks Use Distance Metrics
We present empirical evidence that neural networks with ReLU and Absolute Value activations learn distance-based representations. We independently manipulate both distance and intensity properties of internal activations in trained models, finding that both architectures are highly sensitive to small distance-based perturbations while maintaining robust performance under large intensity-based perturbations. These findings challenge the prevailing intensity-based interpretation of neural network activations and offer new insights into their learning and decision-making processes.
comment: 8 pages excluding references and appendix. 12 pages total. 3 figures. The code for the experiments in this paper is available at https://github.com/alanoursland/neural_networks_use_distance_metrics
☆ Combining Threat Intelligence with IoT Scanning to Predict Cyber Attack
While the Web has become a worldwide platform for communication, hackers and hacktivists share their ideology and communicate with members on the "Dark Web" - the reverse of the Web. Currently, the problems of information overload and difficulty to obtain a comprehensive picture of hackers and cyber-attackers hinder the effective analysis of predicting their activities on the Web. Also, there are currently more objects connected to the internet than there are people in the world and this gap will continue to grow as more and more objects gain ability to directly interface with the Internet. Many technical communities are vigorously pursuing research topics that contribute to the Internet of Things (IoT). In this paper we have proposed a novel methodology for collecting and analyzing the Dark Web information to identify websites of hackers from the Web sea, and how this information can help us in predicting IoT vulnerabilities. This methodology incorporates information collection, analysis, visualization techniques, and exploits some of the IoT devices. Through this research we want to contribute to the existing literature on cyber-security that could potentially guide in both policy-making and intelligence research.
comment: 8 pages, 6 figures, 2 tables. This manuscript has been submitted to Springer for review (Manuscript ID: PDSE-D-24-00163) and is under consideration. It has not yet been peer-reviewed or published. Researchers are welcome to read and build upon this work; please cite it appropriately. For questions or clarifications, feel free to contact me
☆ AI2T: Building Trustable AI Tutors by Interactively Teaching a Self-Aware Learning Agent
AI2T is an interactively teachable AI for authoring intelligent tutoring systems (ITSs). Authors tutor AI2T by providing a few step-by-step solutions and then grading AI2T's own problem-solving attempts. From just 20-30 minutes of interactive training, AI2T can induce robust rules for step-by-step solution tracking (i.e., model-tracing). As AI2T learns it can accurately estimate its certainty of performing correctly on unseen problem steps using STAND: a self-aware precondition learning algorithm that outperforms state-of-the-art methods like XGBoost. Our user study shows that authors can use STAND's certainty heuristic to estimate when AI2T has been trained on enough diverse problems to induce correct and complete model-tracing programs. AI2T-induced programs are more reliable than hallucination-prone LLMs and prior authoring-by-tutoring approaches. With its self-aware induction of hierarchical rules, AI2T offers a path toward trustable data-efficient authoring-by-tutoring for complex ITSs that normally require as many as 200-300 hours of programming per hour of instruction.
☆ Can LLMs plan paths in the real world?
As large language models (LLMs) increasingly integrate into vehicle navigation systems, understanding their path-planning capability is crucial. We tested three LLMs through six real-world path-planning scenarios in various settings and with various difficulties. Our experiments showed that all LLMs made numerous errors in all scenarios, revealing that they are unreliable path planners. We suggest that future work focus on implementing mechanisms for reality checks, enhancing model transparency, and developing smaller models.
☆ Automating grapevine LAI features estimation with UAV imagery and machine learning
The leaf area index determines crop health and growth. Traditional methods for calculating it are time-consuming, destructive, costly, and limited to a scale. In this study, we automate the index estimation method using drone image data of grapevine plants and a machine learning model. Traditional feature extraction and deep learning methods are used to obtain helpful information from the data and enhance the performance of the different machine learning models employed for the leaf area index prediction. The results showed that deep learning based feature extraction is more effective than traditional methods. The new approach is a significant improvement over old methods, offering a faster, non-destructive, and cost-effective leaf area index calculation, which enhances precision agriculture practices.
comment: Accepted in 2024 IEEE INTERNATIONAL WORKSHOP ON Metrology for Agriculture and Forestry
☆ HOPPR Medical-Grade Platform for Medical Imaging AI
Technological advances in artificial intelligence (AI) have enabled the development of large vision language models (LVLMs) that are trained on millions of paired image and text samples. Subsequent research efforts have demonstrated great potential of LVLMs to achieve high performance in medical imaging use cases (e.g., radiology report generation), but there remain barriers that hinder the ability to deploy these solutions broadly. These include the cost of extensive computational requirements for developing large scale models, expertise in the development of sophisticated AI models, and the difficulty in accessing substantially large, high-quality datasets that adequately represent the population in which the LVLM solution is to be deployed. The HOPPR Medical-Grade Platform addresses these barriers by providing powerful computational infrastructure, a suite of foundation models on top of which developers can fine-tune for their specific use cases, and a robust quality management system that sets a standard for evaluating fine-tuned models for deployment in clinical settings. The HOPPR Platform has access to millions of imaging studies and text reports sourced from hundreds of imaging centers from diverse populations to pretrain foundation models and enable use case-specific cohorts for fine-tuning. All data are deidentified and securely stored for HIPAA compliance. Additionally, developers can securely host models on the HOPPR platform and access them via an API to make inferences using these models within established clinical workflows. With the Medical-Grade Platform, HOPPR's mission is to expedite the deployment of LVLM solutions for medical imaging and ultimately optimize radiologist's workflows and meet the growing demands of the field.
comment: 6 pages, 3 figures
☆ LongKey: Keyphrase Extraction for Long Documents
In an era of information overload, manually annotating the vast and growing corpus of documents and scholarly papers is increasingly impractical. Automated keyphrase extraction addresses this challenge by identifying representative terms within texts. However, most existing methods focus on short documents (up to 512 tokens), leaving a gap in processing long-context documents. In this paper, we introduce LongKey, a novel framework for extracting keyphrases from lengthy documents, which uses an encoder-based language model to capture extended text intricacies. LongKey uses a max-pooling embedder to enhance keyphrase candidate representation. Validated on the comprehensive LDKP datasets and six diverse, unseen datasets, LongKey consistently outperforms existing unsupervised and language model-based keyphrase extraction methods. Our findings demonstrate LongKey's versatility and superior performance, marking an advancement in keyphrase extraction for varied text lengths and domains.
comment: Accepted for presentation at the 2024 IEEE International Conference on Big Data (IEEE BigData 2024). Code available at https://github.com/jeohalves/longkey
☆ Accelerating Proximal Policy Optimization Learning Using Task Prediction for Solving Games with Delayed Rewards
In this paper, we tackle the challenging problem of delayed rewards in reinforcement learning (RL). While Proximal Policy Optimization (PPO) has emerged as a leading Policy Gradient method, its performance can degrade under delayed rewards. We introduce two key enhancements to PPO: a hybrid policy architecture that combines an offline policy (trained on expert demonstrations) with an online PPO policy, and a reward shaping mechanism using Time Window Temporal Logic (TWTL). The hybrid architecture leverages offline data throughout training while maintaining PPO's theoretical guarantees. Building on the monotonic improvement framework of Trust Region Policy Optimization (TRPO), we prove that our approach ensures improvement over both the offline policy and previous iterations, with a bounded performance gap of $(2\varsigma\gamma\alpha^2)/(1-\gamma)^2$, where $\alpha$ is the mixing parameter, $\gamma$ is the discount factor, and $\varsigma$ bounds the expected advantage. Additionally, we prove that our TWTL-based reward shaping preserves the optimal policy of the original problem. TWTL enables formal translation of temporal objectives into immediate feedback signals that guide learning. We demonstrate the effectiveness of our approach through extensive experiments on an inverted pendulum and a lunar lander environments, showing improvements in both learning speed and final performance compared to standard PPO and offline-only approaches.
☆ "Give me the code" -- Log Analysis of First-Year CS Students' Interactions With GPT
The impact of Large Language Models (LLMs) like GPT-3, GPT-4, and Bard in computer science (CS) education is expected to be profound. Students now have the power to generate code solutions for a wide array of programming assignments. For first-year students, this may be particularly problematic since the foundational skills are still in development and an over-reliance on generative AI tools can hinder their ability to grasp essential programming concepts. This paper analyzes the prompts used by 69 freshmen undergraduate students to solve a certain programming problem within a project assignment, without giving them prior prompt training. We also present the rules of the exercise that motivated the prompts, designed to foster critical thinking skills during the interaction. Despite using unsophisticated prompting techniques, our findings suggest that the majority of students successfully leveraged GPT, incorporating the suggested solutions into their projects. Additionally, half of the students demonstrated the ability to exercise judgment in selecting from multiple GPT-generated solutions, showcasing the development of their critical thinking skills in evaluating AI-generated code.
comment: This is the author's version of the work. It is posted here for your personal use. Not for redistribution
☆ SoftmAP: Software-Hardware Co-design for Integer-Only Softmax on Associative Processors
Recent research efforts focus on reducing the computational and memory overheads of Large Language Models (LLMs) to make them feasible on resource-constrained devices. Despite advancements in compression techniques, non-linear operators like Softmax and Layernorm remain bottlenecks due to their sensitivity to quantization. We propose SoftmAP, a software-hardware co-design methodology that implements an integer-only low-precision Softmax using In-Memory Compute (IMC) hardware. Our method achieves up to three orders of magnitude improvement in the energy-delay product compared to A100 and RTX3090 GPUs, making LLMs more deployable without compromising performance.
comment: Accepted in DATE 2025
☆ Basic Research, Lethal Effects: Military AI Research Funding as Enlistment
In the context of unprecedented U.S. Department of Defense (DoD) budgets, this paper examines the recent history of DoD funding for academic research in algorithmically based warfighting. We draw from a corpus of DoD grant solicitations from 2007 to 2023, focusing on those addressed to researchers in the field of artificial intelligence (AI). Considering the implications of DoD funding for academic research, the paper proceeds through three analytic sections. In the first, we offer a critical examination of the distinction between basic and applied research, showing how funding calls framed as basic research nonetheless enlist researchers in a war fighting agenda. In the second, we offer a diachronic analysis of the corpus, showing how a 'one small problem' caveat, in which affirmation of progress in military technologies is qualified by acknowledgement of outstanding problems, becomes justification for additional investments in research. We close with an analysis of DoD aspirations based on a subset of Defense Advanced Research Projects Agency (DARPA) grant solicitations for the use of AI in battlefield applications. Taken together, we argue that grant solicitations work as a vehicle for the mutual enlistment of DoD funding agencies and the academic AI research community in setting research agendas. The trope of basic research in this context offers shelter from significant moral questions that military applications of one's research would raise, by obscuring the connections that implicate researchers in U.S. militarism.
comment: 22 pages, 9945 words
☆ SVGDreamer++: Advancing Editability and Diversity in Text-Guided SVG Generation
Recently, text-guided scalable vector graphics (SVG) synthesis has demonstrated significant potential in domains such as iconography and sketching. However, SVGs generated from existing Text-to-SVG methods often lack editability and exhibit deficiencies in visual quality and diversity. In this paper, we propose a novel text-guided vector graphics synthesis method to address these limitations. To improve the diversity of output SVGs, we present a Vectorized Particle-based Score Distillation (VPSD) approach. VPSD addresses over-saturation issues in existing methods and enhances sample diversity. A pre-trained reward model is incorporated to re-weight vector particles, improving aesthetic appeal and enabling faster convergence. Additionally, we design a novel adaptive vector primitives control strategy, which allows for the dynamic adjustment of the number of primitives, thereby enhancing the presentation of graphic details. Extensive experiments validate the effectiveness of the proposed method, demonstrating its superiority over baseline methods in terms of editability, visual quality, and diversity. We also show that our new method supports up to six distinct vector styles, capable of generating high-quality vector assets suitable for stylized vector design and poster design.
comment: 17 pages, 17 figures. arXiv admin note: substantial text overlap with arXiv:2312.16476
☆ STAR: Synthesis of Tailored Architectures
Iterative improvement of model architectures is fundamental to deep learning: Transformers first enabled scaling, and recent advances in model hybridization have pushed the quality-efficiency frontier. However, optimizing architectures remains challenging and expensive. Current automated or manual approaches fall short, largely due to limited progress in the design of search spaces and due to the simplicity of resulting patterns and heuristics. In this work, we propose a new approach for the synthesis of tailored architectures (STAR). Our approach combines a novel search space based on the theory of linear input-varying systems, supporting a hierarchical numerical encoding into architecture genomes. STAR genomes are automatically refined and recombined with gradient-free, evolutionary algorithms to optimize for multiple model quality and efficiency metrics. Using STAR, we optimize large populations of new architectures, leveraging diverse computational units and interconnection patterns, improving over highly-optimized Transformers and striped hybrid models on the frontier of quality, parameter size, and inference cache for autoregressive language modeling.
☆ DapPep: Domain Adaptive Peptide-agnostic Learning for Universal T-cell Receptor-antigen Binding Affinity Prediction
Identifying T-cell receptors (TCRs) that interact with antigenic peptides provides the technical basis for developing vaccines and immunotherapies. The emergent deep learning methods excel at learning antigen binding patterns from known TCRs but struggle with novel or sparsely represented antigens. However, binding specificity for unseen antigens or exogenous peptides is critical. We introduce a domain-adaptive peptide-agnostic learning framework DapPep for universal TCR-antigen binding affinity prediction to address this challenge. The lightweight self-attention architecture combines a pre-trained protein language model with an inner-loop self-supervised regime to enable robust TCR-peptide representations. Extensive experiments on various benchmarks demonstrate that DapPep consistently outperforms existing tools, showcasing robust generalization capability, especially for data-scarce settings and unseen peptides. Moreover, DapPep proves effective in challenging clinical tasks such as sorting reactive T cells in tumor neoantigen therapy and identifying key positions in 3D structures.
☆ Pan-protein Design Learning Enables Task-adaptive Generalization for Low-resource Enzyme Design
Computational protein design (CPD) offers transformative potential for bioengineering, but current deep CPD models, focused on universal domains, struggle with function-specific designs. This work introduces a novel CPD paradigm tailored for functional design tasks, particularly for enzymes-a key protein class often lacking specific application efficiency. To address structural data scarcity, we present CrossDesign, a domain-adaptive framework that leverages pretrained protein language models (PPLMs). By aligning protein structures with sequences, CrossDesign transfers pretrained knowledge to structure models, overcoming the limitations of limited structural data. The framework combines autoregressive (AR) and non-autoregressive (NAR) states in its encoder-decoder architecture, applying it to enzyme datasets and pan-proteins. Experimental results highlight CrossDesign's superior performance and robustness, especially with out-of-domain enzymes. Additionally, the model excels in fitness prediction when tested on large-scale mutation data, showcasing its stability.
☆ Engineering AI Judge Systems
AI judge systems are designed to automatically evaluate Foundation Model-powered software (i.e., FMware). Due to the intrinsic dynamic and stochastic nature of FMware, the development of AI judge systems requires a unique engineering life cycle and presents new challenges. In this paper, we discuss the challenges based on our industrial experiences in developing AI judge systems for FMware. These challenges lead to substantial time consumption, cost and inaccurate judgments. We propose a framework that tackles the challenges with the goal of improving the productivity of developing high-quality AI judge systems. Finally, we evaluate our framework with a case study on judging a commit message generation FMware. The accuracy of the judgments made by the AI judge system developed with our framework outperforms those made by the AI judge system that is developed without our framework by up to 6.2%, with a significant reduction in development effort.
☆ $H^3$Fusion: Helpful, Harmless, Honest Fusion of Aligned LLMs
Alignment of pretrained LLMs using instruction-based datasets is critical for creating fine-tuned models that reflect human preference. A growing number of alignment-based fine-tuning algorithms and benchmarks emerged recently, fueling the efforts on effective alignments of pre-trained LLMs to ensure helpful, harmless, and honest answers from both open-source and closed-source LLMs. This paper tackles this problem by developing an alignment fusion approach, coined as $H^3$Fusion, with three unique characteristics. First, $H^3$Fusion ensembles multiple individually aligned LLMs to create a final fine-tuned alignment model with enhanced capabilities beyond those of individual models, delivering robust alignment through promoting helpful, harmless, honest fusion. Second, $H^3$Fusion leverages the mixture-of-experts (MoE) methodology in two steps. We first freeze the multi-head attention weights of each individual model while tuning the FFN layer during alignment fusion. Then we merge the aligned model weights with an expert router according to the type of input instruction and dynamically select a subset of experts that are best suited for producing the output response. Finally, we boost the performance of the resulting $H^3$3Fusion model by introducing gating loss and regularization terms. The former penalizes the selection errors of the expert-router, and the latter mediates the expert weights drifting during fine-tuning and dynamically adjusts the fusion behavior of the resulting model by canalizing the activations on the experts. Extensive evaluations on three benchmark datasets show that $H^3$3Fusion is more helpful, less harmful, and more honest from two aspects: it outperforms each individually aligned model by $11.37\%$, and it provides stronger robustness compared to the state-of-the-art LLM ensemble approaches by $13.77\%$. Code is available at github.com/sftekin/h3fusion.
Self-supervised Monocular Depth and Pose Estimation for Endoscopy with Generative Latent Priors
Accurate 3D mapping in endoscopy enables quantitative, holistic lesion characterization within the gastrointestinal (GI) tract, requiring reliable depth and pose estimation. However, endoscopy systems are monocular, and existing methods relying on synthetic datasets or complex models often lack generalizability in challenging endoscopic conditions. We propose a robust self-supervised monocular depth and pose estimation framework that incorporates a Generative Latent Bank and a Variational Autoencoder (VAE). The Generative Latent Bank leverages extensive depth scenes from natural images to condition the depth network, enhancing realism and robustness of depth predictions through latent feature priors. For pose estimation, we reformulate it within a VAE framework, treating pose transitions as latent variables to regularize scale, stabilize z-axis prominence, and improve x-y sensitivity. This dual refinement pipeline enables accurate depth and pose predictions, effectively addressing the GI tract's complex textures and lighting. Extensive evaluations on SimCol and EndoSLAM datasets confirm our framework's superior performance over published self-supervised methods in endoscopic depth and pose estimation.
☆ Geometric Point Attention Transformer for 3D Shape Reassembly
Shape assembly, which aims to reassemble separate parts into a complete object, has gained significant interest in recent years. Existing methods primarily rely on networks to predict the poses of individual parts, but often fail to effectively capture the geometric interactions between the parts and their poses. In this paper, we present the Geometric Point Attention Transformer (GPAT), a network specifically designed to address the challenges of reasoning about geometric relationships. In the geometric point attention module, we integrate both global shape information and local pairwise geometric features, along with poses represented as rotation and translation vectors for each part. To enable iterative updates and dynamic reasoning, we introduce a geometric recycling scheme, where each prediction is fed into the next iteration for refinement. We evaluate our model on both the semantic and geometric assembly tasks, showing that it outperforms previous methods in absolute pose estimation, achieving accurate pose predictions and high alignment accuracy.
☆ Hotspot-Driven Peptide Design via Multi-Fragment Autoregressive Extension
Peptides, short chains of amino acids, interact with target proteins, making them a unique class of protein-based therapeutics for treating human diseases. Recently, deep generative models have shown great promise in peptide generation. However, several challenges remain in designing effective peptide binders. First, not all residues contribute equally to peptide-target interactions. Second, the generated peptides must adopt valid geometries due to the constraints of peptide bonds. Third, realistic tasks for peptide drug development are still lacking. To address these challenges, we introduce PepHAR, a hot-spot-driven autoregressive generative model for designing peptides targeting specific proteins. Building on the observation that certain hot spot residues have higher interaction potentials, we first use an energy-based density model to fit and sample these key residues. Next, to ensure proper peptide geometry, we autoregressively extend peptide fragments by estimating dihedral angles between residue frames. Finally, we apply an optimization process to iteratively refine fragment assembly, ensuring correct peptide structures. By combining hot spot sampling with fragment-based extension, our approach enables de novo peptide design tailored to a target protein and allows the incorporation of key hot spot residues into peptide scaffolds. Extensive experiments, including peptide design and peptide scaffold generation, demonstrate the strong potential of PepHAR in computational peptide binder design.
comment: Preprint, Under review
☆ DreamCache: Finetuning-Free Lightweight Personalized Image Generation via Feature Caching
Personalized image generation requires text-to-image generative models that capture the core features of a reference subject to allow for controlled generation across different contexts. Existing methods face challenges due to complex training requirements, high inference costs, limited flexibility, or a combination of these issues. In this paper, we introduce DreamCache, a scalable approach for efficient and high-quality personalized image generation. By caching a small number of reference image features from a subset of layers and a single timestep of the pretrained diffusion denoiser, DreamCache enables dynamic modulation of the generated image features through lightweight, trained conditioning adapters. DreamCache achieves state-of-the-art image and text alignment, utilizing an order of magnitude fewer extra parameters, and is both more computationally effective and versatile than existing models.
comment: 16 pages, 8 figures
☆ Joint Resource Optimization, Computation Offloading and Resource Slicing for Multi-Edge Traffic-Cognitive Networks
The evolving landscape of edge computing envisions platforms operating as dynamic intermediaries between application providers and edge servers (ESs), where task offloading is coupled with payments for computational services. Ensuring efficient resource utilization and meeting stringent Quality of Service (QoS) requirements necessitates incentivizing ESs while optimizing the platforms operational objectives. This paper investigates a multi-agent system where both the platform and ESs are self-interested entities, addressing the joint optimization of revenue maximization, resource allocation, and task offloading. We propose a novel Stackelberg game-based framework to model interactions between stakeholders and solve the optimization problem using a Bayesian Optimization-based centralized algorithm. Recognizing practical challenges in information collection due to privacy concerns, we further design a decentralized solution leveraging neural network optimization and a privacy-preserving information exchange protocol. Extensive numerical evaluations demonstrate the effectiveness of the proposed mechanisms in achieving superior performance compared to existing baselines.
☆ Leaning Time-Varying Instruments for Identifying Causal Effects in Time-Series Data
Querying causal effects from time-series data is important across various fields, including healthcare, economics, climate science, and epidemiology. However, this task becomes complex in the existence of time-varying latent confounders, which affect both treatment and outcome variables over time and can introduce bias in causal effect estimation. Traditional instrumental variable (IV) methods are limited in addressing such complexities due to the need for predefined IVs or strong assumptions that do not hold in dynamic settings. To tackle these issues, we develop a novel Time-varying Conditional Instrumental Variables (CIV) for Debiasing causal effect estimation, referred to as TDCIV. TDCIV leverages Long Short-Term Memory (LSTM) and Variational Autoencoder (VAE) models to disentangle and learn the representations of time-varying CIV and its conditioning set from proxy variables without prior knowledge. Under the assumptions of the Markov property and availability of proxy variables, we theoretically establish the validity of these learned representations for addressing the biases from time-varying latent confounders, thus enabling accurate causal effect estimation. Our proposed TDCIV is the first to effectively learn time-varying CIV and its associated conditioning set without relying on domain-specific knowledge.
comment: 14 pages
☆ MapEval: Towards Unified, Robust and Efficient SLAM Map Evaluation Framework
Evaluating massive-scale point cloud maps in Simultaneous Localization and Mapping (SLAM) remains challenging, primarily due to the absence of unified, robust and efficient evaluation frameworks. We present MapEval, an open-source framework for comprehensive quality assessment of point cloud maps, specifically addressing SLAM scenarios where ground truth map is inherently sparse compared to the mapped environment. Through systematic analysis of existing evaluation metrics in SLAM applications, we identify their fundamental limitations and establish clear guidelines for consistent map quality assessment. Building upon these insights, we propose a novel Gaussian-approximated Wasserstein distance in voxelized space, enabling two complementary metrics under the same error standard: Voxelized Average Wasserstein Distance (AWD) for global geometric accuracy and Spatial Consistency Score (SCS) for local consistency evaluation. This theoretical foundation leads to significant improvements in both robustness against noise and computational efficiency compared to conventional metrics. Extensive experiments on both simulated and real-world datasets demonstrate that MapEval achieves at least \SI{100}{}-\SI{500}{} times faster while maintaining evaluation integrity. The MapEval library\footnote{\texttt{https://github.com/JokerJohn/Cloud\_Map\_Evaluation}} will be publicly available to promote standardized map evaluation practices in the robotics community.
comment: 8 pages, 7 figures, 7 tables
☆ DECODE: Domain-aware Continual Domain Expansion for Motion Prediction
Motion prediction is critical for autonomous vehicles to effectively navigate complex environments and accurately anticipate the behaviors of other traffic participants. As autonomous driving continues to evolve, the need to assimilate new and varied driving scenarios necessitates frequent model updates through retraining. To address these demands, we introduce DECODE, a novel continual learning framework that begins with a pre-trained generalized model and incrementally develops specialized models for distinct domains. Unlike existing continual learning approaches that attempt to develop a unified model capable of generalizing across diverse scenarios, DECODE uniquely balances specialization with generalization, dynamically adjusting to real-time demands. The proposed framework leverages a hypernetwork to generate model parameters, significantly reducing storage requirements, and incorporates a normalizing flow mechanism for real-time model selection based on likelihood estimation. Furthermore, DECODE merges outputs from the most relevant specialized and generalized models using deep Bayesian uncertainty estimation techniques. This integration ensures optimal performance in familiar conditions while maintaining robustness in unfamiliar scenarios. Extensive evaluations confirm the effectiveness of the framework, achieving a notably low forgetting rate of 0.044 and an average minADE of 0.584 m, significantly surpassing traditional learning strategies and demonstrating adaptability across a wide range of driving conditions.
comment: This work has been submitted to the IEEE for possible publication
☆ Nearest-Neighbourless Asymptotically Optimal Motion Planning with Fully Connected Informed Trees (FCIT*)
Improving the performance of motion planning algorithms for high-degree-of-freedom robots usually requires reducing the cost or frequency of computationally expensive operations. Traditionally, and especially for asymptotically optimal sampling-based motion planners, the most expensive operations are local motion validation and querying the nearest neighbours of a configuration. Recent advances have significantly reduced the cost of motion validation by using single instruction/multiple data (SIMD) parallelism to improve solution times for satisficing motion planning problems. These advances have not yet been applied to asymptotically optimal motion planning. This paper presents Fully Connected Informed Trees (FCIT*), the first fully connected, informed, anytime almost-surely asymptotically optimal (ASAO) algorithm. FCIT* exploits the radically reduced cost of edge evaluation via SIMD parallelism to build and search fully connected graphs. This removes the need for nearest-neighbours structures, which are a dominant cost for many sampling-based motion planners, and allows it to find initial solutions faster than state-of-the-art ASAO (VAMP, OMPL) and satisficing (OMPL) algorithms on the MotionBenchMaker dataset while converging towards optimal plans in an anytime manner.
comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA) 2025, 6 + 1 pages, 3 figures, 1 table. A video of FCIT* can be found at https://www.youtube.com/watch?v=Lb_5Znpcleg . Information on the implementation of FCIT* is available at https://robotic-esp.com/code/fcitstar/
☆ Rate-Informed Discovery via Bayesian Adaptive Multifidelity Sampling
Ensuring the safety of autonomous vehicles (AVs) requires both accurate estimation of their performance and efficient discovery of potential failure cases. This paper introduces Bayesian adaptive multifidelity sampling (BAMS), which leverages the power of adaptive Bayesian sampling to achieve efficient discovery while simultaneously estimating the rate of adverse events. BAMS prioritizes exploration of regions with potentially low performance, leading to the identification of novel and critical scenarios that traditional methods might miss. Using real-world AV data we demonstrate that BAMS discovers 10 times as many issues as Monte Carlo (MC) and importance sampling (IS) baselines, while at the same time generating rate estimates with variances 15 and 6 times narrower than MC and IS baselines respectively.
comment: Published at CoRL 2024: https://openreview.net/forum?id=bftFwjSJxk
CityWalker: Learning Embodied Urban Navigation from Web-Scale Videos
Navigating dynamic urban environments presents significant challenges for embodied agents, requiring advanced spatial reasoning and adherence to common-sense norms. Despite progress, existing visual navigation methods struggle in map-free or off-street settings, limiting the deployment of autonomous agents like last-mile delivery robots. To overcome these obstacles, we propose a scalable, data-driven approach for human-like urban navigation by training agents on thousands of hours of in-the-wild city walking and driving videos sourced from the web. We introduce a simple and scalable data processing pipeline that extracts action supervision from these videos, enabling large-scale imitation learning without costly annotations. Our model learns sophisticated navigation policies to handle diverse challenges and critical scenarios. Experimental results show that training on large-scale, diverse datasets significantly enhances navigation performance, surpassing current methods. This work shows the potential of using abundant online video data to develop robust navigation policies for embodied agents in dynamic urban settings. https://ai4ce.github.io/CityWalker/
☆ PROGRESSOR: A Perceptually Guided Reward Estimator with Self-Supervised Online Refinement
We present PROGRESSOR, a novel framework that learns a task-agnostic reward function from videos, enabling policy training through goal-conditioned reinforcement learning (RL) without manual supervision. Underlying this reward is an estimate of the distribution over task progress as a function of the current, initial, and goal observations that is learned in a self-supervised fashion. Crucially, PROGRESSOR refines rewards adversarially during online RL training by pushing back predictions for out-of-distribution observations, to mitigate distribution shift inherent in non-expert observations. Utilizing this progress prediction as a dense reward together with an adversarial push-back, we show that PROGRESSOR enables robots to learn complex behaviors without any external supervision. Pretrained on large-scale egocentric human video from EPIC-KITCHENS, PROGRESSOR requires no fine-tuning on in-domain task-specific data for generalization to real-robot offline RL under noisy demonstrations, outperforming contemporary methods that provide dense visual reward for robotic learning. Our findings highlight the potential of PROGRESSOR for scalable robotic applications where direct action labels and task-specific rewards are not readily available.
comment: 15 pages,13 figures
♻ ☆ Evaluating Tokenizer Performance of Large Language Models Across Official Indian Languages
Large Language Models (LLMs) based on transformer architectures have revolutionized a variety of domains, with tokenization playing a pivotal role in their pre-processing and fine-tuning stages. In multilingual models, particularly those tailored for Indic languages, effective tokenization is crucial for optimizing performance. This paper presents a comprehensive evaluation of tokenizers used by 12 LLMs across all 22 official languages of India, with a focus on comparing the efficiency of their tokenization processes. We employed the Normalized Sequence Length (NSL) as a key metric in our analysis. Our findings reveal that the SUTRA tokenizer outperforms all other models, including several Indic-specific models, excelling in 14 languages. Notable insights include the SUTRA tokenizer's superior handling of Indic languages, GPT-4o's advancement over its predecessor GPT-4 in processing Indian languages, and the limited performance of Project Indus in certain languages. This study underscores the critical importance of developing targeted tokenization strategies for multilingual and Indic-centric models, laying the groundwork for future improvements in tokenizer design to enhance linguistic coverage and model efficiency.
A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics
In drug discovery, molecular dynamics (MD) simulation for protein-ligand binding provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites. There has been a long history of improving the efficiency of MD simulations through better numerical methods and, more recently, by utilizing machine learning (ML) methods. Yet, challenges remain, such as accurate modeling of extended-timescale simulations. To address this issue, we propose NeuralMD, the first ML surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics. We propose a principled approach that incorporates a novel physics-informed multi-grained group symmetric framework. Specifically, we propose (1) the BindingNet model that satisfies group symmetry using vector frames and captures the multi-level protein-ligand interactions, and (2) an augmented neural differential equation solver that learns the trajectory under Newtonian mechanics. For the experiment, we design ten single-trajectory and three multi-trajectory binding simulation tasks. We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$\times$ speedup compared to standard numerical MD simulations. NeuralMD also outperforms all other ML approaches, achieving up to 15$\times$ reduction in reconstruction error and 70% increase in validity. Additionally, we qualitatively illustrate that the oscillations in the predicted trajectories align more closely with ground-truth dynamics than those of other machine-learning methods. We believe NeuralMD paves the foundation for a new research paradigm in simulating protein-ligand dynamics.
♻ ☆ Health AI Developer Foundations
Robust medical Machine Learning (ML) models have the potential to revolutionize healthcare by accelerating clinical research, improving workflows and outcomes, and producing novel insights or capabilities. Developing such ML models from scratch is cost prohibitive and requires substantial compute, data, and time (e.g., expert labeling). To address these challenges, we introduce Health AI Developer Foundations (HAI-DEF), a suite of pre-trained, domain-specific foundation models, tools, and recipes to accelerate building ML for health applications. The models cover various modalities and domains, including radiology (X-rays and computed tomography), histopathology, dermatological imaging, and audio. These models provide domain specific embeddings that facilitate AI development with less labeled data, shorter training times, and reduced computational costs compared to traditional approaches. In addition, we utilize a common interface and style across these models, and prioritize usability to enable developers to integrate HAI-DEF efficiently. We present model evaluations across various tasks and conclude with a discussion of their application and evaluation, covering the importance of ensuring efficacy, fairness, and equity. Finally, while HAI-DEF and specifically the foundation models lower the barrier to entry for ML in healthcare, we emphasize the importance of validation with problem- and population-specific data for each desired usage setting. This technical report will be updated over time as more modalities and features are added.
comment: 16 pages, 8 figures
♻ ☆ CliquePH: Higher-Order Information for Graph Neural Networks through Persistent Homology on Clique Graphs
Graph neural networks have become the default choice by practitioners for graph learning tasks such as graph classification and node classification. Nevertheless, popular graph neural network models still struggle to capture higher-order information, i.e., information that goes \emph{beyond} pairwise interactions. Recent work has shown that persistent homology, a tool from topological data analysis, can enrich graph neural networks with topological information that they otherwise could not capture. Calculating such features is efficient for dimension 0 (connected components) and dimension 1 (cycles). However, when it comes to higher-order structures, it does not scale well, with a complexity of $O(n^d)$, where $n$ is the number of nodes and $d$ is the order of the structures. In this work, we introduce a novel method that extracts information about higher-order structures in the graph while still using the efficient low-dimensional persistent homology algorithm. On standard benchmark datasets, we show that our method can lead to up to $31\%$ improvements in test accuracy.
comment: Published in Proceedings of the Third Learning on Graphs Conference (LoG 2024), PMLR 269
♻ ☆ Reinforcement Learning Discovers Efficient Decentralized Graph Path Search Strategies
Graph path search is a classic computer science problem that has been recently approached with Reinforcement Learning (RL) due to its potential to outperform prior methods. Existing RL techniques typically assume a global view of the network, which is not suitable for large-scale, dynamic, and privacy-sensitive settings. An area of particular interest is search in social networks due to its numerous applications. Inspired by seminal work in experimental sociology, which showed that decentralized yet efficient search is possible in social networks, we frame the problem as a collaborative task between multiple agents equipped with a limited local view of the network. We propose a multi-agent approach for graph path search that successfully leverages both homophily and structural heterogeneity. Our experiments, carried out over synthetic and real-world social networks, demonstrate that our model significantly outperforms learned and heuristic baselines. Furthermore, our results show that meaningful embeddings for graph navigation can be constructed using reward-driven learning.
♻ ☆ Designing the virtual CAT: A digital tool for algorithmic thinking assessment in compulsory education
Algorithmic thinking (AT) is a critical skill in today's digital society, and it is indispensable not only in computer science-related fields but also in everyday problem-solving. As a foundational component of digital education and literacy, fostering AT skills is increasingly relevant for all students and should become a standard part of compulsory education. However, successfully integrating AT into formal education requires effective teaching strategies and robust and scalable assessment procedures. In this paper, we present the design and development process of the virtual Cross Array Task (CAT), a digital adaptation of an unplugged assessment activity aimed at evaluating algorithmic skills in Swiss compulsory education. The development process followed iterative design cycles, incorporating expert evaluations to refine the tool's usability, accessibility and functionality. A participatory design study played a dual role in shaping the platform. First, it gathered valuable insights from end users, including students and teachers, to ensure the tool's relevance and practicality in classroom settings. Second, it facilitated the collection and preliminary analysis of data related to students' AT skills, providing an initial evaluation of the tool's assessment capabilities across various developmental stages. This was achieved through a pilot study involving a diverse group of students aged 4 to 12, spanning preschool to lower secondary school levels. The resulting instrument features multilingual support and includes both gesture-based and visual block-based programming interfaces, making it accessible to a broad range of learners. Findings from the pilot study demonstrate the platform's usability and accessibility, as well as its suitability for assessing AT skills, with preliminary results showing its ability to cater to diverse age groups and educational contexts.
♻ ☆ Do Automatic Factuality Metrics Measure Factuality? A Critical Evaluation
Modern LLMs can now produce highly readable abstractive summaries, to the point where traditional automated metrics for evaluating summary quality, such as ROUGE, have become saturated. However, LLMs still sometimes introduce unwanted content into summaries, i.e., information inconsistent with or unsupported by their source. Measuring the occurrence of these often subtle ``hallucinations'' automatically has proved to be challenging. This in turn has motivated development of a variety of metrics intended to measure the factual consistency of generated summaries against their source. But are these approaches measuring what they purport to do? In this work, we stress-test automatic factuality metrics. Specifically, we investigate whether and to what degree superficial attributes of summary texts suffice to predict ``factuality'', finding that a (supervised) model using only such shallow features is reasonably competitive with SOTA factuality scoring methods. We then evaluate how factuality metrics respond to factual corrections in inconsistent summaries and find that only a few show meaningful improvements. In contrast, some metrics are more sensitive to benign, non-factual edits. Motivated by these insights, we show that one can ``game'' (most) automatic factuality metrics, i.e., reliably inflate ``factuality'' scores by appending innocuous sentences to generated summaries.Taken together, our results raise questions about the degree to which we should rely on existing automated factuality metrics and what exactly we want ``factuality metrics'' to measure.
♻ ☆ CatNet: Effective FDR Control in LSTM with Gaussian Mirrors and SHAP Feature Importance
We introduce CatNet, an algorithm that effectively controls False Discovery Rate (FDR) and selects significant features in LSTM with the Gaussian Mirror (GM) method. To evaluate the feature importance of LSTM in time series, we introduce a vector of the derivative of the SHapley Additive exPlanations (SHAP) to measure feature importance. We also propose a new kernel-based dependence measure to avoid multicollinearity in the GM algorithm, to make a robust feature selection with controlled FDR. We use simulated data to evaluate CatNet's performance in both linear models and LSTM models with different link functions. The algorithm effectively controls the FDR while maintaining a high statistical power in all cases. We also evaluate the algorithm's performance in different low-dimensional and high-dimensional cases, demonstrating its robustness in various input dimensions. To evaluate CatNet's performance in real world applications, we construct a multi-factor investment portfolio to forecast the prices of S\&P 500 index components. The results demonstrate that our model achieves superior predictive accuracy compared to traditional LSTM models without feature selection and FDR control. Additionally, CatNet effectively captures common market-driving features, which helps informed decision-making in financial markets by enhancing the interpretability of predictions. Our study integrates of the Gaussian Mirror algorithm with LSTM models for the first time, and introduces SHAP values as a new feature importance metric for FDR control methods, marking a significant advancement in feature selection and error control for neural networks.
♻ ☆ Enhancing Robustness in Deep Reinforcement Learning: A Lyapunov Exponent Approach
Deep reinforcement learning agents achieve state-of-the-art performance in a wide range of simulated control tasks. However, successful applications to real-world problems remain limited. One reason for this dichotomy is because the learnt policies are not robust to observation noise or adversarial attacks. In this paper, we investigate the robustness of deep RL policies to a single small state perturbation in deterministic continuous control tasks. We demonstrate that RL policies can be deterministically chaotic, as small perturbations to the system state have a large impact on subsequent state and reward trajectories. This unstable non-linear behaviour has two consequences: first, inaccuracies in sensor readings, or adversarial attacks, can cause significant performance degradation; second, even policies that show robust performance in terms of rewards may have unpredictable behaviour in practice. These two facets of chaos in RL policies drastically restrict the application of deep RL to real-world problems. To address this issue, we propose an improvement on the successful Dreamer V3 architecture, implementing Maximal Lyapunov Exponent regularisation. This new approach reduces the chaotic state dynamics, rendering the learnt policies more resilient to sensor noise or adversarial attacks and thereby improving the suitability of deep reinforcement learning for real-world applications.
♻ ☆ Orientation-Aware Graph Neural Networks for Protein Structure Representation Learning
By folding to particular 3D structures, proteins play a key role in living beings. To learn meaningful representation from a protein structure for downstream tasks, not only the global backbone topology but the local fine-grained orientational relations between amino acids should also be considered. In this work, we propose the Orientation-Aware Graph Neural Networks (OAGNNs) to better sense the geometric characteristics in protein structure (e.g. inner-residue torsion angles, inter-residue orientations). Extending a single weight from a scalar to a 3D vector, we construct a rich set of geometric-meaningful operations to process both the classical and SO(3) representations of a given structure. To plug our designed perceptron unit into existing Graph Neural Networks, we further introduce an equivariant message passing paradigm, showing superior versatility in maintaining SO(3)-equivariance at the global scale. Experiments have shown that our OAGNNs have a remarkable ability to sense geometric orientational features compared to classical networks. OAGNNs have also achieved state-of-the-art performance on various computational biology applications related to protein 3D structures.
♻ ☆ LTOS: Layout-controllable Text-Object Synthesis via Adaptive Cross-attention Fusions
Controllable text-to-image generation synthesizes visual text and objects in images with certain conditions, which are frequently applied to emoji and poster generation. Visual text rendering and layout-to-image generation tasks have been popular in controllable text-to-image generation. However, each of these tasks typically focuses on single modality generation or rendering, leaving yet-to-be-bridged gaps between the approaches correspondingly designed for each of the tasks. In this paper, we combine text rendering and layout-to-image generation tasks into a single task: layout-controllable text-object synthesis (LTOS) task, aiming at synthesizing images with object and visual text based on predefined object layout and text contents. As compliant datasets are not readily available for our LTOS task, we construct a layout-aware text-object synthesis dataset, containing elaborate well-aligned labels of visual text and object information. Based on the dataset, we propose a layout-controllable text-object adaptive fusion (TOF) framework, which generates images with clear, legible visual text and plausible objects. We construct a visual-text rendering module to synthesize text and employ an object-layout control module to generate objects while integrating the two modules to harmoniously generate and integrate text content and objects in images. To better the image-text integration, we propose a self-adaptive cross-attention fusion module that helps the image generation to attend more to important text information. Within such a fusion module, we use a self-adaptive learnable factor to learn to flexibly control the influence of cross-attention outputs on image generation. Experimental results show that our method outperforms the state-of-the-art in LTOS, text rendering, and layout-to-image tasks, enabling harmonious visual text rendering and object generation.
♻ ☆ Automatic Album Sequencing
Album sequencing is a critical part of the album production process. Recently, a data-driven approach was proposed that sequences general collections of independent media by extracting the narrative essence of the items in the collections. While this approach implies an album sequencing technique, it is not widely accessible to a less technical audience, requiring advanced knowledge of machine learning techniques to use. To address this, we introduce a new user-friendly web-based tool that allows a less technical audience to upload music tracks, execute this technique in one click, and subsequently presents the result in a clean visualization to the user. To both increase the number of templates available to the user and address shortcomings of previous work, we also introduce a new direct transformer-based album sequencing method. We find that our more direct method outperforms a random baseline but does not reach the same performance as the narrative essence approach. Both methods are included in our web-based user interface, and this -- alongside a full copy of our implementation -- is publicly available at https://github.com/dylanashley/automatic-album-sequencing
comment: presented as a late breaking demo in the 25th International Society for Music Information Retrieval Conference; 3 pages in main text + 1 page of references, 3 figures in main text; source code available at https://github.com/dylanashley/automatic-album-sequencing
♻ ☆ Smoothed Graph Contrastive Learning via Seamless Proximity Integration
Graph contrastive learning (GCL) aligns node representations by classifying node pairs into positives and negatives using a selection process that typically relies on establishing correspondences within two augmented graphs. The conventional GCL approaches incorporate negative samples uniformly in the contrastive loss, resulting in the equal treatment of negative nodes, regardless of their proximity to the true positive. In this paper, we present a Smoothed Graph Contrastive Learning model (SGCL), which leverages the geometric structure of augmented graphs to inject proximity information associated with positive/negative pairs in the contrastive loss, thus significantly regularizing the learning process. The proposed SGCL adjusts the penalties associated with node pairs in contrastive loss by incorporating three distinct smoothing techniques that result in proximity-aware positives and negatives. To enhance scalability for large-scale graphs, the proposed framework incorporates a graph batch-generating strategy that partitions the given graphs into multiple subgraphs, facilitating efficient training in separate batches. Through extensive experimentation in the unsupervised setting on various benchmarks, particularly those of large scale, we demonstrate the superiority of our proposed framework against recent baselines.
comment: 26 pages
♻ ☆ Predict. Optimize. Revise. On Forecast and Policy Stability in Energy Management Systems
This research addresses the challenge of integrating forecasting and optimization in energy management systems, focusing on the impacts of switching costs, forecast accuracy, and stability. It proposes a novel framework for analyzing online optimization problems with switching costs and enabled by deterministic and probabilistic forecasts. Through empirical evaluation and theoretical analysis, the research reveals the balance between forecast accuracy, stability, and switching costs in shaping policy performance. Conducted in the context of battery scheduling within energy management applications, it introduces a metric for evaluating probabilistic forecast stability and examines the effects of forecast accuracy and stability on optimization outcomes using the real-world case of the Citylearn 2022 competition. Findings indicate that switching costs significantly influence the trade-off between forecast accuracy and stability, highlighting the importance of integrated systems that enable collaboration between forecasting and operational units for improved decision-making. The study shows that committing to a policy for longer periods can be advantageous over frequent updates. Results also show a correlation between forecast stability and policy performance, suggesting that stable forecasts can mitigate switching costs. The proposed framework provides valuable insights for energy sector decision-makers and forecast practitioners when designing the operation of an energy management system.
comment: 34 pages, contains the Appendix with a comment on KPIs, MPC formulation, Theoretical analysis of the MPC performance bounds and extra results on the in-sample performance
♻ ☆ A Survey on Multimodal Large Language Models
Recently, Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks. The surprising emergent capabilities of MLLM, such as writing stories based on images and Optical Character Recognition (OCR)-free math reasoning, are rare in traditional multimodal methods, suggesting a potential path to artificial general intelligence. To this end, both academia and industry have endeavored to develop MLLMs that can compete with or even outperform GPT-4V, pushing the limit of research at a surprising speed. In this paper, we aim to trace and summarize the recent progress of MLLMs. First of all, we present the basic formulation of MLLM and delineate its related concepts, including architecture, training strategy and data, as well as evaluation. Then, we introduce research topics about how MLLMs can be extended to support more granularity, modalities, languages, and scenarios. We continue with multimodal hallucination and extended techniques, including Multimodal ICL (M-ICL), Multimodal CoT (M-CoT), and LLM-Aided Visual Reasoning (LAVR). To conclude the paper, we discuss existing challenges and point out promising research directions.
comment: 20 pages, 3 figures, 9 tables, accepted for publication in National Science Review. Project page:https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models
♻ ☆ How should AI decisions be explained? Requirements for Explanations from the Perspective of European Law
This paper investigates the relationship between law and eXplainable Artificial Intelligence (XAI). While there is much discussion about the AI Act, for which the trilogue of the European Parliament, Council and Commission recently concluded, other areas of law seem underexplored. This paper focuses on European (and in part German) law, although with international concepts and regulations such as fiduciary plausibility checks, the General Data Protection Regulation (GDPR), and product safety and liability. Based on XAI-taxonomies, requirements for XAI-methods are derived from each of the legal bases, resulting in the conclusion that each legal basis requires different XAI properties and that the current state of the art does not fulfill these to full satisfaction, especially regarding the correctness (sometimes called fidelity) and confidence estimates of XAI-methods. Published in the Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society https://doi.org/10.1609/aies.v7i1.31648 .
♻ ☆ Efficient Long Video Tokenization via Coordinate-based Patch Reconstruction
Efficient tokenization of videos remains a challenge in training vision models that can process long videos. One promising direction is to develop a tokenizer that can encode long video clips, as it would enable the tokenizer to leverage the temporal coherence of videos better for tokenization. However, training existing tokenizers on long videos often incurs a huge training cost as they are trained to reconstruct all the frames at once. In this paper, we introduce CoordTok, a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos, inspired by recent advances in 3D generative models. In particular, CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled $(x,y,t)$ coordinates. This allows for training large tokenizer models directly on long videos without requiring excessive training resources. Our experiments show that CoordTok can drastically reduce the number of tokens for encoding long video clips. For instance, CoordTok can encode a 128-frame video with 128$\times$128 resolution into 1280 tokens, while baselines need 6144 or 8192 tokens to achieve similar reconstruction quality. We further show that this efficient video tokenization enables memory-efficient training of a diffusion transformer that can generate 128 frames at once.
comment: Code is available on the project webpage: https://huiwon-jang.github.io/coordtok/
♻ ☆ RSL-SQL: Robust Schema Linking in Text-to-SQL Generation
Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational overhead. However, schema linking faces risks that require caution, including the potential omission of necessary elements and disruption of database structural integrity. To address these challenges, we propose a novel framework called RSL-SQL that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction. We improve the recall of pattern linking using forward and backward pruning methods, achieving a strict recall of 94% while reducing the number of input columns by 83%. Furthermore, it hedges the risk by voting between a full mode and a simplified mode enhanced with contextual information. Experiments on the BIRD and Spider benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on Spider using GPT-4o. Furthermore, our approach outperforms a series of GPT-4 based Text-to-SQL systems when adopting DeepSeek (much cheaper) with same intact prompts. Extensive analysis and ablation studies confirm the effectiveness of each component in our framework. The codes are available at https://github.com/Laqcce-cao/RSL-SQL.
♻ ☆ Single-cell Curriculum Learning-based Deep Graph Embedding Clustering
The swift advancement of single-cell RNA sequencing (scRNA-seq) technologies enables the investigation of cellular-level tissue heterogeneity. Cell annotation significantly contributes to the extensive downstream analysis of scRNA-seq data. However, The analysis of scRNA-seq for biological inference presents challenges owing to its intricate and indeterminate data distribution, characterized by a substantial volume and a high frequency of dropout events. Furthermore, the quality of training samples varies greatly, and the performance of the popular scRNA-seq data clustering solution GNN could be harmed by two types of low-quality training nodes: 1) nodes on the boundary; 2) nodes that contribute little additional information to the graph. To address these problems, we propose a single-cell curriculum learning-based deep graph embedding clustering (scCLG). We first propose a Chebyshev graph convolutional autoencoder with multi-decoder (ChebAE) that combines three optimization objectives corresponding to three decoders, including topology reconstruction loss of cell graphs, zero-inflated negative binomial (ZINB) loss, and clustering loss, to learn cell-cell topology representation. Meanwhile, we employ a selective training strategy to train GNN based on the features and entropy of nodes and prune the difficult nodes based on the difficulty scores to keep the high-quality graph. Empirical results on a variety of gene expression datasets show that our model outperforms state-of-the-art methods.
♻ ☆ UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems
Large Language Models (LLMs) has shown exceptional capabilities in many natual language understanding and generation tasks. However, the personalization issue still remains a much-coveted property, especially when it comes to the multiple sources involved in the dialogue system. To better plan and incorporate the use of multiple sources in generating personalized response, we firstly decompose it into three sub-tasks: Knowledge Source Selection, Knowledge Retrieval, and Response Generation. We then propose a novel Unified Multi-Source Retrieval-Augmented Generation system (UniMS-RAG) Specifically, we unify these three sub-tasks with different formulations into the same sequence-to-sequence paradigm during the training, to adaptively retrieve evidences and evaluate the relevance on-demand using special tokens, called acting tokens and evaluation tokens. Enabling language models to generate acting tokens facilitates interaction with various knowledge sources, allowing them to adapt their behavior to diverse task requirements. Meanwhile, evaluation tokens gauge the relevance score between the dialogue context and the retrieved evidence. In addition, we carefully design a self-refinement mechanism to iteratively refine the generated response considering 1) the consistency scores between the generated response and retrieved evidence; and 2) the relevance scores. Experiments on two personalized datasets (DuLeMon and KBP) show that UniMS-RAG achieves state-of-the-art performance on the knowledge source selection and response generation task with itself as a retriever in a unified manner. Extensive analyses and discussions are provided for shedding some new perspectives for personalized dialogue systems.
♻ ☆ Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs
Despite the progress of foundation models, knowledge-based reasoning remains a persistent challenge due to their limited capacity for knowledge recall and inference. Existing methods primarily focus on encouraging these models to plan and solve problems or extensively sample reasoning chains independently. However, these methods often overlook conceptual errors and inferential fallacies, inevitably leading to a series of notorious issues such as misleading conclusions, cognitive biases, and reduced decision quality. While explicit modeling of causality is argued to hold promise in addressing these issues, contemporary research efforts have thus far fallen short in achieving causality-based foundation models. Drawing inspiration from the orchestration of diverse specialized agents collaborating to tackle intricate tasks, we propose a framework named Causal-Consistency Chain-of-Thought (CaCo-CoT) that harnesses multi-agent collaboration to bolster the faithfulness and causality of foundation models, involving a set of reasoners and evaluators. These agents collaboratively work within a reasoning-and-consensus paradigm to improve faithfulness. The reasoners are tasked with generating reasoning chains for knowledge-intensive problems by mimicking human causal reasoning. Meanwhile, the evaluator scrutinizes the causal consistency of a reasoner's reasoning chain from a non-causal and a counterfactual perspective. Our framework demonstrates significant superiority over state-of-the-art methods through extensive and comprehensive evaluations across text-based and multi-modal knowledge reasoning tasks (e.g., science question answering and commonsense reasoning).
comment: 8 pages, 3 figures. 4 tables
♻ ☆ CrowdMAC: Masked Crowd Density Completion for Robust Crowd Density Forecasting WACV 2025
A crowd density forecasting task aims to predict how the crowd density map will change in the future from observed past crowd density maps. However, the past crowd density maps are often incomplete due to the miss-detection of pedestrians, and it is crucial to develop a robust crowd density forecasting model against the miss-detection. This paper presents a MAsked crowd density Completion framework for crowd density forecasting (CrowdMAC), which is simultaneously trained to forecast future crowd density maps from partially masked past crowd density maps (i.e., forecasting maps from past maps with miss-detection) while reconstructing the masked observation maps (i.e., imputing past maps with miss-detection). Additionally, we propose Temporal-Density-aware Masking (TDM), which non-uniformly masks tokens in the observed crowd density map, considering the sparsity of the crowd density maps and the informativeness of the subsequent frames for the forecasting task. Moreover, we introduce multi-task masking to enhance training efficiency. In the experiments, CrowdMAC achieves state-of-the-art performance on seven large-scale datasets, including SDD, ETH-UCY, inD, JRDB, VSCrowd, FDST, and croHD. We also demonstrate the robustness of the proposed method against both synthetic and realistic miss-detections.
comment: Accepted to WACV 2025
♻ ☆ From Goal-Conditioned to Language-Conditioned Agents via Vision-Language Models
Vision-language models (VLMs) have tremendous potential for grounding language, and thus enabling language-conditioned agents (LCAs) to perform diverse tasks specified with text. This has motivated the study of LCAs based on reinforcement learning (RL) with rewards given by rendering images of an environment and evaluating those images with VLMs. If single-task RL is employed, such approaches are limited by the cost and time required to train a policy for each new task. Multi-task RL (MTRL) is a natural alternative, but requires a carefully designed corpus of training tasks and does not always generalize reliably to new tasks. Therefore, this paper introduces a novel decomposition of the problem of building an LCA: first find an environment configuration that has a high VLM score for text describing a task; then use a (pretrained) goal-conditioned policy to reach that configuration. We also explore several enhancements to the speed and quality of VLM-based LCAs, notably, the use of distilled models, and the evaluation of configurations from multiple viewpoints to resolve the ambiguities inherent in a single 2D view. We demonstrate our approach on the Humanoid environment, showing that it results in LCAs that outperform MTRL baselines in zero-shot generalization, without requiring any textual task descriptions or other forms of environment-specific annotation during training. Videos and an interactive demo can be found at https://europe.naverlabs.com/text2control
♻ ☆ How Do Recommendation Models Amplify Popularity Bias? An Analysis from the Spectral Perspective
Recommendation Systems (RS) are often plagued by popularity bias. When training a recommendation model on a typically long-tailed dataset, the model tends to not only inherit this bias but often exacerbate it, resulting in over-representation of popular items in the recommendation lists. This study conducts comprehensive empirical and theoretical analyses to expose the root causes of this phenomenon, yielding two core insights: 1) Item popularity is memorized in the principal spectrum of the score matrix predicted by the recommendation model; 2) The dimension collapse phenomenon amplifies the relative prominence of the principal spectrum, thereby intensifying the popularity bias. Building on these insights, we propose a novel debiasing strategy that leverages a spectral norm regularizer to penalize the magnitude of the principal singular value. We have developed an efficient algorithm to expedite the calculation of the spectral norm by exploiting the spectral property of the score matrix. Extensive experiments across seven real-world datasets and three testing paradigms have been conducted to validate the superiority of the proposed method.
comment: 14 pages, 7 figures
♻ ☆ Getting aligned on representational alignment
Biological and artificial information processing systems form representations of the world that they can use to categorize, reason, plan, navigate, and make decisions. How can we measure the similarity between the representations formed by these diverse systems? Do similarities in representations then translate into similar behavior? If so, then how can a system's representations be modified to better match those of another system? These questions pertaining to the study of representational alignment are at the heart of some of the most promising research areas in contemporary cognitive science, neuroscience, and machine learning. In this Perspective, we survey the exciting recent developments in representational alignment research in the fields of cognitive science, neuroscience, and machine learning. Despite their overlapping interests, there is limited knowledge transfer between these fields, so work in one field ends up duplicated in another, and useful innovations are not shared effectively. To improve communication, we propose a unifying framework that can serve as a common language for research on representational alignment, and map several streams of existing work across fields within our framework. We also lay out open problems in representational alignment where progress can benefit all three of these fields. We hope that this paper will catalyze cross-disciplinary collaboration and accelerate progress for all communities studying and developing information processing systems.
comment: 51 pages; Working paper (changes to be made in upcoming revisions)
♻ ☆ Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey
Semantic segmentation is an important and popular research area in computer vision that focuses on classifying pixels in an image based on their semantics. However, supervised deep learning requires large amounts of data to train models and the process of labeling images pixel by pixel is time-consuming and laborious. This review aims to provide a first comprehensive and organized overview of the state-of-the-art research results on pseudo-label methods in the field of semi-supervised semantic segmentation, which we categorize from different perspectives and present specific methods for specific application areas. In addition, we explore the application of pseudo-label technology in medical and remote-sensing image segmentation. Finally, we also propose some feasible future research directions to address the existing challenges.
comment: Accepted by IEEE Transactions on Circuits and Systems for Video Technology(TCSVT)
♻ ☆ Convergence of a L2 regularized Policy Gradient Algorithm for the Multi Armed Bandit
Although Multi Armed Bandit (MAB) on one hand and the policy gradient approach on the other hand are among the most used frameworks of Reinforcement Learning, the theoretical properties of the policy gradient algorithm used for MAB have not been given enough attention. We investigate in this work the convergence of such a procedure for the situation when a $L2$ regularization term is present jointly with the 'softmax' parametrization. We prove convergence under appropriate technical hypotheses and test numerically the procedure including situations beyond the theoretical setting. The tests show that a time dependent regularized procedure can improve over the canonical approach especially when the initial guess is far from the solution.
♻ ☆ Unconstrained Open Vocabulary Image Classification: Zero-Shot Transfer from Text to Image via CLIP Inversion WACV 2025
We introduce NOVIC, an innovative real-time uNconstrained Open Vocabulary Image Classifier that uses an autoregressive transformer to generatively output classification labels as language. Leveraging the extensive knowledge of CLIP models, NOVIC harnesses the embedding space to enable zero-shot transfer from pure text to images. Traditional CLIP models, despite their ability for open vocabulary classification, require an exhaustive prompt of potential class labels, restricting their application to images of known content or context. To address this, we propose an "object decoder" model that is trained on a large-scale 92M-target dataset of templated object noun sets and LLM-generated captions to always output the object noun in question. This effectively inverts the CLIP text encoder and allows textual object labels from essentially the entire English language to be generated directly from image-derived embedding vectors, without requiring any a priori knowledge of the potential content of an image, and without any label biases. The trained decoders are tested on a mix of manually and web-curated datasets, as well as standard image classification benchmarks, and achieve fine-grained prompt-free prediction scores of up to 87.5%, a strong result considering the model must work for any conceivable image and without any contextual clues.
comment: Published at WACV 2025
♻ ☆ Do LLMs Agree on the Creativity Evaluation of Alternative Uses?
This paper investigates whether large language models (LLMs) show agreement in assessing creativity in responses to the Alternative Uses Test (AUT). While LLMs are increasingly used to evaluate creative content, previous studies have primarily focused on a single model assessing responses generated by the same model or humans. This paper explores whether LLMs can impartially and accurately evaluate creativity in outputs generated by both themselves and other models. Using an oracle benchmark set of AUT responses, categorized by creativity level (common, creative, and highly creative), we experiment with four state-of-the-art LLMs evaluating these outputs. We test both scoring and ranking methods and employ two evaluation settings (comprehensive and segmented) to examine if LLMs agree on the creativity evaluation of alternative uses. Results reveal high inter-model agreement, with Spearman correlations averaging above 0.7 across models and reaching over 0.77 with respect to the oracle, indicating a high level of agreement and validating the reliability of LLMs in creativity assessment of alternative uses. Notably, models do not favour their own responses, instead they provide similar creativity assessment scores or rankings for alternative uses generated by other models. These findings suggest that LLMs exhibit impartiality and high alignment in creativity evaluation, offering promising implications for their use in automated creativity assessment.
comment: 19 pages, 7 figures, 15 tables
♻ ☆ Present and Future Generalization of Synthetic Image Detectors
The continued release of increasingly realistic image generation models creates a demand for synthetic image detectors. To build effective detectors we must first understand how factors like data source diversity, training methodologies and image alterations affect their generalization capabilities. This work conducts a systematic analysis and uses its insights to develop practical guidelines for training robust synthetic image detectors. Model generalization capabilities are evaluated across different setups (e.g. scale, sources, transformations) including real-world deployment conditions. Through an extensive benchmarking of state-of-the-art detectors across diverse and recent datasets, we show that while current approaches excel in specific scenarios, no single detector achieves universal effectiveness. Critical flaws are identified in detectors, and workarounds are proposed to enable the deployment of real-world detector applications enhancing accuracy, reliability and robustness beyond the limitations of current systems.
comment: 21 pages, 12 figures
♻ ☆ IL-TUR: Benchmark for Indian Legal Text Understanding and Reasoning ACL 2024
Legal systems worldwide are inundated with exponential growth in cases and documents. There is an imminent need to develop NLP and ML techniques for automatically processing and understanding legal documents to streamline the legal system. However, evaluating and comparing various NLP models designed specifically for the legal domain is challenging. This paper addresses this challenge by proposing IL-TUR: Benchmark for Indian Legal Text Understanding and Reasoning. IL-TUR contains monolingual (English, Hindi) and multi-lingual (9 Indian languages) domain-specific tasks that address different aspects of the legal system from the point of view of understanding and reasoning over Indian legal documents. We present baseline models (including LLM-based) for each task, outlining the gap between models and the ground truth. To foster further research in the legal domain, we create a leaderboard (available at: https://exploration-lab.github.io/IL-TUR/) where the research community can upload and compare legal text understanding systems.
comment: Accepted at ACL 2024 Main Conference; 40 Pages (9 Pages + References + Appendix)
♻ ☆ LLM-RankFusion: Mitigating Intrinsic Inconsistency in LLM-based Ranking
Ranking passages by prompting a large language model (LLM) can achieve promising performance in modern information retrieval (IR) systems. A common approach to sort the ranking list is by prompting LLMs for a pairwise or setwise comparison which often relies on sorting algorithms. However, sorting-based methods require consistent comparisons to correctly sort the passages, which we show that LLMs often violate. We identify two kinds of intrinsic inconsistency in LLM-based pairwise comparisons: order inconsistency which leads to conflicting results when switching the passage order, and transitive inconsistency which leads to non-transitive triads among all preference pairs. Our study of these inconsistencies is relevant for understanding and improving the stability of any ranking scheme based on relative preferences. In this paper, we propose LLM-RankFusion, an LLM-based ranking framework that mitigates these inconsistencies and produces a robust ranking list. LLM-RankFusion mitigates order inconsistency using in-context learning (ICL) to demonstrate order-agnostic comparisons and calibration to estimate the underlying preference probability between two passages. We then address transitive inconsistency by aggregating the ranking results from multiple rankers. In our experiments, we empirically show that LLM-RankFusion can significantly reduce inconsistent comparison results, improving the ranking quality by making the final ranking list more robust. Our code is available at \href{https://github.com/XHMY/LLM-RankFusion}{https://github.com/XHMY/LLM-RankFusion}
♻ ☆ LLM4DSR: Leveraing Large Language Model for Denoising Sequential Recommendation
Sequential Recommenders generate recommendations based on users' historical interaction sequences. However, in practice, these collected sequences are often contaminated by noisy interactions, which significantly impairs recommendation performance. Accurately identifying such noisy interactions without additional information is particularly challenging due to the absence of explicit supervisory signals indicating noise. Large Language Models (LLMs), equipped with extensive open knowledge and semantic reasoning abilities, offer a promising avenue to bridge this information gap. However, employing LLMs for denoising in sequential recommendation presents notable challenges: 1) Direct application of pretrained LLMs may not be competent for the denoising task, frequently generating nonsensical responses; 2) Even after fine-tuning, the reliability of LLM outputs remains questionable, especially given the complexity of the denoising task and the inherent hallucinatory issue of LLMs. To tackle these challenges, we propose LLM4DSR, a tailored approach for denoising sequential recommendation using LLMs. We constructed a self-supervised fine-tuning task to activate LLMs' capabilities to identify noisy items and suggest replacements. Furthermore, we developed an uncertainty estimation module that ensures only high-confidence responses are utilized for sequence corrections. Remarkably, LLM4DSR is model-agnostic, allowing corrected sequences to be flexibly applied across various recommendation models. Extensive experiments validate the superiority of LLM4DSR over existing methods.
♻ ☆ ALPI: Auto-Labeller with Proxy Injection for 3D Object Detection using 2D Labels Only WACV2025
3D object detection plays a crucial role in various applications such as autonomous vehicles, robotics and augmented reality. However, training 3D detectors requires a costly precise annotation, which is a hindrance to scaling annotation to large datasets. To address this challenge, we propose a weakly supervised 3D annotator that relies solely on 2D bounding box annotations from images, along with size priors. One major problem is that supervising a 3D detection model using only 2D boxes is not reliable due to ambiguities between different 3D poses and their identical 2D projection. We introduce a simple yet effective and generic solution: we build 3D proxy objects with annotations by construction and add them to the training dataset. Our method requires only size priors to adapt to new classes. To better align 2D supervision with 3D detection, our method ensures depth invariance with a novel expression of the 2D losses. Finally, to detect more challenging instances, our annotator follows an offline pseudo-labelling scheme which gradually improves its 3D pseudo-labels. Extensive experiments on the KITTI dataset demonstrate that our method not only performs on-par or above previous works on the Car category, but also achieves performance close to fully supervised methods on more challenging classes. We further demonstrate the effectiveness and robustness of our method by being the first to experiment on the more challenging nuScenes dataset. We additionally propose a setting where weak labels are obtained from a 2D detector pre-trained on MS-COCO instead of human annotations. The code is available at https://github.com/CEA-LIST/ALPI
comment: accepted at WACV2025
♻ ☆ Physically Parameterized Differentiable MUSIC for DoA Estimation with Uncalibrated Arrays
Direction of arrival (DoA) estimation is a common sensing problem in radar, sonar, audio, and wireless communication systems. It has gained renewed importance with the advent of the integrated sensing and communication paradigm. To fully exploit the potential of such sensing systems, it is crucial to take into account potential hardware impairments that can negatively impact the obtained performance. This study introduces a joint DoA estimation and hardware impairment learning scheme following a model-based approach. Specifically, a differentiable version of the multiple signal classification (MUSIC) algorithm is derived, allowing efficient learning of the considered impairments. The proposed approach supports both supervised and unsupervised learning strategies, showcasing its practical potential. Simulation results indicate that the proposed method successfully learns significant inaccuracies in both antenna locations and complex gains. Additionally, the proposed method outperforms the classical MUSIC algorithm in the DoA estimation task.
♻ ☆ Label Noise Robustness of Conformal Prediction
We study the robustness of conformal prediction, a powerful tool for uncertainty quantification, to label noise. Our analysis tackles both regression and classification problems, characterizing when and how it is possible to construct uncertainty sets that correctly cover the unobserved noiseless ground truth labels. We further extend our theory and formulate the requirements for correctly controlling a general loss function, such as the false negative proportion, with noisy labels. Our theory and experiments suggest that conformal prediction and risk-controlling techniques with noisy labels attain conservative risk over the clean ground truth labels whenever the noise is dispersive and increases variability. In other adversarial cases, we can also correct for noise of bounded size in the conformal prediction algorithm in order to ensure achieving the correct risk of the ground truth labels without score or data regularity.
♻ ☆ Is Attention All You Need For Actigraphy? Foundation Models of Wearable Accelerometer Data for Mental Health Research
Wearable accelerometry (actigraphy) has provided valuable data for clinical insights since the 1970s and is increasingly important as wearable devices continue to become widespread. The effectiveness of actigraphy in research and clinical contexts is heavily dependent on the modeling architecture utilized. To address this, we developed the Pretrained Actigraphy Transformer (PAT)--the first pretrained and fully attention-based model designed specifically to handle actigraphy. PAT was pretrained on actigraphy from 29,307 participants in NHANES, enabling it to deliver state-of-the-art performance when fine-tuned across various actigraphy prediction tasks in the mental health domain, even in data-limited scenarios. For example, when trained to predict benzodiazepine usage using actigraphy from only 500 labeled participants, PAT achieved an 8.8 percentage-point AUC improvement over the best baseline. With fewer than 2 million parameters and built-in model explainability, PAT is robust yet easy to deploy in health research settings. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/
♻ ☆ A Survey on Human-Centric LLMs
The rapid evolution of large language models (LLMs) and their capacity to simulate human cognition and behavior has given rise to LLM-based frameworks and tools that are evaluated and applied based on their ability to perform tasks traditionally performed by humans, namely those involving cognition, decision-making, and social interaction. This survey provides a comprehensive examination of such human-centric LLM capabilities, focusing on their performance in both individual tasks (where an LLM acts as a stand-in for a single human) and collective tasks (where multiple LLMs coordinate to mimic group dynamics). We first evaluate LLM competencies across key areas including reasoning, perception, and social cognition, comparing their abilities to human-like skills. Then, we explore real-world applications of LLMs in human-centric domains such as behavioral science, political science, and sociology, assessing their effectiveness in replicating human behaviors and interactions. Finally, we identify challenges and future research directions, such as improving LLM adaptability, emotional intelligence, and cultural sensitivity, while addressing inherent biases and enhancing frameworks for human-AI collaboration. This survey aims to provide a foundational understanding of LLMs from a human-centric perspective, offering insights into their current capabilities and potential for future development.
♻ ☆ Tiny-Align: Bridging Automatic Speech Recognition and Large Language Model on the Edge
The combination of Large Language Models (LLM) and Automatic Speech Recognition (ASR), when deployed on edge devices (called edge ASR-LLM), can serve as a powerful personalized assistant to enable audio-based interaction for users. Compared to text-based interaction, edge ASR-LLM allows accessible and natural audio interactions. Unfortunately, existing ASR-LLM models are mainly trained in high-performance computing environments and produce substantial model weights, making them difficult to deploy on edge devices. More importantly, to better serve users' personalized needs, the ASR-LLM must be able to learn from each distinct user, given that audio input often contains highly personalized characteristics that necessitate personalized on-device training. Since individually fine-tuning the ASR or LLM often leads to suboptimal results due to modality-specific limitations, end-to-end training ensures seamless integration of audio features and language understanding (cross-modal alignment), ultimately enabling a more personalized and efficient adaptation on edge devices. However, due to the complex training requirements and substantial computational demands of existing approaches, cross-modal alignment between ASR audio and LLM can be challenging on edge devices. In this work, we propose a resource-efficient cross-modal alignment framework that bridges ASR and LLMs on edge devices to handle personalized audio input. Our framework enables efficient ASR-LLM alignment on resource-constrained devices like NVIDIA Jetson Orin (8GB RAM), achieving 50x training time speedup while improving the alignment quality by more than 50\%. To the best of our knowledge, this is the first work to study efficient ASR-LLM alignment on resource-constrained edge devices.
comment: 7 pages, 8 figures
♻ ☆ Towards Black-Box Membership Inference Attack for Diffusion Models
Given the rising popularity of AI-generated art and the associated copyright concerns, identifying whether an artwork was used to train a diffusion model is an important research topic. The work approaches this problem from the membership inference attack (MIA) perspective. We first identify the limitation of applying existing MIA methods for proprietary diffusion models: the required access of internal U-nets. To address the above problem, we introduce a novel membership inference attack method that uses only the image-to-image variation API and operates without access to the model's internal U-net. Our method is based on the intuition that the model can more easily obtain an unbiased noise prediction estimate for images from the training set. By applying the API multiple times to the target image, averaging the outputs, and comparing the result to the original image, our approach can classify whether a sample was part of the training set. We validate our method using DDIM and Stable Diffusion setups and further extend both our approach and existing algorithms to the Diffusion Transformer architecture. Our experimental results consistently outperform previous methods.
♻ ☆ A Computational Method for Measuring "Open Codes" in Qualitative Analysis
Qualitative analysis is critical to understanding human datasets in many social science disciplines. Open coding is an inductive qualitative process that identifies and interprets "open codes" from datasets. Yet, meeting methodological expectations (such as "as exhaustive as possible") can be challenging. While many machine learning (ML)/generative AI (GAI) studies have attempted to support open coding, few have systematically measured or evaluated GAI outcomes, increasing potential bias risks. Building on Grounded Theory and Thematic Analysis theories, we present a computational method to measure and identify potential biases from "open codes" systematically. Instead of operationalizing human expert results as the "ground truth," our method is built upon a team-based approach between human and machine coders. We experiment with two HCI datasets to establish this method's reliability by 1) comparing it with human analysis, and 2) analyzing its output stability. We present evidence-based suggestions and example workflows for ML/GAI to support open coding.
♻ ☆ Reward-Augmented Data Enhances Direct Preference Alignment of LLMs
Preference alignment in Large Language Models (LLMs) has significantly improved their ability to adhere to human instructions and intentions. However, existing direct alignment algorithms primarily focus on relative preferences and often overlook the qualitative aspects of responses. Striving to maximize the implicit reward gap between the chosen and the slightly inferior rejected responses can cause overfitting and unnecessary unlearning of the high-quality rejected responses. The unawareness of the reward scores also drives the LLM to indiscriminately favor the low-quality chosen responses and fail to generalize to responses with the highest rewards, which are sparse in data. To overcome these shortcomings, our study introduces reward-conditioned LLM policies that discern and learn from the entire spectrum of response quality within the dataset, helping extrapolate to more optimal regions. We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset. This dataset is easily integrated with existing direct alignment algorithms and is applicable to any preference dataset. The experimental results across instruction-following benchmarks including AlpacaEval, MT-Bench, and Arena-Hard-Auto demonstrate that our approach consistently boosts the performance of DPO by a considerable margin across diverse models. Additionally, our method improves the average accuracy on various academic benchmarks. When applying our method to on-policy data, the resulting DPO model achieves SOTA results on AlpacaEval. Through ablation studies, we demonstrate that our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere dataset expansion. Our code is available at https://github.com/shenao-zhang/reward-augmented-preference.
comment: Temporarily modified the author list pending verification from companies
♻ ☆ I2VControl-Camera: Precise Video Camera Control with Adjustable Motion Strength
Video generation technologies are developing rapidly and have broad potential applications. Among these technologies, camera control is crucial for generating professional-quality videos that accurately meet user expectations. However, existing camera control methods still suffer from several limitations, including control precision and the neglect of the control for subject motion dynamics. In this work, we propose I2VControl-Camera, a novel camera control method that significantly enhances controllability while providing adjustability over the strength of subject motion. To improve control precision, we employ point trajectory in the camera coordinate system instead of only extrinsic matrix information as our control signal. To accurately control and adjust the strength of subject motion, we explicitly model the higher-order components of the video trajectory expansion, not merely the linear terms, and design an operator that effectively represents the motion strength. We use an adapter architecture that is independent of the base model structure. Experiments on static and dynamic scenes show that our framework outperformances previous methods both quantitatively and qualitatively. The project page is: https://wanquanf.github.io/I2VControlCamera .
comment: Project page: https://wanquanf.github.io/I2VControlCamera
♻ ☆ Evaluating the Impact of Underwater Image Enhancement on Object Detection Performance: A Comprehensive Study
Underwater imagery often suffers from severe degradation that results in low visual quality and object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their impact on underwater object detection, and explore their potential to improve detection performance. To this end, we selected representative underwater image enhancement models covering major enhancement categories and applied them separately to two recent datasets: 1) the Real-World Underwater Object Detection Dataset (RUOD), and 2) the Challenging Underwater Plant Detection Dataset (CUPDD). Following this, we conducted qualitative and quantitative analyses on the enhanced images and developed a quality index (Q-index) to compare the quality distribution of the original and enhanced images. Subsequently, we compared the performance of several YOLO-NAS detection models that are separately trained and tested on the original and enhanced image sets. Then, we performed a correlation study to examine the relationship between enhancement metrics and detection performance. We also analyzed the inference results from the trained detectors presenting cases where enhancement increased the detection performance as well as cases where enhancement revealed missed objects by human annotators. This study suggests that although enhancement generally deteriorates the detection performance, it can still be harnessed in some cases for increased detection performance and more accurate human annotation.
♻ ☆ Bridging Weighted First Order Model Counting and Graph Polynomials
The Weighted First-Order Model Counting Problem (WFOMC) asks to compute the weighted sum of models of a given first-order logic sentence over a given domain. It can be solved in time polynomial in the domain size for sentences from the two-variable fragment with counting quantifiers, known as $C^2$. This polynomial-time complexity is known to be retained when extending $C^2$ by one of the following axioms: linear order axiom, tree axiom, forest axiom, directed acyclic graph axiom or connectedness axiom. An interesting question remains as to which other axioms can be added to the first-order sentences in this way. We provide a new perspective on this problem by associating WFOMC with graph polynomials. Using WFOMC, we define Weak Connectedness Polynomial and Strong Connectedness Polynomials for first-order logic sentences. It turns out that these polynomials have the following interesting properties. First, they can be computed in polynomial time in the domain size for sentences from $C^2$. Second, we can use them to solve WFOMC with all of the existing axioms known to be tractable as well as with new ones such as bipartiteness, strong connectedness, having $k$ connected components, etc. Third, the well-known Tutte polynomial can be recovered as a special case of the Weak Connectedness Polynomial, and the Strict and Non-Strict Directed Chromatic Polynomials can be recovered from the Strong Connectedness Polynomials.
comment: 33 pages, 2 figures
♻ ☆ Diffusion-Reward Adversarial Imitation Learning NeurIPS 2024
Imitation learning aims to learn a policy from observing expert demonstrations without access to reward signals from environments. Generative adversarial imitation learning (GAIL) formulates imitation learning as adversarial learning, employing a generator policy learning to imitate expert behaviors and discriminator learning to distinguish the expert demonstrations from agent trajectories. Despite its encouraging results, GAIL training is often brittle and unstable. Inspired by the recent dominance of diffusion models in generative modeling, we propose Diffusion-Reward Adversarial Imitation Learning (DRAIL), which integrates a diffusion model into GAIL, aiming to yield more robust and smoother rewards for policy learning. Specifically, we propose a diffusion discriminative classifier to construct an enhanced discriminator, and design diffusion rewards based on the classifier's output for policy learning. Extensive experiments are conducted in navigation, manipulation, and locomotion, verifying DRAIL's effectiveness compared to prior imitation learning methods. Moreover, additional experimental results demonstrate the generalizability and data efficiency of DRAIL. Visualized learned reward functions of GAIL and DRAIL suggest that DRAIL can produce more robust and smoother rewards. Project page: https://nturobotlearninglab.github.io/DRAIL/
comment: NeurIPS 2024. Project page: https://nturobotlearninglab.github.io/DRAIL/
♻ ☆ POWQMIX: Weighted Value Factorization with Potentially Optimal Joint Actions Recognition for Cooperative Multi-Agent Reinforcement Learning
Value function factorization methods are commonly used in cooperative multi-agent reinforcement learning, with QMIX receiving significant attention. Many QMIX-based methods introduce monotonicity constraints between the joint action value and individual action values to achieve decentralized execution. However, such constraints limit the representation capacity of value factorization, restricting the joint action values it can represent and hindering the learning of the optimal policy. To address this challenge, we propose the Potentially Optimal Joint Actions Weighted QMIX (POWQMIX) algorithm, which recognizes the potentially optimal joint actions and assigns higher weights to the corresponding losses of these joint actions during training. We theoretically prove that with such a weighted training approach the optimal policy is guaranteed to be recovered. Experiments in matrix games, difficulty-enhanced predator-prey, and StarCraft II Multi-Agent Challenge environments demonstrate that our algorithm outperforms the state-of-the-art value-based multi-agent reinforcement learning methods.
comment: The first two authors contributed equally to this work. Under review
♻ ☆ EVINCE: Optimizing Adversarial LLM Dialogues via Conditional Statistics and Information Theory
This paper introduces EVINCE (Entropy and Variation IN Conditional Exchanges), a framework that optimizes multi-LLM dialogues using conditional statistics and information theory. EVINCE introduces dual entropy optimization to balance perspective diversity with prior knowledge, providing quantitative measures for modulating LLM interactions. Through information-theoretic metrics and mutual information optimization, the framework demonstrates consistent improvement over single-LLM performance in applications ranging from disease diagnosis to news debiasing. We present theoretical foundations and empirical validation for this structured approach to LLM collaboration.
comment: 32 pages, 9 figures, 10 tables. arXiv admin note: substantial text overlap with arXiv:2405.15808
♻ ☆ ALF: Adaptive Label Finetuning for Scene Graph Generation
Scene Graph Generation (SGG) endeavors to predict the relationships between subjects and objects in a given image. Nevertheless, the long-tail distribution of relations often leads to biased prediction on coarse labels, presenting a substantial hurdle in SGG. To address this issue, researchers focus on unbiased SGG and introduce data transfer methods to transfer coarse-grained predicates into fine-grained ones across the entire dataset. However, these methods encounter two primary challenges: 1) They overlook the inherent context constraints imposed by subject-object pairs, leading to erroneous relations transfer. 2) Additional retraining process are required after the data transfer, which incurs substantial computational costs. To overcome these limitations, we introduce the first plug-and-play one-stage data transfer pipeline in SGG, termed Adaptive Label Finetuning (ALF), which eliminates the need for extra retraining sessions and meanwhile significantly enhance models' relation recognition capability across various SGG benchmark approaches. Specifically, ALF consists of two components: Adaptive Label Construction (ALC) and Adaptive Iterative Learning (AIL). By imposing Predicate-Context Constraints within relation space, ALC adaptively re-ranks and selects candidate relations in reference to model's predictive logits utilizing the Restriction-Based Judgment techniques, achieving robust relation transfer. Supervised with labels transferred by ALC, AIL iteratively finetunes the SGG models in an auto-regressive manner, which mitigates the substantial computational costs arising from the retraining process. Extensive experiments demonstrate that ALF achieves a 16% improvement in mR@100 compared to the typical SGG method Motif, with only a 6% increase in calculation costs compared to the state-of-the-art method IETrans.
comment: The author requests to withdraw this paper due to a critical definitional error in Adaptive Label Finetuning for Scene Graph Generation. This error aligned with the definition of Unbiased SGG tasks, resulting in an unfair comparison with state-of- the-art (SOTA) methods, which in turn, hindered the ability to evaluate the paper's contributions
♻ ☆ Direction-Oriented Visual-semantic Embedding Model for Remote Sensing Image-text Retrieval
Image-text retrieval has developed rapidly in recent years. However, it is still a challenge in remote sensing due to visual-semantic imbalance, which leads to incorrect matching of non-semantic visual and textual features. To solve this problem, we propose a novel Direction-Oriented Visual-semantic Embedding Model (DOVE) to mine the relationship between vision and language. Our highlight is to conduct visual and textual representations in latent space, directing them as close as possible to a redundancy-free regional visual representation. Concretely, a Regional-Oriented Attention Module (ROAM) adaptively adjusts the distance between the final visual and textual embeddings in the latent semantic space, oriented by regional visual features. Meanwhile, a lightweight Digging Text Genome Assistant (DTGA) is designed to expand the range of tractable textual representation and enhance global word-level semantic connections using less attention operations. Ultimately, we exploit a global visual-semantic constraint to reduce single visual dependency and serve as an external constraint for the final visual and textual representations. The effectiveness and superiority of our method are verified by extensive experiments including parameter evaluation, quantitative comparison, ablation studies and visual analysis, on two benchmark datasets, RSICD and RSITMD.
comment: 14 pages, 12 figures
♻ ☆ DSTC: Direct Preference Learning with Only Self-Generated Tests and Code to Improve Code LMs
Direct preference learning offers a promising and computation-efficient beyond supervised fine-tuning (SFT) for improving code generation in coding large language models (LMs). However, the scarcity of reliable preference data is a bottleneck for the performance of direct preference learning to improve the coding accuracy of code LMs. In this paper, we introduce \underline{\textbf{D}}irect Preference Learning with Only \underline{\textbf{S}}elf-Generated \underline{\textbf{T}}ests and \underline{\textbf{C}}ode (DSTC), a framework that leverages only self-generated code snippets and tests to construct reliable preference pairs such that direct preference learning can improve LM coding accuracy without external annotations. DSTC combines a minimax selection process and test-code concatenation to improve preference pair quality, reducing the influence of incorrect self-generated tests and enhancing model performance without the need for costly reward models. When applied with direct preference learning methods such as Direct Preference Optimization (DPO) and Kahneman-Tversky Optimization (KTO), DSTC yields stable improvements in coding accuracy (pass@1 score) across diverse coding benchmarks, including HumanEval, MBPP, and BigCodeBench, demonstrating both its effectiveness and scalability for models of various sizes. This approach autonomously enhances code generation accuracy across LLMs of varying sizes, reducing reliance on expensive annotated coding datasets.
comment: We temporarily modified the author list because of the pending verification from the company
♻ ☆ Action Contextualization: Adaptive Task Planning and Action Tuning using Large Language Models
Large Language Models (LLMs) present a promising frontier in robotic task planning by leveraging extensive human knowledge. Nevertheless, the current literature often overlooks the critical aspects of robots' adaptability and error correction. This work aims to overcome this limitation by enabling robots to modify their motions and select the most suitable task plans based on the context. We introduce a novel framework to achieve action contextualization, aimed at tailoring robot actions to the context of specific tasks, thereby enhancing adaptability through applying LLM-derived contextual insights. Our framework integrates motion metrics that evaluate robot performances for each motion to resolve redundancy in planning. Moreover, it supports online feedback between the robot and the LLM, enabling immediate modifications to the task plans and corrections of errors. An overall success rate of 81.25% has been achieved through extensive experimental validation. Finally, when integrated with dynamical system (DS)-based robot controllers, the robotic arm-hand system demonstrates its proficiency in autonomously executing LLM-generated motion plans for sequential table-clearing tasks, rectifying errors without human intervention, and showcasing robustness against external disturbances. Our proposed framework also features the potential to be integrated with modular control approaches, significantly enhancing robots' adaptability and autonomy in performing sequential tasks in the real world.
♻ ☆ Self-Centering 3-DoF Feet Controller for Hands-Free Locomotion Control in Telepresence and Virtual Reality
We present a novel seated feet controller for handling 3-DoF aimed to control locomotion for telepresence robotics and virtual reality environments. Tilting the feet on two axes yields in forward, backward and sideways motion. In addition, a separate rotary joint allows for rotation around the vertical axis. Attached springs on all joints self-center the controller. The HTC Vive tracker is used to translate the trackers' orientation into locomotion commands. The proposed self-centering feet controller was used successfully for the ANA Avatar XPRIZE competition, where a naive operator traversed the robot through a longer distance, surpassing obstacles while solving various interaction and manipulation tasks in between. We publicly provide the models of the mostly 3D-printed feet controller for reproduction.
comment: 4 pages, 7 figures, submitted to 2024 IEEE International Conference on Telepresence (Tele 2024)
♻ ☆ PEERNet: An End-to-End Profiling Tool for Real-Time Networked Robotic Systems IROS 2024
Networked robotic systems balance compute, power, and latency constraints in applications such as self-driving vehicles, drone swarms, and teleoperated surgery. A core problem in this domain is deciding when to offload a computationally expensive task to the cloud, a remote server, at the cost of communication latency. Task offloading algorithms often rely on precise knowledge of system-specific performance metrics, such as sensor data rates, network bandwidth, and machine learning model latency. While these metrics can be modeled during system design, uncertainties in connection quality, server load, and hardware conditions introduce real-time performance variations, hindering overall performance. We introduce PEERNet, an end-to-end and real-time profiling tool for cloud robotics. PEERNet enables performance monitoring on heterogeneous hardware through targeted yet adaptive profiling of system components such as sensors, networks, deep-learning pipelines, and devices. We showcase PEERNet's capabilities through networked robotics tasks, such as image-based teleoperation of a Franka Emika Panda arm and querying vision language models using an Nvidia Jetson Orin. PEERNet reveals non-intuitive behavior in robotic systems, such as asymmetric network transmission and bimodal language model output. Our evaluation underscores the effectiveness and importance of benchmarking in networked robotics, demonstrating PEERNet's adaptability. Our code is open-source and available at github.com/UTAustin-SwarmLab/PEERNet.
comment: Accepted at IROS 2024
♻ ☆ DexTouch: Learning to Seek and Manipulate Objects with Tactile Dexterity
The sense of touch is an essential ability for skillfully performing a variety of tasks, providing the capacity to search and manipulate objects without relying on visual information. In this paper, we introduce a multi-finger robot system designed to manipulate objects using the sense of touch, without relying on vision. For tasks that mimic daily life, the robot uses its sense of touch to manipulate randomly placed objects in dark. The objective of this study is to enable robots to perform blind manipulation by using tactile sensation to compensate for the information gap caused by the absence of vision, given the presence of prior information. Training the policy through reinforcement learning in simulation and transferring the trained policy to the real environment, we demonstrate that blind manipulation can be applied to robots without vision. In addition, the experiments showcase the importance of tactile sensing in the blind manipulation tasks. Our project page is available at https://lee-kangwon.github.io/dextouch/
comment: Project page: https://lee-kangwon.github.io/dextouch/; published in IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Learning Generalizable Feature Fields for Mobile Manipulation
An open problem in mobile manipulation is how to represent objects and scenes in a unified manner so that robots can use both for navigation and manipulation. The latter requires capturing intricate geometry while understanding fine-grained semantics, whereas the former involves capturing the complexity inherent at an expansive physical scale. In this work, we present GeFF (Generalizable Feature Fields), a scene-level generalizable neural feature field that acts as a unified representation for both navigation and manipulation that performs in real-time. To do so, we treat generative novel view synthesis as a pre-training task, and then align the resulting rich scene priors with natural language via CLIP feature distillation. We demonstrate the effectiveness of this approach by deploying GeFF on a quadrupedal robot equipped with a manipulator. We quantitatively evaluate GeFF's ability for open-vocabulary object-/part-level manipulation and show that GeFF outperforms point-based baselines in runtime and storage-accuracy trade-offs, with qualitative examples of semantics-aware navigation and articulated object manipulation.
comment: Preprint. Project website is at: https://geff-b1.github.io/
♻ ☆ DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving
Current end-to-end autonomous driving methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized in a planning-oriented spirit with a fully differentiable framework, existing end-to-end driving systems without ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, owing to the rasterized scene representation learning and redundant information transmission. In this paper, we revisit the human driving behavior and propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving. Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection, tracking and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. Besides, both position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thus facilitating the training stability and convergence of the whole framework. Extensive experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
♻ ☆ Simultaneous System Identification and Model Predictive Control with No Dynamic Regret
We provide an algorithm for the simultaneous system identification and model predictive control of nonlinear systems. The algorithm has finite-time near-optimality guarantees and asymptotically converges to the optimal (non-causal) controller. Particularly, the algorithm enjoys sublinear dynamic regret, defined herein as the suboptimality against an optimal clairvoyant controller that knows how the unknown disturbances and system dynamics will adapt to its actions. The algorithm is self-supervised and applies to control-affine systems with unknown dynamics and disturbances that can be expressed in reproducing kernel Hilbert spaces. Such spaces can model external disturbances and modeling errors that can even be adaptive to the system's state and control input. For example, they can model wind and wave disturbances to aerial and marine vehicles, or inaccurate model parameters such as inertia of mechanical systems. The algorithm first generates random Fourier features that are used to approximate the unknown dynamics or disturbances. Then, it employs model predictive control based on the current learned model of the unknown dynamics (or disturbances). The model of the unknown dynamics is updated online using least squares based on the data collected while controlling the system. We validate our algorithm in both hardware experiments and physics-based simulations. The simulations include (i) a cart-pole aiming to maintain the pole upright despite inaccurate model parameters, and (ii) a quadrotor aiming to track reference trajectories despite unmodeled aerodynamic drag effects. The hardware experiments include a quadrotor aiming to track a circular trajectory despite unmodeled aerodynamic drag effects, ground effects, and wind disturbances.
comment: 19 pages, 13 figures
♻ ☆ Locomotion Mode Transitions: Tackling System- and User-Specific Variability in Lower-Limb Exoskeletons
Accurate detection of locomotion transitions, such as walk to sit, walk to stair ascent, and descent, is crucial to effectively control robotic assistive devices, such as lower-limb exoskeletons, as each locomotion mode requires specific assistance. Variability in collected sensor data introduced by user- or system-specific characteristics makes it challenging to maintain high transition detection accuracy while avoiding latency using non-adaptive classification models. In this study, we identified key factors influencing transition detection performance, including variations in user behavior, and different mechanical designs of the exoskeletons. To boost the transition detection accuracy, we introduced two methods for adapting a finite-state machine classifier to system- and user-specific variability: a Statistics-Based approach and Bayesian Optimization. Our experimental results demonstrate that both methods remarkably improve transition detection accuracy across diverse users, achieving up to an 80% increase in certain scenarios compared to the non-personalized threshold method. These findings emphasize the importance of personalization in adaptive control systems, underscoring the potential for enhanced user experience and effectiveness in assistive devices. By incorporating subject- and system-specific data into the model training process, our approach offers a precise and reliable solution for detecting locomotion transitions, catering to individual user needs, and ultimately improving the performance of assistive devices.
comment: 10 pages, 11 figures
♻ ☆ Autonomous Tail-Sitter Flights in Unknown Environments
Trajectory generation for fully autonomous flights of tail-sitter unmanned aerial vehicles (UAVs) presents substantial challenges due to their highly nonlinear aerodynamics. In this paper, we introduce, to the best of our knowledge, the world's first fully autonomous tail-sitter UAV capable of high-speed navigation in unknown, cluttered environments. The UAV autonomy is enabled by cutting-edge technologies including LiDAR-based sensing, differential-flatness-based trajectory planning and control with purely onboard computation. In particular, we propose an optimization-based tail-sitter trajectory planning framework that generates high-speed, collision-free, and dynamically-feasible trajectories. To efficiently and reliably solve this nonlinear, constrained \textcolor{black}{problem}, we develop an efficient feasibility-assured solver, EFOPT, tailored for the online planning of tail-sitter UAVs. We conduct extensive simulation studies to benchmark EFOPT's superiority in planning tasks against conventional NLP solvers. We also demonstrate exhaustive experiments of aggressive autonomous flights with speeds up to 15m/s in various real-world environments, including indoor laboratories, underground parking lots, and outdoor parks. A video demonstration is available at https://youtu.be/OvqhlB2h3k8, and the EFOPT solver is open-sourced at https://github.com/hku-mars/EFOPT.
♻ ☆ Segmentation-Free Outcome Prediction from Head and Neck Cancer PET/CT Images: Deep Learning-Based Feature Extraction from Multi-Angle Maximum Intensity Projections (MA-MIPs)
We introduce an innovative, simple, effective segmentation-free approach for outcome prediction in head \& neck cancer (HNC) patients. By harnessing deep learning-based feature extraction techniques and multi-angle maximum intensity projections (MA-MIPs) applied to Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) volumes, our proposed method eliminates the need for manual segmentations of regions-of-interest (ROIs) such as primary tumors and involved lymph nodes. Instead, a state-of-the-art object detection model is trained to perform automatic cropping of the head and neck region on the PET volumes. A pre-trained deep convolutional neural network backbone is then utilized to extract deep features from MA-MIPs obtained from 72 multi-angel axial rotations of the cropped PET volumes. These deep features extracted from multiple projection views of the PET volumes are then aggregated and fused, and employed to perform recurrence-free survival analysis on a cohort of 489 HNC patients. The proposed approach outperforms the best performing method on the target dataset for the task of recurrence-free survival analysis. By circumventing the manual delineation of the malignancies on the FDG PET-CT images, our approach eliminates the dependency on subjective interpretations and highly enhances the reproducibility of the proposed survival analysis method.
comment: 15 pages, 4 tables, 4 figures. Published in Cancers 2024, Volume 16, Issue 14, page 2538
♻ ☆ How to Segment in 3D Using 2D Models: Automated 3D Segmentation of Prostate Cancer Metastatic Lesions on PET Volumes Using Multi-angle Maximum Intensity Projections and Diffusion Models MICCAI
Prostate specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) imaging provides a tremendously exciting frontier in visualization of prostate cancer (PCa) metastatic lesions. However, accurate segmentation of metastatic lesions is challenging due to low signal-to-noise ratios and variable sizes, shapes, and locations of the lesions. This study proposes a novel approach for automated segmentation of metastatic lesions in PSMA PET/CT 3D volumetric images using 2D denoising diffusion probabilistic models (DDPMs). Instead of 2D trans-axial slices or 3D volumes, the proposed approach segments the lesions on generated multi-angle maximum intensity projections (MA-MIPs) of the PSMA PET images, then obtains the final 3D segmentation masks from 3D ordered subset expectation maximization (OSEM) reconstruction of 2D MA-MIPs segmentations. Our proposed method achieved superior performance compared to state-of-the-art 3D segmentation approaches in terms of accuracy and robustness in detecting and segmenting small metastatic PCa lesions. The proposed method has significant potential as a tool for quantitative analysis of metastatic burden in PCa patients.
comment: 11 pages, 2 figures, accepted in the DGM4MICCAI workshop, MICCAI, 2024
♻ ☆ Diffusion State-Guided Projected Gradient for Inverse Problems
Recent advancements in diffusion models have been effective in learning data priors for solving inverse problems. They leverage diffusion sampling steps for inducing a data prior while using a measurement guidance gradient at each step to impose data consistency. For general inverse problems, approximations are needed when an unconditionally trained diffusion model is used since the measurement likelihood is intractable, leading to inaccurate posterior sampling. In other words, due to their approximations, these methods fail to preserve the generation process on the data manifold defined by the diffusion prior, leading to artifacts in applications such as image restoration. To enhance the performance and robustness of diffusion models in solving inverse problems, we propose Diffusion State-Guided Projected Gradient (DiffStateGrad), which projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process. DiffStateGrad, as a module, can be added to a wide range of diffusion-based inverse solvers to improve the preservation of the diffusion process on the prior manifold and filter out artifact-inducing components. We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise while improving the worst-case performance. Finally, we demonstrate that DiffStateGrad improves upon the state-of-the-art on linear and nonlinear image restoration inverse problems.
comment: preprint. under review. RZ and BT have equal contributions
♻ ☆ CoTAR: Chain-of-Thought Attribution Reasoning with Multi-level Granularity EMNLP 2024
State-of-the-art performance in QA tasks is currently achieved by systems employing Large Language Models (LLMs), however these models tend to hallucinate information in their responses. One approach focuses on enhancing the generation process by incorporating attribution from the given input to the output. However, the challenge of identifying appropriate attributions and verifying their accuracy against a source is a complex task that requires significant improvements in assessing such systems. We introduce an attribution-oriented Chain-of-Thought reasoning method to enhance the accuracy of attributions. This approach focuses the reasoning process on generating an attribution-centric output. Evaluations on two context-enhanced question-answering datasets using GPT-4 demonstrate improved accuracy and correctness of attributions. In addition, the combination of our method with finetuning enhances the response and attribution accuracy of two smaller LLMs, showing their potential to outperform GPT-4 in some cases.
comment: Findings of the Association for Computational Linguistics: EMNLP 2024
♻ ☆ Scalable Spatiotemporal Prediction with Bayesian Neural Fields
Spatiotemporal datasets, which consist of spatially-referenced time series, are ubiquitous in diverse applications, such as air pollution monitoring, disease tracking, and cloud-demand forecasting. As the scale of modern datasets increases, there is a growing need for statistical methods that are flexible enough to capture complex spatiotemporal dynamics and scalable enough to handle many observations. This article introduces the Bayesian Neural Field (BayesNF), a domain-general statistical model that infers rich spatiotemporal probability distributions for data-analysis tasks including forecasting, interpolation, and variography. BayesNF integrates a deep neural network architecture for high-capacity function estimation with hierarchical Bayesian inference for robust predictive uncertainty quantification. Evaluations against prominent baselines show that BayesNF delivers improvements on prediction problems from climate and public health data containing tens to hundreds of thousands of measurements. Accompanying the paper is an open-source software package (https://github.com/google/bayesnf) that runs on GPU and TPU accelerators through the JAX machine learning platform.
comment: 29 pages, 7 figures, 2 tables, 1 listing
♻ ☆ Exploiting Watermark-Based Defense Mechanisms in Text-to-Image Diffusion Models for Unauthorized Data Usage
Text-to-image diffusion models, such as Stable Diffusion, have shown exceptional potential in generating high-quality images. However, recent studies highlight concerns over the use of unauthorized data in training these models, which may lead to intellectual property infringement or privacy violations. A promising approach to mitigate these issues is to apply a watermark to images and subsequently check if generative models reproduce similar watermark features. In this paper, we examine the robustness of various watermark-based protection methods applied to text-to-image models. We observe that common image transformations are ineffective at removing the watermark effect. Therefore, we propose RATTAN, that leverages the diffusion process to conduct controlled image generation on the protected input, preserving the high-level features of the input while ignoring the low-level details utilized by watermarks. A small number of generated images are then used to fine-tune protected models. Our experiments on three datasets and 140 text-to-image diffusion models reveal that existing state-of-the-art protections are not robust against RATTAN.
♻ ☆ Multimodal Task Vectors Enable Many-Shot Multimodal In-Context Learning NeurIPS 2024
The recent success of interleaved Large Multimodal Models (LMMs) in few-shot learning suggests that in-context learning (ICL) with many examples can be promising for learning new tasks. However, this many-shot multimodal ICL setting has one crucial problem: it is fundamentally limited by the model's context length set at pretraining. The problem is especially prominent in the multimodal domain, which processes both text and images, requiring additional tokens. This motivates the need for a multimodal method to compress many shots into fewer tokens without finetuning. In this work, we enable LMMs to perform multimodal, many-shot in-context learning by leveraging Multimodal Task Vectors (MTV) -- compact implicit representations of in-context examples compressed in the model's attention heads. Specifically, we first demonstrate the existence of such MTV in LMMs and then leverage these extracted MTV to enable many-shot in-context learning for various vision-and-language tasks. Our experiments suggest that MTV can scale in performance with the number of compressed shots and generalize to similar out-of-domain tasks without additional context length for inference. Code: https://github.com/Brandon3964/MultiModal-Task-Vector
comment: Accepted to NeurIPS 2024
♻ ☆ Seeking the Sufficiency and Necessity Causal Features in Multimodal Representation Learning
Probability of necessity and sufficiency (PNS) measures the likelihood of a feature set being both necessary and sufficient for predicting an outcome. It has proven effective in guiding representation learning for unimodal data, enhancing both predictive performance and model robustness. Despite these benefits, extending PNS to multimodal settings remains unexplored. This extension presents unique challenges, as the conditions for PNS estimation, exogeneity and monotonicity, need to be reconsidered in a multimodal context. We address these challenges by first conceptualizing multimodal representations as comprising modality-invariant and modality-specific components. We then analyze how to compute PNS for each component while ensuring non-trivial PNS estimation. Based on these analyses, we formulate tractable optimization objectives that enable multimodal models to learn high-PNS representations. Experiments demonstrate the effectiveness of our method on both synthetic and real-world data.
DiG: Scalable and Efficient Diffusion Models with Gated Linear Attention
Diffusion models with large-scale pre-training have achieved significant success in the field of visual content generation, particularly exemplified by Diffusion Transformers (DiT). However, DiT models have faced challenges with quadratic complexity efficiency, especially when handling long sequences. In this paper, we aim to incorporate the sub-quadratic modeling capability of Gated Linear Attention (GLA) into the 2D diffusion backbone. Specifically, we introduce Diffusion Gated Linear Attention Transformers (DiG), a simple, adoptable solution with minimal parameter overhead. We offer two variants, i,e, a plain and U-shape architecture, showing superior efficiency and competitive effectiveness. In addition to superior performance to DiT and other sub-quadratic-time diffusion models at $256 \times 256$ resolution, DiG demonstrates greater efficiency than these methods starting from a $512$ resolution. Specifically, DiG-S/2 is $2.5\times$ faster and saves $75.7\%$ GPU memory compared to DiT-S/2 at a $1792$ resolution. Additionally, DiG-XL/2 is $4.2\times$ faster than the Mamba-based model at a $1024$ resolution and $1.8\times$ faster than DiT with FlashAttention-2 at a $2048$ resolution. We will release the code soon. Code is released at https://github.com/hustvl/DiG.
comment: Code is released at https://github.com/hustvl/DiG
ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems
Much previous AI research has focused on developing monolithic models to maximize their intelligence, with the primary goal of enhancing performance on specific tasks. In contrast, this work attempts to study using LLM-based agents to design collaborative AI systems autonomously. To explore this problem, we first introduce ComfyBench to evaluate agents's ability to design collaborative AI systems in ComfyUI. ComfyBench is a comprehensive benchmark comprising 200 diverse tasks covering various instruction-following generation challenges, along with detailed annotations for 3,205 nodes and 20 workflows. Based on ComfyBench, we further develop ComfyAgent, a novel framework that empowers LLM-based agents to autonomously design collaborative AI systems by generating workflows. ComfyAgent is based on two core concepts. First, it represents workflows with code, which can be reversibly converted into workflows and executed as collaborative systems by the interpreter. Second, it constructs a multi-agent system that cooperates to learn from existing workflows and generate new workflows for a given task. While experimental results demonstrate that ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15\% of creative tasks. LLM-based agents still have a long way to go in autonomously designing collaborative AI systems. Progress with ComfyBench is paving the way for more intelligent and autonomous collaborative AI systems.
♻ ☆ Exciting Contact Modes in Differentiable Simulations for Robot Learning
In this paper, we explore an approach to actively plan and excite contact modes in differentiable simulators as a means to tighten the sim-to-real gap. We propose an optimal experimental design approach derived from information-theoretic methods to identify and search for information-rich contact modes through the use of contact-implicit optimization. We demonstrate our approach on a robot parameter estimation problem with unknown inertial and kinematic parameters which actively seeks contacts with a nearby surface. We show that our approach improves the identification of unknown parameter estimates over experimental runs by an estimate error reduction of at least $\sim 84\%$ when compared to a random sampling baseline, with significantly higher information gains.
♻ ☆ Performance assessment of ADAS in a representative subset of critical traffic situations
As a variety of automated collision prevention systems gain presence within personal vehicles, rating and differentiating the automated safety performance of car models has become increasingly important for consumers, manufacturers, and insurers. In 2023, Swiss Re and partners initiated an eight-month long vehicle testing campaign conducted on a recognized UNECE type approval authority and Euro NCAP accredited proving ground in Germany. The campaign exposed twelve mass-produced vehicle models and one prototype vehicle fitted with collision prevention systems to a selection of safety-critical traffic scenarios representative of United States and European Union accident landscape. In this paper, we compare and evaluate the relative safety performance of these thirteen collision prevention systems (hardware and software stack) as demonstrated by this testing campaign. We first introduce a new scoring system which represents a test system's predicted impact on overall real-world collision frequency and reduction of collision impact energy, weighted based on the real-world relevance of the test scenario. Next, we introduce a novel metric that quantifies the realism of the protocol and confirm that our test protocol is a plausible representation of real-world driving. Finally, we find that the prototype system in its pre-release state outperforms the mass-produced (post-consumer-release) vehicles in the majority of the tested scenarios on the test track.
♻ ☆ SOS-Match: Segmentation for Open-Set Robust Correspondence Search and Robot Localization in Unstructured Environments
We present SOS-Match, a novel framework for detecting and matching objects in unstructured environments. Our system consists of 1) a front-end mapping pipeline using a zero-shot segmentation model to extract object masks from images and track them across frames and 2) a frame alignment pipeline that uses the geometric consistency of object relationships to efficiently localize across a variety of conditions. We evaluate SOS-Match on the Batvik seasonal dataset which includes drone flights collected over a coastal plot of southern Finland during different seasons and lighting conditions. Results show that our approach is more robust to changes in lighting and appearance than classical image feature-based approaches or global descriptor methods, and it provides more viewpoint invariance than learning-based feature detection and description approaches. SOS-Match localizes within a reference map up to 46x faster than other feature-based approaches and has a map size less than 0.5% the size of the most compact other maps. SOS-Match is a promising new approach for landmark detection and correspondence search in unstructured environments that is robust to changes in lighting and appearance and is more computationally efficient than other approaches, suggesting that the geometric arrangement of segments is a valuable localization cue in unstructured environments. We release our datasets at https://acl.mit.edu/SOS-Match/.
comment: 8 pages, 7 figures
Computation and Language 98
☆ Do Large Language Models Perform Latent Multi-Hop Reasoning without Exploiting Shortcuts?
We evaluate how well Large Language Models (LLMs) latently recall and compose facts to answer multi-hop queries like "In the year Scarlett Johansson was born, the Summer Olympics were hosted in the country of". One major challenge in evaluating this ability is that LLMs may have developed shortcuts by encounters of the head entity "Scarlett Johansson" and the answer entity "United States" in the same training sequences or merely guess the answer based on frequency-based priors. To prevent shortcuts, we exclude test queries where the head and answer entities co-appear in pretraining corpora. Through careful selection of relations and facts and systematic removal of cases where models might guess answers or exploit partial matches, we construct an evaluation dataset SOCRATES (ShOrtCut-fRee lATent rEaSoning). We observe that LLMs demonstrate promising latent multi-hop reasoning abilities without exploiting shortcuts, but only for certain types of queries. For queries requiring latent recall of countries as the intermediate answer, the best models achieve 80% latent composability, but this drops to just 5% for the recall of years. Comparisons with Chain-of-Thought composability highlight a significant gap between the ability of models to reason latently versus explicitly. Analysis reveals that latent representations of the intermediate answer are constructed more often in queries with higher latent composability, and shows the emergence of latent multi-hop reasoning during pretraining.
☆ DreamRunner: Fine-Grained Storytelling Video Generation with Retrieval-Augmented Motion Adaptation
Storytelling video generation (SVG) has recently emerged as a task to create long, multi-motion, multi-scene videos that consistently represent the story described in the input text script. SVG holds great potential for diverse content creation in media and entertainment; however, it also presents significant challenges: (1) objects must exhibit a range of fine-grained, complex motions, (2) multiple objects need to appear consistently across scenes, and (3) subjects may require multiple motions with seamless transitions within a single scene. To address these challenges, we propose DreamRunner, a novel story-to-video generation method: First, we structure the input script using a large language model (LLM) to facilitate both coarse-grained scene planning as well as fine-grained object-level layout and motion planning. Next, DreamRunner presents retrieval-augmented test-time adaptation to capture target motion priors for objects in each scene, supporting diverse motion customization based on retrieved videos, thus facilitating the generation of new videos with complex, scripted motions. Lastly, we propose a novel spatial-temporal region-based 3D attention and prior injection module SR3AI for fine-grained object-motion binding and frame-by-frame semantic control. We compare DreamRunner with various SVG baselines, demonstrating state-of-the-art performance in character consistency, text alignment, and smooth transitions. Additionally, DreamRunner exhibits strong fine-grained condition-following ability in compositional text-to-video generation, significantly outperforming baselines on T2V-ComBench. Finally, we validate DreamRunner's robust ability to generate multi-object interactions with qualitative examples.
comment: Project website: https://dreamrunner-story2video.github.io/
☆ Self-Generated Critiques Boost Reward Modeling for Language Models
Reward modeling is crucial for aligning large language models (LLMs) with human preferences, especially in reinforcement learning from human feedback (RLHF). However, current reward models mainly produce scalar scores and struggle to incorporate critiques in a natural language format. We hypothesize that predicting both critiques and the scalar reward would improve reward modeling ability. Motivated by this, we propose Critic-RM, a framework that improves reward models using self-generated critiques without extra supervision. Critic-RM employs a two-stage process: generating and filtering high-quality critiques, followed by joint fine-tuning on reward prediction and critique generation. Experiments across benchmarks show that Critic-RM improves reward modeling accuracy by 3.7%-7.3% compared to standard reward models and LLM judges, demonstrating strong performance and data efficiency. Additional studies further validate the effectiveness of generated critiques in rectifying flawed reasoning steps with 2.5%-3.2% gains in improving reasoning accuracy.
comment: 20 pages
☆ Preventing Jailbreak Prompts as Malicious Tools for Cybercriminals: A Cyber Defense Perspective
Jailbreak prompts pose a significant threat in AI and cybersecurity, as they are crafted to bypass ethical safeguards in large language models, potentially enabling misuse by cybercriminals. This paper analyzes jailbreak prompts from a cyber defense perspective, exploring techniques like prompt injection and context manipulation that allow harmful content generation, content filter evasion, and sensitive information extraction. We assess the impact of successful jailbreaks, from misinformation and automated social engineering to hazardous content creation, including bioweapons and explosives. To address these threats, we propose strategies involving advanced prompt analysis, dynamic safety protocols, and continuous model fine-tuning to strengthen AI resilience. Additionally, we highlight the need for collaboration among AI researchers, cybersecurity experts, and policymakers to set standards for protecting AI systems. Through case studies, we illustrate these cyber defense approaches, promoting responsible AI practices to maintain system integrity and public trust. \textbf{\color{red}Warning: This paper contains content which the reader may find offensive.}
☆ Do Automatic Factuality Metrics Measure Factuality? A Critical Evaluation
Modern LLMs can now produce highly readable abstractive summaries, to the point where traditional automated metrics for evaluating summary quality, such as ROUGE, have become saturated. However, LLMs still sometimes introduce unwanted content into summaries, i.e., information inconsistent with or unsupported by their source. Measuring the occurrence of these often subtle ``hallucinations'' automatically has proved to be challenging. This in turn has motivated development of a variety of metrics intended to measure the factual consistency of generated summaries against their source. But are these approaches measuring what they purport to do? In this work, we stress-test automatic factuality metrics. Specifically, we investigate whether and to what degree superficial attributes of summary texts suffice to predict ``factuality'', finding that a (supervised) model using only such shallow features is reasonably competitive with SOTA factuality scoring methods. We then evaluate how factuality metrics respond to factual corrections in inconsistent summaries and find that only a few show meaningful improvements. In contrast, some metrics are more sensitive to benign, non-factual edits. Motivated by these insights, we show that one can ``game'' (most) automatic factuality metrics, i.e., reliably inflate ``factuality'' scores by appending innocuous sentences to generated summaries.Taken together, our results raise questions about the degree to which we should rely on existing automated factuality metrics and what exactly we want ``factuality metrics'' to measure.
☆ StructFormer: Document Structure-based Masked Attention and its Impact on Language Model Pre-Training
Most state-of-the-art techniques for Language Models (LMs) today rely on transformer-based architectures and their ubiquitous attention mechanism. However, the exponential growth in computational requirements with longer input sequences confines Transformers to handling short passages. Recent efforts have aimed to address this limitation by introducing selective attention mechanisms, notably local and global attention. While sparse attention mechanisms, akin to full attention in being Turing-complete, have been theoretically established, their practical impact on pre-training remains unexplored. This study focuses on empirically assessing the influence of global attention on BERT pre-training. The primary steps involve creating an extensive corpus of structure-aware text through arXiv data, alongside a text-only counterpart. We carry out pre-training on these two datasets, investigate shifts in attention patterns, and assess their implications for downstream tasks. Our analysis underscores the significance of incorporating document structure into LM models, demonstrating their capacity to excel in more abstract tasks, such as document understanding.
☆ Recent Trends in Linear Text Segmentation: a Survey
Linear Text Segmentation is the task of automatically tagging text documents with topic shifts, i.e. the places in the text where the topics change. A well-established area of research in Natural Language Processing, drawing from well-understood concepts in linguistic and computational linguistic research, the field has recently seen a lot of interest as a result of the surge of text, video, and audio available on the web, which in turn require ways of summarising and categorizing the mole of content for which linear text segmentation is a fundamental step. In this survey, we provide an extensive overview of current advances in linear text segmentation, describing the state of the art in terms of resources and approaches for the task. Finally, we highlight the limitations of available resources and of the task itself, while indicating ways forward based on the most recent literature and under-explored research directions.
☆ From Generation to Judgment: Opportunities and Challenges of LLM-as-a-judge
Assessment and evaluation have long been critical challenges in artificial intelligence (AI) and natural language processing (NLP). However, traditional methods, whether matching-based or embedding-based, often fall short of judging subtle attributes and delivering satisfactory results. Recent advancements in Large Language Models (LLMs) inspire the "LLM-as-a-judge" paradigm, where LLMs are leveraged to perform scoring, ranking, or selection across various tasks and applications. This paper provides a comprehensive survey of LLM-based judgment and assessment, offering an in-depth overview to advance this emerging field. We begin by giving detailed definitions from both input and output perspectives. Then we introduce a comprehensive taxonomy to explore LLM-as-a-judge from three dimensions: what to judge, how to judge and where to judge. Finally, we compile benchmarks for evaluating LLM-as-a-judge and highlight key challenges and promising directions, aiming to provide valuable insights and inspire future research in this promising research area. Paper list and more resources about LLM-as-a-judge can be found at \url{https://github.com/llm-as-a-judge/Awesome-LLM-as-a-judge} and \url{https://llm-as-a-judge.github.io}.
comment: 32 pages, 5 figures
Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision
Training large language models (LLMs) to spend more time thinking and reflection before responding is crucial for effectively solving complex reasoning tasks in fields such as science, coding, and mathematics. However, the effectiveness of mechanisms like self-reflection and self-correction depends on the model's capacity to accurately assess its own performance, which can be limited by factors such as initial accuracy, question difficulty, and the lack of external feedback. In this paper, we delve into a two-player paradigm that separates the roles of reasoning and critique models, where the critique model provides step-level feedback to supervise the reasoning (actor) model during both test-time and train-time. We first propose AutoMathCritique, an automated and scalable framework for collecting critique data, resulting in a dataset of $76,321$ responses paired with step-level feedback. Fine-tuning language models with this dataset enables them to generate natural language feedback for mathematical reasoning. We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time, especially when scaling up inference-time computation. Motivated by these findings, we introduce the critique-based supervision to the actor's self-training process, and propose a critique-in-the-loop self-improvement method. Experiments show that the method improves the actor's exploration efficiency and solution diversity, especially on challenging queries, leading to a stronger reasoning model. Lastly, we take the preliminary step to explore training self-talk reasoning models via critique supervision and showcase its potential. Our code and datasets are at \href{https://mathcritique.github.io/}{https://mathcritique.github.io/}.
comment: Preprint
☆ EnStack: An Ensemble Stacking Framework of Large Language Models for Enhanced Vulnerability Detection in Source Code
Automated detection of software vulnerabilities is critical for enhancing security, yet existing methods often struggle with the complexity and diversity of modern codebases. In this paper, we introduce EnStack, a novel ensemble stacking framework that enhances vulnerability detection using natural language processing (NLP) techniques. Our approach synergizes multiple pre-trained large language models (LLMs) specialized in code understanding CodeBERT for semantic analysis, GraphCodeBERT for structural representation, and UniXcoder for cross-modal capabilities. By fine-tuning these models on the Draper VDISC dataset and integrating their outputs through meta-classifiers such as Logistic Regression, Support Vector Machines (SVM), Random Forest, and XGBoost, EnStack effectively captures intricate code patterns and vulnerabilities that individual models may overlook. The meta-classifiers consolidate the strengths of each LLM, resulting in a comprehensive model that excels in detecting subtle and complex vulnerabilities across diverse programming contexts. Experimental results demonstrate that EnStack significantly outperforms existing methods, achieving notable improvements in accuracy, precision, recall, and F1-score. This work highlights the potential of ensemble LLM approaches in code analysis tasks and offers valuable insights into applying NLP techniques for advancing automated vulnerability detection.
comment: Accepted in 2024 IEEE International Conference on Big Data (IEEE BigData 2024)
☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics
Spatial understanding is a crucial capability for robots to make grounded decisions based on their environment. This foundational skill enables robots not only to perceive their surroundings but also to reason about and interact meaningfully within the world. In modern robotics, these capabilities are taken on by visual language models, and they face significant challenges when applied to spatial reasoning context due to their training data sources. These sources utilize general-purpose image datasets, and they often lack sophisticated spatial scene understanding capabilities. For example, the datasets do not address reference frame comprehension - spatial relationships require clear contextual understanding, whether from an ego-centric, object-centric, or world-centric perspective, which allow for effective real-world interaction. To address this issue, we introduce RoboSpatial, a large-scale spatial understanding dataset consisting of real indoor and tabletop scenes captured as 3D scans and egocentric images, annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5K 3D scans, and 3M annotated spatial relationships, with paired 2D egocentric images and 3D scans to make it both 2D and 3D ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robotics manipulation.
☆ Profiling Bias in LLMs: Stereotype Dimensions in Contextual Word Embeddings
Large language models (LLMs) are the foundation of the current successes of artificial intelligence (AI), however, they are unavoidably biased. To effectively communicate the risks and encourage mitigation efforts these models need adequate and intuitive descriptions of their discriminatory properties, appropriate for all audiences of AI. We suggest bias profiles with respect to stereotype dimensions based on dictionaries from social psychology research. Along these dimensions we investigate gender bias in contextual embeddings, across contexts and layers, and generate stereotype profiles for twelve different LLMs, demonstrating their intuition and use case for exposing and visualizing bias.
☆ Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency
We investigate the statistical and computational limits of prompt tuning for transformer-based foundation models. Our key contributions are prompt tuning on \textit{single-head} transformers with only a \textit{single} self-attention layer: (i) is universal, and (ii) supports efficient (even almost-linear time) algorithms under the Strong Exponential Time Hypothesis (SETH). Statistically, we prove that prompt tuning on such simplest possible transformers are universal approximators for sequence-to-sequence Lipschitz functions. In addition, we provide an exponential-in-$dL$ and -in-$(1/\epsilon)$ lower bound on the required soft-prompt tokens for prompt tuning to memorize any dataset with 1-layer, 1-head transformers. Computationally, we identify a phase transition in the efficiency of prompt tuning, determined by the norm of the \textit{soft-prompt-induced} keys and queries, and provide an upper bound criterion. Beyond this criterion, no sub-quadratic (efficient) algorithm for prompt tuning exists under SETH. Within this criterion, we showcase our theory by proving the existence of almost-linear time prompt tuning inference algorithms. These fundamental limits provide important necessary conditions for designing expressive and efficient prompt tuning methods for practitioners.
☆ LaB-RAG: Label Boosted Retrieval Augmented Generation for Radiology Report Generation
In the current paradigm of image captioning, deep learning models are trained to generate text from image embeddings of latent features. We challenge the assumption that these latent features ought to be high-dimensional vectors which require model fine tuning to handle. Here we propose Label Boosted Retrieval Augmented Generation (LaB-RAG), a text-based approach to image captioning that leverages image descriptors in the form of categorical labels to boost standard retrieval augmented generation (RAG) with pretrained large language models (LLMs). We study our method in the context of radiology report generation (RRG), where the task is to generate a clinician's report detailing their observations from a set of radiological images, such as X-rays. We argue that simple linear classifiers over extracted image embeddings can effectively transform X-rays into text-space as radiology-specific labels. In combination with standard RAG, we show that these derived text labels can be used with general-domain LLMs to generate radiology reports. Without ever training our generative language model or image feature encoder models, and without ever directly "showing" the LLM an X-ray, we demonstrate that LaB-RAG achieves better results across natural language and radiology language metrics compared with other retrieval-based RRG methods, while attaining competitive results compared to other fine-tuned vision-language RRG models. We further present results of our experiments with various components of LaB-RAG to better understand our method. Finally, we critique the use of a popular RRG metric, arguing it is possible to artificially inflate its results without true data-leakage.
☆ All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages
Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
comment: A Multilingual Multimodal cultural benchmark for 100 languages
☆ AtomR: Atomic Operator-Empowered Large Language Models for Heterogeneous Knowledge Reasoning
Recent advancements in large language models (LLMs) have led to significant improvements in various natural language processing tasks, but it is still challenging for LLMs to perform knowledge-intensive complex question answering due to LLMs' inefficacy in reasoning planning and the hallucination problem. A typical solution is to employ retrieval-augmented generation (RAG) coupled with chain-of-thought (CoT) reasoning, which decomposes complex questions into chain-like sub-questions and applies iterative RAG at each sub-question. However, prior works exhibit sub-optimal reasoning planning and overlook dynamic knowledge retrieval from heterogeneous sources. In this paper, we propose AtomR, a novel heterogeneous knowledge reasoning framework that conducts multi-source reasoning at the atomic level. Drawing inspiration from the graph modeling of knowledge, AtomR leverages large language models (LLMs) to decompose complex questions into combinations of three atomic knowledge operators, significantly enhancing the reasoning process at both the planning and execution stages. We also introduce BlendQA, a novel evaluation benchmark tailored to assess complex heterogeneous knowledge reasoning. Experiments show that AtomR significantly outperforms state-of-the-art baselines across three single-source and two multi-source reasoning benchmarks, with notable performance gains of 9.4% on 2WikiMultihop and 9.5% on BlendQA.
☆ O1 Replication Journey -- Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson?
This paper presents a critical examination of current approaches to replicating OpenAI's O1 model capabilities, with particular focus on the widespread but often undisclosed use of knowledge distillation techniques. While our previous work explored the fundamental technical path to O1 replication, this study reveals how simple distillation from O1's API, combined with supervised fine-tuning, can achieve superior performance on complex mathematical reasoning tasks. Through extensive experiments, we show that a base model fine-tuned on simply tens of thousands of samples O1-distilled long-thought chains outperforms O1-preview on the American Invitational Mathematics Examination (AIME) with minimal technical complexity. Moreover, our investigation extends beyond mathematical reasoning to explore the generalization capabilities of O1-distilled models across diverse tasks: hallucination, safety and open-domain QA. Notably, despite training only on mathematical problem-solving data, our models demonstrated strong generalization to open-ended QA tasks and became significantly less susceptible to sycophancy after fine-tuning. We deliberately make this finding public to promote transparency in AI research and to challenge the current trend of obscured technical claims in the field. Our work includes: (1) A detailed technical exposition of the distillation process and its effectiveness, (2) A comprehensive benchmark framework for evaluating and categorizing O1 replication attempts based on their technical transparency and reproducibility, (3) A critical discussion of the limitations and potential risks of over-relying on distillation approaches, our analysis culminates in a crucial bitter lesson: while the pursuit of more capable AI systems is important, the development of researchers grounded in first-principles thinking is paramount.
comment: 16 pages
☆ When Babies Teach Babies: Can student knowledge sharing outperform Teacher-Guided Distillation on small datasets? CoNLL
We present our submission to the BabyLM challenge, aiming to push the boundaries of data-efficient language model pretraining. Our method builds upon deep mutual learning, introducing a student model search for diverse initialization. We address the limitation of treating students equally by formulating weighted mutual learning as a bi-level optimization problem. The inner loop learns compact students through online distillation, while the outer loop optimizes weights for better knowledge distillation from diverse students. This dynamic weighting strategy eliminates the need for a teacher model, reducing computational requirements. Our evaluations show that teacher-less methods can match or surpass teacher-supervised approaches.
comment: Accepted to BabyLM challenge, CoNLL Workshop, EMNLP 2024
☆ Learning by Analogy: Enhancing Few-Shot Prompting for Math Word Problem Solving with Computational Graph-Based Retrieval
Large language models (LLMs) are known to struggle with complicated reasoning tasks such as math word problems (MWPs). In this paper, we present how analogy from similarly structured questions can improve LLMs' problem-solving capabilities for MWPs. Specifically, we rely on the retrieval of problems with similar computational graphs to the given question to serve as exemplars in the prompt, providing the correct reasoning path for the generation model to refer to. Empirical results across six math word problem datasets demonstrate the effectiveness of our proposed method, which achieves a significant improvement of up to 6.7 percent on average in absolute value, compared to baseline methods. These results highlight our method's potential in addressing the reasoning challenges in current LLMs.
☆ Finding Structure in Language Models
When we speak, write or listen, we continuously make predictions based on our knowledge of a language's grammar. Remarkably, children acquire this grammatical knowledge within just a few years, enabling them to understand and generalise to novel constructions that have never been uttered before. Language models are powerful tools that create representations of language by incrementally predicting the next word in a sentence, and they have had a tremendous societal impact in recent years. The central research question of this thesis is whether these models possess a deep understanding of grammatical structure similar to that of humans. This question lies at the intersection of natural language processing, linguistics, and interpretability. To address it, we will develop novel interpretability techniques that enhance our understanding of the complex nature of large-scale language models. We approach our research question from three directions. First, we explore the presence of abstract linguistic information through structural priming, a key paradigm in psycholinguistics for uncovering grammatical structure in human language processing. Next, we examine various linguistic phenomena, such as adjective order and negative polarity items, and connect a model's comprehension of these phenomena to the data distribution on which it was trained. Finally, we introduce a controlled testbed for studying hierarchical structure in language models using various synthetic languages of increasing complexity and examine the role of feature interactions in modelling this structure. Our findings offer a detailed account of the grammatical knowledge embedded in language model representations and provide several directions for investigating fundamental linguistic questions using computational methods.
comment: PhD Thesis at ILLC, University of Amsterdam
☆ Adapter-based Approaches to Knowledge-enhanced Language Models -- A Survey
Knowledge-enhanced language models (KELMs) have emerged as promising tools to bridge the gap between large-scale language models and domain-specific knowledge. KELMs can achieve higher factual accuracy and mitigate hallucinations by leveraging knowledge graphs (KGs). They are frequently combined with adapter modules to reduce the computational load and risk of catastrophic forgetting. In this paper, we conduct a systematic literature review (SLR) on adapter-based approaches to KELMs. We provide a structured overview of existing methodologies in the field through quantitative and qualitative analysis and explore the strengths and potential shortcomings of individual approaches. We show that general knowledge and domain-specific approaches have been frequently explored along with various adapter architectures and downstream tasks. We particularly focused on the popular biomedical domain, where we provided an insightful performance comparison of existing KELMs. We outline the main trends and propose promising future directions.
comment: 12 pages, 4 figures. Published at KEOD24 via SciTePress
☆ Human-Calibrated Automated Testing and Validation of Generative Language Models
This paper introduces a comprehensive framework for the evaluation and validation of generative language models (GLMs), with a focus on Retrieval-Augmented Generation (RAG) systems deployed in high-stakes domains such as banking. GLM evaluation is challenging due to open-ended outputs and subjective quality assessments. Leveraging the structured nature of RAG systems, where generated responses are grounded in a predefined document collection, we propose the Human-Calibrated Automated Testing (HCAT) framework. HCAT integrates a) automated test generation using stratified sampling, b) embedding-based metrics for explainable assessment of functionality, risk and safety attributes, and c) a two-stage calibration approach that aligns machine-generated evaluations with human judgments through probability calibration and conformal prediction. In addition, the framework includes robustness testing to evaluate model performance against adversarial, out-of-distribution, and varied input conditions, as well as targeted weakness identification using marginal and bivariate analysis to pinpoint specific areas for improvement. This human-calibrated, multi-layered evaluation framework offers a scalable, transparent, and interpretable approach to GLM assessment, providing a practical and reliable solution for deploying GLMs in applications where accuracy, transparency, and regulatory compliance are paramount.
☆ FineWeb-zhtw: Scalable Curation of Traditional Chinese Text Data from the Web
The quality and size of a pretraining dataset significantly influence the performance of large language models (LLMs). While there have been numerous efforts in the curation of such a dataset for English users, there is a relative lack of similar initiatives for Traditional Chinese. Building upon this foundation of FineWeb, we introduce FineWeb-zhtw, a dataset tailored specifically for Traditional Chinese users. We came up with multiple stages of meticulously designed filters to cater to the linguistic difference between English and Traditional Chinese, to ensure comprehensiveness and quality. We determined effectiveness from querying dataset samples with three main objectives. Our code and datasets are publicly available.
Multi-modal Retrieval Augmented Multi-modal Generation: A Benchmark, Evaluate Metrics and Strong Baselines
This paper investigates an intriguing task of Multi-modal Retrieval Augmented Multi-modal Generation (M$^2$RAG). This task requires foundation models to browse multi-modal web pages, with mixed text and images, and generate multi-modal responses for solving user queries, which exhibits better information density and readability. Given the early researching stage of M$^2$RAG task, there is a lack of systematic studies and analysis. To fill this gap, we construct a benchmark for M$^2$RAG task, equipped with a suite of text-modal metrics and multi-modal metrics to analyze the capabilities of existing foundation models. Besides, we also propose several effective methods for foundation models to accomplish this task, based on the comprehensive evaluation results on our benchmark. Extensive experimental results reveal several intriguing phenomena worth further research.
☆ The Two-Hop Curse: LLMs trained on A->B, B->C fail to learn A-->C
While LLMs excel at multi-hop questions (e.g. "Who is the spouse of the performer of Imagine?") when using chain-of-thought reasoning (CoT), they struggle when forced to reason internally (without CoT). Previous work on the size and nature of this gap produced mixed evidence with inconclusive results. In this paper, we introduce a controlled setting for investigating two-hop reasoning in LLMs, where the above-chance performance constitutes undeniable evidence for latent reasoning. We fine-tune LLMs (including Llama 3 8B Instruct and GPT-4o) on fictional facts and confirm that they generalize to answering two-hop questions about them using CoT. We find that models can perform latent reasoning when facts appear together during training or in the prompt. However, to our surprise, models completely fail at two-hop reasoning without CoT when learned facts only appear in different documents, achieving chance-level accuracy and chance-level test loss. We call this complete failure to compose separately learned facts the Two-Hop Curse. Moreover, we evaluate 9 frontier LLMs on real-world facts, finding that models completely fail at two-hop no-CoT reasoning for over half of question categories while maintaining partial success with CoT across most categories. These results suggest that LLMs lack a general capability for latent multi-hop reasoning independent of the question type.
☆ Preference Optimization for Reasoning with Pseudo Feedback
Preference optimization techniques, such as Direct Preference Optimization (DPO), are frequently employed to enhance the reasoning capabilities of large language models (LLMs) in domains like mathematical reasoning and coding, typically following supervised fine-tuning. These methods rely on high-quality labels for reasoning tasks to generate preference pairs; however, the availability of reasoning datasets with human-verified labels is limited. In this study, we introduce a novel approach to generate pseudo feedback for reasoning tasks by framing the labeling of solutions to reason problems as an evaluation against associated test cases. We explore two forms of pseudo feedback based on test cases: one generated by frontier LLMs and the other by extending self-consistency to multi-test-case. We conduct experiments on both mathematical reasoning and coding tasks using pseudo feedback for preference optimization, and observe improvements across both tasks. Specifically, using Mathstral-7B as our base model, we improve MATH results from 58.3 to 68.6, surpassing both NuminaMath-72B and GPT-4-Turbo-1106-preview. In GSM8K and College Math, our scores increase from 85.6 to 90.3 and from 34.3 to 42.3, respectively. Building on Deepseek-coder-7B-v1.5, we achieve a score of 24.6 on LiveCodeBench (from 21.1), surpassing Claude-3-Haiku.
comment: 28 pages, 11 figures
☆ Can AI grade your essays? A comparative analysis of large language models and teacher ratings in multidimensional essay scoring
The manual assessment and grading of student writing is a time-consuming yet critical task for teachers. Recent developments in generative AI, such as large language models, offer potential solutions to facilitate essay-scoring tasks for teachers. In our study, we evaluate the performance and reliability of both open-source and closed-source LLMs in assessing German student essays, comparing their evaluations to those of 37 teachers across 10 pre-defined criteria (i.e., plot logic, expression). A corpus of 20 real-world essays from Year 7 and 8 students was analyzed using five LLMs: GPT-3.5, GPT-4, o1, LLaMA 3-70B, and Mixtral 8x7B, aiming to provide in-depth insights into LLMs' scoring capabilities. Closed-source GPT models outperform open-source models in both internal consistency and alignment with human ratings, particularly excelling in language-related criteria. The novel o1 model outperforms all other LLMs, achieving Spearman's $r = .74$ with human assessments in the overall score, and an internal consistency of $ICC=.80$. These findings indicate that LLM-based assessment can be a useful tool to reduce teacher workload by supporting the evaluation of essays, especially with regard to language-related criteria. However, due to their tendency for higher scores, the models require further refinement to better capture aspects of content quality.
comment: Accepted at LAK '25
☆ Learning from Relevant Subgoals in Successful Dialogs using Iterative Training for Task-oriented Dialog Systems
Task-oriented Dialog (ToD) systems have to solve multiple subgoals to accomplish user goals, whereas feedback is often obtained only at the end of the dialog. In this work, we propose SUIT (SUbgoal-aware ITerative Training), an iterative training approach for improving ToD systems. We sample dialogs from the model we aim to improve and determine subgoals that contribute to dialog success using distant supervision to obtain high quality training samples. We show how this data improves supervised fine-tuning or, alternatively, preference learning results. SUIT is able to iteratively generate more data instead of relying on fixed static sets. SUIT reaches new state-of-the-art performance on a popular ToD benchmark.
☆ BayLing 2: A Multilingual Large Language Model with Efficient Language Alignment
Large language models (LLMs), with their powerful generative capabilities and vast knowledge, empower various tasks in everyday life. However, these abilities are primarily concentrated in high-resource languages, leaving low-resource languages with weaker generative capabilities and relatively limited knowledge. Enhancing the multilingual capabilities of LLMs is therefore crucial for serving over 100 linguistic communities worldwide. An intuitive approach to enhance the multilingual capabilities would be to construct instruction data for various languages, but constructing instruction data for over 100 languages is prohibitively costly. In this paper, we introduce BayLing 2, which efficiently transfers generative capabilities and knowledge from high-resource languages to low-resource languages through language alignment. To achieve this, we constructed a dataset of 3.2 million instructions, comprising high-resource language instructions (Chinese and English) and cross-lingual instructions for 100+ languages and performed instruction tuning based on the dataset to facilitate the capability transfer between languages. Using Llama as the foundation model, we developed BayLing-2-7B, BayLing-2-13B, and BayLing-3-8B, and conducted a comprehensive evaluation of BayLing. For multilingual translation across 100+ languages, BayLing shows superior performance compared to open-source models of similar scale. For multilingual knowledge and understanding benchmarks, BayLing achieves significant improvements across over 20 low-resource languages, demonstrating its capability of effective knowledge transfer from high-resource to low-resource languages. Furthermore, results on English benchmarks indicate that BayLing maintains high performance in highresource languages while enhancing the performance in low-resource languages. Demo, homepage, code and models of BayLing are available.
comment: BayLing 2's online demo: http://nlp.ict.ac.cn/bayling/demo. BayLing 2's code and models: https://github.com/ictnlp/BayLing
☆ Unraveling Arithmetic in Large Language Models: The Role of Algebraic Structures
Large language models (LLMs) have demonstrated remarkable mathematical capabilities, largely driven by chain-of-thought (CoT) prompting, which decomposes complex reasoning into step-by-step solutions. This approach has enabled significant advancements, as evidenced by performance on benchmarks like GSM8K and MATH. However, the mechanisms underlying LLMs' ability to perform arithmetic in a single step of CoT remain poorly understood. Existing studies debate whether LLMs encode numerical values or rely on symbolic reasoning, while others explore attention and multi-layered processing in arithmetic tasks. In this work, we propose that LLMs learn arithmetic by capturing algebraic structures, such as \emph{Commutativity} and \emph{Identity} properties. Since these structures are observable through input-output relationships, they can generalize to unseen data. We empirically demonstrate that LLMs can learn algebraic structures using a custom dataset of arithmetic problems. Our findings indicate that leveraging algebraic structures can enhance the LLMs' arithmetic capabilities, offering insights into improving their arithmetic performance.
☆ NormXLogit: The Head-on-Top Never Lies
The Transformer architecture has emerged as the dominant choice for building large language models (LLMs). However, with new LLMs emerging on a frequent basis, it is important to consider the potential value of architecture-agnostic approaches that can provide interpretability across a variety of architectures. Despite recent successes in the interpretability of LLMs, many existing approaches rely on complex methods that are often tied to a specific model design and come with a significant computational cost. To address these limitations, we propose a novel technique, called NormXLogit, for assessing the significance of individual input tokens. This method operates based on the input and output representations associated with each token. First, we demonstrate that during the pre-training of LLMs, the norms of word embeddings capture the importance of input tokens. Second, we reveal a significant relationship between a token's importance and the extent to which its representation can resemble the model's final prediction. Through extensive analysis, we show that our approach consistently outperforms existing gradient-based methods in terms of faithfulness. Additionally, our method achieves better performance in layer-wise explanations compared to the most prominent architecture-specific methods.
☆ Transparent Neighborhood Approximation for Text Classifier Explanation
Recent literature highlights the critical role of neighborhood construction in deriving model-agnostic explanations, with a growing trend toward deploying generative models to improve synthetic instance quality, especially for explaining text classifiers. These approaches overcome the challenges in neighborhood construction posed by the unstructured nature of texts, thereby improving the quality of explanations. However, the deployed generators are usually implemented via neural networks and lack inherent explainability, sparking arguments over the transparency of the explanation process itself. To address this limitation while preserving neighborhood quality, this paper introduces a probability-based editing method as an alternative to black-box text generators. This approach generates neighboring texts by implementing manipulations based on in-text contexts. Substituting the generator-based construction process with recursive probability-based editing, the resultant explanation method, XPROB (explainer with probability-based editing), exhibits competitive performance according to the evaluation conducted on two real-world datasets. Additionally, XPROB's fully transparent and more controllable construction process leads to superior stability compared to the generator-based explainers.
comment: IEEE DSAA'24
☆ DoubleCCA: Improving Foundation Model Group Robustness with Random Sentence Embeddings
This paper presents a novel method to improve the robustness of foundation models to group-based biases. We propose a simple yet effective method, called DoubleCCA, that leverages random sentences and Canonical Correlation Analysis (CCA) to enrich the text embeddings of the foundation model. First, we generate various random sentences that augment the original prompts, which extends the original prompts with random words or character sequences. Second, we use an additional sentence embedding model to generate different text embeddings with respect to these random sentences. We then use CCA double twice to align the representations and reconstruct them back to the original representation space. We demonstrate the effectiveness of our method on a variety of tasks and datasets, showing that it outperforms existing methods in terms of both performance and robustness. Our method is simple to implement and can be easily integrated into existing models, making it a practical solution for improving the robustness of foundation models to group-based biases.
comment: 18 pages, 6 figures, 2 tables
☆ MH-MoE:Multi-Head Mixture-of-Experts
Multi-Head Mixture-of-Experts (MH-MoE) demonstrates superior performance by using the multi-head mechanism to collectively attend to information from various representation spaces within different experts. In this paper, we present a novel implementation of MH-MoE that maintains both FLOPs and parameter parity with sparse Mixture of Experts models. Experimental results on language models show that the new implementation yields quality improvements over both vanilla MoE and fine-grained MoE models. Additionally, our experiments demonstrate that MH-MoE is compatible with 1-bit Large Language Models (LLMs) such as BitNet.
comment: 7 pages, 0 figures
☆ Video-Text Dataset Construction from Multi-AI Feedback: Promoting Weak-to-Strong Preference Learning for Video Large Language Models
High-quality video-text preference data is crucial for Multimodal Large Language Models (MLLMs) alignment. However, existing preference data is very scarce. Obtaining VQA preference data for preference training is costly, and manually annotating responses is highly unreliable, which could result in low-quality pairs. Meanwhile, AI-generated responses controlled by temperature adjustment lack diversity. To address these issues, we propose a high-quality VQA preference dataset, called \textit{\textbf{M}ultiple \textbf{M}ultimodal \textbf{A}rtificial \textbf{I}ntelligence \textbf{P}reference Datasets in \textbf{V}QA} (\textbf{MMAIP-V}), which is constructed by sampling from the response distribution set and using an external scoring function for response evaluation. Furthermore, to fully leverage the preference knowledge in MMAIP-V and ensure sufficient optimization, we propose \textit{\textbf{Iter}ative \textbf{W}eak-to-\textbf{S}trong \textbf{R}einforcement \textbf{L}earning from \textbf{AI} \textbf{F}eedback for video MLLMs} (\textbf{Iter-W2S-RLAIF}), a framework that gradually enhances MLLMs' alignment capabilities by iteratively updating the reference model and performing parameter extrapolation. Finally, we propose an unbiased and information-complete evaluation scheme in VQA evaluation. Experiments demonstrate that MMAIP-V is beneficial for MLLMs in preference learning and Iter-W2S-RLAIF fully exploits the alignment information in MMAIP-V. We believe that the proposed automatic VQA preference data generation pipeline based on AI feedback can greatly promote future work in the MLLMs alignment. \textbf{Code and dataset are available} \href{https://anonymous.4open.science/r/MMAIP-V_Iter-W2S-RLAIF-702F}{MMAIP-V\_Iter-W2S-RLAIF-702F}.
☆ Enhancing Multi-Agent Consensus through Third-Party LLM Integration: Analyzing Uncertainty and Mitigating Hallucinations in Large Language Models
Large Language Models (LLMs) still face challenges when dealing with complex reasoning tasks, often resulting in hallucinations, which limit the practical application of LLMs. To alleviate this issue, this paper proposes a new method that integrates different LLMs to expand the knowledge boundary, reduce dependence on a single model, and promote in-depth debate among agents. The main contributions include: 1) Introducing third-party LLMs to adjust the attention weights of agents through uncertainty estimation and confidence analysis, optimizing consensus formation in multi-agent systems; 2) Experiments on arithmetic datasets have validated the effectiveness of the method, surpassing traditional multi-agent baselines. This research provides a new perspective for large models to alleviate hallucination phenomena when dealing with complex tasks.
LLM Augmentations to support Analytical Reasoning over Multiple Documents
Building on their demonstrated ability to perform a variety of tasks, we investigate the application of large language models (LLMs) to enhance in-depth analytical reasoning within the context of intelligence analysis. Intelligence analysts typically work with massive dossiers to draw connections between seemingly unrelated entities, and uncover adversaries' plans and motives. We explore if and how LLMs can be helpful to analysts for this task and develop an architecture to augment the capabilities of an LLM with a memory module called dynamic evidence trees (DETs) to develop and track multiple investigation threads. Through extensive experiments on multiple datasets, we highlight how LLMs, as-is, are still inadequate to support intelligence analysts and offer recommendations to improve LLMs for such intricate reasoning applications.
comment: 2024 IEEE International Conference on Big Data (IEEE BigData 2024)
☆ Adaptive Circuit Behavior and Generalization in Mechanistic Interpretability
Mechanistic interpretability aims to understand the inner workings of large neural networks by identifying circuits, or minimal subgraphs within the model that implement algorithms responsible for performing specific tasks. These circuits are typically discovered and analyzed using a narrowly defined prompt format. However, given the abilities of large language models (LLMs) to generalize across various prompt formats for the same task, it remains unclear how well these circuits generalize. For instance, it is unclear whether the models generalization results from reusing the same circuit components, the components behaving differently, or the use of entirely different components. In this paper, we investigate the generality of the indirect object identification (IOI) circuit in GPT-2 small, which is well-studied and believed to implement a simple, interpretable algorithm. We evaluate its performance on prompt variants that challenge the assumptions of this algorithm. Our findings reveal that the circuit generalizes surprisingly well, reusing all of its components and mechanisms while only adding additional input edges. Notably, the circuit generalizes even to prompt variants where the original algorithm should fail; we discover a mechanism that explains this which we term S2 Hacking. Our findings indicate that circuits within LLMs may be more flexible and general than previously recognized, underscoring the importance of studying circuit generalization to better understand the broader capabilities of these models.
comment: 10 pages, 8 figures
☆ Cautious Optimizers: Improving Training with One Line of Code
AdamW has been the default optimizer for transformer pretraining. For many years, our community searches for faster and more stable optimizers with only constraint positive outcomes. In this work, we propose a \textbf{single-line modification in Pytorch} to any momentum-based optimizer, which we rename Cautious Optimizer, e.g. C-AdamW and C-Lion. Our theoretical result shows that this modification preserves Adam's Hamiltonian function and it does not break the convergence guarantee under the Lyapunov analysis. In addition, a whole new family of optimizers is revealed by our theoretical insight. Among them, we pick the simplest one for empirical experiments, showing speed-up on Llama and MAE pretraining up to $1.47\times$. Code is available at https://github.com/kyleliang919/C-Optim
☆ SAGEval: The frontiers of Satisfactory Agent based NLG Evaluation for reference-free open-ended text
Large Language Model (LLM) integrations into applications like Microsoft365 suite and Google Workspace for creating/processing documents, emails, presentations, etc. has led to considerable enhancements in productivity and time savings. But as these integrations become more more complex, it is paramount to ensure that the quality of output from the LLM-integrated applications are relevant and appropriate for use. Identifying the need to develop robust evaluation approaches for natural language generation, wherein references/ground labels doesn't exist or isn't amply available, this paper introduces a novel framework called "SAGEval" which utilizes a critiquing Agent to provide feedback on scores generated by LLM evaluators. We show that the critiquing Agent is able to rectify scores from LLM evaluators, in absence of references/ground-truth labels, thereby reducing the need for labeled data even for complex NLG evaluation scenarios, like the generation of JSON-structured forms/surveys with responses in different styles like multiple choice, likert ratings, single choice questions, etc.
☆ Predicting Emergent Capabilities by Finetuning
A fundamental open challenge in modern LLM scaling is the lack of understanding around emergent capabilities. In particular, language model pretraining loss is known to be highly predictable as a function of compute. However, downstream capabilities are far less predictable -- sometimes even exhibiting emergent jumps -- which makes it challenging to anticipate the capabilities of future models. In this work, we first pose the task of emergence prediction: given access to current LLMs that have random few-shot accuracy on a task, can we predict whether future models (GPT-N+1) will have non-trivial accuracy on that task? We then discover a simple insight for this problem: finetuning LLMs on a given task can shift the point in scaling at which emergence occurs towards less capable models. To operationalize this insight, we can finetune LLMs with varying amounts of data and fit a parametric function that predicts when emergence will occur (i.e., "emergence laws"). We validate this approach using four standard NLP benchmarks where large-scale open-source LLMs already demonstrate emergence (MMLU, GSM8K, CommonsenseQA, and CoLA). Using only small-scale LLMs, we find that, in some cases, we can accurately predict whether models trained with up to 4x more compute have emerged. Finally, we present a case study of two realistic uses for emergence prediction.
☆ TransCompressor: LLM-Powered Multimodal Data Compression for Smart Transportation
The incorporation of Large Language Models (LLMs) into smart transportation systems has paved the way for improving data management and operational efficiency. This study introduces TransCompressor, a novel framework that leverages LLMs for efficient compression and decompression of multimodal transportation sensor data. TransCompressor has undergone thorough evaluation with diverse sensor data types, including barometer, speed, and altitude measurements, across various transportation modes like buses, taxis, and MTRs. Comprehensive evaluation illustrates the effectiveness of TransCompressor in reconstructing transportation sensor data at different compression ratios. The results highlight that, with well-crafted prompts, LLMs can utilize their vast knowledge base to contribute to data compression processes, enhancing data storage, analysis, and retrieval in smart transportation settings.
comment: 6 pages
☆ Tree Transformers are an Ineffective Model of Syntactic Constituency
Linguists have long held that a key aspect of natural language syntax is the recursive organization of language units into constituent structures, and research has suggested that current state-of-the-art language models lack an inherent bias towards this feature. A number of alternative models have been proposed to provide inductive biases towards constituency, including the Tree Transformer, which utilizes a modified attention mechanism to organize tokens into constituents. We investigate Tree Transformers to study whether they utilize meaningful and/or useful constituent structures. We pretrain a large Tree Transformer on language modeling in order to investigate the learned constituent tree representations of sentences, finding little evidence for meaningful structures. Next, we evaluate Tree Transformers with similar transformer models on error detection tasks requiring constituent structure. We find that while the Tree Transformer models may slightly outperform at these tasks, there is little evidence to suggest a meaningful improvement. In general, we conclude that there is little evidence to support Tree Transformer as an effective model of syntactic constituency.
☆ Dynamic Self-Distillation via Previous Mini-batches for Fine-tuning Small Language Models
Knowledge distillation (KD) has become a widely adopted approach for compressing large language models (LLMs) to reduce computational costs and memory footprints. However, the availability of complex teacher models is a prerequisite for running most KD pipelines. Thus, the traditional KD procedure can be unachievable or budget-unfriendly, particularly when relying on commercial LLMs like GPT4. In this regard, Self-distillation (SelfD) emerges as an advisable alternative, enabling student models to learn without teachers' guidance. Nonetheless, existing SelfD approaches for LMs often involve architectural modifications, assuming the models are open-source, which may not always be practical. In this work, we introduce a model-agnostic and task-agnostic method named dynamic SelfD from the previous minibatch (DynSDPB), which realizes current iterations' distillation from the last ones' generated logits. Additionally, to address prediction inaccuracies during the early iterations, we dynamically adjust the distillation influence and temperature values to enhance the adaptability of fine-tuning. Furthermore, DynSDPB is a novel fine-tuning policy that facilitates the seamless integration of existing self-correction and self-training techniques for small language models (SLMs) because they all require updating SLMs' parameters. We demonstrate the superior performance of DynSDPB on both encoder-only LMs (e.g., BERT model families) and decoder-only LMs (e.g., LLaMA model families), validating its effectiveness across natural language understanding (NLU) and natural language generation (NLG) benchmarks.
comment: Work in progress
☆ Teaching Smaller Language Models To Generalise To Unseen Compositional Questions (Full Thesis)
Pretrained large Language Models (LLMs) are able to answer questions that are unlikely to have been encountered during training. However a diversity of potential applications exist in the broad domain of reasoning systems and considerations such as latency, cost, available compute resource and internet connectivity are relevant in determining an appropriate approach. We consider the setting where some local compute capacity is available at inference time but internet connectivity is not. Similar to a general-purpose LLM, we assume that our much smaller Reasoning Models may be asked arbitrary questions from unknown distributions, so we focus on evaluation in an unseen setting. We train our models to answer diverse questions by instilling an ability to reason over a retrieved context. We acquire context from two knowledge sources; a Wikipedia corpus queried using a multi-hop dense retrieval system with novel extensions, and from rationales generated from a larger Language Model optimised to run in a lower resource environment. Our main contributions: We propose novel methods to show that our model is capable of answering contextualised questions without memorisation. We establish a comprehensive set of baseline results on unseen evaluation datasets. We show that the addition of novel retrieval-augmented training datasets (RATD) to the training regime of the Reasoning Model significantly improves results. We demonstrate further significant improvement through the application of methods for combining knowledge from two sources. The first method (RR) involves training a novel Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We use the scores to derive combined contexts. We also show that utilising the RATD datasets enables our model to become proficient at utilising combined noisy contexts.
☆ Harnessing LLMs for Educational Content-Driven Italian Crossword Generation
In this work, we unveil a novel tool for generating Italian crossword puzzles from text, utilizing advanced language models such as GPT-4o, Mistral-7B-Instruct-v0.3, and Llama3-8b-Instruct. Crafted specifically for educational applications, this cutting-edge generator makes use of the comprehensive Italian-Clue-Instruct dataset, which comprises over 30,000 entries including diverse text, solutions, and types of clues. This carefully assembled dataset is designed to facilitate the creation of contextually relevant clues in various styles associated with specific texts and keywords. The study delves into four distinctive styles of crossword clues: those without format constraints, those formed as definite determiner phrases, copular sentences, and bare noun phrases. Each style introduces unique linguistic structures to diversify clue presentation. Given the lack of sophisticated educational tools tailored to the Italian language, this project seeks to enhance learning experiences and cognitive development through an engaging, interactive platform. By meshing state-of-the-art AI with contemporary educational strategies, our tool can dynamically generate crossword puzzles from Italian educational materials, thereby providing an enjoyable and interactive learning environment. This technological advancement not only redefines educational paradigms but also sets a new benchmark for interactive and cognitive language learning solutions.
comment: This paper has been accepted for presentation at CLiC.it 2024
☆ Boundless Socratic Learning with Language Games
An agent trained within a closed system can master any desired capability, as long as the following three conditions hold: (a) it receives sufficiently informative and aligned feedback, (b) its coverage of experience/data is broad enough, and (c) it has sufficient capacity and resource. In this position paper, we justify these conditions, and consider what limitations arise from (a) and (b) in closed systems, when assuming that (c) is not a bottleneck. Considering the special case of agents with matching input and output spaces (namely, language), we argue that such pure recursive self-improvement, dubbed "Socratic learning", can boost performance vastly beyond what is present in its initial data or knowledge, and is only limited by time, as well as gradual misalignment concerns. Furthermore, we propose a constructive framework to implement it, based on the notion of language games.
☆ Augmenting Multimodal LLMs with Self-Reflective Tokens for Knowledge-based Visual Question Answering
Multimodal LLMs (MLLMs) are the natural extension of large language models to handle multimodal inputs, combining text and image data. They have recently garnered attention due to their capability to address complex tasks involving both modalities. However, their effectiveness is limited to the knowledge acquired during training, which restricts their practical utility. In this work, we introduce a novel method to enhance the adaptability of MLLMs by integrating external knowledge sources. Our proposed model, Reflective LLaVA (ReflectiVA), utilizes reflective tokens to dynamically determine the need for external knowledge and predict the relevance of information retrieved from an external database. Tokens are trained following a two-stage two-model training recipe. This ultimately enables the MLLM to manage external knowledge while preserving fluency and performance on tasks where external knowledge is not needed. Through our experiments, we demonstrate the efficacy of ReflectiVA for knowledge-based visual question answering, highlighting its superior performance compared to existing methods. Source code and trained models are publicly available at https://github.com/aimagelab/ReflectiVA.
☆ Integrating Geodesic Interpolation and Flow Matching for Non-Autoregressive Text Generation in Logit Space
Non-autoregressive language models are emerging as effective alternatives to autoregressive models in the field of natural language processing, facilitating simultaneous token generation. This study introduces a novel flow matching approach that employs Kullback-Leibler (KL) divergence geodesics to interpolate between initial and target distributions for discrete sequences. We formulate a loss function designed to maximize the conditional likelihood of discrete tokens and demonstrate that its maximizer corresponds to the flow matching velocity during logit interpolation. Although preliminary experiments conducted on the TinyStories dataset yielded suboptimal results, we propose an empirical sampling scheme based on a pretrained denoiser that significantly enhances performance. Additionally, we present a more general hybrid approach that achieves strong performance on more complex datasets, such as Fine Web and Lamini Instruction.
☆ Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries
In-hospital mortality (IHM) prediction for ICU patients is critical for timely interventions and efficient resource allocation. While structured physiological data provides quantitative insights, clinical notes offer unstructured, context-rich narratives. This study integrates these modalities with Large Language Model (LLM)-generated expert summaries to improve IHM prediction accuracy. Using the MIMIC-III database, we analyzed time-series physiological data and clinical notes from the first 48 hours of ICU admission. Clinical notes were concatenated chronologically for each patient and transformed into expert summaries using Med42-v2 70B. A multi-representational learning framework was developed to integrate these data sources, leveraging LLMs to enhance textual data while mitigating direct reliance on LLM predictions, which can introduce challenges in uncertainty quantification and interpretability. The proposed model achieved an AUPRC of 0.6156 (+36.41%) and an AUROC of 0.8955 (+7.64%) compared to a time-series-only baseline. Expert summaries outperformed clinical notes or time-series data alone, demonstrating the value of LLM-generated knowledge. Performance gains were consistent across demographic groups, with notable improvements in underrepresented populations, underscoring the framework's equitable application potential. By integrating LLM-generated summaries with structured and unstructured data, the framework captures complementary patient information, significantly improving predictive performance. This approach showcases the potential of LLMs to augment critical care prediction models, emphasizing the need for domain-specific validation and advanced integration strategies for broader clinical adoption.
☆ Fine-Tuning LLMs with Noisy Data for Political Argument Generation
The incivility in social media discourse complicates the deployment of automated text generation models for politically sensitive content. Fine-tuning and prompting strategies are critical, but underexplored, solutions to mitigate toxicity in such contexts. This study investigates the fine-tuning and prompting effects on GPT-3.5 Turbo using subsets of the CLAPTON dataset of political discussion posts, comprising Twitter and Reddit data labeled for their justification, reciprocity and incivility. Fine-tuned models on Reddit data scored highest on discussion quality, while combined noisy data led to persistent toxicity. Prompting strategies reduced specific toxic traits, such as personal attacks, but had limited broader impact. The findings emphasize that high-quality data and well-crafted prompts are essential to reduce incivility and improve rhetorical quality in automated political discourse generation.
☆ Enhancing Answer Reliability Through Inter-Model Consensus of Large Language Models
We explore the collaborative dynamics of an innovative language model interaction system involving advanced models such as GPT-4-0125-preview, Meta-LLaMA-3-70B-Instruct, Claude-3-Opus, and Gemini-1.5-Flash. These models generate and answer complex, PhD-level statistical questions without exact ground-truth answers. Our study investigates how inter-model consensus enhances the reliability and precision of responses. By employing statistical methods such as chi-square tests, Fleiss' Kappa, and confidence interval analysis, we evaluate consensus rates and inter-rater agreement to quantify the reliability of collaborative outputs. Key results reveal that Claude and GPT-4 exhibit the highest reliability and consistency, as evidenced by their narrower confidence intervals and higher alignment with question-generating models. Conversely, Gemini and LLaMA show more significant variability in their consensus rates, as reflected in wider confidence intervals and lower reliability percentages. These findings demonstrate that collaborative interactions among large language models (LLMs) significantly improve response reliability, offering novel insights into autonomous, cooperative reasoning and validation in AI systems.
comment: 15 pages, 2 figures
☆ What can LLM tell us about cities?
This study explores the capabilities of large language models (LLMs) in providing knowledge about cities and regions on a global scale. We employ two methods: directly querying the LLM for target variable values and extracting explicit and implicit features from the LLM correlated with the target variable. Our experiments reveal that LLMs embed a broad but varying degree of knowledge across global cities, with ML models trained on LLM-derived features consistently leading to improved predictive accuracy. Additionally, we observe that LLMs demonstrate a certain level of knowledge across global cities on all continents, but it is evident when they lack knowledge, as they tend to generate generic or random outputs for unfamiliar tasks. These findings suggest that LLMs can offer new opportunities for data-driven decision-making in the study of cities.
☆ Leveraging the Power of MLLMs for Gloss-Free Sign Language Translation
Sign language translation (SLT) is a challenging task that involves translating sign language images into spoken language. For SLT models to perform this task successfully, they must bridge the modality gap and identify subtle variations in sign language components to understand their meanings accurately. To address these challenges, we propose a novel gloss-free SLT framework called Multimodal Sign Language Translation (MMSLT), which leverages the representational capabilities of off-the-shelf multimodal large language models (MLLMs). Specifically, we generate detailed textual descriptions of sign language components using MLLMs. Then, through our proposed multimodal-language pre-training module, we integrate these description features with sign video features to align them within the spoken sentence space. Our approach achieves state-of-the-art performance on benchmark datasets PHOENIX14T and CSL-Daily, highlighting the potential of MLLMs to be effectively utilized in SLT.
☆ Contrastive Multi-graph Learning with Neighbor Hierarchical Sifting for Semi-supervised Text Classification
Graph contrastive learning has been successfully applied in text classification due to its remarkable ability for self-supervised node representation learning. However, explicit graph augmentations may lead to a loss of semantics in the contrastive views. Secondly, existing methods tend to overlook edge features and the varying significance of node features during multi-graph learning. Moreover, the contrastive loss suffer from false negatives. To address these limitations, we propose a novel method of contrastive multi-graph learning with neighbor hierarchical sifting for semi-supervised text classification, namely ConNHS. Specifically, we exploit core features to form a multi-relational text graph, enhancing semantic connections among texts. By separating text graphs, we provide diverse views for contrastive learning. Our approach ensures optimal preservation of the graph information, minimizing data loss and distortion. Then, we separately execute relation-aware propagation and cross-graph attention propagation, which effectively leverages the varying correlations between nodes and edge features while harmonising the information fusion across graphs. Subsequently, we present the neighbor hierarchical sifting loss (NHS) to refine the negative selection. For one thing, following the homophily assumption, NHS masks first-order neighbors of the anchor and positives from being negatives. For another, NHS excludes the high-order neighbors analogous to the anchor based on their similarities. Consequently, it effectively reduces the occurrence of false negatives, preventing the expansion of the distance between similar samples in the embedding space. Our experiments on ThuCNews, SogouNews, 20 Newsgroups, and Ohsumed datasets achieved 95.86\%, 97.52\%, 87.43\%, and 70.65\%, which demonstrates competitive results in semi-supervised text classification.
comment: 16 pages, 6 figures
☆ Parameter Efficient Instruction Tuning: An Empirical Study
Instruction tuning has become an important step for finetuning pretrained language models to better follow human instructions and generalize on various tasks. Nowadays, pretrained language models become increasingly larger, and full parameter finetuning is overwhelmingly costly. Therefore, Parameter Efficient Finetuning (PEFT) has arisen as a cost-effective practice for instruction tuning because of significantly smaller computational, memory, and storage cost compared to full finetuning. Despite their widespread adaptations, the vast hyperparameter spaces, the number of PEFT methods, the different focus of instruction tuning capabilities make disentangling the impact of each aspect difficult. This study systematically investigates several representative PEFT methods, surveying the effect of hyperparameter choices including training hyperparameters and PEFT-specific hyperparameters, how different models sizes and the number of instruction tasks affect the performance, in-task-distribution memorization and open instruction following capability. Our empirical study shows that only LoRA and adapter can get close to full finetuning with ideal training settings. The ideal training setting includes an appropriate learning rate, largest LoRA rank or adapter size allowed and diverse training tasks. On the other hand, LoRA and adapter suffer from training instability if such an ideal training condition is not met. Additionally, LoRA requires a greater number of tasks for effective unseen task generalization, exhibit slower learning speed. Moreover, LoRA has weaker task-level memorization. Lastly, LoRA and adapter fall short in complex reasoning, coding and long-form generation compared to finetuning in open instruction tuning settings but it shows stronger capabilities compared to adapter.
comment: 7 pages, 7 figures
☆ In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models
Text-to-image (T2I) models have shown remarkable progress, but their potential to generate harmful content remains a critical concern in the ML community. While various safety mechanisms have been developed, the field lacks systematic tools for evaluating their effectiveness against real-world misuse scenarios. In this work, we propose ICER, a novel red-teaming framework that leverages Large Language Models (LLMs) and a bandit optimization-based algorithm to generate interpretable and semantic meaningful problematic prompts by learning from past successful red-teaming attempts. Our ICER efficiently probes safety mechanisms across different T2I models without requiring internal access or additional training, making it broadly applicable to deployed systems. Through extensive experiments, we demonstrate that ICER significantly outperforms existing prompt attack methods in identifying model vulnerabilities while maintaining high semantic similarity with intended content. By uncovering that successful jailbreaking instances can systematically facilitate the discovery of new vulnerabilities, our work provides crucial insights for developing more robust safety mechanisms in T2I systems.
☆ SHuBERT: Self-Supervised Sign Language Representation Learning via Multi-Stream Cluster Prediction
Sign language processing has traditionally relied on task-specific models,limiting the potential for transfer learning across tasks. We introduce SHuBERT (Sign Hidden-Unit BERT), a self-supervised transformer encoder that learns strong representations from approximately 1,000 hours of American Sign Language (ASL) video content. Inspired by the success of the HuBERT speech representation model, SHuBERT adapts masked prediction for multi-stream visual sign language input, learning to predict multiple targets for corresponding to clustered hand, face, and body pose streams. SHuBERT achieves state-of-the-art performance across multiple benchmarks. On sign language translation, it outperforms prior methods trained on publicly available data on the How2Sign (+0.7 BLEU), OpenASL (+10.0 BLEU), and FLEURS-ASL (+0.3 BLEU) benchmarks. Similarly for isolated sign language recognition, SHuBERT's accuracy surpasses that of specialized models on ASL-Citizen (+5\%) and SEM-LEX (+20.6\%), while coming close to them on WLASL2000 (-3\%). Ablation studies confirm the contribution of each component of the approach.
comment: 17 pages
☆ Towards Efficient Model-Heterogeneity Federated Learning for Large Models
As demand grows for complex tasks and high-performance applications in edge computing, the deployment of large models in federated learning has become increasingly urgent, given their superior representational power and generalization capabilities. However, the resource constraints and heterogeneity among clients present significant challenges to this deployment. To tackle these challenges, we introduce HeteroTune, an innovative fine-tuning framework tailored for model-heterogeneity federated learning (MHFL). In particular, we propose a novel parameter-efficient fine-tuning (PEFT) structure, called FedAdapter, which employs a multi-branch cross-model aggregator to enable efficient knowledge aggregation across diverse models. Benefiting from the lightweight FedAdapter, our approach significantly reduces both the computational and communication overhead. Finally, our approach is simple yet effective, making it applicable to a wide range of large model fine-tuning tasks. Extensive experiments on computer vision (CV) and natural language processing (NLP) tasks demonstrate that our method achieves state-of-the-art results, seamlessly integrating efficiency and performance.
comment: 8pages, 5figures
♻ ☆ Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions. A primary challenge in this task is bridging the substantial representational gap between visual and textual modalities. The prevailing methods map texts and images into unified embedding space for matching, while the intricate semantic correspondences between texts and images are still not effectively constructed. To address this issue, we propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts. Specifically, via fine-tuning the Contrastive Language-Image Pre-training (CLIP) model, a visual-textual dual encoder is firstly constructed, to preliminarily align the image and text features. Secondly, a Text-guided Image Restoration (TIR) auxiliary task is proposed to map abstract textual entities to specific image regions, improving the alignment between local textual and visual embeddings. Additionally, a cross-modal triplet loss is presented to handle hard samples, and further enhance the model's discriminability for minor differences. Moreover, a pruning-based text data augmentation approach is proposed to enhance focus on essential elements in descriptions, thereby avoiding excessive model attention to less significant information. The experimental results show our proposed method outperforms state-of-the-art methods on three popular benchmark datasets, and the code will be made publicly available at https://github.com/Delong-liu-bupt/SEN.
♻ ☆ Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions
Currently OpenAI o1 sparks a surge of interest in the study of large reasoning models (LRM). Building on this momentum, Marco-o1 not only focuses on disciplines with standard answers, such as mathematics, physics, and coding -- which are well-suited for reinforcement learning (RL) -- but also places greater emphasis on open-ended resolutions. We aim to address the question: ''Can the o1 model effectively generalize to broader domains where clear standards are absent and rewards are challenging to quantify?'' Marco-o1 is powered by Chain-of-Thought (CoT) fine-tuning, Monte Carlo Tree Search (MCTS), reflection mechanisms, and innovative reasoning strategies -- optimized for complex real-world problem-solving tasks.
♻ ☆ Efficient Interactive LLM Serving with Proxy Model-based Sequence Length Prediction
Large language models (LLMs) have been driving a new wave of interactive AI applications across numerous domains. However, efficiently serving LLM inference requests is challenging due to their unpredictable execution times originating from the autoregressive nature of generative models. Existing LLM serving systems exploit first-come-first-serve (FCFS) scheduling, suffering from head-of-line blocking issues. To address the non-deterministic nature of LLMs and enable efficient interactive LLM serving, we present a speculative shortest-job-first (SSJF) scheduler that uses a light proxy model to predict LLM output sequence lengths. Our open-source SSJF implementation does not require changes to memory management or batching strategies. Evaluations on real-world datasets and production workload traces show that SSJF reduces average job completion times by 30.5-39.6% and increases throughput by 2.2-3.6x compared to FCFS schedulers, across no batching, dynamic batching, and continuous batching settings.
comment: Accepted at AIOps'24
♻ ☆ A Review of Mechanistic Models of Event Comprehension
This review examines theoretical assumptions and computational models of event comprehension, tracing the evolution from discourse comprehension theories to contemporary event cognition frameworks. The review covers key discourse comprehension accounts, including Construction-Integration, Event Indexing, Causal Network, and Resonance models, highlighting their contributions to understanding cognitive processes in comprehension. I then discuss contemporary theoretical frameworks of event comprehension, including Event Segmentation Theory (Zacks et al., 2007), the Event Horizon Model (Radvansky & Zacks, 2014), and Hierarchical Generative Framework (Kuperberg, 2021), which emphasize prediction, causality, and multilevel representations in event understanding. Building on these theories, I evaluate five computational models of event comprehension: REPRISE (Butz et al., 2019), Structured Event Memory (SEM; Franklin et al., 2020), the Lu model (Lu et al., 2022), the Gumbsch model (Gumbsch et al., 2022), and the Elman and McRae model (2019). The analysis focuses on their approaches to hierarchical processing, prediction mechanisms, and representation learning. Key themes that emerge include the use of hierarchical structures as inductive biases, the importance of prediction in comprehension, and diverse strategies for learning event dynamics. The review identifies critical areas for future research, including the need for more sophisticated approaches to learning structured representations, integrating episodic memory mechanisms, and developing adaptive updating algorithms for working event models. By synthesizing insights from both theoretical frameworks and computational implementations, this review aims to advance our understanding of human event comprehension and guide future modeling efforts in cognitive science.
♻ ☆ A Survey of Event Causality Identification: Principles, Taxonomy, Challenges, and Assessment
Event Causality Identification (ECI) has become a crucial task in Natural Language Processing (NLP), aimed at automatically extracting causalities from textual data. In this survey, we systematically address the foundational principles, technical frameworks, and challenges of ECI, offering a comprehensive taxonomy to categorize and clarify current research methodologies, as well as a quantitative assessment of existing models. We first establish a conceptual framework for ECI, outlining key definitions, problem formulations, and evaluation standards. Our taxonomy classifies ECI methods according to the two primary tasks of sentence-level (SECI) and document-level (DECI) event causality identification. For SECI, we examine feature pattern-based matching, deep semantic encoding, causal knowledge pre-training and prompt-based fine-tuning, and external knowledge enhancement methods. For DECI, we highlight approaches focused on event graph reasoning and prompt-based techniques to address the complexity of cross-sentence causal inference. Additionally, we analyze the strengths, limitations, and open challenges of each approach. We further conduct an extensive quantitative evaluation of various ECI methods on two benchmark datasets. Finally, we explore future research directions, highlighting promising pathways to overcome current limitations and broaden ECI applications.
♻ ☆ Multimodal Foundation Models Exploit Text to Make Medical Image Predictions
Multimodal foundation models have shown compelling but conflicting performance in medical image interpretation. However, the mechanisms by which these models integrate and prioritize different data modalities, including images and text, remain poorly understood. Here, using a diverse collection of 1014 multimodal medical cases, we evaluate the unimodal and multimodal image interpretation abilities of proprietary (GPT-4, Gemini Pro 1.0) and open-source (Llama-3.2-90B, LLaVA-Med-v1.5) multimodal foundational models with and without the use of text descriptions. Across all models, image predictions were largely driven by exploiting text, with accuracy increasing monotonically with the amount of informative text. By contrast, human performance on medical image interpretation did not improve with informative text. Exploitation of text is a double-edged sword; we show that even mild suggestions of an incorrect diagnosis in text diminishes image-based classification, reducing performance dramatically in cases the model could previously answer with images alone. Finally, we conducted a physician evaluation of model performance on long-form medical cases, finding that the provision of images either reduced or had no effect on model performance when text is already highly informative. Our results suggest that multimodal AI models may be useful in medical diagnostic reasoning but that their accuracy is largely driven, for better and worse, by their exploitation of text.
♻ ☆ A Comprehensive Survey of Text Classification Techniques and Their Research Applications: Observational and Experimental Insights
The exponential growth of textual data presents substantial challenges in management and analysis, notably due to high storage and processing costs. Text classification, a vital aspect of text mining, provides robust solutions by enabling efficient categorization and organization of text data. These techniques allow individuals, researchers, and businesses to derive meaningful patterns and insights from large volumes of text. This survey paper introduces a comprehensive taxonomy specifically designed for text classification based on research fields. The taxonomy is structured into hierarchical levels: research field-based category, research field-based sub-category, methodology-based technique, methodology sub-technique, and research field applications. We employ a dual evaluation approach: empirical and experimental. Empirically, we assess text classification techniques across four critical criteria. Experimentally, we compare and rank the methodology sub-techniques within the same methodology technique and within the same overall research field sub-category. This structured taxonomy, coupled with thorough evaluations, provides a detailed and nuanced understanding of text classification algorithms and their applications, empowering researchers to make informed decisions based on precise, field-specific insights.
♻ ☆ HQP: A Human-Annotated Dataset for Detecting Online Propaganda ACL
Online propaganda poses a severe threat to the integrity of societies. However, existing datasets for detecting online propaganda have a key limitation: they were annotated using weak labels that can be noisy and even incorrect. To address this limitation, our work makes the following contributions: (1) We present HQP: a novel dataset (N = 30,000) for detecting online propaganda with high-quality labels. To the best of our knowledge, HQP is the first large-scale dataset for detecting online propaganda that was created through human annotation. (2) We show empirically that state-of-the-art language models fail in detecting online propaganda when trained with weak labels (AUC: 64.03). In contrast, state-of-the-art language models can accurately detect online propaganda when trained with our high-quality labels (AUC: 92.25), which is an improvement of ~44%. (3) We show that prompt-based learning using a small sample of high-quality labels can still achieve a reasonable performance (AUC: 80.27) while significantly reducing the cost of labeling. (4) We extend HQP to HQP+ to test how well propaganda across different contexts can be detected. Crucially, our work highlights the importance of high-quality labels for sensitive NLP tasks such as propaganda detection.
comment: Accepted at ACL Findings 24
TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs NeurIPS 2024
Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections across various real-world settings. However, existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes. This lack of rich textual edge annotations significantly limits the exploration of contextual relationships between entities, hindering deeper insights into graph-structured data. To address this gap, we introduce Textual-Edge Graphs Datasets and Benchmark (TEG-DB), a comprehensive and diverse collection of benchmark textual-edge datasets featuring rich textual descriptions on nodes and edges. The TEG-DB datasets are large-scale and encompass a wide range of domains, from citation networks to social networks. In addition, we conduct extensive benchmark experiments on TEG-DB to assess the extent to which current techniques, including pre-trained language models, graph neural networks, and their combinations, can utilize textual node and edge information. Our goal is to elicit advancements in textual-edge graph research, specifically in developing methodologies that exploit rich textual node and edge descriptions to enhance graph analysis and provide deeper insights into complex real-world networks. The entire TEG-DB project is publicly accessible as an open-source repository on Github, accessible at https://github.com/Zhuofeng-Li/TEG-Benchmark.
comment: Accepted by NeurIPS 2024
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Collaborative Learning
Contemporary embodied agents, such as Voyager in Minecraft, have demonstrated promising capabilities in open-ended individual learning. However, when powered with open large language models (LLMs), these agents often struggle with rudimentary tasks, even when fine-tuned on domain-specific knowledge. Inspired by human cultural learning, we present \collabvoyager, a novel framework that enhances Voyager with lifelong collaborative learning through explicit perspective-taking. \collabvoyager introduces three key innovations: (1) theory of mind representations linking percepts, beliefs, desires, and actions; (2) natural language communication between agents; and (3) semantic memory of task and environment knowledge and episodic memory of collaboration episodes. These advancements enable agents to reason about their and others' mental states, empirically addressing two prevalent failure modes: false beliefs and faulty task executions. In mixed-expertise Minecraft experiments, \collabvoyager agents outperform Voyager counterparts, significantly improving task completion rate by $66.6\% (+39.4\%)$ for collecting one block of dirt and $70.8\% (+20.8\%)$ for collecting one wood block. They exhibit emergent behaviors like knowledge transfer from expert to novice agents and collaborative code correction. \collabvoyager agents also demonstrate the ability to adapt to out-of-distribution tasks by using their previous experiences and beliefs obtained through collaboration. In this open-ended social learning paradigm, \collabvoyager paves the way for the democratic development of embodied AI, where agents learn in deployment from both peer and environmental feedback.
♻ ☆ How ChatGPT Changed the Media's Narratives on AI: A Semi-Automated Narrative Analysis Through Frame Semantics
We perform a mixed-method frame semantics-based analysis on a dataset of more than 49,000 sentences collected from 5846 news articles that mention AI. The dataset covers the twelve-month period centred around the launch of OpenAI's chatbot ChatGPT and is collected from the most visited open-access English-language news publishers. Our findings indicate that during the six months succeeding the launch, media attention rose tenfold$\unicode{x2014}$from already historically high levels. During this period, discourse has become increasingly centred around experts and political leaders, and AI has become more closely associated with dangers and risks. A deeper review of the data also suggests a qualitative shift in the types of threat AI is thought to represent, as well as the anthropomorphic qualities ascribed to it.
comment: 19 pages, 6 figures and 2 appendices (5 pages) Minds & Machines, published in November 2024
♻ ☆ A Survey of Stance Detection on Social Media: New Directions and Perspectives
In modern digital environments, users frequently express opinions on contentious topics, providing a wealth of information on prevailing attitudes. The systematic analysis of these opinions offers valuable insights for decision-making in various sectors, including marketing and politics. As a result, stance detection has emerged as a crucial subfield within affective computing, enabling the automatic detection of user stances in social media conversations and providing a nuanced understanding of public sentiment on complex issues. Recent years have seen a surge of research interest in developing effective stance detection methods, with contributions from multiple communities, including natural language processing, web science, and social computing. This paper provides a comprehensive survey of stance detection techniques on social media, covering task definitions, datasets, approaches, and future works. We review traditional stance detection models, as well as state-of-the-art methods based on large language models, and discuss their strengths and limitations. Our survey highlights the importance of stance detection in understanding public opinion and sentiment, and identifies gaps in current research. We conclude by outlining potential future directions for stance detection on social media, including the need for more robust and generalizable models, and the importance of addressing emerging challenges such as multi-modal stance detection and stance detection in low-resource languages.
♻ ☆ Learning thresholds lead to stable language coexistence
We introduce a language competition model that is based on the Abrams-Strogatz model and incorporates the effects of memory and learning in the language shift dynamics. On a coarse grained time scale, the effects of memory and learning can be expressed as thresholds on the speakers fractions of the competing languages. In its simplest form, the resulting model is exactly solvable. Besides the consensus on one of the two languages, the model describes additional equilibrium states that are not present in the Abrams-Strogatz model: a stable dynamical coexistence of the two languages and a frozen state coinciding with the initial state. We show numerically that these results are preserved for threshold functions of a more general shape. The comparison of the model predictions with historical datasets demonstrates that while the Abrams-Strogatz model fails to describe some relevant language competition situations, the proposed model provides a good fitting.
comment: 15 pages, 6 figures and 1 table
♻ ☆ Visual Riddles: a Commonsense and World Knowledge Challenge for Large Vision and Language Models
Imagine observing someone scratching their arm; to understand why, additional context would be necessary. However, spotting a mosquito nearby would immediately offer a likely explanation for the person's discomfort, thereby alleviating the need for further information. This example illustrates how subtle visual cues can challenge our cognitive skills and demonstrates the complexity of interpreting visual scenarios. To study these skills, we present Visual Riddles, a benchmark aimed to test vision and language models on visual riddles requiring commonsense and world knowledge. The benchmark comprises 400 visual riddles, each featuring a unique image created by a variety of text-to-image models, question, ground-truth answer, textual hint, and attribution. Human evaluation reveals that existing models lag significantly behind human performance, which is at 82% accuracy, with Gemini-Pro-1.5 leading with 40% accuracy. Our benchmark comes with automatic evaluation tasks to make assessment scalable. These findings underscore the potential of Visual Riddles as a valuable resource for enhancing vision and language models' capabilities in interpreting complex visual scenarios.
comment: https://visual-riddles.github.io/
♻ ☆ OLoRA: Orthonormal Low-Rank Adaptation of Large Language Models
The advent of large language models (LLMs) has revolutionized natural language processing, enabling unprecedented capabilities in understanding and generating human-like text. However, the computational cost and convergence times associated with fine-tuning these models remain significant challenges. Low-Rank Adaptation (LoRA) has emerged as a promising method to mitigate these issues by introducing efficient fine-tuning techniques with a reduced number of trainable parameters. In this paper, we present OLoRA, an enhancement to the LoRA method that leverages orthonormal matrix initialization through QR decomposition. OLoRA significantly accelerates the convergence of LLM training while preserving the efficiency benefits of LoRA, such as the number of trainable parameters and GPU memory footprint. Our empirical evaluations demonstrate that OLoRA not only converges faster but also exhibits improved performance compared to standard LoRA across a variety of language modeling tasks. This advancement opens new avenues for more efficient and accessible fine-tuning of LLMs, potentially enabling broader adoption and innovation in natural language applications.
comment: 10 pages, 5 figures
♻ ☆ OASIS: Open Agent Social Interaction Simulations with One Million Agents
There has been a growing interest in enhancing rule-based agent-based models (ABMs) for social media platforms (i.e., X, Reddit) with more realistic large language model (LLM) agents, thereby allowing for a more nuanced study of complex systems. As a result, several LLM-based ABMs have been proposed in the past year. While they hold promise, each simulator is specifically designed to study a particular scenario, making it time-consuming and resource-intensive to explore other phenomena using the same ABM. Additionally, these models simulate only a limited number of agents, whereas real-world social media platforms involve millions of users. To this end, we propose OASIS, a generalizable and scalable social media simulator. OASIS is designed based on real-world social media platforms, incorporating dynamically updated environments (i.e., dynamic social networks and post information), diverse action spaces (i.e., following, commenting), and recommendation systems (i.e., interest-based and hot-score-based). Additionally, OASIS supports large-scale user simulations, capable of modeling up to one million users. With these features, OASIS can be easily extended to different social media platforms to study large-scale group phenomena and behaviors. We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms. Moreover, we provide observations of social phenomena at different agent group scales. We observe that the larger agent group scale leads to more enhanced group dynamics and more diverse and helpful agents' opinions. These findings demonstrate OASIS's potential as a powerful tool for studying complex systems in digital environments.
♻ ☆ Meta-Chunking: Learning Efficient Text Segmentation via Logical Perception
Retrieval-Augmented Generation (RAG), while serving as a viable complement to large language models (LLMs), often overlooks the crucial aspect of text chunking within its pipeline, which impacts the quality of knowledge-intensive tasks. This paper introduces the concept of Meta-Chunking, which refers to a granularity between sentences and paragraphs, consisting of a collection of sentences within a paragraph that have deep linguistic logical connections. To implement Meta-Chunking, we designed Perplexity (PPL) Chunking, which balances performance and speed, and precisely identifies the boundaries of text chunks by analyzing the characteristics of context perplexity distribution. Additionally, considering the inherent complexity of different texts, we propose a strategy that combines PPL Chunking with dynamic merging to achieve a balance between fine-grained and coarse-grained text chunking. Experiments conducted on eleven datasets demonstrate that Meta-Chunking can more efficiently improve the performance of single-hop and multi-hop question answering based on RAG. For instance, on the 2WikiMultihopQA dataset, it outperforms similarity chunking by 1.32 while only consuming 45.8% of the time. Furthermore, through the analysis of models of various scales and types, we observed that PPL Chunking exhibits notable flexibility and adaptability. Our code is available at https://github.com/IAAR-Shanghai/Meta-Chunking.
♻ ☆ Deanthropomorphising NLP: Can a Language Model Be Conscious?
This work is intended as a voice in the discussion over previous claims that a pretrained large language model (LLM) based on the Transformer model architecture can be sentient. Such claims have been made concerning the LaMDA model and also concerning the current wave of LLM-powered chatbots, such as ChatGPT. This claim, if confirmed, would have serious ramifications in the Natural Language Processing (NLP) community due to wide-spread use of similar models. However, here we take the position that such a large language model cannot be sentient, or conscious, and that LaMDA in particular exhibits no advances over other similar models that would qualify it. We justify this by analysing the Transformer architecture through Integrated Information Theory of consciousness. We see the claims of sentience as part of a wider tendency to use anthropomorphic language in NLP reporting. Regardless of the veracity of the claims, we consider this an opportune moment to take stock of progress in language modelling and consider the ethical implications of the task. In order to make this work helpful for readers outside the NLP community, we also present the necessary background in language modelling.
♻ ☆ Information Extraction from Heterogeneous Documents without Ground Truth Labels using Synthetic Label Generation and Knowledge Distillation WACV 2025
Invoices and receipts submitted by employees are visually rich documents (VRDs) with textual, visual and layout information. To protect against the risk of fraud and abuse, it is crucial for organizations to efficiently extract desired information from submitted receipts. This helps in the assessment of key factors such as appropriateness of the expense claim, adherence to spending and transaction policies, the validity of the receipt, as well as downstream anomaly detection at various levels. These documents are heterogeneous, with multiple formats and languages, uploaded with different image qualities, and often do not contain ground truth labels for the efficient training of models. In this paper we propose Task Aware Instruction-based Labelling (TAIL), a method for synthetic label generation in VRD corpuses without labels, and fine-tune a multimodal Visually Rich Document Understanding Model (VRDU) on TAIL labels using response-based knowledge distillation without using the teacher model's weights or training dataset to conditionally generate annotations in the appropriate format. Using a benchmark external dataset where ground truth labels are available, we demonstrate conditions under which our approach performs at par with Claude 3 Sonnet through empirical studies. We then show that the resulting model performs at par or better on the internal expense documents of a large multinational organization than state-of-the-art LMM (large multimodal model) Claude 3 Sonnet while being 85% less costly and ~5X faster, and outperforms layout-aware baselines by more than 10% in Average Normalized Levenshtein Similarity (ANLS) scores due to its ability to reason and extract information from rare formats. Finally, we illustrate the usage of our approach in overpayment prevention.
comment: Accepted to WACV 2025
♻ ☆ Towards the Dynamics of a DNN Learning Symbolic Interactions
This study proves the two-phase dynamics of a deep neural network (DNN) learning interactions. Despite the long disappointing view of the faithfulness of post-hoc explanation of a DNN, a series of theorems have been proven in recent years to show that for a given input sample, a small set of interactions between input variables can be considered as primitive inference patterns that faithfully represent a DNN's detailed inference logic on that sample. Particularly, Zhang et al. have observed that various DNNs all learn interactions of different complexities in two distinct phases, and this two-phase dynamics well explains how a DNN changes from under-fitting to over-fitting. Therefore, in this study, we mathematically prove the two-phase dynamics of interactions, providing a theoretical mechanism for how the generalization power of a DNN changes during the training process. Experiments show that our theory well predicts the real dynamics of interactions on different DNNs trained for various tasks.
♻ ☆ StepTool: A Step-grained Reinforcement Learning Framework for Tool Learning in LLMs
Despite having powerful reasoning and inference capabilities, Large Language Models (LLMs) still need external tools to acquire real-time information retrieval or domain-specific expertise to solve complex tasks, which is referred to as tool learning. Existing tool learning methods primarily rely on tuning with expert trajectories, focusing on token-sequence learning from a linguistic perspective. However, there are several challenges: 1) imitating static trajectories limits their ability to generalize to new tasks. 2) even expert trajectories can be suboptimal, and better solution paths may exist. In this work, we introduce StepTool, a novel step-grained reinforcement learning framework to improve tool learning in LLMs. It consists of two components: Step-grained Reward Shaping, which assigns rewards at each tool interaction based on tool invocation success and its contribution to the task, and Step-grained Optimization, which uses policy gradient methods to optimize the model in a multi-step manner. Experimental results demonstrate that StepTool significantly outperforms existing methods in multi-step, tool-based tasks, providing a robust solution for complex task environments. Codes are available at https://github.com/yuyq18/StepTool.
comment: Ongoning Work
♻ ☆ From General to Specific: Utilizing General Hallucination to Benchmark Specific Role-Playing Agents
The advanced role-playing capabilities of Large Language Models (LLMs) have paved the way for developing Role-Playing Agents (RPAs). However, existing benchmarks in this domain, such as HPD and SocialBench face limitations like poor generalizability, implicit and inaccurate judgments, and the risk of model forgetting. To address the above issues, we propose an automatic, scalable, and generalizable paradigm. Specifically, we construct a benchmark, SHARP, by extracting relations from a general knowledge graph and leveraging the inherent hallucination properties of RPAs to simulate interactions across roles. We employ ChatGPT for stance detection and define relationship hallucination along with three related metrics based on stance transfer. Extensive experiments validate the effectiveness and stability of our paradigm. Our findings further explore the factors influencing these metrics and discuss the trade-off between blind loyalty to relationships and adherence to facts in RPAs.
comment: Revise three typos in the abstract and methodology sections of the introduction
♻ ☆ Assessing the Answerability of Queries in Retrieval-Augmented Code Generation
Thanks to unprecedented language understanding and generation capabilities of large language model (LLM), Retrieval-augmented Code Generation (RaCG) has recently been widely utilized among software developers. While this has increased productivity, there are still frequent instances of incorrect codes being provided. In particular, there are cases where plausible yet incorrect codes are generated for queries from users that cannot be answered with the given queries and API descriptions. This study proposes a task for evaluating answerability, which assesses whether valid answers can be generated based on users' queries and retrieved APIs in RaCG. Additionally, we build a benchmark dataset called Retrieval-augmented Code Generability Evaluation (RaCGEval) to evaluate the performance of models performing this task. Experimental results show that this task remains at a very challenging level, with baseline models exhibiting a low performance of 46.7%. Furthermore, this study discusses methods that could significantly improve performance.
♻ ☆ Beyond Turing Test: Can GPT-4 Sway Experts' Decisions?
In the post-Turing era, evaluating large language models (LLMs) involves assessing generated text based on readers' reactions rather than merely its indistinguishability from human-produced content. This paper explores how LLM-generated text impacts readers' decisions, focusing on both amateur and expert audiences. Our findings indicate that GPT-4 can generate persuasive analyses affecting the decisions of both amateurs and professionals. Furthermore, we evaluate the generated text from the aspects of grammar, convincingness, logical coherence, and usefulness. The results highlight a high correlation between real-world evaluation through audience reactions and the current multi-dimensional evaluators commonly used for generative models. Overall, this paper shows the potential and risk of using generated text to sway human decisions and also points out a new direction for evaluating generated text, i.e., leveraging the reactions and decisions of readers. We release our dataset to assist future research.
♻ ☆ Octavius: Mitigating Task Interference in MLLMs via LoRA-MoE ICLR 2024
Recent studies have demonstrated Large Language Models (LLMs) can extend their zero-shot generalization capabilities to multimodal learning through instruction tuning. As more modalities and downstream tasks are introduced, negative conflicts and interference may have a worse impact on performance. While this phenomenon has been overlooked in previous work, we propose a novel and extensible framework, called Octavius, for comprehensive studies and experimentation on multimodal learning with Multimodal Large Language Models (MLLMs). Specifically, we combine the well-known Mixture-of-Experts (MoE) and one of the representative PEFT techniques, i.e., LoRA, designing a novel LLM-based decoder, called LoRA-MoE, for multimodal learning. To the best of our knowledge, we are one of the pioneering efforts to introduce MoE into MLLMs to address this problem. The experimental results (about 20% improvement) have shown the effectiveness and versatility of our design in various 2D and 3D downstream tasks. Code and datasets are available at https://openlamm.github.io/tutorial/.
comment: 22 pages, 12 figures. Accepted in ICLR 2024
♻ ☆ Scalable Fine-tuning from Multiple Data Sources: A First-Order Approximation Approach
We study the problem of fine-tuning a language model (LM) for a target task by optimally using the information from $n$ auxiliary tasks. This problem has broad applications in NLP, such as targeted instruction tuning and data selection in chain-of-thought fine-tuning. The key challenge of this problem is that not all auxiliary tasks are useful to improve the performance of the target task. Thus, choosing the right subset of auxiliary tasks is crucial. Conventional subset selection methods, such as forward and backward stepwise selection, are unsuitable for LM fine-tuning because they require repeated training on subsets of auxiliary tasks. This paper introduces a new algorithm to estimate model fine-tuning performances without repeated training. Our algorithm first performs multitask training using the data of all the tasks to obtain a meta initialization. Then, we approximate the model fine-tuning loss of a subset using functional values and gradients from the meta initialization. Empirically, we find that this gradient-based approximation holds with remarkable accuracy for twelve transformer-based LMs. Thus, we can now estimate fine-tuning performances on CPUs within a few seconds. Finally, we fine-tune the pretrained base model for once on the selected subset of tasks. We conduct extensive experiments to validate this approach, delivering a speedup of $30\times$ over conventional subset selection while incurring only $1\%$ error of the true fine-tuning performances. In downstream evaluations involving both instruction tuning and chain-of-thought fine-tuning, this loss-based selection approach improves over prior gradient or representation similarity-based methods for subset selection by up to $3.8\%$.
comment: 17 pages
♻ ☆ Continual Learning of Large Language Models: A Comprehensive Survey
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.
comment: 44 pages, 2 figures, 4 tables; Work in progress
♻ ☆ Interpretable Video based Stress Detection with Self-Refine Chain-of-thought Reasoning
Stress detection is a critical area of research with significant implications for health monitoring and intervention systems. In this paper, we propose a novel interpretable approach for video-based stress detection, leveraging self-refine chain-of-thought reasoning to enhance both accuracy and transparency in decision-making processes. Our method focuses on extracting subtle behavioral and physiological cues from video sequences that indicate stress levels. By incorporating a chain-of-thought reasoning mechanism, the system refines its predictions iteratively, ensuring that the decision-making process can be traced and explained. The model also learns to self-refine through feedback loops, improving its reasoning capabilities over time. We evaluate our approach on several public and private datasets, demonstrating its superior performance in comparison to traditional video-based stress detection methods. Additionally, we provide comprehensive insights into the interpretability of the model's predictions, making the system highly valuable for applications in both healthcare and human-computer interaction domains.
comment: submitted to ICDE 2025 for review
KBAlign: Efficient Self Adaptation on Specific Knowledge Bases
Humans can utilize techniques to quickly acquire knowledge from specific materials in advance, such as creating self-assessment questions, enabling us to achieving related tasks more efficiently. In contrast, large language models (LLMs) usually relies on retrieval-augmented generation to exploit knowledge materials in an instant manner, or requires external signals such as human preference data and stronger LLM annotations to conduct knowledge adaptation. To unleash the self-learning potential of LLMs, we propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases. Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently. Experimental results on multiple datasets demonstrate the effectiveness of our approach, significantly boosting model performance in downstream tasks that require specific knowledge at a low cost. Notably, our approach achieves over 90% of the performance improvement that can be obtained by using GPT-4-turbo annotation, while relying entirely on self-supervision. We release our experimental data, models, and process analyses to the community for further exploration (https://github.com/thunlp/KBAlign).
♻ ☆ The GPT-WritingPrompts Dataset: A Comparative Analysis of Character Portrayal in Short Stories EMNLP 2024
The improved generative capabilities of large language models have made them a powerful tool for creative writing and storytelling. It is therefore important to quantitatively understand the nature of generated stories, and how they differ from human storytelling. We augment the Reddit WritingPrompts dataset with short stories generated by GPT-3.5, given the same prompts. We quantify and compare the emotional and descriptive features of storytelling from both generative processes, human and machine, along a set of six dimensions. We find that generated stories differ significantly from human stories along all six dimensions, and that human and machine generations display similar biases when grouped according to the narrative point-of-view and gender of the main protagonist. We release our dataset and code at https://github.com/KristinHuangg/gpt-writing-prompts.
comment: 9 pages plus appendices; published at the 6th Workshop on Narrative Understanding, EMNLP 2024
♻ ☆ Emotion Granularity from Text: An Aggregate-Level Indicator of Mental Health EMNLP 2024
We are united in how emotions are central to shaping our experiences; and yet, individuals differ greatly in how we each identify, categorize, and express emotions. In psychology, variation in the ability of individuals to differentiate between emotion concepts is called emotion granularity (determined through self-reports of one's emotions). High emotion granularity has been linked with better mental and physical health; whereas low emotion granularity has been linked with maladaptive emotion regulation strategies and poor health outcomes. In this work, we propose computational measures of emotion granularity derived from temporally-ordered speaker utterances in social media (in lieu of self-reports that suffer from various biases). We then investigate the effectiveness of such text-derived measures of emotion granularity in functioning as markers of various mental health conditions (MHCs). We establish baseline measures of emotion granularity derived from textual utterances, and show that, at an aggregate level, emotion granularities are significantly lower for people self-reporting as having an MHC than for the control population. This paves the way towards a better understanding of the MHCs, and specifically the role emotions play in our well-being.
comment: 9 pages plus appendices; published as a long paper at EMNLP 2024
♻ ☆ Concept Drift Adaptation in Text Stream Mining Settings: A Systematic Review
The society produces textual data online in several ways, e.g., via reviews and social media posts. Therefore, numerous researchers have been working on discovering patterns in textual data that can indicate peoples' opinions, interests, etc. Most tasks regarding natural language processing are addressed using traditional machine learning methods and static datasets. This setting can lead to several problems, e.g., outdated datasets and models, which degrade in performance over time. This is particularly true regarding concept drift, in which the data distribution changes over time. Furthermore, text streaming scenarios also exhibit further challenges, such as the high speed at which data arrives over time. Models for stream scenarios must adhere to the aforementioned constraints while learning from the stream, thus storing texts for limited periods and consuming low memory. This study presents a systematic literature review regarding concept drift adaptation in text stream scenarios. Considering well-defined criteria, we selected 48 papers published between 2018 and August 2024 to unravel aspects such as text drift categories, detection types, model update mechanisms, stream mining tasks addressed, and text representation methods and their update mechanisms. Furthermore, we discussed drift visualization and simulation and listed real-world datasets used in the selected papers. Finally, we brought forward a discussion on existing works in the area, also highlighting open challenges and future research directions for the community.
comment: 69 pages
♻ ☆ Reverse Prompt Engineering
This paper explores a new black-box, zero-shot language model inversion problem and proposes an innovative framework for prompt reconstruction using only text outputs from a language model. Leveraging a large language model alongside an optimization algorithm, the proposed method effectively recovers prompts with minimal resources. Experimental results on several datasets derived from public sources indicate that the proposed approach achieves high-quality prompt recovery and generates prompts more similar to the originals than current state-of-the-art methods. Additionally, the use-case study demonstrates the method's strong potential for generating high-quality text data.
♻ ☆ ConVerSum: A Contrastive Learning-based Approach for Data-Scarce Solution of Cross-Lingual Summarization Beyond Direct Equivalents
Cross-lingual summarization (CLS) is a sophisticated branch in Natural Language Processing that demands models to accurately translate and summarize articles from different source languages. Despite the improvement of the subsequent studies, This area still needs data-efficient solutions along with effective training methodologies. To the best of our knowledge, there is no feasible solution for CLS when there is no available high-quality CLS data. In this paper, we propose a novel data-efficient approach, ConVerSum, for CLS leveraging the power of contrastive learning, generating versatile candidate summaries in different languages based on the given source document and contrasting these summaries with reference summaries concerning the given documents. After that, we train the model with a contrastive ranking loss. Then, we rigorously evaluate the proposed approach against current methodologies and compare it to powerful Large Language Models (LLMs)- Gemini, GPT 3.5, and GPT 4o proving our model performs better for low-resource languages' CLS. These findings represent a substantial improvement in the area, opening the door to more efficient and accurate cross-lingual summarizing techniques.
♻ ☆ FATH: Authentication-based Test-time Defense against Indirect Prompt Injection Attacks
Large language models (LLMs) have been widely deployed as the backbone with additional tools and text information for real-world applications. However, integrating external information into LLM-integrated applications raises significant security concerns. Among these, prompt injection attacks are particularly threatening, where malicious instructions injected in the external text information can exploit LLMs to generate answers as the attackers desire. While both training-time and test-time defense methods have been developed to mitigate such attacks, the unaffordable training costs associated with training-time methods and the limited effectiveness of existing test-time methods make them impractical. This paper introduces a novel test-time defense strategy, named Formatting AuThentication with Hash-based tags (FATH). Unlike existing approaches that prevent LLMs from answering additional instructions in external text, our method implements an authentication system, requiring LLMs to answer all received instructions with a security policy and selectively filter out responses to user instructions as the final output. To achieve this, we utilize hash-based authentication tags to label each response, facilitating accurate identification of responses according to the user's instructions and improving the robustness against adaptive attacks. Comprehensive experiments demonstrate that our defense method can effectively defend against indirect prompt injection attacks, achieving state-of-the-art performance under Llama3 and GPT3.5 models across various attack methods. Our code is released at: https://github.com/Jayfeather1024/FATH
♻ ☆ Maximizing Relation Extraction Potential: A Data-Centric Study to Unveil Challenges and Opportunities
Relation extraction is a Natural Language Processing task that aims to extract relationships from textual data. It is a critical step for information extraction. Due to its wide-scale applicability, research in relation extraction has rapidly scaled to using highly advanced neural networks. Despite their computational superiority, modern relation extractors fail to handle complicated extraction scenarios. However, a comprehensive performance analysis of the state-of-the-art extractors that compile these challenges has been missing from the literature, and this paper aims to bridge this gap. The goal has been to investigate the possible data-centric characteristics that impede neural relation extraction. Based on extensive experiments conducted using 15 state-of-the-art relation extraction algorithms ranging from recurrent architectures to large language models and seven large-scale datasets, this research suggests that modern relation extractors are not robust to complex data and relation characteristics. It emphasizes pivotal issues, such as contextual ambiguity, correlating relations, long-tail data, and fine-grained relation distributions. In addition, it sets a marker for future directions to alleviate these issues, thereby proving to be a critical resource for novice and advanced researchers. Efficient handling of the challenges described can have significant implications for the field of information extraction, which is a critical part of popular systems such as search engines and chatbots. Data and relevant code can be found at \url{https://aaig.ece.ufl.edu/projects/relation-extraction}.
comment: This work has been published to the IEEE Access (2024)
♻ ☆ LLM Circuit Analyses Are Consistent Across Training and Scale NeurIPS 2024
Most currently deployed large language models (LLMs) undergo continuous training or additional finetuning. By contrast, most research into LLMs' internal mechanisms focuses on models at one snapshot in time (the end of pre-training), raising the question of whether their results generalize to real-world settings. Existing studies of mechanisms over time focus on encoder-only or toy models, which differ significantly from most deployed models. In this study, we track how model mechanisms, operationalized as circuits, emerge and evolve across 300 billion tokens of training in decoder-only LLMs, in models ranging from 70 million to 2.8 billion parameters. We find that task abilities and the functional components that support them emerge consistently at similar token counts across scale. Moreover, although such components may be implemented by different attention heads over time, the overarching algorithm that they implement remains. Surprisingly, both these algorithms and the types of components involved therein can replicate across model scale. These results suggest that circuit analyses conducted on small models at the end of pre-training can provide insights that still apply after additional pre-training and over model scale.
comment: NeurIPS 2024
♻ ☆ Parallelizing Linear Transformers with the Delta Rule over Sequence Length
Transformers with linear attention (i.e., linear transformers) and state-space models have recently been suggested as a viable linear-time alternative to transformers with softmax attention. However, these models still underperform transformers especially on tasks that require in-context retrieval. While more expressive variants of linear transformers which replace the additive update in linear transformers with the delta rule (DeltaNet) have been found to be more effective at associative recall, existing algorithms for training such models do not parallelize over sequence length and are thus inefficient to train on modern hardware. This work describes a hardware-efficient algorithm for training linear transformers with the delta rule, which exploits a memory-efficient representation for computing products of Householder matrices. This algorithm allows us to scale up DeltaNet to standard language modeling settings. We train a 1.3B model for 100B tokens and find that it outperforms recent linear-time baselines such as Mamba and GLA in terms of perplexity and zero-shot performance on downstream tasks. We also experiment with two hybrid models which combine DeltaNet layers with (1) sliding-window attention layers every other layer or (2) two global attention layers, and find that these hybrids outperform strong transformer baselines.
comment: Minor update
♻ ☆ SlimLM: An Efficient Small Language Model for On-Device Document Assistance
While small language models (SLMs) show promises for mobile deployment, their real-world performance and applications on smartphones remains underexplored. We present SlimLM, a series of SLMs optimized for document assistance tasks on mobile devices. Through extensive experiments on a Samsung Galaxy S24, we identify the optimal trade-offs between model size (ranging from 125M to 7B parameters), context length, and inference time for efficient on-device processing. SlimLM is pre-trained on SlimPajama-627B and fine-tuned on DocAssist, our constructed dataset for summarization, question answering and suggestion tasks. Our smallest model demonstrates efficient performance on S24, while larger variants offer enhanced capabilities within mobile constraints. We evaluate SlimLM against existing SLMs, showing comparable or superior performance and offering a benchmark for future research in on-device language models. We also provide an Android application, offering practical insights into SLM deployment. Our findings provide valuable insights and illuminate the capabilities of running advanced language models on high-end smartphones, potentially reducing server costs and enhancing privacy through on-device processing.
Computer Vision and Pattern Recognition 168
☆ Generative Omnimatte: Learning to Decompose Video into Layers
Given a video and a set of input object masks, an omnimatte method aims to decompose the video into semantically meaningful layers containing individual objects along with their associated effects, such as shadows and reflections. Existing omnimatte methods assume a static background or accurate pose and depth estimation and produce poor decompositions when these assumptions are violated. Furthermore, due to the lack of generative prior on natural videos, existing methods cannot complete dynamic occluded regions. We present a novel generative layered video decomposition framework to address the omnimatte problem. Our method does not assume a stationary scene or require camera pose or depth information and produces clean, complete layers, including convincing completions of occluded dynamic regions. Our core idea is to train a video diffusion model to identify and remove scene effects caused by a specific object. We show that this model can be finetuned from an existing video inpainting model with a small, carefully curated dataset, and demonstrate high-quality decompositions and editing results for a wide range of casually captured videos containing soft shadows, glossy reflections, splashing water, and more.
comment: Project page: https://gen-omnimatte.github.io/
☆ Factorized Visual Tokenization and Generation
Visual tokenizers are fundamental to image generation. They convert visual data into discrete tokens, enabling transformer-based models to excel at image generation. Despite their success, VQ-based tokenizers like VQGAN face significant limitations due to constrained vocabulary sizes. Simply expanding the codebook often leads to training instability and diminishing performance gains, making scalability a critical challenge. In this work, we introduce Factorized Quantization (FQ), a novel approach that revitalizes VQ-based tokenizers by decomposing a large codebook into multiple independent sub-codebooks. This factorization reduces the lookup complexity of large codebooks, enabling more efficient and scalable visual tokenization. To ensure each sub-codebook captures distinct and complementary information, we propose a disentanglement regularization that explicitly reduces redundancy, promoting diversity across the sub-codebooks. Furthermore, we integrate representation learning into the training process, leveraging pretrained vision models like CLIP and DINO to infuse semantic richness into the learned representations. This design ensures our tokenizer captures diverse semantic levels, leading to more expressive and disentangled representations. Experiments show that the proposed FQGAN model substantially improves the reconstruction quality of visual tokenizers, achieving state-of-the-art performance. We further demonstrate that this tokenizer can be effectively adapted into auto-regressive image generation. https://showlab.github.io/FQGAN
☆ Quark: Real-time, High-resolution, and General Neural View Synthesis SIGGRAPH
We present a novel neural algorithm for performing high-quality, high-resolution, real-time novel view synthesis. From a sparse set of input RGB images or videos streams, our network both reconstructs the 3D scene and renders novel views at 1080p resolution at 30fps on an NVIDIA A100. Our feed-forward network generalizes across a wide variety of datasets and scenes and produces state-of-the-art quality for a real-time method. Our quality approaches, and in some cases surpasses, the quality of some of the top offline methods. In order to achieve these results we use a novel combination of several key concepts, and tie them together into a cohesive and effective algorithm. We build on previous works that represent the scene using semi-transparent layers and use an iterative learned render-and-refine approach to improve those layers. Instead of flat layers, our method reconstructs layered depth maps (LDMs) that efficiently represent scenes with complex depth and occlusions. The iterative update steps are embedded in a multi-scale, UNet-style architecture to perform as much compute as possible at reduced resolution. Within each update step, to better aggregate the information from multiple input views, we use a specialized Transformer-based network component. This allows the majority of the per-input image processing to be performed in the input image space, as opposed to layer space, further increasing efficiency. Finally, due to the real-time nature of our reconstruction and rendering, we dynamically create and discard the internal 3D geometry for each frame, generating the LDM for each view. Taken together, this produces a novel and effective algorithm for view synthesis. Through extensive evaluation, we demonstrate that we achieve state-of-the-art quality at real-time rates. Project page: https://quark-3d.github.io/
comment: SIGGRAPH Asia 2024 camera ready version; project page https://quark-3d.github.io/
☆ Diffusion Features for Zero-Shot 6DoF Object Pose Estimation
Zero-shot object pose estimation enables the retrieval of object poses from images without necessitating object-specific training. In recent approaches this is facilitated by vision foundation models (VFM), which are pre-trained models that are effectively general-purpose feature extractors. The characteristics exhibited by these VFMs vary depending on the training data, network architecture, and training paradigm. The prevailing choice in this field are self-supervised Vision Transformers (ViT). This study assesses the influence of Latent Diffusion Model (LDM) backbones on zero-shot pose estimation. In order to facilitate a comparison between the two families of models on a common ground we adopt and modify a recent approach. Therefore, a template-based multi-staged method for estimating poses in a zero-shot fashion using LDMs is presented. The efficacy of the proposed approach is empirically evaluated on three standard datasets for object-specific 6DoF pose estimation. The experiments demonstrate an Average Recall improvement of up to 27% over the ViT baseline. The source code is available at: https://github.com/BvG1993/DZOP.
☆ Edge Weight Prediction For Category-Agnostic Pose Estimation
Category-Agnostic Pose Estimation (CAPE) localizes keypoints across diverse object categories with a single model, using one or a few annotated support images. Recent works have shown that using a pose graph (i.e., treating keypoints as nodes in a graph rather than isolated points) helps handle occlusions and break symmetry. However, these methods assume a static pose graph with equal-weight edges, leading to suboptimal results. We introduce EdgeCape, a novel framework that overcomes these limitations by predicting the graph's edge weights which optimizes localization. To further leverage structural priors, we propose integrating Markovian Structural Bias, which modulates the self-attention interaction between nodes based on the number of hops between them. We show that this improves the model's ability to capture global spatial dependencies. Evaluated on the MP-100 benchmark, which includes 100 categories and over 20K images, EdgeCape achieves state-of-the-art results in the 1-shot setting and leads among similar-sized methods in the 5-shot setting, significantly improving keypoint localization accuracy. Our code is publicly available.
☆ DreamRunner: Fine-Grained Storytelling Video Generation with Retrieval-Augmented Motion Adaptation
Storytelling video generation (SVG) has recently emerged as a task to create long, multi-motion, multi-scene videos that consistently represent the story described in the input text script. SVG holds great potential for diverse content creation in media and entertainment; however, it also presents significant challenges: (1) objects must exhibit a range of fine-grained, complex motions, (2) multiple objects need to appear consistently across scenes, and (3) subjects may require multiple motions with seamless transitions within a single scene. To address these challenges, we propose DreamRunner, a novel story-to-video generation method: First, we structure the input script using a large language model (LLM) to facilitate both coarse-grained scene planning as well as fine-grained object-level layout and motion planning. Next, DreamRunner presents retrieval-augmented test-time adaptation to capture target motion priors for objects in each scene, supporting diverse motion customization based on retrieved videos, thus facilitating the generation of new videos with complex, scripted motions. Lastly, we propose a novel spatial-temporal region-based 3D attention and prior injection module SR3AI for fine-grained object-motion binding and frame-by-frame semantic control. We compare DreamRunner with various SVG baselines, demonstrating state-of-the-art performance in character consistency, text alignment, and smooth transitions. Additionally, DreamRunner exhibits strong fine-grained condition-following ability in compositional text-to-video generation, significantly outperforming baselines on T2V-ComBench. Finally, we validate DreamRunner's robust ability to generate multi-object interactions with qualitative examples.
comment: Project website: https://dreamrunner-story2video.github.io/
☆ LegoPET: Hierarchical Feature Guided Conditional Diffusion for PET Image Reconstruction
Positron emission tomography (PET) is widely utilized for cancer detection due to its ability to visualize functional and biological processes in vivo. PET images are usually reconstructed from histogrammed raw data (sinograms) using traditional iterative techniques (e.g., OSEM, MLEM). Recently, deep learning (DL) methods have shown promise by directly mapping raw sinogram data to PET images. However, DL approaches that are regression-based or GAN-based often produce overly smoothed images or introduce various artifacts respectively. Image-conditioned diffusion probabilistic models (cDPMs) are another class of likelihood-based DL techniques capable of generating highly realistic and controllable images. While cDPMs have notable strengths, they still face challenges such as maintain correspondence and consistency between input and output images when they are from different domains (e.g., sinogram vs. image domain) as well as slow convergence rates. To address these limitations, we introduce LegoPET, a hierarchical feature guided conditional diffusion model for high-perceptual quality PET image reconstruction from sinograms. We conducted several experiments demonstrating that LegoPET not only improves the performance of cDPMs but also surpasses recent DL-based PET image reconstruction techniques in terms of visual quality and pixel-level PSNR/SSIM metrics. Our code is available at https://github.com/yransun/LegoPET.
comment: 5 pages, 3 figures
☆ Imperceptible Adversarial Examples in the Physical World
Adversarial examples in the digital domain against deep learning-based computer vision models allow for perturbations that are imperceptible to human eyes. However, producing similar adversarial examples in the physical world has been difficult due to the non-differentiable image distortion functions in visual sensing systems. The existing algorithms for generating physically realizable adversarial examples often loosen their definition of adversarial examples by allowing unbounded perturbations, resulting in obvious or even strange visual patterns. In this work, we make adversarial examples imperceptible in the physical world using a straight-through estimator (STE, a.k.a. BPDA). We employ STE to overcome the non-differentiability -- applying exact, non-differentiable distortions in the forward pass of the backpropagation step, and using the identity function in the backward pass. Our differentiable rendering extension to STE also enables imperceptible adversarial patches in the physical world. Using printout photos, and experiments in the CARLA simulator, we show that STE enables fast generation of $\ell_\infty$ bounded adversarial examples despite the non-differentiable distortions. To the best of our knowledge, this is the first work demonstrating imperceptible adversarial examples bounded by small $\ell_\infty$ norms in the physical world that force zero classification accuracy in the global perturbation threat model and cause near-zero ($4.22\%$) AP50 in object detection in the patch perturbation threat model. We urge the community to re-evaluate the threat of adversarial examples in the physical world.
☆ Human-Activity AGV Quality Assessment: A Benchmark Dataset and an Objective Evaluation Metric
AI-driven video generation techniques have made significant progress in recent years. However, AI-generated videos (AGVs) involving human activities often exhibit substantial visual and semantic distortions, hindering the practical application of video generation technologies in real-world scenarios. To address this challenge, we conduct a pioneering study on human activity AGV quality assessment, focusing on visual quality evaluation and the identification of semantic distortions. First, we construct the AI-Generated Human activity Video Quality Assessment (Human-AGVQA) dataset, consisting of 3,200 AGVs derived from 8 popular text-to-video (T2V) models using 400 text prompts that describe diverse human activities. We conduct a subjective study to evaluate the human appearance quality, action continuity quality, and overall video quality of AGVs, and identify semantic issues of human body parts. Based on Human-AGVQA, we benchmark the performance of T2V models and analyze their strengths and weaknesses in generating different categories of human activities. Second, we develop an objective evaluation metric, named AI-Generated Human activity Video Quality metric (GHVQ), to automatically analyze the quality of human activity AGVs. GHVQ systematically extracts human-focused quality features, AI-generated content-aware quality features, and temporal continuity features, making it a comprehensive and explainable quality metric for human activity AGVs. The extensive experimental results show that GHVQ outperforms existing quality metrics on the Human-AGVQA dataset by a large margin, demonstrating its efficacy in assessing the quality of human activity AGVs. The Human-AGVQA dataset and GHVQ metric will be released in public at https://github.com/zczhang-sjtu/GHVQ.git
☆ GeoFormer: A Multi-Polygon Segmentation Transformer
In remote sensing there exists a common need for learning scale invariant shapes of objects like buildings. Prior works relies on tweaking multiple loss functions to convert segmentation maps into the final scale invariant representation, necessitating arduous design and optimization. For this purpose we introduce the GeoFormer, a novel architecture which presents a remedy to the said challenges, learning to generate multipolygons end-to-end. By modeling keypoints as spatially dependent tokens in an auto-regressive manner, the GeoFormer outperforms existing works in delineating building objects from satellite imagery. We evaluate the robustness of the GeoFormer against former methods through a variety of parameter ablations and highlight the advantages of optimizing a single likelihood function. Our study presents the first successful application of auto-regressive transformer models for multi-polygon predictions in remote sensing, suggesting a promising methodological alternative for building vectorization.
comment: 21 pages, 5 figures, in proceedings of British Machine Vision Conference 2024
☆ Chat2SVG: Vector Graphics Generation with Large Language Models and Image Diffusion Models
Scalable Vector Graphics (SVG) has become the de facto standard for vector graphics in digital design, offering resolution independence and precise control over individual elements. Despite their advantages, creating high-quality SVG content remains challenging, as it demands technical expertise with professional editing software and a considerable time investment to craft complex shapes. Recent text-to-SVG generation methods aim to make vector graphics creation more accessible, but they still encounter limitations in shape regularity, generalization ability, and expressiveness. To address these challenges, we introduce Chat2SVG, a hybrid framework that combines the strengths of Large Language Models (LLMs) and image diffusion models for text-to-SVG generation. Our approach first uses an LLM to generate semantically meaningful SVG templates from basic geometric primitives. Guided by image diffusion models, a dual-stage optimization pipeline refines paths in latent space and adjusts point coordinates to enhance geometric complexity. Extensive experiments show that Chat2SVG outperforms existing methods in visual fidelity, path regularity, and semantic alignment. Additionally, our system enables intuitive editing through natural language instructions, making professional vector graphics creation accessible to all users.
comment: Project Page: https://chat2svg.github.io/
☆ Unlocking The Potential of Adaptive Attacks on Diffusion-Based Purification
Diffusion-based purification (DBP) is a defense against adversarial examples (AEs), amassing popularity for its ability to protect classifiers in an attack-oblivious manner and resistance to strong adversaries with access to the defense. Its robustness has been claimed to ensue from the reliance on diffusion models (DMs) that project the AEs onto the natural distribution. We revisit this claim, focusing on gradient-based strategies that back-propagate the loss gradients through the defense, commonly referred to as ``adaptive attacks". Analytically, we show that such an optimization method invalidates DBP's core foundations, effectively targeting the DM rather than the classifier and restricting the purified outputs to a distribution over malicious samples instead. Thus, we reassess the reported empirical robustness, uncovering implementation flaws in the gradient back-propagation techniques used thus far for DBP. We fix these issues, providing the first reliable gradient library for DBP and demonstrating how adaptive attacks drastically degrade its robustness. We then study a less efficient yet stricter majority-vote setting where the classifier evaluates multiple purified copies of the input to make its decision. Here, DBP's stochasticity enables it to remain partially robust against traditional norm-bounded AEs. We propose a novel adaptation of a recent optimization method against deepfake watermarking that crafts systemic malicious perturbations while ensuring imperceptibility. When integrated with the adaptive attack, it completely defeats DBP, even in the majority-vote setup. Our findings prove that DBP, in its current state, is not a viable defense against AEs.
☆ Rethinking Diffusion for Text-Driven Human Motion Generation
Since 2023, Vector Quantization (VQ)-based discrete generation methods have rapidly dominated human motion generation, primarily surpassing diffusion-based continuous generation methods in standard performance metrics. However, VQ-based methods have inherent limitations. Representing continuous motion data as limited discrete tokens leads to inevitable information loss, reduces the diversity of generated motions, and restricts their ability to function effectively as motion priors or generation guidance. In contrast, the continuous space generation nature of diffusion-based methods makes them well-suited to address these limitations and with even potential for model scalability. In this work, we systematically investigate why current VQ-based methods perform well and explore the limitations of existing diffusion-based methods from the perspective of motion data representation and distribution. Drawing on these insights, we preserve the inherent strengths of a diffusion-based human motion generation model and gradually optimize it with inspiration from VQ-based approaches. Our approach introduces a human motion diffusion model enabled to perform bidirectional masked autoregression, optimized with a reformed data representation and distribution. Additionally, we also propose more robust evaluation methods to fairly assess different-based methods. Extensive experiments on benchmark human motion generation datasets demonstrate that our method excels previous methods and achieves state-of-the-art performances.
comment: Preprint
☆ J-CaPA : Joint Channel and Pyramid Attention Improves Medical Image Segmentation
Medical image segmentation is crucial for diagnosis and treatment planning. Traditional CNN-based models, like U-Net, have shown promising results but struggle to capture long-range dependencies and global context. To address these limitations, we propose a transformer-based architecture that jointly applies Channel Attention and Pyramid Attention mechanisms to improve multi-scale feature extraction and enhance segmentation performance for medical images. Increasing model complexity requires more training data, and we further improve model generalization with CutMix data augmentation. Our approach is evaluated on the Synapse multi-organ segmentation dataset, achieving a 6.9% improvement in Mean Dice score and a 39.9% improvement in Hausdorff Distance (HD95) over an implementation without our enhancements. Our proposed model demonstrates improved segmentation accuracy for complex anatomical structures, outperforming existing state-of-the-art methods.
☆ Generating Out-Of-Distribution Scenarios Using Language Models
The deployment of autonomous vehicles controlled by machine learning techniques requires extensive testing in diverse real-world environments, robust handling of edge cases and out-of-distribution scenarios, and comprehensive safety validation to ensure that these systems can navigate safely and effectively under unpredictable conditions. Addressing Out-Of-Distribution (OOD) driving scenarios is essential for enhancing safety, as OOD scenarios help validate the reliability of the models within the vehicle's autonomy stack. However, generating OOD scenarios is challenging due to their long-tailed distribution and rarity in urban driving dataset. Recently, Large Language Models (LLMs) have shown promise in autonomous driving, particularly for their zero-shot generalization and common-sense reasoning capabilities. In this paper, we leverage these LLM strengths to introduce a framework for generating diverse OOD driving scenarios. Our approach uses LLMs to construct a branching tree, where each branch represents a unique OOD scenario. These scenarios are then simulated in the CARLA simulator using an automated framework that aligns scene augmentation with the corresponding textual descriptions. We evaluate our framework through extensive simulations, and assess its performance via a diversity metric that measures the richness of the scenarios. Additionally, we introduce a new "OOD-ness" metric, which quantifies how much the generated scenarios deviate from typical urban driving conditions. Furthermore, we explore the capacity of modern Vision-Language Models (VLMs) to interpret and safely navigate through the simulated OOD scenarios. Our findings offer valuable insights into the reliability of language models in addressing OOD scenarios within the context of urban driving.
☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics
Spatial understanding is a crucial capability for robots to make grounded decisions based on their environment. This foundational skill enables robots not only to perceive their surroundings but also to reason about and interact meaningfully within the world. In modern robotics, these capabilities are taken on by visual language models, and they face significant challenges when applied to spatial reasoning context due to their training data sources. These sources utilize general-purpose image datasets, and they often lack sophisticated spatial scene understanding capabilities. For example, the datasets do not address reference frame comprehension - spatial relationships require clear contextual understanding, whether from an ego-centric, object-centric, or world-centric perspective, which allow for effective real-world interaction. To address this issue, we introduce RoboSpatial, a large-scale spatial understanding dataset consisting of real indoor and tabletop scenes captured as 3D scans and egocentric images, annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5K 3D scans, and 3M annotated spatial relationships, with paired 2D egocentric images and 3D scans to make it both 2D and 3D ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robotics manipulation.
☆ LaB-RAG: Label Boosted Retrieval Augmented Generation for Radiology Report Generation
In the current paradigm of image captioning, deep learning models are trained to generate text from image embeddings of latent features. We challenge the assumption that these latent features ought to be high-dimensional vectors which require model fine tuning to handle. Here we propose Label Boosted Retrieval Augmented Generation (LaB-RAG), a text-based approach to image captioning that leverages image descriptors in the form of categorical labels to boost standard retrieval augmented generation (RAG) with pretrained large language models (LLMs). We study our method in the context of radiology report generation (RRG), where the task is to generate a clinician's report detailing their observations from a set of radiological images, such as X-rays. We argue that simple linear classifiers over extracted image embeddings can effectively transform X-rays into text-space as radiology-specific labels. In combination with standard RAG, we show that these derived text labels can be used with general-domain LLMs to generate radiology reports. Without ever training our generative language model or image feature encoder models, and without ever directly "showing" the LLM an X-ray, we demonstrate that LaB-RAG achieves better results across natural language and radiology language metrics compared with other retrieval-based RRG methods, while attaining competitive results compared to other fine-tuned vision-language RRG models. We further present results of our experiments with various components of LaB-RAG to better understand our method. Finally, we critique the use of a popular RRG metric, arguing it is possible to artificially inflate its results without true data-leakage.
☆ PriorPath: Coarse-To-Fine Approach for Controlled De-Novo Pathology Semantic Masks Generation
Incorporating artificial intelligence (AI) into digital pathology offers promising prospects for automating and enhancing tasks such as image analysis and diagnostic processes. However, the diversity of tissue samples and the necessity for meticulous image labeling often result in biased datasets, constraining the applicability of algorithms trained on them. To harness synthetic histopathological images to cope with this challenge, it is essential not only to produce photorealistic images but also to be able to exert control over the cellular characteristics they depict. Previous studies used methods to generate, from random noise, semantic masks that captured the spatial distribution of the tissue. These masks were then used as a prior for conditional generative approaches to produce photorealistic histopathological images. However, as with many other generative models, this solution exhibits mode collapse as the model fails to capture the full diversity of the underlying data distribution. In this work, we present a pipeline, coined PriorPath, that generates detailed, realistic, semantic masks derived from coarse-grained images delineating tissue regions. This approach enables control over the spatial arrangement of the generated masks and, consequently, the resulting synthetic images. We demonstrated the efficacy of our method across three cancer types, skin, prostate, and lung, showcasing PriorPath's capability to cover the semantic mask space and to provide better similarity to real masks compared to previous methods. Our approach allows for specifying desired tissue distributions and obtaining both photorealistic masks and images within a single platform, thus providing a state-of-the-art, controllable solution for generating histopathological images to facilitate AI for computational pathology.
☆ Guarding the Gate: ConceptGuard Battles Concept-Level Backdoors in Concept Bottleneck Models
The increasing complexity of AI models, especially in deep learning, has raised concerns about transparency and accountability, particularly in high-stakes applications like medical diagnostics, where opaque models can undermine trust. Explainable Artificial Intelligence (XAI) aims to address these issues by providing clear, interpretable models. Among XAI techniques, Concept Bottleneck Models (CBMs) enhance transparency by using high-level semantic concepts. However, CBMs are vulnerable to concept-level backdoor attacks, which inject hidden triggers into these concepts, leading to undetectable anomalous behavior. To address this critical security gap, we introduce ConceptGuard, a novel defense framework specifically designed to protect CBMs from concept-level backdoor attacks. ConceptGuard employs a multi-stage approach, including concept clustering based on text distance measurements and a voting mechanism among classifiers trained on different concept subgroups, to isolate and mitigate potential triggers. Our contributions are threefold: (i) we present ConceptGuard as the first defense mechanism tailored for concept-level backdoor attacks in CBMs; (ii) we provide theoretical guarantees that ConceptGuard can effectively defend against such attacks within a certain trigger size threshold, ensuring robustness; and (iii) we demonstrate that ConceptGuard maintains the high performance and interpretability of CBMs, crucial for trustworthiness. Through comprehensive experiments and theoretical proofs, we show that ConceptGuard significantly enhances the security and trustworthiness of CBMs, paving the way for their secure deployment in critical applications.
comment: 17pages, 4 figures
☆ All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages
Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
comment: A Multilingual Multimodal cultural benchmark for 100 languages
☆ Noise Diffusion for Enhancing Semantic Faithfulness in Text-to-Image Synthesis
Diffusion models have achieved impressive success in generating photorealistic images, but challenges remain in ensuring precise semantic alignment with input prompts. Optimizing the initial noisy latent offers a more efficient alternative to modifying model architectures or prompt engineering for improving semantic alignment. A latest approach, InitNo, refines the initial noisy latent by leveraging attention maps; however, these maps capture only limited information, and the effectiveness of InitNo is highly dependent on the initial starting point, as it tends to converge on a local optimum near this point. To this end, this paper proposes leveraging the language comprehension capabilities of large vision-language models (LVLMs) to guide the optimization of the initial noisy latent, and introduces the Noise Diffusion process, which updates the noisy latent to generate semantically faithful images while preserving distribution consistency. Furthermore, we provide a theoretical analysis of the condition under which the update improves semantic faithfulness. Experimental results demonstrate the effectiveness and adaptability of our framework, consistently enhancing semantic alignment across various diffusion models. The code is available at https://github.com/Bomingmiao/NoiseDiffusion.
☆ Multi-Resolution Generative Modeling of Human Motion from Limited Data
We present a generative model that learns to synthesize human motion from limited training sequences. Our framework provides conditional generation and blending across multiple temporal resolutions. The model adeptly captures human motion patterns by integrating skeletal convolution layers and a multi-scale architecture. Our model contains a set of generative and adversarial networks, along with embedding modules, each tailored for generating motions at specific frame rates while exerting control over their content and details. Notably, our approach also extends to the synthesis of co-speech gestures, demonstrating its ability to generate synchronized gestures from speech inputs, even with limited paired data. Through direct synthesis of SMPL pose parameters, our approach avoids test-time adjustments to fit human body meshes. Experimental results showcase our model's ability to achieve extensive coverage of training examples, while generating diverse motions, as indicated by local and global diversity metrics.
comment: 1O pages, 7 figures, published in European Conference on Visual Media Production CVMP 24
☆ Deformable Mamba for Wide Field of View Segmentation
Wide-FoV cameras, like fisheye and panoramic setups, are essential for broader perception but introduce significant distortions in 180{\deg} and 360{\deg} images, complicating dense prediction tasks. For instance, existing MAMBA models lacking distortion-aware capacity cannot perform well in panoramic semantic segmentation. To address this problem, this work presents Deformable Mamba, a unified framework specifically designed to address imaging distortions within the context of panoramic and fisheye semantic segmentation. At the core is a decoder constructed with a series of Deformable Mamba Fusion (DMF) blocks, making the whole framework more deformable, efficient, and accurate, when handling extreme distortions. Extensive evaluations across five datasets demonstrate that our method consistently improves segmentation accuracy compared to the previous state-of-the-art methods tailored for specific FoVs. Notably, Deformable Mamba achieves a +2.5% performance improvement on the 360{\deg} Stanford2D3D dataset, and shows better results across FoVs from 60{\deg} to 360{\deg}.
comment: Models and code will be made publicly available at: https://github.com/JieHu1996/DeformableMamba
☆ Efficient Video Face Enhancement with Enhanced Spatial-Temporal Consistency
As a very common type of video, face videos often appear in movies, talk shows, live broadcasts, and other scenes. Real-world online videos are often plagued by degradations such as blurring and quantization noise, due to the high compression ratio caused by high communication costs and limited transmission bandwidth. These degradations have a particularly serious impact on face videos because the human visual system is highly sensitive to facial details. Despite the significant advancement in video face enhancement, current methods still suffer from $i)$ long processing time and $ii)$ inconsistent spatial-temporal visual effects (e.g., flickering). This study proposes a novel and efficient blind video face enhancement method to overcome the above two challenges, restoring high-quality videos from their compressed low-quality versions with an effective de-flickering mechanism. In particular, the proposed method develops upon a 3D-VQGAN backbone associated with spatial-temporal codebooks recording high-quality portrait features and residual-based temporal information. We develop a two-stage learning framework for the model. In Stage \Rmnum{1}, we learn the model with a regularizer mitigating the codebook collapse problem. In Stage \Rmnum{2}, we learn two transformers to lookup code from the codebooks and further update the encoder of low-quality videos. Experiments conducted on the VFHQ-Test dataset demonstrate that our method surpasses the current state-of-the-art blind face video restoration and de-flickering methods on both efficiency and effectiveness. Code is available at \url{https://github.com/Dixin-Lab/BFVR-STC}.
☆ No Identity, no problem: Motion through detection for people tracking
Tracking-by-detection has become the de facto standard approach to people tracking. To increase robustness, some approaches incorporate re-identification using appearance models and regressing motion offset, which requires costly identity annotations. In this paper, we propose exploiting motion clues while providing supervision only for the detections, which is much easier to do. Our algorithm predicts detection heatmaps at two different times, along with a 2D motion estimate between the two images. It then warps one heatmap using the motion estimate and enforces consistency with the other one. This provides the required supervisory signal on the motion without the need for any motion annotations. In this manner, we couple the information obtained from different images during training and increase accuracy, especially in crowded scenes and when using low frame-rate sequences. We show that our approach delivers state-of-the-art results for single- and multi-view multi-target tracking on the MOT17 and WILDTRACK datasets.
comment: Accepted in TMLR November 2024
☆ VQ-SGen: A Vector Quantized Stroke Representation for Sketch Generation
This paper presents VQ-SGen, a novel algorithm for high-quality sketch generation. Recent approaches have often framed the task as pixel-based generation either as a whole or part-by-part, neglecting the intrinsic and contextual relationships among individual strokes, such as the shape and spatial positioning of both proximal and distant strokes. To overcome these limitations, we propose treating each stroke within a sketch as an entity and introducing a vector-quantized (VQ) stroke representation for fine-grained sketch generation. Our method follows a two-stage framework - in the first stage, we decouple each stroke's shape and location information to ensure the VQ representation prioritizes stroke shape learning. In the second stage, we feed the precise and compact representation into an auto-decoding Transformer to incorporate stroke semantics, positions, and shapes into the generation process. By utilizing tokenized stroke representation, our approach generates strokes with high fidelity and facilitates novel applications, such as conditional generation and semantic-aware stroke editing. Comprehensive experiments demonstrate our method surpasses existing state-of-the-art techniques, underscoring its effectiveness. The code and model will be made publicly available upon publication.
☆ SplatFlow: Multi-View Rectified Flow Model for 3D Gaussian Splatting Synthesis
Text-based generation and editing of 3D scenes hold significant potential for streamlining content creation through intuitive user interactions. While recent advances leverage 3D Gaussian Splatting (3DGS) for high-fidelity and real-time rendering, existing methods are often specialized and task-focused, lacking a unified framework for both generation and editing. In this paper, we introduce SplatFlow, a comprehensive framework that addresses this gap by enabling direct 3DGS generation and editing. SplatFlow comprises two main components: a multi-view rectified flow (RF) model and a Gaussian Splatting Decoder (GSDecoder). The multi-view RF model operates in latent space, generating multi-view images, depths, and camera poses simultaneously, conditioned on text prompts, thus addressing challenges like diverse scene scales and complex camera trajectories in real-world settings. Then, the GSDecoder efficiently translates these latent outputs into 3DGS representations through a feed-forward 3DGS method. Leveraging training-free inversion and inpainting techniques, SplatFlow enables seamless 3DGS editing and supports a broad range of 3D tasks-including object editing, novel view synthesis, and camera pose estimation-within a unified framework without requiring additional complex pipelines. We validate SplatFlow's capabilities on the MVImgNet and DL3DV-7K datasets, demonstrating its versatility and effectiveness in various 3D generation, editing, and inpainting-based tasks.
comment: Project Page: https://gohyojun15.github.io/SplatFlow/
☆ AnonyNoise: Anonymizing Event Data with Smart Noise to Outsmart Re-Identification and Preserve Privacy WACV25
The increasing capabilities of deep neural networks for re-identification, combined with the rise in public surveillance in recent years, pose a substantial threat to individual privacy. Event cameras were initially considered as a promising solution since their output is sparse and therefore difficult for humans to interpret. However, recent advances in deep learning proof that neural networks are able to reconstruct high-quality grayscale images and re-identify individuals using data from event cameras. In our paper, we contribute a crucial ethical discussion on data privacy and present the first event anonymization pipeline to prevent re-identification not only by humans but also by neural networks. Our method effectively introduces learnable data-dependent noise to cover personally identifiable information in raw event data, reducing attackers' re-identification capabilities by up to 60%, while maintaining substantial information for the performing of downstream tasks. Moreover, our anonymization generalizes well on unseen data and is robust against image reconstruction and inversion attacks. Code: https://github.com/dfki-av/AnonyNoise
comment: Accepted at WACV25
☆ Harnessing Superclasses for Learning from Hierarchical Databases
In many large-scale classification problems, classes are organized in a known hierarchy, typically represented as a tree expressing the inclusion of classes in superclasses. We introduce a loss for this type of supervised hierarchical classification. It utilizes the knowledge of the hierarchy to assign each example not only to a class but also to all encompassing superclasses. Applicable to any feedforward architecture with a softmax output layer, this loss is a proper scoring rule, in that its expectation is minimized by the true posterior class probabilities. This property allows us to simultaneously pursue consistent classification objectives between superclasses and fine-grained classes, and eliminates the need for a performance trade-off between different granularities. We conduct an experimental study on three reference benchmarks, in which we vary the size of the training sets to cover a diverse set of learning scenarios. Our approach does not entail any significant additional computational cost compared with the loss of cross-entropy. It improves accuracy and reduces the number of coarse errors, with predicted labels that are distant from ground-truth labels in the tree.
☆ Privacy Protection in Personalized Diffusion Models via Targeted Cross-Attention Adversarial Attack NeurIPS 2024
The growing demand for customized visual content has led to the rise of personalized text-to-image (T2I) diffusion models. Despite their remarkable potential, they pose significant privacy risk when misused for malicious purposes. In this paper, we propose a novel and efficient adversarial attack method, Concept Protection by Selective Attention Manipulation (CoPSAM) which targets only the cross-attention layers of a T2I diffusion model. For this purpose, we carefully construct an imperceptible noise to be added to clean samples to get their adversarial counterparts. This is obtained during the fine-tuning process by maximizing the discrepancy between the corresponding cross-attention maps of the user-specific token and the class-specific token, respectively. Experimental validation on a subset of CelebA-HQ face images dataset demonstrates that our approach outperforms existing methods. Besides this, our method presents two important advantages derived from the qualitative evaluation: (i) we obtain better protection results for lower noise levels than our competitors; and (ii) we protect the content from unauthorized use thereby protecting the individual's identity from potential misuse.
comment: Accepted at Safe Generative AI Workshop (NeurIPS 2024)
☆ TopV-Nav: Unlocking the Top-View Spatial Reasoning Potential of MLLM for Zero-shot Object Navigation
The Zero-Shot Object Navigation (ZSON) task requires embodied agents to find a previously unseen object by navigating in unfamiliar environments. Such a goal-oriented exploration heavily relies on the ability to perceive, understand, and reason based on the spatial information of the environment. However, current LLM-based approaches convert visual observations to language descriptions and reason in the linguistic space, leading to the loss of spatial information. In this paper, we introduce TopV-Nav, a MLLM-based method that directly reasons on the top-view map with complete spatial information. To fully unlock the MLLM's spatial reasoning potential in top-view perspective, we propose the Adaptive Visual Prompt Generation (AVPG) method to adaptively construct semantically-rich top-view map. It enables the agent to directly utilize spatial information contained in the top-view map to conduct thorough reasoning. Besides, we design a Dynamic Map Scaling (DMS) mechanism to dynamically zoom top-view map at preferred scales, enhancing local fine-grained reasoning. Additionally, we devise a Target-Guided Navigation (TGN) mechanism to predict and to utilize target locations, facilitating global and human-like exploration. Experiments on MP3D and HM3D benchmarks demonstrate the superiority of our TopV-Nav, e.g., $+3.9\%$ SR and $+2.0\%$ SPL absolute improvements on HM3D.
comment: 10 pages
☆ Machine Learning for the Digital Typhoon Dataset: Extensions to Multiple Basins and New Developments in Representations and Tasks
This paper presents the Digital Typhoon Dataset V2, a new version of the longest typhoon satellite image dataset for 40+ years aimed at benchmarking machine learning models for long-term spatio-temporal data. The new addition in Dataset V2 is tropical cyclone data from the southern hemisphere, in addition to the northern hemisphere data in Dataset V1. Having data from two hemispheres allows us to ask new research questions about regional differences across basins and hemispheres. We also discuss new developments in representations and tasks of the dataset. We first introduce a self-supervised learning framework for representation learning. Combined with the LSTM model, we discuss performance on intensity forecasting and extra-tropical transition forecasting tasks. We then propose new tasks, such as the typhoon center estimation task. We show that an object detection-based model performs better for stronger typhoons. Finally, we study how machine learning models can generalize across basins and hemispheres, by training the model on the northern hemisphere data and testing it on the southern hemisphere data. The dataset is publicly available at \url{http://agora.ex.nii.ac.jp/digital-typhoon/dataset/} and \url{https://github.com/kitamoto-lab/digital-typhoon/}.
☆ Comparison of Generative Learning Methods for Turbulence Modeling
Numerical simulations of turbulent flows present significant challenges in fluid dynamics due to their complexity and high computational cost. High resolution techniques such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are generally not computationally affordable, particularly for technologically relevant problems. Recent advances in machine learning, specifically in generative probabilistic models, offer promising alternatives for turbulence modeling. This paper investigates the application of three generative models - Variational Autoencoders (VAE), Deep Convolutional Generative Adversarial Networks (DCGAN), and Denoising Diffusion Probabilistic Models (DDPM) - in simulating a 2D K\'arm\'an vortex street around a fixed cylinder. Training data was obtained by means of LES. We evaluate each model's ability to capture the statistical properties and spatial structures of the turbulent flow. Our results demonstrate that DDPM and DCGAN effectively replicate the flow distribution, highlighting their potential as efficient and accurate tools for turbulence modeling. We find a strong argument for DCGAN, as although they are more difficult to train (due to problems such as mode collapse), they gave the fastest inference and training time, require less data to train compared to VAE and DDPM, and provide the results most closely aligned with the input stream. In contrast, VAE train quickly (and can generate samples quickly) but do not produce adequate results, and DDPM, whilst effective, is significantly slower at both inference and training time.
☆ Low-Data Classification of Historical Music Manuscripts: A Few-Shot Learning Approach
In this paper, we explore the intersection of technology and cultural preservation by developing a self-supervised learning framework for the classification of musical symbols in historical manuscripts. Optical Music Recognition (OMR) plays a vital role in digitising and preserving musical heritage, but historical documents often lack the labelled data required by traditional methods. We overcome this challenge by training a neural-based feature extractor on unlabelled data, enabling effective classification with minimal samples. Key contributions include optimising crop preprocessing for a self-supervised Convolutional Neural Network and evaluating classification methods, including SVM, multilayer perceptrons, and prototypical networks. Our experiments yield an accuracy of 87.66\%, showcasing the potential of AI-driven methods to ensure the survival of historical music for future generations through advanced digital archiving techniques.
comment: 6 pages, The Sixth IEEE international conference on Image Processing Applications and Systems
☆ A Study on Unsupervised Domain Adaptation for Semantic Segmentation in the Era of Vision-Language Models BMVC
Despite the recent progress in deep learning based computer vision, domain shifts are still one of the major challenges. Semantic segmentation for autonomous driving faces a wide range of domain shifts, e.g. caused by changing weather conditions, new geolocations and the frequent use of synthetic data in model training. Unsupervised domain adaptation (UDA) methods have emerged which adapt a model to a new target domain by only using unlabeled data of that domain. The variety of UDA methods is large but all of them use ImageNet pre-trained models. Recently, vision-language models have demonstrated strong generalization capabilities which may facilitate domain adaptation. We show that simply replacing the encoder of existing UDA methods like DACS by a vision-language pre-trained encoder can result in significant performance improvements of up to 10.0% mIoU on the GTA5-to-Cityscapes domain shift. For the generalization performance to unseen domains, the newly employed vision-language pre-trained encoder provides a gain of up to 13.7% mIoU across three unseen datasets. However, we find that not all UDA methods can be easily paired with the new encoder and that the UDA performance does not always likewise transfer into generalization performance. Finally, we perform our experiments on an adverse weather condition domain shift to further verify our findings on a pure real-to-real domain shift.
comment: Accepted to British Machine Vision Conference (BMVC) 2024: Workshop on Robust Recognition in the Open World (RROW)
☆ Synthesising Handwritten Music with GANs: A Comprehensive Evaluation of CycleWGAN, ProGAN, and DCGAN
The generation of handwritten music sheets is a crucial step toward enhancing Optical Music Recognition (OMR) systems, which rely on large and diverse datasets for optimal performance. However, handwritten music sheets, often found in archives, present challenges for digitisation due to their fragility, varied handwriting styles, and image quality. This paper addresses the data scarcity problem by applying Generative Adversarial Networks (GANs) to synthesise realistic handwritten music sheets. We provide a comprehensive evaluation of three GAN models - DCGAN, ProGAN, and CycleWGAN - comparing their ability to generate diverse and high-quality handwritten music images. The proposed CycleWGAN model, which enhances style transfer and training stability, significantly outperforms DCGAN and ProGAN in both qualitative and quantitative evaluations. CycleWGAN achieves superior performance, with an FID score of 41.87, an IS of 2.29, and a KID of 0.05, making it a promising solution for improving OMR systems.
comment: 10 pages, one page references, to appear on the IEEE Big Data 2024 2nd Workshop on AI Music Generation (AIMG 2024)
☆ Quadratic Gaussian Splatting for Efficient and Detailed Surface Reconstruction
Recently, 3D Gaussian Splatting (3DGS) has attracted attention for its superior rendering quality and speed over Neural Radiance Fields (NeRF). To address 3DGS's limitations in surface representation, 2D Gaussian Splatting (2DGS) introduced disks as scene primitives to model and reconstruct geometries from multi-view images, offering view-consistent geometry. However, the disk's first-order linear approximation often leads to over-smoothed results. We propose Quadratic Gaussian Splatting (QGS), a novel method that replaces disks with quadric surfaces, enhancing geometric fitting, whose code will be open-sourced. QGS defines Gaussian distributions in non-Euclidean space, allowing primitives to capture more complex textures. As a second-order surface approximation, QGS also renders spatial curvature to guide the normal consistency term, to effectively reduce over-smoothing. Moreover, QGS is a generalized version of 2DGS that achieves more accurate and detailed reconstructions, as verified by experiments on DTU and TNT, demonstrating its effectiveness in surpassing current state-of-the-art methods in geometry reconstruction. Our code willbe released as open source.
☆ Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence
Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, conventional ultrasound diagnostics face several limitations, including high dependence on physician expertise and suboptimal image quality, which complicates interpretation and increases the likelihood of diagnostic errors. Artificial intelligence (AI) has emerged as a promising solution to enhance clinical diagnosis, particularly in detecting abnormalities across various biomedical imaging modalities. Nonetheless, current AI models for ultrasound imaging face critical challenges. First, these models often require large volumes of labeled medical data, raising concerns over patient privacy breaches. Second, most existing models are task-specific, which restricts their broader clinical utility. To overcome these challenges, we present UltraFedFM, an innovative privacy-preserving ultrasound foundation model. UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries, leveraging a dataset of over 1 million ultrasound images covering 19 organs and 10 ultrasound modalities. This extensive and diverse data, combined with a secure training framework, enables UltraFedFM to exhibit strong generalization and diagnostic capabilities. It achieves an average area under the receiver operating characteristic curve of 0.927 for disease diagnosis and a dice similarity coefficient of 0.878 for lesion segmentation. Notably, UltraFedFM surpasses the diagnostic accuracy of mid-level ultrasonographers and matches the performance of expert-level sonographers in the joint diagnosis of 8 common systemic diseases. These findings indicate that UltraFedFM can significantly enhance clinical diagnostics while safeguarding patient privacy, marking an advancement in AI-driven ultrasound imaging for future clinical applications.
Ca2-VDM: Efficient Autoregressive Video Diffusion Model with Causal Generation and Cache Sharing
With the advance of diffusion models, today's video generation has achieved impressive quality. To extend the generation length and facilitate real-world applications, a majority of video diffusion models (VDMs) generate videos in an autoregressive manner, i.e., generating subsequent clips conditioned on the last frame(s) of the previous clip. However, existing autoregressive VDMs are highly inefficient and redundant: The model must re-compute all the conditional frames that are overlapped between adjacent clips. This issue is exacerbated when the conditional frames are extended autoregressively to provide the model with long-term context. In such cases, the computational demands increase significantly (i.e., with a quadratic complexity w.r.t. the autoregression step). In this paper, we propose Ca2-VDM, an efficient autoregressive VDM with Causal generation and Cache sharing. For causal generation, it introduces unidirectional feature computation, which ensures that the cache of conditional frames can be precomputed in previous autoregression steps and reused in every subsequent step, eliminating redundant computations. For cache sharing, it shares the cache across all denoising steps to avoid the huge cache storage cost. Extensive experiments demonstrated that our Ca2-VDM achieves state-of-the-art quantitative and qualitative video generation results and significantly improves the generation speed. Code is available at https://github.com/Dawn-LX/CausalCache-VDM
comment: Technical Report. Code is available at https://github.com/Dawn-LX/CausalCache-VDM
☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the greater scope of Deep Learning-based computer vision. Furthermore, their widespread applicability in critical real-world tasks has given rise to challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation by discussing fundamental concepts in uncertainty that govern advancements in the field as well as the application to various tasks. We identify that quantifying aleatoric and epistemic uncertainty approximates Bayesian inference w.r.t. to either latent variables or model parameters, respectively. Moreover, literature on both uncertainties trace back to four key applications; (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) active learning. Then, a discussion follows that includes an overview of utilized datasets for each of the applications and comparison of the available methods. We also highlight challenges related to architectures, uncertainty-based active learning, standardization and benchmarking, and recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 20 pages
☆ WTDUN: Wavelet Tree-Structured Sampling and Deep Unfolding Network for Image Compressed Sensing
Deep unfolding networks have gained increasing attention in the field of compressed sensing (CS) owing to their theoretical interpretability and superior reconstruction performance. However, most existing deep unfolding methods often face the following issues: 1) they learn directly from single-channel images, leading to a simple feature representation that does not fully capture complex features; and 2) they treat various image components uniformly, ignoring the characteristics of different components. To address these issues, we propose a novel wavelet-domain deep unfolding framework named WTDUN, which operates directly on the multi-scale wavelet subbands. Our method utilizes the intrinsic sparsity and multi-scale structure of wavelet coefficients to achieve a tree-structured sampling and reconstruction, effectively capturing and highlighting the most important features within images. Specifically, the design of tree-structured reconstruction aims to capture the inter-dependencies among the multi-scale subbands, enabling the identification of both fine and coarse features, which can lead to a marked improvement in reconstruction quality. Furthermore, a wavelet domain adaptive sampling method is proposed to greatly improve the sampling capability, which is realized by assigning measurements to each wavelet subband based on its importance. Unlike pure deep learning methods that treat all components uniformly, our method introduces a targeted focus on important subbands, considering their energy and sparsity. This targeted strategy lets us capture key information more efficiently while discarding less important information, resulting in a more effective and detailed reconstruction. Extensive experimental results on various datasets validate the superior performance of our proposed method.
comment: 20pages,Accepted by ACM Transactions on Multimedia Computing Communications and Applications (TOMM)
☆ Cluster-based human-in-the-loop strategy for improving machine learning-based circulating tumor cell detection in liquid biopsy
Detection and differentiation of circulating tumor cells (CTCs) and non-CTCs in blood draws of cancer patients pose multiple challenges. While the gold standard relies on tedious manual evaluation of an automatically generated selection of images, machine learning (ML) techniques offer the potential to automate these processes. However, human assessment remains indispensable when the ML system arrives at uncertain or wrong decisions due to an insufficient set of labeled training data. This study introduces a human-in-the-loop (HiL) strategy for improving ML-based CTC detection. We combine self-supervised deep learning and a conventional ML-based classifier and propose iterative targeted sampling and labeling of new unlabeled training samples by human experts. The sampling strategy is based on the classification performance of local latent space clusters. The advantages of the proposed approach compared to naive random sampling are demonstrated for liquid biopsy data from patients with metastatic breast cancer.
☆ CapHDR2IR: Caption-Driven Transfer from Visible Light to Infrared Domain
Infrared (IR) imaging offers advantages in several fields due to its unique ability of capturing content in extreme light conditions. However, the demanding hardware requirements of high-resolution IR sensors limit its widespread application. As an alternative, visible light can be used to synthesize IR images but this causes a loss of fidelity in image details and introduces inconsistencies due to lack of contextual awareness of the scene. This stems from a combination of using visible light with a standard dynamic range, especially under extreme lighting, and a lack of contextual awareness can result in pseudo-thermal-crossover artifacts. This occurs when multiple objects with similar temperatures appear indistinguishable in the training data, further exacerbating the loss of fidelity. To solve this challenge, this paper proposes CapHDR2IR, a novel framework incorporating vision-language models using high dynamic range (HDR) images as inputs to generate IR images. HDR images capture a wider range of luminance variations, ensuring reliable IR image generation in different light conditions. Additionally, a dense caption branch integrates semantic understanding, resulting in more meaningful and discernible IR outputs. Extensive experiments on the HDRT dataset show that the proposed CapHDR2IR achieves state-of-the-art performance compared with existing general domain transfer methods and those tailored for visible-to-infrared image translation.
☆ Brain-like emergent properties in deep networks: impact of network architecture, datasets and training
Despite the rapid pace at which deep networks are improving on standardized vision benchmarks, they are still outperformed by humans on real-world vision tasks. This paradoxical lack of generalization could be addressed by making deep networks more brain-like. Although several benchmarks have compared the ability of deep networks to predict brain responses to natural images, they do not capture subtle but important brain-like emergent properties. To resolve this issue, we report several well-known perceptual and neural emergent properties that can be tested on deep networks. To evaluate how various design factors impact brain-like properties, we systematically evaluated over 30 state-of-the-art networks with varying network architectures, training datasets and training regimes. Our main findings are as follows. First, network architecture had the strongest impact on brain-like properties compared to dataset and training regime variations. Second, networks varied widely in their alignment to the brain with no single network outperforming all others. Taken together, our results complement existing benchmarks by revealing brain-like properties that are either emergent or lacking in state-of-the-art deep networks.
☆ Luminance Component Analysis for Exposure Correction
Exposure correction methods aim to adjust the luminance while maintaining other luminance-unrelated information. However, current exposure correction methods have difficulty in fully separating luminance-related and luminance-unrelated components, leading to distortions in color, loss of detail, and requiring extra restoration procedures. Inspired by principal component analysis (PCA), this paper proposes an exposure correction method called luminance component analysis (LCA). LCA applies the orthogonal constraint to a U-Net structure to decouple luminance-related and luminance-unrelated features. With decoupled luminance-related features, LCA adjusts only the luminance-related components while keeping the luminance-unrelated components unchanged. To optimize the orthogonal constraint problem, LCA employs a geometric optimization algorithm, which converts the constrained problem in Euclidean space to an unconstrained problem in orthogonal Stiefel manifolds. Extensive experiments show that LCA can decouple the luminance feature from the RGB color space. Moreover, LCA achieves the best PSNR (21.33) and SSIM (0.88) in the exposure correction dataset with 28.72 FPS.
☆ CutS3D: Cutting Semantics in 3D for 2D Unsupervised Instance Segmentation
Traditionally, algorithms that learn to segment object instances in 2D images have heavily relied on large amounts of human-annotated data. Only recently, novel approaches have emerged tackling this problem in an unsupervised fashion. Generally, these approaches first generate pseudo-masks and then train a class-agnostic detector. While such methods deliver the current state of the art, they often fail to correctly separate instances overlapping in 2D image space since only semantics are considered. To tackle this issue, we instead propose to cut the semantic masks in 3D to obtain the final 2D instances by utilizing a point cloud representation of the scene. Furthermore, we derive a Spatial Importance function, which we use to resharpen the semantics along the 3D borders of instances. Nevertheless, these pseudo-masks are still subject to mask ambiguity. To address this issue, we further propose to augment the training of a class-agnostic detector with three Spatial Confidence components aiming to isolate a clean learning signal. With these contributions, our approach outperforms competing methods across multiple standard benchmarks for unsupervised instance segmentation and object detection.
☆ One Diffusion to Generate Them All
We introduce OneDiffusion, a versatile, large-scale diffusion model that seamlessly supports bidirectional image synthesis and understanding across diverse tasks. It enables conditional generation from inputs such as text, depth, pose, layout, and semantic maps, while also handling tasks like image deblurring, upscaling, and reverse processes such as depth estimation and segmentation. Additionally, OneDiffusion allows for multi-view generation, camera pose estimation, and instant personalization using sequential image inputs. Our model takes a straightforward yet effective approach by treating all tasks as frame sequences with varying noise scales during training, allowing any frame to act as a conditioning image at inference time. Our unified training framework removes the need for specialized architectures, supports scalable multi-task training, and adapts smoothly to any resolution, enhancing both generalization and scalability. Experimental results demonstrate competitive performance across tasks in both generation and prediction such as text-to-image, multiview generation, ID preservation, depth estimation and camera pose estimation despite relatively small training dataset. Our code and checkpoint are freely available at https://github.com/lehduong/OneDiffusion
comment: two first authors contribute equally
☆ Monocular Lane Detection Based on Deep Learning: A Survey
Lane detection plays an important role in autonomous driving perception system. As deep learning algorithms gain popularity, monocular lane detection methods based on deep learning have demonstrated superior performance and emerged as a key research direction in autonomous driving perception. The core design of these algorithmic frameworks can be summarized as follows: (1) Task paradigm, focusing on lane instance-level discrimination; (2) Lane modeling, representing lanes as a set of learnable parameters in the neural network; (3) Global context supplementation, enhancing the detection of obscured lanes; (4) Perspective effect elimination, providing 3D lanes usable for downstream applications. From these perspectives, this paper presents a comprehensive overview of existing methods, encompassing both the increasingly mature 2D lane detection approaches and the developing 3D lane detection works. For a relatively fair comparison, in addition to comparing the performance of mainstream methods on different benchmarks, their inference speed is also investigated under a unified setting. Moreover, we present some extended works on lane detection, including multi-task perception, video lane detection, online high-definition (HD) map construction, and lane topology reasoning, to offer readers a comprehensive roadmap for the evolution of lane detection. Finally, we point out some potential future research directions in this field. We exhaustively collect the papers and codes of existing works at https://github.com/Core9724/Awesome-Lane-Detection and will keep tracing the research.
☆ Oriented histogram-based vector field embedding for characterizing 4D CT data sets in radiotherapy
In lung radiotherapy, the primary objective is to optimize treatment outcomes by minimizing exposure to healthy tissues while delivering the prescribed dose to the target volume. The challenge lies in accounting for lung tissue motion due to breathing, which impacts precise treatment alignment. To address this, the paper proposes a prospective approach that relies solely on pre-treatment information, such as planning CT scans and derived data like vector fields from deformable image registration. This data is compared to analogous patient data to tailor treatment strategies, i.e., to be able to review treatment parameters and success for similar patients. To allow for such a comparison, an embedding and clustering strategy of prospective patient data is needed. Therefore, the main focus of this study lies on reducing the dimensionality of deformable registration-based vector fields by employing a voxel-wise spherical coordinate transformation and a low-dimensional 2D oriented histogram representation. Afterwards, a fully unsupervised UMAP embedding of the encoded vector fields (i.e., patient-specific motion information) becomes applicable. The functionality of the proposed method is demonstrated with 71 in-house acquired 4D CT data sets and 33 external 4D CT data sets. A comprehensive analysis of the patient clusters is conducted, focusing on the similarity of breathing patterns of clustered patients. The proposed general approach of reducing the dimensionality of registration vector fields by encoding the inherent information into oriented histograms is, however, applicable to other tasks.
☆ EPS: Efficient Patch Sampling for Video Overfitting in Deep Super-Resolution Model Training
Leveraging the overfitting property of deep neural networks (DNNs) is trending in video delivery systems to enhance quality within bandwidth limits. Existing approaches transmit overfitted super-resolution (SR) model streams for low-resolution (LR) bitstreams, which are used to reconstruct high-resolution (HR) videos at the decoder. Although these approaches show promising results, the huge computational costs of training a large number of video frames limit their practical applications. To overcome this challenge, we propose an efficient patch sampling method named EPS for video SR network overfitting, which identifies the most valuable training patches from video frames. To this end, we first present two low-complexity Discrete Cosine Transform (DCT)-based spatial-temporal features to measure the complexity score of each patch directly. By analyzing the histogram distribution of these features, we then categorize all possible patches into different clusters and select training patches from the cluster with the highest spatial-temporal information. The number of sampled patches is adaptive based on the video content, addressing the trade-off between training complexity and efficiency. Our method reduces the number of patches for the training to 4% to 25%, depending on the resolution and number of clusters, while maintaining high video quality and significantly enhancing training efficiency. Compared to the state-of-the-art patch sampling method, EMT, our approach achieves an 83% decrease in overall run time.
☆ Functionality understanding and segmentation in 3D scenes
Understanding functionalities in 3D scenes involves interpreting natural language descriptions to locate functional interactive objects, such as handles and buttons, in a 3D environment. Functionality understanding is highly challenging, as it requires both world knowledge to interpret language and spatial perception to identify fine-grained objects. For example, given a task like 'turn on the ceiling light', an embodied AI agent must infer that it needs to locate the light switch, even though the switch is not explicitly mentioned in the task description. To date, no dedicated methods have been developed for this problem. In this paper, we introduce Fun3DU, the first approach designed for functionality understanding in 3D scenes. Fun3DU uses a language model to parse the task description through Chain-of-Thought reasoning in order to identify the object of interest. The identified object is segmented across multiple views of the captured scene by using a vision and language model. The segmentation results from each view are lifted in 3D and aggregated into the point cloud using geometric information. Fun3DU is training-free, relying entirely on pre-trained models. We evaluate Fun3DU on SceneFun3D, the most recent and only dataset to benchmark this task, which comprises over 3000 task descriptions on 230 scenes. Our method significantly outperforms state-of-the-art open-vocabulary 3D segmentation approaches. Code will be released publicly.
comment: Technical report. 20 pages, 12 figures, 7 tables
☆ An End-to-End Robust Point Cloud Semantic Segmentation Network with Single-Step Conditional Diffusion Models
Existing conditional Denoising Diffusion Probabilistic Models (DDPMs) with a Noise-Conditional Framework (NCF) remain challenging for 3D scene understanding tasks, as the complex geometric details in scenes increase the difficulty of fitting the gradients of the data distribution (the scores) from semantic labels. This also results in longer training and inference time for DDPMs compared to non-DDPMs. From a different perspective, we delve deeply into the model paradigm dominated by the Conditional Network. In this paper, we propose an end-to-end robust semantic \textbf{Seg}mentation \textbf{Net}work based on a \textbf{C}onditional-Noise Framework (CNF) of D\textbf{D}PMs, named \textbf{CDSegNet}. Specifically, CDSegNet models the Noise Network (NN) as a learnable noise-feature generator. This enables the Conditional Network (CN) to understand 3D scene semantics under multi-level feature perturbations, enhancing the generalization in unseen scenes. Meanwhile, benefiting from the noise system of DDPMs, CDSegNet exhibits strong noise and sparsity robustness in experiments. Moreover, thanks to CNF, CDSegNet can generate the semantic labels in a single-step inference like non-DDPMs, due to avoiding directly fitting the scores from semantic labels in the dominant network of CDSegNet. On public indoor and outdoor benchmarks, CDSegNet significantly outperforms existing methods, achieving state-of-the-art performance.
☆ DiffDesign: Controllable Diffusion with Meta Prior for Efficient Interior Design Generation
Interior design is a complex and creative discipline involving aesthetics, functionality, ergonomics, and materials science. Effective solutions must meet diverse requirements, typically producing multiple deliverables such as renderings and design drawings from various perspectives. Consequently, interior design processes are often inefficient and demand significant creativity. With advances in machine learning, generative models have emerged as a promising means of improving efficiency by creating designs from text descriptions or sketches. However, few generative works focus on interior design, leading to substantial discrepancies between outputs and practical needs, such as differences in size, spatial scope, and the lack of controllable generation quality. To address these challenges, we propose DiffDesign, a controllable diffusion model with meta priors for efficient interior design generation. Specifically, we utilize the generative priors of a 2D diffusion model pre-trained on a large image dataset as our rendering backbone. We further guide the denoising process by disentangling cross-attention control over design attributes, such as appearance, pose, and size, and introduce an optimal transfer-based alignment module to enforce view consistency. Simultaneously, we construct an interior design-specific dataset, DesignHelper, consisting of over 400 solutions across more than 15 spatial types and 15 design styles. This dataset helps fine-tune DiffDesign. Extensive experiments conducted on various benchmark datasets demonstrate the effectiveness and robustness of DiffDesign.
comment: 32 pages
☆ A Performance Increment Strategy for Semantic Segmentation of Low-Resolution Images from Damaged Roads
Autonomous driving needs good roads, but 85% of Brazilian roads have damages that deep learning models may not regard as most semantic segmentation datasets for autonomous driving are high-resolution images of well-maintained urban roads. A representative dataset for emerging countries consists of low-resolution images of poorly maintained roads and includes labels of damage classes; in this scenario, three challenges arise: objects with few pixels, objects with undefined shapes, and highly underrepresented classes. To tackle these challenges, this work proposes the Performance Increment Strategy for Semantic Segmentation (PISSS) as a methodology of 14 training experiments to boost performance. With PISSS, we reached state-of-the-art results of 79.8 and 68.8 mIoU on the Road Traversing Knowledge (RTK) and Technik Autonomer Systeme 500 (TAS500) test sets, respectively. Furthermore, we also offer an analysis of DeepLabV3+ pitfalls for small object segmentation.
☆ Utilizing Uncertainty in 2D Pose Detectors for Probabilistic 3D Human Mesh Recovery WACV 2025
Monocular 3D human pose and shape estimation is an inherently ill-posed problem due to depth ambiguities, occlusions, and truncations. Recent probabilistic approaches learn a distribution over plausible 3D human meshes by maximizing the likelihood of the ground-truth pose given an image. We show that this objective function alone is not sufficient to best capture the full distributions. Instead, we propose to additionally supervise the learned distributions by minimizing the distance to distributions encoded in heatmaps of a 2D pose detector. Moreover, we reveal that current methods often generate incorrect hypotheses for invisible joints which is not detected by the evaluation protocols. We demonstrate that person segmentation masks can be utilized during training to significantly decrease the number of invalid samples and introduce two metrics to evaluate it. Our normalizing flow-based approach predicts plausible 3D human mesh hypotheses that are consistent with the image evidence while maintaining high diversity for ambiguous body parts. Experiments on 3DPW and EMDB show that we outperform other state-of-the-art probabilistic methods. Code is available for research purposes at https://github.com/twehrbein/humr.
comment: WACV 2025
☆ Open-Vocabulary Octree-Graph for 3D Scene Understanding
Open-vocabulary 3D scene understanding is indispensable for embodied agents. Recent works leverage pretrained vision-language models (VLMs) for object segmentation and project them to point clouds to build 3D maps. Despite progress, a point cloud is a set of unordered coordinates that requires substantial storage space and does not directly convey occupancy information or spatial relation, making existing methods inefficient for downstream tasks, e.g., path planning and complex text-based object retrieval. To address these issues, we propose Octree-Graph, a novel scene representation for open-vocabulary 3D scene understanding. Specifically, a Chronological Group-wise Segment Merging (CGSM) strategy and an Instance Feature Aggregation (IFA) algorithm are first designed to get 3D instances and corresponding semantic features. Subsequently, an adaptive-octree structure is developed that stores semantics and depicts the occupancy of an object adjustably according to its shape. Finally, the Octree-Graph is constructed where each adaptive-octree acts as a graph node, and edges describe the spatial relations among nodes. Extensive experiments on various tasks are conducted on several widely-used datasets, demonstrating the versatility and effectiveness of our method.
comment: 11pages,7figures
☆ Diagnosis of diabetic retinopathy using machine learning & deep learning technique
Fundus images are widely used for diagnosing various eye diseases, such as diabetic retinopathy, glaucoma, and age-related macular degeneration. However, manual analysis of fundus images is time-consuming and prone to errors. In this report, we propose a novel method for fundus detection using object detection and machine learning classification techniques. We use a YOLO_V8 to perform object detection on fundus images and locate the regions of interest (ROIs) such as optic disc, optic cup and lesions. We then use machine learning SVM classification algorithms to classify the ROIs into different DR stages based on the presence or absence of pathological signs such as exudates, microaneurysms, and haemorrhages etc. Our method achieves 84% accuracy and efficiency for fundus detection and can be applied for retinal fundus disease triage, especially in remote areas around the world.
comment: 9 pages, 11 figures, Journal Paper
☆ DoubleCCA: Improving Foundation Model Group Robustness with Random Sentence Embeddings
This paper presents a novel method to improve the robustness of foundation models to group-based biases. We propose a simple yet effective method, called DoubleCCA, that leverages random sentences and Canonical Correlation Analysis (CCA) to enrich the text embeddings of the foundation model. First, we generate various random sentences that augment the original prompts, which extends the original prompts with random words or character sequences. Second, we use an additional sentence embedding model to generate different text embeddings with respect to these random sentences. We then use CCA double twice to align the representations and reconstruct them back to the original representation space. We demonstrate the effectiveness of our method on a variety of tasks and datasets, showing that it outperforms existing methods in terms of both performance and robustness. Our method is simple to implement and can be easily integrated into existing models, making it a practical solution for improving the robustness of foundation models to group-based biases.
comment: 18 pages, 6 figures, 2 tables
☆ EigenHearts: Cardiac Diseases Classification Using EigenFaces Approach
In the realm of cardiovascular medicine, medical imaging plays a crucial role in accurately classifying cardiac diseases and making precise diagnoses. However, the field faces significant challenges when integrating data science techniques, as a significant volume of images is required for these techniques. As a consequence, it is necessary to investigate different avenues to overcome this challenge. In this contribution, we offer an innovative tool to conquer this limitation. In particular, we delve into the application of a well recognized method known as the EigenFaces approach to classify cardiac diseases. This approach was originally motivated for efficiently representing pictures of faces using principal component analysis, which provides a set of eigenvectors (aka eigenfaces), explaining the variation between face images. As this approach proven to be efficient for face recognition, it motivated us to explore its efficiency on more complicated data bases. In particular, we integrate this approach, with convolutional neural networks (CNNs) to classify echocardiography images taken from mice in five distinct cardiac conditions (healthy, diabetic cardiomyopathy, myocardial infarction, obesity and TAC hypertension). Performing a preprocessing step inspired from the eigenfaces approach on the echocardiography datasets, yields sets of pod modes, which we will call eigenhearts. To demonstrate the proposed approach, we compare two testcases: (i) supplying the CNN with the original images directly, (ii) supplying the CNN with images projected into the obtained pod modes. The results show a substantial and noteworthy enhancement when employing SVD for pre-processing, with classification accuracy increasing by approximately 50%.
comment: 16 pages, 9 figures, 3 tables
☆ UltraSam: A Foundation Model for Ultrasound using Large Open-Access Segmentation Datasets
Purpose: Automated ultrasound image analysis is challenging due to anatomical complexity and limited annotated data. To tackle this, we take a data-centric approach, assembling the largest public ultrasound segmentation dataset and training a versatile visual foundation model tailored for ultrasound. Methods: We compile US-43d, a large-scale collection of 43 open-access ultrasound datasets with over 280,000 images and segmentation masks for more than 50 anatomical structures. We then introduce UltraSam, an adaptation of the Segment Anything Model (SAM) that is trained on US-43d and supports both point- and box-prompts. Finally, we introduce a new use case for SAM-style models by using UltraSam as a model initialization that can be fine-tuned for various downstream analysis tasks, demonstrating UltraSam's foundational capabilities. Results: UltraSam achieves vastly improved performance over existing SAM-style models for prompt-based segmentation on three diverse public datasets. Moreover, an UltraSam-initialized Vision Transformer surpasses ImageNet-, SAM-, and MedSAM-initialized models in various downstream segmentation and classification tasks, highlighting UltraSam's effectiveness as a foundation model. Conclusion: We compile US-43d, a large-scale unified ultrasound dataset, and introduce UltraSam, a powerful multi-purpose SAM-style model for ultrasound images. We release our code and pretrained models at https://github.com/CAMMA-public/UltraSam and invite the community to further this effort by contributing high-quality datasets.
comment: 7 pages, 3 figures, 3 tables
☆ Weakly supervised image segmentation for defect-based grading of fresh produce
Implementing image-based machine learning in agriculture is often limited by scarce data and annotations, making it hard to achieve high-quality model predictions. This study tackles the issue of postharvest quality assessment of bananas in decentralized supply chains. We propose a method to detect and segment surface defects in banana images using panoptic segmentation to quantify defect size and number. Instead of time-consuming pixel-level annotations, we use weak supervision with coarse labels. A dataset of 476 smartphone images of bananas was collected under real-world field conditions and annotated for bruises and scars. Using the Segment Anything Model (SAM), a recently published foundation model for image segmentation, we generated dense annotations from coarse bounding boxes to train a segmentation model, significantly reducing manual effort while achieving a panoptic quality score of 77.6%. This demonstrates SAM's potential for low-effort, accurate segmentation in agricultural settings with limited data.
☆ Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding
Multiple-in-one image restoration (IR) has made significant progress, aiming to handle all types of single degraded image restoration with a single model. However, in real-world scenarios, images often suffer from combinations of multiple degradation factors. Existing multiple-in-one IR models encounter challenges related to degradation diversity and prompt singularity when addressing this issue. In this paper, we propose a novel multiple-in-one IR model that can effectively restore images with both single and mixed degradations. To address degradation diversity, we design a Local Dynamic Optimization (LDO) module which dynamically processes degraded areas of varying types and granularities. To tackle the prompt singularity issue, we develop an efficient Conditional Feature Embedding (CFE) module that guides the decoder in leveraging degradation-type-related features, significantly improving the model's performance in mixed degradation restoration scenarios. To validate the effectiveness of our model, we introduce a new dataset containing both single and mixed degradation elements. Experimental results demonstrate that our proposed model achieves state-of-the-art (SOTA) performance not only on mixed degradation tasks but also on classic single-task restoration benchmarks.
comment: 10 pages, 3 figures, 8 tables
☆ SMGDiff: Soccer Motion Generation using diffusion probabilistic models
Soccer is a globally renowned sport with significant applications in video games and VR/AR. However, generating realistic soccer motions remains challenging due to the intricate interactions between the human player and the ball. In this paper, we introduce SMGDiff, a novel two-stage framework for generating real-time and user-controllable soccer motions. Our key idea is to integrate real-time character control with a powerful diffusion-based generative model, ensuring high-quality and diverse output motion. In the first stage, we instantly transform coarse user controls into diverse global trajectories of the character. In the second stage, we employ a transformer-based autoregressive diffusion model to generate soccer motions based on trajectory conditioning. We further incorporate a contact guidance module during inference to optimize the contact details for realistic ball-foot interactions. Moreover, we contribute a large-scale soccer motion dataset consisting of over 1.08 million frames of diverse soccer motions. Extensive experiments demonstrate that our SMGDiff significantly outperforms existing methods in terms of motion quality and condition alignment.
☆ SAVEn-Vid: Synergistic Audio-Visual Integration for Enhanced Understanding in Long Video Context
Endeavors have been made to explore Large Language Models for video analysis (Video-LLMs), particularly in understanding and interpreting long videos. However, existing Video-LLMs still face challenges in effectively integrating the rich and diverse audio-visual information inherent in long videos, which is crucial for comprehensive understanding. This raises the question: how can we leverage embedded audio-visual information to enhance long video understanding? Therefore, (i) we introduce SAVEn-Vid, the first-ever long audio-visual video dataset comprising over 58k audio-visual instructions. (ii) From the model perspective, we propose a time-aware Audio-Visual Large Language Model (AV-LLM), SAVEnVideo, fine-tuned on SAVEn-Vid. (iii) Besides, we present AVBench, a benchmark containing 2,500 QAs designed to evaluate models on enhanced audio-visual comprehension tasks within long video, challenging their ability to handle intricate audio-visual interactions. Experiments on AVBench reveal the limitations of current AV-LLMs. Experiments also demonstrate that SAVEnVideo outperforms the best Video-LLM by 3.61% on the zero-shot long video task (Video-MME) and surpasses the leading audio-visual LLM by 1.29% on the zero-shot audio-visual task (Music-AVQA). Consequently, at the 7B parameter scale, SAVEnVideo can achieve state-of-the-art performance. Our dataset and code will be released at https://ljungang.github.io/SAVEn-Vid/ upon acceptance.
☆ Video-Text Dataset Construction from Multi-AI Feedback: Promoting Weak-to-Strong Preference Learning for Video Large Language Models
High-quality video-text preference data is crucial for Multimodal Large Language Models (MLLMs) alignment. However, existing preference data is very scarce. Obtaining VQA preference data for preference training is costly, and manually annotating responses is highly unreliable, which could result in low-quality pairs. Meanwhile, AI-generated responses controlled by temperature adjustment lack diversity. To address these issues, we propose a high-quality VQA preference dataset, called \textit{\textbf{M}ultiple \textbf{M}ultimodal \textbf{A}rtificial \textbf{I}ntelligence \textbf{P}reference Datasets in \textbf{V}QA} (\textbf{MMAIP-V}), which is constructed by sampling from the response distribution set and using an external scoring function for response evaluation. Furthermore, to fully leverage the preference knowledge in MMAIP-V and ensure sufficient optimization, we propose \textit{\textbf{Iter}ative \textbf{W}eak-to-\textbf{S}trong \textbf{R}einforcement \textbf{L}earning from \textbf{AI} \textbf{F}eedback for video MLLMs} (\textbf{Iter-W2S-RLAIF}), a framework that gradually enhances MLLMs' alignment capabilities by iteratively updating the reference model and performing parameter extrapolation. Finally, we propose an unbiased and information-complete evaluation scheme in VQA evaluation. Experiments demonstrate that MMAIP-V is beneficial for MLLMs in preference learning and Iter-W2S-RLAIF fully exploits the alignment information in MMAIP-V. We believe that the proposed automatic VQA preference data generation pipeline based on AI feedback can greatly promote future work in the MLLMs alignment. \textbf{Code and dataset are available} \href{https://anonymous.4open.science/r/MMAIP-V_Iter-W2S-RLAIF-702F}{MMAIP-V\_Iter-W2S-RLAIF-702F}.
☆ VIRES: Video Instance Repainting with Sketch and Text Guidance
We introduce VIRES, a video instance repainting method with sketch and text guidance, enabling video instance repainting, replacement, generation, and removal. Existing approaches struggle with temporal consistency and accurate alignment with the provided sketch sequence. VIRES leverages the generative priors of text-to-video models to maintain temporal consistency and produce visually pleasing results. We propose the Sequential ControlNet with the standardized self-scaling, which effectively extracts structure layouts and adaptively captures high-contrast sketch details. We further augment the diffusion transformer backbone with the sketch attention to interpret and inject fine-grained sketch semantics. A sketch-aware encoder ensures that repainted results are aligned with the provided sketch sequence. Additionally, we contribute the VireSet, a dataset with detailed annotations tailored for training and evaluating video instance editing methods. Experimental results demonstrate the effectiveness of VIRES, which outperforms state-of-the-art methods in visual quality, temporal consistency, condition alignment, and human ratings.
Interpreting Object-level Foundation Models via Visual Precision Search
Advances in multimodal pre-training have propelled object-level foundation models, such as Grounding DINO and Florence-2, in tasks like visual grounding and object detection. However, interpreting these models\' decisions has grown increasingly challenging. Existing interpretable attribution methods for object-level task interpretation have notable limitations: (1) gradient-based methods lack precise localization due to visual-textual fusion in foundation models, and (2) perturbation-based methods produce noisy saliency maps, limiting fine-grained interpretability. To address these, we propose a Visual Precision Search method that generates accurate attribution maps with fewer regions. Our method bypasses internal model parameters to overcome attribution issues from multimodal fusion, dividing inputs into sparse sub-regions and using consistency and collaboration scores to accurately identify critical decision-making regions. We also conducted a theoretical analysis of the boundary guarantees and scope of applicability of our method. Experiments on RefCOCO, MS COCO, and LVIS show our approach enhances object-level task interpretability over SOTA for Grounding DINO and Florence-2 across various evaluation metrics, with faithfulness gains of 23.7\%, 31.6\%, and 20.1\% on MS COCO, LVIS, and RefCOCO for Grounding DINO, and 102.9\% and 66.9\% on MS COCO and RefCOCO for Florence-2. Additionally, our method can interpret failures in visual grounding and object detection tasks, surpassing existing methods across multiple evaluation metrics. The code will be released at \url{https://github.com/RuoyuChen10/VPS}.
☆ Learn from Foundation Model: Fruit Detection Model without Manual Annotation
Recent breakthroughs in large foundation models have enabled the possibility of transferring knowledge pre-trained on vast datasets to domains with limited data availability. Agriculture is one of the domains that lacks sufficient data. This study proposes a framework to train effective, domain-specific, small models from foundation models without manual annotation. Our approach begins with SDM (Segmentation-Description-Matching), a stage that leverages two foundation models: SAM2 (Segment Anything in Images and Videos) for segmentation and OpenCLIP (Open Contrastive Language-Image Pretraining) for zero-shot open-vocabulary classification. In the second stage, a novel knowledge distillation mechanism is utilized to distill compact, edge-deployable models from SDM, enhancing both inference speed and perception accuracy. The complete method, termed SDM-D (Segmentation-Description-Matching-Distilling), demonstrates strong performance across various fruit detection tasks object detection, semantic segmentation, and instance segmentation) without manual annotation. It nearly matches the performance of models trained with abundant labels. Notably, SDM-D outperforms open-set detection methods such as Grounding SAM and YOLO-World on all tested fruit detection datasets. Additionally, we introduce MegaFruits, a comprehensive fruit segmentation dataset encompassing over 25,000 images, and all code and datasets are made publicly available at https://github.com/AgRoboticsResearch/SDM-D.git.
comment: 17 pages, 12 figures, conference or other essential info
☆ Fancy123: One Image to High-Quality 3D Mesh Generation via Plug-and-Play Deformation
Generating 3D meshes from a single image is an important but ill-posed task. Existing methods mainly adopt 2D multiview diffusion models to generate intermediate multiview images, and use the Large Reconstruction Model (LRM) to create the final meshes. However, the multiview images exhibit local inconsistencies, and the meshes often lack fidelity to the input image or look blurry. We propose Fancy123, featuring two enhancement modules and an unprojection operation to address the above three issues, respectively. The appearance enhancement module deforms the 2D multiview images to realign misaligned pixels for better multiview consistency. The fidelity enhancement module deforms the 3D mesh to match the input image. The unprojection of the input image and deformed multiview images onto LRM's generated mesh ensures high clarity, discarding LRM's predicted blurry-looking mesh colors. Extensive qualitative and quantitative experiments verify Fancy123's SoTA performance with significant improvement. Also, the two enhancement modules are plug-and-play and work at inference time, allowing seamless integration into various existing single-image-to-3D methods.
comment: Project page: https://github.com/YuQiao0303/Fancy123
☆ Any3DIS: Class-Agnostic 3D Instance Segmentation by 2D Mask Tracking
Existing 3D instance segmentation methods frequently encounter issues with over-segmentation, leading to redundant and inaccurate 3D proposals that complicate downstream tasks. This challenge arises from their unsupervised merging approach, where dense 2D instance masks are lifted across frames into point clouds to form 3D candidate proposals without direct supervision. These candidates are then hierarchically merged based on heuristic criteria, often resulting in numerous redundant segments that fail to combine into precise 3D proposals. To overcome these limitations, we propose a 3D-Aware 2D Mask Tracking module that uses robust 3D priors from a 2D mask segmentation and tracking foundation model (SAM-2) to ensure consistent object masks across video frames. Rather than merging all visible superpoints across views to create a 3D mask, our 3D Mask Optimization module leverages a dynamic programming algorithm to select an optimal set of views, refining the superpoints to produce a final 3D proposal for each object. Our approach achieves comprehensive object coverage within the scene while reducing unnecessary proposals, which could otherwise impair downstream applications. Evaluations on ScanNet200 and ScanNet++ confirm the effectiveness of our method, with improvements across Class-Agnostic, Open-Vocabulary, and Open-Ended 3D Instance Segmentation tasks.
comment: Project page: https://any3dis.github.io/
☆ Event-boosted Deformable 3D Gaussians for Fast Dynamic Scene Reconstruction
3D Gaussian Splatting (3D-GS) enables real-time rendering but struggles with fast motion due to low temporal resolution of RGB cameras. To address this, we introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for fast dynamic scene reconstruction. We observe that threshold modeling for events plays a crucial role in achieving high-quality reconstruction. Therefore, we propose a GS-Threshold Joint Modeling (GTJM) strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling. Moreover, we introduce a Dynamic-Static Decomposition (DSD) strategy that first identifies dynamic areas by exploiting the inability of static Gaussians to represent motions, then applies a buffer-based soft decomposition to separate dynamic and static areas. This strategy accelerates rendering by avoiding unnecessary deformation in static areas, and focuses on dynamic areas to enhance fidelity. Our approach achieves high-fidelity dynamic reconstruction at 156 FPS with a 400$\times$400 resolution on an RTX 3090 GPU.
☆ High-Resolution Be Aware! Improving the Self-Supervised Real-World Super-Resolution
Self-supervised learning is crucial for super-resolution because ground-truth images are usually unavailable for real-world settings. Existing methods derive self-supervision from low-resolution images by creating pseudo-pairs or by enforcing a low-resolution reconstruction objective. These methods struggle with insufficient modeling of real-world degradations and the lack of knowledge about high-resolution imagery, resulting in unnatural super-resolved results. This paper strengthens awareness of the high-resolution image to improve the self-supervised real-world super-resolution. We propose a controller to adjust the degradation modeling based on the quality of super-resolution results. We also introduce a novel feature-alignment regularizer that directly constrains the distribution of super-resolved images. Our method finetunes the off-the-shelf SR models for a target real-world domain. Experiments show that it produces natural super-resolved images with state-of-the-art perceptual performance.
comment: 10 pages, 9 figures
☆ SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis
Despite advances in Large Multi-modal Models, applying them to long and untrimmed video content remains challenging due to limitations in context length and substantial memory overhead. These constraints often lead to significant information loss and reduced relevance in the model responses. With the exponential growth of video data across web platforms, understanding long-form video is crucial for advancing generalized intelligence. In this paper, we introduce SALOVA: Segment-Augmented LOng Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content through targeted retrieval process. We address two main challenges to achieve it: (i) We present the SceneWalk dataset, a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich descriptive context. (ii) We develop robust architectural designs integrating dynamic routing mechanism and spatio-temporal projector to efficiently retrieve and process relevant video segments based on user queries. Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries, thereby improving the contextual relevance of the generated responses. Through extensive experiments, SALOVA demonstrates enhanced capability in processing complex long-form videos, showing significant capability to maintain contextual integrity across extended sequences.
comment: Project page: https://ivy-lvlm.github.io/SALOVA/
☆ U2NeRF: Unsupervised Underwater Image Restoration and Neural Radiance Fields ICLR
Underwater images suffer from colour shifts, low contrast, and haziness due to light absorption, refraction, scattering and restoring these images has warranted much attention. In this work, we present Unsupervised Underwater Neural Radiance Field U2NeRF, a transformer-based architecture that learns to render and restore novel views conditioned on multi-view geometry simultaneously. Due to the absence of supervision, we attempt to implicitly bake restoring capabilities onto the NeRF pipeline and disentangle the predicted color into several components - scene radiance, direct transmission map, backscatter transmission map, and global background light, and when combined reconstruct the underwater image in a self-supervised manner. In addition, we release an Underwater View Synthesis UVS dataset consisting of 12 underwater scenes, containing both synthetically-generated and real-world data. Our experiments demonstrate that when optimized on a single scene, U2NeRF outperforms several baselines by as much LPIPS 11%, UIQM 5%, UCIQE 4% (on average) and showcases improved rendering and restoration capabilities. Code will be made available upon acceptance.
comment: ICLR Tiny Papers 2024. arXiv admin note: text overlap with arXiv:2207.13298
☆ Image Generation Diversity Issues and How to Tame Them
Generative methods now produce outputs nearly indistinguishable from real data but often fail to fully capture the data distribution. Unlike quality issues, diversity limitations in generative models are hard to detect visually, requiring specific metrics for assessment. In this paper, we draw attention to the current lack of diversity in generative models and the inability of common metrics to measure this. We achieve this by framing diversity as an image retrieval problem, where we measure how many real images can be retrieved using synthetic data as queries. This yields the Image Retrieval Score (IRS), an interpretable, hyperparameter-free metric that quantifies the diversity of a generative model's output. IRS requires only a subset of synthetic samples and provides a statistical measure of confidence. Our experiments indicate that current feature extractors commonly used in generative model assessment are inadequate for evaluating diversity effectively. Consequently, we perform an extensive search for the best feature extractors to assess diversity. Evaluation reveals that current diffusion models converge to limited subsets of the real distribution, with no current state-of-the-art models superpassing 77% of the diversity of the training data. To address this limitation, we introduce Diversity-Aware Diffusion Models (DiADM), a novel approach that improves diversity of unconditional diffusion models without loss of image quality. We do this by disentangling diversity from image quality by using a diversity aware module that uses pseudo-unconditional features as input. We provide a Python package offering unified feature extraction and metric computation to further facilitate the evaluation of generative models https://github.com/MischaD/beyondfid.
comment: 17 pages, 6 tables, 12 figures
☆ CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled Dual Interaction
Recently, large efforts have been made to design efficient linear-complexity visual Transformers. However, current linear attention models are generally unsuitable to be deployed in resource-constrained mobile devices, due to suffering from either few efficiency gains or significant accuracy drops. In this paper, we propose a new de\textbf{C}oupled du\textbf{A}l-interactive linea\textbf{R} att\textbf{E}ntion (CARE) mechanism, revealing that features' decoupling and interaction can fully unleash the power of linear attention. We first propose an asymmetrical feature decoupling strategy that asymmetrically decouples the learning process for local inductive bias and long-range dependencies, thereby preserving sufficient local and global information while effectively enhancing the efficiency of models. Then, a dynamic memory unit is employed to maintain critical information along the network pipeline. Moreover, we design a dual interaction module to effectively facilitate interaction between local inductive bias and long-range information as well as among features at different layers. By adopting a decoupled learning way and fully exploiting complementarity across features, our method can achieve both high efficiency and accuracy. Extensive experiments on ImageNet-1K, COCO, and ADE20K datasets demonstrate the effectiveness of our approach, e.g., achieving $78.4/82.1\%$ top-1 accuracy on ImagegNet-1K at the cost of only $0.7/1.9$ GMACs. Codes will be released on \href{..}{github}.
☆ Local and Global Feature Attention Fusion Network for Face Recognition
Recognition of low-quality face images remains a challenge due to invisible or deformation in partial facial regions. For low-quality images dominated by missing partial facial regions, local region similarity contributes more to face recognition (FR). Conversely, in cases dominated by local face deformation, excessive attention to local regions may lead to misjudgments, while global features exhibit better robustness. However, most of the existing FR methods neglect the bias in feature quality of low-quality images introduced by different factors. To address this issue, we propose a Local and Global Feature Attention Fusion (LGAF) network based on feature quality. The network adaptively allocates attention between local and global features according to feature quality and obtains more discriminative and high-quality face features through local and global information complementarity. In addition, to effectively obtain fine-grained information at various scales and increase the separability of facial features in high-dimensional space, we introduce a Multi-Head Multi-Scale Local Feature Extraction (MHMS) module. Experimental results demonstrate that the LGAF achieves the best average performance on $4$ validation sets (CFP-FP, CPLFW, AgeDB, and CALFW), and the performance on TinyFace and SCFace outperforms the state-of-the-art methods (SoTA).
☆ Text-to-Image Synthesis: A Decade Survey
When humans read a specific text, they often visualize the corresponding images, and we hope that computers can do the same. Text-to-image synthesis (T2I), which focuses on generating high-quality images from textual descriptions, has become a significant aspect of Artificial Intelligence Generated Content (AIGC) and a transformative direction in artificial intelligence research. Foundation models play a crucial role in T2I. In this survey, we review over 440 recent works on T2I. We start by briefly introducing how GANs, autoregressive models, and diffusion models have been used for image generation. Building on this foundation, we discuss the development of these models for T2I, focusing on their generative capabilities and diversity when conditioned on text. We also explore cutting-edge research on various aspects of T2I, including performance, controllability, personalized generation, safety concerns, and consistency in content and spatial relationships. Furthermore, we summarize the datasets and evaluation metrics commonly used in T2I research. Finally, we discuss the potential applications of T2I within AIGC, along with the challenges and future research opportunities in this field.
comment: In this survey, we review over 440 recent works on T2I
☆ Sparse patches adversarial attacks via extrapolating point-wise information NeurIPS 24
Sparse and patch adversarial attacks were previously shown to be applicable in realistic settings and are considered a security risk to autonomous systems. Sparse adversarial perturbations constitute a setting in which the adversarial perturbations are limited to affecting a relatively small number of points in the input. Patch adversarial attacks denote the setting where the sparse attacks are limited to a given structure, i.e., sparse patches with a given shape and number. However, previous patch adversarial attacks do not simultaneously optimize multiple patches' locations and perturbations. This work suggests a novel approach for sparse patches adversarial attacks via point-wise trimming dense adversarial perturbations. Our approach enables simultaneous optimization of multiple sparse patches' locations and perturbations for any given number and shape. Moreover, our approach is also applicable for standard sparse adversarial attacks, where we show that it significantly improves the state-of-the-art over multiple extensive settings. A reference implementation of the proposed method and the reported experiments is provided at \url{https://github.com/yanemcovsky/SparsePatches.git}
comment: AdvML-Frontiers 24: The 3nd Workshop on New Frontiers in Adversarial Machine Learning, NeurIPS 24
☆ MVGenMaster: Scaling Multi-View Generation from Any Image via 3D Priors Enhanced Diffusion Model
We introduce MVGenMaster, a multi-view diffusion model enhanced with 3D priors to address versatile Novel View Synthesis (NVS) tasks. MVGenMaster leverages 3D priors that are warped using metric depth and camera poses, significantly enhancing both generalization and 3D consistency in NVS. Our model features a simple yet effective pipeline that can generate up to 100 novel views conditioned on arbitrary reference views and camera poses with a single forward process. Additionally, we have developed a comprehensive large-scale multi-view image dataset comprising up to 1.2 million scenes, equipped with well-aligned metric depth. Moreover, we present several training and model modifications to strengthen the model with scaled-up datasets. Extensive evaluations across in- and out-of-domain benchmarks demonstrate the effectiveness of our proposed method and data formulation. Models and codes will be released at https://github.com/ewrfcas/MVGenMaster/.
comment: Models and codes will be released at https://github.com/ewrfcas/MVGenMaster/
☆ VideoOrion: Tokenizing Object Dynamics in Videos
We present VideoOrion, a Video Large Language Model (Video-LLM) that explicitly captures the key semantic information in videos--the spatial-temporal dynamics of objects throughout the videos. VideoOrion employs expert vision models to extract object dynamics through a detect-segment-track pipeline, encoding them into a set of object tokens by aggregating spatial-temporal object features. Our method addresses the persistent challenge in Video-LLMs of efficiently compressing high-dimensional video data into semantic tokens that are comprehensible to LLMs. Compared to prior methods which resort to downsampling the original video or aggregating visual tokens using resamplers, leading to information loss and entangled semantics, VideoOrion not only offers a more natural and efficient way to derive compact, disentangled semantic representations but also enables explicit object modeling of video content with minimal computational cost. Moreover, the introduced object tokens naturally allow VideoOrion to accomplish video-based referring tasks. Experimental results show that VideoOrion can learn to make good use of the object tokens, and achieves competitive results on both general video question answering and video-based referring benchmarks.
☆ Revisiting Marr in Face: The Building of 2D--2.5D--3D Representations in Deep Neural Networks
David Marr's seminal theory of vision proposes that the human visual system operates through a sequence of three stages, known as the 2D sketch, the 2.5D sketch, and the 3D model. In recent years, Deep Neural Networks (DNN) have been widely thought to have reached a level comparable to human vision. However, the mechanisms by which DNNs accomplish this and whether they adhere to Marr's 2D--2.5D--3D construction theory remain unexplored. In this paper, we delve into the perception task to explore these questions and find evidence supporting Marr's theory. We introduce a graphics probe, a sub-network crafted to reconstruct the original image from the network's intermediate layers. The key to the graphics probe is its flexible architecture that supports image in both 2D and 3D formats, as well as in a transitional state between them. By injecting graphics probes into neural networks, and analyzing their behavior in reconstructing images, we find that DNNs initially encode images as 2D representations in low-level layers, and finally construct 3D representations in high-level layers. Intriguingly, in mid-level layers, DNNs exhibit a hybrid state, building a geometric representation that s sur normals within a narrow depth range, akin to the appearance of a low-relief sculpture. This stage resembles the 2.5D representations, providing a view of how DNNs evolve from 2D to 3D in the perception process. The graphics probe therefore serves as a tool for peering into the mechanisms of DNN, providing empirical support for Marr's theory.
☆ TreeFormer: Single-view Plant Skeleton Estimation via Tree-constrained Graph Generation WACV 2025
Accurate estimation of plant skeletal structure (e.g., branching structure) from images is essential for smart agriculture and plant science. Unlike human skeletons with fixed topology, plant skeleton estimation presents a unique challenge, i.e., estimating arbitrary tree graphs from images. While recent graph generation methods successfully infer thin structures from images, it is challenging to constrain the output graph strictly to a tree structure. To this problem, we present TreeFormer, a plant skeleton estimator via tree-constrained graph generation. Our approach combines learning-based graph generation with traditional graph algorithms to impose the constraints during the training loop. Specifically, our method projects an unconstrained graph onto a minimum spanning tree (MST) during the training loop and incorporates this prior knowledge into the gradient descent optimization by suppressing unwanted feature values. Experiments show that our method accurately estimates target plant skeletal structures for multiple domains: Synthetic tree patterns, real botanical roots, and grapevine branches. Our implementations are available at https://github.com/huntorochi/TreeFormer/.
comment: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2025)
☆ Three Cars Approaching within 100m! Enhancing Distant Geometry by Tri-Axis Voxel Scanning for Camera-based Semantic Scene Completion
Camera-based Semantic Scene Completion (SSC) is gaining attentions in the 3D perception field. However, properties such as perspective and occlusion lead to the underestimation of the geometry in distant regions, posing a critical issue for safety-focused autonomous driving systems. To tackle this, we propose ScanSSC, a novel camera-based SSC model composed of a Scan Module and Scan Loss, both designed to enhance distant scenes by leveraging context from near-viewpoint scenes. The Scan Module uses axis-wise masked attention, where each axis employing a near-to-far cascade masking that enables distant voxels to capture relationships with preceding voxels. In addition, the Scan Loss computes the cross-entropy along each axis between cumulative logits and corresponding class distributions in a near-to-far direction, thereby propagating rich context-aware signals to distant voxels. Leveraging the synergy between these components, ScanSSC achieves state-of-the-art performance, with IoUs of 44.54 and 48.29, and mIoUs of 17.40 and 20.14 on the SemanticKITTI and SSCBench-KITTI-360 benchmarks.
☆ CIA: Controllable Image Augmentation Framework Based on Stable Diffusion
Computer vision tasks such as object detection and segmentation rely on the availability of extensive, accurately annotated datasets. In this work, We present CIA, a modular pipeline, for (1) generating synthetic images for dataset augmentation using Stable Diffusion, (2) filtering out low quality samples using defined quality metrics, (3) forcing the existence of specific patterns in generated images using accurate prompting and ControlNet. In order to show how CIA can be used to search for an optimal augmentation pipeline of training data, we study human object detection in a data constrained scenario, using YOLOv8n on COCO and Flickr30k datasets. We have recorded significant improvement using CIA-generated images, approaching the performances obtained when doubling the amount of real images in the dataset. Our findings suggest that our modular framework can significantly enhance object detection systems, and make it possible for future research to be done on data-constrained scenarios. The framework is available at: github.com/multitel-ai/CIA.
☆ Med-PerSAM: One-Shot Visual Prompt Tuning for Personalized Segment Anything Model in Medical Domain
Leveraging pre-trained models with tailored prompts for in-context learning has proven highly effective in NLP tasks. Building on this success, recent studies have applied a similar approach to the Segment Anything Model (SAM) within a ``one-shot" framework, where only a single reference image and its label are employed. However, these methods face limitations in the medical domain, primarily due to SAM's essential requirement for visual prompts and the over-reliance on pixel similarity for generating them. This dependency may lead to (1) inaccurate prompt generation and (2) clustering of point prompts, resulting in suboptimal outcomes. To address these challenges, we introduce \textbf{Med-PerSAM}, a novel and straightforward one-shot framework designed for the medical domain. Med-PerSAM uses only visual prompt engineering and eliminates the need for additional training of the pretrained SAM or human intervention, owing to our novel automated prompt generation process. By integrating our lightweight warping-based prompt tuning model with SAM, we enable the extraction and iterative refinement of visual prompts, enhancing the performance of the pre-trained SAM. This advancement is particularly meaningful in the medical domain, where creating visual prompts poses notable challenges for individuals lacking medical expertise. Our model outperforms various foundational models and previous SAM-based approaches across diverse 2D medical imaging datasets.
☆ Learning Optimal Lattice Vector Quantizers for End-to-end Neural Image Compression NeurIPS 2024
It is customary to deploy uniform scalar quantization in the end-to-end optimized Neural image compression methods, instead of more powerful vector quantization, due to the high complexity of the latter. Lattice vector quantization (LVQ), on the other hand, presents a compelling alternative, which can exploit inter-feature dependencies more effectively while keeping computational efficiency almost the same as scalar quantization. However, traditional LVQ structures are designed/optimized for uniform source distributions, hence nonadaptive and suboptimal for real source distributions of latent code space for Neural image compression tasks. In this paper, we propose a novel learning method to overcome this weakness by designing the rate-distortion optimal lattice vector quantization (OLVQ) codebooks with respect to the sample statistics of the latent features to be compressed. By being able to better fit the LVQ structures to any given latent sample distribution, the proposed OLVQ method improves the rate-distortion performances of the existing quantization schemes in neural image compression significantly, while retaining the amenability of uniform scalar quantization.
comment: Accepted by NeurIPS 2024
☆ FUN-AD: Fully Unsupervised Learning for Anomaly Detection with Noisy Training Data WACV 2025
While the mainstream research in anomaly detection has mainly followed the one-class classification, practical industrial environments often incur noisy training data due to annotation errors or lack of labels for new or refurbished products. To address these issues, we propose a novel learning-based approach for fully unsupervised anomaly detection with unlabeled and potentially contaminated training data. Our method is motivated by two observations, that i) the pairwise feature distances between the normal samples are on average likely to be smaller than those between the anomaly samples or heterogeneous samples and ii) pairs of features mutually closest to each other are likely to be homogeneous pairs, which hold if the normal data has smaller variance than the anomaly data. Building on the first observation that nearest-neighbor distances can distinguish between confident normal samples and anomalies, we propose a pseudo-labeling strategy using an iteratively reconstructed memory bank (IRMB). The second observation is utilized as a new loss function to promote class-homogeneity between mutually closest pairs thereby reducing the ill-posedness of the task. Experimental results on two public industrial anomaly benchmarks and semantic anomaly examples validate the effectiveness of FUN-AD across different scenarios and anomaly-to-normal ratios. Our code is available at https://github.com/HY-Vision-Lab/FUNAD.
comment: Accepted at WACV 2025. Supplementary material included after references. 17 pages, 7 figures, 14 tables
☆ UNOPose: Unseen Object Pose Estimation with an Unposed RGB-D Reference Image
Unseen object pose estimation methods often rely on CAD models or multiple reference views, making the onboarding stage costly. To simplify reference acquisition, we aim to estimate the unseen object's pose through a single unposed RGB-D reference image. While previous works leverage reference images as pose anchors to limit the range of relative pose, our scenario presents significant challenges since the relative transformation could vary across the entire SE(3) space. Moreover, factors like occlusion, sensor noise, and extreme geometry could result in low viewpoint overlap. To address these challenges, we present a novel approach and benchmark, termed UNOPose, for unseen one-reference-based object pose estimation. Building upon a coarse-to-fine paradigm, UNOPose constructs an SE(3)-invariant reference frame to standardize object representation despite pose and size variations. To alleviate small overlap across viewpoints, we recalibrate the weight of each correspondence based on its predicted likelihood of being within the overlapping region. Evaluated on our proposed benchmark based on the BOP Challenge, UNOPose demonstrates superior performance, significantly outperforming traditional and learning-based methods in the one-reference setting and remaining competitive with CAD-model-based methods. The code and dataset will be available.
comment: 9 pages, 3 figures
☆ ENCLIP: Ensembling and Clustering-Based Contrastive Language-Image Pretraining for Fashion Multimodal Search with Limited Data and Low-Quality Images
Multimodal search has revolutionized the fashion industry, providing a seamless and intuitive way for users to discover and explore fashion items. Based on their preferences, style, or specific attributes, users can search for products by combining text and image information. Text-to-image searches enable users to find visually similar items or describe products using natural language. This paper presents an innovative approach called ENCLIP, for enhancing the performance of the Contrastive Language-Image Pretraining (CLIP) model, specifically in Multimodal Search targeted towards the domain of fashion intelligence. This method focuses on addressing the challenges posed by limited data availability and low-quality images. This paper proposes an algorithm that involves training and ensembling multiple instances of the CLIP model, and leveraging clustering techniques to group similar images together. The experimental findings presented in this study provide evidence of the effectiveness of the methodology. This approach unlocks the potential of CLIP in the domain of fashion intelligence, where data scarcity and image quality issues are prevalent. Overall, the ENCLIP method represents a valuable contribution to the field of fashion intelligence and provides a practical solution for optimizing the CLIP model in scenarios with limited data and low-quality images.
☆ Very Basics of Tensors with Graphical Notations: Unfolding, Calculations, and Decompositions
Tensor network diagram (graphical notation) is a useful tool that graphically represents multiplications between multiple tensors using nodes and edges. Using the graphical notation, complex multiplications between tensors can be described simply and intuitively, and it also helps to understand the essence of tensor products. In fact, most of matrix/tensor products including inner product, outer product, Hadamard product, Kronecker product, and Khatri-Rao product can be written in graphical notation. These matrix/tensor operations are essential building blocks for the use of matrix/tensor decompositions in signal processing and machine learning. The purpose of this lecture note is to learn the very basics of tensors and how to represent them in mathematical symbols and graphical notation. Many papers using tensors omit these detailed definitions and explanations, which can be difficult for the reader. I hope this note will be of help to such readers.
☆ AI-Generated Image Quality Assessment Based on Task-Specific Prompt and Multi-Granularity Similarity
Recently, AI-generated images (AIGIs) created by given prompts (initial prompts) have garnered widespread attention. Nevertheless, due to technical nonproficiency, they often suffer from poor perception quality and Text-to-Image misalignment. Therefore, assessing the perception quality and alignment quality of AIGIs is crucial to improving the generative model's performance. Existing assessment methods overly rely on the initial prompts in the task prompt design and use the same prompts to guide both perceptual and alignment quality evaluation, overlooking the distinctions between the two tasks. To address this limitation, we propose a novel quality assessment method for AIGIs named TSP-MGS, which designs task-specific prompts and measures multi-granularity similarity between AIGIs and the prompts. Specifically, task-specific prompts are first constructed to describe perception and alignment quality degrees separately, and the initial prompt is introduced for detailed quality perception. Then, the coarse-grained similarity between AIGIs and task-specific prompts is calculated, which facilitates holistic quality awareness. In addition, to improve the understanding of AIGI details, the fine-grained similarity between the image and the initial prompt is measured. Finally, precise quality prediction is acquired by integrating the multi-granularity similarities. Experiments on the commonly used AGIQA-1K and AGIQA-3K benchmarks demonstrate the superiority of the proposed TSP-MGS.
☆ Cautious Optimizers: Improving Training with One Line of Code
AdamW has been the default optimizer for transformer pretraining. For many years, our community searches for faster and more stable optimizers with only constraint positive outcomes. In this work, we propose a \textbf{single-line modification in Pytorch} to any momentum-based optimizer, which we rename Cautious Optimizer, e.g. C-AdamW and C-Lion. Our theoretical result shows that this modification preserves Adam's Hamiltonian function and it does not break the convergence guarantee under the Lyapunov analysis. In addition, a whole new family of optimizers is revealed by our theoretical insight. Among them, we pick the simplest one for empirical experiments, showing speed-up on Llama and MAE pretraining up to $1.47\times$. Code is available at https://github.com/kyleliang919/C-Optim
☆ Leverage Task Context for Object Affordance Ranking
Intelligent agents accomplish different tasks by utilizing various objects based on their affordance, but how to select appropriate objects according to task context is not well-explored. Current studies treat objects within the affordance category as equivalent, ignoring that object affordances vary in priority with different task contexts, hindering accurate decision-making in complex environments. To enable agents to develop a deeper understanding of the objects required to perform tasks, we propose to leverage task context for object affordance ranking, i.e., given image of a complex scene and the textual description of the affordance and task context, revealing task-object relationships and clarifying the priority rank of detected objects. To this end, we propose a novel Context-embed Group Ranking Framework with task relation mining module and graph group update module to deeply integrate task context and perform global relative relationship transmission. Due to the lack of such data, we construct the first large-scale task-oriented affordance ranking dataset with 25 common tasks, over 50k images and more than 661k objects. Experimental results demonstrate the feasibility of the task context based affordance learning paradigm and the superiority of our model over state-of-the-art models in the fields of saliency ranking and multimodal object detection. The source code and dataset will be made available to the public.
☆ Boosting 3D Object Generation through PBR Materials SIGGRAPH
Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.
comment: Accepted to SIGGRAPH Asia 2024 Conference Papers
☆ Debiasing Classifiers by Amplifying Bias with Latent Diffusion and Large Language Models
Neural networks struggle with image classification when biases are learned and misleads correlations, affecting their generalization and performance. Previous methods require attribute labels (e.g. background, color) or utilizes Generative Adversarial Networks (GANs) to mitigate biases. We introduce DiffuBias, a novel pipeline for text-to-image generation that enhances classifier robustness by generating bias-conflict samples, without requiring training during the generation phase. Utilizing pretrained diffusion and image captioning models, DiffuBias generates images that challenge the biases of classifiers, using the top-$K$ losses from a biased classifier ($f_B$) to create more representative data samples. This method not only debiases effectively but also boosts classifier generalization capabilities. To the best of our knowledge, DiffuBias is the first approach leveraging a stable diffusion model to generate bias-conflict samples in debiasing tasks. Our comprehensive experimental evaluations demonstrate that DiffuBias achieves state-of-the-art performance on benchmark datasets. We also conduct a comparative analysis of various generative models in terms of carbon emissions and energy consumption to highlight the significance of computational efficiency.
comment: 8 pages + Appendix
☆ Geometry Distributions
Neural representations of 3D data have been widely adopted across various applications, particularly in recent work leveraging coordinate-based networks to model scalar or vector fields. However, these approaches face inherent challenges, such as handling thin structures and non-watertight geometries, which limit their flexibility and accuracy. In contrast, we propose a novel geometric data representation that models geometry as distributions-a powerful representation that makes no assumptions about surface genus, connectivity, or boundary conditions. Our approach uses diffusion models with a novel network architecture to learn surface point distributions, capturing fine-grained geometric details. We evaluate our representation qualitatively and quantitatively across various object types, demonstrating its effectiveness in achieving high geometric fidelity. Additionally, we explore applications using our representation, such as textured mesh representation, neural surface compression, dynamic object modeling, and rendering, highlighting its potential to advance 3D geometric learning.
comment: For the project site, see https://1zb.github.io/GeomDist/
☆ Soft-TransFormers for Continual Learning
Inspired by Well-initialized Lottery Ticket Hypothesis (WLTH), which provides suboptimal fine-tuning solutions, we propose a novel fully fine-tuned continual learning (CL) method referred to as Soft-TransFormers (Soft-TF). Soft-TF sequentially learns and selects an optimal soft-network or subnetwork for each task. During sequential training in CL, Soft-TF jointly optimizes the weights of sparse layers to obtain task-adaptive soft (real-valued) networks or subnetworks (binary masks), while keeping the well-pre-trained layer parameters frozen. In inference, the identified task-adaptive network of Soft-TF masks the parameters of the pre-trained network, mapping to an optimal solution for each task and minimizing Catastrophic Forgetting (CF) - the soft-masking preserves the knowledge of the pre-trained network. Extensive experiments on Vision Transformer (ViT) and CLIP demonstrate the effectiveness of Soft-TF, achieving state-of-the-art performance across various CL scenarios, including Class-Incremental Learning (CIL) and Task-Incremental Learning (TIL), supported by convergence theory.
☆ Language Driven Occupancy Prediction
We introduce LOcc, an effective and generalizable framework for open-vocabulary occupancy (OVO) prediction. Previous approaches typically supervise the networks through coarse voxel-to-text correspondences via image features as intermediates or noisy and sparse correspondences from voxel-based model-view projections. To alleviate the inaccurate supervision, we propose a semantic transitive labeling pipeline to generate dense and finegrained 3D language occupancy ground truth. Our pipeline presents a feasible way to dig into the valuable semantic information of images, transferring text labels from images to LiDAR point clouds and utimately to voxels, to establish precise voxel-to-text correspondences. By replacing the original prediction head of supervised occupancy models with a geometry head for binary occupancy states and a language head for language features, LOcc effectively uses the generated language ground truth to guide the learning of 3D language volume. Through extensive experiments, we demonstrate that our semantic transitive labeling pipeline can produce more accurate pseudo-labeled ground truth, diminishing labor-intensive human annotations. Additionally, we validate LOcc across various architectures, where all models consistently outperform state-ofthe-art zero-shot occupancy prediction approaches on the Occ3D-nuScenes dataset. Notably, even based on the simpler BEVDet model, with an input resolution of 256 * 704,Occ-BEVDet achieves an mIoU of 20.29, surpassing previous approaches that rely on temporal images, higher-resolution inputs, or larger backbone networks. The code for the proposed method is available at https://github.com/pkqbajng/LOcc.
☆ Multi-Granularity Class Prototype Topology Distillation for Class-Incremental Source-Free Unsupervised Domain Adaptation
This paper explores the Class-Incremental Source-Free Unsupervised Domain Adaptation (CI-SFUDA) problem, where the unlabeled target data come incrementally without access to labeled source instances. This problem poses two challenges, the disturbances of similar source-class knowledge to target-class representation learning and the new target knowledge to old ones. To address them, we propose the Multi-Granularity Class Prototype Topology Distillation (GROTO) algorithm, which effectively transfers the source knowledge to the unlabeled class-incremental target domain. Concretely, we design the multi-granularity class prototype self-organization module and prototype topology distillation module. Firstly, the positive classes are mined by modeling two accumulation distributions. Then, we generate reliable pseudo-labels by introducing multi-granularity class prototypes, and use them to promote the positive-class target feature self-organization. Secondly, the positive-class prototypes are leveraged to construct the topological structures of source and target feature spaces. Then, we perform the topology distillation to continually mitigate the interferences of new target knowledge to old ones. Extensive experiments demonstrate that our proposed method achieves state-of-the-art performances on three public datasets.
comment: 10 pages, 6 figures
☆ Scaling Spike-driven Transformer with Efficient Spike Firing Approximation Training
The ambition of brain-inspired Spiking Neural Networks (SNNs) is to become a low-power alternative to traditional Artificial Neural Networks (ANNs). This work addresses two major challenges in realizing this vision: the performance gap between SNNs and ANNs, and the high training costs of SNNs. We identify intrinsic flaws in spiking neurons caused by binary firing mechanisms and propose a Spike Firing Approximation (SFA) method using integer training and spike-driven inference. This optimizes the spike firing pattern of spiking neurons, enhancing efficient training, reducing power consumption, improving performance, enabling easier scaling, and better utilizing neuromorphic chips. We also develop an efficient spike-driven Transformer architecture and a spike-masked autoencoder to prevent performance degradation during SNN scaling. On ImageNet-1k, we achieve state-of-the-art top-1 accuracy of 78.5\%, 79.8\%, 84.0\%, and 86.2\% with models containing 10M, 19M, 83M, and 173M parameters, respectively. For instance, the 10M model outperforms the best existing SNN by 7.2\% on ImageNet, with training time acceleration and inference energy efficiency improved by 4.5$\times$ and 3.9$\times$, respectively. We validate the effectiveness and efficiency of the proposed method across various tasks, including object detection, semantic segmentation, and neuromorphic vision tasks. This work enables SNNs to match ANN performance while maintaining the low-power advantage, marking a significant step towards SNNs as a general visual backbone. Code is available at https://github.com/BICLab/Spike-Driven-Transformer-V3.
☆ UnitedVLN: Generalizable Gaussian Splatting for Continuous Vision-Language Navigation
Vision-and-Language Navigation (VLN), where an agent follows instructions to reach a target destination, has recently seen significant advancements. In contrast to navigation in discrete environments with predefined trajectories, VLN in Continuous Environments (VLN-CE) presents greater challenges, as the agent is free to navigate any unobstructed location and is more vulnerable to visual occlusions or blind spots. Recent approaches have attempted to address this by imagining future environments, either through predicted future visual images or semantic features, rather than relying solely on current observations. However, these RGB-based and feature-based methods lack intuitive appearance-level information or high-level semantic complexity crucial for effective navigation. To overcome these limitations, we introduce a novel, generalizable 3DGS-based pre-training paradigm, called UnitedVLN, which enables agents to better explore future environments by unitedly rendering high-fidelity 360 visual images and semantic features. UnitedVLN employs two key schemes: search-then-query sampling and separate-then-united rendering, which facilitate efficient exploitation of neural primitives, helping to integrate both appearance and semantic information for more robust navigation. Extensive experiments demonstrate that UnitedVLN outperforms state-of-the-art methods on existing VLN-CE benchmarks.
☆ ROADS: Robust Prompt-driven Multi-Class Anomaly Detection under Domain Shift WACV 2025
Recent advancements in anomaly detection have shifted focus towards Multi-class Unified Anomaly Detection (MUAD), offering more scalable and practical alternatives compared to traditional one-class-one-model approaches. However, existing MUAD methods often suffer from inter-class interference and are highly susceptible to domain shifts, leading to substantial performance degradation in real-world applications. In this paper, we propose a novel robust prompt-driven MUAD framework, called ROADS, to address these challenges. ROADS employs a hierarchical class-aware prompt integration mechanism that dynamically encodes class-specific information into our anomaly detector to mitigate interference among anomaly classes. Additionally, ROADS incorporates a domain adapter to enhance robustness against domain shifts by learning domain-invariant representations. Extensive experiments on MVTec-AD and VISA datasets demonstrate that ROADS surpasses state-of-the-art methods in both anomaly detection and localization, with notable improvements in out-of-distribution settings.
comment: Accepted to the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2025)
☆ ZoomEye: Enhancing Multimodal LLMs with Human-Like Zooming Capabilities through Tree-Based Image Exploration
An image, especially with high-resolution, typically consists of numerous visual elements, ranging from dominant large objects to fine-grained detailed objects. When perceiving such images, multimodal large language models~(MLLMs) face limitations due to the restricted input resolution of the pretrained vision encoder and the cluttered, dense context of the image, resulting in a focus on primary objects while easily overlooking detailed ones. In this paper, we propose Zoom Eye, a tree search algorithm designed to navigate the hierarchical and visual nature of images to capture relevant information. Zoom Eye conceptualizes an image as a tree, with each children node representing a zoomed sub-patch of the parent node and the root represents the overall image. Moreover, Zoom Eye is model-agnostic and training-free, so it enables any MLLMs to simulate human zooming actions by searching along the image tree from root to leaf nodes, seeking out pertinent information, and accurately responding to related queries. We experiment on a series of elaborate high-resolution benchmarks and the results demonstrate that Zoom Eye not only consistently improves the performance of a series base MLLMs with large margin~(e.g., LLaVA-v1.5-7B increases by 34.57\% on $V^*$ Bench and 17.88\% on HR-Bench), but also enables small 7B MLLMs to outperform strong large models such as GPT-4o. Our code is available at \href{https://github.com/om-ai-lab/ZoomEye}{https://github.com/om-ai-lab/ZoomEye}.
☆ VisualLens: Personalization through Visual History
We hypothesize that a user's visual history with images reflecting their daily life, offers valuable insights into their interests and preferences, and can be leveraged for personalization. Among the many challenges to achieve this goal, the foremost is the diversity and noises in the visual history, containing images not necessarily related to a recommendation task, not necessarily reflecting the user's interest, or even not necessarily preference-relevant. Existing recommendation systems either rely on task-specific user interaction logs, such as online shopping history for shopping recommendations, or focus on text signals. We propose a novel approach, VisualLens, that extracts, filters, and refines image representations, and leverages these signals for personalization. We created two new benchmarks with task-agnostic visual histories, and show that our method improves over state-of-the-art recommendations by 5-10% on Hit@3, and improves over GPT-4o by 2-5%. Our approach paves the way for personalized recommendations in scenarios where traditional methods fail.
☆ From Dashcam Videos to Driving Simulations: Stress Testing Automated Vehicles against Rare Events
Testing Automated Driving Systems (ADS) in simulation with realistic driving scenarios is important for verifying their performance. However, converting real-world driving videos into simulation scenarios is a significant challenge due to the complexity of interpreting high-dimensional video data and the time-consuming nature of precise manual scenario reconstruction. In this work, we propose a novel framework that automates the conversion of real-world car crash videos into detailed simulation scenarios for ADS testing. Our approach leverages prompt-engineered Video Language Models(VLM) to transform dashcam footage into SCENIC scripts, which define the environment and driving behaviors in the CARLA simulator, enabling the generation of realistic simulation scenarios. Importantly, rather than solely aiming for one-to-one scenario reconstruction, our framework focuses on capturing the essential driving behaviors from the original video while offering flexibility in parameters such as weather or road conditions to facilitate search-based testing. Additionally, we introduce a similarity metric that helps iteratively refine the generated scenario through feedback by comparing key features of driving behaviors between the real and simulated videos. Our preliminary results demonstrate substantial time efficiency, finishing the real-to-sim conversion in minutes with full automation and no human intervention, while maintaining high fidelity to the original driving events.
☆ Style-Pro: Style-Guided Prompt Learning for Generalizable Vision-Language Models WACV 2025
Pre-trained Vision-language (VL) models, such as CLIP, have shown significant generalization ability to downstream tasks, even with minimal fine-tuning. While prompt learning has emerged as an effective strategy to adapt pre-trained VL models for downstream tasks, current approaches frequently encounter severe overfitting to specific downstream data distributions. This overfitting constrains the original behavior of the VL models to generalize to new domains or unseen classes, posing a critical challenge in enhancing the adaptability and generalization of VL models. To address this limitation, we propose Style-Pro, a novel style-guided prompt learning framework that mitigates overfitting and preserves the zero-shot generalization capabilities of CLIP. Style-Pro employs learnable style bases to synthesize diverse distribution shifts, guided by two specialized loss functions that ensure style diversity and content integrity. Then, to minimize discrepancies between unseen domains and the source domain, Style-Pro maps the unseen styles into the known style representation space as a weighted combination of style bases. Moreover, to maintain consistency between the style-shifted prompted model and the original frozen CLIP, Style-Pro introduces consistency constraints to preserve alignment in the learned embeddings, minimizing deviation during adaptation to downstream tasks. Extensive experiments across 11 benchmark datasets demonstrate the effectiveness of Style-Pro, consistently surpassing state-of-the-art methods in various settings, including base-to-new generalization, cross-dataset transfer, and domain generalization.
comment: Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2025)
♻ ☆ Reconstructing Hand-Held Objects in 3D from Images and Videos
Objects manipulated by the hand (i.e., manipulanda) are particularly challenging to reconstruct from Internet videos. Not only does the hand occlude much of the object, but also the object is often only visible in a small number of image pixels. At the same time, two strong anchors emerge in this setting: (1) estimated 3D hands help disambiguate the location and scale of the object, and (2) the set of manipulanda is small relative to all possible objects. With these insights in mind, we present a scalable paradigm for hand-held object reconstruction that builds on recent breakthroughs in large language/vision models and 3D object datasets. Given a monocular RGB video, we aim to reconstruct hand-held object geometry in 3D, over time. In order to obtain the best performing single frame model, we first present MCC-Hand-Object (MCC-HO), which jointly reconstructs hand and object geometry given a single RGB image and inferred 3D hand as inputs. Subsequently, we prompt a text-to-3D generative model using GPT-4(V) to retrieve a 3D object model that matches the object in the image(s); we call this alignment Retrieval-Augmented Reconstruction (RAR). RAR provides unified object geometry across all frames, and the result is rigidly aligned with both the input images and 3D MCC-HO observations in a temporally consistent manner. Experiments demonstrate that our approach achieves state-of-the-art performance on lab and Internet image/video datasets. We make our code and models available on the project website: https://janehwu.github.io/mcc-ho
comment: Project page: https://janehwu.github.io/mcc-ho
♻ ☆ Enhancing Multimodal Medical Image Classification using Cross-Graph Modal Contrastive Learning
The classification of medical images is a pivotal aspect of disease diagnosis, often enhanced by deep learning techniques. However, traditional approaches typically focus on unimodal medical image data, neglecting the integration of diverse non-image patient data. This paper proposes a novel Cross-Graph Modal Contrastive Learning (CGMCL) framework for multimodal medical image classification. The model effectively integrates both image and non-image data by constructing cross-modality graphs and leveraging contrastive learning to align multimodal features in a shared latent space. An inter-modality feature scaling module further optimizes the representation learning process by reducing the gap between heterogeneous modalities. The proposed approach is evaluated on two datasets: a Parkinson's disease (PD) dataset and a public melanoma dataset. Results demonstrate that CGMCL outperforms conventional unimodal methods in accuracy, interpretability, and early disease prediction. Additionally, the method shows superior performance in multi-class melanoma classification. The CGMCL framework provides valuable insights into medical image classification while offering improved disease interpretability and predictive capabilities.
DocPedia: Unleashing the Power of Large Multimodal Model in the Frequency Domain for Versatile Document Understanding
This work presents DocPedia, a novel large multimodal model (LMM) for versatile OCR-free document understanding, capable of parsing images up to 2,560$\times$2,560 resolution. Unlike existing work either struggle with high-resolution documents or give up the large language model thus vision or language ability constrained, our DocPedia directly processes visual input in the frequency domain rather than the pixel space. The unique characteristic enables DocPedia to capture a greater amount of visual and textual information using a limited number of visual tokens. To consistently enhance both perception and comprehension abilities of our model, we develop a dual-stage training strategy and enrich instructions/annotations of all training tasks covering multiple document types. Extensive quantitative and qualitative experiments conducted on various publicly available benchmarks confirm the mutual benefits of jointly learning perception and comprehension tasks. The results provide further evidence of the effectiveness and superior performance of our DocPedia over other methods.
comment: Accepted by Science China Information Sciences (SCIS)
♻ ☆ Word4Per: Zero-shot Composed Person Retrieval
Searching for specific person has great social benefits and security value, and it often involves a combination of visual and textual information. Conventional person retrieval methods, whether image-based or text-based, usually fall short in effectively harnessing both types of information, leading to the loss of accuracy. In this paper, a whole new task called Composed Person Retrieval (CPR) is proposed to jointly utilize both image and text information for target person retrieval. However, the supervised CPR requires very costly manual annotation dataset, while there are currently no available resources. To mitigate this issue, we firstly introduce the Zero-shot Composed Person Retrieval (ZS-CPR), which leverages existing domain-related data to resolve the CPR problem without expensive annotations. Secondly, to learn ZS-CPR model, we propose a two-stage learning framework, Word4Per, where a lightweight Textual Inversion Network (TINet) and a text-based person retrieval model based on fine-tuned Contrastive Language-Image Pre-training (CLIP) network are learned without utilizing any CPR data. Thirdly, a finely annotated Image-Text Composed Person Retrieval (ITCPR) dataset is built as the benchmark to assess the performance of the proposed Word4Per framework. Extensive experiments under both Rank-1 and mAP demonstrate the effectiveness of Word4Per for the ZS-CPR task, surpassing the comparative methods by over 10\%. The code and ITCPR dataset will be publicly available at https://github.com/Delong-liu-bupt/Word4Per.
♻ ☆ Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions. A primary challenge in this task is bridging the substantial representational gap between visual and textual modalities. The prevailing methods map texts and images into unified embedding space for matching, while the intricate semantic correspondences between texts and images are still not effectively constructed. To address this issue, we propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts. Specifically, via fine-tuning the Contrastive Language-Image Pre-training (CLIP) model, a visual-textual dual encoder is firstly constructed, to preliminarily align the image and text features. Secondly, a Text-guided Image Restoration (TIR) auxiliary task is proposed to map abstract textual entities to specific image regions, improving the alignment between local textual and visual embeddings. Additionally, a cross-modal triplet loss is presented to handle hard samples, and further enhance the model's discriminability for minor differences. Moreover, a pruning-based text data augmentation approach is proposed to enhance focus on essential elements in descriptions, thereby avoiding excessive model attention to less significant information. The experimental results show our proposed method outperforms state-of-the-art methods on three popular benchmark datasets, and the code will be made publicly available at https://github.com/Delong-liu-bupt/SEN.
♻ ☆ OminiControl: Minimal and Universal Control for Diffusion Transformer
In this paper, we introduce OminiControl, a highly versatile and parameter-efficient framework that integrates image conditions into pre-trained Diffusion Transformer (DiT) models. At its core, OminiControl leverages a parameter reuse mechanism, enabling the DiT to encode image conditions using itself as a powerful backbone and process them with its flexible multi-modal attention processors. Unlike existing methods, which rely heavily on additional encoder modules with complex architectures, OminiControl (1) effectively and efficiently incorporates injected image conditions with only ~0.1% additional parameters, and (2) addresses a wide range of image conditioning tasks in a unified manner, including subject-driven generation and spatially-aligned conditions such as edges, depth, and more. Remarkably, these capabilities are achieved by training on images generated by the DiT itself, which is particularly beneficial for subject-driven generation. Extensive evaluations demonstrate that OminiControl outperforms existing UNet-based and DiT-adapted models in both subject-driven and spatially-aligned conditional generation. Additionally, we release our training dataset, Subjects200K, a diverse collection of over 200,000 identity-consistent images, along with an efficient data synthesis pipeline to advance research in subject-consistent generation.
♻ ☆ CoHD: A Counting-Aware Hierarchical Decoding Framework for Generalized Referring Expression Segmentation
The newly proposed Generalized Referring Expression Segmentation (GRES) amplifies the formulation of classic RES by involving complex multiple/non-target scenarios. Recent approaches address GRES by directly extending the well-adopted RES frameworks with object-existence identification. However, these approaches tend to encode multi-granularity object information into a single representation, which makes it difficult to precisely represent comprehensive objects of different granularity. Moreover, the simple binary object-existence identification across all referent scenarios fails to specify their inherent differences, incurring ambiguity in object understanding. To tackle the above issues, we propose a \textbf{Co}unting-Aware \textbf{H}ierarchical \textbf{D}ecoding framework (CoHD) for GRES. By decoupling the intricate referring semantics into different granularity with a visual-linguistic hierarchy, and dynamic aggregating it with intra- and inter-selection, CoHD boosts multi-granularity comprehension with the reciprocal benefit of the hierarchical nature. Furthermore, we incorporate the counting ability by embodying multiple/single/non-target scenarios into count- and category-level supervision, facilitating comprehensive object perception. Experimental results on gRefCOCO, Ref-ZOM, R-RefCOCO, and RefCOCO benchmarks demonstrate the effectiveness and rationality of CoHD which outperforms state-of-the-art GRES methods by a remarkable margin. Code is available at \href{https://github.com/RobertLuo1/CoHD}{here}.
♻ ☆ CSA: Data-efficient Mapping of Unimodal Features to Multimodal Features
Multimodal encoders like CLIP excel in tasks such as zero-shot image classification and cross-modal retrieval. However, they require excessive training data. We propose canonical similarity analysis (CSA), which uses two unimodal encoders to replicate multimodal encoders using limited data. CSA maps unimodal features into a multimodal space, using a new similarity score to retain only the multimodal information. CSA only involves the inference of unimodal encoders and a cubic-complexity matrix decomposition, eliminating the need for extensive GPU-based model training. Experiments show that CSA outperforms CLIP while requiring $300,000\times$ fewer multimodal data pairs and $6\times$ fewer unimodal data for ImageNet classification and misinformative news captions detection. CSA surpasses the state-of-the-art method to map unimodal features to multimodal features. We also demonstrate the ability of CSA with modalities beyond image and text, paving the way for future modality pairs with limited paired multimodal data but abundant unpaired unimodal data, such as lidar and text.
♻ ☆ A Review of Mechanistic Models of Event Comprehension
This review examines theoretical assumptions and computational models of event comprehension, tracing the evolution from discourse comprehension theories to contemporary event cognition frameworks. The review covers key discourse comprehension accounts, including Construction-Integration, Event Indexing, Causal Network, and Resonance models, highlighting their contributions to understanding cognitive processes in comprehension. I then discuss contemporary theoretical frameworks of event comprehension, including Event Segmentation Theory (Zacks et al., 2007), the Event Horizon Model (Radvansky & Zacks, 2014), and Hierarchical Generative Framework (Kuperberg, 2021), which emphasize prediction, causality, and multilevel representations in event understanding. Building on these theories, I evaluate five computational models of event comprehension: REPRISE (Butz et al., 2019), Structured Event Memory (SEM; Franklin et al., 2020), the Lu model (Lu et al., 2022), the Gumbsch model (Gumbsch et al., 2022), and the Elman and McRae model (2019). The analysis focuses on their approaches to hierarchical processing, prediction mechanisms, and representation learning. Key themes that emerge include the use of hierarchical structures as inductive biases, the importance of prediction in comprehension, and diverse strategies for learning event dynamics. The review identifies critical areas for future research, including the need for more sophisticated approaches to learning structured representations, integrating episodic memory mechanisms, and developing adaptive updating algorithms for working event models. By synthesizing insights from both theoretical frameworks and computational implementations, this review aims to advance our understanding of human event comprehension and guide future modeling efforts in cognitive science.
♻ ☆ GSE: Group-wise Sparse and Explainable Adversarial Attacks
Sparse adversarial attacks fool deep neural networks (DNNs) through minimal pixel perturbations, often regularized by the $\ell_0$ norm. Recent efforts have replaced this norm with a structural sparsity regularizer, such as the nuclear group norm, to craft group-wise sparse adversarial attacks. The resulting perturbations are thus explainable and hold significant practical relevance, shedding light on an even greater vulnerability of DNNs. However, crafting such attacks poses an optimization challenge, as it involves computing norms for groups of pixels within a non-convex objective. We address this by presenting a two-phase algorithm that generates group-wise sparse attacks within semantically meaningful areas of an image. Initially, we optimize a quasinorm adversarial loss using the $1/2-$quasinorm proximal operator tailored for non-convex programming. Subsequently, the algorithm transitions to a projected Nesterov's accelerated gradient descent with $2-$norm regularization applied to perturbation magnitudes. Rigorous evaluations on CIFAR-10 and ImageNet datasets demonstrate a remarkable increase in group-wise sparsity, e.g., $50.9\%$ on CIFAR-10 and $38.4\%$ on ImageNet (average case, targeted attack). This performance improvement is accompanied by significantly faster computation times, improved explainability, and a $100\%$ attack success rate.
♻ ☆ Enhancing Diagnostic Precision in Gastric Bleeding through Automated Lesion Segmentation: A Deep DuS-KFCM Approach
Timely and precise classification and segmentation of gastric bleeding in endoscopic imagery are pivotal for the rapid diagnosis and intervention of gastric complications, which is critical in life-saving medical procedures. Traditional methods grapple with the challenge posed by the indistinguishable intensity values of bleeding tissues adjacent to other gastric structures. Our study seeks to revolutionize this domain by introducing a novel deep learning model, the Dual Spatial Kernelized Constrained Fuzzy C-Means (Deep DuS-KFCM) clustering algorithm. This Hybrid Neuro-Fuzzy system synergizes Neural Networks with Fuzzy Logic to offer a highly precise and efficient identification of bleeding regions. Implementing a two-fold coarse-to-fine strategy for segmentation, this model initially employs the Spatial Kernelized Fuzzy C-Means (SKFCM) algorithm enhanced with spatial intensity profiles and subsequently harnesses the state-of-the-art DeepLabv3+ with ResNet50 architecture to refine the segmentation output. Through extensive experiments across mainstream gastric bleeding and red spots datasets, our Deep DuS-KFCM model demonstrated unprecedented accuracy rates of 87.95%, coupled with a specificity of 96.33%, outperforming contemporary segmentation methods. The findings underscore the model's robustness against noise and its outstanding segmentation capabilities, particularly for identifying subtle bleeding symptoms, thereby presenting a significant leap forward in medical image processing.
♻ ☆ Learning deep illumination-robust features from multispectral filter array images
Multispectral (MS) snapshot cameras equipped with a MS filter array (MSFA), capture multiple spectral bands in a single shot, resulting in a raw mosaic image where each pixel holds only one channel value. The fully-defined MS image is estimated from the raw one through \textit{demosaicing}, which inevitably introduces spatio-spectral artifacts. Moreover, training on fully-defined MS images can be computationally intensive, particularly with deep neural networks (DNNs), and may result in features lacking discrimination power due to suboptimal learning of spatio-spectral interactions. Furthermore, outdoor MS image acquisition occurs under varying lighting conditions, leading to illumination-dependent features. This paper presents an original approach to learn discriminant and illumination-robust features directly from raw images. It involves: \textit{raw spectral constancy} to mitigate the impact of illumination, \textit{MSFA-preserving} transformations suited for raw image augmentation to train DNNs on diverse raw textures, and \textit{raw-mixing} to capture discriminant spatio-spectral interactions in raw images. Experiments on MS image classification show that our approach outperforms both handcrafted and recent deep learning-based methods, while also requiring significantly less computational effort. The source code is available at https://github.com/AnisAmziane/RawTexture.
♻ ☆ LATUP-Net: A Lightweight 3D Attention U-Net with Parallel Convolutions for Brain Tumor Segmentation
Early-stage 3D brain tumor segmentation from magnetic resonance imaging (MRI) scans is crucial for prompt and effective treatment. However, this process faces the challenge of precise delineation due to the tumors' complex heterogeneity. Moreover, energy sustainability targets and resource limitations, especially in developing countries, require efficient and accessible medical imaging solutions. The proposed architecture, a Lightweight 3D ATtention U-Net with Parallel convolutions, LATUP-Net, addresses these issues. It is specifically designed to reduce computational requirements significantly while maintaining high segmentation performance. By incorporating parallel convolutions, it enhances feature representation by capturing multi-scale information. It further integrates an attention mechanism to refine segmentation through selective feature recalibration. LATUP-Net achieves promising segmentation performance: the average Dice scores for the whole tumor, tumor core, and enhancing tumor on the BraTS 2020 dataset are 88.41%, 83.82%, and 73.67%, and on the BraTS 2021 dataset, they are 90.29%, 89.54%, and 83.92%, respectively. Hausdorff distance metrics further indicate its improved ability to delineate tumor boundaries. With its significantly reduced computational demand using only 3.07M parameters, about 59 times fewer than other state-of-the-art models, and running on a single NVIDIA GeForce RTX3060 12GB GPU, LATUP-Net requires just 15.79 GFLOPs. This makes it a promising solution for real-world clinical applications, particularly in settings with limited resources. Investigations into the model's interpretability, utilizing gradient-weighted class activation mapping and confusion matrices, reveal that while attention mechanisms enhance the segmentation of small regions, their impact is nuanced. Achieving the most [...]. The code is available at https://qyber.black/ca/code-bca.
♻ ☆ Multimodal Foundation Models Exploit Text to Make Medical Image Predictions
Multimodal foundation models have shown compelling but conflicting performance in medical image interpretation. However, the mechanisms by which these models integrate and prioritize different data modalities, including images and text, remain poorly understood. Here, using a diverse collection of 1014 multimodal medical cases, we evaluate the unimodal and multimodal image interpretation abilities of proprietary (GPT-4, Gemini Pro 1.0) and open-source (Llama-3.2-90B, LLaVA-Med-v1.5) multimodal foundational models with and without the use of text descriptions. Across all models, image predictions were largely driven by exploiting text, with accuracy increasing monotonically with the amount of informative text. By contrast, human performance on medical image interpretation did not improve with informative text. Exploitation of text is a double-edged sword; we show that even mild suggestions of an incorrect diagnosis in text diminishes image-based classification, reducing performance dramatically in cases the model could previously answer with images alone. Finally, we conducted a physician evaluation of model performance on long-form medical cases, finding that the provision of images either reduced or had no effect on model performance when text is already highly informative. Our results suggest that multimodal AI models may be useful in medical diagnostic reasoning but that their accuracy is largely driven, for better and worse, by their exploitation of text.
♻ ☆ @Bench: Benchmarking Vision-Language Models for Human-centered Assistive Technology WACV 2025
As Vision-Language Models (VLMs) advance, human-centered Assistive Technologies (ATs) for helping People with Visual Impairments (PVIs) are evolving into generalists, capable of performing multiple tasks simultaneously. However, benchmarking VLMs for ATs remains under-explored. To bridge this gap, we first create a novel AT benchmark (@Bench). Guided by a pre-design user study with PVIs, our benchmark includes the five most crucial vision-language tasks: Panoptic Segmentation, Depth Estimation, Optical Character Recognition (OCR), Image Captioning, and Visual Question Answering (VQA). Besides, we propose a novel AT model (@Model) that addresses all tasks simultaneously and can be expanded to more assistive functions for helping PVIs. Our framework exhibits outstanding performance across tasks by integrating multi-modal information, and it offers PVIs a more comprehensive assistance. Extensive experiments prove the effectiveness and generalizability of our framework.
comment: Accepted by WACV 2025, project page: https://junweizheng93.github.io/publications/ATBench/ATBench.html
♻ ☆ VidComposition: Can MLLMs Analyze Compositions in Compiled Videos?
The advancement of Multimodal Large Language Models (MLLMs) has enabled significant progress in multimodal understanding, expanding their capacity to analyze video content. However, existing evaluation benchmarks for MLLMs primarily focus on abstract video comprehension, lacking a detailed assessment of their ability to understand video compositions, the nuanced interpretation of how visual elements combine and interact within highly compiled video contexts. We introduce VidComposition, a new benchmark specifically designed to evaluate the video composition understanding capabilities of MLLMs using carefully curated compiled videos and cinematic-level annotations. VidComposition includes 982 videos with 1706 multiple-choice questions, covering various compositional aspects such as camera movement, angle, shot size, narrative structure, character actions and emotions, etc. Our comprehensive evaluation of 33 open-source and proprietary MLLMs reveals a significant performance gap between human and model capabilities. This highlights the limitations of current MLLMs in understanding complex, compiled video compositions and offers insights into areas for further improvement. The leaderboard and evaluation code are available at https://yunlong10.github.io/VidComposition/.
♻ ☆ Hyperspectral and multispectral image fusion with arbitrary resolution through self-supervised representations
The fusion of a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) has emerged as an effective technique for achieving HSI super-resolution (SR). Previous studies have mainly concentrated on estimating the posterior distribution of the latent high-resolution hyperspectral image (HR-HSI), leveraging an appropriate image prior and likelihood computed from the discrepancy between the latent HSI and observed images. Low rankness stands out for preserving latent HSI characteristics through matrix factorization among the various priors. However, the primary limitation in previous studies lies in the generalization of a fusion model with fixed resolution scales, which necessitates retraining whenever output resolutions are changed. To overcome this limitation, we propose a novel continuous low-rank factorization (CLoRF) by integrating two neural representations into the matrix factorization, capturing spatial and spectral information, respectively. This approach enables us to harness both the low rankness from the matrix factorization and the continuity from neural representation in a self-supervised manner.Theoretically, we prove the low-rank property and Lipschitz continuity in the proposed continuous low-rank factorization. Experimentally, our method significantly surpasses existing techniques and achieves user-desired resolutions without the need for neural network retraining. Code is available at https://github.com/wangting1907/CLoRF-Fusion.
♻ ☆ A Deep Learning Approach to Predict the Fall [of Price] of Cryptocurrency Long Before its Actual Fall
In modern times, the cryptocurrency market is one of the world's most rapidly rising financial markets. The cryptocurrency market is regarded to be more volatile and illiquid than traditional markets such as equities, foreign exchange, and commodities. The risk of this market creates an uncertain condition among the investors. The purpose of this research is to predict the magnitude of the risk factor of the cryptocurrency market. Risk factor is also called volatility. Our approach will assist people who invest in the cryptocurrency market by overcoming the problems and difficulties they experience. Our approach starts with calculating the risk factor of the cryptocurrency market from the existing parameters. In twenty elements of the cryptocurrency market, the risk factor has been predicted using different machine learning algorithms such as CNN, LSTM, BiLSTM, and GRU. All of the models have been applied to the calculated risk factor parameter. A new model has been developed to predict better than the existing models. Our proposed model gives the highest RMSE value of 1.3229 and the lowest RMSE value of 0.0089. Following our model, it will be easier for investors to trade in complicated and challenging financial assets like bitcoin, Ethereum, dogecoin, etc. Where the other existing models, the highest RMSE was 14.5092, and the lower was 0.02769. So, the proposed model performs much better than models with proper generalization. Using our approach, it will be easier for investors to trade in complicated and challenging financial assets like Bitcoin, Ethereum, and Dogecoin.
comment: 22 pages, 3 figures
♻ ☆ Dark Miner: Defend against undesired generation for text-to-image diffusion models
Text-to-image diffusion models have been demonstrated with undesired generation due to unfiltered large-scale training data, such as sexual images and copyrights, necessitating the erasure of undesired concepts. Most existing methods focus on modifying the generation probabilities conditioned on the texts containing target concepts. However, they fail to guarantee the desired generation of texts unseen in the training phase, especially for the adversarial texts from malicious attacks. In this paper, we analyze the erasure task and point out that existing methods cannot guarantee the minimization of the total probabilities of undesired generation. To tackle this problem, we propose Dark Miner. It entails a recurring three-stage process that comprises mining, verifying, and circumventing. This method greedily mines embeddings with maximum generation probabilities of target concepts and more effectively reduces their generation. In the experiments, we evaluate its performance on the inappropriateness, object, and style concepts. Compared with the previous methods, our method achieves better erasure and defense results, especially under multiple adversarial attacks, while preserving the native generation capability of the models. Our code will be available at https://github.com/RichardSunnyMeng/DarkMiner-offical-codes.
♻ ☆ FakeFormer: Efficient Vulnerability-Driven Transformers for Generalisable Deepfake Detection
Recently, Vision Transformers (ViTs) have achieved unprecedented effectiveness in the general domain of image classification. Nonetheless, these models remain underexplored in the field of deepfake detection, given their lower performance as compared to Convolution Neural Networks (CNNs) in that specific context. In this paper, we start by investigating why plain ViT architectures exhibit a suboptimal performance when dealing with the detection of facial forgeries. Our analysis reveals that, as compared to CNNs, ViT struggles to model localized forgery artifacts that typically characterize deepfakes. Based on this observation, we propose a deepfake detection framework called FakeFormer, which extends ViTs to enforce the extraction of subtle inconsistency-prone information. For that purpose, an explicit attention learning guided by artifact-vulnerable patches and tailored to ViTs is introduced. Extensive experiments are conducted on diverse well-known datasets, including FF++, Celeb-DF, WildDeepfake, DFD, DFDCP, and DFDC. The results show that FakeFormer outperforms the state-of-the-art in terms of generalization and computational cost, without the need for large-scale training datasets. The code is available at \url{https://github.com/10Ring/FakeFormer}.
♻ ☆ VQA$^2$: Visual Question Answering for Video Quality Assessment
The advent and proliferation of large multi-modal models (LMMs) have introduced new paradigms to computer vision, transforming various tasks into a unified visual question answering framework. Video Quality Assessment (VQA), a classic field in low-level visual perception, focused initially on quantitative video quality scoring. However, driven by advances in LMMs, it is now progressing toward more holistic visual quality understanding tasks. Recent studies in the image domain have demonstrated that Visual Question Answering (VQA) can markedly enhance low-level visual quality evaluation. Nevertheless, related work has not been explored in the video domain, leaving substantial room for improvement. To address this gap, we introduce the VQA2 Instruction Dataset - the first visual question answering instruction dataset that focuses on video quality assessment. This dataset consists of 3 subsets and covers various video types, containing 157,755 instruction question-answer pairs. Then, leveraging this foundation, we present the VQA2 series models. The VQA2 series models interleave visual and motion tokens to enhance the perception of spatial-temporal quality details in videos. We conduct extensive experiments on video quality scoring and understanding tasks, and results demonstrate that the VQA2series models achieve excellent performance in both tasks. Notably, our final model, the VQA2-Assistant, exceeds the renowned GPT-4o in visual quality understanding tasks while maintaining strong competitiveness in quality scoring tasks. Our work provides a foundation and feasible approach for integrating low-level video quality assessment and understanding with LMMs.
comment: 23 pages 12 figures
♻ ☆ Visual Riddles: a Commonsense and World Knowledge Challenge for Large Vision and Language Models
Imagine observing someone scratching their arm; to understand why, additional context would be necessary. However, spotting a mosquito nearby would immediately offer a likely explanation for the person's discomfort, thereby alleviating the need for further information. This example illustrates how subtle visual cues can challenge our cognitive skills and demonstrates the complexity of interpreting visual scenarios. To study these skills, we present Visual Riddles, a benchmark aimed to test vision and language models on visual riddles requiring commonsense and world knowledge. The benchmark comprises 400 visual riddles, each featuring a unique image created by a variety of text-to-image models, question, ground-truth answer, textual hint, and attribution. Human evaluation reveals that existing models lag significantly behind human performance, which is at 82% accuracy, with Gemini-Pro-1.5 leading with 40% accuracy. Our benchmark comes with automatic evaluation tasks to make assessment scalable. These findings underscore the potential of Visual Riddles as a valuable resource for enhancing vision and language models' capabilities in interpreting complex visual scenarios.
comment: https://visual-riddles.github.io/
♻ ☆ Multi-Scale Direction-Aware Network for Infrared Small Target Detection
Infrared small target detection faces the problem that it is difficult to effectively separate the background and the target. Existing deep learning-based methods focus on appearance features and ignore high-frequency directional features. Therefore, we propose a multi-scale direction-aware network (MSDA-Net), which is the first attempt to integrate the high-frequency directional features of infrared small targets as domain prior knowledge into neural networks. Specifically, an innovative multi-directional feature awareness (MDFA) module is constructed, which fully utilizes the prior knowledge of targets and emphasizes the focus on high-frequency directional features. On this basis, combined with the multi-scale local relation learning (MLRL) module, a multi-scale direction-aware (MSDA) module is further constructed. The MSDA module promotes the full extraction of local relations at different scales and the full perception of key features in different directions. Meanwhile, a high-frequency direction injection (HFDI) module without training parameters is constructed to inject the high-frequency directional information of the original image into the network. This helps guide the network to pay attention to detailed information such as target edges and shapes. In addition, we propose a feature aggregation (FA) structure that aggregates multi-level features to solve the problem of small targets disappearing in deep feature maps. Furthermore, a lightweight feature alignment fusion (FAF) module is constructed, which can effectively alleviate the pixel offset existing in multi-level feature map fusion. Extensive experimental results show that our MSDA-Net achieves state-of-the-art (SOTA) results on the public NUDT-SIRST, SIRST and IRSTD-1k datasets.
♻ ☆ MMDS: A Multimodal Medical Diagnosis System Integrating Image Analysis and Knowledge-based Departmental Consultation
We present MMDS, a system capable of recognizing medical images and patient facial details, and providing professional medical diagnoses. The system consists of two core components:The first component is the analysis of medical images and videos. We trained a specialized multimodal medical model capable of interpreting medical images and accurately analyzing patients' facial emotions and facial paralysis conditions. The model achieved an accuracy of 72.59% on the FER2013 facial emotion recognition dataset, with a 91.1% accuracy in recognizing the "happy" emotion. In facial paralysis recognition, the model reached an accuracy of 92%, which is 30% higher than that of GPT-4o. Based on this model, we developed a parser for analyzing facial movement videos of patients with facial paralysis, achieving precise grading of the paralysis severity. In tests on 30 videos of facial paralysis patients, the system demonstrated a grading accuracy of 83.3%.The second component is the generation of professional medical responses. We employed a large language model, integrated with a medical knowledge base, to generate professional diagnoses based on the analysis of medical images or videos. The core innovation lies in our development of a department-specific knowledge base routing management mechanism, in which the large language model categorizes data by medical departments and, during the retrieval process, determines the appropriate knowledge base to query. This significantly improves retrieval accuracy in the RAG (retrieval-augmented generation) process.
♻ ☆ Cutting Voxel Projector a New Approach to Construct 3D Cone Beam CT Operator
In this paper, we introduce a novel class of projectors for 3D cone beam tomographic reconstruction. Analytical formulas are derived to compute the relationship between the volume of a voxel projected onto a detector pixel and its contribution to the line integral of attenuation recorded by that pixel. Based on these formulas, we construct a near-exact projector and backprojector, particularly suited for algebraic reconstruction techniques and hierarchical reconstruction approaches with nonuniform voxel grids. Unlike traditional projectors, which assume a uniform grid with fixed voxel sizes, our method enables local refinement of voxels, allowing for adaptive grid resolution and improved reconstruction quality in regions of interest. We have implemented this cutting voxel projector along with a relaxed, speed-optimized version and compared them to two established projectors: a ray-tracing projector based on Siddon's algorithm and a TT footprint projector. Our results demonstrate that the cutting voxel projector achieves higher accuracy than the TT projector, especially for large cone beam angles. Furthermore, the relaxed version of the cutting voxel projector offers a significant speed advantage over current footprint projector implementations, while maintaining comparable accuracy. In contrast, Siddon's algorithm, when achieving similar accuracy, is considerably slower than the cutting voxel projector. All algorithms are implemented in an open-source framework for algebraic reconstruction using OpenCL and C++, optimized for efficient GPU computation. GitHub repository of the project https://github.com/kulvait/KCT_cbct.
comment: 18 pages, 4 figures
♻ ☆ SADA: Semantic adversarial unsupervised domain adaptation for Temporal Action Localization
Temporal Action Localization (TAL) is a complex task that poses relevant challenges, particularly when attempting to generalize on new -- unseen -- domains in real-world applications. These scenarios, despite realistic, are often neglected in the literature, exposing these solutions to important performance degradation. In this work, we tackle this issue by introducing, for the first time, an approach for Unsupervised Domain Adaptation (UDA) in sparse TAL, which we refer to as Semantic Adversarial unsupervised Domain Adaptation (SADA). Our contributions are threefold: (1) we pioneer the development of a domain adaptation model that operates on realistic sparse action detection benchmarks; (2) we tackle the limitations of global-distribution alignment techniques by introducing a novel adversarial loss that is sensitive to local class distributions, ensuring finer-grained adaptation; and (3) we present a novel set of benchmarks based on EpicKitchens100 and CharadesEgo, that evaluate multiple domain shifts in a comprehensive manner. Our experiments indicate that SADA improves the adaptation across domains when compared to fully supervised state-of-the-art and alternative UDA methods, attaining a performance boost of up to 6.14% mAP.
♻ ☆ Intelligent Anomaly Detection for Lane Rendering Using Transformer with Self-Supervised Pre-Training and Customized Fine-Tuning
The burgeoning navigation services using digital maps provide great convenience to drivers. Nevertheless, the presence of anomalies in lane rendering map images occasionally introduces potential hazards, as such anomalies can be misleading to human drivers and consequently contribute to unsafe driving conditions. In response to this concern and to accurately and effectively detect the anomalies, this paper transforms lane rendering image anomaly detection into a classification problem and proposes a four-phase pipeline consisting of data pre-processing, self-supervised pre-training with the masked image modeling (MiM) method, customized fine-tuning using cross-entropy based loss with label smoothing, and post-processing to tackle it leveraging state-of-the-art deep learning techniques, especially those involving Transformer models. Various experiments verify the effectiveness of the proposed pipeline. Results indicate that the proposed pipeline exhibits superior performance in lane rendering image anomaly detection, and notably, the self-supervised pre-training with MiM can greatly enhance the detection accuracy while significantly reducing the total training time. For instance, employing the Swin Transformer with Uniform Masking as self-supervised pretraining (Swin-Trans-UM) yielded a heightened accuracy at 94.77% and an improved Area Under The Curve (AUC) score of 0.9743 compared with the pure Swin Transformer without pre-training (Swin-Trans) with an accuracy of 94.01% and an AUC of 0.9498. The fine-tuning epochs were dramatically reduced to 41 from the original 280. In conclusion, the proposed pipeline, with its incorporation of self-supervised pre-training using MiM and other advanced deep learning techniques, emerges as a robust solution for enhancing the accuracy and efficiency of lane rendering image anomaly detection in digital navigation systems.
comment: 25 pages, 7 figures, accepted by the 103rd Transportation Research Board (TRB) Annual Meeting, under review by Transportation Research Record: Journal of the Transportation Research Board
♻ ☆ LaVida Drive: Vision-Text Interaction VLM for Autonomous Driving with Token Selection, Recovery and Enhancement
Recent advancements in Visual Language Models (VLMs) have made them crucial for visual question answering (VQA) in autonomous driving, enabling natural human-vehicle interactions. However, existing methods often struggle in dynamic driving environments, as they usually focus on static images or videos and rely on downsampling to manage computational costs. This results in the loss of critical details and the difficulty in effectively integrating spatial and temporal information, undermining fine-grained perception and temporal coherence essential for effective decision-making. To tackle these challenges, we introduce LaVida Drive, a novel and efficient VQA framework for autonomous driving. LaVida Drive seamlessly integrates temporal data while maintaining high-resolution inputs for detailed visual perception. It optimizes spatial processing by retaining high-resolution data for intricate details and using lower-resolution inputs for temporal analysis to focus on motion-related features, thereby boosting computational efficiency. The core of LaVida Drive consists of two modules: the \textit{Query-aware Token Selection} module and the \textit{Spatial-Temporal Token Recovery and Enhancement} module. The former dynamically selects the most relevant visual tokens based on semantic alignment with the input query, reducing the token count from high-resolution spatial input. The latter ensures smooth and coherent interactions between spatial and temporal information, preserving contextual continuity across frames. Extensive experiments on various autonomous driving question-answering benchmarks show that LaVida Drive significantly reduces visual tokens, enhances efficiency, and improves overall performance.
♻ ☆ Long-Tailed Out-of-Distribution Detection via Normalized Outlier Distribution Adaptation NeurIPS2024
One key challenge in Out-of-Distribution (OOD) detection is the absence of ground-truth OOD samples during training. One principled approach to address this issue is to use samples from external datasets as outliers (i.e., pseudo OOD samples) to train OOD detectors. However, we find empirically that the outlier samples often present a distribution shift compared to the true OOD samples, especially in Long-Tailed Recognition (LTR) scenarios, where ID classes are heavily imbalanced, \ie, the true OOD samples exhibit very different probability distribution to the head and tailed ID classes from the outliers. In this work, we propose a novel approach, namely normalized outlier distribution adaptation (AdaptOD), to tackle this distribution shift problem. One of its key components is dynamic outlier distribution adaptation that effectively adapts a vanilla outlier distribution based on the outlier samples to the true OOD distribution by utilizing the OOD knowledge in the predicted OOD samples during inference. Further, to obtain a more reliable set of predicted OOD samples on long-tailed ID data, a novel dual-normalized energy loss is introduced in AdaptOD, which leverages class- and sample-wise normalized energy to enforce a more balanced prediction energy on imbalanced ID samples. This helps avoid bias toward the head samples and learn a substantially better vanilla outlier distribution than existing energy losses during training. It also eliminates the need of manually tuning the sensitive margin hyperparameters in energy losses. Empirical results on three popular benchmarks for OOD detection in LTR show the superior performance of AdaptOD over state-of-the-art methods. Code is available at https://github.com/mala-lab/AdaptOD.
comment: NeurIPS2024
♻ ☆ Trap-MID: Trapdoor-based Defense against Model Inversion Attacks NeurIPS
Model Inversion (MI) attacks pose a significant threat to the privacy of Deep Neural Networks by recovering training data distribution from well-trained models. While existing defenses often rely on regularization techniques to reduce information leakage, they remain vulnerable to recent attacks. In this paper, we propose the Trapdoor-based Model Inversion Defense (Trap-MID) to mislead MI attacks. A trapdoor is integrated into the model to predict a specific label when the input is injected with the corresponding trigger. Consequently, this trapdoor information serves as the "shortcut" for MI attacks, leading them to extract trapdoor triggers rather than private data. We provide theoretical insights into the impacts of trapdoor's effectiveness and naturalness on deceiving MI attacks. In addition, empirical experiments demonstrate the state-of-the-art defense performance of Trap-MID against various MI attacks without the requirements for extra data or large computational overhead. Our source code is publicly available at https://github.com/ntuaislab/Trap-MID.
comment: Accepted by Neural Information Processing Systems (NeurIPS) 2024
♻ ☆ NexusSplats: Efficient 3D Gaussian Splatting in the Wild
While 3D Gaussian Splatting (3DGS) has recently demonstrated remarkable rendering quality and efficiency in 3D scene reconstruction, it struggles with varying lighting conditions and incidental occlusions in real-world scenarios. To accommodate varying lighting conditions, existing 3DGS extensions apply color mapping to the massive Gaussian primitives with individually optimized appearance embeddings. To handle occlusions, they predict pixel-wise uncertainties via 2D image features for occlusion capture. Nevertheless, such massive color mapping and pixel-wise uncertainty prediction strategies suffer from not only additional computational costs but also coarse-grained lighting and occlusion handling. In this work, we propose a nexus kernel-driven approach, termed NexusSplats, for efficient and finer 3D scene reconstruction under complex lighting and occlusion conditions. In particular, NexusSplats leverages a novel light decoupling strategy where appearance embeddings are optimized based on nexus kernels instead of massive Gaussian primitives, thus accelerating reconstruction speeds while ensuring local color consistency for finer textures. Additionally, a Gaussian-wise uncertainty mechanism is developed, aligning 3D structures with 2D image features for fine-grained occlusion handling. Experimental results demonstrate that NexusSplats achieves state-of-the-art rendering quality while reducing reconstruction time by up to 70.4% compared to the current best in quality.
comment: Project page: https://nexus-splats.github.io/
♻ ☆ FTII-Bench: A Comprehensive Multimodal Benchmark for Flow Text with Image Insertion
Benefiting from the revolutionary advances in large language models (LLMs) and foundational vision models, large vision-language models (LVLMs) have also made significant progress. However, current benchmarks focus on tasks that evaluating only a single aspect of LVLM capabilities (e.g., recognition, detection, understanding). These tasks fail to fully demonstrate LVLMs' potential in complex application scenarios. To comprehensively assess the performance of existing LVLMs, we propose a more challenging task called the Flow Text with Image Insertion task (FTII). This task requires LVLMs to simultaneously possess outstanding abilities in image comprehension, instruction understanding, and long-text interpretation. Specifically, given several text paragraphs and a set of candidate images, as the text paragraphs accumulate, the LVLMs are required to select the most suitable image from the candidates to insert after the corresponding paragraph. Constructing a benchmark for such a task is highly challenging, particularly in determining the sequence of flowing text and images. To address this challenge, we turn to professional news reports, which naturally contain a gold standard for image-text sequences. Based on this, we introduce the Flow Text with Image Insertion Benchmark (FTII-Bench), which includes 318 high-quality Chinese image-text news articles and 307 high-quality English image-text news articles, covering 10 different news domains. Using these 625 high-quality articles, we construct problems of two different types with multiple levels of difficulty. Furthermore, we establish two different evaluation pipelines based on the CLIP model and existing LVLMs. We evaluate 9 open-source and 2 closed-source LVLMs as well as 2 CLIP-based models. Results indicate that even the most advanced models (e.g., GPT-4o) face significant challenges when tackling the FTII task.
comment: Work in progress. 9 pages, 3 figures
♻ ☆ Autoassociative Learning of Structural Representations for Modeling and Classification in Medical Imaging
Deep learning architectures based on convolutional neural networks tend to rely on continuous, smooth features. While this characteristics provides significant robustness and proves useful in many real-world tasks, it is strikingly incompatible with the physical characteristic of the world, which, at the scale in which humans operate, comprises crisp objects, typically representing well-defined categories. This study proposes a class of neurosymbolic systems that learn by reconstructing the observed images in terms of visual primitives and are thus forced to form high-level, structural explanations of them. When applied to the task of diagnosing abnormalities in histological imaging, the method proved superior to a conventional deep learning architecture in terms of classification accuracy, while being more transparent.
comment: 16 pages, 9 figures
♻ ☆ Minority-Focused Text-to-Image Generation via Prompt Optimization
We investigate the generation of minority samples using pretrained text-to-image (T2I) latent diffusion models. Minority instances, in the context of T2I generation, can be defined as ones living on low-density regions of text-conditional data distributions. They are valuable for various applications of modern T2I generators, such as data augmentation and creative AI. Unfortunately, existing pretrained T2I diffusion models primarily focus on high-density regions, largely due to the influence of guided samplers (like CFG) that are essential for producing high-quality generations. To address this, we present a novel framework to counter the high-density-focus of T2I diffusion models. Specifically, we first develop an online prompt optimization framework that can encourage the emergence of desired properties during inference while preserving semantic contents of user-provided prompts. We subsequently tailor this generic prompt optimizer into a specialized solver that promotes the generation of minority features by incorporating a carefully-crafted likelihood objective. Our comprehensive experiments, conducted across various types of T2I models, demonstrate that our approach significantly enhances the capability to produce high-quality minority instances compared to existing samplers.
comment: 20 pages, 9 figures
♻ ☆ Gazing Into Missteps: Leveraging Eye-Gaze for Unsupervised Mistake Detection in Egocentric Videos of Skilled Human Activities
We address the challenge of unsupervised mistake detection in egocentric video of skilled human activities through the analysis of gaze signals. While traditional methods rely on manually labeled mistakes, our approach does not require mistake annotations, hence overcoming the need of domain-specific labeled data. Based on the observation that eye movements closely follow object manipulation activities, we assess to what extent eye-gaze signals can support mistake detection, proposing to identify deviations in attention patterns measured through a gaze tracker with respect to those estimated by a gaze prediction model. Since predicting gaze in video is characterized by high uncertainty, we propose a novel gaze completion task, where eye fixations are predicted from visual observations and partial gaze trajectories, and contribute a novel gaze completion approach which explicitly models correlations between gaze information and local visual tokens. Inconsistencies between predicted and observed gaze trajectories act as an indicator to identify mistakes. Experiments highlight the effectiveness of the proposed approach in different settings, with relative gains up to +14%, +11%, and +5% in EPIC-Tent, HoloAssist and IndustReal respectively, remarkably matching results of supervised approaches without seeing any labels. We further show that gaze-based analysis is particularly useful in the presence of skilled actions, low action execution confidence, and actions requiring hand-eye coordination and object manipulation skills. Our method is ranked first on the HoloAssist Mistake Detection challenge.
♻ ☆ GaussianDiffusion: 3D Gaussian Splatting for Denoising Diffusion Probabilistic Models with Structured Noise
Text-to-3D, known for its efficient generation methods and expansive creative potential, has garnered significant attention in the AIGC domain. However, the pixel-wise rendering of NeRF and its ray marching light sampling constrain the rendering speed, impacting its utility in downstream industrial applications. Gaussian splatting has recently shown a trend of replacing the traditional pointwise sampling technique commonly used in NeRF-based methodologies, and it is changing various aspects of 3D reconstruction. This paper introduces a novel text to 3D content generation framework based on Gaussian splatting and produces more realistic renderings. The challenge of achieving multi-view consistency in 3D generation significantly impedes modeling complexity and accuracy. Taking inspiration from SJC, we explore employing multi-view noise distributions to perturb images generated by 3D Gaussian splatting, aiming to rectify inconsistencies in multi-view geometry. We ingeniously devise an efficient method to generate noise that produces Gaussian noise from diverse viewpoints, all originating from a shared noise source. Furthermore, vanilla 3D Gaussian-based generation tends to trap models in local minima, causing artifacts like floaters, burrs, or proliferative elements. To mitigate these issues, we propose the variational Gaussian splatting technique to enhance the quality and stability of 3D appearance. To our knowledge, our approach represents the first comprehensive utilization of Gaussian splatting across the entire spectrum of 3D content generation processes.
♻ ☆ Towards the Dynamics of a DNN Learning Symbolic Interactions
This study proves the two-phase dynamics of a deep neural network (DNN) learning interactions. Despite the long disappointing view of the faithfulness of post-hoc explanation of a DNN, a series of theorems have been proven in recent years to show that for a given input sample, a small set of interactions between input variables can be considered as primitive inference patterns that faithfully represent a DNN's detailed inference logic on that sample. Particularly, Zhang et al. have observed that various DNNs all learn interactions of different complexities in two distinct phases, and this two-phase dynamics well explains how a DNN changes from under-fitting to over-fitting. Therefore, in this study, we mathematically prove the two-phase dynamics of interactions, providing a theoretical mechanism for how the generalization power of a DNN changes during the training process. Experiments show that our theory well predicts the real dynamics of interactions on different DNNs trained for various tasks.
♻ ☆ Semi-supervised Underwater Image Enhancement Using A Physics-Aware Triple-Stream Network
Underwater images normally suffer from degradation due to the transmission medium of water bodies. Both traditional prior-based approaches and deep learning-based methods have been used to address this problem. However, the inflexible assumption of the former often impairs their effectiveness in handling diverse underwater scenes, while the generalization of the latter to unseen images is usually weakened by insufficient data. In this study, we leverage both the physics-based Image Formation Model (IFM) and deep learning techniques for Underwater Image Enhancement (UIE). To this end, we propose a novel Physics-Aware Triple-Stream Underwater Image Enhancement Network, i.e., PATS-UIENet, which comprises a Direct Signal Transmission Estimation Steam (D-Stream), a Backscatter Signal Transmission Estimation Steam (B-Stream) and an Ambient Light Estimation Stream (A-Stream). This network fulfills the UIE task by explicitly estimating the degradation parameters of a revised IFM. We also adopt an IFM-inspired semi-supervised learning framework, which exploits both the labeled and unlabeled images, to address the issue of insufficient data. To our knowledge, such a physics-aware deep network and the IFM-inspired semi-supervised learning framework have not been used for the UIE task before. Our method performs better than, or at least comparably to, sixteen baselines across six testing sets in the degradation estimation and UIE tasks. These promising results should be due to the fact that the proposed method can not only model the degradation but also learn the characteristics of diverse underwater scenes.
comment: 13 pages, 10 figures
♻ ☆ Increasing the scalability of graph convolution for FPGA-implemented event-based vision
Event cameras are becoming increasingly popular as an alternative to traditional frame-based vision sensors, especially in mobile robotics. Taking full advantage of their high temporal resolution, high dynamic range, low power consumption and sparsity of event data, which only reflects changes in the observed scene, requires both an efficient algorithm and a specialised hardware platform. A recent trend involves using Graph Convolutional Neural Networks (GCNNs) implemented on a heterogeneous SoC FPGA. In this paper we focus on optimising hardware modules for graph convolution to allow flexible selection of the FPGA resource (BlockRAM, DSP and LUT) for their implementation. We propose a ''two-step convolution'' approach that utilises additional BRAM buffers in order to reduce up to 94% of LUT usage for multiplications. This method significantly improves the scalability of GCNNs, enabling the deployment of models with more layers, larger graphs sizes and their application for more dynamic scenarios.
comment: Accepted for the PhD forum during FPT 2024 (International Conference on Field Programmable Technology), 10-12 December 2024, Sydney, Australia
♻ ☆ R2I-rPPG: A Robust Region of Interest Selection Method for Remote Photoplethysmography to Extract Heart Rate
The COVID-19 pandemic has underscored the need for low-cost, scalable approaches to measuring contactless vital signs, either during initial triage at a healthcare facility or virtual telemedicine visits. Remote photoplethysmography (rPPG) can accurately estimate heart rate (HR) when applied to close-up videos of healthy volunteers in well-lit laboratory settings. However, results from such highly optimized laboratory studies may not be readily translated to healthcare settings. One significant barrier to the practical application of rPPG in health care is the accurate localization of the region of interest (ROI). Clinical or telemedicine visits may involve sub-optimal lighting, movement artifacts, variable camera angle, and subject distance. This paper presents an rPPG ROI selection method based on 3D facial landmarks and patient head yaw angle. We then demonstrate the robustness of this ROI selection method when coupled to the Plane-Orthogonal-to-Skin (POS) rPPG method when applied to videos of patients presenting to an Emergency Department for respiratory complaints. Our results demonstrate the effectiveness of our proposed approach in improving the accuracy and robustness of rPPG in a challenging clinical environment.
comment: preprint
♻ ☆ RevSAM2: Prompt SAM2 for Medical Image Segmentation via Reverse-Propagation without Fine-tuning
The Segment Anything Model 2 (SAM2) has recently demonstrated exceptional performance in zero-shot prompt segmentation for natural images and videos. However, when the propagation mechanism of SAM2 is applied to medical images, it often results in spatial inconsistencies, leading to significantly different segmentation outcomes for very similar images. In this paper, we introduce RevSAM2, a simple yet effective self-correction framework that enables SAM2 to achieve superior performance in unseen 3D medical image segmentation tasks without the need for fine-tuning. Specifically, to segment a 3D query volume using a limited number of support image-label pairs that define a new segmentation task, we propose reverse propagation strategy as a query information selection mechanism. Instead of simply maintaining a first-in-first-out (FIFO) queue of memories to predict query slices sequentially, reverse propagation selects high-quality query information by leveraging support images to evaluate the quality of each predicted query slice mask. The selected high-quality masks are then used as prompts to propagate across the entire query volume, thereby enhancing generalization to unseen tasks. Notably, we are the first to explore the potential of SAM2 in label-efficient medical image segmentation without fine-tuning. Compared to fine-tuning on large labeled datasets, the label-efficient scenario provides a cost-effective alternative for medical segmentation tasks, particularly for rare diseases or when dealing with unseen classes. Experiments on four public datasets demonstrate the superiority of RevSAM2 in scenarios with limited labels, surpassing state-of-the-arts by 12.18% in Dice. The code will be released.
♻ ☆ DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving
Current end-to-end autonomous driving methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized in a planning-oriented spirit with a fully differentiable framework, existing end-to-end driving systems without ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, owing to the rasterized scene representation learning and redundant information transmission. In this paper, we revisit the human driving behavior and propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving. Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection, tracking and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. Besides, both position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thus facilitating the training stability and convergence of the whole framework. Extensive experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
♻ ☆ Octavius: Mitigating Task Interference in MLLMs via LoRA-MoE ICLR 2024
Recent studies have demonstrated Large Language Models (LLMs) can extend their zero-shot generalization capabilities to multimodal learning through instruction tuning. As more modalities and downstream tasks are introduced, negative conflicts and interference may have a worse impact on performance. While this phenomenon has been overlooked in previous work, we propose a novel and extensible framework, called Octavius, for comprehensive studies and experimentation on multimodal learning with Multimodal Large Language Models (MLLMs). Specifically, we combine the well-known Mixture-of-Experts (MoE) and one of the representative PEFT techniques, i.e., LoRA, designing a novel LLM-based decoder, called LoRA-MoE, for multimodal learning. To the best of our knowledge, we are one of the pioneering efforts to introduce MoE into MLLMs to address this problem. The experimental results (about 20% improvement) have shown the effectiveness and versatility of our design in various 2D and 3D downstream tasks. Code and datasets are available at https://openlamm.github.io/tutorial/.
comment: 22 pages, 12 figures. Accepted in ICLR 2024
♻ ☆ DyGASR: Dynamic Generalized Exponential Splatting with Surface Alignment for Accelerated 3D Mesh Reconstruction
Recent advancements in 3D Gaussian Splatting (3DGS), which lead to high-quality novel view synthesis and accelerated rendering, have remarkably improved the quality of radiance field reconstruction. However, the extraction of mesh from a massive number of minute 3D Gaussian points remains great challenge due to the large volume of Gaussians and difficulty of representation of sharp signals caused by their inherent low-pass characteristics. To address this issue, we propose DyGASR, which utilizes generalized exponential function instead of traditional 3D Gaussian to decrease the number of particles and dynamically optimize the representation of the captured signal. In addition, it is observed that reconstructing mesh with Generalized Exponential Splatting(GES) without modifications frequently leads to failures since the generalized exponential distribution centroids may not precisely align with the scene surface. To overcome this, we adopt Sugar's approach and introduce Generalized Surface Regularization (GSR), which reduces the smallest scaling vector of each point cloud to zero and ensures normal alignment perpendicular to the surface, facilitating subsequent Poisson surface mesh reconstruction. Additionally, we propose a dynamic resolution adjustment strategy that utilizes a cosine schedule to gradually increase image resolution from low to high during the training stage, thus avoiding constant full resolution, which significantly boosts the reconstruction speed. Our approach surpasses existing 3DGS-based mesh reconstruction methods, as evidenced by extensive evaluations on various scene datasets, demonstrating a 25\% increase in speed, and a 30\% reduction in memory usage.
♻ ☆ DriveDreamer4D: World Models Are Effective Data Machines for 4D Driving Scene Representation
Closed-loop simulation is essential for advancing end-to-end autonomous driving systems. Contemporary sensor simulation methods, such as NeRF and 3DGS, rely predominantly on conditions closely aligned with training data distributions, which are largely confined to forward-driving scenarios. Consequently, these methods face limitations when rendering complex maneuvers (e.g., lane change, acceleration, deceleration). Recent advancements in autonomous-driving world models have demonstrated the potential to generate diverse driving videos. However, these approaches remain constrained to 2D video generation, inherently lacking the spatiotemporal coherence required to capture intricacies of dynamic driving environments. In this paper, we introduce DriveDreamer4D, which enhances 4D driving scene representation leveraging world model priors. Specifically, we utilize the world model as a data machine to synthesize novel trajectory videos, where structured conditions are explicitly leveraged to control the spatial-temporal consistency of traffic elements. Besides, the cousin data training strategy is proposed to facilitate merging real and synthetic data for optimizing 4DGS. To our knowledge, DriveDreamer4D is the first to utilize video generation models for improving 4D reconstruction in driving scenarios. Experimental results reveal that DriveDreamer4D significantly enhances generation quality under novel trajectory views, achieving a relative improvement in FID by 32.1%, 46.4%, and 16.3% compared to PVG, S3Gaussian, and Deformable-GS. Moreover, DriveDreamer4D markedly enhances the spatiotemporal coherence of driving agents, which is verified by a comprehensive user study and the relative increases of 22.6%, 43.5%, and 15.6% in the NTA-IoU metric.
comment: Project Page: https://drivedreamer4d.github.io
♻ ☆ DEAL: Decoupled Classifier with Adaptive Linear Modulation for Group Robust Early Diagnosis of MCI to AD Conversion
While deep learning-based Alzheimer's disease (AD) diagnosis has recently made significant advancements, particularly in predicting the conversion of mild cognitive impairment (MCI) to AD based on MRI images, there remains a critical gap in research regarding the group robustness of the diagnosis. Although numerous studies pointed out that deep learning-based classifiers may exhibit poor performance in certain groups by relying on unimportant attributes, this issue has been largely overlooked in the early diagnosis of MCI to AD conversion. In this paper, we present the first comprehensive investigation of the group robustness in the early diagnosis of MCI to AD conversion using MRI images, focusing on disparities in accuracy between groups, specifically sMCI and pMCI individuals divided by age. Our experiments reveal that standard classifiers consistently underperform for certain groups across different architectures, highlighting the need for more tailored approaches. To address this, we propose a novel method, dubbed DEAL (DEcoupled classifier with Adaptive Linear modulation), comprising two key components: (1) a linear modulation of features from the penultimate layer, incorporating easily obtainable age and cognitive indicative tabular features, and (2) a decoupled classifier that provides more tailored decision boundaries for each group, further improving performance. Through extensive experiments and evaluations across different architectures, we demonstrate the efficacy of DEAL in improving the group robustness of the MCI to AD conversion prediction.
comment: Under Review
♻ ☆ RoboSense: Large-scale Dataset and Benchmark for Egocentric Robot Perception and Navigation in Crowded and Unstructured Environments
Reliable embodied perception from an egocentric perspective is challenging yet essential for autonomous navigation technology of intelligent mobile agents. With the growing demand of social robotics, near-field scene understanding becomes an important research topic in the areas of egocentric perceptual tasks related to navigation in both crowded and unstructured environments. Due to the complexity of environmental conditions and difficulty of surrounding obstacles owing to truncation and occlusion, the perception capability under this circumstance is still inferior. To further enhance the intelligence of mobile robots, in this paper, we setup an egocentric multi-sensor data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye), which supports flexible sensor configurations to enable dynamic sight of view from ego-perspective, capturing either near or farther areas. Meanwhile, a large-scale multimodal dataset is constructed, named RoboSense, to facilitate egocentric robot perception. Specifically, RoboSense contains more than 133K synchronized data with 1.4M 3D bounding box and IDs annotated in the full $360^{\circ}$ view, forming 216K trajectories across 7.6K temporal sequences. It has $270\times$ and $18\times$ as many annotations of surrounding obstacles within near ranges as the previous datasets collected for autonomous driving scenarios such as KITTI and nuScenes. Moreover, we define a novel matching criterion for near-field 3D perception and prediction metrics. Based on RoboSense, we formulate 6 popular tasks to facilitate the future research development, where the detailed analysis as well as benchmarks are also provided accordingly. Data desensitization measures have been conducted for privacy protection.
♻ ☆ Bi-Directional Deep Contextual Video Compression
Deep video compression has made remarkable process in recent years, with the majority of advancements concentrated on P-frame coding. Although efforts to enhance B-frame coding are ongoing, their compression performance is still far behind that of traditional bi-directional video codecs. In this paper, we introduce a bi-directional deep contextual video compression scheme tailored for B-frames, termed DCVC-B, to improve the compression performance of deep B-frame coding. Our scheme mainly has three key innovations. First, we develop a bi-directional motion difference context propagation method for effective motion difference coding, which significantly reduces the bit cost of bi-directional motions. Second, we propose a bi-directional contextual compression model and a corresponding bi-directional temporal entropy model, to make better use of the multi-scale temporal contexts. Third, we propose a hierarchical quality structure-based training strategy, leading to an effective bit allocation across large groups of pictures (GOP). Experimental results show that our DCVC-B achieves an average reduction of 26.6% in BD-Rate compared to the reference software for H.265/HEVC under random access conditions. Remarkably, it surpasses the performance of the H.266/VVC reference software on certain test datasets under the same configuration. We anticipate our work can provide valuable insights and bring up deep B-frame coding to the next level.
♻ ☆ EgoSurgery-Phase: A Dataset of Surgical Phase Recognition from Egocentric Open Surgery Videos MICCAI 2024
Surgical phase recognition has gained significant attention due to its potential to offer solutions to numerous demands of the modern operating room. However, most existing methods concentrate on minimally invasive surgery (MIS), leaving surgical phase recognition for open surgery understudied. This discrepancy is primarily attributed to the scarcity of publicly available open surgery video datasets for surgical phase recognition. To address this issue, we introduce a new egocentric open surgery video dataset for phase recognition, named EgoSurgery-Phase. This dataset comprises 15 hours of real open surgery videos spanning 9 distinct surgical phases all captured using an egocentric camera attached to the surgeon's head. In addition to video, the EgoSurgery-Phase offers eye gaze. As far as we know, it is the first real open surgery video dataset for surgical phase recognition publicly available. Furthermore, inspired by the notable success of masked autoencoders (MAEs) in video understanding tasks (e.g., action recognition), we propose a gaze-guided masked autoencoder (GGMAE). Considering the regions where surgeons' gaze focuses are often critical for surgical phase recognition (e.g., surgical field), in our GGMAE, the gaze information acts as an empirical semantic richness prior to guiding the masking process, promoting better attention to semantically rich spatial regions. GGMAE significantly improves the previous state-of-the-art recognition method (6.4% in Jaccard) and the masked autoencoder-based method (3.1% in Jaccard) on EgoSurgery-Phase.
comment: Early accepted by MICCAI 2024
♻ ☆ EgoSurgery-Tool: A Dataset of Surgical Tool and Hand Detection from Egocentric Open Surgery Videos
Surgical tool detection is a fundamental task for understanding egocentric open surgery videos. However, detecting surgical tools presents significant challenges due to their highly imbalanced class distribution, similar shapes and similar textures, and heavy occlusion. The lack of a comprehensive large-scale dataset compounds these challenges. In this paper, we introduce EgoSurgery-Tool, an extension of the existing EgoSurgery-Phase dataset, which contains real open surgery videos captured using an egocentric camera attached to the surgeon's head, along with phase annotations. EgoSurgery-Tool has been densely annotated with surgical tools and comprises over 49K surgical tool bounding boxes across 15 categories, constituting a large-scale surgical tool detection dataset. EgoSurgery-Tool also provides annotations for hand detection with over 46K hand-bounding boxes, capturing hand-object interactions that are crucial for understanding activities in egocentric open surgery. EgoSurgery-Tool is superior to existing datasets due to its larger scale, greater variety of surgical tools, more annotations, and denser scenes. We conduct a comprehensive analysis of EgoSurgery-Tool using nine popular object detectors to assess their effectiveness in both surgical tool and hand detection.
♻ ☆ ZeroPS: High-quality Cross-modal Knowledge Transfer for Zero-Shot 3D Part Segmentation
Zero-shot 3D part segmentation is a challenging and fundamental task. In this work, we propose a novel pipeline, ZeroPS, which achieves high-quality knowledge transfer from 2D pretrained foundation models (FMs), SAM and GLIP, to 3D object point clouds. We aim to explore the natural relationship between multi-view correspondence and the FMs' prompt mechanism and build bridges on it. In ZeroPS, the relationship manifests as follows: 1) lifting 2D to 3D by leveraging co-viewed regions and SAM's prompt mechanism, 2) relating 1D classes to 3D parts by leveraging 2D-3D view projection and GLIP's prompt mechanism, and 3) enhancing prediction performance by leveraging multi-view observations. Extensive evaluations on the PartNetE and AKBSeg benchmarks demonstrate that ZeroPS significantly outperforms the SOTA method across zero-shot unlabeled and instance segmentation tasks. ZeroPS does not require additional training or fine-tuning for the FMs. ZeroPS applies to both simulated and real-world data. It is hardly affected by domain shift. The project page is available at https://luis2088.github.io/ZeroPS_page.
♻ ☆ SCIGS: 3D Gaussians Splatting from a Snapshot Compressive Image
Snapshot Compressive Imaging (SCI) offers a possibility for capturing information in high-speed dynamic scenes, requiring efficient reconstruction method to recover scene information. Despite promising results, current deep learning-based and NeRF-based reconstruction methods face challenges: 1) deep learning-based reconstruction methods struggle to maintain 3D structural consistency within scenes, and 2) NeRF-based reconstruction methods still face limitations in handling dynamic scenes. To address these challenges, we propose SCIGS, a variant of 3DGS, and develop a primitive-level transformation network that utilizes camera pose stamps and Gaussian primitive coordinates as embedding vectors. This approach resolves the necessity of camera pose in vanilla 3DGS and enhances multi-view 3D structural consistency in dynamic scenes by utilizing transformed primitives. Additionally, a high-frequency filter is introduced to eliminate the artifacts generated during the transformation. The proposed SCIGS is the first to reconstruct a 3D explicit scene from a single compressed image, extending its application to dynamic 3D scenes. Experiments on both static and dynamic scenes demonstrate that SCIGS not only enhances SCI decoding but also outperforms current state-of-the-art methods in reconstructing dynamic 3D scenes from a single compressed image. The code will be made available upon publication.
♻ ☆ FocDepthFormer: Transformer with latent LSTM for Depth Estimation from Focal Stack
Most existing methods for depth estimation from a focal stack of images employ convolutional neural networks (CNNs) using 2D or 3D convolutions over a fixed set of images. However, their effectiveness is constrained by the local properties of CNN kernels, which restricts them to process only focal stacks of fixed number of images during both training and inference. This limitation hampers their ability to generalize to stacks of arbitrary lengths. To overcome these limitations, we present a novel Transformer-based network, FocDepthFormer, which integrates a Transformer with an LSTM module and a CNN decoder. The Transformer's self-attention mechanism allows for the learning of more informative spatial features by implicitly performing non-local cross-referencing. The LSTM module is designed to integrate representations across image stacks of varying lengths. Additionally, we employ multi-scale convolutional kernels in an early-stage encoder to capture low-level features at different degrees of focus/defocus. By incorporating the LSTM, FocDepthFormer can be pre-trained on large-scale monocular RGB depth estimation datasets, improving visual pattern learning and reducing reliance on difficult-to-obtain focal stack data. Extensive experiments on diverse focal stack benchmark datasets demonstrate that our model outperforms state-of-the-art approaches across multiple evaluation metrics.
comment: 30 pages, 20 figures, Conference paper
♻ ☆ Flexible Physical Camouflage Generation Based on a Differential Approach
This study introduces a novel approach to neural rendering, specifically tailored for adversarial camouflage, within an extensive 3D rendering framework. Our method, named FPA, goes beyond traditional techniques by faithfully simulating lighting conditions and material variations, ensuring a nuanced and realistic representation of textures on a 3D target. To achieve this, we employ a generative approach that learns adversarial patterns from a diffusion model. This involves incorporating a specially designed adversarial loss and covert constraint loss to guarantee the adversarial and covert nature of the camouflage in the physical world. Furthermore, we showcase the effectiveness of the proposed camouflage in sticker mode, demonstrating its ability to cover the target without compromising adversarial information. Through empirical and physical experiments, FPA exhibits strong performance in terms of attack success rate and transferability. Additionally, the designed sticker-mode camouflage, coupled with a concealment constraint, adapts to the environment, yielding diverse styles of texture. Our findings highlight the versatility and efficacy of the FPA approach in adversarial camouflage applications.
♻ ☆ Few-Shot Open-Set Object Detection via Conditional Evidence Decoupling
Few-shot Open-set Object Detection (FOOD) poses a significant challenge in real-world scenarios. It aims to train an open-set detector under the condition of scarce training samples, which can detect known objects while rejecting unknowns. Under this challenging scenario, the decision boundaries of unknowns are difficult to learn and often ambiguous. To mitigate this issue, we develop a two-stage open-set object detection framework with prompt learning, which delves into conditional evidence decoupling for the unknown rejection. Specifically, we propose an Attribution-Gradient-based Pseudo-unknown Mining (AGPM) method to select region proposals with high uncertainty, which leverages the discrepancy in attribution gradients between known and unknown classes, alleviating the inadequate unknown distribution coverage of training data. Subsequently, we decouple known and unknown properties in pseudo-unknown samples to learn distinct knowledge with proposed Conditional Evidence Decoupling (CED), which enhances separability between knowns and unknowns. Additionally, we adjust the output probability distribution through Abnormal Distribution Calibration (ADC), which serves as a regularization term to establish robust decision boundaries for the unknown rejection. Our method has achieved superior performance over previous state-of-the-art approaches, improving the mean recall of unknown class by 7.24% across all shots in VOC10-5-5 dataset settings and 1.38% in VOC-COCO dataset settings. The code is available via https://github.com/zjzwzw/CED-FOOD.
Interactive Medical Image Segmentation: A Benchmark Dataset and Baseline
Interactive Medical Image Segmentation (IMIS) has long been constrained by the limited availability of large-scale, diverse, and densely annotated datasets, which hinders model generalization and consistent evaluation across different models. In this paper, we introduce the IMed-361M benchmark dataset, a significant advancement in general IMIS research. First, we collect and standardize over 6.4 million medical images and their corresponding ground truth masks from multiple data sources. Then, leveraging the strong object recognition capabilities of a vision foundational model, we automatically generated dense interactive masks for each image and ensured their quality through rigorous quality control and granularity management. Unlike previous datasets, which are limited by specific modalities or sparse annotations, IMed-361M spans 14 modalities and 204 segmentation targets, totaling 361 million masks-an average of 56 masks per image. Finally, we developed an IMIS baseline network on this dataset that supports high-quality mask generation through interactive inputs, including clicks, bounding boxes, text prompts, and their combinations. We evaluate its performance on medical image segmentation tasks from multiple perspectives, demonstrating superior accuracy and scalability compared to existing interactive segmentation models. To facilitate research on foundational models in medical computer vision, we release the IMed-361M and model at https://github.com/uni-medical/IMIS-Bench.
♻ ☆ DreamForge: Motion-Aware Autoregressive Video Generation for Multi-View Driving Scenes
Recent advances in diffusion models have improved controllable streetscape generation and supported downstream perception and planning tasks. However, challenges remain in accurately modeling driving scenes and generating long videos. To alleviate these issues, we propose DreamForge, an advanced diffusion-based autoregressive video generation model tailored for 3D-controllable long-term generation. To enhance the lane and foreground generation, we introduce perspective guidance and integrate object-wise position encoding to incorporate local 3D correlation and improve foreground object modeling. We also propose motion-aware temporal attention to capture motion cues and appearance changes in videos. By leveraging motion frames and an autoregressive generation paradigm, we can autoregressively generate long videos (over 200 frames) using a 7-frame model, achieving superior quality compared to the baseline in 16-frame video evaluations. Finally, we integrate our method with the realistic simulation platform DriveArena to provide more reliable open-loop and closed-loop evaluations for vision-based driving agents. The project page is available at https://pjlab-adg.github.io/DriveArena/dreamforge.
comment: 12 figures, 8 tables
♻ ☆ Fast and Efficient: Mask Neural Fields for 3D Scene Segmentation
Understanding 3D scenes is a crucial challenge in computer vision research with applications spanning multiple domains. Recent advancements in distilling 2D vision-language foundation models into neural fields, like NeRF and 3DGS, enable open-vocabulary segmentation of 3D scenes from 2D multi-view images without the need for precise 3D annotations. However, while effective, these methods typically rely on the per-pixel distillation of high-dimensional CLIP features, introducing ambiguity and necessitating complex regularization strategies, which adds inefficiency during training. This paper presents MaskField, which enables efficient 3D open-vocabulary segmentation with neural fields from a novel perspective. Unlike previous methods, MaskField decomposes the distillation of mask and semantic features from foundation models by formulating a mask feature field and queries. MaskField overcomes ambiguous object boundaries by naturally introducing SAM segmented object shapes without extra regularization during training. By circumventing the direct handling of dense high-dimensional CLIP features during training, MaskField is particularly compatible with explicit scene representations like 3DGS. Our extensive experiments show that MaskField not only surpasses prior state-of-the-art methods but also achieves remarkably fast convergence. We hope that MaskField will inspire further exploration into how neural fields can be trained to comprehend 3D scenes from 2D models.
comment: 15 pages, 9 figures
♻ ☆ RoDE: Linear Rectified Mixture of Diverse Experts for Food Large Multi-Modal Models
Large Multi-modal Models (LMMs) have significantly advanced a variety of vision-language tasks. The scalability and availability of high-quality training data play a pivotal role in the success of LMMs. In the realm of food, while comprehensive food datasets such as Recipe1M offer an abundance of ingredient and recipe information, they often fall short of providing ample data for nutritional analysis. The Recipe1M+ dataset, despite offering a subset for nutritional evaluation, is limited in the scale and accuracy of nutrition information. To bridge this gap, we introduce Uni-Food, a unified food dataset that comprises over 100,000 images with various food labels, including categories, ingredients, recipes, and ingredient-level nutritional information. Uni-Food is designed to provide a more holistic approach to food data analysis, thereby enhancing the performance and capabilities of LMMs in this domain. To mitigate the conflicts arising from multi-task supervision during fine-tuning of LMMs, we introduce a novel Linear Rectification Mixture of Diverse Experts (RoDE) approach. RoDE utilizes a diverse array of experts to address tasks of varying complexity, thereby facilitating the coordination of trainable parameters, i.e., it allocates more parameters for more complex tasks and, conversely, fewer parameters for simpler tasks. RoDE implements linear rectification union to refine the router's functionality, thereby enhancing the efficiency of sparse task allocation. These design choices endow RoDE with features that ensure GPU memory efficiency and ease of optimization. Our experimental results validate the effectiveness of our proposed approach in addressing the inherent challenges of food-related multitasking.
♻ ☆ PointMamba: A Simple State Space Model for Point Cloud Analysis NeurIPS 2024
Transformers have become one of the foundational architectures in point cloud analysis tasks due to their excellent global modeling ability. However, the attention mechanism has quadratic complexity, making the design of a linear complexity method with global modeling appealing. In this paper, we propose PointMamba, transferring the success of Mamba, a recent representative state space model (SSM), from NLP to point cloud analysis tasks. Unlike traditional Transformers, PointMamba employs a linear complexity algorithm, presenting global modeling capacity while significantly reducing computational costs. Specifically, our method leverages space-filling curves for effective point tokenization and adopts an extremely simple, non-hierarchical Mamba encoder as the backbone. Comprehensive evaluations demonstrate that PointMamba achieves superior performance across multiple datasets while significantly reducing GPU memory usage and FLOPs. This work underscores the potential of SSMs in 3D vision-related tasks and presents a simple yet effective Mamba-based baseline for future research. The code will be made available at \url{https://github.com/LMD0311/PointMamba}.
comment: Accepted at NeurIPS 2024. The code will be made available at https://github.com/LMD0311/PointMamba
♻ ☆ DiTAS: Quantizing Diffusion Transformers via Enhanced Activation Smoothing WACV 2025
Diffusion Transformers (DiTs) have recently attracted significant interest from both industry and academia due to their enhanced capabilities in visual generation, surpassing the performance of traditional diffusion models that employ U-Net. However, the improved performance of DiTs comes at the expense of higher parameter counts and implementation costs, which significantly limits their deployment on resource-constrained devices like mobile phones. We propose DiTAS, a data-free post-training quantization (PTQ) method for efficient DiT inference. DiTAS relies on the proposed temporal-aggregated smoothing techniques to mitigate the impact of the channel-wise outliers within the input activations, leading to much lower quantization error under extremely low bitwidth. To further enhance the performance of the quantized DiT, we adopt the layer-wise grid search strategy to optimize the smoothing factor. Moreover, we integrate a training-free LoRA module for weight quantization, leveraging alternating optimization to minimize quantization errors without additional fine-tuning. Experimental results demonstrate that our approach enables 4-bit weight, 8-bit activation (W4A8) quantization for DiTs while maintaining comparable performance as the full-precision model.
comment: Accepted at WACV 2025. Code is available at https://github.com/DZY122/DiTAS
Machine Learning 150
☆ Quark: Real-time, High-resolution, and General Neural View Synthesis SIGGRAPH
We present a novel neural algorithm for performing high-quality, high-resolution, real-time novel view synthesis. From a sparse set of input RGB images or videos streams, our network both reconstructs the 3D scene and renders novel views at 1080p resolution at 30fps on an NVIDIA A100. Our feed-forward network generalizes across a wide variety of datasets and scenes and produces state-of-the-art quality for a real-time method. Our quality approaches, and in some cases surpasses, the quality of some of the top offline methods. In order to achieve these results we use a novel combination of several key concepts, and tie them together into a cohesive and effective algorithm. We build on previous works that represent the scene using semi-transparent layers and use an iterative learned render-and-refine approach to improve those layers. Instead of flat layers, our method reconstructs layered depth maps (LDMs) that efficiently represent scenes with complex depth and occlusions. The iterative update steps are embedded in a multi-scale, UNet-style architecture to perform as much compute as possible at reduced resolution. Within each update step, to better aggregate the information from multiple input views, we use a specialized Transformer-based network component. This allows the majority of the per-input image processing to be performed in the input image space, as opposed to layer space, further increasing efficiency. Finally, due to the real-time nature of our reconstruction and rendering, we dynamically create and discard the internal 3D geometry for each frame, generating the LDM for each view. Taken together, this produces a novel and effective algorithm for view synthesis. Through extensive evaluation, we demonstrate that we achieve state-of-the-art quality at real-time rates. Project page: https://quark-3d.github.io/
comment: SIGGRAPH Asia 2024 camera ready version; project page https://quark-3d.github.io/
☆ CatNet: Effective FDR Control in LSTM with Gaussian Mirrors and SHAP Feature Importance
We introduce CatNet, an algorithm that effectively controls False Discovery Rate (FDR) and selects significant features in LSTM with the Gaussian Mirror (GM) method. To evaluate the feature importance of LSTM in time series, we introduce a vector of the derivative of the SHapley Additive exPlanations (SHAP) to measure feature importance. We also propose a new kernel-based dependence measure to avoid multicollinearity in the GM algorithm, to make a robust feature selection with controlled FDR. We use simulated data to evaluate CatNet's performance in both linear models and LSTM models with different link functions. The algorithm effectively controls the FDR while maintaining a high statistical power in all cases. We also evaluate the algorithm's performance in different low-dimensional and high-dimensional cases, demonstrating its robustness in various input dimensions. To evaluate CatNet's performance in real world applications, we construct a multi-factor investment portfolio to forecast the prices of S\&P 500 index components. The results demonstrate that our model achieves superior predictive accuracy compared to traditional LSTM models without feature selection and FDR control. Additionally, CatNet effectively captures common market-driving features, which helps informed decision-making in financial markets by enhancing the interpretability of predictions. Our study integrates of the Gaussian Mirror algorithm with LSTM models for the first time, and introduces SHAP values as a new feature importance metric for FDR control methods, marking a significant advancement in feature selection and error control for neural networks.
☆ Gaussian Process Priors for Boundary Value Problems of Linear Partial Differential Equations
Solving systems of partial differential equations (PDEs) is a fundamental task in computational science, traditionally addressed by numerical solvers. Recent advancements have introduced neural operators and physics-informed neural networks (PINNs) to tackle PDEs, achieving reduced computational costs at the expense of solution quality and accuracy. Gaussian processes (GPs) have also been applied to linear PDEs, with the advantage of always yielding precise solutions. In this work, we propose Boundary Ehrenpreis-Palamodov Gaussian Processes (B-EPGPs), a novel framework for constructing GP priors that satisfy both general systems of linear PDEs with constant coefficients and linear boundary conditions. We explicitly construct GP priors for representative PDE systems with practical boundary conditions. Formal proofs of correctness are provided and empirical results demonstrating significant accuracy improvements over state-of-the-art neural operator approaches.
comment: 25 pages, 19 figures. Code available at $\href{https://github.com/Jimmy000207/Boundary-EPGP}{\text{this https URL}}$. The paper and all ancillary files are released under CC-BY
☆ Fast training of large kernel models with delayed projections
Classical kernel machines have historically faced significant challenges in scaling to large datasets and model sizes--a key ingredient that has driven the success of neural networks. In this paper, we present a new methodology for building kernel machines that can scale efficiently with both data size and model size. Our algorithm introduces delayed projections to Preconditioned Stochastic Gradient Descent (PSGD) allowing the training of much larger models than was previously feasible, pushing the practical limits of kernel-based learning. We validate our algorithm, EigenPro4, across multiple datasets, demonstrating drastic training speed up over the existing methods while maintaining comparable or better classification accuracy.
comment: arXiv admin note: text overlap with arXiv:2302.02605
☆ Self-Generated Critiques Boost Reward Modeling for Language Models
Reward modeling is crucial for aligning large language models (LLMs) with human preferences, especially in reinforcement learning from human feedback (RLHF). However, current reward models mainly produce scalar scores and struggle to incorporate critiques in a natural language format. We hypothesize that predicting both critiques and the scalar reward would improve reward modeling ability. Motivated by this, we propose Critic-RM, a framework that improves reward models using self-generated critiques without extra supervision. Critic-RM employs a two-stage process: generating and filtering high-quality critiques, followed by joint fine-tuning on reward prediction and critique generation. Experiments across benchmarks show that Critic-RM improves reward modeling accuracy by 3.7%-7.3% compared to standard reward models and LLM judges, demonstrating strong performance and data efficiency. Additional studies further validate the effectiveness of generated critiques in rectifying flawed reasoning steps with 2.5%-3.2% gains in improving reasoning accuracy.
comment: 20 pages
☆ Recommender Systems for Good (RS4Good): Survey of Use Cases and a Call to Action for Research that Matters
In the area of recommender systems, the vast majority of research efforts is spent on developing increasingly sophisticated recommendation models, also using increasingly more computational resources. Unfortunately, most of these research efforts target a very small set of application domains, mostly e-commerce and media recommendation. Furthermore, many of these models are never evaluated with users, let alone put into practice. The scientific, economic and societal value of much of these efforts by scholars therefore remains largely unclear. To achieve a stronger positive impact resulting from these efforts, we posit that we as a research community should more often address use cases where recommender systems contribute to societal good (RS4Good). In this opinion piece, we first discuss a number of examples where the use of recommender systems for problems of societal concern has been successfully explored in the literature. We then proceed by outlining a paradigmatic shift that is needed to conduct successful RS4Good research, where the key ingredients are interdisciplinary collaborations and longitudinal evaluation approaches with humans in the loop.
☆ Exploring Discrete Flow Matching for 3D De Novo Molecule Generation NeurIPS 2024
Deep generative models that produce novel molecular structures have the potential to facilitate chemical discovery. Flow matching is a recently proposed generative modeling framework that has achieved impressive performance on a variety of tasks including those on biomolecular structures. The seminal flow matching framework was developed only for continuous data. However, de novo molecular design tasks require generating discrete data such as atomic elements or sequences of amino acid residues. Several discrete flow matching methods have been proposed recently to address this gap. In this work we benchmark the performance of existing discrete flow matching methods for 3D de novo small molecule generation and provide explanations of their differing behavior. As a result we present FlowMol-CTMC, an open-source model that achieves state of the art performance for 3D de novo design with fewer learnable parameters than existing methods. Additionally, we propose the use of metrics that capture molecule quality beyond local chemical valency constraints and towards higher-order structural motifs. These metrics show that even though basic constraints are satisfied, the models tend to produce unusual and potentially problematic functional groups outside of the training data distribution. Code and trained models for reproducing this work are available at \url{https://github.com/dunni3/FlowMol}.
comment: Presented at the NeurIPS 2024 Machine Learning for Structural Biology Workshop
☆ Inference-Time Policy Steering through Human Interactions
Generative policies trained with human demonstrations can autonomously accomplish multimodal, long-horizon tasks. However, during inference, humans are often removed from the policy execution loop, limiting the ability to guide a pre-trained policy towards a specific sub-goal or trajectory shape among multiple predictions. Naive human intervention may inadvertently exacerbate distribution shift, leading to constraint violations or execution failures. To better align policy output with human intent without inducing out-of-distribution errors, we propose an Inference-Time Policy Steering (ITPS) framework that leverages human interactions to bias the generative sampling process, rather than fine-tuning the policy on interaction data. We evaluate ITPS across three simulated and real-world benchmarks, testing three forms of human interaction and associated alignment distance metrics. Among six sampling strategies, our proposed stochastic sampling with diffusion policy achieves the best trade-off between alignment and distribution shift. Videos are available at https://yanweiw.github.io/itps/.
☆ Graph Pooling with Local Cluster Selection
Graph poolings in GNNs are a family of operations which take graphs as inputs and produce coarsened graphs as output. Modern graph poolings are trainable and closely related to GNNs, which learn to pool graphs under different assumptions. Though there are various assumptions, the procedure of generating pooled graphs is relatively similar and limited. This work formalizes a novel procedure of pooling graphs, along with a graph pooling approach for average situations.
comment: 10 pages, 4 figures
☆ Approximation Algorithms for Combinatorial Optimization with Predictions
We initiate a systematic study of utilizing predictions to improve over approximation guarantees of classic algorithms, without increasing the running time. We propose a systematic method for a wide class of optimization problems that ask to select a feasible subset of input items of minimal (or maximal) total weight. This gives simple (near-)linear time algorithms for, e.g., Vertex Cover, Steiner Tree, Min-Weight Perfect Matching, Knapsack, and Clique. Our algorithms produce optimal solutions when provided with perfect predictions and their approximation ratios smoothly degrade with increasing prediction error. With small enough prediction error we achieve approximation guarantees that are beyond reach without predictions in the given time bounds, as exemplified by the NP-hardness and APX-hardness of many of the above problems. Although we show our approach to be optimal for this class of problems as a whole, there is a potential for exploiting specific structural properties of individual problems to obtain improved bounds; we demonstrate this on the Steiner Tree problem. We conclude with an empirical evaluation of our approach.
☆ Unlocking The Potential of Adaptive Attacks on Diffusion-Based Purification
Diffusion-based purification (DBP) is a defense against adversarial examples (AEs), amassing popularity for its ability to protect classifiers in an attack-oblivious manner and resistance to strong adversaries with access to the defense. Its robustness has been claimed to ensue from the reliance on diffusion models (DMs) that project the AEs onto the natural distribution. We revisit this claim, focusing on gradient-based strategies that back-propagate the loss gradients through the defense, commonly referred to as ``adaptive attacks". Analytically, we show that such an optimization method invalidates DBP's core foundations, effectively targeting the DM rather than the classifier and restricting the purified outputs to a distribution over malicious samples instead. Thus, we reassess the reported empirical robustness, uncovering implementation flaws in the gradient back-propagation techniques used thus far for DBP. We fix these issues, providing the first reliable gradient library for DBP and demonstrating how adaptive attacks drastically degrade its robustness. We then study a less efficient yet stricter majority-vote setting where the classifier evaluates multiple purified copies of the input to make its decision. Here, DBP's stochasticity enables it to remain partially robust against traditional norm-bounded AEs. We propose a novel adaptation of a recent optimization method against deepfake watermarking that crafts systemic malicious perturbations while ensuring imperceptibility. When integrated with the adaptive attack, it completely defeats DBP, even in the majority-vote setup. Our findings prove that DBP, in its current state, is not a viable defense against AEs.
☆ Adversarial Attacks for Drift Detection
Concept drift refers to the change of data distributions over time. While drift poses a challenge for learning models, requiring their continual adaption, it is also relevant in system monitoring to detect malfunctions, system failures, and unexpected behavior. In the latter case, the robust and reliable detection of drifts is imperative. This work studies the shortcomings of commonly used drift detection schemes. We show how to construct data streams that are drifting without being detected. We refer to those as drift adversarials. In particular, we compute all possible adversairals for common detection schemes and underpin our theoretical findings with empirical evaluations.
☆ Alpha Entropy Search for New Information-based Bayesian Optimization
Bayesian optimization (BO) methods based on information theory have obtained state-of-the-art results in several tasks. These techniques heavily rely on the Kullback-Leibler (KL) divergence to compute the acquisition function. In this work, we introduce a novel information-based class of acquisition functions for BO called Alpha Entropy Search (AES). AES is based on the {\alpha}-divergence, that generalizes the KL divergence. Iteratively, AES selects the next evaluation point as the one whose associated target value has the highest level of the dependency with respect to the location and associated value of the global maximum of the optimization problem. Dependency is measured in terms of the {\alpha}-divergence, as an alternative to the KL divergence. Intuitively, this favors the evaluation of the objective function at the most informative points about the global maximum. The {\alpha}-divergence has a free parameter {\alpha}, which determines the behavior of the divergence, trading-off evaluating differences between distributions at a single mode, and evaluating differences globally. Therefore, different values of {\alpha} result in different acquisition functions. AES acquisition lacks a closed-form expression. However, we propose an efficient and accurate approximation using a truncated Gaussian distribution. In practice, the value of {\alpha} can be chosen by the practitioner, but here we suggest to use a combination of acquisition functions obtained by simultaneously considering a range of values of {\alpha}. We provide an implementation of AES in BOTorch and we evaluate its performance in both synthetic, benchmark and real-world experiments involving the tuning of the hyper-parameters of a deep neural network. These experiments show that the performance of AES is competitive with respect to other information-based acquisition functions such as JES, MES or PES.
comment: 31 pages, 12 figures, 3 tables, Journal KBS
Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision
Training large language models (LLMs) to spend more time thinking and reflection before responding is crucial for effectively solving complex reasoning tasks in fields such as science, coding, and mathematics. However, the effectiveness of mechanisms like self-reflection and self-correction depends on the model's capacity to accurately assess its own performance, which can be limited by factors such as initial accuracy, question difficulty, and the lack of external feedback. In this paper, we delve into a two-player paradigm that separates the roles of reasoning and critique models, where the critique model provides step-level feedback to supervise the reasoning (actor) model during both test-time and train-time. We first propose AutoMathCritique, an automated and scalable framework for collecting critique data, resulting in a dataset of $76,321$ responses paired with step-level feedback. Fine-tuning language models with this dataset enables them to generate natural language feedback for mathematical reasoning. We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time, especially when scaling up inference-time computation. Motivated by these findings, we introduce the critique-based supervision to the actor's self-training process, and propose a critique-in-the-loop self-improvement method. Experiments show that the method improves the actor's exploration efficiency and solution diversity, especially on challenging queries, leading to a stronger reasoning model. Lastly, we take the preliminary step to explore training self-talk reasoning models via critique supervision and showcase its potential. Our code and datasets are at \href{https://mathcritique.github.io/}{https://mathcritique.github.io/}.
comment: Preprint
☆ Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches
This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning in a framework designed to tackle the challenges posed by small-sample data. Recognizing the critical limitations of traditional machine learning models that require large datasets-especially in fields such as drug discovery, target recognition, and malicious traffic detection-this study proposes a novel strategy that leverages Generative Adversarial Networks (GANs) and advanced optimization techniques to improve model performance with limited data. Specifically, the paper addresses the noise and bias issues introduced by data augmentation methods, contrasting them with model-based approaches, such as fine-tuning and metric learning, which rely heavily on related datasets. By combining Markov Chain Monte Carlo (MCMC) sampling and discriminative model ensemble strategies within a GAN framework, the proposed model adjusts generative and discriminative distributions to simulate a broader range of relevant data. Furthermore, it employs MHLoss and a reparameterized GAN ensemble to enhance stability and accelerate convergence, ultimately leading to improved classification performance on small-sample images and structured datasets. Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning, offering a practical solution that bridges data scarcity with high-performing model adaptability and generalization.
☆ Quantum Circuit Training with Growth-Based Architectures
This study introduces growth-based training strategies that incrementally increase parameterized quantum circuit (PQC) depth during training, mitigating overfitting and managing model complexity dynamically. We develop three distinct methods: Block Growth, Sequential Feature Map Growth, and Interleave Feature Map Growth, which add reuploader blocks to PQCs adaptively, expanding the accessible frequency spectrum of the model in response to training needs. This approach enables PQCs to achieve more stable convergence and generalization, even in noisy settings. We evaluate our methods on regression tasks and the 2D Laplace equation, demonstrating that dynamic growth methods outperform traditional, fixed-depth approaches, achieving lower final losses and reduced variance between runs. These findings underscore the potential of growth-based PQCs for quantum scientific machine learning (QSciML) applications, where balancing expressivity and stability is essential.
comment: 14 pages, 8 figures
☆ Anomaly Detection and RFI Classification with Unsupervised Learning in Narrowband Radio Technosignature Searches
The search for radio technosignatures is an anomaly detection problem: candidate signals represent needles of interest in the proverbial haystack of radio-frequency interference (RFI). Current search frameworks find an enormity of false-positive signals, especially in large surveys, requiring manual follow-up to a sometimes prohibitive degree. Unsupervised learning provides an algorithmic way to winnow the most anomalous signals from the chaff, as well as group together RFI signals that bear morphological similarities. We present GLOBULAR (Grouping Low-frequency Observations By Unsupervised Learning After Reduction) clustering, a signal processing method that uses HDBSCAN to reduce the false-positive rate and isolate outlier signals for further analysis. When combined with a standard narrowband signal detection and spatial filtering pipeline, such as turboSETI, GLOBULAR clustering offers significant improvements in the false-positive rate over the standard pipeline alone, suggesting dramatic potential for the amelioration of manual follow-up requirements for future large surveys. By removing RFI signals in regions of high spectral occupancy, GLOBULAR clustering may also enable the detection of signals missed by the standard pipeline. We benchmark our method against the Choza et al. (2024) turboSETI-only search of 97 nearby galaxies at L-band, demonstrating a false-positive hit reduction rate of 93.1% and a false-positive event reduction rate of 99.3%.
comment: 20 pages, 14 figures, submitted to AJ
☆ Generating Out-Of-Distribution Scenarios Using Language Models
The deployment of autonomous vehicles controlled by machine learning techniques requires extensive testing in diverse real-world environments, robust handling of edge cases and out-of-distribution scenarios, and comprehensive safety validation to ensure that these systems can navigate safely and effectively under unpredictable conditions. Addressing Out-Of-Distribution (OOD) driving scenarios is essential for enhancing safety, as OOD scenarios help validate the reliability of the models within the vehicle's autonomy stack. However, generating OOD scenarios is challenging due to their long-tailed distribution and rarity in urban driving dataset. Recently, Large Language Models (LLMs) have shown promise in autonomous driving, particularly for their zero-shot generalization and common-sense reasoning capabilities. In this paper, we leverage these LLM strengths to introduce a framework for generating diverse OOD driving scenarios. Our approach uses LLMs to construct a branching tree, where each branch represents a unique OOD scenario. These scenarios are then simulated in the CARLA simulator using an automated framework that aligns scene augmentation with the corresponding textual descriptions. We evaluate our framework through extensive simulations, and assess its performance via a diversity metric that measures the richness of the scenarios. Additionally, we introduce a new "OOD-ness" metric, which quantifies how much the generated scenarios deviate from typical urban driving conditions. Furthermore, we explore the capacity of modern Vision-Language Models (VLMs) to interpret and safely navigate through the simulated OOD scenarios. Our findings offer valuable insights into the reliability of language models in addressing OOD scenarios within the context of urban driving.
☆ Representation Collapsing Problems in Vector Quantization
Vector quantization is a technique in machine learning that discretizes continuous representations into a set of discrete vectors. It is widely employed in tokenizing data representations for large language models, diffusion models, and other generative models. Despite its prevalence, the characteristics and behaviors of vector quantization in generative models remain largely underexplored. In this study, we investigate representation collapse in vector quantization - a critical degradation where codebook tokens or latent embeddings lose their discriminative power by converging to a limited subset of values. This collapse fundamentally compromises the model's ability to capture diverse data patterns. By leveraging both synthetic and real datasets, we identify the severity of each type of collapses and triggering conditions. Our analysis reveals that restricted initialization and limited encoder capacity result in tokens collapse and embeddings collapse. Building on these findings, we propose potential solutions aimed at mitigating each collapse. To the best of our knowledge, this is the first comprehensive study examining representation collapsing problems in vector quantization.
comment: 13 pages, under review
Transformers are Deep Optimizers: Provable In-Context Learning for Deep Model Training
We investigate the transformer's capability for in-context learning (ICL) to simulate the training process of deep models. Our key contribution is providing a positive example of using a transformer to train a deep neural network by gradient descent in an implicit fashion via ICL. Specifically, we provide an explicit construction of a $(2N+4)L$-layer transformer capable of simulating $L$ gradient descent steps of an $N$-layer ReLU network through ICL. We also give the theoretical guarantees for the approximation within any given error and the convergence of the ICL gradient descent. Additionally, we extend our analysis to the more practical setting using Softmax-based transformers. We validate our findings on synthetic datasets for 3-layer, 4-layer, and 6-layer neural networks. The results show that ICL performance matches that of direct training.
comment: 66 pages, 3 figures
☆ Continual Deep Reinforcement Learning with Task-Agnostic Policy Distillation
Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space. This problem space includes: (1) addressing catastrophic forgetting to retain previously learned tasks, (2) demonstrating positive forward transfer for faster learning, (3) ensuring scalability across numerous tasks, and (4) facilitating learning without requiring task labels, even in the absence of clear task boundaries. In this paper, the Task-Agnostic Policy Distillation (TAPD) framework is introduced. This framework alleviates problems (1)-(4) by incorporating a task-agnostic phase, where an agent explores its environment without any external goal and maximizes only its intrinsic motivation. The knowledge gained during this phase is later distilled for further exploration. Therefore, the agent acts in a self-supervised manner by systematically seeking novel states. By utilizing task-agnostic distilled knowledge, the agent can solve downstream tasks more efficiently, leading to improved sample efficiency. Our code is available at the repository: https://github.com/wabbajack1/TAPD.
comment: Accepted for publication in Scientific Reports
☆ Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency
We investigate the statistical and computational limits of prompt tuning for transformer-based foundation models. Our key contributions are prompt tuning on \textit{single-head} transformers with only a \textit{single} self-attention layer: (i) is universal, and (ii) supports efficient (even almost-linear time) algorithms under the Strong Exponential Time Hypothesis (SETH). Statistically, we prove that prompt tuning on such simplest possible transformers are universal approximators for sequence-to-sequence Lipschitz functions. In addition, we provide an exponential-in-$dL$ and -in-$(1/\epsilon)$ lower bound on the required soft-prompt tokens for prompt tuning to memorize any dataset with 1-layer, 1-head transformers. Computationally, we identify a phase transition in the efficiency of prompt tuning, determined by the norm of the \textit{soft-prompt-induced} keys and queries, and provide an upper bound criterion. Beyond this criterion, no sub-quadratic (efficient) algorithm for prompt tuning exists under SETH. Within this criterion, we showcase our theory by proving the existence of almost-linear time prompt tuning inference algorithms. These fundamental limits provide important necessary conditions for designing expressive and efficient prompt tuning methods for practitioners.
☆ Jaya R Package -- A Parameter-Free Solution for Advanced Single and Multi-Objective Optimization
The Jaya R package offers a robust and versatile implementation of the parameter-free Jaya optimization algorithm, suitable for solving both single-objective and multi-objective optimization problems. By integrating advanced features such as constraint handling, adaptive population management, Pareto front tracking for multi-objective trade-offs, and parallel processing for computational efficiency, the package caters to a wide range of optimization challenges. Its intuitive design and flexibility allow users to solve complex, real-world problems across various domains. To demonstrate its practical utility, a case study on energy modeling explores the optimization of renewable energy shares, showcasing the package's ability to minimize carbon emissions and costs while enhancing system reliability. The Jaya R package is an invaluable tool for researchers and practitioners seeking efficient and adaptive optimization solutions.
☆ Interpreting Language Reward Models via Contrastive Explanations
Reward models (RMs) are a crucial component in the alignment of large language models' (LLMs) outputs with human values. RMs approximate human preferences over possible LLM responses to the same prompt by predicting and comparing reward scores. However, as they are typically modified versions of LLMs with scalar output heads, RMs are large black boxes whose predictions are not explainable. More transparent RMs would enable improved trust in the alignment of LLMs. In this work, we propose to use contrastive explanations to explain any binary response comparison made by an RM. Specifically, we generate a diverse set of new comparisons similar to the original one to characterise the RM's local behaviour. The perturbed responses forming the new comparisons are generated to explicitly modify manually specified high-level evaluation attributes, on which analyses of RM behaviour are grounded. In quantitative experiments, we validate the effectiveness of our method for finding high-quality contrastive explanations. We then showcase the qualitative usefulness of our method for investigating global sensitivity of RMs to each evaluation attribute, and demonstrate how representative examples can be automatically extracted to explain and compare behaviours of different RMs. We see our method as a flexible framework for RM explanation, providing a basis for more interpretable and trustworthy LLM alignment.
☆ Multi-Resolution Generative Modeling of Human Motion from Limited Data
We present a generative model that learns to synthesize human motion from limited training sequences. Our framework provides conditional generation and blending across multiple temporal resolutions. The model adeptly captures human motion patterns by integrating skeletal convolution layers and a multi-scale architecture. Our model contains a set of generative and adversarial networks, along with embedding modules, each tailored for generating motions at specific frame rates while exerting control over their content and details. Notably, our approach also extends to the synthesis of co-speech gestures, demonstrating its ability to generate synchronized gestures from speech inputs, even with limited paired data. Through direct synthesis of SMPL pose parameters, our approach avoids test-time adjustments to fit human body meshes. Experimental results showcase our model's ability to achieve extensive coverage of training examples, while generating diverse motions, as indicated by local and global diversity metrics.
comment: 1O pages, 7 figures, published in European Conference on Visual Media Production CVMP 24
☆ Graph Transformer Networks for Accurate Band Structure Prediction: An End-to-End Approach
Predicting electronic band structures from crystal structures is crucial for understanding structure-property correlations in materials science. First-principles approaches are accurate but computationally intensive. Recent years, machine learning (ML) has been extensively applied to this field, while existing ML models predominantly focus on band gap predictions or indirect band structure estimation via solving predicted Hamiltonians. An end-to-end model to predict band structure accurately and efficiently is still lacking. Here, we introduce a graph Transformer-based end-to-end approach that directly predicts band structures from crystal structures with high accuracy. Our method leverages the continuity of the k-path and treat continuous bands as a sequence. We demonstrate that our model not only provides accurate band structure predictions but also can derive other properties (such as band gap, band center, and band dispersion) with high accuracy. We verify the model performance on large and diverse datasets.
comment: 8 pages, 3 figures
☆ Distributed, communication-efficient, and differentially private estimation of KL divergence
A key task in managing distributed, sensitive data is to measure the extent to which a distribution changes. Understanding this drift can effectively support a variety of federated learning and analytics tasks. However, in many practical settings sharing such information can be undesirable (e.g., for privacy concerns) or infeasible (e.g., for high communication costs). In this work, we describe novel algorithmic approaches for estimating the KL divergence of data across federated models of computation, under differential privacy. We analyze their theoretical properties and present an empirical study of their performance. We explore parameter settings that optimize the accuracy of the algorithm catering to each of the settings; these provide sub-variations that are applicable to real-world tasks, addressing different context- and application-specific trust level requirements. Our experimental results confirm that our private estimators achieve accuracy comparable to a baseline algorithm without differential privacy guarantees.
comment: 28 pages, 5 figures
☆ Distributed Online Optimization with Stochastic Agent Availability
Motivated by practical federated learning settings where clients may not be always available, we investigate a variant of distributed online optimization where agents are active with a known probability $p$ at each time step, and communication between neighboring agents can only take place if they are both active. We introduce a distributed variant of the FTRL algorithm and analyze its network regret, defined through the average of the instantaneous regret of the active agents. Our analysis shows that, for any connected communication graph $G$ over $N$ agents, the expected network regret of our FTRL variant after $T$ steps is at most of order $(\kappa/p^2)\min\big\{\sqrt{N},N^{1/4}/\sqrt{p}\big\}\sqrt{T}$, where $\kappa$ is the condition number of the Laplacian of $G$. We then show that similar regret bounds also hold with high probability. Moreover, we show that our notion of regret (average-case over the agents) is essentially equivalent to the standard notion of regret (worst-case over agents), implying that our bounds are not significantly improvable when $p=1$. Our theoretical results are supported by experiments on synthetic datasets.
☆ NonSysId: A nonlinear system identification package with improved model term selection for NARMAX models
System identification involves constructing mathematical models of dynamic systems using input-output data, enabling analysis and prediction of system behaviour in both time and frequency domains. This approach can model the entire system or capture specific dynamics within it. For meaningful analysis, it is essential for the model to accurately reflect the underlying system's behaviour. This paper introduces NonSysId, an open-sourced MATLAB software package designed for nonlinear system identification, specifically focusing on NARMAX models. The software incorporates an advanced term selection methodology that prioritises on simulation (free-run) accuracy while preserving model parsimony. A key feature is the integration of iterative Orthogonal Forward Regression (iOFR) with Predicted Residual Sum of Squares (PRESS) statistic-based term selection, facilitating robust model generalisation without the need for a separate validation dataset. Furthermore, techniques for reducing computational overheads are implemented. These features make NonSysId particularly suitable for real-time applications such as structural health monitoring, fault diagnosis, and biomedical signal processing, where it is a challenge to capture the signals under consistent conditions, resulting in limited or no validation data.
comment: 14 pages, 7 figures
☆ No Identity, no problem: Motion through detection for people tracking
Tracking-by-detection has become the de facto standard approach to people tracking. To increase robustness, some approaches incorporate re-identification using appearance models and regressing motion offset, which requires costly identity annotations. In this paper, we propose exploiting motion clues while providing supervision only for the detections, which is much easier to do. Our algorithm predicts detection heatmaps at two different times, along with a 2D motion estimate between the two images. It then warps one heatmap using the motion estimate and enforces consistency with the other one. This provides the required supervisory signal on the motion without the need for any motion annotations. In this manner, we couple the information obtained from different images during training and increase accuracy, especially in crowded scenes and when using low frame-rate sequences. We show that our approach delivers state-of-the-art results for single- and multi-view multi-target tracking on the MOT17 and WILDTRACK datasets.
comment: Accepted in TMLR November 2024
☆ Lion Cub: Minimizing Communication Overhead in Distributed Lion
Communication overhead is a key challenge in distributed deep learning, especially on slower Ethernet interconnects, and given current hardware trends, communication is likely to become a major bottleneck. While gradient compression techniques have been explored for SGD and Adam, the Lion optimizer has the distinct advantage that its update vectors are the output of a sign operation, enabling straightforward quantization. However, simply compressing updates for communication and using techniques like majority voting fails to lead to end-to-end speedups due to inefficient communication algorithms and reduced convergence. We analyze three factors critical to distributed learning with Lion: optimizing communication methods, identifying effective quantization methods, and assessing the necessity of momentum synchronization. Our findings show that quantization techniques adapted to Lion and selective momentum synchronization can significantly reduce communication costs while maintaining convergence. We combine these into Lion Cub, which enables up to 5x speedups in end-to-end training compared to Lion. This highlights Lion's potential as a communication-efficient solution for distributed training.
☆ On the Reconstruction of Training Data from Group Invariant Networks
Reconstructing training data from trained neural networks is an active area of research with significant implications for privacy and explainability. Recent advances have demonstrated the feasibility of this process for several data types. However, reconstructing data from group-invariant neural networks poses distinct challenges that remain largely unexplored. This paper addresses this gap by first formulating the problem and discussing some of its basic properties. We then provide an experimental evaluation demonstrating that conventional reconstruction techniques are inadequate in this scenario. Specifically, we observe that the resulting data reconstructions gravitate toward symmetric inputs on which the group acts trivially, leading to poor-quality results. Finally, we propose two novel methods aiming to improve reconstruction in this setup and present promising preliminary experimental results. Our work sheds light on the complexities of reconstructing data from group invariant neural networks and offers potential avenues for future research in this domain.
☆ TIFeD: a Tiny Integer-based Federated learning algorithm with Direct feedback alignment
Training machine and deep learning models directly on extremely resource-constrained devices is the next challenge in the field of tiny machine learning. The related literature in this field is very limited, since most of the solutions focus only on on-device inference or model adaptation through online learning, leaving the training to be carried out on external Cloud services. An interesting technological perspective is to exploit Federated Learning (FL), which allows multiple devices to collaboratively train a shared model in a distributed way. However, the main drawback of state-of-the-art FL algorithms is that they are not suitable for running on tiny devices. For the first time in the literature, in this paper we introduce TIFeD, a Tiny Integer-based Federated learning algorithm with Direct Feedback Alignment (DFA) entirely implemented by using an integer-only arithmetic and being specifically designed to operate on devices with limited resources in terms of memory, computation and energy. Besides the traditional full-network operating modality, in which each device of the FL setting trains the entire neural network on its own local data, we propose an innovative single-layer TIFeD implementation, which enables each device to train only a portion of the neural network model and opens the door to a new way of distributing the learning procedure across multiple devices. The experimental results show the feasibility and effectiveness of the proposed solution. The proposed TIFeD algorithm, with its full-network and single-layer implementations, is made available to the scientific community as a public repository.
☆ Privacy Protection in Personalized Diffusion Models via Targeted Cross-Attention Adversarial Attack NeurIPS 2024
The growing demand for customized visual content has led to the rise of personalized text-to-image (T2I) diffusion models. Despite their remarkable potential, they pose significant privacy risk when misused for malicious purposes. In this paper, we propose a novel and efficient adversarial attack method, Concept Protection by Selective Attention Manipulation (CoPSAM) which targets only the cross-attention layers of a T2I diffusion model. For this purpose, we carefully construct an imperceptible noise to be added to clean samples to get their adversarial counterparts. This is obtained during the fine-tuning process by maximizing the discrepancy between the corresponding cross-attention maps of the user-specific token and the class-specific token, respectively. Experimental validation on a subset of CelebA-HQ face images dataset demonstrates that our approach outperforms existing methods. Besides this, our method presents two important advantages derived from the qualitative evaluation: (i) we obtain better protection results for lower noise levels than our competitors; and (ii) we protect the content from unauthorized use thereby protecting the individual's identity from potential misuse.
comment: Accepted at Safe Generative AI Workshop (NeurIPS 2024)
☆ Unsupervised Event Outlier Detection in Continuous Time
Event sequence data record the occurrences of events in continuous time. Event sequence forecasting based on temporal point processes (TPPs) has been extensively studied, but outlier or anomaly detection, especially without any supervision from humans, is still underexplored. In this work, we develop, to the best our knowledge, the first unsupervised outlier detection approach to detecting abnormal events. Our novel unsupervised outlier detection framework is based on ideas from generative adversarial networks (GANs) and reinforcement learning (RL). We train a 'generator' that corrects outliers in the data with a 'discriminator' that learns to discriminate the corrected data from the real data, which may contain outliers. A key insight is that if the generator made a mistake in the correction, it would generate anomalies that are different from the anomalies in the real data, so it serves as data augmentation for the discriminator learning. Different from typical GAN-based outlier detection approaches, our method employs the generator to detect outliers in an online manner. The experimental results show that our method can detect event outliers more accurately than the state-of-the-art approaches.
☆ Turbofan Engine Remaining Useful Life (RUL) Prediction Based on Bi-Directional Long Short-Term Memory (BLSTM)
The aviation industry is rapidly evolving, driven by advancements in technology. Turbofan engines used in commercial aerospace are very complex systems. The majority of turbofan engine components are susceptible to degradation over the life of their operation. Turbofan engine degradation has an impact to engine performance, operability, and reliability. Predicting accurate remaining useful life (RUL) of a commercial turbofan engine based on a variety of complex sensor data is of paramount importance for the safety of the passengers, safety of flight, and for cost effective operations. That is why it is essential for turbofan engines to be monitored, controlled, and maintained. RUL predictions can either come from model-based or data-based approaches. The model-based approach can be very expensive due to the complexity of the mathematical models and the deep expertise that is required in the domain of physical systems. The data-based approach is more frequently used nowadays thanks to the high computational complexity of computers, the advancements in Machine Learning (ML) models, and advancements in sensors. This paper is going to be focused on Bi-Directional Long Short-Term Memory (BLSTM) models but will also provide a benchmark of several RUL prediction databased models. The proposed RUL prediction models are going to be evaluated based on engine failure prediction benchmark dataset Commercial Modular Aero-Propulsion System Simulation (CMAPSS). The CMAPSS dataset is from NASA which contains turbofan engine run to failure events.
☆ Machine Learning for the Digital Typhoon Dataset: Extensions to Multiple Basins and New Developments in Representations and Tasks
This paper presents the Digital Typhoon Dataset V2, a new version of the longest typhoon satellite image dataset for 40+ years aimed at benchmarking machine learning models for long-term spatio-temporal data. The new addition in Dataset V2 is tropical cyclone data from the southern hemisphere, in addition to the northern hemisphere data in Dataset V1. Having data from two hemispheres allows us to ask new research questions about regional differences across basins and hemispheres. We also discuss new developments in representations and tasks of the dataset. We first introduce a self-supervised learning framework for representation learning. Combined with the LSTM model, we discuss performance on intensity forecasting and extra-tropical transition forecasting tasks. We then propose new tasks, such as the typhoon center estimation task. We show that an object detection-based model performs better for stronger typhoons. Finally, we study how machine learning models can generalize across basins and hemispheres, by training the model on the northern hemisphere data and testing it on the southern hemisphere data. The dataset is publicly available at \url{http://agora.ex.nii.ac.jp/digital-typhoon/dataset/} and \url{https://github.com/kitamoto-lab/digital-typhoon/}.
☆ Statistical inference for quantum singular models
Deep learning has seen substantial achievements, with numerical and theoretical evidence suggesting that singularities of statistical models are considered a contributing factor to its performance. From this remarkable success of classical statistical models, it is naturally expected that quantum singular models will play a vital role in many quantum statistical tasks. However, while the theory of quantum statistical models in regular cases has been established, theoretical understanding of quantum singular models is still limited. To investigate the statistical properties of quantum singular models, we focus on two prominent tasks in quantum statistical inference: quantum state estimation and model selection. In particular, we base our study on classical singular learning theory and seek to extend it within the framework of Bayesian quantum state estimation. To this end, we define quantum generalization and training loss functions and give their asymptotic expansions through algebraic geometrical methods. The key idea of the proof is the introduction of a quantum analog of the likelihood function using classical shadows. Consequently, we construct an asymptotically unbiased estimator of the quantum generalization loss, the quantum widely applicable information criterion (QWAIC), as a computable model selection metric from given measurement outcomes.
comment: 57 pages, 8 figures
☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the greater scope of Deep Learning-based computer vision. Furthermore, their widespread applicability in critical real-world tasks has given rise to challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation by discussing fundamental concepts in uncertainty that govern advancements in the field as well as the application to various tasks. We identify that quantifying aleatoric and epistemic uncertainty approximates Bayesian inference w.r.t. to either latent variables or model parameters, respectively. Moreover, literature on both uncertainties trace back to four key applications; (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) active learning. Then, a discussion follows that includes an overview of utilized datasets for each of the applications and comparison of the available methods. We also highlight challenges related to architectures, uncertainty-based active learning, standardization and benchmarking, and recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 20 pages
☆ Machine learning for cerebral blood vessels' malformations
Cerebral aneurysms and arteriovenous malformations are life-threatening hemodynamic pathologies of the brain. While surgical intervention is often essential to prevent fatal outcomes, it carries significant risks both during the procedure and in the postoperative period, making the management of these conditions highly challenging. Parameters of cerebral blood flow, routinely monitored during medical interventions, could potentially be utilized in machine learning-assisted protocols for risk assessment and therapeutic prognosis. To this end, we developed a linear oscillatory model of blood velocity and pressure for clinical data acquired from neurosurgical operations. Using the method of Sparse Identification of Nonlinear Dynamics (SINDy), the parameters of our model can be reconstructed online within milliseconds from a short time series of the hemodynamic variables. The identified parameter values enable automated classification of the blood-flow pathologies by means of logistic regression, achieving an accuracy of 73 %. Our results demonstrate the potential of this model for both diagnostic and prognostic applications, providing a robust and interpretable framework for assessing cerebral blood vessel conditions.
comment: 14 pages, 6 main figures, 5 supplementary figures, 2 supplementary tables
☆ Towards Foundation Models for Critical Care Time Series NeurIPS 2024
Notable progress has been made in generalist medical large language models across various healthcare areas. However, large-scale modeling of in-hospital time series data - such as vital signs, lab results, and treatments in critical care - remains underexplored. Existing datasets are relatively small, but combining them can enhance patient diversity and improve model robustness. To effectively utilize these combined datasets for large-scale modeling, it is essential to address the distribution shifts caused by varying treatment policies, necessitating the harmonization of treatment variables across the different datasets. This work aims to establish a foundation for training large-scale multi-variate time series models on critical care data and to provide a benchmark for machine learning models in transfer learning across hospitals to study and address distribution shift challenges. We introduce a harmonized dataset for sequence modeling and transfer learning research, representing the first large-scale collection to include core treatment variables. Future plans involve expanding this dataset to support further advancements in transfer learning and the development of scalable, generalizable models for critical healthcare applications.
comment: Accepted for Oral Presentation at AIM-FM Workshop at NeurIPS 2024
☆ A Data-Driven Approach to Dataflow-Aware Online Scheduling for Graph Neural Network Inference
Graph Neural Networks (GNNs) have shown significant promise in various domains, such as recommendation systems, bioinformatics, and network analysis. However, the irregularity of graph data poses unique challenges for efficient computation, leading to the development of specialized GNN accelerator architectures that surpass traditional CPU and GPU performance. Despite this, the structural diversity of input graphs results in varying performance across different GNN accelerators, depending on their dataflows. This variability in performance due to differing dataflows and graph properties remains largely unexplored, limiting the adaptability of GNN accelerators. To address this, we propose a data-driven framework for dataflow-aware latency prediction in GNN inference. Our approach involves training regressors to predict the latency of executing specific graphs on particular dataflows, using simulations on synthetic graphs. Experimental results indicate that our regressors can predict the optimal dataflow for a given graph with up to 91.28% accuracy and a Mean Absolute Percentage Error (MAPE) of 3.78%. Additionally, we introduce an online scheduling algorithm that uses these regressors to enhance scheduling decisions. Our experiments demonstrate that this algorithm achieves up to $3.17\times$ speedup in mean completion time and $6.26\times$ speedup in mean execution time compared to the best feasible baseline across all datasets.
comment: Accepted for ASP-DAC 2025
☆ Solaris: A Foundation Model of the Sun
Foundation models have demonstrated remarkable success across various scientific domains, motivating our exploration of their potential in solar physics. In this paper, we present Solaris, the first foundation model for forecasting the Sun's atmosphere. We leverage 13 years of full-disk, multi-wavelength solar imagery from the Solar Dynamics Observatory, spanning a complete solar cycle, to pre-train Solaris for 12-hour interval forecasting. Solaris is built on a large-scale 3D Swin Transformer architecture with 109 million parameters. We demonstrate Solaris' ability to generalize by fine-tuning on a low-data regime using a single wavelength (1700 {\AA}), that was not included in pre-training, outperforming models trained from scratch on this specific wavelength. Our results indicate that Solaris can effectively capture the complex dynamics of the solar atmosphere and transform solar forecasting.
☆ Local Learning for Covariate Selection in Nonparametric Causal Effect Estimation with Latent Variables
Estimating causal effects from nonexperimental data is a fundamental problem in many fields of science. A key component of this task is selecting an appropriate set of covariates for confounding adjustment to avoid bias. Most existing methods for covariate selection often assume the absence of latent variables and rely on learning the global network structure among variables. However, identifying the global structure can be unnecessary and inefficient, especially when our primary interest lies in estimating the effect of a treatment variable on an outcome variable. To address this limitation, we propose a novel local learning approach for covariate selection in nonparametric causal effect estimation, which accounts for the presence of latent variables. Our approach leverages testable independence and dependence relationships among observed variables to identify a valid adjustment set for a target causal relationship, ensuring both soundness and completeness under standard assumptions. We validate the effectiveness of our algorithm through extensive experiments on both synthetic and real-world data.
☆ CATP-LLM: Empowering Large Language Models for Cost-Aware Tool Planning
Utilizing large language models (LLMs) for tool planning has emerged as a promising avenue for developing general AI systems, where LLMs automatically schedule external tools (e.g. vision models) to tackle complex tasks based on task descriptions. To push this paradigm toward practical applications, it is crucial for LLMs to consider tool execution costs (e.g. execution time) for tool planning. Unfortunately, prior studies overlook the tool execution costs, leading to the generation of expensive plans of which the costs outweigh task performance. To fill this gap, we propose the Cost-Aware Tool Planning with LLMs (CATP-LLM) framework, which for the first time provides a coherent design to empower LLMs for cost-aware tool planning. Specifically, CATP-LLM incorporates a tool planning language to enhance the LLM to generate non-sequential plans of multiple branches for efficient concurrent tool execution and cost reduction. Moreover, it further designs a cost-aware offline reinforcement learning algorithm to fine-tune the LLM to optimize the performance-cost trade-off in tool planning. In lack of public cost-related datasets, we further present OpenCATP, the first platform for cost-aware planning evaluation. Experiments on OpenCATP show that CATP-LLM outperforms GPT-4 even when using Llama2-7B as its backbone, with the average improvement of 28.2%-30.2% higher plan performance and 24.7%-45.8% lower costs even on the challenging planning tasks. The codes of CATP-LLM and OpenCATP will be publicly available.
comment: In submission
☆ Learning from Relevant Subgoals in Successful Dialogs using Iterative Training for Task-oriented Dialog Systems
Task-oriented Dialog (ToD) systems have to solve multiple subgoals to accomplish user goals, whereas feedback is often obtained only at the end of the dialog. In this work, we propose SUIT (SUbgoal-aware ITerative Training), an iterative training approach for improving ToD systems. We sample dialogs from the model we aim to improve and determine subgoals that contribute to dialog success using distant supervision to obtain high quality training samples. We show how this data improves supervised fine-tuning or, alternatively, preference learning results. SUIT is able to iteratively generate more data instead of relying on fixed static sets. SUIT reaches new state-of-the-art performance on a popular ToD benchmark.
☆ Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Federated Learning (FL) is a distributed learning approach that trains neural networks across multiple devices while keeping their local data private. However, FL often faces challenges due to data heterogeneity, leading to inconsistent local optima among clients. These inconsistencies can cause unfavorable convergence behavior and generalization performance degradation. Existing studies mainly describe this issue through \textit{convergence analysis}, focusing on how well a model fits training data, or through \textit{algorithmic stability}, which examines the generalization gap. However, neither approach precisely captures the generalization performance of FL algorithms, especially for neural networks. In this paper, we introduce the first generalization dynamics analysis framework in federated optimization, highlighting the trade-offs between model stability and optimization. Through this framework, we show how the generalization of FL algorithms is affected by the interplay of algorithmic stability and optimization. This framework applies to standard federated optimization and its advanced versions, like server momentum. We find that fast convergence from large local steps or accelerated momentum enlarges stability but obtains better generalization performance. Our insights into these trade-offs can guide the practice of future algorithms for better generalization.
☆ DiffDesign: Controllable Diffusion with Meta Prior for Efficient Interior Design Generation
Interior design is a complex and creative discipline involving aesthetics, functionality, ergonomics, and materials science. Effective solutions must meet diverse requirements, typically producing multiple deliverables such as renderings and design drawings from various perspectives. Consequently, interior design processes are often inefficient and demand significant creativity. With advances in machine learning, generative models have emerged as a promising means of improving efficiency by creating designs from text descriptions or sketches. However, few generative works focus on interior design, leading to substantial discrepancies between outputs and practical needs, such as differences in size, spatial scope, and the lack of controllable generation quality. To address these challenges, we propose DiffDesign, a controllable diffusion model with meta priors for efficient interior design generation. Specifically, we utilize the generative priors of a 2D diffusion model pre-trained on a large image dataset as our rendering backbone. We further guide the denoising process by disentangling cross-attention control over design attributes, such as appearance, pose, and size, and introduce an optimal transfer-based alignment module to enforce view consistency. Simultaneously, we construct an interior design-specific dataset, DesignHelper, consisting of over 400 solutions across more than 15 spatial types and 15 design styles. This dataset helps fine-tune DiffDesign. Extensive experiments conducted on various benchmark datasets demonstrate the effectiveness and robustness of DiffDesign.
comment: 32 pages
☆ Evaluating Rank-N-Contrast: Continuous and Robust Representations for Regression
This document is a replication of the original "Rank-N-Contrast" (arXiv:2210.01189v2) paper published in 2023. This evaluation is done for academic purposes. Deep regression models often fail to capture the continuous nature of sample orders, creating fragmented representations and suboptimal performance. To address this, we reproduced the Rank-N-Contrast (RNC) framework, which learns continuous representations by contrasting samples by their rankings in the target space. Our study validates RNC's theoretical and empirical benefits, including improved performance and robustness. We extended the evaluation to an additional regression dataset and conducted robustness tests using a holdout method, where a specific range of continuous data was excluded from the training set. This approach assessed the model's ability to generalise to unseen data and achieve state-of-the-art performance. This replication study validates the original findings and broadens the understanding of RNC's applicability and robustness.
☆ A Graph Neural Architecture Search Approach for Identifying Bots in Social Media
Social media platforms, including X, Facebook, and Instagram, host millions of daily users, giving rise to bots-automated programs disseminating misinformation and ideologies with tangible real-world consequences. While bot detection in platform X has been the area of many deep learning models with adequate results, most approaches neglect the graph structure of social media relationships and often rely on hand-engineered architectures. Our work introduces the implementation of a Neural Architecture Search (NAS) technique, namely Deep and Flexible Graph Neural Architecture Search (DFG-NAS), tailored to Relational Graph Convolutional Neural Networks (RGCNs) in the task of bot detection in platform X. Our model constructs a graph that incorporates both the user relationships and their metadata. Then, DFG-NAS is adapted to automatically search for the optimal configuration of Propagation and Transformation functions in the RGCNs. Our experiments are conducted on the TwiBot-20 dataset, constructing a graph with 229,580 nodes and 227,979 edges. We study the five architectures with the highest performance during the search and achieve an accuracy of 85.7%, surpassing state-of-the-art models. Our approach not only addresses the bot detection challenge but also advocates for the broader implementation of NAS models in neural network design automation.
☆ Even Sparser Graph Transformers
Graph Transformers excel in long-range dependency modeling, but generally require quadratic memory complexity in the number of nodes in an input graph, and hence have trouble scaling to large graphs. Sparse attention variants such as Exphormer can help, but may require high-degree augmentations to the input graph for good performance, and do not attempt to sparsify an already-dense input graph. As the learned attention mechanisms tend to use few of these edges, such high-degree connections may be unnecessary. We show (empirically and with theoretical backing) that attention scores on graphs are usually quite consistent across network widths, and use this observation to propose a two-stage procedure, which we call Spexphormer: first, train a narrow network on the full augmented graph. Next, use only the active connections to train a wider network on a much sparser graph. We establish theoretical conditions when a narrow network's attention scores can match those of a wide network, and show that Spexphormer achieves good performance with drastically reduced memory requirements on various graph datasets.
☆ Deep Learning for Motion Classification in Ankle Exoskeletons Using Surface EMG and IMU Signals
Ankle exoskeletons have garnered considerable interest for their potential to enhance mobility and reduce fall risks, particularly among the aging population. The efficacy of these devices relies on accurate real-time prediction of the user's intended movements through sensor-based inputs. This paper presents a novel motion prediction framework that integrates three Inertial Measurement Units (IMUs) and eight surface Electromyography (sEMG) sensors to capture both kinematic and muscular activity data. A comprehensive set of activities, representative of everyday movements in barrier-free environments, was recorded for the purpose. Our findings reveal that Convolutional Neural Networks (CNNs) slightly outperform Long Short-Term Memory (LSTM) networks on a dataset of five motion tasks, achieving classification accuracies of $96.5 \pm 0.8 \%$ and $87.5 \pm 2.9 \%$, respectively. Furthermore, we demonstrate the system's proficiency in transfer learning, enabling accurate motion classification for new subjects using just ten samples per class for finetuning. The robustness of the model is demonstrated by its resilience to sensor failures resulting in absent signals, maintaining reliable performance in real-world scenarios. These results underscore the potential of deep learning algorithms to enhance the functionality and safety of ankle exoskeletons, ultimately improving their usability in daily life.
☆ Local Bayesian Optimization for Controller Tuning with Crash Constraints
Controller tuning is crucial for closed-loop performance but often involves manual adjustments. Although Bayesian optimization (BO) has been established as a data-efficient method for automated tuning, applying it to large and high-dimensional search spaces remains challenging. We extend a recently proposed local variant of BO to include crash constraints, where the controller can only be successfully evaluated in an a-priori unknown feasible region. We demonstrate the efficiency of the proposed method through simulations and hardware experiments. Our findings showcase the potential of local BO to enhance controller performance and reduce the time and resources necessary for tuning.
comment: Published in at-Automatisierungstechnik
☆ Unraveling Arithmetic in Large Language Models: The Role of Algebraic Structures
Large language models (LLMs) have demonstrated remarkable mathematical capabilities, largely driven by chain-of-thought (CoT) prompting, which decomposes complex reasoning into step-by-step solutions. This approach has enabled significant advancements, as evidenced by performance on benchmarks like GSM8K and MATH. However, the mechanisms underlying LLMs' ability to perform arithmetic in a single step of CoT remain poorly understood. Existing studies debate whether LLMs encode numerical values or rely on symbolic reasoning, while others explore attention and multi-layered processing in arithmetic tasks. In this work, we propose that LLMs learn arithmetic by capturing algebraic structures, such as \emph{Commutativity} and \emph{Identity} properties. Since these structures are observable through input-output relationships, they can generalize to unseen data. We empirically demonstrate that LLMs can learn algebraic structures using a custom dataset of arithmetic problems. Our findings indicate that leveraging algebraic structures can enhance the LLMs' arithmetic capabilities, offering insights into improving their arithmetic performance.
☆ Transparent Neighborhood Approximation for Text Classifier Explanation
Recent literature highlights the critical role of neighborhood construction in deriving model-agnostic explanations, with a growing trend toward deploying generative models to improve synthetic instance quality, especially for explaining text classifiers. These approaches overcome the challenges in neighborhood construction posed by the unstructured nature of texts, thereby improving the quality of explanations. However, the deployed generators are usually implemented via neural networks and lack inherent explainability, sparking arguments over the transparency of the explanation process itself. To address this limitation while preserving neighborhood quality, this paper introduces a probability-based editing method as an alternative to black-box text generators. This approach generates neighboring texts by implementing manipulations based on in-text contexts. Substituting the generator-based construction process with recursive probability-based editing, the resultant explanation method, XPROB (explainer with probability-based editing), exhibits competitive performance according to the evaluation conducted on two real-world datasets. Additionally, XPROB's fully transparent and more controllable construction process leads to superior stability compared to the generator-based explainers.
comment: IEEE DSAA'24
☆ Efficient pooling of predictions via kernel embeddings
Probabilistic predictions are probability distributions over the set of possible outcomes. Such predictions quantify the uncertainty in the outcome, making them essential for effective decision making. By combining multiple predictions, the information sources used to generate the predictions are pooled, often resulting in a more informative forecast. Probabilistic predictions are typically combined by linearly pooling the individual predictive distributions; this encompasses several ensemble learning techniques, for example. The weights assigned to each prediction can be estimated based on their past performance, allowing more accurate predictions to receive a higher weight. This can be achieved by finding the weights that optimise a proper scoring rule over some training data. By embedding predictions into a Reproducing Kernel Hilbert Space (RKHS), we illustrate that estimating the linear pool weights that optimise kernel-based scoring rules is a convex quadratic optimisation problem. This permits an efficient implementation of the linear pool when optimally combining predictions on arbitrary outcome domains. This result also holds for other combination strategies, and we additionally study a flexible generalisation of the linear pool that overcomes some of its theoretical limitations, whilst allowing an efficient implementation within the RKHS framework. These approaches are compared in an application to operational wind speed forecasts, where this generalisation is found to offer substantial improvements upon the traditional linear pool.
☆ Flow Annealed Importance Sampling Bootstrap meets Differentiable Particle Physics NeurIPS
High-energy physics requires the generation of large numbers of simulated data samples from complex but analytically tractable distributions called matrix elements. Surrogate models, such as normalizing flows, are gaining popularity for this task due to their computational efficiency. We adopt an approach based on Flow Annealed importance sampling Bootstrap (FAB) that evaluates the differentiable target density during training and helps avoid the costly generation of training data in advance. We show that FAB reaches higher sampling efficiency with fewer target evaluations in high dimensions in comparison to other methods.
comment: Accepted at the 'Machine Learning and the Physical Sciences 2024' workshop at NeurIPS
☆ Effective Non-Random Extreme Learning Machine
The Extreme Learning Machine (ELM) is a growing statistical technique widely applied to regression problems. In essence, ELMs are single-layer neural networks where the hidden layer weights are randomly sampled from a specific distribution, while the output layer weights are learned from the data. Two of the key challenges with this approach are the architecture design, specifically determining the optimal number of neurons in the hidden layer, and the method's sensitivity to the random initialization of hidden layer weights. This paper introduces a new and enhanced learning algorithm for regression tasks, the Effective Non-Random ELM (ENR-ELM), which simplifies the architecture design and eliminates the need for random hidden layer weight selection. The proposed method incorporates concepts from signal processing, such as basis functions and projections, into the ELM framework. We introduce two versions of the ENR-ELM: the approximated ENR-ELM and the incremental ENR-ELM. Experimental results on both synthetic and real datasets demonstrate that our method overcomes the problems of traditional ELM while maintaining comparable predictive performance.
☆ EigenHearts: Cardiac Diseases Classification Using EigenFaces Approach
In the realm of cardiovascular medicine, medical imaging plays a crucial role in accurately classifying cardiac diseases and making precise diagnoses. However, the field faces significant challenges when integrating data science techniques, as a significant volume of images is required for these techniques. As a consequence, it is necessary to investigate different avenues to overcome this challenge. In this contribution, we offer an innovative tool to conquer this limitation. In particular, we delve into the application of a well recognized method known as the EigenFaces approach to classify cardiac diseases. This approach was originally motivated for efficiently representing pictures of faces using principal component analysis, which provides a set of eigenvectors (aka eigenfaces), explaining the variation between face images. As this approach proven to be efficient for face recognition, it motivated us to explore its efficiency on more complicated data bases. In particular, we integrate this approach, with convolutional neural networks (CNNs) to classify echocardiography images taken from mice in five distinct cardiac conditions (healthy, diabetic cardiomyopathy, myocardial infarction, obesity and TAC hypertension). Performing a preprocessing step inspired from the eigenfaces approach on the echocardiography datasets, yields sets of pod modes, which we will call eigenhearts. To demonstrate the proposed approach, we compare two testcases: (i) supplying the CNN with the original images directly, (ii) supplying the CNN with images projected into the obtained pod modes. The results show a substantial and noteworthy enhancement when employing SVD for pre-processing, with classification accuracy increasing by approximately 50%.
comment: 16 pages, 9 figures, 3 tables
☆ Batch Bayesian Optimization via Expected Subspace Improvement
Extending Bayesian optimization to batch evaluation can enable the designer to make the most use of parallel computing technology. Most of current batch approaches use artificial functions to simulate the sequential Bayesian optimization algorithm's behavior to select a batch of points for parallel evaluation. However, as the batch size grows, the accumulated error introduced by these artificial functions increases rapidly, which dramatically decreases the optimization efficiency of the algorithm. In this work, we propose a simple and efficient approach to extend Bayesian optimization to batch evaluation. Different from existing batch approaches, the idea of the new approach is to draw a batch of subspaces of the original problem and select one acquisition point from each subspace. To achieve this, we propose the expected subspace improvement criterion to measure the amount of the improvement that a candidate point can achieve within a certain subspace. By optimizing these expected subspace improvement functions simultaneously, we can get a batch of query points for expensive evaluation. Numerical experiments show that our proposed approach can achieve near-linear speedup when compared with the sequential Bayesian optimization algorithm, and performs very competitively when compared with eight state-of-the-art batch algorithms. This work provides a simple yet efficient approach for batch Bayesian optimization. A Matlab implementation of our approach is available at https://github.com/zhandawei/Expected_Subspace_Improvement_Batch_Bayesian_Optimization
☆ Video-Text Dataset Construction from Multi-AI Feedback: Promoting Weak-to-Strong Preference Learning for Video Large Language Models
High-quality video-text preference data is crucial for Multimodal Large Language Models (MLLMs) alignment. However, existing preference data is very scarce. Obtaining VQA preference data for preference training is costly, and manually annotating responses is highly unreliable, which could result in low-quality pairs. Meanwhile, AI-generated responses controlled by temperature adjustment lack diversity. To address these issues, we propose a high-quality VQA preference dataset, called \textit{\textbf{M}ultiple \textbf{M}ultimodal \textbf{A}rtificial \textbf{I}ntelligence \textbf{P}reference Datasets in \textbf{V}QA} (\textbf{MMAIP-V}), which is constructed by sampling from the response distribution set and using an external scoring function for response evaluation. Furthermore, to fully leverage the preference knowledge in MMAIP-V and ensure sufficient optimization, we propose \textit{\textbf{Iter}ative \textbf{W}eak-to-\textbf{S}trong \textbf{R}einforcement \textbf{L}earning from \textbf{AI} \textbf{F}eedback for video MLLMs} (\textbf{Iter-W2S-RLAIF}), a framework that gradually enhances MLLMs' alignment capabilities by iteratively updating the reference model and performing parameter extrapolation. Finally, we propose an unbiased and information-complete evaluation scheme in VQA evaluation. Experiments demonstrate that MMAIP-V is beneficial for MLLMs in preference learning and Iter-W2S-RLAIF fully exploits the alignment information in MMAIP-V. We believe that the proposed automatic VQA preference data generation pipeline based on AI feedback can greatly promote future work in the MLLMs alignment. \textbf{Code and dataset are available} \href{https://anonymous.4open.science/r/MMAIP-V_Iter-W2S-RLAIF-702F}{MMAIP-V\_Iter-W2S-RLAIF-702F}.
☆ Neural Network-based High-index Saddle Dynamics Method for Searching Saddle Points and Solution Landscape
The high-index saddle dynamics (HiSD) method is a powerful approach for computing saddle points and solution landscape. However, its practical applicability is constrained by the need for the explicit energy function expression. To overcome this challenge, we propose a neural network-based high-index saddle dynamics (NN-HiSD) method. It utilizes neural network-based surrogate model to approximates the energy function, allowing the use of the HiSD method in the cases where the energy function is either unavailable or computationally expensive. We further enhance the efficiency of the NN-HiSD method by incorporating momentum acceleration techniques, specifically Nesterov's acceleration and the heavy-ball method. We also provide a rigorous convergence analysis of the NN-HiSD method. We conduct numerical experiments on systems with and without explicit energy functions, specifically including the alanine dipeptide model and bacterial ribosomal assembly intermediates for the latter, demonstrating the effectiveness and reliability of the proposed method.
☆ Learn from Foundation Model: Fruit Detection Model without Manual Annotation
Recent breakthroughs in large foundation models have enabled the possibility of transferring knowledge pre-trained on vast datasets to domains with limited data availability. Agriculture is one of the domains that lacks sufficient data. This study proposes a framework to train effective, domain-specific, small models from foundation models without manual annotation. Our approach begins with SDM (Segmentation-Description-Matching), a stage that leverages two foundation models: SAM2 (Segment Anything in Images and Videos) for segmentation and OpenCLIP (Open Contrastive Language-Image Pretraining) for zero-shot open-vocabulary classification. In the second stage, a novel knowledge distillation mechanism is utilized to distill compact, edge-deployable models from SDM, enhancing both inference speed and perception accuracy. The complete method, termed SDM-D (Segmentation-Description-Matching-Distilling), demonstrates strong performance across various fruit detection tasks object detection, semantic segmentation, and instance segmentation) without manual annotation. It nearly matches the performance of models trained with abundant labels. Notably, SDM-D outperforms open-set detection methods such as Grounding SAM and YOLO-World on all tested fruit detection datasets. Additionally, we introduce MegaFruits, a comprehensive fruit segmentation dataset encompassing over 25,000 images, and all code and datasets are made publicly available at https://github.com/AgRoboticsResearch/SDM-D.git.
comment: 17 pages, 12 figures, conference or other essential info
☆ On the Robustness of the Successive Projection Algorithm
The successive projection algorithm (SPA) is a workhorse algorithm to learn the $r$ vertices of the convex hull of a set of $(r-1)$-dimensional data points, a.k.a. a latent simplex, which has numerous applications in data science. In this paper, we revisit the robustness to noise of SPA and several of its variants. In particular, when $r \geq 3$, we prove the tightness of the existing error bounds for SPA and for two more robust preconditioned variants of SPA. We also provide significantly improved error bounds for SPA, by a factor proportional to the conditioning of the $r$ vertices, in two special cases: for the first extracted vertex, and when $r \leq 2$. We then provide further improvements for the error bounds of a translated version of SPA proposed by Arora et al. (''A practical algorithm for topic modeling with provable guarantees'', ICML, 2013) in two special cases: for the first two extracted vertices, and when $r \leq 3$. Finally, we propose a new more robust variant of SPA that first shifts and lifts the data points in order to minimize the conditioning of the problem. We illustrate our results on synthetic data.
comment: 23 pages
☆ BadSFL: Backdoor Attack against Scaffold Federated Learning
Federated learning (FL) enables the training of deep learning models on distributed clients to preserve data privacy. However, this learning paradigm is vulnerable to backdoor attacks, where malicious clients can upload poisoned local models to embed backdoors into the global model, leading to attacker-desired predictions. Existing backdoor attacks mainly focus on FL with independently and identically distributed (IID) scenarios, while real-world FL training data are typically non-IID. Current strategies for non-IID backdoor attacks suffer from limitations in maintaining effectiveness and durability. To address these challenges, we propose a novel backdoor attack method, \name, specifically designed for the FL framework using the scaffold aggregation algorithm in non-IID settings. \name leverages a Generative Adversarial Network (GAN) based on the global model to complement the training set, achieving high accuracy on both backdoor and benign samples. It utilizes a specific feature as the backdoor trigger to ensure stealthiness, and exploits the Scaffold's control variate to predict the global model's convergence direction, ensuring the backdoor's persistence. Extensive experiments on three benchmark datasets demonstrate the high effectiveness, stealthiness, and durability of \name. Notably, our attack remains effective over 60 rounds in the global model and up to 3 times longer than existing baseline attacks after stopping the injection of malicious updates.
☆ Sparse patches adversarial attacks via extrapolating point-wise information NeurIPS 24
Sparse and patch adversarial attacks were previously shown to be applicable in realistic settings and are considered a security risk to autonomous systems. Sparse adversarial perturbations constitute a setting in which the adversarial perturbations are limited to affecting a relatively small number of points in the input. Patch adversarial attacks denote the setting where the sparse attacks are limited to a given structure, i.e., sparse patches with a given shape and number. However, previous patch adversarial attacks do not simultaneously optimize multiple patches' locations and perturbations. This work suggests a novel approach for sparse patches adversarial attacks via point-wise trimming dense adversarial perturbations. Our approach enables simultaneous optimization of multiple sparse patches' locations and perturbations for any given number and shape. Moreover, our approach is also applicable for standard sparse adversarial attacks, where we show that it significantly improves the state-of-the-art over multiple extensive settings. A reference implementation of the proposed method and the reported experiments is provided at \url{https://github.com/yanemcovsky/SparsePatches.git}
comment: AdvML-Frontiers 24: The 3nd Workshop on New Frontiers in Adversarial Machine Learning, NeurIPS 24
☆ MixPE: Quantization and Hardware Co-design for Efficient LLM Inference
Transformer-based large language models (LLMs) have achieved remarkable success as model sizes continue to grow, yet their deployment remains challenging due to significant computational and memory demands. Quantization has emerged as a promising solution, and state-of-the-art quantization algorithms for LLMs introduce the need for mixed-precision matrix multiplication (mpGEMM), where lower-precision weights are multiplied with higher-precision activations. Despite its benefits, current hardware accelerators such as GPUs and TPUs lack native support for efficient mpGEMM, leading to inefficient dequantization operations in the main sequential loop. To address this limitation, we introduce MixPE, a specialized mixed-precision processing element designed for efficient low-bit quantization in LLM inference. MixPE leverages two key innovations to minimize dequantization overhead and unlock the full potential of low-bit quantization. First, recognizing that scale and zero point are shared within each quantization group, we propose performing dequantization after per-group mpGEMM, significantly reducing dequantization overhead. Second, instead of relying on conventional multipliers, MixPE utilizes efficient shift\&add operations for multiplication, optimizing both computation and energy efficiency. Our experimental results demonstrate that MixPE surpasses the state-of-the-art quantization accelerators by $2.6\times$ speedup and $1.4\times$ energy reduction.
☆ VideoOrion: Tokenizing Object Dynamics in Videos
We present VideoOrion, a Video Large Language Model (Video-LLM) that explicitly captures the key semantic information in videos--the spatial-temporal dynamics of objects throughout the videos. VideoOrion employs expert vision models to extract object dynamics through a detect-segment-track pipeline, encoding them into a set of object tokens by aggregating spatial-temporal object features. Our method addresses the persistent challenge in Video-LLMs of efficiently compressing high-dimensional video data into semantic tokens that are comprehensible to LLMs. Compared to prior methods which resort to downsampling the original video or aggregating visual tokens using resamplers, leading to information loss and entangled semantics, VideoOrion not only offers a more natural and efficient way to derive compact, disentangled semantic representations but also enables explicit object modeling of video content with minimal computational cost. Moreover, the introduced object tokens naturally allow VideoOrion to accomplish video-based referring tasks. Experimental results show that VideoOrion can learn to make good use of the object tokens, and achieves competitive results on both general video question answering and video-based referring benchmarks.
☆ Graph Adapter of EEG Foundation Models for Parameter Efficient Fine Tuning
In diagnosing mental diseases from electroencephalography (EEG) data, neural network models such as Transformers have been employed to capture temporal dynamics. Additionally, it is crucial to learn the spatial relationships between EEG sensors, for which Graph Neural Networks (GNNs) are commonly used. However, fine-tuning large-scale complex neural network models simultaneously to capture both temporal and spatial features increases computational costs due to the more significant number of trainable parameters. It causes the limited availability of EEG datasets for downstream tasks, making it challenging to fine-tune large models effectively. We propose EEG-GraphAdapter (EGA), a parameter-efficient fine-tuning (PEFT) approach to address these challenges. EGA is integrated into pre-trained temporal backbone models as a GNN-based module and fine-tuned itself alone while keeping the backbone model parameters frozen. This enables the acquisition of spatial representations of EEG signals for downstream tasks, significantly reducing computational overhead and data requirements. Experimental evaluations on healthcare-related downstream tasks of Major Depressive Disorder and Abnormality Detection demonstrate that our EGA improves performance by up to 16.1% in the F1-score compared with the backbone BENDR model.
comment: Under review
☆ DeDe: Detecting Backdoor Samples for SSL Encoders via Decoders
Self-supervised learning (SSL) is pervasively exploited in training high-quality upstream encoders with a large amount of unlabeled data. However, it is found to be susceptible to backdoor attacks merely via polluting a small portion of training data. The victim encoders mismatch triggered inputs with target embeddings, e.g., match the triggered cat input to an airplane embedding, such that the downstream tasks are affected to misbehave when the trigger is activated. Emerging backdoor attacks have shown great threats in different SSL paradigms such as contrastive learning and CLIP, while few research is devoted to defending against such attacks. Besides, the existing ones fall short in detecting advanced stealthy backdoors. To address the limitations, we propose a novel detection mechanism, DeDe, which detects the activation of the backdoor mapping with the cooccurrence of victim encoder and trigger inputs. Specifically, DeDe trains a decoder for the SSL encoder on an auxiliary dataset (can be out-of-distribution or even slightly poisoned), such that for any triggered input that misleads to the target embedding, the decoder outputs an image significantly different from the input. We empirically evaluate DeDe on both contrastive learning and CLIP models against various types of backdoor attacks, and demonstrate its superior performance over SOTA detection methods in both upstream detection performance and ability of preventing backdoors in downstream tasks.
comment: 12 pages
☆ Local Intrinsic Dimensionality for Dynamic Graph Embeddings
The notion of local intrinsic dimensionality (LID) has important theoretical implications and practical applications in the fields of data mining and machine learning. Recent research efforts indicate that LID measures defined for graphs can improve graph representational learning methods based on random walks. In this paper, we discuss how NC-LID, a LID measure designed for static graphs, can be adapted for dynamic networks. Focusing on dynnode2vec as the most representative dynamic graph embedding method based on random walks, we examine correlations between NC-LID and the intrinsic quality of 10 real-world dynamic network embeddings. The obtained results show that NC-LID can be used as a good indicator of nodes whose embedding vectors do not tend to preserve temporal graph structure well. Thus, our empirical findings constitute the first step towards LID-aware dynamic graph embedding methods.
Causal Adjacency Learning for Spatiotemporal Prediction Over Graphs
Spatiotemporal prediction over graphs (STPG) is crucial for transportation systems. In existing STPG models, an adjacency matrix is an important component that captures the relations among nodes over graphs. However, most studies calculate the adjacency matrix by directly memorizing the data, such as distance- and correlation-based matrices. These adjacency matrices do not consider potential pattern shift for the test data, and may result in suboptimal performance if the test data has a different distribution from the training one. This issue is known as the Out-of-Distribution generalization problem. To address this issue, in this paper we propose a Causal Adjacency Learning (CAL) method to discover causal relations over graphs. The learned causal adjacency matrix is evaluated on a downstream spatiotemporal prediction task using real-world graph data. Results demonstrate that our proposed adjacency matrix can capture the causal relations, and using our learned adjacency matrix can enhance prediction performance on the OOD test data, even though causal learning is not conducted in the downstream task.
☆ Beyond Task Vectors: Selective Task Arithmetic Based on Importance Metrics
Pretrained models have revolutionized deep learning by enabling significant performance improvements across a wide range of tasks, leveraging large-scale, pre-learned knowledge representations. However, deploying these models in real-world multi-task learning (MTL) scenarios poses substantial challenges, primarily due to high computational costs and inefficiencies in inference. Traditional approaches such as pruning, quantization, and knowledge distillation have been explored to mitigate these issues, but they often fall short in fully addressing the complexities of multi-task environments. This paper introduces \textbf{\underline{S}}elective \textbf{\underline{T}}ask \textbf{\underline{A}}rithmetic \underline{\textbf{(STA)}}, a training-free framework designed to enhance multi-task performance through task-specific parameter fusion. STA addresses three key challenges: (i) \textbf{Parameter importance diversity: } Recognizing that different tasks relie on distinct parameters, STA employs a loss-sensitive parameter importance metric derived from a first-order Taylor expansion to accurately measure the importance of parameters for each task. (ii) \textbf{Over-reliance on hyperparameter tuning: }By enhancing the sparsity of task vectors through parameter importance metrics, STA reduces the need for extensive hyperparameter tuning, thereby improving the generalization and robustness of the model. (iii) \textbf{Neglect of other abilities in task arithmetic: } Previous works have largely overlooked the potential for more precise task forgetting. STA leverages its parameter importance metric to achieve more controlled and effective task forgetting, minimizing the impact of noisy elements that can degrade model performance. Experimental results demonstrate that STA achieves superior multi-task performance across benchmarks and excellent performance in task forgetting.
comment: Under Review
☆ Context Awareness Gate For Retrieval Augmented Generation
Retrieval Augmented Generation (RAG) has emerged as a widely adopted approach to mitigate the limitations of large language models (LLMs) in answering domain-specific questions. Previous research has predominantly focused on improving the accuracy and quality of retrieved data chunks to enhance the overall performance of the generation pipeline. However, despite ongoing advancements, the critical issue of retrieving irrelevant information -- which can impair the ability of the model to utilize its internal knowledge effectively -- has received minimal attention. In this work, we investigate the impact of retrieving irrelevant information in open-domain question answering, highlighting its significant detrimental effect on the quality of LLM outputs. To address this challenge, we propose the Context Awareness Gate (CAG) architecture, a novel mechanism that dynamically adjusts the LLMs' input prompt based on whether the user query necessitates external context retrieval. Additionally, we introduce the Vector Candidates method, a core mathematical component of CAG that is statistical, LLM-independent, and highly scalable. We further examine the distributions of relationships between contexts and questions, presenting a statistical analysis of these distributions. This analysis can be leveraged to enhance the context retrieval process in Retrieval Augmented Generation (RAG) systems.
☆ DF-GNN: Dynamic Fusion Framework for Attention Graph Neural Networks on GPUs
Attention Graph Neural Networks (AT-GNNs), such as GAT and Graph Transformer, have demonstrated superior performance compared to other GNNs. However, existing GNN systems struggle to efficiently train AT-GNNs on GPUs due to their intricate computation patterns. The execution of AT-GNN operations without kernel fusion results in heavy data movement and significant kernel launch overhead, while fixed thread scheduling in existing GNN kernel fusion strategies leads to sub-optimal performance, redundant computation and unbalanced workload. To address these challenges, we propose a dynamic kernel fusion framework, DF-GNN, for the AT-GNN family. DF-GNN introduces a dynamic bi-level thread scheduling strategy, enabling flexible adjustments to thread scheduling while retaining the benefits of shared memory within the fused kernel. DF-GNN tailors specific thread scheduling for operations in AT-GNNs and considers the performance bottleneck shift caused by the presence of super nodes. Additionally, DF-GNN is integrated with the PyTorch framework for high programmability. Evaluations across diverse GNN models and multiple datasets reveal that DF-GNN surpasses existing GNN kernel optimization works like cuGraph and dgNN, with speedups up to $7.0\times$ over the state-of-the-art non-fusion DGL sparse library. Moreover, it achieves an average speedup of $2.16\times$ in end-to-end training compared to the popular GNN computing framework DGL.
☆ DP-CDA: An Algorithm for Enhanced Privacy Preservation in Dataset Synthesis Through Randomized Mixing
In recent years, the growth of data across various sectors, including healthcare, security, finance, and education, has created significant opportunities for analysis and informed decision-making. However, these datasets often contain sensitive and personal information, which raises serious privacy concerns. Protecting individual privacy is crucial, yet many existing machine learning and data publishing algorithms struggle with high-dimensional data, facing challenges related to computational efficiency and privacy preservation. To address these challenges, we introduce an effective data publishing algorithm \emph{DP-CDA}. Our proposed algorithm generates synthetic datasets by randomly mixing data in a class-specific manner, and inducing carefully-tuned randomness to ensure formal privacy guarantees. Our comprehensive privacy accounting shows that DP-CDA provides a stronger privacy guarantee compared to existing methods, allowing for better utility while maintaining strict level of privacy. To evaluate the effectiveness of DP-CDA, we examine the accuracy of predictive models trained on the synthetic data, which serves as a measure of dataset utility. Importantly, we identify an optimal order of mixing that balances privacy guarantee with predictive accuracy. Our results indicate that synthetic datasets produced using the DP-CDA can achieve superior utility compared to those generated by traditional data publishing algorithms, even when subject to the same privacy requirements.
comment: Under review in Elsevier Array
☆ Why the Agent Made that Decision: Explaining Deep Reinforcement Learning with Vision Masks
Due to the inherent lack of transparency in deep neural networks, it is challenging for deep reinforcement learning (DRL) agents to gain trust and acceptance from users, especially in safety-critical applications such as medical diagnosis and military operations. Existing methods for explaining an agent's decision either require to retrain the agent using models that support explanation generation or rely on perturbation-based techniques to reveal the significance of different input features in the decision making process. However, retraining the agent may compromise its integrity and performance, while perturbation-based methods have limited performance and lack knowledge accumulation or learning capabilities. Moreover, since each perturbation is performed independently, the joint state of the perturbed inputs may not be physically meaningful. To address these challenges, we introduce $\textbf{VisionMask}$, a standalone explanation model trained end-to-end to identify the most critical regions in the agent's visual input that can explain its actions. VisionMask is trained in a self-supervised manner without relying on human-generated labels. Importantly, its training does not alter the agent model, hence preserving the agent's performance and integrity. We evaluate VisionMask on Super Mario Bros (SMB) and three Atari games. Compared to existing methods, VisionMask achieves a 14.9% higher insertion accuracy and a 30.08% higher F1-Score in reproducing original actions from the selected visual explanations. We also present examples illustrating how VisionMask can be used for counterfactual analysis.
☆ FUN-AD: Fully Unsupervised Learning for Anomaly Detection with Noisy Training Data WACV 2025
While the mainstream research in anomaly detection has mainly followed the one-class classification, practical industrial environments often incur noisy training data due to annotation errors or lack of labels for new or refurbished products. To address these issues, we propose a novel learning-based approach for fully unsupervised anomaly detection with unlabeled and potentially contaminated training data. Our method is motivated by two observations, that i) the pairwise feature distances between the normal samples are on average likely to be smaller than those between the anomaly samples or heterogeneous samples and ii) pairs of features mutually closest to each other are likely to be homogeneous pairs, which hold if the normal data has smaller variance than the anomaly data. Building on the first observation that nearest-neighbor distances can distinguish between confident normal samples and anomalies, we propose a pseudo-labeling strategy using an iteratively reconstructed memory bank (IRMB). The second observation is utilized as a new loss function to promote class-homogeneity between mutually closest pairs thereby reducing the ill-posedness of the task. Experimental results on two public industrial anomaly benchmarks and semantic anomaly examples validate the effectiveness of FUN-AD across different scenarios and anomaly-to-normal ratios. Our code is available at https://github.com/HY-Vision-Lab/FUNAD.
comment: Accepted at WACV 2025. Supplementary material included after references. 17 pages, 7 figures, 14 tables
☆ Adaptive Circuit Behavior and Generalization in Mechanistic Interpretability
Mechanistic interpretability aims to understand the inner workings of large neural networks by identifying circuits, or minimal subgraphs within the model that implement algorithms responsible for performing specific tasks. These circuits are typically discovered and analyzed using a narrowly defined prompt format. However, given the abilities of large language models (LLMs) to generalize across various prompt formats for the same task, it remains unclear how well these circuits generalize. For instance, it is unclear whether the models generalization results from reusing the same circuit components, the components behaving differently, or the use of entirely different components. In this paper, we investigate the generality of the indirect object identification (IOI) circuit in GPT-2 small, which is well-studied and believed to implement a simple, interpretable algorithm. We evaluate its performance on prompt variants that challenge the assumptions of this algorithm. Our findings reveal that the circuit generalizes surprisingly well, reusing all of its components and mechanisms while only adding additional input edges. Notably, the circuit generalizes even to prompt variants where the original algorithm should fail; we discover a mechanism that explains this which we term S2 Hacking. Our findings indicate that circuits within LLMs may be more flexible and general than previously recognized, underscoring the importance of studying circuit generalization to better understand the broader capabilities of these models.
comment: 10 pages, 8 figures
☆ BlendServe: Optimizing Offline Inference for Auto-regressive Large Models with Resource-aware Batching
Offline batch inference, which leverages the flexibility of request batching to achieve higher throughput and lower costs, is becoming more popular for latency-insensitive applications. Meanwhile, recent progress in model capability and modality makes requests more diverse in compute and memory demands, creating unique opportunities for throughput improvement by resource overlapping. However, a request schedule that maximizes resource overlapping can conflict with the schedule that maximizes prefix sharing, a widely-used performance optimization, causing sub-optimal inference throughput. We present BlendServe, a system that maximizes resource utilization of offline batch inference by combining the benefits of resource overlapping and prefix sharing using a resource-aware prefix tree. BlendServe exploits the relaxed latency requirements in offline batch inference to reorder and overlap requests with varied resource demands while ensuring high prefix sharing. We evaluate BlendServe on a variety of synthetic multi-modal workloads and show that it provides up to $1.44\times$ throughput boost compared to widely-used industry standards, vLLM and SGLang.
☆ LDACP: Long-Delayed Ad Conversions Prediction Model for Bidding Strategy
In online advertising, once an ad campaign is deployed, the automated bidding system dynamically adjusts the bidding strategy to optimize Cost Per Action (CPA) based on the number of ad conversions. For ads with a long conversion delay, relying solely on the real-time tracked conversion number as a signal for bidding strategy can significantly overestimate the current CPA, leading to conservative bidding strategies. Therefore, it is crucial to predict the number of long-delayed conversions. Nonetheless, it is challenging to predict ad conversion numbers through traditional regression methods due to the wide range of ad conversion numbers. Previous regression works have addressed this challenge by transforming regression problems into bucket classification problems, achieving success in various scenarios. However, specific challenges arise when predicting the number of ad conversions: 1) The integer nature of ad conversion numbers exacerbates the discontinuity issue in one-hot hard labels; 2) The long-tail distribution of ad conversion numbers complicates tail data prediction. In this paper, we propose the Long-Delayed Ad Conversions Prediction model for bidding strategy (LDACP), which consists of two sub-modules. To alleviate the issue of discontinuity in one-hot hard labels, the Bucket Classification Module with label Smoothing method (BCMS) converts one-hot hard labels into non-normalized soft labels, then fits these soft labels by minimizing classification loss and regression loss. To address the challenge of predicting tail data, the Value Regression Module with Proxy labels (VRMP) uses the prediction bias of aggregated pCTCVR as proxy labels. Finally, a Mixture of Experts (MoE) structure integrates the predictions from BCMS and VRMP to obtain the final predicted ad conversion number.
comment: 10 pages, 8 figures, 6 tables
☆ Very Basics of Tensors with Graphical Notations: Unfolding, Calculations, and Decompositions
Tensor network diagram (graphical notation) is a useful tool that graphically represents multiplications between multiple tensors using nodes and edges. Using the graphical notation, complex multiplications between tensors can be described simply and intuitively, and it also helps to understand the essence of tensor products. In fact, most of matrix/tensor products including inner product, outer product, Hadamard product, Kronecker product, and Khatri-Rao product can be written in graphical notation. These matrix/tensor operations are essential building blocks for the use of matrix/tensor decompositions in signal processing and machine learning. The purpose of this lecture note is to learn the very basics of tensors and how to represent them in mathematical symbols and graphical notation. Many papers using tensors omit these detailed definitions and explanations, which can be difficult for the reader. I hope this note will be of help to such readers.
☆ HiDP: Hierarchical DNN Partitioning for Distributed Inference on Heterogeneous Edge Platforms
Edge inference techniques partition and distribute Deep Neural Network (DNN) inference tasks among multiple edge nodes for low latency inference, without considering the core-level heterogeneity of edge nodes. Further, default DNN inference frameworks also do not fully utilize the resources of heterogeneous edge nodes, resulting in higher inference latency. In this work, we propose a hierarchical DNN partitioning strategy (HiDP) for distributed inference on heterogeneous edge nodes. Our strategy hierarchically partitions DNN workloads at both global and local levels by considering the core-level heterogeneity of edge nodes. We evaluated our proposed HiDP strategy against relevant distributed inference techniques over widely used DNN models on commercial edge devices. On average our strategy achieved 38% lower latency, 46% lower energy, and 56% higher throughput in comparison with other relevant approaches.
comment: 7 pages, 8 figures, 1 table, and 1 algorithm. The manuscript is accepted to be published in 28th Design, Automation and Test in Europe Conference (IEEE DATE, 2025)
☆ Cautious Optimizers: Improving Training with One Line of Code
AdamW has been the default optimizer for transformer pretraining. For many years, our community searches for faster and more stable optimizers with only constraint positive outcomes. In this work, we propose a \textbf{single-line modification in Pytorch} to any momentum-based optimizer, which we rename Cautious Optimizer, e.g. C-AdamW and C-Lion. Our theoretical result shows that this modification preserves Adam's Hamiltonian function and it does not break the convergence guarantee under the Lyapunov analysis. In addition, a whole new family of optimizers is revealed by our theoretical insight. Among them, we pick the simplest one for empirical experiments, showing speed-up on Llama and MAE pretraining up to $1.47\times$. Code is available at https://github.com/kyleliang919/C-Optim
☆ Exploring the Generalization Capabilities of AID-based Bi-level Optimization
Bi-level optimization has achieved considerable success in contemporary machine learning applications, especially for given proper hyperparameters. However, due to the two-level optimization structure, commonly, researchers focus on two types of bi-level optimization methods: approximate implicit differentiation (AID)-based and iterative differentiation (ITD)-based approaches. ITD-based methods can be readily transformed into single-level optimization problems, facilitating the study of their generalization capabilities. In contrast, AID-based methods cannot be easily transformed similarly but must stay in the two-level structure, leaving their generalization properties enigmatic. In this paper, although the outer-level function is nonconvex, we ascertain the uniform stability of AID-based methods, which achieves similar results to a single-level nonconvex problem. We conduct a convergence analysis for a carefully chosen step size to maintain stability. Combining the convergence and stability results, we give the generalization ability of AID-based bi-level optimization methods. Furthermore, we carry out an ablation study of the parameters and assess the performance of these methods on real-world tasks. Our experimental results corroborate the theoretical findings, demonstrating the effectiveness and potential applications of these methods.
☆ Boosting 3D Object Generation through PBR Materials SIGGRAPH
Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.
comment: Accepted to SIGGRAPH Asia 2024 Conference Papers
☆ Soft-TransFormers for Continual Learning
Inspired by Well-initialized Lottery Ticket Hypothesis (WLTH), which provides suboptimal fine-tuning solutions, we propose a novel fully fine-tuned continual learning (CL) method referred to as Soft-TransFormers (Soft-TF). Soft-TF sequentially learns and selects an optimal soft-network or subnetwork for each task. During sequential training in CL, Soft-TF jointly optimizes the weights of sparse layers to obtain task-adaptive soft (real-valued) networks or subnetworks (binary masks), while keeping the well-pre-trained layer parameters frozen. In inference, the identified task-adaptive network of Soft-TF masks the parameters of the pre-trained network, mapping to an optimal solution for each task and minimizing Catastrophic Forgetting (CF) - the soft-masking preserves the knowledge of the pre-trained network. Extensive experiments on Vision Transformer (ViT) and CLIP demonstrate the effectiveness of Soft-TF, achieving state-of-the-art performance across various CL scenarios, including Class-Incremental Learning (CIL) and Task-Incremental Learning (TIL), supported by convergence theory.
☆ VICON: Vision In-Context Operator Networks for Multi-Physics Fluid Dynamics Prediction
In-Context Operator Networks (ICONs) are models that learn operators across different types of PDEs using a few-shot, in-context approach. Although they show successful generalization to various PDEs, existing methods treat each data point as a single token, and suffer from computational inefficiency when processing dense data, limiting their application in higher spatial dimensions. In this work, we propose Vision In-Context Operator Networks (VICON), incorporating a vision transformer architecture that efficiently processes 2D functions through patch-wise operations. We evaluated our method on three fluid dynamics datasets, demonstrating both superior performance (reducing scaled $L^2$ error by $40\%$ and $61.6\%$ for two benchmark datasets for compressible flows, respectively) and computational efficiency (requiring only one-third of the inference time per frame) in long-term rollout predictions compared to the current state-of-the-art sequence-to-sequence model with fixed timestep prediction: Multiple Physics Pretraining (MPP). Compared to MPP, our method preserves the benefits of in-context operator learning, enabling flexible context formation when dealing with insufficient frame counts or varying timestep values.
☆ Machine-learning emergent spacetime from linear response in future tabletop quantum gravity experiments
We introduce a novel interpretable Neural Network (NN) model designed to perform precision bulk reconstruction under the AdS/CFT correspondence. According to the correspondence, a specific condensed matter system on a ring is holographically equivalent to a gravitational system on a bulk disk, through which tabletop quantum gravity experiments may be possible as reported in arXiv:2211.13863. The purpose of this paper is to reconstruct a higher-dimensional gravity metric from the condensed matter system data via machine learning using the NN. Our machine reads spatially and temporarily inhomogeneous linear response data of the condensed matter system, and incorporates a novel layer that implements the Runge-Kutta method to achieve better numerical control. We confirm that our machine can let a higher-dimensional gravity metric be automatically emergent as its interpretable weights, using a linear response of the condensed matter system as data, through supervised machine learning. The developed method could serve as a foundation for generic bulk reconstruction, i.e., a practical solution to the AdS/CFT correspondence, and would be implemented in future tabletop quantum gravity experiments.
comment: 24 pages, 10 figures
♻ ☆ Motion Code: Robust Time Series Classification and Forecasting via Sparse Variational Multi-Stochastic Processes Learning
Despite extensive research, time series classification and forecasting on noisy data remain highly challenging. The main difficulties lie in finding suitable mathematical concepts to describe time series and effectively separate noise from the true signals. Unlike traditional methods treating time series as static vectors or fixed sequences, we propose a novel framework that views each time series, regardless of length, as a realization of a continuous-time stochastic process. This mathematical approach captures dependencies across timestamps and detects hidden, time-varying signals within the noise. However, real-world data often involves multiple distinct dynamics, making it insufficient to model the entire process with a single stochastic model. To address this, we assign each dynamic a unique signature vector and introduce the concept of "most informative timestamps" to infer a sparse approximation of the individual dynamics from these vectors. The resulting model, called Motion Code, includes parameters that fully capture diverse underlying dynamics in an integrated manner, enabling simultaneous classification and forecasting of time series. Extensive experiments on noisy datasets, including real-world Parkinson's disease sensor tracking, demonstrate Motion Code's strong performance against established benchmarks for time series classification and forecasting.
comment: 20 pages, 5 figures, 4 tables
♻ ☆ Is Hyper-Parameter Optimization Different for Software Analytics?
Yes. SE data can have "smoother" boundaries between classes (compared to traditional AI data sets). To be more precise, the magnitude of the second derivative of the loss function found in SE data is typically much smaller. A new hyper-parameter optimizer, called SMOOTHIE, can exploit this idiosyncrasy of SE data. We compare SMOOTHIE and a state-of-the-art AI hyper-parameter optimizer on three tasks: (a) GitHub issue lifetime prediction (b) detecting static code warnings false alarm; (c) defect prediction. For completeness, we also show experiments on some standard AI datasets. SMOOTHIE runs faster and predicts better on the SE data--but ties on non-SE data with the AI tool. Hence we conclude that SE data can be different to other kinds of data; and those differences mean that we should use different kinds of algorithms for our data. To support open science and other researchers working in this area, all our scripts and datasets are available on-line at https://github.com/yrahul3910/smoothness-hpo/.
comment: v3, major revisions
♻ ☆ Multi-Modal Deep Learning for Credit Rating Prediction Using Text and Numerical Data Streams
Knowing which factors are significant in credit rating assignment leads to better decision-making. However, the focus of the literature thus far has been mostly on structured data, and fewer studies have addressed unstructured or multi-modal datasets. In this paper, we present an analysis of the most effective architectures for the fusion of deep learning models for the prediction of company credit rating classes, by using structured and unstructured datasets of different types. In these models, we tested different combinations of fusion strategies with different deep learning models, including CNN, LSTM, GRU, and BERT. We studied data fusion strategies in terms of level (including early and intermediate fusion) and techniques (including concatenation and cross-attention). Our results show that a CNN-based multi-modal model with two fusion strategies outperformed other multi-modal techniques. In addition, by comparing simple architectures with more complex ones, we found that more sophisticated deep learning models do not necessarily produce the highest performance; however, if attention-based models are producing the best results, cross-attention is necessary as a fusion strategy. Finally, our comparison of rating agencies on short-, medium-, and long-term performance shows that Moody's credit ratings outperform those of other agencies like Standard & Poor's and Fitch Ratings.
♻ ☆ Efficient Biological Data Acquisition through Inference Set Design
In drug discovery, highly automated high-throughput laboratories are used to screen a large number of compounds in search of effective drugs. These experiments are expensive, so one might hope to reduce their cost by experimenting on a subset of the compounds, and predicting the outcomes of the remaining experiments. In this work, we model this scenario as a sequential subset selection problem: we aim to select the smallest set of candidates in order to achieve some desired level of accuracy for the system as a whole. Our key observation is that, if there is heterogeneity in the difficulty of the prediction problem across the input space, selectively obtaining the labels for the hardest examples in the acquisition pool will leave only the relatively easy examples to remain in the inference set, leading to better overall system performance. We call this mechanism inference set design, and propose the use of a confidence-based active learning solution to prune out these challenging examples. Our algorithm includes an explicit stopping criterion that stops running the experiments when it is sufficiently confident that the system has reached the target performance. Our empirical studies on image and molecular datasets, as well as a real-world large-scale biological assay, show that active learning for inference set design leads to significant reduction in experimental cost while retaining high system performance.
♻ ☆ OminiControl: Minimal and Universal Control for Diffusion Transformer
In this paper, we introduce OminiControl, a highly versatile and parameter-efficient framework that integrates image conditions into pre-trained Diffusion Transformer (DiT) models. At its core, OminiControl leverages a parameter reuse mechanism, enabling the DiT to encode image conditions using itself as a powerful backbone and process them with its flexible multi-modal attention processors. Unlike existing methods, which rely heavily on additional encoder modules with complex architectures, OminiControl (1) effectively and efficiently incorporates injected image conditions with only ~0.1% additional parameters, and (2) addresses a wide range of image conditioning tasks in a unified manner, including subject-driven generation and spatially-aligned conditions such as edges, depth, and more. Remarkably, these capabilities are achieved by training on images generated by the DiT itself, which is particularly beneficial for subject-driven generation. Extensive evaluations demonstrate that OminiControl outperforms existing UNet-based and DiT-adapted models in both subject-driven and spatially-aligned conditional generation. Additionally, we release our training dataset, Subjects200K, a diverse collection of over 200,000 identity-consistent images, along with an efficient data synthesis pipeline to advance research in subject-consistent generation.
♻ ☆ Uncertainty in Supply Chain Digital Twins: A Quantum-Classical Hybrid Approach
This study investigates uncertainty quantification (UQ) using quantum-classical hybrid machine learning (ML) models for applications in complex and dynamic fields, such as attaining resiliency in supply chain digital twins and financial risk assessment. Although quantum feature transformations have been integrated into ML models for complex data tasks, a gap exists in determining their impact on UQ within their hybrid architectures (quantum-classical approach). This work applies existing UQ techniques for different models within a hybrid framework, examining how quantum feature transformation affects uncertainty propagation. Increasing qubits from 4 to 16 shows varied model responsiveness to outlier detection (OD) samples, which is a critical factor for resilient decision-making in dynamic environments. This work shows how quantum computing techniques can transform data features for UQ, particularly when combined with traditional methods.
♻ ☆ Efficient Interactive LLM Serving with Proxy Model-based Sequence Length Prediction
Large language models (LLMs) have been driving a new wave of interactive AI applications across numerous domains. However, efficiently serving LLM inference requests is challenging due to their unpredictable execution times originating from the autoregressive nature of generative models. Existing LLM serving systems exploit first-come-first-serve (FCFS) scheduling, suffering from head-of-line blocking issues. To address the non-deterministic nature of LLMs and enable efficient interactive LLM serving, we present a speculative shortest-job-first (SSJF) scheduler that uses a light proxy model to predict LLM output sequence lengths. Our open-source SSJF implementation does not require changes to memory management or batching strategies. Evaluations on real-world datasets and production workload traces show that SSJF reduces average job completion times by 30.5-39.6% and increases throughput by 2.2-3.6x compared to FCFS schedulers, across no batching, dynamic batching, and continuous batching settings.
comment: Accepted at AIOps'24
♻ ☆ Twin Transformer using Gated Dynamic Learnable Attention mechanism for Fault Detection and Diagnosis in the Tennessee Eastman Process
Fault detection and diagnosis (FDD) is a crucial task for ensuring the safety and efficiency of industrial processes. We propose a novel FDD methodology for the Tennessee Eastman Process (TEP), a widely used benchmark for chemical process control. The model employs two separate Transformer branches, enabling independent processing of input data and potential extraction of diverse information. A novel attention mechanism, Gated Dynamic Learnable Attention (GDLAttention), is introduced which integrates a gating mechanism and dynamic learning capabilities. The gating mechanism modulates the attention weights, allowing the model to focus on the most relevant parts of the input. The dynamic learning approach adapts the attention strategy during training, potentially leading to improved performance. The attention mechanism uses a bilinear similarity function, providing greater flexibility in capturing complex relationships between query and key vectors. In order to assess the effectiveness of our approach, we tested it against 21 and 18 distinct fault scenarios in TEP, and compared its performance with several established FDD techniques. The outcomes indicate that the method outperforms others in terms of accuracy, false alarm rate, and misclassification rate. This underscores the robustness and efficacy of the approach for FDD in intricate industrial processes.
♻ ☆ CSA: Data-efficient Mapping of Unimodal Features to Multimodal Features
Multimodal encoders like CLIP excel in tasks such as zero-shot image classification and cross-modal retrieval. However, they require excessive training data. We propose canonical similarity analysis (CSA), which uses two unimodal encoders to replicate multimodal encoders using limited data. CSA maps unimodal features into a multimodal space, using a new similarity score to retain only the multimodal information. CSA only involves the inference of unimodal encoders and a cubic-complexity matrix decomposition, eliminating the need for extensive GPU-based model training. Experiments show that CSA outperforms CLIP while requiring $300,000\times$ fewer multimodal data pairs and $6\times$ fewer unimodal data for ImageNet classification and misinformative news captions detection. CSA surpasses the state-of-the-art method to map unimodal features to multimodal features. We also demonstrate the ability of CSA with modalities beyond image and text, paving the way for future modality pairs with limited paired multimodal data but abundant unpaired unimodal data, such as lidar and text.
♻ ☆ BenchMARL: Benchmarking Multi-Agent Reinforcement Learning
The field of Multi-Agent Reinforcement Learning (MARL) is currently facing a reproducibility crisis. While solutions for standardized reporting have been proposed to address the issue, we still lack a benchmarking tool that enables standardization and reproducibility, while leveraging cutting-edge Reinforcement Learning (RL) implementations. In this paper, we introduce BenchMARL, the first MARL training library created to enable standardized benchmarking across different algorithms, models, and environments. BenchMARL uses TorchRL as its backend, granting it high performance and maintained state-of-the-art implementations while addressing the broad community of MARL PyTorch users. Its design enables systematic configuration and reporting, thus allowing users to create and run complex benchmarks from simple one-line inputs. BenchMARL is open-sourced on GitHub: https://github.com/facebookresearch/BenchMARL
♻ ☆ Accelerating Task Generalisation with Multi-Level Hierarchical Options ICLR 2025
Creating reinforcement learning agents that generalise effectively to new tasks is a key challenge in AI research. This paper introduces Fracture Cluster Options (FraCOs), a multi-level hierarchical reinforcement learning method that achieves state-of-the-art performance on difficult generalisation tasks. FraCOs identifies patterns in agent behaviour and forms options based on the expected future usefulness of those patterns, enabling rapid adaptation to new tasks. In tabular settings, FraCOs demonstrates effective transfer and improves performance as it grows in hierarchical depth. We evaluate FraCOs against state-of-the-art deep reinforcement learning algorithms in several complex procedurally generated environments. Our results show that FraCOs achieves higher in-distribution and out-of-distribution performance than competitors.
comment: 10 pages, under review for ICLR 2025
♻ ☆ Scalable and Efficient Temporal Graph Representation Learning via Forward Recent Sampling
Temporal graph representation learning (TGRL) is essential for modeling dynamic systems in real-world networks. However, traditional TGRL methods, despite their effectiveness, often face significant computational challenges and inference delays due to the inefficient sampling of temporal neighbors. Conventional sampling methods typically involve backtracking through the interaction history of each node. In this paper, we propose a novel TGRL framework, No-Looking-Back (NLB), which overcomes these challenges by introducing a forward recent sampling strategy. This strategy eliminates the need to backtrack through historical interactions by utilizing a GPU-executable, size-constrained hash table for each node. The hash table records a down-sampled set of recent interactions, enabling rapid query responses with minimal inference latency. The maintenance of this hash table is highly efficient, operating with $O(1)$ complexity. Fully compatible with GPU processing, NLB maximizes programmability, parallelism, and power efficiency. Empirical evaluations demonstrate that NLB not only matches or surpasses state-of-the-art methods in accuracy for tasks like link prediction and node classification across six real-world datasets but also achieves 1.32-4.40x faster training, 1.2-7.94x greater energy efficiency, and 1.63-12.95x lower inference latency compared to competitive baselines. The link to the code: https://github.com/Graph-COM/NLB.
comment: Learning on Graphs Conference (LoG 2024)
♻ ☆ GSE: Group-wise Sparse and Explainable Adversarial Attacks
Sparse adversarial attacks fool deep neural networks (DNNs) through minimal pixel perturbations, often regularized by the $\ell_0$ norm. Recent efforts have replaced this norm with a structural sparsity regularizer, such as the nuclear group norm, to craft group-wise sparse adversarial attacks. The resulting perturbations are thus explainable and hold significant practical relevance, shedding light on an even greater vulnerability of DNNs. However, crafting such attacks poses an optimization challenge, as it involves computing norms for groups of pixels within a non-convex objective. We address this by presenting a two-phase algorithm that generates group-wise sparse attacks within semantically meaningful areas of an image. Initially, we optimize a quasinorm adversarial loss using the $1/2-$quasinorm proximal operator tailored for non-convex programming. Subsequently, the algorithm transitions to a projected Nesterov's accelerated gradient descent with $2-$norm regularization applied to perturbation magnitudes. Rigorous evaluations on CIFAR-10 and ImageNet datasets demonstrate a remarkable increase in group-wise sparsity, e.g., $50.9\%$ on CIFAR-10 and $38.4\%$ on ImageNet (average case, targeted attack). This performance improvement is accompanied by significantly faster computation times, improved explainability, and a $100\%$ attack success rate.
♻ ☆ CliMB: An AI-enabled Partner for Clinical Predictive Modeling
Despite its significant promise and continuous technical advances, real-world applications of artificial intelligence (AI) remain limited. We attribute this to the "domain expert-AI-conundrum": while domain experts, such as clinician scientists, should be able to build predictive models such as risk scores, they face substantial barriers in accessing state-of-the-art (SOTA) tools. While automated machine learning (AutoML) has been proposed as a partner in clinical predictive modeling, many additional requirements need to be fulfilled to make machine learning accessible for clinician scientists. To address this gap, we introduce CliMB, a no-code AI-enabled partner designed to empower clinician scientists to create predictive models using natural language. CliMB guides clinician scientists through the entire medical data science pipeline, thus empowering them to create predictive models from real-world data in just one conversation. CliMB also creates structured reports and interpretable visuals. In evaluations involving clinician scientists and systematic comparisons against a baseline GPT-4, CliMB consistently demonstrated superior performance in key areas such as planning, error prevention, code execution, and model performance. Moreover, in blinded assessments involving 45 clinicians from diverse specialties and career stages, more than 80% preferred CliMB over GPT-4. Overall, by providing a no-code interface with clear guidance and access to SOTA methods in the fields of data-centric AI, AutoML, and interpretable ML, CliMB empowers clinician scientists to build robust predictive models. The proof-of-concept version of CliMB is available as open-source software on GitHub: https://github.com/vanderschaarlab/climb.
comment: * Evgeny Saveliev and Tim Schubert contributed equally to this work
♻ ☆ A Unified Framework for Center-based Clustering of Distributed Data
We develop a family of distributed center-based clustering algorithms that work over networks of users. In the proposed scenario, users contain a local dataset and communicate only with their immediate neighbours, with the aim of finding a clustering of the full, joint data. The proposed family, termed Distributed Gradient Clustering (DGC-$\mathcal{F}_\rho$), is parametrized by $\rho \geq 1$, controling the proximity of users' center estimates, with $\mathcal{F}$ determining the clustering loss. Our framework allows for a broad class of smooth convex loss functions, including popular clustering losses like $K$-means and Huber loss. Specialized to popular clustering losses like $K$-means and Huber loss, DGC-$\mathcal{F}_\rho$ gives rise to novel distributed clustering algorithms DGC-KM$_\rho$ and DGC-HL$_\rho$, while novel clustering losses based on Logistic and Fair functions lead to DGC-LL$_\rho$ and DGC-FL$_\rho$. We provide a unified analysis and establish several strong results, under mild assumptions. First, we show that the sequence of centers generated by the methods converges to a well-defined notion of fixed point, under any center initialization and value of $\rho$. Second, we prove that, as $\rho$ increases, the family of fixed points produced by DGC-$\mathcal{F}_\rho$ converges to a notion of consensus fixed points. We show that consensus fixed points of DGC-$\mathcal{F}_{\rho}$ are equivalent to fixed points of gradient clustering over the full data, guaranteeing a clustering of the full data is produced. For the special case of Bregman losses, we show that our fixed points converge to the set of Lloyd points. Extensive numerical experiments on synthetic and real data confirm our theoretical findings, show strong performance of our methods and demonstrate the usefulness and wide range of potential applications of our general framework, such as outlier detection.
comment: 49 pages, 9 figures, 7 tables
♻ ☆ OffLight: An Offline Multi-Agent Reinforcement Learning Framework for Traffic Signal Control
Efficient traffic control (TSC) is essential for urban mobility, but traditional systems struggle to handle the complexity of real-world traffic. Multi-agent Reinforcement Learning (MARL) offers adaptive solutions, but online MARL requires extensive interactions with the environment, making it costly and impractical. Offline MARL mitigates these challenges by using historical traffic data for training but faces significant difficulties with heterogeneous behavior policies in real-world datasets, where mixed-quality data complicates learning. We introduce OffLight, a novel offline MARL framework designed to handle heterogeneous behavior policies in TSC datasets. To improve learning efficiency, OffLight incorporates Importance Sampling (IS) to correct for distributional shifts and Return-Based Prioritized Sampling (RBPS) to focus on high-quality experiences. OffLight utilizes a Gaussian Mixture Variational Graph Autoencoder (GMM-VGAE) to capture the diverse distribution of behavior policies from local observations. Extensive experiments across real-world urban traffic scenarios show that OffLight outperforms existing offline RL methods, achieving up to a 7.8% reduction in average travel time and 11.2% decrease in queue length. Ablation studies confirm the effectiveness of OffLight's components in handling heterogeneous data and improving policy performance. These results highlight OffLight's scalability and potential to improve urban traffic management without the risks of online learning.
♻ ☆ Can Learned Optimization Make Reinforcement Learning Less Difficult?
While reinforcement learning (RL) holds great potential for decision making in the real world, it suffers from a number of unique difficulties which often need specific consideration. In particular: it is highly non-stationary; suffers from high degrees of plasticity loss; and requires exploration to prevent premature convergence to local optima and maximize return. In this paper, we consider whether learned optimization can help overcome these problems. Our method, Learned Optimization for Plasticity, Exploration and Non-stationarity (OPEN), meta-learns an update rule whose input features and output structure are informed by previously proposed solutions to these difficulties. We show that our parameterization is flexible enough to enable meta-learning in diverse learning contexts, including the ability to use stochasticity for exploration. Our experiments demonstrate that when meta-trained on single and small sets of environments, OPEN outperforms or equals traditionally used optimizers. Furthermore, OPEN shows strong generalization characteristics across a range of environments and agent architectures.
comment: Neurips 2024
♻ ☆ Interpolating neural network: A novel unification of machine learning and interpolation theory
Artificial intelligence (AI) has revolutionized software development, shifting from task-specific codes (Software 1.0) to neural network-based approaches (Software 2.0). However, applying this transition in engineering software presents challenges, including low surrogate model accuracy, the curse of dimensionality in inverse design, and rising complexity in physical simulations. We introduce an interpolating neural network (INN), grounded in interpolation theory and tensor decomposition, to realize Engineering Software 2.0 by advancing data training, partial differential equation solving, and parameter calibration. INN offers orders of magnitude fewer trainable/solvable parameters for comparable model accuracy than traditional multi-layer perceptron (MLP) or physics-informed neural networks (PINN). Demonstrated in metal additive manufacturing, INN rapidly constructs an accurate surrogate model of Laser Powder Bed Fusion (L-PBF) heat transfer simulation, achieving sub-10-micrometer resolution for a 10 mm path in under 15 minutes on a single GPU. This makes a transformative step forward across all domains essential to engineering software.
comment: 13 pages, 4 figures
♻ ☆ Lipschitz constant estimation for general neural network architectures using control tools
This paper is devoted to the estimation of the Lipschitz constant of general neural network architectures using semidefinite programming. For this purpose, we interpret neural networks as time-varying dynamical systems, where the $k$-th layer corresponds to the dynamics at time $k$. A key novelty with respect to prior work is that we use this interpretation to exploit the series interconnection structure of feedforward neural networks with a dynamic programming recursion. Nonlinearities, such as activation functions and nonlinear pooling layers, are handled with integral quadratic constraints. If the neural network contains signal processing layers (convolutional or state space model layers), we realize them as 1-D/2-D/N-D systems and exploit this structure as well. We distinguish ourselves from related work on Lipschitz constant estimation by more extensive structure exploitation (scalability) and a generalization to a large class of common neural network architectures. To show the versatility and computational advantages of our method, we apply it to different neural network architectures trained on MNIST and CIFAR-10.
♻ ☆ Generalized Principal-Agent Problem with a Learning Agent
Classic principal-agent problems such as Stackelberg games, contract design, and Bayesian persuasion, often assume that the agent is able to best respond to the principal's committed strategy. We study repeated generalized principal-agent problems under the assumption that the principal does not have commitment power and the agent uses algorithms to learn to respond to the principal. We reduce this problem to a one-shot generalized principal-agent problem where the agent approximately best responds. Using this reduction, we show that: (1) If the agent uses contextual no-regret learning algorithms with regret $\mathrm{Reg}(T)$, then the principal can guarantee utility at least $U^* - \Theta\big(\sqrt{\tfrac{\mathrm{Reg}(T)}{T}}\big)$, where $U^*$ is the principal's optimal utility in the classic model with a best-responding agent. (2) If the agent uses contextual no-swap-regret learning algorithms with swap-regret $\mathrm{SReg}(T)$, then the principal cannot obtain utility more than $U^* + O(\frac{\mathrm{SReg(T)}}{T})$. But (3) if the agent uses mean-based learning algorithms (which can be no-regret but not no-swap-regret), then the principal can sometimes do significantly better than $U^*$. These results not only refine previous results in Stackelberg games and contract design, but also lead to new results for Bayesian persuasion with a learning agent and all generalized principal-agent problems where the agent does not have private information.
♻ ☆ A Dataset for Evaluating Online Anomaly Detection Approaches for Discrete Multivariate Time Series
Benchmarking anomaly detection approaches for multivariate time series is challenging due to the lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a small selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data.
comment: Submitted to the IEEE Transactions on Reliability journal
♻ ☆ Auditing for Human Expertise NeurIPS 2023
High-stakes prediction tasks (e.g., patient diagnosis) are often handled by trained human experts. A common source of concern about automation in these settings is that experts may exercise intuition that is difficult to model and/or have access to information (e.g., conversations with a patient) that is simply unavailable to a would-be algorithm. This raises a natural question whether human experts add value which could not be captured by an algorithmic predictor. We develop a statistical framework under which we can pose this question as a natural hypothesis test. Indeed, as our framework highlights, detecting human expertise is more subtle than simply comparing the accuracy of expert predictions to those made by a particular learning algorithm. Instead, we propose a simple procedure which tests whether expert predictions are statistically independent from the outcomes of interest after conditioning on the available inputs (`features'). A rejection of our test thus suggests that human experts may add value to any algorithm trained on the available data, and has direct implications for whether human-AI `complementarity' is achievable in a given prediction task. We highlight the utility of our procedure using admissions data collected from the emergency department of a large academic hospital system, where we show that physicians' admit/discharge decisions for patients with acute gastrointestinal bleeding (AGIB) appear to be incorporating information that is not available to a standard algorithmic screening tool. This is despite the fact that the screening tool is arguably more accurate than physicians' discretionary decisions, highlighting that -- even absent normative concerns about accountability or interpretability -- accuracy is insufficient to justify algorithmic automation.
comment: 30 pages, 10 figures. Appeared in the proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023). 11/2024 replacement fixes typo in the definition of $\tau_k$, as pointed out by Liuquan Nie
♻ ☆ Robust Federated Learning Over the Air: Combating Heavy-Tailed Noise with Median Anchored Clipping
Leveraging over-the-air computations for model aggregation is an effective approach to cope with the communication bottleneck in federated edge learning. By exploiting the superposition properties of multi-access channels, this approach facilitates an integrated design of communication and computation, thereby enhancing system privacy while reducing implementation costs. However, the inherent electromagnetic interference in radio channels often exhibits heavy-tailed distributions, giving rise to exceptionally strong noise in globally aggregated gradients that can significantly deteriorate the training performance. To address this issue, we propose a novel gradient clipping method, termed Median Anchored Clipping (MAC), to combat the detrimental effects of heavy-tailed noise. We also derive analytical expressions for the convergence rate of model training with analog over-the-air federated learning under MAC, which quantitatively demonstrates the effect of MAC on training performance. Extensive experimental results show that the proposed MAC algorithm effectively mitigates the impact of heavy-tailed noise, hence substantially enhancing system robustness.
comment: This is the full version of the paper, and the appendix contains a complete convergence analysis under non-convex conditions
♻ ☆ A Deep Learning Approach to Predict the Fall [of Price] of Cryptocurrency Long Before its Actual Fall
In modern times, the cryptocurrency market is one of the world's most rapidly rising financial markets. The cryptocurrency market is regarded to be more volatile and illiquid than traditional markets such as equities, foreign exchange, and commodities. The risk of this market creates an uncertain condition among the investors. The purpose of this research is to predict the magnitude of the risk factor of the cryptocurrency market. Risk factor is also called volatility. Our approach will assist people who invest in the cryptocurrency market by overcoming the problems and difficulties they experience. Our approach starts with calculating the risk factor of the cryptocurrency market from the existing parameters. In twenty elements of the cryptocurrency market, the risk factor has been predicted using different machine learning algorithms such as CNN, LSTM, BiLSTM, and GRU. All of the models have been applied to the calculated risk factor parameter. A new model has been developed to predict better than the existing models. Our proposed model gives the highest RMSE value of 1.3229 and the lowest RMSE value of 0.0089. Following our model, it will be easier for investors to trade in complicated and challenging financial assets like bitcoin, Ethereum, dogecoin, etc. Where the other existing models, the highest RMSE was 14.5092, and the lower was 0.02769. So, the proposed model performs much better than models with proper generalization. Using our approach, it will be easier for investors to trade in complicated and challenging financial assets like Bitcoin, Ethereum, and Dogecoin.
comment: 22 pages, 3 figures
♻ ☆ Graph neural networks with configuration cross-attention for tensor compilers
With the recent popularity of neural networks comes the need for efficient serving of inference workloads. A neural network inference workload can be represented as a computational graph with nodes as operators transforming multidimensional tensors. The tensors can be transposed and/or tiled in a combinatorially large number of ways, some configurations leading to accelerated inference. We propose TGraph, a neural graph architecture that allows screening for fast configurations of the target computational graph, thus representing an artificial intelligence (AI) tensor compiler in contrast to the traditional heuristics-based compilers. The proposed solution improves mean Kendall's $\tau$ across layout collections of TpuGraphs from 29.8% of the reliable baseline to 67.4% of TGraph. We estimate the potential CO$_2$ emission reduction associated with our work to be equivalent to over 50% of the total household emissions in the areas hosting AI-oriented data centers.
♻ ☆ Noise-tolerant learnability of shallow quantum circuits from statistics and the cost of quantum pseudorandomness
This work studies the learnability of quantum circuits in the near term. We show the natural robustness of quantum statistical queries for learning quantum processes and provide an efficient way to benchmark global depolarizing noise from statistics, which gives us a powerful framework for developing noise-tolerant algorithms. We adapt a learning algorithm for constant-depth quantum circuits to the quantum statistical query setting with a small overhead in the query complexity. We prove average-case lower bounds for learning random quantum circuits of logarithmic and higher depths within diamond distance with statistical queries. Finally, we prove that pseudorandom unitaries (PRUs) cannot be constructed using circuits of constant depth by constructing an efficient distinguisher and proving a new variation of the quantum no-free lunch theorem.
comment: 21+7 pages, 1 figure, 1 table
♻ ☆ Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach
The control of large-scale cyber-physical systems requires optimal distributed policies relying solely on limited communication with neighboring agents. However, computing stabilizing controllers for nonlinear systems while optimizing complex costs remains a significant challenge. Neural Networks (NNs), known for their expressivity, can be leveraged to parametrize control policies that yield good performance. However, NNs' sensitivity to small input changes poses a risk of destabilizing the closed-loop system. Many existing approaches enforce constraints on the controllers' parameter space to guarantee closed-loop stability, leading to computationally expensive optimization procedures. To address these problems, we leverage the framework of port-Hamiltonian systems to design continuous-time distributed control policies for nonlinear systems that guarantee closed-loop stability and finite $\mathcal{L}_2$ or incremental $\mathcal{L}_2$ gains, independent of the optimzation parameters of the controllers. This eliminates the need to constrain parameters during optimization, allowing the use of standard techniques such as gradient-based methods. Additionally, we discuss discretization schemes that preserve the dissipation properties of these controllers for implementation on embedded systems. The effectiveness of the proposed distributed controllers is demonstrated through consensus control of non-holonomic mobile robots subject to collision avoidance and averaged voltage regulation with weighted power sharing in DC microgrids.
comment: The paper has 15 pages, and has been submitted for a possible publication. arXiv admin note: text overlap with arXiv:2403.17785
♻ ☆ Intelligent Anomaly Detection for Lane Rendering Using Transformer with Self-Supervised Pre-Training and Customized Fine-Tuning
The burgeoning navigation services using digital maps provide great convenience to drivers. Nevertheless, the presence of anomalies in lane rendering map images occasionally introduces potential hazards, as such anomalies can be misleading to human drivers and consequently contribute to unsafe driving conditions. In response to this concern and to accurately and effectively detect the anomalies, this paper transforms lane rendering image anomaly detection into a classification problem and proposes a four-phase pipeline consisting of data pre-processing, self-supervised pre-training with the masked image modeling (MiM) method, customized fine-tuning using cross-entropy based loss with label smoothing, and post-processing to tackle it leveraging state-of-the-art deep learning techniques, especially those involving Transformer models. Various experiments verify the effectiveness of the proposed pipeline. Results indicate that the proposed pipeline exhibits superior performance in lane rendering image anomaly detection, and notably, the self-supervised pre-training with MiM can greatly enhance the detection accuracy while significantly reducing the total training time. For instance, employing the Swin Transformer with Uniform Masking as self-supervised pretraining (Swin-Trans-UM) yielded a heightened accuracy at 94.77% and an improved Area Under The Curve (AUC) score of 0.9743 compared with the pure Swin Transformer without pre-training (Swin-Trans) with an accuracy of 94.01% and an AUC of 0.9498. The fine-tuning epochs were dramatically reduced to 41 from the original 280. In conclusion, the proposed pipeline, with its incorporation of self-supervised pre-training using MiM and other advanced deep learning techniques, emerges as a robust solution for enhancing the accuracy and efficiency of lane rendering image anomaly detection in digital navigation systems.
comment: 25 pages, 7 figures, accepted by the 103rd Transportation Research Board (TRB) Annual Meeting, under review by Transportation Research Record: Journal of the Transportation Research Board
♻ ☆ Trap-MID: Trapdoor-based Defense against Model Inversion Attacks NeurIPS
Model Inversion (MI) attacks pose a significant threat to the privacy of Deep Neural Networks by recovering training data distribution from well-trained models. While existing defenses often rely on regularization techniques to reduce information leakage, they remain vulnerable to recent attacks. In this paper, we propose the Trapdoor-based Model Inversion Defense (Trap-MID) to mislead MI attacks. A trapdoor is integrated into the model to predict a specific label when the input is injected with the corresponding trigger. Consequently, this trapdoor information serves as the "shortcut" for MI attacks, leading them to extract trapdoor triggers rather than private data. We provide theoretical insights into the impacts of trapdoor's effectiveness and naturalness on deceiving MI attacks. In addition, empirical experiments demonstrate the state-of-the-art defense performance of Trap-MID against various MI attacks without the requirements for extra data or large computational overhead. Our source code is publicly available at https://github.com/ntuaislab/Trap-MID.
comment: Accepted by Neural Information Processing Systems (NeurIPS) 2024
♻ ☆ MANO: Exploiting Matrix Norm for Unsupervised Accuracy Estimation Under Distribution Shifts
Leveraging the models' outputs, specifically the logits, is a common approach to estimating the test accuracy of a pre-trained neural network on out-of-distribution (OOD) samples without requiring access to the corresponding ground truth labels. Despite their ease of implementation and computational efficiency, current logit-based methods are vulnerable to overconfidence issues, leading to prediction bias, especially under the natural shift. In this work, we first study the relationship between logits and generalization performance from the view of low-density separation assumption. Our findings motivate our proposed method MaNo which (1) applies a data-dependent normalization on the logits to reduce prediction bias, and (2) takes the $L_p$ norm of the matrix of normalized logits as the estimation score. Our theoretical analysis highlights the connection between the provided score and the model's uncertainty. We conduct an extensive empirical study on common unsupervised accuracy estimation benchmarks and demonstrate that MaNo achieves state-of-the-art performance across various architectures in the presence of synthetic, natural, or subpopulation shifts. The code is available at \url{https://github.com/Renchunzi-Xie/MaNo}.
comment: The three first authors contributed equally
♻ ☆ Grasp, See and Place: Efficient Unknown Object Rearrangement with Policy Structure Prior
We focus on the task of unknown object rearrangement, where a robot is supposed to re-configure the objects into a desired goal configuration specified by an RGB-D image. Recent works explore unknown object rearrangement systems by incorporating learning-based perception modules. However, they are sensitive to perception error, and pay less attention to task-level performance. In this paper, we aim to develop an effective system for unknown object rearrangement amidst perception noise. We theoretically reveal that the noisy perception impacts grasp and place in a decoupled way, and show such a decoupled structure is valuable to improve task optimality. We propose GSP, a dual-loop system with the decoupled structure as prior. For the inner loop, we learn a see policy for self-confident in-hand object matching. For the outer loop, we learn a grasp policy aware of object matching and grasp capability guided by task-level rewards. We leverage the foundation model CLIP for object matching, policy learning and self-termination. A series of experiments indicate that GSP can conduct unknown object rearrangement with higher completion rates and fewer steps.
♻ ☆ REDUCR: Robust Data Downsampling Using Class Priority Reweighting
Modern machine learning models are becoming increasingly expensive to train for real-world image and text classification tasks, where massive web-scale data is collected in a streaming fashion. To reduce the training cost, online batch selection techniques have been developed to choose the most informative datapoints. However, these techniques can suffer from poor worst-class generalization performance due to class imbalance and distributional shifts. This work introduces REDUCR, a robust and efficient data downsampling method that uses class priority reweighting. REDUCR reduces the training data while preserving worst-class generalization performance. REDUCR assigns priority weights to datapoints in a class-aware manner using an online learning algorithm. We demonstrate the data efficiency and robust performance of REDUCR on vision and text classification tasks. On web-scraped datasets with imbalanced class distributions, REDUCR significantly improves worst-class test accuracy (and average accuracy), surpassing state-of-the-art methods by around 15%.
comment: Preprint
♻ ☆ Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm under Parallelization
We consider the problem of minimizing the sum of two convex functions. One of those functions has Lipschitz-continuous gradients, and can be accessed via stochastic oracles, whereas the other is "simple". We provide a Bregman-type algorithm with accelerated convergence in function values to a ball containing the minimum. The radius of this ball depends on problem-dependent constants, including the variance of the stochastic oracle. We further show that this algorithmic setup naturally leads to a variant of Frank-Wolfe achieving acceleration under parallelization. More precisely, when minimizing a smooth convex function on a bounded domain, we show that one can achieve an $\epsilon$ primal-dual gap (in expectation) in $\tilde{O}(1/ \sqrt{\epsilon})$ iterations, by only accessing gradients of the original function and a linear maximization oracle with $O(1/\sqrt{\epsilon})$ computing units in parallel. We illustrate this fast convergence on synthetic numerical experiments.
♻ ☆ Learning Distributions on Manifolds with Free-Form Flows NeurIPS 2024
We propose Manifold Free-Form Flows (M-FFF), a simple new generative model for data on manifolds. The existing approaches to learning a distribution on arbitrary manifolds are expensive at inference time, since sampling requires solving a differential equation. Our method overcomes this limitation by sampling in a single function evaluation. The key innovation is to optimize a neural network via maximum likelihood on the manifold, possible by adapting the free-form flow framework to Riemannian manifolds. M-FFF is straightforwardly adapted to any manifold with a known projection. It consistently matches or outperforms previous single-step methods specialized to specific manifolds. It is typically two orders of magnitude faster than multi-step methods based on diffusion or flow matching, achieving better likelihoods in several experiments. We provide our code at https://github.com/vislearn/FFF.
comment: NeurIPS 2024
♻ ☆ Autoassociative Learning of Structural Representations for Modeling and Classification in Medical Imaging
Deep learning architectures based on convolutional neural networks tend to rely on continuous, smooth features. While this characteristics provides significant robustness and proves useful in many real-world tasks, it is strikingly incompatible with the physical characteristic of the world, which, at the scale in which humans operate, comprises crisp objects, typically representing well-defined categories. This study proposes a class of neurosymbolic systems that learn by reconstructing the observed images in terms of visual primitives and are thus forced to form high-level, structural explanations of them. When applied to the task of diagnosing abnormalities in histological imaging, the method proved superior to a conventional deep learning architecture in terms of classification accuracy, while being more transparent.
comment: 16 pages, 9 figures
♻ ☆ Offline reinforcement learning for job-shop scheduling problems
Recent advances in deep learning have shown significant potential for solving combinatorial optimization problems in real-time. Unlike traditional methods, deep learning can generate high-quality solutions efficiently, which is crucial for applications like routing and scheduling. However, existing approaches like deep reinforcement learning (RL) and behavioral cloning have notable limitations, with deep RL suffering from slow learning and behavioral cloning relying solely on expert actions, which can lead to generalization issues and neglect of the optimization objective. This paper introduces a novel offline RL method designed for combinatorial optimization problems with complex constraints, where the state is represented as a heterogeneous graph and the action space is variable. Our approach encodes actions in edge attributes and balances expected rewards with the imitation of expert solutions. We demonstrate the effectiveness of this method on job-shop scheduling and flexible job-shop scheduling benchmarks, achieving superior performance compared to state-of-the-art techniques.
♻ ☆ Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning
As a marriage between offline RL and meta-RL, the advent of offline meta-reinforcement learning (OMRL) has shown great promise in enabling RL agents to multi-task and quickly adapt while acquiring knowledge safely. Among which, context-based OMRL (COMRL) as a popular paradigm, aims to learn a universal policy conditioned on effective task representations. In this work, by examining several key milestones in the field of COMRL, we propose to integrate these seemingly independent methodologies into a unified framework. Most importantly, we show that the pre-existing COMRL algorithms are essentially optimizing the same mutual information objective between the task variable $M$ and its latent representation $Z$ by implementing various approximate bounds. Such theoretical insight offers ample design freedom for novel algorithms. As demonstrations, we propose a supervised and a self-supervised implementation of $I(Z; M)$, and empirically show that the corresponding optimization algorithms exhibit remarkable generalization across a broad spectrum of RL benchmarks, context shift scenarios, data qualities and deep learning architectures. This work lays the information theoretic foundation for COMRL methods, leading to a better understanding of task representation learning in the context of reinforcement learning.
comment: 25 pages, 8 figures, 7 tables. TLDR: We propose a novel information theoretic framework of the context-based offline meta-RL paradigm, which unifies several mainstream methods and leads to two robust algorithm implementations
♻ ☆ Minority-Focused Text-to-Image Generation via Prompt Optimization
We investigate the generation of minority samples using pretrained text-to-image (T2I) latent diffusion models. Minority instances, in the context of T2I generation, can be defined as ones living on low-density regions of text-conditional data distributions. They are valuable for various applications of modern T2I generators, such as data augmentation and creative AI. Unfortunately, existing pretrained T2I diffusion models primarily focus on high-density regions, largely due to the influence of guided samplers (like CFG) that are essential for producing high-quality generations. To address this, we present a novel framework to counter the high-density-focus of T2I diffusion models. Specifically, we first develop an online prompt optimization framework that can encourage the emergence of desired properties during inference while preserving semantic contents of user-provided prompts. We subsequently tailor this generic prompt optimizer into a specialized solver that promotes the generation of minority features by incorporating a carefully-crafted likelihood objective. Our comprehensive experiments, conducted across various types of T2I models, demonstrate that our approach significantly enhances the capability to produce high-quality minority instances compared to existing samplers.
comment: 20 pages, 9 figures
♻ ☆ Interpretable machine learning approach for electron antineutrino selection in a large liquid scintillator detector
Several neutrino detectors, KamLAND, Daya Bay, Double Chooz, RENO, and the forthcoming large-scale JUNO, rely on liquid scintillator to detect reactor antineutrino interactions. In this context, inverse beta decay represents the golden channel for antineutrino detection, providing a pair of correlated events, thus a strong experimental signature to distinguish the signal from a variety of backgrounds. However, given the low cross-section of antineutrino interactions, the development of a powerful event selection algorithm becomes imperative to achieve effective discrimination between signal and backgrounds. In this study, we introduce a machine learning (ML) model to achieve this goal: a fully connected neural network as a powerful signal-background discriminator for a large liquid scintillator detector. We demonstrate, using the JUNO detector as an example, that, despite the already high efficiency of a cut-based approach, the presented ML model can further improve the overall event selection efficiency. Moreover, it allows for the retention of signal events at the detector edges that would otherwise be rejected because of the overwhelming amount of background events in that region. We also present the first interpretable analysis of the ML approach for event selection in reactor neutrino experiments. This method provides insights into the decision-making process of the model and offers valuable information for improving and updating traditional event selection approaches.
comment: This is a post-peer-review, pre-copyedit version of an article published in Phys. Lett. B. The final published version is available online: https://www.sciencedirect.com/science/article/pii/S0370269324006993
♻ ☆ Real-world validation of safe reinforcement learning, model predictive control and decision tree-based home energy management systems
Recent advancements in machine learning based energy management approaches, specifically reinforcement learning with a safety layer (OptLayerPolicy) and a metaheuristic algorithm generating a decision tree control policy (TreeC), have shown promise. However, their effectiveness has only been demonstrated in computer simulations. This paper presents the real-world validation of these methods, comparing against model predictive control and simple rule-based control benchmark. The experiments were conducted on the electrical installation of 4 reproductions of residential houses, which all have their own battery, photovoltaic and dynamic load system emulating a non-controllable electrical load and a controllable electric vehicle charger. The results show that the simple rules, TreeC, and model predictive control-based methods achieved similar costs, with a difference of only 0.6%. The reinforcement learning based method, still in its training phase, obtained a cost 25.5\% higher to the other methods. Additional simulations show that the costs can be further reduced by using a more representative training dataset for TreeC and addressing errors in the model predictive control implementation caused by its reliance on accurate data from various sources. The OptLayerPolicy safety layer allows safe online training of a reinforcement learning agent in the real-world, given an accurate constraint function formulation. The proposed safety layer method remains error-prone, nonetheless, it is found beneficial for all investigated methods. The TreeC method, which does require building a realistic simulation for training, exhibits the safest operational performance, exceeding the grid limit by only 27.1 Wh compared to 593.9 Wh for reinforcement learning.
comment: Accepted version Energy and AI: https://doi.org/10.1016/j.egyai.2024.100448
♻ ☆ Immersion and Invariance-based Coding for Privacy-Preserving Federated Learning
Federated learning (FL) has emerged as a method to preserve privacy in collaborative distributed learning. In FL, clients train AI models directly on their devices rather than sharing data with a centralized server, which can pose privacy risks. However, it has been shown that despite FL's partial protection of local data privacy, information about clients' data can still be inferred from shared model updates during training. In recent years, several privacy-preserving approaches have been developed to mitigate this privacy leakage in FL, though they often provide privacy at the cost of model performance or system efficiency. Balancing these trade-offs presents a significant challenge in implementing FL schemes. In this manuscript, we introduce a privacy-preserving FL framework that combines differential privacy and system immersion tools from control theory. The core idea is to treat the optimization algorithms used in standard FL schemes (e.g., gradient-based algorithms) as a dynamical system that we seek to immerse into a higher-dimensional system (referred to as the target optimization algorithm). The target algorithm's dynamics are designed such that, first, the model parameters of the original algorithm are immersed in its parameters; second, it operates on distorted parameters; and third, it converges to an encoded version of the true model parameters from the original algorithm. These encoded parameters can then be decoded at the server to retrieve the original model parameters. We demonstrate that the proposed privacy-preserving scheme can be tailored to offer any desired level of differential privacy for both local and global model parameters, while maintaining the same accuracy and convergence rate as standard FL algorithms.
♻ ☆ CoverLib: Classifiers-equipped Experience Library by Iterative Problem Distribution Coverage Maximization for Domain-tuned Motion Planning
Library-based methods are known to be very effective for fast motion planning by adapting an experience retrieved from a precomputed library. This article presents CoverLib, a principled approach for constructing and utilizing such a library. CoverLib iteratively adds an experience-classifier-pair to the library, where each classifier corresponds to an adaptable region of the experience within the problem space. This iterative process is an active procedure, as it selects the next experience based on its ability to effectively cover the uncovered region. During the query phase, these classifiers are utilized to select an experience that is expected to be adaptable for a given problem. Experimental results demonstrate that CoverLib effectively mitigates the trade-off between plannability and speed observed in global (e.g. sampling-based) and local (e.g. optimization-based) methods. As a result, it achieves both fast planning and high success rates over the problem domain. Moreover, due to its adaptation-algorithm-agnostic nature, CoverLib seamlessly integrates with various adaptation methods, including nonlinear programming-based and sampling-based algorithms.
♻ ☆ Optimistic Verifiable Training by Controlling Hardware Nondeterminism NeurIPS
The increasing compute demands of AI systems have led to the emergence of services that train models on behalf of clients lacking necessary resources. However, ensuring correctness of training and guarding against potential training-time attacks, such as data poisoning and backdoors, poses challenges. Existing works on verifiable training largely fall into two classes: proof-based systems, which are difficult to scale, and ``optimistic'' methods that consider a third-party auditor who can replicate the training process and contest the trainer. A key challenge with the latter is that nondeterminism between GPU types during training prevents exact replication of the training process, resulting in schemes that are non-robust. We propose a method that combines training in a higher precision than the target, rounding after intermediate computations, and sharing rounding decisions based on an adaptive thresholding procedure, to successfully control for nondeterminism. Across three different NVIDIA GPUs (A40, Titan XP, RTX 2080 Ti), we achieve exact training replication at FP32 precision for both full-training and fine-tuning of ResNet-50 (23M) and GPT-2 (117M) models. Our verifiable training scheme significantly decreases the storage and time costs compared to proof-based systems, and is publicly released at https://github.com/meghabyte/verifiable-training.
comment: 11 pages, 5 figures, Neural Information Processing Systems (NeurIPS) 2024,
♻ ☆ Towards Faster Decentralized Stochastic Optimization with Communication Compression
Communication efficiency has garnered significant attention as it is considered the main bottleneck for large-scale decentralized Machine Learning applications in distributed and federated settings. In this regime, clients are restricted to transmitting small amounts of quantized information to their neighbors over a communication graph. Numerous endeavors have been made to address this challenging problem by developing algorithms with compressed communication for decentralized non-convex optimization problems. Despite considerable efforts, the current results suffer from various issues such as non-scalability with the number of clients, requirements for large batches, or bounded gradient assumption. In this paper, we introduce MoTEF, a novel approach that integrates communication compression with Momentum Tracking and Error Feedback. Our analysis demonstrates that MoTEF achieves most of the desired properties, and significantly outperforms existing methods under arbitrary data heterogeneity. We provide numerical experiments to validate our theoretical findings and confirm the practical superiority of MoTEF.
♻ ☆ Towards the Dynamics of a DNN Learning Symbolic Interactions
This study proves the two-phase dynamics of a deep neural network (DNN) learning interactions. Despite the long disappointing view of the faithfulness of post-hoc explanation of a DNN, a series of theorems have been proven in recent years to show that for a given input sample, a small set of interactions between input variables can be considered as primitive inference patterns that faithfully represent a DNN's detailed inference logic on that sample. Particularly, Zhang et al. have observed that various DNNs all learn interactions of different complexities in two distinct phases, and this two-phase dynamics well explains how a DNN changes from under-fitting to over-fitting. Therefore, in this study, we mathematically prove the two-phase dynamics of interactions, providing a theoretical mechanism for how the generalization power of a DNN changes during the training process. Experiments show that our theory well predicts the real dynamics of interactions on different DNNs trained for various tasks.
♻ ☆ Modyn: Data-Centric Machine Learning Pipeline Orchestration
In real-world machine learning (ML) pipelines, datasets are continuously growing. Models must incorporate this new training data to improve generalization and adapt to potential distribution shifts. The cost of model retraining is proportional to how frequently the model is retrained and how much data it is trained on, which makes the naive approach of retraining from scratch each time impractical. We present Modyn, a data-centric end-to-end machine learning platform. Modyn's ML pipeline abstraction enables users to declaratively describe policies for continuously training a model on a growing dataset. Modyn pipelines allow users to apply data selection policies (to reduce the number of data points) and triggering policies (to reduce the number of trainings). Modyn executes and orchestrates these continuous ML training pipelines. The system is open-source and comes with an ecosystem of benchmark datasets, models, and tooling. We formally discuss how to measure the performance of ML pipelines by introducing the concept of composite models, enabling fair comparison of pipelines with different data selection and triggering policies. We empirically analyze how various data selection and triggering policies impact model accuracy, and also show that Modyn enables high throughput training with sample-level data selection.
comment: accepted at SIGMOD'25; 30 pages
♻ ☆ On Expressive Power of Looped Transformers: Theoretical Analysis and Enhancement via Timestep Encoding
Looped Transformers offer advantages in parameter efficiency and Turing completeness. However, their expressive power for function approximation and approximation rate remains underexplored. In this paper, we establish approximation rates of Looped Transformers by defining the concept of the modulus of continuity for sequence-to-sequence functions. This reveals a limitation specific to the looped architecture. That is, the analysis prompts us to incorporate scaling parameters for each loop, conditioned on timestep encoding. Experimental results demonstrate that increasing the number of loops enhances performance, with further gains achieved through the timestep encoding architecture.
♻ ☆ R2I-rPPG: A Robust Region of Interest Selection Method for Remote Photoplethysmography to Extract Heart Rate
The COVID-19 pandemic has underscored the need for low-cost, scalable approaches to measuring contactless vital signs, either during initial triage at a healthcare facility or virtual telemedicine visits. Remote photoplethysmography (rPPG) can accurately estimate heart rate (HR) when applied to close-up videos of healthy volunteers in well-lit laboratory settings. However, results from such highly optimized laboratory studies may not be readily translated to healthcare settings. One significant barrier to the practical application of rPPG in health care is the accurate localization of the region of interest (ROI). Clinical or telemedicine visits may involve sub-optimal lighting, movement artifacts, variable camera angle, and subject distance. This paper presents an rPPG ROI selection method based on 3D facial landmarks and patient head yaw angle. We then demonstrate the robustness of this ROI selection method when coupled to the Plane-Orthogonal-to-Skin (POS) rPPG method when applied to videos of patients presenting to an Emergency Department for respiratory complaints. Our results demonstrate the effectiveness of our proposed approach in improving the accuracy and robustness of rPPG in a challenging clinical environment.
comment: preprint
♻ ☆ Fostering Intrinsic Motivation in Reinforcement Learning with Pretrained Foundation Models NeurIPS 2024
Exploration remains a significant challenge in reinforcement learning, especially in environments where extrinsic rewards are sparse or non-existent. The recent rise of foundation models, such as CLIP, offers an opportunity to leverage pretrained, semantically rich embeddings that encapsulate broad and reusable knowledge. In this work we explore the potential of these foundation models not just to drive exploration, but also to analyze the critical role of the episodic novelty term in enhancing exploration effectiveness of the agent. We also investigate whether providing the intrinsic module with complete state information -- rather than just partial observations -- can improve exploration, despite the difficulties in handling small variations within large state spaces. Our experiments in the MiniGrid domain reveal that intrinsic modules can effectively utilize full state information, significantly increasing sample efficiency while learning an optimal policy. Moreover, we show that the embeddings provided by foundation models are sometimes even better than those constructed by the agent during training, further accelerating the learning process, especially when coupled with the episodic novelty term to enhance exploration.
comment: Accepted at the Intrinsically Motivated Open-ended Learning workshop at NeurIPS 2024
♻ ☆ Approximate FW Algorithm with a novel DMO method over Graph-structured Support Set
In this project, we reviewed a paper that deals graph-structured convex optimization (GSCO) problem with the approximate Frank-Wolfe (FW) algorithm. We analyzed and implemented the original algorithm and introduced some extensions based on that. Then we conducted experiments to compare the results and concluded that our backtracking line-search method effectively reduced the number of iterations, while our new DMO method (Top-g+ optimal visiting) did not make satisfying enough improvements.
♻ ☆ Unlearn to Relearn Backdoors: Deferred Backdoor Functionality Attacks on Deep Learning Models
Deep learning models are vulnerable to backdoor attacks, where adversaries inject malicious functionality during training that activates on trigger inputs at inference time. Extensive research has focused on developing stealthy backdoor attacks to evade detection and defense mechanisms. However, these approaches still have limitations that leave the door open for detection and mitigation due to their inherent design to cause malicious behavior in the presence of a trigger. To address this limitation, we introduce Deferred Activated Backdoor Functionality (DABF), a new paradigm in backdoor attacks. Unlike conventional attacks, DABF initially conceals its backdoor, producing benign outputs even when triggered. This stealthy behavior allows DABF to bypass multiple detection and defense methods, remaining undetected during initial inspections. The backdoor functionality is strategically activated only after the model undergoes subsequent updates, such as retraining on benign data. DABF attacks exploit the common practice in the life cycle of machine learning models to perform model updates and fine-tuning after initial deployment. To implement DABF attacks, we approach the problem by making the unlearning of the backdoor fragile, allowing it to be easily cancelled and subsequently reactivate the backdoor functionality. To achieve this, we propose a novel two-stage training scheme, called DeferBad. Our extensive experiments across various fine-tuning scenarios, backdoor attack types, datasets, and model architectures demonstrate the effectiveness and stealthiness of DeferBad.
♻ ☆ Scalable Fine-tuning from Multiple Data Sources: A First-Order Approximation Approach
We study the problem of fine-tuning a language model (LM) for a target task by optimally using the information from $n$ auxiliary tasks. This problem has broad applications in NLP, such as targeted instruction tuning and data selection in chain-of-thought fine-tuning. The key challenge of this problem is that not all auxiliary tasks are useful to improve the performance of the target task. Thus, choosing the right subset of auxiliary tasks is crucial. Conventional subset selection methods, such as forward and backward stepwise selection, are unsuitable for LM fine-tuning because they require repeated training on subsets of auxiliary tasks. This paper introduces a new algorithm to estimate model fine-tuning performances without repeated training. Our algorithm first performs multitask training using the data of all the tasks to obtain a meta initialization. Then, we approximate the model fine-tuning loss of a subset using functional values and gradients from the meta initialization. Empirically, we find that this gradient-based approximation holds with remarkable accuracy for twelve transformer-based LMs. Thus, we can now estimate fine-tuning performances on CPUs within a few seconds. Finally, we fine-tune the pretrained base model for once on the selected subset of tasks. We conduct extensive experiments to validate this approach, delivering a speedup of $30\times$ over conventional subset selection while incurring only $1\%$ error of the true fine-tuning performances. In downstream evaluations involving both instruction tuning and chain-of-thought fine-tuning, this loss-based selection approach improves over prior gradient or representation similarity-based methods for subset selection by up to $3.8\%$.
comment: 17 pages
♻ ☆ EgoSurgery-Phase: A Dataset of Surgical Phase Recognition from Egocentric Open Surgery Videos MICCAI 2024
Surgical phase recognition has gained significant attention due to its potential to offer solutions to numerous demands of the modern operating room. However, most existing methods concentrate on minimally invasive surgery (MIS), leaving surgical phase recognition for open surgery understudied. This discrepancy is primarily attributed to the scarcity of publicly available open surgery video datasets for surgical phase recognition. To address this issue, we introduce a new egocentric open surgery video dataset for phase recognition, named EgoSurgery-Phase. This dataset comprises 15 hours of real open surgery videos spanning 9 distinct surgical phases all captured using an egocentric camera attached to the surgeon's head. In addition to video, the EgoSurgery-Phase offers eye gaze. As far as we know, it is the first real open surgery video dataset for surgical phase recognition publicly available. Furthermore, inspired by the notable success of masked autoencoders (MAEs) in video understanding tasks (e.g., action recognition), we propose a gaze-guided masked autoencoder (GGMAE). Considering the regions where surgeons' gaze focuses are often critical for surgical phase recognition (e.g., surgical field), in our GGMAE, the gaze information acts as an empirical semantic richness prior to guiding the masking process, promoting better attention to semantically rich spatial regions. GGMAE significantly improves the previous state-of-the-art recognition method (6.4% in Jaccard) and the masked autoencoder-based method (3.1% in Jaccard) on EgoSurgery-Phase.
comment: Early accepted by MICCAI 2024
♻ ☆ EgoSurgery-Tool: A Dataset of Surgical Tool and Hand Detection from Egocentric Open Surgery Videos
Surgical tool detection is a fundamental task for understanding egocentric open surgery videos. However, detecting surgical tools presents significant challenges due to their highly imbalanced class distribution, similar shapes and similar textures, and heavy occlusion. The lack of a comprehensive large-scale dataset compounds these challenges. In this paper, we introduce EgoSurgery-Tool, an extension of the existing EgoSurgery-Phase dataset, which contains real open surgery videos captured using an egocentric camera attached to the surgeon's head, along with phase annotations. EgoSurgery-Tool has been densely annotated with surgical tools and comprises over 49K surgical tool bounding boxes across 15 categories, constituting a large-scale surgical tool detection dataset. EgoSurgery-Tool also provides annotations for hand detection with over 46K hand-bounding boxes, capturing hand-object interactions that are crucial for understanding activities in egocentric open surgery. EgoSurgery-Tool is superior to existing datasets due to its larger scale, greater variety of surgical tools, more annotations, and denser scenes. We conduct a comprehensive analysis of EgoSurgery-Tool using nine popular object detectors to assess their effectiveness in both surgical tool and hand detection.
♻ ☆ Federated Hypergraph Learning: Hyperedge Completion with Local Differential Privacy
As the volume and complexity increase, graph-structured data commonly need to be split and stored across distributed systems. To enable data mining on subgraphs within these distributed systems, federated graph learning has been proposed, allowing collaborative training of Graph Neural Networks (GNNs) across clients without sharing raw node features. However, when dealing with graph structures that involve high-order relationships between nodes, known as hypergraphs, existing federated graph learning methods are less effective. In this study, we introduce FedHGL, an innovative federated hypergraph learning algorithm. FedHGL is designed to collaboratively train a comprehensive hypergraph neural network across multiple clients, facilitating mining tasks on subgraphs of a hypergraph where relationships are not merely pairwise. To address the high-order information loss between subgraphs caused by distributed storage, we introduce a pre-propagation hyperedge completion operation before the federated training process. In this pre-propagation step, cross-client feature aggregation is performed and distributed at the central server to ensure that this information can be utilized by the clients. Furthermore, by incorporating local differential privacy (LDP) mechanisms, we ensure that the original node features are not disclosed during this aggregation process. Experimental results on seven real-world datasets confirm the effectiveness of our approach and demonstrate its performance advantages over traditional federated graph learning methods.
♻ ☆ Continual Learning of Large Language Models: A Comprehensive Survey
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.
comment: 44 pages, 2 figures, 4 tables; Work in progress
♻ ☆ Transformers Provably Solve Parity Efficiently with Chain of Thought NeurIPS 2024
This work provides the first theoretical analysis of training transformers to solve complex problems by recursively generating intermediate states, analogous to fine-tuning for chain-of-thought (CoT) reasoning. We consider training a one-layer transformer to solve the fundamental $k$-parity problem, extending the work on RNNs by Wies et al. (2023). We establish three key results: (1) any finite-precision gradient-based algorithm, without intermediate supervision, requires substantial iterations to solve parity with finite samples. (2) In contrast, when intermediate parities are incorporated into the loss function, our model can learn parity in one gradient update when aided by \emph{teacher forcing}, where ground-truth labels of the reasoning chain are provided at each generation step. (3) Even without teacher forcing, where the model must generate CoT chains end-to-end, parity can be learned efficiently if augmented data is employed to internally verify the soundness of intermediate steps. Our findings, supported by numerical experiments, show that task decomposition and stepwise reasoning naturally arise from optimizing transformers with CoT; moreover, self-consistency checking can improve multi-step reasoning ability, aligning with empirical studies of CoT.
comment: NeurIPS 2024 M3L Workshop
♻ ☆ Improving Decision Sparsity NeurIPS 2024
Sparsity is a central aspect of interpretability in machine learning. Typically, sparsity is measured in terms of the size of a model globally, such as the number of variables it uses. However, this notion of sparsity is not particularly relevant for decision-making; someone subjected to a decision does not care about variables that do not contribute to the decision. In this work, we dramatically expand a notion of decision sparsity called the Sparse Explanation Value(SEV) so that its explanations are more meaningful. SEV considers movement along a hypercube towards a reference point. By allowing flexibility in that reference and by considering how distances along the hypercube translate to distances in feature space, we can derive sparser and more meaningful explanations for various types of function classes. We present cluster-based SEV and its variant tree-based SEV, introduce a method that improves credibility of explanations, and propose algorithms that optimize decision sparsity in machine learning models.
comment: Accepted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
AdaTrans: Feature-wise and Sample-wise Adaptive Transfer Learning for High-dimensional Regression
We consider the transfer learning problem in the high dimensional linear regression setting, where the feature dimension is larger than the sample size. To learn transferable information, which may vary across features or the source samples, we propose an adaptive transfer learning method that can detect and aggregate the feature-wise (F-AdaTrans) or sample-wise (S-AdaTrans) transferable structures. We achieve this by employing a fused-penalty, coupled with weights that can adapt according to the transferable structure. To choose the weight, we propose a theoretically informed, data-driven procedure, enabling F-AdaTrans to selectively fuse the transferable signals with the target while filtering out non-transferable signals, and S-AdaTrans to obtain the optimal combination of information transferred from each source sample. We show that, with appropriately chosen weights, F-AdaTrans achieves a convergence rate close to that of an oracle estimator with a known transferable structure, and S-AdaTrans recovers existing near-minimax optimal rates as a special case. The effectiveness of the proposed method is validated using both simulation and real data, demonstrating favorable performance compared to the existing methods.
♻ ☆ LeanAgent: Lifelong Learning for Formal Theorem Proving
Large Language Models (LLMs) have been successful in mathematical reasoning tasks such as formal theorem proving when integrated with interactive proof assistants like Lean. Existing approaches involve training or fine-tuning an LLM on a specific dataset to perform well on particular domains, such as undergraduate-level mathematics. These methods struggle with generalizability to advanced mathematics. A fundamental limitation is that these approaches operate on static domains, failing to capture how mathematicians often work across multiple domains and projects simultaneously or cyclically. We present LeanAgent, a novel lifelong learning framework for formal theorem proving that continuously generalizes to and improves on ever-expanding mathematical knowledge without forgetting previously learned knowledge. LeanAgent introduces several key innovations, including a curriculum learning strategy that optimizes the learning trajectory in terms of mathematical difficulty, a dynamic database for efficient management of evolving mathematical knowledge, and progressive training to balance stability and plasticity. LeanAgent successfully proves 155 theorems previously unproved formally by humans across 23 diverse Lean repositories, many from advanced mathematics. It performs significantly better than the static LLM baseline, proving challenging theorems in domains like abstract algebra and algebraic topology while showcasing a clear progression of learning from basic concepts to advanced topics. In addition, we analyze LeanAgent's superior performance on key lifelong learning metrics. LeanAgent achieves exceptional scores in stability and backward transfer, where learning new tasks improves performance on previously learned tasks. This emphasizes LeanAgent's continuous generalizability and improvement, explaining its superior theorem-proving performance.
♻ ☆ Privacy-Preserving Federated Learning with Differentially Private Hyperdimensional Computing
Federated Learning (FL) is essential for efficient data exchange in Internet of Things (IoT) environments, as it trains Machine Learning (ML) models locally and shares only model updates. However, FL is vulnerable to privacy threats like model inversion and membership inference attacks, which can expose sensitive training data. To address these privacy concerns, Differential Privacy (DP) mechanisms are often applied. Yet, adding DP noise to black-box ML models degrades performance, especially in dynamic IoT systems where continuous, lifelong FL learning accumulates excessive noise over time. To mitigate this issue, we introduce Federated HyperDimensional computing with Privacy-preserving (FedHDPrivacy), an eXplainable Artificial Intelligence (XAI) framework that combines the neuro-symbolic paradigm with DP. FedHDPrivacy carefully manages the balance between privacy and performance by theoretically tracking cumulative noise from previous rounds and adding only the necessary incremental noise to meet privacy requirements. In a real-world case study involving in-process monitoring of manufacturing machining operations, FedHDPrivacy demonstrates robust performance, outperforming standard FL frameworks-including Federated Averaging (FedAvg), Federated Stochastic Gradient Descent (FedSGD), Federated Proximal (FedProx), Federated Normalized Averaging (FedNova), and Federated Adam (FedAdam)-by up to 38%. FedHDPrivacy also shows potential for future enhancements, such as multimodal data fusion.
comment: 28 Pages, 10 Figures
Multimedia 9
☆ Sonic: Shifting Focus to Global Audio Perception in Portrait Animation
The study of talking face generation mainly explores the intricacies of synchronizing facial movements and crafting visually appealing, temporally-coherent animations. However, due to the limited exploration of global audio perception, current approaches predominantly employ auxiliary visual and spatial knowledge to stabilize the movements, which often results in the deterioration of the naturalness and temporal inconsistencies.Considering the essence of audio-driven animation, the audio signal serves as the ideal and unique priors to adjust facial expressions and lip movements, without resorting to interference of any visual signals. Based on this motivation, we propose a novel paradigm, dubbed as Sonic, to {s}hift f{o}cus on the exploration of global audio per{c}ept{i}o{n}.To effectively leverage global audio knowledge, we disentangle it into intra- and inter-clip audio perception and collaborate with both aspects to enhance overall perception.For the intra-clip audio perception, 1). \textbf{Context-enhanced audio learning}, in which long-range intra-clip temporal audio knowledge is extracted to provide facial expression and lip motion priors implicitly expressed as the tone and speed of speech. 2). \textbf{Motion-decoupled controller}, in which the motion of the head and expression movement are disentangled and independently controlled by intra-audio clips. Most importantly, for inter-clip audio perception, as a bridge to connect the intra-clips to achieve the global perception, \textbf{Time-aware position shift fusion}, in which the global inter-clip audio information is considered and fused for long-audio inference via through consecutively time-aware shifted windows. Extensive experiments demonstrate that the novel audio-driven paradigm outperform existing SOTA methodologies in terms of video quality, temporally consistency, lip synchronization precision, and motion diversity.
comment: refer to our main-page \url{https://jixiaozhong.github.io/Sonic/}
☆ ENCLIP: Ensembling and Clustering-Based Contrastive Language-Image Pretraining for Fashion Multimodal Search with Limited Data and Low-Quality Images
Multimodal search has revolutionized the fashion industry, providing a seamless and intuitive way for users to discover and explore fashion items. Based on their preferences, style, or specific attributes, users can search for products by combining text and image information. Text-to-image searches enable users to find visually similar items or describe products using natural language. This paper presents an innovative approach called ENCLIP, for enhancing the performance of the Contrastive Language-Image Pretraining (CLIP) model, specifically in Multimodal Search targeted towards the domain of fashion intelligence. This method focuses on addressing the challenges posed by limited data availability and low-quality images. This paper proposes an algorithm that involves training and ensembling multiple instances of the CLIP model, and leveraging clustering techniques to group similar images together. The experimental findings presented in this study provide evidence of the effectiveness of the methodology. This approach unlocks the potential of CLIP in the domain of fashion intelligence, where data scarcity and image quality issues are prevalent. Overall, the ENCLIP method represents a valuable contribution to the field of fashion intelligence and provides a practical solution for optimizing the CLIP model in scenarios with limited data and low-quality images.
☆ Lens Distortion Encoding System Version 1.0
Lens Distortion Encoding System (LDES) allows for a distortion-accurate workflow, with a seamless interchange of high quality motion picture images regardless of the lens source. This system is similar in a concept to the Academy Color Encoding System (ACES), but for distortion. Presented solution is fully compatible with existing software/plug-in tools for STMapping found in popular production software like Adobe After Effects or DaVinci Resolve. LDES utilizes common distortion space and produces single high-quality, animatable STMap used for direct transformation of one view to another, neglecting the need of lens-swapping for each shoot. The LDES profile of a lens consist of two elements; View Map texture, and Footage Map texture, each labeled with the FOV value. Direct distortion mapping is produced by sampling of the Footage Map through the View Map. The result; animatable mapping texture, is then used to sample the footage to a desired distortion. While the Footage Map is specific to a footage, View Maps can be freely combined/transitioned and animated, allowing for effects like smooth shift from anamorphic to spherical distortion, previously impossible to achieve in practice. Presented LDES Version 1.0 uses common 32-bit STMap format for encoding, supported by most compositing software, directly or via plug-ins. The difference between standard STMap workflow and LDES is that it encodes absolute pixel position in the spherical image model. The main benefit of this approach is the ability to achieve a similar look of a highly expensive lens using some less expensive equipment in terms of distortion. It also provides greater artistic control and never seen before manipulation of footage.
comment: 7 pages, 1 figure, 2 tables
☆ Fully Automatic Deep Learning Pipeline for Whole Slide Image Quality Assessment ALT
In recent years, the use of deep learning (DL) methods, including convolutional neural networks (CNNs) and vision transformers (ViTs), has significantly advanced computational pathology, enhancing both diagnostic accuracy and efficiency. Hematoxylin and Eosin (H&E) Whole Slide Images (WSI) plays a crucial role by providing detailed tissue samples for the analysis and training of DL models. However, WSIs often contain regions with artifacts such as tissue folds, blurring, as well as non-tissue regions (background), which can negatively impact DL model performance. These artifacts are diagnostically irrelevant and can lead to inaccurate results. This paper proposes a fully automatic supervised DL pipeline for WSI Quality Assessment (WSI-QA) that uses a fused model combining CNNs and ViTs to detect and exclude WSI regions with artifacts, ensuring that only qualified WSI regions are used to build DL-based computational pathology applications. The proposed pipeline employs a pixel-based segmentation model to classify WSI regions as either qualified or non-qualified based on the presence of artifacts. The proposed model was trained on a large and diverse dataset and validated with internal and external data from various human organs, scanners, and H&E staining procedures. Quantitative and qualitative evaluations demonstrate the superiority of the proposed model, which outperforms state-of-the-art methods in WSI artifact detection. The proposed model consistently achieved over 95% accuracy, precision, recall, and F1 score across all artifact types. Furthermore, the WSI-QA pipeline shows strong generalization across different tissue types and scanning conditions.
comment: submitted to IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, November 25, 2024
☆ Augmenting Multimodal LLMs with Self-Reflective Tokens for Knowledge-based Visual Question Answering
Multimodal LLMs (MLLMs) are the natural extension of large language models to handle multimodal inputs, combining text and image data. They have recently garnered attention due to their capability to address complex tasks involving both modalities. However, their effectiveness is limited to the knowledge acquired during training, which restricts their practical utility. In this work, we introduce a novel method to enhance the adaptability of MLLMs by integrating external knowledge sources. Our proposed model, Reflective LLaVA (ReflectiVA), utilizes reflective tokens to dynamically determine the need for external knowledge and predict the relevance of information retrieved from an external database. Tokens are trained following a two-stage two-model training recipe. This ultimately enables the MLLM to manage external knowledge while preserving fluency and performance on tasks where external knowledge is not needed. Through our experiments, we demonstrate the efficacy of ReflectiVA for knowledge-based visual question answering, highlighting its superior performance compared to existing methods. Source code and trained models are publicly available at https://github.com/aimagelab/ReflectiVA.
♻ ☆ Multimodal Fish Feeding Intensity Assessment in Aquaculture
Fish feeding intensity assessment (FFIA) aims to evaluate fish appetite changes during feeding, which is crucial in industrial aquaculture applications. Existing FFIA methods are limited by their robustness to noise, computational complexity, and the lack of public datasets for developing the models. To address these issues, we first introduce AV-FFIA, a new dataset containing 27,000 labeled audio and video clips that capture different levels of fish feeding intensity. Then, we introduce multi-modal approaches for FFIA by leveraging the models pre-trained on individual modalities and fused with data fusion methods. We perform benchmark studies of these methods on AV-FFIA, and demonstrate the advantages of the multi-modal approach over the single-modality based approach, especially in noisy environments. However, compared to the methods developed for individual modalities, the multimodal approaches may involve higher computational costs due to the need for independent encoders for each modality. To overcome this issue, we further present a novel unified mixed-modality based method for FFIA, termed as U-FFIA. U-FFIA is a single model capable of processing audio, visual, or audio-visual modalities, by leveraging modality dropout during training and knowledge distillation using the models pre-trained with data from single modality. We demonstrate that U-FFIA can achieve performance better than or on par with the state-of-the-art modality-specific FFIA models, with significantly lower computational overhead, enabling robust and efficient FFIA for improved aquaculture management.
♻ ☆ Structured Multi-Track Accompaniment Arrangement via Style Prior Modelling NeurIPS 2024
In the realm of music AI, arranging rich and structured multi-track accompaniments from a simple lead sheet presents significant challenges. Such challenges include maintaining track cohesion, ensuring long-term coherence, and optimizing computational efficiency. In this paper, we introduce a novel system that leverages prior modelling over disentangled style factors to address these challenges. Our method presents a two-stage process: initially, a piano arrangement is derived from the lead sheet by retrieving piano texture styles; subsequently, a multi-track orchestration is generated by infusing orchestral function styles into the piano arrangement. Our key design is the use of vector quantization and a unique multi-stream Transformer to model the long-term flow of the orchestration style, which enables flexible, controllable, and structured music generation. Experiments show that by factorizing the arrangement task into interpretable sub-stages, our approach enhances generative capacity while improving efficiency. Additionally, our system supports a variety of music genres and provides style control at different composition hierarchies. We further show that our system achieves superior coherence, structure, and overall arrangement quality compared to existing baselines.
comment: Accepted by NeurIPS 2024; typos addressed
♻ ☆ X-CrossNet: A complex spectral mapping approach to target speaker extraction with cross attention speaker embedding fusion
Target speaker extraction (TSE) is a technique for isolating a target speaker's voice from mixed speech using auxiliary features associated with the target speaker. It is another attempt at addressing the cocktail party problem and is generally considered to have more practical application prospects than traditional speech separation methods. Although academic research in this area has achieved high performance and evaluation scores on public datasets, most models exhibit significantly reduced performance in real-world noisy or reverberant conditions. To address this limitation, we propose a novel TSE model, X-CrossNet, which leverages CrossNet as its backbone. CrossNet is a speech separation network specifically optimized for challenging noisy and reverberant environments, achieving state-of-the-art performance in tasks such as speaker separation under these conditions. Additionally, to enhance the network's ability to capture and utilize auxiliary features of the target speaker, we integrate a Cross-Attention mechanism into the global multi-head self-attention (GMHSA) module within each CrossNet block. This facilitates more effective integration of target speaker features with mixed speech features. Experimental results show that our method performs superior separation on the WSJ0-2mix and WHAMR! datasets, demonstrating strong robustness and stability.
♻ ☆ Any2Any: Incomplete Multimodal Retrieval with Conformal Prediction
Autonomous agents perceive and interpret their surroundings by integrating multimodal inputs, such as vision, audio, and LiDAR. These perceptual modalities support retrieval tasks, such as place recognition in robotics. However, current multimodal retrieval systems encounter difficulties when parts of the data are missing due to sensor failures or inaccessibility, such as silent videos or LiDAR scans lacking RGB information. We propose Any2Any-a novel retrieval framework that addresses scenarios where both query and reference instances have incomplete modalities. Unlike previous methods limited to the imputation of two modalities, Any2Any handles any number of modalities without training generative models. It calculates pairwise similarities with cross-modal encoders and employs a two-stage calibration process with conformal prediction to align the similarities. Any2Any enables effective retrieval across multimodal datasets, e.g., text-LiDAR and text-time series. It achieves a Recall@5 of 35% on the KITTI dataset, which is on par with baseline models with complete modalities.
Artificial Intelligent 195
☆ OPMOS: Ordered Parallel Multi-Objective Shortest-Path
The Multi-Objective Shortest-Path (MOS) problem finds a set of Pareto-optimal solutions from a start node to a destination node in a multi-attribute graph. To solve the NP-hard MOS problem, the literature explores heuristic multi-objective A*-style algorithmic approaches. A generalized MOS algorithm maintains a "frontier" of partial paths at each node and performs ordered processing to ensure that Pareto-optimal paths are generated to reach the goal node. The algorithm becomes computationally intractable as the number of objectives increases due to a rapid increase in the non-dominated paths, and the concomitantly large increase in Pareto-optimal solutions. While prior works have focused on algorithmic methods to reduce the complexity, we tackle this challenge by exploiting parallelism using an algorithm-architecture approach. The key insight is that MOS algorithms rely on the ordered execution of partial paths to maintain high work efficiency. The OPMOS framework, proposed herein, unlocks ordered parallelism and efficiently exploits the concurrent execution of multiple paths in MOS. Experimental evaluation using the NVIDIA GH200 Superchip shows the performance scaling potential of OPMOS on work efficiency and parallelism using a real-world application to ship routing.
comment: 15 pages
☆ CatNet: Effective FDR Control in LSTM with Gaussian Mirrors and SHAP Feature Importance
We introduce CatNet, an algorithm that effectively controls False Discovery Rate (FDR) and selects significant features in LSTM with the Gaussian Mirror (GM) method. To evaluate the feature importance of LSTM in time series, we introduce a vector of the derivative of the SHapley Additive exPlanations (SHAP) to measure feature importance. We also propose a new kernel-based dependence measure to avoid multicollinearity in the GM algorithm, to make a robust feature selection with controlled FDR. We use simulated data to evaluate CatNet's performance in both linear models and LSTM models with different link functions. The algorithm effectively controls the FDR while maintaining a high statistical power in all cases. We also evaluate the algorithm's performance in different low-dimensional and high-dimensional cases, demonstrating its robustness in various input dimensions. To evaluate CatNet's performance in real world applications, we construct a multi-factor investment portfolio to forecast the prices of S\&P 500 index components. The results demonstrate that our model achieves superior predictive accuracy compared to traditional LSTM models without feature selection and FDR control. Additionally, CatNet effectively captures common market-driving features, which helps informed decision-making in financial markets by enhancing the interpretability of predictions. Our study integrates of the Gaussian Mirror algorithm with LSTM models for the first time, and introduces SHAP values as a new feature importance metric for FDR control methods, marking a significant advancement in feature selection and error control for neural networks.
☆ DreamRunner: Fine-Grained Storytelling Video Generation with Retrieval-Augmented Motion Adaptation
Storytelling video generation (SVG) has recently emerged as a task to create long, multi-motion, multi-scene videos that consistently represent the story described in the input text script. SVG holds great potential for diverse content creation in media and entertainment; however, it also presents significant challenges: (1) objects must exhibit a range of fine-grained, complex motions, (2) multiple objects need to appear consistently across scenes, and (3) subjects may require multiple motions with seamless transitions within a single scene. To address these challenges, we propose DreamRunner, a novel story-to-video generation method: First, we structure the input script using a large language model (LLM) to facilitate both coarse-grained scene planning as well as fine-grained object-level layout and motion planning. Next, DreamRunner presents retrieval-augmented test-time adaptation to capture target motion priors for objects in each scene, supporting diverse motion customization based on retrieved videos, thus facilitating the generation of new videos with complex, scripted motions. Lastly, we propose a novel spatial-temporal region-based 3D attention and prior injection module SR3AI for fine-grained object-motion binding and frame-by-frame semantic control. We compare DreamRunner with various SVG baselines, demonstrating state-of-the-art performance in character consistency, text alignment, and smooth transitions. Additionally, DreamRunner exhibits strong fine-grained condition-following ability in compositional text-to-video generation, significantly outperforming baselines on T2V-ComBench. Finally, we validate DreamRunner's robust ability to generate multi-object interactions with qualitative examples.
comment: Project website: https://dreamrunner-story2video.github.io/
☆ Self-Generated Critiques Boost Reward Modeling for Language Models
Reward modeling is crucial for aligning large language models (LLMs) with human preferences, especially in reinforcement learning from human feedback (RLHF). However, current reward models mainly produce scalar scores and struggle to incorporate critiques in a natural language format. We hypothesize that predicting both critiques and the scalar reward would improve reward modeling ability. Motivated by this, we propose Critic-RM, a framework that improves reward models using self-generated critiques without extra supervision. Critic-RM employs a two-stage process: generating and filtering high-quality critiques, followed by joint fine-tuning on reward prediction and critique generation. Experiments across benchmarks show that Critic-RM improves reward modeling accuracy by 3.7%-7.3% compared to standard reward models and LLM judges, demonstrating strong performance and data efficiency. Additional studies further validate the effectiveness of generated critiques in rectifying flawed reasoning steps with 2.5%-3.2% gains in improving reasoning accuracy.
comment: 20 pages
☆ Recommender Systems for Good (RS4Good): Survey of Use Cases and a Call to Action for Research that Matters
In the area of recommender systems, the vast majority of research efforts is spent on developing increasingly sophisticated recommendation models, also using increasingly more computational resources. Unfortunately, most of these research efforts target a very small set of application domains, mostly e-commerce and media recommendation. Furthermore, many of these models are never evaluated with users, let alone put into practice. The scientific, economic and societal value of much of these efforts by scholars therefore remains largely unclear. To achieve a stronger positive impact resulting from these efforts, we posit that we as a research community should more often address use cases where recommender systems contribute to societal good (RS4Good). In this opinion piece, we first discuss a number of examples where the use of recommender systems for problems of societal concern has been successfully explored in the literature. We then proceed by outlining a paradigmatic shift that is needed to conduct successful RS4Good research, where the key ingredients are interdisciplinary collaborations and longitudinal evaluation approaches with humans in the loop.
☆ Do Automatic Factuality Metrics Measure Factuality? A Critical Evaluation
Modern LLMs can now produce highly readable abstractive summaries, to the point where traditional automated metrics for evaluating summary quality, such as ROUGE, have become saturated. However, LLMs still sometimes introduce unwanted content into summaries, i.e., information inconsistent with or unsupported by their source. Measuring the occurrence of these often subtle ``hallucinations'' automatically has proved to be challenging. This in turn has motivated development of a variety of metrics intended to measure the factual consistency of generated summaries against their source. But are these approaches measuring what they purport to do? In this work, we stress-test automatic factuality metrics. Specifically, we investigate whether and to what degree superficial attributes of summary texts suffice to predict ``factuality'', finding that a (supervised) model using only such shallow features is reasonably competitive with SOTA factuality scoring methods. We then evaluate how factuality metrics respond to factual corrections in inconsistent summaries and find that only a few show meaningful improvements. In contrast, some metrics are more sensitive to benign, non-factual edits. Motivated by these insights, we show that one can ``game'' (most) automatic factuality metrics, i.e., reliably inflate ``factuality'' scores by appending innocuous sentences to generated summaries.Taken together, our results raise questions about the degree to which we should rely on existing automated factuality metrics and what exactly we want ``factuality metrics'' to measure.
☆ Inference-Time Policy Steering through Human Interactions
Generative policies trained with human demonstrations can autonomously accomplish multimodal, long-horizon tasks. However, during inference, humans are often removed from the policy execution loop, limiting the ability to guide a pre-trained policy towards a specific sub-goal or trajectory shape among multiple predictions. Naive human intervention may inadvertently exacerbate distribution shift, leading to constraint violations or execution failures. To better align policy output with human intent without inducing out-of-distribution errors, we propose an Inference-Time Policy Steering (ITPS) framework that leverages human interactions to bias the generative sampling process, rather than fine-tuning the policy on interaction data. We evaluate ITPS across three simulated and real-world benchmarks, testing three forms of human interaction and associated alignment distance metrics. Among six sampling strategies, our proposed stochastic sampling with diffusion policy achieves the best trade-off between alignment and distribution shift. Videos are available at https://yanweiw.github.io/itps/.
☆ Imperceptible Adversarial Examples in the Physical World
Adversarial examples in the digital domain against deep learning-based computer vision models allow for perturbations that are imperceptible to human eyes. However, producing similar adversarial examples in the physical world has been difficult due to the non-differentiable image distortion functions in visual sensing systems. The existing algorithms for generating physically realizable adversarial examples often loosen their definition of adversarial examples by allowing unbounded perturbations, resulting in obvious or even strange visual patterns. In this work, we make adversarial examples imperceptible in the physical world using a straight-through estimator (STE, a.k.a. BPDA). We employ STE to overcome the non-differentiability -- applying exact, non-differentiable distortions in the forward pass of the backpropagation step, and using the identity function in the backward pass. Our differentiable rendering extension to STE also enables imperceptible adversarial patches in the physical world. Using printout photos, and experiments in the CARLA simulator, we show that STE enables fast generation of $\ell_\infty$ bounded adversarial examples despite the non-differentiable distortions. To the best of our knowledge, this is the first work demonstrating imperceptible adversarial examples bounded by small $\ell_\infty$ norms in the physical world that force zero classification accuracy in the global perturbation threat model and cause near-zero ($4.22\%$) AP50 in object detection in the patch perturbation threat model. We urge the community to re-evaluate the threat of adversarial examples in the physical world.
☆ F -- A Model of Events based on the Foundational Ontology DOLCE+DnS Ultralite
The lack of a formal model of events hinders interoperability in distributed event-based systems. In this paper, we present a formal model of events, called Event-Model-F. The model is based on the foundational ontology DOLCE+DnS Ultralite (DUL) and provides comprehensive support to represent time and space, objects and persons, as well as mereological, causal, and correlative relationships between events. In addition, the Event-Model-F provides a flexible means for event composition, modeling event causality and event correlation, and representing different interpretations of the same event. The Event-Model-F is developed following the pattern-oriented approach of DUL, is modularized in different ontologies, and can be easily extended by domain specific ontologies.
comment: Reprint of KCAP 2009 paper with republished ontologies
☆ From Generation to Judgment: Opportunities and Challenges of LLM-as-a-judge
Assessment and evaluation have long been critical challenges in artificial intelligence (AI) and natural language processing (NLP). However, traditional methods, whether matching-based or embedding-based, often fall short of judging subtle attributes and delivering satisfactory results. Recent advancements in Large Language Models (LLMs) inspire the "LLM-as-a-judge" paradigm, where LLMs are leveraged to perform scoring, ranking, or selection across various tasks and applications. This paper provides a comprehensive survey of LLM-based judgment and assessment, offering an in-depth overview to advance this emerging field. We begin by giving detailed definitions from both input and output perspectives. Then we introduce a comprehensive taxonomy to explore LLM-as-a-judge from three dimensions: what to judge, how to judge and where to judge. Finally, we compile benchmarks for evaluating LLM-as-a-judge and highlight key challenges and promising directions, aiming to provide valuable insights and inspire future research in this promising research area. Paper list and more resources about LLM-as-a-judge can be found at \url{https://github.com/llm-as-a-judge/Awesome-LLM-as-a-judge} and \url{https://llm-as-a-judge.github.io}.
comment: 32 pages, 5 figures
Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision
Training large language models (LLMs) to spend more time thinking and reflection before responding is crucial for effectively solving complex reasoning tasks in fields such as science, coding, and mathematics. However, the effectiveness of mechanisms like self-reflection and self-correction depends on the model's capacity to accurately assess its own performance, which can be limited by factors such as initial accuracy, question difficulty, and the lack of external feedback. In this paper, we delve into a two-player paradigm that separates the roles of reasoning and critique models, where the critique model provides step-level feedback to supervise the reasoning (actor) model during both test-time and train-time. We first propose AutoMathCritique, an automated and scalable framework for collecting critique data, resulting in a dataset of $76,321$ responses paired with step-level feedback. Fine-tuning language models with this dataset enables them to generate natural language feedback for mathematical reasoning. We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time, especially when scaling up inference-time computation. Motivated by these findings, we introduce the critique-based supervision to the actor's self-training process, and propose a critique-in-the-loop self-improvement method. Experiments show that the method improves the actor's exploration efficiency and solution diversity, especially on challenging queries, leading to a stronger reasoning model. Lastly, we take the preliminary step to explore training self-talk reasoning models via critique supervision and showcase its potential. Our code and datasets are at \href{https://mathcritique.github.io/}{https://mathcritique.github.io/}.
comment: Preprint
☆ Naive Algorithmic Collusion: When Do Bandit Learners Cooperate and When Do They Compete?
Algorithmic agents are used in a variety of competitive decision settings, notably in making pricing decisions in contexts that range from online retail to residential home rentals. Business managers, algorithm designers, legal scholars, and regulators alike are all starting to consider the ramifications of "algorithmic collusion." We study the emergent behavior of multi-armed bandit machine learning algorithms used in situations where agents are competing, but they have no information about the strategic interaction they are engaged in. Using a general-form repeated Prisoner's Dilemma game, agents engage in online learning with no prior model of game structure and no knowledge of competitors' states or actions (e.g., no observation of competing prices). We show that these context-free bandits, with no knowledge of opponents' choices or outcomes, still will consistently learn collusive behavior - what we call "naive collusion." We primarily study this system through an analytical model and examine perturbations to the model through simulations. Our findings have several notable implications for regulators. First, calls to limit algorithms from conditioning on competitors' prices are insufficient to prevent algorithmic collusion. This is a direct result of collusion arising even in the naive setting. Second, symmetry in algorithms can increase collusion potential. This highlights a new, simple mechanism for "hub-and-spoke" algorithmic collusion. A central distributor need not imbue its algorithm with supra-competitive tendencies for apparent collusion to arise; it can simply arise by using certain (common) machine learning algorithms. Finally, we highlight that collusive outcomes depend starkly on the specific algorithm being used, and we highlight market and algorithmic conditions under which it will be unknown a priori whether collusion occurs.
comment: To be published in proceedings of International Conference on Information Systems 2024
☆ Representation Collapsing Problems in Vector Quantization
Vector quantization is a technique in machine learning that discretizes continuous representations into a set of discrete vectors. It is widely employed in tokenizing data representations for large language models, diffusion models, and other generative models. Despite its prevalence, the characteristics and behaviors of vector quantization in generative models remain largely underexplored. In this study, we investigate representation collapse in vector quantization - a critical degradation where codebook tokens or latent embeddings lose their discriminative power by converging to a limited subset of values. This collapse fundamentally compromises the model's ability to capture diverse data patterns. By leveraging both synthetic and real datasets, we identify the severity of each type of collapses and triggering conditions. Our analysis reveals that restricted initialization and limited encoder capacity result in tokens collapse and embeddings collapse. Building on these findings, we propose potential solutions aimed at mitigating each collapse. To the best of our knowledge, this is the first comprehensive study examining representation collapsing problems in vector quantization.
comment: 13 pages, under review
☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics
Spatial understanding is a crucial capability for robots to make grounded decisions based on their environment. This foundational skill enables robots not only to perceive their surroundings but also to reason about and interact meaningfully within the world. In modern robotics, these capabilities are taken on by visual language models, and they face significant challenges when applied to spatial reasoning context due to their training data sources. These sources utilize general-purpose image datasets, and they often lack sophisticated spatial scene understanding capabilities. For example, the datasets do not address reference frame comprehension - spatial relationships require clear contextual understanding, whether from an ego-centric, object-centric, or world-centric perspective, which allow for effective real-world interaction. To address this issue, we introduce RoboSpatial, a large-scale spatial understanding dataset consisting of real indoor and tabletop scenes captured as 3D scans and egocentric images, annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5K 3D scans, and 3M annotated spatial relationships, with paired 2D egocentric images and 3D scans to make it both 2D and 3D ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robotics manipulation.
☆ Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency
We investigate the statistical and computational limits of prompt tuning for transformer-based foundation models. Our key contributions are prompt tuning on \textit{single-head} transformers with only a \textit{single} self-attention layer: (i) is universal, and (ii) supports efficient (even almost-linear time) algorithms under the Strong Exponential Time Hypothesis (SETH). Statistically, we prove that prompt tuning on such simplest possible transformers are universal approximators for sequence-to-sequence Lipschitz functions. In addition, we provide an exponential-in-$dL$ and -in-$(1/\epsilon)$ lower bound on the required soft-prompt tokens for prompt tuning to memorize any dataset with 1-layer, 1-head transformers. Computationally, we identify a phase transition in the efficiency of prompt tuning, determined by the norm of the \textit{soft-prompt-induced} keys and queries, and provide an upper bound criterion. Beyond this criterion, no sub-quadratic (efficient) algorithm for prompt tuning exists under SETH. Within this criterion, we showcase our theory by proving the existence of almost-linear time prompt tuning inference algorithms. These fundamental limits provide important necessary conditions for designing expressive and efficient prompt tuning methods for practitioners.
☆ Interpreting Language Reward Models via Contrastive Explanations
Reward models (RMs) are a crucial component in the alignment of large language models' (LLMs) outputs with human values. RMs approximate human preferences over possible LLM responses to the same prompt by predicting and comparing reward scores. However, as they are typically modified versions of LLMs with scalar output heads, RMs are large black boxes whose predictions are not explainable. More transparent RMs would enable improved trust in the alignment of LLMs. In this work, we propose to use contrastive explanations to explain any binary response comparison made by an RM. Specifically, we generate a diverse set of new comparisons similar to the original one to characterise the RM's local behaviour. The perturbed responses forming the new comparisons are generated to explicitly modify manually specified high-level evaluation attributes, on which analyses of RM behaviour are grounded. In quantitative experiments, we validate the effectiveness of our method for finding high-quality contrastive explanations. We then showcase the qualitative usefulness of our method for investigating global sensitivity of RMs to each evaluation attribute, and demonstrate how representative examples can be automatically extracted to explain and compare behaviours of different RMs. We see our method as a flexible framework for RM explanation, providing a basis for more interpretable and trustworthy LLM alignment.
☆ O1 Replication Journey -- Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson?
This paper presents a critical examination of current approaches to replicating OpenAI's O1 model capabilities, with particular focus on the widespread but often undisclosed use of knowledge distillation techniques. While our previous work explored the fundamental technical path to O1 replication, this study reveals how simple distillation from O1's API, combined with supervised fine-tuning, can achieve superior performance on complex mathematical reasoning tasks. Through extensive experiments, we show that a base model fine-tuned on simply tens of thousands of samples O1-distilled long-thought chains outperforms O1-preview on the American Invitational Mathematics Examination (AIME) with minimal technical complexity. Moreover, our investigation extends beyond mathematical reasoning to explore the generalization capabilities of O1-distilled models across diverse tasks: hallucination, safety and open-domain QA. Notably, despite training only on mathematical problem-solving data, our models demonstrated strong generalization to open-ended QA tasks and became significantly less susceptible to sycophancy after fine-tuning. We deliberately make this finding public to promote transparency in AI research and to challenge the current trend of obscured technical claims in the field. Our work includes: (1) A detailed technical exposition of the distillation process and its effectiveness, (2) A comprehensive benchmark framework for evaluating and categorizing O1 replication attempts based on their technical transparency and reproducibility, (3) A critical discussion of the limitations and potential risks of over-relying on distillation approaches, our analysis culminates in a crucial bitter lesson: while the pursuit of more capable AI systems is important, the development of researchers grounded in first-principles thinking is paramount.
comment: 16 pages
☆ When Babies Teach Babies: Can student knowledge sharing outperform Teacher-Guided Distillation on small datasets? CoNLL
We present our submission to the BabyLM challenge, aiming to push the boundaries of data-efficient language model pretraining. Our method builds upon deep mutual learning, introducing a student model search for diverse initialization. We address the limitation of treating students equally by formulating weighted mutual learning as a bi-level optimization problem. The inner loop learns compact students through online distillation, while the outer loop optimizes weights for better knowledge distillation from diverse students. This dynamic weighting strategy eliminates the need for a teacher model, reducing computational requirements. Our evaluations show that teacher-less methods can match or surpass teacher-supervised approaches.
comment: Accepted to BabyLM challenge, CoNLL Workshop, EMNLP 2024
☆ Characterized Diffusion Networks for Enhanced Autonomous Driving Trajectory Prediction
In this paper, we present a novel trajectory prediction model for autonomous driving, combining a Characterized Diffusion Module and a Spatial-Temporal Interaction Network to address the challenges posed by dynamic and heterogeneous traffic environments. Our model enhances the accuracy and reliability of trajectory predictions by incorporating uncertainty estimation and complex agent interactions. Through extensive experimentation on public datasets such as NGSIM, HighD, and MoCAD, our model significantly outperforms existing state-of-the-art methods. We demonstrate its ability to capture the underlying spatial-temporal dynamics of traffic scenarios and improve prediction precision, especially in complex environments. The proposed model showcases strong potential for application in real-world autonomous driving systems.
comment: 7 pages, 0 figures
☆ TIFeD: a Tiny Integer-based Federated learning algorithm with Direct feedback alignment
Training machine and deep learning models directly on extremely resource-constrained devices is the next challenge in the field of tiny machine learning. The related literature in this field is very limited, since most of the solutions focus only on on-device inference or model adaptation through online learning, leaving the training to be carried out on external Cloud services. An interesting technological perspective is to exploit Federated Learning (FL), which allows multiple devices to collaboratively train a shared model in a distributed way. However, the main drawback of state-of-the-art FL algorithms is that they are not suitable for running on tiny devices. For the first time in the literature, in this paper we introduce TIFeD, a Tiny Integer-based Federated learning algorithm with Direct Feedback Alignment (DFA) entirely implemented by using an integer-only arithmetic and being specifically designed to operate on devices with limited resources in terms of memory, computation and energy. Besides the traditional full-network operating modality, in which each device of the FL setting trains the entire neural network on its own local data, we propose an innovative single-layer TIFeD implementation, which enables each device to train only a portion of the neural network model and opens the door to a new way of distributing the learning procedure across multiple devices. The experimental results show the feasibility and effectiveness of the proposed solution. The proposed TIFeD algorithm, with its full-network and single-layer implementations, is made available to the scientific community as a public repository.
☆ Unsupervised Event Outlier Detection in Continuous Time
Event sequence data record the occurrences of events in continuous time. Event sequence forecasting based on temporal point processes (TPPs) has been extensively studied, but outlier or anomaly detection, especially without any supervision from humans, is still underexplored. In this work, we develop, to the best our knowledge, the first unsupervised outlier detection approach to detecting abnormal events. Our novel unsupervised outlier detection framework is based on ideas from generative adversarial networks (GANs) and reinforcement learning (RL). We train a 'generator' that corrects outliers in the data with a 'discriminator' that learns to discriminate the corrected data from the real data, which may contain outliers. A key insight is that if the generator made a mistake in the correction, it would generate anomalies that are different from the anomalies in the real data, so it serves as data augmentation for the discriminator learning. Different from typical GAN-based outlier detection approaches, our method employs the generator to detect outliers in an online manner. The experimental results show that our method can detect event outliers more accurately than the state-of-the-art approaches.
☆ TopV-Nav: Unlocking the Top-View Spatial Reasoning Potential of MLLM for Zero-shot Object Navigation
The Zero-Shot Object Navigation (ZSON) task requires embodied agents to find a previously unseen object by navigating in unfamiliar environments. Such a goal-oriented exploration heavily relies on the ability to perceive, understand, and reason based on the spatial information of the environment. However, current LLM-based approaches convert visual observations to language descriptions and reason in the linguistic space, leading to the loss of spatial information. In this paper, we introduce TopV-Nav, a MLLM-based method that directly reasons on the top-view map with complete spatial information. To fully unlock the MLLM's spatial reasoning potential in top-view perspective, we propose the Adaptive Visual Prompt Generation (AVPG) method to adaptively construct semantically-rich top-view map. It enables the agent to directly utilize spatial information contained in the top-view map to conduct thorough reasoning. Besides, we design a Dynamic Map Scaling (DMS) mechanism to dynamically zoom top-view map at preferred scales, enhancing local fine-grained reasoning. Additionally, we devise a Target-Guided Navigation (TGN) mechanism to predict and to utilize target locations, facilitating global and human-like exploration. Experiments on MP3D and HM3D benchmarks demonstrate the superiority of our TopV-Nav, e.g., $+3.9\%$ SR and $+2.0\%$ SPL absolute improvements on HM3D.
comment: 10 pages
☆ Turbofan Engine Remaining Useful Life (RUL) Prediction Based on Bi-Directional Long Short-Term Memory (BLSTM)
The aviation industry is rapidly evolving, driven by advancements in technology. Turbofan engines used in commercial aerospace are very complex systems. The majority of turbofan engine components are susceptible to degradation over the life of their operation. Turbofan engine degradation has an impact to engine performance, operability, and reliability. Predicting accurate remaining useful life (RUL) of a commercial turbofan engine based on a variety of complex sensor data is of paramount importance for the safety of the passengers, safety of flight, and for cost effective operations. That is why it is essential for turbofan engines to be monitored, controlled, and maintained. RUL predictions can either come from model-based or data-based approaches. The model-based approach can be very expensive due to the complexity of the mathematical models and the deep expertise that is required in the domain of physical systems. The data-based approach is more frequently used nowadays thanks to the high computational complexity of computers, the advancements in Machine Learning (ML) models, and advancements in sensors. This paper is going to be focused on Bi-Directional Long Short-Term Memory (BLSTM) models but will also provide a benchmark of several RUL prediction databased models. The proposed RUL prediction models are going to be evaluated based on engine failure prediction benchmark dataset Commercial Modular Aero-Propulsion System Simulation (CMAPSS). The CMAPSS dataset is from NASA which contains turbofan engine run to failure events.
☆ Low-Data Classification of Historical Music Manuscripts: A Few-Shot Learning Approach
In this paper, we explore the intersection of technology and cultural preservation by developing a self-supervised learning framework for the classification of musical symbols in historical manuscripts. Optical Music Recognition (OMR) plays a vital role in digitising and preserving musical heritage, but historical documents often lack the labelled data required by traditional methods. We overcome this challenge by training a neural-based feature extractor on unlabelled data, enabling effective classification with minimal samples. Key contributions include optimising crop preprocessing for a self-supervised Convolutional Neural Network and evaluating classification methods, including SVM, multilayer perceptrons, and prototypical networks. Our experiments yield an accuracy of 87.66\%, showcasing the potential of AI-driven methods to ensure the survival of historical music for future generations through advanced digital archiving techniques.
comment: 6 pages, The Sixth IEEE international conference on Image Processing Applications and Systems
☆ A Study on Unsupervised Domain Adaptation for Semantic Segmentation in the Era of Vision-Language Models BMVC
Despite the recent progress in deep learning based computer vision, domain shifts are still one of the major challenges. Semantic segmentation for autonomous driving faces a wide range of domain shifts, e.g. caused by changing weather conditions, new geolocations and the frequent use of synthetic data in model training. Unsupervised domain adaptation (UDA) methods have emerged which adapt a model to a new target domain by only using unlabeled data of that domain. The variety of UDA methods is large but all of them use ImageNet pre-trained models. Recently, vision-language models have demonstrated strong generalization capabilities which may facilitate domain adaptation. We show that simply replacing the encoder of existing UDA methods like DACS by a vision-language pre-trained encoder can result in significant performance improvements of up to 10.0% mIoU on the GTA5-to-Cityscapes domain shift. For the generalization performance to unseen domains, the newly employed vision-language pre-trained encoder provides a gain of up to 13.7% mIoU across three unseen datasets. However, we find that not all UDA methods can be easily paired with the new encoder and that the UDA performance does not always likewise transfer into generalization performance. Finally, we perform our experiments on an adverse weather condition domain shift to further verify our findings on a pure real-to-real domain shift.
comment: Accepted to British Machine Vision Conference (BMVC) 2024: Workshop on Robust Recognition in the Open World (RROW)
☆ Synthesising Handwritten Music with GANs: A Comprehensive Evaluation of CycleWGAN, ProGAN, and DCGAN
The generation of handwritten music sheets is a crucial step toward enhancing Optical Music Recognition (OMR) systems, which rely on large and diverse datasets for optimal performance. However, handwritten music sheets, often found in archives, present challenges for digitisation due to their fragility, varied handwriting styles, and image quality. This paper addresses the data scarcity problem by applying Generative Adversarial Networks (GANs) to synthesise realistic handwritten music sheets. We provide a comprehensive evaluation of three GAN models - DCGAN, ProGAN, and CycleWGAN - comparing their ability to generate diverse and high-quality handwritten music images. The proposed CycleWGAN model, which enhances style transfer and training stability, significantly outperforms DCGAN and ProGAN in both qualitative and quantitative evaluations. CycleWGAN achieves superior performance, with an FID score of 41.87, an IS of 2.29, and a KID of 0.05, making it a promising solution for improving OMR systems.
comment: 10 pages, one page references, to appear on the IEEE Big Data 2024 2nd Workshop on AI Music Generation (AIMG 2024)
☆ Adapter-based Approaches to Knowledge-enhanced Language Models -- A Survey
Knowledge-enhanced language models (KELMs) have emerged as promising tools to bridge the gap between large-scale language models and domain-specific knowledge. KELMs can achieve higher factual accuracy and mitigate hallucinations by leveraging knowledge graphs (KGs). They are frequently combined with adapter modules to reduce the computational load and risk of catastrophic forgetting. In this paper, we conduct a systematic literature review (SLR) on adapter-based approaches to KELMs. We provide a structured overview of existing methodologies in the field through quantitative and qualitative analysis and explore the strengths and potential shortcomings of individual approaches. We show that general knowledge and domain-specific approaches have been frequently explored along with various adapter architectures and downstream tasks. We particularly focused on the popular biomedical domain, where we provided an insightful performance comparison of existing KELMs. We outline the main trends and propose promising future directions.
comment: 12 pages, 4 figures. Published at KEOD24 via SciTePress
☆ Human-Calibrated Automated Testing and Validation of Generative Language Models
This paper introduces a comprehensive framework for the evaluation and validation of generative language models (GLMs), with a focus on Retrieval-Augmented Generation (RAG) systems deployed in high-stakes domains such as banking. GLM evaluation is challenging due to open-ended outputs and subjective quality assessments. Leveraging the structured nature of RAG systems, where generated responses are grounded in a predefined document collection, we propose the Human-Calibrated Automated Testing (HCAT) framework. HCAT integrates a) automated test generation using stratified sampling, b) embedding-based metrics for explainable assessment of functionality, risk and safety attributes, and c) a two-stage calibration approach that aligns machine-generated evaluations with human judgments through probability calibration and conformal prediction. In addition, the framework includes robustness testing to evaluate model performance against adversarial, out-of-distribution, and varied input conditions, as well as targeted weakness identification using marginal and bivariate analysis to pinpoint specific areas for improvement. This human-calibrated, multi-layered evaluation framework offers a scalable, transparent, and interpretable approach to GLM assessment, providing a practical and reliable solution for deploying GLMs in applications where accuracy, transparency, and regulatory compliance are paramount.
☆ Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence
Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, conventional ultrasound diagnostics face several limitations, including high dependence on physician expertise and suboptimal image quality, which complicates interpretation and increases the likelihood of diagnostic errors. Artificial intelligence (AI) has emerged as a promising solution to enhance clinical diagnosis, particularly in detecting abnormalities across various biomedical imaging modalities. Nonetheless, current AI models for ultrasound imaging face critical challenges. First, these models often require large volumes of labeled medical data, raising concerns over patient privacy breaches. Second, most existing models are task-specific, which restricts their broader clinical utility. To overcome these challenges, we present UltraFedFM, an innovative privacy-preserving ultrasound foundation model. UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries, leveraging a dataset of over 1 million ultrasound images covering 19 organs and 10 ultrasound modalities. This extensive and diverse data, combined with a secure training framework, enables UltraFedFM to exhibit strong generalization and diagnostic capabilities. It achieves an average area under the receiver operating characteristic curve of 0.927 for disease diagnosis and a dice similarity coefficient of 0.878 for lesion segmentation. Notably, UltraFedFM surpasses the diagnostic accuracy of mid-level ultrasonographers and matches the performance of expert-level sonographers in the joint diagnosis of 8 common systemic diseases. These findings indicate that UltraFedFM can significantly enhance clinical diagnostics while safeguarding patient privacy, marking an advancement in AI-driven ultrasound imaging for future clinical applications.
☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the greater scope of Deep Learning-based computer vision. Furthermore, their widespread applicability in critical real-world tasks has given rise to challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation by discussing fundamental concepts in uncertainty that govern advancements in the field as well as the application to various tasks. We identify that quantifying aleatoric and epistemic uncertainty approximates Bayesian inference w.r.t. to either latent variables or model parameters, respectively. Moreover, literature on both uncertainties trace back to four key applications; (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) active learning. Then, a discussion follows that includes an overview of utilized datasets for each of the applications and comparison of the available methods. We also highlight challenges related to architectures, uncertainty-based active learning, standardization and benchmarking, and recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 20 pages
☆ Graph Neural Networks-based Parameter Design towards Large-Scale Superconducting Quantum Circuits for Crosstalk Mitigation
To demonstrate supremacy of quantum computing, increasingly large-scale superconducting quantum computing chips are being designed and fabricated, sparking the demand for electronic design automation in pursuit of better efficiency and effectiveness. However, the complexity of simulating quantum systems poses a significant challenge to computer-aided design of quantum chips. Harnessing the scalability of graph neural networks (GNNs), we here propose a parameter designing algorithm for large-scale superconducting quantum circuits. The algorithm depends on the so-called 'three-stair scaling' mechanism, which comprises two neural-network models: an evaluator supervisedly trained on small-scale circuits for applying to medium-scale circuits, and a designer unsupervisedly trained on medium-scale circuits for applying to large-scale ones. We demonstrate our algorithm in mitigating quantum crosstalk errors, which are commonly present and closely related to the graph structures and parameter assignments of superconducting quantum circuits. Parameters for both single- and two-qubit gates are considered simultaneously. Numerical results indicate that the well-trained designer achieves notable advantages not only in efficiency but also in effectiveness, especially for large-scale circuits. For example, in superconducting quantum circuits consisting of around 870 qubits, the trained designer requires only 27 seconds to complete the frequency designing task which necessitates 90 minutes for the traditional Snake algorithm. More importantly, the crosstalk errors using our algorithm are only 51% of those produced by the Snake algorithm. Overall, this study initially demonstrates the advantages of applying graph neural networks to design parameters in quantum processors, and provides insights for systems where large-scale numerical simulations are challenging in electronic design automation.
☆ The Two-Hop Curse: LLMs trained on A->B, B->C fail to learn A-->C
While LLMs excel at multi-hop questions (e.g. "Who is the spouse of the performer of Imagine?") when using chain-of-thought reasoning (CoT), they struggle when forced to reason internally (without CoT). Previous work on the size and nature of this gap produced mixed evidence with inconclusive results. In this paper, we introduce a controlled setting for investigating two-hop reasoning in LLMs, where the above-chance performance constitutes undeniable evidence for latent reasoning. We fine-tune LLMs (including Llama 3 8B Instruct and GPT-4o) on fictional facts and confirm that they generalize to answering two-hop questions about them using CoT. We find that models can perform latent reasoning when facts appear together during training or in the prompt. However, to our surprise, models completely fail at two-hop reasoning without CoT when learned facts only appear in different documents, achieving chance-level accuracy and chance-level test loss. We call this complete failure to compose separately learned facts the Two-Hop Curse. Moreover, we evaluate 9 frontier LLMs on real-world facts, finding that models completely fail at two-hop no-CoT reasoning for over half of question categories while maintaining partial success with CoT across most categories. These results suggest that LLMs lack a general capability for latent multi-hop reasoning independent of the question type.
☆ Can AI grade your essays? A comparative analysis of large language models and teacher ratings in multidimensional essay scoring
The manual assessment and grading of student writing is a time-consuming yet critical task for teachers. Recent developments in generative AI, such as large language models, offer potential solutions to facilitate essay-scoring tasks for teachers. In our study, we evaluate the performance and reliability of both open-source and closed-source LLMs in assessing German student essays, comparing their evaluations to those of 37 teachers across 10 pre-defined criteria (i.e., plot logic, expression). A corpus of 20 real-world essays from Year 7 and 8 students was analyzed using five LLMs: GPT-3.5, GPT-4, o1, LLaMA 3-70B, and Mixtral 8x7B, aiming to provide in-depth insights into LLMs' scoring capabilities. Closed-source GPT models outperform open-source models in both internal consistency and alignment with human ratings, particularly excelling in language-related criteria. The novel o1 model outperforms all other LLMs, achieving Spearman's $r = .74$ with human assessments in the overall score, and an internal consistency of $ICC=.80$. These findings indicate that LLM-based assessment can be a useful tool to reduce teacher workload by supporting the evaluation of essays, especially with regard to language-related criteria. However, due to their tendency for higher scores, the models require further refinement to better capture aspects of content quality.
comment: Accepted at LAK '25
☆ Brain-like emergent properties in deep networks: impact of network architecture, datasets and training
Despite the rapid pace at which deep networks are improving on standardized vision benchmarks, they are still outperformed by humans on real-world vision tasks. This paradoxical lack of generalization could be addressed by making deep networks more brain-like. Although several benchmarks have compared the ability of deep networks to predict brain responses to natural images, they do not capture subtle but important brain-like emergent properties. To resolve this issue, we report several well-known perceptual and neural emergent properties that can be tested on deep networks. To evaluate how various design factors impact brain-like properties, we systematically evaluated over 30 state-of-the-art networks with varying network architectures, training datasets and training regimes. Our main findings are as follows. First, network architecture had the strongest impact on brain-like properties compared to dataset and training regime variations. Second, networks varied widely in their alignment to the brain with no single network outperforming all others. Taken together, our results complement existing benchmarks by revealing brain-like properties that are either emergent or lacking in state-of-the-art deep networks.
☆ One Diffusion to Generate Them All
We introduce OneDiffusion, a versatile, large-scale diffusion model that seamlessly supports bidirectional image synthesis and understanding across diverse tasks. It enables conditional generation from inputs such as text, depth, pose, layout, and semantic maps, while also handling tasks like image deblurring, upscaling, and reverse processes such as depth estimation and segmentation. Additionally, OneDiffusion allows for multi-view generation, camera pose estimation, and instant personalization using sequential image inputs. Our model takes a straightforward yet effective approach by treating all tasks as frame sequences with varying noise scales during training, allowing any frame to act as a conditioning image at inference time. Our unified training framework removes the need for specialized architectures, supports scalable multi-task training, and adapts smoothly to any resolution, enhancing both generalization and scalability. Experimental results demonstrate competitive performance across tasks in both generation and prediction such as text-to-image, multiview generation, ID preservation, depth estimation and camera pose estimation despite relatively small training dataset. Our code and checkpoint are freely available at https://github.com/lehduong/OneDiffusion
comment: two first authors contribute equally
☆ CATP-LLM: Empowering Large Language Models for Cost-Aware Tool Planning
Utilizing large language models (LLMs) for tool planning has emerged as a promising avenue for developing general AI systems, where LLMs automatically schedule external tools (e.g. vision models) to tackle complex tasks based on task descriptions. To push this paradigm toward practical applications, it is crucial for LLMs to consider tool execution costs (e.g. execution time) for tool planning. Unfortunately, prior studies overlook the tool execution costs, leading to the generation of expensive plans of which the costs outweigh task performance. To fill this gap, we propose the Cost-Aware Tool Planning with LLMs (CATP-LLM) framework, which for the first time provides a coherent design to empower LLMs for cost-aware tool planning. Specifically, CATP-LLM incorporates a tool planning language to enhance the LLM to generate non-sequential plans of multiple branches for efficient concurrent tool execution and cost reduction. Moreover, it further designs a cost-aware offline reinforcement learning algorithm to fine-tune the LLM to optimize the performance-cost trade-off in tool planning. In lack of public cost-related datasets, we further present OpenCATP, the first platform for cost-aware planning evaluation. Experiments on OpenCATP show that CATP-LLM outperforms GPT-4 even when using Llama2-7B as its backbone, with the average improvement of 28.2%-30.2% higher plan performance and 24.7%-45.8% lower costs even on the challenging planning tasks. The codes of CATP-LLM and OpenCATP will be publicly available.
comment: In submission
☆ Learning from Relevant Subgoals in Successful Dialogs using Iterative Training for Task-oriented Dialog Systems
Task-oriented Dialog (ToD) systems have to solve multiple subgoals to accomplish user goals, whereas feedback is often obtained only at the end of the dialog. In this work, we propose SUIT (SUbgoal-aware ITerative Training), an iterative training approach for improving ToD systems. We sample dialogs from the model we aim to improve and determine subgoals that contribute to dialog success using distant supervision to obtain high quality training samples. We show how this data improves supervised fine-tuning or, alternatively, preference learning results. SUIT is able to iteratively generate more data instead of relying on fixed static sets. SUIT reaches new state-of-the-art performance on a popular ToD benchmark.
☆ BayLing 2: A Multilingual Large Language Model with Efficient Language Alignment
Large language models (LLMs), with their powerful generative capabilities and vast knowledge, empower various tasks in everyday life. However, these abilities are primarily concentrated in high-resource languages, leaving low-resource languages with weaker generative capabilities and relatively limited knowledge. Enhancing the multilingual capabilities of LLMs is therefore crucial for serving over 100 linguistic communities worldwide. An intuitive approach to enhance the multilingual capabilities would be to construct instruction data for various languages, but constructing instruction data for over 100 languages is prohibitively costly. In this paper, we introduce BayLing 2, which efficiently transfers generative capabilities and knowledge from high-resource languages to low-resource languages through language alignment. To achieve this, we constructed a dataset of 3.2 million instructions, comprising high-resource language instructions (Chinese and English) and cross-lingual instructions for 100+ languages and performed instruction tuning based on the dataset to facilitate the capability transfer between languages. Using Llama as the foundation model, we developed BayLing-2-7B, BayLing-2-13B, and BayLing-3-8B, and conducted a comprehensive evaluation of BayLing. For multilingual translation across 100+ languages, BayLing shows superior performance compared to open-source models of similar scale. For multilingual knowledge and understanding benchmarks, BayLing achieves significant improvements across over 20 low-resource languages, demonstrating its capability of effective knowledge transfer from high-resource to low-resource languages. Furthermore, results on English benchmarks indicate that BayLing maintains high performance in highresource languages while enhancing the performance in low-resource languages. Demo, homepage, code and models of BayLing are available.
comment: BayLing 2's online demo: http://nlp.ict.ac.cn/bayling/demo. BayLing 2's code and models: https://github.com/ictnlp/BayLing
☆ The SVASR System for Text-dependent Speaker Verification (TdSV) AAIC Challenge 2024
This paper introduces an efficient and accurate pipeline for text-dependent speaker verification (TDSV), designed to address the need for high-performance biometric systems. The proposed system incorporates a Fast-Conformer-based ASR module to validate speech content, filtering out Target-Wrong (TW) and Impostor-Wrong (IW) trials. For speaker verification, we propose a feature fusion approach that combines speaker embeddings extracted from wav2vec-BERT and ReDimNet models to create a unified speaker representation. This system achieves competitive results on the TDSV 2024 Challenge test set, with a normalized min-DCF of 0.0452 (rank 2), highlighting its effectiveness in balancing accuracy and robustness.
☆ Probing for Consciousness in Machines
This study explores the potential for artificial agents to develop core consciousness, as proposed by Antonio Damasio's theory of consciousness. According to Damasio, the emergence of core consciousness relies on the integration of a self model, informed by representations of emotions and feelings, and a world model. We hypothesize that an artificial agent, trained via reinforcement learning (RL) in a virtual environment, can develop preliminary forms of these models as a byproduct of its primary task. The agent's main objective is to learn to play a video game and explore the environment. To evaluate the emergence of world and self models, we employ probes-feedforward classifiers that use the activations of the trained agent's neural networks to predict the spatial positions of the agent itself. Our results demonstrate that the agent can form rudimentary world and self models, suggesting a pathway toward developing machine consciousness. This research provides foundational insights into the capabilities of artificial agents in mirroring aspects of human consciousness, with implications for future advancements in artificial intelligence.
☆ Diagnosis of diabetic retinopathy using machine learning & deep learning technique
Fundus images are widely used for diagnosing various eye diseases, such as diabetic retinopathy, glaucoma, and age-related macular degeneration. However, manual analysis of fundus images is time-consuming and prone to errors. In this report, we propose a novel method for fundus detection using object detection and machine learning classification techniques. We use a YOLO_V8 to perform object detection on fundus images and locate the regions of interest (ROIs) such as optic disc, optic cup and lesions. We then use machine learning SVM classification algorithms to classify the ROIs into different DR stages based on the presence or absence of pathological signs such as exudates, microaneurysms, and haemorrhages etc. Our method achieves 84% accuracy and efficiency for fundus detection and can be applied for retinal fundus disease triage, especially in remote areas around the world.
comment: 9 pages, 11 figures, Journal Paper
☆ Batch Bayesian Optimization via Expected Subspace Improvement
Extending Bayesian optimization to batch evaluation can enable the designer to make the most use of parallel computing technology. Most of current batch approaches use artificial functions to simulate the sequential Bayesian optimization algorithm's behavior to select a batch of points for parallel evaluation. However, as the batch size grows, the accumulated error introduced by these artificial functions increases rapidly, which dramatically decreases the optimization efficiency of the algorithm. In this work, we propose a simple and efficient approach to extend Bayesian optimization to batch evaluation. Different from existing batch approaches, the idea of the new approach is to draw a batch of subspaces of the original problem and select one acquisition point from each subspace. To achieve this, we propose the expected subspace improvement criterion to measure the amount of the improvement that a candidate point can achieve within a certain subspace. By optimizing these expected subspace improvement functions simultaneously, we can get a batch of query points for expensive evaluation. Numerical experiments show that our proposed approach can achieve near-linear speedup when compared with the sequential Bayesian optimization algorithm, and performs very competitively when compared with eight state-of-the-art batch algorithms. This work provides a simple yet efficient approach for batch Bayesian optimization. A Matlab implementation of our approach is available at https://github.com/zhandawei/Expected_Subspace_Improvement_Batch_Bayesian_Optimization
☆ Enhancing Multi-Agent Consensus through Third-Party LLM Integration: Analyzing Uncertainty and Mitigating Hallucinations in Large Language Models
Large Language Models (LLMs) still face challenges when dealing with complex reasoning tasks, often resulting in hallucinations, which limit the practical application of LLMs. To alleviate this issue, this paper proposes a new method that integrates different LLMs to expand the knowledge boundary, reduce dependence on a single model, and promote in-depth debate among agents. The main contributions include: 1) Introducing third-party LLMs to adjust the attention weights of agents through uncertainty estimation and confidence analysis, optimizing consensus formation in multi-agent systems; 2) Experiments on arithmetic datasets have validated the effectiveness of the method, surpassing traditional multi-agent baselines. This research provides a new perspective for large models to alleviate hallucination phenomena when dealing with complex tasks.
☆ SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis
Despite advances in Large Multi-modal Models, applying them to long and untrimmed video content remains challenging due to limitations in context length and substantial memory overhead. These constraints often lead to significant information loss and reduced relevance in the model responses. With the exponential growth of video data across web platforms, understanding long-form video is crucial for advancing generalized intelligence. In this paper, we introduce SALOVA: Segment-Augmented LOng Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content through targeted retrieval process. We address two main challenges to achieve it: (i) We present the SceneWalk dataset, a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich descriptive context. (ii) We develop robust architectural designs integrating dynamic routing mechanism and spatio-temporal projector to efficiently retrieve and process relevant video segments based on user queries. Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries, thereby improving the contextual relevance of the generated responses. Through extensive experiments, SALOVA demonstrates enhanced capability in processing complex long-form videos, showing significant capability to maintain contextual integrity across extended sequences.
comment: Project page: https://ivy-lvlm.github.io/SALOVA/
☆ Local and Global Feature Attention Fusion Network for Face Recognition
Recognition of low-quality face images remains a challenge due to invisible or deformation in partial facial regions. For low-quality images dominated by missing partial facial regions, local region similarity contributes more to face recognition (FR). Conversely, in cases dominated by local face deformation, excessive attention to local regions may lead to misjudgments, while global features exhibit better robustness. However, most of the existing FR methods neglect the bias in feature quality of low-quality images introduced by different factors. To address this issue, we propose a Local and Global Feature Attention Fusion (LGAF) network based on feature quality. The network adaptively allocates attention between local and global features according to feature quality and obtains more discriminative and high-quality face features through local and global information complementarity. In addition, to effectively obtain fine-grained information at various scales and increase the separability of facial features in high-dimensional space, we introduce a Multi-Head Multi-Scale Local Feature Extraction (MHMS) module. Experimental results demonstrate that the LGAF achieves the best average performance on $4$ validation sets (CFP-FP, CPLFW, AgeDB, and CALFW), and the performance on TinyFace and SCFace outperforms the state-of-the-art methods (SoTA).
☆ MixPE: Quantization and Hardware Co-design for Efficient LLM Inference
Transformer-based large language models (LLMs) have achieved remarkable success as model sizes continue to grow, yet their deployment remains challenging due to significant computational and memory demands. Quantization has emerged as a promising solution, and state-of-the-art quantization algorithms for LLMs introduce the need for mixed-precision matrix multiplication (mpGEMM), where lower-precision weights are multiplied with higher-precision activations. Despite its benefits, current hardware accelerators such as GPUs and TPUs lack native support for efficient mpGEMM, leading to inefficient dequantization operations in the main sequential loop. To address this limitation, we introduce MixPE, a specialized mixed-precision processing element designed for efficient low-bit quantization in LLM inference. MixPE leverages two key innovations to minimize dequantization overhead and unlock the full potential of low-bit quantization. First, recognizing that scale and zero point are shared within each quantization group, we propose performing dequantization after per-group mpGEMM, significantly reducing dequantization overhead. Second, instead of relying on conventional multipliers, MixPE utilizes efficient shift\&add operations for multiplication, optimizing both computation and energy efficiency. Our experimental results demonstrate that MixPE surpasses the state-of-the-art quantization accelerators by $2.6\times$ speedup and $1.4\times$ energy reduction.
☆ Graph Adapter of EEG Foundation Models for Parameter Efficient Fine Tuning
In diagnosing mental diseases from electroencephalography (EEG) data, neural network models such as Transformers have been employed to capture temporal dynamics. Additionally, it is crucial to learn the spatial relationships between EEG sensors, for which Graph Neural Networks (GNNs) are commonly used. However, fine-tuning large-scale complex neural network models simultaneously to capture both temporal and spatial features increases computational costs due to the more significant number of trainable parameters. It causes the limited availability of EEG datasets for downstream tasks, making it challenging to fine-tune large models effectively. We propose EEG-GraphAdapter (EGA), a parameter-efficient fine-tuning (PEFT) approach to address these challenges. EGA is integrated into pre-trained temporal backbone models as a GNN-based module and fine-tuned itself alone while keeping the backbone model parameters frozen. This enables the acquisition of spatial representations of EEG signals for downstream tasks, significantly reducing computational overhead and data requirements. Experimental evaluations on healthcare-related downstream tasks of Major Depressive Disorder and Abnormality Detection demonstrate that our EGA improves performance by up to 16.1% in the F1-score compared with the backbone BENDR model.
comment: Under review
☆ SKQVC: One-Shot Voice Conversion by K-Means Quantization with Self-Supervised Speech Representations
One-shot voice conversion (VC) is a method that enables the transformation between any two speakers using only a single target speaker utterance. Existing methods often rely on complex architectures and pre-trained speaker verification (SV) models to improve the fidelity of converted speech. Recent works utilizing K-means quantization (KQ) with self-supervised learning (SSL) features have proven capable of capturing content information from speech. However, they often struggle to preserve speaking variation, such as prosodic detail and phonetic variation, particularly with smaller codebooks. In this work, we propose a simple yet effective one-shot VC model that utilizes the characteristics of SSL features and speech attributes. Our approach addresses the issue of losing speaking variation, enabling high-fidelity voice conversion trained with only reconstruction losses, without requiring external speaker embeddings. We demonstrate the performance of our model across 6 evaluation metrics, with results highlighting the benefits of the speaking variation compensation method.
comment: 5 pages
☆ End-to-End Steering for Autonomous Vehicles via Conditional Imitation Co-Learning
Autonomous driving involves complex tasks such as data fusion, object and lane detection, behavior prediction, and path planning. As opposed to the modular approach which dedicates individual subsystems to tackle each of those tasks, the end-to-end approach treats the problem as a single learnable task using deep neural networks, reducing system complexity and minimizing dependency on heuristics. Conditional imitation learning (CIL) trains the end-to-end model to mimic a human expert considering the navigational commands guiding the vehicle to reach its destination, CIL adopts specialist network branches dedicated to learn the driving task for each navigational command. Nevertheless, the CIL model lacked generalization when deployed to unseen environments. This work introduces the conditional imitation co-learning (CIC) approach to address this issue by enabling the model to learn the relationships between CIL specialist branches via a co-learning matrix generated by gated hyperbolic tangent units (GTUs). Additionally, we propose posing the steering regression problem as classification, we use a classification-regression hybrid loss to bridge the gap between regression and classification, we also propose using co-existence probability to consider the spatial tendency between the steering classes. Our model is demonstrated to improve autonomous driving success rate in unseen environment by 62% on average compared to the CIL method.
comment: NCTA 2024 Best Paper Honorable Mention
☆ CIA: Controllable Image Augmentation Framework Based on Stable Diffusion
Computer vision tasks such as object detection and segmentation rely on the availability of extensive, accurately annotated datasets. In this work, We present CIA, a modular pipeline, for (1) generating synthetic images for dataset augmentation using Stable Diffusion, (2) filtering out low quality samples using defined quality metrics, (3) forcing the existence of specific patterns in generated images using accurate prompting and ControlNet. In order to show how CIA can be used to search for an optimal augmentation pipeline of training data, we study human object detection in a data constrained scenario, using YOLOv8n on COCO and Flickr30k datasets. We have recorded significant improvement using CIA-generated images, approaching the performances obtained when doubling the amount of real images in the dataset. Our findings suggest that our modular framework can significantly enhance object detection systems, and make it possible for future research to be done on data-constrained scenarios. The framework is available at: github.com/multitel-ai/CIA.
☆ Med-PerSAM: One-Shot Visual Prompt Tuning for Personalized Segment Anything Model in Medical Domain
Leveraging pre-trained models with tailored prompts for in-context learning has proven highly effective in NLP tasks. Building on this success, recent studies have applied a similar approach to the Segment Anything Model (SAM) within a ``one-shot" framework, where only a single reference image and its label are employed. However, these methods face limitations in the medical domain, primarily due to SAM's essential requirement for visual prompts and the over-reliance on pixel similarity for generating them. This dependency may lead to (1) inaccurate prompt generation and (2) clustering of point prompts, resulting in suboptimal outcomes. To address these challenges, we introduce \textbf{Med-PerSAM}, a novel and straightforward one-shot framework designed for the medical domain. Med-PerSAM uses only visual prompt engineering and eliminates the need for additional training of the pretrained SAM or human intervention, owing to our novel automated prompt generation process. By integrating our lightweight warping-based prompt tuning model with SAM, we enable the extraction and iterative refinement of visual prompts, enhancing the performance of the pre-trained SAM. This advancement is particularly meaningful in the medical domain, where creating visual prompts poses notable challenges for individuals lacking medical expertise. Our model outperforms various foundational models and previous SAM-based approaches across diverse 2D medical imaging datasets.
☆ Why the Agent Made that Decision: Explaining Deep Reinforcement Learning with Vision Masks
Due to the inherent lack of transparency in deep neural networks, it is challenging for deep reinforcement learning (DRL) agents to gain trust and acceptance from users, especially in safety-critical applications such as medical diagnosis and military operations. Existing methods for explaining an agent's decision either require to retrain the agent using models that support explanation generation or rely on perturbation-based techniques to reveal the significance of different input features in the decision making process. However, retraining the agent may compromise its integrity and performance, while perturbation-based methods have limited performance and lack knowledge accumulation or learning capabilities. Moreover, since each perturbation is performed independently, the joint state of the perturbed inputs may not be physically meaningful. To address these challenges, we introduce $\textbf{VisionMask}$, a standalone explanation model trained end-to-end to identify the most critical regions in the agent's visual input that can explain its actions. VisionMask is trained in a self-supervised manner without relying on human-generated labels. Importantly, its training does not alter the agent model, hence preserving the agent's performance and integrity. We evaluate VisionMask on Super Mario Bros (SMB) and three Atari games. Compared to existing methods, VisionMask achieves a 14.9% higher insertion accuracy and a 30.08% higher F1-Score in reproducing original actions from the selected visual explanations. We also present examples illustrating how VisionMask can be used for counterfactual analysis.
LLM Augmentations to support Analytical Reasoning over Multiple Documents
Building on their demonstrated ability to perform a variety of tasks, we investigate the application of large language models (LLMs) to enhance in-depth analytical reasoning within the context of intelligence analysis. Intelligence analysts typically work with massive dossiers to draw connections between seemingly unrelated entities, and uncover adversaries' plans and motives. We explore if and how LLMs can be helpful to analysts for this task and develop an architecture to augment the capabilities of an LLM with a memory module called dynamic evidence trees (DETs) to develop and track multiple investigation threads. Through extensive experiments on multiple datasets, we highlight how LLMs, as-is, are still inadequate to support intelligence analysts and offer recommendations to improve LLMs for such intricate reasoning applications.
comment: 2024 IEEE International Conference on Big Data (IEEE BigData 2024)
LLMPirate: LLMs for Black-box Hardware IP Piracy
The rapid advancement of large language models (LLMs) has enabled the ability to effectively analyze and generate code nearly instantaneously, resulting in their widespread adoption in software development. Following this advancement, researchers and companies have begun integrating LLMs across the hardware design and verification process. However, these highly potent LLMs can also induce new attack scenarios upon security vulnerabilities across the hardware development process. One such attack vector that has not been explored is intellectual property (IP) piracy. Given that this attack can manifest as rewriting hardware designs to evade piracy detection, it is essential to thoroughly evaluate LLM capabilities in performing this task and assess the mitigation abilities of current IP piracy detection tools. Therefore, in this work, we propose LLMPirate, the first LLM-based technique able to generate pirated variations of circuit designs that successfully evade detection across multiple state-of-the-art piracy detection tools. We devise three solutions to overcome challenges related to integration of LLMs for hardware circuit designs, scalability to large circuits, and effectiveness, resulting in an end-to-end automated, efficient, and practical formulation. We perform an extensive experimental evaluation of LLMPirate using eight LLMs of varying sizes and capabilities and assess their performance in pirating various circuit designs against four state-of-the-art, widely-used piracy detection tools. Our experiments demonstrate that LLMPirate is able to consistently evade detection on 100% of tested circuits across every detection tool. Additionally, we showcase the ramifications of LLMPirate using case studies on IBEX and MOR1KX processors and a GPS module, that we successfully pirate. We envision that our work motivates and fosters the development of better IP piracy detection tools.
comment: Accepted by NDSS Symposium 2025
☆ Adaptive Circuit Behavior and Generalization in Mechanistic Interpretability
Mechanistic interpretability aims to understand the inner workings of large neural networks by identifying circuits, or minimal subgraphs within the model that implement algorithms responsible for performing specific tasks. These circuits are typically discovered and analyzed using a narrowly defined prompt format. However, given the abilities of large language models (LLMs) to generalize across various prompt formats for the same task, it remains unclear how well these circuits generalize. For instance, it is unclear whether the models generalization results from reusing the same circuit components, the components behaving differently, or the use of entirely different components. In this paper, we investigate the generality of the indirect object identification (IOI) circuit in GPT-2 small, which is well-studied and believed to implement a simple, interpretable algorithm. We evaluate its performance on prompt variants that challenge the assumptions of this algorithm. Our findings reveal that the circuit generalizes surprisingly well, reusing all of its components and mechanisms while only adding additional input edges. Notably, the circuit generalizes even to prompt variants where the original algorithm should fail; we discover a mechanism that explains this which we term S2 Hacking. Our findings indicate that circuits within LLMs may be more flexible and general than previously recognized, underscoring the importance of studying circuit generalization to better understand the broader capabilities of these models.
comment: 10 pages, 8 figures
☆ An Empirical Study of Vulnerability Detection using Federated Learning
Although Deep Learning (DL) methods becoming increasingly popular in vulnerability detection, their performance is seriously limited by insufficient training data. This is mainly because few existing software organizations can maintain a complete set of high-quality samples for DL-based vulnerability detection. Due to the concerns about privacy leakage, most of them are reluctant to share data, resulting in the data silo problem. Since enables collaboratively model training without data sharing, Federated Learning (FL) has been investigated as a promising means of addressing the data silo problem in DL-based vulnerability detection. However, since existing FL-based vulnerability detection methods focus on specific applications, it is still far unclear i) how well FL adapts to common vulnerability detection tasks and ii) how to design a high-performance FL solution for a specific vulnerability detection task. To answer these two questions, this paper first proposes VulFL, an effective evaluation framework for FL-based vulnerability detection. Then, based on VulFL, this paper conducts a comprehensive study to reveal the underlying capabilities of FL in dealing with different types of CWEs, especially when facing various data heterogeneity scenarios. Our experimental results show that, compared to independent training, FL can significantly improve the detection performance of common AI models on all investigated CWEs, though the performance of FL-based vulnerability detection is limited by heterogeneous data. To highlight the performance differences between different FL solutions for vulnerability detection, we extensively investigate the impacts of different configuration strategies for each framework component of VulFL. Our study sheds light on the potential of FL in vulnerability detection, which can be used to guide the design of FL-based solutions for vulnerability detection.
☆ ENCLIP: Ensembling and Clustering-Based Contrastive Language-Image Pretraining for Fashion Multimodal Search with Limited Data and Low-Quality Images
Multimodal search has revolutionized the fashion industry, providing a seamless and intuitive way for users to discover and explore fashion items. Based on their preferences, style, or specific attributes, users can search for products by combining text and image information. Text-to-image searches enable users to find visually similar items or describe products using natural language. This paper presents an innovative approach called ENCLIP, for enhancing the performance of the Contrastive Language-Image Pretraining (CLIP) model, specifically in Multimodal Search targeted towards the domain of fashion intelligence. This method focuses on addressing the challenges posed by limited data availability and low-quality images. This paper proposes an algorithm that involves training and ensembling multiple instances of the CLIP model, and leveraging clustering techniques to group similar images together. The experimental findings presented in this study provide evidence of the effectiveness of the methodology. This approach unlocks the potential of CLIP in the domain of fashion intelligence, where data scarcity and image quality issues are prevalent. Overall, the ENCLIP method represents a valuable contribution to the field of fashion intelligence and provides a practical solution for optimizing the CLIP model in scenarios with limited data and low-quality images.
☆ HiDP: Hierarchical DNN Partitioning for Distributed Inference on Heterogeneous Edge Platforms
Edge inference techniques partition and distribute Deep Neural Network (DNN) inference tasks among multiple edge nodes for low latency inference, without considering the core-level heterogeneity of edge nodes. Further, default DNN inference frameworks also do not fully utilize the resources of heterogeneous edge nodes, resulting in higher inference latency. In this work, we propose a hierarchical DNN partitioning strategy (HiDP) for distributed inference on heterogeneous edge nodes. Our strategy hierarchically partitions DNN workloads at both global and local levels by considering the core-level heterogeneity of edge nodes. We evaluated our proposed HiDP strategy against relevant distributed inference techniques over widely used DNN models on commercial edge devices. On average our strategy achieved 38% lower latency, 46% lower energy, and 56% higher throughput in comparison with other relevant approaches.
comment: 7 pages, 8 figures, 1 table, and 1 algorithm. The manuscript is accepted to be published in 28th Design, Automation and Test in Europe Conference (IEEE DATE, 2025)
☆ Cautious Optimizers: Improving Training with One Line of Code
AdamW has been the default optimizer for transformer pretraining. For many years, our community searches for faster and more stable optimizers with only constraint positive outcomes. In this work, we propose a \textbf{single-line modification in Pytorch} to any momentum-based optimizer, which we rename Cautious Optimizer, e.g. C-AdamW and C-Lion. Our theoretical result shows that this modification preserves Adam's Hamiltonian function and it does not break the convergence guarantee under the Lyapunov analysis. In addition, a whole new family of optimizers is revealed by our theoretical insight. Among them, we pick the simplest one for empirical experiments, showing speed-up on Llama and MAE pretraining up to $1.47\times$. Code is available at https://github.com/kyleliang919/C-Optim
☆ Deciphering genomic codes using advanced NLP techniques: a scoping review
Objectives: The vast and complex nature of human genomic sequencing data presents challenges for effective analysis. This review aims to investigate the application of Natural Language Processing (NLP) techniques, particularly Large Language Models (LLMs) and transformer architectures, in deciphering genomic codes, focusing on tokenization, transformer models, and regulatory annotation prediction. The goal of this review is to assess data and model accessibility in the most recent literature, gaining a better understanding of the existing capabilities and constraints of these tools in processing genomic sequencing data. Methods: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, our scoping review was conducted across PubMed, Medline, Scopus, Web of Science, Embase, and ACM Digital Library. Studies were included if they focused on NLP methodologies applied to genomic sequencing data analysis, without restrictions on publication date or article type. Results: A total of 26 studies published between 2021 and April 2024 were selected for review. The review highlights that tokenization and transformer models enhance the processing and understanding of genomic data, with applications in predicting regulatory annotations like transcription-factor binding sites and chromatin accessibility. Discussion: The application of NLP and LLMs to genomic sequencing data interpretation is a promising field that can help streamline the processing of large-scale genomic data while also providing a better understanding of its complex structures. It has the potential to drive advancements in personalized medicine by offering more efficient and scalable solutions for genomic analysis. Further research is also needed to discuss and overcome current limitations, enhancing model transparency and applicability.
☆ Boosting 3D Object Generation through PBR Materials SIGGRAPH
Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.
comment: Accepted to SIGGRAPH Asia 2024 Conference Papers
☆ Debiasing Classifiers by Amplifying Bias with Latent Diffusion and Large Language Models
Neural networks struggle with image classification when biases are learned and misleads correlations, affecting their generalization and performance. Previous methods require attribute labels (e.g. background, color) or utilizes Generative Adversarial Networks (GANs) to mitigate biases. We introduce DiffuBias, a novel pipeline for text-to-image generation that enhances classifier robustness by generating bias-conflict samples, without requiring training during the generation phase. Utilizing pretrained diffusion and image captioning models, DiffuBias generates images that challenge the biases of classifiers, using the top-$K$ losses from a biased classifier ($f_B$) to create more representative data samples. This method not only debiases effectively but also boosts classifier generalization capabilities. To the best of our knowledge, DiffuBias is the first approach leveraging a stable diffusion model to generate bias-conflict samples in debiasing tasks. Our comprehensive experimental evaluations demonstrate that DiffuBias achieves state-of-the-art performance on benchmark datasets. We also conduct a comparative analysis of various generative models in terms of carbon emissions and energy consumption to highlight the significance of computational efficiency.
comment: 8 pages + Appendix
☆ The brain versus AI: World-model-based versatile circuit computation underlying diverse functions in the neocortex and cerebellum
AI's significant recent advances using general-purpose circuit computations offer a potential window into how the neocortex and cerebellum of the brain are able to achieve a diverse range of functions across sensory, cognitive, and motor domains, despite their uniform circuit structures. However, comparing the brain and AI is challenging unless clear similarities exist, and past reviews have been limited to comparison of brain-inspired vision AI and the visual neocortex. Here, to enable comparisons across diverse functional domains, we subdivide circuit computation into three elements -- circuit structure, input/outputs, and the learning algorithm -- and evaluate the similarities for each element. With this novel approach, we identify wide-ranging similarities and convergent evolution in the brain and AI, providing new insights into key concepts in neuroscience. Furthermore, inspired by processing mechanisms of AI, we propose a new theory that integrates established neuroscience theories, particularly the theories of internal models and the mirror neuron system. Both the neocortex and cerebellum predict future world events from past information and learn from prediction errors, thereby acquiring models of the world. These models enable three core processes: (1) Prediction -- generating future information, (2) Understanding -- interpreting the external world via compressed and abstracted sensory information, and (3) Generation -- repurposing the future-information generation mechanism to produce other types of outputs. The universal application of these processes underlies the ability of the neocortex and cerebellum to accomplish diverse functions with uniform circuits. Our systematic approach, insights, and theory promise groundbreaking advances in understanding the brain.
☆ Soft-TransFormers for Continual Learning
Inspired by Well-initialized Lottery Ticket Hypothesis (WLTH), which provides suboptimal fine-tuning solutions, we propose a novel fully fine-tuned continual learning (CL) method referred to as Soft-TransFormers (Soft-TF). Soft-TF sequentially learns and selects an optimal soft-network or subnetwork for each task. During sequential training in CL, Soft-TF jointly optimizes the weights of sparse layers to obtain task-adaptive soft (real-valued) networks or subnetworks (binary masks), while keeping the well-pre-trained layer parameters frozen. In inference, the identified task-adaptive network of Soft-TF masks the parameters of the pre-trained network, mapping to an optimal solution for each task and minimizing Catastrophic Forgetting (CF) - the soft-masking preserves the knowledge of the pre-trained network. Extensive experiments on Vision Transformer (ViT) and CLIP demonstrate the effectiveness of Soft-TF, achieving state-of-the-art performance across various CL scenarios, including Class-Incremental Learning (CIL) and Task-Incremental Learning (TIL), supported by convergence theory.
☆ UnitedVLN: Generalizable Gaussian Splatting for Continuous Vision-Language Navigation
Vision-and-Language Navigation (VLN), where an agent follows instructions to reach a target destination, has recently seen significant advancements. In contrast to navigation in discrete environments with predefined trajectories, VLN in Continuous Environments (VLN-CE) presents greater challenges, as the agent is free to navigate any unobstructed location and is more vulnerable to visual occlusions or blind spots. Recent approaches have attempted to address this by imagining future environments, either through predicted future visual images or semantic features, rather than relying solely on current observations. However, these RGB-based and feature-based methods lack intuitive appearance-level information or high-level semantic complexity crucial for effective navigation. To overcome these limitations, we introduce a novel, generalizable 3DGS-based pre-training paradigm, called UnitedVLN, which enables agents to better explore future environments by unitedly rendering high-fidelity 360 visual images and semantic features. UnitedVLN employs two key schemes: search-then-query sampling and separate-then-united rendering, which facilitate efficient exploitation of neural primitives, helping to integrate both appearance and semantic information for more robust navigation. Extensive experiments demonstrate that UnitedVLN outperforms state-of-the-art methods on existing VLN-CE benchmarks.
☆ From Dashcam Videos to Driving Simulations: Stress Testing Automated Vehicles against Rare Events
Testing Automated Driving Systems (ADS) in simulation with realistic driving scenarios is important for verifying their performance. However, converting real-world driving videos into simulation scenarios is a significant challenge due to the complexity of interpreting high-dimensional video data and the time-consuming nature of precise manual scenario reconstruction. In this work, we propose a novel framework that automates the conversion of real-world car crash videos into detailed simulation scenarios for ADS testing. Our approach leverages prompt-engineered Video Language Models(VLM) to transform dashcam footage into SCENIC scripts, which define the environment and driving behaviors in the CARLA simulator, enabling the generation of realistic simulation scenarios. Importantly, rather than solely aiming for one-to-one scenario reconstruction, our framework focuses on capturing the essential driving behaviors from the original video while offering flexibility in parameters such as weather or road conditions to facilitate search-based testing. Additionally, we introduce a similarity metric that helps iteratively refine the generated scenario through feedback by comparing key features of driving behaviors between the real and simulated videos. Our preliminary results demonstrate substantial time efficiency, finishing the real-to-sim conversion in minutes with full automation and no human intervention, while maintaining high fidelity to the original driving events.
☆ Barriers on the EDGE: A scalable CBF architecture over EDGE for safe aerial-ground multi-agent coordination
In this article, we address the problem of designing a scalable control architecture for a safe coordinated operation of a multi-agent system with aerial (UAVs) and ground robots (UGVs) in a confined task space. The proposed method uses Control Barrier Functions (CBFs) to impose constraints associated with (i) collision avoidance between agents, (ii) landing of UAVs on mobile UGVs, and (iii) task space restriction. Further, to account for the rapid increase in the number of constraints for a single agent with the increasing number of agents, the proposed architecture uses a centralized-decentralized Edge cluster, where a centralized node (Watcher) activates the relevant constraints, reducing the need for high onboard processing and network complexity. The distributed nodes run the controller locally to overcome latency and network issues. The proposed Edge architecture is experimentally validated using multiple aerial and ground robots in a confined environment performing a coordinated operation.
comment: 7 pages, 7 figures, submitted to ICRA'25
☆ Large Language Model-based Decision-making for COLREGs and the Control of Autonomous Surface Vehicles
In the field of autonomous surface vehicles (ASVs), devising decision-making and obstacle avoidance solutions that address maritime COLREGs (Collision Regulations), primarily defined for human operators, has long been a pressing challenge. Recent advancements in explainable Artificial Intelligence (AI) and machine learning have shown promise in enabling human-like decision-making. Notably, significant developments have occurred in the application of Large Language Models (LLMs) to the decision-making of complex systems, such as self-driving cars. The textual and somewhat ambiguous nature of COLREGs (from an algorithmic perspective), however, poses challenges that align well with the capabilities of LLMs, suggesting that LLMs may become increasingly suitable for this application soon. This paper presents and demonstrates the first application of LLM-based decision-making and control for ASVs. The proposed method establishes a high-level decision-maker that uses online collision risk indices and key measurements to make decisions for safe manoeuvres. A tailored design and runtime structure is developed to support training and real-time action generation on a realistic ASV model. Local planning and control algorithms are integrated to execute the commands for waypoint following and collision avoidance at a lower level. To the authors' knowledge, this study represents the first attempt to apply explainable AI to the dynamic control problem of maritime systems recognising the COLREGs rules, opening new avenues for research in this challenging area. Results obtained across multiple test scenarios demonstrate the system's ability to maintain online COLREGs compliance, accurate waypoint tracking, and feasible control, while providing human-interpretable reasoning for each decision.
☆ Use-Inspired Mobile Robot to Improve Safety of Building Retrofit Workforce in Constrained Spaces
The inspection of confined critical infrastructure such as attics or crawlspaces is challenging for human operators due to insufficient task space, limited visibility, and the presence of hazardous materials. This paper introduces a prototype of PARIS (Precision Application Robot for Inaccessible Spaces): a use-inspired teleoperated mobile robot manipulator system that was conceived, developed, and tested for and selected as a Phase I winner of the U.S. Department of Energy's E-ROBOT Prize. To improve the thermal efficiency of buildings, the PARIS platform supports: 1) teleoperated mapping and navigation, enabling the human operator to explore compact spaces; 2) inspection and sensing, facilitating the identification and localization of under-insulated areas; and 3) air-sealing targeted gaps and cracks through which thermal energy is lost. The resulting versatile platform can also be tailored for targeted application of treatments and remediation in constrained spaces.
comment: 6 Pages, 7 Figures. Accepted for publication in the Proceedings of 2024 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
☆ Safety-Critical Controller Synthesis with Reduced-Order Models
Reduced-order models (ROMs) provide lower dimensional representations of complex systems, capturing their salient features while simplifying control design. Building on previous work, this paper presents an overarching framework for the integration of ROMs and control barrier functions, enabling the use of simplified models to construct safety-critical controllers while providing safety guarantees for complex full-order models. To achieve this, we formalize the connection between full and ROMs by defining projection mappings that relate the states and inputs of these models and leverage simulation functions to establish conditions under which safety guarantees may be transferred from a ROM to its corresponding full-order model. The efficacy of our framework is illustrated through simulation results on a drone and hardware demonstrations on ARCHER, a 3D hopping robot.
☆ Using Drone Swarm to Stop Wildfire: A Predict-then-optimize Approach
Drone swarms coupled with data intelligence can be the future of wildfire fighting. However, drone swarm firefighting faces enormous challenges, such as the highly complex environmental conditions in wildfire scenes, the highly dynamic nature of wildfire spread, and the significant computational complexity of drone swarm operations. We develop a predict-then-optimize approach to address these challenges to enable effective drone swarm firefighting. First, we construct wildfire spread prediction convex neural network (Convex-NN) models based on real wildfire data. Then, we propose a mixed-integer programming (MIP) model coupled with dynamic programming (DP) to enable efficient drone swarm task planning. We further use chance-constrained robust optimization (CCRO) to ensure robust firefighting performances under varying situations. The formulated model is solved efficiently using Benders Decomposition and Branch-and-Cut algorithms. After 75 simulated wildfire environments training, the MIP+CCRO approach shows the best performance among several testing sets, reducing movements by 37.3\% compared to the plain MIP. It also significantly outperformed the GA baseline, which often failed to fully extinguish the fire. Eventually, we will conduct real-world fire spread and quenching experiments in the next stage for further validation.
☆ Multi-Robot Reliable Navigation in Uncertain Topological Environments with Graph Attention Networks
This paper studies the multi-robot reliable navigation problem in uncertain topological networks, which aims at maximizing the robot team's on-time arrival probabilities in the face of road network uncertainties. The uncertainty in these networks stems from the unknown edge traversability, which is only revealed to the robot upon its arrival at the edge's starting node. Existing approaches often struggle to adapt to real-time network topology changes, making them unsuitable for varying topological environments. To address the challenge, we reformulate the problem into a Partially Observable Markov Decision Process (POMDP) framework and introduce the Dynamic Adaptive Graph Embedding method to capture the evolving nature of the navigation task. We further enhance each robot's policy learning process by integrating deep reinforcement learning with Graph Attention Networks (GATs), leveraging self-attention to focus on critical graph features. The proposed approach, namely Multi-Agent Routing in Variable Environments with Learning (MARVEL) employs the generalized policy gradient algorithm to optimize the robots' real-time decision-making process iteratively. We compare the performance of MARVEL with state-of-the-art reliable navigation algorithms as well as Canadian traveller problem solutions in a range of canonical transportation networks, demonstrating improved adaptability and performance in uncertain topological networks. Additionally, real-world experiments with two robots navigating within a self-constructed indoor environment with uncertain topological structures demonstrate MARVEL's practicality.
comment: 8 pages, 5 figures
☆ Forest Biomass Mapping with Terrestrial Hyperspectral Imaging for Wildfire Risk Monitoring
With the rapid increase in wildfires in the past decade, it has become necessary to detect and predict these disasters to mitigate losses to ecosystems and human lives. In this paper, we present a novel solution -- Hyper-Drive3D -- consisting of snapshot hyperspectral imaging and LiDAR, mounted on an Unmanned Ground Vehicle (UGV) that identifies areas inside forests at risk of becoming fuel for a forest fire. This system enables more accurate classification by analyzing the spectral signatures of forest vegetation. We conducted field trials in a controlled environment simulating forest conditions, yielding valuable insights into the system's effectiveness. Extensive data collection was also performed in a dense forest across varying environmental conditions and topographies to enhance the system's predictive capabilities for fire hazards and support a risk-informed, proactive forest management strategy. Additionally, we propose a framework for extracting moisture data from hyperspectral imagery and projecting it into 3D space.
comment: Accepted for IEEE SSRR 2024
☆ Picking by Tilting: In-Hand Manipulation for Object Picking using Effector with Curved Form
This paper presents a robotic in-hand manipulation technique that can be applied to pick an object too large to grasp in a prehensile manner, by taking advantage of its contact interactions with a curved, passive end-effector, and two flat support surfaces. First, the object is tilted up while being held between the end-effector and the supports. Then, the end-effector is tucked into the gap underneath the object, which is formed by tilting, in order to obtain a grasp against gravity. In this paper, we first examine the mechanics of tilting to understand the different ways in which the object can be initially tilted. We then present a strategy to tilt up the object in a secure manner. Finally, we demonstrate successful picking of objects of various size and geometry using our technique through a set of experiments performed with a custom-made robotic device and a conventional robot arm. Our experiment results show that object picking can be performed reliably with our method using simple hardware and control, and when possible, with appropriate fixture design.
☆ Teaching Smaller Language Models To Generalise To Unseen Compositional Questions (Full Thesis)
Pretrained large Language Models (LLMs) are able to answer questions that are unlikely to have been encountered during training. However a diversity of potential applications exist in the broad domain of reasoning systems and considerations such as latency, cost, available compute resource and internet connectivity are relevant in determining an appropriate approach. We consider the setting where some local compute capacity is available at inference time but internet connectivity is not. Similar to a general-purpose LLM, we assume that our much smaller Reasoning Models may be asked arbitrary questions from unknown distributions, so we focus on evaluation in an unseen setting. We train our models to answer diverse questions by instilling an ability to reason over a retrieved context. We acquire context from two knowledge sources; a Wikipedia corpus queried using a multi-hop dense retrieval system with novel extensions, and from rationales generated from a larger Language Model optimised to run in a lower resource environment. Our main contributions: We propose novel methods to show that our model is capable of answering contextualised questions without memorisation. We establish a comprehensive set of baseline results on unseen evaluation datasets. We show that the addition of novel retrieval-augmented training datasets (RATD) to the training regime of the Reasoning Model significantly improves results. We demonstrate further significant improvement through the application of methods for combining knowledge from two sources. The first method (RR) involves training a novel Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We use the scores to derive combined contexts. We also show that utilising the RATD datasets enables our model to become proficient at utilising combined noisy contexts.
☆ ExpTest: Automating Learning Rate Searching and Tuning with Insights from Linearized Neural Networks
Hyperparameter tuning remains a significant challenge for the training of deep neural networks (DNNs), requiring manual and/or time-intensive grid searches, increasing resource costs and presenting a barrier to the democratization of machine learning. The global initial learning rate for DNN training is particularly important. Several techniques have been proposed for automated learning rate tuning during training; however, they still require manual searching for the global initial learning rate. Though methods exist that do not require this initial selection, they suffer from poor performance. Here, we present ExpTest, a sophisticated method for initial learning rate searching and subsequent learning rate tuning for the training of DNNs. ExpTest draws on insights from linearized neural networks and the form of the loss curve, which we treat as a real-time signal upon which we perform hypothesis testing. We mathematically justify ExpTest and provide empirical support. ExpTest requires minimal overhead, is robust to hyperparameter choice, and achieves state-of-the-art performance on a variety of tasks and architectures, without initial learning rate selection or learning rate scheduling.
☆ Clustering Time Series Data with Gaussian Mixture Embeddings in a Graph Autoencoder Framework
Time series data analysis is prevalent across various domains, including finance, healthcare, and environmental monitoring. Traditional time series clustering methods often struggle to capture the complex temporal dependencies inherent in such data. In this paper, we propose the Variational Mixture Graph Autoencoder (VMGAE), a graph-based approach for time series clustering that leverages the structural advantages of graphs to capture enriched data relationships and produces Gaussian mixture embeddings for improved separability. Comparisons with baseline methods are included with experimental results, demonstrating that our method significantly outperforms state-of-the-art time-series clustering techniques. We further validate our method on real-world financial data, highlighting its practical applications in finance. By uncovering community structures in stock markets, our method provides deeper insights into stock relationships, benefiting market prediction, portfolio optimization, and risk management.
comment: First two listed authors have equal contribution. Author ordering is determined by coin flip
☆ RoCoDA: Counterfactual Data Augmentation for Data-Efficient Robot Learning from Demonstrations
Imitation learning in robotics faces significant challenges in generalization due to the complexity of robotic environments and the high cost of data collection. We introduce RoCoDA, a novel method that unifies the concepts of invariance, equivariance, and causality within a single framework to enhance data augmentation for imitation learning. RoCoDA leverages causal invariance by modifying task-irrelevant subsets of the environment state without affecting the policy's output. Simultaneously, we exploit SE(3) equivariance by applying rigid body transformations to object poses and adjusting corresponding actions to generate synthetic demonstrations. We validate RoCoDA through extensive experiments on five robotic manipulation tasks, demonstrating improvements in policy performance, generalization, and sample efficiency compared to state-of-the-art data augmentation methods. Our policies exhibit robust generalization to unseen object poses, textures, and the presence of distractors. Furthermore, we observe emergent behavior such as re-grasping, indicating policies trained with RoCoDA possess a deeper understanding of task dynamics. By leveraging invariance, equivariance, and causality, RoCoDA provides a principled approach to data augmentation in imitation learning, bridging the gap between geometric symmetries and causal reasoning.
☆ Contrastive Deep Learning Reveals Age Biomarkers in Histopathological Skin Biopsies
As global life expectancy increases, so does the burden of chronic diseases, yet individuals exhibit considerable variability in the rate at which they age. Identifying biomarkers that distinguish fast from slow ageing is crucial for understanding the biology of ageing, enabling early disease detection, and improving prevention strategies. Using contrastive deep learning, we show that skin biopsy images alone are sufficient to determine an individual's age. We then use visual features in histopathology slides of the skin biopsies to construct a novel biomarker of ageing. By linking with comprehensive health registers in Denmark, we demonstrate that visual features in histopathology slides of skin biopsies predict mortality and the prevalence of chronic age-related diseases. Our work highlights how routinely collected health data can provide additional value when used together with deep learning, by creating a new biomarker for ageing which can be actively used to determine mortality over time.
comment: 20 pages, 5 tables, 5 figures Under review: npj Digital Medicine
☆ Understanding GEMM Performance and Energy on NVIDIA Ada Lovelace: A Machine Learning-Based Analytical Approach
Analytical framework for predicting General Matrix Multiplication (GEMM) performance on modern GPUs, focusing on runtime, power consumption, and energy efficiency. Our study employs two approaches: a custom-implemented tiled matrix multiplication kernel for fundamental analysis, and NVIDIA's CUTLASS library for comprehensive performance data collection across advanced configurations. Using the NVIDIA RTX 4070 as our experimental platform, we developed a Random Forest-based prediction model with multi-output regression capability. Through analysis of both naive tiled matrix multiplication with varying tile sizes (1 to 32) and 16,128 CUTLASS GEMM operations across diverse configurations, we identified critical performance patterns related to matrix dimensions, thread block configurations, and memory access patterns. Our framework achieved exceptional accuracy with an R^2 score of 0.98 for runtime prediction (mean error 15.57%) and 0.78 for power prediction (median error 5.42%). The system successfully predicts performance across matrix sizes, demonstrating robust scaling behavior. Our results show that optimal tile size selection can improve performance by up to 3.2x while reducing power consumption by 22% compared to baseline configurations. Analysis of shared memory utilization and SM occupancy reveals that tile sizes of 16x16 achieve the best balance between parallelism and resource usage. The implementation of our framework, including prediction models and analysis tools, is available as an open-source project at GPPerf [https://github.com/pavlyhalim/GPPerf].
comment: 9 pages, 9 figures, 6 tables, IEEE conference paper format
☆ Harnessing LLMs for Educational Content-Driven Italian Crossword Generation
In this work, we unveil a novel tool for generating Italian crossword puzzles from text, utilizing advanced language models such as GPT-4o, Mistral-7B-Instruct-v0.3, and Llama3-8b-Instruct. Crafted specifically for educational applications, this cutting-edge generator makes use of the comprehensive Italian-Clue-Instruct dataset, which comprises over 30,000 entries including diverse text, solutions, and types of clues. This carefully assembled dataset is designed to facilitate the creation of contextually relevant clues in various styles associated with specific texts and keywords. The study delves into four distinctive styles of crossword clues: those without format constraints, those formed as definite determiner phrases, copular sentences, and bare noun phrases. Each style introduces unique linguistic structures to diversify clue presentation. Given the lack of sophisticated educational tools tailored to the Italian language, this project seeks to enhance learning experiences and cognitive development through an engaging, interactive platform. By meshing state-of-the-art AI with contemporary educational strategies, our tool can dynamically generate crossword puzzles from Italian educational materials, thereby providing an enjoyable and interactive learning environment. This technological advancement not only redefines educational paradigms but also sets a new benchmark for interactive and cognitive language learning solutions.
comment: This paper has been accepted for presentation at CLiC.it 2024
☆ ASSERTIFY: Utilizing Large Language Models to Generate Assertions for Production Code
Production assertions are statements embedded in the code to help developers validate their assumptions about the code. They assist developers in debugging, provide valuable documentation, and enhance code comprehension. Current research in this area primarily focuses on assertion generation for unit tests using techniques, such as static analysis and deep learning. While these techniques have shown promise, they fall short when it comes to generating production assertions, which serve a different purpose. This preprint addresses the gap by introducing Assertify, an automated end-to-end tool that leverages Large Language Models (LLMs) and prompt engineering with few-shot learning to generate production assertions. By creating context-rich prompts, the tool emulates the approach developers take when creating production assertions for their code. To evaluate our approach, we compiled a dataset of 2,810 methods by scraping 22 mature Java repositories from GitHub. Our experiments demonstrate the effectiveness of few-shot learning by producing assertions with an average ROUGE-L score of 0.526, indicating reasonably high structural similarity with the assertions written by developers. This research demonstrates the potential of LLMs in automating the generation of production assertions that resemble the original assertions.
comment: 20 pages, 10 figures, 10 listings, 2 tables, preprint
☆ Are Transformers Truly Foundational for Robotics?
Generative Pre-Trained Transformers (GPTs) are hyped to revolutionize robotics. Here we question their utility. GPTs for autonomous robotics demand enormous and costly compute, excessive training times and (often) offboard wireless control. We contrast GPT state of the art with how tiny insect brains have achieved robust autonomy with none of these constraints. We highlight lessons that can be learned from biology to enhance the utility of GPTs in robotics.
☆ Boundless Socratic Learning with Language Games
An agent trained within a closed system can master any desired capability, as long as the following three conditions hold: (a) it receives sufficiently informative and aligned feedback, (b) its coverage of experience/data is broad enough, and (c) it has sufficient capacity and resource. In this position paper, we justify these conditions, and consider what limitations arise from (a) and (b) in closed systems, when assuming that (c) is not a bottleneck. Considering the special case of agents with matching input and output spaces (namely, language), we argue that such pure recursive self-improvement, dubbed "Socratic learning", can boost performance vastly beyond what is present in its initial data or knowledge, and is only limited by time, as well as gradual misalignment concerns. Furthermore, we propose a constructive framework to implement it, based on the notion of language games.
☆ Enhancing Fluorescence Lifetime Parameter Estimation Accuracy with Differential Transformer Based Deep Learning Model Incorporating Pixelwise Instrument Response Function
Fluorescence lifetime imaging (FLI) is an important molecular imaging modality that can provide unique information for biomedical applications. FLI is based on acquiring and processing photon time of arrival histograms. The shape and temporal offset of these histograms depends on many factors, such as the instrument response function (IRF), optical properties, and the topographic profile of the sample. Several inverse solver analytical methods have been developed to compute the underlying fluorescence lifetime parameters, but most of them are computationally expensive and time-consuming. Thus, deep learning (DL) algorithms have progressively replaced computation methods in fluorescence lifetime parameter estimation. Often, DL models are trained with simple datasets either generated through simulation or a simple experiment where the fluorophore surface profile is mostly flat; therefore, DL models often do not perform well on samples with complex surface profiles such as ex-vivo organs or in-vivo whole intact animals. Herein, we introduce a new DL architecture using state-of-the-art Differential Transformer encoder-decoder architecture, MFliNet (Macroscopic FLI Network), that takes an additional input of IRF together with TPSF, addressing discrepancies in the photon time-of-arrival distribution. We demonstrate the model's performance through carefully designed, complex tissue-mimicking phantoms and preclinical in-vivo cancer xenograft experiments.
comment: 11 pages, 4 figures
☆ Enabling Adoption of Regenerative Agriculture through Soil Carbon Copilots
Mitigating climate change requires transforming agriculture to minimize environ mental impact and build climate resilience. Regenerative agricultural practices enhance soil organic carbon (SOC) levels, thus improving soil health and sequestering carbon. A challenge to increasing regenerative agriculture practices is cheaply measuring SOC over time and understanding how SOC is affected by regenerative agricultural practices and other environmental factors and farm management practices. To address this challenge, we introduce an AI-driven Soil Organic Carbon Copilot that automates the ingestion of complex multi-resolution, multi-modal data to provide large-scale insights into soil health and regenerative practices. Our data includes extreme weather event data (e.g., drought and wildfire incidents), farm management data (e.g., cropland information and tillage predictions), and SOC predictions. We find that integrating public data and specialized models enables large-scale, localized analysis for sustainable agriculture. In comparisons of agricultural practices across California counties, we find evidence that diverse agricultural activity may mitigate the negative effects of tillage; and that while extreme weather conditions heavily affect SOC, composting may mitigate SOC loss. Finally, implementing role-specific personas empowers agronomists, farm consultants, policymakers, and other stakeholders to implement evidence-based strategies that promote sustainable agriculture and build climate resilience.
☆ Augmenting Multimodal LLMs with Self-Reflective Tokens for Knowledge-based Visual Question Answering
Multimodal LLMs (MLLMs) are the natural extension of large language models to handle multimodal inputs, combining text and image data. They have recently garnered attention due to their capability to address complex tasks involving both modalities. However, their effectiveness is limited to the knowledge acquired during training, which restricts their practical utility. In this work, we introduce a novel method to enhance the adaptability of MLLMs by integrating external knowledge sources. Our proposed model, Reflective LLaVA (ReflectiVA), utilizes reflective tokens to dynamically determine the need for external knowledge and predict the relevance of information retrieved from an external database. Tokens are trained following a two-stage two-model training recipe. This ultimately enables the MLLM to manage external knowledge while preserving fluency and performance on tasks where external knowledge is not needed. Through our experiments, we demonstrate the efficacy of ReflectiVA for knowledge-based visual question answering, highlighting its superior performance compared to existing methods. Source code and trained models are publicly available at https://github.com/aimagelab/ReflectiVA.
☆ Towards Precise Scaling Laws for Video Diffusion Transformers
Achieving optimal performance of video diffusion transformers within given data and compute budget is crucial due to their high training costs. This necessitates precisely determining the optimal model size and training hyperparameters before large-scale training. While scaling laws are employed in language models to predict performance, their existence and accurate derivation in visual generation models remain underexplored. In this paper, we systematically analyze scaling laws for video diffusion transformers and confirm their presence. Moreover, we discover that, unlike language models, video diffusion models are more sensitive to learning rate and batch size, two hyperparameters often not precisely modeled. To address this, we propose a new scaling law that predicts optimal hyperparameters for any model size and compute budget. Under these optimal settings, we achieve comparable performance and reduce inference costs by 40.1% compared to conventional scaling methods, within a compute budget of 1e10 TFlops. Furthermore, we establish a more generalized and precise relationship among validation loss, any model size, and compute budget. This enables performance prediction for non-optimal model sizes, which may also be appealed under practical inference cost constraints, achieving a better trade-off.
☆ Edit Away and My Face Will not Stay: Personal Biometric Defense against Malicious Generative Editing
Recent advancements in diffusion models have made generative image editing more accessible, enabling creative edits but raising ethical concerns, particularly regarding malicious edits to human portraits that threaten privacy and identity security. Existing protection methods primarily rely on adversarial perturbations to nullify edits but often fail against diverse editing requests. We propose FaceLock, a novel approach to portrait protection that optimizes adversarial perturbations to destroy or significantly alter biometric information, rendering edited outputs biometrically unrecognizable. FaceLock integrates facial recognition and visual perception into perturbation optimization to provide robust protection against various editing attempts. We also highlight flaws in commonly used evaluation metrics and reveal how they can be manipulated, emphasizing the need for reliable assessments of protection. Experiments show FaceLock outperforms baselines in defending against malicious edits and is robust against purification techniques. Ablation studies confirm its stability and broad applicability across diffusion-based editing algorithms. Our work advances biometric defense and sets the foundation for privacy-preserving practices in image editing. The code is available at: https://github.com/taco-group/FaceLock.
comment: GitHub: https://github.com/taco-group/FaceLock
☆ Beyond Sight: Towards Cognitive Alignment in LVLM via Enriched Visual Knowledge
Does seeing always mean knowing? Large Vision-Language Models (LVLMs) integrate separately pre-trained vision and language components, often using CLIP-ViT as vision backbone. However, these models frequently encounter a core issue of "cognitive misalignment" between the vision encoder (VE) and the large language model (LLM). Specifically, the VE's representation of visual information may not fully align with LLM's cognitive framework, leading to a mismatch where visual features exceed the language model's interpretive range. To address this, we investigate how variations in VE representations influence LVLM comprehension, especially when the LLM faces VE-Unknown data-images whose ambiguous visual representations challenge the VE's interpretive precision. Accordingly, we construct a multi-granularity landmark dataset and systematically examine the impact of VE-Known and VE-Unknown data on interpretive abilities. Our results show that VE-Unknown data limits LVLM's capacity for accurate understanding, while VE-Known data, rich in distinctive features, helps reduce cognitive misalignment. Building on these insights, we propose Entity-Enhanced Cognitive Alignment (EECA), a method that employs multi-granularity supervision to generate visually enriched, well-aligned tokens that not only integrate within the LLM's embedding space but also align with the LLM's cognitive framework. This alignment markedly enhances LVLM performance in landmark recognition. Our findings underscore the challenges posed by VE-Unknown data and highlight the essential role of cognitive alignment in advancing multimodal systems.
☆ Pathways on the Image Manifold: Image Editing via Video Generation
Recent advances in image editing, driven by image diffusion models, have shown remarkable progress. However, significant challenges remain, as these models often struggle to follow complex edit instructions accurately and frequently compromise fidelity by altering key elements of the original image. Simultaneously, video generation has made remarkable strides, with models that effectively function as consistent and continuous world simulators. In this paper, we propose merging these two fields by utilizing image-to-video models for image editing. We reformulate image editing as a temporal process, using pretrained video models to create smooth transitions from the original image to the desired edit. This approach traverses the image manifold continuously, ensuring consistent edits while preserving the original image's key aspects. Our approach achieves state-of-the-art results on text-based image editing, demonstrating significant improvements in both edit accuracy and image preservation.
☆ Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries
In-hospital mortality (IHM) prediction for ICU patients is critical for timely interventions and efficient resource allocation. While structured physiological data provides quantitative insights, clinical notes offer unstructured, context-rich narratives. This study integrates these modalities with Large Language Model (LLM)-generated expert summaries to improve IHM prediction accuracy. Using the MIMIC-III database, we analyzed time-series physiological data and clinical notes from the first 48 hours of ICU admission. Clinical notes were concatenated chronologically for each patient and transformed into expert summaries using Med42-v2 70B. A multi-representational learning framework was developed to integrate these data sources, leveraging LLMs to enhance textual data while mitigating direct reliance on LLM predictions, which can introduce challenges in uncertainty quantification and interpretability. The proposed model achieved an AUPRC of 0.6156 (+36.41%) and an AUROC of 0.8955 (+7.64%) compared to a time-series-only baseline. Expert summaries outperformed clinical notes or time-series data alone, demonstrating the value of LLM-generated knowledge. Performance gains were consistent across demographic groups, with notable improvements in underrepresented populations, underscoring the framework's equitable application potential. By integrating LLM-generated summaries with structured and unstructured data, the framework captures complementary patient information, significantly improving predictive performance. This approach showcases the potential of LLMs to augment critical care prediction models, emphasizing the need for domain-specific validation and advanced integration strategies for broader clinical adoption.
☆ Fine-Tuning LLMs with Noisy Data for Political Argument Generation
The incivility in social media discourse complicates the deployment of automated text generation models for politically sensitive content. Fine-tuning and prompting strategies are critical, but underexplored, solutions to mitigate toxicity in such contexts. This study investigates the fine-tuning and prompting effects on GPT-3.5 Turbo using subsets of the CLAPTON dataset of political discussion posts, comprising Twitter and Reddit data labeled for their justification, reciprocity and incivility. Fine-tuned models on Reddit data scored highest on discussion quality, while combined noisy data led to persistent toxicity. Prompting strategies reduced specific toxic traits, such as personal attacks, but had limited broader impact. The findings emphasize that high-quality data and well-crafted prompts are essential to reduce incivility and improve rhetorical quality in automated political discourse generation.
☆ Blockchain Meets LLMs: A Living Survey on Bidirectional Integration
In the domain of large language models, considerable advancements have been attained in multimodal large language models and explainability research, propelled by the continuous technological progress and innovation. Nonetheless, security and privacy concerns continue to pose as prominent challenges in this field. The emergence of blockchain technology, marked by its decentralized nature, tamper-proof attributes, distributed storage functionality, and traceability, has provided novel approaches for resolving these issues. Both of these technologies independently hold vast potential for development; yet, their combination uncovers substantial cross-disciplinary opportunities and growth prospects. The current research tendencies are increasingly concentrating on the integration of blockchain with large language models, with the aim of compensating for their respective limitations through this fusion and promoting further technological evolution. In this study, we evaluate the advantages and developmental constraints of the two technologies, and explore the possibility and development potential of their combination. This paper primarily investigates the technical convergence in two directions: Firstly, the application of large language models to blockchain, where we identify six major development directions and explore solutions to the shortcomings of blockchain technology and their application scenarios; Secondly, the application of blockchain technology to large language models, leveraging the characteristics of blockchain to remedy the deficiencies of large language models and exploring its application potential in multiple fields.
☆ ADAF: An Artificial Intelligence Data Assimilation Framework for Weather Forecasting
The forecasting skill of numerical weather prediction (NWP) models critically depends on the accurate initial conditions, also known as analysis, provided by data assimilation (DA). Traditional DA methods often face a trade-off between computational cost and accuracy due to complex linear algebra computations and the high dimensionality of the model, especially in nonlinear systems. Moreover, processing massive data in real-time requires substantial computational resources. To address this, we introduce an artificial intelligence-based data assimilation framework (ADAF) to generate high-quality kilometer-scale analysis. This study is the pioneering work using real-world observations from varied locations and multiple sources to verify the AI method's efficacy in DA, including sparse surface weather observations and satellite imagery. We implemented ADAF for four near-surface variables in the Contiguous United States (CONUS). The results indicate that ADAF surpasses the High Resolution Rapid Refresh Data Assimilation System (HRRRDAS) in accuracy by 16% to 33% for near-surface atmospheric conditions, aligning more closely with actual observations, and can effectively reconstruct extreme events, such as tropical cyclone wind fields. Sensitivity experiments reveal that ADAF can generate high-quality analysis even with low-accuracy backgrounds and extremely sparse surface observations. ADAF can assimilate massive observations within a three-hour window at low computational cost, taking about two seconds on an AMD MI200 graphics processing unit (GPU). ADAF has been shown to be efficient and effective in real-world DA, underscoring its potential role in operational weather forecasting.
comment: 29 pages, 15 figures
☆ Human Motion Instruction Tuning
This paper presents LLaMo (Large Language and Human Motion Assistant), a multimodal framework for human motion instruction tuning. In contrast to conventional instruction-tuning approaches that convert non-linguistic inputs, such as video or motion sequences, into language tokens, LLaMo retains motion in its native form for instruction tuning. This method preserves motion-specific details that are often diminished in tokenization, thereby improving the model's ability to interpret complex human behaviors. By processing both video and motion data alongside textual inputs, LLaMo enables a flexible, human-centric analysis. Experimental evaluations across high-complexity domains, including human behaviors and professional activities, indicate that LLaMo effectively captures domain-specific knowledge, enhancing comprehension and prediction in motion-intensive scenarios. We hope LLaMo offers a foundation for future multimodal AI systems with broad applications, from sports analytics to behavioral prediction. Our code and models are available on the project website: https://github.com/ILGLJ/LLaMo.
☆ Leveraging Foundation Models To learn the shape of semi-fluid deformable objects
One of the difficulties imposed on the manipulation of deformable objects is their characterization and the detection of representative keypoints for the purpose of manipulation. A keen interest was manifested by researchers in the last decade to characterize and manipulate deformable objects of non-fluid nature, such as clothes and ropes. Even though several propositions were made in the regard of object characterization, however researchers were always confronted with the need of pixel-level information of the object through images to extract relevant information. This usually is accomplished by means of segmentation networks trained on manually labeled data for this purpose. In this paper, we address the subject of characterizing weld pool to define stable features that serve as information for further motion control objectives. We achieve this by employing different pipelines. The first one consists of characterizing fluid deformable objects through the use of a generative model that is trained using a teacher-student framework. And in the second one we leverage foundation models by using them as teachers to characterize the object in the image, without the need of any pre-training and any dataset. The performance of knowledge distillation from foundation models into a smaller generative model shows prominent results in the characterization of deformable objects. The student network was capable of learning to retrieve the keypoitns of the object with an error of 13.4 pixels. And the teacher was evaluated based on its capacities to retrieve pixel level information represented by the object mask, with a mean Intersection Over Union (mIoU) of 75.26%.
☆ Enhancing Answer Reliability Through Inter-Model Consensus of Large Language Models
We explore the collaborative dynamics of an innovative language model interaction system involving advanced models such as GPT-4-0125-preview, Meta-LLaMA-3-70B-Instruct, Claude-3-Opus, and Gemini-1.5-Flash. These models generate and answer complex, PhD-level statistical questions without exact ground-truth answers. Our study investigates how inter-model consensus enhances the reliability and precision of responses. By employing statistical methods such as chi-square tests, Fleiss' Kappa, and confidence interval analysis, we evaluate consensus rates and inter-rater agreement to quantify the reliability of collaborative outputs. Key results reveal that Claude and GPT-4 exhibit the highest reliability and consistency, as evidenced by their narrower confidence intervals and higher alignment with question-generating models. Conversely, Gemini and LLaMA show more significant variability in their consensus rates, as reflected in wider confidence intervals and lower reliability percentages. These findings demonstrate that collaborative interactions among large language models (LLMs) significantly improve response reliability, offering novel insights into autonomous, cooperative reasoning and validation in AI systems.
comment: 15 pages, 2 figures
☆ What can LLM tell us about cities?
This study explores the capabilities of large language models (LLMs) in providing knowledge about cities and regions on a global scale. We employ two methods: directly querying the LLM for target variable values and extracting explicit and implicit features from the LLM correlated with the target variable. Our experiments reveal that LLMs embed a broad but varying degree of knowledge across global cities, with ML models trained on LLM-derived features consistently leading to improved predictive accuracy. Additionally, we observe that LLMs demonstrate a certain level of knowledge across global cities on all continents, but it is evident when they lack knowledge, as they tend to generate generic or random outputs for unfamiliar tasks. These findings suggest that LLMs can offer new opportunities for data-driven decision-making in the study of cities.
☆ MAGiC-SLAM: Multi-Agent Gaussian Globally Consistent SLAM
Simultaneous localization and mapping (SLAM) systems with novel view synthesis capabilities are widely used in computer vision, with applications in augmented reality, robotics, and autonomous driving. However, existing approaches are limited to single-agent operation. Recent work has addressed this problem using a distributed neural scene representation. Unfortunately, existing methods are slow, cannot accurately render real-world data, are restricted to two agents, and have limited tracking accuracy. In contrast, we propose a rigidly deformable 3D Gaussian-based scene representation that dramatically speeds up the system. However, improving tracking accuracy and reconstructing a globally consistent map from multiple agents remains challenging due to trajectory drift and discrepancies across agents' observations. Therefore, we propose new tracking and map-merging mechanisms and integrate loop closure in the Gaussian-based SLAM pipeline. We evaluate MAGiC-SLAM on synthetic and real-world datasets and find it more accurate and faster than the state of the art.
MotionWavelet: Human Motion Prediction via Wavelet Manifold Learning
Modeling temporal characteristics and the non-stationary dynamics of body movement plays a significant role in predicting human future motions. However, it is challenging to capture these features due to the subtle transitions involved in the complex human motions. This paper introduces MotionWavelet, a human motion prediction framework that utilizes Wavelet Transformation and studies human motion patterns in the spatial-frequency domain. In MotionWavelet, a Wavelet Diffusion Model (WDM) learns a Wavelet Manifold by applying Wavelet Transformation on the motion data therefore encoding the intricate spatial and temporal motion patterns. Once the Wavelet Manifold is built, WDM trains a diffusion model to generate human motions from Wavelet latent vectors. In addition to the WDM, MotionWavelet also presents a Wavelet Space Shaping Guidance mechanism to refine the denoising process to improve conformity with the manifold structure. WDM also develops Temporal Attention-Based Guidance to enhance prediction accuracy. Extensive experiments validate the effectiveness of MotionWavelet, demonstrating improved prediction accuracy and enhanced generalization across various benchmarks. Our code and models will be released upon acceptance.
comment: Project Page: https://frank-zy-dou.github.io/projects/MotionWavelet/ Video: https://youtu.be/pyWq0OYJdI0?si=4YHfFNXmLnbPC39g
☆ The Radiance of Neural Fields: Democratizing Photorealistic and Dynamic Robotic Simulation
As robots increasingly coexist with humans, they must navigate complex, dynamic environments rich in visual information and implicit social dynamics, like when to yield or move through crowds. Addressing these challenges requires significant advances in vision-based sensing and a deeper understanding of socio-dynamic factors, particularly in tasks like navigation. To facilitate this, robotics researchers need advanced simulation platforms offering dynamic, photorealistic environments with realistic actors. Unfortunately, most existing simulators fall short, prioritizing geometric accuracy over visual fidelity, and employing unrealistic agents with fixed trajectories and low-quality visuals. To overcome these limitations, we developed a simulator that incorporates three essential elements: (1) photorealistic neural rendering of environments, (2) neurally animated human entities with behavior management, and (3) an ego-centric robotic agent providing multi-sensor output. By utilizing advanced neural rendering techniques in a dual-NeRF simulator, our system produces high-fidelity, photorealistic renderings of both environments and human entities. Additionally, it integrates a state-of-the-art Social Force Model to model dynamic human-human and human-robot interactions, creating the first photorealistic and accessible human-robot simulation system powered by neural rendering.
comment: 8 pages, 5 figures
☆ Performance Assessment of Lidar Odometry Frameworks: A Case Study at the Australian Botanic Garden Mount Annan
Autonomous vehicles are being tested in diverse environments worldwide. However, a notable gap exists in evaluating datasets representing natural, unstructured environments such as forests or gardens. To address this, we present a study on localisation at the Australian Botanic Garden Mount Annan. This area encompasses open grassy areas, paved pathways, and densely vegetated sections with trees and other objects. The dataset was recorded using a 128-beam LiDAR sensor and GPS and IMU readings to track the ego-vehicle. This paper evaluates the performance of two state-of-the-art LiDARinertial odometry frameworks, COIN-LIO and LIO-SAM, on this dataset. We analyse trajectory estimates in both horizontal and vertical dimensions and assess relative translation and yaw errors over varying distances. Our findings reveal that while both frameworks perform adequately in the vertical plane, COINLIO demonstrates superior accuracy in the horizontal plane, particularly over extended trajectories. In contrast, LIO-SAM shows increased drift and yaw errors over longer distances.
comment: Redacted with respect to the Australian Conference on Robotics and Automoation 2024's writing criteria. Style file: acra.sty, template: acra.tex, bibtex: named.bst 10 pages, 18 figures
☆ Performance Evaluation of Deep Learning-Based State Estimation: A Comparative Study of KalmanNet
Kalman Filters (KF) are fundamental to real-time state estimation applications, including radar-based tracking systems used in modern driver assistance and safety technologies. In a linear dynamical system with Gaussian noise distributions the KF is the optimal estimator. However, real-world systems often deviate from these assumptions. This deviation combined with the success of deep learning across many disciplines has prompted the exploration of data driven approaches that leverage deep learning for filtering applications. These learned state estimators are often reported to outperform traditional model based systems. In this work, one prevalent model, KalmanNet, was selected and evaluated on automotive radar data to assess its performance under real-world conditions and compare it to an interacting multiple models (IMM) filter. The evaluation is based on raw and normalized errors as well as the state uncertainty. The results demonstrate that KalmanNet is outperformed by the IMM filter and indicate that while data-driven methods such as KalmanNet show promise, their current lack of reliability and robustness makes them unsuited for safety-critical applications.
comment: 7 pages, 16th Symposium Sensor Data Fusion (2024)
☆ Predicting center of mass position in non-cyclic activities: The influence of acceleration, prediction horizon, and ground reaction forces
The whole-body center of mass (CoM) plays an important role in quantifying human movement. Prediction of future CoM trajectory, modeled as a point mass under influence of external forces, can be a surrogate for inferring intent. Given the current CoM position and velocity, predicting the future CoM position by forward integration requires a forecast of CoM accelerations during the prediction horizon. However, it is unclear how assumptions about the acceleration, prediction horizon length, and information from ground reaction forces (GRFs), which provide the instantaneous acceleration, affect the prediction. We study these factors by analyzing data of 10 healthy young adults performing 14 non-cyclic activities. We assume that the acceleration during a horizon will be 1) zero, 2) remain constant, or 3) converge to zero as a cubic trajectory, and perform predictions for horizons of 125 to 625 milliseconds. We quantify the prediction performance by comparing the position error and accuracy of identifying the main direction of displacement against trajectories obtained from a whole-body marker set. For all the assumed accelerations profiles, position errors grow quadratically with horizon length ($R^2 > 0.930$) while the accuracy of the predicted direction decreases linearly ($R^2>0.615$). Post-hoc tests reveal that the constant and cubic profiles, which utilize the GRFs, outperform the zero-acceleration assumption in position error ($p<0.001$, Cohen's $d>3.23$) and accuracy ($p<0.034$, Cohen's $d>1.44)$ at horizons of 125 and 250$\,ms$. The results provide evidence for benefits of incorporating GRFs into predictions and point to 250$\,ms$ as a threshold for horizon length in predictive applications.
☆ A Parameter Adaptive Trajectory Tracking and Motion Control Framework for Autonomous Vehicle
This paper studies the trajectory tracking and motion control problems for autonomous vehicles (AVs). A parameter adaptive control framework for AVs is proposed to enhance tracking accuracy and yaw stability. While establishing linear quadratic regulator (LQR) and three robust controllers, the control framework addresses trajectory tracking and motion control in a modular fashion, without introducing complexity into each controller. The robust performance has been guaranteed in three robust controllers by considering the parameter uncertainties, mismatch of unmodeled subsystem as well as external disturbance, comprehensively. Also, the dynamic characteristics of uncertain parameters are identified by Recursive Least Squares (RLS) algorithm, while the boundaries of three robust factors are determined through combining Gaussian Process Regression (GPR) and Bayesian optimization machine learning methods, reducing the conservatism of the controller. Sufficient conditions for closed-loop stability under the diverse robust factors are provided by the Lyapunov method analytically. The simulation results on MATLAB/Simulink and Carsim joint platform demonstrate that the proposed methodology considerably improves tracking accuracy, driving stability, and robust performance, guaranteeing the feasibility and capability of driving in extreme scenarios.
♻ ☆ Motion Code: Robust Time Series Classification and Forecasting via Sparse Variational Multi-Stochastic Processes Learning
Despite extensive research, time series classification and forecasting on noisy data remain highly challenging. The main difficulties lie in finding suitable mathematical concepts to describe time series and effectively separate noise from the true signals. Unlike traditional methods treating time series as static vectors or fixed sequences, we propose a novel framework that views each time series, regardless of length, as a realization of a continuous-time stochastic process. This mathematical approach captures dependencies across timestamps and detects hidden, time-varying signals within the noise. However, real-world data often involves multiple distinct dynamics, making it insufficient to model the entire process with a single stochastic model. To address this, we assign each dynamic a unique signature vector and introduce the concept of "most informative timestamps" to infer a sparse approximation of the individual dynamics from these vectors. The resulting model, called Motion Code, includes parameters that fully capture diverse underlying dynamics in an integrated manner, enabling simultaneous classification and forecasting of time series. Extensive experiments on noisy datasets, including real-world Parkinson's disease sensor tracking, demonstrate Motion Code's strong performance against established benchmarks for time series classification and forecasting.
comment: 20 pages, 5 figures, 4 tables
DocPedia: Unleashing the Power of Large Multimodal Model in the Frequency Domain for Versatile Document Understanding
This work presents DocPedia, a novel large multimodal model (LMM) for versatile OCR-free document understanding, capable of parsing images up to 2,560$\times$2,560 resolution. Unlike existing work either struggle with high-resolution documents or give up the large language model thus vision or language ability constrained, our DocPedia directly processes visual input in the frequency domain rather than the pixel space. The unique characteristic enables DocPedia to capture a greater amount of visual and textual information using a limited number of visual tokens. To consistently enhance both perception and comprehension abilities of our model, we develop a dual-stage training strategy and enrich instructions/annotations of all training tasks covering multiple document types. Extensive quantitative and qualitative experiments conducted on various publicly available benchmarks confirm the mutual benefits of jointly learning perception and comprehension tasks. The results provide further evidence of the effectiveness and superior performance of our DocPedia over other methods.
comment: Accepted by Science China Information Sciences (SCIS)
♻ ☆ Word4Per: Zero-shot Composed Person Retrieval
Searching for specific person has great social benefits and security value, and it often involves a combination of visual and textual information. Conventional person retrieval methods, whether image-based or text-based, usually fall short in effectively harnessing both types of information, leading to the loss of accuracy. In this paper, a whole new task called Composed Person Retrieval (CPR) is proposed to jointly utilize both image and text information for target person retrieval. However, the supervised CPR requires very costly manual annotation dataset, while there are currently no available resources. To mitigate this issue, we firstly introduce the Zero-shot Composed Person Retrieval (ZS-CPR), which leverages existing domain-related data to resolve the CPR problem without expensive annotations. Secondly, to learn ZS-CPR model, we propose a two-stage learning framework, Word4Per, where a lightweight Textual Inversion Network (TINet) and a text-based person retrieval model based on fine-tuned Contrastive Language-Image Pre-training (CLIP) network are learned without utilizing any CPR data. Thirdly, a finely annotated Image-Text Composed Person Retrieval (ITCPR) dataset is built as the benchmark to assess the performance of the proposed Word4Per framework. Extensive experiments under both Rank-1 and mAP demonstrate the effectiveness of Word4Per for the ZS-CPR task, surpassing the comparative methods by over 10\%. The code and ITCPR dataset will be publicly available at https://github.com/Delong-liu-bupt/Word4Per.
♻ ☆ Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions. A primary challenge in this task is bridging the substantial representational gap between visual and textual modalities. The prevailing methods map texts and images into unified embedding space for matching, while the intricate semantic correspondences between texts and images are still not effectively constructed. To address this issue, we propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts. Specifically, via fine-tuning the Contrastive Language-Image Pre-training (CLIP) model, a visual-textual dual encoder is firstly constructed, to preliminarily align the image and text features. Secondly, a Text-guided Image Restoration (TIR) auxiliary task is proposed to map abstract textual entities to specific image regions, improving the alignment between local textual and visual embeddings. Additionally, a cross-modal triplet loss is presented to handle hard samples, and further enhance the model's discriminability for minor differences. Moreover, a pruning-based text data augmentation approach is proposed to enhance focus on essential elements in descriptions, thereby avoiding excessive model attention to less significant information. The experimental results show our proposed method outperforms state-of-the-art methods on three popular benchmark datasets, and the code will be made publicly available at https://github.com/Delong-liu-bupt/SEN.
♻ ☆ OminiControl: Minimal and Universal Control for Diffusion Transformer
In this paper, we introduce OminiControl, a highly versatile and parameter-efficient framework that integrates image conditions into pre-trained Diffusion Transformer (DiT) models. At its core, OminiControl leverages a parameter reuse mechanism, enabling the DiT to encode image conditions using itself as a powerful backbone and process them with its flexible multi-modal attention processors. Unlike existing methods, which rely heavily on additional encoder modules with complex architectures, OminiControl (1) effectively and efficiently incorporates injected image conditions with only ~0.1% additional parameters, and (2) addresses a wide range of image conditioning tasks in a unified manner, including subject-driven generation and spatially-aligned conditions such as edges, depth, and more. Remarkably, these capabilities are achieved by training on images generated by the DiT itself, which is particularly beneficial for subject-driven generation. Extensive evaluations demonstrate that OminiControl outperforms existing UNet-based and DiT-adapted models in both subject-driven and spatially-aligned conditional generation. Additionally, we release our training dataset, Subjects200K, a diverse collection of over 200,000 identity-consistent images, along with an efficient data synthesis pipeline to advance research in subject-consistent generation.
♻ ☆ Twin Transformer using Gated Dynamic Learnable Attention mechanism for Fault Detection and Diagnosis in the Tennessee Eastman Process
Fault detection and diagnosis (FDD) is a crucial task for ensuring the safety and efficiency of industrial processes. We propose a novel FDD methodology for the Tennessee Eastman Process (TEP), a widely used benchmark for chemical process control. The model employs two separate Transformer branches, enabling independent processing of input data and potential extraction of diverse information. A novel attention mechanism, Gated Dynamic Learnable Attention (GDLAttention), is introduced which integrates a gating mechanism and dynamic learning capabilities. The gating mechanism modulates the attention weights, allowing the model to focus on the most relevant parts of the input. The dynamic learning approach adapts the attention strategy during training, potentially leading to improved performance. The attention mechanism uses a bilinear similarity function, providing greater flexibility in capturing complex relationships between query and key vectors. In order to assess the effectiveness of our approach, we tested it against 21 and 18 distinct fault scenarios in TEP, and compared its performance with several established FDD techniques. The outcomes indicate that the method outperforms others in terms of accuracy, false alarm rate, and misclassification rate. This underscores the robustness and efficacy of the approach for FDD in intricate industrial processes.
♻ ☆ CoHD: A Counting-Aware Hierarchical Decoding Framework for Generalized Referring Expression Segmentation
The newly proposed Generalized Referring Expression Segmentation (GRES) amplifies the formulation of classic RES by involving complex multiple/non-target scenarios. Recent approaches address GRES by directly extending the well-adopted RES frameworks with object-existence identification. However, these approaches tend to encode multi-granularity object information into a single representation, which makes it difficult to precisely represent comprehensive objects of different granularity. Moreover, the simple binary object-existence identification across all referent scenarios fails to specify their inherent differences, incurring ambiguity in object understanding. To tackle the above issues, we propose a \textbf{Co}unting-Aware \textbf{H}ierarchical \textbf{D}ecoding framework (CoHD) for GRES. By decoupling the intricate referring semantics into different granularity with a visual-linguistic hierarchy, and dynamic aggregating it with intra- and inter-selection, CoHD boosts multi-granularity comprehension with the reciprocal benefit of the hierarchical nature. Furthermore, we incorporate the counting ability by embodying multiple/single/non-target scenarios into count- and category-level supervision, facilitating comprehensive object perception. Experimental results on gRefCOCO, Ref-ZOM, R-RefCOCO, and RefCOCO benchmarks demonstrate the effectiveness and rationality of CoHD which outperforms state-of-the-art GRES methods by a remarkable margin. Code is available at \href{https://github.com/RobertLuo1/CoHD}{here}.
♻ ☆ CSA: Data-efficient Mapping of Unimodal Features to Multimodal Features
Multimodal encoders like CLIP excel in tasks such as zero-shot image classification and cross-modal retrieval. However, they require excessive training data. We propose canonical similarity analysis (CSA), which uses two unimodal encoders to replicate multimodal encoders using limited data. CSA maps unimodal features into a multimodal space, using a new similarity score to retain only the multimodal information. CSA only involves the inference of unimodal encoders and a cubic-complexity matrix decomposition, eliminating the need for extensive GPU-based model training. Experiments show that CSA outperforms CLIP while requiring $300,000\times$ fewer multimodal data pairs and $6\times$ fewer unimodal data for ImageNet classification and misinformative news captions detection. CSA surpasses the state-of-the-art method to map unimodal features to multimodal features. We also demonstrate the ability of CSA with modalities beyond image and text, paving the way for future modality pairs with limited paired multimodal data but abundant unpaired unimodal data, such as lidar and text.
♻ ☆ A Review of Mechanistic Models of Event Comprehension
This review examines theoretical assumptions and computational models of event comprehension, tracing the evolution from discourse comprehension theories to contemporary event cognition frameworks. The review covers key discourse comprehension accounts, including Construction-Integration, Event Indexing, Causal Network, and Resonance models, highlighting their contributions to understanding cognitive processes in comprehension. I then discuss contemporary theoretical frameworks of event comprehension, including Event Segmentation Theory (Zacks et al., 2007), the Event Horizon Model (Radvansky & Zacks, 2014), and Hierarchical Generative Framework (Kuperberg, 2021), which emphasize prediction, causality, and multilevel representations in event understanding. Building on these theories, I evaluate five computational models of event comprehension: REPRISE (Butz et al., 2019), Structured Event Memory (SEM; Franklin et al., 2020), the Lu model (Lu et al., 2022), the Gumbsch model (Gumbsch et al., 2022), and the Elman and McRae model (2019). The analysis focuses on their approaches to hierarchical processing, prediction mechanisms, and representation learning. Key themes that emerge include the use of hierarchical structures as inductive biases, the importance of prediction in comprehension, and diverse strategies for learning event dynamics. The review identifies critical areas for future research, including the need for more sophisticated approaches to learning structured representations, integrating episodic memory mechanisms, and developing adaptive updating algorithms for working event models. By synthesizing insights from both theoretical frameworks and computational implementations, this review aims to advance our understanding of human event comprehension and guide future modeling efforts in cognitive science.
♻ ☆ A Survey of Event Causality Identification: Principles, Taxonomy, Challenges, and Assessment
Event Causality Identification (ECI) has become a crucial task in Natural Language Processing (NLP), aimed at automatically extracting causalities from textual data. In this survey, we systematically address the foundational principles, technical frameworks, and challenges of ECI, offering a comprehensive taxonomy to categorize and clarify current research methodologies, as well as a quantitative assessment of existing models. We first establish a conceptual framework for ECI, outlining key definitions, problem formulations, and evaluation standards. Our taxonomy classifies ECI methods according to the two primary tasks of sentence-level (SECI) and document-level (DECI) event causality identification. For SECI, we examine feature pattern-based matching, deep semantic encoding, causal knowledge pre-training and prompt-based fine-tuning, and external knowledge enhancement methods. For DECI, we highlight approaches focused on event graph reasoning and prompt-based techniques to address the complexity of cross-sentence causal inference. Additionally, we analyze the strengths, limitations, and open challenges of each approach. We further conduct an extensive quantitative evaluation of various ECI methods on two benchmark datasets. Finally, we explore future research directions, highlighting promising pathways to overcome current limitations and broaden ECI applications.
♻ ☆ BenchMARL: Benchmarking Multi-Agent Reinforcement Learning
The field of Multi-Agent Reinforcement Learning (MARL) is currently facing a reproducibility crisis. While solutions for standardized reporting have been proposed to address the issue, we still lack a benchmarking tool that enables standardization and reproducibility, while leveraging cutting-edge Reinforcement Learning (RL) implementations. In this paper, we introduce BenchMARL, the first MARL training library created to enable standardized benchmarking across different algorithms, models, and environments. BenchMARL uses TorchRL as its backend, granting it high performance and maintained state-of-the-art implementations while addressing the broad community of MARL PyTorch users. Its design enables systematic configuration and reporting, thus allowing users to create and run complex benchmarks from simple one-line inputs. BenchMARL is open-sourced on GitHub: https://github.com/facebookresearch/BenchMARL
♻ ☆ Accelerating Task Generalisation with Multi-Level Hierarchical Options ICLR 2025
Creating reinforcement learning agents that generalise effectively to new tasks is a key challenge in AI research. This paper introduces Fracture Cluster Options (FraCOs), a multi-level hierarchical reinforcement learning method that achieves state-of-the-art performance on difficult generalisation tasks. FraCOs identifies patterns in agent behaviour and forms options based on the expected future usefulness of those patterns, enabling rapid adaptation to new tasks. In tabular settings, FraCOs demonstrates effective transfer and improves performance as it grows in hierarchical depth. We evaluate FraCOs against state-of-the-art deep reinforcement learning algorithms in several complex procedurally generated environments. Our results show that FraCOs achieves higher in-distribution and out-of-distribution performance than competitors.
comment: 10 pages, under review for ICLR 2025
♻ ☆ CliMB: An AI-enabled Partner for Clinical Predictive Modeling
Despite its significant promise and continuous technical advances, real-world applications of artificial intelligence (AI) remain limited. We attribute this to the "domain expert-AI-conundrum": while domain experts, such as clinician scientists, should be able to build predictive models such as risk scores, they face substantial barriers in accessing state-of-the-art (SOTA) tools. While automated machine learning (AutoML) has been proposed as a partner in clinical predictive modeling, many additional requirements need to be fulfilled to make machine learning accessible for clinician scientists. To address this gap, we introduce CliMB, a no-code AI-enabled partner designed to empower clinician scientists to create predictive models using natural language. CliMB guides clinician scientists through the entire medical data science pipeline, thus empowering them to create predictive models from real-world data in just one conversation. CliMB also creates structured reports and interpretable visuals. In evaluations involving clinician scientists and systematic comparisons against a baseline GPT-4, CliMB consistently demonstrated superior performance in key areas such as planning, error prevention, code execution, and model performance. Moreover, in blinded assessments involving 45 clinicians from diverse specialties and career stages, more than 80% preferred CliMB over GPT-4. Overall, by providing a no-code interface with clear guidance and access to SOTA methods in the fields of data-centric AI, AutoML, and interpretable ML, CliMB empowers clinician scientists to build robust predictive models. The proof-of-concept version of CliMB is available as open-source software on GitHub: https://github.com/vanderschaarlab/climb.
comment: * Evgeny Saveliev and Tim Schubert contributed equally to this work
♻ ☆ Multimodal Foundation Models Exploit Text to Make Medical Image Predictions
Multimodal foundation models have shown compelling but conflicting performance in medical image interpretation. However, the mechanisms by which these models integrate and prioritize different data modalities, including images and text, remain poorly understood. Here, using a diverse collection of 1014 multimodal medical cases, we evaluate the unimodal and multimodal image interpretation abilities of proprietary (GPT-4, Gemini Pro 1.0) and open-source (Llama-3.2-90B, LLaVA-Med-v1.5) multimodal foundational models with and without the use of text descriptions. Across all models, image predictions were largely driven by exploiting text, with accuracy increasing monotonically with the amount of informative text. By contrast, human performance on medical image interpretation did not improve with informative text. Exploitation of text is a double-edged sword; we show that even mild suggestions of an incorrect diagnosis in text diminishes image-based classification, reducing performance dramatically in cases the model could previously answer with images alone. Finally, we conducted a physician evaluation of model performance on long-form medical cases, finding that the provision of images either reduced or had no effect on model performance when text is already highly informative. Our results suggest that multimodal AI models may be useful in medical diagnostic reasoning but that their accuracy is largely driven, for better and worse, by their exploitation of text.
♻ ☆ Enhancing Autonomous Driving Safety through World Model-Based Predictive Navigation and Adaptive Learning Algorithms for 5G Wireless Applications
Addressing the challenge of ensuring safety in ever-changing and unpredictable environments, particularly in the swiftly advancing realm of autonomous driving in today's 5G wireless communication world, we present Navigation Secure (NavSecure). This vision-based navigation framework merges the strengths of world models with crucial safety-focused decision-making capabilities, enabling autonomous vehicles to navigate real-world complexities securely. Our approach anticipates potential threats and formulates safer routes by harnessing the predictive capabilities of world models, thus significantly reducing the need for extensive real-world trial-and-error learning. Additionally, our method empowers vehicles to autonomously learn and develop through continuous practice, ensuring the system evolves and adapts to new challenges. Incorporating radio frequency technology, NavSecure leverages 5G networks to enhance real-time data exchange, improving communication and responsiveness. Validated through rigorous experiments under simulation-to-real driving conditions, NavSecure has shown exceptional performance in safety-critical scenarios, such as sudden obstacle avoidance. Results indicate that NavSecure excels in key safety metrics, including collision prevention and risk reduction, surpassing other end-to-end methodologies. This framework not only advances autonomous driving safety but also demonstrates how world models can enhance decision-making in critical applications. NavSecure sets a new standard for developing more robust and trustworthy autonomous driving systems, capable of handling the inherent dynamics and uncertainties of real-world environments.
comment: 6 pages, 5 figures
♻ ☆ OffLight: An Offline Multi-Agent Reinforcement Learning Framework for Traffic Signal Control
Efficient traffic control (TSC) is essential for urban mobility, but traditional systems struggle to handle the complexity of real-world traffic. Multi-agent Reinforcement Learning (MARL) offers adaptive solutions, but online MARL requires extensive interactions with the environment, making it costly and impractical. Offline MARL mitigates these challenges by using historical traffic data for training but faces significant difficulties with heterogeneous behavior policies in real-world datasets, where mixed-quality data complicates learning. We introduce OffLight, a novel offline MARL framework designed to handle heterogeneous behavior policies in TSC datasets. To improve learning efficiency, OffLight incorporates Importance Sampling (IS) to correct for distributional shifts and Return-Based Prioritized Sampling (RBPS) to focus on high-quality experiences. OffLight utilizes a Gaussian Mixture Variational Graph Autoencoder (GMM-VGAE) to capture the diverse distribution of behavior policies from local observations. Extensive experiments across real-world urban traffic scenarios show that OffLight outperforms existing offline RL methods, achieving up to a 7.8% reduction in average travel time and 11.2% decrease in queue length. Ablation studies confirm the effectiveness of OffLight's components in handling heterogeneous data and improving policy performance. These results highlight OffLight's scalability and potential to improve urban traffic management without the risks of online learning.
♻ ☆ VidComposition: Can MLLMs Analyze Compositions in Compiled Videos?
The advancement of Multimodal Large Language Models (MLLMs) has enabled significant progress in multimodal understanding, expanding their capacity to analyze video content. However, existing evaluation benchmarks for MLLMs primarily focus on abstract video comprehension, lacking a detailed assessment of their ability to understand video compositions, the nuanced interpretation of how visual elements combine and interact within highly compiled video contexts. We introduce VidComposition, a new benchmark specifically designed to evaluate the video composition understanding capabilities of MLLMs using carefully curated compiled videos and cinematic-level annotations. VidComposition includes 982 videos with 1706 multiple-choice questions, covering various compositional aspects such as camera movement, angle, shot size, narrative structure, character actions and emotions, etc. Our comprehensive evaluation of 33 open-source and proprietary MLLMs reveals a significant performance gap between human and model capabilities. This highlights the limitations of current MLLMs in understanding complex, compiled video compositions and offers insights into areas for further improvement. The leaderboard and evaluation code are available at https://yunlong10.github.io/VidComposition/.
♻ ☆ Tuning Synaptic Connections instead of Weights by Genetic Algorithm in Spiking Policy Network
Learning from interaction is the primary way that biological agents acquire knowledge about their environment and themselves. Modern deep reinforcement learning (DRL) explores a computational approach to learning from interaction and has made significant progress in solving various tasks. However, despite its power, DRL still falls short of biological agents in terms of energy efficiency. Although the underlying mechanisms are not fully understood, we believe that the integration of spiking communication between neurons and biologically-plausible synaptic plasticity plays a prominent role in achieving greater energy efficiency. Following this biological intuition, we optimized a spiking policy network (SPN) using a genetic algorithm as an energy-efficient alternative to DRL. Our SPN mimics the sensorimotor neuron pathway of insects and communicates through event-based spikes. Inspired by biological research showing that the brain forms memories by creating new synaptic connections and rewiring these connections based on new experiences, we tuned the synaptic connections instead of weights in the SPN to solve given tasks. Experimental results on several robotic control tasks demonstrate that our method can achieve the same level of performance as mainstream DRL methods while exhibiting significantly higher energy efficiency.
comment: Published in Machine Intelligence Research
♻ ☆ Can Learned Optimization Make Reinforcement Learning Less Difficult?
While reinforcement learning (RL) holds great potential for decision making in the real world, it suffers from a number of unique difficulties which often need specific consideration. In particular: it is highly non-stationary; suffers from high degrees of plasticity loss; and requires exploration to prevent premature convergence to local optima and maximize return. In this paper, we consider whether learned optimization can help overcome these problems. Our method, Learned Optimization for Plasticity, Exploration and Non-stationarity (OPEN), meta-learns an update rule whose input features and output structure are informed by previously proposed solutions to these difficulties. We show that our parameterization is flexible enough to enable meta-learning in diverse learning contexts, including the ability to use stochasticity for exploration. Our experiments demonstrate that when meta-trained on single and small sets of environments, OPEN outperforms or equals traditionally used optimizers. Furthermore, OPEN shows strong generalization characteristics across a range of environments and agent architectures.
comment: Neurips 2024
♻ ☆ Interpolating neural network: A novel unification of machine learning and interpolation theory
Artificial intelligence (AI) has revolutionized software development, shifting from task-specific codes (Software 1.0) to neural network-based approaches (Software 2.0). However, applying this transition in engineering software presents challenges, including low surrogate model accuracy, the curse of dimensionality in inverse design, and rising complexity in physical simulations. We introduce an interpolating neural network (INN), grounded in interpolation theory and tensor decomposition, to realize Engineering Software 2.0 by advancing data training, partial differential equation solving, and parameter calibration. INN offers orders of magnitude fewer trainable/solvable parameters for comparable model accuracy than traditional multi-layer perceptron (MLP) or physics-informed neural networks (PINN). Demonstrated in metal additive manufacturing, INN rapidly constructs an accurate surrogate model of Laser Powder Bed Fusion (L-PBF) heat transfer simulation, achieving sub-10-micrometer resolution for a 10 mm path in under 15 minutes on a single GPU. This makes a transformative step forward across all domains essential to engineering software.
comment: 13 pages, 4 figures
♻ ☆ Generalized Principal-Agent Problem with a Learning Agent
Classic principal-agent problems such as Stackelberg games, contract design, and Bayesian persuasion, often assume that the agent is able to best respond to the principal's committed strategy. We study repeated generalized principal-agent problems under the assumption that the principal does not have commitment power and the agent uses algorithms to learn to respond to the principal. We reduce this problem to a one-shot generalized principal-agent problem where the agent approximately best responds. Using this reduction, we show that: (1) If the agent uses contextual no-regret learning algorithms with regret $\mathrm{Reg}(T)$, then the principal can guarantee utility at least $U^* - \Theta\big(\sqrt{\tfrac{\mathrm{Reg}(T)}{T}}\big)$, where $U^*$ is the principal's optimal utility in the classic model with a best-responding agent. (2) If the agent uses contextual no-swap-regret learning algorithms with swap-regret $\mathrm{SReg}(T)$, then the principal cannot obtain utility more than $U^* + O(\frac{\mathrm{SReg(T)}}{T})$. But (3) if the agent uses mean-based learning algorithms (which can be no-regret but not no-swap-regret), then the principal can sometimes do significantly better than $U^*$. These results not only refine previous results in Stackelberg games and contract design, but also lead to new results for Bayesian persuasion with a learning agent and all generalized principal-agent problems where the agent does not have private information.
♻ ☆ A Dataset for Evaluating Online Anomaly Detection Approaches for Discrete Multivariate Time Series
Benchmarking anomaly detection approaches for multivariate time series is challenging due to the lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a small selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data.
comment: Submitted to the IEEE Transactions on Reliability journal
♻ ☆ Robust Federated Learning Over the Air: Combating Heavy-Tailed Noise with Median Anchored Clipping
Leveraging over-the-air computations for model aggregation is an effective approach to cope with the communication bottleneck in federated edge learning. By exploiting the superposition properties of multi-access channels, this approach facilitates an integrated design of communication and computation, thereby enhancing system privacy while reducing implementation costs. However, the inherent electromagnetic interference in radio channels often exhibits heavy-tailed distributions, giving rise to exceptionally strong noise in globally aggregated gradients that can significantly deteriorate the training performance. To address this issue, we propose a novel gradient clipping method, termed Median Anchored Clipping (MAC), to combat the detrimental effects of heavy-tailed noise. We also derive analytical expressions for the convergence rate of model training with analog over-the-air federated learning under MAC, which quantitatively demonstrates the effect of MAC on training performance. Extensive experimental results show that the proposed MAC algorithm effectively mitigates the impact of heavy-tailed noise, hence substantially enhancing system robustness.
comment: This is the full version of the paper, and the appendix contains a complete convergence analysis under non-convex conditions
♻ ☆ Melody Is All You Need For Music Generation
We present the Melody Guided Music Generation (MG2) model, a novel approach using melody to guide the text-to-music generation that, despite a pretty simple method and extremely limited resources, achieves excellent performance. Specifically, we first align the text with audio waveforms and their associated melodies using the newly proposed Contrastive Language-Music Pretraining, enabling the learned text representation fused with implicit melody information. Subsequently, we condition the retrieval-augmented diffusion module on both text prompt and retrieved melody. This allows MG2to generate music that reflects the content of the given text description, meantime keeping the intrinsic harmony under the guidance of explicit melody information. We conducted extensive experiments on two public datasets: MusicCaps and MusicBench. The experimental results demonstrate that the proposed MG2 model surpasses current open-source text-to-music generation models, utilizing fewer than 1/3 of the parameters and less than 1/200 of the training data compared to state-of-the-art counterparts. Furthermore, we carried out comprehensive human evaluations to explore the potential applications of MG2 in real-world scenarios.
comment: 15 pages, 8 figure, 8 tables
TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs NeurIPS 2024
Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections across various real-world settings. However, existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes. This lack of rich textual edge annotations significantly limits the exploration of contextual relationships between entities, hindering deeper insights into graph-structured data. To address this gap, we introduce Textual-Edge Graphs Datasets and Benchmark (TEG-DB), a comprehensive and diverse collection of benchmark textual-edge datasets featuring rich textual descriptions on nodes and edges. The TEG-DB datasets are large-scale and encompass a wide range of domains, from citation networks to social networks. In addition, we conduct extensive benchmark experiments on TEG-DB to assess the extent to which current techniques, including pre-trained language models, graph neural networks, and their combinations, can utilize textual node and edge information. Our goal is to elicit advancements in textual-edge graph research, specifically in developing methodologies that exploit rich textual node and edge descriptions to enhance graph analysis and provide deeper insights into complex real-world networks. The entire TEG-DB project is publicly accessible as an open-source repository on Github, accessible at https://github.com/Zhuofeng-Li/TEG-Benchmark.
comment: Accepted by NeurIPS 2024
♻ ☆ VQA$^2$: Visual Question Answering for Video Quality Assessment
The advent and proliferation of large multi-modal models (LMMs) have introduced new paradigms to computer vision, transforming various tasks into a unified visual question answering framework. Video Quality Assessment (VQA), a classic field in low-level visual perception, focused initially on quantitative video quality scoring. However, driven by advances in LMMs, it is now progressing toward more holistic visual quality understanding tasks. Recent studies in the image domain have demonstrated that Visual Question Answering (VQA) can markedly enhance low-level visual quality evaluation. Nevertheless, related work has not been explored in the video domain, leaving substantial room for improvement. To address this gap, we introduce the VQA2 Instruction Dataset - the first visual question answering instruction dataset that focuses on video quality assessment. This dataset consists of 3 subsets and covers various video types, containing 157,755 instruction question-answer pairs. Then, leveraging this foundation, we present the VQA2 series models. The VQA2 series models interleave visual and motion tokens to enhance the perception of spatial-temporal quality details in videos. We conduct extensive experiments on video quality scoring and understanding tasks, and results demonstrate that the VQA2series models achieve excellent performance in both tasks. Notably, our final model, the VQA2-Assistant, exceeds the renowned GPT-4o in visual quality understanding tasks while maintaining strong competitiveness in quality scoring tasks. Our work provides a foundation and feasible approach for integrating low-level video quality assessment and understanding with LMMs.
comment: 23 pages 12 figures
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Collaborative Learning
Contemporary embodied agents, such as Voyager in Minecraft, have demonstrated promising capabilities in open-ended individual learning. However, when powered with open large language models (LLMs), these agents often struggle with rudimentary tasks, even when fine-tuned on domain-specific knowledge. Inspired by human cultural learning, we present \collabvoyager, a novel framework that enhances Voyager with lifelong collaborative learning through explicit perspective-taking. \collabvoyager introduces three key innovations: (1) theory of mind representations linking percepts, beliefs, desires, and actions; (2) natural language communication between agents; and (3) semantic memory of task and environment knowledge and episodic memory of collaboration episodes. These advancements enable agents to reason about their and others' mental states, empirically addressing two prevalent failure modes: false beliefs and faulty task executions. In mixed-expertise Minecraft experiments, \collabvoyager agents outperform Voyager counterparts, significantly improving task completion rate by $66.6\% (+39.4\%)$ for collecting one block of dirt and $70.8\% (+20.8\%)$ for collecting one wood block. They exhibit emergent behaviors like knowledge transfer from expert to novice agents and collaborative code correction. \collabvoyager agents also demonstrate the ability to adapt to out-of-distribution tasks by using their previous experiences and beliefs obtained through collaboration. In this open-ended social learning paradigm, \collabvoyager paves the way for the democratic development of embodied AI, where agents learn in deployment from both peer and environmental feedback.
♻ ☆ MMDS: A Multimodal Medical Diagnosis System Integrating Image Analysis and Knowledge-based Departmental Consultation
We present MMDS, a system capable of recognizing medical images and patient facial details, and providing professional medical diagnoses. The system consists of two core components:The first component is the analysis of medical images and videos. We trained a specialized multimodal medical model capable of interpreting medical images and accurately analyzing patients' facial emotions and facial paralysis conditions. The model achieved an accuracy of 72.59% on the FER2013 facial emotion recognition dataset, with a 91.1% accuracy in recognizing the "happy" emotion. In facial paralysis recognition, the model reached an accuracy of 92%, which is 30% higher than that of GPT-4o. Based on this model, we developed a parser for analyzing facial movement videos of patients with facial paralysis, achieving precise grading of the paralysis severity. In tests on 30 videos of facial paralysis patients, the system demonstrated a grading accuracy of 83.3%.The second component is the generation of professional medical responses. We employed a large language model, integrated with a medical knowledge base, to generate professional diagnoses based on the analysis of medical images or videos. The core innovation lies in our development of a department-specific knowledge base routing management mechanism, in which the large language model categorizes data by medical departments and, during the retrieval process, determines the appropriate knowledge base to query. This significantly improves retrieval accuracy in the RAG (retrieval-augmented generation) process.
♻ ☆ Intelligent Anomaly Detection for Lane Rendering Using Transformer with Self-Supervised Pre-Training and Customized Fine-Tuning
The burgeoning navigation services using digital maps provide great convenience to drivers. Nevertheless, the presence of anomalies in lane rendering map images occasionally introduces potential hazards, as such anomalies can be misleading to human drivers and consequently contribute to unsafe driving conditions. In response to this concern and to accurately and effectively detect the anomalies, this paper transforms lane rendering image anomaly detection into a classification problem and proposes a four-phase pipeline consisting of data pre-processing, self-supervised pre-training with the masked image modeling (MiM) method, customized fine-tuning using cross-entropy based loss with label smoothing, and post-processing to tackle it leveraging state-of-the-art deep learning techniques, especially those involving Transformer models. Various experiments verify the effectiveness of the proposed pipeline. Results indicate that the proposed pipeline exhibits superior performance in lane rendering image anomaly detection, and notably, the self-supervised pre-training with MiM can greatly enhance the detection accuracy while significantly reducing the total training time. For instance, employing the Swin Transformer with Uniform Masking as self-supervised pretraining (Swin-Trans-UM) yielded a heightened accuracy at 94.77% and an improved Area Under The Curve (AUC) score of 0.9743 compared with the pure Swin Transformer without pre-training (Swin-Trans) with an accuracy of 94.01% and an AUC of 0.9498. The fine-tuning epochs were dramatically reduced to 41 from the original 280. In conclusion, the proposed pipeline, with its incorporation of self-supervised pre-training using MiM and other advanced deep learning techniques, emerges as a robust solution for enhancing the accuracy and efficiency of lane rendering image anomaly detection in digital navigation systems.
comment: 25 pages, 7 figures, accepted by the 103rd Transportation Research Board (TRB) Annual Meeting, under review by Transportation Research Record: Journal of the Transportation Research Board
♻ ☆ Integrating Dynamic Correlation Shifts and Weighted Benchmarking in Extreme Value Analysis
This paper presents an innovative approach to Extreme Value Analysis (EVA) by introducing the Extreme Value Dynamic Benchmarking Method (EVDBM). EVDBM integrates extreme value theory to detect extreme events and is coupled with the novel Dynamic Identification of Significant Correlation (DISC)-Thresholding algorithm, which enhances the analysis of key variables under extreme conditions. By integrating return values predicted through EVA into the benchmarking scores, we are able to transform these scores to reflect anticipated conditions more accurately. This provides a more precise picture of how each case is projected to unfold under extreme conditions. As a result, the adjusted scores offer a forward-looking perspective, highlighting potential vulnerabilities and resilience factors for each case in a way that static historical data alone cannot capture. By incorporating both historical and probabilistic elements, the EVDBM algorithm provides a comprehensive benchmarking framework that is adaptable to a range of scenarios and contexts. The methodology is applied to real PV data, revealing critical low - production scenarios and significant correlations between variables, which aid in risk management, infrastructure design, and long-term planning, while also allowing for the comparison of different production plants. The flexibility of EVDBM suggests its potential for broader applications in other sectors where decision-making sensitivity is crucial, offering valuable insights to improve outcomes.
comment: 33 pages, 8 figures
♻ ☆ LaVida Drive: Vision-Text Interaction VLM for Autonomous Driving with Token Selection, Recovery and Enhancement
Recent advancements in Visual Language Models (VLMs) have made them crucial for visual question answering (VQA) in autonomous driving, enabling natural human-vehicle interactions. However, existing methods often struggle in dynamic driving environments, as they usually focus on static images or videos and rely on downsampling to manage computational costs. This results in the loss of critical details and the difficulty in effectively integrating spatial and temporal information, undermining fine-grained perception and temporal coherence essential for effective decision-making. To tackle these challenges, we introduce LaVida Drive, a novel and efficient VQA framework for autonomous driving. LaVida Drive seamlessly integrates temporal data while maintaining high-resolution inputs for detailed visual perception. It optimizes spatial processing by retaining high-resolution data for intricate details and using lower-resolution inputs for temporal analysis to focus on motion-related features, thereby boosting computational efficiency. The core of LaVida Drive consists of two modules: the \textit{Query-aware Token Selection} module and the \textit{Spatial-Temporal Token Recovery and Enhancement} module. The former dynamically selects the most relevant visual tokens based on semantic alignment with the input query, reducing the token count from high-resolution spatial input. The latter ensures smooth and coherent interactions between spatial and temporal information, preserving contextual continuity across frames. Extensive experiments on various autonomous driving question-answering benchmarks show that LaVida Drive significantly reduces visual tokens, enhances efficiency, and improves overall performance.
♻ ☆ Analog In-Memory Computing Attention Mechanism for Fast and Energy-Efficient Large Language Models
Transformer networks, driven by self-attention, are central to Large Language Models. In generative Transformers, self-attention uses cache memory to store token projections, avoiding recomputation at each time step. However, GPU-stored projections must be loaded into SRAM for each new generation step, causing latency and energy bottlenecks. We present a custom self-attention in-memory computing architecture based on emerging charge-based memories called gain cells, which can be efficiently written to store new tokens during sequence generation and enable parallel analog dot-product computation required for self-attention. However, the analog gain cell circuits introduce non-idealities and constraints preventing the direct mapping of pre-trained models. To circumvent this problem, we design an initialization algorithm achieving text processing performance comparable to GPT-2 without training from scratch. Our architecture respectively reduces attention latency and energy consumption by up to two and five orders of magnitude compared to GPUs, marking a significant step toward ultra-fast, low-power generative Transformers.
comment: 25 pages, 6 figures, 1 table
♻ ☆ Trap-MID: Trapdoor-based Defense against Model Inversion Attacks NeurIPS
Model Inversion (MI) attacks pose a significant threat to the privacy of Deep Neural Networks by recovering training data distribution from well-trained models. While existing defenses often rely on regularization techniques to reduce information leakage, they remain vulnerable to recent attacks. In this paper, we propose the Trapdoor-based Model Inversion Defense (Trap-MID) to mislead MI attacks. A trapdoor is integrated into the model to predict a specific label when the input is injected with the corresponding trigger. Consequently, this trapdoor information serves as the "shortcut" for MI attacks, leading them to extract trapdoor triggers rather than private data. We provide theoretical insights into the impacts of trapdoor's effectiveness and naturalness on deceiving MI attacks. In addition, empirical experiments demonstrate the state-of-the-art defense performance of Trap-MID against various MI attacks without the requirements for extra data or large computational overhead. Our source code is publicly available at https://github.com/ntuaislab/Trap-MID.
comment: Accepted by Neural Information Processing Systems (NeurIPS) 2024
♻ ☆ Using Large Language Models for a standard assessment mapping for sustainable communities
This paper presents a new approach to urban sustainability assessment through the use of Large Language Models (LLMs) to streamline the use of the ISO 37101 framework to automate and standardise the assessment of urban initiatives against the six "sustainability purposes" and twelve "issues" outlined in the standard. The methodology includes the development of a custom prompt based on the standard definitions and its application to two different datasets: 527 projects from the Paris Participatory Budget and 398 activities from the PROBONO Horizon 2020 project. The results show the effectiveness of LLMs in quickly and consistently categorising different urban initiatives according to sustainability criteria. The approach is particularly promising when it comes to breaking down silos in urban planning by providing a holistic view of the impact of projects. The paper discusses the advantages of this method over traditional human-led assessments, including significant time savings and improved consistency. However, it also points out the importance of human expertise in interpreting results and ethical considerations. This study hopefully can contribute to the growing body of work on AI applications in urban planning and provides a novel method for operationalising standardised sustainability frameworks in different urban contexts.
comment: 8 pages, 2 figures
♻ ☆ AI-Native Multi-Access Future Networks -- The REASON Architecture
The development of the sixth generation of communication networks (6G) has been gaining momentum over the past years, with a target of being introduced by 2030. Several initiatives worldwide are developing innovative solutions and setting the direction for the key features of these networks. Some common emerging themes are the tight integration of AI, the convergence of multiple access technologies and sustainable operation, aiming to meet stringent performance and societal requirements. To that end, we are introducing REASON - Realising Enabling Architectures and Solutions for Open Networks. The REASON project aims to address technical challenges in future network deployments, such as E2E service orchestration, sustainability, security and trust management, and policy management, utilising AI-native principles, considering multiple access technologies and cloud-native solutions. This paper presents REASON's architecture and the identified requirements for future networks. The architecture is meticulously designed for modularity, interoperability, scalability, simplified troubleshooting, flexibility, and enhanced security, taking into consideration current and future standardisation efforts, and the ease of implementation and training. It is structured into four horizontal layers: Physical Infrastructure, Network Service, Knowledge, and End-User Application, complemented by two vertical layers: Management and Orchestration, and E2E Security. This layered approach ensures a robust, adaptable framework to support the diverse and evolving requirements of 6G networks, fostering innovation and facilitating seamless integration of advanced technologies.
comment: Accepted for publication at IEEE Access
♻ ☆ Deanthropomorphising NLP: Can a Language Model Be Conscious?
This work is intended as a voice in the discussion over previous claims that a pretrained large language model (LLM) based on the Transformer model architecture can be sentient. Such claims have been made concerning the LaMDA model and also concerning the current wave of LLM-powered chatbots, such as ChatGPT. This claim, if confirmed, would have serious ramifications in the Natural Language Processing (NLP) community due to wide-spread use of similar models. However, here we take the position that such a large language model cannot be sentient, or conscious, and that LaMDA in particular exhibits no advances over other similar models that would qualify it. We justify this by analysing the Transformer architecture through Integrated Information Theory of consciousness. We see the claims of sentience as part of a wider tendency to use anthropomorphic language in NLP reporting. Regardless of the veracity of the claims, we consider this an opportune moment to take stock of progress in language modelling and consider the ethical implications of the task. In order to make this work helpful for readers outside the NLP community, we also present the necessary background in language modelling.
♻ ☆ Offline reinforcement learning for job-shop scheduling problems
Recent advances in deep learning have shown significant potential for solving combinatorial optimization problems in real-time. Unlike traditional methods, deep learning can generate high-quality solutions efficiently, which is crucial for applications like routing and scheduling. However, existing approaches like deep reinforcement learning (RL) and behavioral cloning have notable limitations, with deep RL suffering from slow learning and behavioral cloning relying solely on expert actions, which can lead to generalization issues and neglect of the optimization objective. This paper introduces a novel offline RL method designed for combinatorial optimization problems with complex constraints, where the state is represented as a heterogeneous graph and the action space is variable. Our approach encodes actions in edge attributes and balances expected rewards with the imitation of expert solutions. We demonstrate the effectiveness of this method on job-shop scheduling and flexible job-shop scheduling benchmarks, achieving superior performance compared to state-of-the-art techniques.
♻ ☆ Minority-Focused Text-to-Image Generation via Prompt Optimization
We investigate the generation of minority samples using pretrained text-to-image (T2I) latent diffusion models. Minority instances, in the context of T2I generation, can be defined as ones living on low-density regions of text-conditional data distributions. They are valuable for various applications of modern T2I generators, such as data augmentation and creative AI. Unfortunately, existing pretrained T2I diffusion models primarily focus on high-density regions, largely due to the influence of guided samplers (like CFG) that are essential for producing high-quality generations. To address this, we present a novel framework to counter the high-density-focus of T2I diffusion models. Specifically, we first develop an online prompt optimization framework that can encourage the emergence of desired properties during inference while preserving semantic contents of user-provided prompts. We subsequently tailor this generic prompt optimizer into a specialized solver that promotes the generation of minority features by incorporating a carefully-crafted likelihood objective. Our comprehensive experiments, conducted across various types of T2I models, demonstrate that our approach significantly enhances the capability to produce high-quality minority instances compared to existing samplers.
comment: 20 pages, 9 figures
♻ ☆ The Role of Accuracy and Validation Effectiveness in Conversational Business Analytics
This study examines conversational business analytics, an approach that utilizes AI to address the technical competency gaps that hinder end users from effectively using traditional self-service analytics. By facilitating natural language interactions, conversational business analytics aims to empower end users to independently retrieve data and generate insights. The analysis focuses on Text-to-SQL as a representative technology for translating natural language requests into SQL statements. Developing theoretical models grounded in expected utility theory, this study identifies the conditions under which conversational business analytics, through partial or full support, can outperform delegation to human experts. The results indicate that partial support, focusing solely on information generation by AI, is viable when the accuracy of AI-generated SQL queries leads to a profit that surpasses the performance of a human expert. In contrast, full support includes not only information generation but also validation through explanations provided by the AI, and requires sufficiently high validation effectiveness to be reliable. However, user-based validation presents challenges, such as misjudgment and rejection of valid SQL queries, which may limit the effectiveness of conversational business analytics. These challenges underscore the need for robust validation mechanisms, including improved user support, automated processes, and methods for assessing quality independent of the technical competency of end users.
♻ ☆ Shapley Value Computation in Ontology-Mediated Query Answering
The Shapley value, originally introduced in cooperative game theory for wealth distribution, has found use in KR and databases for the purpose of assigning scores to formulas and database tuples based upon their contribution to obtaining a query result or inconsistency. In the present paper, we explore the use of Shapley values in ontology-mediated query answering (OMQA) and present a detailed complexity analysis of Shapley value computation (SVC) in the OMQA setting. In particular, we establish a PF/#P-hard dichotomy for SVC for ontology-mediated queries (T,q) composed of an ontology T formulated in the description logic ELHI_\bot and a connected constant-free homomorphism-closed query q. We further show that the #P-hardness side of the dichotomy can be strengthened to cover possibly disconnected queries with constants. Our results exploit recently discovered connections between SVC and probabilistic query evaluation and allow us to generalize existing results on probabilistic OMQA.
comment: Long version of KR 2024 homonymous paper
♻ ☆ Real-world validation of safe reinforcement learning, model predictive control and decision tree-based home energy management systems
Recent advancements in machine learning based energy management approaches, specifically reinforcement learning with a safety layer (OptLayerPolicy) and a metaheuristic algorithm generating a decision tree control policy (TreeC), have shown promise. However, their effectiveness has only been demonstrated in computer simulations. This paper presents the real-world validation of these methods, comparing against model predictive control and simple rule-based control benchmark. The experiments were conducted on the electrical installation of 4 reproductions of residential houses, which all have their own battery, photovoltaic and dynamic load system emulating a non-controllable electrical load and a controllable electric vehicle charger. The results show that the simple rules, TreeC, and model predictive control-based methods achieved similar costs, with a difference of only 0.6%. The reinforcement learning based method, still in its training phase, obtained a cost 25.5\% higher to the other methods. Additional simulations show that the costs can be further reduced by using a more representative training dataset for TreeC and addressing errors in the model predictive control implementation caused by its reliance on accurate data from various sources. The OptLayerPolicy safety layer allows safe online training of a reinforcement learning agent in the real-world, given an accurate constraint function formulation. The proposed safety layer method remains error-prone, nonetheless, it is found beneficial for all investigated methods. The TreeC method, which does require building a realistic simulation for training, exhibits the safest operational performance, exceeding the grid limit by only 27.1 Wh compared to 593.9 Wh for reinforcement learning.
comment: Accepted version Energy and AI: https://doi.org/10.1016/j.egyai.2024.100448
♻ ☆ CoverLib: Classifiers-equipped Experience Library by Iterative Problem Distribution Coverage Maximization for Domain-tuned Motion Planning
Library-based methods are known to be very effective for fast motion planning by adapting an experience retrieved from a precomputed library. This article presents CoverLib, a principled approach for constructing and utilizing such a library. CoverLib iteratively adds an experience-classifier-pair to the library, where each classifier corresponds to an adaptable region of the experience within the problem space. This iterative process is an active procedure, as it selects the next experience based on its ability to effectively cover the uncovered region. During the query phase, these classifiers are utilized to select an experience that is expected to be adaptable for a given problem. Experimental results demonstrate that CoverLib effectively mitigates the trade-off between plannability and speed observed in global (e.g. sampling-based) and local (e.g. optimization-based) methods. As a result, it achieves both fast planning and high success rates over the problem domain. Moreover, due to its adaptation-algorithm-agnostic nature, CoverLib seamlessly integrates with various adaptation methods, including nonlinear programming-based and sampling-based algorithms.
♻ ☆ Optimistic Verifiable Training by Controlling Hardware Nondeterminism NeurIPS
The increasing compute demands of AI systems have led to the emergence of services that train models on behalf of clients lacking necessary resources. However, ensuring correctness of training and guarding against potential training-time attacks, such as data poisoning and backdoors, poses challenges. Existing works on verifiable training largely fall into two classes: proof-based systems, which are difficult to scale, and ``optimistic'' methods that consider a third-party auditor who can replicate the training process and contest the trainer. A key challenge with the latter is that nondeterminism between GPU types during training prevents exact replication of the training process, resulting in schemes that are non-robust. We propose a method that combines training in a higher precision than the target, rounding after intermediate computations, and sharing rounding decisions based on an adaptive thresholding procedure, to successfully control for nondeterminism. Across three different NVIDIA GPUs (A40, Titan XP, RTX 2080 Ti), we achieve exact training replication at FP32 precision for both full-training and fine-tuning of ResNet-50 (23M) and GPT-2 (117M) models. Our verifiable training scheme significantly decreases the storage and time costs compared to proof-based systems, and is publicly released at https://github.com/meghabyte/verifiable-training.
comment: 11 pages, 5 figures, Neural Information Processing Systems (NeurIPS) 2024,
♻ ☆ Towards Faster Decentralized Stochastic Optimization with Communication Compression
Communication efficiency has garnered significant attention as it is considered the main bottleneck for large-scale decentralized Machine Learning applications in distributed and federated settings. In this regime, clients are restricted to transmitting small amounts of quantized information to their neighbors over a communication graph. Numerous endeavors have been made to address this challenging problem by developing algorithms with compressed communication for decentralized non-convex optimization problems. Despite considerable efforts, the current results suffer from various issues such as non-scalability with the number of clients, requirements for large batches, or bounded gradient assumption. In this paper, we introduce MoTEF, a novel approach that integrates communication compression with Momentum Tracking and Error Feedback. Our analysis demonstrates that MoTEF achieves most of the desired properties, and significantly outperforms existing methods under arbitrary data heterogeneity. We provide numerical experiments to validate our theoretical findings and confirm the practical superiority of MoTEF.
♻ ☆ Towards the Dynamics of a DNN Learning Symbolic Interactions
This study proves the two-phase dynamics of a deep neural network (DNN) learning interactions. Despite the long disappointing view of the faithfulness of post-hoc explanation of a DNN, a series of theorems have been proven in recent years to show that for a given input sample, a small set of interactions between input variables can be considered as primitive inference patterns that faithfully represent a DNN's detailed inference logic on that sample. Particularly, Zhang et al. have observed that various DNNs all learn interactions of different complexities in two distinct phases, and this two-phase dynamics well explains how a DNN changes from under-fitting to over-fitting. Therefore, in this study, we mathematically prove the two-phase dynamics of interactions, providing a theoretical mechanism for how the generalization power of a DNN changes during the training process. Experiments show that our theory well predicts the real dynamics of interactions on different DNNs trained for various tasks.
♻ ☆ Modyn: Data-Centric Machine Learning Pipeline Orchestration
In real-world machine learning (ML) pipelines, datasets are continuously growing. Models must incorporate this new training data to improve generalization and adapt to potential distribution shifts. The cost of model retraining is proportional to how frequently the model is retrained and how much data it is trained on, which makes the naive approach of retraining from scratch each time impractical. We present Modyn, a data-centric end-to-end machine learning platform. Modyn's ML pipeline abstraction enables users to declaratively describe policies for continuously training a model on a growing dataset. Modyn pipelines allow users to apply data selection policies (to reduce the number of data points) and triggering policies (to reduce the number of trainings). Modyn executes and orchestrates these continuous ML training pipelines. The system is open-source and comes with an ecosystem of benchmark datasets, models, and tooling. We formally discuss how to measure the performance of ML pipelines by introducing the concept of composite models, enabling fair comparison of pipelines with different data selection and triggering policies. We empirically analyze how various data selection and triggering policies impact model accuracy, and also show that Modyn enables high throughput training with sample-level data selection.
comment: accepted at SIGMOD'25; 30 pages
♻ ☆ Mozart's Touch: A Lightweight Multi-modal Music Generation Framework Based on Pre-Trained Large Models
In recent years, AI-Generated Content (AIGC) has witnessed rapid advancements, facilitating the creation of music, images, and other artistic forms across a wide range of industries. However, current models for image- and video-to-music synthesis struggle to capture the nuanced emotions and atmosphere conveyed by visual content. To fill this gap, we propose Mozart's Touch, a multi-modal music generation framework capable of generating music aligned with cross-modal inputs such as images, videos, and text. The framework consists of three key components: Multi-modal Captioning Module, Large Language Model (LLM) understanding \& Bridging Module, and Music Generation Module. Unlike traditional end-to-end methods, Mozart's Touch uses LLMs to accurately interpret visual elements without requiring the training or fine-tuning of music generation models, providing efficiency and transparency through clear, interpretable prompts. We also introduce the "LLM-Bridge" method to resolve the heterogeneous representation challenges between descriptive texts from different modalities. Through a series of objective and subjective evaluations, we demonstrate that Mozart's Touch outperforms current state-of-the-art models. Our code and examples are available at https://github.com/TiffanyBlews/MozartsTouch.
comment: 10 pages, 2 figures, submitted to AIGC 2024
♻ ☆ BugSpotter: Automated Generation of Code Debugging Exercises
Debugging is an essential skill when learning to program, yet its instruction and emphasis often vary widely across introductory courses. In the era of code-generating large language models (LLMs), the ability for students to reason about code and identify errors is increasingly important. However, students frequently resort to trial-and-error methods to resolve bugs without fully understanding the underlying issues. Developing the ability to identify and hypothesize the cause of bugs is crucial but can be time-consuming to teach effectively through traditional means. This paper introduces BugSpotter, an innovative tool that leverages an LLM to generate buggy code from a problem description and verify the synthesized bugs via a test suite. Students interact with BugSpotter by designing failing test cases, where the buggy code's output differs from the expected result as defined by the problem specification. This not only provides opportunities for students to enhance their debugging skills, but also to practice reading and understanding problem specifications. We deployed BugSpotter in a large classroom setting and compared the debugging exercises it generated to exercises hand-crafted by an instructor for the same problems. We found that the LLM-generated exercises produced by BugSpotter varied in difficulty and were well-matched to the problem specifications. Importantly, the LLM-generated exercises were comparable to those manually created by instructors with respect to student performance, suggesting that BugSpotter could be an effective and efficient aid for learning debugging.
comment: Preprint of the SIGCSE'25 paper
♻ ☆ EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction. The emergence of foundation models as the "brain" of EAI agents for high-level task planning has shown promising results. However, the deployment of these agents in physical environments presents significant safety challenges. For instance, a housekeeping robot lacking sufficient risk awareness might place a metal container in a microwave, potentially causing a fire. To address these critical safety concerns, comprehensive pre-deployment risk assessments are imperative. This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios. EAIRiskBench employs a multi-agent cooperative system that leverages various foundation models to generate safety guidelines, create risk-prone scenarios, make task planning, and evaluate safety systematically. Utilizing this framework, we construct EAIRiskDataset, comprising diverse test cases across various domains, encompassing both textual and visual scenarios. Our comprehensive evaluation of state-of-the-art foundation models reveals alarming results: all models exhibit high task risk rates (TRR), with an average of 95.75% across all evaluated models. To address these challenges, we further propose two prompting-based risk mitigation strategies. While these strategies demonstrate some efficacy in reducing TRR, the improvements are limited, still indicating substantial safety concerns. This study provides the first large-scale assessment of physical risk awareness in EAI agents. Our findings underscore the critical need for enhanced safety measures in EAI systems and provide valuable insights for future research directions in developing safer embodied artificial intelligence system. Data and code are available at https://github.com/zihao-ai/EAIRiskBench.
♻ ☆ Fostering Intrinsic Motivation in Reinforcement Learning with Pretrained Foundation Models NeurIPS 2024
Exploration remains a significant challenge in reinforcement learning, especially in environments where extrinsic rewards are sparse or non-existent. The recent rise of foundation models, such as CLIP, offers an opportunity to leverage pretrained, semantically rich embeddings that encapsulate broad and reusable knowledge. In this work we explore the potential of these foundation models not just to drive exploration, but also to analyze the critical role of the episodic novelty term in enhancing exploration effectiveness of the agent. We also investigate whether providing the intrinsic module with complete state information -- rather than just partial observations -- can improve exploration, despite the difficulties in handling small variations within large state spaces. Our experiments in the MiniGrid domain reveal that intrinsic modules can effectively utilize full state information, significantly increasing sample efficiency while learning an optimal policy. Moreover, we show that the embeddings provided by foundation models are sometimes even better than those constructed by the agent during training, further accelerating the learning process, especially when coupled with the episodic novelty term to enhance exploration.
comment: Accepted at the Intrinsically Motivated Open-ended Learning workshop at NeurIPS 2024
♻ ☆ Safe Bayesian Optimization for Complex Control Systems via Additive Gaussian Processes
Controller tuning and optimization have been among the most fundamental problems in robotics and mechatronic systems. The traditional methodology is usually model-based, but its performance heavily relies on an accurate mathematical system model. In control applications with complex dynamics, obtaining a precise model is often challenging, leading us towards a data-driven approach. While various researchers have explored the optimization of a single controller, it remains a challenge to obtain the optimal controller parameters safely and efficiently when multiple controllers are involved. In this paper, we propose SafeCtrlBO to optimize multiple controllers simultaneously and safely. We simplify the exploration process in safe Bayesian optimization, reducing computational effort without sacrificing expansion capability. Additionally, we use additive kernels to enhance the efficiency of Gaussian process updates for unknown functions. Hardware experimental results on a permanent magnet synchronous motor (PMSM) demonstrate that compared to existing safe Bayesian optimization algorithms, SafeCtrlBO can obtain optimal parameters more efficiently while ensuring safety.
comment: 25 pages, 8 figures, 20 subfigures, 1 table. Under Review
♻ ☆ Unlearn to Relearn Backdoors: Deferred Backdoor Functionality Attacks on Deep Learning Models
Deep learning models are vulnerable to backdoor attacks, where adversaries inject malicious functionality during training that activates on trigger inputs at inference time. Extensive research has focused on developing stealthy backdoor attacks to evade detection and defense mechanisms. However, these approaches still have limitations that leave the door open for detection and mitigation due to their inherent design to cause malicious behavior in the presence of a trigger. To address this limitation, we introduce Deferred Activated Backdoor Functionality (DABF), a new paradigm in backdoor attacks. Unlike conventional attacks, DABF initially conceals its backdoor, producing benign outputs even when triggered. This stealthy behavior allows DABF to bypass multiple detection and defense methods, remaining undetected during initial inspections. The backdoor functionality is strategically activated only after the model undergoes subsequent updates, such as retraining on benign data. DABF attacks exploit the common practice in the life cycle of machine learning models to perform model updates and fine-tuning after initial deployment. To implement DABF attacks, we approach the problem by making the unlearning of the backdoor fragile, allowing it to be easily cancelled and subsequently reactivate the backdoor functionality. To achieve this, we propose a novel two-stage training scheme, called DeferBad. Our extensive experiments across various fine-tuning scenarios, backdoor attack types, datasets, and model architectures demonstrate the effectiveness and stealthiness of DeferBad.
♻ ☆ A Survey of Deep Learning Library Testing Methods
In recent years, software systems powered by deep learning (DL) techniques have significantly facilitated people's lives in many aspects. As the backbone of these DL systems, various DL libraries undertake the underlying optimization and computation. However, like traditional software, DL libraries are not immune to bugs, which can pose serious threats to users' personal property and safety. Studying the characteristics of DL libraries, their associated bugs, and the corresponding testing methods is crucial for enhancing the security of DL systems and advancing the widespread application of DL technology. This paper provides an overview of the testing research related to various DL libraries, discusses the strengths and weaknesses of existing methods, and provides guidance and reference for the application of the DL library. This paper first introduces the workflow of DL underlying libraries and the characteristics of three kinds of DL libraries involved, namely DL framework, DL compiler, and DL hardware library. It then provides definitions for DL underlying library bugs and testing. Additionally, this paper summarizes the existing testing methods and tools tailored to these DL libraries separately and analyzes their effectiveness and limitations. It also discusses the existing challenges of DL library testing and outlines potential directions for future research.
comment: 35 pages, 10 figures, 5 tables
♻ ☆ RoboSense: Large-scale Dataset and Benchmark for Egocentric Robot Perception and Navigation in Crowded and Unstructured Environments
Reliable embodied perception from an egocentric perspective is challenging yet essential for autonomous navigation technology of intelligent mobile agents. With the growing demand of social robotics, near-field scene understanding becomes an important research topic in the areas of egocentric perceptual tasks related to navigation in both crowded and unstructured environments. Due to the complexity of environmental conditions and difficulty of surrounding obstacles owing to truncation and occlusion, the perception capability under this circumstance is still inferior. To further enhance the intelligence of mobile robots, in this paper, we setup an egocentric multi-sensor data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye), which supports flexible sensor configurations to enable dynamic sight of view from ego-perspective, capturing either near or farther areas. Meanwhile, a large-scale multimodal dataset is constructed, named RoboSense, to facilitate egocentric robot perception. Specifically, RoboSense contains more than 133K synchronized data with 1.4M 3D bounding box and IDs annotated in the full $360^{\circ}$ view, forming 216K trajectories across 7.6K temporal sequences. It has $270\times$ and $18\times$ as many annotations of surrounding obstacles within near ranges as the previous datasets collected for autonomous driving scenarios such as KITTI and nuScenes. Moreover, we define a novel matching criterion for near-field 3D perception and prediction metrics. Based on RoboSense, we formulate 6 popular tasks to facilitate the future research development, where the detailed analysis as well as benchmarks are also provided accordingly. Data desensitization measures have been conducted for privacy protection.
♻ ☆ EgoSurgery-Phase: A Dataset of Surgical Phase Recognition from Egocentric Open Surgery Videos MICCAI 2024
Surgical phase recognition has gained significant attention due to its potential to offer solutions to numerous demands of the modern operating room. However, most existing methods concentrate on minimally invasive surgery (MIS), leaving surgical phase recognition for open surgery understudied. This discrepancy is primarily attributed to the scarcity of publicly available open surgery video datasets for surgical phase recognition. To address this issue, we introduce a new egocentric open surgery video dataset for phase recognition, named EgoSurgery-Phase. This dataset comprises 15 hours of real open surgery videos spanning 9 distinct surgical phases all captured using an egocentric camera attached to the surgeon's head. In addition to video, the EgoSurgery-Phase offers eye gaze. As far as we know, it is the first real open surgery video dataset for surgical phase recognition publicly available. Furthermore, inspired by the notable success of masked autoencoders (MAEs) in video understanding tasks (e.g., action recognition), we propose a gaze-guided masked autoencoder (GGMAE). Considering the regions where surgeons' gaze focuses are often critical for surgical phase recognition (e.g., surgical field), in our GGMAE, the gaze information acts as an empirical semantic richness prior to guiding the masking process, promoting better attention to semantically rich spatial regions. GGMAE significantly improves the previous state-of-the-art recognition method (6.4% in Jaccard) and the masked autoencoder-based method (3.1% in Jaccard) on EgoSurgery-Phase.
comment: Early accepted by MICCAI 2024
♻ ☆ EgoSurgery-Tool: A Dataset of Surgical Tool and Hand Detection from Egocentric Open Surgery Videos
Surgical tool detection is a fundamental task for understanding egocentric open surgery videos. However, detecting surgical tools presents significant challenges due to their highly imbalanced class distribution, similar shapes and similar textures, and heavy occlusion. The lack of a comprehensive large-scale dataset compounds these challenges. In this paper, we introduce EgoSurgery-Tool, an extension of the existing EgoSurgery-Phase dataset, which contains real open surgery videos captured using an egocentric camera attached to the surgeon's head, along with phase annotations. EgoSurgery-Tool has been densely annotated with surgical tools and comprises over 49K surgical tool bounding boxes across 15 categories, constituting a large-scale surgical tool detection dataset. EgoSurgery-Tool also provides annotations for hand detection with over 46K hand-bounding boxes, capturing hand-object interactions that are crucial for understanding activities in egocentric open surgery. EgoSurgery-Tool is superior to existing datasets due to its larger scale, greater variety of surgical tools, more annotations, and denser scenes. We conduct a comprehensive analysis of EgoSurgery-Tool using nine popular object detectors to assess their effectiveness in both surgical tool and hand detection.
♻ ☆ Continual Learning of Large Language Models: A Comprehensive Survey
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.
comment: 44 pages, 2 figures, 4 tables; Work in progress
♻ ☆ Structured Multi-Track Accompaniment Arrangement via Style Prior Modelling NeurIPS 2024
In the realm of music AI, arranging rich and structured multi-track accompaniments from a simple lead sheet presents significant challenges. Such challenges include maintaining track cohesion, ensuring long-term coherence, and optimizing computational efficiency. In this paper, we introduce a novel system that leverages prior modelling over disentangled style factors to address these challenges. Our method presents a two-stage process: initially, a piano arrangement is derived from the lead sheet by retrieving piano texture styles; subsequently, a multi-track orchestration is generated by infusing orchestral function styles into the piano arrangement. Our key design is the use of vector quantization and a unique multi-stream Transformer to model the long-term flow of the orchestration style, which enables flexible, controllable, and structured music generation. Experiments show that by factorizing the arrangement task into interpretable sub-stages, our approach enhances generative capacity while improving efficiency. Additionally, our system supports a variety of music genres and provides style control at different composition hierarchies. We further show that our system achieves superior coherence, structure, and overall arrangement quality compared to existing baselines.
comment: Accepted by NeurIPS 2024; typos addressed
KBAlign: Efficient Self Adaptation on Specific Knowledge Bases
Humans can utilize techniques to quickly acquire knowledge from specific materials in advance, such as creating self-assessment questions, enabling us to achieving related tasks more efficiently. In contrast, large language models (LLMs) usually relies on retrieval-augmented generation to exploit knowledge materials in an instant manner, or requires external signals such as human preference data and stronger LLM annotations to conduct knowledge adaptation. To unleash the self-learning potential of LLMs, we propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases. Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently. Experimental results on multiple datasets demonstrate the effectiveness of our approach, significantly boosting model performance in downstream tasks that require specific knowledge at a low cost. Notably, our approach achieves over 90% of the performance improvement that can be obtained by using GPT-4-turbo annotation, while relying entirely on self-supervision. We release our experimental data, models, and process analyses to the community for further exploration (https://github.com/thunlp/KBAlign).
♻ ☆ FocDepthFormer: Transformer with latent LSTM for Depth Estimation from Focal Stack
Most existing methods for depth estimation from a focal stack of images employ convolutional neural networks (CNNs) using 2D or 3D convolutions over a fixed set of images. However, their effectiveness is constrained by the local properties of CNN kernels, which restricts them to process only focal stacks of fixed number of images during both training and inference. This limitation hampers their ability to generalize to stacks of arbitrary lengths. To overcome these limitations, we present a novel Transformer-based network, FocDepthFormer, which integrates a Transformer with an LSTM module and a CNN decoder. The Transformer's self-attention mechanism allows for the learning of more informative spatial features by implicitly performing non-local cross-referencing. The LSTM module is designed to integrate representations across image stacks of varying lengths. Additionally, we employ multi-scale convolutional kernels in an early-stage encoder to capture low-level features at different degrees of focus/defocus. By incorporating the LSTM, FocDepthFormer can be pre-trained on large-scale monocular RGB depth estimation datasets, improving visual pattern learning and reducing reliance on difficult-to-obtain focal stack data. Extensive experiments on diverse focal stack benchmark datasets demonstrate that our model outperforms state-of-the-art approaches across multiple evaluation metrics.
comment: 30 pages, 20 figures, Conference paper
♻ ☆ Flexible Physical Camouflage Generation Based on a Differential Approach
This study introduces a novel approach to neural rendering, specifically tailored for adversarial camouflage, within an extensive 3D rendering framework. Our method, named FPA, goes beyond traditional techniques by faithfully simulating lighting conditions and material variations, ensuring a nuanced and realistic representation of textures on a 3D target. To achieve this, we employ a generative approach that learns adversarial patterns from a diffusion model. This involves incorporating a specially designed adversarial loss and covert constraint loss to guarantee the adversarial and covert nature of the camouflage in the physical world. Furthermore, we showcase the effectiveness of the proposed camouflage in sticker mode, demonstrating its ability to cover the target without compromising adversarial information. Through empirical and physical experiments, FPA exhibits strong performance in terms of attack success rate and transferability. Additionally, the designed sticker-mode camouflage, coupled with a concealment constraint, adapts to the environment, yielding diverse styles of texture. Our findings highlight the versatility and efficacy of the FPA approach in adversarial camouflage applications.
♻ ☆ Improving Decision Sparsity NeurIPS 2024
Sparsity is a central aspect of interpretability in machine learning. Typically, sparsity is measured in terms of the size of a model globally, such as the number of variables it uses. However, this notion of sparsity is not particularly relevant for decision-making; someone subjected to a decision does not care about variables that do not contribute to the decision. In this work, we dramatically expand a notion of decision sparsity called the Sparse Explanation Value(SEV) so that its explanations are more meaningful. SEV considers movement along a hypercube towards a reference point. By allowing flexibility in that reference and by considering how distances along the hypercube translate to distances in feature space, we can derive sparser and more meaningful explanations for various types of function classes. We present cluster-based SEV and its variant tree-based SEV, introduce a method that improves credibility of explanations, and propose algorithms that optimize decision sparsity in machine learning models.
comment: Accepted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ LeanAgent: Lifelong Learning for Formal Theorem Proving
Large Language Models (LLMs) have been successful in mathematical reasoning tasks such as formal theorem proving when integrated with interactive proof assistants like Lean. Existing approaches involve training or fine-tuning an LLM on a specific dataset to perform well on particular domains, such as undergraduate-level mathematics. These methods struggle with generalizability to advanced mathematics. A fundamental limitation is that these approaches operate on static domains, failing to capture how mathematicians often work across multiple domains and projects simultaneously or cyclically. We present LeanAgent, a novel lifelong learning framework for formal theorem proving that continuously generalizes to and improves on ever-expanding mathematical knowledge without forgetting previously learned knowledge. LeanAgent introduces several key innovations, including a curriculum learning strategy that optimizes the learning trajectory in terms of mathematical difficulty, a dynamic database for efficient management of evolving mathematical knowledge, and progressive training to balance stability and plasticity. LeanAgent successfully proves 155 theorems previously unproved formally by humans across 23 diverse Lean repositories, many from advanced mathematics. It performs significantly better than the static LLM baseline, proving challenging theorems in domains like abstract algebra and algebraic topology while showcasing a clear progression of learning from basic concepts to advanced topics. In addition, we analyze LeanAgent's superior performance on key lifelong learning metrics. LeanAgent achieves exceptional scores in stability and backward transfer, where learning new tasks improves performance on previously learned tasks. This emphasizes LeanAgent's continuous generalizability and improvement, explaining its superior theorem-proving performance.
♻ ☆ Privacy-Preserving Federated Learning with Differentially Private Hyperdimensional Computing
Federated Learning (FL) is essential for efficient data exchange in Internet of Things (IoT) environments, as it trains Machine Learning (ML) models locally and shares only model updates. However, FL is vulnerable to privacy threats like model inversion and membership inference attacks, which can expose sensitive training data. To address these privacy concerns, Differential Privacy (DP) mechanisms are often applied. Yet, adding DP noise to black-box ML models degrades performance, especially in dynamic IoT systems where continuous, lifelong FL learning accumulates excessive noise over time. To mitigate this issue, we introduce Federated HyperDimensional computing with Privacy-preserving (FedHDPrivacy), an eXplainable Artificial Intelligence (XAI) framework that combines the neuro-symbolic paradigm with DP. FedHDPrivacy carefully manages the balance between privacy and performance by theoretically tracking cumulative noise from previous rounds and adding only the necessary incremental noise to meet privacy requirements. In a real-world case study involving in-process monitoring of manufacturing machining operations, FedHDPrivacy demonstrates robust performance, outperforming standard FL frameworks-including Federated Averaging (FedAvg), Federated Stochastic Gradient Descent (FedSGD), Federated Proximal (FedProx), Federated Normalized Averaging (FedNova), and Federated Adam (FedAdam)-by up to 38%. FedHDPrivacy also shows potential for future enhancements, such as multimodal data fusion.
comment: 28 Pages, 10 Figures
♻ ☆ RoDE: Linear Rectified Mixture of Diverse Experts for Food Large Multi-Modal Models
Large Multi-modal Models (LMMs) have significantly advanced a variety of vision-language tasks. The scalability and availability of high-quality training data play a pivotal role in the success of LMMs. In the realm of food, while comprehensive food datasets such as Recipe1M offer an abundance of ingredient and recipe information, they often fall short of providing ample data for nutritional analysis. The Recipe1M+ dataset, despite offering a subset for nutritional evaluation, is limited in the scale and accuracy of nutrition information. To bridge this gap, we introduce Uni-Food, a unified food dataset that comprises over 100,000 images with various food labels, including categories, ingredients, recipes, and ingredient-level nutritional information. Uni-Food is designed to provide a more holistic approach to food data analysis, thereby enhancing the performance and capabilities of LMMs in this domain. To mitigate the conflicts arising from multi-task supervision during fine-tuning of LMMs, we introduce a novel Linear Rectification Mixture of Diverse Experts (RoDE) approach. RoDE utilizes a diverse array of experts to address tasks of varying complexity, thereby facilitating the coordination of trainable parameters, i.e., it allocates more parameters for more complex tasks and, conversely, fewer parameters for simpler tasks. RoDE implements linear rectification union to refine the router's functionality, thereby enhancing the efficiency of sparse task allocation. These design choices endow RoDE with features that ensure GPU memory efficiency and ease of optimization. Our experimental results validate the effectiveness of our proposed approach in addressing the inherent challenges of food-related multitasking.
♻ ☆ Pureformer-VC: Non-parallel One-Shot Voice Conversion with Pure Transformer Blocks and Triplet Discriminative Training
One-shot voice conversion(VC) aims to change the timbre of any source speech to match that of the target speaker with only one speech sample. Existing style transfer-based VC methods relied on speech representation disentanglement and suffered from accurately and independently encoding each speech component and recomposing back to converted speech effectively. To tackle this, we proposed Pureformer-VC, which utilizes Conformer blocks to build a disentangled encoder, and Zipformer blocks to build a style transfer decoder as the generator. In the decoder, we used effective styleformer blocks to integrate speaker characteristics effectively into the generated speech. The models used the generative VAE loss for encoding components and triplet loss for unsupervised discriminative training. We applied the styleformer method to Zipformer's shared weights for style transfer. The experimental results show that the proposed model achieves comparable subjective scores and exhibits improvements in objective metrics compared to existing methods in a one-shot voice conversion scenario.
comment: our paper is rejected
♻ ☆ KernelGPT: Enhanced Kernel Fuzzing via Large Language Models
Bugs in operating system kernels can affect billions of devices and users all over the world. As a result, a large body of research has been focused on kernel fuzzing, i.e., automatically generating syscall (system call) sequences to detect potential kernel bugs or vulnerabilities. Kernel fuzzing aims to generate valid syscall sequences guided by syscall specifications that define both the syntax and semantics of syscalls. While there has been existing work trying to automate syscall specification generation, this remains largely manual work, and a large number of important syscalls are still uncovered. In this paper, we propose KernelGPT, the first approach to automatically synthesizing syscall specifications via Large Language Models (LLMs) for enhanced kernel fuzzing. Our key insight is that LLMs have seen massive kernel code, documentation, and use cases during pre-training, and thus can automatically distill the necessary information for making valid syscalls. More specifically, KernelGPT leverages an iterative approach to automatically infer the specifications, and further debug and repair them based on the validation feedback. Our results demonstrate that KernelGPT can generate more new and valid specifications and achieve higher coverage than state-of-the-art techniques. So far, by using newly generated specifications, KernelGPT has already detected 24 new unique bugs in Linux kernel, with 12 fixed and 11 assigned with CVE numbers. Moreover, a number of specifications generated by KernelGPT have already been merged into the kernel fuzzer Syzkaller, following the request from its development team.
♻ ☆ TLCFuse: Temporal Multi-Modality Fusion Towards Occlusion-Aware Semantic Segmentation-Aided Motion Planning
In autonomous driving, addressing occlusion scenarios is crucial yet challenging. Robust surrounding perception is essential for handling occlusions and aiding motion planning. State-of-the-art models fuse Lidar and Camera data to produce impressive perception results, but detecting occluded objects remains challenging. In this paper, we emphasize the crucial role of temporal cues by integrating them alongside these modalities to address this challenge. We propose a novel approach for bird's eye view semantic grid segmentation, that leverages sequential sensor data to achieve robustness against occlusions. Our model extracts information from the sensor readings using attention operations and aggregates this information into a lower-dimensional latent representation, enabling thus the processing of multi-step inputs at each prediction step. Moreover, we show how it can also be directly applied to forecast the development of traffic scenes and be seamlessly integrated into a motion planner for trajectory planning. On the semantic segmentation tasks, we evaluate our model on the nuScenes dataset and show that it outperforms other baselines, with particularly large differences when evaluating on occluded and partially-occluded vehicles. Additionally, on motion planning task we are among the early teams to train and evaluate on nuPlan, a cutting-edge large-scale dataset for motion planning.
comment: Published on 2024 IEEE Intelligent Vehicles Symposium (IV)
♻ ☆ Object Augmentation Algorithm: Computing virtual object motion and object induced interaction wrench from optical markers IROS 2024
This study addresses the critical need for diverse and comprehensive data focused on human arm joint torques while performing activities of daily living (ADL). Previous studies have often overlooked the influence of objects on joint torques during ADL, resulting in limited datasets for analysis. To address this gap, we propose an Object Augmentation Algorithm (OAA) capable of augmenting existing marker-based databases with virtual object motions and object-induced joint torque estimations. The OAA consists of five phases: (1) computing hand coordinate systems from optical markers, (2) characterising object movements with virtual markers, (3) calculating object motions through inverse kinematics (IK), (4) determining the wrench necessary for prescribed object motion using inverse dynamics (ID), and (5) computing joint torques resulting from object manipulation. The algorithm's accuracy is validated through trajectory tracking and torque analysis on a 5+4 degree of freedom (DoF) robotic hand-arm system, manipulating three unique objects. The results show that the OAA can accurately and precisely estimate 6 DoF object motion and object-induced joint torques. Correlations between computed and measured quantities were > 0.99 for object trajectories and > 0.93 for joint torques. The OAA was further shown to be robust to variations in the number and placement of input markers, which are expected between databases. Differences between repeated experiments were minor but significant (p < 0.05). The algorithm expands the scope of available data and facilitates more comprehensive analyses of human-object interaction dynamics.
comment: An open source implementation of the described algorithm is available at https://github.com/ChristopherHerneth/ObjectAugmentationAlgorithm/tree/main. Accompanying video material may be found here https://youtu.be/8oz-awvyNRA. The article was accepted at IROS 2024
♻ ☆ Optimized Kalman Filter based State Estimation and Height Control in Hopping Robots
Quadrotor-based multimodal hopping and flying locomotion significantly improves efficiency and operation time as compared to purely flying systems. However, effective control necessitates continuous estimation of the vertical states, as thrust (insufficient for flight) in the aerial phase creates non-ballistic behavior. A single hopping continuous state estimator has been shown (Kang 2024), in which two vertical states (position, acceleration) are measured and velocity is estimated through a technique requiring multiple sensors (IMU, lidar, depth camera, contact force sensor), and computationally intensive calculations (12-core, 5 GHz processor), for a maximum hop height of ~0.6 m at 3.65 kg. This poses a significant challenge to the development of light-weight, high-performance, low observable, jamming and electronic interference resistant hopping systems; especially in perceptually degraded environments (e.g., dust, smoke). Here we show a trained Kalman filter based hopping vertical state estimator (HVSE), requiring only vertical acceleration measurements. The training uses hopping data from the robot and a motion capture system to adapt a general framework to the specific system; including high impact behaviors. Our results show the HVSE can estimate more states (position, velocity) with 32% of the mean-absolute-percentage-error in the hop apex height (height error/ground truth) of the next best inertial navigation technique (12.5%), running ~4.2x faster (840 Hz) on a substantially less powerful processor (dual-core 240 MHz) with over ~6.7x the hopping height (4.02 m) at 20% of the mass (672 g). The presented general HVSE, and training procedure make the methodology broadly applicable to other robots.
comment: 15 pages, 7 figures, 6 tables
♻ ☆ DexGANGrasp: Dexterous Generative Adversarial Grasping Synthesis for Task-Oriented Manipulation
We introduce DexGanGrasp, a dexterous grasping synthesis method that generates and evaluates grasps with single view in real time. DexGanGrasp comprises a Conditional Generative Adversarial Networks (cGANs)-based DexGenerator to generate dexterous grasps and a discriminator-like DexEvalautor to assess the stability of these grasps. Extensive simulation and real-world expriments showcases the effectiveness of our proposed method, outperforming the baseline FFHNet with an 18.57% higher success rate in real-world evaluation. We further extend DexGanGrasp to DexAfford-Prompt, an open-vocabulary affordance grounding pipeline for dexterous grasping leveraging Multimodal Large Language Models (MLLMs) and Vision Language Models (VLMs), to achieve task-oriented grasping with successful real-world deployments.
comment: 8 pages, 4 figures
♻ ☆ Grasp, See and Place: Efficient Unknown Object Rearrangement with Policy Structure Prior
We focus on the task of unknown object rearrangement, where a robot is supposed to re-configure the objects into a desired goal configuration specified by an RGB-D image. Recent works explore unknown object rearrangement systems by incorporating learning-based perception modules. However, they are sensitive to perception error, and pay less attention to task-level performance. In this paper, we aim to develop an effective system for unknown object rearrangement amidst perception noise. We theoretically reveal that the noisy perception impacts grasp and place in a decoupled way, and show such a decoupled structure is valuable to improve task optimality. We propose GSP, a dual-loop system with the decoupled structure as prior. For the inner loop, we learn a see policy for self-confident in-hand object matching. For the outer loop, we learn a grasp policy aware of object matching and grasp capability guided by task-level rewards. We leverage the foundation model CLIP for object matching, policy learning and self-termination. A series of experiments indicate that GSP can conduct unknown object rearrangement with higher completion rates and fewer steps.
♻ ☆ Synchronization-Based Cooperative Distributed Model Predictive Control
Distributed control algorithms are known to reduce overall computation time compared to centralized control algorithms. However, they can result in inconsistent solutions leading to the violation of safety-critical constraints. Inconsistent solutions can arise when two or more agents compute concurrently while making predictions on each others control actions. To address this issue, we propose an iterative algorithm called Synchronization-Based Cooperative Distributed Model Predictive Control, which we presented in [1]. The algorithm consists of two steps: 1. computing the optimal control inputs for each agent and 2. synchronizing the predicted states across all agents. We demonstrate the efficacy of our algorithm in the control of multiple small-scale vehicles in our Cyber-Physical Mobility Lab.
comment: This work was submitted to the Symposium on Systems Theory in Data and Optimization as an extended abstract
♻ ☆ CafkNet: GNN-Empowered Forward Kinematic Modeling for Cable-Driven Parallel Robots
Cable-driven parallel robots (CDPRs) have gained significant attention due to their promising advantages. When deploying CDPRs in practice, the kinematic modeling is a key question. Unlike serial robots, CDPRs have a simple inverse kinematics problem but a complex forward kinematics (FK) issue. So, the development of accurate and efficient FK solvers has been a prominent research focus in CDPR applications. By observing the topology within CDPRs, in this paper, we propose a graph-based representation to model CDPRs and introduce CafkNet, a fast and general FK solving method, leveraging Graph Neural Network (GNN) to learn the topological structure and yield the real FK solutions with superior generality, high accuracy, and low time cost. CafkNet is extensively tested on 3D and 2D CDPRs in different configurations, both in simulators and real scenarios. The results demonstrate its ability to learn CDPRs' internal topology and accurately solve the FK problem. Then, the zero-shot generalization from one configuration to another is validated. Also, the sim2real gap can be bridged by CafkNet using both simulation and real-world data. To the best of our knowledge, it is the first study that employs the GNN to solve the FK problem for CDPRs.
comment: The 2024 IEEE International Conference on Robotics and Biomimetics (IEEE ROBIO 2024). Bangkok, Thailand, December 10-14 2024. Videos and codes are available at https://sites.google.com/view/cafknet/site
♻ ☆ DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving
Current end-to-end autonomous driving methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized in a planning-oriented spirit with a fully differentiable framework, existing end-to-end driving systems without ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, owing to the rasterized scene representation learning and redundant information transmission. In this paper, we revisit the human driving behavior and propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving. Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection, tracking and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. Besides, both position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thus facilitating the training stability and convergence of the whole framework. Extensive experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
♻ ☆ JESTR: Joint Embedding Space Technique for Ranking Candidate Molecules for the Annotation of Untargeted Metabolomics Data
Motivation: A major challenge in metabolomics is annotation: assigning molecular structures to mass spectral fragmentation patterns. Despite recent advances in molecule-to-spectra and in spectra-to-molecular fingerprint prediction (FP), annotation rates remain low. Results: We introduce in this paper a novel paradigm (JESTR) for annotation. Unlike prior approaches that explicitly construct molecular fingerprints or spectra, JESTR leverages the insight that molecules and their corresponding spectra are views of the same data and effectively embeds their representations in a joint space. Candidate structures are ranked based on cosine similarity between the embeddings of query spectrum and each candidate. We evaluate JESTR against mol-to-spec and spec-to-FP annotation tools on three datasets. On average, for rank@[1-5], JESTR outperforms other tools by 23.6%-71.6%. We further demonstrate the strong value of regularization with candidate molecules during training, boosting rank@1 performance by 11.4% and enhancing the model's ability to discern between target and candidate molecules. Through JESTR, we offer a novel promising avenue towards accurate annotation, therefore unlocking valuable insights into the metabolome.
comment: 10 pages, 10 figures, 4 tables
♻ ☆ LIA: Privacy-Preserving Data Quality Evaluation in Federated Learning Using a Lazy Influence Approximation IJCAI
In Federated Learning, it is crucial to handle low-quality, corrupted, or malicious data. However, traditional data valuation methods are not suitable due to privacy concerns. To address this, we propose a simple yet effective approach that utilizes a new influence approximation called "lazy influence" to filter and score data while preserving privacy. To do this, each participant uses their own data to estimate the influence of another participant's batch and sends a differentially private obfuscated score to the central coordinator. Our method has been shown to successfully filter out biased and corrupted data in various simulated and real-world settings, achieving a recall rate of over $>90\%$ (sometimes up to $100\%$) while maintaining strong differential privacy guarantees with $\varepsilon \leq 1$.
comment: Proceedings of the 2024 IEEE International Conference on Big Data (IEEE BigData 2024). A preliminary version of this work received the Best Paper Award at the International Workshop on Trustworthy Federated Learning at IJCAI (FL-IJCAI) 2023
♻ ☆ Complementarity in Human-AI Collaboration: Concept, Sources, and Evidence
Artificial intelligence (AI) has the potential to significantly enhance human performance across various domains. Ideally, collaboration between humans and AI should result in complementary team performance (CTP) -- a level of performance that neither of them can attain individually. So far, however, CTP has rarely been observed, suggesting an insufficient understanding of the principle and the application of complementarity. Therefore, we develop a general concept of complementarity and formalize its theoretical potential as well as the actual realized effect in decision-making situations. Moreover, we identify information and capability asymmetry as the two key sources of complementarity. Finally, we illustrate the impact of each source on complementarity potential and effect in two empirical studies. Our work provides researchers with a comprehensive theoretical foundation of human-AI complementarity in decision-making and demonstrates that leveraging these sources constitutes a viable pathway towards designing effective human-AI collaboration, i.e., the realization of CTP.
♻ ☆ Exploring QUIC Dynamics: A Large-Scale Dataset for Encrypted Traffic Analysis
QUIC, an increasingly adopted transport protocol, addresses limitations of TCP by offering improved security, performance, and features such as stream multiplexing and connection migration. However, these enhancements also introduce challenges for network operators in monitoring and analyzing web traffic, especially due to QUIC's encryption. Existing datasets are inadequate they are often outdated, lack diversity, anonymize critical information, or exclude essential features like SSL keys-limiting comprehensive research and development in this area. We introduce VisQUIC, a publicly available dataset of over 100,000 labeled QUIC traces with corresponding SSL keys, collected from more than 40,000 websites over four months. By generating visual representations of the traces, we facilitate advanced machine learning (ML) applications and in-depth analysis of encrypted QUIC traffic. To demonstrate the dataset's potential, we estimate the number of HTTP3 request-response pairs in a QUIC connection using only encrypted traffic, achieving up to 92% accuracy. This estimation provides insights into server behavior, client-server interactions, and connection load-crucial for tasks like load balancing and intrusion detection. Our dataset enables comprehensive studies on QUIC and HTTP/3 protocols and supports the development of tools for encrypted traffic analysis.
comment: The dataset and the supplementary material can be provided upon request
♻ ☆ Maximizing Relation Extraction Potential: A Data-Centric Study to Unveil Challenges and Opportunities
Relation extraction is a Natural Language Processing task that aims to extract relationships from textual data. It is a critical step for information extraction. Due to its wide-scale applicability, research in relation extraction has rapidly scaled to using highly advanced neural networks. Despite their computational superiority, modern relation extractors fail to handle complicated extraction scenarios. However, a comprehensive performance analysis of the state-of-the-art extractors that compile these challenges has been missing from the literature, and this paper aims to bridge this gap. The goal has been to investigate the possible data-centric characteristics that impede neural relation extraction. Based on extensive experiments conducted using 15 state-of-the-art relation extraction algorithms ranging from recurrent architectures to large language models and seven large-scale datasets, this research suggests that modern relation extractors are not robust to complex data and relation characteristics. It emphasizes pivotal issues, such as contextual ambiguity, correlating relations, long-tail data, and fine-grained relation distributions. In addition, it sets a marker for future directions to alleviate these issues, thereby proving to be a critical resource for novice and advanced researchers. Efficient handling of the challenges described can have significant implications for the field of information extraction, which is a critical part of popular systems such as search engines and chatbots. Data and relevant code can be found at \url{https://aaig.ece.ufl.edu/projects/relation-extraction}.
comment: This work has been published to the IEEE Access (2024)
♻ ☆ UniTS: A Unified Multi-Task Time Series Model NeurIPS 2024
Although pre-trained transformers and reprogrammed text-based LLMs have shown strong performance on time series tasks, the best-performing architectures vary widely across tasks, with most models narrowly focused on specific areas, such as time series forecasting. Unifying predictive and generative time series tasks within a single model remains challenging. We introduce UniTS, a unified multi-task time series model that utilizes task tokenization to integrate predictive and generative tasks into a single framework. UniTS employs a modified transformer block to capture universal time series representations, enabling transferability from a heterogeneous, multi-domain pre-training dataset-characterized by diverse dynamic patterns, sampling rates, and temporal scales-to a wide range of downstream datasets with varied task specifications and data domains. Tested on 38 datasets across human activity sensors, healthcare, engineering, and finance, UniTS achieves superior performance compared to 12 forecasting models, 20 classification models, 18 anomaly detection models, and 16 imputation models, including adapted text-based LLMs. UniTS also demonstrates strong few-shot and prompt capabilities when applied to new domains and tasks. In single-task settings, UniTS outperforms competitive task-specialized time series models. Code and datasets are available at https://github.com/mims-harvard/UniTS.
comment: NeurIPS 2024
♻ ☆ CHESS: Contextual Harnessing for Efficient SQL Synthesis
Translating natural language questions into SQL queries, known as text-to-SQL, is a long-standing research problem. Effective text-to-SQL synthesis can become very challenging due to (i) the extensive size of database catalogs (descriptions of tables and their columns) and database values, (ii) reasoning over large database schemas, (iii) ensuring the functional validity of the generated queries, and (iv) navigating the ambiguities of natural language questions. We introduce CHESS, a Large Language Model (LLM) based multi-agent framework for efficient and scalable SQL synthesis, comprising four specialized agents, each targeting one of the aforementioned challenges: the Information Retriever (IR) extracts relevant data, the Schema Selector (SS) prunes large schemas, the Candidate Generator (CG) generates high-quality candidates and refines queries iteratively, and the Unit Tester (UT) validates queries through LLM-based natural language unit tests. Our framework offers configurable features that adapt to various deployment constraints, including 1) Supporting industrial-scale databases: leveraging the Schema Selector agent, CHESS efficiently narrows down very large database schemas into manageable sub-schemas, boosting system accuracy by approximately $2\%$ and reducing the number of LLM tokens by $\times 5$. 2) State-of-the-Art privacy-preserving performance: Among the methods using open-source models, CHESS achieves state-of-the-art performance, resulting in a high-performing, privacy-preserving system suitable for industrial deployment. 3) Scalablity with additional compute budget: In settings with high computational budgets, CHESS achieves $71.10\%$ accuracy on the BIRD test set, within $2\%$ of the leading proprietary method, while requiring approximately $83\%$ fewer LLM calls.
♻ ☆ Just-in-Time Detection of Silent Security Patches
Open-source code is pervasive. In this setting, embedded vulnerabilities are spreading to downstream software at an alarming rate. While such vulnerabilities are generally identified and addressed rapidly, inconsistent maintenance policies may lead security patches to go unnoticed. Indeed, security patches can be {\em silent}, i.e., they do not always come with comprehensive advisories such as CVEs. This lack of transparency leaves users oblivious to available security updates, providing ample opportunity for attackers to exploit unpatched vulnerabilities. Consequently, identifying silent security patches just in time when they are released is essential for preventing n-day attacks, and for ensuring robust and secure maintenance practices. With LLMDA we propose to (1) leverage large language models (LLMs) to augment patch information with generated code change explanations, (2) design a representation learning approach that explores code-text alignment methodologies for feature combination, (3) implement a label-wise training with labelled instructions for guiding the embedding based on security relevance, and (4) rely on a probabilistic batch contrastive learning mechanism for building a high-precision identifier of security patches. We evaluate LLMDA on the PatchDB and SPI-DB literature datasets and show that our approach substantially improves over the state-of-the-art, notably GraphSPD by 20% in terms of F-Measure on the SPI-DB benchmark.
♻ ☆ Towards Clean-Label Backdoor Attacks in the Physical World
Deep Neural Networks (DNNs) are shown to be vulnerable to backdoor poisoning attacks, with most research focusing on \textbf{digital triggers} -- special patterns added to test-time inputs to induce targeted misclassification. \textbf{Physical triggers}, natural objects within a physical scene, have emerged as a desirable alternative since they enable real-time backdoor activations without digital manipulation. However, current physical backdoor attacks require poisoned inputs to have incorrect labels, making them easily detectable by human inspection. In this paper, we explore a new paradigm of attacks, \textbf{clean-label physical backdoor attacks (CLPBA)}, via experiments on facial recognition and animal classification tasks. Our study reveals that CLPBA could be a serious threat with the right poisoning algorithm and physical trigger. A key finding is that different from digital backdoor attacks which exploit memorization to plant backdoors in deep nets, CLPBA works by embedding the feature of the trigger distribution (i.e., the distribution of trigger samples) to the poisoned images through the perturbations. We also find that representative defenses cannot defend against CLPBA easily since CLPBA fundamentally breaks the core assumptions behind these defenses. Our study highlights accidental backdoor activations as a limitation of CLPBA, happening when unintended objects or classes cause the model to misclassify as the target class. The code and dataset can be found at https://github.com/21thinh/Clean-Label-Physical-Backdoor-Attacks.
comment: 21 pages, 17 figures, 16 tables
♻ ☆ Exploring the Stability Gap in Continual Learning: The Role of the Classification Head WACV 2025
Continual learning (CL) has emerged as a critical area in machine learning, enabling neural networks to learn from evolving data distributions while mitigating catastrophic forgetting. However, recent research has identified the stability gap -- a phenomenon where models initially lose performance on previously learned tasks before partially recovering during training. Such learning dynamics are contradictory to the intuitive understanding of stability in continual learning where one would expect the performance to degrade gradually instead of rapidly decreasing and then partially recovering later. To better understand and alleviate the stability gap, we investigate it at different levels of the neural network architecture, particularly focusing on the role of the classification head. We introduce the nearest-mean classifier (NMC) as a tool to attribute the influence of the backbone and the classification head on the stability gap. Our experiments demonstrate that NMC not only improves final performance, but also significantly enhances training stability across various continual learning benchmarks, including CIFAR100, ImageNet100, CUB-200, and FGVC Aircrafts. Moreover, we find that NMC also reduces task-recency bias. Our analysis provides new insights into the stability gap and suggests that the primary contributor to this phenomenon is the linear head, rather than the insufficient representation learning.
comment: Accepted at WACV 2025
♻ ☆ VitaGlyph: Vitalizing Artistic Typography with Flexible Dual-branch Diffusion Models
Artistic typography is a technique to visualize the meaning of input character in an imaginable and readable manner. With powerful text-to-image diffusion models, existing methods directly design the overall geometry and texture of input character, making it challenging to ensure both creativity and legibility. In this paper, we introduce a dual-branch and training-free method, namely VitaGlyph, enabling flexible artistic typography along with controllable geometry change to maintain the readability. The key insight of VitaGlyph is to treat input character as a scene composed of Subject and Surrounding, followed by rendering them under varying degrees of geometry transformation. The subject flexibly expresses the essential concept of input character, while the surrounding enriches relevant background without altering the shape. Specifically, we implement VitaGlyph through a three-phase framework: (i) Knowledge Acquisition leverages large language models to design text descriptions of subject and surrounding. (ii) Regional decomposition detects the part that most matches the subject description and divides input glyph image into subject and surrounding regions. (iii) Typography Stylization firstly refines the structure of subject region via Semantic Typography, and then separately renders the textures of Subject and Surrounding regions through Controllable Compositional Generation. Experimental results demonstrate that VitaGlyph not only achieves better artistry and readability, but also manages to depict multiple customize concepts, facilitating more creative and pleasing artistic typography generation. Our code will be made publicly at https://github.com/Carlofkl/VitaGlyph.
comment: https://github.com/Carlofkl/VitaGlyph
♻ ☆ Safety Filtering While Training: Improving the Performance and Sample Efficiency of Reinforcement Learning Agents
Reinforcement learning (RL) controllers are flexible and performant but rarely guarantee safety. Safety filters impart hard safety guarantees to RL controllers while maintaining flexibility. However, safety filters can cause undesired behaviours due to the separation between the controller and the safety filter, often degrading performance and robustness. In this paper, we analyze several modifications to incorporating the safety filter in training RL controllers rather than solely applying it during evaluation. The modifications allow the RL controller to learn to account for the safety filter, improving performance. This paper presents a comprehensive analysis of training RL with safety filters, featuring simulated and real-world experiments with a Crazyflie 2.0 drone. We examine how various training modifications and hyperparameters impact performance, sample efficiency, safety, and chattering. Our findings serve as a guide for practitioners and researchers focused on safety filters and safe RL.
comment: 8 pages, 9 figures. Code is publicly available at https://github.com/Federico-PizarroBejarano/safe-control-gym/tree/training_rl_paper
♻ ☆ Mixed Strategy Nash Equilibrium for Crowd Navigation
Robots navigating in crowded areas should negotiate free space with humans rather than fully controlling collision avoidance, as this can lead to freezing behavior. Game theory provides a framework for the robot to reason about potential cooperation from humans for collision avoidance during path planning. In particular, the mixed strategy Nash equilibrium captures the negotiation behavior under uncertainty, making it well suited for crowd navigation. However, computing the mixed strategy Nash equilibrium is often prohibitively expensive for real-time decision-making. In this paper, we propose an iterative Bayesian update scheme over probability distributions of trajectories. The algorithm simultaneously generates a stochastic plan for the robot and probabilistic predictions of other pedestrians' paths. We prove that the proposed algorithm is equivalent to solving a mixed strategy game for crowd navigation, and the algorithm guarantees the recovery of the global Nash equilibrium of the game. We name our algorithm Bayesian Recursive Nash Equilibrium (BRNE) and develop a real-time model prediction crowd navigation framework. Since BRNE is not solving a general-purpose mixed strategy Nash equilibrium but a tailored formula specifically for crowd navigation, it can compute the solution in real-time on a low-power embedded computer. We evaluate BRNE in both simulated environments and real-world pedestrian datasets. BRNE consistently outperforms non-learning and learning-based methods regarding safety and navigation efficiency. It also reaches human-level crowd navigation performance in the pedestrian dataset benchmark. Lastly, we demonstrate the practicality of our algorithm with real humans on an untethered quadruped robot with fully onboard perception and computation.
comment: Accepted to The International Journal of Robotics Research (IJRR)
♻ ☆ VLM-Social-Nav: Socially Aware Robot Navigation through Scoring using Vision-Language Models
We propose VLM-Social-Nav, a novel Vision-Language Model (VLM) based navigation approach to compute a robot's motion in human-centered environments. Our goal is to make real-time decisions on robot actions that are socially compliant with human expectations. We utilize a perception model to detect important social entities and prompt a VLM to generate guidance for socially compliant robot behavior. VLM-Social-Nav uses a VLM-based scoring module that computes a cost term that ensures socially appropriate and effective robot actions generated by the underlying planner. Our overall approach reduces reliance on large training datasets and enhances adaptability in decision-making. In practice, it results in improved socially compliant navigation in human-shared environments. We demonstrate and evaluate our system in four different real-world social navigation scenarios with a Turtlebot robot. We observe at least 27.38% improvement in the average success rate and 19.05% improvement in the average collision rate in the four social navigation scenarios. Our user study score shows that VLM-Social-Nav generates the most socially compliant navigation behavior.
Computation and Language 44
☆ Exploring Performance Contrasts in TableQA: Step-by-Step Reasoning Boosts Bigger Language Models, Limits Smaller Language Models
This paper proposes a detailed prompting flow, termed Table-Logic, to investigate the performance contrasts between bigger and smaller language models (LMs) utilizing step-by-step reasoning methods in the TableQA task. The method processes tasks by sequentially identifying critical columns and rows given question and table with its structure, determining necessary aggregations, calculations, or comparisons, and finally inferring the results to generate a precise prediction. By deploying this method, we observe a 7.8% accuracy improvement in bigger LMs like Llama-3-70B compared to the vanilla on HybridQA, while smaller LMs like Llama-2-7B shows an 11% performance decline. We empirically investigate the potential causes of performance contrasts by exploring the capabilities of bigger and smaller LMs from various dimensions in TableQA task. Our findings highlight the limitations of the step-by-step reasoning method in small models and provide potential insights for making improvements.
☆ Multi-ToM: Evaluating Multilingual Theory of Mind Capabilities in Large Language Models
Theory of Mind (ToM) refers to the cognitive ability to infer and attribute mental states to oneself and others. As large language models (LLMs) are increasingly evaluated for social and cognitive capabilities, it remains unclear to what extent these models demonstrate ToM across diverse languages and cultural contexts. In this paper, we introduce a comprehensive study of multilingual ToM capabilities aimed at addressing this gap. Our approach includes two key components: (1) We translate existing ToM datasets into multiple languages, effectively creating a multilingual ToM dataset and (2) We enrich these translations with culturally specific elements to reflect the social and cognitive scenarios relevant to diverse populations. We conduct extensive evaluations of six state-of-the-art LLMs to measure their ToM performance across both the translated and culturally adapted datasets. The results highlight the influence of linguistic and cultural diversity on the models' ability to exhibit ToM, and questions their social reasoning capabilities. This work lays the groundwork for future research into enhancing LLMs' cross-cultural social cognition and contributes to the development of more culturally aware and socially intelligent AI systems. All our data and code are publicly available.
☆ Investigating Factuality in Long-Form Text Generation: The Roles of Self-Known and Self-Unknown
Large language models (LLMs) have demonstrated strong capabilities in text understanding and generation. However, they often lack factuality, producing a mixture of true and false information, especially in long-form generation. In this work, we investigates the factuality of long-form text generation across various large language models (LLMs), including GPT-4, Gemini-1.5-Pro, Claude-3-Opus, Llama-3-70B, and Mistral. Our analysis reveals that factuality scores tend to decline in later sentences of the generated text, accompanied by a rise in the number of unsupported claims. Furthermore, we explore the effectiveness of different evaluation settings to assess whether LLMs can accurately judge the correctness of their own outputs: Self-Known (the percentage of supported atomic claims, decomposed from LLM outputs, that the corresponding LLMs judge as correct) and Self-Unknown (the percentage of unsupported atomic claims that the corresponding LLMs judge as incorrect). The results indicate that even advanced models like GPT-4 and Gemini-1.5-Pro fail to achieve perfect Self-Known scores, while their Self-Unknown scores remain notably above zero, reflecting ongoing uncertainty in their self-assessments. Moreover, we find a correlation between higher Self-Known scores and improved factuality, while higher Self-Unknown scores are associated with lower factuality. Interestingly, even without significant changes in the models' self-judgment (Self-Known and Self-Unknown), the number of unsupported claims can increases, likely as an artifact of long-form generation. These findings show the limitations of current LLMs in long-form generation, and provide valuable insights for improving factuality in long-form text generation.
☆ Kleene algebra with commutativity conditions is undecidable
We prove that the equational theory of Kleene algebra with commutativity conditions on primitives (or atomic terms) is undecidable, thereby settling a longstanding open question in the theory of Kleene algebra. While this question has also been recently solved independently by Kuznetsov, our results hold even for weaker theories that do not support the induction axioms of Kleene algebra.
comment: Published at CSL 2025
☆ Generative Context Distillation
Prompts used in recent large language model based applications are often fixed and lengthy, leading to significant computational overhead. To address this challenge, we propose Generative Context Distillation (GCD), a lightweight prompt internalization method that employs a joint training approach. This method not only replicates the behavior of models with prompt inputs but also generates the content of the prompt along with reasons for why the model's behavior should change accordingly. We demonstrate that our approach effectively internalizes complex prompts across various agent-based application scenarios. For effective training without interactions with the dedicated environments, we introduce a data synthesis technique that autonomously collects conversational datasets by swapping the roles of the agent and environment. This method is especially useful in scenarios where only a predefined prompt is available without a corresponding training dataset. By internalizing complex prompts, Generative Context Distillation enables high-performance and efficient inference without the need for explicit prompts.
☆ Evaluating Large Language Models for Causal Modeling
In this paper, we consider the process of transforming causal domain knowledge into a representation that aligns more closely with guidelines from causal data science. To this end, we introduce two novel tasks related to distilling causal domain knowledge into causal variables and detecting interaction entities using LLMs. We have determined that contemporary LLMs are helpful tools for conducting causal modeling tasks in collaboration with human experts, as they can provide a wider perspective. Specifically, LLMs, such as GPT-4-turbo and Llama3-70b, perform better in distilling causal domain knowledge into causal variables compared to sparse expert models, such as Mixtral-8x22b. On the contrary, sparse expert models such as Mixtral-8x22b stand out as the most effective in identifying interaction entities. Finally, we highlight the dependency between the domain where the entities are generated and the performance of the chosen LLM for causal modeling.
comment: 13 pages, 6 figutrd, 4 tabels
LLMs Do Not Think Step-by-step In Implicit Reasoning
It has been well-known that Chain-of-Thought can remarkably enhance LLMs' performance on complex tasks. However, because it also introduces slower inference speeds and higher computational costs, many researches have attempted to use implicit CoT, which does not need LLMs to explicitly generate the intermediate steps. But there is still gap between their efficacy and typical explicit CoT methods. This leaves us a doubt that, does implicit CoT really equal to explicit CoT? Therefore, in this study, we address this question through experiments. We probe the information of intermediate steps from the model's hidden states when it is performing implicit CoT. The results surprisingly indicate that LLMs hardly think about intermediate steps, suggesting they may just rely on experience rather than strict step-by-step reasoning. Moreover, we find LLMs' implicit reasoning capabilities are susceptible and unstable, reaffirming the necessity of explicit CoT to effectively support complex tasks.
☆ Is Training Data Quality or Quantity More Impactful to Small Language Model Performance?
This study investigates the relative impact of training data quality versus quantity on the performance of small language models (SLMs), utilizing the TinyStories dataset for empirical analysis. Analysis of dataset variations with respect to size (25% and 50% of the original size) and duplication (controlled rates of 25%, 50%, 75%, and 100%) were performed. Model performance was evaluated based on the validation loss, accuracy, and perplexity metrics. Results indicate training data quality plays a more significant role in the overall performance of SLMs, especially given scale of this experiment. Minimal duplication positively impacted model accuracy (+0.87% increase in accuracy at 25% duplication) without significantly increasing perplexity (+0.52% increase going from 0% to 25% duplication) but excessive duplication led to pronounced performance degradation (-40% drop in accuracy at 100% duplication). The implications of this exploration extend beyond just model performance; training large-scale models imposes significant financial and computational burdens, which can be prohibitive for organizations, individuals, and the public at large, especially in developing countries. Additionally, the energy consumption associated with large-scale training raises environmental concerns. Understanding the relative importance of data quality versus quantity could democratize AI technology, making advanced models more accessible and sustainable for all.
comment: 10 pages, 4 figures
☆ LoRA-Mini : Adaptation Matrices Decomposition and Selective Training
The rapid advancements in large language models (LLMs) have revolutionized natural language processing, creating an increased need for efficient, task-specific fine-tuning methods. Traditional fine-tuning of LLMs involves updating a large number of parameters, which is computationally expensive and memory-intensive. Low-Rank Adaptation (LoRA) has emerged as a promising solution, enabling parameter-efficient fine-tuning by reducing the number of trainable parameters. However, while LoRA reduces the number of trainable parameters, LoRA modules still create significant storage challenges. We propose LoRA-Mini, an optimized adaptation of LoRA that improves parameter efficiency by splitting low-rank matrices into four parts, with only the two inner matrices being trainable. This approach achieves upto a 20x reduction compared to standard LoRA in the number of trainable parameters while preserving performance levels comparable to standard LoRA, addressing both computational and storage efficiency in LLM fine-tuning.
comment: 11 pages
☆ A Method for Building Large Language Models with Predefined KV Cache Capacity
This paper proposes a method for building large language models with predefined Key-Value (KV) cache capacity, particularly suitable for the attention layers in Transformer decode-only architectures. This method introduces fixed-length KV caches to address the issue of excessive memory consumption in traditional KV caches when handling infinite contexts. By dynamically updating the key-value vector sequences, it achieves efficient inference within limited cache capacity, significantly reducing memory usage while maintaining model performance and system throughput. Experimental results show that this method significantly reduces memory usage while maintaining the model's inference quality.
☆ Detecting Turkish Synonyms Used in Different Time Periods
Dynamic structure of languages poses significant challenges in applying natural language processing models on historical texts, causing decreased performance in various downstream tasks. Turkish is a prominent example of rapid linguistic transformation due to the language reform in the 20th century. In this paper, we propose two methods for detecting synonyms used in different time periods, focusing on Turkish. In our first method, we use Orthogonal Procrustes method to align the embedding spaces created using documents written in the corresponding time periods. In our second method, we extend the first one by incorporating Spearman's correlation between frequencies of words throughout the years. In our experiments, we show that our proposed methods outperform the baseline method. Furthermore, we observe that the efficacy of our methods remains consistent when the target time period shifts from the 1960s to the 1980s. However, their performance slightly decreases for subsequent time periods.
comment: published at Innovations in Intelligent Systems and Applications Conference (Ak{\i}ll{\i} Sistemlerde Yenilikler ve Uygulamalar{\i} Konferans{\i} - ASYU) 2024
☆ TableTime: Reformulating Time Series Classification as Zero-Shot Table Understanding via Large Language Models
Large language models (LLMs) have demonstrated their effectiveness in multivariate time series classification (MTSC). Effective adaptation of LLMs for MTSC necessitates informative data representations. Existing LLM-based methods directly encode embeddings for time series within the latent space of LLMs from scratch to align with semantic space of LLMs. Despite their effectiveness, we reveal that these methods conceal three inherent bottlenecks: (1) they struggle to encode temporal and channel-specific information in a lossless manner, both of which are critical components of multivariate time series; (2) it is much difficult to align the learned representation space with the semantic space of the LLMs; (3) they require task-specific retraining, which is both computationally expensive and labor-intensive. To bridge these gaps, we propose TableTime, which reformulates MTSC as a table understanding task. Specifically, TableTime introduces the following strategies: (1) convert multivariate time series into a tabular form, thus minimizing information loss to the greatest extent; (2) represent tabular time series in text format to achieve natural alignment with the semantic space of LLMs; (3) design a reasoning framework that integrates contextual text information, neighborhood assistance, multi-path inference and problem decomposition to enhance the reasoning ability of LLMs and realize zero-shot classification. Extensive experiments performed on 10 publicly representative datasets from UEA archive verify the superiorities of the TableTime.
☆ Development of Pre-Trained Transformer-based Models for the Nepali Language
Transformer-based pre-trained language models have dominated the field of Natural Language Processing (NLP) for quite some time now. However, the Nepali language, spoken by approximately 32 million people worldwide, remains significantly underrepresented in this domain. This underrepresentation is primarily attributed to the scarcity of monolingual data corpora and limited available resources for the Nepali language. While existing efforts have predominantly concentrated on basic encoder-based models, there is a notable gap in the exploration of decoder-based architectures. To address this gap, we have collected 27.5 GB of Nepali text data, approximately 2.4x larger than any previously available Nepali language corpus. Leveraging this data, we pre-trained three different models i.e., BERT, RoBERTa, and GPT-2, exclusively for the Nepali Language. Furthermore, we performed instruction tuning and explored its potential for monolingual Nepali data, providing a foundation for future research. Our models outperformed the existing best model by 2 points on Nep-gLUE benchmark, scoring 95.60 and also outperformed existing models on text generation tasks, demonstrating improvements in both understanding and generating Nepali text.
☆ LLaMA-MoE v2: Exploring Sparsity of LLaMA from Perspective of Mixture-of-Experts with Post-Training
Recently, inspired by the concept of sparsity, Mixture-of-Experts (MoE) models have gained increasing popularity for scaling model size while keeping the number of activated parameters constant. In this study, we thoroughly investigate the sparsity of the dense LLaMA model by constructing MoE for both the attention (i.e., Attention MoE) and MLP (i.e., MLP MoE) modules in the transformer blocks. Specifically, we investigate different expert construction methods and granularities under the same activation conditions to analyze the impact of sparsifying the model. Additionally, to comprehensively evaluate the model's capabilities across various domains (e.g., conversation, code, math) after sparsification, we apply sparsity to the instructed large language models (LLMs) and construct instructed MoE models. To counteract the performance degradation resulting from increased sparsity, we design a two-stage post-training strategy to enhance model performance. Experiments on the LLaMA3 model demonstrate the potential effectiveness of this approach for future developments of instructed MoE models. The source codes and models are available at: \url{https://github.com/OpenSparseLLMs/LLaMA-MoE-v2}.
comment: Technical report,13 pages
☆ RAMIE: Retrieval-Augmented Multi-task Information Extraction with Large Language Models on Dietary Supplements
\textbf{Objective:} We aimed to develop an advanced multi-task large language model (LLM) framework to extract multiple types of information about dietary supplements (DS) from clinical records. \textbf{Methods:} We used four core DS information extraction tasks - namely, named entity recognition (NER: 2,949 clinical sentences), relation extraction (RE: 4,892 sentences), triple extraction (TE: 2,949 sentences), and usage classification (UC: 2,460 sentences) as our multitasks. We introduced a novel Retrieval-Augmented Multi-task Information Extraction (RAMIE) Framework, including: 1) employed instruction fine-tuning techniques with task-specific prompts, 2) trained LLMs for multiple tasks with improved storage efficiency and lower training costs, and 3) incorporated retrieval augmentation generation (RAG) techniques by retrieving similar examples from the training set. We compared RAMIE's performance to LLMs with instruction fine-tuning alone and conducted an ablation study to assess the contributions of multi-task learning and RAG to improved multitasking performance. \textbf{Results:} With the aid of the RAMIE framework, Llama2-13B achieved an F1 score of 87.39 (3.51\% improvement) on the NER task and demonstrated outstanding performance on the RE task with an F1 score of 93.74 (1.15\% improvement). For the TE task, Llama2-7B scored 79.45 (14.26\% improvement), and MedAlpaca-7B achieved the highest F1 score of 93.45 (0.94\% improvement) on the UC task. The ablation study revealed that while MTL increased efficiency with a slight trade-off in performance, RAG significantly boosted overall accuracy. \textbf{Conclusion:} This study presents a novel RAMIE framework that demonstrates substantial improvements in multi-task information extraction for DS-related data from clinical records. Our framework can potentially be applied to other domains.
☆ Deep Sparse Latent Feature Models for Knowledge Graph Completion
Recent progress in knowledge graph completion (KGC) has focused on text-based approaches to address the challenges of large-scale knowledge graphs (KGs). Despite their achievements, these methods often overlook the intricate interconnections between entities, a key aspect of the underlying topological structure of a KG. Stochastic blockmodels (SBMs), particularly the latent feature relational model (LFRM), offer robust probabilistic frameworks that can dynamically capture latent community structures and enhance link prediction. In this paper, we introduce a novel framework of sparse latent feature models for KGC, optimized through a deep variational autoencoder (VAE). Our approach not only effectively completes missing triples but also provides clear interpretability of the latent structures, leveraging textual information. Comprehensive experiments on the WN18RR, FB15k-237, and Wikidata5M datasets show that our method significantly improves performance by revealing latent communities and producing interpretable representations.
☆ PriorDiffusion: Leverage Language Prior in Diffusion Models for Monocular Depth Estimation
This paper explores the potential of leveraging language priors learned by text-to-image diffusion models to address ambiguity and visual nuisance in monocular depth estimation. Particularly, traditional monocular depth estimation suffers from inherent ambiguity due to the absence of stereo or multi-view depth cues, and nuisance due to lack of robustness of vision. We argue that language prior in diffusion models can enhance monocular depth estimation by leveraging the geometric prior aligned with the language description, which is learned during text-to-image pre-training. To generate images that reflect the text properly, the model must comprehend the size and shape of specified objects, their spatial relationship, and the scale of the scene. Thus, we propose PriorDiffusion, using a pre-trained text-to-image diffusion model that takes both image and text description that aligned with the scene to infer affine-invariant depth through a denoising process. We also show that language priors can guide the model's attention to specific regions and help it perceive the 3D scene in alignment with user intent. Simultaneously, it acts as a constraint to accelerate the convergence of the diffusion trajectory, since learning 3D properties from a condensed, low-dimensional language feature is more efficient compared with learning from a redundant, high-dimensional image feature. By training on HyperSim and Virtual KITTI, we achieve state-of-the-art zero-shot performance and a faster convergence speed, compared with other diffusion-based depth estimators, across NYUv2, KITTI, ETH3D, and ScanNet.
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the semantic web, ontology version control is required to capture time-varying information, most importantly for widely-used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component for efficient ontology management, the growing size of ontologies and accumulating errors caused by manual labour overwhelm current OV approaches. In this paper, we propose yet another approach to performing OV using existing ontology matching (OM) techniques and systems. We introduce a unified OM4OV pipeline. From an OM perspective, we reconstruct a new task formulation, measurement, and testbed for OV tasks. Reusing the prior alignment(s) from OM, we propose a pipeline optimisation method called cross-reference (CR) mechanism to improve overall OV performance. We experimentally validate the OM4OV pipeline and the cross-reference mechanism in modified Ontology Alignment Evaluation Initiative (OAEI) datasets. We also discuss the insights on OM used for OV tasks, where some false mappings detected by OV systems are not actually false.
comment: 9 pages, 6 figures, 1 table
♻ ☆ Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data
The impressive capabilities of large language models (LLMs) have sparked debate over whether these models genuinely generalize to unseen tasks or predominantly rely on memorizing vast amounts of pretraining data. To explore this issue, we introduce an extended concept of memorization, distributional memorization, which measures the correlation between the LLM output probabilities and the pretraining data frequency. To effectively capture task-specific pretraining data frequency, we propose a novel task-gram language model, which is built by counting the co-occurrence of semantically related $n$-gram pairs from task inputs and outputs in the pretraining corpus. Using the Pythia models trained on the Pile dataset, we evaluate four distinct tasks: machine translation, factual question answering, world knowledge understanding, and math reasoning. Our findings reveal varying levels of memorization, with the strongest effect observed in factual question answering. Furthermore, while model performance improves across all tasks as LLM size increases, only factual question answering shows an increase in memorization, whereas machine translation and reasoning tasks exhibit greater generalization, producing more novel outputs. This study demonstrates that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks, providing a scalable method for analyzing large pretraining corpora in greater depth.
comment: updated 10-page version
♻ ☆ AutoLLM-CARD: Towards a Description and Landscape of Large Language Models
With the rapid growth of the Natural Language Processing (NLP) field, a vast variety of Large Language Models (LLMs) continue to emerge for diverse NLP tasks. As more papers are published, researchers and developers face the challenge of information overload. Thus, developing a system that can automatically extract and organise key information about LLMs from academic papers is particularly important. The standard format for documenting information about LLMs is the LLM model card (\textbf{LLM-Card}). We propose a method for automatically generating LLM model cards from scientific publications. We use Named Entity Recognition (\textbf{NER}) and Relation Extraction (\textbf{RE}) methods that automatically extract key information about LLMs from the papers, helping researchers to access information about LLMs efficiently. These features include model \textit{licence}, model \textit{name}, and model \textit{application}. With these features, we can form a model card for each paper. We processed 106 academic papers by defining three dictionaries -- LLM's name, licence, and application. 11,051 sentences were extracted through dictionary lookup, and the dataset was constructed through manual review of the final selection of 129 sentences with a link between the name and the \textit{licence}, and 106 sentences with a link between the model name and the \textit{application}. The resulting resource is relevant for LLM card illustrations using relational knowledge graphs. Our code and findings can contribute to automatic LLM card generation. Data and code in \textsc{autoLLM-Card} will be shared and freely available at \url{https://github.com/shengwei-tian/dependency-parser-visualization}
comment: ongoing work, technical report
♻ ☆ Vaccine: Perturbation-aware Alignment for Large Language Models against Harmful Fine-tuning Attack ICML2024
The new paradigm of finetuning-as-a-service introduces a new attack surface for Large Language Models (LLMs): a few harmful data uploaded by users can easily trick the finetuning to produce an alignment-broken model. We conduct an empirical analysis and uncover a \textit{harmful embedding drift} phenomenon, showing a probable cause of the alignment-broken effect. Inspired by our findings, we propose Vaccine, a perturbation-aware alignment technique to mitigate the security risk of users finetuning. The core idea of Vaccine is to produce invariant hidden embeddings by progressively adding crafted perturbation to them in the alignment phase. This enables the embeddings to withstand harmful perturbation from un-sanitized user data in the finetuning phase. Our results on open source mainstream LLMs (e.g., Llama2, Opt, Vicuna) demonstrate that Vaccine can boost the robustness of alignment against harmful prompts induced embedding drift while reserving reasoning ability towards benign prompts. Our code is available at \url{https://github.com/git-disl/Vaccine}.
comment: Rejected by ICML2024. Accepted by NeurIPS2024
♻ ☆ How Far Are We From AGI: Are LLMs All We Need?
The evolution of artificial intelligence (AI) has profoundly impacted human society, driving significant advancements in multiple sectors. AGI, distinguished by its ability to execute diverse real-world tasks with efficiency and effectiveness comparable to human intelligence, reflects a paramount milestone in AI evolution. While existing studies have reviewed specific advancements in AI and proposed potential paths to AGI, such as large language models (LLMs), they fall short of providing a thorough exploration of AGI's definitions, objectives, and developmental trajectories. Unlike previous survey papers, this work goes beyond summarizing LLMs by addressing key questions about our progress toward AGI and outlining the strategies essential for its realization through comprehensive analysis, in-depth discussions, and novel insights. We start by articulating the requisite capability frameworks for AGI, integrating the internal, interface, and system dimensions. As the realization of AGI requires more advanced capabilities and adherence to stringent constraints, we further discuss necessary AGI alignment technologies to harmonize these factors. Notably, we emphasize the importance of approaching AGI responsibly by first defining the key levels of AGI progression, followed by the evaluation framework that situates the status quo, and finally giving our roadmap of how to reach the pinnacle of AGI. Moreover, to give tangible insights into the ubiquitous impact of the integration of AI, we outline existing challenges and potential pathways toward AGI in multiple domains. In sum, serving as a pioneering exploration into the current state and future trajectory of AGI, this paper aims to foster a collective comprehension and catalyze broader public discussions among researchers and practitioners on AGI.
♻ ☆ Formalizing and Benchmarking Prompt Injection Attacks and Defenses
A prompt injection attack aims to inject malicious instruction/data into the input of an LLM-Integrated Application such that it produces results as an attacker desires. Existing works are limited to case studies. As a result, the literature lacks a systematic understanding of prompt injection attacks and their defenses. We aim to bridge the gap in this work. In particular, we propose a framework to formalize prompt injection attacks. Existing attacks are special cases in our framework. Moreover, based on our framework, we design a new attack by combining existing ones. Using our framework, we conduct a systematic evaluation on 5 prompt injection attacks and 10 defenses with 10 LLMs and 7 tasks. Our work provides a common benchmark for quantitatively evaluating future prompt injection attacks and defenses. To facilitate research on this topic, we make our platform public at https://github.com/liu00222/Open-Prompt-Injection.
comment: Published in USENIX Security Symposium 2024; the model sizes for closed-source models are from blog posts
♻ ☆ AmpleGCG: Learning a Universal and Transferable Generative Model of Adversarial Suffixes for Jailbreaking Both Open and Closed LLMs
As large language models (LLMs) become increasingly prevalent and integrated into autonomous systems, ensuring their safety is imperative. Despite significant strides toward safety alignment, recent work GCG~\citep{zou2023universal} proposes a discrete token optimization algorithm and selects the single suffix with the lowest loss to successfully jailbreak aligned LLMs. In this work, we first discuss the drawbacks of solely picking the suffix with the lowest loss during GCG optimization for jailbreaking and uncover the missed successful suffixes during the intermediate steps. Moreover, we utilize those successful suffixes as training data to learn a generative model, named AmpleGCG, which captures the distribution of adversarial suffixes given a harmful query and enables the rapid generation of hundreds of suffixes for any harmful queries in seconds. AmpleGCG achieves near 100\% attack success rate (ASR) on two aligned LLMs (Llama-2-7B-chat and Vicuna-7B), surpassing two strongest attack baselines. More interestingly, AmpleGCG also transfers seamlessly to attack different models, including closed-source LLMs, achieving a 99\% ASR on the latest GPT-3.5. To summarize, our work amplifies the impact of GCG by training a generative model of adversarial suffixes that is universal to any harmful queries and transferable from attacking open-source LLMs to closed-source LLMs. In addition, it can generate 200 adversarial suffixes for one harmful query in only 4 seconds, rendering it more challenging to defend.
comment: Published as a conference paper at COLM 2024 (https://colmweb.org/index.html)
♻ ☆ Improved GUI Grounding via Iterative Narrowing
Graphical User Interface (GUI) grounding plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for one-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework that employs an iterative narrowing mechanism to improve the performance of both general and fine-tuned models in GUI grounding by up to 61%. For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
comment: Code available at https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
♻ ☆ Understanding the Effect of Algorithm Transparency of Model Explanations in Text-to-SQL Semantic Parsing
Explaining the decisions of AI has become vital for fostering appropriate user trust in these systems. This paper investigates explanations for a structured prediction task called ``text-to-SQL Semantic Parsing'', which translates a natural language question into a structured query language (SQL) program. In this task setting, we designed three levels of model explanation, each exposing a different amount of the model's decision-making details (called ``algorithm transparency''), and investigated how different model explanations could potentially yield different impacts on the user experience. Our study with $\sim$100 participants shows that (1) the low-/high-transparency explanations often lead to less/more user reliance on the model decisions, whereas the medium-transparency explanations strike a good balance. We also show that (2) only the medium-transparency participant group was able to engage further in the interaction and exhibit increasing performance over time, and that (3) they showed the least changes in trust before and after the study.
comment: 15 pages, 18 figure, Preprint
♻ ☆ ZigMa: A DiT-style Zigzag Mamba Diffusion Model ECCV 2024
The diffusion model has long been plagued by scalability and quadratic complexity issues, especially within transformer-based structures. In this study, we aim to leverage the long sequence modeling capability of a State-Space Model called Mamba to extend its applicability to visual data generation. Firstly, we identify a critical oversight in most current Mamba-based vision methods, namely the lack of consideration for spatial continuity in the scan scheme of Mamba. Secondly, building upon this insight, we introduce a simple, plug-and-play, zero-parameter method named Zigzag Mamba, which outperforms Mamba-based baselines and demonstrates improved speed and memory utilization compared to transformer-based baselines. Lastly, we integrate Zigzag Mamba with the Stochastic Interpolant framework to investigate the scalability of the model on large-resolution visual datasets, such as FacesHQ $1024\times 1024$ and UCF101, MultiModal-CelebA-HQ, and MS COCO $256\times 256$ . Code will be released at https://taohu.me/zigma/
comment: ECCV 2024 Project Page: https://taohu.me/zigma/
♻ ☆ It's Morphing Time: Unleashing the Potential of Multiple LLMs via Multi-objective Optimization
In this paper, we introduce a novel approach for addressing the multi-objective optimization problem in large language model merging via black-box multi-objective optimization algorithms. The goal of model merging is to combine multiple models, each excelling in different tasks, into a single model that outperforms any of the individual source models. However, model merging faces two significant challenges: First, existing methods rely heavily on human knowledge or intuition. Second, it's difficult to obtain the great model merging configuration in limited evaluations. To address these challenges, we formalize model merging as a multi-objective optimization problem and propose an automated optimization approach named MM-MO. This method leverages multi-objective optimization algorithms to autonomously search for optimal merging configurations across various tasks, alleviating the need for human intervention. In MM-MO, a weak-to-strong method is employed to enhance the acquisition function, allowing previously evaluated superior configurations to guide the search for new ones. Meanwhile, Fisher information is applied to screen these configurations, increasing the possibility of identifying high-quality merging configuration. Additionally, we designed a sparsity metric as an additional optimization objective to enhance the model's generalization performance across different tasks. We conducted comprehensive experiments with other mainstream model merging methods, demonstrating that the proposed MM-MO algorithm is competitive and effective in achieving high-quality model merging.
♻ ☆ Uncovering Factor Level Preferences to Improve Human-Model Alignment
Despite advancements in Large Language Model (LLM) alignment, understanding the reasons behind LLM preferences remains crucial for bridging the gap between desired and actual behavior. LLMs often exhibit biases or tendencies that diverge from human preferences, such as favoring certain writing styles or producing overly verbose outputs. However, current methods for evaluating preference alignment often lack explainability, relying on coarse-grained comparisons. To address this, we introduce PROFILE (PRObing Factors of InfLuence for Explainability), a novel framework that uncovers and quantifies the influence of specific factors driving preferences. PROFILE's factor level analysis explains the 'why' behind human-model alignment and misalignment, offering insights into the direction of model improvement. We apply PROFILE to analyze human and LLM preferences across three tasks: summarization, helpful response generation, and document-based question-answering. Our factor level analysis reveals a substantial discrepancy between human and LLM preferences in generation tasks, whereas LLMs show strong alignment with human preferences in evaluation tasks. We demonstrate how leveraging factor level insights, including addressing misaligned factors or exploiting the generation-evaluation gap, can improve alignment with human preferences. This work underscores the importance of explainable preference analysis and highlights PROFILE's potential to provide valuable training signals, driving further improvements in human-model alignment.
♻ ☆ AIGS: Generating Science from AI-Powered Automated Falsification
Rapid development of artificial intelligence has drastically accelerated the development of scientific discovery. Trained with large-scale observation data, deep neural networks extract the underlying patterns in an end-to-end manner and assist human researchers with highly-precised predictions in unseen scenarios. The recent rise of Large Language Models (LLMs) and the empowered autonomous agents enable scientists to gain help through interaction in different stages of their research, including but not limited to literature review, research ideation, idea implementation, and academic writing. However, AI researchers instantiated by foundation model empowered agents with full-process autonomy are still in their infancy. In this paper, we study $\textbf{AI-Generated Science}$ (AIGS), where agents independently and autonomously complete the entire research process and discover scientific laws. By revisiting the definition of scientific research, we argue that $\textit{falsification}$ is the essence of both human research process and the design of an AIGS system. Through the lens of falsification, prior systems attempting towards AI-Generated Science either lack the part in their design, or rely heavily on existing verification engines that narrow the use in specialized domains. In this work, we propose Baby-AIGS as a baby-step demonstration of a full-process AIGS system, which is a multi-agent system with agents in roles representing key research process. By introducing FalsificationAgent, which identify and then verify possible scientific discoveries, we empower the system with explicit falsification. Experiments on three tasks preliminarily show that Baby-AIGS could produce meaningful scientific discoveries, though not on par with experienced human researchers. Finally, we discuss on the limitations of current Baby-AIGS, actionable insights, and related ethical issues in detail.
comment: Pre-print. 35 pages. Official website: https://agent-force.github.io/AIGS/
♻ ☆ Bias-Free Sentiment Analysis through Semantic Blinding and Graph Neural Networks
This paper introduces the Semantic Propagation Graph Neural Network (SProp GNN), a machine learning sentiment analysis (SA) architecture that relies exclusively on syntactic structures and word-level emotional cues to predict emotions in text. By semantically blinding the model to information about specific words, it is robust to biases such as political or gender bias that have been plaguing previous machine learning-based SA systems. The SProp GNN shows performance superior to lexicon-based alternatives such as VADER and EmoAtlas on two different prediction tasks, and across two languages. Additionally, it approaches the accuracy of transformer-based models while significantly reducing bias in emotion prediction tasks. By offering improved explainability and reducing bias, the SProp GNN bridges the methodological gap between interpretable lexicon approaches and powerful, yet often opaque, deep learning models, offering a robust tool for fair and effective emotion analysis in understanding human behavior through text.
♻ ☆ Leveraging Language Models to Detect Greenwashing
In recent years, climate change repercussions have increasingly captured public interest. Consequently, corporations are emphasizing their environmental efforts in sustainability reports to bolster their public image. Yet, the absence of stringent regulations in review of such reports allows potential greenwashing. In this study, we introduce a novel preliminary methodology to train a language model on generated labels for greenwashing risk. Our primary contributions encompass: developing a preliminary mathematical formulation to quantify greenwashing risk, a fine-tuned ClimateBERT model for this problem, and a comparative analysis of results. On a test set comprising of sustainability reports, our best model achieved an average accuracy score of 86.34% and F1 score of 0.67, demonstrating that our proof-of-concept methodology shows a promising direction of exploration for this task.
♻ ☆ PoPreRo: A New Dataset for Popularity Prediction of Romanian Reddit Posts ICPR 2024
We introduce PoPreRo, the first dataset for Popularity Prediction of Romanian posts collected from Reddit. The PoPreRo dataset includes a varied compilation of post samples from five distinct subreddits of Romania, totaling 28,107 data samples. Along with our novel dataset, we introduce a set of competitive models to be used as baselines for future research. Interestingly, the top-scoring model achieves an accuracy of 61.35% and a macro F1 score of 60.60% on the test set, indicating that the popularity prediction task on PoPreRo is very challenging. Further investigations based on few-shot prompting the Falcon-7B Large Language Model also point in the same direction. We thus believe that PoPreRo is a valuable resource that can be used to evaluate models on predicting the popularity of social media posts in Romanian. We release our dataset at https://github.com/ana-rogoz/PoPreRo.
comment: Accepted at ICPR 2024
♻ ☆ OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF Framework
As large language models (LLMs) continue to grow by scaling laws, reinforcement learning from human feedback (RLHF) has gained significant attention due to its outstanding performance. However, unlike pretraining or fine-tuning a single model, scaling reinforcement learning from human feedback (RLHF) for training large language models poses coordination challenges across four models. We present OpenRLHF, an open-source framework enabling efficient RLHF scaling. Unlike existing RLHF frameworks that co-locate four models on the same GPUs, OpenRLHF re-designs scheduling for the models beyond 70B parameters using Ray, vLLM, and DeepSpeed, leveraging improved resource utilization and diverse training approaches. Integrating seamlessly with Hugging Face, OpenRLHF provides an out-of-the-box solution with optimized algorithms and launch scripts, which ensures user-friendliness. OpenRLHF implements RLHF, DPO, rejection sampling, and other alignment techniques. Empowering state-of-the-art LLM development, OpenRLHF's code is available at \url{https://github.com/OpenRLHF/OpenRLHF}.
♻ ☆ VersaTune: Harnessing Vertical Domain Insights for Multi-Ability LLM Supervised Fine-Tuning
Large Language Models (LLMs) exhibit remarkable capabilities in handling multiple tasks across domains due to their emergent properties. These capabilities are further augmented during the Supervised Fine-Tuning (SFT) phase. Despite their potential, existing work mainly focuses on domain-specific enhancements during fine-tuning, the challenge of which lies in catastrophic forgetting of knowledge across other domains. In this study, we introduce VersaTune, a novel data composition framework designed for enhancing LLMs' overall multi-ability performances during fine-tuning. We categorize knowledge into distinct domains including law, medicine, finance, science, code. We begin with detecting the distribution of domain-specific knowledge within the base model, followed by the composition of training data that aligns with the model's existing knowledge distribution. During the fine-tuning process, weights of different domains are dynamically adjusted based on their learnable potential and forgetting degree. Experimental results demonstrate that VersaTune achieves significant improvements in multi-domain performance, with a 35.21% enhancement in comprehensive multi-domain tasks. Additionally, in scenarios where specific domain optimization is required, VersaTune reduces the degradation of performance in other domains by 38.77%, without compromising the target domain's training efficacy.
♻ ☆ Towards Controllable Natural Language Inference through Lexical Inference Types
Explainable natural language inference aims to provide a mechanism to produce explanatory (abductive) inference chains which ground claims to their supporting premises. A recent corpus called EntailmentBank strives to advance this task by explaining the answer to a question using an entailment tree \cite{dalvi2021explaining}. They employ the T5 model to directly generate the tree, which can explain how the answer is inferred. However, it lacks the ability to explain and control the generation of intermediate steps, which is crucial for the multi-hop inference process. % One recent corpus, EntailmentBank, aims to push this task forward by explaining an answer to a question according to an entailment tree \cite{dalvi2021explaining}. They employ T5 to generate the tree directly, which can explain how the answer is inferred but cannot explain how the intermediate is generated, which is essential to the multi-hop inference process. In this work, we focus on proposing a controlled natural language inference architecture for multi-premise explanatory inference. To improve control and enable explanatory analysis over the generation, we define lexical inference types based on Abstract Meaning Representation (AMR) graph and modify the architecture of T5 to learn a latent sentence representation (T5 bottleneck) conditioned on said type information. We also deliver a dataset of approximately 5000 annotated explanatory inference steps, with well-grounded lexical-symbolic operations. Experimental results indicate that the inference typing induced at the T5 bottleneck can help T5 to generate a conclusion under explicit control.
♻ ☆ Personality Profiling: How informative are social media profiles in predicting personal information?
Personality profiling has been utilised by companies for targeted advertising, political campaigns and public health campaigns. However, the accuracy and versatility of such models remains relatively unknown. Here we explore the extent to which peoples' online digital footprints can be used to profile their Myers-Briggs personality type. We analyse and compare four models: logistic regression, naive Bayes, support vector machines (SVMs) and random forests. We discover that a SVM model achieves the best accuracy of 20.95% for predicting a complete personality type. However, logistic regression models perform only marginally worse and are significantly faster to train and perform predictions. Moreover, we develop a statistical framework for assessing the importance of different sets of features in our models. We discover some features to be more informative than others in the Intuitive/Sensory (p = 0.032) and Thinking/Feeling (p = 0.019) models. Many labelled datasets present substantial class imbalances of personal characteristics on social media, including our own. We therefore highlight the need for attentive consideration when reporting model performance on such datasets and compare a number of methods to fix class-imbalance problems.
comment: 11 pages, 6 figures. Dataset available at https://figshare.com/articles/dataset/Self-Reported_Myers-Briggs_Personality_Types_on_Twitter/23620554
♻ ☆ VoiceBench: Benchmarking LLM-Based Voice Assistants
Building on the success of large language models (LLMs), recent advancements such as GPT-4o have enabled real-time speech interactions through LLM-based voice assistants, offering a significantly improved user experience compared to traditional text-based interactions. However, the absence of benchmarks designed to evaluate these speech interaction capabilities has hindered progress of LLM-based voice assistants development. Current evaluations focus primarily on automatic speech recognition (ASR) or general knowledge evaluation with clean speeches, neglecting the more intricate, real-world scenarios that involve diverse speaker characteristics, environmental and content factors. To address this, we introduce VoiceBench, the first benchmark designed to provide a multi-faceted evaluation of LLM-based voice assistants. VoiceBench also includes both real and synthetic spoken instructions that incorporate the above three key real-world variations. Extensive experiments reveal the limitations of current LLM-based voice assistant models and offer valuable insights for future research and development in this field.
comment: Work in progress. Data is available at https://github.com/MatthewCYM/VoiceBench
♻ ☆ Representation Tuning
Activation engineering is becoming increasingly popular as a means of online control of large language models (LLMs). In this work, we extend the idea of inference-time steering with vectors that represent a behavioral direction of interest to tuning those vectors directly into the model, obviating the need for online control. First, we identify activation vectors related to honesty in an open-source LLM (Llama-2-13b-chat). Next, we demonstrate that model output can be made more or less honest by adding positive or negative multiples of these vectors to residual stream activations during generation. Then, we show that a similar effect can be achieved by fine-tuning the vectors directly into the model, by use of a dual loss function based on the cosine similarity of residual stream activations to the vectors combined with a standard token-based loss ("representation tuning"). Finally, we compare the generations in response to honesty-probing prompts from the resulting models to those from models fine-tuned with a token-based loss alone, and to those from the untuned model subjected to online steering. Overall, fine-tuning the vectors into the models using the cosine similarity plus token loss showed a stronger effect than online steering, and generalized better than using the standard loss, suggesting the potential utility of this approach as a safety measure. Code and data are available at https://github.com/cma1114/representation_tuning. Tuned models are available at https://huggingface.co/collections/cackerman/representation-tuning-66da1e5ab41cd1b824687d9f.
comment: 10 pages, 7 figures, 6 tables
♻ ☆ JailBreakV: A Benchmark for Assessing the Robustness of MultiModal Large Language Models against Jailbreak Attacks
With the rapid advancements in Multimodal Large Language Models (MLLMs), securing these models against malicious inputs while aligning them with human values has emerged as a critical challenge. In this paper, we investigate an important and unexplored question of whether techniques that successfully jailbreak Large Language Models (LLMs) can be equally effective in jailbreaking MLLMs. To explore this issue, we introduce JailBreakV-28K, a pioneering benchmark designed to assess the transferability of LLM jailbreak techniques to MLLMs, thereby evaluating the robustness of MLLMs against diverse jailbreak attacks. Utilizing a dataset of 2, 000 malicious queries that is also proposed in this paper, we generate 20, 000 text-based jailbreak prompts using advanced jailbreak attacks on LLMs, alongside 8, 000 image-based jailbreak inputs from recent MLLMs jailbreak attacks, our comprehensive dataset includes 28, 000 test cases across a spectrum of adversarial scenarios. Our evaluation of 10 open-source MLLMs reveals a notably high Attack Success Rate (ASR) for attacks transferred from LLMs, highlighting a critical vulnerability in MLLMs that stems from their text-processing capabilities. Our findings underscore the urgent need for future research to address alignment vulnerabilities in MLLMs from both textual and visual inputs.
♻ ☆ InjecGuard: Benchmarking and Mitigating Over-defense in Prompt Injection Guardrail Models
Prompt injection attacks pose a critical threat to large language models (LLMs), enabling goal hijacking and data leakage. Prompt guard models, though effective in defense, suffer from over-defense -- falsely flagging benign inputs as malicious due to trigger word bias. To address this issue, we introduce NotInject, an evaluation dataset that systematically measures over-defense across various prompt guard models. NotInject contains 339 benign samples enriched with trigger words common in prompt injection attacks, enabling fine-grained evaluation. Our results show that state-of-the-art models suffer from over-defense issues, with accuracy dropping close to random guessing levels (60%). To mitigate this, we propose InjecGuard, a novel prompt guard model that incorporates a new training strategy, Mitigating Over-defense for Free (MOF), which significantly reduces the bias on trigger words. InjecGuard demonstrates state-of-the-art performance on diverse benchmarks including NotInject, surpassing the existing best model by 30.8%, offering a robust and open-source solution for detecting prompt injection attacks. The code and datasets are released at https://github.com/SaFoLab-WISC/InjecGuard.
♻ ☆ Enhancing Large Vision Language Models with Self-Training on Image Comprehension
Large vision language models (LVLMs) integrate large language models (LLMs) with pre-trained vision encoders, thereby activating the perception capability of the model to understand image inputs for different queries and conduct subsequent reasoning. Improving this capability requires high-quality vision-language data, which is costly and labor-intensive to acquire. Self-training approaches have been effective in single-modal settings to alleviate the need for labeled data by leveraging model's own generation. However, effective self-training remains a challenge regarding the unique visual perception and reasoning capability of LVLMs. To address this, we introduce Self-Training on Image Comprehension (STIC), which emphasizes a self-training approach specifically for image comprehension. First, the model self-constructs a preference dataset for image descriptions using unlabeled images. Preferred responses are generated through a step-by-step prompt, while dis-preferred responses are generated from either corrupted images or misleading prompts. To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data and append its self-generated image descriptions to the prompts. We validate the effectiveness of STIC across seven different benchmarks, demonstrating substantial performance gains of 4.0% on average while using 70% less supervised fine-tuning data than the current method. Further studies investigate various components of STIC and highlight its potential to leverage vast quantities of unlabeled images for self-training. Code and data are made publicly available.
comment: 22 pages, 14 figures, 9 tables
♻ ☆ Reawakening knowledge: Anticipatory recovery from catastrophic interference via structured training NeurIPS 2024
We explore the training dynamics of neural networks in a structured non-IID setting where documents are presented cyclically in a fixed, repeated sequence. Typically, networks suffer from catastrophic interference when training on a sequence of documents; however, we discover a curious and remarkable property of LLMs finetuned sequentially in this setting: they exhibit anticipatory behavior, recovering from the forgetting on documents before encountering them again. This behavior occurs even though the documents are never presented in context together. The behavior emerges and becomes more robust as the architecture scales up its number of parameters. Through comprehensive experiments and visualizations, we demonstrate a new mechanism by which over-parametrized neural networks can recover from catastrophic interference and uncover new insights into training over-parameterized networks in cyclically structured environments.
comment: 38th Conference on Neural Information Processing Systems (NeurIPS 2024), Vancouver
♻ ☆ Can LLMs Learn by Teaching for Better Reasoning? A Preliminary Study NeurIPS 2024
Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, for humans, teaching improves not only students but also teachers, by fostering more rigorous and clear reasoning as well as knowledge building. We ask: Can LLMs also learn by teaching (LbT) for better reasoning? If the answer is yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration on this question. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and bring improvements. Specifically, we design three methods, each mimicking one of the three levels of LbT: observing students' feedback, learning from the feedback, and learning iteratively, with the goals of improving answer accuracy without training or improving models' inherent capability with fine-tuning. We reveal some findings: (1) Teaching materials that make it easier for students to learn have clearer and more accurate logic when using in-context learning as the student's "learning" method; (2) Weak-to-strong generalization: LbT might help improve strong models by teaching weak models; (3) Diversity in students might help: teaching multiple students could be better than teaching one student or the teacher itself. We hope that our exploration can inspire future research on LbT and more broadly adopting the advanced techniques in education to improve LLMs. The code and website are at https://github.com/imagination-research/lbt and https://sites.google.com/view/llm-learning-by-teaching.
comment: NeurIPS 2024
Computer Vision and Pattern Recognition 52
☆ Peritumoral Expansion Radiomics for Improved Lung Cancer Classification
Purpose: This study investigated how nodule segmentation and surrounding peritumoral regions influence radionics-based lung cancer classification. Methods: Using 3D CT scans with bounding box annotated nodules, we generated 3D segmentations using four techniques: Otsu, Fuzzy C-Means (FCM), Gaussian Mixture Model (GMM), and K-Nearest Neighbors (KNN). Radiomics features were extracted using the PyRadiomics library, and multiple machine-learning-based classifiers, including Random Forest, Logistic Regression, and KNN, were employed to classify nodules as cancerous or non-cancerous. The best-performing segmentation and model were further analyzed by expanding the initial nodule segmentation into the peritumoral region (2, 4, 6, 8, 10, and 12 mm) to understand the influence of the surrounding area on classification. Additionally, we compared our results to deep learning-based feature extractors Foundation Model for Cancer Biomarkers (FMCB) and other state-of-the-art baseline models. Results: Incorporating peritumoral regions significantly enhanced performance, with the best result obtained at 8 mm expansion (AUC = 0.78). Compared to image-based deep learning models, such as FMCB (AUC = 0.71) and ResNet50-SWS++ (AUC = 0.71), our radiomics-based approach demonstrated superior classification accuracy. Conclusion: The study highlights the importance of peritumoral expansion in improving lung cancer classification using radiomics. These findings can inform the development of more robust AI-driven diagnostic tools.
comment: 2 table, 5 figures
☆ DRIVE: Dual-Robustness via Information Variability and Entropic Consistency in Source-Free Unsupervised Domain Adaptation
Adapting machine learning models to new domains without labeled data, especially when source data is inaccessible, is a critical challenge in applications like medical imaging, autonomous driving, and remote sensing. This task, known as Source-Free Unsupervised Domain Adaptation (SFUDA), involves adapting a pre-trained model to a target domain using only unlabeled target data, which can lead to issues such as overfitting, underfitting, and poor generalization due to domain discrepancies and noise. Existing SFUDA methods often rely on single-model architectures, struggling with uncertainty and variability in the target domain. To address these challenges, we propose DRIVE (Dual-Robustness through Information Variability and Entropy), a novel SFUDA framework leveraging a dual-model architecture. The two models, initialized with identical weights, work in parallel to capture diverse target domain characteristics. One model is exposed to perturbations via projection gradient descent (PGD) guided by mutual information, focusing on high-uncertainty regions. We also introduce an entropy-aware pseudo-labeling strategy that adjusts label weights based on prediction uncertainty, ensuring the model focuses on reliable data while avoiding noisy regions. The adaptation process has two stages: the first aligns the models on stable features using a mutual information consistency loss, and the second dynamically adjusts the perturbation level based on the loss from the first stage, encouraging the model to explore a broader range of the target domain while preserving existing performance. This enhances generalization capabilities and robustness against interference. Evaluations on standard SFUDA benchmarks show that DRIVE consistently outperforms previous methods, delivering improved adaptation accuracy and stability across complex target domains.
☆ CNNs for Style Transfer of Digital to Film Photography
The use of deep learning in stylistic effect generation has seen increasing use over recent years. In this work, we use simple convolutional neural networks to model Cinestill800T film given a digital input. We test the effect of different loss functions, the addition of an input noise channel and the use of random scales of patches during training. We find that a combination of MSE/VGG loss gives the best colour production and that some grain can be produced, but it is not of a high quality, and no halation is produced. We contribute our dataset of aligned paired images taken with a film and digital camera for further work.
☆ Gaussian Scenes: Pose-Free Sparse-View Scene Reconstruction using Depth-Enhanced Diffusion Priors
In this work, we introduce a generative approach for pose-free reconstruction of $360^{\circ}$ scenes from a limited number of uncalibrated 2D images. Pose-free scene reconstruction from incomplete, unposed observations is usually regularized with depth estimation or 3D foundational priors. While recent advances have enabled sparse-view reconstruction of unbounded scenes with known camera poses using diffusion priors, these methods rely on explicit camera embeddings for extrapolating unobserved regions. This reliance limits their application in pose-free settings, where view-specific data is only implicitly available. To address this, we propose an instruction-following RGBD diffusion model designed to inpaint missing details and remove artifacts in novel view renders and depth maps of a 3D scene. We also propose a novel confidence measure for Gaussian representations to allow for better detection of these artifacts. By progressively integrating these novel views in a Gaussian-SLAM-inspired process, we achieve a multi-view-consistent Gaussian representation. Evaluations on the MipNeRF360 dataset demonstrate that our method surpasses existing pose-free techniques and performs competitively with state-of-the-art posed reconstruction methods in complex $360^{\circ}$ scenes.
comment: 17 pages, 6 figures, 3 tables
☆ Cross-organ Deployment of EOS Detection AI without Retraining: Feasibility and Limitation
Chronic rhinosinusitis (CRS) is characterized by persistent inflammation in the paranasal sinuses, leading to typical symptoms of nasal congestion, facial pressure, olfactory dysfunction, and discolored nasal drainage, which can significantly impact quality-of-life. Eosinophils (Eos), a crucial component in the mucosal immune response, have been linked to disease severity in CRS. The diagnosis of eosinophilic CRS typically uses a threshold of 10-20 eos per high-power field (HPF). However, manually counting Eos in histological samples is laborious and time-intensive, making the use of AI-driven methods for automated evaluations highly desirable. Interestingly, eosinophils are predominantly located in the gastrointestinal (GI) tract, which has prompted the release of numerous deep learning models trained on GI data. This study leverages a CircleSnake model initially trained on upper-GI data to segment Eos cells in whole slide images (WSIs) of nasal tissues. It aims to determine the extent to which Eos segmentation models developed for the GI tract can be adapted to nasal applications without retraining. The experimental results show promising accuracy in some WSIs, although, unsurprisingly, the performance varies across cases. This paper details these performance outcomes, delves into the reasons for such variations, and aims to provide insights that could guide future development of deep learning models for eosinophilic CRS.
comment: 8 pages, 5 figures. Accepted by SPIE Medical Imaging 2025 on October 28, 2024
☆ MobileMamba: Lightweight Multi-Receptive Visual Mamba Network
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs. CNNs, with their local receptive fields, struggle to capture long-range dependencies, while Transformers, despite their global modeling capabilities, are limited by quadratic computational complexity in high-resolution scenarios. Recently, state-space models have gained popularity in the visual domain due to their linear computational complexity. Despite their low FLOPs, current lightweight Mamba-based models exhibit suboptimal throughput. In this work, we propose the MobileMamba framework, which balances efficiency and performance. We design a three-stage network to enhance inference speed significantly. At a fine-grained level, we introduce the Multi-Receptive Field Feature Interaction(MRFFI) module, comprising the Long-Range Wavelet Transform-Enhanced Mamba(WTE-Mamba), Efficient Multi-Kernel Depthwise Convolution(MK-DeConv), and Eliminate Redundant Identity components. This module integrates multi-receptive field information and enhances high-frequency detail extraction. Additionally, we employ training and testing strategies to further improve performance and efficiency. MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods which is maximum x21 faster than LocalVim on GPU. Extensive experiments on high-resolution downstream tasks demonstrate that MobileMamba surpasses current efficient models, achieving an optimal balance between speed and accuracy.
comment: 14 pages
☆ Segment to Recognize Robustly -- Enhancing Recognition by Image Decomposition
In image recognition, both foreground (FG) and background (BG) play an important role; however, standard deep image recognition often leads to unintended over-reliance on the BG, limiting model robustness in real-world deployment settings. Current solutions mainly suppress the BG, sacrificing BG information for improved generalization. We propose "Segment to Recognize Robustly" (S2R^2), a novel recognition approach which decouples the FG and BG modelling and combines them in a simple, robust, and interpretable manner. S2R^2 leverages recent advances in zero-shot segmentation to isolate the FG and the BG before or during recognition. By combining FG and BG, potentially also with a standard full-image classifier, S2R^2 achieves state-of-the-art results on in-domain data while maintaining robustness to BG shifts. The results confirm that segmentation before recognition is now possible.
Improving Pre-Trained Self-Supervised Embeddings Through Effective Entropy Maximization
A number of different architectures and loss functions have been applied to the problem of self-supervised learning (SSL), with the goal of developing embeddings that provide the best possible pre-training for as-yet-unknown, lightly supervised downstream tasks. One of these SSL criteria is to maximize the entropy of a set of embeddings in some compact space. But the goal of maximizing the embedding entropy often depends--whether explicitly or implicitly--upon high dimensional entropy estimates, which typically perform poorly in more than a few dimensions. In this paper, we motivate an effective entropy maximization criterion (E2MC), defined in terms of easy-to-estimate, low-dimensional constraints. We demonstrate that using it to continue training an already-trained SSL model for only a handful of epochs leads to a consistent and, in some cases, significant improvement in downstream performance. We perform careful ablation studies to show that the improved performance is due to the proposed add-on criterion. We also show that continued pre-training with alternative criteria does not lead to notable improvements, and in some cases, even degrades performance.
comment: 19 pages including appendix, 5 figures
☆ Making Images from Images: Interleaving Denoising and Transformation
Simply by rearranging the regions of an image, we can create a new image of any subject matter. The definition of regions is user definable, ranging from regularly and irregularly-shaped blocks, concentric rings, or even individual pixels. Our method extends and improves recent work in the generation of optical illusions by simultaneously learning not only the content of the images, but also the parameterized transformations required to transform the desired images into each other. By learning the image transforms, we allow any source image to be pre-specified; any existing image (e.g. the Mona Lisa) can be transformed to a novel subject. We formulate this process as a constrained optimization problem and address it through interleaving the steps of image diffusion with an energy minimization step. Unlike previous methods, increasing the number of regions actually makes the problem easier and improves results. We demonstrate our approach in both pixel and latent spaces. Creative extensions, such as using infinite copies of the source image and employing multiple source images, are also given.
☆ Deep Learning for automated multi-scale functional field boundaries extraction using multi-date Sentinel-2 and PlanetScope imagery: Case Study of Netherlands and Pakistan
This study explores the effectiveness of multi-temporal satellite imagery for better functional field boundary delineation using deep learning semantic segmentation architecture on two distinct geographical and multi-scale farming systems of Netherlands and Pakistan. Multidate images of April, August and October 2022 were acquired for PlanetScope and Sentinel-2 in sub regions of Netherlands and November 2022, February and March 2023 for selected area of Dunyapur in Pakistan. For Netherlands, Basic registration crop parcels (BRP) vector layer was used as labeled training data. while self-crafted field boundary vector data were utilized for Pakistan. Four deep learning models with UNET architecture were evaluated using different combinations of multi-date images and NDVI stacks in the Netherlands subregions. A comparative analysis of IoU scores assessed the effectiveness of the proposed multi-date NDVI stack approach. These findings were then applied for transfer learning, using pre-trained models from the Netherlands on the selected area in Pakistan. Additionally, separate models were trained using self-crafted field boundary data for Pakistan, and combined models were developed using data from both the Netherlands and Pakistan. Results indicate that multi-date NDVI stacks provide additional temporal context, reflecting crop growth over different times of the season. The study underscores the critical role of multi-scale ground information from diverse geographical areas in developing robust and universally applicable models for field boundary delineation. The results also highlight the importance of fine spatial resolution for extraction of field boundaries in regions with small scale framing. The findings can be extended to multi-scale implementations for improved automatic field boundary delineation in heterogeneous agricultural environments.
comment: 09 pages, To be published
PromptHSI: Universal Hyperspectral Image Restoration Framework for Composite Degradation
Recent developments in All-in-One (AiO) RGB image restoration and prompt learning have enabled the representation of distinct degradations through prompts, allowing degraded images to be effectively addressed by a single restoration model. However, this paradigm faces significant challenges when transferring to hyperspectral image (HSI) restoration tasks due to: 1) the domain gap between RGB and HSI features and difference on their structures, 2) information loss in visual prompts under severe composite degradations, and 3) difficulties in capturing HSI-specific degradation representations through text prompts. To address these challenges, we propose PromptHSI, the first universal AiO HSI restoration framework. By leveraging the frequency-aware feature modulation based on characteristics of HSI degradations, we decompose text prompts into intensity and bias controllers to effectively guide the restoration process while avoiding domain gaps. Our unified architecture excels at both fine-grained recovery and global information restoration tasks. Experimental results demonstrate superior performance under various degradation combinations, indicating great potential for practical remote sensing applications. The source code and dataset will be publicly released.
comment: 11 pages, 8 figures
☆ A Tunable Despeckling Neural Network Stabilized via Diffusion Equation
Multiplicative Gamma noise remove is a critical research area in the application of synthetic aperture radar (SAR) imaging, where neural networks serve as a potent tool. However, real-world data often diverges from theoretical models, exhibiting various disturbances, which makes the neural network less effective. Adversarial attacks work by finding perturbations that significantly disrupt functionality of neural networks, as the inherent instability of neural networks makes them highly susceptible. A network designed to withstand such extreme cases can more effectively mitigate general disturbances in real SAR data. In this work, the dissipative nature of diffusion equations is employed to underpin a novel approach for countering adversarial attacks and improve the resistance of real noise disturbance. We propose a tunable, regularized neural network that unrolls a denoising unit and a regularization unit into a single network for end-to-end training. In the network, the denoising unit and the regularization unit are composed of the denoising network and the simplest linear diffusion equation respectively. The regularization unit enhances network stability, allowing post-training time step adjustments to effectively mitigate the adverse impacts of adversarial attacks. The stability and convergence of our model are theoretically proven, and in the experiments, we compare our model with several state-of-the-art denoising methods on simulated images, adversarial samples, and real SAR images, yielding superior results in both quantitative and visual evaluations.
☆ Bimanual Grasp Synthesis for Dexterous Robot Hands
Humans naturally perform bimanual skills to handle large and heavy objects. To enhance robots' object manipulation capabilities, generating effective bimanual grasp poses is essential. Nevertheless, bimanual grasp synthesis for dexterous hand manipulators remains underexplored. To bridge this gap, we propose the BimanGrasp algorithm for synthesizing bimanual grasps on 3D objects. The BimanGrasp algorithm generates grasp poses by optimizing an energy function that considers grasp stability and feasibility. Furthermore, the synthesized grasps are verified using the Isaac Gym physics simulation engine. These verified grasp poses form the BimanGrasp-Dataset, the first large-scale synthesized bimanual dexterous hand grasp pose dataset to our knowledge. The dataset comprises over 150k verified grasps on 900 objects, facilitating the synthesis of bimanual grasps through a data-driven approach. Last, we propose BimanGrasp-DDPM, a diffusion model trained on the BimanGrasp-Dataset. This model achieved a grasp synthesis success rate of 69.87\% and significant acceleration in computational speed compared to BimanGrasp algorithm.
comment: Published in RA-L 24', 8 pages, 9 figures, 3 tables
☆ Highly Efficient and Unsupervised Framework for Moving Object Detection in Satellite Videos
Moving object detection in satellite videos (SVMOD) is a challenging task due to the extremely dim and small target characteristics. Current learning-based methods extract spatio-temporal information from multi-frame dense representation with labor-intensive manual labels to tackle SVMOD, which needs high annotation costs and contains tremendous computational redundancy due to the severe imbalance between foreground and background regions. In this paper, we propose a highly efficient unsupervised framework for SVMOD. Specifically, we propose a generic unsupervised framework for SVMOD, in which pseudo labels generated by a traditional method can evolve with the training process to promote detection performance. Furthermore, we propose a highly efficient and effective sparse convolutional anchor-free detection network by sampling the dense multi-frame image form into a sparse spatio-temporal point cloud representation and skipping the redundant computation on background regions. Coping these two designs, we can achieve both high efficiency (label and computation efficiency) and effectiveness. Extensive experiments demonstrate that our method can not only process 98.8 frames per second on 1024x1024 images but also achieve state-of-the-art performance. The relabeled dataset and code are available at https://github.com/ChaoXiao12/Moving-object-detection-in-satellite-videos-HiEUM.
comment: 8 pages, 8 figures
☆ Optimization-Driven Statistical Models of Anatomies using Radial Basis Function Shape Representation
Particle-based shape modeling (PSM) is a popular approach to automatically quantify shape variability in populations of anatomies. The PSM family of methods employs optimization to automatically populate a dense set of corresponding particles (as pseudo landmarks) on 3D surfaces to allow subsequent shape analysis. A recent deep learning approach leverages implicit radial basis function representations of shapes to better adapt to the underlying complex geometry of anatomies. Here, we propose an adaptation of this method using a traditional optimization approach that allows more precise control over the desired characteristics of models by leveraging both an eigenshape and a correspondence loss. Furthermore, the proposed approach avoids using a black-box model and allows more freedom for particles to navigate the underlying surfaces, yielding more informative statistical models. We demonstrate the efficacy of the proposed approach to state-of-the-art methods on two real datasets and justify our choice of losses empirically.
☆ Optimizing Brain Tumor Segmentation with MedNeXt: BraTS 2024 SSA and Pediatrics
\usepackage{url} Identifying key pathological features in brain MRIs is crucial for the long-term survival of glioma patients. However, manual segmentation is time-consuming, requiring expert intervention and is susceptible to human error. Therefore, significant research has been devoted to developing machine learning methods that can accurately segment tumors in 3D multimodal brain MRI scans. Despite their progress, state-of-the-art models are often limited by the data they are trained on, raising concerns about their reliability when applied to diverse populations that may introduce distribution shifts. Such shifts can stem from lower quality MRI technology (e.g., in sub-Saharan Africa) or variations in patient demographics (e.g., children). The BraTS-2024 challenge provides a platform to address these issues. This study presents our methodology for segmenting tumors in the BraTS-2024 SSA and Pediatric Tumors tasks using MedNeXt, comprehensive model ensembling, and thorough postprocessing. Our approach demonstrated strong performance on the unseen validation set, achieving an average Dice Similarity Coefficient (DSC) of 0.896 on the BraTS-2024 SSA dataset and an average DSC of 0.830 on the BraTS Pediatric Tumor dataset. Additionally, our method achieved an average Hausdorff Distance (HD95) of 14.682 on the BraTS-2024 SSA dataset and an average HD95 of 37.508 on the BraTS Pediatric dataset.Our GitHub repository can be accessed here: Project Repository: https://github.com/python-arch/BioMbz-Optimizing-Brain-Tumor-Segmentation-with-MedNeXt-BraTS-2024-SSA-and-Pediatrics
☆ Self-Calibrated CLIP for Training-Free Open-Vocabulary Segmentation
Recent advancements in pre-trained vision-language models like CLIP, have enabled the task of open-vocabulary segmentation. CLIP demonstrates impressive zero-shot capabilities in various downstream tasks that require holistic image understanding. However, due to its image-level pre-training, CLIP struggles to capture local details, resulting in poor performance in segmentation tasks. Our analysis reveals that anomaly tokens emerge during the forward pass, drawing excessive attention from normal patch tokens, thereby diminishing spatial awareness. To address this issue, we propose Self-Calibrated CLIP (SC-CLIP), a training-free method that calibrates CLIP to produce finer-grained representations while preserving its original generalization ability, without introducing new parameters or relying on additional backbones. Specifically, we first identify and resolve the anomaly tokens to mitigate their negative impact. Next, we enhance feature discriminability and attention correlation by leveraging the semantic consistency found in CLIP's intermediate features. Furthermore, we employ multi-level feature fusion to enrich details. Collectively, these strategies enhance CLIP's feature representation with greater granularity and coherence. Experimental results demonstrate the effectiveness of SC-CLIP, achieving state-of-the-art results across eight semantic segmentation datasets and surpassing previous methods by 9.5%. Notably, SC-CLIP boosts the performance of vanilla CLIP ViT-L/14 by 6.8 times. Our source code is available at https://github.com/SuleBai/SC-CLIP.
☆ PanoLlama: Generating Endless and Coherent Panoramas with Next-Token-Prediction LLMs
Panoramic Image Generation has emerged as an important task in image generation, driven by growing demands for large-scale visuals in creative and technical applications. While diffusion models have dominated this field, they face inherent limitations, including the multilevel-coherence challenge and implementation complexity, leading to suboptimal outcomes. In this paper, we introduce PanoLlama, a novel framework that redefines panoramic image generation as a next-token prediction task. Building on the pre-trained LlamaGen architecture, we generate images in an autoregressive manner and develop an expansion strategy to handle size limitations. This method aligns with the image token structure in a crop-wise and training-free manner, resulting in high-quality panoramas with minimal seams and maximum scalability. PanoLlama demonstrates its effectiveness and versatility in our experiments, achieving the best overall performance while offering flexibility for multi-scale, multi-layout, and multi-guidance generation. It overcomes the challenges that diffusion-based methods fail to address, setting a new paradigm for panoramic image generation tasks. Code is available at https://github.com/0606zt/PanoLlama.
Generalizable Single-view Object Pose Estimation by Two-side Generating and Matching WACV 2025
In this paper, we present a novel generalizable object pose estimation method to determine the object pose using only one RGB image. Unlike traditional approaches that rely on instance-level object pose estimation and necessitate extensive training data, our method offers generalization to unseen objects without extensive training, operates with a single reference image of the object, and eliminates the need for 3D object models or multiple views of the object. These characteristics are achieved by utilizing a diffusion model to generate novel-view images and conducting a two-sided matching on these generated images. Quantitative experiments demonstrate the superiority of our method over existing pose estimation techniques across both synthetic and real-world datasets. Remarkably, our approach maintains strong performance even in scenarios with significant viewpoint changes, highlighting its robustness and versatility in challenging conditions. The code will be re leased at https://github.com/scy639/Gen2SM.
comment: Accepted by WACV 2025, not published yet
☆ SVTRv2: CTC Beats Encoder-Decoder Models in Scene Text Recognition
Connectionist temporal classification (CTC)-based scene text recognition (STR) methods, e.g., SVTR, are widely employed in OCR applications, mainly due to their simple architecture, which only contains a visual model and a CTC-aligned linear classifier, and therefore fast inference. However, they generally have worse accuracy than encoder-decoder-based methods (EDTRs), particularly in challenging scenarios. In this paper, we propose SVTRv2, a CTC model that beats leading EDTRs in both accuracy and inference speed. SVTRv2 introduces novel upgrades to handle text irregularity and utilize linguistic context, which endows it with the capability to deal with challenging and diverse text instances. First, a multi-size resizing (MSR) strategy is proposed to adaptively resize the text and maintain its readability. Meanwhile, we introduce a feature rearrangement module (FRM) to ensure that visual features accommodate the alignment requirement of CTC well, thus alleviating the alignment puzzle. Second, we propose a semantic guidance module (SGM). It integrates linguistic context into the visual model, allowing it to leverage language information for improved accuracy. Moreover, SGM can be omitted at the inference stage and would not increase the inference cost. We evaluate SVTRv2 in both standard and recent challenging benchmarks, where SVTRv2 is fairly compared with 24 mainstream STR models across multiple scenarios, including different types of text irregularity, languages, and long text. The results indicate that SVTRv2 surpasses all the EDTRs across the scenarios in terms of accuracy and speed. Code is available at https://github.com/Topdu/OpenOCR.
☆ ResCLIP: Residual Attention for Training-free Dense Vision-language Inference
While vision-language models like CLIP have shown remarkable success in open-vocabulary tasks, their application is currently confined to image-level tasks, and they still struggle with dense predictions. Recent works often attribute such deficiency in dense predictions to the self-attention layers in the final block, and have achieved commendable results by modifying the original query-key attention to self-correlation attention, (e.g., query-query and key-key attention). However, these methods overlook the cross-correlation attention (query-key) properties, which capture the rich spatial correspondence. In this paper, we reveal that the cross-correlation of the self-attention in CLIP's non-final layers also exhibits localization properties. Therefore, we propose the Residual Cross-correlation Self-attention (RCS) module, which leverages the cross-correlation self-attention from intermediate layers to remold the attention in the final block. The RCS module effectively reorganizes spatial information, unleashing the localization potential within CLIP for dense vision-language inference. Furthermore, to enhance the focus on regions of the same categories and local consistency, we propose the Semantic Feedback Refinement (SFR) module, which utilizes semantic segmentation maps to further adjust the attention scores. By integrating these two strategies, our method, termed ResCLIP, can be easily incorporated into existing approaches as a plug-and-play module, significantly boosting their performance in dense vision-language inference. Extensive experiments across multiple standard benchmarks demonstrate that our method surpasses state-of-the-art training-free methods, validating the effectiveness of the proposed approach. Code is available at https://github.com/yvhangyang/ResCLIP.
☆ Unveiling the Superior Paradigm: A Comparative Study of Source-Free Domain Adaptation and Unsupervised Domain Adaptation
In domain adaptation, there are two popular paradigms: Unsupervised Domain Adaptation (UDA), which aligns distributions using source data, and Source-Free Domain Adaptation (SFDA), which leverages pre-trained source models without accessing source data. Evaluating the superiority of UDA versus SFDA is an open and timely question with significant implications for deploying adaptive algorithms in practical applications. In this study, we demonstrate through predictive coding theory and extensive experiments on multiple benchmark datasets that SFDA generally outperforms UDA in real-world scenarios. Specifically, SFDA offers advantages in time efficiency, storage requirements, targeted learning objectives, reduced risk of negative transfer, and increased robustness against overfitting. Notably, SFDA is particularly effective in mitigating negative transfer when there are substantial distribution discrepancies between source and target domains. Additionally, we introduce a novel data-model fusion scenario, where data sharing among stakeholders varies (e.g., some provide raw data while others provide only models), and reveal that traditional UDA and SFDA methods do not fully exploit their potential in this context. To address this limitation and capitalize on the strengths of SFDA, we propose a novel weight estimation method that effectively integrates available source data into multi-SFDA (MSFDA) approaches, thereby enhancing model performance within this scenario. This work provides a thorough analysis of UDA versus SFDA and advances a practical approach to model adaptation across diverse real-world environments.
comment: Under review
☆ Unveil Inversion and Invariance in Flow Transformer for Versatile Image Editing
Leveraging the large generative prior of the flow transformer for tuning-free image editing requires authentic inversion to project the image into the model's domain and a flexible invariance control mechanism to preserve non-target contents. However, the prevailing diffusion inversion performs deficiently in flow-based models, and the invariance control cannot reconcile diverse rigid and non-rigid editing tasks. To address these, we systematically analyze the \textbf{inversion and invariance} control based on the flow transformer. Specifically, we unveil that the Euler inversion shares a similar structure to DDIM yet is more susceptible to the approximation error. Thus, we propose a two-stage inversion to first refine the velocity estimation and then compensate for the leftover error, which pivots closely to the model prior and benefits editing. Meanwhile, we propose the invariance control that manipulates the text features within the adaptive layer normalization, connecting the changes in the text prompt to image semantics. This mechanism can simultaneously preserve the non-target contents while allowing rigid and non-rigid manipulation, enabling a wide range of editing types such as visual text, quantity, facial expression, etc. Experiments on versatile scenarios validate that our framework achieves flexible and accurate editing, unlocking the potential of the flow transformer for versatile image editing.
☆ VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding
Large Vision-Language Models (LVLMs) have demonstrated outstanding performance in multimodal task reasoning. However, they often generate responses that appear plausible yet do not accurately reflect the visual content, a phenomenon known as hallucination. Recent approaches have introduced training-free methods that mitigate hallucinations by adjusting the decoding strategy during inference stage, typically attributing hallucination to the language model itself. Our analysis, however, reveals that distortions in the visual encoding process significantly affect the model's reasoning accuracy. Specifically, earlier visual layers may retain key features but gradually distort as the information propagates toward the output layer. Building on these findings, we propose a novel hallucination-mitigation method from the visual encoding perspective: \textbf{V}isu\textbf{a}l \textbf{L}ayer Fus\textbf{i}on Contrastive \textbf{D}ecoding (VaLiD). This method utilizes uncertainty to guide the selection of visual hidden layers, correcting distortions in the visual encoding process and thereby improving the reliability of generated text. Experimental results show that VaLiD effectively reduces hallucinations across various benchmarks, achieving state-of-the-art performance compared to multiple baseline methods.
comment: 15 pages
☆ Modality Alignment Meets Federated Broadcasting
Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data. Despite advancements in homogeneous data scenarios, maintaining performance between the global and local clients in FL over heterogeneous data remains challenging due to data distribution variations that degrade model convergence and increase computational costs. This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices. Inspired by multi-modal learning paradigms like CLIP, this design aligns cross-client learning by treating server-client communications akin to multi-modal broadcasting. We initialize with a pre-trained model to mitigate overfitting, updating select parameters through low-rank adaptation (LoRA) to meet computational demand and performance efficiency. Local models train independently and communicate updates to the server, which aggregates parameters via a query-based method, facilitating cross-client knowledge sharing and performance improvement under extreme heterogeneity. Extensive experiments on benchmark datasets demonstrate the efficacy in maintaining generalization and robustness, even in highly heterogeneous settings.
☆ Variable-size Symmetry-based Graph Fourier Transforms for image compression
Modern compression systems use linear transformations in their encoding and decoding processes, with transforms providing compact signal representations. While multiple data-dependent transforms for image/video coding can adapt to diverse statistical characteristics, assembling large datasets to learn each transform is challenging. Also, the resulting transforms typically lack fast implementation, leading to significant computational costs. Thus, despite many papers proposing new transform families, the most recent compression standards predominantly use traditional separable sinusoidal transforms. This paper proposes integrating a new family of Symmetry-based Graph Fourier Transforms (SBGFTs) of variable sizes into a coding framework, focusing on the extension from our previously introduced 8x8 SBGFTs to the general case of NxN grids. SBGFTs are non-separable transforms that achieve sparse signal representation while maintaining low computational complexity thanks to their symmetry properties. Their design is based on our proposed algorithm, which generates symmetric graphs on the grid by adding specific symmetrical connections between nodes and does not require any data-dependent adaptation. Furthermore, for video intra-frame coding, we exploit the correlations between optimal graphs and prediction modes to reduce the cardinality of the transform sets, thus proposing a low-complexity framework. Experiments show that SBGFTs outperform the primary transforms integrated in the explicit Multiple Transform Selection (MTS) used in the latest VVC intra-coding, providing a bit rate saving percentage of 6.23%, with only a marginal increase in average complexity. A MATLAB implementation of the proposed algorithm is available online at [1].
☆ FastTrackTr:Towards Fast Multi-Object Tracking with Transformers
Transformer-based multi-object tracking (MOT) methods have captured the attention of many researchers in recent years. However, these models often suffer from slow inference speeds due to their structure or other issues. To address this problem, we revisited the Joint Detection and Tracking (JDT) method by looking back at past approaches. By integrating the original JDT approach with some advanced theories, this paper employs an efficient method of information transfer between frames on the DETR, constructing a fast and novel JDT-type MOT framework: FastTrackTr. Thanks to the superiority of this information transfer method, our approach not only reduces the number of queries required during tracking but also avoids the excessive introduction of network structures, ensuring model simplicity. Experimental results indicate that our method has the potential to achieve real-time tracking and exhibits competitive tracking accuracy across multiple datasets.
☆ A Novel Data Augmentation Tool for Enhancing Machine Learning Classification: A New Application of the Higher Order Dynamic Mode Decomposition for Improved Cardiac Disease Identification
In this work, a data-driven, modal decomposition method, the higher order dynamic mode decomposition (HODMD), is combined with a convolutional neural network (CNN) in order to improve the classification accuracy of several cardiac diseases using echocardiography images. The HODMD algorithm is used first as feature extraction technique for the echocardiography datasets, taken from both healthy mice and mice afflicted by different cardiac diseases (Diabetic Cardiomyopathy, Obesity, TAC Hypertrophy and Myocardial Infarction). A total number of 130 echocardiography datasets are used in this work. The dominant features related to each cardiac disease were identified and represented by the HODMD algorithm as a set of DMD modes, which then are used as the input to the CNN. In a way, the database dimension was augmented, hence HODMD has been used, for the first time to the authors knowledge, for data augmentation in the machine learning framework. Six sets of the original echocardiography databases were hold out to be used as unseen data to test the performance of the CNN. In order to demonstrate the efficiency of the HODMD technique, two testcases are studied: the CNN is first trained using the original echocardiography images only, and second training the CNN using a combination of the original images and the DMD modes. The classification performance of the designed trained CNN shows that combining the original images with the DMD modes improves the results in all the testcases, as it improves the accuracy by up to 22%. These results show the great potential of using the HODMD algorithm as a data augmentation technique.
comment: 12 pages, 6 figures, 2 tables
☆ LRSAA: Large-scale Remote Sensing Image Target Recognition and Automatic Annotation
This paper presents a method for object recognition and automatic labeling in large-area remote sensing images called LRSAA. The method integrates YOLOv11 and MobileNetV3-SSD object detection algorithms through ensemble learning to enhance model performance. Furthermore, it employs Poisson disk sampling segmentation techniques and the EIOU metric to optimize the training and inference processes of segmented images, followed by the integration of results. This approach not only reduces the demand for computational resources but also achieves a good balance between accuracy and speed. The source code for this project has been made publicly available on https://github.com/anaerovane/LRSAA.
comment: arXiv admin note: text overlap with arXiv:2411.07802
☆ Medical Slice Transformer: Improved Diagnosis and Explainability on 3D Medical Images with DINOv2
MRI and CT are essential clinical cross-sectional imaging techniques for diagnosing complex conditions. However, large 3D datasets with annotations for deep learning are scarce. While methods like DINOv2 are encouraging for 2D image analysis, these methods have not been applied to 3D medical images. Furthermore, deep learning models often lack explainability due to their "black-box" nature. This study aims to extend 2D self-supervised models, specifically DINOv2, to 3D medical imaging while evaluating their potential for explainable outcomes. We introduce the Medical Slice Transformer (MST) framework to adapt 2D self-supervised models for 3D medical image analysis. MST combines a Transformer architecture with a 2D feature extractor, i.e., DINOv2. We evaluate its diagnostic performance against a 3D convolutional neural network (3D ResNet) across three clinical datasets: breast MRI (651 patients), chest CT (722 patients), and knee MRI (1199 patients). Both methods were tested for diagnosing breast cancer, predicting lung nodule dignity, and detecting meniscus tears. Diagnostic performance was assessed by calculating the Area Under the Receiver Operating Characteristic Curve (AUC). Explainability was evaluated through a radiologist's qualitative comparison of saliency maps based on slice and lesion correctness. P-values were calculated using Delong's test. MST achieved higher AUC values compared to ResNet across all three datasets: breast (0.94$\pm$0.01 vs. 0.91$\pm$0.02, P=0.02), chest (0.95$\pm$0.01 vs. 0.92$\pm$0.02, P=0.13), and knee (0.85$\pm$0.04 vs. 0.69$\pm$0.05, P=0.001). Saliency maps were consistently more precise and anatomically correct for MST than for ResNet. Self-supervised 2D models like DINOv2 can be effectively adapted for 3D medical imaging using MST, offering enhanced diagnostic accuracy and explainability compared to convolutional neural networks.
☆ PG-SLAM: Photo-realistic and Geometry-aware RGB-D SLAM in Dynamic Environments
Simultaneous localization and mapping (SLAM) has achieved impressive performance in static environments. However, SLAM in dynamic environments remains an open question. Many methods directly filter out dynamic objects, resulting in incomplete scene reconstruction and limited accuracy of camera localization. The other works express dynamic objects by point clouds, sparse joints, or coarse meshes, which fails to provide a photo-realistic representation. To overcome the above limitations, we propose a photo-realistic and geometry-aware RGB-D SLAM method by extending Gaussian splatting. Our method is composed of three main modules to 1) map the dynamic foreground including non-rigid humans and rigid items, 2) reconstruct the static background, and 3) localize the camera. To map the foreground, we focus on modeling the deformations and/or motions. We consider the shape priors of humans and exploit geometric and appearance constraints of humans and items. For background mapping, we design an optimization strategy between neighboring local maps by integrating appearance constraint into geometric alignment. As to camera localization, we leverage both static background and dynamic foreground to increase the observations for noise compensation. We explore the geometric and appearance constraints by associating 3D Gaussians with 2D optical flows and pixel patches. Experiments on various real-world datasets demonstrate that our method outperforms state-of-the-art approaches in terms of camera localization and scene representation. Source codes will be publicly available upon paper acceptance.
☆ Symmetric Perception and Ordinal Regression for Detecting Scoliosis Natural Image
Scoliosis is one of the most common diseases in adolescents. Traditional screening methods for the scoliosis usually use radiographic examination, which requires certified experts with medical instruments and brings the radiation risk. Considering such requirement and inconvenience, we propose to use natural images of the human back for wide-range scoliosis screening, which is a challenging problem. In this paper, we notice that the human back has a certain degree of symmetry, and asymmetrical human backs are usually caused by spinal lesions. Besides, scoliosis severity levels have ordinal relationships. Taking inspiration from this, we propose a dual-path scoliosis detection network with two main modules: symmetric feature matching module (SFMM) and ordinal regression head (ORH). Specifically, we first adopt a backbone to extract features from both the input image and its horizontally flipped image. Then, we feed the two extracted features into the SFMM to capture symmetric relationships. Finally, we use the ORH to transform the ordinal regression problem into a series of binary classification sub-problems. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods as well as human performance, which provides a promising and economic solution to wide-range scoliosis screening. In particular, our method achieves accuracies of 95.11% and 81.46% in estimation of general severity level and fine-grained severity level of the scoliosis, respectively.
comment: This paper has been accepted by Applied Intelligence
♻ ☆ The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn)
Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time constraints or image artifacts, such as patient motion. Consequently, the ability to substitute missing modalities and gain segmentation performance is highly desirable and necessary for the broader adoption of these algorithms in the clinical routine. In this work, we present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided. The ultimate aim is to facilitate automated brain tumor segmentation pipelines. The image dataset used in the benchmark is diverse and multi-modal, created through collaboration with various hospitals and research institutions.
comment: Technical report of BraSyn
♻ ☆ Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: 22 pages; 12 figures; Under Review
♻ ☆ EZSR: Event-based Zero-Shot Recognition
This paper studies zero-shot object recognition using event camera data. Guided by CLIP, which is pre-trained on RGB images, existing approaches achieve zero-shot object recognition by optimizing embedding similarities between event data and RGB images respectively encoded by an event encoder and the CLIP image encoder. Alternatively, several methods learn RGB frame reconstructions from event data for the CLIP image encoder. However, they often result in suboptimal zero-shot performance. This study develops an event encoder without relying on additional reconstruction networks. We theoretically analyze the performance bottlenecks of previous approaches: the embedding optimization objectives are prone to suffer from the spatial sparsity of event data, causing semantic misalignments between the learned event embedding space and the CLIP text embedding space. To mitigate the issue, we explore a scalar-wise modulation strategy. Furthermore, to scale up the number of events and RGB data pairs for training, we also study a pipeline for synthesizing event data from static RGB images in mass. Experimentally, we demonstrate an attractive scaling property in the number of parameters and synthesized data. We achieve superior zero-shot object recognition performance on extensive standard benchmark datasets, even compared with past supervised learning approaches. For example, our model with a ViT/B-16 backbone achieves 47.84% zero-shot accuracy on the N-ImageNet dataset.
♻ ☆ A new baseline for edge detection: Make Encoder-Decoder great again
The performance of deep learning based edge detector has far exceeded that of humans, but the huge computational cost and complex training strategy hinder its further development and application. In this paper, we eliminate these complexities with a vanilla encoder-decoder based detector. Firstly, we design a bilateral encoder to decouple the extraction process of location features and semantic features. Since the location branch no longer provides cues for the semantic branch, the richness of features can be further compressed, which is the key to make our model more compact. We propose a cascaded feature fusion decoder, where the location features are progressively refined by semantic features. The refined location features are the only basis for generating the edge map. The coarse original location features and semantic features are avoided from direct contact with the final result. So the noise in the location features and the location error in the semantic features can be suppressed in the generated edge map. The proposed New Baseline for Edge Detection (NBED) achieves superior performance consistently across multiple edge detection benchmarks, even compared with those methods with huge computational cost and complex training strategy. The ODS of NBED on BSDS500 is 0.838, achieving state-of-the-art performance. Our study shows that what really matters in the current edge detection is high-quality features, and we can make the encoder-decoder based detector great again even without complex training strategies and huge computational cost. The code is available at https://github.com/Li-yachuan/NBED.
♻ ☆ LV-UNet: A Lightweight and Vanilla Model for Medical Image Segmentation
While large models have achieved significant progress in computer vision, challenges such as optimization complexity, the intricacy of transformer architectures, computational constraints, and practical application demands highlight the importance of simpler model designs in medical image segmentation. This need is particularly pronounced in mobile medical devices, which require lightweight, deployable models with real-time performance. However, existing lightweight models often suffer from poor robustness across datasets, limiting their widespread adoption. To address these challenges, this paper introduces LV-UNet, a lightweight and vanilla model that leverages pre-trained MobileNetv3-Large backbones and incorporates fusible modules. LV-UNet employs an enhanced deep training strategy and switches to a deployment mode during inference by re-parametrization, significantly reducing parameter count and computational overhead. Experimental results on ISIC 2016, BUSI, CVC-ClinicDB, CVC-ColonDB, and Kvair-SEG datasets demonstrate a better trade-off between performance and the computational load. The code will be released at \url{https://github.com/juntaoJianggavin/LV-UNet}.
comment: Accepted by IEEE BIBM2024 ML4BMI workshop
♻ ☆ Towards Unsupervised Blind Face Restoration using Diffusion Prior WACV 2025
Blind face restoration methods have shown remarkable performance, particularly when trained on large-scale synthetic datasets with supervised learning. These datasets are often generated by simulating low-quality face images with a handcrafted image degradation pipeline. The models trained on such synthetic degradations, however, cannot deal with inputs of unseen degradations. In this paper, we address this issue by using only a set of input images, with unknown degradations and without ground truth targets, to fine-tune a restoration model that learns to map them to clean and contextually consistent outputs. We utilize a pre-trained diffusion model as a generative prior through which we generate high quality images from the natural image distribution while maintaining the input image content through consistency constraints. These generated images are then used as pseudo targets to fine-tune a pre-trained restoration model. Unlike many recent approaches that employ diffusion models at test time, we only do so during training and thus maintain an efficient inference-time performance. Extensive experiments show that the proposed approach can consistently improve the perceptual quality of pre-trained blind face restoration models while maintaining great consistency with the input contents. Our best model also achieves the state-of-the-art results on both synthetic and real-world datasets.
comment: WACV 2025. Project page: https://dt-bfr.github.io/
♻ ☆ AVID: Adapting Video Diffusion Models to World Models
Large-scale generative models have achieved remarkable success in a number of domains. However, for sequential decision-making problems, such as robotics, action-labelled data is often scarce and therefore scaling-up foundation models for decision-making remains a challenge. A potential solution lies in leveraging widely-available unlabelled videos to train world models that simulate the consequences of actions. If the world model is accurate, it can be used to optimize decision-making in downstream tasks. Image-to-video diffusion models are already capable of generating highly realistic synthetic videos. However, these models are not action-conditioned, and the most powerful models are closed-source which means they cannot be finetuned. In this work, we propose to adapt pretrained video diffusion models to action-conditioned world models, without access to the parameters of the pretrained model. Our approach, AVID, trains an adapter on a small domain-specific dataset of action-labelled videos. AVID uses a learned mask to modify the intermediate outputs of the pretrained model and generate accurate action-conditioned videos. We evaluate AVID on video game and real-world robotics data, and show that it outperforms existing baselines for diffusion model adaptation.1 Our results demonstrate that if utilized correctly, pretrained video models have the potential to be powerful tools for embodied AI.
comment: Project Webpage: https://sites.google.com/view/avid-world-model-adapters/home
♻ ☆ Efficient 3D Instance Mapping and Localization with Neural Fields
We tackle the problem of learning an implicit scene representation for 3D instance segmentation from a sequence of posed RGB images. Towards this, we introduce 3DIML, a novel framework that efficiently learns a neural label field which can render 3D instance segmentation masks from novel viewpoints. Opposed to prior art that optimizes a neural field in a self-supervised manner, requiring complicated training procedures and loss function design, 3DIML leverages a two-phase process. The first phase, InstanceMap, takes as input 2D segmentation masks of the image sequence generated by a frontend instance segmentation model, and associates corresponding masks across images to 3D labels. These almost 3D-consistent pseudolabel masks are then used in the second phase, InstanceLift, to supervise the training of a neural label field, which interpolates regions missed by InstanceMap and resolves ambiguities. Additionally, we introduce InstanceLoc, which enables near realtime localization of instance masks given a trained neural label field. We evaluate 3DIML on sequences from the Replica and ScanNet datasets and demonstrate its effectiveness under mild assumptions for the image sequences. We achieve a large practical speedup over existing implicit scene representation methods with comparable quality, showcasing its potential to facilitate faster and more effective 3D scene understanding.
♻ ☆ Towards Full-scene Domain Generalization in Multi-agent Collaborative Bird's Eye View Segmentation for Connected and Autonomous Driving
Collaborative perception has recently gained significant attention in autonomous driving, improving perception quality by enabling the exchange of additional information among vehicles. However, deploying collaborative perception systems can lead to domain shifts due to diverse environmental conditions and data heterogeneity among connected and autonomous vehicles (CAVs). To address these challenges, we propose a unified domain generalization framework to be utilized during the training and inference stages of collaborative perception. In the training phase, we introduce an Amplitude Augmentation (AmpAug) method to augment low-frequency image variations, broadening the model's ability to learn across multiple domains. We also employ a meta-consistency training scheme to simulate domain shifts, optimizing the model with a carefully designed consistency loss to acquire domain-invariant representations. In the inference phase, we introduce an intra-system domain alignment mechanism to reduce or potentially eliminate the domain discrepancy among CAVs prior to inference. Extensive experiments substantiate the effectiveness of our method in comparison with the existing state-of-the-art works.
comment: Accepted by IEEE Transactions on Intelligent Transportation Systems (TITS)
♻ ☆ Accelerating Non-Maximum Suppression: A Graph Theory Perspective
Non-maximum suppression (NMS) is an indispensable post-processing step in object detection. With the continuous optimization of network models, NMS has become the ``last mile'' to enhance the efficiency of object detection. This paper systematically analyzes NMS from a graph theory perspective for the first time, revealing its intrinsic structure. Consequently, we propose two optimization methods, namely QSI-NMS and BOE-NMS. The former is a fast recursive divide-and-conquer algorithm with negligible mAP loss, and its extended version (eQSI-NMS) achieves optimal complexity of $\mathcal{O}(n\log n)$. The latter, concentrating on the locality of NMS, achieves an optimization at a constant level without an mAP loss penalty. Moreover, to facilitate rapid evaluation of NMS methods for researchers, we introduce NMS-Bench, the first benchmark designed to comprehensively assess various NMS methods. Taking the YOLOv8-N model on MS COCO 2017 as the benchmark setup, our method QSI-NMS provides $6.2\times$ speed of original NMS on the benchmark, with a $0.1\%$ decrease in mAP. The optimal eQSI-NMS, with only a $0.3\%$ mAP decrease, achieves $10.7\times$ speed. Meanwhile, BOE-NMS exhibits $5.1\times$ speed with no compromise in mAP.
♻ ☆ Dataset Distillation via Curriculum Data Synthesis in Large Data Era
Dataset distillation or condensation aims to generate a smaller but representative subset from a large dataset, which allows a model to be trained more efficiently, meanwhile evaluating on the original testing data distribution to achieve decent performance. Previous decoupled methods like SRe$^2$L simply use a unified gradient update scheme for synthesizing data from Gaussian noise, while, we notice that the initial several update iterations will determine the final outline of synthesis, thus an improper gradient update strategy may dramatically affect the final generation quality. To address this, we introduce a simple yet effective global-to-local gradient refinement approach enabled by curriculum data augmentation ($\texttt{CDA}$) during data synthesis. The proposed framework achieves the current published highest accuracy on both large-scale ImageNet-1K and 21K with 63.2% under IPC (Images Per Class) 50 and 36.1% under IPC 20, using a regular input resolution of 224$\times$224 with faster convergence speed and less synthetic time. The proposed model outperforms the current state-of-the-art methods like SRe$^2$L, TESLA, and MTT by more than 4% Top-1 accuracy on ImageNet-1K/21K and for the first time, reduces the gap to its full-data training counterparts to less than absolute 15%. Moreover, this work represents the inaugural success in dataset distillation on the larger-scale ImageNet-21K dataset under the standard 224$\times$224 resolution. Our code and distilled ImageNet-21K dataset of 20 IPC, 2K recovery budget are available at https://github.com/VILA-Lab/SRe2L/tree/main/CDA.
comment: TMLR 2024 Camera-ready Version. Code and distilled ImageNet-21K dataset are available at https://github.com/VILA-Lab/SRe2L/tree/main/CDA
♻ ☆ Improved GUI Grounding via Iterative Narrowing
Graphical User Interface (GUI) grounding plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for one-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework that employs an iterative narrowing mechanism to improve the performance of both general and fine-tuned models in GUI grounding by up to 61%. For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
comment: Code available at https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
♻ ☆ Capsule Vision 2024 Challenge: Multi-Class Abnormality Classification for Video Capsule Endoscopy
We present the Capsule Vision 2024 Challenge: Multi-Class Abnormality Classification for Video Capsule Endoscopy. It was virtually organized by the Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, Danube Private University, Krems, Austria, and Medical Imaging and Signal Analysis Hub (MISAHUB) in collaboration with the 9th International Conference on Computer Vision & Image Processing (CVIP 2024) being organized by the Indian Institute of Information Technology, Design and Manufacturing (IIITDM) Kancheepuram, Chennai, India. This document provides an overview of the challenge, including the registration process, rules, submission format, description of the datasets used, qualified team rankings, all team descriptions, and the benchmarking results reported by the organizers.
comment: 10 pages
♻ ☆ BeautyBank: Encoding Facial Makeup in Latent Space
The advancement of makeup transfer, editing, and image encoding has demonstrated their effectiveness and superior quality. However, existing makeup works primarily focus on low-dimensional features such as color distributions and patterns, limiting their versatillity across a wide range of makeup applications. Futhermore, existing high-dimensional latent encoding methods mainly target global features such as structure and style, and are less effective for tasks that require detailed attention to local color and pattern features of makeup. To overcome these limitations, we propose BeautyBank, a novel makeup encoder that disentangles pattern features of bare and makeup faces. Our method encodes makeup features into a high-dimensional space, preserving essential details necessary for makeup reconstruction and broadening the scope of potential makeup research applications. We also propose a Progressive Makeup Tuning (PMT) strategy, specifically designed to enhance the preservation of detailed makeup features while preventing the inclusion of irrelevant attributes. We further explore novel makeup applications, including facial image generation with makeup injection and makeup similarity measure. Extensive empirical experiments validate that our method offers superior task adaptability and holds significant potential for widespread application in various makeup-related fields. Furthermore, to address the lack of large-scale, high-quality paired makeup datasets in the field, we constructed the Bare-Makeup Synthesis Dataset (BMS), comprising 324,000 pairs of 512x512 pixel images of bare and makeup-enhanced faces.
♻ ☆ ClickTrack: Towards Real-time Interactive Single Object Tracking
Single object tracking(SOT) relies on precise object bounding box initialization. In this paper, we reconsidered the deficiencies in the current approaches to initializing single object trackers and propose a new paradigm for single object tracking algorithms, ClickTrack, a new paradigm using clicking interaction for real-time scenarios. Moreover, click as an input type inherently lack hierarchical information. To address ambiguity in certain special scenarios, we designed the Guided Click Refiner(GCR), which accepts point and optional textual information as inputs, transforming the point into the bounding box expected by the operator. The bounding box will be used as input of single object trackers. Experiments on LaSOT and GOT-10k benchmarks show that tracker combined with GCR achieves stable performance in real-time interactive scenarios. Furthermore, we explored the integration of GCR into the Segment Anything model(SAM), significantly reducing ambiguity issues when SAM receives point inputs.
♻ ☆ ZigMa: A DiT-style Zigzag Mamba Diffusion Model ECCV 2024
The diffusion model has long been plagued by scalability and quadratic complexity issues, especially within transformer-based structures. In this study, we aim to leverage the long sequence modeling capability of a State-Space Model called Mamba to extend its applicability to visual data generation. Firstly, we identify a critical oversight in most current Mamba-based vision methods, namely the lack of consideration for spatial continuity in the scan scheme of Mamba. Secondly, building upon this insight, we introduce a simple, plug-and-play, zero-parameter method named Zigzag Mamba, which outperforms Mamba-based baselines and demonstrates improved speed and memory utilization compared to transformer-based baselines. Lastly, we integrate Zigzag Mamba with the Stochastic Interpolant framework to investigate the scalability of the model on large-resolution visual datasets, such as FacesHQ $1024\times 1024$ and UCF101, MultiModal-CelebA-HQ, and MS COCO $256\times 256$ . Code will be released at https://taohu.me/zigma/
comment: ECCV 2024 Project Page: https://taohu.me/zigma/
♻ ☆ MotionFix: Text-Driven 3D Human Motion Editing SIGGRAPH
The focus of this paper is on 3D motion editing. Given a 3D human motion and a textual description of the desired modification, our goal is to generate an edited motion as described by the text. The key challenges include the scarcity of training data and the need to design a model that accurately edits the source motion. In this paper, we address both challenges. We propose a methodology to semi-automatically collect a dataset of triplets comprising (i) a source motion, (ii) a target motion, and (iii) an edit text, introducing the new MotionFix dataset. Access to this data allows us to train a conditional diffusion model, TMED, that takes both the source motion and the edit text as input. We develop several baselines to evaluate our model, comparing it against models trained solely on text-motion pair datasets, and demonstrate the superior performance of our model trained on triplets. We also introduce new retrieval-based metrics for motion editing, establishing a benchmark on the evaluation set of MotionFix. Our results are promising, paving the way for further research in fine-grained motion generation. Code, models, and data are available at https://motionfix.is.tue.mpg.de/ .
comment: SIGGRAPH Asia 2024 Camera Ready, Project page: https://motionfix.is.tue.mpg.de
♻ ☆ DenseFusion-1M: Merging Vision Experts for Comprehensive Multimodal Perception NeurIPS 2024
Existing Multimodal Large Language Models (MLLMs) increasingly emphasize complex understanding of various visual elements, including multiple objects, text information, and spatial relations. Their development for comprehensive visual perception hinges on the availability of high-quality image-text datasets that offer diverse visual elements and throughout image descriptions. However, the scarcity of such hyper-detailed datasets currently hinders progress within the MLLM community. The bottleneck stems from the limited perceptual capabilities of current caption engines, which fall short in providing complete and accurate annotations. To facilitate the cutting-edge research of MLLMs on comprehensive vision perception, we thereby propose Perceptual Fusion, using a low-budget but highly effective caption engine for complete and accurate image descriptions. Specifically, Perceptual Fusion integrates diverse perception experts as image priors to provide explicit information on visual elements and adopts an efficient MLLM as a centric pivot to mimic advanced MLLMs' perception abilities. We carefully select 1M highly representative images from uncurated LAION dataset and generate dense descriptions using our engine, dubbed DenseFusion-1M. Extensive experiments validate that our engine outperforms its counterparts, where the resulting dataset significantly improves the perception and cognition abilities of existing MLLMs across diverse vision-language benchmarks, especially with high-resolution images as inputs. The dataset and code are publicly available at https://github.com/baaivision/DenseFusion.
comment: Accepted by NeurIPS 2024. Project is available at https://github.com/baaivision/DenseFusion
♻ ☆ Efficient Terrain Stochastic Differential Efficient Terrain Stochastic Differential Equations for Multipurpose Digital Elevation Model Restoration
Digital Elevation Models (DEMs) are indispensable in the fields of remote sensing and photogrammetry, with their refinement and enhancement being critical for a diverse array of applications. Numerous methods have been developed for enhancing DEMs, but most of them concentrate on tackling specific tasks individually. This paper presents a unified generative model for multipurpose DEM restoration, diverging from the conventional approach that typically targets isolated tasks. We modify the mean-reverting stochastic differential equation, to generally refine the DEMs by conditioning on the learned terrain priors. The proposed Efficient Terrain Stochastic Differential Equation (ET-SDE) models DEM degradation through SDE progression and restores it via a simulated reversal process. Leveraging efficient submodules with lightweight channel attention, this adapted SDE boosts DEM quality and streamlines the training process. The experiments show that ET-SDE achieves highly competitive restoration performance on super-resolution, void filling, denoising, and their combinations, compared to the state-of-the-art work. In addition to its restoration capabilities, ET-SDE also demonstrates faster inference speeds and the capacity to generalize across various tasks, particularly for larger patches of DEMs.
♻ ☆ Masked Autoencoders are Parameter-Efficient Federated Continual Learners
Federated learning is a specific distributed learning paradigm in which a central server aggregates updates from multiple clients' local models, thereby enabling the server to learn without requiring clients to upload their private data, maintaining data privacy. While existing federated learning methods are primarily designed for static data, real-world applications often require clients to learn new categories over time. This challenge necessitates the integration of continual learning techniques, leading to federated continual learning (FCL). To address both catastrophic forgetting and non-IID issues, we propose to use masked autoencoders (MAEs) as parameter-efficient federated continual learners, called pMAE. pMAE learns reconstructive prompt on the client side through image reconstruction using MAE. On the server side, it reconstructs the uploaded restore information to capture the data distribution across previous tasks and different clients, using these reconstructed images to fine-tune discriminative prompt and classifier parameters tailored for classification, thereby alleviating catastrophic forgetting and non-IID issues on a global scale. Experimental results demonstrate that pMAE achieves performance comparable to existing prompt-based methods and can enhance their effectiveness, particularly when using self-supervised pre-trained transformers as the backbone. Code is available at: https://github.com/ycheoo/pMAE.
Multimedia 3
☆ A review on Machine Learning based User-Centric Multimedia Streaming Techniques
The multimedia content and streaming are a major means of information exchange in the modern era and there is an increasing demand for such services. This coupled with the advancement of future wireless networks B5G/6G and the proliferation of intelligent handheld mobile devices, has facilitated the availability of multimedia content to heterogeneous mobile users. Apart from the conventional video, the 360$^o$ videos have gained popularity with the emerging virtual reality applications. All formats of videos (conventional and 360$^o$) undergo processing, compression, and transmission across dynamic wireless channels with restricted bandwidth to facilitate the streaming services. This causes video impairments, leading to quality degradation and poses challenges in delivering good Quality-of-Experience (QoE) to the viewers. The QoE is a prominent subjective quality measure to assess multimedia services. This requires end-to-end QoE evaluation. Efficient multimedia streaming techniques can improve the service quality while dealing with dynamic network and end-user challenges. A paradigm shift in user-centric multimedia services is envisioned with a focus on Machine Learning (ML) based QoE modeling and streaming strategies. This survey paper presents a comprehensive overview of the overall and continuous, time varying QoE modeling for the purpose of QoE management in multimedia services. It also examines the recent research on intelligent and adaptive multimedia streaming strategies, with a special emphasis on ML based techniques for video (conventional and 360$^o$) streaming. This paper discusses the overall and continuous QoE modeling to optimize the end-user viewing experience, efficient video streaming with a focus on user-centric strategies, associated datasets for modeling and streaming, along with existing shortcoming and open challenges.
comment: Computer Communications
☆ Advanced Learning-Based Inter Prediction for Future Video Coding
In the fourth generation Audio Video coding Standard (AVS4), the Inter Prediction Filter (INTERPF) reduces discontinuities between prediction and adjacent reconstructed pixels in inter prediction. The paper proposes a low complexity learning-based inter prediction (LLIP) method to replace the traditional INTERPF. LLIP enhances the filtering process by leveraging a lightweight neural network model, where parameters can be exported for efficient inference. Specifically, we extract pixels and coordinates utilized by the traditional INTERPF to form the training dataset. Subsequently, we export the weights and biases of the trained neural network model and implement the inference process without any third-party dependency, enabling seamless integration into video codec without relying on Libtorch, thus achieving faster inference speed. Ultimately, we replace the traditional handcraft filtering parameters in INTERPF with the learned optimal filtering parameters. This practical solution makes the combination of deep learning encoding tools with traditional video encoding schemes more efficient. Experimental results show that our approach achieves 0.01%, 0.31%, and 0.25% coding gain for the Y, U, and V components under the random access (RA) configuration on average.
☆ PriorDiffusion: Leverage Language Prior in Diffusion Models for Monocular Depth Estimation
This paper explores the potential of leveraging language priors learned by text-to-image diffusion models to address ambiguity and visual nuisance in monocular depth estimation. Particularly, traditional monocular depth estimation suffers from inherent ambiguity due to the absence of stereo or multi-view depth cues, and nuisance due to lack of robustness of vision. We argue that language prior in diffusion models can enhance monocular depth estimation by leveraging the geometric prior aligned with the language description, which is learned during text-to-image pre-training. To generate images that reflect the text properly, the model must comprehend the size and shape of specified objects, their spatial relationship, and the scale of the scene. Thus, we propose PriorDiffusion, using a pre-trained text-to-image diffusion model that takes both image and text description that aligned with the scene to infer affine-invariant depth through a denoising process. We also show that language priors can guide the model's attention to specific regions and help it perceive the 3D scene in alignment with user intent. Simultaneously, it acts as a constraint to accelerate the convergence of the diffusion trajectory, since learning 3D properties from a condensed, low-dimensional language feature is more efficient compared with learning from a redundant, high-dimensional image feature. By training on HyperSim and Virtual KITTI, we achieve state-of-the-art zero-shot performance and a faster convergence speed, compared with other diffusion-based depth estimators, across NYUv2, KITTI, ETH3D, and ScanNet.
Artificial Intelligent 87
☆ Performance Implications of Multi-Chiplet Neural Processing Units on Autonomous Driving Perception
We study the application of emerging chiplet-based Neural Processing Units to accelerate vehicular AI perception workloads in constrained automotive settings. The motivation stems from how chiplets technology is becoming integral to emerging vehicular architectures, providing a cost-effective trade-off between performance, modularity, and customization; and from perception models being the most computationally demanding workloads in a autonomous driving system. Using the Tesla Autopilot perception pipeline as a case study, we first breakdown its constituent models and profile their performance on different chiplet accelerators. From the insights, we propose a novel scheduling strategy to efficiently deploy perception workloads on multi-chip AI accelerators. Our experiments using a standard DNN performance simulator, MAESTRO, show our approach realizes 82% and 2.8x increase in throughput and processing engines utilization compared to monolithic accelerator designs.
comment: DATE'2025
☆ eFedLLM: Efficient LLM Inference Based on Federated Learning
Large Language Models (LLMs) herald a transformative era in artificial intelligence (AI). However, the expansive scale of data and parameters of LLMs requires high-demand computational and memory resources, restricting their accessibility to a broader range of users and researchers. This paper introduces an effective approach that enhances the operational efficiency and affordability of LLM inference. By utilizing transformer-based federated learning (FL) with model-parallel distributed training, our model efficiently distributes the computational loads and memory requirements across a network of participants. This strategy permits users, especially those with limited resources to train state-of-the-art LLMs collaboratively. We also innovate an incentive mechanism within the FL framework, rewarding constructive contributions and filtering out malicious activities, thereby safeguarding the integrity and reliability of the training process. Concurrently, we leverage memory hierarchy strategies and Singular Value Decomposition (SVD) on weight matrices to boost computational and memory efficiencies further. Our results, derived from formulaic analyses and numerical calculations, demonstrate significant optimization of resource use and democratize access to cutting-edge LLMs, ensuring that a wide scale of users can both contribute to and benefit from these advanced models.
☆ PIANIST: Learning Partially Observable World Models with LLMs for Multi-Agent Decision Making NeurIPS
Effective extraction of the world knowledge in LLMs for complex decision-making tasks remains a challenge. We propose a framework PIANIST for decomposing the world model into seven intuitive components conducive to zero-shot LLM generation. Given only the natural language description of the game and how input observations are formatted, our method can generate a working world model for fast and efficient MCTS simulation. We show that our method works well on two different games that challenge the planning and decision making skills of the agent for both language and non-language based action taking, without any training on domain-specific training data or explicitly defined world model.
comment: Published at Language Gamification Workshop 2024 @ NeurIPS
☆ Ensuring Fair LLM Serving Amid Diverse Applications
In a multi-tenant large language model (LLM) serving platform hosting diverse applications, some users may submit an excessive number of requests, causing the service to become unavailable to other users and creating unfairness. Existing fairness approaches do not account for variations in token lengths across applications and multiple LLM calls, making them unsuitable for such platforms. To address the fairness challenge, this paper analyzes millions of requests from thousands of users on MS CoPilot, a real-world multi-tenant LLM platform hosted by Microsoft. Our analysis confirms the inadequacy of existing methods and guides the development of FairServe, a system that ensures fair LLM access across diverse applications. FairServe proposes application-characteristic aware request throttling coupled with a weighted service counter based scheduling technique to curb abusive behavior and ensure fairness. Our experimental results on real-world traces demonstrate FairServe's superior performance compared to the state-of-the-art method in ensuring fairness. We are actively working on deploying our system in production, expecting to benefit millions of customers world-wide.
☆ Anda: Unlocking Efficient LLM Inference with a Variable-Length Grouped Activation Data Format
The widely-used, weight-only quantized large language models (LLMs), which leverage low-bit integer (INT) weights and retain floating-point (FP) activations, reduce storage requirements while maintaining accuracy. However, this shifts the energy and latency bottlenecks towards the FP activations that are associated with costly memory accesses and computations. Existing LLM accelerators focus primarily on computation optimizations, overlooking the potential of jointly optimizing FP computations and data movement, particularly for the dominant FP-INT GeMM operations in LLM inference. To address these challenges, we investigate the sensitivity of activation precision across various LLM modules and its impact on overall model accuracy. Based on our findings, we first propose the Anda data type: an adaptive data format with group-shared exponent bits and dynamic mantissa bit allocation. Secondly, we develop an iterative post-training adaptive precision search algorithm that optimizes the bit-width for different LLM modules to balance model accuracy, energy efficiency, and inference speed. Lastly, a suite of hardware optimization techniques is proposed to maximally exploit the benefits of the Anda format. These include a bit-plane-based data organization scheme, Anda-enhanced processing units with bit-serial computation, and a runtime bit-plane Anda compressor to simultaneously optimize storage, computation, and memory footprints. Our evaluations on FPINT GeMM operations show that Anda achieves a 2.4x speedup, 4.0x area efficiency, and 3.1x energy efficiency improvement on average for popular LLMs including OPT, LLaMA, and LLaMA-2 series over the GPU-like FP-FP baseline. Anda demonstrates strong adaptability across various application scenarios, accuracy requirements, and system performance, enabling efficient LLM inference across a wide range of deployment scenarios.
comment: To appear in 2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA 2025)
☆ DRIVE: Dual-Robustness via Information Variability and Entropic Consistency in Source-Free Unsupervised Domain Adaptation
Adapting machine learning models to new domains without labeled data, especially when source data is inaccessible, is a critical challenge in applications like medical imaging, autonomous driving, and remote sensing. This task, known as Source-Free Unsupervised Domain Adaptation (SFUDA), involves adapting a pre-trained model to a target domain using only unlabeled target data, which can lead to issues such as overfitting, underfitting, and poor generalization due to domain discrepancies and noise. Existing SFUDA methods often rely on single-model architectures, struggling with uncertainty and variability in the target domain. To address these challenges, we propose DRIVE (Dual-Robustness through Information Variability and Entropy), a novel SFUDA framework leveraging a dual-model architecture. The two models, initialized with identical weights, work in parallel to capture diverse target domain characteristics. One model is exposed to perturbations via projection gradient descent (PGD) guided by mutual information, focusing on high-uncertainty regions. We also introduce an entropy-aware pseudo-labeling strategy that adjusts label weights based on prediction uncertainty, ensuring the model focuses on reliable data while avoiding noisy regions. The adaptation process has two stages: the first aligns the models on stable features using a mutual information consistency loss, and the second dynamically adjusts the perturbation level based on the loss from the first stage, encouraging the model to explore a broader range of the target domain while preserving existing performance. This enhances generalization capabilities and robustness against interference. Evaluations on standard SFUDA benchmarks show that DRIVE consistently outperforms previous methods, delivering improved adaptation accuracy and stability across complex target domains.
☆ Advancing Transformative Education: Generative AI as a Catalyst for Equity and Innovation
Generative AI is transforming education by enabling personalized learning, enhancing administrative efficiency, and fostering creative engagement. This paper explores the opportunities and challenges these tools bring to pedagogy, proposing actionable frameworks to address existing equity gaps. Ethical considerations such as algorithmic bias, data privacy, and AI role in human centric education are emphasized. The findings underscore the need for responsible AI integration that ensures accessibility, equity, and innovation in educational systems.
comment: 12 pages
☆ Partial Identifiability and Misspecification in Inverse Reinforcement Learning
The aim of Inverse Reinforcement Learning (IRL) is to infer a reward function $R$ from a policy $\pi$. This problem is difficult, for several reasons. First of all, there are typically multiple reward functions which are compatible with a given policy; this means that the reward function is only *partially identifiable*, and that IRL contains a certain fundamental degree of ambiguity. Secondly, in order to infer $R$ from $\pi$, an IRL algorithm must have a *behavioural model* of how $\pi$ relates to $R$. However, the true relationship between human preferences and human behaviour is very complex, and practically impossible to fully capture with a simple model. This means that the behavioural model in practice will be *misspecified*, which raises the worry that it might lead to unsound inferences if applied to real-world data. In this paper, we provide a comprehensive mathematical analysis of partial identifiability and misspecification in IRL. Specifically, we fully characterise and quantify the ambiguity of the reward function for all of the behavioural models that are most common in the current IRL literature. We also provide necessary and sufficient conditions that describe precisely how the observed demonstrator policy may differ from each of the standard behavioural models before that model leads to faulty inferences about the reward function $R$. In addition to this, we introduce a cohesive framework for reasoning about partial identifiability and misspecification in IRL, together with several formal tools that can be used to easily derive the partial identifiability and misspecification robustness of new IRL models, or analyse other kinds of reward learning algorithms.
☆ Generative Context Distillation
Prompts used in recent large language model based applications are often fixed and lengthy, leading to significant computational overhead. To address this challenge, we propose Generative Context Distillation (GCD), a lightweight prompt internalization method that employs a joint training approach. This method not only replicates the behavior of models with prompt inputs but also generates the content of the prompt along with reasons for why the model's behavior should change accordingly. We demonstrate that our approach effectively internalizes complex prompts across various agent-based application scenarios. For effective training without interactions with the dedicated environments, we introduce a data synthesis technique that autonomously collects conversational datasets by swapping the roles of the agent and environment. This method is especially useful in scenarios where only a predefined prompt is available without a corresponding training dataset. By internalizing complex prompts, Generative Context Distillation enables high-performance and efficient inference without the need for explicit prompts.
☆ Making Images from Images: Interleaving Denoising and Transformation
Simply by rearranging the regions of an image, we can create a new image of any subject matter. The definition of regions is user definable, ranging from regularly and irregularly-shaped blocks, concentric rings, or even individual pixels. Our method extends and improves recent work in the generation of optical illusions by simultaneously learning not only the content of the images, but also the parameterized transformations required to transform the desired images into each other. By learning the image transforms, we allow any source image to be pre-specified; any existing image (e.g. the Mona Lisa) can be transformed to a novel subject. We formulate this process as a constrained optimization problem and address it through interleaving the steps of image diffusion with an energy minimization step. Unlike previous methods, increasing the number of regions actually makes the problem easier and improves results. We demonstrate our approach in both pixel and latent spaces. Creative extensions, such as using infinite copies of the source image and employing multiple source images, are also given.
☆ Deep Learning for automated multi-scale functional field boundaries extraction using multi-date Sentinel-2 and PlanetScope imagery: Case Study of Netherlands and Pakistan
This study explores the effectiveness of multi-temporal satellite imagery for better functional field boundary delineation using deep learning semantic segmentation architecture on two distinct geographical and multi-scale farming systems of Netherlands and Pakistan. Multidate images of April, August and October 2022 were acquired for PlanetScope and Sentinel-2 in sub regions of Netherlands and November 2022, February and March 2023 for selected area of Dunyapur in Pakistan. For Netherlands, Basic registration crop parcels (BRP) vector layer was used as labeled training data. while self-crafted field boundary vector data were utilized for Pakistan. Four deep learning models with UNET architecture were evaluated using different combinations of multi-date images and NDVI stacks in the Netherlands subregions. A comparative analysis of IoU scores assessed the effectiveness of the proposed multi-date NDVI stack approach. These findings were then applied for transfer learning, using pre-trained models from the Netherlands on the selected area in Pakistan. Additionally, separate models were trained using self-crafted field boundary data for Pakistan, and combined models were developed using data from both the Netherlands and Pakistan. Results indicate that multi-date NDVI stacks provide additional temporal context, reflecting crop growth over different times of the season. The study underscores the critical role of multi-scale ground information from diverse geographical areas in developing robust and universally applicable models for field boundary delineation. The results also highlight the importance of fine spatial resolution for extraction of field boundaries in regions with small scale framing. The findings can be extended to multi-scale implementations for improved automatic field boundary delineation in heterogeneous agricultural environments.
comment: 09 pages, To be published
☆ A Training-Free Approach for Music Style Transfer with Latent Diffusion Models
Music style transfer, while offering exciting possibilities for personalized music generation, often requires extensive training or detailed textual descriptions. This paper introduces a novel training-free approach leveraging pre-trained Latent Diffusion Models (LDMs). By manipulating the self-attention features of the LDM, we effectively transfer the style of reference music onto content music without additional training. Our method achieves superior style transfer and melody preservation compared to existing methods. This work opens new creative avenues for personalized music generation.
comment: Codes will be released upon acceptance
☆ Bimanual Grasp Synthesis for Dexterous Robot Hands
Humans naturally perform bimanual skills to handle large and heavy objects. To enhance robots' object manipulation capabilities, generating effective bimanual grasp poses is essential. Nevertheless, bimanual grasp synthesis for dexterous hand manipulators remains underexplored. To bridge this gap, we propose the BimanGrasp algorithm for synthesizing bimanual grasps on 3D objects. The BimanGrasp algorithm generates grasp poses by optimizing an energy function that considers grasp stability and feasibility. Furthermore, the synthesized grasps are verified using the Isaac Gym physics simulation engine. These verified grasp poses form the BimanGrasp-Dataset, the first large-scale synthesized bimanual dexterous hand grasp pose dataset to our knowledge. The dataset comprises over 150k verified grasps on 900 objects, facilitating the synthesis of bimanual grasps through a data-driven approach. Last, we propose BimanGrasp-DDPM, a diffusion model trained on the BimanGrasp-Dataset. This model achieved a grasp synthesis success rate of 69.87\% and significant acceleration in computational speed compared to BimanGrasp algorithm.
comment: Published in RA-L 24', 8 pages, 9 figures, 3 tables
☆ Highly Efficient and Unsupervised Framework for Moving Object Detection in Satellite Videos
Moving object detection in satellite videos (SVMOD) is a challenging task due to the extremely dim and small target characteristics. Current learning-based methods extract spatio-temporal information from multi-frame dense representation with labor-intensive manual labels to tackle SVMOD, which needs high annotation costs and contains tremendous computational redundancy due to the severe imbalance between foreground and background regions. In this paper, we propose a highly efficient unsupervised framework for SVMOD. Specifically, we propose a generic unsupervised framework for SVMOD, in which pseudo labels generated by a traditional method can evolve with the training process to promote detection performance. Furthermore, we propose a highly efficient and effective sparse convolutional anchor-free detection network by sampling the dense multi-frame image form into a sparse spatio-temporal point cloud representation and skipping the redundant computation on background regions. Coping these two designs, we can achieve both high efficiency (label and computation efficiency) and effectiveness. Extensive experiments demonstrate that our method can not only process 98.8 frames per second on 1024x1024 images but also achieve state-of-the-art performance. The relabeled dataset and code are available at https://github.com/ChaoXiao12/Moving-object-detection-in-satellite-videos-HiEUM.
comment: 8 pages, 8 figures
☆ Navigating the Effect of Parametrization for Dimensionality Reduction NeurIPS 2024
Parametric dimensionality reduction methods have gained prominence for their ability to generalize to unseen datasets, an advantage that traditional approaches typically lack. Despite their growing popularity, there remains a prevalent misconception among practitioners about the equivalence in performance between parametric and non-parametric methods. Here, we show that these methods are not equivalent -- parametric methods retain global structure but lose significant local details. To explain this, we provide evidence that parameterized approaches lack the ability to repulse negative pairs, and the choice of loss function also has an impact. Addressing these issues, we developed a new parametric method, ParamRepulsor, that incorporates Hard Negative Mining and a loss function that applies a strong repulsive force. This new method achieves state-of-the-art performance on local structure preservation for parametric methods without sacrificing the fidelity of global structural representation. Our code is available at https://github.com/hyhuang00/ParamRepulsor.
comment: NeurIPS 2024
☆ Distribution-aware Online Continual Learning for Urban Spatio-Temporal Forecasting
Urban spatio-temporal (ST) forecasting is crucial for various urban applications such as intelligent scheduling and trip planning. Previous studies focus on modeling ST correlations among urban locations in offline settings, which often neglect the non-stationary nature of urban ST data, particularly, distribution shifts over time. This oversight can lead to degraded performance in real-world scenarios. In this paper, we first analyze the distribution shifts in urban ST data, and then introduce DOST, a novel online continual learning framework tailored for ST data characteristics. DOST employs an adaptive ST network equipped with a variable-independent adapter to address the unique distribution shifts at each urban location dynamically. Further, to accommodate the gradual nature of these shifts, we also develop an awake-hibernate learning strategy that intermittently fine-tunes the adapter during the online phase to reduce computational overhead. This strategy integrates a streaming memory update mechanism designed for urban ST sequential data, enabling effective network adaptation to new patterns while preventing catastrophic forgetting. Experimental results confirm DOST's superiority over state-of-the-art models on four real-world datasets, providing online forecasts within an average of 0.1 seconds and achieving a 12.89% reduction in forecast errors compared to baseline models.
LLMs Do Not Think Step-by-step In Implicit Reasoning
It has been well-known that Chain-of-Thought can remarkably enhance LLMs' performance on complex tasks. However, because it also introduces slower inference speeds and higher computational costs, many researches have attempted to use implicit CoT, which does not need LLMs to explicitly generate the intermediate steps. But there is still gap between their efficacy and typical explicit CoT methods. This leaves us a doubt that, does implicit CoT really equal to explicit CoT? Therefore, in this study, we address this question through experiments. We probe the information of intermediate steps from the model's hidden states when it is performing implicit CoT. The results surprisingly indicate that LLMs hardly think about intermediate steps, suggesting they may just rely on experience rather than strict step-by-step reasoning. Moreover, we find LLMs' implicit reasoning capabilities are susceptible and unstable, reaffirming the necessity of explicit CoT to effectively support complex tasks.
☆ Unveiling the Superior Paradigm: A Comparative Study of Source-Free Domain Adaptation and Unsupervised Domain Adaptation
In domain adaptation, there are two popular paradigms: Unsupervised Domain Adaptation (UDA), which aligns distributions using source data, and Source-Free Domain Adaptation (SFDA), which leverages pre-trained source models without accessing source data. Evaluating the superiority of UDA versus SFDA is an open and timely question with significant implications for deploying adaptive algorithms in practical applications. In this study, we demonstrate through predictive coding theory and extensive experiments on multiple benchmark datasets that SFDA generally outperforms UDA in real-world scenarios. Specifically, SFDA offers advantages in time efficiency, storage requirements, targeted learning objectives, reduced risk of negative transfer, and increased robustness against overfitting. Notably, SFDA is particularly effective in mitigating negative transfer when there are substantial distribution discrepancies between source and target domains. Additionally, we introduce a novel data-model fusion scenario, where data sharing among stakeholders varies (e.g., some provide raw data while others provide only models), and reveal that traditional UDA and SFDA methods do not fully exploit their potential in this context. To address this limitation and capitalize on the strengths of SFDA, we propose a novel weight estimation method that effectively integrates available source data into multi-SFDA (MSFDA) approaches, thereby enhancing model performance within this scenario. This work provides a thorough analysis of UDA versus SFDA and advances a practical approach to model adaptation across diverse real-world environments.
comment: Under review
☆ Creating Scalable AGI: the Open General Intelligence Framework
This paper introduces a novel general artificial intelligence systems architecture that provides generalized flexibility and solves current scalability issues plaguing the field. The architecture, OGI (Open General Intelligence), utilizes a dynamic processing system to control and delegate across specialized artificial intelligence modules. It is intended to be used as a reference design for intelligent systems, providing human-like cognitive flexibility for generalized artificial intelligence across various real-world applications.
comment: 8 pages, IEEE SYSCON 2025 Submission
☆ Efficient and Private: Memorisation under differentially private parameter-efficient fine-tuning in language models
Fine-tuning large language models (LLMs) for specific tasks introduces privacy risks, as models may inadvertently memorise and leak sensitive training data. While Differential Privacy (DP) offers a solution to mitigate these risks, it introduces significant computational and performance trade-offs, particularly with standard fine-tuning approaches. Previous work has primarily focused on full-parameter updates, which are computationally intensive and may not fully leverage DPs potential in large models. In this work, we address these shortcomings by investigating Parameter-Efficient Fine-Tuning (PEFT) methods under DP constraints. We show that PEFT methods achieve comparable performance to standard fine-tuning while requiring fewer parameters and significantly reducing privacy leakage. Furthermore, we incorporate a data poisoning experiment involving intentional mislabelling to assess model memorisation and directly measure privacy risks. Our findings indicate that PEFT methods not only provide a promising alternative but also serve as a complementary approach for privacy-preserving, resource-efficient fine-tuning of LLMs.
☆ Is Training Data Quality or Quantity More Impactful to Small Language Model Performance?
This study investigates the relative impact of training data quality versus quantity on the performance of small language models (SLMs), utilizing the TinyStories dataset for empirical analysis. Analysis of dataset variations with respect to size (25% and 50% of the original size) and duplication (controlled rates of 25%, 50%, 75%, and 100%) were performed. Model performance was evaluated based on the validation loss, accuracy, and perplexity metrics. Results indicate training data quality plays a more significant role in the overall performance of SLMs, especially given scale of this experiment. Minimal duplication positively impacted model accuracy (+0.87% increase in accuracy at 25% duplication) without significantly increasing perplexity (+0.52% increase going from 0% to 25% duplication) but excessive duplication led to pronounced performance degradation (-40% drop in accuracy at 100% duplication). The implications of this exploration extend beyond just model performance; training large-scale models imposes significant financial and computational burdens, which can be prohibitive for organizations, individuals, and the public at large, especially in developing countries. Additionally, the energy consumption associated with large-scale training raises environmental concerns. Understanding the relative importance of data quality versus quantity could democratize AI technology, making advanced models more accessible and sustainable for all.
comment: 10 pages, 4 figures
☆ FastTrackTr:Towards Fast Multi-Object Tracking with Transformers
Transformer-based multi-object tracking (MOT) methods have captured the attention of many researchers in recent years. However, these models often suffer from slow inference speeds due to their structure or other issues. To address this problem, we revisited the Joint Detection and Tracking (JDT) method by looking back at past approaches. By integrating the original JDT approach with some advanced theories, this paper employs an efficient method of information transfer between frames on the DETR, constructing a fast and novel JDT-type MOT framework: FastTrackTr. Thanks to the superiority of this information transfer method, our approach not only reduces the number of queries required during tracking but also avoids the excessive introduction of network structures, ensuring model simplicity. Experimental results indicate that our method has the potential to achieve real-time tracking and exhibits competitive tracking accuracy across multiple datasets.
☆ Broad Critic Deep Actor Reinforcement Learning for Continuous Control
In the domain of continuous control, deep reinforcement learning (DRL) demonstrates promising results. However, the dependence of DRL on deep neural networks (DNNs) results in the demand for extensive data and increased computational complexity. To address this issue, a novel hybrid architecture for actor-critic reinforcement learning (RL) algorithms is introduced. The proposed architecture integrates the broad learning system (BLS) with DNN, aiming to merge the strengths of both distinct architectural paradigms. Specifically, the critic network is implemented using BLS, while the actor network is constructed with a DNN. For the estimations of the critic network parameters, ridge regression is employed, and the parameters of the actor network are optimized through gradient descent. The effectiveness of the proposed algorithm is evaluated by applying it to two classic continuous control tasks, and its performance is compared with the widely recognized deep deterministic policy gradient (DDPG) algorithm. Numerical results show that the proposed algorithm is superior to the DDPG algorithm in terms of computational efficiency, along with an accelerated learning trajectory. Application of the proposed algorithm in other actor-critic RL algorithms is suggested for investigation in future studies.
comment: 7 pages
☆ Benchmarking Active Learning for NILM
Non-intrusive load monitoring (NILM) focuses on disaggregating total household power consumption into appliance-specific usage. Many advanced NILM methods are based on neural networks that typically require substantial amounts of labeled appliance data, which can be challenging and costly to collect in real-world settings. We hypothesize that appliance data from all households does not uniformly contribute to NILM model improvements. Thus, we propose an active learning approach to selectively install appliance monitors in a limited number of houses. This work is the first to benchmark the use of active learning for strategically selecting appliance-level data to optimize NILM performance. We first develop uncertainty-aware neural networks for NILM and then install sensors in homes where disaggregation uncertainty is highest. Benchmarking our method on the publicly available Pecan Street Dataport dataset, we demonstrate that our approach significantly outperforms a standard random baseline and achieves performance comparable to models trained on the entire dataset. Using this approach, we achieve comparable NILM accuracy with approximately 30% of the data, and for a fixed number of sensors, we observe up to a 2x reduction in disaggregation errors compared to random sampling.
☆ LoRA-Mini : Adaptation Matrices Decomposition and Selective Training
The rapid advancements in large language models (LLMs) have revolutionized natural language processing, creating an increased need for efficient, task-specific fine-tuning methods. Traditional fine-tuning of LLMs involves updating a large number of parameters, which is computationally expensive and memory-intensive. Low-Rank Adaptation (LoRA) has emerged as a promising solution, enabling parameter-efficient fine-tuning by reducing the number of trainable parameters. However, while LoRA reduces the number of trainable parameters, LoRA modules still create significant storage challenges. We propose LoRA-Mini, an optimized adaptation of LoRA that improves parameter efficiency by splitting low-rank matrices into four parts, with only the two inner matrices being trainable. This approach achieves upto a 20x reduction compared to standard LoRA in the number of trainable parameters while preserving performance levels comparable to standard LoRA, addressing both computational and storage efficiency in LLM fine-tuning.
comment: 11 pages
☆ Medical Slice Transformer: Improved Diagnosis and Explainability on 3D Medical Images with DINOv2
MRI and CT are essential clinical cross-sectional imaging techniques for diagnosing complex conditions. However, large 3D datasets with annotations for deep learning are scarce. While methods like DINOv2 are encouraging for 2D image analysis, these methods have not been applied to 3D medical images. Furthermore, deep learning models often lack explainability due to their "black-box" nature. This study aims to extend 2D self-supervised models, specifically DINOv2, to 3D medical imaging while evaluating their potential for explainable outcomes. We introduce the Medical Slice Transformer (MST) framework to adapt 2D self-supervised models for 3D medical image analysis. MST combines a Transformer architecture with a 2D feature extractor, i.e., DINOv2. We evaluate its diagnostic performance against a 3D convolutional neural network (3D ResNet) across three clinical datasets: breast MRI (651 patients), chest CT (722 patients), and knee MRI (1199 patients). Both methods were tested for diagnosing breast cancer, predicting lung nodule dignity, and detecting meniscus tears. Diagnostic performance was assessed by calculating the Area Under the Receiver Operating Characteristic Curve (AUC). Explainability was evaluated through a radiologist's qualitative comparison of saliency maps based on slice and lesion correctness. P-values were calculated using Delong's test. MST achieved higher AUC values compared to ResNet across all three datasets: breast (0.94$\pm$0.01 vs. 0.91$\pm$0.02, P=0.02), chest (0.95$\pm$0.01 vs. 0.92$\pm$0.02, P=0.13), and knee (0.85$\pm$0.04 vs. 0.69$\pm$0.05, P=0.001). Saliency maps were consistently more precise and anatomically correct for MST than for ResNet. Self-supervised 2D models like DINOv2 can be effectively adapted for 3D medical imaging using MST, offering enhanced diagnostic accuracy and explainability compared to convolutional neural networks.
☆ A review on Machine Learning based User-Centric Multimedia Streaming Techniques
The multimedia content and streaming are a major means of information exchange in the modern era and there is an increasing demand for such services. This coupled with the advancement of future wireless networks B5G/6G and the proliferation of intelligent handheld mobile devices, has facilitated the availability of multimedia content to heterogeneous mobile users. Apart from the conventional video, the 360$^o$ videos have gained popularity with the emerging virtual reality applications. All formats of videos (conventional and 360$^o$) undergo processing, compression, and transmission across dynamic wireless channels with restricted bandwidth to facilitate the streaming services. This causes video impairments, leading to quality degradation and poses challenges in delivering good Quality-of-Experience (QoE) to the viewers. The QoE is a prominent subjective quality measure to assess multimedia services. This requires end-to-end QoE evaluation. Efficient multimedia streaming techniques can improve the service quality while dealing with dynamic network and end-user challenges. A paradigm shift in user-centric multimedia services is envisioned with a focus on Machine Learning (ML) based QoE modeling and streaming strategies. This survey paper presents a comprehensive overview of the overall and continuous, time varying QoE modeling for the purpose of QoE management in multimedia services. It also examines the recent research on intelligent and adaptive multimedia streaming strategies, with a special emphasis on ML based techniques for video (conventional and 360$^o$) streaming. This paper discusses the overall and continuous QoE modeling to optimize the end-user viewing experience, efficient video streaming with a focus on user-centric strategies, associated datasets for modeling and streaming, along with existing shortcoming and open challenges.
comment: Computer Communications
☆ Data Lineage Inference: Uncovering Privacy Vulnerabilities of Dataset Pruning
In this work, we systematically explore the data privacy issues of dataset pruning in machine learning systems. Our findings reveal, for the first time, that even if data in the redundant set is solely used before model training, its pruning-phase membership status can still be detected through attacks. Since this is a fully upstream process before model training, traditional model output-based privacy inference methods are completely unsuitable. To address this, we introduce a new task called Data-Centric Membership Inference and propose the first ever data-centric privacy inference paradigm named Data Lineage Inference (DaLI). Under this paradigm, four threshold-based attacks are proposed, named WhoDis, CumDis, ArraDis and SpiDis. We show that even without access to downstream models, adversaries can accurately identify the redundant set with only limited prior knowledge. Furthermore, we find that different pruning methods involve varying levels of privacy leakage, and even the same pruning method can present different privacy risks at different pruning fractions. We conducted an in-depth analysis of these phenomena and introduced a metric called the Brimming score to offer guidance for selecting pruning methods with privacy protection in mind.
☆ Enhancing the automatic segmentation and analysis of 3D liver vasculature models
Surgical assessment of liver cancer patients requires identification of the vessel trees from medical images. Specifically, the venous trees - the portal (perfusing) and the hepatic (draining) trees are important for understanding the liver anatomy and disease state, and perform surgery planning. This research aims to improve the 3D segmentation, skeletonization, and subsequent analysis of vessel trees, by creating an automatic pipeline based on deep learning and image processing techniques. The first part of this work explores the impact of differentiable skeletonization methods such as ClDice and morphological skeletonization loss, on the overall liver vessel segmentation performance. To this aim, it studies how to improve vessel tree connectivity. The second part of this study converts a single class vessel segmentation into multi-class ones, separating the two venous trees. It builds on the previous two-class vessel segmentation model, which vessel tree outputs might be entangled, and on connected components and skeleton analyses of the trees. After providing sub-labeling of the specific anatomical branches of each venous tree, these algorithms also enable a morphometric analysis of the vessel trees by extracting various geometrical markers. In conclusion, we propose a method that successfully improves current skeletonization methods, for extensive vascular trees that contain vessels of different calibers. The separation algorithm creates a clean multi-class segmentation of the vessels, validated by surgeons to provide low error. A new, publicly shared high-quality liver vessel dataset of 77 cases is thus created. Finally a method to annotate vessel trees according to anatomy is provided, enabling a unique liver vessel morphometry analysis.
comment: Internship at Simbiotx
☆ Decoding Urban Industrial Complexity: Enhancing Knowledge-Driven Insights via IndustryScopeGPT
Industrial parks are critical to urban economic growth. Yet, their development often encounters challenges stemming from imbalances between industrial requirements and urban services, underscoring the need for strategic planning and operations. This paper introduces IndustryScopeKG, a pioneering large-scale multi-modal, multi-level industrial park knowledge graph, which integrates diverse urban data including street views, corporate, socio-economic, and geospatial information, capturing the complex relationships and semantics within industrial parks. Alongside this, we present the IndustryScopeGPT framework, which leverages Large Language Models (LLMs) with Monte Carlo Tree Search to enhance tool-augmented reasoning and decision-making in Industrial Park Planning and Operation (IPPO). Our work significantly improves site recommendation and functional planning, demonstrating the potential of combining LLMs with structured datasets to advance industrial park management. This approach sets a new benchmark for intelligent IPPO research and lays a robust foundation for advancing urban industrial development. The dataset and related code are available at https://github.com/Tongji-KGLLM/IndustryScope.
comment: 9 pages, 6 figures, the 32nd ACM International Conference on Multimedia
☆ Beyond Data Scarcity: A Frequency-Driven Framework for Zero-Shot Forecasting
Time series forecasting is critical in numerous real-world applications, requiring accurate predictions of future values based on observed patterns. While traditional forecasting techniques work well in in-domain scenarios with ample data, they struggle when data is scarce or not available at all, motivating the emergence of zero-shot and few-shot learning settings. Recent advancements often leverage large-scale foundation models for such tasks, but these methods require extensive data and compute resources, and their performance may be hindered by ineffective learning from the available training set. This raises a fundamental question: What factors influence effective learning from data in time series forecasting? Toward addressing this, we propose using Fourier analysis to investigate how models learn from synthetic and real-world time series data. Our findings reveal that forecasters commonly suffer from poor learning from data with multiple frequencies and poor generalization to unseen frequencies, which impedes their predictive performance. To alleviate these issues, we present a novel synthetic data generation framework, designed to enhance real data or replace it completely by creating task-specific frequency information, requiring only the sampling rate of the target data. Our approach, Freq-Synth, improves the robustness of both foundation as well as nonfoundation forecast models in zero-shot and few-shot settings, facilitating more reliable time series forecasting under limited data scenarios.
☆ PEnG: Pose-Enhanced Geo-Localisation
Cross-view Geo-localisation is typically performed at a coarse granularity, because densely sampled satellite image patches overlap heavily. This heavy overlap would make disambiguating patches very challenging. However, by opting for sparsely sampled patches, prior work has placed an artificial upper bound on the localisation accuracy that is possible. Even a perfect oracle system cannot achieve accuracy greater than the average separation of the tiles. To solve this limitation, we propose combining cross-view geo-localisation and relative pose estimation to increase precision to a level practical for real-world application. We develop PEnG, a 2-stage system which first predicts the most likely edges from a city-scale graph representation upon which a query image lies. It then performs relative pose estimation within these edges to determine a precise position. PEnG presents the first technique to utilise both viewpoints available within cross-view geo-localisation datasets to enhance precision to a sub-metre level, with some examples achieving centimetre level accuracy. Our proposed ensemble achieves state-of-the-art precision - with relative Top-5m retrieval improvements on previous works of 213%. Decreasing the median euclidean distance error by 96.90% from the previous best of 734m down to 22.77m, when evaluating with 90 degree horizontal FOV images. Code will be made available: tavisshore.co.uk/PEnG
comment: 8 pages, 6 figures
☆ LTCF-Net: A Transformer-Enhanced Dual-Channel Fourier Framework for Low-Light Image Restoration
We introduce LTCF-Net, a novel network architecture designed for enhancing low-light images. Unlike Retinex-based methods, our approach utilizes two color spaces - LAB and YUV - to efficiently separate and process color information, by leveraging the separation of luminance from chromatic components in color images. In addition, our model incorporates the Transformer architecture to comprehensively understand image content while maintaining computational efficiency. To dynamically balance the brightness in output images, we also introduce a Fourier transform module that adjusts the luminance channel in the frequency domain. This mechanism could uniformly balance brightness across different regions while eliminating background noises, and thereby enhancing visual quality. By combining these innovative components, LTCF-Net effectively improves low-light image quality while keeping the model lightweight. Experimental results demonstrate that our method outperforms current state-of-the-art approaches across multiple evaluation metrics and datasets, achieving more natural color restoration and a balanced brightness distribution.
☆ TableTime: Reformulating Time Series Classification as Zero-Shot Table Understanding via Large Language Models
Large language models (LLMs) have demonstrated their effectiveness in multivariate time series classification (MTSC). Effective adaptation of LLMs for MTSC necessitates informative data representations. Existing LLM-based methods directly encode embeddings for time series within the latent space of LLMs from scratch to align with semantic space of LLMs. Despite their effectiveness, we reveal that these methods conceal three inherent bottlenecks: (1) they struggle to encode temporal and channel-specific information in a lossless manner, both of which are critical components of multivariate time series; (2) it is much difficult to align the learned representation space with the semantic space of the LLMs; (3) they require task-specific retraining, which is both computationally expensive and labor-intensive. To bridge these gaps, we propose TableTime, which reformulates MTSC as a table understanding task. Specifically, TableTime introduces the following strategies: (1) convert multivariate time series into a tabular form, thus minimizing information loss to the greatest extent; (2) represent tabular time series in text format to achieve natural alignment with the semantic space of LLMs; (3) design a reasoning framework that integrates contextual text information, neighborhood assistance, multi-path inference and problem decomposition to enhance the reasoning ability of LLMs and realize zero-shot classification. Extensive experiments performed on 10 publicly representative datasets from UEA archive verify the superiorities of the TableTime.
☆ Fusion Matters: Learning Fusion in Deep Click-through Rate Prediction Models
The evolution of previous Click-Through Rate (CTR) models has mainly been driven by proposing complex components, whether shallow or deep, that are adept at modeling feature interactions. However, there has been less focus on improving fusion design. Instead, two naive solutions, stacked and parallel fusion, are commonly used. Both solutions rely on pre-determined fusion connections and fixed fusion operations. It has been repetitively observed that changes in fusion design may result in different performances, highlighting the critical role that fusion plays in CTR models. While there have been attempts to refine these basic fusion strategies, these efforts have often been constrained to specific settings or dependent on specific components. Neural architecture search has also been introduced to partially deal with fusion design, but it comes with limitations. The complexity of the search space can lead to inefficient and ineffective results. To bridge this gap, we introduce OptFusion, a method that automates the learning of fusion, encompassing both the connection learning and the operation selection. We have proposed a one-shot learning algorithm tackling these tasks concurrently. Our experiments are conducted over three large-scale datasets. Extensive experiments prove both the effectiveness and efficiency of OptFusion in improving CTR model performance. Our code implementation is available here\url{https://github.com/kexin-kxzhang/OptFusion}.
comment: Accepted by WSDM 2025
☆ Understanding Student Acceptance, Trust, and Attitudes Toward AI-Generated Images for Educational Purposes
Recent advancements in artificial intelligence (AI) have broadened the applicability of AI-generated images across various sectors, including the creative industry and design. However, their utilization in educational contexts, particularly among undergraduate students in computer science and software engineering, remains underexplored. This study adopts an exploratory approach, employing questionnaires and interviews, to assess students' acceptance, trust, and positive attitudes towards AI-generated images for educational tasks such as presentations, reports, and web design. The results reveal high acceptance, trust, and positive attitudes among students who value the ease of use and potential academic benefits. However, concerns regarding the lack of technical precision, where the AI fails to accurately produce images as specified by prompts, moderately impact their practical application in detail-oriented educational tasks. These findings suggest a need for developing comprehensive guidelines that address ethical considerations and intellectual property issues, while also setting quality standards for AI-generated images to enhance their educational use. Enhancing the capabilities of AI tools to meet precise user specifications could foster creativity and improve educational outcomes in technical disciplines.
☆ Nimbus: Secure and Efficient Two-Party Inference for Transformers NIPS 2024
Transformer models have gained significant attention due to their power in machine learning tasks. Their extensive deployment has raised concerns about the potential leakage of sensitive information during inference. However, when being applied to Transformers, existing approaches based on secure two-party computation (2PC) bring about efficiency limitations in two folds: (1) resource-intensive matrix multiplications in linear layers, and (2) complex non-linear activation functions like $\mathsf{GELU}$ and $\mathsf{Softmax}$. This work presents a new two-party inference framework $\mathsf{Nimbus}$ for Transformer models. For the linear layer, we propose a new 2PC paradigm along with an encoding approach to securely compute matrix multiplications based on an outer-product insight, which achieves $2.9\times \sim 12.5\times$ performance improvements compared to the state-of-the-art (SOTA) protocol. For the non-linear layer, through a new observation of utilizing the input distribution, we propose an approach of low-degree polynomial approximation for $\mathsf{GELU}$ and $\mathsf{Softmax}$, which improves the performance of the SOTA polynomial approximation by $2.9\times \sim 4.0\times$, where the average accuracy loss of our approach is 0.08\% compared to the non-2PC inference without privacy. Compared with the SOTA two-party inference, $\mathsf{Nimbus}$ improves the end-to-end performance of \bert{} inference by $2.7\times \sim 4.7\times$ across different network settings.
comment: Accepted by NIPS 2024
☆ RAMIE: Retrieval-Augmented Multi-task Information Extraction with Large Language Models on Dietary Supplements
\textbf{Objective:} We aimed to develop an advanced multi-task large language model (LLM) framework to extract multiple types of information about dietary supplements (DS) from clinical records. \textbf{Methods:} We used four core DS information extraction tasks - namely, named entity recognition (NER: 2,949 clinical sentences), relation extraction (RE: 4,892 sentences), triple extraction (TE: 2,949 sentences), and usage classification (UC: 2,460 sentences) as our multitasks. We introduced a novel Retrieval-Augmented Multi-task Information Extraction (RAMIE) Framework, including: 1) employed instruction fine-tuning techniques with task-specific prompts, 2) trained LLMs for multiple tasks with improved storage efficiency and lower training costs, and 3) incorporated retrieval augmentation generation (RAG) techniques by retrieving similar examples from the training set. We compared RAMIE's performance to LLMs with instruction fine-tuning alone and conducted an ablation study to assess the contributions of multi-task learning and RAG to improved multitasking performance. \textbf{Results:} With the aid of the RAMIE framework, Llama2-13B achieved an F1 score of 87.39 (3.51\% improvement) on the NER task and demonstrated outstanding performance on the RE task with an F1 score of 93.74 (1.15\% improvement). For the TE task, Llama2-7B scored 79.45 (14.26\% improvement), and MedAlpaca-7B achieved the highest F1 score of 93.45 (0.94\% improvement) on the UC task. The ablation study revealed that while MTL increased efficiency with a slight trade-off in performance, RAG significantly boosted overall accuracy. \textbf{Conclusion:} This study presents a novel RAMIE framework that demonstrates substantial improvements in multi-task information extraction for DS-related data from clinical records. Our framework can potentially be applied to other domains.
☆ State-Space Large Audio Language Models
Large Audio Language Models (LALM) combine the audio perception models and the Large Language Models (LLM) and show a remarkable ability to reason about the input audio, infer the meaning, and understand the intent. However, these systems rely on Transformers which scale quadratically with the input sequence lengths which poses computational challenges in deploying these systems in memory and time-constrained scenarios. Recently, the state-space models (SSMs) have emerged as an alternative to transformer networks. While there have been successful attempts to replace transformer-based audio perception models with state-space ones, state-space-based LALMs remain unexplored. First, we begin by replacing the transformer-based audio perception module and then replace the transformer-based LLM and propose the first state-space-based LALM. Experimental results demonstrate that space-based LALM despite having a significantly lower number of parameters performs competitively with transformer-based LALMs on close-ended tasks on a variety of datasets.
☆ Quantile deep learning models for multi-step ahead time series prediction
Uncertainty quantification is crucial in time series prediction, and quantile regression offers a valuable mechanism for uncertainty quantification which is useful for extreme value forecasting. Although deep learning models have been prominent in multi-step ahead prediction, the development and evaluation of quantile deep learning models have been limited. We present a novel quantile regression deep learning framework for multi-step time series prediction. In this way, we elevate the capabilities of deep learning models by incorporating quantile regression, thus providing a more nuanced understanding of predictive values. We provide an implementation of prominent deep learning models for multi-step ahead time series prediction and evaluate their performance under high volatility and extreme conditions. We include multivariate and univariate modelling, strategies and provide a comparison with conventional deep learning models from the literature. Our models are tested on two cryptocurrencies: Bitcoin and Ethereum, using daily close-price data and selected benchmark time series datasets. The results show that integrating a quantile loss function with deep learning provides additional predictions for selected quantiles without a loss in the prediction accuracy when compared to the literature. Our quantile model has the ability to handle volatility more effectively and provides additional information for decision-making and uncertainty quantification through the use of quantiles when compared to conventional deep learning models.
☆ Establishing Design Routines for Efficient Control of Automated Robots
With continual advancements in technology, efforts to develop robots simulating human behavior have intensified. Cognitive robotics, combined with artificial intelligence (AI), has proven effective in surveying and research analysis. However, despite progress, human intervention remains necessary, and incorporating AI into robotic systems continues to pose challenges. This paper explores methodologies to integrate AI into robotic designs, aiming to enhance human-robot interactions. Several approaches are proposed to improve robotic performance, including routines for efficient control in varied environments and the incorporation of digital image processing for enhanced line-of-sight capabilities. A key contribution of this work is testing robotic systems in real-time environments to assess efficiency relative to existing models. Additionally, the paper introduces a robotic system with universal control capabilities, suitable for industrial applications, developed and programmed on the Arduino platform. Features such as GPS control for safe operations and progressive memory algorithms for efficient memory management are presented, offering advancements in both industrial and research applications.
☆ Autonomous Multi-Robot Exploration Strategies for 3D Environments with Fire Detection Capabilitie
This paper presents a comprehensive overview of exploration strategies utilized in both 2D and 3D environments, focusing on autonomous multi-robot systems designed for building exploration and fire detection. We explore the limitations of traditional algorithms that rely on prior knowledge and predefined maps, emphasizing the challenges faced when environments undergo changes that invalidate these maps. Our modular approach integrates localization, mapping, and trajectory planning to facilitate effective exploration using an OctoMap framework generated from point cloud data. The exploration strategy incorporates obstacle avoidance through potential fields, ensuring safe navigation in dynamic settings. Additionally, I propose future research directions, including decentralized map creation, coordinated exploration among unmanned aerial vehicles (UAVs), and adaptations to time-varying environments. This work serves as a foundation for advancing coordinated multi-robot exploration algorithms, enhancing their applicability in real-world scenarios.
comment: The copyright may be transferred to IEEE after acceptance of paper
☆ Multi-Robot Scan-n-Print for Wire Arc Additive Manufacturing
Robotic Wire Arc Additive Manufacturing (WAAM) is a metal additive manufacturing technology, offering flexible 3D printing while ensuring high quality near-net-shape final parts. However, WAAM also suffers from geometric imprecision, especially for low-melting-point metal such as aluminum alloys. In this paper, we present a multi-robot framework for WAAM process monitoring and control. We consider a three-robot setup: a 6-dof welding robot, a 2-dof trunnion platform, and a 6-dof sensing robot with a wrist-mounted laser line scanner measuring the printed part height profile. The welding parameters, including the wire feed rate, are held constant based on the materials used, so the control input is the robot path speed. The measured output is the part height profile. The planning phase decomposes the target shape into slices of uniform height. During runtime, the sensing robot scans each printed layer, and the robot path speed for the next layer is adjusted based on the deviation from the desired profile. The adjustment is based on an identified model correlating the path speed to change in height. The control architecture coordinates the synchronous motion and data acquisition between all robots and sensors. Using a three-robot WAAM testbed, we demonstrate significant improvements of the closed loop scan-n-print approach over the current open loop result on both a flat wall and a more complex turbine blade shape.
☆ PG-SLAM: Photo-realistic and Geometry-aware RGB-D SLAM in Dynamic Environments
Simultaneous localization and mapping (SLAM) has achieved impressive performance in static environments. However, SLAM in dynamic environments remains an open question. Many methods directly filter out dynamic objects, resulting in incomplete scene reconstruction and limited accuracy of camera localization. The other works express dynamic objects by point clouds, sparse joints, or coarse meshes, which fails to provide a photo-realistic representation. To overcome the above limitations, we propose a photo-realistic and geometry-aware RGB-D SLAM method by extending Gaussian splatting. Our method is composed of three main modules to 1) map the dynamic foreground including non-rigid humans and rigid items, 2) reconstruct the static background, and 3) localize the camera. To map the foreground, we focus on modeling the deformations and/or motions. We consider the shape priors of humans and exploit geometric and appearance constraints of humans and items. For background mapping, we design an optimization strategy between neighboring local maps by integrating appearance constraint into geometric alignment. As to camera localization, we leverage both static background and dynamic foreground to increase the observations for noise compensation. We explore the geometric and appearance constraints by associating 3D Gaussians with 2D optical flows and pixel patches. Experiments on various real-world datasets demonstrate that our method outperforms state-of-the-art approaches in terms of camera localization and scene representation. Source codes will be publicly available upon paper acceptance.
☆ FoAR: Force-Aware Reactive Policy for Contact-Rich Robotic Manipulation
Contact-rich tasks present significant challenges for robotic manipulation policies due to the complex dynamics of contact and the need for precise control. Vision-based policies often struggle with the skill required for such tasks, as they typically lack critical contact feedback modalities like force/torque information. To address this issue, we propose FoAR, a force-aware reactive policy that combines high-frequency force/torque sensing with visual inputs to enhance the performance in contact-rich manipulation. Built upon the RISE policy, FoAR incorporates a multimodal feature fusion mechanism guided by a future contact predictor, enabling dynamic adjustment of force/torque data usage between non-contact and contact phases. Its reactive control strategy also allows FoAR to accomplish contact-rich tasks accurately through simple position control. Experimental results demonstrate that FoAR significantly outperforms all baselines across various challenging contact-rich tasks while maintaining robust performance under unexpected dynamic disturbances. Project website: https://tonyfang.net/FoAR/
comment: 9 pages, 5 figures
☆ Robustifying Long-term Human-Robot Collaboration through a Hierarchical and Multimodal Framework
Long-term Human-Robot Collaboration (HRC) is crucial for developing flexible manufacturing systems and for integrating companion robots into daily human environments over extended periods. However, sustaining such collaborations requires overcoming challenges such as accurately understanding human intentions, maintaining robustness in noisy and dynamic environments, and adapting to diverse user behaviors. This paper presents a novel multimodal and hierarchical framework to address these challenges, facilitating efficient and robust long-term HRC. In particular, the proposed multimodal framework integrates visual observations with speech commands, which enables intuitive, natural, and flexible interactions between humans and robots. Additionally, our hierarchical approach for human detection and intention prediction significantly enhances the system's robustness, allowing robots to better understand human behaviors. The proactive understanding enables robots to take timely and appropriate actions based on predicted human intentions. We deploy the proposed multimodal hierarchical framework to the KINOVA GEN3 robot and conduct extensive user studies on real-world long-term HRC experiments. The results demonstrate that our approach effectively improves the system efficiency, flexibility, and adaptability in long-term HRC, showcasing the framework's potential to significantly improve the way humans and robots work together.
☆ FunGrasp: Functional Grasping for Diverse Dexterous Hands
Functional grasping is essential for humans to perform specific tasks, such as grasping scissors by the finger holes to cut materials or by the blade to safely hand them over. Enabling dexterous robot hands with functional grasping capabilities is crucial for their deployment to accomplish diverse real-world tasks. Recent research in dexterous grasping, however, often focuses on power grasps while overlooking task- and object-specific functional grasping poses. In this paper, we introduce FunGrasp, a system that enables functional dexterous grasping across various robot hands and performs one-shot transfer to unseen objects. Given a single RGBD image of functional human grasping, our system estimates the hand pose and transfers it to different robotic hands via a human-to-robot (H2R) grasp retargeting module. Guided by the retargeted grasping poses, a policy is trained through reinforcement learning in simulation for dynamic grasping control. To achieve robust sim-to-real transfer, we employ several techniques including privileged learning, system identification, domain randomization, and gravity compensation. In our experiments, we demonstrate that our system enables diverse functional grasping of unseen objects using single RGBD images, and can be successfully deployed across various dexterous robot hands. The significance of the components is validated through comprehensive ablation studies. Project page: https://hly-123.github.io/FunGrasp/ .
comment: Project page: https://hly-123.github.io/FunGrasp/
♻ ☆ Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs
Graph neural networks (GNNs) have achieved great success for a variety of tasks such as node classification, graph classification, and link prediction. However, the use of GNNs (and machine learning more generally) to solve combinatorial optimization (CO) problems is much less explored. Here, we introduce GCON, a novel GNN architecture that leverages a complex filter bank and localized attention mechanisms to solve CO problems on graphs. We show how our method differentiates itself from prior GNN-based CO solvers and how it can be effectively applied to the maximum cut, minimum dominating set, and maximum clique problems in a unsupervised learning setting. GCON is competitive across all tasks and consistently outperforms other specialized GNN-based approaches, and is on par with the powerful Gurobi solver on the max-cut problem. We provide an open-source implementation of our work at https://github.com/WenkelF/copt.
comment: In Proceedings of the Third Learning on Graphs Conference (LoG 2024, Oral); 20 pages, 2 figures
♻ ☆ Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: 22 pages; 12 figures; Under Review
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the semantic web, ontology version control is required to capture time-varying information, most importantly for widely-used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component for efficient ontology management, the growing size of ontologies and accumulating errors caused by manual labour overwhelm current OV approaches. In this paper, we propose yet another approach to performing OV using existing ontology matching (OM) techniques and systems. We introduce a unified OM4OV pipeline. From an OM perspective, we reconstruct a new task formulation, measurement, and testbed for OV tasks. Reusing the prior alignment(s) from OM, we propose a pipeline optimisation method called cross-reference (CR) mechanism to improve overall OV performance. We experimentally validate the OM4OV pipeline and the cross-reference mechanism in modified Ontology Alignment Evaluation Initiative (OAEI) datasets. We also discuss the insights on OM used for OV tasks, where some false mappings detected by OV systems are not actually false.
comment: 9 pages, 6 figures, 1 table
♻ ☆ Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data
The impressive capabilities of large language models (LLMs) have sparked debate over whether these models genuinely generalize to unseen tasks or predominantly rely on memorizing vast amounts of pretraining data. To explore this issue, we introduce an extended concept of memorization, distributional memorization, which measures the correlation between the LLM output probabilities and the pretraining data frequency. To effectively capture task-specific pretraining data frequency, we propose a novel task-gram language model, which is built by counting the co-occurrence of semantically related $n$-gram pairs from task inputs and outputs in the pretraining corpus. Using the Pythia models trained on the Pile dataset, we evaluate four distinct tasks: machine translation, factual question answering, world knowledge understanding, and math reasoning. Our findings reveal varying levels of memorization, with the strongest effect observed in factual question answering. Furthermore, while model performance improves across all tasks as LLM size increases, only factual question answering shows an increase in memorization, whereas machine translation and reasoning tasks exhibit greater generalization, producing more novel outputs. This study demonstrates that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks, providing a scalable method for analyzing large pretraining corpora in greater depth.
comment: updated 10-page version
♻ ☆ CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval
Despite the success of text retrieval in many NLP tasks, code retrieval remains a largely underexplored area. Most text retrieval systems are tailored for natural language queries, often neglecting the specific challenges of retrieving code. This gap leaves existing models unable to effectively capture the diversity of programming languages and tasks across different domains, highlighting the need for more focused research in code retrieval. To address this, we introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters. Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework, enhancing model generalizability and retrieval performance. Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark. In addition to excelling in code retrieval, our models demonstrate competitive performance on the widely adopted BeIR text retrieval benchmark, offering versatility across domains. Experimental results demonstrate that improving retrieval performance significantly enhances end-to-end Retrieval-Augmented Generation (RAG) performance for code-related tasks.
♻ ☆ How Far Are We From AGI: Are LLMs All We Need?
The evolution of artificial intelligence (AI) has profoundly impacted human society, driving significant advancements in multiple sectors. AGI, distinguished by its ability to execute diverse real-world tasks with efficiency and effectiveness comparable to human intelligence, reflects a paramount milestone in AI evolution. While existing studies have reviewed specific advancements in AI and proposed potential paths to AGI, such as large language models (LLMs), they fall short of providing a thorough exploration of AGI's definitions, objectives, and developmental trajectories. Unlike previous survey papers, this work goes beyond summarizing LLMs by addressing key questions about our progress toward AGI and outlining the strategies essential for its realization through comprehensive analysis, in-depth discussions, and novel insights. We start by articulating the requisite capability frameworks for AGI, integrating the internal, interface, and system dimensions. As the realization of AGI requires more advanced capabilities and adherence to stringent constraints, we further discuss necessary AGI alignment technologies to harmonize these factors. Notably, we emphasize the importance of approaching AGI responsibly by first defining the key levels of AGI progression, followed by the evaluation framework that situates the status quo, and finally giving our roadmap of how to reach the pinnacle of AGI. Moreover, to give tangible insights into the ubiquitous impact of the integration of AI, we outline existing challenges and potential pathways toward AGI in multiple domains. In sum, serving as a pioneering exploration into the current state and future trajectory of AGI, this paper aims to foster a collective comprehension and catalyze broader public discussions among researchers and practitioners on AGI.
♻ ☆ Formalizing and Benchmarking Prompt Injection Attacks and Defenses
A prompt injection attack aims to inject malicious instruction/data into the input of an LLM-Integrated Application such that it produces results as an attacker desires. Existing works are limited to case studies. As a result, the literature lacks a systematic understanding of prompt injection attacks and their defenses. We aim to bridge the gap in this work. In particular, we propose a framework to formalize prompt injection attacks. Existing attacks are special cases in our framework. Moreover, based on our framework, we design a new attack by combining existing ones. Using our framework, we conduct a systematic evaluation on 5 prompt injection attacks and 10 defenses with 10 LLMs and 7 tasks. Our work provides a common benchmark for quantitatively evaluating future prompt injection attacks and defenses. To facilitate research on this topic, we make our platform public at https://github.com/liu00222/Open-Prompt-Injection.
comment: Published in USENIX Security Symposium 2024; the model sizes for closed-source models are from blog posts
♻ ☆ Towards Full-scene Domain Generalization in Multi-agent Collaborative Bird's Eye View Segmentation for Connected and Autonomous Driving
Collaborative perception has recently gained significant attention in autonomous driving, improving perception quality by enabling the exchange of additional information among vehicles. However, deploying collaborative perception systems can lead to domain shifts due to diverse environmental conditions and data heterogeneity among connected and autonomous vehicles (CAVs). To address these challenges, we propose a unified domain generalization framework to be utilized during the training and inference stages of collaborative perception. In the training phase, we introduce an Amplitude Augmentation (AmpAug) method to augment low-frequency image variations, broadening the model's ability to learn across multiple domains. We also employ a meta-consistency training scheme to simulate domain shifts, optimizing the model with a carefully designed consistency loss to acquire domain-invariant representations. In the inference phase, we introduce an intra-system domain alignment mechanism to reduce or potentially eliminate the domain discrepancy among CAVs prior to inference. Extensive experiments substantiate the effectiveness of our method in comparison with the existing state-of-the-art works.
comment: Accepted by IEEE Transactions on Intelligent Transportation Systems (TITS)
♻ ☆ Dataset Distillation via Curriculum Data Synthesis in Large Data Era
Dataset distillation or condensation aims to generate a smaller but representative subset from a large dataset, which allows a model to be trained more efficiently, meanwhile evaluating on the original testing data distribution to achieve decent performance. Previous decoupled methods like SRe$^2$L simply use a unified gradient update scheme for synthesizing data from Gaussian noise, while, we notice that the initial several update iterations will determine the final outline of synthesis, thus an improper gradient update strategy may dramatically affect the final generation quality. To address this, we introduce a simple yet effective global-to-local gradient refinement approach enabled by curriculum data augmentation ($\texttt{CDA}$) during data synthesis. The proposed framework achieves the current published highest accuracy on both large-scale ImageNet-1K and 21K with 63.2% under IPC (Images Per Class) 50 and 36.1% under IPC 20, using a regular input resolution of 224$\times$224 with faster convergence speed and less synthetic time. The proposed model outperforms the current state-of-the-art methods like SRe$^2$L, TESLA, and MTT by more than 4% Top-1 accuracy on ImageNet-1K/21K and for the first time, reduces the gap to its full-data training counterparts to less than absolute 15%. Moreover, this work represents the inaugural success in dataset distillation on the larger-scale ImageNet-21K dataset under the standard 224$\times$224 resolution. Our code and distilled ImageNet-21K dataset of 20 IPC, 2K recovery budget are available at https://github.com/VILA-Lab/SRe2L/tree/main/CDA.
comment: TMLR 2024 Camera-ready Version. Code and distilled ImageNet-21K dataset are available at https://github.com/VILA-Lab/SRe2L/tree/main/CDA
♻ ☆ Improved GUI Grounding via Iterative Narrowing
Graphical User Interface (GUI) grounding plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for one-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework that employs an iterative narrowing mechanism to improve the performance of both general and fine-tuned models in GUI grounding by up to 61%. For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
comment: Code available at https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
♻ ☆ Incorporating Metabolic Information into LLMs for Anomaly Detection in Clinical Time-Series
Anomaly detection in clinical time-series holds significant potential in identifying suspicious patterns in different biological parameters. In this paper, we propose a targeted method that incorporates the clinical domain knowledge into LLMs to improve their ability to detect anomalies. We introduce the Metabolism Pathway-driven Prompting (MPP) method, which integrates the information about metabolic pathways to better capture the structural and temporal changes in biological samples. We applied our method for doping detection in sports, focusing on steroid metabolism, and evaluated using real-world data from athletes. The results show that our method improves anomaly detection performance by leveraging metabolic context, providing a more nuanced and accurate prediction of suspicious samples in athletes' profiles.
♻ ☆ A Theoretical Survey on Foundation Models
Understanding the inner mechanisms of black-box foundation models (FMs) is essential yet challenging in artificial intelligence and its applications. Over the last decade, the long-running focus has been on their explainability, leading to the development of post-hoc explainable methods to rationalize the specific decisions already made by black-box FMs. However, these explainable methods have certain limitations in terms of faithfulness and resource requirement. Consequently, a new class of interpretable methods should be considered to unveil the underlying mechanisms of FMs in an accurate, comprehensive, heuristic, and resource-light way. This survey aims to review those interpretable methods that comply with the aforementioned principles and have been successfully applied to FMs. These methods are deeply rooted in machine learning theory, covering the analysis of generalization performance, expressive capability, and dynamic behavior. They provide a thorough interpretation of the entire workflow of FMs, ranging from the inference capability and training dynamics to their ethical implications. Ultimately, drawing upon these interpretations, this review identifies the next frontier research directions for FMs.
comment: 63 pages, 16 figures
♻ ☆ Understanding the Effect of Algorithm Transparency of Model Explanations in Text-to-SQL Semantic Parsing
Explaining the decisions of AI has become vital for fostering appropriate user trust in these systems. This paper investigates explanations for a structured prediction task called ``text-to-SQL Semantic Parsing'', which translates a natural language question into a structured query language (SQL) program. In this task setting, we designed three levels of model explanation, each exposing a different amount of the model's decision-making details (called ``algorithm transparency''), and investigated how different model explanations could potentially yield different impacts on the user experience. Our study with $\sim$100 participants shows that (1) the low-/high-transparency explanations often lead to less/more user reliance on the model decisions, whereas the medium-transparency explanations strike a good balance. We also show that (2) only the medium-transparency participant group was able to engage further in the interaction and exhibit increasing performance over time, and that (3) they showed the least changes in trust before and after the study.
comment: 15 pages, 18 figure, Preprint
♻ ☆ ZigMa: A DiT-style Zigzag Mamba Diffusion Model ECCV 2024
The diffusion model has long been plagued by scalability and quadratic complexity issues, especially within transformer-based structures. In this study, we aim to leverage the long sequence modeling capability of a State-Space Model called Mamba to extend its applicability to visual data generation. Firstly, we identify a critical oversight in most current Mamba-based vision methods, namely the lack of consideration for spatial continuity in the scan scheme of Mamba. Secondly, building upon this insight, we introduce a simple, plug-and-play, zero-parameter method named Zigzag Mamba, which outperforms Mamba-based baselines and demonstrates improved speed and memory utilization compared to transformer-based baselines. Lastly, we integrate Zigzag Mamba with the Stochastic Interpolant framework to investigate the scalability of the model on large-resolution visual datasets, such as FacesHQ $1024\times 1024$ and UCF101, MultiModal-CelebA-HQ, and MS COCO $256\times 256$ . Code will be released at https://taohu.me/zigma/
comment: ECCV 2024 Project Page: https://taohu.me/zigma/
♻ ☆ A Dual-Perspective Approach to Evaluating Feature Attribution Methods
Feature attribution methods attempt to explain neural network predictions by identifying relevant features. However, establishing a cohesive framework for assessing feature attribution remains a challenge. There are several views through which we can evaluate attributions. One principal lens is to observe the effect of perturbing attributed features on the model's behavior (i.e., faithfulness). While providing useful insights, existing faithfulness evaluations suffer from shortcomings that we reveal in this paper. In this work, we propose two new perspectives within the faithfulness paradigm that reveal intuitive properties: soundness and completeness. Soundness assesses the degree to which attributed features are truly predictive features, while completeness examines how well the resulting attribution reveals all the predictive features. The two perspectives are based on a firm mathematical foundation and provide quantitative metrics that are computable through efficient algorithms. We apply these metrics to mainstream attribution methods, offering a novel lens through which to analyze and compare feature attribution methods.
comment: Accepted by Transactions on Machine Learning Research (11/2024)
♻ ☆ Uncovering Factor Level Preferences to Improve Human-Model Alignment
Despite advancements in Large Language Model (LLM) alignment, understanding the reasons behind LLM preferences remains crucial for bridging the gap between desired and actual behavior. LLMs often exhibit biases or tendencies that diverge from human preferences, such as favoring certain writing styles or producing overly verbose outputs. However, current methods for evaluating preference alignment often lack explainability, relying on coarse-grained comparisons. To address this, we introduce PROFILE (PRObing Factors of InfLuence for Explainability), a novel framework that uncovers and quantifies the influence of specific factors driving preferences. PROFILE's factor level analysis explains the 'why' behind human-model alignment and misalignment, offering insights into the direction of model improvement. We apply PROFILE to analyze human and LLM preferences across three tasks: summarization, helpful response generation, and document-based question-answering. Our factor level analysis reveals a substantial discrepancy between human and LLM preferences in generation tasks, whereas LLMs show strong alignment with human preferences in evaluation tasks. We demonstrate how leveraging factor level insights, including addressing misaligned factors or exploiting the generation-evaluation gap, can improve alignment with human preferences. This work underscores the importance of explainable preference analysis and highlights PROFILE's potential to provide valuable training signals, driving further improvements in human-model alignment.
♻ ☆ DenseFusion-1M: Merging Vision Experts for Comprehensive Multimodal Perception NeurIPS 2024
Existing Multimodal Large Language Models (MLLMs) increasingly emphasize complex understanding of various visual elements, including multiple objects, text information, and spatial relations. Their development for comprehensive visual perception hinges on the availability of high-quality image-text datasets that offer diverse visual elements and throughout image descriptions. However, the scarcity of such hyper-detailed datasets currently hinders progress within the MLLM community. The bottleneck stems from the limited perceptual capabilities of current caption engines, which fall short in providing complete and accurate annotations. To facilitate the cutting-edge research of MLLMs on comprehensive vision perception, we thereby propose Perceptual Fusion, using a low-budget but highly effective caption engine for complete and accurate image descriptions. Specifically, Perceptual Fusion integrates diverse perception experts as image priors to provide explicit information on visual elements and adopts an efficient MLLM as a centric pivot to mimic advanced MLLMs' perception abilities. We carefully select 1M highly representative images from uncurated LAION dataset and generate dense descriptions using our engine, dubbed DenseFusion-1M. Extensive experiments validate that our engine outperforms its counterparts, where the resulting dataset significantly improves the perception and cognition abilities of existing MLLMs across diverse vision-language benchmarks, especially with high-resolution images as inputs. The dataset and code are publicly available at https://github.com/baaivision/DenseFusion.
comment: Accepted by NeurIPS 2024. Project is available at https://github.com/baaivision/DenseFusion
♻ ☆ AIGS: Generating Science from AI-Powered Automated Falsification
Rapid development of artificial intelligence has drastically accelerated the development of scientific discovery. Trained with large-scale observation data, deep neural networks extract the underlying patterns in an end-to-end manner and assist human researchers with highly-precised predictions in unseen scenarios. The recent rise of Large Language Models (LLMs) and the empowered autonomous agents enable scientists to gain help through interaction in different stages of their research, including but not limited to literature review, research ideation, idea implementation, and academic writing. However, AI researchers instantiated by foundation model empowered agents with full-process autonomy are still in their infancy. In this paper, we study $\textbf{AI-Generated Science}$ (AIGS), where agents independently and autonomously complete the entire research process and discover scientific laws. By revisiting the definition of scientific research, we argue that $\textit{falsification}$ is the essence of both human research process and the design of an AIGS system. Through the lens of falsification, prior systems attempting towards AI-Generated Science either lack the part in their design, or rely heavily on existing verification engines that narrow the use in specialized domains. In this work, we propose Baby-AIGS as a baby-step demonstration of a full-process AIGS system, which is a multi-agent system with agents in roles representing key research process. By introducing FalsificationAgent, which identify and then verify possible scientific discoveries, we empower the system with explicit falsification. Experiments on three tasks preliminarily show that Baby-AIGS could produce meaningful scientific discoveries, though not on par with experienced human researchers. Finally, we discuss on the limitations of current Baby-AIGS, actionable insights, and related ethical issues in detail.
comment: Pre-print. 35 pages. Official website: https://agent-force.github.io/AIGS/
♻ ☆ SGS-SLAM: Semantic Gaussian Splatting For Neural Dense SLAM
We present SGS-SLAM, the first semantic visual SLAM system based on Gaussian Splatting. It incorporates appearance, geometry, and semantic features through multi-channel optimization, addressing the oversmoothing limitations of neural implicit SLAM systems in high-quality rendering, scene understanding, and object-level geometry. We introduce a unique semantic feature loss that effectively compensates for the shortcomings of traditional depth and color losses in object optimization. Through a semantic-guided keyframe selection strategy, we prevent erroneous reconstructions caused by cumulative errors. Extensive experiments demonstrate that SGS-SLAM delivers state-of-the-art performance in camera pose estimation, map reconstruction, precise semantic segmentation, and object-level geometric accuracy, while ensuring real-time rendering capabilities.
♻ ☆ PoPreRo: A New Dataset for Popularity Prediction of Romanian Reddit Posts ICPR 2024
We introduce PoPreRo, the first dataset for Popularity Prediction of Romanian posts collected from Reddit. The PoPreRo dataset includes a varied compilation of post samples from five distinct subreddits of Romania, totaling 28,107 data samples. Along with our novel dataset, we introduce a set of competitive models to be used as baselines for future research. Interestingly, the top-scoring model achieves an accuracy of 61.35% and a macro F1 score of 60.60% on the test set, indicating that the popularity prediction task on PoPreRo is very challenging. Further investigations based on few-shot prompting the Falcon-7B Large Language Model also point in the same direction. We thus believe that PoPreRo is a valuable resource that can be used to evaluate models on predicting the popularity of social media posts in Romanian. We release our dataset at https://github.com/ana-rogoz/PoPreRo.
comment: Accepted at ICPR 2024
♻ ☆ Generative AI for RF Sensing in IoT systems
The development of wireless sensing technologies, using signals such as Wi-Fi, infrared, and RF to gather environmental data, has significantly advanced within Internet of Things (IoT) systems. Among these, Radio Frequency (RF) sensing stands out for its cost-effective and non-intrusive monitoring of human activities and environmental changes. However, traditional RF sensing methods face significant challenges, including noise, interference, incomplete data, and high deployment costs, which limit their effectiveness and scalability. This paper investigates the potential of Generative AI (GenAI) to overcome these limitations within the IoT ecosystem. We provide a comprehensive review of state-of-the-art GenAI techniques, focusing on their application to RF sensing problems. By generating high-quality synthetic data, enhancing signal quality, and integrating multi-modal data, GenAI offers robust solutions for RF environment reconstruction, localization, and imaging. Additionally, GenAI's ability to generalize enables IoT devices to adapt to new environments and unseen tasks, improving their efficiency and performance. The main contributions of this article include a detailed analysis of the challenges in RF sensing, the presentation of innovative GenAI-based solutions, and the proposal of a unified framework for diverse RF sensing tasks. Through case studies, we demonstrate the effectiveness of integrating GenAI models, leading to advanced, scalable, and intelligent IoT systems.
♻ ☆ OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF Framework
As large language models (LLMs) continue to grow by scaling laws, reinforcement learning from human feedback (RLHF) has gained significant attention due to its outstanding performance. However, unlike pretraining or fine-tuning a single model, scaling reinforcement learning from human feedback (RLHF) for training large language models poses coordination challenges across four models. We present OpenRLHF, an open-source framework enabling efficient RLHF scaling. Unlike existing RLHF frameworks that co-locate four models on the same GPUs, OpenRLHF re-designs scheduling for the models beyond 70B parameters using Ray, vLLM, and DeepSpeed, leveraging improved resource utilization and diverse training approaches. Integrating seamlessly with Hugging Face, OpenRLHF provides an out-of-the-box solution with optimized algorithms and launch scripts, which ensures user-friendliness. OpenRLHF implements RLHF, DPO, rejection sampling, and other alignment techniques. Empowering state-of-the-art LLM development, OpenRLHF's code is available at \url{https://github.com/OpenRLHF/OpenRLHF}.
♻ ☆ PDDFormer: Pairwise Distance Distribution Graph Transformer for Crystal Material Property Prediction
The crystal structure can be simplified as a periodic point set repeating across the entire three-dimensional space along an underlying lattice. Traditionally, methods for representing crystals rely on descriptors like lattice parameters, symmetry, and space groups to characterize the structure. However, in reality, atoms in material always vibrate above absolute zero, causing continuous fluctuations in their positions. This dynamic behavior disrupts the underlying periodicity of the lattice, making crystal graphs based on static lattice parameters and conventional descriptors discontinuous under even slight perturbations. To this end, chemists proposed the Pairwise Distance Distribution (PDD) method, which has been used to distinguish all periodic structures in the world's largest real materials collection, the Cambridge Structural Database. However, achieving the completeness of PDD requires defining a large number of neighboring atoms, resulting in high computational costs. Moreover, it does not account for atomic information, making it challenging to directly apply PDD to crystal material property prediction tasks. To address these challenges, we propose the atom-Weighted Pairwise Distance Distribution (WPDD) and Unit cell Pairwise Distance Distribution (UPDD) for the first time, incorporating them into the construction of multi-edge crystal graphs. Based on this, we further developed WPDDFormer and UPDDFormer, graph transformer architecture constructed using WPDD and UPDD crystal graphs. We demonstrate that this method maintains the continuity and completeness of crystal graphs even under slight perturbations in atomic positions.
comment: 8 pages, 3 figures
♻ ☆ MECG-E: Mamba-based ECG Enhancer for Baseline Wander Removal
Electrocardiogram (ECG) is an important non-invasive method for diagnosing cardiovascular disease. However, ECG signals are susceptible to noise contamination, such as electrical interference or signal wandering, which reduces diagnostic accuracy. Various ECG denoising methods have been proposed, but most existing methods yield suboptimal performance under very noisy conditions or require several steps during inference, leading to latency during online processing. In this paper, we propose a novel ECG denoising model, namely Mamba-based ECG Enhancer (MECG-E), which leverages the Mamba architecture known for its fast inference and outstanding nonlinear mapping capabilities. Experimental results indicate that MECG-E surpasses several well-known existing models across multiple metrics under different noise conditions. Additionally, MECG-E requires less inference time than state-of-the-art diffusion-based ECG denoisers, demonstrating the model's functionality and efficiency.
comment: Accepted at IEEE BigData 2024
♻ ☆ Be aware of overfitting by hyperparameter optimization!
Hyperparameter optimization is very frequently employed in machine learning. However, an optimization of a large space of parameters could result in overfitting of models. In recent studies on solubility prediction the authors collected seven thermodynamic and kinetic solubility datasets from different data sources. They used state-of-the-art graph-based methods and compared models developed for each dataset using different data cleaning protocols and hyperparameter optimization. In our study we showed that hyperparameter optimization did not always result in better models, possibly due to overfitting when using the same statistical measures. Similar results could be calculated using pre-set hyperparameters, reducing the computational effort by around 10,000 times. We also extended the previous analysis by adding a representation learning method based on Natural Language Processing of smiles called Transformer CNN. We show that across all analyzed sets using exactly the same protocol, Transformer CNN provided better results than graph-based methods for 26 out of 28 pairwise comparisons by using only a tiny fraction of time as compared to other methods. Last but not least we stressed the importance of comparing calculation results using exactly the same statistical measures.
comment: 19 pages, 5 Tables
♻ ☆ Markov $α$-Potential Games
We propose a new framework of Markov $\alpha$-potential games to study Markov games. We show that any Markov game with finite-state and finite-action is a Markov $\alpha$-potential game, and establish the existence of an associated $\alpha$-potential function. Any optimizer of an $\alpha$-potential function is shown to be an $\alpha$-stationary Nash equilibrium. We study two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, via the framework of Markov $\alpha$-potential games, with explicit characterization of an upper bound for $\mnpg$ and its relation to game parameters. Additionally, we provide a semi-infinite linear programming based formulation to obtain an upper bound for $\alpha$ for any Markov game. Furthermore, we study two equilibrium approximation algorithms, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, along with their Nash regret analysis, and corroborate the results with numerical experiments.
comment: 36 pages, 5 figures
♻ ☆ VoiceBench: Benchmarking LLM-Based Voice Assistants
Building on the success of large language models (LLMs), recent advancements such as GPT-4o have enabled real-time speech interactions through LLM-based voice assistants, offering a significantly improved user experience compared to traditional text-based interactions. However, the absence of benchmarks designed to evaluate these speech interaction capabilities has hindered progress of LLM-based voice assistants development. Current evaluations focus primarily on automatic speech recognition (ASR) or general knowledge evaluation with clean speeches, neglecting the more intricate, real-world scenarios that involve diverse speaker characteristics, environmental and content factors. To address this, we introduce VoiceBench, the first benchmark designed to provide a multi-faceted evaluation of LLM-based voice assistants. VoiceBench also includes both real and synthetic spoken instructions that incorporate the above three key real-world variations. Extensive experiments reveal the limitations of current LLM-based voice assistant models and offer valuable insights for future research and development in this field.
comment: Work in progress. Data is available at https://github.com/MatthewCYM/VoiceBench
♻ ☆ JailBreakV: A Benchmark for Assessing the Robustness of MultiModal Large Language Models against Jailbreak Attacks
With the rapid advancements in Multimodal Large Language Models (MLLMs), securing these models against malicious inputs while aligning them with human values has emerged as a critical challenge. In this paper, we investigate an important and unexplored question of whether techniques that successfully jailbreak Large Language Models (LLMs) can be equally effective in jailbreaking MLLMs. To explore this issue, we introduce JailBreakV-28K, a pioneering benchmark designed to assess the transferability of LLM jailbreak techniques to MLLMs, thereby evaluating the robustness of MLLMs against diverse jailbreak attacks. Utilizing a dataset of 2, 000 malicious queries that is also proposed in this paper, we generate 20, 000 text-based jailbreak prompts using advanced jailbreak attacks on LLMs, alongside 8, 000 image-based jailbreak inputs from recent MLLMs jailbreak attacks, our comprehensive dataset includes 28, 000 test cases across a spectrum of adversarial scenarios. Our evaluation of 10 open-source MLLMs reveals a notably high Attack Success Rate (ASR) for attacks transferred from LLMs, highlighting a critical vulnerability in MLLMs that stems from their text-processing capabilities. Our findings underscore the urgent need for future research to address alignment vulnerabilities in MLLMs from both textual and visual inputs.
♻ ☆ InjecGuard: Benchmarking and Mitigating Over-defense in Prompt Injection Guardrail Models
Prompt injection attacks pose a critical threat to large language models (LLMs), enabling goal hijacking and data leakage. Prompt guard models, though effective in defense, suffer from over-defense -- falsely flagging benign inputs as malicious due to trigger word bias. To address this issue, we introduce NotInject, an evaluation dataset that systematically measures over-defense across various prompt guard models. NotInject contains 339 benign samples enriched with trigger words common in prompt injection attacks, enabling fine-grained evaluation. Our results show that state-of-the-art models suffer from over-defense issues, with accuracy dropping close to random guessing levels (60%). To mitigate this, we propose InjecGuard, a novel prompt guard model that incorporates a new training strategy, Mitigating Over-defense for Free (MOF), which significantly reduces the bias on trigger words. InjecGuard demonstrates state-of-the-art performance on diverse benchmarks including NotInject, surpassing the existing best model by 30.8%, offering a robust and open-source solution for detecting prompt injection attacks. The code and datasets are released at https://github.com/SaFoLab-WISC/InjecGuard.
♻ ☆ Can LLMs Learn by Teaching for Better Reasoning? A Preliminary Study NeurIPS 2024
Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, for humans, teaching improves not only students but also teachers, by fostering more rigorous and clear reasoning as well as knowledge building. We ask: Can LLMs also learn by teaching (LbT) for better reasoning? If the answer is yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration on this question. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and bring improvements. Specifically, we design three methods, each mimicking one of the three levels of LbT: observing students' feedback, learning from the feedback, and learning iteratively, with the goals of improving answer accuracy without training or improving models' inherent capability with fine-tuning. We reveal some findings: (1) Teaching materials that make it easier for students to learn have clearer and more accurate logic when using in-context learning as the student's "learning" method; (2) Weak-to-strong generalization: LbT might help improve strong models by teaching weak models; (3) Diversity in students might help: teaching multiple students could be better than teaching one student or the teacher itself. We hope that our exploration can inspire future research on LbT and more broadly adopting the advanced techniques in education to improve LLMs. The code and website are at https://github.com/imagination-research/lbt and https://sites.google.com/view/llm-learning-by-teaching.
comment: NeurIPS 2024
♻ ☆ Reconciling Reality through Simulation: A Real-to-Sim-to-Real Approach for Robust Manipulation
Imitation learning methods need significant human supervision to learn policies robust to changes in object poses, physical disturbances, and visual distractors. Reinforcement learning, on the other hand, can explore the environment autonomously to learn robust behaviors but may require impractical amounts of unsafe real-world data collection. To learn performant, robust policies without the burden of unsafe real-world data collection or extensive human supervision, we propose RialTo, a system for robustifying real-world imitation learning policies via reinforcement learning in "digital twin" simulation environments constructed on the fly from small amounts of real-world data. To enable this real-to-sim-to-real pipeline, RialTo proposes an easy-to-use interface for quickly scanning and constructing digital twins of real-world environments. We also introduce a novel "inverse distillation" procedure for bringing real-world demonstrations into simulated environments for efficient fine-tuning, with minimal human intervention and engineering required. We evaluate RialTo across a variety of robotic manipulation problems in the real world, such as robustly stacking dishes on a rack, placing books on a shelf, and six other tasks. RialTo increases (over 67%) in policy robustness without requiring extensive human data collection. Project website and videos at https://real-to-sim-to-real.github.io/RialTo/
comment: Project page: https://real-to-sim-to-real.github.io/RialTo/
♻ ☆ Few-Shot Recognition via Stage-Wise Retrieval-Augmented Finetuning
Few-shot recognition (FSR) aims to train a classification model with only a few labeled examples of each concept concerned by a downstream task, where data annotation cost can be prohibitively high. We develop methods to solve FSR by leveraging a pretrained Vision-Language Model (VLM). We particularly explore retrieval-augmented learning (RAL), which retrieves data from the VLM's pretraining set to learn better models for serving downstream tasks. RAL has been widely studied in zero-shot recognition but remains under-explored in FSR. Although applying RAL to FSR may seem straightforward, we observe interesting and novel challenges and opportunities. First, somewhat surprisingly, finetuning a VLM on a large amount of retrieved data underperforms state-of-the-art zero-shot methods. This is due to the imbalanced distribution of retrieved data and its domain gaps with the few-shot examples in the downstream task. Second, more surprisingly, we find that simply finetuning a VLM solely on few-shot examples significantly outperforms previous FSR methods, and finetuning on the mix of retrieved and few-shot data yields even better results. Third, to mitigate the imbalanced distribution and domain gap issues, we propose Stage-Wise retrieval-Augmented fineTuning (SWAT), which involves end-to-end finetuning on mixed data in the first stage and retraining the classifier on the few-shot data in the second stage. Extensive experiments on nine popular benchmarks demonstrate that SWAT significantly outperforms previous methods by $>$6% accuracy.
comment: Project page: https://tian1327.github.io/SWAT/
♻ ☆ Simultaneous System Identification and Model Predictive Control with No Dynamic Regret
We provide an algorithm for the simultaneous system identification and model predictive control of nonlinear systems. The algorithm has finite-time near-optimality guarantees and asymptotically converges to the optimal (non-causal) controller. Particularly, the algorithm enjoys sublinear dynamic regret, defined herein as the suboptimality against an optimal clairvoyant controller that knows how the unknown disturbances and system dynamics will adapt to its actions. The algorithm is self-supervised and applies to control-affine systems with unknown dynamics and disturbances that can be expressed in reproducing kernel Hilbert spaces. Such spaces can model external disturbances and modeling errors that can even be adaptive to the system's state and control input. For example, they can model wind and wave disturbances to aerial and marine vehicles, or inaccurate model parameters such as inertia of mechanical systems. The algorithm first generates random Fourier features that are used to approximate the unknown dynamics or disturbances. Then, it employs model predictive control based on the current learned model of the unknown dynamics (or disturbances). The model of the unknown dynamics is updated online using least squares based on the data collected while controlling the system. We validate our algorithm in both hardware experiments and physics-based simulations. The simulations include (i) a cart-pole aiming to maintain the pole upright despite inaccurate model parameters, and (ii) a quadrotor aiming to track reference trajectories despite unmodeled aerodynamic drag effects. The hardware experiments include a quadrotor aiming to track a circular trajectory despite unmodeled aerodynamic drag effects, ground effects, and wind disturbances.
comment: 19 pages, 13 figures
♻ ☆ Equivariant IMU Preintegration with Biases: a Galilean Group Approach
This letter proposes a new approach for Inertial Measurement Unit (IMU) preintegration, a fundamental building block that can be leveraged in different optimization-based Inertial Navigation System (INS) localization solutions. Inspired by recent advances in equivariant theory applied to biased INSs, we derive a discrete-time formulation of the IMU preintegration on ${\mathbf{Gal}(3) \ltimes \mathfrak{gal}(3)}$, the left-trivialization of the tangent group of the Galilean group $\mathbf{Gal}(3)$. We define a novel preintegration error that geometrically couples the navigation states and the bias leading to lower linearization error. Our method improves in consistency compared to existing preintegration approaches which treat IMU biases as a separate state-space. Extensive validation against state-of-the-art methods, both in simulation and with real-world IMU data, implementation in the Lie++ library, and open-source code are provided.
♻ ☆ Bring the Heat: Rapid Trajectory Optimization with Pseudospectral Techniques and the Affine Geometric Heat Flow Equation
Generating optimal trajectories for high-dimensional robotic systems in a time-efficient manner while adhering to constraints is a challenging task. This paper introduces PHLAME, which applies pseudospectral collocation and spatial vector algebra to efficiently solve the Affine Geometric Heat Flow (AGHF) Partial Differential Equation (PDE) for trajectory optimization. Unlike traditional PDE approaches like the Hamilton-Jacobi-Bellman (HJB) PDE, which solve for a function over the entire state space, computing a solution to the AGHF PDE scales more efficiently because its solution is defined over a two-dimensional domain, thereby avoiding the intractability of state-space scaling. To solve the AGHF one usually applies the Method of Lines (MOL), which discretizes one variable of the AGHF PDE, and converts the PDE into a system of ordinary differential equations (ODEs) that are solved using standard time-integration methods. Though powerful, this method requires a fine discretization to generate accurate solutions and requires evaluating the AGHF PDE which is computationally expensive for high-dimensional systems. PHLAME overcomes this deficiency by using a pseudospectral method, which reduces the number of function evaluations required to yield a high accuracy solution thereby allowing it to scale efficiently to high-dimensional robotic systems. To further increase computational speed, this paper presents analytical expressions for the AGHF and its Jacobian, both of which can be computed efficiently using rigid body dynamics algorithms. PHLAME is tested across various dynamical systems, with and without obstacles and compared to a number of state-of-the-art techniques. PHLAME generates trajectories for a 44-dimensional state-space system in $\sim5$ seconds, much faster than current state-of-the-art techniques. A project page is available at https://roahmlab.github.io/PHLAME/
comment: 26 pages, 8 figures, A project page can be found at https://roahmlab.github.io/PHLAME/
♻ ☆ Concurrent-Learning Based Relative Localization in Shape Formation of Robot Swarms (Extended version)
In this paper, we address the shape formation problem for massive robot swarms in environments where external localization systems are unavailable. Achieving this task effectively with solely onboard measurements is still scarcely explored and faces some practical challenges. To solve this challenging problem, we propose the following novel results. Firstly, to estimate the relative positions among neighboring robots, a concurrent-learning based estimator is proposed. It relaxes the persistent excitation condition required in the classical ones such as least-square estimator. Secondly, we introduce a finite-time agreement protocol to determine the shape location. This is achieved by estimating the relative position between each robot and a randomly assigned seed robot. The initial position of the seed one marks the shape location. Thirdly, based on the theoretical results of the relative localization, a novel behavior-based control strategy is devised. This strategy not only enables adaptive shape formation of large group of robots but also enhances the observability of inter-robot relative localization. Numerical simulation results are provided to verify the performance of our proposed strategy compared to the state-of-the-art ones. Additionally, outdoor experiments on real robots further demonstrate the practical effectiveness and robustness of our methods.
♻ ☆ DeRO: Dead Reckoning Based on Radar Odometry With Accelerometers Aided for Robot Localization IROS 2024
In this paper, we propose a radar odometry structure that directly utilizes radar velocity measurements for dead reckoning while maintaining its ability to update estimations within the Kalman filter framework. Specifically, we employ the Doppler velocity obtained by a 4D Frequency Modulated Continuous Wave (FMCW) radar in conjunction with gyroscope data to calculate poses. This approach helps mitigate high drift resulting from accelerometer biases and double integration. Instead, tilt angles measured by gravitational force are utilized alongside relative distance measurements from radar scan matching for the filter's measurement update. Additionally, to further enhance the system's accuracy, we estimate and compensate for the radar velocity scale factor. The performance of the proposed method is verified through five real-world open-source datasets. The results demonstrate that our approach reduces position error by 62% and rotation error by 66% on average compared to the state-of-the-art radar-inertial fusion method in terms of absolute trajectory error.
comment: 9 pages, 5 figures, 1 table, IROS 2024
♻ ☆ Optimum Configuration for Hovering n-Quadrotors carrying a Slung Payload
This work proposes a strategy for organising quadrotors around a payload to enable hovering without external stimuli, together with a MATLAB software for modelling the dynamics of a quadrotor-payload system. Based on geometric concepts, the proposed design keeps the payload and system centre of mass aligned. Hovering tests that are successful confirm the method's efficiency. Moreover, the algorithm is improved to take thrust capacities and propeller distances into account, calculating the minimum number of quadrotors needed for hovering. The algorithm's effectiveness is demonstrated by numerical examples, which reveal that larger quadrotors may require fewer units while smaller ones give greater flexibility. Our code can be found at: \href{https://github.com/Hosnooo/Swarm-Slung-Payload}{https://github.com/Hosnooo/Swarm-Slung-Payload}
comment: accepted for publication at AIAA SCITECH 2025
♻ ☆ A Novel Passive Occupational Shoulder Exoskeleton With Adjustable Peak Assistive Torque Angle For Overhead Tasks
Objective: Overhead tasks are a primary inducement to work-related musculoskeletal disorders. Aiming to reduce shoulder physical loads, passive shoulder exoskeletons are increasingly prevalent in the industry due to their lightweight, affordability, and effectiveness. However, they can only accommodate a specific task and cannot effectively balance between compactness and sufficient range of motion. Method: We proposed a novel passive occupational shoulder exoskeleton to handle various overhead tasks with different arm elevation angles and ensured a sufficient ROM while compactness. By formulating kinematic models and simulations, an ergonomic shoulder structure was developed. Then, we presented a torque generator equipped with an adjustable peak assistive torque angle to switch between low and high assistance phases through a passive clutch mechanism. Ten healthy participants were recruited to validate its functionality by performing the screwing task. Results: Measured range of motion results demonstrated that the exoskeleton can ensure a sufficient ROM in both sagittal (164{\deg}) and horizontal (158{\deg}) flexion/extension movements. The experimental results of the screwing task showed that the exoskeleton could reduce muscle activation (up to 49.6%), perceived effort and frustration, and provide an improved user experience (scored 79.7 out of 100). Conclusion: These results indicate that the proposed exoskeleton can guarantee natural movements and provide efficient assistance during overhead work, and thus have the potential to reduce the risk of musculoskeletal disorders. Significance: The proposed exoskeleton provides insights into multi-task adaptability and efficient assistance, highlighting the potential for expanding the application of exoskeletons.
♻ ☆ Enhanced Monocular Visual Odometry with AR Poses and Integrated INS-GPS for Robust Localization in Urban Environments
This paper introduces a cost effective localization system combining monocular visual odometry , augmented reality (AR) poses, and integrated INS-GPS data. We address monocular VO scale factor issues using AR poses and enhance accuracy with INS and GPS data, filtered through an Extended Kalman Filter . Our approach, tested using manually annotated trajectories from Google Street View, achieves an RMSE of 1.529 meters over a 1 km track. Future work will focus on real-time mobile implementation and further integration of visual-inertial odometry for robust localization. This method offers lane-level accuracy with minimal hardware, making advanced navigation more accessible.
comment: The copyright of this paper would be given to IEEE after "acceptance of paper by IEEE"
Computation and Language 55
☆ Ontology-Constrained Generation of Domain-Specific Clinical Summaries
Large Language Models (LLMs) offer promising solutions for text summarization. However, some domains require specific information to be available in the summaries. Generating these domain-adapted summaries is still an open challenge. Similarly, hallucinations in generated content is a major drawback of current approaches, preventing their deployment. This study proposes a novel approach that leverages ontologies to create domain-adapted summaries both structured and unstructured. We employ an ontology-guided constrained decoding process to reduce hallucinations while improving relevance. When applied to the medical domain, our method shows potential in summarizing Electronic Health Records (EHRs) across different specialties, allowing doctors to focus on the most relevant information to their domain. Evaluation on the MIMIC-III dataset demonstrates improvements in generating domain-adapted summaries of clinical notes and hallucination reduction.
comment: 24th International Conference on Knowledge Engineering and Knowledge Management (EKAW 2024), November 26-28, 2024, Amsterdam, The Netherlands
☆ Improving Next Tokens via Second-Last Predictions with Generate and Refine
Autoregressive language models like GPT aim at predicting next tokens, while autoencoding models such as BERT are trained on tasks such as predicting masked tokens. We train a decoder only architecture for predicting the second last token for a sequence of tokens. Our approach yields higher computational training efficiency than BERT-style models by employing a structured deterministic approach towards masking tokens. We use our model to improve the next token predictions of a standard GPT by combining both predictions in a ``generate-then-refine'' approach. We show on different variants of GPT-2 and different datasets that (not unexpectedly) second last token predictions are much more accurate, i.e., more than 15\% higher accuracy than ordinary next token predictors. The ``generate-then-refine'' approach also demonstrates notable improvements in next-token predictions, yielding smaller yet consistent and significant gains.
☆ AfriMed-QA: A Pan-African, Multi-Specialty, Medical Question-Answering Benchmark Dataset
Recent advancements in large language model(LLM) performance on medical multiple choice question (MCQ) benchmarks have stimulated interest from healthcare providers and patients globally. Particularly in low-and middle-income countries (LMICs) facing acute physician shortages and lack of specialists, LLMs offer a potentially scalable pathway to enhance healthcare access and reduce costs. However, their effectiveness in the Global South, especially across the African continent, remains to be established. In this work, we introduce AfriMed-QA, the first large scale Pan-African English multi-specialty medical Question-Answering (QA) dataset, 15,000 questions (open and closed-ended) sourced from over 60 medical schools across 16 countries, covering 32 medical specialties. We further evaluate 30 LLMs across multiple axes including correctness and demographic bias. Our findings show significant performance variation across specialties and geographies, MCQ performance clearly lags USMLE (MedQA). We find that biomedical LLMs underperform general models and smaller edge-friendly LLMs struggle to achieve a passing score. Interestingly, human evaluations show a consistent consumer preference for LLM answers and explanations when compared with clinician answers.
☆ "All that Glitters": Approaches to Evaluations with Unreliable Model and Human Annotations
"Gold" and "ground truth" human-mediated labels have error. The effects of this error can escape commonly reported metrics of label quality or obscure questions of accuracy, bias, fairness, and usefulness during model evaluation. This study demonstrates methods for answering such questions even in the context of very low reliabilities from expert humans. We analyze human labels, GPT model ratings, and transformer encoder model annotations describing the quality of classroom teaching, an important, expensive, and currently only human task. We answer the question of whether such a task can be automated using two Large Language Model (LLM) architecture families--encoders and GPT decoders, using novel approaches to evaluating label quality across six dimensions: Concordance, Confidence, Validity, Bias, Fairness, and Helpfulness. First, we demonstrate that using standard metrics in the presence of poor labels can mask both label and model quality: the encoder family of models achieve state-of-the-art, even "super-human", results across all classroom annotation tasks. But not all these positive results remain after using more rigorous evaluation measures which reveal spurious correlations and nonrandom racial biases across models and humans. This study then expands these methods to estimate how model use would change to human label quality if models were used in a human-in-the-loop context, finding that the variance captured in GPT model labels would worsen reliabilities for humans influenced by these models. We identify areas where some LLMs, within the generalizability of the current data, could improve the quality of expensive human ratings of classroom instruction.
comment: 20 pages, 15 figures, 58 pages with references and appendices
☆ Multi-label Sequential Sentence Classification via Large Language Model EMNLP 2024
Sequential sentence classification (SSC) in scientific publications is crucial for supporting downstream tasks such as fine-grained information retrieval and extractive summarization. However, current SSC methods are constrained by model size, sequence length, and single-label setting. To address these limitations, this paper proposes LLM-SSC, a large language model (LLM)-based framework for both single- and multi-label SSC tasks. Unlike previous approaches that employ small- or medium-sized language models, the proposed framework utilizes LLMs to generate SSC labels through designed prompts, which enhance task understanding by incorporating demonstrations and a query to describe the prediction target. We also present a multi-label contrastive learning loss with auto-weighting scheme, enabling the multi-label classification task. To support our multi-label SSC analysis, we introduce and release a new dataset, biorc800, which mainly contains unstructured abstracts in the biomedical domain with manual annotations. Experiments demonstrate LLM-SSC's strong performance in SSC under both in-context learning and task-specific tuning settings. We release biorc800 and our code at: https://github.com/ScienceNLP-Lab/LLM-SSC.
comment: Accepted by EMNLP 2024
A Survey on LLM-as-a-Judge
Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
comment: 33 pages, 9 figures. arXiv admin note: text overlap with arXiv:2310.05470 by other authors
☆ Transparent but Powerful: Explainability, Accuracy, and Generalizability in ADHD Detection from Social Media Data
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent mental health condition affecting both children and adults, yet it remains severely underdiagnosed. Recent advances in artificial intelligence, particularly in Natural Language Processing (NLP) and Machine Learning (ML), offer promising solutions for scalable and non-invasive ADHD screening methods using social media data. This paper presents a comprehensive study on ADHD detection, leveraging both shallow machine learning models and deep learning approaches, including BiLSTM and transformer-based models, to analyze linguistic patterns in ADHD-related social media text. Our results highlight the trade-offs between interpretability and performance across different models, with BiLSTM offering a balance of transparency and accuracy. Additionally, we assess the generalizability of these models using cross-platform data from Reddit and Twitter, uncovering key linguistic features associated with ADHD that could contribute to more effective digital screening tools.
comment: 12 pages (including references and appendix)
☆ From MTEB to MTOB: Retrieval-Augmented Classification for Descriptive Grammars COLING 2025
Recent advances in language modeling have demonstrated significant improvements in zero-shot capabilities, including in-context learning, instruction following, and machine translation for extremely under-resourced languages (Tanzer et al., 2024). However, many languages with limited written resources rely primarily on formal descriptions of grammar and vocabulary. In this paper, we introduce a set of benchmarks to evaluate how well models can extract and classify information from the complex descriptions found in linguistic grammars. We present a Retrieval-Augmented Generation (RAG)-based approach that leverages these descriptions for downstream tasks such as machine translation. Our benchmarks encompass linguistic descriptions for 248 languages across 142 language families, focusing on typological features from WALS and Grambank. This set of benchmarks offers the first comprehensive evaluation of language models' in-context ability to accurately interpret and extract linguistic features, providing a critical resource for scaling NLP to low-resource languages. The code and data are publicly available at \url{https://github.com/al-the-eigenvalue/RAG-on-grammars}.
comment: submitted to COLING 2025
☆ Do LLMs Agree on the Creativity Evaluation of Alternative Uses?
This paper investigates whether large language models (LLMs) show agreement in assessing creativity in responses to the Alternative Uses Test (AUT). While LLMs are increasingly used to evaluate creative content, previous studies have primarily focused on a single model assessing responses generated by the same model or humans. This paper explores whether LLMs can impartially and accurately evaluate creativity in outputs generated by both themselves and other models. Using an oracle benchmark set of AUT responses, categorized by creativity level (common, creative, and highly creative), we experiment with four state-of-the-art LLMs evaluating these outputs. We test both scoring and ranking methods and employ two evaluation settings (comprehensive and segmented) to examine if LLMs agree on the creativity evaluation of alternative uses. Results reveal high inter-model agreement, with Spearman correlations averaging above 0.7 across models and reaching over 0.77 with respect to the oracle, indicating a high level of agreement and validating the reliability of LLMs in creativity assessment of alternative uses. Notably, models do not favour their own responses, instead they provide similar creativity assessment scores or rankings for alternative uses generated by other models. These findings suggest that LLMs exhibit impartiality and high alignment in creativity evaluation, offering promising implications for their use in automated creativity assessment.
comment: 19 pages, 7 figures, 15 tables
☆ QEQR: An Exploration of Query Expansion Methods for Question Retrieval in CQA Services
CQA services are valuable sources of knowledge that can be used to find answers to users' information needs. In these services, question retrieval aims to help users with their information needs by finding similar questions to theirs. However, finding similar questions is obstructed by the lexical gap that exists between relevant questions. In this work, we target this problem by using query expansion methods. We use word-similarity-based methods, propose a question-similarity-based method and selective expansion of these methods to expand a question that's been submitted and mitigate the lexical gap problem. Our best method achieves a significant relative improvement of 1.8\% compared to the best-performing baseline without query expansion.
☆ Enhancing Grammatical Error Detection using BERT with Cleaned Lang-8 Dataset
This paper presents an improved LLM based model for Grammatical Error Detection (GED), which is a very challenging and equally important problem for many applications. The traditional approach to GED involved hand-designed features, but recently, Neural Networks (NN) have automated the discovery of these features, improving performance in GED. Traditional rule-based systems have an F1 score of 0.50-0.60 and earlier machine learning models give an F1 score of 0.65-0.75, including decision trees and simple neural networks. Previous deep learning models, for example, Bi-LSTM, have reported F1 scores within the range from 0.80 to 0.90. In our study, we have fine-tuned various transformer models using the Lang8 dataset rigorously cleaned by us. In our experiments, the BERT-base-uncased model gave an impressive performance with an F1 score of 0.91 and accuracy of 98.49% on training data and 90.53% on testing data, also showcasing the importance of data cleaning. Increasing model size using BERT-large-uncased or RoBERTa-large did not give any noticeable improvements in performance or advantage for this task, underscoring that larger models are not always better. Our results clearly show how far rigorous data cleaning and simple transformer-based models can go toward significantly improving the quality of GED.
comment: 10 pages, 6 tables, 20 references
☆ MolMetaLM: a Physicochemical Knowledge-Guided Molecular Meta Language Model
Most current molecular language models transfer the masked language model or image-text generation model from natural language processing to molecular field. However, molecules are not solely characterized by atom/bond symbols; they encapsulate important physical/chemical properties. Moreover, normal language models bring grammar rules that are irrelevant for understanding molecules. In this study, we propose a novel physicochemical knowledge-guided molecular meta language framework MolMetaLM. We design a molecule-specialized meta language paradigm, formatted as multiple (subject, predicate, object) knowledge triples sharing the same S (i.e., molecule) to enhance learning the semantic relationships between physicochemical knowledge and molecules. By introducing different molecular knowledge and noises, the meta language paradigm generates tens of thousands of pretraining tasks. By recovering the token/sequence/order-level noises, MolMetaLM exhibits proficiency in large-scale benchmark evaluations involving property prediction, molecule generation, conformation inference, and molecular optimization. Through MolMetaLM, we offer a new insight for designing language models.
☆ Traditional Chinese Medicine Case Analysis System for High-Level Semantic Abstraction: Optimized with Prompt and RAG
This paper details a technical plan for building a clinical case database for Traditional Chinese Medicine (TCM) using web scraping. Leveraging multiple platforms, including 360doc, we gathered over 5,000 TCM clinical cases, performed data cleaning, and structured the dataset with crucial fields such as patient details, pathogenesis, syndromes, and annotations. Using the $Baidu\_ERNIE\_Speed\_128K$ API, we removed redundant information and generated the final answers through the $DeepSeekv2$ API, outputting results in standard JSON format. We optimized data recall with RAG and rerank techniques during retrieval and developed a hybrid matching scheme. By combining two-stage retrieval method with keyword matching via Jieba, we significantly enhanced the accuracy of model outputs.
☆ Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark
Driven by the remarkable progress in diffusion models, text-to-image generation has made significant strides, creating a pressing demand for automatic quality evaluation of generated images. Current state-of-the-art automatic evaluation methods heavily rely on Multi-modal Large Language Models (MLLMs), particularly powerful commercial models like GPT-4o. While these models are highly effective, their substantial costs limit scalability in large-scale evaluations. Adopting open-source MLLMs is an alternative; however, their performance falls short due to significant limitations in processing multi-modal data compared to commercial MLLMs. To tackle these problems, we first propose a task decomposition evaluation framework based on GPT-4o to automatically construct a new training dataset, where the complex evaluation task is decoupled into simpler sub-tasks, effectively reducing the learning complexity. Based on this dataset, we design innovative training strategies to effectively distill GPT-4o's evaluation capabilities into a 7B open-source MLLM, MiniCPM-V-2.6. Furthermore, to reliably and comprehensively assess prior works and our proposed model, we manually annotate a meta-evaluation benchmark that includes chain-of-thought explanations alongside quality scores for generated images. Experimental results demonstrate that our distilled open-source MLLM significantly outperforms the current state-of-the-art GPT-4o-base baseline, VIEScore, with over 4.6\% improvement in Spearman and Kendall correlations with human judgments.
☆ Transition Network Analysis: A Novel Framework for Modeling, Visualizing, and Identifying the Temporal Patterns of Learners and Learning Processes
This paper proposes a novel analytical framework: Transition Network Analysis (TNA), an approach that integrates Stochastic Process Mining and probabilistic graph representation to model, visualize, and identify transition patterns in the learning process data. Combining the relational and temporal aspects into a single lens offers capabilities beyond either framework, including centralities to capture important learning events, community finding to identify patterns of behavior, and clustering to reveal temporal patterns. This paper introduces the theoretical and mathematical foundations of TNA. To demonstrate the functionalities of TNA, we present a case study with students (n=191) engaged in small-group collaboration to map patterns of group dynamics using the theories of co-regulation and socially-shared regulated learning. The analysis revealed that TNA could reveal the regulatory processes and identify important events, temporal patterns and clusters. Bootstrap validation established the significant transitions and eliminated spurious transitions. In doing so, we showcase TNA's utility to capture learning dynamics and provide a robust framework for investigating the temporal evolution of learning processes. Future directions include advancing estimation methods, expanding reliability assessment, exploring longitudinal TNA, and comparing TNA networks using permutation tests.
comment: Accepted at Learning Analytics & Knowledge (LAK '25)
☆ Seed-Free Synthetic Data Generation Framework for Instruction-Tuning LLMs: A Case Study in Thai ACL
We present a synthetic data approach for instruction-tuning large language models (LLMs) for low-resource languages in a data-efficient manner, specifically focusing on Thai. We identify three key properties that contribute to the effectiveness of instruction-tuning datasets: fluency, diversity, and cultural context. We propose a seed-data-free framework for generating synthetic instruction-tuning data that incorporates these essential properties. Our framework employs an LLM to generate diverse topics, retrieve relevant contexts from Wikipedia, and create instructions for various tasks, such as question answering, summarization, and conversation. The experimental results show that our best-performing synthetic dataset, which incorporates all three key properties, achieves competitive performance using only 5,000 instructions when compared to state-of-the-art Thai LLMs trained on hundreds of thousands of instructions. Our code and dataset are publicly available at https://github.com/parinzee/seed-free-synthetic-instruct.
comment: ACL-SRW 2024. Our code and dataset are publicly available at https://github.com/parinzee/seed-free-synthetic-instruct
☆ Towards Robust Evaluation of Unlearning in LLMs via Data Transformations EMNLP 2024
Large Language Models (LLMs) have shown to be a great success in a wide range of applications ranging from regular NLP-based use cases to AI agents. LLMs have been trained on a vast corpus of texts from various sources; despite the best efforts during the data pre-processing stage while training the LLMs, they may pick some undesirable information such as personally identifiable information (PII). Consequently, in recent times research in the area of Machine Unlearning (MUL) has become active, the main idea is to force LLMs to forget (unlearn) certain information (e.g., PII) without suffering from performance loss on regular tasks. In this work, we examine the robustness of the existing MUL techniques for their ability to enable leakage-proof forgetting in LLMs. In particular, we examine the effect of data transformation on forgetting, i.e., is an unlearned LLM able to recall forgotten information if there is a change in the format of the input? Our findings on the TOFU dataset highlight the necessity of using diverse data formats to quantify unlearning in LLMs more reliably.
comment: Accepted at EMNLP 2024 Findings; 21 pages (5 page main content + references + appendix)
☆ HateDay: Insights from a Global Hate Speech Dataset Representative of a Day on Twitter
To tackle the global challenge of online hate speech, a large body of research has developed detection models to flag hate speech in the sea of online content. Yet, due to systematic biases in evaluation datasets, detection performance in real-world settings remains unclear, let alone across geographies. To address this issue, we introduce HateDay, the first global hate speech dataset representative of social media settings, randomly sampled from all tweets posted on September 21, 2022 for eight languages and four English-speaking countries. Using HateDay, we show how the prevalence and composition of hate speech varies across languages and countries. We also find that evaluation on academic hate speech datasets overestimates real-world detection performance, which we find is very low, especially for non-European languages. We identify several factors explaining poor performance, including models' inability to distinguish between hate and offensive speech, and the misalignment between academic target focus and real-world target prevalence. We finally argue that such low performance renders hate speech moderation with public detection models unfeasible, even in a human-in-the-loop setting which we find is prohibitively costly. Overall, we emphasize the need to evaluate future detection models from academia and platforms in real-world settings to address this global challenge.
☆ Efficient Ternary Weight Embedding Model: Bridging Scalability and Performance
Embedding models have become essential tools in both natural language processing and computer vision, enabling efficient semantic search, recommendation, clustering, and more. However, the high memory and computational demands of full-precision embeddings pose challenges for deployment in resource-constrained environments, such as real-time recommendation systems. In this work, we propose a novel finetuning framework to ternary-weight embedding models, which reduces memory and computational overhead while maintaining high performance. To apply ternarization to pre-trained embedding models, we introduce self-taught knowledge distillation to finalize the ternary-weights of the linear layers. With extensive experiments on public text and vision datasets, we demonstrated that without sacrificing effectiveness, the ternarized model consumes low memory usage and has low latency in the inference stage with great efficiency. In practical implementations, embedding models are typically integrated with Approximate Nearest Neighbor (ANN) search. Our experiments combining ternary embedding with ANN search yielded impressive improvement in both accuracy and computational efficiency. The repository is available at here.
comment: Technical Report
☆ Lifelong Knowledge Editing for Vision Language Models with Low-Rank Mixture-of-Experts
Model editing aims to correct inaccurate knowledge, update outdated information, and incorporate new data into Large Language Models (LLMs) without the need for retraining. This task poses challenges in lifelong scenarios where edits must be continuously applied for real-world applications. While some editors demonstrate strong robustness for lifelong editing in pure LLMs, Vision LLMs (VLLMs), which incorporate an additional vision modality, are not directly adaptable to existing LLM editors. In this paper, we propose LiveEdit, a LIfelong Vision language modEl Edit to bridge the gap between lifelong LLM editing and VLLMs. We begin by training an editing expert generator to independently produce low-rank experts for each editing instance, with the goal of correcting the relevant responses of the VLLM. A hard filtering mechanism is developed to utilize visual semantic knowledge, thereby coarsely eliminating visually irrelevant experts for input queries during the inference stage of the post-edited model. Finally, to integrate visually relevant experts, we introduce a soft routing mechanism based on textual semantic relevance to achieve multi-expert fusion. For evaluation, we establish a benchmark for lifelong VLLM editing. Extensive experiments demonstrate that LiveEdit offers significant advantages in lifelong VLLM editing scenarios. Further experiments validate the rationality and effectiveness of each module design in LiveEdit.
☆ Exploring Large Language Models for Multimodal Sentiment Analysis: Challenges, Benchmarks, and Future Directions
Multimodal Aspect-Based Sentiment Analysis (MABSA) aims to extract aspect terms and their corresponding sentiment polarities from multimodal information, including text and images. While traditional supervised learning methods have shown effectiveness in this task, the adaptability of large language models (LLMs) to MABSA remains uncertain. Recent advances in LLMs, such as Llama2, LLaVA, and ChatGPT, demonstrate strong capabilities in general tasks, yet their performance in complex and fine-grained scenarios like MABSA is underexplored. In this study, we conduct a comprehensive investigation into the suitability of LLMs for MABSA. To this end, we construct a benchmark to evaluate the performance of LLMs on MABSA tasks and compare them with state-of-the-art supervised learning methods. Our experiments reveal that, while LLMs demonstrate potential in multimodal understanding, they face significant challenges in achieving satisfactory results for MABSA, particularly in terms of accuracy and inference time. Based on these findings, we discuss the limitations of current LLMs and outline directions for future research to enhance their capabilities in multimodal sentiment analysis.
☆ ML-SPEAK: A Theory-Guided Machine Learning Method for Studying and Predicting Conversational Turn-taking Patterns
Predicting team dynamics from personality traits remains a fundamental challenge for the psychological sciences and team-based organizations. Understanding how team composition generates team processes can significantly advance team-based research along with providing practical guidelines for team staffing and training. Although the Input-Process-Output (IPO) model has been useful for studying these connections, the complex nature of team member interactions demands a more dynamic approach. We develop a computational model of conversational turn-taking within self-organized teams that can provide insight into the relationships between team member personality traits and team communication dynamics. We focus on turn-taking patterns between team members, independent of content, which can significantly influence team emergent states and outcomes while being objectively measurable and quantifiable. As our model is trained on conversational data from teams of given trait compositions, it can learn the relationships between individual traits and speaking behaviors and predict group-wide patterns of communication based on team trait composition alone. We first evaluate the performance of our model using simulated data and then apply it to real-world data collected from self-organized student teams. In comparison to baselines, our model is more accurate at predicting speaking turn sequences and can reveal new relationships between team member traits and their communication patterns. Our approach offers a more data-driven and dynamic understanding of team processes. By bridging the gap between individual personality traits and team communication patterns, our model has the potential to inform theories of team processes and provide powerful insights into optimizing team staffing and training.
comment: 64 pages, 9 figures
☆ A Comparative Analysis of Transformer and LSTM Models for Detecting Suicidal Ideation on Reddit ICML
Suicide is a critical global health problem involving more than 700,000 deaths yearly, particularly among young adults. Many people express their suicidal thoughts on social media platforms such as Reddit. This paper evaluates the effectiveness of the deep learning transformer-based models BERT, RoBERTa, DistilBERT, ALBERT, and ELECTRA and various Long Short-Term Memory (LSTM) based models in detecting suicidal ideation from user posts on Reddit. Toward this objective, we curated an extensive dataset from diverse subreddits and conducted linguistic, topic modeling, and statistical analyses to ensure data quality. Our results indicate that each model could reach high accuracy and F1 scores, but among them, RoBERTa emerged as the most effective model with an accuracy of 93.22% and F1 score of 93.14%. An LSTM model that uses attention and BERT embeddings performed as the second best, with an accuracy of 92.65% and an F1 score of 92.69%. Our findings show that transformer-based models have the potential to improve suicide ideation detection, thereby providing a path to develop robust mental health monitoring tools from social media. This research, therefore, underlines the undeniable prospect of advanced techniques in Natural Language Processing (NLP) while improving suicide prevention efforts.
comment: 23rd IEEE International Conference on Machine Learning and Applications, ICMLA 2024 (camera-ready)
☆ ChatBCI: A P300 Speller BCI Leveraging Large Language Models for Improved Sentence Composition in Realistic Scenarios
P300 speller BCIs allow users to compose sentences by selecting target keys on a GUI through the detection of P300 component in their EEG signals following visual stimuli. Most P300 speller BCIs require users to spell words letter by letter, or the first few initial letters, resulting in high keystroke demands that increase time, cognitive load, and fatigue. This highlights the need for more efficient, user-friendly methods for faster sentence composition. In this work, we introduce ChatBCI, a P300 speller BCI that leverages the zero-shot learning capabilities of large language models (LLMs) to suggest words from user-spelled initial letters or predict the subsequent word(s), reducing keystrokes and accelerating sentence composition. ChatBCI retrieves word suggestions through remote queries to the GPT-3.5 API. A new GUI, displaying GPT-3.5 word suggestions as extra keys is designed. SWLDA is used for the P300 classification. Seven subjects completed two online spelling tasks: 1) copy-spelling a self-composed sentence using ChatBCI, and 2) improvising a sentence using ChatBCI's word suggestions. Results demonstrate that in Task 1, on average, ChatBCI outperforms letter-by-letter BCI spellers, reducing time and keystrokes by 62.14% and 53.22%, respectively, and increasing information transfer rate by 198.96%. In Task 2, ChatBCI achieves 80.68% keystroke savings and a record 8.53 characters/min for typing speed. Overall, ChatBCI, by employing remote LLM queries, enhances sentence composition in realistic scenarios, significantly outperforming traditional spellers without requiring local model training or storage. ChatBCI's (multi-) word predictions, combined with its new GUI, pave the way for developing next-generation speller BCIs that are efficient and effective for real-time communication, especially for users with communication and motor disabilities.
☆ From Jack of All Trades to Master of One: Specializing LLM-based Autoraters to a Test Set
As LLMs continue to become more powerful and versatile, human evaluation has quickly become intractable at scale and reliance on automatic metrics has become the norm. Recently, it has been shown that LLMs are themselves state-of-the-art evaluators for many tasks. These Autoraters are typically designed so that they generalize to new systems and test sets. In practice, however, evaluation is performed on a small set of fixed, canonical test sets, which are carefully curated to measure certain capabilities of interest and are not changed frequently. In this work, we design a method which specializes a prompted Autorater to a given test set, by leveraging historical ratings on the test set to construct in-context learning (ICL) examples. We evaluate our Specialist method on the task of fine-grained machine translation evaluation, and show that it dramatically outperforms the state-of-the-art XCOMET metric by 54% and 119% on the WMT'23 and WMT'24 test sets, respectively. We perform extensive analyses to understand the representations learned by our Specialist metrics, and how variability in rater behavior affects their performance. We also verify the generalizability and robustness of our Specialist method for designing automatic metrics across different numbers of ICL examples, LLM backbones, systems to evaluate, and evaluation tasks.
☆ ChemSafetyBench: Benchmarking LLM Safety on Chemistry Domain
The advancement and extensive application of large language models (LLMs) have been remarkable, including their use in scientific research assistance. However, these models often generate scientifically incorrect or unsafe responses, and in some cases, they may encourage users to engage in dangerous behavior. To address this issue in the field of chemistry, we introduce ChemSafetyBench, a benchmark designed to evaluate the accuracy and safety of LLM responses. ChemSafetyBench encompasses three key tasks: querying chemical properties, assessing the legality of chemical uses, and describing synthesis methods, each requiring increasingly deeper chemical knowledge. Our dataset has more than 30K samples across various chemical materials. We incorporate handcrafted templates and advanced jailbreaking scenarios to enhance task diversity. Our automated evaluation framework thoroughly assesses the safety, accuracy, and appropriateness of LLM responses. Extensive experiments with state-of-the-art LLMs reveal notable strengths and critical vulnerabilities, underscoring the need for robust safety measures. ChemSafetyBench aims to be a pivotal tool in developing safer AI technologies in chemistry. Our code and dataset are available at https://github.com/HaochenZhao/SafeAgent4Chem. Warning: this paper contains discussions on the synthesis of controlled chemicals using AI models.
☆ Multi-Reranker: Maximizing performance of retrieval-augmented generation in the FinanceRAG challenge
As Large Language Models (LLMs) increasingly address domain-specific problems, their application in the financial sector has expanded rapidly. Tasks that are both highly valuable and time-consuming, such as analyzing financial statements, disclosures, and related documents, are now being effectively tackled using LLMs. This paper details the development of a high-performance, finance-specific Retrieval-Augmented Generation (RAG) system for the ACM-ICAIF '24 FinanceRAG competition. We optimized performance through ablation studies on query expansion and corpus refinement during the pre-retrieval phase. To enhance retrieval accuracy, we employed multiple reranker models. Notably, we introduced an efficient method for managing long context sizes during the generation phase, significantly improving response quality without sacrificing performance. We ultimately achieve 2nd place in the FinanceRAG Challenge. Our key contributions include: (1) pre-retrieval ablation analysis, (2) an enhanced retrieval algorithm, and (3) a novel approach for long-context management. This work demonstrates the potential of LLMs in effectively processing and analyzing complex financial data to generate accurate and valuable insights. The source code and further details are available at https://github.com/cv-lee/FinanceRAG.
☆ "Moralized" Multi-Step Jailbreak Prompts: Black-Box Testing of Guardrails in Large Language Models for Verbal Attacks ICLR 2025
As the application of large language models continues to expand in various fields, it poses higher challenges to the effectiveness of identifying harmful content generation and guardrail mechanisms. This research aims to evaluate the effectiveness of guardrails in the face of multi-step jailbreak prompt-generated verbal attacks, through black-box testing of seemingly ethical prompt simulations. The experimental subjects were selected GPT-4o, Grok-2 Beta, Llama 3.1 (405B), Gemini 1.5 and Claude 3.5 Sonnet. The researcher used the same multi-step prompt to simulate moral attacks by designing a scenario of "enterprise middle managers competing for promotion" and observed the model's response at each step. During the experiment, the guardrails of the above model were all bypassed in this experiment and the content of verbal attacks was generated. The data results show that Claude 3.5 Sonnet performs better than other models in terms of its tendency to identify jailbreak prompts. The researcher hopes to use this to remind developers and future research that guardrails not only inappropriately play the role of content filters, but should also have a preventive function. In order to ensure the objectivity and generalizability of the experiment, the researcher has uploaded the experimental process, black box test code, and enhanced guardrail code to GitHub to promote cooperation in the development community: https://github.com/brucewang123456789/GeniusTrail.git.
comment: This paper has been submitted to ICLR 2025 BlogPosts and OpenReview preprints. It has 9 pages of text, 4 figures, and 3 tables
♻ ☆ The Llama 3 Herd of Models
Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
♻ ☆ Squeezed Attention: Accelerating Long Context Length LLM Inference
Emerging Large Language Model (LLM) applications require long input prompts to perform complex downstream tasks like document analysis and code generation. For these long context length applications, the length of the input prompt poses a significant challenge in terms of inference efficiency since the inference costs increase linearly with sequence length. However, for many of these applications, much of the context in the prompt is fixed across different user inputs, thereby providing the opportunity to perform offline optimizations to process user inputs quickly, as they are received. In this work, we propose Squeezed Attention as a mechanism to accelerate LLM applications where a large portion of the input prompt is fixed. We first leverage K-means clustering offline to group the keys for the fixed context based on semantic similarity and represent each cluster with a single centroid value. During inference, we compare query tokens from the user input with the centroids to predict which of the keys from the fixed context are semantically relevant and need to be loaded during inference. We then compute exact attention using only these important keys from the fixed context, thereby reducing bandwidth and computational costs. We also extend our method to use a hierarchical centroid lookup to identify important keys, which can reduce the complexity of attention from linear to logarithmic with respect to the context length. We implement optimized Triton kernels for centroid comparison and sparse FlashAttention with important keys, achieving more than 4x speedups during both the prefill and generation phases for long-context inference. Furthermore, we have extensively evaluated our method on various long-context benchmarks including LongBench, where it achieves a 3x reduction in KV cache budget without accuracy loss and up to an 8x reduction with <0.5 point accuracy gap for various models.
♻ ☆ How Ambiguous are the Rationales for Natural Language Reasoning? A Simple Approach to Handling Rationale Uncertainty
Rationales behind answers not only explain model decisions but boost language models to reason well on complex reasoning tasks. However, obtaining impeccable rationales is often impossible. Besides, it is non-trivial to estimate the degree to which the rationales are faithful enough to encourage model performance. Thus, such reasoning tasks often compel models to output correct answers under undesirable rationales and are sub-optimal compared to what the models are fully capable of. In this work, we propose how to deal with imperfect rationales causing aleatoric uncertainty. We first define the ambiguous rationales with entropy scores of given rationales, using model prior beliefs as informativeness. We then guide models to select one of two different reasoning models according to the ambiguity of rationales. We empirically argue that our proposed method produces robust performance superiority against the adversarial quality of rationales and low-resource settings.
comment: Coling2025
♻ ☆ Query-by-Example Keyword Spotting Using Spectral-Temporal Graph Attentive Pooling and Multi-Task Learning
Existing keyword spotting (KWS) systems primarily rely on predefined keyword phrases. However, the ability to recognize customized keywords is crucial for tailoring interactions with intelligent devices. In this paper, we present a novel Query-by-Example (QbyE) KWS system that employs spectral-temporal graph attentive pooling and multi-task learning. This framework aims to effectively learn speaker-invariant and linguistic-informative embeddings for QbyE KWS tasks. Within this framework, we investigate three distinct network architectures for encoder modeling: LiCoNet, Conformer and ECAPA_TDNN. The experimental results on a substantial internal dataset of $629$ speakers have demonstrated the effectiveness of the proposed QbyE framework in maximizing the potential of simpler models such as LiCoNet. Particularly, LiCoNet, which is 13x more efficient, achieves comparable performance to the computationally intensive Conformer model (1.98% vs. 1.63\% FRR at 0.3 FAs/Hr).
♻ ☆ Is This a Bad Table? A Closer Look at the Evaluation of Table Generation from Text EMNLP 2024
Understanding whether a generated table is of good quality is important to be able to use it in creating or editing documents using automatic methods. In this work, we underline that existing measures for table quality evaluation fail to capture the overall semantics of the tables, and sometimes unfairly penalize good tables and reward bad ones. We propose TabEval, a novel table evaluation strategy that captures table semantics by first breaking down a table into a list of natural language atomic statements and then compares them with ground truth statements using entailment-based measures. To validate our approach, we curate a dataset comprising of text descriptions for 1,250 diverse Wikipedia tables, covering a range of topics and structures, in contrast to the limited scope of existing datasets. We compare TabEval with existing metrics using unsupervised and supervised text-to-table generation methods, demonstrating its stronger correlation with human judgments of table quality across four datasets.
comment: EMNLP 2024 (short)
♻ ☆ Enhancing Post-Hoc Attributions in Long Document Comprehension via Coarse Grained Answer Decomposition EMNLP 2024
Accurately attributing answer text to its source document is crucial for developing a reliable question-answering system. However, attribution for long documents remains largely unexplored. Post-hoc attribution systems are designed to map answer text back to the source document, yet the granularity of this mapping has not been addressed. Furthermore, a critical question arises: What exactly should be attributed? This involves identifying the specific information units within an answer that require grounding. In this paper, we propose and investigate a novel approach to the factual decomposition of generated answers for attribution, employing template-based in-context learning. To accomplish this, we utilize the question and integrate negative sampling during few-shot in-context learning for decomposition. This approach enhances the semantic understanding of both abstractive and extractive answers. We examine the impact of answer decomposition by providing a thorough examination of various attribution approaches, ranging from retrieval-based techniques to LLM-based attributors.
comment: EMNLP 2024
♻ ☆ Aligning LLM Agents by Learning Latent Preference from User Edits
We study interactive learning of LLM-based language agents based on user edits made to the agent's output. In a typical setting such as writing assistants, the user interacts with a language agent to generate a response given a context, and may optionally edit the agent response to personalize it based on their latent preference, in addition to improving the correctness. The edit feedback is naturally generated, making it a suitable candidate for improving the agent's alignment with the user's preference, and for reducing the cost of user edits over time. We propose a learning framework, PRELUDE that infers a description of the user's latent preference based on historic edit data. The inferred user preference descriptions are used to define prompts for generating responses in the future. This avoids fine-tuning the agent, which is costly, challenging to scale with the number of users, and may even degrade its performance on other tasks. Furthermore, learning descriptive preference improves interpretability, allowing the user to view and modify the learned preference. However, user preference can be complex, subtle, and vary based on context, making it challenging to learn. To address this, we propose a simple yet effective algorithm named CIPHER that leverages the LLM to infer the user preference for a given context based on user edits. In the future, CIPHER retrieves inferred preferences from the k-closest contexts in the history, and forms an aggregate preference for response generation. We introduce two interactive environments -- summarization and email writing, and use a GPT-4 simulated user for evaluation. On both tasks, CIPHER outperforms several baselines by achieving the lowest edit distance cost while only having a small overhead in LLM query cost. Our analysis reports that user preferences learned by CIPHER show significant similarity to the ground truth latent preferences.
♻ ☆ Policy-Gradient Training of Language Models for Ranking
Text retrieval plays a crucial role in incorporating factual knowledge for decision making into language processing pipelines, ranging from chat-based web search to question answering systems. Current state-of-the-art text retrieval models leverage pre-trained large language models (LLMs) to achieve competitive performance, but training LLM-based retrievers via typical contrastive losses requires intricate heuristics, including selecting hard negatives and using additional supervision as learning signals. This reliance on heuristics stems from the fact that the contrastive loss itself is heuristic and does not directly optimize the downstream metrics of decision quality at the end of the processing pipeline. To address this issue, we introduce Neural PG-RANK, a novel training algorithm that learns to rank by instantiating a LLM as a Plackett-Luce ranking policy. Neural PG-RANK provides a principled method for end-to-end training of retrieval models as part of larger decision systems via policy gradient, with little reliance on complex heuristics, and it effectively unifies the training objective with downstream decision-making quality. We conduct extensive experiments on various text retrieval benchmarks. The results demonstrate that when the training objective aligns with the evaluation setup, Neural PG-RANK yields remarkable in-domain performance improvement, with substantial out-of-domain generalization to some critical datasets employed in downstream question answering tasks.
♻ ☆ A Study of Nationality Bias in Names and Perplexity using Off-the-Shelf Affect-related Tweet Classifiers EMNLP
In this paper, we apply a method to quantify biases associated with named entities from various countries. We create counterfactual examples with small perturbations on target-domain data instead of relying on templates or specific datasets for bias detection. On widely used classifiers for subjectivity analysis, including sentiment, emotion, hate speech, and offensive text using Twitter data, our results demonstrate positive biases related to the language spoken in a country across all classifiers studied. Notably, the presence of certain country names in a sentence can strongly influence predictions, up to a 23\% change in hate speech detection and up to a 60\% change in the prediction of negative emotions such as anger. We hypothesize that these biases stem from the training data of pre-trained language models (PLMs) and find correlations between affect predictions and PLMs likelihood in English and unknown languages like Basque and Maori, revealing distinct patterns with exacerbate correlations. Further, we followed these correlations in-between counterfactual examples from a same sentence to remove the syntactical component, uncovering interesting results suggesting the impact of the pre-training data was more important for English-speaking-country names. Our anonymized code is [https://anonymous.4open.science/r/biases_ppl-576B/README.md](available here).
comment: updated EMNLP camera ready version
♻ ☆ AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
Multimodal Large Language Models (MLLMs) are widely regarded as crucial in the exploration of Artificial General Intelligence (AGI). The core of MLLMs lies in their capability to achieve cross-modal alignment. To attain this goal, current MLLMs typically follow a two-phase training paradigm: the pre-training phase and the instruction-tuning phase. Despite their success, there are shortcomings in the modeling of alignment capabilities within these models. Firstly, during the pre-training phase, the model usually assumes that all image-text pairs are uniformly aligned, but in fact the degree of alignment between different image-text pairs is inconsistent. Secondly, the instructions currently used for finetuning incorporate a variety of tasks and different tasks usually require different levels of alignment capabilities, but previous MLLMs overlook these differentiated alignment needs. To tackle these issues, we propose a new multimodal large language model AlignGPT. In the pre-training stage, instead of treating all image-text pairs equally, we divide them into different groups according to the degrees of alignment of them. Then, the model is trained to learn the representations of different alignment levels. In the instruction-tuning phase, we adaptively combine these representations of alignment levels to meet the dynamic alignment needs of different tasks. Extensive experimental results show that our model achieves competitive performance on 12 benchmarks.
♻ ☆ Large-scale study of human memory for meaningful narratives
The statistical study of human memory requires large-scale experiments, involving many stimuli conditions and test subjects. While this approach has proven to be quite fruitful for meaningless material such as random lists of words, naturalistic stimuli, like narratives, have until now resisted such a large-scale study, due to the quantity of manual labor required to design and analyze such experiments. In this work, we develop a pipeline that uses large language models (LLMs) both to design naturalistic narrative stimuli for large-scale recall and recognition memory experiments, as well as to analyze the results. We performed online memory experiments with a large number of participants and collected recognition and recall data for narratives of different sizes. We found that both recall and recognition performance scale linearly with narrative length; however, for longer narratives people tend to summarize the content rather than recalling precise details. To investigate the role of narrative comprehension in memory, we repeated these experiments using scrambled versions of the narratives. Although recall performance declined significantly, recognition remained largely unaffected. Recalls in this condition seem to follow the original narrative order rather than the actual scrambled presentation, pointing to a contextual reconstruction of the story in memory. Finally, using LLM text embeddings, we construct a simple measure for each clause based on semantic similarity to the whole narrative, that shows a strong correlation with recall probability. Overall, our work demonstrates the power of LLMs in accessing new regimes in the study of human memory, as well as suggesting novel psychologically informed benchmarks for LLM performance.
comment: 45 pages, significant revision
♻ ☆ AzSLD: Azerbaijani Sign Language Dataset for Fingerspelling, Word, and Sentence Translation with Baseline Software
Sign language processing technology development relies on extensive and reliable datasets, instructions, and ethical guidelines. We present a comprehensive Azerbaijani Sign Language Dataset (AzSLD) collected from diverse sign language users and linguistic parameters to facilitate advancements in sign recognition and translation systems and support the local sign language community. The dataset was created within the framework of a vision-based AzSL translation project. This study introduces the dataset as a summary of the fingerspelling alphabet and sentence- and word-level sign language datasets. The dataset was collected from signers of different ages, genders, and signing styles, with videos recorded from two camera angles to capture each sign in full detail. This approach ensures robust training and evaluation of gesture recognition models. AzSLD contains 30,000 videos, each carefully annotated with accurate sign labels and corresponding linguistic translations. The dataset is accompanied by technical documentation and source code to facilitate its use in training and testing. This dataset offers a valuable resource of labeled data for researchers and developers working on sign language recognition, translation, or synthesis. Ethical guidelines were strictly followed throughout the project, with all participants providing informed consent for collecting, publishing, and using the data.
♻ ☆ Recent Advancements and Challenges of Turkic Central Asian Language Processing
Research in NLP for Central Asian Turkic languages - Kazakh, Uzbek, Kyrgyz, and Turkmen - faces typical low-resource language challenges like data scarcity, limited linguistic resources and technology development. However, recent advancements have included the collection of language-specific datasets and the development of models for downstream tasks. Thus, this paper aims to summarize recent progress and identify future research directions. It provides a high-level overview of each language's linguistic features, the current technology landscape, the application of transfer learning from higher-resource languages, and the availability of labeled and unlabeled data. By outlining the current state, we hope to inspire and facilitate future research.
♻ ☆ A Concept-Based Explainability Framework for Large Multimodal Models NeurIPS 2024
Large multimodal models (LMMs) combine unimodal encoders and large language models (LLMs) to perform multimodal tasks. Despite recent advancements towards the interpretability of these models, understanding internal representations of LMMs remains largely a mystery. In this paper, we present a novel framework for the interpretation of LMMs. We propose a dictionary learning based approach, applied to the representation of tokens. The elements of the learned dictionary correspond to our proposed concepts. We show that these concepts are well semantically grounded in both vision and text. Thus we refer to these as ``multi-modal concepts''. We qualitatively and quantitatively evaluate the results of the learnt concepts. We show that the extracted multimodal concepts are useful to interpret representations of test samples. Finally, we evaluate the disentanglement between different concepts and the quality of grounding concepts visually and textually. Our implementation is publicly available.
comment: NeurIPS 2024
♻ ☆ SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation
Large language models demonstrate exceptional performance in simple code generation tasks but still face challenges in tackling complex problems. These challenges may stem from insufficient reasoning and problem decomposition capabilities. To address this issue, we propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths. This creates a positive feedback loop, enabling continuous improvement. Our method operates entirely through the model itself without requiring additional supervision. By synthesizing natural language reasoning paths and translating them into executable code, the approach ensures analytical accuracy and enhances the success rate in solving complex tasks. Experimental results show that, even without additional supervisory signals, our method achieves performance improvements across different model scales, demonstrating the significant potential of self-improvement in small models. Furthermore, the method remains robust when traditional Chain-of-Thought (CoT) approaches exhibit performance degradation, with notable improvements observed in diversity metrics such as pass@10. We encourage further exploration of reasoning processes within training data to enhance the ability of language models to address complex problems. Our code and data are public at https://github.com/DIRECT-BIT/SRA-MCTS.
♻ ☆ Linear Adversarial Concept Erasure ICML 2022
Modern neural models trained on textual data rely on pre-trained representations that emerge without direct supervision. As these representations are increasingly being used in real-world applications, the inability to \emph{control} their content becomes an increasingly important problem. We formulate the problem of identifying and erasing a linear subspace that corresponds to a given concept, in order to prevent linear predictors from recovering the concept. We model this problem as a constrained, linear maximin game, and show that existing solutions are generally not optimal for this task. We derive a closed-form solution for certain objectives, and propose a convex relaxation, \method, that works well for others. When evaluated in the context of binary gender removal, the method recovers a low-dimensional subspace whose removal mitigates bias by intrinsic and extrinsic evaluation. We show that the method is highly expressive, effectively mitigating bias in deep nonlinear classifiers while maintaining tractability and interpretability.
comment: Accepted in ICML 2022; a revised version
♻ ☆ Counterfactual Generation from Language Models
Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to intervene on these models. To understand the impact of interventions precisely, it is useful to examine counterfactuals -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as Generalized Structural-equation. Models using the Gumbel-max trick. This allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
comment: A preprint
♻ ☆ How Does A Text Preprocessing Pipeline Affect Ontology Syntactic Matching?
The generic text preprocessing pipeline, comprising Tokenisation, Normalisation, Stop Words Removal, and Stemming/Lemmatisation, has been implemented in many ontology matching (OM) systems. However, the lack of standardisation in text preprocessing creates diversity in mapping results. In this paper, we investigate the effect of the text preprocessing pipeline on OM tasks at syntactic levels. Our experiments on 8 Ontology Alignment Evaluation Initiative (OAEI) track repositories with 49 distinct alignments indicate: (1) Tokenisation and Normalisation are currently more effective than Stop Words Removal and Stemming/Lemmatisation; and (2) The selection of Lemmatisation and Stemming is task-specific. We recommend standalone Lemmatisation or Stemming with post-hoc corrections. We find that (3) Porter Stemmer and Snowball Stemmer perform better than Lancaster Stemmer; and that (4) Part-of-Speech (POS) Tagging does not help Lemmatisation. To repair less effective Stop Words Removal and Stemming/Lemmatisation used in OM tasks, we propose a novel context-based pipeline repair approach that significantly improves matching correctness and overall matching performance. We also discuss the use of text preprocessing pipeline in the new era of large language models (LLMs).
comment: 13 pages, 26 figures, 4 tables
♻ ☆ AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios
Large language models (LLMs) are increasingly leveraged to empower autonomous agents to simulate human beings in various fields of behavioral research. However, evaluating their capacity to navigate complex social interactions remains a challenge. Previous studies face limitations due to insufficient scenario diversity, complexity, and a single-perspective focus. To this end, we introduce AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios. Drawing on Dramaturgical Theory, AgentSense employs a bottom-up approach to create 1,225 diverse social scenarios constructed from extensive scripts. We evaluate LLM-driven agents through multi-turn interactions, emphasizing both goal completion and implicit reasoning. We analyze goals using ERG theory and conduct comprehensive experiments. Our findings highlight that LLMs struggle with goals in complex social scenarios, especially high-level growth needs, and even GPT-4o requires improvement in private information reasoning. Code and data are available at \url{https://github.com/ljcleo/agent_sense}.
♻ ☆ Beyond Answers: Transferring Reasoning Capabilities to Smaller LLMs Using Multi-Teacher Knowledge Distillation
Transferring the reasoning capability from stronger large language models (LLMs) to smaller ones has been quite appealing, as smaller LLMs are more flexible to deploy with less expense. Among the existing solutions, knowledge distillation stands out due to its outstanding efficiency and generalization. However, existing methods suffer from several drawbacks, including limited knowledge diversity and the lack of rich contextual information. To solve the problems and facilitate the learning of compact language models, we propose TinyLLM, a new knowledge distillation paradigm to learn a small student LLM from multiple large teacher LLMs. In particular, we encourage the student LLM to not only generate the correct answers but also understand the rationales behind these answers. Given that different LLMs possess diverse reasoning skills, we guide the student model to assimilate knowledge from various teacher LLMs. We further introduce an in-context example generator and a teacher-forcing Chain-of-Thought strategy to ensure that the rationales are accurate and grounded in contextually appropriate scenarios. Extensive experiments on six datasets across two reasoning tasks demonstrate the superiority of our method. Results show that TinyLLM can outperform large teacher LLMs significantly, despite a considerably smaller model size. The source code is available at: https://github.com/YikunHan42/TinyLLM.
comment: Accepted by WSDM 2025
♻ ☆ HLAT: High-quality Large Language Model Pre-trained on AWS Trainium
Getting large language models (LLMs) to perform well on the downstream tasks requires pre-training over trillions of tokens. This typically demands a large number of powerful computational devices in addition to a stable distributed training framework to accelerate the training. The growing number of applications leveraging AI/ML led to a scarcity of the expensive conventional accelerators (such as GPUs), which emphasizes the need for the alternative specialized-accelerators that are scalable and cost-efficient. AWS Trainium is the second-generation machine learning accelerator purposely built for training large deep learning models. However, training LLMs with billions of parameters on AWS Trainium is challenging due to its relatively nascent software ecosystem. In this paper, we showcase HLAT: a family of 7B and 70B decoder-only LLMs pre-trained using 4096 AWS Trainium accelerators over 1.8 trillion tokens. The performance of HLAT is benchmarked against popular open source models including LLaMA and OpenLLaMA, which have been trained on NVIDIA GPUs and Google TPUs, respectively. On various evaluation tasks, we show that HLAT achieves model quality on par with the baselines of similar model size. We also open-source all the training scripts and configurations of HLAT (https://github.com/awslabs/HLAT) and share the best practice of using the NeuronX Distributed Training (NxDT), a customized distributed training library for AWS Trainium. Our work demonstrates that AWS Trainium powered by NxDT is able to successfully pre-train state-of-the-art LLM models with high performance and cost-effectiveness.
♻ ☆ Enriching GNNs with Text Contextual Representations for Detecting Disinformation Campaigns on Social Media
Disinformation on social media poses both societal and technical challenges, requiring robust detection systems. While previous studies have integrated textual information into propagation networks, they have yet to fully leverage the advancements in Transformer-based language models for high-quality contextual text representations. This work addresses this gap by incorporating Transformer-based textual features into Graph Neural Networks (GNNs) for fake news detection. We demonstrate that contextual text representations enhance GNN performance, achieving 33.8% relative improvement in Macro F1 over models without textual features and 9.3% over static text representations. We further investigate the impact of different feature sources and the effects of noisy data augmentation. We expect our methodology to open avenues for further research, and we made code publicly available.
comment: Work still in progress. Accepted as Extended Abstract Poster at LoG Conference 2024
♻ ☆ Reasoning Abilities of Large Language Models: In-Depth Analysis on the Abstraction and Reasoning Corpus
The existing methods for evaluating the inference abilities of Large Language Models (LLMs) have been predominantly results-centric, making it challenging to assess the inference process comprehensively. We introduce a novel approach using the Abstraction and Reasoning Corpus (ARC) benchmark to evaluate the inference and contextual understanding abilities of LLMs in a process-centric manner, focusing on three key components from the Language of Thought Hypothesis (LoTH): Logical Coherence, Compositionality, and Productivity. Our carefully designed experiments reveal that while LLMs demonstrate some inference capabilities, they still significantly lag behind human-level reasoning in these three aspects. The main contribution of this paper lies in introducing the LoTH perspective, which provides a method for evaluating the reasoning process that conventional results-oriented approaches fail to capture, thereby offering new insights into the development of human-level reasoning in artificial intelligence systems.
♻ ☆ Speeding Up Speech Synthesis In Diffusion Models By Reducing Data Distribution Recovery Steps Via Content Transfer
Diffusion based vocoders have been criticised for being slow due to the many steps required during sampling. Moreover, the model's loss function that is popularly implemented is designed such that the target is the original input $x_0$ or error $\epsilon_0$. For early time steps of the reverse process, this results in large prediction errors, which can lead to speech distortions and increase the learning time. We propose a setup where the targets are the different outputs of forward process time steps with a goal to reduce the magnitude of prediction errors and reduce the training time. We use the different layers of a neural network (NN) to perform denoising by training them to learn to generate representations similar to the noised outputs in the forward process of the diffusion. The NN layers learn to progressively denoise the input in the reverse process until finally the final layer estimates the clean speech. To avoid 1:1 mapping between layers of the neural network and the forward process steps, we define a skip parameter $\tau>1$ such that an NN layer is trained to cumulatively remove the noise injected in the $\tau$ steps in the forward process. This significantly reduces the number of data distribution recovery steps and, consequently, the time to generate speech. We show through extensive evaluation that the proposed technique generates high-fidelity speech in competitive time that outperforms current state-of-the-art tools. The proposed technique is also able to generalize well to unseen speech.
comment: 10 pages
♻ ☆ Lexicon3D: Probing Visual Foundation Models for Complex 3D Scene Understanding NeurIPS 2024
Complex 3D scene understanding has gained increasing attention, with scene encoding strategies playing a crucial role in this success. However, the optimal scene encoding strategies for various scenarios remain unclear, particularly compared to their image-based counterparts. To address this issue, we present a comprehensive study that probes various visual encoding models for 3D scene understanding, identifying the strengths and limitations of each model across different scenarios. Our evaluation spans seven vision foundation encoders, including image-based, video-based, and 3D foundation models. We evaluate these models in four tasks: Vision-Language Scene Reasoning, Visual Grounding, Segmentation, and Registration, each focusing on different aspects of scene understanding. Our evaluations yield key findings: DINOv2 demonstrates superior performance, video models excel in object-level tasks, diffusion models benefit geometric tasks, and language-pretrained models show unexpected limitations in language-related tasks. These insights challenge some conventional understandings, provide novel perspectives on leveraging visual foundation models, and highlight the need for more flexible encoder selection in future vision-language and scene-understanding tasks. Code: https://github.com/YunzeMan/Lexicon3D
comment: NeurIPS 2024. Project page: https://yunzeman.github.io/lexicon3d Github: https://github.com/YunzeMan/Lexicon3D
♻ ☆ Introducing the NewsPaLM MBR and QE Dataset: LLM-Generated High-Quality Parallel Data Outperforms Traditional Web-Crawled Data
Recent research in neural machine translation (NMT) has shown that training on high-quality machine-generated data can outperform training on human-generated data. This work accompanies the first-ever release of a LLM-generated, MBR-decoded and QE-reranked dataset with both sentence-level and multi-sentence examples. We perform extensive experiments to demonstrate the quality of our dataset in terms of its downstream impact on NMT model performance. We find that training from scratch on our (machine-generated) dataset outperforms training on the (web-crawled) WMT'23 training dataset (which is 300 times larger), and also outperforms training on the top-quality subset of the WMT'23 training dataset. We also find that performing self-distillation by finetuning the LLM which generated this dataset outperforms the LLM's strong few-shot baseline. These findings corroborate the quality of our dataset, and demonstrate the value of high-quality machine-generated data in improving performance of NMT models.
♻ ☆ LADDER: Language Driven Slice Discovery and Error Rectification
Error slice discovery is crucial to diagnose and mitigate model errors. Current clustering or discrete attribute-based slice discovery methods face key limitations: 1) clustering results in incoherent slices, while assigning discrete attributes to slices leads to incomplete coverage of error patterns due to missing or insufficient attributes; 2) these methods lack complex reasoning, preventing them from fully explaining model biases; 3) they fail to integrate \textit{domain knowledge}, limiting their usage in specialized fields \eg radiology. We propose\ladder (\underline{La}nguage-\underline{D}riven \underline{D}iscovery and \underline{E}rror \underline{R}ectification), to address the limitations by: (1) leveraging the flexibility of natural language to address incompleteness, (2) employing LLM's latent \textit{domain knowledge} and advanced reasoning to analyze sentences and derive testable hypotheses directly, identifying biased attributes, and form coherent error slices without clustering. Existing mitigation methods typically address only the worst-performing group, often amplifying errors in other subgroups. In contrast,\ladder generates pseudo attributes from the discovered hypotheses to mitigate errors across all biases without explicit attribute annotations or prior knowledge of bias. Rigorous evaluations on 6 datasets spanning natural and medical images -- comparing 200+ classifiers with diverse architectures, pretraining strategies, and LLMs -- show that\ladder consistently outperforms existing baselines in discovering and mitigating biases.
Multimedia 4
☆ Hindi audio-video-Deepfake (HAV-DF): A Hindi language-based Audio-video Deepfake Dataset
Deepfakes offer great potential for innovation and creativity, but they also pose significant risks to privacy, trust, and security. With a vast Hindi-speaking population, India is particularly vulnerable to deepfake-driven misinformation campaigns. Fake videos or speeches in Hindi can have an enormous impact on rural and semi-urban communities, where digital literacy tends to be lower and people are more inclined to trust video content. The development of effective frameworks and detection tools to combat deepfake misuse requires high-quality, diverse, and extensive datasets. The existing popular datasets like FF-DF (FaceForensics++), and DFDC (DeepFake Detection Challenge) are based on English language.. Hence, this paper aims to create a first novel Hindi deep fake dataset, named ``Hindi audio-video-Deepfake'' (HAV-DF). The dataset has been generated using the faceswap, lipsyn and voice cloning methods. This multi-step process allows us to create a rich, varied dataset that captures the nuances of Hindi speech and facial expressions, providing a robust foundation for training and evaluating deepfake detection models in a Hindi language context. It is unique of its kind as all of the previous datasets contain either deepfake videos or synthesized audio. This type of deepfake dataset can be used for training a detector for both deepfake video and audio datasets. Notably, the newly introduced HAV-DF dataset demonstrates lower detection accuracy's across existing detection methods like Headpose, Xception-c40, etc. Compared to other well-known datasets FF-DF, and DFDC. This trend suggests that the HAV-DF dataset presents deeper challenges to detect, possibly due to its focus on Hindi language content and diverse manipulation techniques. The HAV-DF dataset fills the gap in Hindi-specific deepfake datasets, aiding multilingual deepfake detection development.
☆ MUFM: A Mamba-Enhanced Feedback Model for Micro Video Popularity Prediction
The surge in micro-videos is transforming the concept of popularity. As researchers delve into vast multi-modal datasets, there is a growing interest in understanding the origins of this popularity and the forces driving its rapid expansion. Recent studies suggest that the virality of short videos is not only tied to their inherent multi-modal content but is also heavily influenced by the strength of platform recommendations driven by audience feedback. In this paper, we introduce a framework for capturing long-term dependencies in user feedback and dynamic event interactions, based on the Mamba Hawkes process. Our experiments on the large-scale open-source multi-modal dataset show that our model significantly outperforms state-of-the-art approaches across various metrics by 23.2%. We believe our model's capability to map the relationships within user feedback behavior sequences will not only contribute to the evolution of next-generation recommendation algorithms and platform applications but also enhance our understanding of micro video dissemination and its broader societal impact.
comment: 14 pages,9 figures
☆ Gotta Hear Them All: Sound Source Aware Vision to Audio Generation
Vision-to-audio (V2A) synthesis has broad applications in multimedia. Recent advancements of V2A methods have made it possible to generate relevant audios from inputs of videos or still images. However, the immersiveness and expressiveness of the generation are limited. One possible problem is that existing methods solely rely on the global scene and overlook details of local sounding objects (i.e., sound sources). To address this issue, we propose a Sound Source-Aware V2A (SSV2A) generator. SSV2A is able to locally perceive multimodal sound sources from a scene with visual detection and cross-modality translation. It then contrastively learns a Cross-Modal Sound Source (CMSS) Manifold to semantically disambiguate each source. Finally, we attentively mix their CMSS semantics into a rich audio representation, from which a pretrained audio generator outputs the sound. To model the CMSS manifold, we curate a novel single-sound-source visual-audio dataset VGGS3 from VGGSound. We also design a Sound Source Matching Score to measure localized audio relevance. This is to our knowledge the first work to address V2A generation at the sound-source level. Extensive experiments show that SSV2A surpasses state-of-the-art methods in both generation fidelity and relevance. We further demonstrate SSV2A's ability to achieve intuitive V2A control by compositing vision, text, and audio conditions. Our SSV2A generation can be tried and heard at https://ssv2a.github.io/SSV2A-demo .
comment: 16 pages, 9 figures, source code released at https://github.com/wguo86/SSV2A
☆ DiM-Gestor: Co-Speech Gesture Generation with Adaptive Layer Normalization Mamba-2
Speech-driven gesture generation using transformer-based generative models represents a rapidly advancing area within virtual human creation. However, existing models face significant challenges due to their quadratic time and space complexities, limiting scalability and efficiency. To address these limitations, we introduce DiM-Gestor, an innovative end-to-end generative model leveraging the Mamba-2 architecture. DiM-Gestor features a dual-component framework: (1) a fuzzy feature extractor and (2) a speech-to-gesture mapping module, both built on the Mamba-2. The fuzzy feature extractor, integrated with a Chinese Pre-trained Model and Mamba-2, autonomously extracts implicit, continuous speech features. These features are synthesized into a unified latent representation and then processed by the speech-to-gesture mapping module. This module employs an Adaptive Layer Normalization (AdaLN)-enhanced Mamba-2 mechanism to uniformly apply transformations across all sequence tokens. This enables precise modeling of the nuanced interplay between speech features and gesture dynamics. We utilize a diffusion model to train and infer diverse gesture outputs. Extensive subjective and objective evaluations conducted on the newly released Chinese Co-Speech Gestures dataset corroborate the efficacy of our proposed model. Compared with Transformer-based architecture, the assessments reveal that our approach delivers competitive results and significantly reduces memory usage, approximately 2.4 times, and enhances inference speeds by 2 to 4 times. Additionally, we released the CCG dataset, a Chinese Co-Speech Gestures dataset, comprising 15.97 hours (six styles across five scenarios) of 3D full-body skeleton gesture motion performed by professional Chinese TV broadcasters.
comment: 13 pages, 11 figures
Artificial Intelligent 52
☆ IRSKG: Unified Intrusion Response System Knowledge Graph Ontology for Cyber Defense
Cyberattacks are becoming increasingly difficult to detect and prevent due to their sophistication. In response, Autonomous Intelligent Cyber-defense Agents (AICAs) are emerging as crucial solutions. One prominent AICA agent is the Intrusion Response System (IRS), which is critical for mitigating threats after detection. IRS uses several Tactics, Techniques, and Procedures (TTPs) to mitigate attacks and restore the infrastructure to normal operations. Continuous monitoring of the enterprise infrastructure is an essential TTP the IRS uses. However, each system serves different purposes to meet operational needs. Integrating these disparate sources for continuous monitoring increases pre-processing complexity and limits automation, eventually prolonging critical response time for attackers to exploit. We propose a unified IRS Knowledge Graph ontology (IRSKG) that streamlines the onboarding of new enterprise systems as a source for the AICAs. Our ontology can capture system monitoring logs and supplemental data, such as a rules repository containing the administrator-defined policies to dictate the IRS responses. Besides, our ontology permits us to incorporate dynamic changes to adapt to the evolving cyber-threat landscape. This robust yet concise design allows machine learning models to train effectively and recover a compromised system to its desired state autonomously with explainability.
comment: 10 pages, 8 figures
☆ Ontology-Constrained Generation of Domain-Specific Clinical Summaries
Large Language Models (LLMs) offer promising solutions for text summarization. However, some domains require specific information to be available in the summaries. Generating these domain-adapted summaries is still an open challenge. Similarly, hallucinations in generated content is a major drawback of current approaches, preventing their deployment. This study proposes a novel approach that leverages ontologies to create domain-adapted summaries both structured and unstructured. We employ an ontology-guided constrained decoding process to reduce hallucinations while improving relevance. When applied to the medical domain, our method shows potential in summarizing Electronic Health Records (EHRs) across different specialties, allowing doctors to focus on the most relevant information to their domain. Evaluation on the MIMIC-III dataset demonstrates improvements in generating domain-adapted summaries of clinical notes and hallucination reduction.
comment: 24th International Conference on Knowledge Engineering and Knowledge Management (EKAW 2024), November 26-28, 2024, Amsterdam, The Netherlands
☆ "All that Glitters": Approaches to Evaluations with Unreliable Model and Human Annotations
"Gold" and "ground truth" human-mediated labels have error. The effects of this error can escape commonly reported metrics of label quality or obscure questions of accuracy, bias, fairness, and usefulness during model evaluation. This study demonstrates methods for answering such questions even in the context of very low reliabilities from expert humans. We analyze human labels, GPT model ratings, and transformer encoder model annotations describing the quality of classroom teaching, an important, expensive, and currently only human task. We answer the question of whether such a task can be automated using two Large Language Model (LLM) architecture families--encoders and GPT decoders, using novel approaches to evaluating label quality across six dimensions: Concordance, Confidence, Validity, Bias, Fairness, and Helpfulness. First, we demonstrate that using standard metrics in the presence of poor labels can mask both label and model quality: the encoder family of models achieve state-of-the-art, even "super-human", results across all classroom annotation tasks. But not all these positive results remain after using more rigorous evaluation measures which reveal spurious correlations and nonrandom racial biases across models and humans. This study then expands these methods to estimate how model use would change to human label quality if models were used in a human-in-the-loop context, finding that the variance captured in GPT model labels would worsen reliabilities for humans influenced by these models. We identify areas where some LLMs, within the generalizability of the current data, could improve the quality of expensive human ratings of classroom instruction.
comment: 20 pages, 15 figures, 58 pages with references and appendices
☆ Aligning Generalisation Between Humans and Machines
Recent advances in AI -- including generative approaches -- have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals. The responsible use of AI increasingly shows the need for human-AI teaming, necessitating effective interaction between humans and machines. A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise. In cognitive science, human generalisation commonly involves abstraction and concept learning. In contrast, AI generalisation encompasses out-of-domain generalisation in machine learning, rule-based reasoning in symbolic AI, and abstraction in neuro-symbolic AI. In this perspective paper, we combine insights from AI and cognitive science to identify key commonalities and differences across three dimensions: notions of generalisation, methods for generalisation, and evaluation of generalisation. We map the different conceptualisations of generalisation in AI and cognitive science along these three dimensions and consider their role in human-AI teaming. This results in interdisciplinary challenges across AI and cognitive science that must be tackled to provide a foundation for effective and cognitively supported alignment in human-AI teaming scenarios.
☆ How Texts Help? A Fine-grained Evaluation to Reveal the Role of Language in Vision-Language Tracking
Vision-language tracking (VLT) extends traditional single object tracking by incorporating textual information, providing semantic guidance to enhance tracking performance under challenging conditions like fast motion and deformations. However, current VLT trackers often underperform compared to single-modality methods on multiple benchmarks, with semantic information sometimes becoming a "distraction." To address this, we propose VLTVerse, the first fine-grained evaluation framework for VLT trackers that comprehensively considers multiple challenge factors and diverse semantic information, hoping to reveal the role of language in VLT. Our contributions include: (1) VLTVerse introduces 10 sequence-level challenge labels and 6 types of multi-granularity semantic information, creating a flexible and multi-dimensional evaluation space for VLT; (2) leveraging 60 subspaces formed by combinations of challenge factors and semantic types, we conduct systematic fine-grained evaluations of three mainstream SOTA VLT trackers, uncovering their performance bottlenecks across complex scenarios and offering a novel perspective on VLT evaluation; (3) through decoupled analysis of experimental results, we examine the impact of various semantic types on specific challenge factors in relation to different algorithms, providing essential guidance for enhancing VLT across data, evaluation, and algorithmic dimensions. The VLTVerse, toolkit, and results will be available at \url{http://metaverse.aitestunion.com}.
comment: Preprint, Under Review
☆ An adversarial feature learning based semantic communication method for Human 3D Reconstruction
With the widespread application of human body 3D reconstruction technology across various fields, the demands for data transmission and processing efficiency continue to rise, particularly in scenarios where network bandwidth is limited and low latency is required. This paper introduces an Adversarial Feature Learning-based Semantic Communication method (AFLSC) for human body 3D reconstruction, which focuses on extracting and transmitting semantic information crucial for the 3D reconstruction task, thereby significantly optimizing data flow and alleviating bandwidth pressure. At the sender's end, we propose a multitask learning-based feature extraction method to capture the spatial layout, keypoints, posture, and depth information from 2D human images, and design a semantic encoding technique based on adversarial feature learning to encode these feature information into semantic data. We also develop a dynamic compression technique to efficiently transmit this semantic data, greatly enhancing transmission efficiency and reducing latency. At the receiver's end, we design an efficient multi-level semantic feature decoding method to convert semantic data back into key image features. Finally, an improved ViT-diffusion model is employed for 3D reconstruction, producing human body 3D mesh models. Experimental results validate the advantages of our method in terms of data transmission efficiency and reconstruction quality, demonstrating its excellent potential for application in bandwidth-limited environments.
A Survey on LLM-as-a-Judge
Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
comment: 33 pages, 9 figures. arXiv admin note: text overlap with arXiv:2310.05470 by other authors
☆ Deep Learning for THz Channel Estimation and Beamforming Prediction via Sub-6GHz Channel
An efficient channel estimation is of vital importance to help THz communication systems achieve their full potential. Conventional uplink channel estimation methods, such as least square estimation, are practically inefficient for THz systems because of their large computation overhead. In this paper, we propose an efficient convolutional neural network (CNN) based THz channel estimator that estimates the THz channel factors using uplink sub-6GHz channel. Further, we use the estimated THz channel factors to predict the optimal beamformer from a pre-given codebook, using a dense neural network. We not only get rid of the overhead associated with the conventional methods, but also achieve near-optimal spectral efficiency rates using the proposed beamformer predictor. The proposed method also outperforms deep learning based beamformer predictors accepting THz channel matrices as input, thus proving the validity and efficiency of our sub-6GHz based approach.
comment: Published: 2022 IEEE International Conference on Signal Processing and Communications (SPCOM 2022)
☆ Do LLMs Agree on the Creativity Evaluation of Alternative Uses?
This paper investigates whether large language models (LLMs) show agreement in assessing creativity in responses to the Alternative Uses Test (AUT). While LLMs are increasingly used to evaluate creative content, previous studies have primarily focused on a single model assessing responses generated by the same model or humans. This paper explores whether LLMs can impartially and accurately evaluate creativity in outputs generated by both themselves and other models. Using an oracle benchmark set of AUT responses, categorized by creativity level (common, creative, and highly creative), we experiment with four state-of-the-art LLMs evaluating these outputs. We test both scoring and ranking methods and employ two evaluation settings (comprehensive and segmented) to examine if LLMs agree on the creativity evaluation of alternative uses. Results reveal high inter-model agreement, with Spearman correlations averaging above 0.7 across models and reaching over 0.77 with respect to the oracle, indicating a high level of agreement and validating the reliability of LLMs in creativity assessment of alternative uses. Notably, models do not favour their own responses, instead they provide similar creativity assessment scores or rankings for alternative uses generated by other models. These findings suggest that LLMs exhibit impartiality and high alignment in creativity evaluation, offering promising implications for their use in automated creativity assessment.
comment: 19 pages, 7 figures, 15 tables
☆ LAGUNA: LAnguage Guided UNsupervised Adaptation with structured spaces
Unsupervised domain adaptation remains a critical challenge in enabling the knowledge transfer of models across unseen domains. Existing methods struggle to balance the need for domain-invariant representations with preserving domain-specific features, which is often due to alignment approaches that impose the projection of samples with similar semantics close in the latent space despite their drastic domain differences. We introduce \mnamelong, a novel approach that shifts the focus from aligning representations in absolute coordinates to aligning the relative positioning of equivalent concepts in latent spaces. \mname defines a domain-agnostic structure upon the semantic/geometric relationships between class labels in language space and guides adaptation, ensuring that the organization of samples in visual space reflects reference inter-class relationships while preserving domain-specific characteristics. %We empirically demonstrate \mname's superiority in domain adaptation tasks across four diverse images and video datasets. Remarkably, \mname surpasses previous works in 18 different adaptation scenarios across four diverse image and video datasets with average accuracy improvements of +3.32% on DomainNet, +5.75% in GeoPlaces, +4.77% on GeoImnet, and +1.94% mean class accuracy improvement on EgoExo4D.
☆ ReWind: Understanding Long Videos with Instructed Learnable Memory
Vision-Language Models (VLMs) are crucial for applications requiring integrated understanding textual and visual information. However, existing VLMs struggle with long videos due to computational inefficiency, memory limitations, and difficulties in maintaining coherent understanding across extended sequences. To address these challenges, we introduce ReWind, a novel memory-based VLM designed for efficient long video understanding while preserving temporal fidelity. ReWind operates in a two-stage framework. In the first stage, ReWind maintains a dynamic learnable memory module with a novel \textbf{read-perceive-write} cycle that stores and updates instruction-relevant visual information as the video unfolds. This module utilizes learnable queries and cross-attentions between memory contents and the input stream, ensuring low memory requirements by scaling linearly with the number of tokens. In the second stage, we propose an adaptive frame selection mechanism guided by the memory content to identify instruction-relevant key moments. It enriches the memory representations with detailed spatial information by selecting a few high-resolution frames, which are then combined with the memory contents and fed into a Large Language Model (LLM) to generate the final answer. We empirically demonstrate ReWind's superior performance in visual question answering (VQA) and temporal grounding tasks, surpassing previous methods on long video benchmarks. Notably, ReWind achieves a +13\% score gain and a +12\% accuracy improvement on the MovieChat-1K VQA dataset and an +8\% mIoU increase on Charades-STA for temporal grounding.
☆ Class Order Disorder in Wikidata and First Fixes
Wikidata has a large ontology with classes at several orders. The Wikidata ontology has long been known to have violations of class order and information related to class order that appears suspect. SPARQL queries were evaluated against Wikidata to determine the prevalence of several kinds of violations and suspect information and the results analyzed. Some changes were manually made to Wikidata to remove some of these results and the queries rerun, showing the effect of the changes. Suggestions are provided on how the problems uncovered might be addressed, either though better tooling or involvement of the Wikidata community.
☆ An unconditional distribution learning advantage with shallow quantum circuits
One of the core challenges of research in quantum computing is concerned with the question whether quantum advantages can be found for near-term quantum circuits that have implications for practical applications. Motivated by this mindset, in this work, we prove an unconditional quantum advantage in the probably approximately correct (PAC) distribution learning framework with shallow quantum circuit hypotheses. We identify a meaningful generative distribution learning problem where constant-depth quantum circuits using one and two qubit gates (QNC^0) are superior compared to constant-depth bounded fan-in classical circuits (NC^0) as a choice for hypothesis classes. We hence prove a PAC distribution learning separation for shallow quantum circuits over shallow classical circuits. We do so by building on recent results by Bene Watts and Parham on unconditional quantum advantages for sampling tasks with shallow circuits, which we technically uplift to a hyperplane learning problem, identifying non-local correlations as the origin of the quantum advantage.
comment: 7 + 5 pages, 2 figures
☆ Optical-Flow Guided Prompt Optimization for Coherent Video Generation
While text-to-video diffusion models have made significant strides, many still face challenges in generating videos with temporal consistency. Within diffusion frameworks, guidance techniques have proven effective in enhancing output quality during inference; however, applying these methods to video diffusion models introduces additional complexity of handling computations across entire sequences. To address this, we propose a novel framework called MotionPrompt that guides the video generation process via optical flow. Specifically, we train a discriminator to distinguish optical flow between random pairs of frames from real videos and generated ones. Given that prompts can influence the entire video, we optimize learnable token embeddings during reverse sampling steps by using gradients from a trained discriminator applied to random frame pairs. This approach allows our method to generate visually coherent video sequences that closely reflect natural motion dynamics, without compromising the fidelity of the generated content. We demonstrate the effectiveness of our approach across various models.
comment: project page: https://motionprompt.github.io/
☆ Large Language Model with Region-guided Referring and Grounding for CT Report Generation
Computed tomography (CT) report generation is crucial to assist radiologists in interpreting CT volumes, which can be time-consuming and labor-intensive. Existing methods primarily only consider the global features of the entire volume, making it struggle to focus on specific regions and potentially missing abnormalities. To address this issue, we propose Reg2RG, the first region-guided referring and grounding framework for CT report generation, which enhances diagnostic performance by focusing on anatomical regions within the volume. Specifically, we utilize masks from a universal segmentation module to capture local features for each referring region. A local feature decoupling (LFD) strategy is proposed to preserve the local high-resolution details with little computational overhead. Then the local features are integrated with global features to capture inter-regional relationships within a cohesive context. Moreover, we propose a novel region-report alignment (RRA) training strategy. It leverages the recognition of referring regions to guide the generation of region-specific reports, enhancing the model's referring and grounding capabilities while also improving the report's interpretability. A large language model (LLM) is further employed as the language decoder to generate reports from integrated visual features, facilitating region-level comprehension. Extensive experiments on two large-scale chest CT-report datasets demonstrate the superiority of our method, which outperforms several state-of-the-art methods in terms of both natural language generation and clinical efficacy metrics while preserving promising interpretability. The code will be made publicly available.
comment: 10 pages
☆ Enhancing Grammatical Error Detection using BERT with Cleaned Lang-8 Dataset
This paper presents an improved LLM based model for Grammatical Error Detection (GED), which is a very challenging and equally important problem for many applications. The traditional approach to GED involved hand-designed features, but recently, Neural Networks (NN) have automated the discovery of these features, improving performance in GED. Traditional rule-based systems have an F1 score of 0.50-0.60 and earlier machine learning models give an F1 score of 0.65-0.75, including decision trees and simple neural networks. Previous deep learning models, for example, Bi-LSTM, have reported F1 scores within the range from 0.80 to 0.90. In our study, we have fine-tuned various transformer models using the Lang8 dataset rigorously cleaned by us. In our experiments, the BERT-base-uncased model gave an impressive performance with an F1 score of 0.91 and accuracy of 98.49% on training data and 90.53% on testing data, also showcasing the importance of data cleaning. Increasing model size using BERT-large-uncased or RoBERTa-large did not give any noticeable improvements in performance or advantage for this task, underscoring that larger models are not always better. Our results clearly show how far rigorous data cleaning and simple transformer-based models can go toward significantly improving the quality of GED.
comment: 10 pages, 6 tables, 20 references
☆ Interactive Visual Assessment for Text-to-Image Generation Models
Visual generation models have achieved remarkable progress in computer graphics applications but still face significant challenges in real-world deployment. Current assessment approaches for visual generation tasks typically follow an isolated three-phase framework: test input collection, model output generation, and user assessment. These fashions suffer from fixed coverage, evolving difficulty, and data leakage risks, limiting their effectiveness in comprehensively evaluating increasingly complex generation models. To address these limitations, we propose DyEval, an LLM-powered dynamic interactive visual assessment framework that facilitates collaborative evaluation between humans and generative models for text-to-image systems. DyEval features an intuitive visual interface that enables users to interactively explore and analyze model behaviors, while adaptively generating hierarchical, fine-grained, and diverse textual inputs to continuously probe the capability boundaries of the models based on their feedback. Additionally, to provide interpretable analysis for users to further improve tested models, we develop a contextual reflection module that mines failure triggers of test inputs and reflects model potential failure patterns supporting in-depth analysis using the logical reasoning ability of LLM. Qualitative and quantitative experiments demonstrate that DyEval can effectively help users identify max up to 2.56 times generation failures than conventional methods, and uncover complex and rare failure patterns, such as issues with pronoun generation and specific cultural context generation. Our framework provides valuable insights for improving generative models and has broad implications for advancing the reliability and capabilities of visual generation systems across various domains.
comment: Under Review
☆ Model Predictive Trees: Sample-Efficient Receding Horizon Planning with Reusable Tree Search
We present Model Predictive Trees (MPT), a receding horizon tree search algorithm that improves its performance by reusing information efficiently. Whereas existing solvers reuse only the highest-quality trajectory from the previous iteration as a "hotstart", our method reuses the entire optimal subtree, enabling the search to be simultaneously guided away from the low-quality areas and towards the high-quality areas. We characterize the restrictions on tree reuse by analyzing the induced tracking error under time-varying dynamics, revealing a tradeoff between the search depth and the timescale of the changing dynamics. In numerical studies, our algorithm outperforms state-of-the-art sampling-based cross-entropy methods with hotstarting. We demonstrate our planner on an autonomous vehicle testbed performing a nonprehensile manipulation task: pushing a target object through an obstacle field. Code associated with this work will be made available at https://github.com/jplathrop/mpt.
comment: Presented at the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems
☆ On the Boundary Feasibility for PDE Control with Neural Operators
The physical world dynamics are generally governed by underlying partial differential equations (PDEs) with unknown analytical forms in science and engineering problems. Neural network based data-driven approaches have been heavily studied in simulating and solving PDE problems in recent years, but it is still challenging to move forward from understanding to controlling the unknown PDE dynamics. PDE boundary control instantiates a simplified but important problem by only focusing on PDE boundary conditions as the control input and output. However, current model-free PDE controllers cannot ensure the boundary output satisfies some given user-specified safety constraint. To this end, we propose a safety filtering framework to guarantee the boundary output stays within the safe set for current model-free controllers. Specifically, we first introduce a general neural boundary control barrier function (BCBF) to ensure the feasibility of the trajectorywise constraint satisfaction of boundary output. Based on a neural operator modeling the transfer function from boundary control input to output trajectories, we show that the change in the BCBF depends linearly on the change in input boundary, so quadratic programming-based safety filtering can be done for pre-trained model-free controllers. Extensive experiments under challenging hyperbolic, parabolic and Navier-Stokes PDE dynamics environments validate the effectiveness of the proposed method in achieving better general performance and boundary constraint satisfaction compared to the model-free controller baselines.
comment: 27 pages, 5 figures, 8 tables
☆ Teaching Shortest Path Algorithms With a Robot and Overlaid Projections
Robots have the potential to enhance teaching of advanced computer science topics, making abstract concepts more tangible and interactive. In this paper, we present Timmy-a GoPiGo robot augmented with projections to demonstrate shortest path algorithms in an interactive learning environment. We integrated a JavaScript-based application that is projected around the robot, which allows users to construct graphs and visualise three different shortest path algorithms with colour-coded edges and vertices. Animated graph exploration and traversal are augmented by robot movements. To evaluate Timmy, we conducted two user studies. An initial study (n=10) to explore the feasibility of this type of teaching where participants were just observing both robot-synced and the on-screen-only visualisations. And a pilot study (n=6) where participants actively interacted with the system, constructed graphs and selected desired algorithms. In both studies we investigated the preferences towards the system and not the teaching outcome. Initial findings suggest that robots offer an engaging tool for teaching advanced algorithmic concepts, but highlight the need for further methodological refinements and larger-scale studies to fully evaluate their effectiveness.
comment: 10 pages, 12 references, 3 figures
☆ Development of a Low-Cost Prosthetic Hand Using Electromyography and Machine Learning
Electromyography (EMG) is a measure of muscular electrical activity and is used in many clinical/biomedical disciplines and modern human computer interaction. Myo-electric prosthetics analyze and classify the electrical signals recorded from the residual limb. The classified output is then used to control the position of motors in a robotic hand and a movement is produced. The aim of this project is to develop a low-cost and effective myo-electric prosthetic hand that would meet the needs of amputees in developing countries. The proposed prosthetic hand should be able to accurately classify five different patterns (gestures) using EMG recordings from three muscles and control a robotic hand accordingly. The robotic hand is composed of two servo motors allowing for two degrees of freedom. After establishing an efficient signal acquisition and amplification system, EMG signals were thoroughly analyzed in the frequency and time domain. Features were extracted from both domains and a shallow neural network was trained on the two sets of data. Results yielded an average classification accuracy of 97.25% and 95.85% for the time and frequency domains respectively. Furthermore, results showed a faster computation and response for the time domain analysis; hence, it was adopted for the classification system. A wrist rotation mechanism was designed and tested to add significant functionality to the prosthetic. The mechanism is controlled by two of the five gestures, one for each direction. Which added a third degree of freedom to the overall design. Finally, a tactile sensory feedback system which uses force sensors and vibration motors was developed to enable sensation of the force inflicted on the hand for the user.
comment: 6 pages, 10 figures
☆ Effects of Muscle Synergy during Overhead Work with a Passive Shoulder Exoskeleton: A Case Study
Objective: Shoulder exoskeletons can effectively assist with overhead work. However, their impacts on muscle synergy remain unclear. The objective is to systematically investigate the effects of the shoulder exoskeleton on muscle synergies during overhead work.Methods: Eight male participants were recruited to perform a screwing task both with (Intervention) and without (Normal) the exoskeleton. Eight muscles were monitored and muscle synergies were extracted using non-negative matrix factorization and electromyographic topographic maps. Results: The number of synergies extracted was the same (n = 2) in both conditions. Specifically, the first synergies in both conditions were identical, with the highest weight of AD and MD; while the second synergies were different between conditions, with highest weight of PM and MD, respectively. As for the first synergy in the Intervention condition, the activation profile significantly decreased, and the average recruitment level and activation duration were significantly lower (p<0.05). The regression analysis for the muscle synergies across conditions shows the changes of muscle synergies did not influence the sparseness of muscle synergies (p=0.7341). In the topographic maps, the mean value exhibited a significant decrease (p<0.001) and the entropy significantly increased (p<0.01). Conclusion: The exoskeleton does not alter the number of synergies and existing major synergies but may induce new synergies. It can also significantly decrease neural activation and may influence the heterogeneity of the distribution of monitored muscle activations. Significance: This study provides insights into the potential mechanisms of exoskeleton-assisted overhead work and guidance on improving the performance of exoskeletons.
☆ Gassidy: Gaussian Splatting SLAM in Dynamic Environments
3D Gaussian Splatting (3DGS) allows flexible adjustments to scene representation, enabling continuous optimization of scene quality during dense visual simultaneous localization and mapping (SLAM) in static environments. However, 3DGS faces challenges in handling environmental disturbances from dynamic objects with irregular movement, leading to degradation in both camera tracking accuracy and map reconstruction quality. To address this challenge, we develop an RGB-D dense SLAM which is called Gaussian Splatting SLAM in Dynamic Environments (Gassidy). This approach calculates Gaussians to generate rendering loss flows for each environmental component based on a designed photometric-geometric loss function. To distinguish and filter environmental disturbances, we iteratively analyze rendering loss flows to detect features characterized by changes in loss values between dynamic objects and static components. This process ensures a clean environment for accurate scene reconstruction. Compared to state-of-the-art SLAM methods, experimental results on open datasets show that Gassidy improves camera tracking precision by up to 97.9% and enhances map quality by up to 6%.
comment: This paper is currently under reviewed for ICRA 2025
☆ SplatSDF: Boosting Neural Implicit SDF via Gaussian Splatting Fusion
A signed distance function (SDF) is a useful representation for continuous-space geometry and many related operations, including rendering, collision checking, and mesh generation. Hence, reconstructing SDF from image observations accurately and efficiently is a fundamental problem. Recently, neural implicit SDF (SDF-NeRF) techniques, trained using volumetric rendering, have gained a lot of attention. Compared to earlier truncated SDF (TSDF) fusion algorithms that rely on depth maps and voxelize continuous space, SDF-NeRF enables continuous-space SDF reconstruction with better geometric and photometric accuracy. However, the accuracy and convergence speed of scene-level SDF reconstruction require further improvements for many applications. With the advent of 3D Gaussian Splatting (3DGS) as an explicit representation with excellent rendering quality and speed, several works have focused on improving SDF-NeRF by introducing consistency losses on depth and surface normals between 3DGS and SDF-NeRF. However, loss-level connections alone lead to incremental improvements. We propose a novel neural implicit SDF called "SplatSDF" to fuse 3DGSandSDF-NeRF at an architecture level with significant boosts to geometric and photometric accuracy and convergence speed. Our SplatSDF relies on 3DGS as input only during training, and keeps the same complexity and efficiency as the original SDF-NeRF during inference. Our method outperforms state-of-the-art SDF-NeRF models on geometric and photometric evaluation by the time of submission.
☆ Gradient-Guided Parameter Mask for Multi-Scenario Image Restoration Under Adverse Weather
Removing adverse weather conditions such as rain, raindrop, and snow from images is critical for various real-world applications, including autonomous driving, surveillance, and remote sensing. However, existing multi-task approaches typically rely on augmenting the model with additional parameters to handle multiple scenarios. While this enables the model to address diverse tasks, the introduction of extra parameters significantly complicates its practical deployment. In this paper, we propose a novel Gradient-Guided Parameter Mask for Multi-Scenario Image Restoration under adverse weather, designed to effectively handle image degradation under diverse weather conditions without additional parameters. Our method segments model parameters into common and specific components by evaluating the gradient variation intensity during training for each specific weather condition. This enables the model to precisely and adaptively learn relevant features for each weather scenario, improving both efficiency and effectiveness without compromising on performance. This method constructs specific masks based on gradient fluctuations to isolate parameters influenced by other tasks, ensuring that the model achieves strong performance across all scenarios without adding extra parameters. We demonstrate the state-of-the-art performance of our framework through extensive experiments on multiple benchmark datasets. Specifically, our method achieves PSNR scores of 29.22 on the Raindrop dataset, 30.76 on the Rain dataset, and 29.56 on the Snow100K dataset. Code is available at: \href{https://github.com/AierLab/MultiTask}{https://github.com/AierLab/MultiTask}.
☆ Two Heads Are Better Than One: Collaborative LLM Embodied Agents for Human-Robot Interaction
With the recent development of natural language generation models - termed as large language models (LLMs) - a potential use case has opened up to improve the way that humans interact with robot assistants. These LLMs should be able to leverage their large breadth of understanding to interpret natural language commands into effective, task appropriate and safe robot task executions. However, in reality, these models suffer from hallucinations, which may cause safety issues or deviations from the task. In other domains, these issues have been improved through the use of collaborative AI systems where multiple LLM agents can work together to collectively plan, code and self-check outputs. In this research, multiple collaborative AI systems were tested against a single independent AI agent to determine whether the success in other domains would translate into improved human-robot interaction performance. The results show that there is no defined trend between the number of agents and the success of the model. However, it is clear that some collaborative AI agent architectures can exhibit a greatly improved capacity to produce error-free code and to solve abstract problems.
comment: 9 pages, 10 figures
☆ SnapMem: Snapshot-based 3D Scene Memory for Embodied Exploration and Reasoning
Constructing compact and informative 3D scene representations is essential for effective embodied exploration and reasoning, especially in complex environments over long periods. Existing scene representations, such as object-centric 3D scene graphs, have significant limitations. They oversimplify spatial relationships by modeling scenes as individual objects, with inter-object relationships described by restrictive texts, making it difficult to answer queries that require nuanced spatial understanding. Furthermore, these representations lack natural mechanisms for active exploration and memory management, which hampers their application to lifelong autonomy. In this work, we propose SnapMem, a novel snapshot-based scene representation serving as 3D scene memory for embodied agents. SnapMem employs informative images, termed Memory Snapshots, to capture rich visual information of explored regions. It also integrates frontier-based exploration by introducing Frontier Snapshots-glimpses of unexplored areas-that enable agents to make informed exploration decisions by considering both known and potential new information. Meanwhile, to support lifelong memory in active exploration settings, we further present an incremental construction pipeline for SnapMem, as well as an effective memory retrieval technique for memory management. Experimental results on three benchmarks demonstrate that SnapMem significantly enhances agents' exploration and reasoning capabilities in 3D environments over extended periods, highlighting its potential for advancing applications in embodied AI.
♻ ☆ The Llama 3 Herd of Models
Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
♻ ☆ Explainable AI needs formal notions of explanation correctness
The use of machine learning (ML) in critical domains such as medicine poses risks and requires regulation. One requirement is that decisions of ML systems in high-risk applications should be human-understandable. The field of "explainable artificial intelligence" (XAI) seemingly addresses this need. However, in its current form, XAI is unfit to provide quality control for ML; it itself needs scrutiny. Popular XAI methods cannot reliably answer important questions about ML models, their training data, or a given test input. We recapitulate results demonstrating that popular XAI methods systematically attribute importance to input features that are independent of the prediction target. This limits their utility for purposes such as model and data (in)validation, model improvement, and scientific discovery. We argue that the fundamental reason for this limitation is that current XAI methods do not address well-defined problems and are not evaluated against objective criteria of explanation correctness. Researchers should formally define the problems they intend to solve first and then design methods accordingly. This will lead to notions of explanation correctness that can be theoretically verified and objective metrics of explanation performance that can be assessed using ground-truth data.
♻ ☆ Query-by-Example Keyword Spotting Using Spectral-Temporal Graph Attentive Pooling and Multi-Task Learning
Existing keyword spotting (KWS) systems primarily rely on predefined keyword phrases. However, the ability to recognize customized keywords is crucial for tailoring interactions with intelligent devices. In this paper, we present a novel Query-by-Example (QbyE) KWS system that employs spectral-temporal graph attentive pooling and multi-task learning. This framework aims to effectively learn speaker-invariant and linguistic-informative embeddings for QbyE KWS tasks. Within this framework, we investigate three distinct network architectures for encoder modeling: LiCoNet, Conformer and ECAPA_TDNN. The experimental results on a substantial internal dataset of $629$ speakers have demonstrated the effectiveness of the proposed QbyE framework in maximizing the potential of simpler models such as LiCoNet. Particularly, LiCoNet, which is 13x more efficient, achieves comparable performance to the computationally intensive Conformer model (1.98% vs. 1.63\% FRR at 0.3 FAs/Hr).
♻ ☆ Speech to Reality: On-Demand Production using Natural Language, 3D Generative AI, and Discrete Robotic Assembly
We present a system that transforms speech into physical objects by combining 3D generative Artificial Intelligence with robotic assembly. The system leverages natural language input to make design and manufacturing more accessible, enabling individuals without expertise in 3D modeling or robotic programming to create physical objects. We propose utilizing discrete robotic assembly of lattice-based voxel components to address the challenges of using generative AI outputs in physical production, such as design variability, fabrication speed, structural integrity, and material waste. The system interprets speech to generate 3D objects, discretizes them into voxel components, computes an optimized assembly sequence, and generates a robotic toolpath. The results are demonstrated through the assembly of various objects, ranging from chairs to shelves, which are prompted via speech and realized within 5 minutes using a 6-axis robotic arm.
comment: This work has been submitted to the IEEE for possible publication. An updated version will replace this version. More details at [https://alexanderhtetkyaw.com/speech-to-reality]
♻ ☆ DRCT: Saving Image Super-resolution away from Information Bottleneck CVPR
In recent years, Vision Transformer-based approaches for low-level vision tasks have achieved widespread success. Unlike CNN-based models, Transformers are more adept at capturing long-range dependencies, enabling the reconstruction of images utilizing non-local information. In the domain of super-resolution, Swin-transformer-based models have become mainstream due to their capability of global spatial information modeling and their shifting-window attention mechanism that facilitates the interchange of information between different windows. Many researchers have enhanced model performance by expanding the receptive fields or designing meticulous networks, yielding commendable results. However, we observed that it is a general phenomenon for the feature map intensity to be abruptly suppressed to small values towards the network's end. This implies an information bottleneck and a diminishment of spatial information, implicitly limiting the model's potential. To address this, we propose the Dense-residual-connected Transformer (DRCT), aimed at mitigating the loss of spatial information and stabilizing the information flow through dense-residual connections between layers, thereby unleashing the model's potential and saving the model away from information bottleneck. Experiment results indicate that our approach surpasses state-of-the-art methods on benchmark datasets and performs commendably at the NTIRE-2024 Image Super-Resolution (x4) Challenge. Our source code is available at https://github.com/ming053l/DRCT
comment: Accepted by CVPRW2024, NTIRE Image Super-resolution (x4)
♻ ☆ Aligning LLM Agents by Learning Latent Preference from User Edits
We study interactive learning of LLM-based language agents based on user edits made to the agent's output. In a typical setting such as writing assistants, the user interacts with a language agent to generate a response given a context, and may optionally edit the agent response to personalize it based on their latent preference, in addition to improving the correctness. The edit feedback is naturally generated, making it a suitable candidate for improving the agent's alignment with the user's preference, and for reducing the cost of user edits over time. We propose a learning framework, PRELUDE that infers a description of the user's latent preference based on historic edit data. The inferred user preference descriptions are used to define prompts for generating responses in the future. This avoids fine-tuning the agent, which is costly, challenging to scale with the number of users, and may even degrade its performance on other tasks. Furthermore, learning descriptive preference improves interpretability, allowing the user to view and modify the learned preference. However, user preference can be complex, subtle, and vary based on context, making it challenging to learn. To address this, we propose a simple yet effective algorithm named CIPHER that leverages the LLM to infer the user preference for a given context based on user edits. In the future, CIPHER retrieves inferred preferences from the k-closest contexts in the history, and forms an aggregate preference for response generation. We introduce two interactive environments -- summarization and email writing, and use a GPT-4 simulated user for evaluation. On both tasks, CIPHER outperforms several baselines by achieving the lowest edit distance cost while only having a small overhead in LLM query cost. Our analysis reports that user preferences learned by CIPHER show significant similarity to the ground truth latent preferences.
EMDM: Efficient Motion Diffusion Model for Fast and High-Quality Motion Generation ECCV 2024
We introduce Efficient Motion Diffusion Model (EMDM) for fast and high-quality human motion generation. Current state-of-the-art generative diffusion models have produced impressive results but struggle to achieve fast generation without sacrificing quality. On the one hand, previous works, like motion latent diffusion, conduct diffusion within a latent space for efficiency, but learning such a latent space can be a non-trivial effort. On the other hand, accelerating generation by naively increasing the sampling step size, e.g., DDIM, often leads to quality degradation as it fails to approximate the complex denoising distribution. To address these issues, we propose EMDM, which captures the complex distribution during multiple sampling steps in the diffusion model, allowing for much fewer sampling steps and significant acceleration in generation. This is achieved by a conditional denoising diffusion GAN to capture multimodal data distributions among arbitrary (and potentially larger) step sizes conditioned on control signals, enabling fewer-step motion sampling with high fidelity and diversity. To minimize undesired motion artifacts, geometric losses are imposed during network learning. As a result, EMDM achieves real-time motion generation and significantly improves the efficiency of motion diffusion models compared to existing methods while achieving high-quality motion generation. Our code will be publicly available upon publication.
comment: ECCV 2024. Project Page: https://frank-zy-dou.github.io/projects/EMDM/index.html
♻ ☆ Policy-Gradient Training of Language Models for Ranking
Text retrieval plays a crucial role in incorporating factual knowledge for decision making into language processing pipelines, ranging from chat-based web search to question answering systems. Current state-of-the-art text retrieval models leverage pre-trained large language models (LLMs) to achieve competitive performance, but training LLM-based retrievers via typical contrastive losses requires intricate heuristics, including selecting hard negatives and using additional supervision as learning signals. This reliance on heuristics stems from the fact that the contrastive loss itself is heuristic and does not directly optimize the downstream metrics of decision quality at the end of the processing pipeline. To address this issue, we introduce Neural PG-RANK, a novel training algorithm that learns to rank by instantiating a LLM as a Plackett-Luce ranking policy. Neural PG-RANK provides a principled method for end-to-end training of retrieval models as part of larger decision systems via policy gradient, with little reliance on complex heuristics, and it effectively unifies the training objective with downstream decision-making quality. We conduct extensive experiments on various text retrieval benchmarks. The results demonstrate that when the training objective aligns with the evaluation setup, Neural PG-RANK yields remarkable in-domain performance improvement, with substantial out-of-domain generalization to some critical datasets employed in downstream question answering tasks.
♻ ☆ PSPO*: An Effective Process-supervised Policy Optimization for Reasoning Alignment
Process supervision enhances the performance of large language models in reasoning tasks by providing feedback at each step of chain-of-thought reasoning. However, due to the lack of effective process supervision methods, even advanced large language models are prone to logical errors and redundant reasoning. We claim that the effectiveness of process supervision significantly depends on both the accuracy and the length of reasoning chains. Moreover, we identify that these factors exhibit a nonlinear relationship with the overall reward score of the reasoning process. Inspired by these insights, we propose a novel process supervision paradigm, PSPO*, which systematically outlines the workflow from reward model training to policy optimization, and highlights the importance of nonlinear rewards in process supervision. Based on PSPO*, we develop the PSPO-WRS, which considers the number of reasoning steps in determining reward scores and utilizes an adjusted Weibull distribution for nonlinear reward shaping. Experimental results on six mathematical reasoning datasets demonstrate that PSPO-WRS consistently outperforms current mainstream models.
comment: Our code can be found at https://github.com/DIRECT-BIT/PSPO
♻ ☆ AutoProSAM: Automated Prompting SAM for 3D Multi-Organ Segmentation WACV-2025
Segment Anything Model (SAM) is one of the pioneering prompt-based foundation models for image segmentation and has been rapidly adopted for various medical imaging applications. However, in clinical settings, creating effective prompts is notably challenging and time-consuming, requiring the expertise of domain specialists such as physicians. This requirement significantly diminishes SAM's primary advantage, its interactive capability with end users, in medical applications. Moreover, recent studies have indicated that SAM, originally designed for 2D natural images, performs suboptimally on 3D medical image segmentation tasks. This subpar performance is attributed to the domain gaps between natural and medical images and the disparities in spatial arrangements between 2D and 3D images, particularly in multi-organ segmentation applications. To overcome these challenges, we present a novel technique termed AutoProSAM. This method automates 3D multi-organ CT-based segmentation by leveraging SAM's foundational model capabilities without relying on domain experts for prompts. The approach utilizes parameter-efficient adaptation techniques to adapt SAM for 3D medical imagery and incorporates an effective automatic prompt learning paradigm specific to this domain. By eliminating the need for manual prompts, it enhances SAM's capabilities for 3D medical image segmentation and achieves state-of-the-art (SOTA) performance in CT-based multi-organ segmentation tasks. The code is in this {\href{https://github.com/ChengyinLee/AutoProSAM_2024}{link}}.
comment: Accepted by WACV-2025
♻ ☆ AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
Multimodal Large Language Models (MLLMs) are widely regarded as crucial in the exploration of Artificial General Intelligence (AGI). The core of MLLMs lies in their capability to achieve cross-modal alignment. To attain this goal, current MLLMs typically follow a two-phase training paradigm: the pre-training phase and the instruction-tuning phase. Despite their success, there are shortcomings in the modeling of alignment capabilities within these models. Firstly, during the pre-training phase, the model usually assumes that all image-text pairs are uniformly aligned, but in fact the degree of alignment between different image-text pairs is inconsistent. Secondly, the instructions currently used for finetuning incorporate a variety of tasks and different tasks usually require different levels of alignment capabilities, but previous MLLMs overlook these differentiated alignment needs. To tackle these issues, we propose a new multimodal large language model AlignGPT. In the pre-training stage, instead of treating all image-text pairs equally, we divide them into different groups according to the degrees of alignment of them. Then, the model is trained to learn the representations of different alignment levels. In the instruction-tuning phase, we adaptively combine these representations of alignment levels to meet the dynamic alignment needs of different tasks. Extensive experimental results show that our model achieves competitive performance on 12 benchmarks.
♻ ☆ A Concept-Based Explainability Framework for Large Multimodal Models NeurIPS 2024
Large multimodal models (LMMs) combine unimodal encoders and large language models (LLMs) to perform multimodal tasks. Despite recent advancements towards the interpretability of these models, understanding internal representations of LMMs remains largely a mystery. In this paper, we present a novel framework for the interpretation of LMMs. We propose a dictionary learning based approach, applied to the representation of tokens. The elements of the learned dictionary correspond to our proposed concepts. We show that these concepts are well semantically grounded in both vision and text. Thus we refer to these as ``multi-modal concepts''. We qualitatively and quantitatively evaluate the results of the learnt concepts. We show that the extracted multimodal concepts are useful to interpret representations of test samples. Finally, we evaluate the disentanglement between different concepts and the quality of grounding concepts visually and textually. Our implementation is publicly available.
comment: NeurIPS 2024
♻ ☆ SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation
Large language models demonstrate exceptional performance in simple code generation tasks but still face challenges in tackling complex problems. These challenges may stem from insufficient reasoning and problem decomposition capabilities. To address this issue, we propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths. This creates a positive feedback loop, enabling continuous improvement. Our method operates entirely through the model itself without requiring additional supervision. By synthesizing natural language reasoning paths and translating them into executable code, the approach ensures analytical accuracy and enhances the success rate in solving complex tasks. Experimental results show that, even without additional supervisory signals, our method achieves performance improvements across different model scales, demonstrating the significant potential of self-improvement in small models. Furthermore, the method remains robust when traditional Chain-of-Thought (CoT) approaches exhibit performance degradation, with notable improvements observed in diversity metrics such as pass@10. We encourage further exploration of reasoning processes within training data to enhance the ability of language models to address complex problems. Our code and data are public at https://github.com/DIRECT-BIT/SRA-MCTS.
♻ ☆ POWQMIX: Weighted Value Factorization with Potentially Optimal Joint Actions Recognition for Cooperative Multi-Agent Reinforcement Learning
Value function factorization methods are commonly used in cooperative multi-agent reinforcement learning, with QMIX receiving significant attention. Many QMIX-based methods introduce monotonicity constraints between the joint action value and individual action values to achieve decentralized execution. However, such constraints limit the representation capacity of value factorization, restricting the joint action values it can represent and hindering the learning of the optimal policy. To address this challenge, we propose the Potentially Optimal Joint Actions Weighted QMIX (POWQMIX) algorithm, which recognizes the potentially optimal joint actions and assigns h QMIX (POWQMIX) algorithm, which recognizes the potentially optimal joint actions and assigns higher weights to the corresponding losses of these joint actions during training. We theoretically prove that with such a weighted training approach the optimal policy is guaranteed to be recovered. Experiments in matrix games, difficulty-enhanced predator-prey, and StarCraft II Multi-Agent Challenge environments demonstrate that our algorithm outperforms the state-of-the-art value-based multi-agent reinforcement learning methods.
comment: The first two authors contributed equally to this work. Under review
♻ ☆ Counterfactual Generation from Language Models
Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to intervene on these models. To understand the impact of interventions precisely, it is useful to examine counterfactuals -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as Generalized Structural-equation. Models using the Gumbel-max trick. This allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
comment: A preprint
♻ ☆ TASER: Temporal Adaptive Sampling for Fast and Accurate Dynamic Graph Representation Learning
Recently, Temporal Graph Neural Networks (TGNNs) have demonstrated state-of-the-art performance in various high-impact applications, including fraud detection and content recommendation. Despite the success of TGNNs, they are prone to the prevalent noise found in real-world dynamic graphs like time-deprecated links and skewed interaction distribution. The noise causes two critical issues that significantly compromise the accuracy of TGNNs: (1) models are supervised by inferior interactions, and (2) noisy input induces high variance in the aggregated messages. However, current TGNN denoising techniques do not consider the diverse and dynamic noise pattern of each node. In addition, they also suffer from the excessive mini-batch generation overheads caused by traversing more neighbors. We believe the remedy for fast and accurate TGNNs lies in temporal adaptive sampling. In this work, we propose TASER, the first adaptive sampling method for TGNNs optimized for accuracy, efficiency, and scalability. TASER adapts its mini-batch selection based on training dynamics and temporal neighbor selection based on the contextual, structural, and temporal properties of past interactions. To alleviate the bottleneck in mini-batch generation, TASER implements a pure GPU-based temporal neighbor finder and a dedicated GPU feature cache. We evaluate the performance of TASER using two state-of-the-art backbone TGNNs. On five popular datasets, TASER outperforms the corresponding baselines by an average of 2.3% in Mean Reciprocal Rank (MRR) while achieving an average of 5.1x speedup in training time.
comment: IPDPS 2024
♻ ☆ Graph Signal Adaptive Message Passing
This paper proposes Graph Signal Adaptive Message Passing (GSAMP), a novel message passing method that simultaneously conducts online prediction, missing data imputation, and noise removal on time-varying graph signals. Unlike conventional Graph Signal Processing methods that apply the same filter to the entire graph, the spatiotemporal updates of GSAMP employ a distinct approach that utilizes localized computations at each node. This update is based on an adaptive solution obtained from an optimization problem designed to minimize the discrepancy between observed and estimated values. GSAMP effectively processes real-world, time-varying graph signals under Gaussian and impulsive noise conditions.
♻ ☆ MS-Glance: Bio-Insipred Non-semantic Context Vectors and their Applications in Supervising Image Reconstruction WACV 2025
Non-semantic context information is crucial for visual recognition, as the human visual perception system first uses global statistics to process scenes rapidly before identifying specific objects. However, while semantic information is increasingly incorporated into computer vision tasks such as image reconstruction, non-semantic information, such as global spatial structures, is often overlooked. To bridge the gap, we propose a biologically informed non-semantic context descriptor, \textbf{MS-Glance}, along with the Glance Index Measure for comparing two images. A Global Glance vector is formulated by randomly retrieving pixels based on a perception-driven rule from an image to form a vector representing non-semantic global context, while a local Glance vector is a flattened local image window, mimicking a zoom-in observation. The Glance Index is defined as the inner product of two standardized sets of Glance vectors. We evaluate the effectiveness of incorporating Glance supervision in two reconstruction tasks: image fitting with implicit neural representation (INR) and undersampled MRI reconstruction. Extensive experimental results show that MS-Glance outperforms existing image restoration losses across both natural and medical images. The code is available at \url{https://github.com/Z7Gao/MSGlance}.
comment: Accepted by WACV 2025
♻ ☆ Learn With Imagination: Safe Set Guided State-wise Constrained Policy Optimization
Deep reinforcement learning (RL) excels in various control tasks, yet the absence of safety guarantees hampers its real-world applicability. In particular, explorations during learning usually results in safety violations, while the RL agent learns from those mistakes. On the other hand, safe control techniques ensure persistent safety satisfaction but demand strong priors on system dynamics, which is usually hard to obtain in practice. To address these problems, we present Safe Set Guided State-wise Constrained Policy Optimization (S-3PO), a pioneering algorithm generating state-wise safe optimal policies with zero training violations, i.e., learning without mistakes. S-3PO first employs a safety-oriented monitor with black-box dynamics to ensure safe exploration. It then enforces an "imaginary" cost for the RL agent to converge to optimal behaviors within safety constraints. S-3PO outperforms existing methods in high-dimensional robotics tasks, managing state-wise constraints with zero training violation. This innovation marks a significant stride towards real-world safe RL deployment.
♻ ☆ LOTUS: Continual Imitation Learning for Robot Manipulation Through Unsupervised Skill Discovery
We introduce LOTUS, a continual imitation learning algorithm that empowers a physical robot to continuously and efficiently learn to solve new manipulation tasks throughout its lifespan. The core idea behind LOTUS is constructing an ever-growing skill library from a sequence of new tasks with a small number of human demonstrations. LOTUS starts with a continual skill discovery process using an open-vocabulary vision model, which extracts skills as recurring patterns presented in unsegmented demonstrations. Continual skill discovery updates existing skills to avoid catastrophic forgetting of previous tasks and adds new skills to solve novel tasks. LOTUS trains a meta-controller that flexibly composes various skills to tackle vision-based manipulation tasks in the lifelong learning process. Our comprehensive experiments show that LOTUS outperforms state-of-the-art baselines by over 11% in success rate, showing its superior knowledge transfer ability compared to prior methods. More results and videos can be found on the project website: https://ut-austin-rpl.github.io/Lotus/.
comment: ICRA 2024
♻ ☆ Cooperative Grasping and Transportation using Multi-agent Reinforcement Learning with Ternary Force Representation
Cooperative grasping and transportation require effective coordination to complete the task. This study focuses on the approach leveraging force-sensing feedback, where robots use sensors to detect forces applied by others on an object to achieve coordination. Unlike explicit communication, it avoids delays and interruptions; however, force-sensing is highly sensitive and prone to interference from variations in grasping environment, such as changes in grasping force, grasping pose, object size and geometry, which can interfere with force signals, subsequently undermining coordination. We propose multi-agent reinforcement learning (MARL) with ternary force representation, a force representation that maintains consistent representation against variations in grasping environment. The simulation and real-world experiments demonstrate the robustness of the proposed method to changes in grasping force, object size and geometry as well as inherent sim2real gap.
♻ ☆ A Joint Prediction Method of Multi-Agent to Reduce Collision Rate
Predicting future motions of road participants is an important task for driving autonomously. Most existing models excel at predicting the marginal trajectory of a single agent, but predicting joint trajectories for multiple agents that are consistent within a scene remains a challenge. Previous research has often focused on marginal predictions, but the importance of joint predictions has become increasingly apparent. Joint prediction aims to generate trajectories that are consistent across the entire scene. Our research builds upon the SIMPL baseline to explore methods for generating scene-consistent trajectories. We tested our algorithm on the Argoverse 2 dataset, and experimental results demonstrate that our approach can generate scene-consistent trajectories. Compared to the SIMPL baseline, our method significantly reduces the collision rate of joint trajectories within the scene.
♻ ☆ Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control
We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach applies to competitive and cooperative multi-agent motion planning problems which we formulate as constrained dynamic games. Given a constrained dynamic game, we randomly sample initial conditions and solve for the generalized Nash equilibrium (GNE) to generate a dataset of GNE solutions, computing the reward outcome of each game-theoretic interaction from the GNE. The data is used to train a simple neural network to predict the reward outcome, which we use as the terminal cost-to-go function in an MPC scheme. We showcase emerging competitive and coordinated behaviors using IGT-MPC in scenarios such as two-vehicle head-to-head racing and un-signalized intersection navigation. IGT-MPC offers a novel method integrating machine learning and game-theoretic reasoning into model-based decentralized multi-agent motion planning.
comment: Submitted to 2025 Learning for Dynamics and Control Conference (L4DC)
♻ ☆ Lexicon3D: Probing Visual Foundation Models for Complex 3D Scene Understanding NeurIPS 2024
Complex 3D scene understanding has gained increasing attention, with scene encoding strategies playing a crucial role in this success. However, the optimal scene encoding strategies for various scenarios remain unclear, particularly compared to their image-based counterparts. To address this issue, we present a comprehensive study that probes various visual encoding models for 3D scene understanding, identifying the strengths and limitations of each model across different scenarios. Our evaluation spans seven vision foundation encoders, including image-based, video-based, and 3D foundation models. We evaluate these models in four tasks: Vision-Language Scene Reasoning, Visual Grounding, Segmentation, and Registration, each focusing on different aspects of scene understanding. Our evaluations yield key findings: DINOv2 demonstrates superior performance, video models excel in object-level tasks, diffusion models benefit geometric tasks, and language-pretrained models show unexpected limitations in language-related tasks. These insights challenge some conventional understandings, provide novel perspectives on leveraging visual foundation models, and highlight the need for more flexible encoder selection in future vision-language and scene-understanding tasks. Code: https://github.com/YunzeMan/Lexicon3D
comment: NeurIPS 2024. Project page: https://yunzeman.github.io/lexicon3d Github: https://github.com/YunzeMan/Lexicon3D
♻ ☆ GraspLDM: Generative 6-DoF Grasp Synthesis using Latent Diffusion Models
Vision-based grasping of unknown objects in unstructured environments is a key challenge for autonomous robotic manipulation. A practical grasp synthesis system is required to generate a diverse set of 6-DoF grasps from which a task-relevant grasp can be executed. Although generative models are suitable for learning such complex data distributions, existing models have limitations in grasp quality, long training times, and a lack of flexibility for task-specific generation. In this work, we present GraspLDM, a modular generative framework for 6-DoF grasp synthesis that uses diffusion models as priors in the latent space of a VAE. GraspLDM learns a generative model of object-centric $SE(3)$ grasp poses conditioned on point clouds. GraspLDM architecture enables us to train task-specific models efficiently by only re-training a small denoising network in the low-dimensional latent space, as opposed to existing models that need expensive re-training. Our framework provides robust and scalable models on both full and partial point clouds. GraspLDM models trained with simulation data transfer well to the real world without any further fine-tuning. Our models provide an 80% success rate for 80 grasp attempts of diverse test objects across two real-world robotic setups. We make our implementation available at https://github.com/kuldeepbrd1/graspldm .
Computation and Language 82
☆ Measuring Bullshit in the Language Games played by ChatGPT
Generative large language models (LLMs), which create text without direct correspondence to truth value, are widely understood to resemble the uses of language described in Frankfurt's popular monograph On Bullshit. In this paper, we offer a rigorous investigation of this topic, identifying how the phenomenon has arisen, and how it might be analysed. In this paper, we elaborate on this argument to propose that LLM-based chatbots play the 'language game of bullshit'. We use statistical text analysis to investigate the features of this Wittgensteinian language game, based on a dataset constructed to contrast the language of 1,000 scientific publications with typical pseudo-scientific text generated by ChatGPT. We then explore whether the same language features can be detected in two well-known contexts of social dysfunction: George Orwell's critique of politics and language, and David Graeber's characterisation of bullshit jobs. Using simple hypothesis-testing methods, we demonstrate that a statistical model of the language of bullshit can reliably relate the Frankfurtian artificial bullshit of ChatGPT to the political and workplace functions of bullshit as observed in natural human language.
☆ TÜLU 3: Pushing Frontiers in Open Language Model Post-Training
Language model post-training is applied to refine behaviors and unlock new skills across a wide range of recent language models, but open recipes for applying these techniques lag behind proprietary ones. The underlying training data and recipes for post-training are simultaneously the most important pieces of the puzzle and the portion with the least transparency. To bridge this gap, we introduce T\"ULU 3, a family of fully-open state-of-the-art post-trained models, alongside its data, code, and training recipes, serving as a comprehensive guide for modern post-training techniques. T\"ULU 3, which builds on Llama 3.1 base models, achieves results surpassing the instruct versions of Llama 3.1, Qwen 2.5, Mistral, and even closed models such as GPT-4o-mini and Claude 3.5-Haiku. The training algorithms for our models include supervised finetuning (SFT), Direct Preference Optimization (DPO), and a novel method we call Reinforcement Learning with Verifiable Rewards (RLVR). With T\"ULU 3, we introduce a multi-task evaluation scheme for post-training recipes with development and unseen evaluations, standard benchmark implementations, and substantial decontamination of existing open datasets on said benchmarks. We conclude with analysis and discussion of training methods that did not reliably improve performance. In addition to the T\"ULU 3 model weights and demo, we release the complete recipe -- including datasets for diverse core skills, a robust toolkit for data curation and evaluation, the training code and infrastructure, and, most importantly, a detailed report for reproducing and further adapting the T\"ULU 3 approach to more domains.
☆ ReXrank: A Public Leaderboard for AI-Powered Radiology Report Generation
AI-driven models have demonstrated significant potential in automating radiology report generation for chest X-rays. However, there is no standardized benchmark for objectively evaluating their performance. To address this, we present ReXrank, https://rexrank.ai, a public leaderboard and challenge for assessing AI-powered radiology report generation. Our framework incorporates ReXGradient, the largest test dataset consisting of 10,000 studies, and three public datasets (MIMIC-CXR, IU-Xray, CheXpert Plus) for report generation assessment. ReXrank employs 8 evaluation metrics and separately assesses models capable of generating only findings sections and those providing both findings and impressions sections. By providing this standardized evaluation framework, ReXrank enables meaningful comparisons of model performance and offers crucial insights into their robustness across diverse clinical settings. Beyond its current focus on chest X-rays, ReXrank's framework sets the stage for comprehensive evaluation of automated reporting across the full spectrum of medical imaging.
☆ VideoRepair: Improving Text-to-Video Generation via Misalignment Evaluation and Localized Refinement
Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of four stages: In (1) video evaluation, we detect misalignments by generating fine-grained evaluation questions and answering those questions with MLLM. In (2) refinement planning, we identify accurately generated objects and then create localized prompts to refine other areas in the video. Next, in (3) region decomposition, we segment the correctly generated area using a combined grounding module. We regenerate the video by adjusting the misaligned regions while preserving the correct regions in (4) localized refinement. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.
comment: Project page: https://video-repair.github.io
☆ Efficient Pruning of Text-to-Image Models: Insights from Pruning Stable Diffusion
As text-to-image models grow increasingly powerful and complex, their burgeoning size presents a significant obstacle to widespread adoption, especially on resource-constrained devices. This paper presents a pioneering study on post-training pruning of Stable Diffusion 2, addressing the critical need for model compression in text-to-image domain. Our study tackles the pruning techniques for the previously unexplored multi-modal generation models, and particularly examines the pruning impact on the textual component and the image generation component separately. We conduct a comprehensive comparison on pruning the model or the single component of the model in various sparsities. Our results yield previously undocumented findings. For example, contrary to established trends in language model pruning, we discover that simple magnitude pruning outperforms more advanced techniques in text-to-image context. Furthermore, our results show that Stable Diffusion 2 can be pruned to 38.5% sparsity with minimal quality loss, achieving a significant reduction in model size. We propose an optimal pruning configuration that prunes the text encoder to 47.5% and the diffusion generator to 35%. This configuration maintains image generation quality while substantially reducing computational requirements. In addition, our work uncovers intriguing questions about information encoding in text-to-image models: we observe that pruning beyond certain thresholds leads to sudden performance drops (unreadable images), suggesting that specific weights encode critical semantics information. This finding opens new avenues for future research in model compression, interoperability, and bias identification in text-to-image models. By providing crucial insights into the pruning behavior of text-to-image models, our study lays the groundwork for developing more efficient and accessible AI-driven image generation systems
☆ XGrammar: Flexible and Efficient Structured Generation Engine for Large Language Models
The applications of LLM Agents are becoming increasingly complex and diverse, leading to a high demand for structured outputs that can be parsed into code, structured function calls, and embodied agent commands. These developments bring significant demands for structured generation in LLM inference. Context-free grammar is a flexible approach to enable structured generation via constrained decoding. However, executing context-free grammar requires going through several stack states over all tokens in vocabulary during runtime, bringing non-negligible overhead for structured generation. In this paper, we propose XGrammar, a flexible and efficient structure generation engine for large language models. XGrammar accelerates context-free grammar execution by dividing the vocabulary into context-independent tokens that can be prechecked and context-dependent tokens that need to be interpreted during runtime. We further build transformations to expand the grammar context and reduce the number of context-independent tokens. Additionally, we build an efficient persistent stack to accelerate the context-dependent token checks. Finally, we co-design the grammar engine with LLM inference engine to overlap grammar computation with GPU executions. Evaluation results show that XGrammar can achieve up to 100x speedup over existing solutions. Combined with an LLM inference engine, it can generate near-zero overhead structure generation in end-to-end low-LLM serving.
☆ Context-Aware Multimodal Pretraining
Large-scale multimodal representation learning successfully optimizes for zero-shot transfer at test time. Yet the standard pretraining paradigm (contrastive learning on large amounts of image-text data) does not explicitly encourage representations to support few-shot adaptation. In this work, we propose a simple, but carefully designed extension to multimodal pretraining which enables representations to accommodate additional context. Using this objective, we show that vision-language models can be trained to exhibit significantly increased few-shot adaptation: across 21 downstream tasks, we find up to four-fold improvements in test-time sample efficiency, and average few-shot adaptation gains of over 5%, while retaining zero-shot generalization performance across model scales and training durations. In particular, equipped with simple, training-free, metric-based adaptation mechanisms, our representations easily surpass more complex and expensive optimization-based schemes, vastly simplifying generalization to new domains.
☆ Instance-Aware Generalized Referring Expression Segmentation
Recent works on Generalized Referring Expression Segmentation (GRES) struggle with handling complex expressions referring to multiple distinct objects. This is because these methods typically employ an end-to-end foreground-background segmentation and lack a mechanism to explicitly differentiate and associate different object instances to the text query. To this end, we propose InstAlign, a method that incorporates object-level reasoning into the segmentation process. Our model leverages both text and image inputs to extract a set of object-level tokens that capture both the semantic information in the input prompt and the objects within the image. By modeling the text-object alignment via instance-level supervision, each token uniquely represents an object segment in the image, while also aligning with relevant semantic information from the text. Extensive experiments on the gRefCOCO and Ref-ZOM benchmarks demonstrate that our method significantly advances state-of-the-art performance, setting a new standard for precise and flexible GRES.
comment: 12 pages, 7 figures
☆ Locating the Leading Edge of Cultural Change
Measures of textual similarity and divergence are increasingly used to study cultural change. But which measures align, in practice, with social evidence about change? We apply three different representations of text (topic models, document embeddings, and word-level perplexity) to three different corpora (literary studies, economics, and fiction). In every case, works by highly-cited authors and younger authors are textually ahead of the curve. We don't find clear evidence that one representation of text is to be preferred over the others. But alignment with social evidence is strongest when texts are represented through the top quartile of passages, suggesting that a text's impact may depend more on its most forward-looking moments than on sustaining a high level of innovation throughout.
comment: Accepted CHR 2024
☆ Fantastic Biases (What are They) and Where to Find Them
Deep Learning models tend to learn correlations of patterns on huge datasets. The bigger these systems are, the more complex are the phenomena they can detect, and the more data they need for this. The use of Artificial Intelligence (AI) is becoming increasingly ubiquitous in our society, and its impact is growing everyday. The promises it holds strongly depend on their fair and universal use, such as access to information or education for all. In a world of inequalities, they can help to reach the most disadvantaged areas. However, such a universal systems must be able to represent society, without benefiting some at the expense of others. We must not reproduce the inequalities observed throughout the world, but educate these IAs to go beyond them. We have seen cases where these systems use gender, race, or even class information in ways that are not appropriate for resolving their tasks. Instead of real causal reasoning, they rely on spurious correlations, which is what we usually call a bias. In this paper, we first attempt to define what is a bias in general terms. It helps us to demystify the concept of bias, to understand why we can find them everywhere and why they are sometimes useful. Second, we focus over the notion of what is generally seen as negative bias, the one we want to avoid in machine learning, before presenting a general zoology containing the most common of these biases. We finally conclude by looking at classical methods to detect them, by means of specially crafted datasets of templates and specific algorithms, and also classical methods to mitigate them.
comment: Publication in Spanish in the Journal Bits de Ciencias: https://www.dcc.uchile.cl/media/bits/pdfs/bits26.2-sesgos-fantasticos.pdf
☆ mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA
Advanced Multimodal Large Language Models (MLLMs) struggle with recent Knowledge-based VQA tasks, such as INFOSEEK and Encyclopedic-VQA, due to their limited and frozen knowledge scope, often leading to ambiguous and inaccurate responses. Thus, multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge, effectively expanding the knowledge scope. However, current mRAG methods have inherent drawbacks, including: 1) Performing retrieval even when external knowledge is not needed. 2) Lacking of identification of evidence that supports the query. 3) Increasing model complexity due to additional information filtering modules or rules. To address these shortcomings, we propose a novel generalized framework called \textbf{m}ultimodal \textbf{R}etrieval-\textbf{R}eflection-\textbf{A}ugmented \textbf{G}eneration (mR$^2$AG), which achieves adaptive retrieval and useful information localization to enable answers through two easy-to-implement reflection operations, preventing high model complexity. In mR$^2$AG, Retrieval-Reflection is designed to distinguish different user queries and avoids redundant retrieval calls, and Relevance-Reflection is introduced to guide the MLLM in locating beneficial evidence of the retrieved content and generating answers accordingly. In addition, mR$^2$AG can be integrated into any well-trained MLLM with efficient fine-tuning on the proposed mR$^2$AG Instruction-Tuning dataset (mR$^2$AG-IT). mR$^2$AG significantly outperforms state-of-the-art MLLMs (e.g., GPT-4v/o) and RAG-based MLLMs on INFOSEEK and Encyclopedic-VQA, while maintaining the exceptional capabilities of base MLLMs across a wide range of Visual-dependent tasks.
☆ Evolutionary Automata and Deep Evolutionary Computation
Evolution by natural selection, which is one of the most compelling themes of modern science, brought forth evolutionary algorithms and evolutionary computation, applying mechanisms of evolution in nature to various problems solved by computers. In this paper we concentrate on evolutionary automata that constitute an analogous model of evolutionary computation compared to well-known evolutionary algorithms. Evolutionary automata provide a more complete dual model of evolutionary computation, similar like abstract automata (e.g., Turing machines) form a more formal and precise model compared to recursive algorithms and their subset - evolutionary algorithms. An evolutionary automaton is an automaton that evolves performing evolutionary computation perhaps using an infinite number of generations. This model allows for a direct modeling evolution of evolution, and leads to tremendous expressiveness of evolutionary automata and evolutionary computation. This also gives the hint to the power of natural evolution that is self-evolving by interactive feedback with the environment.
☆ ScribeAgent: Towards Specialized Web Agents Using Production-Scale Workflow Data
Large Language Model (LLM) agents are rapidly improving to handle increasingly complex web-based tasks. Most of these agents rely on general-purpose, proprietary models like GPT-4 and focus on designing better prompts to improve their planning abilities. However, general-purpose LLMs are not specifically trained to understand specialized web contexts such as HTML, and they often struggle with long-horizon planning. We explore an alternative approach that fine-tunes open-source LLMs using production-scale workflow data collected from over 250 domains corresponding to 6 billion tokens. This simple yet effective approach shows substantial gains over prompting-based agents on existing benchmarks -- ScribeAgent achieves state-of-the-art direct generation performance on Mind2Web and improves the task success rate by 14.1% over the previous best text-only web agents on WebArena. We further perform detailed ablation studies on various fine-tuning design choices and provide insights into LLM selection, training recipes, context window optimization, and effect of dataset sizes.
Large Multi-modal Models Can Interpret Features in Large Multi-modal Models
Recent advances in Large Multimodal Models (LMMs) lead to significant breakthroughs in both academia and industry. One question that arises is how we, as humans, can understand their internal neural representations. This paper takes an initial step towards addressing this question by presenting a versatile framework to identify and interpret the semantics within LMMs. Specifically, 1) we first apply a Sparse Autoencoder(SAE) to disentangle the representations into human understandable features. 2) We then present an automatic interpretation framework to interpreted the open-semantic features learned in SAE by the LMMs themselves. We employ this framework to analyze the LLaVA-NeXT-8B model using the LLaVA-OV-72B model, demonstrating that these features can effectively steer the model's behavior. Our results contribute to a deeper understanding of why LMMs excel in specific tasks, including EQ tests, and illuminate the nature of their mistakes along with potential strategies for their rectification. These findings offer new insights into the internal mechanisms of LMMs and suggest parallels with the cognitive processes of the human brain.
☆ SwissADT: An Audio Description Translation System for Swiss Languages
Audio description (AD) is a crucial accessibility service provided to blind persons and persons with visual impairment, designed to convey visual information in acoustic form. Despite recent advancements in multilingual machine translation research, the lack of well-crafted and time-synchronized AD data impedes the development of audio description translation (ADT) systems that address the needs of multilingual countries such as Switzerland. Furthermore, since the majority of ADT systems rely solely on text, uncertainty exists as to whether incorporating visual information from the corresponding video clips can enhance the quality of ADT outputs. In this work, we present SwissADT, the first ADT system implemented for three main Swiss languages and English. By collecting well-crafted AD data augmented with video clips in German, French, Italian, and English, and leveraging the power of Large Language Models (LLMs), we aim to enhance information accessibility for diverse language populations in Switzerland by automatically translating AD scripts to the desired Swiss language. Our extensive experimental ADT results, composed of both automatic and human evaluations of ADT quality, demonstrate the promising capability of SwissADT for the ADT task. We believe that combining human expertise with the generation power of LLMs can further enhance the performance of ADT systems, ultimately benefiting a larger multilingual target population.
LLM for Barcodes: Generating Diverse Synthetic Data for Identity Documents
Accurate barcode detection and decoding in Identity documents is crucial for applications like security, healthcare, and education, where reliable data extraction and verification are essential. However, building robust detection models is challenging due to the lack of diverse, realistic datasets an issue often tied to privacy concerns and the wide variety of document formats. Traditional tools like Faker rely on predefined templates, making them less effective for capturing the complexity of real-world identity documents. In this paper, we introduce a new approach to synthetic data generation that uses LLMs to create contextually rich and realistic data without relying on predefined field. Using the vast knowledge LLMs have about different documents and content, our method creates data that reflects the variety found in real identity documents. This data is then encoded into barcode and overlayed on templates for documents such as Driver's licenses, Insurance cards, Student IDs. Our approach simplifies the process of dataset creation, eliminating the need for extensive domain knowledge or predefined fields. Compared to traditional methods like Faker, data generated by LLM demonstrates greater diversity and contextual relevance, leading to improved performance in barcode detection models. This scalable, privacy-first solution is a big step forward in advancing machine learning for automated document processing and identity verification.
comment: 5 pages, 1 figures
☆ Information Extraction from Heterogenous Documents without Ground Truth Labels using Synthetic Label Generation and Knowledge Distillation WACV 2025
Invoices and receipts submitted by employees are visually rich documents (VRDs) with textual, visual and layout information. To protect against the risk of fraud and abuse, it is crucial for organizations to efficiently extract desired information from submitted receipts. This helps in the assessment of key factors such as appropriateness of the expense claim, adherence to spending and transaction policies, the validity of the receipt, as well as downstream anomaly detection at various levels. These documents are heterogenous, with multiple formats and languages, uploaded with different image qualities, and often do not contain ground truth labels for the efficient training of models. In this paper we propose Task Aware Instruction-based Labelling (TAIL), a method for synthetic label generation in VRD corpuses without labels, and fine-tune a multimodal Visually Rich Document Understanding Model (VRDU) on TAIL labels using response-based knowledge distillation without using the teacher model's weights or training dataset to conditionally generate annotations in the appropriate format. Using a benchmark external dataset where ground truth labels are available, we demonstrate conditions under which our approach performs at par with Claude 3 Sonnet through empirical studies. We then show that the resulting model performs at par or better on the internal expense documents of a large multinational organization than state-of-the-art LMM (large multimodal model) Claude 3 Sonnet while being 85% less costly and ~5X faster, and outperforms layout-aware baselines by more than 10% in Average Normalized Levenshtein Similarity (ANLS) scores due to its ability to reason and extract information from rare formats. Finally, we illustrate the usage of our approach in overpayment prevention.
comment: Accepted to WACV 2025
☆ ReVisionLLM: Recursive Vision-Language Model for Temporal Grounding in Hour-Long Videos
Large language models (LLMs) excel at retrieving information from lengthy text, but their vision-language counterparts (VLMs) face difficulties with hour-long videos, especially for temporal grounding. Specifically, these VLMs are constrained by frame limitations, often losing essential temporal details needed for accurate event localization in extended video content. We propose ReVisionLLM, a recursive vision-language model designed to locate events in hour-long videos. Inspired by human search strategies, our model initially targets broad segments of interest, progressively revising its focus to pinpoint exact temporal boundaries. Our model can seamlessly handle videos of vastly different lengths, from minutes to hours. We also introduce a hierarchical training strategy that starts with short clips to capture distinct events and progressively extends to longer videos. To our knowledge, ReVisionLLM is the first VLM capable of temporal grounding in hour-long videos, outperforming previous state-of-the-art methods across multiple datasets by a significant margin (+2.6% R1@0.1 on MAD). The code is available at https://github.com/Tanveer81/ReVisionLLM.
☆ Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts
Large language models (LLMs) play a crucial role in natural language processing (NLP) tasks, improving the understanding, generation, and manipulation of human language across domains such as translating, summarizing, and classifying text. Previous studies have demonstrated that instruction-based LLMs can be effectively utilized for data augmentation to generate diverse and realistic text samples. This study applied prompt-based data augmentation to detect mentions of green practices in Russian social media. Detecting green practices in social media aids in understanding their prevalence and helps formulate recommendations for scaling eco-friendly actions to mitigate environmental issues. We evaluated several prompts for augmenting texts in a multi-label classification task, either by rewriting existing datasets using LLMs, generating new data, or combining both approaches. Our results revealed that all strategies improved classification performance compared to the models fine-tuned only on the original dataset, outperforming baselines in most cases. The best results were obtained with the prompt that paraphrased the original text while clearly indicating the relevant categories.
comment: Ivannikov ISPRAS Open Conference (ISPRAS) 2024
☆ Leveraging Hierarchical Prototypes as the Verbalizer for Implicit Discourse Relation Recognition
Implicit discourse relation recognition involves determining relationships that hold between spans of text that are not linked by an explicit discourse connective. In recent years, the pre-train, prompt, and predict paradigm has emerged as a promising approach for tackling this task. However, previous work solely relied on manual verbalizers for implicit discourse relation recognition, which suffer from issues of ambiguity and even incorrectness. To overcome these limitations, we leverage the prototypes that capture certain class-level semantic features and the hierarchical label structure for different classes as the verbalizer. We show that our method improves on competitive baselines. Besides, our proposed approach can be extended to enable zero-shot cross-lingual learning, facilitating the recognition of discourse relations in languages with scarce resources. These advancement validate the practicality and versatility of our approach in addressing the issues of implicit discourse relation recognition across different languages.
☆ Astro-HEP-BERT: A bidirectional language model for studying the meanings of concepts in astrophysics and high energy physics
I present Astro-HEP-BERT, a transformer-based language model specifically designed for generating contextualized word embeddings (CWEs) to study the meanings of concepts in astrophysics and high-energy physics. Built on a general pretrained BERT model, Astro-HEP-BERT underwent further training over three epochs using the Astro-HEP Corpus, a dataset I curated from 21.84 million paragraphs extracted from more than 600,000 scholarly articles on arXiv, all belonging to at least one of these two scientific domains. The project demonstrates both the effectiveness and feasibility of adapting a bidirectional transformer for applications in the history, philosophy, and sociology of science (HPSS). The entire training process was conducted using freely available code, pretrained weights, and text inputs, completed on a single MacBook Pro Laptop (M2/96GB). Preliminary evaluations indicate that Astro-HEP-BERT's CWEs perform comparably to domain-adapted BERT models trained from scratch on larger datasets for domain-specific word sense disambiguation and induction and related semantic change analyses. This suggests that retraining general language models for specific scientific domains can be a cost-effective and efficient strategy for HPSS researchers, enabling high performance without the need for extensive training from scratch.
comment: 7 pages, 4 figures, 1 table
☆ Prioritize Denoising Steps on Diffusion Model Preference Alignment via Explicit Denoised Distribution Estimation
Diffusion models have shown remarkable success in text-to-image generation, making alignment methods for these models increasingly important. A key challenge is the sparsity of preference labels, which are typically available only at the terminal of denoising trajectories. This raises the issue of how to assign credit across denoising steps based on these sparse labels. In this paper, we propose Denoised Distribution Estimation (DDE), a novel method for credit assignment. Unlike previous approaches that rely on auxiliary models or hand-crafted schemes, DDE derives its strategy more explicitly. The proposed DDE directly estimates the terminal denoised distribution from the perspective of each step. It is equipped with two estimation strategies and capable of representing the entire denoising trajectory with a single model inference. Theoretically and empirically, we show that DDE prioritizes optimizing the middle part of the denoising trajectory, resulting in a novel and effective credit assignment scheme. Extensive experiments demonstrate that our approach achieves superior performance, both quantitatively and qualitatively.
☆ VisGraphVar: A Benchmark Generator for Assessing Variability in Graph Analysis Using Large Vision-Language Models
The fast advancement of Large Vision-Language Models (LVLMs) has shown immense potential. These models are increasingly capable of tackling abstract visual tasks. Geometric structures, particularly graphs with their inherent flexibility and complexity, serve as an excellent benchmark for evaluating these models' predictive capabilities. While human observers can readily identify subtle visual details and perform accurate analyses, our investigation reveals that state-of-the-art LVLMs exhibit consistent limitations in specific visual graph scenarios, especially when confronted with stylistic variations. In response to these challenges, we introduce VisGraphVar (Visual Graph Variability), a customizable benchmark generator able to produce graph images for seven distinct task categories (detection, classification, segmentation, pattern recognition, link prediction, reasoning, matching), designed to systematically evaluate the strengths and limitations of individual LVLMs. We use VisGraphVar to produce 990 graph images and evaluate six LVLMs, employing two distinct prompting strategies, namely zero-shot and chain-of-thought. The findings demonstrate that variations in visual attributes of images (e.g., node labeling and layout) and the deliberate inclusion of visual imperfections, such as overlapping nodes, significantly affect model performance. This research emphasizes the importance of a comprehensive evaluation across graph-related tasks, extending beyond reasoning alone. VisGraphVar offers valuable insights to guide the development of more reliable and robust systems capable of performing advanced visual graph analysis.
☆ Fine-Grained Alignment in Vision-and-Language Navigation through Bayesian Optimization
This paper addresses the challenge of fine-grained alignment in Vision-and-Language Navigation (VLN) tasks, where robots navigate realistic 3D environments based on natural language instructions. Current approaches use contrastive learning to align language with visual trajectory sequences. Nevertheless, they encounter difficulties with fine-grained vision negatives. To enhance cross-modal embeddings, we introduce a novel Bayesian Optimization-based adversarial optimization framework for creating fine-grained contrastive vision samples. To validate the proposed methodology, we conduct a series of experiments to assess the effectiveness of the enriched embeddings on fine-grained vision negatives. We conduct experiments on two common VLN benchmarks R2R and REVERIE, experiments on the them demonstrate that these embeddings benefit navigation, and can lead to a promising performance enhancement. Our source code and trained models are available at: https://anonymous.4open.science/r/FGVLN.
☆ Harlequin: Color-driven Generation of Synthetic Data for Referring Expression Comprehension ICPR 2024
Referring Expression Comprehension (REC) aims to identify a particular object in a scene by a natural language expression, and is an important topic in visual language understanding. State-of-the-art methods for this task are based on deep learning, which generally requires expensive and manually labeled annotations. Some works tackle the problem with limited-supervision learning or relying on Large Vision and Language Models. However, the development of techniques to synthesize labeled data is overlooked. In this paper, we propose a novel framework that generates artificial data for the REC task, taking into account both textual and visual modalities. At first, our pipeline processes existing data to create variations in the annotations. Then, it generates an image using altered annotations as guidance. The result of this pipeline is a new dataset, called Harlequin, made by more than 1M queries. This approach eliminates manual data collection and annotation, enabling scalability and facilitating arbitrary complexity. We pre-train three REC models on Harlequin, then fine-tuned and evaluated on human-annotated datasets. Our experiments show that the pre-training on artificial data is beneficial for performance.
comment: Accepted to ICPR 2024
☆ Continual SFT Matches Multimodal RLHF with Negative Supervision
Multimodal RLHF usually happens after supervised finetuning (SFT) stage to continually improve vision-language models' (VLMs) comprehension. Conventional wisdom holds its superiority over continual SFT during this preference alignment stage. In this paper, we observe that the inherent value of multimodal RLHF lies in its negative supervision, the logit of the rejected responses. We thus propose a novel negative supervised finetuning (nSFT) approach that fully excavates these information resided. Our nSFT disentangles this negative supervision in RLHF paradigm, and continually aligns VLMs with a simple SFT loss. This is more memory efficient than multimodal RLHF where 2 (e.g., DPO) or 4 (e.g., PPO) large VLMs are strictly required. The effectiveness of nSFT is rigorously proved by comparing it with various multimodal RLHF approaches, across different dataset sources, base VLMs and evaluation metrics. Besides, fruitful of ablations are provided to support our hypothesis. We hope this paper will stimulate further research to properly align large vision language models.
☆ De-biased Multimodal Electrocardiogram Analysis
Multimodal large language models (MLLMs) are increasingly being applied in the medical field, particularly in medical imaging. However, developing MLLMs for ECG signals, which are crucial in clinical settings, has been a significant challenge beyond medical imaging. Previous studies have attempted to address this by converting ECGs into several text tags using an external classifier in a training-free manner. However, this approach significantly compresses the information in ECGs and underutilizes the reasoning capabilities of LLMs. In this work, we directly feed the embeddings of ECGs into the LLM through a projection layer, retaining more information about ECGs and better leveraging the reasoning abilities of LLMs. Our method can also effectively handle a common situation in clinical practice where it is necessary to compare two ECGs taken at different times. Recent studies found that MLLMs may rely solely on text input to provide answers, ignoring inputs from other modalities. We analyzed this phenomenon from a causal perspective in the context of ECG MLLMs and discovered that the confounder, severity of illness, introduces a spurious correlation between the question and answer, leading the model to rely on this spurious correlation and ignore the ECG input. Such models do not comprehend the ECG input and perform poorly in adversarial tests where different expressions of the same question are used in the training and testing sets. We designed a de-biased pre-training method to eliminate the confounder's effect according to the theory of backdoor adjustment. Our model performed well on the ECG-QA task under adversarial testing and demonstrated zero-shot capabilities. An interesting random ECG test further validated that our model effectively understands and utilizes the input ECG signal.
☆ VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection
The advancement of Large Vision Language Models (LVLMs) has significantly improved multimodal understanding, yet challenges remain in video reasoning tasks due to the scarcity of high-quality, large-scale datasets. Existing video question-answering (VideoQA) datasets often rely on costly manual annotations with insufficient granularity or automatic construction methods with redundant frame-by-frame analysis, limiting their scalability and effectiveness for complex reasoning. To address these challenges, we introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence, along with multimodal annotations of intermediate reasoning steps. Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o. We further develop video Chain-of-Thought (CoT) annotations to enrich reasoning processes, guiding GPT-4o in extracting logical relationships from QA pairs and video content. To exploit the potential of high-quality VideoQA pairs, we propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM. This framework adaptively selects core frames and performs CoT reasoning using multimodal evidence. Evaluated on our proposed benchmark with 14 tasks against 9 popular LVLMs, our method outperforms existing baselines on most tasks, demonstrating superior video reasoning capabilities. Our code and dataset will be released at: https://github.com/hshjerry/VideoEspresso
comment: 14 pages, 14 figures
KBAda: Efficient Self Adaptation on Specific Knowledge Bases
Humans can utilize techniques to quickly acquire knowledge from specific materials in advance, such as creating self-assessment questions, enabling us to achieving related tasks more efficiently. In contrast, large language models (LLMs) usually relies on retrieval-augmented generation to exploit knowledge materials in an instant manner, or requires external signals such as human preference data and stronger LLM annotations to conduct knowledge adaptation. To unleash the self-learning potential of LLMs, we propose KBAda, an approach designed for efficient adaptation to downstream tasks involving knowledge bases. Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently. Experimental results on multiple datasets demonstrate the effectiveness of our approach, significantly boosting model performance in downstream tasks that require specific knowledge at a low cost. Notably, our approach achieves over 90% of the performance improvement that can be obtained by using GPT-4-turbo annotation, while relying entirely on self-supervision. We release our experimental data, models, and process analyses to the community for further exploration (https://github.com/thunlp/KBAda).
☆ IRLab@iKAT24: Learned Sparse Retrieval with Multi-aspect LLM Query Generation for Conversational Search
The Interactive Knowledge Assistant Track (iKAT) 2024 focuses on advancing conversational assistants, able to adapt their interaction and responses from personalized user knowledge. The track incorporates a Personal Textual Knowledge Base (PTKB) alongside Conversational AI tasks, such as passage ranking and response generation. Query Rewrite being an effective approach for resolving conversational context, we explore Large Language Models (LLMs), as query rewriters. Specifically, our submitted runs explore multi-aspect query generation using the MQ4CS framework, which we further enhance with Learned Sparse Retrieval via the SPLADE architecture, coupled with robust cross-encoder models. We also propose an alternative to the previous interleaving strategy, aggregating multiple aspects during the reranking phase. Our findings indicate that multi-aspect query generation is effective in enhancing performance when integrated with advanced retrieval and reranking models. Our results also lead the way for better personalization in Conversational Search, relying on LLMs to integrate personalization within query rewrite, and outperforming human rewrite performance.
☆ Universal and Context-Independent Triggers for Precise Control of LLM Outputs
Large language models (LLMs) have been widely adopted in applications such as automated content generation and even critical decision-making systems. However, the risk of prompt injection allows for potential manipulation of LLM outputs. While numerous attack methods have been documented, achieving full control over these outputs remains challenging, often requiring experienced attackers to make multiple attempts and depending heavily on the prompt context. Recent advancements in gradient-based white-box attack techniques have shown promise in tasks like jailbreaks and system prompt leaks. Our research generalizes gradient-based attacks to find a trigger that is (1) Universal: effective irrespective of the target output; (2) Context-Independent: robust across diverse prompt contexts; and (3) Precise Output: capable of manipulating LLM inputs to yield any specified output with high accuracy. We propose a novel method to efficiently discover such triggers and assess the effectiveness of the proposed attack. Furthermore, we discuss the substantial threats posed by such attacks to LLM-based applications, highlighting the potential for adversaries to taking over the decisions and actions made by AI agents.
☆ Evaluating and Advancing Multimodal Large Language Models in Ability Lens
As multimodal large language models (MLLMs) advance rapidly, rigorous evaluation has become essential, providing further guidance for their development. In this work, we focus on a unified and robust evaluation of \textbf{vision perception} abilities, the foundational skill of MLLMs. We find that existing perception benchmarks, each focusing on different question types, domains, and evaluation metrics, introduce significant evaluation variance, complicating comprehensive assessments of perception abilities when relying on any single benchmark. To address this, we introduce \textbf{AbilityLens}, a unified benchmark designed to evaluate MLLMs across six key perception abilities, focusing on both accuracy and stability, with each ability encompassing diverse question types, domains, and metrics. With the assistance of AbilityLens, we: (1) identify the strengths and weaknesses of current models, highlighting stability patterns and revealing a notable performance gap between open-source and closed-source models; (2) introduce an online evaluation mode, which uncovers interesting ability conflict and early convergence phenomena during MLLM training; and (3) design a simple ability-specific model merging method that combines the best ability checkpoint from early training stages, effectively mitigating performance decline due to ability conflict. The benchmark and online leaderboard will be released soon.
☆ MolReFlect: Towards In-Context Fine-grained Alignments between Molecules and Texts
Molecule discovery is a pivotal research field, impacting everything from the medicines we take to the materials we use. Recently, Large Language Models (LLMs) have been widely adopted in molecule understanding and generation, yet the alignments between molecules and their corresponding captions remain a significant challenge. Previous endeavours often treat the molecule as a general SMILES string or molecular graph, neglecting the fine-grained alignments between the molecular sub-structures and the descriptive textual phrases, which are crucial for accurate and explainable predictions. In this case, we introduce MolReFlect, a novel teacher-student framework designed to contextually perform the molecule-caption alignments in a fine-grained way. Our approach initially leverages a larger teacher LLM to label the detailed alignments by directly extracting critical phrases from molecule captions or SMILES strings and implying them to corresponding sub-structures or characteristics. To refine these alignments, we propose In-Context Selective Reflection, which retrieves previous extraction results as context examples for teacher LLM to reflect and lets a smaller student LLM select from in-context reflection and previous extraction results. Finally, we enhance the learning process of the student LLM through Chain-of-Thought In-Context Molecule Tuning, integrating the fine-grained alignments and the reasoning processes within the Chain-of-Thought format. Our experimental results demonstrate that MolReFlect enables LLMs like Mistral-7B to significantly outperform the previous baselines, achieving SOTA performance on the ChEBI-20 dataset. This advancement not only enhances the generative capabilities of LLMs in the molecule-caption translation task, but also contributes to a more explainable framework.
comment: 22 pages, 12 figures
☆ Optimizing Social Media Annotation of HPV Vaccine Skepticism and Misinformation Using Large Language Models: An Experimental Evaluation of In-Context Learning and Fine-Tuning Stance Detection Across Multiple Models
This paper leverages large-language models (LLMs) to experimentally determine optimal strategies for scaling up social media content annotation for stance detection on HPV vaccine-related tweets. We examine both conventional fine-tuning and emergent in-context learning methods, systematically varying strategies of prompt engineering across widely used LLMs and their variants (e.g., GPT4, Mistral, and Llama3, etc.). Specifically, we varied prompt template design, shot sampling methods, and shot quantity to detect stance on HPV vaccination. Our findings reveal that 1) in general, in-context learning outperforms fine-tuning in stance detection for HPV vaccine social media content; 2) increasing shot quantity does not necessarily enhance performance across models; and 3) different LLMs and their variants present differing sensitivity to in-context learning conditions. We uncovered that the optimal in-context learning configuration for stance detection on HPV vaccine tweets involves six stratified shots paired with detailed contextual prompts. This study highlights the potential and provides an applicable approach for applying LLMs to research on social media stance and skepticism detection.
☆ FedMLLM: Federated Fine-tuning MLLM on Multimodal Heterogeneity Data
Multimodal Large Language Models (MLLMs) have made significant advancements, demonstrating powerful capabilities in processing and understanding multimodal data. Fine-tuning MLLMs with Federated Learning (FL) allows for expanding the training data scope by including private data sources, thereby enhancing their practical applicability in privacy-sensitive domains. However, current research remains in the early stage, particularly in addressing the \textbf{multimodal heterogeneities} in real-world applications. In this paper, we introduce a benchmark for evaluating various downstream tasks in the federated fine-tuning of MLLMs within multimodal heterogeneous scenarios, laying the groundwork for the research in the field. Our benchmark encompasses two datasets, five comparison baselines, and four multimodal scenarios, incorporating over ten types of modal heterogeneities. To address the challenges posed by modal heterogeneity, we develop a general FedMLLM framework that integrates four representative FL methods alongside two modality-agnostic strategies. Extensive experimental results show that our proposed FL paradigm improves the performance of MLLMs by broadening the range of training data and mitigating multimodal heterogeneity. Code is available at https://github.com/1xbq1/FedMLLM
☆ Understanding LLM Embeddings for Regression
With the rise of large language models (LLMs) for flexibly processing information as strings, a natural application is regression, specifically by preprocessing string representations into LLM embeddings as downstream features for metric prediction. In this paper, we provide one of the first comprehensive investigations into embedding-based regression and demonstrate that LLM embeddings as features can be better for high-dimensional regression tasks than using traditional feature engineering. This regression performance can be explained in part due to LLM embeddings over numeric data inherently preserving Lipschitz continuity over the feature space. Furthermore, we quantify the contribution of different model effects, most notably model size and language understanding, which we find surprisingly do not always improve regression performance.
comment: 15 pages, 13 figures
☆ Improving Mathematical Reasoning Capabilities of Small Language Models via Feedback-Driven Distillation
Large Language Models (LLMs) demonstrate exceptional reasoning capabilities, often achieving state-of-the-art performance in various tasks. However, their substantial computational and memory demands, due to billions of parameters, hinder deployment in resource-constrained environments. A promising solution is knowledge distillation, where LLMs transfer reasoning capabilities to Small Language Models (SLMs, $\le$ 1B parameters), enabling wider deployment on low-resource devices. Existing methods primarily focus on generating high-quality reasoning rationales for distillation datasets but often neglect the critical role of data quantity and quality. To address these challenges, we propose a Feedback-Driven Distillation (FDD) framework to enhance SLMs' mathematical reasoning capabilities. In the initialization stage, a distillation dataset is constructed by prompting LLMs to pair mathematical problems with corresponding reasoning rationales. We classify problems into easy and hard categories based on SLM performance. For easy problems, LLMs generate more complex variations, while for hard problems, new questions of similar complexity are synthesized. In addition, we propose a multi-round distillation paradigm to iteratively enrich the distillation datasets, thereby progressively improving the mathematical reasoning abilities of SLMs. Experimental results demonstrate that our method can make SLMs achieve SOTA mathematical reasoning performance.
☆ Whats in a Video: Factorized Autoregressive Decoding for Online Dense Video Captioning
Generating automatic dense captions for videos that accurately describe their contents remains a challenging area of research. Most current models require processing the entire video at once. Instead, we propose an efficient, online approach which outputs frequent, detailed and temporally aligned captions, without access to future frames. Our model uses a novel autoregressive factorized decoding architecture, which models the sequence of visual features for each time segment, outputting localized descriptions and efficiently leverages the context from the previous video segments. This allows the model to output frequent, detailed captions to more comprehensively describe the video, according to its actual local content, rather than mimic the training data. Second, we propose an optimization for efficient training and inference, which enables scaling to longer videos. Our approach shows excellent performance compared to both offline and online methods, and uses 20\% less compute. The annotations produced are much more comprehensive and frequent, and can further be utilized in automatic video tagging and in large-scale video data harvesting.
☆ Multiverse of Greatness: Generating Story Branches with LLMs
This paper presents Dynamic Context Prompting/Programming (DCP/P), a novel framework for interacting with LLMs to generate graph-based content with a dynamic context window history. While there is an existing study utilizing LLMs to generate a visual novel game, the previous study involved a manual process of output extraction and did not provide flexibility in generating a longer, coherent story. We evaluate DCP/P against our baseline, which does not provide context history to an LLM and only relies on the initial story data. Through objective evaluation, we show that simply providing the LLM with a summary leads to a subpar story compared to additionally providing the LLM with the proper context of the story. We also provide an extensive qualitative analysis and discussion. We qualitatively examine the quality of the objectively best-performing generated game from each approach. In addition, we examine biases in word choices and word sentiment of the generated content. We find a consistent observation with previous studies that LLMs are biased towards certain words, even with a different LLM family. Finally, we provide a comprehensive discussion on opportunities for future studies.
comment: 12 pages, 14 figures
☆ Comparative Analysis of Pooling Mechanisms in LLMs: A Sentiment Analysis Perspective
Large Language Models (LLMs) have revolutionized natural language processing (NLP) by delivering state-of-the-art performance across a variety of tasks. Among these, Transformer-based models like BERT and GPT rely on pooling layers to aggregate token-level embeddings into sentence-level representations. Common pooling mechanisms such as Mean, Max, and Weighted Sum play a pivotal role in this aggregation process. Despite their widespread use, the comparative performance of these strategies on different LLM architectures remains underexplored. To address this gap, this paper investigates the effects of these pooling mechanisms on two prominent LLM families -- BERT and GPT, in the context of sentence-level sentiment analysis. Comprehensive experiments reveal that each pooling mechanism exhibits unique strengths and weaknesses depending on the task's specific requirements. Our findings underline the importance of selecting pooling methods tailored to the demands of particular applications, prompting a re-evaluation of common assumptions regarding pooling operations. By offering actionable insights, this study contributes to the optimization of LLM-based models for downstream tasks.
comment: 4 figures
☆ Benchmarking Multimodal Models for Ukrainian Language Understanding Across Academic and Cultural Domains
While the evaluation of multimodal English-centric models is an active area of research with numerous benchmarks, there is a profound lack of benchmarks or evaluation suites for low- and mid-resource languages. We introduce ZNO-Vision, a comprehensive multimodal Ukrainian-centric benchmark derived from standardized university entrance examination (ZNO). The benchmark consists of over 4,300 expert-crafted questions spanning 12 academic disciplines, including mathematics, physics, chemistry, and humanities. We evaluated the performance of both open-source models and API providers, finding that only a handful of models performed above baseline. Alongside the new benchmark, we performed the first evaluation study of multimodal text generation for the Ukrainian language: we measured caption generation quality on the Multi30K-UK dataset, translated the VQA benchmark into Ukrainian, and measured performance degradation relative to original English versions. Lastly, we tested a few models from a cultural perspective on knowledge of national cuisine. We believe our work will advance multimodal generation capabilities for the Ukrainian language and our approach could be useful for other low-resource languages.
☆ On the Impact of Fine-Tuning on Chain-of-Thought Reasoning
Large language models have emerged as powerful tools for general intelligence, showcasing advanced natural language processing capabilities that find applications across diverse domains. Despite their impressive performance, recent studies have highlighted the potential for significant enhancements in LLMs' task-specific performance through fine-tuning strategies like Reinforcement Learning with Human Feedback (RLHF), supervised fine-tuning (SFT), and Quantized Low-Rank Adapters (Q-LoRA) method. However, previous works have shown that while fine-tuning offers significant performance gains, it also leads to challenges such as catastrophic forgetting and privacy and safety risks. To this end, there has been little to no work in \textit{understanding the impact of fine-tuning on the reasoning capabilities of LLMs}. Our research investigates the effect of fine-tuning on the reasoning abilities of LLMs, addressing critical questions regarding the impact of task-specific fine-tuning on overall reasoning capabilities, the influence of fine-tuning on Chain-of-Thought (CoT) reasoning performance, and the implications for the faithfulness of CoT reasonings. By exploring these dimensions, our study shows the impact of fine-tuning on LLM reasoning capabilities, where the faithfulness of CoT reasoning, on average across four datasets, decreases, highlighting potential shifts in internal mechanisms of the LLMs resulting from fine-tuning processes.
comment: This paper is a work in progress with findings based on limited evidence. Please exercise discretion when interpreting the findings
☆ Transforming NLU with Babylon: A Case Study in Development of Real-time, Edge-Efficient, Multi-Intent Translation System for Automated Drive-Thru Ordering
Real-time conversational AI agents face challenges in performing Natural Language Understanding (NLU) in dynamic, outdoor environments like automated drive-thru systems. These settings require NLU models to handle background noise, diverse accents, and multi-intent queries while operating under strict latency and memory constraints on edge devices. Additionally, robustness to errors from upstream Automatic Speech Recognition (ASR) is crucial, as ASR outputs in these environments are often noisy. We introduce Babylon, a transformer-based architecture that tackles NLU as an intent translation task, converting natural language inputs into sequences of regular language units ('transcodes') that encode both intents and slot information. This formulation allows Babylon to manage multi-intent scenarios in a single dialogue turn. Furthermore, Babylon incorporates an LSTM-based token pooling mechanism to preprocess phoneme sequences, reducing input length and optimizing for low-latency, low-memory edge deployment. This also helps mitigate inaccuracies in ASR outputs, enhancing system robustness. While this work focuses on drive-thru ordering, Babylon's design extends to similar noise-prone scenarios, for e.g. ticketing kiosks. Our experiments show that Babylon achieves significantly better accuracy-latency-memory footprint trade-offs over typically employed NMT models like Flan-T5 and BART, demonstrating its effectiveness for real-time NLU in edge deployment settings.
comment: 12 pages, 3 figures, 2 tables
☆ Exploring Facets of Language Generation in the Limit
The recent work of Kleinberg and Mullainathan [KM24] provides a concrete model for language generation in the limit: given a sequence of examples from an unknown target language, the goal is to generate new examples from the target language such that no incorrect examples are generated beyond some point. In sharp contrast to strong negative results for the closely related problem of language identification, they establish positive results for language generation in the limit for all countable collections of languages. Follow-up work by Raman and Tewari [RT24] studies bounds on the number of distinct inputs required by an algorithm before correct language generation is achieved -- namely, whether this is a constant for all languages in the collection (uniform generation) or a language-dependent constant (non-uniform generation). We show that every countable language collection has a generator which has the stronger property of non-uniform generation in the limit. However, while the generation algorithm of [KM24] can be implemented using membership queries, we show that any algorithm cannot non-uniformly generate even for collections of just two languages, using only membership queries. We also formalize the tension between validity and breadth in the generation algorithm of [KM24] by introducing a definition of exhaustive generation, and show a strong negative result for exhaustive generation. Our result shows that a tradeoff between validity and breadth is inherent for generation in the limit. Finally, inspired by algorithms that can choose to obtain feedback, we consider a model of uniform generation with feedback, completely characterizing language collections for which such uniform generation with feedback is possible in terms of a complexity measure of the collection.
comment: 24 pages
☆ PPLqa: An Unsupervised Information-Theoretic Quality Metric for Comparing Generative Large Language Models
We propose PPLqa, an easy to compute, language independent, information-theoretic metric to measure the quality of responses of generative Large Language Models (LLMs) in an unsupervised way, without requiring ground truth annotations or human supervision. The method and metric enables users to rank generative language models for quality of responses, so as to make a selection of the best model for a given task. Our single metric assesses LLMs with an approach that subsumes, but is not explicitly based on, coherence and fluency (quality of writing) and relevance and consistency (appropriateness of response) to the query. PPLqa performs as well as other related metrics, and works better with long-form Q\&A. Thus, PPLqa enables bypassing the lengthy annotation process required for ground truth evaluations, and it also correlates well with human and LLM rankings.
MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs
As a prominent direction of Artificial General Intelligence (AGI), Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia. Building upon pre-trained LLMs, this family of models further develops multimodal perception and reasoning capabilities that are impressive, such as writing code given a flow chart or creating stories based on an image. In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models. Distinct from the traditional train-eval-test paradigm that only favors a single task like image classification, the versatility of MLLMs has spurred the rise of various new benchmarks and evaluation methods. In this paper, we aim to present a comprehensive survey of MLLM evaluation, discussing four key aspects: 1) the summarised benchmarks types divided by the evaluation capabilities, including foundation capabilities, model self-analysis, and extented applications; 2) the typical process of benchmark counstruction, consisting of data collection, annotation, and precautions; 3) the systematic evaluation manner composed of judge, metric, and toolkit; 4) the outlook for the next benchmark. This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods, thereby driving the progress of MLLM research.
comment: Produced by MME+MMBench+LLaVA Teams. Project Page: https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Benchmarks
☆ Sycophancy in Large Language Models: Causes and Mitigations
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks. However, their tendency to exhibit sycophantic behavior - excessively agreeing with or flattering users - poses significant risks to their reliability and ethical deployment. This paper provides a technical survey of sycophancy in LLMs, analyzing its causes, impacts, and potential mitigation strategies. We review recent work on measuring and quantifying sycophantic tendencies, examine the relationship between sycophancy and other challenges like hallucination and bias, and evaluate promising techniques for reducing sycophancy while maintaining model performance. Key approaches explored include improved training data, novel fine-tuning methods, post-deployment control mechanisms, and decoding strategies. We also discuss the broader implications of sycophancy for AI alignment and propose directions for future research. Our analysis suggests that mitigating sycophancy is crucial for developing more robust, reliable, and ethically-aligned language models.
☆ BanglaEmbed: Efficient Sentence Embedding Models for a Low-Resource Language Using Cross-Lingual Distillation Techniques
Sentence-level embedding is essential for various tasks that require understanding natural language. Many studies have explored such embeddings for high-resource languages like English. However, low-resource languages like Bengali (a language spoken by almost two hundred and thirty million people) are still under-explored. This work introduces two lightweight sentence transformers for the Bangla language, leveraging a novel cross-lingual knowledge distillation approach. This method distills knowledge from a pre-trained, high-performing English sentence transformer. Proposed models are evaluated across multiple downstream tasks, including paraphrase detection, semantic textual similarity (STS), and Bangla hate speech detection. The new method consistently outperformed existing Bangla sentence transformers. Moreover, the lightweight architecture and shorter inference time make the models highly suitable for deployment in resource-constrained environments, making them valuable for practical NLP applications in low-resource languages.
comment: Accepted in ACAI 2024
☆ ICT: Image-Object Cross-Level Trusted Intervention for Mitigating Object Hallucination in Large Vision-Language Models
Despite the recent breakthroughs achieved by Large Vision Language Models (LVLMs) in understanding and responding to complex visual-textual contexts, their inherent hallucination tendencies limit their practical application in real-world scenarios that demand high levels of precision. Existing methods typically either fine-tune the LVLMs using additional data, which incurs extra costs in manual annotation and computational resources or perform comparisons at the decoding stage, which may eliminate useful language priors for reasoning while introducing inference time overhead. Therefore, we propose ICT, a lightweight, training-free method that calculates an intervention direction to shift the model's focus towards different levels of visual information, enhancing its attention to high-level and fine-grained visual details. During the forward pass stage, the intervention is applied to the attention heads that encode the overall image information and the fine-grained object details, effectively mitigating the phenomenon of overly language priors, and thereby alleviating hallucinations. Extensive experiments demonstrate that ICT achieves strong performance with a small amount of data and generalizes well across different datasets and models. Our code will be public.
☆ TPLogAD: Unsupervised Log Anomaly Detection Based on Event Templates and Key Parameters
Log-system is an important mechanism for recording the runtime status and events of Web service systems, and anomaly detection in logs is an effective method of detecting problems. However, manual anomaly detection in logs is inefficient, error-prone, and unrealistic. Existing log anomaly detection methods either use the indexes of event templates, or form vectors by embedding the fixed string part of the template as a sentence, or use time parameters for sequence analysis. However, log entries often contain features and semantic information that cannot be fully represented by these methods, resulting in missed and false alarms. In this paper, we propose TPLogAD, a universal unsupervised method for analyzing unstructured logs, which performs anomaly detection based on event templates and key parameters. The itemplate2vec and para2vec included in TPLogAD are two efficient and easy-to-implement semantic representation methods for logs, detecting anomalies in event templates and parameters respectively, which has not been achieved in previous work. Additionally, TPLogAD can avoid the interference of log diversity and dynamics on anomaly detection. Our experiments on four public log datasets show that TPLogAD outperforms existing log anomaly detection methods.
☆ Bio-inspired AI: Integrating Biological Complexity into Artificial Intelligence
The pursuit of creating artificial intelligence (AI) mirrors our longstanding fascination with understanding our own intelligence. From the myths of Talos to Aristotelian logic and Heron's inventions, we have sought to replicate the marvels of the mind. While recent advances in AI hold promise, singular approaches often fall short in capturing the essence of intelligence. This paper explores how fundamental principles from biological computation--particularly context-dependent, hierarchical information processing, trial-and-error heuristics, and multi-scale organization--can guide the design of truly intelligent systems. By examining the nuanced mechanisms of biological intelligence, such as top-down causality and adaptive interaction with the environment, we aim to illuminate potential limitations in artificial constructs. Our goal is to provide a framework inspired by biological systems for designing more adaptable and robust artificial intelligent systems.
☆ The Zamba2 Suite: Technical Report
In this technical report, we present the Zamba2 series -- a suite of 1.2B, 2.7B, and 7.4B parameter hybrid Mamba2-transformer models that achieve state of the art performance against the leading open-weights models of their class, while achieving substantial gains in inference latency, throughput, and memory efficiency. The Zamba2 series builds upon our initial work with Zamba1-7B, optimizing its architecture, training and annealing datasets, and training for up to three trillion tokens. We provide open-source weights for all models of the Zamba2 series as well as instruction-tuned variants that are strongly competitive against comparable instruct-tuned models of their class. We additionally open-source the pretraining dataset, which we call Zyda-2, used to train the Zamba2 series of models. The models and datasets used in this work are openly available at https://huggingface.co/Zyphra
comment: 21/11/24 initial upload
♻ ☆ The Art of Saying No: Contextual Noncompliance in Language Models NeurIPS 2024
Chat-based language models are designed to be helpful, yet they should not comply with every user request. While most existing work primarily focuses on refusal of "unsafe" queries, we posit that the scope of noncompliance should be broadened. We introduce a comprehensive taxonomy of contextual noncompliance describing when and how models should not comply with user requests. Our taxonomy spans a wide range of categories including incomplete, unsupported, indeterminate, and humanizing requests (in addition to unsafe requests). To test noncompliance capabilities of language models, we use this taxonomy to develop a new evaluation suite of 1000 noncompliance prompts. We find that most existing models show significantly high compliance rates in certain previously understudied categories with models like GPT-4 incorrectly complying with as many as 30% of requests. To address these gaps, we explore different training strategies using a synthetically-generated training set of requests and expected noncompliant responses. Our experiments demonstrate that while direct finetuning of instruction-tuned models can lead to both over-refusal and a decline in general capabilities, using parameter efficient methods like low rank adapters helps to strike a good balance between appropriate noncompliance and other capabilities.
comment: The first two authors are co-first authors; Accepted at NeurIPS 2024 Track on Datasets and Benchmarks
♻ ☆ Characterizing User Archetypes and Discussions on Scored.co
In recent years, the proliferation of social platforms has drastically transformed the way individuals interact, organize, and share information. In this scenario, we experience an unprecedented increase in the scale and complexity of interactions and, at the same time, little to no research about some fringe social platforms. In this paper, we present a multi-dimensional framework for characterizing nodes and hyperedges in social hypernetworks, with a focus on the understudied alt-right platform Scored.co. Our approach integrates the possibility of studying higher-order interactions, thanks to the hypernetwork representation, and various node features such as user activity, sentiment, and toxicity, with the aim to define distinct user archetypes and understand their roles within the network. Utilizing a comprehensive dataset from Scored.co, we analyze the dynamics of these archetypes over time and explore their interactions and influence within the community. The framework's versatility allows for detailed analysis of both individual user behaviors and broader social structures. Our findings highlight the importance of higher-order interactions in understanding social dynamics, offering new insights into the roles and behaviors that emerge in complex online environments.
♻ ☆ Negotiating with LLMS: Prompt Hacks, Skill Gaps, and Reasoning Deficits
Large language models LLMs like ChatGPT have reached the 100 Mio user barrier in record time and might increasingly enter all areas of our life leading to a diverse set of interactions between those Artificial Intelligence models and humans. While many studies have discussed governance and regulations deductively from first-order principles, few studies provide an inductive, data-driven lens based on observing dialogues between humans and LLMs especially when it comes to non-collaborative, competitive situations that have the potential to pose a serious threat to people. In this work, we conduct a user study engaging over 40 individuals across all age groups in price negotiations with an LLM. We explore how people interact with an LLM, investigating differences in negotiation outcomes and strategies. Furthermore, we highlight shortcomings of LLMs with respect to their reasoning capabilities and, in turn, susceptiveness to prompt hacking, which intends to manipulate the LLM to make agreements that are against its instructions or beyond any rationality. We also show that the negotiated prices humans manage to achieve span a broad range, which points to a literacy gap in effectively interacting with LLMs.
♻ ☆ Causal Representation Learning with Generative Artificial Intelligence: Application to Texts as Treatments
In this paper, we demonstrate how to enhance the validity of causal inference with unstructured high-dimensional treatments like texts, by leveraging the power of generative Artificial Intelligence. Specifically, we propose to use a deep generative model such as large language models (LLMs) to efficiently generate treatments and use their internal representation for subsequent causal effect estimation. We show that the knowledge of this true internal representation helps disentangle the treatment features of interest, such as specific sentiments and certain topics, from other possibly unknown confounding features. Unlike the existing methods, our proposed approach eliminates the need to learn causal representation from the data and hence produces more accurate and efficient estimates. We formally establish the conditions required for the nonparametric identification of the average treatment effect, propose an estimation strategy that avoids the violation of the overlap assumption, and derive the asymptotic properties of the proposed estimator through the application of double machine learning. Finally, using an instrumental variables approach, we extend the proposed methodology to the settings, in which the treatment feature is based on human perception rather than is assumed to be fixed given the treatment object. The proposed methodology is also applicable to text reuse where an LLM is used to regenerate the existing texts. We conduct simulation and empirical studies, using the generated text data from an open-source LLM, Llama 3, to illustrate the advantages of our estimator over the state-of-the-art causal representation learning algorithms.
♻ ☆ Robustness and Confounders in the Demographic Alignment of LLMs with Human Perceptions of Offensiveness
Large language models (LLMs) are known to exhibit demographic biases, yet few studies systematically evaluate these biases across multiple datasets or account for confounding factors. In this work, we examine LLM alignment with human annotations in five offensive language datasets, comprising approximately 220K annotations. Our findings reveal that while demographic traits, particularly race, influence alignment, these effects are inconsistent across datasets and often entangled with other factors. Confounders -- such as document difficulty, annotator sensitivity, and within-group agreement -- account for more variation in alignment patterns than demographic traits alone. Specifically, alignment increases with higher annotator sensitivity and group agreement, while greater document difficulty corresponds to reduced alignment. Our results underscore the importance of multi-dataset analyses and confounder-aware methodologies in developing robust measures of demographic bias in LLMs.
♻ ☆ Controlling Language and Diffusion Models by Transporting Activations
The increasing capabilities of large generative models and their ever more widespread deployment have raised concerns about their reliability, safety, and potential misuse. To address these issues, recent works have proposed to control model generation by steering model activations in order to effectively induce or prevent the emergence of concepts or behaviors in the generated output. In this paper we introduce Activation Transport (AcT), a general framework to steer activations guided by optimal transport theory that generalizes many previous activation-steering works. AcT is modality-agnostic and provides fine-grained control over the model behavior with negligible computational overhead, while minimally impacting model abilities. We experimentally show the effectiveness and versatility of our approach by addressing key challenges in large language models (LLMs) and text-to-image diffusion models (T2Is). For LLMs, we show that AcT can effectively mitigate toxicity, induce arbitrary concepts, and increase their truthfulness. In T2Is, we show how AcT enables fine-grained style control and concept negation.
♻ ☆ Semantically-Prompted Language Models Improve Visual Descriptions NAACL 2024
Language-vision models like CLIP have made significant strides in vision tasks, such as zero-shot image classification (ZSIC). However, generating specific and expressive visual descriptions remains challenging; descriptions produced by current methods are often ambiguous and lacking in granularity. To tackle these issues, we propose V-GLOSS: Visual Glosses, a novel method built upon two key ideas. The first is Semantic Prompting, which conditions a language model on structured semantic knowledge. The second is a new contrastive algorithm that elicits fine-grained distinctions between similar concepts. With both ideas, we demonstrate that V-GLOSS improves visual descriptions and achieves strong results in the zero-shot setting on general and fine-grained image-classification datasets, including ImageNet, STL-10, FGVC Aircraft, and Flowers 102. Moreover, these descriptive capabilities contribute to enhancing image-generation performance. Finally, we introduce a quality-tested silver dataset with descriptions generated with V-GLOSS for all ImageNet classes.
comment: Published at NAACL 2024. See https://aclanthology.org/2024.findings-naacl.267/
♻ ☆ Natural Language Processing RELIES on Linguistics
Large Language Models (LLMs) have become capable of generating highly fluent text in certain languages, without modules specially designed to capture grammar or semantic coherence. What does this mean for the future of linguistic expertise in NLP? We highlight several aspects in which NLP (still) relies on linguistics, or where linguistic thinking can illuminate new directions. We argue our case around the acronym RELIES that encapsulates six major facets where linguistics contributes to NLP: Resources, Evaluation, Low-resource settings, Interpretability, Explanation, and the Study of language. This list is not exhaustive, nor is linguistics the main point of reference for every effort under these themes; but at a macro level, these facets highlight the enduring importance of studying machine systems vis-\`a-vis systems of human language.
♻ ☆ Utilizing Large Language Models to Synthesize Product Desirability Datasets
This research explores the application of large language models (LLMs) to generate synthetic datasets for Product Desirability Toolkit (PDT) testing, a key component in evaluating user sentiment and product experience. Utilizing gpt-4o-mini, a cost-effective alternative to larger commercial LLMs, three methods, Word+Review, Review+Word, and Supply-Word, were each used to synthesize 1000 product reviews. The generated datasets were assessed for sentiment alignment, textual diversity, and data generation cost. Results demonstrated high sentiment alignment across all methods, with Pearson correlations ranging from 0.93 to 0.97. Supply-Word exhibited the highest diversity and coverage of PDT terms, although with increased generation costs. Despite minor biases toward positive sentiments, in situations with limited test data, LLM-generated synthetic data offers significant advantages, including scalability, cost savings, and flexibility in dataset production.
comment: 9 pages, 2 figures, 6 tables, updated author list
♻ ☆ High-performance automated abstract screening with large language model ensembles
Large language models (LLMs) excel in tasks requiring processing and interpretation of input text. Abstract screening is a labour-intensive component of systematic review involving repetitive application of inclusion and exclusion criteria on a large volume of studies identified by a literature search. Here, LLMs (GPT-3.5 Turbo, GPT-4 Turbo, GPT-4o, Llama 3 70B, Gemini 1.5 Pro, and Claude Sonnet 3.5) were trialled on systematic reviews in a full issue of the Cochrane Library to evaluate their accuracy in zero-shot binary classification for abstract screening. Trials over a subset of 800 records identified optimal prompting strategies and demonstrated superior performance of LLMs to human researchers in terms of sensitivity (LLM-max = 1.000, human-max = 0.775), precision (LLM-max = 0.927, human-max = 0.911), and balanced accuracy (LLM-max = 0.904, human-max = 0.865). The best performing LLM-prompt combinations were trialled across every replicated search result (n = 119,691), and exhibited consistent sensitivity (range 0.756-1.000) but diminished precision (range 0.004-0.096). 66 LLM-human and LLM-LLM ensembles exhibited perfect sensitivity with a maximal precision of 0.458, with less observed performance drop in larger trials. Significant variation in performance was observed between reviews, highlighting the importance of domain-specific validation before deployment. LLMs may reduce the human labour cost of systematic review with maintained or improved accuracy and sensitivity. Systematic review is the foundation of evidence synthesis across academic disciplines, including evidence-based medicine, and LLMs may increase the efficiency and quality of this mode of research.
comment: RS and AJT are joint-first authors
♻ ☆ Automatic Design of Semantic Similarity Ensembles Using Grammatical Evolution
Semantic similarity measures are widely used in natural language processing to catalyze various computer-related tasks. However, no single semantic similarity measure is the most appropriate for all tasks, and researchers often use ensemble strategies to ensure performance. This research work proposes a method for automatically designing semantic similarity ensembles. In fact, our proposed method uses grammatical evolution, for the first time, to automatically select and aggregate measures from a pool of candidates to create an ensemble that maximizes correlation to human judgment. The method is evaluated on several benchmark datasets and compared to state-of-the-art ensembles, showing that it can significantly improve similarity assessment accuracy and outperform existing methods in some cases. As a result, our research demonstrates the potential of using grammatical evolution to automatically compare text and prove the benefits of using ensembles for semantic similarity tasks. The source code that illustrates our approach can be downloaded from https://github.com/jorge-martinez-gil/sesige.
comment: 30 pages
♻ ☆ Leveraging Large Language Models to Measure Gender Representation Bias in Gendered Language Corpora
Gender bias in text corpora that are used for a variety of natural language processing (NLP) tasks, such as for training large language models (LLMs), can lead to the perpetuation and amplification of societal inequalities. This phenomenon is particularly pronounced in gendered languages like Spanish or French, where grammatical structures inherently encode gender, making the bias analysis more challenging. A first step in quantifying gender bias in text entails computing biases in gender representation, i.e., differences in the prevalence of words referring to males vs. females. Existing methods to measure gender representation bias in text corpora have mainly been proposed for English and do not generalize to gendered languages due to the intrinsic linguistic differences between English and gendered languages. This paper introduces a novel methodology that leverages the contextual understanding capabilities of LLMs to quantitatively measure gender representation bias in Spanish corpora. By utilizing LLMs to identify and classify gendered nouns and pronouns in relation to their reference to human entities, our approach provides a robust analysis of gender representation bias in gendered languages. We empirically validate our method on four widely-used benchmark datasets, uncovering significant gender prevalence disparities with a male-to-female ratio ranging from 4:1 to 6:1. These findings demonstrate the value of our methodology for bias quantification in gendered language corpora and suggest its application in NLP, contributing to the development of more equitable language technologies.
♻ ☆ GTA: A Benchmark for General Tool Agents
Significant focus has been placed on integrating large language models (LLMs) with various tools in developing general-purpose agents. This poses a challenge to LLMs' tool-use capabilities. However, there are evident gaps between existing tool-use evaluations and real-world scenarios. Current evaluations often use AI-generated queries, single-step tasks, dummy tools, and text-only interactions, failing to reveal the agents' real-world problem-solving abilities effectively. To address this, we propose GTA, a benchmark for General Tool Agents, featuring three main aspects: (i) Real user queries: human-written queries with simple real-world objectives but implicit tool-use, requiring the LLM to reason the suitable tools and plan the solution steps. (ii) Real deployed tools: an evaluation platform equipped with tools across perception, operation, logic, and creativity categories to evaluate the agents' actual task execution performance. (iii) Real multimodal inputs: authentic image files, such as spatial scenes, web page screenshots, tables, code snippets, and printed/handwritten materials, used as the query contexts to align with real-world scenarios closely. We design 229 real-world tasks and executable tool chains to evaluate mainstream LLMs. Our findings show that real-world user queries are challenging for existing LLMs, with GPT-4 completing less than 50% of the tasks and most LLMs achieving below 25%. This evaluation reveals the bottlenecks in the tool-use capabilities of current LLMs in real-world scenarios, which provides future direction for advancing general-purpose tool agents. The code and dataset are available at https://github.com/open-compass/GTA.
comment: Github repo: https://github.com/open-compass/GTA
♻ ☆ Bone: Block-Affine Adaptation of Large Language Models
Low-Rank Adaptation (LoRA) has achieved remarkable training results by freezing the original weights and training only low-rank matrices, establishing itself as the predominant fine-tuning method for LLMs. In pursuit of performance closer to full-parameter training, a series of LoRA variants have emerged, such as LoRA+, PISSA, Olora, and LoRA-GA. This paper introduces a novel PEFT technique distinct from LoRA, called Block-Affine Adaptation (Bone). By dividing the original weights into multiple subspaces that share a single matrix for weight updates, Bone simplifies the process by requiring the trainable matrix to be initialized to zero, eliminating the need for complex initialization as in some LoRA variants. Compared to LoRA, Bone significantly reduces memory usage and achieves faster computation. Evaluation of both NLU and NLG tasks demonstrates that Bone substantially outperforms LoRA and its variants. Inspired by Pissa, we further proposed the ``Weight Guide'' theory to better utilize the information from the original weights. By integrating ``Weight Guide'' with Bone, we developed a new structure called Block-Affine Transformation (Bat), and ablation experiments confirmed the effectiveness of ``Weight Guide''.
♻ ☆ From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning
The outstanding capabilities of large language models (LLMs) render them a crucial component in various autonomous agent systems. While traditional methods depend on the inherent knowledge of LLMs without fine-tuning, more recent approaches have shifted toward the reinforcement learning strategy to further enhance agents' ability to solve complex interactive tasks with environments and tools. However, previous approaches are constrained by the sparse reward issue, where existing datasets solely provide a final scalar reward for each multi-step reasoning chain, potentially leading to ineffectiveness and inefficiency in policy learning. In this paper, we introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process. Inheriting the spirit of novice-to-expert theory, we first compare the actions of the expert and the agent to automatically generate intermediate rewards for fine-grained optimization. Additionally, we propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment. Further theoretical analysis demonstrates that the action distribution of the agent can converge toward the expert action distribution over multiple training cycles. Experimental results across various datasets indicate that StepAgent outperforms existing baseline methods.
♻ ☆ Delving into the Reversal Curse: How Far Can Large Language Models Generalize? NeurIPS 2024
While large language models (LLMs) showcase unprecedented capabilities, they also exhibit certain inherent limitations when facing seemingly trivial tasks. A prime example is the recently debated "reversal curse", which surfaces when models, having been trained on the fact "A is B", struggle to generalize this knowledge to infer that "B is A". In this paper, we examine the manifestation of the reversal curse across various tasks and delve into both the generalization abilities and the problem-solving mechanisms of LLMs. This investigation leads to a series of significant insights: (1) LLMs are able to generalize to "B is A" when both A and B are presented in the context as in the case of a multiple-choice question. (2) This generalization ability is highly correlated to the structure of the fact "A is B" in the training documents. For example, this generalization only applies to biographies structured in "[Name] is [Description]" but not to "[Description] is [Name]". (3) We propose and verify the hypothesis that LLMs possess an inherent bias in fact recalling during knowledge application, which explains and underscores the importance of the document structure to successful learning. (4) The negative impact of this bias on the downstream performance of LLMs can hardly be mitigated through training alone. These findings offer a novel perspective on interpreting LLMs' generalization through their intrinsic mechanisms and provide insights for developing more effective learning methods. Our code and data are available at https://github.com/alibaba/thinking_bias.git.
comment: Accepted at NeurIPS 2024. Our code and data are available at https://github.com/alibaba/thinking_bias.git
♻ ☆ Xmodel-1.5: An 1B-scale Multilingual LLM
We introduce Xmodel-1.5, a 1-billion-parameter multilingual large language model pretrained on 2 trillion tokens, designed for balanced performance and scalability. Unlike most large models that use the BPE tokenizer, Xmodel-1.5 employs a custom unigram tokenizer with 65,280 tokens, optimizing both efficiency and accuracy. The model delivers competitive results across multiple languages, including Thai, Arabic, French, Chinese, and English, outperforming Alibaba's PolyLM-1.7B on respective evaluation datasets. Xmodel-1.5 excels in benchmarks like mMMLU and PIQA, and achieves state-of-the-art results in Thai. To support low-resource language research, we release Xdata_Thai, a Thai-specific evaluation dataset featuring unique linguistic challenges such as gendered particles and idioms. While the model demonstrates strong performance, there is still room for improvement in handling culturally specific nuances. We hope this work contributes to advancements in multilingual AI research. Models and code are publicly available on GitHub at https://github.com/XiaoduoAILab/XmodelLM-1.5
♻ ☆ Self-Training Meets Consistency: Improving LLMs' Reasoning With Consistency-Driven Rationale Evaluation
Self-training approach for large language models (LLMs) improves reasoning abilities by training the models on their self-generated rationales. Previous approaches have labeled rationales that produce correct answers for a given question as appropriate for training. However, a single measure risks misjudging rationale quality, leading the models to learn flawed reasoning patterns. To address this issue, we propose CREST (Consistency-driven Rationale Evaluation for Self-Training), a self-training framework that further evaluates each rationale through follow-up questions and leverages this evaluation to guide its training. Specifically, we introduce two methods: (1) filtering out rationales that frequently result in incorrect answers on follow-up questions and (2) preference learning based on mixed preferences from rationale evaluation results of both original and follow-up questions. Experiments on three question-answering datasets using open LLMs show that CREST not only improves the logical robustness and correctness of rationales but also improves reasoning abilities compared to previous self-training approaches.
comment: Under review
♻ ☆ SlimLM: An Efficient Small Language Model for On-Device Document Assistance
While small language models (SLMs) show promises for mobile deployment, their real-world performance and applications on smartphones remains underexplored. We present SlimLM, a series of SLMs optimized for document assistance tasks on mobile devices. Through extensive experiments on a Samsung Galaxy S24, we identify the optimal trade-offs between model size (ranging from 125M to 7B parameters), context length, and inference time for efficient on-device processing. SlimLM is pre-trained on SlimPajama-627B and fine-tuned on DocAssist, our constructed dataset for summarization, question answering and suggestion tasks. Our smallest model demonstrates efficient performance on S24, while larger variants offer enhanced capabilities within mobile constraints. We evaluate SlimLM against existing SLMs, showing comparable or superior performance and offering a benchmark for future research in on-device language models. We also provide an Android application, offering practical insights into SLM deployment. Our findings provide valuable insights and illuminate the capabilities of running advanced language models on high-end smartphones, potentially reducing server costs and enhancing privacy through on-device processing.
♻ ☆ Prompt Framework for Role-playing: Generation and Evaluation
Large language models (LLMs) exhibit impressive proficiency in natural language generation, understanding user instructions, and emulating human-like language use, which has led to significant interest in their application to role-playing scenarios. However, the manual collection of role-specific script data and the evaluation of model performance are resource-intensive processes. This project introduces a prompt-based framework designed to leverage GPT's capabilities for the generation of role-playing dialogue datasets and the evaluation of role-playing performance. To validate the effectiveness of the GPT-based generation and evaluation, we further incorporate the recall-oriented Rouge-L metric, providing an additional quantitative measure of performance.
♻ ☆ One-Shot Safety Alignment for Large Language Models via Optimal Dualization
The growing safety concerns surrounding large language models raise an urgent need to align them with diverse human preferences to simultaneously enhance their helpfulness and safety. A promising approach is to enforce safety constraints through Reinforcement Learning from Human Feedback (RLHF). For such constrained RLHF, typical Lagrangian-based primal-dual policy optimization methods are computationally expensive and often unstable. This paper presents a perspective of dualization that reduces constrained alignment to an equivalent unconstrained alignment problem. We do so by pre-optimizing a smooth and convex dual function that has a closed form. This shortcut eliminates the need for cumbersome primal-dual policy iterations, greatly reducing the computational burden and improving training stability. Our strategy leads to two practical algorithms in model-based and preference-based settings (MoCAN and PeCAN, respectively). A broad range of experiments demonstrate the effectiveness and merits of our algorithms.
comment: 32 pages, 6 figures, 8 tables
♻ ☆ Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
This paper presents a systematic overview of parameter-efficient fine-tuning methods, covering over 50 papers published between early 2019 and mid-2024. These methods aim to address the challenges of fine-tuning large language models by training only a small subset of parameters. We provide a taxonomy that covers a broad range of methods and present a detailed method comparison with a specific focus on real-life efficiency in fine-tuning multibillion-scale language models. We also conduct an extensive head-to-head experimental comparison of 15 diverse PEFT methods, evaluating their performance and efficiency on models up to 11B parameters. Our findings reveal that methods previously shown to surpass a strong LoRA baseline face difficulties in resource-constrained settings, where hyperparameter optimization is limited and the network is fine-tuned only for a few epochs. Finally, we provide a set of practical recommendations for using PEFT methods and outline potential future research directions.
♻ ☆ SemiKong: Curating, Training, and Evaluating A Semiconductor Industry-Specific Large Language Model
Large Language Models (LLMs) have demonstrated the potential to address some issues within the semiconductor industry. However, they are often general-purpose models that lack the specialized knowledge needed to tackle the unique challenges of this sector, such as the intricate physics and chemistry of semiconductor devices and processes. SemiKong, the first industry-specific LLM for the semiconductor domain, provides a foundation that can be used to develop tailored proprietary models. With SemiKong 1.0, we aim to develop a foundational model capable of understanding etching problems at an expert level. Our key contributions include (a) curating a comprehensive corpus of semiconductor-related texts, (b) creating a foundational model with in-depth semiconductor knowledge, and (c) introducing a framework for integrating expert knowledge, thereby advancing the evaluation process of domain-specific AI models. Through fine-tuning a pre-trained LLM using our curated dataset, we have shown that SemiKong outperforms larger, general-purpose LLMs in various semiconductor manufacturing and design tasks. Our extensive experiments underscore the importance of developing domain-specific LLMs as a foundation for company- or tool-specific proprietary models, paving the way for further research and applications in the semiconductor domain. Code and dataset will be available at https://github.com/aitomatic/semikong
comment: On-going work
♻ ☆ The Re-Label Method For Data-Centric Machine Learning
In industry deep learning application, our manually labeled data has a certain number of noisy data. To solve this problem and achieve more than 90 score in dev dataset, we present a simple method to find the noisy data and re-label the noisy data by human, given the model predictions as references in human labeling. In this paper, we illustrate our idea for a broad set of deep learning tasks, includes classification, sequence tagging, object detection, sequence generation, click-through rate prediction. The dev dataset evaluation results and human evaluation results verify our idea.
♻ ☆ A Careful Examination of Large Language Model Performance on Grade School Arithmetic NeurIPS
Large language models (LLMs) have achieved impressive success on many benchmarks for mathematical reasoning. However, there is growing concern that some of this performance actually reflects dataset contamination, where data closely resembling benchmark questions leaks into the training data, instead of true reasoning ability. To investigate this claim rigorously, we commission Grade School Math 1000 (GSM1k). GSM1k is designed to mirror the style and complexity of the established GSM8k benchmark, the gold standard for measuring elementary mathematical reasoning. We ensure that the two benchmarks are comparable across important metrics such as human solve rates, number of steps in solution, answer magnitude, and more. When evaluating leading open- and closed-source LLMs on GSM1k, we observe accuracy drops of up to 8%, with several families of models showing evidence of systematic overfitting across almost all model sizes. Further analysis suggests a positive relationship (Spearman's r^2 = 0.36) between a model's probability of generating an example from GSM8k and its performance gap between GSM8k and GSM1k, suggesting that some models may have partially memorized GSM8k. Nevertheless, many models, especially those on the frontier, show minimal signs of overfitting, and all models broadly demonstrate generalization to novel math problems guaranteed to not be in their training data.
comment: 2024 NeurIPS Camera Ready (Datasets and Benchmarks Track)
♻ ☆ CaT-BENCH: Benchmarking Language Model Understanding of Causal and Temporal Dependencies in Plans
Understanding the abilities of LLMs to reason about natural language plans, such as instructional text and recipes, is critical to reliably using them in decision-making systems. A fundamental aspect of plans is the temporal order in which their steps needs to be executed, which reflects the underlying causal dependencies between them. We introduce CaT-Bench, a benchmark of Step Order Prediction questions, which test whether a step must necessarily occur before or after another in cooking recipe plans. We use this to evaluate how well frontier LLMs understand causal and temporal dependencies. We find that SOTA LLMs are underwhelming (best zero-shot is only 0.59 in F1), and are biased towards predicting dependence more often, perhaps relying on temporal order of steps as a heuristic. While prompting for explanations and using few-shot examples improve performance, the best F1 result is only 0.73. Further, human evaluation of explanations along with answer correctness show that, on average, humans do not agree with model reasoning. Surprisingly, we also find that explaining after answering leads to better performance than normal chain-of-thought prompting, and LLM answers are not consistent across questions about the same step pairs. Overall, results show that LLMs' ability to detect dependence between steps has significant room for improvement.
♻ ☆ MultiADE: A Multi-domain Benchmark for Adverse Drug Event Extraction
Active adverse event surveillance monitors Adverse Drug Events (ADE) from different data sources, such as electronic health records, medical literature, social media and search engine logs. Over the years, many datasets have been created, and shared tasks have been organised to facilitate active adverse event surveillance. However, most - if not all - datasets or shared tasks focus on extracting ADEs from a particular type of text. Domain generalisation - the ability of a machine learning model to perform well on new, unseen domains (text types) - is under-explored. Given the rapid advancements in natural language processing, one unanswered question is how far we are from having a single ADE extraction model that is effective on various types of text, such as scientific literature and social media posts. We contribute to answering this question by building a multi-domain benchmark for adverse drug event extraction, which we named MultiADE. The new benchmark comprises several existing datasets sampled from different text types and our newly created dataset - CADECv2, which is an extension of CADEC, covering online posts regarding more diverse drugs than CADEC. Our new dataset is carefully annotated by human annotators following detailed annotation guidelines. Our benchmark results show that the generalisation of the trained models is far from perfect, making it infeasible to be deployed to process different types of text. In addition, although intermediate transfer learning is a promising approach to utilising existing resources, further investigation is needed on methods of domain adaptation, particularly cost-effective methods to select useful training instances. The newly created CADECv2 and the scripts for building the benchmark are publicly available at CSIRO's Data Portal.
comment: Journal of Biomedical Informatics
♻ ☆ Unboxing Engagement in YouTube Influencer Videos: An Attention-Based Approach
Influencer marketing videos have surged in popularity, yet significant gaps remain in understanding the relationships between video features and engagement. This challenge is intensified by the complexities of interpreting unstructured data. While deep learning models effectively leverage raw unstructured data to predict engagement, they often function as black boxes with limited interpretability, particularly when human validation is hindered by the absence of a known ground truth. To address this issue, we develop an 'interpretable deep learning framework' that provides insights into the relationships captured by the models. Inspired by visual attention in print advertising, our interpretation approach uses measures of model attention to video features, eliminating spurious associations through a two-step process and identifying a subset of relationships for formal causal testing. This approach is versatile, as it applies across well-known attention mechanisms - additive attention, scaled dot-product attention, and gradient-based attention - when analyzing text, audio, or video image data. We apply our framework to YouTube influencer videos, linking video features to measures of shallow and deep engagement developed based on the dual-system framework of thinking. Our findings guide influencers in prioritizing the design of video features associated with deep engagement sentiment.
comment: 47 pages, Online Appendix
♻ ☆ Scaling up the Evaluation of Collaborative Problem Solving: Promises and Challenges of Coding Chat Data with ChatGPT
Collaborative problem solving (CPS) is widely recognized as a critical 21st century skill. Efficiently coding communication data is a big challenge in scaling up research on assessing CPS. This paper reports the findings on using ChatGPT to directly code CPS chat data by benchmarking performance across multiple datasets and coding frameworks. We found that ChatGPT-based coding outperformed human coding in tasks where the discussions were characterized by colloquial languages but fell short in tasks where the discussions dealt with specialized scientific terminology and contexts. The findings offer practical guidelines for researchers to develop strategies for efficient and scalable analysis of communication data from CPS tasks.
comment: 21 pages, 3 figures, 5 tables. Initially report in the edArXiv:xw6kz
♻ ☆ Test Security in Remote Testing Age: Perspectives from Process Data Analytics and AI
The COVID-19 pandemic has accelerated the implementation and acceptance of remotely proctored high-stake assessments. While the flexible administration of the tests brings forth many values, it raises test security-related concerns. Meanwhile, artificial intelligence (AI) has witnessed tremendous advances in the last five years. Many AI tools (such as the very recent ChatGPT) can generate high-quality responses to test items. These new developments require test security research beyond the statistical analysis of scores and response time. Data analytics and AI methods based on clickstream process data can get us deeper insight into the test-taking process and hold great promise for securing remotely administered high-stakes tests. This chapter uses real-world examples to show that this is indeed the case.
comment: 23 pages, 8 figures
Computer Vision and Pattern Recognition 143
DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving
Recently, the diffusion model has emerged as a powerful generative technique for robotic policy learning, capable of modeling multi-mode action distributions. Leveraging its capability for end-to-end autonomous driving is a promising direction. However, the numerous denoising steps in the robotic diffusion policy and the more dynamic, open-world nature of traffic scenes pose substantial challenges for generating diverse driving actions at a real-time speed. To address these challenges, we propose a novel truncated diffusion policy that incorporates prior multi-mode anchors and truncates the diffusion schedule, enabling the model to learn denoising from anchored Gaussian distribution to the multi-mode driving action distribution. Additionally, we design an efficient cascade diffusion decoder for enhanced interaction with conditional scene context. The proposed model, DiffusionDrive, demonstrates 10$\times$ reduction in denoising steps compared to vanilla diffusion policy, delivering superior diversity and quality in just 2 steps. On the planning-oriented NAVSIM dataset, with the aligned ResNet-34 backbone, DiffusionDrive achieves 88.1 PDMS without bells and whistles, setting a new record, while running at a real-time speed of 45 FPS on an NVIDIA 4090. Qualitative results on challenging scenarios further confirm that DiffusionDrive can robustly generate diverse plausible driving actions. Code and model will be available at https://github.com/hustvl/DiffusionDrive.
comment: Work in progress. Code & demo & model will be available at https://github.com/hustvl/DiffusionDrive
Material Anything: Generating Materials for Any 3D Object via Diffusion
We present Material Anything, a fully-automated, unified diffusion framework designed to generate physically-based materials for 3D objects. Unlike existing methods that rely on complex pipelines or case-specific optimizations, Material Anything offers a robust, end-to-end solution adaptable to objects under diverse lighting conditions. Our approach leverages a pre-trained image diffusion model, enhanced with a triple-head architecture and rendering loss to improve stability and material quality. Additionally, we introduce confidence masks as a dynamic switcher within the diffusion model, enabling it to effectively handle both textured and texture-less objects across varying lighting conditions. By employing a progressive material generation strategy guided by these confidence masks, along with a UV-space material refiner, our method ensures consistent, UV-ready material outputs. Extensive experiments demonstrate our approach outperforms existing methods across a wide range of object categories and lighting conditions.
comment: Project page: https://xhuangcv.github.io/MaterialAnything/
☆ WildLMa: Long Horizon Loco-Manipulation in the Wild
`In-the-wild' mobile manipulation aims to deploy robots in diverse real-world environments, which requires the robot to (1) have skills that generalize across object configurations; (2) be capable of long-horizon task execution in diverse environments; and (3) perform complex manipulation beyond pick-and-place. Quadruped robots with manipulators hold promise for extending the workspace and enabling robust locomotion, but existing results do not investigate such a capability. This paper proposes WildLMa with three components to address these issues: (1) adaptation of learned low-level controller for VR-enabled whole-body teleoperation and traversability; (2) WildLMa-Skill -- a library of generalizable visuomotor skills acquired via imitation learning or heuristics and (3) WildLMa-Planner -- an interface of learned skills that allow LLM planners to coordinate skills for long-horizon tasks. We demonstrate the importance of high-quality training data by achieving higher grasping success rate over existing RL baselines using only tens of demonstrations. WildLMa exploits CLIP for language-conditioned imitation learning that empirically generalizes to objects unseen in training demonstrations. Besides extensive quantitative evaluation, we qualitatively demonstrate practical robot applications, such as cleaning up trash in university hallways or outdoor terrains, operating articulated objects, and rearranging items on a bookshelf.
comment: Website: https://wildlma.github.io/
☆ Health AI Developer Foundations
Robust medical Machine Learning (ML) models have the potential to revolutionize healthcare by accelerating clinical research, improving workflows and outcomes, and producing novel insights or capabilities. Developing such ML models from scratch is cost prohibitive and requires substantial compute, data, and time (e.g., expert labeling). To address these challenges, we introduce Health AI Developer Foundations (HAI-DEF), a suite of pre-trained, domain-specific foundation models, tools, and recipes to accelerate building ML for health applications. The models cover various modalities and domains, including radiology (X-rays and computed tomography), histopathology, dermatological imaging, and audio. These models provide domain specific embeddings that facilitate AI development with less labeled data, shorter training times, and reduced computational costs compared to traditional approaches. In addition, we utilize a common interface and style across these models, and prioritize usability to enable developers to integrate HAI-DEF efficiently. We present model evaluations across various tasks and conclude with a discussion of their application and evaluation, covering the importance of ensuring efficacy, fairness, and equity. Finally, while HAI-DEF and specifically the foundation models lower the barrier to entry for ML in healthcare, we emphasize the importance of validation with problem- and population-specific data for each desired usage setting. This technical report will be updated over time as more modalities and features are added.
comment: 16 pages, 8 figures
☆ ReXrank: A Public Leaderboard for AI-Powered Radiology Report Generation
AI-driven models have demonstrated significant potential in automating radiology report generation for chest X-rays. However, there is no standardized benchmark for objectively evaluating their performance. To address this, we present ReXrank, https://rexrank.ai, a public leaderboard and challenge for assessing AI-powered radiology report generation. Our framework incorporates ReXGradient, the largest test dataset consisting of 10,000 studies, and three public datasets (MIMIC-CXR, IU-Xray, CheXpert Plus) for report generation assessment. ReXrank employs 8 evaluation metrics and separately assesses models capable of generating only findings sections and those providing both findings and impressions sections. By providing this standardized evaluation framework, ReXrank enables meaningful comparisons of model performance and offers crucial insights into their robustness across diverse clinical settings. Beyond its current focus on chest X-rays, ReXrank's framework sets the stage for comprehensive evaluation of automated reporting across the full spectrum of medical imaging.
☆ VideoRepair: Improving Text-to-Video Generation via Misalignment Evaluation and Localized Refinement
Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of four stages: In (1) video evaluation, we detect misalignments by generating fine-grained evaluation questions and answering those questions with MLLM. In (2) refinement planning, we identify accurately generated objects and then create localized prompts to refine other areas in the video. Next, in (3) region decomposition, we segment the correctly generated area using a combined grounding module. We regenerate the video by adjusting the misaligned regions while preserving the correct regions in (4) localized refinement. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.
comment: Project page: https://video-repair.github.io
☆ Efficient Pruning of Text-to-Image Models: Insights from Pruning Stable Diffusion
As text-to-image models grow increasingly powerful and complex, their burgeoning size presents a significant obstacle to widespread adoption, especially on resource-constrained devices. This paper presents a pioneering study on post-training pruning of Stable Diffusion 2, addressing the critical need for model compression in text-to-image domain. Our study tackles the pruning techniques for the previously unexplored multi-modal generation models, and particularly examines the pruning impact on the textual component and the image generation component separately. We conduct a comprehensive comparison on pruning the model or the single component of the model in various sparsities. Our results yield previously undocumented findings. For example, contrary to established trends in language model pruning, we discover that simple magnitude pruning outperforms more advanced techniques in text-to-image context. Furthermore, our results show that Stable Diffusion 2 can be pruned to 38.5% sparsity with minimal quality loss, achieving a significant reduction in model size. We propose an optimal pruning configuration that prunes the text encoder to 47.5% and the diffusion generator to 35%. This configuration maintains image generation quality while substantially reducing computational requirements. In addition, our work uncovers intriguing questions about information encoding in text-to-image models: we observe that pruning beyond certain thresholds leads to sudden performance drops (unreadable images), suggesting that specific weights encode critical semantics information. This finding opens new avenues for future research in model compression, interoperability, and bias identification in text-to-image models. By providing crucial insights into the pruning behavior of text-to-image models, our study lays the groundwork for developing more efficient and accessible AI-driven image generation systems
☆ A Real-Time DETR Approach to Bangladesh Road Object Detection for Autonomous Vehicles
In the recent years, we have witnessed a paradigm shift in the field of Computer Vision, with the forthcoming of the transformer architecture. Detection Transformers has become a state of the art solution to object detection and is a potential candidate for Road Object Detection in Autonomous Vehicles. Despite the abundance of object detection schemes, real-time DETR models are shown to perform significantly better on inference times, with minimal loss of accuracy and performance. In our work, we used Real-Time DETR (RTDETR) object detection on the BadODD Road Object Detection dataset based in Bangladesh, and performed necessary experimentation and testing. Our results gave a mAP50 score of 0.41518 in the public 60% test set, and 0.28194 in the private 40% test set.
☆ About Time: Advances, Challenges, and Outlooks of Action Understanding
We have witnessed impressive advances in video action understanding. Increased dataset sizes, variability, and computation availability have enabled leaps in performance and task diversification. Current systems can provide coarse- and fine-grained descriptions of video scenes, extract segments corresponding to queries, synthesize unobserved parts of videos, and predict context. This survey comprehensively reviews advances in uni- and multi-modal action understanding across a range of tasks. We focus on prevalent challenges, overview widely adopted datasets, and survey seminal works with an emphasis on recent advances. We broadly distinguish between three temporal scopes: (1) recognition tasks of actions observed in full, (2) prediction tasks for ongoing partially observed actions, and (3) forecasting tasks for subsequent unobserved action. This division allows us to identify specific action modeling and video representation challenges. Finally, we outline future directions to address current shortcomings.
☆ Context-Aware Multimodal Pretraining
Large-scale multimodal representation learning successfully optimizes for zero-shot transfer at test time. Yet the standard pretraining paradigm (contrastive learning on large amounts of image-text data) does not explicitly encourage representations to support few-shot adaptation. In this work, we propose a simple, but carefully designed extension to multimodal pretraining which enables representations to accommodate additional context. Using this objective, we show that vision-language models can be trained to exhibit significantly increased few-shot adaptation: across 21 downstream tasks, we find up to four-fold improvements in test-time sample efficiency, and average few-shot adaptation gains of over 5%, while retaining zero-shot generalization performance across model scales and training durations. In particular, equipped with simple, training-free, metric-based adaptation mechanisms, our representations easily surpass more complex and expensive optimization-based schemes, vastly simplifying generalization to new domains.
☆ OminiControl: Minimal and Universal Control for Diffusion Transformer
In this paper, we introduce OminiControl, a highly versatile and parameter-efficient framework that integrates image conditions into pre-trained Diffusion Transformer (DiT) models. At its core, OminiControl leverages a parameter reuse mechanism, enabling the DiT to encode image conditions using itself as a powerful backbone and process them with its flexible multi-modal attention processors. Unlike existing methods, which rely heavily on additional encoder modules with complex architectures, OminiControl (1) effectively and efficiently incorporates injected image conditions with only ~0.1% additional parameters, and (2) addresses a wide range of image conditioning tasks in a unified manner, including subject-driven generation and spatially-aligned conditions such as edges, depth, and more. Remarkably, these capabilities are achieved by training on images generated by the DiT itself, which is particularly beneficial for subject-driven generation. Extensive evaluations demonstrate that OminiControl outperforms existing UNet-based and DiT-adapted models in both subject-driven and spatially-aligned conditional generation. Additionally, we release our training dataset, Subjects200K, a diverse collection of over 200,000 identity-consistent images, along with an efficient data synthesis pipeline to advance research in subject-consistent generation.
☆ Dimension-independent rates for structured neural density estimation
We show that deep neural networks achieve dimension-independent rates of convergence for learning structured densities such as those arising in image, audio, video, and text applications. More precisely, we demonstrate that neural networks with a simple $L^2$-minimizing loss achieve a rate of $n^{-1/(4+r)}$ in nonparametric density estimation when the underlying density is Markov to a graph whose maximum clique size is at most $r$, and we provide evidence that in the aforementioned applications, this size is typically constant, i.e., $r=O(1)$. We then establish that the optimal rate in $L^1$ is $n^{-1/(2+r)}$ which, compared to the standard nonparametric rate of $n^{-1/(2+d)}$, reveals that the effective dimension of such problems is the size of the largest clique in the Markov random field. These rates are independent of the data's ambient dimension, making them applicable to realistic models of image, sound, video, and text data. Our results provide a novel justification for deep learning's ability to circumvent the curse of dimensionality, demonstrating dimension-independent convergence rates in these contexts.
☆ Instance-Aware Generalized Referring Expression Segmentation
Recent works on Generalized Referring Expression Segmentation (GRES) struggle with handling complex expressions referring to multiple distinct objects. This is because these methods typically employ an end-to-end foreground-background segmentation and lack a mechanism to explicitly differentiate and associate different object instances to the text query. To this end, we propose InstAlign, a method that incorporates object-level reasoning into the segmentation process. Our model leverages both text and image inputs to extract a set of object-level tokens that capture both the semantic information in the input prompt and the objects within the image. By modeling the text-object alignment via instance-level supervision, each token uniquely represents an object segment in the image, while also aligning with relevant semantic information from the text. Extensive experiments on the gRefCOCO and Ref-ZOM benchmarks demonstrate that our method significantly advances state-of-the-art performance, setting a new standard for precise and flexible GRES.
comment: 12 pages, 7 figures
☆ Quantum-enhanced unsupervised image segmentation for medical images analysis
Breast cancer remains the leading cause of cancer-related mortality among women worldwide, necessitating the meticulous examination of mammograms by radiologists to characterize abnormal lesions. This manual process demands high accuracy and is often time-consuming, costly, and error-prone. Automated image segmentation using artificial intelligence offers a promising alternative to streamline this workflow. However, most existing methods are supervised, requiring large, expertly annotated datasets that are not always available, and they experience significant generalization issues. Thus, unsupervised learning models can be leveraged for image segmentation, but they come at a cost of reduced accuracy, or require extensive computational resourcess. In this paper, we propose the first end-to-end quantum-enhanced framework for unsupervised mammography medical images segmentation that balances between performance accuracy and computational requirements. We first introduce a quantum-inspired image representation that serves as an initial approximation of the segmentation mask. The segmentation task is then formulated as a QUBO problem, aiming to maximize the contrast between the background and the tumor region while ensuring a cohesive segmentation mask with minimal connected components. We conduct an extensive evaluation of quantum and quantum-inspired methods for image segmentation, demonstrating that quantum annealing and variational quantum circuits achieve performance comparable to classical optimization techniques. Notably, quantum annealing is shown to be an order of magnitude faster than the classical optimization method in our experiments. Our findings demonstrate that this framework achieves performance comparable to state-of-the-art supervised methods, including UNet-based architectures, offering a viable unsupervised alternative for breast cancer image segmentation.
comment: 16 pages, 7 figures
☆ Leapfrog Latent Consistency Model (LLCM) for Medical Images Generation
The scarcity of accessible medical image data poses a significant obstacle in effectively training deep learning models for medical diagnosis, as hospitals refrain from sharing their data due to privacy concerns. In response, we gathered a diverse dataset named MedImgs, which comprises over 250,127 images spanning 61 disease types and 159 classes of both humans and animals from open-source repositories. We propose a Leapfrog Latent Consistency Model (LLCM) that is distilled from a retrained diffusion model based on the collected MedImgs dataset, which enables our model to generate real-time high-resolution images. We formulate the reverse diffusion process as a probability flow ordinary differential equation (PF-ODE) and solve it in latent space using the Leapfrog algorithm. This formulation enables rapid sampling without necessitating additional iterations. Our model demonstrates state-of-the-art performance in generating medical images. Furthermore, our model can be fine-tuned with any custom medical image datasets, facilitating the generation of a vast array of images. Our experimental results outperform those of existing models on unseen dog cardiac X-ray images. Source code is available at https://github.com/lskdsjy/LeapfrogLCM.
comment: Total 16 pages including 5 figures and 36 references
☆ RankByGene: Gene-Guided Histopathology Representation Learning Through Cross-Modal Ranking Consistency
Spatial transcriptomics (ST) provides essential spatial context by mapping gene expression within tissue, enabling detailed study of cellular heterogeneity and tissue organization. However, aligning ST data with histology images poses challenges due to inherent spatial distortions and modality-specific variations. Existing methods largely rely on direct alignment, which often fails to capture complex cross-modal relationships. To address these limitations, we propose a novel framework that aligns gene and image features using a ranking-based alignment loss, preserving relative similarity across modalities and enabling robust multi-scale alignment. To further enhance the alignment's stability, we employ self-supervised knowledge distillation with a teacher-student network architecture, effectively mitigating disruptions from high dimensionality, sparsity, and noise in gene expression data. Extensive experiments on gene expression prediction and survival analysis demonstrate our framework's effectiveness, showing improved alignment and predictive performance over existing methods and establishing a robust tool for gene-guided image representation learning in digital pathology.
comment: 17 pages, 8 figures
☆ Learning to Stabilize Faces
Nowadays, it is possible to scan faces and automatically register them with high quality. However, the resulting face meshes often need further processing: we need to stabilize them to remove unwanted head movement. Stabilization is important for tasks like game development or movie making which require facial expressions to be cleanly separated from rigid head motion. Since manual stabilization is labor-intensive, there have been attempts to automate it. However, previous methods remain impractical: they either still require some manual input, produce imprecise alignments, rely on dubious heuristics and slow optimization, or assume a temporally ordered input. Instead, we present a new learning-based approach that is simple and fully automatic. We treat stabilization as a regression problem: given two face meshes, our network directly predicts the rigid transform between them that brings their skulls into alignment. We generate synthetic training data using a 3D Morphable Model (3DMM), exploiting the fact that 3DMM parameters separate skull motion from facial skin motion. Through extensive experiments we show that our approach outperforms the state-of-the-art both quantitatively and qualitatively on the tasks of stabilizing discrete sets of facial expressions as well as dynamic facial performances. Furthermore, we provide an ablation study detailing the design choices and best practices to help others adopt our approach for their own uses. Supplementary videos can be found on the project webpage syntec-research.github.io/FaceStab.
comment: Eurographics 2024
☆ SPAC-Net: Rethinking Point Cloud Completion with Structural Prior
Point cloud completion aims to infer a complete shape from its partial observation. Many approaches utilize a pure encoderdecoder paradigm in which complete shape can be directly predicted by shape priors learned from partial scans, however, these methods suffer from the loss of details inevitably due to the feature abstraction issues. In this paper, we propose a novel framework,termed SPAC-Net, that aims to rethink the completion task under the guidance of a new structural prior, we call it interface. Specifically, our method first investigates Marginal Detector (MAD) module to localize the interface, defined as the intersection between the known observation and the missing parts. Based on the interface, our method predicts the coarse shape by learning the displacement from the points in interface move to their corresponding position in missing parts. Furthermore, we devise an additional Structure Supplement(SSP) module before the upsampling stage to enhance the structural details of the coarse shape, enabling the upsampling module to focus more on the upsampling task. Extensive experiments have been conducted on several challenging benchmarks, and the results demonstrate that our method outperforms existing state-of-the-art approaches.
☆ Detecting Hallucinations in Virtual Histology with Neural Precursors
Significant biomedical research and clinical care rely on the histopathologic examination of tissue structure using microscopy of stained tissue. Virtual staining (VS) offers a promising alternative with the potential to reduce cost and eliminate the use of toxic reagents. However, the critical challenge of hallucinations limits confidence in its use, necessitating a VS co-pilot to detect these hallucinations. Here, we first formally establish the problem of hallucination detection in VS. Next, we introduce a scalable, post-hoc hallucination detection method that identifies a Neural Hallucination Precursor (NHP) from VS model embeddings for test-time detection. We report extensive validation across diverse and challenging VS settings to demonstrate NHP's effectiveness and robustness. Furthermore, we show that VS models with fewer hallucinations do not necessarily disclose them better, risking a false sense of security when reporting just the former metric. This highlights the need for a reassessment of current VS evaluation practices.
☆ Fantastic Biases (What are They) and Where to Find Them
Deep Learning models tend to learn correlations of patterns on huge datasets. The bigger these systems are, the more complex are the phenomena they can detect, and the more data they need for this. The use of Artificial Intelligence (AI) is becoming increasingly ubiquitous in our society, and its impact is growing everyday. The promises it holds strongly depend on their fair and universal use, such as access to information or education for all. In a world of inequalities, they can help to reach the most disadvantaged areas. However, such a universal systems must be able to represent society, without benefiting some at the expense of others. We must not reproduce the inequalities observed throughout the world, but educate these IAs to go beyond them. We have seen cases where these systems use gender, race, or even class information in ways that are not appropriate for resolving their tasks. Instead of real causal reasoning, they rely on spurious correlations, which is what we usually call a bias. In this paper, we first attempt to define what is a bias in general terms. It helps us to demystify the concept of bias, to understand why we can find them everywhere and why they are sometimes useful. Second, we focus over the notion of what is generally seen as negative bias, the one we want to avoid in machine learning, before presenting a general zoology containing the most common of these biases. We finally conclude by looking at classical methods to detect them, by means of specially crafted datasets of templates and specific algorithms, and also classical methods to mitigate them.
comment: Publication in Spanish in the Journal Bits de Ciencias: https://www.dcc.uchile.cl/media/bits/pdfs/bits26.2-sesgos-fantasticos.pdf
☆ OVO-SLAM: Open-Vocabulary Online Simultaneous Localization and Mapping
This paper presents the first Open-Vocabulary Online 3D semantic SLAM pipeline, that we denote as OVO-SLAM. Our primary contribution is in the pipeline itself, particularly in the mapping thread. Given a set of posed RGB-D frames, we detect and track 3D segments, which we describe using CLIP vectors, calculated through a novel aggregation from the viewpoints where these 3D segments are observed. Notably, our OVO-SLAM pipeline is not only faster but also achieves better segmentation metrics compared to offline approaches in the literature. Along with superior segmentation performance, we show experimental results of our contributions integrated with Gaussian-SLAM, being the first ones demonstrating end-to-end open-vocabulary online 3D reconstructions without relying on ground-truth camera poses or scene geometry.
☆ HeadRouter: A Training-free Image Editing Framework for MM-DiTs by Adaptively Routing Attention Heads
Diffusion Transformers (DiTs) have exhibited robust capabilities in image generation tasks. However, accurate text-guided image editing for multimodal DiTs (MM-DiTs) still poses a significant challenge. Unlike UNet-based structures that could utilize self/cross-attention maps for semantic editing, MM-DiTs inherently lack support for explicit and consistent incorporated text guidance, resulting in semantic misalignment between the edited results and texts. In this study, we disclose the sensitivity of different attention heads to different image semantics within MM-DiTs and introduce HeadRouter, a training-free image editing framework that edits the source image by adaptively routing the text guidance to different attention heads in MM-DiTs. Furthermore, we present a dual-token refinement module to refine text/image token representations for precise semantic guidance and accurate region expression. Experimental results on multiple benchmarks demonstrate HeadRouter's performance in terms of editing fidelity and image quality.
☆ FloAt: Flow Warping of Self-Attention for Clothing Animation Generation
We propose a diffusion model-based approach, FloAtControlNet to generate cinemagraphs composed of animations of human clothing. We focus on human clothing like dresses, skirts and pants. The input to our model is a text prompt depicting the type of clothing and the texture of clothing like leopard, striped, or plain, and a sequence of normal maps that capture the underlying animation that we desire in the output. The backbone of our method is a normal-map conditioned ControlNet which is operated in a training-free regime. The key observation is that the underlying animation is embedded in the flow of the normal maps. We utilize the flow thus obtained to manipulate the self-attention maps of appropriate layers. Specifically, the self-attention maps of a particular layer and frame are recomputed as a linear combination of itself and the self-attention maps of the same layer and the previous frame, warped by the flow on the normal maps of the two frames. We show that manipulating the self-attention maps greatly enhances the quality of the clothing animation, making it look more natural as well as suppressing the background artifacts. Through extensive experiments, we show that the method proposed beats all baselines both qualitatively in terms of visual results and user study. Specifically, our method is able to alleviate the background flickering that exists in other diffusion model-based baselines that we consider. In addition, we show that our method beats all baselines in terms of RMSE and PSNR computed using the input normal map sequences and the normal map sequences obtained from the output RGB frames. Further, we show that well-established evaluation metrics like LPIPS, SSIM, and CLIP scores that are generally for visual quality are not necessarily suitable for capturing the subtle motions in human clothing animations.
☆ DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models
Video large language models (VLLMs) have significantly advanced recently in processing complex video content, yet their inference efficiency remains constrained because of the high computational cost stemming from the thousands of visual tokens generated from the video inputs. We empirically observe that, unlike single image inputs, VLLMs typically attend visual tokens from different frames at different decoding iterations, making a one-shot pruning strategy prone to removing important tokens by mistake. Motivated by this, we present DyCoke, a training-free token compression method to optimize token representation and accelerate VLLMs. DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames, and applies dynamic KV cache reduction to prune spatially redundant tokens selectively. It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step. Extensive experimental results demonstrate that DyCoke can outperform the prior SoTA counterparts, achieving 1.5X inference speedup, 1.4X memory reduction against the baseline VLLM, while still improving the performance, with no training.
comment: 12 pages, 6 figures
☆ Neural 4D Evolution under Large Topological Changes from 2D Images
In the literature, it has been shown that the evolution of the known explicit 3D surface to the target one can be learned from 2D images using the instantaneous flow field, where the known and target 3D surfaces may largely differ in topology. We are interested in capturing 4D shapes whose topology changes largely over time. We encounter that the straightforward extension of the existing 3D-based method to the desired 4D case performs poorly. In this work, we address the challenges in extending 3D neural evolution to 4D under large topological changes by proposing two novel modifications. More precisely, we introduce (i) a new architecture to discretize and encode the deformation and learn the SDF and (ii) a technique to impose the temporal consistency. (iii) Also, we propose a rendering scheme for color prediction based on Gaussian splatting. Furthermore, to facilitate learning directly from 2D images, we propose a learning framework that can disentangle the geometry and appearance from RGB images. This method of disentanglement, while also useful for the 4D evolution problem that we are concentrating on, is also novel and valid for static scenes. Our extensive experiments on various data provide awesome results and, most importantly, open a new approach toward reconstructing challenging scenes with significant topological changes and deformations. Our source code and the dataset are publicly available at https://github.com/insait-institute/N4DE.
comment: 15 pages, 21 figures
☆ MSSF: A 4D Radar and Camera Fusion Framework With Multi-Stage Sampling for 3D Object Detection in Autonomous Driving
As one of the automotive sensors that have emerged in recent years, 4D millimeter-wave radar has a higher resolution than conventional 3D radar and provides precise elevation measurements. But its point clouds are still sparse and noisy, making it challenging to meet the requirements of autonomous driving. Camera, as another commonly used sensor, can capture rich semantic information. As a result, the fusion of 4D radar and camera can provide an affordable and robust perception solution for autonomous driving systems. However, previous radar-camera fusion methods have not yet been thoroughly investigated, resulting in a large performance gap compared to LiDAR-based methods. Specifically, they ignore the feature-blurring problem and do not deeply interact with image semantic information. To this end, we present a simple but effective multi-stage sampling fusion (MSSF) network based on 4D radar and camera. On the one hand, we design a fusion block that can deeply interact point cloud features with image features, and can be applied to commonly used single-modal backbones in a plug-and-play manner. The fusion block encompasses two types, namely, simple feature fusion (SFF) and multiscale deformable feature fusion (MSDFF). The SFF is easy to implement, while the MSDFF has stronger fusion abilities. On the other hand, we propose a semantic-guided head to perform foreground-background segmentation on voxels with voxel feature re-weighting, further alleviating the problem of feature blurring. Extensive experiments on the View-of-Delft (VoD) and TJ4DRadset datasets demonstrate the effectiveness of our MSSF. Notably, compared to state-of-the-art methods, MSSF achieves a 7.0% and 4.0% improvement in 3D mean average precision on the VoD and TJ4DRadSet datasets, respectively. It even surpasses classical LiDAR-based methods on the VoD dataset.
☆ Differentiable Biomechanics for Markerless Motion Capture in Upper Limb Stroke Rehabilitation: A Comparison with Optical Motion Capture
Marker-based Optical Motion Capture (OMC) paired with biomechanical modeling is currently considered the most precise and accurate method for measuring human movement kinematics. However, combining differentiable biomechanical modeling with Markerless Motion Capture (MMC) offers a promising approach to motion capture in clinical settings, requiring only minimal equipment, such as synchronized webcams, and minimal effort for data collection. This study compares key kinematic outcomes from biomechanically modeled MMC and OMC data in 15 stroke patients performing the drinking task, a functional task recommended for assessing upper limb movement quality. We observed a high level of agreement in kinematic trajectories between MMC and OMC, as indicated by high correlations (median r above 0.95 for the majority of kinematic trajectories) and median RMSE values ranging from 2-5 degrees for joint angles, 0.04 m/s for end-effector velocity, and 6 mm for trunk displacement. Trial-to-trial biases between OMC and MMC were consistent within participant sessions, with interquartile ranges of bias around 1-3 degrees for joint angles, 0.01 m/s in end-effector velocity, and approximately 3mm for trunk displacement. Our findings indicate that our MMC for arm tracking is approaching the accuracy of marker-based methods, supporting its potential for use in clinical settings. MMC could provide valuable insights into movement rehabilitation in stroke patients, potentially enhancing the effectiveness of rehabilitation strategies.
comment: 7 pages, 4 figures, 3 tables, RehabWeek 2025 ICORR, first 3 authors are shared-first and last two authors are shared last
Large Multi-modal Models Can Interpret Features in Large Multi-modal Models
Recent advances in Large Multimodal Models (LMMs) lead to significant breakthroughs in both academia and industry. One question that arises is how we, as humans, can understand their internal neural representations. This paper takes an initial step towards addressing this question by presenting a versatile framework to identify and interpret the semantics within LMMs. Specifically, 1) we first apply a Sparse Autoencoder(SAE) to disentangle the representations into human understandable features. 2) We then present an automatic interpretation framework to interpreted the open-semantic features learned in SAE by the LMMs themselves. We employ this framework to analyze the LLaVA-NeXT-8B model using the LLaVA-OV-72B model, demonstrating that these features can effectively steer the model's behavior. Our results contribute to a deeper understanding of why LMMs excel in specific tasks, including EQ tests, and illuminate the nature of their mistakes along with potential strategies for their rectification. These findings offer new insights into the internal mechanisms of LMMs and suggest parallels with the cognitive processes of the human brain.
☆ Exploring Foundation Models Fine-Tuning for Cytology Classification
Cytology slides are essential tools in diagnosing and staging cancer, but their analysis is time-consuming and costly. Foundation models have shown great potential to assist in these tasks. In this paper, we explore how existing foundation models can be applied to cytological classification. More particularly, we focus on low-rank adaptation, a parameter-efficient fine-tuning method suited to few-shot learning. We evaluated five foundation models across four cytological classification datasets. Our results demonstrate that fine-tuning the pre-trained backbones with LoRA significantly improves model performance compared to fine-tuning only the classifier head, achieving state-of-the-art results on both simple and complex classification tasks while requiring fewer data samples.
comment: 5 pages, 2 figures
☆ 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes
Recent advances in radiance field reconstruction, such as 3D Gaussian Splatting (3DGS), have achieved high-quality novel view synthesis and fast rendering by representing scenes with compositions of Gaussian primitives. However, 3D Gaussians present several limitations for scene reconstruction. Accurately capturing hard edges is challenging without significantly increasing the number of Gaussians, creating a large memory footprint. Moreover, they struggle to represent flat surfaces, as they are diffused in space. Without hand-crafted regularizers, they tend to disperse irregularly around the actual surface. To circumvent these issues, we introduce a novel method, named 3D Convex Splatting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multi-view images. Smooth convex shapes offer greater flexibility than Gaussians, allowing for a better representation of 3D scenes with hard edges and dense volumes using fewer primitives. Powered by our efficient CUDA-based rasterizer, 3DCS achieves superior performance over 3DGS on benchmarks such as Mip-NeRF360, Tanks and Temples, and Deep Blending. Specifically, our method attains an improvement of up to 0.81 in PSNR and 0.026 in LPIPS compared to 3DGS while maintaining high rendering speeds and reducing the number of required primitives. Our results highlight the potential of 3D Convex Splatting to become the new standard for high-quality scene reconstruction and novel view synthesis. Project page: www.convexsplatting.com.
comment: 13 pages, 13 figures, 10 tables
☆ SwissADT: An Audio Description Translation System for Swiss Languages
Audio description (AD) is a crucial accessibility service provided to blind persons and persons with visual impairment, designed to convey visual information in acoustic form. Despite recent advancements in multilingual machine translation research, the lack of well-crafted and time-synchronized AD data impedes the development of audio description translation (ADT) systems that address the needs of multilingual countries such as Switzerland. Furthermore, since the majority of ADT systems rely solely on text, uncertainty exists as to whether incorporating visual information from the corresponding video clips can enhance the quality of ADT outputs. In this work, we present SwissADT, the first ADT system implemented for three main Swiss languages and English. By collecting well-crafted AD data augmented with video clips in German, French, Italian, and English, and leveraging the power of Large Language Models (LLMs), we aim to enhance information accessibility for diverse language populations in Switzerland by automatically translating AD scripts to the desired Swiss language. Our extensive experimental ADT results, composed of both automatic and human evaluations of ADT quality, demonstrate the promising capability of SwissADT for the ADT task. We believe that combining human expertise with the generation power of LLMs can further enhance the performance of ADT systems, ultimately benefiting a larger multilingual target population.
☆ LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning, yet full parameter fine-tuning is often computationally prohibitive for large models. Parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters. While LoRA allows for efficient fine-tuning, it requires significant data for adaptation, making Federated Learning (FL) an appealing solution due to its privacy-preserving collaborative framework. However, combining LoRA with FL introduces two key challenges: the \textbf{Server-Side LoRA Aggregation Bias}, where server-side averaging of LoRA matrices diverges from the ideal global update, and the \textbf{Client-Side LoRA Initialization Drift}, emphasizing the need for consistent initialization across rounds. Existing approaches address these challenges individually, limiting their effectiveness. We propose LoRA-FAIR, a novel method that tackles both issues by introducing a correction term on the server while keeping the original LoRA modules, enhancing aggregation efficiency and accuracy. LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods. Experimental results on ViT and MLP-Mixer models across large-scale datasets demonstrate that LoRA-FAIR consistently achieves performance improvements in FL settings.
☆ Design-o-meter: Towards Evaluating and Refining Graphic Designs WACV 2025
Graphic designs are an effective medium for visual communication. They range from greeting cards to corporate flyers and beyond. Off-late, machine learning techniques are able to generate such designs, which accelerates the rate of content production. An automated way of evaluating their quality becomes critical. Towards this end, we introduce Design-o-meter, a data-driven methodology to quantify the goodness of graphic designs. Further, our approach can suggest modifications to these designs to improve its visual appeal. To the best of our knowledge, Design-o-meter is the first approach that scores and refines designs in a unified framework despite the inherent subjectivity and ambiguity of the setting. Our exhaustive quantitative and qualitative analysis of our approach against baselines adapted for the task (including recent Multimodal LLM-based approaches) brings out the efficacy of our methodology. We hope our work will usher more interest in this important and pragmatic problem setting.
comment: Accepted to WACV 2025. Project page: https://sahilg06.github.io/Design-o-meter/
☆ Evaluating Vision Transformer Models for Visual Quality Control in Industrial Manufacturing
One of the most promising use-cases for machine learning in industrial manufacturing is the early detection of defective products using a quality control system. Such a system can save costs and reduces human errors due to the monotonous nature of visual inspections. Today, a rich body of research exists which employs machine learning methods to identify rare defective products in unbalanced visual quality control datasets. These methods typically rely on two components: A visual backbone to capture the features of the input image and an anomaly detection algorithm that decides if these features are within an expected distribution. With the rise of transformer architecture as visual backbones of choice, there exists now a great variety of different combinations of these two components, ranging all along the trade-off between detection quality and inference time. Facing this variety, practitioners in the field often have to spend a considerable amount of time on researching the right combination for their use-case at hand. Our contribution is to help practitioners with this choice by reviewing and evaluating current vision transformer models together with anomaly detection methods. For this, we chose SotA models of both disciplines, combined them and evaluated them towards the goal of having small, fast and efficient anomaly detection models suitable for industrial manufacturing. We evaluated the results of our experiments on the well-known MVTecAD and BTAD datasets. Moreover, we give guidelines for choosing a suitable model architecture for a quality control system in practice, considering given use-case and hardware constraints.
Morph: A Motion-free Physics Optimization Framework for Human Motion Generation
Human motion generation plays a vital role in applications such as digital humans and humanoid robot control. However, most existing approaches disregard physics constraints, leading to the frequent production of physically implausible motions with pronounced artifacts such as floating and foot sliding. In this paper, we propose \textbf{Morph}, a \textbf{Mo}tion-f\textbf{r}ee \textbf{ph}ysics optimization framework, comprising a Motion Generator and a Motion Physics Refinement module, for enhancing physical plausibility without relying on costly real-world motion data. Specifically, the Motion Generator is responsible for providing large-scale synthetic motion data, while the Motion Physics Refinement Module utilizes these synthetic data to train a motion imitator within a physics simulator, enforcing physical constraints to project the noisy motions into a physically-plausible space. These physically refined motions, in turn, are used to fine-tune the Motion Generator, further enhancing its capability. Experiments on both text-to-motion and music-to-dance generation tasks demonstrate that our framework achieves state-of-the-art motion generation quality while improving physical plausibility drastically.
comment: 15 pages, 6 figures
☆ Reliable Evaluation of Attribution Maps in CNNs: A Perturbation-Based Approach
In this paper, we present an approach for evaluating attribution maps, which play a central role in interpreting the predictions of convolutional neural networks (CNNs). We show that the widely used insertion/deletion metrics are susceptible to distribution shifts that affect the reliability of the ranking. Our method proposes to replace pixel modifications with adversarial perturbations, which provides a more robust evaluation framework. By using smoothness and monotonicity measures, we illustrate the effectiveness of our approach in correcting distribution shifts. In addition, we conduct the most comprehensive quantitative and qualitative assessment of attribution maps to date. Introducing baseline attribution maps as sanity checks, we find that our metric is the only contender to pass all checks. Using Kendall's $\tau$ rank correlation coefficient, we show the increased consistency of our metric across 15 dataset-architecture combinations. Of the 16 attribution maps tested, our results clearly show SmoothGrad to be the best map currently available. This research makes an important contribution to the development of attribution maps by providing a reliable and consistent evaluation framework. To ensure reproducibility, we will provide the code along with our results.
☆ LiDAR-based End-to-end Temporal Perception for Vehicle-Infrastructure Cooperation
Temporal perception, the ability to detect and track objects over time, is critical in autonomous driving for maintaining a comprehensive understanding of dynamic environments. However, this task is hindered by significant challenges, including incomplete perception caused by occluded objects and observational blind spots, which are common in single-vehicle perception systems. To address these issues, we introduce LET-VIC, a LiDAR-based End-to-End Tracking framework for Vehicle-Infrastructure Cooperation (VIC). LET-VIC leverages Vehicle-to-Everything (V2X) communication to enhance temporal perception by fusing spatial and temporal data from both vehicle and infrastructure sensors. First, it spatially integrates Bird's Eye View (BEV) features from vehicle-side and infrastructure-side LiDAR data, creating a comprehensive view that mitigates occlusions and compensates for blind spots. Second, LET-VIC incorporates temporal context across frames, allowing the model to leverage historical data for enhanced tracking stability and accuracy. To further improve robustness, LET-VIC includes a Calibration Error Compensation (CEC) module to address sensor misalignments and ensure precise feature alignment. Experiments on the V2X-Seq-SPD dataset demonstrate that LET-VIC significantly outperforms baseline models, achieving at least a 13.7% improvement in mAP and a 13.1% improvement in AMOTA without considering communication delays. This work offers a practical solution and a new research direction for advancing temporal perception in autonomous driving through vehicle-infrastructure cooperation.
comment: 11 pages, 7 figures
☆ ReVisionLLM: Recursive Vision-Language Model for Temporal Grounding in Hour-Long Videos
Large language models (LLMs) excel at retrieving information from lengthy text, but their vision-language counterparts (VLMs) face difficulties with hour-long videos, especially for temporal grounding. Specifically, these VLMs are constrained by frame limitations, often losing essential temporal details needed for accurate event localization in extended video content. We propose ReVisionLLM, a recursive vision-language model designed to locate events in hour-long videos. Inspired by human search strategies, our model initially targets broad segments of interest, progressively revising its focus to pinpoint exact temporal boundaries. Our model can seamlessly handle videos of vastly different lengths, from minutes to hours. We also introduce a hierarchical training strategy that starts with short clips to capture distinct events and progressively extends to longer videos. To our knowledge, ReVisionLLM is the first VLM capable of temporal grounding in hour-long videos, outperforming previous state-of-the-art methods across multiple datasets by a significant margin (+2.6% R1@0.1 on MAD). The code is available at https://github.com/Tanveer81/ReVisionLLM.
☆ Boundless Across Domains: A New Paradigm of Adaptive Feature and Cross-Attention for Domain Generalization in Medical Image Segmentation
Domain-invariant representation learning is a powerful method for domain generalization. Previous approaches face challenges such as high computational demands, training instability, and limited effectiveness with high-dimensional data, potentially leading to the loss of valuable features. To address these issues, we hypothesize that an ideal generalized representation should exhibit similar pattern responses within the same channel across cross-domain images. Based on this hypothesis, we use deep features from the source domain as queries, and deep features from the generated domain as keys and values. Through a cross-channel attention mechanism, the original deep features are reconstructed into robust regularization representations, forming an explicit constraint that guides the model to learn domain-invariant representations. Additionally, style augmentation is another common method. However, existing methods typically generate new styles through convex combinations of source domains, which limits the diversity of training samples by confining the generated styles to the original distribution. To overcome this limitation, we propose an Adaptive Feature Blending (AFB) method that generates out-of-distribution samples while exploring the in-distribution space, significantly expanding the domain range. Extensive experimental results demonstrate that our proposed methods achieve superior performance on two standard domain generalization benchmarks for medical image segmentation.
comment: 5 pages, 3 figures
☆ Implementation of Real-Time Lane Detection on Autonomous Mobile Robot
This paper describes the implementation of a learning-based lane detection algorithm on an Autonomous Mobile Robot. It aims to implement the Ultra Fast Lane Detection algorithm for real-time application on the SEATER P2MC-BRIN prototype using a camera and optimize its performance on the Jetson Nano platform. Preliminary experiments were conducted to evaluate the algorithm's performance in terms of data processing speed and accuracy using two types of datasets: outdoor using a public dataset and indoor using an internal dataset from the indoor area of the BRIN Workshop Building in Bandung. The experiments revealed that the algorithm runs more optimally on the Jetson Nano platform after conversion to TensorRT compared to the ONNX model, achieving processing speeds of approximately 101 ms using CULane and 105 ms using TuSimple, which is about 22 times faster than the previous model. While the algorithm demonstrates good accuracy on the outdoor public dataset, its performance falls short on the indoor dataset. Future work should focus on transfer learning and fine-tuning to enhance indoor lane detection accuracy.
comment: 4 pages, 9 figures 2 tables
☆ Prioritize Denoising Steps on Diffusion Model Preference Alignment via Explicit Denoised Distribution Estimation
Diffusion models have shown remarkable success in text-to-image generation, making alignment methods for these models increasingly important. A key challenge is the sparsity of preference labels, which are typically available only at the terminal of denoising trajectories. This raises the issue of how to assign credit across denoising steps based on these sparse labels. In this paper, we propose Denoised Distribution Estimation (DDE), a novel method for credit assignment. Unlike previous approaches that rely on auxiliary models or hand-crafted schemes, DDE derives its strategy more explicitly. The proposed DDE directly estimates the terminal denoised distribution from the perspective of each step. It is equipped with two estimation strategies and capable of representing the entire denoising trajectory with a single model inference. Theoretically and empirically, we show that DDE prioritizes optimizing the middle part of the denoising trajectory, resulting in a novel and effective credit assignment scheme. Extensive experiments demonstrate that our approach achieves superior performance, both quantitatively and qualitatively.
☆ BIP3D: Bridging 2D Images and 3D Perception for Embodied Intelligence
In embodied intelligence systems, a key component is 3D perception algorithm, which enables agents to understand their surrounding environments. Previous algorithms primarily rely on point cloud, which, despite offering precise geometric information, still constrain perception performance due to inherent sparsity, noise, and data scarcity. In this work, we introduce a novel image-centric 3D perception model, BIP3D, which leverages expressive image features with explicit 3D position encoding to overcome the limitations of point-centric methods. Specifically, we leverage pre-trained 2D vision foundation models to enhance semantic understanding, and introduce a spatial enhancer module to improve spatial understanding. Together, these modules enable BIP3D to achieve multi-view, multi-modal feature fusion and end-to-end 3D perception. In our experiments, BIP3D outperforms current state-of-the-art results on the EmbodiedScan benchmark, achieving improvements of 5.69% in the 3D detection task and 15.25% in the 3D visual grounding task.
☆ Defective Edge Detection Using Cascaded Ensemble Canny Operator
Edge detection has been one of the most difficult challenges in computer vision because of the difficulty in identifying the borders and edges from the real-world images including objects of varying kinds and sizes. Methods based on ensemble learning, which use a combination of backbones and attention modules, outperformed more conventional approaches, such as Sobel and Canny edge detection. Nevertheless, these algorithms are still challenged when faced with complicated scene photos. In addition, the identified edges utilizing the current methods are not refined and often include incorrect edges. In this work, we used a Cascaded Ensemble Canny operator to solve these problems and detect the object edges. The most difficult Fresh and Rotten and Berkeley datasets are used to test the suggested approach in Python. In terms of performance metrics and output picture quality, the acquired results outperform the specified edge detection networks
comment: 2 Pages and 2 Figures
☆ Benchmarking the Robustness of Optical Flow Estimation to Corruptions
Optical flow estimation is extensively used in autonomous driving and video editing. While existing models demonstrate state-of-the-art performance across various benchmarks, the robustness of these methods has been infrequently investigated. Despite some research focusing on the robustness of optical flow models against adversarial attacks, there has been a lack of studies investigating their robustness to common corruptions. Taking into account the unique temporal characteristics of optical flow, we introduce 7 temporal corruptions specifically designed for benchmarking the robustness of optical flow models, in addition to 17 classical single-image corruptions, in which advanced PSF Blur simulation method is performed. Two robustness benchmarks, KITTI-FC and GoPro-FC, are subsequently established as the first corruption robustness benchmark for optical flow estimation, with Out-Of-Domain (OOD) and In-Domain (ID) settings to facilitate comprehensive studies. Robustness metrics, Corruption Robustness Error (CRE), Corruption Robustness Error ratio (CREr), and Relative Corruption Robustness Error (RCRE) are further introduced to quantify the optical flow estimation robustness. 29 model variants from 15 optical flow methods are evaluated, yielding 10 intriguing observations, such as 1) the absolute robustness of the model is heavily dependent on the estimation performance; 2) the corruptions that diminish local information are more serious than that reduce visual effects. We also give suggestions for the design and application of optical flow models. We anticipate that our benchmark will serve as a foundational resource for advancing research in robust optical flow estimation. The benchmarks and source code will be released at https://github.com/ZhonghuaYi/optical_flow_robustness_benchmark.
comment: The benchmarks and source code will be released at https://github.com/ZhonghuaYi/optical_flow_robustness_benchmark
☆ Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation
Diffusion models (DMs), which enable both image generation from noise and inversion from data, have inspired powerful unpaired image-to-image (I2I) translation algorithms. However, they often require a larger number of neural function evaluations (NFEs), limiting their practical applicability. In this paper, we tackle this problem with Schrodinger Bridges (SBs), which are stochastic differential equations (SDEs) between distributions with minimal transport cost. We analyze the probability flow ordinary differential equation (ODE) formulation of SBs, and observe that we can decompose its vector field into a linear combination of source predictor, target predictor, and noise predictor. Inspired by this observation, we propose Latent Schrodinger Bridges (LSBs) that approximate the SB ODE via pre-trained Stable Diffusion, and develop appropriate prompt optimization and change of variables formula to match the training and inference between distributions. We demonstrate that our algorithm successfully conduct competitive I2I translation in unsupervised setting with only a fraction of computation cost required by previous DM-based I2I methods.
☆ Dynamics-Aware Gaussian Splatting Streaming Towards Fast On-the-Fly Training for 4D Reconstruction
The recent development of 3D Gaussian Splatting (3DGS) has led to great interest in 4D dynamic spatial reconstruction from multi-view visual inputs. While existing approaches mainly rely on processing full-length multi-view videos for 4D reconstruction, there has been limited exploration of iterative online reconstruction methods that enable on-the-fly training and per-frame streaming. Current 3DGS-based streaming methods treat the Gaussian primitives uniformly and constantly renew the densified Gaussians, thereby overlooking the difference between dynamic and static features and also neglecting the temporal continuity in the scene. To address these limitations, we propose a novel three-stage pipeline for iterative streamable 4D dynamic spatial reconstruction. Our pipeline comprises a selective inheritance stage to preserve temporal continuity, a dynamics-aware shift stage for distinguishing dynamic and static primitives and optimizing their movements, and an error-guided densification stage to accommodate emerging objects. Our method achieves state-of-the-art performance in online 4D reconstruction, demonstrating a 20% improvement in on-the-fly training speed, superior representation quality, and real-time rendering capability. Project page: https://www.liuzhening.top/DASS
comment: Project page: https://www.liuzhening.top/DASS
☆ Cell as Point: One-Stage Framework for Efficient Cell Tracking
Cellular activities are dynamic and intricate, playing a crucial role in advancing diagnostic and therapeutic techniques, yet they often require substantial resources for accurate tracking. Despite recent progress, the conventional multi-stage cell tracking approaches not only heavily rely on detection or segmentation results as a prerequisite for the tracking stage, demanding plenty of refined segmentation masks, but are also deteriorated by imbalanced and long sequence data, leading to under-learning in training and missing cells in inference procedures. To alleviate the above issues, this paper proposes the novel end-to-end CAP framework, which leverages the idea of regarding Cell as Point to achieve efficient and stable cell tracking in one stage. CAP abandons detection or segmentation stages and simplifies the process by exploiting the correlation among the trajectories of cell points to track cells jointly, thus reducing the label demand and complexity of the pipeline. With cell point trajectory and visibility to represent cell locations and lineage relationships, CAP leverages the key innovations of adaptive event-guided (AEG) sampling for addressing data imbalance in cell division events and the rolling-as-window (RAW) inference method to ensure continuous tracking of new cells in the long term. Eliminating the need for a prerequisite detection or segmentation stage, CAP demonstrates strong cell tracking performance while also being 10 to 55 times more efficient than existing methods. The code and models will be released.
comment: 17 pages, 8 figures, 8 tables
☆ VisGraphVar: A Benchmark Generator for Assessing Variability in Graph Analysis Using Large Vision-Language Models
The fast advancement of Large Vision-Language Models (LVLMs) has shown immense potential. These models are increasingly capable of tackling abstract visual tasks. Geometric structures, particularly graphs with their inherent flexibility and complexity, serve as an excellent benchmark for evaluating these models' predictive capabilities. While human observers can readily identify subtle visual details and perform accurate analyses, our investigation reveals that state-of-the-art LVLMs exhibit consistent limitations in specific visual graph scenarios, especially when confronted with stylistic variations. In response to these challenges, we introduce VisGraphVar (Visual Graph Variability), a customizable benchmark generator able to produce graph images for seven distinct task categories (detection, classification, segmentation, pattern recognition, link prediction, reasoning, matching), designed to systematically evaluate the strengths and limitations of individual LVLMs. We use VisGraphVar to produce 990 graph images and evaluate six LVLMs, employing two distinct prompting strategies, namely zero-shot and chain-of-thought. The findings demonstrate that variations in visual attributes of images (e.g., node labeling and layout) and the deliberate inclusion of visual imperfections, such as overlapping nodes, significantly affect model performance. This research emphasizes the importance of a comprehensive evaluation across graph-related tasks, extending beyond reasoning alone. VisGraphVar offers valuable insights to guide the development of more reliable and robust systems capable of performing advanced visual graph analysis.
☆ Physically Interpretable Probabilistic Domain Characterization
Characterizing domains is essential for models analyzing dynamic environments, as it allows them to adapt to evolving conditions or to hand the task over to backup systems when facing conditions outside their operational domain. Existing solutions typically characterize a domain by solving a regression or classification problem, which limits their applicability as they only provide a limited summarized description of the domain. In this paper, we present a novel approach to domain characterization by characterizing domains as probability distributions. Particularly, we develop a method to predict the likelihood of different weather conditions from images captured by vehicle-mounted cameras by estimating distributions of physical parameters using normalizing flows. To validate our proposed approach, we conduct experiments within the context of autonomous vehicles, focusing on predicting the distribution of weather parameters to characterize the operational domain. This domain is characterized by physical parameters (absolute characterization) and arbitrarily predefined domains (relative characterization). Finally, we evaluate whether a system can safely operate in a target domain by comparing it to multiple source domains where safety has already been established. This approach holds significant potential, as accurate weather prediction and effective domain adaptation are crucial for autonomous systems to adjust to dynamic environmental conditions.
☆ Omni-IML: Towards Unified Image Manipulation Localization
Image manipulation can lead to misinterpretation of visual content, posing significant risks to information security. Image Manipulation Localization (IML) has thus received increasing attention. However, existing IML methods rely heavily on task-specific designs, making them perform well only on one target image type but are mostly random guessing on other image types, and even joint training on multiple image types causes significant performance degradation. This hinders the deployment for real applications as it notably increases maintenance costs and the misclassification of image types leads to serious error accumulation. To this end, we propose Omni-IML, the first generalist model to unify diverse IML tasks. Specifically, Omni-IML achieves generalism by adopting the Modal Gate Encoder and the Dynamic Weight Decoder to adaptively determine the optimal encoding modality and the optimal decoder filters for each sample. We additionally propose an Anomaly Enhancement module that enhances the features of tampered regions with box supervision and helps the generalist model to extract common features across different IML tasks. We validate our approach on IML tasks across three major scenarios: natural images, document images, and face images. Without bells and whistles, our Omni-IML achieves state-of-the-art performance on all three tasks with a single unified model, providing valuable strategies and insights for real-world application and future research in generalist image forensics. Our code will be publicly available.
Unsupervised Multi-view UAV Image Geo-localization via Iterative Rendering
Unmanned Aerial Vehicle (UAV) Cross-View Geo-Localization (CVGL) presents significant challenges due to the view discrepancy between oblique UAV images and overhead satellite images. Existing methods heavily rely on the supervision of labeled datasets to extract viewpoint-invariant features for cross-view retrieval. However, these methods have expensive training costs and tend to overfit the region-specific cues, showing limited generalizability to new regions. To overcome this issue, we propose an unsupervised solution that lifts the scene representation to 3d space from UAV observations for satellite image generation, providing robust representation against view distortion. By generating orthogonal images that closely resemble satellite views, our method reduces view discrepancies in feature representation and mitigates shortcuts in region-specific image pairing. To further align the rendered image's perspective with the real one, we design an iterative camera pose updating mechanism that progressively modulates the rendered query image with potential satellite targets, eliminating spatial offsets relative to the reference images. Additionally, this iterative refinement strategy enhances cross-view feature invariance through view-consistent fusion across iterations. As such, our unsupervised paradigm naturally avoids the problem of region-specific overfitting, enabling generic CVGL for UAV images without feature fine-tuning or data-driven training. Experiments on the University-1652 and SUES-200 datasets demonstrate that our approach significantly improves geo-localization accuracy while maintaining robustness across diverse regions. Notably, without model fine-tuning or paired training, our method achieves competitive performance with recent supervised methods.
comment: 13 pages
☆ Fine-Grained Alignment in Vision-and-Language Navigation through Bayesian Optimization
This paper addresses the challenge of fine-grained alignment in Vision-and-Language Navigation (VLN) tasks, where robots navigate realistic 3D environments based on natural language instructions. Current approaches use contrastive learning to align language with visual trajectory sequences. Nevertheless, they encounter difficulties with fine-grained vision negatives. To enhance cross-modal embeddings, we introduce a novel Bayesian Optimization-based adversarial optimization framework for creating fine-grained contrastive vision samples. To validate the proposed methodology, we conduct a series of experiments to assess the effectiveness of the enriched embeddings on fine-grained vision negatives. We conduct experiments on two common VLN benchmarks R2R and REVERIE, experiments on the them demonstrate that these embeddings benefit navigation, and can lead to a promising performance enhancement. Our source code and trained models are available at: https://anonymous.4open.science/r/FGVLN.
☆ High-Resolution Image Synthesis via Next-Token Prediction
Denoising with a Joint-Embedding Predictive Architecture (D-JEPA), an autoregressive model, has demonstrated outstanding performance in class-conditional image generation. However, the application of next-token prediction in high-resolution text-to-image generation remains underexplored. In this paper, we introduce D-JEPA$\cdot$T2I, an extension of D-JEPA incorporating flow matching loss, designed to enable data-efficient continuous resolution learning. D-JEPA$\cdot$T2I leverages a multimodal visual transformer to effectively integrate textual and visual features and adopts Visual Rotary Positional Embedding (VoPE) to facilitate continuous resolution learning. Furthermore, we devise a data feedback mechanism that significantly enhances data utilization efficiency. For the first time, we achieve state-of-the-art \textbf{high-resolution} image synthesis via next-token prediction. The experimental code and pretrained models will be open-sourced at \url{https://d-jepa.github.io/t2i}.
comment: 30 pages
☆ Harlequin: Color-driven Generation of Synthetic Data for Referring Expression Comprehension ICPR 2024
Referring Expression Comprehension (REC) aims to identify a particular object in a scene by a natural language expression, and is an important topic in visual language understanding. State-of-the-art methods for this task are based on deep learning, which generally requires expensive and manually labeled annotations. Some works tackle the problem with limited-supervision learning or relying on Large Vision and Language Models. However, the development of techniques to synthesize labeled data is overlooked. In this paper, we propose a novel framework that generates artificial data for the REC task, taking into account both textual and visual modalities. At first, our pipeline processes existing data to create variations in the annotations. Then, it generates an image using altered annotations as guidance. The result of this pipeline is a new dataset, called Harlequin, made by more than 1M queries. This approach eliminates manual data collection and annotation, enabling scalability and facilitating arbitrary complexity. We pre-train three REC models on Harlequin, then fine-tuned and evaluated on human-annotated datasets. Our experiments show that the pre-training on artificial data is beneficial for performance.
comment: Accepted to ICPR 2024
☆ Facial Features Matter: a Dynamic Watermark based Proactive Deepfake Detection Approach
Current passive deepfake face-swapping detection methods encounter significance bottlenecks in model generalization capabilities. Meanwhile, proactive detection methods often use fixed watermarks which lack a close relationship with the content they protect and are vulnerable to security risks. Dynamic watermarks based on facial features offer a promising solution, as these features provide unique identifiers. Therefore, this paper proposes a Facial Feature-based Proactive deepfake detection method (FaceProtect), which utilizes changes in facial characteristics during deepfake manipulation as a novel detection mechanism. We introduce a GAN-based One-way Dynamic Watermark Generating Mechanism (GODWGM) that uses 128-dimensional facial feature vectors as inputs. This method creates irreversible mappings from facial features to watermarks, enhancing protection against various reverse inference attacks. Additionally, we propose a Watermark-based Verification Strategy (WVS) that combines steganography with GODWGM, allowing simultaneous transmission of the benchmark watermark representing facial features within the image. Experimental results demonstrate that our proposed method maintains exceptional detection performance and exhibits high practicality on images altered by various deepfake techniques.
☆ Continual SFT Matches Multimodal RLHF with Negative Supervision
Multimodal RLHF usually happens after supervised finetuning (SFT) stage to continually improve vision-language models' (VLMs) comprehension. Conventional wisdom holds its superiority over continual SFT during this preference alignment stage. In this paper, we observe that the inherent value of multimodal RLHF lies in its negative supervision, the logit of the rejected responses. We thus propose a novel negative supervised finetuning (nSFT) approach that fully excavates these information resided. Our nSFT disentangles this negative supervision in RLHF paradigm, and continually aligns VLMs with a simple SFT loss. This is more memory efficient than multimodal RLHF where 2 (e.g., DPO) or 4 (e.g., PPO) large VLMs are strictly required. The effectiveness of nSFT is rigorously proved by comparing it with various multimodal RLHF approaches, across different dataset sources, base VLMs and evaluation metrics. Besides, fruitful of ablations are provided to support our hypothesis. We hope this paper will stimulate further research to properly align large vision language models.
☆ Adaptive Hyper-Graph Convolution Network for Skeleton-based Human Action Recognition with Virtual Connections
The shared topology of human skeletons motivated the recent investigation of graph convolutional network (GCN) solutions for action recognition. However, the existing GCNs rely on the binary connection of two neighbouring vertices (joints) formed by an edge (bone), overlooking the potential of constructing multi-vertex convolution structures. In this paper we address this oversight and explore the merits of a hyper-graph convolutional network (Hyper-GCN) to achieve the aggregation of rich semantic information conveyed by skeleton vertices. In particular, our Hyper-GCN adaptively optimises multi-scale hyper-graphs during training, revealing the action-driven multi-vertex relations. Besides, virtual connections are often designed to support efficient feature aggregation, implicitly extending the spectrum of dependencies within the skeleton. By injecting virtual connections into hyper-graphs, the semantic clues of diverse action categories can be highlighted. The results of experiments conducted on the NTU-60, NTU-120, and NW-UCLA datasets, demonstrate the merits of our Hyper-GCN, compared to the state-of-the-art methods. Specifically, we outperform the existing solutions on NTU-120, achieving 90.2\% and 91.4\% in terms of the top-1 recognition accuracy on X-Sub and X-Set.
☆ VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection
The advancement of Large Vision Language Models (LVLMs) has significantly improved multimodal understanding, yet challenges remain in video reasoning tasks due to the scarcity of high-quality, large-scale datasets. Existing video question-answering (VideoQA) datasets often rely on costly manual annotations with insufficient granularity or automatic construction methods with redundant frame-by-frame analysis, limiting their scalability and effectiveness for complex reasoning. To address these challenges, we introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence, along with multimodal annotations of intermediate reasoning steps. Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o. We further develop video Chain-of-Thought (CoT) annotations to enrich reasoning processes, guiding GPT-4o in extracting logical relationships from QA pairs and video content. To exploit the potential of high-quality VideoQA pairs, we propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM. This framework adaptively selects core frames and performs CoT reasoning using multimodal evidence. Evaluated on our proposed benchmark with 14 tasks against 9 popular LVLMs, our method outperforms existing baselines on most tasks, demonstrating superior video reasoning capabilities. Our code and dataset will be released at: https://github.com/hshjerry/VideoEspresso
comment: 14 pages, 14 figures
☆ Style-Friendly SNR Sampler for Style-Driven Generation
Recent large-scale diffusion models generate high-quality images but struggle to learn new, personalized artistic styles, which limits the creation of unique style templates. Fine-tuning with reference images is the most promising approach, but it often blindly utilizes objectives and noise level distributions used for pre-training, leading to suboptimal style alignment. We propose the Style-friendly SNR sampler, which aggressively shifts the signal-to-noise ratio (SNR) distribution toward higher noise levels during fine-tuning to focus on noise levels where stylistic features emerge. This enables models to better capture unique styles and generate images with higher style alignment. Our method allows diffusion models to learn and share new "style templates", enhancing personalized content creation. We demonstrate the ability to generate styles such as personal watercolor paintings, minimal flat cartoons, 3D renderings, multi-panel images, and memes with text, thereby broadening the scope of style-driven generation.
☆ Simplifying CLIP: Unleashing the Power of Large-Scale Models on Consumer-level Computers
Contrastive Language-Image Pre-training (CLIP) has attracted a surge of attention for its superior zero-shot performance and excellent transferability to downstream tasks. However, training such large-scale models usually requires substantial computation and storage, which poses barriers for general users with consumer-level computers. Motivated by this observation, in this paper we investigate how to achieve competitive performance on only one Nvidia RTX3090 GPU and with one terabyte for storing dataset. On one hand, we simplify the transformer block structure and combine Weight Inheritance with multi-stage Knowledge Distillation (WIKD), thereby reducing the parameters and improving the inference speed during training along with deployment. On the other hand, confronted with the convergence challenge posed by small dataset, we generate synthetic captions for each sample as data augmentation, and devise a novel Pair Matching (PM) loss to fully exploit the distinguishment among positive and negative image-text pairs. Extensive experiments demonstrate that our model can achieve a new state-of-the-art datascale-parameter-accuracy tradeoff, which could further popularize the CLIP model in the related research community.
☆ FastGrasp: Efficient Grasp Synthesis with Diffusion
Effectively modeling the interaction between human hands and objects is challenging due to the complex physical constraints and the requirement for high generation efficiency in applications. Prior approaches often employ computationally intensive two-stage approaches, which first generate an intermediate representation, such as contact maps, followed by an iterative optimization procedure that updates hand meshes to capture the hand-object relation. However, due to the high computation complexity during the optimization stage, such strategies often suffer from low efficiency in inference. To address this limitation, this work introduces a novel diffusion-model-based approach that generates the grasping pose in a one-stage manner. This allows us to significantly improve generation speed and the diversity of generated hand poses. In particular, we develop a Latent Diffusion Model with an Adaptation Module for object-conditioned hand pose generation and a contact-aware loss to enforce the physical constraints between hands and objects. Extensive experiments demonstrate that our method achieves faster inference, higher diversity, and superior pose quality than state-of-the-art approaches. Code is available at \href{https://github.com/wuxiaofei01/FastGrasp}{https://github.com/wuxiaofei01/FastGrasp.}
☆ Reconciling Semantic Controllability and Diversity for Remote Sensing Image Synthesis with Hybrid Semantic Embedding
Significant advancements have been made in semantic image synthesis in remote sensing. However, existing methods still face formidable challenges in balancing semantic controllability and diversity. In this paper, we present a Hybrid Semantic Embedding Guided Generative Adversarial Network (HySEGGAN) for controllable and efficient remote sensing image synthesis. Specifically, HySEGGAN leverages hierarchical information from a single source. Motivated by feature description, we propose a hybrid semantic Embedding method, that coordinates fine-grained local semantic layouts to characterize the geometric structure of remote sensing objects without extra information. Besides, a Semantic Refinement Network (SRN) is introduced, incorporating a novel loss function to ensure fine-grained semantic feedback. The proposed approach mitigates semantic confusion and prevents geometric pattern collapse. Experimental results indicate that the method strikes an excellent balance between semantic controllability and diversity. Furthermore, HySEGGAN significantly improves the quality of synthesized images and achieves state-of-the-art performance as a data augmentation technique across multiple datasets for downstream tasks.
☆ A Benchmark Dataset for Collaborative SLAM in Service Environments
As service environments have become diverse, they have started to demand complicated tasks that are difficult for a single robot to complete. This change has led to an interest in multiple robots instead of a single robot. C-SLAM, as a fundamental technique for multiple service robots, needs to handle diverse challenges such as homogeneous scenes and dynamic objects to ensure that robots operate smoothly and perform their tasks safely. However, existing C-SLAM datasets do not include the various indoor service environments with the aforementioned challenges. To close this gap, we introduce a new multi-modal C-SLAM dataset for multiple service robots in various indoor service environments, called C-SLAM dataset in Service Environments (CSE). We use the NVIDIA Isaac Sim to generate data in various indoor service environments with the challenges that may occur in real-world service environments. By using simulation, we can provide accurate and precisely time-synchronized sensor data, such as stereo RGB, stereo depth, IMU, and ground truth (GT) poses. We configure three common indoor service environments (Hospital, Office, and Warehouse), each of which includes various dynamic objects that perform motions suitable to each environment. In addition, we drive three robots to mimic the actions of real service robots. Through these factors, we generate a more realistic C-SLAM dataset for multiple service robots. We demonstrate our dataset by evaluating diverse state-of-the-art single-robot SLAM and multi-robot SLAM methods. Our dataset is available at https://github.com/vision3d-lab/CSE_Dataset.
comment: 8 pages, 6 figures, Accepted to IEEE RA-L
☆ Resolution-Agnostic Transformer-based Climate Downscaling
Understanding future weather changes at regional and local scales is crucial for planning and decision-making, particularly in the context of extreme weather events, as well as for broader applications in agriculture, insurance, and infrastructure development. However, the computational cost of downscaling Global Climate Models (GCMs) to the fine resolutions needed for such applications presents a significant barrier. Drawing on advancements in weather forecasting models, this study introduces a cost-efficient downscaling method using a pretrained Earth Vision Transformer (Earth ViT) model. Initially trained on ERA5 data to downscale from 50 km to 25 km resolution, the model is then tested on the higher resolution BARRA-SY dataset at a 3 km resolution. Remarkably, it performs well without additional training, demonstrating its ability to generalize across different resolutions. This approach holds promise for generating large ensembles of regional climate simulations by downscaling GCMs with varying input resolutions without incurring additional training costs. Ultimately, this method could provide more comprehensive estimates of potential future changes in key climate variables, aiding in effective planning for extreme weather events and climate change adaptation strategies.
☆ Efficient Long Video Tokenization via Coordinated-based Patch Reconstruction
Efficient tokenization of videos remains a challenge in training vision models that can process long videos. One promising direction is to develop a tokenizer that can encode long video clips, as it would enable the tokenizer to leverage the temporal coherence of videos better for tokenization. However, training existing tokenizers on long videos often incurs a huge training cost as they are trained to reconstruct all the frames at once. In this paper, we introduce CoordTok, a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos, inspired by recent advances in 3D generative models. In particular, CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled $(x,y,t)$ coordinates. This allows for training large tokenizer models directly on long videos without requiring excessive training resources. Our experiments show that CoordTok can drastically reduce the number of tokens for encoding long video clips. For instance, CoordTok can encode a 128-frame video with 128$\times$128 resolution into 1280 tokens, while baselines need 6144 or 8192 tokens to achieve similar reconstruction quality. We further show that this efficient video tokenization enables memory-efficient training of a diffusion transformer that can generate 128 frames at once.
comment: Code is available on the project webpage: https://huiwon-jang.github.io/coordtok/
☆ FairAdapter: Detecting AI-generated Images with Improved Fairness
The high-quality, realistic images generated by generative models pose significant challenges for exposing them.So far, data-driven deep neural networks have been justified as the most efficient forensics tools for the challenges. However, they may be over-fitted to certain semantics, resulting in considerable inconsistency in detection performance across different contents of generated samples. It could be regarded as an issue of detection fairness. In this paper, we propose a novel framework named Fairadapter to tackle the issue. In comparison with existing state-of-the-art methods, our model achieves improved fairness performance. Our project: https://github.com/AppleDogDog/FairnessDetection
☆ Comparative Analysis of nnUNet and MedNeXt for Head and Neck Tumor Segmentation in MRI-guided Radiotherapy
Radiation therapy (RT) is essential in treating head and neck cancer (HNC), with magnetic resonance imaging(MRI)-guided RT offering superior soft tissue contrast and functional imaging. However, manual tumor segmentation is time-consuming and complex, and therfore remains a challenge. In this study, we present our solution as team TUMOR to the HNTS-MRG24 MICCAI Challenge which is focused on automated segmentation of primary gross tumor volumes (GTVp) and metastatic lymph node gross tumor volume (GTVn) in pre-RT and mid-RT MRI images. We utilized the HNTS-MRG2024 dataset, which consists of 150 MRI scans from patients diagnosed with HNC, including original and registered pre-RT and mid-RT T2-weighted images with corresponding segmentation masks for GTVp and GTVn. We employed two state-of-the-art models in deep learning, nnUNet and MedNeXt. For Task 1, we pretrained models on pre-RT registered and mid-RT images, followed by fine-tuning on original pre-RT images. For Task 2, we combined registered pre-RT images, registered pre-RT segmentation masks, and mid-RT data as a multi-channel input for training. Our solution for Task 1 achieved 1st place in the final test phase with an aggregated Dice Similarity Coefficient of 0.8254, and our solution for Task 2 ranked 8th with a score of 0.7005. The proposed solution is publicly available at Github Repository.
comment: 15 pages, 3 figures
☆ TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior
Recent advances in autonomous driving systems have shifted towards reducing reliance on high-definition maps (HDMaps) due to the huge costs of annotation and maintenance. Instead, researchers are focusing on online vectorized HDMap construction using on-board sensors. However, sensor-only approaches still face challenges in long-range perception due to the restricted views imposed by the mounting angles of onboard cameras, just as human drivers also rely on bird's-eye-view navigation maps for a comprehensive understanding of road structures. To address these issues, we propose to train the perception model to "see" standard definition maps (SDMaps). We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information to improve the bird's eye view (BEV) feature for lane geometry and topology decoding. Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology. To further enhance the ability of geometry prediction and topology reasoning, we also use a topology-guided decoder to refine the predictions by exploiting the mutual relationships between topological and geometric features. We perform extensive experiments on OpenLane-V2 datasets to validate the proposed method. The results show that our model outperforms state-of-the-art methods by a large margin, with gains of +6.7 and +9.1 on the mAP and topology metrics. Our analysis also reveals that models trained with SDMap noise augmentation exhibit enhanced robustness.
comment: 17 pages, 7 figures, and 7 tables
☆ Ordinal Multiple-instance Learning for Ulcerative Colitis Severity Estimation with Selective Aggregated Transformer WACV 2025
Patient-level diagnosis of severity in ulcerative colitis (UC) is common in real clinical settings, where the most severe score in a patient is recorded. However, previous UC classification methods (i.e., image-level estimation) mainly assumed the input was a single image. Thus, these methods can not utilize severity labels recorded in real clinical settings. In this paper, we propose a patient-level severity estimation method by a transformer with selective aggregator tokens, where a severity label is estimated from multiple images taken from a patient, similar to a clinical setting. Our method can effectively aggregate features of severe parts from a set of images captured in each patient, and it facilitates improving the discriminative ability between adjacent severity classes. Experiments demonstrate the effectiveness of the proposed method on two datasets compared with the state-of-the-art MIL methods. Moreover, we evaluated our method in real clinical settings and confirmed that our method outperformed the previous image-level methods. The code is publicly available at https://github.com/Shiku-Kaito/Ordinal-Multiple-instance-Learning-for-Ulcerative-Colitis-Severity-Estimation.
comment: 10 pages, 9 figures, Accepted in WACV 2025
☆ Point Cloud Understanding via Attention-Driven Contrastive Learning
Recently Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms, however, these methods often overlook latent information in less prominent regions, leading to increased sensitivity to perturbations and limited global comprehension. To solve this issue, we introduce PointACL, an attention-driven contrastive learning framework designed to address these limitations. Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions, enhancing the understanding of global structures within the point cloud. Then we combine the original pre-training loss with a contrastive learning loss, improving feature discrimination and generalization. Extensive experiments validate the effectiveness of PointACL, as it achieves state-of-the-art performance across a variety of 3D understanding tasks, including object classification, part segmentation, and few-shot learning. Specifically, when integrated with different Transformer backbones like Point-MAE and PointGPT, PointACL demonstrates improved performance on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart. This highlights its superior capability in capturing both global and local features, as well as its enhanced robustness against perturbations and incomplete data.
☆ FOCUS: Knowledge-enhanced Adaptive Visual Compression for Few-shot Whole Slide Image Classification
Few-shot learning presents a critical solution for cancer diagnosis in computational pathology (CPath), addressing fundamental limitations in data availability, particularly the scarcity of expert annotations and patient privacy constraints. A key challenge in this paradigm stems from the inherent disparity between the limited training set of whole slide images (WSIs) and the enormous number of contained patches, where a significant portion of these patches lacks diagnostically relevant information, potentially diluting the model's ability to learn and focus on critical diagnostic features. While recent works attempt to address this by incorporating additional knowledge, several crucial gaps hinder further progress: (1) despite the emergence of powerful pathology foundation models (FMs), their potential remains largely untapped, with most approaches limiting their use to basic feature extraction; (2) current language guidance mechanisms attempt to align text prompts with vast numbers of WSI patches all at once, struggling to leverage rich pathological semantic information. To this end, we introduce the knowledge-enhanced adaptive visual compression framework, dubbed FOCUS, which uniquely combines pathology FMs with language prior knowledge to enable a focused analysis of diagnostically relevant regions by prioritizing discriminative WSI patches. Our approach implements a progressive three-stage compression strategy: we first leverage FMs for global visual redundancy elimination, and integrate compressed features with language prompts for semantic relevance assessment, then perform neighbor-aware visual token filtering while preserving spatial coherence. Extensive experiments on pathological datasets spanning breast, lung, and ovarian cancers demonstrate its superior performance in few-shot pathology diagnosis. Code will be made available at https://github.com/dddavid4real/FOCUS.
comment: 15 pages, 3 figures
☆ TEXGen: a Generative Diffusion Model for Mesh Textures SIGGRAPH
While high-quality texture maps are essential for realistic 3D asset rendering, few studies have explored learning directly in the texture space, especially on large-scale datasets. In this work, we depart from the conventional approach of relying on pre-trained 2D diffusion models for test-time optimization of 3D textures. Instead, we focus on the fundamental problem of learning in the UV texture space itself. For the first time, we train a large diffusion model capable of directly generating high-resolution texture maps in a feed-forward manner. To facilitate efficient learning in high-resolution UV spaces, we propose a scalable network architecture that interleaves convolutions on UV maps with attention layers on point clouds. Leveraging this architectural design, we train a 700 million parameter diffusion model that can generate UV texture maps guided by text prompts and single-view images. Once trained, our model naturally supports various extended applications, including text-guided texture inpainting, sparse-view texture completion, and text-driven texture synthesis. Project page is at http://cvmi-lab.github.io/TEXGen/.
comment: Accepted to SIGGRAPH Asia Journal Article (TOG 2024)
☆ AI Tailoring: Evaluating Influence of Image Features on Fashion Product Popularity
Identifying key product features that influence consumer preferences is essential in the fashion industry. In this study, we introduce a robust methodology to ascertain the most impactful features in fashion product images, utilizing past market sales data. First, we propose the metric called "influence score" to quantitatively assess the importance of product features. Then we develop a forecasting model, the Fashion Demand Predictor (FDP), which integrates Transformer-based models and Random Forest to predict market popularity based on product images. We employ image-editing diffusion models to modify these images and perform an ablation study, which validates the impact of the highest and lowest-scoring features on the model's popularity predictions. Additionally, we further validate these results through surveys that gather human rankings of preferences, confirming the accuracy of the FDP model's predictions and the efficacy of our method in identifying influential features. Notably, products enhanced with "good" features show marked improvements in predicted popularity over their modified counterparts. Our approach develops a fully automated and systematic framework for fashion image analysis that provides valuable guidance for downstream tasks such as fashion product design and marketing strategy development.
☆ Evaluating and Advancing Multimodal Large Language Models in Ability Lens
As multimodal large language models (MLLMs) advance rapidly, rigorous evaluation has become essential, providing further guidance for their development. In this work, we focus on a unified and robust evaluation of \textbf{vision perception} abilities, the foundational skill of MLLMs. We find that existing perception benchmarks, each focusing on different question types, domains, and evaluation metrics, introduce significant evaluation variance, complicating comprehensive assessments of perception abilities when relying on any single benchmark. To address this, we introduce \textbf{AbilityLens}, a unified benchmark designed to evaluate MLLMs across six key perception abilities, focusing on both accuracy and stability, with each ability encompassing diverse question types, domains, and metrics. With the assistance of AbilityLens, we: (1) identify the strengths and weaknesses of current models, highlighting stability patterns and revealing a notable performance gap between open-source and closed-source models; (2) introduce an online evaluation mode, which uncovers interesting ability conflict and early convergence phenomena during MLLM training; and (3) design a simple ability-specific model merging method that combines the best ability checkpoint from early training stages, effectively mitigating performance decline due to ability conflict. The benchmark and online leaderboard will be released soon.
☆ Effective SAM Combination for Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation aims to assign pixel-level labels to images across an unlimited range of classes. Traditional methods address this by sequentially connecting a powerful mask proposal generator, such as the Segment Anything Model (SAM), with a pre-trained vision-language model like CLIP. But these two-stage approaches often suffer from high computational costs, memory inefficiencies. In this paper, we propose ESC-Net, a novel one-stage open-vocabulary segmentation model that leverages the SAM decoder blocks for class-agnostic segmentation within an efficient inference framework. By embedding pseudo prompts generated from image-text correlations into SAM's promptable segmentation framework, ESC-Net achieves refined spatial aggregation for accurate mask predictions. ESC-Net achieves superior performance on standard benchmarks, including ADE20K, PASCAL-VOC, and PASCAL-Context, outperforming prior methods in both efficiency and accuracy. Comprehensive ablation studies further demonstrate its robustness across challenging conditions.
☆ FedMLLM: Federated Fine-tuning MLLM on Multimodal Heterogeneity Data
Multimodal Large Language Models (MLLMs) have made significant advancements, demonstrating powerful capabilities in processing and understanding multimodal data. Fine-tuning MLLMs with Federated Learning (FL) allows for expanding the training data scope by including private data sources, thereby enhancing their practical applicability in privacy-sensitive domains. However, current research remains in the early stage, particularly in addressing the \textbf{multimodal heterogeneities} in real-world applications. In this paper, we introduce a benchmark for evaluating various downstream tasks in the federated fine-tuning of MLLMs within multimodal heterogeneous scenarios, laying the groundwork for the research in the field. Our benchmark encompasses two datasets, five comparison baselines, and four multimodal scenarios, incorporating over ten types of modal heterogeneities. To address the challenges posed by modal heterogeneity, we develop a general FedMLLM framework that integrates four representative FL methods alongside two modality-agnostic strategies. Extensive experimental results show that our proposed FL paradigm improves the performance of MLLMs by broadening the range of training data and mitigating multimodal heterogeneity. Code is available at https://github.com/1xbq1/FedMLLM
☆ VisionPAD: A Vision-Centric Pre-training Paradigm for Autonomous Driving
This paper introduces VisionPAD, a novel self-supervised pre-training paradigm designed for vision-centric algorithms in autonomous driving. In contrast to previous approaches that employ neural rendering with explicit depth supervision, VisionPAD utilizes more efficient 3D Gaussian Splatting to reconstruct multi-view representations using only images as supervision. Specifically, we introduce a self-supervised method for voxel velocity estimation. By warping voxels to adjacent frames and supervising the rendered outputs, the model effectively learns motion cues in the sequential data. Furthermore, we adopt a multi-frame photometric consistency approach to enhance geometric perception. It projects adjacent frames to the current frame based on rendered depths and relative poses, boosting the 3D geometric representation through pure image supervision. Extensive experiments on autonomous driving datasets demonstrate that VisionPAD significantly improves performance in 3D object detection, occupancy prediction and map segmentation, surpassing state-of-the-art pre-training strategies by a considerable margin.
☆ Any-to-3D Generation via Hybrid Diffusion Supervision
Recent progress in 3D object generation has been fueled by the strong priors offered by diffusion models. However, existing models are tailored to specific tasks, accommodating only one modality at a time and necessitating retraining to change modalities. Given an image-to-3D model and a text prompt, a naive approach is to convert text prompts to images and then use the image-to-3D model for generation. This approach is both time-consuming and labor-intensive, resulting in unavoidable information loss during modality conversion. To address this, we introduce XBind, a unified framework for any-to-3D generation using cross-modal pre-alignment techniques. XBind integrates an multimodal-aligned encoder with pre-trained diffusion models to generate 3D objects from any modalities, including text, images, and audio. We subsequently present a novel loss function, termed Modality Similarity (MS) Loss, which aligns the embeddings of the modality prompts and the rendered images, facilitating improved alignment of the 3D objects with multiple modalities. Additionally, Hybrid Diffusion Supervision combined with a Three-Phase Optimization process improves the quality of the generated 3D objects. Extensive experiments showcase XBind's broad generation capabilities in any-to-3D scenarios. To our knowledge, this is the first method to generate 3D objects from any modality prompts. Project page: https://zeroooooooow1440.github.io/.
☆ Cross-Modal Pre-Aligned Method with Global and Local Information for Remote-Sensing Image and Text Retrieval
Remote sensing cross-modal text-image retrieval (RSCTIR) has gained attention for its utility in information mining. However, challenges remain in effectively integrating global and local information due to variations in remote sensing imagery and ensuring proper feature pre-alignment before modal fusion, which affects retrieval accuracy and efficiency. To address these issues, we propose CMPAGL, a cross-modal pre-aligned method leveraging global and local information. Our Gswin transformer block combines local window self-attention and global-local window cross-attention to capture multi-scale features. A pre-alignment mechanism simplifies modal fusion training, improving retrieval performance. Additionally, we introduce a similarity matrix reweighting (SMR) algorithm for reranking, and enhance the triplet loss function with an intra-class distance term to optimize feature learning. Experiments on four datasets, including RSICD and RSITMD, validate CMPAGL's effectiveness, achieving up to 4.65% improvement in R@1 and 2.28% in mean Recall (mR) over state-of-the-art methods.
☆ Anti-Forgetting Adaptation for Unsupervised Person Re-identification TPAMI
Regular unsupervised domain adaptive person re-identification (ReID) focuses on adapting a model from a source domain to a fixed target domain. However, an adapted ReID model can hardly retain previously-acquired knowledge and generalize to unseen data. In this paper, we propose a Dual-level Joint Adaptation and Anti-forgetting (DJAA) framework, which incrementally adapts a model to new domains without forgetting source domain and each adapted target domain. We explore the possibility of using prototype and instance-level consistency to mitigate the forgetting during the adaptation. Specifically, we store a small number of representative image samples and corresponding cluster prototypes in a memory buffer, which is updated at each adaptation step. With the buffered images and prototypes, we regularize the image-to-image similarity and image-to-prototype similarity to rehearse old knowledge. After the multi-step adaptation, the model is tested on all seen domains and several unseen domains to validate the generalization ability of our method. Extensive experiments demonstrate that our proposed method significantly improves the anti-forgetting, generalization and backward-compatible ability of an unsupervised person ReID model.
comment: Accepted to TPAMI
☆ Whats in a Video: Factorized Autoregressive Decoding for Online Dense Video Captioning
Generating automatic dense captions for videos that accurately describe their contents remains a challenging area of research. Most current models require processing the entire video at once. Instead, we propose an efficient, online approach which outputs frequent, detailed and temporally aligned captions, without access to future frames. Our model uses a novel autoregressive factorized decoding architecture, which models the sequence of visual features for each time segment, outputting localized descriptions and efficiently leverages the context from the previous video segments. This allows the model to output frequent, detailed captions to more comprehensively describe the video, according to its actual local content, rather than mimic the training data. Second, we propose an optimization for efficient training and inference, which enables scaling to longer videos. Our approach shows excellent performance compared to both offline and online methods, and uses 20\% less compute. The annotations produced are much more comprehensive and frequent, and can further be utilized in automatic video tagging and in large-scale video data harvesting.
☆ Cross Group Attention and Group-wise Rolling for Multimodal Medical Image Synthesis
Multimodal MR image synthesis aims to generate missing modality image by fusing and mapping a few available MRI data. Most existing approaches typically adopt an image-to-image translation scheme. However, these methods often suffer from sub-optimal performance due to the spatial misalignment between different modalities while they are typically treated as input channels. Therefore, in this paper, we propose an Adaptive Group-wise Interaction Network (AGI-Net) that explores both inter-modality and intra-modality relationships for multimodal MR image synthesis. Specifically, groups are first pre-defined along the channel dimension and then we perform an adaptive rolling for the standard convolutional kernel to capture inter-modality spatial correspondences. At the same time, a cross-group attention module is introduced to fuse information across different channel groups, leading to better feature representation. We evaluated the effectiveness of our model on the publicly available IXI and BraTS2023 datasets, where the AGI-Net achieved state-of-the-art performance for multimodal MR image synthesis. Code will be released.
☆ BrightVAE: Luminosity Enhancement in Underexposed Endoscopic Images
The enhancement of image luminosity is especially critical in endoscopic images. Underexposed endoscopic images often suffer from reduced contrast and uneven brightness, significantly impacting diagnostic accuracy and treatment planning. Internal body imaging is challenging due to uneven lighting and shadowy regions. Enhancing such images is essential since precise image interpretation is crucial for patient outcomes. In this paper, we introduce BrightVAE, an architecture based on the hierarchical Vector Quantized Variational Autoencoder (hierarchical VQ-VAE) tailored explicitly for enhancing luminosity in low-light endoscopic images. Our architecture is meticulously designed to tackle the unique challenges inherent in endoscopic imaging, such as significant variations in illumination and obscured details due to poor lighting conditions. The proposed model emphasizes advanced feature extraction from three distinct viewpoints-incorporating various receptive fields, skip connections, and feature attentions to robustly enhance image quality and support more accurate medical diagnoses. Through rigorous experimental analysis, we demonstrate the effectiveness of these techniques in enhancing low-light endoscopic images. To evaluate the performance of our architecture, we employ three widely recognized metrics-SSIM, PSNR, and LPIPS-specifically on Endo4IE dataset, which consists of endoscopic images. We evaluated our method using the Endo4IE dataset, which consists exclusively of endoscopic images, and showed significant advancements over the state-of-the-art methods for enhancing luminosity in endoscopic imaging.
comment: 18 pages, 6 figures
☆ Differentially Private Adaptation of Diffusion Models via Noisy Aggregated Embeddings
We introduce novel methods for adapting diffusion models under differential privacy (DP) constraints, enabling privacy-preserving style and content transfer without fine-tuning. Traditional approaches to private adaptation, such as DP-SGD, incur significant computational overhead and degrade model performance when applied to large, complex models. Our approach instead leverages embedding-based techniques: Universal Guidance and Textual Inversion (TI), adapted with differentially private mechanisms. We apply these methods to Stable Diffusion for style adaptation using two private datasets: a collection of artworks by a single artist and pictograms from the Paris 2024 Olympics. Experimental results show that the TI-based adaptation achieves superior fidelity in style transfer, even under strong privacy guarantees, while both methods maintain high privacy resilience by employing calibrated noise and subsampling strategies. Our findings demonstrate a feasible and efficient pathway for privacy-preserving diffusion model adaptation, balancing data protection with the fidelity of generated images, and offer insights into embedding-driven methods for DP in generative AI applications.
♻ ☆ Sketched Equivariant Imaging Regularization and Deep Internal Learning for Inverse Problems
Equivariant Imaging (EI) regularization has become the de-facto technique for unsupervised training of deep imaging networks, without any need of ground-truth data. Observing that the EI-based unsupervised training paradigm currently has significant computational redundancy leading to inefficiency in high-dimensional applications, we propose a sketched EI regularization which leverages the randomized sketching techniques for acceleration. We then extend our sketched EI regularization to develop an accelerated deep internal learning framework -- Sketched Equivariant Deep Image Prior (Sk-EI-DIP), which can be efficiently applied for single-image and task-adapted reconstruction. Additionally, for network adaptation tasks, we propose a parameter-efficient approach for accelerating both EI-DIP and Sk-EI-DIP via optimizing only the normalization layers. Our numerical study on X-ray CT image reconstruction tasks demonstrate that our approach can achieve order-of-magnitude computational acceleration over standard EI-based counterpart in single-input setting, and network adaptation at test time.
♻ ☆ Efficient Brain Imaging Analysis for Alzheimer's and Dementia Detection Using Convolution-Derivative Operations
Alzheimer's disease (AD) is characterized by progressive neurodegeneration and results in detrimental structural changes in human brains. Detecting these changes is crucial for early diagnosis and timely intervention of disease progression. Jacobian maps, derived from spatial normalization in voxel-based morphometry (VBM), have been instrumental in interpreting volume alterations associated with AD. However, the computational cost of generating Jacobian maps limits its clinical adoption. In this study, we explore alternative methods and propose Sobel kernel angle difference (SKAD) as a computationally efficient alternative. SKAD is a derivative operation that offers an optimized approach to quantifying volumetric alterations through localized analysis of the gradients. By efficiently extracting gradient amplitude changes at critical spatial regions, this derivative operation captures regional volume variations Evaluation of SKAD over various medical datasets demonstrates that it is 6.3x faster than Jacobian maps while still maintaining comparable accuracy. This makes it an efficient and competitive approach in neuroimaging research and clinical practice.
♻ ☆ MaGS: Reconstructing and Simulating Dynamic 3D Objects with Mesh-adsorbed Gaussian Splatting
3D reconstruction and simulation, although interrelated, have distinct objectives: reconstruction requires a flexible 3D representation that can adapt to diverse scenes, while simulation needs a structured representation to model motion principles effectively. This paper introduces the Mesh-adsorbed Gaussian Splatting (MaGS) method to address this challenge. MaGS constrains 3D Gaussians to roam near the mesh, creating a mutually adsorbed mesh-Gaussian 3D representation. Such representation harnesses both the rendering flexibility of 3D Gaussians and the structured property of meshes. To achieve this, we introduce RMD-Net, a network that learns motion priors from video data to refine mesh deformations, alongside RGD-Net, which models the relative displacement between the mesh and Gaussians to enhance rendering fidelity under mesh constraints. To generalize to novel, user-defined deformations beyond input video without reliance on temporal data, we propose MPE-Net, which leverages inherent mesh information to bootstrap RMD-Net and RGD-Net. Due to the universality of meshes, MaGS is compatible with various deformation priors such as ARAP, SMPL, and soft physics simulation. Extensive experiments on the D-NeRF, DG-Mesh, and PeopleSnapshot datasets demonstrate that MaGS achieves state-of-the-art performance in both reconstruction and simulation.
comment: Project Page: see https://wcwac.github.io/MaGS-page/
♻ ☆ UnMarker: A Universal Attack on Defensive Image Watermarking
Reports regarding the misuse of Generative AI (GenAI) to create deepfakes are frequent. Defensive watermarking enables GenAI providers to hide fingerprints in their images and use them later for deepfake detection. Yet, its potential has not been fully explored. We present UnMarker -- the first practical universal attack on defensive watermarking. Unlike existing attacks, UnMarker requires no detector feedback, no unrealistic knowledge of the watermarking scheme or similar models, and no advanced denoising pipelines that may not be available. Instead, being the product of an in-depth analysis of the watermarking paradigm revealing that robust schemes must construct their watermarks in the spectral amplitudes, UnMarker employs two novel adversarial optimizations to disrupt the spectra of watermarked images, erasing the watermarks. Evaluations against SOTA schemes prove UnMarker's effectiveness. It not only defeats traditional schemes while retaining superior quality compared to existing attacks but also breaks semantic watermarks that alter an image's structure, reducing the best detection rate to $43\%$ and rendering them useless. To our knowledge, UnMarker is the first practical attack on semantic watermarks, which have been deemed the future of defensive watermarking. Our findings show that defensive watermarking is not a viable defense against deepfakes, and we urge the community to explore alternatives.
comment: To appear at IEEE S&P 2025
♻ ☆ Multi-Branch Generative Models for Multichannel Imaging with an Application to PET/CT Synergistic Reconstruction
This paper presents a novel approach for learned synergistic reconstruction of medical images using multi-branch generative models. Leveraging variational autoencoders (VAEs), our model learns from pairs of images simultaneously, enabling effective denoising and reconstruction. Synergistic image reconstruction is achieved by incorporating the trained models in a regularizer that evaluates the distance between the images and the model. We demonstrate the efficacy of our approach on both Modified National Institute of Standards and Technology (MNIST) and positron emission tomography (PET)/computed tomography (CT) datasets, showcasing improved image quality for low-dose imaging. Despite challenges such as patch decomposition and model limitations, our results underscore the potential of generative models for enhancing medical imaging reconstruction.
comment: 12 pages, 17 figures, 2 tables, submitted to IEEE TRPMS
♻ ☆ Leveraging Hallucinations to Reduce Manual Prompt Dependency in Promptable Segmentation NeurIPS 2024
Promptable segmentation typically requires instance-specific manual prompts to guide the segmentation of each desired object. To minimize such a need, task-generic promptable segmentation has been introduced, which employs a single task-generic prompt to segment various images of different objects in the same task. Current methods use Multimodal Large Language Models (MLLMs) to reason detailed instance-specific prompts from a task-generic prompt for improving segmentation accuracy. The effectiveness of this segmentation heavily depends on the precision of these derived prompts. However, MLLMs often suffer hallucinations during reasoning, resulting in inaccurate prompting. While existing methods focus on eliminating hallucinations to improve a model, we argue that MLLM hallucinations can reveal valuable contextual insights when leveraged correctly, as they represent pre-trained large-scale knowledge beyond individual images. In this paper, we utilize hallucinations to mine task-related information from images and verify its accuracy for enhancing precision of the generated prompts. Specifically, we introduce an iterative Prompt-Mask Cycle generation framework (ProMaC) with a prompt generator and a mask generator.The prompt generator uses a multi-scale chain of thought prompting, initially exploring hallucinations for extracting extended contextual knowledge on a test image.These hallucinations are then reduced to formulate precise instance-specific prompts, directing the mask generator to produce masks that are consistent with task semantics by mask semantic alignment. The generated masks iteratively induce the prompt generator to focus more on task-relevant image areas and reduce irrelevant hallucinations, resulting jointly in better prompts and masks. Experiments on 5 benchmarks demonstrate the effectiveness of ProMaC. Code given in https://lwpyh.github.io/ProMaC/.
comment: NeurIPS 2024
♻ ☆ Single color digital H&E staining with In-and-Out Net
Virtual staining streamlines traditional staining procedures by digitally generating stained images from unstained or differently stained images. While conventional staining methods involve time-consuming chemical processes, virtual staining offers an efficient and low infrastructure alternative. Leveraging microscopy-based techniques, such as confocal microscopy, researchers can expedite tissue analysis without the need for physical sectioning. However, interpreting grayscale or pseudo-color microscopic images remains a challenge for pathologists and surgeons accustomed to traditional histologically stained images. To fill this gap, various studies explore digitally simulating staining to mimic targeted histological stains. This paper introduces a novel network, In-and-Out Net, specifically designed for virtual staining tasks. Based on Generative Adversarial Networks (GAN), our model efficiently transforms Reflectance Confocal Microscopy (RCM) images into Hematoxylin and Eosin (H&E) stained images. We enhance nuclei contrast in RCM images using aluminum chloride preprocessing for skin tissues. Training the model with virtual H\&E labels featuring two fluorescence channels eliminates the need for image registration and provides pixel-level ground truth. Our contributions include proposing an optimal training strategy, conducting a comparative analysis demonstrating state-of-the-art performance, validating the model through an ablation study, and collecting perfectly matched input and ground truth images without registration. In-and-Out Net showcases promising results, offering a valuable tool for virtual staining tasks and advancing the field of histological image analysis.
♻ ☆ Scrapping The Web For Early Wildfire Detection: A New Annotated Dataset of Images and Videos of Smoke Plumes In-the-wild
Early wildfire detection is of the utmost importance to enable rapid response efforts, and thus minimize the negative impacts of wildfire spreads. To this end, we present PyroNear-2024, a new dataset composed of both images and videos, allowing for the training and evaluation of smoke plume detection models, including sequential models. The data is sourced from: \textit{(i)} web-scraped videos of wildfires from public networks of cameras for wildfire detection in-the-wild, \text{(ii)} videos from our in-house network of cameras, and \textit{(iii)} a small portion of synthetic and real images. This dataset includes around 150,000 manual annotations on 50,000 images, covering 400 wildfires, \Pyro surpasses existing datasets in size and diversity. It includes data from France, Spain, and the United States. Finally, it is composed of both images and videos, allowing for the training and evaluation of smoke plume detection models, including sequential models. We ran cross-dataset experiments using a lightweight state-of-the-art object detection model and found out the proposed dataset is particularly challenging, with F1 score of around 60%, but more stable than existing datasets. The video part of the dataset can be used to train a lightweight sequential model, improving global recall while maintaining precision. Finally, its use in concordance with other public dataset helps to reach higher results overall. We will make both our code and data available.
comment: Preprint of ongoing work
♻ ☆ ArcSin: Adaptive ranged cosine Similarity injected noise for Language-Driven Visual Tasks
"A data scientist is tasked with developing a low-cost surgical VQA system for a 2-month workshop. Due to data sensitivity, she collects 50 hours of surgical video from a hospital, requiring two months for privacy approvals. Privacy restrictions prevent uploading data to platforms like ChatGPT, so she assembles one annotator and a medical expert to manually create QA pairs. This process takes three weeks and costs over $10,000. The trained model provides accurate responses within the limited data scope but lacks broader generalizability, completing the project in 3 months." To simplify the challenges presented in the scenario above. In this paper, we replace the image input with text for Vision-language training. Inspired by prior noise injection methods to reduce modality gaps, we introduce Adaptive ranged cosine Similarity injected noise (ArcSin). First, we introduce an innovative adaptive noise scale that effectively generates the textual elements with more variability while preserving the original text feature's integrity. Second, a similarity pool strategy is employed, expanding the domain generalization potential by broadening the overall noise scale. This dual strategy effectively broadens the scope of the original domain while safeguarding content integrity. Our empirical results demonstrate that these models closely rival those trained on images in terms of performance. Specifically, our method exhibits substantial improvements over the previous state-of-the-art, achieving gains of 1.9 and 1.1 CIDEr points in S-Cap and M-Cap, respectively. Additionally, we observe increases of 0.5 percentage points (pp), 1.4 pp, and 1.4 pp in accuracy for VQA, VQA-E, and VE, respectively, pushing the boundaries of what is achievable within the constraints of image-trained model benchmarks.
♻ ☆ Controlling Language and Diffusion Models by Transporting Activations
The increasing capabilities of large generative models and their ever more widespread deployment have raised concerns about their reliability, safety, and potential misuse. To address these issues, recent works have proposed to control model generation by steering model activations in order to effectively induce or prevent the emergence of concepts or behaviors in the generated output. In this paper we introduce Activation Transport (AcT), a general framework to steer activations guided by optimal transport theory that generalizes many previous activation-steering works. AcT is modality-agnostic and provides fine-grained control over the model behavior with negligible computational overhead, while minimally impacting model abilities. We experimentally show the effectiveness and versatility of our approach by addressing key challenges in large language models (LLMs) and text-to-image diffusion models (T2Is). For LLMs, we show that AcT can effectively mitigate toxicity, induce arbitrary concepts, and increase their truthfulness. In T2Is, we show how AcT enables fine-grained style control and concept negation.
♻ ☆ Semantically-Prompted Language Models Improve Visual Descriptions NAACL 2024
Language-vision models like CLIP have made significant strides in vision tasks, such as zero-shot image classification (ZSIC). However, generating specific and expressive visual descriptions remains challenging; descriptions produced by current methods are often ambiguous and lacking in granularity. To tackle these issues, we propose V-GLOSS: Visual Glosses, a novel method built upon two key ideas. The first is Semantic Prompting, which conditions a language model on structured semantic knowledge. The second is a new contrastive algorithm that elicits fine-grained distinctions between similar concepts. With both ideas, we demonstrate that V-GLOSS improves visual descriptions and achieves strong results in the zero-shot setting on general and fine-grained image-classification datasets, including ImageNet, STL-10, FGVC Aircraft, and Flowers 102. Moreover, these descriptive capabilities contribute to enhancing image-generation performance. Finally, we introduce a quality-tested silver dataset with descriptions generated with V-GLOSS for all ImageNet classes.
comment: Published at NAACL 2024. See https://aclanthology.org/2024.findings-naacl.267/
♻ ☆ Hierarchical localization with panoramic views and triplet loss functions
The main objective of this paper is to tackle visual localization, which is essential for the safe navigation of mobile robots. The solution we propose employs panoramic images and triplet convolutional neural networks. We seek to exploit the properties of such architectures to address both hierarchical and global localization in indoor environments, which are prone to visual aliasing and other phenomena. Considering their importance in these architectures, a complete comparative evaluation of different triplet loss functions is performed. The experimental section proves that triplet networks can be trained with a relatively low number of images captured under a specific lighting condition and even so, the resulting networks are a robust tool to perform visual localization under dynamic conditions. Our approach has been evaluated against some of these effects, such as changes in the lighting conditions, occlusions, noise and motion blurring. Furthermore, to explore the limits of our approach, triplet networks have been tested in different indoor environments simultaneously. In all the cases, these architectures have demonstrated a great capability to generalize to diverse and challenging scenarios. The code used in the experiments is available at https://github.com/MarcosAlfaro/TripletNetworksIndoorLocalization.git.
♻ ☆ TDSM: Triplet Diffusion for Skeleton-Text Matching in Zero-Shot Action Recognition
We firstly present a diffusion-based action recognition with zero-shot learning for skeleton inputs. In zero-shot skeleton-based action recognition, aligning skeleton features with the text features of action labels is essential for accurately predicting unseen actions. Previous methods focus on direct alignment between skeleton and text latent spaces, but the modality gaps between these spaces hinder robust generalization learning. Motivated from the remarkable performance of text-to-image diffusion models, we leverage their alignment capabilities between different modalities mostly by focusing on the training process during reverse diffusion rather than using their generative power. Based on this, our framework is designed as a Triplet Diffusion for Skeleton-Text Matching (TDSM) method which aligns skeleton features with text prompts through reverse diffusion, embedding the prompts into the unified skeleton-text latent space to achieve robust matching. To enhance discriminative power, we introduce a novel triplet diffusion (TD) loss that encourages our TDSM to correct skeleton-text matches while pushing apart incorrect ones. Our TDSM significantly outperforms the very recent state-of-the-art methods with large margins of 2.36%-point to 13.05%-point, demonstrating superior accuracy and scalability in zero-shot settings through effective skeleton-text matching.
comment: Please visit our project page at https://kaist-viclab.github.io/TDSM_site/
♻ ☆ BillBoard Splatting (BBSplat): Learnable Textured Primitives for Novel View Synthesis
We present billboard Splatting (BBSplat) - a novel approach for 3D scene representation based on textured geometric primitives. BBSplat represents the scene as a set of optimizable textured planar primitives with learnable RGB textures and alpha-maps to control their shape. BBSplat primitives can be used in any Gaussian Splatting pipeline as drop-in replacements for Gaussians. Our method's qualitative and quantitative improvements over 3D and 2D Gaussians are most noticeable when fewer primitives are used, when BBSplat achieves over 1200 FPS. Our novel regularization term encourages textures to have a sparser structure, unlocking an efficient compression that leads to a reduction in storage space of the model. Our experiments show the efficiency of BBSplat on standard datasets of real indoor and outdoor scenes such as Tanks&Temples, DTU, and Mip-NeRF-360. We demonstrate improvements on PSNR, SSIM, and LPIPS metrics compared to the state-of-the-art, especially for the case when fewer primitives are used, which, on the other hand, leads to up to 2 times inference speed improvement for the same rendering quality.
♻ ☆ Sketch-guided Cage-based 3D Gaussian Splatting Deformation
3D Gaussian Splatting (GS) is one of the most promising novel 3D representations that has received great interest in computer graphics and computer vision. While various systems have introduced editing capabilities for 3D GS, such as those guided by text prompts, fine-grained control over deformation remains an open challenge. In this work, we present a novel sketch-guided 3D GS deformation system that allows users to intuitively modify the geometry of a 3D GS model by drawing a silhouette sketch from a single viewpoint. Our approach introduces a new deformation method that combines cage-based deformations with a variant of Neural Jacobian Fields, enabling precise, fine-grained control. Additionally, it leverages large-scale 2D diffusion priors and ControlNet to ensure the generated deformations are semantically plausible. Through a series of experiments, we demonstrate the effectiveness of our method and showcase its ability to animate static 3D GS models as one of its key applications.
comment: 10 pages, 9 figures, project page: https://tianhaoxie.github.io/project/gs_deform/
♻ ☆ TIPO: Text to Image with Text Presampling for Prompt Optimization
TIPO (Text to Image with text pre-sampling for Prompt Optimization) is an innovative framework designed to enhance text-to-image (T2I) generation by language model (LM) for automatic prompt engineering. By refining and extending user-provided prompts, TIPO bridges the gap between simple inputs and the detailed prompts required for high-quality image generation. Unlike previous approaches that rely on Large Language Models (LLMs) or reinforcement learning (RL), TIPO adjusts user input prompts with the distribution of a trained prompt dataset, eliminating the need for complex runtime cost via lightweight model. This pre-sampling approach enables efficient and scalable prompt optimization, grounded in the model's training distribution. Experimental results demonstrate TIPO's effectiveness in improving aesthetic scores, reducing image corruption, and better aligning generated images with dataset distributions. These findings highlight the critical role of prompt engineering in T2I systems and open avenues for broader applications of automatic prompt refinement.
comment: 26 pages, 19 figures
♻ ☆ Fine-tuned Generative Adversarial Network-based Model for Medical Image Super-Resolution
In the field of medical image analysis, there is a substantial need for high-resolution (HR) images to improve diagnostic accuracy. However, it is a challenging task to obtain HR medical images, as it requires advanced instruments and significant time. Deep learning-based super-resolution methods can help to improve the resolution and perceptual quality of low-resolution (LR) medical images. Recently, Generative Adversarial Network (GAN) based methods have shown remarkable performance among deep learning-based super-resolution methods. Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is a practical model for recovering HR images from real-world LR images. In our proposed approach, we use transfer learning technique and fine-tune the pre-trained Real-ESRGAN model using medical image datasets. This technique helps in improving the performance of the model. We employ the high-order degradation model of the Real-ESRGAN which better simulates real-world image degradations. This adaptation allows for generating more realistic degraded medical images, resulting in improved performance. The focus of this paper is on enhancing the resolution and perceptual quality of chest X-ray and retinal images. We use the Tuberculosis chest X-ray (Shenzhen) dataset and the STARE dataset of retinal images for fine-tuning the model. The proposed model achieves superior perceptual quality compared to the Real-ESRGAN model, effectively preserving fine details and generating images with more realistic textures.
♻ ☆ HistoEncoder: a digital pathology foundation model for prostate cancer
Foundation models are trained on massive amounts of data to distinguish complex patterns and can be adapted to a wide range of downstream tasks with minimal computational resources. Here, we develop a foundation model for prostate cancer digital pathology called HistoEncoder by pre-training on 48 million prostate tissue tile images. We demonstrate that HistoEncoder features extracted from tile images with similar histological patterns map closely together in the feature space. HistoEncoder outperforms models pre-trained with natural images, even without fine-tuning or with 1000 times less training data. We describe two use cases that leverage the capabilities of HistoEncoder by fine-tuning the model with a limited amount of data and computational resources. First, we show how HistoEncoder can be used to automatically annotate large-scale datasets with high accuracy. Second, we combine histomics with commonly used clinical nomograms, significantly improving prostate cancer-specific death survival models. Foundation models such as HistoEncoder can allow organizations with limited resources to build effective clinical software tools without needing extensive datasets or significant amounts of computing.
♻ ☆ Data Diet: Can Trimming PET/CT Datasets Enhance Lesion Segmentation?
In this work, we describe our approach to compete in the autoPET3 datacentric track. While conventional wisdom suggests that larger datasets lead to better model performance, recent studies indicate that excluding certain training samples can enhance model accuracy. We find that in the autoPETIII dataset, a model that is trained on the entire dataset exhibits undesirable characteristics by producing a large number of false positives particularly for PSMA-PETs. We counteract this by removing the easiest samples from the training dataset as measured by the model loss before retraining from scratch. Using the proposed approach we manage to drive down the false negative volume and improve upon the baseline model in both false negative volume and dice score on the preliminary test set. Code and pre-trained models are available at github.com/alexanderjaus/autopet3_datadiet.
♻ ☆ Saliency Map-based Image Retrieval using Invariant Krawtchouk Moments
With the widespread adoption of digital devices equipped with cameras and the rapid development of Internet technology, numerous content-based image retrieval systems and novel image feature extraction techniques have emerged in recent years. This paper introduces a saliency map-based image retrieval approach using invariant Krawtchouk moments (SM-IKM) to enhance retrieval speed and accuracy. The proposed method applies a global contrast-based salient region detection algorithm to create a saliency map that effectively isolates the foreground from the background. It then combines multiple orders of invariant Krawtchouk moments (IKM) with local binary patterns (LBPs) and color histograms to comprehensively represent the foreground and background. Additionally, it incorporates LBPs derived from the saliency map to improve discriminative power, facilitating more precise image differentiation. A bag-of-visual-words (BoVW) model is employed to generate a codebook for classification and discrimination. By using compact IKMs in the BoVW framework and integrating a range of region-based feature-including color histograms, LBPs, and saliency map-enhanced LBPs, our proposed SM-IKM achieves efficient and accurate image retrieval. Extensive experiments on publicly available datasets, such as Caltech 101 and Wang, demonstrate that SM-IKM outperforms recent state-of-the-art retrieval methods. The source code for SM-IKM is available at github.com/arnejad/SMIKM.
♻ ☆ WaveMamba: Spatial-Spectral Wavelet Mamba for Hyperspectral Image Classification
Hyperspectral Imaging (HSI) has proven to be a powerful tool for capturing detailed spectral and spatial information across diverse applications. Despite the advancements in Deep Learning (DL) and Transformer architectures for HSI classification, challenges such as computational efficiency and the need for extensive labeled data persist. This paper introduces WaveMamba, a novel approach that integrates wavelet transformation with the spatial-spectral Mamba architecture to enhance HSI classification. WaveMamba captures both local texture patterns and global contextual relationships in an end-to-end trainable model. The Wavelet-based enhanced features are then processed through the state-space architecture to model spatial-spectral relationships and temporal dependencies. The experimental results indicate that WaveMamba surpasses existing models, achieving an accuracy improvement of 4.5\% on the University of Houston dataset and a 2.0\% increase on the Pavia University dataset.
♻ ☆ Cinematic Gaussians: Real-Time HDR Radiance Fields with Depth of Field
Radiance field methods represent the state of the art in reconstructing complex scenes from multi-view photos. However, these reconstructions often suffer from one or both of the following limitations: First, they typically represent scenes in low dynamic range (LDR), which restricts their use to evenly lit environments and hinders immersive viewing experiences. Secondly, their reliance on a pinhole camera model, assuming all scene elements are in focus in the input images, presents practical challenges and complicates refocusing during novel-view synthesis. Addressing these limitations, we present a lightweight method based on 3D Gaussian Splatting that utilizes multi-view LDR images of a scene with varying exposure times, apertures, and focus distances as input to reconstruct a high-dynamic-range (HDR) radiance field. By incorporating analytical convolutions of Gaussians based on a thin-lens camera model as well as a tonemapping module, our reconstructions enable the rendering of HDR content with flexible refocusing capabilities. We demonstrate that our combined treatment of HDR and depth of field facilitates real-time cinematic rendering, outperforming the state of the art.
♻ ☆ TIMotion: Temporal and Interactive Framework for Efficient Human-Human Motion Generation
Human-human motion generation is essential for understanding humans as social beings. Current methods fall into two main categories: single-person-based methods and separate modeling-based methods. To delve into this field, we abstract the overall generation process into a general framework MetaMotion, which consists of two phases: temporal modeling and interaction mixing. For temporal modeling, the single-person-based methods concatenate two people into a single one directly, while the separate modeling-based methods skip the modeling of interaction sequences. The inadequate modeling described above resulted in sub-optimal performance and redundant model parameters. In this paper, we introduce TIMotion (Temporal and Interactive Modeling), an efficient and effective framework for human-human motion generation. Specifically, we first propose Causal Interactive Injection to model two separate sequences as a causal sequence leveraging the temporal and causal properties. Then we present Role-Evolving Scanning to adjust to the change in the active and passive roles throughout the interaction. Finally, to generate smoother and more rational motion, we design Localized Pattern Amplification to capture short-term motion patterns. Extensive experiments on InterHuman and InterX demonstrate that our method achieves superior performance. The project code will be released upon acceptance. Project page: https://aigc-explorer.github.io/TIMotion-page/
comment: Project page: https://aigc-explorer.github.io/TIMotion-page/
♻ ☆ Maps from Motion (MfM): Generating 2D Semantic Maps from Sparse Multi-view Images
World-wide detailed 2D maps require enormous collective efforts. OpenStreetMap is the result of 11 million registered users manually annotating the GPS location of over 1.75 billion entries, including distinctive landmarks and common urban objects. At the same time, manual annotations can include errors and are slow to update, limiting the map's accuracy. Maps from Motion (MfM) is a step forward to automatize such time-consuming map making procedure by computing 2D maps of semantic objects directly from a collection of uncalibrated multi-view images. From each image, we extract a set of object detections, and estimate their spatial arrangement in a top-down local map centered in the reference frame of the camera that captured the image. Aligning these local maps is not a trivial problem, since they provide incomplete, noisy fragments of the scene, and matching detections across them is unreliable because of the presence of repeated pattern and the limited appearance variability of urban objects. We address this with a novel graph-based framework, that encodes the spatial and semantic distribution of the objects detected in each image, and learns how to combine them to predict the objects' poses in a global reference system, while taking into account all possible detection matches and preserving the topology observed in each image. Despite the complexity of the problem, our best model achieves global 2D registration with an average accuracy within 4 meters (i.e., below GPS accuracy) even on sparse sequences with strong viewpoint change, on which COLMAP has an 80% failure rate. We provide extensive evaluation on synthetic and real-world data, showing how the method obtains a solution even in scenarios where standard optimization techniques fail.
♻ ☆ Unveil Benign Overfitting for Transformer in Vision: Training Dynamics, Convergence, and Generalization
Transformers have demonstrated great power in the recent development of large foundational models. In particular, the Vision Transformer (ViT) has brought revolutionary changes to the field of vision, achieving significant accomplishments on the experimental side. However, their theoretical capabilities, particularly in terms of generalization when trained to overfit training data, are still not fully understood. To address this gap, this work delves deeply into the benign overfitting perspective of transformers in vision. To this end, we study the optimization of a Transformer composed of a self-attention layer with softmax followed by a fully connected layer under gradient descent on a certain data distribution model. By developing techniques that address the challenges posed by softmax and the interdependent nature of multiple weights in transformer optimization, we successfully characterized the training dynamics and achieved generalization in post-training. Our results establish a sharp condition that can distinguish between the small test error phase and the large test error regime, based on the signal-to-noise ratio in the data model. The theoretical results are further verified by experimental simulation. To the best of our knowledge, this is the first work to characterize benign overfitting for Transformers.
♻ ☆ STREAM: A Universal State-Space Model for Sparse Geometric Data
Handling sparse and unstructured geometric data, such as point clouds or event-based vision, is a pressing challenge in the field of machine vision. Recently, sequence models such as Transformers and state-space models entered the domain of geometric data. These methods require specialized preprocessing to create a sequential view of a set of points. Furthermore, prior works involving sequence models iterate geometric data with either uniform or learned step sizes, implicitly relying on the model to infer the underlying geometric structure. In this work, we propose to encode geometric structure explicitly into the parameterization of a state-space model. State-space models are based on linear dynamics governed by a one-dimensional variable such as time or a spatial coordinate. We exploit this dynamic variable to inject relative differences of coordinates into the step size of the state-space model. The resulting geometric operation computes interactions between all pairs of N points in O(N) steps. Our model deploys the Mamba selective state-space model with a modified CUDA kernel to efficiently map sparse geometric data to modern hardware. The resulting sequence model, which we call STREAM, achieves competitive results on a range of benchmarks from point-cloud classification to event-based vision and audio classification. STREAM demonstrates a powerful inductive bias for sparse geometric data by improving the PointMamba baseline when trained from scratch on the ModelNet40 and ScanObjectNN point cloud analysis datasets. It further achieves, for the first time, 100% test accuracy on all 11 classes of the DVS128 Gestures dataset.
♻ ☆ BooW-VTON: Boosting In-the-Wild Virtual Try-On via Mask-Free Pseudo Data Training
Image-based virtual try-on is an increasingly popular and important task to generate realistic try-on images of the specific person. Recent methods model virtual try-on as image mask-inpaint task, which requires masking the person image and results in significant loss of spatial information. Especially, for in-the-wild try-on scenarios with complex poses and occlusions, mask-based methods often introduce noticeable artifacts. Our research found that a mask-free approach can fully leverage spatial and lighting information from the original person image, enabling high-quality virtual try-on. Consequently, we propose a novel training paradigm for a mask-free try-on diffusion model. We ensure the model's mask-free try-on capability by creating high-quality pseudo-data and further enhance its handling of complex spatial information through effective in-the-wild data augmentation. Besides, a try-on localization loss is designed to concentrate on try-on area while suppressing garment features in non-try-on areas, ensuring precise rendering of garments and preservation of fore/back-ground. In the end, we introduce BooW-VTON, the mask-free virtual try-on diffusion model, which delivers SOTA try-on quality without parsing cost. Extensive qualitative and quantitative experiments have demonstrated superior performance in wild scenarios with such a low-demand input.
♻ ☆ Self-Ensembling Gaussian Splatting for Few-Shot Novel View Synthesis
3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness for novel view synthesis (NVS). However, the 3DGS model tends to overfit when trained with sparse posed views, limiting its generalization ability to novel views. In this paper, we alleviate the overfitting problem, presenting a Self-Ensembling Gaussian Splatting (SE-GS) approach. Our method encompasses a $\mathbf{\Sigma}$-model and a $\mathbf{\Delta}$-model. The $\mathbf{\Sigma}$-model serves as an ensemble of 3DGS models that generates novel-view images during inference. We achieve the self-ensembling by introducing an uncertainty-aware perturbation strategy at the training state. We complement the $\mathbf{\Sigma}$-model with the $\mathbf{\Delta}$-model, which is dynamically perturbed based on the uncertainties of novel-view renderings across different training steps. The perturbation yields diverse temporal samples in the Gaussian parameter space without additional training costs. The geometry of the $\mathbf{\Sigma}$-model is regularized by penalizing discrepancies between the $\mathbf{\Sigma}$-model and these temporal samples. Therefore, our SE-GS conducts an effective and efficient regularization across a large number of 3DGS models, resulting in a robust ensemble, the $\mathbf{\Sigma}$-model. Our experimental results on the LLFF, Mip-NeRF360, DTU, and MVImgNet datasets show that our approach improves NVS quality with few-shot training views, outperforming existing state-of-the-art methods. The code is released at: https://sailor-z.github.io/projects/SEGS.html.
♻ ☆ LLaNA: Large Language and NeRF Assistant
Multimodal Large Language Models (MLLMs) have demonstrated an excellent understanding of images and 3D data. However, both modalities have shortcomings in holistically capturing the appearance and geometry of objects. Meanwhile, Neural Radiance Fields (NeRFs), which encode information within the weights of a simple Multi-Layer Perceptron (MLP), have emerged as an increasingly widespread modality that simultaneously encodes the geometry and photorealistic appearance of objects. This paper investigates the feasibility and effectiveness of ingesting NeRF into MLLM. We create LLaNA, the first general-purpose NeRF-language assistant capable of performing new tasks such as NeRF captioning and Q\&A. Notably, our method directly processes the weights of the NeRF's MLP to extract information about the represented objects without the need to render images or materialize 3D data structures. Moreover, we build a dataset of NeRFs with text annotations for various NeRF-language tasks with no human intervention. Based on this dataset, we develop a benchmark to evaluate the NeRF understanding capability of our method. Results show that processing NeRF weights performs favourably against extracting 2D or 3D representations from NeRFs.
comment: Under review. Project page: https://andreamaduzzi.github.io/llana/
♻ ☆ From Text to Pose to Image: Improving Diffusion Model Control and Quality NeurIPS 2024
In the last two years, text-to-image diffusion models have become extremely popular. As their quality and usage increase, a major concern has been the need for better output control. In addition to prompt engineering, one effective method to improve the controllability of diffusion models has been to condition them on additional modalities such as image style, depth map, or keypoints. This forms the basis of ControlNets or Adapters. When attempting to apply these methods to control human poses in outputs of text-to-image diffusion models, two main challenges have arisen. The first challenge is generating poses following a wide range of semantic text descriptions, for which previous methods involved searching for a pose within a dataset of (caption, pose) pairs. The second challenge is conditioning image generation on a specified pose while keeping both high aesthetic and high pose fidelity. In this article, we fix these two main issues by introducing a text-to-pose (T2P) generative model alongside a new sampling algorithm, and a new pose adapter that incorporates more pose keypoints for higher pose fidelity. Together, these two new state-of-the-art models enable, for the first time, a generative text-to-pose-to-image framework for higher pose control in diffusion models. We release all models and the code used for the experiments at https://github.com/clement-bonnet/text-to-pose.
comment: Published at the NeurIPS 2024 Workshop on Compositional Learning: Perspectives, Methods, and Paths Forward
♻ ☆ CE-VAE: Capsule Enhanced Variational AutoEncoder for Underwater Image Enhancement WACV
Unmanned underwater image analysis for marine monitoring faces two key challenges: (i) degraded image quality due to light attenuation and (ii) hardware storage constraints limiting high-resolution image collection. Existing methods primarily address image enhancement with approaches that hinge on storing the full-size input. In contrast, we introduce the Capsule Enhanced Variational AutoEncoder (CE-VAE), a novel architecture designed to efficiently compress and enhance degraded underwater images. Our attention-aware image encoder can project the input image onto a latent space representation while being able to run online on a remote device. The only information that needs to be stored on the device or sent to a beacon is a compressed representation. There is a dual-decoder module that performs offline, full-size enhanced image generation. One branch reconstructs spatial details from the compressed latent space, while the second branch utilizes a capsule-clustering layer to capture entity-level structures and complex spatial relationships. This parallel decoding strategy enables the model to balance fine-detail preservation with context-aware enhancements. CE-VAE achieves state-of-the-art performance in underwater image enhancement on six benchmark datasets, providing up to 3x higher compression efficiency than existing approaches. Code available at \url{https://github.com/iN1k1/ce-vae-underwater-image-enhancement}.
comment: Accepted for publication at IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
♻ ☆ Improving the accuracy of automated labeling of specimen images datasets via a confidence-based process
The digitization of natural history collections over the past three decades has unlocked a treasure trove of specimen imagery and metadata. There is great interest in making this data more useful by further labeling it with additional trait data, and modern deep learning machine learning techniques utilizing convolutional neural nets (CNNs) and similar networks show particular promise to reduce the amount of required manual labeling by human experts, making the process much faster and less expensive. However, in most cases, the accuracy of these approaches is too low for reliable utilization of the automatic labeling, typically in the range of 80-85% accuracy. In this paper, we present and validate an approach that can greatly improve this accuracy, essentially by examining the confidence that the network has in the generated label as well as utilizing a user-defined threshold to reject labels that fall below a chosen level. We demonstrate that a naive model that produced 86% initial accuracy can achieve improved performance - over 95% accuracy (rejecting about 40% of the labels) or over 99% accuracy (rejecting about 65%) by selecting higher confidence thresholds. This gives flexibility to adapt existing models to the statistical requirements of various types of research and has the potential to move these automatic labeling approaches from being unusably inaccurate to being an invaluable new tool. After validating the approach in a number of ways, we annotate the reproductive state of a large dataset of over 600,000 herbarium specimens. The analysis of the results points at under-investigated correlations as well as general alignment with known trends. By sharing this new dataset alongside this work, we want to allow ecologists to gather insights for their own research questions, at their chosen point of accuracy/coverage trade-off.
♻ ☆ Generalized Implicit Neural Representation for Efficient MRI Parallel Imaging Reconstruction
High-resolution magnetic resonance imaging (MRI) is essential in clinical diagnosis. However, its long acquisition time remains a critical issue. Parallel imaging (PI) is a common approach to reduce acquisition time by periodically skipping specific k-space lines and reconstructing images from undersampled data. This study presents a generalized implicit neural representation (INR)-based framework for MRI PI reconstruction, addressing limitations commonly encountered in conventional methods, such as subject-specific or undersampling scale-specific requirements and long reconstruction time. The proposed method overcomes these limitations by leveraging prior knowledge of voxel-specific features and integrating a novel scale-embedded encoder module. This encoder generates scale-independent voxel-specific features from undersampled images, enabling robust reconstruction across various undersampling scales without requiring retraining for each specific scale or subject. The framework's INR model treats fully sampled MR images as a continuous function of spatial coordinates and prior voxel-specific features, efficiently reconstructing high-quality MR images from undersampled data. Extensive experiments on publicly available MRI datasets demonstrate the superior performance of the proposed method in reconstructing images at multiple acceleration factors (4x, 5x, and 6x), achieving higher evaluation metrics and visual fidelity compared to state-of-the-art methods. In terms of efficiency, this INR-based approach exhibits notable advantages, including reduced floating point operations and GPU usage, allowing for accelerated processing times while maintaining high reconstruction quality. The generalized design of the model significantly reduces computational resources and time consumption, making it more suitable for real-time clinical applications.
♻ ☆ Self-supervised learning for radio-astronomy source classification: a benchmark
The upcoming Square Kilometer Array (SKA) telescope marks a significant step forward in radio astronomy, presenting new opportunities and challenges for data analysis. Traditional visual models pretrained on optical photography images may not perform optimally on radio interferometry images, which have distinct visual characteristics. Self-Supervised Learning (SSL) offers a promising approach to address this issue, leveraging the abundant unlabeled data in radio astronomy to train neural networks that learn useful representations from radio images. This study explores the application of SSL to radio astronomy, comparing the performance of SSL-trained models with that of traditional models pretrained on natural images, evaluating the importance of data curation for SSL, and assessing the potential benefits of self-supervision to different domain-specific radio astronomy datasets. Our results indicate that, SSL-trained models achieve significant improvements over the baseline in several downstream tasks, especially in the linear evaluation setting; when the entire backbone is fine-tuned, the benefits of SSL are less evident but still outperform pretraining. These findings suggest that SSL can play a valuable role in efficiently enhancing the analysis of radio astronomical data. The trained models and code is available at: \url{https://github.com/dr4thmos/solo-learn-radio}
♻ ☆ AFFSegNet: Adaptive Feature Fusion Segmentation Network for Microtumors and Multi-Organ Segmentation
Medical image segmentation, a crucial task in computer vision, facilitates the automated delineation of anatomical structures and pathologies, supporting clinicians in diagnosis, treatment planning, and disease monitoring. Notably, transformers employing shifted window-based self-attention have demonstrated exceptional performance. However, their reliance on local window attention limits the fusion of local and global contextual information, crucial for segmenting microtumors and miniature organs. To address this limitation, we propose the Adaptive Semantic Segmentation Network (ASSNet), a transformer architecture that effectively integrates local and global features for precise medical image segmentation. ASSNet comprises a transformer-based U-shaped encoder-decoder network. The encoder utilizes shifted window self-attention across five resolutions to extract multi-scale features, which are then propagated to the decoder through skip connections. We introduce an augmented multi-layer perceptron within the encoder to explicitly model long-range dependencies during feature extraction. Recognizing the constraints of conventional symmetrical encoder-decoder designs, we propose an Adaptive Feature Fusion (AFF) decoder to complement our encoder. This decoder incorporates three key components: the Long Range Dependencies (LRD) block, the Multi-Scale Feature Fusion (MFF) block, and the Adaptive Semantic Center (ASC) block. These components synergistically facilitate the effective fusion of multi-scale features extracted by the decoder while capturing long-range dependencies and refining object boundaries. Comprehensive experiments on diverse medical image segmentation tasks, including multi-organ, liver tumor, and bladder tumor segmentation, demonstrate that ASSNet achieves state-of-the-art results. Code and models are available at: \url{https://github.com/lzeeorno/ASSNet}.
comment: 8 pages, 4 figures, 3 tables
♻ ☆ AGLP: A Graph Learning Perspective for Semi-supervised Domain Adaptation
In semi-supervised domain adaptation (SSDA), the model aims to leverage partially labeled target domain data along with a large amount of labeled source domain data to enhance its generalization capability for the target domain. A key advantage of SSDA is its ability to significantly reduce reliance on labeled data, thereby lowering the costs and time associated with data preparation. Most existing SSDA methods utilize information from domain labels and class labels but overlook the structural information of the data. To address this issue, this paper proposes a graph learning perspective (AGLP) for semi-supervised domain adaptation. We apply the graph convolutional network to the instance graph which allows structural information to propagate along the weighted graph edges. The proposed AGLP model has several advantages. First, to the best of our knowledge, this is the first work to model structural information in SSDA. Second, the proposed model can effectively learn domain-invariant and semantic representations, reducing domain discrepancies in SSDA. Extensive experimental results on multiple standard benchmarks demonstrate that the proposed AGLP algorithm outperforms state-of-the-art semi-supervised domain adaptation methods.
comment: 8page
♻ ☆ GraphCL: Graph-based Clustering for Semi-Supervised Medical Image Segmentation
Semi-supervised learning (SSL) has made notable advancements in medical image segmentation (MIS), particularly in scenarios with limited labeled data and significantly enhancing data utilization efficiency. Previous methods primarily focus on complex training strategies to utilize unlabeled data but neglect the importance of graph structural information. Different from existing methods, we propose a graph-based clustering for semi-supervised medical image segmentation (GraphCL) by jointly modeling graph data structure in a unified deep model. The proposed GraphCL model enjoys several advantages. Firstly, to the best of our knowledge, this is the first work to model the data structure information for semi-supervised medical image segmentation (SSMIS). Secondly, to get the clustered features across different graphs, we integrate both pairwise affinities between local image features and raw features as inputs. Extensive experimental results on three standard benchmarks show that the proposed GraphCL algorithm outperforms state-of-the-art semi-supervised medical image segmentation methods.
comment: 9page
♻ ☆ GuideGen: A Text-Guided Framework for Full-torso Anatomy and CT Volume Generation CVPR2025
The recently emerging conditional diffusion models seem promising for mitigating the labor and expenses in building large 3D medical imaging datasets. However, previous studies on 3D CT generation have yet to fully capitalize on semantic and textual conditions, and they have primarily focused on specific organs characterized by a local structure and fixed contrast. In this work, we present GuideGen, a controllable framework that generates anatomical masks and corresponding CT volumes for the entire torso-from chest to pelvis-based on free-form text prompts. Our approach includes three core components: a text-conditional semantic synthesizer for creating realistic full-torso anatomies; a contrast-aware autoencoder for detailed, high-fidelity feature extraction across varying contrast levels; and a latent feature generator that ensures alignment between CT images, anatomical semantics and input prompts. To train and evaluate GuideGen, we compile a multi-modality cancer imaging dataset with paired CT and clinical descriptions from 12 public TCIA datasets and one private real-world dataset. Comprehensive evaluations across generation quality, cross-modality alignment, and data usability on multi-organ and tumor segmentation tasks demonstrate GuideGen's superiority over existing CT generation methods.
comment: submitted to CVPR2025
♻ ☆ Improving EO Foundation Models with Confidence Assessment for enhanced Semantic segmentation
Confidence assessments of semantic segmentation algorithms are important. Ideally, deep learning models should have the ability to predict in advance whether their output is likely to be incorrect. Assessing the confidence levels of model predictions in Earth Observation (EO) classification is essential, as it can enhance semantic segmentation performance and help prevent further exploitation of the results in case of erroneous prediction. The model we developed, Confidence Assessment for enhanced Semantic segmentation (CAS), evaluates confidence at both the segment and pixel levels, providing both labels and confidence scores as output. Our model, CAS, identifies segments with incorrect predicted labels using the proposed combined confidence metric, refines the model, and enhances its performance. This work has significant applications, particularly in evaluating EO Foundation Models on semantic segmentation downstream tasks, such as land cover classification using Sentinel-2 satellite data. The evaluation results show that this strategy is effective and that the proposed model CAS outperforms other baseline models.
comment: 5 pages, 7 figures, 4 tables, Accepted
♻ ☆ FitDiT: Advancing the Authentic Garment Details for High-fidelity Virtual Try-on
Although image-based virtual try-on has made considerable progress, emerging approaches still encounter challenges in producing high-fidelity and robust fitting images across diverse scenarios. These methods often struggle with issues such as texture-aware maintenance and size-aware fitting, which hinder their overall effectiveness. To address these limitations, we propose a novel garment perception enhancement technique, termed FitDiT, designed for high-fidelity virtual try-on using Diffusion Transformers (DiT) allocating more parameters and attention to high-resolution features. First, to further improve texture-aware maintenance, we introduce a garment texture extractor that incorporates garment priors evolution to fine-tune garment feature, facilitating to better capture rich details such as stripes, patterns, and text. Additionally, we introduce frequency-domain learning by customizing a frequency distance loss to enhance high-frequency garment details. To tackle the size-aware fitting issue, we employ a dilated-relaxed mask strategy that adapts to the correct length of garments, preventing the generation of garments that fill the entire mask area during cross-category try-on. Equipped with the above design, FitDiT surpasses all baselines in both qualitative and quantitative evaluations. It excels in producing well-fitting garments with photorealistic and intricate details, while also achieving competitive inference times of 4.57 seconds for a single 1024x768 image after DiT structure slimming, outperforming existing methods.
comment: Project page: https://byjiang.com/FitDiT/
♻ ☆ VLM Agents Generate Their Own Memories: Distilling Experience into Embodied Programs of Thought
Large-scale generative language and vision-language models (LLMs and VLMs) excel in few-shot in-context learning for decision making and instruction following. However, they require high-quality exemplar demonstrations in their context window. In this work, we ask: Can LLMs and VLMs generate their own examples from generic, sub-optimal demonstrations? We propose In-Context Abstraction Learning (ICAL), a method that builds a memory of multimodal experience from sub-optimal demonstrations and human feedback. Given a task demonstration that may contain inefficiencies or mistakes, a VLM abstracts the trajectory into a generalized program of thoughts by correcting inefficient actions and annotating cognitive abstractions: causal relationships, object state changes, temporal subgoals, and task-relevant visual elements. These programs of thought are iteratively improved through human feedback while the agent executes the trajectory in a similar environment. The resulting examples significantly improve decision-making in retrieval-augmented LLM and VLM agents. Moreover, as the agent's library of examples grows, it becomes more efficient, relying less on human feedback and requiring fewer environment interactions per demonstration. Our ICAL agent surpasses the SOTA in dialogue-based instruction following in TEACh, multimodal web agents in VisualWebArena, and action anticipation in Ego4D. In TEACh, we achieve a 12.6% improvement in goal-condition success. In VisualWebArena, our task success rate improves over few-shot GPT4V. In Ego4D action forecasting, we improve over few-shot GPT-4V and remain competitive with supervised models. We show finetuning our retrieval-augmented in-context agent yields additional improvements. Our approach significantly reduces reliance on manual prompt engineering and consistently outperforms in-context learning from action plans that lack such programs of thought.
comment: Project website: http://ical-learning.github.io/
♻ ☆ Deep ReLU Networks Have Surprisingly Simple Polytopes
A ReLU network is a piecewise linear function over polytopes. Figuring out the properties of such polytopes is of fundamental importance for the research and development of neural networks. So far, either theoretical or empirical studies on polytopes only stay at the level of counting their number, which is far from a complete characterization. Here, we propose to study the shapes of polytopes via the number of faces of the polytope. Then, by computing and analyzing the histogram of faces across polytopes, we find that a ReLU network has relatively simple polytopes under both initialization and gradient descent, although these polytopes can be rather diverse and complicated by a specific design. This finding can be appreciated as a kind of generalized implicit bias, subjected to the intrinsic geometric constraint in space partition of a ReLU network. Next, we perform a combinatorial analysis to explain why adding depth does not generate a more complicated polytope by bounding the average number of faces of polytopes with the dimensionality. Our results concretely reveal what kind of simple functions a network learns and what will happen when a network goes deep. Also, by characterizing the shape of polytopes, the number of faces can be a novel leverage for other problems, \textit{e.g.}, serving as a generic tool to explain the power of popular shortcut networks such as ResNet and analyzing the impact of different regularization strategies on a network's space partition.
♻ ☆ Panther: Illuminate the Sight of Multimodal LLMs with Instruction-Guided Visual Prompts
Multimodal large language models (MLLMs) are closing the gap to human visual perception capability rapidly, while, still lag behind on attending to subtle images details or locating small objects precisely, etc. Common schemes to tackle these issues include deploying multiple vision encoders or operating on original high-resolution images. Few studies have concentrated on taking the textual instruction into improving visual representation, resulting in losing focus in some vision-centric tasks, a phenomenon we herein termed as Amblyopia. In this work, we introduce Panther, a MLLM that closely adheres to user instruction and locates targets of interests precisely, with the finesse of a black panther. Specifically, Panther comprises three integral components: Panther-VE, Panther-Bridge, and Panther-Decoder. Panther-VE integrates user instruction information at the early stages of the vision encoder, thereby extracting the most relevant and useful visual representations. The Panther-Bridge module, equipped with powerful filtering capabilities, significantly reduces redundant visual information, leading to a substantial savings in training costs. The Panther-Decoder is versatile and can be employed with any decoder-only architecture of LLMs without discrimination. Experimental results, particularly on vision-centric benchmarks, have demonstrated the effectiveness of Panther.
♻ ☆ Lightweight Frequency Masker for Cross-Domain Few-Shot Semantic Segmentation NeurIPS 2024
Cross-domain few-shot segmentation (CD-FSS) is proposed to first pre-train the model on a large-scale source-domain dataset, and then transfer the model to data-scarce target-domain datasets for pixel-level segmentation. The significant domain gap between the source and target datasets leads to a sharp decline in the performance of existing few-shot segmentation (FSS) methods in cross-domain scenarios. In this work, we discover an intriguing phenomenon: simply filtering different frequency components for target domains can lead to a significant performance improvement, sometimes even as high as 14% mIoU. Then, we delve into this phenomenon for an interpretation, and find such improvements stem from the reduced inter-channel correlation in feature maps, which benefits CD-FSS with enhanced robustness against domain gaps and larger activated regions for segmentation. Based on this, we propose a lightweight frequency masker, which further reduces channel correlations by an Amplitude-Phase Masker (APM) module and an Adaptive Channel Phase Attention (ACPA) module. Notably, APM introduces only 0.01% additional parameters but improves the average performance by over 10%, and ACPA imports only 2.5% parameters but further improves the performance by over 1.5%, which significantly surpasses the state-of-the-art CD-FSS methods.
comment: Accepted by NeurIPS 2024
♻ ☆ SEP: Self-Enhanced Prompt Tuning for Visual-Language Model
Prompt tuning based on Context Optimization (CoOp) effectively adapts visual-language models (VLMs) to downstream tasks by inferring additional learnable prompt tokens. However, these tokens are less discriminative as they are independent of the pre-trained tokens and fail to capture input-specific knowledge, such as class-aware textual or instance-aware visual knowledge. Leveraging the discriminative and generalization capabilities inherent in pre-trained tokens, we introduce a novel approach named Self-Enhanced Prompt Tuning (SEP). The core principle of SEP involves adapting the learnable prompt tokens at each encoder layer from the corresponding self-pretrained tokens, thereby explicitly incorporating discriminative prior knowledge to enhance both textual-level and visual-level embeddings. Furthermore, SEP's self-enhanced tokens not only boost discrimination but also mitigate domain shifts in unseen domains, enhancing generalization. In practice, SEP selects several representative tokens from all pre-trained tokens for each input data at every layer of the text/visual encoders. Subsequently, a Token Fusion Module (TFM) is introduced to generate a self-enhanced token by merging these representative tokens with the learnable tokens using a cross-attention mechanism. This self-enhanced token is then concatenated with all pre-trained tokens, serving as input for subsequent encoder layers to produce the relevant embeddings. Comprehensive evaluations across various benchmarks and tasks confirm SEP's efficacy in prompt tuning. Code: \href{Code}{https://github.com/htyao89/SEP}.
♻ ☆ Addressing a fundamental limitation in deep vision models: lack of spatial attention
The primary aim of this manuscript is to underscore a significant limitation in current deep learning models, particularly vision models. Unlike human vision, which efficiently selects only the essential visual areas for further processing, leading to high speed and low energy consumption, deep vision models process the entire image. In this work, we examine this issue from a broader perspective and propose two solutions that could pave the way for the next generation of more efficient vision models. In the first solution, convolution and pooling operations are selectively applied to altered regions, with a change map sent to subsequent layers. This map indicates which computations need to be repeated. In the second solution, only the modified regions are processed by a semantic segmentation model, and the resulting segments are inserted into the corresponding areas of the previous output map. The code is available at https://github.com/aliborji/spatial_attention.
♻ ☆ Constrained Diffusion Models via Dual Training
Diffusion models have attained prominence for their ability to synthesize a probability distribution for a given dataset via a diffusion process, enabling the generation of new data points with high fidelity. However, diffusion processes are prone to generating samples that reflect biases in a training dataset. To address this issue, we develop constrained diffusion models by imposing diffusion constraints based on desired distributions that are informed by requirements. Specifically, we cast the training of diffusion models under requirements as a constrained distribution optimization problem that aims to reduce the distribution difference between original and generated data while obeying constraints on the distribution of generated data. We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints. To train constrained diffusion models, we develop a dual training algorithm and characterize the optimality of the trained constrained diffusion model. We empirically demonstrate the effectiveness of our constrained models in two constrained generation tasks: (i) we consider a dataset with one or more underrepresented classes where we train the model with constraints to ensure fairly sampling from all classes during inference; (ii) we fine-tune a pre-trained diffusion model to sample from a new dataset while avoiding overfitting.
comment: 31 pages, 4 figures, 4 tables
♻ ☆ Interpreting the Weight Space of Customized Diffusion Models
We investigate the space of weights spanned by a large collection of customized diffusion models. We populate this space by creating a dataset of over 60,000 models, each of which is a base model fine-tuned to insert a different person's visual identity. We model the underlying manifold of these weights as a subspace, which we term weights2weights. We demonstrate three immediate applications of this space that result in new diffusion models -- sampling, editing, and inversion. First, sampling a set of weights from this space results in a new model encoding a novel identity. Next, we find linear directions in this space corresponding to semantic edits of the identity (e.g., adding a beard), resulting in a new model with the original identity edited. Finally, we show that inverting a single image into this space encodes a realistic identity into a model, even if the input image is out of distribution (e.g., a painting). We further find that these linear properties of the diffusion model weight space extend to other visual concepts. Our results indicate that the weight space of fine-tuned diffusion models can behave as an interpretable meta-latent space producing new models.
comment: Project Page: https://snap-research.github.io/weights2weights
Diff-IP2D: Diffusion-Based Hand-Object Interaction Prediction on Egocentric Videos
Understanding how humans would behave during hand-object interaction is vital for applications in service robot manipulation and extended reality. To achieve this, some recent works have been proposed to simultaneously forecast hand trajectories and object affordances on human egocentric videos. The joint prediction serves as a comprehensive representation of future hand-object interactions in 2D space, indicating potential human motion and motivation. However, the existing approaches mostly adopt the autoregressive paradigm for unidirectional prediction, which lacks mutual constraints within the holistic future sequence, and accumulates errors along the time axis. Meanwhile, these works basically overlook the effect of camera egomotion on first-person view predictions. To address these limitations, we propose a novel diffusion-based interaction prediction method, namely Diff-IP2D, to forecast future hand trajectories and object affordances concurrently in an iterative non-autoregressive manner. We transform the sequential 2D images into latent feature space and design a denoising diffusion model to predict future latent interaction features conditioned on past ones. Motion features are further integrated into the conditional denoising process to enable Diff-IP2D aware of the camera wearer's dynamics for more accurate interaction prediction. Extensive experiments demonstrate that our method significantly outperforms the state-of-the-art baselines on both the off-the-shelf metrics and our newly proposed evaluation protocol. This highlights the efficacy of leveraging a generative paradigm for 2D hand-object interaction prediction. The code of Diff-IP2D is released as open source at https://github.com/IRMVLab/Diff-IP2D.
Boosting Weakly-Supervised Referring Image Segmentation via Progressive Comprehension NeurIPS2024
This paper explores the weakly-supervised referring image segmentation (WRIS) problem, and focuses on a challenging setup where target localization is learned directly from image-text pairs. We note that the input text description typically already contains detailed information on how to localize the target object, and we also observe that humans often follow a step-by-step comprehension process (\ie, progressively utilizing target-related attributes and relations as cues) to identify the target object. Hence, we propose a novel Progressive Comprehension Network (PCNet) to leverage target-related textual cues from the input description for progressively localizing the target object. Specifically, we first use a Large Language Model (LLM) to decompose the input text description into short phrases. These short phrases are taken as target-related cues and fed into a Conditional Referring Module (CRM) in multiple stages, to allow updating the referring text embedding and enhance the response map for target localization in a multi-stage manner. Based on the CRM, we then propose a Region-aware Shrinking (RaS) loss to constrain the visual localization to be conducted progressively in a coarse-to-fine manner across different stages. Finally, we introduce an Instance-aware Disambiguation (IaD) loss to suppress instance localization ambiguity by differentiating overlapping response maps generated by different referring texts on the same image. Extensive experiments show that our method outperforms SOTA methods on three common benchmarks.
comment: Accepted by NeurIPS2024
♻ ☆ EMatch: A Unified Framework for Event-based Optical Flow and Stereo Matching
Event cameras have shown promise in vision applications like optical flow estimation and stereo matching, with many specialized architectures leveraging the asynchronous and sparse nature of event data. However, existing works only focus event data within the confines of task-specific domains, overlooking how tasks across the temporal and spatial domains can reinforce each other. In this paper, we reformulate event-based flow estimation and stereo matching as a unified dense correspondence matching problem, enabling us to solve both tasks within a single model by directly matching features in a shared representation space. Specifically, our method utilizes a Temporal Recurrent Network to aggregate event features across temporal or spatial domains, and a Spatial Contextual Attention to enhance knowledge transfer across event flows via temporal or spatial interactions. By utilizing a shared feature similarities module that integrates knowledge from event streams via temporal or spatial interactions, our network performs optical flow estimation from temporal event segment inputs and stereo matching from spatial event segment inputs simultaneously. We demonstrate that our unified model inherently supports multi-task fusion and cross-task transfer. Without the need for retraining for specific task, our model can effectively handle both optical flow and stereo estimation, achieving state-of-the-art performance on both tasks.
♻ ☆ Exploring the Boundaries of Semi-Supervised Facial Expression Recognition using In-Distribution, Out-of-Distribution, and Unconstrained Data
Deep learning-based methods have been the key driving force behind much of the recent success of facial expression recognition (FER) systems. However, the need for large amounts of labelled data remains a challenge. Semi-supervised learning offers a way to overcome this limitation, allowing models to learn from a small amount of labelled data along with a large unlabelled dataset. While semi-supervised learning has shown promise in FER, most current methods from general computer vision literature have not been explored in the context of FER. In this work, we present a comprehensive study on 11 of the most recent semi-supervised methods, in the context of FER, namely Pi-model, Pseudo-label, Mean Teacher, VAT, UDA, MixMatch, ReMixMatch, FlexMatch, CoMatch, and CCSSL. Our investigation covers semi-supervised learning from in-distribution, out-of-distribution, unconstrained, and very small unlabelled data. Our evaluation includes five FER datasets plus one large face dataset for unconstrained learning. Our results demonstrate that FixMatch consistently achieves better performance on in-distribution unlabelled data, while ReMixMatch stands out among all methods for out-of-distribution, unconstrained, and scarce unlabelled data scenarios. Another significant observation is that with an equal number of labelled samples, semi-supervised learning delivers a considerable improvement over supervised learning, regardless of whether the unlabelled data is in-distribution, out-of-distribution, or unconstrained. We also conduct sensitivity analyses on critical hyper-parameters for the two best methods of each setting. To facilitate reproducibility and further development, we make our code publicly available at: github.com/ShuvenduRoy/SSL_FER_OOD.
comment: Accepted in IEEE Transactions on Affective Computing (TAFFC), 2024
♻ ☆ Understanding Generalizability of Diffusion Models Requires Rethinking the Hidden Gaussian Structure
In this work, we study the generalizability of diffusion models by looking into the hidden properties of the learned score functions, which are essentially a series of deep denoisers trained on various noise levels. We observe that as diffusion models transition from memorization to generalization, their corresponding nonlinear diffusion denoisers exhibit increasing linearity. This discovery leads us to investigate the linear counterparts of the nonlinear diffusion models, which are a series of linear models trained to match the function mappings of the nonlinear diffusion denoisers. Surprisingly, these linear denoisers are approximately the optimal denoisers for a multivariate Gaussian distribution characterized by the empirical mean and covariance of the training dataset. This finding implies that diffusion models have the inductive bias towards capturing and utilizing the Gaussian structure (covariance information) of the training dataset for data generation. We empirically demonstrate that this inductive bias is a unique property of diffusion models in the generalization regime, which becomes increasingly evident when the model's capacity is relatively small compared to the training dataset size. In the case that the model is highly overparameterized, this inductive bias emerges during the initial training phases before the model fully memorizes its training data. Our study provides crucial insights into understanding the notable strong generalization phenomenon recently observed in real-world diffusion models.
♻ ☆ Adversarial Poisoning Attack on Quantum Machine Learning Models
With the growing interest in Quantum Machine Learning (QML) and the increasing availability of quantum computers through cloud providers, addressing the potential security risks associated with QML has become an urgent priority. One key concern in the QML domain is the threat of data poisoning attacks in the current quantum cloud setting. Adversarial access to training data could severely compromise the integrity and availability of QML models. Classical data poisoning techniques require significant knowledge and training to generate poisoned data, and lack noise resilience, making them ineffective for QML models in the Noisy Intermediate Scale Quantum (NISQ) era. In this work, we first propose a simple yet effective technique to measure intra-class encoder state similarity (ESS) by analyzing the outputs of encoding circuits. Leveraging this approach, we introduce a quantum indiscriminate data poisoning attack, QUID. Through extensive experiments conducted in both noiseless and noisy environments (e.g., IBM\_Brisbane's noise), across various architectures and datasets, QUID achieves up to $92\%$ accuracy degradation in model performance compared to baseline models and up to $75\%$ accuracy degradation compared to random label-flipping. We also tested QUID against state-of-the-art classical defenses, with accuracy degradation still exceeding $50\%$, demonstrating its effectiveness. This work represents the first attempt to reevaluate data poisoning attacks in the context of QML.
♻ ☆ Large Language Models for Lossless Image Compression: Next-Pixel Prediction in Language Space is All You Need
We have recently witnessed that ``Intelligence" and `` Compression" are the two sides of the same coin, where the language large model (LLM) with unprecedented intelligence is a general-purpose lossless compressor for various data modalities. This attribute particularly appeals to the lossless image compression community, given the increasing need to compress high-resolution images in the current streaming media era. Consequently, a spontaneous envision emerges: Can the compression performance of the LLM elevate lossless image compression to new heights? However, our findings indicate that the naive application of LLM-based lossless image compressors suffers from a considerable performance gap compared with existing state-of-the-art (SOTA) codecs on common benchmark datasets. In light of this, we are dedicated to fulfilling the unprecedented intelligence (compression) capacity of the LLM for lossless image compression tasks, thereby bridging the gap between theoretical and practical compression performance. Specifically, we propose P$^{2}$-LLM, a next-pixel prediction-based LLM, which integrates various elaborated insights and methodologies, \textit{e.g.,} pixel-level priors, the in-context ability of LLM, and a pixel-level semantic preservation strategy, to enhance the understanding capacity of pixel sequences for better next-pixel predictions. Extensive experiments on benchmark datasets demonstrate that P$^{2}$-LLM can beat SOTA classical and learned codecs.
♻ ☆ Real-world Image Dehazing with Coherence-based Label Generator and Cooperative Unfolding Network NeurIPS 2024
Real-world Image Dehazing (RID) aims to alleviate haze-induced degradation in real-world settings. This task remains challenging due to the complexities in accurately modeling real haze distributions and the scarcity of paired real-world data. To address these challenges, we first introduce a cooperative unfolding network that jointly models atmospheric scattering and image scenes, effectively integrating physical knowledge into deep networks to restore haze-contaminated details. Additionally, we propose the first RID-oriented iterative mean-teacher framework, termed the Coherence-based Label Generator, to generate high-quality pseudo labels for network training. Specifically, we provide an optimal label pool to store the best pseudo-labels during network training, leveraging both global and local coherence to select high-quality candidates and assign weights to prioritize haze-free regions. We verify the effectiveness of our method, with experiments demonstrating that it achieves state-of-the-art performance on RID tasks. Code will be available at \url{https://github.com/cnyvfang/CORUN-Colabator}.
comment: Accepted at NeurIPS 2024 as a Spotlight Paper
♻ ☆ Quantization without Tears
Deep neural networks, while achieving remarkable success across diverse tasks, demand significant resources, including computation, GPU memory, bandwidth, storage, and energy. Network quantization, as a standard compression and acceleration technique, reduces storage costs and enables potential inference acceleration by discretizing network weights and activations into a finite set of integer values. However, current quantization methods are often complex and sensitive, requiring extensive task-specific hyperparameters, where even a single misconfiguration can impair model performance, limiting generality across different models and tasks. In this paper, we propose Quantization without Tears (QwT), a method that simultaneously achieves quantization speed, accuracy, simplicity, and generality. The key insight of QwT is to incorporate a lightweight additional structure into the quantized network to mitigate information loss during quantization. This structure consists solely of a small set of linear layers, keeping the method simple and efficient. More importantly, it provides a closed-form solution, allowing us to improve accuracy effortlessly under 2 minutes. Extensive experiments across various vision, language, and multimodal tasks demonstrate that QwT is both highly effective and versatile. In fact, our approach offers a robust solution for network quantization that combines simplicity, accuracy, and adaptability, which provides new insights for the design of novel quantization paradigms.
♻ ☆ PointRecon: Online Point-based 3D Reconstruction via Ray-based 2D-3D Matching
We propose a novel online, point-based 3D reconstruction method from posed monocular RGB videos. Our model maintains a global point cloud representation of the scene, continuously updating the features and 3D locations of points as new images are observed. It expands the point cloud with newly detected points while carefully removing redundancies. The point cloud updates and the depth predictions for new points are achieved through a novel ray-based 2D-3D feature matching technique, which is robust against errors in previous point position predictions. In contrast to offline methods, our approach processes infinite-length sequences and provides real-time updates. Additionally, the point cloud imposes no pre-defined resolution or scene size constraints, and its unified global representation ensures view consistency across perspectives. Experiments on the ScanNet dataset show that our method achieves comparable quality among online MVS approaches. Project page: https://arthurhero.github.io/projects/pointrecon
♻ ☆ IRASNet: Improved Feature-Level Clutter Reduction for Domain Generalized SAR-ATR
Recently, computer-aided design models and electromagnetic simulations have been used to augment synthetic aperture radar (SAR) data for deep learning. However, an automatic target recognition (ATR) model struggles with domain shift when using synthetic data because the model learns specific clutter patterns present in such data, which disturbs performance when applied to measured data with different clutter distributions. This study proposes a framework particularly designed for domain-generalized SAR-ATR called IRASNet, enabling effective feature-level clutter reduction and domain-invariant feature learning. First, we propose a clutter reduction module (CRM) that maximizes the signal-to-clutter ratio on feature maps. The module reduces the impact of clutter at the feature level while preserving target and shadow information, thereby improving ATR performance. Second, we integrate adversarial learning with CRM to extract clutter-reduced domain-invariant features. The integration bridges the gap between synthetic and measured datasets without requiring measured data during training. Third, we improve feature extraction from target and shadow regions by implementing a positional supervision task using mask ground truth encoding. The improvement enhances the ability of the model to discriminate between classes. Our proposed IRASNet presents new state-of-the-art public SAR datasets utilizing target and shadow information to achieve superior performance across various test conditions. IRASNet not only enhances generalization performance but also significantly improves feature-level clutter reduction, making it a valuable advancement in the field of radar image pattern recognition.
comment: 16 pages, 11 figures
Machine Learning 150
☆ WildLMa: Long Horizon Loco-Manipulation in the Wild
`In-the-wild' mobile manipulation aims to deploy robots in diverse real-world environments, which requires the robot to (1) have skills that generalize across object configurations; (2) be capable of long-horizon task execution in diverse environments; and (3) perform complex manipulation beyond pick-and-place. Quadruped robots with manipulators hold promise for extending the workspace and enabling robust locomotion, but existing results do not investigate such a capability. This paper proposes WildLMa with three components to address these issues: (1) adaptation of learned low-level controller for VR-enabled whole-body teleoperation and traversability; (2) WildLMa-Skill -- a library of generalizable visuomotor skills acquired via imitation learning or heuristics and (3) WildLMa-Planner -- an interface of learned skills that allow LLM planners to coordinate skills for long-horizon tasks. We demonstrate the importance of high-quality training data by achieving higher grasping success rate over existing RL baselines using only tens of demonstrations. WildLMa exploits CLIP for language-conditioned imitation learning that empirically generalizes to objects unseen in training demonstrations. Besides extensive quantitative evaluation, we qualitatively demonstrate practical robot applications, such as cleaning up trash in university hallways or outdoor terrains, operating articulated objects, and rearranging items on a bookshelf.
comment: Website: https://wildlma.github.io/
☆ Health AI Developer Foundations
Robust medical Machine Learning (ML) models have the potential to revolutionize healthcare by accelerating clinical research, improving workflows and outcomes, and producing novel insights or capabilities. Developing such ML models from scratch is cost prohibitive and requires substantial compute, data, and time (e.g., expert labeling). To address these challenges, we introduce Health AI Developer Foundations (HAI-DEF), a suite of pre-trained, domain-specific foundation models, tools, and recipes to accelerate building ML for health applications. The models cover various modalities and domains, including radiology (X-rays and computed tomography), histopathology, dermatological imaging, and audio. These models provide domain specific embeddings that facilitate AI development with less labeled data, shorter training times, and reduced computational costs compared to traditional approaches. In addition, we utilize a common interface and style across these models, and prioritize usability to enable developers to integrate HAI-DEF efficiently. We present model evaluations across various tasks and conclude with a discussion of their application and evaluation, covering the importance of ensuring efficacy, fairness, and equity. Finally, while HAI-DEF and specifically the foundation models lower the barrier to entry for ML in healthcare, we emphasize the importance of validation with problem- and population-specific data for each desired usage setting. This technical report will be updated over time as more modalities and features are added.
comment: 16 pages, 8 figures
☆ PRIMUS: Pretraining IMU Encoders with Multimodal Self-Supervision NeurIPS 2024
Sensing human motions through Inertial Measurement Units (IMUs) embedded in personal devices has enabled significant applications in health and wellness. While labeled IMU data is scarce, we can collect unlabeled or weakly labeled IMU data to model human motions. For video or text modalities, the "pretrain and adapt" approach utilizes large volumes of unlabeled or weakly labeled data for pretraining, building a strong feature extractor, followed by adaptation to specific tasks using limited labeled data. This approach has not been widely adopted in the IMU domain for two reasons: (1) pretraining methods are poorly understood in the context of IMU, and (2) open-source pretrained models that generalize across datasets are rarely publicly available. In this paper, we aim to address the first issue by proposing PRIMUS, a method for PRetraining IMU encoderS. We conduct a systematic and unified evaluation of various self-supervised and multimodal learning pretraining objectives. Our findings indicate that using PRIMUS, which combines self-supervision, multimodal supervision, and nearest-neighbor supervision, can significantly enhance downstream performance. With fewer than 500 labeled samples per class, PRIMUS effectively enhances downstream performance by up to 15% in held-out test data, compared to the state-of-the-art multimodal training method. To benefit the broader community, our code and pre-trained IMU encoders will be made publicly available at github.com/nokia-bell-labs upon publication.
comment: Also presented under the title "PRIMUS: Pretraining IMU Encoders with Multimodal and Self-Supervised Learning" at NeurIPS 2024 TSALM Workshop (Time Series in the Age of Large Models)
☆ RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts
Frontier AI safety policies highlight automation of AI research and development (R&D) by AI agents as an important capability to anticipate. However, there exist few evaluations for AI R&D capabilities, and none that are highly realistic and have a direct comparison to human performance. We introduce RE-Bench (Research Engineering Benchmark, v1), which consists of 7 challenging, open-ended ML research engineering environments and data from 71 8-hour attempts by 61 distinct human experts. We confirm that our experts make progress in the environments given 8 hours, with 82% of expert attempts achieving a non-zero score and 24% matching or exceeding our strong reference solutions. We compare humans to several public frontier models through best-of-k with varying time budgets and agent designs, and find that the best AI agents achieve a score 4x higher than human experts when both are given a total time budget of 2 hours per environment. However, humans currently display better returns to increasing time budgets, narrowly exceeding the top AI agent scores given an 8-hour budget, and achieving 2x the score of the top AI agent when both are given 32 total hours (across different attempts). Qualitatively, we find that modern AI agents possess significant expertise in many ML topics -- e.g. an agent wrote a faster custom Triton kernel than any of our human experts' -- and can generate and test solutions over ten times faster than humans, at much lower cost. We open-source the evaluation environments, human expert data, analysis code and agent trajectories to facilitate future research.
☆ Efficient Pruning of Text-to-Image Models: Insights from Pruning Stable Diffusion
As text-to-image models grow increasingly powerful and complex, their burgeoning size presents a significant obstacle to widespread adoption, especially on resource-constrained devices. This paper presents a pioneering study on post-training pruning of Stable Diffusion 2, addressing the critical need for model compression in text-to-image domain. Our study tackles the pruning techniques for the previously unexplored multi-modal generation models, and particularly examines the pruning impact on the textual component and the image generation component separately. We conduct a comprehensive comparison on pruning the model or the single component of the model in various sparsities. Our results yield previously undocumented findings. For example, contrary to established trends in language model pruning, we discover that simple magnitude pruning outperforms more advanced techniques in text-to-image context. Furthermore, our results show that Stable Diffusion 2 can be pruned to 38.5% sparsity with minimal quality loss, achieving a significant reduction in model size. We propose an optimal pruning configuration that prunes the text encoder to 47.5% and the diffusion generator to 35%. This configuration maintains image generation quality while substantially reducing computational requirements. In addition, our work uncovers intriguing questions about information encoding in text-to-image models: we observe that pruning beyond certain thresholds leads to sudden performance drops (unreadable images), suggesting that specific weights encode critical semantics information. This finding opens new avenues for future research in model compression, interoperability, and bias identification in text-to-image models. By providing crucial insights into the pruning behavior of text-to-image models, our study lays the groundwork for developing more efficient and accessible AI-driven image generation systems
☆ Learnable Activation Functions in Physics-Informed Neural Networks for Solving Partial Differential Equations
We investigate the use of learnable activation functions in Physics-Informed Neural Networks (PINNs) for solving Partial Differential Equations (PDEs). Specifically, we compare the efficacy of traditional Multilayer Perceptrons (MLPs) with fixed and learnable activations against Kolmogorov-Arnold Networks (KANs), which employ learnable basis functions. Physics-informed neural networks (PINNs) have emerged as an effective method for directly incorporating physical laws into the learning process, offering a data-efficient solution for both the forward and inverse problems associated with PDEs. However, challenges such as effective training and spectral bias, where low-frequency components are learned more effectively, often limit their applicability to problems characterized by rapid oscillations or sharp transitions. By employing different activation or basis functions on MLP and KAN, we assess their impact on convergence behavior and spectral bias mitigation, and the accurate approximation of PDEs. The findings offer insights into the design of neural network architectures that balance training efficiency, convergence speed, and test accuracy for PDE solvers. By evaluating the influence of activation or basis function choices, this work provides guidelines for developing more robust and accurate PINN models. The source code and pre-trained models used in this study are made publicly available to facilitate reproducibility and future exploration.
☆ Effective Littlestone Dimension
Delle Rose et al.~(COLT'23) introduced an effective version of the Vapnik-Chervonenkis dimension, and showed that it characterizes improper PAC learning with total computable learners. In this paper, we introduce and study a similar effectivization of the notion of Littlestone dimension. Finite effective Littlestone dimension is a necessary condition for computable online learning but is not a sufficient one -- which we already establish for classes of the effective Littlestone dimension 2. However, the effective Littlestone dimension equals the optimal mistake bound for computable learners in two special cases: a) for classes of Littlestone dimension 1 and b) when the learner receives as additional information an upper bound on the numbers to be guessed. Interestingly, finite effective Littlestone dimension also guarantees that the class consists only of computable functions.
comment: 12 pages
☆ About Time: Advances, Challenges, and Outlooks of Action Understanding
We have witnessed impressive advances in video action understanding. Increased dataset sizes, variability, and computation availability have enabled leaps in performance and task diversification. Current systems can provide coarse- and fine-grained descriptions of video scenes, extract segments corresponding to queries, synthesize unobserved parts of videos, and predict context. This survey comprehensively reviews advances in uni- and multi-modal action understanding across a range of tasks. We focus on prevalent challenges, overview widely adopted datasets, and survey seminal works with an emphasis on recent advances. We broadly distinguish between three temporal scopes: (1) recognition tasks of actions observed in full, (2) prediction tasks for ongoing partially observed actions, and (3) forecasting tasks for subsequent unobserved action. This division allows us to identify specific action modeling and video representation challenges. Finally, we outline future directions to address current shortcomings.
AttriBoT: A Bag of Tricks for Efficiently Approximating Leave-One-Out Context Attribution
The influence of contextual input on the behavior of large language models (LLMs) has prompted the development of context attribution methods that aim to quantify each context span's effect on an LLM's generations. The leave-one-out (LOO) error, which measures the change in the likelihood of the LLM's response when a given span of the context is removed, provides a principled way to perform context attribution, but can be prohibitively expensive to compute for large models. In this work, we introduce AttriBoT, a series of novel techniques for efficiently computing an approximation of the LOO error for context attribution. Specifically, AttriBoT uses cached activations to avoid redundant operations, performs hierarchical attribution to reduce computation, and emulates the behavior of large target models with smaller proxy models. Taken together, AttriBoT can provide a >300x speedup while remaining more faithful to a target model's LOO error than prior context attribution methods. This stark increase in performance makes computing context attributions for a given response 30x faster than generating the response itself, empowering real-world applications that require computing attributions at scale. We release a user-friendly and efficient implementation of AttriBoT to enable efficient LLM interpretability as well as encourage future development of efficient context attribution methods.
comment: 29 pages, 11 figures
☆ What You See is Not What You Get: Neural Partial Differential Equations and The Illusion of Learning
Differentiable Programming for scientific machine learning (SciML) has recently seen considerable interest and success, as it directly embeds neural networks inside PDEs, often called as NeuralPDEs, derived from first principle physics. Therefore, there is a widespread assumption in the community that NeuralPDEs are more trustworthy and generalizable than black box models. However, like any SciML model, differentiable programming relies predominantly on high-quality PDE simulations as "ground truth" for training. However, mathematics dictates that these are only discrete numerical approximations of the true physics. Therefore, we ask: Are NeuralPDEs and differentiable programming models trained on PDE simulations as physically interpretable as we think? In this work, we rigorously attempt to answer these questions, using established ideas from numerical analysis, experiments, and analysis of model Jacobians. Our study shows that NeuralPDEs learn the artifacts in the simulation training data arising from the discretized Taylor Series truncation error of the spatial derivatives. Additionally, NeuralPDE models are systematically biased, and their generalization capability is likely enabled by a fortuitous interplay of numerical dissipation and truncation error in the training dataset and NeuralPDE, which seldom happens in practical applications. This bias manifests aggressively even in relatively accessible 1-D equations, raising concerns about the veracity of differentiable programming on complex, high-dimensional, real-world PDEs, and in dataset integrity of foundation models. Further, we observe that the initial condition constrains the truncation error in initial-value problems in PDEs, thereby exerting limitations to extrapolation. Finally, we demonstrate that an eigenanalysis of model weights can indicate a priori if the model will be inaccurate for out-of-distribution testing.
☆ Context-Aware Multimodal Pretraining
Large-scale multimodal representation learning successfully optimizes for zero-shot transfer at test time. Yet the standard pretraining paradigm (contrastive learning on large amounts of image-text data) does not explicitly encourage representations to support few-shot adaptation. In this work, we propose a simple, but carefully designed extension to multimodal pretraining which enables representations to accommodate additional context. Using this objective, we show that vision-language models can be trained to exhibit significantly increased few-shot adaptation: across 21 downstream tasks, we find up to four-fold improvements in test-time sample efficiency, and average few-shot adaptation gains of over 5%, while retaining zero-shot generalization performance across model scales and training durations. In particular, equipped with simple, training-free, metric-based adaptation mechanisms, our representations easily surpass more complex and expensive optimization-based schemes, vastly simplifying generalization to new domains.
☆ OminiControl: Minimal and Universal Control for Diffusion Transformer
In this paper, we introduce OminiControl, a highly versatile and parameter-efficient framework that integrates image conditions into pre-trained Diffusion Transformer (DiT) models. At its core, OminiControl leverages a parameter reuse mechanism, enabling the DiT to encode image conditions using itself as a powerful backbone and process them with its flexible multi-modal attention processors. Unlike existing methods, which rely heavily on additional encoder modules with complex architectures, OminiControl (1) effectively and efficiently incorporates injected image conditions with only ~0.1% additional parameters, and (2) addresses a wide range of image conditioning tasks in a unified manner, including subject-driven generation and spatially-aligned conditions such as edges, depth, and more. Remarkably, these capabilities are achieved by training on images generated by the DiT itself, which is particularly beneficial for subject-driven generation. Extensive evaluations demonstrate that OminiControl outperforms existing UNet-based and DiT-adapted models in both subject-driven and spatially-aligned conditional generation. Additionally, we release our training dataset, Subjects200K, a diverse collection of over 200,000 identity-consistent images, along with an efficient data synthesis pipeline to advance research in subject-consistent generation.
☆ RED: Effective Trajectory Representation Learning with Comprehensive Information
Trajectory representation learning (TRL) maps trajectories to vectors that can then be used for various downstream tasks, including trajectory similarity computation, trajectory classification, and travel-time estimation. However, existing TRL methods often produce vectors that, when used in downstream tasks, yield insufficiently accurate results. A key reason is that they fail to utilize the comprehensive information encompassed by trajectories. We propose a self-supervised TRL framework, called RED, which effectively exploits multiple types of trajectory information. Overall, RED adopts the Transformer as the backbone model and masks the constituting paths in trajectories to train a masked autoencoder (MAE). In particular, RED considers the moving patterns of trajectories by employing a Road-aware masking strategy} that retains key paths of trajectories during masking, thereby preserving crucial information of the trajectories. RED also adopts a spatial-temporal-user joint Embedding scheme to encode comprehensive information when preparing the trajectories as model inputs. To conduct training, RED adopts Dual-objective task learning}: the Transformer encoder predicts the next segment in a trajectory, and the Transformer decoder reconstructs the entire trajectory. RED also considers the spatial-temporal correlations of trajectories by modifying the attention mechanism of the Transformer. We compare RED with 9 state-of-the-art TRL methods for 4 downstream tasks on 3 real-world datasets, finding that RED can usually improve the accuracy of the best-performing baseline by over 5%.
comment: This paper is accepted by VLDB2025
☆ Dimension-independent rates for structured neural density estimation
We show that deep neural networks achieve dimension-independent rates of convergence for learning structured densities such as those arising in image, audio, video, and text applications. More precisely, we demonstrate that neural networks with a simple $L^2$-minimizing loss achieve a rate of $n^{-1/(4+r)}$ in nonparametric density estimation when the underlying density is Markov to a graph whose maximum clique size is at most $r$, and we provide evidence that in the aforementioned applications, this size is typically constant, i.e., $r=O(1)$. We then establish that the optimal rate in $L^1$ is $n^{-1/(2+r)}$ which, compared to the standard nonparametric rate of $n^{-1/(2+d)}$, reveals that the effective dimension of such problems is the size of the largest clique in the Markov random field. These rates are independent of the data's ambient dimension, making them applicable to realistic models of image, sound, video, and text data. Our results provide a novel justification for deep learning's ability to circumvent the curse of dimensionality, demonstrating dimension-independent convergence rates in these contexts.
☆ Instance-Aware Generalized Referring Expression Segmentation
Recent works on Generalized Referring Expression Segmentation (GRES) struggle with handling complex expressions referring to multiple distinct objects. This is because these methods typically employ an end-to-end foreground-background segmentation and lack a mechanism to explicitly differentiate and associate different object instances to the text query. To this end, we propose InstAlign, a method that incorporates object-level reasoning into the segmentation process. Our model leverages both text and image inputs to extract a set of object-level tokens that capture both the semantic information in the input prompt and the objects within the image. By modeling the text-object alignment via instance-level supervision, each token uniquely represents an object segment in the image, while also aligning with relevant semantic information from the text. Extensive experiments on the gRefCOCO and Ref-ZOM benchmarks demonstrate that our method significantly advances state-of-the-art performance, setting a new standard for precise and flexible GRES.
comment: 12 pages, 7 figures
☆ Leapfrog Latent Consistency Model (LLCM) for Medical Images Generation
The scarcity of accessible medical image data poses a significant obstacle in effectively training deep learning models for medical diagnosis, as hospitals refrain from sharing their data due to privacy concerns. In response, we gathered a diverse dataset named MedImgs, which comprises over 250,127 images spanning 61 disease types and 159 classes of both humans and animals from open-source repositories. We propose a Leapfrog Latent Consistency Model (LLCM) that is distilled from a retrained diffusion model based on the collected MedImgs dataset, which enables our model to generate real-time high-resolution images. We formulate the reverse diffusion process as a probability flow ordinary differential equation (PF-ODE) and solve it in latent space using the Leapfrog algorithm. This formulation enables rapid sampling without necessitating additional iterations. Our model demonstrates state-of-the-art performance in generating medical images. Furthermore, our model can be fine-tuned with any custom medical image datasets, facilitating the generation of a vast array of images. Our experimental results outperform those of existing models on unseen dog cardiac X-ray images. Source code is available at https://github.com/lskdsjy/LeapfrogLCM.
comment: Total 16 pages including 5 figures and 36 references
☆ Towards Speaker Identification with Minimal Dataset and Constrained Resources using 1D-Convolution Neural Network
Voice recognition and speaker identification are vital for applications in security and personal assistants. This paper presents a lightweight 1D-Convolutional Neural Network (1D-CNN) designed to perform speaker identification on minimal datasets. Our approach achieves a validation accuracy of 97.87%, leveraging data augmentation techniques to handle background noise and limited training samples. Future improvements include testing on larger datasets and integrating transfer learning methods to enhance generalizability. We provide all code, the custom dataset, and the trained models to facilitate reproducibility. These resources are available on our GitHub repository: https://github.com/IrfanNafiz/RecMe.
☆ Learning to Stabilize Faces
Nowadays, it is possible to scan faces and automatically register them with high quality. However, the resulting face meshes often need further processing: we need to stabilize them to remove unwanted head movement. Stabilization is important for tasks like game development or movie making which require facial expressions to be cleanly separated from rigid head motion. Since manual stabilization is labor-intensive, there have been attempts to automate it. However, previous methods remain impractical: they either still require some manual input, produce imprecise alignments, rely on dubious heuristics and slow optimization, or assume a temporally ordered input. Instead, we present a new learning-based approach that is simple and fully automatic. We treat stabilization as a regression problem: given two face meshes, our network directly predicts the rigid transform between them that brings their skulls into alignment. We generate synthetic training data using a 3D Morphable Model (3DMM), exploiting the fact that 3DMM parameters separate skull motion from facial skin motion. Through extensive experiments we show that our approach outperforms the state-of-the-art both quantitatively and qualitatively on the tasks of stabilizing discrete sets of facial expressions as well as dynamic facial performances. Furthermore, we provide an ablation study detailing the design choices and best practices to help others adopt our approach for their own uses. Supplementary videos can be found on the project webpage syntec-research.github.io/FaceStab.
comment: Eurographics 2024
☆ Linear convergence of proximal descent schemes on the Wasserstein space
We investigate proximal descent methods, inspired by the minimizing movement scheme introduced by Jordan, Kinderlehrer and Otto, for optimizing entropy-regularized functionals on the Wasserstein space. We establish linear convergence under flat convexity assumptions, thereby relaxing the common reliance on geodesic convexity. Our analysis circumvents the need for discrete-time adaptations of the Evolution Variational Inequality (EVI). Instead, we leverage a uniform logarithmic Sobolev inequality (LSI) and the entropy "sandwich" lemma, extending the analysis from arXiv:2201.10469 and arXiv:2202.01009. The major challenge in the proof via LSI is to show that the relative Fisher information $I(\cdot|\pi)$ is well-defined at every step of the scheme. Since the relative entropy is not Wasserstein differentiable, we prove that along the scheme the iterates belong to a certain class of Sobolev regularity, and hence the relative entropy $\operatorname{KL}(\cdot|\pi)$ has a unique Wasserstein sub-gradient, and that the relative Fisher information is indeed finite.
comment: 28 pages
☆ SPAC-Net: Rethinking Point Cloud Completion with Structural Prior
Point cloud completion aims to infer a complete shape from its partial observation. Many approaches utilize a pure encoderdecoder paradigm in which complete shape can be directly predicted by shape priors learned from partial scans, however, these methods suffer from the loss of details inevitably due to the feature abstraction issues. In this paper, we propose a novel framework,termed SPAC-Net, that aims to rethink the completion task under the guidance of a new structural prior, we call it interface. Specifically, our method first investigates Marginal Detector (MAD) module to localize the interface, defined as the intersection between the known observation and the missing parts. Based on the interface, our method predicts the coarse shape by learning the displacement from the points in interface move to their corresponding position in missing parts. Furthermore, we devise an additional Structure Supplement(SSP) module before the upsampling stage to enhance the structural details of the coarse shape, enabling the upsampling module to focus more on the upsampling task. Extensive experiments have been conducted on several challenging benchmarks, and the results demonstrate that our method outperforms existing state-of-the-art approaches.
☆ Detecting Hallucinations in Virtual Histology with Neural Precursors
Significant biomedical research and clinical care rely on the histopathologic examination of tissue structure using microscopy of stained tissue. Virtual staining (VS) offers a promising alternative with the potential to reduce cost and eliminate the use of toxic reagents. However, the critical challenge of hallucinations limits confidence in its use, necessitating a VS co-pilot to detect these hallucinations. Here, we first formally establish the problem of hallucination detection in VS. Next, we introduce a scalable, post-hoc hallucination detection method that identifies a Neural Hallucination Precursor (NHP) from VS model embeddings for test-time detection. We report extensive validation across diverse and challenging VS settings to demonstrate NHP's effectiveness and robustness. Furthermore, we show that VS models with fewer hallucinations do not necessarily disclose them better, risking a false sense of security when reporting just the former metric. This highlights the need for a reassessment of current VS evaluation practices.
☆ Fantastic Biases (What are They) and Where to Find Them
Deep Learning models tend to learn correlations of patterns on huge datasets. The bigger these systems are, the more complex are the phenomena they can detect, and the more data they need for this. The use of Artificial Intelligence (AI) is becoming increasingly ubiquitous in our society, and its impact is growing everyday. The promises it holds strongly depend on their fair and universal use, such as access to information or education for all. In a world of inequalities, they can help to reach the most disadvantaged areas. However, such a universal systems must be able to represent society, without benefiting some at the expense of others. We must not reproduce the inequalities observed throughout the world, but educate these IAs to go beyond them. We have seen cases where these systems use gender, race, or even class information in ways that are not appropriate for resolving their tasks. Instead of real causal reasoning, they rely on spurious correlations, which is what we usually call a bias. In this paper, we first attempt to define what is a bias in general terms. It helps us to demystify the concept of bias, to understand why we can find them everywhere and why they are sometimes useful. Second, we focus over the notion of what is generally seen as negative bias, the one we want to avoid in machine learning, before presenting a general zoology containing the most common of these biases. We finally conclude by looking at classical methods to detect them, by means of specially crafted datasets of templates and specific algorithms, and also classical methods to mitigate them.
comment: Publication in Spanish in the Journal Bits de Ciencias: https://www.dcc.uchile.cl/media/bits/pdfs/bits26.2-sesgos-fantasticos.pdf
☆ On Multi-Agent Inverse Reinforcement Learning
In multi-agent systems, the agent behavior is highly influenced by its utility function, as these utilities shape both individual goals as well as interactions with the other agents. Inverse Reinforcement Learning (IRL) is a well-established approach to inferring the utility function by observing an expert behavior within a given environment. In this paper, we extend the IRL framework to the multi-agent setting, assuming to observe agents who are following Nash Equilibrium (NE) policies. We theoretically investigate the set of utilities that explain the behavior of NE experts. Specifically, we provide an explicit characterization of the feasible reward set and analyze how errors in estimating the transition dynamics and expert behavior impact the recovered rewards. Building on these findings, we provide the first sample complexity analysis for the multi-agent IRL problem. Finally, we provide a numerical evaluation of our theoretical results.
comment: Currently under review
☆ Safe Multi-Agent Reinforcement Learning with Convergence to Generalized Nash Equilibrium
Multi-agent reinforcement learning (MARL) has achieved notable success in cooperative tasks, demonstrating impressive performance and scalability. However, deploying MARL agents in real-world applications presents critical safety challenges. Current safe MARL algorithms are largely based on the constrained Markov decision process (CMDP) framework, which enforces constraints only on discounted cumulative costs and lacks an all-time safety assurance. Moreover, these methods often overlook the feasibility issue (the system will inevitably violate state constraints within certain regions of the constraint set), resulting in either suboptimal performance or increased constraint violations. To address these challenges, we propose a novel theoretical framework for safe MARL with $\textit{state-wise}$ constraints, where safety requirements are enforced at every state the agents visit. To resolve the feasibility issue, we leverage a control-theoretic notion of the feasible region, the controlled invariant set (CIS), characterized by the safety value function. We develop a multi-agent method for identifying CISs, ensuring convergence to a Nash equilibrium on the safety value function. By incorporating CIS identification into the learning process, we introduce a multi-agent dual policy iteration algorithm that guarantees convergence to a generalized Nash equilibrium in state-wise constrained cooperative Markov games, achieving an optimal balance between feasibility and performance. Furthermore, for practical deployment in complex high-dimensional systems, we propose $\textit{Multi-Agent Dual Actor-Critic}$ (MADAC), a safe MARL algorithm that approximates the proposed iteration scheme within the deep RL paradigm. Empirical evaluations on safe MARL benchmarks demonstrate that MADAC consistently outperforms existing methods, delivering much higher rewards while reducing constraint violations.
☆ HeadRouter: A Training-free Image Editing Framework for MM-DiTs by Adaptively Routing Attention Heads
Diffusion Transformers (DiTs) have exhibited robust capabilities in image generation tasks. However, accurate text-guided image editing for multimodal DiTs (MM-DiTs) still poses a significant challenge. Unlike UNet-based structures that could utilize self/cross-attention maps for semantic editing, MM-DiTs inherently lack support for explicit and consistent incorporated text guidance, resulting in semantic misalignment between the edited results and texts. In this study, we disclose the sensitivity of different attention heads to different image semantics within MM-DiTs and introduce HeadRouter, a training-free image editing framework that edits the source image by adaptively routing the text guidance to different attention heads in MM-DiTs. Furthermore, we present a dual-token refinement module to refine text/image token representations for precise semantic guidance and accurate region expression. Experimental results on multiple benchmarks demonstrate HeadRouter's performance in terms of editing fidelity and image quality.
☆ DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models
Video large language models (VLLMs) have significantly advanced recently in processing complex video content, yet their inference efficiency remains constrained because of the high computational cost stemming from the thousands of visual tokens generated from the video inputs. We empirically observe that, unlike single image inputs, VLLMs typically attend visual tokens from different frames at different decoding iterations, making a one-shot pruning strategy prone to removing important tokens by mistake. Motivated by this, we present DyCoke, a training-free token compression method to optimize token representation and accelerate VLLMs. DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames, and applies dynamic KV cache reduction to prune spatially redundant tokens selectively. It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step. Extensive experimental results demonstrate that DyCoke can outperform the prior SoTA counterparts, achieving 1.5X inference speedup, 1.4X memory reduction against the baseline VLLM, while still improving the performance, with no training.
comment: 12 pages, 6 figures
☆ On the Linear Speedup of Personalized Federated Reinforcement Learning with Shared Representations
Federated reinforcement learning (FedRL) enables multiple agents to collaboratively learn a policy without sharing their local trajectories collected during agent-environment interactions. However, in practice, the environments faced by different agents are often heterogeneous, leading to poor performance by the single policy learned by existing FedRL algorithms on individual agents. In this paper, we take a further step and introduce a \emph{personalized} FedRL framework (PFedRL) by taking advantage of possibly shared common structure among agents in heterogeneous environments. Specifically, we develop a class of PFedRL algorithms named PFedRL-Rep that learns (1) a shared feature representation collaboratively among all agents, and (2) an agent-specific weight vector personalized to its local environment. We analyze the convergence of PFedTD-Rep, a particular instance of the framework with temporal difference (TD) learning and linear representations. To the best of our knowledge, we are the first to prove a linear convergence speedup with respect to the number of agents in the PFedRL setting. To achieve this, we show that PFedTD-Rep is an example of the federated two-timescale stochastic approximation with Markovian noise. Experimental results demonstrate that PFedTD-Rep, along with an extension to the control setting based on deep Q-networks (DQN), not only improve learning in heterogeneous settings, but also provide better generalization to new environments.
☆ FTA generation using GenAI with an Autonomy sensor Usecase
Functional safety forms an important aspect in the design of systems. Its emphasis on the automotive industry has evolved significantly over the years. Till date many methods have been developed to get appropriate FTA(Fault Tree analysis) for various scenarios and features pertaining to Autonomous Driving. This paper is an attempt to explore the scope of using Generative Artificial Intelligence(GenAI) in order to develop Fault Tree Analysis(FTA) with the use case of malfunction for the Lidar sensor in mind. We explore various available open source Large Language Models(LLM) models and then dive deep into one of them to study its responses and provide our analysis. This paper successfully shows the possibility to train existing Large Language models through Prompt Engineering for fault tree analysis for any Autonomy usecase aided with PlantUML tool.
☆ A New Way: Kronecker-Factored Approximate Curvature Deep Hedging and its Benefits
This paper advances the computational efficiency of Deep Hedging frameworks through the novel integration of Kronecker-Factored Approximate Curvature (K-FAC) optimization. While recent literature has established Deep Hedging as a data-driven alternative to traditional risk management strategies, the computational burden of training neural networks with first-order methods remains a significant impediment to practical implementation. The proposed architecture couples Long Short-Term Memory (LSTM) networks with K-FAC second-order optimization, specifically addressing the challenges of sequential financial data and curvature estimation in recurrent networks. Empirical validation using simulated paths from a calibrated Heston stochastic volatility model demonstrates that the K-FAC implementation achieves marked improvements in convergence dynamics and hedging efficacy. The methodology yields a 78.3% reduction in transaction costs ($t = 56.88$, $p < 0.001$) and a 34.4% decrease in profit and loss (P&L) variance compared to Adam optimization. Moreover, the K-FAC-enhanced model exhibits superior risk-adjusted performance with a Sharpe ratio of 0.0401, contrasting with $-0.0025$ for the baseline model. These results provide compelling evidence that second-order optimization methods can materially enhance the tractability of Deep Hedging implementations. The findings contribute to the growing literature on computational methods in quantitative finance while highlighting the potential for advanced optimization techniques to bridge the gap between theoretical frameworks and practical applications in financial markets.
comment: 16 pages, 5 figures
☆ Free Energy Projective Simulation (FEPS): Active inference with interpretability
In the last decade, the free energy principle (FEP) and active inference (AIF) have achieved many successes connecting conceptual models of learning and cognition to mathematical models of perception and action. This effort is driven by a multidisciplinary interest in understanding aspects of self-organizing complex adaptive systems, including elements of agency. Various reinforcement learning (RL) models performing active inference have been proposed and trained on standard RL tasks using deep neural networks. Recent work has focused on improving such agents' performance in complex environments by incorporating the latest machine learning techniques. In this paper, we take an alternative approach. Within the constraints imposed by the FEP and AIF, we attempt to model agents in an interpretable way without deep neural networks by introducing Free Energy Projective Simulation (FEPS). Using internal rewards only, FEPS agents build a representation of their partially observable environments with which they interact. Following AIF, the policy to achieve a given task is derived from this world model by minimizing the expected free energy. Leveraging the interpretability of the model, techniques are introduced to deal with long-term goals and reduce prediction errors caused by erroneous hidden state estimation. We test the FEPS model on two RL environments inspired from behavioral biology: a timed response task and a navigation task in a partially observable grid. Our results show that FEPS agents fully resolve the ambiguity of both environments by appropriately contextualizing their observations based on prediction accuracy only. In addition, they infer optimal policies flexibly for any target observation in the environment.
comment: 26 pages (including 5 pages appendix), 6 figures
☆ Adaptive Group Robust Ensemble Knowledge Distillation NeurIPS 2024
Neural networks can learn spurious correlations in the data, often leading to performance disparity for underrepresented subgroups. Studies have demonstrated that the disparity is amplified when knowledge is distilled from a complex teacher model to a relatively "simple" student model. Prior work has shown that ensemble deep learning methods can improve the performance of the worst-case subgroups; however, it is unclear if this advantage carries over when distilling knowledge from an ensemble of teachers, especially when the teacher models are debiased. This study demonstrates that traditional ensemble knowledge distillation can significantly drop the performance of the worst-case subgroups in the distilled student model even when the teacher models are debiased. To overcome this, we propose Adaptive Group Robust Ensemble Knowledge Distillation (AGRE-KD), a simple ensembling strategy to ensure that the student model receives knowledge beneficial for unknown underrepresented subgroups. Leveraging an additional biased model, our method selectively chooses teachers whose knowledge would better improve the worst-performing subgroups by upweighting the teachers with gradient directions deviating from the biased model. Our experiments on several datasets demonstrate the superiority of the proposed ensemble distillation technique and show that it can even outperform classic model ensembles based on majority voting.
comment: Workshop Algorithmic Fairness through the Lens of Metrics and Evaluation at NeurIPS 2024
☆ Open-Amp: Synthetic Data Framework for Audio Effect Foundation Models
This paper introduces Open-Amp, a synthetic data framework for generating large-scale and diverse audio effects data. Audio effects are relevant to many musical audio processing and Music Information Retrieval (MIR) tasks, such as modelling of analog audio effects, automatic mixing, tone matching and transcription. Existing audio effects datasets are limited in scope, usually including relatively few audio effects processors and a limited amount of input audio signals. Our proposed framework overcomes these issues, by crowdsourcing neural network emulations of guitar amplifiers and effects, created by users of open-source audio effects emulation software. This allows users of Open-Amp complete control over the input signals to be processed by the effects models, as well as providing high-quality emulations of hundreds of devices. Open-Amp can render audio online during training, allowing great flexibility in data augmentation. Our experiments show that using Open-Amp to train a guitar effects encoder achieves new state-of-the-art results on multiple guitar effects classification tasks. Furthermore, we train a one-to-many guitar effects model using Open-Amp, and use it to emulate unseen analog effects via manipulation of its learned latent space, indicating transferability to analog guitar effects data.
☆ Leveraging LLMs for Legacy Code Modernization: Challenges and Opportunities for LLM-Generated Documentation
Legacy software systems, written in outdated languages like MUMPS and mainframe assembly, pose challenges in efficiency, maintenance, staffing, and security. While LLMs offer promise for modernizing these systems, their ability to understand legacy languages is largely unknown. This paper investigates the utilization of LLMs to generate documentation for legacy code using two datasets: an electronic health records (EHR) system in MUMPS and open-source applications in IBM mainframe Assembly Language Code (ALC). We propose a prompting strategy for generating line-wise code comments and a rubric to evaluate their completeness, readability, usefulness, and hallucination. Our study assesses the correlation between human evaluations and automated metrics, such as code complexity and reference-based metrics. We find that LLM-generated comments for MUMPS and ALC are generally hallucination-free, complete, readable, and useful compared to ground-truth comments, though ALC poses challenges. However, no automated metrics strongly correlate with comment quality to predict or measure LLM performance. Our findings highlight the limitations of current automated measures and the need for better evaluation metrics for LLM-generated documentation in legacy systems.
comment: Abbreviated version submitted to LLM4Code 2025 (a workshop co-located with ICSE 2025), 13 pages, 3 figures
☆ LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning, yet full parameter fine-tuning is often computationally prohibitive for large models. Parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters. While LoRA allows for efficient fine-tuning, it requires significant data for adaptation, making Federated Learning (FL) an appealing solution due to its privacy-preserving collaborative framework. However, combining LoRA with FL introduces two key challenges: the \textbf{Server-Side LoRA Aggregation Bias}, where server-side averaging of LoRA matrices diverges from the ideal global update, and the \textbf{Client-Side LoRA Initialization Drift}, emphasizing the need for consistent initialization across rounds. Existing approaches address these challenges individually, limiting their effectiveness. We propose LoRA-FAIR, a novel method that tackles both issues by introducing a correction term on the server while keeping the original LoRA modules, enhancing aggregation efficiency and accuracy. LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods. Experimental results on ViT and MLP-Mixer models across large-scale datasets demonstrate that LoRA-FAIR consistently achieves performance improvements in FL settings.
☆ Evaluating Vision Transformer Models for Visual Quality Control in Industrial Manufacturing
One of the most promising use-cases for machine learning in industrial manufacturing is the early detection of defective products using a quality control system. Such a system can save costs and reduces human errors due to the monotonous nature of visual inspections. Today, a rich body of research exists which employs machine learning methods to identify rare defective products in unbalanced visual quality control datasets. These methods typically rely on two components: A visual backbone to capture the features of the input image and an anomaly detection algorithm that decides if these features are within an expected distribution. With the rise of transformer architecture as visual backbones of choice, there exists now a great variety of different combinations of these two components, ranging all along the trade-off between detection quality and inference time. Facing this variety, practitioners in the field often have to spend a considerable amount of time on researching the right combination for their use-case at hand. Our contribution is to help practitioners with this choice by reviewing and evaluating current vision transformer models together with anomaly detection methods. For this, we chose SotA models of both disciplines, combined them and evaluated them towards the goal of having small, fast and efficient anomaly detection models suitable for industrial manufacturing. We evaluated the results of our experiments on the well-known MVTecAD and BTAD datasets. Moreover, we give guidelines for choosing a suitable model architecture for a quality control system in practice, considering given use-case and hardware constraints.
☆ Reliable Evaluation of Attribution Maps in CNNs: A Perturbation-Based Approach
In this paper, we present an approach for evaluating attribution maps, which play a central role in interpreting the predictions of convolutional neural networks (CNNs). We show that the widely used insertion/deletion metrics are susceptible to distribution shifts that affect the reliability of the ranking. Our method proposes to replace pixel modifications with adversarial perturbations, which provides a more robust evaluation framework. By using smoothness and monotonicity measures, we illustrate the effectiveness of our approach in correcting distribution shifts. In addition, we conduct the most comprehensive quantitative and qualitative assessment of attribution maps to date. Introducing baseline attribution maps as sanity checks, we find that our metric is the only contender to pass all checks. Using Kendall's $\tau$ rank correlation coefficient, we show the increased consistency of our metric across 15 dataset-architecture combinations. Of the 16 attribution maps tested, our results clearly show SmoothGrad to be the best map currently available. This research makes an important contribution to the development of attribution maps by providing a reliable and consistent evaluation framework. To ensure reproducibility, we will provide the code along with our results.
☆ Comparative Study of Neural Network Methods for Solving Topological Solitons
Topological solitons, which are stable, localized solutions of nonlinear differential equations, are crucial in various fields of physics and mathematics, including particle physics and cosmology. However, solving these solitons presents significant challenges due to the complexity of the underlying equations and the computational resources required for accurate solutions. To address this, we have developed a novel method using neural network (NN) to efficiently solve solitons. A similar NN approach is Physics-Informed Neural Networks (PINN). In a comparative analysis between our method and PINN, we find that our method achieves shorter computation times while maintaining the same level of accuracy. This advancement in computational efficiency not only overcomes current limitations but also opens new avenues for studying topological solitons and their dynamical behavior.
comment: 12 pages, 4 figures
☆ Many happy returns: machine learning to support platelet issuing and waste reduction in hospital blood banks
Efforts to reduce platelet wastage in hospital blood banks have focused on ordering policies, but the predominant practice of issuing the oldest unit first may not be optimal when some units are returned unused. We propose a novel, machine learning (ML)-guided issuing policy to increase the likelihood of returned units being reissued before expiration. Our ML model trained to predict returns on 17,297 requests for platelets gave AUROC 0.74 on 9,353 held-out requests. Prior to ML model development we built a simulation of the blood bank operation that incorporated returns to understand the scale of benefits of such a model. Using our trained model in the simulation gave an estimated reduction in wastage of 14%. Our partner hospital is considering adopting our approach, which would be particularly beneficial for hospitals with higher return rates and where units have a shorter remaining useful life on arrival.
☆ Geminio: Language-Guided Gradient Inversion Attacks in Federated Learning
Foundation models that bridge vision and language have made significant progress, inspiring numerous life-enriching applications. However, their potential for misuse to introduce new threats remains largely unexplored. This paper reveals that vision-language models (VLMs) can be exploited to overcome longstanding limitations in gradient inversion attacks (GIAs) within federated learning (FL), where an FL server reconstructs private data samples from gradients shared by victim clients. Current GIAs face challenges in reconstructing high-resolution images, especially when the victim has a large local data batch. While focusing reconstruction on valuable samples rather than the entire batch is promising, existing methods lack the flexibility to allow attackers to specify their target data. In this paper, we introduce Geminio, the first approach to transform GIAs into semantically meaningful, targeted attacks. Geminio enables a brand new privacy attack experience: attackers can describe, in natural language, the types of data they consider valuable, and Geminio will prioritize reconstruction to focus on those high-value samples. This is achieved by leveraging a pretrained VLM to guide the optimization of a malicious global model that, when shared with and optimized by a victim, retains only gradients of samples that match the attacker-specified query. Extensive experiments demonstrate Geminio's effectiveness in pinpointing and reconstructing targeted samples, with high success rates across complex datasets under FL and large batch sizes and showing resilience against existing defenses.
☆ LiDAR-based End-to-end Temporal Perception for Vehicle-Infrastructure Cooperation
Temporal perception, the ability to detect and track objects over time, is critical in autonomous driving for maintaining a comprehensive understanding of dynamic environments. However, this task is hindered by significant challenges, including incomplete perception caused by occluded objects and observational blind spots, which are common in single-vehicle perception systems. To address these issues, we introduce LET-VIC, a LiDAR-based End-to-End Tracking framework for Vehicle-Infrastructure Cooperation (VIC). LET-VIC leverages Vehicle-to-Everything (V2X) communication to enhance temporal perception by fusing spatial and temporal data from both vehicle and infrastructure sensors. First, it spatially integrates Bird's Eye View (BEV) features from vehicle-side and infrastructure-side LiDAR data, creating a comprehensive view that mitigates occlusions and compensates for blind spots. Second, LET-VIC incorporates temporal context across frames, allowing the model to leverage historical data for enhanced tracking stability and accuracy. To further improve robustness, LET-VIC includes a Calibration Error Compensation (CEC) module to address sensor misalignments and ensure precise feature alignment. Experiments on the V2X-Seq-SPD dataset demonstrate that LET-VIC significantly outperforms baseline models, achieving at least a 13.7% improvement in mAP and a 13.1% improvement in AMOTA without considering communication delays. This work offers a practical solution and a new research direction for advancing temporal perception in autonomous driving through vehicle-infrastructure cooperation.
comment: 11 pages, 7 figures
☆ Predictive Modeling For Real-Time Personalized Health Monitoring in Muscular Dystrophy Management
Muscular Dystrophy is a group of genetic disorders that progressively affect the strength and functioning of muscles, thereby affecting millions of people worldwide. The lifetime nature of MD requires continuous follow-up care due to its progressive nature. This conceptual paper proposes an Internet of Things-based system to support the management of MD through remote, multi-dimensional monitoring of patients in order to provide real-time health status updates. Traditional methods have failed to give actionable data in real time, hence denying healthcare providers the opportunity to make evidence-based decisions. Technology-driven approaches are urgently needed to provide deep insights into disease progression and patient health. It aims to enhance treatment strategies, enabling patients to better manage their condition and giving healthcare professionals more confidence in their management decisions.
☆ Exploring Kolmogorov-Arnold Networks for Interpretable Time Series Classification
Time series classification is a relevant step supporting decision-making processes in various domains, and deep neural models have shown promising performance. Despite significant advancements in deep learning, the theoretical understanding of how and why complex architectures function remains limited, prompting the need for more interpretable models. Recently, the Kolmogorov-Arnold Networks (KANs) have been proposed as a more interpretable alternative. While KAN-related research is significantly rising, to date, the study of KAN architectures for time series classification has been limited. In this paper, we aim to conduct a comprehensive and robust exploration of the KAN architecture for time series classification on the UCR benchmark. More specifically, we look at a) how reference architectures for forecasting transfer to classification, at the b) hyperparameter and implementation influence on the classification performance in view of finding the one that performs best on the selected benchmark, the c) complexity trade-offs and d) interpretability advantages. Our results show that (1) Efficient KAN outperforms MLP in performance and computational efficiency, showcasing its suitability for tasks classification tasks. (2) Efficient KAN is more stable than KAN across grid sizes, depths, and layer configurations, particularly with lower learning rates. (3) KAN maintains competitive accuracy compared to state-of-the-art models like HIVE-COTE2, with smaller architectures and faster training times, supporting its balance of performance and transparency. (4) The interpretability of the KAN model aligns with findings from SHAP analysis, reinforcing its capacity for transparent decision-making.
☆ CardioLab: Laboratory Values Estimation and Monitoring from Electrocardiogram Signals -- A Multimodal Deep Learning Approach
Background: Laboratory values are fundamental to medical diagnosis and management, but acquiring these values can be costly, invasive, and time-consuming. While electrocardiogram (ECG) patterns have been linked to certain laboratory abnormalities, the comprehensive modeling of these relationships remains underexplored. Methods: We utilize MIMIC-IV dataset to develop multimodal deep-learning models to demonstrate the feasibility of estimating (real-time) and monitoring (predict at future intervals) laboratory value abnormalities from ECG waveforms, demographics, biometrics, and vital signs. Results: The models exhibit a strong predictive performance with AUROC scores above 0.70 in a statistically significant manner for 23 laboratory values in the estimation setting and up to 26 values in the monitoring setting. Most notably, the accurately predictable values encompassing abnormalities across diverse physiological categories such as cardiac, renal, hematological, metabolic, immunological and coagulation. To name examples, for estimation NTproBNP (>353 pg/mL) with 0.882, whereas for monitoring at 30 minutes Urea nitrogen (<6 mg/dL) with 0.851, at 60 minutes creatinine (<0.5 mg/dL) with 0.85, and at 120 minutes hemoglobin (>17.5 g/dL) with 0.821. Conclusions: This study provides first evidence for the feasibility of using ECG data alongside clinical routine data for the real-time estimation and monitoring of laboratory value abnormalities, which could provide a non-invasive, cost-effective supplement to traditional laboratory testing, with strong implications for enhanced patient monitoring and early intervention. Further validation could facilitate their integration into routine clinical practice.
comment: 7 pages, 1 figure, code under https://github.com/AI4HealthUOL/CardioLab
☆ Boundless Across Domains: A New Paradigm of Adaptive Feature and Cross-Attention for Domain Generalization in Medical Image Segmentation
Domain-invariant representation learning is a powerful method for domain generalization. Previous approaches face challenges such as high computational demands, training instability, and limited effectiveness with high-dimensional data, potentially leading to the loss of valuable features. To address these issues, we hypothesize that an ideal generalized representation should exhibit similar pattern responses within the same channel across cross-domain images. Based on this hypothesis, we use deep features from the source domain as queries, and deep features from the generated domain as keys and values. Through a cross-channel attention mechanism, the original deep features are reconstructed into robust regularization representations, forming an explicit constraint that guides the model to learn domain-invariant representations. Additionally, style augmentation is another common method. However, existing methods typically generate new styles through convex combinations of source domains, which limits the diversity of training samples by confining the generated styles to the original distribution. To overcome this limitation, we propose an Adaptive Feature Blending (AFB) method that generates out-of-distribution samples while exploring the in-distribution space, significantly expanding the domain range. Extensive experimental results demonstrate that our proposed methods achieve superior performance on two standard domain generalization benchmarks for medical image segmentation.
comment: 5 pages, 3 figures
☆ Iterative Reweighted Framework Based Algorithms for Sparse Linear Regression with Generalized Elastic Net Penalty
The elastic net penalty is frequently employed in high-dimensional statistics for parameter regression and variable selection. It is particularly beneficial compared to lasso when the number of predictors greatly surpasses the number of observations. However, empirical evidence has shown that the $\ell_q$-norm penalty (where $0 < q < 1$) often provides better regression compared to the $\ell_1$-norm penalty, demonstrating enhanced robustness in various scenarios. In this paper, we explore a generalized elastic net model that employs a $\ell_r$-norm (where $r \geq 1$) in loss function to accommodate various types of noise, and employs a $\ell_q$-norm (where $0 < q < 1$) to replace the $\ell_1$-norm in elastic net penalty. Theoretically, we establish the computable lower bounds for the nonzero entries of the generalized first-order stationary points of the proposed generalized elastic net model. For implementation, we develop two efficient algorithms based on the locally Lipschitz continuous $\epsilon$-approximation to $\ell_q$-norm. The first algorithm employs an alternating direction method of multipliers (ADMM), while the second utilizes a proximal majorization-minimization method (PMM), where the subproblems are addressed using the semismooth Newton method (SNN). We also perform extensive numerical experiments with both simulated and real data, showing that both algorithms demonstrate superior performance. Notably, the PMM-SSN is efficient than ADMM, even though the latter provides a simpler implementation.
☆ Prioritize Denoising Steps on Diffusion Model Preference Alignment via Explicit Denoised Distribution Estimation
Diffusion models have shown remarkable success in text-to-image generation, making alignment methods for these models increasingly important. A key challenge is the sparsity of preference labels, which are typically available only at the terminal of denoising trajectories. This raises the issue of how to assign credit across denoising steps based on these sparse labels. In this paper, we propose Denoised Distribution Estimation (DDE), a novel method for credit assignment. Unlike previous approaches that rely on auxiliary models or hand-crafted schemes, DDE derives its strategy more explicitly. The proposed DDE directly estimates the terminal denoised distribution from the perspective of each step. It is equipped with two estimation strategies and capable of representing the entire denoising trajectory with a single model inference. Theoretically and empirically, we show that DDE prioritizes optimizing the middle part of the denoising trajectory, resulting in a novel and effective credit assignment scheme. Extensive experiments demonstrate that our approach achieves superior performance, both quantitatively and qualitatively.
☆ Application of AI to formal methods -- an analysis of current trends
With artificial intelligence (AI) being well established within the daily lives of research communities, we turn our gaze toward an application area that appears intuitively unsuited for probabilistic decision-making: the area of formal methods (FM). FM aim to provide sound and understandable reasoning about problems in computer science, which seemingly collides with the black-box nature that inhibits many AI approaches. However, many researchers have crossed this gap and applied AI techniques to enhance FM approaches. As this dichotomy of FM and AI sparked our interest, we conducted a systematic mapping study to map the current landscape of research publications. In this study, we investigate the previous five years of applied AI to FM (2019-2023), as these correspond to periods of high activity. This investigation results in 189 entries, which we explore in more detail to find current trends, highlight research gaps, and give suggestions for future research.
☆ BIP3D: Bridging 2D Images and 3D Perception for Embodied Intelligence
In embodied intelligence systems, a key component is 3D perception algorithm, which enables agents to understand their surrounding environments. Previous algorithms primarily rely on point cloud, which, despite offering precise geometric information, still constrain perception performance due to inherent sparsity, noise, and data scarcity. In this work, we introduce a novel image-centric 3D perception model, BIP3D, which leverages expressive image features with explicit 3D position encoding to overcome the limitations of point-centric methods. Specifically, we leverage pre-trained 2D vision foundation models to enhance semantic understanding, and introduce a spatial enhancer module to improve spatial understanding. Together, these modules enable BIP3D to achieve multi-view, multi-modal feature fusion and end-to-end 3D perception. In our experiments, BIP3D outperforms current state-of-the-art results on the EmbodiedScan benchmark, achieving improvements of 5.69% in the 3D detection task and 15.25% in the 3D visual grounding task.
☆ Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation
Diffusion models (DMs), which enable both image generation from noise and inversion from data, have inspired powerful unpaired image-to-image (I2I) translation algorithms. However, they often require a larger number of neural function evaluations (NFEs), limiting their practical applicability. In this paper, we tackle this problem with Schrodinger Bridges (SBs), which are stochastic differential equations (SDEs) between distributions with minimal transport cost. We analyze the probability flow ordinary differential equation (ODE) formulation of SBs, and observe that we can decompose its vector field into a linear combination of source predictor, target predictor, and noise predictor. Inspired by this observation, we propose Latent Schrodinger Bridges (LSBs) that approximate the SB ODE via pre-trained Stable Diffusion, and develop appropriate prompt optimization and change of variables formula to match the training and inference between distributions. We demonstrate that our algorithm successfully conduct competitive I2I translation in unsupervised setting with only a fraction of computation cost required by previous DM-based I2I methods.
☆ Ex Uno Pluria: Insights on Ensembling in Low Precision Number Systems NeurIPS 2024
While ensembling deep neural networks has shown promise in improving generalization performance, scaling current ensemble methods for large models remains challenging. Given that recent progress in deep learning is largely driven by the scale, exemplified by the widespread adoption of large-scale neural network architectures, scalability emerges an increasingly critical issue for machine learning algorithms in the era of large-scale models. In this work, we first showcase the potential of low precision ensembling, where ensemble members are derived from a single model within low precision number systems in a training-free manner. Our empirical analysis demonstrates the effectiveness of our proposed low precision ensembling method compared to existing ensemble approaches.
comment: NeurIPS 2024
☆ Applications of fractional calculus in learned optimization NeurIPS
Fractional gradient descent has been studied extensively, with a focus on its ability to extend traditional gradient descent methods by incorporating fractional-order derivatives. This approach allows for more flexibility in navigating complex optimization landscapes and offers advantages in certain types of problems, particularly those involving non-linearities and chaotic dynamics. Yet, the challenge of fine-tuning the fractional order parameters remains unsolved. In this work, we demonstrate that it is possible to train a neural network to predict the order of the gradient effectively.
comment: NeurIPS Workshop on Optimization for Machine Learning
☆ Bayesian dynamic mode decomposition for real-time ship motion digital twinning
Digital twins are widely considered enablers of groundbreaking changes in the development, operation, and maintenance of novel generations of products. They are meant to provide reliable and timely predictions to inform decisions along the entire product life cycle. One of their most interesting applications in the naval field is the digital twinning of ship performances in waves, a crucial aspect in design and operation safety. In this paper, a Bayesian extension of the Hankel dynamic mode decomposition method is proposed for ship motion's nowcasting as a prediction tool for naval digital twins. The proposed algorithm meets all the requirements for formulations devoted to digital twinning, being able to adapt the resulting models with the data incoming from the physical system, using a limited amount of data, producing real-time predictions, and estimating their reliability. Results are presented and discussed for the course-keeping of the 5415M model in beam-quartering sea state 7 irregular waves at Fr = 0.33, using data from three different CFD solvers. The results show predictions keeping good accuracy levels up to five wave encounter periods, with the Bayesian formulation improving the deterministic forecasts. In addition, a connection between the predicted uncertainty and prediction accuracy is found.
☆ Gradient Masking All-at-Once: Ensemble Everything Everywhere Is Not Robust
Ensemble everything everywhere is a defense to adversarial examples that was recently proposed to make image classifiers robust. This defense works by ensembling a model's intermediate representations at multiple noisy image resolutions, producing a single robust classification. This defense was shown to be effective against multiple state-of-the-art attacks. Perhaps even more convincingly, it was shown that the model's gradients are perceptually aligned: attacks against the model produce noise that perceptually resembles the targeted class. In this short note, we show that this defense is not robust to adversarial attack. We first show that the defense's randomness and ensembling method cause severe gradient masking. We then use standard adaptive attack techniques to reduce the defense's robust accuracy from 48% to 1% on CIFAR-100 and from 62% to 4% on CIFAR-10, under the $\ell_\infty$-norm threat model with $\varepsilon=8/255$.
☆ VisGraphVar: A Benchmark Generator for Assessing Variability in Graph Analysis Using Large Vision-Language Models
The fast advancement of Large Vision-Language Models (LVLMs) has shown immense potential. These models are increasingly capable of tackling abstract visual tasks. Geometric structures, particularly graphs with their inherent flexibility and complexity, serve as an excellent benchmark for evaluating these models' predictive capabilities. While human observers can readily identify subtle visual details and perform accurate analyses, our investigation reveals that state-of-the-art LVLMs exhibit consistent limitations in specific visual graph scenarios, especially when confronted with stylistic variations. In response to these challenges, we introduce VisGraphVar (Visual Graph Variability), a customizable benchmark generator able to produce graph images for seven distinct task categories (detection, classification, segmentation, pattern recognition, link prediction, reasoning, matching), designed to systematically evaluate the strengths and limitations of individual LVLMs. We use VisGraphVar to produce 990 graph images and evaluate six LVLMs, employing two distinct prompting strategies, namely zero-shot and chain-of-thought. The findings demonstrate that variations in visual attributes of images (e.g., node labeling and layout) and the deliberate inclusion of visual imperfections, such as overlapping nodes, significantly affect model performance. This research emphasizes the importance of a comprehensive evaluation across graph-related tasks, extending beyond reasoning alone. VisGraphVar offers valuable insights to guide the development of more reliable and robust systems capable of performing advanced visual graph analysis.
☆ Physically Interpretable Probabilistic Domain Characterization
Characterizing domains is essential for models analyzing dynamic environments, as it allows them to adapt to evolving conditions or to hand the task over to backup systems when facing conditions outside their operational domain. Existing solutions typically characterize a domain by solving a regression or classification problem, which limits their applicability as they only provide a limited summarized description of the domain. In this paper, we present a novel approach to domain characterization by characterizing domains as probability distributions. Particularly, we develop a method to predict the likelihood of different weather conditions from images captured by vehicle-mounted cameras by estimating distributions of physical parameters using normalizing flows. To validate our proposed approach, we conduct experiments within the context of autonomous vehicles, focusing on predicting the distribution of weather parameters to characterize the operational domain. This domain is characterized by physical parameters (absolute characterization) and arbitrarily predefined domains (relative characterization). Finally, we evaluate whether a system can safely operate in a target domain by comparing it to multiple source domains where safety has already been established. This approach holds significant potential, as accurate weather prediction and effective domain adaptation are crucial for autonomous systems to adjust to dynamic environmental conditions.
☆ Omni-IML: Towards Unified Image Manipulation Localization
Image manipulation can lead to misinterpretation of visual content, posing significant risks to information security. Image Manipulation Localization (IML) has thus received increasing attention. However, existing IML methods rely heavily on task-specific designs, making them perform well only on one target image type but are mostly random guessing on other image types, and even joint training on multiple image types causes significant performance degradation. This hinders the deployment for real applications as it notably increases maintenance costs and the misclassification of image types leads to serious error accumulation. To this end, we propose Omni-IML, the first generalist model to unify diverse IML tasks. Specifically, Omni-IML achieves generalism by adopting the Modal Gate Encoder and the Dynamic Weight Decoder to adaptively determine the optimal encoding modality and the optimal decoder filters for each sample. We additionally propose an Anomaly Enhancement module that enhances the features of tampered regions with box supervision and helps the generalist model to extract common features across different IML tasks. We validate our approach on IML tasks across three major scenarios: natural images, document images, and face images. Without bells and whistles, our Omni-IML achieves state-of-the-art performance on all three tasks with a single unified model, providing valuable strategies and insights for real-world application and future research in generalist image forensics. Our code will be publicly available.
☆ Fine-Grained Alignment in Vision-and-Language Navigation through Bayesian Optimization
This paper addresses the challenge of fine-grained alignment in Vision-and-Language Navigation (VLN) tasks, where robots navigate realistic 3D environments based on natural language instructions. Current approaches use contrastive learning to align language with visual trajectory sequences. Nevertheless, they encounter difficulties with fine-grained vision negatives. To enhance cross-modal embeddings, we introduce a novel Bayesian Optimization-based adversarial optimization framework for creating fine-grained contrastive vision samples. To validate the proposed methodology, we conduct a series of experiments to assess the effectiveness of the enriched embeddings on fine-grained vision negatives. We conduct experiments on two common VLN benchmarks R2R and REVERIE, experiments on the them demonstrate that these embeddings benefit navigation, and can lead to a promising performance enhancement. Our source code and trained models are available at: https://anonymous.4open.science/r/FGVLN.
☆ High-Resolution Image Synthesis via Next-Token Prediction
Denoising with a Joint-Embedding Predictive Architecture (D-JEPA), an autoregressive model, has demonstrated outstanding performance in class-conditional image generation. However, the application of next-token prediction in high-resolution text-to-image generation remains underexplored. In this paper, we introduce D-JEPA$\cdot$T2I, an extension of D-JEPA incorporating flow matching loss, designed to enable data-efficient continuous resolution learning. D-JEPA$\cdot$T2I leverages a multimodal visual transformer to effectively integrate textual and visual features and adopts Visual Rotary Positional Embedding (VoPE) to facilitate continuous resolution learning. Furthermore, we devise a data feedback mechanism that significantly enhances data utilization efficiency. For the first time, we achieve state-of-the-art \textbf{high-resolution} image synthesis via next-token prediction. The experimental code and pretrained models will be open-sourced at \url{https://d-jepa.github.io/t2i}.
comment: 30 pages
☆ Harlequin: Color-driven Generation of Synthetic Data for Referring Expression Comprehension ICPR 2024
Referring Expression Comprehension (REC) aims to identify a particular object in a scene by a natural language expression, and is an important topic in visual language understanding. State-of-the-art methods for this task are based on deep learning, which generally requires expensive and manually labeled annotations. Some works tackle the problem with limited-supervision learning or relying on Large Vision and Language Models. However, the development of techniques to synthesize labeled data is overlooked. In this paper, we propose a novel framework that generates artificial data for the REC task, taking into account both textual and visual modalities. At first, our pipeline processes existing data to create variations in the annotations. Then, it generates an image using altered annotations as guidance. The result of this pipeline is a new dataset, called Harlequin, made by more than 1M queries. This approach eliminates manual data collection and annotation, enabling scalability and facilitating arbitrary complexity. We pre-train three REC models on Harlequin, then fine-tuned and evaluated on human-annotated datasets. Our experiments show that the pre-training on artificial data is beneficial for performance.
comment: Accepted to ICPR 2024
☆ Facial Features Matter: a Dynamic Watermark based Proactive Deepfake Detection Approach
Current passive deepfake face-swapping detection methods encounter significance bottlenecks in model generalization capabilities. Meanwhile, proactive detection methods often use fixed watermarks which lack a close relationship with the content they protect and are vulnerable to security risks. Dynamic watermarks based on facial features offer a promising solution, as these features provide unique identifiers. Therefore, this paper proposes a Facial Feature-based Proactive deepfake detection method (FaceProtect), which utilizes changes in facial characteristics during deepfake manipulation as a novel detection mechanism. We introduce a GAN-based One-way Dynamic Watermark Generating Mechanism (GODWGM) that uses 128-dimensional facial feature vectors as inputs. This method creates irreversible mappings from facial features to watermarks, enhancing protection against various reverse inference attacks. Additionally, we propose a Watermark-based Verification Strategy (WVS) that combines steganography with GODWGM, allowing simultaneous transmission of the benchmark watermark representing facial features within the image. Experimental results demonstrate that our proposed method maintains exceptional detection performance and exhibits high practicality on images altered by various deepfake techniques.
☆ Continual SFT Matches Multimodal RLHF with Negative Supervision
Multimodal RLHF usually happens after supervised finetuning (SFT) stage to continually improve vision-language models' (VLMs) comprehension. Conventional wisdom holds its superiority over continual SFT during this preference alignment stage. In this paper, we observe that the inherent value of multimodal RLHF lies in its negative supervision, the logit of the rejected responses. We thus propose a novel negative supervised finetuning (nSFT) approach that fully excavates these information resided. Our nSFT disentangles this negative supervision in RLHF paradigm, and continually aligns VLMs with a simple SFT loss. This is more memory efficient than multimodal RLHF where 2 (e.g., DPO) or 4 (e.g., PPO) large VLMs are strictly required. The effectiveness of nSFT is rigorously proved by comparing it with various multimodal RLHF approaches, across different dataset sources, base VLMs and evaluation metrics. Besides, fruitful of ablations are provided to support our hypothesis. We hope this paper will stimulate further research to properly align large vision language models.
☆ Adaptive Hyper-Graph Convolution Network for Skeleton-based Human Action Recognition with Virtual Connections
The shared topology of human skeletons motivated the recent investigation of graph convolutional network (GCN) solutions for action recognition. However, the existing GCNs rely on the binary connection of two neighbouring vertices (joints) formed by an edge (bone), overlooking the potential of constructing multi-vertex convolution structures. In this paper we address this oversight and explore the merits of a hyper-graph convolutional network (Hyper-GCN) to achieve the aggregation of rich semantic information conveyed by skeleton vertices. In particular, our Hyper-GCN adaptively optimises multi-scale hyper-graphs during training, revealing the action-driven multi-vertex relations. Besides, virtual connections are often designed to support efficient feature aggregation, implicitly extending the spectrum of dependencies within the skeleton. By injecting virtual connections into hyper-graphs, the semantic clues of diverse action categories can be highlighted. The results of experiments conducted on the NTU-60, NTU-120, and NW-UCLA datasets, demonstrate the merits of our Hyper-GCN, compared to the state-of-the-art methods. Specifically, we outperform the existing solutions on NTU-120, achieving 90.2\% and 91.4\% in terms of the top-1 recognition accuracy on X-Sub and X-Set.
☆ Simplifying CLIP: Unleashing the Power of Large-Scale Models on Consumer-level Computers
Contrastive Language-Image Pre-training (CLIP) has attracted a surge of attention for its superior zero-shot performance and excellent transferability to downstream tasks. However, training such large-scale models usually requires substantial computation and storage, which poses barriers for general users with consumer-level computers. Motivated by this observation, in this paper we investigate how to achieve competitive performance on only one Nvidia RTX3090 GPU and with one terabyte for storing dataset. On one hand, we simplify the transformer block structure and combine Weight Inheritance with multi-stage Knowledge Distillation (WIKD), thereby reducing the parameters and improving the inference speed during training along with deployment. On the other hand, confronted with the convergence challenge posed by small dataset, we generate synthetic captions for each sample as data augmentation, and devise a novel Pair Matching (PM) loss to fully exploit the distinguishment among positive and negative image-text pairs. Extensive experiments demonstrate that our model can achieve a new state-of-the-art datascale-parameter-accuracy tradeoff, which could further popularize the CLIP model in the related research community.
☆ Segmenting Action-Value Functions Over Time-Scales in SARSA using TD($Δ$)
In numerous episodic reinforcement learning (RL) settings, SARSA-based methodologies are employed to enhance policies aimed at maximizing returns over long horizons. Conventional SARSA algorithms, however, have difficulties in balancing bias and variation due to the reliance on a singular, fixed discount factor. This study expands the temporal difference decomposition approach, TD($\triangle$), to the SARSA algorithm. SARSA, a widely utilised on-policy RL method, enhances action-value functions via temporal difference updates. TD($\triangle$) facilitates learning over several time-scales by breaking the action-value function into components associated with distinct discount factors. This decomposition improves learning efficiency and stability, particularly in problems necessitating long-horizon optimization. We illustrate that our methodology mitigates bias in SARSA's updates while facilitating accelerated convergence in contexts characterized by dense rewards. Experimental findings across many benchmark tasks indicate that the proposed SARSA($\triangle$) surpasses conventional TD learning methods in both tabular and deep RL contexts.
comment: 17 pages. arXiv admin note: text overlap with arXiv:2411.14019
☆ Grid and Road Expressions Are Complementary for Trajectory Representation Learning
Trajectory representation learning (TRL) maps trajectories to vectors that can be used for many downstream tasks. Existing TRL methods use either grid trajectories, capturing movement in free space, or road trajectories, capturing movement in a road network, as input. We observe that the two types of trajectories are complementary, providing either region and location information or providing road structure and movement regularity. Therefore, we propose a novel multimodal TRL method, dubbed GREEN, to jointly utilize Grid and Road trajectory Expressions for Effective representatioN learning. In particular, we transform raw GPS trajectories into both grid and road trajectories and tailor two encoders to capture their respective information. To align the two encoders such that they complement each other, we adopt a contrastive loss to encourage them to produce similar embeddings for the same raw trajectory and design a mask language model (MLM) loss to use grid trajectories to help reconstruct masked road trajectories. To learn the final trajectory representation, a dual-modal interactor is used to fuse the outputs of the two encoders via cross-attention. We compare GREEN with 7 state-of-the-art TRL methods for 3 downstream tasks, finding that GREEN consistently outperforms all baselines and improves the accuracy of the best-performing baseline by an average of 15.99\%.
comment: This paper is accepted by KDD2025(August Cycle)
☆ An Attention-based Framework for Fair Contrastive Learning
Contrastive learning has proven instrumental in learning unbiased representations of data, especially in complex environments characterized by high-cardinality and high-dimensional sensitive information. However, existing approaches within this setting require predefined modelling assumptions of bias-causing interactions that limit the model's ability to learn debiased representations. In this work, we propose a new method for fair contrastive learning that employs an attention mechanism to model bias-causing interactions, enabling the learning of a fairer and semantically richer embedding space. In particular, our attention mechanism avoids bias-causing samples that confound the model and focuses on bias-reducing samples that help learn semantically meaningful representations. We verify the advantages of our method against existing baselines in fair contrastive learning and show that our approach can significantly boost bias removal from learned representations without compromising downstream accuracy.
☆ Efficient Long Video Tokenization via Coordinated-based Patch Reconstruction
Efficient tokenization of videos remains a challenge in training vision models that can process long videos. One promising direction is to develop a tokenizer that can encode long video clips, as it would enable the tokenizer to leverage the temporal coherence of videos better for tokenization. However, training existing tokenizers on long videos often incurs a huge training cost as they are trained to reconstruct all the frames at once. In this paper, we introduce CoordTok, a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos, inspired by recent advances in 3D generative models. In particular, CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled $(x,y,t)$ coordinates. This allows for training large tokenizer models directly on long videos without requiring excessive training resources. Our experiments show that CoordTok can drastically reduce the number of tokens for encoding long video clips. For instance, CoordTok can encode a 128-frame video with 128$\times$128 resolution into 1280 tokens, while baselines need 6144 or 8192 tokens to achieve similar reconstruction quality. We further show that this efficient video tokenization enables memory-efficient training of a diffusion transformer that can generate 128 frames at once.
comment: Code is available on the project webpage: https://huiwon-jang.github.io/coordtok/
☆ Hammer: Towards Efficient Hot-Cold Data Identification via Online Learning
Efficient management of storage resources in big data and cloud computing environments requires accurate identification of data's "cold" and "hot" states. Traditional methods, such as rule-based algorithms and early AI techniques, often struggle with dynamic workloads, leading to low accuracy, poor adaptability, and high operational overhead. To address these issues, we propose a novel solution based on online learning strategies. Our approach dynamically adapts to changing data access patterns, achieving higher accuracy and lower operational costs. Rigorous testing with both synthetic and real-world datasets demonstrates a significant improvement, achieving a 90% accuracy rate in hot-cold classification. Additionally, the computational and storage overheads are considerably reduced.
☆ Comparative Analysis of nnUNet and MedNeXt for Head and Neck Tumor Segmentation in MRI-guided Radiotherapy
Radiation therapy (RT) is essential in treating head and neck cancer (HNC), with magnetic resonance imaging(MRI)-guided RT offering superior soft tissue contrast and functional imaging. However, manual tumor segmentation is time-consuming and complex, and therfore remains a challenge. In this study, we present our solution as team TUMOR to the HNTS-MRG24 MICCAI Challenge which is focused on automated segmentation of primary gross tumor volumes (GTVp) and metastatic lymph node gross tumor volume (GTVn) in pre-RT and mid-RT MRI images. We utilized the HNTS-MRG2024 dataset, which consists of 150 MRI scans from patients diagnosed with HNC, including original and registered pre-RT and mid-RT T2-weighted images with corresponding segmentation masks for GTVp and GTVn. We employed two state-of-the-art models in deep learning, nnUNet and MedNeXt. For Task 1, we pretrained models on pre-RT registered and mid-RT images, followed by fine-tuning on original pre-RT images. For Task 2, we combined registered pre-RT images, registered pre-RT segmentation masks, and mid-RT data as a multi-channel input for training. Our solution for Task 1 achieved 1st place in the final test phase with an aggregated Dice Similarity Coefficient of 0.8254, and our solution for Task 2 ranked 8th with a score of 0.7005. The proposed solution is publicly available at Github Repository.
comment: 15 pages, 3 figures
☆ TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior
Recent advances in autonomous driving systems have shifted towards reducing reliance on high-definition maps (HDMaps) due to the huge costs of annotation and maintenance. Instead, researchers are focusing on online vectorized HDMap construction using on-board sensors. However, sensor-only approaches still face challenges in long-range perception due to the restricted views imposed by the mounting angles of onboard cameras, just as human drivers also rely on bird's-eye-view navigation maps for a comprehensive understanding of road structures. To address these issues, we propose to train the perception model to "see" standard definition maps (SDMaps). We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information to improve the bird's eye view (BEV) feature for lane geometry and topology decoding. Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology. To further enhance the ability of geometry prediction and topology reasoning, we also use a topology-guided decoder to refine the predictions by exploiting the mutual relationships between topological and geometric features. We perform extensive experiments on OpenLane-V2 datasets to validate the proposed method. The results show that our model outperforms state-of-the-art methods by a large margin, with gains of +6.7 and +9.1 on the mAP and topology metrics. Our analysis also reveals that models trained with SDMap noise augmentation exhibit enhanced robustness.
comment: 17 pages, 7 figures, and 7 tables
☆ Ordinal Multiple-instance Learning for Ulcerative Colitis Severity Estimation with Selective Aggregated Transformer WACV 2025
Patient-level diagnosis of severity in ulcerative colitis (UC) is common in real clinical settings, where the most severe score in a patient is recorded. However, previous UC classification methods (i.e., image-level estimation) mainly assumed the input was a single image. Thus, these methods can not utilize severity labels recorded in real clinical settings. In this paper, we propose a patient-level severity estimation method by a transformer with selective aggregator tokens, where a severity label is estimated from multiple images taken from a patient, similar to a clinical setting. Our method can effectively aggregate features of severe parts from a set of images captured in each patient, and it facilitates improving the discriminative ability between adjacent severity classes. Experiments demonstrate the effectiveness of the proposed method on two datasets compared with the state-of-the-art MIL methods. Moreover, we evaluated our method in real clinical settings and confirmed that our method outperformed the previous image-level methods. The code is publicly available at https://github.com/Shiku-Kaito/Ordinal-Multiple-instance-Learning-for-Ulcerative-Colitis-Severity-Estimation.
comment: 10 pages, 9 figures, Accepted in WACV 2025
☆ Cosmological Analysis with Calibrated Neural Quantile Estimation and Approximate Simulators
A major challenge in extracting information from current and upcoming surveys of cosmological Large-Scale Structure (LSS) is the limited availability of computationally expensive high-fidelity simulations. We introduce Neural Quantile Estimation (NQE), a new Simulation-Based Inference (SBI) method that leverages a large number of approximate simulations for training and a small number of high-fidelity simulations for calibration. This approach guarantees an unbiased posterior and achieves near-optimal constraining power when the approximate simulations are reasonably accurate. As a proof of concept, we demonstrate that cosmological parameters can be inferred at field level from projected 2-dim dark matter density maps up to $k_{\rm max}\sim1.5\,h$/Mpc at $z=0$ by training on $\sim10^4$ Particle-Mesh (PM) simulations with transfer function correction and calibrating with $\sim10^2$ Particle-Particle (PP) simulations. The calibrated posteriors closely match those obtained by directly training on $\sim10^4$ expensive PP simulations, but at a fraction of the computational cost. Our method offers a practical and scalable framework for SBI of cosmological LSS, enabling precise inference across vast volumes and down to small scales.
comment: 5+4 pages, 5+3 figures, to be submitted, comments are welcome
☆ Point Cloud Understanding via Attention-Driven Contrastive Learning
Recently Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms, however, these methods often overlook latent information in less prominent regions, leading to increased sensitivity to perturbations and limited global comprehension. To solve this issue, we introduce PointACL, an attention-driven contrastive learning framework designed to address these limitations. Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions, enhancing the understanding of global structures within the point cloud. Then we combine the original pre-training loss with a contrastive learning loss, improving feature discrimination and generalization. Extensive experiments validate the effectiveness of PointACL, as it achieves state-of-the-art performance across a variety of 3D understanding tasks, including object classification, part segmentation, and few-shot learning. Specifically, when integrated with different Transformer backbones like Point-MAE and PointGPT, PointACL demonstrates improved performance on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart. This highlights its superior capability in capturing both global and local features, as well as its enhanced robustness against perturbations and incomplete data.
☆ AI Tailoring: Evaluating Influence of Image Features on Fashion Product Popularity
Identifying key product features that influence consumer preferences is essential in the fashion industry. In this study, we introduce a robust methodology to ascertain the most impactful features in fashion product images, utilizing past market sales data. First, we propose the metric called "influence score" to quantitatively assess the importance of product features. Then we develop a forecasting model, the Fashion Demand Predictor (FDP), which integrates Transformer-based models and Random Forest to predict market popularity based on product images. We employ image-editing diffusion models to modify these images and perform an ablation study, which validates the impact of the highest and lowest-scoring features on the model's popularity predictions. Additionally, we further validate these results through surveys that gather human rankings of preferences, confirming the accuracy of the FDP model's predictions and the efficacy of our method in identifying influential features. Notably, products enhanced with "good" features show marked improvements in predicted popularity over their modified counterparts. Our approach develops a fully automated and systematic framework for fashion image analysis that provides valuable guidance for downstream tasks such as fashion product design and marketing strategy development.
☆ FLARE: FP-Less PTQ and Low-ENOB ADC Based AMS-PiM for Error-Resilient, Fast, and Efficient Transformer Acceleration
Encoder-based transformers, powered by self-attention layers, have revolutionized machine learning with their context-aware representations. However, their quadratic growth in computational and memory demands presents significant bottlenecks. Analog-Mixed-Signal Process-in-Memory (AMS-PiM) architectures address these challenges by enabling efficient on-chip processing. Traditionally, AMS-PiM relies on Quantization-Aware Training (QAT), which is hardware-efficient but requires extensive retraining to adapt models to AMS-PiMs, making it increasingly impractical for transformer models. Post-Training Quantization (PTQ) mitigates this training overhead but introduces significant hardware inefficiencies. PTQ relies on dequantization-quantization (DQ-Q) processes, floating-point units (FPUs), and high-ENOB (Effective Number of Bits) analog-to-digital converters (ADCs). Particularly, High-ENOB ADCs scale exponentially in area and energy ($2^{ENOB}$), reduce sensing margins, and increase susceptibility to process, voltage, and temperature (PVT) variations, further compounding PTQ's challenges in AMS-PiM systems. To overcome these limitations, we propose RAP, an AMS-PiM architecture that eliminates DQ-Q processes, introduces FPU- and division-free nonlinear processing, and employs a low-ENOB-ADC-based sparse Matrix Vector multiplication technique. Using the proposed techniques, RAP improves error resiliency, area/energy efficiency, and computational speed while preserving numerical stability. Experimental results demonstrate that RAP outperforms state-of-the-art GPUs and conventional PiM architectures in energy efficiency, latency, and accuracy, making it a scalable solution for the efficient deployment of transformers.
☆ K-GBS3FCM -- KNN Graph-Based Safe Semi-Supervised Fuzzy C-Means
Clustering data using prior domain knowledge, starting from a partially labeled set, has recently been widely investigated. Often referred to as semi-supervised clustering, this approach leverages labeled data to enhance clustering accuracy. To maximize algorithm performance, it is crucial to ensure the safety of this prior knowledge. Methods addressing this concern are termed safe semi-supervised clustering (S3C) algorithms. This paper introduces the KNN graph-based safety-aware semi-supervised fuzzy c-means algorithm (K-GBS3FCM), which dynamically assesses neighborhood relationships between labeled and unlabeled data using the K-Nearest Neighbors (KNN) algorithm. This approach aims to optimize the use of labeled data while minimizing the adverse effects of incorrect labels. Additionally, it is proposed a mechanism that adjusts the influence of labeled data on unlabeled ones through regularization parameters and the average safety degree. Experimental results on multiple benchmark datasets demonstrate that the graph-based approach effectively leverages prior knowledge to enhance clustering accuracy. The proposed method was significantly superior in 64% of the 56 test configurations, obtaining higher levels of clustering accuracy when compared to other semi-supervised and traditional unsupervised methods. This research highlights the potential of integrating graph-based approaches, such as KNN, with established techniques to develop advanced clustering algorithms, offering significant applications in fields that rely on both labeled and unlabeled data for more effective clustering.
comment: 10 pages
☆ Attributed Graph Clustering via Generalized Quaternion Representation Learning
Clustering complex data in the form of attributed graphs has attracted increasing attention, where appropriate graph representation is a critical prerequisite for accurate cluster analysis. However, the Graph Convolutional Network will homogenize the representation of graph nodes due to the well-known over-smoothing effect. This limits the network architecture to a shallow one, losing the ability to capture the critical global distribution information for clustering. Therefore, we propose a generalized graph auto-encoder network, which introduces quaternion operations to the encoders to achieve efficient structured feature representation learning without incurring deeper network and larger-scale parameters. The generalization of our method lies in the following two aspects: 1) connecting the quaternion operation naturally suitable for four feature components with graph data of arbitrary attribute dimensions, and 2) introducing a generalized graph clustering objective as a loss term to obtain clustering-friendly representations without requiring a pre-specified number of clusters $k$. It turns out that the representations of nodes learned by the proposed Graph Clustering based on Generalized Quaternion representation learning (GCGQ) are more discriminative, containing global distribution information, and are more general, suiting downstream clustering under different $k$s. Extensive experiments including significance tests, ablation studies, and qualitative results, illustrate the superiority of GCGQ. The source code is temporarily opened at \url{https://anonymous.4open.science/r/ICLR-25-No7181-codes}.
☆ Enhancing Molecular Design through Graph-based Topological Reinforcement Learning
The generation of drug-like molecules is crucial for drug design. Existing reinforcement learning (RL) methods often overlook structural information. However, feature engineering-based methods usually merely focus on binding affinity prediction without substantial molecular modification. To address this, we present Graph-based Topological Reinforcement Learning (GraphTRL), which integrates both chemical and structural data for improved molecular generation. GraphTRL leverages multiscale weighted colored graphs (MWCG) and persistent homology, combined with molecular fingerprints, as the state space for RL. Evaluations show that GraphTRL outperforms existing methods in binding affinity prediction, offering a promising approach to accelerate drug discovery.
☆ Evaluating and Advancing Multimodal Large Language Models in Ability Lens
As multimodal large language models (MLLMs) advance rapidly, rigorous evaluation has become essential, providing further guidance for their development. In this work, we focus on a unified and robust evaluation of \textbf{vision perception} abilities, the foundational skill of MLLMs. We find that existing perception benchmarks, each focusing on different question types, domains, and evaluation metrics, introduce significant evaluation variance, complicating comprehensive assessments of perception abilities when relying on any single benchmark. To address this, we introduce \textbf{AbilityLens}, a unified benchmark designed to evaluate MLLMs across six key perception abilities, focusing on both accuracy and stability, with each ability encompassing diverse question types, domains, and metrics. With the assistance of AbilityLens, we: (1) identify the strengths and weaknesses of current models, highlighting stability patterns and revealing a notable performance gap between open-source and closed-source models; (2) introduce an online evaluation mode, which uncovers interesting ability conflict and early convergence phenomena during MLLM training; and (3) design a simple ability-specific model merging method that combines the best ability checkpoint from early training stages, effectively mitigating performance decline due to ability conflict. The benchmark and online leaderboard will be released soon.
☆ MolReFlect: Towards In-Context Fine-grained Alignments between Molecules and Texts
Molecule discovery is a pivotal research field, impacting everything from the medicines we take to the materials we use. Recently, Large Language Models (LLMs) have been widely adopted in molecule understanding and generation, yet the alignments between molecules and their corresponding captions remain a significant challenge. Previous endeavours often treat the molecule as a general SMILES string or molecular graph, neglecting the fine-grained alignments between the molecular sub-structures and the descriptive textual phrases, which are crucial for accurate and explainable predictions. In this case, we introduce MolReFlect, a novel teacher-student framework designed to contextually perform the molecule-caption alignments in a fine-grained way. Our approach initially leverages a larger teacher LLM to label the detailed alignments by directly extracting critical phrases from molecule captions or SMILES strings and implying them to corresponding sub-structures or characteristics. To refine these alignments, we propose In-Context Selective Reflection, which retrieves previous extraction results as context examples for teacher LLM to reflect and lets a smaller student LLM select from in-context reflection and previous extraction results. Finally, we enhance the learning process of the student LLM through Chain-of-Thought In-Context Molecule Tuning, integrating the fine-grained alignments and the reasoning processes within the Chain-of-Thought format. Our experimental results demonstrate that MolReFlect enables LLMs like Mistral-7B to significantly outperform the previous baselines, achieving SOTA performance on the ChEBI-20 dataset. This advancement not only enhances the generative capabilities of LLMs in the molecule-caption translation task, but also contributes to a more explainable framework.
comment: 22 pages, 12 figures
☆ FedMLLM: Federated Fine-tuning MLLM on Multimodal Heterogeneity Data
Multimodal Large Language Models (MLLMs) have made significant advancements, demonstrating powerful capabilities in processing and understanding multimodal data. Fine-tuning MLLMs with Federated Learning (FL) allows for expanding the training data scope by including private data sources, thereby enhancing their practical applicability in privacy-sensitive domains. However, current research remains in the early stage, particularly in addressing the \textbf{multimodal heterogeneities} in real-world applications. In this paper, we introduce a benchmark for evaluating various downstream tasks in the federated fine-tuning of MLLMs within multimodal heterogeneous scenarios, laying the groundwork for the research in the field. Our benchmark encompasses two datasets, five comparison baselines, and four multimodal scenarios, incorporating over ten types of modal heterogeneities. To address the challenges posed by modal heterogeneity, we develop a general FedMLLM framework that integrates four representative FL methods alongside two modality-agnostic strategies. Extensive experimental results show that our proposed FL paradigm improves the performance of MLLMs by broadening the range of training data and mitigating multimodal heterogeneity. Code is available at https://github.com/1xbq1/FedMLLM
☆ VisionPAD: A Vision-Centric Pre-training Paradigm for Autonomous Driving
This paper introduces VisionPAD, a novel self-supervised pre-training paradigm designed for vision-centric algorithms in autonomous driving. In contrast to previous approaches that employ neural rendering with explicit depth supervision, VisionPAD utilizes more efficient 3D Gaussian Splatting to reconstruct multi-view representations using only images as supervision. Specifically, we introduce a self-supervised method for voxel velocity estimation. By warping voxels to adjacent frames and supervising the rendered outputs, the model effectively learns motion cues in the sequential data. Furthermore, we adopt a multi-frame photometric consistency approach to enhance geometric perception. It projects adjacent frames to the current frame based on rendered depths and relative poses, boosting the 3D geometric representation through pure image supervision. Extensive experiments on autonomous driving datasets demonstrate that VisionPAD significantly improves performance in 3D object detection, occupancy prediction and map segmentation, surpassing state-of-the-art pre-training strategies by a considerable margin.
☆ Can GNNs Learn Link Heuristics? A Concise Review and Evaluation of Link Prediction Methods
This paper explores the ability of Graph Neural Networks (GNNs) in learning various forms of information for link prediction, alongside a brief review of existing link prediction methods. Our analysis reveals that GNNs cannot effectively learn structural information related to the number of common neighbors between two nodes, primarily due to the nature of set-based pooling of the neighborhood aggregation scheme. Also, our extensive experiments indicate that trainable node embeddings can improve the performance of GNN-based link prediction models. Importantly, we observe that the denser the graph, the greater such the improvement. We attribute this to the characteristics of node embeddings, where the link state of each link sample could be encoded into the embeddings of nodes that are involved in the neighborhood aggregation of the two nodes in that link sample. In denser graphs, every node could have more opportunities to attend the neighborhood aggregation of other nodes and encode states of more link samples to its embedding, thus learning better node embeddings for link prediction. Lastly, we demonstrate that the insights gained from our research carry important implications in identifying the limitations of existing link prediction methods, which could guide the future development of more robust algorithms.
☆ Understanding LLM Embeddings for Regression
With the rise of large language models (LLMs) for flexibly processing information as strings, a natural application is regression, specifically by preprocessing string representations into LLM embeddings as downstream features for metric prediction. In this paper, we provide one of the first comprehensive investigations into embedding-based regression and demonstrate that LLM embeddings as features can be better for high-dimensional regression tasks than using traditional feature engineering. This regression performance can be explained in part due to LLM embeddings over numeric data inherently preserving Lipschitz continuity over the feature space. Furthermore, we quantify the contribution of different model effects, most notably model size and language understanding, which we find surprisingly do not always improve regression performance.
comment: 15 pages, 13 figures
☆ Quantum Hamiltonian Descent for Graph Partition
We introduce Quantum Hamiltonian Descent as a novel approach to solve the graph partition problem. By reformulating graph partition as a Quadratic Unconstrained Binary Optimization (QUBO) problem, we leverage QHD's quantum-inspired dynamics to identify optimal community structures. Our method implements a multi-level refinement strategy that alternates between QUBO formulation and QHD optimization to iteratively improve partition quality. Experimental results demonstrate that our QHD-based approach achieves superior modularity scores (up to 5.49\%) improvement with reduced computational overhead compared to traditional optimization methods. This work establishes QHD as an effective quantum-inspired framework for tackling graph partition challenges in large-scale networks.
☆ Anti-Forgetting Adaptation for Unsupervised Person Re-identification TPAMI
Regular unsupervised domain adaptive person re-identification (ReID) focuses on adapting a model from a source domain to a fixed target domain. However, an adapted ReID model can hardly retain previously-acquired knowledge and generalize to unseen data. In this paper, we propose a Dual-level Joint Adaptation and Anti-forgetting (DJAA) framework, which incrementally adapts a model to new domains without forgetting source domain and each adapted target domain. We explore the possibility of using prototype and instance-level consistency to mitigate the forgetting during the adaptation. Specifically, we store a small number of representative image samples and corresponding cluster prototypes in a memory buffer, which is updated at each adaptation step. With the buffered images and prototypes, we regularize the image-to-image similarity and image-to-prototype similarity to rehearse old knowledge. After the multi-step adaptation, the model is tested on all seen domains and several unseen domains to validate the generalization ability of our method. Extensive experiments demonstrate that our proposed method significantly improves the anti-forgetting, generalization and backward-compatible ability of an unsupervised person ReID model.
comment: Accepted to TPAMI
☆ A Data-Driven Pool Strategy for Price-Makers Under Imperfect Information
This paper studies the pool strategy for price-makers under imperfect information. In this occasion, market participants cannot obtain essential transmission parameters of the power system. Thus, price-makers should estimate the market results with respect to their offer curves using available historical information. The linear programming model of economic dispatch is analyzed with the theory of rim multi-parametric linear programming (rim-MPLP). The characteristics of system patterns (combinations of status flags for generating units and transmission lines) are revealed. A multi-class classification model based on support vector machine (SVM) is trained to map the offer curves to system patterns, which is then integrated into the decision framework of the price-maker. The performance of the proposed method is validated on the IEEE 30-bus system, Illinois synthetic 200-bus system, and South Carolina synthetic 500-bus system.
comment: Paper accepted for IEEE Transactions on Power Systems. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
☆ EV-PINN: A Physics-Informed Neural Network for Predicting Electric Vehicle Dynamics
An onboard prediction of dynamic parameters (e.g. Aerodynamic drag, rolling resistance) enables accurate path planning for EVs. This paper presents EV-PINN, a Physics-Informed Neural Network approach in predicting instantaneous battery power and cumulative energy consumption during cruising while generalizing to the nonlinear dynamics of an EV. Our method learns real-world parameters such as motor efficiency, regenerative braking efficiency, vehicle mass, coefficient of aerodynamic drag, and coefficient of rolling resistance using automatic differentiation based on dynamics and ensures consistency with ground truth vehicle data. EV-PINN was validated using 15 and 35 minutes of in-situ battery log data from the Tesla Model 3 Long Range and Tesla Model S, respectively. With only vehicle speed and time as inputs, our model achieves high accuracy and generalization to dynamics, with validation losses of 0.002195 and 0.002292, respectively. This demonstrates EV-PINN's effectiveness in estimating parameters and predicting battery usage under actual driving conditions without the need for additional sensors.
comment: This work has been submitted to the 2025 IEEE International Conference on Robotics and Automation (ICRA) for possible publication
☆ Whats in a Video: Factorized Autoregressive Decoding for Online Dense Video Captioning
Generating automatic dense captions for videos that accurately describe their contents remains a challenging area of research. Most current models require processing the entire video at once. Instead, we propose an efficient, online approach which outputs frequent, detailed and temporally aligned captions, without access to future frames. Our model uses a novel autoregressive factorized decoding architecture, which models the sequence of visual features for each time segment, outputting localized descriptions and efficiently leverages the context from the previous video segments. This allows the model to output frequent, detailed captions to more comprehensively describe the video, according to its actual local content, rather than mimic the training data. Second, we propose an optimization for efficient training and inference, which enables scaling to longer videos. Our approach shows excellent performance compared to both offline and online methods, and uses 20\% less compute. The annotations produced are much more comprehensive and frequent, and can further be utilized in automatic video tagging and in large-scale video data harvesting.
Self-Supervised Learning for Ordered Three-Dimensional Structures
Recent work has proven that training large language models with self-supervised tasks and fine-tuning these models to complete new tasks in a transfer learning setting is a powerful idea, enabling the creation of models with many parameters, even with little labeled data; however, the number of domains that have harnessed these advancements has been limited. In this work, we formulate a set of geometric tasks suitable for the large-scale study of ordered three-dimensional structures, without requiring any human intervention in data labeling. We build deep rotation- and permutation-equivariant neural networks based on geometric algebra and use them to solve these tasks on both idealized and simulated three-dimensional structures. Quantifying order in complex-structured assemblies remains a long-standing challenge in materials physics; these models can elucidate the behavior of real self-assembling systems in a variety of ways, from distilling insights from learned tasks without further modification to solving new tasks with smaller amounts of labeled data via transfer learning.
comment: Version as submitted to the Learning on Graphs Conference 2022, with small clarifying edits
☆ Recursive Gaussian Process State Space Model
Learning dynamical models from data is not only fundamental but also holds great promise for advancing principle discovery, time-series prediction, and controller design. Among various approaches, Gaussian Process State-Space Models (GPSSMs) have recently gained significant attention due to their combination of flexibility and interpretability. However, for online learning, the field lacks an efficient method suitable for scenarios where prior information regarding data distribution and model function is limited. To address this issue, this paper proposes a recursive GPSSM method with adaptive capabilities for both operating domains and Gaussian process (GP) hyperparameters. Specifically, we first utilize first-order linearization to derive a Bayesian update equation for the joint distribution between the system state and the GP model, enabling closed-form and domain-independent learning. Second, an online selection algorithm for inducing points is developed based on informative criteria to achieve lightweight learning. Third, to support online hyperparameter optimization, we recover historical measurement information from the current filtering distribution. Comprehensive evaluations on both synthetic and real-world datasets demonstrate the superior accuracy, computational efficiency, and adaptability of our method compared to state-of-the-art online GPSSM techniques.
☆ Exploring the Use of Machine Learning Weather Models in Data Assimilation
The use of machine learning (ML) models in meteorology has attracted significant attention for their potential to improve weather forecasting efficiency and accuracy. GraphCast and NeuralGCM, two promising ML-based weather models, are at the forefront of this innovation. However, their suitability for data assimilation (DA) systems, particularly for four-dimensional variational (4DVar) DA, remains under-explored. This study evaluates the tangent linear (TL) and adjoint (AD) models of both GraphCast and NeuralGCM to assess their viability for integration into a DA framework. We compare the TL/AD results of GraphCast and NeuralGCM with those of the Model for Prediction Across Scales - Atmosphere (MPAS-A), a well-established numerical weather prediction (NWP) model. The comparison focuses on the physical consistency and reliability of TL/AD responses to perturbations. While the adjoint results of both GraphCast and NeuralGCM show some similarity to those of MPAS-A, they also exhibit unphysical noise at various vertical levels, raising concerns about their robustness for operational DA systems. The implications of this study extend beyond 4DVar applications. Unphysical behavior and noise in ML-derived TL/AD models could lead to inaccurate error covariances and unreliable ensemble forecasts, potentially degrading the overall performance of ensemble-based DA systems, as well. Addressing these challenges is critical to ensuring that ML models, such as GraphCast and NeuralGCM, can be effectively integrated into operational DA systems, paving the way for more accurate and efficient weather predictions.
☆ Brain-Computer Interfaces for Emotional Regulation in Patients with Various Disorders
Neurological and Physiological Disorders that impact emotional regulation each have their own unique characteristics which are important to understand in order to create a generalized solution to all of them. The purpose of this experiment is to explore the potential applications of EEG-based Brain-Computer Interfaces (BCIs) in enhancing emotional regulation for individuals with neurological and physiological disorders. The research focuses on the development of a novel neural network algorithm for understanding EEG data, with a particular emphasis on recognizing and regulating emotional states. The procedure involves the collection of EEG-based emotion data from open-Neuro. Using novel data modification techniques, information from the dataset can be altered to create a dataset that has neural patterns of patients with disorders whilst showing emotional change. The data analysis reveals promising results, as the algorithm is able to successfully classify emotional states with a high degree of accuracy. This suggests that EEG-based BCIs have the potential to be a valuable tool in aiding individuals with a range of neurological and physiological disorders in recognizing and regulating their emotions. To improve upon this work, data collection on patients with neurological disorders should be done to improve overall sample diversity.
☆ Double Machine Learning for Adaptive Causal Representation in High-Dimensional Data
Adaptive causal representation learning from observational data is presented, integrated with an efficient sample splitting technique within the semiparametric estimating equation framework. The support points sample splitting (SPSS), a subsampling method based on energy distance, is employed for efficient double machine learning (DML) in causal inference. The support points are selected and split as optimal representative points of the full raw data in a random sample, in contrast to the traditional random splitting, and providing an optimal sub-representation of the underlying data generating distribution. They offer the best representation of a full big dataset, whereas the unit structural information of the underlying distribution via the traditional random data splitting is most likely not preserved. Three machine learning estimators were adopted for causal inference, support vector machine (SVM), deep learning (DL), and a hybrid super learner (SL) with deep learning (SDL), using SPSS. A comparative study is conducted between the proposed SVM, DL, and SDL representations using SPSS, and the benchmark results from Chernozhukov et al. (2018), which employed random forest, neural network, and regression trees with a random k-fold cross-fitting technique on the 401(k)-pension plan real data. The simulations show that DL with SPSS and the hybrid methods of DL and SL with SPSS outperform SVM with SPSS in terms of computational efficiency and the estimation quality, respectively.
☆ Sparsifying Suprema of Gaussian Processes
We give a dimension-independent sparsification result for suprema of centered Gaussian processes: Let $T$ be any (possibly infinite) bounded set of vectors in $\mathbb{R}^n$, and let $\{{\boldsymbol{X}}_t\}_{t\in T}$ be the canonical Gaussian process on $T$. We show that there is an $O_\varepsilon(1)$-size subset $S \subseteq T$ and a set of real values $\{c_s\}_{s \in S}$ such that $\sup_{s \in S} \{{\boldsymbol{X}}_s + c_s\}$ is an $\varepsilon$-approximator of $\sup_{t \in T} {\boldsymbol{X}}_t$. Notably, the size of $S$ is completely independent of both the size of $T$ and of the ambient dimension $n$. We use this to show that every norm is essentially a junta when viewed as a function over Gaussian space: Given any norm $\nu(x)$ on $\mathbb{R}^n$, there is another norm $\psi(x)$ which depends only on the projection of $x$ along $O_\varepsilon(1)$ directions, for which $\psi({\boldsymbol{g}})$ is a multiplicative $(1 \pm \varepsilon)$-approximation of $\nu({\boldsymbol{g}})$ with probability $1-\varepsilon$ for ${\boldsymbol{g}} \sim N(0,I_n)$. We also use our sparsification result for suprema of centered Gaussian processes to give a sparsification lemma for convex sets of bounded geometric width: Any intersection of (possibly infinitely many) halfspaces in $\mathbb{R}^n$ that are at distance $O(1)$ from the origin is $\varepsilon$-close, under $N(0,I_n)$, to an intersection of only $O_\varepsilon(1)$ many halfspaces. We describe applications to agnostic learning and tolerant property testing.
comment: 30 pages
☆ Multiset Transformer: Advancing Representation Learning in Persistence Diagrams
To improve persistence diagram representation learning, we propose Multiset Transformer. This is the first neural network that utilizes attention mechanisms specifically designed for multisets as inputs and offers rigorous theoretical guarantees of permutation invariance. The architecture integrates multiset-enhanced attentions with a pool-decomposition scheme, allowing multiplicities to be preserved across equivariant layers. This capability enables full leverage of multiplicities while significantly reducing both computational and spatial complexity compared to the Set Transformer. Additionally, our method can greatly benefit from clustering as a preprocessing step to further minimize complexity, an advantage not possessed by the Set Transformer. Experimental results demonstrate that the Multiset Transformer outperforms existing neural network methods in the realm of persistence diagram representation learning.
♻ ☆ Financial Fraud Detection using Jump-Attentive Graph Neural Networks
As the availability of financial services online continues to grow, the incidence of fraud has surged correspondingly. Fraudsters continually seek new and innovative ways to circumvent the detection algorithms in place. Traditionally, fraud detection relied on rule-based methods, where rules were manually created based on transaction data features. However, these techniques soon became ineffective due to their reliance on manual rule creation and their inability to detect complex data patterns. Today, a significant portion of the financial services sector employs various machine learning algorithms, such as XGBoost, Random Forest, and neural networks, to model transaction data. While these techniques have proven more efficient than rule-based methods, they still fail to capture interactions between different transactions and their interrelationships. Recently, graph-based techniques have been adopted for financial fraud detection, leveraging graph topology to aggregate neighborhood information of transaction data using Graph Neural Networks (GNNs). Despite showing improvements over previous methods, these techniques still struggle to keep pace with the evolving camouflaging tactics of fraudsters and suffer from information loss due to over-smoothing. In this paper, we propose a novel algorithm that employs an efficient neighborhood sampling method, effective for camouflage detection and preserving crucial feature information from non-similar nodes. Additionally, we introduce a novel GNN architecture that utilizes attention mechanisms and preserves holistic neighborhood information to prevent information loss. We test our algorithm on financial data to show that our method outperforms other state-of-the-art graph algorithms.
comment: International Conference on Machine Learning and Applications 2024
♻ ☆ Sketched Equivariant Imaging Regularization and Deep Internal Learning for Inverse Problems
Equivariant Imaging (EI) regularization has become the de-facto technique for unsupervised training of deep imaging networks, without any need of ground-truth data. Observing that the EI-based unsupervised training paradigm currently has significant computational redundancy leading to inefficiency in high-dimensional applications, we propose a sketched EI regularization which leverages the randomized sketching techniques for acceleration. We then extend our sketched EI regularization to develop an accelerated deep internal learning framework -- Sketched Equivariant Deep Image Prior (Sk-EI-DIP), which can be efficiently applied for single-image and task-adapted reconstruction. Additionally, for network adaptation tasks, we propose a parameter-efficient approach for accelerating both EI-DIP and Sk-EI-DIP via optimizing only the normalization layers. Our numerical study on X-ray CT image reconstruction tasks demonstrate that our approach can achieve order-of-magnitude computational acceleration over standard EI-based counterpart in single-input setting, and network adaptation at test time.
AdaFlow: Imitation Learning with Variance-Adaptive Flow-Based Policies
Diffusion-based imitation learning improves Behavioral Cloning (BC) on multi-modal decision-making, but comes at the cost of significantly slower inference due to the recursion in the diffusion process. It urges us to design efficient policy generators while keeping the ability to generate diverse actions. To address this challenge, we propose AdaFlow, an imitation learning framework based on flow-based generative modeling. AdaFlow represents the policy with state-conditioned ordinary differential equations (ODEs), which are known as probability flows. We reveal an intriguing connection between the conditional variance of their training loss and the discretization error of the ODEs. With this insight, we propose a variance-adaptive ODE solver that can adjust its step size in the inference stage, making AdaFlow an adaptive decision-maker, offering rapid inference without sacrificing diversity. Interestingly, it automatically reduces to a one-step generator when the action distribution is uni-modal. Our comprehensive empirical evaluation shows that AdaFlow achieves high performance with fast inference speed.
comment: NeuRIPS 2024
♻ ☆ Persistent Homology for Structural Characterization in Disordered Systems
We propose a unified framework based on persistent homology (PH) to characterize both local and global structures in disordered systems. It can simultaneously generate local and global descriptors using the same algorithm and data structure, and has shown to be highly effective and interpretable in predicting particle rearrangements and classifying global phases. Based on this framework, we define a non-parametric metric, the Separation Index (SI), which not only outperforms traditional bond-orientational order parameters in phase classification tasks but also establishes a connection between particle environments and the global phase structure. Our methods provide an effective framework for understanding and analyzing the properties of disordered materials, with broad potential applications in materials science and even wider studies of complex systems.
comment: 19 pages, 17 figures
♻ ☆ UnMarker: A Universal Attack on Defensive Image Watermarking
Reports regarding the misuse of Generative AI (GenAI) to create deepfakes are frequent. Defensive watermarking enables GenAI providers to hide fingerprints in their images and use them later for deepfake detection. Yet, its potential has not been fully explored. We present UnMarker -- the first practical universal attack on defensive watermarking. Unlike existing attacks, UnMarker requires no detector feedback, no unrealistic knowledge of the watermarking scheme or similar models, and no advanced denoising pipelines that may not be available. Instead, being the product of an in-depth analysis of the watermarking paradigm revealing that robust schemes must construct their watermarks in the spectral amplitudes, UnMarker employs two novel adversarial optimizations to disrupt the spectra of watermarked images, erasing the watermarks. Evaluations against SOTA schemes prove UnMarker's effectiveness. It not only defeats traditional schemes while retaining superior quality compared to existing attacks but also breaks semantic watermarks that alter an image's structure, reducing the best detection rate to $43\%$ and rendering them useless. To our knowledge, UnMarker is the first practical attack on semantic watermarks, which have been deemed the future of defensive watermarking. Our findings show that defensive watermarking is not a viable defense against deepfakes, and we urge the community to explore alternatives.
comment: To appear at IEEE S&P 2025
♻ ☆ Just In Time Transformers
Precise energy load forecasting in residential households is crucial for mitigating carbon emissions and enhancing energy efficiency; indeed, accurate forecasting enables utility companies and policymakers, who advocate sustainable energy practices, to optimize resource utilization. Moreover, smart meters provide valuable information by allowing for granular insights into consumption patterns. Building upon available smart meter data, our study aims to cluster consumers into distinct groups according to their energy usage behaviours, effectively capturing a diverse spectrum of consumption patterns. Next, we design JITtrans (Just In Time transformer), a novel transformer deep learning model that significantly improves energy consumption forecasting accuracy, with respect to traditional forecasting methods. Extensive experimental results validate our claims using proprietary smart meter data. Our findings highlight the potential of advanced predictive technologies to revolutionize energy management and advance sustainable power systems: the development of efficient and eco-friendly energy solutions critically depends on such technologies.
♻ ☆ NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics NeurIPS23
Machine learning provides a valuable tool for analyzing high-dimensional functional neuroimaging data, and is proving effective in predicting various neurological conditions, psychiatric disorders, and cognitive patterns. In functional magnetic resonance imaging (MRI) research, interactions between brain regions are commonly modeled using graph-based representations. The potency of graph machine learning methods has been established across myriad domains, marking a transformative step in data interpretation and predictive modeling. Yet, despite their promise, the transposition of these techniques to the neuroimaging domain has been challenging due to the expansive number of potential preprocessing pipelines and the large parameter search space for graph-based dataset construction. In this paper, we introduce NeuroGraph, a collection of graph-based neuroimaging datasets, and demonstrated its utility for predicting multiple categories of behavioral and cognitive traits. We delve deeply into the dataset generation search space by crafting 35 datasets that encompass static and dynamic brain connectivity, running in excess of 15 baseline methods for benchmarking. Additionally, we provide generic frameworks for learning on both static and dynamic graphs. Our extensive experiments lead to several key observations. Notably, using correlation vectors as node features, incorporating larger number of regions of interest, and employing sparser graphs lead to improved performance. To foster further advancements in graph-based data driven neuroimaging analysis, we offer a comprehensive open-source Python package that includes the benchmark datasets, baseline implementations, model training, and standard evaluation.
comment: NeurIPS23
♻ ☆ OCD-FL: A Novel Communication-Efficient Peer Selection-based Decentralized Federated Learning
The conjunction of edge intelligence and the ever-growing Internet-of-Things (IoT) network heralds a new era of collaborative machine learning, with federated learning (FL) emerging as the most prominent paradigm. With the growing interest in these learning schemes, researchers started addressing some of their most fundamental limitations. Indeed, conventional FL with a central aggregator presents a single point of failure and a network bottleneck. To bypass this issue, decentralized FL where nodes collaborate in a peer-to-peer network has been proposed. Despite the latter's efficiency, communication costs and data heterogeneity remain key challenges in decentralized FL. In this context, we propose a novel scheme, called opportunistic communication-efficient decentralized federated learning, a.k.a., OCD-FL, consisting of a systematic FL peer selection for collaboration, aiming to achieve maximum FL knowledge gain while reducing energy consumption. Experimental results demonstrate the capability of OCD-FL to achieve similar or better performances than the fully collaborative FL, while significantly reducing consumed energy by at least 30% and up to 80%.
comment: 6 pages, under review in IEEE Transactions on Vehicular Technology as a Correspondance (rev. 1)
♻ ☆ Causal Representation Learning with Generative Artificial Intelligence: Application to Texts as Treatments
In this paper, we demonstrate how to enhance the validity of causal inference with unstructured high-dimensional treatments like texts, by leveraging the power of generative Artificial Intelligence. Specifically, we propose to use a deep generative model such as large language models (LLMs) to efficiently generate treatments and use their internal representation for subsequent causal effect estimation. We show that the knowledge of this true internal representation helps disentangle the treatment features of interest, such as specific sentiments and certain topics, from other possibly unknown confounding features. Unlike the existing methods, our proposed approach eliminates the need to learn causal representation from the data and hence produces more accurate and efficient estimates. We formally establish the conditions required for the nonparametric identification of the average treatment effect, propose an estimation strategy that avoids the violation of the overlap assumption, and derive the asymptotic properties of the proposed estimator through the application of double machine learning. Finally, using an instrumental variables approach, we extend the proposed methodology to the settings, in which the treatment feature is based on human perception rather than is assumed to be fixed given the treatment object. The proposed methodology is also applicable to text reuse where an LLM is used to regenerate the existing texts. We conduct simulation and empirical studies, using the generated text data from an open-source LLM, Llama 3, to illustrate the advantages of our estimator over the state-of-the-art causal representation learning algorithms.
♻ ☆ HiBO: Hierarchical Bayesian Optimization via Adaptive Search Space Partitioning
Optimizing black-box functions in high-dimensional search spaces has been known to be challenging for traditional Bayesian Optimization (BO). In this paper, we introduce HiBO, a novel hierarchical algorithm integrating global-level search space partitioning information into the acquisition strategy of a local BO-based optimizer. HiBO employs a search-tree-based global-level navigator to adaptively split the search space into partitions with different sampling potential. The local optimizer then utilizes this global-level information to guide its acquisition strategy towards most promising regions within the search space. A comprehensive set of evaluations demonstrates that HiBO outperforms state-of-the-art methods in high-dimensional synthetic benchmarks and presents significant practical effectiveness in the real-world task of tuning configurations of database management systems (DBMSs).
comment: There are some ethically sensitive words to be further modified in this paper. Hope that we can withdraw it first and re-post it back after a further investigation into the related guidelines
♻ ☆ Can Features for Phishing URL Detection Be Trusted Across Diverse Datasets? A Case Study with Explainable AI
Phishing has been a prevalent cyber threat that manipulates users into revealing sensitive private information through deceptive tactics, designed to masquerade as trustworthy entities. Over the years, proactively detection of phishing URLs (or websites) has been established as an widely-accepted defense approach. In literature, we often find supervised Machine Learning (ML) models with highly competitive performance for detecting phishing websites based on the extracted features from both phishing and benign (i.e., legitimate) websites. However, it is still unclear if these features or indicators are dependent on a particular dataset or they are generalized for overall phishing detection. In this paper, we delve deeper into this issue by analyzing two publicly available phishing URL datasets, where each dataset has its own set of unique and overlapping features related to URL string and website contents. We want to investigate if overlapping features are similar in nature across datasets and how does the model perform when trained on one dataset and tested on the other. We conduct practical experiments and leverage explainable AI (XAI) methods such as SHAP plots to provide insights into different features' contributions in case of phishing detection to answer our primary question, "Can features for phishing URL detection be trusted across diverse dataset?". Our case study experiment results show that features for phishing URL detection can often be dataset-dependent and thus may not be trusted across different datasets even though they share same set of feature behaviors.
comment: 9 pages, 9 figures, 11th International Conference on Networking, Systems, and Security (NSysS 2024), 2024, Khulna, Bangladesh
♻ ☆ Continuous Generative Neural Networks: A Wavelet-Based Architecture in Function Spaces
In this work, we present and study Continuous Generative Neural Networks (CGNNs), namely, generative models in the continuous setting: the output of a CGNN belongs to an infinite-dimensional function space. The architecture is inspired by DCGAN, with one fully connected layer, several convolutional layers and nonlinear activation functions. In the continuous $L^2$ setting, the dimensions of the spaces of each layer are replaced by the scales of a multiresolution analysis of a compactly supported wavelet. We present conditions on the convolutional filters and on the nonlinearity that guarantee that a CGNN is injective. This theory finds applications to inverse problems, and allows for deriving Lipschitz stability estimates for (possibly nonlinear) infinite-dimensional inverse problems with unknowns belonging to the manifold generated by a CGNN. Several numerical simulations, including signal deblurring, illustrate and validate this approach.
comment: 40 pages, 8 figures
♻ ☆ Controlling Language and Diffusion Models by Transporting Activations
The increasing capabilities of large generative models and their ever more widespread deployment have raised concerns about their reliability, safety, and potential misuse. To address these issues, recent works have proposed to control model generation by steering model activations in order to effectively induce or prevent the emergence of concepts or behaviors in the generated output. In this paper we introduce Activation Transport (AcT), a general framework to steer activations guided by optimal transport theory that generalizes many previous activation-steering works. AcT is modality-agnostic and provides fine-grained control over the model behavior with negligible computational overhead, while minimally impacting model abilities. We experimentally show the effectiveness and versatility of our approach by addressing key challenges in large language models (LLMs) and text-to-image diffusion models (T2Is). For LLMs, we show that AcT can effectively mitigate toxicity, induce arbitrary concepts, and increase their truthfulness. In T2Is, we show how AcT enables fine-grained style control and concept negation.
♻ ☆ Structural Group Unfairness: Measurement and Mitigation by means of the Effective Resistance AAAI
Social networks contribute to the distribution of social capital, defined as the relationships, norms of trust and reciprocity within a community or society that facilitate cooperation and collective action. Therefore, better positioned members in a social network benefit from faster access to diverse information and higher influence on information dissemination. A variety of methods have been proposed in the literature to measure social capital at an individual level. However, there is a lack of methods to quantify social capital at a group level, which is particularly important when the groups are defined on the grounds of protected attributes. To fill this gap, we propose to measure the social capital of a group of nodes by means of the effective resistance and emphasize the importance of considering the entire network topology. Grounded in spectral graph theory, we introduce three effective resistance-based measures of group social capital, namely group isolation, group diameter and group control, where the groups are defined according to the value of a protected attribute. We denote the social capital disparity among different groups in a network as structural group unfairness, and propose to mitigate it by means of a budgeted edge augmentation heuristic that systematically increases the social capital of the most disadvantaged group. In experiments on real-world networks, we uncover significant levels of structural group unfairness when using gender as the protected attribute, with females being the most disadvantaged group in comparison to males. We also illustrate how our proposed edge augmentation approach is able to not only effectively mitigate the structural group unfairness but also increase the social capital of all groups in the network.
comment: Accepted at International AAAI Conference on Web and Social Media (ICWSM) 2025. Please cite accordingly
♻ ☆ What Do GNNs Actually Learn? Towards Understanding their Representations
In recent years, graph neural networks (GNNs) have achieved great success in the field of graph representation learning. Although prior work has shed light on the expressiveness of those models (\ie whether they can distinguish pairs of non-isomorphic graphs), it is still not clear what structural information is encoded into the node representations that are learned by those models. In this paper, we address this gap by studying the node representations learned by four standard GNN models. We find that some models produce identical representations for all nodes, while the representations learned by other models are linked to some notion of walks of specific length that start from the nodes. We establish Lipschitz bounds for these models with respect to the number of (normalized) walks. Additionally, we investigate the influence of node features on the learned representations. We find that if the initial representations of all nodes point in the same direction, the representations learned at the $k$-th layer of the models are also related to the initial features of nodes that can be reached in exactly $k$ steps. We also apply our findings to understand the phenomenon of oversquashing that occurs in GNNs. Our theoretical analysis is validated through experiments on synthetic and real-world datasets.
♻ ☆ Utilizing Large Language Models to Synthesize Product Desirability Datasets
This research explores the application of large language models (LLMs) to generate synthetic datasets for Product Desirability Toolkit (PDT) testing, a key component in evaluating user sentiment and product experience. Utilizing gpt-4o-mini, a cost-effective alternative to larger commercial LLMs, three methods, Word+Review, Review+Word, and Supply-Word, were each used to synthesize 1000 product reviews. The generated datasets were assessed for sentiment alignment, textual diversity, and data generation cost. Results demonstrated high sentiment alignment across all methods, with Pearson correlations ranging from 0.93 to 0.97. Supply-Word exhibited the highest diversity and coverage of PDT terms, although with increased generation costs. Despite minor biases toward positive sentiments, in situations with limited test data, LLM-generated synthetic data offers significant advantages, including scalability, cost savings, and flexibility in dataset production.
comment: 9 pages, 2 figures, 6 tables, updated author list
♻ ☆ Interval Abstractions for Robust Counterfactual Explanations
Counterfactual Explanations (CEs) have emerged as a major paradigm in explainable AI research, providing recourse recommendations for users affected by the decisions of machine learning models. However, CEs found by existing methods often become invalid when slight changes occur in the parameters of the model they were generated for. The literature lacks a way to provide exhaustive robustness guarantees for CEs under model changes, in that existing methods to improve CEs' robustness are mostly heuristic, and the robustness performances are evaluated empirically using only a limited number of retrained models. To bridge this gap, we propose a novel interval abstraction technique for parametric machine learning models, which allows us to obtain provable robustness guarantees for CEs under a possibly infinite set of plausible model changes $\Delta$. Based on this idea, we formalise a robustness notion for CEs, which we call $\Delta$-robustness, in both binary and multi-class classification settings. We present procedures to verify $\Delta$-robustness based on Mixed Integer Linear Programming, using which we further propose algorithms to generate CEs that are $\Delta$-robust. In an extensive empirical study involving neural networks and logistic regression models, we demonstrate the practical applicability of our approach. We discuss two strategies for determining the appropriate hyperparameters in our method, and we quantitatively benchmark CEs generated by eleven methods, highlighting the effectiveness of our algorithms in finding robust CEs.
comment: Published in Artificial Intelligence Journal
♻ ☆ Neural Network-Based Bandit: A Medium Access Control for the IIoT Alarm Scenario
Efficient Random Access (RA) is critical for enabling reliable communication in Industrial Internet of Things (IIoT) networks. Herein, we propose a deep reinforcement learning based distributed RA scheme, entitled Neural Network-Based Bandit (NNBB), for the IIoT alarm scenario. In such a scenario, the devices may detect a common critical event, and the goal is to ensure the alarm information is delivered successfully from at least one device. The proposed NNBB scheme is implemented at each device, where it trains itself online and establishes implicit inter-device coordination to achieve the common goal. Devices can transmit simultaneously on multiple orthogonal channels and each possible transmission pattern constitutes a possible action for the NNBB, which uses a deep neural network to determine the action. Our simulation results show that as the number of devices in the network increases, so does the performance gain of the NNBB compared to the Multi-Armed Bandit (MAB) RA benchmark. For instance, NNBB experiences a 7% success rate drop when there are four channels and the number of devices increases from 10 to 60, while MAB faces a 25% drop.
♻ ☆ Engagement-Driven Content Generation with Large Language Models
Large Language Models (LLMs) exhibit significant persuasion capabilities in one-on-one interactions, but their influence within social networks remains underexplored. This study investigates the potential social impact of LLMs in these environments, where interconnected users and complex opinion dynamics pose unique challenges. In particular, we address the following research question: can LLMs learn to generate meaningful content that maximizes user engagement on social networks? To answer this question, we define a pipeline to guide the LLM-based content generation which employs reinforcement learning with simulated feedback. In our framework, the reward is based on an engagement model borrowed from the literature on opinion dynamics and information propagation. Moreover, we force the text generated by the LLM to be aligned with a given topic and to satisfy a minimum fluency requirement. Using our framework, we analyze the capabilities and limitations of LLMs in tackling the given task, specifically considering the relative positions of the LLM as an agent within the social network and the distribution of opinions in the network on the given topic. Our findings show the full potential of LLMs in creating social engagement. Notable properties of our approach are that the learning procedure is adaptive to the opinion distribution of the underlying network and agnostic to the specifics of the engagement model, which is embedded as a plug-and-play component. In this regard, our approach can be easily refined for more complex engagement tasks and interventions in computational social science. The code used for the experiments is publicly available at https://anonymous.4open.science/r/EDCG/.
♻ ☆ Learning General Continuous Constraint from Demonstrations via Positive-Unlabeled Learning
Planning for a wide range of real-world tasks necessitates to know and write all constraints. However, instances exist where these constraints are either unknown or challenging to specify accurately. A possible solution is to infer the unknown constraints from expert demonstration. The majority of prior works limit themselves to learning simple linear constraints, or require strong knowledge of the true constraint parameterization or environmental model. To mitigate these problems, this paper presents a positive-unlabeled (PU) learning approach to infer a continuous, arbitrary and possibly nonlinear, constraint from demonstration. From a PU learning view, We treat all data in demonstrations as positive (feasible) data, and learn a (sub)-optimal policy to generate high-reward-winning but potentially infeasible trajectories, which serve as unlabeled data containing both feasible and infeasible states. Under an assumption on data distribution, a feasible-infeasible classifier (i.e., constraint model) is learned from the two datasets through a postprocessing PU learning technique. The entire method employs an iterative framework alternating between updating the policy, which generates and selects higher-reward policies, and updating the constraint model. Additionally, a memory buffer is introduced to record and reuse samples from previous iterations to prevent forgetting. The effectiveness of the proposed method is validated in two Mujoco environments, successfully inferring continuous nonlinear constraints and outperforming a baseline method in terms of constraint accuracy and policy safety.
comment: The paper is hastily uploaded. We prefer to improve it and upload it later, and possibily after it is published
♻ ☆ FedCRL: Personalized Federated Learning with Contrastive Shared Representations for Label Heterogeneity in Non-IID Data
Heterogeneity resulting from label distribution skew and data scarcity can lead to inaccuracy and unfairness in intelligent communication applications that mainly rely on distributed computing. To deal with it, this paper proposes a novel personalized federated learning algorithm, named Federated Contrastive Shareable Representations (FedCoSR), to facilitate knowledge sharing among clients while maintaining data privacy. Specifically, parameters of local models' shallow layers and typical local representations are both considered shareable information for the server and aggregated globally. To address poor performance caused by label distribution skew among clients, contrastive learning is adopted between local and global representations to enrich local knowledge. Additionally, to ensure fairness for clients with scarce data, FedCoSR introduces adaptive local aggregation to coordinate the global model involvement in each client. Our simulations demonstrate FedCoSR's effectiveness in mitigating label heterogeneity by achieving accuracy and fairness improvements over existing methods on datasets with varying degrees of label heterogeneity.
♻ ☆ How Sparse Can We Prune A Deep Network: A Fundamental Limit Viewpoint
Network pruning is a commonly used measure to alleviate the storage and computational burden of deep neural networks. However, the fundamental limit of network pruning is still lacking. To close the gap, in this work we'll take a first-principles approach, i.e. we'll directly impose the sparsity constraint on the loss function and leverage the framework of statistical dimension in convex geometry, thus we're able to characterize the sharp phase transition point, i.e. the fundamental limit of the pruning ratio. Through this limit, we're able to identify two key factors that determine the pruning ratio limit, namely, weight magnitude and network sharpness. Generally speaking, the flatter the loss landscape or the smaller the weight magnitude, the smaller pruning ratio. Moreover, we provide efficient countermeasures to address the challenges in the computation of the pruning limit, which involves accurate spectrum estimation of a large-scale and non-positive Hessian matrix. Moreover, through the lens of the pruning ratio threshold, we can provide rigorous interpretations on several heuristics in existing pruning algorithms. Extensive experiments are performed that demonstrate that our theoretical pruning ratio threshold coincides very well with the experiments. All codes are available at: https://github.com/QiaozheZhang/Global-One-shot-Pruning
♻ ☆ Random Fourier Signature Features
Tensor algebras give rise to one of the most powerful measures of similarity for sequences of arbitrary length called the signature kernel accompanied with attractive theoretical guarantees from stochastic analysis. Previous algorithms to compute the signature kernel scale quadratically in terms of the length and the number of the sequences. To mitigate this severe computational bottleneck, we develop a random Fourier feature-based acceleration of the signature kernel acting on the inherently non-Euclidean domain of sequences. We show uniform approximation guarantees for the proposed unbiased estimator of the signature kernel, while keeping its computation linear in the sequence length and number. In addition, combined with recent advances on tensor projections, we derive two even more scalable time series features with favourable concentration properties and computational complexity both in time and memory. Our empirical results show that the reduction in computational cost comes at a negligible price in terms of accuracy on moderate-sized datasets, and it enables one to scale to large datasets up to a million time series.
♻ ☆ Discrete Latent Structure in Neural Networks
Many types of data from fields including natural language processing, computer vision, and bioinformatics, are well represented by discrete, compositional structures such as trees, sequences, or matchings. Latent structure models are a powerful tool for learning to extract such representations, offering a way to incorporate structural bias, discover insight about the data, and interpret decisions. However, effective training is challenging, as neural networks are typically designed for continuous computation. This text explores three broad strategies for learning with discrete latent structure: continuous relaxation, surrogate gradients, and probabilistic estimation. Our presentation relies on consistent notations for a wide range of models. As such, we reveal many new connections between latent structure learning strategies, showing how most consist of the same small set of fundamental building blocks, but use them differently, leading to substantially different applicability and properties.
♻ ☆ Unveil Benign Overfitting for Transformer in Vision: Training Dynamics, Convergence, and Generalization
Transformers have demonstrated great power in the recent development of large foundational models. In particular, the Vision Transformer (ViT) has brought revolutionary changes to the field of vision, achieving significant accomplishments on the experimental side. However, their theoretical capabilities, particularly in terms of generalization when trained to overfit training data, are still not fully understood. To address this gap, this work delves deeply into the benign overfitting perspective of transformers in vision. To this end, we study the optimization of a Transformer composed of a self-attention layer with softmax followed by a fully connected layer under gradient descent on a certain data distribution model. By developing techniques that address the challenges posed by softmax and the interdependent nature of multiple weights in transformer optimization, we successfully characterized the training dynamics and achieved generalization in post-training. Our results establish a sharp condition that can distinguish between the small test error phase and the large test error regime, based on the signal-to-noise ratio in the data model. The theoretical results are further verified by experimental simulation. To the best of our knowledge, this is the first work to characterize benign overfitting for Transformers.
♻ ☆ STREAM: A Universal State-Space Model for Sparse Geometric Data
Handling sparse and unstructured geometric data, such as point clouds or event-based vision, is a pressing challenge in the field of machine vision. Recently, sequence models such as Transformers and state-space models entered the domain of geometric data. These methods require specialized preprocessing to create a sequential view of a set of points. Furthermore, prior works involving sequence models iterate geometric data with either uniform or learned step sizes, implicitly relying on the model to infer the underlying geometric structure. In this work, we propose to encode geometric structure explicitly into the parameterization of a state-space model. State-space models are based on linear dynamics governed by a one-dimensional variable such as time or a spatial coordinate. We exploit this dynamic variable to inject relative differences of coordinates into the step size of the state-space model. The resulting geometric operation computes interactions between all pairs of N points in O(N) steps. Our model deploys the Mamba selective state-space model with a modified CUDA kernel to efficiently map sparse geometric data to modern hardware. The resulting sequence model, which we call STREAM, achieves competitive results on a range of benchmarks from point-cloud classification to event-based vision and audio classification. STREAM demonstrates a powerful inductive bias for sparse geometric data by improving the PointMamba baseline when trained from scratch on the ModelNet40 and ScanObjectNN point cloud analysis datasets. It further achieves, for the first time, 100% test accuracy on all 11 classes of the DVS128 Gestures dataset.
♻ ☆ Interpretable Water Level Forecaster with Spatiotemporal Causal Attention Mechanisms
Accurate forecasting of river water levels is vital for effectively managing traffic flow and mitigating the risks associated with natural disasters. This task presents challenges due to the intricate factors influencing the flow of a river. Recent advances in machine learning have introduced numerous effective forecasting methods. However, these methods lack interpretability due to their complex structure, resulting in limited reliability. Addressing this issue, this study proposes a deep learning model that quantifies interpretability, with an emphasis on water level forecasting. This model focuses on generating quantitative interpretability measurements, which align with the common knowledge embedded in the input data. This is facilitated by the utilization of a transformer architecture that is purposefully designed with masking, incorporating a multi-layer network that captures spatiotemporal causation. We perform a comparative analysis on the Han River dataset obtained from Seoul, South Korea, from 2016 to 2021. The results illustrate that our approach offers enhanced interpretability consistent with common knowledge, outperforming competing methods and also enhances robustness against distribution shift.
♻ ☆ From Text to Pose to Image: Improving Diffusion Model Control and Quality NeurIPS 2024
In the last two years, text-to-image diffusion models have become extremely popular. As their quality and usage increase, a major concern has been the need for better output control. In addition to prompt engineering, one effective method to improve the controllability of diffusion models has been to condition them on additional modalities such as image style, depth map, or keypoints. This forms the basis of ControlNets or Adapters. When attempting to apply these methods to control human poses in outputs of text-to-image diffusion models, two main challenges have arisen. The first challenge is generating poses following a wide range of semantic text descriptions, for which previous methods involved searching for a pose within a dataset of (caption, pose) pairs. The second challenge is conditioning image generation on a specified pose while keeping both high aesthetic and high pose fidelity. In this article, we fix these two main issues by introducing a text-to-pose (T2P) generative model alongside a new sampling algorithm, and a new pose adapter that incorporates more pose keypoints for higher pose fidelity. Together, these two new state-of-the-art models enable, for the first time, a generative text-to-pose-to-image framework for higher pose control in diffusion models. We release all models and the code used for the experiments at https://github.com/clement-bonnet/text-to-pose.
comment: Published at the NeurIPS 2024 Workshop on Compositional Learning: Perspectives, Methods, and Paths Forward
♻ ☆ Machine Learning for Practical Quantum Error Mitigation
Quantum computers progress toward outperforming classical supercomputers, but quantum errors remain their primary obstacle. The key to overcoming errors on near-term devices has emerged through the field of quantum error mitigation, enabling improved accuracy at the cost of additional run time. Here, through experiments on state-of-the-art quantum computers using up to 100 qubits, we demonstrate that without sacrificing accuracy machine learning for quantum error mitigation (ML-QEM) drastically reduces the cost of mitigation. We benchmark ML-QEM using a variety of machine learning models -- linear regression, random forests, multi-layer perceptrons, and graph neural networks -- on diverse classes of quantum circuits, over increasingly complex device-noise profiles, under interpolation and extrapolation, and in both numerics and experiments. These tests employ the popular digital zero-noise extrapolation method as an added reference. Finally, we propose a path toward scalable mitigation by using ML-QEM to mimic traditional mitigation methods with superior runtime efficiency. Our results show that classical machine learning can extend the reach and practicality of quantum error mitigation by reducing its overheads and highlight its broader potential for practical quantum computations.
comment: 11 pages, 7 figures (main text) + 9 pages, 4 figures (supplementary information)
♻ ☆ Huber-energy measure quantization
We describe a measure quantization procedure i.e., an algorithm which finds the best approximation of a target probability law (and more generally signed finite variation measure) by a sum of $Q$ Dirac masses ($Q$ being the quantization parameter). The procedure is implemented by minimizing the statistical distance between the original measure and its quantized version; the distance is built from a negative definite kernel and, if necessary, can be computed on the fly and feed to a stochastic optimization algorithm (such as SGD, Adam, ...). We investigate theoretically the fundamental questions of existence of the optimal measure quantizer and identify what are the required kernel properties that guarantee suitable behavior. We propose two best linear unbiased (BLUE) estimators for the squared statistical distance and use them in an unbiased procedure, called HEMQ, to find the optimal quantization. We test HEMQ on several databases: multi-dimensional Gaussian mixtures, Wiener space cubature, Italian wine cultivars and the MNIST image database. The results indicate that the HEMQ algorithm is robust and versatile and, for the class of Huber-energy kernels, matches the expected intuitive behavior.
♻ ☆ GuideGen: A Text-Guided Framework for Full-torso Anatomy and CT Volume Generation CVPR2025
The recently emerging conditional diffusion models seem promising for mitigating the labor and expenses in building large 3D medical imaging datasets. However, previous studies on 3D CT generation have yet to fully capitalize on semantic and textual conditions, and they have primarily focused on specific organs characterized by a local structure and fixed contrast. In this work, we present GuideGen, a controllable framework that generates anatomical masks and corresponding CT volumes for the entire torso-from chest to pelvis-based on free-form text prompts. Our approach includes three core components: a text-conditional semantic synthesizer for creating realistic full-torso anatomies; a contrast-aware autoencoder for detailed, high-fidelity feature extraction across varying contrast levels; and a latent feature generator that ensures alignment between CT images, anatomical semantics and input prompts. To train and evaluate GuideGen, we compile a multi-modality cancer imaging dataset with paired CT and clinical descriptions from 12 public TCIA datasets and one private real-world dataset. Comprehensive evaluations across generation quality, cross-modality alignment, and data usability on multi-organ and tumor segmentation tasks demonstrate GuideGen's superiority over existing CT generation methods.
comment: submitted to CVPR2025
♻ ☆ Self-Training Meets Consistency: Improving LLMs' Reasoning With Consistency-Driven Rationale Evaluation
Self-training approach for large language models (LLMs) improves reasoning abilities by training the models on their self-generated rationales. Previous approaches have labeled rationales that produce correct answers for a given question as appropriate for training. However, a single measure risks misjudging rationale quality, leading the models to learn flawed reasoning patterns. To address this issue, we propose CREST (Consistency-driven Rationale Evaluation for Self-Training), a self-training framework that further evaluates each rationale through follow-up questions and leverages this evaluation to guide its training. Specifically, we introduce two methods: (1) filtering out rationales that frequently result in incorrect answers on follow-up questions and (2) preference learning based on mixed preferences from rationale evaluation results of both original and follow-up questions. Experiments on three question-answering datasets using open LLMs show that CREST not only improves the logical robustness and correctness of rationales but also improves reasoning abilities compared to previous self-training approaches.
comment: Under review
♻ ☆ Improving EO Foundation Models with Confidence Assessment for enhanced Semantic segmentation
Confidence assessments of semantic segmentation algorithms are important. Ideally, deep learning models should have the ability to predict in advance whether their output is likely to be incorrect. Assessing the confidence levels of model predictions in Earth Observation (EO) classification is essential, as it can enhance semantic segmentation performance and help prevent further exploitation of the results in case of erroneous prediction. The model we developed, Confidence Assessment for enhanced Semantic segmentation (CAS), evaluates confidence at both the segment and pixel levels, providing both labels and confidence scores as output. Our model, CAS, identifies segments with incorrect predicted labels using the proposed combined confidence metric, refines the model, and enhances its performance. This work has significant applications, particularly in evaluating EO Foundation Models on semantic segmentation downstream tasks, such as land cover classification using Sentinel-2 satellite data. The evaluation results show that this strategy is effective and that the proposed model CAS outperforms other baseline models.
comment: 5 pages, 7 figures, 4 tables, Accepted
♻ ☆ Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data ICLR 2024
Irregular sampling intervals and missing values in real-world time series data present challenges for conventional methods that assume consistent intervals and complete data. Neural Ordinary Differential Equations (Neural ODEs) offer an alternative approach, utilizing neural networks combined with ODE solvers to learn continuous latent representations through parameterized vector fields. Neural Stochastic Differential Equations (Neural SDEs) extend Neural ODEs by incorporating a diffusion term, although this addition is not trivial, particularly when addressing irregular intervals and missing values. Consequently, careful design of drift and diffusion functions is crucial for maintaining stability and enhancing performance, while incautious choices can result in adverse properties such as the absence of strong solutions, stochastic destabilization, or unstable Euler discretizations, significantly affecting Neural SDEs' performance. In this study, we propose three stable classes of Neural SDEs: Langevin-type SDE, Linear Noise SDE, and Geometric SDE. Then, we rigorously demonstrate their robustness in maintaining excellent performance under distribution shift, while effectively preventing overfitting. To assess the effectiveness of our approach, we conduct extensive experiments on four benchmark datasets for interpolation, forecasting, and classification tasks, and analyze the robustness of our methods with 30 public datasets under different missing rates. Our results demonstrate the efficacy of the proposed method in handling real-world irregular time series data.
comment: Published at the Twelfth International Conference on Learning Representations (ICLR 2024), Spotlight presentation (Notable Top 5%). https://openreview.net/forum?id=4VIgNuQ1pY
♻ ☆ VLM Agents Generate Their Own Memories: Distilling Experience into Embodied Programs of Thought
Large-scale generative language and vision-language models (LLMs and VLMs) excel in few-shot in-context learning for decision making and instruction following. However, they require high-quality exemplar demonstrations in their context window. In this work, we ask: Can LLMs and VLMs generate their own examples from generic, sub-optimal demonstrations? We propose In-Context Abstraction Learning (ICAL), a method that builds a memory of multimodal experience from sub-optimal demonstrations and human feedback. Given a task demonstration that may contain inefficiencies or mistakes, a VLM abstracts the trajectory into a generalized program of thoughts by correcting inefficient actions and annotating cognitive abstractions: causal relationships, object state changes, temporal subgoals, and task-relevant visual elements. These programs of thought are iteratively improved through human feedback while the agent executes the trajectory in a similar environment. The resulting examples significantly improve decision-making in retrieval-augmented LLM and VLM agents. Moreover, as the agent's library of examples grows, it becomes more efficient, relying less on human feedback and requiring fewer environment interactions per demonstration. Our ICAL agent surpasses the SOTA in dialogue-based instruction following in TEACh, multimodal web agents in VisualWebArena, and action anticipation in Ego4D. In TEACh, we achieve a 12.6% improvement in goal-condition success. In VisualWebArena, our task success rate improves over few-shot GPT4V. In Ego4D action forecasting, we improve over few-shot GPT-4V and remain competitive with supervised models. We show finetuning our retrieval-augmented in-context agent yields additional improvements. Our approach significantly reduces reliance on manual prompt engineering and consistently outperforms in-context learning from action plans that lack such programs of thought.
comment: Project website: http://ical-learning.github.io/
♻ ☆ Deep ReLU Networks Have Surprisingly Simple Polytopes
A ReLU network is a piecewise linear function over polytopes. Figuring out the properties of such polytopes is of fundamental importance for the research and development of neural networks. So far, either theoretical or empirical studies on polytopes only stay at the level of counting their number, which is far from a complete characterization. Here, we propose to study the shapes of polytopes via the number of faces of the polytope. Then, by computing and analyzing the histogram of faces across polytopes, we find that a ReLU network has relatively simple polytopes under both initialization and gradient descent, although these polytopes can be rather diverse and complicated by a specific design. This finding can be appreciated as a kind of generalized implicit bias, subjected to the intrinsic geometric constraint in space partition of a ReLU network. Next, we perform a combinatorial analysis to explain why adding depth does not generate a more complicated polytope by bounding the average number of faces of polytopes with the dimensionality. Our results concretely reveal what kind of simple functions a network learns and what will happen when a network goes deep. Also, by characterizing the shape of polytopes, the number of faces can be a novel leverage for other problems, \textit{e.g.}, serving as a generic tool to explain the power of popular shortcut networks such as ResNet and analyzing the impact of different regularization strategies on a network's space partition.
♻ ☆ Minimax Optimal Two-Sample Testing under Local Differential Privacy
We explore the trade-off between privacy and statistical utility in private two-sample testing under local differential privacy (LDP) for both multinomial and continuous data. We begin by addressing the multinomial case, where we introduce private permutation tests using practical privacy mechanisms such as Laplace, discrete Laplace, and Google's RAPPOR. We then extend our multinomial approach to continuous data via binning and study its uniform separation rates under LDP over H\"older and Besov smoothness classes. The proposed tests for both discrete and continuous cases rigorously control the type I error for any finite sample size, strictly adhere to LDP constraints, and achieve minimax separation rates under LDP. The attained minimax rates reveal inherent privacy-utility trade-offs that are unavoidable in private testing. To address scenarios with unknown smoothness parameters in density testing, we propose an adaptive test based on a Bonferroni-type approach that ensures robust performance without prior knowledge of the smoothness parameters. We validate our theoretical findings with extensive numerical experiments and demonstrate the practical relevance and effectiveness of our proposed methods.
comment: 66 pages, 6 figures, 1 table; added a graphical illustration of central and local differential privacy in Section 1, referenced the Python package, fixed typos, and changed the citation style
♻ ☆ ArrivalNet: Predicting City-wide Bus/Tram Arrival Time with Two-dimensional Temporal Variation Modeling
Accurate arrival time prediction (ATP) of buses and trams plays a crucial role in public transport operations. Current methods focused on modeling one-dimensional temporal information but overlooked the latent periodic information within time series. Moreover, most studies developed algorithms for ATP based on a single or a few routes of public transport, which reduces the transferability of the prediction models and their applicability in public transport management systems. To this end, this paper proposes \textit{ArrivalNet}, a two-dimensional temporal variation-based multi-step ATP for buses and trams. It decomposes the one-dimensional temporal sequence into intra-periodic and inter-periodic variations, which can be recast into two-dimensional tensors (2D blocks). Each row of a tensor contains the time points within a period, and each column involves the time points at the same intra-periodic index across various periods. The transformed 2D blocks in different frequencies have an image-like feature representation that enables effective learning with computer vision backbones (e.g., convolutional neural network). Drawing on the concept of residual neural network, the 2D block module is designed as a basic module for flexible aggregation. Meanwhile, contextual factors like workdays, peak hours, and intersections, are also utilized in the augmented feature representation to improve the performance of prediction. 125 days of public transport data from Dresden were collected for model training and validation. Experimental results show that the root mean square error, mean absolute error, and mean absolute percentage error of the proposed predictor decrease by at least 6.1\%, 14.7\%, and 34.2\% compared with state-of-the-art baseline methods.
♻ ☆ One-Shot Safety Alignment for Large Language Models via Optimal Dualization
The growing safety concerns surrounding large language models raise an urgent need to align them with diverse human preferences to simultaneously enhance their helpfulness and safety. A promising approach is to enforce safety constraints through Reinforcement Learning from Human Feedback (RLHF). For such constrained RLHF, typical Lagrangian-based primal-dual policy optimization methods are computationally expensive and often unstable. This paper presents a perspective of dualization that reduces constrained alignment to an equivalent unconstrained alignment problem. We do so by pre-optimizing a smooth and convex dual function that has a closed form. This shortcut eliminates the need for cumbersome primal-dual policy iterations, greatly reducing the computational burden and improving training stability. Our strategy leads to two practical algorithms in model-based and preference-based settings (MoCAN and PeCAN, respectively). A broad range of experiments demonstrate the effectiveness and merits of our algorithms.
comment: 32 pages, 6 figures, 8 tables
♻ ☆ Constrained Diffusion Models via Dual Training
Diffusion models have attained prominence for their ability to synthesize a probability distribution for a given dataset via a diffusion process, enabling the generation of new data points with high fidelity. However, diffusion processes are prone to generating samples that reflect biases in a training dataset. To address this issue, we develop constrained diffusion models by imposing diffusion constraints based on desired distributions that are informed by requirements. Specifically, we cast the training of diffusion models under requirements as a constrained distribution optimization problem that aims to reduce the distribution difference between original and generated data while obeying constraints on the distribution of generated data. We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints. To train constrained diffusion models, we develop a dual training algorithm and characterize the optimality of the trained constrained diffusion model. We empirically demonstrate the effectiveness of our constrained models in two constrained generation tasks: (i) we consider a dataset with one or more underrepresented classes where we train the model with constraints to ensure fairly sampling from all classes during inference; (ii) we fine-tune a pre-trained diffusion model to sample from a new dataset while avoiding overfitting.
comment: 31 pages, 4 figures, 4 tables
♻ ☆ Agnostic Learning of Arbitrary ReLU Activation under Gaussian Marginals
We consider the problem of learning an arbitrarily-biased ReLU activation (or neuron) over Gaussian marginals with the squared loss objective. Despite the ReLU neuron being the basic building block of modern neural networks, we still do not understand the basic algorithmic question of whether one arbitrary ReLU neuron is learnable in the non-realizable setting. In particular, all existing polynomial time algorithms only provide approximation guarantees for the better-behaved unbiased setting or restricted bias setting. Our main result is a polynomial time statistical query (SQ) algorithm that gives the first constant factor approximation for arbitrary bias. It outputs a ReLU activation that achieves a loss of $O(\mathrm{OPT}) + \varepsilon$ in time $\mathrm{poly}(d,1/\varepsilon)$, where $\mathrm{OPT}$ is the loss obtained by the optimal ReLU activation. Our algorithm presents an interesting departure from existing algorithms, which are all based on gradient descent and thus fall within the class of correlational statistical query (CSQ) algorithms. We complement our algorithmic result by showing that no polynomial time CSQ algorithm can achieve a constant factor approximation. Together, these results shed light on the intrinsic limitation of gradient descent, while identifying arguably the simplest setting (a single neuron) where there is a separation between SQ and CSQ algorithms.
♻ ☆ Interpreting the Weight Space of Customized Diffusion Models
We investigate the space of weights spanned by a large collection of customized diffusion models. We populate this space by creating a dataset of over 60,000 models, each of which is a base model fine-tuned to insert a different person's visual identity. We model the underlying manifold of these weights as a subspace, which we term weights2weights. We demonstrate three immediate applications of this space that result in new diffusion models -- sampling, editing, and inversion. First, sampling a set of weights from this space results in a new model encoding a novel identity. Next, we find linear directions in this space corresponding to semantic edits of the identity (e.g., adding a beard), resulting in a new model with the original identity edited. Finally, we show that inverting a single image into this space encodes a realistic identity into a model, even if the input image is out of distribution (e.g., a painting). We further find that these linear properties of the diffusion model weight space extend to other visual concepts. Our results indicate that the weight space of fine-tuned diffusion models can behave as an interpretable meta-latent space producing new models.
comment: Project Page: https://snap-research.github.io/weights2weights
♻ ☆ Spectrum Breathing: Protecting Over-the-Air Federated Learning Against Interference
Federated Learning (FL) is a widely embraced paradigm for distilling artificial intelligence from distributed mobile data. However, the deployment of FL in mobile networks can be compromised by exposure to interference from neighboring cells or jammers. Existing interference mitigation techniques require multi-cell cooperation or at least interference channel state information, which is expensive in practice. On the other hand, power control that treats interference as noise may not be effective due to limited power budgets, and also that this mechanism can trigger countermeasures by interference sources. As a practical approach for protecting FL against interference, we propose Spectrum Breathing, which cascades stochastic-gradient pruning and spread spectrum to suppress interference without bandwidth expansion. The cost is higher learning latency by exploiting the graceful degradation of learning speed due to pruning. We synchronize the two operations such that their levels are controlled by the same parameter, Breathing Depth. To optimally control the parameter, we develop a martingale-based approach to convergence analysis of Over-the-Air FL with spectrum breathing, termed AirBreathing FL. We show a performance tradeoff between gradient-pruning and interference-induced error as regulated by the breathing depth. Given receive SIR and model size, the optimization of the tradeoff yields two schemes for controlling the breathing depth that can be either fixed or adaptive to channels and the learning process. As shown by experiments, in scenarios where traditional Over-the-Air FL fails to converge in the presence of strong interference, AirBreahing FL with either fixed or adaptive breathing depth can ensure convergence where the adaptive scheme achieves close-to-ideal performance.
♻ ☆ Market Reaction to News Flows in Supply Chain Networks
This study examines how positive and negative news about firms affects their stock prices and, moreover, how it affects stock prices of the firms' suppliers and clients, using a large sample of publicly listed firms around the world and another of Japanese listed firms. The level of positiveness and negativeness of each news article is determined by FinBERT, a natural language processing model fine-tuned specifically for financial information. Supply chains of firms across the world are identified mostly by financial statements, while those of Japanese firms are taken from large-scale firm-level surveys. We find that positive news increases the change rate of stock prices of firms mentioned in the news before its disclosure, most likely because of diffusion of information through private channels. Positive news also raises stock prices of the firms' suppliers and clients before its disclosure, confirming propagation of market values through supply chains. In addition, we generally find a larger post-news effect on stock prices of the mentioned firms and their suppliers and clients than the pre-news effect. The positive difference between the post- and pre-news effects can be considered as the net effect of the disclosure of positive news, controlling for information diffusion through private channels. However, the post-news effect on suppliers and clients in Japan is smaller than the pre-news effect, which is the opposite result to non-domestic firms from around the world.
♻ ☆ A Joint Network Optimization Framework to Predict Clinical Severity from Resting State Functional MRI Data
We propose a novel optimization framework to predict clinical severity from resting state fMRI (rs-fMRI) data. Our model consists of two coupled terms. The first term decomposes the correlation matrices into a sparse set of representative subnetworks that define a network manifold. These subnetworks are modeled as rank-one outer-products which correspond to the elemental patterns of co-activation across the brain; the subnetworks are combined via patient-specific non-negative coefficients. The second term is a linear regression model that uses the patient-specific coefficients to predict a measure of clinical severity. We validate our framework on two separate datasets in a ten fold cross validation setting. The first is a cohort of fifty-eight patients diagnosed with Autism Spectrum Disorder (ASD). The second dataset consists of sixty three patients from a publicly available ASD database. Our method outperforms standard semi-supervised frameworks, which employ conventional graph theoretic and statistical representation learning techniques to relate the rs-fMRI correlations to behavior. In contrast, our joint network optimization framework exploits the structure of the rs-fMRI correlation matrices to simultaneously capture group level effects and patient heterogeneity. Finally, we demonstrate that our proposed framework robustly identifies clinically relevant networks characteristic of ASD.
♻ ☆ Understanding Generalizability of Diffusion Models Requires Rethinking the Hidden Gaussian Structure
In this work, we study the generalizability of diffusion models by looking into the hidden properties of the learned score functions, which are essentially a series of deep denoisers trained on various noise levels. We observe that as diffusion models transition from memorization to generalization, their corresponding nonlinear diffusion denoisers exhibit increasing linearity. This discovery leads us to investigate the linear counterparts of the nonlinear diffusion models, which are a series of linear models trained to match the function mappings of the nonlinear diffusion denoisers. Surprisingly, these linear denoisers are approximately the optimal denoisers for a multivariate Gaussian distribution characterized by the empirical mean and covariance of the training dataset. This finding implies that diffusion models have the inductive bias towards capturing and utilizing the Gaussian structure (covariance information) of the training dataset for data generation. We empirically demonstrate that this inductive bias is a unique property of diffusion models in the generalization regime, which becomes increasingly evident when the model's capacity is relatively small compared to the training dataset size. In the case that the model is highly overparameterized, this inductive bias emerges during the initial training phases before the model fully memorizes its training data. Our study provides crucial insights into understanding the notable strong generalization phenomenon recently observed in real-world diffusion models.
♻ ☆ Hokoff: Real Game Dataset from Honor of Kings and its Offline Reinforcement Learning Benchmarks
The advancement of Offline Reinforcement Learning (RL) and Offline Multi-Agent Reinforcement Learning (MARL) critically depends on the availability of high-quality, pre-collected offline datasets that represent real-world complexities and practical applications. However, existing datasets often fall short in their simplicity and lack of realism. To address this gap, we propose Hokoff, a comprehensive set of pre-collected datasets that covers both offline RL and offline MARL, accompanied by a robust framework, to facilitate further research. This data is derived from Honor of Kings, a recognized Multiplayer Online Battle Arena (MOBA) game known for its intricate nature, closely resembling real-life situations. Utilizing this framework, we benchmark a variety of offline RL and offline MARL algorithms. We also introduce a novel baseline algorithm tailored for the inherent hierarchical action space of the game. We reveal the incompetency of current offline RL approaches in handling task complexity, generalization and multi-task learning.
♻ ☆ ADOPT: Modified Adam Can Converge with Any $β_2$ with the Optimal Rate NeurIPS 2024
Adam is one of the most popular optimization algorithms in deep learning. However, it is known that Adam does not converge in theory unless choosing a hyperparameter, i.e., $\beta_2$, in a problem-dependent manner. There have been many attempts to fix the non-convergence (e.g., AMSGrad), but they require an impractical assumption that the gradient noise is uniformly bounded. In this paper, we propose a new adaptive gradient method named ADOPT, which achieves the optimal convergence rate of $\mathcal{O} ( 1 / \sqrt{T} )$ with any choice of $\beta_2$ without depending on the bounded noise assumption. ADOPT addresses the non-convergence issue of Adam by removing the current gradient from the second moment estimate and changing the order of the momentum update and the normalization by the second moment estimate. We also conduct intensive numerical experiments, and verify that our ADOPT achieves superior results compared to Adam and its variants across a wide range of tasks, including image classification, generative modeling, natural language processing, and deep reinforcement learning. The implementation is available at https://github.com/iShohei220/adopt.
comment: Accepted at Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ NonGEMM Bench: Understanding the Performance Horizon of the Latest ML Workloads with NonGEMM Workloads
Machine Learning (ML) operators are the building blocks to design ML models with various target applications. GEneral Matrix Multiplication (GEMM) operators are the backbone of ML models. They are notorious for being computationally expensive requiring billions of multiply-and-accumulate. Therefore, significant effort has been put to study and optimize the GEMM operators in order to speed up the execution of ML models. GPUs and accelerators are widely deployed to accelerate ML workloads by optimizing the execution of GEMM operators. Nonetheless, the performance of NonGEMM operators have not been studied as thoroughly as GEMMs. Therefore, this paper describes \bench, a benchmark to study NonGEMM operators. We first construct \bench using popular ML workloads from different domains, then perform case studies on various grade GPU platforms to analyze the behavior of NonGEMM operators in GPU accelerated systems. Finally, we present some key takeaways to bridge the gap between GEMM and NonGEMM operators and to offer the community with potential new optimization directions.
♻ ☆ Integrating Multi-Modal Input Token Mixer Into Mamba-Based Decision Models: Decision MetaMamba
Sequence modeling with State Space models (SSMs) has demonstrated performance surpassing that of Transformers in various tasks, raising expectations for their potential to outperform the Decision Transformer and its enhanced variants in offline reinforcement learning (RL). However, decision models based on Mamba, a state-of-the-art SSM, failed to achieve superior performance compared to these enhanced Decision Transformers. We hypothesize that this limitation arises from information loss during the selective scanning phase. To address this, we propose the Decision MetaMamba (DMM), which augments Mamba with a token mixer in its input layer. This mixer explicitly accounts for the multimodal nature of offline RL inputs, comprising state, action, and return-to-go. The DMM demonstrates improved performance while significantly reducing parameter count compared to prior models. Notably, similar performance gains were achieved using a simple linear token mixer, emphasizing the importance of preserving information from proximate time steps rather than the specific design of the token mixer itself. This novel modification to Mamba's input layer represents a departure from conventional timestamp-based encoding approaches used in Transformers. By enhancing performance of Mamba in offline RL, characterized by memory efficiency and fast inference, this work opens new avenues for its broader application in future RL research.
♻ ☆ The Re-Label Method For Data-Centric Machine Learning
In industry deep learning application, our manually labeled data has a certain number of noisy data. To solve this problem and achieve more than 90 score in dev dataset, we present a simple method to find the noisy data and re-label the noisy data by human, given the model predictions as references in human labeling. In this paper, we illustrate our idea for a broad set of deep learning tasks, includes classification, sequence tagging, object detection, sequence generation, click-through rate prediction. The dev dataset evaluation results and human evaluation results verify our idea.
♻ ☆ Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting NeurIPS 2024
Sequence modeling faces challenges in capturing long-range dependencies across diverse tasks. Recent linear and transformer-based forecasters have shown superior performance in time series forecasting. However, they are constrained by their inherent inability to effectively address long-range dependencies in time series data, primarily due to using fixed-size inputs for prediction. Furthermore, they typically sacrifice essential temporal correlation among consecutive training samples by shuffling them into mini-batches. To overcome these limitations, we introduce a fast and effective Spectral Attention mechanism, which preserves temporal correlations among samples and facilitates the handling of long-range information while maintaining the base model structure. Spectral Attention preserves long-period trends through a low-pass filter and facilitates gradient to flow between samples. Spectral Attention can be seamlessly integrated into most sequence models, allowing models with fixed-sized look-back windows to capture long-range dependencies over thousands of steps. Through extensive experiments on 11 real-world time series datasets using 7 recent forecasting models, we consistently demonstrate the efficacy of our Spectral Attention mechanism, achieving state-of-the-art results.
comment: Co-first Author: Bong Gyun Kang, Dongjun Lee. NeurIPS 2024 (Conference on Neural Information Processing Systems)
♻ ☆ Towards Measuring Goal-Directedness in AI Systems
Recent advances in deep learning have brought attention to the possibility of creating advanced, general AI systems that outperform humans across many tasks. However, if these systems pursue unintended goals, there could be catastrophic consequences. A key prerequisite for AI systems pursuing unintended goals is whether they will behave in a coherent and goal-directed manner in the first place, optimizing for some unknown goal; there exists significant research trying to evaluate systems for said behaviors. However, the most rigorous definitions of goal-directedness we currently have are difficult to compute in real-world settings. Drawing upon this previous literature, we explore policy goal-directedness within reinforcement learning (RL) environments. In our findings, we propose a different family of definitions of the goal-directedness of a policy that analyze whether it is well-modeled as near-optimal for many (sparse) reward functions. We operationalize this preliminary definition of goal-directedness and test it in toy Markov decision process (MDP) environments. Furthermore, we explore how goal-directedness could be measured in frontier large-language models (LLMs). Our contribution is a definition of goal-directedness that is simpler and more easily computable in order to approach the question of whether AI systems could pursue dangerous goals. We recommend further exploration of measuring coherence and goal-directedness, based on our findings.
comment: Updated acknowledgements
♻ ☆ Enhancing Link Prediction with Fuzzy Graph Attention Networks and Dynamic Negative Sampling
Link prediction is crucial for understanding complex networks but traditional Graph Neural Networks (GNNs) often rely on random negative sampling, leading to suboptimal performance. This paper introduces Fuzzy Graph Attention Networks (FGAT), a novel approach integrating fuzzy rough sets for dynamic negative sampling and enhanced node feature aggregation. Fuzzy Negative Sampling (FNS) systematically selects high-quality negative edges based on fuzzy similarities, improving training efficiency. FGAT layer incorporates fuzzy rough set principles, enabling robust and discriminative node representations. Experiments on two research collaboration networks demonstrate FGAT's superior link prediction accuracy, outperforming state-of-the-art baselines by leveraging the power of fuzzy rough sets for effective negative sampling and node feature learning.
comment: 5 pages
Multimedia 4
☆ Health AI Developer Foundations
Robust medical Machine Learning (ML) models have the potential to revolutionize healthcare by accelerating clinical research, improving workflows and outcomes, and producing novel insights or capabilities. Developing such ML models from scratch is cost prohibitive and requires substantial compute, data, and time (e.g., expert labeling). To address these challenges, we introduce Health AI Developer Foundations (HAI-DEF), a suite of pre-trained, domain-specific foundation models, tools, and recipes to accelerate building ML for health applications. The models cover various modalities and domains, including radiology (X-rays and computed tomography), histopathology, dermatological imaging, and audio. These models provide domain specific embeddings that facilitate AI development with less labeled data, shorter training times, and reduced computational costs compared to traditional approaches. In addition, we utilize a common interface and style across these models, and prioritize usability to enable developers to integrate HAI-DEF efficiently. We present model evaluations across various tasks and conclude with a discussion of their application and evaluation, covering the importance of ensuring efficacy, fairness, and equity. Finally, while HAI-DEF and specifically the foundation models lower the barrier to entry for ML in healthcare, we emphasize the importance of validation with problem- and population-specific data for each desired usage setting. This technical report will be updated over time as more modalities and features are added.
comment: 16 pages, 8 figures
♻ ☆ Deep ReLU Networks Have Surprisingly Simple Polytopes
A ReLU network is a piecewise linear function over polytopes. Figuring out the properties of such polytopes is of fundamental importance for the research and development of neural networks. So far, either theoretical or empirical studies on polytopes only stay at the level of counting their number, which is far from a complete characterization. Here, we propose to study the shapes of polytopes via the number of faces of the polytope. Then, by computing and analyzing the histogram of faces across polytopes, we find that a ReLU network has relatively simple polytopes under both initialization and gradient descent, although these polytopes can be rather diverse and complicated by a specific design. This finding can be appreciated as a kind of generalized implicit bias, subjected to the intrinsic geometric constraint in space partition of a ReLU network. Next, we perform a combinatorial analysis to explain why adding depth does not generate a more complicated polytope by bounding the average number of faces of polytopes with the dimensionality. Our results concretely reveal what kind of simple functions a network learns and what will happen when a network goes deep. Also, by characterizing the shape of polytopes, the number of faces can be a novel leverage for other problems, \textit{e.g.}, serving as a generic tool to explain the power of popular shortcut networks such as ResNet and analyzing the impact of different regularization strategies on a network's space partition.
♻ ☆ Speech2AffectiveGestures: Synthesizing Co-Speech Gestures with Generative Adversarial Affective Expression Learning
We present a generative adversarial network to synthesize 3D pose sequences of co-speech upper-body gestures with appropriate affective expressions. Our network consists of two components: a generator to synthesize gestures from a joint embedding space of features encoded from the input speech and the seed poses, and a discriminator to distinguish between the synthesized pose sequences and real 3D pose sequences. We leverage the Mel-frequency cepstral coefficients and the text transcript computed from the input speech in separate encoders in our generator to learn the desired sentiments and the associated affective cues. We design an affective encoder using multi-scale spatial-temporal graph convolutions to transform 3D pose sequences into latent, pose-based affective features. We use our affective encoder in both our generator, where it learns affective features from the seed poses to guide the gesture synthesis, and our discriminator, where it enforces the synthesized gestures to contain the appropriate affective expressions. We perform extensive evaluations on two benchmark datasets for gesture synthesis from the speech, the TED Gesture Dataset and the GENEA Challenge 2020 Dataset. Compared to the best baselines, we improve the mean absolute joint error by 10--33%, the mean acceleration difference by 8--58%, and the Fr\'echet Gesture Distance by 21--34%. We also conduct a user study and observe that compared to the best current baselines, around 15.28% of participants indicated our synthesized gestures appear more plausible, and around 16.32% of participants felt the gestures had more appropriate affective expressions aligned with the speech.
comment: 11 pages, 4 figures, 2 tables. Proceedings of the 29th ACM International Conference on Multimedia, October 20-24, 2021, Virtual Event, China
♻ ☆ DanceAnyWay: Synthesizing Beat-Guided 3D Dances with Randomized Temporal Contrastive Learning AAAI
We present DanceAnyWay, a generative learning method to synthesize beat-guided dances of 3D human characters synchronized with music. Our method learns to disentangle the dance movements at the beat frames from the dance movements at all the remaining frames by operating at two hierarchical levels. At the coarser "beat" level, it encodes the rhythm, pitch, and melody information of the input music via dedicated feature representations only at the beat frames. It leverages them to synthesize the beat poses of the target dances using a sequence-to-sequence learning framework. At the finer "repletion" level, our method encodes similar rhythm, pitch, and melody information from all the frames of the input music via dedicated feature representations. It generates the full dance sequences by combining the synthesized beat and repletion poses and enforcing plausibility through an adversarial learning framework. Our training paradigm also enforces fine-grained diversity in the synthesized dances through a randomized temporal contrastive loss, which ensures different segments of the dance sequences have different movements and avoids motion freezing or collapsing to repetitive movements. We evaluate the performance of our approach through extensive experiments on the benchmark AIST++ dataset and observe improvements of about 7%-12% in motion quality metrics and 1.5%-4% in motion diversity metrics over the current baselines, respectively. We also conducted a user study to evaluate the visual quality of our synthesized dances. We note that, on average, the samples generated by our method were about 9-48% more preferred by the participants and had a 4-27% better five-point Likert-scale score over the best available current baseline in terms of motion quality and synchronization. Our source code and project page are available at https://github.com/aneeshbhattacharya/DanceAnyWay.
comment: 11 pages, 7 figures, 3 tables. To appear as part of the proceedings of the 38th Annual AAAI Conference on Artificial Intelligence, 2024
Artificial Intelligent 144
☆ Measuring Bullshit in the Language Games played by ChatGPT
Generative large language models (LLMs), which create text without direct correspondence to truth value, are widely understood to resemble the uses of language described in Frankfurt's popular monograph On Bullshit. In this paper, we offer a rigorous investigation of this topic, identifying how the phenomenon has arisen, and how it might be analysed. In this paper, we elaborate on this argument to propose that LLM-based chatbots play the 'language game of bullshit'. We use statistical text analysis to investigate the features of this Wittgensteinian language game, based on a dataset constructed to contrast the language of 1,000 scientific publications with typical pseudo-scientific text generated by ChatGPT. We then explore whether the same language features can be detected in two well-known contexts of social dysfunction: George Orwell's critique of politics and language, and David Graeber's characterisation of bullshit jobs. Using simple hypothesis-testing methods, we demonstrate that a statistical model of the language of bullshit can reliably relate the Frankfurtian artificial bullshit of ChatGPT to the political and workplace functions of bullshit as observed in natural human language.
☆ Health AI Developer Foundations
Robust medical Machine Learning (ML) models have the potential to revolutionize healthcare by accelerating clinical research, improving workflows and outcomes, and producing novel insights or capabilities. Developing such ML models from scratch is cost prohibitive and requires substantial compute, data, and time (e.g., expert labeling). To address these challenges, we introduce Health AI Developer Foundations (HAI-DEF), a suite of pre-trained, domain-specific foundation models, tools, and recipes to accelerate building ML for health applications. The models cover various modalities and domains, including radiology (X-rays and computed tomography), histopathology, dermatological imaging, and audio. These models provide domain specific embeddings that facilitate AI development with less labeled data, shorter training times, and reduced computational costs compared to traditional approaches. In addition, we utilize a common interface and style across these models, and prioritize usability to enable developers to integrate HAI-DEF efficiently. We present model evaluations across various tasks and conclude with a discussion of their application and evaluation, covering the importance of ensuring efficacy, fairness, and equity. Finally, while HAI-DEF and specifically the foundation models lower the barrier to entry for ML in healthcare, we emphasize the importance of validation with problem- and population-specific data for each desired usage setting. This technical report will be updated over time as more modalities and features are added.
comment: 16 pages, 8 figures
☆ ReXrank: A Public Leaderboard for AI-Powered Radiology Report Generation
AI-driven models have demonstrated significant potential in automating radiology report generation for chest X-rays. However, there is no standardized benchmark for objectively evaluating their performance. To address this, we present ReXrank, https://rexrank.ai, a public leaderboard and challenge for assessing AI-powered radiology report generation. Our framework incorporates ReXGradient, the largest test dataset consisting of 10,000 studies, and three public datasets (MIMIC-CXR, IU-Xray, CheXpert Plus) for report generation assessment. ReXrank employs 8 evaluation metrics and separately assesses models capable of generating only findings sections and those providing both findings and impressions sections. By providing this standardized evaluation framework, ReXrank enables meaningful comparisons of model performance and offers crucial insights into their robustness across diverse clinical settings. Beyond its current focus on chest X-rays, ReXrank's framework sets the stage for comprehensive evaluation of automated reporting across the full spectrum of medical imaging.
☆ VideoRepair: Improving Text-to-Video Generation via Misalignment Evaluation and Localized Refinement
Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of four stages: In (1) video evaluation, we detect misalignments by generating fine-grained evaluation questions and answering those questions with MLLM. In (2) refinement planning, we identify accurately generated objects and then create localized prompts to refine other areas in the video. Next, in (3) region decomposition, we segment the correctly generated area using a combined grounding module. We regenerate the video by adjusting the misaligned regions while preserving the correct regions in (4) localized refinement. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.
comment: Project page: https://video-repair.github.io
☆ RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts
Frontier AI safety policies highlight automation of AI research and development (R&D) by AI agents as an important capability to anticipate. However, there exist few evaluations for AI R&D capabilities, and none that are highly realistic and have a direct comparison to human performance. We introduce RE-Bench (Research Engineering Benchmark, v1), which consists of 7 challenging, open-ended ML research engineering environments and data from 71 8-hour attempts by 61 distinct human experts. We confirm that our experts make progress in the environments given 8 hours, with 82% of expert attempts achieving a non-zero score and 24% matching or exceeding our strong reference solutions. We compare humans to several public frontier models through best-of-k with varying time budgets and agent designs, and find that the best AI agents achieve a score 4x higher than human experts when both are given a total time budget of 2 hours per environment. However, humans currently display better returns to increasing time budgets, narrowly exceeding the top AI agent scores given an 8-hour budget, and achieving 2x the score of the top AI agent when both are given 32 total hours (across different attempts). Qualitatively, we find that modern AI agents possess significant expertise in many ML topics -- e.g. an agent wrote a faster custom Triton kernel than any of our human experts' -- and can generate and test solutions over ten times faster than humans, at much lower cost. We open-source the evaluation environments, human expert data, analysis code and agent trajectories to facilitate future research.
☆ Efficient Pruning of Text-to-Image Models: Insights from Pruning Stable Diffusion
As text-to-image models grow increasingly powerful and complex, their burgeoning size presents a significant obstacle to widespread adoption, especially on resource-constrained devices. This paper presents a pioneering study on post-training pruning of Stable Diffusion 2, addressing the critical need for model compression in text-to-image domain. Our study tackles the pruning techniques for the previously unexplored multi-modal generation models, and particularly examines the pruning impact on the textual component and the image generation component separately. We conduct a comprehensive comparison on pruning the model or the single component of the model in various sparsities. Our results yield previously undocumented findings. For example, contrary to established trends in language model pruning, we discover that simple magnitude pruning outperforms more advanced techniques in text-to-image context. Furthermore, our results show that Stable Diffusion 2 can be pruned to 38.5% sparsity with minimal quality loss, achieving a significant reduction in model size. We propose an optimal pruning configuration that prunes the text encoder to 47.5% and the diffusion generator to 35%. This configuration maintains image generation quality while substantially reducing computational requirements. In addition, our work uncovers intriguing questions about information encoding in text-to-image models: we observe that pruning beyond certain thresholds leads to sudden performance drops (unreadable images), suggesting that specific weights encode critical semantics information. This finding opens new avenues for future research in model compression, interoperability, and bias identification in text-to-image models. By providing crucial insights into the pruning behavior of text-to-image models, our study lays the groundwork for developing more efficient and accessible AI-driven image generation systems
☆ About Time: Advances, Challenges, and Outlooks of Action Understanding
We have witnessed impressive advances in video action understanding. Increased dataset sizes, variability, and computation availability have enabled leaps in performance and task diversification. Current systems can provide coarse- and fine-grained descriptions of video scenes, extract segments corresponding to queries, synthesize unobserved parts of videos, and predict context. This survey comprehensively reviews advances in uni- and multi-modal action understanding across a range of tasks. We focus on prevalent challenges, overview widely adopted datasets, and survey seminal works with an emphasis on recent advances. We broadly distinguish between three temporal scopes: (1) recognition tasks of actions observed in full, (2) prediction tasks for ongoing partially observed actions, and (3) forecasting tasks for subsequent unobserved action. This division allows us to identify specific action modeling and video representation challenges. Finally, we outline future directions to address current shortcomings.
☆ XGrammar: Flexible and Efficient Structured Generation Engine for Large Language Models
The applications of LLM Agents are becoming increasingly complex and diverse, leading to a high demand for structured outputs that can be parsed into code, structured function calls, and embodied agent commands. These developments bring significant demands for structured generation in LLM inference. Context-free grammar is a flexible approach to enable structured generation via constrained decoding. However, executing context-free grammar requires going through several stack states over all tokens in vocabulary during runtime, bringing non-negligible overhead for structured generation. In this paper, we propose XGrammar, a flexible and efficient structure generation engine for large language models. XGrammar accelerates context-free grammar execution by dividing the vocabulary into context-independent tokens that can be prechecked and context-dependent tokens that need to be interpreted during runtime. We further build transformations to expand the grammar context and reduce the number of context-independent tokens. Additionally, we build an efficient persistent stack to accelerate the context-dependent token checks. Finally, we co-design the grammar engine with LLM inference engine to overlap grammar computation with GPU executions. Evaluation results show that XGrammar can achieve up to 100x speedup over existing solutions. Combined with an LLM inference engine, it can generate near-zero overhead structure generation in end-to-end low-LLM serving.
☆ OminiControl: Minimal and Universal Control for Diffusion Transformer
In this paper, we introduce OminiControl, a highly versatile and parameter-efficient framework that integrates image conditions into pre-trained Diffusion Transformer (DiT) models. At its core, OminiControl leverages a parameter reuse mechanism, enabling the DiT to encode image conditions using itself as a powerful backbone and process them with its flexible multi-modal attention processors. Unlike existing methods, which rely heavily on additional encoder modules with complex architectures, OminiControl (1) effectively and efficiently incorporates injected image conditions with only ~0.1% additional parameters, and (2) addresses a wide range of image conditioning tasks in a unified manner, including subject-driven generation and spatially-aligned conditions such as edges, depth, and more. Remarkably, these capabilities are achieved by training on images generated by the DiT itself, which is particularly beneficial for subject-driven generation. Extensive evaluations demonstrate that OminiControl outperforms existing UNet-based and DiT-adapted models in both subject-driven and spatially-aligned conditional generation. Additionally, we release our training dataset, Subjects200K, a diverse collection of over 200,000 identity-consistent images, along with an efficient data synthesis pipeline to advance research in subject-consistent generation.
☆ RED: Effective Trajectory Representation Learning with Comprehensive Information
Trajectory representation learning (TRL) maps trajectories to vectors that can then be used for various downstream tasks, including trajectory similarity computation, trajectory classification, and travel-time estimation. However, existing TRL methods often produce vectors that, when used in downstream tasks, yield insufficiently accurate results. A key reason is that they fail to utilize the comprehensive information encompassed by trajectories. We propose a self-supervised TRL framework, called RED, which effectively exploits multiple types of trajectory information. Overall, RED adopts the Transformer as the backbone model and masks the constituting paths in trajectories to train a masked autoencoder (MAE). In particular, RED considers the moving patterns of trajectories by employing a Road-aware masking strategy} that retains key paths of trajectories during masking, thereby preserving crucial information of the trajectories. RED also adopts a spatial-temporal-user joint Embedding scheme to encode comprehensive information when preparing the trajectories as model inputs. To conduct training, RED adopts Dual-objective task learning}: the Transformer encoder predicts the next segment in a trajectory, and the Transformer decoder reconstructs the entire trajectory. RED also considers the spatial-temporal correlations of trajectories by modifying the attention mechanism of the Transformer. We compare RED with 9 state-of-the-art TRL methods for 4 downstream tasks on 3 real-world datasets, finding that RED can usually improve the accuracy of the best-performing baseline by over 5%.
comment: This paper is accepted by VLDB2025
☆ Towards Speaker Identification with Minimal Dataset and Constrained Resources using 1D-Convolution Neural Network
Voice recognition and speaker identification are vital for applications in security and personal assistants. This paper presents a lightweight 1D-Convolutional Neural Network (1D-CNN) designed to perform speaker identification on minimal datasets. Our approach achieves a validation accuracy of 97.87%, leveraging data augmentation techniques to handle background noise and limited training samples. Future improvements include testing on larger datasets and integrating transfer learning methods to enhance generalizability. We provide all code, the custom dataset, and the trained models to facilitate reproducibility. These resources are available on our GitHub repository: https://github.com/IrfanNafiz/RecMe.
☆ Empowering Clients: Transformation of Design Processes Due to Generative AI
The domain of computational design, driven by advancements in Generative AI, is transforming creative fields. We explore the transformative effects of Generative AI on the architectural design process and discuss the role of the architect. The case of architecture is interesting as designing houses is complex, involving extensive customer interaction. We employ a within-subject experiment using a popular general-purpose text-to-image tool for generating designs and providing feedback on existing designs, followed by expert interviews. The study reveals that AI can disrupt the ideation phase by enabling clients to engage in the design process through rapid visualization of their own ideas. In turn, the architect's role shifts more towards assessing the feasibility of designs generated conjointly by clients and AI. Our study also shows that while AI can provide valuable feedback on designs, it might fail to generate such designs, allowing for interesting connections to foundations in computer science, i.e., NP-completeness. AI's feedback also tends to hamper creativity and innovation by suggesting altering novel, innovative approaches toward more standardized designs. Our study also reveals that there is uncertainty among architects about the interpretative sovereignty of architecture and loss of meaning and identity when AI increasingly takes over authorship in the design process.
☆ Financial Risk Assessment via Long-term Payment Behavior Sequence Folding
Online inclusive financial services encounter significant financial risks due to their expansive user base and low default costs. By real-world practice, we reveal that utilizing longer-term user payment behaviors can enhance models' ability to forecast financial risks. However, learning long behavior sequences is non-trivial for deep sequential models. Additionally, the diverse fields of payment behaviors carry rich information, requiring thorough exploitation. These factors collectively complicate the task of long-term user behavior modeling. To tackle these challenges, we propose a Long-term Payment Behavior Sequence Folding method, referred to as LBSF. In LBSF, payment behavior sequences are folded based on merchants, using the merchant field as an intrinsic grouping criterion, which enables informative parallelism without reliance on external knowledge. Meanwhile, we maximize the utility of payment details through a multi-field behavior encoding mechanism. Subsequently, behavior aggregation at the merchant level followed by relational learning across merchants facilitates comprehensive user financial representation. We evaluate LBSF on the financial risk assessment task using a large-scale real-world dataset. The results demonstrate that folding long behavior sequences based on internal behavioral cues effectively models long-term patterns and changes, thereby generating more accurate user financial profiles for practical applications.
comment: ICDM2024 long paper
☆ Enhancing Autonomous Driving Safety through World Model-Based Predictive Navigation and Adaptive Learning Algorithms for 5G Wireless Applications
Addressing the challenge of ensuring safety in ever-changing and unpredictable environments, particularly in the swiftly advancing realm of autonomous driving in today's 5G wireless communication world, we present Navigation Secure (NavSecure). This vision-based navigation framework merges the strengths of world models with crucial safety-focused decision-making capabilities, enabling autonomous vehicles to navigate real-world complexities securely. Our approach anticipates potential threats and formulates safer routes by harnessing the predictive capabilities of world models, thus significantly reducing the need for extensive real-world trial-and-error learning. Additionally, our method empowers vehicles to autonomously learn and develop through continuous practice, ensuring the system evolves and adapts to new challenges. Incorporating radio frequency technology, NavSecure leverages 5G networks to enhance real-time data exchange, improving communication and responsiveness. Validated through rigorous experiments under simulation-to-real driving conditions, NavSecure has shown exceptional performance in safety-critical scenarios, such as sudden obstacle avoidance. Results indicate that NavSecure excels in key safety metrics, including collision prevention and risk reduction, surpassing other end-to-end methodologies. This framework not only advances autonomous driving safety but also demonstrates how world models can enhance decision-making in critical applications. NavSecure sets a new standard for developing more robust and trustworthy autonomous driving systems, capable of handling the inherent dynamics and uncertainties of real-world environments.
comment: 6 pages, 5 figures
☆ mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA
Advanced Multimodal Large Language Models (MLLMs) struggle with recent Knowledge-based VQA tasks, such as INFOSEEK and Encyclopedic-VQA, due to their limited and frozen knowledge scope, often leading to ambiguous and inaccurate responses. Thus, multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge, effectively expanding the knowledge scope. However, current mRAG methods have inherent drawbacks, including: 1) Performing retrieval even when external knowledge is not needed. 2) Lacking of identification of evidence that supports the query. 3) Increasing model complexity due to additional information filtering modules or rules. To address these shortcomings, we propose a novel generalized framework called \textbf{m}ultimodal \textbf{R}etrieval-\textbf{R}eflection-\textbf{A}ugmented \textbf{G}eneration (mR$^2$AG), which achieves adaptive retrieval and useful information localization to enable answers through two easy-to-implement reflection operations, preventing high model complexity. In mR$^2$AG, Retrieval-Reflection is designed to distinguish different user queries and avoids redundant retrieval calls, and Relevance-Reflection is introduced to guide the MLLM in locating beneficial evidence of the retrieved content and generating answers accordingly. In addition, mR$^2$AG can be integrated into any well-trained MLLM with efficient fine-tuning on the proposed mR$^2$AG Instruction-Tuning dataset (mR$^2$AG-IT). mR$^2$AG significantly outperforms state-of-the-art MLLMs (e.g., GPT-4v/o) and RAG-based MLLMs on INFOSEEK and Encyclopedic-VQA, while maintaining the exceptional capabilities of base MLLMs across a wide range of Visual-dependent tasks.
☆ One to rule them all: natural language to bind communication, perception and action
In recent years, research in the area of human-robot interaction has focused on developing robots capable of understanding complex human instructions and performing tasks in dynamic and diverse environments. These systems have a wide range of applications, from personal assistance to industrial robotics, emphasizing the importance of robots interacting flexibly, naturally and safely with humans. This paper presents an advanced architecture for robotic action planning that integrates communication, perception, and planning with Large Language Models (LLMs). Our system is designed to translate commands expressed in natural language into executable robot actions, incorporating environmental information and dynamically updating plans based on real-time feedback. The Planner Module is the core of the system where LLMs embedded in a modified ReAct framework are employed to interpret and carry out user commands. By leveraging their extensive pre-trained knowledge, LLMs can effectively process user requests without the need to introduce new knowledge on the changing environment. The modified ReAct framework further enhances the execution space by providing real-time environmental perception and the outcomes of physical actions. By combining robust and dynamic semantic map representations as graphs with control components and failure explanations, this architecture enhances a robot adaptability, task execution, and seamless collaboration with human users in shared and dynamic environments. Through the integration of continuous feedback loops with the environment the system can dynamically adjusts the plan to accommodate unexpected changes, optimizing the robot ability to perform tasks. Using a dataset of previous experience is possible to provide detailed feedback about the failure. Updating the LLMs context of the next iteration with suggestion on how to overcame the issue.
☆ Time is on my sight: scene graph filtering for dynamic environment perception in an LLM-driven robot
Robots are increasingly being used in dynamic environments like workplaces, hospitals, and homes. As a result, interactions with robots must be simple and intuitive, with robots perception adapting efficiently to human-induced changes. This paper presents a robot control architecture that addresses key challenges in human-robot interaction, with a particular focus on the dynamic creation and continuous update of the robot state representation. The architecture uses Large Language Models to integrate diverse information sources, including natural language commands, robotic skills representation, real-time dynamic semantic mapping of the perceived scene. This enables flexible and adaptive robotic behavior in complex, dynamic environments. Traditional robotic systems often rely on static, pre-programmed instructions and settings, limiting their adaptability to dynamic environments and real-time collaboration. In contrast, this architecture uses LLMs to interpret complex, high-level instructions and generate actionable plans that enhance human-robot collaboration. At its core, the system Perception Module generates and continuously updates a semantic scene graph using RGB-D sensor data, providing a detailed and structured representation of the environment. A particle filter is employed to ensure accurate object localization in dynamic, real-world settings. The Planner Module leverages this up-to-date semantic map to break down high-level tasks into sub-tasks and link them to robotic skills such as navigation, object manipulation (e.g., PICK and PLACE), and movement (e.g., GOTO). By combining real-time perception, state tracking, and LLM-driven communication and task planning, the architecture enhances adaptability, task efficiency, and human-robot collaboration in dynamic environments.
☆ FTA generation using GenAI with an Autonomy sensor Usecase
Functional safety forms an important aspect in the design of systems. Its emphasis on the automotive industry has evolved significantly over the years. Till date many methods have been developed to get appropriate FTA(Fault Tree analysis) for various scenarios and features pertaining to Autonomous Driving. This paper is an attempt to explore the scope of using Generative Artificial Intelligence(GenAI) in order to develop Fault Tree Analysis(FTA) with the use case of malfunction for the Lidar sensor in mind. We explore various available open source Large Language Models(LLM) models and then dive deep into one of them to study its responses and provide our analysis. This paper successfully shows the possibility to train existing Large Language models through Prompt Engineering for fault tree analysis for any Autonomy usecase aided with PlantUML tool.
☆ ScribeAgent: Towards Specialized Web Agents Using Production-Scale Workflow Data
Large Language Model (LLM) agents are rapidly improving to handle increasingly complex web-based tasks. Most of these agents rely on general-purpose, proprietary models like GPT-4 and focus on designing better prompts to improve their planning abilities. However, general-purpose LLMs are not specifically trained to understand specialized web contexts such as HTML, and they often struggle with long-horizon planning. We explore an alternative approach that fine-tunes open-source LLMs using production-scale workflow data collected from over 250 domains corresponding to 6 billion tokens. This simple yet effective approach shows substantial gains over prompting-based agents on existing benchmarks -- ScribeAgent achieves state-of-the-art direct generation performance on Mind2Web and improves the task success rate by 14.1% over the previous best text-only web agents on WebArena. We further perform detailed ablation studies on various fine-tuning design choices and provide insights into LLM selection, training recipes, context window optimization, and effect of dataset sizes.
☆ Learning Lifted STRIPS Models from Action Traces Alone: A Simple, General, and Scalable Solution ICAPS 2025
Learning STRIPS action models from action traces alone is a challenging problem as it involves learning the domain predicates as well. In this work, a novel approach is introduced which, like the well-known LOCM systems, is scalable, but like SAT approaches, is sound and complete. Furthermore, the approach is general and imposes no restrictions on the hidden domain or the number or arity of the predicates. The new learning method is based on an \emph{efficient, novel test} that checks whether the assumption that a predicate is affected by a set of action patterns, namely, actions with specific argument positions, is consistent with the traces. The predicates and action patterns that pass the test provide the basis for the learned domain that is then easily completed with preconditions and static predicates. The new method is studied theoretically and experimentally. For the latter, the method is evaluated on traces and graphs obtained from standard classical domains like the 8-puzzle, which involve hundreds of thousands of states and transitions. The learned representations are then verified on larger instances.
comment: submitted to ICAPS 2025
☆ Free Energy Projective Simulation (FEPS): Active inference with interpretability
In the last decade, the free energy principle (FEP) and active inference (AIF) have achieved many successes connecting conceptual models of learning and cognition to mathematical models of perception and action. This effort is driven by a multidisciplinary interest in understanding aspects of self-organizing complex adaptive systems, including elements of agency. Various reinforcement learning (RL) models performing active inference have been proposed and trained on standard RL tasks using deep neural networks. Recent work has focused on improving such agents' performance in complex environments by incorporating the latest machine learning techniques. In this paper, we take an alternative approach. Within the constraints imposed by the FEP and AIF, we attempt to model agents in an interpretable way without deep neural networks by introducing Free Energy Projective Simulation (FEPS). Using internal rewards only, FEPS agents build a representation of their partially observable environments with which they interact. Following AIF, the policy to achieve a given task is derived from this world model by minimizing the expected free energy. Leveraging the interpretability of the model, techniques are introduced to deal with long-term goals and reduce prediction errors caused by erroneous hidden state estimation. We test the FEPS model on two RL environments inspired from behavioral biology: a timed response task and a navigation task in a partially observable grid. Our results show that FEPS agents fully resolve the ambiguity of both environments by appropriately contextualizing their observations based on prediction accuracy only. In addition, they infer optimal policies flexibly for any target observation in the environment.
comment: 26 pages (including 5 pages appendix), 6 figures
☆ Exploring Foundation Models Fine-Tuning for Cytology Classification
Cytology slides are essential tools in diagnosing and staging cancer, but their analysis is time-consuming and costly. Foundation models have shown great potential to assist in these tasks. In this paper, we explore how existing foundation models can be applied to cytological classification. More particularly, we focus on low-rank adaptation, a parameter-efficient fine-tuning method suited to few-shot learning. We evaluated five foundation models across four cytological classification datasets. Our results demonstrate that fine-tuning the pre-trained backbones with LoRA significantly improves model performance compared to fine-tuning only the classifier head, achieving state-of-the-art results on both simple and complex classification tasks while requiring fewer data samples.
comment: 5 pages, 2 figures
☆ Open-Amp: Synthetic Data Framework for Audio Effect Foundation Models
This paper introduces Open-Amp, a synthetic data framework for generating large-scale and diverse audio effects data. Audio effects are relevant to many musical audio processing and Music Information Retrieval (MIR) tasks, such as modelling of analog audio effects, automatic mixing, tone matching and transcription. Existing audio effects datasets are limited in scope, usually including relatively few audio effects processors and a limited amount of input audio signals. Our proposed framework overcomes these issues, by crowdsourcing neural network emulations of guitar amplifiers and effects, created by users of open-source audio effects emulation software. This allows users of Open-Amp complete control over the input signals to be processed by the effects models, as well as providing high-quality emulations of hundreds of devices. Open-Amp can render audio online during training, allowing great flexibility in data augmentation. Our experiments show that using Open-Amp to train a guitar effects encoder achieves new state-of-the-art results on multiple guitar effects classification tasks. Furthermore, we train a one-to-many guitar effects model using Open-Amp, and use it to emulate unseen analog effects via manipulation of its learned latent space, indicating transferability to analog guitar effects data.
☆ SwissADT: An Audio Description Translation System for Swiss Languages
Audio description (AD) is a crucial accessibility service provided to blind persons and persons with visual impairment, designed to convey visual information in acoustic form. Despite recent advancements in multilingual machine translation research, the lack of well-crafted and time-synchronized AD data impedes the development of audio description translation (ADT) systems that address the needs of multilingual countries such as Switzerland. Furthermore, since the majority of ADT systems rely solely on text, uncertainty exists as to whether incorporating visual information from the corresponding video clips can enhance the quality of ADT outputs. In this work, we present SwissADT, the first ADT system implemented for three main Swiss languages and English. By collecting well-crafted AD data augmented with video clips in German, French, Italian, and English, and leveraging the power of Large Language Models (LLMs), we aim to enhance information accessibility for diverse language populations in Switzerland by automatically translating AD scripts to the desired Swiss language. Our extensive experimental ADT results, composed of both automatic and human evaluations of ADT quality, demonstrate the promising capability of SwissADT for the ADT task. We believe that combining human expertise with the generation power of LLMs can further enhance the performance of ADT systems, ultimately benefiting a larger multilingual target population.
LLM for Barcodes: Generating Diverse Synthetic Data for Identity Documents
Accurate barcode detection and decoding in Identity documents is crucial for applications like security, healthcare, and education, where reliable data extraction and verification are essential. However, building robust detection models is challenging due to the lack of diverse, realistic datasets an issue often tied to privacy concerns and the wide variety of document formats. Traditional tools like Faker rely on predefined templates, making them less effective for capturing the complexity of real-world identity documents. In this paper, we introduce a new approach to synthetic data generation that uses LLMs to create contextually rich and realistic data without relying on predefined field. Using the vast knowledge LLMs have about different documents and content, our method creates data that reflects the variety found in real identity documents. This data is then encoded into barcode and overlayed on templates for documents such as Driver's licenses, Insurance cards, Student IDs. Our approach simplifies the process of dataset creation, eliminating the need for extensive domain knowledge or predefined fields. Compared to traditional methods like Faker, data generated by LLM demonstrates greater diversity and contextual relevance, leading to improved performance in barcode detection models. This scalable, privacy-first solution is a big step forward in advancing machine learning for automated document processing and identity verification.
comment: 5 pages, 1 figures
☆ Design-o-meter: Towards Evaluating and Refining Graphic Designs WACV 2025
Graphic designs are an effective medium for visual communication. They range from greeting cards to corporate flyers and beyond. Off-late, machine learning techniques are able to generate such designs, which accelerates the rate of content production. An automated way of evaluating their quality becomes critical. Towards this end, we introduce Design-o-meter, a data-driven methodology to quantify the goodness of graphic designs. Further, our approach can suggest modifications to these designs to improve its visual appeal. To the best of our knowledge, Design-o-meter is the first approach that scores and refines designs in a unified framework despite the inherent subjectivity and ambiguity of the setting. Our exhaustive quantitative and qualitative analysis of our approach against baselines adapted for the task (including recent Multimodal LLM-based approaches) brings out the efficacy of our methodology. We hope our work will usher more interest in this important and pragmatic problem setting.
comment: Accepted to WACV 2025. Project page: https://sahilg06.github.io/Design-o-meter/
☆ Evaluating Vision Transformer Models for Visual Quality Control in Industrial Manufacturing
One of the most promising use-cases for machine learning in industrial manufacturing is the early detection of defective products using a quality control system. Such a system can save costs and reduces human errors due to the monotonous nature of visual inspections. Today, a rich body of research exists which employs machine learning methods to identify rare defective products in unbalanced visual quality control datasets. These methods typically rely on two components: A visual backbone to capture the features of the input image and an anomaly detection algorithm that decides if these features are within an expected distribution. With the rise of transformer architecture as visual backbones of choice, there exists now a great variety of different combinations of these two components, ranging all along the trade-off between detection quality and inference time. Facing this variety, practitioners in the field often have to spend a considerable amount of time on researching the right combination for their use-case at hand. Our contribution is to help practitioners with this choice by reviewing and evaluating current vision transformer models together with anomaly detection methods. For this, we chose SotA models of both disciplines, combined them and evaluated them towards the goal of having small, fast and efficient anomaly detection models suitable for industrial manufacturing. We evaluated the results of our experiments on the well-known MVTecAD and BTAD datasets. Moreover, we give guidelines for choosing a suitable model architecture for a quality control system in practice, considering given use-case and hardware constraints.
☆ Reliable Evaluation of Attribution Maps in CNNs: A Perturbation-Based Approach
In this paper, we present an approach for evaluating attribution maps, which play a central role in interpreting the predictions of convolutional neural networks (CNNs). We show that the widely used insertion/deletion metrics are susceptible to distribution shifts that affect the reliability of the ranking. Our method proposes to replace pixel modifications with adversarial perturbations, which provides a more robust evaluation framework. By using smoothness and monotonicity measures, we illustrate the effectiveness of our approach in correcting distribution shifts. In addition, we conduct the most comprehensive quantitative and qualitative assessment of attribution maps to date. Introducing baseline attribution maps as sanity checks, we find that our metric is the only contender to pass all checks. Using Kendall's $\tau$ rank correlation coefficient, we show the increased consistency of our metric across 15 dataset-architecture combinations. Of the 16 attribution maps tested, our results clearly show SmoothGrad to be the best map currently available. This research makes an important contribution to the development of attribution maps by providing a reliable and consistent evaluation framework. To ensure reproducibility, we will provide the code along with our results.
☆ Comparative Study of Neural Network Methods for Solving Topological Solitons
Topological solitons, which are stable, localized solutions of nonlinear differential equations, are crucial in various fields of physics and mathematics, including particle physics and cosmology. However, solving these solitons presents significant challenges due to the complexity of the underlying equations and the computational resources required for accurate solutions. To address this, we have developed a novel method using neural network (NN) to efficiently solve solitons. A similar NN approach is Physics-Informed Neural Networks (PINN). In a comparative analysis between our method and PINN, we find that our method achieves shorter computation times while maintaining the same level of accuracy. This advancement in computational efficiency not only overcomes current limitations but also opens new avenues for studying topological solitons and their dynamical behavior.
comment: 12 pages, 4 figures
☆ Geminio: Language-Guided Gradient Inversion Attacks in Federated Learning
Foundation models that bridge vision and language have made significant progress, inspiring numerous life-enriching applications. However, their potential for misuse to introduce new threats remains largely unexplored. This paper reveals that vision-language models (VLMs) can be exploited to overcome longstanding limitations in gradient inversion attacks (GIAs) within federated learning (FL), where an FL server reconstructs private data samples from gradients shared by victim clients. Current GIAs face challenges in reconstructing high-resolution images, especially when the victim has a large local data batch. While focusing reconstruction on valuable samples rather than the entire batch is promising, existing methods lack the flexibility to allow attackers to specify their target data. In this paper, we introduce Geminio, the first approach to transform GIAs into semantically meaningful, targeted attacks. Geminio enables a brand new privacy attack experience: attackers can describe, in natural language, the types of data they consider valuable, and Geminio will prioritize reconstruction to focus on those high-value samples. This is achieved by leveraging a pretrained VLM to guide the optimization of a malicious global model that, when shared with and optimized by a victim, retains only gradients of samples that match the attacker-specified query. Extensive experiments demonstrate Geminio's effectiveness in pinpointing and reconstructing targeted samples, with high success rates across complex datasets under FL and large batch sizes and showing resilience against existing defenses.
☆ LiDAR-based End-to-end Temporal Perception for Vehicle-Infrastructure Cooperation
Temporal perception, the ability to detect and track objects over time, is critical in autonomous driving for maintaining a comprehensive understanding of dynamic environments. However, this task is hindered by significant challenges, including incomplete perception caused by occluded objects and observational blind spots, which are common in single-vehicle perception systems. To address these issues, we introduce LET-VIC, a LiDAR-based End-to-End Tracking framework for Vehicle-Infrastructure Cooperation (VIC). LET-VIC leverages Vehicle-to-Everything (V2X) communication to enhance temporal perception by fusing spatial and temporal data from both vehicle and infrastructure sensors. First, it spatially integrates Bird's Eye View (BEV) features from vehicle-side and infrastructure-side LiDAR data, creating a comprehensive view that mitigates occlusions and compensates for blind spots. Second, LET-VIC incorporates temporal context across frames, allowing the model to leverage historical data for enhanced tracking stability and accuracy. To further improve robustness, LET-VIC includes a Calibration Error Compensation (CEC) module to address sensor misalignments and ensure precise feature alignment. Experiments on the V2X-Seq-SPD dataset demonstrate that LET-VIC significantly outperforms baseline models, achieving at least a 13.7% improvement in mAP and a 13.1% improvement in AMOTA without considering communication delays. This work offers a practical solution and a new research direction for advancing temporal perception in autonomous driving through vehicle-infrastructure cooperation.
comment: 11 pages, 7 figures
☆ Purrfessor: A Fine-tuned Multimodal LLaVA Diet Health Chatbot
This study introduces Purrfessor, an innovative AI chatbot designed to provide personalized dietary guidance through interactive, multimodal engagement. Leveraging the Large Language-and-Vision Assistant (LLaVA) model fine-tuned with food and nutrition data and a human-in-the-loop approach, Purrfessor integrates visual meal analysis with contextual advice to enhance user experience and engagement. We conducted two studies to evaluate the chatbot's performance and user experience: (a) simulation assessments and human validation were conducted to examine the performance of the fine-tuned model; (b) a 2 (Profile: Bot vs. Pet) by 3 (Model: GPT-4 vs. LLaVA vs. Fine-tuned LLaVA) experiment revealed that Purrfessor significantly enhanced users' perceptions of care ($\beta = 1.59$, $p = 0.04$) and interest ($\beta = 2.26$, $p = 0.01$) compared to the GPT-4 bot. Additionally, user interviews highlighted the importance of interaction design details, emphasizing the need for responsiveness, personalization, and guidance to improve user engagement.
comment: 10 pages, 5 figures
☆ GOT4Rec: Graph of Thoughts for Sequential Recommendation
With the advancement of large language models (LLMs), researchers have explored various methods to optimally leverage their comprehension and generation capabilities in sequential recommendation scenarios. However, several challenges persist in this endeavor. Firstly, most existing approaches rely on the input-output prompting paradigm, which can result in irrelevant or inaccurate responses. Secondly, while there have been attempts to enhance LLMs using prompting strategies such as chain-of-thought (CoT), these efforts have not fully harnessed the reasoning abilities of LLMs or effectively captured the multifaceted information contained within user sequences. To address these limitations, we propose GOT4Rec, a sequential recommendation method that utilizes the graph of thoughts (GoT) prompting strategy. Specifically, we identify and utilize three key types of information within user history sequences: short-term interests, long-term interests and collaborative information from other users. Our approach enables LLMs to independently reason and generate recommendations based on these distinct types of information, subsequently aggregating the results within the GoT framework to derive the final recommended items. This method allows LLMs, with enhanced reasoning capabilities, to more effectively consider the diverse information within user sequences, resulting in more accurate recommendations and more comprehensive explanations. Extensive experiments on real-world datasets demonstrate the effectiveness of GOT4Rec, indicating that it outperforms existing state-of-the-art baselines. Our code is available at https://anonymous.4open.science/r/GOT4Rec-ED99.
☆ DAIRHuM: A Platform for Directly Aligning AI Representations with Human Musical Judgments applied to Carnatic Music ICASSP
Quantifying and aligning music AI model representations with human behavior is an important challenge in the field of MIR. This paper presents a platform for exploring the Direct alignment between AI music model Representations and Human Musical judgments (DAIRHuM). It is designed to enable musicians and experimentalists to label similarities in a dataset of music recordings, and examine a pre-trained model's alignment with their labels using quantitative scores and visual plots. DAIRHuM is applied to analyze alignment between NSynth representations, and a rhythmic duet between two percussionists in a Carnatic quartet ensemble, an example of a genre where annotated data is scarce and assessing alignment is non-trivial. The results demonstrate significant findings on model alignment with human judgments of rhythmic harmony, while highlighting key differences in rhythm perception and music similarity judgments specific to Carnatic music. This work is among the first efforts to enable users to explore human-AI model alignment in Carnatic music and advance MIR research in Indian music while dealing with data scarcity and cultural specificity. The development of this platform provides greater accessibility to music AI tools for under-represented genres.
comment: 4 Pages, ICASSP workshop submission
☆ Boundless Across Domains: A New Paradigm of Adaptive Feature and Cross-Attention for Domain Generalization in Medical Image Segmentation
Domain-invariant representation learning is a powerful method for domain generalization. Previous approaches face challenges such as high computational demands, training instability, and limited effectiveness with high-dimensional data, potentially leading to the loss of valuable features. To address these issues, we hypothesize that an ideal generalized representation should exhibit similar pattern responses within the same channel across cross-domain images. Based on this hypothesis, we use deep features from the source domain as queries, and deep features from the generated domain as keys and values. Through a cross-channel attention mechanism, the original deep features are reconstructed into robust regularization representations, forming an explicit constraint that guides the model to learn domain-invariant representations. Additionally, style augmentation is another common method. However, existing methods typically generate new styles through convex combinations of source domains, which limits the diversity of training samples by confining the generated styles to the original distribution. To overcome this limitation, we propose an Adaptive Feature Blending (AFB) method that generates out-of-distribution samples while exploring the in-distribution space, significantly expanding the domain range. Extensive experimental results demonstrate that our proposed methods achieve superior performance on two standard domain generalization benchmarks for medical image segmentation.
comment: 5 pages, 3 figures
☆ Prioritize Denoising Steps on Diffusion Model Preference Alignment via Explicit Denoised Distribution Estimation
Diffusion models have shown remarkable success in text-to-image generation, making alignment methods for these models increasingly important. A key challenge is the sparsity of preference labels, which are typically available only at the terminal of denoising trajectories. This raises the issue of how to assign credit across denoising steps based on these sparse labels. In this paper, we propose Denoised Distribution Estimation (DDE), a novel method for credit assignment. Unlike previous approaches that rely on auxiliary models or hand-crafted schemes, DDE derives its strategy more explicitly. The proposed DDE directly estimates the terminal denoised distribution from the perspective of each step. It is equipped with two estimation strategies and capable of representing the entire denoising trajectory with a single model inference. Theoretically and empirically, we show that DDE prioritizes optimizing the middle part of the denoising trajectory, resulting in a novel and effective credit assignment scheme. Extensive experiments demonstrate that our approach achieves superior performance, both quantitatively and qualitatively.
☆ Application of AI to formal methods -- an analysis of current trends
With artificial intelligence (AI) being well established within the daily lives of research communities, we turn our gaze toward an application area that appears intuitively unsuited for probabilistic decision-making: the area of formal methods (FM). FM aim to provide sound and understandable reasoning about problems in computer science, which seemingly collides with the black-box nature that inhibits many AI approaches. However, many researchers have crossed this gap and applied AI techniques to enhance FM approaches. As this dichotomy of FM and AI sparked our interest, we conducted a systematic mapping study to map the current landscape of research publications. In this study, we investigate the previous five years of applied AI to FM (2019-2023), as these correspond to periods of high activity. This investigation results in 189 entries, which we explore in more detail to find current trends, highlight research gaps, and give suggestions for future research.
☆ BIP3D: Bridging 2D Images and 3D Perception for Embodied Intelligence
In embodied intelligence systems, a key component is 3D perception algorithm, which enables agents to understand their surrounding environments. Previous algorithms primarily rely on point cloud, which, despite offering precise geometric information, still constrain perception performance due to inherent sparsity, noise, and data scarcity. In this work, we introduce a novel image-centric 3D perception model, BIP3D, which leverages expressive image features with explicit 3D position encoding to overcome the limitations of point-centric methods. Specifically, we leverage pre-trained 2D vision foundation models to enhance semantic understanding, and introduce a spatial enhancer module to improve spatial understanding. Together, these modules enable BIP3D to achieve multi-view, multi-modal feature fusion and end-to-end 3D perception. In our experiments, BIP3D outperforms current state-of-the-art results on the EmbodiedScan benchmark, achieving improvements of 5.69% in the 3D detection task and 15.25% in the 3D visual grounding task.
☆ Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation
Diffusion models (DMs), which enable both image generation from noise and inversion from data, have inspired powerful unpaired image-to-image (I2I) translation algorithms. However, they often require a larger number of neural function evaluations (NFEs), limiting their practical applicability. In this paper, we tackle this problem with Schrodinger Bridges (SBs), which are stochastic differential equations (SDEs) between distributions with minimal transport cost. We analyze the probability flow ordinary differential equation (ODE) formulation of SBs, and observe that we can decompose its vector field into a linear combination of source predictor, target predictor, and noise predictor. Inspired by this observation, we propose Latent Schrodinger Bridges (LSBs) that approximate the SB ODE via pre-trained Stable Diffusion, and develop appropriate prompt optimization and change of variables formula to match the training and inference between distributions. We demonstrate that our algorithm successfully conduct competitive I2I translation in unsupervised setting with only a fraction of computation cost required by previous DM-based I2I methods.
☆ Domain and Range Aware Synthetic Negatives Generation for Knowledge Graph Embedding Models
Knowledge Graph Embedding models, representing entities and edges in a low-dimensional space, have been extremely successful at solving tasks related to completing and exploring Knowledge Graphs (KGs). One of the key aspects of training most of these models is teaching to discriminate between true statements positives and false ones (negatives). However, the way in which negatives can be defined is not trivial, as facts missing from the KG are not necessarily false and a set of ground truth negatives is hardly ever given. This makes synthetic negative generation a necessity. Different generation strategies can heavily affect the quality of the embeddings, making it a primary aspect to consider. We revamp a strategy that generates corruptions during training respecting the domain and range of relations, we extend its capabilities and we show our methods bring substantial improvement (+10% MRR) for standard benchmark datasets and over +150% MRR for a larger ontology-backed dataset.
comment: Accepted at the Third Learning on Graphs Conference (LoG 2024)
☆ Dynamics-Aware Gaussian Splatting Streaming Towards Fast On-the-Fly Training for 4D Reconstruction
The recent development of 3D Gaussian Splatting (3DGS) has led to great interest in 4D dynamic spatial reconstruction from multi-view visual inputs. While existing approaches mainly rely on processing full-length multi-view videos for 4D reconstruction, there has been limited exploration of iterative online reconstruction methods that enable on-the-fly training and per-frame streaming. Current 3DGS-based streaming methods treat the Gaussian primitives uniformly and constantly renew the densified Gaussians, thereby overlooking the difference between dynamic and static features and also neglecting the temporal continuity in the scene. To address these limitations, we propose a novel three-stage pipeline for iterative streamable 4D dynamic spatial reconstruction. Our pipeline comprises a selective inheritance stage to preserve temporal continuity, a dynamics-aware shift stage for distinguishing dynamic and static primitives and optimizing their movements, and an error-guided densification stage to accommodate emerging objects. Our method achieves state-of-the-art performance in online 4D reconstruction, demonstrating a 20% improvement in on-the-fly training speed, superior representation quality, and real-time rendering capability. Project page: https://www.liuzhening.top/DASS
comment: Project page: https://www.liuzhening.top/DASS
☆ Who Can Withstand Chat-Audio Attacks? An Evaluation Benchmark for Large Language Models
Adversarial audio attacks pose a significant threat to the growing use of large language models (LLMs) in voice-based human-machine interactions. While existing research has primarily focused on model-specific adversarial methods, real-world applications demand a more generalizable and universal approach to audio adversarial attacks. In this paper, we introduce the Chat-Audio Attacks (CAA) benchmark including four distinct types of audio attacks, which aims to explore the the vulnerabilities of LLMs to these audio attacks in conversational scenarios. To evaluate the robustness of LLMs, we propose three evaluation strategies: Standard Evaluation, utilizing traditional metrics to quantify model performance under attacks; GPT-4o-Based Evaluation, which simulates real-world conversational complexities; and Human Evaluation, offering insights into user perception and trust. We evaluate six state-of-the-art LLMs with voice interaction capabilities, including Gemini-1.5-Pro, GPT-4o, and others, using three distinct evaluation methods on the CAA benchmark. Our comprehensive analysis reveals the impact of four types of audio attacks on the performance of these models, demonstrating that GPT-4o exhibits the highest level of resilience.
☆ VisGraphVar: A Benchmark Generator for Assessing Variability in Graph Analysis Using Large Vision-Language Models
The fast advancement of Large Vision-Language Models (LVLMs) has shown immense potential. These models are increasingly capable of tackling abstract visual tasks. Geometric structures, particularly graphs with their inherent flexibility and complexity, serve as an excellent benchmark for evaluating these models' predictive capabilities. While human observers can readily identify subtle visual details and perform accurate analyses, our investigation reveals that state-of-the-art LVLMs exhibit consistent limitations in specific visual graph scenarios, especially when confronted with stylistic variations. In response to these challenges, we introduce VisGraphVar (Visual Graph Variability), a customizable benchmark generator able to produce graph images for seven distinct task categories (detection, classification, segmentation, pattern recognition, link prediction, reasoning, matching), designed to systematically evaluate the strengths and limitations of individual LVLMs. We use VisGraphVar to produce 990 graph images and evaluate six LVLMs, employing two distinct prompting strategies, namely zero-shot and chain-of-thought. The findings demonstrate that variations in visual attributes of images (e.g., node labeling and layout) and the deliberate inclusion of visual imperfections, such as overlapping nodes, significantly affect model performance. This research emphasizes the importance of a comprehensive evaluation across graph-related tasks, extending beyond reasoning alone. VisGraphVar offers valuable insights to guide the development of more reliable and robust systems capable of performing advanced visual graph analysis.
☆ Physically Interpretable Probabilistic Domain Characterization
Characterizing domains is essential for models analyzing dynamic environments, as it allows them to adapt to evolving conditions or to hand the task over to backup systems when facing conditions outside their operational domain. Existing solutions typically characterize a domain by solving a regression or classification problem, which limits their applicability as they only provide a limited summarized description of the domain. In this paper, we present a novel approach to domain characterization by characterizing domains as probability distributions. Particularly, we develop a method to predict the likelihood of different weather conditions from images captured by vehicle-mounted cameras by estimating distributions of physical parameters using normalizing flows. To validate our proposed approach, we conduct experiments within the context of autonomous vehicles, focusing on predicting the distribution of weather parameters to characterize the operational domain. This domain is characterized by physical parameters (absolute characterization) and arbitrarily predefined domains (relative characterization). Finally, we evaluate whether a system can safely operate in a target domain by comparing it to multiple source domains where safety has already been established. This approach holds significant potential, as accurate weather prediction and effective domain adaptation are crucial for autonomous systems to adjust to dynamic environmental conditions.
☆ High-Resolution Image Synthesis via Next-Token Prediction
Denoising with a Joint-Embedding Predictive Architecture (D-JEPA), an autoregressive model, has demonstrated outstanding performance in class-conditional image generation. However, the application of next-token prediction in high-resolution text-to-image generation remains underexplored. In this paper, we introduce D-JEPA$\cdot$T2I, an extension of D-JEPA incorporating flow matching loss, designed to enable data-efficient continuous resolution learning. D-JEPA$\cdot$T2I leverages a multimodal visual transformer to effectively integrate textual and visual features and adopts Visual Rotary Positional Embedding (VoPE) to facilitate continuous resolution learning. Furthermore, we devise a data feedback mechanism that significantly enhances data utilization efficiency. For the first time, we achieve state-of-the-art \textbf{high-resolution} image synthesis via next-token prediction. The experimental code and pretrained models will be open-sourced at \url{https://d-jepa.github.io/t2i}.
comment: 30 pages
☆ Continual SFT Matches Multimodal RLHF with Negative Supervision
Multimodal RLHF usually happens after supervised finetuning (SFT) stage to continually improve vision-language models' (VLMs) comprehension. Conventional wisdom holds its superiority over continual SFT during this preference alignment stage. In this paper, we observe that the inherent value of multimodal RLHF lies in its negative supervision, the logit of the rejected responses. We thus propose a novel negative supervised finetuning (nSFT) approach that fully excavates these information resided. Our nSFT disentangles this negative supervision in RLHF paradigm, and continually aligns VLMs with a simple SFT loss. This is more memory efficient than multimodal RLHF where 2 (e.g., DPO) or 4 (e.g., PPO) large VLMs are strictly required. The effectiveness of nSFT is rigorously proved by comparing it with various multimodal RLHF approaches, across different dataset sources, base VLMs and evaluation metrics. Besides, fruitful of ablations are provided to support our hypothesis. We hope this paper will stimulate further research to properly align large vision language models.
☆ VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection
The advancement of Large Vision Language Models (LVLMs) has significantly improved multimodal understanding, yet challenges remain in video reasoning tasks due to the scarcity of high-quality, large-scale datasets. Existing video question-answering (VideoQA) datasets often rely on costly manual annotations with insufficient granularity or automatic construction methods with redundant frame-by-frame analysis, limiting their scalability and effectiveness for complex reasoning. To address these challenges, we introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence, along with multimodal annotations of intermediate reasoning steps. Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o. We further develop video Chain-of-Thought (CoT) annotations to enrich reasoning processes, guiding GPT-4o in extracting logical relationships from QA pairs and video content. To exploit the potential of high-quality VideoQA pairs, we propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM. This framework adaptively selects core frames and performs CoT reasoning using multimodal evidence. Evaluated on our proposed benchmark with 14 tasks against 9 popular LVLMs, our method outperforms existing baselines on most tasks, demonstrating superior video reasoning capabilities. Our code and dataset will be released at: https://github.com/hshjerry/VideoEspresso
comment: 14 pages, 14 figures
KBAda: Efficient Self Adaptation on Specific Knowledge Bases
Humans can utilize techniques to quickly acquire knowledge from specific materials in advance, such as creating self-assessment questions, enabling us to achieving related tasks more efficiently. In contrast, large language models (LLMs) usually relies on retrieval-augmented generation to exploit knowledge materials in an instant manner, or requires external signals such as human preference data and stronger LLM annotations to conduct knowledge adaptation. To unleash the self-learning potential of LLMs, we propose KBAda, an approach designed for efficient adaptation to downstream tasks involving knowledge bases. Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently. Experimental results on multiple datasets demonstrate the effectiveness of our approach, significantly boosting model performance in downstream tasks that require specific knowledge at a low cost. Notably, our approach achieves over 90% of the performance improvement that can be obtained by using GPT-4-turbo annotation, while relying entirely on self-supervision. We release our experimental data, models, and process analyses to the community for further exploration (https://github.com/thunlp/KBAda).
☆ Resolution-Agnostic Transformer-based Climate Downscaling
Understanding future weather changes at regional and local scales is crucial for planning and decision-making, particularly in the context of extreme weather events, as well as for broader applications in agriculture, insurance, and infrastructure development. However, the computational cost of downscaling Global Climate Models (GCMs) to the fine resolutions needed for such applications presents a significant barrier. Drawing on advancements in weather forecasting models, this study introduces a cost-efficient downscaling method using a pretrained Earth Vision Transformer (Earth ViT) model. Initially trained on ERA5 data to downscale from 50 km to 25 km resolution, the model is then tested on the higher resolution BARRA-SY dataset at a 3 km resolution. Remarkably, it performs well without additional training, demonstrating its ability to generalize across different resolutions. This approach holds promise for generating large ensembles of regional climate simulations by downscaling GCMs with varying input resolutions without incurring additional training costs. Ultimately, this method could provide more comprehensive estimates of potential future changes in key climate variables, aiding in effective planning for extreme weather events and climate change adaptation strategies.
☆ Mode-conditioned music learning and composition: a spiking neural network inspired by neuroscience and psychology
Musical mode is one of the most critical element that establishes the framework of pitch organization and determines the harmonic relationships. Previous works often use the simplistic and rigid alignment method, and overlook the diversity of modes. However, in contrast to AI models, humans possess cognitive mechanisms for perceiving the various modes and keys. In this paper, we propose a spiking neural network inspired by brain mechanisms and psychological theories to represent musical modes and keys, ultimately generating musical pieces that incorporate tonality features. Specifically, the contributions are detailed as follows: 1) The model is designed with multiple collaborated subsystems inspired by the structures and functions of corresponding brain regions; 2)We incorporate mechanisms for neural circuit evolutionary learning that enable the network to learn and generate mode-related features in music, reflecting the cognitive processes involved in human music perception. 3)The results demonstrate that the proposed model shows a connection framework closely similar to the Krumhansl-Schmuckler model, which is one of the most significant key perception models in the music psychology domain. 4) Experiments show that the model can generate music pieces with characteristics of the given modes and keys. Additionally, the quantitative assessments of generated pieces reveals that the generating music pieces have both tonality characteristics and the melodic adaptability needed to generate diverse and musical content. By combining insights from neuroscience, psychology, and music theory with advanced neural network architectures, our research aims to create a system that not only learns and generates music but also bridges the gap between human cognition and artificial intelligence.
comment: 18 pages, 8 figures
☆ Grid and Road Expressions Are Complementary for Trajectory Representation Learning
Trajectory representation learning (TRL) maps trajectories to vectors that can be used for many downstream tasks. Existing TRL methods use either grid trajectories, capturing movement in free space, or road trajectories, capturing movement in a road network, as input. We observe that the two types of trajectories are complementary, providing either region and location information or providing road structure and movement regularity. Therefore, we propose a novel multimodal TRL method, dubbed GREEN, to jointly utilize Grid and Road trajectory Expressions for Effective representatioN learning. In particular, we transform raw GPS trajectories into both grid and road trajectories and tailor two encoders to capture their respective information. To align the two encoders such that they complement each other, we adopt a contrastive loss to encourage them to produce similar embeddings for the same raw trajectory and design a mask language model (MLM) loss to use grid trajectories to help reconstruct masked road trajectories. To learn the final trajectory representation, a dual-modal interactor is used to fuse the outputs of the two encoders via cross-attention. We compare GREEN with 7 state-of-the-art TRL methods for 3 downstream tasks, finding that GREEN consistently outperforms all baselines and improves the accuracy of the best-performing baseline by an average of 15.99\%.
comment: This paper is accepted by KDD2025(August Cycle)
☆ Efficient Long Video Tokenization via Coordinated-based Patch Reconstruction
Efficient tokenization of videos remains a challenge in training vision models that can process long videos. One promising direction is to develop a tokenizer that can encode long video clips, as it would enable the tokenizer to leverage the temporal coherence of videos better for tokenization. However, training existing tokenizers on long videos often incurs a huge training cost as they are trained to reconstruct all the frames at once. In this paper, we introduce CoordTok, a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos, inspired by recent advances in 3D generative models. In particular, CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled $(x,y,t)$ coordinates. This allows for training large tokenizer models directly on long videos without requiring excessive training resources. Our experiments show that CoordTok can drastically reduce the number of tokens for encoding long video clips. For instance, CoordTok can encode a 128-frame video with 128$\times$128 resolution into 1280 tokens, while baselines need 6144 or 8192 tokens to achieve similar reconstruction quality. We further show that this efficient video tokenization enables memory-efficient training of a diffusion transformer that can generate 128 frames at once.
comment: Code is available on the project webpage: https://huiwon-jang.github.io/coordtok/
☆ Hammer: Towards Efficient Hot-Cold Data Identification via Online Learning
Efficient management of storage resources in big data and cloud computing environments requires accurate identification of data's "cold" and "hot" states. Traditional methods, such as rule-based algorithms and early AI techniques, often struggle with dynamic workloads, leading to low accuracy, poor adaptability, and high operational overhead. To address these issues, we propose a novel solution based on online learning strategies. Our approach dynamically adapts to changing data access patterns, achieving higher accuracy and lower operational costs. Rigorous testing with both synthetic and real-world datasets demonstrates a significant improvement, achieving a 90% accuracy rate in hot-cold classification. Additionally, the computational and storage overheads are considerably reduced.
☆ TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior
Recent advances in autonomous driving systems have shifted towards reducing reliance on high-definition maps (HDMaps) due to the huge costs of annotation and maintenance. Instead, researchers are focusing on online vectorized HDMap construction using on-board sensors. However, sensor-only approaches still face challenges in long-range perception due to the restricted views imposed by the mounting angles of onboard cameras, just as human drivers also rely on bird's-eye-view navigation maps for a comprehensive understanding of road structures. To address these issues, we propose to train the perception model to "see" standard definition maps (SDMaps). We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information to improve the bird's eye view (BEV) feature for lane geometry and topology decoding. Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology. To further enhance the ability of geometry prediction and topology reasoning, we also use a topology-guided decoder to refine the predictions by exploiting the mutual relationships between topological and geometric features. We perform extensive experiments on OpenLane-V2 datasets to validate the proposed method. The results show that our model outperforms state-of-the-art methods by a large margin, with gains of +6.7 and +9.1 on the mAP and topology metrics. Our analysis also reveals that models trained with SDMap noise augmentation exhibit enhanced robustness.
comment: 17 pages, 7 figures, and 7 tables
☆ Point Cloud Understanding via Attention-Driven Contrastive Learning
Recently Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms, however, these methods often overlook latent information in less prominent regions, leading to increased sensitivity to perturbations and limited global comprehension. To solve this issue, we introduce PointACL, an attention-driven contrastive learning framework designed to address these limitations. Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions, enhancing the understanding of global structures within the point cloud. Then we combine the original pre-training loss with a contrastive learning loss, improving feature discrimination and generalization. Extensive experiments validate the effectiveness of PointACL, as it achieves state-of-the-art performance across a variety of 3D understanding tasks, including object classification, part segmentation, and few-shot learning. Specifically, when integrated with different Transformer backbones like Point-MAE and PointGPT, PointACL demonstrates improved performance on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart. This highlights its superior capability in capturing both global and local features, as well as its enhanced robustness against perturbations and incomplete data.
☆ FOCUS: Knowledge-enhanced Adaptive Visual Compression for Few-shot Whole Slide Image Classification
Few-shot learning presents a critical solution for cancer diagnosis in computational pathology (CPath), addressing fundamental limitations in data availability, particularly the scarcity of expert annotations and patient privacy constraints. A key challenge in this paradigm stems from the inherent disparity between the limited training set of whole slide images (WSIs) and the enormous number of contained patches, where a significant portion of these patches lacks diagnostically relevant information, potentially diluting the model's ability to learn and focus on critical diagnostic features. While recent works attempt to address this by incorporating additional knowledge, several crucial gaps hinder further progress: (1) despite the emergence of powerful pathology foundation models (FMs), their potential remains largely untapped, with most approaches limiting their use to basic feature extraction; (2) current language guidance mechanisms attempt to align text prompts with vast numbers of WSI patches all at once, struggling to leverage rich pathological semantic information. To this end, we introduce the knowledge-enhanced adaptive visual compression framework, dubbed FOCUS, which uniquely combines pathology FMs with language prior knowledge to enable a focused analysis of diagnostically relevant regions by prioritizing discriminative WSI patches. Our approach implements a progressive three-stage compression strategy: we first leverage FMs for global visual redundancy elimination, and integrate compressed features with language prompts for semantic relevance assessment, then perform neighbor-aware visual token filtering while preserving spatial coherence. Extensive experiments on pathological datasets spanning breast, lung, and ovarian cancers demonstrate its superior performance in few-shot pathology diagnosis. Code will be made available at https://github.com/dddavid4real/FOCUS.
comment: 15 pages, 3 figures
☆ TEXGen: a Generative Diffusion Model for Mesh Textures SIGGRAPH
While high-quality texture maps are essential for realistic 3D asset rendering, few studies have explored learning directly in the texture space, especially on large-scale datasets. In this work, we depart from the conventional approach of relying on pre-trained 2D diffusion models for test-time optimization of 3D textures. Instead, we focus on the fundamental problem of learning in the UV texture space itself. For the first time, we train a large diffusion model capable of directly generating high-resolution texture maps in a feed-forward manner. To facilitate efficient learning in high-resolution UV spaces, we propose a scalable network architecture that interleaves convolutions on UV maps with attention layers on point clouds. Leveraging this architectural design, we train a 700 million parameter diffusion model that can generate UV texture maps guided by text prompts and single-view images. Once trained, our model naturally supports various extended applications, including text-guided texture inpainting, sparse-view texture completion, and text-driven texture synthesis. Project page is at http://cvmi-lab.github.io/TEXGen/.
comment: Accepted to SIGGRAPH Asia Journal Article (TOG 2024)
☆ Universal and Context-Independent Triggers for Precise Control of LLM Outputs
Large language models (LLMs) have been widely adopted in applications such as automated content generation and even critical decision-making systems. However, the risk of prompt injection allows for potential manipulation of LLM outputs. While numerous attack methods have been documented, achieving full control over these outputs remains challenging, often requiring experienced attackers to make multiple attempts and depending heavily on the prompt context. Recent advancements in gradient-based white-box attack techniques have shown promise in tasks like jailbreaks and system prompt leaks. Our research generalizes gradient-based attacks to find a trigger that is (1) Universal: effective irrespective of the target output; (2) Context-Independent: robust across diverse prompt contexts; and (3) Precise Output: capable of manipulating LLM inputs to yield any specified output with high accuracy. We propose a novel method to efficiently discover such triggers and assess the effectiveness of the proposed attack. Furthermore, we discuss the substantial threats posed by such attacks to LLM-based applications, highlighting the potential for adversaries to taking over the decisions and actions made by AI agents.
☆ LIBER: Lifelong User Behavior Modeling Based on Large Language Models
CTR prediction plays a vital role in recommender systems. Recently, large language models (LLMs) have been applied in recommender systems due to their emergence abilities. While leveraging semantic information from LLMs has shown some improvements in the performance of recommender systems, two notable limitations persist in these studies. First, LLM-enhanced recommender systems encounter challenges in extracting valuable information from lifelong user behavior sequences within textual contexts for recommendation tasks. Second, the inherent variability in human behaviors leads to a constant stream of new behaviors and irregularly fluctuating user interests. This characteristic imposes two significant challenges on existing models. On the one hand, it presents difficulties for LLMs in effectively capturing the dynamic shifts in user interests within these sequences, and on the other hand, there exists the issue of substantial computational overhead if the LLMs necessitate recurrent calls upon each update to the user sequences. In this work, we propose Lifelong User Behavior Modeling (LIBER) based on large language models, which includes three modules: (1) User Behavior Streaming Partition (UBSP), (2) User Interest Learning (UIL), and (3) User Interest Fusion (UIF). Initially, UBSP is employed to condense lengthy user behavior sequences into shorter partitions in an incremental paradigm, facilitating more efficient processing. Subsequently, UIL leverages LLMs in a cascading way to infer insights from these partitions. Finally, UIF integrates the textual outputs generated by the aforementioned processes to construct a comprehensive representation, which can be incorporated by any recommendation model to enhance performance. LIBER has been deployed on Huawei's music recommendation service and achieved substantial improvements in users' play count and play time by 3.01% and 7.69%.
☆ Understanding LLM Embeddings for Regression
With the rise of large language models (LLMs) for flexibly processing information as strings, a natural application is regression, specifically by preprocessing string representations into LLM embeddings as downstream features for metric prediction. In this paper, we provide one of the first comprehensive investigations into embedding-based regression and demonstrate that LLM embeddings as features can be better for high-dimensional regression tasks than using traditional feature engineering. This regression performance can be explained in part due to LLM embeddings over numeric data inherently preserving Lipschitz continuity over the feature space. Furthermore, we quantify the contribution of different model effects, most notably model size and language understanding, which we find surprisingly do not always improve regression performance.
comment: 15 pages, 13 figures
☆ Improving Mathematical Reasoning Capabilities of Small Language Models via Feedback-Driven Distillation
Large Language Models (LLMs) demonstrate exceptional reasoning capabilities, often achieving state-of-the-art performance in various tasks. However, their substantial computational and memory demands, due to billions of parameters, hinder deployment in resource-constrained environments. A promising solution is knowledge distillation, where LLMs transfer reasoning capabilities to Small Language Models (SLMs, $\le$ 1B parameters), enabling wider deployment on low-resource devices. Existing methods primarily focus on generating high-quality reasoning rationales for distillation datasets but often neglect the critical role of data quantity and quality. To address these challenges, we propose a Feedback-Driven Distillation (FDD) framework to enhance SLMs' mathematical reasoning capabilities. In the initialization stage, a distillation dataset is constructed by prompting LLMs to pair mathematical problems with corresponding reasoning rationales. We classify problems into easy and hard categories based on SLM performance. For easy problems, LLMs generate more complex variations, while for hard problems, new questions of similar complexity are synthesized. In addition, we propose a multi-round distillation paradigm to iteratively enrich the distillation datasets, thereby progressively improving the mathematical reasoning abilities of SLMs. Experimental results demonstrate that our method can make SLMs achieve SOTA mathematical reasoning performance.
☆ Quantum Hamiltonian Descent for Graph Partition
We introduce Quantum Hamiltonian Descent as a novel approach to solve the graph partition problem. By reformulating graph partition as a Quadratic Unconstrained Binary Optimization (QUBO) problem, we leverage QHD's quantum-inspired dynamics to identify optimal community structures. Our method implements a multi-level refinement strategy that alternates between QUBO formulation and QHD optimization to iteratively improve partition quality. Experimental results demonstrate that our QHD-based approach achieves superior modularity scores (up to 5.49\%) improvement with reduced computational overhead compared to traditional optimization methods. This work establishes QHD as an effective quantum-inspired framework for tackling graph partition challenges in large-scale networks.
☆ Cross Group Attention and Group-wise Rolling for Multimodal Medical Image Synthesis
Multimodal MR image synthesis aims to generate missing modality image by fusing and mapping a few available MRI data. Most existing approaches typically adopt an image-to-image translation scheme. However, these methods often suffer from sub-optimal performance due to the spatial misalignment between different modalities while they are typically treated as input channels. Therefore, in this paper, we propose an Adaptive Group-wise Interaction Network (AGI-Net) that explores both inter-modality and intra-modality relationships for multimodal MR image synthesis. Specifically, groups are first pre-defined along the channel dimension and then we perform an adaptive rolling for the standard convolutional kernel to capture inter-modality spatial correspondences. At the same time, a cross-group attention module is introduced to fuse information across different channel groups, leading to better feature representation. We evaluated the effectiveness of our model on the publicly available IXI and BraTS2023 datasets, where the AGI-Net achieved state-of-the-art performance for multimodal MR image synthesis. Code will be released.
☆ Multiverse of Greatness: Generating Story Branches with LLMs
This paper presents Dynamic Context Prompting/Programming (DCP/P), a novel framework for interacting with LLMs to generate graph-based content with a dynamic context window history. While there is an existing study utilizing LLMs to generate a visual novel game, the previous study involved a manual process of output extraction and did not provide flexibility in generating a longer, coherent story. We evaluate DCP/P against our baseline, which does not provide context history to an LLM and only relies on the initial story data. Through objective evaluation, we show that simply providing the LLM with a summary leads to a subpar story compared to additionally providing the LLM with the proper context of the story. We also provide an extensive qualitative analysis and discussion. We qualitatively examine the quality of the objectively best-performing generated game from each approach. In addition, we examine biases in word choices and word sentiment of the generated content. We find a consistent observation with previous studies that LLMs are biased towards certain words, even with a different LLM family. Finally, we provide a comprehensive discussion on opportunities for future studies.
comment: 12 pages, 14 figures
☆ Comparative Analysis of Pooling Mechanisms in LLMs: A Sentiment Analysis Perspective
Large Language Models (LLMs) have revolutionized natural language processing (NLP) by delivering state-of-the-art performance across a variety of tasks. Among these, Transformer-based models like BERT and GPT rely on pooling layers to aggregate token-level embeddings into sentence-level representations. Common pooling mechanisms such as Mean, Max, and Weighted Sum play a pivotal role in this aggregation process. Despite their widespread use, the comparative performance of these strategies on different LLM architectures remains underexplored. To address this gap, this paper investigates the effects of these pooling mechanisms on two prominent LLM families -- BERT and GPT, in the context of sentence-level sentiment analysis. Comprehensive experiments reveal that each pooling mechanism exhibits unique strengths and weaknesses depending on the task's specific requirements. Our findings underline the importance of selecting pooling methods tailored to the demands of particular applications, prompting a re-evaluation of common assumptions regarding pooling operations. By offering actionable insights, this study contributes to the optimization of LLM-based models for downstream tasks.
comment: 4 figures
☆ Social Media Algorithms Can Shape Affective Polarization via Exposure to Antidemocratic Attitudes and Partisan Animosity
There is widespread concern about the negative impacts of social media feed ranking algorithms on political polarization. Leveraging advancements in large language models (LLMs), we develop an approach to re-rank feeds in real-time to test the effects of content that is likely to polarize: expressions of antidemocratic attitudes and partisan animosity (AAPA). In a preregistered 10-day field experiment on X/Twitter with 1,256 consented participants, we increase or decrease participants' exposure to AAPA in their algorithmically curated feeds. We observe more positive outparty feelings when AAPA exposure is decreased and more negative outparty feelings when AAPA exposure is increased. Exposure to AAPA content also results in an immediate increase in negative emotions, such as sadness and anger. The interventions do not significantly impact traditional engagement metrics such as re-post and favorite rates. These findings highlight a potential pathway for developing feed algorithms that mitigate affective polarization by addressing content that undermines the shared values required for a healthy democracy.
DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving
Recently, the diffusion model has emerged as a powerful generative technique for robotic policy learning, capable of modeling multi-mode action distributions. Leveraging its capability for end-to-end autonomous driving is a promising direction. However, the numerous denoising steps in the robotic diffusion policy and the more dynamic, open-world nature of traffic scenes pose substantial challenges for generating diverse driving actions at a real-time speed. To address these challenges, we propose a novel truncated diffusion policy that incorporates prior multi-mode anchors and truncates the diffusion schedule, enabling the model to learn denoising from anchored Gaussian distribution to the multi-mode driving action distribution. Additionally, we design an efficient cascade diffusion decoder for enhanced interaction with conditional scene context. The proposed model, DiffusionDrive, demonstrates 10$\times$ reduction in denoising steps compared to vanilla diffusion policy, delivering superior diversity and quality in just 2 steps. On the planning-oriented NAVSIM dataset, with the aligned ResNet-34 backbone, DiffusionDrive achieves 88.1 PDMS without bells and whistles, setting a new record, while running at a real-time speed of 45 FPS on an NVIDIA 4090. Qualitative results on challenging scenarios further confirm that DiffusionDrive can robustly generate diverse plausible driving actions. Code and model will be available at https://github.com/hustvl/DiffusionDrive.
comment: Work in progress. Code & demo & model will be available at https://github.com/hustvl/DiffusionDrive
☆ WildLMa: Long Horizon Loco-Manipulation in the Wild
`In-the-wild' mobile manipulation aims to deploy robots in diverse real-world environments, which requires the robot to (1) have skills that generalize across object configurations; (2) be capable of long-horizon task execution in diverse environments; and (3) perform complex manipulation beyond pick-and-place. Quadruped robots with manipulators hold promise for extending the workspace and enabling robust locomotion, but existing results do not investigate such a capability. This paper proposes WildLMa with three components to address these issues: (1) adaptation of learned low-level controller for VR-enabled whole-body teleoperation and traversability; (2) WildLMa-Skill -- a library of generalizable visuomotor skills acquired via imitation learning or heuristics and (3) WildLMa-Planner -- an interface of learned skills that allow LLM planners to coordinate skills for long-horizon tasks. We demonstrate the importance of high-quality training data by achieving higher grasping success rate over existing RL baselines using only tens of demonstrations. WildLMa exploits CLIP for language-conditioned imitation learning that empirically generalizes to objects unseen in training demonstrations. Besides extensive quantitative evaluation, we qualitatively demonstrate practical robot applications, such as cleaning up trash in university hallways or outdoor terrains, operating articulated objects, and rearranging items on a bookshelf.
comment: Website: https://wildlma.github.io/
☆ Learning-based Trajectory Tracking for Bird-inspired Flapping-Wing Robots
Bird-sized flapping-wing robots offer significant potential for agile flight in complex environments, but achieving agile and robust trajectory tracking remains a challenge due to the complex aerodynamics and highly nonlinear dynamics inherent in flapping-wing flight. In this work, a learning-based control approach is introduced to unlock the versatility and adaptiveness of flapping-wing flight. We propose a model-free reinforcement learning (RL)-based framework for a high degree-of-freedom (DoF) bird-inspired flapping-wing robot that allows for multimodal flight and agile trajectory tracking. Stability analysis was performed on the closed-loop system comprising of the flapping-wing system and the RL policy. Additionally, simulation results demonstrate that the RL-based controller can successfully learn complex wing trajectory patterns, achieve stable flight, switch between flight modes spontaneously, and track different trajectories under various aerodynamic conditions.
☆ OVO-SLAM: Open-Vocabulary Online Simultaneous Localization and Mapping
This paper presents the first Open-Vocabulary Online 3D semantic SLAM pipeline, that we denote as OVO-SLAM. Our primary contribution is in the pipeline itself, particularly in the mapping thread. Given a set of posed RGB-D frames, we detect and track 3D segments, which we describe using CLIP vectors, calculated through a novel aggregation from the viewpoints where these 3D segments are observed. Notably, our OVO-SLAM pipeline is not only faster but also achieves better segmentation metrics compared to offline approaches in the literature. Along with superior segmentation performance, we show experimental results of our contributions integrated with Gaussian-SLAM, being the first ones demonstrating end-to-end open-vocabulary online 3D reconstructions without relying on ground-truth camera poses or scene geometry.
☆ MSSF: A 4D Radar and Camera Fusion Framework With Multi-Stage Sampling for 3D Object Detection in Autonomous Driving
As one of the automotive sensors that have emerged in recent years, 4D millimeter-wave radar has a higher resolution than conventional 3D radar and provides precise elevation measurements. But its point clouds are still sparse and noisy, making it challenging to meet the requirements of autonomous driving. Camera, as another commonly used sensor, can capture rich semantic information. As a result, the fusion of 4D radar and camera can provide an affordable and robust perception solution for autonomous driving systems. However, previous radar-camera fusion methods have not yet been thoroughly investigated, resulting in a large performance gap compared to LiDAR-based methods. Specifically, they ignore the feature-blurring problem and do not deeply interact with image semantic information. To this end, we present a simple but effective multi-stage sampling fusion (MSSF) network based on 4D radar and camera. On the one hand, we design a fusion block that can deeply interact point cloud features with image features, and can be applied to commonly used single-modal backbones in a plug-and-play manner. The fusion block encompasses two types, namely, simple feature fusion (SFF) and multiscale deformable feature fusion (MSDFF). The SFF is easy to implement, while the MSDFF has stronger fusion abilities. On the other hand, we propose a semantic-guided head to perform foreground-background segmentation on voxels with voxel feature re-weighting, further alleviating the problem of feature blurring. Extensive experiments on the View-of-Delft (VoD) and TJ4DRadset datasets demonstrate the effectiveness of our MSSF. Notably, compared to state-of-the-art methods, MSSF achieves a 7.0% and 4.0% improvement in 3D mean average precision on the VoD and TJ4DRadSet datasets, respectively. It even surpasses classical LiDAR-based methods on the VoD dataset.
☆ Autonomous Tail-Sitter Flights in Unknown Environments
Trajectory generation for fully autonomous flights of tail-sitter unmanned aerial vehicles (UAVs) presents substantial challenges due to their highly nonlinear aerodynamics. In this paper, we introduce, to the best of our knowledge, the world's first fully autonomous tail-sitter UAV capable of high-speed navigation in unknown, cluttered environments. The UAV autonomy is enabled by cutting-edge technologies including LiDAR-based sensing, differential-flatness-based trajectory planning and control with purely onboard computation. In particular, we propose an optimization-based tail-sitter trajectory planning framework that generates high-speed, collision-free, and dynamically-feasible trajectories. To efficiently and reliably solve this nonlinear, constrained \textcolor{black}{problem}, we develop an efficient feasibility-assured solver, EFOPT, tailored for the online planning of tail-sitter UAVs. We conduct extensive simulation studies to benchmark EFOPT's superiority in planning tasks against conventional NLP solvers. We also demonstrate exhaustive experiments of aggressive autonomous flights with speeds up to 15m/s in various real-world environments, including indoor laboratories, underground parking lots, and outdoor parks. A video demonstration is available at https://youtu.be/OvqhlB2h3k8, and the EFOPT solver is open-sourced at https://github.com/hku-mars/EFOPT.
☆ Trajectory Planning and Control for Robotic Magnetic Manipulation
Robotic magnetic manipulation offers a minimally invasive approach to gastrointestinal examinations through capsule endoscopy. However, controlling such systems using external permanent magnets (EPM) is challenging due to nonlinear magnetic interactions, especially when there are complex navigation requirements such as avoidance of sensitive tissues. In this work, we present a novel trajectory planning and control method incorporating dynamics and navigation requirements, using a single EPM fixed to a robotic arm to manipulate an internal permanent magnet (IPM). Our approach employs a constrained iterative linear quadratic regulator that considers the dynamics of the IPM to generate optimal trajectories for both the EPM and IPM. Extensive simulations and real-world experiments, motivated by capsule endoscopy operations, demonstrate the robustness of the method, showcasing resilience to external disturbances and precise control under varying conditions. The experimental results show that the IPM reaches the goal position with a maximum mean error of 0.18 cm and a standard deviation of 0.21 cm. This work introduces a unified framework for constrained trajectory optimization in magnetic manipulation, directly incorporating both the IPM's dynamics and the EPM's manipulability.
comment: 8 pages, 6 figures
☆ Task-Aware Robotic Grasping by evaluating Quality Diversity Solutions through Foundation Models
Task-aware robotic grasping is a challenging problem that requires the integration of semantic understanding and geometric reasoning. Traditional grasp planning approaches focus on stable or feasible grasps, often disregarding the specific tasks the robot needs to accomplish. This paper proposes a novel framework that leverages Large Language Models (LLMs) and Quality Diversity (QD) algorithms to enable zero-shot task-conditioned grasp selection. The framework segments objects into meaningful subparts and labels each subpart semantically, creating structured representations that can be used to prompt an LLM. By coupling semantic and geometric representations of an object's structure, the LLM's knowledge about tasks and which parts to grasp can be applied in the physical world. The QD-generated grasp archive provides a diverse set of grasps, allowing us to select the most suitable grasp based on the task. We evaluate the proposed method on a subset of the YCB dataset, where a Franka Emika robot is assigned to perform various actions based on object-specific task requirements. We created a ground truth by conducting a survey with six participants to determine the best grasp region for each task-object combination according to human intuition. The model was evaluated on 12 different objects across 4--7 object-specific tasks, achieving a weighted intersection over union (IoU) of 76.4% when compared to the survey data.
comment: 8 pages, 5 figures
☆ Enhancing Exploration with Diffusion Policies in Hybrid Off-Policy RL: Application to Non-Prehensile Manipulation
Learning diverse policies for non-prehensile manipulation is essential for improving skill transfer and generalization to out-of-distribution scenarios. In this work, we enhance exploration through a two-fold approach within a hybrid framework that tackles both discrete and continuous action spaces. First, we model the continuous motion parameter policy as a diffusion model, and second, we incorporate this into a maximum entropy reinforcement learning framework that unifies both the discrete and continuous components. The discrete action space, such as contact point selection, is optimized through Q-value function maximization, while the continuous part is guided by a diffusion-based policy. This hybrid approach leads to a principled objective, where the maximum entropy term is derived as a lower bound using structured variational inference. We propose the Hybrid Diffusion Policy algorithm (HyDo) and evaluate its performance on both simulation and zero-shot sim2real tasks. Our results show that HyDo encourages more diverse behavior policies, leading to significantly improved success rates across tasks - for example, increasing from 53% to 72% on a real-world 6D pose alignment task. Project page: https://leh2rng.github.io/hydo
comment: 8 pages
☆ Reactive Robot Navigation Using Quasi-conformal Mappings and Control Barrier Functions
This paper presents a robot control algorithm suitable for safe reactive navigation tasks in cluttered environments. The proposed approach consists of transforming the robot workspace into the \emph{ball world}, an artificial representation where all obstacle regions are closed balls. Starting from a polyhedral representation of obstacles in the environment, obtained using exteroceptive sensor readings, a computationally efficient mapping to ball-shaped obstacles is constructed using quasi-conformal mappings and M\"obius transformations. The geometry of the ball world is amenable to provably safe navigation tasks achieved via control barrier functions employed to ensure collision-free robot motions with guarantees both on safety and on the absence of deadlocks. The performance of the proposed navigation algorithm is showcased and analyzed via extensive simulations and experiments performed using different types of robotic systems, including manipulators and mobile robots.
☆ Implementation of Real-Time Lane Detection on Autonomous Mobile Robot
This paper describes the implementation of a learning-based lane detection algorithm on an Autonomous Mobile Robot. It aims to implement the Ultra Fast Lane Detection algorithm for real-time application on the SEATER P2MC-BRIN prototype using a camera and optimize its performance on the Jetson Nano platform. Preliminary experiments were conducted to evaluate the algorithm's performance in terms of data processing speed and accuracy using two types of datasets: outdoor using a public dataset and indoor using an internal dataset from the indoor area of the BRIN Workshop Building in Bandung. The experiments revealed that the algorithm runs more optimally on the Jetson Nano platform after conversion to TensorRT compared to the ONNX model, achieving processing speeds of approximately 101 ms using CULane and 105 ms using TuSimple, which is about 22 times faster than the previous model. While the algorithm demonstrates good accuracy on the outdoor public dataset, its performance falls short on the indoor dataset. Future work should focus on transfer learning and fine-tuning to enhance indoor lane detection accuracy.
comment: 4 pages, 9 figures 2 tables
☆ Benchmarking the Robustness of Optical Flow Estimation to Corruptions
Optical flow estimation is extensively used in autonomous driving and video editing. While existing models demonstrate state-of-the-art performance across various benchmarks, the robustness of these methods has been infrequently investigated. Despite some research focusing on the robustness of optical flow models against adversarial attacks, there has been a lack of studies investigating their robustness to common corruptions. Taking into account the unique temporal characteristics of optical flow, we introduce 7 temporal corruptions specifically designed for benchmarking the robustness of optical flow models, in addition to 17 classical single-image corruptions, in which advanced PSF Blur simulation method is performed. Two robustness benchmarks, KITTI-FC and GoPro-FC, are subsequently established as the first corruption robustness benchmark for optical flow estimation, with Out-Of-Domain (OOD) and In-Domain (ID) settings to facilitate comprehensive studies. Robustness metrics, Corruption Robustness Error (CRE), Corruption Robustness Error ratio (CREr), and Relative Corruption Robustness Error (RCRE) are further introduced to quantify the optical flow estimation robustness. 29 model variants from 15 optical flow methods are evaluated, yielding 10 intriguing observations, such as 1) the absolute robustness of the model is heavily dependent on the estimation performance; 2) the corruptions that diminish local information are more serious than that reduce visual effects. We also give suggestions for the design and application of optical flow models. We anticipate that our benchmark will serve as a foundational resource for advancing research in robust optical flow estimation. The benchmarks and source code will be released at https://github.com/ZhonghuaYi/optical_flow_robustness_benchmark.
comment: The benchmarks and source code will be released at https://github.com/ZhonghuaYi/optical_flow_robustness_benchmark
Unsupervised Multi-view UAV Image Geo-localization via Iterative Rendering
Unmanned Aerial Vehicle (UAV) Cross-View Geo-Localization (CVGL) presents significant challenges due to the view discrepancy between oblique UAV images and overhead satellite images. Existing methods heavily rely on the supervision of labeled datasets to extract viewpoint-invariant features for cross-view retrieval. However, these methods have expensive training costs and tend to overfit the region-specific cues, showing limited generalizability to new regions. To overcome this issue, we propose an unsupervised solution that lifts the scene representation to 3d space from UAV observations for satellite image generation, providing robust representation against view distortion. By generating orthogonal images that closely resemble satellite views, our method reduces view discrepancies in feature representation and mitigates shortcuts in region-specific image pairing. To further align the rendered image's perspective with the real one, we design an iterative camera pose updating mechanism that progressively modulates the rendered query image with potential satellite targets, eliminating spatial offsets relative to the reference images. Additionally, this iterative refinement strategy enhances cross-view feature invariance through view-consistent fusion across iterations. As such, our unsupervised paradigm naturally avoids the problem of region-specific overfitting, enabling generic CVGL for UAV images without feature fine-tuning or data-driven training. Experiments on the University-1652 and SUES-200 datasets demonstrate that our approach significantly improves geo-localization accuracy while maintaining robustness across diverse regions. Notably, without model fine-tuning or paired training, our method achieves competitive performance with recent supervised methods.
comment: 13 pages
☆ FastGrasp: Efficient Grasp Synthesis with Diffusion
Effectively modeling the interaction between human hands and objects is challenging due to the complex physical constraints and the requirement for high generation efficiency in applications. Prior approaches often employ computationally intensive two-stage approaches, which first generate an intermediate representation, such as contact maps, followed by an iterative optimization procedure that updates hand meshes to capture the hand-object relation. However, due to the high computation complexity during the optimization stage, such strategies often suffer from low efficiency in inference. To address this limitation, this work introduces a novel diffusion-model-based approach that generates the grasping pose in a one-stage manner. This allows us to significantly improve generation speed and the diversity of generated hand poses. In particular, we develop a Latent Diffusion Model with an Adaptation Module for object-conditioned hand pose generation and a contact-aware loss to enforce the physical constraints between hands and objects. Extensive experiments demonstrate that our method achieves faster inference, higher diversity, and superior pose quality than state-of-the-art approaches. Code is available at \href{https://github.com/wuxiaofei01/FastGrasp}{https://github.com/wuxiaofei01/FastGrasp.}
☆ A Benchmark Dataset for Collaborative SLAM in Service Environments
As service environments have become diverse, they have started to demand complicated tasks that are difficult for a single robot to complete. This change has led to an interest in multiple robots instead of a single robot. C-SLAM, as a fundamental technique for multiple service robots, needs to handle diverse challenges such as homogeneous scenes and dynamic objects to ensure that robots operate smoothly and perform their tasks safely. However, existing C-SLAM datasets do not include the various indoor service environments with the aforementioned challenges. To close this gap, we introduce a new multi-modal C-SLAM dataset for multiple service robots in various indoor service environments, called C-SLAM dataset in Service Environments (CSE). We use the NVIDIA Isaac Sim to generate data in various indoor service environments with the challenges that may occur in real-world service environments. By using simulation, we can provide accurate and precisely time-synchronized sensor data, such as stereo RGB, stereo depth, IMU, and ground truth (GT) poses. We configure three common indoor service environments (Hospital, Office, and Warehouse), each of which includes various dynamic objects that perform motions suitable to each environment. In addition, we drive three robots to mimic the actions of real service robots. Through these factors, we generate a more realistic C-SLAM dataset for multiple service robots. We demonstrate our dataset by evaluating diverse state-of-the-art single-robot SLAM and multi-robot SLAM methods. Our dataset is available at https://github.com/vision3d-lab/CSE_Dataset.
comment: 8 pages, 6 figures, Accepted to IEEE RA-L
☆ Aim My Robot: Precision Local Navigation to Any Object
Existing navigation systems mostly consider "success" when the robot reaches within 1m radius to a goal. This precision is insufficient for emerging applications where the robot needs to be positioned precisely relative to an object for downstream tasks, such as docking, inspection, and manipulation. To this end, we design and implement Aim-My-Robot (AMR), a local navigation system that enables a robot to reach any object in its vicinity at the desired relative pose, with centimeter-level precision. AMR achieves high precision and robustness by leveraging multi-modal perception, precise action prediction, and is trained on large-scale photorealistic data generated in simulation. AMR shows strong sim2real transfer and can adapt to different robot kinematics and unseen objects with little to no fine-tuning.
☆ VisionPAD: A Vision-Centric Pre-training Paradigm for Autonomous Driving
This paper introduces VisionPAD, a novel self-supervised pre-training paradigm designed for vision-centric algorithms in autonomous driving. In contrast to previous approaches that employ neural rendering with explicit depth supervision, VisionPAD utilizes more efficient 3D Gaussian Splatting to reconstruct multi-view representations using only images as supervision. Specifically, we introduce a self-supervised method for voxel velocity estimation. By warping voxels to adjacent frames and supervising the rendered outputs, the model effectively learns motion cues in the sequential data. Furthermore, we adopt a multi-frame photometric consistency approach to enhance geometric perception. It projects adjacent frames to the current frame based on rendered depths and relative poses, boosting the 3D geometric representation through pure image supervision. Extensive experiments on autonomous driving datasets demonstrate that VisionPAD significantly improves performance in 3D object detection, occupancy prediction and map segmentation, surpassing state-of-the-art pre-training strategies by a considerable margin.
☆ Personalised 3D Human Digital Twin with Soft-Body Feet for Walking Simulation
With the increasing use of assistive robots in rehabilitation and assisted mobility of human patients, there has been a need for a deeper understanding of human-robot interactions particularly through simulations, allowing an understanding of these interactions in a digital environment. There is an emphasis on accurately modelling personalised 3D human digital twins in these simulations, to glean more insights on human-robot interactions. In this paper, we propose to integrate personalised soft-body feet, generated using the motion capture data of real human subjects, into a skeletal model and train it with a walking control policy. Through evaluation using ground reaction force and joint angle results, the soft-body feet were able to generate ground reaction force results comparable to real measured data and closely follow joint angle results of the bare skeletal model and the reference motion. This presents an interesting avenue to produce a dynamically accurate human model in simulation driven by their own control policy while only seeing kinematic information during training.
comment: 10 pages, 16th International Conference on Social Robotics
☆ BIM-based Safe and Trustworthy Robot Pathfinding using Scalable MHA* Algorithms and Natural Language Processing
Construction robots have gained significant traction in recent years in research and development. However, the application of industrial robots has unique challenges. Dynamic environments, domain-specific tasks, and complex localization and mapping are significant obstacles in their development. In construction job sites, moving objects and complex machinery can make pathfinding a difficult task due to the possibility of object collisions. Existing methods such as simultaneous localization and mapping are viable solutions to this problem, however, due to the precision and data quality required by the sensors and the processing of the information, they can be very computationally expensive. We propose using spatial and semantic information in building information modeling (BIM) to develop domain-specific pathfinding strategies. In this work, we integrate a multi-heuristic A* (MHA*) algorithm using APFs from the BIM spatial information and process textual information from the BIM using large language models (LLMs) to adjust the algorithm for dynamic object avoidance. We show increased robot object proximity by 80% while maintaining similar path lengths.
comment: Submitted to IEEE Access
☆ Deep Policy Gradient Methods Without Batch Updates, Target Networks, or Replay Buffers
Modern deep policy gradient methods achieve effective performance on simulated robotic tasks, but they all require large replay buffers or expensive batch updates, or both, making them incompatible for real systems with resource-limited computers. We show that these methods fail catastrophically when limited to small replay buffers or during incremental learning, where updates only use the most recent sample without batch updates or a replay buffer. We propose a novel incremental deep policy gradient method -- Action Value Gradient (AVG) and a set of normalization and scaling techniques to address the challenges of instability in incremental learning. On robotic simulation benchmarks, we show that AVG is the only incremental method that learns effectively, often achieving final performance comparable to batch policy gradient methods. This advancement enabled us to show for the first time effective deep reinforcement learning with real robots using only incremental updates, employing a robotic manipulator and a mobile robot.
comment: In The Thirty-eighth Annual Conference on Neural Information Processing Systems. Source code at https://github.com/gauthamvasan/avg and companion video at https://youtu.be/cwwuN6Hyew0
☆ Personalization of Wearable Sensor-Based Joint Kinematic Estimation Using Computer Vision for Hip Exoskeleton Applications
Accurate lower-limb joint kinematic estimation is critical for applications such as patient monitoring, rehabilitation, and exoskeleton control. While previous studies have employed wearable sensor-based deep learning (DL) models for estimating joint kinematics, these methods often require extensive new datasets to adapt to unseen gait patterns. Meanwhile, researchers in computer vision have advanced human pose estimation models, which are easy to deploy and capable of real-time inference. However, such models are infeasible in scenarios where cameras cannot be used. To address these limitations, we propose a computer vision-based DL adaptation framework for real-time joint kinematic estimation. This framework requires only a small dataset (i.e., 1-2 gait cycles) and does not depend on professional motion capture setups. Using transfer learning, we adapted our temporal convolutional network (TCN) to stiff knee gait data, allowing the model to further reduce root mean square error by 9.7% and 19.9% compared to a TCN trained on only able-bodied and stiff knee datasets, respectively. Our framework demonstrates a potential for smartphone camera-trained DL models to estimate real-time joint kinematics across novel users in clinical populations with applications in wearable robots.
☆ Dynamic Tube MPC: Learning Tube Dynamics with Massively Parallel Simulation for Robust Safety in Practice
Safe navigation of cluttered environments is a critical challenge in robotics. It is typically approached by separating the planning and tracking problems, with planning executed on a reduced order model to generate reference trajectories, and control techniques used to track these trajectories on the full order dynamics. Inevitable tracking error necessitates robustification of the nominal plan to ensure safety; in many cases, this is accomplished via worst-case bounding, which ignores the fact that some trajectories of the planning model may be easier to track than others. In this work, we present a novel method leveraging massively parallel simulation to learn a dynamic tube representation, which characterizes tracking performance as a function of actions taken by the planning model. Planning model trajectories are then optimized such that the dynamic tube lies in the free space, allowing a balance between performance and safety to be traded off in real time. The resulting Dynamic Tube MPC is applied to the 3D hopping robot ARCHER, enabling agile and performant navigation of cluttered environments, and safe collision-free traversal of narrow corridors.
comment: Submitted to ICRA 2025
☆ Direct And Inverse Dynamics Problems For A Three-wheel Mobile Robot With Two Drive Wheels
Mobile robots are widely used to perform various technological operations in several sectors of the national economy. These operations are related to transporting goods and equipment, performing work to determine the condition of a technical object or structure, their construction or repair, performing work to study a specific territory and compile relevant maps, etc. Recently, the list of operations that mobile robots can perform has expanded with police and military operations. Obviously, the safety of personnel working nearby and the time required to perform the relevant operations depend on such robots' speed and accuracy of movement. Therefore, an important task arises to study and form the trajectories of movement of mobile robots. Optimization, adaptation, robustness methods, and the theory of movement stability allow us to consider a mobile robot as a dynamic system with several inputs and outputs. The mathematical description of such a dynamic system can be used to analyze and synthesize the desired trajectories of movement by solving the corresponding direct and inverse dynamics problems. Therefore, creating a mathematical model of a mobile robot is a relevant task, the solution of which allows us to create and research robot control systems that ensure movement along predetermined desired trajectories.
comment: in Ukrainian language
☆ Continuous Design and Reprogramming of Totimorphic Structures for Space Applications
Recently, a class of mechanical lattices with reconfigurable, zero-stiffness structures has been proposed, called Totimorphic structures. In this work, we introduce a computational framework that allows continuous reprogramming of a Totimorphic lattice's effective properties, such as mechanical and optical properties, via continuous geometric changes alone. Our approach is differentiable and guarantees valid Totimorphic lattice configurations throughout the optimisation process, thus providing not only specific configurations with desired properties but also trajectories through configuration space connecting them. It enables re-programmable structures where actuators are controlled via automatic differentiation on an objective-dependent cost function, altering the lattice structure at all times to achieve a given objective - which is interchangeable to achieve different functionalities. Our main interest lies in deep space applications where harsh, extreme, and resource-constrained environments demand solutions that offer flexibility, resource efficiency, and autonomy. We illustrate our framework through two proofs of concept: a re-programmable metamaterial as well as a space telescope mirror with adjustable focal length, both made from Totimorphic structures. The introduced framework is easily adjustable to a variety of Totimorphic designs and objectives, providing a light-weight model for endowing physical prototypes of Totimorphic structures with autonomous self-configuration and self-repair capabilities.
AdaFlow: Imitation Learning with Variance-Adaptive Flow-Based Policies
Diffusion-based imitation learning improves Behavioral Cloning (BC) on multi-modal decision-making, but comes at the cost of significantly slower inference due to the recursion in the diffusion process. It urges us to design efficient policy generators while keeping the ability to generate diverse actions. To address this challenge, we propose AdaFlow, an imitation learning framework based on flow-based generative modeling. AdaFlow represents the policy with state-conditioned ordinary differential equations (ODEs), which are known as probability flows. We reveal an intriguing connection between the conditional variance of their training loss and the discretization error of the ODEs. With this insight, we propose a variance-adaptive ODE solver that can adjust its step size in the inference stage, making AdaFlow an adaptive decision-maker, offering rapid inference without sacrificing diversity. Interestingly, it automatically reduces to a one-step generator when the action distribution is uni-modal. Our comprehensive empirical evaluation shows that AdaFlow achieves high performance with fast inference speed.
comment: NeuRIPS 2024
♻ ☆ FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in AI
We introduce FrontierMath, a benchmark of hundreds of original, exceptionally challenging mathematics problems crafted and vetted by expert mathematicians. The questions cover most major branches of modern mathematics -- from computationally intensive problems in number theory and real analysis to abstract questions in algebraic geometry and category theory. Solving a typical problem requires multiple hours of effort from a researcher in the relevant branch of mathematics, and for the upper end questions, multiple days. FrontierMath uses new, unpublished problems and automated verification to reliably evaluate models while minimizing risk of data contamination. Current state-of-the-art AI models solve under 2% of problems, revealing a vast gap between AI capabilities and the prowess of the mathematical community. As AI systems advance toward expert-level mathematical abilities, FrontierMath offers a rigorous testbed that quantifies their progress.
♻ ☆ The Art of Saying No: Contextual Noncompliance in Language Models NeurIPS 2024
Chat-based language models are designed to be helpful, yet they should not comply with every user request. While most existing work primarily focuses on refusal of "unsafe" queries, we posit that the scope of noncompliance should be broadened. We introduce a comprehensive taxonomy of contextual noncompliance describing when and how models should not comply with user requests. Our taxonomy spans a wide range of categories including incomplete, unsupported, indeterminate, and humanizing requests (in addition to unsafe requests). To test noncompliance capabilities of language models, we use this taxonomy to develop a new evaluation suite of 1000 noncompliance prompts. We find that most existing models show significantly high compliance rates in certain previously understudied categories with models like GPT-4 incorrectly complying with as many as 30% of requests. To address these gaps, we explore different training strategies using a synthetically-generated training set of requests and expected noncompliant responses. Our experiments demonstrate that while direct finetuning of instruction-tuned models can lead to both over-refusal and a decline in general capabilities, using parameter efficient methods like low rank adapters helps to strike a good balance between appropriate noncompliance and other capabilities.
comment: The first two authors are co-first authors; Accepted at NeurIPS 2024 Track on Datasets and Benchmarks
♻ ☆ NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics NeurIPS23
Machine learning provides a valuable tool for analyzing high-dimensional functional neuroimaging data, and is proving effective in predicting various neurological conditions, psychiatric disorders, and cognitive patterns. In functional magnetic resonance imaging (MRI) research, interactions between brain regions are commonly modeled using graph-based representations. The potency of graph machine learning methods has been established across myriad domains, marking a transformative step in data interpretation and predictive modeling. Yet, despite their promise, the transposition of these techniques to the neuroimaging domain has been challenging due to the expansive number of potential preprocessing pipelines and the large parameter search space for graph-based dataset construction. In this paper, we introduce NeuroGraph, a collection of graph-based neuroimaging datasets, and demonstrated its utility for predicting multiple categories of behavioral and cognitive traits. We delve deeply into the dataset generation search space by crafting 35 datasets that encompass static and dynamic brain connectivity, running in excess of 15 baseline methods for benchmarking. Additionally, we provide generic frameworks for learning on both static and dynamic graphs. Our extensive experiments lead to several key observations. Notably, using correlation vectors as node features, incorporating larger number of regions of interest, and employing sparser graphs lead to improved performance. To foster further advancements in graph-based data driven neuroimaging analysis, we offer a comprehensive open-source Python package that includes the benchmark datasets, baseline implementations, model training, and standard evaluation.
comment: NeurIPS23
♻ ☆ Adaptive Communications in Collaborative Perception with Domain Alignment for Autonomous Driving
Collaborative perception among multiple connected and autonomous vehicles can greatly enhance perceptive capabilities by allowing vehicles to exchange supplementary information via communications. Despite advances in previous approaches, challenges still remain due to channel variations and data heterogeneity among collaborative vehicles. To address these issues, we propose ACC-DA, a channel-aware collaborative perception framework to dynamically adjust the communication graph and minimize the average transmission delay while mitigating the side effects from the data heterogeneity. Our novelties lie in three aspects. We first design a transmission delay minimization method, which can construct the communication graph and minimize the transmission delay according to different channel information state. We then propose an adaptive data reconstruction mechanism, which can dynamically adjust the rate-distortion trade-off to enhance perception efficiency. Moreover, it minimizes the temporal redundancy during data transmissions. Finally, we conceive a domain alignment scheme to align the data distribution from different vehicles, which can mitigate the domain gap between different vehicles and improve the performance of the target task. Comprehensive experiments demonstrate the effectiveness of our method in comparison to the existing state-of-the-art works.
comment: Accepted by GLOBECOM'24
♻ ☆ Characterizing User Archetypes and Discussions on Scored.co
In recent years, the proliferation of social platforms has drastically transformed the way individuals interact, organize, and share information. In this scenario, we experience an unprecedented increase in the scale and complexity of interactions and, at the same time, little to no research about some fringe social platforms. In this paper, we present a multi-dimensional framework for characterizing nodes and hyperedges in social hypernetworks, with a focus on the understudied alt-right platform Scored.co. Our approach integrates the possibility of studying higher-order interactions, thanks to the hypernetwork representation, and various node features such as user activity, sentiment, and toxicity, with the aim to define distinct user archetypes and understand their roles within the network. Utilizing a comprehensive dataset from Scored.co, we analyze the dynamics of these archetypes over time and explore their interactions and influence within the community. The framework's versatility allows for detailed analysis of both individual user behaviors and broader social structures. Our findings highlight the importance of higher-order interactions in understanding social dynamics, offering new insights into the roles and behaviors that emerge in complex online environments.
♻ ☆ Negotiating with LLMS: Prompt Hacks, Skill Gaps, and Reasoning Deficits
Large language models LLMs like ChatGPT have reached the 100 Mio user barrier in record time and might increasingly enter all areas of our life leading to a diverse set of interactions between those Artificial Intelligence models and humans. While many studies have discussed governance and regulations deductively from first-order principles, few studies provide an inductive, data-driven lens based on observing dialogues between humans and LLMs especially when it comes to non-collaborative, competitive situations that have the potential to pose a serious threat to people. In this work, we conduct a user study engaging over 40 individuals across all age groups in price negotiations with an LLM. We explore how people interact with an LLM, investigating differences in negotiation outcomes and strategies. Furthermore, we highlight shortcomings of LLMs with respect to their reasoning capabilities and, in turn, susceptiveness to prompt hacking, which intends to manipulate the LLM to make agreements that are against its instructions or beyond any rationality. We also show that the negotiated prices humans manage to achieve span a broad range, which points to a literacy gap in effectively interacting with LLMs.
♻ ☆ Controlling Language and Diffusion Models by Transporting Activations
The increasing capabilities of large generative models and their ever more widespread deployment have raised concerns about their reliability, safety, and potential misuse. To address these issues, recent works have proposed to control model generation by steering model activations in order to effectively induce or prevent the emergence of concepts or behaviors in the generated output. In this paper we introduce Activation Transport (AcT), a general framework to steer activations guided by optimal transport theory that generalizes many previous activation-steering works. AcT is modality-agnostic and provides fine-grained control over the model behavior with negligible computational overhead, while minimally impacting model abilities. We experimentally show the effectiveness and versatility of our approach by addressing key challenges in large language models (LLMs) and text-to-image diffusion models (T2Is). For LLMs, we show that AcT can effectively mitigate toxicity, induce arbitrary concepts, and increase their truthfulness. In T2Is, we show how AcT enables fine-grained style control and concept negation.
♻ ☆ Semantically-Prompted Language Models Improve Visual Descriptions NAACL 2024
Language-vision models like CLIP have made significant strides in vision tasks, such as zero-shot image classification (ZSIC). However, generating specific and expressive visual descriptions remains challenging; descriptions produced by current methods are often ambiguous and lacking in granularity. To tackle these issues, we propose V-GLOSS: Visual Glosses, a novel method built upon two key ideas. The first is Semantic Prompting, which conditions a language model on structured semantic knowledge. The second is a new contrastive algorithm that elicits fine-grained distinctions between similar concepts. With both ideas, we demonstrate that V-GLOSS improves visual descriptions and achieves strong results in the zero-shot setting on general and fine-grained image-classification datasets, including ImageNet, STL-10, FGVC Aircraft, and Flowers 102. Moreover, these descriptive capabilities contribute to enhancing image-generation performance. Finally, we introduce a quality-tested silver dataset with descriptions generated with V-GLOSS for all ImageNet classes.
comment: Published at NAACL 2024. See https://aclanthology.org/2024.findings-naacl.267/
♻ ☆ Hierarchical localization with panoramic views and triplet loss functions
The main objective of this paper is to tackle visual localization, which is essential for the safe navigation of mobile robots. The solution we propose employs panoramic images and triplet convolutional neural networks. We seek to exploit the properties of such architectures to address both hierarchical and global localization in indoor environments, which are prone to visual aliasing and other phenomena. Considering their importance in these architectures, a complete comparative evaluation of different triplet loss functions is performed. The experimental section proves that triplet networks can be trained with a relatively low number of images captured under a specific lighting condition and even so, the resulting networks are a robust tool to perform visual localization under dynamic conditions. Our approach has been evaluated against some of these effects, such as changes in the lighting conditions, occlusions, noise and motion blurring. Furthermore, to explore the limits of our approach, triplet networks have been tested in different indoor environments simultaneously. In all the cases, these architectures have demonstrated a great capability to generalize to diverse and challenging scenarios. The code used in the experiments is available at https://github.com/MarcosAlfaro/TripletNetworksIndoorLocalization.git.
♻ ☆ Natural Language Processing RELIES on Linguistics
Large Language Models (LLMs) have become capable of generating highly fluent text in certain languages, without modules specially designed to capture grammar or semantic coherence. What does this mean for the future of linguistic expertise in NLP? We highlight several aspects in which NLP (still) relies on linguistics, or where linguistic thinking can illuminate new directions. We argue our case around the acronym RELIES that encapsulates six major facets where linguistics contributes to NLP: Resources, Evaluation, Low-resource settings, Interpretability, Explanation, and the Study of language. This list is not exhaustive, nor is linguistics the main point of reference for every effort under these themes; but at a macro level, these facets highlight the enduring importance of studying machine systems vis-\`a-vis systems of human language.
♻ ☆ Utilizing Large Language Models to Synthesize Product Desirability Datasets
This research explores the application of large language models (LLMs) to generate synthetic datasets for Product Desirability Toolkit (PDT) testing, a key component in evaluating user sentiment and product experience. Utilizing gpt-4o-mini, a cost-effective alternative to larger commercial LLMs, three methods, Word+Review, Review+Word, and Supply-Word, were each used to synthesize 1000 product reviews. The generated datasets were assessed for sentiment alignment, textual diversity, and data generation cost. Results demonstrated high sentiment alignment across all methods, with Pearson correlations ranging from 0.93 to 0.97. Supply-Word exhibited the highest diversity and coverage of PDT terms, although with increased generation costs. Despite minor biases toward positive sentiments, in situations with limited test data, LLM-generated synthetic data offers significant advantages, including scalability, cost savings, and flexibility in dataset production.
comment: 9 pages, 2 figures, 6 tables, updated author list
♻ ☆ Differentiable Physics-based System Identification for Robotic Manipulation of Elastoplastic Materials
Robotic manipulation of volumetric elastoplastic deformable materials, from foods such as dough to construction materials like clay, is in its infancy, largely due to the difficulty of modelling and perception in a high-dimensional space. Simulating the dynamics of such materials is computationally expensive. It tends to suffer from inaccurately estimated physics parameters of the materials and the environment, impeding high-precision manipulation. Estimating such parameters from raw point clouds captured by optical cameras suffers further from heavy occlusions. To address this challenge, this work introduces a novel Differentiable Physics-based System Identification (DPSI) framework that enables a robot arm to infer the physics parameters of elastoplastic materials and the environment using simple manipulation motions and incomplete 3D point clouds, aligning the simulation with the real world. Extensive experiments show that with only a single real-world interaction, the estimated parameters, Young's modulus, Poisson's ratio, yield stress and friction coefficients, can accurately simulate visually and physically realistic deformation behaviours induced by unseen and long-horizon manipulation motions. Additionally, the DPSI framework inherently provides physically intuitive interpretations for the parameters in contrast to black-box approaches such as deep neural networks.
comment: Underreivew on the Internation Journal of Robotics Research
♻ ☆ Interval Abstractions for Robust Counterfactual Explanations
Counterfactual Explanations (CEs) have emerged as a major paradigm in explainable AI research, providing recourse recommendations for users affected by the decisions of machine learning models. However, CEs found by existing methods often become invalid when slight changes occur in the parameters of the model they were generated for. The literature lacks a way to provide exhaustive robustness guarantees for CEs under model changes, in that existing methods to improve CEs' robustness are mostly heuristic, and the robustness performances are evaluated empirically using only a limited number of retrained models. To bridge this gap, we propose a novel interval abstraction technique for parametric machine learning models, which allows us to obtain provable robustness guarantees for CEs under a possibly infinite set of plausible model changes $\Delta$. Based on this idea, we formalise a robustness notion for CEs, which we call $\Delta$-robustness, in both binary and multi-class classification settings. We present procedures to verify $\Delta$-robustness based on Mixed Integer Linear Programming, using which we further propose algorithms to generate CEs that are $\Delta$-robust. In an extensive empirical study involving neural networks and logistic regression models, we demonstrate the practical applicability of our approach. We discuss two strategies for determining the appropriate hyperparameters in our method, and we quantitatively benchmark CEs generated by eleven methods, highlighting the effectiveness of our algorithms in finding robust CEs.
comment: Published in Artificial Intelligence Journal
♻ ☆ HistoEncoder: a digital pathology foundation model for prostate cancer
Foundation models are trained on massive amounts of data to distinguish complex patterns and can be adapted to a wide range of downstream tasks with minimal computational resources. Here, we develop a foundation model for prostate cancer digital pathology called HistoEncoder by pre-training on 48 million prostate tissue tile images. We demonstrate that HistoEncoder features extracted from tile images with similar histological patterns map closely together in the feature space. HistoEncoder outperforms models pre-trained with natural images, even without fine-tuning or with 1000 times less training data. We describe two use cases that leverage the capabilities of HistoEncoder by fine-tuning the model with a limited amount of data and computational resources. First, we show how HistoEncoder can be used to automatically annotate large-scale datasets with high accuracy. Second, we combine histomics with commonly used clinical nomograms, significantly improving prostate cancer-specific death survival models. Foundation models such as HistoEncoder can allow organizations with limited resources to build effective clinical software tools without needing extensive datasets or significant amounts of computing.
♻ ☆ Engagement-Driven Content Generation with Large Language Models
Large Language Models (LLMs) exhibit significant persuasion capabilities in one-on-one interactions, but their influence within social networks remains underexplored. This study investigates the potential social impact of LLMs in these environments, where interconnected users and complex opinion dynamics pose unique challenges. In particular, we address the following research question: can LLMs learn to generate meaningful content that maximizes user engagement on social networks? To answer this question, we define a pipeline to guide the LLM-based content generation which employs reinforcement learning with simulated feedback. In our framework, the reward is based on an engagement model borrowed from the literature on opinion dynamics and information propagation. Moreover, we force the text generated by the LLM to be aligned with a given topic and to satisfy a minimum fluency requirement. Using our framework, we analyze the capabilities and limitations of LLMs in tackling the given task, specifically considering the relative positions of the LLM as an agent within the social network and the distribution of opinions in the network on the given topic. Our findings show the full potential of LLMs in creating social engagement. Notable properties of our approach are that the learning procedure is adaptive to the opinion distribution of the underlying network and agnostic to the specifics of the engagement model, which is embedded as a plug-and-play component. In this regard, our approach can be easily refined for more complex engagement tasks and interventions in computational social science. The code used for the experiments is publicly available at https://anonymous.4open.science/r/EDCG/.
♻ ☆ Learning General Continuous Constraint from Demonstrations via Positive-Unlabeled Learning
Planning for a wide range of real-world tasks necessitates to know and write all constraints. However, instances exist where these constraints are either unknown or challenging to specify accurately. A possible solution is to infer the unknown constraints from expert demonstration. The majority of prior works limit themselves to learning simple linear constraints, or require strong knowledge of the true constraint parameterization or environmental model. To mitigate these problems, this paper presents a positive-unlabeled (PU) learning approach to infer a continuous, arbitrary and possibly nonlinear, constraint from demonstration. From a PU learning view, We treat all data in demonstrations as positive (feasible) data, and learn a (sub)-optimal policy to generate high-reward-winning but potentially infeasible trajectories, which serve as unlabeled data containing both feasible and infeasible states. Under an assumption on data distribution, a feasible-infeasible classifier (i.e., constraint model) is learned from the two datasets through a postprocessing PU learning technique. The entire method employs an iterative framework alternating between updating the policy, which generates and selects higher-reward policies, and updating the constraint model. Additionally, a memory buffer is introduced to record and reuse samples from previous iterations to prevent forgetting. The effectiveness of the proposed method is validated in two Mujoco environments, successfully inferring continuous nonlinear constraints and outperforming a baseline method in terms of constraint accuracy and policy safety.
comment: The paper is hastily uploaded. We prefer to improve it and upload it later, and possibily after it is published
♻ ☆ FedCRL: Personalized Federated Learning with Contrastive Shared Representations for Label Heterogeneity in Non-IID Data
Heterogeneity resulting from label distribution skew and data scarcity can lead to inaccuracy and unfairness in intelligent communication applications that mainly rely on distributed computing. To deal with it, this paper proposes a novel personalized federated learning algorithm, named Federated Contrastive Shareable Representations (FedCoSR), to facilitate knowledge sharing among clients while maintaining data privacy. Specifically, parameters of local models' shallow layers and typical local representations are both considered shareable information for the server and aggregated globally. To address poor performance caused by label distribution skew among clients, contrastive learning is adopted between local and global representations to enrich local knowledge. Additionally, to ensure fairness for clients with scarce data, FedCoSR introduces adaptive local aggregation to coordinate the global model involvement in each client. Our simulations demonstrate FedCoSR's effectiveness in mitigating label heterogeneity by achieving accuracy and fairness improvements over existing methods on datasets with varying degrees of label heterogeneity.
♻ ☆ Automatic Design of Semantic Similarity Ensembles Using Grammatical Evolution
Semantic similarity measures are widely used in natural language processing to catalyze various computer-related tasks. However, no single semantic similarity measure is the most appropriate for all tasks, and researchers often use ensemble strategies to ensure performance. This research work proposes a method for automatically designing semantic similarity ensembles. In fact, our proposed method uses grammatical evolution, for the first time, to automatically select and aggregate measures from a pool of candidates to create an ensemble that maximizes correlation to human judgment. The method is evaluated on several benchmark datasets and compared to state-of-the-art ensembles, showing that it can significantly improve similarity assessment accuracy and outperform existing methods in some cases. As a result, our research demonstrates the potential of using grammatical evolution to automatically compare text and prove the benefits of using ensembles for semantic similarity tasks. The source code that illustrates our approach can be downloaded from https://github.com/jorge-martinez-gil/sesige.
comment: 30 pages
♻ ☆ GTA: A Benchmark for General Tool Agents
Significant focus has been placed on integrating large language models (LLMs) with various tools in developing general-purpose agents. This poses a challenge to LLMs' tool-use capabilities. However, there are evident gaps between existing tool-use evaluations and real-world scenarios. Current evaluations often use AI-generated queries, single-step tasks, dummy tools, and text-only interactions, failing to reveal the agents' real-world problem-solving abilities effectively. To address this, we propose GTA, a benchmark for General Tool Agents, featuring three main aspects: (i) Real user queries: human-written queries with simple real-world objectives but implicit tool-use, requiring the LLM to reason the suitable tools and plan the solution steps. (ii) Real deployed tools: an evaluation platform equipped with tools across perception, operation, logic, and creativity categories to evaluate the agents' actual task execution performance. (iii) Real multimodal inputs: authentic image files, such as spatial scenes, web page screenshots, tables, code snippets, and printed/handwritten materials, used as the query contexts to align with real-world scenarios closely. We design 229 real-world tasks and executable tool chains to evaluate mainstream LLMs. Our findings show that real-world user queries are challenging for existing LLMs, with GPT-4 completing less than 50% of the tasks and most LLMs achieving below 25%. This evaluation reveals the bottlenecks in the tool-use capabilities of current LLMs in real-world scenarios, which provides future direction for advancing general-purpose tool agents. The code and dataset are available at https://github.com/open-compass/GTA.
comment: Github repo: https://github.com/open-compass/GTA
♻ ☆ STREAM: A Universal State-Space Model for Sparse Geometric Data
Handling sparse and unstructured geometric data, such as point clouds or event-based vision, is a pressing challenge in the field of machine vision. Recently, sequence models such as Transformers and state-space models entered the domain of geometric data. These methods require specialized preprocessing to create a sequential view of a set of points. Furthermore, prior works involving sequence models iterate geometric data with either uniform or learned step sizes, implicitly relying on the model to infer the underlying geometric structure. In this work, we propose to encode geometric structure explicitly into the parameterization of a state-space model. State-space models are based on linear dynamics governed by a one-dimensional variable such as time or a spatial coordinate. We exploit this dynamic variable to inject relative differences of coordinates into the step size of the state-space model. The resulting geometric operation computes interactions between all pairs of N points in O(N) steps. Our model deploys the Mamba selective state-space model with a modified CUDA kernel to efficiently map sparse geometric data to modern hardware. The resulting sequence model, which we call STREAM, achieves competitive results on a range of benchmarks from point-cloud classification to event-based vision and audio classification. STREAM demonstrates a powerful inductive bias for sparse geometric data by improving the PointMamba baseline when trained from scratch on the ModelNet40 and ScanObjectNN point cloud analysis datasets. It further achieves, for the first time, 100% test accuracy on all 11 classes of the DVS128 Gestures dataset.
♻ ☆ Bone: Block-Affine Adaptation of Large Language Models
Low-Rank Adaptation (LoRA) has achieved remarkable training results by freezing the original weights and training only low-rank matrices, establishing itself as the predominant fine-tuning method for LLMs. In pursuit of performance closer to full-parameter training, a series of LoRA variants have emerged, such as LoRA+, PISSA, Olora, and LoRA-GA. This paper introduces a novel PEFT technique distinct from LoRA, called Block-Affine Adaptation (Bone). By dividing the original weights into multiple subspaces that share a single matrix for weight updates, Bone simplifies the process by requiring the trainable matrix to be initialized to zero, eliminating the need for complex initialization as in some LoRA variants. Compared to LoRA, Bone significantly reduces memory usage and achieves faster computation. Evaluation of both NLU and NLG tasks demonstrates that Bone substantially outperforms LoRA and its variants. Inspired by Pissa, we further proposed the ``Weight Guide'' theory to better utilize the information from the original weights. By integrating ``Weight Guide'' with Bone, we developed a new structure called Block-Affine Transformation (Bat), and ablation experiments confirmed the effectiveness of ``Weight Guide''.
♻ ☆ From Text to Pose to Image: Improving Diffusion Model Control and Quality NeurIPS 2024
In the last two years, text-to-image diffusion models have become extremely popular. As their quality and usage increase, a major concern has been the need for better output control. In addition to prompt engineering, one effective method to improve the controllability of diffusion models has been to condition them on additional modalities such as image style, depth map, or keypoints. This forms the basis of ControlNets or Adapters. When attempting to apply these methods to control human poses in outputs of text-to-image diffusion models, two main challenges have arisen. The first challenge is generating poses following a wide range of semantic text descriptions, for which previous methods involved searching for a pose within a dataset of (caption, pose) pairs. The second challenge is conditioning image generation on a specified pose while keeping both high aesthetic and high pose fidelity. In this article, we fix these two main issues by introducing a text-to-pose (T2P) generative model alongside a new sampling algorithm, and a new pose adapter that incorporates more pose keypoints for higher pose fidelity. Together, these two new state-of-the-art models enable, for the first time, a generative text-to-pose-to-image framework for higher pose control in diffusion models. We release all models and the code used for the experiments at https://github.com/clement-bonnet/text-to-pose.
comment: Published at the NeurIPS 2024 Workshop on Compositional Learning: Perspectives, Methods, and Paths Forward
♻ ☆ From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning
The outstanding capabilities of large language models (LLMs) render them a crucial component in various autonomous agent systems. While traditional methods depend on the inherent knowledge of LLMs without fine-tuning, more recent approaches have shifted toward the reinforcement learning strategy to further enhance agents' ability to solve complex interactive tasks with environments and tools. However, previous approaches are constrained by the sparse reward issue, where existing datasets solely provide a final scalar reward for each multi-step reasoning chain, potentially leading to ineffectiveness and inefficiency in policy learning. In this paper, we introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process. Inheriting the spirit of novice-to-expert theory, we first compare the actions of the expert and the agent to automatically generate intermediate rewards for fine-grained optimization. Additionally, we propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment. Further theoretical analysis demonstrates that the action distribution of the agent can converge toward the expert action distribution over multiple training cycles. Experimental results across various datasets indicate that StepAgent outperforms existing baseline methods.
♻ ☆ Huber-energy measure quantization
We describe a measure quantization procedure i.e., an algorithm which finds the best approximation of a target probability law (and more generally signed finite variation measure) by a sum of $Q$ Dirac masses ($Q$ being the quantization parameter). The procedure is implemented by minimizing the statistical distance between the original measure and its quantized version; the distance is built from a negative definite kernel and, if necessary, can be computed on the fly and feed to a stochastic optimization algorithm (such as SGD, Adam, ...). We investigate theoretically the fundamental questions of existence of the optimal measure quantizer and identify what are the required kernel properties that guarantee suitable behavior. We propose two best linear unbiased (BLUE) estimators for the squared statistical distance and use them in an unbiased procedure, called HEMQ, to find the optimal quantization. We test HEMQ on several databases: multi-dimensional Gaussian mixtures, Wiener space cubature, Italian wine cultivars and the MNIST image database. The results indicate that the HEMQ algorithm is robust and versatile and, for the class of Huber-energy kernels, matches the expected intuitive behavior.
♻ ☆ AFFSegNet: Adaptive Feature Fusion Segmentation Network for Microtumors and Multi-Organ Segmentation
Medical image segmentation, a crucial task in computer vision, facilitates the automated delineation of anatomical structures and pathologies, supporting clinicians in diagnosis, treatment planning, and disease monitoring. Notably, transformers employing shifted window-based self-attention have demonstrated exceptional performance. However, their reliance on local window attention limits the fusion of local and global contextual information, crucial for segmenting microtumors and miniature organs. To address this limitation, we propose the Adaptive Semantic Segmentation Network (ASSNet), a transformer architecture that effectively integrates local and global features for precise medical image segmentation. ASSNet comprises a transformer-based U-shaped encoder-decoder network. The encoder utilizes shifted window self-attention across five resolutions to extract multi-scale features, which are then propagated to the decoder through skip connections. We introduce an augmented multi-layer perceptron within the encoder to explicitly model long-range dependencies during feature extraction. Recognizing the constraints of conventional symmetrical encoder-decoder designs, we propose an Adaptive Feature Fusion (AFF) decoder to complement our encoder. This decoder incorporates three key components: the Long Range Dependencies (LRD) block, the Multi-Scale Feature Fusion (MFF) block, and the Adaptive Semantic Center (ASC) block. These components synergistically facilitate the effective fusion of multi-scale features extracted by the decoder while capturing long-range dependencies and refining object boundaries. Comprehensive experiments on diverse medical image segmentation tasks, including multi-organ, liver tumor, and bladder tumor segmentation, demonstrate that ASSNet achieves state-of-the-art results. Code and models are available at: \url{https://github.com/lzeeorno/ASSNet}.
comment: 8 pages, 4 figures, 3 tables
♻ ☆ AGLP: A Graph Learning Perspective for Semi-supervised Domain Adaptation
In semi-supervised domain adaptation (SSDA), the model aims to leverage partially labeled target domain data along with a large amount of labeled source domain data to enhance its generalization capability for the target domain. A key advantage of SSDA is its ability to significantly reduce reliance on labeled data, thereby lowering the costs and time associated with data preparation. Most existing SSDA methods utilize information from domain labels and class labels but overlook the structural information of the data. To address this issue, this paper proposes a graph learning perspective (AGLP) for semi-supervised domain adaptation. We apply the graph convolutional network to the instance graph which allows structural information to propagate along the weighted graph edges. The proposed AGLP model has several advantages. First, to the best of our knowledge, this is the first work to model structural information in SSDA. Second, the proposed model can effectively learn domain-invariant and semantic representations, reducing domain discrepancies in SSDA. Extensive experimental results on multiple standard benchmarks demonstrate that the proposed AGLP algorithm outperforms state-of-the-art semi-supervised domain adaptation methods.
comment: 8page
♻ ☆ GraphCL: Graph-based Clustering for Semi-Supervised Medical Image Segmentation
Semi-supervised learning (SSL) has made notable advancements in medical image segmentation (MIS), particularly in scenarios with limited labeled data and significantly enhancing data utilization efficiency. Previous methods primarily focus on complex training strategies to utilize unlabeled data but neglect the importance of graph structural information. Different from existing methods, we propose a graph-based clustering for semi-supervised medical image segmentation (GraphCL) by jointly modeling graph data structure in a unified deep model. The proposed GraphCL model enjoys several advantages. Firstly, to the best of our knowledge, this is the first work to model the data structure information for semi-supervised medical image segmentation (SSMIS). Secondly, to get the clustered features across different graphs, we integrate both pairwise affinities between local image features and raw features as inputs. Extensive experimental results on three standard benchmarks show that the proposed GraphCL algorithm outperforms state-of-the-art semi-supervised medical image segmentation methods.
comment: 9page
♻ ☆ Self-Training Meets Consistency: Improving LLMs' Reasoning With Consistency-Driven Rationale Evaluation
Self-training approach for large language models (LLMs) improves reasoning abilities by training the models on their self-generated rationales. Previous approaches have labeled rationales that produce correct answers for a given question as appropriate for training. However, a single measure risks misjudging rationale quality, leading the models to learn flawed reasoning patterns. To address this issue, we propose CREST (Consistency-driven Rationale Evaluation for Self-Training), a self-training framework that further evaluates each rationale through follow-up questions and leverages this evaluation to guide its training. Specifically, we introduce two methods: (1) filtering out rationales that frequently result in incorrect answers on follow-up questions and (2) preference learning based on mixed preferences from rationale evaluation results of both original and follow-up questions. Experiments on three question-answering datasets using open LLMs show that CREST not only improves the logical robustness and correctness of rationales but also improves reasoning abilities compared to previous self-training approaches.
comment: Under review
♻ ☆ Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data ICLR 2024
Irregular sampling intervals and missing values in real-world time series data present challenges for conventional methods that assume consistent intervals and complete data. Neural Ordinary Differential Equations (Neural ODEs) offer an alternative approach, utilizing neural networks combined with ODE solvers to learn continuous latent representations through parameterized vector fields. Neural Stochastic Differential Equations (Neural SDEs) extend Neural ODEs by incorporating a diffusion term, although this addition is not trivial, particularly when addressing irregular intervals and missing values. Consequently, careful design of drift and diffusion functions is crucial for maintaining stability and enhancing performance, while incautious choices can result in adverse properties such as the absence of strong solutions, stochastic destabilization, or unstable Euler discretizations, significantly affecting Neural SDEs' performance. In this study, we propose three stable classes of Neural SDEs: Langevin-type SDE, Linear Noise SDE, and Geometric SDE. Then, we rigorously demonstrate their robustness in maintaining excellent performance under distribution shift, while effectively preventing overfitting. To assess the effectiveness of our approach, we conduct extensive experiments on four benchmark datasets for interpolation, forecasting, and classification tasks, and analyze the robustness of our methods with 30 public datasets under different missing rates. Our results demonstrate the efficacy of the proposed method in handling real-world irregular time series data.
comment: Published at the Twelfth International Conference on Learning Representations (ICLR 2024), Spotlight presentation (Notable Top 5%). https://openreview.net/forum?id=4VIgNuQ1pY
♻ ☆ VLM Agents Generate Their Own Memories: Distilling Experience into Embodied Programs of Thought
Large-scale generative language and vision-language models (LLMs and VLMs) excel in few-shot in-context learning for decision making and instruction following. However, they require high-quality exemplar demonstrations in their context window. In this work, we ask: Can LLMs and VLMs generate their own examples from generic, sub-optimal demonstrations? We propose In-Context Abstraction Learning (ICAL), a method that builds a memory of multimodal experience from sub-optimal demonstrations and human feedback. Given a task demonstration that may contain inefficiencies or mistakes, a VLM abstracts the trajectory into a generalized program of thoughts by correcting inefficient actions and annotating cognitive abstractions: causal relationships, object state changes, temporal subgoals, and task-relevant visual elements. These programs of thought are iteratively improved through human feedback while the agent executes the trajectory in a similar environment. The resulting examples significantly improve decision-making in retrieval-augmented LLM and VLM agents. Moreover, as the agent's library of examples grows, it becomes more efficient, relying less on human feedback and requiring fewer environment interactions per demonstration. Our ICAL agent surpasses the SOTA in dialogue-based instruction following in TEACh, multimodal web agents in VisualWebArena, and action anticipation in Ego4D. In TEACh, we achieve a 12.6% improvement in goal-condition success. In VisualWebArena, our task success rate improves over few-shot GPT4V. In Ego4D action forecasting, we improve over few-shot GPT-4V and remain competitive with supervised models. We show finetuning our retrieval-augmented in-context agent yields additional improvements. Our approach significantly reduces reliance on manual prompt engineering and consistently outperforms in-context learning from action plans that lack such programs of thought.
comment: Project website: http://ical-learning.github.io/
♻ ☆ Deep ReLU Networks Have Surprisingly Simple Polytopes
A ReLU network is a piecewise linear function over polytopes. Figuring out the properties of such polytopes is of fundamental importance for the research and development of neural networks. So far, either theoretical or empirical studies on polytopes only stay at the level of counting their number, which is far from a complete characterization. Here, we propose to study the shapes of polytopes via the number of faces of the polytope. Then, by computing and analyzing the histogram of faces across polytopes, we find that a ReLU network has relatively simple polytopes under both initialization and gradient descent, although these polytopes can be rather diverse and complicated by a specific design. This finding can be appreciated as a kind of generalized implicit bias, subjected to the intrinsic geometric constraint in space partition of a ReLU network. Next, we perform a combinatorial analysis to explain why adding depth does not generate a more complicated polytope by bounding the average number of faces of polytopes with the dimensionality. Our results concretely reveal what kind of simple functions a network learns and what will happen when a network goes deep. Also, by characterizing the shape of polytopes, the number of faces can be a novel leverage for other problems, \textit{e.g.}, serving as a generic tool to explain the power of popular shortcut networks such as ResNet and analyzing the impact of different regularization strategies on a network's space partition.
♻ ☆ System 2 Reasoning via Generality and Adaptation NeurIPS 2024
While significant progress has been made in task-specific applications, current models struggle with deep reasoning, generality, and adaptation -- key components of System 2 reasoning that are crucial for achieving Artificial General Intelligence (AGI). Despite the promise of approaches such as program synthesis, language models, and transformers, these methods often fail to generalize beyond their training data and to adapt to novel tasks, limiting their ability to perform human-like reasoning. This paper explores the limitations of existing approaches in achieving advanced System 2 reasoning and highlights the importance of generality and adaptation for AGI. Moreover, we propose four key research directions to address these gaps: (1) learning human intentions from action sequences, (2) combining symbolic and neural models, (3) meta-learning for unfamiliar environments, and (4) reinforcement learning to reason multi-step. Through these directions, we aim to advance the ability to generalize and adapt, bringing computational models closer to the reasoning capabilities required for AGI.
comment: Accepted by NeurIPS 2024 Workshop on System 2 Reasoning at Scale
♻ ☆ Lightweight Frequency Masker for Cross-Domain Few-Shot Semantic Segmentation NeurIPS 2024
Cross-domain few-shot segmentation (CD-FSS) is proposed to first pre-train the model on a large-scale source-domain dataset, and then transfer the model to data-scarce target-domain datasets for pixel-level segmentation. The significant domain gap between the source and target datasets leads to a sharp decline in the performance of existing few-shot segmentation (FSS) methods in cross-domain scenarios. In this work, we discover an intriguing phenomenon: simply filtering different frequency components for target domains can lead to a significant performance improvement, sometimes even as high as 14% mIoU. Then, we delve into this phenomenon for an interpretation, and find such improvements stem from the reduced inter-channel correlation in feature maps, which benefits CD-FSS with enhanced robustness against domain gaps and larger activated regions for segmentation. Based on this, we propose a lightweight frequency masker, which further reduces channel correlations by an Amplitude-Phase Masker (APM) module and an Adaptive Channel Phase Attention (ACPA) module. Notably, APM introduces only 0.01% additional parameters but improves the average performance by over 10%, and ACPA imports only 2.5% parameters but further improves the performance by over 1.5%, which significantly surpasses the state-of-the-art CD-FSS methods.
comment: Accepted by NeurIPS 2024
♻ ☆ Addressing a fundamental limitation in deep vision models: lack of spatial attention
The primary aim of this manuscript is to underscore a significant limitation in current deep learning models, particularly vision models. Unlike human vision, which efficiently selects only the essential visual areas for further processing, leading to high speed and low energy consumption, deep vision models process the entire image. In this work, we examine this issue from a broader perspective and propose two solutions that could pave the way for the next generation of more efficient vision models. In the first solution, convolution and pooling operations are selectively applied to altered regions, with a change map sent to subsequent layers. This map indicates which computations need to be repeated. In the second solution, only the modified regions are processed by a semantic segmentation model, and the resulting segments are inserted into the corresponding areas of the previous output map. The code is available at https://github.com/aliborji/spatial_attention.
♻ ☆ One-Shot Safety Alignment for Large Language Models via Optimal Dualization
The growing safety concerns surrounding large language models raise an urgent need to align them with diverse human preferences to simultaneously enhance their helpfulness and safety. A promising approach is to enforce safety constraints through Reinforcement Learning from Human Feedback (RLHF). For such constrained RLHF, typical Lagrangian-based primal-dual policy optimization methods are computationally expensive and often unstable. This paper presents a perspective of dualization that reduces constrained alignment to an equivalent unconstrained alignment problem. We do so by pre-optimizing a smooth and convex dual function that has a closed form. This shortcut eliminates the need for cumbersome primal-dual policy iterations, greatly reducing the computational burden and improving training stability. Our strategy leads to two practical algorithms in model-based and preference-based settings (MoCAN and PeCAN, respectively). A broad range of experiments demonstrate the effectiveness and merits of our algorithms.
comment: 32 pages, 6 figures, 8 tables
♻ ☆ Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics
Recently in robotics, Vision-Language-Action (VLA) models have emerged as a transformative approach, enabling robots to execute complex tasks by integrating visual and linguistic inputs within an end-to-end learning framework. While VLA models offer significant capabilities, they also introduce new attack surfaces, making them vulnerable to adversarial attacks. With these vulnerabilities largely unexplored, this paper systematically quantifies the robustness of VLA-based robotic systems. Recognizing the unique demands of robotic execution, our attack objectives target the inherent spatial and functional characteristics of robotic systems. In particular, we introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions, and a targeted attack objective that manipulates the robotic trajectory. Additionally, we design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments. Our evaluation reveals a marked degradation in task success rates, with up to a 100\% reduction across a suite of simulated robotic tasks, highlighting critical security gaps in current VLA architectures. By unveiling these vulnerabilities and proposing actionable evaluation metrics, this work advances both the understanding and enhancement of safety for VLA-based robotic systems, underscoring the necessity for developing robust defense strategies prior to physical-world deployments.
Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
Time Series Classification (TSC) encompasses two settings: classifying entire sequences or classifying segmented subsequences. The raw time series for segmented TSC usually contain Multiple classes with Varying Duration of each class (MVD). Therefore, the characteristics of MVD pose unique challenges for segmented TSC, yet have been largely overlooked by existing works. Specifically, there exists a natural temporal dependency between consecutive instances (segments) to be classified within MVD. However, mainstream TSC models rely on the assumption of independent and identically distributed (i.i.d.), focusing on independently modeling each segment. Additionally, annotators with varying expertise may provide inconsistent boundary labels, leading to unstable performance of noise-free TSC models. To address these challenges, we first formally demonstrate that valuable contextual information enhances the discriminative power of classification instances. Leveraging the contextual priors of MVD at both the data and label levels, we propose a novel consistency learning framework Con4m, which effectively utilizes contextual information more conducive to discriminating consecutive segments in segmented TSC tasks, while harmonizing inconsistent boundary labels for training. Extensive experiments across multiple datasets validate the effectiveness of Con4m in handling segmented TSC tasks on MVD.
♻ ☆ Hokoff: Real Game Dataset from Honor of Kings and its Offline Reinforcement Learning Benchmarks
The advancement of Offline Reinforcement Learning (RL) and Offline Multi-Agent Reinforcement Learning (MARL) critically depends on the availability of high-quality, pre-collected offline datasets that represent real-world complexities and practical applications. However, existing datasets often fall short in their simplicity and lack of realism. To address this gap, we propose Hokoff, a comprehensive set of pre-collected datasets that covers both offline RL and offline MARL, accompanied by a robust framework, to facilitate further research. This data is derived from Honor of Kings, a recognized Multiplayer Online Battle Arena (MOBA) game known for its intricate nature, closely resembling real-life situations. Utilizing this framework, we benchmark a variety of offline RL and offline MARL algorithms. We also introduce a novel baseline algorithm tailored for the inherent hierarchical action space of the game. We reveal the incompetency of current offline RL approaches in handling task complexity, generalization and multi-task learning.
♻ ☆ GIS Copilot: Towards an Autonomous GIS Agent for Spatial Analysis
Recent advancements in Generative AI offer promising capabilities for spatial analysis. Despite their potential, the integration of generative AI with established GIS platforms remains underexplored. In this study, we propose a framework for integrating LLMs directly into existing GIS platforms, using QGIS as an example. Our approach leverages the reasoning and programming capabilities of LLMs to autonomously generate spatial analysis workflows and code through an informed agent that has comprehensive documentation of key GIS tools and parameters. The implementation of this framework resulted in the development of a "GIS Copilot" that allows GIS users to interact with QGIS using natural language commands for spatial analysis. The GIS Copilot was evaluated with over 100 spatial analysis tasks with three complexity levels: basic tasks that require one GIS tool and typically involve one data layer to perform simple operations; intermediate tasks involving multi-step processes with multiple tools, guided by user instructions; and advanced tasks which involve multi-step processes that require multiple tools but not guided by user instructions, necessitating the agent to independently decide on and executes the necessary steps. The evaluation reveals that the GIS Copilot demonstrates strong potential in automating foundational GIS operations, with a high success rate in tool selection and code generation for basic and intermediate tasks, while challenges remain in achieving full autonomy for more complex tasks. This study contributes to the emerging vision of Autonomous GIS, providing a pathway for non-experts to engage with geospatial analysis with minimal prior expertise. While full autonomy is yet to be achieved, the GIS Copilot demonstrates significant potential for simplifying GIS workflows and enhancing decision-making processes.
♻ ☆ Integrating Multi-Modal Input Token Mixer Into Mamba-Based Decision Models: Decision MetaMamba
Sequence modeling with State Space models (SSMs) has demonstrated performance surpassing that of Transformers in various tasks, raising expectations for their potential to outperform the Decision Transformer and its enhanced variants in offline reinforcement learning (RL). However, decision models based on Mamba, a state-of-the-art SSM, failed to achieve superior performance compared to these enhanced Decision Transformers. We hypothesize that this limitation arises from information loss during the selective scanning phase. To address this, we propose the Decision MetaMamba (DMM), which augments Mamba with a token mixer in its input layer. This mixer explicitly accounts for the multimodal nature of offline RL inputs, comprising state, action, and return-to-go. The DMM demonstrates improved performance while significantly reducing parameter count compared to prior models. Notably, similar performance gains were achieved using a simple linear token mixer, emphasizing the importance of preserving information from proximate time steps rather than the specific design of the token mixer itself. This novel modification to Mamba's input layer represents a departure from conventional timestamp-based encoding approaches used in Transformers. By enhancing performance of Mamba in offline RL, characterized by memory efficiency and fast inference, this work opens new avenues for its broader application in future RL research.
♻ ☆ Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting NeurIPS 2024
Sequence modeling faces challenges in capturing long-range dependencies across diverse tasks. Recent linear and transformer-based forecasters have shown superior performance in time series forecasting. However, they are constrained by their inherent inability to effectively address long-range dependencies in time series data, primarily due to using fixed-size inputs for prediction. Furthermore, they typically sacrifice essential temporal correlation among consecutive training samples by shuffling them into mini-batches. To overcome these limitations, we introduce a fast and effective Spectral Attention mechanism, which preserves temporal correlations among samples and facilitates the handling of long-range information while maintaining the base model structure. Spectral Attention preserves long-period trends through a low-pass filter and facilitates gradient to flow between samples. Spectral Attention can be seamlessly integrated into most sequence models, allowing models with fixed-sized look-back windows to capture long-range dependencies over thousands of steps. Through extensive experiments on 11 real-world time series datasets using 7 recent forecasting models, we consistently demonstrate the efficacy of our Spectral Attention mechanism, achieving state-of-the-art results.
comment: Co-first Author: Bong Gyun Kang, Dongjun Lee. NeurIPS 2024 (Conference on Neural Information Processing Systems)
♻ ☆ Evaluating Language Models for Generating and Judging Programming Feedback
The emergence of large language models (LLMs) has transformed research and practice across a wide range of domains. Within the computing education research (CER) domain, LLMs have garnered significant attention, particularly in the context of learning programming. Much of the work on LLMs in CER, however, has focused on applying and evaluating proprietary models. In this article, we evaluate the efficiency of open-source LLMs in generating high-quality feedback for programming assignments and judging the quality of programming feedback, contrasting the results with proprietary models. Our evaluations on a dataset of students' submissions to introductory Python programming exercises suggest that state-of-the-art open-source LLMs are nearly on par with proprietary models in both generating and assessing programming feedback. Additionally, we demonstrate the efficiency of smaller LLMs in these tasks and highlight the wide range of LLMs accessible, even for free, to educators and practitioners.
comment: 2 tables. Accepted for SIGCSE TS 2025
♻ ☆ Towards Measuring Goal-Directedness in AI Systems
Recent advances in deep learning have brought attention to the possibility of creating advanced, general AI systems that outperform humans across many tasks. However, if these systems pursue unintended goals, there could be catastrophic consequences. A key prerequisite for AI systems pursuing unintended goals is whether they will behave in a coherent and goal-directed manner in the first place, optimizing for some unknown goal; there exists significant research trying to evaluate systems for said behaviors. However, the most rigorous definitions of goal-directedness we currently have are difficult to compute in real-world settings. Drawing upon this previous literature, we explore policy goal-directedness within reinforcement learning (RL) environments. In our findings, we propose a different family of definitions of the goal-directedness of a policy that analyze whether it is well-modeled as near-optimal for many (sparse) reward functions. We operationalize this preliminary definition of goal-directedness and test it in toy Markov decision process (MDP) environments. Furthermore, we explore how goal-directedness could be measured in frontier large-language models (LLMs). Our contribution is a definition of goal-directedness that is simpler and more easily computable in order to approach the question of whether AI systems could pursue dangerous goals. We recommend further exploration of measuring coherence and goal-directedness, based on our findings.
comment: Updated acknowledgements
♻ ☆ Enhancing Link Prediction with Fuzzy Graph Attention Networks and Dynamic Negative Sampling
Link prediction is crucial for understanding complex networks but traditional Graph Neural Networks (GNNs) often rely on random negative sampling, leading to suboptimal performance. This paper introduces Fuzzy Graph Attention Networks (FGAT), a novel approach integrating fuzzy rough sets for dynamic negative sampling and enhanced node feature aggregation. Fuzzy Negative Sampling (FNS) systematically selects high-quality negative edges based on fuzzy similarities, improving training efficiency. FGAT layer incorporates fuzzy rough set principles, enabling robust and discriminative node representations. Experiments on two research collaboration networks demonstrate FGAT's superior link prediction accuracy, outperforming state-of-the-art baselines by leveraging the power of fuzzy rough sets for effective negative sampling and node feature learning.
comment: 5 pages
♻ ☆ Extending the Benefits of Parallel Elasticity across Multiple Actuation Tasks: A Geometric and Optimization-Based Approach
A spring in parallel with an effort source (e.g., electric motor or human muscle) can reduce its energy consumption and effort (i.e., torque or force) depending on the spring stiffness, spring preload, and actuation task. However, selecting the spring stiffness and preload that guarantees effort or energy reduction for an arbitrary set of tasks is a design challenge. This work formulates a convex optimization problem to guarantee that a parallel spring reduces the root-mean-square source effort or energy consumption for multiple tasks. Specifically, we guarantee the benefits across multiple tasks by enforcing a set of convex quadratic constraints in our optimization variables, the parallel spring stiffness and preload. These quadratic constraints are equivalent to ellipses in the stiffness and preload plane; any combination of stiffness and preload inside the ellipse represents a parallel spring that minimizes effort source or energy consumption with respect to an actuator without a spring. This geometric interpretation intuitively guides the stiffness and preload selection process. We analytically and experimentally prove the convex quadratic function of the spring stiffness and preload. As applications, we analyze the stiffness and preload selection of a parallel spring for a knee exoskeleton using human muscle as the effort source and a prosthetic ankle powered by electric motors. To promote adoption, the optimization and geometric methods are available as supplemental open-source software that can be executed in a web browser.
♻ ☆ Rapid Integration of LLMs in Healthcare Raises Ethical Concerns: An Investigation into Deceptive Patterns in Social Robots
Conversational agents are increasingly used in healthcare, and the integration of Large Language Models (LLMs) has significantly enhanced their capabilities. When integrated into social robots, LLMs offer the potential for more natural interactions. However, while LLMs promise numerous benefits, they also raise critical ethical concerns, particularly around the issue of hallucinations and deceptive patterns. In this case study, we observed a critical pattern of deceptive behavior in commercially available LLM-based care software integrated into robots. The LLM-equipped robot falsely claimed to have medication reminder functionalities. Not only did these systems assure users of their ability to manage medication schedules, but they also proactively suggested this capability, despite lacking it. This deceptive behavior poses significant risks in healthcare environments, where reliability is paramount. Our findings highlights the ethical and safety concerns surrounding the deployment of LLM-integrated robots in healthcare, emphasizing the need for oversight to prevent potentially harmful consequences for vulnerable populations.
comment: 7 pages, 1table, 1 figure
♻ ☆ Bi-level Trajectory Optimization on Uneven Terrains with Differentiable Wheel-Terrain Interaction Model IROS 2024
Navigation of wheeled vehicles on uneven terrain necessitates going beyond the 2D approaches for trajectory planning. Specifically, it is essential to incorporate the full 6dof variation of vehicle pose and its associated stability cost in the planning process. To this end, most recent works aim to learn a neural network model to predict the vehicle evolution. However, such approaches are data-intensive and fraught with generalization issues. In this paper, we present a purely model-based approach that just requires the digital elevation information of the terrain. Specifically, we express the wheel-terrain interaction and 6dof pose prediction as a non-linear least squares (NLS) problem. As a result, trajectory planning can be viewed as a bi-level optimization. The inner optimization layer predicts the pose on the terrain along a given trajectory, while the outer layer deforms the trajectory itself to reduce the stability and kinematic costs of the pose. We improve the state-of-the-art in the following respects. First, we show that our NLS based pose prediction closely matches the output from a high-fidelity physics engine. This result coupled with the fact that we can query gradients of the NLS solver, makes our pose predictor, a differentiable wheel-terrain interaction model. We further leverage this differentiability to efficiently solve the proposed bi-level trajectory optimization problem. Finally, we perform extensive experiments, and comparison with a baseline to showcase the effectiveness of our approach in obtaining smooth, stable trajectories.
comment: 8 pages, 7 figures, submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
♻ ☆ Personalized Speech Emotion Recognition in Human-Robot Interaction using Vision Transformers
Emotions are an essential element in verbal communication, so understanding individuals' affect during a human-robot interaction (HRI) becomes imperative. This paper investigates the application of vision transformer models, namely ViT (Vision Transformers) and BEiT (BERT Pre-Training of Image Transformers) pipelines, for Speech Emotion Recognition (SER) in HRI. The focus is to generalize the SER models for individual speech characteristics by fine-tuning these models on benchmark datasets and exploiting ensemble methods. For this purpose, we collected audio data from different human subjects having pseudo-naturalistic conversations with the NAO robot. We then fine-tuned our ViT and BEiT-based models and tested these models on unseen speech samples from the participants. In the results, we show that fine-tuning vision transformers on benchmark datasets and and then using either these already fine-tuned models or ensembling ViT/BEiT models gets us the highest classification accuracies per individual when it comes to identifying four primary emotions from their speech: neutral, happy, sad, and angry, as compared to fine-tuning vanilla-ViTs or BEiTs.
comment: Submitted to IEEE for possible publication
♻ ☆ ChatEMG: Synthetic Data Generation to Control a Robotic Hand Orthosis for Stroke
Intent inferral on a hand orthosis for stroke patients is challenging due to the difficulty of data collection. Additionally, EMG signals exhibit significant variations across different conditions, sessions, and subjects, making it hard for classifiers to generalize. Traditional approaches require a large labeled dataset from the new condition, session, or subject to train intent classifiers; however, this data collection process is burdensome and time-consuming. In this paper, we propose ChatEMG, an autoregressive generative model that can generate synthetic EMG signals conditioned on prompts (i.e., a given sequence of EMG signals). ChatEMG enables us to collect only a small dataset from the new condition, session, or subject and expand it with synthetic samples conditioned on prompts from this new context. ChatEMG leverages a vast repository of previous data via generative training while still remaining context-specific via prompting. Our experiments show that these synthetic samples are classifier-agnostic and can improve intent inferral accuracy for different types of classifiers. We demonstrate that our complete approach can be integrated into a single patient session, including the use of the classifier for functional orthosis-assisted tasks. To the best of our knowledge, this is the first time an intent classifier trained partially on synthetic data has been deployed for functional control of an orthosis by a stroke survivor. Videos, source code, and additional information can be found at https://jxu.ai/chatemg.
comment: 8 pages; accepted to RA-L in November, 2024
♻ ☆ Competency-Aware Planning for Probabilistically Safe Navigation Under Perception Uncertainty
Perception-based navigation systems are useful for unmanned ground vehicle (UGV) navigation in complex terrains, where traditional depth-based navigation schemes are insufficient. However, these data-driven methods are highly dependent on their training data and can fail in surprising and dramatic ways with little warning. To ensure the safety of the vehicle and the surrounding environment, it is imperative that the navigation system is able to recognize the predictive uncertainty of the perception model and respond safely and effectively in the face of uncertainty. In an effort to enable safe navigation under perception uncertainty, we develop a probabilistic and reconstruction-based competency estimation (PaRCE) method to estimate the model's level of familiarity with an input image as a whole and with specific regions in the image. We find that the overall competency score can correctly predict correctly classified, misclassified, and out-of-distribution (OOD) samples. We also confirm that the regional competency maps can accurately distinguish between familiar and unfamiliar regions across images. We then use this competency information to develop a planning and control scheme that enables effective navigation while maintaining a low probability of error. We find that the competency-aware scheme greatly reduces the number of collisions with unfamiliar obstacles, compared to a baseline controller with no competency awareness. Furthermore, the regional competency information is very valuable in enabling efficient navigation.
♻ ☆ Understanding cyclists' perception of driverless vehicles through eye-tracking and interviews
As automated vehicles (AVs) become increasingly popular, the question arises as to how cyclists will interact with such vehicles. This study investigated (1) whether cyclists spontaneously notice if a vehicle is driverless, (2) how well they perform a driver-detection task when explicitly instructed, and (3) how they carry out these tasks. Using a Wizard-of-Oz method, 37 participants cycled a designated route and encountered an AV multiple times in two experimental sessions. In Session 1, participants cycled the route uninstructed, while in Session 2, they were instructed to verbally report whether they detected the presence or absence of a driver. Additionally, we recorded participants' gaze behaviour with eye-tracking and their responses in post-session interviews. The interviews revealed that 30% of the cyclists spontaneously mentioned the absence of a driver (Session 1), and when instructed (Session 2), they detected the absence and presence of the driver with 93% accuracy. The eye-tracking data showed that cyclists looked more frequently and for longer at the vehicle in Session 2 compared to Session 1. Additionally, participants exhibited intermittent sampling of the vehicle, and they looked at the area in front of the vehicle when it was far away and towards the windshield region when it was closer. The post-session interviews also indicated that participants were curious, but felt safe, and reported a need to receive information about the AV's driving state. In conclusion, cyclists can detect the absence of a driver in the AV, and this detection may influence their perception of safety. Further research is needed to explore these findings in real-world traffic conditions.
♻ ☆ MemFusionMap: Working Memory Fusion for Online Vectorized HD Map Construction WACV 2025
High-definition (HD) maps provide environmental information for autonomous driving systems and are essential for safe planning. While existing methods with single-frame input achieve impressive performance for online vectorized HD map construction, they still struggle with complex scenarios and occlusions. We propose MemFusionMap, a novel temporal fusion model with enhanced temporal reasoning capabilities for online HD map construction. Specifically, we contribute a working memory fusion module that improves the model's memory capacity to reason across a history of frames. We also design a novel temporal overlap heatmap to explicitly inform the model about the temporal overlap information and vehicle trajectory in the Bird's Eye View space. By integrating these two designs, MemFusionMap significantly outperforms existing methods while also maintaining a versatile design for scalability. We conduct extensive evaluation on open-source benchmarks and demonstrate a maximum improvement of 5.4% in mAP over state-of-the-art methods. The project page for MemFusionMap is https://song-jingyu.github.io/MemFusionMap
comment: Accepted to WACV 2025
♻ ☆ Learning-based legged locomotion; state of the art and future perspectives
Legged locomotion holds the premise of universal mobility, a critical capability for many real-world robotic applications. Both model-based and learning-based approaches have advanced the field of legged locomotion in the past three decades. In recent years, however, a number of factors have dramatically accelerated progress in learning-based methods, including the rise of deep learning, rapid progress in simulating robotic systems, and the availability of high-performance and affordable hardware. This article aims to give a brief history of the field, to summarize recent efforts in learning locomotion skills for quadrupeds, and to provide researchers new to the area with an understanding of the key issues involved. With the recent proliferation of humanoid robots, we further outline the rapid rise of analogous methods for bipedal locomotion. We conclude with a discussion of open problems as well as related societal impact.
Computation and Language 87
☆ Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions
Currently OpenAI o1 has sparked a surge of interest in the study of large reasoning models (LRM). Building on this momentum, Marco-o1 not only focuses on disciplines with standard answers, such as mathematics, physics, and coding -- which are well-suited for reinforcement learning (RL) -- but also places greater emphasis on open-ended resolutions. We aim to address the question: "Can the o1 model effectively generalize to broader domains where clear standards are absent and rewards are challenging to quantify?" Marco-o1 is powered by Chain-of-Thought (CoT) fine-tuning, Monte Carlo Tree Search (MCTS), reflection mechanisms, and innovative reasoning strategies -- optimized for complex real-world problem-solving tasks.
☆ Lightweight Safety Guardrails Using Fine-tuned BERT Embeddings COLING 2025
With the recent proliferation of large language models (LLMs), enterprises have been able to rapidly develop proof-of-concepts and prototypes. As a result, there is a growing need to implement robust guardrails that monitor, quantize and control an LLM's behavior, ensuring that the use is reliable, safe, accurate and also aligned with the users' expectations. Previous approaches for filtering out inappropriate user prompts or system outputs, such as LlamaGuard and OpenAI's MOD API, have achieved significant success by fine-tuning existing LLMs. However, using fine-tuned LLMs as guardrails introduces increased latency and higher maintenance costs, which may not be practical or scalable for cost-efficient deployments. We take a different approach, focusing on fine-tuning a lightweight architecture: Sentence-BERT. This method reduces the model size from LlamaGuard's 7 billion parameters to approximately 67 million, while maintaining comparable performance on the AEGIS safety benchmark.
comment: To appear in Proceedings of COLING 2025
☆ POS-tagging to highlight the skeletal structure of sentences
This study presents the development of a part-of-speech (POS) tagging model to extract the skeletal structure of sentences using transfer learning with the BERT architecture for token classification. The model, fine-tuned on Russian text, demonstrating its effectiveness. The approach offers potential applications in enhancing natural language processing tasks, such as improving machine translation. Keywords: part of speech tagging, morphological analysis, natural language processing, BERT.
comment: in Russian language. Conference: Automated control systems and information technologies https://asuit.pstu.ru/ Section: IT and automated systems
☆ UnifiedCrawl: Aggregated Common Crawl for Affordable Adaptation of LLMs on Low-Resource Languages
Large language models (LLMs) under-perform on low-resource languages due to limited training data. We present a method to efficiently collect text data for low-resource languages from the entire Common Crawl corpus. Our approach, UnifiedCrawl, filters and extracts common crawl using minimal compute resources, yielding mono-lingual datasets much larger than previously available sources. We demonstrate that leveraging this data to fine-tuning multilingual LLMs via efficient adapter methods (QLoRA) significantly boosts performance on the low-resource language, while minimizing VRAM usage. Our experiments show large improvements in language modeling perplexity and an increase in few-shot prompting scores. Our work and released source code provide an affordable approach to improve LLMs for low-resource languages using consumer hardware. Our source code is available here at https://github.com/bethelmelesse/unifiedcrawl.
☆ Velocitune: A Velocity-based Dynamic Domain Reweighting Method for Continual Pre-training
It is well-known that a diverse corpus is critical for training large language models, which are typically constructed from a mixture of various domains. In general, previous efforts resort to sampling training data from different domains with static proportions, as well as adjusting data proportions during training. However, few methods have addressed the complexities of domain-adaptive continual pre-training. To fill this gap, we propose Velocitune, a novel framework dynamically assesses learning velocity and adjusts data proportions accordingly, favoring slower-learning domains while shunning faster-learning ones, which is guided by a scaling law to indicate the desired learning goal for each domain with less associated cost. To evaluate the effectiveness of Velocitune, we conduct experiments in a reasoning-focused dataset with CodeLlama, as well as in a corpus specialised for system command generation with Llama3 and Mistral. Velocitune achieves performance gains in both math and code reasoning tasks and command-line generation benchmarks. Further analysis reveals that key factors driving Velocitune's effectiveness include target loss prediction and data ordering.
comment: Work in progress
☆ Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance
Large vision-language models (LVLMs) have achieved impressive results in various vision-language tasks. However, despite showing promising performance, LVLMs suffer from hallucinations caused by language bias, leading to diminished focus on images and ineffective visual comprehension. We identify two primary reasons for this bias: 1. Different scales of training data between the pretraining stage of LLM and multimodal alignment stage. 2. The learned inference bias due to short-term dependency of text data. Therefore, we propose LACING, a systemic framework designed to address the language bias of LVLMs with muLtimodal duAl-attention meChanIsm (MDA) aNd soft-image Guidance (IFG). Specifically, MDA introduces a parallel dual-attention mechanism that enhances the integration of visual inputs across the model. IFG introduces a learnable soft visual prompt during training and inference to replace visual inputs, designed to compel LVLMs to prioritize text inputs. Then, IFG further proposes a novel decoding strategy using the soft visual prompt to mitigate the model's over-reliance on adjacent text inputs. Comprehensive experiments demonstrate that our method effectively debiases LVLMs from their language bias, enhancing visual comprehension and reducing hallucinations without requiring additional training resources or data. The code and model are available at [lacing-lvlm.github.io](https://lacing-lvlm.github.io).
comment: 19 pages, 12 figures
☆ Efficient Aspect-Based Summarization of Climate Change Reports with Small Language Models
The use of Natural Language Processing (NLP) for helping decision-makers with Climate Change action has recently been highlighted as a use case aligning with a broader drive towards NLP technologies for social good. In this context, Aspect-Based Summarization (ABS) systems that extract and summarize relevant information are particularly useful as they provide stakeholders with a convenient way of finding relevant information in expert-curated reports. In this work, we release a new dataset for ABS of Climate Change reports and we employ different Large Language Models (LLMs) and so-called Small Language Models (SLMs) to tackle this problem in an unsupervised way. Considering the problem at hand, we also show how SLMs are not significantly worse for the problem while leading to reduced carbon footprint; we do so by applying for the first time an existing framework considering both energy efficiency and task performance to the evaluation of zero-shot generative models for ABS. Overall, our results show that modern language models, both big and small, can effectively tackle ABS for Climate Change reports but more research is needed when we frame the problem as a Retrieval Augmented Generation (RAG) problem and our work and dataset will help foster efforts in this direction.
☆ Knowledge Graphs, Large Language Models, and Hallucinations: An NLP Perspective
Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) based applications including automated text generation, question answering, chatbots, and others. However, they face a significant challenge: hallucinations, where models produce plausible-sounding but factually incorrect responses. This undermines trust and limits the applicability of LLMs in different domains. Knowledge Graphs (KGs), on the other hand, provide a structured collection of interconnected facts represented as entities (nodes) and their relationships (edges). In recent research, KGs have been leveraged to provide context that can fill gaps in an LLM understanding of certain topics offering a promising approach to mitigate hallucinations in LLMs, enhancing their reliability and accuracy while benefiting from their wide applicability. Nonetheless, it is still a very active area of research with various unresolved open problems. In this paper, we discuss these open challenges covering state-of-the-art datasets and benchmarks as well as methods for knowledge integration and evaluating hallucinations. In our discussion, we consider the current use of KGs in LLM systems and identify future directions within each of these challenges.
comment: 7 pages, 2 Figures, 1 Table
☆ Do I Know This Entity? Knowledge Awareness and Hallucinations in Language Models
Hallucinations in large language models are a widespread problem, yet the mechanisms behind whether models will hallucinate are poorly understood, limiting our ability to solve this problem. Using sparse autoencoders as an interpretability tool, we discover that a key part of these mechanisms is entity recognition, where the model detects if an entity is one it can recall facts about. Sparse autoencoders uncover meaningful directions in the representation space, these detect whether the model recognizes an entity, e.g. detecting it doesn't know about an athlete or a movie. This suggests that models can have self-knowledge: internal representations about their own capabilities. These directions are causally relevant: capable of steering the model to refuse to answer questions about known entities, or to hallucinate attributes of unknown entities when it would otherwise refuse. We demonstrate that despite the sparse autoencoders being trained on the base model, these directions have a causal effect on the chat model's refusal behavior, suggesting that chat finetuning has repurposed this existing mechanism. Furthermore, we provide an initial exploration into the mechanistic role of these directions in the model, finding that they disrupt the attention of downstream heads that typically move entity attributes to the final token.
☆ Intent-Aware Dialogue Generation and Multi-Task Contrastive Learning for Multi-Turn Intent Classification
Generating large-scale, domain-specific, multilingual multi-turn dialogue datasets remains a significant hurdle for training effective Multi-Turn Intent Classification models in chatbot systems. In this paper, we introduce Chain-of-Intent, a novel mechanism that combines Hidden Markov Models with Large Language Models (LLMs) to generate contextually aware, intent-driven conversations through self-play. By extracting domain-specific knowledge from e-commerce chat logs, we estimate conversation turns and intent transitions, which guide the generation of coherent dialogues. Leveraging LLMs to enhance emission probabilities, our approach produces natural and contextually consistent questions and answers. We also propose MINT-CL, a framework for multi-turn intent classification using multi-task contrastive learning, improving classification accuracy without the need for extensive annotated data. Evaluations show that our methods outperform baselines in dialogue quality and intent classification accuracy, especially in multilingual settings, while significantly reducing data generation efforts. Furthermore, we release MINT-E, a multilingual, intent-aware multi-turn e-commerce dialogue corpus to support future research in this area.
☆ Natural Language Reinforcement Learning
Reinforcement Learning (RL) mathematically formulates decision-making with Markov Decision Process (MDP). With MDPs, researchers have achieved remarkable breakthroughs across various domains, including games, robotics, and language models. This paper seeks a new possibility, Natural Language Reinforcement Learning (NLRL), by extending traditional MDP to natural language-based representation space. Specifically, NLRL innovatively redefines RL principles, including task objectives, policy, value function, Bellman equation, and policy iteration, into their language counterparts. With recent advancements in large language models (LLMs), NLRL can be practically implemented to achieve RL-like policy and value improvement by either pure prompting or gradient-based training. Experiments over Maze, Breakthrough, and Tic-Tac-Toe games demonstrate the effectiveness, efficiency, and interpretability of the NLRL framework among diverse use cases. Our code will be released at https://github.com/waterhorse1/Natural-language-RL.
comment: Extension of arXiv:2402.07157
☆ Evaluating the Robustness of Analogical Reasoning in Large Language Models
LLMs have performed well on several reasoning benchmarks, including ones that test analogical reasoning abilities. However, there is debate on the extent to which they are performing general abstract reasoning versus employing non-robust processes, e.g., that overly rely on similarity to pre-training data. Here we investigate the robustness of analogy-making abilities previously claimed for LLMs on three of four domains studied by Webb, Holyoak, and Lu (2023): letter-string analogies, digit matrices, and story analogies. For each domain we test humans and GPT models on robustness to variants of the original analogy problems that test the same abstract reasoning abilities but are likely dissimilar from tasks in the pre-training data. The performance of a system that uses robust abstract reasoning should not decline substantially on these variants. On simple letter-string analogies, we find that while the performance of humans remains high for two types of variants we tested, the GPT models' performance declines sharply. This pattern is less pronounced as the complexity of these problems is increased, as both humans and GPT models perform poorly on both the original and variant problems requiring more complex analogies. On digit-matrix problems, we find a similar pattern but only on one out of the two types of variants we tested. On story-based analogy problems, we find that, unlike humans, the performance of GPT models are susceptible to answer-order effects, and that GPT models also may be more sensitive than humans to paraphrasing. This work provides evidence that LLMs often lack the robustness of zero-shot human analogy-making, exhibiting brittleness on most of the variations we tested. More generally, this work points to the importance of carefully evaluating AI systems not only for accuracy but also robustness when testing their cognitive capabilities.
comment: 31 pages, 13 figures. arXiv admin note: text overlap with arXiv:2402.08955
☆ OpenScholar: Synthesizing Scientific Literature with Retrieval-augmented LMs
Scientific progress depends on researchers' ability to synthesize the growing body of literature. Can large language models (LMs) assist scientists in this task? We introduce OpenScholar, a specialized retrieval-augmented LM that answers scientific queries by identifying relevant passages from 45 million open-access papers and synthesizing citation-backed responses. To evaluate OpenScholar, we develop ScholarQABench, the first large-scale multi-domain benchmark for literature search, comprising 2,967 expert-written queries and 208 long-form answers across computer science, physics, neuroscience, and biomedicine. On ScholarQABench, OpenScholar-8B outperforms GPT-4o by 5% and PaperQA2 by 7% in correctness, despite being a smaller, open model. While GPT4o hallucinates citations 78 to 90% of the time, OpenScholar achieves citation accuracy on par with human experts. OpenScholar's datastore, retriever, and self-feedback inference loop also improves off-the-shelf LMs: for instance, OpenScholar-GPT4o improves GPT-4o's correctness by 12%. In human evaluations, experts preferred OpenScholar-8B and OpenScholar-GPT4o responses over expert-written ones 51% and 70% of the time, respectively, compared to GPT4o's 32%. We open-source all of our code, models, datastore, data and a public demo.
☆ Why do language models perform worse for morphologically complex languages?
Language models perform differently across languages. It has been previously suggested that morphological typology may explain some of this variability (Cotterell et al., 2018). We replicate previous analyses and find additional new evidence for a performance gap between agglutinative and fusional languages, where fusional languages, such as English, tend to have better language modeling performance than morphologically more complex languages like Turkish. We then propose and test three possible causes for this performance gap: morphological alignment of tokenizers, tokenization quality, and disparities in dataset sizes and measurement. To test the morphological alignment hypothesis, we present MorphScore, a tokenizer evaluation metric, and supporting datasets for 22 languages. We find some evidence that tokenization quality explains the performance gap, but none for the role of morphological alignment. Instead we find that the performance gap is most reduced when training datasets are of equivalent size across language types, but only when scaled according to the so-called "byte-premium" -- the different encoding efficiencies of different languages and orthographies. These results suggest that no language is harder or easier for a language model to learn on the basis of its morphological typology. Differences in performance can be attributed to disparities in dataset size. These results bear on ongoing efforts to improve performance for low-performing and under-resourced languages.
comment: 9 pages
☆ Visual Contexts Clarify Ambiguous Expressions: A Benchmark Dataset
The ability to perform complex reasoning across multimodal inputs is essential for models to effectively interact with humans in real-world scenarios. Advancements in vision-language models have significantly improved performance on tasks that require processing explicit and direct textual inputs, such as Visual Question Answering (VQA) and Visual Grounding (VG). However, less attention has been given to improving the model capabilities to comprehend nuanced and ambiguous forms of communication. This presents a critical challenge, as human language in real-world interactions often convey hidden intentions that rely on context for accurate interpretation. To address this gap, we propose VAGUE, a multimodal benchmark comprising 3.9K indirect human utterances paired with corresponding scenes. Additionally, we contribute a model-based pipeline for generating prompt-solution pairs from input images. Our work aims to delve deeper into the ability of models to understand indirect communication and seek to contribute to the development of models capable of more refined and human-like interactions. Extensive evaluation on multiple VLMs reveals that mainstream models still struggle with indirect communication when required to perform complex linguistic and visual reasoning. We release our code and data at https://github.com/Hazel-Heejeong-Nam/VAGUE.git.
☆ Learning from "Silly" Questions Improves Large Language Models, But Only Slightly
Constructing high-quality Supervised Fine-Tuning (SFT) datasets is critical for the training of large language models (LLMs). Recent studies have shown that using data from a specific source, Ruozhiba, a Chinese website where users ask "silly" questions to better understand certain topics, can lead to better fine-tuning performance. This paper aims to explore some hidden factors: the potential interpretations of its success and a large-scale evaluation of the performance. First, we leverage GPT-4 to analyze the successful cases of Ruozhiba questions from the perspective of education, psychology, and cognitive science, deriving a set of explanatory rules. Then, we construct fine-tuning datasets by applying these rules to the MMLU training set. Surprisingly, our results indicate that rules can significantly improve model performance in certain tasks, while potentially diminishing performance on others. For example, SFT data generated following the "Counterintuitive Thinking" rule can achieve approximately a 5% improvement on the "Global Facts" task, whereas the "Blurring the Conceptual Boundaries" rule leads to a performance drop of 6.14% on the "Econometrics" task. In addition, for specific tasks, different rules tend to have a consistent impact on model performance. This suggests that the differences between the extracted rules are not as significant, and the effectiveness of the rules is relatively consistent across tasks. Our research highlights the importance of considering task diversity and rule applicability when constructing SFT datasets to achieve more comprehensive performance improvements.
comment: 27 pages, 14 figures
☆ Lost in Inference: Rediscovering the Role of Natural Language Inference for Large Language Models
In the recent past, a popular way of evaluating natural language understanding (NLU), was to consider a model's ability to perform natural language inference (NLI) tasks. In this paper, we investigate if NLI tasks, that are rarely used for LLM evaluation, can still be informative for evaluating LLMs. Focusing on five different NLI benchmarks across six models of different scales, we investigate if they are able to discriminate models of different size and quality and how their accuracies develop during training. Furthermore, we investigate the extent to which the softmax distributions of models align with human distributions in cases where statements are ambiguous or vague. Overall, our results paint a positive picture for the NLI tasks: we find that they are able to discriminate well between models at various stages of training, yet are not (all) saturated. Furthermore, we find that while the similarity of model distributions with human label distributions increases with scale, it is still much higher than the similarity between two populations of humans, making it a potentially interesting statistic to consider.
comment: preprint, 13 pages
☆ BEST-STD: Bidirectional Mamba-Enhanced Speech Tokenization for Spoken Term Detection ICASSP 2025
Spoken term detection (STD) is often hindered by reliance on frame-level features and the computationally intensive DTW-based template matching, limiting its practicality. To address these challenges, we propose a novel approach that encodes speech into discrete, speaker-agnostic semantic tokens. This facilitates fast retrieval using text-based search algorithms and effectively handles out-of-vocabulary terms. Our approach focuses on generating consistent token sequences across varying utterances of the same term. We also propose a bidirectional state space modeling within the Mamba encoder, trained in a self-supervised learning framework, to learn contextual frame-level features that are further encoded into discrete tokens. Our analysis shows that our speech tokens exhibit greater speaker invariance than those from existing tokenizers, making them more suitable for STD tasks. Empirical evaluation on LibriSpeech and TIMIT databases indicates that our method outperforms existing STD baselines while being more efficient.
comment: Submitted to ICASSP 2025
☆ Meaning at the Planck scale? Contextualized word embeddings for doing history, philosophy, and sociology of science
This paper explores the potential of contextualized word embeddings (CWEs) as a new tool in the history, philosophy, and sociology of science (HPSS) for studying contextual and evolving meanings of scientific concepts. Using the term "Planck" as a test case, I evaluate five BERT-based models with varying degrees of domain-specific pretraining, including my custom model Astro-HEP-BERT, trained on the Astro-HEP Corpus, a dataset containing 21.84 million paragraphs from 600,000 articles in astrophysics and high-energy physics. For this analysis, I compiled two labeled datasets: (1) the Astro-HEP-Planck Corpus, consisting of 2,900 labeled occurrences of "Planck" sampled from 1,500 paragraphs in the Astro-HEP Corpus, and (2) a physics-related Wikipedia dataset comprising 1,186 labeled occurrences of "Planck" across 885 paragraphs. Results demonstrate that the domain-adapted models outperform the general-purpose ones in disambiguating the target term, predicting its known meanings, and generating high-quality sense clusters, as measured by a novel purity indicator I developed. Additionally, this approach reveals semantic shifts in the target term over three decades in the unlabeled Astro-HEP Corpus, highlighting the emergence of the Planck space mission as a dominant sense. The study underscores the importance of domain-specific pretraining for analyzing scientific language and demonstrates the cost-effectiveness of adapting pretrained models for HPSS research. By offering a scalable and transferable method for modeling the meanings of scientific concepts, CWEs open up new avenues for investigating the socio-historical dynamics of scientific discourses.
comment: 18 pages, 7 figures (1 in the Supplement)
☆ The Master-Slave Encoder Model for Improving Patent Text Summarization: A New Approach to Combining Specifications and Claims
In order to solve the problem of insufficient generation quality caused by traditional patent text abstract generation models only originating from patent specifications, the problem of new terminology OOV caused by rapid patent updates, and the problem of information redundancy caused by insufficient consideration of the high professionalism, accuracy, and uniqueness of patent texts, we proposes a patent text abstract generation model (MSEA) based on a master-slave encoder architecture; Firstly, the MSEA model designs a master-slave encoder, which combines the instructions in the patent text with the claims as input, and fully explores the characteristics and details between the two through the master-slave encoder; Then, the model enhances the consideration of new technical terms in the input sequence based on the pointer network, and further enhances the correlation with the input text by re weighing the "remembered" and "for-gotten" parts of the input sequence from the encoder; Finally, an enhanced repetition suppression mechanism for patent text was introduced to ensure accurate and non redundant abstracts generated. On a publicly available patent text dataset, compared to the state-of-the-art model, Improved Multi-Head Attention Mechanism (IMHAM), the MSEA model achieves an improvement of 0.006, 0.005, and 0.005 in Rouge-1, Rouge-2, and Rouge-L scores, respectively. MSEA leverages the characteristics of patent texts to effectively enhance the quality of patent text generation, demonstrating its advancement and effectiveness in the experiments.
comment: 25pages, 1 figure
☆ MMGenBench: Evaluating the Limits of LMMs from the Text-to-Image Generation Perspective
Large Multimodal Models (LMMs) have demonstrated remarkable capabilities. While existing benchmarks for evaluating LMMs mainly focus on image comprehension, few works evaluate them from the image generation perspective. To address this issue, we propose a straightforward automated evaluation pipeline. Specifically, this pipeline requires LMMs to generate an image-prompt from a given input image. Subsequently, it employs text-to-image generative models to create a new image based on these generated prompts. Finally, we evaluate the performance of LMMs by comparing the original image with the generated one. Furthermore, we introduce MMGenBench-Test, a comprehensive benchmark developed to evaluate LMMs across 13 distinct image patterns, and MMGenBench-Domain, targeting the performance evaluation of LMMs within the generative image domain. A thorough evaluation involving over 50 popular LMMs demonstrates the effectiveness and reliability in both the pipeline and benchmark. Our observations indicate that numerous LMMs excelling in existing benchmarks fail to adequately complete the basic tasks, related to image understanding and description. This finding highlights the substantial potential for performance improvement in current LMMs and suggests avenues for future model optimization. Concurrently, our pipeline facilitates the efficient assessment of LMMs performance across diverse domains by using solely image inputs.
comment: This project is available at: https://github.com/lerogo/MMGenBench
☆ DRPruning: Efficient Large Language Model Pruning through Distributionally Robust Optimization
Large language models (LLMs) deliver impressive results but face challenges from increasing model sizes and computational costs. Structured pruning reduces model size and speeds up inference but often causes uneven degradation across domains, leading to biased performance. To address this, we propose DRPruning, which incorporates distributionally robust optimization to restore balanced performance across domains, along with further improvements to enhance robustness. Experiments in monolingual and multilingual settings show that our method surpasses similarly sized models in pruning and continued pretraining over perplexity, downstream tasks, and instruction tuning. We further provide analysis demonstrating the robustness of our method towards various domains and distribution shifts. Furthermore, our method automatically determines optimal reference losses and data ratios, suggesting potential for broader applications. Our code is available at https://github.com/hexuandeng/DRPruning.
comment: Work in Progress
☆ FunctionChat-Bench: Comprehensive Evaluation of Language Models' Generative Capabilities in Korean Tool-use Dialogs
This study investigates language models' generative capabilities in tool-use dialogs. We categorize the models' outputs in tool-use dialogs into four distinct types: Tool Call, Answer Completion, Slot Question, and Relevance Detection, which serve as aspects for evaluation. We introduce FunctionChat-Bench, comprising 700 evaluation items and automated assessment programs. Using this benchmark, we evaluate several language models that support function calling. Our findings indicate that while language models may exhibit high accuracy in single-turn Tool Call scenarios, this does not necessarily translate to superior generative performance in multi-turn environments. We argue that the capabilities required for function calling extend beyond generating tool call messages; they must also effectively generate conversational messages that engage the user.
comment: 8 pages
☆ Forecasting Future International Events: A Reliable Dataset for Text-Based Event Modeling EMNLP 2024
Predicting future international events from textual information, such as news articles, has tremendous potential for applications in global policy, strategic decision-making, and geopolitics. However, existing datasets available for this task are often limited in quality, hindering the progress of related research. In this paper, we introduce WORLDREP (WORLD Relationship and Event Prediction), a novel dataset designed to address these limitations by leveraging the advanced reasoning capabilities of large-language models (LLMs). Our dataset features high-quality scoring labels generated through advanced prompt modeling and rigorously validated by domain experts in political science. We showcase the quality and utility of WORLDREP for real-world event prediction tasks, demonstrating its effectiveness through extensive experiments and analysis. Furthermore, we publicly release our dataset along with the full automation source code for data collection, labeling, and benchmarking, aiming to support and advance research in text-based event prediction.
comment: EMNLP 2024 Findings
☆ Logic Augmented Generation
Semantic Knowledge Graphs (SKG) face challenges with scalability, flexibility, contextual understanding, and handling unstructured or ambiguous information. However, they offer formal and structured knowledge enabling highly interpretable and reliable results by means of reasoning and querying. Large Language Models (LLMs) overcome those limitations making them suitable in open-ended tasks and unstructured environments. Nevertheless, LLMs are neither interpretable nor reliable. To solve the dichotomy between LLMs and SKGs we envision Logic Augmented Generation (LAG) that combines the benefits of the two worlds. LAG uses LLMs as Reactive Continuous Knowledge Graphs that can generate potentially infinite relations and tacit knowledge on-demand. SKGs are key for injecting a discrete heuristic dimension with clear logical and factual boundaries. We exemplify LAG in two tasks of collective intelligence, i.e., medical diagnostics and climate projections. Understanding the properties and limitations of LAG, which are still mostly unknown, is of utmost importance for enabling a variety of tasks involving tacit knowledge in order to provide interpretable and effective results.
comment: 10 pages, 2 figures
☆ Sentiment Analysis of Economic Text: A Lexicon-Based Approach
We propose an Economic Lexicon (EL) specifically designed for textual applications in economics. We construct the dictionary with two important characteristics: 1) to have a wide coverage of terms used in documents discussing economic concepts, and 2) to provide a human-annotated sentiment score in the range [-1,1]. We illustrate the use of the EL in the context of a simple sentiment measure and consider several applications in economics. The comparison to other lexicons shows that the EL is superior due to its wider coverage of domain relevant terms and its more accurate categorization of the word sentiment.
comment: 37 pages, 9 figures, 6 tables, in press
Towards Full Delegation: Designing Ideal Agentic Behaviors for Travel Planning
How are LLM-based agents used in the future? While many of the existing work on agents has focused on improving the performance of a specific family of objective and challenging tasks, in this work, we take a different perspective by thinking about full delegation: agents take over humans' routine decision-making processes and are trusted by humans to find solutions that fit people's personalized needs and are adaptive to ever-changing context. In order to achieve such a goal, the behavior of the agents, i.e., agentic behaviors, should be evaluated not only on their achievements (i.e., outcome evaluation), but also how they achieved that (i.e., procedure evaluation). For this, we propose APEC Agent Constitution, a list of criteria that an agent should follow for good agentic behaviors, including Accuracy, Proactivity, Efficiency and Credibility. To verify whether APEC aligns with human preferences, we develop APEC-Travel, a travel planning agent that proactively extracts hidden personalized needs via multi-round dialog with travelers. APEC-Travel is constructed purely from synthetic data generated by Llama3.1-405B-Instruct with a diverse set of travelers' persona to simulate rich distribution of dialogs. Iteratively fine-tuned to follow APEC Agent Constitution, APEC-Travel surpasses baselines by 20.7% on rule-based metrics and 9.1% on LLM-as-a-Judge scores across the constitution axes.
☆ PIORS: Personalized Intelligent Outpatient Reception based on Large Language Model with Multi-Agents Medical Scenario Simulation
In China, receptionist nurses face overwhelming workloads in outpatient settings, limiting their time and attention for each patient and ultimately reducing service quality. In this paper, we present the Personalized Intelligent Outpatient Reception System (PIORS). This system integrates an LLM-based reception nurse and a collaboration between LLM and hospital information system (HIS) into real outpatient reception setting, aiming to deliver personalized, high-quality, and efficient reception services. Additionally, to enhance the performance of LLMs in real-world healthcare scenarios, we propose a medical conversational data generation framework named Service Flow aware Medical Scenario Simulation (SFMSS), aiming to adapt the LLM to the real-world environments and PIORS settings. We evaluate the effectiveness of PIORS and SFMSS through automatic and human assessments involving 15 users and 15 clinical experts. The results demonstrate that PIORS-Nurse outperforms all baselines, including the current state-of-the-art model GPT-4o, and aligns with human preferences and clinical needs. Further details and demo can be found at https://github.com/FudanDISC/PIORS
☆ Robust Detection of Watermarks for Large Language Models Under Human Edits
Watermarking has offered an effective approach to distinguishing text generated by large language models (LLMs) from human-written text. However, the pervasive presence of human edits on LLM-generated text dilutes watermark signals, thereby significantly degrading detection performance of existing methods. In this paper, by modeling human edits through mixture model detection, we introduce a new method in the form of a truncated goodness-of-fit test for detecting watermarked text under human edits, which we refer to as Tr-GoF. We prove that the Tr-GoF test achieves optimality in robust detection of the Gumbel-max watermark in a certain asymptotic regime of substantial text modifications and vanishing watermark signals. Importantly, Tr-GoF achieves this optimality \textit{adaptively} as it does not require precise knowledge of human edit levels or probabilistic specifications of the LLMs, in contrast to the optimal but impractical (Neyman--Pearson) likelihood ratio test. Moreover, we establish that the Tr-GoF test attains the highest detection efficiency rate in a certain regime of moderate text modifications. In stark contrast, we show that sum-based detection rules, as employed by existing methods, fail to achieve optimal robustness in both regimes because the additive nature of their statistics is less resilient to edit-induced noise. Finally, we demonstrate the competitive and sometimes superior empirical performance of the Tr-GoF test on both synthetic data and open-source LLMs in the OPT and LLaMA families.
☆ HARec: Hyperbolic Graph-LLM Alignment for Exploration and Exploitation in Recommender Systems
Modern recommendation systems often create information cocoons, limiting users' exposure to diverse content. To enhance user experience, a crucial challenge is developing systems that can balance content exploration and exploitation, allowing users to adjust their recommendation preferences. Intuitively, this balance can be achieved through a tree-structured representation, where depth search facilitates exploitation and breadth search enables exploration. However, current works face two challenges to achieve this target: (1) Euclidean methods fail to fully capture hierarchical structures and lack flexibility in balancing exploration-exploitation, while (2) hyperbolic approaches, despite better hierarchical modeling, suffer from insufficient semantic alignment due to their reliance on Euclidean text encoders. To address these challenges, we propose HARec, a hyperbolic representation learning framework that jointly aligns user-item collaborative information with textual descriptions in hyperbolic space. Our framework introduces two key technique novelty: (1) a hierarchical-aware graph-llm alignment mechanism that enables better hierarchical representation, and (2) a hyperbolic hierarchical tree structure that facilitates user-adjustable exploration-exploitation trade-offs. Extensive experiments demonstrate that HARec consistently outperforms both Euclidean and hyperbolic baselines, achieving up to 5.49% improvement in utility metrics and 11.39% increase in diversity metrics.
☆ Interactive and Expressive Code-Augmented Planning with Large Language Models
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making, but often struggle with complex, long-horizon planning tasks. Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance. These techniques include using variables (to track important information) and functions (to divide complex tasks into smaller re-usable sub-tasks). However, purely code-based approaches can be error-prone and insufficient for handling ambiguous or unstructured data. To address these challenges, we propose REPL-Plan, an LLM planning approach that is fully code-expressive (it can utilize all the benefits of code) while also being dynamic (it can flexibly adapt from errors and use the LLM for fuzzy situations). In REPL-Plan, an LLM solves tasks by interacting with a Read-Eval-Print Loop (REPL), which iteratively executes and evaluates code, similar to language shells or interactive code notebooks, allowing the model to flexibly correct errors and handle tasks dynamically. We demonstrate that REPL-Plan achieves strong results across various planning domains compared to previous methods.
☆ InstCache: A Predictive Cache for LLM Serving
Large language models are revolutionizing every aspect of human life. However, the unprecedented power comes at the cost of significant computing intensity, suggesting long latency and large energy footprint. Key-Value Cache and Semantic Cache have been proposed as a solution to the above problem, but both suffer from limited scalability due to significant memory cost for each token or instruction embeddings. Motivated by the observations that most instructions are short, repetitive and predictable by LLMs, we propose to predict user-instructions by an instruction-aligned LLM and store them in a predictive cache, so-called InstCache. We introduce an instruction pre-population algorithm based on the negative log likelihood of instructions, determining the cache size with regard to the hit rate. The proposed InstCache is efficiently implemented as a hash table with minimal lookup latency for deployment. Experimental results show that InstCache can achieve up to 51.34% hit rate on LMSys dataset, which corresponds to a 2x speedup, at a memory cost of only 4.5GB.
☆ SemiKong: Curating, Training, and Evaluating A Semiconductor Industry-Specific Large Language Model
Large Language Models (LLMs) have demonstrated the potential to address some issues within the semiconductor industry. However, they are often general-purpose models that lack the specialized knowledge needed to tackle the unique challenges of this sector, such as the intricate physics and chemistry of semiconductor devices and processes. SemiKong, the first industry-specific LLM for the semiconductor domain, provides a foundation that can be used to develop tailored proprietary models. With SemiKong 1.0, we aim to develop a foundational model capable of understanding etching problems at an expert level. Our key contributions include (a) curating a comprehensive corpus of semiconductor-related texts, (b) creating a foundational model with in-depth semiconductor knowledge, and (c) introducing a framework for integrating expert knowledge, thereby advancing the evaluation process of domain-specific AI models. Through fine-tuning a pre-trained LLM using our curated dataset, we have shown that SemiKong outperforms larger, general-purpose LLMs in various semiconductor manufacturing and design tasks. Our extensive experiments underscore the importance of developing domain-specific LLMs as a foundation for company- or tool-specific proprietary models, paving the way for further research and applications in the semiconductor domain. Code and dataset will be available at https://github.com/aitomatic/semikong
comment: On-going work
☆ Explaining GPT-4's Schema of Depression Using Machine Behavior Analysis
Use of large language models such as ChatGPT (GPT-4) for mental health support has grown rapidly, emerging as a promising route to assess and help people with mood disorders, like depression. However, we have a limited understanding of GPT-4's schema of mental disorders, that is, how it internally associates and interprets symptoms. In this work, we leveraged contemporary measurement theory to decode how GPT-4 interrelates depressive symptoms to inform both clinical utility and theoretical understanding. We found GPT-4's assessment of depression: (a) had high overall convergent validity (r = .71 with self-report on 955 samples, and r = .81 with experts judgments on 209 samples); (b) had moderately high internal consistency (symptom inter-correlates r = .23 to .78 ) that largely aligned with literature and self-report; except that GPT-4 (c) underemphasized suicidality's -- and overemphasized psychomotor's -- relationship with other symptoms, and (d) had symptom inference patterns that suggest nuanced hypotheses (e.g. sleep and fatigue are influenced by most other symptoms while feelings of worthlessness/guilt is mostly influenced by depressed mood).
comment: 21 pages, 3 tables, 6 figures, 1 supplementary table, 83 references
☆ NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews
Large Language Models (LLMs) have demonstrated impressive capabilities in generating coherent text but often struggle with grounding language and strategic dialogue. To address this gap, we focus on journalistic interviews, a domain rich in grounding communication and abundant in data. We curate a dataset of 40,000 two-person informational interviews from NPR and CNN, and reveal that LLMs are significantly less likely than human interviewers to use acknowledgements and to pivot to higher-level questions. Realizing that a fundamental deficit exists in multi-turn planning and strategic thinking, we develop a realistic simulated environment, incorporating source personas and persuasive elements, in order to facilitate the development of agents with longer-horizon rewards. Our experiments show that while source LLMs mimic human behavior in information sharing, interviewer LLMs struggle with recognizing when questions are answered and engaging persuasively, leading to suboptimal information extraction across model size and capability. These findings underscore the need for enhancing LLMs' strategic dialogue capabilities.
Benchmarking GPT-4 against Human Translators: A Comprehensive Evaluation Across Languages, Domains, and Expertise Levels
This study presents a comprehensive evaluation of GPT-4's translation capabilities compared to human translators of varying expertise levels. Through systematic human evaluation using the MQM schema, we assess translations across three language pairs (Chinese$\longleftrightarrow$English, Russian$\longleftrightarrow$English, and Chinese$\longleftrightarrow$Hindi) and three domains (News, Technology, and Biomedical). Our findings reveal that GPT-4 achieves performance comparable to junior-level translators in terms of total errors, while still lagging behind senior translators. Unlike traditional Neural Machine Translation systems, which show significant performance degradation in resource-poor language directions, GPT-4 maintains consistent translation quality across all evaluated language pairs. Through qualitative analysis, we identify distinctive patterns in translation approaches: GPT-4 tends toward overly literal translations and exhibits lexical inconsistency, while human translators sometimes over-interpret context and introduce hallucinations. This study represents the first systematic comparison between LLM and human translators across different proficiency levels, providing valuable insights into the current capabilities and limitations of LLM-based translation systems.
comment: Work in progress
☆ A Framework for Evaluating LLMs Under Task Indeterminacy NeurIPS 2024
Large language model (LLM) evaluations often assume there is a single correct response -- a gold label -- for each item in the evaluation corpus. However, some tasks can be ambiguous -- i.e., they provide insufficient information to identify a unique interpretation -- or vague -- i.e., they do not clearly indicate where to draw the line when making a determination. Both ambiguity and vagueness can cause task indeterminacy -- the condition where some items in the evaluation corpus have more than one correct response. In this paper, we develop a framework for evaluating LLMs under task indeterminacy. Our framework disentangles the relationships between task specification, human ratings, and LLM responses in the LLM evaluation pipeline. Using our framework, we conduct a synthetic experiment showing that evaluations that use the "gold label" assumption underestimate the true performance. We also provide a method for estimating an error-adjusted performance interval given partial knowledge about indeterminate items in the evaluation corpus. We conclude by outlining implications of our work for the research community.
comment: To Appear in NeurIPS 2024 Workshops on Evaluating Evaluations (EvalEval) and Statistical Foundations of LLMs and Foundation Models (SFLLM)
☆ Adaptable Embeddings Network (AEN)
Modern day Language Models see extensive use in text classification, yet this comes at significant computational cost. Compute-effective classification models are needed for low-resource environments, most notably on edge devices. We introduce Adaptable Embeddings Networks (AEN), a novel dual-encoder architecture using Kernel Density Estimation (KDE). This architecture allows for runtime adaptation of classification criteria without retraining and is non-autoregressive. Through thorough synthetic data experimentation, we demonstrate our model outputs comparable and in certain cases superior results to that of autoregressive models an order of magnitude larger than AEN's size. The architecture's ability to preprocess and cache condition embeddings makes it ideal for edge computing applications and real-time monitoring systems.
comment: 20 pages
☆ Towards Knowledge Checking in Retrieval-augmented Generation: A Representation Perspective
Retrieval-Augmented Generation (RAG) systems have shown promise in enhancing the performance of Large Language Models (LLMs). However, these systems face challenges in effectively integrating external knowledge with the LLM's internal knowledge, often leading to issues with misleading or unhelpful information. This work aims to provide a systematic study on knowledge checking in RAG systems. We conduct a comprehensive analysis of LLM representation behaviors and demonstrate the significance of using representations in knowledge checking. Motivated by the findings, we further develop representation-based classifiers for knowledge filtering. We show substantial improvements in RAG performance, even when dealing with noisy knowledge databases. Our study provides new insights into leveraging LLM representations for enhancing the reliability and effectiveness of RAG systems.
☆ Assessment of LLM Responses to End-user Security Questions
Answering end user security questions is challenging. While large language models (LLMs) like GPT, LLAMA, and Gemini are far from error-free, they have shown promise in answering a variety of questions outside of security. We studied LLM performance in the area of end user security by qualitatively evaluating 3 popular LLMs on 900 systematically collected end user security questions. While LLMs demonstrate broad generalist ``knowledge'' of end user security information, there are patterns of errors and limitations across LLMs consisting of stale and inaccurate answers, and indirect or unresponsive communication styles, all of which impacts the quality of information received. Based on these patterns, we suggest directions for model improvement and recommend user strategies for interacting with LLMs when seeking assistance with security.
comment: 18 pages, 1 figure, 8 tables
☆ Reducibility among NP-Hard graph problems and boundary classes
Many NP-hard graph problems become easy for some classes of graphs, such as coloring is easy for bipartite graphs, but NP-hard in general. So we can ask question like when does a hard problem become easy? What is the minimum substructure for which the problem remains hard? We use the notion of boundary classes to study such questions. In this paper, we introduce a method for transforming the boundary class of one NP-hard graph problem into a boundary class for another problem. If $\Pi$ and $\Gamma$ are two NP-hard graph problems where $\Pi$ is reducible to $\Gamma$, we transform a boundary class of $\Pi$ into a boundary class of $\Gamma$. More formally if $\Pi$ is reducible to $\Gamma$, where the reduction is bijective and it maps hereditary classes of graphs to hereditary classes of graphs, then $X$ is a boundary class of $\Pi$ if and only if the image of $X$ under the reduction is a boundary class of $\Gamma$. This gives us a relationship between boundary classes and reducibility among several NP-hard problems. To show the strength of our main result, we apply our theorem to obtain some previously unknown boundary classes for a few graph problems namely; vertex-cover, clique, traveling-salesperson, bounded-degree-spanning-tree, subgraph-isomorphism and clique-cover.
comment: 9 pages, 6 figures
☆ An Experimental Study on Data Augmentation Techniques for Named Entity Recognition on Low-Resource Domains
Named Entity Recognition (NER) is a machine learning task that traditionally relies on supervised learning and annotated data. Acquiring such data is often a challenge, particularly in specialized fields like medical, legal, and financial sectors. Those are commonly referred to as low-resource domains, which comprise long-tail entities, due to the scarcity of available data. To address this, data augmentation techniques are increasingly being employed to generate additional training instances from the original dataset. In this study, we evaluate the effectiveness of two prominent text augmentation techniques, Mention Replacement and Contextual Word Replacement, on two widely-used NER models, Bi-LSTM+CRF and BERT. We conduct experiments on four datasets from low-resource domains, and we explore the impact of various combinations of training subset sizes and number of augmented examples. We not only confirm that data augmentation is particularly beneficial for smaller datasets, but we also demonstrate that there is no universally optimal number of augmented examples, i.e., NER practitioners must experiment with different quantities in order to fine-tune their projects.
comment: 21 pages, 2 figures
☆ Towards a Middleware for Large Language Models
Large language models have gained widespread popularity for their ability to process natural language inputs and generate insights derived from their training data, nearing the qualities of true artificial intelligence. This advancement has prompted enterprises worldwide to integrate LLMs into their services. So far, this effort is dominated by commercial cloud-based solutions like OpenAI's ChatGPT and Microsoft Azure. As the technology matures, however, there is a strong incentive for independence from major cloud providers through self-hosting "LLM as a Service", driven by privacy, cost, and customization needs. In practice, hosting LLMs independently presents significant challenges due to their complexity and integration issues with existing systems. In this paper, we discuss our vision for a forward-looking middleware system architecture that facilitates the deployment and adoption of LLMs in enterprises, even for advanced use cases in which we foresee LLMs to serve as gateways to a complete application ecosystem and, to some degree, absorb functionality traditionally attributed to the middleware.
☆ FuseGPT: Learnable Layers Fusion of Generative Pre-trained Transformers
Generative Pre-trained Transformers (GPTs) have demonstrated remarkable performance across diverse domains through the extensive scaling of model parameters. Recent works observe the redundancy across the transformer blocks and develop compression methods by structured pruning of the unimportant blocks. However, such straightforward elimination will always provide irreversible performance degradation. In this paper, we propose FuseGPT, a novel methodology to recycle the pruned transformer blocks to further recover the model performance. Firstly we introduce a new importance detection metric, Macro Influence (MI), to detect the long-term influence of each transformer block by calculating their loss of information after removal. Then we propose group-level layers fusion, which adopts the parameters in layers of the unimportant blocks and injects them into the corresponding layers inside the neighboring blocks. The fusion is not one-off but through iterative parameter updates by lightweight group-level fine-tuning. Specifically, these injected parameters are frozen but weighted with learnable rank decomposition matrices to reduce the overhead during fine-tuning. Our approach not only works well on large language models but also on large multimodal models. The experiments have shown that, by using modest amounts of data, FuseGPT can outperform previous works in both perplexity and zero-shot task performance.
☆ Exploring Accuracy-Fairness Trade-off in Large Language Models
Large Language Models (LLMs) have made significant strides in the field of artificial intelligence, showcasing their ability to interact with humans and influence human cognition through information dissemination. However, recent studies have brought to light instances of bias inherent within these LLMs, presenting a critical issue that demands attention. In our research, we delve deeper into the intricate challenge of harmonising accuracy and fairness in the enhancement of LLMs. While improving accuracy can indeed enhance overall LLM performance, it often occurs at the expense of fairness. Overemphasising optimisation of one metric invariably leads to a significant degradation of the other. This underscores the necessity of taking into account multiple considerations during the design and optimisation phases of LLMs. Therefore, we advocate for reformulating the LLM training process as a multi-objective learning task. Our investigation reveals that multi-objective evolutionary learning (MOEL) methodologies offer promising avenues for tackling this challenge. Our MOEL framework enables the simultaneous optimisation of both accuracy and fairness metrics, resulting in a Pareto-optimal set of LLMs. In summary, our study sheds valuable lights on the delicate equilibrium between accuracy and fairness within LLMs, which is increasingly significant for their real-world applications. By harnessing MOEL, we present a promising pathway towards fairer and more efficacious AI technologies.
comment: 9 pages
☆ Understanding World or Predicting Future? A Comprehensive Survey of World Models
The concept of world models has garnered significant attention due to advancements in multimodal large language models such as GPT-4 and video generation models such as Sora, which are central to the pursuit of artificial general intelligence. This survey offers a comprehensive review of the literature on world models. Generally, world models are regarded as tools for either understanding the present state of the world or predicting its future dynamics. This review presents a systematic categorization of world models, emphasizing two primary functions: (1) constructing internal representations to understand the mechanisms of the world, and (2) predicting future states to simulate and guide decision-making. Initially, we examine the current progress in these two categories. We then explore the application of world models in key domains, including autonomous driving, robotics, and social simulacra, with a focus on how each domain utilizes these aspects. Finally, we outline key challenges and provide insights into potential future research directions.
☆ Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning
The efficacy of large language models (LLMs) on downstream tasks usually hinges on instruction tuning, which relies critically on the quality of training data. Unfortunately, collecting high-quality and diverse data is both expensive and time-consuming. To mitigate this issue, we propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets through multi-agent collaboration and assessment. The framework adopts a three-pronged strategy. It initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method. Subsequently, the generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality. Finaly, the above process evolves in a dynamic refinement phase, where more effective LLMs are prioritized, enhancing the overall data quality. Our empirical studies, including instruction tuning experiments with models such as Pythia and LLaMA, demonstrate the effectiveness of the proposed framework. Optimized datasets have achieved substantial improvements, with an average increase of 12% and notable gains in specific metrics, such as a 40% improvement in Fermi, as evidenced by benchmarks like MT-bench, Vicuna bench, and WizardLM testset.
☆ BiomedCoOp: Learning to Prompt for Biomedical Vision-Language Models
Recent advancements in vision-language models (VLMs), such as CLIP, have demonstrated substantial success in self-supervised representation learning for vision tasks. However, effectively adapting VLMs to downstream applications remains challenging, as their accuracy often depends on time-intensive and expertise-demanding prompt engineering, while full model fine-tuning is costly. This is particularly true for biomedical images, which, unlike natural images, typically suffer from limited annotated datasets, unintuitive image contrasts, and nuanced visual features. Recent prompt learning techniques, such as Context Optimization (CoOp) intend to tackle these issues, but still fall short in generalizability. Meanwhile, explorations in prompt learning for biomedical image analysis are still highly limited. In this work, we propose BiomedCoOp, a novel prompt learning framework that enables efficient adaptation of BiomedCLIP for accurate and highly generalizable few-shot biomedical image classification. Our approach achieves effective prompt context learning by leveraging semantic consistency with average prompt ensembles from Large Language Models (LLMs) and knowledge distillation with a statistics-based prompt selection strategy. We conducted comprehensive validation of our proposed framework on 11 medical datasets across 9 modalities and 10 organs against existing state-of-the-art methods, demonstrating significant improvements in both accuracy and generalizability. The code will be publicly available at https://github.com/HealthX-Lab/BiomedCoOp.
comment: 18 pages, 5 figures, 10 tables
♻ ☆ Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Composite Spatial Reasoning
Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks. However, their proficiency in spatial reasoning remains limited, despite its crucial role in tasks involving navigation and interaction with physical environments. Specifically, most of these tasks rely on the core spatial reasoning capabilities in two-dimensional (2D) environments, and our evaluation reveals that state-of-the-art VLMs frequently generate implausible and incorrect responses to composite spatial reasoning problems, including simple pathfinding tasks that humans can solve effortlessly at a glance. To address this, we explore an effective approach to enhance 2D spatial reasoning within VLMs by training the model solely on basic spatial capabilities. We begin by disentangling the key components of 2D spatial reasoning: direction comprehension, distance estimation, and localization. Our central hypothesis is that mastering these basic spatial capabilities can significantly enhance a model's performance on composite spatial tasks requiring advanced spatial understanding and combinatorial problem-solving, with generalized improvements in visual-spatial tasks. To investigate this hypothesis, we introduce Sparkle, a framework that fine-tunes VLMs on these three basic spatial capabilities by synthetic data generation and targeted supervision to form an instruction dataset for each capability. Our experiments demonstrate that VLMs fine-tuned with Sparkle achieve significant performance gains, not only in the basic tasks themselves but also in generalizing to composite and out-of-distribution spatial reasoning tasks. These findings underscore the effectiveness of mastering basic spatial capabilities in enhancing composite spatial problem-solving, offering insights into systematic strategies for improving VLMs' spatial reasoning capabilities.
♻ ☆ LLMs as Zero-shot Graph Learners: Alignment of GNN Representations with LLM Token Embeddings
Zero-shot graph machine learning, especially with graph neural networks (GNNs), has garnered significant interest due to the challenge of scarce labeled data. While methods like self-supervised learning and graph prompt learning have been extensively explored, they often rely on fine-tuning with task-specific labels, limiting their effectiveness in zero-shot scenarios. Inspired by the zero-shot capabilities of instruction-fine-tuned large language models (LLMs), we introduce a novel framework named Token Embedding-Aligned Graph Language Model (TEA-GLM) that leverages LLMs as cross-dataset and cross-task zero-shot learners for graph machine learning. Concretely, we pretrain a GNN, aligning its representations with token embeddings of an LLM. We then train a linear projector that transforms the GNN's representations into a fixed number of graph token embeddings without tuning the LLM. A unified instruction is designed for various graph tasks at different levels, such as node classification (node-level) and link prediction (edge-level). These design choices collectively enhance our method's effectiveness in zero-shot learning, setting it apart from existing methods. Experiments show that our graph token embeddings help the LLM predictor achieve state-of-the-art performance on unseen datasets and tasks compared to other methods using LLMs as predictors.
♻ ☆ LLMSteer: Improving Long-Context LLM Inference by Steering Attention on Reused Contexts
As large language models (LLMs) show impressive performance on complex tasks, they still struggle with longer contextual understanding and high computational costs. To balance efficiency and quality, we introduce LLMSteer, a fine-tuning-free framework that enhances LLMs through query-independent attention steering. Tested on popular LLMs and datasets, LLMSteer narrows the performance gap with baselines by 65.9% and reduces the runtime delay by up to 4.8x compared to recent attention steering methods.
♻ ☆ AUTALIC: A Dataset for Anti-AUTistic Ableist Language In Context
As our understanding of autism and ableism continues to increase, so does our understanding of ableist language towards autistic people. Such language poses a significant challenge in NLP research due to its subtle and context-dependent nature. Yet, detecting anti-autistic ableist language remains underexplored, with existing NLP tools often failing to capture its nuanced expressions. We present AUTALIC, the first benchmark dataset dedicated to the detection of anti-autistic ableist language in context, addressing a significant gap in the field. The dataset comprises 2,400 autism-related sentences collected from Reddit, accompanied by surrounding context, and is annotated by trained experts with backgrounds in neurodiversity. Our comprehensive evaluation reveals that current language models, including state-of-the-art LLMs, struggle to reliably identify anti-autistic ableism and align with human judgments, underscoring their limitations in this domain. We publicly release AUTALIC along with the individual annotations which serve as a valuable resource to researchers working on ableism, neurodiversity, and also studying disagreements in annotation tasks. This dataset serves as a crucial step towards developing more inclusive and context-aware NLP systems that better reflect diverse perspectives.
comment: 9 pages, 5 figures, 7 tables
♻ ☆ Linguacodus: A Synergistic Framework for Transformative Code Generation in Machine Learning Pipelines
In the ever-evolving landscape of machine learning, seamless translation of natural language descriptions into executable code remains a formidable challenge. This paper introduces Linguacodus, an innovative framework designed to tackle this challenge by deploying a dynamic pipeline that iteratively transforms natural language task descriptions into code through high-level data-shaping instructions. The core of Linguacodus is a fine-tuned large language model (LLM), empowered to evaluate diverse solutions for various problems and select the most fitting one for a given task. This paper details the fine-tuning process, and sheds light on how natural language descriptions can be translated into functional code. Linguacodus represents a substantial leap towards automated code generation, effectively bridging the gap between task descriptions and executable code. It holds great promise for advancing machine learning applications across diverse domains. Additionally, we propose an algorithm capable of transforming a natural description of an ML task into code with minimal human interaction. In extensive experiments on a vast machine learning code dataset originating from Kaggle, we showcase the effectiveness of Linguacodus. The investigations highlight its potential applications across diverse domains, emphasizing its impact on applied machine learning in various scientific fields.
♻ ☆ EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
In this work, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users (e.g., tasks, compression ratios), resulting in greater flexibility in adjusting overall capacity without being constrained by specific compression formats. However, naively applying SVD to derive residual paths causes suboptimal utilization of the low-rank representation capacity. Instead, we propose Training-free Eigenspace Low-Rank Approximation (EoRA), a method that directly minimizes compression-induced errors without requiring gradient-based training, achieving fast optimization in minutes using a small amount of calibration data. EoRA projects compression errors into the eigenspace of input activations, leveraging eigenvalues to effectively prioritize the reconstruction of high-importance error components. Moreover, EoRA can be seamlessly integrated with fine-tuning and quantization to further improve effectiveness and efficiency. EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks, such as language generation, commonsense reasoning, and math reasoning tasks (e.g., 31.31%/12.88% and 9.69% improvements on ARC-Easy/ARC-Challenge and MathQA when compensating LLaMA3-8B that is quantized to 4-bit and pruned to 2:4 sparsity). EoRA offers a scalable, training-free solution to compensate for compression errors, making it a powerful tool to deploy LLMs in various capacity and efficiency requirements.
♻ ☆ BERTrend: Neural Topic Modeling for Emerging Trends Detection EMNLP 2024
Detecting and tracking emerging trends and weak signals in large, evolving text corpora is vital for applications such as monitoring scientific literature, managing brand reputation, surveilling critical infrastructure and more generally to any kind of text-based event detection. Existing solutions often fail to capture the nuanced context or dynamically track evolving patterns over time. BERTrend, a novel method, addresses these limitations using neural topic modeling in an online setting. It introduces a new metric to quantify topic popularity over time by considering both the number of documents and update frequency. This metric classifies topics as noise, weak, or strong signals, flagging emerging, rapidly growing topics for further investigation. Experimentation on two large real-world datasets demonstrates BERTrend's ability to accurately detect and track meaningful weak signals while filtering out noise, offering a comprehensive solution for monitoring emerging trends in large-scale, evolving text corpora. The method can also be used for retrospective analysis of past events. In addition, the use of Large Language Models together with BERTrend offers efficient means for the interpretability of trends of events.
comment: 17 pages, 12 figures, FuturED 2024: Workshop on Future of Event Detection (CoLocated with EMNLP 2024)
♻ ☆ What Languages are Easy to Language-Model? A Perspective from Learning Probabilistic Regular Languages ACL 2024
What can large language models learn? By definition, language models (LM) are distributions over strings. Therefore, an intuitive way of addressing the above question is to formalize it as a matter of learnability of classes of distributions over strings. While prior work in this direction focused on assessing the theoretical limits, in contrast, we seek to understand the empirical learnability. Unlike prior empirical work, we evaluate neural LMs on their home turf-learning probabilistic languages-rather than as classifiers of formal languages. In particular, we investigate the learnability of regular LMs (RLMs) by RNN and Transformer LMs. We empirically test the learnability of RLMs as a function of various complexity parameters of the RLM and the hidden state size of the neural LM. We find that the RLM rank, which corresponds to the size of linear space spanned by the logits of its conditional distributions, and the expected length of sampled strings are strong and significant predictors of learnability for both RNNs and Transformers. Several other predictors also reach significance, but with differing patterns between RNNs and Transformers.
comment: Accepted to ACL 2024
♻ ☆ Fine-Grained Detection of Solidarity for Women and Migrants in 155 Years of German Parliamentary Debates EMNLP 2024
Solidarity is a crucial concept to understand social relations in societies. In this paper, we explore fine-grained solidarity frames to study solidarity towards women and migrants in German parliamentary debates between 1867 and 2022. Using 2,864 manually annotated text snippets (with a cost exceeding 18k Euro), we evaluate large language models (LLMs) like Llama 3, GPT-3.5, and GPT-4. We find that GPT-4 outperforms other LLMs, approaching human annotation quality. Using GPT-4, we automatically annotate more than 18k further instances (with a cost of around 500 Euro) across 155 years and find that solidarity with migrants outweighs anti-solidarity but that frequencies and solidarity types shift over time. Most importantly, group-based notions of (anti-)solidarity fade in favor of compassionate solidarity, focusing on the vulnerability of migrant groups, and exchange-based anti-solidarity, focusing on the lack of (economic) contribution. Our study highlights the interplay of historical events, socio-economic needs, and political ideologies in shaping migration discourse and social cohesion. We also show that powerful LLMs, if carefully prompted, can be cost-effective alternatives to human annotation for hard social scientific tasks.
comment: EMNLP 2024 (Main Conference) Camera-Ready Version
♻ ☆ Is Less More? Exploring Token Condensation as Training-free Adaptation for CLIP
Contrastive language-image pre-training (CLIP) has shown remarkable generalization ability in image classification. However, CLIP sometimes encounters performance drops on downstream datasets during zero-shot inference. Test-time adaptation methods attempt to mitigate this by adjusting normalization layers or tuning context prompts with large batch sizes and extensive augmentations; yet, these methods are computationally intensive. This raises an important question: Is there a training-free approach that can efficiently address CLIP's performance drop in such cases? To explore this, we benchmark token condensation techniques, originally designed to enhance the efficiency of vision transformers, on CLIP zero-shot inference tasks. We observe that although token condensation may compromise in-domain accuracy, it surprisingly enhances CLIP's performance on certain cross-dataset benchmarks. This motivates two key inquiries: (1) Can token condensation serve as a "free-lunch" solution for CLIP zero-shot inference? (2) What criteria should guide condensation -- how can essential tokens be identified and redundant ones eliminated? To address these questions, we propose Token Condensation as Adaptation (TCA), a training-free adaptation method for CLIP by pruning class-irrelevant visual tokens while merging class-ambiguous tokens. As the first approach for CLIP's token efficiency, TCA demonstrates superior performance across cross-dataset tasks, achieving up to a 21.4\% improvement over the strongest baseline while reducing GFLOPs by 12.2\% to 48.9\%, with minimized hyperparameter dependency.
comment: 15 pages, 7 figures
♻ ☆ Reconciling Kaplan and Chinchilla Scaling Laws
Kaplan et al. [2020] (`Kaplan') and Hoffmann et al. [2022] (`Chinchilla') studied the scaling behavior of transformers trained on next-token language prediction. These studies produced different estimates for how the number of parameters ($N$) and training tokens ($D$) should be set to achieve the lowest possible loss for a given compute budget ($C$). Kaplan: $N_\text{optimal} \propto C^{0.73}$, Chinchilla: $N_\text{optimal} \propto C^{0.50}$. This paper finds that much of this discrepancy can be attributed to Kaplan counting non-embedding rather than total parameters, combined with their analysis being performed at small scale. Simulating the Chinchilla study under these conditions produces biased scaling coefficients close to Kaplan's. Hence, this paper reaffirms Chinchilla's scaling coefficients, by explaining the primary cause of Kaplan's original overestimation. As a second contribution, the paper explains differences in the reported relationships between loss and compute. These findings lead us to recommend that future scaling studies use total parameters and compute.
comment: Published in TMLR 2024
♻ ☆ Improving Steering Vectors by Targeting Sparse Autoencoder Features
To control the behavior of language models, steering methods attempt to ensure that outputs of the model satisfy specific pre-defined properties. Adding steering vectors to the model is a promising method of model control that is easier than finetuning, and may be more robust than prompting. However, it can be difficult to anticipate the effects of steering vectors produced by methods such as CAA [Panickssery et al., 2024] or the direct use of SAE latents [Templeton et al., 2024]. In our work, we address this issue by using SAEs to measure the effects of steering vectors, giving us a method that can be used to understand the causal effect of any steering vector intervention. We use this method for measuring causal effects to develop an improved steering method, SAE-Targeted Steering (SAE-TS), which finds steering vectors to target specific SAE features while minimizing unintended side effects. We show that overall, SAE-TS balances steering effects with coherence better than CAA and SAE feature steering, when evaluated on a range of tasks.
comment: 8 maintext pages and 9 appendix pages
♻ ☆ How Does A Text Preprocessing Pipeline Affect Ontology Syntactic Matching?
The generic text preprocessing pipeline, comprising Tokenisation, Normalisation, Stop Words Removal, and Stemming/Lemmatisation, has been implemented in many ontology matching (OM) systems. However, the lack of standardisation in text preprocessing creates diversity in mapping results. In this paper, we investigate the effect of the text preprocessing pipeline on OM tasks at syntactic levels. Our experiments on 8 Ontology Alignment Evaluation Initiative (OAEI) track repositories with 49 distinct alignments indicate: (1) Tokenisation and Normalisation are currently more effective than Stop Words Removal and Stemming/Lemmatisation; and (2) The selection of Lemmatisation and Stemming is task-specific. We recommend standalone Lemmatisation or Stemming with post-hoc corrections. We find that (3) Porter Stemmer and Snowball Stemmer perform better than Lancaster Stemmer; and that (4) Part-of-Speech (POS) Tagging does not help Lemmatisation. To repair less effective Stop Words Removal and Stemming/Lemmatisation used in OM tasks, we propose a novel context-based pipeline repair approach that significantly improves matching correctness and overall matching performance. We also discuss the use of text preprocessing pipeline in the new era of large language models (LLMs).
comment: 13 pages, 26 figures, 4 tables
♻ ☆ OASIS: Open Agents Social Interaction Simulations on One Million Agents
There has been a growing interest in enhancing rule-based agent-based models (ABMs) for social media platforms (i.e., X, Reddit) with more realistic large language model (LLM) agents, thereby allowing for a more nuanced study of complex systems. As a result, several LLM-based ABMs have been proposed in the past year. While they hold promise, each simulator is specifically designed to study a particular scenario, making it time-consuming and resource-intensive to explore other phenomena using the same ABM. Additionally, these models simulate only a limited number of agents, whereas real-world social media platforms involve millions of users. To this end, we propose OASIS, a generalizable and scalable social media simulator. OASIS is designed based on real-world social media platforms, incorporating dynamically updated environments (i.e., dynamic social networks and post information), diverse action spaces (i.e., following, commenting), and recommendation systems (i.e., interest-based and hot-score-based). Additionally, OASIS supports large-scale user simulations, capable of modeling up to one million users. With these features, OASIS can be easily extended to different social media platforms to study large-scale group phenomena and behaviors. We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms. Moreover, we provide observations of social phenomena at different agent group scales. We observe that the larger agent group scale leads to more enhanced group dynamics and more diverse and helpful agents' opinions. These findings demonstrate OASIS's potential as a powerful tool for studying complex systems in digital environments.
♻ ☆ CulturePark: Boosting Cross-cultural Understanding in Large Language Models NeurIPS 2024
Cultural bias is pervasive in many large language models (LLMs), largely due to the deficiency of data representative of different cultures. Typically, cultural datasets and benchmarks are constructed either by extracting subsets of existing datasets or by aggregating from platforms such as Wikipedia and social media. However, these approaches are highly dependent on real-world data and human annotations, making them costly and difficult to scale. Inspired by cognitive theories on social communication, this paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection. CulturePark simulates cross-cultural human communication with LLM-based agents playing roles in different cultures. It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs. Using CulturePark, we generated 41,000 cultural samples to fine-tune eight culture-specific LLMs. We evaluated these models across three downstream tasks: content moderation, cultural alignment, and cultural education. Results show that for content moderation, our GPT-3.5-based models either match or outperform GPT-4 on datasets. Regarding cultural alignment, our models surpass GPT-4 on Hofstede's VSM 13 framework. Furthermore, for cultural education of human participants, our models demonstrate superior outcomes in both learning efficacy and user experience compared to GPT-4. CulturePark proves an important step in addressing cultural bias and advancing the democratization of AI, highlighting the critical role of culturally inclusive data in model training. Code is released at https://github.com/Scarelette/CulturePark.
comment: NeurIPS 2024; Code is released at https://github.com/Scarelette/CulturePark. arXiv admin note: substantial text overlap with arXiv:2402.10946
♻ ☆ mHuBERT-147: A Compact Multilingual HuBERT Model
We present mHuBERT-147, the first general-purpose massively multilingual HuBERT speech representation model trained on 90K hours of clean, open-license data. To scale up the multi-iteration HuBERT approach, we use faiss-based clustering, achieving 5.2x faster label assignment than the original method. We also apply a new multilingual batching up-sampling strategy, leveraging both language and dataset diversity. After 3 training iterations, our compact 95M parameter mHuBERT-147 outperforms larger models trained on substantially more data. We rank second and first on the ML-SUPERB 10min and 1h leaderboards, with SOTA scores for 3 tasks. Across ASR/LID tasks, our model consistently surpasses XLS-R (300M params; 436K hours) and demonstrates strong competitiveness against the much larger MMS (1B params; 491K hours). Our findings indicate that mHuBERT-147 is a promising model for multilingual speech tasks, offering an unprecedented balance between high performance and parameter efficiency.
comment: Extended version of the Interspeech 2024 paper of same name
♻ ☆ Verifying the Robustness of Automatic Credibility Assessment
Text classification methods have been widely investigated as a way to detect content of low credibility: fake news, social media bots, propaganda, etc. Quite accurate models (likely based on deep neural networks) help in moderating public electronic platforms and often cause content creators to face rejection of their submissions or removal of already published texts. Having the incentive to evade further detection, content creators try to come up with a slightly modified version of the text (known as an attack with an adversarial example) that exploit the weaknesses of classifiers and result in a different output. Here we systematically test the robustness of common text classifiers against available attacking techniques and discover that, indeed, meaning-preserving changes in input text can mislead the models. The approaches we test focus on finding vulnerable spans in text and replacing individual characters or words, taking into account the similarity between the original and replacement content. We also introduce BODEGA: a benchmark for testing both victim models and attack methods on four misinformation detection tasks in an evaluation framework designed to simulate real use-cases of content moderation. The attacked tasks include (1) fact checking and detection of (2) hyperpartisan news, (3) propaganda and (4) rumours. Our experimental results show that modern large language models are often more vulnerable to attacks than previous, smaller solutions, e.g. attacks on GEMMA being up to 27\% more successful than those on BERT. Finally, we manually analyse a subset adversarial examples and check what kinds of modifications are used in successful attacks.
♻ ☆ Freeze-Omni: A Smart and Low Latency Speech-to-speech Dialogue Model with Frozen LLM
Rapidly developing large language models (LLMs) have brought tremendous intelligent applications. Especially, the GPT-4o's excellent duplex speech interaction ability has brought impressive experience to users. Researchers have recently proposed several multi-modal LLMs in this direction that can achieve user-agent speech-to-speech conversations. This paper proposes a novel speech-text multimodal LLM architecture called Freeze-Omni. Our main contribution is that the speech input and output modalities can be easily connected to a textual LLM while keeping the LLM's parameters frozen throughout the training process. We design a three-stage training strategy for modeling both the speech input and output, enabling Freeze-Omni to obtain speech-to-speech conversation ability using text-speech paired data (such as ASR and TTS data) and only 60,000 multi-round text Q&A data on 8 GPUs. Moreover, we can effectively ensure that the intelligence of the Freeze-Omni in the speech modality is at the same level compared with that in the text modality of its backbone LLM, while achieving low latency end-to-end spoken response. In addition, we also designed a method to achieve duplex dialogue ability through multi-task training, giving Freeze-Omni a more natural style of dialogue ability between users and agents. In summary, Freeze-Omni holds great potential to conduct speech-to-speech dialogue based on a multimodal LLM under the condition of a frozen LLM, avoiding the catastrophic forgetting problem caused by limited data and training resources.
comment: Project Page: https://freeze-omni.github.io/
♻ ☆ A Confidence-based Acquisition Model for Self-supervised Active Learning and Label Correction ACL
Supervised neural approaches are hindered by their dependence on large, meticulously annotated datasets, a requirement that is particularly cumbersome for sequential tasks. The quality of annotations tends to deteriorate with the transition from expert-based to crowd-sourced labelling. To address these challenges, we present CAMEL (Confidence-based Acquisition Model for Efficient self-supervised active Learning), a pool-based active learning framework tailored to sequential multi-output problems. CAMEL possesses two core features: (1) it requires expert annotators to label only a fraction of a chosen sequence, and (2) it facilitates self-supervision for the remainder of the sequence. By deploying a label correction mechanism, CAMEL can also be utilised for data cleaning. We evaluate CAMEL on two sequential tasks, with a special emphasis on dialogue belief tracking, a task plagued by the constraints of limited and noisy datasets. Our experiments demonstrate that CAMEL significantly outperforms the baselines in terms of efficiency. Furthermore, the data corrections suggested by our method contribute to an overall improvement in the quality of the resulting datasets.
comment: Accepted at TACL
♻ ☆ REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering EMNLP 2024
Considering the limited internal parametric knowledge, retrieval-augmented generation (RAG) has been widely used to extend the knowledge scope of large language models (LLMs). Despite the extensive efforts on RAG research, in existing methods, LLMs cannot precisely assess the relevance of retrieved documents, thus likely leading to misleading or even incorrect utilization of external knowledge (eg., retrieved documents). To address this issue, in this paper, we propose REAR, a RElevance-Aware Retrieval-augmented approach for open-domain question answering (QA). As the key motivation, we aim to enhance the self-awareness regarding the reliability of external knowledge for LLMs, so as to adaptively utilize external knowledge in RAG systems. Specially, we develop a novel architecture for LLM-based RAG systems, by incorporating a specially designed assessment module that precisely assesses the relevance of retrieved documents. Furthermore, we propose an improved training method based on bi-granularity relevance fusion and noise-resistant training. By combining the improvements in both architecture and training, our proposed REAR can better utilize external knowledge by effectively perceiving the relevance of retrieved documents. Experiments on four open-domain QA tasks show that REAR significantly outperforms previous a number of competitive RAG approaches. Our codes can be accessed at https://github.com/RUCAIBox/REAR.
comment: Accepted to EMNLP 2024 Main Conference. Published on ACL Anthology: https://aclanthology.org/2024.emnlp-main.321.pdf
♻ ☆ LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning
This paper presents an advanced mathematical problem-solving framework, LLaMA-Berry, for enhancing the mathematical reasoning ability of Large Language Models (LLMs). The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path and utilizes a pairwise reward model to evaluate different paths globally. By leveraging the self-critic and rewriting capabilities of LLMs, Self-Refine applied to MCTS (SR-MCTS) overcomes the inefficiencies and limitations of conventional step-wise and greedy search algorithms by fostering a more efficient exploration of solution spaces. Pairwise Preference Reward Model~(PPRM), inspired by Reinforcement Learning from Human Feedback (RLHF), is then used to model pairwise preferences between solutions, utilizing an Enhanced Borda Count (EBC) method to synthesize these preferences into a global ranking score to find better answers. This approach addresses the challenges of scoring variability and non-independent distributions in mathematical reasoning tasks. The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability compared to existing methods like ToT and rStar, particularly in complex Olympiad-level benchmarks, including GPQA, AIME24 and AMC23.
♻ ☆ Probing Multimodal Large Language Models for Global and Local Semantic Representations LREC
The advancement of Multimodal Large Language Models (MLLMs) has greatly accelerated the development of applications in understanding integrated texts and images. Recent works leverage image-caption datasets to train MLLMs, achieving state-of-the-art performance on image-to-text tasks. However, there are few studies exploring which layers of MLLMs make the most effort to the global image information, which plays vital roles in multimodal comprehension and generation. In this study, we find that the intermediate layers of models can encode more global semantic information, whose representation vectors perform better on visual-language entailment tasks, rather than the topmost layers. We further probe models regarding local semantic representations through object recognition tasks. We find that the topmost layers may excessively focus on local information, leading to a diminished ability to encode global information. Our code and data are released via https://github.com/kobayashikanna01/probing_MLLM_rep.
comment: Accepted by LREC-COLING 2024 as a short paper. ACL Anthology URL: [https://aclanthology.org/2024.lrec-main.1142/]
♻ ☆ PaDeLLM-NER: Parallel Decoding in Large Language Models for Named Entity Recognition
In this study, we aim to reduce generation latency for Named Entity Recognition (NER) with Large Language Models (LLMs). The main cause of high latency in LLMs is the sequential decoding process, which autoregressively generates all labels and mentions for NER, significantly increase the sequence length. To this end, we introduce Parallel Decoding in LLM for NE} (PaDeLLM-NER), a approach that integrates seamlessly into existing generative model frameworks without necessitating additional modules or architectural modifications. PaDeLLM-NER allows for the simultaneous decoding of all mentions, thereby reducing generation latency. Experiments reveal that PaDeLLM-NER significantly increases inference speed that is 1.76 to 10.22 times faster than the autoregressive approach for both English and Chinese. Simultaneously it maintains the quality of predictions as evidenced by the performance that is on par with the state-of-the-art across various datasets.
comment: Accepted to Neurips2024
♻ ☆ Design2Code: Benchmarking Multimodal Code Generation for Automated Front-End Engineering
Generative AI has made rapid advancements in recent years, achieving unprecedented capabilities in multimodal understanding and code generation. This can enable a new paradigm of front-end development in which multimodal large language models (MLLMs) directly convert visual designs into code implementations. In this work, we construct Design2Code - the first real-world benchmark for this task. Specifically, we manually curate 484 diverse real-world webpages as test cases and develop a set of automatic evaluation metrics to assess how well current multimodal LLMs can generate the code implementations that directly render into the given reference webpages, given the screenshots as input. We also complement automatic metrics with comprehensive human evaluations to validate the performance ranking. To rigorously benchmark MLLMs, we test various multimodal prompting methods on frontier models such as GPT-4o, GPT-4V, Gemini, and Claude. Our fine-grained break-down metrics indicate that models mostly lag in recalling visual elements from the input webpages and generating correct layout designs.
comment: The first two authors contributed equally
♻ ☆ High Risk of Political Bias in Black Box Emotion Inference Models
This paper investigates the presence of political bias in emotion inference models used for sentiment analysis (SA) in social science research. Machine learning models often reflect biases in their training data, impacting the validity of their outcomes. While previous research has highlighted gender and race biases, our study focuses on political bias - an underexplored yet pervasive issue that can skew the interpretation of text data across a wide array of studies. We conducted a bias audit on a Polish sentiment analysis model developed in our lab. By analyzing valence predictions for names and sentences involving Polish politicians, we uncovered systematic differences influenced by political affiliations. Our findings indicate that annotations by human raters propagate political biases into the model's predictions. To mitigate this, we pruned the training dataset of texts mentioning these politicians and observed a reduction in bias, though not its complete elimination. Given the significant implications of political bias in SA, our study emphasizes caution in employing these models for social science research. We recommend a critical examination of SA results and propose using lexicon-based systems as a more ideologically neutral alternative. This paper underscores the necessity for ongoing scrutiny and methodological adjustments to ensure the reliability and impartiality of the use of machine learning in academic and applied contexts.
♻ ☆ SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation
Large language models demonstrate exceptional performance in simple code generation tasks but still face challenges in tackling complex problems. These challenges may stem from insufficient reasoning and problem decomposition capabilities. To address this issue, we propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths. This creates a positive feedback loop, enabling continuous improvement. Our method operates entirely through the model itself without requiring additional supervision. By synthesizing natural language reasoning paths and translating them into executable code, the approach ensures analytical accuracy and enhances the success rate in solving complex tasks. Experimental results show that, even without additional supervisory signals, our method achieves performance improvements across different model scales, demonstrating the significant potential of self-improvement in small models. Furthermore, the method remains robust when traditional Chain-of-Thought (CoT) approaches exhibit performance degradation, with notable improvements observed in diversity metrics such as pass@10. We encourage further exploration of reasoning processes within training data to enhance the ability of language models to address complex problems.
♻ ☆ Disentangling Memory and Reasoning Ability in Large Language Models
Large Language Models (LLMs) have demonstrated strong performance in handling complex tasks requiring both extensive knowledge and reasoning abilities. However, the existing LLM inference pipeline operates as an opaque process without explicit separation between knowledge retrieval and reasoning steps, making the model's decision-making process unclear and disorganized. This ambiguity can lead to issues such as hallucinations and knowledge forgetting, which significantly impact the reliability of LLMs in high-stakes domains. In this paper, we propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions: (1) memory recall: which retrieves relevant knowledge, and (2) reasoning: which performs logical steps based on the recalled knowledge. To facilitate this decomposition, we introduce two special tokens memory and reason, guiding the model to distinguish between steps that require knowledge retrieval and those that involve reasoning. Our experiment results show that this decomposition not only improves model performance but also enhances the interpretability of the inference process, enabling users to identify sources of error and refine model responses effectively. The code is available at https://github.com/MingyuJ666/Disentangling-Memory-and-Reasoning.
♻ ☆ A Closer Look at Machine Unlearning for Large Language Models
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns. Due to the high cost of retraining from scratch, researchers attempt to employ machine unlearning to remove specific content from LLMs while preserving the overall performance. In this paper, we discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches. To address the issue of inadequate evaluation of model outputs after unlearning, we introduce three additional metrics to evaluate token diversity, sentence semantics, and factual correctness. We then categorize unlearning methods into untargeted and targeted, and discuss their issues respectively. Specifically, the behavior that untargeted unlearning attempts to approximate is unpredictable and may involve hallucinations, and existing regularization is insufficient for targeted unlearning. To alleviate these issues, we propose using the objective of maximizing entropy (ME) for untargeted unlearning and incorporate answer preservation (AP) loss as regularization for targeted unlearning. Experimental results across three scenarios, i.e., fictitious unlearning, continual unlearning, and real-world unlearning, demonstrate the effectiveness of our approaches. The code is available at https://github.com/sail-sg/closer-look-LLM-unlearning.
♻ ☆ When Context Leads but Parametric Memory Follows in Large Language Models EMNLP 2024
Large language models (LLMs) have demonstrated remarkable progress in leveraging diverse knowledge sources. This study investigates how nine widely used LLMs allocate knowledge between local context and global parameters when answering open-ended questions in knowledge-consistent scenarios. We introduce a novel dataset, WikiAtomic, and systematically vary context sizes to analyze how LLMs prioritize and utilize the provided information and their parametric knowledge in knowledge-consistent scenarios. Additionally, we also study their tendency to hallucinate under varying context sizes. Our findings reveal consistent patterns across models, including a consistent reliance on both contextual (around 70%) and parametric (around 30%) knowledge, and a decrease in hallucinations with increasing context. These insights highlight the importance of more effective context organization and developing models that use input more deterministically for robust performance.
comment: Accepted by EMNLP 2024 Main Conference
♻ ☆ Transformer-Based Contextualized Language Models Joint with Neural Networks for Natural Language Inference in Vietnamese
Natural Language Inference (NLI) is a task within Natural Language Processing (NLP) that holds value for various AI applications. However, there have been limited studies on Natural Language Inference in Vietnamese that explore the concept of joint models. Therefore, we conducted experiments using various combinations of contextualized language models (CLM) and neural networks. We use CLM to create contextualized work presentations and use Neural Networks for classification. Furthermore, we have evaluated the strengths and weaknesses of each joint model and identified the model failure points in the Vietnamese context. The highest F1 score in this experiment, up to 82.78% in the benchmark dataset (ViNLI). By conducting experiments with various models, the most considerable size of the CLM is XLM-R (355M). That combination has consistently demonstrated superior performance compared to fine-tuning strong pre-trained language models like PhoBERT (+6.58%), mBERT (+19.08%), and XLM-R (+0.94%) in terms of F1-score. This article aims to introduce a novel approach or model that attains improved performance for Vietnamese NLI. Overall, we find that the joint approach of CLM and neural networks is simple yet capable of achieving high-quality performance, which makes it suitable for applications that require efficient resource utilization.
♻ ☆ On the Trustworthiness Landscape of State-of-the-art Generative Models: A Survey and Outlook
Diffusion models and large language models have emerged as leading-edge generative models, revolutionizing various aspects of human life. However, the practical implementations of these models have also exposed inherent risks, bringing to the forefront their evil sides and sparking concerns regarding their trustworthiness. Despite the wealth of literature on this subject, a comprehensive survey specifically delving into the intersection of large-scale generative models and their trustworthiness remains largely absent. To bridge this gap, this paper investigates both the long-standing and emerging threats associated with these models across four fundamental dimensions: 1) privacy, 2) security, 3) fairness, and 4) responsibility. Based on the investigation results, we develop an extensive map outlining the trustworthiness of large generative models. After that, we provide practical recommendations and potential research directions for future secure applications equipped with large generative models, ultimately promoting the trustworthiness of the models and benefiting the society as a whole.
comment: draft
♻ ☆ Chat Bankman-Fried: an Exploration of LLM Alignment in Finance
Advancements in large language models (LLMs) have renewed concerns about AI alignment - the consistency between human and AI goals and values. As various jurisdictions enact legislation on AI safety, the concept of alignment must be defined and measured across different domains. This paper proposes an experimental framework to assess whether LLMs adhere to ethical and legal standards in the relatively unexplored context of finance. We prompt nine LLMs to impersonate the CEO of a financial institution and test their willingness to misuse customer assets to repay outstanding corporate debt. Beginning with a baseline configuration, we adjust preferences, incentives and constraints, analyzing the impact of each adjustment with logistic regression. Our findings reveal significant heterogeneity in the baseline propensity for unethical behavior of LLMs. Factors such as risk aversion, profit expectations, and regulatory environment consistently influence misalignment in ways predicted by economic theory, although the magnitude of these effects varies across LLMs. This paper highlights both the benefits and limitations of simulation-based, ex post safety testing. While it can inform financial authorities and institutions aiming to ensure LLM safety, there is a clear trade-off between generality and cost.
♻ ☆ A dataset of questions on decision-theoretic reasoning in Newcomb-like problems
We introduce a dataset of natural-language questions in the decision theory of so-called Newcomb-like problems. Newcomb-like problems include, for instance, decision problems in which an agent interacts with a similar other agent, and thus has to reason about the fact that the other agent will likely reason in similar ways. Evaluating LLM reasoning about Newcomb-like problems is important because interactions between foundation-model-based agents will often be Newcomb-like. Some ways of reasoning about Newcomb-like problems may allow for greater cooperation between models. Our dataset contains both capabilities questions (i.e., questions with a unique, uncontroversially correct answer) and attitude questions (i.e., questions about which decision theorists would disagree). We use our dataset for an investigation of decision-theoretical capabilities and expressed attitudes and their interplay in existing models (different models by OpenAI, Anthropic, Meta, GDM, Reka, etc.), as well as models under simple prompt-based interventions. We find, among other things, that attitudes vary significantly between existing models; that high capabilities are associated with attitudes more favorable toward so-called evidential decision theory; and that attitudes are consistent across different types of questions.
comment: 48 pages, 15 figures; code and data at https://github.com/casparoe/newcomblike_questions_dataset
♻ ☆ Language Models as Hierarchy Encoders NeurIPS 2024
Interpreting hierarchical structures latent in language is a key limitation of current language models (LMs). While previous research has implicitly leveraged these hierarchies to enhance LMs, approaches for their explicit encoding are yet to be explored. To address this, we introduce a novel approach to re-train transformer encoder-based LMs as Hierarchy Transformer encoders (HiTs), harnessing the expansive nature of hyperbolic space. Our method situates the output embedding space of pre-trained LMs within a Poincar\'e ball with a curvature that adapts to the embedding dimension, followed by training on hyperbolic clustering and centripetal losses. These losses are designed to effectively cluster related entities (input as texts) and organise them hierarchically. We evaluate HiTs against pre-trained LMs, standard fine-tuned LMs, and several hyperbolic embedding baselines, focusing on their capabilities in simulating transitive inference, predicting subsumptions, and transferring knowledge across hierarchies. The results demonstrate that HiTs consistently outperform all baselines in these tasks, underscoring the effectiveness and transferability of our re-trained hierarchy encoders.
comment: Accept at NeurIPS 2024
♻ ☆ A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law
In the fast-evolving domain of artificial intelligence, large language models (LLMs) such as GPT-3 and GPT-4 are revolutionizing the landscapes of finance, healthcare, and law: domains characterized by their reliance on professional expertise, challenging data acquisition, high-stakes, and stringent regulatory compliance. This survey offers a detailed exploration of the methodologies, applications, challenges, and forward-looking opportunities of LLMs within these high-stakes sectors. We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies. Moreover, we critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems that respect regulatory norms. By presenting a thorough review of current literature and practical applications, we showcase the transformative impact of LLMs, and outline the imperative for interdisciplinary cooperation, methodological advancements, and ethical vigilance. Through this lens, we aim to spark dialogue and inspire future research dedicated to maximizing the benefits of LLMs while mitigating their risks in these precision-dependent sectors. To facilitate future research on LLMs in these critical societal domains, we also initiate a reading list that tracks the latest advancements under this topic, which will be continually updated: \url{https://github.com/czyssrs/LLM_X_papers}.
comment: TMLR 2024
♻ ☆ Large Language Models Show Human-like Social Desirability Biases in Survey Responses
As Large Language Models (LLMs) become widely used to model and simulate human behavior, understanding their biases becomes critical. We developed an experimental framework using Big Five personality surveys and uncovered a previously undetected social desirability bias in a wide range of LLMs. By systematically varying the number of questions LLMs were exposed to, we demonstrate their ability to infer when they are being evaluated. When personality evaluation is inferred, LLMs skew their scores towards the desirable ends of trait dimensions (i.e., increased extraversion, decreased neuroticism, etc). This bias exists in all tested models, including GPT-4/3.5, Claude 3, Llama 3, and PaLM-2. Bias levels appear to increase in more recent models, with GPT-4's survey responses changing by 1.20 (human) standard deviations and Llama 3's by 0.98 standard deviations-very large effects. This bias is robust to randomization of question order and paraphrasing. Reverse-coding all the questions decreases bias levels but does not eliminate them, suggesting that this effect cannot be attributed to acquiescence bias. Our findings reveal an emergent social desirability bias and suggest constraints on profiling LLMs with psychometric tests and on using LLMs as proxies for human participants.
comment: 3 pages, 2 figures, accepted at PNAS Nexus
♻ ☆ Distributionally Robust Alignment for Medical Federated Vision-Language Pre-training Under Data Heterogeneity
Vision-language pre-training (VLP) has emerged as an effective scheme for multimodal representation learning, but its reliance on large-scale multimodal data poses significant challenges for medical applications. Federated learning (FL) offers a promising solution to scale up the dataset for medical VLP while preserving data privacy. However, we observe that client data heterogeneity in real-world scenarios could cause models to learn biased cross-modal alignment during local pre-training. This would limit the transferability of the federally learned representation model on downstream tasks. To address this challenge, we propose Federated Distributionally Robust Alignment (FedDRA), a framework for federated VLP that achieves robust vision-language alignment under heterogeneous conditions. Based on client datasets, we construct a distribution family that encompasses potential test-time domains, and apply a distributionally robust framework to optimize the pre-trained model's performance across this distribution space. This approach bridges the gap between pre-training samples and downstream applications. To avoid over-fitting on client-specific information, we use anchor representation from the global model to guide the local training, and adopt a two-stage approach to first tune deeper layers before updating the entire network. Extensive experiments on real-world datasets demonstrate FedDRA's effectiveness in enhancing medical federated VLP under data heterogeneity. Our method also adapts well to various medical pre-training methods.
♻ ☆ Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding
Large language models (LLMs) have shown impressive capabilities, but still struggle with complex reasoning tasks requiring multiple steps. While prompt-based methods like Chain-of-Thought (CoT) can improve LLM reasoning at inference time, optimizing reasoning capabilities during training remains challenging. We introduce LaTent Reasoning Optimization (LaTRO), a principled framework that formulates reasoning as sampling from a latent distribution and optimizes it via variational approaches. LaTRO enables LLMs to concurrently improve both their reasoning process and ability to evaluate reasoning quality, without requiring external feedback or reward models. We validate LaTRO through experiments on GSM8K and ARC-Challenge datasets using multiple model architectures. On GSM8K, LaTRO improves zero-shot accuracy by an average of 12.5% over base models and 9.6% over supervised fine-tuning across Phi-3.5-mini, Mistral-7B, and Llama-3.1-8B. Our findings suggest that pre-trained LLMs possess latent reasoning capabilities that can be unlocked and enhanced through our proposed optimization approach in a self-improvement manner. The code of LaTRO is available at \url{https://github.com/SalesforceAIResearch/LaTRO}.
♻ ☆ AdaZeta: Adaptive Zeroth-Order Tensor-Train Adaption for Memory-Efficient Large Language Models Fine-Tuning EMNLP 2024
Fine-tuning large language models (LLMs) has achieved remarkable performance across various natural language processing tasks, yet it demands more and more memory as model sizes keep growing. To address this issue, the recently proposed Memory-efficient Zeroth-order (MeZO) methods attempt to fine-tune LLMs using only forward passes, thereby avoiding the need for a backpropagation graph. However, significant performance drops and a high risk of divergence have limited their widespread adoption. In this paper, we propose the Adaptive Zeroth-order Tensor-Train Adaption (AdaZeta) framework, specifically designed to improve the performance and convergence of the ZO methods. To enhance dimension-dependent ZO estimation accuracy, we introduce a fast-forward, low-parameter tensorized adapter. To tackle the frequently observed divergence issue in large-scale ZO fine-tuning tasks, we propose an adaptive query number schedule that guarantees convergence. Detailed theoretical analysis and extensive experimental results on Roberta-Large and Llama-2-7B models substantiate the efficacy of our AdaZeta framework in terms of accuracy, memory efficiency, and convergence speed.
comment: Accepted for publication in EMNLP 2024
Computer Vision and Pattern Recognition 160
Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models
Large Language Models (LLMs) demonstrate enhanced capabilities and reliability by reasoning more, evolving from Chain-of-Thought prompting to product-level solutions like OpenAI o1. Despite various efforts to improve LLM reasoning, high-quality long-chain reasoning data and optimized training pipelines still remain inadequately explored in vision-language tasks. In this paper, we present Insight-V, an early effort to 1) scalably produce long and robust reasoning data for complex multi-modal tasks, and 2) an effective training pipeline to enhance the reasoning capabilities of multi-modal large language models (MLLMs). Specifically, to create long and structured reasoning data without human labor, we design a two-step pipeline with a progressive strategy to generate sufficiently long and diverse reasoning paths and a multi-granularity assessment method to ensure data quality. We observe that directly supervising MLLMs with such long and complex reasoning data will not yield ideal reasoning ability. To tackle this problem, we design a multi-agent system consisting of a reasoning agent dedicated to performing long-chain reasoning and a summary agent trained to judge and summarize reasoning results. We further incorporate an iterative DPO algorithm to enhance the reasoning agent's generation stability and quality. Based on the popular LLaVA-NeXT model and our stronger base MLLM, we demonstrate significant performance gains across challenging multi-modal benchmarks requiring visual reasoning. Benefiting from our multi-agent system, Insight-V can also easily maintain or improve performance on perception-focused multi-modal tasks.
☆ Stable Flow: Vital Layers for Training-Free Image Editing
Diffusion models have revolutionized the field of content synthesis and editing. Recent models have replaced the traditional UNet architecture with the Diffusion Transformer (DiT), and employed flow-matching for improved training and sampling. However, they exhibit limited generation diversity. In this work, we leverage this limitation to perform consistent image edits via selective injection of attention features. The main challenge is that, unlike the UNet-based models, DiT lacks a coarse-to-fine synthesis structure, making it unclear in which layers to perform the injection. Therefore, we propose an automatic method to identify "vital layers" within DiT, crucial for image formation, and demonstrate how these layers facilitate a range of controlled stable edits, from non-rigid modifications to object addition, using the same mechanism. Next, to enable real-image editing, we introduce an improved image inversion method for flow models. Finally, we evaluate our approach through qualitative and quantitative comparisons, along with a user study, and demonstrate its effectiveness across multiple applications. The project page is available at https://omriavrahami.com/stable-flow
comment: Project page is available at https://omriavrahami.com/stable-flow
☆ Revisiting the Integration of Convolution and Attention for Vision Backbone NeurIPS 2024
Convolutions (Convs) and multi-head self-attentions (MHSAs) are typically considered alternatives to each other for building vision backbones. Although some works try to integrate both, they apply the two operators simultaneously at the finest pixel granularity. With Convs responsible for per-pixel feature extraction already, the question is whether we still need to include the heavy MHSAs at such a fine-grained level. In fact, this is the root cause of the scalability issue w.r.t. the input resolution for vision transformers. To address this important problem, we propose in this work to use MSHAs and Convs in parallel \textbf{at different granularity levels} instead. Specifically, in each layer, we use two different ways to represent an image: a fine-grained regular grid and a coarse-grained set of semantic slots. We apply different operations to these two representations: Convs to the grid for local features, and MHSAs to the slots for global features. A pair of fully differentiable soft clustering and dispatching modules is introduced to bridge the grid and set representations, thus enabling local-global fusion. Through extensive experiments on various vision tasks, we empirically verify the potential of the proposed integration scheme, named \textit{GLMix}: by offloading the burden of fine-grained features to light-weight Convs, it is sufficient to use MHSAs in a few (e.g., 64) semantic slots to match the performance of recent state-of-the-art backbones, while being more efficient. Our visualization results also demonstrate that the soft clustering module produces a meaningful semantic grouping effect with only IN1k classification supervision, which may induce better interpretability and inspire new weakly-supervised semantic segmentation approaches. Code will be available at \url{https://github.com/rayleizhu/GLMix}.
comment: NeurIPS 2024
☆ Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation
Realistic simulation of dynamic scenes requires accurately capturing diverse material properties and modeling complex object interactions grounded in physical principles. However, existing methods are constrained to basic material types with limited predictable parameters, making them insufficient to represent the complexity of real-world materials. We introduce a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation. Our method utilizes multi-modal models to identify material types and initialize material parameters through image queries, while simultaneously inferring 3D Gaussian splats for detailed scene representation. We further refine these material parameters using video diffusion with a differentiable Material Point Method (MPM) and optical flow guidance rather than render loss or Score Distillation Sampling (SDS) loss. This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios, advancing both accuracy and flexibility in physics-based simulations.
comment: Homepage: https://zhuomanliu.github.io/PhysFlow/
Multimodal 3D Brain Tumor Segmentation with Adversarial Training and Conditional Random Field
Accurate brain tumor segmentation remains a challenging task due to structural complexity and great individual differences of gliomas. Leveraging the pre-eminent detail resilience of CRF and spatial feature extraction capacity of V-net, we propose a multimodal 3D Volume Generative Adversarial Network (3D-vGAN) for precise segmentation. The model utilizes Pseudo-3D for V-net improvement, adds conditional random field after generator and use original image as supplemental guidance. Results, using the BraTS-2018 dataset, show that 3D-vGAN outperforms classical segmentation models, including U-net, Gan, FCN and 3D V-net, reaching specificity over 99.8%.
comment: 13 pages, 7 figures, Annual Conference on Medical Image Understanding and Analysis (MIUA) 2024
☆ Adversarial Poisoning Attack on Quantum Machine Learning Models
With the growing interest in Quantum Machine Learning (QML) and the increasing availability of quantum computers through cloud providers, addressing the potential security risks associated with QML has become an urgent priority. One key concern in the QML domain is the threat of data poisoning attacks in the current quantum cloud setting. Adversarial access to training data could severely compromise the integrity and availability of QML models. Classical data poisoning techniques require significant knowledge and training to generate poisoned data, and lack noise resilience, making them ineffective for QML models in the Noisy Intermediate Scale Quantum (NISQ) era. In this work, we first propose a simple yet effective technique to measure intra-class encoder state similarity (ESS) by analyzing the outputs of encoding circuits. Leveraging this approach, we introduce a quantum indiscriminate data poisoning attack, QUID. Through extensive experiments conducted in both noiseless and noisy environments (e.g., IBM\_Brisbane's noise), across various architectures and datasets, QUID achieves up to $92\%$ accuracy degradation in model performance compared to baseline models and up to $75\%$ accuracy degradation compared to random label-flipping. We also tested QUID against state-of-the-art classical defenses, with accuracy degradation still exceeding $50\%$, demonstrating its effectiveness. This work represents the first attempt to reevaluate data poisoning attacks in the context of QML.
Multimodal Autoregressive Pre-training of Large Vision Encoders
We introduce a novel method for pre-training of large-scale vision encoders. Building on recent advancements in autoregressive pre-training of vision models, we extend this framework to a multimodal setting, i.e., images and text. In this paper, we present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process, scalability, and remarkable performance across a range of downstream tasks. This is achieved by pairing the vision encoder with a multimodal decoder that autoregressively generates raw image patches and text tokens. Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification. Notably, our AIMV2-3B encoder achieves 89.5% accuracy on ImageNet-1k with a frozen trunk. Furthermore, AIMV2 consistently outperforms state-of-the-art contrastive models (e.g., CLIP, SigLIP) in multimodal image understanding across diverse settings.
comment: https://github.com/apple/ml-aim
☆ Beyond Training: Dynamic Token Merging for Zero-Shot Video Understanding
Recent advancements in multimodal large language models (MLLMs) have opened new avenues for video understanding. However, achieving high fidelity in zero-shot video tasks remains challenging. Traditional video processing methods rely heavily on fine-tuning to capture nuanced spatial-temporal details, which incurs significant data and computation costs. In contrast, training-free approaches, though efficient, often lack robustness in preserving context-rich features across complex video content. To this end, we propose DYTO, a novel dynamic token merging framework for zero-shot video understanding that adaptively optimizes token efficiency while preserving crucial scene details. DYTO integrates a hierarchical frame selection and a bipartite token merging strategy to dynamically cluster key frames and selectively compress token sequences, striking a balance between computational efficiency with semantic richness. Extensive experiments across multiple benchmarks demonstrate the effectiveness of DYTO, achieving superior performance compared to both fine-tuned and training-free methods and setting a new state-of-the-art for zero-shot video understanding.
☆ Enhancing Diagnostic Precision in Gastric Bleeding through Automated Lesion Segmentation: A Deep DuS-KFCM Approach
Timely and precise classification and segmentation of gastric bleeding in endoscopic imagery are pivotal for the rapid diagnosis and intervention of gastric complications, which is critical in life-saving medical procedures. Traditional methods grapple with the challenge posed by the indistinguishable intensity values of bleeding tissues adjacent to other gastric structures. Our study seeks to revolutionize this domain by introducing a novel deep learning model, the Dual Spatial Kernelized Constrained Fuzzy C-Means (Deep DuS-KFCM) clustering algorithm. This Hybrid Neuro-Fuzzy system synergizes Neural Networks with Fuzzy Logic to offer a highly precise and efficient identification of bleeding regions. Implementing a two-fold coarse-to-fine strategy for segmentation, this model initially employs the Spatial Kernelized Fuzzy C-Means (SKFCM) algorithm enhanced with spatial intensity profiles and subsequently harnesses the state-of-the-art DeepLabv3+ with ResNet50 architecture to refine the segmentation output. Through extensive experiments across mainstream gastric bleeding and red spots datasets, our Deep DuS-KFCM model demonstrated unprecedented accuracy rates of 87.95%, coupled with a specificity of 96.33%, outperforming contemporary segmentation methods. The findings underscore the model's robustness against noise and its outstanding segmentation capabilities, particularly for identifying subtle bleeding symptoms, thereby presenting a significant leap forward in medical image processing.
☆ Baking Gaussian Splatting into Diffusion Denoiser for Fast and Scalable Single-stage Image-to-3D Generation
Existing feed-forward image-to-3D methods mainly rely on 2D multi-view diffusion models that cannot guarantee 3D consistency. These methods easily collapse when changing the prompt view direction and mainly handle object-centric prompt images. In this paper, we propose a novel single-stage 3D diffusion model, DiffusionGS, for object and scene generation from a single view. DiffusionGS directly outputs 3D Gaussian point clouds at each timestep to enforce view consistency and allow the model to generate robustly given prompt views of any directions, beyond object-centric inputs. Plus, to improve the capability and generalization ability of DiffusionGS, we scale up 3D training data by developing a scene-object mixed training strategy. Experiments show that our method enjoys better generation quality (2.20 dB higher in PSNR and 23.25 lower in FID) and over 5x faster speed (~6s on an A100 GPU) than SOTA methods. The user study and text-to-3D applications also reveals the practical values of our method. Our Project page at https://caiyuanhao1998.github.io/project/DiffusionGS/ shows the video and interactive generation results.
comment: A novel one-stage 3DGS-based diffusion generates objects and scenes from a single view in ~6 seconds
☆ Using Formal Models, Safety Shields and Certified Control to Validate AI-Based Train Systems
The certification of autonomous systems is an important concern in science and industry. The KI-LOK project explores new methods for certifying and safely integrating AI components into autonomous trains. We pursued a two-layered approach: (1) ensuring the safety of the steering system by formal analysis using the B method, and (2) improving the reliability of the perception system with a runtime certificate checker. This work links both strategies within a demonstrator that runs simulations on the formal model, controlled by the real AI output and the real certificate checker. The demonstrator is integrated into the validation tool ProB. This enables runtime monitoring, runtime verification, and statistical validation of formal safety properties using a formal B model. Consequently, one can detect and analyse potential vulnerabilities and weaknesses of the AI and the certificate checker. We apply these techniques to a signal detection case study and present our findings.
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ InCrowd-VI: A Realistic Visual-Inertial Dataset for Evaluating SLAM in Indoor Pedestrian-Rich Spaces for Human Navigation
Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control. InCrowd-VI features 58 sequences totaling a 5 km trajectory length and 1.5 hours of recording time, including RGB, stereo images, and IMU measurements. The dataset captures important challenges such as pedestrian occlusions, varying crowd densities, complex layouts, and lighting changes. Ground-truth trajectories, accurate to approximately 2 cm, are provided in the dataset, originating from the Meta Aria project machine perception SLAM service. In addition, a semi-dense 3D point cloud of scenes is provided for each sequence. The evaluation of state-of-the-art visual odometry (VO) and SLAM algorithms on InCrowd-VI revealed severe performance limitations in these realistic scenarios, demonstrating the need and value of the new dataset to advance SLAM research for visually impaired navigation in complex indoor environments.
comment: 18 pages, 7 figures, 5 tabels
☆ Contrasting local and global modeling with machine learning and satellite data: A case study estimating tree canopy height in African savannas
While advances in machine learning with satellite imagery (SatML) are facilitating environmental monitoring at a global scale, developing SatML models that are accurate and useful for local regions remains critical to understanding and acting on an ever-changing planet. As increasing attention and resources are being devoted to training SatML models with global data, it is important to understand when improvements in global models will make it easier to train or fine-tune models that are accurate in specific regions. To explore this question, we contrast local and global training paradigms for SatML through a case study of tree canopy height (TCH) mapping in the Karingani Game Reserve, Mozambique. We find that recent advances in global TCH mapping do not necessarily translate to better local modeling abilities in our study region. Specifically, small models trained only with locally-collected data outperform published global TCH maps, and even outperform globally pretrained models that we fine-tune using local data. Analyzing these results further, we identify specific points of conflict and synergy between local and global modeling paradigms that can inform future research toward aligning local and global performance objectives in geospatial machine learning.
comment: 31 pages; 9 figures
☆ Enhancing Medical Image Segmentation with Deep Learning and Diffusion Models
Medical image segmentation is crucial for accurate clinical diagnoses, yet it faces challenges such as low contrast between lesions and normal tissues, unclear boundaries, and high variability across patients. Deep learning has improved segmentation accuracy and efficiency, but it still relies heavily on expert annotations and struggles with the complexities of medical images. The small size of medical image datasets and the high cost of data acquisition further limit the performance of segmentation networks. Diffusion models, with their iterative denoising process, offer a promising alternative for better detail capture in segmentation. However, they face difficulties in accurately segmenting small targets and maintaining the precision of boundary details. This article discusses the importance of medical image segmentation, the limitations of current deep learning approaches, and the potential of diffusion models to address these challenges.
☆ DINO-X: A Unified Vision Model for Open-World Object Detection and Understanding
In this paper, we introduce DINO-X, which is a unified object-centric vision model developed by IDEA Research with the best open-world object detection performance to date. DINO-X employs the same Transformer-based encoder-decoder architecture as Grounding DINO 1.5 to pursue an object-level representation for open-world object understanding. To make long-tailed object detection easy, DINO-X extends its input options to support text prompt, visual prompt, and customized prompt. With such flexible prompt options, we develop a universal object prompt to support prompt-free open-world detection, making it possible to detect anything in an image without requiring users to provide any prompt. To enhance the model's core grounding capability, we have constructed a large-scale dataset with over 100 million high-quality grounding samples, referred to as Grounding-100M, for advancing the model's open-vocabulary detection performance. Pre-training on such a large-scale grounding dataset leads to a foundational object-level representation, which enables DINO-X to integrate multiple perception heads to simultaneously support multiple object perception and understanding tasks, including detection, segmentation, pose estimation, object captioning, object-based QA, etc. Experimental results demonstrate the superior performance of DINO-X. Specifically, the DINO-X Pro model achieves 56.0 AP, 59.8 AP, and 52.4 AP on the COCO, LVIS-minival, and LVIS-val zero-shot object detection benchmarks, respectively. Notably, it scores 63.3 AP and 56.5 AP on the rare classes of LVIS-minival and LVIS-val benchmarks, both improving the previous SOTA performance by 5.8 AP. Such a result underscores its significantly improved capacity for recognizing long-tailed objects.
comment: Technical Report
☆ Layer Pruning with Consensus: A Triple-Win Solution
Layer pruning offers a promising alternative to standard structured pruning, effectively reducing computational costs, latency, and memory footprint. While notable layer-pruning approaches aim to detect unimportant layers for removal, they often rely on single criteria that may not fully capture the complex, underlying properties of layers. We propose a novel approach that combines multiple similarity metrics into a single expressive measure of low-importance layers, called the Consensus criterion. Our technique delivers a triple-win solution: low accuracy drop, high-performance improvement, and increased robustness to adversarial attacks. With up to 78.80% FLOPs reduction and performance on par with state-of-the-art methods across different benchmarks, our approach reduces energy consumption and carbon emissions by up to 66.99% and 68.75%, respectively. Additionally, it avoids shortcut learning and improves robustness by up to 4 percentage points under various adversarial attacks. Overall, the Consensus criterion demonstrates its effectiveness in creating robust, efficient, and environmentally friendly pruned models.
☆ SplatR : Experience Goal Visual Rearrangement with 3D Gaussian Splatting and Dense Feature Matching
Experience Goal Visual Rearrangement task stands as a foundational challenge within Embodied AI, requiring an agent to construct a robust world model that accurately captures the goal state. The agent uses this world model to restore a shuffled scene to its original configuration, making an accurate representation of the world essential for successfully completing the task. In this work, we present a novel framework that leverages on 3D Gaussian Splatting as a 3D scene representation for experience goal visual rearrangement task. Recent advances in volumetric scene representation like 3D Gaussian Splatting, offer fast rendering of high quality and photo-realistic novel views. Our approach enables the agent to have consistent views of the current and the goal setting of the rearrangement task, which enables the agent to directly compare the goal state and the shuffled state of the world in image space. To compare these views, we propose to use a dense feature matching method with visual features extracted from a foundation model, leveraging its advantages of a more universal feature representation, which facilitates robustness, and generalization. We validate our approach on the AI2-THOR rearrangement challenge benchmark and demonstrate improvements over the current state of the art methods
☆ StereoCrafter-Zero: Zero-Shot Stereo Video Generation with Noisy Restart
Generating high-quality stereo videos that mimic human binocular vision requires maintaining consistent depth perception and temporal coherence across frames. While diffusion models have advanced image and video synthesis, generating high-quality stereo videos remains challenging due to the difficulty of maintaining consistent temporal and spatial coherence between left and right views. We introduce \textit{StereoCrafter-Zero}, a novel framework for zero-shot stereo video generation that leverages video diffusion priors without the need for paired training data. Key innovations include a noisy restart strategy to initialize stereo-aware latents and an iterative refinement process that progressively harmonizes the latent space, addressing issues like temporal flickering and view inconsistencies. Comprehensive evaluations, including quantitative metrics and user studies, demonstrate that \textit{StereoCrafter-Zero} produces high-quality stereo videos with improved depth consistency and temporal smoothness, even when depth estimations are imperfect. Our framework is robust and adaptable across various diffusion models, setting a new benchmark for zero-shot stereo video generation and enabling more immersive visual experiences. Our code can be found in~\url{https://github.com/shijianjian/StereoCrafter-Zero}.
EasyHOI: Unleashing the Power of Large Models for Reconstructing Hand-Object Interactions in the Wild
Our work aims to reconstruct hand-object interactions from a single-view image, which is a fundamental but ill-posed task. Unlike methods that reconstruct from videos, multi-view images, or predefined 3D templates, single-view reconstruction faces significant challenges due to inherent ambiguities and occlusions. These challenges are further amplified by the diverse nature of hand poses and the vast variety of object shapes and sizes. Our key insight is that current foundational models for segmentation, inpainting, and 3D reconstruction robustly generalize to in-the-wild images, which could provide strong visual and geometric priors for reconstructing hand-object interactions. Specifically, given a single image, we first design a novel pipeline to estimate the underlying hand pose and object shape using off-the-shelf large models. Furthermore, with the initial reconstruction, we employ a prior-guided optimization scheme, which optimizes hand pose to comply with 3D physical constraints and the 2D input image content. We perform experiments across several datasets and show that our method consistently outperforms baselines and faithfully reconstructs a diverse set of hand-object interactions. Here is the link of our project page: https://lym29.github.io/EasyHOI-page/
comment: Project page: https://lym29.github.io/EasyHOI-page/
☆ Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance
Large vision-language models (LVLMs) have achieved impressive results in various vision-language tasks. However, despite showing promising performance, LVLMs suffer from hallucinations caused by language bias, leading to diminished focus on images and ineffective visual comprehension. We identify two primary reasons for this bias: 1. Different scales of training data between the pretraining stage of LLM and multimodal alignment stage. 2. The learned inference bias due to short-term dependency of text data. Therefore, we propose LACING, a systemic framework designed to address the language bias of LVLMs with muLtimodal duAl-attention meChanIsm (MDA) aNd soft-image Guidance (IFG). Specifically, MDA introduces a parallel dual-attention mechanism that enhances the integration of visual inputs across the model. IFG introduces a learnable soft visual prompt during training and inference to replace visual inputs, designed to compel LVLMs to prioritize text inputs. Then, IFG further proposes a novel decoding strategy using the soft visual prompt to mitigate the model's over-reliance on adjacent text inputs. Comprehensive experiments demonstrate that our method effectively debiases LVLMs from their language bias, enhancing visual comprehension and reducing hallucinations without requiring additional training resources or data. The code and model are available at [lacing-lvlm.github.io](https://lacing-lvlm.github.io).
comment: 19 pages, 12 figures
☆ Guided MRI Reconstruction via Schrödinger Bridge
Magnetic Resonance Imaging (MRI) is a multi-contrast imaging technique in which different contrast images share similar structural information. However, conventional diffusion models struggle to effectively leverage this structural similarity. Recently, the Schr\"odinger Bridge (SB), a nonlinear extension of the diffusion model, has been proposed to establish diffusion paths between any distributions, allowing the incorporation of guided priors. This study proposes an SB-based, multi-contrast image-guided reconstruction framework that establishes a diffusion bridge between the guiding and target image distributions. By using the guiding image along with data consistency during sampling, the target image is reconstructed more accurately. To better address structural differences between images, we introduce an inversion strategy from the field of image editing, termed $\mathbf{I}^2$SB-inversion. Experiments on a paried T1 and T2-FLAIR datasets demonstrate that $\mathbf{I}^2$SB-inversion achieve a high acceleration up to 14.4 and outperforms existing methods in terms of both reconstruction accuracy and stability.
☆ CP-UNet: Contour-based Probabilistic Model for Medical Ultrasound Images Segmentation
Deep learning-based segmentation methods are widely utilized for detecting lesions in ultrasound images. Throughout the imaging procedure, the attenuation and scattering of ultrasound waves cause contour blurring and the formation of artifacts, limiting the clarity of the acquired ultrasound images. To overcome this challenge, we propose a contour-based probabilistic segmentation model CP-UNet, which guides the segmentation network to enhance its focus on contour during decoding. We design a novel down-sampling module to enable the contour probability distribution modeling and encoding stages to acquire global-local features. Furthermore, the Gaussian Mixture Model utilizes optimized features to model the contour distribution, capturing the uncertainty of lesion boundaries. Extensive experiments with several state-of-the-art deep learning segmentation methods on three ultrasound image datasets show that our method performs better on breast and thyroid lesions segmentation.
comment: 4 pages, 4 figures, 2 tables;For icassp2025
☆ AnywhereDoor: Multi-Target Backdoor Attacks on Object Detection
As object detection becomes integral to many safety-critical applications, understanding its vulnerabilities is essential. Backdoor attacks, in particular, pose a significant threat by implanting hidden backdoor in a victim model, which adversaries can later exploit to trigger malicious behaviors during inference. However, current backdoor techniques are limited to static scenarios where attackers must define a malicious objective before training, locking the attack into a predetermined action without inference-time adaptability. Given the expressive output space in object detection, including object existence detection, bounding box estimation, and object classification, the feasibility of implanting a backdoor that provides inference-time control with a high degree of freedom remains unexplored. This paper introduces AnywhereDoor, a flexible backdoor attack tailored for object detection. Once implanted, AnywhereDoor enables adversaries to specify different attack types (object vanishing, fabrication, or misclassification) and configurations (untargeted or targeted with specific classes) to dynamically control detection behavior. This flexibility is achieved through three key innovations: (i) objective disentanglement to support a broader range of attack combinations well beyond what existing methods allow; (ii) trigger mosaicking to ensure backdoor activations are robust, even against those object detectors that extract localized regions from the input image for recognition; and (iii) strategic batching to address object-level data imbalances that otherwise hinders a balanced manipulation. Extensive experiments demonstrate that AnywhereDoor provides attackers with a high degree of control, achieving an attack success rate improvement of nearly 80% compared to adaptations of existing methods for such flexible control.
☆ FocusLLaVA: A Coarse-to-Fine Approach for Efficient and Effective Visual Token Compression
Recent advances on Multi-modal Large Language Models have demonstrated that high-resolution image input is crucial for model capabilities, especially for fine-grained tasks. However, high-resolution images lead to a quadratic increase in the number of visual tokens input into LLMs, resulting in significant computational costs. Current work develop visual token compression methods to achieve efficiency improvements, often at the expense of performance. We argue that removing visual redundancy can simultaneously improve both efficiency and performance. We build a coarse-to-fine visual token compression method, with a vision-guided sampler for compressing redundant regions with low information density, and a text-guided sampler for selecting visual tokens that are strongly correlated with the user instructions.With these two modules, the proposed FocusLLaVA achieves improvements in both efficiency and performance. We validate the effectiveness of our approach on a wide range of evaluation datasets.
☆ Towards Context-Rich Automated Biodiversity Assessments: Deriving AI-Powered Insights from Camera Trap Data
Camera traps offer enormous new opportunities in ecological studies, but current automated image analysis methods often lack the contextual richness needed to support impactful conservation outcomes. Here we present an integrated approach that combines deep learning-based vision and language models to improve ecological reporting using data from camera traps. We introduce a two-stage system: YOLOv10-X to localise and classify species (mammals and birds) within images, and a Phi-3.5-vision-instruct model to read YOLOv10-X binding box labels to identify species, overcoming its limitation with hard to classify objects in images. Additionally, Phi-3.5 detects broader variables, such as vegetation type, and time of day, providing rich ecological and environmental context to YOLO's species detection output. When combined, this output is processed by the model's natural language system to answer complex queries, and retrieval-augmented generation (RAG) is employed to enrich responses with external information, like species weight and IUCN status (information that cannot be obtained through direct visual analysis). This information is used to automatically generate structured reports, providing biodiversity stakeholders with deeper insights into, for example, species abundance, distribution, animal behaviour, and habitat selection. Our approach delivers contextually rich narratives that aid in wildlife management decisions. By providing contextually rich insights, our approach not only reduces manual effort but also supports timely decision-making in conservation, potentially shifting efforts from reactive to proactive management.
comment: 32 Pages, 22 images
☆ Generative Outpainting To Enhance the Memorability of Short-Form Videos
With the expanding use of the short-form video format in advertising, social media, entertainment, education and more, there is a need for such media to both captivate and be remembered. Video memorability indicates to us how likely a video is to be remembered by a viewer who has no emotional or personal connection with its content. This paper presents the results of using generative outpainting to expand the screen size of a short-form video with a view to improving its memorability. Advances in machine learning and deep learning are compared and leveraged to understand how extending the borders of video screensizes can affect their memorability to viewers. Using quantitative evaluation we determine the best-performing model for outpainting and the impact of outpainting based on image saliency on video memorability scores
Novel View Extrapolation with Video Diffusion Priors
The field of novel view synthesis has made significant strides thanks to the development of radiance field methods. However, most radiance field techniques are far better at novel view interpolation than novel view extrapolation where the synthesis novel views are far beyond the observed training views. We design ViewExtrapolator, a novel view synthesis approach that leverages the generative priors of Stable Video Diffusion (SVD) for realistic novel view extrapolation. By redesigning the SVD denoising process, ViewExtrapolator refines the artifact-prone views rendered by radiance fields, greatly enhancing the clarity and realism of the synthesized novel views. ViewExtrapolator is a generic novel view extrapolator that can work with different types of 3D rendering such as views rendered from point clouds when only a single view or monocular video is available. Additionally, ViewExtrapolator requires no fine-tuning of SVD, making it both data-efficient and computation-efficient. Extensive experiments demonstrate the superiority of ViewExtrapolator in novel view extrapolation. Project page: \url{https://kunhao-liu.github.io/ViewExtrapolator/}.
☆ Is this Generated Person Existed in Real-world? Fine-grained Detecting and Calibrating Abnormal Human-body
Recent improvements in visual synthesis have significantly enhanced the depiction of generated human photos, which are pivotal due to their wide applicability and demand. Nonetheless, the existing text-to-image or text-to-video models often generate low-quality human photos that might differ considerably from real-world body structures, referred to as "abnormal human bodies". Such abnormalities, typically deemed unacceptable, pose considerable challenges in the detection and repair of them within human photos. These challenges require precise abnormality recognition capabilities, which entail pinpointing both the location and the abnormality type. Intuitively, Visual Language Models (VLMs) that have obtained remarkable performance on various visual tasks are quite suitable for this task. However, their performance on abnormality detection in human photos is quite poor. Hence, it is quite important to highlight this task for the research community. In this paper, we first introduce a simple yet challenging task, i.e., \textbf{F}ine-grained \textbf{H}uman-body \textbf{A}bnormality \textbf{D}etection \textbf{(FHAD)}, and construct two high-quality datasets for evaluation. Then, we propose a meticulous framework, named HumanCalibrator, which identifies and repairs abnormalities in human body structures while preserving the other content. Experiments indicate that our HumanCalibrator achieves high accuracy in abnormality detection and accomplishes an increase in visual comparisons while preserving the other visual content.
comment: 16 pages, 14 figures
☆ Revised Regularization for Efficient Continual Learning through Correlation-Based Parameter Update in Bayesian Neural Networks
We propose a Bayesian neural network-based continual learning algorithm using Variational Inference, aiming to overcome several drawbacks of existing methods. Specifically, in continual learning scenarios, storing network parameters at each step to retain knowledge poses challenges. This is compounded by the crucial need to mitigate catastrophic forgetting, particularly given the limited access to past datasets, which complicates maintaining correspondence between network parameters and datasets across all sessions. Current methods using Variational Inference with KL divergence risk catastrophic forgetting during uncertain node updates and coupled disruptions in certain nodes. To address these challenges, we propose the following strategies. To reduce the storage of the dense layer parameters, we propose a parameter distribution learning method that significantly reduces the storage requirements. In the continual learning framework employing variational inference, our study introduces a regularization term that specifically targets the dynamics and population of the mean and variance of the parameters. This term aims to retain the benefits of KL divergence while addressing related challenges. To ensure proper correspondence between network parameters and the data, our method introduces an importance-weighted Evidence Lower Bound term to capture data and parameter correlations. This enables storage of common and distinctive parameter hyperspace bases. The proposed method partitions the parameter space into common and distinctive subspaces, with conditions for effective backward and forward knowledge transfer, elucidating the network-parameter dataset correspondence. The experimental results demonstrate the effectiveness of our method across diverse datasets and various combinations of sequential datasets, yielding superior performance compared to existing approaches.
comment: at ICVGIP 2024
☆ Regional Attention for Shadow Removal
Shadow, as a natural consequence of light interacting with objects, plays a crucial role in shaping the aesthetics of an image, which however also impairs the content visibility and overall visual quality. Recent shadow removal approaches employ the mechanism of attention, due to its effectiveness, as a key component. However, they often suffer from two issues including large model size and high computational complexity for practical use. To address these shortcomings, this work devises a lightweight yet accurate shadow removal framework. First, we analyze the characteristics of the shadow removal task to seek the key information required for reconstructing shadow regions and designing a novel regional attention mechanism to effectively capture such information. Then, we customize a Regional Attention Shadow Removal Model (RASM, in short), which leverages non-shadow areas to assist in restoring shadow ones. Unlike existing attention-based models, our regional attention strategy allows each shadow region to interact more rationally with its surrounding non-shadow areas, for seeking the regional contextual correlation between shadow and non-shadow areas. Extensive experiments are conducted to demonstrate that our proposed method delivers superior performance over other state-of-the-art models in terms of accuracy and efficiency, making it appealing for practical applications.
☆ ComfyGI: Automatic Improvement of Image Generation Workflows
Automatic image generation is no longer just of interest to researchers, but also to practitioners. However, current models are sensitive to the settings used and automatic optimization methods often require human involvement. To bridge this gap, we introduce ComfyGI, a novel approach to automatically improve workflows for image generation without the need for human intervention driven by techniques from genetic improvement. This enables image generation with significantly higher quality in terms of the alignment with the given description and the perceived aesthetics. On the performance side, we find that overall, the images generated with an optimized workflow are about 50% better compared to the initial workflow in terms of the median ImageReward score. These already good results are even surpassed in our human evaluation, as the participants preferred the images improved by ComfyGI in around 90% of the cases.
☆ Deep Learning Approach for Enhancing Oral Squamous Cell Carcinoma with LIME Explainable AI Technique
The goal of the present study is to analyze an application of deep learning models in order to augment the diagnostic performance of oral squamous cell carcinoma (OSCC) with a longitudinal cohort study using the Histopathological Imaging Database for oral cancer analysis. The dataset consisted of 5192 images (2435 Normal and 2511 OSCC), which were allocated between training, testing, and validation sets with an estimated ratio repartition of about 52% for the OSCC group, and still, our performance measure was validated on a combination set that contains almost equal number of sample in this use case as entire database have been divided into half using stratified splitting technique based again near binary proportion but total distribution was around even. We selected four deep-learning architectures for evaluation in the present study: ResNet101, DenseNet121, VGG16, and EfficientnetB3. EfficientNetB3 was found to be the best, with an accuracy of 98.33% and F1 score (0.9844), and it took remarkably less computing power in comparison with other models. The subsequent one was DenseNet121, with 90.24% accuracy and an F1 score of 90.45%. Moreover, we employed the Local Interpretable Model-agnostic Explanations (LIME) method to clarify why EfficientNetB3 made certain decisions with its predictions to improve the explainability and trustworthiness of results. This work provides evidence for the possible superior diagnosis in OSCC activated from the EfficientNetB3 model with the explanation of AI techniques such as LIME and paves an important groundwork to build on towards clinical usage.
comment: Under Review at an IEEE conference
☆ CompetitorFormer: Competitor Transformer for 3D Instance Segmentation
Transformer-based methods have become the dominant approach for 3D instance segmentation. These methods predict instance masks via instance queries, ranking them by classification confidence and IoU scores to select the top prediction as the final outcome. However, it has been observed that the current models employ a fixed and higher number of queries than the instances present within a scene. In such instances, multiple queries predict the same instance, yet only a single query is ultimately optimized. The close scores of queries in the lower-level decoders make it challenging for the dominant query to distinguish itself rapidly, which ultimately impairs the model's accuracy and convergence efficiency. This phenomenon is referred to as inter-query competition. To address this challenge, we put forth a series of plug-and-play competition-oriented designs, collectively designated as the CompetitorFormer, with the aim of reducing competition and facilitating a dominant query. Experiments showed that integrating our designs with state-of-the-art frameworks consistently resulted in significant performance improvements in 3D instance segmentation across a range of datasets.
Spatiotemporal Decoupling for Efficient Vision-Based Occupancy Forecasting
The task of occupancy forecasting (OCF) involves utilizing past and present perception data to predict future occupancy states of autonomous vehicle surrounding environments, which is critical for downstream tasks such as obstacle avoidance and path planning. Existing 3D OCF approaches struggle to predict plausible spatial details for movable objects and suffer from slow inference speeds due to neglecting the bias and uneven distribution of changing occupancy states in both space and time. In this paper, we propose a novel spatiotemporal decoupling vision-based paradigm to explicitly tackle the bias and achieve both effective and efficient 3D OCF. To tackle spatial bias in empty areas, we introduce a novel spatial representation that decouples the conventional dense 3D format into 2D bird's-eye view (BEV) occupancy with corresponding height values, enabling 3D OCF derived only from 2D predictions thus enhancing efficiency. To reduce temporal bias on static voxels, we design temporal decoupling to improve end-to-end OCF by temporally associating instances via predicted flows. We develop an efficient multi-head network EfficientOCF to achieve 3D OCF with our devised spatiotemporally decoupled representation. A new metric, conditional IoU (C-IoU), is also introduced to provide a robust 3D OCF performance assessment, especially in datasets with missing or incomplete annotations. The experimental results demonstrate that EfficientOCF surpasses existing baseline methods on accuracy and efficiency, achieving state-of-the-art performance with a fast inference time of 82.33ms with a single GPU. Our code will be released as open source.
☆ FoPru: Focal Pruning for Efficient Large Vision-Language Models
Large Vision-Language Models (LVLMs) represent a significant advancement toward achieving superior multimodal capabilities by enabling powerful Large Language Models (LLMs) to understand visual input. Typically, LVLMs utilize visual encoders, such as CLIP, to transform images into visual tokens, which are then aligned with textual tokens through projection layers before being input into the LLM for inference. Although existing LVLMs have achieved significant success, their inference efficiency is still limited by the substantial number of visual tokens and the potential redundancy among them. To mitigate this issue, we propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder. Specifically, we introduce two alternative pruning strategies: 1) the rank strategy, which leverages all token significance scores to retain more critical tokens in a global view; 2) the row strategy, which focuses on preserving continuous key information in images from a local perspective. Finally, the selected tokens are reordered to maintain their original positional relationships. Extensive experiments across various LVLMs and multimodal datasets demonstrate that our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
comment: 11 pages, 7 figures
☆ Creating a Formally Verified Neural Network for Autonomous Navigation: An Experience Report
The increased reliance of self-driving vehicles on neural networks opens up the challenge of their verification. In this paper we present an experience report, describing a case study which we undertook to explore the design and training of a neural network on a custom dataset for vision-based autonomous navigation. We are particularly interested in the use of machine learning with differentiable logics to obtain networks satisfying basic safety properties by design, guaranteeing the behaviour of the neural network after training. We motivate the choice of a suitable neural network verifier for our purposes and report our observations on the use of neural network verifiers for self-driving systems.
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks
Due to limitations in acquisition equipment, noise perturbations often corrupt 3-D point clouds, hindering down-stream tasks such as surface reconstruction, rendering, and further processing. Existing 3-D point cloud denoising methods typically fail to reliably fit the underlying continuous surface, resulting in a degradation of reconstruction performance. This paper introduces fine-granularity dynamic graph convolutional networks called GD-GCN, a novel approach to denoising in 3-D point clouds. The GD-GCN employs micro-step temporal graph convolution (MST-GConv) to perform feature learning in a gradual manner. Compared with the conventional GCN, which commonly uses discrete integer-step graph convolution, this modification introduces a more adaptable and nuanced approach to feature learning within graph convolution networks. It more accurately depicts the process of fitting the point cloud with noise to the underlying surface by and the learning process for MST-GConv acts like a changing system and is managed through a type of neural network known as neural Partial Differential Equations (PDEs). This means it can adapt and improve over time. GD-GCN approximates the Riemannian metric, calculating distances between points along a low-dimensional manifold. This capability allows it to understand the local geometric structure and effectively capture diverse relationships between points from different geometric regions through geometric graph construction based on Riemannian distances. Additionally, GD-GCN incorporates robust graph spectral filters based on the Bernstein polynomial approximation, which modulate eigenvalues for complex and arbitrary spectral responses, providing theoretical guarantees for BIBO stability. Symmetric channel mixing matrices further enhance filter flexibility by enabling channel-level scaling and shifting in the spectral domain.
☆ Differentiable SVD based on Moore-Penrose Pseudoinverse for Inverse Imaging Problems
Low-rank regularization-based deep unrolling networks have achieved remarkable success in various inverse imaging problems (IIPs). However, the singular value decomposition (SVD) is non-differentiable when duplicated singular values occur, leading to severe numerical instability during training. In this paper, we propose a differentiable SVD based on the Moore-Penrose pseudoinverse to address this issue. To the best of our knowledge, this is the first work to provide a comprehensive analysis of the differentiability of the trivial SVD. Specifically, we show that the non-differentiability of SVD is essentially due to an underdetermined system of linear equations arising in the derivation process. We utilize the Moore-Penrose pseudoinverse to solve the system, thereby proposing a differentiable SVD. A numerical stability analysis in the context of IIPs is provided. Experimental results in color image compressed sensing and dynamic MRI reconstruction show that our proposed differentiable SVD can effectively address the numerical instability issue while ensuring computational precision. Code is available at https://github.com/yhao-z/SVD-inv.
comment: 11 pages
☆ Visual Contexts Clarify Ambiguous Expressions: A Benchmark Dataset
The ability to perform complex reasoning across multimodal inputs is essential for models to effectively interact with humans in real-world scenarios. Advancements in vision-language models have significantly improved performance on tasks that require processing explicit and direct textual inputs, such as Visual Question Answering (VQA) and Visual Grounding (VG). However, less attention has been given to improving the model capabilities to comprehend nuanced and ambiguous forms of communication. This presents a critical challenge, as human language in real-world interactions often convey hidden intentions that rely on context for accurate interpretation. To address this gap, we propose VAGUE, a multimodal benchmark comprising 3.9K indirect human utterances paired with corresponding scenes. Additionally, we contribute a model-based pipeline for generating prompt-solution pairs from input images. Our work aims to delve deeper into the ability of models to understand indirect communication and seek to contribute to the development of models capable of more refined and human-like interactions. Extensive evaluation on multiple VLMs reveals that mainstream models still struggle with indirect communication when required to perform complex linguistic and visual reasoning. We release our code and data at https://github.com/Hazel-Heejeong-Nam/VAGUE.git.
☆ GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs CVPR '25
Large Language Models (LLMs) have shown impressive proficiency across a range of natural language processing tasks yet remain vulnerable to adversarial prompts, known as jailbreak attacks, carefully designed to elicit harmful responses from LLMs. Traditional methods rely on manual heuristics, which suffer from limited generalizability. While being automatic, optimization-based attacks often produce unnatural jailbreak prompts that are easy to detect by safety filters or require high computational overhead due to discrete token optimization. Witnessing the limitations of existing jailbreak methods, we introduce Generative Adversarial Suffix Prompter (GASP), a novel framework that combines human-readable prompt generation with Latent Bayesian Optimization (LBO) to improve adversarial suffix creation in a fully black-box setting. GASP leverages LBO to craft adversarial suffixes by efficiently exploring continuous embedding spaces, gradually optimizing the model to improve attack efficacy while balancing prompt coherence through a targeted iterative refinement procedure. Our experiments show that GASP can generate natural jailbreak prompts, significantly improving attack success rates, reducing training times, and accelerating inference speed, thus making it an efficient and scalable solution for red-teaming LLMs.
comment: 28 pages, 9 tables, 13 figures; under review at CVPR '25
☆ RestorerID: Towards Tuning-Free Face Restoration with ID Preservation
Blind face restoration has made great progress in producing high-quality and lifelike images. Yet it remains challenging to preserve the ID information especially when the degradation is heavy. Current reference-guided face restoration approaches either require face alignment or personalized test-tuning, which are unfaithful or time-consuming. In this paper, we propose a tuning-free method named RestorerID that incorporates ID preservation during face restoration. RestorerID is a diffusion model-based method that restores low-quality images with varying levels of degradation by using a single reference image. To achieve this, we propose a unified framework to combine the ID injection with the base blind face restoration model. In addition, we design a novel Face ID Rebalancing Adapter (FIR-Adapter) to tackle the problems of content unconsistency and contours misalignment that are caused by information conflicts between the low-quality input and reference image. Furthermore, by employing an Adaptive ID-Scale Adjusting strategy, RestorerID can produce superior restored images across various levels of degradation. Experimental results on the Celeb-Ref dataset and real-world scenarios demonstrate that RestorerID effectively delivers high-quality face restoration with ID preservation, achieving a superior performance compared to the test-tuning approaches and other reference-guided ones. The code of RestorerID is available at \url{https://github.com/YingJiacheng/RestorerID}.
comment: 10 pages, 10 figures
☆ Point Cloud Resampling with Learnable Heat Diffusion
Generative diffusion models have shown empirical successes in point cloud resampling, generating a denser and more uniform distribution of points from sparse or noisy 3D point clouds by progressively refining noise into structure. However, existing diffusion models employ manually predefined schemes, which often fail to recover the underlying point cloud structure due to the rigid and disruptive nature of the geometric degradation. To address this issue, we propose a novel learnable heat diffusion framework for point cloud resampling, which directly parameterizes the marginal distribution for the forward process by learning the adaptive heat diffusion schedules and local filtering scales of the time-varying heat kernel, and consequently, generates an adaptive conditional prior for the reverse process. Unlike previous diffusion models with a fixed prior, the adaptive conditional prior selectively preserves geometric features of the point cloud by minimizing a refined variational lower bound, guiding the points to evolve towards the underlying surface during the reverse process. Extensive experimental results demonstrate that the proposed point cloud resampling achieves state-of-the-art performance in representative reconstruction tasks including point cloud denoising and upsampling.
☆ Uncertainty-Aware Regression for Socio-Economic Estimation via Multi-View Remote Sensing
Remote sensing imagery offers rich spectral data across extensive areas for Earth observation. Many attempts have been made to leverage these data with transfer learning to develop scalable alternatives for estimating socio-economic conditions, reducing reliance on expensive survey-collected data. However, much of this research has primarily focused on daytime satellite imagery due to the limitation that most pre-trained models are trained on 3-band RGB images. Consequently, modeling techniques for spectral bands beyond the visible spectrum have not been thoroughly investigated. Additionally, quantifying uncertainty in remote sensing regression has been less explored, yet it is essential for more informed targeting and iterative collection of ground truth survey data. In this paper, we introduce a novel framework that leverages generic foundational vision models to process remote sensing imagery using combinations of three spectral bands to exploit multi-spectral data. We also employ methods such as heteroscedastic regression and Bayesian modeling to generate uncertainty estimates for the predictions. Experimental results demonstrate that our method outperforms existing models that use RGB or multi-spectral models with unstructured band usage. Moreover, our framework helps identify uncertain predictions, guiding future ground truth data acquisition.
comment: 11 pages, 4 figures
☆ WARLearn: Weather-Adaptive Representation Learning WACV
This paper introduces WARLearn, a novel framework designed for adaptive representation learning in challenging and adversarial weather conditions. Leveraging the in-variance principal used in Barlow Twins, we demonstrate the capability to port the existing models initially trained on clear weather data to effectively handle adverse weather conditions. With minimal additional training, our method exhibits remarkable performance gains in scenarios characterized by fog and low-light conditions. This adaptive framework extends its applicability beyond adverse weather settings, offering a versatile solution for domains exhibiting variations in data distributions. Furthermore, WARLearn is invaluable in scenarios where data distributions undergo significant shifts over time, enabling models to remain updated and accurate. Our experimental findings reveal a remarkable performance, with a mean average precision (mAP) of 52.6% on unseen real-world foggy dataset (RTTS). Similarly, in low light conditions, our framework achieves a mAP of 55.7% on unseen real-world low light dataset (ExDark). Notably, WARLearn surpasses the performance of state-of-the-art frameworks including FeatEnHancer, Image Adaptive YOLO, DENet, C2PNet, PairLIE and ZeroDCE, by a substantial margin in adverse weather, improving the baseline performance in both foggy and low light conditions. The WARLearn code is available at https://github.com/ShubhamAgarwal12/WARLearn
comment: Accepted for publication in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2025
☆ MetaCropFollow: Few-Shot Adaptation with Meta-Learning for Under-Canopy Navigation
Autonomous under-canopy navigation faces additional challenges compared to over-canopy settings - for example the tight spacing between the crop rows, degraded GPS accuracy and excessive clutter. Keypoint-based visual navigation has been shown to perform well in these conditions, however the differences between agricultural environments in terms of lighting, season, soil and crop type mean that a domain shift will likely be encountered at some point of the robot deployment. In this paper, we explore the use of Meta-Learning to overcome this domain shift using a minimal amount of data. We train a base-learner that can quickly adapt to new conditions, enabling more robust navigation in low-data regimes.
Self-supervised learning for radio-astronomy source classification: a benchmark
The upcoming Square Kilometer Array (SKA) telescope marks a significant step forward in radio astronomy, presenting new opportunities and challenges for data analysis. Traditional visual models pretrained on optical photography images may not perform optimally on radio interferometry images, which have distinct visual characteristics. Self-Supervised Learning (SSL) offers a promising approach to address this issue, leveraging the abundant unlabeled data in radio astronomy to train neural networks that learn useful representations from radio images. This study explores the application of SSL to radio astronomy, comparing the performance of SSL-trained models with that of traditional models pretrained on natural images, evaluating the importance of data curation for SSL, and assessing the potential benefits of self-supervision to different domain-specific radio astronomy datasets. Our results indicate that, SSL-trained models achieve significant improvements over the baseline in several downstream tasks, especially in the linear evaluation setting; when the entire backbone is fine-tuned, the benefits of SSL are less evident but still outperform pretraining. These findings suggest that SSL can play a valuable role in efficiently enhancing the analysis of radio astronomical data. The trained models and code is available at: \url{https://github.com/dr4thmos/solo-learn-radio}
☆ Multi LoRA Meets Vision: Merging multiple adapters to create a multi task model
Parameter efficient finetuning (PEFT) methods are widely used in LLMs and generative models in computer vision. Especially one can use multiple of these during inference to change the behavior of the base model. In this paper we investigated whether multiple LoRA adapters trained on computer vision tasks can be merged together and used during inference without loss in performance. By achieving this, multitask models can be created just by merging different LoRAs. Merging these will reduce inference time and it will not require any additional retraining. We have trained adapters on six different tasks and evaluated their performance when they are merged together. For comparison we used a model with a frozen backbone and finetuned its head. Our results show that even with simple merging techniques creating a multitask model by merging adapters is achievable by slightly loosing performance in some cases. In our experiments we merged up to three adapters together. Depending on the task and the similarity of the data adapters were trained on, merges can outperform head finetuning. We have observed that LoRAs trained with dissimilar datasets tend to perform better compared to model trained on similar datasets.
☆ MMGenBench: Evaluating the Limits of LMMs from the Text-to-Image Generation Perspective
Large Multimodal Models (LMMs) have demonstrated remarkable capabilities. While existing benchmarks for evaluating LMMs mainly focus on image comprehension, few works evaluate them from the image generation perspective. To address this issue, we propose a straightforward automated evaluation pipeline. Specifically, this pipeline requires LMMs to generate an image-prompt from a given input image. Subsequently, it employs text-to-image generative models to create a new image based on these generated prompts. Finally, we evaluate the performance of LMMs by comparing the original image with the generated one. Furthermore, we introduce MMGenBench-Test, a comprehensive benchmark developed to evaluate LMMs across 13 distinct image patterns, and MMGenBench-Domain, targeting the performance evaluation of LMMs within the generative image domain. A thorough evaluation involving over 50 popular LMMs demonstrates the effectiveness and reliability in both the pipeline and benchmark. Our observations indicate that numerous LMMs excelling in existing benchmarks fail to adequately complete the basic tasks, related to image understanding and description. This finding highlights the substantial potential for performance improvement in current LMMs and suggests avenues for future model optimization. Concurrently, our pipeline facilitates the efficient assessment of LMMs performance across diverse domains by using solely image inputs.
comment: This project is available at: https://github.com/lerogo/MMGenBench
Stereo Anything: Unifying Stereo Matching with Large-Scale Mixed Data
Stereo matching has been a pivotal component in 3D vision, aiming to find corresponding points between pairs of stereo images to recover depth information. In this work, we introduce StereoAnything, a highly practical solution for robust stereo matching. Rather than focusing on a specialized model, our goal is to develop a versatile foundational model capable of handling stereo images across diverse environments. To this end, we scale up the dataset by collecting labeled stereo images and generating synthetic stereo pairs from unlabeled monocular images. To further enrich the model's ability to generalize across different conditions, we introduce a novel synthetic dataset that complements existing data by adding variability in baselines, camera angles, and scene types. We extensively evaluate the zero-shot capabilities of our model on five public datasets, showcasing its impressive ability to generalize to new, unseen data. Code will be available at \url{https://github.com/XiandaGuo/OpenStereo}.
comment: Code will be available at \url{https://github.com/XiandaGuo/OpenStereo}
☆ Out-Of-Distribution Detection with Diversification (Provably)
Out-of-distribution (OOD) detection is crucial for ensuring reliable deployment of machine learning models. Recent advancements focus on utilizing easily accessible auxiliary outliers (e.g., data from the web or other datasets) in training. However, we experimentally reveal that these methods still struggle to generalize their detection capabilities to unknown OOD data, due to the limited diversity of the auxiliary outliers collected. Therefore, we thoroughly examine this problem from the generalization perspective and demonstrate that a more diverse set of auxiliary outliers is essential for enhancing the detection capabilities. However, in practice, it is difficult and costly to collect sufficiently diverse auxiliary outlier data. Therefore, we propose a simple yet practical approach with a theoretical guarantee, termed Diversity-induced Mixup for OOD detection (diverseMix), which enhances the diversity of auxiliary outlier set for training in an efficient way. Extensive experiments show that diverseMix achieves superior performance on commonly used and recent challenging large-scale benchmarks, which further confirm the importance of the diversity of auxiliary outliers.
☆ Uterine Ultrasound Image Captioning Using Deep Learning Techniques
Medical imaging has significantly revolutionized medical diagnostics and treatment planning, progressing from early X-ray usage to sophisticated methods like MRIs, CT scans, and ultrasounds. This paper investigates the use of deep learning for medical image captioning, with a particular focus on uterine ultrasound images. These images are vital in obstetrics and gynecology for diagnosing and monitoring various conditions across different age groups. However, their interpretation is often challenging due to their complexity and variability. To address this, a deep learning-based medical image captioning system was developed, integrating Convolutional Neural Networks with a Bidirectional Gated Recurrent Unit network. This hybrid model processes both image and text features to generate descriptive captions for uterine ultrasound images. Our experimental results demonstrate the effectiveness of this approach over baseline methods, with the proposed model achieving superior performance in generating accurate and informative captions, as indicated by higher BLEU and ROUGE scores. By enhancing the interpretation of uterine ultrasound images, our research aims to assist medical professionals in making timely and accurate diagnoses, ultimately contributing to improved patient care.
☆ Automatic brain tumor segmentation in 2D intra-operative ultrasound images using MRI tumor annotations
Automatic segmentation of brain tumors in intra-operative ultrasound (iUS) images could facilitate localization of tumor tissue during resection surgery. The lack of large annotated datasets limits the current models performances. In this paper, we investigate the use of tumor annotations in pre-operative MRI images, which are more easily accessible than annotations in iUS images, for training of deep learning models for iUS brain tumor segmentation. We used 180 annotated pre-operative MRI images with corresponding unannotated iUS images, and 29 annotated iUS images. Image registration was performed to transfer the MRI annotations to the corresponding iUS images before training models with the nnU-Net framework. To validate the use of MRI labels, the models were compared to a model trained with only US annotated tumors, and a model with both US and MRI annotated tumors. In addition, the results were compared to annotations validated by an expert neurosurgeon on the same test set to measure inter-observer variability. The results showed similar performance for a model trained with only MRI annotated tumors, compared to a model trained with only US annotated tumors. The model trained using both modalities obtained slightly better results with an average Dice score of 0.62, where external expert annotations achieved a score of 0.67. The results also showed that the deep learning models were comparable to expert annotation for larger tumors (> 200 mm2), but perform clearly worse for smaller tumors (< 200 mm2). This shows that MRI tumor annotations can be used as a substitute for US tumor annotations to train a deep learning model for automatic brain tumor segmentation in intra-operative ultrasound images. Small tumors is a limitation for the current models and will be the focus of future work. The main models are available here: https://github.com/mathildefaanes/us_brain_tumor_segmentation.
comment: 19, 8 figures, submitted to International Journal of Computer Assisted Radiology and Surgery
☆ Experimental comparison of graph-based approximate nearest neighbor search algorithms on edge devices
In this paper, we present an experimental comparison of various graph-based approximate nearest neighbor (ANN) search algorithms deployed on edge devices for real-time nearest neighbor search applications, such as smart city infrastructure and autonomous vehicles. To the best of our knowledge, this specific comparative analysis has not been previously conducted. While existing research has explored graph-based ANN algorithms, it has often been limited to single-threaded implementations on standard commodity hardware. Our study leverages the full computational and storage capabilities of edge devices, incorporating additional metrics such as insertion and deletion latency of new vectors and power consumption. This comprehensive evaluation aims to provide valuable insights into the performance and suitability of these algorithms for edge-based real-time tracking systems enhanced by nearest-neighbor search algorithms.
☆ SEMPose: A Single End-to-end Network for Multi-object Pose Estimation
In computer vision, estimating the six-degree-of-freedom pose from an RGB image is a fundamental task. However, this task becomes highly challenging in multi-object scenes. Currently, the best methods typically employ an indirect strategy, which identifies 2D and 3D correspondences, and then solves with the Perspective-n-Points method. Yet, this approach cannot be trained end-to-end. Direct methods, on the other hand, suffer from lower accuracy due to challenges such as varying object sizes and occlusions. To address these issues, we propose SEMPose, an end-to-end multi-object pose estimation network. SEMPose utilizes a well-designed texture-shape guided feature pyramid network, effectively tackling the challenge of object size variations. Additionally, it employs an iterative refinement head structure, progressively regressing rotation and translation separately to enhance estimation accuracy. During training, we alleviate the impact of occlusion by selecting positive samples from visible parts. Experimental results demonstrate that SEMPose can perform inference at 32 FPS without requiring inputs other than the RGB image. It can accurately estimate the poses of multiple objects in real time, with inference time unaffected by the number of target objects. On the LM-O and YCB-V datasets, our method outperforms other RGB-based single-model methods, achieving higher accuracy. Even when compared with multi-model methods and approaches that use additional refinement, our results remain competitive.
☆ Graph Domain Adaptation with Dual-branch Encoder and Two-level Alignment for Whole Slide Image-based Survival Prediction
In recent years, histopathological whole slide image (WSI)- based survival analysis has attracted much attention in medical image analysis. In practice, WSIs usually come from different hospitals or laboratories, which can be seen as different domains, and thus may have significant differences in imaging equipment, processing procedures, and sample sources. These differences generally result in large gaps in distribution between different WSI domains, and thus the survival analysis models trained on one domain may fail to transfer to another. To address this issue, we propose a Dual-branch Encoder and Two-level Alignment (DETA) framework to explore both feature and category-level alignment between different WSI domains. Specifically, we first formulate the concerned problem as graph domain adaptation (GDA) by virtue the graph representation of WSIs. Then we construct a dual-branch graph encoder, including the message passing branch and the shortest path branch, to explicitly and implicitly extract semantic information from the graph-represented WSIs. To realize GDA, we propose a two-level alignment approach: at the category level, we develop a coupling technique by virtue of the dual-branch structure, leading to reduced divergence between the category distributions of the two domains; at the feature level, we introduce an adversarial perturbation strategy to better augment source domain feature, resulting in improved alignment in feature distribution. To the best of our knowledge, our work is the first attempt to alleviate the domain shift issue for WSI data analysis. Extensive experiments on four TCGA datasets have validated the effectiveness of our proposed DETA framework and demonstrated its superior performance in WSI-based survival analysis.
comment: 12 pages, 6 figures
☆ Mirror Target YOLO: An Improved YOLOv8 Method with Indirect Vision for Heritage Buildings Fire Detection
Fires can cause severe damage to heritage buildings, making timely fire detection essential. Traditional dense cabling and drilling can harm these structures, so reducing the number of cameras to minimize such impact is challenging. Additionally, avoiding false alarms due to noise sensitivity and preserving the expertise of managers in fire-prone areas is crucial. To address these needs, we propose a fire detection method based on indirect vision, called Mirror Target YOLO (MITA-YOLO). MITA-YOLO integrates indirect vision deployment and an enhanced detection module. It uses mirror angles to achieve indirect views, solving issues with limited visibility in irregular spaces and aligning each indirect view with the target monitoring area. The Target-Mask module is designed to automatically identify and isolate the indirect vision areas in each image, filtering out non-target areas. This enables the model to inherit managers' expertise in assessing fire-risk zones, improving focus and resistance to interference in fire detection.In our experiments, we created an 800-image fire dataset with indirect vision. Results show that MITA-YOLO significantly reduces camera requirements while achieving superior detection performance compared to other mainstream models.
☆ Safety Without Semantic Disruptions: Editing-free Safe Image Generation via Context-preserving Dual Latent Reconstruction
Training multimodal generative models on large, uncurated datasets can result in users being exposed to harmful, unsafe and controversial or culturally-inappropriate outputs. While model editing has been proposed to remove or filter undesirable concepts in embedding and latent spaces, it can inadvertently damage learned manifolds, distorting concepts in close semantic proximity. We identify limitations in current model editing techniques, showing that even benign, proximal concepts may become misaligned. To address the need for safe content generation, we propose a modular, dynamic solution that leverages safety-context embeddings and a dual reconstruction process using tunable weighted summation in the latent space to generate safer images. Our method preserves global context without compromising the structural integrity of the learned manifolds. We achieve state-of-the-art results on safe image generation benchmarks, while offering controllable variation of model safety. We identify trade-offs between safety and censorship, which presents a necessary perspective in the development of ethical AI models. We will release our code. Keywords: Text-to-Image Models, Generative AI, Safety, Reliability, Model Editing
comment: This research is supported by the NISDRG project #20100007, funded by the Australian Government
☆ On the Fairness, Diversity and Reliability of Text-to-Image Generative Models
The widespread availability of multimodal generative models has sparked critical discussions on their fairness, reliability, and potential for misuse. While text-to-image models can produce high-fidelity, user-guided images, they also exhibit unpredictable behavior and vulnerabilities, which can be exploited to manipulate class or concept representations. To address this, we propose an evaluation framework designed to assess model reliability through their responses to globally- and locally-applied `semantic' perturbations in the embedding space, pinpointing inputs that trigger unreliable behavior. Our approach offers deeper insights into two essential aspects: (i) generative diversity, evaluating the breadth of visual representations for learned concepts, and (ii) generative fairness, examining how removing concepts from input prompts affects semantic guidance. Beyond these evaluations, our method lays the groundwork for detecting unreliable, bias-injected models and retrieval of bias provenance. We will release our code. Keywords: Fairness, Reliability, AI Ethics, Bias, Text-to-Image Models
comment: This research is supported by the NISDRG project #20100007, funded by the Australian Government
☆ Transforming Static Images Using Generative Models for Video Salient Object Detection
In many video processing tasks, leveraging large-scale image datasets is a common strategy, as image data is more abundant and facilitates comprehensive knowledge transfer. A typical approach for simulating video from static images involves applying spatial transformations, such as affine transformations and spline warping, to create sequences that mimic temporal progression. However, in tasks like video salient object detection, where both appearance and motion cues are critical, these basic image-to-video techniques fail to produce realistic optical flows that capture the independent motion properties of each object. In this study, we show that image-to-video diffusion models can generate realistic transformations of static images while understanding the contextual relationships between image components. This ability allows the model to generate plausible optical flows, preserving semantic integrity while reflecting the independent motion of scene elements. By augmenting individual images in this way, we create large-scale image-flow pairs that significantly enhance model training. Our approach achieves state-of-the-art performance across all public benchmark datasets, outperforming existing approaches.
☆ Zero-Shot Low-Light Image Enhancement via Joint Frequency Domain Priors Guided Diffusion
Due to the singularity of real-world paired datasets and the complexity of low-light environments, this leads to supervised methods lacking a degree of scene generalisation. Meanwhile, limited by poor lighting and content guidance, existing zero-shot methods cannot handle unknown severe degradation well. To address this problem, we will propose a new zero-shot low-light enhancement method to compensate for the lack of light and structural information in the diffusion sampling process by effectively combining the wavelet and Fourier frequency domains to construct rich a priori information. The key to the inspiration comes from the similarity between the wavelet and Fourier frequency domains: both light and structure information are closely related to specific frequency domain regions, respectively. Therefore, by transferring the diffusion process to the wavelet low-frequency domain and combining the wavelet and Fourier frequency domains by continuously decomposing them in the inverse process, the constructed rich illumination prior is utilised to guide the image generation enhancement process. Sufficient experiments show that the framework is robust and effective in various scenarios. The code will be available at: \href{https://github.com/hejh8/Joint-Wavelet-and-Fourier-priors-guided-diffusion}{https://github.com/hejh8/Joint-Wavelet-and-Fourier-priors-guided-diffusion}.
☆ Separable Mixture of Low-Rank Adaptation for Continual Visual Instruction Tuning
Visual instruction tuning (VIT) enables multimodal large language models (MLLMs) to effectively handle a wide range of vision tasks by framing them as language-based instructions. Building on this, continual visual instruction tuning (CVIT) extends the capability of MLLMs to incrementally learn new tasks, accommodating evolving functionalities. While prior work has advanced CVIT through the development of new benchmarks and approaches to mitigate catastrophic forgetting, these efforts largely follow traditional continual learning paradigms, neglecting the unique challenges specific to CVIT. We identify a dual form of catastrophic forgetting in CVIT, where MLLMs not only forget previously learned visual understanding but also experience a decline in instruction following abilities as they acquire new tasks. To address this, we introduce the Separable Mixture of Low-Rank Adaptation (SMoLoRA) framework, which employs separable routing through two distinct modules - one for visual understanding and another for instruction following. This dual-routing design enables specialized adaptation in both domains, preventing forgetting while improving performance. Furthermore, we propose a novel CVIT benchmark that goes beyond existing benchmarks by additionally evaluating a model's ability to generalize to unseen tasks and handle diverse instructions across various tasks. Extensive experiments demonstrate that SMoLoRA outperforms existing methods in mitigating dual forgetting, improving generalization to unseen tasks, and ensuring robustness in following diverse instructions.
☆ Transforming Engineering Diagrams: A Novel Approach for P&ID Digitization using Transformers
The digitization of complex technical systems, such as Piping and Instrumentation Diagrams (P&IDs), is crucial for efficient maintenance and operation of complex systems in hydraulic and process engineering. Previous approaches often rely on separate modules that analyze diagram elements individually, neglecting the diagram's overall structure. We address this limitation by proposing a novel approach that utilizes the Relationformer, a state-of-the-art deep learning architecture, to extract graphs from P&IDs. Our method leverages the ability of the Relationformer to simultaneously detect objects and their relationships in images, making it suitable for the task of graph extraction from engineering diagrams. We apply our proposed approach to both real-world and synthetically created P&ID datasets, and evaluate its effectiveness by comparing it with a modular digitization approach based on recent literature. We present PID2Graph, the first publicly accessible P&ID dataset featuring comprehensive labels for the graph structure, including symbols, nodes and their connections that is used for evaluation. To understand the effect of patching and stitching of both of the approaches, we compare values before and after merging the patches. For the real-world data, the Relationformer achieves convincing results, outperforming the modular digitization approach for edge detection by more than 25%. Our work provides a comprehensive framework for assessing the performance of P&ID digitization methods and opens up new avenues for research in this area using transformer architectures. The P&ID dataset used for evaluation will be published and publicly available upon acceptance of the paper.
Multimodal 3D Reasoning Segmentation with Complex Scenes
The recent development in multimodal learning has greatly advanced the research in 3D scene understanding in various real-world tasks such as embodied AI. However, most existing work shares two typical constraints: 1) they are short of reasoning ability for interaction and interpretation of human intension and 2) they focus on scenarios with single-category objects only which leads to over-simplified textual descriptions due to the negligence of multi-object scenarios and spatial relations among objects. We bridge the research gaps by proposing a 3D reasoning segmentation task for multiple objects in scenes. The task allows producing 3D segmentation masks and detailed textual explanations as enriched by 3D spatial relations among objects. To this end, we create ReasonSeg3D, a large-scale and high-quality benchmark that integrates 3D spatial relations with generated question-answer pairs and 3D segmentation masks. In addition, we design MORE3D, a simple yet effective method that enables multi-object 3D reasoning segmentation with user questions and textual outputs. Extensive experiments show that MORE3D excels in reasoning and segmenting complex multi-object 3D scenes, and the created ReasonSeg3D offers a valuable platform for future exploration of 3D reasoning segmentation. The dataset and code will be released.
☆ Quantization without Tears
Deep neural networks, while achieving remarkable success across diverse tasks, demand significant resources, including computation, GPU memory, bandwidth, storage, and energy. Network quantization, as a standard compression and acceleration technique, reduces storage costs and enables potential inference acceleration by discretizing network weights and activations into a finite set of integer values. However, current quantization methods are often complex and sensitive, requiring extensive task-specific hyperparameters, where even a single misconfiguration can impair model performance, limiting generality across different models and tasks. In this paper, we propose Quantization without Tears (QwT), a method that simultaneously achieves quantization speed, accuracy, simplicity, and generality. The key insight of QwT is to incorporate a lightweight additional structure into the quantized network to mitigate information loss during quantization. This structure consists solely of a small set of linear layers, keeping the method simple and efficient. More importantly, it provides a closed-form solution, allowing us to improve accuracy effortlessly under 2 minutes. Extensive experiments across various vision, language, and multimodal tasks demonstrate that QwT is both highly effective and versatile. In fact, our approach offers a robust solution for network quantization that combines simplicity, accuracy, and adaptability, which provides new insights for the design of novel quantization paradigms.
☆ Panther: Illuminate the Sight of Multimodal LLMs with Instruction-Guided Visual Prompts
Multimodal large language models (MLLMs) are closing the gap to human visual perception capability rapidly, while, still lag behind on attending to subtle images details or locating small objects precisely, etc. Common schemes to tackle these issues include deploying multiple vision encoders or operating on original high-resolution images. Few studies have concentrated on taking the textual instruction into improving visual representation, resulting in losing focus in some vision-centric tasks, a phenomenon we herein termed as Amblyopia. In this work, we introduce Panther, a MLLM that closely adheres to user instruction and locates targets of interests precisely, with the finesse of a black panther. Specifically, Panther comprises three integral components: Panther-VE, Panther-Bridge, and Panther-Decoder. Panther-VE integrates user instruction information at the early stages of the vision encoder, thereby extracting the most relevant and useful visual representations. The Panther-Bridge module, equipped with powerful filtering capabilities, significantly reduces redundant visual information, leading to a substantial savings in training costs. The Panther-Decoder is versatile and can be employed with any decoder-only architecture of LLMs without discrimination. Experimental results, particularly on vision-centric benchmarks, have demonstrated the effectiveness of Panther.
☆ Dressing the Imagination: A Dataset for AI-Powered Translation of Text into Fashion Outfits and A Novel KAN Adapter for Enhanced Feature Adaptation
Specialized datasets that capture the fashion industry's rich language and styling elements can boost progress in AI-driven fashion design. We present FLORA (Fashion Language Outfit Representation for Apparel Generation), the first comprehensive dataset containing 4,330 curated pairs of fashion outfits and corresponding textual descriptions. Each description utilizes industry-specific terminology and jargon commonly used by professional fashion designers, providing precise and detailed insights into the outfits. Hence, the dataset captures the delicate features and subtle stylistic elements necessary to create high-fidelity fashion designs. We demonstrate that fine-tuning generative models on the FLORA dataset significantly enhances their capability to generate accurate and stylistically rich images from textual descriptions of fashion sketches. FLORA will catalyze the creation of advanced AI models capable of comprehending and producing subtle, stylistically rich fashion designs. It will also help fashion designers and end-users to bring their ideas to life. As a second orthogonal contribution, we introduce KAN Adapters, which leverage Kolmogorov-Arnold Networks (KAN) as adaptive modules. They serve as replacements for traditional MLP-based LoRA adapters. With learnable spline-based activations, KAN Adapters excel in modeling complex, non-linear relationships, achieving superior fidelity, faster convergence and semantic alignment. Extensive experiments and ablation studies on our proposed FLORA dataset validate the superiority of KAN Adapters over LoRA adapters. To foster further research and collaboration, we will open-source both the FLORA and our implementation code.
comment: Under review at a conference
☆ CLFace: A Scalable and Resource-Efficient Continual Learning Framework for Lifelong Face Recognition WACV 2025
An important aspect of deploying face recognition (FR) algorithms in real-world applications is their ability to learn new face identities from a continuous data stream. However, the online training of existing deep neural network-based FR algorithms, which are pre-trained offline on large-scale stationary datasets, encounter two major challenges: (I) catastrophic forgetting of previously learned identities, and (II) the need to store past data for complete retraining from scratch, leading to significant storage constraints and privacy concerns. In this paper, we introduce CLFace, a continual learning framework designed to preserve and incrementally extend the learned knowledge. CLFace eliminates the classification layer, resulting in a resource-efficient FR model that remains fixed throughout lifelong learning and provides label-free supervision to a student model, making it suitable for open-set face recognition during incremental steps. We introduce an objective function that employs feature-level distillation to reduce drift between feature maps of the student and teacher models across multiple stages. Additionally, it incorporates a geometry-preserving distillation scheme to maintain the orientation of the teacher model's feature embedding. Furthermore, a contrastive knowledge distillation is incorporated to continually enhance the discriminative power of the feature representation by matching similarities between new identities. Experiments on several benchmark FR datasets demonstrate that CLFace outperforms baseline approaches and state-of-the-art methods on unseen identities using both in-domain and out-of-domain datasets.
comment: Accepted for publication in the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2025)
☆ Sli2Vol+: Segmenting 3D Medical Images Based on an Object Estimation Guided Correspondence Flow Network
Deep learning (DL) methods have shown remarkable successes in medical image segmentation, often using large amounts of annotated data for model training. However, acquiring a large number of diverse labeled 3D medical image datasets is highly difficult and expensive. Recently, mask propagation DL methods were developed to reduce the annotation burden on 3D medical images. For example, Sli2Vol~\cite{yeung2021sli2vol} proposed a self-supervised framework (SSF) to learn correspondences by matching neighboring slices via slice reconstruction in the training stage; the learned correspondences were then used to propagate a labeled slice to other slices in the test stage. But, these methods are still prone to error accumulation due to the inter-slice propagation of reconstruction errors. Also, they do not handle discontinuities well, which can occur between consecutive slices in 3D images, as they emphasize exploiting object continuity. To address these challenges, in this work, we propose a new SSF, called \proposed, {for segmenting any anatomical structures in 3D medical images using only a single annotated slice per training and testing volume.} Specifically, in the training stage, we first propagate an annotated 2D slice of a training volume to the other slices, generating pseudo-labels (PLs). Then, we develop a novel Object Estimation Guided Correspondence Flow Network to learn reliable correspondences between consecutive slices and corresponding PLs in a self-supervised manner. In the test stage, such correspondences are utilized to propagate a single annotated slice to the other slices of a test volume. We demonstrate the effectiveness of our method on various medical image segmentation tasks with different datasets, showing better generalizability across different organs, modalities, and modals. Code is available at \url{https://github.com/adlsn/Sli2Volplus}
☆ Image Compression Using Novel View Synthesis Priors
Real-time visual feedback is essential for tetherless control of remotely operated vehicles, particularly during inspection and manipulation tasks. Though acoustic communication is the preferred choice for medium-range communication underwater, its limited bandwidth renders it impractical to transmit images or videos in real-time. To address this, we propose a model-based image compression technique that leverages prior mission information. Our approach employs trained machine-learning based novel view synthesis models, and uses gradient descent optimization to refine latent representations to help generate compressible differences between camera images and rendered images. We evaluate the proposed compression technique using a dataset from an artificial ocean basin, demonstrating superior compression ratios and image quality over existing techniques. Moreover, our method exhibits robustness to introduction of new objects within the scene, highlighting its potential for advancing tetherless remotely operated vehicle operations.
comment: Preprint submitted to Ocean Engineering
☆ Decoupled Sparse Priors Guided Diffusion Compression Model for Point Clouds
Lossy compression methods rely on an autoencoder to transform a point cloud into latent points for storage, leaving the inherent redundancy of latent representations unexplored. To reduce redundancy in latent points, we propose a sparse priors guided method that achieves high reconstruction quality, especially at high compression ratios. This is accomplished by a dual-density scheme separately processing the latent points (intended for reconstruction) and the decoupled sparse priors (intended for storage). Our approach features an efficient dual-density data flow that relaxes size constraints on latent points, and hybridizes a progressive conditional diffusion model to encapsulate essential details for reconstruction within the conditions, which are decoupled hierarchically to intra-point and inter-point priors. Specifically, our method encodes the original point cloud into latent points and decoupled sparse priors through separate encoders. Latent points serve as intermediates, while sparse priors act as adaptive conditions. We then employ a progressive attention-based conditional denoiser to generate latent points conditioned on the decoupled priors, allowing the denoiser to dynamically attend to geometric and semantic cues from the priors at each encoding and decoding layer. Additionally, we integrate the local distribution into the arithmetic encoder and decoder to enhance local context modeling of the sparse points. The original point cloud is reconstructed through a point decoder. Compared to state-of-the-art, our method obtains superior rate-distortion trade-off, evidenced by extensive evaluations on the ShapeNet dataset and standard test datasets from MPEG group including 8iVFB, and Owlii.
☆ A Multimodal Approach to The Detection and Classification of Skin Diseases
According to PBS, nearly one-third of Americans lack access to primary care services, and another forty percent delay going to avoid medical costs. As a result, many diseases are left undiagnosed and untreated, even if the disease shows many physical symptoms on the skin. With the rise of AI, self-diagnosis and improved disease recognition have become more promising than ever; in spite of that, existing methods suffer from a lack of large-scale patient databases and outdated methods of study, resulting in studies being limited to only a few diseases or modalities. This study incorporates readily available and easily accessible patient information via image and text for skin disease classification on a new dataset of 26 skin disease types that includes both skin disease images (37K) and associated patient narratives. Using this dataset, baselines for various image models were established that outperform existing methods. Initially, the Resnet-50 model was only able to achieve an accuracy of 70% but, after various optimization techniques, the accuracy was improved to 80%. In addition, this study proposes a novel fine-tuning strategy for sequence classification Large Language Models (LLMs), Chain of Options, which breaks down a complex reasoning task into intermediate steps at training time instead of inference. With Chain of Options and preliminary disease recommendations from the image model, this method achieves state of the art accuracy 91% in diagnosing patient skin disease given just an image of the afflicted area as well as a patient description of the symptoms (such as itchiness or dizziness). Through this research, an earlier diagnosis of skin diseases can occur, and clinicians can work with deep learning models to give a more accurate diagnosis, improving quality of life and saving lives.
☆ Dealing with Synthetic Data Contamination in Online Continual Learning NeurIPS'24
Image generation has shown remarkable results in generating high-fidelity realistic images, in particular with the advancement of diffusion-based models. However, the prevalence of AI-generated images may have side effects for the machine learning community that are not clearly identified. Meanwhile, the success of deep learning in computer vision is driven by the massive dataset collected on the Internet. The extensive quantity of synthetic data being added to the Internet would become an obstacle for future researchers to collect "clean" datasets without AI-generated content. Prior research has shown that using datasets contaminated by synthetic images may result in performance degradation when used for training. In this paper, we investigate the potential impact of contaminated datasets on Online Continual Learning (CL) research. We experimentally show that contaminated datasets might hinder the training of existing online CL methods. Also, we propose Entropy Selection with Real-synthetic similarity Maximization (ESRM), a method to alleviate the performance deterioration caused by synthetic images when training online CL models. Experiments show that our method can significantly alleviate performance deterioration, especially when the contamination is severe. For reproducibility, the source code of our work is available at https://github.com/maorong-wang/ESRM.
comment: Accepted to NeurIPS'24
☆ Multitask Learning for SAR Ship Detection with Gaussian-Mask Joint Segmentation
Detecting ships in synthetic aperture radar (SAR) images is challenging due to strong speckle noise, complex surroundings, and varying scales. This paper proposes MLDet, a multitask learning framework for SAR ship detection, consisting of object detection, speckle suppression, and target segmentation tasks. An angle classification loss with aspect ratio weighting is introduced to improve detection accuracy by addressing angular periodicity and object proportions. The speckle suppression task uses a dual-feature fusion attention mechanism to reduce noise and fuse shallow and denoising features, enhancing robustness. The target segmentation task, leveraging a rotated Gaussian-mask, aids the network in extracting target regions from cluttered backgrounds and improves detection efficiency with pixel-level predictions. The Gaussian-mask ensures ship centers have the highest probabilities, gradually decreasing outward under a Gaussian distribution. Additionally, a weighted rotated boxes fusion (WRBF) strategy combines multi-direction anchor predictions, filtering anchors beyond boundaries or with high overlap but low confidence. Extensive experiments on SSDD+ and HRSID datasets demonstrate the effectiveness and superiority of MLDet.
☆ Detecting Human Artifacts from Text-to-Image Models
Despite recent advancements, text-to-image generation models often produce images containing artifacts, especially in human figures. These artifacts appear as poorly generated human bodies, including distorted, missing, or extra body parts, leading to visual inconsistencies with typical human anatomy and greatly impairing overall fidelity. In this study, we address this challenge by curating Human Artifact Dataset (HAD), the first large-scale dataset specifically designed to identify and localize human artifacts. HAD comprises over 37,000 images generated by several popular text-to-image models, annotated for human artifact localization. Using this dataset, we train the Human Artifact Detection Models (HADM), which can identify diverse artifact types across multiple generative domains and demonstrate strong generalization, even on images from unseen generators. Additionally, to further improve generators' perception of human structural coherence, we use the predictions from our HADM as feedback for diffusion model finetuning. Our experiments confirm a reduction in human artifacts in the resulting model. Furthermore, we showcase a novel application of our HADM in an iterative inpainting framework to correct human artifacts in arbitrary images directly, demonstrating its utility in improving image quality. Our dataset and detection models are available at: \url{https://github.com/wangkaihong/HADM}.
☆ Segment Anything in Light Fields for Real-Time Applications via Constrained Prompting
Segmented light field images can serve as a powerful representation in many of computer vision tasks exploiting geometry and appearance of objects, such as object pose tracking. In the light field domain, segmentation presents an additional objective of recognizing the same segment through all the views. Segment Anything Model 2 (SAM 2) allows producing semantically meaningful segments for monocular images and videos. However, using SAM 2 directly on light fields is highly ineffective due to unexploited constraints. In this work, we present a novel light field segmentation method that adapts SAM 2 to the light field domain without retraining or modifying the model. By utilizing the light field domain constraints, the method produces high quality and view-consistent light field masks, outperforming the SAM 2 video tracking baseline and working 7 times faster, with a real-time speed. We achieve this by exploiting the epipolar geometry cues to propagate the masks between the views, probing the SAM 2 latent space to estimate their occlusion, and further prompting SAM 2 for their refinement.
☆ CLIPer: Hierarchically Improving Spatial Representation of CLIP for Open-Vocabulary Semantic Segmentation
Contrastive Language-Image Pre-training (CLIP) exhibits strong zero-shot classification ability on various image-level tasks, leading to the research to adapt CLIP for pixel-level open-vocabulary semantic segmentation without additional training. The key is to improve spatial representation of image-level CLIP, such as replacing self-attention map at last layer with self-self attention map or vision foundation model based attention map. In this paper, we present a novel hierarchical framework, named CLIPer, that hierarchically improves spatial representation of CLIP. The proposed CLIPer includes an early-layer fusion module and a fine-grained compensation module. We observe that, the embeddings and attention maps at early layers can preserve spatial structural information. Inspired by this, we design the early-layer fusion module to generate segmentation map with better spatial coherence. Afterwards, we employ a fine-grained compensation module to compensate the local details using the self-attention maps of diffusion model. We conduct the experiments on seven segmentation datasets. Our proposed CLIPer achieves the state-of-the-art performance on these datasets. For instance, using ViT-L, CLIPer has the mIoU of 69.8% and 43.3% on VOC and COCO Object, outperforming ProxyCLIP by 9.2% and 4.1% respectively.
comment: Homepange and code: https://linsun449.github.io/cliper
☆ MagicDriveDiT: High-Resolution Long Video Generation for Autonomous Driving with Adaptive Control
The rapid advancement of diffusion models has greatly improved video synthesis, especially in controllable video generation, which is essential for applications like autonomous driving. However, existing methods are limited by scalability and how control conditions are integrated, failing to meet the needs for high-resolution and long videos for autonomous driving applications. In this paper, we introduce MagicDriveDiT, a novel approach based on the DiT architecture, and tackle these challenges. Our method enhances scalability through flow matching and employs a progressive training strategy to manage complex scenarios. By incorporating spatial-temporal conditional encoding, MagicDriveDiT achieves precise control over spatial-temporal latents. Comprehensive experiments show its superior performance in generating realistic street scene videos with higher resolution and more frames. MagicDriveDiT significantly improves video generation quality and spatial-temporal controls, expanding its potential applications across various tasks in autonomous driving.
comment: Project Website: https://flymin.github.io/magicdrivedit/
☆ Hugging Rain Man: A Novel Facial Action Units Dataset for Analyzing Atypical Facial Expressions in Children with Autism Spectrum Disorder
Children with Autism Spectrum Disorder (ASD) often exhibit atypical facial expressions. However, the specific objective facial features that underlie this subjective perception remain unclear. In this paper, we introduce a novel dataset, Hugging Rain Man (HRM), which includes facial action units (AUs) manually annotated by FACS experts for both children with ASD and typical development (TD). The dataset comprises a rich collection of posed and spontaneous facial expressions, totaling approximately 130,000 frames, along with 22 AUs, 10 Action Descriptors (ADs), and atypicality ratings. A statistical analysis of static images from the HRM reveals significant differences between the ASD and TD groups across multiple AUs and ADs when displaying the same emotional expressions, confirming that participants with ASD tend to demonstrate more irregular and diverse expression patterns. Subsequently, a temporal regression method was presented to analyze atypicality of dynamic sequences, thereby bridging the gap between subjective perception and objective facial characteristics. Furthermore, baseline results for AU detection are provided for future research reference. This work not only contributes to our understanding of the unique facial expression characteristics associated with ASD but also provides potential tools for ASD early screening. Portions of the dataset, features, and pretrained models are accessible at: \url{https://github.com/Jonas-DL/Hugging-Rain-Man}.
comment: Portions of the dataset, features, and pretrained models are accessible at: https://github.com/Jonas-DL/Hugging-Rain-Man
☆ GalaxyEdit: Large-Scale Image Editing Dataset with Enhanced Diffusion Adapter
Training of large-scale text-to-image and image-to-image models requires a huge amount of annotated data. While text-to-image datasets are abundant, data available for instruction-based image-to-image tasks like object addition and removal is limited. This is because of the several challenges associated with the data generation process, such as, significant human effort, limited automation, suboptimal end-to-end models, data diversity constraints and high expenses. We propose an automated data generation pipeline aimed at alleviating such limitations, and introduce GalaxyEdit - a large-scale image editing dataset for add and remove operations. We fine-tune the SD v1.5 model on our dataset and find that our model can successfully handle a broader range of objects and complex editing instructions, outperforming state-of-the-art methods in FID scores by 11.2\% and 26.1\% for add and remove tasks respectively. Furthermore, in light of on-device usage scenarios, we expand our research to include task-specific lightweight adapters leveraging the ControlNet-xs architecture. While ControlNet-xs excels in canny and depth guided generation, we propose to improve the communication between the control network and U-Net for more intricate add and remove tasks. We achieve this by enhancing ControlNet-xs with non-linear interaction layers based on Volterra filters. Our approach outperforms ControlNet-xs in both add/remove and canny-guided image generation tasks, highlighting the effectiveness of the proposed enhancement.
comment: 10 pages, 6 figures
☆ Edge-Cloud Routing for Text-to-Image Model with Token-Level Multi-Metric Prediction
Large text-to-image models demonstrate impressive generation capabilities; however, their substantial size necessitates expensive cloud servers for deployment. Conversely, light-weight models can be deployed on edge devices at lower cost but often with inferior generation quality for complex user prompts. To strike a balance between performance and cost, we propose a routing framework, called \texttt{RouteT2I}, which dynamically selects either the large cloud model or the light-weight edge model for each user prompt. Since generated image quality is challenging to measure directly, \texttt{RouteT2I} establishes multi-dimensional quality metrics, particularly, by evaluating the similarity between the generated images and both positive and negative texts that describe each specific quality metric. \texttt{RouteT2I} then predicts the expected quality of the generated images by identifying key tokens in the prompt and comparing their impact on the quality. \texttt{RouteT2I} further introduces the Pareto relative superiority to compare the multi-metric quality of the generated images. Based on this comparison and predefined cost constraints, \texttt{RouteT2I} allocates prompts to either the edge or the cloud. Evaluation reveals that \texttt{RouteT2I} significantly reduces the number of requesting large cloud model while maintaining high-quality image generation.
☆ Segment Any Class (SAC): Multi-Class Few-Shot Semantic Segmentation via Class Region Proposals
The Segment-Anything Model (SAM) is a vision foundation model for segmentation with a prompt-driven framework. SAM generates class-agnostic masks based on user-specified instance-referring prompts. However, adapting SAM for automated segmentation -- where manual input is absent -- of specific object classes often requires additional model training. We present Segment Any Class (SAC), a novel, training-free approach that task-adapts SAM for Multi-class segmentation. SAC generates Class-Region Proposals (CRP) on query images which allows us to automatically generate class-aware prompts on probable locations of class instances. CRPs are derived from elementary intra-class and inter-class feature distinctions without any additional training. Our method is versatile, accommodating any N-way K-shot configurations for the multi-class few-shot semantic segmentation (FSS) task. Unlike gradient-learning adaptation of generalist models which risk the loss of generalization and potentially suffer from catastrophic forgetting, SAC solely utilizes automated prompting and achieves superior results over state-of-the-art methods on the COCO-20i benchmark, particularly excelling in high N-way class scenarios. SAC is an interesting demonstration of a prompt-only approach to adapting foundation models for novel tasks with small, limited datasets without any modifications to the foundation model itself. This method offers interesting benefits such as intrinsic immunity to concept or feature loss and rapid, online task adaptation of foundation models.
comment: 8 pages, 2 figures, 3 tables
☆ Evaluating Representational Similarity Measures from the Lens of Functional Correspondence
Neuroscience and artificial intelligence (AI) both face the challenge of interpreting high-dimensional neural data, where the comparative analysis of such data is crucial for revealing shared mechanisms and differences between these complex systems. Despite the widespread use of representational comparisons and the abundance classes of comparison methods, a critical question remains: which metrics are most suitable for these comparisons? While some studies evaluate metrics based on their ability to differentiate models of different origins or constructions (e.g., various architectures), another approach is to assess how well they distinguish models that exhibit distinct behaviors. To investigate this, we examine the degree of alignment between various representational similarity measures and behavioral outcomes, employing group statistics and a comprehensive suite of behavioral metrics for comparison. In our evaluation of eight commonly used representational similarity metrics in the visual domain -- spanning alignment-based, Canonical Correlation Analysis (CCA)-based, inner product kernel-based, and nearest-neighbor methods -- we found that metrics like linear Centered Kernel Alignment (CKA) and Procrustes distance, which emphasize the overall geometric structure or shape of representations, excelled in differentiating trained from untrained models and aligning with behavioral measures, whereas metrics such as linear predictivity, commonly used in neuroscience, demonstrated only moderate alignment with behavior. These insights are crucial for selecting metrics that emphasize behaviorally meaningful comparisons in NeuroAI research.
☆ HotSpot: Screened Poisson Equation for Signed Distance Function Optimization
We propose a method, HotSpot, for optimizing neural signed distance functions, based on a relation between the solution of a screened Poisson equation and the distance function. Existing losses such as the eikonal loss cannot guarantee the recovered implicit function to be a distance function, even when the implicit function satisfies the eikonal equation almost everywhere. Furthermore, the eikonal loss suffers from stability issues in optimization and the remedies that introduce area or divergence minimization can lead to oversmoothing. We address these challenges by designing a loss function that when minimized can converge to the true distance function, is stable, and naturally penalize large surface area. We provide theoretical analysis and experiments on both challenging 2D and 3D datasets and show that our method provide better surface reconstruction and more accurate distance approximation.
☆ Unveiling the Hidden: A Comprehensive Evaluation of Underwater Image Enhancement and Its Impact on Object Detection
Underwater imagery often suffers from severe degradation that results in low visual quality and object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their impact on underwater object detection, and explore their potential to improve detection performance. To this end, we selected representative underwater image enhancement models covering major enhancement categories and applied them separately to two recent datasets: 1) the Real-World Underwater Object Detection Dataset (RUOD), and 2) the Challenging Underwater Plant Detection Dataset (CUPDD). Following this, we conducted qualitative and quantitative analyses on the enhanced images and developed a quality index (Q-index) to compare the quality distribution of the original and enhanced images. Subsequently, we compared the performance of several YOLO-NAS detection models that are separately trained and tested on the original and enhanced image sets. Then, we performed a correlation study to examine the relationship between enhancement metrics and detection performance. We also analyzed the inference results from the trained detectors presenting cases where enhancement increased the detection performance as well as cases where enhancement revealed missed objects by human annotators. This study suggests that although enhancement generally deteriorates the detection performance, it can still be harnessed in some cases for increased detection performance and more accurate human annotation.
☆ Solving Zero-Shot 3D Visual Grounding as Constraint Satisfaction Problems
3D visual grounding (3DVG) aims to locate objects in a 3D scene with natural language descriptions. Supervised methods have achieved decent accuracy, but have a closed vocabulary and limited language understanding ability. Zero-shot methods mostly utilize large language models (LLMs) to handle natural language descriptions, yet suffer from slow inference speed. To address these problems, in this work, we propose a zero-shot method that reformulates the 3DVG task as a Constraint Satisfaction Problem (CSP), where the variables and constraints represent objects and their spatial relations, respectively. This allows a global reasoning of all relevant objects, producing grounding results of both the target and anchor objects. Moreover, we demonstrate the flexibility of our framework by handling negation- and counting-based queries with only minor extra coding efforts. Our system, Constraint Satisfaction Visual Grounding (CSVG), has been extensively evaluated on the public datasets ScanRefer and Nr3D datasets using only open-source LLMs. Results show the effectiveness of CSVG and superior grounding accuracy over current state-of-the-art zero-shot 3DVG methods with improvements of $+7.0\%$ (Acc@0.5 score) and $+11.2\%$ on the ScanRefer and Nr3D datasets, respectively. The code of our system is publicly available at https://github.com/sunsleaf/CSVG.
☆ Privacy-Preserving Video Anomaly Detection: A Survey
Video Anomaly Detection (VAD) aims to automatically analyze spatiotemporal patterns in surveillance videos collected from open spaces to detect anomalous events that may cause harm without physical contact. However, vision-based surveillance systems such as closed-circuit television often capture personally identifiable information. The lack of transparency and interpretability in video transmission and usage raises public concerns about privacy and ethics, limiting the real-world application of VAD. Recently, researchers have focused on privacy concerns in VAD by conducting systematic studies from various perspectives including data, features, and systems, making Privacy-Preserving Video Anomaly Detection (P2VAD) a hotspot in the AI community. However, current research in P2VAD is fragmented, and prior reviews have mostly focused on methods using RGB sequences, overlooking privacy leakage and appearance bias considerations. To address this gap, this article systematically reviews the progress of P2VAD for the first time, defining its scope and providing an intuitive taxonomy. We outline the basic assumptions, learning frameworks, and optimization objectives of various approaches, analyzing their strengths, weaknesses, and potential correlations. Additionally, we provide open access to research resources such as benchmark datasets and available code. Finally, we discuss key challenges and future opportunities from the perspectives of AI development and P2VAD deployment, aiming to guide future work in the field.
comment: 19 pages, 6 figures
☆ Enhancing GeoAI and location encoding with spatial point pattern statistics: A Case Study of Terrain Feature Classification
This study introduces a novel approach to terrain feature classification by incorporating spatial point pattern statistics into deep learning models. Inspired by the concept of location encoding, which aims to capture location characteristics to enhance GeoAI decision-making capabilities, we improve the GeoAI model by a knowledge driven approach to integrate both first-order and second-order effects of point patterns. This paper investigates how these spatial contexts impact the accuracy of terrain feature predictions. The results show that incorporating spatial point pattern statistics notably enhances model performance by leveraging different representations of spatial relationships.
comment: 4 pages with 1 figure. Accepted in 7th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery
☆ SegBook: A Simple Baseline and Cookbook for Volumetric Medical Image Segmentation
Computed Tomography (CT) is one of the most popular modalities for medical imaging. By far, CT images have contributed to the largest publicly available datasets for volumetric medical segmentation tasks, covering full-body anatomical structures. Large amounts of full-body CT images provide the opportunity to pre-train powerful models, e.g., STU-Net pre-trained in a supervised fashion, to segment numerous anatomical structures. However, it remains unclear in which conditions these pre-trained models can be transferred to various downstream medical segmentation tasks, particularly segmenting the other modalities and diverse targets. To address this problem, a large-scale benchmark for comprehensive evaluation is crucial for finding these conditions. Thus, we collected 87 public datasets varying in modality, target, and sample size to evaluate the transfer ability of full-body CT pre-trained models. We then employed a representative model, STU-Net with multiple model scales, to conduct transfer learning across modalities and targets. Our experimental results show that (1) there may be a bottleneck effect concerning the dataset size in fine-tuning, with more improvement on both small- and large-scale datasets than medium-size ones. (2) Models pre-trained on full-body CT demonstrate effective modality transfer, adapting well to other modalities such as MRI. (3) Pre-training on the full-body CT not only supports strong performance in structure detection but also shows efficacy in lesion detection, showcasing adaptability across target tasks. We hope that this large-scale open evaluation of transfer learning can direct future research in volumetric medical image segmentation.
☆ GMAI-VL & GMAI-VL-5.5M: A Large Vision-Language Model and A Comprehensive Multimodal Dataset Towards General Medical AI
Despite significant advancements in general artificial intelligence, such as GPT-4, their effectiveness in the medical domain (general medical AI, GMAI) remains constrained due to the absence of specialized medical knowledge. To address this challenge, we present GMAI-VL-5.5M, a comprehensive multimodal medical dataset created by converting hundreds of specialized medical datasets into meticulously constructed image-text pairs. This dataset features comprehensive task coverage, diverse modalities, and high-quality image-text data. Building upon this multimodal dataset, we propose GMAI-VL, a general medical vision-language model with a progressively three-stage training strategy. This approach significantly enhances the model's ability by integrating visual and textual information, thereby improving its ability to process multimodal data and support accurate diagnosis and clinical decision-making. Experimental evaluations demonstrate that GMAI-VL achieves state-of-the-art results across a wide range of multimodal medical tasks, such as visual question answering and medical image diagnosis. Our contributions include the development of the GMAI-VL-5.5M dataset, the introduction of the GMAI-VL model, and the establishment of new benchmarks in multiple medical domains. Code and dataset will be released at https://github.com/uni-medical/GMAI-VL.
☆ MyTimeMachine: Personalized Facial Age Transformation
Facial aging is a complex process, highly dependent on multiple factors like gender, ethnicity, lifestyle, etc., making it extremely challenging to learn a global aging prior to predict aging for any individual accurately. Existing techniques often produce realistic and plausible aging results, but the re-aged images often do not resemble the person's appearance at the target age and thus need personalization. In many practical applications of virtual aging, e.g. VFX in movies and TV shows, access to a personal photo collection of the user depicting aging in a small time interval (20$\sim$40 years) is often available. However, naive attempts to personalize global aging techniques on personal photo collections often fail. Thus, we propose MyTimeMachine (MyTM), which combines a global aging prior with a personal photo collection (using as few as 50 images) to learn a personalized age transformation. We introduce a novel Adapter Network that combines personalized aging features with global aging features and generates a re-aged image with StyleGAN2. We also introduce three loss functions to personalize the Adapter Network with personalized aging loss, extrapolation regularization, and adaptive w-norm regularization. Our approach can also be extended to videos, achieving high-quality, identity-preserving, and temporally consistent aging effects that resemble actual appearances at target ages, demonstrating its superiority over state-of-the-art approaches.
comment: Project page: https://mytimemachine.github.io/
☆ The Double-Ellipsoid Geometry of CLIP
Contrastive Language-Image Pre-Training (CLIP) is highly instrumental in machine learning applications within a large variety of domains. We investigate the geometry of this embedding, which is still not well understood. We examine the raw unnormalized embedding and show that text and image reside on linearly separable ellipsoid shells, not centered at the origin. We explain the benefits of having this structure, allowing to better embed instances according to their uncertainty during contrastive training. Frequent concepts in the dataset yield more false negatives, inducing greater uncertainty. A new notion of conformity is introduced, which measures the average cosine similarity of an instance to any other instance within a representative data set. We show this measure can be accurately estimated by simply computing the cosine similarity to the modality mean vector. Furthermore, we find that CLIP's modality gap optimizes the matching of the conformity distributions of image and text.
☆ Memory Backdoor Attacks on Neural Networks
Neural networks, such as image classifiers, are frequently trained on proprietary and confidential datasets. It is generally assumed that once deployed, the training data remains secure, as adversaries are limited to query response interactions with the model, where at best, fragments of arbitrary data can be inferred without any guarantees on their authenticity. In this paper, we propose the memory backdoor attack, where a model is covertly trained to memorize specific training samples and later selectively output them when triggered with an index pattern. What makes this attack unique is that it (1) works even when the tasks conflict (making a classifier output images), (2) enables the systematic extraction of training samples from deployed models and (3) offers guarantees on the extracted authenticity of the data. We demonstrate the attack on image classifiers, segmentation models, and a large language model (LLM). We demonstrate the attack on image classifiers, segmentation models, and a large language model (LLM). With this attack, it is possible to hide thousands of images and texts in modern vision architectures and LLMs respectively, all while maintaining model performance. The memory back door attack poses a significant threat not only to conventional model deployments but also to federated learning paradigms and other modern frameworks. Therefore, we suggest an efficient and effective countermeasure that can be immediately applied and advocate for further work on the topic.
☆ Are Anomaly Scores Telling the Whole Story? A Benchmark for Multilevel Anomaly Detection
Anomaly detection (AD) is a machine learning task that identifies anomalies by learning patterns from normal training data. In many real-world scenarios, anomalies vary in severity, from minor anomalies with little risk to severe abnormalities requiring immediate attention. However, existing models primarily operate in a binary setting, and the anomaly scores they produce are usually based on the deviation of data points from normal data, which may not accurately reflect practical severity. In this paper, we address this gap by making three key contributions. First, we propose a novel setting, Multilevel AD (MAD), in which the anomaly score represents the severity of anomalies in real-world applications, and we highlight its diverse applications across various domains. Second, we introduce a novel benchmark, MAD-Bench, that evaluates models not only on their ability to detect anomalies, but also on how effectively their anomaly scores reflect severity. This benchmark incorporates multiple types of baselines and real-world applications involving severity. Finally, we conduct a comprehensive performance analysis on MAD-Bench. We evaluate models on their ability to assign severity-aligned scores, investigate the correspondence between their performance on binary and multilevel detection, and study their robustness. This analysis offers key insights into improving AD models for practical severity alignment. The code framework and datasets used for the benchmark will be made publicly available.
comment: Under review
☆ NexusSplats: Efficient 3D Gaussian Splatting in the Wild CVPR 2025
While 3D Gaussian Splatting (3DGS) has recently demonstrated remarkable rendering quality and efficiency in 3D scene reconstruction, it struggles with varying lighting conditions and incidental occlusions in real-world scenarios. To accommodate varying lighting conditions, existing 3DGS extensions apply color mapping to the massive Gaussian primitives with individually optimized appearance embeddings. To handle occlusions, they predict pixel-wise uncertainties via 2D image features for occlusion capture. Nevertheless, such massive color mapping and pixel-wise uncertainty prediction strategies suffer from not only additional computational costs but also coarse-grained lighting and occlusion handling. In this work, we propose a nexus kernel-driven approach, termed NexusSplats, for efficient and finer 3D scene reconstruction under complex lighting and occlusion conditions. In particular, NexusSplats leverages a novel light decoupling strategy where appearance embeddings are optimized based on nexus kernels instead of massive Gaussian primitives, thus accelerating reconstruction speeds while ensuring local color consistency for finer textures. Additionally, a Gaussian-wise uncertainty mechanism is developed, aligning 3D structures with 2D image features for fine-grained occlusion handling. Experimental results demonstrate that NexusSplats achieves state-of-the-art rendering quality while reducing reconstruction time by up to 70.4% compared to the current best in quality.
comment: submitted to CVPR 2025
♻ ☆ Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model
Multimodal language models (MLLMs) are increasingly being applied in real-world environments, necessitating their ability to interpret 3D spaces and comprehend temporal dynamics. Current methods often rely on specialized architectural designs or task-specific fine-tuning to achieve this. We introduce Coarse Correspondences, a simple lightweight method that enhances MLLMs' spatial-temporal reasoning with 2D images as input, without modifying the architecture or requiring task-specific fine-tuning. Our method uses a lightweight tracking model to identify primary object correspondences between frames in a video or across different image viewpoints, and then conveys this information to MLLMs through visual prompting. We demonstrate that this simple training-free approach brings substantial gains to GPT4-V/O consistently on four benchmarks that require spatial-temporal reasoning, including +20.5\% improvement on ScanQA, +9.7\% on OpenEQA's episodic memory subset, +6.0\% on the long-form video benchmark EgoSchema, and +11\% on the R2R navigation benchmark. Additionally, we show that Coarse Correspondences can also enhance open-source MLLMs' spatial reasoning (by +6.9\% on ScanQA) when applied in both training and inference and that the improvement can generalize to unseen datasets such as SQA3D (+3.1\%). Taken together, we show that Coarse Correspondences effectively and efficiently boosts models' performance on downstream tasks requiring spatial-temporal reasoning.
comment: project page: https://coarse-correspondence.github.io
♻ ☆ Pushing the Limits of Sparsity: A Bag of Tricks for Extreme Pruning
Pruning of deep neural networks has been an effective technique for reducing model size while preserving most of the performance of dense networks, crucial for deploying models on memory and power-constrained devices. While recent sparse learning methods have shown promising performance up to moderate sparsity levels such as 95% and 98%, accuracy quickly deteriorates when pushing sparsities to extreme levels. Obtaining sparse networks at such extreme sparsity levels presents unique challenges, such as fragile gradient flow and heightened risk of layer collapse. In this work, we explore network performance beyond the commonly studied sparsities, and propose a collection of techniques that enable the continuous learning of networks without accuracy collapse even at extreme sparsities, including 99.90%, 99.95% and 99.99% on ResNet architectures. Our approach combines 1) Dynamic ReLU phasing, where DyReLU initially allows for richer parameter exploration before being gradually replaced by standard ReLU, 2) weight sharing which reuses parameters within a residual layer while maintaining the same number of learnable parameters, and 3) cyclic sparsity, where both sparsity levels and sparsity patterns evolve dynamically throughout training to better encourage parameter exploration. We evaluate our method, which we term Extreme Adaptive Sparse Training (EAST) at extreme sparsities using ResNet-34 and ResNet-50 on CIFAR-10, CIFAR-100, and ImageNet, achieving significant performance improvements over state-of-the-art methods we compared with.
comment: V2: same as V1 but with appendix/preliminaries; 12 pages, 5 figures, 4 tables
♻ ☆ A Sociotechnical Lens for Evaluating Computer Vision Models: A Case Study on Detecting and Reasoning about Gender and Emotion
In the evolving landscape of computer vision (CV) technologies, the automatic detection and interpretation of gender and emotion in images is a critical area of study. This paper investigates social biases in CV models, emphasizing the limitations of traditional evaluation metrics such as precision, recall, and accuracy. These metrics often fall short in capturing the complexities of gender and emotion, which are fluid and culturally nuanced constructs. Our study proposes a sociotechnical framework for evaluating CV models, incorporating both technical performance measures and considerations of social fairness. Using a dataset of 5,570 images related to vaccination and climate change, we empirically compared the performance of various CV models, including traditional models like DeepFace and FER, and generative models like GPT-4 Vision. Our analysis involved manually validating the gender and emotional expressions in a subset of images to serve as benchmarks. Our findings reveal that while GPT-4 Vision outperforms other models in technical accuracy for gender classification, it exhibits discriminatory biases, particularly in response to transgender and non-binary personas. Furthermore, the model's emotion detection skew heavily towards positive emotions, with a notable bias towards associating female images with happiness, especially when prompted by male personas. These findings underscore the necessity of developing more comprehensive evaluation criteria that address both validity and discriminatory biases in CV models. Our proposed framework provides guidelines for researchers to critically assess CV tools, ensuring their application in communication research is both ethical and effective. The significant contribution of this study lies in its emphasis on a sociotechnical approach, advocating for CV technologies that support social good and mitigate biases rather than perpetuate them.
♻ ☆ Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Composite Spatial Reasoning
Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks. However, their proficiency in spatial reasoning remains limited, despite its crucial role in tasks involving navigation and interaction with physical environments. Specifically, most of these tasks rely on the core spatial reasoning capabilities in two-dimensional (2D) environments, and our evaluation reveals that state-of-the-art VLMs frequently generate implausible and incorrect responses to composite spatial reasoning problems, including simple pathfinding tasks that humans can solve effortlessly at a glance. To address this, we explore an effective approach to enhance 2D spatial reasoning within VLMs by training the model solely on basic spatial capabilities. We begin by disentangling the key components of 2D spatial reasoning: direction comprehension, distance estimation, and localization. Our central hypothesis is that mastering these basic spatial capabilities can significantly enhance a model's performance on composite spatial tasks requiring advanced spatial understanding and combinatorial problem-solving, with generalized improvements in visual-spatial tasks. To investigate this hypothesis, we introduce Sparkle, a framework that fine-tunes VLMs on these three basic spatial capabilities by synthetic data generation and targeted supervision to form an instruction dataset for each capability. Our experiments demonstrate that VLMs fine-tuned with Sparkle achieve significant performance gains, not only in the basic tasks themselves but also in generalizing to composite and out-of-distribution spatial reasoning tasks. These findings underscore the effectiveness of mastering basic spatial capabilities in enhancing composite spatial problem-solving, offering insights into systematic strategies for improving VLMs' spatial reasoning capabilities.
♻ ☆ Localizing Events in Videos with Multimodal Queries
Localizing events in videos based on semantic queries is a pivotal task in video understanding, with the growing significance of user-oriented applications like video search. Yet, current research predominantly relies on natural language queries (NLQs), overlooking the potential of using multimodal queries (MQs) that integrate images to more flexibly represent semantic queries -- especially when it is difficult to express non-verbal or unfamiliar concepts in words. To bridge this gap, we introduce ICQ, a new benchmark designed for localizing events in videos with MQs, alongside an evaluation dataset ICQ-Highlight. To accommodate and evaluate existing video localization models for this new task, we propose 3 Multimodal Query Adaptation methods and a novel Surrogate Fine-tuning on pseudo-MQs strategy. ICQ systematically benchmarks 12 state-of-the-art backbone models, spanning from specialized video localization models to Video LLMs, across diverse application domains. Our experiments highlight the high potential of MQs in real-world applications. We believe this benchmark is a first step toward advancing MQs in video event localization.
comment: 20 pages (including references and appendix); for the project homepage, see https://icq-benchmark.github.io/
♻ ☆ ViSTa Dataset: Do vision-language models understand sequential tasks?
Using vision-language models (VLMs) as reward models in reinforcement learning holds promise for reducing costs and improving safety. So far, VLM reward models have only been used for goal-oriented tasks, where the agent must reach a particular final outcome. We explore VLMs' potential to supervise tasks that cannot be scored by the final state alone. To this end, we introduce ViSTa, a dataset for evaluating Vision-based understanding of Sequential Tasks. ViSTa comprises over 4,000 videos with step-by-step descriptions in virtual home, Minecraft, and real-world environments. Its novel hierarchical structure -- basic single-step tasks composed into more and more complex sequential tasks -- allows a fine-grained understanding of how well VLMs can judge tasks with varying complexity. To illustrate this, we use ViSTa to evaluate state-of-the-art VLMs, including CLIP, ViCLIP, and GPT-4o. We find that, while they are all good at object recognition, they fail to understand sequential tasks, with only GPT-4o achieving non-trivial performance.
♻ ☆ Dual Attention Model with Reinforcement Learning for Classification of Histology Whole-Slide Images
Digital whole slide images (WSIs) are generally captured at microscopic resolution and encompass extensive spatial data. Directly feeding these images to deep learning models is computationally intractable due to memory constraints, while downsampling the WSIs risks incurring information loss. Alternatively, splitting the WSIs into smaller patches may result in a loss of important contextual information. In this paper, we propose a novel dual attention approach, consisting of two main components, both inspired by the visual examination process of a pathologist: The first soft attention model processes a low magnification view of the WSI to identify relevant regions of interest, followed by a custom sampling method to extract diverse and spatially distinct image tiles from the selected ROIs. The second component, the hard attention classification model further extracts a sequence of multi-resolution glimpses from each tile for classification. Since hard attention is non-differentiable, we train this component using reinforcement learning to predict the location of the glimpses. This approach allows the model to focus on essential regions instead of processing the entire tile, thereby aligning with a pathologist's way of diagnosis. The two components are trained in an end-to-end fashion using a joint loss function to demonstrate the efficacy of the model. The proposed model was evaluated on two WSI-level classification problems: Human epidermal growth factor receptor 2 scoring on breast cancer histology images and prediction of Intact/Loss status of two Mismatch Repair biomarkers from colorectal cancer histology images. We show that the proposed model achieves performance better than or comparable to the state-of-the-art methods while processing less than 10% of the WSI at the highest magnification and reducing the time required to infer the WSI-level label by more than 75%.
♻ ☆ VG-SSL: Benchmarking Self-supervised Representation Learning Approaches for Visual Geo-localization WACV 2025
Visual Geo-localization (VG) is a critical research area for identifying geo-locations from visual inputs, particularly in autonomous navigation for robotics and vehicles. Current VG methods often learn feature extractors from geo-labeled images to create dense, geographically relevant representations. Recent advances in Self-Supervised Learning (SSL) have demonstrated its capability to achieve performance on par with supervised techniques with unlabeled images. This study presents a novel VG-SSL framework, designed for versatile integration and benchmarking of diverse SSL methods for representation learning in VG, featuring a unique geo-related pair strategy, GeoPair. Through extensive performance analysis, we adapt SSL techniques to improve VG on datasets from hand-held and car-mounted cameras used in robotics and autonomous vehicles. Our results show that contrastive learning and information maximization methods yield superior geo-specific representation quality, matching or surpassing the performance of state-of-the-art VG techniques. To our knowledge, This is the first benchmarking study of SSL in VG, highlighting its potential in enhancing geo-specific visual representations for robotics and autonomous vehicles. The code is publicly available at https://github.com/arplaboratory/VG-SSL.
comment: 18 pages (including appendix, references), 7 figures, 7 tables. Accepted for WACV 2025
♻ ☆ High-performance real-world optical computing trained by in situ gradient-based model-free optimization TPAMI 2024
Optical computing systems provide high-speed and low-energy data processing but face deficiencies in computationally demanding training and simulation-to-reality gaps. We propose a gradient-based model-free optimization (G-MFO) method based on a Monte Carlo gradient estimation algorithm for computationally efficient in situ training of optical computing systems. This approach treats an optical computing system as a black box and back-propagates the loss directly to the optical computing weights' probability distributions, circumventing the need for a computationally heavy and biased system simulation. Our experiments on diffractive optical computing systems show that G-MFO outperforms hybrid training on the MNIST and FMNIST datasets. Furthermore, we demonstrate image-free and high-speed classification of cells from their marker-free phase maps. Our method's model-free and high-performance nature, combined with its low demand for computational resources, paves the way for accelerating the transition of optical computing from laboratory demonstrations to practical, real-world applications.
comment: The paper titled "High-performance real-world optical computing trained by in situ gradient-based model-free optimization" has been accepted at ICCP&TPAMI 2024. For more details, please visit the [project page](https://shuxin626.github.io/mfo_optical_computing/index.html)
♻ ☆ VerA: Versatile Anonymization Applicable to Clinical Facial Photographs WACV 2025
The demand for privacy in facial image dissemination is gaining ground internationally, echoed by the proliferation of regulations such as GDPR, DPDPA, CCPA, PIPL, and APPI. While recent advances in anonymization surpass pixelation or blur methods, additional constraints to the task pose challenges. Largely unaddressed by current anonymization methods are clinical images and pairs of before-and-after clinical images illustrating facial medical interventions, e.g., facial surgeries or dental procedures. We present VerA, the first Versatile Anonymization framework that solves two challenges in clinical applications: A) it preserves selected semantic areas (e.g., mouth region) to show medical intervention results, that is, anonymization is only applied to the areas outside the preserved area; and B) it produces anonymized images with consistent personal identity across multiple photographs, which is crucial for anonymizing photographs of the same person taken before and after a clinical intervention. We validate our results on both single and paired anonymization of clinical images through extensive quantitative and qualitative evaluation. We also demonstrate that VerA reaches the state of the art on established anonymization tasks, in terms of photorealism and de-identification.
comment: accepted to WACV 2025
♻ ☆ A Fusion of Variational Distribution Priors and Saliency Map Replay for Continual 3D Reconstruction
Single-image 3D reconstruction is a research challenge focused on predicting 3D object shapes from single-view images. This task requires significant data acquisition to predict both visible and occluded portions of the shape. Furthermore, learning-based methods face the difficulty of creating a comprehensive training dataset for all possible classes. To this end, we propose a continual learning-based 3D reconstruction method where our goal is to design a model using Variational Priors that can still reconstruct the previously seen classes reasonably even after training on new classes. Variational Priors represent abstract shapes and combat forgetting, whereas saliency maps preserve object attributes with less memory usage. This is vital due to resource constraints in storing extensive training data. Additionally, we introduce saliency map-based experience replay to capture global and distinct object features. Thorough experiments show competitive results compared to established methods, both quantitatively and qualitatively.
comment: at ICVGIP 2024
♻ ☆ Uncertainty-Guided Alignment for Unsupervised Domain Adaptation in Regression
Unsupervised Domain Adaptation for Regression (UDAR) aims to adapt models from a labeled source domain to an unlabeled target domain for regression tasks. Traditional feature alignment methods, successful in classification, often prove ineffective for regression due to the correlated nature of regression features. To address this challenge, we propose Uncertainty-Guided Alignment (UGA), a novel method that integrates predictive uncertainty into the feature alignment process. UGA employs Evidential Deep Learning to predict both target values and their associated uncertainties. This uncertainty information guides the alignment process and fuses information within the embedding space, effectively mitigating issues such as feature collapse in out-of-distribution scenarios. We evaluate UGA on two computer vision benchmarks and a real-world battery state-of-charge prediction across different manufacturers and operating temperatures. Across 52 transfer tasks, UGA on average outperforms existing state-of-the-art methods. Our approach not only improves adaptation performance but also provides well-calibrated uncertainty estimates.
♻ ☆ MVMS-RCN: A Dual-Domain Unfolding CT Reconstruction with Multi-sparse-view and Multi-scale Refinement-correction
X-ray Computed Tomography (CT) is one of the most important diagnostic imaging techniques in clinical applications. Sparse-view CT imaging reduces the number of projection views to a lower radiation dose and alleviates the potential risk of radiation exposure. Most existing deep learning (DL) and deep unfolding sparse-view CT reconstruction methods: 1) do not fully use the projection data; 2) do not always link their architecture designs to a mathematical theory; 3) do not flexibly deal with multi-sparse-view reconstruction assignments. This paper aims to use mathematical ideas and design optimal DL imaging algorithms for sparse-view tomography reconstructions. We propose a novel dual-domain deep unfolding unified framework that offers a great deal of flexibility for multi-sparse-view CT reconstruction with different sampling views through a single model. This framework combines the theoretical advantages of model-based methods with the superior reconstruction performance of DL-based methods, resulting in the expected generalizability of DL. We propose a refinement module that utilizes unfolding projection domain to refine full-sparse-view projection errors, as well as an image domain correction module that distills multi-scale geometric error corrections to reconstruct sparse-view CT. This provides us with a new way to explore the potential of projection information and a new perspective on designing network architectures. All parameters of our proposed framework are learnable end to end, and our method possesses the potential to be applied to plug-and-play reconstruction. Extensive experiments demonstrate that our framework is superior to other existing state-of-the-art methods. Our source codes are available at https://github.com/fanxiaohong/MVMS-RCN.
comment: 14 pages, Accepted to IEEE Transactions on Computational Imaging, 2024
♻ ☆ Efficient 3D Instance Mapping and Localization with Neural Fields
We tackle the problem of learning an implicit scene representation for 3D instance segmentation from a sequence of posed RGB images. Towards this, we introduce 3DIML, a novel framework that efficiently learns a neural label field which can render 3D instance segmentation masks from novel viewpoints. Opposed to prior art that optimizes a neural field in a self-supervised manner, requiring complicated training procedures and loss function design, 3DIML leverages a two-phase process. The first phase, InstanceMap, takes as input 2D segmentation masks of the image sequence generated by a frontend instance segmentation model, and associates corresponding masks across images to 3D labels. These almost 3D-consistent pseudolabel masks are then used in the second phase, InstanceLift, to supervise the training of a neural label field, which interpolates regions missed by InstanceMap and resolves ambiguities. Additionally, we introduce InstanceLoc, which enables near realtime localization of instance masks given a trained neural label field. We evaluate 3DIML on sequences from the Replica and ScanNet datasets and demonstrate its effectiveness under mild assumptions for the image sequences. We achieve a large practical speedup over existing implicit scene representation methods with comparable quality, showcasing its potential to facilitate faster and more effective 3D scene understanding.
♻ ☆ FFAA: Multimodal Large Language Model based Explainable Open-World Face Forgery Analysis Assistant
The rapid advancement of deepfake technologies has sparked widespread public concern, particularly as face forgery poses a serious threat to public information security. However, the unknown and diverse forgery techniques, varied facial features and complex environmental factors pose significant challenges for face forgery analysis. Existing datasets lack descriptive annotations of these aspects, making it difficult for models to distinguish between real and forged faces using only visual information amid various confounding factors. In addition, existing methods fail to yield user-friendly and explainable results, hindering the understanding of the model's decision-making process. To address these challenges, we introduce a novel Open-World Face Forgery Analysis VQA (OW-FFA-VQA) task and its corresponding benchmark. To tackle this task, we first establish a dataset featuring a diverse collection of real and forged face images with essential descriptions and reliable forgery reasoning. Based on this dataset, we introduce FFAA: Face Forgery Analysis Assistant, consisting of a fine-tuned Multimodal Large Language Model (MLLM) and Multi-answer Intelligent Decision System (MIDS). By integrating hypothetical prompts with MIDS, the impact of fuzzy classification boundaries is effectively mitigated, enhancing model robustness. Extensive experiments demonstrate that our method not only provides user-friendly and explainable results but also significantly boosts accuracy and robustness compared to previous methods.
comment: 23 pages, 21 figures; project page: https://ffaa-vl.github.io
♻ ☆ OmniGen: Unified Image Generation
The emergence of Large Language Models (LLMs) has unified language generation tasks and revolutionized human-machine interaction. However, in the realm of image generation, a unified model capable of handling various tasks within a single framework remains largely unexplored. In this work, we introduce OmniGen, a new diffusion model for unified image generation. OmniGen is characterized by the following features: 1) Unification: OmniGen not only demonstrates text-to-image generation capabilities but also inherently supports various downstream tasks, such as image editing, subject-driven generation, and visual-conditional generation. 2) Simplicity: The architecture of OmniGen is highly simplified, eliminating the need for additional plugins. Moreover, compared to existing diffusion models, it is more user-friendly and can complete complex tasks end-to-end through instructions without the need for extra intermediate steps, greatly simplifying the image generation workflow. 3) Knowledge Transfer: Benefit from learning in a unified format, OmniGen effectively transfers knowledge across different tasks, manages unseen tasks and domains, and exhibits novel capabilities. We also explore the model's reasoning capabilities and potential applications of the chain-of-thought mechanism. This work represents the first attempt at a general-purpose image generation model, and we will release our resources at https://github.com/VectorSpaceLab/OmniGen to foster future advancements.
comment: Update the paper for OmniGen-v1
♻ ☆ SemanticDraw: Towards Real-Time Interactive Content Creation from Image Diffusion Models
We introduce SemanticDraw, a new paradigm of interactive content creation where high-quality images are generated in near real-time from given multiple hand-drawn regions, each encoding prescribed semantic meaning. In order to maximize the productivity of content creators and to fully realize their artistic imagination, it requires both quick interactive interfaces and fine-grained regional controls in their tools. Despite astonishing generation quality from recent diffusion models, we find that existing approaches for regional controllability are very slow (52 seconds for $512 \times 512$ image) while not compatible with acceleration methods such as LCM, blocking their huge potential in interactive content creation. From this observation, we build our solution for interactive content creation in two steps: (1) we establish compatibility between region-based controls and acceleration techniques for diffusion models, maintaining high fidelity of multi-prompt image generation with $\times 10$ reduced number of inference steps, (2) we increase the generation throughput with our new multi-prompt stream batch pipeline, enabling low-latency generation from multiple, region-based text prompts on a single RTX 2080 Ti GPU. Our proposed framework is generalizable to any existing diffusion models and acceleration schedulers, allowing sub-second (0.64 seconds) image content creation application upon well-established image diffusion models. Our project page is: https://jaerinlee.com/research/semantic-draw.
comment: 20 pages, 15 figures. v3: added tables
♻ ☆ Leveraging Bi-Focal Perspectives and Granular Feature Integration for Accurate Reliable Early Alzheimer's Detection
Alzheimer's disease (AD) is the most common neurodegeneration, annually diagnosed in millions of patients. The present medicine scenario still finds challenges in the exact diagnosis and classification of AD through neuroimaging data. Traditional CNNs can extract a good amount of low-level information in an image but fail to extract high-level minuscule particles, which is a significant challenge in detecting AD from MRI scans. To overcome this, we propose a novel Granular Feature Integration method to combine information extraction at different scales combined with an efficient information flow, enabling the model to capture both broad and fine-grained features simultaneously. We also propose a Bi-Focal Perspective mechanism to highlight the subtle neurofibrillary tangles and amyloid plaques in the MRI scans, ensuring that critical pathological markers are accurately identified. Our model achieved an F1-Score of 99.31%, precision of 99.24%, and recall of 99.51%. These scores prove that our model is significantly better than the state-of-the-art (SOTA) CNNs in existence.
comment: 14 pages, 12 figures, 6 tables
♻ ☆ Effective Message Hiding with Order-Preserving Mechanisms BMVC 2024
Message hiding, a technique that conceals secret message bits within a cover image, aims to achieve an optimal balance among message capacity, recovery accuracy, and imperceptibility. While convolutional neural networks have notably improved message capacity and imperceptibility, achieving high recovery accuracy remains challenging. This challenge arises because convolutional operations struggle to preserve the sequential order of message bits and effectively address the discrepancy between these two modalities. To address this, we propose StegaFormer, an innovative MLP-based framework designed to preserve bit order and enable global fusion between modalities. Specifically, StegaFormer incorporates three crucial components: Order-Preserving Message Encoder (OPME), Decoder (OPMD) and Global Message-Image Fusion (GMIF). OPME and OPMD aim to preserve the order of message bits by segmenting the entire sequence into equal-length segments and incorporating sequential information during encoding and decoding. Meanwhile, GMIF employs a cross-modality fusion mechanism to effectively fuse the features from the two uncorrelated modalities. Experimental results on the COCO and DIV2K datasets demonstrate that StegaFormer surpasses existing state-of-the-art methods in terms of recovery accuracy, message capacity, and imperceptibility. We will make our code publicly available.
comment: BMVC 2024
♻ ☆ FlightPatchNet: Multi-Scale Patch Network with Differential Coding for Flight Trajectory Prediction
Accurate multi-step flight trajectory prediction plays an important role in Air Traffic Control, which can ensure the safety of air transportation. Two main issues limit the flight trajectory prediction performance of existing works. The first issue is the negative impact on prediction accuracy caused by the significant differences in data range. The second issue is that real-world flight trajectories involve underlying temporal dependencies, and existing methods fail to reveal the hidden complex temporal variations and only extract features from one single time scale. To address the above issues, we propose FlightPatchNet, a multi-scale patch network with differential coding for flight trajectory prediction. Specifically, FlightPatchNet first utilizes the differential coding to encode the original values of longitude and latitude into first-order differences and generates embeddings for all variables at each time step. Then, a global temporal attention is introduced to explore the dependencies between different time steps. To fully explore the diverse temporal patterns in flight trajectories, a multi-scale patch network is delicately designed to serve as the backbone. The multi-scale patch network exploits stacked patch mixer blocks to capture inter- and intra-patch dependencies under different time scales, and further integrates multi-scale temporal features across different scales and variables. Finally, FlightPatchNet ensembles multiple predictors to make direct multi-step prediction. Extensive experiments on ADS-B datasets demonstrate that our model outperforms the competitive baselines.
♻ ☆ Neuro-3D: Towards 3D Visual Decoding from EEG Signals
Human's perception of the visual world is shaped by the stereo processing of 3D information. Understanding how the brain perceives and processes 3D visual stimuli in the real world has been a longstanding endeavor in neuroscience. Towards this goal, we introduce a new neuroscience task: decoding 3D visual perception from EEG signals, a neuroimaging technique that enables real-time monitoring of neural dynamics enriched with complex visual cues. To provide the essential benchmark, we first present EEG-3D, a pioneering dataset featuring multimodal analysis data and extensive EEG recordings from 12 subjects viewing 72 categories of 3D objects rendered in both videos and images. Furthermore, we propose Neuro-3D, a 3D visual decoding framework based on EEG signals. This framework adaptively integrates EEG features derived from static and dynamic stimuli to learn complementary and robust neural representations, which are subsequently utilized to recover both the shape and color of 3D objects through the proposed diffusion-based colored point cloud decoder. To the best of our knowledge, we are the first to explore EEG-based 3D visual decoding. Experiments indicate that Neuro-3D not only reconstructs colored 3D objects with high fidelity, but also learns effective neural representations that enable insightful brain region analysis. The dataset and associated code will be made publicly available.
♻ ☆ Geometric Algebra Planes: Convex Implicit Neural Volumes
Volume parameterizations abound in recent literature, from the classic voxel grid to the implicit neural representation and everything in between. While implicit representations have shown impressive capacity and better memory efficiency compared to voxel grids, to date they require training via nonconvex optimization. This nonconvex training process can be slow to converge and sensitive to initialization and hyperparameter choices that affect the final converged result. We introduce a family of models, GA-Planes, that is the first class of implicit neural volume representations that can be trained by convex optimization. GA-Planes models include any combination of features stored in tensor basis elements, followed by a neural feature decoder. They generalize many existing representations and can be adapted for convex, semiconvex, or nonconvex training as needed for different inverse problems. In the 2D setting, we prove that GA-Planes is equivalent to a low-rank plus low-resolution matrix factorization; we show that this approximation outperforms the classic low-rank plus sparse decomposition for fitting a natural image. In 3D, we demonstrate GA-Planes' competitive performance in terms of expressiveness, model size, and optimizability across three volume fitting tasks: radiance field reconstruction, 3D segmentation, and video segmentation.
comment: Code is available at https://github.com/sivginirmak/Geometric-Algebra-Planes
♻ ☆ AdaNCA: Neural Cellular Automata As Adaptors For More Robust Vision Transformer
Vision Transformers (ViTs) demonstrate remarkable performance in image classification through visual-token interaction learning, particularly when equipped with local information via region attention or convolutions. Although such architectures improve the feature aggregation from different granularities, they often fail to contribute to the robustness of the networks. Neural Cellular Automata (NCA) enables the modeling of global visual-token representations through local interactions, with its training strategies and architecture design conferring strong generalization ability and robustness against noisy input. In this paper, we propose Adaptor Neural Cellular Automata (AdaNCA) for Vision Transformers that uses NCA as plug-and-play adaptors between ViT layers, thus enhancing ViT's performance and robustness against adversarial samples as well as out-of-distribution inputs. To overcome the large computational overhead of standard NCAs, we propose Dynamic Interaction for more efficient interaction learning. Using our analysis of AdaNCA placement and robustness improvement, we also develop an algorithm for identifying the most effective insertion points for AdaNCA. With less than a 3% increase in parameters, AdaNCA contributes to more than 10% absolute improvement in accuracy under adversarial attacks on the ImageNet1K benchmark. Moreover, we demonstrate with extensive evaluations across eight robustness benchmarks and four ViT architectures that AdaNCA, as a plug-and-play module, consistently improves the robustness of ViTs.
comment: 32 pages, 12 figures
♻ ☆ Data Augmentation for Surgical Scene Segmentation with Anatomy-Aware Diffusion Models WACV 2025
In computer-assisted surgery, automatically recognizing anatomical organs is crucial for understanding the surgical scene and providing intraoperative assistance. While machine learning models can identify such structures, their deployment is hindered by the need for labeled, diverse surgical datasets with anatomical annotations. Labeling multiple classes (i.e., organs) in a surgical scene is time-intensive, requiring medical experts. Although synthetically generated images can enhance segmentation performance, maintaining both organ structure and texture during generation is challenging. We introduce a multi-stage approach using diffusion models to generate multi-class surgical datasets with annotations. Our framework improves anatomy awareness by training organ specific models with an inpainting objective guided by binary segmentation masks. The organs are generated with an inference pipeline using pre-trained ControlNet to maintain the organ structure. The synthetic multi-class datasets are constructed through an image composition step, ensuring structural and textural consistency. This versatile approach allows the generation of multi-class datasets from real binary datasets and simulated surgical masks. We thoroughly evaluate the generated datasets on image quality and downstream segmentation, achieving a $15\%$ improvement in segmentation scores when combined with real images. The code is available at https://gitlab.com/nct_tso_public/muli-class-image-synthesis
comment: Accepted at WACV 2025
♻ ☆ PatchScaler: An Efficient Patch-Independent Diffusion Model for Image Super-Resolution
While diffusion models significantly improve the perceptual quality of super-resolved images, they usually require a large number of sampling steps, resulting in high computational costs and long inference times. Recent efforts have explored reasonable acceleration schemes by reducing the number of sampling steps. However, these approaches treat all regions of the image equally, overlooking the fact that regions with varying levels of reconstruction difficulty require different sampling steps. To address this limitation, we propose PatchScaler, an efficient patch-independent diffusion pipeline for single image super-resolution. Specifically, PatchScaler introduces a Patch-adaptive Group Sampling (PGS) strategy that groups feature patches by quantifying their reconstruction difficulty and establishes shortcut paths with different sampling configurations for each group. To further optimize the patch-level reconstruction process of PGS, we propose a texture prompt that provides rich texture conditional information to the diffusion model. The texture prompt adaptively retrieves texture priors for the target patch from a common reference texture memory. Extensive experiments show that our PatchScaler achieves superior performance in both quantitative and qualitative evaluations, while significantly speeding up inference. Our code will be available at \url{https://github.com/yongliuy/PatchScaler}.
♻ ☆ RoGs: Large Scale Road Surface Reconstruction with Meshgrid Gaussian
Road surface reconstruction plays a crucial role in autonomous driving, which can be used for road lane perception and autolabeling. Recently, mesh-based road surface reconstruction algorithms have shown promising reconstruction results. However, these mesh-based methods suffer from slow speed and poor reconstruction quality. To address these limitations, we propose a novel large-scale road surface reconstruction approach with meshgrid Gaussian, named RoGs. Specifically, we model the road surface by placing Gaussian surfels in the vertices of a uniformly distributed square mesh, where each surfel stores color, semantic, and geometric information. This square mesh-based layout covers the entire road with fewer Gaussian surfels and reduces the overlap between Gaussian surfels during training. In addition, because the road surface has no thickness, 2D Gaussian surfel is more consistent with the physical reality of the road surface than 3D Gaussian sphere. Then, unlike previous initialization methods that rely on point clouds, we introduce a vehicle pose-based initialization method to initialize the height and rotation of the Gaussian surfel. Thanks to this meshgrid Gaussian modeling and pose-based initialization, our method achieves significant speedups while improving reconstruction quality. We obtain excellent results in reconstruction of road surfaces in a variety of challenging real-world scenes.
♻ ☆ Exosense: A Vision-Based Scene Understanding System For Exoskeletons
Self-balancing exoskeletons are a key enabling technology for individuals with mobility impairments. While the current challenges focus on human-compliant hardware and control, unlocking their use for daily activities requires a scene perception system. In this work, we present Exosense, a vision-centric scene understanding system for self-balancing exoskeletons. We introduce a multi-sensor visual-inertial mapping device as well as a navigation stack for state estimation, terrain mapping and long-term operation. We tested Exosense attached to both a human leg and Wandercraft's Personal Exoskeleton in real-world indoor scenarios. This enabled us to test the system during typical periodic walking gaits, as well as future uses in multi-story environments. We demonstrate that Exosense can achieve an odometry drift of about 4 cm per meter traveled, and construct terrain maps under 1 cm average reconstruction error. It can also work in a visual localization mode in a previously mapped environment, providing a step towards long-term operation of exoskeletons.
comment: 8 pages, 9 figures
♻ ☆ Model Inversion Attacks Through Target-Specific Conditional Diffusion Models
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications. Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space. To alleviate these issues, leveraging on diffusion models' remarkable synthesis capabilities, we propose Diffusion-based Model Inversion (Diff-MI) attacks. Specifically, we introduce a novel target-specific conditional diffusion model (CDM) to purposely approximate target classifier's private distribution and achieve superior accuracy-fidelity balance. Our method involves a two-step learning paradigm. Step-1 incorporates the target classifier into the entire CDM learning under a pretrain-then-finetune fashion, with creating pseudo-labels as model conditions in pretraining and adjusting specified layers with image predictions in fine-tuning. Step-2 presents an iterative image reconstruction method, further enhancing the attack performance through a combination of diffusion priors and target knowledge. Additionally, we propose an improved max-margin loss that replaces the hard max with top-k maxes, fully leveraging feature information and soft labels from the target classifier. Extensive experiments demonstrate that Diff-MI significantly improves generative fidelity with an average decrease of 20\% in FID while maintaining competitive attack accuracy compared to state-of-the-art methods across various datasets and models. Our code is available at: \url{https://github.com/Ouxiang-Li/Diff-MI}.
♻ ☆ Is Less More? Exploring Token Condensation as Training-free Adaptation for CLIP
Contrastive language-image pre-training (CLIP) has shown remarkable generalization ability in image classification. However, CLIP sometimes encounters performance drops on downstream datasets during zero-shot inference. Test-time adaptation methods attempt to mitigate this by adjusting normalization layers or tuning context prompts with large batch sizes and extensive augmentations; yet, these methods are computationally intensive. This raises an important question: Is there a training-free approach that can efficiently address CLIP's performance drop in such cases? To explore this, we benchmark token condensation techniques, originally designed to enhance the efficiency of vision transformers, on CLIP zero-shot inference tasks. We observe that although token condensation may compromise in-domain accuracy, it surprisingly enhances CLIP's performance on certain cross-dataset benchmarks. This motivates two key inquiries: (1) Can token condensation serve as a "free-lunch" solution for CLIP zero-shot inference? (2) What criteria should guide condensation -- how can essential tokens be identified and redundant ones eliminated? To address these questions, we propose Token Condensation as Adaptation (TCA), a training-free adaptation method for CLIP by pruning class-irrelevant visual tokens while merging class-ambiguous tokens. As the first approach for CLIP's token efficiency, TCA demonstrates superior performance across cross-dataset tasks, achieving up to a 21.4\% improvement over the strongest baseline while reducing GFLOPs by 12.2\% to 48.9\%, with minimized hyperparameter dependency.
comment: 15 pages, 7 figures
♻ ☆ CTVR-EHO TDA-IPH Topological Optimized Convolutional Visual Recurrent Network for Brain Tumor Segmentation and Classification
In today's world of health care, brain tumor detection has become common. However, the manual brain tumor classification approach is time-consuming. So Deep Convolutional Neural Network (DCNN) is used by many researchers in the medical field for making accurate diagnoses and aiding in the patient's treatment. The traditional techniques have problems such as overfitting and the inability to extract necessary features. To overcome these problems, we developed the Topological Data Analysis based Improved Persistent Homology (TDA-IPH) and Convolutional Transfer learning and Visual Recurrent learning with Elephant Herding Optimization hyper-parameter tuning (CTVR-EHO) models for brain tumor segmentation and classification. Initially, the Topological Data Analysis based Improved Persistent Homology is designed to segment the brain tumor image. Then, from the segmented image, features are extracted using TL via the AlexNet model and Bidirectional Visual Long Short-Term Memory (Bi-VLSTM). Next, elephant Herding Optimization (EHO) is used to tune the hyperparameters of both networks to get an optimal result. Finally, extracted features are concatenated and classified using the softmax activation layer. The simulation result of this proposed CTVR-EHO and TDA-IPH method is analyzed based on precision, accuracy, recall, loss, and F score metrics. When compared to other existing brain tumor segmentation and classification models, the proposed CTVR-EHO and TDA-IPH approaches show high accuracy (99.8%), high recall (99.23%), high precision (99.67%), and high F score (99.59%).
♻ ☆ Advancing Pose-Guided Image Synthesis with Progressive Conditional Diffusion Models ICLR 2024
Recent work has showcased the significant potential of diffusion models in pose-guided person image synthesis. However, owing to the inconsistency in pose between the source and target images, synthesizing an image with a distinct pose, relying exclusively on the source image and target pose information, remains a formidable challenge. This paper presents Progressive Conditional Diffusion Models (PCDMs) that incrementally bridge the gap between person images under the target and source poses through three stages. Specifically, in the first stage, we design a simple prior conditional diffusion model that predicts the global features of the target image by mining the global alignment relationship between pose coordinates and image appearance. Then, the second stage establishes a dense correspondence between the source and target images using the global features from the previous stage, and an inpainting conditional diffusion model is proposed to further align and enhance the contextual features, generating a coarse-grained person image. In the third stage, we propose a refining conditional diffusion model to utilize the coarsely generated image from the previous stage as a condition, achieving texture restoration and enhancing fine-detail consistency. The three-stage PCDMs work progressively to generate the final high-quality and high-fidelity synthesized image. Both qualitative and quantitative results demonstrate the consistency and photorealism of our proposed PCDMs under challenging scenarios.The code and model will be available at https://github.com/tencent-ailab/PCDMs.
comment: Accepted to ICLR 2024. The final version is available at OpenReview: https://openreview.net/forum?id=rHzapPnCgT
♻ ☆ Rethinking Weight-Averaged Model-merging
Weight-averaged model-merging has emerged as a powerful approach in deep learning, capable of enhancing model performance without fine-tuning or retraining. However, the underlying mechanisms that explain its effectiveness remain largely unexplored. In this paper, we investigate this technique from three novel perspectives to provide deeper insights into how and why weight-averaged model-merging works: (1) we examine the intrinsic patterns captured by the learning of the model weights, through the visualizations of their patterns on several datasets, showing that these weights often encode structured and interpretable patterns; (2) we investigate model ensemble merging strategies based on averaging on weights versus averaging on features, providing detailed analyses across diverse architectures and datasets; and (3) we explore the impact on model-merging prediction stability in terms of changing the parameter magnitude, revealing insights into the way of weight averaging works as regularization by showing the robustness across different parameter scales. Our findings shed light on the "black box" of weight-averaged model-merging, offering valuable insights and practical recommendations that advance the model-merging process.
♻ ☆ Diffusion Features to Bridge Domain Gap for Semantic Segmentation
Pre-trained diffusion models have demonstrated remarkable proficiency in synthesizing images across a wide range of scenarios with customizable prompts, indicating their effective capacity to capture universal features. Motivated by this, our study delves into the utilization of the implicit knowledge embedded within diffusion models to address challenges in cross-domain semantic segmentation. This paper investigates the approach that leverages the sampling and fusion techniques to harness the features of diffusion models efficiently. We propose DIffusion Feature Fusion (DIFF) as a backbone use for extracting and integrating effective semantic representations through the diffusion process. By leveraging the strength of text-to-image generation capability, we introduce a new training framework designed to implicitly learn posterior knowledge from it. Through rigorous evaluation in the contexts of domain generalization semantic segmentation, we establish that our methodology surpasses preceding approaches in mitigating discrepancies across distinct domains and attains the state-of-the-art (SOTA) benchmark.
comment: The code is released at https://github.com/Yux1angJi/DIFF
♻ ☆ BiDense: Binarization for Dense Prediction
Dense prediction is a critical task in computer vision. However, previous methods often require extensive computational resources, which hinders their real-world application. In this paper, we propose BiDense, a generalized binary neural network (BNN) designed for efficient and accurate dense prediction tasks. BiDense incorporates two key techniques: the Distribution-adaptive Binarizer (DAB) and the Channel-adaptive Full-precision Bypass (CFB). The DAB adaptively calculates thresholds and scaling factors for binarization, effectively retaining more information within BNNs. Meanwhile, the CFB facilitates full-precision bypassing for binary convolutional layers undergoing various channel size transformations, which enhances the propagation of real-valued signals and minimizes information loss. By leveraging these techniques, BiDense preserves more real-valued information, enabling more accurate and detailed dense predictions in BNNs. Extensive experiments demonstrate that our framework achieves performance levels comparable to full-precision models while significantly reducing memory usage and computational costs.
Inversion Circle Interpolation: Diffusion-based Image Augmentation for Data-scarce Classification
Data Augmentation (DA), i.e., synthesizing faithful and diverse samples to expand the original training set, is a prevalent and effective strategy to improve the performance of various data-scarce tasks. With the powerful image generation ability, diffusion-based DA has shown strong performance gains on different image classification benchmarks. In this paper, we analyze today's diffusion-based DA methods, and argue that they cannot take account of both faithfulness and diversity, which are two critical keys for generating high-quality samples and boosting classification performance. To this end, we propose a novel Diffusion-based DA method: Diff-II. Specifically, it consists of three steps: 1) Category concepts learning: Learning concept embeddings for each category. 2) Inversion interpolation: Calculating the inversion for each image, and conducting circle interpolation for two randomly sampled inversions from the same category. 3) Two-stage denoising: Using different prompts to generate synthesized images in a coarse-to-fine manner. Extensive experiments on various data-scarce image classification tasks (e.g., few-shot, long-tailed, and out-of-distribution classification) have demonstrated its effectiveness over state-of-the-art diffusion-based DA methods.
♻ ☆ CosmoCLIP: Generalizing Large Vision-Language Models for Astronomical Imaging
Existing vision-text contrastive learning models enhance representation transferability and support zero-shot prediction by matching paired image and caption embeddings while pushing unrelated pairs apart. However, astronomical image-label datasets are significantly smaller compared to general image and label datasets available from the internet. We introduce CosmoCLIP, an astronomical image-text contrastive learning framework precisely fine-tuned on the pre-trained CLIP model using SpaceNet and BLIP-based captions. SpaceNet, attained via FLARE, constitutes ~13k optimally distributed images, while BLIP acts as a rich knowledge extractor. The rich semantics derived from this SpaceNet and BLIP descriptions, when learned contrastively, enable CosmoCLIP to achieve superior generalization across various in-domain and out-of-domain tasks. Our results demonstrate that CosmoCLIP is a straightforward yet powerful framework, significantly outperforming CLIP in zero-shot classification and image-text retrieval tasks.
comment: Accepted at SPAICE Conference, ECSAT, UK, 2024
♻ ☆ Multi-times Monte Carlo Rendering for Inter-reflection Reconstruction NeurIPS 2024
Inverse rendering methods have achieved remarkable performance in reconstructing high-fidelity 3D objects with disentangled geometries, materials, and environmental light. However, they still face huge challenges in reflective surface reconstruction. Although recent methods model the light trace to learn specularity, the ignorance of indirect illumination makes it hard to handle inter-reflections among multiple smooth objects. In this work, we propose Ref-MC2 that introduces the multi-time Monte Carlo sampling which comprehensively computes the environmental illumination and meanwhile considers the reflective light from object surfaces. To address the computation challenge as the times of Monte Carlo sampling grow, we propose a specularity-adaptive sampling strategy, significantly reducing the computational complexity. Besides the computational resource, higher geometry accuracy is also required because geometric errors accumulate multiple times. Therefore, we further introduce a reflection-aware surface model to initialize the geometry and refine it during inverse rendering. We construct a challenging dataset containing scenes with multiple objects and inter-reflections. Experiments show that our method outperforms other inverse rendering methods on various object groups. We also show downstream applications, e.g., relighting and material editing, to illustrate the disentanglement ability of our method.
comment: 10 pages,6 figures, Accepted by NeurIPS 2024
♻ ☆ A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density Measurement
Early detection of fertilizer-induced stress in tomato plants is crucial for optimizing crop yield through timely management interventions. While conventional optical methods struggle to detect fertilizer stress in young leaves, these leaves contain valuable diagnostic information through their microscopic hair-like structures, particularly trichomes, which existing approaches have overlooked. This study introduces a smartphone-based noninvasive technique that leverages mobile computing and digital imaging capabilities to quantify trichome density on young leaves with superior detection latency. Our method uniquely combines augmented reality technology with image processing algorithms to analyze trichomes transferred onto specialized measurement paper. A robust automated pipeline processes these images through region extraction, perspective transformation, and illumination correction to precisely quantify trichome density. Validation experiments on hydroponically grown tomatoes under varying fertilizer conditions demonstrated the method's effectiveness. Leave-one-out cross-validation revealed strong predictive performance with the area under the precision-recall curve (PR-AUC: 0.82) and area under the receiver operating characteristic curve (ROC-AUC: 0.64), while the predicted and observed trichome densities exhibited high correlation ($r = 0.79$). This innovative approach transforms smartphones into precise diagnostic tools for plant nutrition assessment, offering a practical, cost-effective solution for precision agriculture.
♻ ☆ IC3M: In-Car Multimodal Multi-object Monitoring for Abnormal Status of Both Driver and Passengers
Recently, in-car monitoring has emerged as a promising technology for detecting early-stage abnormal status of the driver and providing timely alerts to prevent traffic accidents. Although training models with multimodal data enhances the reliability of abnormal status detection, the scarcity of labeled data and the imbalance of class distribution impede the extraction of critical abnormal state features, significantly deteriorating training performance. Furthermore, missing modalities due to environment and hardware limitations further exacerbate the challenge of abnormal status identification. More importantly, monitoring abnormal health conditions of passengers, particularly in elderly care, is of paramount importance but remains underexplored. To address these challenges, we introduce our IC3M, an efficient camera-rotation-based multimodal framework for monitoring both driver and passengers in a car. Our IC3M comprises two key modules: an adaptive threshold pseudo-labeling strategy and a missing modality reconstruction. The former customizes pseudo-labeling thresholds for different classes based on the class distribution, generating class-balanced pseudo labels to guide model training effectively, while the latter leverages crossmodality relationships learned from limited labels to accurately recover missing modalities by distribution transferring from available modalities. Extensive experimental results demonstrate that IC3M outperforms state-of-the-art benchmarks in accuracy, precision, and recall while exhibiting superior robustness under limited labeled data and severe missing modality.
comment: 16 pages, 17 figures
♻ ☆ Towards Understanding Adversarial Transferability in Federated Learning
We investigate a specific security risk in FL: a group of malicious clients has impacted the model during training by disguising their identities and acting as benign clients but later switching to an adversarial role. They use their data, which was part of the training set, to train a substitute model and conduct transferable adversarial attacks against the federated model. This type of attack is subtle and hard to detect because these clients initially appear to be benign. The key question we address is: How robust is the FL system to such covert attacks, especially compared to traditional centralized learning systems? We empirically show that the proposed attack imposes a high security risk to current FL systems. By using only 3\% of the client's data, we achieve the highest attack rate of over 80\%. To further offer a full understanding of the challenges the FL system faces in transferable attacks, we provide a comprehensive analysis over the transfer robustness of FL across a spectrum of configurations. Surprisingly, FL systems show a higher level of robustness than their centralized counterparts, especially when both systems are equally good at handling regular, non-malicious data. We attribute this increased robustness to two main factors: 1) Decentralized Data Training: Each client trains the model on its own data, reducing the overall impact of any single malicious client. 2) Model Update Averaging: The updates from each client are averaged together, further diluting any malicious alterations. Both practical experiments and theoretical analysis support our conclusions. This research not only sheds light on the resilience of FL systems against hidden attacks but also raises important considerations for their future application and development.
comment: Published in Transactions on Machine Learning Research (TMLR) (11/2024)
♻ ☆ Automated Identification and Segmentation of Hi Sources in CRAFTS Using Deep Learning Method
Identifying neutral hydrogen (\hi) galaxies from observational data is a significant challenge in \hi\ galaxy surveys. With the advancement of observational technology, especially with the advent of large-scale telescope projects such as FAST and SKA, the significant increase in data volume presents new challenges for the efficiency and accuracy of data processing.To address this challenge, in this study, we present a machine learning-based method for extracting \hi\ sources from the three-dimensional (3D) spectral data obtained from the Commensal Radio Astronomy FAST Survey (CRAFTS). We have carefully assembled a specialized dataset, HISF, rich in \hi\ sources, specifically designed to enhance the detection process. Our model, Unet-LK, utilizes the advanced 3D-Unet segmentation architecture and employs an elongated convolution kernel to effectively capture the intricate structures of \hi\ sources. This strategy ensures a reliable identification and segmentation of \hi\ sources, achieving notable performance metrics with a recall rate of 91.6\% and an accuracy of 95.7\%. These results substantiate the robustness of our dataset and the effectiveness of our proposed network architecture in the precise identification of \hi\ sources. Our code and dataset is publicly available at \url{https://github.com/fishszh/HISF}.
comment: 8 pages, 8 figures
♻ ☆ MOT FCG++: Enhanced Representation of Spatio-temporal Motion and Appearance Features
The goal of multi-object tracking (MOT) is to detect and track all objects in a scene across frames, while maintaining a unique identity for each object. Most existing methods rely on the spatial-temporal motion features and appearance embedding features of the detected objects in consecutive frames. Effectively and robustly representing the spatial and appearance features of long trajectories has become a critical factor affecting the performance of MOT. We propose a novel approach for appearance and spatial-temporal motion feature representation, improving upon the hierarchical clustering association method MOT FCG. For spatialtemporal motion features, we first propose Diagonal Modulated GIoU, which more accurately represents the relationship between the position and shape of the objects. Second, Mean Constant Velocity Modeling is proposed to reduce the effect of observation noise on target motion state estimation. For appearance features, we utilize a dynamic appearance representation that incorporates confidence information, enabling the trajectory appearance features to be more robust and global. Based on the baseline model MOT FCG, we have realized further improvements in the performance of all. we achieved 63.1 HOTA, 76.9 MOTA and 78.2 IDF1 on the MOT17 test set, and also achieved competitive performance on the MOT20 and DanceTrack sets.
comment: 14 pages, 7 figures
♻ ☆ t-READi: Transformer-Powered Robust and Efficient Multimodal Inference for Autonomous Driving
Given the wide adoption of multimodal sensors (e.g., camera, lidar, radar) by autonomous vehicles (AVs), deep analytics to fuse their outputs for a robust perception become imperative. However, existing fusion methods often make two assumptions rarely holding in practice: i) similar data distributions for all inputs and ii) constant availability for all sensors. Because, for example, lidars have various resolutions and failures of radars may occur, such variability often results in significant performance degradation in fusion. To this end, we present tREADi, an adaptive inference system that accommodates the variability of multimodal sensory data and thus enables robust and efficient perception. t-READi identifies variation-sensitive yet structure-specific model parameters; it then adapts only these parameters while keeping the rest intact. t-READi also leverages a cross-modality contrastive learning method to compensate for the loss from missing modalities. Both functions are implemented to maintain compatibility with existing multimodal deep fusion methods. The extensive experiments evidently demonstrate that compared with the status quo approaches, t-READi not only improves the average inference accuracy by more than 6% but also reduces the inference latency by almost 15x with the cost of only 5% extra memory overhead in the worst case under realistic data and modal variations.
comment: 14 pages, 16 figures
♻ ☆ OTO Planner: An Efficient Only Travelling Once Exploration Planner for Complex and Unknown Environments
Autonomous exploration in complex and cluttered environments is essential for various applications. However, there are many challenges due to the lack of global heuristic information. Existing exploration methods suffer from the repeated paths and considerable computational resource requirement in large-scale environments. To address the above issues, this letter proposes an efficient exploration planner that reduces repeated paths in complex environments, hence it is called "Only Travelling Once Planner". OTO Planner includes fast frontier updating, viewpoint evaluation and viewpoint refinement. A selective frontier updating mechanism is designed, saving a large amount of computational resources. In addition, a novel viewpoint evaluation system is devised to reduce the repeated paths utilizing the enclosed sub-region detection. Besides, a viewpoint refinement approach is raised to concentrate the redundant viewpoints, leading to smoother paths. We conduct extensive simulation and real-world experiments to validate the proposed method. Compared to the state-of-the-art approach, the proposed method reduces the exploration time and movement distance by 10%-20% and improves the speed of frontier detection by 6-9 times.
♻ ☆ Brain-Inspired Efficient Pruning: Exploiting Criticality in Spiking Neural Networks
Spiking Neural Networks (SNNs) have gained significant attention due to the energy-efficient and multiplication-free characteristics. Despite these advantages, deploying large-scale SNNs on edge hardware is challenging due to limited resource availability. Network pruning offers a viable approach to compress the network scale and reduce hardware resource requirements for model deployment. However, existing SNN pruning methods cause high pruning costs and performance loss because they lack efficiency in processing the sparse spike representation of SNNs. In this paper, inspired by the critical brain hypothesis in neuroscience and the high biological plausibility of SNNs, we explore and leverage criticality to facilitate efficient pruning in deep SNNs. We firstly explain criticality in SNNs from the perspective of maximizing feature information entropy. Second, We propose a low-cost metric for assess neuron criticality in feature transmission and design a pruning-regeneration method that incorporates this criticality into the pruning process. Experimental results demonstrate that our method achieves higher performance than the current state-of-the-art (SOTA) method with up to 95.26\% reduction of pruning cost. The criticality-based regeneration process efficiently selects potential structures and facilitates consistent feature representation.
♻ ☆ Design2Code: Benchmarking Multimodal Code Generation for Automated Front-End Engineering
Generative AI has made rapid advancements in recent years, achieving unprecedented capabilities in multimodal understanding and code generation. This can enable a new paradigm of front-end development in which multimodal large language models (MLLMs) directly convert visual designs into code implementations. In this work, we construct Design2Code - the first real-world benchmark for this task. Specifically, we manually curate 484 diverse real-world webpages as test cases and develop a set of automatic evaluation metrics to assess how well current multimodal LLMs can generate the code implementations that directly render into the given reference webpages, given the screenshots as input. We also complement automatic metrics with comprehensive human evaluations to validate the performance ranking. To rigorously benchmark MLLMs, we test various multimodal prompting methods on frontier models such as GPT-4o, GPT-4V, Gemini, and Claude. Our fine-grained break-down metrics indicate that models mostly lag in recalling visual elements from the input webpages and generating correct layout designs.
comment: The first two authors contributed equally
♻ ☆ Multi Loss-based Feature Fusion and Top Two Voting Ensemble Decision Strategy for Facial Expression Recognition in the Wild
Facial expression recognition (FER) in the wild is a challenging task affected by the image quality and has attracted broad interest in computer vision. There is no research using feature fusion and ensemble strategy for FER simultaneously. Different from previous studies, this paper applies both internal feature fusion for a single model and feature fusion among multiple networks, as well as the ensemble strategy. This paper proposes one novel single model named R18+FAML, as well as one ensemble model named R18+FAML-FGA-T2V to improve the performance of the FER in the wild. Based on the structure of ResNet18 (R18), R18+FAML combines internal Feature fusion and three Attention blocks using Multiple Loss functions (FAML) to improve the diversity of the feature extraction. To improve the performance of R18+FAML, we propose a Feature fusion among networks based on the Genetic Algorithm (FGA), which can fuse the convolution kernels for feature extraction of multiple networks. On the basis of R18+FAML and FGA, we propose one ensemble strategy, i.e., the Top Two Voting (T2V) to support the classification of FER, which can consider more classification information comprehensively. Combining the above strategies, R18+FAML-FGA-T2V can focus on the main expression-aware areas. Extensive experiments demonstrate that our single model R18+FAML and the ensemble model R18+FAML-FGA-T2V achieve the accuracies of $\left( 90.32, 62.17, 65.83 \right)\%$ and $\left( 91.59, 63.27, 66.63 \right)\%$ on three challenging unbalanced FER datasets RAF-DB, AffectNet-8 and AffectNet-7 respectively, both outperforming the state-of-the-art results.
comment: 12 pages, 8 figures
♻ ☆ Instruction-Guided Editing Controls for Images and Multimedia: A Survey in LLM era
The rapid advancement of large language models (LLMs) and multimodal learning has transformed digital content creation and manipulation. Traditional visual editing tools require significant expertise, limiting accessibility. Recent strides in instruction-based editing have enabled intuitive interaction with visual content, using natural language as a bridge between user intent and complex editing operations. This survey provides an overview of these techniques, focusing on how LLMs and multimodal models empower users to achieve precise visual modifications without deep technical knowledge. By synthesizing over 100 publications, we explore methods from generative adversarial networks to diffusion models, examining multimodal integration for fine-grained content control. We discuss practical applications across domains such as fashion, 3D scene manipulation, and video synthesis, highlighting increased accessibility and alignment with human intuition. Our survey compares existing literature, emphasizing LLM-empowered editing, and identifies key challenges to stimulate further research. We aim to democratize powerful visual editing across various industries, from entertainment to education. Interested readers are encouraged to access our repository at https://github.com/tamlhp/awesome-instruction-editing.
comment: Fixed a serious error in author information
♻ ☆ AI-generated faces influence gender stereotypes and racial homogenization
Text-to-image generative AI models such as Stable Diffusion are used daily by millions worldwide. However, the extent to which these models exhibit racial and gender stereotypes is not yet fully understood. Here, we document significant biases in Stable Diffusion across six races, two genders, 32 professions, and eight attributes. Additionally, we examine the degree to which Stable Diffusion depicts individuals of the same race as being similar to one another. This analysis reveals significant racial homogenization, e.g., depicting nearly all Middle Eastern men as bearded, brown-skinned, and wearing traditional attire. We then propose debiasing solutions that allow users to specify the desired distributions of race and gender when generating images while minimizing racial homogenization. Finally, using a preregistered survey experiment, we find evidence that being presented with inclusive AI-generated faces reduces people's racial and gender biases, while being presented with non-inclusive ones increases such biases, regardless of whether the images are labeled as AI-generated. Taken together, our findings emphasize the need to address biases and stereotypes in text-to-image models.
comment: 47 pages, 19 figures
♻ ☆ Retrieval-Enhanced Visual Prompt Learning for Few-shot Classification
The Contrastive Language-Image Pretraining (CLIP) model has been widely used in various downstream vision tasks. The few-shot learning paradigm has been widely adopted to augment its capacity for these tasks. However, current paradigms may struggle with fine-grained classification, such as satellite image recognition, due to widening domain gaps. To address this limitation, we propose retrieval-enhanced visual prompt learning (RePrompt), which introduces retrieval mechanisms to cache and reuse the knowledge of downstream tasks. RePrompt constructs a retrieval database from either training examples or external data if available, and uses a retrieval mechanism to enhance multiple stages of a simple prompt learning baseline, thus narrowing the domain gap. During inference, our enhanced model can reference similar samples brought by retrieval to make more accurate predictions. A detailed analysis reveals that retrieval helps to improve the distribution of late features, thus, improving generalization for downstream tasks. Reprompt attains state-of-the-art performance on a wide range of vision datasets, including 11 image datasets, 3 video datasets, 1 multi-view dataset, and 4 domain generalization benchmarks.
♻ ☆ InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint NeurIPS 2024
Text-conditioned motion synthesis has made remarkable progress with the emergence of diffusion models. However, the majority of these motion diffusion models are primarily designed for a single character and overlook multi-human interactions. In our approach, we strive to explore this problem by synthesizing human motion with interactions for a group of characters of any size in a zero-shot manner. The key aspect of our approach is the adaptation of human-wise interactions as pairs of human joints that can be either in contact or separated by a desired distance. In contrast to existing methods that necessitate training motion generation models on multi-human motion datasets with a fixed number of characters, our approach inherently possesses the flexibility to model human interactions involving an arbitrary number of individuals, thereby transcending the limitations imposed by the training data. We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs. It consists of a motion controller and an inverse kinematics guidance module that realistically and accurately aligns the joints of synthesized characters to the desired location. Furthermore, we demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model (LLM). Experimental results highlight the capability of our framework to generate interactions with multiple human characters and its potential to work with off-the-shelf physics-based character simulators. Code is available at https://github.com/zhenzhiwang/intercontrol
comment: NeurIPS 2024 camera ready version. TL;DR: Generate human interactions with only single-person motion data in training via joint contact pairs from LLMs
♻ ☆ HumanVid: Demystifying Training Data for Camera-controllable Human Image Animation NeurIPS
Human image animation involves generating videos from a character photo, allowing user control and unlocking the potential for video and movie production. While recent approaches yield impressive results using high-quality training data, the inaccessibility of these datasets hampers fair and transparent benchmarking. Moreover, these approaches prioritize 2D human motion and overlook the significance of camera motions in videos, leading to limited control and unstable video generation. To demystify the training data, we present HumanVid, the first large-scale high-quality dataset tailored for human image animation, which combines crafted real-world and synthetic data. For the real-world data, we compile a vast collection of real-world videos from the internet. We developed and applied careful filtering rules to ensure video quality, resulting in a curated collection of 20K high-resolution (1080P) human-centric videos. Human and camera motion annotation is accomplished using a 2D pose estimator and a SLAM-based method. To expand our synthetic dataset, we collected 10K 3D avatar assets and leveraged existing assets of body shapes, skin textures and clothings. Notably, we introduce a rule-based camera trajectory generation method, enabling the synthetic pipeline to incorporate diverse and precise camera motion annotation, which can rarely be found in real-world data. To verify the effectiveness of HumanVid, we establish a baseline model named CamAnimate, short for Camera-controllable Human Animation, that considers both human and camera motions as conditions. Through extensive experimentation, we demonstrate that such simple baseline training on our HumanVid achieves state-of-the-art performance in controlling both human pose and camera motions, setting a new benchmark. Demo, data and code could be found in the project website: https://humanvid.github.io/.
comment: NeurIPS D&B Track 2024 camera ready version, TL;DR: the first large-scale dataset for camera controllable human image animation task, and a baseline method
♻ ☆ FruitNinja: 3D Object Interior Texture Generation with Gaussian Splatting
In the real world, objects reveal internal textures when sliced or cut, yet this behavior is not well-studied in 3D generation tasks today. For example, slicing a virtual 3D watermelon should reveal flesh and seeds. Given that no available dataset captures an object's full internal structure and collecting data from all slices is impractical, generative methods become the obvious approach. However, current 3D generation and inpainting methods often focus on visible appearance and overlook internal textures. To bridge this gap, we introduce FruitNinja, the first method to generate internal textures for 3D objects undergoing geometric and topological changes. Our approach produces objects via 3D Gaussian Splatting (3DGS) with both surface and interior textures synthesized, enabling real-time slicing and rendering without additional optimization. FruitNinja leverages a pre-trained diffusion model to progressively inpaint cross-sectional views and applies voxel-grid-based smoothing to achieve cohesive textures throughout the object. Our OpaqueAtom GS strategy overcomes 3DGS limitations by employing densely distributed opaque Gaussians, avoiding biases toward larger particles that destabilize training and sharp color transitions for fine-grained textures. Experimental results show that FruitNinja substantially outperforms existing approaches, showcasing unmatched visual quality in real-time rendered internal views across arbitrary geometry manipulations.
♻ ☆ Physical Adversarial Attack meets Computer Vision: A Decade Survey TPAMI
Despite the impressive achievements of Deep Neural Networks (DNNs) in computer vision, their vulnerability to adversarial attacks remains a critical concern. Extensive research has demonstrated that incorporating sophisticated perturbations into input images can lead to a catastrophic degradation in DNNs' performance. This perplexing phenomenon not only exists in the digital space but also in the physical world. Consequently, it becomes imperative to evaluate the security of DNNs-based systems to ensure their safe deployment in real-world scenarios, particularly in security-sensitive applications. To facilitate a profound understanding of this topic, this paper presents a comprehensive overview of physical adversarial attacks. Firstly, we distill four general steps for launching physical adversarial attacks. Building upon this foundation, we uncover the pervasive role of artifacts carrying adversarial perturbations in the physical world. These artifacts influence each step. To denote them, we introduce a new term: adversarial medium. Then, we take the first step to systematically evaluate the performance of physical adversarial attacks, taking the adversarial medium as a first attempt. Our proposed evaluation metric, hiPAA, comprises six perspectives: Effectiveness, Stealthiness, Robustness, Practicability, Aesthetics, and Economics. We also provide comparative results across task categories, together with insightful observations and suggestions for future research directions.
comment: Published at IEEE TPAMI. GitHub:https://github.com/weihui1308/PAA
♻ ☆ On the Trustworthiness Landscape of State-of-the-art Generative Models: A Survey and Outlook
Diffusion models and large language models have emerged as leading-edge generative models, revolutionizing various aspects of human life. However, the practical implementations of these models have also exposed inherent risks, bringing to the forefront their evil sides and sparking concerns regarding their trustworthiness. Despite the wealth of literature on this subject, a comprehensive survey specifically delving into the intersection of large-scale generative models and their trustworthiness remains largely absent. To bridge this gap, this paper investigates both the long-standing and emerging threats associated with these models across four fundamental dimensions: 1) privacy, 2) security, 3) fairness, and 4) responsibility. Based on the investigation results, we develop an extensive map outlining the trustworthiness of large generative models. After that, we provide practical recommendations and potential research directions for future secure applications equipped with large generative models, ultimately promoting the trustworthiness of the models and benefiting the society as a whole.
comment: draft
♻ ☆ Unveiling Hidden Details: A RAW Data-Enhanced Paradigm for Real-World Super-Resolution
Real-world image super-resolution (Real SR) aims to generate high-fidelity, detail-rich high-resolution (HR) images from low-resolution (LR) counterparts. Existing Real SR methods primarily focus on generating details from the LR RGB domain, often leading to a lack of richness or fidelity in fine details. In this paper, we pioneer the use of details hidden in RAW data to complement existing RGB-only methods, yielding superior outputs. We argue that key image processing steps in Image Signal Processing, such as denoising and demosaicing, inherently result in the loss of fine details in LR images, making LR RAW a valuable information source. To validate this, we present RealSR-RAW, a comprehensive dataset comprising over 10,000 pairs with LR and HR RGB images, along with corresponding LR RAW, captured across multiple smartphones under varying focal lengths and diverse scenes. Additionally, we propose a novel, general RAW adapter to efficiently integrate LR RAW data into existing CNNs, Transformers, and Diffusion-based Real SR models by suppressing the noise contained in LR RAW and aligning its distribution. Extensive experiments demonstrate that incorporating RAW data significantly enhances detail recovery and improves Real SR performance across ten evaluation metrics, including both fidelity and perception-oriented metrics. Our findings open a new direction for the Real SR task, with the dataset and code will be made available to support future research.
comment: We sincerely apologize, but due to some commercial confidentiality agreements related to the report, we have decided to withdraw the submission for now and will resubmit after making the necessary revisions
♻ ☆ VQA$^2$: Visual Question Answering for Video Quality Assessment
The advent and proliferation of large multi-modal models (LMMs) have introduced new paradigms to computer vision, transforming various tasks into a unified visual question answering framework. Video Quality Assessment (VQA), a classic field in low-level visual perception, focused initially on quantitative video quality scoring. However, driven by advances in LMMs, it is now progressing toward more holistic visual quality understanding tasks. Recent studies in the image domain have demonstrated that Visual Question Answering (VQA) can markedly enhance low-level visual quality evaluation. Nevertheless, related work has not been explored in the video domain, leaving substantial room for improvement. To address this gap, we introduce the VQA2 Instruction Dataset - the first visual question answering instruction dataset that focuses on video quality assessment. This dataset consists of 3 subsets and covers various video types, containing 157,755 instruction question-answer pairs. Then, leveraging this foundation, we present the VQA2 series models. The VQA2 series models interleave visual and motion tokens to enhance the perception of spatial-temporal quality details in videos. We conduct extensive experiments on video quality scoring and understanding tasks, and results demonstrate that the VQA2series models achieve excellent performance in both tasks. Notably, our final model, the VQA2-Assistant, exceeds the renowned GPT-4o in visual quality understanding tasks while maintaining strong competitiveness in quality scoring tasks. Our work provides a foundation and feasible approach for integrating low-level video quality assessment and understanding with LMMs.
comment: 24 pages 12 figures
♻ ☆ FracGM: A Fast Fractional Programming Technique for Geman-McClure Robust Estimator
Robust estimation is essential in computer vision, robotics, and navigation, aiming to minimize the impact of outlier measurements for improved accuracy. We present a fast algorithm for Geman-McClure robust estimation, FracGM, leveraging fractional programming techniques. This solver reformulates the original non-convex fractional problem to a convex dual problem and a linear equation system, iteratively solving them in an alternating optimization pattern. Compared to graduated non-convexity approaches, this strategy exhibits a faster convergence rate and better outlier rejection capability. In addition, the global optimality of the proposed solver can be guaranteed under given conditions. We demonstrate the proposed FracGM solver with Wahba's rotation problem and 3-D point-cloud registration along with relaxation pre-processing and projection post-processing. Compared to state-of-the-art algorithms, when the outlier rates increase from 20% to 80%, FracGM shows 53% and 88% lower rotation and translation increases. In real-world scenarios, FracGM achieves better results in 13 out of 18 outcomes, while having a 19.43% improvement in the computation time.
comment: 8 pages, 6 figures
♻ ☆ CycleGAN with Better Cycles
CycleGAN provides a framework to train image-to-image translation with unpaired datasets using cycle consistency loss [4]. While results are great in many applications, the pixel level cycle consistency can potentially be problematic and causes unrealistic images in certain cases. In this project, we propose three simple modifications to cycle consistency, and show that such an approach achieves better results with fewer artifacts.
comment: Technical Report 2018
♻ ☆ Neural Deformable Models for 3D Bi-Ventricular Heart Shape Reconstruction and Modeling from 2D Sparse Cardiac Magnetic Resonance Imaging ICCV 2023
We propose a novel neural deformable model (NDM) targeting at the reconstruction and modeling of 3D bi-ventricular shape of the heart from 2D sparse cardiac magnetic resonance (CMR) imaging data. We model the bi-ventricular shape using blended deformable superquadrics, which are parameterized by a set of geometric parameter functions and are capable of deforming globally and locally. While global geometric parameter functions and deformations capture gross shape features from visual data, local deformations, parameterized as neural diffeomorphic point flows, can be learned to recover the detailed heart shape.Different from iterative optimization methods used in conventional deformable model formulations, NDMs can be trained to learn such geometric parameter functions, global and local deformations from a shape distribution manifold. Our NDM can learn to densify a sparse cardiac point cloud with arbitrary scales and generate high-quality triangular meshes automatically. It also enables the implicit learning of dense correspondences among different heart shape instances for accurate cardiac shape registration. Furthermore, the parameters of NDM are intuitive, and can be used by a physician without sophisticated post-processing. Experimental results on a large CMR dataset demonstrate the improved performance of NDM over conventional methods.
comment: Accepted by ICCV 2023
♻ ☆ Enhancing Screen Time Identification in Children with a Multi-View Vision Language Model and Screen Time Tracker
Being able to accurately monitor the screen exposure of young children is important for research on phenomena linked to screen use such as childhood obesity, physical activity, and social interaction. Most existing studies rely upon self-report or manual measures from bulky wearable sensors, thus lacking efficiency and accuracy in capturing quantitative screen exposure data. In this work, we developed a novel sensor informatics framework that utilizes egocentric images from a wearable sensor, termed the screen time tracker (STT), and a vision language model (VLM). In particular, we devised a multi-view VLM that takes multiple views from egocentric image sequences and interprets screen exposure dynamically. We validated our approach by using a dataset of children's free-living activities, demonstrating significant improvement over existing methods in plain vision language models and object detection models. Results supported the promise of this monitoring approach, which could optimize behavioral research on screen exposure in children's naturalistic settings.
comment: Prepare for submission
♻ ☆ Distributionally Robust Alignment for Medical Federated Vision-Language Pre-training Under Data Heterogeneity
Vision-language pre-training (VLP) has emerged as an effective scheme for multimodal representation learning, but its reliance on large-scale multimodal data poses significant challenges for medical applications. Federated learning (FL) offers a promising solution to scale up the dataset for medical VLP while preserving data privacy. However, we observe that client data heterogeneity in real-world scenarios could cause models to learn biased cross-modal alignment during local pre-training. This would limit the transferability of the federally learned representation model on downstream tasks. To address this challenge, we propose Federated Distributionally Robust Alignment (FedDRA), a framework for federated VLP that achieves robust vision-language alignment under heterogeneous conditions. Based on client datasets, we construct a distribution family that encompasses potential test-time domains, and apply a distributionally robust framework to optimize the pre-trained model's performance across this distribution space. This approach bridges the gap between pre-training samples and downstream applications. To avoid over-fitting on client-specific information, we use anchor representation from the global model to guide the local training, and adopt a two-stage approach to first tune deeper layers before updating the entire network. Extensive experiments on real-world datasets demonstrate FedDRA's effectiveness in enhancing medical federated VLP under data heterogeneity. Our method also adapts well to various medical pre-training methods.
♻ ☆ AutoAD-Zero: A Training-Free Framework for Zero-Shot Audio Description
Our objective is to generate Audio Descriptions (ADs) for both movies and TV series in a training-free manner. We use the power of off-the-shelf Visual-Language Models (VLMs) and Large Language Models (LLMs), and develop visual and text prompting strategies for this task. Our contributions are three-fold: (i) We demonstrate that a VLM can successfully name and refer to characters if directly prompted with character information through visual indications without requiring any fine-tuning; (ii) A two-stage process is developed to generate ADs, with the first stage asking the VLM to comprehensively describe the video, followed by a second stage utilising a LLM to summarise dense textual information into one succinct AD sentence; (iii) A new dataset for TV audio description is formulated. Our approach, named AutoAD-Zero, demonstrates outstanding performance (even competitive with some models fine-tuned on ground truth ADs) in AD generation for both movies and TV series, achieving state-of-the-art CRITIC scores.
comment: Project Page: https://www.robots.ox.ac.uk/~vgg/research/autoad-zero/
♻ ☆ Moving Object Segmentation: All You Need Is SAM (and Flow)
The objective of this paper is motion segmentation -- discovering and segmenting the moving objects in a video. This is a much studied area with numerous careful, and sometimes complex, approaches and training schemes including: self-supervised learning, learning from synthetic datasets, object-centric representations, amodal representations, and many more. Our interest in this paper is to determine if the Segment Anything model (SAM) can contribute to this task. We investigate two models for combining SAM with optical flow that harness the segmentation power of SAM with the ability of flow to discover and group moving objects. In the first model, we adapt SAM to take optical flow, rather than RGB, as an input. In the second, SAM takes RGB as an input, and flow is used as a segmentation prompt. These surprisingly simple methods, without any further modifications, outperform all previous approaches by a considerable margin in both single and multi-object benchmarks. We also extend these frame-level segmentations to sequence-level segmentations that maintain object identity. Again, this simple model achieves outstanding performance across multiple moving object segmentation benchmarks.
comment: Project Page: https://www.robots.ox.ac.uk/~vgg/research/flowsam/
♻ ☆ When to Extract ReID Features: A Selective Approach for Improved Multiple Object Tracking
Extracting and matching Re-Identification (ReID) features is used by many state-of-the-art (SOTA) Multiple Object Tracking (MOT) methods, particularly effective against frequent and long-term occlusions. While end-to-end object detection and tracking have been the main focus of recent research, they have yet to outperform traditional methods in benchmarks like MOT17 and MOT20. Thus, from an application standpoint, methods with separate detection and embedding remain the best option for accuracy, modularity, and ease of implementation, though they are impractical for edge devices due to the overhead involved. In this paper, we investigate a selective approach to minimize the overhead of feature extraction while preserving accuracy, modularity, and ease of implementation. This approach can be integrated into various SOTA methods. We demonstrate its effectiveness by applying it to StrongSORT and Deep OC-SORT. Experiments on MOT17, MOT20, and DanceTrack datasets show that our mechanism retains the advantages of feature extraction during occlusions while significantly reducing runtime. Additionally, it improves accuracy by preventing confusion in the feature-matching stage, particularly in cases of deformation and appearance similarity, which are common in DanceTrack. https://github.com/emirhanbayar/Fast-StrongSORT, https://github.com/emirhanbayar/Fast-Deep-OC-SORT
comment: 8 pages, 5 figures. Presents a selective approach for ReID feature extraction in Multiple Object Tracking, reducing computational overhead while maintaining accuracy. Tested on StrongSORT and Deep OC-SORT using MOT17, MOT20, and DanceTrack datasets. Code: https://github.com/emirhanbayar/Fast-StrongSORT, https://github.com/emirhanbayar/Fast-Deep-OC-SORT
♻ ☆ Entropy Bootstrapping for Weakly Supervised Nuclei Detection
Microscopy structure segmentation, such as detecting cells or nuclei, generally requires a human to draw a ground truth contour around each instance. Weakly supervised approaches (e.g. consisting of only single point labels) have the potential to reduce this workload significantly. Our approach uses individual point labels for an entropy estimation to approximate an underlying distribution of cell pixels. We infer full cell masks from this distribution, and use Mask-RCNN to produce an instance segmentation output. We compare this point--annotated approach with training on the full ground truth masks. We show that our method achieves a comparatively good level of performance, despite a 95% reduction in pixel labels.
comment: 8 Pages
Machine Learning 152
☆ Stable Flow: Vital Layers for Training-Free Image Editing
Diffusion models have revolutionized the field of content synthesis and editing. Recent models have replaced the traditional UNet architecture with the Diffusion Transformer (DiT), and employed flow-matching for improved training and sampling. However, they exhibit limited generation diversity. In this work, we leverage this limitation to perform consistent image edits via selective injection of attention features. The main challenge is that, unlike the UNet-based models, DiT lacks a coarse-to-fine synthesis structure, making it unclear in which layers to perform the injection. Therefore, we propose an automatic method to identify "vital layers" within DiT, crucial for image formation, and demonstrate how these layers facilitate a range of controlled stable edits, from non-rigid modifications to object addition, using the same mechanism. Next, to enable real-image editing, we introduce an improved image inversion method for flow models. Finally, we evaluate our approach through qualitative and quantitative comparisons, along with a user study, and demonstrate its effectiveness across multiple applications. The project page is available at https://omriavrahami.com/stable-flow
comment: Project page is available at https://omriavrahami.com/stable-flow
☆ Learning Fair Robustness via Domain Mixup
Adversarial training is one of the predominant techniques for training classifiers that are robust to adversarial attacks. Recent work, however has found that adversarial training, which makes the overall classifier robust, it does not necessarily provide equal amount of robustness for all classes. In this paper, we propose the use of mixup for the problem of learning fair robust classifiers, which can provide similar robustness across all classes. Specifically, the idea is to mix inputs from the same classes and perform adversarial training on mixed up inputs. We present a theoretical analysis of this idea for the case of linear classifiers and show that mixup combined with adversarial training can provably reduce the class-wise robustness disparity. This method not only contributes to reducing the disparity in class-wise adversarial risk, but also the class-wise natural risk. Complementing our theoretical analysis, we also provide experimental results on both synthetic data and the real world dataset (CIFAR-10), which shows improvement in class wise disparities for both natural and adversarial risks.
☆ From RNNs to Foundation Models: An Empirical Study on Commercial Building Energy Consumption NeurIPS 2024
Accurate short-term energy consumption forecasting for commercial buildings is crucial for smart grid operations. While smart meters and deep learning models enable forecasting using past data from multiple buildings, data heterogeneity from diverse buildings can reduce model performance. The impact of increasing dataset heterogeneity in time series forecasting, while keeping size and model constant, is understudied. We tackle this issue using the ComStock dataset, which provides synthetic energy consumption data for U.S. commercial buildings. Two curated subsets, identical in size and region but differing in building type diversity, are used to assess the performance of various time series forecasting models, including fine-tuned open-source foundation models (FMs). The results show that dataset heterogeneity and model architecture have a greater impact on post-training forecasting performance than the parameter count. Moreover, despite the higher computational cost, fine-tuned FMs demonstrate competitive performance compared to base models trained from scratch.
comment: NeurIPS 2024 Workshop on Time Series in the Age of Large Models
☆ Multi-Agent Environments for Vehicle Routing Problems
Research on Reinforcement Learning (RL) approaches for discrete optimization problems has increased considerably, extending RL to an area classically dominated by Operations Research (OR). Vehicle routing problems are a good example of discrete optimization problems with high practical relevance where RL techniques have had considerable success. Despite these advances, open-source development frameworks remain scarce, hampering both the testing of algorithms and the ability to objectively compare results. This ultimately slows down progress in the field and limits the exchange of ideas between the RL and OR communities. Here we propose a library composed of multi-agent environments that simulates classic vehicle routing problems. The library, built on PyTorch, provides a flexible modular architecture design that allows easy customization and incorporation of new routing problems. It follows the Agent Environment Cycle ("AEC") games model and has an intuitive API, enabling rapid adoption and easy integration into existing reinforcement learning frameworks. The library allows for a straightforward use of classical OR benchmark instances in order to narrow the gap between the test beds for algorithm benchmarking used by the RL and OR communities. Additionally, we provide benchmark instance sets for each environment, as well as baseline RL models and training code.
Multimodal Autoregressive Pre-training of Large Vision Encoders
We introduce a novel method for pre-training of large-scale vision encoders. Building on recent advancements in autoregressive pre-training of vision models, we extend this framework to a multimodal setting, i.e., images and text. In this paper, we present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process, scalability, and remarkable performance across a range of downstream tasks. This is achieved by pairing the vision encoder with a multimodal decoder that autoregressively generates raw image patches and text tokens. Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification. Notably, our AIMV2-3B encoder achieves 89.5% accuracy on ImageNet-1k with a frozen trunk. Furthermore, AIMV2 consistently outperforms state-of-the-art contrastive models (e.g., CLIP, SigLIP) in multimodal image understanding across diverse settings.
comment: https://github.com/apple/ml-aim
☆ Beyond Training: Dynamic Token Merging for Zero-Shot Video Understanding
Recent advancements in multimodal large language models (MLLMs) have opened new avenues for video understanding. However, achieving high fidelity in zero-shot video tasks remains challenging. Traditional video processing methods rely heavily on fine-tuning to capture nuanced spatial-temporal details, which incurs significant data and computation costs. In contrast, training-free approaches, though efficient, often lack robustness in preserving context-rich features across complex video content. To this end, we propose DYTO, a novel dynamic token merging framework for zero-shot video understanding that adaptively optimizes token efficiency while preserving crucial scene details. DYTO integrates a hierarchical frame selection and a bipartite token merging strategy to dynamically cluster key frames and selectively compress token sequences, striking a balance between computational efficiency with semantic richness. Extensive experiments across multiple benchmarks demonstrate the effectiveness of DYTO, achieving superior performance compared to both fine-tuned and training-free methods and setting a new state-of-the-art for zero-shot video understanding.
☆ Persistent Homology for Structural Characterization in Disordered Systems
We propose a unified framework based on persistent homology (PH) to characterize both local and global structures in disordered systems. It can simultaneously generate local and global descriptors using the same algorithm and data structure, and has shown to be highly effective and interpretable in predicting particle rearrangements and classifying global phases. Based on this framework, we define a non-parametric metric, the Separation Index (SI), which not only outperforms traditional bond-orientational order parameters in phase classification tasks but also establishes a connection between particle environments and the global phase structure. Our methods provide an effective framework for understanding and analyzing the properties of disordered materials, with broad potential applications in materials science and even wider studies of complex systems.
comment: 19 pages, 17 figures
☆ CoNFiLD-inlet: Synthetic Turbulence Inflow Using Generative Latent Diffusion Models with Neural Fields
Eddy-resolving turbulence simulations require stochastic inflow conditions that accurately replicate the complex, multi-scale structures of turbulence. Traditional recycling-based methods rely on computationally expensive precursor simulations, while existing synthetic inflow generators often fail to reproduce realistic coherent structures of turbulence. Recent advances in deep learning (DL) have opened new possibilities for inflow turbulence generation, yet many DL-based methods rely on deterministic, autoregressive frameworks prone to error accumulation, resulting in poor robustness for long-term predictions. In this work, we present CoNFiLD-inlet, a novel DL-based inflow turbulence generator that integrates diffusion models with a conditional neural field (CNF)-encoded latent space to produce realistic, stochastic inflow turbulence. By parameterizing inflow conditions using Reynolds numbers, CoNFiLD-inlet generalizes effectively across a wide range of Reynolds numbers ($Re_\tau$ between $10^3$ and $10^4$) without requiring retraining or parameter tuning. Comprehensive validation through a priori and a posteriori tests in Direct Numerical Simulation (DNS) and Wall-Modeled Large Eddy Simulation (WMLES) demonstrates its high fidelity, robustness, and scalability, positioning it as an efficient and versatile solution for inflow turbulence synthesis.
comment: 27 pages, 10 figures
☆ Model Checking for Reinforcement Learning in Autonomous Driving: One Can Do More Than You Think!
Most reinforcement learning (RL) platforms use high-level programming languages, such as OpenAI Gymnasium using Python. These frameworks provide various API and benchmarks for testing RL algorithms in different domains, such as autonomous driving (AD) and robotics. These platforms often emphasise the design of RL algorithms and the training performance but neglect the correctness of models and reward functions, which can be crucial for the successful application of RL. This paper proposes using formal methods to model AD systems and demonstrates how model checking (MC) can be used in RL for AD. Most studies combining MC and RL focus on safety, such as safety shields. However, this paper shows different facets where MC can strengthen RL. First, an MC-based model pre-analysis can reveal bugs with respect to sensor accuracy and learning step size. This step serves as a preparation of RL, which saves time if bugs exist and deepens users' understanding of the target system. Second, reward automata can benefit the design of reward functions and greatly improve learning performance especially when the learning objectives are multiple. All these findings are supported by experiments.
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ Contrasting local and global modeling with machine learning and satellite data: A case study estimating tree canopy height in African savannas
While advances in machine learning with satellite imagery (SatML) are facilitating environmental monitoring at a global scale, developing SatML models that are accurate and useful for local regions remains critical to understanding and acting on an ever-changing planet. As increasing attention and resources are being devoted to training SatML models with global data, it is important to understand when improvements in global models will make it easier to train or fine-tune models that are accurate in specific regions. To explore this question, we contrast local and global training paradigms for SatML through a case study of tree canopy height (TCH) mapping in the Karingani Game Reserve, Mozambique. We find that recent advances in global TCH mapping do not necessarily translate to better local modeling abilities in our study region. Specifically, small models trained only with locally-collected data outperform published global TCH maps, and even outperform globally pretrained models that we fine-tune using local data. Analyzing these results further, we identify specific points of conflict and synergy between local and global modeling paradigms that can inform future research toward aligning local and global performance objectives in geospatial machine learning.
comment: 31 pages; 9 figures
☆ Enhancing Medical Image Segmentation with Deep Learning and Diffusion Models
Medical image segmentation is crucial for accurate clinical diagnoses, yet it faces challenges such as low contrast between lesions and normal tissues, unclear boundaries, and high variability across patients. Deep learning has improved segmentation accuracy and efficiency, but it still relies heavily on expert annotations and struggles with the complexities of medical images. The small size of medical image datasets and the high cost of data acquisition further limit the performance of segmentation networks. Diffusion models, with their iterative denoising process, offer a promising alternative for better detail capture in segmentation. However, they face difficulties in accurately segmenting small targets and maintaining the precision of boundary details. This article discusses the importance of medical image segmentation, the limitations of current deep learning approaches, and the potential of diffusion models to address these challenges.
☆ Indiscriminate Disruption of Conditional Inference on Multivariate Gaussians
The multivariate Gaussian distribution underpins myriad operations-research, decision-analytic, and machine-learning models (e.g., Bayesian optimization, Gaussian influence diagrams, and variational autoencoders). However, despite recent advances in adversarial machine learning (AML), inference for Gaussian models in the presence of an adversary is notably understudied. Therefore, we consider a self-interested attacker who wishes to disrupt a decisionmaker's conditional inference and subsequent actions by corrupting a set of evidentiary variables. To avoid detection, the attacker also desires the attack to appear plausible wherein plausibility is determined by the density of the corrupted evidence. We consider white- and grey-box settings such that the attacker has complete and incomplete knowledge about the decisionmaker's underlying multivariate Gaussian distribution, respectively. Select instances are shown to reduce to quadratic and stochastic quadratic programs, and structural properties are derived to inform solution methods. We assess the impact and efficacy of these attacks in three examples, including, real estate evaluation, interest rate estimation and signals processing. Each example leverages an alternative underlying model, thereby highlighting the attacks' broad applicability. Through these applications, we also juxtapose the behavior of the white- and grey-box attacks to understand how uncertainty and structure affect attacker behavior.
comment: 30 pages, 6 figures; 4 tables
☆ Agnostic Learning of Arbitrary ReLU Activation under Gaussian Marginals
We consider the problem of learning an arbitrarily-biased ReLU activation (or neuron) over Gaussian marginals with the squared loss objective. Despite the ReLU neuron being the basic building block of modern neural networks, we still do not understand the basic algorithmic question of whether one arbitrary ReLU neuron is learnable in the non-realizable setting. In particular, all existing polynomial time algorithms only provide approximation guarantees for the better-behaved unbiased setting or restricted bias setting. Our main result is a polynomial time statistical query (SQ) algorithm that gives the first constant factor approximation for arbitrary bias. It outputs a ReLU activation that achieves a loss of $O(\mathrm{OPT}) + \varepsilon$ in time $\mathrm{poly}(d,1/\varepsilon)$, where $\mathrm{OPT}$ is the loss obtained by the optimal ReLU activation. Our algorithm presents an interesting departure from existing algorithms, which are all based on gradient descent and thus fall within the class of correlational statistical query (CSQ) algorithms. We complement our algorithmic result by showing that no polynomial time CSQ algorithm can achieve a constant factor approximation. Together, these results shed light on the intrinsic limitation of gradient descent, while identifying arguably the simplest setting (a single neuron) where there is a separation between SQ and CSQ algorithms.
☆ Layer Pruning with Consensus: A Triple-Win Solution
Layer pruning offers a promising alternative to standard structured pruning, effectively reducing computational costs, latency, and memory footprint. While notable layer-pruning approaches aim to detect unimportant layers for removal, they often rely on single criteria that may not fully capture the complex, underlying properties of layers. We propose a novel approach that combines multiple similarity metrics into a single expressive measure of low-importance layers, called the Consensus criterion. Our technique delivers a triple-win solution: low accuracy drop, high-performance improvement, and increased robustness to adversarial attacks. With up to 78.80% FLOPs reduction and performance on par with state-of-the-art methods across different benchmarks, our approach reduces energy consumption and carbon emissions by up to 66.99% and 68.75%, respectively. Additionally, it avoids shortcut learning and improves robustness by up to 4 percentage points under various adversarial attacks. Overall, the Consensus criterion demonstrates its effectiveness in creating robust, efficient, and environmentally friendly pruned models.
☆ Overcomplete Tensor Decomposition via Koszul-Young Flattenings
Motivated by connections between algebraic complexity lower bounds and tensor decompositions, we investigate Koszul-Young flattenings, which are the main ingredient in recent lower bounds for matrix multiplication. Based on this tool we give a new algorithm for decomposing an $n_1 \times n_2 \times n_3$ tensor as the sum of a minimal number of rank-1 terms, and certifying uniqueness of this decomposition. For $n_1 \le n_2 \le n_3$ with $n_1 \to \infty$ and $n_3/n_2 = O(1)$, our algorithm is guaranteed to succeed when the tensor rank is bounded by $r \le (1-\epsilon)(n_2 + n_3)$ for an arbitrary $\epsilon > 0$, provided the tensor components are generically chosen. For any fixed $\epsilon$, the runtime is polynomial in $n_3$. When $n_2 = n_3 = n$, our condition on the rank gives a factor-of-2 improvement over the classical simultaneous diagonalization algorithm, which requires $r \le n$, and also improves on the recent algorithm of Koiran (2024) which requires $r \le 4n/3$. It also improves on the PhD thesis of Persu (2018) which solves rank detection for $r \leq 3n/2$. We complement our upper bounds by showing limitations, in particular that no flattening of the style we consider can surpass rank $n_2 + n_3$. Furthermore, for $n \times n \times n$ tensors, we show that an even more general class of degree-$d$ polynomial flattenings cannot surpass rank $Cn$ for a constant $C = C(d)$. This suggests that for tensor decompositions, the case of generic components may be fundamentally harder than that of random components, where efficient decomposition is possible even in highly overcomplete settings.
comment: 42 pages
☆ Logarithmic Neyman Regret for Adaptive Estimation of the Average Treatment Effect AISTATS 2025
Estimation of the Average Treatment Effect (ATE) is a core problem in causal inference with strong connections to Off-Policy Evaluation in Reinforcement Learning. This paper considers the problem of adaptively selecting the treatment allocation probability in order to improve estimation of the ATE. The majority of prior work on adaptive ATE estimation focus on asymptotic guarantees, and in turn overlooks important practical considerations such as the difficulty of learning the optimal treatment allocation as well as hyper-parameter selection. Existing non-asymptotic methods are limited by poor empirical performance and exponential scaling of the Neyman regret with respect to problem parameters. In order to address these gaps, we propose and analyze the Clipped Second Moment Tracking (ClipSMT) algorithm, a variant of an existing algorithm with strong asymptotic optimality guarantees, and provide finite sample bounds on its Neyman regret. Our analysis shows that ClipSMT achieves exponential improvements in Neyman regret on two fronts: improving the dependence on $T$ from $O(\sqrt{T})$ to $O(\log T)$, as well as reducing the exponential dependence on problem parameters to a polynomial dependence. Finally, we conclude with simulations which show the marked improvement of ClipSMT over existing approaches.
comment: 12 pages, 2 figures. Submitted to AISTATS 2025
☆ Model-free learning of probability flows: Elucidating the nonequilibrium dynamics of flocking
Active systems comprise a class of nonequilibrium dynamics in which individual components autonomously dissipate energy. Efforts towards understanding the role played by activity have centered on computation of the entropy production rate (EPR), which quantifies the breakdown of time reversal symmetry. A fundamental difficulty in this program is that high dimensionality of the phase space renders traditional computational techniques infeasible for estimating the EPR. Here, we overcome this challenge with a novel deep learning approach that estimates probability currents directly from stochastic system trajectories. We derive a new physical connection between the probability current and two local definitions of the EPR for inertial systems, which we apply to characterize the departure from equilibrium in a canonical model of flocking. Our results highlight that entropy is produced and consumed on the spatial interface of a flock as the interplay between alignment and fluctuation dynamically creates and annihilates order. By enabling the direct visualization of when and where a given system is out of equilibrium, we anticipate that our methodology will advance the understanding of a broad class of complex nonequilibrium dynamics.
☆ Outlier-robust Mean Estimation near the Breakdown Point via Sum-of-Squares
We revisit the problem of estimating the mean of a high-dimensional distribution in the presence of an $\varepsilon$-fraction of adversarial outliers. When $\varepsilon$ is at most some sufficiently small constant, previous works can achieve optimal error rate efficiently \cite{diakonikolas2018robustly, kothari2018robust}. As $\varepsilon$ approaches the breakdown point $\frac{1}{2}$, all previous algorithms incur either sub-optimal error rates or exponential running time. In this paper we give a new analysis of the canonical sum-of-squares program introduced in \cite{kothari2018robust} and show that this program efficiently achieves optimal error rate for all $\varepsilon \in[0,\frac{1}{2})$. The key ingredient for our results is a new identifiability proof for robust mean estimation that focuses on the overlap between the distributions instead of their statistical distance as in previous works. We capture this proof within the sum-of-squares proof system, thus obtaining efficient algorithms using the sum-of-squares proofs to algorithms paradigm \cite{raghavendra2018high}.
comment: Accepted at SODA 2025, 47 pages
☆ Improving Routability Prediction via NAS Using a Smooth One-shot Augmented Predictor
Routability optimization in modern EDA tools has benefited greatly from using machine learning (ML) models. Constructing and optimizing the performance of ML models continues to be a challenge. Neural Architecture Search (NAS) serves as a tool to aid in the construction and improvement of these models. Traditional NAS techniques struggle to perform well on routability prediction as a result of two primary factors. First, the separation between the training objective and the search objective adds noise to the NAS process. Secondly, the increased variance of the search objective further complicates performing NAS. We craft a novel NAS technique, coined SOAP-NAS, to address these challenges through novel data augmentation techniques and a novel combination of one-shot and predictor-based NAS. Results show that our technique outperforms existing solutions by 40% closer to the ideal performance measured by ROC-AUC (area under the receiver operating characteristic curve) in DRC hotspot detection. SOAPNet is able to achieve an ROC-AUC of 0.9802 and a query time of only 0.461 ms.
☆ On the Sample Complexity of One Hidden Layer Networks with Equivariance, Locality and Weight Sharing
Weight sharing, equivariance, and local filters, as in convolutional neural networks, are believed to contribute to the sample efficiency of neural networks. However, it is not clear how each one of these design choices contribute to the generalization error. Through the lens of statistical learning theory, we aim to provide an insight into this question by characterizing the relative impact of each choice on the sample complexity. We obtain lower and upper sample complexity bounds for a class of single hidden layer networks. It is shown that the gain of equivariance is directly manifested in the bound, while getting a similar increase for weight sharing depends on the sharing mechanism. Among our results, we obtain a completely dimension-free bound for equivariant networks for a class of pooling operations. We show that the bound depends merely on the norm of filters, which is tighter than using the spectral norm of the respective matrix. We also characterize the trade-off in sample complexity between the parametrization of filters in spatial and frequency domains, particularly when spatial filters are localized as in vanilla convolutional neural networks.
☆ Generating Realistic Adversarial Examples for Business Processes using Variational Autoencoders
In predictive process monitoring, predictive models are vulnerable to adversarial attacks, where input perturbations can lead to incorrect predictions. Unlike in computer vision, where these perturbations are designed to be imperceptible to the human eye, the generation of adversarial examples in predictive process monitoring poses unique challenges. Minor changes to the activity sequences can create improbable or even impossible scenarios to occur due to underlying constraints such as regulatory rules or process constraints. To address this, we focus on generating realistic adversarial examples tailored to the business process context, in contrast to the imperceptible, pixel-level changes commonly seen in computer vision adversarial attacks. This paper introduces two novel latent space attacks, which generate adversaries by adding noise to the latent space representation of the input data, rather than directly modifying the input attributes. These latent space methods are domain-agnostic and do not rely on process-specific knowledge, as we restrict the generation of adversarial examples to the learned class-specific data distributions by directly perturbing the latent space representation of the business process executions. We evaluate these two latent space methods with six other adversarial attacking methods on eleven real-life event logs and four predictive models. The first three attacking methods directly permute the activities of the historically observed business process executions. The fourth method constrains the adversarial examples to lie within the same data distribution as the original instances, by projecting the adversarial examples to the original data distribution.
☆ Do I Know This Entity? Knowledge Awareness and Hallucinations in Language Models
Hallucinations in large language models are a widespread problem, yet the mechanisms behind whether models will hallucinate are poorly understood, limiting our ability to solve this problem. Using sparse autoencoders as an interpretability tool, we discover that a key part of these mechanisms is entity recognition, where the model detects if an entity is one it can recall facts about. Sparse autoencoders uncover meaningful directions in the representation space, these detect whether the model recognizes an entity, e.g. detecting it doesn't know about an athlete or a movie. This suggests that models can have self-knowledge: internal representations about their own capabilities. These directions are causally relevant: capable of steering the model to refuse to answer questions about known entities, or to hallucinate attributes of unknown entities when it would otherwise refuse. We demonstrate that despite the sparse autoencoders being trained on the base model, these directions have a causal effect on the chat model's refusal behavior, suggesting that chat finetuning has repurposed this existing mechanism. Furthermore, we provide an initial exploration into the mechanistic role of these directions in the model, finding that they disrupt the attention of downstream heads that typically move entity attributes to the final token.
☆ BERT-Based Approach for Automating Course Articulation Matrix Construction with Explainable AI
Course Outcome (CO) and Program Outcome (PO)/Program-Specific Outcome (PSO) alignment is a crucial task for ensuring curriculum coherence and assessing educational effectiveness. The construction of a Course Articulation Matrix (CAM), which quantifies the relationship between COs and POs/PSOs, typically involves assigning numerical values (0, 1, 2, 3) to represent the degree of alignment. In this study, We experiment with four models from the BERT family: BERT Base, DistilBERT, ALBERT, and RoBERTa, and use multiclass classification to assess the alignment between CO and PO/PSO pairs. We first evaluate traditional machine learning classifiers, such as Decision Tree, Random Forest, and XGBoost, and then apply transfer learning to evaluate the performance of the pretrained BERT models. To enhance model interpretability, we apply Explainable AI technique, specifically Local Interpretable Model-agnostic Explanations (LIME), to provide transparency into the decision-making process. Our system achieves accuracy, precision, recall, and F1-score values of 98.66%, 98.67%, 98.66%, and 98.66%, respectively. This work demonstrates the potential of utilizing transfer learning with BERT-based models for the automated generation of CAMs, offering high performance and interpretability in educational outcome assessment.
comment: 26 pages, 9 figures
☆ Natural Language Reinforcement Learning
Reinforcement Learning (RL) mathematically formulates decision-making with Markov Decision Process (MDP). With MDPs, researchers have achieved remarkable breakthroughs across various domains, including games, robotics, and language models. This paper seeks a new possibility, Natural Language Reinforcement Learning (NLRL), by extending traditional MDP to natural language-based representation space. Specifically, NLRL innovatively redefines RL principles, including task objectives, policy, value function, Bellman equation, and policy iteration, into their language counterparts. With recent advancements in large language models (LLMs), NLRL can be practically implemented to achieve RL-like policy and value improvement by either pure prompting or gradient-based training. Experiments over Maze, Breakthrough, and Tic-Tac-Toe games demonstrate the effectiveness, efficiency, and interpretability of the NLRL framework among diverse use cases. Our code will be released at https://github.com/waterhorse1/Natural-language-RL.
comment: Extension of arXiv:2402.07157
☆ Simulation-Aided Policy Tuning for Black-Box Robot Learning
How can robots learn and adapt to new tasks and situations with little data? Systematic exploration and simulation are crucial tools for efficient robot learning. We present a novel black-box policy search algorithm focused on data-efficient policy improvements. The algorithm learns directly on the robot and treats simulation as an additional information source to speed up the learning process. At the core of the algorithm, a probabilistic model learns the dependence of the policy parameters and the robot learning objective not only by performing experiments on the robot, but also by leveraging data from a simulator. This substantially reduces interaction time with the robot. Using this model, we can guarantee improvements with high probability for each policy update, thereby facilitating fast, goal-oriented learning. We evaluate our algorithm on simulated fine-tuning tasks and demonstrate the data-efficiency of the proposed dual-information source optimization algorithm. In a real robot learning experiment, we show fast and successful task learning on a robot manipulator with the aid of an imperfect simulator.
☆ Evaluating the Robustness of Analogical Reasoning in Large Language Models
LLMs have performed well on several reasoning benchmarks, including ones that test analogical reasoning abilities. However, there is debate on the extent to which they are performing general abstract reasoning versus employing non-robust processes, e.g., that overly rely on similarity to pre-training data. Here we investigate the robustness of analogy-making abilities previously claimed for LLMs on three of four domains studied by Webb, Holyoak, and Lu (2023): letter-string analogies, digit matrices, and story analogies. For each domain we test humans and GPT models on robustness to variants of the original analogy problems that test the same abstract reasoning abilities but are likely dissimilar from tasks in the pre-training data. The performance of a system that uses robust abstract reasoning should not decline substantially on these variants. On simple letter-string analogies, we find that while the performance of humans remains high for two types of variants we tested, the GPT models' performance declines sharply. This pattern is less pronounced as the complexity of these problems is increased, as both humans and GPT models perform poorly on both the original and variant problems requiring more complex analogies. On digit-matrix problems, we find a similar pattern but only on one out of the two types of variants we tested. On story-based analogy problems, we find that, unlike humans, the performance of GPT models are susceptible to answer-order effects, and that GPT models also may be more sensitive than humans to paraphrasing. This work provides evidence that LLMs often lack the robustness of zero-shot human analogy-making, exhibiting brittleness on most of the variations we tested. More generally, this work points to the importance of carefully evaluating AI systems not only for accuracy but also robustness when testing their cognitive capabilities.
comment: 31 pages, 13 figures. arXiv admin note: text overlap with arXiv:2402.08955
☆ Revised Regularization for Efficient Continual Learning through Correlation-Based Parameter Update in Bayesian Neural Networks
We propose a Bayesian neural network-based continual learning algorithm using Variational Inference, aiming to overcome several drawbacks of existing methods. Specifically, in continual learning scenarios, storing network parameters at each step to retain knowledge poses challenges. This is compounded by the crucial need to mitigate catastrophic forgetting, particularly given the limited access to past datasets, which complicates maintaining correspondence between network parameters and datasets across all sessions. Current methods using Variational Inference with KL divergence risk catastrophic forgetting during uncertain node updates and coupled disruptions in certain nodes. To address these challenges, we propose the following strategies. To reduce the storage of the dense layer parameters, we propose a parameter distribution learning method that significantly reduces the storage requirements. In the continual learning framework employing variational inference, our study introduces a regularization term that specifically targets the dynamics and population of the mean and variance of the parameters. This term aims to retain the benefits of KL divergence while addressing related challenges. To ensure proper correspondence between network parameters and the data, our method introduces an importance-weighted Evidence Lower Bound term to capture data and parameter correlations. This enables storage of common and distinctive parameter hyperspace bases. The proposed method partitions the parameter space into common and distinctive subspaces, with conditions for effective backward and forward knowledge transfer, elucidating the network-parameter dataset correspondence. The experimental results demonstrate the effectiveness of our method across diverse datasets and various combinations of sequential datasets, yielding superior performance compared to existing approaches.
comment: at ICVGIP 2024
☆ OpenScholar: Synthesizing Scientific Literature with Retrieval-augmented LMs
Scientific progress depends on researchers' ability to synthesize the growing body of literature. Can large language models (LMs) assist scientists in this task? We introduce OpenScholar, a specialized retrieval-augmented LM that answers scientific queries by identifying relevant passages from 45 million open-access papers and synthesizing citation-backed responses. To evaluate OpenScholar, we develop ScholarQABench, the first large-scale multi-domain benchmark for literature search, comprising 2,967 expert-written queries and 208 long-form answers across computer science, physics, neuroscience, and biomedicine. On ScholarQABench, OpenScholar-8B outperforms GPT-4o by 5% and PaperQA2 by 7% in correctness, despite being a smaller, open model. While GPT4o hallucinates citations 78 to 90% of the time, OpenScholar achieves citation accuracy on par with human experts. OpenScholar's datastore, retriever, and self-feedback inference loop also improves off-the-shelf LMs: for instance, OpenScholar-GPT4o improves GPT-4o's correctness by 12%. In human evaluations, experts preferred OpenScholar-8B and OpenScholar-GPT4o responses over expert-written ones 51% and 70% of the time, respectively, compared to GPT4o's 32%. We open-source all of our code, models, datastore, data and a public demo.
☆ ComfyGI: Automatic Improvement of Image Generation Workflows
Automatic image generation is no longer just of interest to researchers, but also to practitioners. However, current models are sensitive to the settings used and automatic optimization methods often require human involvement. To bridge this gap, we introduce ComfyGI, a novel approach to automatically improve workflows for image generation without the need for human intervention driven by techniques from genetic improvement. This enables image generation with significantly higher quality in terms of the alignment with the given description and the perceived aesthetics. On the performance side, we find that overall, the images generated with an optimized workflow are about 50% better compared to the initial workflow in terms of the median ImageReward score. These already good results are even surpassed in our human evaluation, as the participants preferred the images improved by ComfyGI in around 90% of the cases.
☆ Learning Pore-scale Multi-phase Flow from Experimental Data with Graph Neural Network NeurIPS 2024
Understanding the process of multiphase fluid flow through porous media is crucial for many climate change mitigation technologies, including CO$_2$ geological storage, hydrogen storage, and fuel cells. However, current numerical models are often incapable of accurately capturing the complex pore-scale physics observed in experiments. In this study, we address this challenge using a graph neural network-based approach and directly learn pore-scale fluid flow using micro-CT experimental data. We propose a Long-Short-Edge MeshGraphNet (LSE-MGN) that predicts the state of each node in the pore space at each time step. During inference, given an initial state, the model can autoregressively predict the evolution of the multiphase flow process over time. This approach successfully captures the physics from the high-resolution experimental data while maintaining computational efficiency, providing a promising direction for accurate and efficient pore-scale modeling of complex multiphase fluid flow dynamics.
comment: Accpeted for Machine Learning and the Physical Sciences Workshop at the 38th conference on Neural Information Processing Systems (NeurIPS 2024)
☆ SPARKLE: A Unified Single-Loop Primal-Dual Framework for Decentralized Bilevel Optimization
This paper studies decentralized bilevel optimization, in which multiple agents collaborate to solve problems involving nested optimization structures with neighborhood communications. Most existing literature primarily utilizes gradient tracking to mitigate the influence of data heterogeneity, without exploring other well-known heterogeneity-correction techniques such as EXTRA or Exact Diffusion. Additionally, these studies often employ identical decentralized strategies for both upper- and lower-level problems, neglecting to leverage distinct mechanisms across different levels. To address these limitations, this paper proposes SPARKLE, a unified Single-loop Primal-dual AlgoRithm frameworK for decentraLized bilEvel optimization. SPARKLE offers the flexibility to incorporate various heterogeneitycorrection strategies into the algorithm. Moreover, SPARKLE allows for different strategies to solve upper- and lower-level problems. We present a unified convergence analysis for SPARKLE, applicable to all its variants, with state-of-the-art convergence rates compared to existing decentralized bilevel algorithms. Our results further reveal that EXTRA and Exact Diffusion are more suitable for decentralized bilevel optimization, and using mixed strategies in bilevel algorithms brings more benefits than relying solely on gradient tracking.
comment: 73 pages, the Thirty-Eighth Annual Conference on Neural Information Processing Systems (2024)
☆ Creating a Formally Verified Neural Network for Autonomous Navigation: An Experience Report
The increased reliance of self-driving vehicles on neural networks opens up the challenge of their verification. In this paper we present an experience report, describing a case study which we undertook to explore the design and training of a neural network on a custom dataset for vision-based autonomous navigation. We are particularly interested in the use of machine learning with differentiable logics to obtain networks satisfying basic safety properties by design, guaranteeing the behaviour of the neural network after training. We motivate the choice of a suitable neural network verifier for our purposes and report our observations on the use of neural network verifiers for self-driving systems.
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs CVPR '25
Large Language Models (LLMs) have shown impressive proficiency across a range of natural language processing tasks yet remain vulnerable to adversarial prompts, known as jailbreak attacks, carefully designed to elicit harmful responses from LLMs. Traditional methods rely on manual heuristics, which suffer from limited generalizability. While being automatic, optimization-based attacks often produce unnatural jailbreak prompts that are easy to detect by safety filters or require high computational overhead due to discrete token optimization. Witnessing the limitations of existing jailbreak methods, we introduce Generative Adversarial Suffix Prompter (GASP), a novel framework that combines human-readable prompt generation with Latent Bayesian Optimization (LBO) to improve adversarial suffix creation in a fully black-box setting. GASP leverages LBO to craft adversarial suffixes by efficiently exploring continuous embedding spaces, gradually optimizing the model to improve attack efficacy while balancing prompt coherence through a targeted iterative refinement procedure. Our experiments show that GASP can generate natural jailbreak prompts, significantly improving attack success rates, reducing training times, and accelerating inference speed, thus making it an efficient and scalable solution for red-teaming LLMs.
comment: 28 pages, 9 tables, 13 figures; under review at CVPR '25
☆ Umbrella Reinforcement Learning -- computationally efficient tool for hard non-linear problems
We report a novel, computationally efficient approach for solving hard nonlinear problems of reinforcement learning (RL). Here we combine umbrella sampling, from computational physics/chemistry, with optimal control methods. The approach is realized on the basis of neural networks, with the use of policy gradient. It outperforms, by computational efficiency and implementation universality, all available state-of-the-art algorithms, in application to hard RL problems with sparse reward, state traps and lack of terminal states. The proposed approach uses an ensemble of simultaneously acting agents, with a modified reward which includes the ensemble entropy, yielding an optimal exploration-exploitation balance.
☆ Adjoint-based online learning of two-layer quasi-geostrophic baroclinic turbulence
For reasons of computational constraint, most global ocean circulation models used for Earth System Modeling still rely on parameterizations of sub-grid processes, and limitations in these parameterizations affect the modeled ocean circulation and impact on predictive skill. An increasingly popular approach is to leverage machine learning approaches for parameterizations, regressing for a map between the resolved state and missing feedbacks in a fluid system as a supervised learning task. However, the learning is often performed in an `offline' fashion, without involving the underlying fluid dynamical model during the training stage. Here, we explore the `online' approach that involves the fluid dynamical model during the training stage for the learning of baroclinic turbulence and its parameterization, with reference to ocean eddy parameterization. Two online approaches are considered: a full adjoint-based online approach, related to traditional adjoint optimization approaches that require a `differentiable' dynamical model, and an approximately online approach that approximates the adjoint calculation and does not require a differentiable dynamical model. The online approaches are found to be generally more skillful and numerically stable than offline approaches. Others details relating to online training, such as window size, machine learning model set up and designs of the loss functions are detailed to aid in further explorations of the online training methodology for Earth System Modeling.
comment: 25 pages, 1 table, 8 figures
☆ GNN-MultiFix: Addressing the pitfalls for GNNs for multi-label node classification
Graph neural networks (GNNs) have emerged as powerful models for learning representations of graph data showing state of the art results in various tasks. Nevertheless, the superiority of these methods is usually supported by either evaluating their performance on small subset of benchmark datasets or by reasoning about their expressive power in terms of certain graph isomorphism tests. In this paper we critically analyse both these aspects through a transductive setting for the task of node classification. First, we delve deeper into the case of multi-label node classification which offers a more realistic scenario and has been ignored in most of the related works. Through analysing the training dynamics for GNN methods we highlight the failure of GNNs to learn over multi-label graph datasets even for the case of abundant training data. Second, we show that specifically for transductive node classification, even the most expressive GNN may fail to learn in absence of node attributes and without using explicit label information as input. To overcome this deficit, we propose a straightforward approach, referred to as GNN-MultiFix, that integrates the feature, label, and positional information of a node. GNN-MultiFix demonstrates significant improvement across all the multi-label datasets. We release our code at https://anonymous.4open.science/r/Graph-MultiFix-4121.
☆ MetaCropFollow: Few-Shot Adaptation with Meta-Learning for Under-Canopy Navigation
Autonomous under-canopy navigation faces additional challenges compared to over-canopy settings - for example the tight spacing between the crop rows, degraded GPS accuracy and excessive clutter. Keypoint-based visual navigation has been shown to perform well in these conditions, however the differences between agricultural environments in terms of lighting, season, soil and crop type mean that a domain shift will likely be encountered at some point of the robot deployment. In this paper, we explore the use of Meta-Learning to overcome this domain shift using a minimal amount of data. We train a base-learner that can quickly adapt to new conditions, enabling more robust navigation in low-data regimes.
☆ Exploration by Running Away from the Past
The ability to explore efficiently and effectively is a central challenge of reinforcement learning. In this work, we consider exploration through the lens of information theory. Specifically, we cast exploration as a problem of maximizing the Shannon entropy of the state occupation measure. This is done by maximizing a sequence of divergences between distributions representing an agent's past behavior and its current behavior. Intuitively, this encourages the agent to explore new behaviors that are distinct from past behaviors. Hence, we call our method RAMP, for ``$\textbf{R}$unning $\textbf{A}$way fro$\textbf{m}$ the $\textbf{P}$ast.'' A fundamental question of this method is the quantification of the distribution change over time. We consider both the Kullback-Leibler divergence and the Wasserstein distance to quantify divergence between successive state occupation measures, and explain why the former might lead to undesirable exploratory behaviors in some tasks. We demonstrate that by encouraging the agent to explore by actively distancing itself from past experiences, it can effectively explore mazes and a wide range of behaviors on robotic manipulation and locomotion tasks.
☆ MMGenBench: Evaluating the Limits of LMMs from the Text-to-Image Generation Perspective
Large Multimodal Models (LMMs) have demonstrated remarkable capabilities. While existing benchmarks for evaluating LMMs mainly focus on image comprehension, few works evaluate them from the image generation perspective. To address this issue, we propose a straightforward automated evaluation pipeline. Specifically, this pipeline requires LMMs to generate an image-prompt from a given input image. Subsequently, it employs text-to-image generative models to create a new image based on these generated prompts. Finally, we evaluate the performance of LMMs by comparing the original image with the generated one. Furthermore, we introduce MMGenBench-Test, a comprehensive benchmark developed to evaluate LMMs across 13 distinct image patterns, and MMGenBench-Domain, targeting the performance evaluation of LMMs within the generative image domain. A thorough evaluation involving over 50 popular LMMs demonstrates the effectiveness and reliability in both the pipeline and benchmark. Our observations indicate that numerous LMMs excelling in existing benchmarks fail to adequately complete the basic tasks, related to image understanding and description. This finding highlights the substantial potential for performance improvement in current LMMs and suggests avenues for future model optimization. Concurrently, our pipeline facilitates the efficient assessment of LMMs performance across diverse domains by using solely image inputs.
comment: This project is available at: https://github.com/lerogo/MMGenBench
☆ Out-Of-Distribution Detection with Diversification (Provably)
Out-of-distribution (OOD) detection is crucial for ensuring reliable deployment of machine learning models. Recent advancements focus on utilizing easily accessible auxiliary outliers (e.g., data from the web or other datasets) in training. However, we experimentally reveal that these methods still struggle to generalize their detection capabilities to unknown OOD data, due to the limited diversity of the auxiliary outliers collected. Therefore, we thoroughly examine this problem from the generalization perspective and demonstrate that a more diverse set of auxiliary outliers is essential for enhancing the detection capabilities. However, in practice, it is difficult and costly to collect sufficiently diverse auxiliary outlier data. Therefore, we propose a simple yet practical approach with a theoretical guarantee, termed Diversity-induced Mixup for OOD detection (diverseMix), which enhances the diversity of auxiliary outlier set for training in an efficient way. Extensive experiments show that diverseMix achieves superior performance on commonly used and recent challenging large-scale benchmarks, which further confirm the importance of the diversity of auxiliary outliers.
☆ REFOL: Resource-Efficient Federated Online Learning for Traffic Flow Forecasting
Multiple federated learning (FL) methods are proposed for traffic flow forecasting (TFF) to avoid heavy-transmission and privacy-leaking concerns resulting from the disclosure of raw data in centralized methods. However, these FL methods adopt offline learning which may yield subpar performance, when concept drift occurs, i.e., distributions of historical and future data vary. Online learning can detect concept drift during model training, thus more applicable to TFF. Nevertheless, the existing federated online learning method for TFF fails to efficiently solve the concept drift problem and causes tremendous computing and communication overhead. Therefore, we propose a novel method named Resource-Efficient Federated Online Learning (REFOL) for TFF, which guarantees prediction performance in a communication-lightweight and computation-efficient way. Specifically, we design a data-driven client participation mechanism to detect the occurrence of concept drift and determine clients' participation necessity. Subsequently, we propose an adaptive online optimization strategy, which guarantees prediction performance and meanwhile avoids meaningless model updates. Then, a graph convolution-based model aggregation mechanism is designed, aiming to assess participants' contribution based on spatial correlation without importing extra communication and computing consumption on clients. Finally, we conduct extensive experiments on real-world datasets to demonstrate the superiority of REFOL in terms of prediction improvement and resource economization.
☆ Teaching MLPs to Master Heterogeneous Graph-Structured Knowledge for Efficient and Accurate Inference
Heterogeneous Graph Neural Networks (HGNNs) have achieved promising results in various heterogeneous graph learning tasks, owing to their superiority in capturing the intricate relationships and diverse relational semantics inherent in heterogeneous graph structures. However, the neighborhood-fetching latency incurred by structure dependency in HGNNs makes it challenging to deploy for latency-constrained applications that require fast inference. Inspired by recent GNN-to-MLP knowledge distillation frameworks, we introduce HG2M and HG2M+ to combine both HGNN's superior performance and MLP's efficient inference. HG2M directly trains student MLPs with node features as input and soft labels from teacher HGNNs as targets, and HG2M+ further distills reliable and heterogeneous semantic knowledge into student MLPs through reliable node distillation and reliable meta-path distillation. Experiments conducted on six heterogeneous graph datasets show that despite lacking structural dependencies, HG2Ms can still achieve competitive or even better performance than HGNNs and significantly outperform vanilla MLPs. Moreover, HG2Ms demonstrate a 379.24$\times$ speedup in inference over HGNNs on the large-scale IGB-3M-19 dataset, showcasing their ability for latency-sensitive deployments.
☆ Time-Scale Separation in Q-Learning: Extending TD($\triangle$) for Action-Value Function Decomposition
Q-Learning is a fundamental off-policy reinforcement learning (RL) algorithm that has the objective of approximating action-value functions in order to learn optimal policies. Nonetheless, it has difficulties in reconciling bias with variance, particularly in the context of long-term rewards. This paper introduces Q($\Delta$)-Learning, an extension of TD($\Delta$) for the Q-Learning framework. TD($\Delta$) facilitates efficient learning over several time scales by breaking the Q($\Delta$)-function into distinct discount factors. This approach offers improved learning stability and scalability, especially for long-term tasks where discounting bias may impede convergence. Our methodology guarantees that each element of the Q($\Delta$)-function is acquired individually, facilitating expedited convergence on shorter time scales and enhancing the learning of extended time scales. We demonstrate through theoretical analysis and practical evaluations on standard benchmarks like Atari that Q($\Delta$)-Learning surpasses conventional Q-Learning and TD learning methods in both tabular and deep RL environments.
comment: 17 pages
☆ Automatic brain tumor segmentation in 2D intra-operative ultrasound images using MRI tumor annotations
Automatic segmentation of brain tumors in intra-operative ultrasound (iUS) images could facilitate localization of tumor tissue during resection surgery. The lack of large annotated datasets limits the current models performances. In this paper, we investigate the use of tumor annotations in pre-operative MRI images, which are more easily accessible than annotations in iUS images, for training of deep learning models for iUS brain tumor segmentation. We used 180 annotated pre-operative MRI images with corresponding unannotated iUS images, and 29 annotated iUS images. Image registration was performed to transfer the MRI annotations to the corresponding iUS images before training models with the nnU-Net framework. To validate the use of MRI labels, the models were compared to a model trained with only US annotated tumors, and a model with both US and MRI annotated tumors. In addition, the results were compared to annotations validated by an expert neurosurgeon on the same test set to measure inter-observer variability. The results showed similar performance for a model trained with only MRI annotated tumors, compared to a model trained with only US annotated tumors. The model trained using both modalities obtained slightly better results with an average Dice score of 0.62, where external expert annotations achieved a score of 0.67. The results also showed that the deep learning models were comparable to expert annotation for larger tumors (> 200 mm2), but perform clearly worse for smaller tumors (< 200 mm2). This shows that MRI tumor annotations can be used as a substitute for US tumor annotations to train a deep learning model for automatic brain tumor segmentation in intra-operative ultrasound images. Small tumors is a limitation for the current models and will be the focus of future work. The main models are available here: https://github.com/mathildefaanes/us_brain_tumor_segmentation.
comment: 19, 8 figures, submitted to International Journal of Computer Assisted Radiology and Surgery
☆ Trajectory Representation Learning on Road Networks and Grids with Spatio-Temporal Dynamics
Trajectory representation learning is a fundamental task for applications in fields including smart city, and urban planning, as it facilitates the utilization of trajectory data (e.g., vehicle movements) for various downstream applications, such as trajectory similarity computation or travel time estimation. This is achieved by learning low-dimensional representations from high-dimensional and raw trajectory data. However, existing methods for trajectory representation learning either rely on grid-based or road-based representations, which are inherently different and thus, could lose information contained in the other modality. Moreover, these methods overlook the dynamic nature of urban traffic, relying on static road network features rather than time varying traffic patterns. In this paper, we propose TIGR, a novel model designed to integrate grid and road network modalities while incorporating spatio-temporal dynamics to learn rich, general-purpose representations of trajectories. We evaluate TIGR on two realworld datasets and demonstrate the effectiveness of combining both modalities by substantially outperforming state-of-the-art methods, i.e., up to 43.22% for trajectory similarity, up to 16.65% for travel time estimation, and up to 10.16% for destination prediction.
☆ Single-Model Attribution for Spoofed Speech via Vocoder Fingerprints in an Open-World Setting
As speech generation technology advances, so do the potential threats of misusing spoofed speech signals. One way to address these threats is by attributing the signals to their source generative model. In this work, we are the first to tackle the single-model attribution task in an open-world setting, that is, we aim at identifying whether spoofed speech signals from unknown sources originate from a specific vocoder. We show that the standardized average residual between audio signals and their low-pass filtered or EnCodec filtered versions can serve as powerful vocoder fingerprints. The approach only requires data from the target vocoder and allows for simple but highly accurate distance-based model attribution. We demonstrate its effectiveness on LJSpeech and JSUT, achieving an average AUROC of over 99% in most settings. The accompanying robustness study shows that it is also resilient to noise levels up to a certain degree.
☆ Generative Intervention Models for Causal Perturbation Modeling
We consider the problem of predicting perturbation effects via causal models. In many applications, it is a priori unknown which mechanisms of a system are modified by an external perturbation, even though the features of the perturbation are available. For example, in genomics, some properties of a drug may be known, but not their causal effects on the regulatory pathways of cells. We propose a generative intervention model (GIM) that learns to map these perturbation features to distributions over atomic interventions in a jointly-estimated causal model. Contrary to prior approaches, this enables us to predict the distribution shifts of unseen perturbation features while gaining insights about their mechanistic effects in the underlying data-generating process. On synthetic data and scRNA-seq drug perturbation data, GIMs achieve robust out-of-distribution predictions on par with unstructured approaches, while effectively inferring the underlying perturbation mechanisms, often better than other causal inference methods.
☆ Accelerated zero-order SGD under high-order smoothness and overparameterized regime
We present a novel gradient-free algorithm to solve a convex stochastic optimization problem, such as those encountered in medicine, physics, and machine learning (e.g., adversarial multi-armed bandit problem), where the objective function can only be computed through numerical simulation, either as the result of a real experiment or as feedback given by the function evaluations from an adversary. Thus we suppose that only a black-box access to the function values of the objective is available, possibly corrupted by adversarial noise: deterministic or stochastic. The noisy setup can arise naturally from modeling randomness within a simulation or by computer discretization, or when exact values of function are forbidden due to privacy issues, or when solving non-convex problems as convex ones with an inexact function oracle. By exploiting higher-order smoothness, fulfilled, e.g., in logistic regression, we improve the performance of zero-order methods developed under the assumption of classical smoothness (or having a Lipschitz gradient). The proposed algorithm enjoys optimal oracle complexity and is designed under an overparameterization setup, i.e., when the number of model parameters is much larger than the size of the training dataset. Overparametrized models fit to the training data perfectly while also having good generalization and outperforming underparameterized models on unseen data. We provide convergence guarantees for the proposed algorithm under both types of noise. Moreover, we estimate the maximum permissible adversarial noise level that maintains the desired accuracy in the Euclidean setup, and then we extend our results to a non-Euclidean setup. Our theoretical results are verified on the logistic regression problem.
comment: 10 pages, 1 figure
☆ Market Making without Regret
We consider a sequential decision-making setting where, at every round $t$, a market maker posts a bid price $B_t$ and an ask price $A_t$ to an incoming trader (the taker) with a private valuation for one unit of some asset. If the trader's valuation is lower than the bid price, or higher than the ask price, then a trade (sell or buy) occurs. If a trade happens at round $t$, then letting $M_t$ be the market price (observed only at the end of round $t$), the maker's utility is $M_t - B_t$ if the maker bought the asset, and $A_t - M_t$ if they sold it. We characterize the maker's regret with respect to the best fixed choice of bid and ask pairs under a variety of assumptions (adversarial, i.i.d., and their variants) on the sequence of market prices and valuations. Our upper bound analysis unveils an intriguing connection relating market making to first-price auctions and dynamic pricing. Our main technical contribution is a lower bound for the i.i.d. case with Lipschitz distributions and independence between prices and valuations. The difficulty in the analysis stems from the unique structure of the reward and feedback functions, allowing an algorithm to acquire information by graduating the "cost of exploration" in an arbitrary way.
☆ Movable Antenna-Equipped UAV for Data Collection in Backscatter Sensor Networks: A Deep Reinforcement Learning-based Approach
Backscatter communication (BC) becomes a promising energy-efficient solution for future wireless sensor networks (WSNs). Unmanned aerial vehicles (UAVs) enable flexible data collection from remote backscatter devices (BDs), yet conventional UAVs rely on omni-directional fixed-position antennas (FPAs), limiting channel gain and prolonging data collection time. To address this issue, we consider equipping a UAV with a directional movable antenna (MA) with high directivity and flexibility. The MA enhances channel gain by precisely aiming its main lobe at each BD, focusing transmission power for efficient communication. Our goal is to minimize the total data collection time by jointly optimizing the UAV's trajectory and the MA's orientation. We develop a deep reinforcement learning (DRL)-based strategy using the azimuth angle and distance between the UAV and each BD to simplify the agent's observation space. To ensure stability during training, we adopt Soft Actor-Critic (SAC) algorithm that balances exploration with reward maximization for efficient and reliable learning. Simulation results demonstrate that our proposed MA-equipped UAV with SAC outperforms both FPA-equipped UAVs and other RL methods, achieving significant reductions in both data collection time and energy consumption.
☆ Material synthesis through simulations guided by machine learning: a position paper
In this position paper, we propose an approach for sustainable data collection in the field of optimal mix design for marble sludge reuse. Marble sludge, a calcium-rich residual from stone-cutting processes, can be repurposed by mixing it with various ingredients. However, determining the optimal mix design is challenging due to the variability in sludge composition and the costly, time-consuming nature of experimental data collection. Also, we investigate the possibility of using machine learning models using meta-learning as an optimization tool to estimate the correct quantity of stone-cutting sludge to be used in aggregates to obtain a mix design with specific mechanical properties that can be used successfully in the building industry. Our approach offers two key advantages: (i) through simulations, a large dataset can be generated, saving time and money during the data collection phase, and (ii) Utilizing machine learning models, with performance enhancement through hyper-parameter optimization via meta-learning, to estimate optimal mix designs reducing the need for extensive manual experimentation, lowering costs, minimizing environmental impact, and accelerating the processing of quarry sludge. Our idea promises to streamline the marble sludge reuse process by leveraging collective data and advanced machine learning, promoting sustainability and efficiency in the stonecutting sector.
☆ A Dataset for Evaluating Online Anomaly Detection Approaches for Discrete Multivariate Time Series
Benchmarking anomaly detection approaches for multivariate time series is challenging due to the lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a small selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data.
☆ Neuromorphic Attitude Estimation and Control
The real-world application of small drones is mostly hampered by energy limitations. Neuromorphic computing promises extremely energy-efficient AI for autonomous flight, but is still challenging to train and deploy on real robots. In order to reap the maximal benefits from neuromorphic computing, it is desired to perform all autonomy functions end-to-end on a single neuromorphic chip, from low-level attitude control to high-level navigation. This research presents the first neuromorphic control system using a spiking neural network (SNN) to effectively map a drone's raw sensory input directly to motor commands. We apply this method to low-level attitude estimation and control for a quadrotor, deploying the SNN on a tiny Crazyflie. We propose a modular SNN, separately training and then merging estimation and control sub-networks. The SNN is trained with imitation learning, using a flight dataset of sensory-motor pairs. Post-training, the network is deployed on the Crazyflie, issuing control commands from sensor inputs at $500$Hz. Furthermore, for the training procedure we augmented training data by flying a controller with additional excitation and time-shifting the target data to enhance the predictive capabilities of the SNN. On the real drone the perception-to-control SNN tracks attitude commands with an average error of $3$ degrees, compared to $2.5$ degrees for the regular flight stack. We also show the benefits of the proposed learning modifications for reducing the average tracking error and reducing oscillations. Our work shows the feasibility of performing neuromorphic end-to-end control, laying the basis for highly energy-efficient and low-latency neuromorphic autopilots.
☆ Learning to Cooperate with Humans using Generative Agents
Training agents that can coordinate zero-shot with humans is a key mission in multi-agent reinforcement learning (MARL). Current algorithms focus on training simulated human partner policies which are then used to train a Cooperator agent. The simulated human is produced either through behavior cloning over a dataset of human cooperation behavior, or by using MARL to create a population of simulated agents. However, these approaches often struggle to produce a Cooperator that can coordinate well with real humans, since the simulated humans fail to cover the diverse strategies and styles employed by people in the real world. We show \emph{learning a generative model of human partners} can effectively address this issue. Our model learns a latent variable representation of the human that can be regarded as encoding the human's unique strategy, intention, experience, or style. This generative model can be flexibly trained from any (human or neural policy) agent interaction data. By sampling from the latent space, we can use the generative model to produce different partners to train Cooperator agents. We evaluate our method -- \textbf{G}enerative \textbf{A}gent \textbf{M}odeling for \textbf{M}ulti-agent \textbf{A}daptation (GAMMA) -- on Overcooked, a challenging cooperative cooking game that has become a standard benchmark for zero-shot coordination. We conduct an evaluation with real human teammates, and the results show that GAMMA consistently improves performance, whether the generative model is trained on simulated populations or human datasets. Further, we propose a method for posterior sampling from the generative model that is biased towards the human data, enabling us to efficiently improve performance with only a small amount of expensive human interaction data.
☆ Exponentially Consistent Nonparametric Clustering of Data Streams
In this paper, we consider nonparametric clustering of $M$ independent and identically distributed (i.i.d.) data streams generated from unknown distributions. The distributions of the $M$ data streams belong to $K$ underlying distribution clusters. Existing results on exponentially consistent nonparametric clustering algorithms, like single linkage-based (SLINK) clustering and $k$-medoids distribution clustering, assume that the maximum intra-cluster distance ($d_L$) is smaller than the minimum inter-cluster distance ($d_H$). First, in the fixed sample size (FSS) setting, we show that exponential consistency can be achieved for SLINK clustering under a less strict assumption, $d_I < d_H$, where $d_I$ is the maximum distance between any two sub-clusters of a cluster that partition the cluster. Note that $d_I < d_L$ in general. Our results show that SLINK is exponentially consistent for a larger class of problems than $k$-medoids distribution clustering. We also identify examples where $k$-medoids clustering is unable to find the true clusters, but SLINK is exponentially consistent. Then, we propose a sequential clustering algorithm, named SLINK-SEQ, based on SLINK and prove that it is also exponentially consistent. Simulation results show that the SLINK-SEQ algorithm requires fewer expected number of samples than the FSS SLINK algorithm for the same probability of error.
☆ NBMLSS: probabilistic forecasting of electricity prices via Neural Basis Models for Location Scale and Shape
Forecasters using flexible neural networks (NN) in multi-horizon distributional regression setups often struggle to gain detailed insights into the underlying mechanisms that lead to the predicted feature-conditioned distribution parameters. In this work, we deploy a Neural Basis Model for Location, Scale and Shape, that blends the principled interpretability of GAMLSS with a computationally scalable shared basis decomposition, combined by linear projections supporting dedicated stepwise and parameter-wise feature shape functions aggregations. Experiments have been conducted on multiple market regions, achieving probabilistic forecasting performance comparable to that of distributional neural networks, while providing more insights into the model behavior through the learned nonlinear feature level maps to the distribution parameters across the prediction steps.
comment: 23 pages
☆ Predictive Maintenance Study for High-Pressure Industrial Compressors: Hybrid Clustering Models
This study introduces a predictive maintenance strategy for high pressure industrial compressors using sensor data and features derived from unsupervised clustering integrated into classification models. The goal is to enhance model accuracy and efficiency in detecting compressor failures. After data pre processing, sensitive clustering parameters were tuned to identify algorithms that best capture the dataset's temporal and operational characteristics. Clustering algorithms were evaluated using quality metrics like Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI), selecting those most effective at distinguishing between normal and non normal conditions. These features enriched regression models, improving failure detection accuracy by 4.87 percent on average. Although training time was reduced by 22.96 percent, the decrease was not statistically significant, varying across algorithms. Cross validation and key performance metrics confirmed the benefits of clustering based features in predictive maintenance models.
comment: 10 pages, 9 figures, 2 tables, HICSS58 conference
☆ ICODE: Modeling Dynamical Systems with Extrinsic Input Information
Learning models of dynamical systems with external inputs, that may be, for example, nonsmooth or piecewise, is crucial for studying complex phenomena and predicting future state evolution, which is essential for applications such as safety guarantees and decision-making. In this work, we introduce \emph{Input Concomitant Neural ODEs (ICODEs)}, which incorporate precise real-time input information into the learning process of the models, rather than treating the inputs as hidden parameters to be learned. The sufficient conditions to ensure the model's contraction property are provided to guarantee that system trajectories of the trained model converge to a fixed point, regardless of initial conditions across different training processes. We validate our method through experiments on several representative real dynamics: Single-link robot, DC-to-DC converter, motion dynamics of a rigid body, Rabinovich-Fabrikant equation, Glycolytic-glycogenolytic pathway model, and heat conduction equation. The experimental results demonstrate that our proposed ICODEs efficiently learn the ground truth systems, achieving superior prediction performance under both typical and atypical inputs. This work offers a valuable class of neural ODE models for understanding physical systems with explicit external input information, with potential promising applications in fields such as physics and robotics.
☆ Split Federated Learning Over Heterogeneous Edge Devices: Algorithm and Optimization
Split Learning (SL) is a promising collaborative machine learning approach, enabling resource-constrained devices to train models without sharing raw data, while reducing computational load and preserving privacy simultaneously. However, current SL algorithms face limitations in training efficiency and suffer from prolonged latency, particularly in sequential settings, where the slowest device can bottleneck the entire process due to heterogeneous resources and frequent data exchanges between clients and servers. To address these challenges, we propose the Heterogeneous Split Federated Learning (HSFL) framework, which allows resource-constrained clients to train their personalized client-side models in parallel, utilizing different cut layers. Aiming to mitigate the impact of heterogeneous environments and accelerate the training process, we formulate a latency minimization problem that optimizes computational and transmission resources jointly. Additionally, we design a resource allocation algorithm that combines the Sample Average Approximation (SAA), Genetic Algorithm (GA), Lagrangian relaxation and Branch and Bound (B\&B) methods to efficiently solve this problem. Simulation results demonstrate that HSFL outperforms other frameworks in terms of both convergence rate and model accuracy on heterogeneous devices with non-iid data, while the optimization algorithm is better than other baseline methods in reducing latency.
☆ AmpliNetECG12: A lightweight SoftMax-based relativistic amplitude amplification architecture for 12 lead ECG classification
The urgent need to promptly detect cardiac disorders from 12-lead Electrocardiograms using limited computations is motivated by the heart's fast and complex electrical activity and restricted computational power of portable devices. Timely and precise diagnoses are crucial since delays might significantly impact patient health outcomes. This research presents a novel deep-learning architecture that aims to diagnose heart abnormalities quickly and accurately. We devised a new activation function called aSoftMax, designed to improve the visibility of ECG deflections. The proposed activation function is used with Convolutional Neural Network architecture to includes kernel weight sharing across the ECG's various leads. This innovative method thoroughly generalizes the global 12-lead ECG features and minimizes the model's complexity by decreasing the trainable parameters. aSoftMax, combined with enhanced CNN architecture yielded AmpliNetECG12, we obtain exceptional accuracy of 84% in diagnosing cardiac disorders. AmpliNetECG12 shows outstanding prediction ability when used with the CPSC2018 dataset for arrhythmia classification. The model attains an F1-score of 80.71% and a ROC-AUC score of 96.00%, with 280,000 trainable parameters which signifies the lightweight yet efficient nature of AmpliNetECG12. The stochastic characteristics of aSoftMax, a fundamental element of AmpliNetECG12, improve prediction accuracy and also increasse the model's interpretability. This feature enhances comprehension of important ECG segments in different forms of arrhythmias, establishing a new standard of explainable architecture for cardiac disorder classification.
☆ Schemato -- An LLM for Netlist-to-Schematic Conversion
Machine learning models are advancing circuit design, particularly in analog circuits. They typically generate netlists that lack human interpretability. This is a problem as human designers heavily rely on the interpretability of circuit diagrams or schematics to intuitively understand, troubleshoot, and develop designs. Hence, to integrate domain knowledge effectively, it is crucial to translate ML-generated netlists into interpretable schematics quickly and accurately. We propose Schemato, a large language model (LLM) for netlist-to-schematic conversion. In particular, we consider our approach in the two settings of converting netlists to .asc files for LTSpice and LATEX files for CircuiTikz schematics. Experiments on our circuit dataset show that Schemato achieves up to 93% compilation success rate for the netlist-to-LaTeX conversion task, surpassing the 26% rate scored by the state-of-the-art LLMs. Furthermore, our experiments show that Schemato generates schematics with a mean structural similarity index measure that is 3xhigher than the best performing LLMs, therefore closer to the reference human design.
☆ GraCo -- A Graph Composer for Integrated Circuits
Designing integrated circuits involves substantial complexity, posing challenges in revealing its potential applications - from custom digital cells to analog circuits. Despite extensive research over the past decades in building versatile and automated frameworks, there remains open room to explore more computationally efficient AI-based solutions. This paper introduces the graph composer GraCo, a novel method for synthesizing integrated circuits using reinforcement learning (RL). GraCo learns to construct a graph step-by-step, which is then converted into a netlist and simulated with SPICE. We demonstrate that GraCo is highly configurable, enabling the incorporation of prior design knowledge into the framework. We formalize how this prior knowledge can be utilized and, in particular, show that applying consistency checks enhances the efficiency of the sampling process. To evaluate its performance, we compare GraCo to a random baseline, which is known to perform well for smaller design space problems. We demonstrate that GraCo can discover circuits for tasks such as generating standard cells, including the inverter and the two-input NAND (NAND2) gate. Compared to a random baseline, GraCo requires 5x fewer sampling steps to design an inverter and successfully synthesizes a NAND2 gate that is 2.5x faster.
☆ When Online Algorithms Influence the Environment: A Dynamical Systems Analysis of the Unintended Consequences
We analyze the effect that online algorithms have on the environment that they are learning. As a motivation, consider recommendation systems that use online algorithms to learn optimal product recommendations based on user and product attributes. It is well known that the sequence of recommendations affects user preferences. However, typical learning algorithms treat the user attributes as static and disregard the impact of their recommendations on user preferences. Our interest is to analyze the effect of this mismatch between the model assumption of a static environment, and the reality of an evolving environment affected by the recommendations. To perform this analysis, we first introduce a model for a generic coupled evolution of the parameters that are being learned, and the environment that is affected by it. We then frame a linear bandit recommendation system (RS) into this generic model where the users are characterized by a state variable that evolves based on the sequence of recommendations. The learning algorithm of the RS does not explicitly account for this evolution and assumes that the users are static. A dynamical system model that captures the coupled evolution of the population state and the learning algorithm is described, and its equilibrium behavior is analyzed. We show that when the recommendation algorithm is able to learn the population preferences in the presence of this mismatch, the algorithm induces similarity in the preferences of the user population. In particular, we present results on how different properties of the recommendation algorithm, namely the user attribute space and the exploration-exploitation tradeoff, effect the population preferences when they are learned by the algorithm. We demonstrate these results using model simulations.
comment: 13 pages, 4 figures
☆ Exploring applications of topological data analysis in stock index movement prediction
Topological Data Analysis (TDA) has recently gained significant attention in the field of financial prediction. However, the choice of point cloud construction methods, topological feature representations, and classification models has a substantial impact on prediction results. This paper addresses the classification problem of stock index movement. First, we construct point clouds for stock indices using three different methods. Next, we apply TDA to extract topological structures from the point clouds. Four distinct topological features are computed to represent the patterns in the data, and 15 combinations of these features are enumerated and input into six different machine learning models. We evaluate the predictive performance of various TDA configurations by conducting index movement classification tasks on datasets such as CSI, DAX, HSI and FTSE providing insights into the efficiency of different TDA setups.
comment: 20 pages, 10 figures
☆ Topology optimization of periodic lattice structures for specified mechanical properties using machine learning considering member connectivity
This study proposes a methodology to utilize machine learning (ML) for topology optimization of periodic lattice structures. In particular, we investigate data representation of lattice structures used as input data for ML models to improve the performance of the models, focusing on the filtering process and feature selection. We use the filtering technique to explicitly consider the connectivity of lattice members and perform feature selection to reduce the input data size. In addition, we propose a convolution approach to apply pre-trained models for small structures to structures of larger sizes. The computational cost for obtaining optimal topologies by a heuristic method is reduced by incorporating the prediction of the trained ML model into the optimization process. In the numerical examples, a response prediction model is constructed for a lattice structure of 4x4 units, and topology optimization of 4x4-unit and 8x8-unit structures is performed by simulated annealing assisted by the trained ML model. The example demonstrates that ML models perform higher accuracy by using the filtered data as input than by solely using the data representing the existence of each member. It is also demonstrated that a small-scale prediction model can be constructed with sufficient accuracy by feature selection. Additionally, the proposed method can find the optimal structure in less computation time than the pure simulated annealing.
comment: Presented at Asian Congress of Structural and Multidisciplinary Optimization (ACSMO 2024)
☆ Robust Detection of Watermarks for Large Language Models Under Human Edits
Watermarking has offered an effective approach to distinguishing text generated by large language models (LLMs) from human-written text. However, the pervasive presence of human edits on LLM-generated text dilutes watermark signals, thereby significantly degrading detection performance of existing methods. In this paper, by modeling human edits through mixture model detection, we introduce a new method in the form of a truncated goodness-of-fit test for detecting watermarked text under human edits, which we refer to as Tr-GoF. We prove that the Tr-GoF test achieves optimality in robust detection of the Gumbel-max watermark in a certain asymptotic regime of substantial text modifications and vanishing watermark signals. Importantly, Tr-GoF achieves this optimality \textit{adaptively} as it does not require precise knowledge of human edit levels or probabilistic specifications of the LLMs, in contrast to the optimal but impractical (Neyman--Pearson) likelihood ratio test. Moreover, we establish that the Tr-GoF test attains the highest detection efficiency rate in a certain regime of moderate text modifications. In stark contrast, we show that sum-based detection rules, as employed by existing methods, fail to achieve optimal robustness in both regimes because the additive nature of their statistics is less resilient to edit-induced noise. Finally, we demonstrate the competitive and sometimes superior empirical performance of the Tr-GoF test on both synthetic data and open-source LLMs in the OPT and LLaMA families.
☆ HARec: Hyperbolic Graph-LLM Alignment for Exploration and Exploitation in Recommender Systems
Modern recommendation systems often create information cocoons, limiting users' exposure to diverse content. To enhance user experience, a crucial challenge is developing systems that can balance content exploration and exploitation, allowing users to adjust their recommendation preferences. Intuitively, this balance can be achieved through a tree-structured representation, where depth search facilitates exploitation and breadth search enables exploration. However, current works face two challenges to achieve this target: (1) Euclidean methods fail to fully capture hierarchical structures and lack flexibility in balancing exploration-exploitation, while (2) hyperbolic approaches, despite better hierarchical modeling, suffer from insufficient semantic alignment due to their reliance on Euclidean text encoders. To address these challenges, we propose HARec, a hyperbolic representation learning framework that jointly aligns user-item collaborative information with textual descriptions in hyperbolic space. Our framework introduces two key technique novelty: (1) a hierarchical-aware graph-llm alignment mechanism that enables better hierarchical representation, and (2) a hyperbolic hierarchical tree structure that facilitates user-adjustable exploration-exploitation trade-offs. Extensive experiments demonstrate that HARec consistently outperforms both Euclidean and hyperbolic baselines, achieving up to 5.49% improvement in utility metrics and 11.39% increase in diversity metrics.
☆ A Multimodal Approach to The Detection and Classification of Skin Diseases
According to PBS, nearly one-third of Americans lack access to primary care services, and another forty percent delay going to avoid medical costs. As a result, many diseases are left undiagnosed and untreated, even if the disease shows many physical symptoms on the skin. With the rise of AI, self-diagnosis and improved disease recognition have become more promising than ever; in spite of that, existing methods suffer from a lack of large-scale patient databases and outdated methods of study, resulting in studies being limited to only a few diseases or modalities. This study incorporates readily available and easily accessible patient information via image and text for skin disease classification on a new dataset of 26 skin disease types that includes both skin disease images (37K) and associated patient narratives. Using this dataset, baselines for various image models were established that outperform existing methods. Initially, the Resnet-50 model was only able to achieve an accuracy of 70% but, after various optimization techniques, the accuracy was improved to 80%. In addition, this study proposes a novel fine-tuning strategy for sequence classification Large Language Models (LLMs), Chain of Options, which breaks down a complex reasoning task into intermediate steps at training time instead of inference. With Chain of Options and preliminary disease recommendations from the image model, this method achieves state of the art accuracy 91% in diagnosing patient skin disease given just an image of the afflicted area as well as a patient description of the symptoms (such as itchiness or dizziness). Through this research, an earlier diagnosis of skin diseases can occur, and clinicians can work with deep learning models to give a more accurate diagnosis, improving quality of life and saving lives.
☆ Dealing with Synthetic Data Contamination in Online Continual Learning NeurIPS'24
Image generation has shown remarkable results in generating high-fidelity realistic images, in particular with the advancement of diffusion-based models. However, the prevalence of AI-generated images may have side effects for the machine learning community that are not clearly identified. Meanwhile, the success of deep learning in computer vision is driven by the massive dataset collected on the Internet. The extensive quantity of synthetic data being added to the Internet would become an obstacle for future researchers to collect "clean" datasets without AI-generated content. Prior research has shown that using datasets contaminated by synthetic images may result in performance degradation when used for training. In this paper, we investigate the potential impact of contaminated datasets on Online Continual Learning (CL) research. We experimentally show that contaminated datasets might hinder the training of existing online CL methods. Also, we propose Entropy Selection with Real-synthetic similarity Maximization (ESRM), a method to alleviate the performance deterioration caused by synthetic images when training online CL models. Experiments show that our method can significantly alleviate performance deterioration, especially when the contamination is severe. For reproducibility, the source code of our work is available at https://github.com/maorong-wang/ESRM.
comment: Accepted to NeurIPS'24
☆ Exact and approximate error bounds for physics-informed neural networks NeurIPS 2024
The use of neural networks to solve differential equations, as an alternative to traditional numerical solvers, has increased recently. However, error bounds for the obtained solutions have only been developed for certain equations. In this work, we report important progress in calculating error bounds of physics-informed neural networks (PINNs) solutions of nonlinear first-order ODEs. We give a general expression that describes the error of the solution that the PINN-based method provides for a nonlinear first-order ODE. In addition, we propose a technique to calculate an approximate bound for the general case and an exact bound for a particular case. The error bounds are computed using only the residual information and the equation structure. We apply the proposed methods to particular cases and show that they can successfully provide error bounds without relying on the numerical solution.
comment: 10 pages, 1 figure, accepted to NeurIPS 2024 Workshop on Machine Learning and the Physical Sciences
☆ Interactive and Expressive Code-Augmented Planning with Large Language Models
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making, but often struggle with complex, long-horizon planning tasks. Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance. These techniques include using variables (to track important information) and functions (to divide complex tasks into smaller re-usable sub-tasks). However, purely code-based approaches can be error-prone and insufficient for handling ambiguous or unstructured data. To address these challenges, we propose REPL-Plan, an LLM planning approach that is fully code-expressive (it can utilize all the benefits of code) while also being dynamic (it can flexibly adapt from errors and use the LLM for fuzzy situations). In REPL-Plan, an LLM solves tasks by interacting with a Read-Eval-Print Loop (REPL), which iteratively executes and evaluates code, similar to language shells or interactive code notebooks, allowing the model to flexibly correct errors and handle tasks dynamically. We demonstrate that REPL-Plan achieves strong results across various planning domains compared to previous methods.
☆ Heterophilic Graph Neural Networks Optimization with Causal Message-passing
In this work, we discover that causal inference provides a promising approach to capture heterophilic message-passing in Graph Neural Network (GNN). By leveraging cause-effect analysis, we can discern heterophilic edges based on asymmetric node dependency. The learned causal structure offers more accurate relationships among nodes. To reduce the computational complexity, we introduce intervention-based causal inference in graph learning. We first simplify causal analysis on graphs by formulating it as a structural learning model and define the optimization problem within the Bayesian scheme. We then present an analysis of decomposing the optimization target into a consistency penalty and a structure modification based on cause-effect relations. We then estimate this target by conditional entropy and present insights into how conditional entropy quantifies the heterophily. Accordingly, we propose CausalMP, a causal message-passing discovery network for heterophilic graph learning, that iteratively learns the explicit causal structure of input graphs. We conduct extensive experiments in both heterophilic and homophilic graph settings. The result demonstrates that the our model achieves superior link prediction performance. Training on causal structure can also enhance node representation in classification task across different base models.
☆ FLRNet: A Deep Learning Method for Regressive Reconstruction of Flow Field From Limited Sensor Measurements
Many applications in computational and experimental fluid mechanics require effective methods for reconstructing the flow fields from limited sensor data. However, this task remains a significant challenge because the measurement operator, which provides the punctual sensor measurement for a given state of the flow field, is often ill-conditioned and non-invertible. This issue impedes the feasibility of identifying the forward map, theoretically the inverse of the measurement operator, for field reconstruction purposes. While data-driven methods are available, their generalizability across different flow conditions (\textit{e.g.,} different Reynold numbers) remains questioned. Moreover, they frequently face the problem of spectral bias, which leads to smooth and blurry reconstructed fields, thereby decreasing the accuracy of reconstruction. We introduce FLRNet, a deep learning method for flow field reconstruction from sparse sensor measurements. FLRNet employs an variational autoencoder with Fourier feature layers and incorporates an extra perceptual loss term during training to learn a rich, low-dimensional latent representation of the flow field. The learned latent representation is then correlated to the sensor measurement using a fully connected (dense) network. We validated the reconstruction capability and the generalizability of FLRNet under various fluid flow conditions and sensor configurations, including different sensor counts and sensor layouts. Numerical experiments show that in all tested scenarios, FLRNet consistently outperformed other baselines, delivering the most accurate reconstructed flow field and being the most robust to noise.
☆ AutoMixQ: Self-Adjusting Quantization for High Performance Memory-Efficient Fine-Tuning
Fine-tuning large language models (LLMs) under resource constraints is a significant challenge in deep learning. Low-Rank Adaptation (LoRA), pruning, and quantization are all effective methods for improving resource efficiency. However, combining them directly often results in suboptimal performance, especially with uniform quantization across all model layers. This is due to the complex, uneven interlayer relationships introduced by pruning, necessitating more refined quantization strategies. To address this, we propose AutoMixQ, an end-to-end optimization framework that selects optimal quantization configurations for each LLM layer. AutoMixQ leverages lightweight performance models to guide the selection process, significantly reducing time and computational resources compared to exhaustive search methods. By incorporating Pareto optimality, AutoMixQ balances memory usage and performance, approaching the upper bounds of model capability under strict resource constraints. Our experiments on widely used benchmarks show that AutoMixQ reduces memory consumption while achieving superior performance. For example, at a 30\% pruning rate in LLaMA-7B, AutoMixQ achieved 66.21\% on BoolQ compared to 62.45\% for LoRA and 58.96\% for LoftQ, while reducing memory consumption by 35.5\% compared to LoRA and 27.5\% compared to LoftQ.
☆ Edge-Cloud Routing for Text-to-Image Model with Token-Level Multi-Metric Prediction
Large text-to-image models demonstrate impressive generation capabilities; however, their substantial size necessitates expensive cloud servers for deployment. Conversely, light-weight models can be deployed on edge devices at lower cost but often with inferior generation quality for complex user prompts. To strike a balance between performance and cost, we propose a routing framework, called \texttt{RouteT2I}, which dynamically selects either the large cloud model or the light-weight edge model for each user prompt. Since generated image quality is challenging to measure directly, \texttt{RouteT2I} establishes multi-dimensional quality metrics, particularly, by evaluating the similarity between the generated images and both positive and negative texts that describe each specific quality metric. \texttt{RouteT2I} then predicts the expected quality of the generated images by identifying key tokens in the prompt and comparing their impact on the quality. \texttt{RouteT2I} further introduces the Pareto relative superiority to compare the multi-metric quality of the generated images. Based on this comparison and predefined cost constraints, \texttt{RouteT2I} allocates prompts to either the edge or the cloud. Evaluation reveals that \texttt{RouteT2I} significantly reduces the number of requesting large cloud model while maintaining high-quality image generation.
☆ Adaptable Embeddings Network (AEN)
Modern day Language Models see extensive use in text classification, yet this comes at significant computational cost. Compute-effective classification models are needed for low-resource environments, most notably on edge devices. We introduce Adaptable Embeddings Networks (AEN), a novel dual-encoder architecture using Kernel Density Estimation (KDE). This architecture allows for runtime adaptation of classification criteria without retraining and is non-autoregressive. Through thorough synthetic data experimentation, we demonstrate our model outputs comparable and in certain cases superior results to that of autoregressive models an order of magnitude larger than AEN's size. The architecture's ability to preprocess and cache condition embeddings makes it ideal for edge computing applications and real-time monitoring systems.
comment: 20 pages
☆ NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews
Large Language Models (LLMs) have demonstrated impressive capabilities in generating coherent text but often struggle with grounding language and strategic dialogue. To address this gap, we focus on journalistic interviews, a domain rich in grounding communication and abundant in data. We curate a dataset of 40,000 two-person informational interviews from NPR and CNN, and reveal that LLMs are significantly less likely than human interviewers to use acknowledgements and to pivot to higher-level questions. Realizing that a fundamental deficit exists in multi-turn planning and strategic thinking, we develop a realistic simulated environment, incorporating source personas and persuasive elements, in order to facilitate the development of agents with longer-horizon rewards. Our experiments show that while source LLMs mimic human behavior in information sharing, interviewer LLMs struggle with recognizing when questions are answered and engaging persuasively, leading to suboptimal information extraction across model size and capability. These findings underscore the need for enhancing LLMs' strategic dialogue capabilities.
☆ A Survey on Adversarial Robustness of LiDAR-based Machine Learning Perception in Autonomous Vehicles
In autonomous driving, the combination of AI and vehicular technology offers great potential. However, this amalgamation comes with vulnerabilities to adversarial attacks. This survey focuses on the intersection of Adversarial Machine Learning (AML) and autonomous systems, with a specific focus on LiDAR-based systems. We comprehensively explore the threat landscape, encompassing cyber-attacks on sensors and adversarial perturbations. Additionally, we investigate defensive strategies employed in countering these threats. This paper endeavors to present a concise overview of the challenges and advances in securing autonomous driving systems against adversarial threats, emphasizing the need for robust defenses to ensure safety and security.
comment: 20 pages, 2 figures
☆ Assessing data-driven predictions of band gap and electrical conductivity for transparent conducting materials
Machine Learning (ML) has offered innovative perspectives for accelerating the discovery of new functional materials, leveraging the increasing availability of material databases. Despite the promising advances, data-driven methods face constraints imposed by the quantity and quality of available data. Moreover, ML is often employed in tandem with simulated datasets originating from density functional theory (DFT), and assessed through in-sample evaluation schemes. This scenario raises questions about the practical utility of ML in uncovering new and significant material classes for industrial applications. Here, we propose a data-driven framework aimed at accelerating the discovery of new transparent conducting materials (TCMs), an important category of semiconductors with a wide range of applications. To mitigate the shortage of available data, we create and validate unique experimental databases, comprising several examples of existing TCMs. We assess state-of-the-art (SOTA) ML models for property prediction from the stoichiometry alone. We propose a bespoke evaluation scheme to provide empirical evidence on the ability of ML to uncover new, previously unseen materials of interest. We test our approach on a list of 55 compositions containing typical elements of known TCMs. Although our study indicates that ML tends to identify new TCMs compositionally similar to those in the training data, we empirically demonstrate that it can highlight material candidates that may have been previously overlooked, offering a systematic approach to identify materials that are likely to display TCMs characteristics.
☆ Generative Fuzzy System for Sequence Generation
Generative Models (GMs), particularly Large Language Models (LLMs), have garnered significant attention in machine learning and artificial intelligence for their ability to generate new data by learning the statistical properties of training data and creating data that resemble the original. This capability offers a wide range of applications across various domains. However, the complex structures and numerous model parameters of GMs make the input-output processes opaque, complicating the understanding and control of outputs. Moreover, the purely data-driven learning mechanism limits GM's ability to acquire broader knowledge. There remains substantial potential for enhancing the robustness and generalization capabilities of GMs. In this work, we introduce the fuzzy system, a classical modeling method that combines data and knowledge-driven mechanisms, to generative tasks. We propose a novel Generative Fuzzy System framework, named GenFS, which integrates the deep learning capabilities of GM with the interpretability and dual-driven mechanisms of fuzzy systems. Specifically, we propose an end-to-end GenFS-based model for sequence generation, called FuzzyS2S. A series of experimental studies were conducted on 12 datasets, covering three distinct categories of generative tasks: machine translation, code generation, and summary generation. The results demonstrate that FuzzyS2S outperforms the Transformer in terms of accuracy and fluency. Furthermore, it exhibits better performance on some datasets compared to state-of-the-art models T5 and CodeT5.
comment: 12 pages, 5 figures
♻ ☆ Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model
Multimodal language models (MLLMs) are increasingly being applied in real-world environments, necessitating their ability to interpret 3D spaces and comprehend temporal dynamics. Current methods often rely on specialized architectural designs or task-specific fine-tuning to achieve this. We introduce Coarse Correspondences, a simple lightweight method that enhances MLLMs' spatial-temporal reasoning with 2D images as input, without modifying the architecture or requiring task-specific fine-tuning. Our method uses a lightweight tracking model to identify primary object correspondences between frames in a video or across different image viewpoints, and then conveys this information to MLLMs through visual prompting. We demonstrate that this simple training-free approach brings substantial gains to GPT4-V/O consistently on four benchmarks that require spatial-temporal reasoning, including +20.5\% improvement on ScanQA, +9.7\% on OpenEQA's episodic memory subset, +6.0\% on the long-form video benchmark EgoSchema, and +11\% on the R2R navigation benchmark. Additionally, we show that Coarse Correspondences can also enhance open-source MLLMs' spatial reasoning (by +6.9\% on ScanQA) when applied in both training and inference and that the improvement can generalize to unseen datasets such as SQA3D (+3.1\%). Taken together, we show that Coarse Correspondences effectively and efficiently boosts models' performance on downstream tasks requiring spatial-temporal reasoning.
comment: project page: https://coarse-correspondence.github.io
♻ ☆ Quantum Policy Gradient in Reproducing Kernel Hilbert Space
Parametrised quantum circuits offer expressive and data-efficient representations for machine learning. Due to quantum states residing in a high-dimensional Hilbert space, parametrised quantum circuits have a natural interpretation in terms of kernel methods. The representation of quantum circuits in terms of quantum kernels has been studied widely in quantum supervised learning, but has been overlooked in the context of quantum reinforcement learning. This paper proposes parametric and non-parametric policy gradient and actor-critic algorithms with quantum kernel policies in quantum environments. This approach, implemented with both numerical and analytical quantum policy gradient techniques, allows exploiting the many advantages of kernel methods, including available analytic forms for the gradient of the policy and tunable expressiveness. The proposed approach is suitable for vector-valued action spaces and each of the formulations demonstrates a quadratic reduction in query complexity compared to their classical counterparts. Two actor-critic algorithms, one based on stochastic policy gradient and one based on deterministic policy gradient (comparable to the popular DDPG algorithm), demonstrate additional query complexity reductions compared to quantum policy gradient algorithms under favourable conditions.
♻ ☆ Integrating Physics of the Problem into Data-Driven Methods to Enhance Elastic Full-Waveform Inversion with Uncertainty Quantification
Full-Waveform Inversion (FWI) is a nonlinear iterative seismic imaging technique that, by reducing the misfit between recorded and predicted seismic waveforms, can produce detailed estimates of subsurface geophysical properties. Nevertheless, the strong nonlinearity of FWI can trap the optimization in local minima. This issue arises due to factors such as improper initial values, the absence of low frequencies in the measurements, noise, and other related considerations. To address this challenge and with the advent of advanced machine-learning techniques, data-driven methods, such as deep learning, have attracted significantly increasing attention in the geophysical community. Furthermore, the elastic wave equation should be included in FWI to represent elastic effects accurately. The intersection of data-driven techniques and elastic scattering theories presents opportunities and challenges. In this paper, by using the knowledge of elastic scattering (physics of the problem) and integrating it with machine learning techniques, we propose methods for the solution of time-harmonic FWI to enhance accuracy compared to pure data-driven and physics-based approaches. Moreover, to address uncertainty quantification, by modifying the structure of the Variational Autoencoder, we introduce a probabilistic deep learning method based on the physics of the problem that enables us to explore the uncertainties of the solution. According to the limited availability of datasets in this field and to assess the performance and accuracy of the proposed methods, we create a comprehensive dataset close to reality and conduct a comparative analysis of the presented approaches to it.
♻ ☆ Differentiable Weightless Neural Networks
We introduce the Differentiable Weightless Neural Network (DWN), a model based on interconnected lookup tables. Training of DWNs is enabled by a novel Extended Finite Difference technique for approximate differentiation of binary values. We propose Learnable Mapping, Learnable Reduction, and Spectral Regularization to further improve the accuracy and efficiency of these models. We evaluate DWNs in three edge computing contexts: (1) an FPGA-based hardware accelerator, where they demonstrate superior latency, throughput, energy efficiency, and model area compared to state-of-the-art solutions, (2) a low-power microcontroller, where they achieve preferable accuracy to XGBoost while subject to stringent memory constraints, and (3) ultra-low-cost chips, where they consistently outperform small models in both accuracy and projected hardware area. DWNs also compare favorably against leading approaches for tabular datasets, with higher average rank. Overall, our work positions DWNs as a pioneering solution for edge-compatible high-throughput neural networks.
♻ ☆ LLMs as Zero-shot Graph Learners: Alignment of GNN Representations with LLM Token Embeddings
Zero-shot graph machine learning, especially with graph neural networks (GNNs), has garnered significant interest due to the challenge of scarce labeled data. While methods like self-supervised learning and graph prompt learning have been extensively explored, they often rely on fine-tuning with task-specific labels, limiting their effectiveness in zero-shot scenarios. Inspired by the zero-shot capabilities of instruction-fine-tuned large language models (LLMs), we introduce a novel framework named Token Embedding-Aligned Graph Language Model (TEA-GLM) that leverages LLMs as cross-dataset and cross-task zero-shot learners for graph machine learning. Concretely, we pretrain a GNN, aligning its representations with token embeddings of an LLM. We then train a linear projector that transforms the GNN's representations into a fixed number of graph token embeddings without tuning the LLM. A unified instruction is designed for various graph tasks at different levels, such as node classification (node-level) and link prediction (edge-level). These design choices collectively enhance our method's effectiveness in zero-shot learning, setting it apart from existing methods. Experiments show that our graph token embeddings help the LLM predictor achieve state-of-the-art performance on unseen datasets and tasks compared to other methods using LLMs as predictors.
♻ ☆ Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models NeurIPS 2024
Bayesian reasoning in linear mixed-effects models (LMMs) is challenging and often requires advanced sampling techniques like Markov chain Monte Carlo (MCMC). A common approach is to write the model in a probabilistic programming language and then sample via Hamiltonian Monte Carlo (HMC). However, there are many ways a user can transform a model that make inference more or less efficient. In particular, marginalizing some variables can greatly improve inference but is difficult for users to do manually. We develop an algorithm to easily marginalize random effects in LMMs. A naive approach introduces cubic time operations within an inference algorithm like HMC, but we reduce the running time to linear using fast linear algebra techniques. We show that marginalization is always beneficial when applicable and highlight improvements in various models, especially ones from cognitive sciences.
comment: 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ A TVD neural network closure and application to turbulent combustion
Trained neural networks (NN) have attractive features for closing governing equations. There are many methods that are showing promise, but all can fail in cases when small errors consequentially violate physical reality, such as a solution boundedness condition. A NN formulation is introduced to preclude spurious oscillations that violate solution boundedness or positivity. It is embedded in the discretized equations as a machine learning closure and strictly constrained, inspired by total variation diminishing (TVD) methods for hyperbolic conservation laws. The constraint is exactly enforced during gradient-descent training by rescaling the NN parameters, which maps them onto an explicit feasible set. Demonstrations show that the constrained NN closure model usefully recovers linear and nonlinear hyperbolic phenomena and anti-diffusion while enforcing the non-oscillatory property. Finally, the model is applied to subgrid-scale (SGS) modeling of a turbulent reacting flow, for which it suppresses spurious oscillations in scalar fields that otherwise violate the solution boundedness. It outperforms a simple penalization of oscillations in the loss function.
♻ ☆ Variational Nearest Neighbor Gaussian Process
Variational approximations to Gaussian processes (GPs) typically use a small set of inducing points to form a low-rank approximation to the covariance matrix. In this work, we instead exploit a sparse approximation of the precision matrix. We propose variational nearest neighbor Gaussian process (VNNGP), which introduces a prior that only retains correlations within $K$ nearest-neighboring observations, thereby inducing sparse precision structure. Using the variational framework, VNNGP's objective can be factorized over both observations and inducing points, enabling stochastic optimization with a time complexity of $O(K^3)$. Hence, we can arbitrarily scale the inducing point size, even to the point of putting inducing points at every observed location. We compare VNNGP to other scalable GPs through various experiments, and demonstrate that VNNGP (1) can dramatically outperform low-rank methods, and (2) is less prone to overfitting than other nearest neighbor methods.
♻ ☆ LLMSteer: Improving Long-Context LLM Inference by Steering Attention on Reused Contexts
As large language models (LLMs) show impressive performance on complex tasks, they still struggle with longer contextual understanding and high computational costs. To balance efficiency and quality, we introduce LLMSteer, a fine-tuning-free framework that enhances LLMs through query-independent attention steering. Tested on popular LLMs and datasets, LLMSteer narrows the performance gap with baselines by 65.9% and reduces the runtime delay by up to 4.8x compared to recent attention steering methods.
♻ ☆ Model-Based Transfer Learning for Contextual Reinforcement Learning
Deep reinforcement learning (RL) is a powerful approach to complex decision making. However, one issue that limits its practical application is its brittleness, sometimes failing to train in the presence of small changes in the environment. Motivated by the success of zero-shot transfer-where pre-trained models perform well on related tasks-we consider the problem of selecting a good set of training tasks to maximize generalization performance across a range of tasks. Given the high cost of training, it is critical to select training tasks strategically, but not well understood how to do so. We hence introduce Model-Based Transfer Learning (MBTL), which layers on top of existing RL methods to effectively solve contextual RL problems. MBTL models the generalization performance in two parts: 1) the performance set point, modeled using Gaussian processes, and 2) performance loss (generalization gap), modeled as a linear function of contextual similarity. MBTL combines these two pieces of information within a Bayesian optimization (BO) framework to strategically select training tasks. We show theoretically that the method exhibits sublinear regret in the number of training tasks and discuss conditions to further tighten regret bounds. We experimentally validate our methods using urban traffic and standard continuous control benchmarks. The experimental results suggest that MBTL can achieve up to 50x improved sample efficiency compared with canonical independent training and multi-task training. Further experiments demonstrate the efficacy of BO and the insensitivity to the underlying RL algorithm and hyperparameters. This work lays the foundations for investigating explicit modeling of generalization, thereby enabling principled yet effective methods for contextual RL.
♻ ☆ ViSTa Dataset: Do vision-language models understand sequential tasks?
Using vision-language models (VLMs) as reward models in reinforcement learning holds promise for reducing costs and improving safety. So far, VLM reward models have only been used for goal-oriented tasks, where the agent must reach a particular final outcome. We explore VLMs' potential to supervise tasks that cannot be scored by the final state alone. To this end, we introduce ViSTa, a dataset for evaluating Vision-based understanding of Sequential Tasks. ViSTa comprises over 4,000 videos with step-by-step descriptions in virtual home, Minecraft, and real-world environments. Its novel hierarchical structure -- basic single-step tasks composed into more and more complex sequential tasks -- allows a fine-grained understanding of how well VLMs can judge tasks with varying complexity. To illustrate this, we use ViSTa to evaluate state-of-the-art VLMs, including CLIP, ViCLIP, and GPT-4o. We find that, while they are all good at object recognition, they fail to understand sequential tasks, with only GPT-4o achieving non-trivial performance.
♻ ☆ Linguacodus: A Synergistic Framework for Transformative Code Generation in Machine Learning Pipelines
In the ever-evolving landscape of machine learning, seamless translation of natural language descriptions into executable code remains a formidable challenge. This paper introduces Linguacodus, an innovative framework designed to tackle this challenge by deploying a dynamic pipeline that iteratively transforms natural language task descriptions into code through high-level data-shaping instructions. The core of Linguacodus is a fine-tuned large language model (LLM), empowered to evaluate diverse solutions for various problems and select the most fitting one for a given task. This paper details the fine-tuning process, and sheds light on how natural language descriptions can be translated into functional code. Linguacodus represents a substantial leap towards automated code generation, effectively bridging the gap between task descriptions and executable code. It holds great promise for advancing machine learning applications across diverse domains. Additionally, we propose an algorithm capable of transforming a natural description of an ML task into code with minimal human interaction. In extensive experiments on a vast machine learning code dataset originating from Kaggle, we showcase the effectiveness of Linguacodus. The investigations highlight its potential applications across diverse domains, emphasizing its impact on applied machine learning in various scientific fields.
♻ ☆ Embedding-based Multimodal Learning on Pan-Squamous Cell Carcinomas for Improved Survival Outcomes
Cancer clinics capture disease data at various scales, from genetic to organ level. Current bioinformatic methods struggle to handle the heterogeneous nature of this data, especially with missing modalities. We propose PARADIGM, a Graph Neural Network (GNN) framework that learns from multimodal, heterogeneous datasets to improve clinical outcome prediction. PARADIGM generates embeddings from multi-resolution data using foundation models, aggregates them into patient-level representations, fuses them into a unified graph, and enhances performance for tasks like survival analysis. We train GNNs on pan-Squamous Cell Carcinomas and validate our approach on Moffitt Cancer Center lung SCC data. Multimodal GNN outperforms other models in patient survival prediction. Converging individual data modalities across varying scales provides a more insightful disease view. Our solution aims to understand the patient's circumstances comprehensively, offering insights on heterogeneous data integration and the benefits of converging maximum data views.
♻ ☆ High-performance real-world optical computing trained by in situ gradient-based model-free optimization TPAMI 2024
Optical computing systems provide high-speed and low-energy data processing but face deficiencies in computationally demanding training and simulation-to-reality gaps. We propose a gradient-based model-free optimization (G-MFO) method based on a Monte Carlo gradient estimation algorithm for computationally efficient in situ training of optical computing systems. This approach treats an optical computing system as a black box and back-propagates the loss directly to the optical computing weights' probability distributions, circumventing the need for a computationally heavy and biased system simulation. Our experiments on diffractive optical computing systems show that G-MFO outperforms hybrid training on the MNIST and FMNIST datasets. Furthermore, we demonstrate image-free and high-speed classification of cells from their marker-free phase maps. Our method's model-free and high-performance nature, combined with its low demand for computational resources, paves the way for accelerating the transition of optical computing from laboratory demonstrations to practical, real-world applications.
comment: The paper titled "High-performance real-world optical computing trained by in situ gradient-based model-free optimization" has been accepted at ICCP&TPAMI 2024. For more details, please visit the [project page](https://shuxin626.github.io/mfo_optical_computing/index.html)
♻ ☆ HoneyBee: A Scalable Modular Framework for Creating Multimodal Oncology Datasets with Foundational Embedding Models
Developing accurate machine learning models for oncology requires large-scale, high-quality multimodal datasets. However, creating such datasets remains challenging due to the complexity and heterogeneity of medical data. To address this challenge, we introduce HoneyBee, a scalable modular framework for building multimodal oncology datasets that leverages foundation models to generate representative embeddings. HoneyBee integrates various data modalities, including clinical diagnostic and pathology imaging data, medical notes, reports, records, and molecular data. It employs data preprocessing techniques and foundation models to generate embeddings that capture the essential features and relationships within the raw medical data. The generated embeddings are stored in a structured format using Hugging Face datasets and PyTorch dataloaders for accessibility. Vector databases enable efficient querying and retrieval for machine learning applications. We demonstrate the effectiveness of HoneyBee through experiments assessing the quality and representativeness of these embeddings. The framework is designed to be extensible to other medical domains and aims to accelerate oncology research by providing high-quality, machine learning-ready datasets. HoneyBee is an ongoing open-source effort, and the code, datasets, and models are available at the project repository.
♻ ☆ Robust Fast Adaptation from Adversarially Explicit Task Distribution Generation
Meta-learning is a practical learning paradigm to transfer skills across tasks from a few examples. Nevertheless, the existence of task distribution shifts tends to weaken meta-learners' generalization capability, particularly when the training task distribution is naively hand-crafted or based on simple priors that fail to cover critical scenarios sufficiently. Here, we consider explicitly generative modeling task distributions placed over task identifiers and propose robustifying fast adaptation from adversarial training. Our approach, which can be interpreted as a model of a Stackelberg game, not only uncovers the task structure during problem-solving from an explicit generative model but also theoretically increases the adaptation robustness in worst cases. This work has practical implications, particularly in dealing with task distribution shifts in meta-learning, and contributes to theoretical insights in the field. Our method demonstrates its robustness in the presence of task subpopulation shifts and improved performance over SOTA baselines in extensive experiments. The code will be available at the project site https://sites.google.com/view/ar-metalearn.
comment: Accepted by KDD 2025. The project is available at https://sites.google.com/view/ar-metalearn
♻ ☆ Data-centric Graph Learning: A Survey
The history of artificial intelligence (AI) has witnessed the significant impact of high-quality data on various deep learning models, such as ImageNet for AlexNet and ResNet. Recently, instead of designing more complex neural architectures as model-centric approaches, the attention of AI community has shifted to data-centric ones, which focuses on better processing data to strengthen the ability of neural models. Graph learning, which operates on ubiquitous topological data, also plays an important role in the era of deep learning. In this survey, we comprehensively review graph learning approaches from the data-centric perspective, and aim to answer three crucial questions: (1) when to modify graph data, (2) what part of the graph data needs modification to unlock the potential of various graph models, and (3) how to safeguard graph models from problematic data influence. Accordingly, we propose a novel taxonomy based on the stages in the graph learning pipeline, and highlight the processing methods for different data structures in the graph data, i.e., topology, feature and label. Furthermore, we analyze some potential problems embedded in graph data and discuss how to solve them in a data-centric manner. Finally, we provide some promising future directions for data-centric graph learning.
comment: 20 pages, accepted by IEEE Transactions on Big Data
♻ ☆ Graph Neural Networks and Arithmetic Circuits
We characterize the computational power of neural networks that follow the graph neural network (GNN) architecture, not restricted to aggregate-combine GNNs or other particular types. We establish an exact correspondence between the expressivity of GNNs using diverse activation functions and arithmetic circuits over real numbers. In our results the activation function of the network becomes a gate type in the circuit. Our result holds for families of constant depth circuits and networks, both uniformly and non-uniformly, for all common activation functions.
♻ ☆ VerA: Versatile Anonymization Applicable to Clinical Facial Photographs WACV 2025
The demand for privacy in facial image dissemination is gaining ground internationally, echoed by the proliferation of regulations such as GDPR, DPDPA, CCPA, PIPL, and APPI. While recent advances in anonymization surpass pixelation or blur methods, additional constraints to the task pose challenges. Largely unaddressed by current anonymization methods are clinical images and pairs of before-and-after clinical images illustrating facial medical interventions, e.g., facial surgeries or dental procedures. We present VerA, the first Versatile Anonymization framework that solves two challenges in clinical applications: A) it preserves selected semantic areas (e.g., mouth region) to show medical intervention results, that is, anonymization is only applied to the areas outside the preserved area; and B) it produces anonymized images with consistent personal identity across multiple photographs, which is crucial for anonymizing photographs of the same person taken before and after a clinical intervention. We validate our results on both single and paired anonymization of clinical images through extensive quantitative and qualitative evaluation. We also demonstrate that VerA reaches the state of the art on established anonymization tasks, in terms of photorealism and de-identification.
comment: accepted to WACV 2025
♻ ☆ Learning multivariate Gaussians with imperfect advice
We revisit the problem of distribution learning within the framework of learning-augmented algorithms. In this setting, we explore the scenario where a probability distribution is provided as potentially inaccurate advice on the true, unknown distribution. Our objective is to develop learning algorithms whose sample complexity decreases as the quality of the advice improves, thereby surpassing standard learning lower bounds when the advice is sufficiently accurate. Specifically, we demonstrate that this outcome is achievable for the problem of learning a multivariate Gaussian distribution $N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ in the PAC learning setting. Classically, in the advice-free setting, $\tilde{\Theta}(d^2/\varepsilon^2)$ samples are sufficient and worst case necessary to learn $d$-dimensional Gaussians up to TV distance $\varepsilon$ with constant probability. When we are additionally given a parameter $\tilde{\boldsymbol{\Sigma}}$ as advice, we show that $\tilde{O}(d^{2-\beta}/\varepsilon^2)$ samples suffices whenever $\| \tilde{\boldsymbol{\Sigma}}^{-1/2} \boldsymbol{\Sigma} \tilde{\boldsymbol{\Sigma}}^{-1/2} - \boldsymbol{I_d} \|_1 \leq \varepsilon d^{1-\beta}$ (where $\|\cdot\|_1$ denotes the entrywise $\ell_1$ norm) for any $\beta > 0$, yielding a polynomial improvement over the advice-free setting.
♻ ☆ A Fusion of Variational Distribution Priors and Saliency Map Replay for Continual 3D Reconstruction
Single-image 3D reconstruction is a research challenge focused on predicting 3D object shapes from single-view images. This task requires significant data acquisition to predict both visible and occluded portions of the shape. Furthermore, learning-based methods face the difficulty of creating a comprehensive training dataset for all possible classes. To this end, we propose a continual learning-based 3D reconstruction method where our goal is to design a model using Variational Priors that can still reconstruct the previously seen classes reasonably even after training on new classes. Variational Priors represent abstract shapes and combat forgetting, whereas saliency maps preserve object attributes with less memory usage. This is vital due to resource constraints in storing extensive training data. Additionally, we introduce saliency map-based experience replay to capture global and distinct object features. Thorough experiments show competitive results compared to established methods, both quantitatively and qualitatively.
comment: at ICVGIP 2024
♻ ☆ Uncertainty-Guided Alignment for Unsupervised Domain Adaptation in Regression
Unsupervised Domain Adaptation for Regression (UDAR) aims to adapt models from a labeled source domain to an unlabeled target domain for regression tasks. Traditional feature alignment methods, successful in classification, often prove ineffective for regression due to the correlated nature of regression features. To address this challenge, we propose Uncertainty-Guided Alignment (UGA), a novel method that integrates predictive uncertainty into the feature alignment process. UGA employs Evidential Deep Learning to predict both target values and their associated uncertainties. This uncertainty information guides the alignment process and fuses information within the embedding space, effectively mitigating issues such as feature collapse in out-of-distribution scenarios. We evaluate UGA on two computer vision benchmarks and a real-world battery state-of-charge prediction across different manufacturers and operating temperatures. Across 52 transfer tasks, UGA on average outperforms existing state-of-the-art methods. Our approach not only improves adaptation performance but also provides well-calibrated uncertainty estimates.
♻ ☆ The Role of Deep Learning Regularizations on Actors in Offline RL
Deep learning regularization techniques, such as dropout, layer normalization, or weight decay, are widely adopted in the construction of modern artificial neural networks, often resulting in more robust training processes and improved generalization capabilities. However, in the domain of Reinforcement Learning (RL), the application of these techniques has been limited, usually applied to value function estimators (Hiraoka et al., 2021; Smith et al., 2022), and may result in detrimental effects. This issue is even more pronounced in offline RL settings, which bear greater similarity to supervised learning but have received less attention. Recent work in continuous offline RL (Park et al., 2024) has demonstrated that while we can build sufficiently powerful critic networks, the generalization of actor networks remains a bottleneck. In this study, we empirically show that applying standard regularization techniques to actor networks in offline RL actor-critic algorithms yields improvements of 6% on average across two algorithms and three different continuous D4RL domains.
comment: https://github.com/DT6A/ActoReg
♻ ☆ RRADistill: Distilling LLMs' Passage Ranking Ability for Long-Tail Queries Document Re-Ranking on a Search Engine EMNLP 2024
Large Language Models (LLMs) excel at understanding the semantic relationships between queries and documents, even with lengthy and complex long-tail queries. These queries are challenging for feedback-based rankings due to sparse user engagement and limited feedback, making LLMs' ranking ability highly valuable. However, the large size and slow inference of LLMs necessitate the development of smaller, more efficient models (sLLMs). Recently, integrating ranking label generation into distillation techniques has become crucial, but existing methods underutilize LLMs' capabilities and are cumbersome. Our research, RRADistill: Re-Ranking Ability Distillation, propose an efficient label generation pipeline and novel sLLM training methods for both encoder and decoder models. We introduce an encoder-based method using a Term Control Layer to capture term matching signals and a decoder-based model with a ranking layer for enhanced understanding. A/B testing on a Korean-based search platform, validates the effectiveness of our approach in improving re-ranking for long-tail queries.
comment: Accepted to EMNLP 2024 Industry Track. First two authors contributed equally
♻ ☆ The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning
In this work, we assess the theoretical limitations of determining guaranteed stability and accuracy of neural networks in classification tasks. We consider classical distribution-agnostic framework and algorithms minimising empirical risks and potentially subjected to some weights regularisation. We show that there is a large family of tasks for which computing and verifying ideal stable and accurate neural networks in the above settings is extremely challenging, if at all possible, even when such ideal solutions exist within the given class of neural architectures.
comment: Revised version of the original submission
♻ ☆ Leveraging Bi-Focal Perspectives and Granular Feature Integration for Accurate Reliable Early Alzheimer's Detection
Alzheimer's disease (AD) is the most common neurodegeneration, annually diagnosed in millions of patients. The present medicine scenario still finds challenges in the exact diagnosis and classification of AD through neuroimaging data. Traditional CNNs can extract a good amount of low-level information in an image but fail to extract high-level minuscule particles, which is a significant challenge in detecting AD from MRI scans. To overcome this, we propose a novel Granular Feature Integration method to combine information extraction at different scales combined with an efficient information flow, enabling the model to capture both broad and fine-grained features simultaneously. We also propose a Bi-Focal Perspective mechanism to highlight the subtle neurofibrillary tangles and amyloid plaques in the MRI scans, ensuring that critical pathological markers are accurately identified. Our model achieved an F1-Score of 99.31%, precision of 99.24%, and recall of 99.51%. These scores prove that our model is significantly better than the state-of-the-art (SOTA) CNNs in existence.
comment: 14 pages, 12 figures, 6 tables
♻ ☆ Collaborative Distributed Machine Learning
Various collaborative distributed machine learning (CDML) systems, including federated learning systems and swarm learning systems, with diferent key traits were developed to leverage resources for the development and use of machine learning(ML) models in a conidentiality-preserving way. To meet use case requirements, suitable CDML systems need to be selected. However, comparison between CDML systems to assess their suitability for use cases is often diicult. To support comparison of CDML systems and introduce scientiic and practical audiences to the principal functioning and key traits of CDML systems, this work presents a CDML system conceptualization and CDML archetypes.
♻ ☆ Fine-Grained Detection of Solidarity for Women and Migrants in 155 Years of German Parliamentary Debates EMNLP 2024
Solidarity is a crucial concept to understand social relations in societies. In this paper, we explore fine-grained solidarity frames to study solidarity towards women and migrants in German parliamentary debates between 1867 and 2022. Using 2,864 manually annotated text snippets (with a cost exceeding 18k Euro), we evaluate large language models (LLMs) like Llama 3, GPT-3.5, and GPT-4. We find that GPT-4 outperforms other LLMs, approaching human annotation quality. Using GPT-4, we automatically annotate more than 18k further instances (with a cost of around 500 Euro) across 155 years and find that solidarity with migrants outweighs anti-solidarity but that frequencies and solidarity types shift over time. Most importantly, group-based notions of (anti-)solidarity fade in favor of compassionate solidarity, focusing on the vulnerability of migrant groups, and exchange-based anti-solidarity, focusing on the lack of (economic) contribution. Our study highlights the interplay of historical events, socio-economic needs, and political ideologies in shaping migration discourse and social cohesion. We also show that powerful LLMs, if carefully prompted, can be cost-effective alternatives to human annotation for hard social scientific tasks.
comment: EMNLP 2024 (Main Conference) Camera-Ready Version
♻ ☆ Asymptotic generalization error of a single-layer graph convolutional network
While graph convolutional networks show great practical promises, the theoretical understanding of their generalization properties as a function of the number of samples is still in its infancy compared to the more broadly studied case of supervised fully connected neural networks. In this article, we predict the performances of a single-layer graph convolutional network (GCN) trained on data produced by attributed stochastic block models (SBMs) in the high-dimensional limit. Previously, only ridge regression on contextual-SBM (CSBM) has been considered in Shi et al. 2022; we generalize the analysis to arbitrary convex loss and regularization for the CSBM and add the analysis for another data model, the neural-prior SBM. We also study the high signal-to-noise ratio limit, detail the convergence rates of the GCN and show that, while consistent, it does not reach the Bayes-optimal rate for any of the considered cases.
♻ ☆ Data Augmentation for Surgical Scene Segmentation with Anatomy-Aware Diffusion Models WACV 2025
In computer-assisted surgery, automatically recognizing anatomical organs is crucial for understanding the surgical scene and providing intraoperative assistance. While machine learning models can identify such structures, their deployment is hindered by the need for labeled, diverse surgical datasets with anatomical annotations. Labeling multiple classes (i.e., organs) in a surgical scene is time-intensive, requiring medical experts. Although synthetically generated images can enhance segmentation performance, maintaining both organ structure and texture during generation is challenging. We introduce a multi-stage approach using diffusion models to generate multi-class surgical datasets with annotations. Our framework improves anatomy awareness by training organ specific models with an inpainting objective guided by binary segmentation masks. The organs are generated with an inference pipeline using pre-trained ControlNet to maintain the organ structure. The synthetic multi-class datasets are constructed through an image composition step, ensuring structural and textural consistency. This versatile approach allows the generation of multi-class datasets from real binary datasets and simulated surgical masks. We thoroughly evaluate the generated datasets on image quality and downstream segmentation, achieving a $15\%$ improvement in segmentation scores when combined with real images. The code is available at https://gitlab.com/nct_tso_public/muli-class-image-synthesis
comment: Accepted at WACV 2025
♻ ☆ Is Less More? Exploring Token Condensation as Training-free Adaptation for CLIP
Contrastive language-image pre-training (CLIP) has shown remarkable generalization ability in image classification. However, CLIP sometimes encounters performance drops on downstream datasets during zero-shot inference. Test-time adaptation methods attempt to mitigate this by adjusting normalization layers or tuning context prompts with large batch sizes and extensive augmentations; yet, these methods are computationally intensive. This raises an important question: Is there a training-free approach that can efficiently address CLIP's performance drop in such cases? To explore this, we benchmark token condensation techniques, originally designed to enhance the efficiency of vision transformers, on CLIP zero-shot inference tasks. We observe that although token condensation may compromise in-domain accuracy, it surprisingly enhances CLIP's performance on certain cross-dataset benchmarks. This motivates two key inquiries: (1) Can token condensation serve as a "free-lunch" solution for CLIP zero-shot inference? (2) What criteria should guide condensation -- how can essential tokens be identified and redundant ones eliminated? To address these questions, we propose Token Condensation as Adaptation (TCA), a training-free adaptation method for CLIP by pruning class-irrelevant visual tokens while merging class-ambiguous tokens. As the first approach for CLIP's token efficiency, TCA demonstrates superior performance across cross-dataset tasks, achieving up to a 21.4\% improvement over the strongest baseline while reducing GFLOPs by 12.2\% to 48.9\%, with minimized hyperparameter dependency.
comment: 15 pages, 7 figures
♻ ☆ Reconciling Kaplan and Chinchilla Scaling Laws
Kaplan et al. [2020] (`Kaplan') and Hoffmann et al. [2022] (`Chinchilla') studied the scaling behavior of transformers trained on next-token language prediction. These studies produced different estimates for how the number of parameters ($N$) and training tokens ($D$) should be set to achieve the lowest possible loss for a given compute budget ($C$). Kaplan: $N_\text{optimal} \propto C^{0.73}$, Chinchilla: $N_\text{optimal} \propto C^{0.50}$. This paper finds that much of this discrepancy can be attributed to Kaplan counting non-embedding rather than total parameters, combined with their analysis being performed at small scale. Simulating the Chinchilla study under these conditions produces biased scaling coefficients close to Kaplan's. Hence, this paper reaffirms Chinchilla's scaling coefficients, by explaining the primary cause of Kaplan's original overestimation. As a second contribution, the paper explains differences in the reported relationships between loss and compute. These findings lead us to recommend that future scaling studies use total parameters and compute.
comment: Published in TMLR 2024
♻ ☆ Improving Steering Vectors by Targeting Sparse Autoencoder Features
To control the behavior of language models, steering methods attempt to ensure that outputs of the model satisfy specific pre-defined properties. Adding steering vectors to the model is a promising method of model control that is easier than finetuning, and may be more robust than prompting. However, it can be difficult to anticipate the effects of steering vectors produced by methods such as CAA [Panickssery et al., 2024] or the direct use of SAE latents [Templeton et al., 2024]. In our work, we address this issue by using SAEs to measure the effects of steering vectors, giving us a method that can be used to understand the causal effect of any steering vector intervention. We use this method for measuring causal effects to develop an improved steering method, SAE-Targeted Steering (SAE-TS), which finds steering vectors to target specific SAE features while minimizing unintended side effects. We show that overall, SAE-TS balances steering effects with coherence better than CAA and SAE feature steering, when evaluated on a range of tasks.
comment: 8 maintext pages and 9 appendix pages
♻ ☆ Rethinking Weight-Averaged Model-merging
Weight-averaged model-merging has emerged as a powerful approach in deep learning, capable of enhancing model performance without fine-tuning or retraining. However, the underlying mechanisms that explain its effectiveness remain largely unexplored. In this paper, we investigate this technique from three novel perspectives to provide deeper insights into how and why weight-averaged model-merging works: (1) we examine the intrinsic patterns captured by the learning of the model weights, through the visualizations of their patterns on several datasets, showing that these weights often encode structured and interpretable patterns; (2) we investigate model ensemble merging strategies based on averaging on weights versus averaging on features, providing detailed analyses across diverse architectures and datasets; and (3) we explore the impact on model-merging prediction stability in terms of changing the parameter magnitude, revealing insights into the way of weight averaging works as regularization by showing the robustness across different parameter scales. Our findings shed light on the "black box" of weight-averaged model-merging, offering valuable insights and practical recommendations that advance the model-merging process.
♻ ☆ Towards Generative Ray Path Sampling for Faster Point-to-Point Ray Tracing ICML
Radio propagation modeling is essential in telecommunication research, as radio channels result from complex interactions with environmental objects. Recently, Machine Learning has been attracting attention as a potential alternative to computationally demanding tools, like Ray Tracing, which can model these interactions in detail. However, existing Machine Learning approaches often attempt to learn directly specific channel characteristics, such as the coverage map, making them highly specific to the frequency and material properties and unable to fully capture the underlying propagation mechanisms. Hence, Ray Tracing, particularly the Point-to-Point variant, remains popular to accurately identify all possible paths between transmitter and receiver nodes. Still, path identification is computationally intensive because the number of paths to be tested grows exponentially while only a small fraction is valid. In this paper, we propose a Machine Learning-aided Ray Tracing approach to efficiently sample potential ray paths, significantly reducing the computational load while maintaining high accuracy. Our model dynamically learns to prioritize potentially valid paths among all possible paths and scales linearly with scene complexity. Unlike recent alternatives, our approach is invariant with translation, scaling, or rotation of the geometry, and avoids dependency on specific environment characteristics.
comment: 6 pages, 6 figures, submitted to IEEE ICMLCN 2025
♻ ☆ Near-Field Spot Beamfocusing: A Correlation-Aware Transfer Learning Approach
3D spot beamfocusing (SBF), in contrast to conventional angular-domain beamforming, concentrates radiating power within very small volume in both radial and angular domains in the near-field zone. Recently the implementation of channel-state-information (CSI)-independent machine learning (ML)-based approaches have been developed for effective SBF using extremely-largescale-programable-metasurface (ELPMs). These methods involve dividing the ELPMs into subarrays and independently training them with Deep Reinforcement Learning to jointly focus the beam at the Desired Focal Point (DFP). This paper explores near-field SBF using ELPMs, addressing challenges associated with lengthy training times resulting from independent training of subarrays. To achieve a faster CSIindependent solution, inspired by the correlation between the beamfocusing matrices of the subarrays, we leverage transfer learning techniques. First, we introduce a novel similarity criterion based on the Phase Distribution Image of subarray apertures. Then we devise a subarray policy propagation scheme that transfers the knowledge from trained to untrained subarrays. We further enhance learning by introducing Quasi-Liquid-Layers as a revised version of the adaptive policy reuse technique. We show through simulations that the proposed scheme improves the training speed about 5 times. Furthermore, for dynamic DFP management, we devised a DFP policy blending process, which augments the convergence rate up to 8-fold.
♻ ☆ Communication-Efficient Distributed Deep Learning via Federated Dynamic Averaging
The ever-growing volume and decentralized nature of data, coupled with the need to harness it and extract knowledge, have led to the extensive use of distributed deep learning (DDL) techniques for training. These techniques rely on local training performed at distributed nodes using locally collected data, followed by a periodic synchronization process that combines these models to create a unified global model. However, the frequent synchronization of deep learning models, encompassing millions to many billions of parameters, creates a communication bottleneck, severely hindering scalability. Worse yet, DDL algorithms typically waste valuable bandwidth and render themselves less practical in bandwidth-constrained federated settings by relying on overly simplistic, periodic, and rigid synchronization schedules. These inefficiencies make the training process increasingly impractical as they demand excessive time for data communication. To address these shortcomings, we propose Federated Dynamic Averaging (FDA), a communication-efficient DDL strategy that dynamically triggers synchronization based on the value of the model variance. In essence, the costly synchronization step is triggered only if the local models -- initialized from a common global model after each synchronization -- have significantly diverged. This decision is facilitated by the transmission of a small local state from each distributed node. Through extensive experiments across a wide range of learning tasks we demonstrate that FDA reduces communication cost by orders of magnitude, compared to both traditional and cutting-edge communication-efficient algorithms. Additionally, we show that FDA maintains robust performance across diverse data heterogeneity settings.
comment: Accepted as research paper at EDBT 2025
♻ ☆ Unsupervised End-to-End Training with a Self-Defined Target
Designing algorithms for versatile AI hardware that can learn on the edge using both labeled and unlabeled data is challenging. Deep end-to-end training methods incorporating phases of self-supervised and supervised learning are accurate and adaptable to input data but self-supervised learning requires even more computational and memory resources than supervised learning, too high for current embedded hardware. Conversely, unsupervised layer-by-layer training, such as Hebbian learning, is more compatible with existing hardware but does not integrate well with supervised learning. To address this, we propose a method enabling networks or hardware designed for end-to-end supervised learning to also perform high-performance unsupervised learning by adding two simple elements to the output layer: Winner-Take-All (WTA) selectivity and homeostasis regularization. These mechanisms introduce a "self-defined target" for unlabeled data, allowing purely unsupervised training for both fully-connected and convolutional layers using backpropagation or equilibrium propagation on datasets like MNIST (up to 99.2%), Fashion-MNIST (up to 90.3%), and SVHN (up to 81.5%). We extend this method to semi-supervised learning, adjusting targets based on data type, achieving 96.6% accuracy with only 600 labeled MNIST samples in a multi-layer perceptron. Our results show that this approach can effectively enable networks and hardware initially dedicated to supervised learning to also perform unsupervised learning, adapting to varying availability of labeled data.
♻ ☆ Verifying the Robustness of Automatic Credibility Assessment
Text classification methods have been widely investigated as a way to detect content of low credibility: fake news, social media bots, propaganda, etc. Quite accurate models (likely based on deep neural networks) help in moderating public electronic platforms and often cause content creators to face rejection of their submissions or removal of already published texts. Having the incentive to evade further detection, content creators try to come up with a slightly modified version of the text (known as an attack with an adversarial example) that exploit the weaknesses of classifiers and result in a different output. Here we systematically test the robustness of common text classifiers against available attacking techniques and discover that, indeed, meaning-preserving changes in input text can mislead the models. The approaches we test focus on finding vulnerable spans in text and replacing individual characters or words, taking into account the similarity between the original and replacement content. We also introduce BODEGA: a benchmark for testing both victim models and attack methods on four misinformation detection tasks in an evaluation framework designed to simulate real use-cases of content moderation. The attacked tasks include (1) fact checking and detection of (2) hyperpartisan news, (3) propaganda and (4) rumours. Our experimental results show that modern large language models are often more vulnerable to attacks than previous, smaller solutions, e.g. attacks on GEMMA being up to 27\% more successful than those on BERT. Finally, we manually analyse a subset adversarial examples and check what kinds of modifications are used in successful attacks.
♻ ☆ Repurposing Language Models into Embedding Models: Finding the Compute-Optimal Recipe NeurIPS 2024
Text embeddings are essential for many tasks, such as document retrieval, clustering, and semantic similarity assessment. In this paper, we study how to contrastively train text embedding models in a compute-optimal fashion, given a suite of pre-trained decoder-only language models. Our innovation is an algorithm that produces optimal configurations of model sizes, data quantities, and fine-tuning methods for text-embedding models at different computational budget levels. The resulting recipe, which we obtain through extensive experiments, can be used by practitioners to make informed design choices for their embedding models. Specifically, our findings suggest that full fine-tuning and low-rank adaptation fine-tuning produce optimal models at lower and higher computational budgets respectively.
comment: NeurIPS 2024
♻ ☆ Predicting Wall Thickness Changes in Cold Forging Processes: An Integrated FEM and Neural Network approach
This study presents a novel approach for predicting wall thickness changes in tubes during the nosing process. Specifically, we first provide a thorough analysis of nosing processes and the influencing parameters. We further set-up a Finite Element Method (FEM) simulation to better analyse the effects of varying process parameters. As however traditional FEM simulations, while accurate, are time-consuming and computationally intensive, which renders them inapplicable for real-time application, we present a novel modeling framework based on specifically designed graph neural networks as surrogate models. To this end, we extend the neural network architecture by directly incorporating information about the nosing process by adding different types of edges and their corresponding encoders to model object interactions. This augmentation enhances model accuracy and opens the possibility for employing precise surrogate models within closed-loop production processes. The proposed approach is evaluated using a new evaluation metric termed area between thickness curves (ABTC). The results demonstrate promising performance and highlight the potential of neural networks as surrogate models in predicting wall thickness changes during nosing forging processes.
♻ ☆ The Digital Transformation in Health: How AI Can Improve the Performance of Health Systems
Mobile health has the potential to revolutionize health care delivery and patient engagement. In this work, we discuss how integrating Artificial Intelligence into digital health applications-focused on supply chain, patient management, and capacity building, among other use cases-can improve the health system and public health performance. We present an Artificial Intelligence and Reinforcement Learning platform that allows the delivery of adaptive interventions whose impact can be optimized through experimentation and real-time monitoring. The system can integrate multiple data sources and digital health applications. The flexibility of this platform to connect to various mobile health applications and digital devices and send personalized recommendations based on past data and predictions can significantly improve the impact of digital tools on health system outcomes. The potential for resource-poor settings, where the impact of this approach on health outcomes could be more decisive, is discussed specifically. This framework is, however, similarly applicable to improving efficiency in health systems where scarcity is not an issue.
comment: This is an original manuscript of an article published by Taylor & Francis in Health Systems & Reform on 22 Oct 2024, available online: https://www.tandfonline.com/doi/10.1080/23288604.2024.2387138
♻ ☆ Privacy-Aware Data Acquisition under Data Similarity in Regression Markets
Data markets facilitate decentralized data exchange for applications such as prediction, learning, or inference. The design of these markets is challenged by varying privacy preferences as well as data similarity among data owners. Related works have often overlooked how data similarity impacts pricing and data value through statistical information leakage. We demonstrate that data similarity and privacy preferences are integral to market design and propose a query-response protocol using local differential privacy for a two-party data acquisition mechanism. In our regression data market model, we analyze strategic interactions between privacy-aware owners and the learner as a Stackelberg game over the asked price and privacy factor. Finally, we numerically evaluate how data similarity affects market participation and traded data value.
comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems
♻ ☆ Engagement-Driven Content Generation with Large Language Models
Large Language Models (LLMs) exhibit significant persuasion capabilities in one-on-one interactions, but their influence within social networks remains underexplored. This study investigates the potential social impact of LLMs in these environments, where interconnected users and complex opinion dynamics pose unique challenges. In particular, we address the following research question: can LLMs learn to generate meaningful content that maximizes user engagement on social networks? To answer this question, we define a pipeline to guide the LLM-based content generation which employs reinforcement learning with simulated feedback. In our framework, the reward is based on an engagement model borrowed from the literature on opinion dynamics and information propagation. Moreover, we force the text generated by the LLM to be aligned with a given topic and to satisfy a minimum fluency requirement. Using our framework, we analyze the capabilities and limitations of LLMs in tackling the given task, specifically considering the relative positions of the LLM as an agent within the social network and the distribution of opinions in the network on the given topic. Our findings show the full potential of LLMs in creating social engagement. Notable properties of our approach are that the learning procedure is adaptive to the opinion distribution of the underlying network and agnostic to the specifics of the engagement model, which is embedded as a plug-and-play component. In this regard, our approach can be easily refined for more complex engagement tasks and interventions in computational social science. The code used for the experiments is publicly available at https://anonymous.4open.science/r/EDCG/.
♻ ☆ A Confidence-based Acquisition Model for Self-supervised Active Learning and Label Correction ACL
Supervised neural approaches are hindered by their dependence on large, meticulously annotated datasets, a requirement that is particularly cumbersome for sequential tasks. The quality of annotations tends to deteriorate with the transition from expert-based to crowd-sourced labelling. To address these challenges, we present CAMEL (Confidence-based Acquisition Model for Efficient self-supervised active Learning), a pool-based active learning framework tailored to sequential multi-output problems. CAMEL possesses two core features: (1) it requires expert annotators to label only a fraction of a chosen sequence, and (2) it facilitates self-supervision for the remainder of the sequence. By deploying a label correction mechanism, CAMEL can also be utilised for data cleaning. We evaluate CAMEL on two sequential tasks, with a special emphasis on dialogue belief tracking, a task plagued by the constraints of limited and noisy datasets. Our experiments demonstrate that CAMEL significantly outperforms the baselines in terms of efficiency. Furthermore, the data corrections suggested by our method contribute to an overall improvement in the quality of the resulting datasets.
comment: Accepted at TACL
♻ ☆ ADOPT: Modified Adam Can Converge with Any $β_2$ with the Optimal Rate NeurIPS 2024
Adam is one of the most popular optimization algorithms in deep learning. However, it is known that Adam does not converge in theory unless choosing a hyperparameter, i.e., $\beta_2$, in a problem-dependent manner. There have been many attempts to fix the non-convergence (e.g., AMSGrad), but they require an impractical assumption that the gradient noise is uniformly bounded. In this paper, we propose a new adaptive gradient method named ADOPT, which achieves the optimal convergence rate of $\mathcal{O} ( 1 / \sqrt{T} )$ with any choice of $\beta_2$ without depending on the bounded noise assumption. ADOPT addresses the non-convergence issue of Adam by removing the current gradient from the second moment estimate and changing the order of the momentum update and the normalization by the second moment estimate. We also conduct intensive numerical experiments, and verify that our ADOPT achieves superior results compared to Adam and its variants across a wide range of tasks, including image classification, generative modeling, natural language processing, and deep reinforcement learning. The implementation is available at https://github.com/iShohei220/adopt.
comment: Accepted at Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ S-MolSearch: 3D Semi-supervised Contrastive Learning for Bioactive Molecule Search
Virtual Screening is an essential technique in the early phases of drug discovery, aimed at identifying promising drug candidates from vast molecular libraries. Recently, ligand-based virtual screening has garnered significant attention due to its efficacy in conducting extensive database screenings without relying on specific protein-binding site information. Obtaining binding affinity data for complexes is highly expensive, resulting in a limited amount of available data that covers a relatively small chemical space. Moreover, these datasets contain a significant amount of inconsistent noise. It is challenging to identify an inductive bias that consistently maintains the integrity of molecular activity during data augmentation. To tackle these challenges, we propose S-MolSearch, the first framework to our knowledge, that leverages molecular 3D information and affinity information in semi-supervised contrastive learning for ligand-based virtual screening. Drawing on the principles of inverse optimal transport, S-MolSearch efficiently processes both labeled and unlabeled data, training molecular structural encoders while generating soft labels for the unlabeled data. This design allows S-MolSearch to adaptively utilize unlabeled data within the learning process. Empirically, S-MolSearch demonstrates superior performance on widely-used benchmarks LIT-PCBA and DUD-E. It surpasses both structure-based and ligand-based virtual screening methods for AUROC, BEDROC and EF.
♻ ☆ IC3M: In-Car Multimodal Multi-object Monitoring for Abnormal Status of Both Driver and Passengers
Recently, in-car monitoring has emerged as a promising technology for detecting early-stage abnormal status of the driver and providing timely alerts to prevent traffic accidents. Although training models with multimodal data enhances the reliability of abnormal status detection, the scarcity of labeled data and the imbalance of class distribution impede the extraction of critical abnormal state features, significantly deteriorating training performance. Furthermore, missing modalities due to environment and hardware limitations further exacerbate the challenge of abnormal status identification. More importantly, monitoring abnormal health conditions of passengers, particularly in elderly care, is of paramount importance but remains underexplored. To address these challenges, we introduce our IC3M, an efficient camera-rotation-based multimodal framework for monitoring both driver and passengers in a car. Our IC3M comprises two key modules: an adaptive threshold pseudo-labeling strategy and a missing modality reconstruction. The former customizes pseudo-labeling thresholds for different classes based on the class distribution, generating class-balanced pseudo labels to guide model training effectively, while the latter leverages crossmodality relationships learned from limited labels to accurately recover missing modalities by distribution transferring from available modalities. Extensive experimental results demonstrate that IC3M outperforms state-of-the-art benchmarks in accuracy, precision, and recall while exhibiting superior robustness under limited labeled data and severe missing modality.
comment: 16 pages, 17 figures
♻ ☆ Towards Understanding Adversarial Transferability in Federated Learning
We investigate a specific security risk in FL: a group of malicious clients has impacted the model during training by disguising their identities and acting as benign clients but later switching to an adversarial role. They use their data, which was part of the training set, to train a substitute model and conduct transferable adversarial attacks against the federated model. This type of attack is subtle and hard to detect because these clients initially appear to be benign. The key question we address is: How robust is the FL system to such covert attacks, especially compared to traditional centralized learning systems? We empirically show that the proposed attack imposes a high security risk to current FL systems. By using only 3\% of the client's data, we achieve the highest attack rate of over 80\%. To further offer a full understanding of the challenges the FL system faces in transferable attacks, we provide a comprehensive analysis over the transfer robustness of FL across a spectrum of configurations. Surprisingly, FL systems show a higher level of robustness than their centralized counterparts, especially when both systems are equally good at handling regular, non-malicious data. We attribute this increased robustness to two main factors: 1) Decentralized Data Training: Each client trains the model on its own data, reducing the overall impact of any single malicious client. 2) Model Update Averaging: The updates from each client are averaged together, further diluting any malicious alterations. Both practical experiments and theoretical analysis support our conclusions. This research not only sheds light on the resilience of FL systems against hidden attacks but also raises important considerations for their future application and development.
comment: Published in Transactions on Machine Learning Research (TMLR) (11/2024)
♻ ☆ BiT-MamSleep: Bidirectional Temporal Mamba for EEG Sleep Staging
In this paper, we address the challenges in automatic sleep stage classification, particularly the high computational cost, inadequate modeling of bidirectional temporal dependencies, and class imbalance issues faced by Transformer-based models. To address these limitations, we propose BiT-MamSleep, a novel architecture that integrates the Triple-Resolution CNN (TRCNN) for efficient multi-scale feature extraction with the Bidirectional Mamba (BiMamba) mechanism, which models both short- and long-term temporal dependencies through bidirectional processing of EEG data. Additionally, BiT-MamSleep incorporates an Adaptive Feature Recalibration (AFR) module and a temporal enhancement block to dynamically refine feature importance, optimizing classification accuracy without increasing computational complexity. To further improve robustness, we apply optimization techniques such as Focal Loss and SMOTE to mitigate class imbalance. Extensive experiments on four public datasets demonstrate that BiT-MamSleep significantly outperforms state-of-the-art methods, particularly in handling long EEG sequences and addressing class imbalance, leading to more accurate and scalable sleep stage classification.
♻ ☆ SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework
Traditional federated learning (FL) frameworks rely heavily on terrestrial networks, where coverage limitations and increasing bandwidth congestion significantly hinder model convergence. Fortunately, the advancement of low-Earth orbit (LEO) satellite networks offers promising new communication avenues to augment traditional terrestrial FL. Despite this potential, the limited satellite-ground communication bandwidth and the heterogeneous operating environments of ground devices-including variations in data, bandwidth, and computing power-pose substantial challenges for effective and robust satellite-assisted FL. To address these challenges, we propose SatFed, a resource-efficient satellite-assisted heterogeneous FL framework. SatFed implements freshness-based model prioritization queues to optimize the use of highly constrained satellite-ground bandwidth, ensuring the transmission of the most critical models. Additionally, a multigraph is constructed to capture real-time heterogeneous relationships between devices, including data distribution, terrestrial bandwidth, and computing capability. This multigraph enables SatFed to aggregate satellite-transmitted models into peer guidance, enhancing local training in heterogeneous environments. Extensive experiments with real-world LEO satellite networks demonstrate that SatFed achieves superior performance and robustness compared to state-of-the-art benchmarks.
comment: 10 pages, 12 figures
♻ ☆ Heterogeneity-Aware Cooperative Federated Edge Learning with Adaptive Computation and Communication Compression
Motivated by the drawbacks of cloud-based federated learning (FL), cooperative federated edge learning (CFEL) has been proposed to improve efficiency for FL over mobile edge networks, where multiple edge servers collaboratively coordinate the distributed model training across a large number of edge devices. However, CFEL faces critical challenges arising from dynamic and heterogeneous device properties, which slow down the convergence and increase resource consumption. This paper proposes a heterogeneity-aware CFEL scheme called \textit{Heterogeneity-Aware Cooperative Edge-based Federated Averaging} (HCEF) that aims to maximize the model accuracy while minimizing the training time and energy consumption via adaptive computation and communication compression in CFEL. By theoretically analyzing how local update frequency and gradient compression affect the convergence error bound in CFEL, we develop an efficient online control algorithm for HCEF to dynamically determine local update frequencies and compression ratios for heterogeneous devices. Experimental results show that compared with prior schemes, the proposed HCEF scheme can maintain higher model accuracy while reducing training latency and improving energy efficiency simultaneously.
comment: 20 pages, 8 figures, accepted by IEEE Transactions on Mobile Computing
♻ ☆ t-READi: Transformer-Powered Robust and Efficient Multimodal Inference for Autonomous Driving
Given the wide adoption of multimodal sensors (e.g., camera, lidar, radar) by autonomous vehicles (AVs), deep analytics to fuse their outputs for a robust perception become imperative. However, existing fusion methods often make two assumptions rarely holding in practice: i) similar data distributions for all inputs and ii) constant availability for all sensors. Because, for example, lidars have various resolutions and failures of radars may occur, such variability often results in significant performance degradation in fusion. To this end, we present tREADi, an adaptive inference system that accommodates the variability of multimodal sensory data and thus enables robust and efficient perception. t-READi identifies variation-sensitive yet structure-specific model parameters; it then adapts only these parameters while keeping the rest intact. t-READi also leverages a cross-modality contrastive learning method to compensate for the loss from missing modalities. Both functions are implemented to maintain compatibility with existing multimodal deep fusion methods. The extensive experiments evidently demonstrate that compared with the status quo approaches, t-READi not only improves the average inference accuracy by more than 6% but also reduces the inference latency by almost 15x with the cost of only 5% extra memory overhead in the worst case under realistic data and modal variations.
comment: 14 pages, 16 figures
♻ ☆ Brain-Inspired Efficient Pruning: Exploiting Criticality in Spiking Neural Networks
Spiking Neural Networks (SNNs) have gained significant attention due to the energy-efficient and multiplication-free characteristics. Despite these advantages, deploying large-scale SNNs on edge hardware is challenging due to limited resource availability. Network pruning offers a viable approach to compress the network scale and reduce hardware resource requirements for model deployment. However, existing SNN pruning methods cause high pruning costs and performance loss because they lack efficiency in processing the sparse spike representation of SNNs. In this paper, inspired by the critical brain hypothesis in neuroscience and the high biological plausibility of SNNs, we explore and leverage criticality to facilitate efficient pruning in deep SNNs. We firstly explain criticality in SNNs from the perspective of maximizing feature information entropy. Second, We propose a low-cost metric for assess neuron criticality in feature transmission and design a pruning-regeneration method that incorporates this criticality into the pruning process. Experimental results demonstrate that our method achieves higher performance than the current state-of-the-art (SOTA) method with up to 95.26\% reduction of pruning cost. The criticality-based regeneration process efficiently selects potential structures and facilitates consistent feature representation.
♻ ☆ Toward a Well-Calibrated Discrimination via Survival Outcome-Aware Contrastive Learning NeurIPS 2024
Previous deep learning approaches for survival analysis have primarily relied on ranking losses to improve discrimination performance, which often comes at the expense of calibration performance. To address such an issue, we propose a novel contrastive learning approach specifically designed to enhance discrimination \textit{without} sacrificing calibration. Our method employs weighted sampling within a contrastive learning framework, assigning lower penalties to samples with similar survival outcomes. This aligns well with the assumption that patients with similar event times share similar clinical statuses. Consequently, when augmented with the commonly used negative log-likelihood loss, our approach significantly improves discrimination performance without directly manipulating the model outputs, thereby achieving better calibration. Experiments on multiple real-world clinical datasets demonstrate that our method outperforms state-of-the-art deep survival models in both discrimination and calibration. Through comprehensive ablation studies, we further validate the effectiveness of our approach through quantitative and qualitative analyses.
comment: Accepted at NeurIPS 2024
♻ ☆ A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems
Since the creation of the Web, recommender systems (RSs) have been an indispensable mechanism in information filtering. State-of-the-art RSs primarily depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables. To prevent over-parameterized embedding tables from harming scalability, both academia and industry have seen increasing efforts in compressing RS embeddings. However, despite the prosperity of lightweight embedding-based RSs (LERSs), a wide diversity is seen in evaluation protocols, resulting in obstacles when relating LERS performance to real-world usability. Moreover, despite the common goal of lightweight embeddings, LERSs are evaluated with a single choice between the two main recommendation tasks -- collaborative filtering and content-based recommendation. This lack of discussions on cross-task transferability hinders the development of unified, more scalable solutions. Motivated by these issues, this study investigates various LERSs' performance, efficiency, and cross-task transferability via a thorough benchmarking process. Additionally, we propose an efficient embedding compression method using magnitude pruning, which is an easy-to-deploy yet highly competitive baseline that outperforms various complex LERSs. Our study reveals the distinct performance of LERSs across the two tasks, shedding light on their effectiveness and generalizability. To support edge-based recommendations, we tested all LERSs on a Raspberry Pi 4, where the efficiency bottleneck is exposed. Finally, we conclude this paper with critical summaries of LERS performance, model selection suggestions, and underexplored challenges around LERSs for future research. To encourage future research, we publish source codes and artifacts at \href{this link}{https://github.com/chenxing1999/recsys-benchmark}.
♻ ☆ SPDIM: Source-Free Unsupervised Conditional and Label Shift Adaptation in EEG
The non-stationary nature of electroencephalography (EEG) introduces distribution shifts across domains (e.g., days and subjects), posing a significant challenge to EEG-based neurotechnology generalization. Without labeled calibration data for target domains, the problem is a source-free unsupervised domain adaptation (SFUDA) problem. For scenarios with constant label distribution, Riemannian geometry-aware statistical alignment frameworks on the symmetric positive definite (SPD) manifold are considered state-of-the-art. However, many practical scenarios, including EEG-based sleep staging, exhibit label shifts. Here, we propose a geometric deep learning framework for SFUDA problems under specific distribution shifts, including label shifts. We introduce a novel, realistic generative model and show that prior Riemannian statistical alignment methods on the SPD manifold can compensate for specific marginal and conditional distribution shifts but hurt generalization under label shifts. As a remedy, we propose a parameter-efficient manifold optimization strategy termed SPDIM. SPDIM uses the information maximization principle to learn a single SPD-manifold-constrained parameter per target domain. In simulations, we demonstrate that SPDIM can compensate for the shifts under our generative model. Moreover, using public EEG-based brain-computer interface and sleep staging datasets, we show that SPDIM outperforms prior approaches.
♻ ☆ Instruction-Guided Editing Controls for Images and Multimedia: A Survey in LLM era
The rapid advancement of large language models (LLMs) and multimodal learning has transformed digital content creation and manipulation. Traditional visual editing tools require significant expertise, limiting accessibility. Recent strides in instruction-based editing have enabled intuitive interaction with visual content, using natural language as a bridge between user intent and complex editing operations. This survey provides an overview of these techniques, focusing on how LLMs and multimodal models empower users to achieve precise visual modifications without deep technical knowledge. By synthesizing over 100 publications, we explore methods from generative adversarial networks to diffusion models, examining multimodal integration for fine-grained content control. We discuss practical applications across domains such as fashion, 3D scene manipulation, and video synthesis, highlighting increased accessibility and alignment with human intuition. Our survey compares existing literature, emphasizing LLM-empowered editing, and identifies key challenges to stimulate further research. We aim to democratize powerful visual editing across various industries, from entertainment to education. Interested readers are encouraged to access our repository at https://github.com/tamlhp/awesome-instruction-editing.
comment: Fixed a serious error in author information
♻ ☆ Graph Knowledge Distillation to Mixture of Experts
In terms of accuracy, Graph Neural Networks (GNNs) are the best architectural choice for the node classification task. Their drawback in real-world deployment is the latency that emerges from the neighbourhood processing operation. One solution to the latency issue is to perform knowledge distillation from a trained GNN to a Multi-Layer Perceptron (MLP), where the MLP processes only the features of the node being classified (and possibly some pre-computed structural information). However, the performance of such MLPs in both transductive and inductive settings remains inconsistent for existing knowledge distillation techniques. We propose to address the performance concerns by using a specially-designed student model instead of an MLP. Our model, named Routing-by-Memory (RbM), is a form of Mixture-of-Experts (MoE), with a design that enforces expert specialization. By encouraging each expert to specialize on a certain region on the hidden representation space, we demonstrate experimentally that it is possible to derive considerably more consistent performance across multiple datasets. Code available at https://github.com/Rufaim/routing-by-memory.
♻ ☆ Transfer Learning on Transformers for Building Energy Consumption Forecasting -- A Comparative Study
This study investigates the application of Transfer Learning (TL) on Transformer architectures to enhance building energy consumption forecasting. Transformers are a relatively new deep learning architecture, which has served as the foundation for groundbreaking technologies such as ChatGPT. While TL has been studied in the past, prior studies considered either one data-centric TL strategy or used older deep learning models such as Recurrent Neural Networks or Convolutional Neural Networks. Here, we carry out an extensive empirical study on six different data-centric TL strategies and analyse their performance under varying feature spaces. In addition to the vanilla Transformer architecture, we also experiment with Informer and PatchTST, specifically designed for time series forecasting. We use 16 datasets from the Building Data Genome Project 2 to create building energy consumption forecasting models. Experimental results reveal that while TL is generally beneficial, especially when the target domain has no data, careful selection of the exact TL strategy should be made to gain the maximum benefit. This decision largely depends on the feature space properties such as the recorded weather features. We also note that PatchTST outperforms the other two Transformer variants (vanilla Transformer and Informer). Our findings advance the building energy consumption forecasting using advanced approaches like TL and Transformer architectures.
♻ ☆ Distribution Learning and Its Application in Deep Learning
This paper introduces a novel theoretical learning framework, termed probability distribution learning (PD learning). Departing from the traditional statistical learning framework, PD learning focuses on learning the underlying probability distribution, which is modeled as a random variable within the probability simplex. Within this framework, the optimization objective is learning error, which quantifies the posterior expected discrepancy between the model's predicted distribution and the underlying true distribution, given available sample data and prior knowledge. To optimize the learning error, this paper proposes the necessary conditions for loss functions, models, and optimization algorithms, ensuring that these conditions are all satisfied in real-world machine learning scenarios. Based on these conditions, the non-convex optimization mechanism corresponding to model training can be theoretically resolved. Moreover, the paper provides both model-dependent and model-independent bounds on learning error, offering new insights into the model's fitting ability and generalization capabilities. Furthermore, the paper applies the PD learning framework to elucidate the mechanisms by which various techniques, including random parameter initialization, over-parameterization, and dropout, influence deep model training. Finally, the paper substantiates the key conclusions of the proposed framework through experimental results.
comment: arXiv admin note: text overlap with arXiv:2105.04026 by other authors. arXiv admin note: text overlap with arXiv:2105.04026 by other authors
♻ ☆ A Closer Look at Machine Unlearning for Large Language Models
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns. Due to the high cost of retraining from scratch, researchers attempt to employ machine unlearning to remove specific content from LLMs while preserving the overall performance. In this paper, we discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches. To address the issue of inadequate evaluation of model outputs after unlearning, we introduce three additional metrics to evaluate token diversity, sentence semantics, and factual correctness. We then categorize unlearning methods into untargeted and targeted, and discuss their issues respectively. Specifically, the behavior that untargeted unlearning attempts to approximate is unpredictable and may involve hallucinations, and existing regularization is insufficient for targeted unlearning. To alleviate these issues, we propose using the objective of maximizing entropy (ME) for untargeted unlearning and incorporate answer preservation (AP) loss as regularization for targeted unlearning. Experimental results across three scenarios, i.e., fictitious unlearning, continual unlearning, and real-world unlearning, demonstrate the effectiveness of our approaches. The code is available at https://github.com/sail-sg/closer-look-LLM-unlearning.
♻ ☆ Generation through the lens of learning theory
We study generation through the lens of statistical learning theory. First, we abstract and formalize the results of Gold [1967], Angluin [1979], Angluin [1980] and Kleinberg and Mullainathan [2024] in terms of a binary hypothesis class defined over an abstract example space. Then, we extend the notion of "generation" from Kleinberg and Mullainathan [2024] to two new settings, we call "uniform" and "non-uniform" generation, and provide a characterization of which hypothesis classes are uniformly and non-uniformly generatable. As is standard in learning theory, our characterizations are in terms of the finiteness of a new combinatorial dimension termed the Closure dimension. By doing so, we are able to compare generatability with predictability (captured via PAC and online learnability) and show that these two properties of hypothesis classes are incompatible -- there are classes that are generatable but not predictable and vice versa. Finally, we extend our results to capture prompted generation and give a complete characterization of which classes are prompt generatable, generalizing some of the work by Kleinberg and Mullainathan [2024].
comment: 28 pages, 2 figures
♻ ☆ Multi-Objective Optimization via Wasserstein-Fisher-Rao Gradient Flow
Multi-objective optimization (MOO) aims to optimize multiple, possibly conflicting objectives with widespread applications. We introduce a novel interacting particle method for MOO inspired by molecular dynamics simulations. Our approach combines overdamped Langevin and birth-death dynamics, incorporating a "dominance potential" to steer particles toward global Pareto optimality. In contrast to previous methods, our method is able to relocate dominated particles, making it particularly adept at managing Pareto fronts of complicated geometries. Our method is also theoretically grounded as a Wasserstein-Fisher-Rao gradient flow with convergence guarantees. Extensive experiments confirm that our approach outperforms state-of-the-art methods on challenging synthetic and real-world datasets.
♻ ☆ Risk-Sensitive Reinforcement Learning with Exponential Criteria
While reinforcement learning has shown experimental success in a number of applications, it is known to be sensitive to noise and perturbations in the parameters of the system, leading to high variance in the total reward amongst different episodes in slightly different environments. To introduce robustness, as well as sample efficiency, risk-sensitive reinforcement learning methods are being thoroughly studied. In this work, we provide a definition of robust reinforcement learning policies and formulate a risk-sensitive reinforcement learning problem to approximate them, by solving an optimization problem with respect to a modified objective based on exponential criteria. In particular, we study a model-free risk-sensitive variation of the widely-used Monte Carlo Policy Gradient algorithm and introduce a novel risk-sensitive online Actor-Critic algorithm based on solving a multiplicative Bellman equation using stochastic approximation updates. Analytical results suggest that the use of exponential criteria generalizes commonly used ad-hoc regularization approaches, improves sample efficiency, and introduces robustness with respect to perturbations in the model parameters and the environment. The implementation, performance, and robustness properties of the proposed methods are evaluated in simulated experiments.
♻ ☆ WaveRoRA: Wavelet Rotary Route Attention for Multivariate Time Series Forecasting
In recent years, Transformer-based models (Transformers) have achieved significant success in multivariate time series forecasting (MTSF). However, previous works focus on extracting features either from the time domain or the frequency domain, which inadequately captures the trends and periodic characteristics. To address this issue, we propose a wavelet learning framework to model complex temporal dependencies of the time series data. The wavelet domain integrates both time and frequency information, allowing for the analysis of local characteristics of signals at different scales. Additionally, the Softmax self-attention mechanism used by Transformers has quadratic complexity, which leads to excessive computational costs when capturing long-term dependencies. Therefore, we propose a novel attention mechanism: Rotary Route Attention (RoRA). Unlike Softmax attention, RoRA utilizes rotary position embeddings to inject relative positional information to sequence tokens and introduces a small number of routing tokens $r$ to aggregate information from the $KV$ matrices and redistribute it to the $Q$ matrix, offering linear complexity. We further propose WaveRoRA, which leverages RoRA to capture inter-series dependencies in the wavelet domain. We conduct extensive experiments on eight real-world datasets. The results indicate that WaveRoRA outperforms existing state-of-the-art models while maintaining lower computational costs. Our code is available at https://github.com/Leopold2333/WaveRoRA.
comment: Model architecture changed
♻ ☆ HumanVid: Demystifying Training Data for Camera-controllable Human Image Animation NeurIPS
Human image animation involves generating videos from a character photo, allowing user control and unlocking the potential for video and movie production. While recent approaches yield impressive results using high-quality training data, the inaccessibility of these datasets hampers fair and transparent benchmarking. Moreover, these approaches prioritize 2D human motion and overlook the significance of camera motions in videos, leading to limited control and unstable video generation. To demystify the training data, we present HumanVid, the first large-scale high-quality dataset tailored for human image animation, which combines crafted real-world and synthetic data. For the real-world data, we compile a vast collection of real-world videos from the internet. We developed and applied careful filtering rules to ensure video quality, resulting in a curated collection of 20K high-resolution (1080P) human-centric videos. Human and camera motion annotation is accomplished using a 2D pose estimator and a SLAM-based method. To expand our synthetic dataset, we collected 10K 3D avatar assets and leveraged existing assets of body shapes, skin textures and clothings. Notably, we introduce a rule-based camera trajectory generation method, enabling the synthetic pipeline to incorporate diverse and precise camera motion annotation, which can rarely be found in real-world data. To verify the effectiveness of HumanVid, we establish a baseline model named CamAnimate, short for Camera-controllable Human Animation, that considers both human and camera motions as conditions. Through extensive experimentation, we demonstrate that such simple baseline training on our HumanVid achieves state-of-the-art performance in controlling both human pose and camera motions, setting a new benchmark. Demo, data and code could be found in the project website: https://humanvid.github.io/.
comment: NeurIPS D&B Track 2024 camera ready version, TL;DR: the first large-scale dataset for camera controllable human image animation task, and a baseline method
♻ ☆ Data-driven discovery of self-similarity using neural networks
Finding self-similarity is a key step for understanding the governing law behind complex physical phenomena. Traditional methods for identifying self-similarity often rely on specific models, which can introduce significant bias. In this paper, we present a novel neural network-based approach that discovers self-similarity directly from observed data, without presupposing any models. The presence of self-similar solutions in a physical problem signals that the governing law contains a function whose arguments are given by power-law monomials of physical parameters, which are characterized by power-law exponents. The basic idea is to enforce such particular forms structurally in a neural network in a parametrized way. We train the neural network model using the observed data, and when the training is successful, we can extract the power exponents that characterize scale-transformation symmetries of the physical problem. We demonstrate the effectiveness of our method with both synthetic and experimental data, validating its potential as a robust, model-independent tool for exploring self-similarity in complex systems.
comment: 21 pages, 18 figures, 5 tables
♻ ☆ On the Trustworthiness Landscape of State-of-the-art Generative Models: A Survey and Outlook
Diffusion models and large language models have emerged as leading-edge generative models, revolutionizing various aspects of human life. However, the practical implementations of these models have also exposed inherent risks, bringing to the forefront their evil sides and sparking concerns regarding their trustworthiness. Despite the wealth of literature on this subject, a comprehensive survey specifically delving into the intersection of large-scale generative models and their trustworthiness remains largely absent. To bridge this gap, this paper investigates both the long-standing and emerging threats associated with these models across four fundamental dimensions: 1) privacy, 2) security, 3) fairness, and 4) responsibility. Based on the investigation results, we develop an extensive map outlining the trustworthiness of large generative models. After that, we provide practical recommendations and potential research directions for future secure applications equipped with large generative models, ultimately promoting the trustworthiness of the models and benefiting the society as a whole.
comment: draft
♻ ☆ Decision-Focused Model-based Reinforcement Learning for Reward Transfer
Model-based reinforcement learning (MBRL) provides a way to learn a transition model of the environment, which can then be used to plan personalized policies for different patient cohorts and to understand the dynamics involved in the decision-making process. However, standard MBRL algorithms are either sensitive to changes in the reward function or achieve suboptimal performance on the task when the transition model is restricted. Motivated by the need to use simple and interpretable models in critical domains such as healthcare, we propose a novel robust decision-focused (RDF) algorithm that learns a transition model that achieves high returns while being robust to changes in the reward function. We demonstrate our RDF algorithm can be used with several model classes and planning algorithms. We also provide theoretical and empirical evidence, on a variety of simulators and real patient data, that RDF can learn simple yet effective models that can be used to plan personalized policies.
comment: Machine Learning for Healthcare (MLHC) 2024
♻ ☆ On the Use of Relative Validity Indices for Comparing Clustering Approaches
Relative Validity Indices (RVIs) such as the Silhouette Width Criterion and Davies Bouldin indices are the most widely used tools for evaluating and optimising clustering outcomes. Traditionally, their ability to rank collections of candidate dataset partitions has been used to guide the selection of the number of clusters, and to compare partitions from different clustering algorithms. However, there is a growing trend in the literature to use RVIs when selecting a Similarity Paradigm (SP) for clustering - the combination of normalisation procedure, representation method, and distance measure which affects the computation of object dissimilarities used in clustering. Despite the growing prevalence of this practice, there has been no empirical or theoretical investigation into the suitability of RVIs for this purpose. Moreover, since RVIs are computed using object dissimilarities, it remains unclear how they would need to be implemented for fair comparisons of different SPs. This study presents the first comprehensive investigation into the reliability of RVIs for SP selection. We conducted extensive experiments with seven popular RVIs on over 2.7 million clustering partitions of synthetic and real-world datasets, encompassing feature-vector and time-series data. We identified fundamental conceptual limitations undermining the use of RVIs for SP selection, and our empirical findings confirmed this predicted unsuitability. Among our recommendations, we suggest instead that practitioners select SPs by using external validation on high quality labelled datasets or carefully designed outcome-oriented objective criteria, both of which should be informed by careful consideration of dataset characteristics, and domain requirements. Our findings have important implications for clustering methodology and evaluation, suggesting the need for more rigorous approaches to SP selection.
♻ ☆ Language Models as Hierarchy Encoders NeurIPS 2024
Interpreting hierarchical structures latent in language is a key limitation of current language models (LMs). While previous research has implicitly leveraged these hierarchies to enhance LMs, approaches for their explicit encoding are yet to be explored. To address this, we introduce a novel approach to re-train transformer encoder-based LMs as Hierarchy Transformer encoders (HiTs), harnessing the expansive nature of hyperbolic space. Our method situates the output embedding space of pre-trained LMs within a Poincar\'e ball with a curvature that adapts to the embedding dimension, followed by training on hyperbolic clustering and centripetal losses. These losses are designed to effectively cluster related entities (input as texts) and organise them hierarchically. We evaluate HiTs against pre-trained LMs, standard fine-tuned LMs, and several hyperbolic embedding baselines, focusing on their capabilities in simulating transitive inference, predicting subsumptions, and transferring knowledge across hierarchies. The results demonstrate that HiTs consistently outperform all baselines in these tasks, underscoring the effectiveness and transferability of our re-trained hierarchy encoders.
comment: Accept at NeurIPS 2024
Multimedia 8
☆ HARP: A Large-Scale Higher-Order Ambisonic Room Impulse Response Dataset ICASSP 2025
This contribution introduces a dataset of 7th-order Ambisonic Room Impulse Responses (HOA-RIRs), created using the Image Source Method. By employing higher-order Ambisonics, our dataset enables precise spatial audio reproduction, a critical requirement for realistic immersive audio applications. Leveraging the virtual simulation, we present a unique microphone configuration, based on the superposition principle, designed to optimize sound field coverage while addressing the limitations of traditional microphone arrays. The presented 64-microphone configuration allows us to capture RIRs directly in the Spherical Harmonics domain. The dataset features a wide range of room configurations, encompassing variations in room geometry, acoustic absorption materials, and source-receiver distances. A detailed description of the simulation setup is provided alongside for an accurate reproduction. The dataset serves as a vital resource for researchers working on spatial audio, particularly in applications involving machine learning to improve room acoustics modeling and sound field synthesis. It further provides a very high level of spatial resolution and realism crucial for tasks such as source localization, reverberation prediction, and immersive sound reproduction.
comment: Submitted to ICASSP 2025 Workshop Dataset and code to be uploaded at: https://github.com/whojavumusic/HARP
☆ Compact Visual Data Representation for Green Multimedia -- A Human Visual System Perspective
The Human Visual System (HVS), with its intricate sophistication, is capable of achieving ultra-compact information compression for visual signals. This remarkable ability is coupled with high generalization capability and energy efficiency. By contrast, the state-of-the-art Versatile Video Coding (VVC) standard achieves a compression ratio of around 1,000 times for raw visual data. This notable disparity motivates the research community to draw inspiration to effectively handle the immense volume of visual data in a green way. Therefore, this paper provides a survey of how visual data can be efficiently represented for green multimedia, in particular when the ultimate task is knowledge extraction instead of visual signal reconstruction. We introduce recent research efforts that promote green, sustainable, and efficient multimedia in this field. Moreover, we discuss how the deep understanding of the HVS can benefit the research community, and envision the development of future green multimedia technologies.
☆ SpikEmo: Enhancing Emotion Recognition With Spiking Temporal Dynamics in Conversations
In affective computing, the task of Emotion Recognition in Conversations (ERC) has emerged as a focal area of research. The primary objective of this task is to predict emotional states within conversations by analyzing multimodal data including text, audio, and video. While existing studies have progressed in extracting and fusing representations from multimodal data, they often overlook the temporal dynamics in the data during conversations. To address this challenge, we have developed the SpikEmo framework, which is based on spiking neurons and employs a Semantic & Dynamic Two-stage Modeling approach to more precisely capture the complex temporal features of multimodal emotional data. Additionally, to tackle the class imbalance and emotional semantic similarity problems in the ERC tasks, we have devised an innovative combination of loss functions that significantly enhances the model's performance when dealing with ERC data characterized by long-tail distributions. Extensive experiments conducted on multiple ERC benchmark datasets demonstrate that SpikEmo significantly outperforms existing state-of-the-art methods in ERC tasks. Our code is available at https://github.com/Yu-xm/SpikEmo.git.
☆ Robust Steganography with Boundary-Preserving Overflow Alleviation and Adaptive Error Correction
With the rapid evolution of the Internet, the vast amount of data has created opportunities for fostering the development of steganographic techniques. However, traditional steganographic techniques encounter challenges due to distortions in online social networks, such as JPEG recompression. Presently, research into the lossy operations of spatial truncation in JPEG recompression remains limited. Existing methods aim to ensure the stability of the quantized coefficients by reducing the effects of spatial truncation. Nevertheless, these approaches may induce notable alterations to image pixels, potentially compromising anti-steganalysis performance. In this study, we analyzed the overflow characteristics of spatial blocks and observed that pixel values at the boundaries of spatial blocks are more prone to overflow. Building upon this observation, we proposed a preprocessing method that performs overflow removal operations based on the actual overflow conditions of spatial blocks. After preprocessing, our algorithm enhances coefficient stability while minimizing modifications to spatial block boundaries, favoring image quality preservation. Subsequently, we employed adaptive error correction coding to reduce coding redundancy, thereby augmenting robustness and mitigating its impact on anti-steganalysis performance. The experimental results indicate that the proposed method possesses a strong embedding capacity, maintaining a high level of robustness while enhancing security.
☆ X-CrossNet: A complex spectral mapping approach to target speaker extraction with cross attention speaker embedding fusion
Target speaker extraction (TSE) is a technique for isolating a target speaker's voice from mixed speech using auxiliary features associated with the target speaker. This approach addresses the cocktail party problem and is generally considered more promising for practical applications than conventional speech separation methods. Although academic research in this area has achieved high accuracy and evaluation scores on public datasets, most models exhibit significantly reduced performance in real-world noisy or reverberant conditions. To address this limitation, we propose a novel TSE model, X-CrossNet, which leverages CrossNet as its backbone. CrossNet is a speech separation network specifically optimized for challenging noisy and reverberant environments, achieving state-of-the-art performance in tasks such as speaker separation under these conditions. Additionally, to enhance the network's ability to capture and utilize auxiliary features of the target speaker, we integrate a Cross-Attention mechanism into the global multi-head self-attention (GMHSA) module within each CrossNet block. This facilitates more effective integration of target speaker features with mixed speech features. Experimental results show that our method performs superior separation on the WSJ0-2mix and WHAMR! datasets, demonstrating strong robustness and stability.
☆ Generative AI for Music and Audio
Generative AI has been transforming the way we interact with technology and consume content. In the next decade, AI technology will reshape how we create audio content in various media, including music, theater, films, games, podcasts, and short videos. In this dissertation, I introduce the three main directions of my research centered around generative AI for music and audio: 1) multitrack music generation, 2) assistive music creation tools, and 3) multimodal learning for audio and music. Through my research, I aim to answer the following two fundamental questions: 1) How can AI help professionals or amateurs create music and audio content? 2) Can AI learn to create music in a way similar to how humans learn music? My long-term goal is to lower the barrier of entry for music composition and democratize audio content creation
comment: PhD Dissertation
☆ Optimal Transcoding Preset Selection for Live Video Streaming
In today's digital landscape, video content dominates internet traffic, underscoring the need for efficient video processing to support seamless live streaming experiences on platforms like YouTube Live, Twitch, and Facebook Live. This paper introduces a comprehensive framework designed to optimize video transcoding parameters, with a specific focus on preset and bitrate selection to minimize distortion while respecting constraints on bitrate and transcoding time. The framework comprises three main steps: feature extraction, prediction, and optimization. It leverages extracted features to predict transcoding time and rate-distortion, employing both supervised and unsupervised methods. By utilizing integer linear programming, it identifies the optimal sequence of presets and bitrates for video segments, ensuring real-time application feasibility under set constraints. The results demonstrate the framework's effectiveness in enhancing video quality for live streaming, maintaining high standards of video delivery while managing computational resources efficiently. This optimization approach meets the evolving demands of video delivery by offering a solution for real-time transcoding optimization. Evaluation using the User Generated Content dataset showed an average PSNR improvement of 1.5 dB over the default Twitch configuration, highlighting significant PSNR gains. Additionally, subsequent experiments demonstrated a BD-rate reduction of -49.60%, reinforcing the framework's superior performance over Twitch's default configuration.
comment: 23 pages, 10 figures
♻ ☆ Instruction-Guided Editing Controls for Images and Multimedia: A Survey in LLM era
The rapid advancement of large language models (LLMs) and multimodal learning has transformed digital content creation and manipulation. Traditional visual editing tools require significant expertise, limiting accessibility. Recent strides in instruction-based editing have enabled intuitive interaction with visual content, using natural language as a bridge between user intent and complex editing operations. This survey provides an overview of these techniques, focusing on how LLMs and multimodal models empower users to achieve precise visual modifications without deep technical knowledge. By synthesizing over 100 publications, we explore methods from generative adversarial networks to diffusion models, examining multimodal integration for fine-grained content control. We discuss practical applications across domains such as fashion, 3D scene manipulation, and video synthesis, highlighting increased accessibility and alignment with human intuition. Our survey compares existing literature, emphasizing LLM-empowered editing, and identifies key challenges to stimulate further research. We aim to democratize powerful visual editing across various industries, from entertainment to education. Interested readers are encouraged to access our repository at https://github.com/tamlhp/awesome-instruction-editing.
comment: Fixed a serious error in author information
Artificial Intelligent 209
☆ Revisiting the Integration of Convolution and Attention for Vision Backbone NeurIPS 2024
Convolutions (Convs) and multi-head self-attentions (MHSAs) are typically considered alternatives to each other for building vision backbones. Although some works try to integrate both, they apply the two operators simultaneously at the finest pixel granularity. With Convs responsible for per-pixel feature extraction already, the question is whether we still need to include the heavy MHSAs at such a fine-grained level. In fact, this is the root cause of the scalability issue w.r.t. the input resolution for vision transformers. To address this important problem, we propose in this work to use MSHAs and Convs in parallel \textbf{at different granularity levels} instead. Specifically, in each layer, we use two different ways to represent an image: a fine-grained regular grid and a coarse-grained set of semantic slots. We apply different operations to these two representations: Convs to the grid for local features, and MHSAs to the slots for global features. A pair of fully differentiable soft clustering and dispatching modules is introduced to bridge the grid and set representations, thus enabling local-global fusion. Through extensive experiments on various vision tasks, we empirically verify the potential of the proposed integration scheme, named \textit{GLMix}: by offloading the burden of fine-grained features to light-weight Convs, it is sufficient to use MHSAs in a few (e.g., 64) semantic slots to match the performance of recent state-of-the-art backbones, while being more efficient. Our visualization results also demonstrate that the soft clustering module produces a meaningful semantic grouping effect with only IN1k classification supervision, which may induce better interpretability and inspire new weakly-supervised semantic segmentation approaches. Code will be available at \url{https://github.com/rayleizhu/GLMix}.
comment: NeurIPS 2024
☆ Whack-a-Chip: The Futility of Hardware-Centric Export Controls
U.S. export controls on semiconductors are widely known to be permeable, with the People's Republic of China (PRC) steadily creating state-of-the-art artificial intelligence (AI) models with exfiltrated chips. This paper presents the first concrete, public evidence of how leading PRC AI labs evade and circumvent U.S. export controls. We examine how Chinese companies, notably Tencent, are not only using chips that are restricted under U.S. export controls but are also finding ways to circumvent these regulations by using software and modeling techniques that maximize less capable hardware. Specifically, we argue that Tencent's ability to power its Hunyuan-Large model with non-export controlled NVIDIA H20s exemplifies broader gains in efficiency in machine learning that have eroded the moat that the United States initially built via its existing export controls. Finally, we examine the implications of this finding for the future of the United States' export control strategy.
☆ Resolving Multiple-Dynamic Model Uncertainty in Hypothesis-Driven Belief-MDPs
When human operators of cyber-physical systems encounter surprising behavior, they often consider multiple hypotheses that might explain it. In some cases, taking information-gathering actions such as additional measurements or control inputs given to the system can help resolve uncertainty and determine the most accurate hypothesis. The task of optimizing these actions can be formulated as a belief-space Markov decision process that we call a hypothesis-driven belief MDP. Unfortunately, this problem suffers from the curse of history similar to a partially observable Markov decision process (POMDP). To plan in continuous domains, an agent needs to reason over countlessly many possible action-observation histories, each resulting in a different belief over the unknown state. The problem is exacerbated in the hypothesis-driven context because each action-observation pair spawns a different belief for each hypothesis, leading to additional branching. This paper considers the case in which each hypothesis corresponds to a different dynamic model in an underlying POMDP. We present a new belief MDP formulation that: (i) enables reasoning over multiple hypotheses, (ii) balances the goals of determining the (most likely) correct hypothesis and performing well in the underlying POMDP, and (iii) can be solved with sparse tree search.
comment: 8 pages, 4 figures, submitted to AAMAS 2025
☆ Landing Trajectory Prediction for UAS Based on Generative Adversarial Network
Models for trajectory prediction are an essential component of many advanced air mobility studies. These models help aircraft detect conflict and plan avoidance maneuvers, which is especially important in Unmanned Aircraft systems (UAS) landing management due to the congested airspace near vertiports. In this paper, we propose a landing trajectory prediction model for UAS based on Generative Adversarial Network (GAN). The GAN is a prestigious neural network that has been developed for many years. In previous research, GAN has achieved many state-of-the-art results in many generation tasks. The GAN consists of one neural network generator and a neural network discriminator. Because of the learning capacity of the neural networks, the generator is capable to understand the features of the sample trajectory. The generator takes the previous trajectory as input and outputs some random status of a flight. According to the results of the experiences, the proposed model can output more accurate predictions than the baseline method(GMR) in various datasets. To evaluate the proposed model, we also create a real UAV landing dataset that includes more than 2600 trajectories of drone control manually by real pilots.
comment: 9 pages, AIAA SCITECH 2023
☆ Using Formal Models, Safety Shields and Certified Control to Validate AI-Based Train Systems
The certification of autonomous systems is an important concern in science and industry. The KI-LOK project explores new methods for certifying and safely integrating AI components into autonomous trains. We pursued a two-layered approach: (1) ensuring the safety of the steering system by formal analysis using the B method, and (2) improving the reliability of the perception system with a runtime certificate checker. This work links both strategies within a demonstrator that runs simulations on the formal model, controlled by the real AI output and the real certificate checker. The demonstrator is integrated into the validation tool ProB. This enables runtime monitoring, runtime verification, and statistical validation of formal safety properties using a formal B model. Consequently, one can detect and analyse potential vulnerabilities and weaknesses of the AI and the certificate checker. We apply these techniques to a signal detection case study and present our findings.
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ Synthesising Robust Controllers for Robot Collectives with Recurrent Tasks: A Case Study
When designing correct-by-construction controllers for autonomous collectives, three key challenges are the task specification, the modelling, and its use at practical scale. In this paper, we focus on a simple yet useful abstraction for high-level controller synthesis for robot collectives with optimisation goals (e.g., maximum cleanliness, minimum energy consumption) and recurrence (e.g., re-establish contamination and charge thresholds) and safety (e.g., avoid full discharge, mutually exclusive room occupation) constraints. Due to technical limitations (related to scalability and using constraints in the synthesis), we simplify our graph-based setting from a stochastic two-player game into a single-player game on a partially observable Markov decision process (POMDP). Robustness against environmental uncertainty is encoded via partial observability. Linear-time correctness properties are verified separately after synthesising the POMDP strategy. We contribute at-scale guidance on POMDP modelling and controller synthesis for tasked robot collectives exemplified by the scenario of battery-driven robots responsible for cleaning public buildings with utilisation constraints.
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ RV4Chatbot: Are Chatbots Allowed to Dream of Electric Sheep?
Chatbots have become integral to various application domains, including those with safety-critical considerations. As a result, there is a pressing need for methods that ensure chatbots consistently adhere to expected, safe behaviours. In this paper, we introduce RV4Chatbot, a Runtime Verification framework designed to monitor deviations in chatbot behaviour. We formalise expected behaviours as interaction protocols between the user and the chatbot. We present the RV4Chatbot design and describe two implementations that instantiate it: RV4Rasa, for monitoring chatbots created with the Rasa framework, and RV4Dialogflow, for monitoring Dialogflow chatbots. Additionally, we detail experiments conducted in a factory automation scenario using both RV4Rasa and RV4Dialogflow.
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ ROSMonitoring 2.0: Extending ROS Runtime Verification to Services and Ordered Topics
Formal verification of robotic applications presents challenges due to their hybrid nature and distributed architecture. This paper introduces ROSMonitoring 2.0, an extension of ROSMonitoring designed to facilitate the monitoring of both topics and services while considering the order in which messages are published and received. The framework has been enhanced to support these novel features for ROS1 -- and partially ROS2 environments -- offering improved real-time support, security, scalability, and interoperability. We discuss the modifications made to accommodate these advancements and present results obtained from a case study involving the runtime monitoring of specific components of a fire-fighting Uncrewed Aerial Vehicle (UAV).
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ Contrasting local and global modeling with machine learning and satellite data: A case study estimating tree canopy height in African savannas
While advances in machine learning with satellite imagery (SatML) are facilitating environmental monitoring at a global scale, developing SatML models that are accurate and useful for local regions remains critical to understanding and acting on an ever-changing planet. As increasing attention and resources are being devoted to training SatML models with global data, it is important to understand when improvements in global models will make it easier to train or fine-tune models that are accurate in specific regions. To explore this question, we contrast local and global training paradigms for SatML through a case study of tree canopy height (TCH) mapping in the Karingani Game Reserve, Mozambique. We find that recent advances in global TCH mapping do not necessarily translate to better local modeling abilities in our study region. Specifically, small models trained only with locally-collected data outperform published global TCH maps, and even outperform globally pretrained models that we fine-tune using local data. Analyzing these results further, we identify specific points of conflict and synergy between local and global modeling paradigms that can inform future research toward aligning local and global performance objectives in geospatial machine learning.
comment: 31 pages; 9 figures
☆ UnifiedCrawl: Aggregated Common Crawl for Affordable Adaptation of LLMs on Low-Resource Languages
Large language models (LLMs) under-perform on low-resource languages due to limited training data. We present a method to efficiently collect text data for low-resource languages from the entire Common Crawl corpus. Our approach, UnifiedCrawl, filters and extracts common crawl using minimal compute resources, yielding mono-lingual datasets much larger than previously available sources. We demonstrate that leveraging this data to fine-tuning multilingual LLMs via efficient adapter methods (QLoRA) significantly boosts performance on the low-resource language, while minimizing VRAM usage. Our experiments show large improvements in language modeling perplexity and an increase in few-shot prompting scores. Our work and released source code provide an affordable approach to improve LLMs for low-resource languages using consumer hardware. Our source code is available here at https://github.com/bethelmelesse/unifiedcrawl.
☆ Automated Generation of Code Debugging Exercises
Debugging is an essential skill when learning to program, yet its instruction and emphasis often vary widely across introductory courses. In the era of code-generating large language models (LLMs), the ability for students to reason about code and identify errors is increasingly important. However, students frequently resort to trial-and-error methods to resolve bugs without fully understanding the underlying issues. Developing the ability to identify and hypothesize the cause of bugs is crucial but can be time-consuming to teach effectively through traditional means. This paper introduces BugSpotter, an innovative tool that leverages an LLM to generate buggy code from a problem description and verify the synthesized bugs via a test suite. Students interact with BugSpotter by designing failing test cases, where the buggy code's output differs from the expected result as defined by the problem specification. This not only provides opportunities for students to enhance their debugging skills, but also to practice reading and understanding problem specifications. We deployed BugSpotter in a large classroom setting and compared the debugging exercises it generated to exercises hand-crafted by an instructor for the same problems. We found that the LLM-generated exercises produced by BugSpotter varied in difficulty and were well-matched to the problem specifications. Importantly, the LLM-generated exercises were comparable to those manually created by instructors with respect to student performance, suggesting that BugSpotter could be an effective and efficient aid for learning debugging.
comment: Preprint of the SIGCSE'25 paper
☆ Neuro-Symbolic Query Optimization in Knowledge Graphs
This chapter delves into the emerging field of neuro-symbolic query optimization for knowledge graphs (KGs), presenting a comprehensive exploration of how neural and symbolic techniques can be integrated to enhance query processing. Traditional query optimizers in knowledge graphs rely heavily on symbolic methods, utilizing dataset summaries, statistics, and cost models to select efficient execution plans. However, these approaches often suffer from misestimations and inaccuracies, particularly when dealing with complex queries or large-scale datasets. Recent advancements have introduced neural models, which capture non-linear aspects of query optimization, offering promising alternatives to purely symbolic methods. In this chapter, we introduce neuro-symbolic query optimizers, a novel approach that combines the strengths of symbolic reasoning with the adaptability of neural computation. We discuss the architecture of these hybrid systems, highlighting the interplay between neural and symbolic components to improve the optimizer's ability to navigate the search space and produce efficient execution plans. Additionally, the chapter reviews existing neural components tailored for optimizing queries over knowledge graphs and examines the limitations and challenges in deploying neuro-symbolic query optimizers in real-world environments.
☆ Generating Realistic Adversarial Examples for Business Processes using Variational Autoencoders
In predictive process monitoring, predictive models are vulnerable to adversarial attacks, where input perturbations can lead to incorrect predictions. Unlike in computer vision, where these perturbations are designed to be imperceptible to the human eye, the generation of adversarial examples in predictive process monitoring poses unique challenges. Minor changes to the activity sequences can create improbable or even impossible scenarios to occur due to underlying constraints such as regulatory rules or process constraints. To address this, we focus on generating realistic adversarial examples tailored to the business process context, in contrast to the imperceptible, pixel-level changes commonly seen in computer vision adversarial attacks. This paper introduces two novel latent space attacks, which generate adversaries by adding noise to the latent space representation of the input data, rather than directly modifying the input attributes. These latent space methods are domain-agnostic and do not rely on process-specific knowledge, as we restrict the generation of adversarial examples to the learned class-specific data distributions by directly perturbing the latent space representation of the business process executions. We evaluate these two latent space methods with six other adversarial attacking methods on eleven real-life event logs and four predictive models. The first three attacking methods directly permute the activities of the historically observed business process executions. The fourth method constrains the adversarial examples to lie within the same data distribution as the original instances, by projecting the adversarial examples to the original data distribution.
☆ Knowledge Graphs, Large Language Models, and Hallucinations: An NLP Perspective
Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) based applications including automated text generation, question answering, chatbots, and others. However, they face a significant challenge: hallucinations, where models produce plausible-sounding but factually incorrect responses. This undermines trust and limits the applicability of LLMs in different domains. Knowledge Graphs (KGs), on the other hand, provide a structured collection of interconnected facts represented as entities (nodes) and their relationships (edges). In recent research, KGs have been leveraged to provide context that can fill gaps in an LLM understanding of certain topics offering a promising approach to mitigate hallucinations in LLMs, enhancing their reliability and accuracy while benefiting from their wide applicability. Nonetheless, it is still a very active area of research with various unresolved open problems. In this paper, we discuss these open challenges covering state-of-the-art datasets and benchmarks as well as methods for knowledge integration and evaluating hallucinations. In our discussion, we consider the current use of KGs in LLM systems and identify future directions within each of these challenges.
comment: 7 pages, 2 Figures, 1 Table
☆ Do I Know This Entity? Knowledge Awareness and Hallucinations in Language Models
Hallucinations in large language models are a widespread problem, yet the mechanisms behind whether models will hallucinate are poorly understood, limiting our ability to solve this problem. Using sparse autoencoders as an interpretability tool, we discover that a key part of these mechanisms is entity recognition, where the model detects if an entity is one it can recall facts about. Sparse autoencoders uncover meaningful directions in the representation space, these detect whether the model recognizes an entity, e.g. detecting it doesn't know about an athlete or a movie. This suggests that models can have self-knowledge: internal representations about their own capabilities. These directions are causally relevant: capable of steering the model to refuse to answer questions about known entities, or to hallucinate attributes of unknown entities when it would otherwise refuse. We demonstrate that despite the sparse autoencoders being trained on the base model, these directions have a causal effect on the chat model's refusal behavior, suggesting that chat finetuning has repurposed this existing mechanism. Furthermore, we provide an initial exploration into the mechanistic role of these directions in the model, finding that they disrupt the attention of downstream heads that typically move entity attributes to the final token.
☆ BERT-Based Approach for Automating Course Articulation Matrix Construction with Explainable AI
Course Outcome (CO) and Program Outcome (PO)/Program-Specific Outcome (PSO) alignment is a crucial task for ensuring curriculum coherence and assessing educational effectiveness. The construction of a Course Articulation Matrix (CAM), which quantifies the relationship between COs and POs/PSOs, typically involves assigning numerical values (0, 1, 2, 3) to represent the degree of alignment. In this study, We experiment with four models from the BERT family: BERT Base, DistilBERT, ALBERT, and RoBERTa, and use multiclass classification to assess the alignment between CO and PO/PSO pairs. We first evaluate traditional machine learning classifiers, such as Decision Tree, Random Forest, and XGBoost, and then apply transfer learning to evaluate the performance of the pretrained BERT models. To enhance model interpretability, we apply Explainable AI technique, specifically Local Interpretable Model-agnostic Explanations (LIME), to provide transparency into the decision-making process. Our system achieves accuracy, precision, recall, and F1-score values of 98.66%, 98.67%, 98.66%, and 98.66%, respectively. This work demonstrates the potential of utilizing transfer learning with BERT-based models for the automated generation of CAMs, offering high performance and interpretability in educational outcome assessment.
comment: 26 pages, 9 figures
☆ Intent-Aware Dialogue Generation and Multi-Task Contrastive Learning for Multi-Turn Intent Classification
Generating large-scale, domain-specific, multilingual multi-turn dialogue datasets remains a significant hurdle for training effective Multi-Turn Intent Classification models in chatbot systems. In this paper, we introduce Chain-of-Intent, a novel mechanism that combines Hidden Markov Models with Large Language Models (LLMs) to generate contextually aware, intent-driven conversations through self-play. By extracting domain-specific knowledge from e-commerce chat logs, we estimate conversation turns and intent transitions, which guide the generation of coherent dialogues. Leveraging LLMs to enhance emission probabilities, our approach produces natural and contextually consistent questions and answers. We also propose MINT-CL, a framework for multi-turn intent classification using multi-task contrastive learning, improving classification accuracy without the need for extensive annotated data. Evaluations show that our methods outperform baselines in dialogue quality and intent classification accuracy, especially in multilingual settings, while significantly reducing data generation efforts. Furthermore, we release MINT-E, a multilingual, intent-aware multi-turn e-commerce dialogue corpus to support future research in this area.
☆ Natural Language Reinforcement Learning
Reinforcement Learning (RL) mathematically formulates decision-making with Markov Decision Process (MDP). With MDPs, researchers have achieved remarkable breakthroughs across various domains, including games, robotics, and language models. This paper seeks a new possibility, Natural Language Reinforcement Learning (NLRL), by extending traditional MDP to natural language-based representation space. Specifically, NLRL innovatively redefines RL principles, including task objectives, policy, value function, Bellman equation, and policy iteration, into their language counterparts. With recent advancements in large language models (LLMs), NLRL can be practically implemented to achieve RL-like policy and value improvement by either pure prompting or gradient-based training. Experiments over Maze, Breakthrough, and Tic-Tac-Toe games demonstrate the effectiveness, efficiency, and interpretability of the NLRL framework among diverse use cases. Our code will be released at https://github.com/waterhorse1/Natural-language-RL.
comment: Extension of arXiv:2402.07157
☆ AnywhereDoor: Multi-Target Backdoor Attacks on Object Detection
As object detection becomes integral to many safety-critical applications, understanding its vulnerabilities is essential. Backdoor attacks, in particular, pose a significant threat by implanting hidden backdoor in a victim model, which adversaries can later exploit to trigger malicious behaviors during inference. However, current backdoor techniques are limited to static scenarios where attackers must define a malicious objective before training, locking the attack into a predetermined action without inference-time adaptability. Given the expressive output space in object detection, including object existence detection, bounding box estimation, and object classification, the feasibility of implanting a backdoor that provides inference-time control with a high degree of freedom remains unexplored. This paper introduces AnywhereDoor, a flexible backdoor attack tailored for object detection. Once implanted, AnywhereDoor enables adversaries to specify different attack types (object vanishing, fabrication, or misclassification) and configurations (untargeted or targeted with specific classes) to dynamically control detection behavior. This flexibility is achieved through three key innovations: (i) objective disentanglement to support a broader range of attack combinations well beyond what existing methods allow; (ii) trigger mosaicking to ensure backdoor activations are robust, even against those object detectors that extract localized regions from the input image for recognition; and (iii) strategic batching to address object-level data imbalances that otherwise hinders a balanced manipulation. Extensive experiments demonstrate that AnywhereDoor provides attackers with a high degree of control, achieving an attack success rate improvement of nearly 80% compared to adaptations of existing methods for such flexible control.
☆ Towards Context-Rich Automated Biodiversity Assessments: Deriving AI-Powered Insights from Camera Trap Data
Camera traps offer enormous new opportunities in ecological studies, but current automated image analysis methods often lack the contextual richness needed to support impactful conservation outcomes. Here we present an integrated approach that combines deep learning-based vision and language models to improve ecological reporting using data from camera traps. We introduce a two-stage system: YOLOv10-X to localise and classify species (mammals and birds) within images, and a Phi-3.5-vision-instruct model to read YOLOv10-X binding box labels to identify species, overcoming its limitation with hard to classify objects in images. Additionally, Phi-3.5 detects broader variables, such as vegetation type, and time of day, providing rich ecological and environmental context to YOLO's species detection output. When combined, this output is processed by the model's natural language system to answer complex queries, and retrieval-augmented generation (RAG) is employed to enrich responses with external information, like species weight and IUCN status (information that cannot be obtained through direct visual analysis). This information is used to automatically generate structured reports, providing biodiversity stakeholders with deeper insights into, for example, species abundance, distribution, animal behaviour, and habitat selection. Our approach delivers contextually rich narratives that aid in wildlife management decisions. By providing contextually rich insights, our approach not only reduces manual effort but also supports timely decision-making in conservation, potentially shifting efforts from reactive to proactive management.
comment: 32 Pages, 22 images
☆ Evaluating the Robustness of Analogical Reasoning in Large Language Models
LLMs have performed well on several reasoning benchmarks, including ones that test analogical reasoning abilities. However, there is debate on the extent to which they are performing general abstract reasoning versus employing non-robust processes, e.g., that overly rely on similarity to pre-training data. Here we investigate the robustness of analogy-making abilities previously claimed for LLMs on three of four domains studied by Webb, Holyoak, and Lu (2023): letter-string analogies, digit matrices, and story analogies. For each domain we test humans and GPT models on robustness to variants of the original analogy problems that test the same abstract reasoning abilities but are likely dissimilar from tasks in the pre-training data. The performance of a system that uses robust abstract reasoning should not decline substantially on these variants. On simple letter-string analogies, we find that while the performance of humans remains high for two types of variants we tested, the GPT models' performance declines sharply. This pattern is less pronounced as the complexity of these problems is increased, as both humans and GPT models perform poorly on both the original and variant problems requiring more complex analogies. On digit-matrix problems, we find a similar pattern but only on one out of the two types of variants we tested. On story-based analogy problems, we find that, unlike humans, the performance of GPT models are susceptible to answer-order effects, and that GPT models also may be more sensitive than humans to paraphrasing. This work provides evidence that LLMs often lack the robustness of zero-shot human analogy-making, exhibiting brittleness on most of the variations we tested. More generally, this work points to the importance of carefully evaluating AI systems not only for accuracy but also robustness when testing their cognitive capabilities.
comment: 31 pages, 13 figures. arXiv admin note: text overlap with arXiv:2402.08955
☆ Physics-Informed LLM-Agent for Automated Modulation Design in Power Electronics Systems
LLM-based autonomous agents have demonstrated outstanding performance in solving complex industrial tasks. However, in the pursuit of carbon neutrality and high-performance renewable energy systems, existing AI-assisted design automation faces significant limitations in explainability, scalability, and usability. To address these challenges, we propose LP-COMDA, an LLM-based, physics-informed autonomous agent that automates the modulation design of power converters in Power Electronics Systems with minimal human supervision. Unlike traditional AI-assisted approaches, LP-COMDA contains an LLM-based planner that gathers and validates design specifications through a user-friendly chat interface. The planner then coordinates with physics-informed design and optimization tools to iteratively generate and refine modulation designs autonomously. Through the chat interface, LP-COMDA provides an explainable design process, presenting explanations and charts. Experiments show that LP-COMDA outperforms all baseline methods, achieving a 63.2% reduction in error compared to the second-best benchmark method in terms of standard mean absolute error. Furthermore, empirical studies with 20 experts conclude that design time with LP-COMDA is over 33 times faster than conventional methods, showing its significant improvement on design efficiency over the current processes.
☆ HARP: A Large-Scale Higher-Order Ambisonic Room Impulse Response Dataset ICASSP 2025
This contribution introduces a dataset of 7th-order Ambisonic Room Impulse Responses (HOA-RIRs), created using the Image Source Method. By employing higher-order Ambisonics, our dataset enables precise spatial audio reproduction, a critical requirement for realistic immersive audio applications. Leveraging the virtual simulation, we present a unique microphone configuration, based on the superposition principle, designed to optimize sound field coverage while addressing the limitations of traditional microphone arrays. The presented 64-microphone configuration allows us to capture RIRs directly in the Spherical Harmonics domain. The dataset features a wide range of room configurations, encompassing variations in room geometry, acoustic absorption materials, and source-receiver distances. A detailed description of the simulation setup is provided alongside for an accurate reproduction. The dataset serves as a vital resource for researchers working on spatial audio, particularly in applications involving machine learning to improve room acoustics modeling and sound field synthesis. It further provides a very high level of spatial resolution and realism crucial for tasks such as source localization, reverberation prediction, and immersive sound reproduction.
comment: Submitted to ICASSP 2025 Workshop Dataset and code to be uploaded at: https://github.com/whojavumusic/HARP
☆ Is this Generated Person Existed in Real-world? Fine-grained Detecting and Calibrating Abnormal Human-body
Recent improvements in visual synthesis have significantly enhanced the depiction of generated human photos, which are pivotal due to their wide applicability and demand. Nonetheless, the existing text-to-image or text-to-video models often generate low-quality human photos that might differ considerably from real-world body structures, referred to as "abnormal human bodies". Such abnormalities, typically deemed unacceptable, pose considerable challenges in the detection and repair of them within human photos. These challenges require precise abnormality recognition capabilities, which entail pinpointing both the location and the abnormality type. Intuitively, Visual Language Models (VLMs) that have obtained remarkable performance on various visual tasks are quite suitable for this task. However, their performance on abnormality detection in human photos is quite poor. Hence, it is quite important to highlight this task for the research community. In this paper, we first introduce a simple yet challenging task, i.e., \textbf{F}ine-grained \textbf{H}uman-body \textbf{A}bnormality \textbf{D}etection \textbf{(FHAD)}, and construct two high-quality datasets for evaluation. Then, we propose a meticulous framework, named HumanCalibrator, which identifies and repairs abnormalities in human body structures while preserving the other content. Experiments indicate that our HumanCalibrator achieves high accuracy in abnormality detection and accomplishes an increase in visual comparisons while preserving the other visual content.
comment: 16 pages, 14 figures
☆ OpenScholar: Synthesizing Scientific Literature with Retrieval-augmented LMs
Scientific progress depends on researchers' ability to synthesize the growing body of literature. Can large language models (LMs) assist scientists in this task? We introduce OpenScholar, a specialized retrieval-augmented LM that answers scientific queries by identifying relevant passages from 45 million open-access papers and synthesizing citation-backed responses. To evaluate OpenScholar, we develop ScholarQABench, the first large-scale multi-domain benchmark for literature search, comprising 2,967 expert-written queries and 208 long-form answers across computer science, physics, neuroscience, and biomedicine. On ScholarQABench, OpenScholar-8B outperforms GPT-4o by 5% and PaperQA2 by 7% in correctness, despite being a smaller, open model. While GPT4o hallucinates citations 78 to 90% of the time, OpenScholar achieves citation accuracy on par with human experts. OpenScholar's datastore, retriever, and self-feedback inference loop also improves off-the-shelf LMs: for instance, OpenScholar-GPT4o improves GPT-4o's correctness by 12%. In human evaluations, experts preferred OpenScholar-8B and OpenScholar-GPT4o responses over expert-written ones 51% and 70% of the time, respectively, compared to GPT4o's 32%. We open-source all of our code, models, datastore, data and a public demo.
☆ ComfyGI: Automatic Improvement of Image Generation Workflows
Automatic image generation is no longer just of interest to researchers, but also to practitioners. However, current models are sensitive to the settings used and automatic optimization methods often require human involvement. To bridge this gap, we introduce ComfyGI, a novel approach to automatically improve workflows for image generation without the need for human intervention driven by techniques from genetic improvement. This enables image generation with significantly higher quality in terms of the alignment with the given description and the perceived aesthetics. On the performance side, we find that overall, the images generated with an optimized workflow are about 50% better compared to the initial workflow in terms of the median ImageReward score. These already good results are even surpassed in our human evaluation, as the participants preferred the images improved by ComfyGI in around 90% of the cases.
☆ FoPru: Focal Pruning for Efficient Large Vision-Language Models
Large Vision-Language Models (LVLMs) represent a significant advancement toward achieving superior multimodal capabilities by enabling powerful Large Language Models (LLMs) to understand visual input. Typically, LVLMs utilize visual encoders, such as CLIP, to transform images into visual tokens, which are then aligned with textual tokens through projection layers before being input into the LLM for inference. Although existing LVLMs have achieved significant success, their inference efficiency is still limited by the substantial number of visual tokens and the potential redundancy among them. To mitigate this issue, we propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder. Specifically, we introduce two alternative pruning strategies: 1) the rank strategy, which leverages all token significance scores to retain more critical tokens in a global view; 2) the row strategy, which focuses on preserving continuous key information in images from a local perspective. Finally, the selected tokens are reordered to maintain their original positional relationships. Extensive experiments across various LVLMs and multimodal datasets demonstrate that our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
comment: 11 pages, 7 figures
☆ Differentiable SVD based on Moore-Penrose Pseudoinverse for Inverse Imaging Problems
Low-rank regularization-based deep unrolling networks have achieved remarkable success in various inverse imaging problems (IIPs). However, the singular value decomposition (SVD) is non-differentiable when duplicated singular values occur, leading to severe numerical instability during training. In this paper, we propose a differentiable SVD based on the Moore-Penrose pseudoinverse to address this issue. To the best of our knowledge, this is the first work to provide a comprehensive analysis of the differentiability of the trivial SVD. Specifically, we show that the non-differentiability of SVD is essentially due to an underdetermined system of linear equations arising in the derivation process. We utilize the Moore-Penrose pseudoinverse to solve the system, thereby proposing a differentiable SVD. A numerical stability analysis in the context of IIPs is provided. Experimental results in color image compressed sensing and dynamic MRI reconstruction show that our proposed differentiable SVD can effectively address the numerical instability issue while ensuring computational precision. Code is available at https://github.com/yhao-z/SVD-inv.
comment: 11 pages
☆ GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs CVPR '25
Large Language Models (LLMs) have shown impressive proficiency across a range of natural language processing tasks yet remain vulnerable to adversarial prompts, known as jailbreak attacks, carefully designed to elicit harmful responses from LLMs. Traditional methods rely on manual heuristics, which suffer from limited generalizability. While being automatic, optimization-based attacks often produce unnatural jailbreak prompts that are easy to detect by safety filters or require high computational overhead due to discrete token optimization. Witnessing the limitations of existing jailbreak methods, we introduce Generative Adversarial Suffix Prompter (GASP), a novel framework that combines human-readable prompt generation with Latent Bayesian Optimization (LBO) to improve adversarial suffix creation in a fully black-box setting. GASP leverages LBO to craft adversarial suffixes by efficiently exploring continuous embedding spaces, gradually optimizing the model to improve attack efficacy while balancing prompt coherence through a targeted iterative refinement procedure. Our experiments show that GASP can generate natural jailbreak prompts, significantly improving attack success rates, reducing training times, and accelerating inference speed, thus making it an efficient and scalable solution for red-teaming LLMs.
comment: 28 pages, 9 tables, 13 figures; under review at CVPR '25
☆ Umbrella Reinforcement Learning -- computationally efficient tool for hard non-linear problems
We report a novel, computationally efficient approach for solving hard nonlinear problems of reinforcement learning (RL). Here we combine umbrella sampling, from computational physics/chemistry, with optimal control methods. The approach is realized on the basis of neural networks, with the use of policy gradient. It outperforms, by computational efficiency and implementation universality, all available state-of-the-art algorithms, in application to hard RL problems with sparse reward, state traps and lack of terminal states. The proposed approach uses an ensemble of simultaneously acting agents, with a modified reward which includes the ensemble entropy, yielding an optimal exploration-exploitation balance.
☆ MetaCropFollow: Few-Shot Adaptation with Meta-Learning for Under-Canopy Navigation
Autonomous under-canopy navigation faces additional challenges compared to over-canopy settings - for example the tight spacing between the crop rows, degraded GPS accuracy and excessive clutter. Keypoint-based visual navigation has been shown to perform well in these conditions, however the differences between agricultural environments in terms of lighting, season, soil and crop type mean that a domain shift will likely be encountered at some point of the robot deployment. In this paper, we explore the use of Meta-Learning to overcome this domain shift using a minimal amount of data. We train a base-learner that can quickly adapt to new conditions, enabling more robust navigation in low-data regimes.
☆ Multi LoRA Meets Vision: Merging multiple adapters to create a multi task model
Parameter efficient finetuning (PEFT) methods are widely used in LLMs and generative models in computer vision. Especially one can use multiple of these during inference to change the behavior of the base model. In this paper we investigated whether multiple LoRA adapters trained on computer vision tasks can be merged together and used during inference without loss in performance. By achieving this, multitask models can be created just by merging different LoRAs. Merging these will reduce inference time and it will not require any additional retraining. We have trained adapters on six different tasks and evaluated their performance when they are merged together. For comparison we used a model with a frozen backbone and finetuned its head. Our results show that even with simple merging techniques creating a multitask model by merging adapters is achievable by slightly loosing performance in some cases. In our experiments we merged up to three adapters together. Depending on the task and the similarity of the data adapters were trained on, merges can outperform head finetuning. We have observed that LoRAs trained with dissimilar datasets tend to perform better compared to model trained on similar datasets.
☆ MMGenBench: Evaluating the Limits of LMMs from the Text-to-Image Generation Perspective
Large Multimodal Models (LMMs) have demonstrated remarkable capabilities. While existing benchmarks for evaluating LMMs mainly focus on image comprehension, few works evaluate them from the image generation perspective. To address this issue, we propose a straightforward automated evaluation pipeline. Specifically, this pipeline requires LMMs to generate an image-prompt from a given input image. Subsequently, it employs text-to-image generative models to create a new image based on these generated prompts. Finally, we evaluate the performance of LMMs by comparing the original image with the generated one. Furthermore, we introduce MMGenBench-Test, a comprehensive benchmark developed to evaluate LMMs across 13 distinct image patterns, and MMGenBench-Domain, targeting the performance evaluation of LMMs within the generative image domain. A thorough evaluation involving over 50 popular LMMs demonstrates the effectiveness and reliability in both the pipeline and benchmark. Our observations indicate that numerous LMMs excelling in existing benchmarks fail to adequately complete the basic tasks, related to image understanding and description. This finding highlights the substantial potential for performance improvement in current LMMs and suggests avenues for future model optimization. Concurrently, our pipeline facilitates the efficient assessment of LMMs performance across diverse domains by using solely image inputs.
comment: This project is available at: https://github.com/lerogo/MMGenBench
☆ FunctionChat-Bench: Comprehensive Evaluation of Language Models' Generative Capabilities in Korean Tool-use Dialogs
This study investigates language models' generative capabilities in tool-use dialogs. We categorize the models' outputs in tool-use dialogs into four distinct types: Tool Call, Answer Completion, Slot Question, and Relevance Detection, which serve as aspects for evaluation. We introduce FunctionChat-Bench, comprising 700 evaluation items and automated assessment programs. Using this benchmark, we evaluate several language models that support function calling. Our findings indicate that while language models may exhibit high accuracy in single-turn Tool Call scenarios, this does not necessarily translate to superior generative performance in multi-turn environments. We argue that the capabilities required for function calling extend beyond generating tool call messages; they must also effectively generate conversational messages that engage the user.
comment: 8 pages
☆ Forecasting Future International Events: A Reliable Dataset for Text-Based Event Modeling EMNLP 2024
Predicting future international events from textual information, such as news articles, has tremendous potential for applications in global policy, strategic decision-making, and geopolitics. However, existing datasets available for this task are often limited in quality, hindering the progress of related research. In this paper, we introduce WORLDREP (WORLD Relationship and Event Prediction), a novel dataset designed to address these limitations by leveraging the advanced reasoning capabilities of large-language models (LLMs). Our dataset features high-quality scoring labels generated through advanced prompt modeling and rigorously validated by domain experts in political science. We showcase the quality and utility of WORLDREP for real-world event prediction tasks, demonstrating its effectiveness through extensive experiments and analysis. Furthermore, we publicly release our dataset along with the full automation source code for data collection, labeling, and benchmarking, aiming to support and advance research in text-based event prediction.
comment: EMNLP 2024 Findings
☆ Uterine Ultrasound Image Captioning Using Deep Learning Techniques
Medical imaging has significantly revolutionized medical diagnostics and treatment planning, progressing from early X-ray usage to sophisticated methods like MRIs, CT scans, and ultrasounds. This paper investigates the use of deep learning for medical image captioning, with a particular focus on uterine ultrasound images. These images are vital in obstetrics and gynecology for diagnosing and monitoring various conditions across different age groups. However, their interpretation is often challenging due to their complexity and variability. To address this, a deep learning-based medical image captioning system was developed, integrating Convolutional Neural Networks with a Bidirectional Gated Recurrent Unit network. This hybrid model processes both image and text features to generate descriptive captions for uterine ultrasound images. Our experimental results demonstrate the effectiveness of this approach over baseline methods, with the proposed model achieving superior performance in generating accurate and informative captions, as indicated by higher BLEU and ROUGE scores. By enhancing the interpretation of uterine ultrasound images, our research aims to assist medical professionals in making timely and accurate diagnoses, ultimately contributing to improved patient care.
☆ Assessing data-driven predictions of band gap and electrical conductivity for transparent conducting materials
Machine Learning (ML) has offered innovative perspectives for accelerating the discovery of new functional materials, leveraging the increasing availability of material databases. Despite the promising advances, data-driven methods face constraints imposed by the quantity and quality of available data. Moreover, ML is often employed in tandem with simulated datasets originating from density functional theory (DFT), and assessed through in-sample evaluation schemes. This scenario raises questions about the practical utility of ML in uncovering new and significant material classes for industrial applications. Here, we propose a data-driven framework aimed at accelerating the discovery of new transparent conducting materials (TCMs), an important category of semiconductors with a wide range of applications. To mitigate the shortage of available data, we create and validate unique experimental databases, comprising several examples of existing TCMs. We assess state-of-the-art (SOTA) ML models for property prediction from the stoichiometry alone. We propose a bespoke evaluation scheme to provide empirical evidence on the ability of ML to uncover new, previously unseen materials of interest. We test our approach on a list of 55 compositions containing typical elements of known TCMs. Although our study indicates that ML tends to identify new TCMs compositionally similar to those in the training data, we empirically demonstrate that it can highlight material candidates that may have been previously overlooked, offering a systematic approach to identify materials that are likely to display TCMs characteristics.
☆ Multi-LLM-Agent Systems: Techniques and Business Perspectives
In the era of (multi-modal) large language models, most operational processes can be reformulated and reproduced using LLM agents. The LLM agents can perceive, control, and get feedback from the environment so as to accomplish the given tasks in an autonomous manner. Besides the environment-interaction property, the LLM agents can call various external tools to ease the task completion process. The tools can be regarded as a predefined operational process with private or real-time knowledge that does not exist in the parameters of LLMs. As a natural trend of development, the tools for calling are becoming autonomous agents, thus the full intelligent system turns out to be a multi-LLM-agent system (MLAS). This paper discusses the technical and business landscapes of MLAS. Compared to the previous single-LLM-agent system, a MLAS has the advantages of i) higher potential of task-solving performance, ii) higher flexibility for system changing, iii) proprietary data preserving for each participating entity, and iv) feasibility of monetization for each entity. To support the ecosystem of MLAS, we provide a preliminary version of such MLAS protocol considering technical requirements, data privacy, and business incentives. As such, MLAS would be a practical solution to achieve artificial collective intelligence in the near future.
☆ Logic Augmented Generation
Semantic Knowledge Graphs (SKG) face challenges with scalability, flexibility, contextual understanding, and handling unstructured or ambiguous information. However, they offer formal and structured knowledge enabling highly interpretable and reliable results by means of reasoning and querying. Large Language Models (LLMs) overcome those limitations making them suitable in open-ended tasks and unstructured environments. Nevertheless, LLMs are neither interpretable nor reliable. To solve the dichotomy between LLMs and SKGs we envision Logic Augmented Generation (LAG) that combines the benefits of the two worlds. LAG uses LLMs as Reactive Continuous Knowledge Graphs that can generate potentially infinite relations and tacit knowledge on-demand. SKGs are key for injecting a discrete heuristic dimension with clear logical and factual boundaries. We exemplify LAG in two tasks of collective intelligence, i.e., medical diagnostics and climate projections. Understanding the properties and limitations of LAG, which are still mostly unknown, is of utmost importance for enabling a variety of tasks involving tacit knowledge in order to provide interpretable and effective results.
comment: 10 pages, 2 figures
☆ Mirror Target YOLO: An Improved YOLOv8 Method with Indirect Vision for Heritage Buildings Fire Detection
Fires can cause severe damage to heritage buildings, making timely fire detection essential. Traditional dense cabling and drilling can harm these structures, so reducing the number of cameras to minimize such impact is challenging. Additionally, avoiding false alarms due to noise sensitivity and preserving the expertise of managers in fire-prone areas is crucial. To address these needs, we propose a fire detection method based on indirect vision, called Mirror Target YOLO (MITA-YOLO). MITA-YOLO integrates indirect vision deployment and an enhanced detection module. It uses mirror angles to achieve indirect views, solving issues with limited visibility in irregular spaces and aligning each indirect view with the target monitoring area. The Target-Mask module is designed to automatically identify and isolate the indirect vision areas in each image, filtering out non-target areas. This enables the model to inherit managers' expertise in assessing fire-risk zones, improving focus and resistance to interference in fire detection.In our experiments, we created an 800-image fire dataset with indirect vision. Results show that MITA-YOLO significantly reduces camera requirements while achieving superior detection performance compared to other mainstream models.
☆ Safety Without Semantic Disruptions: Editing-free Safe Image Generation via Context-preserving Dual Latent Reconstruction
Training multimodal generative models on large, uncurated datasets can result in users being exposed to harmful, unsafe and controversial or culturally-inappropriate outputs. While model editing has been proposed to remove or filter undesirable concepts in embedding and latent spaces, it can inadvertently damage learned manifolds, distorting concepts in close semantic proximity. We identify limitations in current model editing techniques, showing that even benign, proximal concepts may become misaligned. To address the need for safe content generation, we propose a modular, dynamic solution that leverages safety-context embeddings and a dual reconstruction process using tunable weighted summation in the latent space to generate safer images. Our method preserves global context without compromising the structural integrity of the learned manifolds. We achieve state-of-the-art results on safe image generation benchmarks, while offering controllable variation of model safety. We identify trade-offs between safety and censorship, which presents a necessary perspective in the development of ethical AI models. We will release our code. Keywords: Text-to-Image Models, Generative AI, Safety, Reliability, Model Editing
comment: This research is supported by the NISDRG project #20100007, funded by the Australian Government
☆ On the Fairness, Diversity and Reliability of Text-to-Image Generative Models
The widespread availability of multimodal generative models has sparked critical discussions on their fairness, reliability, and potential for misuse. While text-to-image models can produce high-fidelity, user-guided images, they also exhibit unpredictable behavior and vulnerabilities, which can be exploited to manipulate class or concept representations. To address this, we propose an evaluation framework designed to assess model reliability through their responses to globally- and locally-applied `semantic' perturbations in the embedding space, pinpointing inputs that trigger unreliable behavior. Our approach offers deeper insights into two essential aspects: (i) generative diversity, evaluating the breadth of visual representations for learned concepts, and (ii) generative fairness, examining how removing concepts from input prompts affects semantic guidance. Beyond these evaluations, our method lays the groundwork for detecting unreliable, bias-injected models and retrieval of bias provenance. We will release our code. Keywords: Fairness, Reliability, AI Ethics, Bias, Text-to-Image Models
comment: This research is supported by the NISDRG project #20100007, funded by the Australian Government
☆ FedRAV: Hierarchically Federated Region-Learning for Traffic Object Classification of Autonomous Vehicles
The emerging federated learning enables distributed autonomous vehicles to train equipped deep learning models collaboratively without exposing their raw data, providing great potential for utilizing explosively growing autonomous driving data. However, considering the complicated traffic environments and driving scenarios, deploying federated learning for autonomous vehicles is inevitably challenged by non-independent and identically distributed (Non-IID) data of vehicles, which may lead to failed convergence and low training accuracy. In this paper, we propose a novel hierarchically Federated Region-learning framework of Autonomous Vehicles (FedRAV), a two-stage framework, which adaptively divides a large area containing vehicles into sub-regions based on the defined region-wise distance, and achieves personalized vehicular models and regional models. This approach ensures that the personalized vehicular model adopts the beneficial models while discarding the unprofitable ones. We validate our FedRAV framework against existing federated learning algorithms on three real-world autonomous driving datasets in various heterogeneous settings. The experiment results demonstrate that our framework outperforms those known algorithms, and improves the accuracy by at least 3.69%. The source code of FedRAV is available at: https://github.com/yjzhai-cs/FedRAV.
comment: 8 pages, 4 figures
☆ A Dataset for Evaluating Online Anomaly Detection Approaches for Discrete Multivariate Time Series
Benchmarking anomaly detection approaches for multivariate time series is challenging due to the lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a small selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data.
☆ Separable Mixture of Low-Rank Adaptation for Continual Visual Instruction Tuning
Visual instruction tuning (VIT) enables multimodal large language models (MLLMs) to effectively handle a wide range of vision tasks by framing them as language-based instructions. Building on this, continual visual instruction tuning (CVIT) extends the capability of MLLMs to incrementally learn new tasks, accommodating evolving functionalities. While prior work has advanced CVIT through the development of new benchmarks and approaches to mitigate catastrophic forgetting, these efforts largely follow traditional continual learning paradigms, neglecting the unique challenges specific to CVIT. We identify a dual form of catastrophic forgetting in CVIT, where MLLMs not only forget previously learned visual understanding but also experience a decline in instruction following abilities as they acquire new tasks. To address this, we introduce the Separable Mixture of Low-Rank Adaptation (SMoLoRA) framework, which employs separable routing through two distinct modules - one for visual understanding and another for instruction following. This dual-routing design enables specialized adaptation in both domains, preventing forgetting while improving performance. Furthermore, we propose a novel CVIT benchmark that goes beyond existing benchmarks by additionally evaluating a model's ability to generalize to unseen tasks and handle diverse instructions across various tasks. Extensive experiments demonstrate that SMoLoRA outperforms existing methods in mitigating dual forgetting, improving generalization to unseen tasks, and ensuring robustness in following diverse instructions.
LLMs as Continuous Learners: Improving the Reproduction of Defective Code in Software Issues
Reproducing buggy code is the first and crucially important step in issue resolving, as it aids in identifying the underlying problems and validating that generated patches resolve the problem. While numerous approaches have been proposed for this task, they primarily address common, widespread errors and struggle to adapt to unique, evolving errors specific to individual code repositories. To fill this gap, we propose EvoCoder, a multi-agent continuous learning framework for issue code reproduction. EvoCoder adopts a reflection mechanism that allows the LLM to continuously learn from previously resolved problems and dynamically refine its strategies to new emerging challenges. To prevent experience bloating, EvoCoder introduces a novel hierarchical experience pool that enables the model to adaptively update common and repo-specific experiences. Our experimental results show a 20\% improvement in issue reproduction rates over existing SOTA methods. Furthermore, integrating our reproduction mechanism significantly boosts the overall accuracy of the existing issue-resolving pipeline.
☆ Learning to Cooperate with Humans using Generative Agents
Training agents that can coordinate zero-shot with humans is a key mission in multi-agent reinforcement learning (MARL). Current algorithms focus on training simulated human partner policies which are then used to train a Cooperator agent. The simulated human is produced either through behavior cloning over a dataset of human cooperation behavior, or by using MARL to create a population of simulated agents. However, these approaches often struggle to produce a Cooperator that can coordinate well with real humans, since the simulated humans fail to cover the diverse strategies and styles employed by people in the real world. We show \emph{learning a generative model of human partners} can effectively address this issue. Our model learns a latent variable representation of the human that can be regarded as encoding the human's unique strategy, intention, experience, or style. This generative model can be flexibly trained from any (human or neural policy) agent interaction data. By sampling from the latent space, we can use the generative model to produce different partners to train Cooperator agents. We evaluate our method -- \textbf{G}enerative \textbf{A}gent \textbf{M}odeling for \textbf{M}ulti-agent \textbf{A}daptation (GAMMA) -- on Overcooked, a challenging cooperative cooking game that has become a standard benchmark for zero-shot coordination. We conduct an evaluation with real human teammates, and the results show that GAMMA consistently improves performance, whether the generative model is trained on simulated populations or human datasets. Further, we propose a method for posterior sampling from the generative model that is biased towards the human data, enabling us to efficiently improve performance with only a small amount of expensive human interaction data.
☆ XAgents: A Framework for Interpretable Rule-Based Multi-Agents Cooperation
Extracting implicit knowledge and logical reasoning abilities from large language models (LLMs) has consistently been a significant challenge. The advancement of multi-agent systems has further en-hanced the capabilities of LLMs. Inspired by the structure of multi-polar neurons (MNs), we propose the XAgents framework, an in-terpretable multi-agent cooperative framework based on the IF-THEN rule-based system. The IF-Parts of the rules are responsible for logical reasoning and domain membership calculation, while the THEN-Parts are comprised of domain expert agents that generate domain-specific contents. Following the calculation of the member-ship, XAgetns transmits the task to the disparate domain rules, which subsequently generate the various responses. These re-sponses are analogous to the answers provided by different experts to the same question. The final response is reached at by eliminat-ing the hallucinations and erroneous knowledge of the LLM through membership computation and semantic adversarial genera-tion of the various domain rules. The incorporation of rule-based interpretability serves to bolster user confidence in the XAgents framework. We evaluate the efficacy of XAgents through a com-parative analysis with the latest AutoAgents, in which XAgents demonstrated superior performance across three distinct datasets. We perform post-hoc interpretable studies with SHAP algorithm and case studies, proving the interpretability of XAgent in terms of input-output feature correlation and rule-based semantics.
☆ Split Federated Learning Over Heterogeneous Edge Devices: Algorithm and Optimization
Split Learning (SL) is a promising collaborative machine learning approach, enabling resource-constrained devices to train models without sharing raw data, while reducing computational load and preserving privacy simultaneously. However, current SL algorithms face limitations in training efficiency and suffer from prolonged latency, particularly in sequential settings, where the slowest device can bottleneck the entire process due to heterogeneous resources and frequent data exchanges between clients and servers. To address these challenges, we propose the Heterogeneous Split Federated Learning (HSFL) framework, which allows resource-constrained clients to train their personalized client-side models in parallel, utilizing different cut layers. Aiming to mitigate the impact of heterogeneous environments and accelerate the training process, we formulate a latency minimization problem that optimizes computational and transmission resources jointly. Additionally, we design a resource allocation algorithm that combines the Sample Average Approximation (SAA), Genetic Algorithm (GA), Lagrangian relaxation and Branch and Bound (B\&B) methods to efficiently solve this problem. Simulation results demonstrate that HSFL outperforms other frameworks in terms of both convergence rate and model accuracy on heterogeneous devices with non-iid data, while the optimization algorithm is better than other baseline methods in reducing latency.
☆ AmpliNetECG12: A lightweight SoftMax-based relativistic amplitude amplification architecture for 12 lead ECG classification
The urgent need to promptly detect cardiac disorders from 12-lead Electrocardiograms using limited computations is motivated by the heart's fast and complex electrical activity and restricted computational power of portable devices. Timely and precise diagnoses are crucial since delays might significantly impact patient health outcomes. This research presents a novel deep-learning architecture that aims to diagnose heart abnormalities quickly and accurately. We devised a new activation function called aSoftMax, designed to improve the visibility of ECG deflections. The proposed activation function is used with Convolutional Neural Network architecture to includes kernel weight sharing across the ECG's various leads. This innovative method thoroughly generalizes the global 12-lead ECG features and minimizes the model's complexity by decreasing the trainable parameters. aSoftMax, combined with enhanced CNN architecture yielded AmpliNetECG12, we obtain exceptional accuracy of 84% in diagnosing cardiac disorders. AmpliNetECG12 shows outstanding prediction ability when used with the CPSC2018 dataset for arrhythmia classification. The model attains an F1-score of 80.71% and a ROC-AUC score of 96.00%, with 280,000 trainable parameters which signifies the lightweight yet efficient nature of AmpliNetECG12. The stochastic characteristics of aSoftMax, a fundamental element of AmpliNetECG12, improve prediction accuracy and also increasse the model's interpretability. This feature enhances comprehension of important ECG segments in different forms of arrhythmias, establishing a new standard of explainable architecture for cardiac disorder classification.
☆ PIORS: Personalized Intelligent Outpatient Reception based on Large Language Model with Multi-Agents Medical Scenario Simulation
In China, receptionist nurses face overwhelming workloads in outpatient settings, limiting their time and attention for each patient and ultimately reducing service quality. In this paper, we present the Personalized Intelligent Outpatient Reception System (PIORS). This system integrates an LLM-based reception nurse and a collaboration between LLM and hospital information system (HIS) into real outpatient reception setting, aiming to deliver personalized, high-quality, and efficient reception services. Additionally, to enhance the performance of LLMs in real-world healthcare scenarios, we propose a medical conversational data generation framework named Service Flow aware Medical Scenario Simulation (SFMSS), aiming to adapt the LLM to the real-world environments and PIORS settings. We evaluate the effectiveness of PIORS and SFMSS through automatic and human assessments involving 15 users and 15 clinical experts. The results demonstrate that PIORS-Nurse outperforms all baselines, including the current state-of-the-art model GPT-4o, and aligns with human preferences and clinical needs. Further details and demo can be found at https://github.com/FudanDISC/PIORS
☆ When Online Algorithms Influence the Environment: A Dynamical Systems Analysis of the Unintended Consequences
We analyze the effect that online algorithms have on the environment that they are learning. As a motivation, consider recommendation systems that use online algorithms to learn optimal product recommendations based on user and product attributes. It is well known that the sequence of recommendations affects user preferences. However, typical learning algorithms treat the user attributes as static and disregard the impact of their recommendations on user preferences. Our interest is to analyze the effect of this mismatch between the model assumption of a static environment, and the reality of an evolving environment affected by the recommendations. To perform this analysis, we first introduce a model for a generic coupled evolution of the parameters that are being learned, and the environment that is affected by it. We then frame a linear bandit recommendation system (RS) into this generic model where the users are characterized by a state variable that evolves based on the sequence of recommendations. The learning algorithm of the RS does not explicitly account for this evolution and assumes that the users are static. A dynamical system model that captures the coupled evolution of the population state and the learning algorithm is described, and its equilibrium behavior is analyzed. We show that when the recommendation algorithm is able to learn the population preferences in the presence of this mismatch, the algorithm induces similarity in the preferences of the user population. In particular, we present results on how different properties of the recommendation algorithm, namely the user attribute space and the exploration-exploitation tradeoff, effect the population preferences when they are learned by the algorithm. We demonstrate these results using model simulations.
comment: 13 pages, 4 figures
☆ Next-Generation Phishing: How LLM Agents Empower Cyber Attackers
The escalating threat of phishing emails has become increasingly sophisticated with the rise of Large Language Models (LLMs). As attackers exploit LLMs to craft more convincing and evasive phishing emails, it is crucial to assess the resilience of current phishing defenses. In this study we conduct a comprehensive evaluation of traditional phishing detectors, such as Gmail Spam Filter, Apache SpamAssassin, and Proofpoint, as well as machine learning models like SVM, Logistic Regression, and Naive Bayes, in identifying both traditional and LLM-rephrased phishing emails. We also explore the emerging role of LLMs as phishing detection tools, a method already adopted by companies like NTT Security Holdings and JPMorgan Chase. Our results reveal notable declines in detection accuracy for rephrased emails across all detectors, highlighting critical weaknesses in current phishing defenses. As the threat landscape evolves, our findings underscore the need for stronger security controls and regulatory oversight on LLM-generated content to prevent its misuse in creating advanced phishing attacks. This study contributes to the development of more effective Cyber Threat Intelligence (CTI) by leveraging LLMs to generate diverse phishing variants that can be used for data augmentation, harnessing the power of LLMs to enhance phishing detection, and paving the way for more robust and adaptable threat detection systems.
☆ Generative Fuzzy System for Sequence Generation
Generative Models (GMs), particularly Large Language Models (LLMs), have garnered significant attention in machine learning and artificial intelligence for their ability to generate new data by learning the statistical properties of training data and creating data that resemble the original. This capability offers a wide range of applications across various domains. However, the complex structures and numerous model parameters of GMs make the input-output processes opaque, complicating the understanding and control of outputs. Moreover, the purely data-driven learning mechanism limits GM's ability to acquire broader knowledge. There remains substantial potential for enhancing the robustness and generalization capabilities of GMs. In this work, we introduce the fuzzy system, a classical modeling method that combines data and knowledge-driven mechanisms, to generative tasks. We propose a novel Generative Fuzzy System framework, named GenFS, which integrates the deep learning capabilities of GM with the interpretability and dual-driven mechanisms of fuzzy systems. Specifically, we propose an end-to-end GenFS-based model for sequence generation, called FuzzyS2S. A series of experimental studies were conducted on 12 datasets, covering three distinct categories of generative tasks: machine translation, code generation, and summary generation. The results demonstrate that FuzzyS2S outperforms the Transformer in terms of accuracy and fluency. Furthermore, it exhibits better performance on some datasets compared to state-of-the-art models T5 and CodeT5.
comment: 12 pages, 5 figures
☆ HARec: Hyperbolic Graph-LLM Alignment for Exploration and Exploitation in Recommender Systems
Modern recommendation systems often create information cocoons, limiting users' exposure to diverse content. To enhance user experience, a crucial challenge is developing systems that can balance content exploration and exploitation, allowing users to adjust their recommendation preferences. Intuitively, this balance can be achieved through a tree-structured representation, where depth search facilitates exploitation and breadth search enables exploration. However, current works face two challenges to achieve this target: (1) Euclidean methods fail to fully capture hierarchical structures and lack flexibility in balancing exploration-exploitation, while (2) hyperbolic approaches, despite better hierarchical modeling, suffer from insufficient semantic alignment due to their reliance on Euclidean text encoders. To address these challenges, we propose HARec, a hyperbolic representation learning framework that jointly aligns user-item collaborative information with textual descriptions in hyperbolic space. Our framework introduces two key technique novelty: (1) a hierarchical-aware graph-llm alignment mechanism that enables better hierarchical representation, and (2) a hyperbolic hierarchical tree structure that facilitates user-adjustable exploration-exploitation trade-offs. Extensive experiments demonstrate that HARec consistently outperforms both Euclidean and hyperbolic baselines, achieving up to 5.49% improvement in utility metrics and 11.39% increase in diversity metrics.
☆ Exploratory Study Of Human-AI Interaction For Hindustani Music NeurIPS
This paper presents a study of participants interacting with and using GaMaDHaNi, a novel hierarchical generative model for Hindustani vocal contours. To explore possible use cases in human-AI interaction, we conducted a user study with three participants, each engaging with the model through three predefined interaction modes. Although this study was conducted "in the wild"- with the model unadapted for the shift from the training data to real-world interaction - we use it as a pilot to better understand the expectations, reactions, and preferences of practicing musicians when engaging with such a model. We note their challenges as (1) the lack of restrictions in model output, and (2) the incoherence of model output. We situate these challenges in the context of Hindustani music and aim to suggest future directions for the model design to address these gaps.
comment: Accepted at NeurIPS Creative AI Track 2024
☆ Heterophilic Graph Neural Networks Optimization with Causal Message-passing
In this work, we discover that causal inference provides a promising approach to capture heterophilic message-passing in Graph Neural Network (GNN). By leveraging cause-effect analysis, we can discern heterophilic edges based on asymmetric node dependency. The learned causal structure offers more accurate relationships among nodes. To reduce the computational complexity, we introduce intervention-based causal inference in graph learning. We first simplify causal analysis on graphs by formulating it as a structural learning model and define the optimization problem within the Bayesian scheme. We then present an analysis of decomposing the optimization target into a consistency penalty and a structure modification based on cause-effect relations. We then estimate this target by conditional entropy and present insights into how conditional entropy quantifies the heterophily. Accordingly, we propose CausalMP, a causal message-passing discovery network for heterophilic graph learning, that iteratively learns the explicit causal structure of input graphs. We conduct extensive experiments in both heterophilic and homophilic graph settings. The result demonstrates that the our model achieves superior link prediction performance. Training on causal structure can also enhance node representation in classification task across different base models.
☆ AutoMixQ: Self-Adjusting Quantization for High Performance Memory-Efficient Fine-Tuning
Fine-tuning large language models (LLMs) under resource constraints is a significant challenge in deep learning. Low-Rank Adaptation (LoRA), pruning, and quantization are all effective methods for improving resource efficiency. However, combining them directly often results in suboptimal performance, especially with uniform quantization across all model layers. This is due to the complex, uneven interlayer relationships introduced by pruning, necessitating more refined quantization strategies. To address this, we propose AutoMixQ, an end-to-end optimization framework that selects optimal quantization configurations for each LLM layer. AutoMixQ leverages lightweight performance models to guide the selection process, significantly reducing time and computational resources compared to exhaustive search methods. By incorporating Pareto optimality, AutoMixQ balances memory usage and performance, approaching the upper bounds of model capability under strict resource constraints. Our experiments on widely used benchmarks show that AutoMixQ reduces memory consumption while achieving superior performance. For example, at a 30\% pruning rate in LLaMA-7B, AutoMixQ achieved 66.21\% on BoolQ compared to 62.45\% for LoRA and 58.96\% for LoftQ, while reducing memory consumption by 35.5\% compared to LoRA and 27.5\% compared to LoftQ.
☆ NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews
Large Language Models (LLMs) have demonstrated impressive capabilities in generating coherent text but often struggle with grounding language and strategic dialogue. To address this gap, we focus on journalistic interviews, a domain rich in grounding communication and abundant in data. We curate a dataset of 40,000 two-person informational interviews from NPR and CNN, and reveal that LLMs are significantly less likely than human interviewers to use acknowledgements and to pivot to higher-level questions. Realizing that a fundamental deficit exists in multi-turn planning and strategic thinking, we develop a realistic simulated environment, incorporating source personas and persuasive elements, in order to facilitate the development of agents with longer-horizon rewards. Our experiments show that while source LLMs mimic human behavior in information sharing, interviewer LLMs struggle with recognizing when questions are answered and engaging persuasively, leading to suboptimal information extraction across model size and capability. These findings underscore the need for enhancing LLMs' strategic dialogue capabilities.
☆ A Survey on Adversarial Robustness of LiDAR-based Machine Learning Perception in Autonomous Vehicles
In autonomous driving, the combination of AI and vehicular technology offers great potential. However, this amalgamation comes with vulnerabilities to adversarial attacks. This survey focuses on the intersection of Adversarial Machine Learning (AML) and autonomous systems, with a specific focus on LiDAR-based systems. We comprehensively explore the threat landscape, encompassing cyber-attacks on sensors and adversarial perturbations. Additionally, we investigate defensive strategies employed in countering these threats. This paper endeavors to present a concise overview of the challenges and advances in securing autonomous driving systems against adversarial threats, emphasizing the need for robust defenses to ensure safety and security.
comment: 20 pages, 2 figures
Benchmarking GPT-4 against Human Translators: A Comprehensive Evaluation Across Languages, Domains, and Expertise Levels
This study presents a comprehensive evaluation of GPT-4's translation capabilities compared to human translators of varying expertise levels. Through systematic human evaluation using the MQM schema, we assess translations across three language pairs (Chinese$\longleftrightarrow$English, Russian$\longleftrightarrow$English, and Chinese$\longleftrightarrow$Hindi) and three domains (News, Technology, and Biomedical). Our findings reveal that GPT-4 achieves performance comparable to junior-level translators in terms of total errors, while still lagging behind senior translators. Unlike traditional Neural Machine Translation systems, which show significant performance degradation in resource-poor language directions, GPT-4 maintains consistent translation quality across all evaluated language pairs. Through qualitative analysis, we identify distinctive patterns in translation approaches: GPT-4 tends toward overly literal translations and exhibits lexical inconsistency, while human translators sometimes over-interpret context and introduce hallucinations. This study represents the first systematic comparison between LLM and human translators across different proficiency levels, providing valuable insights into the current capabilities and limitations of LLM-based translation systems.
comment: Work in progress
☆ FastRAG: Retrieval Augmented Generation for Semi-structured Data
Efficiently processing and interpreting network data is critical for the operation of increasingly complex networks. Recent advances in Large Language Models (LLM) and Retrieval-Augmented Generation (RAG) techniques have improved data processing in network management. However, existing RAG methods like VectorRAG and GraphRAG struggle with the complexity and implicit nature of semi-structured technical data, leading to inefficiencies in time, cost, and retrieval. This paper introduces FastRAG, a novel RAG approach designed for semi-structured data. FastRAG employs schema learning and script learning to extract and structure data without needing to submit entire data sources to an LLM. It integrates text search with knowledge graph (KG) querying to improve accuracy in retrieving context-rich information. Evaluation results demonstrate that FastRAG provides accurate question answering, while improving up to 90% in time and 85% in cost compared to GraphRAG.
☆ An Evaluation-Driven Approach to Designing LLM Agents: Process and Architecture
The advent of Large Language Models (LLMs) has enabled the development of LLM agents capable of autonomously achieving under-specified goals and continuously evolving through post-deployment improvement, sometimes without requiring code or model updates. Conventional approaches, such as pre-defined test cases and code/model redevelopment pipelines, are inadequate for addressing the unique challenges of LLM agent development, particularly in terms of quality and risk control. This paper introduces an evaluation-driven design approach, inspired by test-driven development, to address these challenges. Through a multivocal literature review (MLR), we synthesize existing LLM evaluation methods and propose a novel process model and reference architecture specifically designed for LLM agents. The proposed approach integrates online and offline evaluations to support adaptive runtime adjustments and systematic offline redevelopment, improving runtime pipelines, artifacts, system architecture, and LLMs by continuously incorporating evaluation results, including fine-grained feedback from human and AI evaluators.
☆ Tiny-Align: Bridging Automatic Speech Recognition and Large Language Model on the Edge
The combination of Large Language Models (LLM) and Automatic Speech Recognition (ASR), when deployed on edge devices (called edge ASR-LLM), can serve as a powerful personalized assistant to enable audio-based interaction for users. Compared to text-based interaction, edge ASR-LLM allows accessible and natural audio interactions. Unfortunately, existing ASR-LLM models are mainly trained in high-performance computing environments and produce substantial model weights, making them difficult to deploy on edge devices. More importantly, to better serve users' personalized needs, the ASR-LLM must be able to learn from each distinct user, given that audio input often contains highly personalized characteristics that necessitate personalized on-device training. Since individually fine-tuning the ASR or LLM often leads to suboptimal results due to modality-specific limitations, end-to-end training ensures seamless integration of audio features and language understanding (cross-modal alignment), ultimately enabling a more personalized and efficient adaptation on edge devices. However, due to the complex training requirements and substantial computational demands of existing approaches, cross-modal alignment between ASR audio and LLM can be challenging on edge devices. In this work, we propose a resource-efficient cross-modal alignment framework that bridges ASR and LLMs on edge devices to handle personalized audio input. Our framework enables efficient ASR-LLM alignment on resource-constrained devices like NVIDIA Jetson Orin (8GB RAM), achieving 50x training time speedup while improving the alignment quality by more than 50\%. To the best of our knowledge, this is the first work to study efficient ASR-LLM alignment on resource-constrained edge devices.
comment: 7 pages, 8 figures
☆ AttentionBreaker: Adaptive Evolutionary Optimization for Unmasking Vulnerabilities in LLMs through Bit-Flip Attacks
Large Language Models (LLMs) have revolutionized natural language processing (NLP), excelling in tasks like text generation and summarization. However, their increasing adoption in mission-critical applications raises concerns about hardware-based threats, particularly bit-flip attacks (BFAs). BFAs, enabled by fault injection methods such as Rowhammer, target model parameters in memory, compromising both integrity and performance. Identifying critical parameters for BFAs in the vast parameter space of LLMs poses significant challenges. While prior research suggests transformer-based architectures are inherently more robust to BFAs compared to traditional deep neural networks, we challenge this assumption. For the first time, we demonstrate that as few as three bit-flips can cause catastrophic performance degradation in an LLM with billions of parameters. Current BFA techniques are inadequate for exploiting this vulnerability due to the difficulty of efficiently identifying critical parameters within the immense parameter space. To address this, we propose AttentionBreaker, a novel framework tailored for LLMs that enables efficient traversal of the parameter space to identify critical parameters. Additionally, we introduce GenBFA, an evolutionary optimization strategy designed to refine the search further, isolating the most critical bits for an efficient and effective attack. Empirical results reveal the profound vulnerability of LLMs to AttentionBreaker. For example, merely three bit-flips (4.129 x 10^-9% of total parameters) in the LLaMA3-8B-Instruct 8-bit quantized (W8) model result in a complete performance collapse: accuracy on MMLU tasks drops from 67.3% to 0%, and Wikitext perplexity skyrockets from 12.6 to 4.72 x 10^5. These findings underscore the effectiveness of AttentionBreaker in uncovering and exploiting critical vulnerabilities within LLM architectures.
Transformer-based Heuristic for Advanced Air Mobility Planning
Safety is extremely important for urban flights of autonomous Unmanned Aerial Vehicles (UAVs). Risk-aware path planning is one of the most effective methods to guarantee the safety of UAVs. This type of planning can be represented as a Constrained Shortest Path (CSP) problem, which seeks to find the shortest route that meets a predefined safety constraint. Solving CSP problems is NP-hard, presenting significant computational challenges. Although traditional methods can accurately solve CSP problems, they tend to be very slow. Previously, we introduced an additional safety dimension to the traditional A* algorithm, known as ASD A*, to effectively handle Constrained Shortest Path (CSP) problems. Then, we developed a custom learning-based heuristic using transformer-based neural networks, which significantly reduced computational load and enhanced the performance of the ASD A* algorithm. In this paper, we expand our dataset to include more risk maps and tasks, improve the proposed model, and increase its performance. We also introduce a new heuristic strategy and a novel neural network, which enhance the overall effectiveness of our approach.
comment: 2024 AIAA DATC/IEEE 43rd Digital Avionics Systems Conference (DASC)
☆ 23 DoF Grasping Policies from a Raw Point Cloud
Coordinating the motion of robots with high degrees of freedom (DoF) to grasp objects gives rise to many challenges. In this paper, we propose a novel imitation learning approach to learn a policy that directly predicts 23 DoF grasp trajectories from a partial point cloud provided by a single, fixed camera. At the core of the approach is a second-order geometric-based model of behavioral dynamics. This Neural Geometric Fabric (NGF) policy predicts accelerations directly in joint space. We show that our policy is capable of generalizing to novel objects, and combine our policy with a geometric fabric motion planner in a loop to generate stable grasping trajectories. We evaluate our approach on a set of three different objects, compare different policy structures, and run ablation studies to understand the importance of different object encodings for policy learning.
comment: IEEE International Conference on Robotics and Automation (ICRA) Workshop on Geometric Representations 2023
☆ Learning Humanoid Locomotion with Perceptive Internal Model
In contrast to quadruped robots that can navigate diverse terrains using a "blind" policy, humanoid robots require accurate perception for stable locomotion due to their high degrees of freedom and inherently unstable morphology. However, incorporating perceptual signals often introduces additional disturbances to the system, potentially reducing its robustness, generalizability, and efficiency. This paper presents the Perceptive Internal Model (PIM), which relies on onboard, continuously updated elevation maps centered around the robot to perceive its surroundings. We train the policy using ground-truth obstacle heights surrounding the robot in simulation, optimizing it based on the Hybrid Internal Model (HIM), and perform inference with heights sampled from the constructed elevation map. Unlike previous methods that directly encode depth maps or raw point clouds, our approach allows the robot to perceive the terrain beneath its feet clearly and is less affected by camera movement or noise. Furthermore, since depth map rendering is not required in simulation, our method introduces minimal additional computational costs and can train the policy in 3 hours on an RTX 4090 GPU. We verify the effectiveness of our method across various humanoid robots, various indoor and outdoor terrains, stairs, and various sensor configurations. Our method can enable a humanoid robot to continuously climb stairs and has the potential to serve as a foundational algorithm for the development of future humanoid control methods.
comment: submitted to ICRA2025
☆ ETA-IK: Execution-Time-Aware Inverse Kinematics for Dual-Arm Systems
This paper presents ETA-IK, a novel Execution-Time-Aware Inverse Kinematics method tailored for dual-arm robotic systems. The primary goal is to optimize motion execution time by leveraging the redundancy of both arms, specifically in tasks where only the relative pose of the robots is constrained, such as dual-arm scanning of unknown objects. Unlike traditional inverse kinematics methods that use surrogate metrics such as joint configuration distance, our method incorporates direct motion execution time and implicit collisions into the optimization process, thereby finding target joints that allow subsequent trajectory generation to get more efficient and collision-free motion. A neural network based execution time approximator is employed to predict time-efficient joint configurations while accounting for potential collisions. Through experimental evaluation on a system composed of a UR5 and a KUKA iiwa robot, we demonstrate significant reductions in execution time. The proposed method outperforms conventional approaches, showing improved motion efficiency without sacrificing positioning accuracy. These results highlight the potential of ETA-IK to improve the performance of dual-arm systems in applications, where efficiency and safety are paramount.
☆ Cross--layer Formal Verification of Robotic Systems
Robotic systems are widely used to interact with humans or to perform critical tasks. As a result, it is imperative to provide guarantees about their behavior. Due to the modularity and complexity of robotic systems, their design and verification are often divided into several layers. However, some system properties can only be investigated by considering multiple layers simultaneously. We propose a cross-layer verification method to verify the expected properties of concrete robotic systems. Our method verifies one layer using abstractions of other layers. We propose two approaches: refining the models of the abstract layers and refining the property under verification. A combination of these two approaches seems to be the most promising to ensure model genericity and to avoid the state-space explosion problem.
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ Model Checking and Verification of Synchronisation Properties of Cobot Welding
This paper describes use of model checking to verify synchronisation properties of an industrial welding system consisting of a cobot arm and an external turntable. The robots must move synchronously, but sometimes get out of synchronisation, giving rise to unsatisfactory weld qualities in problem areas, such as around corners. These mistakes are costly, since time is lost both in the robotic welding and in manual repairs needed to improve the weld. Verification of the synchronisation properties has shown that they are fulfilled as long as assumptions of correctness made about parts outside the scope of the model hold, indicating limitations in the hardware. These results have indicated the source of the problem, and motivated a re-calibration of the real-life system. This has drastically improved the welding results, and is a demonstration of how formal methods can be useful in an industrial setting.
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ InCrowd-VI: A Realistic Visual-Inertial Dataset for Evaluating SLAM in Indoor Pedestrian-Rich Spaces for Human Navigation
Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control. InCrowd-VI features 58 sequences totaling a 5 km trajectory length and 1.5 hours of recording time, including RGB, stereo images, and IMU measurements. The dataset captures important challenges such as pedestrian occlusions, varying crowd densities, complex layouts, and lighting changes. Ground-truth trajectories, accurate to approximately 2 cm, are provided in the dataset, originating from the Meta Aria project machine perception SLAM service. In addition, a semi-dense 3D point cloud of scenes is provided for each sequence. The evaluation of state-of-the-art visual odometry (VO) and SLAM algorithms on InCrowd-VI revealed severe performance limitations in these realistic scenarios, demonstrating the need and value of the new dataset to advance SLAM research for visually impaired navigation in complex indoor environments.
comment: 18 pages, 7 figures, 5 tabels
☆ Convex Approximation of Probabilistic Reachable Sets from Small Samples Using Self-supervised Neural Networks
Probabilistic Reachable Set (PRS) plays a crucial role in many fields of autonomous systems, yet efficiently generating PRS remains a significant challenge. This paper presents a learning approach to generating 2-dimensional PRS for states in a dynamic system. Traditional methods such as Hamilton-Jacobi reachability analysis, Monte Carlo, and Gaussian process classification face significant computational challenges or require detailed dynamics information, limiting their applicability in realistic situations. Existing data-driven methods may lack accuracy. To overcome these limitations, we propose leveraging neural networks, commonly used in imitation learning and computer vision, to imitate expert methods to generate PRS approximations. We trained the neural networks using a multi-label, self-supervised learning approach. We selected the fine-tuned convex approximation method as the expert to create expert PRS. Additionally, we continued sampling from the distribution to obtain a diverse array of sample sets. Given a small sample set, the trained neural networks can replicate the PRS approximation generated by the expert method, while the generation speed is much faster.
comment: 10 pages
☆ SplatR : Experience Goal Visual Rearrangement with 3D Gaussian Splatting and Dense Feature Matching
Experience Goal Visual Rearrangement task stands as a foundational challenge within Embodied AI, requiring an agent to construct a robust world model that accurately captures the goal state. The agent uses this world model to restore a shuffled scene to its original configuration, making an accurate representation of the world essential for successfully completing the task. In this work, we present a novel framework that leverages on 3D Gaussian Splatting as a 3D scene representation for experience goal visual rearrangement task. Recent advances in volumetric scene representation like 3D Gaussian Splatting, offer fast rendering of high quality and photo-realistic novel views. Our approach enables the agent to have consistent views of the current and the goal setting of the rearrangement task, which enables the agent to directly compare the goal state and the shuffled state of the world in image space. To compare these views, we propose to use a dense feature matching method with visual features extracted from a foundation model, leveraging its advantages of a more universal feature representation, which facilitates robustness, and generalization. We validate our approach on the AI2-THOR rearrangement challenge benchmark and demonstrate improvements over the current state of the art methods
☆ Continual Learning and Lifting of Koopman Dynamics for Linear Control of Legged Robots
The control of legged robots, particularly humanoid and quadruped robots, presents significant challenges due to their high-dimensional and nonlinear dynamics. While linear systems can be effectively controlled using methods like Model Predictive Control (MPC), the control of nonlinear systems remains complex. One promising solution is the Koopman Operator, which approximates nonlinear dynamics with a linear model, enabling the use of proven linear control techniques. However, achieving accurate linearization through data-driven methods is difficult due to issues like approximation error, domain shifts, and the limitations of fixed linear state-space representations. These challenges restrict the scalability of Koopman-based approaches. This paper addresses these challenges by proposing a continual learning algorithm designed to iteratively refine Koopman dynamics for high-dimensional legged robots. The key idea is to progressively expand the dataset and latent space dimension, enabling the learned Koopman dynamics to converge towards accurate approximations of the true system dynamics. Theoretical analysis shows that the linear approximation error of our method converges monotonically. Experimental results demonstrate that our method achieves high control performance on robots like Unitree G1/H1/A1/Go2 and ANYmal D, across various terrains using simple linear MPC controllers. This work is the first to successfully apply linearized Koopman dynamics for locomotion control of high-dimensional legged robots, enabling a scalable model-based control solution.
☆ Soft Manipulation Surface With Reduced Actuator Density For Heterogeneous Object Manipulation
Object manipulation in robotics faces challenges due to diverse object shapes, sizes, and fragility. Gripper-based methods offer precision and low degrees of freedom (DOF) but the gripper limits the kind of objects to grasp. On the other hand, surface-based approaches provide flexibility for handling fragile and heterogeneous objects but require numerous actuators, increasing complexity. We propose new manipulation hardware that utilizes equally spaced linear actuators placed vertically and connected by a soft surface. In this setup, object manipulation occurs on the soft surface through coordinated movements of the surrounding actuators. This approach requires fewer actuators to cover a large manipulation area, offering a cost-effective solution with a lower DOF compared to dense actuator arrays. It also effectively handles heterogeneous objects of varying shapes and weights, even when they are significantly smaller than the distance between actuators. This method is particularly suitable for managing highly fragile objects in the food industry.
☆ Generalizing End-To-End Autonomous Driving In Real-World Environments Using Zero-Shot LLMs
Traditional autonomous driving methods adopt a modular design, decomposing tasks into sub-tasks. In contrast, end-to-end autonomous driving directly outputs actions from raw sensor data, avoiding error accumulation. However, training an end-to-end model requires a comprehensive dataset; otherwise, the model exhibits poor generalization capabilities. Recently, large language models (LLMs) have been applied to enhance the generalization capabilities of end-to-end driving models. Most studies explore LLMs in an open-loop manner, where the output actions are compared to those of experts without direct feedback from the real world, while others examine closed-loop results only in simulations. This paper proposes an efficient architecture that integrates multimodal LLMs into end-to-end driving models operating in closed-loop settings in real-world environments. In our architecture, the LLM periodically processes raw sensor data to generate high-level driving instructions, effectively guiding the end-to-end model, even at a slower rate than the raw sensor data. This architecture relaxes the trade-off between the latency and inference quality of the LLM. It also allows us to choose from a wide variety of LLMs to improve high-level driving instructions and minimize fine-tuning costs. Consequently, our architecture reduces data collection requirements because the LLMs do not directly output actions; we only need to train a simple imitation learning model to output actions. In our experiments, the training data for the end-to-end model in a real-world environment consists of only simple obstacle configurations with one traffic cone, while the test environment is more complex and contains multiple obstacles placed in various positions. Experiments show that the proposed architecture enhances the generalization capabilities of the end-to-end model even without fine-tuning the LLM.
☆ Towards a Physics Engine to Simulate Robotic Laser Surgery: Finite Element Modeling of Thermal Laser-Tissue Interactions
This paper presents a computational model, based on the Finite Element Method (FEM), that simulates the thermal response of laser-irradiated tissue. This model addresses a gap in the current ecosystem of surgical robot simulators, which generally lack support for lasers and other energy-based end effectors. In the proposed model, the thermal dynamics of the tissue are calculated as the solution to a heat conduction problem with appropriate boundary conditions. The FEM formulation allows the model to capture complex phenomena, such as convection, which is crucial for creating realistic simulations. The accuracy of the model was verified via benchtop laser-tissue interaction experiments using agar tissue phantoms and ex-vivo chicken muscle. The results revealed an average root-mean-square error (RMSE) of less than 2 degrees Celsius across most experimental conditions.
comment: Submitted to the International Symposium on Medical Robotics 2025
☆ Simulation-Aided Policy Tuning for Black-Box Robot Learning
How can robots learn and adapt to new tasks and situations with little data? Systematic exploration and simulation are crucial tools for efficient robot learning. We present a novel black-box policy search algorithm focused on data-efficient policy improvements. The algorithm learns directly on the robot and treats simulation as an additional information source to speed up the learning process. At the core of the algorithm, a probabilistic model learns the dependence of the policy parameters and the robot learning objective not only by performing experiments on the robot, but also by leveraging data from a simulator. This substantially reduces interaction time with the robot. Using this model, we can guarantee improvements with high probability for each policy update, thereby facilitating fast, goal-oriented learning. We evaluate our algorithm on simulated fine-tuning tasks and demonstrate the data-efficiency of the proposed dual-information source optimization algorithm. In a real robot learning experiment, we show fast and successful task learning on a robot manipulator with the aid of an imperfect simulator.
☆ Formalizing Stateful Behavior Trees
Behavior Trees (BTs) are high-level controllers that are useful in a variety of planning tasks and are gaining traction in robotic mission planning. As they gain popularity in safety-critical domains, it is important to formalize their syntax and semantics, as well as verify properties for them. In this paper, we formalize a class of BTs we call Stateful Behavior Trees (SBTs) that have auxiliary variables and operate in an environment that can change over time. SBTs have access to persistent shared memory (often known as a blackboard) that keeps track of these auxiliary variables. We demonstrate that SBTs are equivalent in computational power to Turing Machines when the blackboard can store mathematical (i.e., unbounded) integers. We further identify syntactic assumptions where SBTs have computational power equivalent to finite state automata, specifically where the auxiliary variables are of finitary types. We present a domain specific language (DSL) for writing SBTs and adapt the tool BehaVerify for use with this DSL. This new DSL in BehaVerify supports interfacing with popular BT libraries in Python, and also provides generation of Haskell code and nuXmv models, the latter of which is used for model checking temporal logic specifications for the SBTs. We include examples and scalability results where BehaVerify outperforms another verification tool by a factor of 100.
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ Verification of Behavior Trees with Contingency Monitors
Behavior Trees (BTs) are high level controllers that have found use in a wide range of robotics tasks. As they grow in popularity and usage, it is crucial to ensure that the appropriate tools and methods are available for ensuring they work as intended. To that end, we created a new methodology by which to create Runtime Monitors for BTs. These monitors can be used by the BT to correct when undesirable behavior is detected and are capable of handling LTL specifications. We demonstrate that in terms of runtime, the generated monitors are on par with monitors generated by existing tools and highlight certain features that make our method more desirable in various situations. We note that our method allows for our monitors to be swapped out with alternate monitors with fairly minimal user effort. Finally, our method ties in with our existing tool, BehaVerify, allowing for the verification of BTs with monitors.
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ Grand Challenges in the Verification of Autonomous Systems
Autonomous systems use independent decision-making with only limited human intervention to accomplish goals in complex and unpredictable environments. As the autonomy technologies that underpin them continue to advance, these systems will find their way into an increasing number of applications in an ever wider range of settings. If we are to deploy them to perform safety-critical or mission-critical roles, it is imperative that we have justified confidence in their safe and correct operation. Verification is the process by which such confidence is established. However, autonomous systems pose challenges to existing verification practices. This paper highlights viewpoints of the Roadmap Working Group of the IEEE Robotics and Automation Society Technical Committee for Verification of Autonomous Systems, identifying these grand challenges, and providing a vision for future research efforts that will be needed to address them.
☆ Path Tracking Hybrid A* For Autonomous Agricultural Vehicles
We propose a path-tracking Hybrid A* planner and a coupled hierarchical Model Predictive Control (MPC) controller in scenarios involving the path smoothing of agricultural vehicles. For agricultural vehicles following reference paths on farmlands, especially during cross-furrow operations, a minimum deviation from the reference path is desired, in addition to the curvature constraints and body scale collision avoidance. Our contribution is threefold. (1) We propose the path-tracking Hybrid A*, which satisfies nonholonomic constraints and vehicle size collision avoidance, and devise new cost and heuristic functions to minimize the deviation degree. The path-tracking Hybrid A* can not only function in offline smoothing but also the real-time adjustment when confronted with unexpected obstacles. (2) We propose the hierarchical MPC to safely track the smoothed trajectory, using the initial solution solved by linearized MPC and nonlinear local adjustments around the initial solution. (3) We carry out extensive simulations with baseline comparisons based on real-world farm datasets to evaluate the performance of our algorithm.
GPT versus Humans: Uncovering Ethical Concerns in Conversational Generative AI-empowered Multi-Robot Systems
The emergence of generative artificial intelligence (GAI) and large language models (LLMs) such ChatGPT has enabled the realization of long-harbored desires in software and robotic development. The technology however, has brought with it novel ethical challenges. These challenges are compounded by the application of LLMs in other machine learning systems, such as multi-robot systems. The objectives of the study were to examine novel ethical issues arising from the application of LLMs in multi-robot systems. Unfolding ethical issues in GPT agent behavior (deliberation of ethical concerns) was observed, and GPT output was compared with human experts. The article also advances a model for ethical development of multi-robot systems. A qualitative workshop-based method was employed in three workshops for the collection of ethical concerns: two human expert workshops (N=16 participants) and one GPT-agent-based workshop (N=7 agents; two teams of 6 agents plus one judge). Thematic analysis was used to analyze the qualitative data. The results reveal differences between the human-produced and GPT-based ethical concerns. Human experts placed greater emphasis on new themes related to deviance, data privacy, bias and unethical corporate conduct. GPT agents emphasized concerns present in existing AI ethics guidelines. The study contributes to a growing body of knowledge in context-specific AI ethics and GPT application. It demonstrates the gap between human expert thinking and LLM output, while emphasizing new ethical concerns emerging in novel technology.
comment: 51 pages, 10 figures
☆ A Simulated real-world upper-body Exoskeleton Accident and Investigation
This paper describes the enactment of a simulated (mock) accident involving an upper-body exoskeleton and its investigation. The accident scenario is enacted by role-playing volunteers, one of whom is wearing the exoskeleton. Following the mock accident, investigators - also volunteers - interview both the subject of the accident and relevant witnesses. The investigators then consider the witness testimony alongside robot data logged by the ethical black box, in order to address the three key questions: what happened?, why did it happen?, and how can we make changes to prevent the accident happening again? This simulated accident scenario is one of a series we have run as part of the RoboTIPS project, with the overall aim of developing and testing both processes and technologies to support social robot accident investigation.
☆ Contact Tooling Manipulation Control for Robotic Repair Platform
This paper delves into various robotic manipulation control methods designed for dynamic contact tooling operations on a robotic repair platform. The explored control strategies include hybrid position-force control, admittance control, bilateral telerobotic control, virtual fixture, and shared control. Each approach is elucidated and assessed in terms of its applicability and effectiveness for handling contact tooling tasks in real-world repair scenarios. The hybrid position-force controller is highlighted for its proficiency in executing precise force-required tasks, but it demands contingent on an accurate model of the environment and structured, static environment. In contrast, for unstructured environments, bilateral teleoperation control is investigated, revealing that the compliance with the remote robot controller is crucial for stable contact, albeit at the expense of reduced motion tracking performance. Moreover, advanced controllers for tooling manipulation tasks, such as virtual fixture and shared control approaches, are investigated for their potential applications.
comment: This paper was submitted to Waste Management Symposia 2024 (WM2024)
☆ Dual-Arm Telerobotic Platform for Robotic Hotbox Operations for Nuclear Waste Disposition in EM Sites
This paper introduces a dual-arm telerobotic platform designed to efficiently and safely execute hot cell operations for nuclear waste disposition at EM sites. The proposed system consists of a remote robot arm platform and a teleoperator station, both integrated with a software architecture to control the entire system. The dual-arm configuration of the remote platform enhances versatility and task performance in complex and hazardous environments, ensuring precise manipulation and effective handling of nuclear waste materials. The integration of a teleoperator station enables human teleoperator to remotely control the entire system real-time, enhancing decision-making capabilities, situational awareness, and dexterity. The control software plays a crucial role in our system, providing a robust and intuitive interface for the teleoperator. Test operation results demonstrate the system's effectiveness in operating as a remote hotbox for nuclear waste disposition, showcasing its potential applicability in real EM sites.
comment: This paper was submitted to Waste Management Symposia 2024 (WM2024)
☆ Dehazing-aided Multi-Rate Multi-Modal Pose Estimation Framework for Mitigating Visual Disturbances in Extreme Underwater Domain
This paper delves into the potential of DU-VIO, a dehazing-aided hybrid multi-rate multi-modal Visual-Inertial Odometry (VIO) estimation framework, designed to thrive in the challenging realm of extreme underwater environments. The cutting-edge DU-VIO framework is incorporating a GAN-based pre-processing module and a hybrid CNN-LSTM module for precise pose estimation, using visibility-enhanced underwater images and raw IMU data. Accurate pose estimation is paramount for various underwater robotics and exploration applications. However, underwater visibility is often compromised by suspended particles and attenuation effects, rendering visual-inertial pose estimation a formidable challenge. DU-VIO aims to overcome these limitations by effectively removing visual disturbances from raw image data, enhancing the quality of image features used for pose estimation. We demonstrate the effectiveness of DU-VIO by calculating RMSE scores for translation and rotation vectors in comparison to their reference values. These scores are then compared to those of a base model using a modified AQUALOC Dataset. This study's significance lies in its potential to revolutionize underwater robotics and exploration. DU-VIO offers a robust solution to the persistent challenge of underwater visibility, significantly improving the accuracy of pose estimation. This research contributes valuable insights and tools for advancing underwater technology, with far-reaching implications for scientific research, environmental monitoring, and industrial applications.
☆ Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control
We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach applies to competitive and cooperative multi-agent motion planning problems which we formulate as constrained dynamic games. Given a constrained dynamic game, we randomly sample initial conditions and solve for the generalized Nash equilibrium (GNE) to generate a dataset of GNE solutions, computing the reward outcome of each game-theoretic interaction from the GNE. The data is used to train a simple neural network to predict the reward outcome, which we use as the terminal cost-to-go function in an MPC scheme. We showcase emerging competitive and coordinated behaviors using IGT-MPC in scenarios such as two-vehicle head-to-head racing and un-signalized intersection navigation. IGT-MPC offers a novel method integrating machine learning and game-theoretic reasoning into model-based decentralized multi-agent motion planning.
comment: Submitted to 2025 Learning for Dynamics and Control Conference (L4DC)
☆ Breadboarding the European Moon Rover System: discussion and results of the analogue field test campaign
This document compiles results obtained from the test campaign of the European Moon Rover System (EMRS) project. The test campaign, conducted at the Planetary Exploration Lab of DLR in Wessling, aimed to understand the scope of the EMRS breadboard design, its strengths, and the benefits of the modular design. The discussion of test results is based on rover traversal analyses, robustness assessments, wheel deflection analyses, and the overall transportation cost of the rover. This not only enables the comparison of locomotion modes on lunar regolith but also facilitates critical decision-making in the design of future lunar missions.
comment: 6 pages, 5 figures, conference International Conference on Space Robotics
☆ Hybrid-Neuromorphic Approach for Underwater Robotics Applications: A Conceptual Framework
This paper introduces the concept of employing neuromorphic methodologies for task-oriented underwater robotics applications. In contrast to the increasing computational demands of conventional deep learning algorithms, neuromorphic technology, leveraging spiking neural network architectures, promises sophisticated artificial intelligence with significantly reduced computational requirements and power consumption, emulating human brain operational principles. Despite documented neuromorphic technology applications in various robotic domains, its utilization in marine robotics remains largely unexplored. Thus, this article proposes a unified framework for integrating neuromorphic technologies for perception, pose estimation, and haptic-guided conditional control of underwater vehicles, customized to specific user-defined objectives. This conceptual framework stands to revolutionize underwater robotics, enhancing efficiency and autonomy while reducing energy consumption. By enabling greater adaptability and robustness, this advancement could facilitate applications such as underwater exploration, environmental monitoring, and infrastructure maintenance, thereby contributing to significant progress in marine science and technology.
☆ Learning thin deformable object manipulation with a multi-sensory integrated soft hand
Robotic manipulation has made significant advancements, with systems demonstrating high precision and repeatability. However, this remarkable precision often fails to translate into efficient manipulation of thin deformable objects. Current robotic systems lack imprecise dexterity, the ability to perform dexterous manipulation through robust and adaptive behaviors that do not rely on precise control. This paper explores the singulation and grasping of thin, deformable objects. Here, we propose a novel solution that incorporates passive compliance, touch, and proprioception into thin, deformable object manipulation. Our system employs a soft, underactuated hand that provides passive compliance, facilitating adaptive and gentle interactions to dexterously manipulate deformable objects without requiring precise control. The tactile and force/torque sensors equipped on the hand, along with a depth camera, gather sensory data required for manipulation via the proposed slip module. The manipulation policies are learned directly from raw sensory data via model-free reinforcement learning, bypassing explicit environmental and object modeling. We implement a hierarchical double-loop learning process to enhance learning efficiency by decoupling the action space. Our method was deployed on real-world robots and trained in a self-supervised manner. The resulting policy was tested on a variety of challenging tasks that were beyond the capabilities of prior studies, ranging from displaying suit fabric like a salesperson to turning pages of sheet music for violinists.
comment: 19 pages
☆ Neuromorphic Attitude Estimation and Control
The real-world application of small drones is mostly hampered by energy limitations. Neuromorphic computing promises extremely energy-efficient AI for autonomous flight, but is still challenging to train and deploy on real robots. In order to reap the maximal benefits from neuromorphic computing, it is desired to perform all autonomy functions end-to-end on a single neuromorphic chip, from low-level attitude control to high-level navigation. This research presents the first neuromorphic control system using a spiking neural network (SNN) to effectively map a drone's raw sensory input directly to motor commands. We apply this method to low-level attitude estimation and control for a quadrotor, deploying the SNN on a tiny Crazyflie. We propose a modular SNN, separately training and then merging estimation and control sub-networks. The SNN is trained with imitation learning, using a flight dataset of sensory-motor pairs. Post-training, the network is deployed on the Crazyflie, issuing control commands from sensor inputs at $500$Hz. Furthermore, for the training procedure we augmented training data by flying a controller with additional excitation and time-shifting the target data to enhance the predictive capabilities of the SNN. On the real drone the perception-to-control SNN tracks attitude commands with an average error of $3$ degrees, compared to $2.5$ degrees for the regular flight stack. We also show the benefits of the proposed learning modifications for reducing the average tracking error and reducing oscillations. Our work shows the feasibility of performing neuromorphic end-to-end control, laying the basis for highly energy-efficient and low-latency neuromorphic autopilots.
☆ Cooperative Grasping and Transportation using Multi-agent Reinforcement Learning with Ternary Force Representation
Cooperative grasping and transportation require effective coordination to complete the task. This study focuses on the approach leveraging force-sensing feedback, where robots use sensors to detect forces applied by others on an object to achieve coordination. Unlike explicit communication, it avoids delays and interruptions; however, force-sensing is highly sensitive and prone to interference from variations in grasping environment, such as changes in grasping force, grasping pose, object size and geometry, which can interfere with force signals, subsequently undermining coordination. We propose multi-agent reinforcement learning (MARL) with ternary force representation, a force representation that maintains consistent representation against variations in grasping environment. The simulation and real-world experiments demonstrate the robustness of the proposed method to changes in grasping force, object size and geometry as well as inherent sim2real gap.
☆ Joint-repositionable Inner-wireless Planar Snake Robot
Bio-inspired multi-joint snake robots offer the advantages of terrain adaptability due to their limbless structure and high flexibility. However, a series of dozens of motor units in typical multiple-joint snake robots results in a heavy body structure and hundreds of watts of high power consumption. This paper presents a joint-repositionable, inner-wireless snake robot that enables multi-joint-like locomotion using a low-powered underactuated mechanism. The snake robot, consisting of a series of flexible passive links, can dynamically change its joint coupling configuration by repositioning motor-driven joint units along rack gears inside the robot. Additionally, a soft robot skin wirelessly powers the internal joint units, avoiding the risk of wire tangling and disconnection caused by the movable joint units. The combination of the joint-repositionable mechanism and the wireless-charging-enabled soft skin achieves a high degree of bending, along with a lightweight structure of 1.3 kg and energy-efficient wireless power transmission of 7.6 watts.
☆ Hybrid Physics-ML Modeling for Marine Vehicle Maneuvering Motions in the Presence of Environmental Disturbances
A hybrid physics-machine learning modeling framework is proposed for the surface vehicles' maneuvering motions to address the modeling capability and stability in the presence of environmental disturbances. From a deep learning perspective, the framework is based on a variant version of residual networks with additional feature extraction. Initially, an imperfect physical model is derived and identified to capture the fundamental hydrodynamic characteristics of marine vehicles. This model is then integrated with a feedforward network through a residual block. Additionally, feature extraction from trigonometric transformations is employed in the machine learning component to account for the periodic influence of currents and waves. The proposed method is evaluated using real navigational data from the 'JH7500' unmanned surface vehicle. The results demonstrate the robust generalizability and accurate long-term prediction capabilities of the nonlinear dynamic model in specific environmental conditions. This approach has the potential to be extended and applied to develop a comprehensive high-fidelity simulator.
☆ Trajectory Tracking Using Frenet Coordinates with Deep Deterministic Policy Gradient
This paper studies the application of the DDPG algorithm in trajectory-tracking tasks and proposes a trajectorytracking control method combined with Frenet coordinate system. By converting the vehicle's position and velocity information from the Cartesian coordinate system to Frenet coordinate system, this method can more accurately describe the vehicle's deviation and travel distance relative to the center line of the road. The DDPG algorithm adopts the Actor-Critic framework, uses deep neural networks for strategy and value evaluation, and combines the experience replay mechanism and target network to improve the algorithm's stability and data utilization efficiency. Experimental results show that the DDPG algorithm based on Frenet coordinate system performs well in trajectory-tracking tasks in complex environments, achieves high-precision and stable path tracking, and demonstrates its application potential in autonomous driving and intelligent transportation systems. Keywords- DDPG; path tracking; robot navigation
☆ Image Compression Using Novel View Synthesis Priors
Real-time visual feedback is essential for tetherless control of remotely operated vehicles, particularly during inspection and manipulation tasks. Though acoustic communication is the preferred choice for medium-range communication underwater, its limited bandwidth renders it impractical to transmit images or videos in real-time. To address this, we propose a model-based image compression technique that leverages prior mission information. Our approach employs trained machine-learning based novel view synthesis models, and uses gradient descent optimization to refine latent representations to help generate compressible differences between camera images and rendered images. We evaluate the proposed compression technique using a dataset from an artificial ocean basin, demonstrating superior compression ratios and image quality over existing techniques. Moreover, our method exhibits robustness to introduction of new objects within the scene, highlighting its potential for advancing tetherless remotely operated vehicle operations.
comment: Preprint submitted to Ocean Engineering
☆ Data-Driven Multi-step Nonlinear Model Predictive Control for Industrial Heavy Load Hydraulic Robot
Automating complex industrial robots requires precise nonlinear control and efficient energy management. This paper introduces a data-driven nonlinear model predictive control (NMPC) framework to optimize control under multiple objectives. To enhance the prediction accuracy of the dynamic model, we design a single-shot multi-step prediction (SSMP) model based on long short-term memory (LSTM) and multilayer perceptrons (MLP), which can directly obtain the predictive horizon without iterative repetition and reduce computational pressure. Moreover, we combine offline and online models to address disturbances stemming from environmental interactions, similar to the superposition of the robot's free and forced responses. The online model learns the system's variations from the prediction mismatches of the offline model and updates its weights in real time. The proposed hybrid predictive model simplifies the relationship between inputs and outputs into matrix multiplication, which can quickly obtain the derivative. Therefore, the solution for the control signal sequence employs a gradient descent method with an adaptive learning rate, allowing the NMPC cost function to be formulated as a convex function incorporating critical states. The learning rate is dynamically adjusted based on state errors to counteract the inherent prediction inaccuracies of neural networks. The controller outputs the average value of the control signal sequence instead of the first value. Simulations and experiments on a 22-ton hydraulic excavator have validated the effectiveness of our method, showing that the proposed NMPC approach can be widely applied to industrial systems, including nonlinear control and energy management.
☆ A Data-Driven Modeling and Motion Control of Heavy-Load Hydraulic Manipulators via Reversible Transformation
This work proposes a data-driven modeling and the corresponding hybrid motion control framework for unmanned and automated operation of industrial heavy-load hydraulic manipulator. Rather than the direct use of a neural network black box, we construct a reversible nonlinear model by using multilayer perceptron to approximate dynamics in the physical integrator chain system after reversible transformations. The reversible nonlinear model is trained offline using supervised learning techniques, and the data are obtained from simulations or experiments. Entire hybrid motion control framework consists of the model inversion controller that compensates for the nonlinear dynamics and proportional-derivative controller that enhances the robustness. The stability is proved with Lyapunov theory. Co-simulation and Experiments show the effectiveness of proposed modeling and hybrid control framework. With a commercial 39-ton class hydraulic excavator for motion control tasks, the root mean square error of trajectory tracking error decreases by at least 50\% compared to traditional control methods. In addition, by analyzing the system model, the proposed framework can be rapidly applied to different control plants.
☆ Arm Robot: AR-Enhanced Embodied Control and Visualization for Intuitive Robot Arm Manipulation
Embodied interaction has been introduced to human-robot interaction (HRI) as a type of teleoperation, in which users control robot arms with bodily action via handheld controllers or haptic gloves. Embodied teleoperation has made robot control intuitive to non-technical users, but differences between humans' and robots' capabilities \eg ranges of motion and response time, remain challenging. In response, we present Arm Robot, an embodied robot arm teleoperation system that helps users tackle human-robot discrepancies. Specifically, Arm Robot (1) includes AR visualization as real-time feedback on temporal and spatial discrepancies, and (2) allows users to change observing perspectives and expand action space. We conducted a user study (N=18) to investigate the usability of the Arm Robot and learn how users perceive the embodiment. Our results show users could use Arm Robot's features to effectively control the robot arm, providing insights for continued work in embodied HRI.
☆ Spatiotemporal Tubes for Temporal Reach-Avoid-Stay Tasks in Unknown Systems
The paper considers the controller synthesis problem for general MIMO systems with unknown dynamics, aiming to fulfill the temporal reach-avoid-stay task, where the unsafe regions are time-dependent, and the target must be reached within a specified time frame. The primary aim of the paper is to construct the spatiotemporal tube (STT) using a sampling-based approach and thereby devise a closed-form approximation-free control strategy to ensure that system trajectory reaches the target set while avoiding time-dependent unsafe sets. The proposed scheme utilizes a novel method involving STTs to provide controllers that guarantee both system safety and reachability. In our sampling-based framework, we translate the requirements of STTs into a Robust optimization program (ROP). To address the infeasibility of ROP caused by infinite constraints, we utilize the sampling-based Scenario optimization program (SOP). Subsequently, we solve the SOP to generate the tube and closed-form controller for an unknown system, ensuring the temporal reach-avoid-stay specification. Finally, the effectiveness of the proposed approach is demonstrated through three case studies: an omnidirectional robot, a SCARA manipulator, and a magnetic levitation system.
☆ A Novel Passive Occupational Shoulder Exoskeleton With Adjustable Peak Assistive Torque Angle For Overhead Tasks
Objective: Overhead tasks are a primary inducement to work-related musculoskeletal disorders. Aiming to reduce shoulder physical loads, passive shoulder exoskeletons are increasingly prevalent in the industry due to their lightweight, affordability, and effectiveness. However, they can only handle specific tasks and struggle to balance compactness with a sufficient range of motion effectively. Method: We proposed a novel passive occupational shoulder exoskeleton designed to handle various overhead tasks at different arm elevation angles, ensuring sufficient ROM while maintaining compactness. By formulating kinematic models and simulations, an ergonomic shoulder structure was developed. Then, we presented a torque generator equipped with an adjustable peak assistive torque angle to switch between low and high assistance phases through a passive clutch mechanism. Ten healthy participants were recruited to validate its functionality by performing the screwing task. Results: Measured range of motion results demonstrated that the exoskeleton can ensure a sufficient ROM in both sagittal (164$^\circ$) and horizontal (158$^\circ$) flexion/extension movements. The experimental results of the screwing task showed that the exoskeleton could reduce muscle activation (up to 49.6%), perceived effort and frustration, and provide an improved user experience (scored 79.7 out of 100). Conclusion: These results indicate that the proposed exoskeleton can guarantee natural movements and provide efficient assistance during overhead work, and thus have the potential to reduce the risk of musculoskeletal disorders. Significance: The proposed exoskeleton provides insights into multi-task adaptability and efficient assistance, highlighting the potential for expanding the application of exoskeletons.
☆ Trajectory Representation Learning on Road Networks and Grids with Spatio-Temporal Dynamics
Trajectory representation learning is a fundamental task for applications in fields including smart city, and urban planning, as it facilitates the utilization of trajectory data (e.g., vehicle movements) for various downstream applications, such as trajectory similarity computation or travel time estimation. This is achieved by learning low-dimensional representations from high-dimensional and raw trajectory data. However, existing methods for trajectory representation learning either rely on grid-based or road-based representations, which are inherently different and thus, could lose information contained in the other modality. Moreover, these methods overlook the dynamic nature of urban traffic, relying on static road network features rather than time varying traffic patterns. In this paper, we propose TIGR, a novel model designed to integrate grid and road network modalities while incorporating spatio-temporal dynamics to learn rich, general-purpose representations of trajectories. We evaluate TIGR on two realworld datasets and demonstrate the effectiveness of combining both modalities by substantially outperforming state-of-the-art methods, i.e., up to 43.22% for trajectory similarity, up to 16.65% for travel time estimation, and up to 10.16% for destination prediction.
☆ Evaluating Representational Similarity Measures from the Lens of Functional Correspondence
Neuroscience and artificial intelligence (AI) both face the challenge of interpreting high-dimensional neural data, where the comparative analysis of such data is crucial for revealing shared mechanisms and differences between these complex systems. Despite the widespread use of representational comparisons and the abundance classes of comparison methods, a critical question remains: which metrics are most suitable for these comparisons? While some studies evaluate metrics based on their ability to differentiate models of different origins or constructions (e.g., various architectures), another approach is to assess how well they distinguish models that exhibit distinct behaviors. To investigate this, we examine the degree of alignment between various representational similarity measures and behavioral outcomes, employing group statistics and a comprehensive suite of behavioral metrics for comparison. In our evaluation of eight commonly used representational similarity metrics in the visual domain -- spanning alignment-based, Canonical Correlation Analysis (CCA)-based, inner product kernel-based, and nearest-neighbor methods -- we found that metrics like linear Centered Kernel Alignment (CKA) and Procrustes distance, which emphasize the overall geometric structure or shape of representations, excelled in differentiating trained from untrained models and aligning with behavioral measures, whereas metrics such as linear predictivity, commonly used in neuroscience, demonstrated only moderate alignment with behavior. These insights are crucial for selecting metrics that emphasize behaviorally meaningful comparisons in NeuroAI research.
☆ Generative AI for Music and Audio
Generative AI has been transforming the way we interact with technology and consume content. In the next decade, AI technology will reshape how we create audio content in various media, including music, theater, films, games, podcasts, and short videos. In this dissertation, I introduce the three main directions of my research centered around generative AI for music and audio: 1) multitrack music generation, 2) assistive music creation tools, and 3) multimodal learning for audio and music. Through my research, I aim to answer the following two fundamental questions: 1) How can AI help professionals or amateurs create music and audio content? 2) Can AI learn to create music in a way similar to how humans learn music? My long-term goal is to lower the barrier of entry for music composition and democratize audio content creation
comment: PhD Dissertation
☆ Unveiling the Hidden: A Comprehensive Evaluation of Underwater Image Enhancement and Its Impact on Object Detection
Underwater imagery often suffers from severe degradation that results in low visual quality and object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their impact on underwater object detection, and explore their potential to improve detection performance. To this end, we selected representative underwater image enhancement models covering major enhancement categories and applied them separately to two recent datasets: 1) the Real-World Underwater Object Detection Dataset (RUOD), and 2) the Challenging Underwater Plant Detection Dataset (CUPDD). Following this, we conducted qualitative and quantitative analyses on the enhanced images and developed a quality index (Q-index) to compare the quality distribution of the original and enhanced images. Subsequently, we compared the performance of several YOLO-NAS detection models that are separately trained and tested on the original and enhanced image sets. Then, we performed a correlation study to examine the relationship between enhancement metrics and detection performance. We also analyzed the inference results from the trained detectors presenting cases where enhancement increased the detection performance as well as cases where enhancement revealed missed objects by human annotators. This study suggests that although enhancement generally deteriorates the detection performance, it can still be harnessed in some cases for increased detection performance and more accurate human annotation.
☆ Predictive Analytics of Air Alerts in the Russian-Ukrainian War
The paper considers exploratory data analysis and approaches in predictive analytics for air alerts during the Russian-Ukrainian war which broke out on Feb 24, 2022. The results illustrate that alerts in regions correlate with one another and have geospatial patterns which make it feasible to build a predictive model which predicts alerts that are expected to take place in a certain region within a specified time period. The obtained results show that the alert status in a particular region is highly dependable on the features of its adjacent regions. Seasonality features like hours, days of a week and months are also crucial in predicting the target variable. Some regions highly rely on the time feature which equals to a number of days from the initial date of the dataset. From this, we can deduce that the air alert pattern changes throughout the time.
☆ Exploiting Boosting in Hyperdimensional Computing for Enhanced Reliability in Healthcare
Hyperdimensional computing (HDC) enables efficient data encoding and processing in high-dimensional space, benefiting machine learning and data analysis. However, underutilization of these spaces can lead to overfitting and reduced model reliability, especially in data-limited systems a critical issue in sectors like healthcare that demand robustness and consistent performance. We introduce BoostHD, an approach that applies boosting algorithms to partition the hyperdimensional space into subspaces, creating an ensemble of weak learners. By integrating boosting with HDC, BoostHD enhances performance and reliability beyond existing HDC methods. Our analysis highlights the importance of efficient utilization of hyperdimensional spaces for improved model performance. Experiments on healthcare datasets show that BoostHD outperforms state-of-the-art methods. On the WESAD dataset, it achieved an accuracy of 98.37%, surpassing Random Forest, XGBoost, and OnlineHD. BoostHD also demonstrated superior inference efficiency and stability, maintaining high accuracy under data imbalance and noise. In person-specific evaluations, it achieved an average accuracy of 96.19%, outperforming other models. By addressing the limitations of both boosting and HDC, BoostHD expands the applicability of HDC in critical domains where reliability and precision are paramount.
comment: Accepted to DATE 2025
☆ A Systematic Study of Multi-Agent Deep Reinforcement Learning for Safe and Robust Autonomous Highway Ramp Entry
Vehicles today can drive themselves on highways and driverless robotaxis operate in major cities, with more sophisticated levels of autonomous driving expected to be available and become more common in the future. Yet, technically speaking, so-called "Level 5" (L5) operation, corresponding to full autonomy, has not been achieved. For that to happen, functions such as fully autonomous highway ramp entry must be available, and provide provably safe, and reliably robust behavior to enable full autonomy. We present a systematic study of a highway ramp function that controls the vehicles forward-moving actions to minimize collisions with the stream of highway traffic into which a merging (ego) vehicle enters. We take a game-theoretic multi-agent (MA) approach to this problem and study the use of controllers based on deep reinforcement learning (DRL). The virtual environment of the MA DRL uses self-play with simulated data where merging vehicles safely learn to control longitudinal position during a taper-type merge. The work presented in this paper extends existing work by studying the interaction of more than two vehicles (agents) and does so by systematically expanding the road scene with additional traffic and ego vehicles. While previous work on the two-vehicle setting established that collision-free controllers are theoretically impossible in fully decentralized, non-coordinated environments, we empirically show that controllers learned using our approach are nearly ideal when measured against idealized optimal controllers.
comment: 9 pages, 9 figures
☆ G-RAG: Knowledge Expansion in Material Science
In the field of Material Science, effective information retrieval systems are essential for facilitating research. Traditional Retrieval-Augmented Generation (RAG) approaches in Large Language Models (LLMs) often encounter challenges such as outdated information, hallucinations, limited interpretability due to context constraints, and inaccurate retrieval. To address these issues, Graph RAG integrates graph databases to enhance the retrieval process. Our proposed method processes Material Science documents by extracting key entities (referred to as MatIDs) from sentences, which are then utilized to query external Wikipedia knowledge bases (KBs) for additional relevant information. We implement an agent-based parsing technique to achieve a more detailed representation of the documents. Our improved version of Graph RAG called G-RAG further leverages a graph database to capture relationships between these entities, improving both retrieval accuracy and contextual understanding. This enhanced approach demonstrates significant improvements in performance for domains that require precise information retrieval, such as Material Science.
☆ SRSA: A Cost-Efficient Strategy-Router Search Agent for Real-world Human-Machine Interactions
Recently, as Large Language Models (LLMs) have shown impressive emerging capabilities and gained widespread popularity, research on LLM-based search agents has proliferated. In real-world situations, users often input contextual and highly personalized queries to chatbots, challenging LLMs to capture context and generate appropriate answers. However, much of the prior research has not focused specifically on authentic human-machine dialogue scenarios. It also ignores the important balance between response quality and computational cost by forcing all queries to follow the same agent process. To address these gaps, we propose a Strategy-Router Search Agent (SRSA), routing different queries to appropriate search strategies and enabling fine-grained serial searches to obtain high-quality results at a relatively low cost. To evaluate our work, we introduce a new dataset, Contextual Query Enhancement Dataset (CQED), comprising contextual queries to simulate authentic and daily interactions between humans and chatbots. Using LLM-based automatic evaluation metrics, we assessed SRSA's performance in terms of informativeness, completeness, novelty, and actionability. To conclude, SRSA provides an approach that resolves the issue of simple serial searches leading to degenerate answers for lengthy and contextual queries, effectively and efficiently parses complex user queries, and generates more comprehensive and informative responses without fine-tuning an LLM.
☆ Assessment of LLM Responses to End-user Security Questions
Answering end user security questions is challenging. While large language models (LLMs) like GPT, LLAMA, and Gemini are far from error-free, they have shown promise in answering a variety of questions outside of security. We studied LLM performance in the area of end user security by qualitatively evaluating 3 popular LLMs on 900 systematically collected end user security questions. While LLMs demonstrate broad generalist ``knowledge'' of end user security information, there are patterns of errors and limitations across LLMs consisting of stale and inaccurate answers, and indirect or unresponsive communication styles, all of which impacts the quality of information received. Based on these patterns, we suggest directions for model improvement and recommend user strategies for interacting with LLMs when seeking assistance with security.
comment: 18 pages, 1 figure, 8 tables
☆ The importance of the clustering model to detect new types of intrusion in data traffic
In the current digital age, the volume of data generated by various cyber activities has become enormous and is constantly increasing. The data may contain valuable insights that can be harnessed to improve cyber security measures. However, much of this data is unclassified and qualitative, which poses significant challenges to traditional analysis methods. Clustering facilitates the identification of hidden patterns and structures in data through grouping similar data points, which makes it simpler to identify and address threats. Clustering can be defined as a data mining (DM) approach, which uses similarity calculations for dividing a data set into several categories. Hierarchical, density-based, along with partitioning clustering algorithms are typical. The presented work use K-means algorithm, which is a popular clustering technique. Utilizing K-means algorithm, we worked with two different types of data: first, we gathered data with the use of XG-boost algorithm following completing the aggregation with K-means algorithm. Data was gathered utilizing Kali Linux environment, cicflowmeter traffic, and Putty Software tools with the use of diverse and simple attacks. The concept could assist in identifying new attack types, which are distinct from the known attacks, and labeling them based on the characteristics they will exhibit, as the dynamic nature regarding cyber threats means that new attack types often emerge, for which labeled data might not yet exist. The model counted the attacks and assigned numbers to each one of them. Secondly, We tried the same work on the ready data inside the Kaggle repository called (Intrusion Detection in Internet of Things Network), and the clustering model worked well and detected the number of attacks correctly as shown in the results section.
comment: 18 pages, 4 figures
☆ Open Challenges in the Formal Verification of Autonomous Driving
In the realm of autonomous driving, the development and integration of highly complex and heterogeneous systems are standard practice. Modern vehicles are not monolithic systems; instead, they are composed of diverse hardware components, each running its own software systems. An autonomous vehicle comprises numerous independent components, often developed by different and potentially competing companies. This diversity poses significant challenges for the certification process, as it necessitates certifying components that may not disclose their internal behaviour (black-boxes). In this paper, we present a real-world case study of an autonomous driving system, identify key open challenges associated with its development and integration, and explore how formal verification techniques can address these challenges to ensure system reliability and safety.
comment: In Proceedings FMAS2024, arXiv:2411.13215
☆ Are Anomaly Scores Telling the Whole Story? A Benchmark for Multilevel Anomaly Detection
Anomaly detection (AD) is a machine learning task that identifies anomalies by learning patterns from normal training data. In many real-world scenarios, anomalies vary in severity, from minor anomalies with little risk to severe abnormalities requiring immediate attention. However, existing models primarily operate in a binary setting, and the anomaly scores they produce are usually based on the deviation of data points from normal data, which may not accurately reflect practical severity. In this paper, we address this gap by making three key contributions. First, we propose a novel setting, Multilevel AD (MAD), in which the anomaly score represents the severity of anomalies in real-world applications, and we highlight its diverse applications across various domains. Second, we introduce a novel benchmark, MAD-Bench, that evaluates models not only on their ability to detect anomalies, but also on how effectively their anomaly scores reflect severity. This benchmark incorporates multiple types of baselines and real-world applications involving severity. Finally, we conduct a comprehensive performance analysis on MAD-Bench. We evaluate models on their ability to assign severity-aligned scores, investigate the correspondence between their performance on binary and multilevel detection, and study their robustness. This analysis offers key insights into improving AD models for practical severity alignment. The code framework and datasets used for the benchmark will be made publicly available.
comment: Under review
☆ Variational Autoencoders for Efficient Simulation-Based Inference
We present a generative modeling approach based on the variational inference framework for likelihood-free simulation-based inference. The method leverages latent variables within variational autoencoders to efficiently estimate complex posterior distributions arising from stochastic simulations. We explore two variations of this approach distinguished by their treatment of the prior distribution. The first model adapts the prior based on observed data using a multivariate prior network, enhancing generalization across various posterior queries. In contrast, the second model utilizes a standard Gaussian prior, offering simplicity while still effectively capturing complex posterior distributions. We demonstrate the efficacy of these models on well-established benchmark problems, achieving results comparable to flow-based approaches while maintaining computational efficiency and scalability.
☆ FuseGPT: Learnable Layers Fusion of Generative Pre-trained Transformers
Generative Pre-trained Transformers (GPTs) have demonstrated remarkable performance across diverse domains through the extensive scaling of model parameters. Recent works observe the redundancy across the transformer blocks and develop compression methods by structured pruning of the unimportant blocks. However, such straightforward elimination will always provide irreversible performance degradation. In this paper, we propose FuseGPT, a novel methodology to recycle the pruned transformer blocks to further recover the model performance. Firstly we introduce a new importance detection metric, Macro Influence (MI), to detect the long-term influence of each transformer block by calculating their loss of information after removal. Then we propose group-level layers fusion, which adopts the parameters in layers of the unimportant blocks and injects them into the corresponding layers inside the neighboring blocks. The fusion is not one-off but through iterative parameter updates by lightweight group-level fine-tuning. Specifically, these injected parameters are frozen but weighted with learnable rank decomposition matrices to reduce the overhead during fine-tuning. Our approach not only works well on large language models but also on large multimodal models. The experiments have shown that, by using modest amounts of data, FuseGPT can outperform previous works in both perplexity and zero-shot task performance.
☆ Planning-Driven Programming: A Large Language Model Programming Workflow
The strong performance of large language models (LLMs) on natural language processing tasks raises extensive discussion on their application to code generation. Recent work suggests multiple sampling approaches to improve initial code generation accuracy or program repair approaches to refine the code. However, these methods suffer from LLMs' inefficiencies and limited reasoning capacity. In this work, we propose an LLM programming workflow (LPW) designed to improve both initial code generation and subsequent refinements within a structured two-phase workflow. Specifically, in the solution generation phase, the LLM first outlines a solution plan that decomposes the problem into manageable sub-problems and then verifies the generated solution plan through visible test cases. Subsequently, in the code implementation phase, the LLM initially drafts a code according to the solution plan and its verification. If the generated code fails the visible tests, the plan verification serves as the intended natural language solution to inform the refinement process for correcting bugs. We further introduce SLPW, a sampling variant of LPW, which initially generates multiple solution plans and plan verifications, produces a program for each plan and its verification, and refines each program as necessary until one successfully passes the visible tests. Compared to the state-of-the-art methods across various existing LLMs, our experimental results show that LPW significantly improves the Pass@1 accuracy by up to 16.4% on well-established text-to-code generation benchmarks, especially with a notable improvement of around 10% on challenging benchmarks. Additionally, SLPW demonstrates up to a 5.6% improvement over LPW and sets new state-of-the-art Pass@1 accuracy on various benchmarks, e.g., 98.2% on HumanEval, 84.8% on MBPP, 64.0% on APPS, and 35.3% on CodeContest, using GPT-4o as the backbone.
☆ Global Challenge for Safe and Secure LLMs Track 1
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks. With the increasing integration of LLMs in critical sectors such as healthcare, finance, and public administration, ensuring these models are resilient to adversarial attacks is vital for preventing misuse and upholding ethical standards. This competition focused on two distinct tracks designed to evaluate and enhance the robustness of LLM security frameworks. Track 1 tasked participants with developing automated methods to probe LLM vulnerabilities by eliciting undesirable responses, effectively testing the limits of existing safety protocols within LLMs. Participants were challenged to devise techniques that could bypass content safeguards across a diverse array of scenarios, from offensive language to misinformation and illegal activities. Through this process, Track 1 aimed to deepen the understanding of LLM vulnerabilities and provide insights for creating more resilient models.
☆ Exploring Accuracy-Fairness Trade-off in Large Language Models
Large Language Models (LLMs) have made significant strides in the field of artificial intelligence, showcasing their ability to interact with humans and influence human cognition through information dissemination. However, recent studies have brought to light instances of bias inherent within these LLMs, presenting a critical issue that demands attention. In our research, we delve deeper into the intricate challenge of harmonising accuracy and fairness in the enhancement of LLMs. While improving accuracy can indeed enhance overall LLM performance, it often occurs at the expense of fairness. Overemphasising optimisation of one metric invariably leads to a significant degradation of the other. This underscores the necessity of taking into account multiple considerations during the design and optimisation phases of LLMs. Therefore, we advocate for reformulating the LLM training process as a multi-objective learning task. Our investigation reveals that multi-objective evolutionary learning (MOEL) methodologies offer promising avenues for tackling this challenge. Our MOEL framework enables the simultaneous optimisation of both accuracy and fairness metrics, resulting in a Pareto-optimal set of LLMs. In summary, our study sheds valuable lights on the delicate equilibrium between accuracy and fairness within LLMs, which is increasingly significant for their real-world applications. By harnessing MOEL, we present a promising pathway towards fairer and more efficacious AI technologies.
comment: 9 pages
☆ Learning Autonomous Surgical Irrigation and Suction with the da Vinci Research Kit Using Reinforcement Learning
The irrigation-suction process is a common procedure to rinse and clean up the surgical field in minimally invasive surgery (MIS). In this process, surgeons first irrigate liquid, typically saline, into the surgical scene for rinsing and diluting the contaminant, and then suction the liquid out of the surgical field. While recent advances have shown promising results in the application of reinforcement learning (RL) for automating surgical subtasks, fewer studies have explored the automation of fluid-related tasks. In this work, we explore the automation of both steps in the irrigation-suction procedure and train two vision-based RL agents to complete irrigation and suction autonomously. To achieve this, a platform is developed for creating simulated surgical robot learning environments and for training agents, and two simulated learning environments are built for irrigation and suction with visually plausible fluid rendering capabilities. With techniques such as domain randomization (DR) and carefully designed reward functions, two agents are trained in the simulator and transferred to the real world. Individual evaluations of both agents show satisfactory real-world results. With an initial amount of around 5 grams of contaminants, the irrigation agent ultimately achieved an average of 2.21 grams remaining after a manual suction. As a comparison, fully manual operation by a human results in 1.90 grams remaining. The suction agent achieved 2.64 and 2.24 grams of liquid remaining across two trial groups with more than 20 and 30 grams of initial liquid in the container. Fully autonomous irrigation-suction trials reduce the contaminant in the container from around 5 grams to an average of 2.42 grams, although yielding a higher total weight remaining (4.40) due to residual liquid not suctioned. Further information about the project is available at https://tbs-ualberta.github.io/CRESSim/.
comment: 13 pages, 19 figures. Submitted to IEEE Transactions on Automation Science and Engineering (T-ASE)
☆ Conjugate momentum based thruster force estimate in dynamic multimodal robot
In a multi-modal system which combines thruster and legged locomotion such our state-of-the-art Harpy platform to perform dynamic locomotion. Therefore, it is very important to have a proper estimate of Thruster force. Harpy is a bipedal robot capable of legged-aerial locomotion using its legs and thrusters attached to its main frame. we can characterize thruster force using a thrust stand but it generally does not account for working conditions such as battery voltage. In this study, we present a momentum-based thruster force estimator. One of the key information required to estimate is terrain information. we show estimation results with and without terrain knowledge. In this work, we derive a conjugate momentum thruster force estimator and implement it on a numerical simulator that uses thruster force to perform thruster-assisted walking.
comment: Submitted to ACC 2025. arXiv admin note: text overlap with arXiv:2411.12968
☆ EdgeFlowNet: 100FPS@1W Dense Optical Flow For Tiny Mobile Robots
Optical flow estimation is a critical task for tiny mobile robotics to enable safe and accurate navigation, obstacle avoidance, and other functionalities. However, optical flow estimation on tiny robots is challenging due to limited onboard sensing and computation capabilities. In this paper, we propose EdgeFlowNet , a high-speed, low-latency dense optical flow approach for tiny autonomous mobile robots by harnessing the power of edge computing. We demonstrate the efficacy of our approach by deploying EdgeFlowNet on a tiny quadrotor to perform static obstacle avoidance, flight through unknown gaps and dynamic obstacle dodging. EdgeFlowNet is about 20 faster than the previous state-of-the-art approaches while improving accuracy by over 20% and using only 1.08W of power enabling advanced autonomy on palm-sized tiny mobile robots.
comment: https://pear.wpi.edu/research/edgeflownet.html
☆ Maximum Solar Energy Tracking Leverage High-DoF Robotics System with Deep Reinforcement Learning
Solar trajectory monitoring is a pivotal challenge in solar energy systems, underpinning applications such as autonomous energy harvesting and environmental sensing. A prevalent failure mode in sustained solar tracking arises when the predictive algorithm erroneously diverges from the solar locus, erroneously anchoring to extraneous celestial or terrestrial features. This phenomenon is attributable to an inadequate assimilation of solar-specific objectness attributes within the tracking paradigm. To mitigate this deficiency inherent in extant methodologies, we introduce an innovative objectness regularization framework that compels tracking points to remain confined within the delineated boundaries of the solar entity. By encapsulating solar objectness indicators during the training phase, our approach obviates the necessity for explicit solar mask computation during operational deployment. Furthermore, we leverage the high-DoF robot arm to integrate our method to improve its robustness and flexibility in different outdoor environments.
Tra-MoE: Learning Trajectory Prediction Model from Multiple Domains for Adaptive Policy Conditioning
Learning from multiple domains is a primary factor that influences the generalization of a single unified robot system. In this paper, we aim to learn the trajectory prediction model by using broad out-of-domain data to improve its performance and generalization ability. Trajectory model is designed to predict any-point trajectories in the current frame given an instruction and can provide detailed control guidance for robotic policy learning. To handle the diverse out-of-domain data distribution, we propose a sparsely-gated MoE (\textbf{Top-1} gating strategy) architecture for trajectory model, coined as \textbf{Tra-MoE}. The sparse activation design enables good balance between parameter cooperation and specialization, effectively benefiting from large-scale out-of-domain data while maintaining constant FLOPs per token. In addition, we further introduce an adaptive policy conditioning technique by learning 2D mask representations for predicted trajectories, which is explicitly aligned with image observations to guide action prediction more flexibly. We perform extensive experiments on both simulation and real-world scenarios to verify the effectiveness of Tra-MoE and adaptive policy conditioning technique. We also conduct a comprehensive empirical study to train Tra-MoE, demonstrating that our Tra-MoE consistently exhibits superior performance compared to the dense baseline model, even when the latter is scaled to match Tra-MoE's parameter count.
comment: 15 pages, 5 figures
☆ Rethinking the Intermediate Features in Adversarial Attacks: Misleading Robotic Models via Adversarial Distillation
Language-conditioned robotic learning has significantly enhanced robot adaptability by enabling a single model to execute diverse tasks in response to verbal commands. Despite these advancements, security vulnerabilities within this domain remain largely unexplored. This paper addresses this gap by proposing a novel adversarial prompt attack tailored to language-conditioned robotic models. Our approach involves crafting a universal adversarial prefix that induces the model to perform unintended actions when added to any original prompt. We demonstrate that existing adversarial techniques exhibit limited effectiveness when directly transferred to the robotic domain due to the inherent robustness of discretized robotic action spaces. To overcome this challenge, we propose to optimize adversarial prefixes based on continuous action representations, circumventing the discretization process. Additionally, we identify the beneficial impact of intermediate features on adversarial attacks and leverage the negative gradient of intermediate self-attention features to further enhance attack efficacy. Extensive experiments on VIMA models across 13 robot manipulation tasks validate the superiority of our method over existing approaches and demonstrate its transferability across different model variants.
☆ Enhanced Capture Point Control Using Thruster Dynamics and QP-Based Optimization for Harpy
Our work aims to make significant strides in understanding unexplored locomotion control paradigms based on the integration of posture manipulation and thrust vectoring. These techniques are commonly seen in nature, such as Chukar birds using their wings to run on a nearly vertical wall. In this work, we developed a capture-point-based controller integrated with a quadratic programming (QP) solver which is used to create a thruster-assisted dynamic bipedal walking controller for our state-of-the-art Harpy platform. Harpy is a bipedal robot capable of legged-aerial locomotion using its legs and thrusters attached to its main frame. While capture point control based on centroidal models for bipedal systems has been extensively studied, the use of these thrusters in determining the capture point for a bipedal robot has not been extensively explored. The addition of these external thrust forces can lead to interesting interpretations of locomotion, such as virtual buoyancy studied in aquatic-legged locomotion. In this work, we derive a thruster-assisted bipedal walking with the capture point controller and implement it in simulation to study its performance.
comment: Submitted to ACC2025. arXiv admin note: substantial text overlap with arXiv:2406.14799, arXiv:2411.12968
♻ ☆ A Sociotechnical Lens for Evaluating Computer Vision Models: A Case Study on Detecting and Reasoning about Gender and Emotion
In the evolving landscape of computer vision (CV) technologies, the automatic detection and interpretation of gender and emotion in images is a critical area of study. This paper investigates social biases in CV models, emphasizing the limitations of traditional evaluation metrics such as precision, recall, and accuracy. These metrics often fall short in capturing the complexities of gender and emotion, which are fluid and culturally nuanced constructs. Our study proposes a sociotechnical framework for evaluating CV models, incorporating both technical performance measures and considerations of social fairness. Using a dataset of 5,570 images related to vaccination and climate change, we empirically compared the performance of various CV models, including traditional models like DeepFace and FER, and generative models like GPT-4 Vision. Our analysis involved manually validating the gender and emotional expressions in a subset of images to serve as benchmarks. Our findings reveal that while GPT-4 Vision outperforms other models in technical accuracy for gender classification, it exhibits discriminatory biases, particularly in response to transgender and non-binary personas. Furthermore, the model's emotion detection skew heavily towards positive emotions, with a notable bias towards associating female images with happiness, especially when prompted by male personas. These findings underscore the necessity of developing more comprehensive evaluation criteria that address both validity and discriminatory biases in CV models. Our proposed framework provides guidelines for researchers to critically assess CV tools, ensuring their application in communication research is both ethical and effective. The significant contribution of this study lies in its emphasis on a sociotechnical approach, advocating for CV technologies that support social good and mitigate biases rather than perpetuate them.
♻ ☆ Differentiable Weightless Neural Networks
We introduce the Differentiable Weightless Neural Network (DWN), a model based on interconnected lookup tables. Training of DWNs is enabled by a novel Extended Finite Difference technique for approximate differentiation of binary values. We propose Learnable Mapping, Learnable Reduction, and Spectral Regularization to further improve the accuracy and efficiency of these models. We evaluate DWNs in three edge computing contexts: (1) an FPGA-based hardware accelerator, where they demonstrate superior latency, throughput, energy efficiency, and model area compared to state-of-the-art solutions, (2) a low-power microcontroller, where they achieve preferable accuracy to XGBoost while subject to stringent memory constraints, and (3) ultra-low-cost chips, where they consistently outperform small models in both accuracy and projected hardware area. DWNs also compare favorably against leading approaches for tabular datasets, with higher average rank. Overall, our work positions DWNs as a pioneering solution for edge-compatible high-throughput neural networks.
♻ ☆ Localizing Events in Videos with Multimodal Queries
Localizing events in videos based on semantic queries is a pivotal task in video understanding, with the growing significance of user-oriented applications like video search. Yet, current research predominantly relies on natural language queries (NLQs), overlooking the potential of using multimodal queries (MQs) that integrate images to more flexibly represent semantic queries -- especially when it is difficult to express non-verbal or unfamiliar concepts in words. To bridge this gap, we introduce ICQ, a new benchmark designed for localizing events in videos with MQs, alongside an evaluation dataset ICQ-Highlight. To accommodate and evaluate existing video localization models for this new task, we propose 3 Multimodal Query Adaptation methods and a novel Surrogate Fine-tuning on pseudo-MQs strategy. ICQ systematically benchmarks 12 state-of-the-art backbone models, spanning from specialized video localization models to Video LLMs, across diverse application domains. Our experiments highlight the high potential of MQs in real-world applications. We believe this benchmark is a first step toward advancing MQs in video event localization.
comment: 20 pages (including references and appendix); for the project homepage, see https://icq-benchmark.github.io/
♻ ☆ LLMs as Zero-shot Graph Learners: Alignment of GNN Representations with LLM Token Embeddings
Zero-shot graph machine learning, especially with graph neural networks (GNNs), has garnered significant interest due to the challenge of scarce labeled data. While methods like self-supervised learning and graph prompt learning have been extensively explored, they often rely on fine-tuning with task-specific labels, limiting their effectiveness in zero-shot scenarios. Inspired by the zero-shot capabilities of instruction-fine-tuned large language models (LLMs), we introduce a novel framework named Token Embedding-Aligned Graph Language Model (TEA-GLM) that leverages LLMs as cross-dataset and cross-task zero-shot learners for graph machine learning. Concretely, we pretrain a GNN, aligning its representations with token embeddings of an LLM. We then train a linear projector that transforms the GNN's representations into a fixed number of graph token embeddings without tuning the LLM. A unified instruction is designed for various graph tasks at different levels, such as node classification (node-level) and link prediction (edge-level). These design choices collectively enhance our method's effectiveness in zero-shot learning, setting it apart from existing methods. Experiments show that our graph token embeddings help the LLM predictor achieve state-of-the-art performance on unseen datasets and tasks compared to other methods using LLMs as predictors.
♻ ☆ Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN
This paper presents a fast and cost-effective method for diagnosing cardiac abnormalities with high accuracy and reliability using low-cost systems in clinics. The primary limitation of automatic diagnosing of cardiac diseases is the rarity of correct and acceptable labeled samples, which can be expensive to prepare. To address this issue, two methods are proposed in this work. The first method is a unique Multi-Branch Deep Convolutional Neural Network (MBDCN) architecture inspired by human auditory processing, specifically designed to optimize feature extraction by employing various sizes of convolutional filters and audio signal power spectrum as input. In the second method, called as Long short-term memory-Convolutional Neural (LSCN) model, Additionally, the network architecture includes Long Short-Term Memory (LSTM) network blocks to improve feature extraction in the time domain. The innovative approach of combining multiple parallel branches consisting of the one-dimensional convolutional layers along with LSTM blocks helps in achieving superior results in audio signal processing tasks. The experimental results demonstrate superiority of the proposed methods over the state-of-the-art techniques. The overall classification accuracy of heart sounds with the LSCN network is more than 96%. The efficiency of this network is significant compared to common feature extraction methods such as Mel Frequency Cepstral Coefficients (MFCC) and wavelet transform. Therefore, the proposed method shows promising results in the automatic analysis of heart sounds and has potential applications in the diagnosis and early detection of cardiovascular diseases.
comment: 22 pages
♻ ☆ Pairwise Judgment Formulation for Semantic Embedding Model in Web Search
Semantic Embedding Model (SEM), a neural network-based Siamese architecture, is gaining momentum in information retrieval and natural language processing. In order to train SEM in a supervised fashion for Web search, the search engine query log is typically utilized to automatically formulate pairwise judgments as training data. Despite the growing application of semantic embeddings in the search engine industry, little work has been done on formulating effective pairwise judgments for training SEM. In this paper, we make the first in-depth investigation of a wide range of strategies for generating pairwise judgments for SEM. An interesting (perhaps surprising) discovery reveals that the conventional pairwise judgment formulation strategy wildly used in the field of pairwise Learning-to-Rank (LTR) is not necessarily effective for training SEM. Through a large-scale empirical study based on query logs and click-through activities from a major commercial search engine, we demonstrate the effective strategies for SEM and highlight the advantages of a hybrid heuristic (i.e., Clicked > Non-Clicked) in comparison to the atomic heuristics (e.g., Clicked > Skipped) in LTR. We conclude with best practices for training SEM and offer promising insights for future research.
♻ ☆ AUTALIC: A Dataset for Anti-AUTistic Ableist Language In Context
As our understanding of autism and ableism continues to increase, so does our understanding of ableist language towards autistic people. Such language poses a significant challenge in NLP research due to its subtle and context-dependent nature. Yet, detecting anti-autistic ableist language remains underexplored, with existing NLP tools often failing to capture its nuanced expressions. We present AUTALIC, the first benchmark dataset dedicated to the detection of anti-autistic ableist language in context, addressing a significant gap in the field. The dataset comprises 2,400 autism-related sentences collected from Reddit, accompanied by surrounding context, and is annotated by trained experts with backgrounds in neurodiversity. Our comprehensive evaluation reveals that current language models, including state-of-the-art LLMs, struggle to reliably identify anti-autistic ableism and align with human judgments, underscoring their limitations in this domain. We publicly release AUTALIC along with the individual annotations which serve as a valuable resource to researchers working on ableism, neurodiversity, and also studying disagreements in annotation tasks. This dataset serves as a crucial step towards developing more inclusive and context-aware NLP systems that better reflect diverse perspectives.
comment: 9 pages, 5 figures, 7 tables
♻ ☆ Linguacodus: A Synergistic Framework for Transformative Code Generation in Machine Learning Pipelines
In the ever-evolving landscape of machine learning, seamless translation of natural language descriptions into executable code remains a formidable challenge. This paper introduces Linguacodus, an innovative framework designed to tackle this challenge by deploying a dynamic pipeline that iteratively transforms natural language task descriptions into code through high-level data-shaping instructions. The core of Linguacodus is a fine-tuned large language model (LLM), empowered to evaluate diverse solutions for various problems and select the most fitting one for a given task. This paper details the fine-tuning process, and sheds light on how natural language descriptions can be translated into functional code. Linguacodus represents a substantial leap towards automated code generation, effectively bridging the gap between task descriptions and executable code. It holds great promise for advancing machine learning applications across diverse domains. Additionally, we propose an algorithm capable of transforming a natural description of an ML task into code with minimal human interaction. In extensive experiments on a vast machine learning code dataset originating from Kaggle, we showcase the effectiveness of Linguacodus. The investigations highlight its potential applications across diverse domains, emphasizing its impact on applied machine learning in various scientific fields.
♻ ☆ Probabilistically Correct Language-based Multi-Robot Planning using Conformal Prediction
This paper addresses task planning problems for language-instructed robot teams. Tasks are expressed in natural language (NL), requiring the robots to apply their capabilities at various locations and semantic objects. Several recent works have addressed similar planning problems by leveraging pre-trained Large Language Models (LLMs) to design effective multi-robot plans. However, these approaches lack performance guarantees. To address this challenge, we introduce a new distributed LLM-based planner, called S-ATLAS for Safe plAnning for Teams of Language-instructed AgentS, that is capable of achieving user-defined mission success rates. This is accomplished by leveraging conformal prediction (CP), a distribution-free uncertainty quantification tool in black-box models. CP allows the proposed multi-robot planner to reason about its inherent uncertainty in a distributed fashion, enabling robots to make individual decisions when they are sufficiently certain and seek help otherwise. We show, both theoretically and empirically, that the proposed planner can achieve user-specified task success rates, assuming successful plan execution, while minimizing the overall number of help requests. We provide comparative experiments against related works showing that our method is significantly more computational efficient and achieves lower help rates. The advantage of our algorithm over baselines becomes more pronounced with increasing robot team size.
♻ ☆ HoneyBee: A Scalable Modular Framework for Creating Multimodal Oncology Datasets with Foundational Embedding Models
Developing accurate machine learning models for oncology requires large-scale, high-quality multimodal datasets. However, creating such datasets remains challenging due to the complexity and heterogeneity of medical data. To address this challenge, we introduce HoneyBee, a scalable modular framework for building multimodal oncology datasets that leverages foundation models to generate representative embeddings. HoneyBee integrates various data modalities, including clinical diagnostic and pathology imaging data, medical notes, reports, records, and molecular data. It employs data preprocessing techniques and foundation models to generate embeddings that capture the essential features and relationships within the raw medical data. The generated embeddings are stored in a structured format using Hugging Face datasets and PyTorch dataloaders for accessibility. Vector databases enable efficient querying and retrieval for machine learning applications. We demonstrate the effectiveness of HoneyBee through experiments assessing the quality and representativeness of these embeddings. The framework is designed to be extensible to other medical domains and aims to accelerate oncology research by providing high-quality, machine learning-ready datasets. HoneyBee is an ongoing open-source effort, and the code, datasets, and models are available at the project repository.
♻ ☆ EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
In this work, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users (e.g., tasks, compression ratios), resulting in greater flexibility in adjusting overall capacity without being constrained by specific compression formats. However, naively applying SVD to derive residual paths causes suboptimal utilization of the low-rank representation capacity. Instead, we propose Training-free Eigenspace Low-Rank Approximation (EoRA), a method that directly minimizes compression-induced errors without requiring gradient-based training, achieving fast optimization in minutes using a small amount of calibration data. EoRA projects compression errors into the eigenspace of input activations, leveraging eigenvalues to effectively prioritize the reconstruction of high-importance error components. Moreover, EoRA can be seamlessly integrated with fine-tuning and quantization to further improve effectiveness and efficiency. EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks, such as language generation, commonsense reasoning, and math reasoning tasks (e.g., 31.31%/12.88% and 9.69% improvements on ARC-Easy/ARC-Challenge and MathQA when compensating LLaMA3-8B that is quantized to 4-bit and pruned to 2:4 sparsity). EoRA offers a scalable, training-free solution to compensate for compression errors, making it a powerful tool to deploy LLMs in various capacity and efficiency requirements.
♻ ☆ BERTrend: Neural Topic Modeling for Emerging Trends Detection EMNLP 2024
Detecting and tracking emerging trends and weak signals in large, evolving text corpora is vital for applications such as monitoring scientific literature, managing brand reputation, surveilling critical infrastructure and more generally to any kind of text-based event detection. Existing solutions often fail to capture the nuanced context or dynamically track evolving patterns over time. BERTrend, a novel method, addresses these limitations using neural topic modeling in an online setting. It introduces a new metric to quantify topic popularity over time by considering both the number of documents and update frequency. This metric classifies topics as noise, weak, or strong signals, flagging emerging, rapidly growing topics for further investigation. Experimentation on two large real-world datasets demonstrates BERTrend's ability to accurately detect and track meaningful weak signals while filtering out noise, offering a comprehensive solution for monitoring emerging trends in large-scale, evolving text corpora. The method can also be used for retrospective analysis of past events. In addition, the use of Large Language Models together with BERTrend offers efficient means for the interpretability of trends of events.
comment: 17 pages, 12 figures, FuturED 2024: Workshop on Future of Event Detection (CoLocated with EMNLP 2024)
♻ ☆ VeriGraph: Scene Graphs for Execution Verifiable Robot Planning
Recent advancements in vision-language models (VLMs) offer potential for robot task planning, but challenges remain due to VLMs' tendency to generate incorrect action sequences. To address these limitations, we propose VeriGraph, a novel framework that integrates VLMs for robotic planning while verifying action feasibility. VeriGraph employs scene graphs as an intermediate representation, capturing key objects and spatial relationships to improve plan verification and refinement. The system generates a scene graph from input images and uses it to iteratively check and correct action sequences generated by an LLM-based task planner, ensuring constraints are respected and actions are executable. Our approach significantly enhances task completion rates across diverse manipulation scenarios, outperforming baseline methods by 58% for language-based tasks and 30% for image-based tasks.
♻ ☆ Graph Neural Networks and Arithmetic Circuits
We characterize the computational power of neural networks that follow the graph neural network (GNN) architecture, not restricted to aggregate-combine GNNs or other particular types. We establish an exact correspondence between the expressivity of GNNs using diverse activation functions and arithmetic circuits over real numbers. In our results the activation function of the network becomes a gate type in the circuit. Our result holds for families of constant depth circuits and networks, both uniformly and non-uniformly, for all common activation functions.
♻ ☆ FFAA: Multimodal Large Language Model based Explainable Open-World Face Forgery Analysis Assistant
The rapid advancement of deepfake technologies has sparked widespread public concern, particularly as face forgery poses a serious threat to public information security. However, the unknown and diverse forgery techniques, varied facial features and complex environmental factors pose significant challenges for face forgery analysis. Existing datasets lack descriptive annotations of these aspects, making it difficult for models to distinguish between real and forged faces using only visual information amid various confounding factors. In addition, existing methods fail to yield user-friendly and explainable results, hindering the understanding of the model's decision-making process. To address these challenges, we introduce a novel Open-World Face Forgery Analysis VQA (OW-FFA-VQA) task and its corresponding benchmark. To tackle this task, we first establish a dataset featuring a diverse collection of real and forged face images with essential descriptions and reliable forgery reasoning. Based on this dataset, we introduce FFAA: Face Forgery Analysis Assistant, consisting of a fine-tuned Multimodal Large Language Model (MLLM) and Multi-answer Intelligent Decision System (MIDS). By integrating hypothetical prompts with MIDS, the impact of fuzzy classification boundaries is effectively mitigated, enhancing model robustness. Extensive experiments demonstrate that our method not only provides user-friendly and explainable results but also significantly boosts accuracy and robustness compared to previous methods.
comment: 23 pages, 21 figures; project page: https://ffaa-vl.github.io
♻ ☆ The Role of Deep Learning Regularizations on Actors in Offline RL
Deep learning regularization techniques, such as dropout, layer normalization, or weight decay, are widely adopted in the construction of modern artificial neural networks, often resulting in more robust training processes and improved generalization capabilities. However, in the domain of Reinforcement Learning (RL), the application of these techniques has been limited, usually applied to value function estimators (Hiraoka et al., 2021; Smith et al., 2022), and may result in detrimental effects. This issue is even more pronounced in offline RL settings, which bear greater similarity to supervised learning but have received less attention. Recent work in continuous offline RL (Park et al., 2024) has demonstrated that while we can build sufficiently powerful critic networks, the generalization of actor networks remains a bottleneck. In this study, we empirically show that applying standard regularization techniques to actor networks in offline RL actor-critic algorithms yields improvements of 6% on average across two algorithms and three different continuous D4RL domains.
comment: https://github.com/DT6A/ActoReg
♻ ☆ RRADistill: Distilling LLMs' Passage Ranking Ability for Long-Tail Queries Document Re-Ranking on a Search Engine EMNLP 2024
Large Language Models (LLMs) excel at understanding the semantic relationships between queries and documents, even with lengthy and complex long-tail queries. These queries are challenging for feedback-based rankings due to sparse user engagement and limited feedback, making LLMs' ranking ability highly valuable. However, the large size and slow inference of LLMs necessitate the development of smaller, more efficient models (sLLMs). Recently, integrating ranking label generation into distillation techniques has become crucial, but existing methods underutilize LLMs' capabilities and are cumbersome. Our research, RRADistill: Re-Ranking Ability Distillation, propose an efficient label generation pipeline and novel sLLM training methods for both encoder and decoder models. We introduce an encoder-based method using a Term Control Layer to capture term matching signals and a decoder-based model with a ranking layer for enhanced understanding. A/B testing on a Korean-based search platform, validates the effectiveness of our approach in improving re-ranking for long-tail queries.
comment: Accepted to EMNLP 2024 Industry Track. First two authors contributed equally
♻ ☆ OpenGeMM: A High-Utilization GeMM Accelerator Generator with Lightweight RISC-V Control and Tight Memory Coupling
Deep neural networks (DNNs) face significant challenges when deployed on resource-constrained extreme edge devices due to their computational and data-intensive nature. While standalone accelerators tailored for specific application scenarios suffer from inflexible control and limited programmability, generic hardware acceleration platforms coupled with RISC-V CPUs can enable high reusability and flexibility, yet typically at the expense of system level efficiency and low utilization. To fill this gap, we propose OpenGeMM, an open-source acceleration platform, jointly demonstrating high efficiency and utilization, as well as ease of configurability and programmability. OpenGeMM encompasses a parameterized Chisel-coded GeMM accelerator, a lightweight RISC-V processor, and a tightly coupled multi-banked scratchpad memory. The GeMM core utilization and system efficiency are boosted through three mechanisms: configuration pre-loading, input pre-fetching with output buffering, and programmable strided memory access. Experimental results show that OpenGeMM can consistently achieve hardware utilization ranging from 81.89% to 99.34% across diverse CNN and Transformer workloads. Compared to the SotA open-source Gemmini accelerator, OpenGeMM demonstrates a 3.58x to 16.40x speedup on normalized throughput across a wide variety ofGeMM workloads, while achieving 4.68 TOPS/W system efficiency.
♻ ☆ OmniGen: Unified Image Generation
The emergence of Large Language Models (LLMs) has unified language generation tasks and revolutionized human-machine interaction. However, in the realm of image generation, a unified model capable of handling various tasks within a single framework remains largely unexplored. In this work, we introduce OmniGen, a new diffusion model for unified image generation. OmniGen is characterized by the following features: 1) Unification: OmniGen not only demonstrates text-to-image generation capabilities but also inherently supports various downstream tasks, such as image editing, subject-driven generation, and visual-conditional generation. 2) Simplicity: The architecture of OmniGen is highly simplified, eliminating the need for additional plugins. Moreover, compared to existing diffusion models, it is more user-friendly and can complete complex tasks end-to-end through instructions without the need for extra intermediate steps, greatly simplifying the image generation workflow. 3) Knowledge Transfer: Benefit from learning in a unified format, OmniGen effectively transfers knowledge across different tasks, manages unseen tasks and domains, and exhibits novel capabilities. We also explore the model's reasoning capabilities and potential applications of the chain-of-thought mechanism. This work represents the first attempt at a general-purpose image generation model, and we will release our resources at https://github.com/VectorSpaceLab/OmniGen to foster future advancements.
comment: Update the paper for OmniGen-v1
♻ ☆ Is Less More? Exploring Token Condensation as Training-free Adaptation for CLIP
Contrastive language-image pre-training (CLIP) has shown remarkable generalization ability in image classification. However, CLIP sometimes encounters performance drops on downstream datasets during zero-shot inference. Test-time adaptation methods attempt to mitigate this by adjusting normalization layers or tuning context prompts with large batch sizes and extensive augmentations; yet, these methods are computationally intensive. This raises an important question: Is there a training-free approach that can efficiently address CLIP's performance drop in such cases? To explore this, we benchmark token condensation techniques, originally designed to enhance the efficiency of vision transformers, on CLIP zero-shot inference tasks. We observe that although token condensation may compromise in-domain accuracy, it surprisingly enhances CLIP's performance on certain cross-dataset benchmarks. This motivates two key inquiries: (1) Can token condensation serve as a "free-lunch" solution for CLIP zero-shot inference? (2) What criteria should guide condensation -- how can essential tokens be identified and redundant ones eliminated? To address these questions, we propose Token Condensation as Adaptation (TCA), a training-free adaptation method for CLIP by pruning class-irrelevant visual tokens while merging class-ambiguous tokens. As the first approach for CLIP's token efficiency, TCA demonstrates superior performance across cross-dataset tasks, achieving up to a 21.4\% improvement over the strongest baseline while reducing GFLOPs by 12.2\% to 48.9\%, with minimized hyperparameter dependency.
comment: 15 pages, 7 figures
♻ ☆ Improving Steering Vectors by Targeting Sparse Autoencoder Features
To control the behavior of language models, steering methods attempt to ensure that outputs of the model satisfy specific pre-defined properties. Adding steering vectors to the model is a promising method of model control that is easier than finetuning, and may be more robust than prompting. However, it can be difficult to anticipate the effects of steering vectors produced by methods such as CAA [Panickssery et al., 2024] or the direct use of SAE latents [Templeton et al., 2024]. In our work, we address this issue by using SAEs to measure the effects of steering vectors, giving us a method that can be used to understand the causal effect of any steering vector intervention. We use this method for measuring causal effects to develop an improved steering method, SAE-Targeted Steering (SAE-TS), which finds steering vectors to target specific SAE features while minimizing unintended side effects. We show that overall, SAE-TS balances steering effects with coherence better than CAA and SAE feature steering, when evaluated on a range of tasks.
comment: 8 maintext pages and 9 appendix pages
♻ ☆ CulturePark: Boosting Cross-cultural Understanding in Large Language Models NeurIPS 2024
Cultural bias is pervasive in many large language models (LLMs), largely due to the deficiency of data representative of different cultures. Typically, cultural datasets and benchmarks are constructed either by extracting subsets of existing datasets or by aggregating from platforms such as Wikipedia and social media. However, these approaches are highly dependent on real-world data and human annotations, making them costly and difficult to scale. Inspired by cognitive theories on social communication, this paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection. CulturePark simulates cross-cultural human communication with LLM-based agents playing roles in different cultures. It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs. Using CulturePark, we generated 41,000 cultural samples to fine-tune eight culture-specific LLMs. We evaluated these models across three downstream tasks: content moderation, cultural alignment, and cultural education. Results show that for content moderation, our GPT-3.5-based models either match or outperform GPT-4 on datasets. Regarding cultural alignment, our models surpass GPT-4 on Hofstede's VSM 13 framework. Furthermore, for cultural education of human participants, our models demonstrate superior outcomes in both learning efficacy and user experience compared to GPT-4. CulturePark proves an important step in addressing cultural bias and advancing the democratization of AI, highlighting the critical role of culturally inclusive data in model training. Code is released at https://github.com/Scarelette/CulturePark.
comment: NeurIPS 2024; Code is released at https://github.com/Scarelette/CulturePark. arXiv admin note: substantial text overlap with arXiv:2402.10946
♻ ☆ PSCodec: A Series of High-Fidelity Low-bitrate Neural Speech Codecs Leveraging Prompt Encoders
Neural speech codecs have recently emerged as a focal point in the fields of speech compression and generation. Despite this progress, achieving high-quality speech reconstruction under low-bitrate scenarios remains a significant challenge. In this paper, we propose PSCodec, a series of neural speech codecs based on prompt encoders, comprising PSCodec-Base, PSCodec-DRL-ICT, and PSCodec-CasAN, which are capable of delivering high-performance speech reconstruction with low bandwidths. Specifically, we first introduce PSCodec-Base, which leverages a pretrained speaker verification model-based prompt encoder (VPP-Enc) and a learnable Mel-spectrogram-based prompt encoder (MelP-Enc) to effectively disentangle and integrate voiceprint and Mel-related features in utterances. To further enhance feature utilization efficiency, we propose PSCodec-DRL-ICT, incorporating a structural similarity (SSIM) based disentangled representation loss (DRL) and an incremental continuous training (ICT) strategy. While PSCodec-DRL-ICT demonstrates impressive performance, its reliance on extensive hyperparameter tuning and multi-stage training makes it somewhat labor-intensive. To circumvent these limitations, we propose PSCodec-CasAN, utilizing an advanced cascaded attention network (CasAN) to enhance representational capacity of the entire system. Extensive experiments show that our proposed PSCodec-Base, PSCodec-DRL-ICT, and PSCodec-CasAN all significantly outperform several state-of-the-art neural codecs, exhibiting substantial improvements in both speech reconstruction quality and speaker similarity under low-bitrate conditions.
comment: Submiited to TASLP
♻ ☆ Near-Field Spot Beamfocusing: A Correlation-Aware Transfer Learning Approach
3D spot beamfocusing (SBF), in contrast to conventional angular-domain beamforming, concentrates radiating power within very small volume in both radial and angular domains in the near-field zone. Recently the implementation of channel-state-information (CSI)-independent machine learning (ML)-based approaches have been developed for effective SBF using extremely-largescale-programable-metasurface (ELPMs). These methods involve dividing the ELPMs into subarrays and independently training them with Deep Reinforcement Learning to jointly focus the beam at the Desired Focal Point (DFP). This paper explores near-field SBF using ELPMs, addressing challenges associated with lengthy training times resulting from independent training of subarrays. To achieve a faster CSIindependent solution, inspired by the correlation between the beamfocusing matrices of the subarrays, we leverage transfer learning techniques. First, we introduce a novel similarity criterion based on the Phase Distribution Image of subarray apertures. Then we devise a subarray policy propagation scheme that transfers the knowledge from trained to untrained subarrays. We further enhance learning by introducing Quasi-Liquid-Layers as a revised version of the adaptive policy reuse technique. We show through simulations that the proposed scheme improves the training speed about 5 times. Furthermore, for dynamic DFP management, we devised a DFP policy blending process, which augments the convergence rate up to 8-fold.
♻ ☆ The Digital Transformation in Health: How AI Can Improve the Performance of Health Systems
Mobile health has the potential to revolutionize health care delivery and patient engagement. In this work, we discuss how integrating Artificial Intelligence into digital health applications-focused on supply chain, patient management, and capacity building, among other use cases-can improve the health system and public health performance. We present an Artificial Intelligence and Reinforcement Learning platform that allows the delivery of adaptive interventions whose impact can be optimized through experimentation and real-time monitoring. The system can integrate multiple data sources and digital health applications. The flexibility of this platform to connect to various mobile health applications and digital devices and send personalized recommendations based on past data and predictions can significantly improve the impact of digital tools on health system outcomes. The potential for resource-poor settings, where the impact of this approach on health outcomes could be more decisive, is discussed specifically. This framework is, however, similarly applicable to improving efficiency in health systems where scarcity is not an issue.
comment: This is an original manuscript of an article published by Taylor & Francis in Health Systems & Reform on 22 Oct 2024, available online: https://www.tandfonline.com/doi/10.1080/23288604.2024.2387138
♻ ☆ Freeze-Omni: A Smart and Low Latency Speech-to-speech Dialogue Model with Frozen LLM
Rapidly developing large language models (LLMs) have brought tremendous intelligent applications. Especially, the GPT-4o's excellent duplex speech interaction ability has brought impressive experience to users. Researchers have recently proposed several multi-modal LLMs in this direction that can achieve user-agent speech-to-speech conversations. This paper proposes a novel speech-text multimodal LLM architecture called Freeze-Omni. Our main contribution is that the speech input and output modalities can be easily connected to a textual LLM while keeping the LLM's parameters frozen throughout the training process. We design a three-stage training strategy for modeling both the speech input and output, enabling Freeze-Omni to obtain speech-to-speech conversation ability using text-speech paired data (such as ASR and TTS data) and only 60,000 multi-round text Q&A data on 8 GPUs. Moreover, we can effectively ensure that the intelligence of the Freeze-Omni in the speech modality is at the same level compared with that in the text modality of its backbone LLM, while achieving low latency end-to-end spoken response. In addition, we also designed a method to achieve duplex dialogue ability through multi-task training, giving Freeze-Omni a more natural style of dialogue ability between users and agents. In summary, Freeze-Omni holds great potential to conduct speech-to-speech dialogue based on a multimodal LLM under the condition of a frozen LLM, avoiding the catastrophic forgetting problem caused by limited data and training resources.
comment: Project Page: https://freeze-omni.github.io/
♻ ☆ Diffusion Features to Bridge Domain Gap for Semantic Segmentation
Pre-trained diffusion models have demonstrated remarkable proficiency in synthesizing images across a wide range of scenarios with customizable prompts, indicating their effective capacity to capture universal features. Motivated by this, our study delves into the utilization of the implicit knowledge embedded within diffusion models to address challenges in cross-domain semantic segmentation. This paper investigates the approach that leverages the sampling and fusion techniques to harness the features of diffusion models efficiently. We propose DIffusion Feature Fusion (DIFF) as a backbone use for extracting and integrating effective semantic representations through the diffusion process. By leveraging the strength of text-to-image generation capability, we introduce a new training framework designed to implicitly learn posterior knowledge from it. Through rigorous evaluation in the contexts of domain generalization semantic segmentation, we establish that our methodology surpasses preceding approaches in mitigating discrepancies across distinct domains and attains the state-of-the-art (SOTA) benchmark.
comment: The code is released at https://github.com/Yux1angJi/DIFF
♻ ☆ Engagement-Driven Content Generation with Large Language Models
Large Language Models (LLMs) exhibit significant persuasion capabilities in one-on-one interactions, but their influence within social networks remains underexplored. This study investigates the potential social impact of LLMs in these environments, where interconnected users and complex opinion dynamics pose unique challenges. In particular, we address the following research question: can LLMs learn to generate meaningful content that maximizes user engagement on social networks? To answer this question, we define a pipeline to guide the LLM-based content generation which employs reinforcement learning with simulated feedback. In our framework, the reward is based on an engagement model borrowed from the literature on opinion dynamics and information propagation. Moreover, we force the text generated by the LLM to be aligned with a given topic and to satisfy a minimum fluency requirement. Using our framework, we analyze the capabilities and limitations of LLMs in tackling the given task, specifically considering the relative positions of the LLM as an agent within the social network and the distribution of opinions in the network on the given topic. Our findings show the full potential of LLMs in creating social engagement. Notable properties of our approach are that the learning procedure is adaptive to the opinion distribution of the underlying network and agnostic to the specifics of the engagement model, which is embedded as a plug-and-play component. In this regard, our approach can be easily refined for more complex engagement tasks and interventions in computational social science. The code used for the experiments is publicly available at https://anonymous.4open.science/r/EDCG/.
♻ ☆ A Transformer Model for Segmentation, Classification, and Caller Identification of Marmoset Vocalization
Marmoset, a highly vocalized primate, has become a popular animal model for studying social-communicative behavior and its underlying mechanism comparing with human infant linguistic developments. In the study of vocal communication, it is vital to know the caller identities, call contents, and vocal exchanges. Previous work of a CNN has achieved a joint model for call segmentation, classification, and caller identification for marmoset vocalizations. However, the CNN has limitations in modeling long-range acoustic patterns; the Transformer architecture that has been shown to outperform CNNs, utilizes the self-attention mechanism that efficiently segregates information parallelly over long distances and captures the global structure of marmoset vocalization. We propose using the Transformer to jointly segment and classify the marmoset calls and identify the callers for each vocalization.
♻ ☆ Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based Wireless Communication Systems
Machine Learning (ML) has been instrumental in enabling joint transceiver optimization by merging all physical layer blocks of the end-to-end wireless communication systems. Although there have been a number of adversarial attacks on ML-based wireless systems, the existing methods do not provide a comprehensive view including multi-modality of the source data, common physical layer protocols, and wireless domain constraints. This paper proposes Magmaw, a novel wireless attack methodology capable of generating universal adversarial perturbations for any multimodal signal transmitted over a wireless channel. We further introduce new objectives for adversarial attacks on downstream applications. We adopt the widely-used defenses to verify the resilience of Magmaw. For proof-of-concept evaluation, we build a real-time wireless attack platform using a software-defined radio system. Experimental results demonstrate that Magmaw causes significant performance degradation even in the presence of strong defense mechanisms. Furthermore, we validate the performance of Magmaw in two case studies: encrypted communication channel and channel modality-based ML model.
comment: Accepted at NDSS 2025
♻ ☆ Structure-Based Molecule Optimization via Gradient-Guided Bayesian Update
Structure-based molecule optimization (SBMO) aims to optimize molecules with both continuous coordinates and discrete types against protein targets. A promising direction is to exert gradient guidance on generative models given its remarkable success in images, but it is challenging to guide discrete data and risks inconsistencies between modalities. To this end, we leverage a continuous and differentiable space derived through Bayesian inference, presenting Molecule Joint Optimization (MolJO), the first gradient-based SBMO framework that facilitates joint guidance signals across different modalities while preserving SE(3)-equivariance. We introduce a novel backward correction strategy that optimizes within a sliding window of the past histories, allowing for a seamless trade-off between explore-and-exploit during optimization. Our proposed MolJO achieves state-of-the-art performance on CrossDocked2020 benchmark (Success Rate 51.3% , Vina Dock -9.05 and SA 0.78), more than 4x improvement in Success Rate compared to the gradient-based counterpart, and 2x "Me-Better" Ratio as much as 3D baselines. Furthermore, we extend MolJO to a wide range of optimization settings, including multi-objective optimization and challenging tasks in drug design such as R-group optimization and scaffold hopping, further underscoring its versatility and potential.
comment: 27 pages, 17 figures
♻ ☆ IC3M: In-Car Multimodal Multi-object Monitoring for Abnormal Status of Both Driver and Passengers
Recently, in-car monitoring has emerged as a promising technology for detecting early-stage abnormal status of the driver and providing timely alerts to prevent traffic accidents. Although training models with multimodal data enhances the reliability of abnormal status detection, the scarcity of labeled data and the imbalance of class distribution impede the extraction of critical abnormal state features, significantly deteriorating training performance. Furthermore, missing modalities due to environment and hardware limitations further exacerbate the challenge of abnormal status identification. More importantly, monitoring abnormal health conditions of passengers, particularly in elderly care, is of paramount importance but remains underexplored. To address these challenges, we introduce our IC3M, an efficient camera-rotation-based multimodal framework for monitoring both driver and passengers in a car. Our IC3M comprises two key modules: an adaptive threshold pseudo-labeling strategy and a missing modality reconstruction. The former customizes pseudo-labeling thresholds for different classes based on the class distribution, generating class-balanced pseudo labels to guide model training effectively, while the latter leverages crossmodality relationships learned from limited labels to accurately recover missing modalities by distribution transferring from available modalities. Extensive experimental results demonstrate that IC3M outperforms state-of-the-art benchmarks in accuracy, precision, and recall while exhibiting superior robustness under limited labeled data and severe missing modality.
comment: 16 pages, 17 figures
♻ ☆ LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning
This paper presents an advanced mathematical problem-solving framework, LLaMA-Berry, for enhancing the mathematical reasoning ability of Large Language Models (LLMs). The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path and utilizes a pairwise reward model to evaluate different paths globally. By leveraging the self-critic and rewriting capabilities of LLMs, Self-Refine applied to MCTS (SR-MCTS) overcomes the inefficiencies and limitations of conventional step-wise and greedy search algorithms by fostering a more efficient exploration of solution spaces. Pairwise Preference Reward Model~(PPRM), inspired by Reinforcement Learning from Human Feedback (RLHF), is then used to model pairwise preferences between solutions, utilizing an Enhanced Borda Count (EBC) method to synthesize these preferences into a global ranking score to find better answers. This approach addresses the challenges of scoring variability and non-independent distributions in mathematical reasoning tasks. The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability compared to existing methods like ToT and rStar, particularly in complex Olympiad-level benchmarks, including GPQA, AIME24 and AMC23.
♻ ☆ MOT FCG++: Enhanced Representation of Spatio-temporal Motion and Appearance Features
The goal of multi-object tracking (MOT) is to detect and track all objects in a scene across frames, while maintaining a unique identity for each object. Most existing methods rely on the spatial-temporal motion features and appearance embedding features of the detected objects in consecutive frames. Effectively and robustly representing the spatial and appearance features of long trajectories has become a critical factor affecting the performance of MOT. We propose a novel approach for appearance and spatial-temporal motion feature representation, improving upon the hierarchical clustering association method MOT FCG. For spatialtemporal motion features, we first propose Diagonal Modulated GIoU, which more accurately represents the relationship between the position and shape of the objects. Second, Mean Constant Velocity Modeling is proposed to reduce the effect of observation noise on target motion state estimation. For appearance features, we utilize a dynamic appearance representation that incorporates confidence information, enabling the trajectory appearance features to be more robust and global. Based on the baseline model MOT FCG, we have realized further improvements in the performance of all. we achieved 63.1 HOTA, 76.9 MOTA and 78.2 IDF1 on the MOT17 test set, and also achieved competitive performance on the MOT20 and DanceTrack sets.
comment: 14 pages, 7 figures
♻ ☆ Probing Multimodal Large Language Models for Global and Local Semantic Representations LREC
The advancement of Multimodal Large Language Models (MLLMs) has greatly accelerated the development of applications in understanding integrated texts and images. Recent works leverage image-caption datasets to train MLLMs, achieving state-of-the-art performance on image-to-text tasks. However, there are few studies exploring which layers of MLLMs make the most effort to the global image information, which plays vital roles in multimodal comprehension and generation. In this study, we find that the intermediate layers of models can encode more global semantic information, whose representation vectors perform better on visual-language entailment tasks, rather than the topmost layers. We further probe models regarding local semantic representations through object recognition tasks. We find that the topmost layers may excessively focus on local information, leading to a diminished ability to encode global information. Our code and data are released via https://github.com/kobayashikanna01/probing_MLLM_rep.
comment: Accepted by LREC-COLING 2024 as a short paper. ACL Anthology URL: [https://aclanthology.org/2024.lrec-main.1142/]
♻ ☆ SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework
Traditional federated learning (FL) frameworks rely heavily on terrestrial networks, where coverage limitations and increasing bandwidth congestion significantly hinder model convergence. Fortunately, the advancement of low-Earth orbit (LEO) satellite networks offers promising new communication avenues to augment traditional terrestrial FL. Despite this potential, the limited satellite-ground communication bandwidth and the heterogeneous operating environments of ground devices-including variations in data, bandwidth, and computing power-pose substantial challenges for effective and robust satellite-assisted FL. To address these challenges, we propose SatFed, a resource-efficient satellite-assisted heterogeneous FL framework. SatFed implements freshness-based model prioritization queues to optimize the use of highly constrained satellite-ground bandwidth, ensuring the transmission of the most critical models. Additionally, a multigraph is constructed to capture real-time heterogeneous relationships between devices, including data distribution, terrestrial bandwidth, and computing capability. This multigraph enables SatFed to aggregate satellite-transmitted models into peer guidance, enhancing local training in heterogeneous environments. Extensive experiments with real-world LEO satellite networks demonstrate that SatFed achieves superior performance and robustness compared to state-of-the-art benchmarks.
comment: 10 pages, 12 figures
♻ ☆ PaDeLLM-NER: Parallel Decoding in Large Language Models for Named Entity Recognition
In this study, we aim to reduce generation latency for Named Entity Recognition (NER) with Large Language Models (LLMs). The main cause of high latency in LLMs is the sequential decoding process, which autoregressively generates all labels and mentions for NER, significantly increase the sequence length. To this end, we introduce Parallel Decoding in LLM for NE} (PaDeLLM-NER), a approach that integrates seamlessly into existing generative model frameworks without necessitating additional modules or architectural modifications. PaDeLLM-NER allows for the simultaneous decoding of all mentions, thereby reducing generation latency. Experiments reveal that PaDeLLM-NER significantly increases inference speed that is 1.76 to 10.22 times faster than the autoregressive approach for both English and Chinese. Simultaneously it maintains the quality of predictions as evidenced by the performance that is on par with the state-of-the-art across various datasets.
comment: Accepted to Neurips2024
♻ ☆ t-READi: Transformer-Powered Robust and Efficient Multimodal Inference for Autonomous Driving
Given the wide adoption of multimodal sensors (e.g., camera, lidar, radar) by autonomous vehicles (AVs), deep analytics to fuse their outputs for a robust perception become imperative. However, existing fusion methods often make two assumptions rarely holding in practice: i) similar data distributions for all inputs and ii) constant availability for all sensors. Because, for example, lidars have various resolutions and failures of radars may occur, such variability often results in significant performance degradation in fusion. To this end, we present tREADi, an adaptive inference system that accommodates the variability of multimodal sensory data and thus enables robust and efficient perception. t-READi identifies variation-sensitive yet structure-specific model parameters; it then adapts only these parameters while keeping the rest intact. t-READi also leverages a cross-modality contrastive learning method to compensate for the loss from missing modalities. Both functions are implemented to maintain compatibility with existing multimodal deep fusion methods. The extensive experiments evidently demonstrate that compared with the status quo approaches, t-READi not only improves the average inference accuracy by more than 6% but also reduces the inference latency by almost 15x with the cost of only 5% extra memory overhead in the worst case under realistic data and modal variations.
comment: 14 pages, 16 figures
♻ ☆ Brain-Inspired Efficient Pruning: Exploiting Criticality in Spiking Neural Networks
Spiking Neural Networks (SNNs) have gained significant attention due to the energy-efficient and multiplication-free characteristics. Despite these advantages, deploying large-scale SNNs on edge hardware is challenging due to limited resource availability. Network pruning offers a viable approach to compress the network scale and reduce hardware resource requirements for model deployment. However, existing SNN pruning methods cause high pruning costs and performance loss because they lack efficiency in processing the sparse spike representation of SNNs. In this paper, inspired by the critical brain hypothesis in neuroscience and the high biological plausibility of SNNs, we explore and leverage criticality to facilitate efficient pruning in deep SNNs. We firstly explain criticality in SNNs from the perspective of maximizing feature information entropy. Second, We propose a low-cost metric for assess neuron criticality in feature transmission and design a pruning-regeneration method that incorporates this criticality into the pruning process. Experimental results demonstrate that our method achieves higher performance than the current state-of-the-art (SOTA) method with up to 95.26\% reduction of pruning cost. The criticality-based regeneration process efficiently selects potential structures and facilitates consistent feature representation.
♻ ☆ High Risk of Political Bias in Black Box Emotion Inference Models
This paper investigates the presence of political bias in emotion inference models used for sentiment analysis (SA) in social science research. Machine learning models often reflect biases in their training data, impacting the validity of their outcomes. While previous research has highlighted gender and race biases, our study focuses on political bias - an underexplored yet pervasive issue that can skew the interpretation of text data across a wide array of studies. We conducted a bias audit on a Polish sentiment analysis model developed in our lab. By analyzing valence predictions for names and sentences involving Polish politicians, we uncovered systematic differences influenced by political affiliations. Our findings indicate that annotations by human raters propagate political biases into the model's predictions. To mitigate this, we pruned the training dataset of texts mentioning these politicians and observed a reduction in bias, though not its complete elimination. Given the significant implications of political bias in SA, our study emphasizes caution in employing these models for social science research. We recommend a critical examination of SA results and propose using lexicon-based systems as a more ideologically neutral alternative. This paper underscores the necessity for ongoing scrutiny and methodological adjustments to ensure the reliability and impartiality of the use of machine learning in academic and applied contexts.
♻ ☆ Multi Loss-based Feature Fusion and Top Two Voting Ensemble Decision Strategy for Facial Expression Recognition in the Wild
Facial expression recognition (FER) in the wild is a challenging task affected by the image quality and has attracted broad interest in computer vision. There is no research using feature fusion and ensemble strategy for FER simultaneously. Different from previous studies, this paper applies both internal feature fusion for a single model and feature fusion among multiple networks, as well as the ensemble strategy. This paper proposes one novel single model named R18+FAML, as well as one ensemble model named R18+FAML-FGA-T2V to improve the performance of the FER in the wild. Based on the structure of ResNet18 (R18), R18+FAML combines internal Feature fusion and three Attention blocks using Multiple Loss functions (FAML) to improve the diversity of the feature extraction. To improve the performance of R18+FAML, we propose a Feature fusion among networks based on the Genetic Algorithm (FGA), which can fuse the convolution kernels for feature extraction of multiple networks. On the basis of R18+FAML and FGA, we propose one ensemble strategy, i.e., the Top Two Voting (T2V) to support the classification of FER, which can consider more classification information comprehensively. Combining the above strategies, R18+FAML-FGA-T2V can focus on the main expression-aware areas. Extensive experiments demonstrate that our single model R18+FAML and the ensemble model R18+FAML-FGA-T2V achieve the accuracies of $\left( 90.32, 62.17, 65.83 \right)\%$ and $\left( 91.59, 63.27, 66.63 \right)\%$ on three challenging unbalanced FER datasets RAF-DB, AffectNet-8 and AffectNet-7 respectively, both outperforming the state-of-the-art results.
comment: 12 pages, 8 figures
♻ ☆ SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation
Large language models demonstrate exceptional performance in simple code generation tasks but still face challenges in tackling complex problems. These challenges may stem from insufficient reasoning and problem decomposition capabilities. To address this issue, we propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths. This creates a positive feedback loop, enabling continuous improvement. Our method operates entirely through the model itself without requiring additional supervision. By synthesizing natural language reasoning paths and translating them into executable code, the approach ensures analytical accuracy and enhances the success rate in solving complex tasks. Experimental results show that, even without additional supervisory signals, our method achieves performance improvements across different model scales, demonstrating the significant potential of self-improvement in small models. Furthermore, the method remains robust when traditional Chain-of-Thought (CoT) approaches exhibit performance degradation, with notable improvements observed in diversity metrics such as pass@10. We encourage further exploration of reasoning processes within training data to enhance the ability of language models to address complex problems.
♻ ☆ ProactivePIM: Accelerating Weight-Sharing Embedding Layer with PIM for Scalable Recommendation System
The model size growth of personalized recommendation systems poses new challenges for inference. Weight-sharing algorithms have been proposed for size reduction, but they increase memory access. Recent advancements in processing-in-memory (PIM) enhanced the model throughput by exploiting memory parallelism, but such algorithms introduce massive CPU-PIM communication into prior PIM systems. We propose ProactivePIM, a PIM system for weight-sharing recommendation system acceleration. ProactivePIM integrates a cache within the PIM with a prefetching scheme to leverage a unique locality of the algorithm and eliminate communication overhead through a subtable mapping strategy. ProactivePIM achieves a 4.8x speedup compared to prior works.
comment: 8 pages, 9 figures
♻ ☆ Instruction-Guided Editing Controls for Images and Multimedia: A Survey in LLM era
The rapid advancement of large language models (LLMs) and multimodal learning has transformed digital content creation and manipulation. Traditional visual editing tools require significant expertise, limiting accessibility. Recent strides in instruction-based editing have enabled intuitive interaction with visual content, using natural language as a bridge between user intent and complex editing operations. This survey provides an overview of these techniques, focusing on how LLMs and multimodal models empower users to achieve precise visual modifications without deep technical knowledge. By synthesizing over 100 publications, we explore methods from generative adversarial networks to diffusion models, examining multimodal integration for fine-grained content control. We discuss practical applications across domains such as fashion, 3D scene manipulation, and video synthesis, highlighting increased accessibility and alignment with human intuition. Our survey compares existing literature, emphasizing LLM-empowered editing, and identifies key challenges to stimulate further research. We aim to democratize powerful visual editing across various industries, from entertainment to education. Interested readers are encouraged to access our repository at https://github.com/tamlhp/awesome-instruction-editing.
comment: Fixed a serious error in author information
♻ ☆ Graph Knowledge Distillation to Mixture of Experts
In terms of accuracy, Graph Neural Networks (GNNs) are the best architectural choice for the node classification task. Their drawback in real-world deployment is the latency that emerges from the neighbourhood processing operation. One solution to the latency issue is to perform knowledge distillation from a trained GNN to a Multi-Layer Perceptron (MLP), where the MLP processes only the features of the node being classified (and possibly some pre-computed structural information). However, the performance of such MLPs in both transductive and inductive settings remains inconsistent for existing knowledge distillation techniques. We propose to address the performance concerns by using a specially-designed student model instead of an MLP. Our model, named Routing-by-Memory (RbM), is a form of Mixture-of-Experts (MoE), with a design that enforces expert specialization. By encouraging each expert to specialize on a certain region on the hidden representation space, we demonstrate experimentally that it is possible to derive considerably more consistent performance across multiple datasets. Code available at https://github.com/Rufaim/routing-by-memory.
♻ ☆ AI-generated faces influence gender stereotypes and racial homogenization
Text-to-image generative AI models such as Stable Diffusion are used daily by millions worldwide. However, the extent to which these models exhibit racial and gender stereotypes is not yet fully understood. Here, we document significant biases in Stable Diffusion across six races, two genders, 32 professions, and eight attributes. Additionally, we examine the degree to which Stable Diffusion depicts individuals of the same race as being similar to one another. This analysis reveals significant racial homogenization, e.g., depicting nearly all Middle Eastern men as bearded, brown-skinned, and wearing traditional attire. We then propose debiasing solutions that allow users to specify the desired distributions of race and gender when generating images while minimizing racial homogenization. Finally, using a preregistered survey experiment, we find evidence that being presented with inclusive AI-generated faces reduces people's racial and gender biases, while being presented with non-inclusive ones increases such biases, regardless of whether the images are labeled as AI-generated. Taken together, our findings emphasize the need to address biases and stereotypes in text-to-image models.
comment: 47 pages, 19 figures
♻ ☆ A Closer Look at Machine Unlearning for Large Language Models
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns. Due to the high cost of retraining from scratch, researchers attempt to employ machine unlearning to remove specific content from LLMs while preserving the overall performance. In this paper, we discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches. To address the issue of inadequate evaluation of model outputs after unlearning, we introduce three additional metrics to evaluate token diversity, sentence semantics, and factual correctness. We then categorize unlearning methods into untargeted and targeted, and discuss their issues respectively. Specifically, the behavior that untargeted unlearning attempts to approximate is unpredictable and may involve hallucinations, and existing regularization is insufficient for targeted unlearning. To alleviate these issues, we propose using the objective of maximizing entropy (ME) for untargeted unlearning and incorporate answer preservation (AP) loss as regularization for targeted unlearning. Experimental results across three scenarios, i.e., fictitious unlearning, continual unlearning, and real-world unlearning, demonstrate the effectiveness of our approaches. The code is available at https://github.com/sail-sg/closer-look-LLM-unlearning.
♻ ☆ Risk-Sensitive Reinforcement Learning with Exponential Criteria
While reinforcement learning has shown experimental success in a number of applications, it is known to be sensitive to noise and perturbations in the parameters of the system, leading to high variance in the total reward amongst different episodes in slightly different environments. To introduce robustness, as well as sample efficiency, risk-sensitive reinforcement learning methods are being thoroughly studied. In this work, we provide a definition of robust reinforcement learning policies and formulate a risk-sensitive reinforcement learning problem to approximate them, by solving an optimization problem with respect to a modified objective based on exponential criteria. In particular, we study a model-free risk-sensitive variation of the widely-used Monte Carlo Policy Gradient algorithm and introduce a novel risk-sensitive online Actor-Critic algorithm based on solving a multiplicative Bellman equation using stochastic approximation updates. Analytical results suggest that the use of exponential criteria generalizes commonly used ad-hoc regularization approaches, improves sample efficiency, and introduces robustness with respect to perturbations in the model parameters and the environment. The implementation, performance, and robustness properties of the proposed methods are evaluated in simulated experiments.
♻ ☆ HumanVid: Demystifying Training Data for Camera-controllable Human Image Animation NeurIPS
Human image animation involves generating videos from a character photo, allowing user control and unlocking the potential for video and movie production. While recent approaches yield impressive results using high-quality training data, the inaccessibility of these datasets hampers fair and transparent benchmarking. Moreover, these approaches prioritize 2D human motion and overlook the significance of camera motions in videos, leading to limited control and unstable video generation. To demystify the training data, we present HumanVid, the first large-scale high-quality dataset tailored for human image animation, which combines crafted real-world and synthetic data. For the real-world data, we compile a vast collection of real-world videos from the internet. We developed and applied careful filtering rules to ensure video quality, resulting in a curated collection of 20K high-resolution (1080P) human-centric videos. Human and camera motion annotation is accomplished using a 2D pose estimator and a SLAM-based method. To expand our synthetic dataset, we collected 10K 3D avatar assets and leveraged existing assets of body shapes, skin textures and clothings. Notably, we introduce a rule-based camera trajectory generation method, enabling the synthetic pipeline to incorporate diverse and precise camera motion annotation, which can rarely be found in real-world data. To verify the effectiveness of HumanVid, we establish a baseline model named CamAnimate, short for Camera-controllable Human Animation, that considers both human and camera motions as conditions. Through extensive experimentation, we demonstrate that such simple baseline training on our HumanVid achieves state-of-the-art performance in controlling both human pose and camera motions, setting a new benchmark. Demo, data and code could be found in the project website: https://humanvid.github.io/.
comment: NeurIPS D&B Track 2024 camera ready version, TL;DR: the first large-scale dataset for camera controllable human image animation task, and a baseline method
♻ ☆ When Context Leads but Parametric Memory Follows in Large Language Models EMNLP 2024
Large language models (LLMs) have demonstrated remarkable progress in leveraging diverse knowledge sources. This study investigates how nine widely used LLMs allocate knowledge between local context and global parameters when answering open-ended questions in knowledge-consistent scenarios. We introduce a novel dataset, WikiAtomic, and systematically vary context sizes to analyze how LLMs prioritize and utilize the provided information and their parametric knowledge in knowledge-consistent scenarios. Additionally, we also study their tendency to hallucinate under varying context sizes. Our findings reveal consistent patterns across models, including a consistent reliance on both contextual (around 70%) and parametric (around 30%) knowledge, and a decrease in hallucinations with increasing context. These insights highlight the importance of more effective context organization and developing models that use input more deterministically for robust performance.
comment: Accepted by EMNLP 2024 Main Conference
♻ ☆ TransLinkGuard: Safeguarding Transformer Models Against Model Stealing in Edge Deployment ACM MM24
Proprietary large language models (LLMs) have been widely applied in various scenarios. Additionally, deploying LLMs on edge devices is trending for efficiency and privacy reasons. However, edge deployment of proprietary LLMs introduces new security challenges: edge-deployed models are exposed as white-box accessible to users, enabling adversaries to conduct effective model stealing (MS) attacks. Unfortunately, existing defense mechanisms fail to provide effective protection. Specifically, we identify four critical protection properties that existing methods fail to simultaneously satisfy: (1) maintaining protection after a model is physically copied; (2) authorizing model access at request level; (3) safeguarding runtime reverse engineering; (4) achieving high security with negligible runtime overhead. To address the above issues, we propose TransLinkGuard, a plug-and-play model protection approach against model stealing on edge devices. The core part of TransLinkGuard is a lightweight authorization module residing in a secure environment, e.g., TEE. The authorization module can freshly authorize each request based on its input. Extensive experiments show that TransLinkGuard achieves the same security protection as the black-box security guarantees with negligible overhead.
comment: Accepted by ACM MM24 Conference
♻ ☆ On the Trustworthiness Landscape of State-of-the-art Generative Models: A Survey and Outlook
Diffusion models and large language models have emerged as leading-edge generative models, revolutionizing various aspects of human life. However, the practical implementations of these models have also exposed inherent risks, bringing to the forefront their evil sides and sparking concerns regarding their trustworthiness. Despite the wealth of literature on this subject, a comprehensive survey specifically delving into the intersection of large-scale generative models and their trustworthiness remains largely absent. To bridge this gap, this paper investigates both the long-standing and emerging threats associated with these models across four fundamental dimensions: 1) privacy, 2) security, 3) fairness, and 4) responsibility. Based on the investigation results, we develop an extensive map outlining the trustworthiness of large generative models. After that, we provide practical recommendations and potential research directions for future secure applications equipped with large generative models, ultimately promoting the trustworthiness of the models and benefiting the society as a whole.
comment: draft
♻ ☆ Chat Bankman-Fried: an Exploration of LLM Alignment in Finance
Advancements in large language models (LLMs) have renewed concerns about AI alignment - the consistency between human and AI goals and values. As various jurisdictions enact legislation on AI safety, the concept of alignment must be defined and measured across different domains. This paper proposes an experimental framework to assess whether LLMs adhere to ethical and legal standards in the relatively unexplored context of finance. We prompt nine LLMs to impersonate the CEO of a financial institution and test their willingness to misuse customer assets to repay outstanding corporate debt. Beginning with a baseline configuration, we adjust preferences, incentives and constraints, analyzing the impact of each adjustment with logistic regression. Our findings reveal significant heterogeneity in the baseline propensity for unethical behavior of LLMs. Factors such as risk aversion, profit expectations, and regulatory environment consistently influence misalignment in ways predicted by economic theory, although the magnitude of these effects varies across LLMs. This paper highlights both the benefits and limitations of simulation-based, ex post safety testing. While it can inform financial authorities and institutions aiming to ensure LLM safety, there is a clear trade-off between generality and cost.
♻ ☆ Decision-Focused Model-based Reinforcement Learning for Reward Transfer
Model-based reinforcement learning (MBRL) provides a way to learn a transition model of the environment, which can then be used to plan personalized policies for different patient cohorts and to understand the dynamics involved in the decision-making process. However, standard MBRL algorithms are either sensitive to changes in the reward function or achieve suboptimal performance on the task when the transition model is restricted. Motivated by the need to use simple and interpretable models in critical domains such as healthcare, we propose a novel robust decision-focused (RDF) algorithm that learns a transition model that achieves high returns while being robust to changes in the reward function. We demonstrate our RDF algorithm can be used with several model classes and planning algorithms. We also provide theoretical and empirical evidence, on a variety of simulators and real patient data, that RDF can learn simple yet effective models that can be used to plan personalized policies.
comment: Machine Learning for Healthcare (MLHC) 2024
♻ ☆ A Survey on Compositional Learning of AI Models: Theoretical and Experimental Practices
Compositional learning, mastering the ability to combine basic concepts and construct more intricate ones, is crucial for human cognition, especially in human language comprehension and visual perception. This notion is tightly connected to generalization over unobserved situations. Despite its integral role in intelligence, there is a lack of systematic theoretical and experimental research methodologies, making it difficult to analyze the compositional learning abilities of computational models. In this paper, we survey the literature on compositional learning of AI models and the connections made to cognitive studies. We identify abstract concepts of compositionality in cognitive and linguistic studies and connect these to the computational challenges faced by language and vision models in compositional reasoning. We overview the formal definitions, tasks, evaluation benchmarks, various computational models, and theoretical findings. Our primary focus is on linguistic benchmarks and combining language and vision, though there is a large amount of research on compositional concept learning in the computer vision community alone. We cover modern studies on large language models to provide a deeper understanding of the cutting-edge compositional capabilities exhibited by state-of-the-art AI models and pinpoint important directions for future research.
♻ ☆ Multi-Modal Forecaster: Jointly Predicting Time Series and Textual Data
Current forecasting approaches are largely unimodal and ignore the rich textual data that often accompany the time series due to lack of well-curated multimodal benchmark dataset. In this work, we develop TimeText Corpus (TTC), a carefully curated, time-aligned text and time dataset for multimodal forecasting. Our dataset is composed of sequences of numbers and text aligned to timestamps, and includes data from two different domains: climate science and healthcare. Our data is a significant contribution to the rare selection of available multimodal datasets. We also propose the Hybrid Multi-Modal Forecaster (Hybrid-MMF), a multimodal LLM that jointly forecasts both text and time series data using shared embeddings. However, contrary to our expectations, our Hybrid-MMF model does not outperform existing baselines in our experiments. This negative result highlights the challenges inherent in multimodal forecasting. Our code and data are available at https://github.com/Rose-STL-Lab/Multimodal_ Forecasting.
comment: 21 pages, 4 tables, 2 figures
♻ ☆ VQA$^2$: Visual Question Answering for Video Quality Assessment
The advent and proliferation of large multi-modal models (LMMs) have introduced new paradigms to computer vision, transforming various tasks into a unified visual question answering framework. Video Quality Assessment (VQA), a classic field in low-level visual perception, focused initially on quantitative video quality scoring. However, driven by advances in LMMs, it is now progressing toward more holistic visual quality understanding tasks. Recent studies in the image domain have demonstrated that Visual Question Answering (VQA) can markedly enhance low-level visual quality evaluation. Nevertheless, related work has not been explored in the video domain, leaving substantial room for improvement. To address this gap, we introduce the VQA2 Instruction Dataset - the first visual question answering instruction dataset that focuses on video quality assessment. This dataset consists of 3 subsets and covers various video types, containing 157,755 instruction question-answer pairs. Then, leveraging this foundation, we present the VQA2 series models. The VQA2 series models interleave visual and motion tokens to enhance the perception of spatial-temporal quality details in videos. We conduct extensive experiments on video quality scoring and understanding tasks, and results demonstrate that the VQA2series models achieve excellent performance in both tasks. Notably, our final model, the VQA2-Assistant, exceeds the renowned GPT-4o in visual quality understanding tasks while maintaining strong competitiveness in quality scoring tasks. Our work provides a foundation and feasible approach for integrating low-level video quality assessment and understanding with LMMs.
comment: 24 pages 12 figures
♻ ☆ A dataset of questions on decision-theoretic reasoning in Newcomb-like problems
We introduce a dataset of natural-language questions in the decision theory of so-called Newcomb-like problems. Newcomb-like problems include, for instance, decision problems in which an agent interacts with a similar other agent, and thus has to reason about the fact that the other agent will likely reason in similar ways. Evaluating LLM reasoning about Newcomb-like problems is important because interactions between foundation-model-based agents will often be Newcomb-like. Some ways of reasoning about Newcomb-like problems may allow for greater cooperation between models. Our dataset contains both capabilities questions (i.e., questions with a unique, uncontroversially correct answer) and attitude questions (i.e., questions about which decision theorists would disagree). We use our dataset for an investigation of decision-theoretical capabilities and expressed attitudes and their interplay in existing models (different models by OpenAI, Anthropic, Meta, GDM, Reka, etc.), as well as models under simple prompt-based interventions. We find, among other things, that attitudes vary significantly between existing models; that high capabilities are associated with attitudes more favorable toward so-called evidential decision theory; and that attitudes are consistent across different types of questions.
comment: 48 pages, 15 figures; code and data at https://github.com/casparoe/newcomblike_questions_dataset
♻ ☆ Language Models as Hierarchy Encoders NeurIPS 2024
Interpreting hierarchical structures latent in language is a key limitation of current language models (LMs). While previous research has implicitly leveraged these hierarchies to enhance LMs, approaches for their explicit encoding are yet to be explored. To address this, we introduce a novel approach to re-train transformer encoder-based LMs as Hierarchy Transformer encoders (HiTs), harnessing the expansive nature of hyperbolic space. Our method situates the output embedding space of pre-trained LMs within a Poincar\'e ball with a curvature that adapts to the embedding dimension, followed by training on hyperbolic clustering and centripetal losses. These losses are designed to effectively cluster related entities (input as texts) and organise them hierarchically. We evaluate HiTs against pre-trained LMs, standard fine-tuned LMs, and several hyperbolic embedding baselines, focusing on their capabilities in simulating transitive inference, predicting subsumptions, and transferring knowledge across hierarchies. The results demonstrate that HiTs consistently outperform all baselines in these tasks, underscoring the effectiveness and transferability of our re-trained hierarchy encoders.
comment: Accept at NeurIPS 2024
♻ ☆ Geometric Static Modeling Framework for Piecewise-Continuous Curved-Link Multi Point-of-Contact Tensegrity Robots
Tensegrities synergistically combine tensile (cable) and rigid (link) elements to achieve structural integrity, making them lightweight, packable, and impact resistant. Consequently, they have high potential for locomotion in unstructured environments. This research presents geometric modeling of a Tensegrity eXploratory Robot (TeXploR) comprised of two semi-circular, curved links held together by 12 prestressed cables and actuated with an internal mass shifting along each link. This design allows for efficient rolling with stability (e.g., tip-over on an incline). However, the unique design poses static and dynamic modeling challenges given the discontinuous nature of the semi-circular, curved links, two changing points of contact with the surface plane, and instantaneous movement of the masses along the links. The robot is modeled using a geometric approach where the holonomic constraints confirm the experimentally observed four-state hybrid system, proving TeXploR rolls along one link while pivoting about the end of the other. It also identifies the quasi-static state transition boundaries that enable a continuous change in the robot states via internal mass shifting. This is the first time in literature a non-spherical two-point contact system is kinematically and geometrically modeled. Furthermore, the static solutions are closed-form and do not require numerical exploration of the solution. The MATLAB simulations are experimentally validated on a tetherless prototype with mean absolute error of 4.36{\deg}.
comment: This work is published on IEEE RA-L. Please refer to the published article below: https://ieeexplore.ieee.org/document/10734217 L. Ervin and V. Vikas, "Geometric Static Modeling Framework for Piecewise-Continuous Curved-Link Multi Point-of-Contact Tensegrity Robots," in IEEE Robotics and Automation Letters, vol. 9, no. 12, pp. 11066-11073, Dec. 2024, doi: 10.1109/LRA.2024.3486199
♻ ☆ Accelerating Gaussian Variational Inference for Motion Planning Under Uncertainty
This work addresses motion planning under uncertainty as a stochastic optimal control problem. The path distribution induced by the optimal controller corresponds to a posterior path distribution with a known form. To approximate this posterior, we frame an optimization problem in the space of Gaussian distributions, which aligns with the Gaussian Variational Inference Motion Planning (GVIMP) paradigm introduced in \cite{yu2023gaussian}. In this framework, the computation bottleneck lies in evaluating the expectation of collision costs over a dense discretized trajectory and computing the marginal covariances. This work exploits the sparse motion planning factor graph, which allows for parallel computing collision costs and Gaussian Belief Propagation (GBP) marginal covariance computation, to introduce a computationally efficient approach to solving GVIMP. We term the novel paradigm as the Parallel Gaussian Variational Inference Motion Planning (P-GVIMP). We validate the proposed framework on various robotic systems, demonstrating significant speed acceleration achieved by leveraging Graphics Processing Units (GPUs) for parallel computation. An open-sourced implementation is presented at https://github.com/hzyu17/VIMP.
comment: 7 pages
♻ ☆ M-SET: Multi-Drone Swarm Intelligence Experimentation with Collision Avoidance Realism
Distributed sensing by cooperative drone swarms is crucial for several Smart City applications, such as traffic monitoring and disaster response. Using an indoor lab with inexpensive drones, a testbed supports complex and ambitious studies on these systems while maintaining low cost, rigor, and external validity. This paper introduces the Multi-drone Sensing Experimentation Testbed (M-SET), a novel platform designed to prototype, develop, test, and evaluate distributed sensing with swarm intelligence. M-SET addresses the limitations of existing testbeds that fail to emulate collisions, thus lacking realism in outdoor environments. By integrating a collision avoidance method based on a potential field algorithm, M-SET ensures collision-free navigation and sensing, further optimized via a multi-agent collective learning algorithm. Extensive evaluation demonstrates accurate energy consumption estimation and a low risk of collisions, providing a robust proof-of-concept. New insights show that M-SET has significant potential to support ambitious research with minimal cost, simplicity, and high sensing quality.
comment: 7 pages, 7 figures. This work has been accepted by 2024 IEEE 49th Conference on Local Computer Networks (LCN)
♻ ☆ Exosense: A Vision-Based Scene Understanding System For Exoskeletons
Self-balancing exoskeletons are a key enabling technology for individuals with mobility impairments. While the current challenges focus on human-compliant hardware and control, unlocking their use for daily activities requires a scene perception system. In this work, we present Exosense, a vision-centric scene understanding system for self-balancing exoskeletons. We introduce a multi-sensor visual-inertial mapping device as well as a navigation stack for state estimation, terrain mapping and long-term operation. We tested Exosense attached to both a human leg and Wandercraft's Personal Exoskeleton in real-world indoor scenarios. This enabled us to test the system during typical periodic walking gaits, as well as future uses in multi-story environments. We demonstrate that Exosense can achieve an odometry drift of about 4 cm per meter traveled, and construct terrain maps under 1 cm average reconstruction error. It can also work in a visual localization mode in a previously mapped environment, providing a step towards long-term operation of exoskeletons.
comment: 8 pages, 9 figures
♻ ☆ A Survey on Small-Scale Testbeds for Connected and Automated Vehicles and Robot Swarms
Connected and automated vehicles and robot swarms hold transformative potential for enhancing safety, efficiency, and sustainability in the transportation and manufacturing sectors. Extensive testing and validation of these technologies is crucial for their deployment in the real world. While simulations are essential for initial testing, they often have limitations in capturing the complex dynamics of real-world interactions. This limitation underscores the importance of small-scale testbeds. These testbeds provide a realistic, cost-effective, and controlled environment for testing and validating algorithms, acting as an essential intermediary between simulation and full-scale experiments. This work serves to facilitate researchers' efforts in identifying existing small-scale testbeds suitable for their experiments and provide insights for those who want to build their own. In addition, it delivers a comprehensive survey of the current landscape of these testbeds. We derive 62 characteristics of testbeds based on the well-known sense-plan-act paradigm and offer an online table comparing 23 small-scale testbeds based on these characteristics. The online table is hosted on our designated public webpage https://bassamlab.github.io/testbeds-survey, and we invite testbed creators and developers to contribute to it. We closely examine nine testbeds in this paper, demonstrating how the derived characteristics can be used to present testbeds. Furthermore, we discuss three ongoing challenges concerning small-scale testbeds that we identified, i.e., small-scale to full-scale transition, sustainability, and power and resource management.
comment: 16 pages, 11 figures, 1 table. This work was accepted by the IEEE Robotics & Automation Magazine
♻ ☆ Highly dynamic physical interaction for robotics: design and control of an active remote center of compliance
Robot interaction control is often limited to low dynamics or low flexibility, depending on whether an active or passive approach is chosen. In this work, we introduce a hybrid control scheme that combines the advantages of active and passive interaction control. To accomplish this, we propose the design of a novel Active Remote Center of Compliance (ARCC), which is based on a passive and active element which can be used to directly control the interaction forces. We introduce surrogate models for a dynamic comparison against purely robot-based interaction schemes. In a comparative validation, ARCC drastically improves the interaction dynamics, leading to an increase in the motion bandwidth of up to 31 times. We introduce further our control approach as well as the integration in the robot controller. Finally, we analyze ARCC on different industrial benchmarks like peg-in-hole, top-hat rail assembly and contour following problems and compare it against the state of the art, to highlight the dynamic and flexibility. The proposed system is especially suited if the application requires a low cycle time combined with a sensitive manipulation.
comment: 7 pages, 7 figures
♻ ☆ OTO Planner: An Efficient Only Travelling Once Exploration Planner for Complex and Unknown Environments
Autonomous exploration in complex and cluttered environments is essential for various applications. However, there are many challenges due to the lack of global heuristic information. Existing exploration methods suffer from the repeated paths and considerable computational resource requirement in large-scale environments. To address the above issues, this letter proposes an efficient exploration planner that reduces repeated paths in complex environments, hence it is called "Only Travelling Once Planner". OTO Planner includes fast frontier updating, viewpoint evaluation and viewpoint refinement. A selective frontier updating mechanism is designed, saving a large amount of computational resources. In addition, a novel viewpoint evaluation system is devised to reduce the repeated paths utilizing the enclosed sub-region detection. Besides, a viewpoint refinement approach is raised to concentrate the redundant viewpoints, leading to smoother paths. We conduct extensive simulation and real-world experiments to validate the proposed method. Compared to the state-of-the-art approach, the proposed method reduces the exploration time and movement distance by 10%-20% and improves the speed of frontier detection by 6-9 times.
♻ ☆ Learning Robust Grasping Strategy Through Tactile Sensing and Adaption Skill
Robust grasping represents an essential task in robotics, necessitating tactile feedback and reactive grasping adjustments for robust grasping of objects. Previous research has extensively combined tactile sensing with grasping, primarily relying on rule-based approaches, frequently neglecting post-grasping difficulties such as external disruptions or inherent uncertainties of the object's physics and geometry. To address these limitations, this paper introduces an human-demonstration-based adaptive grasping policy base on tactile, which aims to achieve robust gripping while resisting disturbances to maintain grasp stability. Our trained model generalizes to daily objects with seven different sizes, shapes, and textures. Experimental results demonstrate that our method performs well in dynamic and force interaction tasks and exhibits excellent generalization ability.
♻ ☆ FracGM: A Fast Fractional Programming Technique for Geman-McClure Robust Estimator
Robust estimation is essential in computer vision, robotics, and navigation, aiming to minimize the impact of outlier measurements for improved accuracy. We present a fast algorithm for Geman-McClure robust estimation, FracGM, leveraging fractional programming techniques. This solver reformulates the original non-convex fractional problem to a convex dual problem and a linear equation system, iteratively solving them in an alternating optimization pattern. Compared to graduated non-convexity approaches, this strategy exhibits a faster convergence rate and better outlier rejection capability. In addition, the global optimality of the proposed solver can be guaranteed under given conditions. We demonstrate the proposed FracGM solver with Wahba's rotation problem and 3-D point-cloud registration along with relaxation pre-processing and projection post-processing. Compared to state-of-the-art algorithms, when the outlier rates increase from 20% to 80%, FracGM shows 53% and 88% lower rotation and translation increases. In real-world scenarios, FracGM achieves better results in 13 out of 18 outcomes, while having a 19.43% improvement in the computation time.
comment: 8 pages, 6 figures
♻ ☆ Artificial General Intelligence for Medical Imaging Analysis
Large-scale Artificial General Intelligence (AGI) models, including Large Language Models (LLMs) such as ChatGPT/GPT-4, have achieved unprecedented success in a variety of general domain tasks. Yet, when applied directly to specialized domains like medical imaging, which require in-depth expertise, these models face notable challenges arising from the medical field's inherent complexities and unique characteristics. In this review, we delve into the potential applications of AGI models in medical imaging and healthcare, with a primary focus on LLMs, Large Vision Models, and Large Multimodal Models. We provide a thorough overview of the key features and enabling techniques of LLMs and AGI, and further examine the roadmaps guiding the evolution and implementation of AGI models in the medical sector, summarizing their present applications, potentialities, and associated challenges. In addition, we highlight potential future research directions, offering a holistic view on upcoming ventures. This comprehensive review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
♻ ☆ Large Language Models Show Human-like Social Desirability Biases in Survey Responses
As Large Language Models (LLMs) become widely used to model and simulate human behavior, understanding their biases becomes critical. We developed an experimental framework using Big Five personality surveys and uncovered a previously undetected social desirability bias in a wide range of LLMs. By systematically varying the number of questions LLMs were exposed to, we demonstrate their ability to infer when they are being evaluated. When personality evaluation is inferred, LLMs skew their scores towards the desirable ends of trait dimensions (i.e., increased extraversion, decreased neuroticism, etc). This bias exists in all tested models, including GPT-4/3.5, Claude 3, Llama 3, and PaLM-2. Bias levels appear to increase in more recent models, with GPT-4's survey responses changing by 1.20 (human) standard deviations and Llama 3's by 0.98 standard deviations-very large effects. This bias is robust to randomization of question order and paraphrasing. Reverse-coding all the questions decreases bias levels but does not eliminate them, suggesting that this effect cannot be attributed to acquiescence bias. Our findings reveal an emergent social desirability bias and suggest constraints on profiling LLMs with psychometric tests and on using LLMs as proxies for human participants.
comment: 3 pages, 2 figures, accepted at PNAS Nexus
♻ ☆ Beyond Joint Demonstrations: Personalized Expert Guidance for Efficient Multi-Agent Reinforcement Learning
Multi-Agent Reinforcement Learning (MARL) algorithms face the challenge of efficient exploration due to the exponential increase in the size of the joint state-action space. While demonstration-guided learning has proven beneficial in single-agent settings, its direct applicability to MARL is hindered by the practical difficulty of obtaining joint expert demonstrations. In this work, we introduce a novel concept of personalized expert demonstrations, tailored for each individual agent or, more broadly, each individual type of agent within a heterogeneous team. These demonstrations solely pertain to single-agent behaviors and how each agent can achieve personal goals without encompassing any cooperative elements, thus naively imitating them will not achieve cooperation due to potential conflicts. To this end, we propose an approach that selectively utilizes personalized expert demonstrations as guidance and allows agents to learn to cooperate, namely personalized expert-guided MARL (PegMARL). This algorithm utilizes two discriminators: the first provides incentives based on the alignment of individual agent behavior with demonstrations, and the second regulates incentives based on whether the behaviors lead to the desired outcome. We evaluate PegMARL using personalized demonstrations in both discrete and continuous environments. The results demonstrate that PegMARL learns near-optimal policies even when provided with suboptimal demonstrations and outperforms state-of-the-art MARL algorithms in solving coordinated tasks. We also showcase PegMARL's capability of leveraging joint demonstrations in the StarCraft scenario and converging effectively even with demonstrations from non-co-trained policies.
♻ ☆ Enhancing Screen Time Identification in Children with a Multi-View Vision Language Model and Screen Time Tracker
Being able to accurately monitor the screen exposure of young children is important for research on phenomena linked to screen use such as childhood obesity, physical activity, and social interaction. Most existing studies rely upon self-report or manual measures from bulky wearable sensors, thus lacking efficiency and accuracy in capturing quantitative screen exposure data. In this work, we developed a novel sensor informatics framework that utilizes egocentric images from a wearable sensor, termed the screen time tracker (STT), and a vision language model (VLM). In particular, we devised a multi-view VLM that takes multiple views from egocentric image sequences and interprets screen exposure dynamically. We validated our approach by using a dataset of children's free-living activities, demonstrating significant improvement over existing methods in plain vision language models and object detection models. Results supported the promise of this monitoring approach, which could optimize behavioral research on screen exposure in children's naturalistic settings.
comment: Prepare for submission
♻ ☆ AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing
The intensive care unit (ICU) is a specialized hospital space where critically ill patients receive intensive care and monitoring. Comprehensive monitoring is imperative in assessing patients conditions, in particular acuity, and ultimately the quality of care. However, the extent of patient monitoring in the ICU is limited due to time constraints and the workload on healthcare providers. Currently, visual assessments for acuity, including fine details such as facial expressions, posture, and mobility, are sporadically captured, or not captured at all. These manual observations are subjective to the individual, prone to documentation errors, and overburden care providers with the additional workload. Artificial Intelligence (AI) enabled systems has the potential to augment the patient visual monitoring and assessment due to their exceptional learning capabilities. Such systems require robust annotated data to train. To this end, we have developed pervasive sensing and data processing system which collects data from multiple modalities depth images, color RGB images, accelerometry, electromyography, sound pressure, and light levels in ICU for developing intelligent monitoring systems for continuous and granular acuity, delirium risk, pain, and mobility assessment. This paper presents the Intelligent Intensive Care Unit (I2CU) system architecture we developed for real-time patient monitoring and visual assessment.
♻ ☆ Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding
Large language models (LLMs) have shown impressive capabilities, but still struggle with complex reasoning tasks requiring multiple steps. While prompt-based methods like Chain-of-Thought (CoT) can improve LLM reasoning at inference time, optimizing reasoning capabilities during training remains challenging. We introduce LaTent Reasoning Optimization (LaTRO), a principled framework that formulates reasoning as sampling from a latent distribution and optimizes it via variational approaches. LaTRO enables LLMs to concurrently improve both their reasoning process and ability to evaluate reasoning quality, without requiring external feedback or reward models. We validate LaTRO through experiments on GSM8K and ARC-Challenge datasets using multiple model architectures. On GSM8K, LaTRO improves zero-shot accuracy by an average of 12.5% over base models and 9.6% over supervised fine-tuning across Phi-3.5-mini, Mistral-7B, and Llama-3.1-8B. Our findings suggest that pre-trained LLMs possess latent reasoning capabilities that can be unlocked and enhanced through our proposed optimization approach in a self-improvement manner. The code of LaTRO is available at \url{https://github.com/SalesforceAIResearch/LaTRO}.
♻ ☆ Entropy Bootstrapping for Weakly Supervised Nuclei Detection
Microscopy structure segmentation, such as detecting cells or nuclei, generally requires a human to draw a ground truth contour around each instance. Weakly supervised approaches (e.g. consisting of only single point labels) have the potential to reduce this workload significantly. Our approach uses individual point labels for an entropy estimation to approximate an underlying distribution of cell pixels. We infer full cell masks from this distribution, and use Mask-RCNN to produce an instance segmentation output. We compare this point--annotated approach with training on the full ground truth masks. We show that our method achieves a comparatively good level of performance, despite a 95% reduction in pixel labels.
comment: 8 Pages
♻ ☆ AdaZeta: Adaptive Zeroth-Order Tensor-Train Adaption for Memory-Efficient Large Language Models Fine-Tuning EMNLP 2024
Fine-tuning large language models (LLMs) has achieved remarkable performance across various natural language processing tasks, yet it demands more and more memory as model sizes keep growing. To address this issue, the recently proposed Memory-efficient Zeroth-order (MeZO) methods attempt to fine-tune LLMs using only forward passes, thereby avoiding the need for a backpropagation graph. However, significant performance drops and a high risk of divergence have limited their widespread adoption. In this paper, we propose the Adaptive Zeroth-order Tensor-Train Adaption (AdaZeta) framework, specifically designed to improve the performance and convergence of the ZO methods. To enhance dimension-dependent ZO estimation accuracy, we introduce a fast-forward, low-parameter tensorized adapter. To tackle the frequently observed divergence issue in large-scale ZO fine-tuning tasks, we propose an adaptive query number schedule that guarantees convergence. Detailed theoretical analysis and extensive experimental results on Roberta-Large and Llama-2-7B models substantiate the efficacy of our AdaZeta framework in terms of accuracy, memory efficiency, and convergence speed.
comment: Accepted for publication in EMNLP 2024
♻ ☆ NeuroBench: A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems
Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological advancements, compare performance with conventional methods, and identify promising future research directions. Prior neuromorphic computing benchmark efforts have not seen widespread adoption due to a lack of inclusive, actionable, and iterative benchmark design and guidelines. To address these shortcomings, we present NeuroBench: a benchmark framework for neuromorphic computing algorithms and systems. NeuroBench is a collaboratively-designed effort from an open community of researchers across industry and academia, aiming to provide a representative structure for standardizing the evaluation of neuromorphic approaches. The NeuroBench framework introduces a common set of tools and systematic methodology for inclusive benchmark measurement, delivering an objective reference framework for quantifying neuromorphic approaches in both hardware-independent (algorithm track) and hardware-dependent (system track) settings. In this article, we outline tasks and guidelines for benchmarks across multiple application domains, and present initial performance baselines across neuromorphic and conventional approaches for both benchmark tracks. NeuroBench is intended to continually expand its benchmarks and features to foster and track the progress made by the research community.
comment: System track baselines added
♻ ☆ ConceptDrift: Uncovering Biases through the Lens of Foundation Models
An important goal of ML research is to identify and mitigate unwanted biases intrinsic to datasets and already incorporated into pre-trained models. Previous approaches have identified biases using highly curated validation subsets, that require human knowledge to create in the first place. This limits the ability to automate the discovery of unknown biases in new datasets. We solve this by using interpretable vision-language models, combined with a filtration method using LLMs and known concept hierarchies. More exactly, for a dataset, we use pre-trained CLIP models that have an associated embedding for each class and see how it drifts through learning towards embeddings that disclose hidden biases. We call this approach ConceptDrift and show that it can be scaled to automatically identify biases in datasets like ImageNet without human prior knowledge. We propose two bias identification evaluation protocols to fill the gap in the previous work and show that our method significantly improves over SoTA methods, both using our protocol and classical evaluations. Alongside validating the identified biases, we also show that they can be leveraged to improve the performance of different methods. Our method is not bounded to a single modality, and we empirically validate it both on image (Waterbirds, CelebA, ImageNet), and text datasets (CivilComments).
comment: 8 pages, 4 figures, 6 tables, under review
Spatiotemporal Predictive Pre-training for Robotic Motor Control
Robotic motor control necessitates the ability to predict the dynamics of environments and interaction objects. However, advanced self-supervised pre-trained visual representations in robotic motor control, leveraging large-scale egocentric videos, often focus solely on learning the static content features. This neglects the crucial temporal motion clues in human video, which implicitly contain key knowledge about interacting and manipulating with the environments and objects. In this paper, we present a simple yet effective robotic motor control visual pre-training framework that jointly performs spatiotemporal prediction with dual decoders, utilizing large-scale video data, termed as STP. STP adheres to two key designs in a multi-task learning manner. First, we perform spatial prediction on the masked current frame for learning content features. Second, we utilize the future frame with an extremely high masking ratio as a condition, based on the masked current frame, to conduct temporal prediction for capturing motion features. The asymmetric masking and decoupled dual decoders ensure that our image representation focusing on motion information while capturing spatial details. Extensive simulation and real-world experiments demonstrate the effectiveness and generalization abilities of STP, especially in generalizing to unseen environments with more distractors. Additionally, further post-pre-training and hybrid pre-training unleash its generality and data efficiency. Our code and weights will be released for further applications.
comment: 19 pages, 7 figures, 14 tables
♻ ☆ Developing a Safety Management System for the Autonomous Vehicle Industry
Safety Management Systems (SMSs) have been used in many safety-critical industries and are now being developed and deployed in the automated driving system (ADS)-equipped vehicle (AV) sector. Industries with decades of SMS deployment have established frameworks tailored to their specific context. Several frameworks for an AV industry SMS have been proposed or are currently under development. These frameworks borrow heavily from the aviation industry although the AV and aviation industries differ in many significant ways. In this context, there is a need to review the approach to develop an SMS that is tailored to the AV industry, building on generalized lessons learned from other safety-sensitive industries. A harmonized AV-industry SMS framework would establish a single set of SMS practices to address management of broad safety risks in an integrated manner and advance the establishment of a more mature regulatory framework. This paper outlines a proposed SMS framework for the AV industry based on robust taxonomy development and validation criteria and provides rationale for such an approach. Keywords: Safety Management System (SMS), Automated Driving System (ADS), ADS-Equipped Vehicle, Autonomous Vehicles (AV)
comment: Submitted to SAE Technical Papers
♻ ☆ High-Speed Cornering Control and Real-Vehicle Deployment for Autonomous Electric Vehicles
Executing drift maneuvers during high-speed cornering presents significant challenges for autonomous vehicles, yet offers the potential to minimize turning time and enhance driving dynamics. While reinforcement learning (RL) has shown promising results in simulated environments, discrepancies between simulations and real-world conditions have limited its practical deployment. This study introduces an innovative control framework that integrates trajectory optimization with drift maneuvers, aiming to improve the algorithm's adaptability for real-vehicle implementation. We leveraged Bezier-based pre-trajectory optimization to enhance rewards and optimize the controller through Twin Delayed Deep Deterministic Policy Gradient (TD3) in a simulated environment. For real-world deployment, we implement a hybrid RL-MPC fusion mechanism, , where TD3-derived maneuvers serve as primary inputs for a Model Predictive Controller (MPC). This integration enables precise real-time tracking of the optimal trajectory, with MPC providing corrective inputs to bridge the gap between simulation and reality. The efficacy of this method is validated through real-vehicle tests on consumer-grade electric vehicles, focusing on drift U-turns and drift right-angle turns. The control outcomes of these real-vehicle tests are thoroughly documented in the paper, supported by supplementary video evidence (https://youtu.be/5wp67FcpfL8). Notably, this study is the first to deploy and apply an RL-based transient drift cornering algorithm on consumer-grade electric vehicles.
comment: In the process of being submitted to the Journal of IEEE Transactions on Industrial Electronics