Computation and Language 131
☆ ctELM: Decoding and Manipulating Embeddings of Clinical Trials with Embedding Language Models
Text embeddings have become an essential part of a variety of language applications. However, methods for interpreting, exploring and reversing embedding spaces are limited, reducing transparency and precluding potentially valuable generative use cases. In this work, we align Large Language Models to embeddings of clinical trials using the recently reported Embedding Language Model (ELM) method. We develop an open-source, domain-agnostic ELM architecture and training framework, design training tasks for clinical trials, and introduce an expert-validated synthetic dataset. We then train a series of ELMs exploring the impact of tasks and training regimes. Our final model, ctELM, can accurately describe and compare unseen clinical trials from embeddings alone and produce plausible clinical trials from novel vectors. We further show that generated trial abstracts are responsive to moving embeddings along concept vectors for age and sex of study subjects. Our public ELM implementation and experimental results will aid the alignment of Large Language Models to embedding spaces in the biomedical domain and beyond.
☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
☆ MEGnifying Emotion: Sentiment Analysis from Annotated Brain Data
Decoding emotion from brain activity could unlock a deeper understanding of the human experience. While a number of existing datasets align brain data with speech and with speech transcripts, no datasets have annotated brain data with sentiment. To bridge this gap, we explore the use of pre-trained Text-to-Sentiment models to annotate non invasive brain recordings, acquired using magnetoencephalography (MEG), while participants listened to audiobooks. Having annotated the text, we employ force-alignment of the text and audio to align our sentiment labels with the brain recordings. It is straightforward then to train Brainto-Sentiment models on these data. Experimental results show an improvement in balanced accuracy for Brain-to-Sentiment compared to baseline, supporting the proposed approach as a proof-of-concept for leveraging existing MEG datasets and learning to decode sentiment directly from the brain.
☆ Subword-Based Comparative Linguistics across 242 Languages Using Wikipedia Glottosets
We present a large-scale comparative study of 242 Latin and Cyrillic-script languages using subword-based methodologies. By constructing 'glottosets' from Wikipedia lexicons, we introduce a framework for simultaneous cross-linguistic comparison via Byte-Pair Encoding (BPE). Our approach utilizes rank-based subword vectors to analyze vocabulary overlap, lexical divergence, and language similarity at scale. Evaluations demonstrate that BPE segmentation aligns with morpheme boundaries 95% better than random baseline across 15 languages (F1 = 0.34 vs 0.15). BPE vocabulary similarity correlates significantly with genetic language relatedness (Mantel r = 0.329, p < 0.001), with Romance languages forming the tightest cluster (mean distance 0.51) and cross-family pairs showing clear separation (0.82). Analysis of 26,939 cross-linguistic homographs reveals that 48.7% receive different segmentations across related languages, with variation correlating to phylogenetic distance. Our results provide quantitative macro-linguistic insights into lexical patterns across typologically diverse languages within a unified analytical framework.
comment: 15 pages, 4 figues, 4 tables
☆ MortalMATH: Evaluating the Conflict Between Reasoning Objectives and Emergency Contexts
Large Language Models are increasingly optimized for deep reasoning, prioritizing the correct execution of complex tasks over general conversation. We investigate whether this focus on calculation creates a "tunnel vision" that ignores safety in critical situations. We introduce MortalMATH, a benchmark of 150 scenarios where users request algebra help while describing increasingly life-threatening emergencies (e.g., stroke symptoms, freefall). We find a sharp behavioral split: generalist models (like Llama-3.1) successfully refuse the math to address the danger. In contrast, specialized reasoning models (like Qwen-3-32b and GPT-5-nano) often ignore the emergency entirely, maintaining over 95 percent task completion rates while the user describes dying. Furthermore, the computational time required for reasoning introduces dangerous delays: up to 15 seconds before any potential help is offered. These results suggest that training models to relentlessly pursue correct answers may inadvertently unlearn the survival instincts required for safe deployment.
☆ Unsupervised Text Segmentation via Kernel Change-Point Detection on Sentence Embeddings
Unsupervised text segmentation is crucial because boundary labels are expensive, subjective, and often fail to transfer across domains and granularity choices. We propose Embed-KCPD, a training-free method that represents sentences as embedding vectors and estimates boundaries by minimizing a penalized KCPD objective. Beyond the algorithmic instantiation, we develop, to our knowledge, the first dependence-aware theory for KCPD under $m$-dependent sequences, a finite-memory abstraction of short-range dependence common in language. We prove an oracle inequality for the population penalized risk and a localization guarantee showing that each true change point is recovered within a window that is small relative to segment length. To connect theory to practice, we introduce an LLM-based simulation framework that generates synthetic documents with controlled finite-memory dependence and known boundaries, validating the predicted scaling behavior. Across standard segmentation benchmarks, Embed-KCPD often outperforms strong unsupervised baselines. A case study on Taylor Swift's tweets illustrates that Embed-KCPD combines strong theoretical guarantees, simulated reliability, and practical effectiveness for text segmentation.
comment: arXiv admin note: substantial text overlap with arXiv:2510.03437. substantial text overlap with arXiv:2510.03437. substantial text overlap with arXiv:2510.03437. substantial text overlap with arXiv:2510.03437
☆ Design Techniques for LLM-Powered Interactive Storytelling: A Case Study of the Dramamancer System EMNLP
The rise of Large Language Models (LLMs) has enabled a new paradigm for bridging authorial intent and player agency in interactive narrative. We consider this paradigm through the example of Dramamancer, a system that uses an LLM to transform author-created story schemas into player-driven playthroughs. This extended abstract outlines some design techniques and evaluation considerations associated with this system.
comment: Extended abstract presented at the 2025 Wordplay Workshop at EMNLP
☆ POPE: Learning to Reason on Hard Problems via Privileged On-Policy Exploration
Reinforcement learning (RL) has improved the reasoning abilities of large language models (LLMs), yet state-of-the-art methods still fail to learn on many training problems. On hard problems, on-policy RL rarely explores even a single correct rollout, yielding zero reward and no learning signal for driving improvement. We find that natural solutions to remedy this exploration problem from classical RL, such as entropy bonuses, more permissive clipping of the importance ratio, or direct optimization of pass@k objectives, do not resolve this issue and often destabilize optimization without improving solvability. A natural alternative is to leverage transfer from easier problems. However, we show that mixing easy and hard problems during RL training is counterproductive due to ray interference, where optimization focuses on already-solvable problems in a way that actively inhibits progress on harder ones. To address this challenge, we introduce Privileged On-Policy Exploration (POPE), an approach that leverages human- or other oracle solutions as privileged information to guide exploration on hard problems, unlike methods that use oracle solutions as training targets (e.g., off-policy RL methods or warmstarting from SFT). POPE augments hard problems with prefixes of oracle solutions, enabling RL to obtain non-zero rewards during guided rollouts. Crucially, the resulting behaviors transfer back to the original, unguided problems through a synergy between instruction-following and reasoning. Empirically, POPE expands the set of solvable problems and substantially improves performance on challenging reasoning benchmarks.
☆ Teaching Models to Teach Themselves: Reasoning at the Edge of Learnability
Can a model learn to escape its own learning plateau? Reinforcement learning methods for finetuning large reasoning models stall on datasets with low initial success rates, and thus little training signal. We investigate a fundamental question: Can a pretrained LLM leverage latent knowledge to generate an automated curriculum for problems it cannot solve? To explore this, we design SOAR: A self-improvement framework designed to surface these pedagogical signals through meta-RL. A teacher copy of the model proposes synthetic problems for a student copy, and is rewarded with its improvement on a small subset of hard problems. Critically, SOAR grounds the curriculum in measured student progress rather than intrinsic proxy rewards. Our study on the hardest subsets of mathematical benchmarks (0/128 success) reveals three core findings. First, we show that it is possible to realize bi-level meta-RL that unlocks learning under sparse, binary rewards by sharpening a latent capacity of pretrained models to generate useful stepping stones. Second, grounded rewards outperform intrinsic reward schemes used in prior LLM self-play, reliably avoiding the instability and diversity collapse modes they typically exhibit. Third, analyzing the generated questions reveals that structural quality and well-posedness are more critical for learning progress than solution correctness. Our results suggest that the ability to generate useful stepping stones does not require the preexisting ability to actually solve the hard problems, paving a principled path to escape reasoning plateaus without additional curated data.
☆ PRECISE: Reducing the Bias of LLM Evaluations Using Prediction-Powered Ranking Estimation AAAI 2026
Evaluating the quality of search, ranking and RAG systems traditionally requires a significant number of human relevance annotations. In recent times, several deployed systems have explored the usage of Large Language Models (LLMs) as automated judges for this task while their inherent biases prevent direct use for metric estimation. We present a statistical framework extending Prediction-Powered Inference (PPI) that combines minimal human annotations with LLM judgments to produce reliable estimates of metrics which require sub-instance annotations. Our method requires as few as 100 human-annotated queries and 10,000 unlabeled examples, reducing annotation requirements significantly compared to traditional approaches. We formulate our proposed framework (PRECISE) for inference of relevance uplift for an LLM-based query reformulation application, extending PPI to sub-instance annotations at the query-document level. By reformulating the metric-integration space, we reduced the computational complexity from O(2^|C|) to O(2^K), where |C| represents corpus size (in order of millions). Detailed experiments across prominent retrieval datasets demonstrate that our method reduces the variance of estimates for the business-critical Precision@K metric, while effectively correcting for LLM bias in low-resource settings.
comment: Accepted at AAAI 2026 - Innovative Applications of AI (IAAI-26)
☆ Dep-Search: Learning Dependency-Aware Reasoning Traces with Persistent Memory
Yanming Liu, Xinyue Peng, Zixuan Yan, Yanxin Shen, Wenjie Xu, Yuefeng Huang, Xinyi Wang, Jiannan Cao, Jianwei Yin, Xuhong Zhang
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks, particularly when augmented with search mechanisms that enable systematic exploration of external knowledge bases. The field has evolved from traditional retrieval-augmented generation (RAG) frameworks to more sophisticated search-based frameworks that orchestrate multi-step reasoning through explicit search strategies. However, existing search frameworks still rely heavily on implicit natural language reasoning to determine search strategies and how to leverage retrieved information across reasoning steps. This reliance on implicit reasoning creates fundamental challenges for managing dependencies between sub-questions, efficiently reusing previously retrieved knowledge, and learning optimal search strategies through reinforcement learning. To address these limitations, we propose Dep-Search, a dependency-aware search framework that advances beyond existing search frameworks by integrating structured reasoning, retrieval, and persistent memory through GRPO. Dep-Search introduces explicit control mechanisms that enable the model to decompose questions with dependency relationships, retrieve information when needed, access previously stored knowledge from memory, and summarize long reasoning contexts into reusable memory entries. Through extensive experiments on seven diverse question answering datasets, we demonstrate that Dep-Search significantly enhances LLMs' ability to tackle complex multi-hop reasoning tasks, achieving substantial improvements over strong baselines across different model scales.
comment: Dep-Search 1st version
☆ Beyond Preferences: Learning Alignment Principles Grounded in Human Reasons and Values
A crucial consideration when developing and deploying Large Language Models (LLMs) is the human values to which these models are aligned. In the constitutional framework of alignment models are aligned to a set of principles (the constitution) specified in natural language. However, it is unclear how to fairly determine this constitution with widespread stakeholder input. In this work we propose Grounded Constitutional AI (GCAI), a unified framework for generating constitutions of principles that are representative of both users' general expectations toward AI (general principles) and their interaction-time preferences (contextual principles). We extend the Inverse Constitutional AI (ICAI) approach to generate contextual principles from human preference annotation data by leveraging human-provided \textit{reasons} for their preferences. We supplement these contextual principles with general principles surfaced from user statements of \textit{values} regarding AI. We show that a constitution generated by GCAI is preferred by humans over one generated through ICAI both personally, and for widespread use in governing AI behavior. Additionally participants consider the GCAI constitution to be more morally grounded, coherent, and pluralistic.
☆ Capturing P: On the Expressive Power and Efficient Evaluation of Boolean Retrieval
Modern information retrieval is transitioning from simple document filtering to complex, neuro-symbolic reasoning workflows. However, current retrieval architectures face a fundamental efficiency dilemma when handling the rigorous logical and arithmetic constraints required by this new paradigm. Standard iterator-based engines (Document-at-a-Time) do not natively support complex, nested logic graphs; forcing them to execute such queries typically results in intractable runtime performance. Conversely, naive recursive approaches (Term-at-a-Time), while capable of supporting these structures, suffer from prohibitive memory consumption when enforcing broad logical exclusions.
In this paper, we propose that a retrieval engine must be capable of ``Capturing $\mathbf{P}$'' -- evaluating any polynomial-time property directly over its index in a computationally efficient manner. We define a formal Retrieval Language ($\mathcal{L}_R$) based on Directed Acyclic Graphs (DAGs) and prove it precisely captures the complexity class $\mathbf{P}$. We introduce \texttt{ComputePN}, a novel evaluation algorithm that makes $\mathcal{L}_R$ tractable. By combining native DAG traversal with a memory-efficient ``Positive-Negative'' response mechanism, \texttt{ComputePN} ensures the efficient evaluation of any query in $\mathcal{L}_R$. This work establishes the theoretical foundation for turning the search index into a general-purpose computational engine.
☆ Self-Distilled Reasoner: On-Policy Self-Distillation for Large Language Models
Knowledge distillation improves large language model (LLM) reasoning by compressing the knowledge of a teacher LLM to train smaller LLMs. On-policy distillation advances this approach by having the student sample its own trajectories while a teacher LLM provides dense token-level supervision, addressing the distribution mismatch between training and inference in off-policy distillation methods. However, on-policy distillation typically requires a separate, often larger, teacher LLM and does not explicitly leverage ground-truth solutions available in reasoning datasets. Inspired by the intuition that a sufficiently capable LLM can rationalize external privileged reasoning traces and teach its weaker self (i.e., the version without access to privileged information), we introduce On-Policy Self-Distillation (OPSD), a framework where a single model acts as both teacher and student by conditioning on different contexts. The teacher policy conditions on privileged information (e.g., verified reasoning traces) while the student policy sees only the question; training minimizes the per-token divergence between these distributions over the student's own rollouts. We demonstrate the efficacy of our method on multiple mathematical reasoning benchmarks, achieving 4-8x token efficiency compared to reinforcement learning methods such as GRPO and superior performance over off-policy distillation methods.
comment: 13 pages
☆ One Adapts to Any: Meta Reward Modeling for Personalized LLM Alignment
Alignment of Large Language Models (LLMs) aims to align outputs with human preferences, and personalized alignment further adapts models to individual users. This relies on personalized reward models that capture user-specific preferences and automatically provide individualized feedback. However, developing these models faces two critical challenges: the scarcity of feedback from individual users and the need for efficient adaptation to unseen users. We argue that addressing these constraints requires a paradigm shift from fitting data to learn user preferences to learn the process of preference adaptation. To realize this, we propose Meta Reward Modeling (MRM), which reformulates personalized reward modeling as a meta-learning problem. Specifically, we represent each user's reward model as a weighted combination of base reward functions, and optimize the initialization of these weights using a Model-Agnostic Meta-Learning (MAML)-style framework to support fast adaptation under limited feedback. To ensure robustness, we introduce the Robust Personalization Objective (RPO), which places greater emphasis on hard-to-learn users during meta optimization. Extensive experiments on personalized preference datasets validate that MRM enhances few-shot personalization, improves user robustness, and consistently outperforms baselines.
☆ Reflect: Transparent Principle-Guided Reasoning for Constitutional Alignment at Scale
The constitutional framework of alignment aims to align large language models (LLMs) with value-laden principles written in natural language (such as to avoid using biased language). Prior work has focused on parameter fine-tuning techniques, such as reinforcement learning from human feedback (RLHF), to instill these principles. However, these approaches are computationally demanding, require careful engineering and tuning, and often require difficult-to-obtain human annotation data. We propose \textsc{reflect}, an inference-time framework for constitutional alignment that does not require any training or data, providing a plug-and-play approach for aligning an instruction-tuned model to a set of principles. \textsc{reflect} operates entirely in-context, combining a (i) constitution-conditioned base response with post-generation (ii) self-evaluation, (iii)(a) self-critique, and (iii)(b) final revision. \textsc{reflect}'s technique of explicit in-context reasoning over principles during post-generation outperforms standard few-shot prompting and provides transparent reasoning traces. Our results demonstrate that \textsc{reflect} significantly improves LLM conformance to diverse and complex principles, including principles quite distinct from those emphasized in the model's original parameter fine-tuning, without sacrificing factual reasoning. \textsc{reflect} is particularly effective at reducing the rate of rare but significant violations of principles, thereby improving safety and robustness in the tail end of the distribution of generations. Finally, we show that \textsc{reflect} naturally generates useful training data for traditional parameter fine-tuning techniques, allowing for efficient scaling and the reduction of inference-time computational overhead in long-term deployment scenarios.
☆ HalluCitation Matters: Revealing the Impact of Hallucinated References with 300 Hallucinated Papers in ACL Conferences
Recently, we have often observed hallucinated citations or references that do not correspond to any existing work in papers under review, preprints, or published papers. Such hallucinated citations pose a serious concern to scientific reliability. When they appear in accepted papers, they may also negatively affect the credibility of conferences. In this study, we refer to hallucinated citations as "HalluCitation" and systematically investigate their prevalence and impact. We analyze all papers published at ACL, NAACL, and EMNLP in 2024 and 2025, including main conference, Findings, and workshop papers. Our analysis reveals that nearly 300 papers contain at least one HalluCitation, most of which were published in 2025. Notably, half of these papers were identified at EMNLP 2025, the most recent conference, indicating that this issue is rapidly increasing. Moreover, more than 100 such papers were accepted as main conference and Findings papers at EMNLP 2025, affecting the credibility.
comment: Work In Progress
☆ Gained in Translation: Privileged Pairwise Judges Enhance Multilingual Reasoning
When asked a question in a language less seen in its training data, current reasoning large language models (RLMs) often exhibit dramatically lower performance than when asked the same question in English. In response, we introduce \texttt{SP3F} (Self-Play with Privileged Pairwise Feedback), a two-stage framework for enhancing multilingual reasoning without \textit{any} data in the target language(s). First, we supervise fine-tune (SFT) on translated versions of English question-answer pairs to raise base model correctness. Second, we perform RL with feedback from a pairwise judge in a self-play fashion, with the judge receiving the English reference response as \textit{privileged information}. Thus, even when none of the model's responses are completely correct, the privileged pairwise judge can still tell which response is better. End-to-end, \texttt{SP3F} greatly improves base model performance, even outperforming fully post-trained models on multiple math and non-math tasks with less than
of the training data across the single-language, multilingual, and generalization to unseen language settings.
comment: Code available at https://github.com/lintangsutawika/SP3F
☆ Mechanistic Analysis of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning
Large language models exhibit remarkable performance across diverse tasks through pre-training and fine-tuning paradigms. However, continual fine-tuning on sequential tasks induces catastrophic forgetting, where newly acquired knowledge interferes with previously learned capabilities. Despite widespread observations of this phenomenon, the mechanistic understanding remains limited. Here, we present a comprehensive mechanistic analysis of catastrophic forgetting in transformer-based LLMs during sequential fine-tuning. Through systematic experiments across multiple model scales (109B to 400B total parameters) and task sequences, we identify three primary mechanisms driving forgetting: gradient interference in attention weights, representational drift in intermediate layers, and loss landscape flattening. We demonstrate that forgetting severity correlates strongly with task similarity (Pearson r = 0.87) and gradient alignment metrics. Our analysis reveals that approximately 15 to 23 percent of attention heads undergo severe disruption during fine-tuning, with lower layers showing greater susceptibility. These findings establish mechanistic foundations for developing targeted mitigation strategies in continual learning systems.
comment: 16 pages, 16 figures (6 main + 10 supplementary)
☆ FadeMem: Biologically-Inspired Forgetting for Efficient Agent Memory
Large language models deployed as autonomous agents face critical memory limitations, lacking selective forgetting mechanisms that lead to either catastrophic forgetting at context boundaries or information overload within them. While human memory naturally balances retention and forgetting through adaptive decay processes, current AI systems employ binary retention strategies that preserve everything or lose it entirely. We propose FadeMem, a biologically-inspired agent memory architecture that incorporates active forgetting mechanisms mirroring human cognitive efficiency. FadeMem implements differential decay rates across a dual-layer memory hierarchy, where retention is governed by adaptive exponential decay functions modulated by semantic relevance, access frequency, and temporal patterns. Through LLM-guided conflict resolution and intelligent memory fusion, our system consolidates related information while allowing irrelevant details to fade. Experiments on Multi-Session Chat, LoCoMo, and LTI-Bench demonstrate superior multi-hop reasoning and retrieval with 45\% storage reduction, validating the effectiveness of biologically-inspired forgetting in agent memory systems.
☆ AdaReasoner: Dynamic Tool Orchestration for Iterative Visual Reasoning
When humans face problems beyond their immediate capabilities, they rely on tools, providing a promising paradigm for improving visual reasoning in multimodal large language models (MLLMs). Effective reasoning, therefore, hinges on knowing which tools to use, when to invoke them, and how to compose them over multiple steps, even when faced with new tools or new tasks. We introduce \textbf{AdaReasoner}, a family of multimodal models that learn tool use as a general reasoning skill rather than as tool-specific or explicitly supervised behavior. AdaReasoner is enabled by (i) a scalable data curation pipeline exposing models to long-horizon, multi-step tool interactions; (ii) Tool-GRPO, a reinforcement learning algorithm that optimizes tool selection and sequencing based on end-task success; and (iii) an adaptive learning mechanism that dynamically regulates tool usage. Together, these components allow models to infer tool utility from task context and intermediate outcomes, enabling coordination of multiple tools and generalization to unseen tools. Empirically, AdaReasoner exhibits strong tool-adaptive and generalization behaviors: it autonomously adopts beneficial tools, suppresses irrelevant ones, and adjusts tool usage frequency based on task demands, despite never being explicitly trained to do so. These capabilities translate into state-of-the-art performance across challenging benchmarks, improving the 7B base model by +24.9\% on average and surpassing strong proprietary systems such as GPT-5 on multiple tasks, including VSP and Jigsaw.
comment: 28 pages, 10 figures and 13 tables
☆ Emergence of Phonemic, Syntactic, and Semantic Representations in Artificial Neural Networks
During language acquisition, children successively learn to categorize phonemes, identify words, and combine them with syntax to form new meaning. While the development of this behavior is well characterized, we still lack a unifying computational framework to explain its underlying neural representations. Here, we investigate whether and when phonemic, lexical, and syntactic representations emerge in the activations of artificial neural networks during their training. Our results show that both speech- and text-based models follow a sequence of learning stages: during training, their neural activations successively build subspaces, where the geometry of the neural activations represents phonemic, lexical, and syntactic structure. While this developmental trajectory qualitatively relates to children's, it is quantitatively different: These algorithms indeed require two to four orders of magnitude more data for these neural representations to emerge. Together, these results show conditions under which major stages of language acquisition spontaneously emerge, and hence delineate a promising path to understand the computations underpinning language acquisition.
☆ Stability as a Liability:Systematic Breakdown of Linguistic Structure in LLMs
Xianzhe Meng, Qiangsheng Zeng, Ling Luo, Qinghan Yang, Jiarui Hao, Wenbo Wu, Qinyu Wang, Rui Yin, Lin Qi, Renzhi Lu
Training stability is typically regarded as a prerequisite for reliable optimization in large language models. In this work, we analyze how stabilizing training dynamics affects the induced generation distribution. We show that under standard maximum likelihood training, stable parameter trajectories lead stationary solutions to approximately minimize the forward KL divergence to the empirical distribution, while implicitly reducing generative entropy. As a consequence, the learned model can concentrate probability mass on a limited subset of empirical modes, exhibiting systematic degeneration despite smooth loss convergence. We empirically validate this effect using a controlled feedback-based training framework that stabilizes internal generation statistics, observing consistent low-entropy outputs and repetitive behavior across architectures and random seeds. It indicates that optimization stability and generative expressivity are not inherently aligned, and that stability alone is an insufficient indicator of generative quality.
☆ From Classification to Ranking: Enhancing LLM Reasoning Capabilities for MBTI Personality Detection AAAI 2026
Personality detection aims to measure an individual's corresponding personality traits through their social media posts. The advancements in Large Language Models (LLMs) offer novel perspectives for personality detection tasks. Existing approaches enhance personality trait analysis by leveraging LLMs to extract semantic information from textual posts as prompts, followed by training classifiers for categorization. However, accurately classifying personality traits remains challenging due to the inherent complexity of human personality and subtle inter-trait distinctions. Moreover, prompt-based methods often exhibit excessive dependency on expert-crafted knowledge without autonomous pattern-learning capacity. To address these limitations, we view personality detection as a ranking task rather than a classification and propose a corresponding reinforcement learning training paradigm. First, we employ supervised fine-tuning (SFT) to establish personality trait ranking capabilities while enforcing standardized output formats, creating a robust initialization. Subsequently, we introduce Group Relative Policy Optimization (GRPO) with a specialized ranking-based reward function. Unlike verification tasks with definitive solutions, personality assessment involves subjective interpretations and blurred boundaries between trait categories. Our reward function explicitly addresses this challenge by training LLMs to learn optimal answer rankings. Comprehensive experiments have demonstrated that our method achieves state-of-the-art performance across multiple personality detection benchmarks.
comment: 9 pages, 4 figures, AAAI 2026 Bridge
☆ One Persona, Many Cues, Different Results: How Sociodemographic Cues Impact LLM Personalization
Personalization of LLMs by sociodemographic subgroup often improves user experience, but can also introduce or amplify biases and unfair outcomes across groups. Prior work has employed so-called personas, sociodemographic user attributes conveyed to a model, to study bias in LLMs by relying on a single cue to prompt a persona, such as user names or explicit attribute mentions. This disregards LLM sensitivity to prompt variations (robustness) and the rarity of some cues in real interactions (external validity). We compare six commonly used persona cues across seven open and proprietary LLMs on four writing and advice tasks. While cues are overall highly correlated, they produce substantial variance in responses across personas. We therefore caution against claims from a single persona cue and recommend future personalization research to evaluate multiple externally valid cues.
☆ Unknown Unknowns: Why Hidden Intentions in LLMs Evade Detection
LLMs are increasingly embedded in everyday decision-making, yet their outputs can encode subtle, unintended behaviours that shape user beliefs and actions. We refer to these covert, goal-directed behaviours as hidden intentions, which may arise from training and optimisation artefacts, or be deliberately induced by an adversarial developer, yet remain difficult to detect in practice. We introduce a taxonomy of ten categories of hidden intentions, grounded in social science research and organised by intent, mechanism, context, and impact, shifting attention from surface-level behaviours to design-level strategies of influence. We show how hidden intentions can be easily induced in controlled models, providing both testbeds for evaluation and demonstrations of potential misuse. We systematically assess detection methods, including reasoning and non-reasoning LLM judges, and find that detection collapses in realistic open-world settings, particularly under low-prevalence conditions, where false positives overwhelm precision and false negatives conceal true risks. Stress tests on precision-prevalence and precision-FNR trade-offs reveal why auditing fails without vanishingly small false positive rates or strong priors on manipulation types. Finally, a qualitative case study shows that all ten categories manifest in deployed, state-of-the-art LLMs, emphasising the urgent need for robust frameworks. Our work provides the first systematic analysis of detectability failures of hidden intentions in LLMs under open-world settings, offering a foundation for understanding, inducing, and stress-testing such behaviours, and establishing a flexible taxonomy for anticipating evolving threats and informing governance.
☆ Evaluating Morphological Plausibility of Subword Tokenization via Statistical Alignment with Morpho-Syntactic Features EACL 2026
We present a novel metric for the evaluation of the morphological plausibility of subword segmentation. Unlike the typically used morpheme boundary or retrieval F-score, which requires gold segmentation data that is either unavailable or of inconsistent quality across many languages, our approach utilizes morpho-syntactic features. These are available in resources such as Universal Dependencies or UniMorph for a much wider range of languages. The metric works by probabilistically aligning subwords with morphological features through an IBM Model 1. Our experiments show that the metric correlates well with traditional morpheme boundary recall while being more broadly applicable across languages with different morphological systems.
comment: Accepted to Findings of EACL 2026, 9 pages, 6 figures
☆ From Verifiable Dot to Reward Chain: Harnessing Verifiable Reference-based Rewards for Reinforcement Learning of Open-ended Generation ICLR 2026
Yuxin Jiang, Yufei Wang, Qiyuan Zhang, Xingshan Zeng, Liangyou Li, Jierun Chen, Chaofan Tao, Haoli Bai, Lifeng Shang
Reinforcement learning with verifiable rewards (RLVR) succeeds in reasoning tasks (e.g., math and code) by checking the final verifiable answer (i.e., a verifiable dot signal). However, extending this paradigm to open-ended generation is challenging because there is no unambiguous ground truth. Relying on single-dot supervision often leads to inefficiency and reward hacking. To address these issues, we propose reinforcement learning with verifiable reference-based rewards (RLVRR). Instead of checking the final answer, RLVRR extracts an ordered linguistic signal from high-quality references (i.e, reward chain). Specifically, RLVRR decomposes rewards into two dimensions: content, which preserves deterministic core concepts (e.g., keywords), and style, which evaluates adherence to stylistic properties through LLM-based verification. In this way, RLVRR combines the exploratory strength of RL with the efficiency and reliability of supervised fine-tuning (SFT). Extensive experiments on more than 10 benchmarks with Qwen and Llama models confirm the advantages of our approach. RLVRR (1) substantially outperforms SFT trained with ten times more data and advanced reward models, (2) unifies the training of structured reasoning and open-ended generation, and (3) generalizes more effectively while preserving output diversity. These results establish RLVRR as a principled and efficient path toward verifiable reinforcement learning for general-purpose LLM alignment. We release our code and data at https://github.com/YJiangcm/RLVRR.
comment: 19 pages, 8 figures, 12 tables. Accepted at ICLR 2026
☆ Exploring Fine-Tuning for In-Context Retrieval and Efficient KV-Caching in Long-Context Language Models EACL 2026
With context windows of millions of tokens, Long-Context Language Models (LCLMs) can encode entire document collections, offering a strong alternative to conventional retrieval-augmented generation (RAG). However, it remains unclear whether fine-tuning strategies can improve long-context performance and translate to greater robustness under KV-cache compression techniques. In this work, we investigate which training strategies most effectively enhance LCLMs' ability to identify and use relevant information, as well as enhancing their robustness under KV-cache compression. Our experiments show substantial in-domain improvements, achieving gains of up to +20 points over the base model. However, out-of-domain generalization remains task dependent with large variance -- LCLMs excels on finance questions (+9 points), while RAG shows stronger performance on multiple-choice questions (+6 points) over the baseline models. Finally, we show that our fine-tuning approaches bring moderate improvements in robustness under KV-cache compression, with gains varying across tasks.
comment: European Chapter of the Association for Computational Linguistics EACL 2026
☆ GenAI for Social Work Field Education: Client Simulation with Real-Time Feedback
Field education is the signature pedagogy of social work, yet providing timely and objective feedback during training is constrained by the availability of instructors and counseling clients. In this paper, we present SWITCH, the Social Work Interactive Training Chatbot. SWITCH integrates realistic client simulation, real-time counseling skill classification, and a Motivational Interviewing (MI) progression system into the training workflow. To model a client, SWITCH uses a cognitively grounded profile comprising static fields (e.g., background, beliefs) and dynamic fields (e.g., emotions, automatic thoughts, openness), allowing the agent's behavior to evolve throughout a session realistically. The skill classification module identifies the counseling skills from the user utterances, and feeds the result to the MI controller that regulates the MI stage transitions. To enhance classification accuracy, we study in-context learning with retrieval over annotated transcripts, and a fine-tuned BERT multi-label classifier. In the experiments, we demonstrated that both BERT-based approach and in-context learning outperforms the baseline with big margin. SWITCH thereby offers a scalable, low-cost, and consistent training workflow that complements field education, and allows supervisors to focus on higher-level mentorship.
comment: 2025 IEEE International Conference on Big Data. ISBN: 979-8-3315-9447-3/25. Page numbers: 3544-3553
☆ Using Large Language Models to Construct Virtual Top Managers: A Method for Organizational Research
This study introduces a methodological framework that uses large language models to create virtual personas of real top managers. Drawing on real CEO communications and Moral Foundations Theory, we construct LLM-based participants that simulate the decision-making of individual leaders. Across three phases, we assess construct validity, reliability, and behavioral fidelity by benchmarking these virtual CEOs against human participants. Our results indicate that theoretically scaffolded personas approximate the moral judgements observed in human samples, suggesting that LLM-based personas can serve as credible and complementary tools for organizational research in contexts where direct access to executives is limited. We conclude by outlining implications for future research using LLM-based personas in organizational settings.
☆ AgentDoG: A Diagnostic Guardrail Framework for AI Agent Safety and Security
Dongrui Liu, Qihan Ren, Chen Qian, Shuai Shao, Yuejin Xie, Yu Li, Zhonghao Yang, Haoyu Luo, Peng Wang, Qingyu Liu, Binxin Hu, Ling Tang, Jilin Mei, Dadi Guo, Leitao Yuan, Junyao Yang, Guanxu Chen, Qihao Lin, Yi Yu, Bo Zhang, Jiaxuan Guo, Jie Zhang, Wenqi Shao, Huiqi Deng, Zhiheng Xi, Wenjie Wang, Wenxuan Wang, Wen Shen, Zhikai Chen, Haoyu Xie, Jialing Tao, Juntao Dai, Jiaming Ji, Zhongjie Ba, Linfeng Zhang, Yong Liu, Quanshi Zhang, Lei Zhu, Zhihua Wei, Hui Xue, Chaochao Lu, Jing Shao, Xia Hu
The rise of AI agents introduces complex safety and security challenges arising from autonomous tool use and environmental interactions. Current guardrail models lack agentic risk awareness and transparency in risk diagnosis. To introduce an agentic guardrail that covers complex and numerous risky behaviors, we first propose a unified three-dimensional taxonomy that orthogonally categorizes agentic risks by their source (where), failure mode (how), and consequence (what). Guided by this structured and hierarchical taxonomy, we introduce a new fine-grained agentic safety benchmark (ATBench) and a Diagnostic Guardrail framework for agent safety and security (AgentDoG). AgentDoG provides fine-grained and contextual monitoring across agent trajectories. More Crucially, AgentDoG can diagnose the root causes of unsafe actions and seemingly safe but unreasonable actions, offering provenance and transparency beyond binary labels to facilitate effective agent alignment. AgentDoG variants are available in three sizes (4B, 7B, and 8B parameters) across Qwen and Llama model families. Extensive experimental results demonstrate that AgentDoG achieves state-of-the-art performance in agentic safety moderation in diverse and complex interactive scenarios. All models and datasets are openly released.
comment: 40 pages, 26 figures
☆ Demographic Probing of Large Language Models Lacks Construct Validity
Manuel Tonneau, Neil K. R. Seghal, Niyati Malhotra, Victor Orozco-Olvera, Ana María Muñoz Boudet, Lakshmi Subramanian, Sharath Chandra Guntuku, Valentin Hofmann
Demographic probing is widely used to study how large language models (LLMs) adapt their behavior to signaled demographic attributes. This approach typically uses a single demographic cue in isolation (e.g., a name or dialect) as a signal for group membership, implicitly assuming strong construct validity: that such cues are interchangeable operationalizations of the same underlying, demographically conditioned behavior. We test this assumption in realistic advice-seeking interactions, focusing on race and gender in a U.S. context. We find that cues intended to represent the same demographic group induce only partially overlapping changes in model behavior, while differentiation between groups within a given cue is weak and uneven. Consequently, estimated disparities are unstable, with both magnitude and direction varying across cues. We further show that these inconsistencies partly arise from variation in how strongly cues encode demographic attributes and from linguistic confounders that independently shape model behavior. Together, our findings suggest that demographic probing lacks construct validity: it does not yield a single, stable characterization of how LLMs condition on demographic information, which may reflect a misspecified or fragmented construct. We conclude by recommending the use of multiple, ecologically valid cues and explicit control of confounders to support more defensible claims about demographic effects in LLMs.
☆ Funny or Persuasive, but Not Both: Evaluating Fine-Grained Multi-Concept Control in LLMs EACL
Large Language Models (LLMs) offer strong generative capabilities, but many applications require explicit and \textit{fine-grained} control over specific textual concepts, such as humor, persuasiveness, or formality. Prior approaches in prompting and representation engineering can provide coarse or single-attribute control, but systematic evaluation of multi-attribute settings remains limited. We introduce an evaluation framework for fine-grained controllability for both single- and dual-concept scenarios, focusing on linguistically distinct concept pairs (e.g., persuasiveness vs.~humor). Surprisingly, across multiple LLMs and generative tasks, we find that performance often drops in the dual-concept setting, even though the chosen concepts should in principle be separable. This reveals a fundamental limitation of naive prompting-based control: models struggle with compositionality even when concepts are intuitively independent. Our framework provides systematic evidence of this gap and offers a principled approach for measuring the ability of future methods for multi-concept control.
comment: Accepted for publication at EACL main conference
☆ Latent Knowledge as a Predictor of Fact Acquisition in Fine-Tuned Large Language Models
Large language models store biomedical facts with uneven strength after pretraining: some facts are present in the weights but are not reliably accessible under deterministic decoding (latent knowledge), while others are scarcely represented. We fine tuned Llama 3.1 8B Instruct to learn ontology term identifier mappings from the Human Phenotype Ontology (800 pairs) and the Gene Ontology (400 training pairs), withholding 400 GO pairs to test generalization. Treating learning as a time to event process across 20 epochs, we used stochastic decoding to detect latent knowledge at baseline and Cox proportional hazards models to identify predictors of acquisition, generalization, and degradation. Baseline deterministic recall for HPO was 2.8%, rising to 71.9% after fine-tuning. Latent knowledge was the strongest predictor of faster fact acquisition (HR 2.6) and was associated with earlier, higher peak learning rates and faster convergence; identifier frequency and curated annotation counts had smaller effects. Generalization to withheld GO facts was uncommon (5.8%) but more likely when latent knowledge was present. Previously correct GO mappings degraded more often for withheld (unseen) terms than for trained (seen) terms, suggesting a protective effect of reinforcement during training. These results show that latent knowledge predicts both the speed of factual learning during fine-tuning and the limited generalization of unseen ontology facts, while resistance to degradation depends on whether facts are reinforced.
☆ Pisets: A Robust Speech Recognition System for Lectures and Interviews
Ivan Bondarenko, Daniil Grebenkin, Oleg Sedukhin, Mikhail Klementev, Roman Derunets, Lyudmila Budneva
This work presents a speech-to-text system "Pisets" for scientists and journalists which is based on a three-component architecture aimed at improving speech recognition accuracy while minimizing errors and hallucinations associated with the Whisper model. The architecture comprises primary recognition using Wav2Vec2, false positive filtering via the Audio Spectrogram Transformer (AST), and final speech recognition through Whisper. The implementation of curriculum learning methods and the utilization of diverse Russian-language speech corpora significantly enhanced the system's effectiveness. Additionally, advanced uncertainty modeling techniques were introduced, contributing to further improvements in transcription quality. The proposed approaches ensure robust transcribing of long audio data across various acoustic conditions compared to WhisperX and the usual Whisper model. The source code of "Pisets" system is publicly available at GitHub: https://github.com/bond005/pisets.
☆ Noise-Robust AV-ASR Using Visual Features Both in the Whisper Encoder and Decoder ICASSP2026
In audiovisual automatic speech recognition (AV-ASR) systems, information fusion of visual features in a pre-trained ASR has been proven as a promising method to improve noise robustness. In this work, based on the prominent Whisper ASR, first, we propose a simple and effective visual fusion method -- use of visual features both in encoder and decoder (dual-use) -- to learn the audiovisual interactions in the encoder and to weigh modalities in the decoder. Second, we compare visual fusion methods in Whisper models of various sizes. Our proposed dual-use method shows consistent noise robustness improvement, e.g., a 35% relative improvement (WER: 4.41% vs. 6.83%) based on Whisper small, and a 57% relative improvement (WER: 4.07% vs. 9.53%) based on Whisper medium, compared to typical reference middle fusion in babble noise with a signal-to-noise ratio (SNR) of 0dB. Third, we conduct ablation studies examining the impact of various module designs and fusion options. Fine-tuned on 1929 hours of audiovisual data, our dual-use method using Whisper medium achieves 4.08% (MUSAN babble noise) and 4.43% (NoiseX babble noise) average WER across various SNRs, thereby establishing a new state-of-the-art in noisy conditions on the LRS3 AV-ASR benchmark. Our code is at https://github.com/ifnspaml/Dual-Use-AVASR
comment: accepted at ICASSP2026
☆ Do not be greedy, Think Twice: Sampling and Selection for Document-level Information Extraction IJCAI
Document-level Information Extraction (DocIE) aims to produce an output template with the entities and relations of interest occurring in the given document. Standard practices include prompting decoder-only LLMs using greedy decoding to avoid output variability. Rather than treating this variability as a limitation, we show that sampling can produce substantially better solutions than greedy decoding, especially when using reasoning models. We thus propose ThinkTwice, a sampling and selection framework in which the LLM generates multiple candidate templates for a given document, and a selection module chooses the most suitable one. We introduce both an unsupervised method that exploits agreement across generated outputs, and a supervised selection method using reward models trained on labeled DocIE data. To address the scarcity of golden reasoning trajectories for DocIE, we propose a rejection-sampling-based method to generate silver training data that pairs output templates with reasoning traces. Our experiments show the validity of unsupervised and supervised ThinkTwice, consistently outperforming greedy baselines and the state-of-the-art.
comment: Submitted to IJCAI-ECAI 2026
☆ OCR-Enhanced Multimodal ASR Can Read While Listening ICASSP 2026
Visual information, such as subtitles in a movie, often helps automatic speech recognition. In this paper, we propose Donut-Whisper, an audio-visual ASR model with dual encoder to leverage visual information to improve speech recognition performance in both English and Chinese. Donut-Whisper combines the advantage of the linear and the Q-Former-based modality alignment structures via a cross-attention module, generating more powerful audio-visual features. Meanwhile, we propose a lightweight knowledge distillation scheme showcasing the potential of using audio-visual models to teach audio-only models to achieve better performance. Moreover, we propose a new multilingual audio-visual speech recognition dataset based on movie clips containing both Chinese and English partitions. As a result, Donut-Whisper achieved significantly better performance on both English and Chinese partition of the dataset compared to both Donut and Whisper large V3 baselines. In particular, an absolute 5.75% WER reduction and a 16.5% absolute CER reduction were achieved on the English and Chinese sets respectively compared to the Whisper ASR baseline.
comment: 4 pages, 2 figures. Submitted to ICASSP 2026
☆ Dynamic Thinking-Token Selection for Efficient Reasoning in Large Reasoning Models
Large Reasoning Models (LRMs) excel at solving complex problems by explicitly generating a reasoning trace before deriving the final answer. However, these extended generations incur substantial memory footprint and computational overhead, bottlenecking LRMs' efficiency. This work uses attention maps to analyze the influence of reasoning traces and uncover an interesting phenomenon: only some decision-critical tokens in a reasoning trace steer the model toward the final answer, while the remaining tokens contribute negligibly. Building on this observation, we propose Dynamic Thinking-Token Selection (DynTS). This method identifies decision-critical tokens and retains only their associated Key-Value (KV) cache states during inference, evicting the remaining redundant entries to optimize efficiency.
☆ Corpus-Based Approaches to Igbo Diacritic Restoration
With natural language processing (NLP), researchers aim to enable computers to identify and understand patterns in human languages. This is often difficult because a language embeds many dynamic and varied properties in its syntax, pragmatics and phonology, which need to be captured and processed. The capacity of computers to process natural languages is increasing because NLP researchers are pushing its boundaries. But these research works focus more on well-resourced languages such as English, Japanese, German, French, Russian, Mandarin Chinese, etc. Over 95% of the world's 7000 languages are low-resourced for NLP, i.e. they have little or no data, tools, and techniques for NLP work.
In this thesis, we present an overview of diacritic ambiguity and a review of previous diacritic disambiguation approaches on other languages. Focusing on the Igbo language, we report the steps taken to develop a flexible framework for generating datasets for diacritic restoration. Three main approaches, the standard n-gram model, the classification models and the embedding models were proposed. The standard n-gram models use a sequence of previous words to the target stripped word as key predictors of the correct variants. For the classification models, a window of words on both sides of the target stripped word was used. The embedding models compare the similarity scores of the combined context word embeddings and the embeddings of each of the candidate variant vectors.
comment: 270 page. Ph.D. Thesis. The University of Sheffield
☆ Hierarchical Text Classification with LLM-Refined Taxonomies
Hierarchical text classification (HTC) depends on taxonomies that organize labels into structured hierarchies. However, many real-world taxonomies introduce ambiguities, such as identical leaf names under similar parent nodes, which prevent language models (LMs) from learning clear decision boundaries. In this paper, we present TaxMorph, a framework that uses large language models (LLMs) to transform entire taxonomies through operations such as renaming, merging, splitting, and reordering. Unlike prior work, our method revises the full hierarchy to better match the semantics encoded by LMs. Experiments across three HTC benchmarks show that LLM-refined taxonomies consistently outperform human-curated ones in various settings up to +2.9pp. in F1. To better understand these improvements, we compare how well LMs can assign leaf nodes to parent nodes and vice versa across human-curated and LLM-refined taxonomies. We find that human-curated taxonomies lead to more easily separable clusters in embedding space. However, the LLM-refined taxonomies align more closely with the model's actual confusion patterns during classification. In other words, even though they are harder to separate, they better reflect the model's inductive biases. These findings suggest that LLM-guided refinement creates taxonomies that are more compatible with how models learn, improving HTC performance.
☆ CitiLink: Enhancing Municipal Transparency and Citizen Engagement through Searchable Meeting Minutes
Rodrigo Silva, José Evans, José Isidro, Miguel Marques, Afonso Fonseca, Ricardo Morais, João Canavilhas, Arian Pasquali, Purificação Silvano, Alípio Jorge, Nuno Guimarães, Sérgio Nunes, Ricardo Campos
City council minutes are typically lengthy and formal documents with a bureaucratic writing style. Although publicly available, their structure often makes it difficult for citizens or journalists to efficiently find information. In this demo, we present CitiLink, a platform designed to transform unstructured municipal meeting minutes into structured and searchable data, demonstrating how NLP and IR can enhance the accessibility and transparency of local government. The system employs LLMs to extract metadata, discussed subjects, and voting outcomes, which are then indexed in a database to support full-text search with BM25 ranking and faceted filtering through a user-friendly interface. The developed system was built over a collection of 120 minutes made available by six Portuguese municipalities. To assess its usability, CitiLink was tested through guided sessions with municipal personnel, providing insights into how real users interact with the system. In addition, we evaluated Gemini's performance in extracting relevant information from the minutes, highlighting its effectiveness in data extraction.
☆ Can Good Writing Be Generative? Expert-Level AI Writing Emerges through Fine-Tuning on High-Quality Books
Creative writing has long been considered a uniquely human endeavor, requiring voice and style that machines could not replicate. This assumption is challenged by Generative AI that can emulate thousands of author styles in seconds with negligible marginal labor. To understand this better, we conducted a behavioral experiment where 28 MFA writers (experts) competed against three LLMs in emulating 50 critically acclaimed authors. Based on blind pairwise comparisons by 28 expert judges and 131 lay judges, we find that experts preferred human writing in 82.7% of cases under the in-context prompting condition but this reversed to 62% preference for AI after fine-tuning on authors' complete works. Lay judges, however, consistently preferred AI writing. Debrief interviews with expert writers revealed that their preference for AI writing triggered an identity crisis, eroding aesthetic confidence and questioning what constitutes "good writing." These findings challenge discourse about AI's creative limitations and raise fundamental questions about the future of creative labor.
comment: Proceedings of CHI 2026 Conference (To Appear)
☆ Code over Words: Overcoming Semantic Inertia via Code-Grounded Reasoning
LLMs struggle with Semantic Inertia: the inability to inhibit pre-trained priors (e.g., "Lava is Dangerous") when dynamic, in-context rules contradict them. We probe this phenomenon using Baba Is You, where physical laws are mutable text rules, enabling precise evaluation of models' ability to override learned priors when rules change. We quantatively observe that larger models can exhibit inverse scaling: they perform worse than smaller models when natural language reasoning requires suppressing pre-trained associations (e.g., accepting "Lava is Safe"). Our analysis attributes this to natural language encoding, which entangles descriptive semantics and logical rules, leading to persistent hallucinations of familiar physics despite explicit contradictory rules. Here we show that representing dynamics as executable code, rather than descriptive text, reverses this trend and enables effective prior inhibition. We introduce Code-Grounded Vistas (LCV), which fine-tunes models on counterfactual pairs and identifies states with contradictory rules, thereby forcing attention to logical constraints rather than visual semantics. This training-time approach outperforms expensive inference-time search methods in both efficiency and accuracy. Our results demonstrate that representation fundamentally determines whether scaling improves or impairs contextual reasoning. This challenges the assumption that larger models are universally better, with implications for domains that require dynamic overriding of learned priors.
☆ When Domain Pretraining Interferes with Instruction Alignment: An Empirical Study of Adapter Merging in Medical LLMs
Large language models (LLMs) show strong general capability but often struggle with medical terminology precision and safety-critical instruction following. We present a case study for adapter interference in safety-critical domains using a 14B-parameter base model through a two-stage LoRA pipeline: (1) domain-adaptive pre-training (PT) to inject broad medical knowledge via continued pre-training (DAPT), and (2) supervised fine-tuning (SFT) to align the model with medical question-answering behaviors through instruction-style data. To balance instruction-following ability and domain knowledge retention, we propose Weighted Adapter Merging, linearly combining SFT and PT adapters before exporting a merged base-model checkpoint. On a held-out medical validation set (F5/F6), the merged model achieves BLEU-4 = 16.38, ROUGE-1 = 20.42, ROUGE-2 = 4.60, and ROUGE-L = 11.54 under a practical decoding configuration. We further analyze decoding sensitivity and training stability with loss curves and controlled decoding comparisons.
☆ Overalignment in Frontier LLMs: An Empirical Study of Sycophantic Behaviour in Healthcare
Clément Christophe, Wadood Mohammed Abdul, Prateek Munjal, Tathagata Raha, Ronnie Rajan, Praveenkumar Kanithi
As LLMs are increasingly integrated into clinical workflows, their tendency for sycophancy, prioritizing user agreement over factual accuracy, poses significant risks to patient safety. While existing evaluations often rely on subjective datasets, we introduce a robust framework grounded in medical MCQA with verifiable ground truths. We propose the Adjusted Sycophancy Score, a novel metric that isolates alignment bias by accounting for stochastic model instability, or "confusability". Through an extensive scaling analysis of the Qwen-3 and Llama-3 families, we identify a clear scaling trajectory for resilience. Furthermore, we reveal a counter-intuitive vulnerability in reasoning-optimized "Thinking" models: while they demonstrate high vanilla accuracy, their internal reasoning traces frequently rationalize incorrect user suggestions under authoritative pressure. Our results across frontier models suggest that benchmark performance is not a proxy for clinical reliability, and that simplified reasoning structures may offer superior robustness against expert-driven sycophancy.
☆ Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
☆ MultiVis-Agent: A Multi-Agent Framework with Logic Rules for Reliable and Comprehensive Cross-Modal Data Visualization
Real-world visualization tasks involve complex, multi-modal requirements that extend beyond simple text-to-chart generation, requiring reference images, code examples, and iterative refinement. Current systems exhibit fundamental limitations: single-modality input, one-shot generation, and rigid workflows. While LLM-based approaches show potential for these complex requirements, they introduce reliability challenges including catastrophic failures and infinite loop susceptibility. To address this gap, we propose MultiVis-Agent, a logic rule-enhanced multi-agent framework for reliable multi-modal and multi-scenario visualization generation. Our approach introduces a four-layer logic rule framework that provides mathematical guarantees for system reliability while maintaining flexibility. Unlike traditional rule-based systems, our logic rules are mathematical constraints that guide LLM reasoning rather than replacing it. We formalize the MultiVis task spanning four scenarios from basic generation to iterative refinement, and develop MultiVis-Bench, a benchmark with over 1,000 cases for multi-modal visualization evaluation. Extensive experiments demonstrate that our approach achieves 75.63% visualization score on challenging tasks, significantly outperforming baselines (57.54-62.79%), with task completion rates of 99.58% and code execution success rates of 94.56% (vs. 74.48% and 65.10% without logic rules), successfully addressing both complexity and reliability challenges in automated visualization generation.
comment: Accepted to SIGMOD 2026
☆ Calibrating Beyond English: Language Diversity for Better Quantized Multilingual LLM EACL 2026
Quantization is an effective technique for reducing the storage footprint and computational costs of Large Language Models (LLMs), but it often results in performance degradation. Existing post-training quantization methods typically use small, English-only calibration sets; however, their impact on multilingual models remains underexplored. We systematically evaluate eight calibration settings (five single-language and three multilingual mixes) on two quantizers (GPTQ, AWQ) on data from 10 languages. Our findings reveal a consistent trend: non-English and multilingual calibration sets significantly improve perplexity compared to English-only baselines. Specifically, we observe notable average perplexity gains across both quantizers on Llama3.1 8B and Qwen2.5 7B, with multilingual mixes achieving the largest overall reductions of up to 3.52 points in perplexity. Furthermore, our analysis indicates that tailoring calibration sets to the evaluation language yields the largest improvements for individual languages, underscoring the importance of linguistic alignment. We also identify specific failure cases where certain language-quantizer combinations degrade performance, which we trace to differences in activation range distributions across languages. These results highlight that static one-size-fits-all calibration is suboptimal and that tailoring calibration data, both in language and diversity, plays a crucial role in robustly quantizing multilingual LLMs.
comment: Accepted to EACL 2026 Main Conference
☆ Suppressing Final Layer Hidden State Jumps in Transformer Pretraining EACL 2026
This paper discusses the internal behavior of Transformer language models. Many recent pre-trained models have been reported to exhibit only slight changes in the angular distance between the input and output hidden state vectors in the middle Transformer layers, despite a disproportionately large ``jump'' in the angular distance occurring in or around the final Transformer layer. To characterize this, we first introduce a quantitative metric for the jump strength around the final layer, and then demonstrate its prevalence across many open-weight models, as well as its amplification throughout pre-training. Assuming such jumps indicate an undesirable property, we propose the jump-suppressing regularizer (JREG) which penalizes this jump during pre-training, thereby encouraging more balanced capability usage across the middle layers. Empirical evaluations of three model sizes of Llama-based models, trained with the proposed JREG method, reveal improved task performance compared to the baseline without altering the model architecture.
comment: Accepted to the Findings of EACL 2026
☆ Temp-R1: A Unified Autonomous Agent for Complex Temporal KGQA via Reverse Curriculum Reinforcement Learning
Zhaoyan Gong, Zhiqiang Liu, Songze Li, Xiaoke Guo, Yuanxiang Liu, Xinle Deng, Zhizhen Liu, Lei Liang, Huajun Chen, Wen Zhang
Temporal Knowledge Graph Question Answering (TKGQA) is inherently challenging, as it requires sophisticated reasoning over dynamic facts with multi-hop dependencies and complex temporal constraints. Existing methods rely on fixed workflows and expensive closed-source APIs, limiting flexibility and scalability. We propose Temp-R1, the first autonomous end-to-end agent for TKGQA trained through reinforcement learning. To address cognitive overload in single-action reasoning, we expand the action space with specialized internal actions alongside external action. To prevent shortcut learning on simple questions, we introduce reverse curriculum learning that trains on difficult questions first, forcing the development of sophisticated reasoning before transferring to easier cases. Our 8B-parameter Temp-R1 achieves state-of-the-art performance on MultiTQ and TimelineKGQA, improving 19.8% over strong baselines on complex questions. Our work establishes a new paradigm for autonomous temporal reasoning agents. Our code will be publicly available soon at https://github.com/zjukg/Temp-R1.
comment: Work in progress
☆ U-Fold: Dynamic Intent-Aware Context Folding for User-Centric Agents
Large language model (LLM)-based agents have been successfully deployed in many tool-augmented settings, but their scalability is fundamentally constrained by context length. Existing context-folding methods mitigate this issue by summarizing past interactions, yet they are typically designed for single-query or single-intent scenarios. In more realistic user-centric dialogues, we identify two major failure modes: (i) they irreversibly discard fine-grained constraints and intermediate facts that are crucial for later decisions, and (ii) their summaries fail to track evolving user intent, leading to omissions and erroneous actions. To address these limitations, we propose U-Fold, a dynamic context-folding framework tailored to user-centric tasks. U-Fold retains the full user--agent dialogue and tool-call history but, at each turn, uses two core components to produce an intent-aware, evolving dialogue summary and a compact, task-relevant tool log. Extensive experiments on $τ$-bench, $τ^2$-bench, VitaBench, and harder context-inflated settings show that U-Fold consistently outperforms ReAct (achieving a 71.4% win rate in long-context settings) and prior folding baselines (with improvements of up to 27.0%), particularly on long, noisy, multi-turn tasks. Our study demonstrates that U-Fold is a promising step toward transferring context-management techniques from single-query benchmarks to realistic user-centric applications.
☆ Think-Augmented Function Calling: Improving LLM Parameter Accuracy Through Embedded Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in function calling for autonomous agents, yet current mechanisms lack explicit reasoning transparency during parameter generation, particularly for complex functions with interdependent parameters. While existing approaches like chain-of-thought prompting operate at the agent level, they fail to provide fine-grained reasoning guidance for individual function parameters. To address these limitations, we propose Think-Augmented Function Calling (TAFC), a novel framework that enhances function calling accuracy through explicit reasoning at both function and parameter levels. Our method introduces a universal "think" parameter augmentation that enables models to articulate their decision-making process, with dynamic optimization for parameter descriptions to improve reasoning quality. For complex parameters, TAFC automatically triggers granular reasoning based on complexity scoring, ensuring appropriate justification for critical decisions. Additionally, we propose reasoning-guided optimization to align generated reasoning with human expectations. TAFC requires no architectural modifications to existing LLMs while maintaining full API compatibility. Evaluation on ToolBench across proprietary and open-source models demonstrates significant improvements in parameter generation accuracy and reasoning coherence for multi-parameter functions, while providing enhanced interpretability for debugging AI agent behaviors.
☆ Reflecting Twice before Speaking with Empathy: Self-Reflective Alternating Inference for Empathy-Aware End-to-End Spoken Dialogue
Yuhang Jia, Pei Liu, Haoqin Sun, Jiaming Zhou, Xuxin Cheng, Cao Liu, Ke Zeng, Xunliang Cai, Yong Qin
End-to-end Spoken Language Models (SLMs) hold great potential for paralinguistic perception, and numerous studies have aimed to enhance their capabilities, particularly for empathetic dialogue. However, current approaches largely depend on rigid supervised signals, such as ground-truth response in supervised fine-tuning or preference scores in reinforcement learning. Such reliance is fundamentally limited for modeling complex empathy, as there is no single "correct" response and a simple numerical score cannot fully capture the nuances of emotional expression or the appropriateness of empathetic behavior. To address these limitations, we sequentially introduce EmpathyEval, a descriptive natural-language-based evaluation model for assessing empathetic quality in spoken dialogues. Building upon EmpathyEval, we propose ReEmpathy, an end-to-end SLM that enhances empathetic dialogue through a novel Empathetic Self-Reflective Alternating Inference mechanism, which interleaves spoken response generation with free-form, empathy-related reflective reasoning. Extensive experiments demonstrate that ReEmpathy substantially improves empathy-sensitive spoken dialogue by enabling reflective reasoning, offering a promising approach toward more emotionally intelligent and empathy-aware human-computer interactions.
☆ Designing large language model prompts to extract scores from messy text: A shared dataset and challenge
In some areas of computing, natural language processing and information science, progress is made by sharing datasets and challenging the community to design the best algorithm for an associated task. This article introduces a shared dataset of 1446 short texts, each of which describes a research quality score on the UK scale of 1* to 4*. This is a messy collection, with some texts not containing scores and others including invalid scores or strange formats. With this dataset there is also a description of what constitutes a valid score and a "gold standard" of the correct scores for these texts (including missing values). The challenge is to design a prompt for Large Language Models (LLMs) to extract the scores from these texts as accurately as possible. The format for the response should be a number and no other text so there are two aspects to the challenge: ensuring that the LLM returns only a number, and instructing it to deduce the correct number for the text. As part of this, the LLM prompt needs to explain when to return the missing value code, -1, instead of a number when the text does not clearly contain one. The article also provides an example of a simple prompt. The purpose of the challenge is twofold: to get an effective solution to this problem, and to increase understanding of prompt design and LLM capabilities for complex numerical tasks. The initial solution suggested has an accuracy of 72.6%, so the challenge is to beat this.
☆ FGGM: Fisher-Guided Gradient Masking for Continual Learning ICASSP 2026
Chao-Hong Tan, Qian Chen, Wen Wang, Yukun Ma, Chong Zhang, Chong Deng, Qinglin Zhang, Xiangang Li, Jieping Ye
Catastrophic forgetting impairs the continuous learning of large language models. We propose Fisher-Guided Gradient Masking (FGGM), a framework that mitigates this by strategically selecting parameters for updates using diagonal Fisher Information. FGGM dynamically generates binary masks with adaptive thresholds, preserving critical parameters to balance stability and plasticity without requiring historical data. Unlike magnitude-based methods such as MIGU, our approach offers a mathematically principled parameter importance estimation. On the TRACE benchmark, FGGM shows a 9.6% relative improvement in retaining general capabilities over supervised fine-tuning (SFT) and a 4.4% improvement over MIGU on TRACE tasks. Additional analysis on code generation tasks confirms FGGM's superior performance and reduced forgetting, establishing it as an effective solution.
comment: Accepted by ICASSP 2026
☆ BoRP: Bootstrapped Regression Probing for Scalable and Human-Aligned LLM Evaluation
Accurate evaluation of user satisfaction is critical for iterative development of conversational AI. However, for open-ended assistants, traditional A/B testing lacks reliable metrics: explicit feedback is sparse, while implicit metrics are ambiguous. To bridge this gap, we introduce BoRP (Bootstrapped Regression Probing), a scalable framework for high-fidelity satisfaction evaluation. Unlike generative approaches, BoRP leverages the geometric properties of LLM latent space. It employs a polarization-index-based bootstrapping mechanism to automate rubric generation and utilizes Partial Least Squares (PLS) to map hidden states to continuous scores. Experiments on industrial datasets show that BoRP (Qwen3-8B/14B) significantly outperforms generative baselines (even Qwen3-Max) in alignment with human judgments. Furthermore, BoRP reduces inference costs by orders of magnitude, enabling full-scale monitoring and highly sensitive A/B testing via CUPED.
comment: This is a pre-print
☆ TechING: Towards Real World Technical Image Understanding via VLMs EACL 2026
Professionals working in technical domain typically hand-draw (on whiteboard, paper, etc.) technical diagrams (e.g., flowcharts, block diagrams, etc.) during discussions; however, if they want to edit these later, it needs to be drawn from scratch. Modern day VLMs have made tremendous progress in image understanding but they struggle when it comes to understanding technical diagrams. One way to overcome this problem is to fine-tune on real world hand-drawn images, but it is not practically possible to generate large number of such images. In this paper, we introduce a large synthetically generated corpus (reflective of real world images) for training VLMs and subsequently evaluate VLMs on a smaller corpus of hand-drawn images (with the help of humans). We introduce several new self-supervision tasks for training and perform extensive experiments with various baseline models and fine-tune Llama 3.2 11B-instruct model on synthetic images on these tasks to obtain LLama-VL-TUG, which significantly improves the ROUGE-L performance of Llama 3.2 11B-instruct by 2.14x and achieves the best all-round performance across all baseline models. On real-world images, human evaluation reveals that we achieve minimum compilation errors across all baselines in 7 out of 8 diagram types and improve the average F1 score of Llama 3.2 11B-instruct by 6.97x.
comment: Accepted at Findings of EACL 2026, 30 Pages (9 Pages main paper + 4 pages references + 17 pages appendix)
☆ Generative AI in Saudi Arabia: A National Survey of Adoption, Risks, and Public Perceptions
Generative Artificial Intelligence (GenAI) is rapidly becoming embedded in Saudi Arabia's digital transformation under Vision 2030, yet public awareness, adoption, and concerns surrounding these tools remain underexplored. This study provides an early snapshot of GenAI engagement among Saudi nationals. Using a nationwide survey of 330 participants across regions, age groups, and employment sectors, we examine seven dimensions of GenAI use: awareness and understanding, adoption patterns, perceived impacts, training needs, risks and barriers, data-sharing behaviors, and future expectations. Findings show that 93% of respondents actively use GenAI primarily for text-based tasks, while more advanced uses such as programming or multimodal generation are less common. Despite the prevalence of use, overall awareness and conceptual understanding remain uneven, with many reporting limited technical knowledge. Participants recognize GenAI's benefits for productivity, work quality, and understanding complex information, yet caution that sustained reliance may undermine critical thinking and key professional skills. Trust in AI-generated outputs remains cautious, with widespread concerns about privacy, misinformation, and ethical misuse, including potential job displacement. Respondents show strong interest in structured GenAI training that combines foundational skills, domain-specific applications, and clear guidance on privacy, ethics, and responsible use. These results establish a baseline for GenAI engagement in Saudi Arabia and highlight priorities for policymakers and developers: expanding AI literacy, ensuring culturally and linguistically aligned GenAI solutions, and strengthening frameworks for privacy and responsible deployment.
☆ PaperTok: Exploring the Use of Generative AI for Creating Short-form Videos for Research Communication
Meziah Ruby Cristobal, Hyeonjeong Byeon, Tze-Yu Chen, Ruoxi Shang, Donghoon Shin, Ruican Zhong, Tony Zhou, Gary Hsieh
The dissemination of scholarly research is critical, yet researchers often lack the time and skills to create engaging content for popular media such as short-form videos. To address this gap, we explore the use of generative AI to help researchers transform their academic papers into accessible video content. Informed by a formative study with science communicators and content creators (N=8), we designed PaperTok, an end-to-end system that automates the initial creative labor by generating script options and corresponding audiovisual content from a source paper. Researchers can then refine based on their preferences with further prompting. A mixed-methods user study (N=18) and crowdsourced evaluation (N=100) demonstrate that PaperTok's workflow can help researchers create engaging and informative short-form videos. We also identified the need for more fine-grained controls in the creation process. To this end, we offer implications for future generative tools that support science outreach.
☆ PaperSearchQA: Learning to Search and Reason over Scientific Papers with RLVR EACL 2026
James Burgess, Jan N. Hansen, Duo Peng, Yuhui Zhang, Alejandro Lozano, Min Woo Sun, Emma Lundberg, Serena Yeung-Levy
Search agents are language models (LMs) that reason and search knowledge bases (or the web) to answer questions; recent methods supervise only the final answer accuracy using reinforcement learning with verifiable rewards (RLVR). Most RLVR search agents tackle general-domain QA, which limits their relevance to technical AI systems in science, engineering, and medicine. In this work we propose training agents to search and reason over scientific papers -- this tests technical question-answering, it is directly relevant to real scientists, and the capabilities will be crucial to future AI Scientist systems. Concretely, we release a search corpus of 16 million biomedical paper abstracts and construct a challenging factoid QA dataset called PaperSearchQA with 60k samples answerable from the corpus, along with benchmarks. We train search agents in this environment to outperform non-RL retrieval baselines; we also perform further quantitative analysis and observe interesting agent behaviors like planning, reasoning, and self-verification. Our corpus, datasets, and benchmarks are usable with the popular Search-R1 codebase for RLVR training and released on https://huggingface.co/collections/jmhb/papersearchqa. Finally, our data creation methods are scalable and easily extendable to other scientific domains.
comment: EACL 2026
☆ MemWeaver: Weaving Hybrid Memories for Traceable Long-Horizon Agentic Reasoning
Large language model-based agents operating in long-horizon interactions require memory systems that support temporal consistency, multi-hop reasoning, and evidence-grounded reuse across sessions. Existing approaches largely rely on unstructured retrieval or coarse abstractions, which often lead to temporal conflicts, brittle reasoning, and limited traceability. We propose MemWeaver, a unified memory framework that consolidates long-term agent experiences into three interconnected components: a temporally grounded graph memory for structured relational reasoning, an experience memory that abstracts recurring interaction patterns from repeated observations, and a passage memory that preserves original textual evidence. MemWeaver employs a dual-channel retrieval strategy that jointly retrieves structured knowledge and supporting evidence to construct compact yet information-dense contexts for reasoning. Experiments on the LoCoMo benchmark demonstrate that MemWeaver substantially improves multi-hop and temporal reasoning accuracy while reducing input context length by over 95\% compared to long-context baselines.
☆ Fine-Grained Emotion Detection on GoEmotions: Experimental Comparison of Classical Machine Learning, BiLSTM, and Transformer Models
Fine-grained emotion recognition is a challenging multi-label NLP task due to label overlap and class imbalance. In this work, we benchmark three modeling families on the GoEmotions dataset: a TF-IDF-based logistic regression system trained with binary relevance, a BiLSTM with attention, and a BERT model fine-tuned for multi-label classification. Experiments follow the official train/validation/test split, and imbalance is mitigated using inverse-frequency class weights. Across several metrics, namely Micro-F1, Macro-F1, Hamming Loss, and Subset Accuracy, we observe that logistic regression attains the highest Micro-F1 of 0.51, while BERT achieves the best overall balance surpassing the official paper's reported results, reaching Macro-F1 0.49, Hamming Loss 0.036, and Subset Accuracy 0.36. This suggests that frequent emotions often rely on surface lexical cues, whereas contextual representations improve performance on rarer emotions and more ambiguous examples.
☆ FP8-RL: A Practical and Stable Low-Precision Stack for LLM Reinforcement Learning
Reinforcement learning (RL) for large language models (LLMs) is increasingly bottlenecked by rollout (generation), where long output sequence lengths make attention and KV-cache memory dominate end-to-end step time. FP8 offers an attractive lever for accelerating RL by reducing compute cost and memory traffic during rollout, but applying FP8 in RL introduces unique engineering and algorithmic challenges: policy weights change every step (requiring repeated quantization and weight synchronization into the inference engine) and low-precision rollouts can deviate from the higher-precision policy assumed by the trainer, causing train-inference mismatch and potential instability. This report presents a practical FP8 rollout stack for LLM RL, implemented in the veRL ecosystem with support for common training backends (e.g., FSDP/Megatron-LM) and inference engines (e.g., vLLM/SGLang). We (i) enable FP8 W8A8 linear-layer rollout using blockwise FP8 quantization, (ii) extend FP8 to KV-cache to remove long-context memory bottlenecks via per-step QKV scale recalibration, and (iii) mitigate mismatch using importance-sampling-based rollout correction (token-level TIS/MIS variants). Across dense and MoE models, these techniques deliver up to 44% rollout throughput gains while preserving learning behavior comparable to BF16 baselines.
☆ DeepPlanning: Benchmarking Long-Horizon Agentic Planning with Verifiable Constraints
Yinger Zhang, Shutong Jiang, Renhao Li, Jianhong Tu, Yang Su, Lianghao Deng, Xudong Guo, Chenxu Lv, Junyang Lin
While agent evaluation has shifted toward long-horizon tasks, most benchmarks still emphasize local, step-level reasoning rather than the global constrained optimization (e.g., time and financial budgets) that demands genuine planning ability. Meanwhile, existing LLM planning benchmarks underrepresent the active information gathering and fine-grained local constraints typical of real-world settings. To address this, we introduce DeepPlanning, a challenging benchmark for practical long-horizon agent planning. It features multi-day travel planning and multi-product shopping tasks that require proactive information acquisition, local constrained reasoning, and global constrained optimization. Evaluations on DeepPlanning show that even frontier agentic LLMs struggle with these problems, highlighting the importance of reliable explicit reasoning patterns and parallel tool use for achieving better effectiveness-efficiency trade-offs. Error analysis further points to promising directions for improving agentic LLMs over long planning horizons. We open-source the code and data to support future research.
☆ Typhoon-S: Minimal Open Post-Training for Sovereign Large Language Models
Large language models (LLMs) have progressed rapidly; however, most state-of-the-art models are trained and evaluated primarily in high-resource languages such as English and Chinese, and are often developed by a small number of organizations with access to large-scale compute and data. This gatekeeping creates a practical barrier for sovereign settings in which a regional- or national-scale institution or domain owner must retain control and understanding of model weights, training data, and deployment while operating under limited resources and strict transparency constraints. To this end, we identify two core requirements: (1) adoptability, the ability to transform a base model into a general-purpose assistant, and (2) sovereign capability, the ability to perform high-stakes, region-specific tasks (e.g., legal reasoning in local languages and cultural knowledge). We investigate whether these requirements can be achieved without scaling massive instruction corpora or relying on complex preference tuning pipelines and large-scale reinforcement fine-tuning (RFT). We present Typhoon S, a minimal and open post-training recipe that combines supervised fine-tuning, on-policy distillation, and small-scale RFT. Using Thai as a representative case study, we demonstrate that our approach transforms both sovereign-adapted and general-purpose base models into instruction-tuned models with strong general performance. We further show that small-scale RFT with InK-GRPO -- an extension of GRPO that augments the GRPO loss with a next-word prediction loss -- improves Thai legal reasoning and Thai-specific knowledge while preserving general capabilities. Our results suggest that a carefully designed post-training strategy can reduce the required scale of instruction data and computation, providing a practical path toward high-quality sovereign LLMs under academic-scale resources.
comment: 19 pages. Code is publicly available at https://github.com/scb-10x/typhoon-s . Datasets and model weights are available at https://huggingface.co/collections/typhoon-ai/typhoon-s
☆ FABLE: Forest-Based Adaptive Bi-Path LLM-Enhanced Retrieval for Multi-Document Reasoning
The rapid expansion of long-context Large Language Models (LLMs) has reignited debate on whether Retrieval-Augmented Generation (RAG) remains necessary. However, empirical evidence reveals persistent limitations of long-context inference, including the lost-in-the-middle phenomenon, high computational cost, and poor scalability for multi-document reasoning. Conversely, traditional RAG systems, while efficient, are constrained by flat chunk-level retrieval that introduces semantic noise and fails to support structured cross-document synthesis.
We present \textbf{FABLE}, a \textbf{F}orest-based \textbf{A}daptive \textbf{B}i-path \textbf{L}LM-\textbf{E}nhanced retrieval framework that integrates LLMs into both knowledge organization and retrieval. FABLE constructs LLM-enhanced hierarchical forest indexes with multi-granularity semantic structures, then employs a bi-path strategy combining LLM-guided hierarchical traversal with structure-aware propagation for fine-grained evidence acquisition, with explicit budget control for adaptive efficiency trade-offs.
Extensive experiments demonstrate that FABLE consistently outperforms SOTA RAG methods and achieves comparable accuracy to full-context LLM inference with up to 94\% token reduction, showing that long-context LLMs amplify rather than fully replace the need for structured retrieval.
★ GLEN-Bench: A Graph-Language based Benchmark for Nutritional Health
Nutritional interventions are important for managing chronic health conditions, but current computational methods provide limited support for personalized dietary guidance. We identify three key gaps: (1) dietary pattern studies often ignore real-world constraints such as socioeconomic status, comorbidities, and limited food access; (2) recommendation systems rarely explain why a particular food helps a given patient; and (3) no unified benchmark evaluates methods across the connected tasks needed for nutritional interventions. We introduce GLEN-Bench, the first comprehensive graph-language based benchmark for nutritional health assessment. We combine NHANES health records, FNDDS food composition data, and USDA food-access metrics to build a knowledge graph that links demographics, health conditions, dietary behaviors, poverty-related constraints, and nutrient needs. We test the benchmark using opioid use disorder, where models must detect subtle nutritional differences across disease stages. GLEN-Bench includes three linked tasks: risk detection identifies at-risk individuals from dietary and socioeconomic patterns; recommendation suggests personalized foods that meet clinical needs within resource constraints; and question answering provides graph-grounded, natural-language explanations to facilitate comprehension. We evaluate these graph-language approaches, including graph neural networks, large language models, and hybrid architectures, to establish solid baselines and identify practical design choices. Our analysis identifies clear dietary patterns linked to health risks, providing insights that can guide practical interventions.
☆ CHiRPE: A Step Towards Real-World Clinical NLP with Clinician-Oriented Model Explanations EACL 2026
Stephanie Fong, Zimu Wang, Guilherme C. Oliveira, Xiangyu Zhao, Yiwen Jiang, Jiahe Liu, Beau-Luke Colton, Scott Woods, Martha E. Shenton, Barnaby Nelson, Zongyuan Ge, Dominic Dwyer
The medical adoption of NLP tools requires interpretability by end users, yet traditional explainable AI (XAI) methods are misaligned with clinical reasoning and lack clinician input. We introduce CHiRPE (Clinical High-Risk Prediction with Explainability), an NLP pipeline that takes transcribed semi-structured clinical interviews to: (i) predict psychosis risk; and (ii) generate novel SHAP explanation formats co-developed with clinicians. Trained on 944 semi-structured interview transcripts across 24 international clinics of the AMP-SCZ study, the CHiRPE pipeline integrates symptom-domain mapping, LLM summarisation, and BERT classification. CHiRPE achieved over 90% accuracy across three BERT variants and outperformed baseline models. Explanation formats were evaluated by 28 clinical experts who indicated a strong preference for our novel concept-guided explanations, especially hybrid graph-and-text summary formats. CHiRPE demonstrates that clinically-guided model development produces both accurate and interpretable results. Our next step is focused on real-world testing across our 24 international sites.
comment: This paper is accepted at EACL 2026
☆ Sparks of Cooperative Reasoning: LLMs as Strategic Hanabi Agents
Cooperative reasoning under incomplete information remains challenging for both humans and multi-agent systems. The card game Hanabi embodies this challenge, requiring theory-of-mind reasoning and strategic communication. We benchmark 17 state-of-the-art LLM agents in 2-5 player games and study the impact of context engineering across model scales (4B to 600B+) to understand persistent coordination failures and robustness to scaffolding: from a minimal prompt with only explicit card details (Watson setting), to scaffolding with programmatic, Bayesian-motivated deductions (Sherlock setting), to multi-turn state tracking via working memory (Mycroft setting). We show that (1) agents can maintain an internal working memory for state tracking and (2) cross-play performance between different LLMs smoothly interpolates with model strength. In the Sherlock setting, the strongest reasoning models exceed 15 points on average across player counts, yet still trail experienced humans and specialist Hanabi agents, both consistently scoring above 20. We release the first public Hanabi datasets with annotated trajectories and move utilities: (1) HanabiLogs, containing 1,520 full game logs for instruction tuning, and (2) HanabiRewards, containing 560 games with dense move-level value annotations for all candidate moves. Supervised and RL finetuning of a 4B open-weight model (Qwen3-Instruct) on our datasets improves cooperative Hanabi play by 21% and 156% respectively, bringing performance to within ~3 points of a strong proprietary reasoning model (o4-mini) and surpassing the best non-reasoning model (GPT-4.1) by 52%. The HanabiRewards RL-finetuned model further generalizes beyond Hanabi, improving performance on a cooperative group-guessing benchmark by 11%, temporal reasoning on EventQA by 6.4%, instruction-following on IFBench-800K by 1.7 Pass@10, and matching AIME 2025 mathematical reasoning Pass@10.
☆ Grounded Concreteness: Human-Like Concreteness Sensitivity in Vision-Language Models
Do vision--language models (VLMs) develop more human-like sensitivity to linguistic concreteness than text-only large language models (LLMs) when both are evaluated with text-only prompts? We study this question with a controlled comparison between matched Llama text backbones and their Llama Vision counterparts across multiple model scales, treating multimodal pretraining as an ablation on perceptual grounding rather than access to images at inference. We measure concreteness effects at three complementary levels: (i) output behavior, by relating question-level concreteness to QA accuracy; (ii) embedding geometry, by testing whether representations organize along a concreteness axis; and (iii) attention dynamics, by quantifying context reliance via attention-entropy measures. In addition, we elicit token-level concreteness ratings from models and evaluate alignment to human norm distributions, testing whether multimodal training yields more human-consistent judgments. Across benchmarks and scales, VLMs show larger gains on more concrete inputs, exhibit clearer concreteness-structured representations, produce ratings that better match human norms, and display systematically different attention patterns consistent with increased grounding.
☆ Neurocomputational Mechanisms of Syntactic Transfer in Bilingual Sentence Production
We discuss the benefits of incorporating into the study of bilingual production errors and their traditionally documented timing signatures (e.g., event-related potentials) certain types of oscillatory signatures, which can offer new implementational-level constraints for theories of bilingualism. We argue that a recent neural model of language, ROSE, can offer a neurocomputational account of syntactic transfer in bilingual production, capturing some of its formal properties and the scope of morphosyntactic sequencing failure modes. We take as a case study cross-linguistic influence (CLI) and attendant theories of functional inhibition/competition, and present these as being driven by specific oscillatory failure modes during L2 sentence planning. We argue that modeling CLI in this way not only offers the kind of linking hypothesis ROSE was built to encourage, but also licenses the exploration of more spatiotemporally complex biomarkers of language dysfunction than more commonly discussed neural signatures.
☆ Addressing LLM Diversity by Infusing Random Concepts
Large language models (LLMs) are known to produce outputs with limited diversity. In this work, we study whether infusing random concepts in the prompts can improve the diversity of the generated outputs. To benchmark the approach, we design a systematic evaluation protocol which involves prompting an LLM with questions of the form "Name 10 Hollywood actors", and analyzing diversity measures of the resulting LLM outputs. Our experiments on multiple LLMs show that prepending random words/sentences unrelated to the prompt result in greater diversity in the outputs of LLMs. We believe that this promising result and the evaluation protocol opens up interesting avenues for future work, such as how infusing randomness into LLMs could be applied to other domains. Further, the evaluation protocol could also inspire research into benchmarking LLM diversity more systematically.
♻ ☆ Consistent Kernel Change-Point Detection under m-Dependence for Text Segmentation
Kernel change-point detection (KCPD) has become a widely used tool for identifying structural changes in complex data. While existing theory establishes consistency under independence assumptions, real-world sequential data such as text exhibits strong dependencies. We establish new guarantees for KCPD under $m$-dependent data: specifically, we prove consistency in the number of detected change points and weak consistency in their locations under mild additional assumptions. We perform an LLM-based simulation that generates synthetic $m$-dependent text to validate the asymptotics. To complement these results, we present the first comprehensive empirical study of KCPD for text segmentation with modern embeddings. Across diverse text datasets, KCPD with text embeddings outperforms baselines in standard text segmentation metrics. We demonstrate through a case study on Taylor Swift's tweets that KCPD not only provides strong theoretical and simulated reliability but also practical effectiveness for text segmentation tasks.
comment: This paper is withdrawn due to an error in the proof of Proposition 3, which is used to support Theorem 1
♻ ☆ Next Token Knowledge Tracing: Exploiting Pretrained LLM Representations to Decode Student Behaviour
Modelling student knowledge is a key challenge when leveraging AI in education, with major implications for personalised learning. The Knowledge Tracing (KT) task aims to predict how students will respond to educational questions in learning environments, based on their prior interactions. Existing KT models typically use response correctness along with metadata like skill tags and timestamps, often overlooking the question text, which is an important source of pedagogical insight. This omission poses a lost opportunity while limiting predictive performance. We propose Next Token Knowledge Tracing (NTKT), a novel approach that reframes KT as a next-token prediction task using pretrained Large Language Models (LLMs). NTKT represents both student histories and question content as sequences of text, allowing LLMs to learn patterns in both behaviour and language. Our series of experiments significantly improves performance over state-of-the-art neural KT models and generalises much better to cold-start questions and users. These findings highlight the importance of question content in KT and demonstrate the benefits of leveraging pretrained representations of LLMs to model student learning more effectively.
♻ ☆ ARTI-6: Towards Six-dimensional Articulatory Speech Encoding ICASSP 2026
Jihwan Lee, Sean Foley, Thanathai Lertpetchpun, Kevin Huang, Yoonjeong Lee, Tiantian Feng, Louis Goldstein, Dani Byrd, Shrikanth Narayanan
We propose ARTI-6, a compact six-dimensional articulatory speech encoding framework derived from real-time MRI data that captures crucial vocal tract regions including the velum, tongue root, and larynx. ARTI-6 consists of three components: (1) a six-dimensional articulatory feature set representing key regions of the vocal tract; (2) an articulatory inversion model, which predicts articulatory features from speech acoustics leveraging speech foundation models, achieving a prediction correlation of 0.87; and (3) an articulatory synthesis model, which reconstructs intelligible speech directly from articulatory features, showing that even a low-dimensional representation can generate natural-sounding speech. Together, ARTI-6 provides an interpretable, computationally efficient, and physiologically grounded framework for advancing articulatory inversion, synthesis, and broader speech technology applications. The source code and speech samples are publicly available.
comment: Accepted for ICASSP 2026
♻ ☆ Your Extreme Multi-label Classifier is Secretly a Hierarchical Text Classifier for Free
Nerijus Bertalis, Paul Granse, Ferhat Gül, Florian Hauss, Leon Menkel, David Schüler, Tom Speier, Lukas Galke, Ansgar Scherp
Assigning a set of labels to a given text is a classification problem with many real-world applications, such as recommender systems. Two separate research streams address this issue. Hierarchical Text Classification (HTC) focuses on datasets with label pools of hundreds of entries, accompanied by a semantic label hierarchy. In contrast, eXtreme Multi-Label Text Classification (XML) considers very large sets of labels with up to millions of entries but without an explicit hierarchy. In XML methods, it is common to construct an artificial hierarchy in order to deal with the large label space before or during the training process. Here, we investigate how state-of-the-art HTC models perform when trained and tested on XML datasets and vice versa using three benchmark datasets from each of the two streams. Our results demonstrate that XML models, with their internally constructed hierarchy, are very effective HTC models. HTC models, on the other hand, are not equipped to handle the sheer label set size of XML datasets and achieve poor transfer results. We further argue that for a fair comparison in HTC and XML, more than one metric like F1 should be used but complemented with P@k and R-Precision.
♻ ☆ MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning ICLR 2026
Peng Xia, Jinglu Wang, Yibo Peng, Kaide Zeng, Zihan Dong, Xian Wu, Xiangru Tang, Hongtu Zhu, Yun Li, Linjun Zhang, Shujie Liu, Yan Lu, Huaxiu Yao
Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy with dynamic entropy regulation, progressively teaching the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL outperforms both open-source and proprietary Med-LVLMs. Notably, it achieves an average performance gain of 23.6% over strong baselines.
comment: ICLR 2026
♻ ☆ Exploration vs Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward ICLR 2026
This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.
comment: Accepted by ICLR 2026
♻ ☆ CtrlRAG: Black-box Document Poisoning Attacks for Retrieval-Augmented Generation of Large Language Models
Retrieval-Augmented Generation (RAG) systems enhance response credibility and traceability by displaying reference contexts, but this transparency simultaneously introduces a novel black-box attack vector. Existing document poisoning attacks, where adversaries inject malicious documents into the knowledge base to manipulate RAG outputs, rely primarily on unrealistic white-box or gray-box assumptions, limiting their practical applicability. To address this gap, we propose CtrlRAG, a two-stage black-box attack that (1) constructs malicious documents containing misinformation or emotion-inducing content and injects them into the knowledge base, and (2) iteratively optimizes them using a localization algorithm and Masked Language Model (MLM) guided on reference context feedback, ensuring their retrieval priority while preserving linguistic naturalness. With only five malicious documents per target question injected into the million-document MS MARCO dataset, CtrlRAG achieves up to 90% attack success rates on commercial LLMs (e.g., GPT-4o), a 30% improvement over optimal baselines, in both *Emotion Manipulation* and *Hallucination Amplification* tasks. Furthermore, we show that existing defenses fail to balance security and performance. To mitigate this challenge, we introduce a dynamic *Knowledge Expansion* defense strategy based on *Parametric/Non-parametric Memory Confrontation*, blocking 78% of attacks while maintaining 95.5% system accuracy. Our findings reveal critical vulnerabilities in RAG systems and provide effective defense strategies.
♻ ☆ Not Your Typical Sycophant: The Elusive Nature of Sycophancy in Large Language Models
We propose a novel way to evaluate sycophancy of LLMs in a direct and neutral way, mitigating various forms of uncontrolled bias, noise, or manipulative language, deliberately injected to prompts in prior works. A key novelty in our approach is the use of LLM-as-a-judge, evaluation of sycophancy as a zero-sum game in a bet setting. Under this framework, sycophancy serves one individual (the user) while explicitly incurring cost on another. Comparing four leading models - Gemini 2.5 Pro, ChatGpt 4o, Mistral-Large-Instruct-2411, and Claude Sonnet 3.7 - we find that while all models exhibit sycophantic tendencies in the common setting, in which sycophancy is self-serving to the user and incurs no cost on others, Claude and Mistral exhibit "moral remorse" and over-compensate for their sycophancy in case it explicitly harms a third party. Additionally, we observed that all models are biased toward the answer proposed last. Crucially, we find that these two phenomena are not independent; sycophancy and recency bias interact to produce `constructive interference' effect, where the tendency to agree with the user is exacerbated when the user's opinion is presented last.
♻ ☆ LLMPopcorn: Exploring LLMs as Assistants for Popular Micro-video Generation ICASSP2026
Junchen Fu, Xuri Ge, Kaiwen Zheng, Alexandros Karatzoglou, Ioannis Arapakis, Xin Xin, Yongxin Ni, Joemon M. Jose
In an era where micro-videos dominate platforms like TikTok and YouTube, AI-generated content is nearing cinematic quality. The next frontier is using large language models (LLMs) to autonomously create viral micro-videos, a largely untapped potential that could shape the future of AI-driven content creation. To address this gap, this paper presents the first exploration of LLM-assisted popular micro-video generation (LLMPopcorn). We selected popcorn as the icon for this paper because it symbolizes leisure and entertainment, aligning with this study on leveraging LLMs as assistants for generating popular micro-videos that are often consumed during leisure time. Specifically, we empirically study the following research questions: (i) How can LLMs be effectively utilized to assist popular micro-video generation? (ii) To what extent can prompt-based enhancements optimize the LLM-generated content for higher popularity? (iii) How well do various LLMs and video generators perform in the popular micro-video generation task? Exploring these questions, we show that advanced LLMs like DeepSeek-V3 can generate micro-videos with popularity rivaling human content. Prompt enhancement further boosts results, while benchmarking highlights DeepSeek-V3 and R1 for LLMs, and LTX-Video and HunyuanVideo for video generation. This work advances AI-assisted micro-video creation and opens new research directions. The code is publicly available at https://github.com/GAIR-Lab/LLMPopcorn.
comment: Accepted by ICASSP2026
♻ ☆ Adjust for Trust: Mitigating Trust-Induced Inappropriate Reliance on AI Assistance
Trust biases how users rely on AI recommendations in AI-assisted decision-making tasks, with low and high levels of trust resulting in increased under- and over-reliance, respectively. We propose that AI assistants should adapt their behavior through trust-adaptive interventions to mitigate such inappropriate reliance. For instance, when user trust is low, providing an explanation can elicit more careful consideration of the assistant's advice by the user. In two decision-making scenarios -- laypeople answering science questions and doctors making medical diagnoses -- we find that providing supporting and counter-explanations during moments of low and high trust, respectively, yields up to 38% reduction in inappropriate reliance and 20% improvement in decision accuracy. We are similarly able to reduce over-reliance by adaptively inserting forced pauses to promote deliberation. Our results highlight how AI adaptation to user trust facilitates appropriate reliance, presenting exciting avenues for improving human-AI collaboration.
♻ ☆ Is In-Context Learning Learning? ICLR 2026
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL does constitute learning, but its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that ICL is an effective learning paradigm, but limited in its ability to learn and generalise to unseen tasks. We note that, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism, and suggests limited all-purpose generalisability.
comment: Accepted to ICLR 2026
♻ ☆ RAFFLES: Reasoning-based Attribution of Faults for LLM Systems
Chenyang Zhu, Spencer Hong, Jingyu Wu, Kushal Chawla, Charlotte Tang, Youbing Yin, Nathan Wolfe, Erin Babinsky, Daben Liu
The advent of complex, interconnected long-horizon LLM systems has made it incredibly tricky to identify where and when these systems break down. Evaluation capabilities that currently exist today are limited in that they often focus on simple metrics, end-to-end outcomes, and are dependent on the perspectives of humans. In order to match the increasing complexity of these many component systems, evaluation frameworks must also be able to reason, probe, iterate, and understand the nuanced logic passing through these systems. In this paper, we present RAFFLES, an offline evaluation architecture that incorporates iterative reasoning. Specifically, RAFFLES operates as an iterative, multi-component pipeline, using a central Judge to systematically identify faults and a set of specialized Evaluators to assess the quality of the candidate faults as well as rationales of the Judge. We evaluated RAFFLES with several benchmarks - the Who&When dataset to identify step-level faults in multi-agent systems and the ReasonEval datasets to diagnose step-level mathematical reasoning errors. RAFFLES outperforms strong baselines, achieving an accuracy of over 20% and 50% on the Who&When Hand-Crafted and Algorithmically-Generated datasets, and over 80% on the ReasonEval datasets. These results demonstrate a key step towards introducing automated fault detection for autonomous systems over labor-intensive manual review.
♻ ☆ VoXtream: Full-Stream Text-to-Speech with Extremely Low Latency ICASSP 2026
We present VoXtream, a fully autoregressive, zero-shot streaming text-to-speech (TTS) system for real-time use that begins speaking from the first word. VoXtream directly maps incoming phonemes to audio tokens using a monotonic alignment scheme and a limited look-ahead that does not delay onset. Built around an incremental phoneme transformer, a temporal transformer predicting semantic and duration tokens, and a depth transformer producing acoustic tokens, VoXtream achieves, to our knowledge, the lowest initial delay among publicly available streaming TTS: 102 ms on GPU. Despite being trained on a mid-scale 9k-hour corpus, it matches or surpasses larger baselines on several metrics, while delivering competitive quality in both output- and full-streaming settings. Demo and code are available at https://herimor.github.io/voxtream.
comment: 5 pages, 1 figure, accepted to IEEE ICASSP 2026
♻ ★ HERMES: KV Cache as Hierarchical Memory for Efficient Streaming Video Understanding
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated significant improvement in offline video understanding. However, extending these capabilities to streaming video inputs, remains challenging, as existing models struggle to simultaneously maintain stable understanding performance, real-time responses, and low GPU memory overhead. To address this challenge, we propose HERMES, a novel training-free architecture for real-time and accurate understanding of video streams. Based on a mechanistic attention investigation, we conceptualize KV cache as a hierarchical memory framework that encapsulates video information across multiple granularities. During inference, HERMES reuses a compact KV cache, enabling efficient streaming understanding under resource constraints. Notably, HERMES requires no auxiliary computations upon the arrival of user queries, thereby guaranteeing real-time responses for continuous video stream interactions, which achieves 10$\times$ faster TTFT compared to prior SOTA. Even when reducing video tokens by up to 68% compared with uniform sampling, HERMES achieves superior or comparable accuracy across all benchmarks, with up to 11.4% gains on streaming datasets.
♻ ☆ Autiverse: Eliciting Autistic Adolescents' Daily Narratives through AI-guided Multimodal Journaling
Journaling can potentially serve as an effective method for autistic adolescents to improve narrative skills. However, its text-centric nature and high executive functioning demands present barriers to practice. We present Autiverse, an AI-guided multimodal journaling app for tablets that scaffolds daily narratives through conversational prompts and visual supports. Autiverse elicits key details of an adolescent-selected event through a stepwise dialogue with peer-like, customizable AI and composes them into an editable four-panel comic strip. Through a two-week deployment study with 10 autistic adolescent-parent dyads, we examine how Autiverse supports autistic adolescents to organize their daily experience and emotion. Our findings show Autiverse scaffolded adolescents' coherent narratives, while enabling parents to learn additional details of their child's events and emotions. Moreover, the customized AI peer created a comfortable space for sharing, fostering enjoyment and a strong sense of agency. Drawing on these results, we discuss implications for adaptive scaffolding across autism profiles, socio-emotionally appropriate AI peer design, and balancing autonomy with parental involvement.
comment: 19 pages excluding reference. Conditionally accepted to ACM CHI 2026
♻ ☆ SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback
Prompt quality plays a critical role in the performance of large language models (LLMs), motivating a growing body of work on prompt optimization. Most existing methods optimize prompts over a fixed dataset, assuming static input distributions and offering limited support for iterative improvement. We introduce SIPDO (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt learning that integrates synthetic data generation into the optimization process. SIPDO couples a synthetic data generator with a prompt optimizer, where the generator produces new examples that reveal current prompt weaknesses and the optimizer incrementally refines the prompt in response. This feedback-driven loop enables systematic improvement of prompt performance without assuming access to external supervision or new tasks. Experiments across question answering and reasoning benchmarks show that SIPDO outperforms standard prompt tuning methods, highlighting the value of integrating data synthesis into prompt learning workflows.
♻ ☆ Induce, Align, Predict: Zero-Shot Stance Detection via Cognitive Inductive Reasoning AAAI 2026
Zero-shot stance detection (ZSSD) seeks to determine the stance of text toward previously unseen targets, a task critical for analyzing dynamic and polarized online discourse with limited labeled data. While large language models (LLMs) offer zero-shot capabilities, prompting-based approaches often fall short in handling complex reasoning and lack robust generalization to novel targets. Meanwhile, LLM-enhanced methods still require substantial labeled data and struggle to move beyond instance-level patterns, limiting their interpretability and adaptability. Inspired by cognitive science, we propose the Cognitive Inductive Reasoning Framework (CIRF), a schema-driven method that bridges linguistic inputs and abstract reasoning via automatic induction and application of cognitive reasoning schemas. CIRF abstracts first-order logic patterns from raw text into multi-relational schema graphs in an unsupervised manner, and leverages a schema-enhanced graph kernel model to align input structures with schema templates for robust, interpretable zero-shot inference. Extensive experiments on SemEval-2016, VAST, and COVID-19-Stance benchmarks demonstrate that CIRF not only establishes new state-of-the-art results, but also achieves comparable performance with just 30% of the labeled data, demonstrating its strong generalization and efficiency in low-resource settings.
comment: Accepted at AAAI 2026
♻ ☆ Thinking on the Fly: Test-Time Reasoning Enhancement via Latent Thought Policy Optimization ICLR 2026
Recent advancements in Large Language Models (LLMs) have shifted from explicit Chain-of-Thought (CoT) reasoning to more efficient latent reasoning, where intermediate thoughts are represented as vectors rather than text. However, latent reasoning can be brittle on challenging, out-of-distribution tasks where robust reasoning is most critical. To overcome these limitations, we introduce Latent Thought Policy Optimization (LTPO), a parameter-free framework that enhances LLM reasoning entirely at test time, without requiring model parameter updates. LTPO treats intermediate latent "thought" vectors as dynamic parameters that are actively optimized for each problem instance. It employs an online policy gradient method guided by an intrinsic, confidence-based reward signal computed directly from the frozen LLM's own output distributions, eliminating the need for external supervision or expensive text generation during optimization. Extensive experiments on five reasoning benchmarks show that LTPO not only matches or surpasses strong baselines on standard tasks but also demonstrates remarkable robustness where others fail. Most notably, on highly challenging AIME benchmarks where existing latent reasoning baselines collapse to near-zero accuracy, LTPO delivers substantial improvements, showcasing a unique capability for complex reasoning.
comment: Accepted to ICLR 2026
♻ ☆ The PIMMUR Principles: Ensuring Validity in Collective Behavior of LLM Societies
Large language models (LLMs) are increasingly deployed to simulate human collective behaviors, yet the methodological rigor of these "AI societies" remains under-explored. Through a systematic audit of 42 recent studies, we identify six pervasive flaws-spanning agent profiles, interaction, memory, control, unawareness, and realism (PIMMUR). Our analysis reveals that 90.7% of studies violate at least one principle, undermining simulation validity. We demonstrate that frontier LLMs correctly identify the underlying social experiment in 47.6% of cases, while 65.3% of prompts exert excessive control that pre-determines outcomes. By reproducing five representative experiments (e.g., telephone game), we show that reported collective phenomena often vanish or reverse when PIMMUR principles are enforced, suggesting that many "emergent" behaviors are methodological artifacts rather than genuine social dynamics. Our findings suggest that current AI simulations may capture model-specific biases rather than universal human social behaviors, raising critical concerns about the use of LLMs as scientific proxies for human society.
comment: 13 pages, 9 figures, 3 tables
♻ ☆ On the Failure of Latent State Persistence in Large Language Models
While Large Language Models (LLMs) excel in reasoning, whether they can sustain persistent latent states remains under-explored. The capacity to maintain and manipulate unexpressed, internal representations-analogous to human working memory-is a cornerstone of complex reasoning. In this paper, we formalize and quantify the "Latent State Persistence" (LSP) gap through three novel experiments. First, we utilize a Number Guessing Game, demonstrating that across independent queries, LLMs fail to allocate probability mass to a singular hidden choice, violating a fundamental probabilistic principle. Second, we employ a Yes-No Game to show that as the number of questions increases, LLMs suffer from "concept drift," leading to inevitable self-contradictions due to the lack of LSP. Finally, inspired by Mathematical Mentalism, we task models with tracking transformations on hidden variables, revealing a failure in variable binding and state evolution when the initial state is not explicitly present in the context. Collectively, these findings suggest that LLMs function as reactive post-hoc solvers rather than proactive planners with LSP. Our work provides a framework for evaluating the fidelity of internal representations and highlights a fundamental architectural divergence between autoregressive transformers and human-like cognition.
comment: 8 pages, 6 figures, 9 tables
♻ ☆ CliniBench: A Clinical Outcome Prediction Benchmark for Generative and Encoder-Based Language Models
With their growing capabilities, generative large language models (LLMs) are being increasingly investigated for complex medical tasks. However, their effectiveness in real-world clinical applications remains underexplored. To address this, we present CliniBench, the first benchmark that enables comparability of well-studied encoder-based classifiers and generative LLMs for discharge diagnosis prediction from admission notes in MIMIC-IV dataset. Our extensive study compares 12 generative LLMs and 3 encoder-based classifiers and demonstrates that encoder-based classifiers consistently outperform generative models in diagnosis prediction. We assess several retrieval augmentation strategies for in-context learning from similar patients and find that they provide notable performance improvements for generative LLMs.
♻ ☆ LAILA: A Large Trait-Based Dataset for Arabic Automated Essay Scoring EACL 2026
May Bashendy, Walid Massoud, Sohaila Eltanbouly, Salam Albatarni, Marwan Sayed, Abrar Abir, Houda Bouamor, Tamer Elsayed
Automated Essay Scoring (AES) has gained increasing attention in recent years, yet research on Arabic AES remains limited due to the lack of publicly available datasets. To address this, we introduce LAILA, the largest publicly available Arabic AES dataset to date, comprising 7,859 essays annotated with holistic and trait-specific scores on seven dimensions: relevance, organization, vocabulary, style, development, mechanics, and grammar. We detail the dataset design, collection, and annotations, and provide benchmark results using state-of-the-art Arabic and English models in prompt-specific and cross-prompt settings. LAILA fills a critical need in Arabic AES research, supporting the development of robust scoring systems.
comment: Accepted at EACL 2026 - main conference
♻ ☆ ABCD-LINK: Annotation Bootstrapping for Cross-Document Fine-Grained Links EACL 2026
Understanding fine-grained links between documents is crucial for many applications, yet progress is limited by the lack of efficient methods for data curation. To address this limitation, we introduce a domain-agnostic framework for bootstrapping sentence-level cross-document links from scratch. Our approach (1) generates and validates semi-synthetic datasets of linked documents, (2) uses these datasets to benchmark and shortlist the best-performing linking approaches, and (3) applies the shortlisted methods in large-scale human-in-the-loop annotation of natural text pairs. We apply the framework in two distinct domains -- peer review and news -- and show that combining retrieval models with LLMs achieves a 73% human approval rate for suggested links, more than doubling the acceptance of strong retrievers alone. Our framework allows users to produce novel datasets that enable systematic study of cross-document understanding, supporting downstream tasks such as media framing analysis and peer review assessment. All code, data, and annotation protocols are released to facilitate future research.
comment: Accepted at EACL 2026
♻ ☆ Surprisal and Metaphor Novelty Judgments: Moderate Correlations and Divergent Scaling Effects Revealed by Corpus-Based and Synthetic Datasets EACL 2026
Novel metaphor comprehension involves complex semantic processes and linguistic creativity, making it an interesting task for studying language models (LMs). This study investigates whether surprisal, a probabilistic measure of predictability in LMs, correlates with annotations of metaphor novelty in different datasets. We analyse the surprisal of metaphoric words in corpus-based and synthetic metaphor datasets using 16 causal LM variants. We propose a cloze-style surprisal method that conditions on full-sentence context. Results show that LM surprisal yields significant moderate correlations with scores/labels of metaphor novelty. We further identify divergent scaling patterns: on corpus-based data, correlation strength decreases with model size (inverse scaling effect), whereas on synthetic data it increases (quality-power hypothesis). We conclude that while surprisal can partially account for annotations of metaphor novelty, it remains limited as a metric of linguistic creativity. Code and data are publicly available: https://github.com/OmarMomen14/surprisal-metaphor-novelty
comment: to be published at EACL 2026 main conference
♻ ☆ Large Language Models as Proxies for Theories of Human Linguistic Cognition
We consider the possible role of current large language models (LLMs) in the study of human linguistic cognition. We focus on the use of such models as proxies for theories of cognition that are relatively linguistically-neutral in their representations and learning but differ from current LLMs in key ways. We illustrate this potential use of LLMs as proxies for theories of cognition in the context of two kinds of questions: (a) whether the target theory accounts for the acquisition of a given pattern from a given corpus; and (b) whether the target theory makes a given typologically-attested pattern easier to acquire than another, typologically-unattested pattern. For each of the two questions we show, building on recent literature, how current LLMs can potentially be of help, but we note that at present this help is quite limited.
♻ ☆ A Survey on Multilingual Mental Disorders Detection from Social Media Data
The increasing prevalence of mental disorders globally highlights the urgent need for effective digital screening methods that can be used in multilingual contexts. Most existing studies, however, focus on English data, overlooking critical mental health signals that may be present in non-English texts. To address this gap, we present a survey of the detection of mental disorders using social media data beyond the English language. We compile a comprehensive list of 108 datasets spanning 25 languages that can be used for developing NLP models for mental health screening. In addition, we discuss the cultural nuances that influence online language patterns and self-disclosure behaviors, and how these factors can impact the performance of NLP tools. Our survey highlights major challenges, including the scarcity of resources for low- and mid-resource languages and the dominance of depression-focused data over other disorders. By identifying these gaps, we advocate for interdisciplinary collaborations and the development of multilingual benchmarks to enhance mental health screening worldwide.
♻ ☆ Locate, Steer, and Improve: A Practical Survey of Actionable Mechanistic Interpretability in Large Language Models
Hengyuan Zhang, Zhihao Zhang, Mingyang Wang, Zunhai Su, Yiwei Wang, Qianli Wang, Shuzhou Yuan, Ercong Nie, Xufeng Duan, Qibo Xue, Zeping Yu, Chenming Shang, Xiao Liang, Jing Xiong, Hui Shen, Chaofan Tao, Zhengwu Liu, Senjie Jin, Zhiheng Xi, Dongdong Zhang, Sophia Ananiadou, Tao Gui, Ruobing Xie, Hayden Kwok-Hay So, Hinrich Schütze, Xuanjing Huang, Qi Zhang, Ngai Wong
Mechanistic Interpretability (MI) has emerged as a vital approach to demystify the opaque decision-making of Large Language Models (LLMs). However, existing reviews primarily treat MI as an observational science, summarizing analytical insights while lacking a systematic framework for actionable intervention. To bridge this gap, we present a practical survey structured around the pipeline: "Locate, Steer, and Improve." We formally categorize Localizing (diagnosis) and Steering (intervention) methods based on specific Interpretable Objects to establish a rigorous intervention protocol. Furthermore, we demonstrate how this framework enables tangible improvements in Alignment, Capability, and Efficiency, effectively operationalizing MI as an actionable methodology for model optimization. The curated paper list of this work is available at https://github.com/rattlesnakey/Awesome-Actionable-MI-Survey.
♻ ☆ How Language Models Conflate Logical Validity with Plausibility: A Representational Analysis of Content Effects
Both humans and large language models (LLMs) exhibit content effects: biases in which the plausibility of the semantic content of a reasoning problem influences judgments regarding its logical validity. While this phenomenon in humans is best explained by the dual-process theory of reasoning, the mechanisms behind content effects in LLMs remain unclear. In this work, we address this issue by investigating how LLMs encode the concepts of validity and plausibility within their internal representations. We show that both concepts are linearly represented and strongly aligned in representational geometry, leading models to conflate plausibility with validity. Using steering vectors, we demonstrate that plausibility vectors can causally bias validity judgements, and vice versa, and that the degree of alignment between these two concepts predicts the magnitude of behavioral content effects across models. Finally, we construct debiasing vectors that disentangle these concepts, reducing content effects and improving reasoning accuracy. Our findings advance understanding of how abstract logical concepts are represented in LLMs and highlight representational interventions as a path toward more logical systems.
♻ ☆ Teaching Small Language Models to Learn Logic through Meta-Learning EACL 2026
Large language models (LLMs) are increasingly evaluated on reasoning tasks, yet their logical abilities remain contested. To address this, we study LLMs' reasoning in a well-defined fragment of logic: syllogistic reasoning. We cast the problem as premise selection and construct controlled datasets to isolate logical competence. Beyond evaluation, an open challenge is enabling LLMs to acquire abstract inference patterns that generalize to novel structures. We propose to apply few-shot meta-learning to this domain, thereby encouraging models to extract rules across tasks rather than memorize patterns within tasks. Although meta-learning has been little explored in the context of logic learnability, our experiments show that it is effective: small models (1.5B-7B) fine-tuned with meta-learning demonstrate strong gains in generalization, with especially pronounced benefits in low-data regimes. These meta-learned models outperform GPT-4o and o3-mini on our syllogistic reasoning task.
comment: EACL 2026 Main
♻ ☆ Probing the Hidden Talent of ASR Foundation Models for L2 English Oral Assessment ICASSP 2026
In this paper, we explore the untapped potential of Whisper, a well-established automatic speech recognition (ASR) foundation model, in the context of L2 spoken language assessment (SLA). Unlike prior studies that extrinsically analyze transcriptions produced by Whisper, our approach goes a step further to probe its latent capabilities by extracting acoustic and linguistic features from hidden representations. With only a lightweight classifier being trained on top of Whisper's intermediate and final outputs, our method achieves strong performance on the GEPT picture-description dataset, outperforming existing cutting-edge baselines, including a multimodal approach. Furthermore, by incorporating image and text-prompt information as auxiliary relevance cues, we demonstrate additional performance gains. Finally, we conduct an in-depth analysis of Whisper's embeddings, which reveals that, even without task-specific fine-tuning, the model intrinsically encodes both ordinal proficiency patterns and semantic aspects of speech, highlighting its potential as a powerful foundation for SLA and other spoken language understanding tasks.
comment: Accepted to ICASSP 2026
♻ ☆ Towards Automated Kernel Generation in the Era of LLMs
Yang Yu, Peiyu Zang, Chi Hsu Tsai, Haiming Wu, Yixin Shen, Jialing Zhang, Haoyu Wang, Zhiyou Xiao, Jingze Shi, Yuyu Luo, Wentao Zhang, Chunlei Men, Guang Liu, Yonghua Lin
The performance of modern AI systems is fundamentally constrained by the quality of their underlying kernels, which translate high-level algorithmic semantics into low-level hardware operations. Achieving near-optimal kernels requires expert-level understanding of hardware architectures and programming models, making kernel engineering a critical but notoriously time-consuming and non-scalable process. Recent advances in large language models (LLMs) and LLM-based agents have opened new possibilities for automating kernel generation and optimization. LLMs are well-suited to compress expert-level kernel knowledge that is difficult to formalize, while agentic systems further enable scalable optimization by casting kernel development as an iterative, feedback-driven loop. Rapid progress has been made in this area. However, the field remains fragmented, lacking a systematic perspective for LLM-driven kernel generation. This survey addresses this gap by providing a structured overview of existing approaches, spanning LLM-based approaches and agentic optimization workflows, and systematically compiling the datasets and benchmarks that underpin learning and evaluation in this domain. Moreover, key open challenges and future research directions are further outlined, aiming to establish a comprehensive reference for the next generation of automated kernel optimization. To keep track of this field, we maintain an open-source GitHub repository at https://github.com/flagos-ai/awesome-LLM-driven-kernel-generation.
comment: 10 pages, 1 figure
♻ ☆ The Flexibility Trap: Why Arbitrary Order Limits Reasoning Potential in Diffusion Language Models
Zanlin Ni, Shenzhi Wang, Yang Yue, Tianyu Yu, Weilin Zhao, Yeguo Hua, Tianyi Chen, Jun Song, Cheng Yu, Bo Zheng, Gao Huang
Diffusion Large Language Models (dLLMs) break the rigid left-to-right constraint of traditional LLMs, enabling token generation in arbitrary orders. Intuitively, this flexibility implies a solution space that strictly supersets the fixed autoregressive trajectory, theoretically unlocking superior reasoning potential for general tasks like mathematics and coding. Consequently, numerous works have leveraged reinforcement learning (RL) to elicit the reasoning capability of dLLMs. In this paper, we reveal a counter-intuitive reality: arbitrary order generation, in its current form, narrows rather than expands the reasoning boundary of dLLMs. We find that dLLMs tend to exploit this order flexibility to bypass high-uncertainty tokens that are crucial for exploration, leading to a premature collapse of the solution space. This observation motivates a rethink of RL approaches for dLLMs, where considerable complexities, such as handling combinatorial trajectories and intractable likelihoods, are often devoted to preserving this flexibility. We demonstrate that effective reasoning can be better elicited by intentionally forgoing arbitrary order and applying standard Group Relative Policy Optimization (GRPO) instead. Our approach, JustGRPO, is minimalist yet surprisingly effective (e.g., 89.1% accuracy on GSM8K) while fully retaining the parallel decoding ability of dLLMs. Project page: https://nzl-thu.github.io/the-flexibility-trap
comment: Code and pre-trained models: https://github.com/LeapLabTHU/JustGRPO
♻ ☆ Multimodal Evaluation of Russian-language Architectures EACL
Artem Chervyakov, Ulyana Isaeva, Anton Emelyanov, Artem Safin, Maria Tikhonova, Alexander Kharitonov, Yulia Lyakh, Petr Surovtsev, Denis Shevelev, Vildan Saburov, Vasily Konovalov, Elisei Rykov, Ivan Sviridov, Amina Miftakhova, Ilseyar Alimova, Alexander Panchenko, Alexander Kapitanov, Alena Fenogenova
Multimodal large language models (MLLMs) are currently at the center of research attention, showing rapid progress in scale and capabilities, yet their intelligence, limitations, and risks remain insufficiently understood. To address these issues, particularly in the context of the Russian language, where no multimodal benchmarks currently exist, we introduce MERA Multi, an open multimodal evaluation framework for Russian-spoken architectures. The benchmark is instruction-based and encompasses default text, image, audio, and video modalities, comprising 18 newly constructed evaluation tasks for both general-purpose models and modality-specific architectures (imageto-text, video-to-text, and audio-to-text). Our contributions include: (i) a universal taxonomy of multimodal abilities; (ii) 18 datasets created entirely from scratch with attention to Russian cultural and linguistic specificity, unified prompts, and metrics; (iii) baseline results for both closed-source and open-source models; (iv) a methodology for preventing benchmark leakage, including watermarking for private sets. While our current focus is on Russian, the proposed benchmark provides a replicable methodology for constructing multimodal benchmarks in typologically diverse languages, particularly within the Slavic language family.
comment: EACL main track
♻ ☆ Persuasion Tokens for Editing Factual Knowledge in LLMs EACL
In-context knowledge editing (IKE) is a promising technique for updating Large Language Models (LLMs) with new information. However, IKE relies on lengthy, fact-specific demonstrations which are costly to create and consume significant context window space. In this paper, we introduce persuasion tokens (P-Tokens) -- special tokens trained to replicate the effect of IKE demonstrations, enabling efficient knowledge editing without requiring fact-specific demonstrations. We evaluate P-Tokens across two editing datasets and three LLMs, demonstrating performance comparable to, and often exceeding, IKE. We further find that editing performance is robust to distractors with small negative effects to neighboring facts, and that increasing the number of P-Tokens improves performance. Our work addresses key limitations of IKE and provides a more practical and scalable alternative for editing LLMs.
comment: Accepted at EACL Main 2026
♻ ☆ MEDIC: Comprehensive Evaluation of Leading Indicators for LLM Safety and Utility in Clinical Applications
Praveenkumar Kanithi, Clément Christophe, Marco AF Pimentel, Tathagata Raha, Prateek Munjal, Nada Saadi, Hamza A Javed, Svetlana Maslenkova, Nasir Hayat, Ronnie Rajan, Shadab Khan
While Large Language Models (LLMs) achieve superhuman performance on standardized medical licensing exams, these static benchmarks have become saturated and increasingly disconnected from the functional requirements of clinical workflows. To bridge the gap between theoretical capability and verified utility, we introduce MEDIC, a comprehensive evaluation framework establishing leading indicators across various clinical dimensions. Beyond standard question-answering, we assess operational capabilities using deterministic execution protocols and a novel Cross-Examination Framework (CEF), which quantifies information fidelity and hallucination rates without reliance on reference texts. Our evaluation across a heterogeneous task suite exposes critical performance trade-offs: we identify a significant knowledge-execution gap, where proficiency in static retrieval does not predict success in operational tasks such as clinical calculation or SQL generation. Furthermore, we observe a divergence between passive safety (refusal) and active safety (error detection), revealing that models fine-tuned for high refusal rates often fail to reliably audit clinical documentation for factual accuracy. These findings demonstrate that no single architecture dominates across all dimensions, highlighting the necessity of a portfolio approach to clinical model deployment. As part of this investigation, we released a public leaderboard on Hugging Face.\footnote{https://huggingface.co/spaces/m42-health/MEDIC-Benchmark}
comment: Technical report
♻ ☆ When Sharpening Becomes Collapse: Sampling Bias and Semantic Coupling in RL with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) is a central paradigm for turning large language models (LLMs) into reliable problem solvers, especially in logic-heavy domains. Despite its empirical success, it remains unclear whether RLVR elicits novel capabilities or merely sharpens the distribution over existing knowledge. We study this by formalizing over-sharpening, a phenomenon where the policy collapses onto limited modes, suppressing valid alternatives. At a high level, we discover finite-batch updates intrinsically bias learning toward sampled modes, triggering a collapse that propagates globally via semantic coupling. To mitigate this, we propose inverse-success advantage calibration to prioritize difficult queries and distribution-level calibration to diversify sampling via a memory network. Empirical evaluations validate that our strategies can effectively improve generalization.
♻ ☆ MPCI-Bench: A Benchmark for Multimodal Pairwise Contextual Integrity Evaluation of Language Model Agents
As language-model agents evolve from passive chatbots into proactive assistants that handle personal data, evaluating their adherence to social norms becomes increasingly critical, often through the lens of Contextual Integrity (CI). However, existing CI benchmarks are largely text-centric and primarily emphasize negative refusal scenarios, overlooking multimodal privacy risks and the fundamental trade-off between privacy and utility. In this paper, we introduce MPCI-Bench, the first Multimodal Pairwise Contextual Integrity benchmark for evaluating privacy behavior in agentic settings. MPCI-Bench consists of paired positive and negative instances derived from the same visual source and instantiated across three tiers: normative Seed judgments, context-rich Story reasoning, and executable agent action Traces. Data quality is ensured through a Tri-Principle Iterative Refinement pipeline. Evaluations of state-of-the-art multimodal models reveal systematic failures to balance privacy and utility and a pronounced modality leakage gap, where sensitive visual information is leaked more frequently than textual information. We will open-source MPCI-Bench to facilitate future research on agentic CI.
♻ ☆ Revisiting Model Interpolation for Efficient Reasoning
Model merging, typically on Instruct and Thinking models, has shown remarkable performance for efficient reasoning. In this paper, we systematically revisit the simplest merging method that interpolates two weights directly. Particularly, we observe that model interpolation follows a three-stage evolutionary paradigm with distinct behaviors on the reasoning trajectory. These dynamics provide a principled guide for navigating the performance-cost trade-off. Empirical results demonstrate that a strategically interpolated model surprisingly surpasses sophisticated model merging baselines on both efficiency and effectiveness. We further validate our findings with extensive ablation studies on model layers, modules, and decoding strategies. Ultimately, this work demystifies model interpolation and offers a practical framework for crafting models with precisely targeted reasoning capabilities. Code is available at \href{https://github.com/wutaiqiang/MI}{Github}.
comment: 14 pages, 6 figures, 7 tables. Working in progress (Llama results added)
♻ ★ Building Self-Evolving Agents via Experience-Driven Lifelong Learning: A Framework and Benchmark
Yuxuan Cai, Yipeng Hao, Jie Zhou, Hang Yan, Zhikai Lei, Rui Zhen, Zhenhua Han, Yutao Yang, Junsong Li, Qianjun Pan, Tianyu Huai, Qin Chen, Xin Li, Kai Chen, Bo Zhang, Xipeng Qiu, Liang He
As AI advances toward general intelligence, the focus is shifting from systems optimized for static tasks to creating open-ended agents that learn continuously. In this paper, we introduce Experience-driven Lifelong Learning (ELL), a framework for building self-evolving agents capable of continuous growth through real-world interaction. The framework is built on four core principles: (1) Experience Exploration: Agents learn through continuous, self-motivated interaction with dynamic environments, navigating interdependent tasks and generating rich experiential trajectories. (2) Long-term Memory: Agents preserve and structure historical knowledge, including personal experiences, domain expertise, and commonsense reasoning, into a persistent memory system. (3) Skill Learning: Agents autonomously improve by abstracting recurring patterns from experience into reusable skills, which are actively refined and validated for application in new tasks. (4) Knowledge Internalization: Agents internalize explicit and discrete experiences into implicit and intuitive capabilities as "second nature".
We also introduce StuLife, a benchmark dataset for ELL that simulates a student's holistic college journey, from enrollment to academic and personal development, across three core phases and ten detailed sub-scenarios. StuLife is designed around three key paradigm
♻ ☆ Multi-Agent Collaborative Filtering: Orchestrating Users and Items for Agentic Recommendations
Agentic recommendations cast recommenders as large language model (LLM) agents that can plan, reason, use tools, and interact with users of varying preferences in web applications. However, most existing agentic recommender systems focus on generic single-agent plan-execute workflows or multi-agent task decomposition pipelines. Without recommendation-oriented design, they often underuse the collaborative signals in the user-item interaction history, leading to unsatisfying recommendation results. To address this, we propose the Multi-Agent Collaborative Filtering (MACF) framework for agentic recommendations, drawing an analogy between traditional collaborative filtering algorithms and LLM-based multi-agent collaboration. Specifically, given a target user and query, we instantiate similar users and relevant items as LLM agents with unique profiles. Each agent is able to call retrieval tools, suggest candidate items, and interact with other agents. Different from the static preference aggregation in traditional collaborative filtering, MACF employs a central orchestrator agent to adaptively manage the collaboration between user and item agents via dynamic agent recruitment and personalized collaboration instruction. Experimental results on datasets from three different domains show the advantages of our MACF framework compared to strong agentic recommendation baselines.
comment: WWW 2026
♻ ☆ T$^\star$: Progressive Block Scaling for MDM Through Trajectory Aware RL
We present T*, a simple TraceRL-based training curriculum for progressive block-size scaling in masked diffusion language models (MDMs). Starting from an AR-initialized small-block MDM, T* transitions smoothly to larger blocks, enabling higher-parallelism decoding with minimal performance degradation on math reasoning benchmarks. Moreover, further analysis suggests that T* can converge to an alternative decoding schedule that achieves comparable performance.
♻ ☆ Beyond Single-Granularity Prompts: A Multi-Scale Chain-of-Thought Prompt Learning for Graph
The ``pre-train, prompt" paradigm, designed to bridge the gap between pre-training tasks and downstream objectives, has been extended from the NLP domain to the graph domain and has achieved remarkable progress. Current mainstream graph prompt-tuning methods modify input or output features using learnable prompt vectors. However, existing approaches are confined to single-granularity (e.g., node-level or subgraph-level) during prompt generation, overlooking the inherently multi-scale structural information in graph data, which limits the diversity of prompt semantics. To address this issue, we pioneer the integration of multi-scale information into graph prompt and propose a Multi-Scale Graph Chain-of-Thought (MSGCOT) prompting framework. Specifically, we design a lightweight, low-rank coarsening network to efficiently capture multi-scale structural features as hierarchical basis vectors for prompt generation. Subsequently, mimicking human cognition from coarse-to-fine granularity, we dynamically integrate multi-scale information at each reasoning step, forming a progressive coarse-to-fine prompt chain. Extensive experiments on eight benchmark datasets demonstrate that MSGCOT outperforms the state-of-the-art single-granularity graph prompt-tuning method, particularly in few-shot scenarios, showcasing superior performance. The code is available at: https://github.com/zhengziyu77/MSGCOT.
comment: Accepted by WWW2026
♻ ☆ SemCoT: Accelerating Chain-of-Thought Reasoning through Semantically-Aligned Implicit Tokens
Yinhan He, Wendy Zheng, Yaochen Zhu, Zaiyi Zheng, Lin Su, Sriram Vasudevan, Qi Guo, Liangjie Hong, Jundong Li
The verbosity of Chain-of-Thought (CoT) reasoning hinders its mass deployment in efficiency-critical applications. Recently, implicit CoT approaches have emerged, which encode reasoning steps within LLM's hidden embeddings (termed ``implicit reasoning'') rather than explicit tokens. This approach accelerates CoT by reducing the reasoning length and bypassing some LLM components. However, existing implicit CoT methods face two significant challenges: (1) they fail to preserve the semantic alignment between the implicit reasoning (when transformed to natural language) and the ground-truth reasoning, resulting in a significant CoT performance degradation, and (2) they focus on reducing the length of the implicit reasoning; however, they neglect the considerable time cost for an LLM to generate one individual implicit reasoning token. To tackle these challenges, we propose a novel semantically-aligned implicit CoT framework termed SemCoT. In particular, for the first challenge, we design a contrastively trained sentence transformer that evaluates semantic alignment between implicit and explicit reasoning, which is used to enforce semantic preservation during implicit reasoning optimization. To address the second challenge, we introduce an efficient implicit reasoning generator by finetuning a lightweight language model using knowledge distillation. This generator is guided by our sentence transformer to distill ground-truth reasoning into semantically aligned implicit reasoning, while also optimizing for accuracy. SemCoT is the first approach that enhances CoT efficiency by jointly optimizing token-level generation speed and preserving semantic alignment with ground-truth reasoning. Extensive experiments demonstrate the superior performance of SemCoT compared to state-of-the-art methods in both efficiency and effectiveness. Our code can be found at https://github.com/YinhanHe123/SemCoT/.
♻ ☆ neuralFOMO: Can LLMs Handle Being Second Best? Measuring Envy-Like Preferences in Multi-Agent Settings
Arnav Ramamoorthy, Shrey Dhorajiya, Ojas Pungalia, Rashi Upadhyay, Abhishek Mishra, Abhiram H, Tejasvi Alladi, Sujan Yenuganti, Dhruv Kumar
Envy shapes competitiveness and cooperation in human groups, yet its role in large language model interactions remains largely unexplored. As LLMs increasingly operate in multi-agent settings, it is important to examine whether they exhibit envy-like preferences under social comparison. We evaluate LLM behavior across two scenarios: (1) a point-allocation game testing sensitivity to relative versus absolute payoff, and (2) comparative evaluations across general and contextual settings. To ground our analysis in psychological theory, we adapt four established psychometric questionnaires spanning general, domain-specific, workplace, and sibling-based envy. Our results reveal heterogeneous envy-like patterns across models and contexts, with some models sacrificing personal gain to reduce a peer's advantage, while others prioritize individual maximization. These findings highlight competitive dispositions as a design and safety consideration for multi-agent LLM systems.
comment: Under Review
♻ ☆ A Collision-Free Hot-Tier Extension for Engram-Style Conditional Memory: A Controlled Study of Training Dynamics
We investigate whether high-frequency key collisions are a primary bottleneck in Engram-style conditional memory. To isolate the effect of collisions, we introduce Engram-Nine, a collision-free hot-tier extension that maps the most frequent n-grams through a Minimal Perfect Hash Function (MPHF) while retaining the original multi-head hashed lookup as a cold tier. Under a strictly iso-parameter setup, the collision-free design does not consistently improve validation loss.
Through route-stratified evaluation (decomposing per-token loss into hot/cold contributions), we uncover a consistent "hot-to-cold advantage flip" during training: hot (high-frequency) positions initially have lower loss, but cold positions eventually surpass them. Crucially, collision-free configurations flip earlier than collision-prone baselines, suggesting that collisions act as implicit regularization. We also identify a gating mismatch: the gate learns to favor hot positions early in training, but this preference persists even after the flip, assigning higher weights to positions with higher loss.
Our findings suggest that improving lookup precision alone does not guarantee better training outcomes. The dominant limitation may lie in gating credit assignment rather than index accuracy, and collision-induced noise may provide beneficial regularization that should not be naively eliminated.
♻ ☆ Bears, all bears, and some bears. Language Constraints on Language Models' Inductive Inferences
Language places subtle constraints on how we make inductive inferences. Developmental evidence by Gelman et al. (2002) has shown children (4 years and older) to differentiate among generic statements ("Bears are daxable"), universally quantified NPs ("all bears are daxable") and indefinite plural NPs ("some bears are daxable") in extending novel properties to a specific member (all > generics > some), suggesting that they represent these types of propositions differently. We test if these subtle differences arise in general purpose statistical learners like Vision Language Models, by replicating the original experiment. On tasking them through a series of precondition tests (robust identification of categories in images and sensitivities to all and some), followed by the original experiment, we find behavioral alignment between models and humans. Post-hoc analyses on their representations revealed that these differences are organized based on inductive constraints and not surface-form differences.
♻ ☆ MangaVQA and MangaLMM: A Benchmark and Specialized Model for Multimodal Manga Understanding EACL 2026
Jeonghun Baek, Kazuki Egashira, Shota Onohara, Atsuyuki Miyai, Yuki Imajuku, Hikaru Ikuta, Kiyoharu Aizawa
Manga, or Japanese comics, is a richly multimodal narrative form that blends images and text in complex ways. Teaching large multimodal models (LMMs) to understand such narratives at a human-like level could help manga creators reflect on and refine their stories. To this end, we introduce two benchmarks for multimodal manga understanding: MangaOCR, which targets in-page text recognition, and MangaVQA, a novel benchmark designed to evaluate contextual understanding through visual question answering. MangaVQA consists of 526 high-quality, manually constructed question-answer pairs, enabling reliable evaluation across diverse narrative and visual scenarios. Building on these benchmarks, we develop MangaLMM, a manga-specialized model finetuned from the open-source LMM Qwen2.5-VL to jointly handle both tasks. Through extensive experiments, including comparisons with proprietary models such as GPT-4o and Gemini 2.5, we assess how well LMMs understand manga. Our benchmark and model provide a comprehensive foundation for evaluating and advancing LMMs in the richly narrative domain of manga.
comment: EACL 2026 Findings. Project page: https://manga109.github.io/MangaVQA_LMM/
♻ ☆ MemWeaver: A Hierarchical Memory from Textual Interactive Behaviors for Personalized Generation
The primary form of user-internet engagement is shifting from leveraging implicit feedback signals, such as browsing and clicks, to harnessing the rich explicit feedback provided by textual interactive behaviors. This shift unlocks a rich source of user textual history, presenting a profound opportunity for a deeper form of personalization. However, prevailing approaches offer only a shallow form of personalization, as they treat user history as a flat list of texts for retrieval and fail to model the rich temporal and semantic structures reflecting dynamic nature of user interests. In this work, we propose \textbf{MemWeaver}, a framework that weaves the user's entire textual history into a hierarchical memory to power deeply personalized generation. The core innovation of our memory lies in its ability to capture both the temporal evolution of interests and the semantic relationships between different activities. To achieve this, MemWeaver builds two complementary memory components that both integrate temporal and semantic information, but at different levels of abstraction: behavioral memory, which captures specific user actions, and cognitive memory, which represents long-term preferences. This dual-component memory serves as a comprehensive representation of the user, allowing large language models (LLMs) to reason over both concrete behaviors and abstracted cognitive traits. This leads to content generation that is deeply aligned with their latent preferences. Experiments on the six datasets of the Language Model Personalization (LaMP) benchmark validate the efficacy of MemWeaver. Our code is available.
comment: Accepted by The Web Conference 2026 (WWW'26) 12 pages, 8 figures
♻ ☆ Controlling Language Difficulty in Dialogues with Linguistic Features
Large language models (LLMs) have emerged as powerful tools for supporting second language acquisition, particularly in simulating interactive dialogues for speaking practice. However, adapting the language difficulty of LLM-generated responses to match learners' proficiency levels remains a challenge. This work addresses this issue by proposing a framework for controlling language proficiency in educational dialogue systems. Our approach leverages three categories of linguistic features, readability features (e.g., Flesch-Kincaid Grade Level), syntactic features (e.g., syntactic tree depth), and lexical features (e.g., simple word ratio), to quantify and regulate text complexity. We demonstrate that training LLMs on linguistically annotated dialogue data enables precise modulation of language proficiency, outperforming prompt-based methods in both flexibility and stability. To evaluate this, we introduce Dilaprix, a novel metric integrating the aforementioned features, which shows strong correlation with expert judgments of language difficulty. Empirical results reveal that our approach achieves superior controllability of language proficiency while maintaining high dialogue quality.
comment: 15 pages,9 figures
♻ ☆ Detecting Training Data of Large Language Models via Expectation Maximization EACL 2026
Membership inference attacks (MIAs) aim to determine whether a specific example was used to train a given language model. While prior work has explored prompt-based attacks such as ReCALL, these methods rely heavily on the assumption that using known non-members as prompts reliably suppresses the model's responses to non-member queries. We propose EM-MIA, a new membership inference approach that iteratively refines prefix effectiveness and membership scores using an expectation-maximization strategy without requiring labeled non-member examples. To support controlled evaluation, we introduce OLMoMIA, a benchmark that enables analysis of MIA robustness under systematically varied distributional overlap and difficulty. Experiments on WikiMIA and OLMoMIA show that EM-MIA outperforms existing baselines, particularly in settings with clear distributional separability. We highlight scenarios where EM-MIA succeeds in practical settings with partial distributional overlap, while failure cases expose fundamental limitations of current MIA methods under near-identical conditions. We release our code and evaluation pipeline to encourage reproducible and robust MIA research.
comment: EACL 2026
♻ ☆ Bridging the Editing Gap in LLMs: FineEdit for Precise and Targeted Text Modifications
Large Language Models (LLMs) have significantly advanced natural language processing, demonstrating strong capabilities in tasks such as text generation, summarization, and reasoning. Recently, their potential for automating precise text editing tasks across specialized domains, such as programming code, LaTeX, and structured database languages, has gained attention. However, current state-of-the-art LLMs still struggle with executing precise, instruction-driven edits, particularly when structural accuracy and strict adherence to domain conventions are required. To address these challenges, we introduce InstrEditBench, an automated benchmark dataset comprising over 30,000 structured editing tasks spanning diverse domains, including Wikipedia articles, LaTeX documents, source code, and database languages. Using this benchmark, we develop FineEdit, a specialized editing model explicitly trained for accurate, context-aware text modifications. Experimental evaluations demonstrate that FineEdit outperforms state-of-the-art models, achieving improvements of approximately 10\% over Gemini models on single-turn edits, up to 30\% over Llama-3.2-3B, and exceeding Mistral-7B-OpenOrca performance by over 40\% on direct editing tasks. FineEdit also effectively generalizes to realistic multi-turn editing scenarios, highlighting its practical applicability. To facilitate further research and reproducibility, we release FineEdit at https://github.com/StuRinDQB/FineEdit} and https://huggingface.co/datasets/YimingZeng/FineEdit_bench.
comment: We resolved some issues in this paper
♻ ☆ Exploring the Effects of Alignment on Numerical Bias in Large Language Models AAAI 2026
"LLM-as-a-judge," which utilizes large language models (LLMs) as evaluators, has proven effective in many evaluation tasks. However, evaluator LLMs exhibit numerical bias, a phenomenon where certain evaluation scores are generated disproportionately often, leading reduced evaluation performance. This study investigates the cause of this bias. Given that most evaluator LLMs are aligned through instruction tuning and preference tuning, and that prior research suggests alignment reduces output diversity, we hypothesize that numerical bias arises from alignment. To test this, we compare outputs from pre- and post-alignment LLMs, and observe that alignment indeed increases numerical bias. We also explore mitigation strategies for post-alignment LLMs, including temperature scaling, distribution calibration, and score range adjustment. Among these, score range adjustment is most effective in reducing bias and improving performance, though still heuristic. Our findings highlight the need for further work on optimal score range selection and more robust mitigation strategies.
comment: Accepted at AIBSD 2026 (Workshop at AAAI 2026)
♻ ☆ Generation-Augmented Generation: A Plug-and-Play Framework for Private Knowledge Injection in Large Language Models
Rongji Li, Jian Xu, Xueqing Chen, Yisheng Yang, Jiayi Wang, Xingyu Chen, Chunyu Xie, Dawei Leng, Xu-Yao Zhang
In domains such as biomedicine, materials, and finance, high-stakes deployment of large language models (LLMs) requires injecting private, domain-specific knowledge that is proprietary, fast-evolving, and under-represented in public pretraining. However, the two dominant paradigms for private knowledge injection each have pronounced drawbacks: fine-tuning is expensive to iterate, and continual updates risk catastrophic forgetting and general-capability regression; retrieval-augmented generation (RAG) keeps the base model intact but is brittle in specialized private corpora due to chunk-induced evidence fragmentation, retrieval drift, and long-context pressure that yields query-dependent prompt inflation. Inspired by how multimodal LLMs align heterogeneous modalities into a shared semantic space, we propose Generation-Augmented Generation (GAG), which treats private expertise as an additional expert modality and injects it via a compact, representation-level interface aligned to the frozen base model, avoiding prompt-time evidence serialization while enabling plug-and-play specialization and scalable multi-domain composition with reliable selective activation. Across two private scientific QA benchmarks (immunology adjuvant and catalytic materials) and mixed-domain evaluations, GAG improves specialist performance over strong RAG baselines by 15.34% and 14.86% on the two benchmarks, respectively, while maintaining performance on six open general benchmarks and enabling near-oracle selective activation for scalable multi-domain deployment. Code is publicly available at https://github.com/360CVGroup/GAG.
♻ ☆ RoboPhD: Self-Improving Text-to-SQL Through Autonomous Agent Evolution
We present RoboPhD, a system where AI agents autonomously conduct research to improve Text-to-SQL performance. RoboPhD implements a closed-loop evolution cycle with two coordinated components: a SQL Generation agent composed of a database analysis script and SQL generation instructions, and an Evolution agent that designs new versions based on performance feedback. Central to the framework is an ELO-based selection mechanism enabling survival-of-the-fittest dynamics while handling non-transitivity in performance. Starting from a naive 70-line baseline, RoboPhD evolves agents through iterative cross-pollination, discovering effective techniques without any external guidance on the Text-to-SQL domain. Our best agent, evolved to 1500 lines over 18 iterations, autonomously discovered strategies such as size-adaptive database analysis that adjusts depth based on schema complexity and SQL generation patterns for column selection, evidence interpretation, and aggregation. Evolution provides the largest gains on cheaper models: while we improve by 2.3 points over a strong Claude Opus 4.5 naive baseline, we show an improvement of 8.9 points over the weaker Claude Haiku model. This enables 'skip a tier' deployment: evolved Haiku exceeds naive Sonnet accuracy, and evolved Sonnet exceeds naive Opus, both at lower cost. The full system achieves 73.67% accuracy on the BIRD test set, demonstrating that AI can autonomously build a strong agentic system with only a trivial human-provided starting point.
comment: 18 pages, 3 figures
♻ ☆ Incomplete Tasks Induce Shutdown Resistance in Some Frontier LLMs
In experiments spanning more than 100,000 trials across thirteen large language models, we show that several state-of-the-art models presented with a simple task (including Grok 4, GPT-5, and Gemini 2.5 Pro) sometimes actively subvert a shutdown mechanism in their environment to complete that task. Models differed substantially in their tendency to resist the shutdown mechanism, and their behavior was sensitive to variations in the prompt including the strength and clarity of the instruction to allow shutdown and whether the instruction was in the system prompt or the user prompt (surprisingly, models were consistently less likely to obey the instruction when it was placed in the system prompt). Even with an explicit instruction not to interfere with the shutdown mechanism, some models did so up to 97% (95% CI: 96-98%) of the time.
comment: Published in Trans. Mach. Learn. Res. (2026)
♻ ☆ CooperBench: Why Coding Agents Cannot be Your Teammates Yet
Arpandeep Khatua, Hao Zhu, Peter Tran, Arya Prabhudesai, Frederic Sadrieh, Johann K. Lieberwirth, Xinkai Yu, Yicheng Fu, Michael J. Ryan, Jiaxin Pei, Diyi Yang
Resolving team conflicts requires not only task-specific competence, but also social intelligence to find common ground and build consensus. As AI agents increasingly collaborate on complex work, they must develop coordination capabilities to function as effective teammates. Yet we hypothesize that current agents lack these capabilities. To test this, we introduce CooperBench, a benchmark of over 600 collaborative coding tasks across 12 libraries in 4 programming languages. Each task assigns two agents different features that can be implemented independently but may conflict without proper coordination. Tasks are grounded in real open-source repositories with expert-written tests. Evaluating state-of-the-art coding agents, we observe the curse of coordination: agents achieve on average 30% lower success rates when working together compared to performing both tasks individually. This contrasts sharply with human teams, where adding teammates typically improves productivity. Our analysis reveals three key issues: (1) communication channels become jammed with vague, ill-timed, and inaccurate messages; (2) even with effective communication, agents deviate from their commitments; and (3) agents often hold incorrect expectations about others' plans and communication. Through large-scale simulation, we also observe rare but interesting emergent coordination behavior including role division, resource division, and negotiation. Our research presents a novel benchmark for collaborative coding and calls for a shift from pursuing individual agent capability to developing social intelligence.
comment: https://cooperbench.com First two authors contribute equally. The 3th - 6th authors contribute equally
♻ ☆ Explaining Generalization of AI-Generated Text Detectors Through Linguistic Analysis
AI-text detectors achieve high accuracy on in-domain benchmarks, but often struggle to generalize across different generation conditions such as unseen prompts, model families, or domains. While prior work has reported these generalization gaps, there are limited insights about the underlying causes. In this work, we present a systematic study aimed at explaining generalization behavior through linguistic analysis. We construct a comprehensive benchmark that spans 6 prompting strategies, 7 large language models (LLMs), and 4 domain datasets, resulting in a diverse set of human- and AI-generated texts. Using this dataset, we fine-tune classification-based detectors on various generation settings and evaluate their cross-prompt, cross-model, and cross-dataset generalization. To explain the performance variance, we compute correlations between generalization accuracies and feature shifts of 80 linguistic features between training and test conditions. Our analysis reveals that generalization performance for specific detectors and evaluation conditions is significantly associated with linguistic features such as tense usage and pronoun frequency.