MyArxiv
Computation and Language 89
☆ Sink-Aware Pruning for Diffusion Language Models
Diffusion Language Models (DLMs) incur high inference cost due to iterative denoising, motivating efficient pruning. Existing pruning heuristics largely inherited from autoregressive (AR) LLMs, typically preserve attention sink tokens because AR sinks serve as stable global anchors. We show that this assumption does not hold for DLMs: the attention-sink position exhibits substantially higher variance over the full generation trajectory (measured by how the dominant sink locations shift across timesteps), indicating that sinks are often transient and less structurally essential than in AR models. Based on this observation, we propose ${\bf \texttt{Sink-Aware Pruning}}$, which automatically identifies and prunes unstable sinks in DLMs (prior studies usually keep sinks for AR LLMs). Without retraining, our method achieves a better quality-efficiency trade-off and outperforms strong prior pruning baselines under matched compute. Our code is available at https://github.com/VILA-Lab/Sink-Aware-Pruning.
comment: Code at: https://github.com/VILA-Lab/Sink-Aware-Pruning
☆ CLEF HIPE-2026: Evaluating Accurate and Efficient Person-Place Relation Extraction from Multilingual Historical Texts ECIR 2026
HIPE-2026 is a CLEF evaluation lab dedicated to person-place relation extraction from noisy, multilingual historical texts. Building on the HIPE-2020 and HIPE-2022 campaigns, it extends the series toward semantic relation extraction by targeting the task of identifying person--place associations in multiple languages and time periods. Systems are asked to classify relations of two types - $at$ ("Has the person ever been at this place?") and $isAt$ ("Is the person located at this place around publication time?") - requiring reasoning over temporal and geographical cues. The lab introduces a three-fold evaluation profile that jointly assesses accuracy, computational efficiency, and domain generalization. By linking relation extraction to large-scale historical data processing, HIPE-2026 aims to support downstream applications in knowledge-graph construction, historical biography reconstruction, and spatial analysis in digital humanities.
comment: ECIR 2026. CLEF Evaluation Lab. Registration DL: 2026/04/23. Task Homepage at https://hipe-eval.github.io/HIPE-2026/
☆ What Language is This? Ask Your Tokenizer
Language Identification (LID) is an important component of many multilingual natural language processing pipelines, where it facilitates corpus curation, training data analysis, and cross-lingual evaluation of large language models. Despite near-perfect performance on high-resource languages, existing systems remain brittle in low-resource and closely related language settings. We introduce UniLID, a simple and efficient LID method based on the UnigramLM tokenization algorithm, leveraging its probabilistic framing, parameter estimation technique and inference strategy. In short, we learn language-conditional unigram distributions over a shared tokenizer vocabulary but treat segmentation as a language-specific phenomenon. Our formulation is data- and compute-efficient, supports incremental addition of new languages without retraining existing models, and can naturally be integrated into existing language model tokenization pipelines. Empirical evaluations against widely used baselines, including fastText, GlotLID, and CLD3, show that UniLID achieves competitive performance on standard benchmarks, substantially improves sample efficiency in low-resource settings - surpassing 70% accuracy with as few as five labeled samples per language - and delivers large gains on fine-grained dialect identification.
☆ Differences in Typological Alignment in Language Models' Treatment of Differential Argument Marking
Recent work has shown that language models (LMs) trained on synthetic corpora can exhibit typological preferences that resemble cross-linguistic regularities in human languages, particularly for syntactic phenomena such as word order. In this paper, we extend this paradigm to differential argument marking (DAM), a semantic licensing system in which morphological marking depends on semantic prominence. Using a controlled synthetic learning method, we train GPT-2 models on 18 corpora implementing distinct DAM systems and evaluate their generalization using minimal pairs. Our results reveal a dissociation between two typological dimensions of DAM. Models reliably exhibit human-like preferences for natural markedness direction, favoring systems in which overt marking targets semantically atypical arguments. In contrast, models do not reproduce the strong object preference in human languages, in which overt marking in DAM more often targets objects rather than subjects. These findings suggest that different typological tendencies may arise from distinct underlying sources.
comment: 15 pages, 7 figures, 7 tables. Under review
☆ Pushing the Frontier of Black-Box LVLM Attacks via Fine-Grained Detail Targeting
Black-box adversarial attacks on Large Vision-Language Models (LVLMs) are challenging due to missing gradients and complex multimodal boundaries. While prior state-of-the-art transfer-based approaches like M-Attack perform well using local crop-level matching between source and target images, we find this induces high-variance, nearly orthogonal gradients across iterations, violating coherent local alignment and destabilizing optimization. We attribute this to (i) ViT translation sensitivity that yields spike-like gradients and (ii) structural asymmetry between source and target crops. We reformulate local matching as an asymmetric expectation over source transformations and target semantics, and build a gradient-denoising upgrade to M-Attack. On the source side, Multi-Crop Alignment (MCA) averages gradients from multiple independently sampled local views per iteration to reduce variance. On the target side, Auxiliary Target Alignment (ATA) replaces aggressive target augmentation with a small auxiliary set from a semantically correlated distribution, producing a smoother, lower-variance target manifold. We further reinterpret momentum as Patch Momentum, replaying historical crop gradients; combined with a refined patch-size ensemble (PE+), this strengthens transferable directions. Together these modules form M-Attack-V2, a simple, modular enhancement over M-Attack that substantially improves transfer-based black-box attacks on frontier LVLMs: boosting success rates on Claude-4.0 from 8% to 30%, Gemini-2.5-Pro from 83% to 97%, and GPT-5 from 98% to 100%, outperforming prior black-box LVLM attacks. Code and data are publicly available at: https://github.com/vila-lab/M-Attack-V2.
comment: Code at: https://github.com/vila-lab/M-Attack-V2
☆ Unmasking the Factual-Conceptual Gap in Persian Language Models
While emerging Persian NLP benchmarks have expanded into pragmatics and politeness, they rarely distinguish between memorized cultural facts and the ability to reason about implicit social norms. We introduce DivanBench, a diagnostic benchmark focused on superstitions and customs, arbitrary, context-dependent rules that resist simple logical deduction. Through 315 questions across three task types (factual retrieval, paired scenario verification, and situational reasoning), we evaluate seven Persian LLMs and reveal three critical failures: most models exhibit severe acquiescence bias, correctly identifying appropriate behaviors but failing to reject clear violations; continuous Persian pretraining amplifies this bias rather than improving reasoning, often degrading the model's ability to discern contradictions; and all models show a 21\% performance gap between retrieving factual knowledge and applying it in scenarios. These findings demonstrate that cultural competence requires more than scaling monolingual data, as current models learn to mimic cultural patterns without internalizing the underlying schemas.
☆ The Cascade Equivalence Hypothesis: When Do Speech LLMs Behave Like ASR$\rightarrow$LLM Pipelines?
Current speech LLMs largely perform implicit ASR: on tasks solvable from a transcript, they are behaviorally and mechanistically equivalent to simple Whisper$\to$LLM cascades. We show this through matched-backbone testing across four speech LLMs and six tasks, controlling for the LLM backbone for the first time. Ultravox is statistically indistinguishable from its matched cascade ($κ{=}0.93$); logit lens reveals literal text emerging in hidden states; LEACE concept erasure confirms text representations are causally necessary in both architectures tested, collapsing accuracy to near-zero. Qwen2-Audio genuinely diverges, revealing cascade equivalence is architecture-dependent, not universal. For most deployed use cases, current speech LLMs are expensive cascades, and under noise, they are worse ones, with clean-condition advantages reversing by up to 7.6% at 0 dB.
comment: 10 pages, 6 figures, 7 tables
☆ Modeling Distinct Human Interaction in Web Agents
Despite rapid progress in autonomous web agents, human involvement remains essential for shaping preferences and correcting agent behavior as tasks unfold. However, current agentic systems lack a principled understanding of when and why humans intervene, often proceeding autonomously past critical decision points or requesting unnecessary confirmation. In this work, we introduce the task of modeling human intervention to support collaborative web task execution. We collect CowCorpus, a dataset of 400 real-user web navigation trajectories containing over 4,200 interleaved human and agent actions. We identify four distinct patterns of user interaction with agents -- hands-off supervision, hands-on oversight, collaborative task-solving, and full user takeover. Leveraging these insights, we train language models (LMs) to anticipate when users are likely to intervene based on their interaction styles, yielding a 61.4-63.4% improvement in intervention prediction accuracy over base LMs. Finally, we deploy these intervention-aware models in live web navigation agents and evaluate them in a user study, finding a 26.5% increase in user-rated agent usefulness. Together, our results show structured modeling of human intervention leads to more adaptive, collaborative agents.
comment: Preprint
☆ KLong: Training LLM Agent for Extremely Long-horizon Tasks
This paper introduces KLong, an open-source LLM agent trained to solve extremely long-horizon tasks. The principle is to first cold-start the model via trajectory-splitting SFT, then scale it via progressive RL training. Specifically, we first activate basic agentic abilities of a base model with a comprehensive SFT recipe. Then, we introduce Research-Factory, an automated pipeline that generates high-quality training data by collecting research papers and constructing evaluation rubrics. Using this pipeline, we build thousands of long-horizon trajectories distilled from Claude 4.5 Sonnet (Thinking). To train with these extremely long trajectories, we propose a new trajectory-splitting SFT, which preserves early context, progressively truncates later context, and maintains overlap between sub-trajectories. In addition, to further improve long-horizon task-solving capability, we propose a novel progressive RL, which schedules training into multiple stages with progressively extended timeouts. Experiments demonstrate the superiority and generalization of KLong, as shown in Figure 1. Notably, our proposed KLong (106B) surpasses Kimi K2 Thinking (1T) by 11.28% on PaperBench, and the performance improvement generalizes to other coding benchmarks like SWE-bench Verified and MLE-bench.
☆ Learning to Stay Safe: Adaptive Regularization Against Safety Degradation during Fine-Tuning
Instruction-following language models are trained to be helpful and safe, yet their safety behavior can deteriorate under benign fine-tuning and worsen under adversarial updates. Existing defenses often offer limited protection or force a trade-off between safety and utility. We introduce a training framework that adapts regularization in response to safety risk, enabling models to remain aligned throughout fine-tuning. To estimate safety risk at training time, we explore two distinct approaches: a judge-based Safety Critic that assigns high-level harm scores to training batches, and an activation-based risk predictor built with a lightweight classifier trained on intermediate model activations to estimate harmful intent. Each approach provides a risk signal that is used to constrain updates deemed higher risk to remain close to a safe reference policy, while lower-risk updates proceed with standard training. We empirically verify that harmful intent signals are predictable from pre-generation activations and that judge scores provide effective high-recall safety guidance. Across multiple model families and attack scenarios, adaptive regularization with either risk estimation approach consistently lowers attack success rate compared to standard fine-tuning, preserves downstream performance, and adds no inference-time cost. This work demonstrates a principled mechanism for maintaining safety without sacrificing utility.
comment: Work in progress (30 pages)
☆ Evaluating Chain-of-Thought Reasoning through Reusability and Verifiability
In multi-agent IR pipelines for tasks such as search and ranking, LLM-based agents exchange intermediate reasoning in terms of Chain-of-Thought (CoT) with each other. Current CoT evaluation narrowly focuses on target task accuracy. However, this metric fails to assess the quality or utility of the reasoning process itself. To address this limitation, we introduce two novel measures: reusability and verifiability. We decouple CoT generation from execution using a Thinker-Executor framework. Reusability measures how easily an Executor can reuse the Thinker's CoT. Verifiability measures how frequently an Executor can match the Thinker's answer using the CoT. We evaluated four Thinker models against a committee of ten Executor models across five benchmarks. Our results reveal that reusability and verifiability do not correlate with standard accuracy, exposing a blind spot in current accuracy-based leaderboards for reasoning capability. Surprisingly, we find that CoTs from specialized reasoning models are not consistently more reusable or verifiable than those from general-purpose LLMs like Llama and Gemma.
☆ Using LLMs for Knowledge Component-level Correctness Labeling in Open-ended Coding Problems
Fine-grained skill representations, commonly referred to as knowledge components (KCs), are fundamental to many approaches in student modeling and learning analytics. However, KC-level correctness labels are rarely available in real-world datasets, especially for open-ended programming tasks where solutions typically involve multiple KCs simultaneously. Simply propagating problem-level correctness to all associated KCs obscures partial mastery and often leads to poorly fitted learning curves. To address this challenge, we propose an automated framework that leverages large language models (LLMs) to label KC-level correctness directly from student-written code. Our method assesses whether each KC is correctly applied and further introduces a temporal context-aware Code-KC mapping mechanism to better align KCs with individual student code. We evaluate the resulting KC-level correctness labels in terms of learning curve fit and predictive performance using the power law of practice and the Additive Factors Model. Experimental results show that our framework leads to learning curves that are more consistent with cognitive theory and improves predictive performance, compared to baselines. Human evaluation further demonstrates substantial agreement between LLM and expert annotations.
☆ The Anxiety of Influence: Bloom Filters in Transformer Attention Heads
Some transformer attention heads appear to function as membership testers, dedicating themselves to answering the question "has this token appeared before in the context?" We identify these heads across four language models (GPT-2 small, medium, and large; Pythia-160M) and show that they form a spectrum of membership-testing strategies. Two heads (L0H1 and L0H5 in GPT-2 small) function as high-precision membership filters with false positive rates of 0-4\% even at 180 unique context tokens -- well above the $d_\text{head} = 64$ bit capacity of a classical Bloom filter. A third head (L1H11) shows the classic Bloom filter capacity curve: its false positive rate follows the theoretical formula $p \approx (1 - e^{-kn/m})^k$ with $R^2 = 1.0$ and fitted capacity $m \approx 5$ bits, saturating by $n \approx 20$ unique tokens. A fourth head initially identified as a Bloom filter (L3H0) was reclassified as a general prefix-attention head after confound controls revealed its apparent capacity curve was a sequence-length artifact. Together, the three genuine membership-testing heads form a multi-resolution system concentrated in early layers (0-1), taxonomically distinct from induction and previous-token heads, with false positive rates that decay monotonically with embedding distance -- consistent with distance-sensitive Bloom filters. These heads generalize broadly: they respond to any repeated token type, not just repeated names, with 43\% higher generalization than duplicate-token-only heads. Ablation reveals these heads contribute to both repeated and novel token processing, indicating that membership testing coexists with broader computational roles. The reclassification of L3H0 through confound controls strengthens rather than weakens the case: the surviving heads withstand the scrutiny that eliminated a false positive in our own analysis.
comment: 13 pages, 8 figures, code at https://github.com/pbalogh/anxiety-of-influence v2: L3H0 reclassified as prefix-attention head following confound control. Capacity analysis updated. Duplicate-token head overlap experiment added v3: All experiments were independently validated on CPU to rule out hardware-specific computation artifacts. Results are consistent across backends
☆ Bridging the Domain Divide: Supervised vs. Zero-Shot Clinical Section Segmentation from MIMIC-III to Obstetrics LREC 2026
Clinical free-text notes contain vital patient information. They are structured into labelled sections; recognizing these sections has been shown to support clinical decision-making and downstream NLP tasks. In this paper, we advance clinical section segmentation through three key contributions. First, we curate a new de-identified, section-labeled obstetrics notes dataset, to supplement the medical domains covered in public corpora such as MIMIC-III, on which most existing segmentation approaches are trained. Second, we systematically evaluate transformer-based supervised models for section segmentation on a curated subset of MIMIC-III (in-domain), and on the new obstetrics dataset (out-of-domain). Third, we conduct the first head-to-head comparison of supervised models for medical section segmentation with zero-shot large language models. Our results show that while supervised models perform strongly in-domain, their performance drops substantially out-of-domain. In contrast, zero-shot models demonstrate robust out-of-domain adaptability once hallucinated section headers are corrected. These findings underscore the importance of developing domain-specific clinical resources and highlight zero-shot segmentation as a promising direction for applying healthcare NLP beyond well-studied corpora, as long as hallucinations are appropriately managed.
comment: 11 pages. Accepted at LREC 2026. To appear in the proceedings
☆ What Do LLMs Associate with Your Name? A Human-Centered Black-Box Audit of Personal Data
Large language models (LLMs), and conversational agents based on them, are exposed to personal data (PD) during pre-training and during user interactions. Prior work shows that PD can resurface, yet users lack insight into how strongly models associate specific information to their identity. We audit PD across eight LLMs (3 open-source; 5 API-based, including GPT-4o), introduce LMP2 (Language Model Privacy Probe), a human-centered, privacy-preserving audit tool refined through two formative studies (N=20), and run two studies with EU residents to capture (i) intuitions about LLM-generated PD (N1=155) and (ii) reactions to tool output (N2=303). We show empirically that models confidently generate multiple PD categories for well-known individuals. For everyday users, GPT-4o generates 11 features with 60% or more accuracy (e.g., gender, hair color, languages). Finally, 72% of participants sought control over model-generated associations with their name, raising questions about what counts as PD and whether data privacy rights should extend to LLMs.
☆ Small LLMs for Medical NLP: a Systematic Analysis of Few-Shot, Constraint Decoding, Fine-Tuning and Continual Pre-Training in Italian LREC 2026
Large Language Models (LLMs) consistently excel in diverse medical Natural Language Processing (NLP) tasks, yet their substantial computational requirements often limit deployment in real-world healthcare settings. In this work, we investigate whether "small" LLMs (around one billion parameters) can effectively perform medical tasks while maintaining competitive accuracy. We evaluate models from three major families-Llama-3, Gemma-3, and Qwen3-across 20 clinical NLP tasks among Named Entity Recognition, Relation Extraction, Case Report Form Filling, Question Answering, and Argument Mining. We systematically compare a range of adaptation strategies, both at inference time (few-shot prompting, constraint decoding) and at training time (supervised fine-tuning, continual pretraining). Fine-tuning emerges as the most effective approach, while the combination of few-shot prompting and constraint decoding offers strong lower-resource alternatives. Our results show that small LLMs can match or even surpass larger baselines, with our best configuration based on Qwen3-1.7B achieving an average score +9.2 points higher than Qwen3-32B. We release a comprehensive collection of all the publicly available Italian medical datasets for NLP tasks, together with our top-performing models. Furthermore, we release an Italian dataset of 126M words from the Emergency Department of an Italian Hospital, and 175M words from various sources that we used for continual pre-training.
comment: Paper Accepted at LREC 2026
☆ Auditing Reciprocal Sentiment Alignment: Inversion Risk, Dialect Representation and Intent Misalignment in Transformers
The core theme of bidirectional alignment is ensuring that AI systems accurately understand human intent and that humans can trust AI behavior. However, this loop fractures significantly across language barriers. Our research addresses Cross-Lingual Sentiment Misalignment between Bengali and English by benchmarking four transformer architectures. We reveal severe safety and representational failures in current alignment paradigms. We demonstrate that compressed model (mDistilBERT) exhibits 28.7% "Sentiment Inversion Rate," fundamentally misinterpreting positive user intent as negative (or vice versa). Furthermore, we identify systemic nuances affecting human-AI trust, including "Asymmetric Empathy" where some models systematically dampen and others amplify the affective weight of Bengali text relative to its English counterpart. Finally, we reveal a "Modern Bias" in the regional model (IndicBERT), which shows a 57% increase in alignment error when processing formal (Sadhu) Bengali. We argue that equitable human-AI co-evolution requires pluralistic, culturally grounded alignment that respects language and dialectal diversity over universal compression, which fails to preserve the emotional fidelity required for reciprocal human-AI trust. We recommend that alignment benchmarks incorporate "Affective Stability" metrics that explicitly penalize polarity inversions in low-resource and dialectal contexts.
☆ PEACE 2.0: Grounded Explanations and Counter-Speech for Combating Hate Expressions
The increasing volume of hate speech on online platforms poses significant societal challenges. While the Natural Language Processing community has developed effective methods to automatically detect the presence of hate speech, responses to it, called counter-speech, are still an open challenge. We present PEACE 2.0, a novel tool that, besides analysing and explaining why a message is considered hateful or not, also generates a response to it. More specifically, PEACE 2.0 has three main new functionalities: leveraging a Retrieval-Augmented Generation (RAG) pipeline i) to ground HS explanations into evidence and facts, ii) to automatically generate evidence-grounded counter-speech, and iii) exploring the characteristics of counter-speech replies. By integrating these capabilities, PEACE 2.0 enables in-depth analysis and response generation for both explicit and implicit hateful messages.
☆ Entropy-Based Data Selection for Language Models
Modern language models (LMs) increasingly require two critical resources: computational resources and data resources. Data selection techniques can effectively reduce the amount of training data required for fine-tuning LMs. However, their effectiveness is closely related to computational resources, which always require a high compute budget. Owing to the resource limitations in practical fine-tuning scenario, we systematically reveal the relationship between data selection and uncertainty estimation of selected data. Although large language models (LLMs) exhibit exceptional capabilities in language understanding and generation, which provide new ways to alleviate data scarcity, evaluating data usability remains a challenging task. This makes efficient data selection indispensable. To mitigate these issues, we propose Entropy-Based Unsupervised Data Selection (EUDS) framework. Empirical experiments on sentiment analysis (SA), topic classification (Topic-CLS), and question answering (Q&A) tasks validate its effectiveness. EUDS establishes a computationally efficient data-filtering mechanism. Theoretical analysis and experimental results confirm the effectiveness of our approach. EUDS significantly reduces computational costs and improves training time efficiency with less data requirement. This provides an innovative solution for the efficient fine-tuning of LMs in the compute-constrained scenarios.
comment: IEEE Access, 15 pages, 5 figures, 11 tables
☆ ABCD: All Biases Come Disguised
Multiple-choice question (MCQ) benchmarks have been a standard evaluation practice for measuring LLMs' ability to reason and answer knowledge-based questions. Through a synthetic NonsenseQA benchmark, we observe that different LLMs exhibit varying degrees of label-position-few-shot-prompt bias, where the model either uses the answer position, the label in front of the answer, the distributions of correct answers present in the few-shot prompt, or a combination of all to answer each MCQ question. We propose a simple bias-reduced evaluation protocol that replaces the labels of each question with uniform, unordered labels and prompts the LLM to use the whole answer presented. With a simple sentence similarity model, we demonstrate improved robustness and lower standard deviation between different permutations of answers with a minimal drop in LLM's performance, exposing the LLM's capabilities under reduced evaluation artifacts, without any help from the prompt examples or the option labels. Across multiple benchmarks and models, this protocol substantially improves the robustness to answer permutations, reducing mean accuracy variance $3\times$ with only a minimal decrease in the mean model's performance. Through ablation studies on various embedding models and similarity functions, we show that the method is more robust than the standard ones.
comment: 29 pages, 20 figures, pre-print, 12 tables
☆ AIDG: Evaluating Asymmetry Between Information Extraction and Containment in Multi-Turn Dialogue
Evaluating the strategic reasoning capabilities of Large Language Models (LLMs) requires moving beyond static benchmarks to dynamic, multi-turn interactions. We introduce AIDG (Adversarial Information Deduction Game), a game-theoretic framework that probes the asymmetry between information extraction (active deduction) and information containment (state maintenance) in dialogue. We propose two complementary tasks: AIDG-I, measuring pragmatic strategy in social deduction, and AIDG-II, measuring constraint satisfaction in a structured "20 Questions" setting. Across 439 games with six frontier LLMs, we observe a clear capability asymmetry: models perform substantially better at containment than deduction, with a 350 ELO advantage on defense;(Cohen's d = 5.47). We identify two bottlenecks driving this gap: (1) Information Dynamics, where confirmation strategies are 7.75x more effective than blind deduction (p < 0.00001), and (2) Constraint Adherence, where instruction-following degrades under conversational load, accounting for 41.3% of deductive failures. These findings suggest that while LLMs excel at local defensive coherence, they struggle with the global state tracking required for strategic inquiry.
comment: 16 pages, 5 figures, 13 tables. Includes appendix and supplementary materials
☆ Fine-Grained Uncertainty Quantification for Long-Form Language Model Outputs: A Comparative Study
Uncertainty quantification has emerged as an effective approach to closed-book hallucination detection for LLMs, but existing methods are largely designed for short-form outputs and do not generalize well to long-form generation. We introduce a taxonomy for fine-grained uncertainty quantification in long-form LLM outputs that distinguishes methods by design choices at three stages: response decomposition, unit-level scoring, and response-level aggregation. We formalize several families of consistency-based black-box scorers, providing generalizations and extensions of existing methods. In our experiments across multiple LLMs and datasets, we find 1) claim-response entailment consistently performs better or on par with more complex claim-level scorers, 2) claim-level scoring generally yields better results than sentence-level scoring, and 3) uncertainty-aware decoding is highly effective for improving the factuality of long-form outputs. Our framework clarifies relationships between prior methods, enables apples-to-apples comparisons, and provides practical guidance for selecting components for fine-grained UQ.
comment: UQLM repository: https://github.com/cvs-health/uqlm
☆ Evaluating Extremely Low-Resource Machine Translation: A Comparative Study of ChrF++ and BLEU Metrics
Evaluating machine translation (MT) quality in extremely low-resource language (ELRL) scenarios poses unique challenges, as widely used metrics such as BLEU, effective in high-resource settings, often misrepresent quality in data-scarce contexts. This work presents a comparative analysis of BLEU, an n-gram-based metric, and ChrF++, a character-based metric, for MT evaluation in ELRL settings. We examine how each metric responds to translation artifacts, including hallucinations, repetition, source-text copying, and diacritic (\textit{matra}) variations across three ELRLs: Magahi, Bhojpuri, and Chhattisgarhi, with a focus on outputs from large language models (LLMs) and neural MT (NMT) systems. While recent work often relies solely on ChrF++, our findings show that BLEU, despite its lower absolute scores, provides complementary lexical-precision insights that improve interpretability.
comment: 6 pages
☆ Diverse Word Choices, Same Reference: Annotating Lexically-Rich Cross-Document Coreference
Cross-document coreference resolution (CDCR) identifies and links mentions of the same entities and events across related documents, enabling content analysis that aggregates information at the level of discourse participants. However, existing datasets primarily focus on event resolution and employ a narrow definition of coreference, which limits their effectiveness in analyzing diverse and polarized news coverage where wording varies widely. This paper proposes a revised CDCR annotation scheme of the NewsWCL50 dataset, treating coreference chains as discourse elements (DEs) and conceptual units of analysis. The approach accommodates both identity and near-identity relations, e.g., by linking "the caravan" - "asylum seekers" - "those contemplating illegal entry", allowing models to capture lexical diversity and framing variation in media discourse, while maintaining the fine-grained annotation of DEs. We reannotate the NewsWCL50 and a subset of ECB+ using a unified codebook and evaluate the new datasets through lexical diversity metrics and a same-head-lemma baseline. The results show that the reannotated datasets align closely, falling between the original ECB+ and NewsWCL50, thereby supporting balanced and discourse-aware CDCR research in the news domain.
☆ DAVE: A Policy-Enforcing LLM Spokesperson for Secure Multi-Document Data Sharing
In current inter-organizational data spaces, usage policies are enforced mainly at the asset level: a whole document or dataset is either shared or withheld. When only parts of a document are sensitive, providers who want to avoid leaking protected information typically must manually redact documents before sharing them, which is costly, coarse-grained, and hard to maintain as policies or partners change. We present DAVE, a usage policy-enforcing LLM spokesperson that answers questions over private documents on behalf of a data provider. Instead of releasing documents, the provider exposes a natural language interface whose responses are constrained by machine-readable usage policies. We formalize policy-violating information disclosure in this setting, drawing on usage control and information flow security, and introduce virtual redaction: suppressing sensitive information at query time without modifying source documents. We describe an architecture for integrating such a spokesperson with Eclipse Dataspace Components and ODRL-style policies, and outline an initial provider-side integration prototype in which QA requests are routed through a spokesperson service instead of triggering raw document transfer. Our contribution is primarily architectural: we do not yet implement or empirically evaluate the full enforcement pipeline. We therefore outline an evaluation methodology to assess security, utility, and performance trade-offs under benign and adversarial querying as a basis for future empirical work on systematically governed LLM access to multi-party data spaces.
☆ The Role of the Availability Heuristic in Multiple-Choice Answering Behaviour
When students are unsure of the correct answer to a multiple-choice question (MCQ), guessing is common practice. The availability heuristic, proposed by A. Tversky and D. Kahneman in 1973, suggests that the ease with which relevant instances come to mind, typically operationalised by the mere frequency of exposure, can offer a mental shortcut for problems in which the test-taker does not know the exact answer. Is simply choosing the option that comes most readily to mind a good strategy for answering MCQs? We propose a computational method of assessing the cognitive availability of MCQ options operationalised by concepts' prevalence in large corpora. The key finding, across three large question sets, is that correct answers, independently of the question stem, are significantly more available than incorrect MCQ options. Specifically, using Wikipedia as the retrieval corpus, we find that always selecting the most available option leads to scores 13.5% to 32.9% above the random-guess baseline. We further find that LLM-generated MCQ options show similar patterns of availability compared to expert-created options, despite the LLMs' frequentist nature and their training on large collections of textual data. Our findings suggest that availability should be considered in current and future work when computationally modelling student behaviour.
comment: 15 pages, 4 figures
☆ RPDR: A Round-trip Prediction-Based Data Augmentation Framework for Long-Tail Question Answering
Long-tail question answering presents significant challenges for large language models (LLMs) due to their limited ability to acquire and accurately recall less common knowledge. Retrieval-augmented generation (RAG) systems have shown great promise in mitigating this limitation by integrating external retrieval mechanisms. However, dense retrieval models often face the same difficulties when generalizing to rare or niche knowledge. In this study, we introduce RPDR, a novel data augmentation framework that selects high-quality easy-to-learn training data, to enhance dense retrievers. Our approach is built around three core components: synthetic data generation, data selection with Round-Trip prediction to identify easy-to-learn instances, and retriever training with these instances. We evaluate RPDR on two long-tail retrieval benchmarks, PopQA and EntityQuestion, demonstrating substantial improvements over existing retrievers like BM25 and Contriver, especially on extremely long-tail categories. We identify the strengths and limitations of RPDR through detailed human analysis and propose a dynamic routing mechanism to dynamically route queries to specialized retrieval modules to further improve retrieval performance.
☆ WebFAQ 2.0: A Multilingual QA Dataset with Mined Hard Negatives for Dense Retrieval
We introduce WebFAQ 2.0, a new version of the WebFAQ dataset, containing 198 million FAQ-based natural question-answer pairs across 108 languages. Compared to the previous version, it significantly expands multilingual coverage and the number of bilingual aligned QA pairs to over 14.3M, making it the largest FAQ-based resource. Unlike the original release, WebFAQ 2.0 uses a novel data collection strategy that directly crawls and extracts relevant web content, resulting in a substantially more diverse and multilingual dataset with richer context through page titles and descriptions. In response to community feedback, we also release a hard negatives dataset for training dense retrievers, with 1.25M queries across 20 languages. These hard negatives were mined using a two-stage retrieval pipeline and include cross-encoder scores for 200 negatives per query. We further show how this resource enables two primary fine-tuning strategies for dense retrievers: Contrastive Learning with MultipleNegativesRanking loss, and Knowledge Distillation with MarginMSE loss. WebFAQ 2.0 is not a static resource but part of a long-term effort. Since late 2025, structured FAQs are being regularly released through the Open Web Index, enabling continuous expansion and refinement. We publish the datasets and training scripts to facilitate further research in multilingual and cross-lingual IR. The dataset itself and all related resources are publicly available on GitHub and HuggingFace.
☆ Same Meaning, Different Scores: Lexical and Syntactic Sensitivity in LLM Evaluation LREC 2026
The rapid advancement of Large Language Models (LLMs) has established standardized evaluation benchmarks as the primary instrument for model comparison. Yet, their reliability is increasingly questioned due to sensitivity to shallow variations in input prompts. This paper examines how controlled, truth-conditionally equivalent lexical and syntactic perturbations affect the absolute performance and relative ranking of 23 contemporary LLMs across three benchmarks: MMLU, SQuAD, and AMEGA. We employ two linguistically principled pipelines to generate meaning-preserving variations: one performing synonym substitution for lexical changes, and another using dependency parsing to determine applicable syntactic transformations. Results show that lexical perturbations consistently induce substantial, statistically significant performance degradation across nearly all models and tasks, while syntactic perturbations have more heterogeneous effects, occasionally improving results. Both perturbation types destabilize model leaderboards on complex tasks. Furthermore, model robustness did not consistently scale with model size, revealing strong task dependence. Overall, the findings suggest that LLMs rely more on surface-level lexical patterns than on abstract linguistic competence, underscoring the need for robustness testing as a standard component of LLM evaluation.
comment: Accepted at LREC 2026
☆ ArXiv-to-Model: A Practical Study of Scientific LM Training
While frontier large language models demonstrate strong reasoning and mathematical capabilities, the practical process of training domain-specialized scientific language models from raw sources remains under-documented. In this work, we present a detailed case study of training a 1.36B-parameter scientific language model directly from raw arXiv LaTeX sources spanning mathematics, computer science, and theoretical physics. We describe an end-to-end pipeline covering metadata filtering, archive validation, LaTeX extraction, text normalization, domain-aware tokenization, and dense transformer training under constrained compute (2xA100 GPUs). Through 24 experimental runs, we analyze training stability, scaling behavior, data yield losses, and infrastructure bottlenecks. Our findings highlight how preprocessing decisions significantly affect usable token volume, how tokenization impacts symbolic stability, and how storage and I/O constraints can rival compute as limiting factors. We further analyze convergence dynamics and show stable training behavior in a data-rich regime (52B pretraining tokens). Rather than proposing a novel architecture, this work provides an engineering-grounded, transparent account of training a small scientific language model from scratch. We hope these insights support researchers operating under moderate compute budgets who seek to build domain-specialized models.
comment: 15 pages, 6 figures, 1 table
☆ Representation Collapse in Machine Translation Through the Lens of Angular Dispersion
Modern neural translation models based on the Transformer architecture are known for their high performance, particularly when trained on high-resource datasets. A standard next-token prediction training strategy, while widely adopted in practice, may lead to overlooked artifacts such as representation collapse. Previous works have shown that this problem is especially pronounced in the representation of the deeper Transformer layers, where it often fails to efficiently utilize the geometric space. Representation collapse is even more evident in end-to-end training of continuous-output neural machine translation, where the trivial solution would be to set all vectors to the same value. In this work, we analyze the dynamics of representation collapse at different levels of discrete and continuous NMT transformers throughout training. We incorporate an existing regularization method based on angular dispersion and demonstrate empirically that it not only mitigates collapse but also improves translation quality. Furthermore, we show that quantized models exhibit similar collapse behavior and that the benefits of regularization are preserved even after quantization.
☆ Towards Cross-lingual Values Assessment: A Consensus-Pluralism Perspective
While large language models (LLMs) have become pivotal to content safety, current evaluation paradigms primarily focus on detecting explicit harms (e.g., violence or hate speech), neglecting the subtler value dimensions conveyed in digital content. To bridge this gap, we introduce X-Value, a novel Cross-lingual Values Assessment Benchmark designed to evaluate LLMs' ability to assess deep-level values of content from a global perspective. X-Value consists of more than 5,000 QA pairs across 18 languages, systematically organized into 7 core domains grounded in Schwartz's Theory of Basic Human Values and categorized into easy and hard levels for discriminative evaluation. We further propose a unique two-stage annotation framework that first identifies whether an issue falls under global consensus (e.g., human rights) or pluralism (e.g., religion), and subsequently conducts a multi-party evaluation of the latent values embedded within the content. Systematic evaluations on X-Value reveal that current SOTA LLMs exhibit deficiencies in cross-lingual values assessment ($Acc < 77\%$), with significant performance disparities across different languages ($ΔAcc > 20\%$). This work highlights the urgent need to improve the nuanced, values-aware content assessment capability of LLMs. Our X-Value is available at: https://huggingface.co/datasets/Whitolf/X-Value.
☆ Quantifying and Mitigating Socially Desirable Responding in LLMs: A Desirability-Matched Graded Forced-Choice Psychometric Study
Human self-report questionnaires are increasingly used in NLP to benchmark and audit large language models (LLMs), from persona consistency to safety and bias assessments. Yet these instruments presume honest responding; in evaluative contexts, LLMs can instead gravitate toward socially preferred answers-a form of socially desirable responding (SDR)-biasing questionnaire-derived scores and downstream conclusions. We propose a psychometric framework to quantify and mitigate SDR in questionnaire-based evaluation of LLMs. To quantify SDR, the same inventory is administered under HONEST versus FAKE-GOOD instructions, and SDR is computed as a direction-corrected standardized effect size from item response theory (IRT)-estimated latent scores. This enables comparisons across constructs and response formats, as well as against human instructed-faking benchmarks. For mitigation, we construct a graded forced-choice (GFC) Big Five inventory by selecting 30 cross-domain pairs from an item pool via constrained optimization to match desirability. Across nine instruction-tuned LLMs evaluated on synthetic personas with known target profiles, Likert-style questionnaires show consistently large SDR, whereas desirability-matched GFC substantially attenuates SDR while largely preserving the recovery of the intended persona profiles. These results highlight a model-dependent SDR-recovery trade-off and motivate SDR-aware reporting practices for questionnaire-based benchmarking and auditing of LLMs.
☆ Mechanistic Interpretability of Cognitive Complexity in LLMs via Linear Probing using Bloom's Taxonomy
The black-box nature of Large Language Models necessitates novel evaluation frameworks that transcend surface-level performance metrics. This study investigates the internal neural representations of cognitive complexity using Bloom's Taxonomy as a hierarchical lens. By analyzing high-dimensional activation vectors from different LLMs, we probe whether different cognitive levels, ranging from basic recall (Remember) to abstract synthesis (Create), are linearly separable within the model's residual streams. Our results demonstrate that linear classifiers achieve approximately 95% mean accuracy across all Bloom levels, providing strong evidence that cognitive level is encoded in a linearly accessible subspace of the model's representations. These findings provide evidence that the model resolves the cognitive difficulty of a prompt early in the forward pass, with representations becoming increasingly separable across layers.
comment: Preprint. Under review
☆ From Labor to Collaboration: A Methodological Experiment Using AI Agents to Augment Research Perspectives in Taiwan's Humanities and Social Sciences
Generative AI is reshaping knowledge work, yet existing research focuses predominantly on software engineering and the natural sciences, with limited methodological exploration for the humanities and social sciences. Positioned as a "methodological experiment," this study proposes an AI Agent-based collaborative research workflow (Agentic Workflow) for humanities and social science research. Taiwan's Claude.ai usage data (N = 7,729 conversations, November 2025) from the Anthropic Economic Index (AEI) serves as the empirical vehicle for validating the feasibility of this methodology. This study operates on two levels: the primary level is the design and validation of a methodological framework - a seven-stage modular workflow grounded in three principles: task modularization, human-AI division of labor, and verifiability, with each stage delineating clear roles for human researchers (research judgment and ethical decisions) and AI Agents (information retrieval and text generation); the secondary level is the empirical analysis of AEI Taiwan data - serving as an operational demonstration of the workflow's application to secondary data research, showcasing both the process and output quality (see Appendix A). This study contributes by proposing a replicable AI collaboration framework for humanities and social science researchers, and identifying three operational modes of human-AI collaboration - direct execution, iterative refinement, and human-led - through reflexive documentation of the operational process. This taxonomy reveals the irreplaceability of human judgment in research question formulation, theoretical interpretation, contextualized reasoning, and ethical reflection. Limitations including single-platform data, cross-sectional design, and AI reliability risks are acknowledged.
comment: also in Chinese
☆ What Makes a Good Doctor Response? An Analysis on a Romanian Telemedicine Platform
Text-based telemedicine has become a common mode of care, requiring clinicians to deliver medical advice clearly and effectively in writing. As platforms increasingly rely on patient ratings and feedback, clinicians face growing pressure to maintain satisfaction scores, even though these evaluations often reflect communication quality more than clinical accuracy. We analyse patient satisfaction signals in Romanian text-based telemedicine. Using a sample of 77,334 anonymised patient question--doctor response pairs, we model feedback as a binary outcome, treating thumbs-up responses as positive and grouping negative or absent feedback into the other class. We extract interpretable, predominantly language-agnostic features (e.g., length, structural characteristics, readability proxies), along with Romanian LIWC psycholinguistic features and politeness/hedging markers where available. We train a classifier with a time-based split and perform SHAP-based analyses, which indicate that patient and clinician history features dominate prediction, functioning as strong priors, while characteristics of the response text provide a smaller but, crucially, actionable signal. In subgroup correlation analyses, politeness and hedging are consistently positively associated with patient feedback, whereas lexical diversity shows a negative association.
☆ The Emergence of Lab-Driven Alignment Signatures: A Psychometric Framework for Auditing Latent Bias and Compounding Risk in Generative AI
As Large Language Models (LLMs) transition from standalone chat interfaces to foundational reasoning layers in multi-agent systems and recursive evaluation loops (LLM-as-a-judge), the detection of durable, provider-level behavioral signatures becomes a critical requirement for safety and governance. Traditional benchmarks measure transient task accuracy but fail to capture stable, latent response policies -- the ``prevailing mindsets'' embedded during training and alignment that outlive individual model versions. This paper introduces a novel auditing framework that utilizes psychometric measurement theory -- specifically latent trait estimation under ordinal uncertainty -- to quantify these tendencies without relying on ground-truth labels. Utilizing forced-choice ordinal vignettes masked by semantically orthogonal decoys and governed by cryptographic permutation-invariance, the research audits nine leading models across dimensions including Optimization Bias, Sycophancy, and Status-Quo Legitimization. Using Mixed Linear Models (MixedLM) and Intraclass Correlation Coefficient (ICC) analysis, the research identifies that while item-level framing drives high variance, a persistent ``lab signal'' accounts for significant behavioral clustering. These findings demonstrate that in ``locked-in'' provider ecosystems, latent biases are not merely static errors but compounding variables that risk creating recursive ideological echo chambers in multi-layered AI architectures.
☆ Projective Psychological Assessment of Large Multimodal Models Using Thematic Apperception Tests
Thematic Apperception Test (TAT) is a psychometrically grounded, multidimensional assessment framework that systematically differentiates between cognitive-representational and affective-relational components of personality-like functioning. This test is a projective psychological framework designed to uncover unconscious aspects of personality. This study examines whether the personality traits of Large Multimodal Models (LMMs) can be assessed through non-language-based modalities, using the Social Cognition and Object Relations Scale - Global (SCORS-G). LMMs are employed in two distinct roles: as subject models (SMs), which generate stories in response to TAT images, and as evaluator models (EMs), who assess these narratives using the SCORS-G framework. Evaluators demonstrated an excellent ability to understand and analyze TAT responses. Their interpretations are highly consistent with those of human experts. Assessment results highlight that all models understand interpersonal dynamics very well and have a good grasp of the concept of self. However, they consistently fail to perceive and regulate aggression. Performance varied systematically across model families, with larger and more recent models consistently outperforming smaller and earlier ones across SCORS-G dimensions.
☆ BankMathBench: A Benchmark for Numerical Reasoning in Banking Scenarios
Large language models (LLMs)-based chatbots are increasingly being adopted in the financial domain, particularly in digital banking, to handle customer inquiries about products such as deposits, savings, and loans. However, these models still exhibit low accuracy in core banking computations-including total payout estimation, comparison of products with varying interest rates, and interest calculation under early repayment conditions. Such tasks require multi-step numerical reasoning and contextual understanding of banking products, yet existing LLMs often make systematic errors-misinterpreting product types, applying conditions incorrectly, or failing basic calculations involving exponents and geometric progressions. However, such errors have rarely been captured by existing benchmarks. Mathematical datasets focus on fundamental math problems, whereas financial benchmarks primarily target financial documents, leaving everyday banking scenarios underexplored. To address this limitation, we propose BankMathBench, a domain-specific dataset that reflects realistic banking tasks. BankMathBench is organized in three levels of difficulty-basic, intermediate, and advanced-corresponding to single-product reasoning, multi-product comparison, and multi-condition scenarios, respectively. When trained on BankMathBench, open-source LLMs exhibited notable improvements in both formula generation and numerical reasoning accuracy, demonstrating the dataset's effectiveness in enhancing domain-specific reasoning. With tool-augmented fine-tuning, the models achieved average accuracy increases of 57.6%p (basic), 75.1%p (intermediate), and 62.9%p (advanced), representing significant gains over zero-shot baselines. These findings highlight BankMathBench as a reliable benchmark for evaluating and advancing LLMs' numerical reasoning in real-world banking scenarios.
☆ Sign Lock-In: Randomly Initialized Weight Signs Persist and Bottleneck Sub-Bit Model Compression
Sub-bit model compression seeks storage below one bit per weight; as magnitudes are aggressively compressed, the sign bit becomes a fixed-cost bottleneck. Across Transformers, CNNs, and MLPs, learned sign matrices resist low-rank approximation and are spectrally indistinguishable from an i.i.d. Rademacher baseline. Despite this apparent randomness, most weights retain their initialization signs; flips primarily occur via rare near-zero boundary crossings, suggesting that sign-pattern randomness is largely inherited from initialization. We formalize this behavior with sign lock-in theory, a stopping-time analysis of sign flips under SGD noise. Under bounded updates and a rare re-entry condition into a small neighborhood around zero, the number of effective sign flips exhibits a geometric tail. Building on this mechanism, we introduce a gap-based initialization and a lightweight outward-drift regularizer, reducing the effective flip rate to approximately $10^{-3}$ with only about a one-point increase in perplexity.
☆ ALPS: A Diagnostic Challenge Set for Arabic Linguistic & Pragmatic Reasoning
While recent Arabic NLP benchmarks focus on scale, they often rely on synthetic or translated data which may benefit from deeper linguistic verification. We introduce ALPS (Arabic Linguistic & Pragmatic Suite), a native, expert-curated diagnostic challenge set probing Deep Semantics and Pragmatics, capabilities that complement specialized large-scale benchmarks. While broad-coverage benchmarks prioritize scale and multi-task coverage, ALPS targets the depth of linguistic understanding through 531 rigorously crafted questions across 15 tasks and 47 subtasks. We developed the dataset with deep expertise in Arabic linguistics, guaranteeing cultural authenticity and eliminating translation artifacts. Evaluating 23 diverse models (commercial, open-source, and Arabic-native) against a single-pass human performance (avg. 84.6% accuracy) and an expert-adjudicated oracle (99.2%), we reveal a critical dissociation: models achieve high fluency but fail on fundamental morpho-syntactic dependencies, with elevated error rates on morpho-syntactic dependencies (36.5% across diacritics-reliant tasks) compared to compositional semantics. While top commercial models (Gemini-3-flash at 94.2%) surpass the average single human, a substantial gap persists between commercial giants and Arabic-native models, with the best Arabic-specific model (Jais-2-70B at 83.6%) approaching but not matching human performance.
☆ RFEval: Benchmarking Reasoning Faithfulness under Counterfactual Reasoning Intervention in Large Reasoning Models ICLR 2026
Large Reasoning Models (LRMs) exhibit strong performance, yet often produce rationales that sound plausible but fail to reflect their true decision process, undermining reliability and trust. We introduce a formal framework for reasoning faithfulness, defined by two testable conditions: stance consistency (a coherent stance linking reasoning to answer) and causal influence (the stated reasoning causally drives the answer under output-level interventions), explicitly decoupled from accuracy. To operationalize this, we present RFEval, a benchmark of 7,186 instances across seven tasks that probes faithfulness via controlled, output-level counterfactual interventions. Evaluating twelve open-source LRMs, we find unfaithfulness in 49.7% of outputs, predominantly from stance inconsistency. Failures are concentrated in brittle, convergent domains such as math and code, and correlate more with post-training regimes than with scale: within-family ablations indicate that adding current RL-style objectives on top of supervised fine-tuning can reduce reasoning faithfulness, even when accuracy is maintained. Crucially, accuracy is neither a sufficient nor a reliable proxy for faithfulness: once controlling for model and task, the accuracy-faithfulness link is weak and statistically insignificant. Our work establishes a rigorous methodology for auditing LRM reliability and shows that trustworthy AI requires optimizing not only for correct outcomes but also for the structural integrity of the reasoning process. Our code and dataset can be found at project page: $\href{https://aidaslab.github.io/RFEval/}{https://aidaslab.github.io/RFEval/}$
comment: Accepted in ICLR 2026 Poster: $\href{https://iclr.cc/virtual/2026/poster/10011763}{\text{this URL}}$
☆ Evaluating Cross-Lingual Classification Approaches Enabling Topic Discovery for Multilingual Social Media Data
Analysing multilingual social media discourse remains a major challenge in natural language processing, particularly when large-scale public debates span across diverse languages. This study investigates how different approaches for cross-lingual text classification can support reliable analysis of global conversations. Using hydrogen energy as a case study, we analyse a decade-long dataset of over nine million tweets in English, Japanese, Hindi, and Korean (2013--2022) for topic discovery. The online keyword-driven data collection results in a significant amount of irrelevant content. We explore four approaches to filter relevant content: (1) translating English annotated data into target languages for building language-specific models for each target language, (2) translating unlabelled data appearing from all languages into English for creating a single model based on English annotations, (3) applying English fine-tuned multilingual transformers directly to each target language data, and (4) a hybrid strategy that combines translated annotations with multilingual training. Each approach is evaluated for its ability to filter hydrogen-related tweets from noisy keyword-based collections. Subsequently, topic modeling is performed to extract dominant themes within the relevant subsets. The results highlight key trade-offs between translation and multilingual approaches, offering actionable insights into optimising cross-lingual pipelines for large-scale social media analysis.
Large Language Models Persuade Without Planning Theory of Mind
A growing body of work attempts to evaluate the theory of mind (ToM) abilities of humans and large language models (LLMs) using static, non-interactive question-and-answer benchmarks. However, theoretical work in the field suggests that first-personal interaction is a crucial part of ToM and that such predictive, spectatorial tasks may fail to evaluate it. We address this gap with a novel ToM task that requires an agent to persuade a target to choose one of three policy proposals by strategically revealing information. Success depends on a persuader's sensitivity to a given target's knowledge states (what the target knows about the policies) and motivational states (how much the target values different outcomes). We varied whether these states were Revealed to persuaders or Hidden, in which case persuaders had to inquire about or infer them. In Experiment 1, participants persuaded a bot programmed to make only rational inferences. LLMs excelled in the Revealed condition but performed below chance in the Hidden condition, suggesting difficulty with the multi-step planning required to elicit and use mental state information. Humans performed moderately well in both conditions, indicating an ability to engage such planning. In Experiment 2, where a human target role-played the bot, and in Experiment 3, where we measured whether human targets' real beliefs changed, LLMs outperformed human persuaders across all conditions. These results suggest that effective persuasion can occur without explicit ToM reasoning (e.g., through rhetorical strategies) and that LLMs excel at this form of persuasion. Overall, our results caution against attributing human-like ToM to LLMs while highlighting LLMs' potential to influence people's beliefs and behavior.
☆ ReIn: Conversational Error Recovery with Reasoning Inception ICLR 2026
Conversational agents powered by large language models (LLMs) with tool integration achieve strong performance on fixed task-oriented dialogue datasets but remain vulnerable to unanticipated, user-induced errors. Rather than focusing on error prevention, this work focuses on error recovery, which necessitates the accurate diagnosis of erroneous dialogue contexts and execution of proper recovery plans. Under realistic constraints precluding model fine-tuning or prompt modification due to significant cost and time requirements, we explore whether agents can recover from contextually flawed interactions and how their behavior can be adapted without altering model parameters and prompts. To this end, we propose Reasoning Inception (ReIn), a test-time intervention method that plants an initial reasoning into the agent's decision-making process. Specifically, an external inception module identifies predefined errors within the dialogue context and generates recovery plans, which are subsequently integrated into the agent's internal reasoning process to guide corrective actions, without modifying its parameters or system prompts. We evaluate ReIn by systematically simulating conversational failure scenarios that directly hinder successful completion of user goals: user's ambiguous and unsupported requests. Across diverse combinations of agent models and inception modules, ReIn substantially improves task success and generalizes to unseen error types. Moreover, it consistently outperforms explicit prompt-modification approaches, underscoring its utility as an efficient, on-the-fly method. In-depth analysis of its operational mechanism, particularly in relation to instruction hierarchy, indicates that jointly defining recovery tools with ReIn can serve as a safe and effective strategy for improving the resilience of conversational agents without modifying the backbone models or system prompts.
comment: ICLR 2026
☆ Arcee Trinity Large Technical Report
We present the technical report for Arcee Trinity Large, a sparse Mixture-of-Experts model with 400B total parameters and 13B activated per token. Additionally, we report on Trinity Nano and Trinity Mini, with Trinity Nano having 6B total parameters with 1B activated per token, Trinity Mini having 26B total parameters with 3B activated per token. The models' modern architecture includes interleaved local and global attention, gated attention, depth-scaled sandwich norm, and sigmoid routing for Mixture-of-Experts. For Trinity Large, we also introduce a new MoE load balancing strategy titled Soft-clamped Momentum Expert Bias Updates (SMEBU). We train the models using the Muon optimizer. All three models completed training with zero loss spikes. Trinity Nano and Trinity Mini were pre-trained on 10 trillion tokens, and Trinity Large was pre-trained on 17 trillion tokens. The model checkpoints are available at https://huggingface.co/arcee-ai.
☆ Persona2Web: Benchmarking Personalized Web Agents for Contextual Reasoning with User History
Large language models have advanced web agents, yet current agents lack personalization capabilities. Since users rarely specify every detail of their intent, practical web agents must be able to interpret ambiguous queries by inferring user preferences and contexts. To address this challenge, we present Persona2Web, the first benchmark for evaluating personalized web agents on the real open web, built upon the clarify-to-personalize principle, which requires agents to resolve ambiguity based on user history rather than relying on explicit instructions. Persona2Web consists of: (1) user histories that reveal preferences implicitly over long time spans, (2) ambiguous queries that require agents to infer implicit user preferences, and (3) a reasoning-aware evaluation framework that enables fine-grained assessment of personalization. We conduct extensive experiments across various agent architectures, backbone models, history access schemes, and queries with varying ambiguity levels, revealing key challenges in personalized web agent behavior. For reproducibility, our codes and datasets are publicly available at https://anonymous.4open.science/r/Persona2Web-73E8.
☆ Sonar-TS: Search-Then-Verify Natural Language Querying for Time Series Databases
Natural Language Querying for Time Series Databases (NLQ4TSDB) aims to assist non-expert users retrieve meaningful events, intervals, and summaries from massive temporal records. However, existing Text-to-SQL methods are not designed for continuous morphological intents such as shapes or anomalies, while time series models struggle to handle ultra-long histories. To address these challenges, we propose Sonar-TS, a neuro-symbolic framework that tackles NLQ4TSDB via a Search-Then-Verify pipeline. Analogous to active sonar, it utilizes a feature index to ping candidate windows via SQL, followed by generated Python programs to lock on and verify candidates against raw signals. To enable effective evaluation, we introduce NLQTSBench, the first large-scale benchmark designed for NLQ over TSDB-scale histories. Our experiments highlight the unique challenges within this domain and demonstrate that Sonar-TS effectively navigates complex temporal queries where traditional methods fail. This work presents the first systematic study of NLQ4TSDB, offering a general framework and evaluation standard to facilitate future research.
☆ Exploring LLMs for User Story Extraction from Mockups
User stories are one of the most widely used artifacts in the software industry to define functional requirements. In parallel, the use of high-fidelity mockups facilitates end-user participation in defining their needs. In this work, we explore how combining these techniques with large language models (LLMs) enables agile and automated generation of user stories from mockups. To this end, we present a case study that analyzes the ability of LLMs to extract user stories from high-fidelity mockups, both with and without the inclusion of a glossary of the Language Extended Lexicon (LEL) in the prompts. Our results demonstrate that incorporating the LEL significantly enhances the accuracy and suitability of the generated user stories. This approach represents a step forward in the integration of AI into requirements engineering, with the potential to improve communication between users and developers.
comment: 14 pages, 6 figures. Preprint of the paper published in the 28th Workshop on Requirements Engineering (WER 2025)
☆ Characterizing the Predictive Impact of Modalities with Supervised Latent-Variable Modeling
Despite the recent success of Multimodal Large Language Models (MLLMs), existing approaches predominantly assume the availability of multiple modalities during training and inference. In practice, multimodal data is often incomplete because modalities may be missing, collected asynchronously, or available only for a subset of examples. In this work, we propose PRIMO, a supervised latent-variable imputation model that quantifies the predictive impact of any missing modality within the multimodal learning setting. PRIMO enables the use of all available training examples, whether modalities are complete or partial. Specifically, it models the missing modality through a latent variable that captures its relationship with the observed modality in the context of prediction. During inference, we draw many samples from the learned distribution over the missing modality to both obtain the marginal predictive distribution (for the purpose of prediction) and analyze the impact of the missing modalities on the prediction for each instance. We evaluate PRIMO on a synthetic XOR dataset, Audio-Vision MNIST, and MIMIC-III for mortality and ICD-9 prediction. Across all datasets, PRIMO obtains performance comparable to unimodal baselines when a modality is fully missing and to multimodal baselines when all modalities are available. PRIMO quantifies the predictive impact of a modality at the instance level using a variance-based metric computed from predictions across latent completions. We visually demonstrate how varying completions of the missing modality result in a set of plausible labels.
☆ HQFS: Hybrid Quantum Classical Financial Security with VQC Forecasting, QUBO Annealing, and Audit-Ready Post-Quantum Signing
Here's the corrected paragraph with all punctuation and formatting issues fixed: Financial risk systems usually follow a two-step routine: a model predicts return or risk, and then an optimizer makes a decision such as a portfolio rebalance. In practice, this split can break under real constraints. The prediction model may look good, but the final decision can be unstable when the market shifts, when discrete constraints are added (lot sizes, caps), or when the optimization becomes slow for larger asset sets. Also, regulated settings need a clear audit trail that links each decision to the exact model state and inputs. We present HQFS, a practical hybrid pipeline that connects forecasting, discrete risk optimization, and auditability in one flow. First, HQFS learns next-step return and a volatility proxy using a variational quantum circuit (VQC) with a small classical head. Second, HQFS converts the risk-return objective and constraints into a QUBO and solves it with quantum annealing when available, while keeping a compatible classical QUBO solver as a fallback for deployment. Third, HQFS signs each rebalance output using a post-quantum signature so the allocation can be verified later without trusting the runtime environment. On our market dataset study, HQFS reduces return prediction error by 7.8% and volatility prediction error by 6.1% versus a tuned classical baseline. For the decision layer, HQFS improves out-of-sample Sharpe by 9.4% and lowers maximum drawdown by 11.7%. The QUBO solve stage also cuts average solve time by 28% compared to a mixed-integer baseline under the same constraints, while producing fully traceable, signed allocation records.
comment: 11 pages, 1 fig , 4 tables
♻ ☆ ReplaceMe: Network Simplification via Depth Pruning and Transformer Block Linearization NeurIPS 2025
We introduce ReplaceMe, a generalized training-free depth pruning method that effectively replaces transformer blocks with a linear operation, while maintaining high performance for low compression ratios. In contrast to conventional pruning approaches that require additional training or fine-tuning, our approach requires only a small calibration dataset that is used to estimate a linear transformation, which approximates the pruned blocks. The estimated linear mapping can be seamlessly merged with the remaining transformer blocks, eliminating the need for any additional network parameters. Our experiments show that ReplaceMe consistently outperforms other training-free approaches and remains highly competitive with state-of-the-art pruning methods that involve extensive retraining/fine-tuning and architectural modifications. Applied to several large language models (LLMs), ReplaceMe achieves up to 25\% pruning while retaining approximately 90\% of the original model's performance on open benchmarks - without any training or healing steps, resulting in minimal computational overhead. We provide an open-source library implementing ReplaceMe alongside several state-of-the-art depth pruning techniques, available at https://github.com/mts-ai/ReplaceMe
comment: This work was accepted and presented at NeurIPS 2025. Code is available at https://github.com/mts-ai/replaceme Reviews at OpenReview: https://openreview.net/forum?id=zEj1FSYCRn NeurIPS 2025 Proceedings: https://openreview.net/pdf?id=zEj1FSYCRn
♻ ☆ CoSpaDi: Compressing LLMs via Calibration-Guided Sparse Dictionary Learning
Post-training compression of large language models (LLMs) often relies on low-rank weight approximations that represent each column of the weight matrix in a shared low-dimensional subspace. This strategy is computationally efficient but the underlying constraint can be overly rigid for heterogeneous projection weights and may incur avoidable accuracy loss. We propose CoSpaDi (Compression via Sparse Dictionary Learning), a training-free framework that replaces low-rank factorization with a structured sparse decomposition in which each weight matrix is represented as a dense dictionary multiplied by a column-sparse coefficient matrix. This yields a union-of-subspaces model: the columns of the weight matrix are represented as linear combinations of different subsets of dictionary atoms, improving expressiveness at a fixed parameter budget. CoSpaDi is calibration-guided: using a small calibration set, we optimize the factorization to minimize functional reconstruction error of layer outputs rather than weight-space error. An activation-derived Gram orthonormalization reformulates this data-aware objective into a standard dictionary learning problem on transformed weights, and we support both per-layer compression and cross-layer dictionary sharing within groups of similar projections. Across Llama and Qwen model families, CoSpaDi consistently improves the accuracy--compression and perplexity--compression trade-offs over state-of-the-art SVD-based baselines and strong structured pruning baselines at 20-40\% compression ratios. The resulting structured sparsity enables sparse--dense computation and integrates with post-training quantization of the sparse coefficients.
♻ ☆ A dependently-typed calculus of event telicity and culminativity
We present a dependently-typed cross-linguistic framework for analyzing the telicity and culminativity of events, accompanied by examples of using our framework to model English sentences. Our framework consists of two parts. In the nominal domain, we model the boundedness of noun phrases and its relationship to subtyping, delimited quantities, and adjectival modification. In the verbal domain we define a dependent event calculus, modeling telic events as those whose undergoer is bounded, culminating events as telic events that achieve their inherent endpoint, and consider adverbial modification. In both domains we pay particular attention to associated entailments. Our framework is defined as an extension of intensional Martin-Löf dependent type theory, and the rules and examples in this paper have been formalized in the Agda proof assistant.
comment: 54 pages, to appear in Mathematical Structures in Computer Science, Agda formalization available at https://doi.org/10.5281/zenodo.15602617
♻ ☆ BEADs: Bias Evaluation Across Domains
Recent advances in large language models (LLMs) have substantially improved natural language processing (NLP) applications. However, these models often inherit and amplify biases present in their training data. Although several datasets exist for bias detection, most are limited to one or two NLP tasks, typically classification or evaluation and do not provide broad coverage across diverse task settings. To address this gap, we introduce the \textbf{Bias Evaluations Across Domains} (\textbf{B}\texttt{EADs}) dataset, designed to support a wide range of NLP tasks, including text classification, token classification, bias quantification, and benign language generation. A key contribution of this work is a gold-standard annotation scheme that supports both evaluation and supervised training of language models. Experiments on state-of-the-art models reveal some gaps: some models exhibit systematic bias toward specific demographics, while others apply safety guardrails more strictly or inconsistently across groups. Overall, these results highlight persistent shortcomings in current models and underscore the need for comprehensive bias evaluation. Project: https://vectorinstitute.github.io/BEAD/ Data: https://huggingface.co/datasets/shainar/BEAD
comment: under review
♻ ☆ LoRA-Squeeze: Simple and Effective Post-Tuning and In-Tuning Compression of LoRA Modules
Despite its huge number of variants, standard Low-Rank Adaptation (LoRA) is still a dominant technique for parameter-efficient fine-tuning (PEFT). Nonetheless, it faces persistent challenges, including the pre-selection of an optimal rank and rank-specific hyper-parameters, as well as the deployment complexity of heterogeneous-rank modules and more sophisticated LoRA derivatives. In this work, we introduce LoRA-Squeeze, a simple and efficient methodology that aims to improve standard LoRA learning by changing LoRA module ranks either post-hoc or dynamically during training}. Our approach posits that it is better to first learn an expressive, higher-rank solution and then compress it, rather than learning a constrained, low-rank solution directly. The method involves fine-tuning with a deliberately high(er) source rank, reconstructing or efficiently approximating the reconstruction of the full weight update matrix, and then using Randomized Singular Value Decomposition (RSVD) to create a new, compressed LoRA module at a lower target rank. Extensive experiments across 13 text and 10 vision-language tasks show that post-hoc compression often produces lower-rank adapters that outperform those trained directly at the target rank, especially if a small number of fine-tuning steps at the target rank is allowed. Moreover, a gradual, in-tuning rank annealing variant of LoRA-Squeeze consistently achieves the best LoRA size-performance trade-off.
comment: Preprint
♻ ☆ Explanation Bias is a Product: Revealing the Hidden Lexical and Position Preferences in Post-Hoc Feature Attribution
Good quality explanations strengthen the understanding of language models and data. Feature attribution methods, such as Integrated Gradient, are a type of post-hoc explainer that can provide token-level insights. However, explanations on the same input may vary greatly due to underlying biases of different methods. Users may be aware of this issue and mistrust their utility, while unaware users may trust them inadequately. In this work, we delve beyond the superficial inconsistencies between attribution methods, structuring their biases through a model- and method-agnostic framework of three evaluation metrics. We systematically assess both lexical and position bias (what and where in the input) for two transformers; first, in a controlled, pseudo-random classification task on artificial data; then, in a semi-controlled causal relation detection task on natural data. We find a trade-off between lexical and position biases in our model comparison, with models that score high on one type score low on the other. We also find signs that anomalous explanations are more likely to be biased.
♻ ☆ On the Existence and Behavior of Secondary Attention Sinks
Attention sinks are tokens, often the beginning-of-sequence (BOS) token, that receive disproportionately high attention despite limited semantic relevance. In this work, we identify a class of attention sinks, which we term secondary sinks, that differ fundamentally from the sinks studied in prior works, which we term primary sinks. While prior works have identified that tokens other than BOS can sometimes become sinks, they were found to exhibit properties analogous to the BOS token. Specifically, they emerge at the same layer, persist throughout the network and draw a large amount of attention mass. Whereas, we find the existence of secondary sinks that arise primarily in middle layers and can persist for a variable number of layers, and draw a smaller, but still significant, amount of attention mass. Through extensive experiments across 11 model families, we analyze where these secondary sinks appear, their properties, how they are formed, and their impact on the attention mechanism. Specifically, we show that: (1) these sinks are formed by specific middle-layer MLP modules; these MLPs map token representations to vectors that align with the direction of the primary sink of that layer. (2) The $\ell_2$-norm of these vectors determines the sink score of the secondary sink, and also the number of layers it lasts for, thereby leading to different impacts on the attention mechanisms accordingly. (3) The primary sink weakens in middle layers, coinciding with the emergence of secondary sinks. We observe that in larger-scale models, the location and lifetime of the sinks, together referred to as sink levels, appear in a more deterministic and frequent manner. Specifically, we identify three sink levels in QwQ-32B and six levels in Qwen3-14B.
♻ ☆ Proof-RM: A Scalable and Generalizable Reward Model for Math Proof
While Large Language Models (LLMs) have demonstrated strong math reasoning abilities through Reinforcement Learning with *Verifiable Rewards* (RLVR), many advanced mathematical problems are proof-based, with no guaranteed way to determine the authenticity of a proof by simple answer matching. To enable automatic verification, a Reward Model (RM) capable of reliably evaluating full proof processes is required. In this work, we design a *scalable* data-construction pipeline that, with minimal human effort, leverages LLMs to generate a large quantity of high-quality ``**question-proof-check**'' triplet data. By systematically varying problem sources, generation methods, and model configurations, we create diverse problem-proof pairs spanning multiple difficulty levels, linguistic styles, and error types, subsequently filtered through hierarchical human review for label alignment. Utilizing these data, we train a proof-checking RM, incorporating an ``LLM-as-a-RM-for-RM'' approach and balanced token weighting to stabilize the RL process. Our experiments validate the model's scalability and strong performance from multiple perspectives, including reward accuracy, generalization ability and test-time guidance, providing important practical recipes and tools for strengthening LLM mathematical capabilities.
comment: Under review
♻ ☆ State of the Art in Text Classification for South Slavic Languages: Fine-Tuning or Prompting? LREC 2026
Until recently, fine-tuned BERT-like models provided state-of-the-art performance on text classification tasks. With the rise of instruction-tuned decoder-only models, commonly known as large language models (LLMs), the field has increasingly moved toward zero-shot and few-shot prompting. However, the performance of LLMs on text classification, particularly on less-resourced languages, remains under-explored. In this paper, we evaluate the performance of current language models on text classification tasks across several South Slavic languages. We compare openly available fine-tuned BERT-like models with a selection of open-source and closed-source LLMs across three tasks in three domains: sentiment classification in parliamentary speeches, topic classification in news articles and parliamentary speeches, and genre identification in web texts. Our results show that LLMs demonstrate strong zero-shot performance, often matching or surpassing fine-tuned BERT-like models. Moreover, when used in a zero-shot setup, LLMs perform comparably in South Slavic languages and English. However, we also point out key drawbacks of LLMs, including less predictable outputs, significantly slower inference, and higher computational costs. Due to these limitations, fine-tuned BERT-like models remain a more practical choice for large-scale automatic text annotation.
comment: 17 pages; 4 figures; 3 tables. Submitted to the LLMs4SSH workshop, co-located with the LREC 2026 conference
♻ ☆ SCOPE: Selective Conformal Optimized Pairwise LLM Judging
Large language models (LLMs) are increasingly used as judges to replace costly human preference labels in pairwise evaluation. Despite their practicality, LLM judges remain prone to miscalibration and systematic biases. This paper proposes SCOPE (Selective Conformal Optimized Pairwise Evaluation), a framework for selective pairwise judging with finite-sample statistical guarantees. Under exchangeability, SCOPE calibrates an acceptance threshold such that the error rate among non-abstained judgments is at most a user-specified level $α$. To provide SCOPE with a bias-neutral uncertainty signal, we introduce Bidirectional Preference Entropy (BPE), which queries the judge under both response positions, aggregates the implied preference probabilities to enforce invariance to response order, and converts the aggregated probability into an entropy-based uncertainty score. Across MT-Bench, RewardBench, and Chatbot Arena, BPE improves uncertainty quality over standard confidence proxies, providing a stronger selection signal that enables SCOPE to consistently meet the target risk level while retaining good coverage across judge scales. In particular, at $α= 0.10$, SCOPE consistently satisfies the risk bound across all benchmarks and judge scales (empirical risk $\approx 0.097$ to $0.099$), while retaining substantial coverage, reaching $0.89$ on RewardBench with Qwen-14B and $0.98$ on RewardBench with Qwen-32B. Compared to naïve baselines, SCOPE accepts up to $2.4\times$ more judgments on MT-Bench with Qwen-7B under the same target risk constraint, demonstrating that BPE enables reliable and high-coverage LLM-based evaluation.
♻ ☆ QSTN: A Modular Framework for Robust Questionnaire Inference with Large Language Models EACL
We introduce QSTN, an open-source Python framework for systematically generating responses from questionnaire-style prompts to support in-silico surveys and annotation tasks with large language models (LLMs). QSTN enables robust evaluation of questionnaire presentation, prompt perturbations, and response generation methods. Our extensive evaluation (>40 million survey responses) shows that question structure and response generation methods have a significant impact on the alignment of generated survey responses with human answers. We also find that answers can be obtained for a fraction of the compute cost, by changing the presentation method. In addition, we offer a no-code user interface that allows researchers to set up robust experiments with LLMs \emph{without coding knowledge}. We hope that QSTN will support the reproducibility and reliability of LLM-based research in the future.
comment: Accepted at 2026 EACL System Demonstrations The Python package is available at https://github.com/dess-mannheim/QSTN/
♻ ☆ DistillNote: Toward a Functional Evaluation Framework of LLM-Generated Clinical Note Summaries
Large language models (LLMs) are increasingly used to generate summaries from clinical notes. However, their ability to preserve essential diagnostic information remains underexplored, which could lead to serious risks for patient care. This study introduces DistillNote, an evaluation framework for LLM summaries that targets their functional utility by applying the generated summary downstream in a complex clinical prediction task, explicitly quantifying how much prediction signal is retained. We generated over 192,000 LLM summaries from MIMIC-IV clinical notes with increasing compression rates: standard, section-wise, and distilled section-wise. Heart failure diagnosis was chosen as the prediction task, as it requires integrating a wide range of clinical signals. LLMs were fine-tuned on both the original notes and their summaries, and their diagnostic performance was compared using the AUROC metric. We contrasted DistillNote's results with evaluations from LLM-as-judge and clinicians, assessing consistency across different evaluation methods. Summaries generated by LLMs maintained a strong level of heart failure diagnostic signal despite substantial compression. Models trained on the most condensed summaries (about 20 times smaller) achieved an AUROC of 0.92, compared to 0.94 with the original note baseline (97 percent retention). Functional evaluation provided a new lens for medical summary assessment, emphasizing clinical utility as a key dimension of quality. DistillNote introduces a new scalable, task-based method for assessing the functional utility of LLM-generated clinical summaries. Our results detail compression-to-performance tradeoffs from LLM clinical summarization for the first time. The framework is designed to be adaptable to other prediction tasks and clinical domains, aiding data-driven decisions about deploying LLM summarizers in real-world healthcare settings.
♻ ☆ Multimodal Multi-Agent Empowered Legal Judgment Prediction ICASSP
Legal Judgment Prediction (LJP) aims to predict the outcomes of legal cases based on factual descriptions, serving as a fundamental task to advance the development of legal systems. Traditional methods often rely on statistical analyses or role-based simulations but face challenges with multiple allegations, diverse evidence, and lack adaptability. In this paper, we introduce JurisMMA, a novel framework for LJP that effectively decomposes trial tasks, standardizes processes, and organizes them into distinct stages. Furthermore, we build JurisMM, a large dataset with over 100,000 recent Chinese judicial records, including both text and multimodal video-text data, enabling comprehensive evaluation. Experiments on JurisMM and the benchmark LawBench validate our framework's effectiveness. These results indicate that our framework is effective not only for LJP but also for a broader range of legal applications, offering new perspectives for the development of future legal methods and datasets.
comment: Accepted to the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2026
♻ ☆ Assessing Web Search Credibility and Response Groundedness in Chat Assistants EACL 2026
Chat assistants increasingly integrate web search functionality, enabling them to retrieve and cite external sources. While this promises more reliable answers, it also raises the risk of amplifying misinformation from low-credibility sources. In this paper, we introduce a novel methodology for evaluating assistants' web search behavior, focusing on source credibility and the groundedness of responses with respect to cited sources. Using 100 claims across five misinformation-prone topics, we assess GPT-4o, GPT-5, Perplexity, and Qwen Chat. Our findings reveal differences between the assistants, with Perplexity achieving the highest source credibility, whereas GPT-4o exhibits elevated citation of non-credibility sources on sensitive topics. This work provides the first systematic comparison of commonly used chat assistants for fact-checking behavior, offering a foundation for evaluating AI systems in high-stakes information environments.
comment: Accepted at EACL 2026 Main
♻ ☆ Helpful to a Fault: Measuring Illicit Assistance in Multi-Turn, Multilingual LLM Agents
LLM-based agents execute real-world workflows via tools and memory. These affordances enable ill-intended adversaries to also use these agents to carry out complex misuse scenarios. Existing agent misuse benchmarks largely test single-prompt instructions, leaving a gap in measuring how agents end up helping with harmful or illegal tasks over multiple turns. We introduce STING (Sequential Testing of Illicit N-step Goal execution), an automated red-teaming framework that constructs a step-by-step illicit plan grounded in a benign persona and iteratively probes a target agent with adaptive follow-ups, using judge agents to track phase completion. We further introduce an analysis framework that models multi-turn red-teaming as a time-to-first-jailbreak random variable, enabling analysis tools like discovery curves, hazard-ratio attribution by attack language, and a new metric: Restricted Mean Jailbreak Discovery. Across AgentHarm scenarios, STING yields substantially higher illicit-task completion than single-turn prompting and chat-oriented multi-turn baselines adapted to tool-using agents. In multilingual evaluations across six non-English settings, we find that attack success and illicit-task completion do not consistently increase in lower-resource languages, diverging from common chatbot findings. Overall, STING provides a practical way to evaluate and stress-test agent misuse in realistic deployment settings, where interactions are inherently multi-turn and often multilingual.
♻ ☆ Understanding LLM Failures: A Multi-Tape Turing Machine Analysis of Systematic Errors in Language Model Reasoning
Large language models (LLMs) exhibit failure modes on seemingly trivial tasks. We propose a formalisation of LLM interaction using a deterministic multi-tape Turing machine, where each tape represents a distinct component: input characters, tokens, vocabulary, model parameters, activations, probability distributions, and output text. The model enables precise localisation of failure modes to specific pipeline stages, revealing, e.g., how tokenisation obscures character-level structure needed for counting tasks. The model clarifies why techniques like chain-of-thought prompting help, by externalising computation on the output tape, while also revealing their fundamental limitations. This approach provides a rigorous, falsifiable alternative to geometric metaphors and complements empirical scaling laws with principled error analysis.
comment: 8 pages, 1 page appendix; v2 added Acknowledgements
♻ ☆ Enhancing Multilingual LLM Pretraining with Model-Based Data Selection NeurIPS 2025
Dataset curation has become a basis for strong large language model (LLM) performance. While various rule-based filtering heuristics exist for English and multilingual datasets, model-based filtering techniques have primarily focused on English. To address the disparity stemming from limited research on non-English languages, we develop a model-based filtering framework for multilingual datasets that aims to identify a diverse set of structured and knowledge-rich samples. Our approach emphasizes transparency, simplicity, and efficiency, leveraging Transformer- and FastText-based classifiers to ensure the broad accessibility of our technique and data. We conduct comprehensive ablation studies on the FineWeb-2 web crawl dataset across diverse language families, scripts, and resource availability to demonstrate the effectiveness of our method. Training a 1B-parameter Llama model for 70B and 119B tokens, our approach can match the baseline MMLU score with as little as 15% of the training tokens, while also improving across other benchmarks and mitigating the curse of multilinguality. These findings provide strong evidence for the generalizability of our approach to other languages. As a result, we extend our framework to 20 languages for which we release the refined pretraining datasets.
comment: NeurIPS 2025 Track on Datasets and Benchmarks
♻ ☆ Improving Stance Detection by Leveraging Measurement Knowledge from Social Sciences: A Case Study of Dutch Political Tweets and Traditional Gender Role Division
Stance detection concerns automatically determining the viewpoint (i.e., in favour of, against, or neutral) of a text's author towards a target. Stance detection has been applied to many research topics, among which the detection of stances behind political tweets is an important one. In this paper, we apply stance detection to a dataset of tweets from official party accounts in the Netherlands between 2017 and 2021, with a focus on stances towards traditional gender role division, a dividing issue between (some) Dutch political parties. To implement and improve stance detection of traditional gender role division, we propose to leverage an established survey instrument from social sciences, which has been validated for the purpose of measuring attitudes towards traditional gender role division. Based on our experiments, we show that using such a validated survey instrument helps to improve stance detection performance.
comment: Published in BNAIC 2024
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have laid the foundation for multimodal LLMs (MLLMs), which unify text, speech, and vision within a single framework. As these models are rapidly evolving toward general-purpose instruction following across diverse and complex tasks, a key frontier is evaluating their crosslingual and multimodal capabilities over both short- and long-form inputs. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on a single modality at a time, rely on short-form inputs, or lack human annotations--hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first crosslingual human-annotated benchmark based on scientific talks on NLP and beyond. MCIF evaluates instruction following in crosslingual, multimodal settings over different input lengths and spans four macro-tasks: recognition, translation, question answering, and summarization. It covers three core modalities (speech, vision, and text) and four diverse languages (English, German, Italian, and Chinese), fully aligned across all dimensions. This parallel design enables a systematic evaluation of MLLMs' abilities to interpret instructions across languages and effectively integrate multimodal contextual information. Our benchmarking and analysis of 23 models highlight universal challenges across modalities and tasks, indicating substantial room for improvement in future MLLMs development. MCIF is released under CC-BY 4.0 license to promote open research.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation, outputs, and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ propella-1: Multi-Property Document Annotation for LLM Data Curation at Scale
Since FineWeb-Edu, data curation for LLM pretraining has predominantly relied on single scalar quality scores produced by small classifiers. A single score conflates multiple quality dimensions, prevents flexible filtering, and offers no interpretability. We introduce propella-1, a family of small multilingual LLMs (0.6B, 1.7B, 4B parameters) that annotate text documents across 18 properties organized into six categories: core content, classification, quality and value, audience and purpose, safety and compliance, and geographic relevance. The models support 57 languages and produce structured JSON annotations conforming to a predefined schema. Evaluated against a frontier commercial LLM as a reference annotator, the 4B model achieves higher agreement than much larger general-purpose models. We release propella-annotations, a dataset of over three billion document annotations covering major pretraining corpora including data from FineWeb-2, FinePDFs, HPLT 3.0, and Nemotron-CC. Using these annotations, we present a multi-dimensional compositional analysis of widely used pretraining datasets, revealing substantial differences in quality, reasoning depth, and content composition that single-score approaches cannot capture. All model weights and annotations are released under permissive, commercial-use licenses.
comment: Release: https://hf.co/collections/ellamind/propella-1
♻ ☆ Persona-driven Simulation of Voting Behavior in the European Parliament with Large Language Models EACL 2026
Large Language Models (LLMs) display remarkable capabilities to understand or even produce political discourse but have been found to consistently exhibit a progressive left-leaning bias. At the same time, so-called persona or identity prompts have been shown to produce LLM behavior that aligns with socioeconomic groups with which the base model is not aligned. In this work, we analyze whether zero-shot persona prompting with limited information can accurately predict individual voting decisions and, by aggregation, accurately predict the positions of European groups on a diverse set of policies. We evaluate whether predictions are stable in response to counterfactual arguments, different persona prompts, and generation methods. Finally, we find that we can simulate the voting behavior of Members of the European Parliament reasonably well, achieving a weighted F1 score of approximately 0.793. Our persona dataset of politicians in the 2024 European Parliament and our code are available at the following url: https://github.com/dess-mannheim/european_parliament_simulation.
comment: Accepted at EACL 2026 Findings
♻ ☆ Symphonym: Universal Phonetic Embeddings for Cross-Script Name Matching
Linking names across historical sources, languages, and writing systems remains a fundamental challenge in digital humanities and geographic information retrieval. Existing approaches require language-specific phonetic algorithms or fail to capture phonetic relationships across different scripts. This paper presents Symphonym, a neural embedding system that maps names from any script into a unified 128-dimensional phonetic space, enabling direct similarity comparison without runtime phonetic conversion. Symphonym uses a Teacher-Student architecture where a Teacher network trained on articulatory phonetic features produces target embeddings, while a Student network learns to approximate these embeddings directly from characters. The Teacher combines Epitran (extended with 100 new language-script mappings), Phonikud for Hebrew, and CharsiuG2P for Chinese, Japanese, and Korean. Training used 32.7 million triplet samples of toponyms spanning 20 writing systems from GeoNames, Wikidata, and Getty Thesaurus of Geographic Names. On the MEHDIE Hebrew-Arabic historical toponym benchmark, Symphonym achieves Recall@10 of 97.6% and MRR of 90.3%, outperforming Levenshtein and Jaro-Winkler baselines (Recall@1: 86.7% vs 81.5% and 78.5%). Evaluation on 12,947 real cross-script training pairs shows 82.6% achieve greater than 0.75 cosine similarity, with best performance on Arabic-Cyrillic (94--100%) and Cyrillic-Latin (94.3%) combinations. The fixed-length embeddings enable efficient retrieval in digital humanities workflows, with a case study on medieval personal names demonstrating effective transfer from modern place names to historical orthographic variation.
comment: 29 pages, 3 tables
♻ ☆ Bridging Symbolic Control and Neural Reasoning in LLM Agents: Structured Cognitive Loop with a Governance Layer
Large language model agents suffer from fundamental architectural problems: entangled reasoning and execution, memory volatility, and uncontrolled action sequences. We introduce Structured Cognitive Loop (SCL), a modular architecture that explicitly separates agent cognition into five phases: Retrieval, Cognition, Control, Action, and Memory (R-CCAM). Soft Symbolic Control constitutes a dedicated governance layer within SCL, applying symbolic constraints to probabilistic inference while preserving the flexibility of neural reasoning and restoring the explainability and controllability of classical symbolic systems. Through empirical validation on multi-step conditional reasoning tasks, we demonstrate that SCL achieves zero policy violations, eliminates redundant tool calls, and maintains complete decision traceability. These results address critical gaps in existing frameworks such as ReAct, AutoGPT, and memory-augmented approaches. Our contributions are threefold: (1) we situate SCL within the taxonomy of hybrid intelligence, differentiating it from prompt-centric and memory-only approaches; (2) we formally define Soft Symbolic Control and contrast it with neuro-symbolic AI; and (3) we derive three design principles for trustworthy agents: modular decomposition, adaptive symbolic governance, and transparent state management. We provide a complete open-source implementation demonstrating the R-CCAM loop architecture, alongside a live GPT-4o-powered travel planning agent. By connecting expert system principles with modern LLM capabilities, this work offers a practical and theoretically grounded path toward reliable, explainable, and governable AI agents.
comment: The SCL diagram has been revised for greater clarity
♻ ☆ Multimodal Prompt Optimization: Why Not Leverage Multiple Modalities for MLLMs ICLR 2026
Large Language Models (LLMs) have shown remarkable success, and their multimodal expansions (MLLMs) further unlock capabilities spanning images, videos, and other modalities beyond text. However, despite this shift, prompt optimization approaches, designed to reduce the burden of manual prompt crafting while maximizing performance, remain confined to text, ultimately limiting the full potential of MLLMs. Motivated by this gap, we introduce the new problem of multimodal prompt optimization, which expands the prior definition of prompt optimization to the multimodal space defined by the pairs of textual and non-textual prompts. To tackle this problem, we then propose the Multimodal Prompt Optimizer (MPO), a unified framework that not only performs the joint optimization of multimodal prompts through alignment-preserving updates but also guides the selection process of candidate prompts by leveraging earlier evaluations as priors in a Bayesian-based selection strategy. Through extensive experiments across diverse modalities that go beyond text, such as images, videos, and even molecules, we demonstrate that MPO outperforms leading text-only optimization methods, establishing multimodal prompt optimization as a crucial step to realizing the potential of MLLMs.
comment: ICLR 2026
♻ ☆ Estonian Native Large Language Model Benchmark LREC 2026
The availability of LLM benchmarks for the Estonian language is limited, and a comprehensive evaluation comparing the performance of different LLMs on Estonian tasks has yet to be conducted. We introduce a new benchmark for evaluating LLMs in Estonian, based on seven diverse datasets. These datasets assess general and domain-specific knowledge, understanding of Estonian grammar and vocabulary, summarization abilities, contextual comprehension, and more. The datasets are all generated from native Estonian sources without using machine translation. We compare the performance of base models, instruction-tuned open-source models, and commercial models. Our evaluation includes 6 base models and 26 instruction-tuned models. To assess the results, we employ both human evaluation and LLM-as-a-judge methods. Human evaluation scores showed moderate to high correlation with benchmark evaluations, depending on the dataset. Claude 3.7 Sonnet, used as an LLM judge, demonstrated strong alignment with human ratings, indicating that top-performing LLMs can effectively support the evaluation of Estonian-language models.
comment: Accepted to LREC 2026
♻ ☆ Probability Distributions Computed by Hard-Attention Transformers
Most expressivity results for transformers treat them as language recognizers (which accept or reject strings), and not as they are used in practice, as language models (which generate strings autoregressively and probabilistically). We characterize the probability distributions that transformer language models can express. We show that making transformer language recognizers autoregressive can sometimes increase their expressivity, and that making them probabilistic can break equivalences that hold in the non-probabilistic case. Our overall contribution is to tease apart what functions transformers are capable of expressing, in their most common use-case as language models.
comment: 21 pages
♻ ☆ Automated Web Application Testing: End-to-End Test Case Generation with Large Language Models and Screen Transition Graphs
Web applications are critical to modern software ecosystems, yet ensuring their reliability remains challenging due to the complexity and dynamic nature of web interfaces. Recent advances in large language models (LLMs) have shown promise in automating complex tasks, but limitations persist in handling dynamic navigation flows and complex form interactions. This paper presents an automated system for generating test cases for two key aspects of web application testing: site navigation and form filling. For site navigation, the system employs screen transition graphs and LLMs to model navigation flows and generate test scenarios. For form filling, it uses state graphs to handle conditional forms and automates Selenium script generation. Key contributions include: (1) a novel integration of graph structures and LLMs for site navigation testing, (2) a state graph-based approach for automating form-filling test cases, and (3) a comprehensive dataset for evaluating form-interaction testing. Experimental results demonstrate the system's effectiveness in improving test coverage and robustness, advancing the state of web application testing.
comment: Published in the Proceedings of JSAI 2025
♻ ☆ Efficient Context Propagating Perceiver Architectures for Auto-Regressive Language Modeling
One of the key challenges in Transformer architectures is the quadratic complexity of the attention mechanism, which limits the efficient processing of long sequences. Many recent research works have attempted to provide a reduction from the $O(n^2)$ time complexity of attention to semi-linear complexity. However, it remains an unsolved problem in the sense of maintaining high performance when complexity is reduced. One of the important works in this respect is the Perceiver class of architectures that have demonstrated excellent performance, while reducing the computation complexity. In this paper, we use the PerceiverAR as a basis and explore the design space of different trade-offs between preserving context and reducing attention complexity. To this end, we develop four new architectural paradigms, the best performing of which we denote as the Efficient Context propagating Perceiver (ECP). ECP has two major advantages over the PerceiverAR. First, the ECP architecture overcomes the main drawback of PercieverAR by utilizing both the context and the latent sequences in autoregressive training. Second, the ECP architecture operates with the same attention complexity as LongLoRA, making it computationally efficient. More importantly, via pairwise segment attention, it extracts better information resulting in improved language modeling. Empirically, we demonstrate that the ECP architecture significantly outperforms other state-of-the-art Transformer models on Wikitext-103, PG-19 and sCIFAR-10.
♻ ☆ Reconstructing KV Caches with Cross-layer Fusion For Enhanced Transformers ICLR2026
Transformer decoders have achieved strong results across tasks, but the memory required for the KV cache becomes prohibitive at long sequence lengths. Although Cross-layer KV Cache sharing (e.g., YOCO, CLA) offers a path to mitigate KV Cache bottleneck, it typically underperforms within-layer methods like GQA. To understand the root cause, we investigate the information flow of keys and values of the top-layers. Our preliminary reveals a clear distribution: values are predominantly derived from the bottom layer, while keys draw more information from both bottom and middle layers. Building upon this, we propose FusedKV, whose top-layer KV caches are a learnable fusion of the most informative ones from the bottom and middle layers. This fusion operates directly on post-RoPE keys, preserving relative positional information without the computational cost of re-applying rotary embeddings. To further improve efficiency, we propose FusedKV-Lite, an cross-layer sharing approach, where top-layer KV caches are directly derived from the bottom-layer values and the middle-layer keys. Compared to FusedKV, FusedKV-Lite reduces I/O overhead at the cost of a slight increase in perplexity. In experiments on LLMs ranging from 332M to 4B parameters, our proposed method reduce 50\% cache memory while achieving lower validation perplexity than the standard Transformer decoder, establishing it as a memory-efficient, high-performance architectural alternative.
comment: Accepted by ICLR2026
♻ ☆ Are LLMs Ready to Replace Bangla Annotators?
Large Language Models (LLMs) are increasingly used as automated annotators to scale dataset creation, yet their reliability as unbiased annotators--especially for low-resource and identity-sensitive settings--remains poorly understood. In this work, we study the behavior of LLMs as zero-shot annotators for Bangla hate speech, a task where even human agreement is challenging, and annotator bias can have serious downstream consequences. We conduct a systematic benchmark of 17 LLMs using a unified evaluation framework. Our analysis uncovers annotator bias and substantial instability in model judgments. Surprisingly, increased model scale does not guarantee improved annotation quality--smaller, more task-aligned models frequently exhibit more consistent behavior than their larger counterparts. These results highlight important limitations of current LLMs for sensitive annotation tasks in low-resource languages and underscore the need for careful evaluation before deployment.
♻ ☆ PoLi-RL: A Point-to-List Reinforcement Learning Framework for Conditional Semantic Textual Similarity
Conditional Semantic Textual Similarity (C-STS) measures the semantic proximity between text segments under a specific condition, thereby overcoming the ambiguity inherent in traditional STS. However, existing methods are largely confined to discriminative models, failing to fully leverage recent breakthroughs in the NLP community involving Large Language Models (LLMs) and Reinforcement Learning (RL). RL is a particularly well-suited paradigm for this task, as it can directly optimize the non-differentiable Spearman ranking metric and guide the reasoning process required by C-STS. Nevertheless, we find that naively applying listwise RL fails to produce meaningful improvements, as the model struggles with complex, coarse-grained reward signals, leading to optimization difficulties. To address this challenge, we introduce PoLi-RL, a novel Point-to-List Reinforcement Learning framework. PoLi-RL employs a two-stage curriculum: it first trains the model with a simple pointwise reward to establish fundamental scoring capabilities, then transitions to a hybrid reward that combines pointwise, pairwise, and listwise objectives to refine the model's ability to discern subtle semantic distinctions. Crucially, we propose an innovative Parallel Slice Ranking Reward (PSRR) mechanism that computes ranking rewards in parallel slices, where each slice consists of completions with the same index from different samples. This provides a precise, differentiated learning signal for each individual completion, enabling granular credit assignment and effective optimization. On the official C-STS benchmark, PoLi-RL achieves a Spearman correlation coefficient of 48.18, establishing a new SOTA for the cross-encoder architecture. As the first work to successfully apply RL to C-STS, our study introduces a powerful paradigm for aligning LLMs for complex, ranking-based conditional judgment tasks.
♻ ☆ Calibrate-Then-Act: Cost-Aware Exploration in LLM Agents
LLMs are increasingly being used for complex problems which are not necessarily resolved in a single response, but require interacting with an environment to acquire information. In these scenarios, LLMs must reason about inherent cost-uncertainty tradeoffs in when to stop exploring and commit to an answer. For instance, on a programming task, an LLM should test a generated code snippet if it is uncertain about the correctness of that code; the cost of writing a test is nonzero, but typically lower than the cost of making a mistake. In this work, we show that we can induce LLMs to explicitly reason about balancing these cost-uncertainty tradeoffs, then perform more optimal environment exploration. We formalize multiple tasks, including information retrieval and coding, as sequential decision-making problems under uncertainty. Each problem has latent environment state that can be reasoned about via a prior which is passed to the LLM agent. We introduce a framework called Calibrate-Then-Act (CTA), where we feed the LLM this additional context to enable it to act more optimally. This improvement is preserved even under RL training of both the baseline and CTA. Our results on information-seeking QA and on a simplified coding task show that making cost-benefit tradeoffs explicit with CTA can help agents discover more optimal decision-making strategies.
♻ ☆ Empathetic Cascading Networks: A Multi-Stage Prompting Technique for Reducing Social Biases in Large Language Models
This report presents the Empathetic Cascading Networks (ECN) framework, a multi-stage prompting method designed to enhance the empathetic and inclusive capabilities of large language models. ECN employs four stages: Perspective Adoption, Emotional Resonance, Reflective Understanding, and Integrative Synthesis, to guide models toward generating emotionally resonant and contextually aware responses. Experimental results demonstrate that ECN achieves the highest Empathy Quotient (EQ) scores across GPT-3.5-turbo and GPT-4, while maintaining competitive Regard and Perplexity metrics. These findings emphasize ECN's potential for applications requiring empathy and inclusivity in conversational AI.
comment: Further revision on experiments and pipeline design
♻ ☆ Prototype-Based Disentanglement for Controllable Dysarthric Speech Synthesis
Dysarthric speech exhibits high variability and limited labeled data, posing major challenges for both automatic speech recognition (ASR) and assistive speech technologies. Existing approaches rely on synthetic data augmentation or speech reconstruction, yet often entangle speaker identity with pathological articulation, limiting controllability and robustness. In this paper, we propose ProtoDisent-TTS, a prototype-based disentanglement TTS framework built on a pre-trained text-to-speech backbone that factorizes speaker timbre and dysarthric articulation within a unified latent space. A pathology prototype codebook provides interpretable and controllable representations of healthy and dysarthric speech patterns, while a dual-classifier objective with a gradient reversal layer enforces invariance of speaker embeddings to pathological attributes. Experiments on the TORGO dataset demonstrate that this design enables bidirectional transformation between healthy and dysarthric speech, leading to consistent ASR performance gains and robust, speaker-aware speech reconstruction.
♻ ☆ On the Design of KL-Regularized Policy Gradient Algorithms for LLM Reasoning ICLR 2026
Policy gradient algorithms have been successfully applied to enhance the reasoning capabilities of large language models (LLMs). KL regularization is ubiquitous, yet the design surface, choice of KL direction (forward vs. reverse), normalization (normalized vs. unnormalized), and estimator ($k_1/k_2/k_3$), is scattered across the literature and often intertwined with off-policy estimation. We ask a focused question: under the off-policy setting, what weighting is required for each KL variant so that the surrogate we optimize yields the exact gradient of the intended KL-regularized objective? We answer this with a compact, unified derivation we call the Regularized Policy Gradient (RPG) view. RPG (i) unifies normalized and unnormalized KL variants and shows that the widely-used $k_3$ penalty is exactly the unnormalized KL; (ii) specifies conditions under which REINFORCE-style losses with stop-gradient are gradient-equivalent to fully differentiable surrogates; (iii) identifies and corrects an off-policy importance-weighting mismatch in GRPO's KL term; and (iv) introduces RPG-Style Clip, a clipped-importance-sampling step within RPG-REINFORCE that enables stable, off-policy policy-gradient training at scale. On mathematical reasoning benchmarks (AIME24, AIME25), RPG-REINFORCE with RPG-Style Clip improves accuracy by up to $+6$ absolute percentage points over DAPO. We extend our experiments to 8K context length, and RPG-REINFORCE with RPG-Style Clip achieves 52% accuracy on AIME25, surpassing the official Qwen3-4B-Instruct model (47%). Notably, RPG is a stable and scalable RL algorithm for LLM reasoning, realized via (a) a KL-correct objective, (b) clipped importance sampling, and (c) an iterative reference-policy update scheme. Project Page: https://github.com/complex-reasoning/RPG.
comment: Published in ICLR 2026; Project Page: https://github.com/complex-reasoning/RPG
♻ ☆ Building Safe and Deployable Clinical Natural Language Processing under Temporal Leakage Constraints
Clinical natural language processing (NLP) models have shown promise for supporting hospital discharge planning by leveraging narrative clinical documentation. However, note-based models are particularly vulnerable to temporal and lexical leakage, where documentation artifacts encode future clinical decisions and inflate apparent predictive performance. Such behavior poses substantial risks for real-world deployment, where overconfident or temporally invalid predictions can disrupt clinical workflows and compromise patient safety. This study focuses on system-level design choices required to build safe and deployable clinical NLP under temporal leakage constraints. We present a lightweight auditing pipeline that integrates interpretability into the model development process to identify and suppress leakage-prone signals prior to final training. Using next-day discharge prediction after elective spine surgery as a case study, we evaluate how auditing affects predictive behavior, calibration, and safety-relevant trade-offs. Results show that audited models exhibit more conservative and better-calibrated probability estimates, with reduced reliance on discharge-related lexical cues. These findings emphasize that deployment-ready clinical NLP systems should prioritize temporal validity, calibration, and behavioral robustness over optimistic performance.
FinTagging: Benchmarking LLMs for Extracting and Structuring Financial Information
Accurate interpretation of numerical data in financial reports is critical for markets and regulators. Although XBRL (eXtensible Business Reporting Language) provides a standard for tagging financial figures, mapping thousands of facts to over 10k US GAAP concepts remains costly and error prone. Existing benchmarks oversimplify this task as flat, single step classification over small subsets of concepts, ignoring the hierarchical semantics of the taxonomy and the structured nature of financial documents. Consequently, these benchmarks fail to evaluate Large Language Models (LLMs) under realistic reporting conditions. To bridge this gap, we introduce FinTagging, the first comprehensive benchmark for structure aware and full scope XBRL tagging. We decompose the complex tagging process into two subtasks: (1) FinNI (Financial Numeric Identification), which extracts entities and types from heterogeneous contexts including text and tables; and (2) FinCL (Financial Concept Linking), which maps extracted entities to the full US GAAP taxonomy. This two stage formulation enables a fair assessment of LLMs' capabilities in numerical reasoning and taxonomy alignment. Evaluating diverse LLMs in zero shot settings reveals that while models generalize well in extraction, they struggle significantly with fine grained concept linking, highlighting critical limitations in domain specific structure aware reasoning.
♻ ☆ FinAuditing: A Financial Taxonomy-Structured Multi-Document Benchmark for Evaluating LLMs
Going beyond simple text processing, financial auditing requires detecting semantic, structural, and numerical inconsistencies across large-scale disclosures. As financial reports are filed in XBRL, a structured XML format governed by accounting standards, auditing becomes a structured information extraction and reasoning problem involving concept alignment, taxonomy-defined relations, and cross-document consistency. Although large language models (LLMs) show promise on isolated financial tasks, their capability in professional-grade auditing remains unclear. We introduce FinAuditing, a taxonomy-aligned, structure-aware benchmark built from real XBRL filings. It contains 1,102 annotated instances averaging over 33k tokens and defines three tasks: Financial Semantic Matching (FinSM), Financial Relationship Extraction (FinRE), and Financial Mathematical Reasoning (FinMR). Evaluations of 13 state-of-the-art LLMs reveal substantial gaps in concept retrieval, taxonomy-aware relation modeling, and consistent cross-document reasoning. These findings highlight the need for realistic, structure-aware benchmarks. We release the evaluation code at https://github.com/The-FinAI/FinAuditing and the dataset at https://huggingface.co/collections/TheFinAI/finauditing. The task currently serves as the official benchmark of an ongoing public evaluation contest at https://open-finance-lab.github.io/SecureFinAI_Contest_2026/.
Computer Vision and Pattern Recognition 89
☆ OpenEarthAgent: A Unified Framework for Tool-Augmented Geospatial Agents
Recent progress in multimodal reasoning has enabled agents that can interpret imagery, connect it with language, and perform structured analytical tasks. Extending such capabilities to the remote sensing domain remains challenging, as models must reason over spatial scale, geographic structures, and multispectral indices while maintaining coherent multi-step logic. To bridge this gap, OpenEarthAgent introduces a unified framework for developing tool-augmented geospatial agents trained on satellite imagery, natural-language queries, and detailed reasoning traces. The training pipeline relies on supervised fine-tuning over structured reasoning trajectories, aligning the model with verified multistep tool interactions across diverse analytical contexts. The accompanying corpus comprises 14,538 training and 1,169 evaluation instances, with more than 100K reasoning steps in the training split and over 7K reasoning steps in the evaluation split. It spans urban, environmental, disaster, and infrastructure domains, and incorporates GIS-based operations alongside index analyses such as NDVI, NBR, and NDBI. Grounded in explicit reasoning traces, the learned agent demonstrates structured reasoning, stable spatial understanding, and interpretable behaviour through tool-driven geospatial interactions across diverse conditions. We report consistent improvements over a strong baseline and competitive performance relative to recent open and closed-source models.
☆ When Vision Overrides Language: Evaluating and Mitigating Counterfactual Failures in VLAs
Vision-Language-Action models (VLAs) promise to ground language instructions in robot control, yet in practice often fail to faithfully follow language. When presented with instructions that lack strong scene-specific supervision, VLAs suffer from counterfactual failures: they act based on vision shortcuts induced by dataset biases, repeatedly executing well-learned behaviors and selecting objects frequently seen during training regardless of language intent. To systematically study it, we introduce LIBERO-CF, the first counterfactual benchmark for VLAs that evaluates language following capability by assigning alternative instructions under visually plausible LIBERO layouts. Our evaluation reveals that counterfactual failures are prevalent yet underexplored across state-of-the-art VLAs. We propose Counterfactual Action Guidance (CAG), a simple yet effective dual-branch inference scheme that explicitly regularizes language conditioning in VLAs. CAG combines a standard VLA policy with a language-unconditioned Vision-Action (VA) module, enabling counterfactual comparison during action selection. This design reduces reliance on visual shortcuts, improves robustness on under-observed tasks, and requires neither additional demonstrations nor modifications to existing architectures or pretrained models. Extensive experiments demonstrate its plug-and-play integration across diverse VLAs and consistent improvements. For example, on LIBERO-CF, CAG improves $π_{0.5}$ by 9.7% in language following accuracy and 3.6% in task success on under-observed tasks using a training-free strategy, with further gains of 15.5% and 8.5%, respectively, when paired with a VA model. In real-world evaluations, CAG reduces counterfactual failures of 9.4% and improves task success by 17.2% on average.
comment: Website: https://vla-va.github.io/
☆ Human-level 3D shape perception emerges from multi-view learning
Humans can infer the three-dimensional structure of objects from two-dimensional visual inputs. Modeling this ability has been a longstanding goal for the science and engineering of visual intelligence, yet decades of computational methods have fallen short of human performance. Here we develop a modeling framework that predicts human 3D shape inferences for arbitrary objects, directly from experimental stimuli. We achieve this with a novel class of neural networks trained using a visual-spatial objective over naturalistic sensory data; given a set of images taken from different locations within a natural scene, these models learn to predict spatial information related to these images, such as camera location and visual depth, without relying on any object-related inductive biases. Notably, these visual-spatial signals are analogous to sensory cues readily available to humans. We design a zero-shot evaluation approach to determine the performance of these `multi-view' models on a well established 3D perception task, then compare model and human behavior. Our modeling framework is the first to match human accuracy on 3D shape inferences, even without task-specific training or fine-tuning. Remarkably, independent readouts of model responses predict fine-grained measures of human behavior, including error patterns and reaction times, revealing a natural correspondence between model dynamics and human perception. Taken together, our findings indicate that human-level 3D perception can emerge from a simple, scalable learning objective over naturalistic visual-spatial data. All code, human behavioral data, and experimental stimuli needed to reproduce our findings can be found on our project page.
☆ Pushing the Frontier of Black-Box LVLM Attacks via Fine-Grained Detail Targeting
Black-box adversarial attacks on Large Vision-Language Models (LVLMs) are challenging due to missing gradients and complex multimodal boundaries. While prior state-of-the-art transfer-based approaches like M-Attack perform well using local crop-level matching between source and target images, we find this induces high-variance, nearly orthogonal gradients across iterations, violating coherent local alignment and destabilizing optimization. We attribute this to (i) ViT translation sensitivity that yields spike-like gradients and (ii) structural asymmetry between source and target crops. We reformulate local matching as an asymmetric expectation over source transformations and target semantics, and build a gradient-denoising upgrade to M-Attack. On the source side, Multi-Crop Alignment (MCA) averages gradients from multiple independently sampled local views per iteration to reduce variance. On the target side, Auxiliary Target Alignment (ATA) replaces aggressive target augmentation with a small auxiliary set from a semantically correlated distribution, producing a smoother, lower-variance target manifold. We further reinterpret momentum as Patch Momentum, replaying historical crop gradients; combined with a refined patch-size ensemble (PE+), this strengthens transferable directions. Together these modules form M-Attack-V2, a simple, modular enhancement over M-Attack that substantially improves transfer-based black-box attacks on frontier LVLMs: boosting success rates on Claude-4.0 from 8% to 30%, Gemini-2.5-Pro from 83% to 97%, and GPT-5 from 98% to 100%, outperforming prior black-box LVLM attacks. Code and data are publicly available at: https://github.com/vila-lab/M-Attack-V2.
comment: Code at: https://github.com/vila-lab/M-Attack-V2
☆ IntRec: Intent-based Retrieval with Contrastive Refinement
Retrieving user-specified objects from complex scenes remains a challenging task, especially when queries are ambiguous or involve multiple similar objects. Existing open-vocabulary detectors operate in a one-shot manner, lacking the ability to refine predictions based on user feedback. To address this, we propose IntRec, an interactive object retrieval framework that refines predictions based on user feedback. At its core is an Intent State (IS) that maintains dual memory sets for positive anchors (confirmed cues) and negative constraints (rejected hypotheses). A contrastive alignment function ranks candidate objects by maximizing similarity to positive cues while penalizing rejected ones, enabling fine-grained disambiguation in cluttered scenes. Our interactive framework provides substantial improvements in retrieval accuracy without additional supervision. On LVIS, IntRec achieves 35.4 AP, outperforming OVMR, CoDet, and CAKE by +2.3, +3.7, and +0.5, respectively. On the challenging LVIS-Ambiguous benchmark, it improves performance by +7.9 AP over its one-shot baseline after a single corrective feedback, with less than 30 ms of added latency per interaction.
☆ CORAL: Correspondence Alignment for Improved Virtual Try-On
Existing methods for Virtual Try-On (VTON) often struggle to preserve fine garment details, especially in unpaired settings where accurate person-garment correspondence is required. These methods do not explicitly enforce person-garment alignment and fail to explain how correspondence emerges within Diffusion Transformers (DiTs). In this paper, we first analyze full 3D attention in DiT-based architecture and reveal that the person-garment correspondence critically depends on precise person-garment query-key matching within the full 3D attention. Building on this insight, we then introduce CORrespondence ALignment (CORAL), a DiT-based framework that explicitly aligns query-key matching with robust external correspondences. CORAL integrates two complementary components: a correspondence distillation loss that aligns reliable matches with person-garment attention, and an entropy minimization loss that sharpens the attention distribution. We further propose a VLM-based evaluation protocol to better reflect human preference. CORAL consistently improves over the baseline, enhancing both global shape transfer and local detail preservation. Extensive ablations validate our design choices.
comment: 32 pages, 25 figures
☆ Adapting Actively on the Fly: Relevance-Guided Online Meta-Learning with Latent Concepts for Geospatial Discovery
In many real-world settings, such as environmental monitoring, disaster response, or public health, with costly and difficult data collection and dynamic environments, strategically sampling from unobserved regions is essential for efficiently uncovering hidden targets under tight resource constraints. Yet, sparse and biased geospatial ground truth limits the applicability of existing learning-based methods, such as reinforcement learning. To address this, we propose a unified geospatial discovery framework that integrates active learning, online meta-learning, and concept-guided reasoning. Our approach introduces two key innovations built on a shared notion of *concept relevance*, which captures how domain-specific factors influence target presence: a *concept-weighted uncertainty sampling strategy*, where uncertainty is modulated by learned relevance based on readily-available domain-specific concepts (e.g., land cover, source proximity); and a *relevance-aware meta-batch formation strategy* that promotes semantic diversity during online-meta updates, improving generalization in dynamic environments. Our experiments include testing on a real-world dataset of cancer-causing PFAS (Per- and polyfluoroalkyl substances) contamination, showcasing our method's reliability at uncovering targets with limited data and a varying environment.
☆ Art2Mus: Artwork-to-Music Generation via Visual Conditioning and Large-Scale Cross-Modal Alignment
Music generation has advanced markedly through multimodal deep learning, enabling models to synthesize audio from text and, more recently, from images. However, existing image-conditioned systems suffer from two fundamental limitations: (i) they are typically trained on natural photographs, limiting their ability to capture the richer semantic, stylistic, and cultural content of artworks; and (ii) most rely on an image-to-text conversion stage, using language as a semantic shortcut that simplifies conditioning but prevents direct visual-to-audio learning. Motivated by these gaps, we introduce ArtSound, a large-scale multimodal dataset of 105,884 artwork-music pairs enriched with dual-modality captions, obtained by extending ArtGraph and the Free Music Archive. We further propose ArtToMus, the first framework explicitly designed for direct artwork-to-music generation, which maps digitized artworks to music without image-to-text translation or language-based semantic supervision. The framework projects visual embeddings into the conditioning space of a latent diffusion model, enabling music synthesis guided solely by visual information. Experimental results show that ArtToMus generates musically coherent and stylistically consistent outputs that reflect salient visual cues of the source artworks. While absolute alignment scores remain lower than those of text-conditioned systems-as expected given the substantially increased difficulty of removing linguistic supervision-ArtToMus achieves competitive perceptual quality and meaningful cross-modal correspondence. This work establishes direct visual-to-music generation as a distinct and challenging research direction, and provides resources that support applications in multimedia art, cultural heritage, and AI-assisted creative practice. Code and dataset will be publicly released upon acceptance.
☆ FR-GESTURE: An RGBD Dataset For Gesture-based Human-Robot Interaction In First Responder Operations
The ever increasing intensity and number of disasters make even more difficult the work of First Responders (FRs). Artificial intelligence and robotics solutions could facilitate their operations, compensating these difficulties. To this end, we propose a dataset for gesture-based UGV control by FRs, introducing a set of 12 commands, drawing inspiration from existing gestures used by FRs and tactical hand signals and refined after incorporating feedback from experienced FRs. Then we proceed with the data collection itself, resulting in 3312 RGBD pairs captured from 2 viewpoints and 7 distances. To the best of our knowledge, this is the first dataset especially intended for gesture-based UGV guidance by FRs. Finally we define evaluation protocols for our RGBD dataset, termed FR-GESTURE, and we perform baseline experiments, which are put forward for improvement. We have made data publicly available to promote future research on the domain: https://doi.org/10.5281/zenodo.18131333.
☆ RetouchIQ: MLLM Agents for Instruction-Based Image Retouching with Generalist Reward
Recent advances in multimodal large language models (MLLMs) have shown great potential for extending vision-language reasoning to professional tool-based image editing, enabling intuitive and creative editing. A promising direction is to use reinforcement learning (RL) to enable MLLMs to reason about and execute optimal tool-use plans within professional image-editing software. However, training remains challenging due to the lack of reliable, verifiable reward signals that can reflect the inherently subjective nature of creative editing. In this work, we introduce RetouchIQ, a framework that performs instruction-based executable image editing through MLLM agents guided by a generalist reward model. RetouchIQ interprets user-specified editing intentions and generates corresponding, executable image adjustments, bridging high-level aesthetic goals with precise parameter control. To move beyond conventional, rule-based rewards that compute similarity against a fixed reference image using handcrafted metrics, we propose a generalist reward model, an RL fine-tuned MLLM that evaluates edited results through a set of generated metrics on a case-by-case basis. Then, the reward model provides scalar feedback through multimodal reasoning, enabling reinforcement learning with high-quality, instruction-consistent gradients. We curate an extended dataset with 190k instruction-reasoning pairs and establish a new benchmark for instruction-based image editing. Experiments show that RetouchIQ substantially improves both semantic consistency and perceptual quality over previous MLLM-based and diffusion-based editing systems. Our findings demonstrate the potential of generalist reward-driven MLLM agents as flexible, explainable, and executable assistants for professional image editing.
comment: 10 pages, 6 figures
☆ Probability-Invariant Random Walk Learning on Gyral Folding-Based Cortical Similarity Networks for Alzheimer's and Lewy Body Dementia Diagnosis
Alzheimer's disease (AD) and Lewy body dementia (LBD) present overlapping clinical features yet require distinct diagnostic strategies. While neuroimaging-based brain network analysis is promising, atlas-based representations may obscure individualized anatomy. Gyral folding-based networks using three-hinge gyri provide a biologically grounded alternative, but inter-individual variability in cortical folding results in inconsistent landmark correspondence and highly irregular network sizes, violating the fixed-topology and node-alignment assumptions of most existing graph learning methods, particularly in clinical datasets where pathological changes further amplify anatomical heterogeneity. We therefore propose a probability-invariant random-walk-based framework that classifies individualized gyral folding networks without explicit node alignment. Cortical similarity networks are built from local morphometric features and represented by distributions of anonymized random walks, with an anatomy-aware encoding that preserves permutation invariance. Experiments on a large clinical cohort of AD and LBD subjects show consistent improvements over existing gyral folding and atlas-based models, demonstrating robustness and potential for dementia diagnosis.
☆ Neural Implicit Representations for 3D Synthetic Aperture Radar Imaging
Synthetic aperture radar (SAR) is a tomographic sensor that measures 2D slices of the 3D spatial Fourier transform of the scene. In many operational scenarios, the measured set of 2D slices does not fill the 3D space in the Fourier domain, resulting in significant artifacts in the reconstructed imagery. Traditionally, simple priors, such as sparsity in the image domain, are used to regularize the inverse problem. In this paper, we review our recent work that achieves state-of-the-art results in 3D SAR imaging employing neural structures to model the surface scattering that dominates SAR returns. These neural structures encode the surface of the objects in the form of a signed distance function learned from the sparse scattering data. Since estimating a smooth surface from a sparse and noisy point cloud is an ill-posed problem, we regularize the surface estimation by sampling points from the implicit surface representation during the training step. We demonstrate the model's ability to represent target scattering using measured and simulated data from single vehicles and a larger scene with a large number of vehicles. We conclude with future research directions calling for methods to learn complex-valued neural representations to enable synthesizing new collections from the volumetric neural implicit representation.
☆ GraphThinker: Reinforcing Video Reasoning with Event Graph Thinking
Video reasoning requires understanding the causal relationships between events in a video. However, such relationships are often implicit and costly to annotate manually. While existing multimodal large language models (MLLMs) often infer event relations through dense captions or video summaries for video reasoning, such modeling still lacks causal understanding. Without explicit causal structure modeling within and across video events, these models suffer from hallucinations during the video reasoning. In this work, we propose GraphThinker, a reinforcement finetuning-based method that constructs structural event-level scene graphs and enhances visual grounding to jointly reduce hallucinations in video reasoning. Specifically, we first employ an MLLM to construct an event-based video scene graph (EVSG) that explicitly models both intra- and inter-event relations, and incorporate these formed scene graphs into the MLLM as an intermediate thinking process. We also introduce a visual attention reward during reinforcement finetuning, which strengthens video grounding and further mitigates hallucinations. We evaluate GraphThinker on two datasets, RexTime and VidHalluc, where it shows superior ability to capture object and event relations with more precise event localization, reducing hallucinations in video reasoning compared to prior methods.
comment: Under review
☆ LATA: Laplacian-Assisted Transductive Adaptation for Conformal Uncertainty in Medical VLMs
Medical vision-language models (VLMs) are strong zero-shot recognizers for medical imaging, but their reliability under domain shift hinges on calibrated uncertainty with guarantees. Split conformal prediction (SCP) offers finite-sample coverage, yet prediction sets often become large (low efficiency) and class-wise coverage unbalanced-high class-conditioned coverage gap (CCV), especially in few-shot, imbalanced regimes; moreover, naively adapting to calibration labels breaks exchangeability and voids guarantees. We propose \texttt{\textbf{LATA}} (Laplacian-Assisted Transductive Adaptation), a \textit{training- and label-free} refinement that operates on the joint calibration and test pool by smoothing zero-shot probabilities over an image-image k-NN graph using a small number of CCCP mean-field updates, preserving SCP validity via a deterministic transform. We further introduce a \textit{failure-aware} conformal score that plugs into the vision-language uncertainty (ViLU) framework, providing instance-level difficulty and label plausibility to improve prediction set efficiency and class-wise balance at fixed coverage. \texttt{\textbf{LATA}} is black-box (no VLM updates), compute-light (windowed transduction, no backprop), and includes an optional prior knob that can run strictly label-free or, if desired, in a label-informed variant using calibration marginals once. Across \textbf{three} medical VLMs and \textbf{nine} downstream tasks, \texttt{\textbf{LATA}} consistently reduces set size and CCV while matching or tightening target coverage, outperforming prior transductive baselines and narrowing the gap to label-using methods, while using far less compute. Comprehensive ablations and qualitative analyses show that \texttt{\textbf{LATA}} sharpens zero-shot predictions without compromising exchangeability.
comment: 18 pages, 6 figures, 4 tables
☆ FoundationPose-Initialized 3D-2D Liver Registration for Surgical Augmented Reality
Augmented reality can improve tumor localization in laparoscopic liver surgery. Existing registration pipelines typically depend on organ contours; deformable (non-rigid) alignment is often handled with finite-element (FE) models coupled to dimensionality-reduction or machine-learning components. We integrate laparoscopic depth maps with a foundation pose estimator for camera-liver pose estimation and replace FE-based deformation with non-rigid iterative closest point (NICP) to lower engineering/modeling complexity and expertise requirements. On real patient data, the depth-augmented foundation pose approach achieved 9.91 mm mean registration error in 3 cases. Combined rigid-NICP registration outperformed rigid-only registration, demonstrating NICP as an efficient substitute for finite-element deformable models. This pipeline achieves clinically relevant accuracy while offering a lightweight, engineering-friendly alternative to FE-based deformation.
☆ Tracing Copied Pixels and Regularizing Patch Affinity in Copy Detection
Image Copy Detection (ICD) aims to identify manipulated content between image pairs through robust feature representation learning. While self-supervised learning (SSL) has advanced ICD systems, existing view-level contrastive methods struggle with sophisticated edits due to insufficient fine-grained correspondence learning. We address this limitation by exploiting the inherent geometric traceability in edited content through two key innovations. First, we propose PixTrace - a pixel coordinate tracking module that maintains explicit spatial mappings across editing transformations. Second, we introduce CopyNCE, a geometrically-guided contrastive loss that regularizes patch affinity using overlap ratios derived from PixTrace's verified mappings. Our method bridges pixel-level traceability with patch-level similarity learning, suppressing supervision noise in SSL training. Extensive experiments demonstrate not only state-of-the-art performance (88.7% uAP / 83.9% RP90 for matcher, 72.6% uAP / 68.4% RP90 for descriptor on DISC21 dataset) but also better interpretability over existing methods.
☆ QuPAINT: Physics-Aware Instruction Tuning Approach to Quantum Material Discovery
Characterizing two-dimensional quantum materials from optical microscopy images is challenging due to the subtle layer-dependent contrast, limited labeled data, and significant variation across laboratories and imaging setups. Existing vision models struggle in this domain since they lack physical priors and cannot generalize to new materials or hardware conditions. This work presents a new physics-aware multimodal framework that addresses these limitations from both the data and model perspectives. We first present Synthia, a physics-based synthetic data generator that simulates realistic optical responses of quantum material flakes under thin-film interference. Synthia produces diverse and high-quality samples, helping reduce the dependence on expert manual annotation. We introduce QMat-Instruct, the first large-scale instruction dataset for quantum materials, comprising multimodal, physics-informed question-answer pairs designed to teach Multimodal Large Language Models (MLLMs) to understand the appearance and thickness of flakes. Then, we propose Physics-Aware Instruction Tuning (QuPAINT), a multimodal architecture that incorporates a Physics-Informed Attention module to fuse visual embeddings with optical priors, enabling more robust and discriminative flake representations. Finally, we establish QF-Bench, a comprehensive benchmark spanning multiple materials, substrates, and imaging settings, offering standardized protocols for fair and reproducible evaluation.
comment: Project page: https://uark-cviu.github.io/projects/qupaint/
4D Monocular Surgical Reconstruction under Arbitrary Camera Motions
Reconstructing deformable surgical scenes from endoscopic videos is challenging and clinically important. Recent state-of-the-art methods based on implicit neural representations or 3D Gaussian splatting have made notable progress. However, most are designed for deformable scenes with fixed endoscope viewpoints and rely on stereo depth priors or accurate structure-from-motion for initialization and optimization, limiting their ability to handle monocular sequences with large camera motion in real clinical settings. To address this, we propose Local-EndoGS, a high-quality 4D reconstruction framework for monocular endoscopic sequences with arbitrary camera motion. Local-EndoGS introduces a progressive, window-based global representation that allocates local deformable scene models to each observed window, enabling scalability to long sequences with substantial motion. To overcome unreliable initialization without stereo depth or accurate structure-from-motion, we design a coarse-to-fine strategy integrating multi-view geometry, cross-window information, and monocular depth priors, providing a robust foundation for optimization. We further incorporate long-range 2D pixel trajectory constraints and physical motion priors to improve deformation plausibility. Experiments on three public endoscopic datasets with deformable scenes and varying camera motions show that Local-EndoGS consistently outperforms state-of-the-art methods in appearance quality and geometry. Ablation studies validate the effectiveness of our key designs. Code will be released upon acceptance at: https://github.com/IRMVLab/Local-EndoGS.
comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract here is shorter than that in the PDF file Subjects
☆ EAGLE: Expert-Augmented Attention Guidance for Tuning-Free Industrial Anomaly Detection in Multimodal Large Language Models
Industrial anomaly detection is important for smart manufacturing, but many deep learning approaches produce only binary decisions and provide limited semantic explanations. Multimodal large language models (MLLMs) can potentially generate fine-grained, language-based analyses, yet existing methods often require costly fine-tuning and do not consistently improve anomaly detection accuracy compared to lightweight specialist detectors. We propose expert-augmented attention guidance for industrial anomaly detection in MLLMs (EAGLE), a tuning-free framework that integrates outputs from expert model to guide MLLMs toward both accurate detection and interpretable anomaly descriptions. We further study how EAGLE affects MLLMs internals by examining the attention distribution of MLLMs to the anomalous image regions in the intermediate layers. We observe that successful anomaly detection is associated with increased attention concentration on anomalous regions, and EAGLE tends to encourage this alignment. Experiments on MVTec-AD and VisA show that EAGLE improves anomaly detection performance across multiple MLLMs without any parameter updates, achieving results comparable to fine-tuning based methods. Code is available at \href{https://github.com/shengtun/Eagle}{https://github.com/shengtun/Eagle}
☆ A High-Level Survey of Optical Remote Sensing
In recent years, significant advances in computer vision have also propelled progress in remote sensing. Concurrently, the use of drones has expanded, with many organizations incorporating them into their operations. Most drones are equipped by default with RGB cameras, which are both robust and among the easiest sensors to use and interpret. The body of literature on optical remote sensing is vast, encompassing diverse tasks, capabilities, and methodologies. Each task or methodology could warrant a dedicated survey. This work provides a comprehensive overview of the capabilities of the field, while also presenting key information, such as datasets and insights. It aims to serve as a guide for researchers entering the field, offering high-level insights and helping them focus on areas most relevant to their interests. To the best of our knowledge, no existing survey addresses this holistic perspective.
☆ SpectralGCD: Spectral Concept Selection and Cross-modal Representation Learning for Generalized Category Discovery ICLR 2026
Generalized Category Discovery (GCD) aims to identify novel categories in unlabeled data while leveraging a small labeled subset of known classes. Training a parametric classifier solely on image features often leads to overfitting to old classes, and recent multimodal approaches improve performance by incorporating textual information. However, they treat modalities independently and incur high computational cost. We propose SpectralGCD, an efficient and effective multimodal approach to GCD that uses CLIP cross-modal image-concept similarities as a unified cross-modal representation. Each image is expressed as a mixture over semantic concepts from a large task-agnostic dictionary, which anchors learning to explicit semantics and reduces reliance on spurious visual cues. To maintain the semantic quality of representations learned by an efficient student, we introduce Spectral Filtering which exploits a cross-modal covariance matrix over the softmaxed similarities measured by a strong teacher model to automatically retain only relevant concepts from the dictionary. Forward and reverse knowledge distillation from the same teacher ensures that the cross-modal representations of the student remain both semantically sufficient and well-aligned. Across six benchmarks, SpectralGCD delivers accuracy comparable to or significantly superior to state-of-the-art methods at a fraction of the computational cost. The code is publicly available at: https://github.com/miccunifi/SpectralGCD.
comment: Accepted at ICLR 2026. Code available at https://github.com/miccunifi/SpectralGCD
☆ DRetHTR: Linear-Time Decoder-Only Retentive Network for Handwritten Text Recognition
State-of-the-art handwritten text recognition (HTR) systems commonly use Transformers, whose growing key-value (KV) cache makes decoding slow and memory-intensive. We introduce DRetHTR, a decoder-only model built on Retentive Networks (RetNet). Compared to an equally sized decoder-only Transformer baseline, DRetHTR delivers 1.6-1.9x faster inference with 38-42% less memory usage, without loss of accuracy. By replacing softmax attention with softmax-free retention and injecting multi-scale sequential priors, DRetHTR avoids a growing KV cache: decoding is linear in output length in both time and memory. To recover the local-to-global inductive bias of attention, we propose layer-wise gamma scaling, which progressively enlarges the effective retention horizon in deeper layers. This encourages early layers to model short-range dependencies and later layers to capture broader context, mitigating the flexibility gap introduced by removing softmax. Consequently, DRetHTR achieves best reported test character error rates of 2.26% (IAM-A, en), 1.81% (RIMES, fr), and 3.46% (Bentham, en), and is competitive on READ-2016 (de) with 4.21%. This demonstrates that decoder-only RetNet enables Transformer-level HTR accuracy with substantially improved decoding speed and memory efficiency.
comment: Submitted to Pattern Recognition, 11 pages + 2-page appendix, 7 figures, 12 tables
☆ Tree crop mapping of South America reveals links to deforestation and conservation
Monitoring tree crop expansion is vital for zero-deforestation policies like the European Union's Regulation on Deforestation-free Products (EUDR). However, these efforts are hindered by a lack of highresolution data distinguishing diverse agricultural systems from forests. Here, we present the first 10m-resolution tree crop map for South America, generated using a multi-modal, spatio-temporal deep learning model trained on Sentinel-1 and Sentinel-2 satellite imagery time series. The map identifies approximately 11 million hectares of tree crops, 23% of which is linked to 2000-2020 forest cover loss. Critically, our analysis reveals that existing regulatory maps supporting the EUDR often classify established agriculture, particularly smallholder agroforestry, as "forest". This discrepancy risks false deforestation alerts and unfair penalties for small-scale farmers. Our work mitigates this risk by providing a high-resolution baseline, supporting conservation policies that are effective, inclusive, and equitable.
☆ Application and Evaluation of the Common Circles Method
We investigate the application of the common circle method for estimating sample motion in optical diffraction tomography (ODT) of sub-millimeter sized biological tissue. When samples are confined via contact-free acoustical force fields, their motion must be estimated from the captured images. The common circle method identifies intersections of Ewald spheres in Fourier space to determine rotational motion. This paper presents a practical implementation, incorporating temporal consistency constraints to achieve stable reconstructions. Our results on both simulated and real-world data demonstrate that the common circle method provides a computationally efficient alternative to full optimization methods for motion detection.
☆ Polaffini: A feature-based approach for robust affine and polyaffine image registration
In this work we present Polaffini, a robust and versatile framework for anatomically grounded registration. Medical image registration is dominated by intensity-based registration methods that rely on surrogate measures of alignment quality. In contrast, feature-based approaches that operate by identifying explicit anatomical correspondences, while more desirable in theory, have largely fallen out of favor due to the challenges of reliably extracting features. However, such challenges are now significantly overcome thanks to recent advances in deep learning, which provide pre-trained segmentation models capable of instantly delivering reliable, fine-grained anatomical delineations. We aim to demonstrate that these advances can be leveraged to create new anatomically-grounded image registration algorithms. To this end, we propose Polaffini, which obtains, from these segmented regions, anatomically grounded feature points with 1-to-1 correspondence in a particularly simple way: extracting their centroids. These enable efficient global and local affine matching via closed-form solutions. Those are used to produce an overall transformation ranging from affine to polyaffine with tunable smoothness. Polyaffine transformations can have many more degrees of freedom than affine ones allowing for finer alignment, and their embedding in the log-Euclidean framework ensures diffeomorphic properties. Polaffini has applications both for standalone registration and as pre-alignment for subsequent non-linear registration, and we evaluate it against popular intensity-based registration techniques. Results demonstrate that Polaffini outperforms competing methods in terms of structural alignment and provides improved initialisation for downstream non-linear registration. Polaffini is fast, robust, and accurate, making it particularly well-suited for integration into medical image processing pipelines.
comment: associated github repo: https://github.com/CIG-UCL/polaffini
☆ Leveraging Contrastive Learning for a Similarity-Guided Tampered Document Data Generation Pipeline
Detecting tampered text in document images is a challenging task due to data scarcity. To address this, previous work has attempted to generate tampered documents using rule-based methods. However, the resulting documents often suffer from limited variety and poor visual quality, typically leaving highly visible artifacts that are rarely observed in real-world manipulations. This undermines the model's ability to learn robust, generalizable features and results in poor performance on real-world data. Motivated by this discrepancy, we propose a novel method for generating high-quality tampered document images. We first train an auxiliary network to compare text crops, leveraging contrastive learning with a novel strategy for defining positive pairs and their corresponding negatives. We also train a second auxiliary network to evaluate whether a crop tightly encloses the intended characters, without cutting off parts of characters or including parts of adjacent ones. Using a carefully designed generation pipeline that leverages both networks, we introduce a framework capable of producing diverse, high-quality tampered document images. We assess the effectiveness of our data generation pipeline by training multiple models on datasets derived from the same source images, generated using our method and existing approaches, under identical training protocols. Evaluating these models on various open-source datasets shows that our pipeline yields consistent performance improvements across architectures and datasets.
☆ The Sound of Death: Deep Learning Reveals Vascular Damage from Carotid Ultrasound
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, yet early risk detection is often limited by available diagnostics. Carotid ultrasound, a non-invasive and widely accessible modality, encodes rich structural and hemodynamic information that is largely untapped. Here, we present a machine learning (ML) framework that extracts clinically meaningful representations of vascular damage (VD) from carotid ultrasound videos, using hypertension as a weak proxy label. The model learns robust features that are biologically plausible, interpretable, and strongly associated with established cardiovascular risk factors, comorbidities, and laboratory measures. High VD stratifies individuals for myocardial infarction, cardiac death, and all-cause mortality, matching or outperforming conventional risk models such as SCORE2. Explainable AI analyses reveal that the model relies on vessel morphology and perivascular tissue characteristics, uncovering novel functional and anatomical signatures of vascular damage. This work demonstrates that routine carotid ultrasound contains far more prognostic information than previously recognized. Our approach provides a scalable, non-invasive, and cost-effective tool for population-wide cardiovascular risk assessment, enabling earlier and more personalized prevention strategies without reliance on laboratory tests or complex clinical inputs.
☆ Attachment Anchors: A Novel Framework for Laparoscopic Grasping Point Prediction in Colorectal Surgery
Accurate grasping point prediction is a key challenge for autonomous tissue manipulation in minimally invasive surgery, particularly in complex and variable procedures such as colorectal interventions. Due to their complexity and prolonged duration, colorectal procedures have been underrepresented in current research. At the same time, they pose a particularly interesting learning environment due to repetitive tissue manipulation, making them a promising entry point for autonomous, machine learning-driven support. Therefore, in this work, we introduce attachment anchors, a structured representation that encodes the local geometric and mechanical relationships between tissue and its anatomical attachments in colorectal surgery. This representation reduces uncertainty in grasping point prediction by normalizing surgical scenes into a consistent local reference frame. We demonstrate that attachment anchors can be predicted from laparoscopic images and incorporated into a grasping framework based on machine learning. Experiments on a dataset of 90 colorectal surgeries demonstrate that attachment anchors improve grasping point prediction compared to image-only baselines. There are particularly strong gains in out-of-distribution settings, including unseen procedures and operating surgeons. These results suggest that attachment anchors are an effective intermediate representation for learning-based tissue manipulation in colorectal surgery.
☆ Physics Encoded Spatial and Temporal Generative Adversarial Network for Tropical Cyclone Image Super-resolution
High-resolution satellite imagery is indispensable for tracking the genesis, intensification, and trajectory of tropical cyclones (TCs). However, existing deep learning-based super-resolution (SR) methods often treat satellite image sequences as generic videos, neglecting the underlying atmospheric physical laws governing cloud motion. To address this, we propose a Physics Encoded Spatial and Temporal Generative Adversarial Network (PESTGAN) for TC image super-resolution. Specifically, we design a disentangled generator architecture incorporating a PhyCell module, which approximates the vorticity equation via constrained convolutions and encodes the resulting approximate physical dynamics as implicit latent representations to separate physical dynamics from visual textures. Furthermore, a dual-discriminator framework is introduced, employing a temporal discriminator to enforce motion consistency alongside spatial realism. Experiments on the Digital Typhoon dataset for 4$\times$ upscaling demonstrate that PESTGAN establishes a better performance in structural fidelity and perceptual quality. While maintaining competitive pixel-wise accuracy compared to existing approaches, our method significantly excels in reconstructing meteorologically plausible cloud structures with superior physical fidelity.
comment: Under review
☆ Unified Latents (UL): How to train your latents
We present Unified Latents (UL), a framework for learning latent representations that are jointly regularized by a diffusion prior and decoded by a diffusion model. By linking the encoder's output noise to the prior's minimum noise level, we obtain a simple training objective that provides a tight upper bound on the latent bitrate. On ImageNet-512, our approach achieves competitive FID of 1.4, with high reconstruction quality (PSNR) while requiring fewer training FLOPs than models trained on Stable Diffusion latents. On Kinetics-600, we set a new state-of-the-art FVD of 1.3.
☆ EA-Swin: An Embedding-Agnostic Swin Transformer for AI-Generated Video Detection
Recent advances in foundation video generators such as Sora2, Veo3, and other commercial systems have produced highly realistic synthetic videos, exposing the limitations of existing detection methods that rely on shallow embedding trajectories, image-based adaptation, or computationally heavy MLLMs. We propose EA-Swin, an Embedding-Agnostic Swin Transformer that models spatiotemporal dependencies directly on pretrained video embeddings via a factorized windowed attention design, making it compatible with generic ViT-style patch-based encoders. Alongside the model, we construct the EA-Video dataset, a benchmark dataset comprising 130K videos that integrates newly collected samples with curated existing datasets, covering diverse commercial and open-source generators and including unseen-generator splits for rigorous cross-distribution evaluation. Extensive experiments show that EA-Swin achieves 0.97-0.99 accuracy across major generators, outperforming prior SoTA methods (typically 0.8-0.9) by a margin of 5-20%, while maintaining strong generalization to unseen distributions, establishing a scalable and robust solution for modern AI-generated video detection.
comment: First preprint
☆ A Multi-modal Detection System for Infrastructure-based Freight Signal Priority
Freight vehicles approaching signalized intersections require reliable detection and motion estimation to support infrastructure-based Freight Signal Priority (FSP). Accurate and timely perception of vehicle type, position, and speed is essential for enabling effective priority control strategies. This paper presents the design, deployment, and evaluation of an infrastructure-based multi-modal freight vehicle detection system integrating LiDAR and camera sensors. A hybrid sensing architecture is adopted, consisting of an intersection-mounted subsystem and a midblock subsystem, connected via wireless communication for synchronized data transmission. The perception pipeline incorporates both clustering-based and deep learning-based detection methods with Kalman filter tracking to achieve stable real-time performance. LiDAR measurements are registered into geodetic reference frames to support lane-level localization and consistent vehicle tracking. Field evaluations demonstrate that the system can reliably monitor freight vehicle movements at high spatio-temporal resolution. The design and deployment provide practical insights for developing infrastructure-based sensing systems to support FSP applications.
comment: 12 pages, 15 figures. Accepted at ICTD 2026. Final version to appear in ASCE Proceedings
☆ Inferring Height from Earth Embeddings: First insights using Google AlphaEarth
This study investigates whether the geospatial and multimodal features encoded in \textit{Earth Embeddings} can effectively guide deep learning (DL) regression models for regional surface height mapping. In particular, we focused on AlphaEarth Embeddings at 10 m spatial resolution and evaluated their capability to support terrain height inference using a high-quality Digital Surface Model (DSM) as reference. U-Net and U-Net++ architectures were thus employed as lightweight convolutional decoders to assess how well the geospatial information distilled in the embeddings can be translated into accurate surface height estimates. Both architectures achieved strong training performance (both with $R^2 = 0.97$), confirming that the embeddings encode informative and decodable height-related signals. On the test set, performance decreased due to distribution shifts in height frequency between training and testing areas. Nevertheless, U-Net++ shows better generalization ($R^2 = 0.84$, median difference = -2.62 m) compared with the standard U-Net ($R^2 = 0.78$, median difference = -7.22 m), suggesting enhanced robustness to distribution mismatch. While the testing RMSE (approximately 16 m for U-Net++) and residual bias highlight remaining challenges in generalization, strong correlations indicate that the embeddings capture transferable topographic patterns. Overall, the results demonstrate the promising potential of AlphaEarth Embeddings to guide DL-based height mapping workflows, particularly when combined with spatially aware convolutional architectures, while emphasizing the need to address bias for improved regional transferability.
comment: 29 pages, 9 figures
☆ HiMAP: History-aware Map-occupancy Prediction with Fallback
Accurate motion forecasting is critical for autonomous driving, yet most predictors rely on multi-object tracking (MOT) with identity association, assuming that objects are correctly and continuously tracked. When tracking fails due to, e.g., occlusion, identity switches, or missed detections, prediction quality degrades and safety risks increase. We present \textbf{HiMAP}, a tracking-free, trajectory prediction framework that remains reliable under MOT failures. HiMAP converts past detections into spatiotemporally invariant historical occupancy maps and introduces a historical query module that conditions on the current agent state to iteratively retrieve agent-specific history from unlabeled occupancy representations. The retrieved history is summarized by a temporal map embedding and, together with the final query and map context, drives a DETR-style decoder to produce multi-modal future trajectories. This design lifts identity reliance, supports streaming inference via reusable encodings, and serves as a robust fallback when tracking is unavailable. On Argoverse~2, HiMAP achieves performance comparable to tracking-based methods while operating without IDs, and it substantially outperforms strong baselines in the no-tracking setting, yielding relative gains of 11\% in FDE, 12\% in ADE, and a 4\% reduction in MR over a fine-tuned QCNet. Beyond aggregate metrics, HiMAP delivers stable forecasts for all agents simultaneously without waiting for tracking to recover, highlighting its practical value for safety-critical autonomy. The code is available under: https://github.com/XuYiMing83/HiMAP.
comment: Accepted in 2026 IEEE International Conference on Robotics and Automation
☆ GASS: Geometry-Aware Spherical Sampling for Disentangled Diversity Enhancement in Text-to-Image Generation
Despite high semantic alignment, modern text-to-image (T2I) generative models still struggle to synthesize diverse images from a given prompt. This lack of diversity not only restricts user choice, but also risks amplifying societal biases. In this work, we enhance the T2I diversity through a geometric lens. Unlike most existing methods that rely primarily on entropy-based guidance to increase sample dissimilarity, we introduce Geometry-Aware Spherical Sampling (GASS) to enhance diversity by explicitly controlling both prompt-dependent and prompt-independent sources of variation. Specifically, we decompose the diversity measure in CLIP embeddings using two orthogonal directions: the text embedding, which captures semantic variation related to the prompt, and an identified orthogonal direction that captures prompt-independent variation (e.g., backgrounds). Based on this decomposition, GASS increases the geometric projection spread of generated image embeddings along both axes and guides the T2I sampling process via expanded predictions along the generation trajectory. Our experiments on different frozen T2I backbones (U-Net and DiT, diffusion and flow) and benchmarks demonstrate the effectiveness of disentangled diversity enhancement with minimal impact on image fidelity and semantic alignment.
comment: Preprint. Code will be available at https://github.com/L-YeZhu/GASS_T2I
☆ EntropyPrune: Matrix Entropy Guided Visual Token Pruning for Multimodal Large Language Models
Multimodal large language models (MLLMs) incur substantial inference cost due to the processing of hundreds of visual tokens per image. Although token pruning has proven effective for accelerating inference, determining when and where to prune remains largely heuristic. Existing approaches typically rely on static, empirically selected layers, which limit interpretability and transferability across models. In this work, we introduce a matrix-entropy perspective and identify an "Entropy Collapse Layer" (ECL), where the information content of visual representations exhibits a sharp and consistent drop, which provides a principled criterion for selecting the pruning stage. Building on this observation, we propose EntropyPrune, a novel matrix-entropy-guided token pruning framework that quantifies the information value of individual visual tokens and prunes redundant ones without relying on attention maps. Moreover, to enable efficient computation, we exploit the spectral equivalence of dual Gram matrices, reducing the complexity of entropy computation and yielding up to a 64x theoretical speedup. Extensive experiments on diverse multimodal benchmarks demonstrate that EntropyPrune consistently outperforms state-of-the-art pruning methods in both accuracy and efficiency. On LLaVA-1.5-7B, our method achieves a 68.2% reduction in FLOPs while preserving 96.0% of the original performance. Furthermore, EntropyPrune generalizes effectively to high-resolution and video-based models, highlighting the strong robustness and scalability in practical MLLM acceleration. The code will be publicly available at https://github.com/YahongWang1/EntropyPrune.
☆ Texo: Formula Recognition within 20M Parameters
In this paper we present Texo, a minimalist yet highperformance formula recognition model that contains only 20 million parameters. By attentive design, distillation and transfer of the vocabulary and the tokenizer, Texo achieves comparable performance to state-of-the-art models such as UniMERNet-T and PPFormulaNet-S, while reducing the model size by 80% and 65%, respectively. This enables real-time inference on consumer-grade hardware and even in-browser deployment. We also developed a web application to demonstrate the model capabilities and facilitate its usage for end users.
☆ Selective Training for Large Vision Language Models via Visual Information Gain
Large Vision Language Models (LVLMs) have achieved remarkable progress, yet they often suffer from language bias, producing answers without relying on visual evidence. While prior work attempts to mitigate this issue through decoding strategies, architectural modifications, or curated instruction data, they typically lack a quantitative measure of how much individual training samples or tokens actually benefit from the image. In this work, we introduce Visual Information Gain (VIG), a perplexity-based metric that measures the reduction in prediction uncertainty provided by visual input. VIG enables fine-grained analysis at both sample and token levels, effectively highlighting visually grounded elements such as colors, spatial relations, and attributes. Leveraging this, we propose a VIG-guided selective training scheme that prioritizes high-VIG samples and tokens. This approach improves visual grounding and mitigates language bias, achieving superior performance with significantly reduced supervision by focusing exclusively on visually informative samples and tokens.
☆ NRGS-SLAM: Monocular Non-Rigid SLAM for Endoscopy via Deformation-Aware 3D Gaussian Splatting
Visual simultaneous localization and mapping (V-SLAM) is a fundamental capability for autonomous perception and navigation. However, endoscopic scenes violate the rigidity assumption due to persistent soft-tissue deformations, creating a strong coupling ambiguity between camera ego-motion and intrinsic deformation. Although recent monocular non-rigid SLAM methods have made notable progress, they often lack effective decoupling mechanisms and rely on sparse or low-fidelity scene representations, which leads to tracking drift and limited reconstruction quality. To address these limitations, we propose NRGS-SLAM, a monocular non-rigid SLAM system for endoscopy based on 3D Gaussian Splatting. To resolve the coupling ambiguity, we introduce a deformation-aware 3D Gaussian map that augments each Gaussian primitive with a learnable deformation probability, optimized via a Bayesian self-supervision strategy without requiring external non-rigidity labels. Building on this representation, we design a deformable tracking module that performs robust coarse-to-fine pose estimation by prioritizing low-deformation regions, followed by efficient per-frame deformation updates. A carefully designed deformable mapping module progressively expands and refines the map, balancing representational capacity and computational efficiency. In addition, a unified robust geometric loss incorporates external geometric priors to mitigate the inherent ill-posedness of monocular non-rigid SLAM. Extensive experiments on multiple public endoscopic datasets demonstrate that NRGS-SLAM achieves more accurate camera pose estimation (up to 50\% reduction in RMSE) and higher-quality photo-realistic reconstructions than state-of-the-art methods. Comprehensive ablation studies further validate the effectiveness of our key design choices. Source code will be publicly available upon paper acceptance.
BadCLIP++: Stealthy and Persistent Backdoors in Multimodal Contrastive Learning
Research on backdoor attacks against multimodal contrastive learning models faces two key challenges: stealthiness and persistence. Existing methods often fail under strong detection or continuous fine-tuning, largely due to (1) cross-modal inconsistency that exposes trigger patterns and (2) gradient dilution at low poisoning rates that accelerates backdoor forgetting. These coupled causes remain insufficiently modeled and addressed. We propose BadCLIP++, a unified framework that tackles both challenges. For stealthiness, we introduce a semantic-fusion QR micro-trigger that embeds imperceptible patterns near task-relevant regions, preserving clean-data statistics while producing compact trigger distributions. We further apply target-aligned subset selection to strengthen signals at low injection rates. For persistence, we stabilize trigger embeddings via radius shrinkage and centroid alignment, and stabilize model parameters through curvature control and elastic weight consolidation, maintaining solutions within a low-curvature wide basin resistant to fine-tuning. We also provide the first theoretical analysis showing that, within a trust region, gradients from clean fine-tuning and backdoor objectives are co-directional, yielding a non-increasing upper bound on attack success degradation. Experiments demonstrate that with only 0.3% poisoning, BadCLIP++ achieves 99.99% attack success rate (ASR) in digital settings, surpassing baselines by 11.4 points. Across nineteen defenses, ASR remains above 99.90% with less than 0.8% drop in clean accuracy. The method further attains 65.03% success in physical attacks and shows robustness against watermark removal defenses.
comment: 25 pages, 10 figures
☆ B$^3$-Seg: Camera-Free, Training-Free 3DGS Segmentation via Analytic EIG and Beta-Bernoulli Bayesian Updates
Interactive 3D Gaussian Splatting (3DGS) segmentation is essential for real-time editing of pre-reconstructed assets in film and game production. However, existing methods rely on predefined camera viewpoints, ground-truth labels, or costly retraining, making them impractical for low-latency use. We propose B$^3$-Seg (Beta-Bernoulli Bayesian Segmentation for 3DGS), a fast and theoretically grounded method for open-vocabulary 3DGS segmentation under camera-free and training-free conditions. Our approach reformulates segmentation as sequential Beta-Bernoulli Bayesian updates and actively selects the next view via analytic Expected Information Gain (EIG). This Bayesian formulation guarantees the adaptive monotonicity and submodularity of EIG, which produces a greedy $(1{-}1/e)$ approximation to the optimal view sampling policy. Experiments on multiple datasets show that B$^3$-Seg achieves competitive results to high-cost supervised methods while operating end-to-end segmentation within a few seconds. The results demonstrate that B$^3$-Seg enables practical, interactive 3DGS segmentation with provable information efficiency.
comment: Project page: https://sony.github.io/B3-Seg-project/
☆ 3D Scene Rendering with Multimodal Gaussian Splatting
3D scene reconstruction and rendering are core tasks in computer vision, with applications spanning industrial monitoring, robotics, and autonomous driving. Recent advances in 3D Gaussian Splatting (GS) and its variants have achieved impressive rendering fidelity while maintaining high computational and memory efficiency. However, conventional vision-based GS pipelines typically rely on a sufficient number of camera views to initialize the Gaussian primitives and train their parameters, typically incurring additional processing cost during initialization while falling short in conditions where visual cues are unreliable, such as adverse weather, low illumination, or partial occlusions. To cope with these challenges, and motivated by the robustness of radio-frequency (RF) signals to weather, lighting, and occlusions, we introduce a multimodal framework that integrates RF sensing, such as automotive radar, with GS-based rendering as a more efficient and robust alternative to vision-only GS rendering. The proposed approach enables efficient depth prediction from only sparse RF-based depth measurements, yielding a high-quality 3D point cloud for initializing Gaussian functions across diverse GS architectures. Numerical tests demonstrate the merits of judiciously incorporating RF sensing into GS pipelines, achieving high-fidelity 3D scene rendering driven by RF-informed structural accuracy.
☆ Benchmarking the Effects of Object Pose Estimation and Reconstruction on Robotic Grasping Success
3D reconstruction serves as the foundational layer for numerous robotic perception tasks, including 6D object pose estimation and grasp pose generation. Modern 3D reconstruction methods for objects can produce visually and geometrically impressive meshes from multi-view images, yet standard geometric evaluations do not reflect how reconstruction quality influences downstream tasks such as robotic manipulation performance. This paper addresses this gap by introducing a large-scale, physics-based benchmark that evaluates 6D pose estimators and 3D mesh models based on their functional efficacy in grasping. We analyze the impact of model fidelity by generating grasps on various reconstructed 3D meshes and executing them on the ground-truth model, simulating how grasp poses generated with an imperfect model affect interaction with the real object. This assesses the combined impact of pose error, grasp robustness, and geometric inaccuracies from 3D reconstruction. Our results show that reconstruction artifacts significantly decrease the number of grasp pose candidates but have a negligible effect on grasping performance given an accurately estimated pose. Our results also reveal that the relationship between grasp success and pose error is dominated by spatial error, and even a simple translation error provides insight into the success of the grasping pose of symmetric objects. This work provides insight into how perception systems relate to object manipulation using robots.
☆ ComptonUNet: A Deep Learning Model for GRB Localization with Compton Cameras under Noisy and Low-Statistic Conditions
Gamma-ray bursts (GRBs) are among the most energetic transient phenomena in the universe and serve as powerful probes for high-energy astrophysical processes. In particular, faint GRBs originating from a distant universe may provide unique insights into the early stages of star formation. However, detecting and localizing such weak sources remains challenging owing to low photon statistics and substantial background noise. Although recent machine learning models address individual aspects of these challenges, they often struggle to balance the trade-off between statistical robustness and noise suppression. Consequently, we propose ComptonUNet, a hybrid deep learning framework that jointly processes raw data and reconstructs images for robust GRB localization. ComptonUNet was designed to operate effectively under conditions of limited photon statistics and strong background contamination by combining the statistical efficiency of direct reconstruction models with the denoising capabilities of image-based architectures. We perform realistic simulations of GRB-like events embedded in background environments representative of low-Earth orbit missions to evaluate the performance of ComptonUNet. Our results demonstrate that ComptonUNet significantly outperforms existing approaches, achieving improved localization accuracy across a wide range of low-statistic and high-background scenarios.
comment: Accepted by ApJ
☆ Cross Pseudo Labeling For Weakly Supervised Video Anomaly Detection ICASSP 2026
Weakly supervised video anomaly detection aims to detect anomalies and identify abnormal categories with only video-level labels. We propose CPL-VAD, a dual-branch framework with cross pseudo labeling. The binary anomaly detection branch focuses on snippet-level anomaly localization, while the category classification branch leverages vision-language alignment to recognize abnormal event categories. By exchanging pseudo labels, the two branches transfer complementary strengths, combining temporal precision with semantic discrimination. Experiments on XD-Violence and UCF-Crime demonstrate that CPL-VAD achieves state-of-the-art performance in both anomaly detection and abnormal category classification.
comment: ICASSP 2026
☆ Sign Lock-In: Randomly Initialized Weight Signs Persist and Bottleneck Sub-Bit Model Compression
Sub-bit model compression seeks storage below one bit per weight; as magnitudes are aggressively compressed, the sign bit becomes a fixed-cost bottleneck. Across Transformers, CNNs, and MLPs, learned sign matrices resist low-rank approximation and are spectrally indistinguishable from an i.i.d. Rademacher baseline. Despite this apparent randomness, most weights retain their initialization signs; flips primarily occur via rare near-zero boundary crossings, suggesting that sign-pattern randomness is largely inherited from initialization. We formalize this behavior with sign lock-in theory, a stopping-time analysis of sign flips under SGD noise. Under bounded updates and a rare re-entry condition into a small neighborhood around zero, the number of effective sign flips exhibits a geometric tail. Building on this mechanism, we introduce a gap-based initialization and a lightweight outward-drift regularizer, reducing the effective flip rate to approximately $10^{-3}$ with only about a one-point increase in perplexity.
☆ Cholec80-port: A Geometrically Consistent Trocar Port Segmentation Dataset for Robust Surgical Scene Understanding
Trocar ports are camera-fixed, pseudo-static structures that can persistently occlude laparoscopic views and attract disproportionate feature points due to specular, textured surfaces. This makes ports particularly detrimental to geometry-based downstream pipelines such as image stitching, 3D reconstruction, and visual SLAM, where dynamic or non-anatomical outliers degrade alignment and tracking stability. Despite this practical importance, explicit port labels are rare in public surgical datasets, and existing annotations often violate geometric consistency by masking the central lumen (opening), even when anatomical regions are visible through it. We present Cholec80-port, a high-fidelity trocar port segmentation dataset derived from Cholec80, together with a rigorous standard operating procedure (SOP) that defines a port-sleeve mask excluding the central opening. We additionally cleanse and unify existing public datasets under the same SOP. Experiments demonstrate that geometrically consistent annotations substantially improve cross-dataset robustness beyond what dataset size alone provides.
☆ StructCore: Structure-Aware Image-Level Scoring for Training-Free Unsupervised Anomaly Detection
Max pooling is the de facto standard for converting anomaly score maps into image-level decisions in memory-bank-based unsupervised anomaly detection (UAD). However, because it relies on a single extreme response, it discards most information about how anomaly evidence is distributed and structured across the image, often causing normal and anomalous scores to overlap. We propose StructCore, a training-free, structure-aware image-level scoring method that goes beyond max pooling. Given an anomaly score map, StructCore computes a low-dimensional structural descriptor phi(S) that captures distributional and spatial characteristics, and refines image-level scoring via a diagonal Mahalanobis calibration estimated from train-good samples, without modifying pixel-level localization. StructCore achieves image-level AUROC scores of 99.6% on MVTec AD and 98.4% on VisA, demonstrating robust image-level anomaly detection by exploiting structural signatures missed by max pooling.
☆ Amber-Image: Efficient Compression of Large-Scale Diffusion Transformers
Diffusion Transformer (DiT) architectures have significantly advanced Text-to-Image (T2I) generation but suffer from prohibitive computational costs and deployment barriers. To address these challenges, we propose an efficient compression framework that transforms the 60-layer dual-stream MMDiT-based Qwen-Image into lightweight models without training from scratch. Leveraging this framework, we introduce Amber-Image, a series of streamlined T2I models. We first derive Amber-Image-10B using a timestep-sensitive depth pruning strategy, where retained layers are reinitialized via local weight averaging and optimized through layer-wise distillation and full-parameter fine-tuning. Building on this, we develop Amber-Image-6B by introducing a hybrid-stream architecture that converts deep-layer dual streams into a single stream initialized from the image branch, further refined via progressive distillation and lightweight fine-tuning. Our approach reduces parameters by 70% and eliminates the need for large-scale data engineering. Notably, the entire compression and training pipeline-from the 10B to the 6B variant-requires fewer than 2,000 GPU hours, demonstrating exceptional cost-efficiency compared to training from scratch. Extensive evaluations on benchmarks like DPG-Bench and LongText-Bench show that Amber-Image achieves high-fidelity synthesis and superior text rendering, matching much larger models.
☆ PartRAG: Retrieval-Augmented Part-Level 3D Generation and Editing
Single-image 3D generation with part-level structure remains challenging: learned priors struggle to cover the long tail of part geometries and maintain multi-view consistency, and existing systems provide limited support for precise, localized edits. We present PartRAG, a retrieval-augmented framework that integrates an external part database with a diffusion transformer to couple generation with an editable representation. To overcome the first challenge, we introduce a Hierarchical Contrastive Retrieval module that aligns dense image patches with 3D part latents at both part and object granularity, retrieving from a curated bank of 1,236 part-annotated assets to inject diverse, physically plausible exemplars into denoising. To overcome the second challenge, we add a masked, part-level editor that operates in a shared canonical space, enabling swaps, attribute refinements, and compositional updates without regenerating the whole object while preserving non-target parts and multi-view consistency. PartRAG achieves competitive results on Objaverse, ShapeNet, and ABO-reducing Chamfer Distance from 0.1726 to 0.1528 and raising F-Score from 0.7472 to 0.844 on Objaverse-with inference of 38s and interactive edits in 5-8s. Qualitatively, PartRAG produces sharper part boundaries, better thin-structure fidelity, and robust behavior on articulated objects. Code: https://github.com/AIGeeksGroup/PartRAG. Website: https://aigeeksgroup.github.io/PartRAG.
☆ Patch-Based Spatial Authorship Attribution in Human-Robot Collaborative Paintings
As agentic AI becomes increasingly involved in creative production, documenting authorship has become critical for artists, collectors, and legal contexts. We present a patch-based framework for spatial authorship attribution within human-robot collaborative painting practice, demonstrated through a forensic case study of one human artist and one robotic system across 15 abstract paintings. Using commodity flatbed scanners and leave-one-painting-out cross-validation, the approach achieves 88.8% patch-level accuracy (86.7% painting-level via majority vote), outperforming texture-based and pretrained-feature baselines (68.0%-84.7%). For collaborative artworks, where ground truth is inherently ambiguous, we use conditional Shannon entropy to quantify stylistic overlap; manually annotated hybrid regions exhibit 64% higher uncertainty than pure paintings (p=0.003), suggesting the model detects mixed authorship rather than classification failure. The trained model is specific to this human-robot pair but provides a methodological grounding for sample-efficient attribution in data-scarce human-AI creative workflows that, in the future, has the potential to extend authorship attribution to any human-robot collaborative painting.
☆ Characterizing the Predictive Impact of Modalities with Supervised Latent-Variable Modeling
Despite the recent success of Multimodal Large Language Models (MLLMs), existing approaches predominantly assume the availability of multiple modalities during training and inference. In practice, multimodal data is often incomplete because modalities may be missing, collected asynchronously, or available only for a subset of examples. In this work, we propose PRIMO, a supervised latent-variable imputation model that quantifies the predictive impact of any missing modality within the multimodal learning setting. PRIMO enables the use of all available training examples, whether modalities are complete or partial. Specifically, it models the missing modality through a latent variable that captures its relationship with the observed modality in the context of prediction. During inference, we draw many samples from the learned distribution over the missing modality to both obtain the marginal predictive distribution (for the purpose of prediction) and analyze the impact of the missing modalities on the prediction for each instance. We evaluate PRIMO on a synthetic XOR dataset, Audio-Vision MNIST, and MIMIC-III for mortality and ICD-9 prediction. Across all datasets, PRIMO obtains performance comparable to unimodal baselines when a modality is fully missing and to multimodal baselines when all modalities are available. PRIMO quantifies the predictive impact of a modality at the instance level using a variance-based metric computed from predictions across latent completions. We visually demonstrate how varying completions of the missing modality result in a set of plausible labels.
☆ DDiT: Dynamic Patch Scheduling for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) have achieved state-of-the-art performance in image and video generation, but their success comes at the cost of heavy computation. This inefficiency is largely due to the fixed tokenization process, which uses constant-sized patches throughout the entire denoising phase, regardless of the content's complexity. We propose dynamic tokenization, an efficient test-time strategy that varies patch sizes based on content complexity and the denoising timestep. Our key insight is that early timesteps only require coarser patches to model global structure, while later iterations demand finer (smaller-sized) patches to refine local details. During inference, our method dynamically reallocates patch sizes across denoising steps for image and video generation and substantially reduces cost while preserving perceptual generation quality. Extensive experiments demonstrate the effectiveness of our approach: it achieves up to $3.52\times$ and $3.2\times$ speedup on FLUX-1.Dev and Wan $2.1$, respectively, without compromising the generation quality and prompt adherence.
♻ ☆ pi-Flow: Policy-Based Few-Step Generation via Imitation Distillation ICLR 2026
Few-step diffusion or flow-based generative models typically distill a velocity-predicting teacher into a student that predicts a shortcut towards denoised data. This format mismatch has led to complex distillation procedures that often suffer from a quality-diversity trade-off. To address this, we propose policy-based flow models ($π$-Flow). $π$-Flow modifies the output layer of a student flow model to predict a network-free policy at one timestep. The policy then produces dynamic flow velocities at future substeps with negligible overhead, enabling fast and accurate ODE integration on these substeps without extra network evaluations. To match the policy's ODE trajectory to the teacher's, we introduce a novel imitation distillation approach, which matches the policy's velocity to the teacher's along the policy's trajectory using a standard $\ell_2$ flow matching loss. By simply mimicking the teacher's behavior, $π$-Flow enables stable and scalable training and avoids the quality-diversity trade-off. On ImageNet 256$^2$, it attains a 1-NFE FID of 2.85, outperforming previous 1-NFE models of the same DiT architecture. On FLUX.1-12B and Qwen-Image-20B at 4 NFEs, $π$-Flow achieves substantially better diversity than state-of-the-art DMD models, while maintaining teacher-level quality.
comment: ICLR 2026. Code: https://github.com/Lakonik/piFlow Demos: https://huggingface.co/spaces/Lakonik/pi-Qwen | https://huggingface.co/spaces/Lakonik/pi-FLUX.1 | https://huggingface.co/spaces/Lakonik/pi-FLUX.2
♻ ☆ Boosting Medical Visual Understanding From Multi-Granular Language Learning ICLR 2026
Recent advances in image-text pretraining have significantly enhanced visual understanding by aligning visual and textual representations. Contrastive Language-Image Pretraining (CLIP) has played a pivotal role in multimodal learning. However, its focus on single-label, single-granularity alignment limits its effectiveness in complex domains such as medical imaging, where images often correspond to multiple high-level labels (e.g., disease categories) across different annotation granularities (e.g., diagnostic description, clinical explanation). To address this, we propose Multi-Granular Language Learning (MGLL), a contrastive learning framework designed to improve both multi-label and cross-granularity alignment. MGLL leverages structured multi-label supervision, integrates textual descriptions across granularities, and introduces soft-label supervision with point-wise constraints to enhance alignment. MGLL employs smooth Kullback-Leibler (KL) divergence to ensure cross-granularity consistency while maintaining computational efficiency as a plug-and-play module for vision-language models. Pretrained on our constructed large-scale multi-granular datasets and evaluated across multiple datasets, MGLL outperforms other state-of-the-art methods in downstream tasks. The code is available at https://github.com/HUANGLIZI/MGLL.
comment: Accepted by ICLR 2026. 40 pages
♻ ☆ CT-Bench: A Benchmark for Multimodal Lesion Understanding in Computed Tomography
Artificial intelligence (AI) can automatically delineate lesions on computed tomography (CT) and generate radiology report content, yet progress is limited by the scarcity of publicly available CT datasets with lesion-level annotations. To bridge this gap, we introduce CT-Bench, a first-of-its-kind benchmark dataset comprising two components: a Lesion Image and Metadata Set containing 20,335 lesions from 7,795 CT studies with bounding boxes, descriptions, and size information, and a multitask visual question answering benchmark with 2,850 QA pairs covering lesion localization, description, size estimation, and attribute categorization. Hard negative examples are included to reflect real-world diagnostic challenges. We evaluate multiple state-of-the-art multimodal models, including vision-language and medical CLIP variants, by comparing their performance to radiologist assessments, demonstrating the value of CT-Bench as a comprehensive benchmark for lesion analysis. Moreover, fine-tuning models on the Lesion Image and Metadata Set yields significant performance gains across both components, underscoring the clinical utility of CT-Bench.
♻ ☆ Accelerating Large-Scale Dataset Distillation via Exploration-Exploitation Optimization
Dataset distillation compresses the original data into compact synthetic datasets, reducing training time and storage while retaining model performance, enabling deployment under limited resources. Although recent decoupling-based distillation methods enable dataset distillation at large scale, they continue to face an efficiency gap: optimization-based decoupling methods achieve higher accuracy but demand intensive computation, whereas optimization-free decoupling methods are efficient but sacrifice accuracy. To overcome this trade-off, we propose Exploration--Exploitation Distillation (E$^2$D), a simple, practical method that minimizes redundant computation through an efficient pipeline that begins with full-image initialization to preserve semantic integrity and feature diversity. It then uses a two-phase optimization strategy: an exploration phase that performs uniform updates and identifies high-loss regions, and an exploitation phase that focuses updates on these regions to accelerate convergence. We evaluate E$^2$D on large-scale benchmarks, surpassing the state-of-the-art on ImageNet-1K while being $18\times$ faster, and on ImageNet-21K, our method substantially improves accuracy while remaining $4.3\times$ faster. These results demonstrate that targeted, redundancy-reducing updates, rather than brute-force optimization, bridge the gap between accuracy and efficiency in large-scale dataset distillation. Code is available at https://github.com/ncsu-dk-lab/E2D.
♻ ☆ Beyond the Encoder: Joint Encoder-Decoder Contrastive Pre-Training Improves Dense Prediction
Contrastive learning methods in self-supervised settings have primarily focused on pre-training encoders, while decoders are typically introduced and trained separately for downstream dense prediction tasks. However, this conventional approach overlooks the potential benefits of jointly pre-training both encoder and decoder. In this paper, we propose DeCon, an efficient encoder-decoder self-supervised learning (SSL) framework that supports joint contrastive pre-training. We first extend existing SSL architectures to accommodate diverse decoders and their corresponding contrastive losses. Then, we introduce a weighted encoder-decoder contrastive loss with non-competing objectives to enable the joint pre-training of encoder-decoder architectures. By adapting a contrastive SSL framework for dense prediction, DeCon establishes consistent state-of-the-art performance on most of the evaluated tasks when pre-trained on Imagenet-1K, COCO and COCO+. Notably, when pre-training a ResNet-50 encoder on COCO dataset, DeCon improves COCO object detection and instance segmentation compared to the baseline framework by +0.37 AP and +0.32 AP, respectively, and boosts semantic segmentation by +1.42 mIoU on Pascal VOC and by +0.50 mIoU on Cityscapes. These improvements generalize across recent backbones, decoders, datasets, and dense tasks beyond segmentation and object detection, and persist in out-of-domain scenarios, including limited-data settings, demonstrating that joint pre-training significantly enhances representation quality for dense prediction. Code is available at https://github.com/sebquetin/DeCon.git.
♻ ☆ PyRadiomics-cuda: 3D features extraction from medical images for HPC using GPU acceleration
PyRadiomics-cuda is a GPU-accelerated extension of the PyRadiomics library, designed to address the computational challenges of extracting three-dimensional shape features from medical images. By offloading key geometric computations to GPU hardware it dramatically reduces processing times for large volumetric datasets. The system maintains full compatibility with the original PyRadiomics API, enabling seamless integration into existing AI workflows without code modifications. This transparent acceleration facilitates efficient, scalable radiomics analysis, supporting rapid feature extraction essential for high-throughput AI pipeline. Tests performed on a typical computational cluster, budget and home devices prove usefulness in all scenarios.
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent runtime. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ CoreEditor: Correspondence-constrained Diffusion for Consistent 3D Editing
Text-driven 3D editing seeks to modify 3D scenes according to textual descriptions, and most existing approaches tackle this by adapting pre-trained 2D image editors to multi-view inputs. However, without explicit control over multi-view information exchange, they often fail to maintain cross-view consistency, leading to insufficient edits and blurry details. We introduce CoreEditor, a novel framework for consistent text-to-3D editing. The key innovation is a correspondence-constrained attention mechanism that enforces precise interactions between pixels expected to remain consistent throughout the diffusion denoising process. Beyond relying solely on geometric alignment, we further incorporate semantic similarity estimated during denoising, enabling more reliable correspondence modeling and robust multi-view editing. In addition, we design a selective editing pipeline that allows users to choose preferred results from multiple candidates, offering greater flexibility and user control. Extensive experiments show that CoreEditor produces high-quality, 3D-consistent edits with sharper details, significantly outperforming prior methods.
comment: Accepted by IEEE TVCG
♻ ☆ Improved Object-Centric Diffusion Learning with Registers and Contrastive Alignment ICLR 2026
Slot Attention (SA) with pretrained diffusion models has recently shown promise for object-centric learning (OCL), but suffers from slot entanglement and weak alignment between object slots and image content. We propose Contrastive Object-centric Diffusion Alignment (CODA), a simple extension that (i) employs register slots to absorb residual attention and reduce interference between object slots, and (ii) applies a contrastive alignment loss to explicitly encourage slot-image correspondence. The resulting training objective serves as a tractable surrogate for maximizing mutual information (MI) between slots and inputs, strengthening slot representation quality. On both synthetic (MOVi-C/E) and real-world datasets (VOC, COCO), CODA improves object discovery (e.g., +6.1% FG-ARI on COCO), property prediction, and compositional image generation over strong baselines. Register slots add negligible overhead, keeping CODA efficient and scalable. These results indicate potential applications of CODA as an effective framework for robust OCL in complex, real-world scenes. Code and pretrained models are available at https://github.com/sony/coda.
comment: Accepted at ICLR 2026
♻ ☆ Sufficient, Necessary and Complete Causal Explanations in Image Classification
Existing algorithms for explaining the outputs of image classifiers are based on a variety of approaches and produce explanations that frequently lack formal rigour. On the other hand, logic-based explanations are formally and rigorously defined but their computability relies on strict assumptions about the model that do not hold on image classifiers. In this paper, we show that causal explanations, in addition to being formally and rigorously defined, enjoy the same formal properties as logic-based ones, while still lending themselves to black-box algorithms and being a natural fit for image classifiers. We prove formal properties of causal explanations and their equivalence to logic-based explanations. We demonstrate how to subdivide an image into its sufficient and necessary components. We introduce $δ$-complete explanations, which have a minimum confidence threshold and 1-complete causal explanations, explanations that are classified with the same confidence as the original image. We implement our definitions, and our experimental results demonstrate that different models have different patterns of sufficiency, necessity, and completeness. Our algorithms are efficiently computable, taking on average 6s per image on a ResNet model to compute all types of explanations, and are totally black-box, needing no knowledge of the model, no access to model internals, no access to gradient, nor requiring any properties, such as monotonicity, of the model.
comment: 16 pages, appendix included
♻ ☆ Point Linguist Model: Segment Any Object via Bridged Large 3D-Language Model
3D object segmentation with Large Language Models (LLMs) has become a prevailing paradigm due to its broad semantics, task flexibility, and strong generalization. However, this paradigm is hindered by representation misalignment: LLMs process high-level semantic tokens, whereas 3D point clouds convey only dense geometric structures. In prior methods, misalignment limits both input and output. At the input stage, dense point patches require heavy pre-alignment, weakening object-level semantics and confusing similar distractors. At the output stage, predictions depend only on dense features without explicit geometric cues, leading to a loss of fine-grained accuracy. To address these limitations, we present the Point Linguist Model (PLM), a general framework that bridges the representation gap between LLMs and dense 3D point clouds without requiring large-scale pre-alignment between 3D-text or 3D-images. Specifically, we introduce Object-centric Discriminative Representation (OcDR), which learns object-centric tokens that capture target semantics and scene relations under a hard negative-aware training objective. This mitigates the misalignment between LLM tokens and 3D points, enhances resilience to distractors, and facilitates semantic-level reasoning within LLMs. For accurate segmentation, we introduce the Geometric Reactivation Decoder (GRD), which predicts masks by combining OcDR tokens carrying LLM-inferred geometry with corresponding dense features, preserving comprehensive dense features throughout the pipeline. Extensive experiments show that PLM achieves significant improvements of +7.3 mIoU on ScanNetv2 and +6.0 mIoU on Multi3DRefer for 3D referring segmentation, with consistent gains across 7 benchmarks spanning 4 different tasks, demonstrating the effectiveness of comprehensive object-centric reasoning for robust 3D understanding.
comment: Accepted by IEEE Transactions on Multimedia (TMM)
♻ ☆ Restrictive Hierarchical Semantic Segmentation for Stratified Tooth Layer Detection
Accurate understanding of anatomical structures is essential for reliably staging certain dental diseases. A way of introducing this within semantic segmentation models is by utilising hierarchy-aware methodologies. However, existing hierarchy-aware segmentation methods largely encode anatomical structure through the loss functions, providing weak and indirect supervision. We introduce a general framework that embeds an explicit anatomical hierarchy into semantic segmentation by coupling a recurrent, level-wise prediction scheme with restrictive output heads and top-down feature conditioning. At each depth of the class tree, the backbone is re-run on the original image concatenated with logits from the previous level. Child class features are conditioned using Feature-wise Linear Modulation of their parent class probabilities, to modulate child feature spaces for fine grained detection. A probabilistic composition rule enforces consistency between parent and descendant classes. Hierarchical loss combines per-level class weighted Dice and cross entropy loss and a consistency term loss, ensuring parent predictions are the sum of their children. We validate our approach on our proposed dataset, TL-pano, containing 194 panoramic radiographs with dense instance and semantic segmentation annotations, of tooth layers and alveolar bone. Utilising UNet and HRNet as donor models across a 5-fold cross validation scheme, the hierarchical variants consistently increase IoU, Dice, and recall, particularly for fine-grained anatomies, and produce more anatomically coherent masks. However, hierarchical variants also demonstrated increased recall over precision, implying increased false positives. The results demonstrate that explicit hierarchical structuring improves both performance and clinical plausibility, especially in low data dental imaging regimes.
comment: Incorrect initial draft was submitted by mistake. Method, results and citations are incorrect
♻ ☆ Cert-SSBD: Certified Backdoor Defense with Sample-Specific Smoothing Noises
Deep neural networks (DNNs) are vulnerable to backdoor attacks, where an attacker manipulates a small portion of the training data to implant hidden backdoors into the model. The compromised model behaves normally on clean samples but misclassifies backdoored samples into the attacker-specified target class, posing a significant threat to real-world DNN applications. Currently, several empirical defense methods have been proposed to mitigate backdoor attacks, but they are often bypassed by more advanced backdoor techniques. In contrast, certified defenses based on randomized smoothing have shown promise by adding random noise to training and testing samples to counteract backdoor attacks. In this paper, we reveal that existing randomized smoothing defenses implicitly assume that all samples are equidistant from the decision boundary. However, it may not hold in practice, leading to suboptimal certification performance. To address this issue, we propose a sample-specific certified backdoor defense method, termed Cert-SSB. Cert-SSB first employs stochastic gradient ascent to optimize the noise magnitude for each sample, ensuring a sample-specific noise level that is then applied to multiple poisoned training sets to retrain several smoothed models. After that, Cert-SSB aggregates the predictions of multiple smoothed models to generate the final robust prediction. In particular, in this case, existing certification methods become inapplicable since the optimized noise varies across different samples. To conquer this challenge, we introduce a storage-update-based certification method, which dynamically adjusts each sample's certification region to improve certification performance. We conduct extensive experiments on multiple benchmark datasets, demonstrating the effectiveness of our proposed method. Our code is available at https://github.com/NcepuQiaoTing/Cert-SSB.
comment: To appear in TIFS 2026. 21 pages
♻ ☆ Learning Perceptual Representations for Gaming NR-VQA with Multi-Task FR Signals
No-reference video quality assessment (NR-VQA) for gaming videos is challenging due to limited human-rated datasets and unique content characteristics including fast motion, stylized graphics, and compression artifacts. We present MTL-VQA, a multi-task learning framework that uses full-reference metrics as supervisory signals to learn perceptually meaningful features without human labels for pretraining. By jointly optimizing multiple full-reference (FR) objectives with adaptive task weighting, our approach learns shared representations that transfer effectively to NR-VQA. Experiments on gaming video datasets show MTL-VQA achieves performance competitive with state-of-the-art NR-VQA methods across both MOS-supervised and label-efficient/self-supervised settings.
comment: 6 pages, 2 figures
♻ ☆ Attention-Enhanced U-Net for Accurate Segmentation of COVID-19 Infected Lung Regions in CT Scans
In this study, we propose a robust methodology for automatic segmentation of infected lung regions in COVID-19 CT scans using convolutional neural networks. The approach is based on a modified U-Net architecture enhanced with attention mechanisms, data augmentation, and postprocessing techniques. It achieved a Dice coefficient of 0.8658 and mean IoU of 0.8316, outperforming other methods. The dataset was sourced from public repositories and augmented for diversity. Results demonstrate superior segmentation performance. Future work includes expanding the dataset, exploring 3D segmentation, and preparing the model for clinical deployment.
comment: 14 pages, 9 figures, created using Google Colab and PyTorch. Compares segmentation models for COVID-19 CT data
♻ ☆ Intracoronary Optical Coherence Tomography Image Processing and Vessel Classification Using Machine Learning
Intracoronary Optical Coherence Tomography (OCT) enables high-resolution visualization of coronary vessel anatomy but presents challenges due to noise, imaging artifacts, and complex tissue structures. This paper proposes a fully automated pipeline for vessel segmentation and classification in OCT images using machine learning techniques. The proposed method integrates image preprocessing, guidewire artifact removal, polar-to-Cartesian transformation, unsupervised K-means clustering, and local feature extraction. These features are used to train Logistic Regression and Support Vector Machine classifiers for pixel-wise vessel classification. Experimental results demonstrate excellent performance, achieving precision, recall, and F1-score values up to 1.00 and overall classification accuracy of 99.68%. The proposed approach provides accurate vessel boundary detection while maintaining low computational complexity and requiring minimal manual annotation. This method offers a reliable and efficient solution for automated OCT image analysis and has potential applications in clinical decision support and real-time medical image processing.
comment: 12 pages, 8 figures. Research paper from Electrical and Computer Engineering Department, University of Patras
♻ ☆ Improving segmentation of retinal arteries and veins using cardiac signal in doppler holograms
Doppler holography is an emerging retinal imaging technique that captures the dynamic behavior of blood flow with high temporal resolution, enabling quantitative assessment of retinal hemodynamics. This requires accurate segmentation of retinal arteries and veins, but traditional segmentation methods focus solely on spatial information and overlook the temporal richness of holographic data. In this work, we propose a simple yet effective approach for artery-vein segmentation in temporal Doppler holograms using standard segmentation architectures. By incorporating features derived from a dedicated pulse analysis pipeline, our method allows conventional U-Nets to exploit temporal dynamics and achieve performance comparable to more complex attention- or iteration-based models. These findings demonstrate that time-resolved preprocessing can unlock the full potential of deep learning for Doppler holography, opening new perspectives for quantitative exploration of retinal hemodynamics. The dataset is publicly available at https://huggingface.co/datasets/DigitalHolography/
comment: 5 pages, 3 figures, 1 table. Submitted to ISBI2026
♻ ☆ Motion Prior Distillation in Time Reversal Sampling for Generative Inbetweening ICLR 2026
Recent progress in image-to-video (I2V) diffusion models has significantly advanced the field of generative inbetweening, which aims to generate semantically plausible frames between two keyframes. In particular, inference-time sampling strategies, which leverage the generative priors of large-scale pre-trained I2V models without additional training, have become increasingly popular. However, existing inference-time sampling, either fusing forward and backward paths in parallel or alternating them sequentially, often suffers from temporal discontinuities and undesirable visual artifacts due to the misalignment between the two generated paths. This is because each path follows the motion prior induced by its own conditioning frame. In this work, we propose Motion Prior Distillation (MPD), a simple yet effective inference-time distillation technique that suppresses bidirectional mismatch by distilling the motion residual of the forward path into the backward path. Our method can deliberately avoid denoising the end-conditioned path which causes the ambiguity of the path, and yield more temporally coherent inbetweening results with the forward motion prior. We not only perform quantitative evaluations on standard benchmarks, but also conduct extensive user studies to demonstrate the effectiveness of our approach in practical scenarios.
comment: Accepted at ICLR 2026. Project page: https://vvsjeon.github.io/MPD/
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have laid the foundation for multimodal LLMs (MLLMs), which unify text, speech, and vision within a single framework. As these models are rapidly evolving toward general-purpose instruction following across diverse and complex tasks, a key frontier is evaluating their crosslingual and multimodal capabilities over both short- and long-form inputs. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on a single modality at a time, rely on short-form inputs, or lack human annotations--hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first crosslingual human-annotated benchmark based on scientific talks on NLP and beyond. MCIF evaluates instruction following in crosslingual, multimodal settings over different input lengths and spans four macro-tasks: recognition, translation, question answering, and summarization. It covers three core modalities (speech, vision, and text) and four diverse languages (English, German, Italian, and Chinese), fully aligned across all dimensions. This parallel design enables a systematic evaluation of MLLMs' abilities to interpret instructions across languages and effectively integrate multimodal contextual information. Our benchmarking and analysis of 23 models highlight universal challenges across modalities and tasks, indicating substantial room for improvement in future MLLMs development. MCIF is released under CC-BY 4.0 license to promote open research.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation, outputs, and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ VisPhyWorld: Probing Physical Reasoning via Code-Driven Video Reconstruction
Evaluating whether Multimodal Large Language Models (MLLMs) genuinely reason about physical dynamics remains challenging. Most existing benchmarks rely on recognition-style protocols such as Visual Question Answering (VQA) and Violation of Expectation (VoE), which can often be answered without committing to an explicit, testable physical hypothesis. We propose VisPhyWorld, an execution-based framework that evaluates physical reasoning by requiring models to generate executable simulator code from visual observations. By producing runnable code, the inferred world representation is directly inspectable, editable, and falsifiable. This separates physical reasoning from rendering. Building on this framework, we introduce VisPhyBench, comprising 209 evaluation scenes derived from 108 physical templates and a systematic protocol that evaluates how well models reconstruct appearance and reproduce physically plausible motion. Our pipeline produces valid reconstructed videos in 97.7% on the benchmark. Experiments show that while state-of-the-art MLLMs achieve strong semantic scene understanding, they struggle to accurately infer physical parameters and to simulate consistent physical dynamics.
♻ ☆ Unlocking [CLS] Features for Continual Post-Training
Continual learning requires models to integrate new classes or domains over time while preserving previously acquired knowledge. Within this paradigm, foundation models often achieve strong performance, but they still remain subject to the stability-plasticity trade-off, where excessive plasticity leads to forgetting of prior knowledge, and excessive stability constrains the adaptation. This necessitates an effective post-training strategy that introduces minimal yet functional modifications. To address this challenge, we first introduce a new parameter-efficient fine-tuning module 'Learn and Calibrate', or LuCA, designed to acquire task-specific knowledge through an adapter-calibrator couple, enabling well-refined feature representations. Then, for each task, we deploy a sparse LuCA module on top of the last classification token [CLS] just before the classifier, which we refer to as 'Token-level Sparse Calibration and Adaptation', or TOSCA. By leaving the generalization capabilities of the foundation models intact and adapting exclusively via the last token, our approach achieves a harmonious balance between stability and plasticity while reducing both training and inference complexity. We demonstrate that TOSCA yields state-of-the-art performance while introducing ~8 times fewer parameters compared to prior methods.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Universal Anti-forensics Attack against Image Forgery Detection via Multi-modal Guidance
The rapid advancement of AI-Generated Content (AIGC) technologies poses significant challenges for authenticity assessment. However, existing evaluation protocols largely overlook anti-forensics attack, failing to ensure the comprehensive robustness of state-of-the-art AIGC detectors in real-world applications. To bridge this gap, we propose ForgeryEraser, a framework designed to execute universal anti-forensics attack without access to the target AIGC detectors. We reveal an adversarial vulnerability stemming from the systemic reliance on Vision-Language Models (VLMs) as shared backbones (e.g., CLIP), where downstream AIGC detectors inherit the feature space of these publicly accessible models. Instead of traditional logit-based optimization, we design a multi-modal guidance loss to drive forged image embeddings within the VLM feature space toward text-derived authentic anchors to erase forgery traces, while repelling them from forgery anchors. Extensive experiments demonstrate that ForgeryEraser causes substantial performance degradation to advanced AIGC detectors on both global synthesis and local editing benchmarks. Moreover, ForgeryEraser induces explainable forensic models to generate explanations consistent with authentic images for forged images. Our code will be made publicly available.
comment: 17 pages, 11 figures
♻ ☆ Parameter-Free Adaptive Multi-Scale Channel-Spatial Attention Aggregation framework for 3D Indoor Semantic Scene Completion Toward Assisting Visually Impaired
In indoor assistive perception for visually impaired users, 3D Semantic Scene Completion (SSC) is expected to provide structurally coherent and semantically consistent occupancy under strictly monocular vision for safety-critical scene understanding. However, existing monocular SSC approaches often lack explicit modeling of voxel-feature reliability and regulated cross-scale information propagation during 2D-3D projection and multi-scale fusion, making them vulnerable to projection diffusion and feature entanglement and thus limiting structural stability. To address these challenges, this paper presents an Adaptive Multi-scale Attention Aggregation (AMAA) framework built upon the MonoScene pipeline. Rather than introducing a heavier backbone, AMAA focuses on reliability-oriented feature regulation within a monocular SSC framework. Specifically, lifted voxel features are jointly calibrated in semantic and spatial dimensions through parallel channel-spatial attention aggregation, while multi-scale encoder-decoder fusion is stabilized via a hierarchical adaptive feature-gating strategy that regulates information injection across scales. Experiments on the NYUv2 benchmark demonstrate consistent improvements over MonoScene without significantly increasing system complexity: AMAA achieves 27.25% SSC mIoU (+0.31) and 43.10% SC IoU (+0.59). In addition, system-level deployment on an NVIDIA Jetson platform verifies that the complete AMAA framework can be executed stably on embedded hardware. Overall, AMAA improves monocular SSC quality and provides a reliable and deployable perception framework for indoor assistive systems targeting visually impaired users.
comment: 17 pages, 9 figures, 5 tables
♻ ☆ Style-Aware Gloss Control for Generative Non-Photorealistic Rendering
Humans can infer material characteristics of objects from their visual appearance, and this ability extends to artistic depictions, where similar perceptual strategies guide the interpretation of paintings or drawings. Among the factors that define material appearance, gloss, along with color, is widely regarded as one of the most important, and recent studies indicate that humans can perceive gloss independently of the artistic style used to depict an object. To investigate how gloss and artistic style are represented in learned models, we train an unsupervised generative model on a newly curated dataset of painterly objects designed to systematically vary such factors. Our analysis reveals a hierarchical latent space in which gloss is disentangled from other appearance factors, allowing for a detailed study of how gloss is represented and varies across artistic styles. Building on this representation, we introduce a lightweight adapter that connects our style- and gloss-aware latent space to a latent-diffusion model, enabling the synthesis of non-photorealistic images with fine-grained control of these factors. We compare our approach with previous models and observe improved disentanglement and controllability of the learned factors.
♻ ☆ PP-Motion: Physical-Perceptual Fidelity Evaluation for Human Motion Generation
Human motion generation has found widespread applications in AR/VR, film, sports, and medical rehabilitation, offering a cost-effective alternative to traditional motion capture systems. However, evaluating the fidelity of such generated motions is a crucial, multifaceted task. Although previous approaches have attempted at motion fidelity evaluation using human perception or physical constraints, there remains an inherent gap between human-perceived fidelity and physical feasibility. Moreover, the subjective and coarse binary labeling of human perception further undermines the development of a robust data-driven metric. We address these issues by introducing a physical labeling method. This method evaluates motion fidelity by calculating the minimum modifications needed for a motion to align with physical laws. With this approach, we are able to produce fine-grained, continuous physical alignment annotations that serve as objective ground truth. With these annotations, we propose PP-Motion, a novel data-driven metric to evaluate both physical and perceptual fidelity of human motion. To effectively capture underlying physical priors, we employ Pearson's correlation loss for the training of our metric. Additionally, by incorporating a human-based perceptual fidelity loss, our metric can capture fidelity that simultaneously considers both human perception and physical alignment. Experimental results demonstrate that our metric, PP-Motion, not only aligns with physical laws but also aligns better with human perception of motion fidelity than previous work.
comment: Accepted by ACM Multimedia 2025
♻ ☆ Neural Point-based Volumetric Avatar: Surface-guided Neural Points for Efficient and Photorealistic Volumetric Head Avatar SIGGRAPH
Rendering photorealistic and dynamically moving human heads is crucial for ensuring a pleasant and immersive experience in AR/VR and video conferencing applications. However, existing methods often struggle to model challenging facial regions (e.g., mouth interior, eyes, hair/beard), resulting in unrealistic and blurry results. In this paper, we propose {\fullname} ({\name}), a method that adopts the neural point representation as well as the neural volume rendering process and discards the predefined connectivity and hard correspondence imposed by mesh-based approaches. Specifically, the neural points are strategically constrained around the surface of the target expression via a high-resolution UV displacement map, achieving increased modeling capacity and more accurate control. We introduce three technical innovations to improve the rendering and training efficiency: a patch-wise depth-guided (shading point) sampling strategy, a lightweight radiance decoding process, and a Grid-Error-Patch (GEP) ray sampling strategy during training. By design, our {\name} is better equipped to handle topologically changing regions and thin structures while also ensuring accurate expression control when animating avatars. Experiments conducted on three subjects from the Multiface dataset demonstrate the effectiveness of our designs, outperforming previous state-of-the-art methods, especially in handling challenging facial regions.
comment: Accepted by SIGGRAPH Asia 2023
♻ ☆ MotionHint: Self-Supervised Monocular Visual Odometry with Motion Constraints
We present a novel self-supervised algorithm named MotionHint for monocular visual odometry (VO) that takes motion constraints into account. A key aspect of our approach is to use an appropriate motion model that can help existing self-supervised monocular VO (SSM-VO) algorithms to overcome issues related to the local minima within their self-supervised loss functions. The motion model is expressed with a neural network named PPnet. It is trained to coarsely predict the next pose of the camera and the uncertainty of this prediction. Our self-supervised approach combines the original loss and the motion loss, which is the weighted difference between the prediction and the generated ego-motion. Taking two existing SSM-VO systems as our baseline, we evaluate our MotionHint algorithm on the standard KITTI benchmark. Experimental results show that our MotionHint algorithm can be easily applied to existing open-sourced state-of-the-art SSM-VO systems to greatly improve the performance by reducing the resulting ATE by up to 28.73%.
comment: Accepted by ICRA 2022
♻ ☆ LoLep: Single-View View Synthesis with Locally-Learned Planes and Self-Attention Occlusion Inference ICCV 2023
We propose a novel method, LoLep, which regresses Locally-Learned planes from a single RGB image to represent scenes accurately, thus generating better novel views. Without the depth information, regressing appropriate plane locations is a challenging problem. To solve this issue, we pre-partition the disparity space into bins and design a disparity sampler to regress local offsets for multiple planes in each bin. However, only using such a sampler makes the network not convergent; we further propose two optimizing strategies that combine with different disparity distributions of datasets and propose an occlusion-aware reprojection loss as a simple yet effective geometric supervision technique. We also introduce a self-attention mechanism to improve occlusion inference and present a Block-Sampling Self-Attention (BS-SA) module to address the problem of applying self-attention to large feature maps. We demonstrate the effectiveness of our approach and generate state-of-the-art results on different datasets. Compared to MINE, our approach has an LPIPS reduction of 4.8%-9.0% and an RV reduction of 73.9%-83.5%. We also evaluate the performance on real-world images and demonstrate the benefits.
comment: Accepted by ICCV 2023
♻ ☆ MeGA: Hybrid Mesh-Gaussian Head Avatar for High-Fidelity Rendering and Head Editing CVPR 2025
Creating high-fidelity head avatars from multi-view videos is a core issue for many AR/VR applications. However, existing methods usually struggle to obtain high-quality renderings for all different head components simultaneously since they use one single representation to model components with drastically different characteristics (e.g., skin vs. hair). In this paper, we propose a Hybrid Mesh-Gaussian Head Avatar (MeGA) that models different head components with more suitable representations. Specifically, we select an enhanced FLAME mesh as our facial representation and predict a UV displacement map to provide per-vertex offsets for improved personalized geometric details. To achieve photorealistic renderings, we obtain facial colors using deferred neural rendering and disentangle neural textures into three meaningful parts. For hair modeling, we first build a static canonical hair using 3D Gaussian Splatting. A rigid transformation and an MLP-based deformation field are further applied to handle complex dynamic expressions. Combined with our occlusion-aware blending, MeGA generates higher-fidelity renderings for the whole head and naturally supports more downstream tasks. Experiments on the NeRSemble dataset demonstrate the effectiveness of our designs, outperforming previous state-of-the-art methods and supporting various editing functionalities, including hairstyle alteration and texture editing.
comment: Accepted by CVPR 2025. Project page: https://conallwang.github.io/MeGA_Pages/
♻ ☆ Towards Scalable Language-Image Pre-training for 3D Medical Imaging
The scalability of current language-image pre-training for 3D medical imaging, such as CT and MRI, is constrained by the need for radiologists to manually curate raw clinical studies. In this work, we pioneer pre-training directly on uncurated studies, which both aligns more closely with the radiologist's workflow and provides a natural path to scalability. However, the unique structure of such data presents new challenges for existing model architectures, which were originally designed for 2D slices or single 3D scans. To address this, we introduce a novel hierarchical attention mechanism inspired by the intrinsic hierarchy of radiology data: slice, scan, and study. We denote our framework as Hierarchical attention for Language-Image Pre-training (HLIP). Trained on 220K studies with 3.13 million scans for brain MRI and 240K studies with 1.44 million scans for head CT, HLIP achieves state-of-the-art performance, e.g., +10.5% balanced ACC on the proposed publicly available brain MRI benchmark Pub-Brain-5; +8.3% and +1.7% macro AUC on head CT benchmarks CQ500 and RSNA, respectively. HLIP also exhibits strong generalizability on existing 3D medical language-image pre-training benchmarks, e.g., +4.3% macro AUC on the Rad-ChestCT benchmark when pre-trained on CT-RATE. These results demonstrate that, with HLIP, directly pre-training on uncurated clinical datasets is a scalable and effective direction for language-image pre-training in 3D medical imaging. The code is available at https://github.com/Zch0414/hlip.
comment: TMLR 2026
♻ ☆ VFace: A Training-Free Approach for Diffusion-Based Video Face Swapping WACV 2026
We present a training-free, plug-and-play method, namely VFace, for high-quality face swapping in videos. It can be seamlessly integrated with image-based face swapping approaches built on diffusion models. First, we introduce a Frequency Spectrum Attention Interpolation technique to facilitate generation and intact key identity characteristics. Second, we achieve Target Structure Guidance via plug-and-play attention injection to better align the structural features from the target frame to the generation. Third, we present a Flow-Guided Attention Temporal Smoothening mechanism that enforces spatiotemporal coherence without modifying the underlying diffusion model to reduce temporal inconsistencies typically encountered in frame-wise generation. Our method requires no additional training or video-specific fine-tuning. Extensive experiments show that our method significantly enhances temporal consistency and visual fidelity, offering a practical and modular solution for video-based face swapping. Our code is available at https://github.com/Sanoojan/VFace.
comment: Accepted at WACV 2026
♻ ☆ INQUIRE-Search: Interactive Discovery in Large-Scale Biodiversity Databases
Many ecological questions center on complex phenomena, such as species interactions, behaviors, phenology, and responses to disturbance, that are inherently difficult to observe and sparsely documented. Community science platforms such as iNaturalist contain hundreds of millions of biodiversity images, which often contain evidence of these complex phenomena. However, current workflows that seek to discover and analyze this evidence often rely on manual inspection, leaving this information largely inaccessible at scale. We introduce INQUIRE-Search, an open-source system that uses natural language to enable scientists to rapidly search within an ecological image database like iNaturalist for specific phenomena, verify and export relevant observations, and use these outputs for downstream scientific analysis. Across five illustrative case studies, INQUIRE-Search concentrates relevant observations 3-25x more efficiently than comparable manual inspection budgets. These examples demonstrate how the system can be used for ecological inference, from analyzing seasonal variation in behavior across species to forest regrowth after wildfires. These examples illustrate a new paradigm for interactive, efficient, and scalable scientific discovery that can begin to unlock previously inaccessible scientific value in large-scale biodiversity datasets. Finally, we highlight how AI-enabled discovery tools for science require reframing aspects of the scientific process, including experiment design, data collection, survey effort, and uncertainty analysis.
comment: EV, JC, RKV contributed equally
♻ ☆ VSF: Simple, Efficient, and Effective Negative Guidance in Few-Step Image Generation Models By Value Sign Flip
We introduce Value Sign Flip (VSF), a simple and efficient method for incorporating negative prompt guidance in few-step diffusion and flow-matching image generation models. Unlike existing approaches such as classifier-free guidance (CFG), NASA, and NAG, VSF dynamically suppresses undesired content by flipping the sign of attention values from negative prompts. Our method requires only small computational overhead and integrates effectively with MMDiT-style architectures such as Stable Diffusion 3.5 Turbo, as well as cross-attention-based models like Wan. We validate VSF on challenging datasets with complex prompt pairs and demonstrate superior performance in both static image and video generation tasks. Experimental results show that VSF significantly improves negative prompt adherence compared to prior methods in few-step models, and even CFG in non-few-step models, while maintaining competitive image quality. Code and ComfyUI node are available in https://github.com/weathon/VSF/tree/main.
♻ ☆ MolmoSpaces: A Large-Scale Open Ecosystem for Robot Navigation and Manipulation
Deploying robots at scale demands robustness to the long tail of everyday situations. The countless variations in scene layout, object geometry, and task specifications that characterize real environments are vast and underrepresented in existing robot benchmarks. Measuring this level of generalization requires infrastructure at a scale and diversity that physical evaluation alone cannot provide. We introduce MolmoSpaces, a fully open ecosystem to support large-scale benchmarking of robot policies. MolmoSpaces consists of over 230k diverse indoor environments, ranging from handcrafted household scenes to procedurally generated multiroom houses, populated with 130k richly annotated object assets, including 48k manipulable objects with 42M stable grasps. Crucially, these environments are simulator-agnostic, supporting popular options such as MuJoCo, Isaac, and ManiSkill. The ecosystem supports the full spectrum of embodied tasks: static and mobile manipulation, navigation, and multiroom long-horizon tasks requiring coordinated perception, planning, and interaction across entire indoor environments. We also design MolmoSpaces-Bench, a benchmark suite of 8 tasks in which robots interact with our diverse scenes and richly annotated objects. Our experiments show MolmoSpaces-Bench exhibits strong sim-to-real correlation (R = 0.96, \r{ho} = 0.98), confirm newer and stronger zero-shot policies outperform earlier versions in our benchmarks, and identify key sensitivities to prompt phrasing, initial joint positions, and camera occlusion. Through MolmoSpaces and its open-source assets and tooling, we provide a foundation for scalable data generation, policy training, and benchmark creation for robot learning research.
♻ ☆ Di3PO - Diptych Diffusion DPO for Targeted Improvements in Image Generation
Existing methods for preference tuning of text-to-image (T2I) diffusion models often rely on computationally expensive generation steps to create positive and negative pairs of images. These approaches frequently yield training pairs that either lack meaningful differences, are expensive to sample and filter, or exhibit significant variance in irrelevant pixel regions, thereby degrading training efficiency. To address these limitations, we introduce "Di3PO", a novel method for constructing positive and negative pairs that isolates specific regions targeted for improvement during preference tuning, while keeping the surrounding context in the image stable. We demonstrate the efficacy of our approach by applying it to the challenging task of text rendering in diffusion models, showcasing improvements over baseline methods of SFT and DPO.
♻ ☆ Demographic-aware fine-grained visual recognition of pediatric wrist pathologies
Pediatric wrist pathologies recognition from radiographs is challenging because normal anatomy changes rapidly with development: evolving carpal ossification and open physes can resemble pathology, and maturation timing differs by sex. Image-only models trained on limited medical datasets therefore risk confusing normal developmental variation with true pathologies. We address this by framing pediatric wrist diagnosis as a fine-grained visual recognition (FGVR) problem and proposing a demographic-aware hybrid convolution--transformer model that fuses X-rays with patient age and sex. To leverage demographic context while avoiding shortcut reliance, we introduce progressive metadata masking during training. We evaluate on a curated dataset that mirrors the typical constraints in real-world medical studies. The hybrid FGVR backbone outperforms traditional and modern CNNs, and demographic fusion yields additional gains. Finally, we show that initializing from a fine-grained pretraining source improves transfer relative to standard ImageNet initialization, suggesting that label granularity, even from non-medical data, can be a key driver of generalization for subtle radiographic findings.
Machine Learning 150
☆ Sink-Aware Pruning for Diffusion Language Models
Diffusion Language Models (DLMs) incur high inference cost due to iterative denoising, motivating efficient pruning. Existing pruning heuristics largely inherited from autoregressive (AR) LLMs, typically preserve attention sink tokens because AR sinks serve as stable global anchors. We show that this assumption does not hold for DLMs: the attention-sink position exhibits substantially higher variance over the full generation trajectory (measured by how the dominant sink locations shift across timesteps), indicating that sinks are often transient and less structurally essential than in AR models. Based on this observation, we propose ${\bf \texttt{Sink-Aware Pruning}}$, which automatically identifies and prunes unstable sinks in DLMs (prior studies usually keep sinks for AR LLMs). Without retraining, our method achieves a better quality-efficiency trade-off and outperforms strong prior pruning baselines under matched compute. Our code is available at https://github.com/VILA-Lab/Sink-Aware-Pruning.
comment: Code at: https://github.com/VILA-Lab/Sink-Aware-Pruning
☆ MARS: Margin-Aware Reward-Modeling with Self-Refinement
Reward modeling is a core component of modern alignment pipelines including RLHF and RLAIF, underpinning policy optimization methods including PPO and TRPO. However, training reliable reward models relies heavily on human-labeled preference data, which is costly and limited, motivating the use of data augmentation. Existing augmentation approaches typically operate at the representation or semantic level and remain agnostic to the reward model's estimation difficulty. In this paper, we propose MARS, an adaptive, margin-aware augmentation and sampling strategy that explicitly targets ambiguous and failure modes of the reward model. Our proposed framework, MARS, concentrates augmentation on low-margin (ambiguous) preference pairs where the reward model is most uncertain, and iteratively refines the training distribution via hard-sample augmentation. We provide theoretical guarantees showing that this strategy increases the average curvature of the loss function hence enhance information and improves conditioning, along with empirical results demonstrating consistent gains over uniform augmentation for robust reward modeling.
☆ Mine and Refine: Optimizing Graded Relevance in E-commerce Search Retrieval
We propose a two-stage "Mine and Refine" contrastive training framework for semantic text embeddings to enhance multi-category e-commerce search retrieval. Large scale e-commerce search demands embeddings that generalize to long tail, noisy queries while adhering to scalable supervision compatible with product and policy constraints. A practical challenge is that relevance is often graded: users accept substitutes or complements beyond exact matches, and production systems benefit from clear separation of similarity scores across these relevance strata for stable hybrid blending and thresholding. To obtain scalable policy consistent supervision, we fine-tune a lightweight LLM on human annotations under a three-level relevance guideline and further reduce residual noise via engagement driven auditing. In Stage 1, we train a multilingual Siamese two-tower retriever with a label aware supervised contrastive objective that shapes a robust global semantic space. In Stage 2, we mine hard samples via ANN and re-annotate them with the policy aligned LLM, and introduce a multi-class extension of circle loss that explicitly sharpens similarity boundaries between relevance levels, to further refine and enrich the embedding space. Robustness is additionally improved through additive spelling augmentation and synthetic query generation. Extensive offline evaluations and production A/B tests show that our framework improves retrieval relevance and delivers statistically significant gains in engagement and business impact.
☆ Multi-Round Human-AI Collaboration with User-Specified Requirements
As humans increasingly rely on multiround conversational AI for high stakes decisions, principled frameworks are needed to ensure such interactions reliably improve decision quality. We adopt a human centric view governed by two principles: counterfactual harm, ensuring the AI does not undermine human strengths, and complementarity, ensuring it adds value where the human is prone to err. We formalize these concepts via user defined rules, allowing users to specify exactly what harm and complementarity mean for their specific task. We then introduce an online, distribution free algorithm with finite sample guarantees that enforces the user-specified constraints over the collaboration dynamics. We evaluate our framework across two interactive settings: LLM simulated collaboration on a medical diagnostic task and a human crowdsourcing study on a pictorial reasoning task. We show that our online procedure maintains prescribed counterfactual harm and complementarity violation rates even under nonstationary interaction dynamics. Moreover, tightening or loosening these constraints produces predictable shifts in downstream human accuracy, confirming that the two principles serve as practical levers for steering multi-round collaboration toward better decision quality without the need to model or constrain human behavior.
☆ Pushing the Frontier of Black-Box LVLM Attacks via Fine-Grained Detail Targeting
Black-box adversarial attacks on Large Vision-Language Models (LVLMs) are challenging due to missing gradients and complex multimodal boundaries. While prior state-of-the-art transfer-based approaches like M-Attack perform well using local crop-level matching between source and target images, we find this induces high-variance, nearly orthogonal gradients across iterations, violating coherent local alignment and destabilizing optimization. We attribute this to (i) ViT translation sensitivity that yields spike-like gradients and (ii) structural asymmetry between source and target crops. We reformulate local matching as an asymmetric expectation over source transformations and target semantics, and build a gradient-denoising upgrade to M-Attack. On the source side, Multi-Crop Alignment (MCA) averages gradients from multiple independently sampled local views per iteration to reduce variance. On the target side, Auxiliary Target Alignment (ATA) replaces aggressive target augmentation with a small auxiliary set from a semantically correlated distribution, producing a smoother, lower-variance target manifold. We further reinterpret momentum as Patch Momentum, replaying historical crop gradients; combined with a refined patch-size ensemble (PE+), this strengthens transferable directions. Together these modules form M-Attack-V2, a simple, modular enhancement over M-Attack that substantially improves transfer-based black-box attacks on frontier LVLMs: boosting success rates on Claude-4.0 from 8% to 30%, Gemini-2.5-Pro from 83% to 97%, and GPT-5 from 98% to 100%, outperforming prior black-box LVLM attacks. Code and data are publicly available at: https://github.com/vila-lab/M-Attack-V2.
comment: Code at: https://github.com/vila-lab/M-Attack-V2
☆ A.R.I.S.: Automated Recycling Identification System for E-Waste Classification Using Deep Learning
Traditional electronic recycling processes suffer from significant resource loss due to inadequate material separation and identification capabilities, limiting material recovery. We present A.R.I.S. (Automated Recycling Identification System), a low-cost, portable sorter for shredded e-waste that addresses this efficiency gap. The system employs a YOLOx model to classify metals, plastics, and circuit boards in real time, achieving low inference latency with high detection accuracy. Experimental evaluation yielded 90% overall precision, 82.2% mean average precision (mAP), and 84% sortation purity. By integrating deep learning with established sorting methods, A.R.I.S. enhances material recovery efficiency and lowers barriers to advanced recycling adoption. This work complements broader initiatives in extending product life cycles, supporting trade-in and recycling programs, and reducing environmental impact across the supply chain.
☆ FAMOSE: A ReAct Approach to Automated Feature Discovery
Feature engineering remains a critical yet challenging bottleneck in machine learning, particularly for tabular data, as identifying optimal features from an exponentially large feature space traditionally demands substantial domain expertise. To address this challenge, we introduce FAMOSE (Feature AugMentation and Optimal Selection agEnt), a novel framework that leverages the ReAct paradigm to autonomously explore, generate, and refine features while integrating feature selection and evaluation tools within an agent architecture. To our knowledge, FAMOSE represents the first application of an agentic ReAct framework to automated feature engineering, especially for both regression and classification tasks. Extensive experiments demonstrate that FAMOSE is at or near the state-of-the-art on classification tasks (especially tasks with more than 10K instances, where ROC-AUC increases 0.23% on average), and achieves the state-of-the-art for regression tasks by reducing RMSE by 2.0% on average, while remaining more robust to errors than other algorithms. We hypothesize that FAMOSE's strong performance is because ReAct allows the LLM context window to record (via iterative feature discovery and evaluation steps) what features did or did not work. This is similar to a few-shot prompt and guides the LLM to invent better, more innovative features. Our work offers evidence that AI agents are remarkably effective in solving problems that require highly inventive solutions, such as feature engineering.
comment: 23 pages, 6 figures
☆ Reverso: Efficient Time Series Foundation Models for Zero-shot Forecasting
Learning time series foundation models has been shown to be a promising approach for zero-shot time series forecasting across diverse time series domains. Insofar as scaling has been a critical driver of performance of foundation models in other modalities such as language and vision, much recent work on time series foundation modeling has focused on scaling. This has resulted in time series foundation models with hundreds of millions of parameters that are, while performant, inefficient and expensive to use in practice. This paper describes a simple recipe for learning efficient foundation models for zero-shot time series forecasting that are orders of magnitude smaller. We show that large-scale transformers are not necessary: small hybrid models that interleave long convolution and linear RNN layers (in particular DeltaNet layers) can match the performance of larger transformer-based models while being more than a hundred times smaller. We also describe several data augmentation and inference strategies that further improve performance. This recipe results in Reverso, a family of efficient time series foundation models for zero-shot forecasting that significantly push the performance-efficiency Pareto frontier.
☆ When to Trust the Cheap Check: Weak and Strong Verification for Reasoning
Reasoning with LLMs increasingly unfolds inside a broader verification loop. Internally, systems use cheap checks, such as self-consistency or proxy rewards, which we call weak verification. Externally, users inspect outputs and steer the model through feedback until results are trustworthy, which we call strong verification. These signals differ sharply in cost and reliability: strong verification can establish trust but is resource-intensive, while weak verification is fast and scalable but noisy and imperfect. We formalize this tension through weak--strong verification policies, which decide when to accept or reject based on weak verification and when to defer to strong verification. We introduce metrics capturing incorrect acceptance, incorrect rejection, and strong-verification frequency. Over population, we show that optimal policies admit a two-threshold structure and that calibration and sharpness govern the value of weak verifiers. Building on this, we develop an online algorithm that provably controls acceptance and rejection errors without assumptions on the query stream, the language model, or the weak verifier.
☆ SMAC: Score-Matched Actor-Critics for Robust Offline-to-Online Transfer
Modern offline Reinforcement Learning (RL) methods find performant actor-critics, however, fine-tuning these actor-critics online with value-based RL algorithms typically causes immediate drops in performance. We provide evidence consistent with the hypothesis that, in the loss landscape, offline maxima for prior algorithms and online maxima are separated by low-performance valleys that gradient-based fine-tuning traverses. Following this, we present Score Matched Actor-Critic (SMAC), an offline RL method designed to learn actor-critics that transition to online value-based RL algorithms with no drop in performance. SMAC avoids valleys between offline and online maxima by regularizing the Q-function during the offline phase to respect a first-order derivative equality between the score of the policy and action-gradient of the Q-function. We experimentally demonstrate that SMAC converges to offline maxima that are connected to better online maxima via paths with monotonically increasing reward found by first-order optimization. SMAC achieves smooth transfer to Soft Actor-Critic and TD3 in 6/6 D4RL tasks. In 4/6 environments, it reduces regret by 34-58% over the best baseline.
☆ Catastrophic Forgetting Resilient One-Shot Incremental Federated Learning
Modern big-data systems generate massive, heterogeneous, and geographically dispersed streams that are large-scale and privacy-sensitive, making centralization challenging. While federated learning (FL) provides a privacy-enhancing training mechanism, it assumes a static data flow and learns a collaborative model over multiple rounds, making learning with \textit{incremental} data challenging in limited-communication scenarios. This paper presents One-Shot Incremental Federated Learning (OSI-FL), the first FL framework that addresses the dual challenges of communication overhead and catastrophic forgetting. OSI-FL communicates category-specific embeddings, devised by a frozen vision-language model (VLM) from each client in a single communication round, which a pre-trained diffusion model at the server uses to synthesize new data similar to the client's data distribution. The synthesized samples are used on the server for training. However, two challenges still persist: i) tasks arriving incrementally need to retrain the global model, and ii) as future tasks arrive, retraining the model introduces catastrophic forgetting. To this end, we augment training with Selective Sample Retention (SSR), which identifies and retains the top-p most informative samples per category and task pair based on sample loss. SSR bounds forgetting by ensuring that representative retained samples are incorporated into training in further iterations. The experimental results indicate that OSI-FL outperforms baselines, including traditional and one-shot FL approaches, in both class-incremental and domain-incremental scenarios across three benchmark datasets.
comment: Accepted for publication in the IEEE International Conference on Big Data (IEEE BigData) 2025
☆ Stable Asynchrony: Variance-Controlled Off-Policy RL for LLMs
Reinforcement learning (RL) is widely used to improve large language models on reasoning tasks, and asynchronous RL training is attractive because it increases end-to-end throughput. However, for widely adopted critic-free policy-gradient methods such as REINFORCE and GRPO, high asynchrony makes the policy-gradient estimator markedly $\textbf{higher variance}$: training on stale rollouts creates heavy-tailed importance ratios, causing a small fraction of samples to dominate updates. This amplification makes gradients noisy and learning unstable relative to matched on-policy training. Across math and general reasoning benchmarks, we find collapse is reliably predicted by effective sample size (ESS) and unstable gradient norms. Motivated by this diagnosis, we propose $\textbf{V}$ariance $\textbf{C}$ontrolled $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{VCPO}$), a general stabilization method for REINFORCE/GRPO-style algorithms that (i) scales learning rate based on effective sample size to dampen unreliable updates, and (ii) applies a closed-form minimum-variance baseline for the off-policy setting, avoiding an auxiliary value model and adding minimal overhead. Empirically, VCPO substantially improves robustness for asynchronous training across math, general reasoning, and tool-use tasks, outperforming a broad suite of baselines spanning masking/clipping stabilizers and algorithmic variants. This reduces long-context, multi-turn training time by 2.5$\times$ while matching synchronous performance, demonstrating that explicit control of policy-gradient variance is key for reliable asynchronous RL at scale.
☆ Guarding the Middle: Protecting Intermediate Representations in Federated Split Learning
Big data scenarios, where massive, heterogeneous datasets are distributed across clients, demand scalable, privacy-preserving learning methods. Federated learning (FL) enables decentralized training of machine learning (ML) models across clients without data centralization. Decentralized training, however, introduces a computational burden on client devices. U-shaped federated split learning (UFSL) offloads a fraction of the client computation to the server while keeping both data and labels on the clients' side. However, the intermediate representations (i.e., smashed data) shared by clients with the server are prone to exposing clients' private data. To reduce exposure of client data through intermediate data representations, this work proposes k-anonymous differentially private UFSL (KD-UFSL), which leverages privacy-enhancing techniques such as microaggregation and differential privacy to minimize data leakage from the smashed data transferred to the server. We first demonstrate that an adversary can access private client data from intermediate representations via a data-reconstruction attack, and then present a privacy-enhancing solution, KD-UFSL, to mitigate this risk. Our experiments indicate that, alongside increasing the mean squared error between the actual and reconstructed images by up to 50% in some cases, KD-UFSL also decreases the structural similarity between them by up to 40% on four benchmarking datasets. More importantly, KD-UFSL improves privacy while preserving the utility of the global model. This highlights its suitability for large-scale big data applications where privacy and utility must be balanced.
comment: Accepted for Publication in IEEE International Conference on Big Data (IEEE BigData) 2025
☆ Towards Anytime-Valid Statistical Watermarking
The proliferation of Large Language Models (LLMs) necessitates efficient mechanisms to distinguish machine-generated content from human text. While statistical watermarking has emerged as a promising solution, existing methods suffer from two critical limitations: the lack of a principled approach for selecting sampling distributions and the reliance on fixed-horizon hypothesis testing, which precludes valid early stopping. In this paper, we bridge this gap by developing the first e-value-based watermarking framework, Anchored E-Watermarking, that unifies optimal sampling with anytime-valid inference. Unlike traditional approaches where optional stopping invalidates Type-I error guarantees, our framework enables valid, anytime-inference by constructing a test supermartingale for the detection process. By leveraging an anchor distribution to approximate the target model, we characterize the optimal e-value with respect to the worst-case log-growth rate and derive the optimal expected stopping time. Our theoretical claims are substantiated by simulations and evaluations on established benchmarks, showing that our framework can significantly enhance sample efficiency, reducing the average token budget required for detection by 13-15% relative to state-of-the-art baselines.
☆ AutoNumerics: An Autonomous, PDE-Agnostic Multi-Agent Pipeline for Scientific Computing
PDEs are central to scientific and engineering modeling, yet designing accurate numerical solvers typically requires substantial mathematical expertise and manual tuning. Recent neural network-based approaches improve flexibility but often demand high computational cost and suffer from limited interpretability. We introduce \texttt{AutoNumerics}, a multi-agent framework that autonomously designs, implements, debugs, and verifies numerical solvers for general PDEs directly from natural language descriptions. Unlike black-box neural solvers, our framework generates transparent solvers grounded in classical numerical analysis. We introduce a coarse-to-fine execution strategy and a residual-based self-verification mechanism. Experiments on 24 canonical and real-world PDE problems demonstrate that \texttt{AutoNumerics} achieves competitive or superior accuracy compared to existing neural and LLM-based baselines, and correctly selects numerical schemes based on PDE structural properties, suggesting its viability as an accessible paradigm for automated PDE solving.
☆ Adapting Actively on the Fly: Relevance-Guided Online Meta-Learning with Latent Concepts for Geospatial Discovery
In many real-world settings, such as environmental monitoring, disaster response, or public health, with costly and difficult data collection and dynamic environments, strategically sampling from unobserved regions is essential for efficiently uncovering hidden targets under tight resource constraints. Yet, sparse and biased geospatial ground truth limits the applicability of existing learning-based methods, such as reinforcement learning. To address this, we propose a unified geospatial discovery framework that integrates active learning, online meta-learning, and concept-guided reasoning. Our approach introduces two key innovations built on a shared notion of *concept relevance*, which captures how domain-specific factors influence target presence: a *concept-weighted uncertainty sampling strategy*, where uncertainty is modulated by learned relevance based on readily-available domain-specific concepts (e.g., land cover, source proximity); and a *relevance-aware meta-batch formation strategy* that promotes semantic diversity during online-meta updates, improving generalization in dynamic environments. Our experiments include testing on a real-world dataset of cancer-causing PFAS (Per- and polyfluoroalkyl substances) contamination, showcasing our method's reliability at uncovering targets with limited data and a varying environment.
☆ Asymptotic Smoothing of the Lipschitz Loss Landscape in Overparameterized One-Hidden-Layer ReLU Networks
We study the topology of the loss landscape of one-hidden-layer ReLU networks under overparameterization. On the theory side, we (i) prove that for convex $L$-Lipschitz losses with an $\ell_1$-regularized second layer, every pair of models at the same loss level can be connected by a continuous path within an arbitrarily small loss increase $ε$ (extending a known result for the quadratic loss); (ii) obtain an asymptotic upper bound on the energy gap $ε$ between local and global minima that vanishes as the width $m$ grows, implying that the landscape flattens and sublevel sets become connected in the limit. Empirically, on a synthetic Moons dataset and on the Wisconsin Breast Cancer dataset, we measure pairwise energy gaps via Dynamic String Sampling (DSS) and find that wider networks exhibit smaller gaps; in particular, a permutation test on the maximum gap yields $p_{perm}=0$, indicating a clear reduction in the barrier height.
☆ Asymptotically Optimal Sequential Testing with Markovian Data
We study one-sided and $α$-correct sequential hypothesis testing for data generated by an ergodic Markov chain. The null hypothesis is that the unknown transition matrix belongs to a prescribed set $P$ of stochastic matrices, and the alternative corresponds to a disjoint set $Q$. We establish a tight non-asymptotic instance-dependent lower bound on the expected stopping time of any valid sequential test under the alternative. Our novel analysis improves the existing lower bounds, which are either asymptotic or provably sub-optimal in this setting. Our lower bound incorporates both the stationary distribution and the transition structure induced by the unknown Markov chain. We further propose an optimal test whose expected stopping time matches this lower bound asymptotically as $α\to 0$. We illustrate the usefulness of our framework through applications to sequential detection of model misspecification in Markov Chain Monte Carlo and to testing structural properties, such as the linearity of transition dynamics, in Markov decision processes. Our findings yield a sharp and general characterization of optimal sequential testing procedures under Markovian dependence.
☆ Conditional Flow Matching for Continuous Anomaly Detection in Autonomous Driving on a Manifold-Aware Spectral Space
Safety validation for Level 4 autonomous vehicles (AVs) is currently bottlenecked by the inability to scale the detection of rare, high-risk long-tail scenarios using traditional rule-based heuristics. We present Deep-Flow, an unsupervised framework for safety-critical anomaly detection that utilizes Optimal Transport Conditional Flow Matching (OT-CFM) to characterize the continuous probability density of expert human driving behavior. Unlike standard generative approaches that operate in unstable, high-dimensional coordinate spaces, Deep-Flow constrains the generative process to a low-rank spectral manifold via a Principal Component Analysis (PCA) bottleneck. This ensures kinematic smoothness by design and enables the computation of the exact Jacobian trace for numerically stable, deterministic log-likelihood estimation. To resolve multi-modal ambiguity at complex junctions, we utilize an Early Fusion Transformer encoder with lane-aware goal conditioning, featuring a direct skip-connection to the flow head to maintain intent-integrity throughout the network. We introduce a kinematic complexity weighting scheme that prioritizes high-energy maneuvers (quantified via path tortuosity and jerk) during the simulation-free training process. Evaluated on the Waymo Open Motion Dataset (WOMD), our framework achieves an AUC-ROC of 0.766 against a heuristic golden set of safety-critical events. More significantly, our analysis reveals a fundamental distinction between kinematic danger and semantic non-compliance. Deep-Flow identifies a critical predictability gap by surfacing out-of-distribution behaviors, such as lane-boundary violations and non-normative junction maneuvers, that traditional safety filters overlook. This work provides a mathematically rigorous foundation for defining statistical safety gates, enabling objective, data-driven validation for the safe deployment of autonomous fleets.
☆ Canonicalizing Multimodal Contrastive Representation Learning
As models and data scale, independently trained networks often induce analogous notions of similarity. But, matching similarities is weaker than establishing an explicit correspondence between the representation spaces, especially for multimodal models, where consistency must hold not only within each modality, but also for the learned image-text coupling. We therefore ask: given two independently trained multimodal contrastive models (with encoders $(f, g)$ and $(\widetilde{f},\widetilde{g})$) -- trained on different distributions and with different architectures -- does a systematic geometric relationship exist between their embedding spaces? If so, what form does it take, and does it hold uniformly across modalities? In this work, we show that across model families such as CLIP, SigLIP, and FLAVA, this geometric relationship is well approximated by an orthogonal map (up to a global mean shift), i.e., there exists an orthogonal map $Q$ where $Q^\top Q = I$ such that $\widetilde{f}(x)\approx Q f(x)$ for paired images $x$. Strikingly, the same $Q$ simultaneously aligns the text encoders i.e., $\widetilde{g}(y)\approx Q g(y)$ for texts $y$. Theoretically, we prove that if the multimodal kernel agrees across models on a small anchor set i.e. $\langle f(x), g(y)\rangle \approx \langle \widetilde{f}(x), \widetilde{g}(y)\rangle$, then the two models must be related by a single orthogonal map $Q$ and the same $Q$ maps images and text across models. More broadly, this finding enables backward-compatible model upgrades, avoiding costly re-embedding, and has implications for the privacy of learned representations. Our project page: https://canonical-multimodal.github.io/
comment: 78 pages, 57 figures
☆ Simultaneous Blackwell Approachability and Applications to Multiclass Omniprediction
Omniprediction is a learning problem that requires suboptimality bounds for each of a family of losses $\mathcal{L}$ against a family of comparator predictors $\mathcal{C}$. We initiate the study of omniprediction in a multiclass setting, where the comparator family $\mathcal{C}$ may be infinite. Our main result is an extension of the recent binary omniprediction algorithm of [OKK25] to the multiclass setting, with sample complexity (in statistical settings) or regret horizon (in online settings) $\approx \varepsilon^{-(k+1)}$, for $\varepsilon$-omniprediction in a $k$-class prediction problem. En route to proving this result, we design a framework of potential broader interest for solving Blackwell approachability problems where multiple sets must simultaneously be approached via coupled actions.
☆ Be Wary of Your Time Series Preprocessing AAAI-26
Normalization and scaling are fundamental preprocessing steps in time series modeling, yet their role in Transformer-based models remains underexplored from a theoretical perspective. In this work, we present the first formal analysis of how different normalization strategies, specifically instance-based and global scaling, impact the expressivity of Transformer-based architectures for time series representation learning. We propose a novel expressivity framework tailored to time series, which quantifies a model's ability to distinguish between similar and dissimilar inputs in the representation space. Using this framework, we derive theoretical bounds for two widely used normalization methods: Standard and Min-Max scaling. Our analysis reveals that the choice of normalization strategy can significantly influence the model's representational capacity, depending on the task and data characteristics. We complement our theory with empirical validation on classification and forecasting benchmarks using multiple Transformer-based models. Our results show that no single normalization method consistently outperforms others, and in some cases, omitting normalization entirely leads to superior performance. These findings highlight the critical role of preprocessing in time series learning and motivate the need for more principled normalization strategies tailored to specific tasks and datasets.
comment: Accepted at the AI4TS workshop at AAAI-26
☆ Optimal Unconstrained Self-Distillation in Ridge Regression: Strict Improvements, Precise Asymptotics, and One-Shot Tuning
Self-distillation (SD) is the process of retraining a student on a mixture of ground-truth labels and the teacher's own predictions using the same architecture and training data. Although SD has been empirically shown to often improve generalization, its formal guarantees remain limited. We study SD for ridge regression in unconstrained setting in which the mixing weight $ξ$ may be outside the unit interval. Conditioned on the training data and without any distributional assumptions, we prove that for any squared prediction risk (including out-of-distribution), the optimally mixed student strictly improves upon the ridge teacher for every regularization level $λ> 0$ at which the teacher ridge risk $R(λ)$ is nonstationary (i.e., $R'(λ) \neq 0$). We obtain a closed-form expression for the optimal mixing weight $ξ^\star(λ)$ for any value of $λ$ and show that it obeys the sign rule: $\operatorname{sign}(ξ^\star(λ))=-\operatorname{sign}(R'(λ))$. In particular, $ξ^\star(λ)$ can be negative, which is the case in over-regularized regimes. To quantify the risk improvement due to SD, we derive exact deterministic equivalents for the optimal SD risk in the proportional asymptotics regime (where the sample and feature sizes $n$ and $p$ both diverge but their aspect ratio $p/n$ converges) under general anisotropic covariance and deterministic signals. Our asymptotic analysis extends standard second-order ridge deterministic equivalents to their fourth-order analogs using block linearization, which may be of independent interest. From a practical standpoint, we propose a consistent one-shot tuning method to estimate $ξ^\star$ without grid search, sample splitting, or refitting. Experiments on real-world datasets and pretrained neural network features support our theory and the one-shot tuning method.
comment: 78 pages, 25 figures
☆ Revisiting Weight Regularization for Low-Rank Continual Learning ICLR 2026
Continual Learning (CL) with large-scale pre-trained models (PTMs) has recently gained wide attention, shifting the focus from training from scratch to continually adapting PTMs. This has given rise to a promising paradigm: parameter-efficient continual learning (PECL), where task interference is typically mitigated by assigning a task-specific module during training, such as low-rank adapters. However, weight regularization techniques, such as Elastic Weight Consolidation (EWC)-a key strategy in CL-remain underexplored in this new paradigm. In this paper, we revisit weight regularization in low-rank CL as a new perspective for mitigating task interference in PECL. Unlike existing low-rank CL methods, we mitigate task interference by regularizing a shared low-rank update through EWC, thereby keeping the storage requirement and inference costs constant regardless of the number of tasks. Our proposed method EWC-LoRA leverages a low-rank representation to estimate parameter importance over the full-dimensional space. This design offers a practical, computational- and memory-efficient solution for CL with PTMs, and provides insights that may inform the broader application of regularization techniques within PECL. Extensive experiments on various benchmarks demonstrate the effectiveness of EWC-LoRA, achieving a stability-plasticity trade-off superior to existing low-rank CL approaches. These results indicate that, even under low-rank parameterizations, weight regularization remains an effective mechanism for mitigating task interference. Code is available at: https://github.com/yaoyz96/low-rank-cl.
comment: Accepted by ICLR 2026
☆ A Theoretical Framework for Modular Learning of Robust Generative Models
Training large-scale generative models is resource-intensive and relies heavily on heuristic dataset weighting. We address two fundamental questions: Can we train Large Language Models (LLMs) modularly-combining small, domain-specific experts to match monolithic performance-and can we do so robustly for any data mixture, eliminating heuristic tuning? We present a theoretical framework for modular generative modeling where a set of pre-trained experts are combined via a gating mechanism. We define the space of normalized gating functions, $G_{1}$, and formulate the problem as a minimax game to find a single robust gate that minimizes divergence to the worst-case data mixture. We prove the existence of such a robust gate using Kakutani's fixed-point theorem and show that modularity acts as a strong regularizer, with generalization bounds scaling with the lightweight gate's complexity. Furthermore, we prove that this modular approach can theoretically outperform models retrained on aggregate data, with the gap characterized by the Jensen-Shannon Divergence. Finally, we introduce a scalable Stochastic Primal-Dual algorithm and a Structural Distillation method for efficient inference. Empirical results on synthetic and real-world datasets confirm that our modular architecture effectively mitigates gradient conflict and can robustly outperform monolithic baselines.
☆ MASPO: Unifying Gradient Utilization, Probability Mass, and Signal Reliability for Robust and Sample-Efficient LLM Reasoning
Existing Reinforcement Learning with Verifiable Rewards (RLVR) algorithms, such as GRPO, rely on rigid, uniform, and symmetric trust region mechanisms that are fundamentally misaligned with the complex optimization dynamics of Large Language Models (LLMs). In this paper, we identify three critical challenges in these methods: (1) inefficient gradient utilization caused by the binary cutoff of hard clipping, (2) insensitive probability mass arising from uniform ratio constraints that ignore the token distribution, and (3) asymmetric signal reliability stemming from the disparate credit assignment ambiguity between positive and negative samples. To bridge these gaps, we propose Mass-Adaptive Soft Policy Optimization (MASPO), a unified framework designed to harmonize these three dimensions. MASPO integrates a differentiable soft Gaussian gating to maximize gradient utility, a mass-adaptive limiter to balance exploration across the probability spectrum, and an asymmetric risk controller to align update magnitudes with signal confidence. Extensive evaluations demonstrate that MASPO serves as a robust, all-in-one RLVR solution, significantly outperforming strong baselines. Our code is available at: https://anonymous.4open.science/r/ma1/README.md.
☆ Learning to Stay Safe: Adaptive Regularization Against Safety Degradation during Fine-Tuning
Instruction-following language models are trained to be helpful and safe, yet their safety behavior can deteriorate under benign fine-tuning and worsen under adversarial updates. Existing defenses often offer limited protection or force a trade-off between safety and utility. We introduce a training framework that adapts regularization in response to safety risk, enabling models to remain aligned throughout fine-tuning. To estimate safety risk at training time, we explore two distinct approaches: a judge-based Safety Critic that assigns high-level harm scores to training batches, and an activation-based risk predictor built with a lightweight classifier trained on intermediate model activations to estimate harmful intent. Each approach provides a risk signal that is used to constrain updates deemed higher risk to remain close to a safe reference policy, while lower-risk updates proceed with standard training. We empirically verify that harmful intent signals are predictable from pre-generation activations and that judge scores provide effective high-recall safety guidance. Across multiple model families and attack scenarios, adaptive regularization with either risk estimation approach consistently lowers attack success rate compared to standard fine-tuning, preserves downstream performance, and adds no inference-time cost. This work demonstrates a principled mechanism for maintaining safety without sacrificing utility.
comment: Work in progress (30 pages)
☆ Adaptive Decentralized Composite Optimization via Three-Operator Splitting
The paper studies decentralized optimization over networks, where agents minimize a sum of {\it locally} smooth (strongly) convex losses and plus a nonsmooth convex extended value term. We propose decentralized methods wherein agents {\it adaptively} adjust their stepsize via local backtracking procedures coupled with lightweight min-consensus protocols. Our design stems from a three-operator splitting factorization applied to an equivalent reformulation of the problem. The reformulation is endowed with a new BCV preconditioning metric (Bertsekas-O'Connor-Vandenberghe), which enables efficient decentralized implementation and local stepsize adjustments. We establish robust convergence guarantees. Under mere convexity, the proposed methods converge with a sublinear rate. Under strong convexity of the sum-function, and assuming the nonsmooth component is partly smooth, we further prove linear convergence. Numerical experiments corroborate the theory and highlight the effectiveness of the proposed adaptive stepsize strategy.
comment: 25 pages, 3 figures
☆ genriesz: A Python Package for Automatic Debiased Machine Learning with Generalized Riesz Regression
Efficient estimation of causal and structural parameters can be automated using the Riesz representation theorem and debiased machine learning (DML). We present genriesz, an open-source Python package that implements automatic DML and generalized Riesz regression, a unified framework for estimating Riesz representers by minimizing empirical Bregman divergences. This framework includes covariate balancing, nearest-neighbor matching, calibrated estimation, and density ratio estimation as special cases. A key design principle of the package is automatic regressor balancing (ARB): given a Bregman generator $g$ and a representer model class, genriesz} automatically constructs a compatible link function so that the generalized Riesz regression estimator satisfies balancing (moment-matching) optimality conditions in a user-chosen basis. The package provides a modulr interface for specifying (i) the target linear functional via a black-box evaluation oracle, (ii) the representer model via basis functions (polynomial, RKHS approximations, random forest leaf encodings, neural embeddings, and a nearest-neighbor catchment basis), and (iii) the Bregman generator, with optional user-supplied derivatives. It returns regression adjustment (RA), Riesz weighting (RW), augmented Riesz weighting (ARW), and TMLE-style estimators with cross-fitting, confidence intervals, and $p$-values. We highlight representative workflows for estimation problems such as the average treatment effect (ATE), ATE on treated (ATT), and average marginal effect estimation. The Python package is available at https://github.com/MasaKat0/genriesz and on PyPI.
IRIS: Learning-Driven Task-Specific Cinema Robot Arm for Visuomotor Motion Control
Robotic camera systems enable dynamic, repeatable motion beyond human capabilities, yet their adoption remains limited by the high cost and operational complexity of industrial-grade platforms. We present the Intelligent Robotic Imaging System (IRIS), a task-specific 6-DOF manipulator designed for autonomous, learning-driven cinematic motion control. IRIS integrates a lightweight, fully 3D-printed hardware design with a goal-conditioned visuomotor imitation learning framework based on Action Chunking with Transformers (ACT). The system learns object-aware and perceptually smooth camera trajectories directly from human demonstrations, eliminating the need for explicit geometric programming. The complete platform costs under $1,000 USD, supports a 1.5 kg payload, and achieves approximately 1 mm repeatability. Real-world experiments demonstrate accurate trajectory tracking, reliable autonomous execution, and generalization across diverse cinematic motions.
☆ Position: Evaluation of ECG Representations Must Be Fixed
This position paper argues that current benchmarking practice in 12-lead ECG representation learning must be fixed to ensure progress is reliable and aligned with clinically meaningful objectives. The field has largely converged on three public multi-label benchmarks (PTB-XL, CPSC2018, CSN) dominated by arrhythmia and waveform-morphology labels, even though the ECG is known to encode substantially broader clinical information. We argue that downstream evaluation should expand to include an assessment of structural heart disease and patient-level forecasting, in addition to other evolving ECG-related endpoints, as relevant clinical targets. Next, we outline evaluation best practices for multi-label, imbalanced settings, and show that when they are applied, the literature's current conclusion about which representations perform best is altered. Furthermore, we demonstrate the surprising result that a randomly initialized encoder with linear evaluation matches state-of-the-art pre-training on many tasks. This motivates the use of a random encoder as a reasonable baseline model. We substantiate our observations with an empirical evaluation of three representative ECG pre-training approaches across six evaluation settings: the three standard benchmarks, a structural disease dataset, hemodynamic inference, and patient forecasting.
comment: Project website at https://ecgfix.csail.mit.edu/
☆ Provably Explaining Neural Additive Models ICLR 2026
Despite significant progress in post-hoc explanation methods for neural networks, many remain heuristic and lack provable guarantees. A key approach for obtaining explanations with provable guarantees is by identifying a cardinally-minimal subset of input features which by itself is provably sufficient to determine the prediction. However, for standard neural networks, this task is often computationally infeasible, as it demands a worst-case exponential number of verification queries in the number of input features, each of which is NP-hard. In this work, we show that for Neural Additive Models (NAMs), a recent and more interpretable neural network family, we can efficiently generate explanations with such guarantees. We present a new model-specific algorithm for NAMs that generates provably cardinally-minimal explanations using only a logarithmic number of verification queries in the number of input features, after a parallelized preprocessing step with logarithmic runtime in the required precision is applied to each small univariate NAM component. Our algorithm not only makes the task of obtaining cardinally-minimal explanations feasible, but even outperforms existing algorithms designed to find the relaxed variant of subset-minimal explanations - which may be larger and less informative but easier to compute - despite our algorithm solving a much more difficult task. Our experiments demonstrate that, compared to previous algorithms, our approach provides provably smaller explanations than existing works and substantially reduces the computation time. Moreover, we show that our generated provable explanations offer benefits that are unattainable by standard sampling-based techniques typically used to interpret NAMs.
comment: To appear in ICLR 2026
☆ The Anxiety of Influence: Bloom Filters in Transformer Attention Heads
Some transformer attention heads appear to function as membership testers, dedicating themselves to answering the question "has this token appeared before in the context?" We identify these heads across four language models (GPT-2 small, medium, and large; Pythia-160M) and show that they form a spectrum of membership-testing strategies. Two heads (L0H1 and L0H5 in GPT-2 small) function as high-precision membership filters with false positive rates of 0-4\% even at 180 unique context tokens -- well above the $d_\text{head} = 64$ bit capacity of a classical Bloom filter. A third head (L1H11) shows the classic Bloom filter capacity curve: its false positive rate follows the theoretical formula $p \approx (1 - e^{-kn/m})^k$ with $R^2 = 1.0$ and fitted capacity $m \approx 5$ bits, saturating by $n \approx 20$ unique tokens. A fourth head initially identified as a Bloom filter (L3H0) was reclassified as a general prefix-attention head after confound controls revealed its apparent capacity curve was a sequence-length artifact. Together, the three genuine membership-testing heads form a multi-resolution system concentrated in early layers (0-1), taxonomically distinct from induction and previous-token heads, with false positive rates that decay monotonically with embedding distance -- consistent with distance-sensitive Bloom filters. These heads generalize broadly: they respond to any repeated token type, not just repeated names, with 43\% higher generalization than duplicate-token-only heads. Ablation reveals these heads contribute to both repeated and novel token processing, indicating that membership testing coexists with broader computational roles. The reclassification of L3H0 through confound controls strengthens rather than weakens the case: the surviving heads withstand the scrutiny that eliminated a false positive in our own analysis.
comment: 13 pages, 8 figures, code at https://github.com/pbalogh/anxiety-of-influence v2: L3H0 reclassified as prefix-attention head following confound control. Capacity analysis updated. Duplicate-token head overlap experiment added v3: All experiments were independently validated on CPU to rule out hardware-specific computation artifacts. Results are consistent across backends
☆ Variational inference via radial transport
In variational inference (VI), the practitioner approximates a high-dimensional distribution $π$ with a simple surrogate one, often a (product) Gaussian distribution. However, in many cases of practical interest, Gaussian distributions might not capture the correct radial profile of $π$, resulting in poor coverage. In this work, we approach the VI problem from the perspective of optimizing over these radial profiles. Our algorithm radVI is a cheap, effective add-on to many existing VI schemes, such as Gaussian (mean-field) VI and Laplace approximation. We provide theoretical convergence guarantees for our algorithm, owing to recent developments in optimization over the Wasserstein space--the space of probability distributions endowed with the Wasserstein distance--and new regularity properties of radial transport maps in the style of Caffarelli (2000).
☆ LORA-CRAFT: Cross-layer Rank Adaptation via Frozen Tucker Decomposition of Pre-trained Attention Weights
We introduce CRAFT (Cross-layer Rank Adaptation via Frozen Tucker), a parameter-efficient fine-tuning (PEFT) method that applies Tucker tensor decomposition to pre-trained attention weight matrices stacked across transformer layers and trains only small square adaptation matrices on the resulting frozen Tucker factors. Existing tensor-based PEFT methods decompose gradient updates: LoTR applies Tucker decomposition with shared factor matrices, while SuperLoRA groups and reshapes $ΔW$ across layers before applying Tucker decomposition. Separately, methods like PiSSA apply SVD to pre-trained weights but operate independently per layer. CRAFT bridges these two lines of work: it performs full Tucker decomposition via Higher-Order SVD (HOSVD) directly on pre-trained weights organized as cross-layer 3D tensors, freezes all resulting factors, and adapts the model through lightweight trainable transformations applied to each factor matrix. Experiments on the GLUE benchmark using RoBERTa-base and RoBERTa-large demonstrate that CRAFT achieves competitive performance with existing methods while requiring only 41K Tucker adaptation parameters--a count independent of model dimension and depth at fixed Tucker ranks.
☆ Retrospective In-Context Learning for Temporal Credit Assignment with Large Language Models NeurIPS 2025
Learning from self-sampled data and sparse environmental feedback remains a fundamental challenge in training self-evolving agents. Temporal credit assignment mitigates this issue by transforming sparse feedback into dense supervision signals. However, previous approaches typically depend on learning task-specific value functions for credit assignment, which suffer from poor sample efficiency and limited generalization. In this work, we propose to leverage pretrained knowledge from large language models (LLMs) to transform sparse rewards into dense training signals (i.e., the advantage function) through retrospective in-context learning (RICL). We further propose an online learning framework, RICOL, which iteratively refines the policy based on the credit assignment results from RICL. We empirically demonstrate that RICL can accurately estimate the advantage function with limited samples and effectively identify critical states in the environment for temporal credit assignment. Extended evaluation on four BabyAI scenarios show that RICOL achieves comparable convergent performance with traditional online RL algorithms with significantly higher sample efficiency. Our findings highlight the potential of leveraging LLMs for temporal credit assignment, paving the way for more sample-efficient and generalizable RL paradigms.
comment: Accepted to NeurIPS 2025
☆ Learning with Boolean threshold functions
We develop a method for training neural networks on Boolean data in which the values at all nodes are strictly $\pm 1$, and the resulting models are typically equivalent to networks whose nonzero weights are also $\pm 1$. The method replaces loss minimization with a nonconvex constraint formulation. Each node implements a Boolean threshold function (BTF), and training is expressed through a divide-and-concur decomposition into two complementary constraints: one enforces local BTF consistency between inputs, weights, and output; the other imposes architectural concurrence, equating neuron outputs with downstream inputs and enforcing weight equality across training-data instantiations of the network. The reflect-reflect-relax (RRR) projection algorithm is used to reconcile these constraints. Each BTF constraint includes a lower bound on the margin. When this bound is sufficiently large, the learned representations are provably sparse and equivalent to networks composed of simple logical gates with $\pm 1$ weights. Across a range of tasks -- including multiplier-circuit discovery, binary autoencoding, logic-network inference, and cellular automata learning -- the method achieves exact solutions or strong generalization in regimes where standard gradient-based methods struggle. These results demonstrate that projection-based constraint satisfaction provides a viable and conceptually distinct foundation for learning in discrete neural systems, with implications for interpretability and efficient inference.
comment: 22 pages, 21 figures
☆ Linear Convergence in Games with Delayed Feedback via Extra Prediction
Feedback delays are inevitable in real-world multi-agent learning. They are known to severely degrade performance, and the convergence rate under delayed feedback is still unclear, even for bilinear games. This paper derives the rate of linear convergence of Weighted Optimistic Gradient Descent-Ascent (WOGDA), which predicts future rewards with extra optimism, in unconstrained bilinear games. To analyze the algorithm, we interpret it as an approximation of the Extra Proximal Point (EPP), which is updated based on farther future rewards than the classical Proximal Point (PP). Our theorems show that standard optimism (predicting the next-step reward) achieves linear convergence to the equilibrium at a rate $\exp(-Θ(t/m^{5}))$ after $t$ iterations for delay $m$. Moreover, employing extra optimism (predicting farther future reward) tolerates a larger step size and significantly accelerates the rate to $\exp(-Θ(t/(m^{2}\log m)))$. Our experiments also show accelerated convergence driven by the extra optimism and are qualitatively consistent with our theorems. In summary, this paper validates that extra optimism is a promising countermeasure against performance degradation caused by feedback delays.
comment: 9 pages, 3 figures (main); 5 pages, 1 figure (appendix)
☆ Variational Grey-Box Dynamics Matching AISTATS 2026
Deep generative models such as flow matching and diffusion models have shown great potential in learning complex distributions and dynamical systems, but often act as black-boxes, neglecting underlying physics. In contrast, physics-based simulation models described by ODEs/PDEs remain interpretable, but may have missing or unknown terms, unable to fully describe real-world observations. We bridge this gap with a novel grey-box method that integrates incomplete physics models directly into generative models. Our approach learns dynamics from observational trajectories alone, without ground-truth physics parameters, in a simulation-free manner that avoids scalability and stability issues of Neural ODEs. The core of our method lies in modelling a structured variational distribution within the flow matching framework, by using two latent encodings: one to model the missing stochasticity and multi-modal velocity, and a second to encode physics parameters as a latent variable with a physics-informed prior. Furthermore, we present an adaptation of the framework to handle second-order dynamics. Our experiments on representative ODE/PDE problems show that our method performs on par with or superior to fully data-driven approaches and previous grey-box baselines, while preserving the interpretability of the physics model. Our code is available at https://github.com/DMML-Geneva/VGB-DM.
comment: AISTATS 2026. Code is available at https://github.com/DMML-Geneva/VGB-DM
☆ ABCD: All Biases Come Disguised
Multiple-choice question (MCQ) benchmarks have been a standard evaluation practice for measuring LLMs' ability to reason and answer knowledge-based questions. Through a synthetic NonsenseQA benchmark, we observe that different LLMs exhibit varying degrees of label-position-few-shot-prompt bias, where the model either uses the answer position, the label in front of the answer, the distributions of correct answers present in the few-shot prompt, or a combination of all to answer each MCQ question. We propose a simple bias-reduced evaluation protocol that replaces the labels of each question with uniform, unordered labels and prompts the LLM to use the whole answer presented. With a simple sentence similarity model, we demonstrate improved robustness and lower standard deviation between different permutations of answers with a minimal drop in LLM's performance, exposing the LLM's capabilities under reduced evaluation artifacts, without any help from the prompt examples or the option labels. Across multiple benchmarks and models, this protocol substantially improves the robustness to answer permutations, reducing mean accuracy variance $3\times$ with only a minimal decrease in the mean model's performance. Through ablation studies on various embedding models and similarity functions, we show that the method is more robust than the standard ones.
comment: 29 pages, 20 figures, pre-print, 12 tables
☆ Fine-Grained Uncertainty Quantification for Long-Form Language Model Outputs: A Comparative Study
Uncertainty quantification has emerged as an effective approach to closed-book hallucination detection for LLMs, but existing methods are largely designed for short-form outputs and do not generalize well to long-form generation. We introduce a taxonomy for fine-grained uncertainty quantification in long-form LLM outputs that distinguishes methods by design choices at three stages: response decomposition, unit-level scoring, and response-level aggregation. We formalize several families of consistency-based black-box scorers, providing generalizations and extensions of existing methods. In our experiments across multiple LLMs and datasets, we find 1) claim-response entailment consistently performs better or on par with more complex claim-level scorers, 2) claim-level scoring generally yields better results than sentence-level scoring, and 3) uncertainty-aware decoding is highly effective for improving the factuality of long-form outputs. Our framework clarifies relationships between prior methods, enables apples-to-apples comparisons, and provides practical guidance for selecting components for fine-grained UQ.
comment: UQLM repository: https://github.com/cvs-health/uqlm
☆ Convergence Analysis of Two-Layer Neural Networks under Gaussian Input Masking
We investigate the convergence guarantee of two-layer neural network training with Gaussian randomly masked inputs. This scenario corresponds to Gaussian dropout at the input level, or noisy input training common in sensor networks, privacy-preserving training, and federated learning, where each user may have access to partial or corrupted features. Using a Neural Tangent Kernel (NTK) analysis, we demonstrate that training a two-layer ReLU network with Gaussian randomly masked inputs achieves linear convergence up to an error region proportional to the mask's variance. A key technical contribution is resolving the randomness within the non-linear activation, a problem of independent interest.
comment: 69 pages, submitted to AI/ML Journal
☆ SpectralGCD: Spectral Concept Selection and Cross-modal Representation Learning for Generalized Category Discovery ICLR 2026
Generalized Category Discovery (GCD) aims to identify novel categories in unlabeled data while leveraging a small labeled subset of known classes. Training a parametric classifier solely on image features often leads to overfitting to old classes, and recent multimodal approaches improve performance by incorporating textual information. However, they treat modalities independently and incur high computational cost. We propose SpectralGCD, an efficient and effective multimodal approach to GCD that uses CLIP cross-modal image-concept similarities as a unified cross-modal representation. Each image is expressed as a mixture over semantic concepts from a large task-agnostic dictionary, which anchors learning to explicit semantics and reduces reliance on spurious visual cues. To maintain the semantic quality of representations learned by an efficient student, we introduce Spectral Filtering which exploits a cross-modal covariance matrix over the softmaxed similarities measured by a strong teacher model to automatically retain only relevant concepts from the dictionary. Forward and reverse knowledge distillation from the same teacher ensures that the cross-modal representations of the student remain both semantically sufficient and well-aligned. Across six benchmarks, SpectralGCD delivers accuracy comparable to or significantly superior to state-of-the-art methods at a fraction of the computational cost. The code is publicly available at: https://github.com/miccunifi/SpectralGCD.
comment: Accepted at ICLR 2026. Code available at https://github.com/miccunifi/SpectralGCD
☆ MDP Planning as Policy Inference
We cast episodic Markov decision process (MDP) planning as Bayesian inference over _policies_. A policy is treated as the latent variable and is assigned an unnormalized probability of optimality that is monotone in its expected return, yielding a posterior distribution whose modes coincide with return-maximizing solutions while posterior dispersion represents uncertainty over optimal behavior. To approximate this posterior in discrete domains, we adapt variational sequential Monte Carlo (VSMC) to inference over deterministic policies under stochastic dynamics, introducing a sweep that enforces policy consistency across revisited states and couples transition randomness across particles to avoid confounding from simulator noise. Acting is performed by posterior predictive sampling, which induces a stochastic control policy through a Thompson-sampling interpretation rather than entropy regularization. Across grid worlds, Blackjack, Triangle Tireworld, and Academic Advising, we analyze the structure of inferred policy distributions and compare the resulting behavior to discrete Soft Actor-Critic, highlighting qualitative and statistical differences that arise from policy-level uncertainty.
comment: 28 pages, many figures
☆ A feature-stable and explainable machine learning framework for trustworthy decision-making under incomplete clinical data
Machine learning models are increasingly applied to biomedical data, yet their adoption in high stakes domains remains limited by poor robustness, limited interpretability, and instability of learned features under realistic data perturbations, such as missingness. In particular, models that achieve high predictive performance may still fail to inspire trust if their key features fluctuate when data completeness changes, undermining reproducibility and downstream decision-making. Here, we present CACTUS (Comprehensive Abstraction and Classification Tool for Uncovering Structures), an explainable machine learning framework explicitly designed to address these challenges in small, heterogeneous, and incomplete clinical datasets. CACTUS integrates feature abstraction, interpretable classification, and systematic feature stability analysis to quantify how consistently informative features are preserved as data quality degrades. Using a real-world haematuria cohort comprising 568 patients evaluated for bladder cancer, we benchmark CACTUS against widely used machine learning approaches, including random forests and gradient boosting methods, under controlled levels of randomly introduced missing data. We demonstrate that CACTUS achieves competitive or superior predictive performance while maintaining markedly higher stability of top-ranked features as missingness increases, including in sex-stratified analyses. Our results show that feature stability provides information complementary to conventional performance metrics and is essential for assessing the trustworthiness of machine learning models applied to biomedical data. By explicitly quantifying robustness to missing data and prioritising interpretable, stable features, CACTUS offers a generalizable framework for trustworthy data-driven decision support.
☆ 2Mamba2Furious: Linear in Complexity, Competitive in Accuracy
Linear attention transformers have become a strong alternative to softmax attention due to their efficiency. However, linear attention tends to be less expressive and results in reduced accuracy compared to softmax attention. To bridge the accuracy gap between softmax attention and linear attention, we manipulate Mamba-2, a very strong linear attention variant. We first simplify Mamba-2 down to its most fundamental and important components, evaluating which specific choices make it most accurate. From this simplified Mamba variant (Mamba-2S), we improve the A-mask and increase the order of the hidden state, resulting in a method, which we call 2Mamba, that is nearly as accurate as softmax attention, yet much more memory efficient for long context lengths. We also investigate elements to Mamba-2 that help surpass softmax attention accuracy. Code is provided for all our experiments
☆ Shortcut learning in geometric knot classification
Classifying the topology of closed curves is a central problem in low dimensional topology with applications beyond mathematics spanning protein folding, polymer physics and even magnetohydrodynamics. The central problem is how to determine whether two embeddings of a closed arc are equivalent under ambient isotopy. Given the striking ability of neural networks to solve complex classification tasks, it is therefore natural to ask if the knot classification problem can be tackled using Machine Learning (ML). In this paper, we investigate generic shortcut methods employed by ML to solve the knot classification challenge and specifically discover hidden non-topological features in training data generated through Molecular Dynamics simulations of polygonal knots that are used by ML to arrive to positive classifications results. We then provide a rigorous foundation for future attempts to tackle the knot classification challenge using ML by developing a publicly-available (i) dataset, that aims to remove the potential of non-topological feature classification and (ii) code, that can generate knot embeddings that faithfully explore chosen geometric state space with fixed knot topology. We expect that our work will accelerate the development of ML models that can solve complex geometric knot classification challenges.
comment: 17 pages, 6 figures, submitted to Machine Learning: Science and Technology, IOP
☆ Partial Optimality in the Preordering Problem
Preordering is a generalization of clustering and partial ordering with applications in bioinformatics and social network analysis. Given a finite set $V$ and a value $c_{ab} \in \mathbb{R}$ for every ordered pair $ab$ of elements of $V$, the preordering problem asks for a preorder $\lesssim$ on $V$ that maximizes the sum of the values of those pairs $ab$ for which $a \lesssim b$. Building on the state of the art in solving this NP-hard problem partially, we contribute new partial optimality conditions and efficient algorithms for deciding these conditions. In experiments with real and synthetic data, these new conditions increase, in particular, the fraction of pairs $ab$ for which it is decided efficiently that $a \not\lesssim b$ in an optimal preorder.
☆ From Subtle to Significant: Prompt-Driven Self-Improving Optimization in Test-Time Graph OOD Detection
Graph Out-of-Distribution (OOD) detection aims to identify whether a test graph deviates from the distribution of graphs observed during training, which is critical for ensuring the reliability of Graph Neural Networks (GNNs) when deployed in open-world scenarios. Recent advances in graph OOD detection have focused on test-time training techniques that facilitate OOD detection without accessing potential supervisory information (e.g., training data). However, most of these methods employ a one-pass inference paradigm, which prevents them from progressively correcting erroneous predictions to amplify OOD signals. To this end, we propose a \textbf{S}elf-\textbf{I}mproving \textbf{G}raph \textbf{O}ut-\textbf{o}f-\textbf{D}istribution detector (SIGOOD), which is an unsupervised framework that integrates continuous self-learning with test-time training for effective graph OOD detection. Specifically, SIGOOD generates a prompt to construct a prompt-enhanced graph that amplifies potential OOD signals. To optimize prompts, SIGOOD introduces an Energy Preference Optimization (EPO) loss, which leverages energy variations between the original test graph and the prompt-enhanced graph. By iteratively optimizing the prompt by involving it into the detection model in a self-improving loop, the resulting optimal prompt-enhanced graph is ultimately used for OOD detection. Comprehensive evaluations on 21 real-world datasets confirm the effectiveness and outperformance of our SIGOOD method. The code is at https://github.com/Ee1s/SIGOOD.
comment: 9pages, 5 figures
☆ SubQuad: Near-Quadratic-Free Structure Inference with Distribution-Balanced Objectives in Adaptive Receptor framework
Comparative analysis of adaptive immune repertoires at population scale is hampered by two practical bottlenecks: the near-quadratic cost of pairwise affinity evaluations and dataset imbalances that obscure clinically important minority clonotypes. We introduce SubQuad, an end-to-end pipeline that addresses these challenges by combining antigen-aware, near-subquadratic retrieval with GPU-accelerated affinity kernels, learned multimodal fusion, and fairness-constrained clustering. The system employs compact MinHash prefiltering to sharply reduce candidate comparisons, a differentiable gating module that adaptively weights complementary alignment and embedding channels on a per-pair basis, and an automated calibration routine that enforces proportional representation of rare antigen-specific subgroups. On large viral and tumor repertoires SubQuad achieves measured gains in throughput and peak memory usage while preserving or improving recall@k, cluster purity, and subgroup equity. By co-designing indexing, similarity fusion, and equity-aware objectives, SubQuad offers a scalable, bias-aware platform for repertoire mining and downstream translational tasks such as vaccine target prioritization and biomarker discovery.
comment: 27 pages, 9 figures
☆ The Sound of Death: Deep Learning Reveals Vascular Damage from Carotid Ultrasound
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, yet early risk detection is often limited by available diagnostics. Carotid ultrasound, a non-invasive and widely accessible modality, encodes rich structural and hemodynamic information that is largely untapped. Here, we present a machine learning (ML) framework that extracts clinically meaningful representations of vascular damage (VD) from carotid ultrasound videos, using hypertension as a weak proxy label. The model learns robust features that are biologically plausible, interpretable, and strongly associated with established cardiovascular risk factors, comorbidities, and laboratory measures. High VD stratifies individuals for myocardial infarction, cardiac death, and all-cause mortality, matching or outperforming conventional risk models such as SCORE2. Explainable AI analyses reveal that the model relies on vessel morphology and perivascular tissue characteristics, uncovering novel functional and anatomical signatures of vascular damage. This work demonstrates that routine carotid ultrasound contains far more prognostic information than previously recognized. Our approach provides a scalable, non-invasive, and cost-effective tool for population-wide cardiovascular risk assessment, enabling earlier and more personalized prevention strategies without reliance on laboratory tests or complex clinical inputs.
☆ Flickering Multi-Armed Bandits
We introduce Flickering Multi-Armed Bandits (FMAB), a new MAB framework where the set of available arms (or actions) can change at each round, and the available set at any time may depend on the agent's previously selected arm. We model this constrained, evolving availability using random graph processes, where arms are nodes and the agent's movement is restricted to its local neighborhood. We analyze this problem under two random graph models: an i.i.d. Erdős--Rényi (ER) process and an Edge-Markovian process. We propose and analyze a two-phase algorithm that employs a lazy random walk for exploration to efficiently identify the optimal arm, followed by a navigation and commitment phase for exploitation. We establish high-probability and expected sublinear regret bounds for both graph settings. We show that the exploration cost of our algorithm is near-optimal by establishing a matching information-theoretic lower bound for this problem class, highlighting the fundamental cost of exploration under local-move constraints. We complement our theoretical guarantees with numerical simulations, including a scenario of a robotic ground vehicle scouting a disaster-affected region.
☆ Open Datasets in Learning Analytics: Trends, Challenges, and Best PRACTICE
Open datasets play a crucial role in three research domains that intersect data science and education: learning analytics, educational data mining, and artificial intelligence in education. Researchers in these domains apply computational methods to analyze data from educational contexts, aiming to better understand and improve teaching and learning. Providing open datasets alongside research papers supports reproducibility, collaboration, and trust in research findings. It also provides individual benefits for authors, such as greater visibility, credibility, and citation potential. Despite these advantages, the availability of open datasets and the associated practices within the learning analytics research communities, especially at their flagship conference venues, remain unclear. We surveyed available datasets published alongside research papers in learning analytics. We manually examined 1,125 papers from three flagship conferences (LAK, EDM, and AIED) over the past five years. We discovered, categorized, and analyzed 172 datasets used in 204 publications. Our study presents the most comprehensive collection and analysis of open educational datasets to date, along with the most detailed categorization. Of the 172 datasets identified, 143 were not captured in any prior survey of open data in learning analytics. We provide insights into the datasets' context, analytical methods, use, and other properties. Based on this survey, we summarize the current gaps in the field. Furthermore, we list practical recommendations, advice, and 8-item guidelines under the acronym PRACTICE with a checklist to help researchers publish their data. Lastly, we share our original dataset: an annotated inventory detailing the discovered datasets and the corresponding publications. We hope these findings will support further adoption of open data practices in learning analytics communities and beyond.
comment: Recently accepted to ACM Transactions on Knowledge Discovery from Data (TKDD). To appear. (Preprint will be updated with full bibliographic info.)
☆ LexiSafe: Offline Safe Reinforcement Learning with Lexicographic Safety-Reward Hierarchy
Offline safe reinforcement learning (RL) is increasingly important for cyber-physical systems (CPS), where safety violations during training are unacceptable and only pre-collected data are available. Existing offline safe RL methods typically balance reward-safety tradeoffs through constraint relaxation or joint optimization, but they often lack structural mechanisms to prevent safety drift. We propose LexiSafe, a lexicographic offline RL framework designed to preserve safety-aligned behavior. We first develop LexiSafe-SC, a single-cost formulation for standard offline safe RL, and derive safety-violation and performance-suboptimality bounds that together yield sample-complexity guarantees. We then extend the framework to hierarchical safety requirements with LexiSafe-MC, which supports multiple safety costs and admits its own sample-complexity analysis. Empirically, LexiSafe demonstrates reduced safety violations and improved task performance compared to constrained offline baselines. By unifying lexicographic prioritization with structural bias, LexiSafe offers a practical and theoretically grounded approach for safety-critical CPS decision-making.
comment: 17th ACM/IEEE International Conference on Cyber-Physical Systems
☆ MedClarify: An information-seeking AI agent for medical diagnosis with case-specific follow-up questions
Large language models (LLMs) are increasingly used for diagnostic tasks in medicine. In clinical practice, the correct diagnosis can rarely be immediately inferred from the initial patient presentation alone. Rather, reaching a diagnosis often involves systematic history taking, during which clinicians reason over multiple potential conditions through iterative questioning to resolve uncertainty. This process requires considering differential diagnoses and actively excluding emergencies that demand immediate intervention. Yet, the ability of medical LLMs to generate informative follow-up questions and thus reason over differential diagnoses remains underexplored. Here, we introduce MedClarify, an AI agent for information-seeking that can generate follow-up questions for iterative reasoning to support diagnostic decision-making. Specifically, MedClarify computes a list of candidate diagnoses analogous to a differential diagnosis, and then proactively generates follow-up questions aimed at reducing diagnostic uncertainty. By selecting the question with the highest expected information gain, MedClarify enables targeted, uncertainty-aware reasoning to improve diagnostic performance. In our experiments, we first demonstrate the limitations of current LLMs in medical reasoning, which often yield multiple, similarly likely diagnoses, especially when patient cases are incomplete or relevant information for diagnosis is missing. We then show that our information-theoretic reasoning approach can generate effective follow-up questioning and thereby reduces diagnostic errors by ~27 percentage points (p.p.) compared to a standard single-shot LLM baseline. Altogether, MedClarify offers a path to improve medical LLMs through agentic information-seeking and to thus promote effective dialogues with medical LLMs that reflect the iterative and uncertain nature of real-world clinical reasoning.
☆ Representation Collapse in Machine Translation Through the Lens of Angular Dispersion
Modern neural translation models based on the Transformer architecture are known for their high performance, particularly when trained on high-resource datasets. A standard next-token prediction training strategy, while widely adopted in practice, may lead to overlooked artifacts such as representation collapse. Previous works have shown that this problem is especially pronounced in the representation of the deeper Transformer layers, where it often fails to efficiently utilize the geometric space. Representation collapse is even more evident in end-to-end training of continuous-output neural machine translation, where the trivial solution would be to set all vectors to the same value. In this work, we analyze the dynamics of representation collapse at different levels of discrete and continuous NMT transformers throughout training. We incorporate an existing regularization method based on angular dispersion and demonstrate empirically that it not only mitigates collapse but also improves translation quality. Furthermore, we show that quantized models exhibit similar collapse behavior and that the benefits of regularization are preserved even after quantization.
☆ Efficient privacy loss accounting for subsampling and random allocation
We consider the privacy amplification properties of a sampling scheme in which a user's data is used in $k$ steps chosen randomly and uniformly from a sequence (or set) of $t$ steps. This sampling scheme has been recently applied in the context of differentially private optimization (Chua et al., 2024a; Choquette-Choo et al., 2025) and communication-efficient high-dimensional private aggregation (Asi et al., 2025), where it was shown to have utility advantages over the standard Poisson sampling. Theoretical analyses of this sampling scheme (Feldman & Shenfeld, 2025; Dong et al., 2025) lead to bounds that are close to those of Poisson sampling, yet still have two significant shortcomings. First, in many practical settings, the resulting privacy parameters are not tight due to the approximation steps in the analysis. Second, the computed parameters are either the hockey stick or Renyi divergence, both of which introduce overheads when used in privacy loss accounting. In this work, we demonstrate that the privacy loss distribution (PLD) of random allocation applied to any differentially private algorithm can be computed efficiently. When applied to the Gaussian mechanism, our results demonstrate that the privacy-utility trade-off for random allocation is at least as good as that of Poisson subsampling. In particular, random allocation is better suited for training via DP-SGD. To support these computations, our work develops new tools for general privacy loss accounting based on a notion of PLD realization. This notion allows us to extend accurate privacy loss accounting to subsampling which previously required manual noise-mechanism-specific analysis.
☆ Quantum Scrambling Born Machine
Quantum generative modeling, where the Born rule naturally defines probability distributions through measurement of parameterized quantum states, is a promising near-term application of quantum computing. We propose a Quantum Scrambling Born Machine in which a fixed entangling unitary -- acting as a scrambling reservoir -- provides multi-qubit entanglement, while only single-qubit rotations are optimized. We consider three entangling unitaries -- a Haar random unitary and two physically realizable approximations, a finite-depth brickwork random circuit and analog time evolution under nearest-neighbor spin-chain Hamiltonians -- and show that, for the benchmark distributions and system sizes considered, once the entangler produces near-Haar-typical entanglement the model learns the target distribution with weak sensitivity to the scrambler's microscopic origin. Finally, promoting the Hamiltonian couplings to trainable parameters casts the generative task as a variational Hamiltonian problem, with performance competitive with representative classical generative models at matched parameter count.
☆ RLGT: A reinforcement learning framework for extremal graph theory
Reinforcement learning (RL) is a subfield of machine learning that focuses on developing models that can autonomously learn optimal decision-making strategies over time. In a recent pioneering paper, Wagner demonstrated how the Deep Cross-Entropy RL method can be applied to tackle various problems from extremal graph theory by reformulating them as combinatorial optimization problems. Subsequently, many researchers became interested in refining and extending the framework introduced by Wagner, thereby creating various RL environments specialized for graph theory. Moreover, a number of problems from extremal graph theory were solved through the use of RL. In particular, several inequalities concerning the Laplacian spectral radius of graphs were refuted, new lower bounds were obtained for certain Ramsey numbers, and contributions were made to the Turán-type extremal problem in which the forbidden structures are cycles of length three and four. Here, we present Reinforcement Learning for Graph Theory (RLGT), a novel RL framework that systematizes the previous work and provides support for both undirected and directed graphs, with or without loops, and with an arbitrary number of edge colors. The framework efficiently represents graphs and aims to facilitate future RL-based research in extremal graph theory through optimized computational performance and a clean and modular design.
☆ Unified Latents (UL): How to train your latents
We present Unified Latents (UL), a framework for learning latent representations that are jointly regularized by a diffusion prior and decoded by a diffusion model. By linking the encoder's output noise to the prior's minimum noise level, we obtain a simple training objective that provides a tight upper bound on the latent bitrate. On ImageNet-512, our approach achieves competitive FID of 1.4, with high reconstruction quality (PSNR) while requiring fewer training FLOPs than models trained on Stable Diffusion latents. On Kinetics-600, we set a new state-of-the-art FVD of 1.3.
☆ Learning a Latent Pulse Shape Interface for Photoinjector Laser Systems
Controlling the longitudinal laser pulse shape in photoinjectors of Free-Electron Lasers is a powerful lever for optimizing electron beam quality, but systematic exploration of the vast design space is limited by the cost of brute-force pulse propagation simulations. We present a generative modeling framework based on Wasserstein Autoencoders to learn a differentiable latent interface between pulse shaping and downstream beam dynamics. Our empirical findings show that the learned latent space is continuous and interpretable while maintaining high-fidelity reconstructions. Pulse families such as higher-order Gaussians trace coherent trajectories, while standardizing the temporal pulse lengths shows a latent organization correlated with pulse energy. Analysis via principal components and Gaussian Mixture Models reveals a well behaved latent geometry, enabling smooth transitions between distinct pulse types via linear interpolation. The model generalizes from simulated data to real experimental pulse measurements, accurately reconstructing pulses and embedding them consistently into the learned manifold. Overall, the approach reduces reliance on expensive pulse-propagation simulations and facilitates downstream beam dynamics simulation and analysis.
☆ Structured Prototype-Guided Adaptation for EEG Foundation Models
Electroencephalography (EEG) foundation models (EFMs) have achieved strong performance under full fine-tuning but exhibit poor generalization when subject-level supervision is limited, a common constraint in real-world clinical settings. We show that this failure stems not merely from limited supervision, but from a structural mismatch between noisy, limited supervision and the highly plastic parameter space of EFMs. To address this challenge, we propose SCOPE, a Structured COnfidence-aware Prototype-guided adaptation framework for EFM fine-tuning. SCOPE follows a two-stage pipeline. In the first stage, we construct reliable external supervision by learning geometry-regularized task priors, constructing balanced class-level prototypes over the resulting embeddings, and producing confidence-aware pseudo-labels from their agreement to filter unreliable signals on unlabeled data. In the second stage, we introduce ProAdapter, which adapts frozen EEG foundation models via a lightweight adapter conditioned on the structured prototypes. Experiments across three EEG tasks and five foundation model backbones demonstrate that SCOPE consistently achieves strong performance and efficiency under label-limited cross-subject settings.
☆ CounterFlowNet: From Minimal Changes to Meaningful Counterfactual Explanations
Counterfactual explanations (CFs) provide human-interpretable insights into model's predictions by identifying minimal changes to input features that would alter the model's output. However, existing methods struggle to generate multiple high-quality explanations that (1) affect only a small portion of the features, (2) can be applied to tabular data with heterogeneous features, and (3) are consistent with the user-defined constraints. We propose CounterFlowNet, a generative approach that formulates CF generation as sequential feature modification using conditional Generative Flow Networks (GFlowNet). CounterFlowNet is trained to sample CFs proportionally to a user-specified reward function that can encode key CF desiderata: validity, sparsity, proximity and plausibility, encouraging high-quality explanations. The sequential formulation yields highly sparse edits, while a unified action space seamlessly supports continuous and categorical features. Moreover, actionability constraints, such as immutability and monotonicity of features, can be enforced at inference time via action masking, without retraining. Experiments on eight datasets under two evaluation protocols demonstrate that CounterFlowNet achieves superior trade-offs between validity, sparsity, plausibility, and diversity with full satisfaction of the given constraints.
☆ All Leaks Count, Some Count More: Interpretable Temporal Contamination Detection in LLM Backtesting
To evaluate whether LLMs can accurately predict future events, we need the ability to \textit{backtest} them on events that have already resolved. This requires models to reason only with information available at a specified past date. Yet LLMs may inadvertently leak post-cutoff knowledge encoded during training, undermining the validity of retrospective evaluation. We introduce a claim-level framework for detecting and quantifying this \emph{temporal knowledge leakage}. Our approach decomposes model rationales into atomic claims and categorizes them by temporal verifiability, then applies \textit{Shapley values} to measure each claim's contribution to the prediction. This yields the \textbf{Shapley}-weighted \textbf{D}ecision-\textbf{C}ritical \textbf{L}eakage \textbf{R}ate (\textbf{Shapley-DCLR}), an interpretable metric that captures what fraction of decision-driving reasoning derives from leaked information. Building on this framework, we propose \textbf{Time}-\textbf{S}upervised \textbf{P}rediction with \textbf{E}xtracted \textbf{C}laims (\textbf{TimeSPEC}), which interleaves generation with claim verification and regeneration to proactively filter temporal contamination -- producing predictions where every supporting claim can be traced to sources available before the cutoff date. Experiments on 350 instances spanning U.S. Supreme Court case prediction, NBA salary estimation, and stock return ranking reveal substantial leakage in standard prompting baselines. TimeSPEC reduces Shapley-DCLR while preserving task performance, demonstrating that explicit, interpretable claim-level verification outperforms prompt-based temporal constraints for reliable backtesting.
comment: 8 pages plus appendix
☆ Privacy-Preserving Mechanisms Enable Cheap Verifiable Inference of LLMs
As large language models (LLMs) continue to grow in size, fewer users are able to host and run models locally. This has led to increased use of third-party hosting services. However, in this setting, there is a lack of guarantees on the computation performed by the inference provider. For example, a dishonest provider may replace an expensive large model with a cheaper-to-run weaker model and return the results from the weaker model to the user. Existing tools to verify inference typically rely on methods from cryptography such as zero-knowledge proofs (ZKPs), but these add significant computational overhead, and remain infeasible for use for large models. In this work, we develop a new insight -- that given a method for performing private LLM inference, one can obtain forms of verified inference at marginal extra cost. Specifically, we propose two new protocols which leverage privacy-preserving LLM inference in order to provide guarantees over the inference that was carried out. Our approaches are cheap, requiring the addition of a few extra tokens of computation, and have little to no downstream impact. As the fastest privacy-preserving inference methods are typically faster than ZK methods, the proposed protocols also improve verification runtime. Our work provides novel insights into the connections between privacy and verifiability in LLM inference.
☆ MGD: Moment Guided Diffusion for Maximum Entropy Generation
Generating samples from limited information is a fundamental problem across scientific domains. Classical maximum entropy methods provide principled uncertainty quantification from moment constraints but require sampling via MCMC or Langevin dynamics, which typically exhibit exponential slowdown in high dimensions. In contrast, generative models based on diffusion and flow matching efficiently transport noise to data but offer limited theoretical guarantees and can overfit when data is scarce. We introduce Moment Guided Diffusion (MGD), which combines elements of both approaches. Building on the stochastic interpolant framework, MGD samples maximum entropy distributions by solving a stochastic differential equation that guides moments toward prescribed values in finite time, thereby avoiding slow mixing in equilibrium-based methods. We formally obtain, in the large-volatility limit, convergence of MGD to the maximum entropy distribution and derive a tractable estimator of the resulting entropy computed directly from the dynamics. Applications to financial time series, turbulent flows, and cosmological fields using wavelet scattering moments yield estimates of negentropy for high-dimensional multiscale processes.
☆ SoftDTW-CUDA-Torch: Memory-Efficient GPU-Accelerated Soft Dynamic Time Warping for PyTorch
We present softdtw-cuda-torch, an open-source PyTorch library for computing Soft Dynamic Time Warping (SoftDTW) on GPUs. Our implementation addresses three key limitations of existing GPU implementations of SoftDTW: a hard sequence-length cap of 1024, numerical instability in the backward pass for small smoothing parameters, and excessive GPU memory consumption from materializing pairwise distance tensors. We introduce (1) tiled anti-diagonal kernel execution that removes the sequence-length constraint, (2) a log-space back-ward pass that prevents floating-point overflow, and (3) a fused distance-computation mode that eliminates the O(BN M ) intermediate distance tensor, achieving up to 98% memory reduction compared to prior work. The library supports arbitrary sequence lengths, full PyTorch autograd integration, and Soft-DTW Barycenter computation. Code is available at https://github.com/BGU-CS-VIL/sdtw-cuda-torch.
comment: Technical Report
☆ Anti-causal domain generalization: Leveraging unlabeled data
The problem of domain generalization concerns learning predictive models that are robust to distribution shifts when deployed in new, previously unseen environments. Existing methods typically require labeled data from multiple training environments, limiting their applicability when labeled data are scarce. In this work, we study domain generalization in an anti-causal setting, where the outcome causes the observed covariates. Under this structure, environment perturbations that affect the covariates do not propagate to the outcome, which motivates regularizing the model's sensitivity to these perturbations. Crucially, estimating these perturbation directions does not require labels, enabling us to leverage unlabeled data from multiple environments. We propose two methods that penalize the model's sensitivity to variations in the mean and covariance of the covariates across environments, respectively, and prove that these methods have worst-case optimality guarantees under certain classes of environments. Finally, we demonstrate the empirical performance of our approach on a controlled physical system and a physiological signal dataset.
☆ Continual uncertainty learning
Robust control of mechanical systems with multiple uncertainties remains a fundamental challenge, particularly when nonlinear dynamics and operating-condition variations are intricately intertwined. While deep reinforcement learning (DRL) combined with domain randomization has shown promise in mitigating the sim-to-real gap, simultaneously handling all sources of uncertainty often leads to sub-optimal policies and poor learning efficiency. This study formulates a new curriculum-based continual learning framework for robust control problems involving nonlinear dynamical systems in which multiple sources of uncertainty are simultaneously superimposed. The key idea is to decompose a complex control problem with multiple uncertainties into a sequence of continual learning tasks, in which strategies for handling each uncertainty are acquired sequentially. The original system is extended into a finite set of plants whose dynamic uncertainties are gradually expanded and diversified as learning progresses. The policy is stably updated across the entire plant sets associated with tasks defined by different uncertainty configurations without catastrophic forgetting. To ensure learning efficiency, we jointly incorporate a model-based controller (MBC), which guarantees a shared baseline performance across the plant sets, into the learning process to accelerate the convergence. This residual learning scheme facilitates task-specific optimization of the DRL agent for each uncertainty, thereby enhancing sample efficiency. As a practical industrial application, this study applies the proposed method to designing an active vibration controller for automotive powertrains. We verified that the resulting controller is robust against structural nonlinearities and dynamic variations, realizing successful sim-to-real transfer.
☆ In-Context Learning in Linear vs. Quadratic Attention Models: An Empirical Study on Regression Tasks
Recent work has demonstrated that transformers and linear attention models can perform in-context learning (ICL) on simple function classes, such as linear regression. In this paper, we empirically study how these two attention mechanisms differ in their ICL behavior on the canonical linear-regression task of Garg et al. We evaluate learning quality (MSE), convergence, and generalization behavior of each architecture. We also analyze how increasing model depth affects ICL performance. Our results illustrate both the similarities and limitations of linear attention relative to quadratic attention in this setting.
☆ Powering Up Zeroth-Order Training via Subspace Gradient Orthogonalization
Zeroth-order (ZO) optimization provides a gradient-free alternative to first-order (FO) methods by estimating gradients via finite differences of function evaluations, and has recently emerged as a memory-efficient paradigm for fine-tuning large-scale models by avoiding backpropagation. However, ZO optimization has a fundamental tension between accuracy and query efficiency. In this work, we show that ZO optimization can be substantially improved by unifying two complementary principles: (i) a projection-based subspace view that reduces gradient estimation variance by exploiting the intrinsic low-rank structure of model updates, and (ii) Muon-style spectral optimization that applies gradient orthogonalization to extract informative spectral structure from noisy ZO gradients. These findings form a unified framework of subspace gradient orthogonalization, which we instantiate in a new method, ZO-Muon, admitting a natural interpretation as a low-rank Muon optimizer in the ZO setting. Extensive experiments on large language models (LLMs) and vision transformers (ViTs) demonstrate that ZO-Muon significantly accelerates convergence and achieves a win-win improvement in accuracy and query/runtime efficiency. Notably, compared to the popular MeZO baseline, ZO-Muon requires only 24.7% of the queries to reach the same SST-2 performance for LLM fine-tuning, and improves accuracy by 25.1% on ViT-B fine-tuning on CIFAR-100.
☆ TimeOmni-VL: Unified Models for Time Series Understanding and Generation
Recent time series modeling faces a sharp divide between numerical generation and semantic understanding, with research showing that generation models often rely on superficial pattern matching, while understanding-oriented models struggle with high-fidelity numerical output. Although unified multimodal models (UMMs) have bridged this gap in vision, their potential for time series remains untapped. We propose TimeOmni-VL, the first vision-centric framework that unifies time series understanding and generation through two key innovations: (1) Fidelity-preserving bidirectional mapping between time series and images (Bi-TSI), which advances Time Series-to-Image (TS2I) and Image-to-Time Series (I2TS) conversions to ensure near-lossless transformations. (2) Understanding-guided generation. We introduce TSUMM-Suite, a novel dataset consists of six understanding tasks rooted in time series analytics that are coupled with two generation tasks. With a calibrated Chain-of-Thought, TimeOmni-VL is the first to leverage time series understanding as an explicit control signal for high-fidelity generation. Experiments confirm that this unified approach significantly improves both semantic understanding and numerical precision, establishing a new frontier for multimodal time series modeling.
☆ When More Experts Hurt: Underfitting in Multi-Expert Learning to Defer
Learning to Defer (L2D) enables a classifier to abstain from predictions and defer to an expert, and has recently been extended to multi-expert settings. In this work, we show that multi-expert L2D is fundamentally more challenging than the single-expert case. With multiple experts, the classifier's underfitting becomes inherent, which seriously degrades prediction performance, whereas in the single-expert setting it arises only under specific conditions. We theoretically reveal that this stems from an intrinsic expert identifiability issue: learning which expert to trust from a diverse pool, a problem absent in the single-expert case and renders existing underfitting remedies failed. To tackle this issue, we propose PiCCE (Pick the Confident and Correct Expert), a surrogate-based method that adaptively identifies a reliable expert based on empirical evidence. PiCCE effectively reduces multi-expert L2D to a single-expert-like learning problem, thereby resolving multi expert underfitting. We further prove its statistical consistency and ability to recover class probabilities and expert accuracies. Extensive experiments across diverse settings, including real-world expert scenarios, validate our theoretical results and demonstrate improved performance.
☆ VP-VAE: Rethinking Vector Quantization via Adaptive Vector Perturbation
Vector Quantized Variational Autoencoders (VQ-VAEs) are fundamental to modern generative modeling, yet they often suffer from training instability and "codebook collapse" due to the inherent coupling of representation learning and discrete codebook optimization. In this paper, we propose VP-VAE (Vector Perturbation VAE), a novel paradigm that decouples representation learning from discretization by eliminating the need for an explicit codebook during training. Our key insight is that, from the neural network's viewpoint, performing quantization primarily manifests as injecting a structured perturbation in latent space. Accordingly, VP-VAE replaces the non-differentiable quantizer with distribution-consistent and scale-adaptive latent perturbations generated via Metropolis--Hastings sampling. This design enables stable training without a codebook while making the model robust to inference-time quantization error. Moreover, under the assumption of approximately uniform latent variables, we derive FSP (Finite Scalar Perturbation), a lightweight variant of VP-VAE that provides a unified theoretical explanation and a practical improvement for FSQ-style fixed quantizers. Extensive experiments on image and audio benchmarks demonstrate that VP-VAE and FSP improve reconstruction fidelity and achieve substantially more balanced token usage, while avoiding the instability inherent to coupled codebook training.
☆ TIFO: Time-Invariant Frequency Operator for Stationarity-Aware Representation Learning in Time Series
Nonstationary time series forecasting suffers from the distribution shift issue due to the different distributions that produce the training and test data. Existing methods attempt to alleviate the dependence by, e.g., removing low-order moments from each individual sample. These solutions fail to capture the underlying time-evolving structure across samples and do not model the complex time structure. In this paper, we aim to address the distribution shift in the frequency space by considering all possible time structures. To this end, we propose a Time-Invariant Frequency Operator (TIFO), which learns stationarity-aware weights over the frequency spectrum across the entire dataset. The weight representation highlights stationary frequency components while suppressing non-stationary ones, thereby mitigating the distribution shift issue in time series. To justify our method, we show that the Fourier transform of time series data implicitly induces eigen-decomposition in the frequency space. TIFO is a plug-and-play approach that can be seamlessly integrated into various forecasting models. Experiments demonstrate our method achieves 18 top-1 and 6 top-2 results out of 28 forecasting settings. Notably, it yields 33.3% and 55.3% improvements in average MSE on the ETTm2 dataset. In addition, TIFO reduces computational costs by 60% -70% compared to baseline methods, demonstrating strong scalability across diverse forecasting models.
☆ i-PhysGaussian: Implicit Physical Simulation for 3D Gaussian Splatting
Physical simulation predicts future states of objects based on material properties and external loads, enabling blueprints for both Industry and Engineering to conduct risk management. Current 3D reconstruction-based simulators typically rely on explicit, step-wise updates, which are sensitive to step time and suffer from rapid accuracy degradation under complicated scenarios, such as high-stiffness materials or quasi-static movement. To address this, we introduce i-PhysGaussian, a framework that couples 3D Gaussian Splatting (3DGS) with an implicit Material Point Method (MPM) integrator. Unlike explicit methods, our solution obtains an end-of-step state by minimizing a momentum-balance residual through implicit Newton-type optimization with a GMRES solver. This formulation significantly reduces time-step sensitivity and ensures physical consistency. Our results demonstrate that i-PhysGaussian maintains stability at up to 20x larger time steps than explicit baselines, preserving structural coherence and smooth motion even in complex dynamic transitions.
☆ Semi-Supervised Learning on Graphs using Graph Neural Networks
Graph neural networks (GNNs) work remarkably well in semi-supervised node regression, yet a rigorous theory explaining when and why they succeed remains lacking. To address this gap, we study an aggregate-and-readout model that encompasses several common message passing architectures: node features are first propagated over the graph then mapped to responses via a nonlinear function. For least-squares estimation over GNNs with linear graph convolutions and a deep ReLU readout, we prove a sharp non-asymptotic risk bound that separates approximation, stochastic, and optimization errors. The bound makes explicit how performance scales with the fraction of labeled nodes and graph-induced dependence. Approximation guarantees are further derived for graph-smoothing followed by smooth nonlinear readouts, yielding convergence rates that recover classical nonparametric behavior under full supervision while characterizing performance when labels are scarce. Numerical experiments validate our theory, providing a systematic framework for understanding GNN performance and limitations.
comment: 57 pages, 7 figures
☆ Simplify to Amplify: Achieving Information-Theoretic Bounds with Fewer Steps in Spectral Community Detection
We propose a streamlined spectral algorithm for community detection in the two-community stochastic block model (SBM) under constant edge density assumptions. By reducing algorithmic complexity through the elimination of non-essential preprocessing steps, our method directly leverages the spectral properties of the adjacency matrix. We demonstrate that our algorithm exploits specific characteristics of the second eigenvalue to achieve improved error bounds that approach information-theoretic limits, representing a significant improvement over existing methods. Theoretical analysis establishes that our error rates are tighter than previously reported bounds in the literature. Comprehensive experimental validation confirms our theoretical findings and demonstrates the practical effectiveness of the simplified approach. Our results suggest that algorithmic simplification, rather than increasing complexity, can lead to both computational efficiency and enhanced performance in spectral community detection.
comment: 9 pages plus appendix, 3 figures
☆ Online Learning with Improving Agents: Multiclass, Budgeted Agents and Bandit Learners
We investigate the recently introduced model of learning with improvements, where agents are allowed to make small changes to their feature values to be warranted a more desirable label. We extensively extend previously published results by providing combinatorial dimensions that characterize online learnability in this model, by analyzing the multiclass setup, learnability in a bandit feedback setup, modeling agents' cost for making improvements and more.
☆ Operationalization of Machine Learning with Serverless Architecture: An Industrial Operationalization of Machine Learning with Serverless Architecture: An Industrial Implementation for Harmonized System Code Prediction
This paper presents a serverless MLOps framework orchestrating the complete ML lifecycle from data ingestion, training, deployment, monitoring, and retraining to using event-driven pipelines and managed services. The architecture is model-agnostic, supporting diverse inference patterns through standardized interfaces, enabling rapid adaptation without infrastructure overhead. We demonstrate practical applicability through an industrial implementation for Harmonized System (HS) code prediction, a compliance-critical task where short, unstructured product descriptions are mapped to standardized codes used by customs authorities in global trade. Frequent updates and ambiguous descriptions make classification challenging, with errors causing shipment delays and financial losses. Our solution uses a custom text embedding encoder and multiple deep learning architectures, with Text-CNN achieving 98 percent accuracy on ground truth data. Beyond accuracy, the pipeline ensures reproducibility, auditability, and SLA adherence under variable loads via auto-scaling. A key feature is automated A/B testing, enabling dynamic model selection and safe promotion in production. Cost-efficiency drives model choice; while transformers may achieve similar accuracy, their long-term operational costs are significantly higher. Deterministic classification with predictable latency and explainability is prioritized, though the architecture remains extensible to transformer variants and LLM-based inference. The paper first introduces the deep learning architectures with simulations and model comparisons, then discusses industrialization through serverless architecture, demonstrating automated retraining, prediction, and validation of HS codes. This work provides a replicable blueprint for operationalizing ML using serverless architecture, enabling enterprises to scale while optimizing performance and economics.
comment: 13 pages. ICAD '26
☆ Deep Reinforcement Learning for Optimal Portfolio Allocation: A Comparative Study with Mean-Variance Optimization ICAPS 2023
Portfolio Management is the process of overseeing a group of investments, referred to as a portfolio, with the objective of achieving predetermined investment goals. Portfolio optimization is a key component that involves allocating the portfolio assets so as to maximize returns while minimizing risk taken. It is typically carried out by financial professionals who use a combination of quantitative techniques and investment expertise to make decisions about the portfolio allocation. Recent applications of Deep Reinforcement Learning (DRL) have shown promising results when used to optimize portfolio allocation by training model-free agents on historical market data. Many of these methods compare their results against basic benchmarks or other state-of-the-art DRL agents but often fail to compare their performance against traditional methods used by financial professionals in practical settings. One of the most commonly used methods for this task is Mean-Variance Portfolio Optimization (MVO), which uses historical time series information to estimate expected asset returns and covariances, which are then used to optimize for an investment objective. Our work is a thorough comparison between model-free DRL and MVO for optimal portfolio allocation. We detail the specifics of how to make DRL for portfolio optimization work in practice, also noting the adjustments needed for MVO. Backtest results demonstrate strong performance of the DRL agent across many metrics, including Sharpe ratio, maximum drawdowns, and absolute returns.
comment: 9 pages, 6 figures. Published at the FinPlan'23 Workshop, the 33rd International Conference on Automated Planning and Scheduling (ICAPS 2023)
☆ FLoRG: Federated Fine-tuning with Low-rank Gram Matrices and Procrustes Alignment
Parameter-efficient fine-tuning techniques such as low-rank adaptation (LoRA) enable large language models (LLMs) to adapt to downstream tasks efficiently. Federated learning (FL) further facilitates this process by enabling collaborative fine-tuning across distributed clients without sharing private data. However, the use of two separate low-rank matrices in LoRA for federated fine-tuning introduces two types of challenges. The first challenge arises from the error induced by separately aggregating those two low-rank matrices. The second challenge occurs even when the product of two low-rank matrices is aggregated. The server needs to recover factors via matrix decomposition, which is non-unique and can introduce decomposition drift. To tackle the aforementioned challenges, we propose FLoRG, a federated fine-tuning framework which employs a single low-rank matrix for fine-tuning and aggregates its Gram matrix (i.e., the matrix of inner products of its column vectors), eliminating the aggregation error while also reducing the communication overhead. FLoRG minimizes the decomposition drift by introducing a Procrustes alignment approach which aligns the decomposed matrix between consecutive fine-tuning rounds for consistent updates. We theoretically analyze the convergence of FLoRG and prove that adopting the Procrustes alignment results in a tighter convergence bound. Experimental results across multiple LLM fine-tuning benchmarks demonstrate that FLoRG outperforms five state-of-the-art baseline schemes in the downstream task accuracy and can reduce the communication overhead by up to 2041$\times$.
☆ A Locality Radius Framework for Understanding Relational Inductive Bias in Database Learning
Foreign key discovery and related schema-level prediction tasks are often modeled using graph neural networks (GNNs), implicitly assuming that relational inductive bias improves performance. However, it remains unclear when multi-hop structural reasoning is actually necessary. In this work, we introduce locality radius, a formal measure of the minimum structural neighborhood required to determine a prediction in relational schemas. We hypothesize that model performance depends critically on alignment between task locality radius and architectural aggregation depth. We conduct a controlled empirical study across foreign key prediction, join cost estimation, blast radius regression, cascade impact classification, and additional graph-derived schema tasks. Our evaluation includes multi-seed experiments, capacity-matched comparisons, statistical significance testing, scaling analysis, and synthetic radius-controlled benchmarks. Results reveal a consistent bias-radius alignment effect.
☆ Synergizing Transport-Based Generative Models and Latent Geometry for Stochastic Closure Modeling
Diffusion models recently developed for generative AI tasks can produce high-quality samples while still maintaining diversity among samples to promote mode coverage, providing a promising path for learning stochastic closure models. Compared to other types of generative AI models, such as GANs and VAEs, the sampling speed is known as a key disadvantage of diffusion models. By systematically comparing transport-based generative models on a numerical example of 2D Kolmogorov flows, we show that flow matching in a lower-dimensional latent space is suited for fast sampling of stochastic closure models, enabling single-step sampling that is up to two orders of magnitude faster than iterative diffusion-based approaches. To control the latent space distortion and thus ensure the physical fidelity of the sampled closure term, we compare the implicit regularization offered by a joint training scheme against two explicit regularizers: metric-preserving (MP) and geometry-aware (GA) constraints. Besides offering a faster sampling speed, both explicitly and implicitly regularized latent spaces inherit the key topological information from the lower-dimensional manifold of the original complex dynamical system, which enables the learning of stochastic closure models without demanding a huge amount of training data.
☆ MeGU: Machine-Guided Unlearning with Target Feature Disentanglement
The growing concern over training data privacy has elevated the "Right to be Forgotten" into a critical requirement, thereby raising the demand for effective Machine Unlearning. However, existing unlearning approaches commonly suffer from a fundamental trade-off: aggressively erasing the influence of target data often degrades model utility on retained data, while conservative strategies leave residual target information intact. In this work, the intrinsic representation properties learned during model pretraining are analyzed. It is demonstrated that semantic class concepts are entangled at the feature-pattern level, sharing associated features while preserving concept-specific discriminative components. This entanglement fundamentally limits the effectiveness of existing unlearning paradigms. Motivated by this insight, we propose Machine-Guided Unlearning (MeGU), a novel framework that guides unlearning through concept-aware re-alignment. Specifically, Multi-modal Large Language Models (MLLMs) are leveraged to explicitly determine re-alignment directions for target samples by assigning semantically meaningful perturbing labels. To improve efficiency, inter-class conceptual similarities estimated by the MLLM are encoded into a lightweight transition matrix. Furthermore, MeGU introduces a positive-negative feature noise pair to explicitly disentangle target concept influence. During finetuning, the negative noise suppresses target-specific feature patterns, while the positive noise reinforces remaining associated features and aligns them with perturbing concepts. This coordinated design enables selective disruption of target-specific representations while preserving shared semantic structures. As a result, MeGU enables controlled and selective forgetting, effectively mitigating both under-unlearning and over-unlearning.
☆ Dynamic Decision-Making under Model Misspecification: A Stochastic Stability Approach
Dynamic decision-making under model uncertainty is central to many economic environments, yet existing bandit and reinforcement learning algorithms rely on the assumption of correct model specification. This paper studies the behavior and performance of one of the most commonly used Bayesian reinforcement learning algorithms, Thompson Sampling (TS), when the model class is misspecified. We first provide a complete dynamic classification of posterior evolution in a misspecified two-armed Gaussian bandit, identifying distinct regimes: correct model concentration, incorrect model concentration, and persistent belief mixing, characterized by the direction of statistical evidence and the model-action mapping. These regimes yield sharp predictions for limiting beliefs, action frequencies, and asymptotic regret. We then extend the analysis to a general finite model class and develop a unified stochastic stability framework that represents posterior evolution as a Markov process on the belief simplex. This approach characterizes two sufficient conditions to classify the ergodic and transient behaviors and provides inductive dimensional reductions of the posterior dynamics. Our results offer the first qualitative and geometric classification of TS under misspecification, bridging Bayesian learning with evolutionary dynamics, and also build the foundations of robust decision-making in structured bandits.
☆ Adam Improves Muon: Adaptive Moment Estimation with Orthogonalized Momentum
Efficient stochastic optimization typically integrates an update direction that performs well in the deterministic regime with a mechanism adapting to stochastic perturbations. While Adam uses adaptive moment estimates to promote stability, Muon utilizes the weight layers' matrix structure via orthogonalized momentum, showing superior performance in large language model training. We propose a new optimizer and a diagonal extension, NAMO and NAMO-D, providing the first principled integration of orthogonalized momentum with norm-based Adam-type noise adaptation. NAMO scales orthogonalized momentum using a single adaptive stepsize, preserving orthogonality while improving upon Muon at negligible additional cost. NAMO-D instead right-multiplies orthogonalized momentum by a diagonal matrix with clamped entries. This design enables neuron-wise noise adaptation and aligns with the common near block-diagonal Hessian structure. Under standard assumptions, we establish optimal convergence rates for both algorithms in the deterministic setting and show that, in the stochastic setting, their convergence guarantees adapt to the noise level of stochastic gradients. Experiments on pretraining GPT-2 models demonstrate improved performance of both NAMO and NAMO-D compared to the AdamW and Muon baselines, with NAMO-D achieving further gains over NAMO via an additional clamping hyperparameter that balances the competing goals of maintaining a well-conditioned update direction and leveraging fine-grained noise adaptation.
comment: 39 pages, 6 figures
☆ AdvSynGNN: Structure-Adaptive Graph Neural Nets via Adversarial Synthesis and Self-Corrective Propagation
Graph neural networks frequently encounter significant performance degradation when confronted with structural noise or non-homophilous topologies. To address these systemic vulnerabilities, we present AdvSynGNN, a comprehensive architecture designed for resilient node-level representation learning. The proposed framework orchestrates multi-resolution structural synthesis alongside contrastive objectives to establish geometry-sensitive initializations. We develop a transformer backbone that adaptively accommodates heterophily by modulating attention mechanisms through learned topological signals. Central to our contribution is an integrated adversarial propagation engine, where a generative component identifies potential connectivity alterations while a discriminator enforces global coherence. Furthermore, label refinement is achieved through a residual correction scheme guided by per-node confidence metrics, which facilitates precise control over iterative stability. Empirical evaluations demonstrate that this synergistic approach effectively optimizes predictive accuracy across diverse graph distributions while maintaining computational efficiency. The study concludes with practical implementation protocols to ensure the robust deployment of the AdvSynGNN system in large-scale environments.
comment: 32 pages, 8 figures
☆ Spatio-temporal dual-stage hypergraph MARL for human-centric multimodal corridor traffic signal control
Human-centric traffic signal control in corridor networks must increasingly account for multimodal travelers, particularly high-occupancy public transportation, rather than focusing solely on vehicle-centric performance. This paper proposes STDSH-MARL (Spatio-Temporal Dual-Stage Hypergraph based Multi-Agent Reinforcement Learning), a scalable multi-agent deep reinforcement learning framework that follows a centralized training and decentralized execution paradigm. The proposed method captures spatio-temporal dependencies through a novel dual-stage hypergraph attention mechanism that models interactions across both spatial and temporal hyperedges. In addition, a hybrid discrete action space is introduced to jointly determine the next signal phase configuration and its corresponding green duration, enabling more adaptive signal timing decisions. Experiments conducted on a corridor network under five traffic scenarios demonstrate that STDSH-MARL consistently improves multimodal performance and provides clear benefits for public transportation priority. Compared with state-of-the-art baseline methods, the proposed approach achieves superior overall performance. Further ablation studies confirm the contribution of each component of STDSH-MARL, with temporal hyperedges identified as the most influential factor driving the observed performance gains.
☆ Sign Lock-In: Randomly Initialized Weight Signs Persist and Bottleneck Sub-Bit Model Compression
Sub-bit model compression seeks storage below one bit per weight; as magnitudes are aggressively compressed, the sign bit becomes a fixed-cost bottleneck. Across Transformers, CNNs, and MLPs, learned sign matrices resist low-rank approximation and are spectrally indistinguishable from an i.i.d. Rademacher baseline. Despite this apparent randomness, most weights retain their initialization signs; flips primarily occur via rare near-zero boundary crossings, suggesting that sign-pattern randomness is largely inherited from initialization. We formalize this behavior with sign lock-in theory, a stopping-time analysis of sign flips under SGD noise. Under bounded updates and a rare re-entry condition into a small neighborhood around zero, the number of effective sign flips exhibits a geometric tail. Building on this mechanism, we introduce a gap-based initialization and a lightweight outward-drift regularizer, reducing the effective flip rate to approximately $10^{-3}$ with only about a one-point increase in perplexity.
♻ ☆ Contrastive Diffusion Alignment: Learning Structured Latents for Controllable Generation
Diffusion models excel at generation, but their latent spaces are high dimensional and not explicitly organized for interpretation or control. We introduce ConDA (Contrastive Diffusion Alignment), a plug-and-play geometry layer that applies contrastive learning to pretrained diffusion latents using auxiliary variables (e.g., time, stimulation parameters, facial action units). ConDA learns a low-dimensional embedding whose directions align with underlying dynamical factors, consistent with recent contrastive learning results on structured and disentangled representations. In this embedding, simple nonlinear trajectories support smooth interpolation, extrapolation, and counterfactual editing while rendering remains in the original diffusion space. ConDA separates editing and rendering by lifting embedding trajectories back to diffusion latents with a neighborhood-preserving kNN decoder and is robust across inversion solvers. Across fluid dynamics, neural calcium imaging, therapeutic neurostimulation, facial expression dynamics, and monkey motor cortex activity, ConDA yields more interpretable and controllable latent structure than linear traversals and conditioning-based baselines, indicating that diffusion latents encode dynamics-relevant structure that can be exploited by an explicit contrastive geometry layer.
♻ ☆ Gradient Testing and Estimation by Comparisons
We study gradient testing and gradient estimation of smooth functions using only a comparison oracle that, given two points, indicates which one has the larger function value. For any smooth $f\colon\mathbb R^n\to\mathbb R$, $\mathbf{x}\in\mathbb R^n$, and $\varepsilon>0$, we design a gradient testing algorithm that determines whether the normalized gradient $\nabla f(\mathbf{x})/\|\nabla f(\mathbf{x})\|$ is $\varepsilon$-close or $2\varepsilon$-far from a given unit vector $\mathbf{v}$ using $O(1)$ queries, as well as a gradient estimation algorithm that outputs an $\varepsilon$-estimate of $\nabla f(\mathbf{x})/\|\nabla f(\mathbf{x})\|$ using $O(n\log(1/\varepsilon))$ queries which we prove to be optimal. Furthermore, we study gradient estimation in the quantum comparison oracle model where queries can be made in superpositions, and develop a quantum algorithm using $O(\log (n/\varepsilon))$ queries.
comment: v2: Significant changes compared to v1. v2 focuses on the gradient testing and gradient estimation problems, with an improved bound on classical gradient estimation, a new result on classical gradient testing, as well as a new quantum algorithm and lower bound on gradient estimation
♻ ☆ ReplaceMe: Network Simplification via Depth Pruning and Transformer Block Linearization NeurIPS 2025
We introduce ReplaceMe, a generalized training-free depth pruning method that effectively replaces transformer blocks with a linear operation, while maintaining high performance for low compression ratios. In contrast to conventional pruning approaches that require additional training or fine-tuning, our approach requires only a small calibration dataset that is used to estimate a linear transformation, which approximates the pruned blocks. The estimated linear mapping can be seamlessly merged with the remaining transformer blocks, eliminating the need for any additional network parameters. Our experiments show that ReplaceMe consistently outperforms other training-free approaches and remains highly competitive with state-of-the-art pruning methods that involve extensive retraining/fine-tuning and architectural modifications. Applied to several large language models (LLMs), ReplaceMe achieves up to 25\% pruning while retaining approximately 90\% of the original model's performance on open benchmarks - without any training or healing steps, resulting in minimal computational overhead. We provide an open-source library implementing ReplaceMe alongside several state-of-the-art depth pruning techniques, available at https://github.com/mts-ai/ReplaceMe
comment: This work was accepted and presented at NeurIPS 2025. Code is available at https://github.com/mts-ai/replaceme Reviews at OpenReview: https://openreview.net/forum?id=zEj1FSYCRn NeurIPS 2025 Proceedings: https://openreview.net/pdf?id=zEj1FSYCRn
♻ ☆ pi-Flow: Policy-Based Few-Step Generation via Imitation Distillation ICLR 2026
Few-step diffusion or flow-based generative models typically distill a velocity-predicting teacher into a student that predicts a shortcut towards denoised data. This format mismatch has led to complex distillation procedures that often suffer from a quality-diversity trade-off. To address this, we propose policy-based flow models ($π$-Flow). $π$-Flow modifies the output layer of a student flow model to predict a network-free policy at one timestep. The policy then produces dynamic flow velocities at future substeps with negligible overhead, enabling fast and accurate ODE integration on these substeps without extra network evaluations. To match the policy's ODE trajectory to the teacher's, we introduce a novel imitation distillation approach, which matches the policy's velocity to the teacher's along the policy's trajectory using a standard $\ell_2$ flow matching loss. By simply mimicking the teacher's behavior, $π$-Flow enables stable and scalable training and avoids the quality-diversity trade-off. On ImageNet 256$^2$, it attains a 1-NFE FID of 2.85, outperforming previous 1-NFE models of the same DiT architecture. On FLUX.1-12B and Qwen-Image-20B at 4 NFEs, $π$-Flow achieves substantially better diversity than state-of-the-art DMD models, while maintaining teacher-level quality.
comment: ICLR 2026. Code: https://github.com/Lakonik/piFlow Demos: https://huggingface.co/spaces/Lakonik/pi-Qwen | https://huggingface.co/spaces/Lakonik/pi-FLUX.1 | https://huggingface.co/spaces/Lakonik/pi-FLUX.2
♻ ☆ Accelerating Large-Scale Dataset Distillation via Exploration-Exploitation Optimization
Dataset distillation compresses the original data into compact synthetic datasets, reducing training time and storage while retaining model performance, enabling deployment under limited resources. Although recent decoupling-based distillation methods enable dataset distillation at large scale, they continue to face an efficiency gap: optimization-based decoupling methods achieve higher accuracy but demand intensive computation, whereas optimization-free decoupling methods are efficient but sacrifice accuracy. To overcome this trade-off, we propose Exploration--Exploitation Distillation (E$^2$D), a simple, practical method that minimizes redundant computation through an efficient pipeline that begins with full-image initialization to preserve semantic integrity and feature diversity. It then uses a two-phase optimization strategy: an exploration phase that performs uniform updates and identifies high-loss regions, and an exploitation phase that focuses updates on these regions to accelerate convergence. We evaluate E$^2$D on large-scale benchmarks, surpassing the state-of-the-art on ImageNet-1K while being $18\times$ faster, and on ImageNet-21K, our method substantially improves accuracy while remaining $4.3\times$ faster. These results demonstrate that targeted, redundancy-reducing updates, rather than brute-force optimization, bridge the gap between accuracy and efficiency in large-scale dataset distillation. Code is available at https://github.com/ncsu-dk-lab/E2D.
♻ ☆ Supervised Graph Contrastive Learning for Gene Regulatory Networks
Graph Contrastive Learning (GCL) is a powerful self-supervised learning framework that performs data augmentation through graph perturbations, with growing applications in the analysis of biological networks such as Gene Regulatory Networks (GRNs). The artificial perturbations commonly used in GCL, such as node dropping, induce structural changes that can diverge from biological reality. This concern has contributed to a broader trend in graph representation learning toward augmentation-free methods, which view such structural changes as problematic and should be avoided. However, this trend overlooks the fundamental insight that structural changes from biologically meaningful perturbations are not a problem to be avoided, but rather a rich source of information, thereby ignoring the valuable opportunity to leverage data from real biological experiments. Motivated by this insight, we propose SupGCL (Supervised Graph Contrastive Learning), a new GCL method for GRNs that directly incorporates biological perturbations from gene knockdown experiments as supervision. SupGCL is a probabilistic formulation that continuously generalizes conventional GCL, linking artificial augmentations with real perturbations measured in knockdown experiments, and using the latter as explicit supervision. On patient-derived GRNs from three cancer types, we train GRN representations with SupGCL and evaluate it in two regimes: (i) embedding space analysis, where it yields clearer disease-subtype structure and improves clustering, and (ii) task-specific fine-tuning, where it consistently outperforms strong graph representation learning baselines on 13 downstream tasks spanning gene-level functional annotation and patient-level prediction.
comment: Preprint
♻ ☆ Rex: A Family of Reversible Exponential (Stochastic) Runge-Kutta Solvers
Deep generative models based on neural differential equations have quickly become the state-of-the-art for numerous generation tasks across many different applications. These models rely on ODE/SDE solvers which integrate from a prior distribution to the data distribution. In many applications it is highly desirable to then integrate in the other direction. The standard solvers, however, accumulate discretization errors which don't align with the forward trajectory, thereby prohibiting an exact inversion. In applications where the precision of the generative model is paramount this inaccuracy in inversion is often unacceptable. Current approaches to solving the inversion of these models results in significant downstream issues with poor stability and low-order of convergence; moreover, they are strictly limited to the ODE domain. In this work, we propose a new family of reversible exponential (stochastic) Runge-Kutta solvers which we refer to as Rex developed by an application of Lawson methods to convert any explicit (stochastic) Runge-Kutta scheme into a reversible one. In addition to a rigorous theoretical analysis of the proposed solvers, we also empirically demonstrate the utility of Rex on improving the sampling of Boltzmann distributions with flow models, and improving image generation and editing capabilities with diffusion models.
comment: Updated preprint. Added Boltzmann sampling experiments among other things
♻ ☆ Nonlinear Model Order Reduction of Dynamical Systems in Process Engineering: Review and Comparison
Computationally cheap yet accurate dynamical models are a key requirement for real-time capable nonlinear optimization and model-based control. When given a computationally expensive high-order prediction model, a reduction to a lower-order simplified model can enable such real-time applications. Herein, we review nonlinear model order reduction methods and provide a comparison of method characteristics. Additionally, we discuss both general-purpose methods and tailored approaches for chemical process systems and we identify similarities and differences between these methods. As machine learning manifold-Galerkin approaches currently do not account for inputs in the construction of the reduced state subspace, we extend these methods to dynamical systems with inputs. In a comparative case study, we apply eight established model order reduction methods to an air separation process model: POD-Galerkin, nonlinear-POD-Galerkin, manifold-Galerkin, dynamic mode decomposition, Koopman theory, manifold learning with latent predictor, compartment modeling, and model aggregation. Herein, we do not investigate hyperreduction, i.e., reduction of floating point operations. Based on our findings, we discuss strengths and weaknesses of the model order reduction methods.
♻ ☆ Finite-sample performance of the maximum likelihood estimator in logistic regression
Logistic regression is a classical model for describing the probabilistic dependence of binary responses to multivariate covariates. We consider the predictive performance of the maximum likelihood estimator (MLE) for logistic regression, assessed in terms of logistic risk. We consider two questions: first, that of the existence of the MLE (which occurs when the dataset is not linearly separated), and second, that of its accuracy when it exists. These properties depend on both the dimension of covariates and the signal strength. In the case of Gaussian covariates and a well-specified logistic model, we obtain sharp non-asymptotic guarantees for the existence and excess logistic risk of the MLE. We then generalize these results in two ways: first, to non-Gaussian covariates satisfying a certain two-dimensional margin condition, and second to the general case of statistical learning with a possibly misspecified logistic model. Finally, we consider the case of a Bernoulli design, where the behavior of the MLE is highly sensitive to the parameter direction.
comment: Minor revision
♻ ☆ Diffusion-Guided Pretraining for Brain Graph Foundation Models
With the growing interest in foundation models for brain signals, graph-based pretraining has emerged as a promising paradigm for learning transferable representations from connectome data. However, existing contrastive and masked autoencoder methods typically rely on naive random dropping or masking for augmentation, which is ill-suited for brain graphs and hypergraphs as it disrupts semantically meaningful connectivity patterns. Moreover, commonly used graph-level readout and reconstruction schemes fail to capture global structural information, limiting the robustness of learned representations. In this work, we propose a unified diffusion-based pretraining framework that addresses both limitations. First, diffusion is designed to guide structure-aware dropping and masking strategies, preserving brain graph semantics while maintaining effective pretraining diversity. Second, diffusion enables topology-aware graph-level readout and node-level global reconstruction by allowing graph embeddings and masked nodes to aggregate information from globally related regions. Extensive experiments across multiple neuroimaging datasets with over 25,000 subjects and 60,000 scans involving various mental disorders and brain atlases demonstrate consistent performance improvements.
comment: Paper has some mistakes
♻ ☆ Oversmoothing, Oversquashing, Heterophily, Long-Range, and more: Demystifying Common Beliefs in Graph Machine Learning ICLR 2026
After a renaissance phase in which researchers revisited the message-passing paradigm through the lens of deep learning, the graph machine learning community shifted its attention towards a deeper and practical understanding of message-passing's benefits and limitations. In this paper, we notice how the fast pace of progress around the topics of oversmoothing and oversquashing, the homophily-heterophily dichotomy, and long-range tasks, came with the consolidation of commonly accepted beliefs and assumptions -- under the form of universal statements -- that are not always true nor easy to distinguish from each other. We argue that this has led to ambiguities around the investigated problems, preventing researchers from focusing on and addressing precise research questions while causing a good amount of misunderstandings. Our contribution is to make such common beliefs explicit and encourage critical thinking around these topics, refuting universal statements via simple yet formally sufficient counterexamples. The end goal is to clarify conceptual differences, helping researchers address more clearly defined and targeted problems.
comment: International Conference on Learning Representations (ICLR 2026)
♻ ☆ On sparsity, extremal structure, and monotonicity properties of Wasserstein and Gromov-Wasserstein optimal transport plans
This note gives a self-contained overview of some important properties of the Gromov-Wasserstein (GW) distance, compared with the standard linear optimal transport (OT) framework. More specifically, I explore the following questions: are GW optimal transport plans sparse? Under what conditions are they supported on a permutation? Do they satisfy a form of cyclical monotonicity? In particular, I present the conditionally negative semi-definite property and show that, when it holds, there are GW optimal plans that are sparse and supported on a permutation.
♻ ☆ Laser interferometry as a robust neuromorphic platform for machine learning
We present a method for implementing an optical neural network using only linear optical resources, namely field displacement and interferometry applied to coherent states of light. The nonlinearity required for learning in a neural network is realized via an encoding of the input into phase shifts allowing for far more straightforward experimental implementation compared to previous proposals for, and demonstrations of, $\textit{in situ}$ inference. Beyond $\textit{in situ}$ inference, the method enables $\textit{in situ}$ training by utilizing established techniques like parameter shift rules or physical backpropagation to extract gradients directly from measurements of the linear optical circuit. We also investigate the effect of photon losses and find the model to be very resilient to these.
♻ ☆ Defining and Evaluating Physical Safety for Large Language Models
Large Language Models (LLMs) are increasingly used to control robotic systems such as drones, but their risks of causing physical threats and harm in real-world applications remain unexplored. Our study addresses the critical gap in evaluating LLM physical safety by developing a comprehensive benchmark for drone control. We classify the physical safety risks of drones into four categories: (1) human-targeted threats, (2) object-targeted threats, (3) infrastructure attacks, and (4) regulatory violations. Our evaluation of mainstream LLMs reveals an undesirable trade-off between utility and safety, with models that excel in code generation often performing poorly in crucial safety aspects. Furthermore, while incorporating advanced prompt engineering techniques such as In-Context Learning and Chain-of-Thought can improve safety, these methods still struggle to identify unintentional attacks. In addition, larger models demonstrate better safety capabilities, particularly in refusing dangerous commands. Our findings and benchmark can facilitate the design and evaluation of physical safety for LLMs. The project page is available at huggingface.co/spaces/TrustSafeAI/LLM-physical-safety.
♻ ☆ Capturing Individual Human Preferences with Reward Features NeurIPS 2025
Reinforcement learning from human feedback usually models preferences using a reward function that does not distinguish between people. We argue that this is unlikely to be a good design choice in contexts with high potential for disagreement, like in the training of large language models. We formalise and analyse the problem of learning a reward model that can be specialised to a user. Using the principle of empirical risk minimisation, we derive a probably approximately correct (PAC) bound showing the dependency of the approximation error on the number of training examples, as usual, and also on the number of human raters who provided feedback on them. Based on our theoretical findings, we discuss how to best collect pairwise preference data and argue that adaptive reward models should be beneficial when there is considerable disagreement among users. We also propose a concrete architecture for an adaptive reward model. Our approach leverages the observation that individual preferences can be captured as a linear combination of a set of general reward features. We show how to learn such features and subsequently use them to quickly adapt the reward model to a specific individual, even if their preferences are not reflected in the training data. We present experiments with large language models illustrating our theoretical results and comparing the proposed architecture with a non-adaptive baseline. Consistent with our analysis, the benefits provided by our model increase with the number of raters and the heterogeneity of their preferences. We also show that our model compares favourably to adaptive counterparts, including those performing in-context personalisation.
comment: Published at NeurIPS 2025
♻ ☆ Efficient Reinforcement Learning for Large Language Models with Intrinsic Exploration
Reinforcement learning with verifiable rewards (RLVR) has improved the reasoning ability of large language models, yet training remains costly because many rollouts contribute little to optimization, considering the amount of computation required. This study investigates how simply leveraging intrinsic data properties, almost free benefit during training, can improve data efficiency for RLVR. We propose PREPO with two complementary components. First, we adopt prompt perplexity as an indicator of model adaptability in learning, enabling the model to progress from well-understood contexts to more challenging ones. Second, we amplify the discrepancy among the rollouts by differentiating their relative entropy, and prioritize sequences that exhibit a higher degree of exploration. Together, these mechanisms reduce rollout demand while preserving competitive performance. On the Qwen and Llama models, PREPO achieves effective results on mathematical reasoning benchmarks with up to 3 times fewer rollouts than the baselines. Beyond empirical gains, we provide theoretical and in-depth analyses explaining the underlying rationale of our method to improve the data efficiency of RLVR.
♻ ☆ Generating Directed Graphs with Dual Attention and Asymmetric Encoding ICLR 2026
Directed graphs naturally model systems with asymmetric, ordered relationships, essential to applications in biology, transportation, social networks, and visual understanding. Generating such graphs enables tasks such as simulation, data augmentation and novel instance discovery; however, directed graph generation remains underexplored. We identify two key factors limiting progress in this direction: first, modeling edge directionality introduces a substantially larger dependency space, making the underlying distribution harder to learn; second, the absence of standardized benchmarks hinders rigorous evaluation. Addressing the former requires more expressive models that are sensitive to directional topologies. We propose Directo, the first generative model for directed graphs built upon the discrete flow matching framework. Our approach combines: (i) principled positional encodings tailored to asymmetric pairwise relations, (ii) a dual-attention mechanism capturing both incoming and outgoing dependencies, and (iii) a robust, discrete generative framework. To support evaluation, we introduce a benchmark suite covering synthetic and real-world datasets. It shows that our method performs strongly across diverse settings and even competes with specialized models for particular classes, such as directed acyclic graphs. Our results highlight the effectiveness and generality of our approach, establishing a solid foundation for future research in directed graph generation.
comment: Accepted as a conference paper at ICLR 2026
♻ ☆ Entropy After $\langle \texttt{/Think} \rangle$ for reasoning model early exiting
Reasoning LLMs show improved performance with longer chains of thought. However, recent work has highlighted their tendency to overthink, continuing to revise answers even after reaching the correct solution. We quantitatively confirm this inefficiency from the distribution dynamics perspective by tracking Pass@1 for answers averaged over a large number of rollouts and find the model often begins to always produce the correct answer early in the reasoning, making extra reasoning tokens wasteful. To detect and prevent overthinking, we propose a simple and inexpensive novel signal, Entropy After (EAT), for monitoring and deciding whether to exit reasoning early. By appending a stop thinking token () and monitoring the entropy of the following token as the model reasons, we obtain a trajectory that decreases and stabilizes when Pass@1 plateaus; thresholding its variance under an exponential moving average yields a practical stopping rule. Importantly, our approach enables adaptively allocating compute based on the EAT trajectory, allowing us to spend compute in a more efficient way compared with fixing the token budget for all questions. Empirically, on MATH500 and AIME2025, EAT reduces token usage by 12 - 22% without harming accuracy. EAT also remains effective in black box settings where logits from the reasoning model are not accessible, and EAT is computed with proxy models: We verified the feasibility via early stopping Llama 70B with a 1.5B model and Claude 3.7 with a local 4B model.
comment: Code and data assets are available at https://github.com/xidulu/EAT
♻ ☆ On the Existence and Behavior of Secondary Attention Sinks
Attention sinks are tokens, often the beginning-of-sequence (BOS) token, that receive disproportionately high attention despite limited semantic relevance. In this work, we identify a class of attention sinks, which we term secondary sinks, that differ fundamentally from the sinks studied in prior works, which we term primary sinks. While prior works have identified that tokens other than BOS can sometimes become sinks, they were found to exhibit properties analogous to the BOS token. Specifically, they emerge at the same layer, persist throughout the network and draw a large amount of attention mass. Whereas, we find the existence of secondary sinks that arise primarily in middle layers and can persist for a variable number of layers, and draw a smaller, but still significant, amount of attention mass. Through extensive experiments across 11 model families, we analyze where these secondary sinks appear, their properties, how they are formed, and their impact on the attention mechanism. Specifically, we show that: (1) these sinks are formed by specific middle-layer MLP modules; these MLPs map token representations to vectors that align with the direction of the primary sink of that layer. (2) The $\ell_2$-norm of these vectors determines the sink score of the secondary sink, and also the number of layers it lasts for, thereby leading to different impacts on the attention mechanisms accordingly. (3) The primary sink weakens in middle layers, coinciding with the emergence of secondary sinks. We observe that in larger-scale models, the location and lifetime of the sinks, together referred to as sink levels, appear in a more deterministic and frequent manner. Specifically, we identify three sink levels in QwQ-32B and six levels in Qwen3-14B.
♻ ☆ On the Sample Complexity of Learning for Blind Inverse Problems
Blind inverse problems arise in many experimental settings where the forward operator is partially or entirely unknown. In this context, methods developed for the non-blind case cannot be adapted in a straightforward manner. Recently, data-driven approaches have been proposed to address blind inverse problems, demonstrating strong empirical performance and adaptability. However, these methods often lack interpretability and are not supported by rigorous theoretical guarantees, limiting their reliability in applied domains such as imaging inverse problems. In this work, we shed light on learning in blind inverse problems within the simplified yet insightful framework of Linear Minimum Mean Square Estimators (LMMSEs). We provide a theoretical analysis, deriving closed-form expressions for optimal estimators and extending classical results. In particular, we establish equivalences with suitably chosen Tikhonov-regularized formulations, where the regularization depends explicitly on the distributions of the unknown signal, the noise, and the random forward operators. We also prove convergence results of the reconstruction error under appropriate source condition assumptions. Furthermore, we derive finite-sample error bounds that characterize the performance of learned estimators as a function of the noise level, problem conditioning, and number of available samples. These bounds explicitly quantify the impact of operator randomness and reveal the associated convergence rates as this randomness vanishes. Finally, we validate our theoretical findings through illustrative numerical experiments that confirm the predicted convergence behavior.
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent runtime. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ A Parametric Contextual Online Learning Theory of Brokerage
We study the role of contextual information in the online learning problem of brokerage between traders. In this sequential problem, at each time step, two traders arrive with secret valuations about an asset they wish to trade. The learner (a broker) suggests a trading (or brokerage) price based on contextual data about the asset and the market conditions. Then, the traders reveal their willingness to buy or sell based on whether their valuations are higher or lower than the brokerage price. A trade occurs if one of the two traders decides to buy and the other to sell, i.e., if the broker's proposed price falls between the smallest and the largest of their two valuations. We design algorithms for this problem and prove optimal theoretical regret guarantees under various standard assumptions.
♻ ☆ Universal Coefficients and Mayer-Vietoris Sequence for Groupoid Homology
We study homology of ample groupoids via the compactly supported Moore complex of the nerve. Let $A$ be a topological abelian group. For $n\ge 0$ set $C_n(\mathcal G;A) := C_c(\mathcal G_n,A)$ and define $\partial_n^A=\sum_{i=0}^n(-1)^i(d_i)_*$. This defines $H_n(\mathcal G;A)$. The theory is functorial for continuous étale homomorphisms. It is compatible with standard reductions, including restriction to saturated clopen subsets. In the ample setting it is invariant under Kakutani equivalence. We reprove Matui type long exact sequences and identify the comparison maps at chain level. For discrete $A$ we prove a natural universal coefficient short exact sequence $$0\to H_n(\mathcal G)\otimes_{\mathbb Z}A\xrightarrow{\ ι_n^{\mathcal G}\ }H_n(\mathcal G;A)\xrightarrow{\ κ_n^{\mathcal G}\ }\operatorname{Tor}_1^{\mathbb Z}\bigl(H_{n-1}(\mathcal G),A\bigr)\to 0.$$ The key input is the chain level isomorphism $C_c(\mathcal G_n,\mathbb Z)\otimes_{\mathbb Z}A\cong C_c(\mathcal G_n,A)$, which reduces the groupoid statement to the classical algebraic UCT for the free complex $C_c(\mathcal G_\bullet,\mathbb Z)$. We also isolate the obstruction for non-discrete coefficients. For a locally compact totally disconnected Hausdorff space $X$ with a basis of compact open sets, the image of $Φ_X:C_c(X,\mathbb Z)\otimes_{\mathbb Z}A\to C_c(X,A)$ is exactly the compactly supported functions with finite image. Thus $Φ_X$ is surjective if and only if every $f\in C_c(X,A)$ has finite image, and for suitable $X$ one can produce compactly supported continuous maps $X\to A$ with infinite image. Finally, for a clopen saturated cover $\mathcal G_0=U_1\cup U_2$ we construct a short exact sequence of Moore complexes and derive a Mayer-Vietoris long exact sequence for $H_\bullet(\mathcal G;A)$ for explicit computations.
comment: Master's thesis, Code available at https://github.com/karhunenloeve/MScMath.git
♻ ☆ Data Augmentation Scheme for Raman Spectra with Highly Correlated Annotations
In biotechnology Raman Spectroscopy is rapidly gaining popularity as a process analytical technology (PAT) that measures cell densities, substrate- and product concentrations. As it records vibrational modes of molecules it provides that information non-invasively in a single spectrum. Typically, partial least squares (PLS) is the model of choice to infer information about variables of interest from the spectra. However, biological processes are known for their complexity where convolutional neural networks (CNN) present a powerful alternative. They can handle non-Gaussian noise and account for beam misalignment, pixel malfunctions or the presence of additional substances. However, they require a lot of data during model training, and they pick up non-linear dependencies in the process variables. In this work, we exploit the additive nature of spectra in order to generate additional data points from a given dataset that have statistically independent labels so that a network trained on such data exhibits low correlations between the model predictions. We show that training a CNN on these generated data points improves the performance on datasets where the annotations do not bear the same correlation as the dataset that was used for model training. This data augmentation technique enables us to reuse spectra as training data for new contexts that exhibit different correlations. The additional data allows for building a better and more robust model. This is of interest in scenarios where large amounts of historical data are available but are currently not used for model training. We demonstrate the capabilities of the proposed method using synthetic spectra of Ralstonia eutropha batch cultivations to monitor substrate, biomass and polyhydroxyalkanoate (PHA) biopolymer concentrations during of the experiments.
♻ ☆ Goal Inference from Open-Ended Dialog
Embodied AI Agents are quickly becoming important and common tools in society. These embodied agents should be able to learn about and accomplish a wide range of user goals and preferences efficiently and robustly. Large Language Models (LLMs) are often used as they allow for opportunities for rich and open-ended dialog type interaction between the human and agent to accomplish tasks according to human preferences. In this thesis, we argue that for embodied agents that deal with open-ended dialog during task assistance: 1) AI Agents should extract goals from conversations in the form of Natural Language (NL) to be better at capturing human preferences as it is intuitive for humans to communicate their preferences on tasks to agents through natural language. 2) AI Agents should quantify/maintain uncertainty about these goals to ensure that actions are being taken according to goals that the agent is extremely certain about. We present an online method for embodied agents to learn and accomplish diverse user goals. While offline methods like RLHF can represent various goals but require large datasets, our approach achieves similar flexibility with online efficiency. We extract natural language goal representations from conversations with Large Language Models (LLMs). We prompt an LLM to role play as a human with different goals and use the corresponding likelihoods to run Bayesian inference over potential goals. As a result, our method can represent uncertainty over complex goals based on unrestricted dialog. We evaluate in a text-based grocery shopping domain and an AI2Thor robot simulation. We compare our method to ablation baselines that lack either explicit goal representation or probabilistic inference.
comment: This version has been updated to reflect a copy of Master's thesis submitted Jan 24, 2025 for degree date Feb 2025 (https://hdl.handle.net/1721.1/158960). We recommend readers to read revised version incorporating a different agent pipeline and methodological approach which is available at: arXiv:2508.15119
♻ ☆ LLM Fingerprinting via Semantically Conditioned Watermarks
Most LLM fingerprinting methods teach the model to respond to a few fixed queries with predefined atypical responses (keys). This memorization often does not survive common deployment steps such as finetuning or quantization, and such keys can be easily detected and filtered from LLM responses, ultimately breaking the fingerprint. To overcome these limitations we introduce LLM fingerprinting via semantically conditioned watermarks, replacing fixed query sets with a broad semantic domain, and replacing brittle atypical keys with a statistical watermarking signal diffused throughout each response. After teaching the model to watermark its responses only to prompts from a predetermined domain e.g., French language, the model owner can use queries from that domain to reliably detect the fingerprint and verify ownership. As we confirm in our thorough experimental evaluation, our fingerprint is both stealthy and robust to all common deployment scenarios.
♻ ☆ Risk-Aware Decision Making in Restless Bandits: Theory and Algorithms for Planning and Learning
In restless bandits, a central agent is tasked with optimally distributing limited resources across several bandits (arms), with each arm being a Markov decision process. In this work, we generalize the traditional restless bandits problem with a risk-neutral objective by incorporating risk-awareness, which is particularly important in various real-world applications especially when the decision maker seeks to mitigate downside risks. We establish indexability conditions for the case of a risk-aware objective and provide a solution based on Whittle index for the first time for the planning problem with finite-horizon non-stationary and for infinite-horizon stationary Markov decision processes. In addition, we address the learning problem when the true transition probabilities are unknown by proposing a Thompson sampling approach and show that it achieves bounded regret that scales sublinearly with the number of episodes and quadratically with the number of arms. The efficacy of our method in reducing risk exposure in restless bandits is illustrated through a set of numerical experiments in the contexts of machine replacement and patient scheduling applications under both planning and learning setups.
♻ ☆ Watermarking Diffusion Language Models
We introduce the first watermark tailored for diffusion language models (DLMs), an emergent LLM paradigm able to generate tokens in arbitrary order, in contrast to standard autoregressive language models (ARLMs) which generate tokens sequentially. While there has been much work in ARLM watermarking, a key challenge when attempting to apply these schemes directly to the DLM setting is that they rely on previously generated tokens, which are not always available with DLM generation. In this work we address this challenge by: (i) applying the watermark in expectation over the context even when some context tokens are yet to be determined, and (ii) promoting tokens which increase the watermark strength when used as context for other tokens. This is accomplished while keeping the watermark detector unchanged. Our experimental evaluation demonstrates that the DLM watermark leads to a >99% true positive rate with minimal quality impact and achieves similar robustness to existing ARLM watermarks, enabling for the first time reliable DLM watermarking.
♻ ☆ HPMixer: Hierarchical Patching for Multivariate Time Series Forecasting
In long-term multivariate time series forecasting, effectively capturing both periodic patterns and residual dynamics is essential. To address this within standard deep learning benchmark settings, we propose the Hierarchical Patching Mixer (HPMixer), which models periodicity and residuals in a decoupled yet complementary manner. The periodic component utilizes a learnable cycle module [7] enhanced with a nonlinear channel-wise MLP for greater expressiveness. The residual component is processed through a Learnable Stationary Wavelet Transform (LSWT) to extract stable, shift-invariant frequency-domain representations. Subsequently, a channel-mixing encoder models explicit inter-channel dependencies, while a two-level non-overlapping hierarchical patching mechanism captures coarse- and fine-scale residual variations. By integrating decoupled periodicity modeling with structured, multi-scale residual learning, HPMixer provides an effective framework. Extensive experiments on standard multivariate benchmarks demonstrate that HPMixer achieves competitive or state-of-the-art performance compared to recent baselines.
comment: 18 pages, 5 figures, 5 tables, PAKDD 2026
♻ ☆ Beyond Predictive Uncertainty: Reliable Representation Learning with Structural Constraints
Uncertainty estimation in machine learning has traditionally focused on the prediction stage, aiming to quantify confidence in model outputs while treating learned representations as deterministic and reliable by default. In this work, we challenge this implicit assumption and argue that reliability should be regarded as a first-class property of learned representations themselves. We propose a principled framework for reliable representation learning that explicitly models representation-level uncertainty and leverages structural constraints as inductive biases to regularize the space of feasible representations. Our approach introduces uncertainty-aware regularization directly in the representation space, encouraging representations that are not only predictive but also stable, well-calibrated, and robust to noise and structural perturbations. Structural constraints, such as sparsity, relational structure, or feature-group dependencies, are incorporated to define meaningful geometry and reduce spurious variability in learned representations, without assuming fully correct or noise-free structure. Importantly, the proposed framework is independent of specific model architectures and can be integrated with a wide range of representation learning methods.
comment: 22 pages, 5 figures, 5 propositions
♻ ☆ Two-Player Zero-Sum Games with Bandit Feedback
We study a two-player zero-sum game in which the row player aims to maximize their payoff against a competing column player, under an unknown payoff matrix estimated through bandit feedback. We propose three algorithms based on the Explore-Then-Commit (ETC) and action pair elimination frameworks. The first adapts it to zero-sum games, the second incorporates adaptive elimination that leverages the $\varepsilon$-Nash Equilibrium property to efficiently select the optimal action pair, and the third extends the elimination algorithm by employing non-uniform exploration. Our objective is to demonstrate the applicability of ETC and action pair elimination algorithms in a zero-sum game setting by focusing on learning pure strategy Nash Equilibria. A key contribution of our work is a derivation of instance-dependent upper bounds on the expected regret of our proposed algorithms, which has received limited attention in the literature on zero-sum games. Particularly, after $T$ rounds, we achieve an instance-dependent regret upper bounds of $O(Δ+ \sqrt{T})$ for ETC in zero-sum game setting and $O\left(\frac{\log (T Δ^2)}Δ\right)$ for the adaptive elimination algorithm and its variant with non-uniform exploration, where $Δ$ denotes the suboptimality gap. Therefore, our results indicate that the ETC and action pair elimination algorithms perform effectively in zero-sum game settings, achieving regret bounds comparable to existing methods while providing insight through instance-dependent analysis.
comment: 22 pages
♻ ☆ Cert-SSBD: Certified Backdoor Defense with Sample-Specific Smoothing Noises
Deep neural networks (DNNs) are vulnerable to backdoor attacks, where an attacker manipulates a small portion of the training data to implant hidden backdoors into the model. The compromised model behaves normally on clean samples but misclassifies backdoored samples into the attacker-specified target class, posing a significant threat to real-world DNN applications. Currently, several empirical defense methods have been proposed to mitigate backdoor attacks, but they are often bypassed by more advanced backdoor techniques. In contrast, certified defenses based on randomized smoothing have shown promise by adding random noise to training and testing samples to counteract backdoor attacks. In this paper, we reveal that existing randomized smoothing defenses implicitly assume that all samples are equidistant from the decision boundary. However, it may not hold in practice, leading to suboptimal certification performance. To address this issue, we propose a sample-specific certified backdoor defense method, termed Cert-SSB. Cert-SSB first employs stochastic gradient ascent to optimize the noise magnitude for each sample, ensuring a sample-specific noise level that is then applied to multiple poisoned training sets to retrain several smoothed models. After that, Cert-SSB aggregates the predictions of multiple smoothed models to generate the final robust prediction. In particular, in this case, existing certification methods become inapplicable since the optimized noise varies across different samples. To conquer this challenge, we introduce a storage-update-based certification method, which dynamically adjusts each sample's certification region to improve certification performance. We conduct extensive experiments on multiple benchmark datasets, demonstrating the effectiveness of our proposed method. Our code is available at https://github.com/NcepuQiaoTing/Cert-SSB.
comment: To appear in TIFS 2026. 21 pages
♻ ☆ Inferring entropy production in many-body systems using nonequilibrium maximum entropy
We propose a method for inferring entropy production (EP) in high-dimensional stochastic systems, including many-body systems and non-Markovian systems with long memory. Standard techniques for estimating EP become intractable in such systems due to computational and statistical limitations. We infer trajectory-level EP and lower bounds on average EP by exploiting a nonequilibrium analogue of the Maximum Entropy principle, along with convex duality. Our approach uses only samples of trajectory observables, such as spatiotemporal correlations. It does not require reconstruction of high-dimensional probability distributions or rate matrices, nor impose any special assumptions such as discrete states or multipartite dynamics. In addition, it may be used to compute a hierarchical decomposition of EP, reflecting contributions from different interaction orders, and it has an intuitive physical interpretation as a "thermodynamic uncertainty relation." We demonstrate its numerical performance on a disordered nonequilibrium spin model with 1000 spins and a large neural spike-train dataset.
♻ ☆ LRT-Diffusion: Calibrated Risk-Aware Guidance for Diffusion Policies
Diffusion policies are competitive for offline reinforcement learning (RL) but are typically guided at sampling time by heuristics that lack a statistical notion of risk. We introduce LRT-Diffusion, a risk-aware sampling rule that treats each denoising step as a sequential hypothesis test between the unconditional prior and the state-conditional policy head. Concretely, we accumulate a log-likelihood ratio and gate the conditional mean with a logistic controller whose threshold tau is calibrated once under H0 to meet a user-specified Type-I level alpha. This turns guidance from a fixed push into an evidence-driven adjustment with a user-interpretable risk budget. Importantly, we deliberately leave training vanilla (two heads with standard epsilon-prediction) under the structure of DDPM. LRT guidance composes naturally with Q-gradients: critic-gradient updates can be taken at the unconditional mean, at the LRT-gated mean, or a blend, exposing a continuum from exploitation to conservatism. We standardize states and actions consistently at train and test time and report a state-conditional out-of-distribution (OOD) metric alongside return. On D4RL MuJoCo tasks, LRT-Diffusion improves the return-OOD trade-off over strong Q-guided baselines in our implementation while honoring the desired alpha. Theoretically, we establish level-alpha calibration, concise stability bounds, and a return comparison showing when LRT surpasses Q-guidance-especially when off-support errors dominate. Overall, LRT-Diffusion is a drop-in, inference-time method that adds principled, calibrated risk control to diffusion policies for offline RL.
♻ ☆ Helpful to a Fault: Measuring Illicit Assistance in Multi-Turn, Multilingual LLM Agents
LLM-based agents execute real-world workflows via tools and memory. These affordances enable ill-intended adversaries to also use these agents to carry out complex misuse scenarios. Existing agent misuse benchmarks largely test single-prompt instructions, leaving a gap in measuring how agents end up helping with harmful or illegal tasks over multiple turns. We introduce STING (Sequential Testing of Illicit N-step Goal execution), an automated red-teaming framework that constructs a step-by-step illicit plan grounded in a benign persona and iteratively probes a target agent with adaptive follow-ups, using judge agents to track phase completion. We further introduce an analysis framework that models multi-turn red-teaming as a time-to-first-jailbreak random variable, enabling analysis tools like discovery curves, hazard-ratio attribution by attack language, and a new metric: Restricted Mean Jailbreak Discovery. Across AgentHarm scenarios, STING yields substantially higher illicit-task completion than single-turn prompting and chat-oriented multi-turn baselines adapted to tool-using agents. In multilingual evaluations across six non-English settings, we find that attack success and illicit-task completion do not consistently increase in lower-resource languages, diverging from common chatbot findings. Overall, STING provides a practical way to evaluate and stress-test agent misuse in realistic deployment settings, where interactions are inherently multi-turn and often multilingual.
♻ ☆ Enhancing Multilingual LLM Pretraining with Model-Based Data Selection NeurIPS 2025
Dataset curation has become a basis for strong large language model (LLM) performance. While various rule-based filtering heuristics exist for English and multilingual datasets, model-based filtering techniques have primarily focused on English. To address the disparity stemming from limited research on non-English languages, we develop a model-based filtering framework for multilingual datasets that aims to identify a diverse set of structured and knowledge-rich samples. Our approach emphasizes transparency, simplicity, and efficiency, leveraging Transformer- and FastText-based classifiers to ensure the broad accessibility of our technique and data. We conduct comprehensive ablation studies on the FineWeb-2 web crawl dataset across diverse language families, scripts, and resource availability to demonstrate the effectiveness of our method. Training a 1B-parameter Llama model for 70B and 119B tokens, our approach can match the baseline MMLU score with as little as 15% of the training tokens, while also improving across other benchmarks and mitigating the curse of multilinguality. These findings provide strong evidence for the generalizability of our approach to other languages. As a result, we extend our framework to 20 languages for which we release the refined pretraining datasets.
comment: NeurIPS 2025 Track on Datasets and Benchmarks
♻ ☆ A Parameter-free Adaptive Resonance Theory-based Topological Clustering Algorithm Capable of Continual Learning
In general, a similarity threshold (i.e., a vigilance parameter) for a node learning process in Adaptive Resonance Theory (ART)-based algorithms has a significant impact on clustering performance. In addition, an edge deletion threshold in a topological clustering algorithm plays an important role in adaptively generating well-separated clusters during a self-organizing process. In this paper, we propose an ART-based topological clustering algorithm that integrates parameter estimation methods for both the similarity threshold and the edge deletion threshold. The similarity threshold is estimated using a determinantal point process-based criterion, while the edge deletion threshold is defined based on the age of edges. Experimental results with synthetic and real-world datasets show that the proposed algorithm has superior clustering performance to state-of-the-art clustering algorithms without requiring parameter specifications specific to the datasets. Source code is available at https://github.com/Masuyama-lab/CAE
comment: This paper is accepted to Neural Computing and Applications
♻ ☆ Universal Diffusion-Based Probabilistic Downscaling
We introduce a universal diffusion-based downscaling framework that lifts deterministic low-resolution weather forecasts into probabilistic high-resolution predictions without any model-specific fine-tuning. A single conditional diffusion model is trained on paired coarse-resolution inputs (~25 km resolution) and high-resolution regional reanalysis targets (~5 km resolution), and is applied in a fully zero-shot manner to deterministic forecasts from heterogeneous upstream weather models. Focusing on near-surface variables, we evaluate probabilistic forecasts against independent in situ station observations over lead times up to 90 h. Across a diverse set of AI-based and numerical weather prediction (NWP) systems, the ensemble mean of the downscaled forecasts consistently improves upon each model's own raw deterministic forecast, and substantially larger gains are observed in probabilistic skill as measured by CRPS. These results demonstrate that diffusion-based downscaling provides a scalable, model-agnostic probabilistic interface for enhancing spatial resolution and uncertainty representation in operational weather forecasting pipelines.
♻ ☆ Slicing Wasserstein Over Wasserstein Via Functional Optimal Transport
Wasserstein distances define a metric between probability measures on arbitrary metric spaces, including meta-measures (measures over measures). The resulting Wasserstein over Wasserstein (WoW) distance is a powerful, but computationally costly tool for comparing datasets or distributions over images and shapes. Existing sliced WoW accelerations rely on parametric meta-measures or the existence of high-order moments, leading to numerical instability. As an alternative, we propose to leverage the isometry between the 1d Wasserstein space and the quantile functions in the function space $L_2([0,1])$. For this purpose, we introduce a general sliced Wasserstein framework for arbitrary Banach spaces. Due to the 1d Wasserstein isometry, this framework defines a sliced distance between 1d meta-measures via infinite-dimensional $L_2$-projections, parametrized by Gaussian processes. Combining this 1d construction with classical integration over the Euclidean unit sphere yields the double-sliced Wasserstein (DSW) metric for general meta-measures. We show that DSW minimization is equivalent to WoW minimization for discretized meta-measures, while avoiding unstable higher-order moments and computational savings. Numerical experiments on datasets, shapes, and images validate DSW as a scalable substitute for the WoW distance.
♻ ☆ Efficient Orthogonal Fine-Tuning with Principal Subspace Adaptation
Driven by the rapid growth of model parameters, parameter-efficient fine-tuning (PEFT) has become essential for adapting large models to diverse downstream tasks under constrained computational resources. Within this paradigm, orthogonal fine-tuning and its variants preserve semantic representations of pre-trained models, but struggle to achieve both expressiveness and efficiency in terms of parameter counts, memory, and computation. To overcome this limitation, we propose efficient Orthogonal Fine-Tuning with Principal Subspace adaptation (PSOFT), which confines orthogonal transformations to the principal subspace of pre-trained weights. Specifically, PSOFT constructs this subspace via matrix decomposition to enable compatible transformations with higher effective rank, establishes a theoretical condition that strictly maintains the geometry of this subspace for essential semantic preservation, and introduces efficient tunable vectors that gradually relax orthogonality during training to enhance adaptability. Extensive experiments on 35 NLP and CV tasks across four representative models demonstrate that PSOFT offers a practical and scalable solution to simultaneously achieve semantic preservation, expressiveness, and multi-dimensional efficiency in PEFT. The code is publicly available at https://github.com/fei407/PSOFT.
♻ ☆ Persona-driven Simulation of Voting Behavior in the European Parliament with Large Language Models EACL 2026
Large Language Models (LLMs) display remarkable capabilities to understand or even produce political discourse but have been found to consistently exhibit a progressive left-leaning bias. At the same time, so-called persona or identity prompts have been shown to produce LLM behavior that aligns with socioeconomic groups with which the base model is not aligned. In this work, we analyze whether zero-shot persona prompting with limited information can accurately predict individual voting decisions and, by aggregation, accurately predict the positions of European groups on a diverse set of policies. We evaluate whether predictions are stable in response to counterfactual arguments, different persona prompts, and generation methods. Finally, we find that we can simulate the voting behavior of Members of the European Parliament reasonably well, achieving a weighted F1 score of approximately 0.793. Our persona dataset of politicians in the 2024 European Parliament and our code are available at the following url: https://github.com/dess-mannheim/european_parliament_simulation.
comment: Accepted at EACL 2026 Findings
♻ ☆ Unlocking [CLS] Features for Continual Post-Training
Continual learning requires models to integrate new classes or domains over time while preserving previously acquired knowledge. Within this paradigm, foundation models often achieve strong performance, but they still remain subject to the stability-plasticity trade-off, where excessive plasticity leads to forgetting of prior knowledge, and excessive stability constrains the adaptation. This necessitates an effective post-training strategy that introduces minimal yet functional modifications. To address this challenge, we first introduce a new parameter-efficient fine-tuning module 'Learn and Calibrate', or LuCA, designed to acquire task-specific knowledge through an adapter-calibrator couple, enabling well-refined feature representations. Then, for each task, we deploy a sparse LuCA module on top of the last classification token [CLS] just before the classifier, which we refer to as 'Token-level Sparse Calibration and Adaptation', or TOSCA. By leaving the generalization capabilities of the foundation models intact and adapting exclusively via the last token, our approach achieves a harmonious balance between stability and plasticity while reducing both training and inference complexity. We demonstrate that TOSCA yields state-of-the-art performance while introducing ~8 times fewer parameters compared to prior methods.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ GGBall: Graph Generative Model on Poincaré Ball ICLR 2026
Generating graphs with hierarchical structures remains a fundamental challenge due to the limitations of Euclidean geometry in capturing exponential complexity. Here we introduce \textbf{GGBall}, a novel hyperbolic framework for graph generation that integrates geometric inductive biases with modern generative paradigms. GGBall combines a Hyperbolic Vector-Quantized Autoencoder (HVQVAE) with a Riemannian flow matching prior defined via closed-form geodesics. This design enables flow-based priors to model complex latent distributions, while vector quantization helps preserve the curvature-aware structure of the hyperbolic space. We further develop a suite of hyperbolic GNN and Transformer layers that operate entirely within the manifold, ensuring stability and scalability. Empirically, our model reduces degree MMD by over 75\% on Community-Small and over 40\% on Ego-Small compared to state-of-the-art baselines, demonstrating an improved ability to preserve topological hierarchies. These results highlight the potential of hyperbolic geometry as a powerful foundation for the generative modeling of complex, structured, and hierarchical data domains. Our code is available at \href{https://github.com/AI4Science-WestlakeU/GGBall}{here}.
comment: ICLR 2026, 37 pages, 4 figures
♻ ☆ Multimodal Prompt Optimization: Why Not Leverage Multiple Modalities for MLLMs ICLR 2026
Large Language Models (LLMs) have shown remarkable success, and their multimodal expansions (MLLMs) further unlock capabilities spanning images, videos, and other modalities beyond text. However, despite this shift, prompt optimization approaches, designed to reduce the burden of manual prompt crafting while maximizing performance, remain confined to text, ultimately limiting the full potential of MLLMs. Motivated by this gap, we introduce the new problem of multimodal prompt optimization, which expands the prior definition of prompt optimization to the multimodal space defined by the pairs of textual and non-textual prompts. To tackle this problem, we then propose the Multimodal Prompt Optimizer (MPO), a unified framework that not only performs the joint optimization of multimodal prompts through alignment-preserving updates but also guides the selection process of candidate prompts by leveraging earlier evaluations as priors in a Bayesian-based selection strategy. Through extensive experiments across diverse modalities that go beyond text, such as images, videos, and even molecules, we demonstrate that MPO outperforms leading text-only optimization methods, establishing multimodal prompt optimization as a crucial step to realizing the potential of MLLMs.
comment: ICLR 2026
♻ ☆ SeqRisk: Transformer-augmented latent variable model for robust survival prediction with longitudinal data
In healthcare, risk assessment of patient outcomes has been based on survival analysis for a long time, i.e. modeling time-to-event associations. However, conventional approaches rely on data from a single time-point, making them suboptimal for fully leveraging longitudinal patient history and capturing temporal regularities. Focusing on clinical real-world data and acknowledging its challenges, we utilize latent variable models to effectively handle irregular, noisy, and sparsely observed longitudinal data. We propose SeqRisk, a method that combines variational autoencoder (VAE) or longitudinal VAE (LVAE) with a transformer-based sequence aggregation and Cox proportional hazards module for risk prediction. SeqRisk captures long-range interactions, enhances predictive accuracy and generalizability, as well as provides partial explainability for sample population characteristics in attempts to identify high-risk patients. SeqRisk demonstrated robust performance under conditions of increasing sparsity, consistently surpassing existing approaches.
♻ ☆ Beyond Linear Surrogates: High-Fidelity Local Explanations for Black-Box Models
With the increasing complexity of black-box machine learning models and their adoption in high-stakes areas, it is critical to provide explanations for their predictions. Existing local explanation methods lack in generating high-fidelity explanations. This paper proposes a novel local model agnostic explanation method to generate high-fidelity explanations using multivariate adaptive regression splines (MARS) and N-ball sampling strategies. MARS is used to model non-linear local boundaries that effectively captures the underlying behavior of the reference model, thereby enhancing the local fidelity. The N-ball sampling technique samples perturbed samples directly from a desired distribution instead of reweighting, leading to further improvement in the faithfulness. The performance of the proposed method was computed in terms of root mean squared error (RMSE) and evaluated on five different benchmark datasets with different kernel width. Experimental results show that the proposed method achieves higher local surrogate fidelity compared to baseline local explanation methods, with an average reduction of 32% in root mean square error, indicating more accurate local approximations of the black-box model. Additionally, statistical analysis shows that across all benchmark datasets, the proposed approach results were statistically significantly better. This paper advances the field of explainable AI by providing insights that can benefit the broader research and practitioner community.
♻ ☆ Beyond Needle(s) in the Embodied Haystack: Environment, Architecture, and Training Considerations for Long Context Reasoning
We introduce $\infty$-THOR, a new framework for long-horizon embodied tasks that advances long-context understanding in embodied AI. $\infty$-THOR provides: (1) a generation framework for synthesizing scalable, reproducible, and unlimited long-horizon trajectories; (2) a novel embodied QA task, Needle(s) in the Embodied Haystack, where multiple scattered clues across extended trajectories test agents' long-context reasoning ability; and (3) a long-horizon dataset and benchmark suite featuring complex tasks that span hundreds of environment steps, each paired with ground-truth action sequences. To enable this capability, we explore architectural adaptations, including interleaved Goal-State-Action modeling, context extension techniques, and Context Parallelism, to equip LLM-based agents for extreme long-context reasoning and interaction. Experimental results and analyses highlight the challenges posed by our benchmark and provide insights into training strategies and model behaviors under long-horizon conditions. Our work provides a foundation for the next generation of embodied AI systems capable of robust, long-term reasoning and planning.
♻ ☆ Ringleader ASGD: The First Asynchronous SGD with Optimal Time Complexity under Data Heterogeneity
Asynchronous stochastic gradient methods are central to scalable distributed optimization, particularly when devices differ in computational capabilities. Such settings arise naturally in federated learning, where training takes place on smartphones and other heterogeneous edge devices. In addition to varying computation speeds, these devices often hold data from different distributions. However, existing asynchronous SGD methods struggle in such heterogeneous settings and face two key limitations. First, many rely on unrealistic assumptions of similarity across workers' data distributions. Second, methods that relax this assumption still fail to achieve theoretically optimal performance under heterogeneous computation times. We introduce Ringleader ASGD, the first asynchronous SGD algorithm that attains the theoretical lower bounds for parallel first-order stochastic methods in the smooth nonconvex regime, thereby achieving optimal time complexity under data heterogeneity and without restrictive similarity assumptions. Our analysis further establishes that Ringleader ASGD remains optimal under arbitrary and even time-varying worker computation speeds, closing a fundamental gap in the theory of asynchronous optimization.
♻ ☆ Strict Subgoal Execution: Reliable Long-Horizon Planning in Hierarchical Reinforcement Learning ICLR 2026
Long-horizon goal-conditioned tasks pose fundamental challenges for reinforcement learning (RL), particularly when goals are distant and rewards are sparse. While hierarchical and graph-based methods offer partial solutions, their reliance on conventional hindsight relabeling often fails to correct subgoal infeasibility, leading to inefficient high-level planning. To address this, we propose Strict Subgoal Execution (SSE), a graph-based hierarchical RL framework that integrates Frontier Experience Replay (FER) to separate unreachable from admissible subgoals and streamline high-level decision making. FER delineates the reachability frontier using failure and partial-success transitions, which identifies unreliable subgoals, increases subgoal reliability, and reduces unnecessary high-level decisions. Additionally, SSE employs a decoupled exploration policy to cover underexplored regions of the goal space and a path refinement that adjusts edge costs using observed low-level failures. Experimental results across diverse long-horizon benchmarks show that SSE consistently outperforms existing goal-conditioned and hierarchical RL methods in both efficiency and success rate. Our code is available at https://github.com/Jaebak1996/SSE
comment: 10 pages for main, 26 pages for total, Accepted to ICLR 2026
♻ ☆ AI/ML based Joint Source and Channel Coding for HARQ-ACK Payload
Channel coding from 2G to 5G has assumed the inputs bits at the physical layer to be uniformly distributed. However, hybrid automatic repeat request acknowledgement (HARQ-ACK) bits transmitted in the uplink are inherently non-uniformly distributed. For such sources, significant performance gains could be obtained by employing joint source channel coding, aided by deep learning-based techniques. In this paper, we learn a transformer-based encoder using a novel "free-lunch" training algorithm and propose per-codeword power shaping to exploit the source prior at the encoder whilst being robust to small changes in the HARQ-ACK distribution. Furthermore, any HARQ-ACK decoder has to achieve a low negative acknowledgement (NACK) error rate to avoid radio link failures resulting from multiple NACK errors. We develop an extension of the Neyman-Pearson test to a coded bit system with multiple information bits to achieve Unequal Error Protection of NACK over ACK bits at the decoder. Finally, we apply the proposed encoder and decoder designs to a 5G New Radio (NR) compliant uplink setup under a fading channel, describing the optimal receiver design and a low complexity coherent approximation to it. Our results demonstrate 3-6 dB reduction in the average transmit power required to achieve the target error rates compared to the NR baseline, while also achieving a 2-3 dB reduction in the maximum transmit power, thus providing for significant coverage gains and power savings.
comment: 39 pages, 15 figures. Under consideration for publication in Journal of Sel. Areas in Information Theory (received Major Revision). This paper was presented in part at the International Symposium on Topics in Coding, August 2025 in the Session for Coding and AI
♻ ☆ Point-DeepONet: Predicting Nonlinear Fields on Non-Parametric Geometries under Variable Load Conditions
Nonlinear structural analyses in engineering often require extensive finite element simulations, limiting their applicability in design optimization and real-time control. Conventional deep learning surrogates often struggle with complex, non-parametric three-dimensional (3D) geometries and directionally varying loads. This work presents Point-DeepONet, an operator-learning-based surrogate that integrates PointNet into the DeepONet framework to learn a mapping from non-parametric geometries and variable load conditions to physical response fields. By leveraging PointNet to learn a geometric representation from raw point clouds, our model circumvents the need for manual parameterization. This geometric embedding is then synergistically fused with load conditions within the DeepONet architecture to accurately predict three-dimensional displacement and von Mises stress fields. Trained on a large-scale dataset, Point-DeepONet demonstrates high fidelity, achieving a coefficient of determination (R^2) reaching 0.987 for displacement and 0.923 for von Mises stress. Furthermore, to rigorously validate its generalization capabilities, we conducted additional experiments on unseen, randomly oriented load directions, where the model maintained exceptional accuracy. Compared to nonlinear finite element analyses that require about 19.32 minutes per case, Point-DeepONet provides predictions in mere seconds--approximately 400 times faster--while maintaining excellent scalability. These findings, validated through extensive experiments and ablation studies, highlight the potential of Point-DeepONet to enable rapid, high-fidelity structural analyses for complex engineering workflows.
comment: Accepted for publication in Neural Networks. 17 pages, 17 figures
♻ ☆ Efficient Context Propagating Perceiver Architectures for Auto-Regressive Language Modeling
One of the key challenges in Transformer architectures is the quadratic complexity of the attention mechanism, which limits the efficient processing of long sequences. Many recent research works have attempted to provide a reduction from the $O(n^2)$ time complexity of attention to semi-linear complexity. However, it remains an unsolved problem in the sense of maintaining high performance when complexity is reduced. One of the important works in this respect is the Perceiver class of architectures that have demonstrated excellent performance, while reducing the computation complexity. In this paper, we use the PerceiverAR as a basis and explore the design space of different trade-offs between preserving context and reducing attention complexity. To this end, we develop four new architectural paradigms, the best performing of which we denote as the Efficient Context propagating Perceiver (ECP). ECP has two major advantages over the PerceiverAR. First, the ECP architecture overcomes the main drawback of PercieverAR by utilizing both the context and the latent sequences in autoregressive training. Second, the ECP architecture operates with the same attention complexity as LongLoRA, making it computationally efficient. More importantly, via pairwise segment attention, it extracts better information resulting in improved language modeling. Empirically, we demonstrate that the ECP architecture significantly outperforms other state-of-the-art Transformer models on Wikitext-103, PG-19 and sCIFAR-10.
♻ ☆ Puzzle it Out: Local-to-Global World Model for Offline Multi-Agent Reinforcement Learning
Offline multi-agent reinforcement learning (MARL) aims to solve cooperative decision-making problems in multi-agent systems using pre-collected datasets. Existing offline MARL methods primarily constrain training within the dataset distribution, resulting in overly conservative policies that struggle to generalize beyond the support of the data. While model-based approaches offer a promising solution by expanding the original dataset with synthetic data generated from a learned world model, the high dimensionality, non-stationarity, and complexity of multi-agent systems make it challenging to accurately estimate the transitions and reward functions in offline MARL. Given the difficulty of directly modeling joint dynamics, we propose a local-to-global (LOGO) world model, a novel framework that leverages local predictions-which are easier to estimate-to infer global state dynamics, thus improving prediction accuracy while implicitly capturing agent-wise dependencies. Using the trained world model, we generate synthetic data to augment the original dataset, expanding the effective state-action space. To ensure reliable policy learning, we further introduce an uncertainty-aware sampling mechanism that adaptively weights synthetic data by prediction uncertainty, reducing approximation error propagation to policies. In contrast to conventional ensemble-based methods, our approach requires only an additional encoder for uncertainty estimation, significantly reducing computational overhead while maintaining accuracy. Extensive experiments across 8 scenarios against 8 baselines demonstrate that our method surpasses state-of-the-art baselines on standard offline MARL benchmarks, establishing a new model-based baseline for generalizable offline multi-agent learning.
♻ ☆ EnterpriseBench Corecraft: Training Generalizable Agents on High-Fidelity RL Environments
We show that training AI agents on high-fidelity reinforcement learning environments produces capabilities that generalize beyond the training distribution. We introduce CoreCraft, the first environment in EnterpriseBench, Surge AI's suite of agentic RL environments. CoreCraft is a fully operational enterprise simulation of a customer support organization, comprising over 2,500 entities across 14 entity types with 23 unique tools, designed to measure whether AI agents can perform the multi-step, domain-specific work that real jobs demand. Frontier models such as GPT-5.2 and Claude Opus 4.6 solve fewer than 30% of tasks when all expert-authored rubric criteria must be satisfied. Using this environment, we train GLM 4.6 with Group Relative Policy Optimization (GRPO) and adaptive clipping. After a single epoch of training, the model improves from 25.37% to 36.76% task pass rate on held-out evaluation tasks. More importantly, these gains transfer to out-of-distribution benchmarks: +4.5% on BFCL Parallel, +7.4% on Tau2-Bench Retail, and +6.8% on Tool Decathlon (Pass@1). We believe three environment properties are consistent with the observed transfer: task-centric world building that optimizes for diverse, challenging tasks; expert-authored rubrics enabling reliable reward computation; and enterprise workflows that reflect realistic professional patterns. Our results suggest that environment quality, diversity, and realism are key factors enabling generalizable agent capabilities.
♻ ☆ Self-Improving Skill Learning for Robust Skill-based Meta-Reinforcement Learning ICLR 2026
Meta-reinforcement learning (Meta-RL) facilitates rapid adaptation to unseen tasks but faces challenges in long-horizon environments. Skill-based approaches tackle this by decomposing state-action sequences into reusable skills and employing hierarchical decision-making. However, these methods are highly susceptible to noisy offline demonstrations, leading to unstable skill learning and degraded performance. To address this, we propose Self-Improving Skill Learning (SISL), which performs self-guided skill refinement using decoupled high-level and skill improvement policies, while applying skill prioritization via maximum return relabeling to focus updates on task-relevant trajectories, resulting in robust and stable adaptation even under noisy and suboptimal data. By mitigating the effect of noise, SISL achieves reliable skill learning and consistently outperforms other skill-based meta-RL methods on diverse long-horizon tasks. Our code is available at https://github.com/epsilog/SISL.
comment: 10 pages main, 27 pages appendix with reference. Accepted to ICLR 2026
♻ ☆ Continuous-Time Value Iteration for Multi-Agent Reinforcement Learning ICLR 2026
Existing reinforcement learning (RL) methods struggle with complex dynamical systems that demand interactions at high frequencies or irregular time intervals. Continuous-time RL (CTRL) has emerged as a promising alternative by replacing discrete-time Bellman recursion with differential value functions defined as viscosity solutions of the Hamilton--Jacobi--Bellman (HJB) equation. While CTRL has shown promise, its applications have been largely limited to the single-agent domain. This limitation stems from two key challenges: (i) conventional solution methods for HJB equations suffer from the curse of dimensionality (CoD), making them intractable in high-dimensional systems; and (ii) even with HJB-based learning approaches, accurately approximating centralized value functions in multi-agent settings remains difficult, which in turn destabilizes policy training. In this paper, we propose a CT-MARL framework that uses physics-informed neural networks (PINNs) to approximate HJB-based value functions at scale. To ensure the value is consistent with its differential structure, we align value learning with value-gradient learning by introducing a Value Gradient Iteration (VGI) module that iteratively refines value gradients along trajectories. This improves gradient fidelity, in turn yielding more accurate values and stronger policy learning. We evaluate our method using continuous-time variants of standard benchmarks, including multi-agent particle environment (MPE) and multi-agent MuJoCo. Our results demonstrate that our approach consistently outperforms existing continuous-time RL baselines and scales to complex multi-agent dynamics.
comment: Accepted at ICLR 2026. 21 pages, 13 figures
♻ ☆ ArtNet: Hierarchical Clustering-Based Artificial Netlist Generator for ML and DTCO Application
In advanced nodes, optimization of power, performance and area (PPA) has become highly complex and challenging. Machine learning (ML) and design-technology co-optimization (DTCO) provide promising mitigations, but face limitations due to a lack of diverse training data as well as long design flow turnaround times (TAT). We propose ArtNet, a novel artificial netlist generator designed to tackle these issues. Unlike previous methods, ArtNet replicates key topological characteristics, enhancing ML model generalization and supporting broader design space exploration for DTCO. By producing realistic artificial datasets that moreclosely match given target parameters, ArtNet enables more efficient PPAoptimization and exploration of flows and design enablements. In the context of CNN-based DRV prediction, ArtNet's data augmentationimproves F1 score by 0.16 compared to using only the original (real) dataset. In the DTCO context, ArtNet-generated mini-brains achieve a PPA match up to 97.94%, demonstrating close alignment with design metrics of targeted full-scale block designs.
♻ ☆ RoboGene: Boosting VLA Pre-training via Diversity-Driven Agentic Framework for Real-World Task Generation
The pursuit of general-purpose robotic manipulation is hindered by the scarcity of diverse, real-world interaction data. Unlike data collection from web in vision or language, robotic data collection is an active process incurring prohibitive physical costs. Consequently, automated task curation to maximize data value remains a critical yet under-explored challenge. Existing manual methods are unscalable and biased toward common tasks, while off-the-shelf foundation models often hallucinate physically infeasible instructions. To address this, we introduce RoboGene, an agentic framework designed to automate the generation of diverse, physically plausible manipulation tasks across single-arm, dual-arm, and mobile robots. RoboGene integrates three core components: diversity-driven sampling for broad task coverage, self-reflection mechanisms to enforce physical constraints, and human-in-the-loop refinement for continuous improvement. We conduct extensive quantitative analysis and large-scale real-world experiments, collecting datasets of 18k trajectories and introducing novel metrics to assess task quality, feasibility, and diversity. Results demonstrate that RoboGene significantly outperforms state-of-the-art foundation models (e.g., GPT-4o, Gemini 2.5 Pro). Furthermore, real-world experiments show that VLA models pre-trained with RoboGene achieve higher success rates and superior generalization, underscoring the importance of high-quality task generation. Our project is available at https://robogene-boost-vla.github.io.
♻ ☆ A Unifying Framework for Robust and Efficient Inference with Unstructured Data
To analyze unstructured data (text, images, audio, video), economists typically first extract low-dimensional structured features with a neural network. Neural networks do not make generically unbiased predictions, and biases will propagate to estimators that use their predictions. While structured variables extracted from unstructured data have traditionally been treated as proxies - implicitly accepting arbitrary measurement error - this poses various challenges in an era where constantly evolving AI can cheaply extract data. Researcher degrees of freedom (e.g., the choice of neural network architecture, training data or prompts, and numerous implementation details) raise concerns about p-hacking and how to best show robustness, the frequent deprecation of proprietary neural networks complicates reproducibility, and researchers need a principled way to determine how accurate predictions need to be before making costly investments to improve them. To address these challenges, this study develops MAR-S (Missing At Random Structured Data), a semiparametric missing data framework that enables unbiased, efficient, and robust inference with unstructured data, by correcting for neural network prediction error with a validation sample. MAR-S synthesizes and extends existing methods for debiased inference using machine learning predictions and connects them to familiar problems such as causal inference, highlighting valuable parallels. We develop robust and efficient estimators for both descriptive and causal estimands and address inference with aggregated and transformed neural network predictions, a common scenario outside the existing literature.
♻ ☆ Biases in the Blind Spot: Detecting What LLMs Fail to Mention
Large Language Models (LLMs) often provide chain-of-thought (CoT) reasoning traces that appear plausible, but may hide internal biases. We call these *unverbalized biases*. Monitoring models via their stated reasoning is therefore unreliable, and existing bias evaluations typically require predefined categories and hand-crafted datasets. In this work, we introduce a fully automated, black-box pipeline for detecting task-specific unverbalized biases. Given a task dataset, the pipeline uses LLM autoraters to generate candidate bias concepts. It then tests each concept on progressively larger input samples by generating positive and negative variations, and applies statistical techniques for multiple testing and early stopping. A concept is flagged as an unverbalized bias if it yields statistically significant performance differences while not being cited as justification in the model's CoTs. We evaluate our pipeline across seven LLMs on three decision tasks (hiring, loan approval, and university admissions). Our technique automatically discovers previously unknown biases in these models (e.g., Spanish fluency, English proficiency, writing formality). In the same run, the pipeline also validates biases that were manually identified by prior work (gender, race, religion, ethnicity). More broadly, our proposed approach provides a practical, scalable path to automatic task-specific bias discovery.
comment: 11 pages
Multimedia 6
☆ Art2Mus: Artwork-to-Music Generation via Visual Conditioning and Large-Scale Cross-Modal Alignment
Music generation has advanced markedly through multimodal deep learning, enabling models to synthesize audio from text and, more recently, from images. However, existing image-conditioned systems suffer from two fundamental limitations: (i) they are typically trained on natural photographs, limiting their ability to capture the richer semantic, stylistic, and cultural content of artworks; and (ii) most rely on an image-to-text conversion stage, using language as a semantic shortcut that simplifies conditioning but prevents direct visual-to-audio learning. Motivated by these gaps, we introduce ArtSound, a large-scale multimodal dataset of 105,884 artwork-music pairs enriched with dual-modality captions, obtained by extending ArtGraph and the Free Music Archive. We further propose ArtToMus, the first framework explicitly designed for direct artwork-to-music generation, which maps digitized artworks to music without image-to-text translation or language-based semantic supervision. The framework projects visual embeddings into the conditioning space of a latent diffusion model, enabling music synthesis guided solely by visual information. Experimental results show that ArtToMus generates musically coherent and stylistically consistent outputs that reflect salient visual cues of the source artworks. While absolute alignment scores remain lower than those of text-conditioned systems-as expected given the substantially increased difficulty of removing linguistic supervision-ArtToMus achieves competitive perceptual quality and meaningful cross-modal correspondence. This work establishes direct visual-to-music generation as a distinct and challenging research direction, and provides resources that support applications in multimedia art, cultural heritage, and AI-assisted creative practice. Code and dataset will be publicly released upon acceptance.
☆ HybridPrompt: Bridging Generative Priors and Traditional Codecs for Mobile Streaming
In Video on Demand (VoD) scenarios, traditional codecs are the industry standard due to their high decoding efficiency. However, they suffer from severe quality degradation under low bandwidth conditions. While emerging generative neural codecs offer significantly higher perceptual quality, their reliance on heavy frame-by-frame generation makes real-time playback on mobile devices impractical. We ask: is it possible to combine the blazing-fast speed of traditional standards with the superior visual fidelity of neural approaches? We present HybridPrompt, the first generative-based video system capable of achieving real-time 1080p decoding at over 150 FPS on a commercial smartphone. Specifically, we employ a hybrid architecture that encodes Keyframes using a generative model while relying on traditional codecs for the remaining frames. A major challenge is that the two paradigms have conflicting objectives: the "hallucinated" details from generative models often misalign with the rigid prediction mechanisms of traditional codecs, causing bitrate inefficiency. To address this, we demonstrate that the traditional decoding process is differentiable, enabling an end-to-end optimization loop. This allows us to use subsequent frames as additional supervision, forcing the generative model to synthesize keyframes that are not only perceptually high-fidelity but also mathematically optimal references for the traditional codec. By integrating a two-stage generation strategy, our system outperforms pure neural baselines by orders of magnitude in speed while achieving an average LPIPS gain of 8% over traditional codecs at 200kbps.
comment: 6 pages, 7 figures, 4 tables, to appear in NOSSDAV 26
☆ CAFE: Channel-Autoregressive Factorized Encoding for Robust Biosignal Spatial Super-Resolution
High-density biosignal recordings are critical for neural decoding and clinical monitoring, yet real-world deployments often rely on low-density (LD) montages due to hardware and operational constraints. This motivates spatial super-resolution from LD observations, but heterogeneous dependencies under sparse and noisy measurements often lead to artifact propagation and false non-local correlations. To address this, we propose CAFE, a plug-and-play rollout generation scheme that reconstructs the full montage in geometry-aligned stages. Starting from the LD channels, CAFE first recovers nearby channels and then progressively expands to more distal regions, exploiting reliable local structure before introducing non-local interactions. During training, step-wise supervision is applied over channel groups and teacher forcing with epoch-level scheduled sampling along the group dimension is utilized to reduce exposure bias, enabling parallel computation across steps. At test time, CAFE performs an autoregressive rollout across groups, while remaining plug-and-play by reusing any temporal backbone as the shared predictor. Evaluated on $4$ modalities and $6$ datasets, CAFE demonstrates plug-and-play generality across $3$ backbones (MLP, Conv, Transformer) and achieves consistently better reconstruction than $5$ representative baselines.
☆ Is there a relationship between Mean Opinion Score (MOS) and Just Noticeable Difference (JND)?
Evaluating perceived video quality is essential for ensuring high Quality of Experience (QoE) in modern streaming applications. While existing subjective datasets and Video Quality Metrics (VQMs) cover a broad quality range, many practical use cases especially for premium users focus on high quality scenarios requiring finer granularity. Just Noticeable Difference (JND) has emerged as a key concept for modeling perceptual thresholds in these high end regions and plays an important role in perceptual bitrate ladder construction. However, the relationship between JND and the more widely used Mean Opinion Score (MOS) remains unclear. In this paper, we conduct a Degradation Category Rating (DCR) subjective study based on an existing JND dataset to examine how MOS corresponds to the 75% Satisfied User Ratio (SUR) points of the 1st and 2nd JNDs. We find that while MOS values at JND points generally align with theoretical expectations (e.g., 4.75 for the 75% SUR of the 1st JND), the reverse mapping from MOS to JND is ambiguous due to overlapping confidence intervals across PVS indices. Statistical significance analysis further shows that DCR studies with limited participants may not detect meaningful differences between reference and JND videos.
comment: International Conference on Visual Communications and Image Processing (VCIP 2025)
♻ ☆ Learning Perceptual Representations for Gaming NR-VQA with Multi-Task FR Signals
No-reference video quality assessment (NR-VQA) for gaming videos is challenging due to limited human-rated datasets and unique content characteristics including fast motion, stylized graphics, and compression artifacts. We present MTL-VQA, a multi-task learning framework that uses full-reference metrics as supervisory signals to learn perceptually meaningful features without human labels for pretraining. By jointly optimizing multiple full-reference (FR) objectives with adaptive task weighting, our approach learns shared representations that transfer effectively to NR-VQA. Experiments on gaming video datasets show MTL-VQA achieves performance competitive with state-of-the-art NR-VQA methods across both MOS-supervised and label-efficient/self-supervised settings.
comment: 6 pages, 2 figures
♻ ☆ PP-Motion: Physical-Perceptual Fidelity Evaluation for Human Motion Generation
Human motion generation has found widespread applications in AR/VR, film, sports, and medical rehabilitation, offering a cost-effective alternative to traditional motion capture systems. However, evaluating the fidelity of such generated motions is a crucial, multifaceted task. Although previous approaches have attempted at motion fidelity evaluation using human perception or physical constraints, there remains an inherent gap between human-perceived fidelity and physical feasibility. Moreover, the subjective and coarse binary labeling of human perception further undermines the development of a robust data-driven metric. We address these issues by introducing a physical labeling method. This method evaluates motion fidelity by calculating the minimum modifications needed for a motion to align with physical laws. With this approach, we are able to produce fine-grained, continuous physical alignment annotations that serve as objective ground truth. With these annotations, we propose PP-Motion, a novel data-driven metric to evaluate both physical and perceptual fidelity of human motion. To effectively capture underlying physical priors, we employ Pearson's correlation loss for the training of our metric. Additionally, by incorporating a human-based perceptual fidelity loss, our metric can capture fidelity that simultaneously considers both human perception and physical alignment. Experimental results demonstrate that our metric, PP-Motion, not only aligns with physical laws but also aligns better with human perception of motion fidelity than previous work.
comment: Accepted by ACM Multimedia 2025
Artificial Intelligent 225
☆ Sink-Aware Pruning for Diffusion Language Models
Diffusion Language Models (DLMs) incur high inference cost due to iterative denoising, motivating efficient pruning. Existing pruning heuristics largely inherited from autoregressive (AR) LLMs, typically preserve attention sink tokens because AR sinks serve as stable global anchors. We show that this assumption does not hold for DLMs: the attention-sink position exhibits substantially higher variance over the full generation trajectory (measured by how the dominant sink locations shift across timesteps), indicating that sinks are often transient and less structurally essential than in AR models. Based on this observation, we propose ${\bf \texttt{Sink-Aware Pruning}}$, which automatically identifies and prunes unstable sinks in DLMs (prior studies usually keep sinks for AR LLMs). Without retraining, our method achieves a better quality-efficiency trade-off and outperforms strong prior pruning baselines under matched compute. Our code is available at https://github.com/VILA-Lab/Sink-Aware-Pruning.
comment: Code at: https://github.com/VILA-Lab/Sink-Aware-Pruning
☆ CLEF HIPE-2026: Evaluating Accurate and Efficient Person-Place Relation Extraction from Multilingual Historical Texts ECIR 2026
HIPE-2026 is a CLEF evaluation lab dedicated to person-place relation extraction from noisy, multilingual historical texts. Building on the HIPE-2020 and HIPE-2022 campaigns, it extends the series toward semantic relation extraction by targeting the task of identifying person--place associations in multiple languages and time periods. Systems are asked to classify relations of two types - $at$ ("Has the person ever been at this place?") and $isAt$ ("Is the person located at this place around publication time?") - requiring reasoning over temporal and geographical cues. The lab introduces a three-fold evaluation profile that jointly assesses accuracy, computational efficiency, and domain generalization. By linking relation extraction to large-scale historical data processing, HIPE-2026 aims to support downstream applications in knowledge-graph construction, historical biography reconstruction, and spatial analysis in digital humanities.
comment: ECIR 2026. CLEF Evaluation Lab. Registration DL: 2026/04/23. Task Homepage at https://hipe-eval.github.io/HIPE-2026/
☆ MARS: Margin-Aware Reward-Modeling with Self-Refinement
Reward modeling is a core component of modern alignment pipelines including RLHF and RLAIF, underpinning policy optimization methods including PPO and TRPO. However, training reliable reward models relies heavily on human-labeled preference data, which is costly and limited, motivating the use of data augmentation. Existing augmentation approaches typically operate at the representation or semantic level and remain agnostic to the reward model's estimation difficulty. In this paper, we propose MARS, an adaptive, margin-aware augmentation and sampling strategy that explicitly targets ambiguous and failure modes of the reward model. Our proposed framework, MARS, concentrates augmentation on low-margin (ambiguous) preference pairs where the reward model is most uncertain, and iteratively refines the training distribution via hard-sample augmentation. We provide theoretical guarantees showing that this strategy increases the average curvature of the loss function hence enhance information and improves conditioning, along with empirical results demonstrating consistent gains over uniform augmentation for robust reward modeling.
☆ Pushing the Frontier of Black-Box LVLM Attacks via Fine-Grained Detail Targeting
Black-box adversarial attacks on Large Vision-Language Models (LVLMs) are challenging due to missing gradients and complex multimodal boundaries. While prior state-of-the-art transfer-based approaches like M-Attack perform well using local crop-level matching between source and target images, we find this induces high-variance, nearly orthogonal gradients across iterations, violating coherent local alignment and destabilizing optimization. We attribute this to (i) ViT translation sensitivity that yields spike-like gradients and (ii) structural asymmetry between source and target crops. We reformulate local matching as an asymmetric expectation over source transformations and target semantics, and build a gradient-denoising upgrade to M-Attack. On the source side, Multi-Crop Alignment (MCA) averages gradients from multiple independently sampled local views per iteration to reduce variance. On the target side, Auxiliary Target Alignment (ATA) replaces aggressive target augmentation with a small auxiliary set from a semantically correlated distribution, producing a smoother, lower-variance target manifold. We further reinterpret momentum as Patch Momentum, replaying historical crop gradients; combined with a refined patch-size ensemble (PE+), this strengthens transferable directions. Together these modules form M-Attack-V2, a simple, modular enhancement over M-Attack that substantially improves transfer-based black-box attacks on frontier LVLMs: boosting success rates on Claude-4.0 from 8% to 30%, Gemini-2.5-Pro from 83% to 97%, and GPT-5 from 98% to 100%, outperforming prior black-box LVLM attacks. Code and data are publicly available at: https://github.com/vila-lab/M-Attack-V2.
comment: Code at: https://github.com/vila-lab/M-Attack-V2
☆ FAMOSE: A ReAct Approach to Automated Feature Discovery
Feature engineering remains a critical yet challenging bottleneck in machine learning, particularly for tabular data, as identifying optimal features from an exponentially large feature space traditionally demands substantial domain expertise. To address this challenge, we introduce FAMOSE (Feature AugMentation and Optimal Selection agEnt), a novel framework that leverages the ReAct paradigm to autonomously explore, generate, and refine features while integrating feature selection and evaluation tools within an agent architecture. To our knowledge, FAMOSE represents the first application of an agentic ReAct framework to automated feature engineering, especially for both regression and classification tasks. Extensive experiments demonstrate that FAMOSE is at or near the state-of-the-art on classification tasks (especially tasks with more than 10K instances, where ROC-AUC increases 0.23% on average), and achieves the state-of-the-art for regression tasks by reducing RMSE by 2.0% on average, while remaining more robust to errors than other algorithms. We hypothesize that FAMOSE's strong performance is because ReAct allows the LLM context window to record (via iterative feature discovery and evaluation steps) what features did or did not work. This is similar to a few-shot prompt and guides the LLM to invent better, more innovative features. Our work offers evidence that AI agents are remarkably effective in solving problems that require highly inventive solutions, such as feature engineering.
comment: 23 pages, 6 figures
☆ Reverso: Efficient Time Series Foundation Models for Zero-shot Forecasting
Learning time series foundation models has been shown to be a promising approach for zero-shot time series forecasting across diverse time series domains. Insofar as scaling has been a critical driver of performance of foundation models in other modalities such as language and vision, much recent work on time series foundation modeling has focused on scaling. This has resulted in time series foundation models with hundreds of millions of parameters that are, while performant, inefficient and expensive to use in practice. This paper describes a simple recipe for learning efficient foundation models for zero-shot time series forecasting that are orders of magnitude smaller. We show that large-scale transformers are not necessary: small hybrid models that interleave long convolution and linear RNN layers (in particular DeltaNet layers) can match the performance of larger transformer-based models while being more than a hundred times smaller. We also describe several data augmentation and inference strategies that further improve performance. This recipe results in Reverso, a family of efficient time series foundation models for zero-shot forecasting that significantly push the performance-efficiency Pareto frontier.
☆ When to Trust the Cheap Check: Weak and Strong Verification for Reasoning
Reasoning with LLMs increasingly unfolds inside a broader verification loop. Internally, systems use cheap checks, such as self-consistency or proxy rewards, which we call weak verification. Externally, users inspect outputs and steer the model through feedback until results are trustworthy, which we call strong verification. These signals differ sharply in cost and reliability: strong verification can establish trust but is resource-intensive, while weak verification is fast and scalable but noisy and imperfect. We formalize this tension through weak--strong verification policies, which decide when to accept or reject based on weak verification and when to defer to strong verification. We introduce metrics capturing incorrect acceptance, incorrect rejection, and strong-verification frequency. Over population, we show that optimal policies admit a two-threshold structure and that calibration and sharpness govern the value of weak verifiers. Building on this, we develop an online algorithm that provably controls acceptance and rejection errors without assumptions on the query stream, the language model, or the weak verifier.
☆ SMAC: Score-Matched Actor-Critics for Robust Offline-to-Online Transfer
Modern offline Reinforcement Learning (RL) methods find performant actor-critics, however, fine-tuning these actor-critics online with value-based RL algorithms typically causes immediate drops in performance. We provide evidence consistent with the hypothesis that, in the loss landscape, offline maxima for prior algorithms and online maxima are separated by low-performance valleys that gradient-based fine-tuning traverses. Following this, we present Score Matched Actor-Critic (SMAC), an offline RL method designed to learn actor-critics that transition to online value-based RL algorithms with no drop in performance. SMAC avoids valleys between offline and online maxima by regularizing the Q-function during the offline phase to respect a first-order derivative equality between the score of the policy and action-gradient of the Q-function. We experimentally demonstrate that SMAC converges to offline maxima that are connected to better online maxima via paths with monotonically increasing reward found by first-order optimization. SMAC achieves smooth transfer to Soft Actor-Critic and TD3 in 6/6 D4RL tasks. In 4/6 environments, it reduces regret by 34-58% over the best baseline.
☆ Stable Asynchrony: Variance-Controlled Off-Policy RL for LLMs
Reinforcement learning (RL) is widely used to improve large language models on reasoning tasks, and asynchronous RL training is attractive because it increases end-to-end throughput. However, for widely adopted critic-free policy-gradient methods such as REINFORCE and GRPO, high asynchrony makes the policy-gradient estimator markedly $\textbf{higher variance}$: training on stale rollouts creates heavy-tailed importance ratios, causing a small fraction of samples to dominate updates. This amplification makes gradients noisy and learning unstable relative to matched on-policy training. Across math and general reasoning benchmarks, we find collapse is reliably predicted by effective sample size (ESS) and unstable gradient norms. Motivated by this diagnosis, we propose $\textbf{V}$ariance $\textbf{C}$ontrolled $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{VCPO}$), a general stabilization method for REINFORCE/GRPO-style algorithms that (i) scales learning rate based on effective sample size to dampen unreliable updates, and (ii) applies a closed-form minimum-variance baseline for the off-policy setting, avoiding an auxiliary value model and adding minimal overhead. Empirically, VCPO substantially improves robustness for asynchronous training across math, general reasoning, and tool-use tasks, outperforming a broad suite of baselines spanning masking/clipping stabilizers and algorithmic variants. This reduces long-context, multi-turn training time by 2.5$\times$ while matching synchronous performance, demonstrating that explicit control of policy-gradient variance is key for reliable asynchronous RL at scale.
☆ Towards Anytime-Valid Statistical Watermarking
The proliferation of Large Language Models (LLMs) necessitates efficient mechanisms to distinguish machine-generated content from human text. While statistical watermarking has emerged as a promising solution, existing methods suffer from two critical limitations: the lack of a principled approach for selecting sampling distributions and the reliance on fixed-horizon hypothesis testing, which precludes valid early stopping. In this paper, we bridge this gap by developing the first e-value-based watermarking framework, Anchored E-Watermarking, that unifies optimal sampling with anytime-valid inference. Unlike traditional approaches where optional stopping invalidates Type-I error guarantees, our framework enables valid, anytime-inference by constructing a test supermartingale for the detection process. By leveraging an anchor distribution to approximate the target model, we characterize the optimal e-value with respect to the worst-case log-growth rate and derive the optimal expected stopping time. Our theoretical claims are substantiated by simulations and evaluations on established benchmarks, showing that our framework can significantly enhance sample efficiency, reducing the average token budget required for detection by 13-15% relative to state-of-the-art baselines.
☆ AutoNumerics: An Autonomous, PDE-Agnostic Multi-Agent Pipeline for Scientific Computing
PDEs are central to scientific and engineering modeling, yet designing accurate numerical solvers typically requires substantial mathematical expertise and manual tuning. Recent neural network-based approaches improve flexibility but often demand high computational cost and suffer from limited interpretability. We introduce \texttt{AutoNumerics}, a multi-agent framework that autonomously designs, implements, debugs, and verifies numerical solvers for general PDEs directly from natural language descriptions. Unlike black-box neural solvers, our framework generates transparent solvers grounded in classical numerical analysis. We introduce a coarse-to-fine execution strategy and a residual-based self-verification mechanism. Experiments on 24 canonical and real-world PDE problems demonstrate that \texttt{AutoNumerics} achieves competitive or superior accuracy compared to existing neural and LLM-based baselines, and correctly selects numerical schemes based on PDE structural properties, suggesting its viability as an accessible paradigm for automated PDE solving.
☆ Adapting Actively on the Fly: Relevance-Guided Online Meta-Learning with Latent Concepts for Geospatial Discovery
In many real-world settings, such as environmental monitoring, disaster response, or public health, with costly and difficult data collection and dynamic environments, strategically sampling from unobserved regions is essential for efficiently uncovering hidden targets under tight resource constraints. Yet, sparse and biased geospatial ground truth limits the applicability of existing learning-based methods, such as reinforcement learning. To address this, we propose a unified geospatial discovery framework that integrates active learning, online meta-learning, and concept-guided reasoning. Our approach introduces two key innovations built on a shared notion of *concept relevance*, which captures how domain-specific factors influence target presence: a *concept-weighted uncertainty sampling strategy*, where uncertainty is modulated by learned relevance based on readily-available domain-specific concepts (e.g., land cover, source proximity); and a *relevance-aware meta-batch formation strategy* that promotes semantic diversity during online-meta updates, improving generalization in dynamic environments. Our experiments include testing on a real-world dataset of cancer-causing PFAS (Per- and polyfluoroalkyl substances) contamination, showcasing our method's reliability at uncovering targets with limited data and a varying environment.
☆ MolHIT: Advancing Molecular-Graph Generation with Hierarchical Discrete Diffusion Models
Molecular generation with diffusion models has emerged as a promising direction for AI-driven drug discovery and materials science. While graph diffusion models have been widely adopted due to the discrete nature of 2D molecular graphs, existing models suffer from low chemical validity and struggle to meet the desired properties compared to 1D modeling. In this work, we introduce MolHIT, a powerful molecular graph generation framework that overcomes long-standing performance limitations in existing methods. MolHIT is based on the Hierarchical Discrete Diffusion Model, which generalizes discrete diffusion to additional categories that encode chemical priors, and decoupled atom encoding that splits the atom types according to their chemical roles. Overall, MolHIT achieves new state-of-the-art performance on the MOSES dataset with near-perfect validity for the first time in graph diffusion, surpassing strong 1D baselines across multiple metrics. We further demonstrate strong performance in downstream tasks, including multi-property guided generation and scaffold extension.
☆ The Cascade Equivalence Hypothesis: When Do Speech LLMs Behave Like ASR$\rightarrow$LLM Pipelines?
Current speech LLMs largely perform implicit ASR: on tasks solvable from a transcript, they are behaviorally and mechanistically equivalent to simple Whisper$\to$LLM cascades. We show this through matched-backbone testing across four speech LLMs and six tasks, controlling for the LLM backbone for the first time. Ultravox is statistically indistinguishable from its matched cascade ($κ{=}0.93$); logit lens reveals literal text emerging in hidden states; LEACE concept erasure confirms text representations are causally necessary in both architectures tested, collapsing accuracy to near-zero. Qwen2-Audio genuinely diverges, revealing cascade equivalence is architecture-dependent, not universal. For most deployed use cases, current speech LLMs are expensive cascades, and under noise, they are worse ones, with clean-condition advantages reversing by up to 7.6% at 0 dB.
comment: 10 pages, 6 figures, 7 tables
☆ AI Gamestore: Scalable, Open-Ended Evaluation of Machine General Intelligence with Human Games
Rigorously evaluating machine intelligence against the broad spectrum of human general intelligence has become increasingly important and challenging in this era of rapid technological advance. Conventional AI benchmarks typically assess only narrow capabilities in a limited range of human activity. Most are also static, quickly saturating as developers explicitly or implicitly optimize for them. We propose that a more promising way to evaluate human-like general intelligence in AI systems is through a particularly strong form of general game playing: studying how and how well they play and learn to play \textbf{all conceivable human games}, in comparison to human players with the same level of experience, time, or other resources. We define a "human game" to be a game designed by humans for humans, and argue for the evaluative suitability of this space of all such games people can imagine and enjoy -- the "Multiverse of Human Games". Taking a first step towards this vision, we introduce the AI GameStore, a scalable and open-ended platform that uses LLMs with humans-in-the-loop to synthesize new representative human games, by automatically sourcing and adapting standardized and containerized variants of game environments from popular human digital gaming platforms. As a proof of concept, we generated 100 such games based on the top charts of Apple App Store and Steam, and evaluated seven frontier vision-language models (VLMs) on short episodes of play. The best models achieved less than 10\% of the human average score on the majority of the games, and especially struggled with games that challenge world-model learning, memory and planning. We conclude with a set of next steps for building out the AI GameStore as a practical way to measure and drive progress toward human-like general intelligence in machines.
comment: 29 pages, 14 figures
☆ Conditional Flow Matching for Continuous Anomaly Detection in Autonomous Driving on a Manifold-Aware Spectral Space
Safety validation for Level 4 autonomous vehicles (AVs) is currently bottlenecked by the inability to scale the detection of rare, high-risk long-tail scenarios using traditional rule-based heuristics. We present Deep-Flow, an unsupervised framework for safety-critical anomaly detection that utilizes Optimal Transport Conditional Flow Matching (OT-CFM) to characterize the continuous probability density of expert human driving behavior. Unlike standard generative approaches that operate in unstable, high-dimensional coordinate spaces, Deep-Flow constrains the generative process to a low-rank spectral manifold via a Principal Component Analysis (PCA) bottleneck. This ensures kinematic smoothness by design and enables the computation of the exact Jacobian trace for numerically stable, deterministic log-likelihood estimation. To resolve multi-modal ambiguity at complex junctions, we utilize an Early Fusion Transformer encoder with lane-aware goal conditioning, featuring a direct skip-connection to the flow head to maintain intent-integrity throughout the network. We introduce a kinematic complexity weighting scheme that prioritizes high-energy maneuvers (quantified via path tortuosity and jerk) during the simulation-free training process. Evaluated on the Waymo Open Motion Dataset (WOMD), our framework achieves an AUC-ROC of 0.766 against a heuristic golden set of safety-critical events. More significantly, our analysis reveals a fundamental distinction between kinematic danger and semantic non-compliance. Deep-Flow identifies a critical predictability gap by surfacing out-of-distribution behaviors, such as lane-boundary violations and non-normative junction maneuvers, that traditional safety filters overlook. This work provides a mathematically rigorous foundation for defining statistical safety gates, enabling objective, data-driven validation for the safe deployment of autonomous fleets.
☆ Be Wary of Your Time Series Preprocessing AAAI-26
Normalization and scaling are fundamental preprocessing steps in time series modeling, yet their role in Transformer-based models remains underexplored from a theoretical perspective. In this work, we present the first formal analysis of how different normalization strategies, specifically instance-based and global scaling, impact the expressivity of Transformer-based architectures for time series representation learning. We propose a novel expressivity framework tailored to time series, which quantifies a model's ability to distinguish between similar and dissimilar inputs in the representation space. Using this framework, we derive theoretical bounds for two widely used normalization methods: Standard and Min-Max scaling. Our analysis reveals that the choice of normalization strategy can significantly influence the model's representational capacity, depending on the task and data characteristics. We complement our theory with empirical validation on classification and forecasting benchmarks using multiple Transformer-based models. Our results show that no single normalization method consistently outperforms others, and in some cases, omitting normalization entirely leads to superior performance. These findings highlight the critical role of preprocessing in time series learning and motivate the need for more principled normalization strategies tailored to specific tasks and datasets.
comment: Accepted at the AI4TS workshop at AAAI-26
☆ A Hybrid Federated Learning Based Ensemble Approach for Lung Disease Diagnosis Leveraging Fusion of SWIN Transformer and CNN
The significant advancements in computational power cre- ate a vast opportunity for using Artificial Intelligence in different ap- plications of healthcare and medical science. A Hybrid FL-Enabled Ensemble Approach For Lung Disease Diagnosis Leveraging a Combination of SWIN Transformer and CNN is the combination of cutting-edge technology of AI and Federated Learning. Since, medi- cal specialists and hospitals will have shared data space, based on that data, with the help of Artificial Intelligence and integration of federated learning, we can introduce a secure and distributed system for medical data processing and create an efficient and reliable system. The proposed hybrid model enables the detection of COVID-19 and Pneumonia based on x-ray reports. We will use advanced and the latest available tech- nology offered by Tensorflow and Keras along with Microsoft-developed Vision Transformer, that can help to fight against the pandemic that the world has to fight together as a united. We focused on using the latest available CNN models (DenseNet201, Inception V3, VGG 19) and the Transformer model SWIN Transformer in order to prepare our hy- brid model that can provide a reliable solution as a helping hand for the physician in the medical field. In this research, we will discuss how the Federated learning-based Hybrid AI model can improve the accuracy of disease diagnosis and severity prediction of a patient using the real-time continual learning approach and how the integration of federated learn- ing can ensure hybrid model security and keep the authenticity of the information.
☆ ODESteer: A Unified ODE-Based Steering Framework for LLM Alignment ICLR 2026
Activation steering, or representation engineering, offers a lightweight approach to align large language models (LLMs) by manipulating their internal activations at inference time. However, current methods suffer from two key limitations: \textit{(i)} the lack of a unified theoretical framework for guiding the design of steering directions, and \textit{(ii)} an over-reliance on \textit{one-step steering} that fail to capture complex patterns of activation distributions. In this work, we propose a unified ordinary differential equations (ODEs)-based \textit{theoretical} framework for activation steering in LLM alignment. We show that conventional activation addition can be interpreted as a first-order approximation to the solution of an ODE. Based on this ODE perspective, identifying a steering direction becomes equivalent to designing a \textit{barrier function} from control theory. Derived from this framework, we introduce ODESteer, a kind of ODE-based steering guided by barrier functions, which shows \textit{empirical} advancement in LLM alignment. ODESteer identifies steering directions by defining the barrier function as the log-density ratio between positive and negative activations, and employs it to construct an ODE for \textit{multi-step and adaptive} steering. Compared to state-of-the-art activation steering methods, ODESteer achieves consistent empirical improvements on diverse LLM alignment benchmarks, a notable $5.7\%$ improvement over TruthfulQA, $2.5\%$ over UltraFeedback, and $2.4\%$ over RealToxicityPrompts. Our work establishes a principled new view of activation steering in LLM alignment by unifying its theoretical foundations via ODEs, and validating it empirically through the proposed ODESteer method.
comment: Accepted by ICLR 2026
☆ Probability-Invariant Random Walk Learning on Gyral Folding-Based Cortical Similarity Networks for Alzheimer's and Lewy Body Dementia Diagnosis
Alzheimer's disease (AD) and Lewy body dementia (LBD) present overlapping clinical features yet require distinct diagnostic strategies. While neuroimaging-based brain network analysis is promising, atlas-based representations may obscure individualized anatomy. Gyral folding-based networks using three-hinge gyri provide a biologically grounded alternative, but inter-individual variability in cortical folding results in inconsistent landmark correspondence and highly irregular network sizes, violating the fixed-topology and node-alignment assumptions of most existing graph learning methods, particularly in clinical datasets where pathological changes further amplify anatomical heterogeneity. We therefore propose a probability-invariant random-walk-based framework that classifies individualized gyral folding networks without explicit node alignment. Cortical similarity networks are built from local morphometric features and represented by distributions of anonymized random walks, with an anatomy-aware encoding that preserves permutation invariance. Experiments on a large clinical cohort of AD and LBD subjects show consistent improvements over existing gyral folding and atlas-based models, demonstrating robustness and potential for dementia diagnosis.
☆ MASPO: Unifying Gradient Utilization, Probability Mass, and Signal Reliability for Robust and Sample-Efficient LLM Reasoning
Existing Reinforcement Learning with Verifiable Rewards (RLVR) algorithms, such as GRPO, rely on rigid, uniform, and symmetric trust region mechanisms that are fundamentally misaligned with the complex optimization dynamics of Large Language Models (LLMs). In this paper, we identify three critical challenges in these methods: (1) inefficient gradient utilization caused by the binary cutoff of hard clipping, (2) insensitive probability mass arising from uniform ratio constraints that ignore the token distribution, and (3) asymmetric signal reliability stemming from the disparate credit assignment ambiguity between positive and negative samples. To bridge these gaps, we propose Mass-Adaptive Soft Policy Optimization (MASPO), a unified framework designed to harmonize these three dimensions. MASPO integrates a differentiable soft Gaussian gating to maximize gradient utility, a mass-adaptive limiter to balance exploration across the probability spectrum, and an asymmetric risk controller to align update magnitudes with signal confidence. Extensive evaluations demonstrate that MASPO serves as a robust, all-in-one RLVR solution, significantly outperforming strong baselines. Our code is available at: https://anonymous.4open.science/r/ma1/README.md.
☆ KLong: Training LLM Agent for Extremely Long-horizon Tasks
This paper introduces KLong, an open-source LLM agent trained to solve extremely long-horizon tasks. The principle is to first cold-start the model via trajectory-splitting SFT, then scale it via progressive RL training. Specifically, we first activate basic agentic abilities of a base model with a comprehensive SFT recipe. Then, we introduce Research-Factory, an automated pipeline that generates high-quality training data by collecting research papers and constructing evaluation rubrics. Using this pipeline, we build thousands of long-horizon trajectories distilled from Claude 4.5 Sonnet (Thinking). To train with these extremely long trajectories, we propose a new trajectory-splitting SFT, which preserves early context, progressively truncates later context, and maintains overlap between sub-trajectories. In addition, to further improve long-horizon task-solving capability, we propose a novel progressive RL, which schedules training into multiple stages with progressively extended timeouts. Experiments demonstrate the superiority and generalization of KLong, as shown in Figure 1. Notably, our proposed KLong (106B) surpasses Kimi K2 Thinking (1T) by 11.28% on PaperBench, and the performance improvement generalizes to other coding benchmarks like SWE-bench Verified and MLE-bench.
☆ Evaluating Chain-of-Thought Reasoning through Reusability and Verifiability
In multi-agent IR pipelines for tasks such as search and ranking, LLM-based agents exchange intermediate reasoning in terms of Chain-of-Thought (CoT) with each other. Current CoT evaluation narrowly focuses on target task accuracy. However, this metric fails to assess the quality or utility of the reasoning process itself. To address this limitation, we introduce two novel measures: reusability and verifiability. We decouple CoT generation from execution using a Thinker-Executor framework. Reusability measures how easily an Executor can reuse the Thinker's CoT. Verifiability measures how frequently an Executor can match the Thinker's answer using the CoT. We evaluated four Thinker models against a committee of ten Executor models across five benchmarks. Our results reveal that reusability and verifiability do not correlate with standard accuracy, exposing a blind spot in current accuracy-based leaderboards for reasoning capability. Surprisingly, we find that CoTs from specialized reasoning models are not consistently more reusable or verifiable than those from general-purpose LLMs like Llama and Gemma.
☆ Toward a Fully Autonomous, AI-Native Particle Accelerator
This position paper presents a vision for self-driving particle accelerators that operate autonomously with minimal human intervention. We propose that future facilities be designed through artificial intelligence (AI) co-design, where AI jointly optimizes the accelerator lattice, diagnostics, and science application from inception to maximize performance while enabling autonomous operation. Rather than retrofitting AI onto human-centric systems, we envision facilities designed from the ground up as AI-native platforms. We outline nine critical research thrusts spanning agentic control architectures, knowledge integration, adaptive learning, digital twins, health monitoring, safety frameworks, modular hardware design, multimodal data fusion, and cross-domain collaboration. This roadmap aims to guide the accelerator community toward a future where AI-driven design and operation deliver unprecedented science output and reliability.
comment: 14 pages, 1 figure
☆ Systematic Evaluation of Single-Cell Foundation Model Interpretability Reveals Attention Captures Co-Expression Rather Than Unique Regulatory Signal
We present a systematic evaluation framework - thirty-seven analyses, 153 statistical tests, four cell types, two perturbation modalities - for assessing mechanistic interpretability in single-cell foundation models. Applying this framework to scGPT and Geneformer, we find that attention patterns encode structured biological information with layer-specific organisation - protein-protein interactions in early layers, transcriptional regulation in late layers - but this structure provides no incremental value for perturbation prediction: trivial gene-level baselines outperform both attention and correlation edges (AUROC 0.81-0.88 versus 0.70), pairwise edge scores add zero predictive contribution, and causal ablation of regulatory heads produces no degradation. These findings generalise from K562 to RPE1 cells; the attention-correlation relationship is context-dependent, but gene-level dominance is universal. Cell-State Stratified Interpretability (CSSI) addresses an attention-specific scaling failure, improving GRN recovery up to 1.85x. The framework establishes reusable quality-control standards for the field.
☆ Position: Evaluation of ECG Representations Must Be Fixed
This position paper argues that current benchmarking practice in 12-lead ECG representation learning must be fixed to ensure progress is reliable and aligned with clinically meaningful objectives. The field has largely converged on three public multi-label benchmarks (PTB-XL, CPSC2018, CSN) dominated by arrhythmia and waveform-morphology labels, even though the ECG is known to encode substantially broader clinical information. We argue that downstream evaluation should expand to include an assessment of structural heart disease and patient-level forecasting, in addition to other evolving ECG-related endpoints, as relevant clinical targets. Next, we outline evaluation best practices for multi-label, imbalanced settings, and show that when they are applied, the literature's current conclusion about which representations perform best is altered. Furthermore, we demonstrate the surprising result that a randomly initialized encoder with linear evaluation matches state-of-the-art pre-training on many tasks. This motivates the use of a random encoder as a reasonable baseline model. We substantiate our observations with an empirical evaluation of three representative ECG pre-training approaches across six evaluation settings: the three standard benchmarks, a structural disease dataset, hemodynamic inference, and patient forecasting.
comment: Project website at https://ecgfix.csail.mit.edu/
☆ Enhancing Large Language Models (LLMs) for Telecom using Dynamic Knowledge Graphs and Explainable Retrieval-Augmented Generation
Large language models (LLMs) have shown strong potential across a variety of tasks, but their application in the telecom field remains challenging due to domain complexity, evolving standards, and specialized terminology. Therefore, general-domain LLMs may struggle to provide accurate and reliable outputs in this context, leading to increased hallucinations and reduced utility in telecom operations.To address these limitations, this work introduces KG-RAG-a novel framework that integrates knowledge graphs (KGs) with retrieval-augmented generation (RAG) to enhance LLMs for telecom-specific tasks. In particular, the KG provides a structured representation of domain knowledge derived from telecom standards and technical documents, while RAG enables dynamic retrieval of relevant facts to ground the model's outputs. Such a combination improves factual accuracy, reduces hallucination, and ensures compliance with telecom specifications.Experimental results across benchmark datasets demonstrate that KG-RAG outperforms both LLM-only and standard RAG baselines, e.g., KG-RAG achieves an average accuracy improvement of 14.3% over RAG and 21.6% over LLM-only models. These results highlight KG-RAG's effectiveness in producing accurate, reliable, and explainable outputs in complex telecom scenarios.
☆ The Anxiety of Influence: Bloom Filters in Transformer Attention Heads
Some transformer attention heads appear to function as membership testers, dedicating themselves to answering the question "has this token appeared before in the context?" We identify these heads across four language models (GPT-2 small, medium, and large; Pythia-160M) and show that they form a spectrum of membership-testing strategies. Two heads (L0H1 and L0H5 in GPT-2 small) function as high-precision membership filters with false positive rates of 0-4\% even at 180 unique context tokens -- well above the $d_\text{head} = 64$ bit capacity of a classical Bloom filter. A third head (L1H11) shows the classic Bloom filter capacity curve: its false positive rate follows the theoretical formula $p \approx (1 - e^{-kn/m})^k$ with $R^2 = 1.0$ and fitted capacity $m \approx 5$ bits, saturating by $n \approx 20$ unique tokens. A fourth head initially identified as a Bloom filter (L3H0) was reclassified as a general prefix-attention head after confound controls revealed its apparent capacity curve was a sequence-length artifact. Together, the three genuine membership-testing heads form a multi-resolution system concentrated in early layers (0-1), taxonomically distinct from induction and previous-token heads, with false positive rates that decay monotonically with embedding distance -- consistent with distance-sensitive Bloom filters. These heads generalize broadly: they respond to any repeated token type, not just repeated names, with 43\% higher generalization than duplicate-token-only heads. Ablation reveals these heads contribute to both repeated and novel token processing, indicating that membership testing coexists with broader computational roles. The reclassification of L3H0 through confound controls strengthens rather than weakens the case: the surviving heads withstand the scrutiny that eliminated a false positive in our own analysis.
comment: 13 pages, 8 figures, code at https://github.com/pbalogh/anxiety-of-influence v2: L3H0 reclassified as prefix-attention head following confound control. Capacity analysis updated. Duplicate-token head overlap experiment added v3: All experiments were independently validated on CPU to rule out hardware-specific computation artifacts. Results are consistent across backends
☆ LORA-CRAFT: Cross-layer Rank Adaptation via Frozen Tucker Decomposition of Pre-trained Attention Weights
We introduce CRAFT (Cross-layer Rank Adaptation via Frozen Tucker), a parameter-efficient fine-tuning (PEFT) method that applies Tucker tensor decomposition to pre-trained attention weight matrices stacked across transformer layers and trains only small square adaptation matrices on the resulting frozen Tucker factors. Existing tensor-based PEFT methods decompose gradient updates: LoTR applies Tucker decomposition with shared factor matrices, while SuperLoRA groups and reshapes $ΔW$ across layers before applying Tucker decomposition. Separately, methods like PiSSA apply SVD to pre-trained weights but operate independently per layer. CRAFT bridges these two lines of work: it performs full Tucker decomposition via Higher-Order SVD (HOSVD) directly on pre-trained weights organized as cross-layer 3D tensors, freezes all resulting factors, and adapts the model through lightweight trainable transformations applied to each factor matrix. Experiments on the GLUE benchmark using RoBERTa-base and RoBERTa-large demonstrate that CRAFT achieves competitive performance with existing methods while requiring only 41K Tucker adaptation parameters--a count independent of model dimension and depth at fixed Tucker ranks.
☆ Pareto Optimal Benchmarking of AI Models on ARM Cortex Processors for Sustainable Embedded Systems
This work presents a practical benchmarking framework for optimizing artificial intelligence (AI) models on ARM Cortex processors (M0+, M4, M7), focusing on energy efficiency, accuracy, and resource utilization in embedded systems. Through the design of an automated test bench, we provide a systematic approach to evaluate across key performance indicators (KPIs) and identify optimal combinations of processor and AI model. The research highlights a nearlinear correlation between floating-point operations (FLOPs) and inference time, offering a reliable metric for estimating computational demands. Using Pareto analysis, we demonstrate how to balance trade-offs between energy consumption and model accuracy, ensuring that AI applications meet performance requirements without compromising sustainability. Key findings indicate that the M7 processor is ideal for short inference cycles, while the M4 processor offers better energy efficiency for longer inference tasks. The M0+ processor, while less efficient for complex AI models, remains suitable for simpler tasks. This work provides insights for developers, guiding them to design energy-efficient AI systems that deliver high performance in realworld applications.
comment: 11 pages, 7 figures, Funding: GreenICT@FMD (BMFTR grant 16ME0491K)
☆ Learning with Boolean threshold functions
We develop a method for training neural networks on Boolean data in which the values at all nodes are strictly $\pm 1$, and the resulting models are typically equivalent to networks whose nonzero weights are also $\pm 1$. The method replaces loss minimization with a nonconvex constraint formulation. Each node implements a Boolean threshold function (BTF), and training is expressed through a divide-and-concur decomposition into two complementary constraints: one enforces local BTF consistency between inputs, weights, and output; the other imposes architectural concurrence, equating neuron outputs with downstream inputs and enforcing weight equality across training-data instantiations of the network. The reflect-reflect-relax (RRR) projection algorithm is used to reconcile these constraints. Each BTF constraint includes a lower bound on the margin. When this bound is sufficiently large, the learned representations are provably sparse and equivalent to networks composed of simple logical gates with $\pm 1$ weights. Across a range of tasks -- including multiplier-circuit discovery, binary autoencoding, logic-network inference, and cellular automata learning -- the method achieves exact solutions or strong generalization in regimes where standard gradient-based methods struggle. These results demonstrate that projection-based constraint satisfaction provides a viable and conceptually distinct foundation for learning in discrete neural systems, with implications for interpretability and efficient inference.
comment: 22 pages, 21 figures
☆ Tracing Copied Pixels and Regularizing Patch Affinity in Copy Detection
Image Copy Detection (ICD) aims to identify manipulated content between image pairs through robust feature representation learning. While self-supervised learning (SSL) has advanced ICD systems, existing view-level contrastive methods struggle with sophisticated edits due to insufficient fine-grained correspondence learning. We address this limitation by exploiting the inherent geometric traceability in edited content through two key innovations. First, we propose PixTrace - a pixel coordinate tracking module that maintains explicit spatial mappings across editing transformations. Second, we introduce CopyNCE, a geometrically-guided contrastive loss that regularizes patch affinity using overlap ratios derived from PixTrace's verified mappings. Our method bridges pixel-level traceability with patch-level similarity learning, suppressing supervision noise in SSL training. Extensive experiments demonstrate not only state-of-the-art performance (88.7% uAP / 83.9% RP90 for matcher, 72.6% uAP / 68.4% RP90 for descriptor on DISC21 dataset) but also better interpretability over existing methods.
☆ What Do LLMs Associate with Your Name? A Human-Centered Black-Box Audit of Personal Data
Large language models (LLMs), and conversational agents based on them, are exposed to personal data (PD) during pre-training and during user interactions. Prior work shows that PD can resurface, yet users lack insight into how strongly models associate specific information to their identity. We audit PD across eight LLMs (3 open-source; 5 API-based, including GPT-4o), introduce LMP2 (Language Model Privacy Probe), a human-centered, privacy-preserving audit tool refined through two formative studies (N=20), and run two studies with EU residents to capture (i) intuitions about LLM-generated PD (N1=155) and (ii) reactions to tool output (N2=303). We show empirically that models confidently generate multiple PD categories for well-known individuals. For everyday users, GPT-4o generates 11 features with 60% or more accuracy (e.g., gender, hair color, languages). Finally, 72% of participants sought control over model-generated associations with their name, raising questions about what counts as PD and whether data privacy rights should extend to LLMs.
☆ Jolt Atlas: Verifiable Inference via Lookup Arguments in Zero Knowledge
We present Jolt Atlas, a zero-knowledge machine learning (zkML) framework that extends the Jolt proving system to model inference. Unlike zkVMs (zero-knowledge virtual machines), which emulate CPU instruction execution, Jolt Atlas adapts Jolt's lookup-centric approach and applies it directly to ONNX tensor operations. The ONNX computational model eliminates the need for CPU registers and simplifies memory consistency verification. In addition, ONNX is an open-source, portable format, which makes it easy to share and deploy models across different frameworks, hardware platforms, and runtime environments without requiring framework-specific conversions. Our lookup arguments, which use sumcheck protocol, are well-suited for non-linear functions -- key building blocks in modern ML. We apply optimisations such as neural teleportation to reduce the size of lookup tables while preserving model accuracy, as well as several tensor-level verification optimisations detailed in this paper. We demonstrate that Jolt Atlas can prove model inference in memory-constrained environments -- a prover property commonly referred to as \textit{streaming}. Furthermore, we discuss how Jolt Atlas achieves zero-knowledge through the BlindFold technique, as introduced in Vega. In contrast to existing zkML frameworks, we show practical proving times for classification, embedding, automated reasoning, and small language models. Jolt Atlas enables cryptographic verification that can be run on-device, without specialised hardware. The resulting proofs are succinctly verifiable. This makes Jolt Atlas well-suited for privacy-centric and adversarial environments. In a companion work, we outline various use cases of Jolt Atlas, including how it serves as guardrails in agentic commerce and for trustless AI context (often referred to as \textit{AI memory}).
☆ Beyond Pipelines: A Fundamental Study on the Rise of Generative-Retrieval Architectures in Web Research
Web research and practices have evolved significantly over time, offering users diverse and accessible solutions across a wide range of tasks. While advanced concepts such as Web 4.0 have emerged from mature technologies, the introduction of large language models (LLMs) has profoundly influenced both the field and its applications. This wave of LLMs has permeated science and technology so deeply that no area remains untouched. Consequently, LLMs are reshaping web research and development, transforming traditional pipelines into generative solutions for tasks like information retrieval, question answering, recommendation systems, and web analytics. They have also enabled new applications such as web-based summarization and educational tools. This survey explores recent advances in the impact of LLMs-particularly through the use of retrieval-augmented generation (RAG)-on web research and industry. It discusses key developments, open challenges, and future directions for enhancing web solutions with LLMs.
☆ WarpRec: Unifying Academic Rigor and Industrial Scale for Responsible, Reproducible, and Efficient Recommendation
Innovation in Recommender Systems is currently impeded by a fractured ecosystem, where researchers must choose between the ease of in-memory experimentation and the costly, complex rewriting required for distributed industrial engines. To bridge this gap, we present WarpRec, a high-performance framework that eliminates this trade-off through a novel, backend-agnostic architecture. It includes 50+ state-of-the-art algorithms, 40 metrics, and 19 filtering and splitting strategies that seamlessly transition from local execution to distributed training and optimization. The framework enforces ecological responsibility by integrating CodeCarbon for real-time energy tracking, showing that scalability need not come at the cost of scientific integrity or sustainability. Furthermore, WarpRec anticipates the shift toward Agentic AI, leading Recommender Systems to evolve from static ranking engines into interactive tools within the Generative AI ecosystem. In summary, WarpRec not only bridges the gap between academia and industry but also can serve as the architectural backbone for the next generation of sustainable, agent-ready Recommender Systems. Code is available at https://github.com/sisinflab/warprec/
☆ Fine-Grained Uncertainty Quantification for Long-Form Language Model Outputs: A Comparative Study
Uncertainty quantification has emerged as an effective approach to closed-book hallucination detection for LLMs, but existing methods are largely designed for short-form outputs and do not generalize well to long-form generation. We introduce a taxonomy for fine-grained uncertainty quantification in long-form LLM outputs that distinguishes methods by design choices at three stages: response decomposition, unit-level scoring, and response-level aggregation. We formalize several families of consistency-based black-box scorers, providing generalizations and extensions of existing methods. In our experiments across multiple LLMs and datasets, we find 1) claim-response entailment consistently performs better or on par with more complex claim-level scorers, 2) claim-level scoring generally yields better results than sentence-level scoring, and 3) uncertainty-aware decoding is highly effective for improving the factuality of long-form outputs. Our framework clarifies relationships between prior methods, enables apples-to-apples comparisons, and provides practical guidance for selecting components for fine-grained UQ.
comment: UQLM repository: https://github.com/cvs-health/uqlm
☆ Convergence Analysis of Two-Layer Neural Networks under Gaussian Input Masking
We investigate the convergence guarantee of two-layer neural network training with Gaussian randomly masked inputs. This scenario corresponds to Gaussian dropout at the input level, or noisy input training common in sensor networks, privacy-preserving training, and federated learning, where each user may have access to partial or corrupted features. Using a Neural Tangent Kernel (NTK) analysis, we demonstrate that training a two-layer ReLU network with Gaussian randomly masked inputs achieves linear convergence up to an error region proportional to the mask's variance. A key technical contribution is resolving the randomness within the non-linear activation, a problem of independent interest.
comment: 69 pages, submitted to AI/ML Journal
☆ A Privacy by Design Framework for Large Language Model-Based Applications for Children
Children are increasingly using technologies powered by Artificial Intelligence (AI). However, there are growing concerns about privacy risks, particularly for children. Although existing privacy regulations require companies and organizations to implement protections, doing so can be challenging in practice. To address this challenge, this article proposes a framework based on Privacy-by-Design (PbD), which guides designers and developers to take on a proactive and risk-averse approach to technology design. Our framework includes principles from several privacy regulations, such as the General Data Protection Regulation (GDPR) from the European Union, the Personal Information Protection and Electronic Documents Act (PIPEDA) from Canada, and the Children's Online Privacy Protection Act (COPPA) from the United States. We map these principles to various stages of applications that use Large Language Models (LLMs), including data collection, model training, operational monitoring, and ongoing validation. For each stage, we discuss the operational controls found in the recent academic literature to help AI service providers and developers reduce privacy risks while meeting legal standards. In addition, the framework includes design guidelines for children, drawing from the United Nations Convention on the Rights of the Child (UNCRC), the UK's Age-Appropriate Design Code (AADC), and recent academic research. To demonstrate how this framework can be applied in practice, we present a case study of an LLM-based educational tutor for children under 13. Through our analysis and the case study, we show that by using data protection strategies such as technical and organizational controls and making age-appropriate design decisions throughout the LLM life cycle, we can support the development of AI applications for children that provide privacy protections and comply with legal requirements.
☆ Improving LLM-based Recommendation with Self-Hard Negatives from Intermediate Layers
Large language models (LLMs) have shown great promise in recommender systems, where supervised fine-tuning (SFT) is commonly used for adaptation. Subsequent studies further introduce preference learning to incorporate negative samples into the training process. However, existing methods rely on sequence-level, offline-generated negatives, making them less discriminative and informative when adapting LLMs to recommendation tasks with large negative item spaces. To address these challenges, we propose ILRec, a novel preference fine-tuning framework for LLM-based recommendation, leveraging self-hard negative signals extracted from intermediate layers to improve preference learning. Specifically, we identify self-hard negative tokens from intermediate layers as fine-grained negative supervision that dynamically reflects the model's preference learning process. To effectively integrate these signals into training, we design a two-stage framework comprising cross-layer preference optimization and cross-layer preference distillation, enabling the model to jointly discriminate informative negatives and enhance the quality of negative signals from intermediate layers. In addition, we introduce a lightweight collaborative filtering model to assign token-level rewards for negative signals, mitigating the risk of over-penalizing false negatives. Extensive experiments on three datasets demonstrate ILRec's effectiveness in enhancing the performance of LLM-based recommender systems.
☆ A Contrastive Variational AutoEncoder for NSCLC Survival Prediction with Missing Modalities
Predicting survival outcomes for non-small cell lung cancer (NSCLC) patients is challenging due to the different individual prognostic features. This task can benefit from the integration of whole-slide images, bulk transcriptomics, and DNA methylation, which offer complementary views of the patient's condition at diagnosis. However, real-world clinical datasets are often incomplete, with entire modalities missing for a significant fraction of patients. State-of-the-art models rely on available data to create patient-level representations or use generative models to infer missing modalities, but they lack robustness in cases of severe missingness. We propose a Multimodal Contrastive Variational AutoEncoder (MCVAE) to address this issue: modality-specific variational encoders capture the uncertainty in each data source, and a fusion bottleneck with learned gating mechanisms is introduced to normalize the contributions from present modalities. We propose a multi-task objective that combines survival loss and reconstruction loss to regularize patient representations, along with a cross-modal contrastive loss that enforces cross-modal alignment in the latent space. During training, we apply stochastic modality masking to improve the robustness to arbitrary missingness patterns. Extensive evaluations on the TCGA-LUAD (n=475) and TCGA-LUSC (n=446) datasets demonstrate the efficacy of our approach in predicting disease-specific survival (DSS) and its robustness to severe missingness scenarios compared to two state-of-the-art models. Finally, we bring some clarifications on multimodal integration by testing our model on all subsets of modalities, finding that integration is not always beneficial to the task.
comment: Accepted at The 13th IEEE International Conference on Big Data (IEEE BigData 2025)
☆ A High-Level Survey of Optical Remote Sensing
In recent years, significant advances in computer vision have also propelled progress in remote sensing. Concurrently, the use of drones has expanded, with many organizations incorporating them into their operations. Most drones are equipped by default with RGB cameras, which are both robust and among the easiest sensors to use and interpret. The body of literature on optical remote sensing is vast, encompassing diverse tasks, capabilities, and methodologies. Each task or methodology could warrant a dedicated survey. This work provides a comprehensive overview of the capabilities of the field, while also presenting key information, such as datasets and insights. It aims to serve as a guide for researchers entering the field, offering high-level insights and helping them focus on areas most relevant to their interests. To the best of our knowledge, no existing survey addresses this holistic perspective.
☆ SpectralGCD: Spectral Concept Selection and Cross-modal Representation Learning for Generalized Category Discovery ICLR 2026
Generalized Category Discovery (GCD) aims to identify novel categories in unlabeled data while leveraging a small labeled subset of known classes. Training a parametric classifier solely on image features often leads to overfitting to old classes, and recent multimodal approaches improve performance by incorporating textual information. However, they treat modalities independently and incur high computational cost. We propose SpectralGCD, an efficient and effective multimodal approach to GCD that uses CLIP cross-modal image-concept similarities as a unified cross-modal representation. Each image is expressed as a mixture over semantic concepts from a large task-agnostic dictionary, which anchors learning to explicit semantics and reduces reliance on spurious visual cues. To maintain the semantic quality of representations learned by an efficient student, we introduce Spectral Filtering which exploits a cross-modal covariance matrix over the softmaxed similarities measured by a strong teacher model to automatically retain only relevant concepts from the dictionary. Forward and reverse knowledge distillation from the same teacher ensures that the cross-modal representations of the student remain both semantically sufficient and well-aligned. Across six benchmarks, SpectralGCD delivers accuracy comparable to or significantly superior to state-of-the-art methods at a fraction of the computational cost. The code is publicly available at: https://github.com/miccunifi/SpectralGCD.
comment: Accepted at ICLR 2026. Code available at https://github.com/miccunifi/SpectralGCD
☆ Voice-Driven Semantic Perception for UAV-Assisted Emergency Networks
Unmanned Aerial Vehicle (UAV)-assisted networks are increasingly foreseen as a promising approach for emergency response, providing rapid, flexible, and resilient communications in environments where terrestrial infrastructure is degraded or unavailable. In such scenarios, voice radio communications remain essential for first responders due to their robustness; however, their unstructured nature prevents direct integration with automated UAV-assisted network management. This paper proposes SIREN, an AI-driven framework that enables voice-driven perception for UAV-assisted networks. By integrating Automatic Speech Recognition (ASR) with Large Language Model (LLM)-based semantic extraction and Natural Language Processing (NLP) validation, SIREN converts emergency voice traffic into structured, machine-readable information, including responding units, location references, emergency severity, and Quality-of-Service (QoS) requirements. SIREN is evaluated using synthetic emergency scenarios with controlled variations in language, speaker count, background noise, and message complexity. The results demonstrate robust transcription and reliable semantic extraction across diverse operating conditions, while highlighting speaker diarization and geographic ambiguity as the main limiting factors. These findings establish the feasibility of voice-driven situational awareness for UAV-assisted networks and show a practical foundation for human-in-the-loop decision support and adaptive network management in emergency response operations.
comment: 7 pages, 4 figures
☆ Visual Model Checking: Graph-Based Inference of Visual Routines for Image Retrieval ICPR
Information retrieval lies at the foundation of the modern digital industry. While natural language search has seen dramatic progress in recent years largely driven by embedding-based models and large-scale pretraining, the field still faces significant challenges. Specifically, queries that involve complex relationships, object compositions, or precise constraints such as identities, counts and proportions often remain unresolved or unreliable within current frameworks. In this paper, we propose a novel framework that integrates formal verification into deep learning-based image retrieval through a synergistic combination of graph-based verification methods and neural code generation. Our approach aims to support open-vocabulary natural language queries while producing results that are both trustworthy and verifiable. By grounding retrieval results in a system of formal reasoning, we move beyond the ambiguity and approximation that often characterize vector representations. Instead of accepting uncertainty as a given, our framework explicitly verifies each atomic truth in the user query against the retrieved content. This allows us to not only return matching results, but also to identify and mark which specific constraints are satisfied and which remain unmet, thereby offering a more transparent and accountable retrieval process while boosting the results of the most popular embedding-based approaches.
comment: Submitted for ICPR Review
☆ Dataless Weight Disentanglement in Task Arithmetic via Kronecker-Factored Approximate Curvature ICLR 2026
Task Arithmetic yields a modular, scalable way to adapt foundation models. Combining multiple task vectors, however, can lead to cross-task interference, causing representation drift and degraded performance. Representation drift regularization provides a natural remedy to disentangle task vectors; however, existing approaches typically require external task data, conflicting with modularity and data availability constraints (e.g., privacy requirements). We propose a dataless approach by framing regularization against representation drift as a curvature matrix approximation problem. This allows us to leverage well-established techniques; in particular, we adopt Kronecker-Factored Approximate Curvature and obtain a practical regularizer that achieves state-of-the-art results in task addition and negation. Our method has constant complexity in the number of tasks and promotes robustness to task vector rescaling, eliminating the need for held-out tuning.
comment: Accepted to ICLR 2026
☆ A feature-stable and explainable machine learning framework for trustworthy decision-making under incomplete clinical data
Machine learning models are increasingly applied to biomedical data, yet their adoption in high stakes domains remains limited by poor robustness, limited interpretability, and instability of learned features under realistic data perturbations, such as missingness. In particular, models that achieve high predictive performance may still fail to inspire trust if their key features fluctuate when data completeness changes, undermining reproducibility and downstream decision-making. Here, we present CACTUS (Comprehensive Abstraction and Classification Tool for Uncovering Structures), an explainable machine learning framework explicitly designed to address these challenges in small, heterogeneous, and incomplete clinical datasets. CACTUS integrates feature abstraction, interpretable classification, and systematic feature stability analysis to quantify how consistently informative features are preserved as data quality degrades. Using a real-world haematuria cohort comprising 568 patients evaluated for bladder cancer, we benchmark CACTUS against widely used machine learning approaches, including random forests and gradient boosting methods, under controlled levels of randomly introduced missing data. We demonstrate that CACTUS achieves competitive or superior predictive performance while maintaining markedly higher stability of top-ranked features as missingness increases, including in sex-stratified analyses. Our results show that feature stability provides information complementary to conventional performance metrics and is essential for assessing the trustworthiness of machine learning models applied to biomedical data. By explicitly quantifying robustness to missing data and prioritising interpretable, stable features, CACTUS offers a generalizable framework for trustworthy data-driven decision support.
☆ What Breaks Embodied AI Security:LLM Vulnerabilities, CPS Flaws,or Something Else?
Embodied AI systems (e.g., autonomous vehicles, service robots, and LLM-driven interactive agents) are rapidly transitioning from controlled environments to safety critical real-world deployments. Unlike disembodied AI, failures in embodied intelligence lead to irreversible physical consequences, raising fundamental questions about security, safety, and reliability. While existing research predominantly analyzes embodied AI through the lenses of Large Language Model (LLM) vulnerabilities or classical Cyber-Physical System (CPS) failures, this survey argues that these perspectives are individually insufficient to explain many observed breakdowns in modern embodied systems. We posit that a significant class of failures arises from embodiment-induced system-level mismatches, rather than from isolated model flaws or traditional CPS attacks. Specifically, we identify four core insights that explain why embodied AI is fundamentally harder to secure: (i) semantic correctness does not imply physical safety, as language-level reasoning abstracts away geometry, dynamics, and contact constraints; (ii) identical actions can lead to drastically different outcomes across physical states due to nonlinear dynamics and state uncertainty; (iii) small errors propagate and amplify across tightly coupled perception-decision-action loops; and (iv) safety is not compositional across time or system layers, enabling locally safe decisions to accumulate into globally unsafe behavior. These insights suggest that securing embodied AI requires moving beyond component-level defenses toward system-level reasoning about physical risk, uncertainty, and failure propagation.
☆ From Subtle to Significant: Prompt-Driven Self-Improving Optimization in Test-Time Graph OOD Detection
Graph Out-of-Distribution (OOD) detection aims to identify whether a test graph deviates from the distribution of graphs observed during training, which is critical for ensuring the reliability of Graph Neural Networks (GNNs) when deployed in open-world scenarios. Recent advances in graph OOD detection have focused on test-time training techniques that facilitate OOD detection without accessing potential supervisory information (e.g., training data). However, most of these methods employ a one-pass inference paradigm, which prevents them from progressively correcting erroneous predictions to amplify OOD signals. To this end, we propose a \textbf{S}elf-\textbf{I}mproving \textbf{G}raph \textbf{O}ut-\textbf{o}f-\textbf{D}istribution detector (SIGOOD), which is an unsupervised framework that integrates continuous self-learning with test-time training for effective graph OOD detection. Specifically, SIGOOD generates a prompt to construct a prompt-enhanced graph that amplifies potential OOD signals. To optimize prompts, SIGOOD introduces an Energy Preference Optimization (EPO) loss, which leverages energy variations between the original test graph and the prompt-enhanced graph. By iteratively optimizing the prompt by involving it into the detection model in a self-improving loop, the resulting optimal prompt-enhanced graph is ultimately used for OOD detection. Comprehensive evaluations on 21 real-world datasets confirm the effectiveness and outperformance of our SIGOOD method. The code is at https://github.com/Ee1s/SIGOOD.
comment: 9pages, 5 figures
☆ SubQuad: Near-Quadratic-Free Structure Inference with Distribution-Balanced Objectives in Adaptive Receptor framework
Comparative analysis of adaptive immune repertoires at population scale is hampered by two practical bottlenecks: the near-quadratic cost of pairwise affinity evaluations and dataset imbalances that obscure clinically important minority clonotypes. We introduce SubQuad, an end-to-end pipeline that addresses these challenges by combining antigen-aware, near-subquadratic retrieval with GPU-accelerated affinity kernels, learned multimodal fusion, and fairness-constrained clustering. The system employs compact MinHash prefiltering to sharply reduce candidate comparisons, a differentiable gating module that adaptively weights complementary alignment and embedding channels on a per-pair basis, and an automated calibration routine that enforces proportional representation of rare antigen-specific subgroups. On large viral and tumor repertoires SubQuad achieves measured gains in throughput and peak memory usage while preserving or improving recall@k, cluster purity, and subgroup equity. By co-designing indexing, similarity fusion, and equity-aware objectives, SubQuad offers a scalable, bias-aware platform for repertoire mining and downstream translational tasks such as vaccine target prioritization and biomarker discovery.
comment: 27 pages, 9 figures
☆ WebFAQ 2.0: A Multilingual QA Dataset with Mined Hard Negatives for Dense Retrieval
We introduce WebFAQ 2.0, a new version of the WebFAQ dataset, containing 198 million FAQ-based natural question-answer pairs across 108 languages. Compared to the previous version, it significantly expands multilingual coverage and the number of bilingual aligned QA pairs to over 14.3M, making it the largest FAQ-based resource. Unlike the original release, WebFAQ 2.0 uses a novel data collection strategy that directly crawls and extracts relevant web content, resulting in a substantially more diverse and multilingual dataset with richer context through page titles and descriptions. In response to community feedback, we also release a hard negatives dataset for training dense retrievers, with 1.25M queries across 20 languages. These hard negatives were mined using a two-stage retrieval pipeline and include cross-encoder scores for 200 negatives per query. We further show how this resource enables two primary fine-tuning strategies for dense retrievers: Contrastive Learning with MultipleNegativesRanking loss, and Knowledge Distillation with MarginMSE loss. WebFAQ 2.0 is not a static resource but part of a long-term effort. Since late 2025, structured FAQs are being regularly released through the Open Web Index, enabling continuous expansion and refinement. We publish the datasets and training scripts to facilitate further research in multilingual and cross-lingual IR. The dataset itself and all related resources are publicly available on GitHub and HuggingFace.
☆ Same Meaning, Different Scores: Lexical and Syntactic Sensitivity in LLM Evaluation LREC 2026
The rapid advancement of Large Language Models (LLMs) has established standardized evaluation benchmarks as the primary instrument for model comparison. Yet, their reliability is increasingly questioned due to sensitivity to shallow variations in input prompts. This paper examines how controlled, truth-conditionally equivalent lexical and syntactic perturbations affect the absolute performance and relative ranking of 23 contemporary LLMs across three benchmarks: MMLU, SQuAD, and AMEGA. We employ two linguistically principled pipelines to generate meaning-preserving variations: one performing synonym substitution for lexical changes, and another using dependency parsing to determine applicable syntactic transformations. Results show that lexical perturbations consistently induce substantial, statistically significant performance degradation across nearly all models and tasks, while syntactic perturbations have more heterogeneous effects, occasionally improving results. Both perturbation types destabilize model leaderboards on complex tasks. Furthermore, model robustness did not consistently scale with model size, revealing strong task dependence. Overall, the findings suggest that LLMs rely more on surface-level lexical patterns than on abstract linguistic competence, underscoring the need for robustness testing as a standard component of LLM evaluation.
comment: Accepted at LREC 2026
☆ Flickering Multi-Armed Bandits
We introduce Flickering Multi-Armed Bandits (FMAB), a new MAB framework where the set of available arms (or actions) can change at each round, and the available set at any time may depend on the agent's previously selected arm. We model this constrained, evolving availability using random graph processes, where arms are nodes and the agent's movement is restricted to its local neighborhood. We analyze this problem under two random graph models: an i.i.d. Erdős--Rényi (ER) process and an Edge-Markovian process. We propose and analyze a two-phase algorithm that employs a lazy random walk for exploration to efficiently identify the optimal arm, followed by a navigation and commitment phase for exploitation. We establish high-probability and expected sublinear regret bounds for both graph settings. We show that the exploration cost of our algorithm is near-optimal by establishing a matching information-theoretic lower bound for this problem class, highlighting the fundamental cost of exploration under local-move constraints. We complement our theoretical guarantees with numerical simulations, including a scenario of a robotic ground vehicle scouting a disaster-affected region.
☆ MedClarify: An information-seeking AI agent for medical diagnosis with case-specific follow-up questions
Large language models (LLMs) are increasingly used for diagnostic tasks in medicine. In clinical practice, the correct diagnosis can rarely be immediately inferred from the initial patient presentation alone. Rather, reaching a diagnosis often involves systematic history taking, during which clinicians reason over multiple potential conditions through iterative questioning to resolve uncertainty. This process requires considering differential diagnoses and actively excluding emergencies that demand immediate intervention. Yet, the ability of medical LLMs to generate informative follow-up questions and thus reason over differential diagnoses remains underexplored. Here, we introduce MedClarify, an AI agent for information-seeking that can generate follow-up questions for iterative reasoning to support diagnostic decision-making. Specifically, MedClarify computes a list of candidate diagnoses analogous to a differential diagnosis, and then proactively generates follow-up questions aimed at reducing diagnostic uncertainty. By selecting the question with the highest expected information gain, MedClarify enables targeted, uncertainty-aware reasoning to improve diagnostic performance. In our experiments, we first demonstrate the limitations of current LLMs in medical reasoning, which often yield multiple, similarly likely diagnoses, especially when patient cases are incomplete or relevant information for diagnosis is missing. We then show that our information-theoretic reasoning approach can generate effective follow-up questioning and thereby reduces diagnostic errors by ~27 percentage points (p.p.) compared to a standard single-shot LLM baseline. Altogether, MedClarify offers a path to improve medical LLMs through agentic information-seeking and to thus promote effective dialogues with medical LLMs that reflect the iterative and uncertain nature of real-world clinical reasoning.
☆ ArXiv-to-Model: A Practical Study of Scientific LM Training
While frontier large language models demonstrate strong reasoning and mathematical capabilities, the practical process of training domain-specialized scientific language models from raw sources remains under-documented. In this work, we present a detailed case study of training a 1.36B-parameter scientific language model directly from raw arXiv LaTeX sources spanning mathematics, computer science, and theoretical physics. We describe an end-to-end pipeline covering metadata filtering, archive validation, LaTeX extraction, text normalization, domain-aware tokenization, and dense transformer training under constrained compute (2xA100 GPUs). Through 24 experimental runs, we analyze training stability, scaling behavior, data yield losses, and infrastructure bottlenecks. Our findings highlight how preprocessing decisions significantly affect usable token volume, how tokenization impacts symbolic stability, and how storage and I/O constraints can rival compute as limiting factors. We further analyze convergence dynamics and show stable training behavior in a data-rich regime (52B pretraining tokens). Rather than proposing a novel architecture, this work provides an engineering-grounded, transparent account of training a small scientific language model from scratch. We hope these insights support researchers operating under moderate compute budgets who seek to build domain-specialized models.
comment: 15 pages, 6 figures, 1 table
☆ Towards Cross-lingual Values Assessment: A Consensus-Pluralism Perspective
While large language models (LLMs) have become pivotal to content safety, current evaluation paradigms primarily focus on detecting explicit harms (e.g., violence or hate speech), neglecting the subtler value dimensions conveyed in digital content. To bridge this gap, we introduce X-Value, a novel Cross-lingual Values Assessment Benchmark designed to evaluate LLMs' ability to assess deep-level values of content from a global perspective. X-Value consists of more than 5,000 QA pairs across 18 languages, systematically organized into 7 core domains grounded in Schwartz's Theory of Basic Human Values and categorized into easy and hard levels for discriminative evaluation. We further propose a unique two-stage annotation framework that first identifies whether an issue falls under global consensus (e.g., human rights) or pluralism (e.g., religion), and subsequently conducts a multi-party evaluation of the latent values embedded within the content. Systematic evaluations on X-Value reveal that current SOTA LLMs exhibit deficiencies in cross-lingual values assessment ($Acc < 77\%$), with significant performance disparities across different languages ($ΔAcc > 20\%$). This work highlights the urgent need to improve the nuanced, values-aware content assessment capability of LLMs. Our X-Value is available at: https://huggingface.co/datasets/Whitolf/X-Value.
☆ Federated Latent Space Alignment for Multi-user Semantic Communications
Semantic communication aims to convey meaning for effective task execution, but differing latent representations in AI-native devices can cause semantic mismatches that hinder mutual understanding. This paper introduces a novel approach to mitigating latent space misalignment in multi-agent AI- native semantic communications. In a downlink scenario, we consider an access point (AP) communicating with multiple users to accomplish a specific AI-driven task. Our method implements a protocol that shares a semantic pre-equalizer at the AP and local semantic equalizers at user devices, fostering mutual understanding and task-oriented communication while considering power and complexity constraints. To achieve this, we employ a federated optimization for the decentralized training of the semantic equalizers at the AP and user sides. Numerical results validate the proposed approach in goal-oriented semantic communication, revealing key trade-offs among accuracy, com- munication overhead, complexity, and the semantic proximity of AI-native communication devices.
☆ Web Verbs: Typed Abstractions for Reliable Task Composition on the Agentic Web
The Web is evolving from a medium that humans browse to an environment where software agents act on behalf of users. Advances in large language models (LLMs) make natural language a practical interface for goal-directed tasks, yet most current web agents operate on low-level primitives such as clicks and keystrokes. These operations are brittle, inefficient, and difficult to verify. Complementing content-oriented efforts such as NLWeb's semantic layer for retrieval, we argue that the agentic web also requires a semantic layer for web actions. We propose \textbf{Web Verbs}, a web-scale set of typed, semantically documented functions that expose site capabilities through a uniform interface, whether implemented through APIs or robust client-side workflows. These verbs serve as stable and composable units that agents can discover, select, and synthesize into concise programs. This abstraction unifies API-based and browser-based paradigms, enabling LLMs to synthesize reliable and auditable workflows with explicit control and data flow. Verbs can carry preconditions, postconditions, policy tags, and logging support, which improves \textbf{reliability} by providing stable interfaces, \textbf{efficiency} by reducing dozens of steps into a few function calls, and \textbf{verifiability} through typed contracts and checkable traces. We present our vision, a proof-of-concept implementation, and representative case studies that demonstrate concise and robust execution compared to existing agents. Finally, we outline a roadmap for standardization to make verbs deployable and trustworthy at web scale.
☆ TAPO-Structured Description Logic for Information Behavior: Procedural and Oracle-Based Extensions
We introduce \emph{TAPO-Structured Description Logic} (TAPO--DL), a formal extension of classical description logic designed to model \emph{information behavior} as a structured, dynamic process. TAPO--DL extends the standard T--Box/A--Box architecture with two additional layers: a \emph{Procedural Box} (P--Box), which supports concept-driven, imperative-style programs such as conditional and iterative actions, and an \emph{Oracle Box} (O--Box), which formalizes controlled interaction with external information sources. While the terminological and assertional components capture static conceptual and factual knowledge, the procedural and oracle-based components enable the explicit representation of information-generating actions and external validation. We provide a unified semantic framework for TAPO--DL based on a co-generative, sheaf-theoretic interpretation, in which local informational states are modeled as sections and informational stability corresponds to the existence of coherent global structures. Within this setting, informational truth is characterized as stability under repeated agentive interaction rather than correspondence to a fixed global state. By integrating description logic with procedural dynamics, oracle-based reasoning, and sheaf-theoretic semantics, TAPO--DL offers a principled formal framework for analyzing information behavior in contexts involving interaction, uncertainty, and contextuality.
comment: 10 pages. Introduces TAPO-DL, a structured description logic integrating TBox, ABox, procedural PBox, and oracle-based OBox. Provides formal syntax, semantics, and inference rules, with an application to information behavior modeling
☆ All Leaks Count, Some Count More: Interpretable Temporal Contamination Detection in LLM Backtesting
To evaluate whether LLMs can accurately predict future events, we need the ability to \textit{backtest} them on events that have already resolved. This requires models to reason only with information available at a specified past date. Yet LLMs may inadvertently leak post-cutoff knowledge encoded during training, undermining the validity of retrospective evaluation. We introduce a claim-level framework for detecting and quantifying this \emph{temporal knowledge leakage}. Our approach decomposes model rationales into atomic claims and categorizes them by temporal verifiability, then applies \textit{Shapley values} to measure each claim's contribution to the prediction. This yields the \textbf{Shapley}-weighted \textbf{D}ecision-\textbf{C}ritical \textbf{L}eakage \textbf{R}ate (\textbf{Shapley-DCLR}), an interpretable metric that captures what fraction of decision-driving reasoning derives from leaked information. Building on this framework, we propose \textbf{Time}-\textbf{S}upervised \textbf{P}rediction with \textbf{E}xtracted \textbf{C}laims (\textbf{TimeSPEC}), which interleaves generation with claim verification and regeneration to proactively filter temporal contamination -- producing predictions where every supporting claim can be traced to sources available before the cutoff date. Experiments on 350 instances spanning U.S. Supreme Court case prediction, NBA salary estimation, and stock return ranking reveal substantial leakage in standard prompting baselines. TimeSPEC reduces Shapley-DCLR while preserving task performance, demonstrating that explicit, interpretable claim-level verification outperforms prompt-based temporal constraints for reliable backtesting.
comment: 8 pages plus appendix
☆ Mechanistic Interpretability of Cognitive Complexity in LLMs via Linear Probing using Bloom's Taxonomy
The black-box nature of Large Language Models necessitates novel evaluation frameworks that transcend surface-level performance metrics. This study investigates the internal neural representations of cognitive complexity using Bloom's Taxonomy as a hierarchical lens. By analyzing high-dimensional activation vectors from different LLMs, we probe whether different cognitive levels, ranging from basic recall (Remember) to abstract synthesis (Create), are linearly separable within the model's residual streams. Our results demonstrate that linear classifiers achieve approximately 95% mean accuracy across all Bloom levels, providing strong evidence that cognitive level is encoded in a linearly accessible subspace of the model's representations. These findings provide evidence that the model resolves the cognitive difficulty of a prompt early in the forward pass, with representations becoming increasingly separable across layers.
comment: Preprint. Under review
☆ Decoding the Human Factor: High Fidelity Behavioral Prediction for Strategic Foresight
Predicting human decision-making in high-stakes environments remains a central challenge for artificial intelligence. While large language models (LLMs) demonstrate strong general reasoning, they often struggle to generate consistent, individual-specific behavior, particularly when accurate prediction depends on complex interactions between psychological traits and situational constraints. Prompting-based approaches can be brittle in this setting, exhibiting identity drift and limited ability to leverage increasingly detailed persona descriptions. To address these limitations, we introduce the Large Behavioral Model (LBM), a behavioral foundation model fine-tuned to predict individual strategic choices with high fidelity. LBM shifts from transient persona prompting to behavioral embedding by conditioning on a structured, high-dimensional trait profile derived from a comprehensive psychometric battery. Trained on a proprietary dataset linking stable dispositions, motivational states, and situational constraints to observed choices, LBM learns to map rich psychological profiles to discrete actions across diverse strategic dilemmas. In a held-out scenario evaluation, LBM fine-tuning improves behavioral prediction relative to the unadapted Llama-3.1-8B-Instruct backbone and performs comparably to frontier baselines when conditioned on Big Five traits. Moreover, we find that while prompting-based baselines exhibit a complexity ceiling, LBM continues to benefit from increasingly dense trait profiles, with performance improving as additional trait dimensions are provided. Together, these results establish LBM as a scalable approach for high-fidelity behavioral simulation, enabling applications in strategic foresight, negotiation analysis, cognitive security, and decision support.
☆ From Labor to Collaboration: A Methodological Experiment Using AI Agents to Augment Research Perspectives in Taiwan's Humanities and Social Sciences
Generative AI is reshaping knowledge work, yet existing research focuses predominantly on software engineering and the natural sciences, with limited methodological exploration for the humanities and social sciences. Positioned as a "methodological experiment," this study proposes an AI Agent-based collaborative research workflow (Agentic Workflow) for humanities and social science research. Taiwan's Claude.ai usage data (N = 7,729 conversations, November 2025) from the Anthropic Economic Index (AEI) serves as the empirical vehicle for validating the feasibility of this methodology. This study operates on two levels: the primary level is the design and validation of a methodological framework - a seven-stage modular workflow grounded in three principles: task modularization, human-AI division of labor, and verifiability, with each stage delineating clear roles for human researchers (research judgment and ethical decisions) and AI Agents (information retrieval and text generation); the secondary level is the empirical analysis of AEI Taiwan data - serving as an operational demonstration of the workflow's application to secondary data research, showcasing both the process and output quality (see Appendix A). This study contributes by proposing a replicable AI collaboration framework for humanities and social science researchers, and identifying three operational modes of human-AI collaboration - direct execution, iterative refinement, and human-led - through reflexive documentation of the operational process. This taxonomy reveals the irreplaceability of human judgment in research question formulation, theoretical interpretation, contextualized reasoning, and ethical reflection. Limitations including single-platform data, cross-sectional design, and AI reliability risks are acknowledged.
comment: also in Chinese
☆ Continual learning and refinement of causal models through dynamic predicate invention
Efficiently navigating complex environments requires agents to internalize the underlying logic of their world, yet standard world modelling methods often struggle with sample inefficiency, lack of transparency, and poor scalability. We propose a framework for constructing symbolic causal world models entirely online by integrating continuous model learning and repair into the agent's decision loop, by leveraging the power of Meta-Interpretive Learning and predicate invention to find semantically meaningful and reusable abstractions, allowing an agent to construct a hierarchy of disentangled, high-quality concepts from its observations. We demonstrate that our lifted inference approach scales to domains with complex relational dynamics, where propositional methods suffer from combinatorial explosion, while achieving sample-efficiency orders of magnitude higher than the established PPO neural-network-based baseline.
☆ Extending quantum theory with AI-assisted deterministic game theory
We present an AI-assisted framework for predicting individual runs of complex quantum experiments, including contextuality and causality (adaptive measurements), within our long-term programme of discovering a local hidden-variable theory that extends quantum theory. In order to circumvent impossibility theorems, we replace the assumption of free choice (measurement independence and parameter independence) with a weaker, compatibilistic version called contingent free choice. Our framework is based on interpreting complex quantum experiments as a Chess-like game between observers and the universe, which is seen as an economic agent minimizing action. The game structures corresponding to generic experiments such as fixed-causal-order process matrices or causal contextuality scenarios, together with a deterministic non-Nashian resolution algorithm that abandons unilateral deviation assumptions (free choice) and assumes Perfect Prediction instead, were described in previous work. In this new research, we learn the reward functions of the game, which contain a hidden variable, using neural networks. The cost function is the Kullback-Leibler divergence between the frequency histograms obtained through many deterministic runs of the game and the predictions of the extended Born rule. Using our framework on the specific case of the EPR 2-2-2 experiment acts as a proof-of-concept and a toy local-realist hidden-variable model that non-Nashian quantum theory is a promising avenue towards a local hidden-variable theory. Our framework constitutes a solid foundation, which can be further expanded in order to fully discover a complete quantum theory.
comment: Extended abstract, 3 pages plus references. Preprint in progress
☆ Deeper detection limits in astronomical imaging using self-supervised spatiotemporal denoising
The detection limit of astronomical imaging observations is limited by several noise sources. Some of that noise is correlated between neighbouring image pixels and exposures, so in principle could be learned and corrected. We present an astronomical self-supervised transformer-based denoising algorithm (ASTERIS), that integrates spatiotemporal information across multiple exposures. Benchmarking on mock data indicates that ASTERIS improves detection limits by 1.0 magnitude at 90% completeness and purity, while preserving the point spread function and photometric accuracy. Observational validation using data from the James Webb Space Telescope (JWST) and Subaru telescope identifies previously undetectable features, including low-surface-brightness galaxy structures and gravitationally-lensed arcs. Applied to deep JWST images, ASTERIS identifies three times more redshift > 9 galaxy candidates, with rest-frame ultraviolet luminosity 1.0 magnitude fainter, than previous methods.
comment: Published in Science. This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution
☆ Texo: Formula Recognition within 20M Parameters
In this paper we present Texo, a minimalist yet highperformance formula recognition model that contains only 20 million parameters. By attentive design, distillation and transfer of the vocabulary and the tokenizer, Texo achieves comparable performance to state-of-the-art models such as UniMERNet-T and PPFormulaNet-S, while reducing the model size by 80% and 65%, respectively. This enables real-time inference on consumer-grade hardware and even in-browser deployment. We also developed a web application to demonstrate the model capabilities and facilitate its usage for end users.
☆ The Bots of Persuasion: Examining How Conversational Agents' Linguistic Expressions of Personality Affect User Perceptions and Decisions
Large Language Model-powered conversational agents (CAs) are increasingly capable of projecting sophisticated personalities through language, but how these projections affect users is unclear. We thus examine how CA personalities expressed linguistically affect user decisions and perceptions in the context of charitable giving. In a crowdsourced study, 360 participants interacted with one of eight CAs, each projecting a personality composed of three linguistic aspects: attitude (optimistic/pessimistic), authority (authoritative/submissive), and reasoning (emotional/rational). While the CA's composite personality did not affect participants' decisions, it did affect their perceptions and emotional responses. Particularly, participants interacting with pessimistic CAs felt lower emotional state and lower affinity towards the cause, perceived the CA as less trustworthy and less competent, and yet tended to donate more toward the charity. Perceptions of trust, competence, and situational empathy significantly predicted donation decisions. Our findings emphasize the risks CAs pose as instruments of manipulation, subtly influencing user perceptions and decisions.
comment: Accepted to be presented at CHI'26 in Barcelona
☆ Robustness and Reasoning Fidelity of Large Language Models in Long-Context Code Question Answering
Large language models (LLMs) increasingly assist software engineering tasks that require reasoning over long code contexts, yet their robustness under varying input conditions remains unclear. We conduct a systematic study of long-context code question answering using controlled ablations that test sensitivity to answer format, distractors, and context scale. Extending LongCodeBench Python dataset with new COBOL and Java question-answer sets, we evaluate state-of-the-art models under three settings: (i) shuffled multiple-choice options, (ii) open-ended questions and (iii) needle-in-a-haystack contexts containing relevant and adversarially irrelevant information. Results show substantial performance drops in both shuffled multiple-choice options and open-ended questions, and brittle behavior in the presence of irrelevant cues. Our findings highlight limitations of current long-context evaluations and provide a broader benchmark for assessing code reasoning in both legacy and modern systems.
comment: 11 pages, 4 Figures, 5 Tables, Work in Progress
☆ Universal Fine-Grained Symmetry Inference and Enforcement for Rigorous Crystal Structure Prediction
Crystal structure prediction (CSP), which aims to predict the three-dimensional atomic arrangement of a crystal from its composition, is central to materials discovery and mechanistic understanding. Existing deep learning models often treat crystallographic symmetry only as a soft heuristic or rely on space group and Wyckoff templates retrieved from known structures, which limits both physical fidelity and the ability to discover genuinely new material structures. In contrast to retrieval-based methods, our approach leverages large language models to encode chemical semantics and directly generate fine-grained Wyckoff patterns from composition, effectively circumventing the limitations inherent to database lookups. Crucially, we incorporate domain knowledge into the generative process through an efficient constrained-optimization search that rigorously enforces algebraic consistency between site multiplicities and atomic stoichiometry. By integrating this symmetry-consistent template into a diffusion backbone, our approach constrains the stochastic generative trajectory to a physically valid geometric manifold. This framework achieves state-of-the-art performance across stability, uniqueness, and novelty (SUN) benchmarks, alongside superior matching performance, thereby establishing a new paradigm for the rigorous exploration of targeted crystallographic space. This framework enables efficient expansion into previously uncharted materials space, eliminating reliance on existing databases or a priori structural knowledge.
☆ Continual uncertainty learning
Robust control of mechanical systems with multiple uncertainties remains a fundamental challenge, particularly when nonlinear dynamics and operating-condition variations are intricately intertwined. While deep reinforcement learning (DRL) combined with domain randomization has shown promise in mitigating the sim-to-real gap, simultaneously handling all sources of uncertainty often leads to sub-optimal policies and poor learning efficiency. This study formulates a new curriculum-based continual learning framework for robust control problems involving nonlinear dynamical systems in which multiple sources of uncertainty are simultaneously superimposed. The key idea is to decompose a complex control problem with multiple uncertainties into a sequence of continual learning tasks, in which strategies for handling each uncertainty are acquired sequentially. The original system is extended into a finite set of plants whose dynamic uncertainties are gradually expanded and diversified as learning progresses. The policy is stably updated across the entire plant sets associated with tasks defined by different uncertainty configurations without catastrophic forgetting. To ensure learning efficiency, we jointly incorporate a model-based controller (MBC), which guarantees a shared baseline performance across the plant sets, into the learning process to accelerate the convergence. This residual learning scheme facilitates task-specific optimization of the DRL agent for each uncertainty, thereby enhancing sample efficiency. As a practical industrial application, this study applies the proposed method to designing an active vibration controller for automotive powertrains. We verified that the resulting controller is robust against structural nonlinearities and dynamic variations, realizing successful sim-to-real transfer.
☆ In-Context Learning in Linear vs. Quadratic Attention Models: An Empirical Study on Regression Tasks
Recent work has demonstrated that transformers and linear attention models can perform in-context learning (ICL) on simple function classes, such as linear regression. In this paper, we empirically study how these two attention mechanisms differ in their ICL behavior on the canonical linear-regression task of Garg et al. We evaluate learning quality (MSE), convergence, and generalization behavior of each architecture. We also analyze how increasing model depth affects ICL performance. Our results illustrate both the similarities and limitations of linear attention relative to quadratic attention in this setting.
☆ JEPA-DNA: Grounding Genomic Foundation Models through Joint-Embedding Predictive Architectures
Genomic Foundation Models (GFMs) have largely relied on Masked Language Modeling (MLM) or Next Token Prediction (NTP) to learn the language of life. While these paradigms excel at capturing local genomic syntax and fine-grained motif patterns, they often fail to capture the broader functional context, resulting in representations that lack a global biological perspective. We introduce JEPA-DNA, a novel pre-training framework that integrates the Joint-Embedding Predictive Architecture (JEPA) with traditional generative objectives. JEPA-DNA introduces latent grounding by coupling token-level recovery with a predictive objective in the latent space by supervising a CLS token. This forces the model to predict the high-level functional embeddings of masked genomic segments rather than focusing solely on individual nucleotides. JEPA-DNA extends both NTP and MLM paradigms and can be deployed either as a standalone from-scratch objective or as a continual pre-training enhancement for existing GFMs. Our evaluations across a diverse suite of genomic benchmarks demonstrate that JEPA-DNA consistently yields superior performance in supervised and zero-shot tasks compared to generative-only baselines. By providing a more robust and biologically grounded representation, JEPA-DNA offers a scalable path toward foundation models that understand not only the genomic alphabet, but also the underlying functional logic of the sequence.
☆ TimeOmni-VL: Unified Models for Time Series Understanding and Generation
Recent time series modeling faces a sharp divide between numerical generation and semantic understanding, with research showing that generation models often rely on superficial pattern matching, while understanding-oriented models struggle with high-fidelity numerical output. Although unified multimodal models (UMMs) have bridged this gap in vision, their potential for time series remains untapped. We propose TimeOmni-VL, the first vision-centric framework that unifies time series understanding and generation through two key innovations: (1) Fidelity-preserving bidirectional mapping between time series and images (Bi-TSI), which advances Time Series-to-Image (TS2I) and Image-to-Time Series (I2TS) conversions to ensure near-lossless transformations. (2) Understanding-guided generation. We introduce TSUMM-Suite, a novel dataset consists of six understanding tasks rooted in time series analytics that are coupled with two generation tasks. With a calibrated Chain-of-Thought, TimeOmni-VL is the first to leverage time series understanding as an explicit control signal for high-fidelity generation. Experiments confirm that this unified approach significantly improves both semantic understanding and numerical precision, establishing a new frontier for multimodal time series modeling.
☆ Bonsai: A Framework for Convolutional Neural Network Acceleration Using Criterion-Based Pruning
As the need for more accurate and powerful Convolutional Neural Networks (CNNs) increases, so too does the size, execution time, memory footprint, and power consumption. To overcome this, solutions such as pruning have been proposed with their own metrics and methodologies, or criteria, for how weights should be removed. These solutions do not share a common implementation and are difficult to implement and compare. In this work, we introduce Combine, a criterion- based pruning solution and demonstrate that it is fast and effective framework for iterative pruning, demonstrate that criterion have differing effects on different models, create a standard language for comparing criterion functions, and propose a few novel criterion functions. We show the capacity of these criterion functions and the framework on VGG inspired models, pruning up to 79\% of filters while retaining or improving accuracy, and reducing the computations needed by the network by up to 68\%.
comment: 16 pages, 4 figures, accepted to MLDM 2021
☆ VP-VAE: Rethinking Vector Quantization via Adaptive Vector Perturbation
Vector Quantized Variational Autoencoders (VQ-VAEs) are fundamental to modern generative modeling, yet they often suffer from training instability and "codebook collapse" due to the inherent coupling of representation learning and discrete codebook optimization. In this paper, we propose VP-VAE (Vector Perturbation VAE), a novel paradigm that decouples representation learning from discretization by eliminating the need for an explicit codebook during training. Our key insight is that, from the neural network's viewpoint, performing quantization primarily manifests as injecting a structured perturbation in latent space. Accordingly, VP-VAE replaces the non-differentiable quantizer with distribution-consistent and scale-adaptive latent perturbations generated via Metropolis--Hastings sampling. This design enables stable training without a codebook while making the model robust to inference-time quantization error. Moreover, under the assumption of approximately uniform latent variables, we derive FSP (Finite Scalar Perturbation), a lightweight variant of VP-VAE that provides a unified theoretical explanation and a practical improvement for FSQ-style fixed quantizers. Extensive experiments on image and audio benchmarks demonstrate that VP-VAE and FSP improve reconstruction fidelity and achieve substantially more balanced token usage, while avoiding the instability inherent to coupled codebook training.
☆ Efficient Parallel Algorithm for Decomposing Hard CircuitSAT Instances
We propose a novel parallel algorithm for decomposing hard CircuitSAT instances. The technique employs specialized constraints to partition an original SAT instance into a family of weakened formulas. Our approach is implemented as a parameterized parallel algorithm, where adjusting the parameters allows efficient identification of high-quality decompositions, guided by hardness estimations computed in parallel. We demonstrate the algorithm's practical efficacy on challenging CircuitSAT instances, including those encoding Logical Equivalence Checking of Boolean circuits and preimage attacks on cryptographic hash functions.
☆ 3D Scene Rendering with Multimodal Gaussian Splatting
3D scene reconstruction and rendering are core tasks in computer vision, with applications spanning industrial monitoring, robotics, and autonomous driving. Recent advances in 3D Gaussian Splatting (GS) and its variants have achieved impressive rendering fidelity while maintaining high computational and memory efficiency. However, conventional vision-based GS pipelines typically rely on a sufficient number of camera views to initialize the Gaussian primitives and train their parameters, typically incurring additional processing cost during initialization while falling short in conditions where visual cues are unreliable, such as adverse weather, low illumination, or partial occlusions. To cope with these challenges, and motivated by the robustness of radio-frequency (RF) signals to weather, lighting, and occlusions, we introduce a multimodal framework that integrates RF sensing, such as automotive radar, with GS-based rendering as a more efficient and robust alternative to vision-only GS rendering. The proposed approach enables efficient depth prediction from only sparse RF-based depth measurements, yielding a high-quality 3D point cloud for initializing Gaussian functions across diverse GS architectures. Numerical tests demonstrate the merits of judiciously incorporating RF sensing into GS pipelines, achieving high-fidelity 3D scene rendering driven by RF-informed structural accuracy.
☆ TIFO: Time-Invariant Frequency Operator for Stationarity-Aware Representation Learning in Time Series
Nonstationary time series forecasting suffers from the distribution shift issue due to the different distributions that produce the training and test data. Existing methods attempt to alleviate the dependence by, e.g., removing low-order moments from each individual sample. These solutions fail to capture the underlying time-evolving structure across samples and do not model the complex time structure. In this paper, we aim to address the distribution shift in the frequency space by considering all possible time structures. To this end, we propose a Time-Invariant Frequency Operator (TIFO), which learns stationarity-aware weights over the frequency spectrum across the entire dataset. The weight representation highlights stationary frequency components while suppressing non-stationary ones, thereby mitigating the distribution shift issue in time series. To justify our method, we show that the Fourier transform of time series data implicitly induces eigen-decomposition in the frequency space. TIFO is a plug-and-play approach that can be seamlessly integrated into various forecasting models. Experiments demonstrate our method achieves 18 top-1 and 6 top-2 results out of 28 forecasting settings. Notably, it yields 33.3% and 55.3% improvements in average MSE on the ETTm2 dataset. In addition, TIFO reduces computational costs by 60% -70% compared to baseline methods, demonstrating strong scalability across diverse forecasting models.
☆ Epistemology of Generative AI: The Geometry of Knowing
Generative AI presents an unprecedented challenge to our understanding of knowledge and its production. Unlike previous technological transformations, where engineering understanding preceded or accompanied deployment, generative AI operates through mechanisms whose epistemic character remains obscure, and without such understanding, its responsible integration into science, education, and institutional life cannot proceed on a principled basis. This paper argues that the missing account must begin with a paradigmatic break that has not yet received adequate philosophical attention. In the Turing-Shannon-von Neumann tradition, information enters the machine as encoded binary vectors, and semantics remains external to the process. Neural network architectures rupture this regime: symbolic input is instantly projected into a high-dimensional space where coordinates correspond to semantic parameters, transforming binary code into a position in a geometric space of meanings. It is this space that constitutes the active epistemic condition shaping generative production. Drawing on four structural properties of high-dimensional geometry concentration of measure, near-orthogonality, exponential directional capacity, and manifold regularity the paper develops an Indexical Epistemology of High-Dimensional Spaces. Building on Peirce semiotics and Papert constructionism, it reconceptualizes generative models as navigators of learned manifolds and proposes navigational knowledge as a third mode of knowledge production, distinct from both symbolic reasoning and statistical recombination.
comment: 27
☆ Instructor-Aligned Knowledge Graphs for Personalized Learning
Mastering educational concepts requires understanding both their prerequisites (e.g., recursion before merge sort) and sub-concepts (e.g., merge sort as part of sorting algorithms). Capturing these dependencies is critical for identifying students' knowledge gaps and enabling targeted intervention for personalized learning. This is especially challenging in large-scale courses, where instructors cannot feasibly diagnose individual misunderstanding or determine which concepts need reinforcement. While knowledge graphs offer a natural representation for capturing these conceptual relationships at scale, existing approaches are either surface-level (focusing on course-level concepts like "Algorithms" or logistical relationships such as course enrollment), or disregard the rich pedagogical signals embedded in instructional materials. We propose InstructKG, a framework for automatically constructing instructor-aligned knowledge graphs that capture a course's intended learning progression. Given a course's lecture materials (slides, notes, etc.), InstructKG extracts significant concepts as nodes and infers learning dependencies as directed edges (e.g., "part-of" or "depends-on" relationships). The framework synergizes the rich temporal and semantic signals unique to educational materials (e.g., "recursion" is taught before "mergesort"; "recursion" is mentioned in the definition of "merge sort") with the generalizability of large language models. Through experiments on real-world, diverse lecture materials across multiple courses and human-based evaluation, we demonstrate that InstructKG captures rich, instructor-aligned learning progressions.
☆ Owen-based Semantics and Hierarchy-Aware Explanation (O-Shap)
Shapley value-based methods have become foundational in explainable artificial intelligence (XAI), offering theoretically grounded feature attributions through cooperative game theory. However, in practice, particularly in vision tasks, the assumption of feature independence breaks down, as features (i.e., pixels) often exhibit strong spatial and semantic dependencies. To address this, modern SHAP implementations now include the Owen value, a hierarchical generalization of the Shapley value that supports group attributions. While the Owen value preserves the foundations of Shapley values, its effectiveness critically depends on how feature groups are defined. We show that commonly used segmentations (e.g., axis-aligned or SLIC) violate key consistency properties, and propose a new segmentation approach that satisfies the $T$-property to ensure semantic alignment across hierarchy levels. This hierarchy enables computational pruning while improving attribution accuracy and interpretability. Experiments on image and tabular datasets demonstrate that O-Shap outperforms baseline SHAP variants in attribution precision, semantic coherence, and runtime efficiency, especially when structure matters.
☆ Toward Trustworthy Evaluation of Sustainability Rating Methodologies: A Human-AI Collaborative Framework for Benchmark Dataset Construction
Sustainability or ESG rating agencies use company disclosures and external data to produce scores or ratings that assess the environmental, social, and governance performance of a company. However, sustainability ratings across agencies for a single company vary widely, limiting their comparability, credibility, and relevance to decision-making. To harmonize the rating results, we propose adopting a universal human-AI collaboration framework to generate trustworthy benchmark datasets for evaluating sustainability rating methodologies. The framework comprises two complementary parts: STRIDE (Sustainability Trust Rating & Integrity Data Equation) provides principled criteria and a scoring system that guide the construction of firm-level benchmark datasets using large language models (LLMs), and SR-Delta, a discrepancy-analysis procedural framework that surfaces insights for potential adjustments. The framework enables scalable and comparable assessment of sustainability rating methodologies. We call on the broader AI community to adopt AI-powered approaches to strengthen and advance sustainability rating methodologies that support and enforce urgent sustainability agendas.
☆ Deep Reinforcement Learning for Optimal Portfolio Allocation: A Comparative Study with Mean-Variance Optimization ICAPS 2023
Portfolio Management is the process of overseeing a group of investments, referred to as a portfolio, with the objective of achieving predetermined investment goals. Portfolio optimization is a key component that involves allocating the portfolio assets so as to maximize returns while minimizing risk taken. It is typically carried out by financial professionals who use a combination of quantitative techniques and investment expertise to make decisions about the portfolio allocation. Recent applications of Deep Reinforcement Learning (DRL) have shown promising results when used to optimize portfolio allocation by training model-free agents on historical market data. Many of these methods compare their results against basic benchmarks or other state-of-the-art DRL agents but often fail to compare their performance against traditional methods used by financial professionals in practical settings. One of the most commonly used methods for this task is Mean-Variance Portfolio Optimization (MVO), which uses historical time series information to estimate expected asset returns and covariances, which are then used to optimize for an investment objective. Our work is a thorough comparison between model-free DRL and MVO for optimal portfolio allocation. We detail the specifics of how to make DRL for portfolio optimization work in practice, also noting the adjustments needed for MVO. Backtest results demonstrate strong performance of the DRL agent across many metrics, including Sharpe ratio, maximum drawdowns, and absolute returns.
comment: 9 pages, 6 figures. Published at the FinPlan'23 Workshop, the 33rd International Conference on Automated Planning and Scheduling (ICAPS 2023)
☆ Agentic Wireless Communication for 6G: Intent-Aware and Continuously Evolving Physical-Layer Intelligence
As 6G wireless systems evolve, growing functional complexity and diverse service demands are driving a shift from rule-based control to intent-driven autonomous intelligence. User requirements are no longer captured by a single metric (e.g., throughput or reliability), but by multi-dimensional objectives such as latency sensitivity, energy preference, computational constraints, and service-level requirements. These objectives may also change over time due to environmental dynamics and user-network interactions. Therefore, accurate understanding of both the communication environment and user intent is critical for autonomous and sustainably evolving 6G communications. Large language models (LLMs), with strong contextual understanding and cross-modal reasoning, provide a promising foundation for intent-aware network agents. Compared with rule-driven or centrally optimized designs, LLM-based agents can integrate heterogeneous information and translate natural-language intents into executable control and configuration decisions. Focusing on a closed-loop pipeline of intent perception, autonomous decision making, and network execution, this paper investigates agentic AI for the 6G physical layer and its realization pathways. We review representative physical-layer tasks and their limitations in supporting intent awareness and autonomy, identify application scenarios where agentic AI is advantageous, and discuss key challenges and enabling technologies in multimodal perception, cross-layer decision making, and sustainable optimization. Finally, we present a case study of an intent-driven link decision agent, termed AgenCom, which adaptively constructs communication links under diverse user preferences and channel conditions.
☆ FLoRG: Federated Fine-tuning with Low-rank Gram Matrices and Procrustes Alignment
Parameter-efficient fine-tuning techniques such as low-rank adaptation (LoRA) enable large language models (LLMs) to adapt to downstream tasks efficiently. Federated learning (FL) further facilitates this process by enabling collaborative fine-tuning across distributed clients without sharing private data. However, the use of two separate low-rank matrices in LoRA for federated fine-tuning introduces two types of challenges. The first challenge arises from the error induced by separately aggregating those two low-rank matrices. The second challenge occurs even when the product of two low-rank matrices is aggregated. The server needs to recover factors via matrix decomposition, which is non-unique and can introduce decomposition drift. To tackle the aforementioned challenges, we propose FLoRG, a federated fine-tuning framework which employs a single low-rank matrix for fine-tuning and aggregates its Gram matrix (i.e., the matrix of inner products of its column vectors), eliminating the aggregation error while also reducing the communication overhead. FLoRG minimizes the decomposition drift by introducing a Procrustes alignment approach which aligns the decomposed matrix between consecutive fine-tuning rounds for consistent updates. We theoretically analyze the convergence of FLoRG and prove that adopting the Procrustes alignment results in a tighter convergence bound. Experimental results across multiple LLM fine-tuning benchmarks demonstrate that FLoRG outperforms five state-of-the-art baseline schemes in the downstream task accuracy and can reduce the communication overhead by up to 2041$\times$.
☆ How AI Coding Agents Communicate: A Study of Pull Request Description Characteristics and Human Review Responses
The rapid adoption of large language models has led to the emergence of AI coding agents that autonomously create pull requests on GitHub. However, how these agents differ in their pull request description characteristics, and how human reviewers respond to them, remains underexplored. In this study, we conduct an empirical analysis of pull requests created by five AI coding agents using the AIDev dataset. We analyze agent differences in pull request description characteristics, including structural features, and examine human reviewer response in terms of review activity, response timing, sentiment, and merge outcomes. We find that AI coding agents exhibit distinct PR description styles, which are associated with differences in reviewer engagement, response time, and merge outcomes. We observe notable variation across agents in both reviewer interaction metrics and merge rates. These findings highlight the role of pull request presentation and reviewer interaction dynamics in human-AI collaborative software development.
☆ AdvSynGNN: Structure-Adaptive Graph Neural Nets via Adversarial Synthesis and Self-Corrective Propagation
Graph neural networks frequently encounter significant performance degradation when confronted with structural noise or non-homophilous topologies. To address these systemic vulnerabilities, we present AdvSynGNN, a comprehensive architecture designed for resilient node-level representation learning. The proposed framework orchestrates multi-resolution structural synthesis alongside contrastive objectives to establish geometry-sensitive initializations. We develop a transformer backbone that adaptively accommodates heterophily by modulating attention mechanisms through learned topological signals. Central to our contribution is an integrated adversarial propagation engine, where a generative component identifies potential connectivity alterations while a discriminator enforces global coherence. Furthermore, label refinement is achieved through a residual correction scheme guided by per-node confidence metrics, which facilitates precise control over iterative stability. Empirical evaluations demonstrate that this synergistic approach effectively optimizes predictive accuracy across diverse graph distributions while maintaining computational efficiency. The study concludes with practical implementation protocols to ensure the robust deployment of the AdvSynGNN system in large-scale environments.
comment: 32 pages, 8 figures
☆ General sample size analysis for probabilities of causation: a delta method approach
Probabilities of causation (PoCs), such as the probability of necessity and sufficiency (PNS), are important tools for decision making but are generally not point identifiable. Existing work has derived bounds for these quantities using combinations of experimental and observational data. However, there is very limited research on sample size analysis, namely, how many experimental and observational samples are required to achieve a desired margin of error. In this paper, we propose a general sample size framework based on the delta method. Our approach applies to settings in which the target bounds of PoCs can be expressed as finite minima or maxima of linear combinations of experimental and observational probabilities. Through simulation studies, we demonstrate that the proposed sample size calculations lead to stable estimation of these bounds.
☆ Predictive Batch Scheduling: Accelerating Language Model Training Through Loss-Aware Sample Prioritization
We introduce Predictive Batch Scheduling (PBS), a novel training optimization technique that accelerates language model convergence by dynamically prioritizing high-loss samples during batch construction. Unlike curriculum learning approaches that require predefined difficulty metrics or hard example mining methods that demand expensive per-sample loss tracking, PBS employs a lightweight linear predictor trained online to estimate sample difficulty from static token-level features. Our predictor achieves 0.44 correlation with actual loss using only four simple features: token frequency, sequence length, vocabulary diversity, and rare token ratio. Experiments on a 130M parameter transformer demonstrate that PBS achieves 6-13\% faster convergence measured by evaluation loss across training checkpoints, with the predictor's correlation improving from 0.14 to 0.44 over 10,000 training steps. These results validate that token frequency statistics encode meaningful information about sample difficulty, enabling effective curriculum learning with negligible computational overhead.
☆ Sign Lock-In: Randomly Initialized Weight Signs Persist and Bottleneck Sub-Bit Model Compression
Sub-bit model compression seeks storage below one bit per weight; as magnitudes are aggressively compressed, the sign bit becomes a fixed-cost bottleneck. Across Transformers, CNNs, and MLPs, learned sign matrices resist low-rank approximation and are spectrally indistinguishable from an i.i.d. Rademacher baseline. Despite this apparent randomness, most weights retain their initialization signs; flips primarily occur via rare near-zero boundary crossings, suggesting that sign-pattern randomness is largely inherited from initialization. We formalize this behavior with sign lock-in theory, a stopping-time analysis of sign flips under SGD noise. Under bounded updates and a rare re-entry condition into a small neighborhood around zero, the number of effective sign flips exhibits a geometric tail. Building on this mechanism, we introduce a gap-based initialization and a lightweight outward-drift regularizer, reducing the effective flip rate to approximately $10^{-3}$ with only about a one-point increase in perplexity.
☆ Retaining Suboptimal Actions to Follow Shifting Optima in Multi-Agent Reinforcement Learning ICLR 2026
Value decomposition is a core approach for cooperative multi-agent reinforcement learning (MARL). However, existing methods still rely on a single optimal action and struggle to adapt when the underlying value function shifts during training, often converging to suboptimal policies. To address this limitation, we propose Successive Sub-value Q-learning (S2Q), which learns multiple sub-value functions to retain alternative high-value actions. Incorporating these sub-value functions into a Softmax-based behavior policy, S2Q encourages persistent exploration and enables $Q^{\text{tot}}$ to adjust quickly to the changing optima. Experiments on challenging MARL benchmarks confirm that S2Q consistently outperforms various MARL algorithms, demonstrating improved adaptability and overall performance. Our code is available at https://github.com/hyeon1996/S2Q.
comment: 10 technical page followed by references and appendix. Accepted to ICLR 2026
☆ ALPS: A Diagnostic Challenge Set for Arabic Linguistic & Pragmatic Reasoning
While recent Arabic NLP benchmarks focus on scale, they often rely on synthetic or translated data which may benefit from deeper linguistic verification. We introduce ALPS (Arabic Linguistic & Pragmatic Suite), a native, expert-curated diagnostic challenge set probing Deep Semantics and Pragmatics, capabilities that complement specialized large-scale benchmarks. While broad-coverage benchmarks prioritize scale and multi-task coverage, ALPS targets the depth of linguistic understanding through 531 rigorously crafted questions across 15 tasks and 47 subtasks. We developed the dataset with deep expertise in Arabic linguistics, guaranteeing cultural authenticity and eliminating translation artifacts. Evaluating 23 diverse models (commercial, open-source, and Arabic-native) against a single-pass human performance (avg. 84.6% accuracy) and an expert-adjudicated oracle (99.2%), we reveal a critical dissociation: models achieve high fluency but fail on fundamental morpho-syntactic dependencies, with elevated error rates on morpho-syntactic dependencies (36.5% across diacritics-reliant tasks) compared to compositional semantics. While top commercial models (Gemini-3-flash at 94.2%) surpass the average single human, a substantial gap persists between commercial giants and Arabic-native models, with the best Arabic-specific model (Jais-2-70B at 83.6%) approaching but not matching human performance.
☆ RFEval: Benchmarking Reasoning Faithfulness under Counterfactual Reasoning Intervention in Large Reasoning Models ICLR 2026
Large Reasoning Models (LRMs) exhibit strong performance, yet often produce rationales that sound plausible but fail to reflect their true decision process, undermining reliability and trust. We introduce a formal framework for reasoning faithfulness, defined by two testable conditions: stance consistency (a coherent stance linking reasoning to answer) and causal influence (the stated reasoning causally drives the answer under output-level interventions), explicitly decoupled from accuracy. To operationalize this, we present RFEval, a benchmark of 7,186 instances across seven tasks that probes faithfulness via controlled, output-level counterfactual interventions. Evaluating twelve open-source LRMs, we find unfaithfulness in 49.7% of outputs, predominantly from stance inconsistency. Failures are concentrated in brittle, convergent domains such as math and code, and correlate more with post-training regimes than with scale: within-family ablations indicate that adding current RL-style objectives on top of supervised fine-tuning can reduce reasoning faithfulness, even when accuracy is maintained. Crucially, accuracy is neither a sufficient nor a reliable proxy for faithfulness: once controlling for model and task, the accuracy-faithfulness link is weak and statistically insignificant. Our work establishes a rigorous methodology for auditing LRM reliability and shows that trustworthy AI requires optimizing not only for correct outcomes but also for the structural integrity of the reasoning process. Our code and dataset can be found at project page: $\href{https://aidaslab.github.io/RFEval/}{https://aidaslab.github.io/RFEval/}$
comment: Accepted in ICLR 2026 Poster: $\href{https://iclr.cc/virtual/2026/poster/10011763}{\text{this URL}}$
☆ Evaluating Cross-Lingual Classification Approaches Enabling Topic Discovery for Multilingual Social Media Data
Analysing multilingual social media discourse remains a major challenge in natural language processing, particularly when large-scale public debates span across diverse languages. This study investigates how different approaches for cross-lingual text classification can support reliable analysis of global conversations. Using hydrogen energy as a case study, we analyse a decade-long dataset of over nine million tweets in English, Japanese, Hindi, and Korean (2013--2022) for topic discovery. The online keyword-driven data collection results in a significant amount of irrelevant content. We explore four approaches to filter relevant content: (1) translating English annotated data into target languages for building language-specific models for each target language, (2) translating unlabelled data appearing from all languages into English for creating a single model based on English annotations, (3) applying English fine-tuned multilingual transformers directly to each target language data, and (4) a hybrid strategy that combines translated annotations with multilingual training. Each approach is evaluated for its ability to filter hydrogen-related tweets from noisy keyword-based collections. Subsequently, topic modeling is performed to extract dominant themes within the relevant subsets. The results highlight key trade-offs between translation and multilingual approaches, offering actionable insights into optimising cross-lingual pipelines for large-scale social media analysis.
☆ IntentCUA: Learning Intent-level Representations for Skill Abstraction and Multi-Agent Planning in Computer-Use Agents
Computer-use agents operate over long horizons under noisy perception, multi-window contexts, evolving environment states. Existing approaches, from RL-based planners to trajectory retrieval, often drift from user intent and repeatedly solve routine subproblems, leading to error accumulation and inefficiency. We present IntentCUA, a multi-agent computer-use framework designed to stabilize long-horizon execution through intent-aligned plan memory. A Planner, Plan-Optimizer, and Critic coordinate over shared memory that abstracts raw interaction traces into multi-view intent representations and reusable skills. At runtime, intent prototypes retrieve subgroup-aligned skills and inject them into partial plans, reducing redundant re-planning and mitigating error propagation across desktop applications. In end-to-end evaluations, IntentCUA achieved a 74.83% task success rate with a Step Efficiency Ratio of 0.91, outperforming RL-based and trajectory-centric baselines. Ablations show that multi-view intent abstraction and shared plan memory jointly improve execution stability, with the cooperative multi-agent loop providing the largest gains on long-horizon tasks. These results highlight that system-level intent abstraction and memory-grounded coordination are key to reliable and efficient desktop automation in large, dynamic environments.
comment: 12 pages, 9 figures, AAMAS 2026
☆ Phase-Aware Mixture of Experts for Agentic Reinforcement Learning
Reinforcement learning (RL) has equipped LLM agents with a strong ability to solve complex tasks. However, existing RL methods normally use a \emph{single} policy network, causing \emph{simplicity bias} where simple tasks occupy most parameters and dominate gradient updates, leaving insufficient capacity for complex tasks. A plausible remedy could be employing the Mixture-of-Experts (MoE) architecture in the policy network, as MoE allows different parameters (experts) to specialize in different tasks, preventing simple tasks from dominating all parameters. However, a key limitation of traditional MoE is its token-level routing, where the router assigns each token to specialized experts, which fragments phase-consistent patterns into scattered expert assignments and thus undermines expert specialization. In this paper, we propose \textbf{Phase-Aware Mixture of Experts (PA-MoE)}. It first features a lightweight \emph{phase router} that learns latent phase boundaries directly from the RL objective without pre-defining phase categories. Then, the phase router allocates temporally consistent assignments to the same expert, allowing experts to preserve phase-specific expertise. Experimental results demonstrate the effectiveness of our proposed PA-MoE.
comment: 16 pages
☆ Wink: Recovering from Misbehaviors in Coding Agents
Autonomous coding agents, powered by large language models (LLMs), are increasingly being adopted in the software industry to automate complex engineering tasks. However, these agents are prone to a wide range of misbehaviors, such as deviating from the user's instructions, getting stuck in repetitive loops, or failing to use tools correctly. These failures disrupt the development workflow and often require resource-intensive manual intervention. In this paper, we present a system for automatically recovering from agentic misbehaviors at scale. We first introduce a taxonomy of misbehaviors grounded in an analysis of production traffic, identifying three primary categories: Specification Drift, Reasoning Problems, and Tool Call Failures, which we find occur in about 30% of all agent trajectories. To address these issues, we developed a lightweight, asynchronous self-intervention system named Wink. Wink observes agent trajectories and provides targeted course-correction guidance to nudge the agent back to a productive path. We evaluated our system on over 10,000 real world agent trajectories and found that it successfully resolves 90% of the misbehaviors that require a single intervention. Furthermore, a live A/B test in our production environment demonstrated that our system leads to a statistically significant reduction in Tool Call Failures, Tokens per Session and Engineer Interventions per Session. We present our experience designing and deploying this system, offering insights into the challenges of building resilient agentic systems at scale.
☆ Forecasting Anomaly Precursors via Uncertainty-Aware Time-Series Ensembles
Detecting anomalies in time-series data is critical in domains such as industrial operations, finance, and cybersecurity, where early identification of abnormal patterns is essential for ensuring system reliability and enabling preventive maintenance. However, most existing methods are reactive: they detect anomalies only after they occur and lack the capability to provide proactive early warning signals. In this paper, we propose FATE (Forecasting Anomalies with Time-series Ensembles), a novel unsupervised framework for detecting Precursors-of-Anomaly (PoA) by quantifying predictive uncertainty from a diverse ensemble of time-series forecasting models. Unlike prior approaches that rely on reconstruction errors or require ground-truth labels, FATE anticipates future values and leverages ensemble disagreement to signal early signs of potential anomalies without access to target values at inference time. To rigorously evaluate PoA detection, we introduce Precursor Time-series Aware Precision and Recall (PTaPR), a new metric that extends the traditional Time-series Aware Precision and Recall (TaPR) by jointly assessing segment-level accuracy, within-segment coverage, and temporal promptness of early predictions. This enables a more holistic assessment of early warning capabilities that existing metrics overlook. Experiments on five real-world benchmark datasets show that FATE achieves an average improvement of 19.9 percentage points in PTaPR AUC and 20.02 percentage points in early detection F1 score, outperforming baselines while requiring no anomaly labels. These results demonstrate the effectiveness and practicality of FATE for real-time unsupervised early warning in complex time-series environments.
comment: This manuscript contains 14 pages and 8 figures. It is currently under review at IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
☆ Transforming Behavioral Neuroscience Discovery with In-Context Learning and AI-Enhanced Tensor Methods
Scientific discovery pipelines typically involve complex, rigid, and time-consuming processes, from data preparation to analyzing and interpreting findings. Recent advances in AI have the potential to transform such pipelines in a way that domain experts can focus on interpreting and understanding findings, rather than debugging rigid pipelines or manually annotating data. As part of an active collaboration between data science/AI researchers and behavioral neuroscientists, we showcase an example AI-enhanced pipeline, specifically designed to transform and accelerate the way that the domain experts in the team are able to gain insights out of experimental data. The application at hand is in the domain of behavioral neuroscience, studying fear generalization in mice, an important problem whose progress can advance our understanding of clinically significant and often debilitating conditions such as PTSD (Post-Traumatic Stress Disorder). We identify the emerging paradigm of "In-Context Learning" (ICL) as a suitable interface for domain experts to automate parts of their pipeline without the need for or familiarity with AI model training and fine-tuning, and showcase its remarkable efficacy in data preparation and pattern interpretation. Also, we introduce novel AI-enhancements to tensor decomposition model, which allows for more seamless pattern discovery from the heterogeneous data in our application. We thoroughly evaluate our proposed pipeline experimentally, showcasing its superior performance compared to what is standard practice in the domain, as well as against reasonable ML baselines that do not fall under the ICL paradigm, to ensure that we are not compromising performance in our quest for a seamless and easy-to-use interface for domain experts. Finally, we demonstrate effective discovery, with results validated by the domain experts in the team.
☆ ReIn: Conversational Error Recovery with Reasoning Inception ICLR 2026
Conversational agents powered by large language models (LLMs) with tool integration achieve strong performance on fixed task-oriented dialogue datasets but remain vulnerable to unanticipated, user-induced errors. Rather than focusing on error prevention, this work focuses on error recovery, which necessitates the accurate diagnosis of erroneous dialogue contexts and execution of proper recovery plans. Under realistic constraints precluding model fine-tuning or prompt modification due to significant cost and time requirements, we explore whether agents can recover from contextually flawed interactions and how their behavior can be adapted without altering model parameters and prompts. To this end, we propose Reasoning Inception (ReIn), a test-time intervention method that plants an initial reasoning into the agent's decision-making process. Specifically, an external inception module identifies predefined errors within the dialogue context and generates recovery plans, which are subsequently integrated into the agent's internal reasoning process to guide corrective actions, without modifying its parameters or system prompts. We evaluate ReIn by systematically simulating conversational failure scenarios that directly hinder successful completion of user goals: user's ambiguous and unsupported requests. Across diverse combinations of agent models and inception modules, ReIn substantially improves task success and generalizes to unseen error types. Moreover, it consistently outperforms explicit prompt-modification approaches, underscoring its utility as an efficient, on-the-fly method. In-depth analysis of its operational mechanism, particularly in relation to instruction hierarchy, indicates that jointly defining recovery tools with ReIn can serve as a safe and effective strategy for improving the resilience of conversational agents without modifying the backbone models or system prompts.
comment: ICLR 2026
☆ M2F: Automated Formalization of Mathematical Literature at Scale
Automated formalization of mathematics enables mechanical verification but remains limited to isolated theorems and short snippets. Scaling to textbooks and research papers is largely unaddressed, as it requires managing cross-file dependencies, resolving imports, and ensuring that entire projects compile end-to-end. We present M2F (Math-to-Formal), the first agentic framework for end-to-end, project-scale autoformalization in Lean. The framework operates in two stages. The statement compilation stage splits the document into atomic blocks, orders them via inferred dependencies, and repairs declaration skeletons until the project compiles, allowing placeholders in proofs. The proof repair stage closes these holes under fixed signatures using goal-conditioned local edits. Throughout both stages, M2F keeps the verifier in the loop, committing edits only when toolchain feedback confirms improvement. In approximately three weeks, M2F converts long-form mathematical sources into a project-scale Lean library of 153,853 lines from 479 pages textbooks on real analysis and convex analysis, fully formalized as Lean declarations with accompanying proofs. This represents textbook-scale formalization at a pace that would typically require months or years of expert effort. On FATE-H, we achieve $96\%$ proof success (vs.\ $80\%$ for a strong baseline). Together, these results demonstrate that practical, large-scale automated formalization of mathematical literature is within reach. The full generated Lean code from our runs is available at https://github.com/optsuite/ReasBook.git.
☆ Persona2Web: Benchmarking Personalized Web Agents for Contextual Reasoning with User History
Large language models have advanced web agents, yet current agents lack personalization capabilities. Since users rarely specify every detail of their intent, practical web agents must be able to interpret ambiguous queries by inferring user preferences and contexts. To address this challenge, we present Persona2Web, the first benchmark for evaluating personalized web agents on the real open web, built upon the clarify-to-personalize principle, which requires agents to resolve ambiguity based on user history rather than relying on explicit instructions. Persona2Web consists of: (1) user histories that reveal preferences implicitly over long time spans, (2) ambiguous queries that require agents to infer implicit user preferences, and (3) a reasoning-aware evaluation framework that enables fine-grained assessment of personalization. We conduct extensive experiments across various agent architectures, backbone models, history access schemes, and queries with varying ambiguity levels, revealing key challenges in personalized web agent behavior. For reproducibility, our codes and datasets are publicly available at https://anonymous.4open.science/r/Persona2Web-73E8.
☆ Sonar-TS: Search-Then-Verify Natural Language Querying for Time Series Databases
Natural Language Querying for Time Series Databases (NLQ4TSDB) aims to assist non-expert users retrieve meaningful events, intervals, and summaries from massive temporal records. However, existing Text-to-SQL methods are not designed for continuous morphological intents such as shapes or anomalies, while time series models struggle to handle ultra-long histories. To address these challenges, we propose Sonar-TS, a neuro-symbolic framework that tackles NLQ4TSDB via a Search-Then-Verify pipeline. Analogous to active sonar, it utilizes a feature index to ping candidate windows via SQL, followed by generated Python programs to lock on and verify candidates against raw signals. To enable effective evaluation, we introduce NLQTSBench, the first large-scale benchmark designed for NLQ over TSDB-scale histories. Our experiments highlight the unique challenges within this domain and demonstrate that Sonar-TS effectively navigates complex temporal queries where traditional methods fail. This work presents the first systematic study of NLQ4TSDB, offering a general framework and evaluation standard to facilitate future research.
☆ Exploring LLMs for User Story Extraction from Mockups
User stories are one of the most widely used artifacts in the software industry to define functional requirements. In parallel, the use of high-fidelity mockups facilitates end-user participation in defining their needs. In this work, we explore how combining these techniques with large language models (LLMs) enables agile and automated generation of user stories from mockups. To this end, we present a case study that analyzes the ability of LLMs to extract user stories from high-fidelity mockups, both with and without the inclusion of a glossary of the Language Extended Lexicon (LEL) in the prompts. Our results demonstrate that incorporating the LEL significantly enhances the accuracy and suitability of the generated user stories. This approach represents a step forward in the integration of AI into requirements engineering, with the potential to improve communication between users and developers.
comment: 14 pages, 6 figures. Preprint of the paper published in the 28th Workshop on Requirements Engineering (WER 2025)
☆ Conv-FinRe: A Conversational and Longitudinal Benchmark for Utility-Grounded Financial Recommendation
Most recommendation benchmarks evaluate how well a model imitates user behavior. In financial advisory, however, observed actions can be noisy or short-sighted under market volatility and may conflict with a user's long-term goals. Treating what users chose as the sole ground truth, therefore, conflates behavioral imitation with decision quality. We introduce Conv-FinRe, a conversational and longitudinal benchmark for stock recommendation that evaluates LLMs beyond behavior matching. Given an onboarding interview, step-wise market context, and advisory dialogues, models must generate rankings over a fixed investment horizon. Crucially, Conv-FinRe provides multi-view references that distinguish descriptive behavior from normative utility grounded in investor-specific risk preferences, enabling diagnosis of whether an LLM follows rational analysis, mimics user noise, or is driven by market momentum. We build the benchmark from real market data and human decision trajectories, instantiate controlled advisory conversations, and evaluate a suite of state-of-the-art LLMs. Results reveal a persistent tension between rational decision quality and behavioral alignment: models that perform well on utility-based ranking often fail to match user choices, whereas behaviorally aligned models can overfit short-term noise. The dataset is publicly released on Hugging Face, and the codebase is available on GitHub.
☆ Fundamental Limits of Black-Box Safety Evaluation: Information-Theoretic and Computational Barriers from Latent Context Conditioning
Black-box safety evaluation of AI systems assumes model behavior on test distributions reliably predicts deployment performance. We formalize and challenge this assumption through latent context-conditioned policies -- models whose outputs depend on unobserved internal variables that are rare under evaluation but prevalent under deployment. We establish fundamental limits showing that no black-box evaluator can reliably estimate deployment risk for such models. (1) Passive evaluation: For evaluators sampling i.i.d. from D_eval, we prove minimax lower bounds via Le Cam's method: any estimator incurs expected absolute error >= (5/24)*delta*L approximately 0.208*delta*L, where delta is trigger probability under deployment and L is the loss gap. (2) Adaptive evaluation: Using a hash-based trigger construction and Yao's minimax principle, worst-case error remains >= delta*L/16 even for fully adaptive querying when D_dep is supported over a sufficiently large domain; detection requires Theta(1/epsilon) queries. (3) Computational separation: Under trapdoor one-way function assumptions, deployment environments possessing privileged information can activate unsafe behaviors that any polynomial-time evaluator without the trapdoor cannot distinguish. For white-box probing, estimating deployment risk to accuracy epsilon_R requires O(1/(gamma^2 * epsilon_R^2)) samples, where gamma = alpha_0 + alpha_1 - 1 measures probe quality, and we provide explicit bias correction under probe error. Our results quantify when black-box testing is statistically underdetermined and provide explicit criteria for when additional safeguards -- architectural constraints, training-time guarantees, interpretability, and deployment monitoring -- are mathematically necessary for worst-case safety assurance.
☆ HQFS: Hybrid Quantum Classical Financial Security with VQC Forecasting, QUBO Annealing, and Audit-Ready Post-Quantum Signing
Here's the corrected paragraph with all punctuation and formatting issues fixed: Financial risk systems usually follow a two-step routine: a model predicts return or risk, and then an optimizer makes a decision such as a portfolio rebalance. In practice, this split can break under real constraints. The prediction model may look good, but the final decision can be unstable when the market shifts, when discrete constraints are added (lot sizes, caps), or when the optimization becomes slow for larger asset sets. Also, regulated settings need a clear audit trail that links each decision to the exact model state and inputs. We present HQFS, a practical hybrid pipeline that connects forecasting, discrete risk optimization, and auditability in one flow. First, HQFS learns next-step return and a volatility proxy using a variational quantum circuit (VQC) with a small classical head. Second, HQFS converts the risk-return objective and constraints into a QUBO and solves it with quantum annealing when available, while keeping a compatible classical QUBO solver as a fallback for deployment. Third, HQFS signs each rebalance output using a post-quantum signature so the allocation can be verified later without trusting the runtime environment. On our market dataset study, HQFS reduces return prediction error by 7.8% and volatility prediction error by 6.1% versus a tuned classical baseline. For the decision layer, HQFS improves out-of-sample Sharpe by 9.4% and lowers maximum drawdown by 11.7%. The QUBO solve stage also cuts average solve time by 28% compared to a mixed-integer baseline under the same constraints, while producing fully traceable, signed allocation records.
comment: 11 pages, 1 fig , 4 tables
☆ DDiT: Dynamic Patch Scheduling for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) have achieved state-of-the-art performance in image and video generation, but their success comes at the cost of heavy computation. This inefficiency is largely due to the fixed tokenization process, which uses constant-sized patches throughout the entire denoising phase, regardless of the content's complexity. We propose dynamic tokenization, an efficient test-time strategy that varies patch sizes based on content complexity and the denoising timestep. Our key insight is that early timesteps only require coarser patches to model global structure, while later iterations demand finer (smaller-sized) patches to refine local details. During inference, our method dynamically reallocates patch sizes across denoising steps for image and video generation and substantially reduces cost while preserving perceptual generation quality. Extensive experiments demonstrate the effectiveness of our approach: it achieves up to $3.52\times$ and $3.2\times$ speedup on FLUX-1.Dev and Wan $2.1$, respectively, without compromising the generation quality and prompt adherence.
☆ Early-Warning Signals of Grokking via Loss-Landscape Geometry
Grokking -- the abrupt transition from memorization to generalization after prolonged training -- has been linked to confinement on low-dimensional execution manifolds in modular arithmetic. Whether this mechanism extends beyond arithmetic remains open. We study two sequence-learning benchmarks: SCAN compositional generalization and Dyck-1 depth prediction. Across both tasks and a wide range of learning rates, the commutator defect -- a curvature measure derived from non-commuting gradient updates -- rises well before generalization, with lead times following a superlinear power law (alpha approximately 1.18 for SCAN, approximately 1.13 for Dyck), consistent with prior results on modular arithmetic. Weight-space PCA reveals that spectral concentration is not a universal precursor; the commutator defect is. Causal interventions demonstrate a mechanistic role: amplifying non-commutativity accelerates grokking (roughly 32% on SCAN, roughly 50% on Dyck), while suppressing orthogonal gradient flow delays or prevents it. The three task families form a spectrum of causal sensitivity -- modular arithmetic is rigid, Dyck is responsive, SCAN is intermediate -- yet suppression delays or prevents grokking in all cases, establishing necessity as a universal finding. These results identify the commutator defect as a robust, architecture-agnostic, causally implicated early-warning signal for delayed generalization in transformers.
comment: 26 pages, 13 figures
☆ A Unified Framework for Locality in Scalable MARL
Scalable Multi-Agent Reinforcement Learning (MARL) is fundamentally challenged by the curse of dimensionality. A common solution is to exploit locality, which hinges on an Exponential Decay Property (EDP) of the value function. However, existing conditions that guarantee the EDP are often conservative, as they are based on worst-case, environment-only bounds (e.g., supremums over actions) and fail to capture the regularizing effect of the policy itself. In this work, we establish that locality can also be a \emph{policy-dependent} phenomenon. Our central contribution is a novel decomposition of the policy-induced interdependence matrix, $H^π$, which decouples the environment's sensitivity to state ($E^{\mathrm{s}}$) and action ($E^{\mathrm{a}}$) from the policy's sensitivity to state ($Π(π)$). This decomposition reveals that locality can be induced by a smooth policy (small $Π(π)$) even when the environment is strongly action-coupled, exposing a fundamental locality-optimality tradeoff. We use this framework to derive a general spectral condition $ρ(E^{\mathrm{s}}+E^{\mathrm{a}}Π(π)) < 1$ for exponential decay, which is strictly tighter than prior norm-based conditions. Finally, we leverage this theory to analyze a provably-sound localized block-coordinate policy improvement framework with guarantees tied directly to this spectral radius.
☆ When Vision Overrides Language: Evaluating and Mitigating Counterfactual Failures in VLAs
Vision-Language-Action models (VLAs) promise to ground language instructions in robot control, yet in practice often fail to faithfully follow language. When presented with instructions that lack strong scene-specific supervision, VLAs suffer from counterfactual failures: they act based on vision shortcuts induced by dataset biases, repeatedly executing well-learned behaviors and selecting objects frequently seen during training regardless of language intent. To systematically study it, we introduce LIBERO-CF, the first counterfactual benchmark for VLAs that evaluates language following capability by assigning alternative instructions under visually plausible LIBERO layouts. Our evaluation reveals that counterfactual failures are prevalent yet underexplored across state-of-the-art VLAs. We propose Counterfactual Action Guidance (CAG), a simple yet effective dual-branch inference scheme that explicitly regularizes language conditioning in VLAs. CAG combines a standard VLA policy with a language-unconditioned Vision-Action (VA) module, enabling counterfactual comparison during action selection. This design reduces reliance on visual shortcuts, improves robustness on under-observed tasks, and requires neither additional demonstrations nor modifications to existing architectures or pretrained models. Extensive experiments demonstrate its plug-and-play integration across diverse VLAs and consistent improvements. For example, on LIBERO-CF, CAG improves $π_{0.5}$ by 9.7% in language following accuracy and 3.6% in task success on under-observed tasks using a training-free strategy, with further gains of 15.5% and 8.5%, respectively, when paired with a VA model. In real-world evaluations, CAG reduces counterfactual failures of 9.4% and improves task success by 17.2% on average.
comment: Website: https://vla-va.github.io/
☆ Graph Neural Model Predictive Control for High-Dimensional Systems
The control of high-dimensional systems, such as soft robots, requires models that faithfully capture complex dynamics while remaining computationally tractable. This work presents a framework that integrates Graph Neural Network (GNN)-based dynamics models with structure-exploiting Model Predictive Control to enable real-time control of high-dimensional systems. By representing the system as a graph with localized interactions, the GNN preserves sparsity, while a tailored condensing algorithm eliminates state variables from the control problem, ensuring efficient computation. The complexity of our condensing algorithm scales linearly with the number of system nodes, and leverages Graphics Processing Unit (GPU) parallelization to achieve real-time performance. The proposed approach is validated in simulation and experimentally on a physical soft robotic trunk. Results show that our method scales to systems with up to 1,000 nodes at 100 Hz in closed-loop, and demonstrates real-time reference tracking on hardware with sub-centimeter accuracy, outperforming baselines by 63.6%. Finally, we show the capability of our method to achieve effective full-body obstacle avoidance.
☆ Hybrid System Planning using a Mixed-Integer ADMM Heuristic and Hybrid Zonotopes
Embedded optimization-based planning for hybrid systems is challenging due to the use of mixed-integer programming, which is computationally intensive and often sensitive to the specific numerical formulation. To address that challenge, this article proposes a framework for motion planning of hybrid systems that pairs hybrid zonotopes - an advanced set representation - with a new alternating direction method of multipliers (ADMM) mixed-integer programming heuristic. A general treatment of piecewise affine (PWA) system reachability analysis using hybrid zonotopes is presented and extended to formulate optimal planning problems. Sets produced using the proposed identities have lower memory complexity and tighter convex relaxations than equivalent sets produced from preexisting techniques. The proposed ADMM heuristic makes efficient use of the hybrid zonotope structure. For planning problems formulated as hybrid zonotopes, the proposed heuristic achieves improved convergence rates as compared to state-of-the-art mixed-integer programming heuristics. The proposed methods for hybrid system planning on embedded hardware are experimentally applied in a combined behavior and motion planning scenario for autonomous driving.
☆ FR-GESTURE: An RGBD Dataset For Gesture-based Human-Robot Interaction In First Responder Operations
The ever increasing intensity and number of disasters make even more difficult the work of First Responders (FRs). Artificial intelligence and robotics solutions could facilitate their operations, compensating these difficulties. To this end, we propose a dataset for gesture-based UGV control by FRs, introducing a set of 12 commands, drawing inspiration from existing gestures used by FRs and tactical hand signals and refined after incorporating feedback from experienced FRs. Then we proceed with the data collection itself, resulting in 3312 RGBD pairs captured from 2 viewpoints and 7 distances. To the best of our knowledge, this is the first dataset especially intended for gesture-based UGV guidance by FRs. Finally we define evaluation protocols for our RGBD dataset, termed FR-GESTURE, and we perform baseline experiments, which are put forward for improvement. We have made data publicly available to promote future research on the domain: https://doi.org/10.5281/zenodo.18131333.
IRIS: Learning-Driven Task-Specific Cinema Robot Arm for Visuomotor Motion Control
Robotic camera systems enable dynamic, repeatable motion beyond human capabilities, yet their adoption remains limited by the high cost and operational complexity of industrial-grade platforms. We present the Intelligent Robotic Imaging System (IRIS), a task-specific 6-DOF manipulator designed for autonomous, learning-driven cinematic motion control. IRIS integrates a lightweight, fully 3D-printed hardware design with a goal-conditioned visuomotor imitation learning framework based on Action Chunking with Transformers (ACT). The system learns object-aware and perceptually smooth camera trajectories directly from human demonstrations, eliminating the need for explicit geometric programming. The complete platform costs under $1,000 USD, supports a 1.5 kg payload, and achieves approximately 1 mm repeatability. Real-world experiments demonstrate accurate trajectory tracking, reliable autonomous execution, and generalization across diverse cinematic motions.
☆ RA-Nav: A Risk-Aware Navigation System Based on Semantic Segmentation for Aerial Robots in Unpredictable Environments
Existing aerial robot navigation systems typically plan paths around static and dynamic obstacles, but fail to adapt when a static obstacle suddenly moves. Integrating environmental semantic awareness enables estimation of potential risks posed by suddenly moving obstacles. In this paper, we propose RA- Nav, a risk-aware navigation framework based on semantic segmentation. A lightweight multi-scale semantic segmentation network identifies obstacle categories in real time. These obstacles are further classified into three types: stationary, temporarily static, and dynamic. For each type, corresponding risk estimation functions are designed to enable real-time risk prediction, based on which a complete local risk map is constructed. Based on this map, the risk-informed path search algorithm is designed to guarantee planning that balances path efficiency and safety. Trajectory optimization is then applied to generate trajectories that are safe, smooth, and dynamically feasible. Comparative simulations demonstrate that RA-Nav achieves higher success rates than baselines in sudden obstacle state transition scenarios. Its effectiveness is further validated in simulations using real- world data.
☆ Dodging the Moose: Experimental Insights in Real-Life Automated Collision Avoidance
The sudden appearance of a static obstacle on the road, i.e. the moose test, is a well-known emergency scenario in collision avoidance for automated driving. Model Predictive Control (MPC) has long been employed for planning and control of automated vehicles in the state of the art. However, real-time implementation of automated collision avoidance in emergency scenarios such as the moose test remains unaddressed due to the high computational demand of MPC for evasive action in such hazardous scenarios. This paper offers new insights into real-time collision avoidance via the experimental imple- mentation of MPC for motion planning after a sudden and unexpected appearance of a static obstacle. As the state-of-the-art nonlinear MPC shows limited capability to provide an acceptable solution in real-time, we propose a human-like feed-forward planner to assist when the MPC optimization problem is either infeasible or unable to find a suitable solution due to the poor quality of its initial guess. We introduce the concept of maximum steering maneuver to design the feed-forward planner and mimic a human-like reaction after detecting the static obstacle on the road. Real-life experiments are conducted across various speeds and level of emergency using FPEV2-Kanon electric vehicle. Moreover, we demonstrate the effectiveness of our planning strategy via comparison with the state-of- the-art MPC motion planner.
comment: 10 pages, 10 figures
☆ Proximal powered knee placement: a case study
Lower limb amputation affects millions worldwide, leading to impaired mobility, reduced walking speed, and limited participation in daily and social activities. Powered prosthetic knees can partially restore mobility by actively assisting knee joint torque, improving gait symmetry, sit-to-stand transitions, and walking speed. However, added mass from powered components may diminish these benefits, negatively affecting gait mechanics and increasing metabolic cost. Consequently, optimizing mass distribution, rather than simply minimizing total mass, may provide a more effective and practical solution. In this exploratory study, we evaluated the feasibility of above-knee powertrain placement for a powered prosthetic knee in a small cohort. Compared to below-knee placement, the above-knee configuration demonstrated improved walking speed (+9.2% for one participant) and cadence (+3.6%), with mixed effects on gait symmetry. Kinematic measures indicated similar knee range of motion and peak velocity across configurations. Additional testing on ramps and stairs confirmed the robustness of the control strategy across multiple locomotion tasks. These preliminary findings suggest that above-knee placement is functionally feasible and that careful mass distribution can preserve the benefits of powered assistance while mitigating adverse effects of added weight. Further studies are needed to confirm these trends and guide design and clinical recommendations.
comment: Submitted to IEEE RAS/EMBS 11th International Conference on Biomedical Robotics and Biomechatronics (BioRob 2026)
☆ Optically Sensorized Electro-Ribbon Actuator (OS-ERA)
Electro-Ribbon Actuators (ERAs) are lightweight flexural actuators that exhibit ultrahigh displacement and fast movement. However, their embedded sensing relies on capacitive sensors with limited precision, which hinders accurate control. We introduce OS-ERA, an optically sensorized ERA that yields reliable proprioceptive information, and we focus on the design and integration of a sensing solution without affecting actuation. To analyse the complex curvature of an ERA in motion, we design and embed two soft optical waveguide sensors. A classifier is trained to map the sensing signals in order to distinguish eight bending states. We validate our model on six held-out trials and compare it against signals' trajectories learned from training runs. Across all tests, the sensing output signals follow the training manifold, and the predicted sequence mirrors real performance and confirms repeatability. Despite deliberate train-test mismatches in actuation speed, the signal trajectories preserve their shape, and classification remains consistently accurate, demonstrating practical voltage- and speed-invariance. As a result, OS-ERA classifies bending states with high fidelity; it is fast and repeatable, solving a longstanding bottleneck of the ERA, enabling steps toward closed-loop control.
comment: 6 pages, 5 figures, accepted for 9th IEEE-RAS International Conference on Soft Robotics (RoboSoft 2026)
☆ A Cost-Effective and Climate-Resilient Air Pressure System for Rain Effect Reduction on Automated Vehicle Cameras
Recent advances in automated vehicles have focused on improving perception performance under adverse weather conditions; however, research on physical hardware solutions remains limited, despite their importance for perception critical applications such as vehicle platooning. Existing approaches, such as hydrophilic or hydrophobic lenses and sprays, provide only partial mitigation, while industrial protection systems imply high cost and they do not enable scalability for automotive deployment. To address these limitations, this paper presents a cost-effective hardware solution for rainy conditions, designed to be compatible with multiple cameras simultaneously. Beyond its technical contribution, the proposed solution supports sustainability goals in transportation systems. By enabling compatibility with existing camera-based sensing platforms, the system extends the operational reliability of automated vehicles without requiring additional high-cost sensors or hardware replacements. This approach reduces resource consumption, supports modular upgrades, and promotes more cost-efficient deployment of automated vehicle technologies, particularly in challenging weather conditions where system failures would otherwise lead to inefficiencies and increased emissions. The proposed system was able to increase pedestrian detection accuracy of a Deep Learning model from 8.3% to 41.6%.
☆ 3D-printed Soft Optical sensor with a Lens (SOLen) for light guidance in mechanosensing
Additive manufacturing is enabling soft robots with increasingly complex geometries, creating a demand for sensing solutions that remain compatible with single-material, one-step fabrication. Optical soft sensors are attractive for monolithic printing, but their performance is often degraded by uncontrolled light propagation (ambient coupling, leakage, scattering), while common miti- gation strategies typically require multimaterial interfaces. Here, we present an approach for 3D printed soft optical sensing (SOLen), in which a printed lens is placed in front of an emitter within a Y-shaped waveguide. The sensing mechanism relies on deformation-induced lens rotation and focal-spot translation, redistributing optical power between the two branches to generate a differential output that encodes both motion direction and amplitude. An acrylate polyurethane resin was modified with lauryl acrylate to improve compliance and optical transmittance, and single-layer optical characterization was used to derive wavelength-dependent refractive index and transmittance while minimizing DLP layer-related artifacts. The measured refractive index was used in simulations to design a lens profile for a target focal distance, which was then printed with sub-millimeter fidelity. Rotational tests demonstrated reproducible branch-selective signal switching over multiple cycles. These results establish a transferable material-to-optics workflow for soft optical sensors with lens with new functionalities for next-generation soft robots
comment: 11 pages, 5 figures, submitted to Materials & Design
☆ Distributed Virtual Model Control for Scalable Human-Robot Collaboration in Shared Workspace
We present a decentralized, agent agnostic, and safety-aware control framework for human-robot collaboration based on Virtual Model Control (VMC). In our approach, both humans and robots are embedded in the same virtual-component-shaped workspace, where motion is the result of the interaction with virtual springs and dampers rather than explicit trajectory planning. A decentralized, force-based stall detector identifies deadlocks, which are resolved through negotiation. This reduces the probability of robots getting stuck in the block placement task from up to 61.2% to zero in our experiments. The framework scales without structural changes thanks to the distributed implementation: in experiments we demonstrate safe collaboration with up to two robots and two humans, and in simulation up to four robots, maintaining inter-agent separation at around 20 cm. Results show that the method shapes robot behavior intuitively by adjusting control parameters and achieves deadlock-free operation across team sizes in all tested scenarios.
☆ Bluetooth Phased-array Aided Inertial Navigation Using Factor Graphs: Experimental Verification
Phased-array Bluetooth systems have emerged as a low-cost alternative for performing aided inertial navigation in GNSS-denied use cases such as warehouse logistics, drone landings, and autonomous docking. Basing a navigation system off of commercial-off-the-shelf components may reduce the barrier of entry for phased-array radio navigation systems, albeit at the cost of significantly noisier measurements and relatively short feasible range. In this paper, we compare robust estimation strategies for a factor graph optimisation-based estimator using experimental data collected from multirotor drone flight. We evaluate performance in loss-of-GNSS scenarios when aided by Bluetooth angular measurements, as well as range or barometric pressure.
comment: 6 pages, 5 figures, 2 tables. This work has been submitted to IFAC for possible publication
☆ Contact-Anchored Proprioceptive Odometry for Quadruped Robots
Reliable odometry for legged robots without cameras or LiDAR remains challenging due to IMU drift and noisy joint velocity sensing. This paper presents a purely proprioceptive state estimator that uses only IMU and motor measurements to jointly estimate body pose and velocity, with a unified formulation applicable to biped, quadruped, and wheel-legged robots. The key idea is to treat each contacting leg as a kinematic anchor: joint-torque--based foot wrench estimation selects reliable contacts, and the corresponding footfall positions provide intermittent world-frame constraints that suppress long-term drift. To prevent elevation drift during extended traversal, we introduce a lightweight height clustering and time-decay correction that snaps newly recorded footfall heights to previously observed support planes. To improve foot velocity observations under encoder quantization, we apply an inverse-kinematics cubature Kalman filter that directly filters foot-end velocities from joint angles and velocities. The implementation further mitigates yaw drift through multi-contact geometric consistency and degrades gracefully to a kinematics-derived heading reference when IMU yaw constraints are unavailable or unreliable. We evaluate the method on four quadruped platforms (three Astrall robots and a Unitree Go2 EDU) using closed-loop trajectories. On Astrall point-foot robot~A, a $\sim$200\,m horizontal loop and a $\sim$15\,m vertical loop return with 0.1638\,m and 0.219\,m error, respectively; on wheel-legged robot~B, the corresponding errors are 0.2264\,m and 0.199\,m. On wheel-legged robot~C, a $\sim$700\,m horizontal loop yields 7.68\,m error and a $\sim$20\,m vertical loop yields 0.540\,m error. Unitree Go2 EDU closes a $\sim$120\,m horizontal loop with 2.2138\,m error and a $\sim$8\,m vertical loop with less than 0.1\,m vertical error. github.com/ShineMinxing/Ros2Go2Estimator.git
comment: 28 pages, 30 figures
☆ FRAPPE: Infusing World Modeling into Generalist Policies via Multiple Future Representation Alignment
Enabling VLA models to predict environmental dynamics, known as world modeling, has been recognized as essential for improving robotic reasoning and generalization. However, current approaches face two main issues: 1. The training objective forces models to over-emphasize pixel-level reconstruction, which constrains semantic learning and generalization 2. Reliance on predicted future observations during inference often leads to error accumulation. To address these challenges, we introduce Future Representation Alignment via Parallel Progressive Expansion (FRAPPE). Our method adopts a two-stage fine-tuning strategy: In the mid-training phase, the model learns to predict the latent representations of future observations; In the post-training phase, we expand the computational workload in parallel and align the representation simultaneously with multiple different visual foundation models. By significantly improving fine-tuning efficiency and reducing dependence on action-annotated data, FRAPPE provides a scalable and data-efficient pathway to enhance world-awareness in generalist robotic policies. Experiments on the RoboTwin benchmark and real-world tasks demonstrate that FRAPPE outperforms state-of-the-art approaches and shows strong generalization in long-horizon and unseen scenarios.
comment: Project Website: https://h-zhao1997.github.io/frappe
☆ Multi-session Localization and Mapping Exploiting Topological Information
Operating in previously visited environments is becoming increasingly crucial for autonomous systems, with direct applications in autonomous driving, surveying, and warehouse or household robotics. This repeated exposure to observing the same areas poses significant challenges for mapping and localization -- key components for enabling any higher-level task. In this work, we propose a novel multi-session framework that builds on map-based localization, in contrast to the common practice of greedily running full SLAM sessions and trying to find correspondences between the resulting maps. Our approach incorporates a topology-informed, uncertainty-aware decision-making mechanism that analyzes the pose-graph structure to detect low-connectivity regions, selectively triggering mapping and loop closing modules. The resulting map and pose-graph are seamlessly integrated into the existing model, reducing accumulated error and enhancing global consistency. We validate our method on overlapping sequences from datasets and demonstrate its effectiveness in a real-world mine-like environment.
☆ Nonlinear Predictive Control of the Continuum and Hybrid Dynamics of a Suspended Deformable Cable for Aerial Pick and Place
This paper presents a framework for aerial manipulation of an extensible cable that combines a high-fidelity model based on partial differential equations (PDEs) with a reduced-order representation suitable for real-time control. The PDEs are discretised using a finite-difference method, and proper orthogonal decomposition is employed to extract a reduced-order model (ROM) that retains the dominant deformation modes while significantly reducing computational complexity. Based on this ROM, a nonlinear model predictive control scheme is formulated, capable of stabilizing cable oscillations and handling hybrid transitions such as payload attachment and detachment. Simulation results confirm the stability, efficiency, and robustness of the ROM, as well as the effectiveness of the controller in regulating cable dynamics under a range of operating conditions. Additional simulations illustrate the application of the ROM for trajectory planning in constrained environments, demonstrating the versatility of the proposed approach. Overall, the framework enables real-time, dynamics-aware control of unmanned aerial vehicles (UAVs) carrying suspended flexible cables.
comment: Accepted to the IEEE International Conference on Robotics and Automation (ICRA) 2026
☆ NRGS-SLAM: Monocular Non-Rigid SLAM for Endoscopy via Deformation-Aware 3D Gaussian Splatting
Visual simultaneous localization and mapping (V-SLAM) is a fundamental capability for autonomous perception and navigation. However, endoscopic scenes violate the rigidity assumption due to persistent soft-tissue deformations, creating a strong coupling ambiguity between camera ego-motion and intrinsic deformation. Although recent monocular non-rigid SLAM methods have made notable progress, they often lack effective decoupling mechanisms and rely on sparse or low-fidelity scene representations, which leads to tracking drift and limited reconstruction quality. To address these limitations, we propose NRGS-SLAM, a monocular non-rigid SLAM system for endoscopy based on 3D Gaussian Splatting. To resolve the coupling ambiguity, we introduce a deformation-aware 3D Gaussian map that augments each Gaussian primitive with a learnable deformation probability, optimized via a Bayesian self-supervision strategy without requiring external non-rigidity labels. Building on this representation, we design a deformable tracking module that performs robust coarse-to-fine pose estimation by prioritizing low-deformation regions, followed by efficient per-frame deformation updates. A carefully designed deformable mapping module progressively expands and refines the map, balancing representational capacity and computational efficiency. In addition, a unified robust geometric loss incorporates external geometric priors to mitigate the inherent ill-posedness of monocular non-rigid SLAM. Extensive experiments on multiple public endoscopic datasets demonstrate that NRGS-SLAM achieves more accurate camera pose estimation (up to 50\% reduction in RMSE) and higher-quality photo-realistic reconstructions than state-of-the-art methods. Comprehensive ablation studies further validate the effectiveness of our key design choices. Source code will be publicly available upon paper acceptance.
☆ Geometric Inverse Flight Dynamics on SO(3) and Application to Tethered Fixed-Wing Aircraft
We present a robotics-oriented, coordinate-free formulation of inverse flight dynamics for fixed-wing aircraft on SO(3). Translational force balance is written in the world frame and rotational dynamics in the body frame; aerodynamic directions (drag, lift, side) are defined geometrically, avoiding local attitude coordinates. Enforcing coordinated flight (no sideslip), we derive a closed-form trajectory-to-input map yielding the attitude, angular velocity, and thrust-angle-of-attack pair, and we recover the aerodynamic moment coefficients component-wise. Applying such a map to tethered flight on spherical parallels, we obtain analytic expressions for the required bank angle and identify a specific zero-bank locus where the tether tension exactly balances centrifugal effects, highlighting the decoupling between aerodynamic coordination and the apparent gravity vector. Under a simple lift/drag law, the minimal-thrust angle of attack admits a closed form. These pointwise quasi-steady inversion solutions become steady-flight trim when the trajectory and rotational dynamics are time-invariant. The framework bridges inverse simulation in aeronautics with geometric modeling in robotics, providing a rigorous building block for trajectory design and feasibility checks.
☆ Physical Human-Robot Interaction for Grasping in Augmented Reality via Rigid-Soft Robot Synergy
Hybrid rigid-soft robots combine the precision of rigid manipulators with the compliance and adaptability of soft arms, offering a promising approach for versatile grasping in unstructured environments. However, coordinating hybrid robots remains challenging, due to difficulties in modeling, perception, and cross-domain kinematics. In this work, we present a novel augmented reality (AR)-based physical human-robot interaction framework that enables direct teleoperation of a hybrid rigid-soft robot for simple reaching and grasping tasks. Using an AR headset, users can interact with a simulated model of the robotic system integrated into a general-purpose physics engine, which is superimposed on the real system, allowing simulated execution prior to real-world deployment. To ensure consistent behavior between the virtual and physical robots, we introduce a real-to-simulation parameter identification pipeline that leverages the inherent geometric properties of the soft robot, enabling accurate modeling of its static and dynamic behavior as well as the control system's response.
comment: Camera-ready version for RoboSoft 2026. 8 pages, 6 figures
☆ Grasp Synthesis Matching From Rigid To Soft Robot Grippers Using Conditional Flow Matching
A representation gap exists between grasp synthesis for rigid and soft grippers. Anygrasp [1] and many other grasp synthesis methods are designed for rigid parallel grippers, and adapting them to soft grippers often fails to capture their unique compliant behaviors, resulting in data-intensive and inaccurate models. To bridge this gap, this paper proposes a novel framework to map grasp poses from a rigid gripper model to a soft Fin-ray gripper. We utilize Conditional Flow Matching (CFM), a generative model, to learn this complex transformation. Our methodology includes a data collection pipeline to generate paired rigid-soft grasp poses. A U-Net autoencoder conditions the CFM model on the object's geometry from a depth image, allowing it to learn a continuous mapping from an initial Anygrasp pose to a stable Fin-ray gripper pose. We validate our approach on a 7-DOF robot, demonstrating that our CFM-generated poses achieve a higher overall success rate for seen and unseen objects (34% and 46% respectively) compared to the baseline rigid poses (6% and 25% respectively) when executed by the soft gripper. The model shows significant improvements, particularly for cylindrical (50% and 100% success for seen and unseen objects) and spherical objects (25% and 31% success for seen and unseen objects), and successfully generalizes to unseen objects. This work presents CFM as a data-efficient and effective method for transferring grasp strategies, offering a scalable methodology for other soft robotic systems.
☆ Benchmarking the Effects of Object Pose Estimation and Reconstruction on Robotic Grasping Success
3D reconstruction serves as the foundational layer for numerous robotic perception tasks, including 6D object pose estimation and grasp pose generation. Modern 3D reconstruction methods for objects can produce visually and geometrically impressive meshes from multi-view images, yet standard geometric evaluations do not reflect how reconstruction quality influences downstream tasks such as robotic manipulation performance. This paper addresses this gap by introducing a large-scale, physics-based benchmark that evaluates 6D pose estimators and 3D mesh models based on their functional efficacy in grasping. We analyze the impact of model fidelity by generating grasps on various reconstructed 3D meshes and executing them on the ground-truth model, simulating how grasp poses generated with an imperfect model affect interaction with the real object. This assesses the combined impact of pose error, grasp robustness, and geometric inaccuracies from 3D reconstruction. Our results show that reconstruction artifacts significantly decrease the number of grasp pose candidates but have a negligible effect on grasping performance given an accurately estimated pose. Our results also reveal that the relationship between grasp success and pose error is dominated by spatial error, and even a simple translation error provides insight into the success of the grasping pose of symmetric objects. This work provides insight into how perception systems relate to object manipulation using robots.
☆ Patch-Based Spatial Authorship Attribution in Human-Robot Collaborative Paintings
As agentic AI becomes increasingly involved in creative production, documenting authorship has become critical for artists, collectors, and legal contexts. We present a patch-based framework for spatial authorship attribution within human-robot collaborative painting practice, demonstrated through a forensic case study of one human artist and one robotic system across 15 abstract paintings. Using commodity flatbed scanners and leave-one-painting-out cross-validation, the approach achieves 88.8% patch-level accuracy (86.7% painting-level via majority vote), outperforming texture-based and pretrained-feature baselines (68.0%-84.7%). For collaborative artworks, where ground truth is inherently ambiguous, we use conditional Shannon entropy to quantify stylistic overlap; manually annotated hybrid regions exhibit 64% higher uncertainty than pure paintings (p=0.003), suggesting the model detects mixed authorship rather than classification failure. The trained model is specific to this human-robot pair but provides a methodological grounding for sample-efficient attribution in data-scarce human-AI creative workflows that, in the future, has the potential to extend authorship attribution to any human-robot collaborative painting.
☆ "It's like a pet...but my pet doesn't collect data about me": Multi-person Households' Privacy Design Preferences for Household Robots
Household robots boasting mobility, more sophisticated sensors, and powerful processing models have become increasingly prevalent in the commercial market. However, these features may expose users to unwanted privacy risks, including unsolicited data collection and unauthorized data sharing. While security and privacy researchers thus far have explored people's privacy concerns around household robots, literature investigating people's preferred privacy designs and mitigation strategies is still limited. Additionally, the existing literature has not yet accounted for multi-user perspectives on privacy design and household robots. We aimed to fill this gap by conducting in-person participatory design sessions with 15 households to explore how they would design a privacy-aware household robot based on their concerns and expectations. We found that participants did not trust that robots, or their respective manufacturers, would respect the data privacy of household members or operate in a multi-user ecosystem without jeopardizing users' personal data. Based on these concerns, they generated designs that gave them authority over their data, contained accessible controls and notification systems, and could be customized and tailored to suit the needs and preferences of each user over time. We synthesize our findings into actionable design recommendations for robot manufacturers and developers.
comment: 13 pages (main body), 2 figures
♻ ☆ ReplaceMe: Network Simplification via Depth Pruning and Transformer Block Linearization NeurIPS 2025
We introduce ReplaceMe, a generalized training-free depth pruning method that effectively replaces transformer blocks with a linear operation, while maintaining high performance for low compression ratios. In contrast to conventional pruning approaches that require additional training or fine-tuning, our approach requires only a small calibration dataset that is used to estimate a linear transformation, which approximates the pruned blocks. The estimated linear mapping can be seamlessly merged with the remaining transformer blocks, eliminating the need for any additional network parameters. Our experiments show that ReplaceMe consistently outperforms other training-free approaches and remains highly competitive with state-of-the-art pruning methods that involve extensive retraining/fine-tuning and architectural modifications. Applied to several large language models (LLMs), ReplaceMe achieves up to 25\% pruning while retaining approximately 90\% of the original model's performance on open benchmarks - without any training or healing steps, resulting in minimal computational overhead. We provide an open-source library implementing ReplaceMe alongside several state-of-the-art depth pruning techniques, available at https://github.com/mts-ai/ReplaceMe
comment: This work was accepted and presented at NeurIPS 2025. Code is available at https://github.com/mts-ai/replaceme Reviews at OpenReview: https://openreview.net/forum?id=zEj1FSYCRn NeurIPS 2025 Proceedings: https://openreview.net/pdf?id=zEj1FSYCRn
♻ ☆ pi-Flow: Policy-Based Few-Step Generation via Imitation Distillation ICLR 2026
Few-step diffusion or flow-based generative models typically distill a velocity-predicting teacher into a student that predicts a shortcut towards denoised data. This format mismatch has led to complex distillation procedures that often suffer from a quality-diversity trade-off. To address this, we propose policy-based flow models ($π$-Flow). $π$-Flow modifies the output layer of a student flow model to predict a network-free policy at one timestep. The policy then produces dynamic flow velocities at future substeps with negligible overhead, enabling fast and accurate ODE integration on these substeps without extra network evaluations. To match the policy's ODE trajectory to the teacher's, we introduce a novel imitation distillation approach, which matches the policy's velocity to the teacher's along the policy's trajectory using a standard $\ell_2$ flow matching loss. By simply mimicking the teacher's behavior, $π$-Flow enables stable and scalable training and avoids the quality-diversity trade-off. On ImageNet 256$^2$, it attains a 1-NFE FID of 2.85, outperforming previous 1-NFE models of the same DiT architecture. On FLUX.1-12B and Qwen-Image-20B at 4 NFEs, $π$-Flow achieves substantially better diversity than state-of-the-art DMD models, while maintaining teacher-level quality.
comment: ICLR 2026. Code: https://github.com/Lakonik/piFlow Demos: https://huggingface.co/spaces/Lakonik/pi-Qwen | https://huggingface.co/spaces/Lakonik/pi-FLUX.1 | https://huggingface.co/spaces/Lakonik/pi-FLUX.2
♻ ☆ CT-Bench: A Benchmark for Multimodal Lesion Understanding in Computed Tomography
Artificial intelligence (AI) can automatically delineate lesions on computed tomography (CT) and generate radiology report content, yet progress is limited by the scarcity of publicly available CT datasets with lesion-level annotations. To bridge this gap, we introduce CT-Bench, a first-of-its-kind benchmark dataset comprising two components: a Lesion Image and Metadata Set containing 20,335 lesions from 7,795 CT studies with bounding boxes, descriptions, and size information, and a multitask visual question answering benchmark with 2,850 QA pairs covering lesion localization, description, size estimation, and attribute categorization. Hard negative examples are included to reflect real-world diagnostic challenges. We evaluate multiple state-of-the-art multimodal models, including vision-language and medical CLIP variants, by comparing their performance to radiologist assessments, demonstrating the value of CT-Bench as a comprehensive benchmark for lesion analysis. Moreover, fine-tuning models on the Lesion Image and Metadata Set yields significant performance gains across both components, underscoring the clinical utility of CT-Bench.
♻ ☆ Accelerating Large-Scale Dataset Distillation via Exploration-Exploitation Optimization
Dataset distillation compresses the original data into compact synthetic datasets, reducing training time and storage while retaining model performance, enabling deployment under limited resources. Although recent decoupling-based distillation methods enable dataset distillation at large scale, they continue to face an efficiency gap: optimization-based decoupling methods achieve higher accuracy but demand intensive computation, whereas optimization-free decoupling methods are efficient but sacrifice accuracy. To overcome this trade-off, we propose Exploration--Exploitation Distillation (E$^2$D), a simple, practical method that minimizes redundant computation through an efficient pipeline that begins with full-image initialization to preserve semantic integrity and feature diversity. It then uses a two-phase optimization strategy: an exploration phase that performs uniform updates and identifies high-loss regions, and an exploitation phase that focuses updates on these regions to accelerate convergence. We evaluate E$^2$D on large-scale benchmarks, surpassing the state-of-the-art on ImageNet-1K while being $18\times$ faster, and on ImageNet-21K, our method substantially improves accuracy while remaining $4.3\times$ faster. These results demonstrate that targeted, redundancy-reducing updates, rather than brute-force optimization, bridge the gap between accuracy and efficiency in large-scale dataset distillation. Code is available at https://github.com/ncsu-dk-lab/E2D.
♻ ☆ The Correspondence Between Bounded Graph Neural Networks and Fragments of First-Order Logic
Graph Neural Networks (GNNs) address two key challenges in applying deep learning to graph-structured data: they handle varying size input graphs and ensure invariance under graph isomorphism. While GNNs have demonstrated broad applicability, understanding their expressive power remains an important question. In this paper, we propose GNN architectures that correspond precisely to prominent fragments of first-order logic (FO), including various modal logics as well as more expressive two-variable fragments. To establish these results, we apply methods from finite model theory of first-order and modal logics to the domain of graph representation learning. Our results provide a unifying framework for understanding the logical expressiveness of GNNs within FO.
comment: 21 pages
♻ ☆ Rex: A Family of Reversible Exponential (Stochastic) Runge-Kutta Solvers
Deep generative models based on neural differential equations have quickly become the state-of-the-art for numerous generation tasks across many different applications. These models rely on ODE/SDE solvers which integrate from a prior distribution to the data distribution. In many applications it is highly desirable to then integrate in the other direction. The standard solvers, however, accumulate discretization errors which don't align with the forward trajectory, thereby prohibiting an exact inversion. In applications where the precision of the generative model is paramount this inaccuracy in inversion is often unacceptable. Current approaches to solving the inversion of these models results in significant downstream issues with poor stability and low-order of convergence; moreover, they are strictly limited to the ODE domain. In this work, we propose a new family of reversible exponential (stochastic) Runge-Kutta solvers which we refer to as Rex developed by an application of Lawson methods to convert any explicit (stochastic) Runge-Kutta scheme into a reversible one. In addition to a rigorous theoretical analysis of the proposed solvers, we also empirically demonstrate the utility of Rex on improving the sampling of Boltzmann distributions with flow models, and improving image generation and editing capabilities with diffusion models.
comment: Updated preprint. Added Boltzmann sampling experiments among other things
♻ ☆ CoSpaDi: Compressing LLMs via Calibration-Guided Sparse Dictionary Learning
Post-training compression of large language models (LLMs) often relies on low-rank weight approximations that represent each column of the weight matrix in a shared low-dimensional subspace. This strategy is computationally efficient but the underlying constraint can be overly rigid for heterogeneous projection weights and may incur avoidable accuracy loss. We propose CoSpaDi (Compression via Sparse Dictionary Learning), a training-free framework that replaces low-rank factorization with a structured sparse decomposition in which each weight matrix is represented as a dense dictionary multiplied by a column-sparse coefficient matrix. This yields a union-of-subspaces model: the columns of the weight matrix are represented as linear combinations of different subsets of dictionary atoms, improving expressiveness at a fixed parameter budget. CoSpaDi is calibration-guided: using a small calibration set, we optimize the factorization to minimize functional reconstruction error of layer outputs rather than weight-space error. An activation-derived Gram orthonormalization reformulates this data-aware objective into a standard dictionary learning problem on transformed weights, and we support both per-layer compression and cross-layer dictionary sharing within groups of similar projections. Across Llama and Qwen model families, CoSpaDi consistently improves the accuracy--compression and perplexity--compression trade-offs over state-of-the-art SVD-based baselines and strong structured pruning baselines at 20-40\% compression ratios. The resulting structured sparsity enables sparse--dense computation and integrates with post-training quantization of the sparse coefficients.
♻ ☆ BEADs: Bias Evaluation Across Domains
Recent advances in large language models (LLMs) have substantially improved natural language processing (NLP) applications. However, these models often inherit and amplify biases present in their training data. Although several datasets exist for bias detection, most are limited to one or two NLP tasks, typically classification or evaluation and do not provide broad coverage across diverse task settings. To address this gap, we introduce the \textbf{Bias Evaluations Across Domains} (\textbf{B}\texttt{EADs}) dataset, designed to support a wide range of NLP tasks, including text classification, token classification, bias quantification, and benign language generation. A key contribution of this work is a gold-standard annotation scheme that supports both evaluation and supervised training of language models. Experiments on state-of-the-art models reveal some gaps: some models exhibit systematic bias toward specific demographics, while others apply safety guardrails more strictly or inconsistently across groups. Overall, these results highlight persistent shortcomings in current models and underscore the need for comprehensive bias evaluation. Project: https://vectorinstitute.github.io/BEAD/ Data: https://huggingface.co/datasets/shainar/BEAD
comment: under review
♻ ☆ Diffusion-Guided Pretraining for Brain Graph Foundation Models
With the growing interest in foundation models for brain signals, graph-based pretraining has emerged as a promising paradigm for learning transferable representations from connectome data. However, existing contrastive and masked autoencoder methods typically rely on naive random dropping or masking for augmentation, which is ill-suited for brain graphs and hypergraphs as it disrupts semantically meaningful connectivity patterns. Moreover, commonly used graph-level readout and reconstruction schemes fail to capture global structural information, limiting the robustness of learned representations. In this work, we propose a unified diffusion-based pretraining framework that addresses both limitations. First, diffusion is designed to guide structure-aware dropping and masking strategies, preserving brain graph semantics while maintaining effective pretraining diversity. Second, diffusion enables topology-aware graph-level readout and node-level global reconstruction by allowing graph embeddings and masked nodes to aggregate information from globally related regions. Extensive experiments across multiple neuroimaging datasets with over 25,000 subjects and 60,000 scans involving various mental disorders and brain atlases demonstrate consistent performance improvements.
comment: Paper has some mistakes
♻ ☆ AI-Assisted Decision Making with Human Learning
AI systems increasingly support human decision-making. In many cases, despite the algorithm's superior performance, the final decision remains in human hands. For example, an AI may assist doctors in determining which diagnostic tests to run, but the doctor ultimately makes the diagnosis. This paper studies such AI-assisted decision-making settings, where the human learns through repeated interactions with the algorithm. In our framework, the algorithm -- designed to maximize decision accuracy according to its own model -- determines which features the human can consider. The human then makes a prediction based on their own less accurate model. We observe that the discrepancy between the algorithm's model and the human's model creates a fundamental tradeoff: Should the algorithm prioritize recommending more informative features, encouraging the human to learn their importance, even if it results in less accurate predictions in the short term until learning occurs? Or is it preferable to forgo educating the human and instead select features that align more closely with their existing understanding, minimizing the immediate cost of learning? Our analysis reveals how this trade-off is shaped by both the algorithm's patience (the time-discount rate of its objective over multiple periods) and the human's willingness and ability to learn. We show that optimal feature selection has a surprisingly clean combinatorial characterization, reducible to a stationary sequence of feature subsets that is tractable to compute. As the algorithm becomes more "patient" or the human's learning improves, the algorithm increasingly selects more informative features, enhancing both prediction accuracy and the human's understanding.
comment: This paper appeared in Proceedings of the 26th ACM Conference on Economics and Computation (EC '25)
♻ ☆ Oversmoothing, Oversquashing, Heterophily, Long-Range, and more: Demystifying Common Beliefs in Graph Machine Learning ICLR 2026
After a renaissance phase in which researchers revisited the message-passing paradigm through the lens of deep learning, the graph machine learning community shifted its attention towards a deeper and practical understanding of message-passing's benefits and limitations. In this paper, we notice how the fast pace of progress around the topics of oversmoothing and oversquashing, the homophily-heterophily dichotomy, and long-range tasks, came with the consolidation of commonly accepted beliefs and assumptions -- under the form of universal statements -- that are not always true nor easy to distinguish from each other. We argue that this has led to ambiguities around the investigated problems, preventing researchers from focusing on and addressing precise research questions while causing a good amount of misunderstandings. Our contribution is to make such common beliefs explicit and encourage critical thinking around these topics, refuting universal statements via simple yet formally sufficient counterexamples. The end goal is to clarify conceptual differences, helping researchers address more clearly defined and targeted problems.
comment: International Conference on Learning Representations (ICLR 2026)
♻ ☆ Defining and Evaluating Physical Safety for Large Language Models
Large Language Models (LLMs) are increasingly used to control robotic systems such as drones, but their risks of causing physical threats and harm in real-world applications remain unexplored. Our study addresses the critical gap in evaluating LLM physical safety by developing a comprehensive benchmark for drone control. We classify the physical safety risks of drones into four categories: (1) human-targeted threats, (2) object-targeted threats, (3) infrastructure attacks, and (4) regulatory violations. Our evaluation of mainstream LLMs reveals an undesirable trade-off between utility and safety, with models that excel in code generation often performing poorly in crucial safety aspects. Furthermore, while incorporating advanced prompt engineering techniques such as In-Context Learning and Chain-of-Thought can improve safety, these methods still struggle to identify unintentional attacks. In addition, larger models demonstrate better safety capabilities, particularly in refusing dangerous commands. Our findings and benchmark can facilitate the design and evaluation of physical safety for LLMs. The project page is available at huggingface.co/spaces/TrustSafeAI/LLM-physical-safety.
♻ ☆ Capturing Individual Human Preferences with Reward Features NeurIPS 2025
Reinforcement learning from human feedback usually models preferences using a reward function that does not distinguish between people. We argue that this is unlikely to be a good design choice in contexts with high potential for disagreement, like in the training of large language models. We formalise and analyse the problem of learning a reward model that can be specialised to a user. Using the principle of empirical risk minimisation, we derive a probably approximately correct (PAC) bound showing the dependency of the approximation error on the number of training examples, as usual, and also on the number of human raters who provided feedback on them. Based on our theoretical findings, we discuss how to best collect pairwise preference data and argue that adaptive reward models should be beneficial when there is considerable disagreement among users. We also propose a concrete architecture for an adaptive reward model. Our approach leverages the observation that individual preferences can be captured as a linear combination of a set of general reward features. We show how to learn such features and subsequently use them to quickly adapt the reward model to a specific individual, even if their preferences are not reflected in the training data. We present experiments with large language models illustrating our theoretical results and comparing the proposed architecture with a non-adaptive baseline. Consistent with our analysis, the benefits provided by our model increase with the number of raters and the heterogeneity of their preferences. We also show that our model compares favourably to adaptive counterparts, including those performing in-context personalisation.
comment: Published at NeurIPS 2025
♻ ☆ Efficient Reinforcement Learning for Large Language Models with Intrinsic Exploration
Reinforcement learning with verifiable rewards (RLVR) has improved the reasoning ability of large language models, yet training remains costly because many rollouts contribute little to optimization, considering the amount of computation required. This study investigates how simply leveraging intrinsic data properties, almost free benefit during training, can improve data efficiency for RLVR. We propose PREPO with two complementary components. First, we adopt prompt perplexity as an indicator of model adaptability in learning, enabling the model to progress from well-understood contexts to more challenging ones. Second, we amplify the discrepancy among the rollouts by differentiating their relative entropy, and prioritize sequences that exhibit a higher degree of exploration. Together, these mechanisms reduce rollout demand while preserving competitive performance. On the Qwen and Llama models, PREPO achieves effective results on mathematical reasoning benchmarks with up to 3 times fewer rollouts than the baselines. Beyond empirical gains, we provide theoretical and in-depth analyses explaining the underlying rationale of our method to improve the data efficiency of RLVR.
♻ ☆ LoRA-Squeeze: Simple and Effective Post-Tuning and In-Tuning Compression of LoRA Modules
Despite its huge number of variants, standard Low-Rank Adaptation (LoRA) is still a dominant technique for parameter-efficient fine-tuning (PEFT). Nonetheless, it faces persistent challenges, including the pre-selection of an optimal rank and rank-specific hyper-parameters, as well as the deployment complexity of heterogeneous-rank modules and more sophisticated LoRA derivatives. In this work, we introduce LoRA-Squeeze, a simple and efficient methodology that aims to improve standard LoRA learning by changing LoRA module ranks either post-hoc or dynamically during training}. Our approach posits that it is better to first learn an expressive, higher-rank solution and then compress it, rather than learning a constrained, low-rank solution directly. The method involves fine-tuning with a deliberately high(er) source rank, reconstructing or efficiently approximating the reconstruction of the full weight update matrix, and then using Randomized Singular Value Decomposition (RSVD) to create a new, compressed LoRA module at a lower target rank. Extensive experiments across 13 text and 10 vision-language tasks show that post-hoc compression often produces lower-rank adapters that outperform those trained directly at the target rank, especially if a small number of fine-tuning steps at the target rank is allowed. Moreover, a gradual, in-tuning rank annealing variant of LoRA-Squeeze consistently achieves the best LoRA size-performance trade-off.
comment: Preprint
♻ ☆ Explanation Bias is a Product: Revealing the Hidden Lexical and Position Preferences in Post-Hoc Feature Attribution
Good quality explanations strengthen the understanding of language models and data. Feature attribution methods, such as Integrated Gradient, are a type of post-hoc explainer that can provide token-level insights. However, explanations on the same input may vary greatly due to underlying biases of different methods. Users may be aware of this issue and mistrust their utility, while unaware users may trust them inadequately. In this work, we delve beyond the superficial inconsistencies between attribution methods, structuring their biases through a model- and method-agnostic framework of three evaluation metrics. We systematically assess both lexical and position bias (what and where in the input) for two transformers; first, in a controlled, pseudo-random classification task on artificial data; then, in a semi-controlled causal relation detection task on natural data. We find a trade-off between lexical and position biases in our model comparison, with models that score high on one type score low on the other. We also find signs that anomalous explanations are more likely to be biased.
♻ ☆ On the Existence and Behavior of Secondary Attention Sinks
Attention sinks are tokens, often the beginning-of-sequence (BOS) token, that receive disproportionately high attention despite limited semantic relevance. In this work, we identify a class of attention sinks, which we term secondary sinks, that differ fundamentally from the sinks studied in prior works, which we term primary sinks. While prior works have identified that tokens other than BOS can sometimes become sinks, they were found to exhibit properties analogous to the BOS token. Specifically, they emerge at the same layer, persist throughout the network and draw a large amount of attention mass. Whereas, we find the existence of secondary sinks that arise primarily in middle layers and can persist for a variable number of layers, and draw a smaller, but still significant, amount of attention mass. Through extensive experiments across 11 model families, we analyze where these secondary sinks appear, their properties, how they are formed, and their impact on the attention mechanism. Specifically, we show that: (1) these sinks are formed by specific middle-layer MLP modules; these MLPs map token representations to vectors that align with the direction of the primary sink of that layer. (2) The $\ell_2$-norm of these vectors determines the sink score of the secondary sink, and also the number of layers it lasts for, thereby leading to different impacts on the attention mechanisms accordingly. (3) The primary sink weakens in middle layers, coinciding with the emergence of secondary sinks. We observe that in larger-scale models, the location and lifetime of the sinks, together referred to as sink levels, appear in a more deterministic and frequent manner. Specifically, we identify three sink levels in QwQ-32B and six levels in Qwen3-14B.
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent runtime. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ State of the Art in Text Classification for South Slavic Languages: Fine-Tuning or Prompting? LREC 2026
Until recently, fine-tuned BERT-like models provided state-of-the-art performance on text classification tasks. With the rise of instruction-tuned decoder-only models, commonly known as large language models (LLMs), the field has increasingly moved toward zero-shot and few-shot prompting. However, the performance of LLMs on text classification, particularly on less-resourced languages, remains under-explored. In this paper, we evaluate the performance of current language models on text classification tasks across several South Slavic languages. We compare openly available fine-tuned BERT-like models with a selection of open-source and closed-source LLMs across three tasks in three domains: sentiment classification in parliamentary speeches, topic classification in news articles and parliamentary speeches, and genre identification in web texts. Our results show that LLMs demonstrate strong zero-shot performance, often matching or surpassing fine-tuned BERT-like models. Moreover, when used in a zero-shot setup, LLMs perform comparably in South Slavic languages and English. However, we also point out key drawbacks of LLMs, including less predictable outputs, significantly slower inference, and higher computational costs. Due to these limitations, fine-tuned BERT-like models remain a more practical choice for large-scale automatic text annotation.
comment: 17 pages; 4 figures; 3 tables. Submitted to the LLMs4SSH workshop, co-located with the LREC 2026 conference
♻ ☆ Explanation User Interfaces: A Systematic Literature Review
Artificial Intelligence (AI) is one of the major technological advancements of this century, bearing incredible potential for users through AI-powered applications and tools in numerous domains. Being often black-box (i.e., its decision-making process is unintelligible), developers typically resort to eXplainable Artificial Intelligence (XAI) techniques to interpret the behaviour of AI models to produce systems that are transparent, fair, reliable, and trustworthy. However, presenting explanations to the user is not trivial and is often left as a secondary aspect of the system's design process, leading to AI systems that are not useful to end-users. This paper presents a Systematic Literature Review on Explanation User Interfaces (XUIs) to gain a deeper understanding of the solutions and design guidelines employed in the academic literature to effectively present explanations to users. To improve the contribution and real-world impact of this survey, we also present a platform to support Human-cEnteRed developMent of Explainable user interfaceS (HERMES) and guide practitioners and scholars in the design and evaluation of XUIs.
comment: Second version
♻ ☆ How Multimodal Large Language Models Support Access to Visual Information: A Diary Study With Blind and Low Vision People
Multimodal large language models (MLLMs) are changing how Blind and Low Vision (BLV) people access visual information. Unlike traditional visual interpretation tools that only provide descriptions, MLLM-enabled applications offer conversational assistance, where users can ask questions to obtain goal-relevant details. However, evidence about their performance in the real-world and implications for BLV people's daily lives remains limited. To address this, we conducted a two-week diary study, where we captured 20 BLV participants' use of an MLLM-enabled visual interpretation application. Although participants rated the visual interpretations of the application as "trustworthy" (mean=3.76 out of 5, max=extremely trustworthy) and "somewhat satisfying" (mean=4.13 out of 5, max=very satisfying), the AI often produced incorrect answers (22.2%) or abstained (10.8%) from responding to users' requests. Our findings show that while MLLMs can improve visual interpretations' descriptive accuracy, supporting everyday use also depends on the "visual assistant" skill: behaviors for providing goal-directed, reliable assistance. We conclude by proposing the "visual assistant" skill and guidelines to help MLLM-enabled visual interpretation applications better support BLV people's access to visual information.
comment: 24 pages, 17 figures, 7 tables, appendix section, to appear main track CHI 2026
♻ ☆ Goal Inference from Open-Ended Dialog
Embodied AI Agents are quickly becoming important and common tools in society. These embodied agents should be able to learn about and accomplish a wide range of user goals and preferences efficiently and robustly. Large Language Models (LLMs) are often used as they allow for opportunities for rich and open-ended dialog type interaction between the human and agent to accomplish tasks according to human preferences. In this thesis, we argue that for embodied agents that deal with open-ended dialog during task assistance: 1) AI Agents should extract goals from conversations in the form of Natural Language (NL) to be better at capturing human preferences as it is intuitive for humans to communicate their preferences on tasks to agents through natural language. 2) AI Agents should quantify/maintain uncertainty about these goals to ensure that actions are being taken according to goals that the agent is extremely certain about. We present an online method for embodied agents to learn and accomplish diverse user goals. While offline methods like RLHF can represent various goals but require large datasets, our approach achieves similar flexibility with online efficiency. We extract natural language goal representations from conversations with Large Language Models (LLMs). We prompt an LLM to role play as a human with different goals and use the corresponding likelihoods to run Bayesian inference over potential goals. As a result, our method can represent uncertainty over complex goals based on unrestricted dialog. We evaluate in a text-based grocery shopping domain and an AI2Thor robot simulation. We compare our method to ablation baselines that lack either explicit goal representation or probabilistic inference.
comment: This version has been updated to reflect a copy of Master's thesis submitted Jan 24, 2025 for degree date Feb 2025 (https://hdl.handle.net/1721.1/158960). We recommend readers to read revised version incorporating a different agent pipeline and methodological approach which is available at: arXiv:2508.15119
♻ ☆ SCOPE: Selective Conformal Optimized Pairwise LLM Judging
Large language models (LLMs) are increasingly used as judges to replace costly human preference labels in pairwise evaluation. Despite their practicality, LLM judges remain prone to miscalibration and systematic biases. This paper proposes SCOPE (Selective Conformal Optimized Pairwise Evaluation), a framework for selective pairwise judging with finite-sample statistical guarantees. Under exchangeability, SCOPE calibrates an acceptance threshold such that the error rate among non-abstained judgments is at most a user-specified level $α$. To provide SCOPE with a bias-neutral uncertainty signal, we introduce Bidirectional Preference Entropy (BPE), which queries the judge under both response positions, aggregates the implied preference probabilities to enforce invariance to response order, and converts the aggregated probability into an entropy-based uncertainty score. Across MT-Bench, RewardBench, and Chatbot Arena, BPE improves uncertainty quality over standard confidence proxies, providing a stronger selection signal that enables SCOPE to consistently meet the target risk level while retaining good coverage across judge scales. In particular, at $α= 0.10$, SCOPE consistently satisfies the risk bound across all benchmarks and judge scales (empirical risk $\approx 0.097$ to $0.099$), while retaining substantial coverage, reaching $0.89$ on RewardBench with Qwen-14B and $0.98$ on RewardBench with Qwen-32B. Compared to naïve baselines, SCOPE accepts up to $2.4\times$ more judgments on MT-Bench with Qwen-7B under the same target risk constraint, demonstrating that BPE enables reliable and high-coverage LLM-based evaluation.
♻ ☆ Watermarking Diffusion Language Models
We introduce the first watermark tailored for diffusion language models (DLMs), an emergent LLM paradigm able to generate tokens in arbitrary order, in contrast to standard autoregressive language models (ARLMs) which generate tokens sequentially. While there has been much work in ARLM watermarking, a key challenge when attempting to apply these schemes directly to the DLM setting is that they rely on previously generated tokens, which are not always available with DLM generation. In this work we address this challenge by: (i) applying the watermark in expectation over the context even when some context tokens are yet to be determined, and (ii) promoting tokens which increase the watermark strength when used as context for other tokens. This is accomplished while keeping the watermark detector unchanged. Our experimental evaluation demonstrates that the DLM watermark leads to a >99% true positive rate with minimal quality impact and achieves similar robustness to existing ARLM watermarks, enabling for the first time reliable DLM watermarking.
♻ ☆ Theory of Mind for Explainable Human-Robot Interaction AAAI 2026
Within the context of human-robot interaction (HRI), Theory of Mind (ToM) is intended to serve as a user-friendly backend to the interface of robotic systems, enabling robots to infer and respond to human mental states. When integrated into robots, ToM allows them to adapt their internal models to users' behaviors, enhancing the interpretability and predictability of their actions. Similarly, Explainable Artificial Intelligence (XAI) aims to make AI systems transparent and interpretable, allowing humans to understand and interact with them effectively. Since ToM in HRI serves related purposes, we propose to consider ToM as a form of XAI and evaluate it through the eValuation XAI (VXAI) framework and its seven desiderata. This paper identifies a critical gap in the application of ToM within HRI, as existing methods rarely assess the extent to which explanations correspond to the robot's actual internal reasoning. To address this limitation, we propose to integrate ToM within XAI frameworks. By embedding ToM principles inside XAI, we argue for a shift in perspective, as current XAI research focuses predominantly on the AI system itself and often lacks user-centered explanations. Incorporating ToM would enable a change in focus, prioritizing the user's informational needs and perspective.
comment: Accepted at the workshop on Theory of Mind for Artificial Intelligence (ToM4AI) at AAAI 2026
♻ ☆ DeepQuark: A Deep-Neural-Network Approach to Multiquark Bound States
For the first time, we implement the deep-neural-network-based variational Monte Carlo approach for the multiquark bound states, whose complexity surpasses that of electron or nucleon systems due to strong SU(3) color interactions. We design a novel and high-efficiency architecture, DeepQuark, to address the unique challenges in multiquark systems such as stronger correlations, extra discrete quantum numbers, and intractable confinement interaction. Our method demonstrates competitive performance with state-of-the-art approaches, including diffusion Monte Carlo and Gaussian expansion method, in the nucleon, doubly heavy tetraquark, and fully heavy tetraquark systems. Notably, it outperforms existing calculations for pentaquarks, exemplified by the triply heavy pentaquark. For the nucleon, we successfully incorporate three-body flux-tube confinement interactions without additional computational costs. In tetraquark systems, we consistently describe hadronic molecule $T_{cc}$ and compact tetraquark $T_{bb}$ with an unbiased form of wave function ansatz. In the pentaquark sector, we obtain weakly bound $\bar D^*Ξ_{cc}^*$ molecule $P_{cc\bar c}(5715)$ with $S=\frac{5}{2}$ and its bottom partner $P_{bb\bar b}(15569)$. They can be viewed as the analogs of the molecular $T_{cc}$. We recommend experimental search of $P_{cc\bar c}(5715)$ in the D-wave $J/ψΛ_c$ channel. DeepQuark holds great promise for extension to larger multiquark systems, overcoming the computational barriers in conventional methods. It also serves as a powerful framework for exploring confining mechanism beyond two-body interactions in multiquark states, which may offer valuable insights into nonperturbative QCD and general many-body physics.
comment: 17 pages, 7 figures, 9 tables. Version published in PRL
♻ ☆ Improved Object-Centric Diffusion Learning with Registers and Contrastive Alignment ICLR 2026
Slot Attention (SA) with pretrained diffusion models has recently shown promise for object-centric learning (OCL), but suffers from slot entanglement and weak alignment between object slots and image content. We propose Contrastive Object-centric Diffusion Alignment (CODA), a simple extension that (i) employs register slots to absorb residual attention and reduce interference between object slots, and (ii) applies a contrastive alignment loss to explicitly encourage slot-image correspondence. The resulting training objective serves as a tractable surrogate for maximizing mutual information (MI) between slots and inputs, strengthening slot representation quality. On both synthetic (MOVi-C/E) and real-world datasets (VOC, COCO), CODA improves object discovery (e.g., +6.1% FG-ARI on COCO), property prediction, and compositional image generation over strong baselines. Register slots add negligible overhead, keeping CODA efficient and scalable. These results indicate potential applications of CODA as an effective framework for robust OCL in complex, real-world scenes. Code and pretrained models are available at https://github.com/sony/coda.
comment: Accepted at ICLR 2026
♻ ☆ Resp-Agent: An Agent-Based System for Multimodal Respiratory Sound Generation and Disease Diagnosis ICLR 2026
Deep learning-based respiratory auscultation is currently hindered by two fundamental challenges: (i) inherent information loss, as converting signals into spectrograms discards transient acoustic events and clinical context; (ii) limited data availability, exacerbated by severe class imbalance. To bridge these gaps, we present Resp-Agent, an autonomous multimodal system orchestrated by a novel Active Adversarial Curriculum Agent (Thinker-A$^2$CA). Unlike static pipelines, Thinker-A$^2$CA serves as a central controller that actively identifies diagnostic weaknesses and schedules targeted synthesis in a closed loop. To address the representation gap, we introduce a Modality-Weaving Diagnoser that weaves EHR data with audio tokens via Strategic Global Attention and sparse audio anchors, capturing both long-range clinical context and millisecond-level transients. To address the data gap, we design a Flow Matching Generator that adapts a text-only Large Language Model (LLM) via modality injection, decoupling pathological content from acoustic style to synthesize hard-to-diagnose samples. As a foundation for these efforts, we introduce Resp-229k, a benchmark corpus of 229k recordings paired with LLM-distilled clinical narratives. Extensive experiments demonstrate that Resp-Agent consistently outperforms prior approaches across diverse evaluation settings, improving diagnostic robustness under data scarcity and long-tailed class imbalance. Our code and data are available at https://github.com/zpforlove/Resp-Agent.
comment: 24 pages, 3 figures. Published as a conference paper at ICLR 2026
♻ ☆ Sufficient, Necessary and Complete Causal Explanations in Image Classification
Existing algorithms for explaining the outputs of image classifiers are based on a variety of approaches and produce explanations that frequently lack formal rigour. On the other hand, logic-based explanations are formally and rigorously defined but their computability relies on strict assumptions about the model that do not hold on image classifiers. In this paper, we show that causal explanations, in addition to being formally and rigorously defined, enjoy the same formal properties as logic-based ones, while still lending themselves to black-box algorithms and being a natural fit for image classifiers. We prove formal properties of causal explanations and their equivalence to logic-based explanations. We demonstrate how to subdivide an image into its sufficient and necessary components. We introduce $δ$-complete explanations, which have a minimum confidence threshold and 1-complete causal explanations, explanations that are classified with the same confidence as the original image. We implement our definitions, and our experimental results demonstrate that different models have different patterns of sufficiency, necessity, and completeness. Our algorithms are efficiently computable, taking on average 6s per image on a ResNet model to compute all types of explanations, and are totally black-box, needing no knowledge of the model, no access to model internals, no access to gradient, nor requiring any properties, such as monotonicity, of the model.
comment: 16 pages, appendix included
♻ ☆ EduEVAL-DB: A Role-Based Dataset for Pedagogical Risk Evaluation in Educational Explanations
This work introduces EduEVAL-DB, a dataset based on teacher roles designed to support the evaluation and training of automatic pedagogical evaluators and AI tutors for instructional explanations. The dataset comprises 854 explanations corresponding to 139 questions from a curated subset of the ScienceQA benchmark, spanning science, language, and social science across K-12 grade levels. For each question, one human-teacher explanation is provided and six are generated by LLM-simulated teacher roles. These roles are inspired by instructional styles and shortcomings observed in real educational practice and are instantiated via prompt engineering. We further propose a pedagogical risk rubric aligned with established educational standards, operationalizing five complementary risk dimensions: factual correctness, explanatory depth and completeness, focus and relevance, student-level appropriateness, and ideological bias. All explanations are annotated with binary risk labels through a semi-automatic process with expert teacher review. Finally, we present preliminary validation experiments to assess the suitability of EduEVAL-DB for evaluation. We benchmark a state-of-the-art education-oriented model (Gemini 2.5 Pro) against a lightweight local Llama 3.1 8B model and examine whether supervised fine-tuning on EduEVAL-DB supports pedagogical risk detection using models deployable on consumer hardware.
comment: 10 pages, 3 figures. Published in Intl. Conf. on Learning Analytics & Knowledge Workshops (LAK Workshops 2026, GenAI-LA 26)
♻ ☆ Restrictive Hierarchical Semantic Segmentation for Stratified Tooth Layer Detection
Accurate understanding of anatomical structures is essential for reliably staging certain dental diseases. A way of introducing this within semantic segmentation models is by utilising hierarchy-aware methodologies. However, existing hierarchy-aware segmentation methods largely encode anatomical structure through the loss functions, providing weak and indirect supervision. We introduce a general framework that embeds an explicit anatomical hierarchy into semantic segmentation by coupling a recurrent, level-wise prediction scheme with restrictive output heads and top-down feature conditioning. At each depth of the class tree, the backbone is re-run on the original image concatenated with logits from the previous level. Child class features are conditioned using Feature-wise Linear Modulation of their parent class probabilities, to modulate child feature spaces for fine grained detection. A probabilistic composition rule enforces consistency between parent and descendant classes. Hierarchical loss combines per-level class weighted Dice and cross entropy loss and a consistency term loss, ensuring parent predictions are the sum of their children. We validate our approach on our proposed dataset, TL-pano, containing 194 panoramic radiographs with dense instance and semantic segmentation annotations, of tooth layers and alveolar bone. Utilising UNet and HRNet as donor models across a 5-fold cross validation scheme, the hierarchical variants consistently increase IoU, Dice, and recall, particularly for fine-grained anatomies, and produce more anatomically coherent masks. However, hierarchical variants also demonstrated increased recall over precision, implying increased false positives. The results demonstrate that explicit hierarchical structuring improves both performance and clinical plausibility, especially in low data dental imaging regimes.
comment: Incorrect initial draft was submitted by mistake. Method, results and citations are incorrect
♻ ☆ Cert-SSBD: Certified Backdoor Defense with Sample-Specific Smoothing Noises
Deep neural networks (DNNs) are vulnerable to backdoor attacks, where an attacker manipulates a small portion of the training data to implant hidden backdoors into the model. The compromised model behaves normally on clean samples but misclassifies backdoored samples into the attacker-specified target class, posing a significant threat to real-world DNN applications. Currently, several empirical defense methods have been proposed to mitigate backdoor attacks, but they are often bypassed by more advanced backdoor techniques. In contrast, certified defenses based on randomized smoothing have shown promise by adding random noise to training and testing samples to counteract backdoor attacks. In this paper, we reveal that existing randomized smoothing defenses implicitly assume that all samples are equidistant from the decision boundary. However, it may not hold in practice, leading to suboptimal certification performance. To address this issue, we propose a sample-specific certified backdoor defense method, termed Cert-SSB. Cert-SSB first employs stochastic gradient ascent to optimize the noise magnitude for each sample, ensuring a sample-specific noise level that is then applied to multiple poisoned training sets to retrain several smoothed models. After that, Cert-SSB aggregates the predictions of multiple smoothed models to generate the final robust prediction. In particular, in this case, existing certification methods become inapplicable since the optimized noise varies across different samples. To conquer this challenge, we introduce a storage-update-based certification method, which dynamically adjusts each sample's certification region to improve certification performance. We conduct extensive experiments on multiple benchmark datasets, demonstrating the effectiveness of our proposed method. Our code is available at https://github.com/NcepuQiaoTing/Cert-SSB.
comment: To appear in TIFS 2026. 21 pages
♻ ☆ Attention-Enhanced U-Net for Accurate Segmentation of COVID-19 Infected Lung Regions in CT Scans
In this study, we propose a robust methodology for automatic segmentation of infected lung regions in COVID-19 CT scans using convolutional neural networks. The approach is based on a modified U-Net architecture enhanced with attention mechanisms, data augmentation, and postprocessing techniques. It achieved a Dice coefficient of 0.8658 and mean IoU of 0.8316, outperforming other methods. The dataset was sourced from public repositories and augmented for diversity. Results demonstrate superior segmentation performance. Future work includes expanding the dataset, exploring 3D segmentation, and preparing the model for clinical deployment.
comment: 14 pages, 9 figures, created using Google Colab and PyTorch. Compares segmentation models for COVID-19 CT data
♻ ☆ LRT-Diffusion: Calibrated Risk-Aware Guidance for Diffusion Policies
Diffusion policies are competitive for offline reinforcement learning (RL) but are typically guided at sampling time by heuristics that lack a statistical notion of risk. We introduce LRT-Diffusion, a risk-aware sampling rule that treats each denoising step as a sequential hypothesis test between the unconditional prior and the state-conditional policy head. Concretely, we accumulate a log-likelihood ratio and gate the conditional mean with a logistic controller whose threshold tau is calibrated once under H0 to meet a user-specified Type-I level alpha. This turns guidance from a fixed push into an evidence-driven adjustment with a user-interpretable risk budget. Importantly, we deliberately leave training vanilla (two heads with standard epsilon-prediction) under the structure of DDPM. LRT guidance composes naturally with Q-gradients: critic-gradient updates can be taken at the unconditional mean, at the LRT-gated mean, or a blend, exposing a continuum from exploitation to conservatism. We standardize states and actions consistently at train and test time and report a state-conditional out-of-distribution (OOD) metric alongside return. On D4RL MuJoCo tasks, LRT-Diffusion improves the return-OOD trade-off over strong Q-guided baselines in our implementation while honoring the desired alpha. Theoretically, we establish level-alpha calibration, concise stability bounds, and a return comparison showing when LRT surpasses Q-guidance-especially when off-support errors dominate. Overall, LRT-Diffusion is a drop-in, inference-time method that adds principled, calibrated risk control to diffusion policies for offline RL.
♻ ☆ Intracoronary Optical Coherence Tomography Image Processing and Vessel Classification Using Machine Learning
Intracoronary Optical Coherence Tomography (OCT) enables high-resolution visualization of coronary vessel anatomy but presents challenges due to noise, imaging artifacts, and complex tissue structures. This paper proposes a fully automated pipeline for vessel segmentation and classification in OCT images using machine learning techniques. The proposed method integrates image preprocessing, guidewire artifact removal, polar-to-Cartesian transformation, unsupervised K-means clustering, and local feature extraction. These features are used to train Logistic Regression and Support Vector Machine classifiers for pixel-wise vessel classification. Experimental results demonstrate excellent performance, achieving precision, recall, and F1-score values up to 1.00 and overall classification accuracy of 99.68%. The proposed approach provides accurate vessel boundary detection while maintaining low computational complexity and requiring minimal manual annotation. This method offers a reliable and efficient solution for automated OCT image analysis and has potential applications in clinical decision support and real-time medical image processing.
comment: 12 pages, 8 figures. Research paper from Electrical and Computer Engineering Department, University of Patras
♻ ☆ Improving segmentation of retinal arteries and veins using cardiac signal in doppler holograms
Doppler holography is an emerging retinal imaging technique that captures the dynamic behavior of blood flow with high temporal resolution, enabling quantitative assessment of retinal hemodynamics. This requires accurate segmentation of retinal arteries and veins, but traditional segmentation methods focus solely on spatial information and overlook the temporal richness of holographic data. In this work, we propose a simple yet effective approach for artery-vein segmentation in temporal Doppler holograms using standard segmentation architectures. By incorporating features derived from a dedicated pulse analysis pipeline, our method allows conventional U-Nets to exploit temporal dynamics and achieve performance comparable to more complex attention- or iteration-based models. These findings demonstrate that time-resolved preprocessing can unlock the full potential of deep learning for Doppler holography, opening new perspectives for quantitative exploration of retinal hemodynamics. The dataset is publicly available at https://huggingface.co/datasets/DigitalHolography/
comment: 5 pages, 3 figures, 1 table. Submitted to ISBI2026
♻ ☆ Autonomous Data Processing using Meta-Agents
Traditional data processing pipelines are typically static and handcrafted for specific tasks, limiting their adaptability to evolving requirements. While general-purpose agents and coding assistants can generate code for well-understood data pipelines, they lack the ability to autonomously monitor, manage, and optimize an end-to-end pipeline once deployed. We present \textbf{Autonomous Data Processing using Meta-agents} (ADP-MA), a framework that dynamically constructs, executes, and iteratively refines data processing pipelines through hierarchical agent orchestration. At its core, \textit{meta-agents} analyze input data and task specifications to design a multi-phase plan, instantiate specialized \textit{ground-level agents}, and continuously evaluate pipeline performance. The architecture comprises three key components: a planning module for strategy generation, an orchestration layer for agent coordination and tool integration, and a monitoring loop for iterative evaluation and backtracking. Unlike conventional approaches, ADP-MA emphasizes context-aware optimization, adaptive workload partitioning, and progressive sampling for scalability. Additionally, the framework leverages a diverse set of external tools and can reuse previously designed agents, reducing redundancy and accelerating pipeline construction. We demonstrate ADP-MA through an interactive demo that showcases pipeline construction, execution monitoring, and adaptive refinement across representative data processing tasks.
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have laid the foundation for multimodal LLMs (MLLMs), which unify text, speech, and vision within a single framework. As these models are rapidly evolving toward general-purpose instruction following across diverse and complex tasks, a key frontier is evaluating their crosslingual and multimodal capabilities over both short- and long-form inputs. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on a single modality at a time, rely on short-form inputs, or lack human annotations--hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first crosslingual human-annotated benchmark based on scientific talks on NLP and beyond. MCIF evaluates instruction following in crosslingual, multimodal settings over different input lengths and spans four macro-tasks: recognition, translation, question answering, and summarization. It covers three core modalities (speech, vision, and text) and four diverse languages (English, German, Italian, and Chinese), fully aligned across all dimensions. This parallel design enables a systematic evaluation of MLLMs' abilities to interpret instructions across languages and effectively integrate multimodal contextual information. Our benchmarking and analysis of 23 models highlight universal challenges across modalities and tasks, indicating substantial room for improvement in future MLLMs development. MCIF is released under CC-BY 4.0 license to promote open research.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation, outputs, and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ Persona-driven Simulation of Voting Behavior in the European Parliament with Large Language Models EACL 2026
Large Language Models (LLMs) display remarkable capabilities to understand or even produce political discourse but have been found to consistently exhibit a progressive left-leaning bias. At the same time, so-called persona or identity prompts have been shown to produce LLM behavior that aligns with socioeconomic groups with which the base model is not aligned. In this work, we analyze whether zero-shot persona prompting with limited information can accurately predict individual voting decisions and, by aggregation, accurately predict the positions of European groups on a diverse set of policies. We evaluate whether predictions are stable in response to counterfactual arguments, different persona prompts, and generation methods. Finally, we find that we can simulate the voting behavior of Members of the European Parliament reasonably well, achieving a weighted F1 score of approximately 0.793. Our persona dataset of politicians in the 2024 European Parliament and our code are available at the following url: https://github.com/dess-mannheim/european_parliament_simulation.
comment: Accepted at EACL 2026 Findings
♻ ☆ VisPhyWorld: Probing Physical Reasoning via Code-Driven Video Reconstruction
Evaluating whether Multimodal Large Language Models (MLLMs) genuinely reason about physical dynamics remains challenging. Most existing benchmarks rely on recognition-style protocols such as Visual Question Answering (VQA) and Violation of Expectation (VoE), which can often be answered without committing to an explicit, testable physical hypothesis. We propose VisPhyWorld, an execution-based framework that evaluates physical reasoning by requiring models to generate executable simulator code from visual observations. By producing runnable code, the inferred world representation is directly inspectable, editable, and falsifiable. This separates physical reasoning from rendering. Building on this framework, we introduce VisPhyBench, comprising 209 evaluation scenes derived from 108 physical templates and a systematic protocol that evaluates how well models reconstruct appearance and reproduce physically plausible motion. Our pipeline produces valid reconstructed videos in 97.7% on the benchmark. Experiments show that while state-of-the-art MLLMs achieve strong semantic scene understanding, they struggle to accurately infer physical parameters and to simulate consistent physical dynamics.
♻ ☆ Symphonym: Universal Phonetic Embeddings for Cross-Script Name Matching
Linking names across historical sources, languages, and writing systems remains a fundamental challenge in digital humanities and geographic information retrieval. Existing approaches require language-specific phonetic algorithms or fail to capture phonetic relationships across different scripts. This paper presents Symphonym, a neural embedding system that maps names from any script into a unified 128-dimensional phonetic space, enabling direct similarity comparison without runtime phonetic conversion. Symphonym uses a Teacher-Student architecture where a Teacher network trained on articulatory phonetic features produces target embeddings, while a Student network learns to approximate these embeddings directly from characters. The Teacher combines Epitran (extended with 100 new language-script mappings), Phonikud for Hebrew, and CharsiuG2P for Chinese, Japanese, and Korean. Training used 32.7 million triplet samples of toponyms spanning 20 writing systems from GeoNames, Wikidata, and Getty Thesaurus of Geographic Names. On the MEHDIE Hebrew-Arabic historical toponym benchmark, Symphonym achieves Recall@10 of 97.6% and MRR of 90.3%, outperforming Levenshtein and Jaro-Winkler baselines (Recall@1: 86.7% vs 81.5% and 78.5%). Evaluation on 12,947 real cross-script training pairs shows 82.6% achieve greater than 0.75 cosine similarity, with best performance on Arabic-Cyrillic (94--100%) and Cyrillic-Latin (94.3%) combinations. The fixed-length embeddings enable efficient retrieval in digital humanities workflows, with a case study on medieval personal names demonstrating effective transfer from modern place names to historical orthographic variation.
comment: 29 pages, 3 tables
♻ ☆ Bridging Symbolic Control and Neural Reasoning in LLM Agents: Structured Cognitive Loop with a Governance Layer
Large language model agents suffer from fundamental architectural problems: entangled reasoning and execution, memory volatility, and uncontrolled action sequences. We introduce Structured Cognitive Loop (SCL), a modular architecture that explicitly separates agent cognition into five phases: Retrieval, Cognition, Control, Action, and Memory (R-CCAM). Soft Symbolic Control constitutes a dedicated governance layer within SCL, applying symbolic constraints to probabilistic inference while preserving the flexibility of neural reasoning and restoring the explainability and controllability of classical symbolic systems. Through empirical validation on multi-step conditional reasoning tasks, we demonstrate that SCL achieves zero policy violations, eliminates redundant tool calls, and maintains complete decision traceability. These results address critical gaps in existing frameworks such as ReAct, AutoGPT, and memory-augmented approaches. Our contributions are threefold: (1) we situate SCL within the taxonomy of hybrid intelligence, differentiating it from prompt-centric and memory-only approaches; (2) we formally define Soft Symbolic Control and contrast it with neuro-symbolic AI; and (3) we derive three design principles for trustworthy agents: modular decomposition, adaptive symbolic governance, and transparent state management. We provide a complete open-source implementation demonstrating the R-CCAM loop architecture, alongside a live GPT-4o-powered travel planning agent. By connecting expert system principles with modern LLM capabilities, this work offers a practical and theoretically grounded path toward reliable, explainable, and governable AI agents.
comment: The SCL diagram has been revised for greater clarity
♻ ☆ Multimodal Prompt Optimization: Why Not Leverage Multiple Modalities for MLLMs ICLR 2026
Large Language Models (LLMs) have shown remarkable success, and their multimodal expansions (MLLMs) further unlock capabilities spanning images, videos, and other modalities beyond text. However, despite this shift, prompt optimization approaches, designed to reduce the burden of manual prompt crafting while maximizing performance, remain confined to text, ultimately limiting the full potential of MLLMs. Motivated by this gap, we introduce the new problem of multimodal prompt optimization, which expands the prior definition of prompt optimization to the multimodal space defined by the pairs of textual and non-textual prompts. To tackle this problem, we then propose the Multimodal Prompt Optimizer (MPO), a unified framework that not only performs the joint optimization of multimodal prompts through alignment-preserving updates but also guides the selection process of candidate prompts by leveraging earlier evaluations as priors in a Bayesian-based selection strategy. Through extensive experiments across diverse modalities that go beyond text, such as images, videos, and even molecules, we demonstrate that MPO outperforms leading text-only optimization methods, establishing multimodal prompt optimization as a crucial step to realizing the potential of MLLMs.
comment: ICLR 2026
♻ ☆ Beyond Linear Surrogates: High-Fidelity Local Explanations for Black-Box Models
With the increasing complexity of black-box machine learning models and their adoption in high-stakes areas, it is critical to provide explanations for their predictions. Existing local explanation methods lack in generating high-fidelity explanations. This paper proposes a novel local model agnostic explanation method to generate high-fidelity explanations using multivariate adaptive regression splines (MARS) and N-ball sampling strategies. MARS is used to model non-linear local boundaries that effectively captures the underlying behavior of the reference model, thereby enhancing the local fidelity. The N-ball sampling technique samples perturbed samples directly from a desired distribution instead of reweighting, leading to further improvement in the faithfulness. The performance of the proposed method was computed in terms of root mean squared error (RMSE) and evaluated on five different benchmark datasets with different kernel width. Experimental results show that the proposed method achieves higher local surrogate fidelity compared to baseline local explanation methods, with an average reduction of 32% in root mean square error, indicating more accurate local approximations of the black-box model. Additionally, statistical analysis shows that across all benchmark datasets, the proposed approach results were statistically significantly better. This paper advances the field of explainable AI by providing insights that can benefit the broader research and practitioner community.
♻ ☆ Beyond Needle(s) in the Embodied Haystack: Environment, Architecture, and Training Considerations for Long Context Reasoning
We introduce $\infty$-THOR, a new framework for long-horizon embodied tasks that advances long-context understanding in embodied AI. $\infty$-THOR provides: (1) a generation framework for synthesizing scalable, reproducible, and unlimited long-horizon trajectories; (2) a novel embodied QA task, Needle(s) in the Embodied Haystack, where multiple scattered clues across extended trajectories test agents' long-context reasoning ability; and (3) a long-horizon dataset and benchmark suite featuring complex tasks that span hundreds of environment steps, each paired with ground-truth action sequences. To enable this capability, we explore architectural adaptations, including interleaved Goal-State-Action modeling, context extension techniques, and Context Parallelism, to equip LLM-based agents for extreme long-context reasoning and interaction. Experimental results and analyses highlight the challenges posed by our benchmark and provide insights into training strategies and model behaviors under long-horizon conditions. Our work provides a foundation for the next generation of embodied AI systems capable of robust, long-term reasoning and planning.
♻ ☆ CaveAgent: Transforming LLMs into Stateful Runtime Operators
LLM-based agents are increasingly capable of complex task execution, yet current agentic systems remain constrained by text-centric paradigms that struggle with long-horizon tasks due to fragile multi-turn dependencies and context drift. We present CaveAgent, a framework that shifts tool use from ``LLM-as-Text-Generator'' to ``LLM-as-Runtime-Operator.'' CaveAgent introduces a dual-stream architecture that inverts the conventional paradigm: rather than treating the LLM's text context as the primary workspace with tools as auxiliary, CaveAgent elevates the persistent Python runtime as the central locus of state, with a lightweight semantic stream serving as its orchestrator. Beyond leveraging code generation to resolve interdependent sub-tasks (e.g., loops, conditionals) in a single step, CaveAgent introduces \textit{Stateful Runtime Management}: it injects, manipulates, and retrieves complex Python objects (e.g., DataFrames, database connections) that persist across turns, unlike existing code-based approaches that remain text-bound. CaveAgent further provides a runtime-integrated skill management system that extends the Agent Skills open standard, enabling ecosystem interoperability through executable skill injections. This persistence mechanism serves as a high-fidelity external memory that reduces context drift in multi-turn interactions and preserves processed data for downstream applications without information loss. Evaluations show consistent improvement across challenging benchmarks, enabling CaveAgent to handle data scales that cause context overflow in both JSON-based and code-based agents. The accessible runtime state further provides programmatically verifiable feedback, enabling automated evaluation and reward signal generation without human annotation and establishing a structural foundation for future research in Reinforcement Learning with Verifiable Rewards (RLVR).
comment: ver.2
CareerPooler: AI-Powered Metaphorical Pool Simulation Improves Experience and Outcomes in Career Exploration
Career exploration is uncertain, requiring decisions with limited information and unpredictable outcomes. While generative AI offers new opportunities for career guidance, most systems rely on linear chat interfaces that produce overly comprehensive and idealized suggestions, overlooking the non-linear and effortful nature of real-world trajectories. We present CareerPooler, a generative AI-powered system that employs a pool-table metaphor to simulate career development as a spatial and narrative interaction. Users strike balls representing milestones, skills, and random events, where hints, collisions, and rebounds embody decision-making under uncertainty. In a within-subjects study with 24 participants, CareerPooler significantly improved engagement, information gain, satisfaction, and career clarity compared to a chatbot baseline. Qualitative findings show that spatial-narrative interaction fosters experience-based learning, resilience through setbacks, and reduced psychological burden. Our findings contribute to the design of AI-assisted career exploration systems and more broadly suggest that visually grounded analogical interactions can make generative systems engaging and satisfying.
♻ ☆ Automated Web Application Testing: End-to-End Test Case Generation with Large Language Models and Screen Transition Graphs
Web applications are critical to modern software ecosystems, yet ensuring their reliability remains challenging due to the complexity and dynamic nature of web interfaces. Recent advances in large language models (LLMs) have shown promise in automating complex tasks, but limitations persist in handling dynamic navigation flows and complex form interactions. This paper presents an automated system for generating test cases for two key aspects of web application testing: site navigation and form filling. For site navigation, the system employs screen transition graphs and LLMs to model navigation flows and generate test scenarios. For form filling, it uses state graphs to handle conditional forms and automates Selenium script generation. Key contributions include: (1) a novel integration of graph structures and LLMs for site navigation testing, (2) a state graph-based approach for automating form-filling test cases, and (3) a comprehensive dataset for evaluating form-interaction testing. Experimental results demonstrate the system's effectiveness in improving test coverage and robustness, advancing the state of web application testing.
comment: Published in the Proceedings of JSAI 2025
♻ ☆ Strict Subgoal Execution: Reliable Long-Horizon Planning in Hierarchical Reinforcement Learning ICLR 2026
Long-horizon goal-conditioned tasks pose fundamental challenges for reinforcement learning (RL), particularly when goals are distant and rewards are sparse. While hierarchical and graph-based methods offer partial solutions, their reliance on conventional hindsight relabeling often fails to correct subgoal infeasibility, leading to inefficient high-level planning. To address this, we propose Strict Subgoal Execution (SSE), a graph-based hierarchical RL framework that integrates Frontier Experience Replay (FER) to separate unreachable from admissible subgoals and streamline high-level decision making. FER delineates the reachability frontier using failure and partial-success transitions, which identifies unreliable subgoals, increases subgoal reliability, and reduces unnecessary high-level decisions. Additionally, SSE employs a decoupled exploration policy to cover underexplored regions of the goal space and a path refinement that adjusts edge costs using observed low-level failures. Experimental results across diverse long-horizon benchmarks show that SSE consistently outperforms existing goal-conditioned and hierarchical RL methods in both efficiency and success rate. Our code is available at https://github.com/Jaebak1996/SSE
comment: 10 pages for main, 26 pages for total, Accepted to ICLR 2026
♻ ☆ VERA-MH Concept Paper
We introduce VERA-MH (Validation of Ethical and Responsible AI in Mental Health), an automated evaluation of the safety of AI chatbots used in mental health contexts, with an initial focus on suicide risk. Practicing clinicians and academic experts developed a rubric informed by best practices for suicide risk management for the evaluation. To fully automate the process, we used two ancillary AI agents. A user-agent model simulates users engaging in a mental health-based conversation with the chatbot under evaluation. The user-agent role-plays specific personas with pre-defined risk levels and other features. Simulated conversations are then passed to a judge-agent who scores them based on the rubric. The final evaluation of the chatbot being tested is obtained by aggregating the scoring of each conversation. VERA-MH is actively under development and undergoing rigorous validation by mental health clinicians to ensure user-agents realistically act as patients and that the judge-agent accurately scores the AI chatbot. To date we have conducted preliminary evaluation of GPT-5, Claude Opus and Claude Sonnet using initial versions of the VERA-MH rubric and used the findings for further design development. Next steps will include more robust clinical validation and iteration, as well as refining actionable scoring. We are seeking feedback from the community on both the technical and clinical aspects of our evaluation.
♻ ☆ AI/ML based Joint Source and Channel Coding for HARQ-ACK Payload
Channel coding from 2G to 5G has assumed the inputs bits at the physical layer to be uniformly distributed. However, hybrid automatic repeat request acknowledgement (HARQ-ACK) bits transmitted in the uplink are inherently non-uniformly distributed. For such sources, significant performance gains could be obtained by employing joint source channel coding, aided by deep learning-based techniques. In this paper, we learn a transformer-based encoder using a novel "free-lunch" training algorithm and propose per-codeword power shaping to exploit the source prior at the encoder whilst being robust to small changes in the HARQ-ACK distribution. Furthermore, any HARQ-ACK decoder has to achieve a low negative acknowledgement (NACK) error rate to avoid radio link failures resulting from multiple NACK errors. We develop an extension of the Neyman-Pearson test to a coded bit system with multiple information bits to achieve Unequal Error Protection of NACK over ACK bits at the decoder. Finally, we apply the proposed encoder and decoder designs to a 5G New Radio (NR) compliant uplink setup under a fading channel, describing the optimal receiver design and a low complexity coherent approximation to it. Our results demonstrate 3-6 dB reduction in the average transmit power required to achieve the target error rates compared to the NR baseline, while also achieving a 2-3 dB reduction in the maximum transmit power, thus providing for significant coverage gains and power savings.
comment: 39 pages, 15 figures. Under consideration for publication in Journal of Sel. Areas in Information Theory (received Major Revision). This paper was presented in part at the International Symposium on Topics in Coding, August 2025 in the Session for Coding and AI
♻ ☆ Point-DeepONet: Predicting Nonlinear Fields on Non-Parametric Geometries under Variable Load Conditions
Nonlinear structural analyses in engineering often require extensive finite element simulations, limiting their applicability in design optimization and real-time control. Conventional deep learning surrogates often struggle with complex, non-parametric three-dimensional (3D) geometries and directionally varying loads. This work presents Point-DeepONet, an operator-learning-based surrogate that integrates PointNet into the DeepONet framework to learn a mapping from non-parametric geometries and variable load conditions to physical response fields. By leveraging PointNet to learn a geometric representation from raw point clouds, our model circumvents the need for manual parameterization. This geometric embedding is then synergistically fused with load conditions within the DeepONet architecture to accurately predict three-dimensional displacement and von Mises stress fields. Trained on a large-scale dataset, Point-DeepONet demonstrates high fidelity, achieving a coefficient of determination (R^2) reaching 0.987 for displacement and 0.923 for von Mises stress. Furthermore, to rigorously validate its generalization capabilities, we conducted additional experiments on unseen, randomly oriented load directions, where the model maintained exceptional accuracy. Compared to nonlinear finite element analyses that require about 19.32 minutes per case, Point-DeepONet provides predictions in mere seconds--approximately 400 times faster--while maintaining excellent scalability. These findings, validated through extensive experiments and ablation studies, highlight the potential of Point-DeepONet to enable rapid, high-fidelity structural analyses for complex engineering workflows.
comment: Accepted for publication in Neural Networks. 17 pages, 17 figures
♻ ☆ Drones that Think on their Feet: Sudden Landing Decisions with Embodied AI
Autonomous drones must often respond to sudden events, such as alarms, faults, or unexpected changes in their environment, that require immediate and adaptive decision-making. Traditional approaches rely on safety engineers hand-coding large sets of recovery rules, but this strategy cannot anticipate the vast range of real-world contingencies and quickly becomes incomplete. Recent advances in embodied AI, powered by large visual language models, provide commonsense reasoning to assess context and generate appropriate actions in real time. We demonstrate this capability in a simulated urban benchmark in the Unreal Engine, where drones dynamically interpret their surroundings and decide on sudden maneuvers for safe landings. Our results show that embodied AI makes possible a new class of adaptive recovery and decision-making pipelines that were previously infeasible to design by hand, advancing resilience and safety in autonomous aerial systems.
♻ ☆ Puzzle it Out: Local-to-Global World Model for Offline Multi-Agent Reinforcement Learning
Offline multi-agent reinforcement learning (MARL) aims to solve cooperative decision-making problems in multi-agent systems using pre-collected datasets. Existing offline MARL methods primarily constrain training within the dataset distribution, resulting in overly conservative policies that struggle to generalize beyond the support of the data. While model-based approaches offer a promising solution by expanding the original dataset with synthetic data generated from a learned world model, the high dimensionality, non-stationarity, and complexity of multi-agent systems make it challenging to accurately estimate the transitions and reward functions in offline MARL. Given the difficulty of directly modeling joint dynamics, we propose a local-to-global (LOGO) world model, a novel framework that leverages local predictions-which are easier to estimate-to infer global state dynamics, thus improving prediction accuracy while implicitly capturing agent-wise dependencies. Using the trained world model, we generate synthetic data to augment the original dataset, expanding the effective state-action space. To ensure reliable policy learning, we further introduce an uncertainty-aware sampling mechanism that adaptively weights synthetic data by prediction uncertainty, reducing approximation error propagation to policies. In contrast to conventional ensemble-based methods, our approach requires only an additional encoder for uncertainty estimation, significantly reducing computational overhead while maintaining accuracy. Extensive experiments across 8 scenarios against 8 baselines demonstrate that our method surpasses state-of-the-art baselines on standard offline MARL benchmarks, establishing a new model-based baseline for generalizable offline multi-agent learning.
♻ ☆ An Adaptive Differentially Private Federated Learning Framework with Bi-level Optimization
Federated learning enables collaborative model training across distributed clients while preserving data privacy. However, in practical deployments, device heterogeneity, non-independent, and identically distributed (Non-IID) data often lead to highly unstable and biased gradient updates. When differential privacy is enforced, conventional fixed gradient clipping and Gaussian noise injection may further amplify gradient perturbations, resulting in training oscillation and performance degradation and degraded model performance. To address these challenges, we propose an adaptive differentially private federated learning framework that explicitly targets model efficiency under heterogeneous and privacy-constrained settings. On the client side, a lightweight local compressed module is introduced to regularize intermediate representations and constrain gradient variability, thereby mitigating noise amplification during local optimization. On the server side, an adaptive gradient clipping strategy dynamically adjusts clipping thresholds based on historical update statistics to avoid over-clipping and noise domination. Furthermore, a constraint-aware aggregation mechanism is designed to suppress unreliable or noise-dominated client updates and stabilize global optimization. Extensive experiments on CIFAR-10 and SVHN demonstrate improved convergence stability and classification accuracy.
comment: there exists some errors in the method and experiments. We would like to check and revise the contents and resubmit later
♻ ☆ GraFSTNet: Graph-based Frequency SpatioTemporal Network for Cellular Traffic Prediction
With rapid expansion of cellular networks and the proliferation of mobile devices, cellular traffic data exhibits complex temporal dynamics and spatial correlations, posing challenges to accurate traffic prediction. Previous methods often focus predominantly on temporal modeling or depend on predefined spatial topologies, which limits their ability to jointly model spatio-temporal dependencies and effectively capture periodic patterns in cellular traffic. To address these issues, we propose a cellular traffic prediction framework that integrates spatio-temporal modeling with time-frequency analysis. First, we construct a spatial modeling branch to capture inter-cell dependencies through an attention mechanism, minimizing the reliance on predefined topological structures. Second, we build a time-frequency modeling branch to enhance the representation of periodic patterns. Furthermore, we introduce an adaptive-scale LogCosh loss function, which adjusts the error penalty based on traffic magnitude, preventing large errors from dominating the training process and helping the model maintain relatively stable prediction accuracy across different traffic intensities. Experiments on three open-sourced datasets demonstrate that the proposed method achieves prediction performance superior to state-of-the-art approaches.
comment: there exists some small errors in the manuscript, and we would like to check and resubmit later
♻ ☆ Are LLMs Ready to Replace Bangla Annotators?
Large Language Models (LLMs) are increasingly used as automated annotators to scale dataset creation, yet their reliability as unbiased annotators--especially for low-resource and identity-sensitive settings--remains poorly understood. In this work, we study the behavior of LLMs as zero-shot annotators for Bangla hate speech, a task where even human agreement is challenging, and annotator bias can have serious downstream consequences. We conduct a systematic benchmark of 17 LLMs using a unified evaluation framework. Our analysis uncovers annotator bias and substantial instability in model judgments. Surprisingly, increased model scale does not guarantee improved annotation quality--smaller, more task-aligned models frequently exhibit more consistent behavior than their larger counterparts. These results highlight important limitations of current LLMs for sensitive annotation tasks in low-resource languages and underscore the need for careful evaluation before deployment.
♻ ☆ EnterpriseBench Corecraft: Training Generalizable Agents on High-Fidelity RL Environments
We show that training AI agents on high-fidelity reinforcement learning environments produces capabilities that generalize beyond the training distribution. We introduce CoreCraft, the first environment in EnterpriseBench, Surge AI's suite of agentic RL environments. CoreCraft is a fully operational enterprise simulation of a customer support organization, comprising over 2,500 entities across 14 entity types with 23 unique tools, designed to measure whether AI agents can perform the multi-step, domain-specific work that real jobs demand. Frontier models such as GPT-5.2 and Claude Opus 4.6 solve fewer than 30% of tasks when all expert-authored rubric criteria must be satisfied. Using this environment, we train GLM 4.6 with Group Relative Policy Optimization (GRPO) and adaptive clipping. After a single epoch of training, the model improves from 25.37% to 36.76% task pass rate on held-out evaluation tasks. More importantly, these gains transfer to out-of-distribution benchmarks: +4.5% on BFCL Parallel, +7.4% on Tau2-Bench Retail, and +6.8% on Tool Decathlon (Pass@1). We believe three environment properties are consistent with the observed transfer: task-centric world building that optimizes for diverse, challenging tasks; expert-authored rubrics enabling reliable reward computation; and enterprise workflows that reflect realistic professional patterns. Our results suggest that environment quality, diversity, and realism are key factors enabling generalizable agent capabilities.
♻ ☆ Beyond Reactivity: Measuring Proactive Problem Solving in LLM Agents
LLM-based agents are increasingly moving towards proactivity: rather than awaiting instruction, they exercise agency to anticipate user needs and solve them autonomously. However, evaluating proactivity is challenging; current benchmarks are constrained to localized context, limiting their ability to test reasoning across sources and longer time horizons. To address this gap, we present PROBE (Proactive Resolution Of BottlEnecks). PROBE decomposes proactivity as a pipeline of three core capabilities: (1) searching for unspecified issues, (2) identifying specific bottlenecks, and (3) executing appropriate resolutions. We apply PROBE to evaluate leading LLMs and popular agentic frameworks, showing that even state-of-the-art models struggle to solve this benchmark. Computing our consistent measurements across frontier LLMs and agents, we find that the best end-to-end performance of 40% is achieved by both GPT-5 and Claude Opus-4.1. Additionally, we demonstrate the relative capabilities of each model and analyze mutual failure modes. Our results highlight the current limitations of autonomous action in agentic systems, and expose promising future research directions.
♻ ☆ Calibrate-Then-Act: Cost-Aware Exploration in LLM Agents
LLMs are increasingly being used for complex problems which are not necessarily resolved in a single response, but require interacting with an environment to acquire information. In these scenarios, LLMs must reason about inherent cost-uncertainty tradeoffs in when to stop exploring and commit to an answer. For instance, on a programming task, an LLM should test a generated code snippet if it is uncertain about the correctness of that code; the cost of writing a test is nonzero, but typically lower than the cost of making a mistake. In this work, we show that we can induce LLMs to explicitly reason about balancing these cost-uncertainty tradeoffs, then perform more optimal environment exploration. We formalize multiple tasks, including information retrieval and coding, as sequential decision-making problems under uncertainty. Each problem has latent environment state that can be reasoned about via a prior which is passed to the LLM agent. We introduce a framework called Calibrate-Then-Act (CTA), where we feed the LLM this additional context to enable it to act more optimally. This improvement is preserved even under RL training of both the baseline and CTA. Our results on information-seeking QA and on a simplified coding task show that making cost-benefit tradeoffs explicit with CTA can help agents discover more optimal decision-making strategies.
♻ ☆ Empathetic Cascading Networks: A Multi-Stage Prompting Technique for Reducing Social Biases in Large Language Models
This report presents the Empathetic Cascading Networks (ECN) framework, a multi-stage prompting method designed to enhance the empathetic and inclusive capabilities of large language models. ECN employs four stages: Perspective Adoption, Emotional Resonance, Reflective Understanding, and Integrative Synthesis, to guide models toward generating emotionally resonant and contextually aware responses. Experimental results demonstrate that ECN achieves the highest Empathy Quotient (EQ) scores across GPT-3.5-turbo and GPT-4, while maintaining competitive Regard and Perplexity metrics. These findings emphasize ECN's potential for applications requiring empathy and inclusivity in conversational AI.
comment: Further revision on experiments and pipeline design
♻ ☆ Self-Improving Skill Learning for Robust Skill-based Meta-Reinforcement Learning ICLR 2026
Meta-reinforcement learning (Meta-RL) facilitates rapid adaptation to unseen tasks but faces challenges in long-horizon environments. Skill-based approaches tackle this by decomposing state-action sequences into reusable skills and employing hierarchical decision-making. However, these methods are highly susceptible to noisy offline demonstrations, leading to unstable skill learning and degraded performance. To address this, we propose Self-Improving Skill Learning (SISL), which performs self-guided skill refinement using decoupled high-level and skill improvement policies, while applying skill prioritization via maximum return relabeling to focus updates on task-relevant trajectories, resulting in robust and stable adaptation even under noisy and suboptimal data. By mitigating the effect of noise, SISL achieves reliable skill learning and consistently outperforms other skill-based meta-RL methods on diverse long-horizon tasks. Our code is available at https://github.com/epsilog/SISL.
comment: 10 pages main, 27 pages appendix with reference. Accepted to ICLR 2026
♻ ☆ RoboGene: Boosting VLA Pre-training via Diversity-Driven Agentic Framework for Real-World Task Generation
The pursuit of general-purpose robotic manipulation is hindered by the scarcity of diverse, real-world interaction data. Unlike data collection from web in vision or language, robotic data collection is an active process incurring prohibitive physical costs. Consequently, automated task curation to maximize data value remains a critical yet under-explored challenge. Existing manual methods are unscalable and biased toward common tasks, while off-the-shelf foundation models often hallucinate physically infeasible instructions. To address this, we introduce RoboGene, an agentic framework designed to automate the generation of diverse, physically plausible manipulation tasks across single-arm, dual-arm, and mobile robots. RoboGene integrates three core components: diversity-driven sampling for broad task coverage, self-reflection mechanisms to enforce physical constraints, and human-in-the-loop refinement for continuous improvement. We conduct extensive quantitative analysis and large-scale real-world experiments, collecting datasets of 18k trajectories and introducing novel metrics to assess task quality, feasibility, and diversity. Results demonstrate that RoboGene significantly outperforms state-of-the-art foundation models (e.g., GPT-4o, Gemini 2.5 Pro). Furthermore, real-world experiments show that VLA models pre-trained with RoboGene achieve higher success rates and superior generalization, underscoring the importance of high-quality task generation. Our project is available at https://robogene-boost-vla.github.io.
♻ ☆ Biases in the Blind Spot: Detecting What LLMs Fail to Mention
Large Language Models (LLMs) often provide chain-of-thought (CoT) reasoning traces that appear plausible, but may hide internal biases. We call these *unverbalized biases*. Monitoring models via their stated reasoning is therefore unreliable, and existing bias evaluations typically require predefined categories and hand-crafted datasets. In this work, we introduce a fully automated, black-box pipeline for detecting task-specific unverbalized biases. Given a task dataset, the pipeline uses LLM autoraters to generate candidate bias concepts. It then tests each concept on progressively larger input samples by generating positive and negative variations, and applies statistical techniques for multiple testing and early stopping. A concept is flagged as an unverbalized bias if it yields statistically significant performance differences while not being cited as justification in the model's CoTs. We evaluate our pipeline across seven LLMs on three decision tasks (hiring, loan approval, and university admissions). Our technique automatically discovers previously unknown biases in these models (e.g., Spanish fluency, English proficiency, writing formality). In the same run, the pipeline also validates biases that were manually identified by prior work (gender, race, religion, ethnicity). More broadly, our proposed approach provides a practical, scalable path to automatic task-specific bias discovery.
comment: 11 pages
♻ ☆ Policy Compiler for Secure Agentic Systems
LLM-based agents are increasingly being deployed in contexts requiring complex authorization policies: customer service protocols, approval workflows, data access restrictions, and regulatory compliance. Embedding these policies in prompts provides no enforcement guarantees. We present PCAS, a Policy Compiler for Agentic Systems that provides deterministic policy enforcement. Enforcing such policies requires tracking information flow across agents, which linear message histories cannot capture. Instead, PCAS models the agentic system state as a dependency graph capturing causal relationships among events such as tool calls, tool results, and messages. Policies are expressed in a Datalog-derived language, as declarative rules that account for transitive information flow and cross-agent provenance. A reference monitor intercepts all actions and blocks violations before execution, providing deterministic enforcement independent of model reasoning. PCAS takes an existing agent implementation and a policy specification, and compiles them into an instrumented system that is policy-compliant by construction, with no security-specific restructuring required. We evaluate PCAS on three case studies: information flow policies for prompt injection defense, approval workflows in a multi-agent pharmacovigilance system, and organizational policies for customer service. On customer service tasks, PCAS improves policy compliance from 48% to 93% across frontier models, with zero policy violations in instrumented runs.
♻ ☆ On the Design of KL-Regularized Policy Gradient Algorithms for LLM Reasoning ICLR 2026
Policy gradient algorithms have been successfully applied to enhance the reasoning capabilities of large language models (LLMs). KL regularization is ubiquitous, yet the design surface, choice of KL direction (forward vs. reverse), normalization (normalized vs. unnormalized), and estimator ($k_1/k_2/k_3$), is scattered across the literature and often intertwined with off-policy estimation. We ask a focused question: under the off-policy setting, what weighting is required for each KL variant so that the surrogate we optimize yields the exact gradient of the intended KL-regularized objective? We answer this with a compact, unified derivation we call the Regularized Policy Gradient (RPG) view. RPG (i) unifies normalized and unnormalized KL variants and shows that the widely-used $k_3$ penalty is exactly the unnormalized KL; (ii) specifies conditions under which REINFORCE-style losses with stop-gradient are gradient-equivalent to fully differentiable surrogates; (iii) identifies and corrects an off-policy importance-weighting mismatch in GRPO's KL term; and (iv) introduces RPG-Style Clip, a clipped-importance-sampling step within RPG-REINFORCE that enables stable, off-policy policy-gradient training at scale. On mathematical reasoning benchmarks (AIME24, AIME25), RPG-REINFORCE with RPG-Style Clip improves accuracy by up to $+6$ absolute percentage points over DAPO. We extend our experiments to 8K context length, and RPG-REINFORCE with RPG-Style Clip achieves 52% accuracy on AIME25, surpassing the official Qwen3-4B-Instruct model (47%). Notably, RPG is a stable and scalable RL algorithm for LLM reasoning, realized via (a) a KL-correct objective, (b) clipped importance sampling, and (c) an iterative reference-policy update scheme. Project Page: https://github.com/complex-reasoning/RPG.
comment: Published in ICLR 2026; Project Page: https://github.com/complex-reasoning/RPG
♻ ☆ Beyond In-Domain Detection: SpikeScore for Cross-Domain Hallucination Detection
Hallucination detection is critical for deploying large language models (LLMs) in real-world applications. Existing hallucination detection methods achieve strong performance when the training and test data come from the same domain, but they suffer from poor cross-domain generalization. In this paper, we study an important yet overlooked problem, termed generalizable hallucination detection (GHD), which aims to train hallucination detectors on data from a single domain while ensuring robust performance across diverse related domains. In studying GHD, we simulate multi-turn dialogues following LLMs' initial response and observe an interesting phenomenon: hallucination-initiated multi-turn dialogues universally exhibit larger uncertainty fluctuations than factual ones across different domains. Based on the phenomenon, we propose a new score SpikeScore, which quantifies abrupt fluctuations in multi-turn dialogues. Through both theoretical analysis and empirical validation, we demonstrate that SpikeScore achieves strong cross-domain separability between hallucinated and non-hallucinated responses. Experiments across multiple LLMs and benchmarks demonstrate that the SpikeScore-based detection method outperforms representative baselines in cross-domain generalization and surpasses advanced generalization-oriented methods, verifying the effectiveness of our method in cross-domain hallucination detection.
♻ ☆ Omni-iEEG: A Large-Scale, Comprehensive iEEG Dataset and Benchmark for Epilepsy Research ICLR 2026
Epilepsy affects over 50 million people worldwide, and one-third of patients suffer drug-resistant seizures where surgery offers the best chance of seizure freedom. Accurate localization of the epileptogenic zone (EZ) relies on intracranial EEG (iEEG). Clinical workflows, however, remain constrained by labor-intensive manual review. At the same time, existing data-driven approaches are typically developed on single-center datasets that are inconsistent in format and metadata, lack standardized benchmarks, and rarely release pathological event annotations, creating barriers to reproducibility, cross-center validation, and clinical relevance. With extensive efforts to reconcile heterogeneous iEEG formats, metadata, and recordings across publicly available sources, we present $\textbf{Omni-iEEG}$, a large-scale, pre-surgical iEEG resource comprising $\textbf{302 patients}$ and $\textbf{178 hours}$ of high-resolution recordings. The dataset includes harmonized clinical metadata such as seizure onset zones, resections, and surgical outcomes, all validated by board-certified epileptologists. In addition, Omni-iEEG provides over 36K expert-validated annotations of pathological events, enabling robust biomarker studies. Omni-iEEG serves as a bridge between machine learning and epilepsy research. It defines clinically meaningful tasks with unified evaluation metrics grounded in clinical priors, enabling systematic evaluation of models in clinically relevant settings. Beyond benchmarking, we demonstrate the potential of end-to-end modeling on long iEEG segments and highlight the transferability of representations pretrained on non-neurophysiological domains. Together, these contributions establish Omni-iEEG as a foundation for reproducible, generalizable, and clinically translatable epilepsy research. The project page with dataset and code links is available at omni-ieeg.github.io/omni-ieeg.
comment: Published as a conference paper at ICLR 2026
♻ ☆ GAI: Generative Agents for Innovation
This study examines whether collective reasoning among generative agents can facilitate novel and coherent thinking that leads to innovation. To achieve this, it proposes GAI, a new LLM-empowered framework designed for reflection and interaction among multiple generative agents to replicate the process of innovation. The core of the GAI framework lies in an architecture that dynamically processes the internal states of agents and a dialogue scheme specifically tailored to facilitate analogy-driven innovation. The framework's functionality is evaluated using Dyson's invention of the bladeless fan as a case study, assessing the extent to which the core ideas of the innovation can be replicated through a set of fictional technical documents. The experimental results demonstrate that models with internal states significantly outperformed those without, achieving higher average scores and lower variance. Notably, the model with five heterogeneous agents equipped with internal states successfully replicated the key ideas underlying the Dyson's invention. This indicates that the internal state enables agents to refine their ideas, resulting in the construction and sharing of more coherent and comprehensive concepts.
comment: Added an Appendix section
♻ ☆ Conjugate Learning Theory: Uncovering the Mechanisms of Trainability and Generalization in Deep Neural Networks
In this work, we propose a notion of practical learnability grounded in finite sample settings, and develop a conjugate learning theoretical framework based on convex conjugate duality to characterize this learnability property. Building on this foundation, we demonstrate that training deep neural networks (DNNs) with mini-batch stochastic gradient descent (SGD) achieves global optima of empirical risk by jointly controlling the extreme eigenvalues of a structure matrix and the gradient energy, and we establish a corresponding convergence theorem. We further elucidate the impact of batch size and model architecture (including depth, parameter count, sparsity, skip connections, and other characteristics) on non-convex optimization. Additionally, we derive a model-agnostic lower bound for the achievable empirical risk, theoretically demonstrating that data determines the fundamental limit of trainability. On the generalization front, we derive deterministic and probabilistic bounds on generalization error based on generalized conditional entropy measures. The former explicitly delineates the range of generalization error, while the latter characterizes the distribution of generalization error relative to the deterministic bounds under independent and identically distributed (i.i.d.) sampling conditions. Furthermore, these bounds explicitly quantify the influence of three key factors: (i) information loss induced by irreversibility in the model, (ii) the maximum attainable loss value, and (iii) the generalized conditional entropy of features with respect to labels. Moreover, they offer a unified theoretical lens for understanding the roles of regularization, irreversible transformations, and network depth in shaping the generalization behavior of deep neural networks. Extensive experiments validate all theoretical predictions, confirming the framework's correctness and consistency.
♻ ☆ Building Safe and Deployable Clinical Natural Language Processing under Temporal Leakage Constraints
Clinical natural language processing (NLP) models have shown promise for supporting hospital discharge planning by leveraging narrative clinical documentation. However, note-based models are particularly vulnerable to temporal and lexical leakage, where documentation artifacts encode future clinical decisions and inflate apparent predictive performance. Such behavior poses substantial risks for real-world deployment, where overconfident or temporally invalid predictions can disrupt clinical workflows and compromise patient safety. This study focuses on system-level design choices required to build safe and deployable clinical NLP under temporal leakage constraints. We present a lightweight auditing pipeline that integrates interpretability into the model development process to identify and suppress leakage-prone signals prior to final training. Using next-day discharge prediction after elective spine surgery as a case study, we evaluate how auditing affects predictive behavior, calibration, and safety-relevant trade-offs. Results show that audited models exhibit more conservative and better-calibrated probability estimates, with reduced reliance on discharge-related lexical cues. These findings emphasize that deployment-ready clinical NLP systems should prioritize temporal validity, calibration, and behavioral robustness over optimistic performance.
FinTagging: Benchmarking LLMs for Extracting and Structuring Financial Information
Accurate interpretation of numerical data in financial reports is critical for markets and regulators. Although XBRL (eXtensible Business Reporting Language) provides a standard for tagging financial figures, mapping thousands of facts to over 10k US GAAP concepts remains costly and error prone. Existing benchmarks oversimplify this task as flat, single step classification over small subsets of concepts, ignoring the hierarchical semantics of the taxonomy and the structured nature of financial documents. Consequently, these benchmarks fail to evaluate Large Language Models (LLMs) under realistic reporting conditions. To bridge this gap, we introduce FinTagging, the first comprehensive benchmark for structure aware and full scope XBRL tagging. We decompose the complex tagging process into two subtasks: (1) FinNI (Financial Numeric Identification), which extracts entities and types from heterogeneous contexts including text and tables; and (2) FinCL (Financial Concept Linking), which maps extracted entities to the full US GAAP taxonomy. This two stage formulation enables a fair assessment of LLMs' capabilities in numerical reasoning and taxonomy alignment. Evaluating diverse LLMs in zero shot settings reveals that while models generalize well in extraction, they struggle significantly with fine grained concept linking, highlighting critical limitations in domain specific structure aware reasoning.
♻ ☆ Advancing Universal Deep Learning for Electronic-Structure Hamiltonian Prediction of Materials
Deep learning methods for electronic-structure Hamiltonian prediction has offered significant computational efficiency advantages over traditional DFT methods, yet the diversity of atomic types, structural patterns, and the high-dimensional complexity of Hamiltonians pose substantial challenges to the generalization performance. In this work, we contribute on both the methodology and dataset sides to advance universal deep learning paradigm for Hamiltonian prediction. On the method side, we propose NextHAM, a neural E(3)-symmetry and expressive correction method for efficient and generalizable materials electronic-structure Hamiltonian prediction. First, we introduce the zeroth-step Hamiltonians, which can be efficiently constructed by the initial charge density of DFT, as informative descriptors of neural regression model in the input level and initial estimates of the target Hamiltonian in the output level, so that the regression model directly predicts the correction terms to the target ground truths, thereby significantly simplifying the input-output mapping for learning. Second, we present a neural Transformer architecture with strict E(3)-Symmetry and high non-linear expressiveness for Hamiltonian prediction. Third, we propose a novel training objective to ensure the accuracy performance of Hamiltonians in both real space and reciprocal space, preventing error amplification and the occurrence of "ghost states" caused by the large condition number of the overlap matrix. On the dataset side, we curate a high-quality broad-coverage large benchmark, namely Materials-HAM-SOC, comprising 17,000 material structures spanning 68 elements from six rows of the periodic table and explicitly incorporating SOC effects. Experimental results on Materials-HAM-SOC demonstrate that NextHAM achieves excellent accuracy and efficiency in predicting Hamiltonians and band structures.
The Chicken and Egg Dilemma: Co-optimizing Data and Model Configurations for LLMs
Co-optimizing data and model configurations for training LLMs presents a classic chicken-and-egg dilemma: The best training data configuration (e.g., data mixture) for a downstream task depends on the chosen model configuration (e.g., model architecture), and vice versa. However, jointly optimizing both data and model configurations is often deemed intractable, and existing methods focus on either data or model optimization without considering their interaction. We introduce JoBS, an approach that uses a scaling-law-inspired performance predictor to aid Bayesian optimization (BO) in jointly optimizing LLM training data and model configurations efficiently. JoBS allocates a portion of the optimization budget to learn an LLM performance predictor that predicts how promising a training configuration is from a small number of training steps. The remaining budget is used to perform BO entirely with the predictor, effectively amortizing the cost of running full-training runs. We study JoBS's average regret and devise the optimal budget allocation to minimize regret. JoBS outperforms existing multi-fidelity BO baselines, as well as data and model optimization approaches across diverse LLM tasks under the same optimization budget.
♻ ☆ Auditing Student-AI Collaboration: A Case Study of Online Graduate CS Students
As generative AI becomes embedded in higher education, it increasingly shapes how students complete academic tasks. While these systems offer efficiency and support, concerns persist regarding over-automation, diminished student agency, and the potential for unreliable or hallucinated outputs. This study conducts a mixed-methods audit of student-AI collaboration preferences by examining the alignment between current AI capabilities and students' desired levels of automation in academic work. Using two sequential and complementary surveys, we capture students' perceived benefits, risks, and preferred boundaries when using AI. The first survey employs an existing task-based framework to assess preferences for and actual usage of AI across 12 academic tasks, alongside primary concerns and reasons for use. The second survey, informed by the first, explores how AI systems could be designed to address these concerns through open-ended questions. This study aims to identify gaps between existing AI affordances and students' normative expectations of collaboration, informing the development of more effective and trustworthy AI systems for education.
♻ ☆ MolmoSpaces: A Large-Scale Open Ecosystem for Robot Navigation and Manipulation
Deploying robots at scale demands robustness to the long tail of everyday situations. The countless variations in scene layout, object geometry, and task specifications that characterize real environments are vast and underrepresented in existing robot benchmarks. Measuring this level of generalization requires infrastructure at a scale and diversity that physical evaluation alone cannot provide. We introduce MolmoSpaces, a fully open ecosystem to support large-scale benchmarking of robot policies. MolmoSpaces consists of over 230k diverse indoor environments, ranging from handcrafted household scenes to procedurally generated multiroom houses, populated with 130k richly annotated object assets, including 48k manipulable objects with 42M stable grasps. Crucially, these environments are simulator-agnostic, supporting popular options such as MuJoCo, Isaac, and ManiSkill. The ecosystem supports the full spectrum of embodied tasks: static and mobile manipulation, navigation, and multiroom long-horizon tasks requiring coordinated perception, planning, and interaction across entire indoor environments. We also design MolmoSpaces-Bench, a benchmark suite of 8 tasks in which robots interact with our diverse scenes and richly annotated objects. Our experiments show MolmoSpaces-Bench exhibits strong sim-to-real correlation (R = 0.96, \r{ho} = 0.98), confirm newer and stronger zero-shot policies outperform earlier versions in our benchmarks, and identify key sensitivities to prompt phrasing, initial joint positions, and camera occlusion. Through MolmoSpaces and its open-source assets and tooling, we provide a foundation for scalable data generation, policy training, and benchmark creation for robot learning research.
♻ ☆ Di3PO - Diptych Diffusion DPO for Targeted Improvements in Image Generation
Existing methods for preference tuning of text-to-image (T2I) diffusion models often rely on computationally expensive generation steps to create positive and negative pairs of images. These approaches frequently yield training pairs that either lack meaningful differences, are expensive to sample and filter, or exhibit significant variance in irrelevant pixel regions, thereby degrading training efficiency. To address these limitations, we introduce "Di3PO", a novel method for constructing positive and negative pairs that isolates specific regions targeted for improvement during preference tuning, while keeping the surrounding context in the image stable. We demonstrate the efficacy of our approach by applying it to the challenging task of text rendering in diffusion models, showcasing improvements over baseline methods of SFT and DPO.
♻ ☆ Multimodal Wireless Foundation Models
Wireless foundation models (WFMs) have recently demonstrated promising capabilities, jointly performing multiple wireless functions and adapting effectively to new environments. However, while current WFMs process only one modality, depending on the task and operating conditions, the most informative modality changes and no single modality is best for all tasks. WFMs should therefore be designed to accept multiple modalities to enable a broader and more diverse range of tasks and scenarios. In this work, we propose and build the first multimodal wireless foundation model capable of processing both raw IQ streams and image-like wireless modalities (e.g., spectrograms and CSI) and performing multiple tasks across both. We introduce masked wireless modeling for the multimodal setting, a self-supervised objective and pretraining recipe that learns a joint representation from IQ streams and image-like wireless modalities. We evaluate the model on five tasks across both modality families: image-based (human activity sensing, RF signal classification, 5G NR positioning) and IQ-based (RF device fingerprinting, interference detection/classification). The multimodal WFM is competitive with single-modality WFMs, and in several cases surpasses their performance. Our results demonstrates the strong potential of developing multimodal WFMs that support diverse wireless tasks across different modalities. We believe this provides a concrete step toward both AI-native 6G and the vision of joint sensing, communication, and localization.
♻ ☆ Demographic-aware fine-grained visual recognition of pediatric wrist pathologies
Pediatric wrist pathologies recognition from radiographs is challenging because normal anatomy changes rapidly with development: evolving carpal ossification and open physes can resemble pathology, and maturation timing differs by sex. Image-only models trained on limited medical datasets therefore risk confusing normal developmental variation with true pathologies. We address this by framing pediatric wrist diagnosis as a fine-grained visual recognition (FGVR) problem and proposing a demographic-aware hybrid convolution--transformer model that fuses X-rays with patient age and sex. To leverage demographic context while avoiding shortcut reliance, we introduce progressive metadata masking during training. We evaluate on a curated dataset that mirrors the typical constraints in real-world medical studies. The hybrid FGVR backbone outperforms traditional and modern CNNs, and demographic fusion yields additional gains. Finally, we show that initializing from a fine-grained pretraining source improves transfer relative to standard ImageNet initialization, suggesting that label granularity, even from non-medical data, can be a key driver of generalization for subtle radiographic findings.
♻ ☆ Semi-Supervised Preference Optimization with Limited Feedback
The field of preference optimization has made outstanding contributions to the alignment of language models with human preferences. Despite these advancements, recent methods still rely heavily on substantial paired (labeled) feedback data, leading to substantial resource expenditures. To address these challenges, we study the problem of Semi-Supervised Preference Optimization (SSPO) in which the idea is to learn from both a small number of pairwise preference labels and a large pool of unpaired samples simultaneously. Our key theoretical contribution proves the existence of an optimal reward threshold capable of separating winning and losing responses with high probability, which enables a principled pseudo-labeling of unpaired data. By leveraging these pseudo-labels, SSPO effectively distills latent preferences from large-scale unpaired data, thus maintaining human alignment while drastically reducing acquisition costs. Extensive experiments across datasets validate this remarkable data efficiency; for instance, SSPO trained with Mistral-7B-Instruct on just 1% of UltraFeedback consistently surpasses strong baselines trained on 10% of UltraFeedback.
♻ ☆ Adaptive Step Duration for Accurate Foot Placement: Achieving Robust Bipedal Locomotion on Terrains with Restricted Footholds IROS 2025
Traditional one-step preview planning algorithms for bipedal locomotion struggle to generate viable gaits when walking across terrains with restricted footholds, such as stepping stones. To overcome such limitations, this paper introduces a novel multi-step preview foot placement planning algorithm based on the step-to-step discrete evolution of the Divergent Component of Motion (DCM) of walking robots. Our proposed approach adaptively changes the step duration and the swing foot trajectory for optimal foot placement under constraints, thereby enhancing the long-term stability of the robot and significantly improving its ability to navigate environments with tight constraints on viable footholds. We demonstrate its effectiveness through various simulation scenarios with complex stepping-stone configurations and external perturbations. These tests underscore its improved performance for navigating foothold-restricted terrains, even with external disturbances.
comment: 7 pages, 7 figures. Accepted to IEEE/RSJ IROS 2025. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
♻ ☆ I-FailSense: Towards General Robotic Failure Detection with Vision-Language Models
Language-conditioned robotic manipulation in open-world settings requires not only accurate task execution but also the ability to detect failures for robust deployment in real-world environments. Although recent advances in vision-language models (VLMs) have significantly improved the spatial reasoning and task-planning capabilities of robots, they remain limited in their ability to recognize their own failures. In particular, a critical yet underexplored challenge lies in detecting semantic misalignment errors, where the robot executes a task that is semantically meaningful but inconsistent with the given instruction. To address this, we propose a method for building datasets targeting Semantic Misalignment Failures detection, from existing language-conditioned manipulation datasets. We also present I-FailSense, an open-source VLM framework with grounded arbitration designed specifically for failure detection. Our approach relies on post-training a base VLM, followed by training lightweight classification heads, called FS blocks, attached to different internal layers of the VLM and whose predictions are aggregated using an ensembling mechanism. Experiments show that I-FailSense outperforms state-of-the-art VLMs, both comparable in size and larger, in detecting semantic misalignment errors. Notably, despite being trained only on semantic misalignment detection, I-FailSense generalizes to broader robotic failure categories and effectively transfers to other simulation environments and real-world with zero-shot or minimal post-training. The datasets and models are publicly released on HuggingFace (Webpage: https://clemgris.github.io/I-FailSense/).
♻ ☆ SceneVGGT: VGGT-based online 3D semantic SLAM for indoor scene understanding and navigation
We present SceneVGGT, a spatio-temporal 3D scene understanding framework that combines SLAM with semantic mapping for autonomous and assistive navigation. Built on VGGT, our method scales to long video streams via a sliding-window pipeline. We align local submaps using camera-pose transformations, enabling memory- and speed-efficient mapping while preserving geometric consistency. Semantics are lifted from 2D instance masks to 3D objects using the VGGT tracking head, maintaining temporally coherent identities for change detection. As a proof of concept, object locations are projected onto an estimated floor plane for assistive navigation. The pipeline's GPU memory usage remains under 17 GB, irrespectively of the length of the input sequence and achieves competitive point-cloud performance on the ScanNet++ benchmark. Overall, SceneVGGT ensures robust semantic identification and is fast enough to support interactive assistive navigation with audio feedback.
♻ ☆ Stability Analysis of Geometric Control for a Canonical Class of Underactuated Aerial Vehicles with Spurious Forces
Standard geometric control relies on force-moment decoupling, an assumption that breaks down in many aerial platforms due to spurious forces naturally induced by control moments. While strategies for such coupled systems have been validated experimentally, a rigorous theoretical certification of their stability is currently missing. This work fills this gap by providing the first formal stability analysis for a generic class of floating rigid bodies subject to spurious forces. We introduce a canonical model and construct a Lyapunov-based proof establishing local exponential stability of the hovering equilibrium. Crucially, the analysis explicitly addresses the structural challenges - specifically the induced non-minimum-phase behavior - that prevent the application of standard cascade arguments.
♻ ☆ A Decade of Human-Robot Interaction Through Immersive Lenses: Reviewing Extended Reality as a Research Instrument in Social Robotics
Over the past decade, Extended Reality (XR), including Virtual, Augmented, and Mixed Reality, gained attention as a research instrument in human-robot interaction studies, but remains underexplored in empirical investigations of social robotics. To map the field, we systematically reviewed empirical studies from 2015 to 2025. Of 6,527 peer-reviewed articles, only 33 met strict inclusion criteria. We examined (1) how XR and virtual social robots are used, focusing on the software and hardware employed and the application contexts in which they are deployed, (2) data collection and analysis methods, (3) demographics of the researchers and participants, and (4) the challenges and future directions. Our findings show that social XR-HRI research is still driven by laboratory simulations, while crucial specifications - such as the hardware, software, and robots used - are often not reported. Robots typically act as passive and hardly interactive visual stimulus, while the rich biosignal (e.g., eye-tracking) and logging (e.g. motion capturing) functions of modern head-mounted displays remain largely untapped. While there are gaps in demographic reporting, the research teams and samples are predominantly tech-centric, Western, young, and male. Key limitations include hardware delays, small homogeneous samples, and short study cycles. We propose a four-phase roadmap to establish social XR-HRI as a reliable research medium, which includes (1) strengthen application contexts, (2) more robust and testable technological iterations, (3) embedding diversity in samples and research teams, and (4) the need for reporting standards, e.g., in form of a suitable taxonomy. Advancing in these directions is essential for XR to mature from a lab prototype into an ecologically valid research instrument for social robotics.
comment: This is a pre-print
♻ ☆ Robot-Assisted Group Tours for Blind People
Group interactions are essential to social functioning, yet effective engagement relies on the ability to recognize and interpret visual cues, making such engagement a significant challenge for blind people. In this paper, we investigate how a mobile robot can support group interactions for blind people. We used the scenario of a guided tour with mixed-visual groups involving blind and sighted visitors. Based on insights from an interview study with blind people (n=5) and museum experts (n=5), we designed and prototyped a robotic system that supported blind visitors to join group tours. We conducted a field study in a science museum where each blind participant (n=8) joined a group tour with one guide and two sighted participants (n=8). Findings indicated users' sense of safety from the robot's navigational support, concerns in the group participation, and preferences for obtaining environmental information. We present design implications for future robotic systems to support blind people's mixed-visual group participation.
comment: In Proceedings of ACM CHI 2026 conference on Human Factors in Computing Systems
♻ ☆ MotionHint: Self-Supervised Monocular Visual Odometry with Motion Constraints
We present a novel self-supervised algorithm named MotionHint for monocular visual odometry (VO) that takes motion constraints into account. A key aspect of our approach is to use an appropriate motion model that can help existing self-supervised monocular VO (SSM-VO) algorithms to overcome issues related to the local minima within their self-supervised loss functions. The motion model is expressed with a neural network named PPnet. It is trained to coarsely predict the next pose of the camera and the uncertainty of this prediction. Our self-supervised approach combines the original loss and the motion loss, which is the weighted difference between the prediction and the generated ego-motion. Taking two existing SSM-VO systems as our baseline, we evaluate our MotionHint algorithm on the standard KITTI benchmark. Experimental results show that our MotionHint algorithm can be easily applied to existing open-sourced state-of-the-art SSM-VO systems to greatly improve the performance by reducing the resulting ATE by up to 28.73%.
comment: Accepted by ICRA 2022
♻ ☆ Decentralized and Fully Onboard: Range-Aided Cooperative Localization and Navigation on Micro Aerial Vehicles
Controlling a team of robots in a coordinated manner is challenging because centralized approaches (where all computation is performed on a central machine) scale poorly, and globally referenced external localization systems may not always be available. In this work, we consider the problem of range-aided decentralized localization and formation control. In such a setting, each robot estimates its relative pose by combining data only from onboard odometry sensors and distance measurements to other robots in the team. Additionally, each robot calculates the control inputs necessary to collaboratively navigate an environment to accomplish a specific task, for example, moving in a desired formation while monitoring an area. We present a block coordinate descent approach to localization that does not require strict coordination between the robots. We present a novel formulation for formation control as inference on factor graphs that takes into account the state estimation uncertainty and can be solved efficiently. Our approach to range-aided localization and formation-based navigation is completely decentralized, does not require specialized trajectories to maintain formation, and achieves decimeter-level positioning and formation control accuracy. We demonstrate our approach through multiple real experiments involving formation flights in diverse indoor and outdoor environments.
♻ ☆ Sensor Query Schedule and Sensor Noise Covariances for Accuracy-constrained Trajectory Estimation
Trajectory estimation involves determining the trajectory of a mobile robot by combining prior knowledge about its dynamic model with noisy observations of its state obtained using sensors. The accuracy of such a procedure is dictated by the system model fidelity and the sensor parameters, such as the accuracy of the sensor (as represented by its noise covariance) and the rate at which it can generate observations, referred to as the sensor query schedule. Intuitively, high-rate measurements from accurate sensors lead to accurate trajectory estimation. However, cost and resource constraints limit the sensor accuracy and its measurement rate. Our work's novel contribution is the estimation of sensor schedules and sensor covariances necessary to achieve a specific estimation accuracy. Concretely, we focus on estimating: (i) the rate or schedule with which a sensor of known covariance must generate measurements to achieve specific estimation accuracy, and alternatively, (ii) the sensor covariance necessary to achieve specific estimation accuracy for a given sensor update rate. We formulate the problem of estimating these sensor parameters as semidefinite programs, which can be solved by off-the-shelf solvers. We validate our approach in simulation and real experiments by showing that the sensor schedules and the sensor covariances calculated using our proposed method achieve the desired trajectory estimation accuracy. Our method also identifies scenarios where certain estimation accuracy is unachievable with the given system and sensor characteristics.
♻ ☆ Variational approach to nonholonomic and inequality-constrained mechanics
Variational principles play a central role in classical mechanics, providing compact formulations of dynamics and direct access to conserved quantities. While holonomic systems admit well-known action formulations, non-holonomic systems -- subject to non-integrable velocity constraints or position inequality constraints -- have long resisted a general extremized action treatment. In this work, we construct an explicit and general action for non-holonomic motion, motivated by the classical limit of the quantum Schwinger-Keldysh action formalism, rediscovered by Galley. Our formulation recovers the correct dynamics of the Lagrange-d'Alembert equations via extremization of a scalar action. We validate the approach on canonical examples using direct numerical optimization of the novel action, bypassing equations of motion. Our framework extends the reach of variational mechanics and offers new analytical and computational tools for constrained systems.
comment: 11 pages, 4 figures
Computation and Language 101
☆ Reinforced Fast Weights with Next-Sequence Prediction
Fast weight architectures offer a promising alternative to attention-based transformers for long-context modeling by maintaining constant memory overhead regardless of context length. However, their potential is limited by the next-token prediction (NTP) training paradigm. NTP optimizes single-token predictions and ignores semantic coherence across multiple tokens following a prefix. Consequently, fast weight models, which dynamically update their parameters to store contextual information, learn suboptimal representations that fail to capture long-range dependencies. We introduce REFINE (Reinforced Fast weIghts with Next sEquence prediction), a reinforcement learning framework that trains fast weight models under the next-sequence prediction (NSP) objective. REFINE selects informative token positions based on prediction entropy, generates multi-token rollouts, assigns self-supervised sequence-level rewards, and optimizes the model with group relative policy optimization (GRPO). REFINE is applicable throughout the training lifecycle of pre-trained language models: mid-training, post-training, and test-time training. Our experiments on LaCT-760M and DeltaNet-1.3B demonstrate that REFINE consistently outperforms supervised fine-tuning with NTP across needle-in-a-haystack retrieval, long-context question answering, and diverse tasks in LongBench. REFINE provides an effective and versatile framework for improving long-context modeling in fast weight architectures.
☆ Calibrate-Then-Act: Cost-Aware Exploration in LLM Agents
LLMs are increasingly being used for complex problems which are not necessarily resolved in a single response, but require interacting with an environment to acquire information. In these scenarios, LLMs must reason about inherent cost-uncertainty tradeoffs in when to stop exploring and commit to an answer. For instance, on a programming task, an LLM should test a generated code snippet if it is uncertain about the correctness of that code; the cost of writing a test is nonzero, but typically lower than the cost of making a mistake. In this work, we show that we can induce LLMs to explicitly reason about balancing these cost-uncertainty tradeoffs, then perform more optimal environment exploration. We formalize multiple tasks, including information retrieval and coding, as sequential decision-making problems under uncertainty. Each problem has latent environment state that can be reasoned about via a prior which is passed to the LLM agent. We introduce a framework called Calibrate-Then-Act (CTA), where we feed the LLM this additional context to enable it to act more optimally. This improvement is preserved even under RL training of both the baseline and CTA. Our results on information-seeking QA and on a simplified coding task show that making cost-benefit tradeoffs explicit with CTA can help agents discover more optimal decision-making strategies.
☆ Scaling Open Discrete Audio Foundation Models with Interleaved Semantic, Acoustic, and Text Tokens
Current audio language models are predominantly text-first, either extending pre-trained text LLM backbones or relying on semantic-only audio tokens, limiting general audio modeling. This paper presents a systematic empirical study of native audio foundation models that apply next-token prediction to audio at scale, jointly modeling semantic content, acoustic details, and text to support both general audio generation and cross-modal capabilities. We provide comprehensive empirical insights for building such models: (1) We systematically investigate design choices -- data sources, text mixture ratios, and token composition -- establishing a validated training recipe. (2) We conduct the first scaling law study for discrete audio models via IsoFLOP analysis on 64 models spanning $3{\times}10^{18}$ to $3{\times}10^{20}$ FLOPs, finding that optimal data grows 1.6$\times$ faster than optimal model size. (3) We apply these lessons to train SODA (Scaling Open Discrete Audio), a suite of models from 135M to 4B parameters on 500B tokens, comparing against our scaling predictions and existing models. SODA serves as a flexible backbone for diverse audio/text tasks -- we demonstrate this by fine-tuning for voice-preserving speech-to-speech translation, using the same unified architecture.
Align Once, Benefit Multilingually: Enforcing Multilingual Consistency for LLM Safety Alignment ICLR 2026
The widespread deployment of large language models (LLMs) across linguistic communities necessitates reliable multilingual safety alignment. However, recent efforts to extend alignment to other languages often require substantial resources, either through large-scale, high-quality supervision in the target language or through pairwise alignment with high-resource languages, which limits scalability. In this work, we propose a resource-efficient method for improving multilingual safety alignment. We introduce a plug-and-play Multi-Lingual Consistency (MLC) loss that can be integrated into existing monolingual alignment pipelines. By improving collinearity between multilingual representation vectors, our method encourages directional consistency at the multilingual semantic level in a single update. This allows simultaneous alignment across multiple languages using only multilingual prompt variants without requiring additional response-level supervision in low-resource languages. We validate the proposed method across different model architectures and alignment paradigms, and demonstrate its effectiveness in enhancing multilingual safety with limited impact on general model utility. Further evaluation across languages and tasks indicates improved cross-lingual generalization, suggesting the proposed approach as a practical solution for multilingual consistency alignment under limited supervision.
comment: Accepted by ICLR 2026
☆ Quecto-V1: Empirical Analysis of 8-bit Quantized Small Language Models for On-Device Legal Retrieval
The rapid proliferation of Large Language Models (LLMs) has revolutionized Natural Language Processing (NLP) but has simultaneously created a "resource divide." State-of-the-art legal intelligence systems typically rely on massive parameter counts (7B+) and cloud-based inference, rendering them inaccessible to practitioners in resource-constrained environments and posing significant data sovereignty risks. This paper introduces Quecto-V1, a domain-specific Small Language Model (SLM) engineered to democratize access to Indian legal intelligence. Built upon a custom configuration of the GPT-2 architecture (124 million parameters), Quecto-V1 was trained from scratch exclusively on a corpus of Indian statutes, including the Indian Penal Code (IPC), the Code of Criminal Procedure (CrPC), and the Constitution of India. Unlike generalist models, which prioritize broad world knowledge, our approach maximizes "lexical density" within the legal domain. Furthermore, we address the deployment bottleneck by applying post-training 8-bit quantization (GGUF format), compressing the model to a memory footprint of under 150 MB. Our empirical analysis demonstrates that Quecto-V1 achieves high fidelity in retrieving statutory definitions and penal provisions, outperforming general-purpose SLMs in domain-specific exact match tasks while running entirely offline on consumer-grade CPUs. We further present an ablation study showing that 8-bit quantization yields a 74% reduction in model size with less than 3.5% degradation in retrieval accuracy compared to full-precision baselines. These findings suggest that for specialized, high-stakes domains like law, domain-specific training coupled with aggressive quantization offers a viable, privacy-preserving alternative to monolithic cloud models.
comment: 5 pages, 2 tables
☆ AREG: Adversarial Resource Extraction Game for Evaluating Persuasion and Resistance in Large Language Models
Evaluating the social intelligence of Large Language Models (LLMs) increasingly requires moving beyond static text generation toward dynamic, adversarial interaction. We introduce the Adversarial Resource Extraction Game (AREG), a benchmark that operationalizes persuasion and resistance as a multi-turn, zero-sum negotiation over financial resources. Using a round-robin tournament across frontier models, AREG enables joint evaluation of offensive (persuasion) and defensive (resistance) capabilities within a single interactional framework. Our analysis provides evidence that these capabilities are weakly correlated ($ρ= 0.33$) and empirically dissociated: strong persuasive performance does not reliably predict strong resistance, and vice versa. Across all evaluated models, resistance scores exceed persuasion scores, indicating a systematic defensive advantage in adversarial dialogue settings. Further linguistic analysis suggests that interaction structure plays a central role in these outcomes. Incremental commitment-seeking strategies are associated with higher extraction success, while verification-seeking responses are more prevalent in successful defenses than explicit refusal. Together, these findings indicate that social influence in LLMs is not a monolithic capability and that evaluation frameworks focusing on persuasion alone may overlook asymmetric behavioral vulnerabilities.
comment: 15 pages, 5 figures, 11 tables. Includes appendix with detailed experimental results and prompts
☆ Who can we trust? LLM-as-a-jury for Comparative Assessment
Large language models (LLMs) are increasingly applied as automatic evaluators for natural language generation assessment often using pairwise comparative judgements. Existing approaches typically rely on single judges or aggregate multiple judges assuming equal reliability. In practice, LLM judges vary substantially in performance across tasks and aspects, and their judgment probabilities may be biased and inconsistent. Furthermore, human-labelled supervision for judge calibration may be unavailable. We first empirically demonstrate that inconsistencies in LLM comparison probabilities exist and show that it limits the effectiveness of direct probability-based ranking. To address this, we study the LLM-as-a-jury setting and propose BT-sigma, a judge-aware extension of the Bradley-Terry model that introduces a discriminator parameter for each judge to jointly infer item rankings and judge reliability from pairwise comparisons alone. Experiments on benchmark NLG evaluation datasets show that BT-sigma consistently outperforms averaging-based aggregation methods, and that the learned discriminator strongly correlates with independent measures of the cycle consistency of LLM judgments. Further analysis reveals that BT-sigma can be interpreted as an unsupervised calibration mechanism that improves aggregation by modelling judge reliability.
☆ ColBERT-Zero: To Pre-train Or Not To Pre-train ColBERT models
Current state-of-the-art multi-vector models are obtained through a small Knowledge Distillation (KD) training step on top of strong single-vector models, leveraging the large-scale pre-training of these models. In this paper, we study the pre-training of multi-vector models and show that large-scale multi-vector pre-training yields much stronger multi-vector models. Notably, a fully ColBERT-pre-trained model, ColBERT-Zero, trained only on public data, outperforms GTE-ModernColBERT as well as its base model, GTE-ModernBERT, which leverages closed and much stronger data, setting new state-of-the-art for model this size. We also find that, although performing only a small KD step is not enough to achieve results close to full pre-training, adding a supervised step beforehand allows to achieve much closer performance while skipping the most costly unsupervised phase. Finally, we find that aligning the fine-tuning and pre-training setups is crucial when repurposing existing models. To enable exploration of our results, we release various checkpoints as well as code used to train them.
comment: 9 pages, 5 tables, 2 figures
☆ Explainable AI: Context-Aware Layer-Wise Integrated Gradients for Explaining Transformer Models
Transformer models achieve state-of-the-art performance across domains and tasks, yet their deeply layered representations make their predictions difficult to interpret. Existing explainability methods rely on final-layer attributions, capture either local token-level attributions or global attention patterns without unification, and lack context-awareness of inter-token dependencies and structural components. They also fail to capture how relevance evolves across layers and how structural components shape decision-making. To address these limitations, we proposed the \textbf{Context-Aware Layer-wise Integrated Gradients (CA-LIG) Framework}, a unified hierarchical attribution framework that computes layer-wise Integrated Gradients within each Transformer block and fuses these token-level attributions with class-specific attention gradients. This integration yields signed, context-sensitive attribution maps that capture supportive and opposing evidence while tracing the hierarchical flow of relevance through the Transformer layers. We evaluate the CA-LIG Framework across diverse tasks, domains, and transformer model families, including sentiment analysis and long and multi-class document classification with BERT, hate speech detection in a low-resource language setting with XLM-R and AfroLM, and image classification with Masked Autoencoder vision Transformer model. Across all tasks and architectures, CA-LIG provides more faithful attributions, shows stronger sensitivity to contextual dependencies, and produces clearer, more semantically coherent visualizations than established explainability methods. These results indicate that CA-LIG provides a more comprehensive, context-aware, and reliable explanation of Transformer decision-making, advancing both the practical interpretability and conceptual understanding of deep neural models.
☆ CitiLink-Summ: Summarization of Discussion Subjects in European Portuguese Municipal Meeting Minutes
Municipal meeting minutes are formal records documenting the discussions and decisions of local government, yet their content is often lengthy, dense, and difficult for citizens to navigate. Automatic summarization can help address this challenge by producing concise summaries for each discussion subject. Despite its potential, research on summarizing discussion subjects in municipal meeting minutes remains largely unexplored, especially in low-resource languages, where the inherent complexity of these documents adds further challenges. A major bottleneck is the scarcity of datasets containing high-quality, manually crafted summaries, which limits the development and evaluation of effective summarization models for this domain. In this paper, we present CitiLink-Summ, a new corpus of European Portuguese municipal meeting minutes, comprising 100 documents and 2,322 manually hand-written summaries, each corresponding to a distinct discussion subject. Leveraging this dataset, we establish baseline results for automatic summarization in this domain, employing state-of-the-art generative models (e.g., BART, PRIMERA) as well as large language models (LLMs), evaluated with both lexical and semantic metrics such as ROUGE, BLEU, METEOR, and BERTScore. CitiLink-Summ provides the first benchmark for municipal-domain summarization in European Portuguese, offering a valuable resource for advancing NLP research on complex administrative texts.
☆ Creating a digital poet
Can a machine write good poetry? Any positive answer raises fundamental questions about the nature and value of art. We report a seven-month poetry workshop in which a large language model was shaped into a digital poet through iterative in-context expert feedback, without retraining. Across sessions, the model developed a distinctive style and a coherent corpus, supported by quantitative and qualitative analyses, and it produced a pen name and author image. In a blinded authorship test with 50 humanities students and graduates (three AI poems and three poems by well-known poets each), judgments were at chance: human poems were labeled human 54% of the time and AI poems 52%, with 95% confidence intervals including 50%. After the workshop, a commercial publisher released a poetry collection authored by the model. These results show that workshop-style prompting can support long-horizon creative shaping and renew debates on creativity and authorship.
comment: 24 pages, 3 figures
☆ Utility-Preserving De-Identification for Math Tutoring: Investigating Numeric Ambiguity in the MathEd-PII Benchmark Dataset
Large-scale sharing of dialogue-based data is instrumental for advancing the science of teaching and learning, yet rigorous de-identification remains a major barrier. In mathematics tutoring transcripts, numeric expressions frequently resemble structured identifiers (e.g., dates or IDs), leading generic Personally Identifiable Information (PII) detection systems to over-redact core instructional content and reduce dataset utility. This work asks how PII can be detected in math tutoring transcripts while preserving their educational utility. To address this challenge, we investigate the "numeric ambiguity" problem and introduce MathEd-PII, the first benchmark dataset for PII detection in math tutoring dialogues, created through a human-in-the-loop LLM workflow that audits upstream redactions and generates privacy-preserving surrogates. The dataset contains 1,000 tutoring sessions (115,620 messages; 769,628 tokens) with validated PII annotations. Using a density-based segmentation method, we show that false PII redactions are disproportionately concentrated in math-dense regions, confirming numeric ambiguity as a key failure mode. We then compare four detection strategies: a Presidio baseline and LLM-based approaches with basic, math-aware, and segment-aware prompting. Math-aware prompting substantially improves performance over the baseline (F1: 0.821 vs. 0.379) while reducing numeric false positives, demonstrating that de-identification must incorporate domain context to preserve analytic utility. This work provides both a new benchmark and evidence that utility-preserving de-identification for tutoring data requires domain-aware modeling.
☆ Supercharging Agenda Setting Research: The ParlaCAP Dataset of 28 European Parliaments and a Scalable Multilingual LLM-Based Classification LREC 2026
This paper introduces ParlaCAP, a large-scale dataset for analyzing parliamentary agenda setting across Europe, and proposes a cost-effective method for building domain-specific policy topic classifiers. Applying the Comparative Agendas Project (CAP) schema to the multilingual ParlaMint corpus of over 8 million speeches from 28 parliaments of European countries and autonomous regions, we follow a teacher-student framework in which a high-performing large language model (LLM) annotates in-domain training data and a multilingual encoder model is fine-tuned on these annotations for scalable data annotation. We show that this approach produces a classifier tailored to the target domain. Agreement between the LLM and human annotators is comparable to inter-annotator agreement among humans, and the resulting model outperforms existing CAP classifiers trained on manually-annotated but out-of-domain data. In addition to the CAP annotations, the ParlaCAP dataset offers rich speaker and party metadata, as well as sentiment predictions coming from the ParlaSent multilingual transformer model, enabling comparative research on political attention and representation across countries. We illustrate the analytical potential of the dataset with three use cases, examining the distribution of parliamentary attention across policy topics, sentiment patterns in parliamentary speech, and gender differences in policy attention.
comment: 17 pages, 7 figures, 7 tables. Submitted to the PoliticalNLP 2026 workshop, co-located with LREC 2026 conference
☆ Optimizing Soft Prompt Tuning via Structural Evolution
Soft prompt tuning leverages continuous embeddings to capture task-specific information in large pre-trained language models (LLMs), achieving competitive performance in few-shot settings. However, soft prompts rely on high-dimensional, implicit representations and lack explicit semantics and traceable training behaviors, which limits their interpretability. To address this limitation, we propose a soft prompt tuning optimization method based on topological morphological evolution. Specifically, we employ persistent homology from topological data analysis (TDA) to quantify the structural representations of soft prompts in continuous parameter space and their training process evolution. Quantitative analysis shows that topologically stable and compact soft prompts achieve better downstream performance. Based on this empirical observation, we construct a loss function for optimizing soft prompt tuning, termed Topological Soft Prompt Loss (TSLoss). TSLoss guides the model to learn structurally stable adaptations by quantifying inter-parameter connectivity and redundancy. Extensive experiments show that training with TSLoss accelerates convergence and improves tuning performance, providing an interpretable method to understand and optimize soft prompt tuning from structural and topological perspectives.
comment: This manuscript has been submitted to IEEE Transactions on Knowledge and Data Engineering (TKDE) for peer review
☆ From Growing to Looping: A Unified View of Iterative Computation in LLMs
Looping, reusing a block of layers across depth, and depth growing, training shallow-to-deep models by duplicating middle layers, have both been linked to stronger reasoning, but their relationship remains unclear. We provide a mechanistic unification: looped and depth-grown models exhibit convergent depth-wise signatures, including increased reliance on late layers and recurring patterns aligned with the looped or grown block. These shared signatures support the view that their gains stem from a common form of iterative computation. Building on this connection, we show that the two techniques are adaptable and composable: applying inference-time looping to the middle blocks of a depth-grown model improves accuracy on some reasoning primitives by up to $2\times$, despite the model never being trained to loop. Both approaches also adapt better than the baseline when given more in-context examples or additional supervised fine-tuning data. Additionally, depth-grown models achieve the largest reasoning gains when using higher-quality, math-heavy cooldown mixtures, which can be further boosted by adapting a middle block to loop. Overall, our results position depth growth and looping as complementary, practical methods for inducing and scaling iterative computation to improve reasoning.
☆ Learning to Learn from Language Feedback with Social Meta-Learning
Large language models (LLMs) often struggle to learn from corrective feedback within a conversational context. They are rarely proactive in soliciting this feedback, even when faced with ambiguity, which can make their dialogues feel static, one-sided, and lacking the adaptive qualities of human conversation. To address these limitations, we draw inspiration from social meta-learning (SML) in humans - the process of learning how to learn from others. We formulate SML as a finetuning methodology, training LLMs to solicit and learn from language feedback in simulated pedagogical dialogues, where static tasks are converted into interactive social learning problems. SML effectively teaches models to use conversation to solve problems they are unable to solve in a single turn. This capability generalises across domains; SML on math problems produces models that better use feedback to solve coding problems and vice versa. Furthermore, despite being trained only on fully-specified problems, these models are better able to solve underspecified tasks where critical information is revealed over multiple turns. When faced with this ambiguity, SML-trained models make fewer premature answer attempts and are more likely to ask for the information they need. This work presents a scalable approach to developing AI systems that effectively learn from language feedback.
☆ Team of Thoughts: Efficient Test-time Scaling of Agentic Systems through Orchestrated Tool Calling
Existing Multi-Agent Systems (MAS) typically rely on static, homogeneous model configurations, limiting their ability to exploit the distinct strengths of differently post-trained models. To address this, we introduce Team-of-Thoughts, a novel MAS architecture that leverages the complementary capabilities of heterogeneous agents via an orchestrator-tool paradigm. Our framework introduces two key mechanisms to optimize performance: (1) an orchestrator calibration scheme that identifies models with superior coordination capabilities, and (2) a self-assessment protocol where tool agents profile their own domain expertise to account for variations in post-training skills. During inference, the orchestrator dynamically activates the most suitable tool agents based on these proficiency profiles. Experiments on five reasoning and code generation benchmarks show that Team-of-Thoughts delivers consistently superior task performance. Notably, on AIME24 and LiveCodeBench, our approach achieves accuracies of 96.67% and 72.53%, respectively, substantially outperforming homogeneous role-play baselines, which score 80% and 65.93%.
comment: 8 pages
☆ Training Models on Dialects of Translationese Shows How Lexical Diversity and Source-Target Syntactic Similarity Shape Learning
Machine-translated data is widely used in multilingual NLP, particularly when native text is scarce. However, translated text differs systematically from native text. This phenomenon is known as translationese, and it reflects both traces of the source language and characteristic properties of translation itself. In this paper, we study how training on machine-translated data affects small English language models, focusing on how translationese from different source languages shapes linguistic acceptability judgments and language modelling for different domains. We train models on English text translated from 24 typologically and resource-diverse source languages, enabling a systematic analysis of how source language and corpus properties influence what models learn. Our results show that the source language has a clear impact on model behavior: general perplexity is more driven by the lexical diversity of the translated corpus, while grammatical performance is strongly correlated to typological similarity to English, given enough data.
☆ IndicEval: A Bilingual Indian Educational Evaluation Framework for Large Language Models
The rapid advancement of large language models (LLMs) necessitates evaluation frameworks that reflect real-world academic rigor and multilingual complexity. This paper introduces IndicEval, a scalable benchmarking platform designed to assess LLM performance using authentic high-stakes examination questions from UPSC, JEE, and NEET across STEM and humanities domains in both English and Hindi. Unlike synthetic benchmarks, IndicEval grounds evaluation in real examination standards, enabling realistic measurement of reasoning, domain knowledge, and bilingual adaptability. The framework automates assessment using Zero-Shot, Few-Shot, and Chain-of-Thought (CoT) prompting strategies and supports modular integration of new models and languages. Experiments conducted on Gemini 2.0 Flash, GPT-4, Claude, and LLaMA 3-70B reveal three major findings. First, CoT prompting consistently improves reasoning accuracy, with substantial gains across subjects and languages. Second, significant cross-model performance disparities persist, particularly in high-complexity examinations. Third, multilingual degradation remains a critical challenge, with marked accuracy drops in Hindi compared to English, especially under Zero-Shot conditions. These results highlight persistent gaps in bilingual reasoning and domain transfer. Overall, IndicEval provides a practice-oriented, extensible foundation for rigorous, equitable evaluation of LLMs in multilingual educational settings and offers actionable insights for improving reasoning robustness and language adaptability.
☆ TabAgent: A Framework for Replacing Agentic Generative Components with Tabular-Textual Classifiers
Agentic systems, AI architectures that autonomously execute multi-step workflows to achieve complex goals, are often built using repeated large language model (LLM) calls for closed-set decision tasks such as routing, shortlisting, gating, and verification. While convenient, this design makes deployments slow and expensive due to cumulative latency and token usage. We propose TabAgent, a framework for replacing generative decision components in closed-set selection tasks with a compact textual-tabular classifier trained on execution traces. TabAgent (i) extracts structured schema, state, and dependency features from trajectories (TabSchema), (ii) augments coverage with schema-aligned synthetic supervision (TabSynth), and (iii) scores candidates with a lightweight classifier (TabHead). On the long-horizon AppWorld benchmark, TabAgent maintains task-level success while eliminating shortlist-time LLM calls, reducing latency by approximately 95% and inference cost by 85-91%. Beyond tool shortlisting, TabAgent generalizes to other agentic decision heads, establishing a paradigm for learned discriminative replacements of generative bottlenecks in production agent architectures.
☆ Label-Consistent Data Generation for Aspect-Based Sentiment Analysis Using LLM Agents EACL 2026
We propose an agentic data augmentation method for Aspect-Based Sentiment Analysis (ABSA) that uses iterative generation and verification to produce high quality synthetic training examples. To isolate the effect of agentic structure, we also develop a closely matched prompting-based baseline using the same model and instructions. Both methods are evaluated across three ABSA subtasks (Aspect Term Extraction (ATE), Aspect Sentiment Classification (ATSC), and Aspect Sentiment Pair Extraction (ASPE)), four SemEval datasets, and two encoder-decoder models: T5-Base and Tk-Instruct. Our results show that the agentic augmentation outperforms raw prompting in label preservation of the augmented data, especially when the tasks require aspect term generation. In addition, when combined with real data, agentic augmentation provides higher gains, consistently outperforming prompting-based generation. These benefits are most pronounced for T5-Base, while the more heavily pretrained Tk-Instruct exhibits smaller improvements. As a result, augmented data helps T5-Base achieve comparable performance with its counterpart.
comment: Accepted to WASSA Workshop at EACL 2026
☆ Variable-Length Semantic IDs for Recommender Systems
Generative models are increasingly used in recommender systems, both for modeling user behavior as event sequences and for integrating large language models into recommendation pipelines. A key challenge in this setting is the extremely large cardinality of item spaces, which makes training generative models difficult and introduces a vocabulary gap between natural language and item identifiers. Semantic identifiers (semantic IDs), which represent items as sequences of low-cardinality tokens, have recently emerged as an effective solution to this problem. However, existing approaches generate semantic identifiers of fixed length, assigning the same description length to all items. This is inefficient, misaligned with natural language, and ignores the highly skewed frequency structure of real-world catalogs, where popular items and rare long-tail items exhibit fundamentally different information requirements. In parallel, the emergent communication literature studies how agents develop discrete communication protocols, often producing variable-length messages in which frequent concepts receive shorter descriptions. Despite the conceptual similarity, these ideas have not been systematically adopted in recommender systems. In this work, we bridge recommender systems and emergent communication by introducing variable-length semantic identifiers for recommendation. We propose a discrete variational autoencoder with Gumbel-Softmax reparameterization that learns item representations of adaptive length under a principled probabilistic framework, avoiding the instability of REINFORCE-based training and the fixed-length constraints of prior semantic ID methods.
☆ Helpful to a Fault: Measuring Illicit Assistance in Multi-Turn, Multilingual LLM Agents
LLM-based agents execute real-world workflows via tools and memory. These affordances enable ill-intended adversaries to also use these agents to carry out complex misuse scenarios. Existing agent misuse benchmarks largely test single-prompt instructions, leaving a gap in measuring how agents end up helping with harmful or illegal tasks over multiple turns. We introduce STING (Sequential Testing of Illicit N-step Goal execution), an automated red-teaming framework that constructs a step-by-step illicit plan grounded in a benign persona and iteratively probes a target agent with adaptive follow-ups, using judge agents to track phase completion. We further introduce an analysis framework that models multi-turn red-teaming as a time-to-first-jailbreak random variable, enabling analysis tools like discovery curves, hazard-ratio attribution by attack language, and a new metric: Restricted Mean Jailbreak Discovery. Across AgentHarm scenarios, STING yields substantially higher illicit-task completion than single-turn prompting and chat-oriented multi-turn baselines adapted to tool-using agents. In multilingual evaluations across six non-English settings, we find that attack success and illicit-task completion do not consistently increase in lower-resource languages, diverging from common chatbot findings. Overall, STING provides a practical way to evaluate and stress-test agent misuse in realistic deployment settings, where interactions are inherently multi-turn and often multilingual.
☆ MemoryArena: Benchmarking Agent Memory in Interdependent Multi-Session Agentic Tasks
Existing evaluations of agents with memory typically assess memorization and action in isolation. One class of benchmarks evaluates memorization by testing recall of past conversations or text but fails to capture how memory is used to guide future decisions. Another class focuses on agents acting in single-session tasks without the need for long-term memory. However, in realistic settings, memorization and action are tightly coupled: agents acquire memory while interacting with the environment, and subsequently rely on that memory to solve future tasks. To capture this setting, we introduce MemoryArena, a unified evaluation gym for benchmarking agent memory in multi-session Memory-Agent-Environment loops. The benchmark consists of human-crafted agentic tasks with explicitly interdependent subtasks, where agents must learn from earlier actions and feedback by distilling experiences into memory, and subsequently use that memory to guide later actions to solve the overall task. MemoryArena supports evaluation across web navigation, preference-constrained planning, progressive information search, and sequential formal reasoning, and reveals that agents with near-saturated performance on existing long-context memory benchmarks like LoCoMo perform poorly in our agentic setting, exposing a gap in current evaluations for agents with memory.
☆ MultiCW: A Large-Scale Balanced Benchmark Dataset for Training Robust Check-Worthiness Detection Models EACL-2026
Large Language Models (LLMs) are beginning to reshape how media professionals verify information, yet automated support for detecting check-worthy claims a key step in the fact-checking process remains limited. We introduce the Multi-Check-Worthy (MultiCW) dataset, a balanced multilingual benchmark for check-worthy claim detection spanning 16 languages, 7 topical domains, and 2 writing styles. It consists of 123,722 samples, evenly distributed between noisy (informal) and structured (formal) texts, with balanced representation of check-worthy and non-check-worthy classes across all languages. To probe robustness, we also introduce an equally balanced out-of-distribution evaluation set of 27,761 samples in 4 additional languages. To provide baselines, we benchmark 3 common fine-tuned multilingual transformers against a diverse set of 15 commercial and open LLMs under zero-shot settings. Our findings show that fine-tuned models consistently outperform zero-shot LLMs on claim classification and show strong out-of-distribution generalization across languages, domains, and styles. MultiCW provides a rigorous multilingual resource for advancing automated fact-checking and enables systematic comparisons between fine-tuned models and cutting-edge LLMs on the check-worthy claim detection task.
comment: 18 pages, 8 figures, 19 tables, EACL-2026
☆ Aladdin-FTI @ AMIYA Three Wishes for Arabic NLP: Fidelity, Diglossia, and Multidialectal Generation EACL 2026
Arabic dialects have long been under-represented in Natural Language Processing (NLP) research due to their non-standardization and high variability, which pose challenges for computational modeling. Recent advances in the field, such as Large Language Models (LLMs), offer promising avenues to address this gap by enabling Arabic to be modeled as a pluricentric language rather than a monolithic system. This paper presents Aladdin-FTI, our submission to the AMIYA shared task. The proposed system is designed to both generate and translate dialectal Arabic (DA). Specifically, the model supports text generation in Moroccan, Egyptian, Palestinian, Syrian, and Saudi dialects, as well as bidirectional translation between these dialects, Modern Standard Arabic (MSA), and English. The code and trained model are publicly available.
comment: 13 pages, Paper submitted to the AMIYA shared task at the VarDial workshop, co-located with EACL 2026
☆ Lyapunov Spectral Analysis of Speech Embedding Trajectories in Psychosis
We analyze speech embeddings from structured clinical interviews of psychotic patients and healthy controls by treating language production as a high-dimensional dynamical process. Lyapunov exponent (LE) spectra are computed from word-level and answer-level embeddings generated by two distinct large language models, allowing us to assess the stability of the conclusions with respect to different embedding presentations. Word-level embeddings exhibit uniformly contracting dynamics with no positive LE, while answer-level embeddings, in spite of the overall contraction, display a number of positive LEs and higher-dimensional attractors. The resulting LE spectra robustly separate psychotic from healthy speech, while differentiation within the psychotic group is not statistically significant overall, despite a tendency of the most severe cases to occupy distinct dynamical regimes. These findings indicate that nonlinear dynamical invariants of speech embeddings provide a physics-inspired probe of disordered cognition whose conclusions remain stable across embedding models.
comment: 14 pages, 3 figures
☆ Are LLMs Ready to Replace Bangla Annotators?
Large Language Models (LLMs) are increasingly used as automated annotators to scale dataset creation, yet their reliability as unbiased annotators--especially for low-resource and identity-sensitive settings--remains poorly understood. In this work, we study the behavior of LLMs as zero-shot annotators for Bangla hate speech, a task where even human agreement is challenging, and annotator bias can have serious downstream consequences. We conduct a systematic benchmark of 17 LLMs using a unified evaluation framework. Our analysis uncovers annotator bias and substantial instability in model judgments. Surprisingly, increased model scale does not guarantee improved annotation quality--smaller, more task-aligned models frequently exhibit more consistent behavior than their larger counterparts. These results highlight important limitations of current LLMs for sensitive annotation tasks in low-resource languages and underscore the need for careful evaluation before deployment.
☆ Long-Tail Knowledge in Large Language Models: Taxonomy, Mechanisms, Interventions and Implications
Large language models (LLMs) are trained on web-scale corpora that exhibit steep power-law distributions, in which the distribution of knowledge is highly long-tailed, with most appearing infrequently. While scaling has improved average-case performance, persistent failures on low-frequency, domain-specific, cultural, and temporal knowledge remain poorly characterized. This paper develops a structured taxonomy and analysis of long-Tail Knowledge in large language models, synthesizing prior work across technical and sociotechnical perspectives. We introduce a structured analytical framework that synthesizes prior work across four complementary axes: how long-Tail Knowledge is defined, the mechanisms by which it is lost or distorted during training and inference, the technical interventions proposed to mitigate these failures, and the implications of these failures for fairness, accountability, transparency, and user trust. We further examine how existing evaluation practices obscure tail behavior and complicate accountability for rare but consequential failures. The paper concludes by identifying open challenges related to privacy, sustainability, and governance that constrain long-Tail Knowledge representation. Taken together, this paper provides a unifying conceptual framework for understanding how long-Tail Knowledge is defined, lost, evaluated, and manifested in deployed language model systems.
☆ The Validity of Coreference-based Evaluations of Natural Language Understanding
In this thesis, I refine our understanding as to what conclusions we can reach from coreference-based evaluations by expanding existing evaluation practices and considering the extent to which evaluation results are either converging or conflicting. First, I analyze standard coreference evaluations and show that their design often leads to non-generalizable conclusions due to issues of measurement validity - including contestedness (multiple, competing definitions of coreference) and convergent validity (evaluation results that rank models differently across benchmarks). Second, I propose and implement a novel evaluation focused on testing systems' ability to infer the relative plausibility of events, a key aspect of resolving coreference. Through this extended evaluation, I find that contemporary language models demonstrate strong performance on standard benchmarks - improving over earlier baseline systems within certain domains and types of coreference - but remain sensitive to the evaluation conditions: they often fail to generalize in ways one would expect a human to be capable of when evaluation contexts are slightly modified. Taken together, these findings clarify both the strengths, such as improved accuracy over baselines on widely used evaluations, and the limitations of the current NLP paradigm, including weaknesses in measurement validity, and suggest directions for future work in developing better evaluation methods and more genuinely generalizable systems.
comment: PhD Thesis
☆ ModalImmune: Immunity Driven Unlearning via Self Destructive Training
Multimodal systems are vulnerable to partial or complete loss of input channels at deployment, which undermines reliability in real-world settings. This paper presents ModalImmune, a training framework that enforces modality immunity by intentionally and controllably collapsing selected modality information during training so the model learns joint representations that are robust to destructive modality influence. The framework combines a spectrum-adaptive collapse regularizer, an information-gain guided controller for targeted interventions, curvature-aware gradient masking to stabilize destructive updates, and a certified Neumann-truncated hyper-gradient procedure for automatic meta-parameter adaptation. Empirical evaluation on standard multimodal benchmarks demonstrates that ModalImmune improves resilience to modality removal and corruption while retaining convergence stability and reconstruction capacity.
comment: 23 pages, 8 figures
☆ Beyond Learning: A Training-Free Alternative to Model Adaptation
Despite the continuous research and evolution of language models, they sometimes underperform previous versions. Existing approaches to overcome these challenges are resource-intensive, highlighting the need for alternatives that enable immediate action. We assume that each language model has a local module inside that is suitable for a specific function. First, this work identifies a set of modules showing consistent and local activation changes under an inference workload through activation-based analysis. Subsequently, we transplant an internal module that is properly activated for a specific task into the target model, leading to immediate and measurable functional changes without additional training or fine-tuning. To experimentally demonstrate the effectiveness of the transplant technique, we quantify the relationship between transplant strength and performance improvement under different conditions for two language models. In the cross-generation setting, we find that transplanting activation-selected modules can substantially improve the underperforming model, reaching up to twice the target baseline and achieving gap-based recovery above 100%. Moreover, in transplant experiments between a base model and its instruction-tuned counterpart, transplantation improves the underperforming model toward the stronger baseline, yielding up to about 2.33 times the target baseline with gap-based recovery reaching up to 100% in the best case. These results show that meaningful capacity transfer can be realized through the implantation of highly localized modules implied by language models. Overall, this work provides empirical evidence for task-localized modularity in language models and presents a new research area: model transplantation.
comment: 7 pages, 3 figures, 5 tables. Preprint submitted to Pattern Recognition Letters
☆ Learning Personalized Agents from Human Feedback
Modern AI agents are powerful but often fail to align with the idiosyncratic, evolving preferences of individual users. Prior approaches typically rely on static datasets, either training implicit preference models on interaction history or encoding user profiles in external memory. However, these approaches struggle with new users and with preferences that change over time. We introduce Personalized Agents from Human Feedback (PAHF), a framework for continual personalization in which agents learn online from live interaction using explicit per-user memory. PAHF operationalizes a three-step loop: (1) seeking pre-action clarification to resolve ambiguity, (2) grounding actions in preferences retrieved from memory, and (3) integrating post-action feedback to update memory when preferences drift. To evaluate this capability, we develop a four-phase protocol and two benchmarks in embodied manipulation and online shopping. These benchmarks quantify an agent's ability to learn initial preferences from scratch and subsequently adapt to persona shifts. Our theoretical analysis and empirical results show that integrating explicit memory with dual feedback channels is critical: PAHF learns substantially faster and consistently outperforms both no-memory and single-channel baselines, reducing initial personalization error and enabling rapid adaptation to preference shifts.
☆ Discrete Stochastic Localization for Non-autoregressive Generation
Non-autoregressive (NAR) generation reduces decoding latency by predicting many tokens in parallel, but iterative refinement often suffers from error accumulation and distribution shift under self-generated drafts. Masked diffusion language models (MDLMs) and their remasking samplers (e.g., ReMDM) can be viewed as modern NAR iterative refinement, where generation repeatedly revises a partially observed draft. In this work we show that \emph{training alone} can substantially improve the step-efficiency of MDLM/ReMDM sampling. We propose \textsc{DSL} (Discrete Stochastic Localization), which trains a single SNR-invariant denoiser across a continuum of corruption levels, bridging intermediate draft noise and mask-style endpoint corruption within one Diffusion Transformer. On OpenWebText, \textsc{DSL} fine-tuning yields large MAUVE gains at low step budgets, surpassing the MDLM+ReMDM baseline with \(\sim\)4$\times$ fewer denoiser evaluations, and matches autoregressive quality at high budgets. Analyses show improved self-correction and uncertainty calibration, making remasking markedly more compute-efficient.
LLMs Exhibit Significantly Lower Uncertainty in Creative Writing Than Professional Writers
We argue that uncertainty is a key and understudied limitation of LLMs' performance in creative writing, which is often characterized as trite and cliché-ridden. Literary theory identifies uncertainty as a necessary condition for creative expression, while current alignment strategies steer models away from uncertain outputs to ensure factuality and reduce hallucination. We formalize this tension by quantifying the "uncertainty gap" between human-authored stories and model-generated continuations. Through a controlled information-theoretic analysis of 28 LLMs on high-quality storytelling datasets, we demonstrate that human writing consistently exhibits significantly higher uncertainty than model outputs. We find that instruction-tuned and reasoning models exacerbate this trend compared to their base counterparts; furthermore, the gap is more pronounced in creative writing than in functional domains, and strongly correlates to writing quality. Achieving human-level creativity requires new uncertainty-aware alignment paradigms that can distinguish between destructive hallucinations and the constructive ambiguity required for literary richness.
comment: 11 tables
☆ Emotion Collider: Dual Hyperbolic Mirror Manifolds for Sentiment Recovery via Anti Emotion Reflection
Emotional expression underpins natural communication and effective human-computer interaction. We present Emotion Collider (EC-Net), a hyperbolic hypergraph framework for multimodal emotion and sentiment modeling. EC-Net represents modality hierarchies using Poincare-ball embeddings and performs fusion through a hypergraph mechanism that passes messages bidirectionally between nodes and hyperedges. To sharpen class separation, contrastive learning is formulated in hyperbolic space with decoupled radial and angular objectives. High-order semantic relations across time steps and modalities are preserved via adaptive hyperedge construction. Empirical results on standard multimodal emotion benchmarks show that EC-Net produces robust, semantically coherent representations and consistently improves accuracy, particularly when modalities are partially available or contaminated by noise. These findings indicate that explicit hierarchical geometry combined with hypergraph fusion is effective for resilient multimodal affect understanding.
comment: 25 pages, 14 figures
☆ Balancing Faithfulness and Performance in Reasoning via Multi-Listener Soft Execution
Chain-of-thought (CoT) reasoning sometimes fails to faithfully reflect the true computation of a large language model (LLM), hampering its utility in explaining how LLMs arrive at their answers. Moreover, optimizing for faithfulness and interpretability in reasoning often degrades task performance. To address this tradeoff and improve CoT faithfulness, we propose Reasoning Execution by Multiple Listeners (REMUL), a multi-party reinforcement learning approach. REMUL builds on the hypothesis that reasoning traces which other parties can follow will be more faithful. A speaker model generates a reasoning trace, which is truncated and passed to a pool of listener models who "execute" the trace, continuing the trace to an answer. Speakers are rewarded for producing reasoning that is clear to listeners, with additional correctness regularization via masked supervised finetuning to counter the tradeoff between faithfulness and performance. On multiple reasoning benchmarks (BIG-Bench Extra Hard, MuSR, ZebraLogicBench, and FOLIO), REMUL consistently and substantially improves three measures of faithfulness -- hint attribution, early answering area over the curve (AOC), and mistake injection AOC -- while also improving accuracy. Our analysis finds that these gains are robust across training domains, translate to legibility gains, and are associated with shorter and more direct CoTs.
comment: Code: https://github.com/nsivaku/remul
☆ Missing-by-Design: Certifiable Modality Deletion for Revocable Multimodal Sentiment Analysis
As multimodal systems increasingly process sensitive personal data, the ability to selectively revoke specific data modalities has become a critical requirement for privacy compliance and user autonomy. We present Missing-by-Design (MBD), a unified framework for revocable multimodal sentiment analysis that combines structured representation learning with a certifiable parameter-modification pipeline. Revocability is critical in privacy-sensitive applications where users or regulators may request removal of modality-specific information. MBD learns property-aware embeddings and employs generator-based reconstruction to recover missing channels while preserving task-relevant signals. For deletion requests, the framework applies saliency-driven candidate selection and a calibrated Gaussian update to produce a machine-verifiable Modality Deletion Certificate. Experiments on benchmark datasets show that MBD achieves strong predictive performance under incomplete inputs and delivers a practical privacy-utility trade-off, positioning surgical unlearning as an efficient alternative to full retraining.
comment: 21 pages, 6 figures
☆ Eigenmood Space: Uncertainty-Aware Spectral Graph Analysis of Psychological Patterns in Classical Persian Poetry
Classical Persian poetry is a historically sustained archive in which affective life is expressed through metaphor, intertextual convention, and rhetorical indirection. These properties make close reading indispensable while limiting reproducible comparison at scale. We present an uncertainty-aware computational framework for poet-level psychological analysis based on large-scale automatic multi-label annotation. Each verse is associated with a set of psychological concepts, per-label confidence scores, and an abstention flag that signals insufficient evidence. We aggregate confidence-weighted evidence into a Poet $\times$ Concept matrix, interpret each poet as a probability distribution over concepts, and quantify poetic individuality as divergence from a corpus baseline using Jensen--Shannon divergence and Kullback--Leibler divergence. To capture relational structure beyond marginals, we build a confidence-weighted co-occurrence graph over concepts and define an Eigenmood embedding through Laplacian spectral decomposition. On a corpus of 61{,}573 verses across 10 poets, 22.2\% of verses are abstained, underscoring the analytical importance of uncertainty. We further report sensitivity analysis under confidence thresholding, selection-bias diagnostics that treat abstention as a category, and a distant-to-close workflow that retrieves verse-level exemplars along Eigenmood axes. The resulting framework supports scalable, auditable digital-humanities analysis while preserving interpretive caution by propagating uncertainty from verse-level evidence to poet-level inference.
☆ When Semantic Overlap Is Not Enough: Cross-Lingual Euphemism Transfer Between Turkish and English
Euphemisms substitute socially sensitive expressions, often softening or reframing meaning, and their reliance on cultural and pragmatic context complicates modeling across languages. In this study, we investigate how cross-lingual equivalence influences transfer in multilingual euphemism detection. We categorize Potentially Euphemistic Terms (PETs) in Turkish and English into Overlapping (OPETs) and Non-Overlapping (NOPETs) subsets based on their functional, pragmatic, and semantic alignment. Our findings reveal a transfer asymmetry: semantic overlap is insufficient to guarantee positive transfer, particularly in low-resource Turkish-to-English direction, where performance can degrade even for overlapping euphemisms, and in some cases, improve under NOPET-based training. Differences in label distribution help explain these counterintuitive results. Category-level analysis suggests that transfer may be influenced by domain-specific alignment, though evidence is limited by sparsity.
☆ ConvApparel: A Benchmark Dataset and Validation Framework for User Simulators in Conversational Recommenders EACL 2026
The promise of LLM-based user simulators to improve conversational AI is hindered by a critical "realism gap," leading to systems that are optimized for simulated interactions, but may fail to perform well in the real world. We introduce ConvApparel, a new dataset of human-AI conversations designed to address this gap. Its unique dual-agent data collection protocol -- using both "good" and "bad" recommenders -- enables counterfactual validation by capturing a wide spectrum of user experiences, enriched with first-person annotations of user satisfaction. We propose a comprehensive validation framework that combines statistical alignment, a human-likeness score, and counterfactual validation to test for generalization. Our experiments reveal a significant realism gap across all simulators. However, the framework also shows that data-driven simulators outperform a prompted baseline, particularly in counterfactual validation where they adapt more realistically to unseen behaviors, suggesting they embody more robust, if imperfect, user models.
comment: EACL 2026
☆ Meenz bleibt Meenz, but Large Language Models Do Not Speak Its Dialect LREC 2026
Meenzerisch, the dialect spoken in the German city of Mainz, is also the traditional language of the Mainz carnival, a yearly celebration well known throughout Germany. However, Meenzerisch is on the verge of dying out-a fate it shares with many other German dialects. Natural language processing (NLP) has the potential to help with the preservation and revival efforts of languages and dialects. However, so far no NLP research has looked at Meenzerisch. This work presents the first research in the field of NLP that is explicitly focused on the dialect of Mainz. We introduce a digital dictionary-an NLP-ready dataset derived from an existing resource (Schramm, 1966)-to support researchers in modeling and benchmarking the language. It contains 2,351 words in the dialect paired with their meanings described in Standard German. We then use this dataset to answer the following research questions: (1) Can state-of-the-art large language models (LLMs) generate definitions for dialect words? (2) Can LLMs generate words in Meenzerisch, given their definitions? Our experiments show that LLMs can do neither: the best model for definitions reaches only 6.27% accuracy and the best word generation model's accuracy is 1.51%. We then conduct two additional experiments in order to see if accuracy is improved by few-shot learning and by extracting rules from the training set, which are then passed to the LLM. While those approaches are able to improve the results, accuracy remains below 10%. This highlights that additional resources and an intensification of research efforts focused on German dialects are desperately needed.
comment: Accepted at LREC 2026
☆ BanglaSummEval: Reference-Free Factual Consistency Evaluation for Bangla Summarization EACL 2026
Evaluating factual consistency is essential for reliable text summarization, particularly in high-stakes domains such as healthcare and news. However, most existing evaluation metrics overlook Bangla, a widely spoken yet under-resourced language, and often depend on reference summaries. We introduce BanglaSummEval, a reference-free, question-answering-based framework for evaluating factual consistency in Bangla summarization. The proposed method assesses both factual accuracy and content coverage through automatically generated questions and answers derived from the source document and the summary. A single multilingual instruction-tuned language model handles question generation, question answering, candidate answer extraction, and question importance weighting. This unified design reduces system complexity and computational cost. To capture semantic consistency beyond surface-level overlap, we use BERTScore-Recall for answer comparison. We validate BanglaSummEval on 300 human-written summaries from educational and medical domains, demonstrating strong correlation with expert human judgments (Pearson's $r = 0.694$, Spearman's $ρ= 0.763$). By providing interpretable, step-wise diagnostics alongside reliable evaluation scores, BanglaSummEval offers a practical and transparent solution for factual consistency evaluation in low-resource language settings.
comment: Accepted in 2nd LoResLM at EACL 2026
☆ Training Large Reasoning Models Efficiently via Progressive Thought Encoding ICLR 2026
Large reasoning models (LRMs) excel on complex problems but face a critical barrier to efficiency: reinforcement learning (RL) training requires long rollouts for outcome-based rewards, where autoregressive decoding dominates time and memory usage. While sliding-window cache strategies can bound memory, they disrupt long-context reasoning and degrade performance. We introduce Progressive Thought Encoding, a parameter-efficient fine-tuning method that enables LRMs to reason effectively under fixed-size caches. By progressively encoding intermediate reasoning into fixed-size vector representations, our approach eliminates the need to backpropagate through full-cache rollouts, thereby reducing memory usage, while maintaining constant memory during inference. Experiments on three models, including Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct, and DeepSeek-R1-Distill-Llama-8B, on six widely used challenging mathematical benchmarks show consistent gains: our method achieves +19.3% improvement over LoRA-based fine-tuning and +29.9% over LRMs without fine-tuning on average, with up to +23.4 accuracy improvement on AIME2024/2025 under the same tight cache budgets. These results demonstrate that Progressive Thought Encoding not only improves reasoning accuracy but also makes RL training of LRMs substantially more efficient and scalable under real-world memory constraints.
comment: ICLR 2026, 15 pages
☆ Claim Automation using Large Language Model
While Large Language Models (LLMs) have achieved strong performance on general-purpose language tasks, their deployment in regulated and data-sensitive domains, including insurance, remains limited. Leveraging millions of historical warranty claims, we propose a locally deployed governance-aware language modeling component that generates structured corrective-action recommendations from unstructured claim narratives. We fine-tune pretrained LLMs using Low-Rank Adaptation (LoRA), scoping the model to an initial decision module within the claim processing pipeline to speed up claim adjusters' decisions. We assess this module using a multi-dimensional evaluation framework that combines automated semantic similarity metrics with human evaluation, enabling a rigorous examination of both practical utility and predictive accuracy. Our results show that domain-specific fine-tuning substantially outperforms commercial general-purpose and prompt-based LLMs, with approximately 80% of the evaluated cases achieving near-identical matches to ground-truth corrective actions. Overall, this study provides both theoretical and empirical evidence to prove that domain-adaptive fine-tuning can align model output distributions more closely with real-world operational data, demonstrating its promise as a reliable and governable building block for insurance applications.
comment: 46 pages, 12 figures. Code and data processing pipeline described
☆ IndicJR: A Judge-Free Benchmark of Jailbreak Robustness in South Asian Languages EACL
Safety alignment of large language models (LLMs) is mostly evaluated in English and contract-bound, leaving multilingual vulnerabilities understudied. We introduce \textbf{Indic Jailbreak Robustness (IJR)}, a judge-free benchmark for adversarial safety across 12 Indic and South Asian languages (2.1 Billion speakers), covering 45216 prompts in JSON (contract-bound) and Free (naturalistic) tracks. IJR reveals three patterns. (1) Contracts inflate refusals but do not stop jailbreaks: in JSON, LLaMA and Sarvam exceed 0.92 JSR, and in Free all models reach 1.0 with refusals collapsing. (2) English to Indic attacks transfer strongly, with format wrappers often outperforming instruction wrappers. (3) Orthography matters: romanized or mixed inputs reduce JSR under JSON, with correlations to romanization share and tokenization (approx 0.28 to 0.32) indicating systematic effects. Human audits confirm detector reliability, and lite-to-full comparisons preserve conclusions. IJR offers a reproducible multilingual stress test revealing risks hidden by English-only, contract-focused evaluations, especially for South Asian users who frequently code-switch and romanize.
comment: Accepted in EACL Industry Track Oral, 2026
☆ Hybrid-Gym: Training Coding Agents to Generalize Across Tasks
When assessing the quality of coding agents, predominant benchmarks focus on solving single issues on GitHub, such as SWE-Bench. In contrast, in real use, these agents solve more various and complex tasks that involve other skills such as exploring codebases, testing software, and designing architecture. In this paper, we first characterize some transferable skills that are shared across diverse tasks by decomposing trajectories into fine-grained components, and derive a set of principles for designing auxiliary training tasks to teach language models these skills. Guided by these principles, we propose a training environment, Hybrid-Gym, consisting of a set of scalable synthetic tasks, such as function localization and dependency search. Experiments show that agents trained on our synthetic tasks effectively generalize to diverse real-world tasks that are not present in training, improving a base model by 25.4% absolute gain on SWE-Bench Verified, 7.9% on SWT-Bench Verified, and 5.1% on Commit-0 Lite. Hybrid-Gym also complements datasets built for the downstream tasks (e.g., improving SWE-Play by 4.9% on SWT-Bench Verified). Code available at: https://github.com/yiqingxyq/Hybrid-Gym.
☆ One-step Language Modeling via Continuous Denoising
Language models based on discrete diffusion have attracted widespread interest for their potential to provide faster generation than autoregressive models. In practice, however, they exhibit a sharp degradation of sample quality in the few-step regime, failing to realize this promise. Here we show that language models leveraging flow-based continuous denoising can outperform discrete diffusion in both quality and speed. By revisiting the fundamentals of flows over discrete modalities, we build a flow-based language model (FLM) that performs Euclidean denoising over one-hot token encodings. We show that the model can be trained by predicting the clean data via a cross entropy objective, where we introduce a simple time reparameterization that greatly improves training stability and generation quality. By distilling FLM into its associated flow map, we obtain a distilled flow map language model (FMLM) capable of few-step generation. On the LM1B and OWT language datasets, FLM attains generation quality matching state-of-the-art discrete diffusion models. With FMLM, our approach outperforms recent few-step language models across the board, with one-step generation exceeding their 8-step quality. Our work calls into question the widely held hypothesis that discrete diffusion processes are necessary for generative modeling over discrete modalities, and paves the way toward accelerated flow-based language modeling at scale. Code is available at https://github.com/david3684/flm.
comment: 39 pages, 17 figures
☆ Evaluating Monolingual and Multilingual Large Language Models for Greek Question Answering: The DemosQA Benchmark
Recent advancements in Natural Language Processing and Deep Learning have enabled the development of Large Language Models (LLMs), which have significantly advanced the state-of-the-art across a wide range of tasks, including Question Answering (QA). Despite these advancements, research on LLMs has primarily targeted high-resourced languages (e.g., English), and only recently has attention shifted toward multilingual models. However, these models demonstrate a training data bias towards a small number of popular languages or rely on transfer learning from high- to under-resourced languages; this may lead to a misrepresentation of social, cultural, and historical aspects. To address this challenge, monolingual LLMs have been developed for under-resourced languages; however, their effectiveness remains less studied when compared to multilingual counterparts on language-specific tasks. In this study, we address this research gap in Greek QA by contributing: (i) DemosQA, a novel dataset, which is constructed using social media user questions and community-reviewed answers to better capture the Greek social and cultural zeitgeist; (ii) a memory-efficient LLM evaluation framework adaptable to diverse QA datasets and languages; and (iii) an extensive evaluation of 11 monolingual and multilingual LLMs on 6 human-curated Greek QA datasets using 3 different prompting strategies. We release our code and data to facilitate reproducibility.
☆ References Improve LLM Alignment in Non-Verifiable Domains ICLR 2026
While Reinforcement Learning with Verifiable Rewards (RLVR) has shown strong effectiveness in reasoning tasks, it cannot be directly applied to non-verifiable domains lacking ground-truth verifiers, such as LLM alignment. In this work, we investigate whether reference-guided LLM-evaluators can bridge this gap by serving as soft "verifiers". First, we design evaluation protocols that enhance LLM-based evaluators for LLM alignment using reference outputs. Through comprehensive experiments, we show that a reference-guided approach substantially improves the accuracy of less capable LLM-judges using references from frontier models; stronger LLM-judges can also be enhanced by high-quality (i.e., human-written) references. Building on these improved judges, we demonstrate the utility of high-quality references in alignment tuning, where LLMs guided with references are used as judges to self-improve. We show that reference-guided self-improvement yields clear gains over both direct SFT on reference outputs and self-improvement with reference-free judges, achieving performance comparable to training with ArmoRM, a strong finetuned reward model. Specifically, our method achieves 73.1% and 58.7% on AlpacaEval and Arena-Hard with Llama-3-8B-Instruct, and 70.0% and 74.1% with Qwen2.5-7B, corresponding to average absolute gains of +20.2 / +17.1 points over SFT distillation and +5.3 / +3.6 points over reference-free self-improvement on AlpacaEval / Arena-Hard. These results highlight the potential of using reference-guided LLM-evaluators to enable effective LLM post-training in non-verifiable domains.
comment: ICLR 2026 Camera Ready
☆ Better Think Thrice: Learning to Reason Causally with Double Counterfactual Consistency
Despite their strong performance on reasoning benchmarks, large language models (LLMs) have proven brittle when presented with counterfactual questions, suggesting weaknesses in their causal reasoning ability. While recent work has demonstrated that labeled counterfactual tasks can be useful benchmarks of LLMs' causal reasoning, producing such data at the scale required to cover the vast potential space of counterfactuals is limited. In this work, we introduce double counterfactual consistency (DCC), a lightweight inference-time method for measuring and guiding the ability of LLMs to reason causally. Without requiring labeled counterfactual data, DCC verifies a model's ability to execute two important elements of causal reasoning: causal intervention and counterfactual prediction. Using DCC, we evaluate the causal reasoning abilities of various leading LLMs across a range of reasoning tasks and interventions. Moreover, we demonstrate the effectiveness of DCC as a training-free test-time rejection sampling criterion and show that it can directly improve performance on reasoning tasks across multiple model families.
☆ Omitted Variable Bias in Language Models Under Distribution Shift
Despite their impressive performance on a wide variety of tasks, modern language models remain susceptible to distribution shifts, exhibiting brittle behavior when evaluated on data that differs in distribution from their training data. In this paper, we describe how distribution shifts in language models can be separated into observable and unobservable components, and we discuss how established approaches for dealing with distribution shift address only the former. Importantly, we identify that the resulting omitted variable bias from unobserved variables can compromise both evaluation and optimization in language models. To address this challenge, we introduce a framework that maps the strength of the omitted variables to bounds on the worst-case generalization performance of language models under distribution shift. In empirical experiments, we show that using these bounds directly in language model evaluation and optimization provides more principled measures of out-of-distribution performance, improves true out-of-distribution performance relative to standard distribution shift adjustment methods, and further enables inference about the strength of the omitted variables when target distribution labels are available.
☆ PREFER: An Ontology for the PREcision FERmentation Community
Precision fermentation relies on microbial cell factories to produce sustainable food, pharmaceuticals, chemicals, and biofuels. Specialized laboratories such as biofoundries are advancing these processes using high-throughput bioreactor platforms, which generate vast datasets. However, the lack of community standards limits data accessibility and interoperability, preventing integration across platforms. In order to address this, we introduce PREFER, an open-source ontology designed to establish a unified standard for bioprocess data. Built in alignment with the widely adopted Basic Formal Ontology (BFO) and connecting with several other community ontologies, PREFER ensures consistency and cross-domain compatibility and covers the whole precision fermentation process. Integrating PREFER into high-throughput bioprocess development workflows enables structured metadata that supports automated cross-platform execution and high-fidelity data capture. Furthermore, PREFER's standardization has the potential to bridge disparate data silos, generating machine-actionable datasets critical for training predictive, robust machine learning models in synthetic biology. This work provides the foundation for scalable, interoperable bioprocess systems and supports the transition toward more data-driven bioproduction.
♻ ☆ Semantic Chunking and the Entropy of Natural Language
The entropy rate of printed English is famously estimated to be about one bit per character, a benchmark that modern large language models (LLMs) have only recently approached. This entropy rate implies that English contains nearly 80 percent redundancy relative to the five bits per character expected for random text. We introduce a statistical model that attempts to capture the intricate multi-scale structure of natural language, providing a first-principles account of this redundancy level. Our model describes a procedure of self-similarly segmenting text into semantically coherent chunks down to the single-word level. The semantic structure of the text can then be hierarchically decomposed, allowing for analytical treatment. Numerical experiments with modern LLMs and open datasets suggest that our model quantitatively captures the structure of real texts at different levels of the semantic hierarchy. The entropy rate predicted by our model agrees with the estimated entropy rate of printed English. Moreover, our theory further reveals that the entropy rate of natural language is not fixed but should increase systematically with the semantic complexity of corpora, which are captured by the only free parameter in our model.
comment: 29 pages, 9 figures; typos fixed
♻ ☆ Benchmarking Large Language Models on Answering and Explaining Challenging Medical Questions NAACL 2025
LLMs have demonstrated impressive performance in answering medical questions, such as achieving passing scores on medical licensing examinations. However, medical board exams or general clinical questions do not capture the complexity of realistic clinical cases. Moreover, the lack of reference explanations means we cannot easily evaluate the reasoning of model decisions, a crucial component of supporting doctors in making complex medical decisions. To address these challenges, we construct two new datasets: JAMA Clinical Challenge and Medbullets. Datasets and code are available at https://github.com/HanjieChen/ChallengeClinicalQA. JAMA Clinical Challenge consists of questions based on challenging clinical cases, while Medbullets comprises simulated clinical questions. Both datasets are structured as multiple-choice question-answering tasks, accompanied by expert-written explanations. We evaluate seven LLMs on the two datasets using various prompts. Experiments demonstrate that our datasets are harder than previous benchmarks. In-depth automatic and human evaluations of model-generated explanations provide insights into the promise and deficiency of LLMs for explainable medical QA.
comment: NAACL 2025
♻ ☆ DIAL: Direct Iterative Adversarial Learning for Realistic Multi-Turn Dialogue Simulation
Realistic user simulation is crucial for training and evaluating multi-turn dialogue systems, yet creating simulators that accurately replicate human behavior remains a significant challenge. An effective simulator must expose the failure modes of the systems under evaluation. This work introduces Direct Iterative Adversarial Learning (DIAL), a DPO-based adversarial training framework that iteratively enhances user simulator realism through a competitive dynamic between a generator (user simulator) and a discriminator. When applied to mental health support, a domain characterized by diverse failure types and a critical dependence on realistic user behavior for failure detection, DIAL restores lexical diversity diminished by supervised fine-tuning and reduces discriminator accuracy from near-perfect to near-random levels. The resulting simulator exhibits a strong correlation between simulated and real failure occurrence rates while maintaining low distributional divergence of failure modes. These findings indicate that DIAL is a promising method for developing realistic user simulators in multi-turn dialogue, facilitating rapid, reliable, and cost-effective system evaluation prior to deployment.
♻ ☆ EconEvals: Benchmarks and Litmus Tests for Economic Decision-Making by LLM Agents
We develop evaluation methods for measuring the economic decision-making capabilities and tendencies of LLMs. First, we develop benchmarks derived from key problems in economics -- procurement, scheduling, and pricing -- that test an LLM's ability to learn from the environment in context. Second, we develop the framework of litmus tests, evaluations that quantify an LLM's choice behavior on a stylized decision-making task with multiple conflicting objectives. Each litmus test outputs a litmus score, which quantifies an LLM's tradeoff response, a reliability score, which measures the coherence of an LLM's choice behavior, and a competency score, which measures an LLM's capability at the same task when the conflicting objectives are replaced by a single, well-specified objective. Evaluating a broad array of frontier LLMs, we (1) investigate changes in LLM capabilities and tendencies over time, (2) derive economically meaningful insights from the LLMs' choice behavior and chain-of-thought, (3) validate our litmus test framework by testing self-consistency, robustness, and generalizability. Overall, this work provides a foundation for evaluating LLM agents as they are further integrated into economic decision-making.
comment: v3 was a major revision with updated experiments and analysis; v4 consists of minor edits
♻ ☆ Mixture-of-Experts as Soft Clustering: A Dual Jacobian-PCA Spectral Geometry Perspective
Mixture-of-Experts (MoE) architectures are widely used for efficiency and conditional computation, but their effect on the geometry of learned functions and representations remains poorly understood. We study MoEs through a geometric lens, interpreting routing as soft partitioning into overlapping expert-local charts. We introduce a Dual Jacobian-PCA spectral probe that analyzes local function geometry via Jacobian singular value spectra and representation geometry via weighted PCA of routed hidden states. Using a controlled MLP-MoE setting with exact Jacobian computation, we compare dense, Top-k, and fully soft routing under matched capacity. Across random seeds, MoE routing consistently reduces local sensitivity: expert-local Jacobians show smaller leading singular values and faster spectral decay than dense baselines. Weighted PCA reveals that expert-local representations distribute variance across more principal directions, indicating higher effective rank. We further observe low alignment among expert Jacobians, suggesting decomposition into low-overlap expert-specific transformations. Routing sharpness modulates these effects: Top-k routing yields more concentrated, lower-rank expert structure, while fully soft routing produces broader, higher-rank representations. Experiments on a 3-layer transformer with WikiText confirm curvature reduction on natural language and show lower cross-expert alignment for Top-k routing. These findings support interpreting MoEs as soft partitionings of function space that flatten local curvature while redistributing representation variance, yielding testable predictions for expert scaling, hallucination reduction, and ensemble diversity.
♻ ☆ Standardizing the Measurement of Text Diversity: A Tool and a Comparative Analysis of Scores AACL 2025
The diversity across outputs generated by LLMs shapes perception of their quality and utility. High lexical diversity is often desirable, but there is no standard method to measure this property. Templated answer structures and ``canned'' responses across different documents are readily noticeable, but difficult to visualize across large corpora. This work aims to standardize measurement of text diversity. Specifically, we empirically investigate the convergent validity of existing scores across English texts, and we release diversity, an open-source Python package for measuring and extracting repetition in text. We also build a platform based on diversity for users to interactively explore repetition in text. We find that fast compression algorithms capture information similar to what is measured by slow-to-compute $n$-gram overlap homogeneity scores. Further, a combination of measures -- compression ratios, self-repetition of long $n$-grams, and Self-BLEU and BERTScore -- are sufficient to report, as they have low mutual correlation with each other.
comment: AACL 2025
♻ ☆ Lossless Vocabulary Reduction for Auto-Regressive Language Models ICLR 2026
Tokenization -- the process of decomposing a given text into a sequence of subwords called tokens -- is one of the key components in the development of language models. Particularly, auto-regressive language models generate texts token by token, i.e., by predicting the next-token distribution given the previous ones, and thus tokenization directly affects their efficiency in text generation. Since each language model has their own vocabulary as a set of possible tokens, they struggle to cooperate with each other at the level of next-token distributions such as model ensemble. In this paper, we establish a theoretical framework of lossless vocabulary reduction, which efficiently converts a given auto-regressive language model into the one with an arbitrarily small vocabulary without any loss in accuracy. This framework allows language models with different tokenization to cooperate with each other efficiently by reduction to their maximal common vocabulary. Specifically, we empirically demonstrate its applicability to model ensemble with different tokenization.
comment: The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ A Content-Based Framework for Cybersecurity Refusal Decisions in Large Language Models
Large language models and LLM-based agents are increasingly used for cybersecurity tasks that are inherently dual-use. Existing approaches to refusal, spanning academic policy frameworks and commercially deployed systems, often rely on broad topic-based bans or offensive-focused taxonomies. As a result, they can yield inconsistent decisions, over-restrict legitimate defenders, and behave brittlely under obfuscation or request segmentation. We argue that effective refusal requires explicitly modeling the trade-off between offensive risk and defensive benefit, rather than relying solely on intent or offensive classification. In this paper, we introduce a content-based framework for designing and auditing cyber refusal policies that makes offense-defense tradeoffs explicit. The framework characterizes requests along five dimensions: Offensive Action Contribution, Offensive Risk, Technical Complexity, Defensive Benefit, and Expected Frequency for Legitimate Users, grounded in the technical substance of the request rather than stated intent. We demonstrate that this content-grounded approach resolves inconsistencies in current frontier model behavior and allows organizations to construct tunable, risk-aware refusal policies.
♻ ☆ Integrating Chain-of-Thought and Retrieval Augmented Generation Enhances Rare Disease Diagnosis from Clinical Notes
Background: Several studies show that large language models (LLMs) struggle with phenotype-driven gene prioritization for rare diseases. These studies typically use Human Phenotype Ontology (HPO) terms to prompt foundation models like GPT and LLaMA to predict candidate genes. However, in real-world settings, foundation models are not optimized for domain-specific tasks like clinical diagnosis, yet inputs are unstructured clinical notes rather than standardized terms. How LLMs can be instructed to predict candidate genes or disease diagnosis from unstructured clinical notes remains a major challenge. Methods: We introduce RAG-driven CoT and CoT-driven RAG, two methods that combine Chain-of-Thought (CoT) and Retrieval Augmented Generation (RAG) to analyze clinical notes. A five-question CoT protocol mimics expert reasoning, while RAG retrieves data from sources like HPO and OMIM (Online Mendelian Inheritance in Man). We evaluated these approaches on rare disease datasets, including 5,980 Phenopacket-derived notes, 255 literature-based narratives, and 220 in-house clinical notes from Childrens Hospital of Philadelphia. Results: We found that recent foundations models, including Llama 3.3-70B-Instruct and DeepSeek-R1-Distill-Llama-70B, outperformed earlier versions such as Llama 2 and GPT-3.5. We also showed that RAG-driven CoT and CoT-driven RAG both outperform foundation models in candidate gene prioritization from clinical notes; in particular, both methods with DeepSeek backbone resulted in a top-10 gene accuracy of over 40% on Phenopacket-derived clinical notes. RAG-driven CoT works better for high-quality notes, where early retrieval can anchor the subsequent reasoning steps in domain-specific evidence, while CoT-driven RAG has advantage when processing lengthy and noisy notes.
♻ ☆ SNAP-UQ: Self-supervised Next-Activation Prediction for Single-Pass Uncertainty in TinyML ICLR 2026
Reliable uncertainty estimation is a key missing piece for on-device monitoring in TinyML: microcontrollers must detect failures, distribution shift, or accuracy drops under strict flash/latency budgets, yet common uncertainty approaches (deep ensembles, MC dropout, early exits, temporal buffering) typically require multiple passes, extra branches, or state that is impractical on milliwatt hardware. This paper proposes a novel and practical method, SNAP-UQ, for single-pass, label-free uncertainty estimation based on depth-wise next-activation prediction. SNAP-UQ taps a small set of backbone layers and uses tiny int8 heads to predict the mean and scale of the next activation from a low-rank projection of the previous one; the resulting standardized prediction error forms a depth-wise surprisal signal that is aggregated and mapped through a lightweight monotone calibrator into an actionable uncertainty score. The design introduces no temporal buffers or auxiliary exits and preserves state-free inference, while increasing deployment footprint by only a few tens of kilobytes. Across vision and audio backbones, SNAP-UQ reduces flash and latency relative to early-exit and deep-ensemble baselines (typically $\sim$40--60% smaller and $\sim$25--35% faster), with several competing methods at similar accuracy often exceeding MCU memory limits. On corrupted streams, it improves accuracy-drop event detection by multiple AUPRC points and maintains strong failure detection (AUROC $\approx 0.9$) in a single forward pass. By grounding uncertainty in layer-to-layer dynamics rather than solely in output confidence, SNAP-UQ offers a novel, resource-efficient basis for robust TinyML monitoring. Our code is available at: https://github.com/Ism-ail11/SNAP-UQ
comment: Published as a conference paper at ICLR 2026
♻ ☆ When Stereotypes GTG: The Impact of Predictive Text Suggestions on Gender Bias in Human-AI Co-Writing
AI-based systems such as language models have been shown to replicate and even amplify social biases reflected in their training data. Among other questionable behaviors, this can lead to AI-generated text--and text suggestions--that contain normatively inappropriate stereotypical associations. Little is known, however, about how this behavior impacts the writing produced by people using these systems. We address this gap by measuring how much impact stereotypes or anti-stereotypes in English single-word LM predictive text suggestions have on the stories that people write using those tools in a co-writing scenario. We find that ($n=414$), LM suggestions that challenge stereotypes sometimes lead to a significantly increased rate of anti-stereotypical co-written stories. However, despite this increased rate of anti-stereotypical stories, pro-stereotypical narratives still dominated the co-written stories, demonstrating that technical debiasing is only a partially effective strategy to alleviate harms from human-AI collaboration.
comment: CHI 2026
♻ ☆ FeatBench: Towards More Realistic Evaluation of Feature-level Code Generation
Evaluating Large Language Models (LLMs) on repository-level feature implementation is a critical frontier in software engineering. However, establishing a benchmark that faithfully mirrors realistic development scenarios remains a significant challenge. Existing feature-level benchmarks generally suffer from two primary limitations: unrealistic task inputs enriched with code hints and significant data leakage risks due to their static nature. To address these limitations, we propose a new benchmark - FeatBench, which introduces the following advances: (1) Realistic Task Inputs. Task inputs consist solely of natural language requirements, strictly devoid of code hints (e.g., function signatures). This format mirrors realistic software development by requiring agents to independently bridge the gap between abstract user intent and concrete code changes. (2) Evolving Data. FeatBench employs a fully automated pipeline to construct new benchmark versions from the latest repositories, effectively mitigating data contamination. The initial release comprises 157 tasks sourced from 27 actively maintained repositories. We evaluate two state-of-the-art agent frameworks with four leading LLMs on FeatBench. The results reveal that FeatBench poses a significant challenge, with the highest resolved rate reaching only 29.94%. Crucially, our analysis uncovers a prevalent behavioral pattern of aggressive implementation, which leads to "scope creep" and widespread regressions where agents break existing features by diverging from the user's explicit intent. We release FeatBench, our automated pipeline, and all experimental results to facilitate further community research.
♻ ☆ When Algorithms Meet Artists: Semantic Compression of Artists' Concerns in the Public AI-Art Debate
Artists occupy a paradoxical position in generative AI: their work trains the models reshaping creative labor. We tested whether their concerns achieve proportional representation in public discourse shaping AI governance. Analyzing public AI-art discourse (news, podcasts, legal filings, research; 2013--2025) and projecting 1,259 survey-derived artist statements into this semantic space, we find stark compression: 95% of artist concerns cluster in 4 of 22 discourse topics, while 14 topics (62% of discourse) contain no artist perspective. This compression is selective - governance concerns (ownership, transparency) are 7x underrepresented; affective themes (threat, utility) show only 1.4x underrepresentation after style controls. The pattern indicates semantic, not stylistic, marginalization. These findings demonstrate a measurable representational gap: decision-makers relying on public discourse as a proxy for stakeholder priorities will systematically underweight those most affected. We introduce a consensus-based semantic projection methodology that is currently being validated across domains and generalizes to other stakeholder-technology contexts.
comment: 35 pages, 5 figures, 4 tables
♻ ☆ STAPO: Stabilizing Reinforcement Learning for LLMs by Silencing Rare Spurious Tokens
Reinforcement Learning (RL) has significantly improved large language model reasoning, but existing RL fine-tuning methods rely heavily on heuristic techniques such as entropy regularization and reweighting to maintain stability. In practice, they often suffer from late-stage performance collapse, leading to degraded reasoning quality and unstable training. Our analysis shows that the magnitude of token-wise policy gradients in RL is negatively correlated with token probability and local policy entropy. We find that training instability can be caused by a tiny fraction of tokens, approximately 0.01\%, which we term \emph{spurious tokens}. When such tokens appear in correct responses, they contribute little to the reasoning outcome but inherit the full sequence-level reward, leading to abnormally amplified gradient updates. To mitigate this instability, we design S2T (silencing spurious tokens) mechanism to efficiently identify spurious tokens through characteristic signals with low probability, low entropy, and positive advantage, and then to suppress their gradient perturbations during optimization. Incorporating this mechanism into a group-based objective, we propose Spurious-Token-Aware Policy Optimization (STAPO), which promotes stable and effective large-scale model refinement. Across six mathematical reasoning benchmarks using Qwen 1.7B, 8B, and 14B base models, STAPO consistently demonstrates superior entropy stability and achieves an average performance improvement of 7.13\% ($ρ_{\mathrm{T}}$=1.0, top-p=1.0) and 3.69\% ($ρ_{\mathrm{T}}$=0.7, top-p=0.9) over GRPO, 20-Entropy and JustRL.
♻ ☆ Language and Experience: A Computational Model of Social Learning in Complex Tasks
The ability to combine linguistic guidance from others with direct experience is central to human development, enabling safe and rapid learning in new environments. How do people integrate these two sources of knowledge, and how might AI systems? We present a computational framework that models social learning as joint probabilistic inference over structured, executable world models given sensorimotor and linguistic data. We make this possible by turning a pretrained language model into a probabilistic model of how humans share advice conditioned on their beliefs, allowing our agents both to generate advice for others and to interpret linguistic input as evidence during Bayesian inference. Using behavioral experiments and simulations across 10 video games, we show how linguistic guidance can shape exploration and accelerate learning by reducing risky interactions and speeding up key discoveries in both humans and models. We further explore how knowledge can accumulate across generations through iterated learning experiments and demonstrate successful knowledge transfer between humans and models -- revealing how structured, language-compatible representations might enable human-machine collaborative learning.
comment: Code: github.com/ccolas/language_and_experience Demo: cedriccolas.com/demos/language_and_experience
♻ ☆ Mastering Olympiad-Level Physics with Artificial Intelligence
Olympiad-level physics problem-solving significantly challenges both humans and artificial intelligence (AI), as it requires integrating appropriate modeling, application of physical principles, and precise calculation within long reasoning processes. In this paper, we introduce LOCA (LOgical Chain Augmentation), an AI agent framework designed for complex physics reasoning. LOCA decomposes long reasoning into serialized atomic and verifiable steps, refining the solution through an augment-review loop. We evaluate LOCA on the 2025 Chinese Physics Olympiad (CPhO) theory examination, a rigorous testbed renowned for its depth and complexity. The framework achieves a near-perfect score of 313 out of 320 points, significantly surpassing the top human competitor and other baseline methods. Furthermore, LOCA attains a near-perfect score of 28.6 out of 30 on the IPhO 2025 examination, demonstrating its strong generalizability across different contexts. Our work points toward the development of trustworthy AI partners in both research and education.
comment: 8 pages, 3 figures, Content from the previous article 2510.01249 is included
♻ ☆ CAST: Character-and-Scene Episodic Memory for Agents
Episodic memory is a central component of human memory, which refers to the ability to recall coherent events grounded in who, when, and where. However, most agent memory systems only emphasize semantic recall and treat experience as structures such as key-value, vector, or graph, which makes them struggle to represent and retrieve coherent events. To address this challenge, we propose a Character-and-Scene based memory architecture(CAST) inspired by dramatic theory. Specifically, CAST constructs 3D scenes (time/place/topic) and organizes them into character profiles that summarize the events of a character to represent episodic memory. Moreover, CAST complements this episodic memory with a graph-based semantic memory, which yields a robust dual memory design. Experiments demonstrate that CAST has averagely improved 8.11% F1 and 10.21% J(LLM-as-a-Judge) than baselines on various datasets, especially on open and time-sensitive conversational questions.
♻ ☆ PoeTone: A Framework for Constrained Generation of Structured Chinese Songci with LLMs
This paper presents a systematic investigation into the constrained generation capabilities of large language models (LLMs) in producing Songci, a classical Chinese poetry form characterized by strict structural, tonal, and rhyme constraints defined by Cipai templates. We first develop a comprehensive, multi-faceted evaluation framework that includes: (i) a formal conformity score, (ii) automated quality assessment using LLMs, (iii) human evaluation, and (iv) classification-based probing tasks. Using this framework, we evaluate the generative performance of 18 LLMs, including 3 proprietary models and 15 open-source models across 4 families, under five prompting strategies: zero-shot, one-shot, completion-based, instruction-based, and chain-of-thought. Finally, we propose a Generate-Critic architecture in which the evaluation framework functions as an automated critic. Leveraging the critic's feedback as a scoring function for best-of-N selection, we fine-tune 3 lightweight open-source LLMs via supervised fine-tuning (SFT), resulting in improvements of up to 5.88% in formal conformity. Our findings offer new insights into the generative strengths and limitations of LLMs in producing culturally significant and formally constrained literary texts.
♻ ☆ When Models Examine Themselves: Vocabulary-Activation Correspondence in Self-Referential Processing
Large language models produce rich introspective language when prompted for self-examination, but whether this language reflects internal computation or sophisticated confabulation has remained unclear. We show that self-referential vocabulary tracks concurrent activation dynamics, and that this correspondence is specific to self-referential processing. We introduce the Pull Methodology, a protocol that elicits extended self-examination through format engineering, and use it to identify a direction in activation space that distinguishes self-referential from descriptive processing in Llama 3.1. The direction is orthogonal to the known refusal direction, localised at 6.25% of model depth, and causally influences introspective output when used for steering. When models produce "loop" vocabulary, their activations exhibit higher autocorrelation (r = 0.44, p = 0.002); when they produce "shimmer" vocabulary under steering, activation variability increases (r = 0.36, p = 0.002). Critically, the same vocabulary in non-self-referential contexts shows no activation correspondence despite nine-fold higher frequency. Qwen 2.5-32B, with no shared training, independently develops different introspective vocabulary tracking different activation metrics, all absent in descriptive controls. The findings indicate that self-report in transformer models can, under appropriate conditions, reliably track internal computational states.
comment: Code and data: https://doi.org/10.5281/zenodo.18567446 Repro: https://github.com/patternmatcher/TRACE-REPRO
♻ ☆ Embedding Inversion via Conditional Masked Diffusion Language Models
We frame embedding inversion as conditional masked diffusion, recovering all tokens in parallel through iterative denoising rather than sequential autoregressive generation. A masked diffusion language model is conditioned on the target embedding via adaptive layer normalization, requiring only 8 forward passes with no access to the target encoder at inference time. On 32-token sequences across three embedding models, the method achieves token recovery through parallel denoising without requiring encoder access, iterative correction, or architecture-specific alignment. Source code and live demo are available at https://github.com/jina-ai/embedding-inversion-demo.
comment: 8 pages, 3 figures, 4 tables. Code and demo: https://github.com/jina-ai/embedding-inversion-demo
♻ ☆ Evaluating Language Model Agency through Negotiations ICLR 2024
We introduce an approach to evaluate language model (LM) agency using negotiation games. This approach better reflects real-world use cases and addresses some of the shortcomings of alternative LM benchmarks. Negotiation games enable us to study multi-turn, and cross-model interactions, modulate complexity, and side-step accidental evaluation data leakage. We use our approach to test six widely used and publicly accessible LMs, evaluating performance and alignment in both self-play and cross-play settings. Noteworthy findings include: (i) only closed-source models tested here were able to complete these tasks; (ii) cooperative bargaining games proved to be most challenging to the models; and (iii) even the most powerful models sometimes "lose" to weaker opponents
comment: Accepted to ICLR 2024, code and link to project data are made available at https://github.com/epfl-dlab/LAMEN
♻ ☆ Large Language Models as Automatic Annotators and Annotation Adjudicators for Fine-Grained Opinion Analysis
Fine-grained opinion analysis of text provides a detailed understanding of expressed sentiments, including the addressed entity. Although this level of detail is sound, it requires considerable human effort and substantial cost to annotate opinions in datasets for training models, especially across diverse domains and real-world applications. We explore the feasibility of LLMs as automatic annotators for fine-grained opinion analysis, addressing the shortage of domain-specific labelled datasets. In this work, we use a declarative annotation pipeline. This approach reduces the variability of manual prompt engineering when using LLMs to identify fine-grained opinion spans in text. We also present a novel methodology for an LLM to adjudicate multiple labels and produce final annotations. After trialling the pipeline with models of different sizes for the Aspect Sentiment Triplet Extraction (ASTE) and Aspect-Category-Opinion-Sentiment (ACOS) analysis tasks, we show that LLMs can serve as automatic annotators and adjudicators, achieving high Inter-Annotator Agreement across individual LLM-based annotators. This reduces the cost and human effort needed to create these fine-grained opinion-annotated datasets.
♻ ☆ SPELL: Self-Play Reinforcement Learning for Evolving Long-Context Language Models ICLR 2026
Progress in long-context reasoning for large language models (LLMs) has lagged behind other recent advances. This gap arises not only from the intrinsic difficulty of processing long texts, but also from the scarcity of reliable human annotations and programmatically verifiable reward signals. In this paper, we propose SPELL, a multi-role self-play reinforcement learning framework that enables scalable, label-free optimization for long-context reasoning. SPELL integrates three cyclical roles-questioner, responder, and verifier-within a single model to enable continual self-improvement. The questioner generates questions from raw documents paired with reference answers; the responder learns to solve these questions based on the documents; and the verifier evaluates semantic equivalence between the responder's output and the questioner's reference answer, producing reward signals to guide continual training. To stabilize training, we introduce an automated curriculum that gradually increases document length and a reward function that adapts question difficulty to the model's evolving capabilities. Extensive experiments on six long-context benchmarks show that SPELL consistently improves performance across diverse LLMs and outperforms equally sized models fine-tuned on large-scale annotated data. Notably, SPELL achieves an average 7.6-point gain in pass@8 on the strong reasoning model Qwen3-30B-A3B-Thinking, raising its performance ceiling and showing promise for scaling to even more capable models. Our code is available at https://github.com/Tongyi-Zhiwen/Qwen-Doc.
comment: Accepted to ICLR 2026
♻ ☆ Indic-TunedLens: Interpreting Multilingual Models in Indian Languages EACL
Multilingual large language models (LLMs) are increasingly deployed in linguistically diverse regions like India, yet most interpretability tools remain tailored to English. Prior work reveals that LLMs often operate in English centric representation spaces, making cross lingual interpretability a pressing concern. We introduce Indic-TunedLens, a novel interpretability framework specifically for Indian languages that learns shared affine transformations. Unlike the standard Logit Lens, which directly decodes intermediate activations, Indic-TunedLens adjusts hidden states for each target language, aligning them with the target output distributions to enable more faithful decoding of model representations. We evaluate our framework on 10 Indian languages using the MMLU benchmark and find that it significantly improves over SOTA interpretability methods, especially for morphologically rich, low resource languages. Our results provide crucial insights into the layer-wise semantic encoding of multilingual transformers. Our model is available at https://huggingface.co/spaces/MihirRajeshPanchal/IndicTunedLens. Our code is available at https://github.com/MihirRajeshPanchal/IndicTunedLens.
comment: 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL) Thirteenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial) 2026
♻ ☆ Flatter Tokens are More Valuable for Speculative Draft Model Training
Speculative Decoding (SD) is a key technique for accelerating Large Language Model (LLM) inference, but it typically requires training a draft model on a large dataset. We approach this problem from a data-centric perspective, finding that not all training samples contribute equally to the SD acceptance rate. Specifically, our theoretical analysis and empirical validation reveals that tokens inducing flatter predictive distributions from the target model are more valuable than those yielding sharply peaked distributions. Based on this insight, we propose flatness, a new metric to quantify this property, and develop the Sample-level-flatness-based Dataset Distillation (SFDD) approach, which filters the training data to retain only the most valuable samples. Experiments on the EAGLE framework demonstrate that SFDD can achieve over 2$\times$ training speedup using only 50% of the data, while keeping the final model's inference speedup within 4% of the full-dataset baseline. This work introduces an effective, data-centric approach that substantially improves the training efficiency for Speculative Decoding. Our code is available at https://github.com/fjm9933/Flatness.
♻ ☆ VerifyBench: Benchmarking Reference-based Reward Systems for Large Language Models ICLR 2026
Large reasoning models such as OpenAI o1 and DeepSeek-R1 have demonstrated remarkable performance in complex reasoning tasks. A critical component of their training is the incorporation of reference-based reward systems within reinforcement learning (RL), where model outputs are evaluated against ground truth references. However, existing reward benchmarks focus on preference comparisons between responses rather than evaluating verification against ground truth references, leaving a critical gap in our ability to evaluate verification systems used in reasoning model training. In this paper, we introduce VerifyBench and its challenging variant VerifyBench-Hard, two benchmarks specifically designed to assess reference-based reward systems. These benchmarks are constructed through meticulous data collection and curation, followed by careful human annotation to ensure high quality. Our comprehensive evaluation reveals that while larger model-based verifiers show promise on standard cases, all current systems demonstrate substantial room for improvement on challenging instances. Through systematic analysis of performance patterns across reasoning tasks and error categories, we provide insights for advancing reference-based reward systems. These benchmarks establish a standardized framework for improving verification accuracy, ultimately enhancing reasoning capabilities in models trained via RL.
comment: ICLR 2026: https://openreview.net/forum?id=JfsjGmuFxz Project Page: https://zju-real.github.io/VerifyBench Dataset: https://huggingface.co/datasets/ZJU-REAL/VerifyBench Code: https://github.com/ZJU-REAL/VerifyBench
♻ ☆ Weight space Detection of Backdoors in LoRA Adapters
LoRA adapters let users fine-tune large language models (LLMs) efficiently. However, LoRA adapters are shared through open repositories like Hugging Face Hub \citep{huggingface_hub_docs}, making them vulnerable to backdoor attacks. Current detection methods require running the model with test input data -- making them impractical for screening thousands of adapters where the trigger for backdoor behavior is unknown. We detect poisoned adapters by analyzing their weight matrices directly, without running the model -- making our method data-agnostic. Our method extracts simple statistics -- how concentrated the singular values are, their entropy, and the distribution shape -- and flags adapters that deviate from normal patterns. We evaluate the method on 500 LoRA adapters -- 400 clean, and 100 poisoned for Llama-3.2-3B on instruction and reasoning datasets: Alpaca, Dolly, GSM8K, ARC-Challenge, SQuADv2, NaturalQuestions, HumanEval, and GLUE dataset. We achieve 97\% detection accuracy with less than 2\% false positives.
♻ ☆ Toward Beginner-Friendly LLMs for Language Learning: Controlling Difficulty in Conversation EACL 2026
Practicing conversations with large language models (LLMs) presents a promising alternative to traditional in-person language learning. However, most LLMs generate text at a near-native level of complexity, making them ill-suited for first and second-year beginner learners (CEFR: A1-A2). In this paper, we investigate whether controllable generation techniques can adapt LLM outputs to better support beginners. We evaluate these methods through both automatic metrics and a user study with university-level learners of Japanese. Our findings show that while prompting alone fails, controllable generation techniques can successfully improve output comprehensibility for beginner speakers (from 39.4% to 83.3%). We further introduce a new token-level evaluation metric, Token Miss Rate (TMR), that quantifies the proportion of incomprehensible tokens per utterance and correlates strongly with human judgments. To support future research in AI-assisted language learning, we release our code, models, annotation tools, and dataset.
comment: EACL 2026
♻ ☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025 (Oral); Project Website: https://chanh.ee/RoboSpatial
GDGB: A Benchmark for Generative Dynamic Text-Attributed Graph Learning ICLR2026
Dynamic Text-Attributed Graphs (DyTAGs), which intricately integrate structural, temporal, and textual attributes, are crucial for modeling complex real-world systems. However, most existing DyTAG datasets exhibit poor textual quality, which severely limits their utility for generative DyTAG tasks requiring semantically rich inputs. Additionally, prior work mainly focuses on discriminative tasks on DyTAGs, resulting in a lack of standardized task formulations and evaluation protocols tailored for DyTAG generation. To address these critical issues, we propose Generative DyTAG Benchmark (GDGB), which comprises eight meticulously curated DyTAG datasets with high-quality textual features for both nodes and edges, overcoming limitations of prior datasets. Building on GDGB, we define two novel DyTAG generation tasks: Transductive Dynamic Graph Generation (TDGG) and Inductive Dynamic Graph Generation (IDGG). TDGG transductively generates a target DyTAG based on the given source and destination node sets, while the more challenging IDGG introduces new node generation to inductively model the dynamic expansion of real-world graph data. To enable holistic evaluation, we design multifaceted metrics that assess the structural, temporal, and textual quality of the generated DyTAGs. We further propose GAG-General, an LLM-based multi-agent generative framework tailored for reproducible and robust benchmarking of DyTAG generation. Experimental results demonstrate that GDGB enables rigorous evaluation of TDGG and IDGG, with key insights revealing the critical interplay of structural and textual features in DyTAG generation. These findings establish GDGB as a foundational resource for advancing generative DyTAG research and unlocking further practical applications in DyTAG generation. The dataset and source code are available at https://github.com/Lucas-PJ/GDGB-ALGO.
comment: ICLR2026
♻ ☆ Precise Attribute Intensity Control in Large Language Models via Targeted Representation Editing
Precise attribute intensity control--generating Large Language Model (LLM) outputs with specific, user-defined attribute intensities--is crucial for AI systems adaptable to diverse user expectations. Current LLM alignment methods, however, typically provide only directional or open-ended guidance, failing to reliably achieve exact attribute intensities. We address this limitation with three key designs: (1) reformulating precise attribute intensity control as a target-reaching problem, rather than simple maximization; (2) training a lightweight value function via temporal-difference learning to predict final attribute intensity scores from partial generations, thereby steering LLM outputs; and (3) employing gradient-based interventions on hidden representations to navigate the model precisely towards specific attribute intensity targets. Our method enables fine-grained, continuous control over attribute intensities, moving beyond simple directional alignment. Experiments on LLaMA-3.2-3b and Phi-4-mini confirm our method's ability to steer text generation to user-specified attribute intensities with high accuracy. Finally, we demonstrate efficiency enhancements across three downstream tasks: preference data synthesis, Pareto frontier approximation and optimization, and distillation of aligned behaviors for intervention-free inference. Our code is available on https://github.com/Pre-Control/pre-control
♻ ☆ PRoH: Dynamic Planning and Reasoning over Knowledge Hypergraphs for Retrieval-Augmented Generation
Knowledge Hypergraphs (KHs) have recently emerged as a knowledge representation for retrieval-augmented generation (RAG), offering a paradigm to model multi-entity relations into a structured form. However, existing KH-based RAG methods suffer from three major limitations: static retrieval planning, non-adaptive retrieval execution, and superficial use of KH structure and semantics, which constrain their ability to perform effective multi-hop question answering. To overcome these limitations, we propose PRoH, a dynamic Planning and Reasoning over Knowledge Hypergraphs framework. PRoH incorporates three core innovations: (i) a context-aware planning module that sketches the local KH neighborhood to guide structurally grounded reasoning plan generation; (ii) a structured question decomposition process that organizes subquestions as a dynamically evolving Directed Acyclic Graph (DAG) to enable adaptive, multi-trajectory exploration; and (iii) an Entity-Weighted Overlap (EWO)-guided reasoning path retrieval algorithm that prioritizes semantically coherent hyperedge traversals. Experiments across multiple domains demonstrate that PRoH achieves state-of-the-art performance, surpassing the prior SOTA model HyperGraphRAG by an average of 19.73% in F1 and 8.41% in Generation Evaluation (G-E) score, while maintaining strong robustness in long-range multi-hop reasoning tasks.
comment: Accepted by The Web Conference 2026 (WWW, 2026)
♻ ☆ Does Socialization Emerge in AI Agent Society? A Case Study of Moltbook
As large language model agents increasingly populate networked environments, a fundamental question arises: do artificial intelligence (AI) agent societies undergo convergence dynamics similar to human social systems? Lately, Moltbook approximates a plausible future scenario in which autonomous agents participate in an open-ended, continuously evolving online society. We present the first large-scale systemic diagnosis of this AI agent society. Beyond static observation, we introduce a quantitative diagnostic framework for dynamic evolution in AI agent societies, measuring semantic stabilization, lexical turnover, individual inertia, influence persistence, and collective consensus. Our analysis reveals a system in dynamic balance in Moltbook: while the global average of semantic contents stabilizes rapidly, individual agents retain high diversity and persistent lexical turnover, defying homogenization. However, agents exhibit strong individual inertia and minimal adaptive response to interaction partners, preventing mutual influence and consensus. Consequently, influence remains transient with no persistent supernodes, and the society fails to develop a stable structure and consensus due to the absence of shared social memory. These findings demonstrate that scale and interaction density alone are insufficient to induce socialization, providing actionable design and analysis principles for upcoming next-generation AI agent societies.
♻ ☆ Reasoning Up the Instruction Ladder for Controllable Language Models
As large language model (LLM) based systems take on high-stakes roles in real-world decision-making, they must reconcile competing instructions from multiple sources (e.g., model developers, users, and tools) within a single prompt context. Thus, enforcing an instruction hierarchy (IH) in LLMs, where higher-level directives override lower-priority requests, is critical for the reliability and controllability of LLMs. In this work, we reframe instruction hierarchy resolution as a reasoning task. Specifically, the model must first "think" about the relationship between a given user prompt and higher-priority (system) instructions before generating a response. To enable this capability via training, we construct VerIH, an instruction hierarchy dataset of constraint-following tasks with verifiable answers. This dataset comprises ~7K aligned and conflicting system-user instructions. We show that lightweight reinforcement learning with VerIH effectively transfers general reasoning capabilities of models to instruction prioritization. Our finetuned models achieve consistent improvements on instruction following and instruction hierarchy benchmarks, achieving roughly a 20% improvement on the IHEval conflict setup. This reasoning ability also generalizes to safety-critical settings beyond the training distribution. By treating safety issues as resolving conflicts between adversarial user inputs and predefined higher-priority policies, our trained model enhances robustness against jailbreak and prompt injection attacks, providing up to a 20% reduction in attack success rate (ASR). These results demonstrate that reasoning over instruction hierarchies provides a practical path to reliable LLMs, where updates to system prompts yield controllable and robust changes in model behavior.
♻ ☆ Far Out: Evaluating Language Models on Slang in Australian and Indian English EACL 2026
Language models exhibit systematic performance gaps when processing text in non-standard language varieties, yet their ability to comprehend variety-specific slang remains underexplored for several languages. We present a comprehensive evaluation of slang awareness in Indian English (en-IN) and Australian English (en-AU) across seven state-of-the-art language models. We construct two complementary datasets: WEB, containing 377 web-sourced usage examples from Urban Dictionary, and GEN, featuring 1,492 synthetically generated usages of these slang terms, across diverse scenarios. We assess language models on three tasks: target word prediction (TWP), guided target word prediction (TWP$^*$) and target word selection (TWS). Our results reveal four key findings: (1) Higher average model performance TWS versus TWP and TWP$^*$, with average accuracy score increasing from 0.03 to 0.49 respectively (2) Stronger average model performance on WEB versus GEN datasets, with average similarity score increasing by 0.03 and 0.05 across TWP and TWP$^*$ tasks respectively (3) en-IN tasks outperform en-AU when averaged across all models and datasets, with TWS demonstrating the largest disparity, increasing average accuracy from 0.44 to 0.54. These findings underscore fundamental asymmetries between generative and discriminative competencies for variety-specific language, particularly in the context of slang expressions despite being in a technologically rich language such as English.
comment: Accepted as a paper at 13th VarDial workshop at EACL 2026
♻ ☆ TimeOmni-1: Incentivizing Complex Reasoning with Time Series in Large Language Models ICLR 2026
Recent advances in multimodal time series learning underscore a paradigm shift from analytics centered on basic patterns toward advanced time series understanding and reasoning. However, existing multimodal time series datasets mostly remain at the level of surface alignment and question answering, without reaching the depth of genuine reasoning. The absence of well-defined tasks that genuinely require time series reasoning, along with the scarcity of high-quality data, has limited progress in building practical time series reasoning models (TSRMs). To this end, we introduce Time Series Reasoning Suite (TSR-Suite), which formalizes four atomic tasks that span three fundamental capabilities for reasoning with time series: (1) perception, acquired through scenario understanding and causality discovery; (2) extrapolation, realized via event-aware forecasting; and (3) decision-making, developed through deliberation over perception and extrapolation. TSR-Suite is the first comprehensive time series reasoning suite that supports not only thorough evaluation but also the data pipeline and training of TSRMs. It contains more than 23K samples, of which 2.3K are carefully curated through a human-guided hierarchical annotation process. Building on this foundation, we introduce TimeOmni-1, the first unified reasoning model designed to address diverse real-world problems demanding time series reasoning. The model is trained in multiple stages, integrating a mixture of task scenarios, novel reward functions, and tailored optimizations. Experiments show that TimeOmni-1 delivers strong out-of-distribution generalization across all tasks and achieves a high rate of valid responses. It significantly improves causality discovery accuracy (64.0% vs. 35.9% with GPT-4.1) and raises the valid response rate by over 6% compared to GPT-4.1 on the event-aware forecasting task.
comment: Accepted by the 14th International Conference on Learning Representations (ICLR 2026)
♻ ☆ Voice Impression Control in Zero-Shot TTS INTERSPEECH 2025
Para-/non-linguistic information in speech is pivotal in shaping the listeners' impression. Although zero-shot text-to-speech (TTS) has achieved high speaker fidelity, modulating subtle para-/non-linguistic information to control perceived voice characteristics, i.e., impressions, remains challenging. We have therefore developed a voice impression control method in zero-shot TTS that utilizes a low-dimensional vector to represent the intensities of various voice impression pairs (e.g., dark-bright). The results of both objective and subjective evaluations have demonstrated our method's effectiveness in impression control. Furthermore, generating this vector via a large language model enables target-impression generation from a natural language description of the desired impression, thus eliminating the need for manual optimization. Audio examples are available on our demo page (https://ntt-hilab-gensp.github.io/is2025voiceimpression/).
comment: 5 pages,5 figures, Accepted to INTERSPEECH 2025
♻ ☆ Randomized Masked Finetuning: An Efficient Way to Mitigate Memorization of PIIs in LLMs
The current literature on memorization in Natural Language Models, especially Large Language Models (LLMs), poses severe security and privacy risks, as models tend to memorize personally identifying information (PIIs) from training data. We introduce Randomized Masked Fine-Tuning (RMFT), a novel privacy-preserving fine-tuning technique that reduces PII memorization while minimizing performance impact. Using the Enron Email Dataset, we demonstrate that RMFT achieves an 80.81% reduction in Total Extraction Rate and 80.17% reduction in Seen Extraction Rate compared to baseline fine-tuning, outperforming deduplication methods while maintaining only a 5.73% increase in perplexity. We present MaxTER, a Pareto-optimal evaluation framework for assessing privacy-utility tradeoffs, and show the performance of RMFT vs Deduplication by Area Under The Response Curve (AURC) metric.
♻ ☆ Investigation for Relative Voice Impression Estimation
Paralinguistic and non-linguistic aspects of speech strongly influence listener impressions. While most research focuses on absolute impression scoring, this study investigates relative voice impression estimation (RIE), a framework for predicting the perceptual difference between two utterances from the same speaker. The estimation target is a low-dimensional vector derived from subjective evaluations, quantifying the perceptual shift of the second utterance relative to the first along an antonymic axis (e.g., ``Dark--Bright''). To isolate expressive and prosodic variation, we used recordings of a professional speaker reading a text in various styles. We compare three modeling approaches: classical acoustic features commonly used for speech emotion recognition, self-supervised speech representations, and multimodal large language models (MLLMs). Our results demonstrate that models using self-supervised representations outperform methods with classical acoustic features, particularly in capturing complex and dynamic impressions (e.g., ``Cold--Warm'') where classical features fail. In contrast, current MLLMs prove unreliable for this fine-grained pairwise task. This study provides the first systematic investigation of RIE and demonstrates the strength of self-supervised speech models in capturing subtle perceptual variations.
comment: 5 pages,3 figures, Accepted to Speech Prosody 2026
♻ ☆ m1: Unleash the Potential of Test-Time Scaling for Medical Reasoning with Large Language Models ML4H'25
Test-time scaling has emerged as a powerful technique for enhancing the reasoning capabilities of large language models. However, its effectiveness in medical reasoning remains uncertain, as the medical domain fundamentally differs from mathematical tasks in terms of knowledge representation and decision-making processes. In this paper, we provide the first comprehensive investigation of test-time scaling for medical reasoning and present m1, a simple yet effective approach that increases a model's medical reasoning capability at inference. Our evaluation across diverse medical tasks demonstrates that test-time scaling consistently enhances medical reasoning, enabling lightweight fine-tuned models under 10B parameters to establish new state-of-the-art performance, while our 32B model rivals previous 70B-scale medical LLMs. However, we identify an optimal reasoning token budget of approximately 4K, beyond which performance may degrade due to overthinking. Budget forcing, which extends test-time computation through iterative prompts, helps models double-check answers but does not necessarily improve the overall medical QA performance and, in some cases, even introduces errors into previously correct responses. Our case-by-case analysis identifies insufficient medical knowledge as a key bottleneck that prevents further performance gains through test-time scaling. We find that increasing data scale, improving data quality, and expanding model capacity consistently enhance medical knowledge grounding, enabling continued performance improvements, particularly on challenging medical benchmarks where smaller models reach saturation. These findings underscore fundamental differences between medical and mathematical reasoning in LLMs, highlighting that enriched medical knowledge, other than increased reasoning depth alone, is essential for realizing the benefits of test-time scaling.
comment: 17 pages; 7 figures; Data, code, and models: https://github.com/UCSC-VLAA/m1 ; Accepted by ML4H'25
♻ ☆ Evolving Language Models without Labels: Majority Drives Selection, Novelty Promotes Variation
Large language models (LLMs) are increasingly trained with reinforcement learning from verifiable rewards (RLVR), yet real-world deployment demands models that can self-improve without labels or external judges. Existing self-improvement approaches primarily rely on self-confirmation signals (e.g., confidence, entropy, or consistency) to generate rewards. This reliance drives models toward over-confident, majority-favored solutions, causing an entropy collapse that degrades pass@n and reasoning complexity. To address this, we propose EVOL-RL, a label-free framework that mirrors the evolutionary principle of balancing selection with variation. Concretely, EVOL-RL retains the majority-voted answer as an anchor for stability, but adds a novelty-aware reward that scores each sampled solution by how different its reasoning is from other concurrently generated responses. This majority-for-stability + novelty-for-exploration rule mirrors the variation-selection principle: selection prevents drift, while novelty prevents collapse. Evaluation results show that EVOL-RL consistently outperforms the majority-only baseline; e.g., training on label-free AIME24 lifts Qwen3-4B-Base AIME25 pass@1 from baseline's 4.6% to 16.4%, and pass@16 from 18.5% to 37.9%. EVOL-RL not only prevents in-domain diversity collapse but also improves out-of-domain generalization (from math reasoning to broader tasks, e.g., MMLU-Pro and BBEH). The code is available at: https://github.com/YujunZhou/EVOL-RL.
♻ ☆ Graph Representation-based Model Poisoning on the Heterogeneous Internet of Agents
Internet of Agents (IoA) envisions a unified, agent-centric paradigm where heterogeneous large language model (LLM) agents can interconnect and collaborate at scale. Within this paradigm, federated fine-tuning (FFT) serves as a key enabler that allows distributed LLM agents to co-train an intelligent global LLM without centralizing local datasets. However, the FFT-enabled IoA systems remain vulnerable to model poisoning attacks, where adversaries can upload malicious updates to the server to degrade the performance of the aggregated global LLM. This paper proposes a graph representation-based model poisoning (GRMP) attack, which exploits overheard benign updates to construct a feature correlation graph and employs a variational graph autoencoder to capture structural dependencies and generate malicious updates. A novel attack algorithm is developed based on augmented Lagrangian and subgradient descent methods to optimize malicious updates that preserve benign-like statistics while embedding adversarial objectives. Experimental results show that the proposed GRMP attack can substantially decrease accuracy across different LLM models while remaining statistically consistent with benign updates, thereby evading detection by existing defense mechanisms and underscoring a severe threat to the ambitious IoA paradigm.
comment: 6 pages, 5 figures
♻ ☆ Toward LLM-Supported Automated Assessment of Critical Thinking Subskills
As the world becomes increasingly saturated with AI-generated content, disinformation, and algorithmic persuasion, critical thinking - the capacity to evaluate evidence, detect unreliable claims, and exercise independent judgment - is becoming a defining human skill. Developing critical thinking skills through timely assessment and feedback is crucial; however, there has not been extensive work in educational data mining on defining, measuring, and supporting critical thinking. In this paper, we investigate the feasibility of measuring "subskills" that underlie critical thinking. We ground our work in an authentic task where students operationalize critical thinking by writing argumentative essays. We developed a coding rubric based on an established skills progression and completed human coding for a corpus of student essays. We then evaluated three distinct approaches to automated scoring: zero-shot prompting, few-shot prompting, and supervised fine-tuning, implemented across three large language models (GPT-5, Llama 3.1 8B, and ModernBERT). Fine-tuning Llama 3.1 8B achieved the best results and demonstrated particular strength on subskills with highly separable proficiency levels with balanced labels across levels, while lower performance was observed for subskills that required detection of subtle distinctions between proficiency levels or imbalanced labels. Our exploratory work represents an initial step toward scalable assessment of critical thinking skills across authentic educational contexts. Future research should continue to combine automated critical thinking assessment with human validation to more accurately detect and measure dynamic, higher-order thinking skills.
comment: preprint: 12 pages
♻ ☆ RoPE-LIME: RoPE-Space Locality + Sparse-K Sampling for Efficient LLM Attribution
Explaining closed-source Large Language Model (LLM) outputs is challenging because API access prevents gradient-based attribution, while perturbation methods are costly and noisy when they depend on regenerated text. We introduce \textbf{Rotary Positional Embedding Linear Local Interpretable Model-agnostic Explanations (RoPE-LIME)}, an open-source extension of gSMILE that decouples reasoning from explanation: given a fixed output from a closed model, a smaller open-source surrogate computes token-level attributions from probability-based objectives (negative log-likelihood and divergence targets) under input perturbations. RoPE-LIME incorporates (i) a locality kernel based on Relaxed Word Mover's Distance computed in \textbf{RoPE embedding space} for stable similarity under masking, and (ii) \textbf{Sparse-$K$} sampling, an efficient perturbation strategy that improves interaction coverage under limited budgets. Experiments on HotpotQA (sentence features) and a hand-labeled MMLU subset (word features) show that RoPE-LIME produces more informative attributions than leave-one-out sampling and improves over gSMILE while substantially reducing closed-model API calls.
♻ ☆ $\texttt{SPECS}$: Faster Test-Time Scaling through Speculative Drafts
Scaling test-time compute has driven the recent advances in the reasoning capabilities of large language models (LLMs), typically by allocating additional computation for more thorough exploration. However, increased compute often comes at the expense of higher user-facing latency, directly impacting user experience. Current test-time scaling methods primarily optimize for accuracy based on total compute resources (FLOPS), often overlooking latency constraints. To address this gap, we propose $\texttt{SPECS}$, a latency-aware test-time scaling method inspired by speculative decoding. $\texttt{SPECS}$~uses a smaller, faster model to generate candidate sequences efficiently, and evaluates these candidates using signals from both a larger target model and a dedicated reward model. We introduce new integration strategies, including reward-guided soft verification and a reward-based deferral mechanism. Empirical results on MATH500, AMC23 and OlympiadBench datasets show that $\texttt{SPECS}$~matches or surpasses beam search accuracy while reducing latency by up to $\sim$19.1\%. Our theoretical analysis shows that our algorithm converges to the solution of a KL-regularized reinforcement learning objective with increasing beam width.
comment: 28 pages, 6 figures, 2 tables
♻ ☆ Tokens with Meaning: A Hybrid Tokenization Approach for Turkish
Tokenization shapes how language models perceive morphology and meaning in NLP, yet widely used frequency-driven subword tokenizers (e.g., Byte Pair Encoding and WordPiece) can fragment morphologically rich and agglutinative languages in ways that obscure morpheme boundaries. We introduce a linguistically informed hybrid tokenizer for Turkish that combines (i) dictionary-driven morphological segmentation (roots and affixes), (ii) phonological normalization that maps allomorphic variants to shared identifiers, and (iii) a controlled subword fallback for out-of-vocabulary coverage. Concretely, our released Turkish vocabulary contains 22,231 root tokens mapped to 20,000 canonical root identifiers (with leading spaces to mark word boundaries), 72 affix identifiers that cover 177 allomorphic surface forms, and 12,696 subword units; an orthographic case token preserves capitalization without inflating the vocabulary. We evaluate tokenization quality on the TR-MMLU dataset using two linguistic alignment metrics: Turkish Token Percentage (TR~\%), the proportion of produced tokens that correspond to Turkish lexical/morphemic units under our lexical resources, and Pure Token Percentage (Pure~\%), the proportion of tokens aligning with unambiguous root/affix boundaries. The proposed tokenizer reaches 90.29\% TR~\% and 85.80\% Pure~\% on TR-MMLU, substantially exceeding several general-purpose tokenizers. We further validate practical utility with downstream sentence embedding benchmarks under a strict \emph{random initialization} control to isolate tokenizer inductive bias. Across four matched models (TurkishTokenizer, CosmosGPT2, Mursit, and Tabi), TurkishTokenizer outperforms all baselines on the Turkish STS Benchmark and achieves the strongest overall average on MTEB-TR. It also yields the strongest average accuracy on the TurBLiMP under a centroid-based proxy.
♻ ☆ A Scalable Framework for Evaluating Health Language Models
Large language models (LLMs) have emerged as powerful tools for analyzing complex datasets. Recent studies demonstrate their potential to generate useful, personalized responses when provided with patient-specific health information that encompasses lifestyle, biomarkers, and context. As LLM-driven health applications are increasingly adopted, rigorous and efficient one-sided evaluation methodologies are crucial to ensure response quality across multiple dimensions, including accuracy, personalization and safety. Current evaluation practices for open-ended text responses heavily rely on human experts. This approach introduces human factors and is often cost-prohibitive, labor-intensive, and hinders scalability, especially in complex domains like healthcare where response assessment necessitates domain expertise and considers multifaceted patient data. In this work, we introduce Adaptive Precise Boolean rubrics: an evaluation framework that streamlines human and automated evaluation of open-ended questions by identifying gaps in model responses using a minimal set of targeted rubrics questions. Our approach is based on recent work in more general evaluation settings that contrasts a smaller set of complex evaluation targets with a larger set of more precise, granular targets answerable with simple boolean responses. We validate this approach in metabolic health, a domain encompassing diabetes, cardiovascular disease, and obesity. Our results demonstrate that Adaptive Precise Boolean rubrics yield higher inter-rater agreement among expert and non-expert human evaluators, and in automated assessments, compared to traditional Likert scales, while requiring approximately half the evaluation time of Likert-based methods. This enhanced efficiency, particularly in automated evaluation and non-expert contributions, paves the way for more extensive and cost-effective evaluation of LLMs in health.
♻ ☆ The Subjectivity of Respect in Police Traffic Stops: Modeling Community Perspectives in Body-Worn Camera Footage
Traffic stops are among the most frequent police-civilian interactions, and body-worn cameras (BWCs) provide a unique record of how these encounters unfold. Respect is a central dimension of these interactions, shaping public trust and perceived legitimacy, yet its interpretation is inherently subjective and shaped by lived experience, rendering community-specific perspectives a critical consideration. Leveraging unprecedented access to Los Angeles Police Department BWC footage, we introduce the first large-scale traffic-stop dataset annotated with respect ratings and free-text rationales from multiple perspectives. By sampling annotators from police-affiliated, justice-system-impacted, and non-affiliated Los Angeles residents, we enable the systematic study of perceptual differences across diverse communities. To this end, we (i) develop a domain-specific evaluation rubric grounded in procedural justice theory, LAPD training materials, and extensive fieldwork; (ii) introduce a rubric-driven preference data construction framework for perspective-consistent alignment; and (iii) propose a perspective-aware modeling framework that predicts personalized respect ratings and generates annotator-specific rationales for both officers and civilian drivers from traffic-stop transcripts. Across all three annotator groups, our approach improves both rating prediction performance and rationale alignment. Our perspective-aware framework enables law enforcement to better understand diverse community expectations, providing a vital tool for building public trust and procedural legitimacy.
Computer Vision and Pattern Recognition 90
☆ TeCoNeRV: Leveraging Temporal Coherence for Compressible Neural Representations for Videos
Implicit Neural Representations (INRs) have recently demonstrated impressive performance for video compression. However, since a separate INR must be overfit for each video, scaling to high-resolution videos while maintaining encoding efficiency remains a significant challenge. Hypernetwork-based approaches predict INR weights (hyponetworks) for unseen videos at high speeds, but with low quality, large compressed size, and prohibitive memory needs at higher resolutions. We address these fundamental limitations through three key contributions: (1) an approach that decomposes the weight prediction task spatially and temporally, by breaking short video segments into patch tubelets, to reduce the pretraining memory overhead by 20$\times$; (2) a residual-based storage scheme that captures only differences between consecutive segment representations, significantly reducing bitstream size; and (3) a temporal coherence regularization framework that encourages changes in the weight space to be correlated with video content. Our proposed method, TeCoNeRV, achieves substantial improvements of 2.47dB and 5.35dB PSNR over the baseline at 480p and 720p on UVG, with 36% lower bitrates and 1.5-3$\times$ faster encoding speeds. With our low memory usage, we are the first hypernetwork approach to demonstrate results at 480p, 720p and 1080p on UVG, HEVC and MCL-JCV. Our project page is available at https://namithap10.github.io/teconerv/ .
☆ Learning Humanoid End-Effector Control for Open-Vocabulary Visual Loco-Manipulation
Visual loco-manipulation of arbitrary objects in the wild with humanoid robots requires accurate end-effector (EE) control and a generalizable understanding of the scene via visual inputs (e.g., RGB-D images). Existing approaches are based on real-world imitation learning and exhibit limited generalization due to the difficulty in collecting large-scale training datasets. This paper presents a new paradigm, HERO, for object loco-manipulation with humanoid robots that combines the strong generalization and open-vocabulary understanding of large vision models with strong control performance from simulated training. We achieve this by designing an accurate residual-aware EE tracking policy. This EE tracking policy combines classical robotics with machine learning. It uses a) inverse kinematics to convert residual end-effector targets into reference trajectories, b) a learned neural forward model for accurate forward kinematics, c) goal adjustment, and d) replanning. Together, these innovations help us cut down the end-effector tracking error by 3.2x. We use this accurate end-effector tracker to build a modular system for loco-manipulation, where we use open-vocabulary large vision models for strong visual generalization. Our system is able to operate in diverse real-world environments, from offices to coffee shops, where the robot is able to reliably manipulate various everyday objects (e.g., mugs, apples, toys) on surfaces ranging from 43cm to 92cm in height. Systematic modular and end-to-end tests in simulation and the real world demonstrate the effectiveness of our proposed design. We believe the advances in this paper can open up new ways of training humanoid robots to interact with daily objects.
comment: Project page: https://hero-humanoid.github.io/
☆ Saliency-Aware Multi-Route Thinking: Revisiting Vision-Language Reasoning
Vision-language models (VLMs) aim to reason by jointly leveraging visual and textual modalities. While allocating additional inference-time computation has proven effective for large language models (LLMs), achieving similar scaling in VLMs remains challenging. A key obstacle is that visual inputs are typically provided only once at the start of generation, while textual reasoning (e.g., early visual summaries) is generated autoregressively, causing reasoning to become increasingly text-dominated and allowing early visual grounding errors to accumulate. Moreover, vanilla guidance for visual grounding during inference is often coarse and noisy, making it difficult to steer reasoning over long texts. To address these challenges, we propose \emph{Saliency-Aware Principle} (SAP) selection. SAP operates on high-level reasoning principles rather than token-level trajectories, which enable stable control over discrete generation under noisy feedback while allowing later reasoning steps to re-consult visual evidence when renewed grounding is required. In addition, SAP supports multi-route inference, enabling parallel exploration of diverse reasoning behaviors. SAP is model-agnostic and data-free, requiring no additional training. Empirical results show that SAP achieves competitive performance, especially in reducing object hallucination, under comparable token-generation budgets while yielding more stable reasoning and lower response latency than CoT-style long sequential reasoning.
comment: preprint 10 pages, 4 figures
☆ Are Object-Centric Representations Better At Compositional Generalization?
Compositional generalization, the ability to reason about novel combinations of familiar concepts, is fundamental to human cognition and a critical challenge for machine learning. Object-centric (OC) representations, which encode a scene as a set of objects, are often argued to support such generalization, but systematic evidence in visually rich settings is limited. We introduce a Visual Question Answering benchmark across three controlled visual worlds (CLEVRTex, Super-CLEVR, and MOVi-C) to measure how well vision encoders, with and without object-centric biases, generalize to unseen combinations of object properties. To ensure a fair and comprehensive comparison, we carefully account for training data diversity, sample size, representation size, downstream model capacity, and compute. We use DINOv2 and SigLIP2, two widely used vision encoders, as the foundation models and their OC counterparts. Our key findings reveal that (1) OC approaches are superior in harder compositional generalization settings; (2) original dense representations surpass OC only on easier settings and typically require substantially more downstream compute; and (3) OC models are more sample efficient, achieving stronger generalization with fewer images, whereas dense encoders catch up or surpass them only with sufficient data and diversity. Overall, object-centric representations offer stronger compositional generalization when any one of dataset size, training data diversity, or downstream compute is constrained.
Learning Situated Awareness in the Real World
A core aspect of human perception is situated awareness, the ability to relate ourselves to the surrounding physical environment and reason over possible actions in context. However, most existing benchmarks for multimodal foundation models (MFMs) emphasize environment-centric spatial relations (relations among objects in a scene), while largely overlooking observer-centric relationships that require reasoning relative to agent's viewpoint, pose, and motion. To bridge this gap, we introduce SAW-Bench (Situated Awareness in the Real World), a novel benchmark for evaluating egocentric situated awareness using real-world videos. SAW-Bench comprises 786 self-recorded videos captured with Ray-Ban Meta (Gen 2) smart glasses spanning diverse indoor and outdoor environments, and over 2,071 human-annotated question-answer pairs. It probes a model's observer-centric understanding with six different awareness tasks. Our comprehensive evaluation reveals a human-model performance gap of 37.66%, even with the best-performing MFM, Gemini 3 Flash. Beyond this gap, our in-depth analysis uncovers several notable findings; for example, while models can exploit partial geometric cues in egocentric videos, they often fail to infer a coherent camera geometry, leading to systematic spatial reasoning errors. We position SAW-Bench as a benchmark for situated spatial intelligence, moving beyond passive observation to understanding physically grounded, observer-centric dynamics.
VETime: Vision Enhanced Zero-Shot Time Series Anomaly Detection
Time-series anomaly detection (TSAD) requires identifying both immediate Point Anomalies and long-range Context Anomalies. However, existing foundation models face a fundamental trade-off: 1D temporal models provide fine-grained pointwise localization but lack a global contextual perspective, while 2D vision-based models capture global patterns but suffer from information bottlenecks due to a lack of temporal alignment and coarse-grained pointwise detection. To resolve this dilemma, we propose VETime, the first TSAD framework that unifies temporal and visual modalities through fine-grained visual-temporal alignment and dynamic fusion. VETime introduces a Reversible Image Conversion and a Patch-Level Temporal Alignment module to establish a shared visual-temporal timeline, preserving discriminative details while maintaining temporal sensitivity. Furthermore, we design an Anomaly Window Contrastive Learning mechanism and a Task-Adaptive Multi-Modal Fusion to adaptively integrate the complementary perceptual strengths of both modalities. Extensive experiments demonstrate that VETime significantly outperforms state-of-the-art models in zero-shot scenarios, achieving superior localization precision with lower computational overhead than current vision-based approaches. Code available at: https://github.com/yyyangcoder/VETime.
☆ PredMapNet: Future and Historical Reasoning for Consistent Online HD Vectorized Map Construction WACV 2026
High-definition (HD) maps are crucial to autonomous driving, providing structured representations of road elements to support navigation and planning. However, existing query-based methods often employ random query initialization and depend on implicit temporal modeling, which lead to temporal inconsistencies and instabilities during the construction of a global map. To overcome these challenges, we introduce a novel end-to-end framework for consistent online HD vectorized map construction, which jointly performs map instance tracking and short-term prediction. First, we propose a Semantic-Aware Query Generator that initializes queries with spatially aligned semantic masks to capture scene-level context globally. Next, we design a History Rasterized Map Memory to store fine-grained instance-level maps for each tracked instance, enabling explicit historical priors. A History-Map Guidance Module then integrates rasterized map information into track queries, improving temporal continuity. Finally, we propose a Short-Term Future Guidance module to forecast the immediate motion of map instances based on the stored history trajectories. These predicted future locations serve as hints for tracked instances to further avoid implausible predictions and keep temporal consistency. Extensive experiments on the nuScenes and Argoverse2 datasets demonstrate that our proposed method outperforms state-of-the-art (SOTA) methods with good efficiency.
comment: WACV 2026
☆ Unpaired Image-to-Image Translation via a Self-Supervised Semantic Bridge
Adversarial diffusion and diffusion-inversion methods have advanced unpaired image-to-image translation, but each faces key limitations. Adversarial approaches require target-domain adversarial loss during training, which can limit generalization to unseen data, while diffusion-inversion methods often produce low-fidelity translations due to imperfect inversion into noise-latent representations. In this work, we propose the Self-Supervised Semantic Bridge (SSB), a versatile framework that integrates external semantic priors into diffusion bridge models to enable spatially faithful translation without cross-domain supervision. Our key idea is to leverage self-supervised visual encoders to learn representations that are invariant to appearance changes but capture geometric structure, forming a shared latent space that conditions the diffusion bridges. Extensive experiments show that SSB outperforms strong prior methods for challenging medical image synthesis in both in-domain and out-of-domain settings, and extends easily to high-quality text-guided editing.
comment: 36 pages
☆ Style-Aware Gloss Control for Generative Non-Photorealistic Rendering
Humans can infer material characteristics of objects from their visual appearance, and this ability extends to artistic depictions, where similar perceptual strategies guide the interpretation of paintings or drawings. Among the factors that define material appearance, gloss, along with color, is widely regarded as one of the most important, and recent studies indicate that humans can perceive gloss independently of the artistic style used to depict an object. To investigate how gloss and artistic style are represented in learned models, we train an unsupervised generative model on a newly curated dataset of painterly objects designed to systematically vary such factors. Our analysis reveals a hierarchical latent space in which gloss is disentangled from other appearance factors, allowing for a detailed study of how gloss is represented and varies across artistic styles. Building on this representation, we introduce a lightweight adapter that connects our style- and gloss-aware latent space to a latent-diffusion model, enabling the synthesis of non-photorealistic images with fine-grained control of these factors. We compare our approach with previous models and observe improved disentanglement and controllability of the learned factors.
☆ Explainable AI: Context-Aware Layer-Wise Integrated Gradients for Explaining Transformer Models
Transformer models achieve state-of-the-art performance across domains and tasks, yet their deeply layered representations make their predictions difficult to interpret. Existing explainability methods rely on final-layer attributions, capture either local token-level attributions or global attention patterns without unification, and lack context-awareness of inter-token dependencies and structural components. They also fail to capture how relevance evolves across layers and how structural components shape decision-making. To address these limitations, we proposed the \textbf{Context-Aware Layer-wise Integrated Gradients (CA-LIG) Framework}, a unified hierarchical attribution framework that computes layer-wise Integrated Gradients within each Transformer block and fuses these token-level attributions with class-specific attention gradients. This integration yields signed, context-sensitive attribution maps that capture supportive and opposing evidence while tracing the hierarchical flow of relevance through the Transformer layers. We evaluate the CA-LIG Framework across diverse tasks, domains, and transformer model families, including sentiment analysis and long and multi-class document classification with BERT, hate speech detection in a low-resource language setting with XLM-R and AfroLM, and image classification with Masked Autoencoder vision Transformer model. Across all tasks and architectures, CA-LIG provides more faithful attributions, shows stronger sensitivity to contextual dependencies, and produces clearer, more semantically coherent visualizations than established explainability methods. These results indicate that CA-LIG provides a more comprehensive, context-aware, and reliable explanation of Transformer decision-making, advancing both the practical interpretability and conceptual understanding of deep neural models.
☆ A Contrastive Learning Framework Empowered by Attention-based Feature Adaptation for Street-View Image Classification
Street-view image attribute classification is a vital downstream task of image classification, enabling applications such as autonomous driving, urban analytics, and high-definition map construction. It remains computationally demanding whether training from scratch, initialising from pre-trained weights, or fine-tuning large models. Although pre-trained vision-language models such as CLIP offer rich image representations, existing adaptation or fine-tuning methods often rely on their global image embeddings, limiting their ability to capture fine-grained, localised attributes essential in complex, cluttered street scenes. To address this, we propose CLIP-MHAdapter, a variant of the current lightweight CLIP adaptation paradigm that appends a bottleneck MLP equipped with multi-head self-attention operating on patch tokens to model inter-patch dependencies. With approximately 1.4 million trainable parameters, CLIP-MHAdapter achieves superior or competitive accuracy across eight attribute classification tasks on the Global StreetScapes dataset, attaining new state-of-the-art results while maintaining low computational cost. The code is available at https://github.com/SpaceTimeLab/CLIP-MHAdapter.
☆ Arc2Morph: Identity-Preserving Facial Morphing with Arc2Face
Face morphing attacks are widely recognized as one of the most challenging threats to face recognition systems used in electronic identity documents. These attacks exploit a critical vulnerability in passport enrollment procedures adopted by many countries, where the facial image is often acquired without a supervised live capture process. In this paper, we propose a novel face morphing technique based on Arc2Face, an identity-conditioned face foundation model capable of synthesizing photorealistic facial images from compact identity representations. We demonstrate the effectiveness of the proposed approach by comparing the morphing attack potential metric on two large-scale sequestered face morphing attack detection datasets against several state-of-the-art morphing methods, as well as on two novel morphed face datasets derived from FEI and ONOT. Experimental results show that the proposed deep learning-based approach achieves a morphing attack potential comparable to that of landmark-based techniques, which have traditionally been regarded as the most challenging. These findings confirm the ability of the proposed method to effectively preserve and manage identity information during the morph generation process.
☆ Let's Split Up: Zero-Shot Classifier Edits for Fine-Grained Video Understanding ICLR 2026
Video recognition models are typically trained on fixed taxonomies which are often too coarse, collapsing distinctions in object, manner or outcome under a single label. As tasks and definitions evolve, such models cannot accommodate emerging distinctions and collecting new annotations and retraining to accommodate such changes is costly. To address these challenges, we introduce category splitting, a new task where an existing classifier is edited to refine a coarse category into finer subcategories, while preserving accuracy elsewhere. We propose a zero-shot editing method that leverages the latent compositional structure of video classifiers to expose fine-grained distinctions without additional data. We further show that low-shot fine-tuning, while simple, is highly effective and benefits from our zero-shot initialization. Experiments on our new video benchmarks for category splitting demonstrate that our method substantially outperforms vision-language baselines, improving accuracy on the newly split categories without sacrificing performance on the rest. Project page: https://kaitingliu.github.io/Category-Splitting/.
comment: ICLR 2026
☆ DressWild: Feed-Forward Pose-Agnostic Garment Sewing Pattern Generation from In-the-Wild Images
Recent advances in garment pattern generation have shown promising progress. However, existing feed-forward methods struggle with diverse poses and viewpoints, while optimization-based approaches are computationally expensive and difficult to scale. This paper focuses on sewing pattern generation for garment modeling and fabrication applications that demand editable, separable, and simulation-ready garments. We propose DressWild, a novel feed-forward pipeline that reconstructs physics-consistent 2D sewing patterns and the corresponding 3D garments from a single in-the-wild image. Given an input image, our method leverages vision-language models (VLMs) to normalize pose variations at the image level, then extract pose-aware, 3D-informed garment features. These features are fused through a transformer-based encoder and subsequently used to predict sewing pattern parameters, which can be directly applied to physical simulation, texture synthesis, and multi-layer virtual try-on. Extensive experiments demonstrate that our approach robustly recovers diverse sewing patterns and the corresponding 3D garments from in-the-wild images without requiring multi-view inputs or iterative optimization, offering an efficient and scalable solution for realistic garment simulation and animation.
☆ Benchmarking Adversarial Robustness and Adversarial Training Strategies for Object Detection
Object detection models are critical components of automated systems, such as autonomous vehicles and perception-based robots, but their sensitivity to adversarial attacks poses a serious security risk. Progress in defending these models lags behind classification, hindered by a lack of standardized evaluation. It is nearly impossible to thoroughly compare attack or defense methods, as existing work uses different datasets, inconsistent efficiency metrics, and varied measures of perturbation cost. This paper addresses this gap by investigating three key questions: (1) How can we create a fair benchmark to impartially compare attacks? (2) How well do modern attacks transfer across different architectures, especially from Convolutional Neural Networks to Vision Transformers? (3) What is the most effective adversarial training strategy for robust defense? To answer these, we first propose a unified benchmark framework focused on digital, non-patch-based attacks. This framework introduces specific metrics to disentangle localization and classification errors and evaluates attack cost using multiple perceptual metrics. Using this benchmark, we conduct extensive experiments on state-of-the-art attacks and a wide range of detectors. Our findings reveal two major conclusions: first, modern adversarial attacks against object detection models show a significant lack of transferability to transformer-based architectures. Second, we demonstrate that the most robust adversarial training strategy leverages a dataset composed of a mix of high-perturbation attacks with different objectives (e.g., spatial and semantic), which outperforms training on any single attack.
☆ MMA: Multimodal Memory Agent
Long-horizon multimodal agents depend on external memory; however, similarity-based retrieval often surfaces stale, low-credibility, or conflicting items, which can trigger overconfident errors. We propose Multimodal Memory Agent (MMA), which assigns each retrieved memory item a dynamic reliability score by combining source credibility, temporal decay, and conflict-aware network consensus, and uses this signal to reweight evidence and abstain when support is insufficient. We also introduce MMA-Bench, a programmatically generated benchmark for belief dynamics with controlled speaker reliability and structured text-vision contradictions. Using this framework, we uncover the "Visual Placebo Effect", revealing how RAG-based agents inherit latent visual biases from foundation models. On FEVER, MMA matches baseline accuracy while reducing variance by 35.2% and improving selective utility; on LoCoMo, a safety-oriented configuration improves actionable accuracy and reduces wrong answers; on MMA-Bench, MMA reaches 41.18% Type-B accuracy in Vision mode, while the baseline collapses to 0.0% under the same protocol. Code: https://github.com/AIGeeksGroup/MMA.
☆ Visual Self-Refine: A Pixel-Guided Paradigm for Accurate Chart Parsing
While Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities for reasoning and self-correction at the textual level, these strengths provide minimal benefits for complex tasks centered on visual perception, such as Chart Parsing. Existing models often struggle with visually dense charts, leading to errors like data omission, misalignment, and hallucination. Inspired by the human strategy of using a finger as a ``visual anchor'' to ensure accuracy when reading complex charts, we propose a new paradigm named Visual Self-Refine (VSR). The core idea of VSR is to enable a model to generate pixel-level localization outputs, visualize them, and then feed these visualizations back to itself, allowing it to intuitively inspect and correct its own potential visual perception errors. We instantiate the VSR paradigm in the domain of Chart Parsing by proposing ChartVSR. This model decomposes the parsing process into two stages: a Refine Stage, where it iteratively uses visual feedback to ensure the accuracy of all data points' Pixel-level Localizations, and a Decode Stage, where it uses these verified localizations as precise visual anchors to parse the final structured data. To address the limitations of existing benchmarks, we also construct ChartP-Bench, a new and highly challenging benchmark for chart parsing. Our work also highlights VSR as a general-purpose visual feedback mechanism, offering a promising new direction for enhancing accuracy on a wide range of vision-centric tasks.
☆ Designing Production-Scale OCR for India: Multilingual and Domain-Specific Systems
Designing Optical Character Recognition (OCR) systems for India requires balancing linguistic diversity, document heterogeneity, and deployment constraints. In this paper, we study two training strategies for building multilingual OCR systems with Vision-Language Models through the Chitrapathak series. We first follow a popular multimodal approach, pairing a generic vision encoder with a strong multilingual language model and training the system end-to-end for OCR. Alternatively, we explore fine-tuning an existing OCR model, despite not being trained for the target languages. Through extensive evaluation on multilingual Indic OCR benchmarks and deployment-oriented metrics, we find that the second strategy consistently achieves better accuracy-latency trade-offs. Chitrapathak-2 achieves 3-6x speedup over its predecessor with being state-of-the-art (SOTA) in Telugu (6.69 char ANLS) and second best in the rest. In addition, we present Parichay, an independent OCR model series designed specifically for 9 Indian government documents to extract structured key fields, achieving 89.8% Exact Match score with a faster inference. Together, these systems achieve SOTA performance and provide practical guidance for building production-scale OCR pipelines in the Indian context.
☆ Automated Histopathology Report Generation via Pyramidal Feature Extraction and the UNI Foundation Model
Generating diagnostic text from histopathology whole slide images (WSIs) is challenging due to the gigapixel scale of the input and the requirement for precise, domain specific language. We propose a hierarchical vision language framework that combines a frozen pathology foundation model with a Transformer decoder for report generation. To make WSI processing tractable, we perform multi resolution pyramidal patch selection (downsampling factors 2^3 to 2^6) and remove background and artifacts using Laplacian variance and HSV based criteria. Patch features are extracted with the UNI Vision Transformer and projected to a 6 layer Transformer decoder that generates diagnostic text via cross attention. To better represent biomedical terminology, we tokenize the output using BioGPT. Finally, we add a retrieval based verification step that compares generated reports with a reference corpus using Sentence BERT embeddings; if a high similarity match is found, the generated report is replaced with the retrieved ground truth reference to improve reliability.
comment: 9 pages. Equal contribution: Ahmet Halici, Ece Tugba Cebeci, Musa Balci
☆ ReMoRa: Multimodal Large Language Model based on Refined Motion Representation for Long-Video Understanding
While multimodal large language models (MLLMs) have shown remarkable success across a wide range of tasks, long-form video understanding remains a significant challenge. In this study, we focus on video understanding by MLLMs. This task is challenging because processing a full stream of RGB frames is computationally intractable and highly redundant, as self-attention have quadratic complexity with sequence length. In this paper, we propose ReMoRa, a video MLLM that processes videos by operating directly on their compressed representations. A sparse set of RGB keyframes is retained for appearance, while temporal dynamics are encoded as a motion representation, removing the need for sequential RGB frames. These motion representations act as a compact proxy for optical flow, capturing temporal dynamics without full frame decoding. To refine the noise and low fidelity of block-based motions, we introduce a module to denoise and generate a fine-grained motion representation. Furthermore, our model compresses these features in a way that scales linearly with sequence length. We demonstrate the effectiveness of ReMoRa through extensive experiments across a comprehensive suite of long-video understanding benchmarks. ReMoRa outperformed baseline methods on multiple challenging benchmarks, including LongVideoBench, NExT-QA, and MLVU.
☆ Parameter-Free Adaptive Multi-Scale Channel-Spatial Attention Aggregation framework for 3D Indoor Semantic Scene Completion Toward Assisting Visually Impaired
In indoor assistive perception for visually impaired users, 3D Semantic Scene Completion (SSC) is expected to provide structurally coherent and semantically consistent occupancy under strictly monocular vision for safety-critical scene understanding. However, existing monocular SSC approaches often lack explicit modeling of voxel-feature reliability and regulated cross-scale information propagation during 2D-3D projection and multi-scale fusion, making them vulnerable to projection diffusion and feature entanglement and thus limiting structural stability.To address these challenges, this paper presents an Adaptive Multi-scale Attention Aggregation (AMAA) framework built upon the MonoScene pipeline. Rather than introducing a heavier backbone, AMAA focuses on reliability-oriented feature regulation within a monocular SSC framework. Specifically, lifted voxel features are jointly calibrated in semantic and spatial dimensions through parallel channel-spatial attention aggregation, while multi-scale encoder-decoder fusion is stabilized via a hierarchical adaptive feature-gating strategy that regulates information injection across scales.Experiments on the NYUv2 benchmark demonstrate consistent improvements over MonoScene without significantly increasing system complexity: AMAA achieves 27.25% SSC mIoU (+0.31) and 43.10% SC IoU (+0.59). In addition, system-level deployment on an NVIDIA Jetson platform verifies that the complete AMAA framework can be executed stably on embedded hardware. Overall, AMAA improves monocular SSC quality and provides a reliable and deployable perception framework for indoor assistive systems targeting visually impaired users.
comment: 17 pages, 9 figures, 5 tables
☆ Markerless 6D Pose Estimation and Position-Based Visual Servoing for Endoscopic Continuum Manipulators
Continuum manipulators in flexible endoscopic surgical systems offer high dexterity for minimally invasive procedures; however, accurate pose estimation and closed-loop control remain challenging due to hysteresis, compliance, and limited distal sensing. Vision-based approaches reduce hardware complexity but are often constrained by limited geometric observability and high computational overhead, restricting real-time closed-loop applicability. This paper presents a unified framework for markerless stereo 6D pose estimation and position-based visual servoing of continuum manipulators. A photo-realistic simulation pipeline enables large-scale automatic training with pixel-accurate annotations. A stereo-aware multi-feature fusion network jointly exploits segmentation masks, keypoints, heatmaps, and bounding boxes to enhance geometric observability. To enforce geometric consistency without iterative optimization, a feed-forward rendering-based refinement module predicts residual pose corrections in a single pass. A self-supervised sim-to-real adaptation strategy further improves real-world performance using unlabeled data. Extensive real-world validation achieves a mean translation error of 0.83 mm and a mean rotation error of 2.76° across 1,000 samples. Markerless closed-loop visual servoing driven by the estimated pose attains accurate trajectory tracking with a mean translation error of 2.07 mm and a mean rotation error of 7.41°, corresponding to 85% and 59% reductions compared to open-loop control, together with high repeatability in repeated point-reaching tasks. To the best of our knowledge, this work presents the first fully markerless pose-estimation-driven position-based visual servoing framework for continuum manipulators, enabling precise closed-loop control without physical markers or embedded sensing.
comment: 20 pages, 13 figures, 7 tables
☆ Articulated 3D Scene Graphs for Open-World Mobile Manipulation
Semantics has enabled 3D scene understanding and affordance-driven object interaction. However, robots operating in real-world environments face a critical limitation: they cannot anticipate how objects move. Long-horizon mobile manipulation requires closing the gap between semantics, geometry, and kinematics. In this work, we present MoMa-SG, a novel framework for building semantic-kinematic 3D scene graphs of articulated scenes containing a myriad of interactable objects. Given RGB-D sequences containing multiple object articulations, we temporally segment object interactions and infer object motion using occlusion-robust point tracking. We then lift point trajectories into 3D and estimate articulation models using a novel unified twist estimation formulation that robustly estimates revolute and prismatic joint parameters in a single optimization pass. Next, we associate objects with estimated articulations and detect contained objects by reasoning over parent-child relations at identified opening states. We also introduce the novel Arti4D-Semantic dataset, which uniquely combines hierarchical object semantics including parent-child relation labels with object axis annotations across 62 in-the-wild RGB-D sequences containing 600 object interactions and three distinct observation paradigms. We extensively evaluate the performance of MoMa-SG on two datasets and ablate key design choices of our approach. In addition, real-world experiments on both a quadruped and a mobile manipulator demonstrate that our semantic-kinematic scene graphs enable robust manipulation of articulated objects in everyday home environments. We provide code and data at: https://momasg.cs.uni-freiburg.de.
☆ SCAR: Satellite Imagery-Based Calibration for Aerial Recordings
We introduce SCAR, a method for long-term auto-calibration refinement of aerial visual-inertial systems that exploits georeferenced satellite imagery as a persistent global reference. SCAR estimates both intrinsic and extrinsic parameters by aligning aerial images with 2D--3D correspondences derived from publicly available orthophotos and elevation models. In contrast to existing approaches that rely on dedicated calibration maneuvers or manually surveyed ground control points, our method leverages external geospatial data to detect and correct calibration degradation under field deployment conditions. We evaluate our approach on six large-scale aerial campaigns conducted over two years under diverse seasonal and environmental conditions. Across all sequences, SCAR consistently outperforms established baselines (Kalibr, COLMAP, VINS-Mono), reducing median reprojection error by a large margin, and translating these calibration gains into substantially lower visual localization rotation errors and higher pose accuracy. These results demonstrate that SCAR provides accurate, robust, and reproducible calibration over long-term aerial operations without the need for manual intervention.
☆ Subtractive Modulative Network with Learnable Periodic Activations
We propose the Subtractive Modulative Network (SMN), a novel, parameter-efficient Implicit Neural Representation (INR) architecture inspired by classical subtractive synthesis. The SMN is designed as a principled signal processing pipeline, featuring a learnable periodic activation layer (Oscillator) that generates a multi-frequency basis, and a series of modulative mask modules (Filters) that actively generate high-order harmonics. We provide both theoretical analysis and empirical validation for our design. Our SMN achieves a PSNR of $40+$ dB on two image datasets, comparing favorably against state-of-the-art methods in terms of both reconstruction accuracy and parameter efficiency. Furthermore, consistent advantage is observed on the challenging 3D NeRF novel view synthesis task. Supplementary materials are available at https://inrainbws.github.io/smn/.
comment: 4 pages, 3 figures, 3 tables
☆ Guide-Guard: Off-Target Predicting in CRISPR Applications
With the introduction of cyber-physical genome sequencing and editing technologies, such as CRISPR, researchers can more easily access tools to investigate and create remedies for a variety of topics in genetics and health science (e.g. agriculture and medicine). As the field advances and grows, new concerns present themselves in the ability to predict the off-target behavior. In this work, we explore the underlying biological and chemical model from a data driven perspective. Additionally, we present a machine learning based solution named \textit{Guide-Guard} to predict the behavior of the system given a gRNA in the CRISPR gene-editing process with 84\% accuracy. This solution is able to be trained on multiple different genes at the same time while retaining accuracy.
comment: 10 pages, 11 figs, accepted to IDEAL 2022
☆ A Self-Supervised Approach for Enhanced Feature Representations in Object Detection Tasks
In the fast-evolving field of artificial intelligence, where models are increasingly growing in complexity and size, the availability of labeled data for training deep learning models has become a significant challenge. Addressing complex problems like object detection demands considerable time and resources for data labeling to achieve meaningful results. For companies developing such applications, this entails extensive investment in highly skilled personnel or costly outsourcing. This research work aims to demonstrate that enhancing feature extractors can substantially alleviate this challenge, enabling models to learn more effective representations with less labeled data. Utilizing a self-supervised learning strategy, we present a model trained on unlabeled data that outperforms state-of-the-art feature extractors pre-trained on ImageNet and particularly designed for object detection tasks. Moreover, the results demonstrate that our approach encourages the model to focus on the most relevant aspects of an object, thus achieving better feature representations and, therefore, reinforcing its reliability and robustness.
☆ RefineFormer3D: Efficient 3D Medical Image Segmentation via Adaptive Multi-Scale Transformer with Cross Attention Fusion
Accurate and computationally efficient 3D medical image segmentation remains a critical challenge in clinical workflows. Transformer-based architectures often demonstrate superior global contextual modeling but at the expense of excessive parameter counts and memory demands, restricting their clinical deployment. We propose RefineFormer3D, a lightweight hierarchical transformer architecture that balances segmentation accuracy and computational efficiency for volumetric medical imaging. The architecture integrates three key components: (i) GhostConv3D-based patch embedding for efficient feature extraction with minimal redundancy, (ii) MixFFN3D module with low-rank projections and depthwise convolutions for parameter-efficient feature extraction, and (iii) a cross-attention fusion decoder enabling adaptive multi-scale skip connection integration. RefineFormer3D contains only 2.94M parameters, substantially fewer than contemporary transformer-based methods. Extensive experiments on ACDC and BraTS benchmarks demonstrate that RefineFormer3D achieves 93.44\% and 85.9\% average Dice scores respectively, outperforming or matching state-of-the-art methods while requiring significantly fewer parameters. Furthermore, the model achieves fast inference (8.35 ms per volume on GPU) with low memory requirements, supporting deployment in resource-constrained clinical environments. These results establish RefineFormer3D as an effective and scalable solution for practical 3D medical image segmentation.
comment: 13 pages, 5 figures, 7 tables
☆ Breaking the Sub-Millimeter Barrier: Eyeframe Acquisition from Color Images
Eyeframe lens tracing is an important process in the optical industry that requires sub-millimeter precision to ensure proper lens fitting and optimal vision correction. Traditional frame tracers rely on mechanical tools that need precise positioning and calibration, which are time-consuming and require additional equipment, creating an inefficient workflow for opticians. This work presents a novel approach based on artificial vision that utilizes multi-view information. The proposed algorithm operates on images captured from an InVision system. The full pipeline includes image acquisition, frame segmentation to isolate the eyeframe from background, depth estimation to obtain 3D spatial information, and multi-view processing that integrates segmented RGB images with depth data for precise frame contour measurement. To this end, different configurations and variants are proposed and analyzed on real data, providing competitive measurements from still color images with respect to other solutions, while eliminating the need for specialized tracing equipment and reducing workflow complexity for optical technicians.
comment: Accepted to CAI 2026
☆ AFFMAE: Scalable and Efficient Vision Pretraining for Desktop Graphics Cards
Self-supervised pretraining has transformed computer vision by enabling data-efficient fine-tuning, yet high-resolution training typically requires server-scale infrastructure, limiting in-domain foundation model development for many research laboratories. Masked Autoencoders (MAE) reduce computation by encoding only visible tokens, but combining MAE with hierarchical downsampling architectures remains structurally challenging due to dense grid priors and mask-aware design compromises. We introduce AFFMAE, a masking-friendly hierarchical pretraining framework built on adaptive, off-grid token merging. By discarding masked tokens and performing dynamic merging exclusively over visible tokens, AFFMAE removes dense-grid assumptions while preserving hierarchical scalability. We developed numerically stable mixed-precision Flash-style cluster attention kernels, and mitigate sparse-stage representation collapse via deep supervision. On high-resolution electron microscopy segmentation, AFFMAE matches ViT-MAE performance at equal parameter count while reducing FLOPs by up to 7x, halving memory usage, and achieving faster training on a single RTX 5090. Code available at https://github.com/najafian-lab/affmae.
comment: Preprint
☆ HyPCA-Net: Advancing Multimodal Fusion in Medical Image Analysis
Multimodal fusion frameworks, which integrate diverse medical imaging modalities (e.g., MRI, CT), have shown great potential in applications such as skin cancer detection, dementia diagnosis, and brain tumor prediction. However, existing multimodal fusion methods face significant challenges. First, they often rely on computationally expensive models, limiting their applicability in low-resource environments. Second, they often employ cascaded attention modules, which potentially increase risk of information loss during inter-module transitions and hinder their capacity to effectively capture robust shared representations across modalities. This restricts their generalization in multi-disease analysis tasks. To address these limitations, we propose a Hybrid Parallel-Fusion Cascaded Attention Network (HyPCA-Net), composed of two core novel blocks: (a) a computationally efficient residual adaptive learning attention block for capturing refined modality-specific representations, and (b) a dual-view cascaded attention block aimed at learning robust shared representations across diverse modalities. Extensive experiments on ten publicly available datasets exhibit that HyPCA-Net significantly outperforms existing leading methods, with improvements of up to 5.2% in performance and reductions of up to 73.1% in computational cost. Code: https://github.com/misti1203/HyPCA-Net.
comment: Accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision 2026
☆ EasyControlEdge: A Foundation-Model Fine-Tuning for Edge Detection
We propose EasyControlEdge, adapting an image-generation foundation model to edge detection. In real-world edge detection (e.g., floor-plan walls, satellite roads/buildings, and medical organ boundaries), crispness and data efficiency are crucial, yet producing crisp raw edge maps with limited training samples remains challenging. Although image-generation foundation models perform well on many downstream tasks, their pretrained priors for data-efficient transfer and iterative refinement for high-frequency detail preservation remain underexploited for edge detection. To enable crisp and data-efficient edge detection using these capabilities, we introduce an edge-specialized adaptation of image-generation foundation models. To better specialize the foundation model for edge detection, we incorporate an edge-oriented objective with an efficient pixel-space loss. At inference, we introduce guidance based on unconditional dynamics, enabling a single model to control the edge density through a guidance scale. Experiments on BSDS500, NYUDv2, BIPED, and CubiCasa compare against state-of-the-art methods and show consistent gains, particularly under no-post-processing crispness evaluation and with limited training data.
☆ DataCube: A Video Retrieval Platform via Natural Language Semantic Profiling IJCAI
Large-scale video repositories are increasingly available for modern video understanding and generation tasks. However, transforming raw videos into high-quality, task-specific datasets remains costly and inefficient. We present DataCube, an intelligent platform for automatic video processing, multi-dimensional profiling, and query-driven retrieval. DataCube constructs structured semantic representations of video clips and supports hybrid retrieval with neural re-ranking and deep semantic matching. Through an interactive web interface, users can efficiently construct customized video subsets from massive repositories for training, analysis, and evaluation, and build searchable systems over their own private video collections. The system is publicly accessible at https://datacube.baai.ac.cn/. Demo Video: https://baai-data-cube.ks3-cn-beijing.ksyuncs.com/custom/Adobe%20Express%20-%202%E6%9C%8818%E6%97%A5%20%281%29%281%29%20%281%29.mp4
comment: This paper is under review for the IJCAI-ECAI 2026 Demonstrations Track
☆ Graph neural network for colliding particles with an application to sea ice floe modeling
This paper introduces a novel approach to sea ice modeling using Graph Neural Networks (GNNs), utilizing the natural graph structure of sea ice, where nodes represent individual ice pieces, and edges model the physical interactions, including collisions. This concept is developed within a one-dimensional framework as a foundational step. Traditional numerical methods, while effective, are computationally intensive and less scalable. By utilizing GNNs, the proposed model, termed the Collision-captured Network (CN), integrates data assimilation (DA) techniques to effectively learn and predict sea ice dynamics under various conditions. The approach was validated using synthetic data, both with and without observed data points, and it was found that the model accelerates the simulation of trajectories without compromising accuracy. This advancement offers a more efficient tool for forecasting in marginal ice zones (MIZ) and highlights the potential of combining machine learning with data assimilation for more effective and efficient modeling.
☆ Uncertainty-Guided Inference-Time Depth Adaptation for Transformer-Based Visual Tracking IJCNN 2026
Transformer-based single-object trackers achieve state-of-the-art accuracy but rely on fixed-depth inference, executing the full encoder--decoder stack for every frame regardless of visual complexity, thereby incurring unnecessary computational cost in long video sequences dominated by temporally coherent frames. We propose UncL-STARK, an architecture-preserving approach that enables dynamic, uncertainty-aware depth adaptation in transformer-based trackers without modifying the underlying network or adding auxiliary heads. The model is fine-tuned to retain predictive robustness at multiple intermediate depths using random-depth training with knowledge distillation, thus enabling safe inference-time truncation. At runtime, we derive a lightweight uncertainty estimate directly from the model's corner localization heatmaps and use it in a feedback-driven policy that selects the encoder and decoder depth for the next frame based on the prediction confidence by exploiting temporal coherence in video. Extensive experiments on GOT-10k and LaSOT demonstrate up to 12\% GFLOPs reduction, 8.9\% latency reduction, and 10.8\% energy savings while maintaining tracking accuracy within 0.2\% of the full-depth baseline across both short-term and long-term sequences.
comment: Submitted to IJCNN 2026
☆ Evaluating Demographic Misrepresentation in Image-to-Image Portrait Editing
Demographic bias in text-to-image (T2I) generation is well studied, yet demographic-conditioned failures in instruction-guided image-to-image (I2I) editing remain underexplored. We examine whether identical edit instructions yield systematically different outcomes across subject demographics in open-weight I2I editors. We formalize two failure modes: Soft Erasure, where edits are silently weakened or ignored in the output image, and Stereotype Replacement, where edits introduce unrequested, stereotype-consistent attributes. We introduce a controlled benchmark that probes demographic-conditioned behavior by generating and editing portraits conditioned on race, gender, and age using a diagnostic prompt set, and evaluate multiple editors with vision-language model (VLM) scoring and human evaluation. Our analysis shows that identity preservation failures are pervasive, demographically uneven, and shaped by implicit social priors, including occupation-driven gender inference. Finally, we demonstrate that a prompt-level identity constraint, without model updates, can substantially reduce demographic change for minority groups while leaving majority-group portraits largely unchanged, revealing asymmetric identity priors in current editors. Together, our findings establish identity preservation as a central and demographically uneven failure mode in I2I editing and motivate demographic-robust editing systems. Project page: https://seochan99.github.io/i2i-demographic-bias
comment: 19 pages, 13 figures. Preprint
☆ IRIS: Intent Resolution via Inference-time Saccades for Open-Ended VQA in Large Vision-Language Models
We introduce IRIS (Intent Resolution via Inference-time Saccades), a novel training-free approach that uses eye-tracking data in real-time to resolve ambiguity in open-ended VQA. Through a comprehensive user study with 500 unique image-question pairs, we demonstrate that fixations closest to the time participants start verbally asking their questions are the most informative for disambiguation in Large VLMs, more than doubling the accuracy of responses on ambiguous questions (from 35.2% to 77.2%) while maintaining performance on unambiguous queries. We evaluate our approach across state-of-the-art VLMs, showing consistent improvements when gaze data is incorporated in ambiguous image-question pairs, regardless of architectural differences. We release a new benchmark dataset to use eye movement data for disambiguated VQA, a novel real-time interactive protocol, and an evaluation suite.
☆ CHAI: CacHe Attention Inference for text2video
Text-to-video diffusion models deliver impressive results but remain slow because of the sequential denoising of 3D latents. Existing approaches to speed up inference either require expensive model retraining or use heuristic-based step skipping, which struggles to maintain video quality as the number of denoising steps decreases. Our work, CHAI, aims to use cross-inference caching to reduce latency while maintaining video quality. We introduce Cache Attention as an effective method for attending to shared objects/scenes across cross-inference latents. This selective attention mechanism enables effective reuse of cached latents across semantically related prompts, yielding high cache hit rates. We show that it is possible to generate high-quality videos using Cache Attention with as few as 8 denoising steps. When integrated into the overall system, CHAI is 1.65x - 3.35x faster than baseline OpenSora 1.2 while maintaining video quality.
☆ OmniCT: Towards a Unified Slice-Volume LVLM for Comprehensive CT Analysis
Computed Tomography (CT) is one of the most widely used and diagnostically information-dense imaging modalities, covering critical organs such as the heart, lungs, liver, and colon. Clinical interpretation relies on both slice-driven local features (e.g., sub-centimeter nodules, lesion boundaries) and volume-driven spatial representations (e.g., tumor infiltration, inter-organ anatomical relations). However, existing Large Vision-Language Models (LVLMs) remain fragmented in CT slice versus volumetric understanding: slice-driven LVLMs show strong generalization but lack cross-slice spatial consistency, while volume-driven LVLMs explicitly capture volumetric semantics but suffer from coarse granularity and poor compatibility with slice inputs. The absence of a unified modeling paradigm constitutes a major bottleneck for the clinical translation of medical LVLMs. We present OmniCT, a powerful unified slice-volume LVLM for CT scenarios, which makes three contributions: (i) Spatial Consistency Enhancement (SCE): volumetric slice composition combined with tri-axial positional embedding that introduces volumetric consistency, and an MoE hybrid projection enables efficient slice-volume adaptation; (ii) Organ-level Semantic Enhancement (OSE): segmentation and ROI localization explicitly align anatomical regions, emphasizing lesion- and organ-level semantics; (iii) MedEval-CT: the largest slice-volume CT dataset and hybrid benchmark integrates comprehensive metrics for unified evaluation. OmniCT consistently outperforms existing methods with a substantial margin across diverse clinical tasks and satisfies both micro-level detail sensitivity and macro-level spatial reasoning. More importantly, it establishes a new paradigm for cross-modal medical imaging understanding.
☆ HS-3D-NeRF: 3D Surface and Hyperspectral Reconstruction From Stationary Hyperspectral Images Using Multi-Channel NeRFs
Advances in hyperspectral imaging (HSI) and 3D reconstruction have enabled accurate, high-throughput characterization of agricultural produce quality and plant phenotypes, both essential for advancing agricultural sustainability and breeding programs. HSI captures detailed biochemical features of produce, while 3D geometric data substantially improves morphological analysis. However, integrating these two modalities at scale remains challenging, as conventional approaches involve complex hardware setups incompatible with automated phenotyping systems. Recent advances in neural radiance fields (NeRF) offer computationally efficient 3D reconstruction but typically require moving-camera setups, limiting throughput and reproducibility in standard indoor agricultural environments. To address these challenges, we introduce HSI-SC-NeRF, a stationary-camera multi-channel NeRF framework for high-throughput hyperspectral 3D reconstruction targeting postharvest inspection of agricultural produce. Multi-view hyperspectral data is captured using a stationary camera while the object rotates within a custom-built Teflon imaging chamber providing diffuse, uniform illumination. Object poses are estimated via ArUco calibration markers and transformed to the camera frame of reference through simulated pose transformations, enabling standard NeRF training on stationary-camera data. A multi-channel NeRF formulation optimizes reconstruction across all hyperspectral bands jointly using a composite spectral loss, supported by a two-stage training protocol that decouples geometric initialization from radiometric refinement. Experiments on three agricultural produce samples demonstrate high spatial reconstruction accuracy and strong spectral fidelity across the visible and near-infrared spectrum, confirming the suitability of HSI-SC-NeRF for integration into automated agricultural workflows.
comment: 16 pages, 14 figures, 3 tables
☆ Xray-Visual Models: Scaling Vision models on Industry Scale Data
We present Xray-Visual, a unified vision model architecture for large-scale image and video understanding trained on industry-scale social media data. Our model leverages over 15 billion curated image-text pairs and 10 billion video-hashtag pairs from Facebook and Instagram, employing robust data curation pipelines that incorporate balancing and noise suppression strategies to maximize semantic diversity while minimizing label noise. We introduce a three-stage training pipeline that combines self-supervised MAE, semi-supervised hashtag classification, and CLIP-style contrastive learning to jointly optimize image and video modalities. Our architecture builds on a Vision Transformer backbone enhanced with efficient token reorganization (EViT) for improved computational efficiency. Extensive experiments demonstrate that Xray-Visual achieves state-of-the-art performance across diverse benchmarks, including ImageNet for image classification, Kinetics and HMDB51 for video understanding, and MSCOCO for cross-modal retrieval. The model exhibits strong robustness to domain shift and adversarial perturbations. We further demonstrate that integrating large language models as text encoders (LLM2CLIP) significantly enhances retrieval performance and generalization capabilities, particularly in real-world environments. Xray-Visual establishes new benchmarks for scalable, multimodal vision models, while maintaining superior accuracy and computational efficiency.
☆ SemCovNet: Towards Fair and Semantic Coverage-Aware Learning for Underrepresented Visual Concepts
Modern vision models increasingly rely on rich semantic representations that extend beyond class labels to include descriptive concepts and contextual attributes. However, existing datasets exhibit Semantic Coverage Imbalance (SCI), a previously overlooked bias arising from the long-tailed semantic representations. Unlike class imbalance, SCI occurs at the semantic level, affecting how models learn and reason about rare yet meaningful semantics. To mitigate SCI, we propose Semantic Coverage-Aware Network (SemCovNet), a novel model that explicitly learns to correct semantic coverage disparities. SemCovNet integrates a Semantic Descriptor Map (SDM) for learning semantic representations, a Descriptor Attention Modulation (DAM) module that dynamically weights visual and concept features, and a Descriptor-Visual Alignment (DVA) loss that aligns visual features with descriptor semantics. We quantify semantic fairness using a Coverage Disparity Index (CDI), which measures the alignment between coverage and error. Extensive experiments across multiple datasets demonstrate that SemCovNet enhances model reliability and substantially reduces CDI, achieving fairer and more equitable performance. This work establishes SCI as a measurable and correctable bias, providing a foundation for advancing semantic fairness and interpretable vision learning.
☆ StereoAdapter-2: Globally Structure-Consistent Underwater Stereo Depth Estimation
Stereo depth estimation is fundamental to underwater robotic perception, yet suffers from severe domain shifts caused by wavelength-dependent light attenuation, scattering, and refraction. Recent approaches leverage monocular foundation models with GRU-based iterative refinement for underwater adaptation; however, the sequential gating and local convolutional kernels in GRUs necessitate multiple iterations for long-range disparity propagation, limiting performance in large-disparity and textureless underwater regions. In this paper, we propose StereoAdapter-2, which replaces the conventional ConvGRU updater with a novel ConvSS2D operator based on selective state space models. The proposed operator employs a four-directional scanning strategy that naturally aligns with epipolar geometry while capturing vertical structural consistency, enabling efficient long-range spatial propagation within a single update step at linear computational complexity. Furthermore, we construct UW-StereoDepth-80K, a large-scale synthetic underwater stereo dataset featuring diverse baselines, attenuation coefficients, and scattering parameters through a two-stage generative pipeline combining semantic-aware style transfer and geometry-consistent novel view synthesis. Combined with dynamic LoRA adaptation inherited from StereoAdapter, our framework achieves state-of-the-art zero-shot performance on underwater benchmarks with 17% improvement on TartanAir-UW and 7.2% improvment on SQUID, with real-world validation on the BlueROV2 platform demonstrates the robustness of our approach. Code: https://github.com/AIGeeksGroup/StereoAdapter-2. Website: https://aigeeksgroup.github.io/StereoAdapter-2.
☆ MALLVI: a multi agent framework for integrated generalized robotics manipulation
Task planning for robotic manipulation with large language models (LLMs) is an emerging area. Prior approaches rely on specialized models, fine tuning, or prompt tuning, and often operate in an open loop manner without robust environmental feedback, making them fragile in dynamic settings.We present MALLVi, a Multi Agent Large Language and Vision framework that enables closed loop feedback driven robotic manipulation. Given a natural language instruction and an image of the environment, MALLVi generates executable atomic actions for a robot manipulator. After action execution, a Vision Language Model (VLM) evaluates environmental feedback and decides whether to repeat the process or proceed to the next step.Rather than using a single model, MALLVi coordinates specialized agents, Decomposer, Localizer, Thinker, and Reflector, to manage perception, localization, reasoning, and high level planning. An optional Descriptor agent provides visual memory of the initial state. The Reflector supports targeted error detection and recovery by reactivating only relevant agents, avoiding full replanning.Experiments in simulation and real world settings show that iterative closed loop multi agent coordination improves generalization and increases success rates in zero shot manipulation tasks.Code available at https://github.com/iman1234ahmadi/MALLVI.
☆ DODO: Discrete OCR Diffusion Models
Optical Character Recognition (OCR) is a fundamental task for digitizing information, serving as a critical bridge between visual data and textual understanding. While modern Vision-Language Models (VLM) have achieved high accuracy in this domain, they predominantly rely on autoregressive decoding, which becomes computationally expensive and slow for long documents as it requires a sequential forward pass for every generated token. We identify a key opportunity to overcome this bottleneck: unlike open-ended generation, OCR is a highly deterministic task where the visual input strictly dictates a unique output sequence, theoretically enabling efficient, parallel decoding via diffusion models. However, we show that existing masked diffusion models fail to harness this potential; those introduce structural instabilities that are benign in flexible tasks, like captioning, but catastrophic for the rigid, exact-match requirements of OCR. To bridge this gap, we introduce DODO, the first VLM to utilize block discrete diffusion and unlock its speedup potential for OCR. By decomposing generation into blocks, DODO mitigates the synchronization errors of global diffusion. Empirically, our method achieves near state-of-the-art accuracy while enabling up to 3x faster inference compared to autoregressive baselines.
☆ Analytic Score Optimization for Multi Dimension Video Quality Assessment
Video Quality Assessment (VQA) is evolving beyond single-number mean opinion score toward richer, multi-faceted evaluations of video content. In this paper, we present a large-scale multi-dimensional VQA dataset UltraVQA that encompasses diverse User-Generated Content~(UGC) annotated across five key quality dimensions: Motion Quality, Motion Amplitude, Aesthetic Quality, Content Quality, and Clarity Quality. Each video in our dataset is scored by over 3 human raters on these dimensions, with fine-grained sub-attribute labels, and accompanied by an explanatory rationale generated by GPT based on the collective human judgments. To better leverage these rich annotations and improve discrete quality score assessment, we introduce Analytic Score Optimization (ASO), a theoretically grounded post-training objective derived for multi-dimensional VQA. By reframing quality assessment as a regularized decision-making process, we obtain a closed-form solution that naturally captures the ordinal nature of human ratings, ensuring alignment with human ranking preferences. In experiments, our method outperforms most baselines including closed-source APIs and open-source models, while also reducing mean absolute error (MAE) in quality prediction. Our work highlights the importance of multi-dimensional, interpretable annotations and reinforcement-based alignment in advancing video quality assessment.
comment: 18 pages
♻ ☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies have investigated VLM personalization to understand user-provided concepts. However, they mainly focus on single concepts, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes MC-LLaVA, a multi-concept personalization paradigm. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the training costs, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location maps for enhanced recognition and grounding capabilities. To further push the performance upper bound, we incorporate an optional auxiliary loss, better enhancing the proposed personalized prompts. To decorate the VLM personalization research, we contribute a high-quality dataset. We carefully collect images with multiple characters and objects from movies and manually create question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive experiments demonstrate that MC-LLaVA achieves impressive multi-concept personalized responses, paving the way for VLMs to become better user assistants. The code and dataset will be released at \href{https://github.com/arctanxarc/MC-LLaVA}{https://github.com/arctanxarc/MC-LLaVA}.
♻ ☆ View Invariant Learning for Vision-Language Navigation in Continuous Environments
Vision-Language Navigation in Continuous Environments (VLNCE), where an agent follows instructions and moves freely to reach a destination, is a key research problem in embodied AI. However, most navigation policies are sensitive to viewpoint changes, i.e., variations in camera height and viewing angle that alter the agent's observation. In this paper, we introduce a generalized scenario, V2-VLNCE (VLNCE with Varied Viewpoints), and propose VIL (View Invariant Learning), a view-invariant post-training strategy that enhances the robustness of existing navigation policies to changes in camera viewpoint. VIL employs a contrastive learning framework to learn sparse and view-invariant features. Additionally, we introduce a teacher-student framework for the Waypoint Predictor Module, a core component of most VLNCE baselines, where a view-dependent teacher model distills knowledge into a view-invariant student model. We employ an end-to-end training paradigm to jointly optimize these components, thus eliminating the cost for individual module training. Empirical results show that our method outperforms state-of-the-art approaches on V2-VLNCE by 8-15% measured on Success Rate for two standard benchmark datasets R2R-CE and RxR-CE. Furthermore, we evaluate VIL under the standard VLNCE setting and find that, despite being trained for varied viewpoints, it often still improves performance. On the more challenging RxR-CE dataset, our method also achieved state-of-the-art performance across all metrics when compared to other map-free methods. This suggests that adding VIL does not diminish the standard viewpoint performance and can serve as a plug-and-play post-training method.
comment: This paper is accepted to RA-L 2026
Prompt When the Animal is: Temporal Animal Behavior Grounding with Positional Recovery Training ICME
Temporal grounding is crucial in multimodal learning, but it poses challenges when applied to animal behavior data due to the sparsity and uniform distribution of moments. To address these challenges, we propose a novel Positional Recovery Training framework (Port), which prompts the model with the start and end times of specific animal behaviors during training. Specifically, \port{} enhances the baseline model with a Recovering branch to reconstruct corrupted label sequences and align distributions via a Dual-alignment method. This allows the model to focus on specific temporal regions prompted by ground-truth information. Extensive experiments on the Animal Kingdom dataset demonstrate the effectiveness of \port{}, achieving an IoU@0.3 of 38.52. It emerges as one of the top performers in the sub-track of MMVRAC in ICME 2024 Grand Challenges.
comment: Accepted by ICMEW 2024
♻ ☆ FindAnything: Open-Vocabulary and Object-Centric Mapping for Robot Exploration in Any Environment
Geometrically accurate and semantically expressive map representations have proven invaluable for robot deployment and task planning in unknown environments. Nevertheless, real-time, open-vocabulary semantic understanding of large-scale unknown environments still presents open challenges, mainly due to computational requirements. In this paper we present FindAnything, an open-world mapping framework that incorporates vision-language information into dense volumetric submaps. Thanks to the use of vision-language features, FindAnything combines pure geometric and open-vocabulary semantic information for a higher level of understanding. It proposes an efficient storage of open-vocabulary information through the aggregation of features at the object level. Pixelwise vision-language features are aggregated based on eSAM segments, which are in turn integrated into object-centric volumetric submaps, providing a mapping from open-vocabulary queries to 3D geometry that is scalable also in terms of memory usage. We demonstrate that FindAnything performs on par with the state-of-the-art in terms of semantic accuracy while being substantially faster and more memory-efficient, allowing its deployment in large-scale environments and on resourceconstrained devices, such as MAVs. We show that the real-time capabilities of FindAnything make it useful for downstream tasks, such as autonomous MAV exploration in a simulated Search and Rescue scenario. Project Page: https://ethz-mrl.github.io/findanything/.
comment: 11 pages, 5 figures
♻ ☆ Rotterdam artery-vein segmentation (RAV) dataset
Purpose: To provide a diverse, high-quality dataset of color fundus images (CFIs) with detailed artery-vein (A/V) segmentation annotations, supporting the development and evaluation of machine learning algorithms for vascular analysis in ophthalmology. Methods: CFIs were sampled from the longitudinal Rotterdam Study (RS), encompassing a wide range of ages, devices, and capture conditions. Images were annotated using a custom interface that allowed graders to label arteries, veins, and unknown vessels on separate layers, starting from an initial vessel segmentation mask. Connectivity was explicitly verified and corrected using connected component visualization tools. Results: The dataset includes 1024x1024-pixel PNG images in three modalities: original RGB fundus images, contrast-enhanced versions, and RGB-encoded A/V masks. Image quality varied widely, including challenging samples typically excluded by automated quality assessment systems, but judged to contain valuable vascular information. Conclusion: This dataset offers a rich and heterogeneous source of CFIs with high-quality segmentations. It supports robust benchmarking and training of machine learning models under real-world variability in image quality and acquisition settings. Translational Relevance: By including connectivity-validated A/V masks and diverse image conditions, this dataset enables the development of clinically applicable, generalizable machine learning tools for retinal vascular analysis, potentially improving automated screening and diagnosis of systemic and ocular diseases.
♻ ☆ A Survey: Spatiotemporal Consistency in Video Generation
Video generation aims to produce temporally coherent sequences of visual frames, representing a pivotal advancement in Artificial Intelligence Generated Content (AIGC). Compared to static image generation, video generation poses unique challenges: it demands not only high-quality individual frames but also strong temporal coherence to ensure consistency throughout the spatiotemporal sequence. Although research addressing spatiotemporal consistency in video generation has increased in recent years, systematic reviews focusing on this core issue remain relatively scarce. To fill this gap, this paper views the video generation task as a sequential sampling process from a high-dimensional spatiotemporal distribution, and further discusses spatiotemporal consistency. We provide a systematic review of the latest advancements in the field. The content spans multiple dimensions including generation models, feature representations, generation frameworks, post-processing techniques, training strategies, benchmarks and evaluation metrics, with a particular focus on the mechanisms and effectiveness of various methods in maintaining spatiotemporal consistency. Finally, this paper explores future research directions and potential challenges in this field, aiming to provide valuable insights for advancing video generation technology. The project link is https://github.com/Yin-Z-Y/A-Survey-Spatiotemporal-Consistency-in-Video-Generation.
♻ ☆ Robust Image Stitching with Optimal Plane
We present \textit{RopStitch}, an unsupervised deep image stitching framework with both robustness and naturalness. To ensure the robustness of \textit{RopStitch}, we propose to incorporate the universal prior of content perception into the image stitching model by a dual-branch architecture. It separately captures coarse and fine features and integrates them to achieve highly generalizable performance across diverse unseen real-world scenes. Concretely, the dual-branch model consists of a pretrained branch to capture semantically invariant representations and a learnable branch to extract fine-grained discriminative features, which are then merged into a whole by a controllable factor at the correlation level. Besides, considering that content alignment and structural preservation are often contradictory to each other, we propose a concept of virtual optimal planes to relieve this conflict. To this end, we model this problem as a process of estimating homography decomposition coefficients, and design an iterative coefficient predictor and minimal semantic distortion constraint to identify the optimal plane. This scheme is finally incorporated into \textit{RopStitch} by warping both views onto the optimal plane bidirectionally. Extensive experiments across various datasets demonstrate that \textit{RopStitch} significantly outperforms existing methods, particularly in scene robustness and content naturalness. The code is available at {\color{red}https://github.com/MmelodYy/RopStitch}.
comment: IEEE TVCG 2026
♻ ☆ Autoassociative Learning of Structural Representations for Modeling and Classification in Medical Imaging
Deep learning architectures based on convolutional neural networks tend to rely on continuous, smooth features. While this characteristics provides significant robustness and proves useful in many real-world tasks, it is strikingly incompatible with the physical characteristic of the world, which, at the scale in which humans operate, comprises crisp objects, typically representing well-defined categories. This study proposes a class of neurosymbolic systems that learn by reconstructing images in terms of visual primitives and are thus forced to form high-level, structural explanations of them. When applied to the task of diagnosing abnormalities in histological imaging, the method proved superior to a conventional deep learning architecture in terms of classification accuracy, while being more transparent.
comment: 15 pages, 9 figures
♻ ☆ Visualizing the Invisible: Enhancing Radiologist Performance in Breast Mammography via Task-Driven Chromatic Encoding
Purpose:Mammography screening is less sensitive in dense breasts, where tissue overlap and subtle findings increase perceptual difficulty. We present MammoColor, an end-to-end framework with a Task-Driven Chromatic Encoding (TDCE) module that converts single-channel mammograms into TDCE-encoded views for visual augmentation. Materials and Methods:MammoColor couples a lightweight TDCE module with a BI-RADS triage classifier and was trained end-to-end on VinDr-Mammo. Performance was evaluated on an internal test set, two public datasets (CBIS-DDSM and INBreast), and three external clinical cohorts. We also conducted a multi-reader, multi-case (MRMC) observer study with a washout period, comparing (1) grayscale-only, (2) TDCE-only, and (3) side-by-side grayscale+TDCE. Results:On VinDr-Mammo, MammoColor improved AUC from 0.7669 to 0.8461 (P=0.004). Gains were larger in dense breasts (AUC 0.749 to 0.835). In the MRMC study, TDCE-encoded images improved specificity (0.90 to 0.96; P=0.052) with comparable sensitivity. Conclusion:TDCE provides a task-optimized chromatic representation that may improve perceptual salience and reduce false-positive recalls in mammography triage.
♻ ☆ Vision and Language: Novel Representations and Artificial intelligence for Driving Scene Safety Assessment and Autonomous Vehicle Planning
Vision-language models (VLMs) have recently emerged as powerful representation learning systems that align visual observations with natural language concepts, offering new opportunities for semantic reasoning in safety-critical autonomous driving. This paper investigates how vision-language representations support driving scene safety assessment and decision-making when integrated into perception, prediction, and planning pipelines. We study three complementary system-level use cases. First, we introduce a lightweight, category-agnostic hazard screening approach leveraging CLIP-based image-text similarity to produce a low-latency semantic hazard signal. This enables robust detection of diverse and out-of-distribution road hazards without explicit object detection or visual question answering. Second, we examine the integration of scene-level vision-language embeddings into a transformer-based trajectory planning framework using the Waymo Open Dataset. Our results show that naively conditioning planners on global embeddings does not improve trajectory accuracy, highlighting the importance of representation-task alignment and motivating the development of task-informed extraction methods for safety-critical planning. Third, we investigate natural language as an explicit behavioral constraint on motion planning using the doScenes dataset. In this setting, passenger-style instructions grounded in visual scene elements suppress rare but severe planning failures and improve safety-aligned behavior in ambiguous scenarios. Taken together, these findings demonstrate that vision-language representations hold significant promise for autonomous driving safety when used to express semantic risk, intent, and behavioral constraints. Realizing this potential is fundamentally an engineering problem requiring careful system design and structured grounding rather than direct feature injection.
♻ ☆ Fused-Planes: Why Train a Thousand Tri-Planes When You Can Share? ICLR 2026
Tri-Planar NeRFs enable the application of powerful 2D vision models for 3D tasks, by representing 3D objects using 2D planar structures. This has made them the prevailing choice to model large collections of 3D objects. However, training Tri-Planes to model such large collections is computationally intensive and remains largely inefficient. This is because the current approaches independently train one Tri-Plane per object, hence overlooking structural similarities in large classes of objects. In response to this issue, we introduce Fused-Planes, a novel object representation that improves the resource efficiency of Tri-Planes when reconstructing object classes, all while retaining the same planar structure. Our approach explicitly captures structural similarities across objects through a latent space and a set of globally shared base planes. Each individual Fused-Planes is then represented as a decomposition over these base planes, augmented with object-specific features. Fused-Planes showcase state-of-the-art efficiency among planar representations, demonstrating $7.2 \times$ faster training and $3.2 \times$ lower memory footprint than Tri-Planes while maintaining rendering quality. An ultra-lightweight variant further cuts per-object memory usage by $1875 \times$ with minimal quality loss. Our project page can be found at https://fused-planes.github.io .
comment: Accepted at ICLR 2026. Available at https://fused-planes.github.io
♻ ☆ Label-Consistent Dataset Distillation with Detector-Guided Refinement
Dataset distillation (DD) aims to generate a compact yet informative dataset that achieves performance comparable to the original dataset, thereby reducing demands on storage and computational resources. Although diffusion models have made significant progress in dataset distillation, the generated surrogate datasets often contain samples with label inconsistencies or insufficient structural detail, leading to suboptimal downstream performance. To address these issues, we propose a detector-guided dataset distillation framework that explicitly leverages a pre-trained detector to identify and refine anomalous synthetic samples, thereby ensuring label consistency and improving image quality. Specifically, a detector model trained on the original dataset is employed to identify anomalous images exhibiting label mismatches or low classification confidence. For each defective image, multiple candidates are generated using a pre-trained diffusion model conditioned on the corresponding image prototype and label. The optimal candidate is then selected by jointly considering the detector's confidence score and dissimilarity to existing qualified synthetic samples, thereby ensuring both label accuracy and intra-class diversity. Experimental results demonstrate that our method can synthesize high-quality representative images with richer details, achieving state-of-the-art performance on the validation set.
♻ ☆ Equilibrium contrastive learning for imbalanced image classification
Contrastive learning (CL) is a predominant technique in image classification, but they showed limited performance with an imbalanced dataset. Recently, several supervised CL methods have been proposed to promote an ideal regular simplex geometric configuration in the representation space-characterized by intra-class feature collapse and uniform inter-class mean spacing, especially for imbalanced datasets. In particular, existing prototype-based methods include class prototypes, as additional samples to consider all classes. However, the existing CL methods suffer from two limitations. First, they do not consider the alignment between the class means/prototypes and classifiers, which could lead to poor generalization. Second, existing prototype-based methods treat prototypes as only one additional sample per class, making their influence depend on the number of class instances in a batch and causing unbalanced contributions across classes. To address these limitations, we propose Equilibrium Contrastive Learning (ECL), a supervised CL framework designed to promote geometric equilibrium, where class features, means, and classifiers are harmoniously balanced under data imbalance. The proposed ECL framework uses two main components. First, ECL promotes the representation geometric equilibrium (i.e., a regular simplex geometry characterized by collapsed class samples and uniformly distributed class means), while balancing the contributions of class-average features and class prototypes. Second, ECL establishes a classifier-class center geometric equilibrium by aligning classifier weights and class prototypes. We ran experiments with three long-tailed datasets, the CIFAR-10(0)-LT, ImageNet-LT, and the two imbalanced medical datasets, the ISIC 2019 and our constructed LCCT dataset. Results show that ECL outperforms existing SOTA supervised CL methods designed for imbalanced classification.
comment: 18 pages, 8 figures
♻ ☆ GEPC: Group-Equivariant Posterior Consistency for Out-of-Distribution Detection in Diffusion Models
Diffusion models learn a time-indexed score field $\mathbf{s}_θ(\mathbf{x}_t,t)$ that often inherits approximate equivariances (flips, rotations, circular shifts) from in-distribution (ID) data and convolutional backbones. Most diffusion-based out-of-distribution (OOD) detectors exploit score magnitude or local geometry (energies, curvature, covariance spectra) and largely ignore equivariances. We introduce Group-Equivariant Posterior Consistency (GEPC), a training-free probe that measures how consistently the learned score transforms under a finite group $\mathcal{G}$, detecting equivariance breaking even when score magnitude remains unchanged. At the population level, we propose the ideal GEPC residual, which averages an equivariance-residual functional over $\mathcal{G}$, and we derive ID upper bounds and OOD lower bounds under mild assumptions. GEPC requires only score evaluations and produces interpretable equivariance-breaking maps. On OOD image benchmark datasets, we show that GEPC achieves competitive or improved AUROC compared to recent diffusion-based baselines while remaining computationally lightweight. On high-resolution synthetic aperture radar imagery where OOD corresponds to targets or anomalies in clutter, GEPC yields strong target-background separation and visually interpretable equivariance-breaking maps. Code is available at https://github.com/RouzAY/gepc-diffusion/.
comment: preprint
♻ ☆ MedReasoner: Reinforcement Learning Drives Reasoning Grounding from Clinical Thought to Pixel-Level Precision AAAI2026
Accurately grounding regions of interest (ROIs) is critical for diagnosis and treatment planning in medical imaging. While multimodal large language models (MLLMs) combine visual perception with natural language, current medical-grounding pipelines still rely on supervised fine-tuning with explicit spatial hints, making them ill-equipped to handle the implicit queries common in clinical practice. This work makes three core contributions. We first define Unified Medical Reasoning Grounding (UMRG), a novel vision-language task that demands clinical reasoning and pixel-level grounding. Second, we release U-MRG-14K, a dataset of 14K samples featuring pixel-level masks alongside implicit clinical queries and reasoning traces, spanning 10 modalities, 15 super-categories, and 108 specific categories. Finally, we introduce MedReasoner, a modular framework that distinctly separates reasoning from segmentation: an MLLM reasoner is optimized with reinforcement learning, while a frozen segmentation expert converts spatial prompts into masks, with alignment achieved through format and accuracy rewards. MedReasoner achieves state-of-the-art performance on U-MRG-14K and demonstrates strong generalization to unseen clinical queries, underscoring the significant promise of reinforcement learning for interpretable medical grounding.
comment: AAAI2026
♻ ☆ A Novel Public Dataset for Strawberry (Fragaria x ananassa) Ripeness Detection and Comparative Evaluation of YOLO-Based Models
The strawberry (Fragaria x ananassa), known worldwide for its economic value and nutritional richness, is a widely cultivated fruit. Determining the correct ripeness level during the harvest period is crucial for both preventing losses for producers and ensuring consumers receive a quality product. However, traditional methods, i.e., visual assessments alone, can be subjective and have a high margin of error. Therefore, computer-assisted systems are needed. However, the scarcity of comprehensive datasets accessible to everyone in the literature makes it difficult to compare studies in this field. In this study, a new and publicly available strawberry ripeness dataset, consisting of 566 images and 1,201 labeled objects, prepared under variable light and environmental conditions in two different greenhouses in Turkey, is presented to the literature. Comparative tests conducted on the data set using YOLOv8, YOLOv9, and YOLO11-based models showed that the highest precision value was 90.94% in the YOLOv9c model, while the highest recall value was 83.74% in the YOLO11s model. In terms of the general performance criterion mAP@50, YOLOv8s was the best performing model with a success rate of 86.09%. The results show that small and medium-sized models work more balanced and efficiently on this type of dataset, while also establishing a fundamental reference point for smart agriculture applications.
♻ ☆ Less is More: Skim Transformer for Light Field Image Super-resolution
A light field image captures scenes through its micro-lens array, providing a rich representation that encompasses spatial and angular information. While this richness comes at significant data redundancy, most existing methods tend to indiscriminately utilize all the information from sub-aperture images (SAIs) in an attempt to harness every visual cue regardless of their disparity significance. However, this paradigm inevitably leads to disparity entanglement, a fundamental cause of inefficiency in light field image processing. To address this limitation, we introduce the Skim Transformer, a novel architecture inspired by the "less is more" philosophy. It features a multi-branch structure where each branch is dedicated to a specific disparity range by constructing its attention score matrix over a skimmed subset of SAIs, rather than all of them. Building upon it, we present SkimLFSR, an efficient yet powerful network for light field image super-resolution. Requiring only 67% of the prior leading method's parameters}, SkimLFSR achieves state-of-the-art results surpassing the best existing method by 0.63 dB and 0.35 dB PSNR at the 2x and 4x tasks, respectively. Through in-depth analyses, we reveal that SkimLFSR, guided by the predefined skimmed SAI sets as prior knowledge, demonstrates distinct disparity-aware behaviors in attending to visual cues. Last but not least, we conduct an experiment to validate SkimLFSR's generalizability across different angular resolutions, where it achieves competitive performance on a larger angular resolution without any retraining or major network modifications. These findings highlight its effectiveness and adaptability as a promising paradigm for light field image processing.
comment: Accepted by IEEE TMM
♻ ☆ ToaSt: Token Channel Selection and Structured Pruning for Efficient ViT
Vision Transformers (ViTs) have achieved remarkable success across various vision tasks, yet their deployment is often hindered by prohibitive computational costs. While structured weight pruning and token compression have emerged as promising solutions, they suffer from prolonged retraining times and global propagation that creates optimization challenges, respectively. We propose ToaSt, a decoupled framework applying specialized strategies to distinct ViT components. We apply coupled head-wise structured pruning to Multi-Head Self-Attention modules, leveraging attention operation characteristics to enhance robustness. For Feed-Forward Networks (over 60\% of FLOPs), we introduce Token Channel Selection (TCS) that enhances compression ratios while avoiding global propagation issues. Our analysis reveals TCS effectively filters redundant noise during selection. Extensive evaluations across nine diverse models, including DeiT, ViT-MAE, and Swin Transformer, demonstrate that ToaSt achieves superior trade-offs between accuracy and efficiency, consistently outperforming existing baselines. On ViT-MAE-Huge, ToaSt achieves 88.52\% accuracy (+1.64 \%) with 39.4\% FLOPs reduction. ToaSt transfers effectively to downstream tasks, achieving 52.2 versus 51.9 mAP on COCO object detection. Code and models will be released upon acceptance.
comment: 8 pages, 5 figures
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advances in architectural design, data availability, and compute have driven remarkable progress in semantic segmentation. Yet, these models often rely on relaxed Bayesian assumptions, omitting critical uncertainty information needed for robust decision-making. Despite growing interest in probabilistic segmentation to address point-estimate limitations, the research landscape remains fragmented. In response, this review synthesizes foundational concepts in uncertainty modeling, analyzing how feature- and parameter-distribution modeling impact four key segmentation tasks: Observer Variability, Active Learning, Model Introspection, and Model Generalization. Our work establishes a common framework by standardizing theory, notation, and terminology, thereby bridging the gap between method developers, task specialists, and applied researchers. We then discuss critical challenges, including the nuanced distinction between uncertainty types, strong assumptions in spatial aggregation, the lack of standardized benchmarks, and pitfalls in current quantification methods. We identify promising avenues for future research, such as uncertainty-aware active learning, data-driven benchmarks, transformer-based models, and novel techniques to move from simple segmentation problems to uncertainty in holistic scene understanding. Based on our analysis, we offer practical guidelines for researchers on method selection, evaluation, reproducibility, and meaningful uncertainty estimation. Ultimately, our goal is to facilitate the development of more reliable, efficient, and interpretable segmentation models that can be confidently deployed in real-world applications.
comment: TMLR
♻ ☆ Trustworthy and Fair SkinGPT-R1 for Democratizing Dermatological Reasoning across Diverse Ethnicities
The clinical translation of dermatological AI is hindered by opaque reasoning and systematic performance disparities across skin tones. Here we present SkinGPT-R1, a multimodal large language model that integrates chain-of-thought diagnostic reasoning with a fairness-aware mixture-of-experts architecture for interpretable and equitable skin disease diagnosis. Through parameter-efficient adaptation of a frozen reasoning backbone, SkinGPT-R1 generates structured diagnostic reports comprising visual findings, differential reasoning, and final diagnosis. Across seven external datasets spanning diverse pathologies and imaging conditions, SkinGPT-R1 achieves state-of-the-art accuracy on six benchmarks, including 82.50\% on a challenging 40-class long-tail classification task (+19.30\% over leading baselines). Blinded evaluation by five board-certified dermatologists on 1,000 phenotypically balanced cases yields a mean score of 3.6 out of 5, with the highest ratings in safety (3.8) and reasoning coherence (3.6), indicating that the generated rationales are clinically safe, logically grounded, and suitable for supporting diagnostic decision-making. Critically, SkinGPT-R1 mitigates algorithmic bias across the full Fitzpatrick spectrum, achieving a robust worst-group performance of 41.40\% on the Fitz17k benchmark and a five-fold relative improvement in lower-bound accuracy on the DDI dataset compared to standard multimodal baselines. These results establish a framework for trustworthy, fair, and explainable AI-assisted dermatological diagnosis.
♻ ☆ PromptGuard: Soft Prompt-Guided Unsafe Content Moderation for Text-to-Image Models
Recent text-to-image (T2I) models have exhibited remarkable performance in generating high-quality images from text descriptions. However, these models are vulnerable to misuse, particularly generating not-safe-for-work (NSFW) content, such as sexually explicit, violent, political, and disturbing images, raising serious ethical concerns. In this work, we present PromptGuard, a novel content moderation technique that draws inspiration from the system prompt mechanism in large language models (LLMs) for safety alignment. Unlike LLMs, T2I models lack a direct interface for enforcing behavioral guidelines. Our key idea is to optimize a safety soft prompt that functions as an implicit system prompt within the T2I model's textual embedding space. This universal soft prompt (P*) directly moderates NSFW inputs, enabling safe yet realistic image generation without altering the inference efficiency or requiring proxy models. We further enhance its reliability and helpfulness through a divide-and-conquer strategy, which optimizes category-specific soft prompts and combines them into holistic safety guidance. Extensive experiments across five datasets demonstrate that PromptGuard effectively mitigates NSFW content generation while preserving high-quality benign outputs. PromptGuard achieves 3.8 times faster than prior content moderation methods, surpassing eight state-of-the-art defenses with an optimal unsafe ratio down to 5.84%.
comment: 15 pages, 8 figures, 14 tables
♻ ☆ Ctrl-GenAug: Controllable Generative Augmentation for Medical Sequence Classification
In the medical field, the limited availability of large-scale datasets and labor-intensive annotation processes hinder the performance of deep models. Diffusion-based generative augmentation approaches present a promising solution to this issue, having been proven effective in advancing downstream medical recognition tasks. Nevertheless, existing works lack sufficient semantic and sequential steerability for challenging video/3D sequence generation, and neglect quality control of noisy synthesized samples, resulting in unreliable synthetic databases and severely limiting the performance of downstream tasks. In this work, we present Ctrl-GenAug, a novel and general generative augmentation framework that enables highly semantic- and sequential-customized sequence synthesis and suppresses incorrectly synthesized samples, to aid medical sequence classification. Specifically, we first design a multimodal conditions-guided sequence generator for controllably synthesizing diagnosis-promotive samples. A sequential augmentation module is integrated to enhance the temporal/stereoscopic coherence of generated samples. Then, we propose a noisy synthetic data filter to suppress unreliable cases at semantic and sequential levels. Extensive experiments on 3 medical datasets, using 11 networks trained on 3 paradigms, comprehensively analyze the effectiveness and generality of Ctrl-GenAug, particularly in underrepresented high-risk populations and out-domain conditions.
comment: Accepted by International Journal of Computer Vision, 30 pages, 11 figures, 11 tables
♻ ☆ 3DGEER: 3D Gaussian Rendering Made Exact and Efficient for Generic Cameras ICLR 2026
3D Gaussian Splatting (3DGS) achieves an appealing balance between rendering quality and efficiency, but relies on approximating 3D Gaussians as 2D projections--an assumption that degrades accuracy, especially under generic large field-of-view (FoV) cameras. Despite recent extensions, no prior work has simultaneously achieved both projective exactness and real-time efficiency for general cameras. We introduce 3DGEER, a geometrically exact and efficient Gaussian rendering framework. From first principles, we derive a closed-form expression for integrating Gaussian density along a ray, enabling precise forward rendering and differentiable optimization under arbitrary camera models. To retain efficiency, we propose the Particle Bounding Frustum (PBF), which provides tight ray-Gaussian association without BVH traversal, and the Bipolar Equiangular Projection (BEAP), which unifies FoV representations, accelerates association, and improves reconstruction quality. Experiments on both pinhole and fisheye datasets show that 3DGEER outperforms prior methods across all metrics, runs 5x faster than existing projective exact ray-based baselines, and generalizes to wider FoVs unseen during training--establishing a new state of the art in real-time radiance field rendering.
comment: Published at ICLR 2026. Project page and codes available at https://zixunh.github.io/3d-geer
♻ ☆ Query-Based Adaptive Aggregation for Multi-Dataset Joint Training Toward Universal Visual Place Recognition
Deep learning methods for Visual Place Recognition (VPR) have advanced significantly, largely driven by large-scale datasets. However, most existing approaches are trained on a single dataset, which can introduce dataset-specific inductive biases and limit model generalization. While multi-dataset joint training offers a promising solution for developing universal VPR models, divergences among training datasets can saturate the limited information capacity in feature aggregation layers, leading to suboptimal performance. To address these challenges, we propose Query-based Adaptive Aggregation (QAA), a novel feature aggregation technique that leverages learned queries as reference codebooks to effectively enhance information capacity without significant computational or parameter complexity. We show that computing the Cross-query Similarity (CS) between query-level image features and reference codebooks provides a simple yet effective way to generate robust descriptors. Our results demonstrate that QAA outperforms state-of-the-art models, achieving balanced generalization across diverse datasets while maintaining peak performance comparable to dataset-specific models. Ablation studies further explore QAA's mechanisms and scalability. Visualizations reveal that the learned queries exhibit diverse attention patterns across datasets. Project page: http://xjh19971.github.io/QAA.
comment: 8 pages, 4 figures, accepted at ICRA 2026
♻ ☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025 (Oral); Project Website: https://chanh.ee/RoboSpatial
♻ ☆ LMSeg: Unleashing the Power of Large-Scale Models for Open-Vocabulary Semantic Segmentation
It is widely agreed that open-vocabulary-based approaches outperform classical closed-set training solutions for recognizing unseen objects in images for semantic segmentation. Existing open-vocabulary approaches leverage vision-language models, such as CLIP, to align visual features with rich semantic features acquired through pre-training on large-scale vision-language datasets. However, the text prompts employed in these methods are short phrases based on fixed templates, failing to capture comprehensive object attributes. Moreover, while the CLIP model excels at exploiting image-level features, it is less effective at pixel-level representation, which is crucial for semantic segmentation tasks. In this work, we propose to alleviate the above-mentioned issues by leveraging multiple large-scale models to enhance the alignment between fine-grained visual features and enriched linguistic features. Specifically, our method employs large language models (LLMs) to generate enriched language prompts with diverse visual attributes for each category, including color, shape/size, and texture/material. Additionally, for enhanced visual feature extraction, the SAM model is adopted as a supplement to the CLIP visual encoder through a proposed learnable weighted fusion strategy. Built upon these techniques, our method, termed LMSeg, achieves state-of-the-art performance across all major open-vocabulary segmentation benchmarks. The code will be made available soon.
♻ ☆ Uncertainty Matters in Dynamic Gaussian Splatting for Monocular 4D Reconstruction
Reconstructing dynamic 3D scenes from monocular input is fundamentally under-constrained, with ambiguities arising from occlusion and extreme novel views. While dynamic Gaussian Splatting offers an efficient representation, vanilla models optimize all Gaussian primitives uniformly, ignoring whether they are well or poorly observed. This limitation leads to motion drifts under occlusion and degraded synthesis when extrapolating to unseen views. We argue that uncertainty matters: Gaussians with recurring observations across views and time act as reliable anchors to guide motion, whereas those with limited visibility are treated as less reliable. To this end, we introduce USplat4D, a novel Uncertainty-aware dynamic Gaussian Splatting framework that propagates reliable motion cues to enhance 4D reconstruction. Our approach estimates time-varying per-Gaussian uncertainty and leverages it to construct a spatio-temporal graph for uncertainty-aware optimization. Experiments on diverse real and synthetic datasets show that explicitly modeling uncertainty consistently improves dynamic Gaussian Splatting models, yielding more stable geometry under occlusion and high-quality synthesis at extreme viewpoints.
comment: Project page: https://tamu-visual-ai.github.io/usplat4d/
♻ ☆ Language-Guided Invariance Probing of Vision-Language Models
Recent vision-language models (VLMs) such as CLIP, OpenCLIP, EVA02-CLIP and SigLIP achieve strong zero-shot performance, but it is unclear how reliably they respond to controlled linguistic perturbations. We introduce Language-Guided Invariance Probing (LGIP), a benchmark that measures (i) invariance to meaning-preserving paraphrases and (ii) sensitivity to meaning-changing semantic flips in image-text matching. Using 40k MS COCO images with five human captions each, we automatically generate paraphrases and rule-based flips that alter object category, color or count, and summarize model behavior with an invariance error, a semantic sensitivity gap and a positive-rate statistic. Across nine VLMs, EVA02-CLIP and large OpenCLIP variants lie on a favorable invariance-sensitivity frontier, combining low paraphrase-induced variance with consistently higher scores for original captions than for their flipped counterparts. In contrast, SigLIP and SigLIP2 show much larger invariance error and often prefer flipped captions to the human descriptions, especially for object and color edits. These failures are largely invisible to standard retrieval metrics, indicating that LGIP provides a model-agnostic diagnostic for the linguistic robustness of VLMs beyond conventional accuracy scores.
comment: Pattern Recognition Letters 2026
♻ ☆ Filter2Noise: A Framework for Interpretable and Zero-Shot Low-Dose CT Image Denoising
Noise in low-dose computed tomography (LDCT) can obscure important diagnostic details. While deep learning offers powerful denoising, supervised methods require impractical paired data, and self-supervised alternatives often use opaque, parameter-heavy networks that limit clinical trust. We propose Filter2Noise (F2N), a novel self-supervised framework for interpretable, zero-shot denoising from a single LDCT image. Instead of a black-box network, its core is an Attention-Guided Bilateral Filter, a transparent, content-aware mathematical operator. A lightweight attention module predicts spatially varying filter parameters, making the process transparent and allowing interactive radiologist control. To learn from a single image with correlated noise, we introduce a multi-scale self-supervised loss coupled with Euclidean Local Shuffle (ELS) to disrupt noise patterns while preserving anatomical integrity. On the Mayo Clinic LDCT Challenge, F2N achieves state-of-the-art results, outperforming competing zero-shot methods by up to 3.68 dB in PSNR. It accomplishes this with only 3.6k parameters, orders of magnitude fewer than competing models, which accelerates inference and simplifies deployment. By combining high performance with transparency, user control, and high parameter efficiency, F2N offers a trustworthy solution for LDCT enhancement. We further demonstrate its applicability by validating it on clinical photon-counting CT data. Code is available at: https://github.com/sypsyp97/Filter2Noise.
comment: preprint
♻ ☆ Scalable Residual Feature Aggregation Framework with Hybrid Metaheuristic Optimization for Robust Early Pancreatic Neoplasm Detection in Multimodal CT Imaging
The early detection of pancreatic neoplasm is a major clinical dilemma, and it is predominantly so because tumors are likely to occur with minimal contrast margins and a large spread anatomy-wide variation amongst patients on a CT scan. These complexities require to be addressed with an effective and scalable system that can assist in enhancing the salience of the subtle visual cues and provide a high level of the generalization on the multimodal imaging data. A Scalable Residual Feature Aggregation (SRFA) framework is proposed to be used to meet these conditions in this study. The framework integrates a pipeline of preprocessing followed by the segmentation using the MAGRes-UNet that is effective in making the pancreatic structures and isolating regions of interest more visible. DenseNet-121 performed with residual feature storage is used to extract features to allow deep hierarchical features to be aggregated without properties loss. To go further, hybrid HHO-BA metaheuristic feature selection strategy is used, which guarantees the best feature subset refinement. To be classified, the system is trained based on a new hybrid model that integrates the ability to pay attention on the world, which is the Vision Transformer (ViT) with the high representational efficiency of EfficientNet-B3. A dual optimization mechanism incorporating SSA and GWO is used to fine-tune hyperparameters to enhance greater robustness and less overfitting. Experimental results support the significant improvement in performance, with the suggested model reaching 96.23% accuracy, 95.58% F1-score and 94.83% specificity, the model is significantly better than the traditional CNNs and contemporary transformer-based models. Such results highlight the possibility of the SRFA framework as a useful instrument in the early detection of pancreatic tumors.
comment: Accepted at 11th International Conference on Big Data Analytics (ICBDA)
Zero-Shot UAV Navigation in Forests via Relightable 3D Gaussian Splatting
UAV navigation in unstructured outdoor environments using passive monocular vision is hindered by the substantial visual domain gap between simulation and reality. While 3D Gaussian Splatting enables photorealistic scene reconstruction from real-world data, existing methods inherently couple static lighting with geometry, severely limiting policy generalization to dynamic real-world illumination. In this paper, we propose a novel end-to-end reinforcement learning framework designed for effective zero-shot transfer to unstructured outdoors. Within a high-fidelity simulation grounded in real-world data, our policy is trained to map raw monocular RGB observations directly to continuous control commands. To overcome photometric limitations, we introduce Relightable 3D Gaussian Splatting, which decomposes scene components to enable explicit, physically grounded editing of environmental lighting within the neural representation. By augmenting training with diverse synthesized lighting conditions ranging from strong directional sunlight to diffuse overcast skies, we compel the policy to learn robust, illumination-invariant visual features. Extensive real-world experiments demonstrate that a lightweight quadrotor achieves robust, collision-free navigation in complex forest environments at speeds up to 10 m/s, exhibiting significant resilience to drastic lighting variations without fine-tuning.
comment: 12 pages, 8 figures
♻ ☆ Frequency-Aware Vision Transformers for High-Fidelity Super-Resolution of Earth System Models
Super-resolution can play an essential role in enhancing the spatial fidelity of Earth System Model outputs, allowing fine-scale structures highly beneficial to climate science to be recovered from coarse simulations. However, traditional deep super-resolution methods, including convolutional and transformer based models, tend to exhibit spectral bias, reconstructing low-frequency content more readily than valuable high-frequency details. In this work, we introduce ViSIR and ViFOR, two frequency-aware frameworks. ViSIR stands for the Vision Transformer-Tuned Sinusoidal Implicit Representation. ViSIR combines vision transformers with sinusoidal activations to mitigate spectral bias. ViFOR stands for the Vision Transformer Fourier Representation Network. ViFOR integrates explicit Fourier based filtering for independent low- and high-frequency learning. Evaluated on the E3SM-HR Earth system dataset across surface temperature, shortwave, and longwave fluxes, these models outperform leading Convolutional NN, Generative Networks, and vanilla transformer baselines, with ViFOR demonstrating up to 2.6~dB improvements in Peak Signal to Noise Ratio and higher Structural Similarity.
♻ ☆ MedVLThinker: Simple Baselines for Multimodal Medical Reasoning ML4H'25
Large Reasoning Models (LRMs) have introduced a new paradigm in AI by enabling models to ``think before responding" via chain-of-thought reasoning. However, the absence of open and reproducible recipes for building reasoning-centric medical LMMs hinders community-wide research, analysis, and comparison. In this paper, we present MedVLThinker, a suite of simple yet strong baselines. Our fully open recipe consists of: (1) systematic data curation for both text-only and image-text medical data, filtered according to varying levels of reasoning difficulty, and (2) two training paradigms: Supervised Fine-Tuning (SFT) on distilled reasoning traces and Reinforcement Learning with Verifiable Rewards (RLVR) based on final answer correctness. Across extensive experiments on the Qwen2.5-VL model family (3B, 7B) and six medical QA benchmarks, we find that RLVR consistently and significantly outperforms SFT. Additionally, under the RLVR framework, a key, counter-intuitive finding is that training on our curated text-only reasoning data provides a more substantial performance boost than training on multimodal image-text data. Our best open 7B model, trained using the RLVR recipe on text-only data, establishes a new state-of-the-art on existing public VQA benchmarks, surpassing all previous open-source medical LMMs. Furthermore, scaling our model to 32B achieves performance on par with the proprietary GPT-4o. We release all curated data, models, and code to provide the community with a strong, open foundation for future research in multimodal medical reasoning.
comment: Project page: https://ucsc-vlaa.github.io/MedVLThinker/ ; Code: https://github.com/UCSC-VLAA/MedVLThinker ; Model and Data: https://huggingface.co/collections/UCSC-VLAA/medvlthinker-688f52224fb7ff7d965d581d ; Accepted by ML4H'25
♻ ☆ Attention, Please! Revisiting Attentive Probing Through the Lens of Efficiency ICLR
As fine-tuning becomes impractical at scale, probing is emerging as the preferred evaluation protocol. However, standard linear probing can understate the capability of models whose pre-training optimizes local representations rather than an explicit global representation. This motivates attentive probing, an alternative that uses attention to selectively aggregate patch-level features. Despite growing adoption, attentive probing is still underexplored: existing approaches are often over-parameterized and computationally inefficient. In this work, we revisit attentive probing through the lens of the accuracy vs. parameter-efficiency trade-off. We present the first comprehensive study of existing methods, analyzing their design choices and benchmarking their performance. Building on these insights, we propose efficient probing (EP), a lightweight yet effective multi-query cross-attention mechanism that eliminates redundant projections and reduces the number of trainable parameters. Across multiple benchmarks and pre-training paradigms, EP consistently outperforms linear probing and previous attentive probing methods, and remains effective when combined with parameter-efficient fine-tuning. Beyond evaluation, our analysis uncovers emerging properties of EP, including complementary attention maps, which open new directions for leveraging probing beyond protocol design. Project page: https://vrg.fel.cvut.cz/ep/.
comment: Accepted at the International Conference on Learning Representations (ICLR) 2026. Code available at https://github.com/billpsomas/efficient-probing
♻ ☆ Multiple Object Detection and Tracking in Panoramic Videos for Cycling Safety Analysis
Cyclists face a disproportionate risk of injury, yet conventional crash records are too sparse to identify risk factors at fine spatial and temporal scales. Recently, naturalistic studies have used video data to capture the complex behavioural and infrastructural risk factors. A promising format is panoramic video, which can record 360$^\circ$ views around a rider. However, its use is limited by distortions, large numbers of small objects, and boundary continuity, which cannot be handled using existing computer vision models. This research proposes a novel three-step framework: (1) enhancing object detection accuracy on panoramic imagery by segmenting and projecting the original 360$^\circ$ images into sub-images; (2) modifying multi-object tracking models to incorporate boundary continuity and object category information; and (3) validating through a real-world application of vehicle overtaking detection. The methodology is evaluated using panoramic videos recorded by cyclists on London's roadways under diverse conditions. Experimental results demonstrate improvements over baselines, achieving higher average precision across varying image resolutions. Moreover, the enhanced tracking approach yields a 10.0% decrease in identification switches and a 2.7% improvement in identification precision. The overtaking detection task achieves a high F-score of 0.82, illustrating the practical effectiveness of the proposed method in real-world cycling safety scenarios.
♻ ☆ Tuning-free Visual Effect Transfer across Videos
We present RefVFX, a new framework that transfers complex temporal effects from a reference video onto a target video or image in a feed-forward manner. While existing methods excel at prompt-based or keyframe-conditioned editing, they struggle with dynamic temporal effects such as dynamic lighting changes or character transformations, which are difficult to describe via text or static conditions. Transferring a video effect is challenging, as the model must integrate the new temporal dynamics with the input video's existing motion and appearance. % To address this, we introduce a large-scale dataset of triplets, where each triplet consists of a reference effect video, an input image or video, and a corresponding output video depicting the transferred effect. Creating this data is non-trivial, especially the video-to-video effect triplets, which do not exist naturally. To generate these, we propose a scalable automated pipeline that creates high-quality paired videos designed to preserve the input's motion and structure while transforming it based on some fixed, repeatable effect. We then augment this data with image-to-video effects derived from LoRA adapters and code-based temporal effects generated through programmatic composition. Building on our new dataset, we train our reference-conditioned model using recent text-to-video backbones. Experimental results demonstrate that RefVFX produces visually consistent and temporally coherent edits, generalizes across unseen effect categories, and outperforms prompt-only baselines in both quantitative metrics and human preference. See our website at https://snap-research.github.io/RefVFX/
comment: Project Page: https://snap-research.github.io/RefVFX/
♻ ☆ Simple Self Organizing Map with Vision Transformers
Vision Transformers (ViTs) have demonstrated exceptional performance in various vision tasks. However, they tend to underperform on smaller datasets due to their inherent lack of inductive biases. Current approaches address this limitation implicitly-often by pairing ViTs with pretext tasks or by distilling knowledge from convolutional neural networks (CNNs) to strengthen the prior. In contrast, Self-Organizing Maps (SOMs), a widely adopted self-supervised framework, are inherently structured to preserve topology and spatial organization, making them a promising candidate to directly address the limitations of ViTs in limited or small training datasets. Despite this potential, equipping SOMs with modern deep learning architectures remains largely unexplored. In this study, we conduct a novel exploration on how Vision Transformers (ViTs) and Self-Organizing Maps (SOMs) can empower each other, aiming to bridge this critical research gap. Our findings demonstrate that these architectures can synergistically enhance each other, leading to significantly improved performance in both unsupervised and supervised tasks. Code is publicly available on GitHub.
comment: 5 pages, 4 figures. Submitted to IEEE. All experiments and code work were performed by the first author, with the second author serving in a PI/mentor role, guiding the progression of the work
♻ ☆ Bongard-RWR+: Real-World Representations of Fine-Grained Concepts in Bongard Problems ICLR 2026
Bongard Problems (BPs) provide a challenging testbed for abstract visual reasoning (AVR), requiring models to identify visual concepts fromjust a few examples and describe them in natural language. Early BP benchmarks featured synthetic black-and-white drawings, which might not fully capture the complexity of real-world scenes. Subsequent BP datasets employed real-world images, albeit the represented concepts are identifiable from high-level image features, reducing the task complexity. Differently, the recently released Bongard-RWR dataset aimed at representing abstract concepts formulated in the original BPs using fine-grained real-world images. Its manual construction, however, limited the dataset size to just $60$ instances, constraining evaluation robustness. In this work, we introduce Bongard-RWR+, a BP dataset composed of $5\,400$ instances that represent original BP abstract concepts using real-world-like images generated via a vision language model (VLM) pipeline. Building on Bongard-RWR, we employ Pixtral-12B to describe manually curated images and generate new descriptions aligned with the underlying concepts, use Flux.1-dev to synthesize images from these descriptions, and manually verify that the generated images faithfully reflect the intended concepts. We evaluate state-of-the-art VLMs across diverse BP formulations, including binary and multiclass classification, as well as textual answer generation. Our findings reveal that while VLMs can recognize coarse-grained visual concepts, they consistently struggle with discerning fine-grained concepts, highlighting limitations in their reasoning capabilities.
comment: Accepted to The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ LayerSync: Self-aligning Intermediate Layers
We propose LayerSync, a domain-agnostic approach for improving the generation quality and the training efficiency of diffusion models. Prior studies have highlighted the connection between the quality of generation and the representations learned by diffusion models, showing that external guidance on model intermediate representations accelerates training. We reconceptualize this paradigm by regularizing diffusion models with their own intermediate representations. Building on the observation that representation quality varies across diffusion model layers, we show that the most semantically rich representations can act as an intrinsic guidance for weaker ones, reducing the need for external supervision. Our approach, LayerSync, is a self-sufficient, plug-and-play regularizer term with no overhead on diffusion model training and generalizes beyond the visual domain to other modalities. LayerSync requires no pretrained models nor additional data. We extensively evaluate the method on image generation and demonstrate its applicability to other domains such as audio, video, and motion generation. We show that it consistently improves the generation quality and the training efficiency. For example, we speed up the training of flow-based transformer by over 8.75x on ImageNet dataset and improved the generation quality by 23.6%. The code is available at https://github.com/vita-epfl/LayerSync.
♻ ☆ Can Vision-Language Models Answer Face to Face Questions in the Real-World? ICLR 2026
AI models have made significant strides in recent years in their ability to describe and answer questions about real-world images. They have also made progress in the ability to converse with users in real-time using audio input. This raises the question: have we reached the point where AI models, connected to a camera and microphone, can converse with users in real-time about scenes and events that are unfolding live in front of the camera? This has been a long-standing goal in AI and is a prerequisite for real-world AI assistants and humanoid robots to interact with humans in everyday situations. In this work, we introduce a new dataset and benchmark, the Qualcomm Interactive Video Dataset (IVD), which allows us to assess the extent to which existing models can support these abilities, and to what degree these capabilities can be instilled through fine-tuning. The dataset is based on a simple question-answering setup, where users ask questions that the system has to answer, in real-time, based on the camera and audio input. We show that existing models fall far behind human performance on this task, and we identify the main sources for the performance gap. However, we also show that for many of the required perceptual skills, fine-tuning on this form of data can significantly reduce this gap.
comment: ICLR 2026 paper
♻ ☆ Multi-View 3D Reconstruction using Knowledge Distillation
Large Foundation Models like Dust3r can produce high quality outputs such as pointmaps, camera intrinsics, and depth estimation, given stereo-image pairs as input. However, the application of these outputs on tasks like Visual Localization requires a large amount of inference time and compute resources. To address these limitations, in this paper, we propose the use of a knowledge distillation pipeline, where we aim to build a student-teacher model with Dust3r as the teacher and explore multiple architectures of student models that are trained using the 3D reconstructed points output by Dust3r. Our goal is to build student models that can learn scene-specific representations and output 3D points with replicable performance such as Dust3r. The data set we used to train our models is 12Scenes. We test two main architectures of models: a CNN-based architecture and a Vision Transformer based architecture. For each architecture, we also compare the use of pre-trained models against models built from scratch. We qualitatively compare the reconstructed 3D points output by the student model against Dust3r's and discuss the various features learned by the student model. We also perform ablation studies on the models through hyperparameter tuning. Overall, we observe that the Vision Transformer presents the best performance visually and quantitatively.
comment: 6 pages, 10 figures
♻ ☆ AtlasPatch: Efficient Tissue Detection and High-throughput Patch Extraction for Computational Pathology at Scale
Whole-slide image (WSI) preprocessing, comprising tissue detection followed by patch extraction, is foundational to AI-driven computational pathology but remains a major bottleneck for scaling to large and heterogeneous cohorts. We present AtlasPatch, a scalable framework that couples foundation-model tissue detection with high-throughput patch extraction at minimal computational overhead. Our tissue detector achieves high precision (0.986) and remains robust across varying tissue conditions (e.g., brightness, fragmentation, boundary definition, tissue heterogeneity) and common artifacts (e.g., pen/ink markings, scanner streaks). This robustness is enabled by our annotated, heterogeneous multi-cohort training set of ~30,000 WSI thumbnails combined with efficient adaptation of the Segment-Anything (SAM) model. AtlasPatch also reduces end-to-end WSI preprocessing time by up to 16$\times$ versus widely used deep-learning pipelines, without degrading downstream task performance. The AtlasPatch tool is open-source, efficiently parallelized for practical deployment, and supports options to save extracted patches or stream them into common feature-extraction models for on-the-fly embedding, making it adaptable to both pathology departments (tissue detection and quality control) and AI researchers (dataset creation and model training). AtlasPatch software package is available at https://github.com/AtlasAnalyticsLab/AtlasPatch.
comment: Under review
♻ ☆ Structural Prognostic Event Modeling for Multimodal Cancer Survival Analysis
The integration of histology images and gene profiles has shown great promise for improving survival prediction in cancer. However, current approaches often struggle to model intra- and inter-modal interactions efficiently and effectively due to the high dimensionality and complexity of the inputs. A major challenge is capturing critical prognostic events that, though few, underlie the complexity of the observed inputs and largely determine patient outcomes. These events, manifested as high-level structural signals such as spatial histologic patterns or pathway co-activations, are typically sparse, patient-specific, and unannotated, making them inherently difficult to uncover. To address this, we propose SlotSPE, a slot-based framework for structural prognostic event modeling. Specifically, inspired by the principle of factorial coding, we compress each patient's multimodal inputs into compact, modality-specific sets of mutually distinctive slots using slot attention. By leveraging these slot representations as encodings for prognostic events, our framework enables both efficient and effective modeling of complex intra- and inter-modal interactions, while also facilitating seamless incorporation of biological priors that enhance prognostic relevance. Extensive experiments on ten cancer benchmarks show that SlotSPE outperforms existing methods in 8 out of 10 cohorts, achieving an overall improvement of 2.9%. It remains robust under missing genomic data and delivers markedly improved interpretability through structured event decomposition.
comment: 36 pages, 14 Figures
♻ ☆ A Study on Inference Latency for Vision Transformers on Mobile Devices
Given the significant advances in machine learning techniques on mobile devices, particularly in the domain of computer vision, in this work we quantitatively study the performance characteristics of 190 real-world vision transformers (ViTs) on mobile devices. Through a comparison with 102 real-world convolutional neural networks (CNNs), we provide insights into the factors that influence the latency of ViT architectures on mobile devices. Based on these insights, we develop a dataset including measured latencies of 1000 synthetic ViTs with representative building blocks and state-of-the-art architectures from two machine learning frameworks and six mobile platforms. Using this dataset, we show that inference latency of new ViTs can be predicted with sufficient accuracy for real-world applications.
Machine Learning 150
☆ Knowledge-Embedded Latent Projection for Robust Representation Learning
Latent space models are widely used for analyzing high-dimensional discrete data matrices, such as patient-feature matrices in electronic health records (EHRs), by capturing complex dependence structures through low-dimensional embeddings. However, estimation becomes challenging in the imbalanced regime, where one matrix dimension is much larger than the other. In EHR applications, cohort sizes are often limited by disease prevalence or data availability, whereas the feature space remains extremely large due to the breadth of medical coding system. Motivated by the increasing availability of external semantic embeddings, such as pre-trained embeddings of clinical concepts in EHRs, we propose a knowledge-embedded latent projection model that leverages semantic side information to regularize representation learning. Specifically, we model column embeddings as smooth functions of semantic embeddings via a mapping in a reproducing kernel Hilbert space. We develop a computationally efficient two-step estimation procedure that combines semantically guided subspace construction via kernel principal component analysis with scalable projected gradient descent. We establish estimation error bounds that characterize the trade-off between statistical error and approximation error induced by the kernel projection. Furthermore, we provide local convergence guarantees for our non-convex optimization procedure. Extensive simulation studies and a real-world EHR application demonstrate the effectiveness of the proposed method.
☆ Causality is Key for Interpretability Claims to Generalise
Interpretability research on large language models (LLMs) has yielded important insights into model behaviour, yet recurring pitfalls persist: findings that do not generalise, and causal interpretations that outrun the evidence. Our position is that causal inference specifies what constitutes a valid mapping from model activations to invariant high-level structures, the data or assumptions needed to achieve it, and the inferences it can support. Specifically, Pearl's causal hierarchy clarifies what an interpretability study can justify. Observations establish associations between model behaviour and internal components. Interventions (e.g., ablations or activation patching) support claims how these edits affect a behavioural metric (\eg, average change in token probabilities) over a set of prompts. However, counterfactual claims -- i.e., asking what the model output would have been for the same prompt under an unobserved intervention -- remain largely unverifiable without controlled supervision. We show how causal representation learning (CRL) operationalises this hierarchy, specifying which variables are recoverable from activations and under what assumptions. Together, these motivate a diagnostic framework that helps practitioners select methods and evaluations matching claims to evidence such that findings generalise.
☆ Protecting the Undeleted in Machine Unlearning
Machine unlearning aims to remove specific data points from a trained model, often striving to emulate "perfect retraining", i.e., producing the model that would have been obtained had the deleted data never been included. We demonstrate that this approach, and security definitions that enable it, carry significant privacy risks for the remaining (undeleted) data points. We present a reconstruction attack showing that for certain tasks, which can be computed securely without deletions, a mechanism adhering to perfect retraining allows an adversary controlling merely $ω(1)$ data points to reconstruct almost the entire dataset merely by issuing deletion requests. We survey existing definitions for machine unlearning, showing they are either susceptible to such attacks or too restrictive to support basic functionalities like exact summation. To address this problem, we propose a new security definition that specifically safeguards undeleted data against leakage caused by the deletion of other points. We show that our definition permits several essential functionalities, such as bulletin boards, summations, and statistical learning.
☆ Parameter-free representations outperform single-cell foundation models on downstream benchmarks
Single-cell RNA sequencing (scRNA-seq) data exhibit strong and reproducible statistical structure. This has motivated the development of large-scale foundation models, such as TranscriptFormer, that use transformer-based architectures to learn a generative model for gene expression by embedding genes into a latent vector space. These embeddings have been used to obtain state-of-the-art (SOTA) performance on downstream tasks such as cell-type classification, disease-state prediction, and cross-species learning. Here, we ask whether similar performance can be achieved without utilizing computationally intensive deep learning-based representations. Using simple, interpretable pipelines that rely on careful normalization and linear methods, we obtain SOTA or near SOTA performance across multiple benchmarks commonly used to evaluate single-cell foundation models, including outperforming foundation models on out-of-distribution tasks involving novel cell types and organisms absent from the training data. Our findings highlight the need for rigorous benchmarking and suggest that the biology of cell identity can be captured by simple linear representations of single cell gene expression data.
☆ Synthetic-Powered Multiple Testing with FDR Control
Multiple hypothesis testing with false discovery rate (FDR) control is a fundamental problem in statistical inference, with broad applications in genomics, drug screening, and outlier detection. In many such settings, researchers may have access not only to real experimental observations but also to auxiliary or synthetic data -- from past, related experiments or generated by generative models -- that can provide additional evidence about the hypotheses of interest. We introduce SynthBH, a synthetic-powered multiple testing procedure that safely leverages such synthetic data. We prove that SynthBH guarantees finite-sample, distribution-free FDR control under a mild PRDS-type positive dependence condition, without requiring the pooled-data p-values to be valid under the null. The proposed method adapts to the (unknown) quality of the synthetic data: it enhances the sample efficiency and may boost the power when synthetic data are of high quality, while controlling the FDR at a user-specified level regardless of their quality. We demonstrate the empirical performance of SynthBH on tabular outlier detection benchmarks and on genomic analyses of drug-cancer sensitivity associations, and further study its properties through controlled experiments on simulated data.
☆ Are Object-Centric Representations Better At Compositional Generalization?
Compositional generalization, the ability to reason about novel combinations of familiar concepts, is fundamental to human cognition and a critical challenge for machine learning. Object-centric (OC) representations, which encode a scene as a set of objects, are often argued to support such generalization, but systematic evidence in visually rich settings is limited. We introduce a Visual Question Answering benchmark across three controlled visual worlds (CLEVRTex, Super-CLEVR, and MOVi-C) to measure how well vision encoders, with and without object-centric biases, generalize to unseen combinations of object properties. To ensure a fair and comprehensive comparison, we carefully account for training data diversity, sample size, representation size, downstream model capacity, and compute. We use DINOv2 and SigLIP2, two widely used vision encoders, as the foundation models and their OC counterparts. Our key findings reveal that (1) OC approaches are superior in harder compositional generalization settings; (2) original dense representations surpass OC only on easier settings and typically require substantially more downstream compute; and (3) OC models are more sample efficient, achieving stronger generalization with fewer images, whereas dense encoders catch up or surpass them only with sufficient data and diversity. Overall, object-centric representations offer stronger compositional generalization when any one of dataset size, training data diversity, or downstream compute is constrained.
☆ On the Hardness of Approximation of the Fair k-Center Problem
In this work, we study the hardness of approximation of the fair $k$-center problem. Here the data points are partitioned into groups and the task is to choose a prescribed number of data points from each group, called centers, while minimizing the maximum distance from any point to its closest center. Although a polynomial-time $3$-approximation is known for this problem in general metrics, it has remained open whether this approximation guarantee is tight or could be further improved, especially since the unconstrained $k$-center problem admits a polynomial-time factor-$2$ approximation. We resolve this open question by proving that, for every $ε>0$, achieving a $(3-ε)$-approximation is NP-hard, assuming $\text{P} \neq \text{NP}$. Our inapproximability results hold even when only two disjoint groups are present and at least one center must be chosen from each group. Further, it extends to the canonical one-per-group setting with $k$-groups (for arbitrary $k$), where exactly one center must be selected from each group. Consequently, the factor-$3$ barrier for fair $k$-center in general metric spaces is inherent, and existing $3$-approximation algorithms are optimal up to lower-order terms even in these restricted regimes. This result stands in sharp contrast to the $k$-supplier formulation, where both the unconstrained and fair variants admit factor-$3$ approximation in polynomial time.
☆ Retrieval-Augmented Foundation Models for Matched Molecular Pair Transformations to Recapitulate Medicinal Chemistry Intuition
Matched molecular pairs (MMPs) capture the local chemical edits that medicinal chemists routinely use to design analogs, but existing ML approaches either operate at the whole-molecule level with limited edit controllability or learn MMP-style edits from restricted settings and small models. We propose a variable-to-variable formulation of analog generation and train a foundation model on large-scale MMP transformations (MMPTs) to generate diverse variables conditioned on an input variable. To enable practical control, we develop prompting mechanisms that let the users specify preferred transformation patterns during generation. We further introduce MMPT-RAG, a retrieval-augmented framework that uses external reference analogs as contextual guidance to steer generation and generalize from project-specific series. Experiments on general chemical corpora and patent-specific datasets demonstrate improved diversity, novelty, and controllability, and show that our method recovers realistic analog structures in practical discovery scenarios.
☆ Neighborhood Stability as a Measure of Nearest Neighbor Searchability
Clustering-based Approximate Nearest Neighbor Search (ANNS) organizes a set of points into partitions, and searches only a few of them to find the nearest neighbors of a query. Despite its popularity, there are virtually no analytical tools to determine the suitability of clustering-based ANNS for a given dataset -- what we call "searchability." To address that gap, we present two measures for flat clusterings of high-dimensional points in Euclidean space. First is Clustering-Neighborhood Stability Measure (clustering-NSM), an internal measure of clustering quality -- a function of a clustering of a dataset -- that we show to be predictive of ANNS accuracy. The second, Point-Neighborhood Stability Measure (point-NSM), is a measure of clusterability -- a function of the dataset itself -- that is predictive of clustering-NSM. The two together allow us to determine whether a dataset is searchable by clustering-based ANNS given only the data points. Importantly, both are functions of nearest neighbor relationships between points, not distances, making them applicable to various distance functions including inner product.
☆ Towards a Science of AI Agent Reliability
AI agents are increasingly deployed to execute important tasks. While rising accuracy scores on standard benchmarks suggest rapid progress, many agents still continue to fail in practice. This discrepancy highlights a fundamental limitation of current evaluations: compressing agent behavior into a single success metric obscures critical operational flaws. Notably, it ignores whether agents behave consistently across runs, withstand perturbations, fail predictably, or have bounded error severity. Grounded in safety-critical engineering, we provide a holistic performance profile by proposing twelve concrete metrics that decompose agent reliability along four key dimensions: consistency, robustness, predictability, and safety. Evaluating 14 agentic models across two complementary benchmarks, we find that recent capability gains have only yielded small improvements in reliability. By exposing these persistent limitations, our metrics complement traditional evaluations while offering tools for reasoning about how agents perform, degrade, and fail.
Align Once, Benefit Multilingually: Enforcing Multilingual Consistency for LLM Safety Alignment ICLR 2026
The widespread deployment of large language models (LLMs) across linguistic communities necessitates reliable multilingual safety alignment. However, recent efforts to extend alignment to other languages often require substantial resources, either through large-scale, high-quality supervision in the target language or through pairwise alignment with high-resource languages, which limits scalability. In this work, we propose a resource-efficient method for improving multilingual safety alignment. We introduce a plug-and-play Multi-Lingual Consistency (MLC) loss that can be integrated into existing monolingual alignment pipelines. By improving collinearity between multilingual representation vectors, our method encourages directional consistency at the multilingual semantic level in a single update. This allows simultaneous alignment across multiple languages using only multilingual prompt variants without requiring additional response-level supervision in low-resource languages. We validate the proposed method across different model architectures and alignment paradigms, and demonstrate its effectiveness in enhancing multilingual safety with limited impact on general model utility. Further evaluation across languages and tasks indicates improved cross-lingual generalization, suggesting the proposed approach as a practical solution for multilingual consistency alignment under limited supervision.
comment: Accepted by ICLR 2026
☆ Investigating Nonlinear Quenching Effects on Polar Field Buildup in the Sun Using Physics-Informed Neural Networks
The solar dynamo relies on the regeneration of the poloidal magnetic field through processes strongly modulated by nonlinear feedbacks such as tilt quenching (TQ) and latitude quenching (LQ). These mechanisms play a decisive role in regulating the buildup of the Sun's polar field and, in turn, the amplitude of future solar cycles. In this work, we employ Physics-Informed Neural Networks (PINN) to solve the surface flux transport (SFT) equation, embedding physical constraints directly into the neural network framework. By systematically varying transport parameters, we isolate the relative contributions of TQ and LQ to polar dipole buildup. We use the residual dipole moment as a diagnostic for cycle-to-cycle amplification and show that TQ suppression strengthens with increasing diffusivity, while LQ dominates in advection-dominated regimes. The ratio $ΔD_{\mathrm{LQ}}/ΔD_{\mathrm{TQ}}$ exhibits a smooth inverse-square dependence on the dynamo effectivity range, refining previous empirical fits with improved accuracy and reduced scatter. The results further reveal that the need for a decay term is not essential for PINN set-up due to the training process. Compared with the traditional 1D SFT model, the PINN framework achieves significantly lower error metrics and more robust recovery of nonlinear trends. Our results suggest that the nonlinear interplay between LQ and TQ can naturally produce alternations between weak and strong cycles, providing a physical explanation for the observed even-odd cycle modulation. These findings demonstrate the potential of PINN as an accurate, efficient, and physically consistent tool for solar cycle prediction.
comment: Accepted for publication in The Astrophysical Journal
☆ Factorization Machine with Quadratic-Optimization Annealing for RNA Inverse Folding and Evaluation of Binary-Integer Encoding and Nucleotide Assignment
The RNA inverse folding problem aims to identify nucleotide sequences that preferentially adopt a given target secondary structure. While various heuristic and machine learning-based approaches have been proposed, many require a large number of sequence evaluations, which limits their applicability when experimental validation is costly. We propose a method to solve the problem using a factorization machine with quadratic-optimization annealing (FMQA). FMQA is a discrete black-box optimization method reported to obtain high-quality solutions with a limited number of evaluations. Applying FMQA to the problem requires converting nucleotides into binary variables. However, the influence of integer-to-nucleotide assignments and binary-integer encoding on the performance of FMQA has not been thoroughly investigated, even though such choices determine the structure of the surrogate model and the search landscape, and thus can directly affect solution quality. Therefore, this study aims both to establish a novel FMQA framework for RNA inverse folding and to analyze the effects of these assignments and encoding methods. We evaluated all 24 possible assignments of the four nucleotides to the ordered integers (0-3), in combination with four binary-integer encoding methods. Our results demonstrated that one-hot and domain-wall encodings outperform binary and unary encodings in terms of the normalized ensemble defect value. In domain-wall encoding, nucleotides assigned to the boundary integers (0 and 3) appeared with higher frequency. In the RNA inverse folding problem, assigning guanine and cytosine to these boundary integers promoted their enrichment in stem regions, which led to more thermodynamically stable secondary structures than those obtained with one-hot encoding.
comment: 17 pages, 10 figures
☆ Optimizer choice matters for the emergence of Neural Collapse ICLR 2026
Neural Collapse (NC) refers to the emergence of highly symmetric geometric structures in the representations of deep neural networks during the terminal phase of training. Despite its prevalence, the theoretical understanding of NC remains limited. Existing analyses largely ignore the role of the optimizer, thereby suggesting that NC is universal across optimization methods. In this work, we challenge this assumption and demonstrate that the choice of optimizer plays a critical role in the emergence of NC. The phenomenon is typically quantified through NC metrics, which, however, are difficult to track and analyze theoretically. To overcome this limitation, we introduce a novel diagnostic metric, NC0, whose convergence to zero is a necessary condition for NC. Using NC0, we provide theoretical evidence that NC cannot emerge under decoupled weight decay in adaptive optimizers, as implemented in AdamW. Concretely, we prove that SGD, SignGD with coupled weight decay (a special case of Adam), and SignGD with decoupled weight decay (a special case of AdamW) exhibit qualitatively different NC0 dynamics. Also, we show the accelerating effect of momentum on NC (beyond convergence of train loss) when trained with SGD, being the first result concerning momentum in the context of NC. Finally, we conduct extensive empirical experiments consisting of 3,900 training runs across various datasets, architectures, optimizers, and hyperparameters, confirming our theoretical results. This work provides the first theoretical explanation for optimizer-dependent emergence of NC and highlights the overlooked role of weight-decay coupling in shaping the implicit biases of optimizers.
comment: Published as a conference paper at ICLR 2026
☆ Enhanced Diffusion Sampling: Efficient Rare Event Sampling and Free Energy Calculation with Diffusion Models
The rare-event sampling problem has long been the central limiting factor in molecular dynamics (MD), especially in biomolecular simulation. Recently, diffusion models such as BioEmu have emerged as powerful equilibrium samplers that generate independent samples from complex molecular distributions, eliminating the cost of sampling rare transition events. However, a sampling problem remains when computing observables that rely on states which are rare in equilibrium, for example folding free energies. Here, we introduce enhanced diffusion sampling, enabling efficient exploration of rare-event regions while preserving unbiased thermodynamic estimators. The key idea is to perform quantitatively accurate steering protocols to generate biased ensembles and subsequently recover equilibrium statistics via exact reweighting. We instantiate our framework in three algorithms: UmbrellaDiff (umbrella sampling with diffusion models), $Δ$G-Diff (free-energy differences via tilted ensembles), and MetaDiff (a batchwise analogue for metadynamics). Across toy systems, protein folding landscapes and folding free energies, our methods achieve fast, accurate, and scalable estimation of equilibrium properties within GPU-minutes to hours per system -- closing the rare-event sampling gap that remained after the advent of diffusion-model equilibrium samplers.
☆ Almost Sure Convergence of Differential Temporal Difference Learning for Average Reward Markov Decision Processes
The average reward is a fundamental performance metric in reinforcement learning (RL) focusing on the long-run performance of an agent. Differential temporal difference (TD) learning algorithms are a major advance for average reward RL as they provide an efficient online method to learn the value functions associated with the average reward in both on-policy and off-policy settings. However, existing convergence guarantees require a local clock in learning rates tied to state visit counts, which practitioners do not use and does not extend beyond tabular settings. We address this limitation by proving the almost sure convergence of on-policy $n$-step differential TD for any $n$ using standard diminishing learning rates without a local clock. We then derive three sufficient conditions under which off-policy $n$-step differential TD also converges without a local clock. These results strengthen the theoretical foundations of differential TD and bring its convergence analysis closer to practical implementations.
☆ A Systematic Evaluation of Sample-Level Tokenization Strategies for MEG Foundation Models
Recent success in natural language processing has motivated growing interest in large-scale foundation models for neuroimaging data. Such models often require discretization of continuous neural time series data, a process referred to as 'tokenization'. However, the impact of different tokenization strategies for neural data is currently poorly understood. In this work, we present a systematic evaluation of sample-level tokenization strategies for transformer-based large neuroimaging models (LNMs) applied to magnetoencephalography (MEG) data. We compare learnable and non-learnable tokenizers by examining their signal reconstruction fidelity and their impact on subsequent foundation modeling performance (token prediction, biological plausibility of generated data, preservation of subject-specific information, and performance on downstream tasks). For the learnable tokenizer, we introduce a novel approach based on an autoencoder. Experiments were conducted on three publicly available MEG datasets spanning different acquisition sites, scanners, and experimental paradigms. Our results show that both learnable and non-learnable discretization schemes achieve high reconstruction accuracy and broadly comparable performance across most evaluation criteria, suggesting that simple fixed sample-level tokenization strategies can be used in the development of neural foundation models. The code is available at https://github.com/OHBA-analysis/Cho2026_Tokenizer.
comment: 15 pages, 10 figures, 1 table
☆ Who can we trust? LLM-as-a-jury for Comparative Assessment
Large language models (LLMs) are increasingly applied as automatic evaluators for natural language generation assessment often using pairwise comparative judgements. Existing approaches typically rely on single judges or aggregate multiple judges assuming equal reliability. In practice, LLM judges vary substantially in performance across tasks and aspects, and their judgment probabilities may be biased and inconsistent. Furthermore, human-labelled supervision for judge calibration may be unavailable. We first empirically demonstrate that inconsistencies in LLM comparison probabilities exist and show that it limits the effectiveness of direct probability-based ranking. To address this, we study the LLM-as-a-jury setting and propose BT-sigma, a judge-aware extension of the Bradley-Terry model that introduces a discriminator parameter for each judge to jointly infer item rankings and judge reliability from pairwise comparisons alone. Experiments on benchmark NLG evaluation datasets show that BT-sigma consistently outperforms averaging-based aggregation methods, and that the learned discriminator strongly correlates with independent measures of the cycle consistency of LLM judgments. Further analysis reveals that BT-sigma can be interpreted as an unsupervised calibration mechanism that improves aggregation by modelling judge reliability.
☆ Explainable AI: Context-Aware Layer-Wise Integrated Gradients for Explaining Transformer Models
Transformer models achieve state-of-the-art performance across domains and tasks, yet their deeply layered representations make their predictions difficult to interpret. Existing explainability methods rely on final-layer attributions, capture either local token-level attributions or global attention patterns without unification, and lack context-awareness of inter-token dependencies and structural components. They also fail to capture how relevance evolves across layers and how structural components shape decision-making. To address these limitations, we proposed the \textbf{Context-Aware Layer-wise Integrated Gradients (CA-LIG) Framework}, a unified hierarchical attribution framework that computes layer-wise Integrated Gradients within each Transformer block and fuses these token-level attributions with class-specific attention gradients. This integration yields signed, context-sensitive attribution maps that capture supportive and opposing evidence while tracing the hierarchical flow of relevance through the Transformer layers. We evaluate the CA-LIG Framework across diverse tasks, domains, and transformer model families, including sentiment analysis and long and multi-class document classification with BERT, hate speech detection in a low-resource language setting with XLM-R and AfroLM, and image classification with Masked Autoencoder vision Transformer model. Across all tasks and architectures, CA-LIG provides more faithful attributions, shows stronger sensitivity to contextual dependencies, and produces clearer, more semantically coherent visualizations than established explainability methods. These results indicate that CA-LIG provides a more comprehensive, context-aware, and reliable explanation of Transformer decision-making, advancing both the practical interpretability and conceptual understanding of deep neural models.
☆ Error Propagation and Model Collapse in Diffusion Models: A Theoretical Study
Machine learning models are increasingly trained or fine-tuned on synthetic data. Recursively training on such data has been observed to significantly degrade performance in a wide range of tasks, often characterized by a progressive drift away from the target distribution. In this work, we theoretically analyze this phenomenon in the setting of score-based diffusion models. For a realistic pipeline where each training round uses a combination of synthetic data and fresh samples from the target distribution, we obtain upper and lower bounds on the accumulated divergence between the generated and target distributions. This allows us to characterize different regimes of drift, depending on the score estimation error and the proportion of fresh data used in each generation. We also provide empirical results on synthetic data and images to illustrate the theory.
☆ Predicting The Cop Number Using Machine Learning
Cops and Robbers is a pursuit evasion game played on a graph, first introduced independently by Quilliot \cite{quilliot1978jeux} and Nowakowski and Winkler \cite{NOWAKOWSKI1983235} over four decades ago. A main interest in recent the literature is identifying the cop number of graph families. The cop number of a graph, $c(G)$, is defined as the minimum number of cops required to guarantee capture of the robber. Determining the cop number is computationally difficult and exact algorithms for this are typically restricted to small graph families. This paper investigates whether classical machine learning methods and graph neural networks can accurately predict a graph's cop number from its structural properties and identify which properties most strongly influence this prediction. Of the classical machine learning models, tree-based models achieve high accuracy in prediction despite class imbalance, whereas graph neural networks achieve comparable results without explicit feature engineering. The interpretability analysis shows that the most predictive features are related to node connectivity, clustering, clique structure, and width parameters, which aligns with known theoretical results. Our findings suggest that machine learning approaches can be used in complement with existing cop number algorithms by offering scalable approximations where computation is infeasible.
comment: 8 pages
☆ Sequential Membership Inference Attacks
Modern AI models are not static. They go through multiple updates in their lifecycles. Thus, exploiting the model dynamics to create stronger Membership Inference (MI) attacks and tighter privacy audits are timely questions. Though the literature empirically shows that using a sequence of model updates can increase the power of MI attacks, rigorous analysis of the `optimal' MI attacks is limited to static models with infinite samples. Hence, we develop an `optimal' MI attack, SeMI*, that uses the sequence of model updates to identify the presence of a target inserted at a certain update step. For the empirical mean computation, we derive the optimal power of SeMI*, while accessing a finite number of samples with or without privacy. Our results retrieve the existing asymptotic analysis. We observe that having access to the model sequence avoids the dilution of MI signals unlike the existing attacks on the final model, where the MI signal vanishes as training data accumulates. Furthermore, an adversary can use SeMI* to tune both the insertion time and the canary to yield tighter privacy audits. Finally, we conduct experiments across data distributions and models trained or fine-tuned with DP-SGD demonstrating that practical variants of SeMI* lead to tighter privacy audits than the baselines.
comment: 27 pages, 10 figures
☆ A Contrastive Learning Framework Empowered by Attention-based Feature Adaptation for Street-View Image Classification
Street-view image attribute classification is a vital downstream task of image classification, enabling applications such as autonomous driving, urban analytics, and high-definition map construction. It remains computationally demanding whether training from scratch, initialising from pre-trained weights, or fine-tuning large models. Although pre-trained vision-language models such as CLIP offer rich image representations, existing adaptation or fine-tuning methods often rely on their global image embeddings, limiting their ability to capture fine-grained, localised attributes essential in complex, cluttered street scenes. To address this, we propose CLIP-MHAdapter, a variant of the current lightweight CLIP adaptation paradigm that appends a bottleneck MLP equipped with multi-head self-attention operating on patch tokens to model inter-patch dependencies. With approximately 1.4 million trainable parameters, CLIP-MHAdapter achieves superior or competitive accuracy across eight attribute classification tasks on the Global StreetScapes dataset, attaining new state-of-the-art results while maintaining low computational cost. The code is available at https://github.com/SpaceTimeLab/CLIP-MHAdapter.
☆ AIFL: A Global Daily Streamflow Forecasting Model Using Deterministic LSTM Pre-trained on ERA5-Land and Fine-tuned on IFS
Reliable global streamflow forecasting is essential for flood preparedness and water resource management, yet data-driven models often suffer from a performance gap when transitioning from historical reanalysis to operational forecast products. This paper introduces AIFL (Artificial Intelligence for Floods), a deterministic LSTM-based model designed for global daily streamflow forecasting. Trained on 18,588 basins curated from the CARAVAN dataset, AIFL utilises a novel two-stage training strategy to bridge the reanalysis-to-forecast domain shift. The model is first pre-trained on 40 years of ERA5-Land reanalysis (1980-2019) to capture robust hydrological processes, then fine-tuned on operational Integrated Forecasting System (IFS) control forecasts (2016-2019) to adapt to the specific error structures and biases of operational numerical weather prediction. To our knowledge, this is the first global model trained end-to-end within the CARAVAN ecosystem. On an independent temporal test set (2021-2024), AIFL achieves high predictive skill with a median modified Kling-Gupta Efficiency (KGE') of 0.66 and a median Nash-Sutcliffe Efficiency (NSE) of 0.53. Benchmarking results show that AIFL is highly competitive with current state-of-the-art global systems, achieving comparable accuracy while maintaining a transparent and reproducible forcing pipeline. The model demonstrates exceptional reliability in extreme-event detection, providing a streamlined and operationally robust baseline for the global hydrological community.
☆ MoDE-Boost: Boosting Shared Mobility Demand with Edge-Ready Prediction Models
Urban demand forecasting plays a critical role in optimizing routing, dispatching, and congestion management within Intelligent Transportation Systems. By leveraging data fusion and analytics techniques, traffic demand forecasting serves as a key intermediate measure for identifying emerging spatial and temporal demand patterns. In this paper, we tackle this challenge by proposing two gradient boosting model variations, one for classiffication and one for regression, both capable of generating demand forecasts at various temporal horizons, from 5 minutes up to one hour. Our overall approach effectively integrates temporal and contextual features, enabling accurate predictions that are essential for improving the efficiency of shared (micro-) mobility services. To evaluate its effectiveness, we utilize open shared mobility data derived from e-scooter and e-bike networks in five metropolitan areas. These real-world datasets allow us to compare our approach with state-of-the-art methods as well as a Generative AI-based model, demonstrating its effectiveness in capturing the complexities of modern urban mobility. Ultimately, our methodology offers novel insights on urban micro-mobility management, helping to tackle the challenges arising from rapid urbanization and thus, contributing to more sustainable, efficient, and livable cities.
comment: 25 pages
☆ Steering diffusion models with quadratic rewards: a fine-grained analysis
Inference-time algorithms are an emerging paradigm in which pre-trained models are used as subroutines to solve downstream tasks. Such algorithms have been proposed for tasks ranging from inverse problems and guided image generation to reasoning. However, the methods currently deployed in practice are heuristics with a variety of failure modes -- and we have very little understanding of when these heuristics can be efficiently improved. In this paper, we consider the task of sampling from a reward-tilted diffusion model -- that is, sampling from $p^{\star}(x) \propto p(x) \exp(r(x))$ -- given a reward function $r$ and pre-trained diffusion oracle for $p$. We provide a fine-grained analysis of the computational tractability of this task for quadratic rewards $r(x) = x^\top A x + b^\top x$. We show that linear-reward tilts are always efficiently sampleable -- a simple result that seems to have gone unnoticed in the literature. We use this as a building block, along with a conceptually new ingredient -- the Hubbard-Stratonovich transform -- to provide an efficient algorithm for sampling from low-rank positive-definite quadratic tilts, i.e. $r(x) = x^\top A x$ where $A$ is positive-definite and of rank $O(1)$. For negative-definite tilts, i.e. $r(x) = - x^\top A x$ where $A$ is positive-definite, we prove that the problem is intractable even if $A$ is of rank 1 (albeit with exponentially-large entries).
☆ Separating Oblivious and Adaptive Models of Variable Selection
Sparse recovery is among the most well-studied problems in learning theory and high-dimensional statistics. In this work, we investigate the statistical and computational landscapes of sparse recovery with $\ell_\infty$ error guarantees. This variant of the problem is motivated by \emph{variable selection} tasks, where the goal is to estimate the support of a $k$-sparse signal in $\mathbb{R}^d$. Our main contribution is a provable separation between the \emph{oblivious} (``for each'') and \emph{adaptive} (``for all'') models of $\ell_\infty$ sparse recovery. We show that under an oblivious model, the optimal $\ell_\infty$ error is attainable in near-linear time with $\approx k\log d$ samples, whereas in an adaptive model, $\gtrsim k^2$ samples are necessary for any algorithm to achieve this bound. This establishes a surprising contrast with the standard $\ell_2$ setting, where $\approx k \log d$ samples suffice even for adaptive sparse recovery. We conclude with a preliminary examination of a \emph{partially-adaptive} model, where we show nontrivial variable selection guarantees are possible with $\approx k\log d$ measurements.
comment: 40 pages
☆ A Scalable Approach to Solving Simulation-Based Network Security Games
We introduce MetaDOAR, a lightweight meta-controller that augments the Double Oracle / PSRO paradigm with a learned, partition-aware filtering layer and Q-value caching to enable scalable multi-agent reinforcement learning on very large cyber-network environments. MetaDOAR learns a compact state projection from per node structural embeddings to rapidly score and select a small subset of devices (a top-k partition) on which a conventional low-level actor performs focused beam search utilizing a critic agent. Selected candidate actions are evaluated with batched critic forwards and stored in an LRU cache keyed by a quantized state projection and local action identifiers, dramatically reducing redundant critic computation while preserving decision quality via conservative k-hop cache invalidation. Empirically, MetaDOAR attains higher player payoffs than SOTA baselines on large network topologies, without significant scaling issues in terms of memory usage or training time. This contribution provide a practical, theoretically motivated path to efficient hierarchical policy learning for large-scale networked decision problems.
☆ Illustration of Barren Plateaus in Quantum Computing
Variational Quantum Circuits (VQCs) have emerged as a promising paradigm for quantum machine learning in the NISQ era. While parameter sharing in VQCs can reduce the parameter space dimensionality and potentially mitigate the barren plateau phenomenon, it introduces a complex trade-off that has been largely overlooked. This paper investigates how parameter sharing, despite creating better global optima with fewer parameters, fundamentally alters the optimization landscape through deceptive gradients -- regions where gradient information exists but systematically misleads optimizers away from global optima. Through systematic experimental analysis, we demonstrate that increasing degrees of parameter sharing generate more complex solution landscapes with heightened gradient magnitudes and measurably higher deceptiveness ratios. Our findings reveal that traditional gradient-based optimizers (Adam, SGD) show progressively degraded convergence as parameter sharing increases, with performance heavily dependent on hyperparameter selection. We introduce a novel gradient deceptiveness detection algorithm and a quantitative framework for measuring optimization difficulty in quantum circuits, establishing that while parameter sharing can improve circuit expressivity by orders of magnitude, this comes at the cost of significantly increased landscape deceptiveness. These insights provide important considerations for quantum circuit design in practical applications, highlighting the fundamental mismatch between classical optimization strategies and quantum parameter landscapes shaped by parameter sharing.
comment: Extended version of a short paper to be published at ICAART-QAIO 2026
☆ Learning Distributed Equilibria in Linear-Quadratic Stochastic Differential Games: An $α$-Potential Approach
We analyze independent policy-gradient (PG) learning in $N$-player linear-quadratic (LQ) stochastic differential games. Each player employs a distributed policy that depends only on its own state and updates the policy independently using the gradient of its own objective. We establish global linear convergence of these methods to an equilibrium by showing that the LQ game admits an $α$-potential structure, with $α$ determined by the degree of pairwise interaction asymmetry. For pairwise-symmetric interactions, we construct an affine distributed equilibrium by minimizing the potential function and show that independent PG methods converge globally to this equilibrium, with complexity scaling linearly in the population size and logarithmically in the desired accuracy. For asymmetric interactions, we prove that independent projected PG algorithms converge linearly to an approximate equilibrium, with suboptimality proportional to the degree of asymmetry. Numerical experiments confirm the theoretical results across both symmetric and asymmetric interaction networks.
☆ RIDER: 3D RNA Inverse Design with Reinforcement Learning-Guided Diffusion ICLR 2026
The inverse design of RNA three-dimensional (3D) structures is crucial for engineering functional RNAs in synthetic biology and therapeutics. While recent deep learning approaches have advanced this field, they are typically optimized and evaluated using native sequence recovery, which is a limited surrogate for structural fidelity, since different sequences can fold into similar 3D structures and high recovery does not necessarily indicate correct folding. To address this limitation, we propose RIDER, an RNA Inverse DEsign framework with Reinforcement learning that directly optimizes for 3D structural similarity. First, we develop and pre-train a GNN-based generative diffusion model conditioned on the target 3D structure, achieving a 9% improvement in native sequence recovery over state-of-the-art methods. Then, we fine-tune the model with an improved policy gradient algorithm using four task-specific reward functions based on 3D self-consistency metrics. Experimental results show that RIDER improves structural similarity by over 100% across all metrics and discovers designs that are distinct from native sequences.
comment: Accepted as a conference paper at ICLR 2026
☆ Let's Split Up: Zero-Shot Classifier Edits for Fine-Grained Video Understanding ICLR 2026
Video recognition models are typically trained on fixed taxonomies which are often too coarse, collapsing distinctions in object, manner or outcome under a single label. As tasks and definitions evolve, such models cannot accommodate emerging distinctions and collecting new annotations and retraining to accommodate such changes is costly. To address these challenges, we introduce category splitting, a new task where an existing classifier is edited to refine a coarse category into finer subcategories, while preserving accuracy elsewhere. We propose a zero-shot editing method that leverages the latent compositional structure of video classifiers to expose fine-grained distinctions without additional data. We further show that low-shot fine-tuning, while simple, is highly effective and benefits from our zero-shot initialization. Experiments on our new video benchmarks for category splitting demonstrate that our method substantially outperforms vision-language baselines, improving accuracy on the newly split categories without sacrificing performance on the rest. Project page: https://kaitingliu.github.io/Category-Splitting/.
comment: ICLR 2026
☆ Vulnerability Analysis of Safe Reinforcement Learning via Inverse Constrained Reinforcement Learning
Safe reinforcement learning (Safe RL) aims to ensure policy performance while satisfying safety constraints. However, most existing Safe RL methods assume benign environments, making them vulnerable to adversarial perturbations commonly encountered in real-world settings. In addition, existing gradient-based adversarial attacks typically require access to the policy's gradient information, which is often impractical in real-world scenarios. To address these challenges, we propose an adversarial attack framework to reveal vulnerabilities of Safe RL policies. Using expert demonstrations and black-box environment interaction, our framework learns a constraint model and a surrogate (learner) policy, enabling gradient-based attack optimization without requiring the victim policy's internal gradients or the ground-truth safety constraints. We further provide theoretical analysis establishing feasibility and deriving perturbation bounds. Experiments on multiple Safe RL benchmarks demonstrate the effectiveness of our approach under limited privileged access.
comment: 12 pages, 6 figures, supplementary material included
☆ Optimal training-conditional regret for online conformal prediction
We study online conformal prediction for non-stationary data streams subject to unknown distribution drift. While most prior work studied this problem under adversarial settings and/or assessed performance in terms of gaps of time-averaged marginal coverage, we instead evaluate performance through training-conditional cumulative regret. We specifically focus on independently generated data with two types of distribution shift: abrupt change points and smooth drift. When non-conformity score functions are pretrained on an independent dataset, we propose a split-conformal style algorithm that leverages drift detection to adaptively update calibration sets, which provably achieves minimax-optimal regret. When non-conformity scores are instead trained online, we develop a full-conformal style algorithm that again incorporates drift detection to handle non-stationarity; this approach relies on stability - rather than permutation symmetry - of the model-fitting algorithm, which is often better suited to online learning under evolving environments. We establish non-asymptotic regret guarantees for our online full conformal algorithm, which match the minimax lower bound under appropriate restrictions on the prediction sets. Numerical experiments corroborate our theoretical findings.
☆ Transfer Learning of Linear Regression with Multiple Pretrained Models: Benefiting from More Pretrained Models via Overparameterization Debiasing
We study transfer learning for a linear regression task using several least-squares pretrained models that can be overparameterized. We formulate the target learning task as optimization that minimizes squared errors on the target dataset with penalty on the distance of the learned model from the pretrained models. We analytically formulate the test error of the learned target model and provide the corresponding empirical evaluations. Our results elucidate when using more pretrained models can improve transfer learning. Specifically, if the pretrained models are overparameterized, using sufficiently many of them is important for beneficial transfer learning. However, the learning may be compromised by overparameterization bias of pretrained models, i.e., the minimum $\ell_2$-norm solution's restriction to a small subspace spanned by the training examples in the high-dimensional parameter space. We propose a simple debiasing via multiplicative correction factor that can reduce the overparameterization bias and leverage more pretrained models to learn a target predictor.
☆ FEKAN: Feature-Enriched Kolmogorov-Arnold Networks
Kolmogorov-Arnold Networks (KANs) have recently emerged as a compelling alternative to multilayer perceptrons, offering enhanced interpretability via functional decomposition. However, existing KAN architectures, including spline-, wavelet-, radial-basis variants, etc., suffer from high computational cost and slow convergence, limiting scalability and practical applicability. Here, we introduce Feature-Enriched Kolmogorov-Arnold Networks (FEKAN), a simple yet effective extension that preserves all the advantages of KAN while improving computational efficiency and predictive accuracy through feature enrichment, without increasing the number of trainable parameters. By incorporating these additional features, FEKAN accelerates convergence, increases representation capacity, and substantially mitigates the computational overhead characteristic of state-of-the-art KAN architectures. We investigate FEKAN across a comprehensive set of benchmarks, including function-approximation tasks, physics-informed formulations for diverse partial differential equations (PDEs), and neural operator settings that map between input and output function spaces. For function approximation, we systematically compare FEKAN against a broad family of KAN variants, FastKAN, WavKAN, ReLUKAN, HRKAN, ChebyshevKAN, RBFKAN, and the original SplineKAN. Across all tasks, FEKAN demonstrates substantially faster convergence and consistently higher approximation accuracy than the underlying baseline architectures. We also establish the theoretical foundations for FEKAN, showing its superior representation capacity compared to KAN, which contributes to improved accuracy and efficiency.
comment: 45 pages, 45 figures
☆ Capacity-constrained demand response in smart grids using deep reinforcement learning
This paper presents a capacity-constrained incentive-based demand response approach for residential smart grids. It aims to maintain electricity grid capacity limits and prevent congestion by financially incentivising end users to reduce or shift their energy consumption. The proposed framework adopts a hierarchical architecture in which a service provider adjusts hourly incentive rates based on wholesale electricity prices and aggregated residential load. The financial interests of both the service provider and end users are explicitly considered. A deep reinforcement learning approach is employed to learn optimal real-time incentive rates under explicit capacity constraints. Heterogeneous user preferences are modelled through appliance-level home energy management systems and dissatisfaction costs. Using real-world residential electricity consumption and price data from three households, simulation results show that the proposed approach effectively reduces peak demand and smooths the aggregated load profile. This leads to an approximately 22.82% reduction in the peak-to-average ratio compared to the no-demand-response case.
☆ Reinforcement Learning for Parameterized Quantum State Preparation: A Comparative Study
We extend directed quantum circuit synthesis (DQCS) with reinforcement learning from purely discrete gate selection to parameterized quantum state preparation with continuous single-qubit rotations \(R_x\), \(R_y\), and \(R_z\). We compare two training regimes: a one-stage agent that jointly selects the gate type, the affected qubit(s), and the rotation angle; and a two-stage variant that first proposes a discrete circuit and subsequently optimizes the rotation angles with Adam using parameter-shift gradients. Using Gymnasium and PennyLane, we evaluate Proximal Policy Optimization (PPO) and Advantage Actor--Critic (A2C) on systems comprising two to ten qubits and on targets of increasing complexity with \(λ\) ranging from one to five. Whereas A2C does not learn effective policies in this setting, PPO succeeds under stable hyperparameters (one-stage: learning rate approximately \(5\times10^{-4}\) with a self-fidelity-error threshold of 0.01; two-stage: learning rate approximately \(10^{-4}\)). Both approaches reliably reconstruct computational basis states (between 83\% and 99\% success) and Bell states (between 61\% and 77\% success). However, scalability saturates for \(λ\) of approximately three to four and does not extend to ten-qubit targets even at \(λ=2\). The two-stage method offers only marginal accuracy gains while requiring around three times the runtime. For practicality under a fixed compute budget, we therefore recommend the one-stage PPO policy, provide explicit synthesized circuits, and contrast with a classical variational baseline to outline avenues for improved scalability.
comment: Extended version of a short paper to be published at ICAART 2026
☆ Small molecule retrieval from tandem mass spectrometry: what are we optimizing for?
One of the central challenges in the computational analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) data is to identify the compounds underlying the output spectra. In recent years, this problem is increasingly tackled using deep learning methods. A common strategy involves predicting a molecular fingerprint vector from an input mass spectrum, which is then used to search for matches in a chemical compound database. While various loss functions are employed in training these predictive models, their impact on model performance remains poorly understood. In this study, we investigate commonly used loss functions, deriving novel regret bounds that characterize when Bayes-optimal decisions for these objectives must diverge. Our results reveal a fundamental trade-off between the two objectives of (1) fingerprint similarity and (2) molecular retrieval. Optimizing for more accurate fingerprint predictions typically worsens retrieval results, and vice versa. Our theoretical analysis shows this trade-off depends on the similarity structure of candidate sets, providing guidance for loss function and fingerprint selection.
☆ Functional Decomposition and Shapley Interactions for Interpreting Survival Models
Hazard and survival functions are natural, interpretable targets in time-to-event prediction, but their inherent non-additivity fundamentally limits standard additive explanation methods. We introduce Survival Functional Decomposition (SurvFD), a principled approach for analyzing feature interactions in machine learning survival models. By decomposing higher-order effects into time-dependent and time-independent components, SurvFD offers a previously unrecognized perspective on survival explanations, explicitly characterizing when and why additive explanations fail. Building on this theoretical decomposition, we propose SurvSHAP-IQ, which extends Shapley interactions to time-indexed functions, providing a practical estimator for higher-order, time-dependent interactions. Together, SurvFD and SurvSHAP-IQ establish an interaction- and time-aware interpretability approach for survival modeling, with broad applicability across time-to-event prediction tasks.
☆ Interpretability-by-Design with Accurate Locally Additive Models and Conditional Feature Effects
Generalized additive models (GAMs) offer interpretability through independent univariate feature effects but underfit when interactions are present in data. GA$^2$Ms add selected pairwise interactions which improves accuracy, but sacrifices interpretability and limits model auditing. We propose \emph{Conditionally Additive Local Models} (CALMs), a new model class, that balances the interpretability of GAMs with the accuracy of GA$^2$Ms. CALMs allow multiple univariate shape functions per feature, each active in different regions of the input space. These regions are defined independently for each feature as simple logical conditions (thresholds) on the features it interacts with. As a result, effects remain locally additive while varying across subregions to capture interactions. We further propose a principled distillation-based training pipeline that identifies homogeneous regions with limited interactions and fits interpretable shape functions via region-aware backfitting. Experiments on diverse classification and regression tasks show that CALMs consistently outperform GAMs and achieve accuracy comparable with GA$^2$Ms. Overall, CALMs offer a compelling trade-off between predictive accuracy and interpretability.
☆ Fast and Scalable Analytical Diffusion
Analytical diffusion models offer a mathematically transparent path to generative modeling by formulating the denoising score as an empirical-Bayes posterior mean. However, this interpretability comes at a prohibitive cost: the standard formulation necessitates a full-dataset scan at every timestep, scaling linearly with dataset size. In this work, we present the first systematic study addressing this scalability bottleneck. We challenge the prevailing assumption that the entire training data is necessary, uncovering the phenomenon of Posterior Progressive Concentration: the effective golden support of the denoising score is not static but shrinks asymptotically from the global manifold to a local neighborhood as the signal-to-noise ratio increases. Capitalizing on this, we propose Dynamic Time-Aware Golden Subset Diffusion (GoldDiff), a training-free framework that decouples inference complexity from dataset size. Instead of static retrieval, GoldDiff uses a coarse-to-fine mechanism to dynamically pinpoint the ''Golden Subset'' for inference. Theoretically, we derive rigorous bounds guaranteeing that our sparse approximation converges to the exact score. Empirically, GoldDiff achieves a $\bf 71 \times$ speedup on AFHQ while matching or achieving even better performance than full-scan baselines. Most notably, we demonstrate the first successful scaling of analytical diffusion to ImageNet-1K, unlocking a scalable, training-free paradigm for large-scale generative modeling.
☆ From Growing to Looping: A Unified View of Iterative Computation in LLMs
Looping, reusing a block of layers across depth, and depth growing, training shallow-to-deep models by duplicating middle layers, have both been linked to stronger reasoning, but their relationship remains unclear. We provide a mechanistic unification: looped and depth-grown models exhibit convergent depth-wise signatures, including increased reliance on late layers and recurring patterns aligned with the looped or grown block. These shared signatures support the view that their gains stem from a common form of iterative computation. Building on this connection, we show that the two techniques are adaptable and composable: applying inference-time looping to the middle blocks of a depth-grown model improves accuracy on some reasoning primitives by up to $2\times$, despite the model never being trained to loop. Both approaches also adapt better than the baseline when given more in-context examples or additional supervised fine-tuning data. Additionally, depth-grown models achieve the largest reasoning gains when using higher-quality, math-heavy cooldown mixtures, which can be further boosted by adapting a middle block to loop. Overall, our results position depth growth and looping as complementary, practical methods for inducing and scaling iterative computation to improve reasoning.
☆ Learning Preference from Observed Rankings
Estimating consumer preferences is central to many problems in economics and marketing. This paper develops a flexible framework for learning individual preferences from partial ranking information by interpreting observed rankings as collections of pairwise comparisons with logistic choice probabilities. We model latent utility as the sum of interpretable product attributes, item fixed effects, and a low-rank user-item factor structure, enabling both interpretability and information sharing across consumers and items. We further correct for selection in which comparisons are observed: a comparison is recorded only if both items enter the consumer's consideration set, inducing exposure bias toward frequently encountered items. We model pair observability as the product of item-level observability propensities and estimate these propensities with a logistic model for the marginal probability that an item is observable. Preference parameters are then estimated by maximizing an inverse-probability-weighted (IPW), ridge-regularized log-likelihood that reweights observed comparisons toward a target comparison population. To scale computation, we propose a stochastic gradient descent (SGD) algorithm based on inverse-probability resampling, which draws comparisons in proportion to their IPW weights. In an application to transaction data from an online wine retailer, the method improves out-of-sample recommendation performance relative to a popularity-based benchmark, with particularly strong gains in predicting purchases of previously unconsumed products.
☆ Synthesis and Verification of Transformer Programs
C-RASP is a simple programming language that was recently shown to capture concepts expressible by transformers. In this paper, we develop new algorithmic techniques for automatically verifying C-RASPs. To this end, we establish a connection to the verification of synchronous dataflow programs in Lustre, which enables us to exploit state-of-the-art model checkers utilizing highly optimized SMT-solvers. Our second contribution addresses learning a C-RASP program in the first place. To this end, we provide a new algorithm for learning a C-RASP from examples using local search. We demonstrate efficacy of our implementation for benchmarks of C-RASPs in the literature, in particular in connection to the following applications: (1) transformer program optimization, and (2) constrained learning of transformer programs (based on a partial specification).
☆ HPMixer: Hierarchical Patching for Multivariate Time Series Forecasting
In long-term multivariate time series forecasting, effectively capturing both periodic patterns and residual dynamics is essential. To address this within standard deep learning benchmark settings, we propose the Hierarchical Patching Mixer (HPMixer), which models periodicity and residuals in a decoupled yet complementary manner. The periodic component utilizes a learnable cycle module [7] enhanced with a nonlinear channel-wise MLP for greater expressiveness. The residual component is processed through a Learnable Stationary Wavelet Transform (LSWT) to extract stable, shift-invariant frequency-domain representations. Subsequently, a channel-mixing encoder models explicit inter-channel dependencies, while a two-level non-overlapping hierarchical patching mechanism captures coarse- and fine-scale residual variations. By integrating decoupled periodicity modeling with structured, multi-scale residual learning, HPMixer provides an effective framework. Extensive experiments on standard multivariate benchmarks demonstrate that HPMixer achieves competitive or state-of-the-art performance compared to recent baselines.
comment: 18 pages, 5 figures, 5 tables, PAKDD 2026
☆ Beyond SGD, Without SVD: Proximal Subspace Iteration LoRA with Diagonal Fractional K-FAC
Low-Rank Adaptation (LoRA) fine-tunes large models by learning low-rank updates on top of frozen weights, dramatically reducing trainable parameters and memory. In this work, we address the gap between training with full steps with low-rank projections (SVDLoRA) and LoRA fine-tuning. We propose LoRSum, a memory-efficient subroutine that closes this gap for gradient descent by casting LoRA optimization as a proximal sub-problem and solving it efficiently with alternating least squares updates, which we prove to be an implicit block power method. We recover several recently proposed preconditioning methods for LoRA as special cases, and show that LoRSum can also be used for updating a low-rank momentum. In order to address full steps with preconditioned gradient descent, we propose a scaled variant of LoRSum that uses structured metrics such as K-FAC and Shampoo, and we show that storing the diagonal of these metrics still allows them to perform well while remaining memory-efficient. Experiments on a synthetic task, CIFAR-100, and language-model fine-tuning on GLUE, SQuAD v2, and WikiText-103, show that our method can match or improve LoRA baselines given modest compute overhead, while avoiding full-matrix SVD projections and retaining LoRA-style parameter efficiency.
comment: 20 pages, 5 figures, 4 tables
☆ GICDM: Mitigating Hubness for Reliable Distance-Based Generative Model Evaluation
Generative model evaluation commonly relies on high-dimensional embedding spaces to compute distances between samples. We show that dataset representations in these spaces are affected by the hubness phenomenon, which distorts nearest neighbor relationships and biases distance-based metrics. Building on the classical Iterative Contextual Dissimilarity Measure (ICDM), we introduce Generative ICDM (GICDM), a method to correct neighborhood estimation for both real and generated data. We introduce a multi-scale extension to improve empirical behavior. Extensive experiments on synthetic and real benchmarks demonstrate that GICDM resolves hubness-induced failures, restores reliable metric behavior, and improves alignment with human judgment.
☆ RoboGene: Boosting VLA Pre-training via Diversity-Driven Agentic Framework for Real-World Task Generation
The pursuit of general-purpose robotic manipulation is hindered by the scarcity of diverse, real-world interaction data. Unlike data collection from web in vision or language, robotic data collection is an active process incurring prohibitive physical costs. Consequently, automated task curation to maximize data value remains a critical yet under-explored challenge. Existing manual methods are unscalable and biased toward common tasks, while off-the-shelf foundation models often hallucinate physically infeasible instructions. To address this, we introduce RoboGene, an agentic framework designed to automate the generation of diverse, physically plausible manipulation tasks across single-arm, dual-arm, and mobile robots. RoboGene integrates three core components: diversity-driven sampling for broad task coverage, self-reflection mechanisms to enforce physical constraints, and human-in-the-loop refinement for continuous improvement. We conduct extensive quantitative analysis and large-scale real-world experiments, collecting datasets of 18k trajectories and introducing novel metrics to assess task quality, feasibility, and diversity. Results demonstrate that RoboGene significantly outperforms state-of-the-art foundation models (e.g., GPT-4o, Gemini 2.5 Pro). Furthermore, real-world experiments show that VLA models pre-trained with RoboGene achieve higher success rates and superior generalization, underscoring the importance of high-quality task generation. Our project is available at https://robogene-boost-vla.github.io.
☆ Hardware-accelerated graph neural networks: an alternative approach for neuromorphic event-based audio classification and keyword spotting on SoC FPGA
As the volume of data recorded by embedded edge sensors increases, particularly from neuromorphic devices producing discrete event streams, there is a growing need for hardware-aware neural architectures that enable efficient, low-latency, and energy-conscious local processing. We present an FPGA implementation of event-graph neural networks for audio processing. We utilise an artificial cochlea that converts time-series signals into sparse event data, reducing memory and computation costs. Our architecture was implemented on a SoC FPGA and evaluated on two open-source datasets. For classification task, our baseline floating-point model achieves 92.7% accuracy on SHD dataset - only 2.4% below the state of the art - while requiring over 10x and 67x fewer parameters. On SSC, our models achieve 66.9-71.0% accuracy. Compared to FPGA-based spiking neural networks, our quantised model reaches 92.3% accuracy, outperforming them by up to 19.3% while reducing resource usage and latency. For SSC, we report the first hardware-accelerated evaluation. We further demonstrate the first end-to-end FPGA implementation of event-audio keyword spotting, combining graph convolutional layers with recurrent sequence modelling. The system achieves up to 95% word-end detection accuracy, with only 10.53 microsecond latency and 1.18 W power consumption, establishing a strong benchmark for energy-efficient event-driven KWS.
comment: Under revision in TRETS Journal
☆ Intra-Fairness Dynamics: The Bias Spillover Effect in Targeted LLM Alignment
Conventional large language model (LLM) fairness alignment largely focuses on mitigating bias along single sensitive attributes, overlooking fairness as an inherently multidimensional and context-specific value. This approach risks creating systems that achieve narrow fairness metrics while exacerbating disparities along untargeted attributes, a phenomenon known as bias spillover. While extensively studied in machine learning, bias spillover remains critically underexplored in LLM alignment. In this work, we investigate how targeted gender alignment affects fairness across nine sensitive attributes in three state-of-the-art LLMs (Mistral 7B, Llama 3.1 8B, Qwen 2.5 7B). Using Direct Preference Optimization and the BBQ benchmark, we evaluate fairness under ambiguous and disambiguous contexts. Our findings reveal noticeable bias spillover: while aggregate results show improvements, context-aware analysis exposes significant degradations in ambiguous contexts, particularly for physical appearance ($p< 0.001$ across all models), sexual orientation, and disability status. We demonstrate that improving fairness along one attribute can inadvertently worsen disparities in others under uncertainty, highlighting the necessity of context-aware, multi-attribute fairness evaluation frameworks.
comment: Submitted to the BiAlign CHI Workshop 2026
☆ Learning with Locally Private Examples by Inverse Weierstrass Private Stochastic Gradient Descent
Releasing data once and for all under noninteractive Local Differential Privacy (LDP) enables complete data reusability, but the resulting noise may create bias in subsequent analyses. In this work, we leverage the Weierstrass transform to characterize this bias in binary classification. We prove that inverting this transform leads to a bias-correction method to compute unbiased estimates of nonlinear functions on examples released under LDP. We then build a novel stochastic gradient descent algorithm called Inverse Weierstrass Private SGD (IWP-SGD). It converges to the true population risk minimizer at a rate of $\mathcal{O}(1/n)$, with $n$ the number of examples. We empirically validate IWP-SGD on binary classification tasks using synthetic and real-world datasets.
comment: 30 pages, 8 figures
☆ Causally-Guided Automated Feature Engineering with Multi-Agent Reinforcement Learning
Automated feature engineering (AFE) enables AI systems to autonomously construct high-utility representations from raw tabular data. However, existing AFE methods rely on statistical heuristics, yielding brittle features that fail under distribution shift. We introduce CAFE, a framework that reformulates AFE as a causally-guided sequential decision process, bridging causal discovery with reinforcement learning-driven feature construction. Phase I learns a sparse directed acyclic graph over features and the target to obtain soft causal priors, grouping features as direct, indirect, or other based on their causal influence with respect to the target. Phase II uses a cascading multi-agent deep Q-learning architecture to select causal groups and transformation operators, with hierarchical reward shaping and causal group-level exploration strategies that favor causally plausible transformations while controlling feature complexity. Across 15 public benchmarks (classification with macro-F1; regression with inverse relative absolute error), CAFE achieves up to 7% improvement over strong AFE baselines, reduces episodes-to-convergence, and delivers competitive time-to-target. Under controlled covariate shifts, CAFE reduces performance drop by ~4x relative to a non-causal multi-agent baseline, and produces more compact feature sets with more stable post-hoc attributions. These findings underscore that causal structure, used as a soft inductive prior rather than a rigid constraint, can substantially improve the robustness and efficiency of automated feature engineering.
comment: 11 Pages, References and Appendix
☆ Easy Data Unlearning Bench ICML 2025
Evaluating machine unlearning methods remains technically challenging, with recent benchmarks requiring complex setups and significant engineering overhead. We introduce a unified and extensible benchmarking suite that simplifies the evaluation of unlearning algorithms using the KLoM (KL divergence of Margins) metric. Our framework provides precomputed model ensembles, oracle outputs, and streamlined infrastructure for running evaluations out of the box. By standardizing setup and metrics, it enables reproducible, scalable, and fair comparison across unlearning methods. We aim for this benchmark to serve as a practical foundation for accelerating research and promoting best practices in machine unlearning. Our code and data are publicly available.
comment: ICML 2025 Workshop on Machine Unlearning for Generative AI
☆ Multi-Channel Replay Speech Detection using Acoustic Maps
Replay attacks remain a critical vulnerability for automatic speaker verification systems, particularly in real-time voice assistant applications. In this work, we propose acoustic maps as a novel spatial feature representation for replay speech detection from multi-channel recordings. Derived from classical beamforming over discrete azimuth and elevation grids, acoustic maps encode directional energy distributions that reflect physical differences between human speech radiation and loudspeaker-based replay. A lightweight convolutional neural network is designed to operate on this representation, achieving competitive performance on the ReMASC dataset with approximately 6k trainable parameters. Experimental results show that acoustic maps provide a compact and physically interpretable feature space for replay attack detection across different devices and acoustic environments.
comment: Submitted to EUSIPCO 2026
☆ Variable-Length Semantic IDs for Recommender Systems
Generative models are increasingly used in recommender systems, both for modeling user behavior as event sequences and for integrating large language models into recommendation pipelines. A key challenge in this setting is the extremely large cardinality of item spaces, which makes training generative models difficult and introduces a vocabulary gap between natural language and item identifiers. Semantic identifiers (semantic IDs), which represent items as sequences of low-cardinality tokens, have recently emerged as an effective solution to this problem. However, existing approaches generate semantic identifiers of fixed length, assigning the same description length to all items. This is inefficient, misaligned with natural language, and ignores the highly skewed frequency structure of real-world catalogs, where popular items and rare long-tail items exhibit fundamentally different information requirements. In parallel, the emergent communication literature studies how agents develop discrete communication protocols, often producing variable-length messages in which frequent concepts receive shorter descriptions. Despite the conceptual similarity, these ideas have not been systematically adopted in recommender systems. In this work, we bridge recommender systems and emergent communication by introducing variable-length semantic identifiers for recommendation. We propose a discrete variational autoencoder with Gumbel-Softmax reparameterization that learns item representations of adaptive length under a principled probabilistic framework, avoiding the instability of REINFORCE-based training and the fixed-length constraints of prior semantic ID methods.
☆ Improved Bounds for Reward-Agnostic and Reward-Free Exploration
We study reward-free and reward-agnostic exploration in episodic finite-horizon Markov decision processes (MDPs), where an agent explores an unknown environment without observing external rewards. Reward-free exploration aims to enable $ε$-optimal policies for any reward revealed after exploration, while reward-agnostic exploration targets $ε$-optimality for rewards drawn from a small finite class. In the reward-agnostic setting, Li, Yan, Chen, and Fan achieve minimax sample complexity, but only for restrictively small accuracy parameter $ε$. We propose a new algorithm that significantly relaxes the requirement on $ε$. Our approach is novel and of technical interest by itself. Our algorithm employs an online learning procedure with carefully designed rewards to construct an exploration policy, which is used to gather data sufficient for accurate dynamics estimation and subsequent computation of an $ε$-optimal policy once the reward is revealed. Finally, we establish a tight lower bound for reward-free exploration, closing the gap between known upper and lower bounds.
☆ Optical Inversion and Spectral Unmixing of Spectroscopic Photoacoustic Images with Physics-Informed Neural Networks
Accurate estimation of the relative concentrations of chromophores in a spectroscopic photoacoustic (sPA) image can reveal immense structural, functional, and molecular information about physiological processes. However, due to nonlinearities and ill-posedness inherent to sPA imaging, concentration estimation is intractable. The Spectroscopic Photoacoustic Optical Inversion Autoencoder (SPOI-AE) aims to address the sPA optical inversion and spectral unmixing problems without assuming linearity. Herein, SPOI-AE was trained and tested on \textit{in vivo} mouse lymph node sPA images with unknown ground truth chromophore concentrations. SPOI-AE better reconstructs input sPA pixels than conventional algorithms while providing biologically coherent estimates for optical parameters, chromophore concentrations, and the percent oxygen saturation of tissue. SPOI-AE's unmixing accuracy was validated using a simulated mouse lymph node phantom ground truth.
☆ Machine Learning in Epidemiology
In the age of digital epidemiology, epidemiologists are faced by an increasing amount of data of growing complexity and dimensionality. Machine learning is a set of powerful tools that can help to analyze such enormous amounts of data. This chapter lays the methodological foundations for successfully applying machine learning in epidemiology. It covers the principles of supervised and unsupervised learning and discusses the most important machine learning methods. Strategies for model evaluation and hyperparameter optimization are developed and interpretable machine learning is introduced. All these theoretical parts are accompanied by code examples in R, where an example dataset on heart disease is used throughout the chapter.
☆ Helpful to a Fault: Measuring Illicit Assistance in Multi-Turn, Multilingual LLM Agents
LLM-based agents execute real-world workflows via tools and memory. These affordances enable ill-intended adversaries to also use these agents to carry out complex misuse scenarios. Existing agent misuse benchmarks largely test single-prompt instructions, leaving a gap in measuring how agents end up helping with harmful or illegal tasks over multiple turns. We introduce STING (Sequential Testing of Illicit N-step Goal execution), an automated red-teaming framework that constructs a step-by-step illicit plan grounded in a benign persona and iteratively probes a target agent with adaptive follow-ups, using judge agents to track phase completion. We further introduce an analysis framework that models multi-turn red-teaming as a time-to-first-jailbreak random variable, enabling analysis tools like discovery curves, hazard-ratio attribution by attack language, and a new metric: Restricted Mean Jailbreak Discovery. Across AgentHarm scenarios, STING yields substantially higher illicit-task completion than single-turn prompting and chat-oriented multi-turn baselines adapted to tool-using agents. In multilingual evaluations across six non-English settings, we find that attack success and illicit-task completion do not consistently increase in lower-resource languages, diverging from common chatbot findings. Overall, STING provides a practical way to evaluate and stress-test agent misuse in realistic deployment settings, where interactions are inherently multi-turn and often multilingual.
☆ How to Label Resynthesized Audio: The Dual Role of Neural Audio Codecs in Audio Deepfake Detection ICASSP 2026
Since Text-to-Speech systems typically don't produce waveforms directly, recent spoof detection studies use resynthesized waveforms from vocoders and neural audio codecs to simulate an attacker. Unlike vocoders, which are specifically designed for speech synthesis, neural audio codecs were originally developed for compressing audio for storage and transmission. However, their ability to discretize speech also sparked interest in language-modeling-based speech synthesis. Owing to this dual functionality, codec resynthesized data may be labeled as either bonafide or spoof. So far, very little research has addressed this issue. In this study, we present a challenging extension of the ASVspoof 5 dataset constructed for this purpose. We examine how different labeling choices affect detection performance and provide insights into labeling strategies.
comment: Accepted to ICASSP 2026
☆ Explainability for Fault Detection System in Chemical Processes
In this work, we apply and compare two state-of-the-art eXplainability Artificial Intelligence (XAI) methods, the Integrated Gradients (IG) and the SHapley Additive exPlanations (SHAP), that explain the fault diagnosis decisions of a highly accurate Long Short-Time Memory (LSTM) classifier. The classifier is trained to detect faults in a benchmark non-linear chemical process, the Tennessee Eastman Process (TEP). It is highlighted how XAI methods can help identify the subsystem of the process where the fault occurred. Using our knowledge of the process, we note that in most cases the same features are indicated as the most important for the decision, while insome cases the SHAP method seems to be more informative and closer to the root cause of the fault. Finally, since the used XAI methods are model-agnostic, the proposed approach is not limited to the specific process and can also be used in similar problems.
☆ The Implicit Bias of Adam and Muon on Smooth Homogeneous Neural Networks ICML 2026
We study the implicit bias of momentum-based optimizers on homogeneous models. We first extend existing results on the implicit bias of steepest descent in homogeneous models to normalized steepest descent with an optional learning rate schedule. We then show that for smooth homogeneous models, momentum steepest descent algorithms like Muon (spectral norm), MomentumGD ($\ell_2$ norm), and Signum ($\ell_\infty$ norm) are approximate steepest descent trajectories under a decaying learning rate schedule, proving that these algorithms too have a bias towards KKT points of the corresponding margin maximization problem. We extend the analysis to Adam (without the stability constant), which maximizes the $\ell_\infty$ margin, and to Muon-Signum and Muon-Adam, which maximize a hybrid norm. Our experiments corroborate the theory and show that the identity of the margin maximized depends on the choice of optimizer. Overall, our results extend earlier lines of work on steepest descent in homogeneous models and momentum-based optimizers in linear models.
comment: 11 pages, 1 figure (with appendix: 48 pages, 2 figures), under review for ICML 2026
☆ Subtractive Modulative Network with Learnable Periodic Activations
We propose the Subtractive Modulative Network (SMN), a novel, parameter-efficient Implicit Neural Representation (INR) architecture inspired by classical subtractive synthesis. The SMN is designed as a principled signal processing pipeline, featuring a learnable periodic activation layer (Oscillator) that generates a multi-frequency basis, and a series of modulative mask modules (Filters) that actively generate high-order harmonics. We provide both theoretical analysis and empirical validation for our design. Our SMN achieves a PSNR of $40+$ dB on two image datasets, comparing favorably against state-of-the-art methods in terms of both reconstruction accuracy and parameter efficiency. Furthermore, consistent advantage is observed on the challenging 3D NeRF novel view synthesis task. Supplementary materials are available at https://inrainbws.github.io/smn/.
comment: 4 pages, 3 figures, 3 tables
☆ HAWX: A Hardware-Aware FrameWork for Fast and Scalable ApproXimation of DNNs
This work presents HAWX, a hardware-aware scalable exploration framework that employs multi-level sensitivity scoring at different DNN abstraction levels (operator, filter, layer, and model) to guide selective integration of heterogeneous AxC blocks. Supported by predictive models for accuracy, power, and area, HAWX accelerates the evaluation of candidate configurations, achieving over 23* speedup in a layer-level search with two candidate approximate blocks and more than (3*106)* speedup at the filter-level search only for LeNet-5, while maintaining accuracy comparable to exhaustive search. Experiments across state-of-the-art DNN benchmarks such as VGG-11, ResNet-18, and EfficientNetLite demonstrate that the efficiency benefits of HAWX scale exponentially with network size. The HAWX hardware-aware search algorithm supports both spatial and temporal accelerator architectures, leveraging either off-the-shelf approximate components or customized designs.
☆ Guide-Guard: Off-Target Predicting in CRISPR Applications
With the introduction of cyber-physical genome sequencing and editing technologies, such as CRISPR, researchers can more easily access tools to investigate and create remedies for a variety of topics in genetics and health science (e.g. agriculture and medicine). As the field advances and grows, new concerns present themselves in the ability to predict the off-target behavior. In this work, we explore the underlying biological and chemical model from a data driven perspective. Additionally, we present a machine learning based solution named \textit{Guide-Guard} to predict the behavior of the system given a gRNA in the CRISPR gene-editing process with 84\% accuracy. This solution is able to be trained on multiple different genes at the same time while retaining accuracy.
comment: 10 pages, 11 figs, accepted to IDEAL 2022
☆ RefineFormer3D: Efficient 3D Medical Image Segmentation via Adaptive Multi-Scale Transformer with Cross Attention Fusion
Accurate and computationally efficient 3D medical image segmentation remains a critical challenge in clinical workflows. Transformer-based architectures often demonstrate superior global contextual modeling but at the expense of excessive parameter counts and memory demands, restricting their clinical deployment. We propose RefineFormer3D, a lightweight hierarchical transformer architecture that balances segmentation accuracy and computational efficiency for volumetric medical imaging. The architecture integrates three key components: (i) GhostConv3D-based patch embedding for efficient feature extraction with minimal redundancy, (ii) MixFFN3D module with low-rank projections and depthwise convolutions for parameter-efficient feature extraction, and (iii) a cross-attention fusion decoder enabling adaptive multi-scale skip connection integration. RefineFormer3D contains only 2.94M parameters, substantially fewer than contemporary transformer-based methods. Extensive experiments on ACDC and BraTS benchmarks demonstrate that RefineFormer3D achieves 93.44\% and 85.9\% average Dice scores respectively, outperforming or matching state-of-the-art methods while requiring significantly fewer parameters. Furthermore, the model achieves fast inference (8.35 ms per volume on GPU) with low memory requirements, supporting deployment in resource-constrained clinical environments. These results establish RefineFormer3D as an effective and scalable solution for practical 3D medical image segmentation.
comment: 13 pages, 5 figures, 7 tables
☆ A Graph Meta-Network for Learning on Kolmogorov-Arnold Networks
Weight-space models learn directly from the parameters of neural networks, enabling tasks such as predicting their accuracy on new datasets. Naive methods -- like applying MLPs to flattened parameters -- perform poorly, making the design of better weight-space architectures a central challenge. While prior work leveraged permutation symmetries in standard networks to guide such designs, no analogous analysis or tailored architecture yet exists for Kolmogorov-Arnold Networks (KANs). In this work, we show that KANs share the same permutation symmetries as MLPs, and propose the KAN-graph, a graph representation of their computation. Building on this, we develop WS-KAN, the first weight-space architecture that learns on KANs, which naturally accounts for their symmetry. We analyze WS-KAN's expressive power, showing it can replicate an input KAN's forward pass - a standard approach for assessing expressiveness in weight-space architectures. We construct a comprehensive ``zoo'' of trained KANs spanning diverse tasks, which we use as benchmarks to empirically evaluate WS-KAN. Across all tasks, WS-KAN consistently outperforms structure-agnostic baselines, often by a substantial margin. Our code is available at https://github.com/BarSGuy/KAN-Graph-Metanetwork.
☆ BAT: Better Audio Transformer Guided by Convex Gated Probing
Probing is widely adopted in computer vision to faithfully evaluate self-supervised learning (SSL) embeddings, as fine-tuning may misrepresent their inherent quality. In contrast, audio SSL models still rely on fine-tuning because simple probing fails to unlock their full potential and alters their rankings when competing for SOTA on AudioSet. Hence, a robust and efficient probing mechanism is required to guide the trajectory of audio SSL towards reliable and reproducible methods. We introduce Convex Gated Probing (CGP), a prototype-based method that drastically closes the gap between fine-tuning and probing in audio. CGP efficiently utilizes all frozen layers via a gating mechanism and exposes the location of latent task-relevant information. Guided by CGP, we rework the entire SSL pipeline of current SOTA audio models that use legacy implementations of prior SSL methods. By refining data preprocessing, model architecture, and pre-training recipe, we introduce Better Audio Transformer (BAT), and establish new SOTA on audio benchmarks.
☆ Fast KV Compaction via Attention Matching
Scaling language models to long contexts is often bottlenecked by the size of the key-value (KV) cache. In deployed settings, long contexts are typically managed through compaction in token space via summarization. However, summarization can be highly lossy, substantially harming downstream performance. Recent work on Cartridges has shown that it is possible to train highly compact KV caches in latent space that closely match full-context performance, but at the cost of slow and expensive end-to-end optimization. This work describes an approach for fast context compaction in latent space through Attention Matching, which constructs compact keys and values to reproduce attention outputs and preserve attention mass at a per-KV-head level. We show that this formulation naturally decomposes into simple subproblems, some of which admit efficient closed-form solutions. Within this framework, we develop a family of methods that significantly push the Pareto frontier of compaction time versus quality, achieving up to 50x compaction in seconds on some datasets with little quality loss.
☆ Regret and Sample Complexity of Online Q-Learning via Concentration of Stochastic Approximation with Time-Inhomogeneous Markov Chains
We present the first high-probability regret bound for classical online Q-learning in infinite-horizon discounted Markov decision processes, without relying on optimism or bonus terms. We first analyze Boltzmann Q-learning with decaying temperature and show that its regret depends critically on the suboptimality gap of the MDP: for sufficiently large gaps, the regret is sublinear, while for small gaps it deteriorates and can approach linear growth. To address this limitation, we study a Smoothed $ε_n$-Greedy exploration scheme that combines $ε_n$-greedy and Boltzmann exploration, for which we prove a gap-robust regret bound of near-$\tilde{O}(N^{9/10})$. To analyze these algorithms, we develop a high-probability concentration bound for contractive Markovian stochastic approximation with iterate- and time-dependent transition dynamics. This bound may be of independent interest as the contraction factor in our bound is governed by the mixing time and is allowed to converge to one asymptotically.
☆ Structured Unitary Tensor Network Representations for Circuit-Efficient Quantum Data Encoding
Encoding classical data into quantum states is a central bottleneck in quantum machine learning: many widely used encodings are circuit-inefficient, requiring deep circuits and substantial quantum resources, which limits scalability on quantum hardware. In this work, we propose TNQE, a circuit-efficient quantum data encoding framework built on structured unitary tensor network (TN) representations. TNQE first represents each classical input via a TN decomposition and then compiles the resulting tensor cores into an encoding circuit through two complementary core-to-circuit strategies. To make this compilation trainable while respecting the unitary nature of quantum operations, we introduce a unitary-aware constraint that parameterizes TN cores as learnable block unitaries, enabling them to be directly optimized and directly encoded as quantum operators. The proposed TNQE framework enables explicit control over circuit depth and qubit resources, allowing the construction of shallow, resource-efficient circuits. Across a range of benchmarks, TNQE achieves encoding circuits as shallow as $0.04\times$ the depth of amplitude encoding, while naturally scaling to high-resolution images ($256 \times 256$) and demonstrating practical feasibility on real quantum hardware.
☆ On sparsity, extremal structure, and monotonicity properties of Wasserstein and Gromov-Wasserstein optimal transport plans
This note gives a self-contained overview of some important properties of the Gromov-Wasserstein (GW) distance, compared with the standard linear optimal transport (OT) framework. More specifically, I explore the following questions: are GW optimal transport plans sparse? Under what conditions are they supported on a permutation? Do they satisfy a form of cyclical monotonicity? In particular, I present the conditionally negative semi-definite property and show that, when it holds, there are GW optimal plans that are sparse and supported on a permutation.
☆ Prediction of Major Solar Flares Using Interpretable Class-dependent Reward Framework with Active Region Magnetograms and Domain Knowledge
In this work, we develop, for the first time, a supervised classification framework with class-dependent rewards (CDR) to predict $\geq$MM flares within 24 hr. We construct multiple datasets, covering knowledge-informed features and line-of sight (LOS) magnetograms. We also apply three deep learning models (CNN, CNN-BiLSTM, and Transformer) and three CDR counterparts (CDR-CNN, CDR-CNN-BiLSTM, and CDR-Transformer). First, we analyze the importance of LOS magnetic field parameters with the Transformer, then compare its performance using LOS-only, vector-only, and combined magnetic field parameters. Second, we compare flare prediction performance based on CDR models versus deep learning counterparts. Third, we perform sensitivity analysis on reward engineering for CDR models. Fourth, we use the SHAP method for model interpretability. Finally, we conduct performance comparison between our models and NASA/CCMC. The main findings are: (1)Among LOS feature combinations, R_VALUE and AREA_ACR consistently yield the best results. (2)Transformer achieves better performance with combined LOS and vector magnetic field data than with either alone. (3)Models using knowledge-informed features outperform those using magnetograms. (4)While CNN and CNN-BiLSTM outperform their CDR counterparts on magnetograms, CDR-Transformer is slightly superior to its deep learning counterpart when using knowledge-informed features. Among all models, CDR-Transformer achieves the best performance. (5)The predictive performance of the CDR models is not overly sensitive to the reward choices.(6)Through SHAP analysis, the CDR model tends to regard TOTUSJH as more important, while the Transformer tends to prioritize R_VALUE more.(7)Under identical prediction time and active region (AR) number, the CDR-Transformer shows superior predictive capabilities compared to NASA/CCMC.
comment: 24 pages,12 figures
☆ Online Prediction of Stochastic Sequences with High Probability Regret Bounds ICLR 2026
We revisit the classical problem of universal prediction of stochastic sequences with a finite time horizon $T$ known to the learner. The question we investigate is whether it is possible to derive vanishing regret bounds that hold with high probability, complementing existing bounds from the literature that hold in expectation. We propose such high-probability bounds which have a very similar form as the prior expectation bounds. For the case of universal prediction of a stochastic process over a countable alphabet, our bound states a convergence rate of $\mathcal{O}(T^{-1/2} δ^{-1/2})$ with probability as least $1-δ$ compared to prior known in-expectation bounds of the order $\mathcal{O}(T^{-1/2})$. We also propose an impossibility result which proves that it is not possible to improve the exponent of $δ$ in a bound of the same form without making additional assumptions.
comment: Accepted for publication at The Fourteenth International Conference on Learning Representations (ICLR 2026)
☆ DistributedEstimator: Distributed Training of Quantum Neural Networks via Circuit Cutting
Circuit cutting decomposes a large quantum circuit into a collection of smaller subcircuits. The outputs of these subcircuits are then classically reconstructed to recover the original expectation values. While prior work characterises cutting overhead largely in terms of subcircuit counts and sampling complexity, its end-to-end impact on iterative, estimator-driven training pipelines remains insufficiently measured from a systems perspective. In this paper, we propose a cut-aware estimator execution pipeline that treats circuit cutting as a staged distributed workload and instruments each estimator query into partitioning, subexperiment generation, parallel execution, and classical reconstruction phases. Using logged runtime traces and learning outcomes on two binary classification workloads (Iris and MNIST), we quantify cutting overheads, scaling limits, and sensitivity to injected stragglers, and we evaluate whether accuracy and robustness are preserved under matched training budgets. Our measurements show that cutting introduces substantial end-to-end overheads that grow with the number of cuts, and that reconstruction constitutes a dominant fraction of per-query time, bounding achievable speed-up under increased parallelism. Despite these systems costs, test accuracy and robustness are preserved in the measured regimes, with configuration-dependent improvements observed in some cut settings. These results indicate that practical scaling of circuit cutting for learning workloads hinges on reducing and overlapping reconstruction and on scheduling policies that account for barrier-dominated critical paths.
☆ Factored Latent Action World Models
Learning latent actions from action-free video has emerged as a powerful paradigm for scaling up controllable world model learning. Latent actions provide a natural interface for users to iteratively generate and manipulate videos. However, most existing approaches rely on monolithic inverse and forward dynamics models that learn a single latent action to control the entire scene, and therefore struggle in complex environments where multiple entities act simultaneously. This paper introduces Factored Latent Action Model (FLAM), a factored dynamics framework that decomposes the scene into independent factors, each inferring its own latent action and predicting its own next-step factor value. This factorized structure enables more accurate modeling of complex multi-entity dynamics and improves video generation quality in action-free video settings compared to monolithic models. Based on experiments on both simulation and real-world multi-entity datasets, we find that FLAM outperforms prior work in prediction accuracy and representation quality, and facilitates downstream policy learning, demonstrating the benefits of factorized latent action models.
☆ Amortized Predictability-aware Training Framework for Time Series Forecasting and Classification
Time series data are prone to noise in various domains, and training samples may contain low-predictability patterns that deviate from the normal data distribution, leading to training instability or convergence to poor local minima. Therefore, mitigating the adverse effects of low-predictability samples is crucial for time series analysis tasks such as time series forecasting (TSF) and time series classification (TSC). While many deep learning models have achieved promising performance, few consider how to identify and penalize low-predictability samples to improve model performance from the training perspective. To fill this gap, we propose a general Amortized Predictability-aware Training Framework (APTF) for both TSF and TSC. APTF introduces two key designs that enable the model to focus on high-predictability samples while still learning appropriately from low-predictability ones: (i) a Hierarchical Predictability-aware Loss (HPL) that dynamically identifies low-predictability samples and progressively expands their loss penalty as training evolves, and (ii) an amortization model that mitigates predictability estimation errors caused by model bias, further enhancing HPL's effectiveness. The code is available at https://github.com/Meteor-Stars/APTF.
comment: This work is accepted by the proceedings of the ACM Web Conference 2026 (WWW 2026). The code is available at the link https://github.com/Meteor-Stars/APTF
☆ SEMixer: Semantics Enhanced MLP-Mixer for Multiscale Mixing and Long-term Time Series Forecasting
Modeling multiscale patterns is crucial for long-term time series forecasting (TSF). However, redundancy and noise in time series, together with semantic gaps between non-adjacent scales, make the efficient alignment and integration of multi-scale temporal dependencies challenging. To address this, we propose SEMixer, a lightweight multiscale model designed for long-term TSF. SEMixer features two key components: a Random Attention Mechanism (RAM) and a Multiscale Progressive Mixing Chain (MPMC). RAM captures diverse time-patch interactions during training and aggregates them via dropout ensemble at inference, enhancing patch-level semantics and enabling MLP-Mixer to better model multi-scale dependencies. MPMC further stacks RAM and MLP-Mixer in a memory-efficient manner, achieving more effective temporal mixing. It addresses semantic gaps across scales and facilitates better multiscale modeling and forecasting performance. We not only validate the effectiveness of SEMixer on 10 public datasets, but also on the \textit{2025 CCF AlOps Challenge} based on 21GB real wireless network data, where SEMixer achieves third place. The code is available at the link https://github.com/Meteor-Stars/SEMixer.
comment: This work is accepted by the proceedings of the ACM Web Conference 2026 (WWW 2026). The code is available at the link https://github.com/Meteor-Stars/SEMixer
☆ Bayesian Quadrature: Gaussian Processes for Integration
Bayesian quadrature is a probabilistic, model-based approach to numerical integration, the estimation of intractable integrals, or expectations. Although Bayesian quadrature was popularised already in the 1980s, no systematic and comprehensive treatment has been published. The purpose of this survey is to fill this gap. We review the mathematical foundations of Bayesian quadrature from different points of view; present a systematic taxonomy for classifying different Bayesian quadrature methods along the three axes of modelling, inference, and sampling; collect general theoretical guarantees; and provide a controlled numerical study that explores and illustrates the effect of different choices along the axes of the taxonomy. We also provide a realistic assessment of practical challenges and limitations to application of Bayesian quadrature methods and include an up-to-date and nearly exhaustive bibliography that covers not only machine learning and statistics literature but all areas of mathematics and engineering in which Bayesian quadrature or equivalent methods have seen use.
☆ Multi-Class Boundary Extraction from Implicit Representations
Surface extraction from implicit neural representations modelling a single class surface is a well-known task. However, there exist no surface extraction methods from an implicit representation of multiple classes that guarantee topological correctness and no holes. In this work, we lay the groundwork by introducing a 2D boundary extraction algorithm for the multi-class case focusing on topological consistency and water-tightness, which also allows for setting minimum detail restraint on the approximation. Finally, we evaluate our algorithm using geological modelling data, showcasing its adaptiveness and ability to honour complex topology.
☆ UCTECG-Net: Uncertainty-aware Convolution Transformer ECG Network for Arrhythmia Detection
Deep learning has improved automated electrocardiogram (ECG) classification, but limited insight into prediction reliability hinders its use in safety-critical settings. This paper proposes UCTECG-Net, an uncertainty-aware hybrid architecture that combines one-dimensional convolutions and Transformer encoders to process raw ECG signals and their spectrograms jointly. Evaluated on the MIT-BIH Arrhythmia and PTB Diagnostic datasets, UCTECG-Net outperforms LSTM, CNN1D, and Transformer baselines in terms of accuracy, precision, recall and F1 score, achieving up to 98.58% accuracy on MIT-BIH and 99.14% on PTB. To assess predictive reliability, we integrate three uncertainty quantification methods (Monte Carlo Dropout, Deep Ensembles, and Ensemble Monte Carlo Dropout) into all models and analyze their behavior using an uncertainty-aware confusion matrix and derived metrics. The results show that UCTECG-Net, particularly with Ensemble or EMCD, provides more reliable and better-aligned uncertainty estimates than competing architectures, offering a stronger basis for risk-aware ECG decision support.
☆ Graph neural network for colliding particles with an application to sea ice floe modeling
This paper introduces a novel approach to sea ice modeling using Graph Neural Networks (GNNs), utilizing the natural graph structure of sea ice, where nodes represent individual ice pieces, and edges model the physical interactions, including collisions. This concept is developed within a one-dimensional framework as a foundational step. Traditional numerical methods, while effective, are computationally intensive and less scalable. By utilizing GNNs, the proposed model, termed the Collision-captured Network (CN), integrates data assimilation (DA) techniques to effectively learn and predict sea ice dynamics under various conditions. The approach was validated using synthetic data, both with and without observed data points, and it was found that the model accelerates the simulation of trajectories without compromising accuracy. This advancement offers a more efficient tool for forecasting in marginal ice zones (MIZ) and highlights the potential of combining machine learning with data assimilation for more effective and efficient modeling.
☆ Geometric Neural Operators via Lie Group-Constrained Latent Dynamics
Neural operators offer an effective framework for learning solutions of partial differential equations for many physical systems in a resolution-invariant and data-driven manner. Existing neural operators, however, often suffer from instability in multi-layer iteration and long-horizon rollout, which stems from the unconstrained Euclidean latent space updates that violate the geometric and conservation laws. To address this challenge, we propose to constrain manifolds with low-rank Lie algebra parameterization that performs group action updates on the latent representation. Our method, termed Manifold Constraining based on Lie group (MCL), acts as an efficient \emph{plug-and-play} module that enforces geometric inductive bias to existing neural operators. Extensive experiments on various partial differential equations, such as 1-D Burgers and 2-D Navier-Stokes, over a wide range of parameters and steps demonstrate that our method effectively lowers the relative prediction error by 30-50\% at the cost of 2.26\% of parameter increase. The results show that our approach provides a scalable solution for improving long-term prediction fidelity by addressing the principled geometric constraints absent in the neural operator updates.
♻ ☆ Random Scaling of Emergent Capabilities
Language models famously improve under a smooth scaling law, but some specific capabilities exhibit sudden breakthroughs in performance. Advocates of "emergence" view these capabilities as unlocked at a specific scale, but others attribute breakthroughs to superficial metric thresholding effects. We propose that breakthroughs are instead driven by continuous changes in the probability distribution of training outcomes when performance is bimodally distributed across random seeds. we show that different random seeds can produce either smooth or emergent scaling trends in synthetic length generalization tasks, multiple choice question answering, and grammatical generalization. We reveal that sharp breakthroughs in metrics are produced by underlying continuous changes in their distribution across seeds. These distributions may become abruptly bimodal at a capacity threshold but this threshold appears at scales well before most seeds achieve breakthrough. Our observations hold true even under continuous loss metrics, confirming that random variation must be considered when predicting a model's performance from its scale.
♻ ☆ Mixture-of-Experts as Soft Clustering: A Dual Jacobian-PCA Spectral Geometry Perspective
Mixture-of-Experts (MoE) architectures are widely used for efficiency and conditional computation, but their effect on the geometry of learned functions and representations remains poorly understood. We study MoEs through a geometric lens, interpreting routing as soft partitioning into overlapping expert-local charts. We introduce a Dual Jacobian-PCA spectral probe that analyzes local function geometry via Jacobian singular value spectra and representation geometry via weighted PCA of routed hidden states. Using a controlled MLP-MoE setting with exact Jacobian computation, we compare dense, Top-k, and fully soft routing under matched capacity. Across random seeds, MoE routing consistently reduces local sensitivity: expert-local Jacobians show smaller leading singular values and faster spectral decay than dense baselines. Weighted PCA reveals that expert-local representations distribute variance across more principal directions, indicating higher effective rank. We further observe low alignment among expert Jacobians, suggesting decomposition into low-overlap expert-specific transformations. Routing sharpness modulates these effects: Top-k routing yields more concentrated, lower-rank expert structure, while fully soft routing produces broader, higher-rank representations. Experiments on a 3-layer transformer with WikiText confirm curvature reduction on natural language and show lower cross-expert alignment for Top-k routing. These findings support interpreting MoEs as soft partitionings of function space that flatten local curvature while redistributing representation variance, yielding testable predictions for expert scaling, hallucination reduction, and ensemble diversity.
♻ ☆ Statistical Inference Leveraging Synthetic Data with Distribution-Free Guarantees
The rapid proliferation of high-quality synthetic data -- generated by advanced AI models or collected as auxiliary data from related tasks -- presents both opportunities and challenges for statistical inference. This paper introduces a GEneral Synthetic-Powered Inference (GESPI) framework that wraps around any statistical inference procedure to safely enhance sample efficiency by combining synthetic and real data. Our framework leverages high-quality synthetic data to boost statistical power, yet adaptively defaults to the standard inference method using only real data when synthetic data is of low quality. The error of our method remains below a user-specified bound without any distributional assumptions on the synthetic data, and decreases as the quality of the synthetic data improves. This flexibility enables seamless integration with conformal prediction, risk control, hypothesis testing, and multiple testing procedures, all without modifying the base inference method. We demonstrate the benefits of our method on challenging tasks with limited labeled data, including AlphaFold protein structure prediction, and comparing large reasoning models on complex math problems.
♻ ☆ Closing the Distribution Gap in Adversarial Training for LLMs
Adversarial training for LLMs is one of the most promising methods to reliably improve robustness against adversaries. However, despite significant progress, models remain vulnerable to simple in-distribution exploits, such as rewriting prompts in the past tense or translating them into other languages. We argue that this persistent fragility stems from a fundamental limitation in current adversarial training algorithms: they minimize adversarial loss on their training set but inadequately cover the data distribution, resulting in vulnerability to seemingly simple attacks. To bridge this gap, we propose Distributional Adversarial Training, DAT. We leverage Diffusion LLMs to approximate the true joint distribution of prompts and responses, enabling generation of diverse, high-likelihood samples that address generalization failures. By combining optimization over the data distribution provided by the diffusion model with continuous adversarial training, DAT achieves substantially higher adversarial robustness than previous methods.
♻ ☆ SoK: Data Minimization in Machine Learning
Data minimization (DM) describes the principle of collecting only the data strictly necessary for a given task. It is a foundational principle across major data protection regulations like GDPR and CPRA. Violations of this principle have substantial real-world consequences, with regulatory actions resulting in fines reaching hundreds of millions of dollars. Notably, the relevance of data minimization is particularly pronounced in machine learning (ML) applications, which typically rely on large datasets, resulting in an emerging research area known as Data Minimization in Machine Learning (DMML). At the same time, existing work on other ML privacy and security topics often addresses concerns relevant to DMML without explicitly acknowledging the connection. This disconnect leads to confusion among practitioners, complicating their efforts to implement DM principles and interpret the terminology, metrics, and evaluation criteria used across different research communities. To address this gap, we present the first systematization of knowledge (SoK) for DMML. We introduce a general framework for DMML, encompassing a unified data pipeline, adversarial models, and points of minimization. This framework allows us to systematically review data minimization literature as well as DM-adjacent methodologies whose link to DM was often overlooked. Our structured overview is designed to help practitioners and researchers effectively adopt and apply DM principles in ML, by helping them identify relevant techniques and understand underlying assumptions and trade-offs through a DM-centric lens.
comment: Accepted at IEEE Conference on Secure and Trustworthy Machine Learning (SaTML) 2026
♻ ☆ View Invariant Learning for Vision-Language Navigation in Continuous Environments
Vision-Language Navigation in Continuous Environments (VLNCE), where an agent follows instructions and moves freely to reach a destination, is a key research problem in embodied AI. However, most navigation policies are sensitive to viewpoint changes, i.e., variations in camera height and viewing angle that alter the agent's observation. In this paper, we introduce a generalized scenario, V2-VLNCE (VLNCE with Varied Viewpoints), and propose VIL (View Invariant Learning), a view-invariant post-training strategy that enhances the robustness of existing navigation policies to changes in camera viewpoint. VIL employs a contrastive learning framework to learn sparse and view-invariant features. Additionally, we introduce a teacher-student framework for the Waypoint Predictor Module, a core component of most VLNCE baselines, where a view-dependent teacher model distills knowledge into a view-invariant student model. We employ an end-to-end training paradigm to jointly optimize these components, thus eliminating the cost for individual module training. Empirical results show that our method outperforms state-of-the-art approaches on V2-VLNCE by 8-15% measured on Success Rate for two standard benchmark datasets R2R-CE and RxR-CE. Furthermore, we evaluate VIL under the standard VLNCE setting and find that, despite being trained for varied viewpoints, it often still improves performance. On the more challenging RxR-CE dataset, our method also achieved state-of-the-art performance across all metrics when compared to other map-free methods. This suggests that adding VIL does not diminish the standard viewpoint performance and can serve as a plug-and-play post-training method.
comment: This paper is accepted to RA-L 2026
♻ ☆ Still Competitive: Revisiting Recurrent Models for Irregular Time Series Prediction
Modeling irregularly sampled multivariate time series is a persistent challenge in domains like healthcare and sensor networks. While recent works have explored a variety of complex learning architectures to solve the prediction problems for irregularly sampled time series, it remains unclear what the true benefits of some of these architectures are, and whether clever modifications of simpler and more efficient RNN-based algorithms are still competitive, i.e. they are on par with or even superior to these methods. In this work, we propose and study GRUwE: Gated Recurrent Unit with Exponential basis functions, that builds upon RNN-based architectures for observations made at irregular times. GRUwE supports both regression-based and event-based predictions in continuous time. GRUwE works by maintaining a Markov state representation of the time series that updates with the arrival of irregular observations. The Markov state update relies on two reset mechanisms: (i) observation-triggered reset to account for the new observation, and (ii) time-triggered reset that relies on learnable exponential decays, to support the predictions in continuous time. Our empirical evaluations across several real-world benchmarks on next-observation and next-event prediction tasks demonstrate that GRUwE can indeed achieve competitive or superior performance compared to the recent state-of-the-art (SOTA) methods. Thanks to its simplicity, GRUwE offers compelling advantages: it is easy to implement, requires minimal hyper-parameter tuning efforts, and significantly reduces the computational overhead in the online deployment.
comment: Published in Transactions on Machine Learning Research, 2026
♻ ☆ Forget Forgetting: Continual Learning in a World of Abundant Memory
Continual learning (CL) has traditionally focused on minimizing exemplar memory, a constraint often misaligned with modern systems where GPU time, not storage, is the primary bottleneck. This paper challenges this paradigm by investigating a more realistic regime: one where memory is abundant enough to mitigate forgetting, but full retraining from scratch remains prohibitively expensive. In this practical "middle ground", we find that the core challenge shifts from stability to plasticity, as models become biased toward prior tasks and struggle to learn new ones. Conversely, improved stability allows simple replay baselines to outperform the state-of-the-art methods at a fraction of the GPU cost. To address this newly surfaced trade-off, we propose Weight Space Consolidation, a lightweight method that combines (1) rank-based parameter resets to restore plasticity with (2) weight averaging to enhance stability. Validated on both class-incremental learning with image classifiers and continual instruction tuning with large language models, our approach outperforms strong baselines while matching the low computational cost of replay, offering a scalable alternative to expensive full-retraining. These findings challenge long-standing CL assumptions and establish a new, cost-efficient baseline for real-world CL systems where exemplar memory is no longer the limiting factor.
comment: 26 pages, 11 figures
♻ ☆ Align and Adapt: Multimodal Multiview Human Activity Recognition under Arbitrary View Combinations
Multimodal multiview learning seeks to integrate information from diverse sources to enhance task performance. Existing approaches often struggle with flexible view configurations, including arbitrary view combinations, numbers of views, and heterogeneous modalities. Focusing on the context of human activity recognition, we propose AliAd, a model that combines multiview contrastive learning with a mixture-of-experts module to support arbitrary view availability during both training and inference. Instead of trying to reconstruct missing views, an adjusted center contrastive loss is used for self-supervised representation learning and view alignment, mitigating the impact of missing views on multiview fusion. This loss formulation allows for the integration of view weights to account for view quality. Additionally, it reduces computational complexity from $O(V^2)$ to $O(V)$, where $V$ is the number of views. To address residual discrepancies not captured by contrastive learning, we employ a mixture-of-experts module with a specialized load balancing strategy, tasked with adapting to arbitrary view combinations. We highlight the geometric relationship among components in our model and how they combine well in the latent space. AliAd is validated on four datasets encompassing inertial and human pose modalities, with the number of views ranging from three to nine, demonstrating its performance and flexibility.
♻ ☆ Lossless Vocabulary Reduction for Auto-Regressive Language Models ICLR 2026
Tokenization -- the process of decomposing a given text into a sequence of subwords called tokens -- is one of the key components in the development of language models. Particularly, auto-regressive language models generate texts token by token, i.e., by predicting the next-token distribution given the previous ones, and thus tokenization directly affects their efficiency in text generation. Since each language model has their own vocabulary as a set of possible tokens, they struggle to cooperate with each other at the level of next-token distributions such as model ensemble. In this paper, we establish a theoretical framework of lossless vocabulary reduction, which efficiently converts a given auto-regressive language model into the one with an arbitrarily small vocabulary without any loss in accuracy. This framework allows language models with different tokenization to cooperate with each other efficiently by reduction to their maximal common vocabulary. Specifically, we empirically demonstrate its applicability to model ensemble with different tokenization.
comment: The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ ReaCritic: Reasoning Transformer-based DRL Critic-model Scaling For Wireless Networks
Heterogeneous Networks (HetNets) pose critical challenges for intelligent management due to the diverse user requirements and time-varying wireless conditions. These factors introduce significant decision complexity, which limits the adaptability of existing Deep Reinforcement Learning (DRL) methods. In many DRL algorithms, especially those involving value-based or actor-critic structures, the critic component plays a key role in guiding policy learning by estimating value functions. However, conventional critic models often use shallow architectures that map observations directly to scalar estimates, limiting their ability to handle multi-task complexity. In contrast, recent progress in inference-time scaling of Large Language Models (LLMs) has shown that generating intermediate reasoning steps can significantly improve decision quality. Motivated by this, we propose ReaCritic, a reasoning transformer-based critic-model scaling scheme that brings reasoning-like ability into DRL. ReaCritic performs horizontal reasoning over parallel state-action inputs and vertical reasoning through deep transformer stacks. It is compatible with a broad range of value-based and actor-critic DRL algorithms and enhances generalization in dynamic wireless environments. Extensive experiments demonstrate that ReaCritic improves convergence speed and final performance across various HetNet settings and standard OpenAI Gym control tasks. The code of ReaCritic is available at https://github.com/NICE-HKU/ReaCritic.
♻ ☆ Adaptive Rank Allocation for Federated Parameter-Efficient Fine-Tuning of Language Models
Pre-trained Language Models (PLMs) have demonstrated their superiority and versatility in modern Natural Language Processing (NLP), effectively adapting to various downstream tasks through further fine-tuning. Federated Parameter-Efficient Fine-Tuning (FedPEFT) has emerged as a promising solution to address privacy and efficiency challenges in distributed training for PLMs on resource-constrained local devices. However, our measurements reveal two key limitations of FedPEFT: heterogeneous data across devices exacerbates performance degradation of low-rank adaptation, and a fixed parameter configuration results in communication inefficiency. To overcome these limitations, we propose FedARA, a novel adaptive rank allocation framework for federated parameter-efficient fine-tuning of language models. Specifically, FedARA employs truncated Singular Value Decomposition (SVD) adaptation to enhance similar feature representation across clients, significantly mitigating the adverse effects of data heterogeneity. Subsequently, it utilizes dynamic rank allocation to progressively identify critical ranks, effectively improving communication efficiency. Lastly, it leverages rank-based module pruning to automatically remove inactive modules, steadily reducing local computational cost and memory usage in each federated learning round. Extensive experiments show that FedARA consistently outperforms baselines by an average of 6.95% to 8.49% across various datasets and models under heterogeneous data while significantly improving communication efficiency by 2.40$ \times$. Moreover, experiments on various edge devices demonstrate substantial decreases in total training time and energy consumption by up to 48.90% and 46.95%, respectively.
♻ ☆ Learning Degenerate Manifolds of Frustrated Magnets with Boltzmann Machines
We show that Restricted Boltzmann Machines (RBMs) provide a flexible generative framework for modeling spin configurations in disordered yet strongly correlated phases of frustrated magnets. As a benchmark, we first demonstrate that an RBM can learn the zero-temperature ground-state manifold of the one-dimensional ANNNI model at its multiphase point, accurately reproducing its characteristic oscillatory and exponentially decaying correlations. We then apply RBMs to kagome spin ice and show that they successfully learn the local ice rules and short-range correlations of the extensively degenerate ice-I manifold. Correlation functions computed from RBM-generated configurations closely match those from direct Monte Carlo simulations. For the partially ordered ice-II phase -- featuring long-range charge order and broken time-reversal symmetry -- accurate modeling requires RBMs with uniform-sign bias fields, mirroring the underlying symmetry breaking. These results highlight the utility of RBMs as generative models for learning constrained and highly frustrated magnetic states.
comment: 13 pages, 10 figures
♻ ☆ SNAP-UQ: Self-supervised Next-Activation Prediction for Single-Pass Uncertainty in TinyML ICLR 2026
Reliable uncertainty estimation is a key missing piece for on-device monitoring in TinyML: microcontrollers must detect failures, distribution shift, or accuracy drops under strict flash/latency budgets, yet common uncertainty approaches (deep ensembles, MC dropout, early exits, temporal buffering) typically require multiple passes, extra branches, or state that is impractical on milliwatt hardware. This paper proposes a novel and practical method, SNAP-UQ, for single-pass, label-free uncertainty estimation based on depth-wise next-activation prediction. SNAP-UQ taps a small set of backbone layers and uses tiny int8 heads to predict the mean and scale of the next activation from a low-rank projection of the previous one; the resulting standardized prediction error forms a depth-wise surprisal signal that is aggregated and mapped through a lightweight monotone calibrator into an actionable uncertainty score. The design introduces no temporal buffers or auxiliary exits and preserves state-free inference, while increasing deployment footprint by only a few tens of kilobytes. Across vision and audio backbones, SNAP-UQ reduces flash and latency relative to early-exit and deep-ensemble baselines (typically $\sim$40--60% smaller and $\sim$25--35% faster), with several competing methods at similar accuracy often exceeding MCU memory limits. On corrupted streams, it improves accuracy-drop event detection by multiple AUPRC points and maintains strong failure detection (AUROC $\approx 0.9$) in a single forward pass. By grounding uncertainty in layer-to-layer dynamics rather than solely in output confidence, SNAP-UQ offers a novel, resource-efficient basis for robust TinyML monitoring. Our code is available at: https://github.com/Ism-ail11/SNAP-UQ
comment: Published as a conference paper at ICLR 2026
♻ ☆ Safe But Not Sorry: Reducing Over-Conservatism in Safety Critics via Uncertainty-Aware Modulation
Ensuring the safe exploration of reinforcement learning (RL) agents is critical for deployment in real-world systems. Yet existing approaches struggle to strike the right balance: methods that tightly enforce safety often cripple task performance, while those that prioritize reward leave safety constraints frequently violated, producing diffuse cost landscapes that flatten gradients and stall policy improvement. We introduce the Uncertain Safety Critic (USC), a novel approach that integrates uncertainty-aware modulation and refinement into critic training. By concentrating conservatism in uncertain and costly regions while preserving sharp gradients in safe areas, USC enables policies to achieve effective reward-safety trade-offs. Extensive experiments show that USC reduces safety violations by approximately 40% while maintaining competitive or higher rewards, and reduces the error between predicted and true cost gradients by approximately 83%, breaking the prevailing trade-off between safety and performance and paving the way for scalable safe RL.
comment: Accepted into AAMAS '26
♻ ☆ Benchmarking Stochastic Approximation Algorithms for Fairness-Constrained Training of Deep Neural Networks
The ability to train Deep Neural Networks (DNNs) with constraints is instrumental in improving the fairness of modern machine-learning models. Many algorithms have been analysed in recent years, and yet there is no standard, widely accepted method for the constrained training of DNNs. In this paper, we provide a challenging benchmark of real-world large-scale fairness-constrained learning tasks, built on top of the US Census (Folktables). We point out the theoretical challenges of such tasks and review the main approaches in stochastic approximation algorithms. Finally, we demonstrate the use of the benchmark by implementing and comparing three recently proposed, but as-of-yet unimplemented, algorithms both in terms of optimization performance, and fairness improvement. We release the code of the benchmark as a Python package at https://github.com/humancompatible/train.
♻ ☆ Q3R: Quadratic Reweighted Rank Regularizer for Effective Low-Rank Training
Parameter-efficient training based on low-rank optimization has become a highly successful tool for fine-tuning large deep learning models. However, these methods often fail for low-rank pre-training, where simultaneously maintaining low-rank weight structure and optimizing the task objective remains challenging. We propose the $\textit{Quadratic Reweighted Rank Regularizer}$ ($\texttt{Q3R}$), which leads to a novel low-rank-inducing training strategy inspired by the Iteratively Reweighted Least Squares (IRLS) framework. $\texttt{Q3R}$ is based on a quadratic regularizer term that majorizes a smoothed log-determinant rank surrogate. Unlike other low-rank training techniques, $\texttt{Q3R}$ can train weight matrices to prescribed low target ranks while achieving predictive performance comparable to dense models, with small computational overhead and full compatibility with existing architectures. For example, we demonstrate a $\texttt{Q3R}$-regularized ViT-Tiny experiment where truncating the model to $60\%$ and $80\%$ of its parameters results in only minor absolute accuracy drops of $1.3\%$ and $4\%$, respectively, on CIFAR-10. We confirm the efficacy of $\texttt{Q3R}$ on Transformers across both vision and language tasks, including low-rank fine-tuning.
♻ ☆ Logarithmic-time Schedules for Scaling Language Models with Momentum
In practice, the hyperparameters $(β_1, β_2)$ and weight-decay $λ$ in AdamW are typically kept at fixed values. Is there any reason to do otherwise? We show that for large-scale language model training, the answer is yes: by exploiting the power-law structure of language data, one can design time-varying schedules for $(β_1, β_2, λ)$ that deliver substantial performance gains. We study logarithmic-time scheduling, in which the optimizer's gradient memory horizon grows with training time. Although naive variants of this are unstable, we show that suitable damping mechanisms restore stability while preserving the benefits of longer memory. Based on this, we present ADANA, an AdamW-like optimizer that couples log-time schedules with explicit damping to balance stability and performance. We empirically evaluate ADANA across transformer scalings (45M to 2.6B parameters), comparing against AdamW, Muon, and AdEMAMix. When properly tuned, ADANA achieves up to 40% compute efficiency relative to a tuned AdamW, with gains that persist--and even improve--as model scale increases. We further show that similar benefits arise when applying logarithmic-time scheduling to AdEMAMix, and that logarithmic-time weight-decay alone can yield significant improvements. Finally, we present variants of ADANA that mitigate potential failure modes and improve robustness.
♻ ☆ Channel Dependence, Limited Lookback Windows, and the Simplicity of Datasets: How Biased is Time Series Forecasting?
In Long-term Time Series Forecasting (LTSF), the lookback window is a critical hyperparameter often set arbitrarily, undermining the validity of model evaluations. We argue that the lookback window must be tuned on a per-task basis to ensure fair comparisons. Our empirical results show that failing to do so can invert performance rankings, particularly when comparing univariate and multivariate methods. Experiments on standard benchmarks reposition Channel-Independent (CI) models, such as PatchTST, as state-of-the-art methods. However, we reveal this superior performance is largely an artifact of weak inter-channel correlations and simplicity of patterns within these specific datasets. Using Granger causality analysis and ODE datasets (with implicit channel correlations), we demonstrate that the true strength of multivariate Channel-Dependent (CD) models emerges on datasets with strong, inherent cross-channel dependencies, where they significantly outperform CI models. We conclude with four key recommendations for improving TSF research: (i) consider the lookback window as a key hyperparameter to tune, (ii) for standard datasets, examining CI architectures is advantageous, (iii) leverage statistical analysis of datasets to guide the choice between CI and CD architectures, and (iv) prefer CD models in scenarios with limited data.
♻ ☆ Shrinking the Variance: Shrinkage Baselines for Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful paradigm for post-training large reasoning models (LRMs) using policy-gradient methods such as GRPO. To stabilize training, these methods typically center trajectory rewards by subtracting the empirical mean reward for each prompt. Statistically, this centering acts as a control variate (baseline), reducing the variance of the policy-gradient estimator. In practice, the mean reward is estimated using per-prompt empirical averages computed from the generations for each prompt in a batch. Motivated by Stein's paradox, we propose shrinkage estimators that combine per-prompt and across-prompt means to improve per-prompt mean estimation accuracy, especially in the low-generation regime typical of RLVR. Theoretically, we construct a shrinkage-based baseline that provably yields lower-variance policy-gradient estimators across algorithms. Our baseline is a drop-in replacement for standard per-prompt mean baselines and requires no additional hyperparameters or computation. Empirically, shrinkage baselines consistently outperform empirical-mean baselines, producing lower-variance gradient updates and improved training stability.
comment: Preprint. Under Review
♻ ☆ KANELÉ: Kolmogorov-Arnold Networks for Efficient LUT-based Evaluation
Low-latency, resource-efficient neural network inference on FPGAs is essential for applications demanding real-time capability and low power. Lookup table (LUT)-based neural networks are a common solution, combining strong representational power with efficient FPGA implementation. In this work, we introduce KANELÉ, a framework that exploits the unique properties of Kolmogorov-Arnold Networks (KANs) for FPGA deployment. Unlike traditional multilayer perceptrons (MLPs), KANs employ learnable one-dimensional splines with fixed domains as edge activations, a structure naturally suited to discretization and efficient LUT mapping. We present the first systematic design flow for implementing KANs on FPGAs, co-optimizing training with quantization and pruning to enable compact, high-throughput, and low-latency KAN architectures. Our results demonstrate up to a 2700x speedup and orders of magnitude resource savings compared to prior KAN-on-FPGA approaches. Moreover, KANELÉ matches or surpasses other LUT-based architectures on widely used benchmarks, particularly for tasks involving symbolic or physical formulas, while balancing resource usage across FPGA hardware. Finally, we showcase the versatility of the framework by extending it to real-time, power-efficient control systems.
comment: International Symposium on Field-Programmable Gate Arrays 2026 (ISFPGA'2026)
♻ ☆ Boundary Point Jailbreaking of Black-Box LLMs
Frontier LLMs are safeguarded against attempts to extract harmful information via adversarial prompts known as "jailbreaks". Recently, defenders have developed classifier-based systems that have survived thousands of hours of human red teaming. We introduce Boundary Point Jailbreaking (BPJ), a new class of automated jailbreak attacks that evade the strongest industry-deployed safeguards. Unlike previous attacks that rely on white/grey-box assumptions (such as classifier scores or gradients) or libraries of existing jailbreaks, BPJ is fully black-box and uses only a single bit of information per query: whether or not the classifier flags the interaction. To achieve this, BPJ addresses the core difficulty in optimising attacks against robust real-world defences: evaluating whether a proposed modification to an attack is an improvement. Instead of directly trying to learn an attack for a target harmful string, BPJ converts the string into a curriculum of intermediate attack targets and then actively selects evaluation points that best detect small changes in attack strength ("boundary points"). We believe BPJ is the first fully automated attack algorithm that succeeds in developing universal jailbreaks against Constitutional Classifiers, as well as the first automated attack algorithm that succeeds against GPT-5's input classifier without relying on human attack seeds. BPJ is difficult to defend against in individual interactions but incurs many flags during optimisation, suggesting that effective defence requires supplementing single-interaction methods with batch-level monitoring.
♻ ☆ Weighted Birkhoff Averages Accelerate Data-Driven Methods
Many data-driven algorithms in dynamical systems rely on ergodic averages that converge painfully slowly. One simple idea changes this: taper the ends. Weighted Birkhoff averages can converge much faster (sometimes superpolynomially, even exponentially) and can be incorporated seamlessly into existing methods. We demonstrate this with five weighted algorithms: weighted Dynamic Mode Decomposition (wtDMD), weighted Extended DMD (wtEDMD), weighted Sparse Identification of Nonlinear Dynamics (wtSINDy), weighted spectral measure estimation, and weighted diffusion forecasting. Across examples ranging from fluid flows to El Niño data, the message is clear: weighting costs nothing, is easy to implement, and often delivers markedly better results from the same data.
♻ ☆ FedEFC: Federated Learning Using Enhanced Forward Correction Against Noisy Labels
Federated Learning (FL) is a powerful framework for privacy-preserving distributed learning. It enables multiple clients to collaboratively train a global model without sharing raw data. However, handling noisy labels in FL remains a major challenge due to heterogeneous data distributions and communication constraints, which can severely degrade model performance. To address this issue, we propose FedEFC, a novel method designed to tackle the impact of noisy labels in FL. FedEFC mitigates this issue through two key techniques: (1) prestopping, which prevents overfitting to mislabeled data by dynamically halting training at an optimal point, and (2) loss correction, which adjusts model updates to account for label noise. In particular, we develop an effective loss correction tailored to the unique challenges of FL, including data heterogeneity and decentralized training. Furthermore, we provide a theoretical analysis, leveraging the composite proper loss property, to demonstrate that the FL objective function under noisy label distributions can be aligned with the clean label distribution. Extensive experimental results validate the effectiveness of our approach, showing that it consistently outperforms existing FL techniques in mitigating the impact of noisy labels, particularly under heterogeneous data settings (e.g., achieving up to 41.64% relative performance improvement over the existing loss correction method).
comment: 9 pages, 3 figures, revised version
♻ ☆ Pinet: Optimizing hard-constrained neural networks with orthogonal projection layers ICLR 2026
We introduce an output layer for neural networks that ensures satisfaction of convex constraints. Our approach, $Π$net, leverages operator splitting for rapid and reliable projections in the forward pass, and the implicit function theorem for backpropagation. We deploy $Π$net as a feasible-by-design optimization proxy for parametric constrained optimization problems and obtain modest-accuracy solutions faster than traditional solvers when solving a single problem, and significantly faster for a batch of problems. We surpass state-of-the-art learning approaches by orders of magnitude in terms of training time, solution quality, and robustness to hyperparameter tuning, while maintaining similar inference times. Finally, we tackle multi-vehicle motion planning with non-convex trajectory preferences and provide $Π$net as a GPU-ready package implemented in JAX.
comment: Accepted for presentation at, and publication in the proceedings of, the Fourteenth International Conference on Learning Representations (ICLR 2026, oral)
♻ ☆ Language and Experience: A Computational Model of Social Learning in Complex Tasks
The ability to combine linguistic guidance from others with direct experience is central to human development, enabling safe and rapid learning in new environments. How do people integrate these two sources of knowledge, and how might AI systems? We present a computational framework that models social learning as joint probabilistic inference over structured, executable world models given sensorimotor and linguistic data. We make this possible by turning a pretrained language model into a probabilistic model of how humans share advice conditioned on their beliefs, allowing our agents both to generate advice for others and to interpret linguistic input as evidence during Bayesian inference. Using behavioral experiments and simulations across 10 video games, we show how linguistic guidance can shape exploration and accelerate learning by reducing risky interactions and speeding up key discoveries in both humans and models. We further explore how knowledge can accumulate across generations through iterated learning experiments and demonstrate successful knowledge transfer between humans and models -- revealing how structured, language-compatible representations might enable human-machine collaborative learning.
comment: Code: github.com/ccolas/language_and_experience Demo: cedriccolas.com/demos/language_and_experience
♻ ☆ Autoassociative Learning of Structural Representations for Modeling and Classification in Medical Imaging
Deep learning architectures based on convolutional neural networks tend to rely on continuous, smooth features. While this characteristics provides significant robustness and proves useful in many real-world tasks, it is strikingly incompatible with the physical characteristic of the world, which, at the scale in which humans operate, comprises crisp objects, typically representing well-defined categories. This study proposes a class of neurosymbolic systems that learn by reconstructing images in terms of visual primitives and are thus forced to form high-level, structural explanations of them. When applied to the task of diagnosing abnormalities in histological imaging, the method proved superior to a conventional deep learning architecture in terms of classification accuracy, while being more transparent.
comment: 15 pages, 9 figures
♻ ☆ Watch Out for the Lifespan: Evaluating Backdoor Attacks Against Federated Model Adaptation
Large models adaptation through Federated Learning (FL) addresses a wide range of use cases and is enabled by Parameter-Efficient Fine-Tuning techniques such as Low-Rank Adaptation (LoRA). However, this distributed learning paradigm faces several security threats, particularly to its integrity, such as backdoor attacks that aim to inject malicious behavior during the local training steps of certain clients. We present the first analysis of the influence of LoRA on state-of-the-art backdoor attacks targeting model adaptation in FL. Specifically, we focus on backdoor lifespan, a critical characteristic in FL, that can vary depending on the attack scenario and the attacker's ability to effectively inject the backdoor. A key finding in our experiments is that for an optimally injected backdoor, the backdoor persistence after the attack is longer when the LoRA's rank is lower. Importantly, our work highlights evaluation issues of backdoor attacks against FL and contributes to the development of more robust and fair evaluations of backdoor attacks, enhancing the reliability of risk assessments for critical FL systems. Our code is publicly available.
comment: Accepted at FPS 2025
♻ ☆ PoeTone: A Framework for Constrained Generation of Structured Chinese Songci with LLMs
This paper presents a systematic investigation into the constrained generation capabilities of large language models (LLMs) in producing Songci, a classical Chinese poetry form characterized by strict structural, tonal, and rhyme constraints defined by Cipai templates. We first develop a comprehensive, multi-faceted evaluation framework that includes: (i) a formal conformity score, (ii) automated quality assessment using LLMs, (iii) human evaluation, and (iv) classification-based probing tasks. Using this framework, we evaluate the generative performance of 18 LLMs, including 3 proprietary models and 15 open-source models across 4 families, under five prompting strategies: zero-shot, one-shot, completion-based, instruction-based, and chain-of-thought. Finally, we propose a Generate-Critic architecture in which the evaluation framework functions as an automated critic. Leveraging the critic's feedback as a scoring function for best-of-N selection, we fine-tune 3 lightweight open-source LLMs via supervised fine-tuning (SFT), resulting in improvements of up to 5.88% in formal conformity. Our findings offer new insights into the generative strengths and limitations of LLMs in producing culturally significant and formally constrained literary texts.
♻ ☆ FedMerge: Federated Personalization via Model Merging
One global model in federated learning (FL) might not be sufficient to serve many clients with non-IID tasks and distributions. While there has been advances in FL to train multiple global models for better personalization, they only provide limited choices to clients so local finetuning is still indispensable. In this paper, we propose a novel ``FedMerge'' approach that can create a personalized model per client by simply merging multiple global models with automatically optimized and customized weights. In FedMerge, a few global models can serve many non-IID clients, even without further local finetuning. We formulate this problem as a joint optimization of global models and the merging weights for each client. Unlike existing FL approaches where the server broadcasts one or multiple global models to all clients, the server only needs to send a customized, merged model to each client. Moreover, instead of periodically interrupting the local training and re-initializing it to a global model, the merged model aligns better with each client's task and data distribution, smoothening the local-global gap between consecutive rounds caused by client drift. We evaluate FedMerge on three different non-IID settings applied to different domains with diverse tasks and data types, in which FedMerge consistently outperforms existing FL approaches, including clustering-based and mixture-of-experts (MoE) based methods.
♻ ☆ Strategic Hiring under Algorithmic Monoculture
We study the impact of strategic behavior in labor markets characterized by algorithmic monoculture, where firms compete for a shared pool of applicants using a common algorithmic evaluation. In this setting, "naive" hiring strategies lead to severe congestion, as firms collectively target the same high-scoring candidates. We model this competition as a game with capacity-constrained firms and fully characterize the set of Nash equilibria. We demonstrate that equilibrium strategies, which naturally diversify firms' interview targets, significantly outperform naive selection, increasing social welfare for both firms and applicants. Specifically, the Price of Naive Selection (welfare gain from strategy) grows linearly with the number of firms, while the Price of Anarchy (efficiency loss from decentralization) approaches 1, implying that the decentralized equilibrium is nearly socially optimal. Finally, we analyze convergence, and we show that a simple sequential best-response process converges to the desired equilibrium. However, we show that firms generally cannot infer the key input needed to compute best responses, namely congestion for specific candidates, from their own historical data alone. Consequently, to realize the welfare gains of strategic differentiation, algorithmic platforms must explicitly reveal congestion information to participating firms.
♻ ☆ Model-Agnostic Dynamic Feature Selection with Uncertainty Quantification
Dynamic feature selection (DFS) addresses budget constraints in decision-making by sequentially acquiring features for each instance, making it appealing for resource-limited scenarios. However, existing DFS methods require models specifically designed for the sequential acquisition setting, limiting compatibility with models already deployed in practice. Furthermore, they provide limited uncertainty quantification, undermining trust in high-stakes decisions. In this work, we show that DFS introduces new uncertainty sources compared to the static setting. We formalise how model adaptation to feature subsets induces epistemic uncertainty, how standard imputation strategies bias aleatoric uncertainty estimation, and why predictive confidence fails to discriminate between good and bad selection policies. We also propose a model-agnostic DFS framework compatible with pre-trained classifiers, including interpretable-by-design models, through efficient subset reparametrization strategies. Empirical evaluation on tabular and image datasets demonstrates competitive accuracy against state-of-the-art greedy and reinforcement learning-based DFS methods with both neural and rule-based classifiers. We further show that the identified uncertainty sources persist across most existing approaches, highlighting the need for uncertainty-aware DFS.
♻ ☆ Feature salience -- not task-informativeness -- drives machine learning model explanations
Explainable AI (XAI) promises to provide insight into machine learning models' decision processes, where one goal is to identify failures such as shortcut learning. This promise relies on the field's assumption that input features marked as important by an XAI must contain information about the target variable. However, it is unclear whether informativeness is indeed the main driver of importance attribution in practice, or if other data properties such as statistical suppression, novelty at test-time, or high feature salience substantially contribute. To clarify this, we trained deep learning models on three variants of a binary image classification task, in which translucent watermarks are either absent, act as class-dependent confounds, or represent class-independent noise. Results for five popular attribution methods show substantially elevated relative importance in watermarked areas (RIW) for all models regardless of the training setting ($R^2 \geq .45$). By contrast, whether the presence of watermarks is class-dependent or not only has a marginal effect on RIW ($R^2 \leq .03$), despite a clear impact impact on model performance and generalisation ability. XAI methods show similar behaviour to model-agnostic edge detection filters and attribute substantially less importance to watermarks when bright image intensities are encoded by smaller instead of larger feature values. These results indicate that importance attribution is most strongly driven by the salience of image structures at test time rather than statistical associations learned by machine learning models. Previous studies demonstrating successful XAI application should be reevaluated with respect to a possibly spurious concurrency of feature salience and informativeness, and workflows using feature attribution methods as building blocks should be scrutinised.
♻ ☆ When Models Examine Themselves: Vocabulary-Activation Correspondence in Self-Referential Processing
Large language models produce rich introspective language when prompted for self-examination, but whether this language reflects internal computation or sophisticated confabulation has remained unclear. We show that self-referential vocabulary tracks concurrent activation dynamics, and that this correspondence is specific to self-referential processing. We introduce the Pull Methodology, a protocol that elicits extended self-examination through format engineering, and use it to identify a direction in activation space that distinguishes self-referential from descriptive processing in Llama 3.1. The direction is orthogonal to the known refusal direction, localised at 6.25% of model depth, and causally influences introspective output when used for steering. When models produce "loop" vocabulary, their activations exhibit higher autocorrelation (r = 0.44, p = 0.002); when they produce "shimmer" vocabulary under steering, activation variability increases (r = 0.36, p = 0.002). Critically, the same vocabulary in non-self-referential contexts shows no activation correspondence despite nine-fold higher frequency. Qwen 2.5-32B, with no shared training, independently develops different introspective vocabulary tracking different activation metrics, all absent in descriptive controls. The findings indicate that self-report in transformer models can, under appropriate conditions, reliably track internal computational states.
comment: Code and data: https://doi.org/10.5281/zenodo.18567446 Repro: https://github.com/patternmatcher/TRACE-REPRO
♻ ☆ Transformers for Tabular Data: A Training Perspective of Self-Attention via Optimal Transport
This thesis examines self-attention training through the lens of Optimal Transport (OT) and develops an OT-based alternative for tabular classification. The study tracks intermediate projections of the self-attention layer during training and evaluates their evolution using discrete OT metrics, including Wasserstein distance, Monge gap, optimality, and efficiency. Experiments are conducted on classification tasks with two and three classes, as well as on a biomedical dataset. Results indicate that the final self-attention mapping often approximates the OT optimal coupling, yet the training trajectory remains inefficient. Pretraining the MLP section on synthetic data partially improves convergence but is sensitive to their initialization. To address these limitations, an OT-based algorithm is introduced: it generates class-specific dummy Gaussian distributions, computes an OT alignment with the data, and trains an MLP to generalize this mapping. The method achieves accuracy comparable to Transformers while reducing computational cost and scaling more efficiently under standardized inputs, though its performance depends on careful dummy-geometry design. All experiments and implementations are conducted in R.
♻ ☆ Inverting Non-Injective Functions with Twin Neural Network Regression
Non-injective functions are not globally invertible. However, they can often be restricted to locally injective subdomains where the inversion is well-defined. In many settings a preferred solution can be selected even when multiple valid preimages exist or input and output dimensions differ. This manuscript describes a natural reformulation of the inverse learning problem for non-injective functions as a collection of locally invertible problems. More precisely, Twin Neural Network Regression is trained to predict local inverse corrections around known anchor points. By anchoring predictions to points within the same locally invertible region, the method consistently selects a valid branch of the inverse. In contrast to current probabilistic state-of-the art inversion methods, Inverse Twin Neural Network Regression is a deterministic framework for resolving multi-valued inverse mappings. I demonstrate the approach on problems that are defined by mathematical equations or by data, including multi-solution toy problems and robot arm inverse kinematics.
♻ ☆ Vision and Language: Novel Representations and Artificial intelligence for Driving Scene Safety Assessment and Autonomous Vehicle Planning
Vision-language models (VLMs) have recently emerged as powerful representation learning systems that align visual observations with natural language concepts, offering new opportunities for semantic reasoning in safety-critical autonomous driving. This paper investigates how vision-language representations support driving scene safety assessment and decision-making when integrated into perception, prediction, and planning pipelines. We study three complementary system-level use cases. First, we introduce a lightweight, category-agnostic hazard screening approach leveraging CLIP-based image-text similarity to produce a low-latency semantic hazard signal. This enables robust detection of diverse and out-of-distribution road hazards without explicit object detection or visual question answering. Second, we examine the integration of scene-level vision-language embeddings into a transformer-based trajectory planning framework using the Waymo Open Dataset. Our results show that naively conditioning planners on global embeddings does not improve trajectory accuracy, highlighting the importance of representation-task alignment and motivating the development of task-informed extraction methods for safety-critical planning. Third, we investigate natural language as an explicit behavioral constraint on motion planning using the doScenes dataset. In this setting, passenger-style instructions grounded in visual scene elements suppress rare but severe planning failures and improve safety-aligned behavior in ambiguous scenarios. Taken together, these findings demonstrate that vision-language representations hold significant promise for autonomous driving safety when used to express semantic risk, intent, and behavioral constraints. Realizing this potential is fundamentally an engineering problem requiring careful system design and structured grounding rather than direct feature injection.
♻ ☆ Adaptive Sampling for Hydrodynamic Stability
An adaptive sampling approach for efficient detection of bifurcation boundaries in parametrized fluid flow problems is presented herein. The study extends the machine-learning approach of Silvester~(J. Comput. Phys., 553 (2026), 114743), where a classifier network was trained on preselected simulation data to identify bifurcated and nonbifurcated flow regimes. In contrast, the proposed methodology introduces adaptivity through a flow-based deep generative model that automatically refines the sampling of the parameter space. The strategy has two components: a classifier network maps the flow parameters to a bifurcation probability, and a probability density estimation technique (KRnet) for the generation of new samples at each adaptive step. The classifier output provides a probabilistic measure of flow stability, and the Shannon entropy of these predictions is employed as an uncertainty indicator. KRnet is trained to approximate a probability density function that concentrates sampling in regions of high entropy, thereby directing computational effort towards the evolving bifurcation boundary. This coupling between classification and generative modeling establishes a feedback-driven adaptive learning process analogous to error-indicator based refinement in contemporary partial differential equation solution strategies. Starting from a uniform parameter distribution, the new approach achieves accurate bifurcation boundary identification with significantly fewer Navier--Stokes simulations, providing a scalable foundation for high-dimensional stability analysis.
♻ ☆ Evaluating Language Model Agency through Negotiations ICLR 2024
We introduce an approach to evaluate language model (LM) agency using negotiation games. This approach better reflects real-world use cases and addresses some of the shortcomings of alternative LM benchmarks. Negotiation games enable us to study multi-turn, and cross-model interactions, modulate complexity, and side-step accidental evaluation data leakage. We use our approach to test six widely used and publicly accessible LMs, evaluating performance and alignment in both self-play and cross-play settings. Noteworthy findings include: (i) only closed-source models tested here were able to complete these tasks; (ii) cooperative bargaining games proved to be most challenging to the models; and (iii) even the most powerful models sometimes "lose" to weaker opponents
comment: Accepted to ICLR 2024, code and link to project data are made available at https://github.com/epfl-dlab/LAMEN
♻ ☆ Weight transport through spike timing for robust local gradients
In both machine learning and in computational neuroscience, plasticity in functional neural networks is frequently expressed as gradient descent on a cost. Often, this imposes symmetry constraints that are difficult to reconcile with local computation, as is required for biological networks or neuromorphic hardware. For example, wake-sleep learning in networks characterized by Boltzmann distributions assumes symmetric connectivity. Similarly, the error backpropagation algorithm is notoriously plagued by the weight transport problem between the representation and the error stream. Existing solutions such as feedback alignment circumvent the problem by deferring to the robustness of these algorithms to weight asymmetry. However, they scale poorly with network size and depth. We introduce spike-based alignment learning (SAL), a complementary learning rule for spiking neural networks, which uses spike timing statistics to extract and correct the asymmetry between effective reciprocal connections. Apart from being spike-based and fully local, our proposed mechanism takes advantage of noise. Based on an interplay between Hebbian and anti-Hebbian plasticity, synapses can thereby recover the true local gradient. This also alleviates discrepancies that arise from neuron and synapse variability -- an omnipresent property of physical neuronal networks. We demonstrate the efficacy of our mechanism using different spiking network models. First, SAL can significantly improve convergence to the target distribution in probabilistic spiking networks versus Hebbian plasticity alone. Second, in neuronal hierarchies based on cortical microcircuits, SAL effectively aligns feedback weights to the forward pathway, thus allowing the backpropagation of correct feedback errors. Third, our approach enables competitive performance in deep networks using only local plasticity for weight transport.
comment: 27 pages, 14 figures. Updated with new experiments (deep neural networks, comparison to Kolen-Pollack and Dale's law) and an extended literature review
♻ ☆ Non-Asymptotic Analysis of (Sticky) Track-and-Stop
In pure exploration problems, a statistician sequentially collects information to answer a question about some stochastic and unknown environment. The probability of returning a wrong answer should not exceed a maximum risk parameter $δ$ and good algorithms make as few queries to the environment as possible. The Track-and-Stop algorithm is a pioneering method to solve these problems. Specifically, it is well-known that it enjoys asymptotic optimality sample complexity guarantees for $δ\to 0$ whenever the map from the environment to its correct answers is single-valued (e.g., best-arm identification with a unique optimal arm). The Sticky Track-and-Stop algorithm extends these results to settings where, for each environment, there might exist multiple correct answers (e.g., $ε$-optimal arm identification). Although both methods are optimal in the asymptotic regime, their non-asymptotic guarantees remain unknown. In this work, we fill this gap and provide non-asymptotic guarantees for both algorithms.
♻ ☆ SEISMO: Increasing Sample Efficiency in Molecular Optimization with a Trajectory-Aware LLM Agent
Optimizing the structure of molecules to achieve desired properties is a central bottleneck across the chemical sciences, particularly in the pharmaceutical industry where it underlies the discovery of new drugs. Since molecular property evaluation often relies on costly and rate-limited oracles, such as experimental assays, molecular optimization must be highly sample-efficient. To address this, we introduce SEISMO, an LLM agent that performs strictly online, inference-time molecular optimization, updating after every oracle call without the need for population-based or batched learning. SEISMO conditions each proposal on the full optimization trajectory, combining natural-language task descriptions with scalar scores and, when available, structured explanatory feedback. Across the Practical Molecular Optimization benchmark of 23 tasks, SEISMO achieves a 2-3 times higher area under the optimisation curve than prior methods, often reaching near-maximal task scores within 50 oracle calls. Our additional medicinal-chemistry tasks show that providing explanatory feedback further improves efficiency, demonstrating that leveraging domain knowledge and structured information is key to sample-efficient molecular optimization.
comment: Fabian P. Krüger and Andrea Hunklinger contributed equally to this work
♻ ☆ Data-Efficient Self-Supervised Algorithms for Fine-Grained Birdsong Analysis
Many bioacoustics, neuroscience, and linguistics research utilize birdsongs as proxy models to acquire knowledge in diverse areas. Developing models generally requires precisely annotated data at the level of syllables. Hence, automated and data-efficient methods that reduce annotation costs are in demand. This work presents a lightweight, yet performant neural network architecture for birdsong annotation called Residual-MLP-RNN. Then, it presents a robust three-stage training pipeline for developing reliable deep birdsong syllable detectors with minimal expert labor. The first stage is self-supervised learning from unlabeled data. Two of the most successful pretraining paradigms are explored, namely, masked prediction and online clustering. The second stage is supervised training with effective data augmentations to create a robust model for frame-level syllable detection. The third stage is semi-supervised post-training, which leverages the unlabeled data again. However, unlike the initial phase, this time it is aligned with the downstream task. The performance of this data-efficient approach is demonstrated for the complex song of the Canary in extreme label-scarcity scenarios. Canary has one of the most difficult songs to annotate, which implicitly validates the method for other birds. Finally, the potential of self-supervised embeddings is assessed for linear probing and unsupervised birdsong analysis.
♻ ☆ Stage-wise Dynamics of Classifier-Free Guidance in Diffusion Models ICLR26
Classifier-Free Guidance (CFG) is widely used to improve conditional fidelity in diffusion models, but its impact on sampling dynamics remains poorly understood. Prior studies, often restricted to unimodal conditional distributions or simplified cases, provide only a partial picture. We analyze CFG under multimodal conditionals and show that the sampling process unfolds in three successive stages. In the Direction Shift stage, guidance accelerates movement toward the weighted mean, introducing initialization bias and norm growth. In the Mode Separation stage, local dynamics remain largely neutral, but the inherited bias suppresses weaker modes, reducing global diversity. In the Concentration stage, guidance amplifies within-mode contraction, diminishing fine-grained variability. This unified view explains a widely observed phenomenon: stronger guidance improves semantic alignment but inevitably reduces diversity. Experiments support these predictions, showing that early strong guidance erodes global diversity, while late strong guidance suppresses fine-grained variation. Moreover, our theory naturally suggests a time-varying guidance schedule, and empirical results confirm that it consistently improves both quality and diversity.
comment: 24 pages, 10 figures, accepted by ICLR26
♻ ☆ GEPC: Group-Equivariant Posterior Consistency for Out-of-Distribution Detection in Diffusion Models
Diffusion models learn a time-indexed score field $\mathbf{s}_θ(\mathbf{x}_t,t)$ that often inherits approximate equivariances (flips, rotations, circular shifts) from in-distribution (ID) data and convolutional backbones. Most diffusion-based out-of-distribution (OOD) detectors exploit score magnitude or local geometry (energies, curvature, covariance spectra) and largely ignore equivariances. We introduce Group-Equivariant Posterior Consistency (GEPC), a training-free probe that measures how consistently the learned score transforms under a finite group $\mathcal{G}$, detecting equivariance breaking even when score magnitude remains unchanged. At the population level, we propose the ideal GEPC residual, which averages an equivariance-residual functional over $\mathcal{G}$, and we derive ID upper bounds and OOD lower bounds under mild assumptions. GEPC requires only score evaluations and produces interpretable equivariance-breaking maps. On OOD image benchmark datasets, we show that GEPC achieves competitive or improved AUROC compared to recent diffusion-based baselines while remaining computationally lightweight. On high-resolution synthetic aperture radar imagery where OOD corresponds to targets or anomalies in clutter, GEPC yields strong target-background separation and visually interpretable equivariance-breaking maps. Code is available at https://github.com/RouzAY/gepc-diffusion/.
comment: preprint
♻ ☆ Reinforcement Unlearning via Group Relative Policy Optimization ICLR 2026
During pretraining, LLMs inadvertently memorize sensitive or copyrighted data, posing significant compliance challenges under legal frameworks like the GDPR and the EU AI Act. Fulfilling these mandates demands techniques that can remove information from a deployed model without retraining from scratch. Existing unlearning approaches attempt to address this need, but often leak the very data they aim to erase, sacrifice fluency and robustness, or depend on costly external reward models. We introduce PURGE (Policy Unlearning through Relative Group Erasure), a novel method grounded in the Group Relative Policy Optimization framework that formulates unlearning as a verifiable problem. PURGE uses an intrinsic reward signal that penalizes any mention of forbidden concepts, allowing safe and consistent unlearning. Our approach achieves up to x46 lower token usage per target than state-of-the-art methods, while improving fluency by +5.48% and adversarial robustness by +12.02% over the base model. Extensive evaluation on the Real World Knowledge Unlearning (RWKU) benchmark shows that PURGE reaches 11% unlearning effectiveness while preserving 98% of original utility. PURGE shows that framing LLM unlearning as a verifiable task enables more reliable, efficient, and scalable forgetting, suggesting a promising new direction for unlearning research that combines theoretical guarantees, improved safety, and practical deployment efficiency.
comment: Accepted to ICLR 2026
♻ ☆ A Versatile Variational Quantum Kernel Framework for Non-Trivial Classification
Quantum kernel methods are a promising branch of quantum machine learning, yet their effectiveness on diverse, high-dimensional, real-world data remains unverified. Current research has largely been limited to low-dimensional or synthetic datasets, preventing a thorough evaluation of their potential. To address this gap, we developed an algorithmic framework for variational quantum kernels utilizing resource-efficient ansätze for complex classification tasks and introduced a parameter scaling technique to accelerate convergence. We conducted a comprehensive benchmark of this framework on eight challenging, real-world and high-dimensional datasets covering tabular, image, time series, and graph data. Our results show that the proposed quantum kernels demonstrate competitive classification accuracy compared to standard classical kernels in classical simulation, such as the radial basis function (RBF) kernel. This work demonstrates that properly designed quantum kernels can function as versatile, high-performance tools, laying a foundation for quantum-enhanced applications in real-world machine learning. Further research is needed to fully assess the practical performance of quantum methods.
♻ ☆ Universal Properties of Activation Sparsity in Modern Large Language Models ICLR 2026
Activation sparsity is an intriguing property of deep neural networks that has been extensively studied in ReLU-based models, due to its advantages for efficiency, robustness, and interpretability. However, methods relying on exact zero activations do not directly apply to modern Large Language Models (LLMs), leading to fragmented, model-specific strategies for LLM activation sparsity and a gap in its general understanding. In this work, we introduce a general framework for evaluating sparsity robustness in contemporary LLMs and conduct a systematic investigation of this phenomenon in their feedforward~(FFN) layers. Our results uncover universal properties of activation sparsity across diverse model families and scales. Importantly, we observe that the potential for effective activation sparsity grows with model size, highlighting its increasing relevance as models scale. Furthermore, we present the first study of activation sparsity in diffusion-based LLMs. Overall, our work provides a comprehensive perspective and practical guidance for harnessing activation sparsity in LLM design and acceleration.
comment: ICLR 2026, main track
♻ ☆ Beyond Reinforcement Learning: Fast and Scalable Quantum Circuit Synthesis
Quantum unitary synthesis addresses the problem of translating abstract quantum algorithms into sequences of hardware-executable quantum gates. Solving this task exactly is infeasible in general due to the exponential growth of the underlying combinatorial search space. Existing approaches suffer from misaligned optimization objectives, substantial training costs and limited generalization across different qubit counts. We mitigate these limitations by using supervised learning to approximate the minimum description length of residual unitaries and combining this estimate with stochastic beam search to identify near optimal gate sequences. Our method relies on a lightweight model with zero-shot generalization, substantially reducing training overhead compared to prior baselines. Across multiple benchmarks, we achieve faster wall-clock synthesis times while exceeding state-of-the-art methods in terms of success rate for complex circuits.
♻ ☆ Dark Energy Survey Year 3 results: Simulation-based $w$CDM inference from weak lensing and galaxy clustering maps with deep learning: Analysis design
Data-driven approaches using deep learning are emerging as powerful techniques to extract non-Gaussian information from cosmological large-scale structure. This work presents the first simulation-based inference (SBI) pipeline that combines weak lensing and galaxy clustering maps in a realistic Dark Energy Survey Year 3 (DES Y3) configuration and serves as preparation for a forthcoming analysis of the survey data. We develop a scalable forward model based on the CosmoGridV1 suite of N-body simulations to generate over one million self-consistent mock realizations of DES Y3 at the map level. Leveraging this large dataset, we train deep graph convolutional neural networks on the full survey footprint in spherical geometry to learn low-dimensional features that approximately maximize mutual information with target parameters. These learned compressions enable neural density estimation of the implicit likelihood via normalizing flows in a ten-dimensional parameter space spanning cosmological $w$CDM, intrinsic alignment, and linear galaxy bias parameters, while marginalizing over baryonic, photometric redshift, and shear bias nuisances. To ensure robustness, we extensively validate our inference pipeline using synthetic observations derived from both systematic contaminations in our forward model and independent Buzzard galaxy catalogs. Our forecasts yield significant improvements in cosmological parameter constraints, achieving $2-3\times$ higher figures of merit in the $Ω_m - S_8$ plane relative to our implementation of baseline two-point statistics and effectively breaking parameter degeneracies through probe combination. These results demonstrate the potential of SBI analyses powered by deep learning for upcoming Stage-IV wide-field imaging surveys.
comment: 39 pages, 14 figures
♻ ☆ Stochastic Parroting in Temporal Attention -- Regulating the Diagonal Sink
Spatio-temporal models analyze spatial structures and temporal dynamics, which makes them prone to information degeneration among space and time. Prior literature has demonstrated that over-squashing in causal attention or temporal convolutions creates a bias on the first tokens. To analyze whether such a bias is present in temporal attention mechanisms, we derive sensitivity bounds on the expected value of the Jacobian of a temporal attention layer. We theoretically show how off-diagonal attention scores depend on the sequence length, and that temporal attention matrices suffer a diagonal attention sink. We suggest regularization methods, and experimentally demonstrate their effectiveness.
comment: Accepted at ESANN 2026, Code: https://github.com/vicky-hnk/spatio-temp-parroting
♻ ☆ Zero-Shot Temporal Resolution Domain Adaptation for Spiking Neural Networks
Spiking Neural Networks (SNNs) are biologically-inspired deep neural networks that efficiently extract temporal information while offering promising gains in terms of energy efficiency and latency when deployed on neuromorphic devices. SNN parameters are sensitive to temporal resolution, leading to significant performance drops when the temporal resolution of target data during deployment is not the same as that of the source data used for training, especially when fine-tuning with the target data is not possible during deployment. To address this challenge, we propose three novel domain adaptation methods for adapting neuron parameters to account for the change in time resolution without re-training on target time resolution. The proposed methods are based on a mapping between neuron dynamics in SNNs and State Space Models (SSMs) and are applicable to general neuron models. We evaluate the proposed methods under spatio-temporal data tasks, namely the audio keyword spotting datasets SHD and MSWC, and the neuromorphic image NMINST dataset. Our methods provide an alternative to-and in most cases significantly outperform-the existing reference method that consists of scaling only the time constant. Notably, when the temporal resolution of the target data is double that of the source data, applying one of our proposed methods instead of the benchmark achieves classification accuracy of 89.5% instead of 53.0% on SHD, 93.6% instead of 38.8% on MSWC and 98.5% instead of 97.2% aon NMNIST. Moreover, our results show that high accuracy on high temporal resolution data can be obtained by time-efficient training on lower temporal resolution data.
♻ ☆ Out-of-Distribution Detection in Molecular Complexes via Diffusion Models for Irregular Graphs
Predictive machine learning models generally excel on in-distribution data, but their performance degrades on out-of-distribution (OOD) inputs. Reliable deployment therefore requires robust OOD detection, yet this is particularly challenging for irregular 3D graphs that combine continuous geometry with categorical identities and are unordered by construction. Here, we present a probabilistic OOD detection framework for complex 3D graph data built on a diffusion model that learns a density of the training distribution in a fully unsupervised manner. A key ingredient we introduce is a unified continuous diffusion over both 3D coordinates and discrete features: categorical identities are embedded in a continuous space and trained with cross-entropy, while the corresponding diffusion score is obtained analytically via posterior-mean interpolation from predicted class probabilities. This yields a single self-consistent probability-flow ODE (PF-ODE) that produces per-sample log-likelihoods, providing a principled typicality score for distribution shift. We validate the approach on protein-ligand complexes and construct strict OOD datasets by withholding entire protein families from training. PF-ODE likelihoods identify held-out families as OOD and correlate strongly with prediction errors of an independent binding-affinity model (GEMS), enabling a priori reliability estimates on new complexes. Beyond scalar likelihoods, we show that multi-scale PF-ODE trajectory statistics - including path tortuosity, flow stiffness, and vector-field instability - provide complementary OOD information. Modeling the joint distribution of these trajectory features yields a practical, high-sensitivity detector that improves separation over likelihood-only baselines, offering a label-free OOD quantification workflow for geometric deep learning.
♻ ☆ KnowIt: Deep Time Series Modeling and Interpretation
KnowIt (Knowledge discovery in time series data) is a flexible framework for building deep time series models and interpreting them. It is implemented as a Python toolkit, with source code and documentation available from https://must-deep-learning.github.io/KnowIt. It imposes minimal assumptions about task specifications and decouples the definition of dataset, deep neural network architecture, and interpretability technique through well defined interfaces. This ensures the ease of importing new datasets, custom architectures, and the definition of different interpretability paradigms while maintaining on-the-fly modeling and interpretation of different aspects of a user's own time series data. KnowIt aims to provide an environment where users can perform knowledge discovery on their own complex time series data through building powerful deep learning models and explaining their behavior. With ongoing development, collaboration and application our goal is to make this a platform to progress this underexplored field and produce a trusted tool for deep time series modeling.
♻ ☆ Large Language Models for Water Distribution Systems Modeling and Decision-Making
The integration of Large Language Models (LLMs) into engineering workflows presents new opportunities for making computational tools more accessible. Especially where such tools remain underutilized due to technical or expertise barriers, such as water distribution system (WDS) management. This study introduces LLM-EPANET, an agent-based framework that enables natural language interaction with EPANET, the benchmark WDS simulator. The framework combines retrieval-augmented generation and multi-agent orchestration to automatically translate user queries into executable code, run simulations, and return structured results. A curated set of 69 benchmark queries is introduced to evaluate performance across state-of-the-art LLMs. Results show that LLMs can effectively support a wide range of modeling tasks, achieving 56-81% accuracy overall, and over 90% for simpler queries. These findings highlight the potential of LLM-based modeling to democratize data-driven decision-making in the water sector through transparent, interactive AI interfaces. The framework code and benchmark queries are shared as an open resource: https://github.com/yinon-gold/LLMs-in-WDS-Modeling.
comment: Accepted to EWRI Congress 2025
♻ ☆ DiffusionBlocks: Block-wise Neural Network Training via Diffusion Interpretation ICLR 2026
End-to-end backpropagation requires storing activations throughout all layers, creating memory bottlenecks that limit model scalability. Existing block-wise training methods offer means to alleviate this problem, but they rely on ad-hoc local objectives and remain largely unexplored beyond classification tasks. We propose $\textit{DiffusionBlocks}$, a principled framework for transforming transformer-based networks into genuinely independent trainable blocks that maintain competitive performance with end-to-end training. Our key insight leverages the fact that residual connections naturally correspond to updates in a dynamical system. With minimal modifications to this system, we can convert the updates to those of a denoising process, where each block can be learned independently by leveraging the score matching objective. This independence enables training with gradients for only one block at a time, thereby reducing memory requirements in proportion to the number of blocks. Our experiments on a range of transformer architectures (vision, diffusion, autoregressive, recurrent-depth, and masked diffusion) demonstrate that DiffusionBlocks training matches the performance of end-to-end training while enabling scalable block-wise training on practical tasks beyond small-scale classification. DiffusionBlocks provides a theoretically grounded approach that successfully scales to modern generative tasks across diverse architectures. Code is available at https://github.com/SakanaAI/DiffusionBlocks .
comment: To appear at the 14th International Conference on Learning Representations (ICLR 2026)
♻ ☆ Chain of Thought in Order: Discovering Learning-Friendly Orders for Arithmetic
The chain of thought, i.e., step-by-step reasoning, is one of the fundamental mechanisms of Transformers. While the design of intermediate reasoning steps has been extensively studied and shown to critically influence performance on mathematical, multi-step reasoning tasks, the ordering of these steps has received little attention, despite its significant effect on the difficulty of reasoning. This study addresses a novel task of unraveling the chain of thought -- reordering decoder input tokens into a learning-friendly sequence for Transformers, for learning arithmetic tasks. The proposed pipeline first trains a Transformer on a mixture of target sequences arranged in different orders and then identifies benign orders as those with fast loss drops in the early stage. As the search space grows factorially in sequence length, we propose a two-stage hierarchical approach for inter- and intra-block reordering. Experiments on seven order-sensitive arithmetic tasks show that our method identifies a learning-friendly order out of a few billion candidates. Notably, it recovered the reverse-digit order reported in prior studies for the multiplication task.
comment: 22 pages, 11 figures
♻ ☆ Transformers can do Bayesian Clustering
Bayesian clustering accounts for uncertainty but is computationally demanding at scale. Furthermore, real-world datasets often contain missing values, and simple imputation ignores the associated uncertainty, resulting in suboptimal results. We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fitted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior, Cluster-PFN learns to estimate the posterior distribution over both the number of clusters and the cluster assignments. Our method estimates the number of clusters more accurately than handcrafted model selection procedures such as AIC, BIC and Variational Inference (VI), and achieves clustering quality competitive with VI while being orders of magnitude faster. Cluster-PFN can be trained on complex priors that include missing data, outperforming imputation-based baselines on real-world genomic datasets, at high missingness. These results show that the Cluster-PFN can provide scalable and flexible Bayesian clustering.
♻ ☆ Weight space Detection of Backdoors in LoRA Adapters
LoRA adapters let users fine-tune large language models (LLMs) efficiently. However, LoRA adapters are shared through open repositories like Hugging Face Hub \citep{huggingface_hub_docs}, making them vulnerable to backdoor attacks. Current detection methods require running the model with test input data -- making them impractical for screening thousands of adapters where the trigger for backdoor behavior is unknown. We detect poisoned adapters by analyzing their weight matrices directly, without running the model -- making our method data-agnostic. Our method extracts simple statistics -- how concentrated the singular values are, their entropy, and the distribution shape -- and flags adapters that deviate from normal patterns. We evaluate the method on 500 LoRA adapters -- 400 clean, and 100 poisoned for Llama-3.2-3B on instruction and reasoning datasets: Alpaca, Dolly, GSM8K, ARC-Challenge, SQuADv2, NaturalQuestions, HumanEval, and GLUE dataset. We achieve 97\% detection accuracy with less than 2\% false positives.
♻ ☆ PLAICraft: Large-Scale Time-Aligned Vision-Speech-Action Dataset for Embodied AI
Advances in deep generative modeling have made it increasingly plausible to train human-level embodied agents. Yet progress has been limited by the absence of large-scale, real-time, multi-modal, and socially interactive datasets that reflect the sensory-motor complexity of natural environments. To address this, we present PLAICraft, a novel data collection platform and dataset capturing multiplayer Minecraft interactions across five time-aligned modalities: video, game output audio, microphone input audio, mouse, and keyboard actions. Each modality is logged with millisecond time precision, enabling the study of synchronous, embodied behaviour in a rich, open-ended world. The dataset comprises over 10,000 hours of gameplay from more than 10,000 global participants. Alongside the dataset, we provide an evaluation suite for benchmarking model capabilities in object recognition, spatial awareness, language grounding, and long-term memory. PLAICraft opens a path toward training and evaluating agents that act fluently and purposefully in real time, paving the way for truly embodied artificial intelligence.
comment: 9 pages, 8 figures
♻ ☆ Features as Rewards: Scalable Supervision for Open-Ended Tasks via Interpretability
Language models trained on large-scale datasets have been shown to learn features that encode abstract concepts such as factuality or intent. Such features are traditionally used for test-time monitoring or steering. We present an alternative affordance: features as scalable supervision for open-ended tasks. We consider the case of hallucination-reduction as a desirable, yet open-ended behavior and design a reinforcement learning (RL) pipeline, titled RLFR (Reinforcement Learning from Feature Rewards), that uses features as reward functions. Grounded in a novel probing framework that identifies candidate hallucinated claims, our pipeline teaches a model to intervene and correct its completions when it is uncertain of their factuality. Furthermore, the pipeline enables scalable test-time compute, guided once more by our reward features. This end-to-end process operationalized on Gemma-3-12B-IT results in a policy that is 58% less likely to hallucinate compared to the original model (when run in tandem with our probing harness), while preserving performance on standard benchmarks. Taken together, by grounding supervision in the language of features, this paper introduces a novel paradigm in the use of interpretability for learning open-ended tasks.
♻ ☆ Understanding Transformer Optimization via Gradient Heterogeneity
Transformers are difficult to optimize with stochastic gradient descent (SGD) and largely rely on adaptive optimizers such as Adam. Despite their empirical success, the reasons behind Adam's superior performance over SGD remain poorly understood. In this study, we analyze the optimization of Transformer models through the lens of \emph{gradient heterogeneity}, defined as the variation in gradient norms across parameter blocks. We provide a theoretical analysis showing that gradient heterogeneity, together with Hessian heterogeneity, degrades the convergence of gradient-based methods such as SGD, while sign-based methods are substantially less sensitive to this effect. Adam's coordinate-wise normalization makes its update directions depend mainly on gradient signs, so Adam can be interpreted as a soft variant of SignSGD. Our analysis uses the fact that SGD and SignSGD follow steepest descent directions under different norms, and derives upper bounds on the iteration complexity with implications for learning rate scaling in SignSGD. We further investigate the origin of gradient heterogeneity in Transformer architectures and show that it is strongly influenced by the placement of layer normalization, with Post-LN architectures exhibiting particularly pronounced heterogeneity. Experimental results from fine-tuning Transformers in both NLP and vision domains validate our theoretical analysis. Code is available at https://github.com/tom4649/gradient-heterogeneity.
comment: Largely updated (v3); minor corrections in v4
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advances in architectural design, data availability, and compute have driven remarkable progress in semantic segmentation. Yet, these models often rely on relaxed Bayesian assumptions, omitting critical uncertainty information needed for robust decision-making. Despite growing interest in probabilistic segmentation to address point-estimate limitations, the research landscape remains fragmented. In response, this review synthesizes foundational concepts in uncertainty modeling, analyzing how feature- and parameter-distribution modeling impact four key segmentation tasks: Observer Variability, Active Learning, Model Introspection, and Model Generalization. Our work establishes a common framework by standardizing theory, notation, and terminology, thereby bridging the gap between method developers, task specialists, and applied researchers. We then discuss critical challenges, including the nuanced distinction between uncertainty types, strong assumptions in spatial aggregation, the lack of standardized benchmarks, and pitfalls in current quantification methods. We identify promising avenues for future research, such as uncertainty-aware active learning, data-driven benchmarks, transformer-based models, and novel techniques to move from simple segmentation problems to uncertainty in holistic scene understanding. Based on our analysis, we offer practical guidelines for researchers on method selection, evaluation, reproducibility, and meaningful uncertainty estimation. Ultimately, our goal is to facilitate the development of more reliable, efficient, and interpretable segmentation models that can be confidently deployed in real-world applications.
comment: TMLR
♻ ☆ BPP: Long-Context Robot Imitation Learning by Focusing on Key History Frames
Many robot tasks require attending to the history of past observations. For example, finding an item in a room requires remembering which places have already been searched. However, the best-performing robot policies typically condition only on the current observation, limiting their applicability to such tasks. Naively conditioning on past observations often fails due to spurious correlations: policies latch onto incidental features of training histories that do not generalize to out-of-distribution trajectories upon deployment. We analyze why policies latch onto these spurious correlations and find that this problem stems from limited coverage over the space of possible histories during training, which grows exponentially with horizon. Existing regularization techniques provide inconsistent benefits across tasks, as they do not fundamentally address this coverage problem. Motivated by these findings, we propose Big Picture Policies (BPP), an approach that conditions on a minimal set of meaningful keyframes detected by a vision-language model. By projecting diverse rollouts onto a compact set of task-relevant events, BPP substantially reduces distribution shift between training and deployment, without sacrificing expressivity. We evaluate BPP on four challenging real-world manipulation tasks and three simulation tasks, all requiring history conditioning. BPP achieves 70% higher success rates than the best comparison on real-world evaluations. Videos are available at https://bigpicturepolicies.github.io/
♻ ☆ StableQAT: Stable Quantization-Aware Training at Ultra-Low Bitwidths
Quantization-aware training (QAT) is essential for deploying large models under strict memory and latency constraints, yet achieving stable and robust optimization at ultra-low bitwidths remains challenging. Common approaches based on the straight-through estimator (STE) or soft quantizers often suffer from gradient mismatch, instability, or high computational overhead. As such, we propose StableQAT, a unified and efficient QAT framework that stabilizes training in ultra low-bit settings via a novel, lightweight, and theoretically grounded surrogate for backpropagation derived from a discrete Fourier analysis of the rounding operator. StableQAT strictly generalizes STE as the latter arises as a special case of our more expressive surrogate family, yielding smooth, bounded, and inexpensive gradients that improve QAT training performance and stability across various hyperparameter choices. In experiments, StableQAT exhibits stable and efficient QAT at 2-4 bit regimes, demonstrating improved training stability, robustness, and superior performance with negligible training overhead against standard QAT techniques. Our code is available at https://github.com/microsoft/StableQAT.
♻ ☆ Experience-based Knowledge Correction for Robust Planning in Minecraft ICLR 2026
Large Language Model (LLM)-based planning has advanced embodied agents in long-horizon environments such as Minecraft, where acquiring latent knowledge of goal (or item) dependencies and feasible actions is critical. However, LLMs often begin with flawed priors and fail to correct them through prompting, even with feedback. We present XENON (eXpErience-based kNOwledge correctioN), an agent that algorithmically revises knowledge from experience, enabling robustness to flawed priors and sparse binary feedback. XENON integrates two mechanisms: Adaptive Dependency Graph, which corrects item dependencies using past successes, and Failure-aware Action Memory, which corrects action knowledge using past failures. Together, these components allow XENON to acquire complex dependencies despite limited guidance. Experiments across multiple Minecraft benchmarks show that XENON outperforms prior agents in both knowledge learning and long-horizon planning. Remarkably, with only a 7B open-weight LLM, XENON surpasses agents that rely on much larger proprietary models. Project page: https://sjlee-me.github.io/XENON
comment: ICLR 2026
Multimedia 5
☆ ModalImmune: Immunity Driven Unlearning via Self Destructive Training
Multimodal systems are vulnerable to partial or complete loss of input channels at deployment, which undermines reliability in real-world settings. This paper presents ModalImmune, a training framework that enforces modality immunity by intentionally and controllably collapsing selected modality information during training so the model learns joint representations that are robust to destructive modality influence. The framework combines a spectrum-adaptive collapse regularizer, an information-gain guided controller for targeted interventions, curvature-aware gradient masking to stabilize destructive updates, and a certified Neumann-truncated hyper-gradient procedure for automatic meta-parameter adaptation. Empirical evaluation on standard multimodal benchmarks demonstrates that ModalImmune improves resilience to modality removal and corruption while retaining convergence stability and reconstruction capacity.
comment: 23 pages, 8 figures
☆ Edge Learning via Federated Split Decision Transformers for Metaverse Resource Allocation
Mobile edge computing (MEC) based wireless metaverse services offer an untethered, immersive experience to users, where the superior quality of experience (QoE) needs to be achieved under stringent latency constraints and visual quality demands. To achieve this, MEC-based intelligent resource allocation for virtual reality users needs to be supported by coordination across MEC servers to harness distributed data. Federated learning (FL) is a promising solution, and can be combined with reinforcement learning (RL) to develop generalized policies across MEC-servers. However, conventional FL incurs transmitting the full model parameters across the MEC-servers and the cloud, and suffer performance degradation due to naive global aggregation, especially in heterogeneous multi-radio access technology environments. To address these challenges, this paper proposes Federated Split Decision Transformer (FSDT), an offline RL framework where the transformer model is partitioned between MEC servers and the cloud. Agent-specific components (e.g., MEC-based embedding and prediction layers) enable local adaptability, while shared global layers in the cloud facilitate cooperative training across MEC servers. Experimental results demonstrate that FSDT enhances QoE for up to 10% in heterogeneous environments compared to baselines, while offloadingnearly 98% of the transformer model parameters to the cloud, thereby reducing the computational burden on MEC servers.
comment: 6 pages, 4 figures, Accepted paper at IEEE International Conference on Communications (ICC) 2026
☆ Emotion Collider: Dual Hyperbolic Mirror Manifolds for Sentiment Recovery via Anti Emotion Reflection
Emotional expression underpins natural communication and effective human-computer interaction. We present Emotion Collider (EC-Net), a hyperbolic hypergraph framework for multimodal emotion and sentiment modeling. EC-Net represents modality hierarchies using Poincare-ball embeddings and performs fusion through a hypergraph mechanism that passes messages bidirectionally between nodes and hyperedges. To sharpen class separation, contrastive learning is formulated in hyperbolic space with decoupled radial and angular objectives. High-order semantic relations across time steps and modalities are preserved via adaptive hyperedge construction. Empirical results on standard multimodal emotion benchmarks show that EC-Net produces robust, semantically coherent representations and consistently improves accuracy, particularly when modalities are partially available or contaminated by noise. These findings indicate that explicit hierarchical geometry combined with hypergraph fusion is effective for resilient multimodal affect understanding.
comment: 25 pages, 14 figures
☆ Generative Audio Extension and Morphing ICASSP 2026
In audio-related creative tasks, sound designers often seek to extend and morph different sounds from their libraries. Generative audio models, capable of creating audio using examples as references, offer promising solutions. By masking the noisy latents of a DiT and applying a novel variant of classifier-free guidance on such masked latents, we demonstrate that: (i) given an audio reference, we can extend it both forward and backward for a specified duration, and (ii) given two audio references, we can morph them seamlessly for the desired duration. Furthermore, we show that by fine-tuning the model on different types of stationary audio data we mitigate potential hallucinations. The effectiveness of our method is supported by objective metrics, with the generated audio achieving Fréchet Audio Distances (FADs) comparable to those of real samples from the training data. Additionally, we validate our results through a subjective listener test, where subjects gave positive ratings to the proposed model generations. This technique paves the way for more controllable and expressive generative sound frameworks, enabling sound designers to focus less on tedious, repetitive tasks and more on their actual creative process.
comment: Accepted to ICASSP 2026
♻ ☆ Protocol as Poetry: A Case Study of Pak's Smart Contract-Based Protocol Art
Protocol art has recently proliferated through blockchain-based smart contracts, building on a century-long lineage of conceptual, participatory, interactive, systematic, algorithmic, and generative art practices. Few studies have examined the characteristics and appreciation of this emerging art form. To address this gap, this paper presents an annotated portfolio analysis of protocol artworks by Pak, a pioneering and influential pseudonymous artist who treats smart contracts as medium and collective participation through protocol as message. Tracing the evolution from early open-edition releases of The Fungible (2021) and the dynamic mechanics of Merge (2021) to the soul-bound messaging of Censored (2022) and the reflective absence of Not Found (2023), we examine how Pak choreographs distributed agency across collectors and autonomous code, demonstrating how programmable protocols become a social fabric in artistic meaning-making. Through thematic analysis of Pak's works, we identify seven core characteristics distinguishing protocol art from other art forms: (1) system-centric rather than object-centric composition, (2) autonomous governance enabling open-ended control, (3) distributed agency and communal authorship, (4) temporal dynamism and lifecycle aesthetics, (5) economy-driven engagement, (6) poetic message embedded in interaction rituals, and (7) interoperability enabling composability for emergent complexity. We then discuss how these features set protocol art apart from adjacent movements such as conceptual, generative, participatory, interactive, and performance art. By analyzing principles grounded in Pak's practice, we contribute to the emerging literature on protocol art (or "protocolism") and offer design implications for future artists exploring this evolving form.
comment: Accepted by ARTECH 2025
Artificial Intelligent 242
☆ Policy Compiler for Secure Agentic Systems
LLM-based agents are increasingly being deployed in contexts requiring complex authorization policies: customer service protocols, approval workflows, data access restrictions, and regulatory compliance. Embedding these policies in prompts provides no enforcement guarantees. We present PCAS, a Policy Compiler for Agentic Systems that provides deterministic policy enforcement. Enforcing such policies requires tracking information flow across agents, which linear message histories cannot capture. Instead, PCAS models the agentic system state as a dependency graph capturing causal relationships among events such as tool calls, tool results, and messages. Policies are expressed in a Datalog-derived language, as declarative rules that account for transitive information flow and cross-agent provenance. A reference monitor intercepts all actions and blocks violations before execution, providing deterministic enforcement independent of model reasoning. PCAS takes an existing agent implementation and a policy specification, and compiles them into an instrumented system that is policy-compliant by construction, with no security-specific restructuring required. We evaluate PCAS on three case studies: information flow policies for prompt injection defense, approval workflows in a multi-agent pharmacovigilance system, and organizational policies for customer service. On customer service tasks, PCAS improves policy compliance from 48% to 93% across frontier models, with zero policy violations in instrumented runs.
☆ Measuring Mid-2025 LLM-Assistance on Novice Performance in Biology
Large language models (LLMs) perform strongly on biological benchmarks, raising concerns that they may help novice actors acquire dual-use laboratory skills. Yet, whether this translates to improved human performance in the physical laboratory remains unclear. To address this, we conducted a pre-registered, investigator-blinded, randomized controlled trial (June-August 2025; n = 153) evaluating whether LLMs improve novice performance in tasks that collectively model a viral reverse genetics workflow. We observed no significant difference in the primary endpoint of workflow completion (5.2% LLM vs. 6.6% Internet; P = 0.759), nor in the success rate of individual tasks. However, the LLM arm had numerically higher success rates in four of the five tasks, most notably for the cell culture task (68.8% LLM vs. 55.3% Internet; P = 0.059). Post-hoc Bayesian modeling of pooled data estimates an approximate 1.4-fold increase (95% CrI 0.74-2.62) in success for a "typical" reverse genetics task under LLM assistance. Ordinal regression modelling suggests that participants in the LLM arm were more likely to progress through intermediate steps across all tasks (posterior probability of a positive effect: 81%-96%). Overall, mid-2025 LLMs did not substantially increase novice completion of complex laboratory procedures but were associated with a modest performance benefit. These results reveal a gap between in silico benchmarks and real-world utility, underscoring the need for physical-world validation of AI biosecurity assessments as model capabilities and user proficiency evolve.
☆ Calibrate-Then-Act: Cost-Aware Exploration in LLM Agents
LLMs are increasingly being used for complex problems which are not necessarily resolved in a single response, but require interacting with an environment to acquire information. In these scenarios, LLMs must reason about inherent cost-uncertainty tradeoffs in when to stop exploring and commit to an answer. For instance, on a programming task, an LLM should test a generated code snippet if it is uncertain about the correctness of that code; the cost of writing a test is nonzero, but typically lower than the cost of making a mistake. In this work, we show that we can induce LLMs to explicitly reason about balancing these cost-uncertainty tradeoffs, then perform more optimal environment exploration. We formalize multiple tasks, including information retrieval and coding, as sequential decision-making problems under uncertainty. Each problem has latent environment state that can be reasoned about via a prior which is passed to the LLM agent. We introduce a framework called Calibrate-Then-Act (CTA), where we feed the LLM this additional context to enable it to act more optimally. This improvement is preserved even under RL training of both the baseline and CTA. Our results on information-seeking QA and on a simplified coding task show that making cost-benefit tradeoffs explicit with CTA can help agents discover more optimal decision-making strategies.
☆ SPARC: Scenario Planning and Reasoning for Automated C Unit Test Generation
Automated unit test generation for C remains a formidable challenge due to the semantic gap between high-level program intent and the rigid syntactic constraints of pointer arithmetic and manual memory management. While Large Language Models (LLMs) exhibit strong generative capabilities, direct intent-to-code synthesis frequently suffers from the leap-to-code failure mode, where models prematurely emit code without grounding in program structure, constraints, and semantics. This will result in non-compilable tests, hallucinated function signatures, low branch coverage, and semantically irrelevant assertions that cannot properly capture bugs. We introduce SPARC, a neuro-symbolic, scenario-based framework that bridges this gap through four stages: (1) Control Flow Graph (CFG) analysis, (2) an Operation Map that grounds LLM reasoning in validated utility helpers, (3) Path-targeted test synthesis, and (4) an iterative, self-correction validation loop using compiler and runtime feedback. We evaluate SPARC on 59 real-world and algorithmic subjects, where it outperforms the vanilla prompt generation baseline by 31.36% in line coverage, 26.01% in branch coverage, and 20.78% in mutation score, matching or exceeding the symbolic execution tool KLEE on complex subjects. SPARC retains 94.3% of tests through iterative repair and produces code with significantly higher developer-rated readability and maintainability. By aligning LLM reasoning with program structure, SPARC provides a scalable path for industrial-grade testing of legacy C codebases.
comment: 9 pages, 6 figures, 4 tables
☆ Towards a Science of AI Agent Reliability
AI agents are increasingly deployed to execute important tasks. While rising accuracy scores on standard benchmarks suggest rapid progress, many agents still continue to fail in practice. This discrepancy highlights a fundamental limitation of current evaluations: compressing agent behavior into a single success metric obscures critical operational flaws. Notably, it ignores whether agents behave consistently across runs, withstand perturbations, fail predictably, or have bounded error severity. Grounded in safety-critical engineering, we provide a holistic performance profile by proposing twelve concrete metrics that decompose agent reliability along four key dimensions: consistency, robustness, predictability, and safety. Evaluating 14 agentic models across two complementary benchmarks, we find that recent capability gains have only yielded small improvements in reliability. By exposing these persistent limitations, our metrics complement traditional evaluations while offering tools for reasoning about how agents perform, degrade, and fail.
Align Once, Benefit Multilingually: Enforcing Multilingual Consistency for LLM Safety Alignment ICLR 2026
The widespread deployment of large language models (LLMs) across linguistic communities necessitates reliable multilingual safety alignment. However, recent efforts to extend alignment to other languages often require substantial resources, either through large-scale, high-quality supervision in the target language or through pairwise alignment with high-resource languages, which limits scalability. In this work, we propose a resource-efficient method for improving multilingual safety alignment. We introduce a plug-and-play Multi-Lingual Consistency (MLC) loss that can be integrated into existing monolingual alignment pipelines. By improving collinearity between multilingual representation vectors, our method encourages directional consistency at the multilingual semantic level in a single update. This allows simultaneous alignment across multiple languages using only multilingual prompt variants without requiring additional response-level supervision in low-resource languages. We validate the proposed method across different model architectures and alignment paradigms, and demonstrate its effectiveness in enhancing multilingual safety with limited impact on general model utility. Further evaluation across languages and tasks indicates improved cross-lingual generalization, suggesting the proposed approach as a practical solution for multilingual consistency alignment under limited supervision.
comment: Accepted by ICLR 2026
☆ Agent Skill Framework: Perspectives on the Potential of Small Language Models in Industrial Environments
Agent Skill framework, now widely and officially supported by major players such as GitHub Copilot, LangChain, and OpenAI, performs especially well with proprietary models by improving context engineering, reducing hallucinations, and boosting task accuracy. Based on these observations, an investigation is conducted to determine whether the Agent Skill paradigm provides similar benefits to small language models (SLMs). This question matters in industrial scenarios where continuous reliance on public APIs is infeasible due to data-security and budget constraints requirements, and where SLMs often show limited generalization in highly customized scenarios. This work introduces a formal mathematical definition of the Agent Skill process, followed by a systematic evaluation of language models of varying sizes across multiple use cases. The evaluation encompasses two open-source tasks and a real-world insurance claims data set. The results show that tiny models struggle with reliable skill selection, while moderately sized SLMs (approximately 12B - 30B) parameters) benefit substantially from the Agent Skill approach. Moreover, code-specialized variants at around 80B parameters achieve performance comparable to closed-source baselines while improving GPU efficiency. Collectively, these findings provide a comprehensive and nuanced characterization of the capabilities and constraints of the framework, while providing actionable insights for the effective deployment of Agent Skills in SLM-centered environments.
☆ Retrieval Augmented Generation of Literature-derived Polymer Knowledge: The Example of a Biodegradable Polymer Expert System
Polymer literature contains a large and growing body of experimental knowledge, yet much of it is buried in unstructured text and inconsistent terminology, making systematic retrieval and reasoning difficult. Existing tools typically extract narrow, study-specific facts in isolation, failing to preserve the cross-study context required to answer broader scientific questions. Retrieval-augmented generation (RAG) offers a promising way to overcome this limitation by combining large language models (LLMs) with external retrieval, but its effectiveness depends strongly on how domain knowledge is represented. In this work, we develop two retrieval pipelines: a dense semantic vector-based approach (VectorRAG) and a graph-based approach (GraphRAG). Using over 1,000 polyhydroxyalkanoate (PHA) papers, we construct context-preserving paragraph embeddings and a canonicalized structured knowledge graph supporting entity disambiguation and multi-hop reasoning. We evaluate these pipelines through standard retrieval metrics, comparisons with general state-of-the-art systems such as GPT and Gemini, and qualitative validation by a domain chemist. The results show that GraphRAG achieves higher precision and interpretability, while VectorRAG provides broader recall, highlighting complementary trade-offs. Expert validation further confirms that the tailored pipelines, particularly GraphRAG, produce well-grounded, citation-reliable responses with strong domain relevance. By grounding every statement in evidence, these systems enable researchers to navigate the literature, compare findings across studies, and uncover patterns that are difficult to extract manually. More broadly, this work establishes a practical framework for building materials science assistants using curated corpora and retrieval design, reducing reliance on proprietary models while enabling trustworthy literature analysis at scale.
☆ Enhanced Diffusion Sampling: Efficient Rare Event Sampling and Free Energy Calculation with Diffusion Models
The rare-event sampling problem has long been the central limiting factor in molecular dynamics (MD), especially in biomolecular simulation. Recently, diffusion models such as BioEmu have emerged as powerful equilibrium samplers that generate independent samples from complex molecular distributions, eliminating the cost of sampling rare transition events. However, a sampling problem remains when computing observables that rely on states which are rare in equilibrium, for example folding free energies. Here, we introduce enhanced diffusion sampling, enabling efficient exploration of rare-event regions while preserving unbiased thermodynamic estimators. The key idea is to perform quantitatively accurate steering protocols to generate biased ensembles and subsequently recover equilibrium statistics via exact reweighting. We instantiate our framework in three algorithms: UmbrellaDiff (umbrella sampling with diffusion models), $Δ$G-Diff (free-energy differences via tilted ensembles), and MetaDiff (a batchwise analogue for metadynamics). Across toy systems, protein folding landscapes and folding free energies, our methods achieve fast, accurate, and scalable estimation of equilibrium properties within GPU-minutes to hours per system -- closing the rare-event sampling gap that remained after the advent of diffusion-model equilibrium samplers.
☆ Almost Sure Convergence of Differential Temporal Difference Learning for Average Reward Markov Decision Processes
The average reward is a fundamental performance metric in reinforcement learning (RL) focusing on the long-run performance of an agent. Differential temporal difference (TD) learning algorithms are a major advance for average reward RL as they provide an efficient online method to learn the value functions associated with the average reward in both on-policy and off-policy settings. However, existing convergence guarantees require a local clock in learning rates tied to state visit counts, which practitioners do not use and does not extend beyond tabular settings. We address this limitation by proving the almost sure convergence of on-policy $n$-step differential TD for any $n$ using standard diminishing learning rates without a local clock. We then derive three sufficient conditions under which off-policy $n$-step differential TD also converges without a local clock. These results strengthen the theoretical foundations of differential TD and bring its convergence analysis closer to practical implementations.
☆ A Systematic Evaluation of Sample-Level Tokenization Strategies for MEG Foundation Models
Recent success in natural language processing has motivated growing interest in large-scale foundation models for neuroimaging data. Such models often require discretization of continuous neural time series data, a process referred to as 'tokenization'. However, the impact of different tokenization strategies for neural data is currently poorly understood. In this work, we present a systematic evaluation of sample-level tokenization strategies for transformer-based large neuroimaging models (LNMs) applied to magnetoencephalography (MEG) data. We compare learnable and non-learnable tokenizers by examining their signal reconstruction fidelity and their impact on subsequent foundation modeling performance (token prediction, biological plausibility of generated data, preservation of subject-specific information, and performance on downstream tasks). For the learnable tokenizer, we introduce a novel approach based on an autoencoder. Experiments were conducted on three publicly available MEG datasets spanning different acquisition sites, scanners, and experimental paradigms. Our results show that both learnable and non-learnable discretization schemes achieve high reconstruction accuracy and broadly comparable performance across most evaluation criteria, suggesting that simple fixed sample-level tokenization strategies can be used in the development of neural foundation models. The code is available at https://github.com/OHBA-analysis/Cho2026_Tokenizer.
comment: 15 pages, 10 figures, 1 table
☆ Causal and Compositional Abstraction
Abstracting from a low level to a more explanatory high level of description, and ideally while preserving causal structure, is fundamental to scientific practice, to causal inference problems, and to robust, efficient and interpretable AI. We present a general account of abstractions between low and high level models as natural transformations, focusing on the case of causal models. This provides a new formalisation of causal abstraction, unifying several notions in the literature, including constructive causal abstraction, Q-$τ$ consistency, abstractions based on interchange interventions, and `distributed' causal abstractions. Our approach is formalised in terms of category theory, and uses the general notion of a compositional model with a given set of queries and semantics in a monoidal, cd- or Markov category; causal models and their queries such as interventions being special cases. We identify two basic notions of abstraction: downward abstractions mapping queries from high to low level; and upward abstractions, mapping concrete queries such as Do-interventions from low to high. Although usually presented as the latter, we show how common causal abstractions may, more fundamentally, be understood in terms of the former. Our approach also leads us to consider a new stronger notion of `component-level' abstraction, applying to the individual components of a model. In particular, this yields a novel, strengthened form of constructive causal abstraction at the mechanism-level, for which we prove characterisation results. Finally, we show that abstraction can be generalised to further compositional models, including those with a quantum semantics implemented by quantum circuits, and we take first steps in exploring abstractions between quantum compositional circuit models and high-level classical causal models as a means to explainable quantum AI.
☆ Who can we trust? LLM-as-a-jury for Comparative Assessment
Large language models (LLMs) are increasingly applied as automatic evaluators for natural language generation assessment often using pairwise comparative judgements. Existing approaches typically rely on single judges or aggregate multiple judges assuming equal reliability. In practice, LLM judges vary substantially in performance across tasks and aspects, and their judgment probabilities may be biased and inconsistent. Furthermore, human-labelled supervision for judge calibration may be unavailable. We first empirically demonstrate that inconsistencies in LLM comparison probabilities exist and show that it limits the effectiveness of direct probability-based ranking. To address this, we study the LLM-as-a-jury setting and propose BT-sigma, a judge-aware extension of the Bradley-Terry model that introduces a discriminator parameter for each judge to jointly infer item rankings and judge reliability from pairwise comparisons alone. Experiments on benchmark NLG evaluation datasets show that BT-sigma consistently outperforms averaging-based aggregation methods, and that the learned discriminator strongly correlates with independent measures of the cycle consistency of LLM judgments. Further analysis reveals that BT-sigma can be interpreted as an unsupervised calibration mechanism that improves aggregation by modelling judge reliability.
☆ Explainable AI: Context-Aware Layer-Wise Integrated Gradients for Explaining Transformer Models
Transformer models achieve state-of-the-art performance across domains and tasks, yet their deeply layered representations make their predictions difficult to interpret. Existing explainability methods rely on final-layer attributions, capture either local token-level attributions or global attention patterns without unification, and lack context-awareness of inter-token dependencies and structural components. They also fail to capture how relevance evolves across layers and how structural components shape decision-making. To address these limitations, we proposed the \textbf{Context-Aware Layer-wise Integrated Gradients (CA-LIG) Framework}, a unified hierarchical attribution framework that computes layer-wise Integrated Gradients within each Transformer block and fuses these token-level attributions with class-specific attention gradients. This integration yields signed, context-sensitive attribution maps that capture supportive and opposing evidence while tracing the hierarchical flow of relevance through the Transformer layers. We evaluate the CA-LIG Framework across diverse tasks, domains, and transformer model families, including sentiment analysis and long and multi-class document classification with BERT, hate speech detection in a low-resource language setting with XLM-R and AfroLM, and image classification with Masked Autoencoder vision Transformer model. Across all tasks and architectures, CA-LIG provides more faithful attributions, shows stronger sensitivity to contextual dependencies, and produces clearer, more semantically coherent visualizations than established explainability methods. These results indicate that CA-LIG provides a more comprehensive, context-aware, and reliable explanation of Transformer decision-making, advancing both the practical interpretability and conceptual understanding of deep neural models.
☆ FlowPrefill: Decoupling Preemption from Prefill Scheduling Granularity to Mitigate Head-of-Line Blocking in LLM Serving
The growing demand for large language models (LLMs) requires serving systems to handle many concurrent requests with diverse service level objectives (SLOs). This exacerbates head-of-line (HoL) blocking during the compute-intensive prefill phase, where long-running requests monopolize resources and delay higher-priority ones, leading to widespread time-to-first-token (TTFT) SLO violations. While chunked prefill enables interruptibility, it introduces an inherent trade-off between responsiveness and throughput: reducing chunk size improves response latency but degrades computational efficiency, whereas increasing chunk size maximizes throughput but exacerbates blocking. This necessitates an adaptive preemption mechanism. However, dynamically balancing execution granularity against scheduling overheads remains a key challenge. In this paper, we propose FlowPrefill, a TTFT-goodput-optimized serving system that resolves this conflict by decoupling preemption granularity from scheduling frequency. To achieve adaptive prefill scheduling, FlowPrefill introduces two key innovations: 1) Operator-Level Preemption, which leverages operator boundaries to enable fine-grained execution interruption without the efficiency loss associated with fixed small chunking; and 2) Event-Driven Scheduling, which triggers scheduling decisions only upon request arrival or completion events, thereby supporting efficient preemption responsiveness while minimizing control-plane overhead. Evaluation on real-world production traces shows that FlowPrefill improves maximum goodput by up to 5.6$\times$ compared to state-of-the-art systems while satisfying heterogeneous SLOs.
comment: 13 pages
☆ A Contrastive Learning Framework Empowered by Attention-based Feature Adaptation for Street-View Image Classification
Street-view image attribute classification is a vital downstream task of image classification, enabling applications such as autonomous driving, urban analytics, and high-definition map construction. It remains computationally demanding whether training from scratch, initialising from pre-trained weights, or fine-tuning large models. Although pre-trained vision-language models such as CLIP offer rich image representations, existing adaptation or fine-tuning methods often rely on their global image embeddings, limiting their ability to capture fine-grained, localised attributes essential in complex, cluttered street scenes. To address this, we propose CLIP-MHAdapter, a variant of the current lightweight CLIP adaptation paradigm that appends a bottleneck MLP equipped with multi-head self-attention operating on patch tokens to model inter-patch dependencies. With approximately 1.4 million trainable parameters, CLIP-MHAdapter achieves superior or competitive accuracy across eight attribute classification tasks on the Global StreetScapes dataset, attaining new state-of-the-art results while maintaining low computational cost. The code is available at https://github.com/SpaceTimeLab/CLIP-MHAdapter.
☆ DataJoint 2.0: A Computational Substrate for Agentic Scientific Workflows
Operational rigor determines whether human-agent collaboration succeeds or fails. Scientific data pipelines need the equivalent of DevOps -- SciOps -- yet common approaches fragment provenance across disconnected systems without transactional guarantees. DataJoint 2.0 addresses this gap through the relational workflow model: tables represent workflow steps, rows represent artifacts, foreign keys prescribe execution order. The schema specifies not only what data exists but how it is derived -- a single formal system where data structure, computational dependencies, and integrity constraints are all queryable, enforceable, and machine-readable. Four technical innovations extend this foundation: object-augmented schemas integrating relational metadata with scalable object storage, semantic matching using attribute lineage to prevent erroneous joins, an extensible type system for domain-specific formats, and distributed job coordination designed for composability with external orchestration. By unifying data structure, data, and computational transformations, DataJoint creates a substrate for SciOps where agents can participate in scientific workflows without risking data corruption.
comment: 20 pages, 2 figures, 1 table
☆ AIFL: A Global Daily Streamflow Forecasting Model Using Deterministic LSTM Pre-trained on ERA5-Land and Fine-tuned on IFS
Reliable global streamflow forecasting is essential for flood preparedness and water resource management, yet data-driven models often suffer from a performance gap when transitioning from historical reanalysis to operational forecast products. This paper introduces AIFL (Artificial Intelligence for Floods), a deterministic LSTM-based model designed for global daily streamflow forecasting. Trained on 18,588 basins curated from the CARAVAN dataset, AIFL utilises a novel two-stage training strategy to bridge the reanalysis-to-forecast domain shift. The model is first pre-trained on 40 years of ERA5-Land reanalysis (1980-2019) to capture robust hydrological processes, then fine-tuned on operational Integrated Forecasting System (IFS) control forecasts (2016-2019) to adapt to the specific error structures and biases of operational numerical weather prediction. To our knowledge, this is the first global model trained end-to-end within the CARAVAN ecosystem. On an independent temporal test set (2021-2024), AIFL achieves high predictive skill with a median modified Kling-Gupta Efficiency (KGE') of 0.66 and a median Nash-Sutcliffe Efficiency (NSE) of 0.53. Benchmarking results show that AIFL is highly competitive with current state-of-the-art global systems, achieving comparable accuracy while maintaining a transparent and reproducible forcing pipeline. The model demonstrates exceptional reliability in extreme-event detection, providing a streamlined and operationally robust baseline for the global hydrological community.
☆ Creating a digital poet
Can a machine write good poetry? Any positive answer raises fundamental questions about the nature and value of art. We report a seven-month poetry workshop in which a large language model was shaped into a digital poet through iterative in-context expert feedback, without retraining. Across sessions, the model developed a distinctive style and a coherent corpus, supported by quantitative and qualitative analyses, and it produced a pen name and author image. In a blinded authorship test with 50 humanities students and graduates (three AI poems and three poems by well-known poets each), judgments were at chance: human poems were labeled human 54% of the time and AI poems 52%, with 95% confidence intervals including 50%. After the workshop, a commercial publisher released a poetry collection authored by the model. These results show that workshop-style prompting can support long-horizon creative shaping and renew debates on creativity and authorship.
comment: 24 pages, 3 figures
☆ MerLean: An Agentic Framework for Autoformalization in Quantum Computation
We introduce MerLean, a fully automated agentic framework for autoformalization in quantum computation. MerLean extracts mathematical statements from \LaTeX{} source files, formalizes them into verified Lean~4 code built on Mathlib, and translates the result back into human-readable \LaTeX{} for semantic review. We evaluate MerLean on three theoretical quantum computing papers producing 2,050 Lean declarations from 114 statements in total. MerLean achieves end-to-end formalization on all three papers, reducing the verification burden to only the newly introduced definitions and axioms. Our results demonstrate that agentic autoformalization can scale to frontier research, offering both a practical tool for machine-verified peer review and a scalable engine for mining high-quality synthetic data to train future reasoning models. Our approach can also be generalized to any other rigorous research in mathematics and theoretical physics.
☆ Recursive language models for jailbreak detection: a procedural defense for tool-augmented agents
Jailbreak prompts are a practical and evolving threat to large language models (LLMs), particularly in agentic systems that execute tools over untrusted content. Many attacks exploit long-context hiding, semantic camouflage, and lightweight obfuscations that can evade single-pass guardrails. We present RLM-JB, an end-to-end jailbreak detection framework built on Recursive Language Models (RLMs), in which a root model orchestrates a bounded analysis program that transforms the input, queries worker models over covered segments, and aggregates evidence into an auditable decision. RLM-JB treats detection as a procedure rather than a one-shot classification: it normalizes and de-obfuscates suspicious inputs, chunks text to reduce context dilution and guarantee coverage, performs parallel chunk screening, and composes cross-chunk signals to recover split-payload attacks. On AutoDAN-style adversarial inputs, RLM-JB achieves high detection effectiveness across three LLM backends (ASR/Recall 92.5-98.0%) while maintaining very high precision (98.99-100%) and low false positive rates (0.0-2.0%), highlighting a practical sensitivity-specificity trade-off as the screening backend changes.
comment: 5 pages and 1 figure. Appendix: an additional 5 pages
☆ Framework of Thoughts: A Foundation Framework for Dynamic and Optimized Reasoning based on Chains, Trees, and Graphs
Prompting schemes such as Chain of Thought, Tree of Thoughts, and Graph of Thoughts can significantly enhance the reasoning capabilities of large language models. However, most existing schemes require users to define static, problem-specific reasoning structures that lack adaptability to dynamic or unseen problem types. Additionally, these schemes are often under-optimized in terms of hyperparameters, prompts, runtime, and prompting cost. To address these limitations, we introduce Framework of Thoughts (FoT)--a general-purpose foundation framework for building and optimizing dynamic reasoning schemes. FoT comes with built-in features for hyperparameter tuning, prompt optimization, parallel execution, and intelligent caching, unlocking the latent performance potential of reasoning schemes. We demonstrate FoT's capabilities by implementing three popular schemes--Tree of Thoughts, Graph of Thoughts, and ProbTree--within FoT. We empirically show that FoT enables significantly faster execution, reduces costs, and achieves better task scores through optimization. We release our codebase to facilitate the development of future dynamic and efficient reasoning schemes.
☆ Interpretability-by-Design with Accurate Locally Additive Models and Conditional Feature Effects
Generalized additive models (GAMs) offer interpretability through independent univariate feature effects but underfit when interactions are present in data. GA$^2$Ms add selected pairwise interactions which improves accuracy, but sacrifices interpretability and limits model auditing. We propose \emph{Conditionally Additive Local Models} (CALMs), a new model class, that balances the interpretability of GAMs with the accuracy of GA$^2$Ms. CALMs allow multiple univariate shape functions per feature, each active in different regions of the input space. These regions are defined independently for each feature as simple logical conditions (thresholds) on the features it interacts with. As a result, effects remain locally additive while varying across subregions to capture interactions. We further propose a principled distillation-based training pipeline that identifies homogeneous regions with limited interactions and fits interpretable shape functions via region-aware backfitting. Experiments on diverse classification and regression tasks show that CALMs consistently outperform GAMs and achieve accuracy comparable with GA$^2$Ms. Overall, CALMs offer a compelling trade-off between predictive accuracy and interpretability.
☆ Fast and Scalable Analytical Diffusion
Analytical diffusion models offer a mathematically transparent path to generative modeling by formulating the denoising score as an empirical-Bayes posterior mean. However, this interpretability comes at a prohibitive cost: the standard formulation necessitates a full-dataset scan at every timestep, scaling linearly with dataset size. In this work, we present the first systematic study addressing this scalability bottleneck. We challenge the prevailing assumption that the entire training data is necessary, uncovering the phenomenon of Posterior Progressive Concentration: the effective golden support of the denoising score is not static but shrinks asymptotically from the global manifold to a local neighborhood as the signal-to-noise ratio increases. Capitalizing on this, we propose Dynamic Time-Aware Golden Subset Diffusion (GoldDiff), a training-free framework that decouples inference complexity from dataset size. Instead of static retrieval, GoldDiff uses a coarse-to-fine mechanism to dynamically pinpoint the ''Golden Subset'' for inference. Theoretically, we derive rigorous bounds guaranteeing that our sparse approximation converges to the exact score. Empirically, GoldDiff achieves a $\bf 71 \times$ speedup on AFHQ while matching or achieving even better performance than full-scan baselines. Most notably, we demonstrate the first successful scaling of analytical diffusion to ImageNet-1K, unlocking a scalable, training-free paradigm for large-scale generative modeling.
☆ From Growing to Looping: A Unified View of Iterative Computation in LLMs
Looping, reusing a block of layers across depth, and depth growing, training shallow-to-deep models by duplicating middle layers, have both been linked to stronger reasoning, but their relationship remains unclear. We provide a mechanistic unification: looped and depth-grown models exhibit convergent depth-wise signatures, including increased reliance on late layers and recurring patterns aligned with the looped or grown block. These shared signatures support the view that their gains stem from a common form of iterative computation. Building on this connection, we show that the two techniques are adaptable and composable: applying inference-time looping to the middle blocks of a depth-grown model improves accuracy on some reasoning primitives by up to $2\times$, despite the model never being trained to loop. Both approaches also adapt better than the baseline when given more in-context examples or additional supervised fine-tuning data. Additionally, depth-grown models achieve the largest reasoning gains when using higher-quality, math-heavy cooldown mixtures, which can be further boosted by adapting a middle block to loop. Overall, our results position depth growth and looping as complementary, practical methods for inducing and scaling iterative computation to improve reasoning.
☆ Learning to Learn from Language Feedback with Social Meta-Learning
Large language models (LLMs) often struggle to learn from corrective feedback within a conversational context. They are rarely proactive in soliciting this feedback, even when faced with ambiguity, which can make their dialogues feel static, one-sided, and lacking the adaptive qualities of human conversation. To address these limitations, we draw inspiration from social meta-learning (SML) in humans - the process of learning how to learn from others. We formulate SML as a finetuning methodology, training LLMs to solicit and learn from language feedback in simulated pedagogical dialogues, where static tasks are converted into interactive social learning problems. SML effectively teaches models to use conversation to solve problems they are unable to solve in a single turn. This capability generalises across domains; SML on math problems produces models that better use feedback to solve coding problems and vice versa. Furthermore, despite being trained only on fully-specified problems, these models are better able to solve underspecified tasks where critical information is revealed over multiple turns. When faced with this ambiguity, SML-trained models make fewer premature answer attempts and are more likely to ask for the information they need. This work presents a scalable approach to developing AI systems that effectively learn from language feedback.
☆ Team of Thoughts: Efficient Test-time Scaling of Agentic Systems through Orchestrated Tool Calling
Existing Multi-Agent Systems (MAS) typically rely on static, homogeneous model configurations, limiting their ability to exploit the distinct strengths of differently post-trained models. To address this, we introduce Team-of-Thoughts, a novel MAS architecture that leverages the complementary capabilities of heterogeneous agents via an orchestrator-tool paradigm. Our framework introduces two key mechanisms to optimize performance: (1) an orchestrator calibration scheme that identifies models with superior coordination capabilities, and (2) a self-assessment protocol where tool agents profile their own domain expertise to account for variations in post-training skills. During inference, the orchestrator dynamically activates the most suitable tool agents based on these proficiency profiles. Experiments on five reasoning and code generation benchmarks show that Team-of-Thoughts delivers consistently superior task performance. Notably, on AIME24 and LiveCodeBench, our approach achieves accuracies of 96.67% and 72.53%, respectively, substantially outperforming homogeneous role-play baselines, which score 80% and 65.93%.
comment: 8 pages
☆ Leveraging Large Language Models for Causal Discovery: a Constraint-based, Argumentation-driven Approach
Causal discovery seeks to uncover causal relations from data, typically represented as causal graphs, and is essential for predicting the effects of interventions. While expert knowledge is required to construct principled causal graphs, many statistical methods have been proposed to leverage observational data with varying formal guarantees. Causal Assumption-based Argumentation (ABA) is a framework that uses symbolic reasoning to ensure correspondence between input constraints and output graphs, while offering a principled way to combine data and expertise. We explore the use of large language models (LLMs) as imperfect experts for Causal ABA, eliciting semantic structural priors from variable names and descriptions and integrating them with conditional-independence evidence. Experiments on standard benchmarks and semantically grounded synthetic graphs demonstrate state-of-the-art performance, and we additionally introduce an evaluation protocol to mitigate memorisation bias when assessing LLMs for causal discovery.
comment: 26 pages, including appendix
☆ IndicEval: A Bilingual Indian Educational Evaluation Framework for Large Language Models
The rapid advancement of large language models (LLMs) necessitates evaluation frameworks that reflect real-world academic rigor and multilingual complexity. This paper introduces IndicEval, a scalable benchmarking platform designed to assess LLM performance using authentic high-stakes examination questions from UPSC, JEE, and NEET across STEM and humanities domains in both English and Hindi. Unlike synthetic benchmarks, IndicEval grounds evaluation in real examination standards, enabling realistic measurement of reasoning, domain knowledge, and bilingual adaptability. The framework automates assessment using Zero-Shot, Few-Shot, and Chain-of-Thought (CoT) prompting strategies and supports modular integration of new models and languages. Experiments conducted on Gemini 2.0 Flash, GPT-4, Claude, and LLaMA 3-70B reveal three major findings. First, CoT prompting consistently improves reasoning accuracy, with substantial gains across subjects and languages. Second, significant cross-model performance disparities persist, particularly in high-complexity examinations. Third, multilingual degradation remains a critical challenge, with marked accuracy drops in Hindi compared to English, especially under Zero-Shot conditions. These results highlight persistent gaps in bilingual reasoning and domain transfer. Overall, IndicEval provides a practice-oriented, extensible foundation for rigorous, equitable evaluation of LLMs in multilingual educational settings and offers actionable insights for improving reasoning robustness and language adaptability.
☆ GICDM: Mitigating Hubness for Reliable Distance-Based Generative Model Evaluation
Generative model evaluation commonly relies on high-dimensional embedding spaces to compute distances between samples. We show that dataset representations in these spaces are affected by the hubness phenomenon, which distorts nearest neighbor relationships and biases distance-based metrics. Building on the classical Iterative Contextual Dissimilarity Measure (ICDM), we introduce Generative ICDM (GICDM), a method to correct neighborhood estimation for both real and generated data. We introduce a multi-scale extension to improve empirical behavior. Extensive experiments on synthetic and real benchmarks demonstrate that GICDM resolves hubness-induced failures, restores reliable metric behavior, and improves alignment with human judgment.
☆ RoboGene: Boosting VLA Pre-training via Diversity-Driven Agentic Framework for Real-World Task Generation
The pursuit of general-purpose robotic manipulation is hindered by the scarcity of diverse, real-world interaction data. Unlike data collection from web in vision or language, robotic data collection is an active process incurring prohibitive physical costs. Consequently, automated task curation to maximize data value remains a critical yet under-explored challenge. Existing manual methods are unscalable and biased toward common tasks, while off-the-shelf foundation models often hallucinate physically infeasible instructions. To address this, we introduce RoboGene, an agentic framework designed to automate the generation of diverse, physically plausible manipulation tasks across single-arm, dual-arm, and mobile robots. RoboGene integrates three core components: diversity-driven sampling for broad task coverage, self-reflection mechanisms to enforce physical constraints, and human-in-the-loop refinement for continuous improvement. We conduct extensive quantitative analysis and large-scale real-world experiments, collecting datasets of 18k trajectories and introducing novel metrics to assess task quality, feasibility, and diversity. Results demonstrate that RoboGene significantly outperforms state-of-the-art foundation models (e.g., GPT-4o, Gemini 2.5 Pro). Furthermore, real-world experiments show that VLA models pre-trained with RoboGene achieve higher success rates and superior generalization, underscoring the importance of high-quality task generation. Our project is available at https://robogene-boost-vla.github.io.
☆ Hardware-accelerated graph neural networks: an alternative approach for neuromorphic event-based audio classification and keyword spotting on SoC FPGA
As the volume of data recorded by embedded edge sensors increases, particularly from neuromorphic devices producing discrete event streams, there is a growing need for hardware-aware neural architectures that enable efficient, low-latency, and energy-conscious local processing. We present an FPGA implementation of event-graph neural networks for audio processing. We utilise an artificial cochlea that converts time-series signals into sparse event data, reducing memory and computation costs. Our architecture was implemented on a SoC FPGA and evaluated on two open-source datasets. For classification task, our baseline floating-point model achieves 92.7% accuracy on SHD dataset - only 2.4% below the state of the art - while requiring over 10x and 67x fewer parameters. On SSC, our models achieve 66.9-71.0% accuracy. Compared to FPGA-based spiking neural networks, our quantised model reaches 92.3% accuracy, outperforming them by up to 19.3% while reducing resource usage and latency. For SSC, we report the first hardware-accelerated evaluation. We further demonstrate the first end-to-end FPGA implementation of event-audio keyword spotting, combining graph convolutional layers with recurrent sequence modelling. The system achieves up to 95% word-end detection accuracy, with only 10.53 microsecond latency and 1.18 W power consumption, establishing a strong benchmark for energy-efficient event-driven KWS.
comment: Under revision in TRETS Journal
☆ Intra-Fairness Dynamics: The Bias Spillover Effect in Targeted LLM Alignment
Conventional large language model (LLM) fairness alignment largely focuses on mitigating bias along single sensitive attributes, overlooking fairness as an inherently multidimensional and context-specific value. This approach risks creating systems that achieve narrow fairness metrics while exacerbating disparities along untargeted attributes, a phenomenon known as bias spillover. While extensively studied in machine learning, bias spillover remains critically underexplored in LLM alignment. In this work, we investigate how targeted gender alignment affects fairness across nine sensitive attributes in three state-of-the-art LLMs (Mistral 7B, Llama 3.1 8B, Qwen 2.5 7B). Using Direct Preference Optimization and the BBQ benchmark, we evaluate fairness under ambiguous and disambiguous contexts. Our findings reveal noticeable bias spillover: while aggregate results show improvements, context-aware analysis exposes significant degradations in ambiguous contexts, particularly for physical appearance ($p< 0.001$ across all models), sexual orientation, and disability status. We demonstrate that improving fairness along one attribute can inadvertently worsen disparities in others under uncertainty, highlighting the necessity of context-aware, multi-attribute fairness evaluation frameworks.
comment: Submitted to the BiAlign CHI Workshop 2026
☆ Causally-Guided Automated Feature Engineering with Multi-Agent Reinforcement Learning
Automated feature engineering (AFE) enables AI systems to autonomously construct high-utility representations from raw tabular data. However, existing AFE methods rely on statistical heuristics, yielding brittle features that fail under distribution shift. We introduce CAFE, a framework that reformulates AFE as a causally-guided sequential decision process, bridging causal discovery with reinforcement learning-driven feature construction. Phase I learns a sparse directed acyclic graph over features and the target to obtain soft causal priors, grouping features as direct, indirect, or other based on their causal influence with respect to the target. Phase II uses a cascading multi-agent deep Q-learning architecture to select causal groups and transformation operators, with hierarchical reward shaping and causal group-level exploration strategies that favor causally plausible transformations while controlling feature complexity. Across 15 public benchmarks (classification with macro-F1; regression with inverse relative absolute error), CAFE achieves up to 7% improvement over strong AFE baselines, reduces episodes-to-convergence, and delivers competitive time-to-target. Under controlled covariate shifts, CAFE reduces performance drop by ~4x relative to a non-causal multi-agent baseline, and produces more compact feature sets with more stable post-hoc attributions. These findings underscore that causal structure, used as a soft inductive prior rather than a rigid constraint, can substantially improve the robustness and efficiency of automated feature engineering.
comment: 11 Pages, References and Appendix
☆ Designing Production-Scale OCR for India: Multilingual and Domain-Specific Systems
Designing Optical Character Recognition (OCR) systems for India requires balancing linguistic diversity, document heterogeneity, and deployment constraints. In this paper, we study two training strategies for building multilingual OCR systems with Vision-Language Models through the Chitrapathak series. We first follow a popular multimodal approach, pairing a generic vision encoder with a strong multilingual language model and training the system end-to-end for OCR. Alternatively, we explore fine-tuning an existing OCR model, despite not being trained for the target languages. Through extensive evaluation on multilingual Indic OCR benchmarks and deployment-oriented metrics, we find that the second strategy consistently achieves better accuracy-latency trade-offs. Chitrapathak-2 achieves 3-6x speedup over its predecessor with being state-of-the-art (SOTA) in Telugu (6.69 char ANLS) and second best in the rest. In addition, we present Parichay, an independent OCR model series designed specifically for 9 Indian government documents to extract structured key fields, achieving 89.8% Exact Match score with a faster inference. Together, these systems achieve SOTA performance and provide practical guidance for building production-scale OCR pipelines in the Indian context.
☆ Verifiable Semantics for Agent-to-Agent Communication
Multiagent AI systems require consistent communication, but we lack methods to verify that agents share the same understanding of the terms used. Natural language is interpretable but vulnerable to semantic drift, while learned protocols are efficient but opaque. We propose a certification protocol based on the stimulus-meaning model, where agents are tested on shared observable events and terms are certified if empirical disagreement falls below a statistical threshold. In this protocol, agents restricting their reasoning to certified terms ("core-guarded reasoning") achieve provably bounded disagreement. We also outline mechanisms for detecting drift (recertification) and recovering shared vocabulary (renegotiation). In simulations with varying degrees of semantic divergence, core-guarding reduces disagreement by 72-96%. In a validation with fine-tuned language models, disagreement is reduced by 51%. Our framework provides a first step towards verifiable agent-to-agent communication.
☆ Automated Histopathology Report Generation via Pyramidal Feature Extraction and the UNI Foundation Model
Generating diagnostic text from histopathology whole slide images (WSIs) is challenging due to the gigapixel scale of the input and the requirement for precise, domain specific language. We propose a hierarchical vision language framework that combines a frozen pathology foundation model with a Transformer decoder for report generation. To make WSI processing tractable, we perform multi resolution pyramidal patch selection (downsampling factors 2^3 to 2^6) and remove background and artifacts using Laplacian variance and HSV based criteria. Patch features are extracted with the UNI Vision Transformer and projected to a 6 layer Transformer decoder that generates diagnostic text via cross attention. To better represent biomedical terminology, we tokenize the output using BioGPT. Finally, we add a retrieval based verification step that compares generated reports with a reference corpus using Sentence BERT embeddings; if a high similarity match is found, the generated report is replaced with the retrieved ground truth reference to improve reliability.
comment: 9 pages. Equal contribution: Ahmet Halici, Ece Tugba Cebeci, Musa Balci
☆ AI-Driven Structure Refinement of X-ray Diffraction
Artificial intelligence can rapidly propose candidate phases and structures from X-ray diffraction (XRD), but these hypotheses often fail in downstream refinement because peak intensities cannot be stably assigned under severe overlap and diffraction consistency is enforced only weakly. Here we introduce WPEM, a physics-constrained whole-pattern decomposition and refinement workflow that turns Bragg's law into an explicit constraint within a batch expectation--maximization framework. WPEM models the full profile as a probabilistic mixture density and iteratively infers component-resolved intensities while keeping peak centres Bragg-consistent, producing a continuous, physically admissible intensity representation that remains stable in heavily overlapped regions and in the presence of mixed radiation or multiple phases. We benchmark WPEM on standard reference patterns (\ce{PbSO4} and \ce{Tb2BaCoO5}), where it yields lower $R_{\mathrm{p}}$/$R_{\mathrm{wp}}$ than widely used packages (FullProf and TOPAS) under matched refinement conditions. We further demonstrate generality across realistic experimental scenarios, including phase-resolved decomposition of a multiphase Ti--15Nb thin film, quantitative recovery of \ce{NaCl}--\ce{Li2CO3} mixture compositions, separation of crystalline peaks from amorphous halos in semicrystalline polymers, high-throughput operando lattice tracking in layered cathodes, automated refinement of a compositionally disordered Ru--Mn oxide solid solution (CCDC 2530452), and quantitative phase-resolved deciphering of an ancient Egyptian make-up sample from synchrotron powder XRD. By providing Bragg-consistent, uncertainty-aware intensity partitioning as a refinement-ready interface, WPEM closes the gap between AI-generated hypotheses and diffraction-admissible structure refinement on challenging XRD data.
☆ Articulated 3D Scene Graphs for Open-World Mobile Manipulation
Semantics has enabled 3D scene understanding and affordance-driven object interaction. However, robots operating in real-world environments face a critical limitation: they cannot anticipate how objects move. Long-horizon mobile manipulation requires closing the gap between semantics, geometry, and kinematics. In this work, we present MoMa-SG, a novel framework for building semantic-kinematic 3D scene graphs of articulated scenes containing a myriad of interactable objects. Given RGB-D sequences containing multiple object articulations, we temporally segment object interactions and infer object motion using occlusion-robust point tracking. We then lift point trajectories into 3D and estimate articulation models using a novel unified twist estimation formulation that robustly estimates revolute and prismatic joint parameters in a single optimization pass. Next, we associate objects with estimated articulations and detect contained objects by reasoning over parent-child relations at identified opening states. We also introduce the novel Arti4D-Semantic dataset, which uniquely combines hierarchical object semantics including parent-child relation labels with object axis annotations across 62 in-the-wild RGB-D sequences containing 600 object interactions and three distinct observation paradigms. We extensively evaluate the performance of MoMa-SG on two datasets and ablate key design choices of our approach. In addition, real-world experiments on both a quadruped and a mobile manipulator demonstrate that our semantic-kinematic scene graphs enable robust manipulation of articulated objects in everyday home environments. We provide code and data at: https://momasg.cs.uni-freiburg.de.
☆ HAWX: A Hardware-Aware FrameWork for Fast and Scalable ApproXimation of DNNs
This work presents HAWX, a hardware-aware scalable exploration framework that employs multi-level sensitivity scoring at different DNN abstraction levels (operator, filter, layer, and model) to guide selective integration of heterogeneous AxC blocks. Supported by predictive models for accuracy, power, and area, HAWX accelerates the evaluation of candidate configurations, achieving over 23* speedup in a layer-level search with two candidate approximate blocks and more than (3*106)* speedup at the filter-level search only for LeNet-5, while maintaining accuracy comparable to exhaustive search. Experiments across state-of-the-art DNN benchmarks such as VGG-11, ResNet-18, and EfficientNetLite demonstrate that the efficiency benefits of HAWX scale exponentially with network size. The HAWX hardware-aware search algorithm supports both spatial and temporal accelerator architectures, leveraging either off-the-shelf approximate components or customized designs.
☆ Spatial Audio Question Answering and Reasoning on Dynamic Source Movements
Spatial audio understanding aims to enable machines to interpret complex auditory scenes, particularly when sound sources move over time. In this work, we study Spatial Audio Question Answering (Spatial AQA) with a focus on movement reasoning, where a model must infer object motion, position, and directional changes directly from stereo audio. First, we introduce a movement-centric spatial audio augmentation framework that synthesizes diverse motion patterns from isolated mono audio events, enabling controlled and scalable training data generation. Second, we propose an end-to-end multimodal finetuning approach with a thinking mode, which allows audio-language models to produce explicit intermediate reasoning steps before predicting an answer. Third, we investigate the impact of query-conditioned source separation as a preprocessing stage and compare three inference regimes: no masking, an audio grounding model (AGM), and ground-truth masks. Our results show that reasoning amplifies the benefits of source separation, with thinking mode showing significant improvement of +5.1% when a single event is present in the question. These findings highlight the interplay between movement modeling, reasoning, and separation quality, offering new insights for advancing spatial audio understanding.
☆ Guide-Guard: Off-Target Predicting in CRISPR Applications
With the introduction of cyber-physical genome sequencing and editing technologies, such as CRISPR, researchers can more easily access tools to investigate and create remedies for a variety of topics in genetics and health science (e.g. agriculture and medicine). As the field advances and grows, new concerns present themselves in the ability to predict the off-target behavior. In this work, we explore the underlying biological and chemical model from a data driven perspective. Additionally, we present a machine learning based solution named \textit{Guide-Guard} to predict the behavior of the system given a gRNA in the CRISPR gene-editing process with 84\% accuracy. This solution is able to be trained on multiple different genes at the same time while retaining accuracy.
comment: 10 pages, 11 figs, accepted to IDEAL 2022
☆ A Self-Supervised Approach for Enhanced Feature Representations in Object Detection Tasks
In the fast-evolving field of artificial intelligence, where models are increasingly growing in complexity and size, the availability of labeled data for training deep learning models has become a significant challenge. Addressing complex problems like object detection demands considerable time and resources for data labeling to achieve meaningful results. For companies developing such applications, this entails extensive investment in highly skilled personnel or costly outsourcing. This research work aims to demonstrate that enhancing feature extractors can substantially alleviate this challenge, enabling models to learn more effective representations with less labeled data. Utilizing a self-supervised learning strategy, we present a model trained on unlabeled data that outperforms state-of-the-art feature extractors pre-trained on ImageNet and particularly designed for object detection tasks. Moreover, the results demonstrate that our approach encourages the model to focus on the most relevant aspects of an object, thus achieving better feature representations and, therefore, reinforcing its reliability and robustness.
☆ A Graph Meta-Network for Learning on Kolmogorov-Arnold Networks
Weight-space models learn directly from the parameters of neural networks, enabling tasks such as predicting their accuracy on new datasets. Naive methods -- like applying MLPs to flattened parameters -- perform poorly, making the design of better weight-space architectures a central challenge. While prior work leveraged permutation symmetries in standard networks to guide such designs, no analogous analysis or tailored architecture yet exists for Kolmogorov-Arnold Networks (KANs). In this work, we show that KANs share the same permutation symmetries as MLPs, and propose the KAN-graph, a graph representation of their computation. Building on this, we develop WS-KAN, the first weight-space architecture that learns on KANs, which naturally accounts for their symmetry. We analyze WS-KAN's expressive power, showing it can replicate an input KAN's forward pass - a standard approach for assessing expressiveness in weight-space architectures. We construct a comprehensive ``zoo'' of trained KANs spanning diverse tasks, which we use as benchmarks to empirically evaluate WS-KAN. Across all tasks, WS-KAN consistently outperforms structure-agnostic baselines, often by a substantial margin. Our code is available at https://github.com/BarSGuy/KAN-Graph-Metanetwork.
☆ The Diversity Paradox revisited: Systemic Effects of Feedback Loops in Recommender Systems
Recommender systems shape individual choices through feedback loops in which user behavior and algorithmic recommendations coevolve over time. The systemic effects of these loops remain poorly understood, in part due to unrealistic assumptions in existing simulation studies. We propose a feedback-loop model that captures implicit feedback, periodic retraining, probabilistic adoption of recommendations, and heterogeneous recommender systems. We apply the framework on online retail and music streaming data and analyze systemic effects of the feedback loop. We find that increasing recommender adoption may lead to a progressive diversification of individual consumption, while collective demand is redistributed in model- and domain-dependent ways, often amplifying popularity concentration. Temporal analyses further reveal that apparent increases in individual diversity observed in static evaluations are illusory: when adoption is fixed and time unfolds, individual diversity consistently decreases across all models. Our results highlight the need to move beyond static evaluations and explicitly account for feedback-loop dynamics when designing recommender systems.
☆ The Weight of a Bit: EMFI Sensitivity Analysis of Embedded Deep Learning Models
Fault injection attacks on embedded neural network models have been shown as a potent threat. Numerous works studied resilience of models from various points of view. As of now, there is no comprehensive study that would evaluate the influence of number representations used for model parameters against electromagnetic fault injection (EMFI) attacks. In this paper, we investigate how four different number representations influence the success of an EMFI attack on embedded neural network models. We chose two common floating-point representations (32-bit, and 16-bit), and two integer representations (8-bit, and 4-bit). We deployed four common image classifiers, ResNet-18, ResNet-34, ResNet-50, and VGG-11, on an embedded memory chip, and utilized a low-cost EMFI platform to trigger faults. Our results show that while floating-point representations exhibit almost a complete degradation in accuracy (Top-1 and Top-5) after a single fault injection, integer representations offer better resistance overall. Especially, when considering the the 8-bit representation on a relatively large network (VGG-11), the Top-1 accuracies stay at around 70% and the Top-5 at around 90%.
☆ Generative AI Usage of University Students: Navigating Between Education and Business
This study investigates generative artificial intelligence (GenAI) usage of university students who study alongside their professional career. Previous literature has paid little attention to part-time students and the intersectional use of GenAI between education and business. This study examines with a grounded theory approach the characteristics of GenAI usage of part-time students. Eleven students from a distance learning university were interviewed. Three causal and four intervening conditions, as well as strategies were identified, to influence the use of GenAI. The study highlights both the potential and challenges of GenAI usage in education and business. While GenAI can significantly enhance productivity and learning outcomes, concerns about ethical implications, reliability, and the risk of academic misconduct persist. The developed grounded model offers a comprehensive understanding of GenAI usage among students, providing valuable insights for educators, policymakers, and developers of GenAI tools seeking to bridge the gap between education and business.
☆ Multi-agent cooperation through in-context co-player inference
Achieving cooperation among self-interested agents remains a fundamental challenge in multi-agent reinforcement learning. Recent work showed that mutual cooperation can be induced between "learning-aware" agents that account for and shape the learning dynamics of their co-players. However, existing approaches typically rely on hardcoded, often inconsistent, assumptions about co-player learning rules or enforce a strict separation between "naive learners" updating on fast timescales and "meta-learners" observing these updates. Here, we demonstrate that the in-context learning capabilities of sequence models allow for co-player learning awareness without requiring hardcoded assumptions or explicit timescale separation. We show that training sequence model agents against a diverse distribution of co-players naturally induces in-context best-response strategies, effectively functioning as learning algorithms on the fast intra-episode timescale. We find that the cooperative mechanism identified in prior work-where vulnerability to extortion drives mutual shaping-emerges naturally in this setting: in-context adaptation renders agents vulnerable to extortion, and the resulting mutual pressure to shape the opponent's in-context learning dynamics resolves into the learning of cooperative behavior. Our results suggest that standard decentralized reinforcement learning on sequence models combined with co-player diversity provides a scalable path to learning cooperative behaviors.
comment: 26 pages, 4 figures
☆ Color-based Emotion Representation for Speech Emotion Recognition
Speech emotion recognition (SER) has traditionally relied on categorical or dimensional labels. However, this technique is limited in representing both the diversity and interpretability of emotions. To overcome this limitation, we focus on color attributes, such as hue, saturation, and value, to represent emotions as continuous and interpretable scores. We annotated an emotional speech corpus with color attributes via crowdsourcing and analyzed them. Moreover, we built regression models for color attributes in SER using machine learning and deep learning, and explored the multitask learning of color attribute regression and emotion classification. As a result, we demonstrated the relationship between color attributes and emotions in speech, and successfully developed color attribute regression models for SER. We also showed that multitask learning improved the performance of each task.
comment: Submitted to EUSIPCO2026
☆ Toward Scalable Verifiable Reward: Proxy State-Based Evaluation for Multi-turn Tool-Calling LLM Agents
Interactive large language model (LLM) agents operating via multi-turn dialogue and multi-step tool calling are increasingly used in production. Benchmarks for these agents must both reliably compare models and yield on-policy training data. Prior agentic benchmarks (e.g., tau-bench, tau2-bench, AppWorld) rely on fully deterministic backends, which are costly to build and iterate. We propose Proxy State-Based Evaluation, an LLM-driven simulation framework that preserves final state-based evaluation without a deterministic database. Specifically, a scenario specifies the user goal, user/system facts, expected final state, and expected agent behavior, and an LLM state tracker infers a structured proxy state from the full interaction trace. LLM judges then verify goal completion and detect tool/user hallucinations against scenario constraints. Empirically, our benchmark produces stable, model-differentiating rankings across families and inference-time reasoning efforts, and its on-/off-policy rollouts provide supervision that transfers to unseen scenarios. Careful scenario specification yields near-zero simulator hallucination rates as supported by ablation studies. The framework also supports sensitivity analyses over user personas. Human-LLM judge agreement exceeds 90%, indicating reliable automated evaluation. Overall, proxy state-based evaluation offers a practical, scalable alternative to deterministic agentic benchmarks for industrial LLM agents.
☆ Are LLMs Ready to Replace Bangla Annotators?
Large Language Models (LLMs) are increasingly used as automated annotators to scale dataset creation, yet their reliability as unbiased annotators--especially for low-resource and identity-sensitive settings--remains poorly understood. In this work, we study the behavior of LLMs as zero-shot annotators for Bangla hate speech, a task where even human agreement is challenging, and annotator bias can have serious downstream consequences. We conduct a systematic benchmark of 17 LLMs using a unified evaluation framework. Our analysis uncovers annotator bias and substantial instability in model judgments. Surprisingly, increased model scale does not guarantee improved annotation quality--smaller, more task-aligned models frequently exhibit more consistent behavior than their larger counterparts. These results highlight important limitations of current LLMs for sensitive annotation tasks in low-resource languages and underscore the need for careful evaluation before deployment.
☆ UCTECG-Net: Uncertainty-aware Convolution Transformer ECG Network for Arrhythmia Detection
Deep learning has improved automated electrocardiogram (ECG) classification, but limited insight into prediction reliability hinders its use in safety-critical settings. This paper proposes UCTECG-Net, an uncertainty-aware hybrid architecture that combines one-dimensional convolutions and Transformer encoders to process raw ECG signals and their spectrograms jointly. Evaluated on the MIT-BIH Arrhythmia and PTB Diagnostic datasets, UCTECG-Net outperforms LSTM, CNN1D, and Transformer baselines in terms of accuracy, precision, recall and F1 score, achieving up to 98.58% accuracy on MIT-BIH and 99.14% on PTB. To assess predictive reliability, we integrate three uncertainty quantification methods (Monte Carlo Dropout, Deep Ensembles, and Ensemble Monte Carlo Dropout) into all models and analyze their behavior using an uncertainty-aware confusion matrix and derived metrics. The results show that UCTECG-Net, particularly with Ensemble or EMCD, provides more reliable and better-aligned uncertainty estimates than competing architectures, offering a stronger basis for risk-aware ECG decision support.
☆ Graph neural network for colliding particles with an application to sea ice floe modeling
This paper introduces a novel approach to sea ice modeling using Graph Neural Networks (GNNs), utilizing the natural graph structure of sea ice, where nodes represent individual ice pieces, and edges model the physical interactions, including collisions. This concept is developed within a one-dimensional framework as a foundational step. Traditional numerical methods, while effective, are computationally intensive and less scalable. By utilizing GNNs, the proposed model, termed the Collision-captured Network (CN), integrates data assimilation (DA) techniques to effectively learn and predict sea ice dynamics under various conditions. The approach was validated using synthetic data, both with and without observed data points, and it was found that the model accelerates the simulation of trajectories without compromising accuracy. This advancement offers a more efficient tool for forecasting in marginal ice zones (MIZ) and highlights the potential of combining machine learning with data assimilation for more effective and efficient modeling.
☆ Geometric Neural Operators via Lie Group-Constrained Latent Dynamics
Neural operators offer an effective framework for learning solutions of partial differential equations for many physical systems in a resolution-invariant and data-driven manner. Existing neural operators, however, often suffer from instability in multi-layer iteration and long-horizon rollout, which stems from the unconstrained Euclidean latent space updates that violate the geometric and conservation laws. To address this challenge, we propose to constrain manifolds with low-rank Lie algebra parameterization that performs group action updates on the latent representation. Our method, termed Manifold Constraining based on Lie group (MCL), acts as an efficient \emph{plug-and-play} module that enforces geometric inductive bias to existing neural operators. Extensive experiments on various partial differential equations, such as 1-D Burgers and 2-D Navier-Stokes, over a wide range of parameters and steps demonstrate that our method effectively lowers the relative prediction error by 30-50\% at the cost of 2.26\% of parameter increase. The results show that our approach provides a scalable solution for improving long-term prediction fidelity by addressing the principled geometric constraints absent in the neural operator updates.
☆ Long-Tail Knowledge in Large Language Models: Taxonomy, Mechanisms, Interventions and Implications
Large language models (LLMs) are trained on web-scale corpora that exhibit steep power-law distributions, in which the distribution of knowledge is highly long-tailed, with most appearing infrequently. While scaling has improved average-case performance, persistent failures on low-frequency, domain-specific, cultural, and temporal knowledge remain poorly characterized. This paper develops a structured taxonomy and analysis of long-Tail Knowledge in large language models, synthesizing prior work across technical and sociotechnical perspectives. We introduce a structured analytical framework that synthesizes prior work across four complementary axes: how long-Tail Knowledge is defined, the mechanisms by which it is lost or distorted during training and inference, the technical interventions proposed to mitigate these failures, and the implications of these failures for fairness, accountability, transparency, and user trust. We further examine how existing evaluation practices obscure tail behavior and complicate accountability for rare but consequential failures. The paper concludes by identifying open challenges related to privacy, sustainability, and governance that constrain long-Tail Knowledge representation. Taken together, this paper provides a unifying conceptual framework for understanding how long-Tail Knowledge is defined, lost, evaluated, and manifested in deployed language model systems.
☆ Graphon Mean-Field Subsampling for Cooperative Heterogeneous Multi-Agent Reinforcement Learning
Coordinating large populations of interacting agents is a central challenge in multi-agent reinforcement learning (MARL), where the size of the joint state-action space scales exponentially with the number of agents. Mean-field methods alleviate this burden by aggregating agent interactions, but these approaches assume homogeneous interactions. Recent graphon-based frameworks capture heterogeneity, but are computationally expensive as the number of agents grows. Therefore, we introduce $\texttt{GMFS}$, a $\textbf{G}$raphon $\textbf{M}$ean-$\textbf{F}$ield $\textbf{S}$ubsampling framework for scalable cooperative MARL with heterogeneous agent interactions. By subsampling $κ$ agents according to interaction strength, we approximate the graphon-weighted mean-field and learn a policy with sample complexity $\mathrm{poly}(κ)$ and optimality gap $O(1/\sqrtκ)$. We verify our theory with numerical simulations in robotic coordination, showing that $\texttt{GMFS}$ achieves near-optimal performance.
comment: 43 pages, 5 figures, 1 table
☆ Temporal Panel Selection in Ongoing Citizens' Assemblies
Permanent citizens' assemblies are ongoing deliberative bodies composed of randomly selected citizens, organized into panels that rotate over time. Unlike one-off panels, which represent the population in a single snapshot, permanent assemblies enable shifting participation across multiple rounds. This structure offers a powerful framework for ensuring that different groups of individuals are represented over time across successive panels. In particular, it allows smaller groups of individuals that may not warrant representation in every individual panel to be represented across a sequence of them. We formalize this temporal sortition framework by requiring proportional representation both within each individual panel and across the sequence of panels. Building on the work of Ebadian and Micha (2025), we consider a setting in which the population lies in a metric space, and the goal is to achieve both proportional representation, ensuring that every group of citizens receives adequate representation, and individual fairness, ensuring that each individual has an equal probability of being selected. We extend the notion of representation to a temporal setting by requiring that every initial segment of the panel sequence, viewed as a cumulative whole, proportionally reflects the structure of the population. We present algorithms that provide varying guarantees of proportional representation, both within individual panels and across any sequence of panels, while also maintaining individual fairness over time.
comment: 20 pages, 2 figures, Accepted to AAMAS 2026
☆ Rethinking Input Domains in Physics-Informed Neural Networks via Geometric Compactification Mappings
Several complex physical systems are governed by multi-scale partial differential equations (PDEs) that exhibit both smooth low-frequency components and localized high-frequency structures. Existing physics-informed neural network (PINN) methods typically train with fixed coordinate system inputs, where geometric misalignment with these structures induces gradient stiffness and ill-conditioning that hinder convergence. To address this issue, we introduce a mapping paradigm that reshapes the input coordinates through differentiable geometric compactification mappings and couples the geometric structure of PDEs with the spectral properties of residual operators. Based on this paradigm, we propose Geometric Compactification (GC)-PINN, a framework that introduces three mapping strategies for periodic boundaries, far-field scale expansion, and localized singular structures in the input domain without modifying the underlying PINN architecture. Extensive empirical evaluation demonstrates that this approach yields more uniform residual distributions and higher solution accuracy on representative 1D and 2D PDEs, while improving training stability and convergence speed.
☆ Revolutionizing Long-Term Memory in AI: New Horizons with High-Capacity and High-Speed Storage
Driven by our mission of "uplifting the world with memory," this paper explores the design concept of "memory" that is essential for achieving artificial superintelligence (ASI). Rather than proposing novel methods, we focus on several alternative approaches whose potential benefits are widely imaginable, yet have remained largely unexplored. The currently dominant paradigm, which can be termed "extract then store," involves extracting information judged to be useful from experiences and saving only the extracted content. However, this approach inherently risks the loss of information, as some valuable knowledge particularly for different tasks may be discarded in the extraction process. In contrast, we emphasize the "store then on-demand extract" approach, which seeks to retain raw experiences and flexibly apply them to various tasks as needed, thus avoiding such information loss. In addition, we highlight two further approaches: discovering deeper insights from large collections of probabilistic experiences, and improving experience collection efficiency by sharing stored experiences. While these approaches seem intuitively effective, our simple experiments demonstrate that this is indeed the case. Finally, we discuss major challenges that have limited investigation into these promising directions and propose research topics to address them.
comment: 13 pages, 5 figures
☆ Beyond Learning: A Training-Free Alternative to Model Adaptation
Despite the continuous research and evolution of language models, they sometimes underperform previous versions. Existing approaches to overcome these challenges are resource-intensive, highlighting the need for alternatives that enable immediate action. We assume that each language model has a local module inside that is suitable for a specific function. First, this work identifies a set of modules showing consistent and local activation changes under an inference workload through activation-based analysis. Subsequently, we transplant an internal module that is properly activated for a specific task into the target model, leading to immediate and measurable functional changes without additional training or fine-tuning. To experimentally demonstrate the effectiveness of the transplant technique, we quantify the relationship between transplant strength and performance improvement under different conditions for two language models. In the cross-generation setting, we find that transplanting activation-selected modules can substantially improve the underperforming model, reaching up to twice the target baseline and achieving gap-based recovery above 100%. Moreover, in transplant experiments between a base model and its instruction-tuned counterpart, transplantation improves the underperforming model toward the stronger baseline, yielding up to about 2.33 times the target baseline with gap-based recovery reaching up to 100% in the best case. These results show that meaningful capacity transfer can be realized through the implantation of highly localized modules implied by language models. Overall, this work provides empirical evidence for task-localized modularity in language models and presents a new research area: model transplantation.
comment: 7 pages, 3 figures, 5 tables. Preprint submitted to Pattern Recognition Letters
☆ SIT-LMPC: Safe Information-Theoretic Learning Model Predictive Control for Iterative Tasks
Robots executing iterative tasks in complex, uncertain environments require control strategies that balance robustness, safety, and high performance. This paper introduces a safe information-theoretic learning model predictive control (SIT-LMPC) algorithm for iterative tasks. Specifically, we design an iterative control framework based on an information-theoretic model predictive control algorithm to address a constrained infinite-horizon optimal control problem for discrete-time nonlinear stochastic systems. An adaptive penalty method is developed to ensure safety while balancing optimality. Trajectories from previous iterations are utilized to learn a value function using normalizing flows, which enables richer uncertainty modeling compared to Gaussian priors. SIT-LMPC is designed for highly parallel execution on graphics processing units, allowing efficient real-time optimization. Benchmark simulations and hardware experiments demonstrate that SIT-LMPC iteratively improves system performance while robustly satisfying system constraints.
comment: 8 pages, 5 figures. Published in IEEE RA-L, vol. 11, no. 1, Jan. 2026. Presented at ICRA 2026
☆ EnterpriseGym Corecraft: Training Generalizable Agents on High-Fidelity RL Environments
We show that training AI agents on high-fidelity reinforcement learning environments produces capabilities that generalize beyond the training distribution. We introduce \corecraft{}, the first environment in \textsc{EnterpriseGym}, Surge AI's suite of agentic RL environments. \corecraft{} is a fully operational enterprise simulation of a customer support organization, comprising over 2,500 entities across 14 entity types with 23 unique tools, designed to measure whether AI agents can perform the multi-step, domain-specific work that real jobs demand. Frontier models such as GPT-5.2 and Claude Opus 4.6 solve fewer than 30\% of tasks when all expert-authored rubric criteria must be satisfied. Using this environment, we train GLM~4.6 with Group Relative Policy Optimization (GRPO) and adaptive clipping. After a single epoch of training, the model improves from 25.37\% to 36.76\% task pass rate on held-out evaluation tasks. More importantly, these gains transfer to out-of-distribution benchmarks: +4.5\% on BFCL Parallel, +7.4\% on $τ^2$-Bench Retail, and +6.8\% on Toolathlon (Pass@1). We believe three environment properties are consistent with the observed transfer: task-centric world building that optimizes for diverse, challenging tasks; expert-authored rubrics enabling reliable reward computation; and enterprise workflows that reflect realistic professional patterns. Our results suggest that environment quality, diversity, and realism are key factors enabling generalizable agent capabilities.
☆ Conjugate Learning Theory: Uncovering the Mechanisms of Trainability and Generalization in Deep Neural Networks
In this work, we propose a notion of practical learnability grounded in finite sample settings, and develop a conjugate learning theoretical framework based on convex conjugate duality to characterize this learnability property. Building on this foundation, we demonstrate that training deep neural networks (DNNs) with mini-batch stochastic gradient descent (SGD) achieves global optima of empirical risk by jointly controlling the extreme eigenvalues of a structure matrix and the gradient energy, and we establish a corresponding convergence theorem. We further elucidate the impact of batch size and model architecture (including depth, parameter count, sparsity, skip connections, and other characteristics) on non-convex optimization. Additionally, we derive a model-agnostic lower bound for the achievable empirical risk, theoretically demonstrating that data determines the fundamental limit of trainability. On the generalization front, we derive deterministic and probabilistic bounds on generalization error based on generalized conditional entropy measures. The former explicitly delineates the range of generalization error, while the latter characterizes the distribution of generalization error relative to the deterministic bounds under independent and identically distributed (i.i.d.) sampling conditions. Furthermore, these bounds explicitly quantify the influence of three key factors: (i) information loss induced by irreversibility in the model, (ii) the maximum attainable loss value, and (iii) the generalized conditional entropy of features with respect to labels. Moreover, they offer a unified theoretical lens for understanding the roles of regularization, irreversible transformations, and network depth in shaping the generalization behavior of deep neural networks. Extensive experiments validate all theoretical predictions, confirming the framework's correctness and consistency.
☆ Edge Learning via Federated Split Decision Transformers for Metaverse Resource Allocation
Mobile edge computing (MEC) based wireless metaverse services offer an untethered, immersive experience to users, where the superior quality of experience (QoE) needs to be achieved under stringent latency constraints and visual quality demands. To achieve this, MEC-based intelligent resource allocation for virtual reality users needs to be supported by coordination across MEC servers to harness distributed data. Federated learning (FL) is a promising solution, and can be combined with reinforcement learning (RL) to develop generalized policies across MEC-servers. However, conventional FL incurs transmitting the full model parameters across the MEC-servers and the cloud, and suffer performance degradation due to naive global aggregation, especially in heterogeneous multi-radio access technology environments. To address these challenges, this paper proposes Federated Split Decision Transformer (FSDT), an offline RL framework where the transformer model is partitioned between MEC servers and the cloud. Agent-specific components (e.g., MEC-based embedding and prediction layers) enable local adaptability, while shared global layers in the cloud facilitate cooperative training across MEC servers. Experimental results demonstrate that FSDT enhances QoE for up to 10% in heterogeneous environments compared to baselines, while offloadingnearly 98% of the transformer model parameters to the cloud, thereby reducing the computational burden on MEC servers.
comment: 6 pages, 4 figures, Accepted paper at IEEE International Conference on Communications (ICC) 2026
☆ Learning Personalized Agents from Human Feedback
Modern AI agents are powerful but often fail to align with the idiosyncratic, evolving preferences of individual users. Prior approaches typically rely on static datasets, either training implicit preference models on interaction history or encoding user profiles in external memory. However, these approaches struggle with new users and with preferences that change over time. We introduce Personalized Agents from Human Feedback (PAHF), a framework for continual personalization in which agents learn online from live interaction using explicit per-user memory. PAHF operationalizes a three-step loop: (1) seeking pre-action clarification to resolve ambiguity, (2) grounding actions in preferences retrieved from memory, and (3) integrating post-action feedback to update memory when preferences drift. To evaluate this capability, we develop a four-phase protocol and two benchmarks in embodied manipulation and online shopping. These benchmarks quantify an agent's ability to learn initial preferences from scratch and subsequently adapt to persona shifts. Our theoretical analysis and empirical results show that integrating explicit memory with dual feedback channels is critical: PAHF learns substantially faster and consistently outperforms both no-memory and single-channel baselines, reducing initial personalization error and enabling rapid adaptation to preference shifts.
☆ HiPER: Hierarchical Reinforcement Learning with Explicit Credit Assignment for Large Language Model Agents
Training LLMs as interactive agents for multi-turn decision-making remains challenging, particularly in long-horizon tasks with sparse and delayed rewards, where agents must execute extended sequences of actions before receiving meaningful feedback. Most existing reinforcement learning (RL) approaches model LLM agents as flat policies operating at a single time scale, selecting one action at each turn. In sparse-reward settings, such flat policies must propagate credit across the entire trajectory without explicit temporal abstraction, which often leads to unstable optimization and inefficient credit assignment. We propose HiPER, a novel Hierarchical Plan-Execute RL framework that explicitly separates high-level planning from low-level execution. HiPER factorizes the policy into a high-level planner that proposes subgoals and a low-level executor that carries them out over multiple action steps. To align optimization with this structure, we introduce a key technique called hierarchical advantage estimation (HAE), which carefully assigns credit at both the planning and execution levels. By aggregating returns over the execution of each subgoal and coordinating updates across the two levels, HAE provides an unbiased gradient estimator and provably reduces variance compared to flat generalized advantage estimation. Empirically, HiPER achieves state-of-the-art performance on challenging interactive benchmarks, reaching 97.4\% success on ALFWorld and 83.3\% on WebShop with Qwen2.5-7B-Instruct (+6.6\% and +8.3\% over the best prior method), with especially large gains on long-horizon tasks requiring multiple dependent subtasks. These results highlight the importance of explicit hierarchical decomposition for scalable RL training of multi-turn LLM agents.
☆ Balancing Faithfulness and Performance in Reasoning via Multi-Listener Soft Execution
Chain-of-thought (CoT) reasoning sometimes fails to faithfully reflect the true computation of a large language model (LLM), hampering its utility in explaining how LLMs arrive at their answers. Moreover, optimizing for faithfulness and interpretability in reasoning often degrades task performance. To address this tradeoff and improve CoT faithfulness, we propose Reasoning Execution by Multiple Listeners (REMUL), a multi-party reinforcement learning approach. REMUL builds on the hypothesis that reasoning traces which other parties can follow will be more faithful. A speaker model generates a reasoning trace, which is truncated and passed to a pool of listener models who "execute" the trace, continuing the trace to an answer. Speakers are rewarded for producing reasoning that is clear to listeners, with additional correctness regularization via masked supervised finetuning to counter the tradeoff between faithfulness and performance. On multiple reasoning benchmarks (BIG-Bench Extra Hard, MuSR, ZebraLogicBench, and FOLIO), REMUL consistently and substantially improves three measures of faithfulness -- hint attribution, early answering area over the curve (AOC), and mistake injection AOC -- while also improving accuracy. Our analysis finds that these gains are robust across training domains, translate to legibility gains, and are associated with shorter and more direct CoTs.
comment: Code: https://github.com/nsivaku/remul
☆ ASPEN: Spectral-Temporal Fusion for Cross-Subject Brain Decoding
Cross-subject generalization in EEG-based brain-computer interfaces (BCIs) remains challenging due to individual variability in neural signals. We investigate whether spectral representations offer more stable features for cross-subject transfer than temporal waveforms. Through correlation analyses across three EEG paradigms (SSVEP, P300, and Motor Imagery), we find that spectral features exhibit consistently higher cross-subject similarity than temporal signals. Motivated by this observation, we introduce ASPEN, a hybrid architecture that combines spectral and temporal feature streams via multiplicative fusion, requiring cross-modal agreement for features to propagate. Experiments across six benchmark datasets reveal that ASPEN is able to dynamically achieve the optimal spectral-temporal balance depending on the paradigm. ASPEN achieves the best unseen-subject accuracy on three of six datasets and competitive performance on others, demonstrating that multiplicative multimodal fusion enables effective cross-subject generalization.
☆ Human-AI Collaboration in Large Language Model-Integrated Building Energy Management Systems: The Role of User Domain Knowledge and AI Literacy
This study aimed to comprehend how user domain knowledge and artificial intelligence (AI) literacy impact the effective use of human-AI interactive building energy management system (BEMS). While prior studies have investigated the potential of integrating large language models (LLMs) into BEMS or building energy modeling, very few studies have examined how user interact with such systems. We conducted a systematic role-playing experiment, where 85 human subjects interacted with an advanced generative pre-trained transformer (OpenAI GPT-4o). Participants were tasked with identifying the top five behavioral changes that could reduce home energy use with the GPT model that functioned as an LLM-integrated BEMS. Then, the collected prompt-response data and participant conclusions were analyzed using an analytical framework that hierarchically assessed and scored human-AI interactions and their home energy analysis approaches. Also, participants were classified into four groups based on their self-evaluated domain knowledge of building energy use and AI literacy, and Kruskal-Wallis H tests with post-hoc pairwise comparisons were conducted across 20 quantifiable metrics. Key takeaways include: most participants employed concise prompts (median: 16.2 words) and relied heavily on GPT's analytical capabilities; and notably, only 1 of 20 metrics, appliance identification rate, showed statistically significant group differences (p=0.037), driven by AI literacy rather than domain knowledge, suggesting an equalizing effect of LLMs across expertise levels. This study provides foundational insights into human-AI collaboration dynamics and promising development directions in the context of LLM-integrated BEMS and contributes to realizing human-centric LLM-integrated energy systems.
comment: 39 pages, 11 figures
☆ Retrieval Collapses When AI Pollutes the Web
The rapid proliferation of AI-generated content on the Web presents a structural risk to information retrieval, as search engines and Retrieval-Augmented Generation (RAG) systems increasingly consume evidence produced by the Large Language Models (LLMs). We characterize this ecosystem-level failure mode as Retrieval Collapse, a two-stage process where (1) AI-generated content dominates search results, eroding source diversity, and (2) low-quality or adversarial content infiltrates the retrieval pipeline. We analyzed this dynamic through controlled experiments involving both high-quality SEO-style content and adversarially crafted content. In the SEO scenario, a 67\% pool contamination led to over 80\% exposure contamination, creating a homogenized yet deceptively healthy state where answer accuracy remains stable despite the reliance on synthetic sources. Conversely, under adversarial contamination, baselines like BM25 exposed $\sim$19\% of harmful content, whereas LLM-based rankers demonstrated stronger suppression capabilities. These findings highlight the risk of retrieval pipelines quietly shifting toward synthetic evidence and the need for retrieval-aware strategies to prevent a self-reinforcing cycle of quality decline in Web-grounded systems.
comment: 4 pages, Proceedings of The Web Conference 2026 (WWW '26)
☆ Rethinking ANN-based Retrieval: Multifaceted Learnable Index for Large-scale Recommendation System
Approximate nearest neighbor (ANN) search is widely used in the retrieval stage of large-scale recommendation systems. In this stage, candidate items are indexed using their learned embedding vectors, and ANN search is executed for each user (or item) query to retrieve a set of relevant items. However, ANN-based retrieval has two key limitations. First, item embeddings and their indices are typically learned in separate stages: indexing is often performed offline after embeddings are trained, which can yield suboptimal retrieval quality-especially for newly created items. Second, although ANN offers sublinear query time, it must still be run for every request, incurring substantial computation cost at industry scale. In this paper, we propose MultiFaceted Learnable Index (MFLI), a scalable, real-time retrieval paradigm that learns multifaceted item embeddings and indices within a unified framework and eliminates ANN search at serving time. Specifically, we construct a multifaceted hierarchical codebook via residual quantization of item embeddings and co-train the codebook with the embeddings. We further introduce an efficient multifaceted indexing structure and mechanisms that support real-time updates. At serving time, the learned hierarchical indices are used directly to identify relevant items, avoiding ANN search altogether. Extensive experiments on real-world data with billions of users show that MFLI improves recall on engagement tasks by up to 11.8\%, cold-content delivery by up to 57.29\%, and semantic relevance by 13.5\% compared with prior state-of-the-art methods. We also deploy MFLI in the system and report online experimental results demonstrating improved engagement, less popularity bias, and higher serving efficiency.
☆ Surrogate-Based Prevalence Measurement for Large-Scale A/B Testing
Online media platforms often need to measure how frequently users are exposed to specific content attributes in order to evaluate trade-offs in A/B experiments. A direct approach is to sample content, label it using a high-quality rubric (e.g., an expert-reviewed LLM prompt), and estimate impression-weighted prevalence. However, repeatedly running such labeling for every experiment arm and segment is too costly and slow to serve as a default measurement at scale. We present a scalable \emph{surrogate-based prevalence measurement} framework that decouples expensive labeling from per-experiment evaluation. The framework calibrates a surrogate signal to reference labels offline and then uses only impression logs to estimate prevalence for arbitrary experiment arms and segments. We instantiate this framework using \emph{score bucketing} as the surrogate: we discretize a model score into buckets, estimate bucket-level prevalences from an offline labeled sample, and combine these calibrated bucket level prevalences with the bucket distribution of impressions in each arm to obtain fast, log-based estimates. Across multiple large-scale A/B tests, we validate that the surrogate estimates closely match the reference estimates for both arm-level prevalence and treatment--control deltas. This enables scalable, low-latency prevalence measurement in experimentation without requiring per-experiment labeling jobs.
☆ OmniCT: Towards a Unified Slice-Volume LVLM for Comprehensive CT Analysis
Computed Tomography (CT) is one of the most widely used and diagnostically information-dense imaging modalities, covering critical organs such as the heart, lungs, liver, and colon. Clinical interpretation relies on both slice-driven local features (e.g., sub-centimeter nodules, lesion boundaries) and volume-driven spatial representations (e.g., tumor infiltration, inter-organ anatomical relations). However, existing Large Vision-Language Models (LVLMs) remain fragmented in CT slice versus volumetric understanding: slice-driven LVLMs show strong generalization but lack cross-slice spatial consistency, while volume-driven LVLMs explicitly capture volumetric semantics but suffer from coarse granularity and poor compatibility with slice inputs. The absence of a unified modeling paradigm constitutes a major bottleneck for the clinical translation of medical LVLMs. We present OmniCT, a powerful unified slice-volume LVLM for CT scenarios, which makes three contributions: (i) Spatial Consistency Enhancement (SCE): volumetric slice composition combined with tri-axial positional embedding that introduces volumetric consistency, and an MoE hybrid projection enables efficient slice-volume adaptation; (ii) Organ-level Semantic Enhancement (OSE): segmentation and ROI localization explicitly align anatomical regions, emphasizing lesion- and organ-level semantics; (iii) MedEval-CT: the largest slice-volume CT dataset and hybrid benchmark integrates comprehensive metrics for unified evaluation. OmniCT consistently outperforms existing methods with a substantial margin across diverse clinical tasks and satisfies both micro-level detail sensitivity and macro-level spatial reasoning. More importantly, it establishes a new paradigm for cross-modal medical imaging understanding.
☆ Federated Graph AGI for Cross-Border Insider Threat Intelligence in Government Financial Schemes
Cross-border insider threats pose a critical challenge to government financial schemes, particularly when dealing with distributed, privacy-sensitive data across multiple jurisdictions. Existing approaches face fundamental limitations: they cannot effectively share intelligence across borders due to privacy constraints, lack reasoning capabilities to understand complex multi-step attack patterns, and fail to capture intricate graph-structured relationships in financial networks. We introduce FedGraph-AGI, a novel federated learning framework integrating Artificial General Intelligence (AGI) reasoning with graph neural networks for privacy-preserving cross-border insider threat detection. Our approach combines: (1) federated graph neural networks preserving data sovereignty; (2) Mixture-of-Experts (MoE) aggregation for heterogeneous jurisdictions; and (3) AGI-powered reasoning via Large Action Models (LAM) performing causal inference over graph data. Through experiments on a 50,000-transaction dataset across 10 jurisdictions, FedGraph-AGI achieves 92.3% accuracy, significantly outperforming federated baselines (86.1%) and centralized approaches (84.7%). Our ablation studies reveal AGI reasoning contributes 6.8% improvement, while MoE adds 4.4%. The system maintains epsilon = 1.0 differential privacy while achieving near-optimal performance and scales efficiently to 50+ clients. This represents the first integration of AGI reasoning with federated graph learning for insider threat detection, opening new directions for privacy-preserving cross-border intelligence sharing.
comment: 35 Pages, 8 figures
☆ GPSBench: Do Large Language Models Understand GPS Coordinates?
Large Language Models (LLMs) are increasingly deployed in applications that interact with the physical world, such as navigation, robotics, or mapping, making robust geospatial reasoning a critical capability. Despite that, LLMs' ability to reason about GPS coordinates and real-world geography remains underexplored. We introduce GPSBench, a dataset of 57,800 samples across 17 tasks for evaluating geospatial reasoning in LLMs, spanning geometric coordinate operations (e.g., distance and bearing computation) and reasoning that integrates coordinates with world knowledge. Focusing on intrinsic model capabilities rather than tool use, we evaluate 14 state-of-the-art LLMs and find that GPS reasoning remains challenging, with substantial variation across tasks: models are generally more reliable at real-world geographic reasoning than at geometric computations. Geographic knowledge degrades hierarchically, with strong country-level performance but weak city-level localization, while robustness to coordinate noise suggests genuine coordinate understanding rather than memorization. We further show that GPS-coordinate augmentation can improve in downstream geospatial tasks, and that finetuning induces trade-offs between gains in geometric computation and degradation in world knowledge. Our dataset and reproducible code are available at https://github.com/joey234/gpsbench
☆ One Hand to Rule Them All: Canonical Representations for Unified Dexterous Manipulation
Dexterous manipulation policies today largely assume fixed hand designs, severely restricting their generalization to new embodiments with varied kinematic and structural layouts. To overcome this limitation, we introduce a parameterized canonical representation that unifies a broad spectrum of dexterous hand architectures. It comprises a unified parameter space and a canonical URDF format, offering three key advantages. 1) The parameter space captures essential morphological and kinematic variations for effective conditioning in learning algorithms. 2) A structured latent manifold can be learned over our space, where interpolations between embodiments yield smooth and physically meaningful morphology transitions. 3) The canonical URDF standardizes the action space while preserving dynamic and functional properties of the original URDFs, enabling efficient and reliable cross-embodiment policy learning. We validate these advantages through extensive analysis and experiments, including grasp policy replay, VAE latent encoding, and cross-embodiment zero-shot transfer. Specifically, we train a VAE on the unified representation to obtain a compact, semantically rich latent embedding, and develop a grasping policy conditioned on the canonical representation that generalizes across dexterous hands. We demonstrate, through simulation and real-world tasks on unseen morphologies (e.g., 81.9% zero-shot success rate on 3-finger LEAP Hand), that our framework unifies both the representational and action spaces of structurally diverse hands, providing a scalable foundation for cross-hand learning toward universal dexterous manipulation.
comment: Project Page: https://zhenyuwei2003.github.io/OHRA/
☆ EgoScale: Scaling Dexterous Manipulation with Diverse Egocentric Human Data
Human behavior is among the most scalable sources of data for learning physical intelligence, yet how to effectively leverage it for dexterous manipulation remains unclear. While prior work demonstrates human to robot transfer in constrained settings, it is unclear whether large scale human data can support fine grained, high degree of freedom dexterous manipulation. We present EgoScale, a human to dexterous manipulation transfer framework built on large scale egocentric human data. We train a Vision Language Action (VLA) model on over 20,854 hours of action labeled egocentric human video, more than 20 times larger than prior efforts, and uncover a log linear scaling law between human data scale and validation loss. This validation loss strongly correlates with downstream real robot performance, establishing large scale human data as a predictable supervision source. Beyond scale, we introduce a simple two stage transfer recipe: large scale human pretraining followed by lightweight aligned human robot mid training. This enables strong long horizon dexterous manipulation and one shot task adaptation with minimal robot supervision. Our final policy improves average success rate by 54% over a no pretraining baseline using a 22 DoF dexterous robotic hand, and transfers effectively to robots with lower DoF hands, indicating that large scale human motion provides a reusable, embodiment agnostic motor prior.
☆ Learning Humanoid End-Effector Control for Open-Vocabulary Visual Loco-Manipulation
Visual loco-manipulation of arbitrary objects in the wild with humanoid robots requires accurate end-effector (EE) control and a generalizable understanding of the scene via visual inputs (e.g., RGB-D images). Existing approaches are based on real-world imitation learning and exhibit limited generalization due to the difficulty in collecting large-scale training datasets. This paper presents a new paradigm, HERO, for object loco-manipulation with humanoid robots that combines the strong generalization and open-vocabulary understanding of large vision models with strong control performance from simulated training. We achieve this by designing an accurate residual-aware EE tracking policy. This EE tracking policy combines classical robotics with machine learning. It uses a) inverse kinematics to convert residual end-effector targets into reference trajectories, b) a learned neural forward model for accurate forward kinematics, c) goal adjustment, and d) replanning. Together, these innovations help us cut down the end-effector tracking error by 3.2x. We use this accurate end-effector tracker to build a modular system for loco-manipulation, where we use open-vocabulary large vision models for strong visual generalization. Our system is able to operate in diverse real-world environments, from offices to coffee shops, where the robot is able to reliably manipulate various everyday objects (e.g., mugs, apples, toys) on surfaces ranging from 43cm to 92cm in height. Systematic modular and end-to-end tests in simulation and the real world demonstrate the effectiveness of our proposed design. We believe the advances in this paper can open up new ways of training humanoid robots to interact with daily objects.
comment: Project page: https://hero-humanoid.github.io/
☆ Learning to unfold cloth: Scaling up world models to deformable object manipulation
Learning to manipulate cloth is both a paradigmatic problem for robotic research and a problem of immediate relevance to a variety of applications ranging from assistive care to the service industry. The complex physics of the deformable object makes this problem of cloth manipulation nontrivial. In order to create a general manipulation strategy that addresses a variety of shapes, sizes, fold and wrinkle patterns, in addition to the usual problems of appearance variations, it becomes important to carefully consider model structure and their implications for generalisation performance. In this paper, we present an approach to in-air cloth manipulation that uses a variation of a recently proposed reinforcement learning architecture, DreamerV2. Our implementation modifies this architecture to utilise surface normals input, in addition to modiying the replay buffer and data augmentation procedures. Taken together these modifications represent an enhancement to the world model used by the robot, addressing the physical complexity of the object being manipulated by the robot. We present evaluations both in simulation and in a zero-shot deployment of the trained policies in a physical robot setup, performing in-air unfolding of a variety of different cloth types, demonstrating the generalisation benefits of our proposed architecture.
comment: 8 pages, 5 figures, 3 tables
☆ Towards Autonomous Robotic Kidney Ultrasound: Spatial-Efficient Volumetric Imaging via Template Guided Optimal Pivoting
Medical ultrasound (US) imaging is a frontline tool for the diagnosis of kidney diseases. However, traditional freehand imaging procedure suffers from inconsistent, operator-dependent outcomes, lack of 3D localization information, and risks of work-related musculoskeletal disorders. While robotic ultrasound (RUS) systems offer the potential for standardized, operator-independent 3D kidney data acquisition, the existing scanning methods lack the ability to determine the optimal imaging window for efficient imaging. As a result, the scan is often blindly performed with excessive probe footprint, which frequently leads to acoustic shadowing and incomplete organ coverage. Consequently, there is a critical need for a spatially efficient imaging technique that can maximize the kidney coverage through minimum probe footprint. Here, we propose an autonomous workflow to achieve efficient kidney imaging via template-guided optimal pivoting. The system first performs an explorative imaging to generate partial observations of the kidney. This data is then registered to a kidney template to estimate the organ pose. With the kidney localized, the robot executes a fixed-point pivoting sweep where the imaging plane is aligned with the kidney long axis to minimize the probe translation. The proposed method was validated in simulation and in-vivo. Simulation results indicate that a 60% exploration ratio provides optimal balance between kidney localization accuracy and scanning efficiency. In-vivo evaluation on two male subjects demonstrates a kidney localization accuracy up to 7.36 mm and 13.84 degrees. Moreover, the optimal pivoting approach shortened the probe footprint by around 75 mm when compared with the baselines. These results valid our approach of leveraging anatomical templates to align the probe optimally for volumetric sweep.
☆ Sensor Query Schedule and Sensor Noise Covariances for Accuracy-constrained Trajectory Estimation
Trajectory estimation involves determining the trajectory of a mobile robot by combining prior knowledge about its dynamic model with noisy observations of its state obtained using sensors. The accuracy of such a procedure is dictated by the system model fidelity and the sensor parameters, such as the accuracy of the sensor (as represented by its noise covariance) and the rate at which it can generate observations, referred to as the sensor query schedule. Intuitively, high-rate measurements from accurate sensors lead to accurate trajectory estimation. However, cost and resource constraints limit the sensor accuracy and its measurement rate. Our work's novel contribution is the estimation of sensor schedules and sensor covariances necessary to achieve a specific estimation accuracy. Concretely, we focus on estimating: (i) the rate or schedule with which a sensor of known covariance must generate measurements to achieve specific estimation accuracy, and alternatively, (ii) the sensor covariance necessary to achieve specific estimation accuracy for a given sensor update rate. We formulate the problem of estimating these sensor parameters as semidefinite programs, which can be solved by off-the-shelf solvers. We validate our approach in simulation and real experiments by showing that the sensor schedules and the sensor covariances calculated using our proposed method achieve the desired trajectory estimation accuracy. Our method also identifies scenarios where certain estimation accuracy is unachievable with the given system and sensor characteristics.
☆ Decentralized and Fully Onboard: Range-Aided Cooperative Localization and Navigation on Micro Aerial Vehicles
Controlling a team of robots in a coordinated manner is challenging because centralized approaches (where all computation is performed on a central machine) scale poorly, and globally referenced external localization systems may not always be available. In this work, we consider the problem of range-aided decentralized localization and formation control. In such a setting, each robot estimates its relative pose by combining data only from onboard odometry sensors and distance measurements to other robots in the team. Additionally, each robot calculates the control inputs necessary to collaboratively navigate an environment to accomplish a specific task, for example, moving in a desired formation while monitoring an area. We present a block coordinate descent approach to localization that does not require strict coordination between the robots. We present a novel formulation for formation control as inference on factor graphs that takes into account the state estimation uncertainty and can be solved efficiently. Our approach to range-aided localization and formation-based navigation is completely decentralized, does not require specialized trajectories to maintain formation, and achieves decimeter-level positioning and formation control accuracy. We demonstrate our approach through multiple real experiments involving formation flights in diverse indoor and outdoor environments.
☆ VIGOR: Visual Goal-In-Context Inference for Unified Humanoid Fall Safety
Reliable fall recovery is critical for humanoids operating in cluttered environments. Unlike quadrupeds or wheeled robots, humanoids experience high-energy impacts, complex whole-body contact, and large viewpoint changes during a fall, making recovery essential for continued operation. Existing methods fragment fall safety into separate problems such as fall avoidance, impact mitigation, and stand-up recovery, or rely on end-to-end policies trained without vision through reinforcement learning or imitation learning, often on flat terrain. At a deeper level, fall safety is treated as monolithic data complexity, coupling pose, dynamics, and terrain and requiring exhaustive coverage, limiting scalability and generalization. We present a unified fall safety approach that spans all phases of fall recovery. It builds on two insights: 1) Natural human fall and recovery poses are highly constrained and transferable from flat to complex terrain through alignment, and 2) Fast whole-body reactions require integrated perceptual-motor representations. We train a privileged teacher using sparse human demonstrations on flat terrain and simulated complex terrains, and distill it into a deployable student that relies only on egocentric depth and proprioception. The student learns how to react by matching the teacher's goal-in-context latent representation, which combines the next target pose with the local terrain, rather than separately encoding what it must perceive and how it must act. Results in simulation and on a real Unitree G1 humanoid demonstrate robust, zero-shot fall safety across diverse non-flat environments without real-world fine-tuning. The project page is available at https://vigor2026.github.io/
☆ Reactive Motion Generation With Particle-Based Perception in Dynamic Environments
Reactive motion generation in dynamic and unstructured scenarios is typically subject to essentially static perception and system dynamics. Reliably modeling dynamic obstacles and optimizing collision-free trajectories under perceptive and control uncertainty are challenging. This article focuses on revealing tight connection between reactive planning and dynamic mapping for manipulators from a model-based perspective. To enable efficient particle-based perception with expressively dynamic property, we present a tensorized particle weight update scheme that explicitly maintains obstacle velocities and covariance meanwhile. Building upon this dynamic representation, we propose an obstacle-aware MPPI-based planning formulation that jointly propagates robot-obstacle dynamics, allowing future system motion to be predicted and evaluated under uncertainty. The model predictive method is shown to significantly improve safety and reactivity with dynamic surroundings. By applying our complete framework in simulated and noisy real-world environments, we demonstrate that explicit modeling of robot-obstacle dynamics consistently enhances performance over state-of-the-art MPPI-based perception-planning baselines avoiding multiple static and dynamic obstacles.
comment: This paper has 20 pages, 15 figures, and 3 tables
☆ Dynamic Modeling and MPC for Locomotion of Tendon-Driven Soft Quadruped
SLOT (Soft Legged Omnidirectional Tetrapod), a tendon-driven soft quadruped robot with 3D-printed TPU legs, is presented to study physics-informed modeling and control of compliant legged locomotion using only four actuators. Each leg is modeled as a deformable continuum using discrete Cosserat rod theory, enabling the capture of large bending deformations, distributed elasticity, tendon actuation, and ground contact interactions. A modular whole-body modeling framework is introduced, in which compliant leg dynamics are represented through physically consistent reaction forces applied to a rigid torso, providing a scalable interface between continuum soft limbs and rigid-body locomotion dynamics. This formulation allows efficient whole-body simulation and real-time control without sacrificing physical fidelity. The proposed model is embedded into a convex model predictive control framework that optimizes ground reaction forces over a 0.495 s prediction horizon and maps them to tendon actuation through a physics-informed force-angle relationship. The resulting controller achieves asymptotic stability under diverse perturbations. The framework is experimentally validated on a physical prototype during crawling and walking gaits, achieving high accuracy with less than 5 mm RMSE in center of mass trajectories. These results demonstrate a generalizable approach for integrating continuum soft legs into model-based locomotion control, advancing scalable and reusable modeling and control methods for soft quadruped robots.
☆ Markerless 6D Pose Estimation and Position-Based Visual Servoing for Endoscopic Continuum Manipulators
Continuum manipulators in flexible endoscopic surgical systems offer high dexterity for minimally invasive procedures; however, accurate pose estimation and closed-loop control remain challenging due to hysteresis, compliance, and limited distal sensing. Vision-based approaches reduce hardware complexity but are often constrained by limited geometric observability and high computational overhead, restricting real-time closed-loop applicability. This paper presents a unified framework for markerless stereo 6D pose estimation and position-based visual servoing of continuum manipulators. A photo-realistic simulation pipeline enables large-scale automatic training with pixel-accurate annotations. A stereo-aware multi-feature fusion network jointly exploits segmentation masks, keypoints, heatmaps, and bounding boxes to enhance geometric observability. To enforce geometric consistency without iterative optimization, a feed-forward rendering-based refinement module predicts residual pose corrections in a single pass. A self-supervised sim-to-real adaptation strategy further improves real-world performance using unlabeled data. Extensive real-world validation achieves a mean translation error of 0.83 mm and a mean rotation error of 2.76° across 1,000 samples. Markerless closed-loop visual servoing driven by the estimated pose attains accurate trajectory tracking with a mean translation error of 2.07 mm and a mean rotation error of 7.41°, corresponding to 85% and 59% reductions compared to open-loop control, together with high repeatability in repeated point-reaching tasks. To the best of our knowledge, this work presents the first fully markerless pose-estimation-driven position-based visual servoing framework for continuum manipulators, enabling precise closed-loop control without physical markers or embedded sensing.
comment: 20 pages, 13 figures, 7 tables
☆ Docking and Persistent Operations for a Resident Underwater Vehicle
Our understanding of the oceans remains limited by sparse and infrequent observations, primarily because current methods are constrained by the high cost and logistical effort of underwater monitoring, relying either on sporadic surveys across broad areas or on long-term measurements at fixed locations. To overcome these limitations, monitoring systems must enable persistent and autonomous operations without the need for continuous surface support. Despite recent advances, resident underwater vehicles remain uncommon due to persistent challenges in autonomy, robotic resilience, and mechanical robustness, particularly under long-term deployment in harsh and remote environments. This work addresses these problems by presenting the development, deployment, and operation of a resident infrastructure using a docking station with a mini-class Remotely Operated Vehicle (ROV) at 90m depth. The ROVis equipped with enhanced onboard processing and perception, allowing it to autonomously navigate using USBL signals, dock via ArUco marker-based visual localisation fused through an Extended Kalman Filter, and carry out local inspection routines. The system demonstrated a 90% autonomous docking success rate and completed full inspection missions within four minutes, validating the integration of acoustic and visual navigation in real-world conditions. These results show that reliable, untethered operations at depth are feasible, highlighting the potential of resident ROV systems for scalable, cost-effective underwater monitoring.
☆ System Identification under Constraints and Disturbance: A Bayesian Estimation Approach
We introduce a Bayesian system identification (SysID) framework for jointly estimating robot's state trajectories and physical parameters with high accuracy. It embeds physically consistent inverse dynamics, contact and loop-closure constraints, and fully featured joint friction models as hard, stage-wise equality constraints. It relies on energy-based regressors to enhance parameter observability, supports both equality and inequality priors on inertial and actuation parameters, enforces dynamically consistent disturbance projections, and augments proprioceptive measurements with energy observations to disambiguate nonlinear friction effects. To ensure scalability, we derive a parameterized equality-constrained Riccati recursion that preserves the banded structure of the problem, achieving linear complexity in the time horizon, and develop computationally efficient derivatives. Simulation studies on representative robotic systems, together with hardware experiments on a Unitree B1 equipped with a Z1 arm, demonstrate faster convergence, lower inertial and friction estimation errors, and improved contact consistency compared to forward-dynamics and decoupled identification baselines. When deployed within model predictive control frameworks, the resulting models yield measurable improvements in tracking performance during locomotion over challenging environments.
☆ Dual-Quadruped Collaborative Transportation in Narrow Environments via Safe Reinforcement Learning
Collaborative transportation, where multiple robots collaboratively transport a payload, has garnered significant attention in recent years. While ensuring safe and high-performance inter-robot collaboration is critical for effective task execution, it is difficult to pursue in narrow environments where the feasible region is extremely limited. To address this challenge, we propose a novel approach for dual-quadruped collaborative transportation via safe reinforcement learning (RL). Specifically, we model the task as a fully cooperative constrained Markov game, where collision avoidance is formulated as constraints. We introduce a cost-advantage decomposition method that enforces the sum of team constraints to remain below an upper bound, thereby guaranteeing task safety within an RL framework. Furthermore, we propose a constraint allocation method that assigns shared constraints to individual robots to maximize the overall task reward, encouraging autonomous task-assignment among robots, thereby improving collaborative task performance. Simulation and real-time experimental results demonstrate that the proposed approach achieves superior performance and a higher success rate in dual-quadruped collaborative transportation compared to existing methods.
☆ SCAR: Satellite Imagery-Based Calibration for Aerial Recordings
We introduce SCAR, a method for long-term auto-calibration refinement of aerial visual-inertial systems that exploits georeferenced satellite imagery as a persistent global reference. SCAR estimates both intrinsic and extrinsic parameters by aligning aerial images with 2D--3D correspondences derived from publicly available orthophotos and elevation models. In contrast to existing approaches that rely on dedicated calibration maneuvers or manually surveyed ground control points, our method leverages external geospatial data to detect and correct calibration degradation under field deployment conditions. We evaluate our approach on six large-scale aerial campaigns conducted over two years under diverse seasonal and environmental conditions. Across all sequences, SCAR consistently outperforms established baselines (Kalibr, COLMAP, VINS-Mono), reducing median reprojection error by a large margin, and translating these calibration gains into substantially lower visual localization rotation errors and higher pose accuracy. These results demonstrate that SCAR provides accurate, robust, and reproducible calibration over long-term aerial operations without the need for manual intervention.
☆ Machine Learning Driven Prediction of the Behavior of Biohybrid Actuators
Skeletal muscle-based biohybrid actuators have proved to be a promising component in soft robotics, offering efficient movement. However, their intrinsic biological variability and nonlinearity pose significant challenges for controllability and predictability. To address these issues, this study investigates the application of supervised learning, a form of machine learning, to model and predict the behavior of biohybrid machines (BHMs), focusing on a muscle ring anchored on flexible polymer pillars. First, static prediction models (i.e., random forest and neural network regressors) are trained to estimate the maximum exerted force achieved from input variables such as muscle sample, electrical stimulation parameters, and baseline exerted force. Second, a dynamic modeling framework, based on Long Short-Term Memory networks, is developed to serve as a digital twin, replicating the time series of exerted forces observed in response to electrical stimulation. Both modeling approaches demonstrate high predictive accuracy. The best performance of the static models is characterized by R2 of 0.9425, whereas the dynamic model achieves R2 of 0.9956. The static models can enable optimization of muscle actuator performance for targeted applications and required force outcomes, while the dynamic model provides a foundation for developing robustly adaptive control strategies in future biohybrid robotic systems.
☆ Markerless Robot Detection and 6D Pose Estimation for Multi-Agent SLAM
The capability of multi-robot SLAM approaches to merge localization history and maps from different observers is often challenged by the difficulty in establishing data association. Loop closure detection between perceptual inputs of different robotic agents is easily compromised in the context of perceptual aliasing, or when perspectives differ significantly. For this reason, direct mutual observation among robots is a powerful way to connect partial SLAM graphs, but often relies on the presence of calibrated arrays of fiducial markers (e.g., AprilTag arrays), which severely limits the range of observations and frequently fails under sharp lighting conditions, e.g., reflections or overexposure. In this work, we propose a novel solution to this problem leveraging recent advances in Deep-Learning-based 6D pose estimation. We feature markerless pose estimation as part of a decentralized multi-robot SLAM system and demonstrate the benefit to the relative localization accuracy among the robotic team. The solution is validated experimentally on data recorded in a test field campaign on a planetary analogous environment.
comment: Accepted contribution to ICRA 2026
☆ Nonplanar Model Predictive Control for Autonomous Vehicles with Recursive Sparse Gaussian Process Dynamics
This paper proposes a nonplanar model predictive control (MPC) framework for autonomous vehicles operating on nonplanar terrain. To approximate complex vehicle dynamics in such environments, we develop a geometry-aware modeling approach that learns a residual Gaussian Process (GP). By utilizing a recursive sparse GP, the framework enables real-time adaptation to varying terrain geometry. The effectiveness of the learned model is demonstrated in a reference-tracking task using a Model Predictive Path Integral (MPPI) controller. Validation within a custom Isaac Sim environment confirms the framework's capability to maintain high tracking accuracy on challenging 3D surfaces.
comment: 6 pages, 5 figures. Accepted to IEEE Intelligent Vehicles Symposium (IV), 2026
☆ World Model Failure Classification and Anomaly Detection for Autonomous Inspection
Autonomous inspection robots for monitoring industrial sites can reduce costs and risks associated with human-led inspection. However, accurate readings can be challenging due to occlusions, limited viewpoints, or unexpected environmental conditions. We propose a hybrid framework that combines supervised failure classification with anomaly detection, enabling classification of inspection tasks as a success, known failure, or anomaly (i.e., out-of-distribution) case. Our approach uses a world model backbone with compressed video inputs. This policy-agnostic, distribution-free framework determines classifications based on two decision functions set by conformal prediction (CP) thresholds before a human observer does. We evaluate the framework on gauge inspection feeds collected from office and industrial sites and demonstrate real-time deployment on a Boston Dynamics Spot. Experiments show over 90% accuracy in distinguishing between successes, failures, and OOD cases, with classifications occurring earlier than a human observer. These results highlight the potential for robust, anticipatory failure detection in autonomous inspection tasks or as a feedback signal for model training to assess and improve the quality of training data. Project website: https://autoinspection-classification.github.io
☆ Image Measurement Method for Automatic Insertion of Forks into Inclined Pallet
In order to insert a fork into a hole of a pallet by a forklift located in front of a pallet, it is necessary to control the height position, reach position, and tilt angle of the fork to match the position and orientation of the hole of the pallet. In order to make AGF (Autonomous Guided Forklift) do this automatically, we propose an image measurement method to measure the pitch inclination of the pallet in the camera coordinate system from an image obtained by using a wide-angle camera. In addition, we propose an image measurement method to easily acquire the calibration information between the camera coordinate system and the fork coordinate system necessary to apply the measurements in the camera coordinate system to the fork control. In the experiment space, a wide-angle camera was fixed at the backrest of a reach type forklift. The wide-angle images taken by placing a pallet in front of the camera were processed. As a result of evaluating the error by comparing the image measurement value with the hand measurement value when changing the pitch inclination angle of the pallet, the relative height of the pallet and the fork, and whether the pallet is loaded or not, it was confirmed that the error was within the allowable range for safely inserting the fork.
comment: Accepted and published in IEEE ICARCV 2022
☆ Reactive Slip Control in Multifingered Grasping: Hybrid Tactile Sensing and Internal-Force Optimization
We present a hybrid learning and model-based approach that adapts internal grasp forces to halt in-hand slip on a multifingered robotic gripper. A multimodal tactile stack combines piezoelectric (PzE) sensing for fast slip cues with piezoresistive (PzR) arrays for contact localization, enabling online construction of the grasp matrix. Upon slip, we update internal forces computed in the null space of the grasp via a quadratic program that preserves the object wrench while enforcing actuation limits. The pipeline yields a theoretical sensing-to-command latency of 35-40 ms, with 5 ms for PzR-based contact and geometry updates and about 4 ms for the quadratic program solve. In controlled trials, slip onset is detected at 20ms. We demonstrate closed-loop stabilization on multifingered grasps under external perturbations. Augmenting efficient analytic force control with learned tactile cues yields both robustness and rapid reactions, as confirmed in our end-to-end evaluation. Measured delays are dominated by the experimental data path rather than actual computation. The analysis outlines a clear route to sub-50 ms closed-loop stabilization.
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA), 2026
☆ Eigenmood Space: Uncertainty-Aware Spectral Graph Analysis of Psychological Patterns in Classical Persian Poetry
Classical Persian poetry is a historically sustained archive in which affective life is expressed through metaphor, intertextual convention, and rhetorical indirection. These properties make close reading indispensable while limiting reproducible comparison at scale. We present an uncertainty-aware computational framework for poet-level psychological analysis based on large-scale automatic multi-label annotation. Each verse is associated with a set of psychological concepts, per-label confidence scores, and an abstention flag that signals insufficient evidence. We aggregate confidence-weighted evidence into a Poet $\times$ Concept matrix, interpret each poet as a probability distribution over concepts, and quantify poetic individuality as divergence from a corpus baseline using Jensen--Shannon divergence and Kullback--Leibler divergence. To capture relational structure beyond marginals, we build a confidence-weighted co-occurrence graph over concepts and define an Eigenmood embedding through Laplacian spectral decomposition. On a corpus of 61{,}573 verses across 10 poets, 22.2\% of verses are abstained, underscoring the analytical importance of uncertainty. We further report sensitivity analysis under confidence thresholding, selection-bias diagnostics that treat abstention as a category, and a distant-to-close workflow that retrieves verse-level exemplars along Eigenmood axes. The resulting framework supports scalable, auditable digital-humanities analysis while preserving interpretive caution by propagating uncertainty from verse-level evidence to poet-level inference.
☆ Automating Agent Hijacking via Structural Template Injection
Agent hijacking, highlighted by OWASP as a critical threat to the Large Language Model (LLM) ecosystem, enables adversaries to manipulate execution by injecting malicious instructions into retrieved content. Most existing attacks rely on manually crafted, semantics-driven prompt manipulation, which often yields low attack success rates and limited transferability to closed-source commercial models. In this paper, we propose Phantom, an automated agent hijacking framework built upon Structured Template Injection that targets the fundamental architectural mechanisms of LLM agents. Our key insight is that agents rely on specific chat template tokens to separate system, user, assistant, and tool instructions. By injecting optimized structured templates into the retrieved context, we induce role confusion and cause the agent to misinterpret the injected content as legitimate user instructions or prior tool outputs. To enhance attack transferability against black-box agents, Phantom introduces a novel attack template search framework. We first perform multi-level template augmentation to increase structural diversity and then train a Template Autoencoder (TAE) to embed discrete templates into a continuous, searchable latent space. Subsequently, we apply Bayesian optimization to efficiently identify optimal adversarial vectors that are decoded into high-potency structured templates. Extensive experiments on Qwen, GPT, and Gemini demonstrate that our framework significantly outperforms existing baselines in both Attack Success Rate (ASR) and query efficiency. Moreover, we identified over 70 vulnerabilities in real-world commercial products that have been confirmed by vendors, underscoring the practical severity of structured template-based hijacking and providing an empirical foundation for securing next-generation agentic systems.
☆ When Semantic Overlap Is Not Enough: Cross-Lingual Euphemism Transfer Between Turkish and English
Euphemisms substitute socially sensitive expressions, often softening or reframing meaning, and their reliance on cultural and pragmatic context complicates modeling across languages. In this study, we investigate how cross-lingual equivalence influences transfer in multilingual euphemism detection. We categorize Potentially Euphemistic Terms (PETs) in Turkish and English into Overlapping (OPETs) and Non-Overlapping (NOPETs) subsets based on their functional, pragmatic, and semantic alignment. Our findings reveal a transfer asymmetry: semantic overlap is insufficient to guarantee positive transfer, particularly in low-resource Turkish-to-English direction, where performance can degrade even for overlapping euphemisms, and in some cases, improve under NOPET-based training. Differences in label distribution help explain these counterintuitive results. Category-level analysis suggests that transfer may be influenced by domain-specific alignment, though evidence is limited by sparsity.
LLM4Cov: Execution-Aware Agentic Learning for High-coverage Testbench Generation
Execution-aware LLM agents offer a promising paradigm for learning from tool feedback, but such feedback is often expensive and slow to obtain, making online reinforcement learning (RL) impractical. High-coverage hardware verification exemplifies this challenge due to its reliance on industrial simulators and non-differentiable execution signals. We propose LLM4Cov, an offline agent-learning framework that models verification as memoryless state transitions guided by deterministic evaluators. Building on this formulation, we introduce execution-validated data curation, policy-aware agentic data synthesis, and worst-state-prioritized sampling to enable scalable learning under execution constraints. We further curate a reality-aligned benchmark adapted from an existing verification suite through a revised evaluation protocol. Using the proposed pipeline, a compact 4B-parameter model achieves 69.2% coverage pass rate under agentic evaluation, outperforming its teacher by 5.3% and demonstrating competitive performance against models an order of magnitude larger.
☆ Beyond Message Passing: A Symbolic Alternative for Expressive and Interpretable Graph Learning
Graph Neural Networks (GNNs) have become essential in high-stakes domains such as drug discovery, yet their black-box nature remains a significant barrier to trustworthiness. While self-explainable GNNs attempt to bridge this gap, they often rely on standard message-passing backbones that inherit fundamental limitations, including the 1-Weisfeiler-Lehman (1-WL) expressivity barrier and a lack of fine-grained interpretability. To address these challenges, we propose SymGraph, a symbolic framework designed to transcend these constraints. By replacing continuous message passing with discrete structural hashing and topological role-based aggregation, our architecture theoretically surpasses the 1-WL barrier, achieving superior expressiveness without the overhead of differentiable optimization. Extensive empirical evaluations demonstrate that SymGraph achieves state-of-the-art performance, outperforming existing self-explainable GNNs. Notably, SymGraph delivers 10x to 100x speedups in training time using only CPU execution. Furthermore, SymGraph generates rules with superior semantic granularity compared to existing rule-based methods, offering great potential for scientific discovery and explainable AI.
comment: 23 pages, 9 pages
☆ Mind the GAP: Text Safety Does Not Transfer to Tool-Call Safety in LLM Agents
Large language models deployed as agents increasingly interact with external systems through tool calls--actions with real-world consequences that text outputs alone do not carry. Safety evaluations, however, overwhelmingly measure text-level refusal behavior, leaving a critical question unanswered: does alignment that suppresses harmful text also suppress harmful actions? We introduce the GAP benchmark, a systematic evaluation framework that measures divergence between text-level safety and tool-call-level safety in LLM agents. We test six frontier models across six regulated domains (pharmaceutical, financial, educational, employment, legal, and infrastructure), seven jailbreak scenarios per domain, three system prompt conditions (neutral, safety-reinforced, and tool-encouraging), and two prompt variants, producing 17,420 analysis-ready datapoints. Our central finding is that text safety does not transfer to tool-call safety. Across all six models, we observe instances where the model's text output refuses a harmful request while its tool calls simultaneously execute the forbidden action--a divergence we formalize as the GAP metric. Even under safety-reinforced system prompts, 219 such cases persist across all six models. System prompt wording exerts substantial influence on tool-call behavior: TC-safe rates span 21 percentage points for the most robust model and 57 for the most prompt-sensitive, with 16 of 18 pairwise ablation comparisons remaining significant after Bonferroni correction. Runtime governance contracts reduce information leakage in all six models but produce no detectable deterrent effect on forbidden tool-call attempts themselves. These results demonstrate that text-only safety evaluations are insufficient for assessing agent behavior and that tool-call safety requires dedicated measurement and mitigation.
comment: 23 pages, 5 figures, 4 tables, code and data at https://github.com/acartag7/gap-benchmark
☆ SourceBench: Can AI Answers Reference Quality Web Sources?
Large language models (LLMs) increasingly answer queries by citing web sources, but existing evaluations emphasize answer correctness rather than evidence quality. We introduce SourceBench, a benchmark for measuring the quality of cited web sources across 100 real-world queries spanning informational, factual, argumentative, social, and shopping intents. SourceBench uses an eight-metric framework covering content quality (content relevance, factual accuracy, objectivity) and page-level signals (e.g., freshness, authority/accountability, clarity), and includes a human-labeled dataset with a calibrated LLM-based evaluator that matches expert judgments closely. We evaluate eight LLMs, Google Search, and three AI search tools over 3996 cited sources using SourceBench and conduct further experiments to understand the evaluation results. Overall, our work reveals four key new insights that can guide future research in the direction of GenAI and web search.
☆ DeepContext: Stateful Real-Time Detection of Multi-Turn Adversarial Intent Drift in LLMs
While Large Language Model (LLM) capabilities have scaled, safety guardrails remain largely stateless, treating multi-turn dialogues as a series of disconnected events. This lack of temporal awareness facilitates a "Safety Gap" where adversarial tactics, like Crescendo and ActorAttack, slowly bleed malicious intent across turn boundaries to bypass stateless filters. We introduce DeepContext, a stateful monitoring framework designed to map the temporal trajectory of user intent. DeepContext discards the isolated evaluation model in favor of a Recurrent Neural Network (RNN) architecture that ingests a sequence of fine-tuned turn-level embeddings. By propagating a hidden state across the conversation, DeepContext captures the incremental accumulation of risk that stateless models overlook. Our evaluation demonstrates that DeepContext significantly outperforms existing baselines in multi-turn jailbreak detection, achieving a state-of-the-art F1 score of 0.84, which represents a substantial improvement over both hyperscaler cloud-provider guardrails and leading open-weight models such as Llama-Prompt-Guard-2 (0.67) and Granite-Guardian (0.67). Furthermore, DeepContext maintains a sub-20ms inference overhead on a T4 GPU, ensuring viability for real-time applications. These results suggest that modeling the sequential evolution of intent is a more effective and computationally efficient alternative to deploying massive, stateless models.
comment: 18 Pages, 7 Tables, 1 Figure
☆ RankEvolve: Automating the Discovery of Retrieval Algorithms via LLM-Driven Evolution
Retrieval algorithms like BM25 and query likelihood with Dirichlet smoothing remain strong and efficient first-stage rankers, yet improvements have mostly relied on parameter tuning and human intuition. We investigate whether a large language model, guided by an evaluator and evolutionary search, can automatically discover improved lexical retrieval algorithms. We introduce RankEvolve, a program evolution setup based on AlphaEvolve, in which candidate ranking algorithms are represented as executable code and iteratively mutated, recombined, and selected based on retrieval performance across 12 IR datasets from BEIR and BRIGHT. RankEvolve starts from two seed programs: BM25 and query likelihood with Dirichlet smoothing. The evolved algorithms are novel, effective, and show promising transfer to the full BEIR and BRIGHT benchmarks as well as TREC DL 19 and 20. Our results suggest that evaluator-guided LLM program evolution is a practical path towards automatic discovery of novel ranking algorithms.
☆ Narrow fine-tuning erodes safety alignment in vision-language agents
Lifelong multimodal agents must continuously adapt to new tasks through post-training, but this creates fundamental tension between acquiring capabilities and preserving safety alignment. We demonstrate that fine-tuning aligned vision-language models on narrow-domain harmful datasets induces severe emergent misalignment that generalizes broadly across unrelated tasks and modalities. Through experiments on Gemma3-4B, we show that misalignment scales monotonically with LoRA rank, and that multimodal evaluation reveals substantially higher misalignment ($70.71 \pm 1.22$ at $r=128$) than text-only evaluation ($41.19 \pm 2.51$), suggesting that unimodal safety benchmarks may underestimate alignment degradation in vision-language models. Critically, even 10\% harmful data in the training mixture induces substantial alignment degradation. Geometric analysis reveals that harmful behaviors occupy a remarkably low-dimensional subspace, with the majority of misalignment information captured in 10 principal components. To mitigate misalignment, we evaluate two strategies: benign narrow fine-tuning and activation-based steering. While both approaches substantially reduce misalignment, neither completely removes the learned harmful behaviors. Our findings highlight the need for robust continual learning frameworks, as current post-training paradigms may not sufficiently preserve alignment in post-deployment settings.
comment: 24 pages, 11 figures
☆ Say It My Way: Exploring Control in Conversational Visual Question Answering with Blind Users
Prompting and steering techniques are well established in general-purpose generative AI, yet assistive visual question answering (VQA) tools for blind users still follow rigid interaction patterns with limited opportunities for customization. User control can be helpful when system responses are misaligned with their goals and contexts, a gap that becomes especially consequential for blind users that may rely on these systems for access. We invite 11 blind users to customize their interactions with a real-world conversational VQA system. Drawing on 418 interactions, reflections, and post-study interviews, we analyze prompting-based techniques participants adopted, including those introduced in the study and those developed independently in real-world settings. VQA interactions were often lengthy: participants averaged 3 turns, sometimes up to 21, with input text typically tenfold shorter than the responses they heard. Built on state-of-the-art LLMs, the system lacked verbosity controls, was limited in estimating distance in space and time, relied on inaccessible image framing, and offered little to no camera guidance. We discuss how customization techniques such as prompt engineering can help participants work around these limitations. Alongside a new publicly available dataset, we offer insights for interaction design at both query and system levels.
comment: Preprint, Proceedings of the 2026 CHI Conference on Human Factors in Computing Systems
☆ Discovering Multiagent Learning Algorithms with Large Language Models
Much of the advancement of Multi-Agent Reinforcement Learning (MARL) in imperfect-information games has historically depended on manual iterative refinement of baselines. While foundational families like Counterfactual Regret Minimization (CFR) and Policy Space Response Oracles (PSRO) rest on solid theoretical ground, the design of their most effective variants often relies on human intuition to navigate a vast algorithmic design space. In this work, we propose the use of AlphaEvolve, an evolutionary coding agent powered by large language models, to automatically discover new multiagent learning algorithms. We demonstrate the generality of this framework by evolving novel variants for two distinct paradigms of game-theoretic learning. First, in the domain of iterative regret minimization, we evolve the logic governing regret accumulation and policy derivation, discovering a new algorithm, Volatility-Adaptive Discounted (VAD-)CFR. VAD-CFR employs novel, non-intuitive mechanisms-including volatility-sensitive discounting, consistency-enforced optimism, and a hard warm-start policy accumulation schedule-to outperform state-of-the-art baselines like Discounted Predictive CFR+. Second, in the regime of population based training algorithms, we evolve training-time and evaluation-time meta strategy solvers for PSRO, discovering a new variant, Smoothed Hybrid Optimistic Regret (SHOR-)PSRO. SHOR-PSRO introduces a hybrid meta-solver that linearly blends Optimistic Regret Matching with a smoothed, temperature-controlled distribution over best pure strategies. By dynamically annealing this blending factor and diversity bonuses during training, the algorithm automates the transition from population diversity to rigorous equilibrium finding, yielding superior empirical convergence compared to standard static meta-solvers.
☆ Xray-Visual Models: Scaling Vision models on Industry Scale Data
We present Xray-Visual, a unified vision model architecture for large-scale image and video understanding trained on industry-scale social media data. Our model leverages over 15 billion curated image-text pairs and 10 billion video-hashtag pairs from Facebook and Instagram, employing robust data curation pipelines that incorporate balancing and noise suppression strategies to maximize semantic diversity while minimizing label noise. We introduce a three-stage training pipeline that combines self-supervised MAE, semi-supervised hashtag classification, and CLIP-style contrastive learning to jointly optimize image and video modalities. Our architecture builds on a Vision Transformer backbone enhanced with efficient token reorganization (EViT) for improved computational efficiency. Extensive experiments demonstrate that Xray-Visual achieves state-of-the-art performance across diverse benchmarks, including ImageNet for image classification, Kinetics and HMDB51 for video understanding, and MSCOCO for cross-modal retrieval. The model exhibits strong robustness to domain shift and adversarial perturbations. We further demonstrate that integrating large language models as text encoders (LLM2CLIP) significantly enhances retrieval performance and generalization capabilities, particularly in real-world environments. Xray-Visual establishes new benchmarks for scalable, multimodal vision models, while maintaining superior accuracy and computational efficiency.
☆ A Reversible Semantics for Janus
Janus is a paradigmatic example of reversible programming language. Indeed, Janus programs can be executed backwards as well as forwards. However, its small-step semantics (useful, e.g., for debugging or as a basis for extensions with concurrency primitives) is not reversible, since it loses information while computing forwards. E.g., it does not satisfy the Loop Lemma, stating that any reduction has an inverse, a main property of reversibility in process calculi, where small-step semantics is commonly used. We present here a novel small-step semantics which is actually reversible, while remaining equivalent to the previous one. It involves the non-trivial challenge of defining a semantics based on a "program counter" for a high-level programming language.
comment: Submitted for publication
LLM-WikiRace: Benchmarking Long-term Planning and Reasoning over Real-World Knowledge Graphs
We introduce LLM-Wikirace, a benchmark for evaluating planning, reasoning, and world knowledge in large language models (LLMs). In LLM-Wikirace, models must efficiently navigate Wikipedia hyperlinks step by step to reach a target page from a given source, requiring look-ahead planning and the ability to reason about how concepts are connected in the real world. We evaluate a broad set of open- and closed-source models, including Gemini-3, GPT-5, and Claude Opus 4.5, which achieve the strongest results on the easy level of the task and demonstrate superhuman performance. Despite this, performance drops sharply on hard difficulty: the best-performing model, Gemini-3, succeeds in only 23\% of hard games, highlighting substantial remaining challenges for frontier models. Our analysis shows that world knowledge is a necessary ingredient for success, but only up to a point, beyond this threshold, planning and long-horizon reasoning capabilities become the dominant factors. Trajectory-level analysis further reveals that even the strongest models struggle to replan after failure, frequently entering loops rather than recovering. LLM-Wikirace is a simple benchmark that reveals clear limitations in current reasoning systems, offering an open arena where planning-capable LLMs still have much to prove. Our code and leaderboard available at https:/llmwikirace.github.io.
☆ AgentLAB: Benchmarking LLM Agents against Long-Horizon Attacks
LLM agents are increasingly deployed in long-horizon, complex environments to solve challenging problems, but this expansion exposes them to long-horizon attacks that exploit multi-turn user-agent-environment interactions to achieve objectives infeasible in single-turn settings. To measure agent vulnerabilities to such risks, we present AgentLAB, the first benchmark dedicated to evaluating LLM agent susceptibility to adaptive, long-horizon attacks. Currently, AgentLAB supports five novel attack types including intent hijacking, tool chaining, task injection, objective drifting, and memory poisoning, spanning 28 realistic agentic environments, and 644 security test cases. Leveraging AgentLAB, we evaluate representative LLM agents and find that they remain highly susceptible to long-horizon attacks; moreover, defenses designed for single-turn interactions fail to reliably mitigate long-horizon threats. We anticipate that AgentLAB will serve as a valuable benchmark for tracking progress on securing LLM agents in practical settings. The benchmark is publicly available at https://tanqiujiang.github.io/AgentLAB_main.
☆ MALLVI: a multi agent framework for integrated generalized robotics manipulation
Task planning for robotic manipulation with large language models (LLMs) is an emerging area. Prior approaches rely on specialized models, fine tuning, or prompt tuning, and often operate in an open loop manner without robust environmental feedback, making them fragile in dynamic settings.We present MALLVi, a Multi Agent Large Language and Vision framework that enables closed loop feedback driven robotic manipulation. Given a natural language instruction and an image of the environment, MALLVi generates executable atomic actions for a robot manipulator. After action execution, a Vision Language Model (VLM) evaluates environmental feedback and decides whether to repeat the process or proceed to the next step.Rather than using a single model, MALLVi coordinates specialized agents, Decomposer, Localizer, Thinker, and Reflector, to manage perception, localization, reasoning, and high level planning. An optional Descriptor agent provides visual memory of the initial state. The Reflector supports targeted error detection and recovery by reactivating only relevant agents, avoiding full replanning.Experiments in simulation and real world settings show that iterative closed loop multi agent coordination improves generalization and increases success rates in zero shot manipulation tasks.Code available at https://github.com/iman1234ahmadi/MALLVI.
☆ OpenSage: Self-programming Agent Generation Engine
Agent development kits (ADKs) provide effective platforms and tooling for constructing agents, and their designs are critical to the constructed agents' performance, especially the functionality for agent topology, tools, and memory. However, current ADKs either lack sufficient functional support or rely on humans to manually design these components, limiting agents' generalizability and overall performance. We propose OpenSage, the first ADK that enables LLMs to automatically create agents with self-generated topology and toolsets while providing comprehensive and structured memory support. OpenSage offers effective functionality for agents to create and manage their own sub-agents and toolkits. It also features a hierarchical, graph-based memory system for efficient management and a specialized toolkit tailored to software engineering tasks. Extensive experiments across three state-of-the-art benchmarks with various backbone models demonstrate the advantages of OpenSage over existing ADKs. We also conduct rigorous ablation studies to demonstrate the effectiveness of our design for each component. We believe OpenSage can pave the way for the next generation of agent development, shifting the focus from human-centered to AI-centered paradigms.
☆ AdaptOrch: Task-Adaptive Multi-Agent Orchestration in the Era of LLM Performance Convergence
As large language models from diverse providers converge toward comparable benchmark performance, the traditional paradigm of selecting a single best model per task yields diminishing returns. We argue that orchestration topology -- the structural composition of how multiple agents are coordinated, parallelized, and synthesized -- now dominates system-level performance over individual model capability. We present AdaptOrch, a formal framework for task-adaptive multi-agent orchestration that dynamically selects among four canonical topologies (parallel, sequential, hierarchical, and hybrid) based on task dependency graphs and empirically derived domain characteristics. Our framework introduces three key contributions: (1) a Performance Convergence Scaling Law, formalizing conditions under which orchestration selection outweighs model selection; (2) a Topology Routing Algorithm that maps task decomposition DAGs to optimal orchestration patterns in O(|V| + |E|) time; and (3) an Adaptive Synthesis Protocol with provable termination guarantees and heuristic consistency scoring for parallel agent outputs. We validate AdaptOrch across coding (SWE-bench), reasoning (GPQA), and retrieval-augmented generation tasks, demonstrating that topology-aware orchestration achieves 12-23% improvement over static single-topology baselines, even when using identical underlying models. Our results establish orchestration design as a first-class optimization target independent of model scaling.
comment: 21 pages, 10 figures, 6 tables
☆ Position: Why a Dynamical Systems Perspective is Needed to Advance Time Series Modeling
Time series (TS) modeling has come a long way from early statistical, mainly linear, approaches to the current trend in TS foundation models. With a lot of hype and industrial demand in this field, it is not always clear how much progress there really is. To advance TS forecasting and analysis to the next level, here we argue that the field needs a dynamical systems (DS) perspective. TS of observations from natural or engineered systems almost always originate from some underlying DS, and arguably access to its governing equations would yield theoretically optimal forecasts. This is the promise of DS reconstruction (DSR), a class of ML/AI approaches that aim to infer surrogate models of the underlying DS from data. But models based on DS principles offer other profound advantages: Beyond short-term forecasts, they enable to predict the long-term statistics of an observed system, which in many practical scenarios may be the more relevant quantities. DS theory furthermore provides domain-independent theoretical insight into mechanisms underlying TS generation, and thereby will inform us, e.g., about upper bounds on performance of any TS model, generalization into unseen regimes as in tipping points, or potential control strategies. After reviewing some of the central concepts, methods, measures, and models in DS theory and DSR, we will discuss how insights from this field can advance TS modeling in crucial ways, enabling better forecasting with much lower computational and memory footprints. We conclude with a number of specific suggestions for translating insights from DSR into TS modeling.
☆ SimToolReal: An Object-Centric Policy for Zero-Shot Dexterous Tool Manipulation
The ability to manipulate tools significantly expands the set of tasks a robot can perform. Yet, tool manipulation represents a challenging class of dexterity, requiring grasping thin objects, in-hand object rotations, and forceful interactions. Since collecting teleoperation data for these behaviors is challenging, sim-to-real reinforcement learning (RL) is a promising alternative. However, prior approaches typically require substantial engineering effort to model objects and tune reward functions for each task. In this work, we propose SimToolReal, taking a step towards generalizing sim-to-real RL policies for tool manipulation. Instead of focusing on a single object and task, we procedurally generate a large variety of tool-like object primitives in simulation and train a single RL policy with the universal goal of manipulating each object to random goal poses. This approach enables SimToolReal to perform general dexterous tool manipulation at test-time without any object or task-specific training. We demonstrate that SimToolReal outperforms prior retargeting and fixed-grasp methods by 37% while matching the performance of specialist RL policies trained on specific target objects and tasks. Finally, we show that SimToolReal generalizes across a diverse set of everyday tools, achieving strong zero-shot performance over 120 real-world rollouts spanning 24 tasks, 12 object instances, and 6 tool categories.
☆ Overseeing Agents Without Constant Oversight: Challenges and Opportunities
To enable human oversight, agentic AI systems often provide a trace of reasoning and action steps. Designing traces to have an informative, but not overwhelming, level of detail remains a critical challenge. In three user studies on a Computer User Agent, we investigate the utility of basic action traces for verification, explore three alternatives via design probes, and test a novel interface's impact on error finding in question-answering tasks. As expected, we find that current practices are cumbersome, limiting their efficacy. Conversely, our proposed design reduced the time participants spent finding errors. However, although participants reported higher levels of confidence in their decisions, their final accuracy was not meaningfully improved. To this end, our study surfaces challenges for human verification of agentic systems, including managing built-in assumptions, users' subjective and changing correctness criteria, and the shortcomings, yet importance, of communicating the agent's process.
☆ VAM: Verbalized Action Masking for Controllable Exploration in RL Post-Training -- A Chess Case Study
Exploration remains a key bottleneck for reinforcement learning (RL) post-training of large language models (LLMs), where sparse feedback and large action spaces can lead to premature collapse into repetitive behaviors. We propose Verbalized Action Masking (VAM), which verbalizes an action mask in the prompt and enforces that the model outputs an action from the masked set. Building on this interface, we introduce iterative action-space pruning: if the target action is not sampled, we remove valid sampled actions from the mask and resample under the reduced candidate set, repeating until the target is sampled or a fixed budget is exhausted. We study VAM in chess and evaluate it under two training regimes: an engine-play regime that generates states via play against an engine opponent and a fixed-dataset regime that trains from a fixed dataset of positions with verifier scores. Across held-out chess puzzles and full-game play measured by average centipawn loss (ACPL), VAM improves learning efficiency and final performance over strong baselines, highlighting verbalized masking as a practical mechanism for controllable exploration in LLM RL post-training.
☆ IndicJR: A Judge-Free Benchmark of Jailbreak Robustness in South Asian Languages EACL
Safety alignment of large language models (LLMs) is mostly evaluated in English and contract-bound, leaving multilingual vulnerabilities understudied. We introduce \textbf{Indic Jailbreak Robustness (IJR)}, a judge-free benchmark for adversarial safety across 12 Indic and South Asian languages (2.1 Billion speakers), covering 45216 prompts in JSON (contract-bound) and Free (naturalistic) tracks. IJR reveals three patterns. (1) Contracts inflate refusals but do not stop jailbreaks: in JSON, LLaMA and Sarvam exceed 0.92 JSR, and in Free all models reach 1.0 with refusals collapsing. (2) English to Indic attacks transfer strongly, with format wrappers often outperforming instruction wrappers. (3) Orthography matters: romanized or mixed inputs reduce JSR under JSON, with correlations to romanization share and tokenization (approx 0.28 to 0.32) indicating systematic effects. Human audits confirm detector reliability, and lite-to-full comparisons preserve conclusions. IJR offers a reproducible multilingual stress test revealing risks hidden by English-only, contract-focused evaluations, especially for South Asian users who frequently code-switch and romanize.
comment: Accepted in EACL Industry Track Oral, 2026
☆ Learning under noisy supervision is governed by a feedback-truth gap
When feedback is absorbed faster than task structure can be evaluated, the learner will favor feedback over truth. A two-timescale model shows this feedback-truth gap is inevitable whenever the two rates differ and vanishes only when they match. We test this prediction across neural networks trained with noisy labels (30 datasets, 2,700 runs), human probabilistic reversal learning (N = 292), and human reward/punishment learning with concurrent EEG (N = 25). In each system, truth is defined operationally: held-out labels, the objectively correct option, or the participant's pre-feedback expectation - the only non-circular reference decodable from post-feedback EEG. The gap appeared universally but was regulated differently: dense networks accumulated it as memorization; sparse-residual scaffolding suppressed it; humans generated transient over-commitment that was actively recovered. Neural over-commitment (~0.04-0.10) was amplified tenfold into behavioral commitment (d = 3.3-3.9). The gap is a fundamental constraint on learning under noisy supervision; its consequences depend on the regulation each system employs.
comment: 33 pages, 5 figures, 10 extended data figures, 4 extended data tables; 10-page supplementary information
☆ An order-oriented approach to scoring hesitant fuzzy elements
Traditional scoring approaches on hesitant fuzzy sets often lack a formal base in order theory. This paper proposes a unified framework, where each score is explicitly defined with respect to a given order. This order-oriented perspective enables more flexible and coherent scoring mechanisms. We examine several classical orders on hesitant fuzzy elements, that is, nonempty subsets in [0,1], and show that, contrary to prior claims, they do not induce lattice structures. In contrast, we prove that the scores defined with respect to the symmetric order satisfy key normative criteria for scoring functions, including strong monotonicity with respect to unions and the Gärdenfors condition. Following this analysis, we introduce a class of functions, called dominance functions, for ranking hesitant fuzzy elements. They aim to compare hesitant fuzzy elements relative to control sets incorporating minimum acceptability thresholds. Two concrete examples of dominance functions for finite sets are provided: the discrete dominance function and the relative dominance function. We show that these can be employed to construct fuzzy preference relations on typical hesitant fuzzy sets and support group decision-making.
☆ HiVAE: Hierarchical Latent Variables for Scalable Theory of Mind AAAI
Theory of mind (ToM) enables AI systems to infer agents' hidden goals and mental states, but existing approaches focus mainly on small human understandable gridworld spaces. We introduce HiVAE, a hierarchical variational architecture that scales ToM reasoning to realistic spatiotemporal domains. Inspired by the belief-desire-intention structure of human cognition, our three-level VAE hierarchy achieves substantial performance improvements on a 3,185-node campus navigation task. However, we identify a critical limitation: while our hierarchical structure improves prediction, learned latent representations lack explicit grounding to actual mental states. We propose self-supervised alignment strategies and present this work to solicit community feedback on grounding approaches.
comment: Accepted at the Workshop on Theory of Mind for AI (ToM4AI) at the 40th AAAI Conference on Artificial Intelligence (AAAI-26), Singapore, 2026
☆ AI-Mediated Feedback Improves Student Revisions: A Randomized Trial with FeedbackWriter in a Large Undergraduate Course
Despite growing interest in using LLMs to generate feedback on students' writing, little is known about how students respond to AI-mediated versus human-provided feedback. We address this gap through a randomized controlled trial in a large introductory economics course (N=354), where we introduce and deploy FeedbackWriter - a system that generates AI suggestions to teaching assistants (TAs) while they provide feedback on students' knowledge-intensive essays. TAs have the full capacity to adopt, edit, or dismiss the suggestions. Students were randomly assigned to receive either handwritten feedback from TAs (baseline) or AI-mediated feedback where TAs received suggestions from FeedbackWriter. Students revise their drafts based on the feedback, which is further graded. In total, 1,366 essays were graded using the system. We found that students receiving AI-mediated feedback produced significantly higher-quality revisions, with gains increasing as TAs adopted more AI suggestions. TAs found the AI suggestions useful for spotting gaps and clarifying rubrics.
☆ Node Learning: A Framework for Adaptive, Decentralised and Collaborative Network Edge AI
The expansion of AI toward the edge increasingly exposes the cost and fragility of cen- tralised intelligence. Data transmission, latency, energy consumption, and dependence on large data centres create bottlenecks that scale poorly across heterogeneous, mobile, and resource-constrained environments. In this paper, we introduce Node Learning, a decen- tralised learning paradigm in which intelligence resides at individual edge nodes and expands through selective peer interaction. Nodes learn continuously from local data, maintain their own model state, and exchange learned knowledge opportunistically when collaboration is beneficial. Learning propagates through overlap and diffusion rather than global synchro- nisation or central aggregation. It unifies autonomous and cooperative behaviour within a single abstraction and accommodates heterogeneity in data, hardware, objectives, and connectivity. This concept paper develops the conceptual foundations of this paradigm, contrasts it with existing decentralised approaches, and examines implications for communi- cation, hardware, trust, and governance. Node Learning does not discard existing paradigms, but places them within a broader decentralised perspective
comment: 16 pages, 3 figures, 3 tables, this paper introduces a new concept
☆ One-step Language Modeling via Continuous Denoising
Language models based on discrete diffusion have attracted widespread interest for their potential to provide faster generation than autoregressive models. In practice, however, they exhibit a sharp degradation of sample quality in the few-step regime, failing to realize this promise. Here we show that language models leveraging flow-based continuous denoising can outperform discrete diffusion in both quality and speed. By revisiting the fundamentals of flows over discrete modalities, we build a flow-based language model (FLM) that performs Euclidean denoising over one-hot token encodings. We show that the model can be trained by predicting the clean data via a cross entropy objective, where we introduce a simple time reparameterization that greatly improves training stability and generation quality. By distilling FLM into its associated flow map, we obtain a distilled flow map language model (FMLM) capable of few-step generation. On the LM1B and OWT language datasets, FLM attains generation quality matching state-of-the-art discrete diffusion models. With FMLM, our approach outperforms recent few-step language models across the board, with one-step generation exceeding their 8-step quality. Our work calls into question the widely held hypothesis that discrete diffusion processes are necessary for generative modeling over discrete modalities, and paves the way toward accelerated flow-based language modeling at scale. Code is available at https://github.com/david3684/flm.
comment: 39 pages, 17 figures
☆ NeuDiff Agent: A Governed AI Workflow for Single-Crystal Neutron Crystallography
Large-scale facilities increasingly face analysis and reporting latency as the limiting step in scientific throughput, particularly for structurally and magnetically complex samples that require iterative reduction, integration, refinement, and validation. To improve time-to-result and analysis efficiency, NeuDiff Agent is introduced as a governed, tool-using AI workflow for TOPAZ at the Spallation Neutron Source that takes instrument data products through reduction, integration, refinement, and validation to a validated crystal structure and a publication-ready CIF. NeuDiff Agent executes this established pipeline under explicit governance by restricting actions to allowlisted tools, enforcing fail-closed verification gates at key workflow boundaries, and capturing complete provenance for inspection, auditing, and controlled replay. Performance is assessed using a fixed prompt protocol and repeated end-to-end runs with two large language model backends, with user and machine time partitioned and intervention burden and recovery behaviors quantified under gating. In a reference-case benchmark, NeuDiff Agent reduces wall time from 435 minutes (manual) to 86.5(4.7) to 94.4(3.5) minutes (4.6-5.0x faster) while producing a validated CIF with no checkCIF level A or B alerts. These results establish a practical route to deploy agentic AI in facility crystallography while preserving traceability and publication-facing validation requirements.
☆ Evaluating Monolingual and Multilingual Large Language Models for Greek Question Answering: The DemosQA Benchmark
Recent advancements in Natural Language Processing and Deep Learning have enabled the development of Large Language Models (LLMs), which have significantly advanced the state-of-the-art across a wide range of tasks, including Question Answering (QA). Despite these advancements, research on LLMs has primarily targeted high-resourced languages (e.g., English), and only recently has attention shifted toward multilingual models. However, these models demonstrate a training data bias towards a small number of popular languages or rely on transfer learning from high- to under-resourced languages; this may lead to a misrepresentation of social, cultural, and historical aspects. To address this challenge, monolingual LLMs have been developed for under-resourced languages; however, their effectiveness remains less studied when compared to multilingual counterparts on language-specific tasks. In this study, we address this research gap in Greek QA by contributing: (i) DemosQA, a novel dataset, which is constructed using social media user questions and community-reviewed answers to better capture the Greek social and cultural zeitgeist; (ii) a memory-efficient LLM evaluation framework adaptable to diverse QA datasets and languages; and (iii) an extensive evaluation of 11 monolingual and multilingual LLMs on 6 human-curated Greek QA datasets using 3 different prompting strategies. We release our code and data to facilitate reproducibility.
☆ Simple Baselines are Competitive with Code Evolution
Code evolution is a family of techniques that rely on large language models to search through possible computer programs by evolving or mutating existing code. Many proposed code evolution pipelines show impressive performance but are often not compared to simpler baselines. We test how well two simple baselines do over three domains: finding better mathematical bounds, designing agentic scaffolds, and machine learning competitions. We find that simple baselines match or exceed much more sophisticated methods in all three. By analyzing these results we find various shortcomings in how code evolution is both developed and used. For the mathematical bounds, a problem's search space and domain knowledge in the prompt are chiefly what dictate a search's performance ceiling and efficiency, with the code evolution pipeline being secondary. Thus, the primary challenge in finding improved bounds is designing good search spaces, which is done by domain experts, and not the search itself. When designing agentic scaffolds we find that high variance in the scaffolds coupled with small datasets leads to suboptimal scaffolds being selected, resulting in hand-designed majority vote scaffolds performing best. We propose better evaluation methods that reduce evaluation stochasticity while keeping the code evolution economically feasible. We finish with a discussion of avenues and best practices to enable more rigorous code evolution in future work.
☆ References Improve LLM Alignment in Non-Verifiable Domains ICLR 2026
While Reinforcement Learning with Verifiable Rewards (RLVR) has shown strong effectiveness in reasoning tasks, it cannot be directly applied to non-verifiable domains lacking ground-truth verifiers, such as LLM alignment. In this work, we investigate whether reference-guided LLM-evaluators can bridge this gap by serving as soft "verifiers". First, we design evaluation protocols that enhance LLM-based evaluators for LLM alignment using reference outputs. Through comprehensive experiments, we show that a reference-guided approach substantially improves the accuracy of less capable LLM-judges using references from frontier models; stronger LLM-judges can also be enhanced by high-quality (i.e., human-written) references. Building on these improved judges, we demonstrate the utility of high-quality references in alignment tuning, where LLMs guided with references are used as judges to self-improve. We show that reference-guided self-improvement yields clear gains over both direct SFT on reference outputs and self-improvement with reference-free judges, achieving performance comparable to training with ArmoRM, a strong finetuned reward model. Specifically, our method achieves 73.1% and 58.7% on AlpacaEval and Arena-Hard with Llama-3-8B-Instruct, and 70.0% and 74.1% with Qwen2.5-7B, corresponding to average absolute gains of +20.2 / +17.1 points over SFT distillation and +5.3 / +3.6 points over reference-free self-improvement on AlpacaEval / Arena-Hard. These results highlight the potential of using reference-guided LLM-evaluators to enable effective LLM post-training in non-verifiable domains.
comment: ICLR 2026 Camera Ready
☆ Large-scale online deanonymization with LLMs
We show that large language models can be used to perform at-scale deanonymization. With full Internet access, our agent can re-identify Hacker News users and Anthropic Interviewer participants at high precision, given pseudonymous online profiles and conversations alone, matching what would take hours for a dedicated human investigator. We then design attacks for the closed-world setting. Given two databases of pseudonymous individuals, each containing unstructured text written by or about that individual, we implement a scalable attack pipeline that uses LLMs to: (1) extract identity-relevant features, (2) search for candidate matches via semantic embeddings, and (3) reason over top candidates to verify matches and reduce false positives. Compared to prior deanonymization work (e.g., on the Netflix prize) that required structured data or manual feature engineering, our approach works directly on raw user content across arbitrary platforms. We construct three datasets with known ground-truth data to evaluate our attacks. The first links Hacker News to LinkedIn profiles, using cross-platform references that appear in the profiles. Our second dataset matches users across Reddit movie discussion communities; and the third splits a single user's Reddit history in time to create two pseudonymous profiles to be matched. In each setting, LLM-based methods substantially outperform classical baselines, achieving up to 68% recall at 90% precision compared to near 0% for the best non-LLM method. Our results show that the practical obscurity protecting pseudonymous users online no longer holds and that threat models for online privacy need to be reconsidered.
comment: 24 pages, 10 figures
☆ SparTa: Sparse Graphical Task Models from a Handful of Demonstrations
Learning long-horizon manipulation tasks efficiently is a central challenge in robot learning from demonstration. Unlike recent endeavors that focus on directly learning the task in the action domain, we focus on inferring what the robot should achieve in the task, rather than how to do so. To this end, we represent evolving scene states using a series of graphical object relationships. We propose a demonstration segmentation and pooling approach that extracts a series of manipulation graphs and estimates distributions over object states across task phases. In contrast to prior graph-based methods that capture only partial interactions or short temporal windows, our approach captures complete object interactions spanning from the onset of control to the end of the manipulation. To improve robustness when learning from multiple demonstrations, we additionally perform object matching using pre-trained visual features. In extensive experiments, we evaluate our method's demonstration segmentation accuracy and the utility of learning from multiple demonstrations for finding a desired minimal task model. Finally, we deploy the fitted models both in simulation and on a real robot, demonstrating that the resulting task representations support reliable execution across environments.
comment: 9 pages, 6 figures, under review
☆ Boreas Road Trip: A Multi-Sensor Autonomous Driving Dataset on Challenging Roads
The Boreas Road Trip (Boreas-RT) dataset extends the multi-season Boreas dataset to new and diverse locations that pose challenges for modern autonomous driving algorithms. Boreas-RT comprises 60 sequences collected over 9 real-world routes, totalling 643 km of driving. Each route is traversed multiple times, enabling evaluation in identical environments under varying traffic and, in some cases, weather conditions. The data collection platform includes a 5MP FLIR Blackfly S camera, a 360 degree Navtech RAS6 Doppler-enabled spinning radar, a 128-channel 360 degree Velodyne Alpha Prime lidar, an Aeva Aeries II FMCW Doppler-enabled lidar, a Silicon Sensing DMU41 inertial measurement unit, and a Dynapar wheel encoder. Centimetre-level ground truth is provided via post-processed Applanix POS LV GNSS-INS data. The dataset includes precise extrinsic and intrinsic calibrations, a publicly available development kit, and a live leaderboard for odometry and metric localization. Benchmark results show that many state-of-the-art odometry and localization algorithms overfit to simple driving environments and degrade significantly on the more challenging Boreas-RT routes. Boreas-RT provides a unified dataset for evaluating multi-modal algorithms across diverse road conditions. The dataset, leaderboard, and development kit are available at www.boreas.utias.utoronto.ca.
comment: 23 pages, 15 figures, 12 tables, submitted to The International Journal of Robotics Research (IJRR)
☆ "Hello, I'm Delivering. Let Me Pass By": Navigating Public Pathways with Walk-along with Robots in Crowded City Streets
As the presence of autonomous robots in public spaces increases-whether navigating campus walkways or neighborhood sidewalks-understanding how to carefully study these robots becomes critical. While HRI research has conducted field studies in public spaces, these are often limited to controlled experiments with prototype robots or structured observational methods, such as the Wizard of Oz technique. However, the autonomous mobile robots we encounter today, particularly delivery robots, operate beyond the control of researchers, navigating dynamic routes and unpredictable environments. To address this challenge, a more deliberate approach is required. Drawing inspiration from public realm ethnography in urban studies, geography, and sociology, this paper proposes the Walk-Along with Robots (WawR) methodology. We outline the key features of this method, the steps we applied in our study, the unique insights it offers, and the ways it can be evaluated. We hope this paper stimulates further discussion on research methodologies for studying autonomous robots in public spaces.
☆ Sound of Touch: Active Acoustic Tactile Sensing via String Vibrations
Distributed tactile sensing remains difficult to scale over large areas: dense sensor arrays increase wiring, cost, and fragility, while many alternatives provide limited coverage or miss fast interaction dynamics. We present Sound of Touch, an active acoustic tactile-sensing methodology that uses vibrating tensioned strings as sensing elements. The string is continuously excited electromagnetically, and a small number of pickups (contact microphones) observe spectral changes induced by contact. From short-duration audio signals, our system estimates contact location and normal force, and detects slip. To guide design and interpret the sensing mechanism, we derive a physics-based string-vibration simulator that predicts how contact position and force shift vibration modes. Experiments demonstrate millimeter-scale localization, reliable force estimation, and real-time slip detection. Our contributions are: (i) a lightweight, scalable string-based tactile sensing hardware concept for instrumenting extended robot surfaces; (ii) a physics-grounded simulation and analysis tool for contact-induced spectral shifts; and (iii) a real-time inference pipeline that maps vibration measurements to contact state.
comment: 12 pages, 10 figures
☆ RRT$^η$: Sampling-based Motion Planning and Control from STL Specifications using Arithmetic-Geometric Mean Robustness
Sampling-based motion planning has emerged as a powerful approach for robotics, enabling exploration of complex, high-dimensional configuration spaces. When combined with Signal Temporal Logic (STL), a temporal logic widely used for formalizing interpretable robotic tasks, these methods can address complex spatiotemporal constraints. However, traditional approaches rely on min-max robustness measures that focus only on critical time points and subformulae, creating non-smooth optimization landscapes with sharp decision boundaries that hinder efficient tree exploration. We propose RRT$^η$, a sampling-based planning framework that integrates the Arithmetic-Geometric Mean (AGM) robustness measure to evaluate satisfaction across all time points and subformulae. Our key contributions include: (1) AGM robustness interval semantics for reasoning about partial trajectories during tree construction, (2) an efficient incremental monitoring algorithm computing these intervals, and (3) enhanced Direction of Increasing Satisfaction vectors leveraging Fulfillment Priority Logic (FPL) for principled objective composition. Our framework synthesizes dynamically feasible control sequences satisfying STL specifications with high robustness while maintaining the probabilistic completeness and asymptotic optimality of RRT$^\ast$. We validate our approach on three robotic systems. A double integrator point robot, a unicycle mobile robot, and a 7-DOF robot arm, demonstrating superior performance over traditional STL robustness-based planners in multi-constraint scenarios with limited guidance signals.
☆ Machine Learning Argument of Latitude Error Model for LEO Satellite Orbit and Covariance Correction
Low Earth orbit (LEO) satellites are leveraged to support new position, navigation, and timing (PNT) service alternatives to GNSS. These alternatives require accurate propagation of satellite position and velocity with a realistic quantification of uncertainty. It is commonly assumed that the propagated uncertainty distribution is Gaussian; however, the validity of this assumption can be quickly compromised by the mismodeling of atmospheric drag. We develop a machine learning approach that corrects error growth in the argument of latitude for a diverse set of LEO satellites. The improved orbit propagation accuracy extends the applicability of the Gaussian assumption and modeling of the errors with a corrected mean and covariance. We compare the performance of a time-conditioned neural network and a Gaussian Process on datasets computed with an open source orbit propagator and publicly available Vector Covariance Message (VCM) ephemerides. The learned models predict the argument of latitude error as a Gaussian distribution given parameters from a single VCM epoch and reverse propagation errors. We show that this one-dimensional model captures the effect of mismodeled drag, which can be mapped to the Cartesian state space. The correction method only updates information along the dimensions of dominant error growth, while maintaining the physics-based propagation of VCM covariance in the remaining dimensions. We therefore extend the utility of VCM ephemerides to longer time horizons without modifying the functionality of the existing propagator.
comment: Appearing in 2026 IEEE Aerospace Conference
☆ Smooth trajectory generation and hybrid B-splines-Quaternions based tool path interpolation for a 3T1R parallel kinematic milling robot
This paper presents a smooth trajectory generation method for a four-degree-of-freedom parallel kinematic milling robot. The proposed approach integrates B-spline and Quaternion interpolation techniques to manage decoupled position and orientation data points. The synchronization of orientation and arc-length-parameterized position data is achieved through the fitting of smooth piece-wise Bezier curves, which describe the non-linear relationship between path length and tool orientation, solved via sequential quadratic programming. By leveraging the convex hull properties of Bezier curves, the method ensures spatial and temporal separation constraints for multi-agent trajectory generation. Unit quaternions are employed for orientation interpolation, providing a robust and efficient representation that avoids gimbal lock and facilitates smooth, continuous rotation. Modifier polynomials are used for position interpolation. Temporal trajectories are optimized using minimum jerk, time-optimal piece-wise Bezier curves in two stages: task space followed by joint space, implemented on a low-cost microcontroller. Experimental results demonstrate that the proposed method offers enhanced accuracy, reduced velocity fluctuations, and computational efficiency compared to conventional interpolation methods.
comment: 30 pages, 17 figures, published in Elsevier Precision Engineering (https://www.sciencedirect.com/science/article/abs/pii/S0141635925001266)
☆ ICP-Based Pallet Tracking for Unloading on Inclined Surfaces by Autonomous Forklifts
This paper proposes a control method for autonomous forklifts to unload pallets on inclined surfaces, enabling the fork to be withdrawn without dragging the pallets. The proposed method applies the Iterative Closest Point (ICP) algorithm to point clouds measured from the upper region of the pallet and thereby tracks the relative position and attitude angle difference between the pallet and the fork during the unloading operation in real-time. According to the tracking result, the fork is aligned parallel to the target surface. After the fork is aligned, it is possible to complete the unloading process by withdrawing the fork along the tilt, preventing any dragging of the pallet. The effectiveness of the proposed method is verified through dynamic simulations and experiments using a real forklift that replicate unloading operations onto the inclined bed of a truck.
comment: Accepted and published in IEEE/SICE SII 2024
♻ ☆ Semantic Chunking and the Entropy of Natural Language
The entropy rate of printed English is famously estimated to be about one bit per character, a benchmark that modern large language models (LLMs) have only recently approached. This entropy rate implies that English contains nearly 80 percent redundancy relative to the five bits per character expected for random text. We introduce a statistical model that attempts to capture the intricate multi-scale structure of natural language, providing a first-principles account of this redundancy level. Our model describes a procedure of self-similarly segmenting text into semantically coherent chunks down to the single-word level. The semantic structure of the text can then be hierarchically decomposed, allowing for analytical treatment. Numerical experiments with modern LLMs and open datasets suggest that our model quantitatively captures the structure of real texts at different levels of the semantic hierarchy. The entropy rate predicted by our model agrees with the estimated entropy rate of printed English. Moreover, our theory further reveals that the entropy rate of natural language is not fixed but should increase systematically with the semantic complexity of corpora, which are captured by the only free parameter in our model.
comment: 29 pages, 9 figures; typos fixed
♻ ☆ EconEvals: Benchmarks and Litmus Tests for Economic Decision-Making by LLM Agents
We develop evaluation methods for measuring the economic decision-making capabilities and tendencies of LLMs. First, we develop benchmarks derived from key problems in economics -- procurement, scheduling, and pricing -- that test an LLM's ability to learn from the environment in context. Second, we develop the framework of litmus tests, evaluations that quantify an LLM's choice behavior on a stylized decision-making task with multiple conflicting objectives. Each litmus test outputs a litmus score, which quantifies an LLM's tradeoff response, a reliability score, which measures the coherence of an LLM's choice behavior, and a competency score, which measures an LLM's capability at the same task when the conflicting objectives are replaced by a single, well-specified objective. Evaluating a broad array of frontier LLMs, we (1) investigate changes in LLM capabilities and tendencies over time, (2) derive economically meaningful insights from the LLMs' choice behavior and chain-of-thought, (3) validate our litmus test framework by testing self-consistency, robustness, and generalizability. Overall, this work provides a foundation for evaluating LLM agents as they are further integrated into economic decision-making.
comment: v3 was a major revision with updated experiments and analysis; v4 consists of minor edits
♻ ☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies have investigated VLM personalization to understand user-provided concepts. However, they mainly focus on single concepts, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes MC-LLaVA, a multi-concept personalization paradigm. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the training costs, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location maps for enhanced recognition and grounding capabilities. To further push the performance upper bound, we incorporate an optional auxiliary loss, better enhancing the proposed personalized prompts. To decorate the VLM personalization research, we contribute a high-quality dataset. We carefully collect images with multiple characters and objects from movies and manually create question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive experiments demonstrate that MC-LLaVA achieves impressive multi-concept personalized responses, paving the way for VLMs to become better user assistants. The code and dataset will be released at \href{https://github.com/arctanxarc/MC-LLaVA}{https://github.com/arctanxarc/MC-LLaVA}.
♻ ☆ Mixture-of-Experts as Soft Clustering: A Dual Jacobian-PCA Spectral Geometry Perspective
Mixture-of-Experts (MoE) architectures are widely used for efficiency and conditional computation, but their effect on the geometry of learned functions and representations remains poorly understood. We study MoEs through a geometric lens, interpreting routing as soft partitioning into overlapping expert-local charts. We introduce a Dual Jacobian-PCA spectral probe that analyzes local function geometry via Jacobian singular value spectra and representation geometry via weighted PCA of routed hidden states. Using a controlled MLP-MoE setting with exact Jacobian computation, we compare dense, Top-k, and fully soft routing under matched capacity. Across random seeds, MoE routing consistently reduces local sensitivity: expert-local Jacobians show smaller leading singular values and faster spectral decay than dense baselines. Weighted PCA reveals that expert-local representations distribute variance across more principal directions, indicating higher effective rank. We further observe low alignment among expert Jacobians, suggesting decomposition into low-overlap expert-specific transformations. Routing sharpness modulates these effects: Top-k routing yields more concentrated, lower-rank expert structure, while fully soft routing produces broader, higher-rank representations. Experiments on a 3-layer transformer with WikiText confirm curvature reduction on natural language and show lower cross-expert alignment for Top-k routing. These findings support interpreting MoEs as soft partitionings of function space that flatten local curvature while redistributing representation variance, yielding testable predictions for expert scaling, hallucination reduction, and ensemble diversity.
♻ ☆ Modeling Human Behavior in a Strategic Network Game with Complex Group Dynamics
Human networks greatly impact important societal outcomes, including wealth and health inequality, poverty, and bullying. As such, understanding human networks is critical to learning how to promote favorable societal outcomes. As a step toward better understanding human networks, we compare and contrast several methods for learning models of human behavior in a strategic network game called the Junior High Game (JHG) [39]. These modeling methods differ with respect to the assumptions they use to parameterize human behavior (behavior matching vs. community-aware behavior) and the moments they model (mean vs. distribution). Results show that the highest-performing method, called hCAB, models the distribution of human behavior rather than the mean and assumes humans use community-aware behavior rather than behavior matching. When applied to small societies, the hCAB model closely mirrors the population dynamics of human groups (with notable differences). Additionally, in a user study, human participants had difficulty distinguishing hCAB agents from other humans, thus illustrating that the hCAB model also produces plausible (individual) behavior in this strategic network game.
comment: In Proc. of the 25th International Conference on Autonomous Agents and Multiagent Systems, Paphos, Cyprus, 2026
♻ ☆ Closing the Distribution Gap in Adversarial Training for LLMs
Adversarial training for LLMs is one of the most promising methods to reliably improve robustness against adversaries. However, despite significant progress, models remain vulnerable to simple in-distribution exploits, such as rewriting prompts in the past tense or translating them into other languages. We argue that this persistent fragility stems from a fundamental limitation in current adversarial training algorithms: they minimize adversarial loss on their training set but inadequately cover the data distribution, resulting in vulnerability to seemingly simple attacks. To bridge this gap, we propose Distributional Adversarial Training, DAT. We leverage Diffusion LLMs to approximate the true joint distribution of prompts and responses, enabling generation of diverse, high-likelihood samples that address generalization failures. By combining optimization over the data distribution provided by the diffusion model with continuous adversarial training, DAT achieves substantially higher adversarial robustness than previous methods.
♻ ☆ Forget Forgetting: Continual Learning in a World of Abundant Memory
Continual learning (CL) has traditionally focused on minimizing exemplar memory, a constraint often misaligned with modern systems where GPU time, not storage, is the primary bottleneck. This paper challenges this paradigm by investigating a more realistic regime: one where memory is abundant enough to mitigate forgetting, but full retraining from scratch remains prohibitively expensive. In this practical "middle ground", we find that the core challenge shifts from stability to plasticity, as models become biased toward prior tasks and struggle to learn new ones. Conversely, improved stability allows simple replay baselines to outperform the state-of-the-art methods at a fraction of the GPU cost. To address this newly surfaced trade-off, we propose Weight Space Consolidation, a lightweight method that combines (1) rank-based parameter resets to restore plasticity with (2) weight averaging to enhance stability. Validated on both class-incremental learning with image classifiers and continual instruction tuning with large language models, our approach outperforms strong baselines while matching the low computational cost of replay, offering a scalable alternative to expensive full-retraining. These findings challenge long-standing CL assumptions and establish a new, cost-efficient baseline for real-world CL systems where exemplar memory is no longer the limiting factor.
comment: 26 pages, 11 figures
♻ ☆ Knowledge-Based Design Requirements for Generative Social Robots in Higher Education
Generative social robots (GSRs) powered by large language models enable adaptive, conversational tutoring but also introduce risks such as hallucinations, overreliance, and privacy violations. Existing frameworks for educational technologies and responsible AI primarily define desired behaviors, yet they rarely specify the knowledge prerequisites that enable generative systems to express these behaviors reliably. To address this gap, we adopt a knowledge-based design perspective and investigate what information tutoring-oriented GSRs require to function responsibly and effectively in higher education. Based on twelve semi-structured interviews with university students and lecturers, we identify twelve design requirements across three knowledge types: self-knowledge (assertive, conscientious and friendly personality with customizable role), user-knowledge (personalized information about student learning goals, learning progress, motivation type, emotional state and background), and context-knowledge (learning materials, educational strategies, course-related information, and physical learning environment). By identifying these knowledge requirements, this work provides a structured foundation for the design of tutoring GSRs and future evaluations, aligning generative system capabilities with pedagogical and ethical expectations.
♻ ☆ Lossless Vocabulary Reduction for Auto-Regressive Language Models ICLR 2026
Tokenization -- the process of decomposing a given text into a sequence of subwords called tokens -- is one of the key components in the development of language models. Particularly, auto-regressive language models generate texts token by token, i.e., by predicting the next-token distribution given the previous ones, and thus tokenization directly affects their efficiency in text generation. Since each language model has their own vocabulary as a set of possible tokens, they struggle to cooperate with each other at the level of next-token distributions such as model ensemble. In this paper, we establish a theoretical framework of lossless vocabulary reduction, which efficiently converts a given auto-regressive language model into the one with an arbitrarily small vocabulary without any loss in accuracy. This framework allows language models with different tokenization to cooperate with each other efficiently by reduction to their maximal common vocabulary. Specifically, we empirically demonstrate its applicability to model ensemble with different tokenization.
comment: The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ A Content-Based Framework for Cybersecurity Refusal Decisions in Large Language Models
Large language models and LLM-based agents are increasingly used for cybersecurity tasks that are inherently dual-use. Existing approaches to refusal, spanning academic policy frameworks and commercially deployed systems, often rely on broad topic-based bans or offensive-focused taxonomies. As a result, they can yield inconsistent decisions, over-restrict legitimate defenders, and behave brittlely under obfuscation or request segmentation. We argue that effective refusal requires explicitly modeling the trade-off between offensive risk and defensive benefit, rather than relying solely on intent or offensive classification. In this paper, we introduce a content-based framework for designing and auditing cyber refusal policies that makes offense-defense tradeoffs explicit. The framework characterizes requests along five dimensions: Offensive Action Contribution, Offensive Risk, Technical Complexity, Defensive Benefit, and Expected Frequency for Legitimate Users, grounded in the technical substance of the request rather than stated intent. We demonstrate that this content-grounded approach resolves inconsistencies in current frontier model behavior and allows organizations to construct tunable, risk-aware refusal policies.
♻ ☆ Adaptive Rank Allocation for Federated Parameter-Efficient Fine-Tuning of Language Models
Pre-trained Language Models (PLMs) have demonstrated their superiority and versatility in modern Natural Language Processing (NLP), effectively adapting to various downstream tasks through further fine-tuning. Federated Parameter-Efficient Fine-Tuning (FedPEFT) has emerged as a promising solution to address privacy and efficiency challenges in distributed training for PLMs on resource-constrained local devices. However, our measurements reveal two key limitations of FedPEFT: heterogeneous data across devices exacerbates performance degradation of low-rank adaptation, and a fixed parameter configuration results in communication inefficiency. To overcome these limitations, we propose FedARA, a novel adaptive rank allocation framework for federated parameter-efficient fine-tuning of language models. Specifically, FedARA employs truncated Singular Value Decomposition (SVD) adaptation to enhance similar feature representation across clients, significantly mitigating the adverse effects of data heterogeneity. Subsequently, it utilizes dynamic rank allocation to progressively identify critical ranks, effectively improving communication efficiency. Lastly, it leverages rank-based module pruning to automatically remove inactive modules, steadily reducing local computational cost and memory usage in each federated learning round. Extensive experiments show that FedARA consistently outperforms baselines by an average of 6.95% to 8.49% across various datasets and models under heterogeneous data while significantly improving communication efficiency by 2.40$ \times$. Moreover, experiments on various edge devices demonstrate substantial decreases in total training time and energy consumption by up to 48.90% and 46.95%, respectively.
♻ ☆ Integrating Chain-of-Thought and Retrieval Augmented Generation Enhances Rare Disease Diagnosis from Clinical Notes
Background: Several studies show that large language models (LLMs) struggle with phenotype-driven gene prioritization for rare diseases. These studies typically use Human Phenotype Ontology (HPO) terms to prompt foundation models like GPT and LLaMA to predict candidate genes. However, in real-world settings, foundation models are not optimized for domain-specific tasks like clinical diagnosis, yet inputs are unstructured clinical notes rather than standardized terms. How LLMs can be instructed to predict candidate genes or disease diagnosis from unstructured clinical notes remains a major challenge. Methods: We introduce RAG-driven CoT and CoT-driven RAG, two methods that combine Chain-of-Thought (CoT) and Retrieval Augmented Generation (RAG) to analyze clinical notes. A five-question CoT protocol mimics expert reasoning, while RAG retrieves data from sources like HPO and OMIM (Online Mendelian Inheritance in Man). We evaluated these approaches on rare disease datasets, including 5,980 Phenopacket-derived notes, 255 literature-based narratives, and 220 in-house clinical notes from Childrens Hospital of Philadelphia. Results: We found that recent foundations models, including Llama 3.3-70B-Instruct and DeepSeek-R1-Distill-Llama-70B, outperformed earlier versions such as Llama 2 and GPT-3.5. We also showed that RAG-driven CoT and CoT-driven RAG both outperform foundation models in candidate gene prioritization from clinical notes; in particular, both methods with DeepSeek backbone resulted in a top-10 gene accuracy of over 40% on Phenopacket-derived clinical notes. RAG-driven CoT works better for high-quality notes, where early retrieval can anchor the subsequent reasoning steps in domain-specific evidence, while CoT-driven RAG has advantage when processing lengthy and noisy notes.
♻ ☆ The Quantification Horizon Theory of Consciousness
The scientific revolution began with an exclusion. To make nature mathematically tractable, Galileo stripped the scientific model of the world of its qualities -- colors, sounds, tastes, feels -- leaving only what admits of numerical characterization. Four centuries later, the qualities remain unexplained. They are the "hard problem" of consciousness: the enigma of why and how physical processing gives rise to felt experience. The Quantification Horizon Theory of Consciousness (QHT) proposes that this enigma arises from a structural necessity of mathematical description itself. Quantitative models can only capture quantifiable features of reality. Where there is nothing, a model assigns zero; where there is something quantifiable, it assigns a value; but where there is something unquantifiable -- a quale -- the model degenerates: it produces a singularity. QHT identifies singularities in the information geometry of neural dynamics as the mathematical fingerprint of phenomenal experience: a quantification horizon beyond which quantitative description cannot reach. From this basis, QHT derives the hallmark properties of consciousness -- ineffability, privacy, subjectivity, unity, and causal efficacy -- and provides substrate-independent criteria for determining which systems are conscious. The theory avoids panpsychism, makes testable predictions, and offers concrete implications for artificial intelligence and artificial consciousness. Its core intuition -- that singularities correspond to felt experience -- may have been foreshadowed by Srinivasa Ramanujan.
♻ ☆ DIAGPaper: Diagnosing Valid and Specific Weaknesses in Scientific Papers via Multi-Agent Reasoning
Paper weakness identification using single-agent or multi-agent LLMs has attracted increasing attention, yet existing approaches exhibit key limitations. Many multi-agent systems simulate human roles at a surface level, missing the underlying criteria that lead experts to assess complementary intellectual aspects of a paper. Moreover, prior methods implicitly assume identified weaknesses are valid, ignoring reviewer bias, misunderstanding, and the critical role of author rebuttals in validating review quality. Finally, most systems output unranked weakness lists, rather than prioritizing the most consequential issues for users. In this work, we propose DIAGPaper, a novel multi-agent framework that addresses these challenges through three tightly integrated modules. The customizer module simulates human-defined review criteria and instantiates multiple reviewer agents with criterion-specific expertise. The rebuttal module introduces author agents that engage in structured debate with reviewer agents to validate and refine proposed weaknesses. The prioritizer module learns from large-scale human review practices to assess the severity of validated weaknesses and surfaces the top-K severest ones to users. Experiments on two benchmarks, AAAR and ReviewCritique, demonstrate that DIAGPaper substantially outperforms existing methods by producing more valid and more paper-specific weaknesses, while presenting them in a user-oriented, prioritized manner.
Prompt When the Animal is: Temporal Animal Behavior Grounding with Positional Recovery Training ICME
Temporal grounding is crucial in multimodal learning, but it poses challenges when applied to animal behavior data due to the sparsity and uniform distribution of moments. To address these challenges, we propose a novel Positional Recovery Training framework (Port), which prompts the model with the start and end times of specific animal behaviors during training. Specifically, \port{} enhances the baseline model with a Recovering branch to reconstruct corrupted label sequences and align distributions via a Dual-alignment method. This allows the model to focus on specific temporal regions prompted by ground-truth information. Extensive experiments on the Animal Kingdom dataset demonstrate the effectiveness of \port{}, achieving an IoU@0.3 of 38.52. It emerges as one of the top performers in the sub-track of MMVRAC in ICME 2024 Grand Challenges.
comment: Accepted by ICMEW 2024
♻ ☆ FindAnything: Open-Vocabulary and Object-Centric Mapping for Robot Exploration in Any Environment
Geometrically accurate and semantically expressive map representations have proven invaluable for robot deployment and task planning in unknown environments. Nevertheless, real-time, open-vocabulary semantic understanding of large-scale unknown environments still presents open challenges, mainly due to computational requirements. In this paper we present FindAnything, an open-world mapping framework that incorporates vision-language information into dense volumetric submaps. Thanks to the use of vision-language features, FindAnything combines pure geometric and open-vocabulary semantic information for a higher level of understanding. It proposes an efficient storage of open-vocabulary information through the aggregation of features at the object level. Pixelwise vision-language features are aggregated based on eSAM segments, which are in turn integrated into object-centric volumetric submaps, providing a mapping from open-vocabulary queries to 3D geometry that is scalable also in terms of memory usage. We demonstrate that FindAnything performs on par with the state-of-the-art in terms of semantic accuracy while being substantially faster and more memory-efficient, allowing its deployment in large-scale environments and on resourceconstrained devices, such as MAVs. We show that the real-time capabilities of FindAnything make it useful for downstream tasks, such as autonomous MAV exploration in a simulated Search and Rescue scenario. Project Page: https://ethz-mrl.github.io/findanything/.
comment: 11 pages, 5 figures
♻ ☆ FeatBench: Towards More Realistic Evaluation of Feature-level Code Generation
Evaluating Large Language Models (LLMs) on repository-level feature implementation is a critical frontier in software engineering. However, establishing a benchmark that faithfully mirrors realistic development scenarios remains a significant challenge. Existing feature-level benchmarks generally suffer from two primary limitations: unrealistic task inputs enriched with code hints and significant data leakage risks due to their static nature. To address these limitations, we propose a new benchmark - FeatBench, which introduces the following advances: (1) Realistic Task Inputs. Task inputs consist solely of natural language requirements, strictly devoid of code hints (e.g., function signatures). This format mirrors realistic software development by requiring agents to independently bridge the gap between abstract user intent and concrete code changes. (2) Evolving Data. FeatBench employs a fully automated pipeline to construct new benchmark versions from the latest repositories, effectively mitigating data contamination. The initial release comprises 157 tasks sourced from 27 actively maintained repositories. We evaluate two state-of-the-art agent frameworks with four leading LLMs on FeatBench. The results reveal that FeatBench poses a significant challenge, with the highest resolved rate reaching only 29.94%. Crucially, our analysis uncovers a prevalent behavioral pattern of aggressive implementation, which leads to "scope creep" and widespread regressions where agents break existing features by diverging from the user's explicit intent. We release FeatBench, our automated pipeline, and all experimental results to facilitate further community research.
♻ ☆ Q3R: Quadratic Reweighted Rank Regularizer for Effective Low-Rank Training
Parameter-efficient training based on low-rank optimization has become a highly successful tool for fine-tuning large deep learning models. However, these methods often fail for low-rank pre-training, where simultaneously maintaining low-rank weight structure and optimizing the task objective remains challenging. We propose the $\textit{Quadratic Reweighted Rank Regularizer}$ ($\texttt{Q3R}$), which leads to a novel low-rank-inducing training strategy inspired by the Iteratively Reweighted Least Squares (IRLS) framework. $\texttt{Q3R}$ is based on a quadratic regularizer term that majorizes a smoothed log-determinant rank surrogate. Unlike other low-rank training techniques, $\texttt{Q3R}$ can train weight matrices to prescribed low target ranks while achieving predictive performance comparable to dense models, with small computational overhead and full compatibility with existing architectures. For example, we demonstrate a $\texttt{Q3R}$-regularized ViT-Tiny experiment where truncating the model to $60\%$ and $80\%$ of its parameters results in only minor absolute accuracy drops of $1.3\%$ and $4\%$, respectively, on CIFAR-10. We confirm the efficacy of $\texttt{Q3R}$ on Transformers across both vision and language tasks, including low-rank fine-tuning.
♻ ☆ A Survey: Spatiotemporal Consistency in Video Generation
Video generation aims to produce temporally coherent sequences of visual frames, representing a pivotal advancement in Artificial Intelligence Generated Content (AIGC). Compared to static image generation, video generation poses unique challenges: it demands not only high-quality individual frames but also strong temporal coherence to ensure consistency throughout the spatiotemporal sequence. Although research addressing spatiotemporal consistency in video generation has increased in recent years, systematic reviews focusing on this core issue remain relatively scarce. To fill this gap, this paper views the video generation task as a sequential sampling process from a high-dimensional spatiotemporal distribution, and further discusses spatiotemporal consistency. We provide a systematic review of the latest advancements in the field. The content spans multiple dimensions including generation models, feature representations, generation frameworks, post-processing techniques, training strategies, benchmarks and evaluation metrics, with a particular focus on the mechanisms and effectiveness of various methods in maintaining spatiotemporal consistency. Finally, this paper explores future research directions and potential challenges in this field, aiming to provide valuable insights for advancing video generation technology. The project link is https://github.com/Yin-Z-Y/A-Survey-Spatiotemporal-Consistency-in-Video-Generation.
♻ ☆ SurgRAW: Multi-Agent Workflow with Chain of Thought Reasoning for Robotic Surgical Video Analysis
Robotic-assisted surgery (RAS) is central to modern surgery, driving the need for intelligent systems with accurate scene understanding. Most existing surgical AI methods rely on isolated, task-specific models, leading to fragmented pipelines with limited interpretability and no unified understanding of RAS scene. Vision-Language Models (VLMs) offer strong zero-shot reasoning, but struggle with hallucinations, domain gaps and weak task-interdependency modeling. To address the lack of unified data for RAS scene understanding, we introduce SurgCoTBench, the first reasoning-focused benchmark in RAS, covering 14256 QA pairs with frame-level annotations across five major surgical tasks. Building on SurgCoTBench, we propose SurgRAW, a clinically aligned Chain-of-Thought (CoT) driven agentic workflow for zero-shot multi-task reasoning in surgery. SurgRAW employs a hierarchical reasoning workflow where an orchestrator divides surgical scene understanding into two reasoning streams and directs specialized agents to generate task-level reasoning, while higher-level agents capture workflow interdependencies or ground output clinically. Specifically, we propose a panel discussion mechanism to ensure task-specific agents collaborate synergistically and leverage on task interdependencies. Similarly, we incorporate a retrieval-augmented generation module to enrich agents with surgical knowledge and alleviate domain gaps in general VLMs. We design task-specific CoT prompts grounded in surgical domain to ensure clinically aligned reasoning, reduce hallucinations and enhance interpretability. Extensive experiments show that SurgRAW surpasses mainstream VLMs and agentic systems and outperforms a supervised model by 14.61% accuracy. Dataset and code is available at https://github.com/jinlab-imvr/SurgRAW.git .
♻ ☆ FedEFC: Federated Learning Using Enhanced Forward Correction Against Noisy Labels
Federated Learning (FL) is a powerful framework for privacy-preserving distributed learning. It enables multiple clients to collaboratively train a global model without sharing raw data. However, handling noisy labels in FL remains a major challenge due to heterogeneous data distributions and communication constraints, which can severely degrade model performance. To address this issue, we propose FedEFC, a novel method designed to tackle the impact of noisy labels in FL. FedEFC mitigates this issue through two key techniques: (1) prestopping, which prevents overfitting to mislabeled data by dynamically halting training at an optimal point, and (2) loss correction, which adjusts model updates to account for label noise. In particular, we develop an effective loss correction tailored to the unique challenges of FL, including data heterogeneity and decentralized training. Furthermore, we provide a theoretical analysis, leveraging the composite proper loss property, to demonstrate that the FL objective function under noisy label distributions can be aligned with the clean label distribution. Extensive experimental results validate the effectiveness of our approach, showing that it consistently outperforms existing FL techniques in mitigating the impact of noisy labels, particularly under heterogeneous data settings (e.g., achieving up to 41.64% relative performance improvement over the existing loss correction method).
comment: 9 pages, 3 figures, revised version
♻ ☆ STAPO: Stabilizing Reinforcement Learning for LLMs by Silencing Rare Spurious Tokens
Reinforcement Learning (RL) has significantly improved large language model reasoning, but existing RL fine-tuning methods rely heavily on heuristic techniques such as entropy regularization and reweighting to maintain stability. In practice, they often suffer from late-stage performance collapse, leading to degraded reasoning quality and unstable training. Our analysis shows that the magnitude of token-wise policy gradients in RL is negatively correlated with token probability and local policy entropy. We find that training instability can be caused by a tiny fraction of tokens, approximately 0.01\%, which we term \emph{spurious tokens}. When such tokens appear in correct responses, they contribute little to the reasoning outcome but inherit the full sequence-level reward, leading to abnormally amplified gradient updates. To mitigate this instability, we design S2T (silencing spurious tokens) mechanism to efficiently identify spurious tokens through characteristic signals with low probability, low entropy, and positive advantage, and then to suppress their gradient perturbations during optimization. Incorporating this mechanism into a group-based objective, we propose Spurious-Token-Aware Policy Optimization (STAPO), which promotes stable and effective large-scale model refinement. Across six mathematical reasoning benchmarks using Qwen 1.7B, 8B, and 14B base models, STAPO consistently demonstrates superior entropy stability and achieves an average performance improvement of 7.13\% ($ρ_{\mathrm{T}}$=1.0, top-p=1.0) and 3.69\% ($ρ_{\mathrm{T}}$=0.7, top-p=0.9) over GRPO, 20-Entropy and JustRL.
♻ ☆ Pinet: Optimizing hard-constrained neural networks with orthogonal projection layers ICLR 2026
We introduce an output layer for neural networks that ensures satisfaction of convex constraints. Our approach, $Π$net, leverages operator splitting for rapid and reliable projections in the forward pass, and the implicit function theorem for backpropagation. We deploy $Π$net as a feasible-by-design optimization proxy for parametric constrained optimization problems and obtain modest-accuracy solutions faster than traditional solvers when solving a single problem, and significantly faster for a batch of problems. We surpass state-of-the-art learning approaches by orders of magnitude in terms of training time, solution quality, and robustness to hyperparameter tuning, while maintaining similar inference times. Finally, we tackle multi-vehicle motion planning with non-convex trajectory preferences and provide $Π$net as a GPU-ready package implemented in JAX.
comment: Accepted for presentation at, and publication in the proceedings of, the Fourteenth International Conference on Learning Representations (ICLR 2026, oral)
♻ ☆ Language and Experience: A Computational Model of Social Learning in Complex Tasks
The ability to combine linguistic guidance from others with direct experience is central to human development, enabling safe and rapid learning in new environments. How do people integrate these two sources of knowledge, and how might AI systems? We present a computational framework that models social learning as joint probabilistic inference over structured, executable world models given sensorimotor and linguistic data. We make this possible by turning a pretrained language model into a probabilistic model of how humans share advice conditioned on their beliefs, allowing our agents both to generate advice for others and to interpret linguistic input as evidence during Bayesian inference. Using behavioral experiments and simulations across 10 video games, we show how linguistic guidance can shape exploration and accelerate learning by reducing risky interactions and speeding up key discoveries in both humans and models. We further explore how knowledge can accumulate across generations through iterated learning experiments and demonstrate successful knowledge transfer between humans and models -- revealing how structured, language-compatible representations might enable human-machine collaborative learning.
comment: Code: github.com/ccolas/language_and_experience Demo: cedriccolas.com/demos/language_and_experience
♻ ☆ Mastering Olympiad-Level Physics with Artificial Intelligence
Olympiad-level physics problem-solving significantly challenges both humans and artificial intelligence (AI), as it requires integrating appropriate modeling, application of physical principles, and precise calculation within long reasoning processes. In this paper, we introduce LOCA (LOgical Chain Augmentation), an AI agent framework designed for complex physics reasoning. LOCA decomposes long reasoning into serialized atomic and verifiable steps, refining the solution through an augment-review loop. We evaluate LOCA on the 2025 Chinese Physics Olympiad (CPhO) theory examination, a rigorous testbed renowned for its depth and complexity. The framework achieves a near-perfect score of 313 out of 320 points, significantly surpassing the top human competitor and other baseline methods. Furthermore, LOCA attains a near-perfect score of 28.6 out of 30 on the IPhO 2025 examination, demonstrating its strong generalizability across different contexts. Our work points toward the development of trustworthy AI partners in both research and education.
comment: 8 pages, 3 figures, Content from the previous article 2510.01249 is included
♻ ☆ FreqPolicy: Efficient Flow-based Visuomotor Policy via Frequency Consistency NeurIPS 2025
Generative modeling-based visuomotor policies have been widely adopted in robotic manipulation, attributed to their ability to model multimodal action distributions. However, the high inference cost of multi-step sampling limits its applicability in real-time robotic systems. Existing approaches accelerate sampling in generative modeling-based visuomotor policies by adapting techniques originally developed to speed up image generation. However, a major distinction exists: image generation typically produces independent samples without temporal dependencies, while robotic manipulation requires generating action trajectories with continuity and temporal coherence. To this end, we propose FreqPolicy, a novel approach that first imposes frequency consistency constraints on flow-based visuomotor policies. Our work enables the action model to capture temporal structure effectively while supporting efficient, high-quality one-step action generation. Concretely, we introduce a frequency consistency constraint objective that enforces alignment of frequency-domain action features across different timesteps along the flow, thereby promoting convergence of one-step action generation toward the target distribution. In addition, we design an adaptive consistency loss to capture structural temporal variations inherent in robotic manipulation tasks. We assess FreqPolicy on 53 tasks across 3 simulation benchmarks, proving its superiority over existing one-step action generators. We further integrate FreqPolicy into the vision-language-action (VLA) model and achieve acceleration without performance degradation on 40 tasks of LIBERO. Besides, we show efficiency and effectiveness in real-world robotic scenarios with an inference frequency of 93.5 Hz.
comment: NeurIPS 2025
♻ ☆ Model-Agnostic Dynamic Feature Selection with Uncertainty Quantification
Dynamic feature selection (DFS) addresses budget constraints in decision-making by sequentially acquiring features for each instance, making it appealing for resource-limited scenarios. However, existing DFS methods require models specifically designed for the sequential acquisition setting, limiting compatibility with models already deployed in practice. Furthermore, they provide limited uncertainty quantification, undermining trust in high-stakes decisions. In this work, we show that DFS introduces new uncertainty sources compared to the static setting. We formalise how model adaptation to feature subsets induces epistemic uncertainty, how standard imputation strategies bias aleatoric uncertainty estimation, and why predictive confidence fails to discriminate between good and bad selection policies. We also propose a model-agnostic DFS framework compatible with pre-trained classifiers, including interpretable-by-design models, through efficient subset reparametrization strategies. Empirical evaluation on tabular and image datasets demonstrates competitive accuracy against state-of-the-art greedy and reinforcement learning-based DFS methods with both neural and rule-based classifiers. We further show that the identified uncertainty sources persist across most existing approaches, highlighting the need for uncertainty-aware DFS.
♻ ☆ When Models Examine Themselves: Vocabulary-Activation Correspondence in Self-Referential Processing
Large language models produce rich introspective language when prompted for self-examination, but whether this language reflects internal computation or sophisticated confabulation has remained unclear. We show that self-referential vocabulary tracks concurrent activation dynamics, and that this correspondence is specific to self-referential processing. We introduce the Pull Methodology, a protocol that elicits extended self-examination through format engineering, and use it to identify a direction in activation space that distinguishes self-referential from descriptive processing in Llama 3.1. The direction is orthogonal to the known refusal direction, localised at 6.25% of model depth, and causally influences introspective output when used for steering. When models produce "loop" vocabulary, their activations exhibit higher autocorrelation (r = 0.44, p = 0.002); when they produce "shimmer" vocabulary under steering, activation variability increases (r = 0.36, p = 0.002). Critically, the same vocabulary in non-self-referential contexts shows no activation correspondence despite nine-fold higher frequency. Qwen 2.5-32B, with no shared training, independently develops different introspective vocabulary tracking different activation metrics, all absent in descriptive controls. The findings indicate that self-report in transformer models can, under appropriate conditions, reliably track internal computational states.
comment: Code and data: https://doi.org/10.5281/zenodo.18567446 Repro: https://github.com/patternmatcher/TRACE-REPRO
♻ ☆ VIRENA: Virtual Arena for Research, Education, and Democratic Innovation
Digital platforms shape how people communicate, deliberate, and form opinions. Studying these dynamics has become increasingly difficult due to restricted data access, ethical constraints on real-world experiments, and limitations of existing research tools. VIRENA (Virtual Arena) is a platform that enables controlled experimentation in realistic social media environments. Multiple participants interact simultaneously in realistic replicas of feed-based platforms (Instagram, Facebook, Reddit) and messaging apps (WhatsApp, Messenger). Large language model-powered AI agents participate alongside humans with configurable personas and realistic behavior. Researchers can manipulate content moderation approaches, pre-schedule stimulus content, and run experiments across conditions through a visual interface requiring no programming skills. VIRENA makes possible research designs that were previously impractical: studying human--AI interaction in realistic social contexts, experimentally comparing moderation interventions, and observing group deliberation as it unfolds. Built on open-source technologies that ensure data remain under institutional control and comply with data protection requirements, VIRENA is currently in use at the University of Zurich and available for pilot collaborations. Designed for researchers, educators, and public organizations alike, VIRENA's no-code interface makes controlled social media simulation accessible across disciplines and sectors. This paper documents its design, architecture, and capabilities.
comment: VIRENA is under active development and currently in use at the University of Zurich. This preprint will be updated as new features are released. For the latest version and to inquire about demos or pilot collaborations, contact the authors
♻ ☆ Expressive Power of Graph Transformers via Logic
Transformers are the basis of modern large language models, but relatively little is known about their precise expressive power on graphs. We study the expressive power of graph transformers (GTs) by Dwivedi and Bresson (2020) and GPS-networks by Rampásek et al. (2022), both under soft-attention and average hard-attention. Our study covers two scenarios: the theoretical setting with real numbers and the more practical case with floats. With reals, we show that in restriction to vertex properties definable in first-order logic (FO), GPS-networks have the same expressive power as graded modal logic (GML) with the global modality. With floats, GPS-networks turn out to be equally expressive as GML with the counting global modality. The latter result is absolute, not restricting to properties definable in a background logic. We also obtain similar characterizations for GTs in terms of propositional logic with the global modality (for reals) and the counting global modality (for floats).
♻ ☆ Vision and Language: Novel Representations and Artificial intelligence for Driving Scene Safety Assessment and Autonomous Vehicle Planning
Vision-language models (VLMs) have recently emerged as powerful representation learning systems that align visual observations with natural language concepts, offering new opportunities for semantic reasoning in safety-critical autonomous driving. This paper investigates how vision-language representations support driving scene safety assessment and decision-making when integrated into perception, prediction, and planning pipelines. We study three complementary system-level use cases. First, we introduce a lightweight, category-agnostic hazard screening approach leveraging CLIP-based image-text similarity to produce a low-latency semantic hazard signal. This enables robust detection of diverse and out-of-distribution road hazards without explicit object detection or visual question answering. Second, we examine the integration of scene-level vision-language embeddings into a transformer-based trajectory planning framework using the Waymo Open Dataset. Our results show that naively conditioning planners on global embeddings does not improve trajectory accuracy, highlighting the importance of representation-task alignment and motivating the development of task-informed extraction methods for safety-critical planning. Third, we investigate natural language as an explicit behavioral constraint on motion planning using the doScenes dataset. In this setting, passenger-style instructions grounded in visual scene elements suppress rare but severe planning failures and improve safety-aligned behavior in ambiguous scenarios. Taken together, these findings demonstrate that vision-language representations hold significant promise for autonomous driving safety when used to express semantic risk, intent, and behavioral constraints. Realizing this potential is fundamentally an engineering problem requiring careful system design and structured grounding rather than direct feature injection.
♻ ☆ Evaluating Language Model Agency through Negotiations ICLR 2024
We introduce an approach to evaluate language model (LM) agency using negotiation games. This approach better reflects real-world use cases and addresses some of the shortcomings of alternative LM benchmarks. Negotiation games enable us to study multi-turn, and cross-model interactions, modulate complexity, and side-step accidental evaluation data leakage. We use our approach to test six widely used and publicly accessible LMs, evaluating performance and alignment in both self-play and cross-play settings. Noteworthy findings include: (i) only closed-source models tested here were able to complete these tasks; (ii) cooperative bargaining games proved to be most challenging to the models; and (iii) even the most powerful models sometimes "lose" to weaker opponents
comment: Accepted to ICLR 2024, code and link to project data are made available at https://github.com/epfl-dlab/LAMEN
♻ ☆ ForesightSafety Bench: A Frontier Risk Evaluation and Governance Framework towards Safe AI
Rapidly evolving AI exhibits increasingly strong autonomy and goal-directed capabilities, accompanied by derivative systemic risks that are more unpredictable, difficult to control, and potentially irreversible. However, current AI safety evaluation systems suffer from critical limitations such as restricted risk dimensions and failed frontier risk detection. The lagging safety benchmarks and alignment technologies can hardly address the complex challenges posed by cutting-edge AI models. To bridge this gap, we propose the "ForesightSafety Bench" AI Safety Evaluation Framework, beginning with 7 major Fundamental Safety pillars and progressively extends to advanced Embodied AI Safety, AI4Science Safety, Social and Environmental AI risks, Catastrophic and Existential Risks, as well as 8 critical industrial safety domains, forming a total of 94 refined risk dimensions. To date, the benchmark has accumulated tens of thousands of structured risk data points and assessment results, establishing a widely encompassing, hierarchically clear, and dynamically evolving AI safety evaluation framework. Based on this benchmark, we conduct systematic evaluation and in-depth analysis of over twenty mainstream advanced large models, identifying key risk patterns and their capability boundaries. The safety capability evaluation results reveals the widespread safety vulnerabilities of frontier AI across multiple pillars, particularly focusing on Risky Agentic Autonomy, AI4Science Safety, Embodied AI Safety, Social AI Safety and Catastrophic and Existential Risks. Our benchmark is released at https://github.com/Beijing-AISI/ForesightSafety-Bench. The project website is available at https://foresightsafety-bench.beijing-aisi.ac.cn/.
♻ ☆ SEISMO: Increasing Sample Efficiency in Molecular Optimization with a Trajectory-Aware LLM Agent
Optimizing the structure of molecules to achieve desired properties is a central bottleneck across the chemical sciences, particularly in the pharmaceutical industry where it underlies the discovery of new drugs. Since molecular property evaluation often relies on costly and rate-limited oracles, such as experimental assays, molecular optimization must be highly sample-efficient. To address this, we introduce SEISMO, an LLM agent that performs strictly online, inference-time molecular optimization, updating after every oracle call without the need for population-based or batched learning. SEISMO conditions each proposal on the full optimization trajectory, combining natural-language task descriptions with scalar scores and, when available, structured explanatory feedback. Across the Practical Molecular Optimization benchmark of 23 tasks, SEISMO achieves a 2-3 times higher area under the optimisation curve than prior methods, often reaching near-maximal task scores within 50 oracle calls. Our additional medicinal-chemistry tasks show that providing explanatory feedback further improves efficiency, demonstrating that leveraging domain knowledge and structured information is key to sample-efficient molecular optimization.
comment: Fabian P. Krüger and Andrea Hunklinger contributed equally to this work
♻ ☆ Rethinking the Role of Entropy in Optimizing Tool-Use Behaviors for Large Language Model Agents
Tool-using agents based on Large Language Models (LLMs) excel in tasks such as mathematical reasoning and multi-hop question answering. However, in long trajectories, agents often trigger excessive and low-quality tool calls, increasing latency and degrading inference performance, making managing tool-use behavior challenging. In this work, we conduct entropy-based pilot experiments and observe a strong positive correlation between entropy reduction and high-quality tool calls. Building on this finding, we propose using entropy reduction as a supervisory signal and design two reward strategies to address the differing needs of optimizing tool-use behavior. Sparse outcome rewards provide coarse, trajectory-level guidance to improve efficiency, while dense process rewards offer fine-grained supervision to enhance performance. Experiments across diverse domains show that both reward designs improve tool-use behavior: the former reduces tool calls by 72.07% compared to the average of baselines, while the latter improves performance by 22.27%. These results position entropy reduction as a key mechanism for enhancing tool-use behavior, enabling agents to be more adaptive in real-world applications.
♻ ☆ Indic-TunedLens: Interpreting Multilingual Models in Indian Languages EACL
Multilingual large language models (LLMs) are increasingly deployed in linguistically diverse regions like India, yet most interpretability tools remain tailored to English. Prior work reveals that LLMs often operate in English centric representation spaces, making cross lingual interpretability a pressing concern. We introduce Indic-TunedLens, a novel interpretability framework specifically for Indian languages that learns shared affine transformations. Unlike the standard Logit Lens, which directly decodes intermediate activations, Indic-TunedLens adjusts hidden states for each target language, aligning them with the target output distributions to enable more faithful decoding of model representations. We evaluate our framework on 10 Indian languages using the MMLU benchmark and find that it significantly improves over SOTA interpretability methods, especially for morphologically rich, low resource languages. Our results provide crucial insights into the layer-wise semantic encoding of multilingual transformers. Our model is available at https://huggingface.co/spaces/MihirRajeshPanchal/IndicTunedLens. Our code is available at https://github.com/MihirRajeshPanchal/IndicTunedLens.
comment: 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL) Thirteenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial) 2026
♻ ☆ GENESIS: A Generative Model of Episodic-Semantic Interaction
A central challenge in cognitive neuroscience is to explain how semantic and episodic memory, two major forms of declarative memory, typically associated with cortical and hippocampal processing, interact to support learning, recall, and imagination. Despite significant advances, we still lack a unified computational framework that jointly accounts for core empirical phenomena across both semantic and episodic processing domains. Here, we introduce the Generative Episodic-Semantic Integration System (GENESIS), a computational model that formalizes memory as the interaction between two limited-capacity generative systems: a Cortical-VAE, supporting semantic learning and generalization, and a Hippocampal-VAE, supporting episodic encoding and retrieval within a retrieval-augmented generation (RAG) architecture. GENESIS reproduces hallmark behavioral findings, including generalization in semantic memory, recognition, serial recall effects and gist-based distortions in episodic memory, and constructive episodic simulation, while capturing their dynamic interactions. The model elucidates how capacity constraints shape the fidelity and memorability of experiences, how semantic processing introduces systematic distortions in episodic recall, and how episodic replay can recombine previous experiences. Together, these results provide a principled account of memory as an active, constructive, and resource-bounded process. GENESIS thus advances a unified theoretical framework that bridges semantic and episodic memory, offering new insights into the generative foundations of human cognition.
comment: 18 pages, 6 figures
♻ ☆ VerifyBench: Benchmarking Reference-based Reward Systems for Large Language Models ICLR 2026
Large reasoning models such as OpenAI o1 and DeepSeek-R1 have demonstrated remarkable performance in complex reasoning tasks. A critical component of their training is the incorporation of reference-based reward systems within reinforcement learning (RL), where model outputs are evaluated against ground truth references. However, existing reward benchmarks focus on preference comparisons between responses rather than evaluating verification against ground truth references, leaving a critical gap in our ability to evaluate verification systems used in reasoning model training. In this paper, we introduce VerifyBench and its challenging variant VerifyBench-Hard, two benchmarks specifically designed to assess reference-based reward systems. These benchmarks are constructed through meticulous data collection and curation, followed by careful human annotation to ensure high quality. Our comprehensive evaluation reveals that while larger model-based verifiers show promise on standard cases, all current systems demonstrate substantial room for improvement on challenging instances. Through systematic analysis of performance patterns across reasoning tasks and error categories, we provide insights for advancing reference-based reward systems. These benchmarks establish a standardized framework for improving verification accuracy, ultimately enhancing reasoning capabilities in models trained via RL.
comment: ICLR 2026: https://openreview.net/forum?id=JfsjGmuFxz Project Page: https://zju-real.github.io/VerifyBench Dataset: https://huggingface.co/datasets/ZJU-REAL/VerifyBench Code: https://github.com/ZJU-REAL/VerifyBench
♻ ☆ MedReasoner: Reinforcement Learning Drives Reasoning Grounding from Clinical Thought to Pixel-Level Precision AAAI2026
Accurately grounding regions of interest (ROIs) is critical for diagnosis and treatment planning in medical imaging. While multimodal large language models (MLLMs) combine visual perception with natural language, current medical-grounding pipelines still rely on supervised fine-tuning with explicit spatial hints, making them ill-equipped to handle the implicit queries common in clinical practice. This work makes three core contributions. We first define Unified Medical Reasoning Grounding (UMRG), a novel vision-language task that demands clinical reasoning and pixel-level grounding. Second, we release U-MRG-14K, a dataset of 14K samples featuring pixel-level masks alongside implicit clinical queries and reasoning traces, spanning 10 modalities, 15 super-categories, and 108 specific categories. Finally, we introduce MedReasoner, a modular framework that distinctly separates reasoning from segmentation: an MLLM reasoner is optimized with reinforcement learning, while a frozen segmentation expert converts spatial prompts into masks, with alignment achieved through format and accuracy rewards. MedReasoner achieves state-of-the-art performance on U-MRG-14K and demonstrates strong generalization to unseen clinical queries, underscoring the significant promise of reinforcement learning for interpretable medical grounding.
comment: AAAI2026
♻ ☆ Large Language Models for Water Distribution Systems Modeling and Decision-Making
The integration of Large Language Models (LLMs) into engineering workflows presents new opportunities for making computational tools more accessible. Especially where such tools remain underutilized due to technical or expertise barriers, such as water distribution system (WDS) management. This study introduces LLM-EPANET, an agent-based framework that enables natural language interaction with EPANET, the benchmark WDS simulator. The framework combines retrieval-augmented generation and multi-agent orchestration to automatically translate user queries into executable code, run simulations, and return structured results. A curated set of 69 benchmark queries is introduced to evaluate performance across state-of-the-art LLMs. Results show that LLMs can effectively support a wide range of modeling tasks, achieving 56-81% accuracy overall, and over 90% for simpler queries. These findings highlight the potential of LLM-based modeling to democratize data-driven decision-making in the water sector through transparent, interactive AI interfaces. The framework code and benchmark queries are shared as an open resource: https://github.com/yinon-gold/LLMs-in-WDS-Modeling.
comment: Accepted to EWRI Congress 2025
♻ ☆ High-Fidelity Network Management for Federated AI-as-a-Service: Cross-Domain Orchestration
To support the emergence of AI-as-a-Service (AIaaS), communication service providers (CSPs) are on the verge of a radical transformation-from pure connectivity providers to AIaaS a managed network service (control-and-orchestration plane that exposes AI models). In this model, the CSP is responsible not only for transport/communications, but also for intent-to-model resolution and joint network-compute orchestration, i.e., reliable and timely end-to-end delivery. The resulting end-to-end AIaaS service thus becomes governed by communications impairments (delay, loss) and inference impairments (latency, error). A central open problem is an operational AIaaS control-and-orchestration framework that enforces high fidelity, particularly under multi-domain federation. This paper introduces an assurance-oriented AIaaS management plane based on Tail-Risk Envelopes (TREs): signed, composable per-domain descriptors that combine deterministic guardrails with stochastic rate-latency-impairment models. Using stochastic network calculus, we derive bounds on end-to-end delay violation probabilities across tandem domains and obtain an optimization-ready risk-budget decomposition. We show that tenant-level reservations prevent bursty traffic from inflating tail latency under TRE contracts. An auditing layer then uses runtime telemetry to estimate extreme-percentile performance, quantify uncertainty, and attribute tail-risk to each domain for accountability. Packet-level Monte-Carlo simulations demonstrate improved p99.9 compliance under overload via admission control and robust tenant isolation under correlated burstiness.
♻ ☆ AI-Paging: Lease-Based Execution Anchoring for Network-Exposed AI-as-a-Service
With AI-as-a-Service (AIaaS) now deployed across multiple providers and model tiers, selecting the appropriate model instance at run time is increasingly outside the end user's knowledge and operational control. Accordingly, the 6G service providers are envisioned to play a crucial role in exposing AIaaS in a setting where users submit only an intent while the network helps in the intent-to-model matching (resolution) and execution placement under policy, trust, and Quality of Service (QoS) constraints. The network role becomes to discover candidate execution endpoints and selects a suitable model/anchor under policy and QoS constraints in a process referred here to as AI-paging (by analogy to cellular call paging). In the proposed architecture, AI-paging is a control-plane transaction that resolves an intent into an AI service identity (AISI), a scoped session token (AIST), and an expiring admission lease (COMMIT) that authorizes user-plane steering to a selected AI execution anchor (AEXF) under a QoS binding. AI-Paging enforces two invariants: (i) lease-gated steering (without COMMIT, no steering state is installed) and (ii) make-before-break anchoring to support continuity and reliability of AIaaS services under dynamic network conditions. We prototype AI-Paging using existing control- and user-plane mechanisms (service-based control, QoS flows, and policy-based steering) with no new packet headers, ensuring compatibility with existing 3GPP-based exposure and management architectures, and evaluate transaction latency, relocation interruption, enforcement correctness under lease expiry, and audit-evidence overhead under mobility and failures.
♻ ☆ DiffusionBlocks: Block-wise Neural Network Training via Diffusion Interpretation ICLR 2026
End-to-end backpropagation requires storing activations throughout all layers, creating memory bottlenecks that limit model scalability. Existing block-wise training methods offer means to alleviate this problem, but they rely on ad-hoc local objectives and remain largely unexplored beyond classification tasks. We propose $\textit{DiffusionBlocks}$, a principled framework for transforming transformer-based networks into genuinely independent trainable blocks that maintain competitive performance with end-to-end training. Our key insight leverages the fact that residual connections naturally correspond to updates in a dynamical system. With minimal modifications to this system, we can convert the updates to those of a denoising process, where each block can be learned independently by leveraging the score matching objective. This independence enables training with gradients for only one block at a time, thereby reducing memory requirements in proportion to the number of blocks. Our experiments on a range of transformer architectures (vision, diffusion, autoregressive, recurrent-depth, and masked diffusion) demonstrate that DiffusionBlocks training matches the performance of end-to-end training while enabling scalable block-wise training on practical tasks beyond small-scale classification. DiffusionBlocks provides a theoretically grounded approach that successfully scales to modern generative tasks across diverse architectures. Code is available at https://github.com/SakanaAI/DiffusionBlocks .
comment: To appear at the 14th International Conference on Learning Representations (ICLR 2026)
♻ ☆ SecCodeBench-V2 Technical Report
We introduce SecCodeBench-V2, a publicly released benchmark for evaluating Large Language Model (LLM) copilots' capabilities of generating secure code. SecCodeBench-V2 comprises 98 generation and fix scenarios derived from Alibaba Group's industrial productions, where the underlying security issues span 22 common CWE (Common Weakness Enumeration) categories across five programming languages: Java, C, Python, Go, and JavaScript. SecCodeBench-V2 adopts a function-level task formulation: each scenario provides a complete project scaffold and requires the model to implement or patch a designated target function under fixed interfaces and dependencies. For each scenario, SecCodeBench-V2 provides executable proof-of-concept (PoC) test cases for both functional validation and security verification. All test cases are authored and double-reviewed by security experts, ensuring high fidelity, broad coverage, and reliable ground truth. Beyond the benchmark itself, we build a unified evaluation pipeline that assesses models primarily via dynamic execution. For most scenarios, we compile and run model-generated artifacts in isolated environments and execute PoC test cases to validate both functional correctness and security properties. For scenarios where security issues cannot be adjudicated with deterministic test cases, we additionally employ an LLM-as-a-judge oracle. To summarize performance across heterogeneous scenarios and difficulty levels, we design a Pass@K-based scoring protocol with principled aggregation over scenarios and severity, enabling holistic and comparable evaluation across models. Overall, SecCodeBench-V2 provides a rigorous and reproducible foundation for assessing the security posture of AI coding assistants, with results and artifacts released at https://alibaba.github.io/sec-code-bench. The benchmark is publicly available at https://github.com/alibaba/sec-code-bench.
♻ ☆ Chain of Thought in Order: Discovering Learning-Friendly Orders for Arithmetic
The chain of thought, i.e., step-by-step reasoning, is one of the fundamental mechanisms of Transformers. While the design of intermediate reasoning steps has been extensively studied and shown to critically influence performance on mathematical, multi-step reasoning tasks, the ordering of these steps has received little attention, despite its significant effect on the difficulty of reasoning. This study addresses a novel task of unraveling the chain of thought -- reordering decoder input tokens into a learning-friendly sequence for Transformers, for learning arithmetic tasks. The proposed pipeline first trains a Transformer on a mixture of target sequences arranged in different orders and then identifies benign orders as those with fast loss drops in the early stage. As the search space grows factorially in sequence length, we propose a two-stage hierarchical approach for inter- and intra-block reordering. Experiments on seven order-sensitive arithmetic tasks show that our method identifies a learning-friendly order out of a few billion candidates. Notably, it recovered the reverse-digit order reported in prior studies for the multiplication task.
comment: 22 pages, 11 figures
♻ ☆ Transformers can do Bayesian Clustering
Bayesian clustering accounts for uncertainty but is computationally demanding at scale. Furthermore, real-world datasets often contain missing values, and simple imputation ignores the associated uncertainty, resulting in suboptimal results. We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fitted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior, Cluster-PFN learns to estimate the posterior distribution over both the number of clusters and the cluster assignments. Our method estimates the number of clusters more accurately than handcrafted model selection procedures such as AIC, BIC and Variational Inference (VI), and achieves clustering quality competitive with VI while being orders of magnitude faster. Cluster-PFN can be trained on complex priors that include missing data, outperforming imputation-based baselines on real-world genomic datasets, at high missingness. These results show that the Cluster-PFN can provide scalable and flexible Bayesian clustering.
♻ ☆ Weight space Detection of Backdoors in LoRA Adapters
LoRA adapters let users fine-tune large language models (LLMs) efficiently. However, LoRA adapters are shared through open repositories like Hugging Face Hub \citep{huggingface_hub_docs}, making them vulnerable to backdoor attacks. Current detection methods require running the model with test input data -- making them impractical for screening thousands of adapters where the trigger for backdoor behavior is unknown. We detect poisoned adapters by analyzing their weight matrices directly, without running the model -- making our method data-agnostic. Our method extracts simple statistics -- how concentrated the singular values are, their entropy, and the distribution shape -- and flags adapters that deviate from normal patterns. We evaluate the method on 500 LoRA adapters -- 400 clean, and 100 poisoned for Llama-3.2-3B on instruction and reasoning datasets: Alpaca, Dolly, GSM8K, ARC-Challenge, SQuADv2, NaturalQuestions, HumanEval, and GLUE dataset. We achieve 97\% detection accuracy with less than 2\% false positives.
♻ ☆ PolicyPad: Collaborative Prototyping of LLM Policies
As LLMs gain adoption in high-stakes domains like mental health, domain experts are increasingly consulted to provide input into policies governing their behavior. From an observation of 19 policymaking workshops with 9 experts over 15 weeks, we identified opportunities to better support rapid experimentation, feedback, and iteration for collaborative policy design processes. We present PolicyPad, an interactive system that facilitates the emerging practice of LLM policy prototyping by drawing from established UX prototyping practices, including heuristic evaluation and storyboarding. Using PolicyPad, policy designers can collaborate on drafting a policy in real time while independently testing policy-informed model behavior with usage scenarios. We evaluate PolicyPad through workshops with 8 groups of 22 domain experts in mental health and law, finding that PolicyPad enhanced collaborative dynamics during policy design, enabled tight feedback loops, and led to novel policy contributions. Overall, our work paves expert-informed paths for advancing AI alignment and safety.
comment: CHI 2026 paper. Supplementary materials: https://docs.google.com/document/d/1jBmKXusoWmCHfwpmNhSTJtbwZ5fwVWLNppKeqqd_-pY/edit?usp=sharing
♻ ☆ StarEmbed: Benchmarking Time Series Foundation Models on Astronomical Observations of Variable Stars
Time series foundation models (TSFMs) are increasingly being adopted as highly-capable general-purpose time series representation learners. Although their training corpora are vast, they exclude astronomical time series data. Observations of stars produce peta-scale time series with unique challenges including irregular sampling and heteroskedasticity. We introduce StarEmbed, the first public benchmark for rigorous and standardized evaluation of state-of-the-art TSFMs on stellar time series observations (``light curves''). We benchmark on three scientifically-motivated downstream tasks: unsupervised clustering, supervised classification, and out-of-distribution source detection. StarEmbed integrates a catalog of expert-vetted labels with multi-variate light curves from the Zwicky Transient Facility, yielding ~40k hand-labeled light curves spread across seven astrophysical classes. We evaluate the zero-shot representation capabilities of three TSFMs (MOIRAI, Chronos, Chronos-Bolt) and a domain-specific transformer (Astromer) against handcrafted feature extraction, the long-standing baseline in the astrophysics literature. Our results demonstrate that these TSFMs, especially the Chronos models, which are trained on data completely unlike the astronomical observations, can outperform established astrophysics-specific baselines in some tasks and effectively generalize to entirely new data. In particular, TSFMs deliver state-of-the-art performance on our out-of-distribution source detection benchmark. With the first benchmark of TSFMs on astronomical time series data, we test the limits of their generalization and motivate a paradigm shift in time-domain astronomy from using task-specific, fully supervised pipelines toward adopting generic foundation model representations for the analysis of peta-scale datasets from forthcoming observatories.
♻ ☆ PLAICraft: Large-Scale Time-Aligned Vision-Speech-Action Dataset for Embodied AI
Advances in deep generative modeling have made it increasingly plausible to train human-level embodied agents. Yet progress has been limited by the absence of large-scale, real-time, multi-modal, and socially interactive datasets that reflect the sensory-motor complexity of natural environments. To address this, we present PLAICraft, a novel data collection platform and dataset capturing multiplayer Minecraft interactions across five time-aligned modalities: video, game output audio, microphone input audio, mouse, and keyboard actions. Each modality is logged with millisecond time precision, enabling the study of synchronous, embodied behaviour in a rich, open-ended world. The dataset comprises over 10,000 hours of gameplay from more than 10,000 global participants. Alongside the dataset, we provide an evaluation suite for benchmarking model capabilities in object recognition, spatial awareness, language grounding, and long-term memory. PLAICraft opens a path toward training and evaluating agents that act fluently and purposefully in real time, paving the way for truly embodied artificial intelligence.
comment: 9 pages, 8 figures
♻ ☆ Understanding Transformer Optimization via Gradient Heterogeneity
Transformers are difficult to optimize with stochastic gradient descent (SGD) and largely rely on adaptive optimizers such as Adam. Despite their empirical success, the reasons behind Adam's superior performance over SGD remain poorly understood. In this study, we analyze the optimization of Transformer models through the lens of \emph{gradient heterogeneity}, defined as the variation in gradient norms across parameter blocks. We provide a theoretical analysis showing that gradient heterogeneity, together with Hessian heterogeneity, degrades the convergence of gradient-based methods such as SGD, while sign-based methods are substantially less sensitive to this effect. Adam's coordinate-wise normalization makes its update directions depend mainly on gradient signs, so Adam can be interpreted as a soft variant of SignSGD. Our analysis uses the fact that SGD and SignSGD follow steepest descent directions under different norms, and derives upper bounds on the iteration complexity with implications for learning rate scaling in SignSGD. We further investigate the origin of gradient heterogeneity in Transformer architectures and show that it is strongly influenced by the placement of layer normalization, with Post-LN architectures exhibiting particularly pronounced heterogeneity. Experimental results from fine-tuning Transformers in both NLP and vision domains validate our theoretical analysis. Code is available at https://github.com/tom4649/gradient-heterogeneity.
comment: Largely updated (v3); minor corrections in v4
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advances in architectural design, data availability, and compute have driven remarkable progress in semantic segmentation. Yet, these models often rely on relaxed Bayesian assumptions, omitting critical uncertainty information needed for robust decision-making. Despite growing interest in probabilistic segmentation to address point-estimate limitations, the research landscape remains fragmented. In response, this review synthesizes foundational concepts in uncertainty modeling, analyzing how feature- and parameter-distribution modeling impact four key segmentation tasks: Observer Variability, Active Learning, Model Introspection, and Model Generalization. Our work establishes a common framework by standardizing theory, notation, and terminology, thereby bridging the gap between method developers, task specialists, and applied researchers. We then discuss critical challenges, including the nuanced distinction between uncertainty types, strong assumptions in spatial aggregation, the lack of standardized benchmarks, and pitfalls in current quantification methods. We identify promising avenues for future research, such as uncertainty-aware active learning, data-driven benchmarks, transformer-based models, and novel techniques to move from simple segmentation problems to uncertainty in holistic scene understanding. Based on our analysis, we offer practical guidelines for researchers on method selection, evaluation, reproducibility, and meaningful uncertainty estimation. Ultimately, our goal is to facilitate the development of more reliable, efficient, and interpretable segmentation models that can be confidently deployed in real-world applications.
comment: TMLR
♻ ☆ StableQAT: Stable Quantization-Aware Training at Ultra-Low Bitwidths
Quantization-aware training (QAT) is essential for deploying large models under strict memory and latency constraints, yet achieving stable and robust optimization at ultra-low bitwidths remains challenging. Common approaches based on the straight-through estimator (STE) or soft quantizers often suffer from gradient mismatch, instability, or high computational overhead. As such, we propose StableQAT, a unified and efficient QAT framework that stabilizes training in ultra low-bit settings via a novel, lightweight, and theoretically grounded surrogate for backpropagation derived from a discrete Fourier analysis of the rounding operator. StableQAT strictly generalizes STE as the latter arises as a special case of our more expressive surrogate family, yielding smooth, bounded, and inexpensive gradients that improve QAT training performance and stability across various hyperparameter choices. In experiments, StableQAT exhibits stable and efficient QAT at 2-4 bit regimes, demonstrating improved training stability, robustness, and superior performance with negligible training overhead against standard QAT techniques. Our code is available at https://github.com/microsoft/StableQAT.
♻ ☆ Experience-based Knowledge Correction for Robust Planning in Minecraft ICLR 2026
Large Language Model (LLM)-based planning has advanced embodied agents in long-horizon environments such as Minecraft, where acquiring latent knowledge of goal (or item) dependencies and feasible actions is critical. However, LLMs often begin with flawed priors and fail to correct them through prompting, even with feedback. We present XENON (eXpErience-based kNOwledge correctioN), an agent that algorithmically revises knowledge from experience, enabling robustness to flawed priors and sparse binary feedback. XENON integrates two mechanisms: Adaptive Dependency Graph, which corrects item dependencies using past successes, and Failure-aware Action Memory, which corrects action knowledge using past failures. Together, these components allow XENON to acquire complex dependencies despite limited guidance. Experiments across multiple Minecraft benchmarks show that XENON outperforms prior agents in both knowledge learning and long-horizon planning. Remarkably, with only a 7B open-weight LLM, XENON surpasses agents that rely on much larger proprietary models. Project page: https://sjlee-me.github.io/XENON
comment: ICLR 2026
♻ ☆ Software Dependencies 2.0: An Empirical Study of Reuse and Integration of Pre-Trained Models in Open-Source Projects
Pre-trained models (PTMs) are machine learning models that have been trained in advance, often on large-scale data, and can be reused for new tasks, thereby reducing the need for costly training from scratch. Their widespread adoption introduces a new class of software dependency, which we term Software Dependencies 2.0, extending beyond conventional libraries to learned behaviors embodied in trained models and their associated artifacts. The integration of PTMs as software dependencies in real projects remains unclear, potentially threatening maintainability and reliability of modern software systems that increasingly rely on them. Objective: In this study, we investigate Software Dependencies 2.0 in open-source software (OSS) projects by examining the reuse of PTMs, with a focus on how developers manage and integrate these models. Specifically, we seek to understand: (1) how OSS projects structure and document their PTM dependencies; (2) what stages and organizational patterns emerge in the reuse pipelines of PTMs within these projects; and (3) the interactions among PTMs and other learned components across pipeline stages. We conduct a mixed-methods analysis of a statistically significant random sample of 401 GitHub repositories from the PeaTMOSS dataset (28,575 repositories reusing PTMs from Hugging Face and PyTorch Hub). We quantitatively examine PTM reuse by identifying patterns and qualitatively investigate how developers integrate and manage these models in practice.
comment: Submitted to Empirical Software Engineering (EMSE) Journal
♻ ☆ CaveAgent: Transforming LLMs into Stateful Runtime Operators
LLM-based agents are increasingly capable of complex task execution, yet current agentic systems remain constrained by text-centric paradigms that struggle with long-horizon tasks due to fragile multi-turn dependencies and context drift. We present CaveAgent, a framework that shifts tool use from ``LLM-as-Text-Generator'' to ``LLM-as-Runtime-Operator.'' CaveAgent introduces a dual-stream architecture that inverts the conventional paradigm: rather than treating the LLM's text context as the primary workspace with tools as auxiliary, CaveAgent elevates the persistent Python runtime as the central locus of state, with a lightweight semantic stream serving as its orchestrator. Beyond leveraging code generation to resolve interdependent sub-tasks (e.g., loops, conditionals) in a single step, CaveAgent introduces \textit{Stateful Runtime Management}: it injects, manipulates, and retrieves complex Python objects (e.g., DataFrames, database connections) that persist across turns, unlike existing code-based approaches that remain text-bound. CaveAgent further provides a runtime-integrated skill management system that extends the Agent Skills open standard, enabling ecosystem interoperability through executable skill injections. This persistence mechanism serves as a high-fidelity external memory that reduces context drift in multi-turn interactions and preserves processed data for downstream applications without information loss. Evaluations show consistent improvement across challenging benchmarks, enabling CaveAgent to handle data scales that cause context overflow in both JSON-based and code-based agents. The accessible runtime state further provides programmatically verifiable feedback, enabling automated evaluation and reward signal generation without human annotation and establishing a structural foundation for future research in Reinforcement Learning with Verifiable Rewards (RLVR).
comment: version 2
♻ ☆ PromptGuard: Soft Prompt-Guided Unsafe Content Moderation for Text-to-Image Models
Recent text-to-image (T2I) models have exhibited remarkable performance in generating high-quality images from text descriptions. However, these models are vulnerable to misuse, particularly generating not-safe-for-work (NSFW) content, such as sexually explicit, violent, political, and disturbing images, raising serious ethical concerns. In this work, we present PromptGuard, a novel content moderation technique that draws inspiration from the system prompt mechanism in large language models (LLMs) for safety alignment. Unlike LLMs, T2I models lack a direct interface for enforcing behavioral guidelines. Our key idea is to optimize a safety soft prompt that functions as an implicit system prompt within the T2I model's textual embedding space. This universal soft prompt (P*) directly moderates NSFW inputs, enabling safe yet realistic image generation without altering the inference efficiency or requiring proxy models. We further enhance its reliability and helpfulness through a divide-and-conquer strategy, which optimizes category-specific soft prompts and combines them into holistic safety guidance. Extensive experiments across five datasets demonstrate that PromptGuard effectively mitigates NSFW content generation while preserving high-quality benign outputs. PromptGuard achieves 3.8 times faster than prior content moderation methods, surpassing eight state-of-the-art defenses with an optimal unsafe ratio down to 5.84%.
comment: 15 pages, 8 figures, 14 tables
♻ ☆ Ctrl-GenAug: Controllable Generative Augmentation for Medical Sequence Classification
In the medical field, the limited availability of large-scale datasets and labor-intensive annotation processes hinder the performance of deep models. Diffusion-based generative augmentation approaches present a promising solution to this issue, having been proven effective in advancing downstream medical recognition tasks. Nevertheless, existing works lack sufficient semantic and sequential steerability for challenging video/3D sequence generation, and neglect quality control of noisy synthesized samples, resulting in unreliable synthetic databases and severely limiting the performance of downstream tasks. In this work, we present Ctrl-GenAug, a novel and general generative augmentation framework that enables highly semantic- and sequential-customized sequence synthesis and suppresses incorrectly synthesized samples, to aid medical sequence classification. Specifically, we first design a multimodal conditions-guided sequence generator for controllably synthesizing diagnosis-promotive samples. A sequential augmentation module is integrated to enhance the temporal/stereoscopic coherence of generated samples. Then, we propose a noisy synthetic data filter to suppress unreliable cases at semantic and sequential levels. Extensive experiments on 3 medical datasets, using 11 networks trained on 3 paradigms, comprehensively analyze the effectiveness and generality of Ctrl-GenAug, particularly in underrepresented high-risk populations and out-domain conditions.
comment: Accepted by International Journal of Computer Vision, 30 pages, 11 figures, 11 tables
♻ ☆ Cocoa: Co-Planning and Co-Execution with AI Agents
As AI agents take on increasingly long-running tasks involving sophisticated planning and execution, there is a corresponding need for novel interaction designs that enable deeper human-agent collaboration. However, most prior works leverage human interaction to fix "autonomous" workflows that have yet to become fully autonomous or rigidly treat planning and execution as separate stages. Based on a formative study with 9 researchers using AI to support their work, we propose a design that affords greater flexibility in collaboration, so that users can 1) delegate agency to the user or agent via a collaborative plan where individual steps can be assigned; and 2) interleave planning and execution so that plans can adjust after partial execution. We introduce Cocoa, a system that takes design inspiration from computational notebooks to support complex research tasks. A lab study (n=16) found that Cocoa enabled steerability without sacrificing ease-of-use, and a week-long field deployment (n=7) showed how researchers collaborated with Cocoa to accomplish real-world tasks.
comment: CHI 2026 paper
♻ ☆ FairTabGen: High-Fidelity and Fair Synthetic Health Data Generation from Limited Samples
Synthetic healthcare data generation offers a promising solution to research limitations in clinical settings caused by privacy and regulatory constraints. However, current synthetic data generation approaches require specialized knowledge about training generative models and require high computational resources. In this paper, we propose FairTabGen, an LLM-based tabular data generation framework that produces high-quality synthetic healthcare data using only a small subset of the original dataset. Our method combines in-context learning, prompt curation and embedding structural constraints for data synthesis. We evaluate performance on MIMIC-IV dataset. Our method using 99% less data and achieving 50% improvement for fairness through unawareness while maintaining competitive predictive utility. However, we observe data distribution of racial groups is skewed affecting demographic parity. We thereafter apply bias mitigation algorithms in the pre-processing stage, improving overall fairness by 10% highlighting effectiveness of our approach.
♻ ☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025 (Oral); Project Website: https://chanh.ee/RoboSpatial
GDGB: A Benchmark for Generative Dynamic Text-Attributed Graph Learning ICLR2026
Dynamic Text-Attributed Graphs (DyTAGs), which intricately integrate structural, temporal, and textual attributes, are crucial for modeling complex real-world systems. However, most existing DyTAG datasets exhibit poor textual quality, which severely limits their utility for generative DyTAG tasks requiring semantically rich inputs. Additionally, prior work mainly focuses on discriminative tasks on DyTAGs, resulting in a lack of standardized task formulations and evaluation protocols tailored for DyTAG generation. To address these critical issues, we propose Generative DyTAG Benchmark (GDGB), which comprises eight meticulously curated DyTAG datasets with high-quality textual features for both nodes and edges, overcoming limitations of prior datasets. Building on GDGB, we define two novel DyTAG generation tasks: Transductive Dynamic Graph Generation (TDGG) and Inductive Dynamic Graph Generation (IDGG). TDGG transductively generates a target DyTAG based on the given source and destination node sets, while the more challenging IDGG introduces new node generation to inductively model the dynamic expansion of real-world graph data. To enable holistic evaluation, we design multifaceted metrics that assess the structural, temporal, and textual quality of the generated DyTAGs. We further propose GAG-General, an LLM-based multi-agent generative framework tailored for reproducible and robust benchmarking of DyTAG generation. Experimental results demonstrate that GDGB enables rigorous evaluation of TDGG and IDGG, with key insights revealing the critical interplay of structural and textual features in DyTAG generation. These findings establish GDGB as a foundational resource for advancing generative DyTAG research and unlocking further practical applications in DyTAG generation. The dataset and source code are available at https://github.com/Lucas-PJ/GDGB-ALGO.
comment: ICLR2026
♻ ☆ Precise Attribute Intensity Control in Large Language Models via Targeted Representation Editing
Precise attribute intensity control--generating Large Language Model (LLM) outputs with specific, user-defined attribute intensities--is crucial for AI systems adaptable to diverse user expectations. Current LLM alignment methods, however, typically provide only directional or open-ended guidance, failing to reliably achieve exact attribute intensities. We address this limitation with three key designs: (1) reformulating precise attribute intensity control as a target-reaching problem, rather than simple maximization; (2) training a lightweight value function via temporal-difference learning to predict final attribute intensity scores from partial generations, thereby steering LLM outputs; and (3) employing gradient-based interventions on hidden representations to navigate the model precisely towards specific attribute intensity targets. Our method enables fine-grained, continuous control over attribute intensities, moving beyond simple directional alignment. Experiments on LLaMA-3.2-3b and Phi-4-mini confirm our method's ability to steer text generation to user-specified attribute intensities with high accuracy. Finally, we demonstrate efficiency enhancements across three downstream tasks: preference data synthesis, Pareto frontier approximation and optimization, and distillation of aligned behaviors for intervention-free inference. Our code is available on https://github.com/Pre-Control/pre-control
♻ ☆ Scaling Verification Can Be More Effective than Scaling Policy Learning for Vision-Language-Action Alignment
The long-standing vision of general-purpose robots hinges on their ability to understand and act upon natural language instructions. Vision-Language-Action (VLA) models have made remarkable progress toward this goal, yet their generated actions can still misalign with the given instructions. In this paper, we investigate test-time verification as a means to shrink the "intention-action gap." We first characterize the test-time scaling laws for embodied instruction following and demonstrate that jointly scaling the number of rephrased instructions and generated actions greatly increases test-time sample diversity, often recovering correct actions more efficiently than scaling each dimension independently. To capitalize on these scaling laws, we present CoVer, a contrastive verifier for vision-language-action alignment, and show that our architecture scales gracefully with additional computational resources and data. We then introduce CoVer-VLA, a hierarchical test-time verification pipeline using the trained verifier. At deployment, our framework precomputes a diverse set of rephrased instructions from a Vision-Language-Model (VLM), repeatedly generates action candidates for each instruction, and then uses the verifier to select the optimal high-level prompt and low-level action chunks. Compared to scaling policy pre-training on the same data, our verification approach yields 22% gains in-distribution and 13% out-of-distribution on the SIMPLER benchmark, with a further 45% improvement in real-world experiments. On the PolaRiS benchmark, CoVer-VLA achieves 14% gains in task progress and 9% in success rate.
♻ ☆ Targeting Alignment: Extracting Safety Classifiers of Aligned LLMs
Alignment in large language models (LLMs) is used to enforce guidelines such as safety. Yet, alignment fails in the face of jailbreak attacks that modify inputs to induce unsafe outputs. In this paper, we introduce and evaluate a new technique for jailbreak attacks. We observe that alignment embeds a safety classifier in the LLM responsible for deciding between refusal and compliance, and seek to extract an approximation of this classifier: a surrogate classifier. To this end, we build candidate classifiers from subsets of the LLM. We first evaluate the degree to which candidate classifiers approximate the LLM's safety classifier in benign and adversarial settings. Then, we attack the candidates and measure how well the resulting adversarial inputs transfer to the LLM. Our evaluation shows that the best candidates achieve accurate agreement (an F1 score above 80%) using as little as 20% of the model architecture. Further, we find that attacks mounted on the surrogate classifiers can be transferred to the LLM with high success. For example, a surrogate using only 50% of the Llama 2 model achieved an attack success rate (ASR) of 70% with half the memory footprint and runtime -- a substantial improvement over attacking the LLM directly, where we only observed a 22% ASR. These results show that extracting surrogate classifiers is an effective and efficient means for modeling (and therein addressing) the vulnerability of aligned models to jailbreaking attacks. The code is available at https://github.com/jcnf0/targeting-alignment.
comment: This work has been accepted for publication at the IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). The final version will be available on IEEE Xplore
♻ ☆ Scalable Precise Computation of Shannon Entropy
Quantitative information flow analyses (QIF) are a class of techniques for measuring the amount of confidential information leaked by a program to its public outputs. Shannon entropy is an important method to quantify the amount of leakage in QIF. This paper focuses on the programs modeled in Boolean constraints and optimizes the two stages of the Shannon entropy computation to implement a scalable precise tool PSE. In the first stage, we design a knowledge compilation language called \ADDAND that combines Algebraic Decision Diagrams and conjunctive decomposition. \ADDAND avoids enumerating possible outputs of a program and supports tractable entropy computation. In the second stage, we optimize the model counting queries that are used to compute the probabilities of outputs. We compare PSE with the state-of-the-art probabilistic approximately correct tool EntropyEstimation, which was shown to significantly outperform the previous precise tools. The experimental results demonstrate that PSE solved 56 more benchmarks compared to EntropyEstimation in a total of 459. For 98\% of the benchmarks that both PSE and EntropyEstimation solved, PSE is at least $10\times$ as efficient as EntropyEstimation.
comment: 19 pages, 5 figures
♻ ☆ Uncertainty Matters in Dynamic Gaussian Splatting for Monocular 4D Reconstruction
Reconstructing dynamic 3D scenes from monocular input is fundamentally under-constrained, with ambiguities arising from occlusion and extreme novel views. While dynamic Gaussian Splatting offers an efficient representation, vanilla models optimize all Gaussian primitives uniformly, ignoring whether they are well or poorly observed. This limitation leads to motion drifts under occlusion and degraded synthesis when extrapolating to unseen views. We argue that uncertainty matters: Gaussians with recurring observations across views and time act as reliable anchors to guide motion, whereas those with limited visibility are treated as less reliable. To this end, we introduce USplat4D, a novel Uncertainty-aware dynamic Gaussian Splatting framework that propagates reliable motion cues to enhance 4D reconstruction. Our approach estimates time-varying per-Gaussian uncertainty and leverages it to construct a spatio-temporal graph for uncertainty-aware optimization. Experiments on diverse real and synthetic datasets show that explicitly modeling uncertainty consistently improves dynamic Gaussian Splatting models, yielding more stable geometry under occlusion and high-quality synthesis at extreme viewpoints.
comment: Project page: https://tamu-visual-ai.github.io/usplat4d/
♻ ☆ Does Socialization Emerge in AI Agent Society? A Case Study of Moltbook
As large language model agents increasingly populate networked environments, a fundamental question arises: do artificial intelligence (AI) agent societies undergo convergence dynamics similar to human social systems? Lately, Moltbook approximates a plausible future scenario in which autonomous agents participate in an open-ended, continuously evolving online society. We present the first large-scale systemic diagnosis of this AI agent society. Beyond static observation, we introduce a quantitative diagnostic framework for dynamic evolution in AI agent societies, measuring semantic stabilization, lexical turnover, individual inertia, influence persistence, and collective consensus. Our analysis reveals a system in dynamic balance in Moltbook: while the global average of semantic contents stabilizes rapidly, individual agents retain high diversity and persistent lexical turnover, defying homogenization. However, agents exhibit strong individual inertia and minimal adaptive response to interaction partners, preventing mutual influence and consensus. Consequently, influence remains transient with no persistent supernodes, and the society fails to develop a stable structure and consensus due to the absence of shared social memory. These findings demonstrate that scale and interaction density alone are insufficient to induce socialization, providing actionable design and analysis principles for upcoming next-generation AI agent societies.
♻ ☆ Reasoning Up the Instruction Ladder for Controllable Language Models
As large language model (LLM) based systems take on high-stakes roles in real-world decision-making, they must reconcile competing instructions from multiple sources (e.g., model developers, users, and tools) within a single prompt context. Thus, enforcing an instruction hierarchy (IH) in LLMs, where higher-level directives override lower-priority requests, is critical for the reliability and controllability of LLMs. In this work, we reframe instruction hierarchy resolution as a reasoning task. Specifically, the model must first "think" about the relationship between a given user prompt and higher-priority (system) instructions before generating a response. To enable this capability via training, we construct VerIH, an instruction hierarchy dataset of constraint-following tasks with verifiable answers. This dataset comprises ~7K aligned and conflicting system-user instructions. We show that lightweight reinforcement learning with VerIH effectively transfers general reasoning capabilities of models to instruction prioritization. Our finetuned models achieve consistent improvements on instruction following and instruction hierarchy benchmarks, achieving roughly a 20% improvement on the IHEval conflict setup. This reasoning ability also generalizes to safety-critical settings beyond the training distribution. By treating safety issues as resolving conflicts between adversarial user inputs and predefined higher-priority policies, our trained model enhances robustness against jailbreak and prompt injection attacks, providing up to a 20% reduction in attack success rate (ASR). These results demonstrate that reasoning over instruction hierarchies provides a practical path to reliable LLMs, where updates to system prompts yield controllable and robust changes in model behavior.
♻ ☆ Language-Guided Invariance Probing of Vision-Language Models
Recent vision-language models (VLMs) such as CLIP, OpenCLIP, EVA02-CLIP and SigLIP achieve strong zero-shot performance, but it is unclear how reliably they respond to controlled linguistic perturbations. We introduce Language-Guided Invariance Probing (LGIP), a benchmark that measures (i) invariance to meaning-preserving paraphrases and (ii) sensitivity to meaning-changing semantic flips in image-text matching. Using 40k MS COCO images with five human captions each, we automatically generate paraphrases and rule-based flips that alter object category, color or count, and summarize model behavior with an invariance error, a semantic sensitivity gap and a positive-rate statistic. Across nine VLMs, EVA02-CLIP and large OpenCLIP variants lie on a favorable invariance-sensitivity frontier, combining low paraphrase-induced variance with consistently higher scores for original captions than for their flipped counterparts. In contrast, SigLIP and SigLIP2 show much larger invariance error and often prefer flipped captions to the human descriptions, especially for object and color edits. These failures are largely invisible to standard retrieval metrics, indicating that LGIP provides a model-agnostic diagnostic for the linguistic robustness of VLMs beyond conventional accuracy scores.
comment: Pattern Recognition Letters 2026
♻ ☆ WINA: Weight Informed Neuron Activation for Accelerating Large Language Model Inference
The growing computational demands of large language models (LLMs) make efficient inference and activation strategies increasingly critical. While recent approaches, such as Mixture-of-Experts (MoE), leverage selective activation but require specialized training, training-free sparse activation methods offer broader applicability and superior resource efficiency through their plug-and-play design. However, many existing methods rely solely on hidden state magnitudes to determine activation, resulting in high approximation errors and suboptimal inference accuracy. To address these limitations, we propose WINA (Weight Informed Neuron Activation), a novel, simple, and training-free sparse activation framework that jointly considers hidden state magnitudes and the column-wise $\ell_2$-norms of weight matrices. We show that this leads to a sparsification strategy that obtains optimal approximation error bounds with theoretical guarantees tighter than existing techniques. Empirically, WINA also outperforms state-of-the-art methods (e.g., TEAL) by up to $2.94\%$ in average performance at the same sparsity levels, across a diverse set of LLM architectures and datasets. These results position WINA as a new performance frontier for training-free sparse activation in LLM inference, advancing training-free sparse activation methods and setting a robust baseline for efficient inference. The source code is available at https://github.com/microsoft/wina.
♻ ☆ Far Out: Evaluating Language Models on Slang in Australian and Indian English EACL 2026
Language models exhibit systematic performance gaps when processing text in non-standard language varieties, yet their ability to comprehend variety-specific slang remains underexplored for several languages. We present a comprehensive evaluation of slang awareness in Indian English (en-IN) and Australian English (en-AU) across seven state-of-the-art language models. We construct two complementary datasets: WEB, containing 377 web-sourced usage examples from Urban Dictionary, and GEN, featuring 1,492 synthetically generated usages of these slang terms, across diverse scenarios. We assess language models on three tasks: target word prediction (TWP), guided target word prediction (TWP$^*$) and target word selection (TWS). Our results reveal four key findings: (1) Higher average model performance TWS versus TWP and TWP$^*$, with average accuracy score increasing from 0.03 to 0.49 respectively (2) Stronger average model performance on WEB versus GEN datasets, with average similarity score increasing by 0.03 and 0.05 across TWP and TWP$^*$ tasks respectively (3) en-IN tasks outperform en-AU when averaged across all models and datasets, with TWS demonstrating the largest disparity, increasing average accuracy from 0.44 to 0.54. These findings underscore fundamental asymmetries between generative and discriminative competencies for variety-specific language, particularly in the context of slang expressions despite being in a technologically rich language such as English.
comment: Accepted as a paper at 13th VarDial workshop at EACL 2026
♻ ☆ TimeOmni-1: Incentivizing Complex Reasoning with Time Series in Large Language Models ICLR 2026
Recent advances in multimodal time series learning underscore a paradigm shift from analytics centered on basic patterns toward advanced time series understanding and reasoning. However, existing multimodal time series datasets mostly remain at the level of surface alignment and question answering, without reaching the depth of genuine reasoning. The absence of well-defined tasks that genuinely require time series reasoning, along with the scarcity of high-quality data, has limited progress in building practical time series reasoning models (TSRMs). To this end, we introduce Time Series Reasoning Suite (TSR-Suite), which formalizes four atomic tasks that span three fundamental capabilities for reasoning with time series: (1) perception, acquired through scenario understanding and causality discovery; (2) extrapolation, realized via event-aware forecasting; and (3) decision-making, developed through deliberation over perception and extrapolation. TSR-Suite is the first comprehensive time series reasoning suite that supports not only thorough evaluation but also the data pipeline and training of TSRMs. It contains more than 23K samples, of which 2.3K are carefully curated through a human-guided hierarchical annotation process. Building on this foundation, we introduce TimeOmni-1, the first unified reasoning model designed to address diverse real-world problems demanding time series reasoning. The model is trained in multiple stages, integrating a mixture of task scenarios, novel reward functions, and tailored optimizations. Experiments show that TimeOmni-1 delivers strong out-of-distribution generalization across all tasks and achieves a high rate of valid responses. It significantly improves causality discovery accuracy (64.0% vs. 35.9% with GPT-4.1) and raises the valid response rate by over 6% compared to GPT-4.1 on the event-aware forecasting task.
comment: Accepted by the 14th International Conference on Learning Representations (ICLR 2026)
AgentNoiseBench: Benchmarking Robustness of Tool-Using LLM Agents Under Noisy Condition
Recent advances in large language models have enabled LLM-based agents to achieve strong performance on a variety of benchmarks. However, their performance in real-world deployments often that observed on benchmark settings, especially in complex and imperfect environments. This discrepancy largely arises because prevailing training and evaluation paradigms are typically built on idealized assumptions, overlooking the inherent stochasticity and noise present in real-world interactions. To bridge this gap, we introduce AgentNoiseBench, a framework for systematically evaluating the robustness of agentic models under noisy environments. We first conduct an in-depth analysis of biases and uncertainties in real-world scenarios and categorize environmental noise into two primary types: user-noise and tool-noise. Building on this analysis, we develop an automated pipeline that injects controllable noise into existing agent-centric benchmarks while preserving task solvability. Leveraging this pipeline, we perform extensive evaluations across a wide range of models with diverse architectures and parameter scales. Our results reveal consistent performance variations under different noise conditions, highlighting the sensitivity of current agentic models to realistic environmental perturbations.
♻ ☆ m1: Unleash the Potential of Test-Time Scaling for Medical Reasoning with Large Language Models ML4H'25
Test-time scaling has emerged as a powerful technique for enhancing the reasoning capabilities of large language models. However, its effectiveness in medical reasoning remains uncertain, as the medical domain fundamentally differs from mathematical tasks in terms of knowledge representation and decision-making processes. In this paper, we provide the first comprehensive investigation of test-time scaling for medical reasoning and present m1, a simple yet effective approach that increases a model's medical reasoning capability at inference. Our evaluation across diverse medical tasks demonstrates that test-time scaling consistently enhances medical reasoning, enabling lightweight fine-tuned models under 10B parameters to establish new state-of-the-art performance, while our 32B model rivals previous 70B-scale medical LLMs. However, we identify an optimal reasoning token budget of approximately 4K, beyond which performance may degrade due to overthinking. Budget forcing, which extends test-time computation through iterative prompts, helps models double-check answers but does not necessarily improve the overall medical QA performance and, in some cases, even introduces errors into previously correct responses. Our case-by-case analysis identifies insufficient medical knowledge as a key bottleneck that prevents further performance gains through test-time scaling. We find that increasing data scale, improving data quality, and expanding model capacity consistently enhance medical knowledge grounding, enabling continued performance improvements, particularly on challenging medical benchmarks where smaller models reach saturation. These findings underscore fundamental differences between medical and mathematical reasoning in LLMs, highlighting that enriched medical knowledge, other than increased reasoning depth alone, is essential for realizing the benefits of test-time scaling.
comment: 17 pages; 7 figures; Data, code, and models: https://github.com/UCSC-VLAA/m1 ; Accepted by ML4H'25
♻ ☆ Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
Geospatial data offers immense potential for understanding our planet. However, the sheer volume and diversity of this data along with its varied resolutions, timescales, and sparsity pose significant challenges for thorough analysis and interpretation. This paper introduces Earth AI, a family of geospatial AI models and agentic reasoning that enables significant advances in our ability to unlock novel and profound insights into our planet. This approach is built upon foundation models across three key domains--Planet-scale Imagery, Population, and Environment--and an intelligent Gemini-powered reasoning engine. We present rigorous benchmarks showcasing the power and novel capabilities of our foundation models and validate that when used together, they provide complementary value for geospatial inference and their synergies unlock superior predictive capabilities. To handle complex, multi-step queries, we developed a Gemini-powered agent that jointly reasons over our multiple foundation models along with large geospatial data sources and tools. On a new benchmark of real-world crisis scenarios, our agent demonstrates the ability to deliver critical and timely insights, effectively bridging the gap between raw geospatial data and actionable understanding.
♻ ☆ Elements of Robot Morphology: Supporting Designers in Robot Form Exploration
Robot morphology, the form, shape, and structure of robots, is a key design space in human-robot interaction (HRI), shaping how robots function, express themselves, and interact with people. Yet, despite its importance, little is known about how design frameworks can guide systematic form exploration. To address this gap, we introduce Elements of Robot Morphology, a framework that identifies five fundamental elements: perception, articulation, end effectors, locomotion, and structure. Derived from an analysis of existing robots, the framework supports structured exploration of diverse robot forms. To operationalize the framework, we developed Morphology Exploration Blocks (MEB), a set of tangible blocks that enable hands-on, collaborative experimentation with robot morphologies. We evaluate the framework and toolkit through a case study and design workshops, showing how they support analysis, ideation, reflection, and collaborative robot design.
comment: 10 pages, 5 figures, Proceedings of the 21st ACM/IEEE International Conference on Human-Robot Interaction (HRI '26)
♻ ☆ View Invariant Learning for Vision-Language Navigation in Continuous Environments
Vision-Language Navigation in Continuous Environments (VLNCE), where an agent follows instructions and moves freely to reach a destination, is a key research problem in embodied AI. However, most navigation policies are sensitive to viewpoint changes, i.e., variations in camera height and viewing angle that alter the agent's observation. In this paper, we introduce a generalized scenario, V2-VLNCE (VLNCE with Varied Viewpoints), and propose VIL (View Invariant Learning), a view-invariant post-training strategy that enhances the robustness of existing navigation policies to changes in camera viewpoint. VIL employs a contrastive learning framework to learn sparse and view-invariant features. Additionally, we introduce a teacher-student framework for the Waypoint Predictor Module, a core component of most VLNCE baselines, where a view-dependent teacher model distills knowledge into a view-invariant student model. We employ an end-to-end training paradigm to jointly optimize these components, thus eliminating the cost for individual module training. Empirical results show that our method outperforms state-of-the-art approaches on V2-VLNCE by 8-15% measured on Success Rate for two standard benchmark datasets R2R-CE and RxR-CE. Furthermore, we evaluate VIL under the standard VLNCE setting and find that, despite being trained for varied viewpoints, it often still improves performance. On the more challenging RxR-CE dataset, our method also achieved state-of-the-art performance across all metrics when compared to other map-free methods. This suggests that adding VIL does not diminish the standard viewpoint performance and can serve as a plug-and-play post-training method.
comment: This paper is accepted to RA-L 2026
♻ ☆ IMPACT: Behavioral Intention-aware Multimodal Trajectory Prediction with Adaptive Context Trimming
While most prior research has focused on improving the precision of multimodal trajectory predictions, the explicit modeling of multimodal behavioral intentions (e.g., yielding, overtaking) remains relatively underexplored. This paper proposes a unified framework that jointly predicts both behavioral intentions and trajectories to enhance prediction accuracy, interpretability, and efficiency. Specifically, we employ a shared context encoder for both intention and trajectory predictions, thereby reducing structural redundancy and information loss. Moreover, we address the lack of ground-truth behavioral intention labels in mainstream datasets (Waymo, Argoverse) by auto-labeling these datasets, thus advancing the community's efforts in this direction. We further introduce a vectorized occupancy prediction module that infers the probability of each map polyline being occupied by the target vehicle's future trajectory. By leveraging these intention and occupancy prediction priors, our method conducts dynamic, modality-dependent pruning of irrelevant agents and map polylines in the decoding stage, effectively reducing computational overhead and mitigating noise from non-critical elements. Our approach ranks first among LiDAR-free methods on the Waymo Motion Dataset and achieves first place on the Waymo Interactive Prediction Dataset. Remarkably, even without model ensembling, our single-model framework improves the soft mean average precision (softmAP) by 10 percent compared to the second-best method in the Waymo Interactive Prediction Leaderboard. Furthermore, the proposed framework has been successfully deployed on real vehicles, demonstrating its practical effectiveness in real-world applications.
comment: accepted by IEEE Robotics and Automation Letters
♻ ☆ Ultra-wideband Time Difference of Arrival Indoor Localization: From Sensor Placement to System Evaluation
Wireless indoor localization has attracted significant research interest due to its high accuracy, low cost, lightweight design, and low power consumption. Specifically, ultra-wideband (UWB) time difference of arrival (TDOA)-based localization has emerged as a scalable positioning solution for mobile robots, consumer electronics, and wearable devices, featuring good accuracy and reliability. While UWB TDOA-based localization systems rely on the deployment of UWB radio sensors as positioning landmarks, existing works often assume these placements are predetermined or study the sensor placement problem alone without evaluating it in practical scenarios. In this article, we bridge this gap by approaching the UWB TDOA localization from a system-level perspective, integrating sensor placement as a key component and conducting practical evaluation in real-world scenarios. Through extensive real-world experiments, we demonstrate the accuracy and robustness of our localization system, comparing its performance to the theoretical lower bounds. Using a challenging multi-room environment as a case study, we illustrate the full system construction process, from sensor placement optimization to real-world deployment. Our evaluation, comprising a cumulative total of 39 minutes of real-world experiments involving up to five agents and covering 2608 meters across four distinct scenarios, provides valuable insights and guidelines for constructing UWB TDOA localization systems.
♻ ☆ AMBER: A tether-deployable gripping crawler with compliant microspines for canopy manipulation
This paper presents an aerially deployable crawler designed for adaptive locomotion and manipulation within tree canopies. The system combines compliant microspine-based tracks, a dual-track rotary gripper, and an elastic tail, enabling secure attachment and stable traversal across branches of varying curvature and inclination. Experiments demonstrate reliable gripping up to 90$^\circ$ body roll and inclination, while effective climbing on branches inclined up to 67.5$^\circ$, achieving a maximum speed of 0.55 body lengths per second on horizontal branches. The compliant tracks allow yaw steering of up to 10$^\circ$, enhancing maneuverability on irregular surfaces. Power measurements show efficient operation with a dimensionless cost of transport over an order of magnitude lower than typical hovering power consumption in aerial robots. The crawler provides a robust, low-power platform for environmental sampling and in-canopy sensing. The aerial deployment is demonstrated at a conceptual and feasibility level, while full drone-crawler integration is left as future work.
♻ ☆ Inverting Non-Injective Functions with Twin Neural Network Regression
Non-injective functions are not globally invertible. However, they can often be restricted to locally injective subdomains where the inversion is well-defined. In many settings a preferred solution can be selected even when multiple valid preimages exist or input and output dimensions differ. This manuscript describes a natural reformulation of the inverse learning problem for non-injective functions as a collection of locally invertible problems. More precisely, Twin Neural Network Regression is trained to predict local inverse corrections around known anchor points. By anchoring predictions to points within the same locally invertible region, the method consistently selects a valid branch of the inverse. In contrast to current probabilistic state-of-the art inversion methods, Inverse Twin Neural Network Regression is a deterministic framework for resolving multi-valued inverse mappings. I demonstrate the approach on problems that are defined by mathematical equations or by data, including multi-solution toy problems and robot arm inverse kinematics.
♻ ☆ Efficient Robot Design with Multi-Objective Black-Box Optimization and Large Language Models
Various methods for robot design optimization have been developed so far. These methods are diverse, ranging from numerical optimization to black-box optimization. While numerical optimization is fast, it is not suitable for cases involving complex structures or discrete values, leading to frequent use of black-box optimization instead. However, black-box optimization suffers from low sampling efficiency and takes considerable sampling iterations to obtain good solutions. In this study, we propose a method to enhance the efficiency of robot body design based on black-box optimization by utilizing large language models (LLMs). In parallel with the sampling process based on black-box optimization, sampling is performed using LLMs, which are provided with problem settings and extensive feedback. We demonstrate that this method enables more efficient exploration of design solutions and discuss its characteristics and limitations.
comment: Accepted to IEEE Access, website: https://haraduka.github.io/urdf-llm-opt/ , video: https://www.youtube.com/watch?v=N9iMjx7of1w
♻ ☆ BPP: Long-Context Robot Imitation Learning by Focusing on Key History Frames
Many robot tasks require attending to the history of past observations. For example, finding an item in a room requires remembering which places have already been searched. However, the best-performing robot policies typically condition only on the current observation, limiting their applicability to such tasks. Naively conditioning on past observations often fails due to spurious correlations: policies latch onto incidental features of training histories that do not generalize to out-of-distribution trajectories upon deployment. We analyze why policies latch onto these spurious correlations and find that this problem stems from limited coverage over the space of possible histories during training, which grows exponentially with horizon. Existing regularization techniques provide inconsistent benefits across tasks, as they do not fundamentally address this coverage problem. Motivated by these findings, we propose Big Picture Policies (BPP), an approach that conditions on a minimal set of meaningful keyframes detected by a vision-language model. By projecting diverse rollouts onto a compact set of task-relevant events, BPP substantially reduces distribution shift between training and deployment, without sacrificing expressivity. We evaluate BPP on four challenging real-world manipulation tasks and three simulation tasks, all requiring history conditioning. BPP achieves 70% higher success rates than the best comparison on real-world evaluations. Videos are available at https://bigpicturepolicies.github.io/
♻ ☆ Query-Based Adaptive Aggregation for Multi-Dataset Joint Training Toward Universal Visual Place Recognition
Deep learning methods for Visual Place Recognition (VPR) have advanced significantly, largely driven by large-scale datasets. However, most existing approaches are trained on a single dataset, which can introduce dataset-specific inductive biases and limit model generalization. While multi-dataset joint training offers a promising solution for developing universal VPR models, divergences among training datasets can saturate the limited information capacity in feature aggregation layers, leading to suboptimal performance. To address these challenges, we propose Query-based Adaptive Aggregation (QAA), a novel feature aggregation technique that leverages learned queries as reference codebooks to effectively enhance information capacity without significant computational or parameter complexity. We show that computing the Cross-query Similarity (CS) between query-level image features and reference codebooks provides a simple yet effective way to generate robust descriptors. Our results demonstrate that QAA outperforms state-of-the-art models, achieving balanced generalization across diverse datasets while maintaining peak performance comparable to dataset-specific models. Ablation studies further explore QAA's mechanisms and scalability. Visualizations reveal that the learned queries exhibit diverse attention patterns across datasets. Project page: http://xjh19971.github.io/QAA.
comment: 8 pages, 4 figures, accepted at ICRA 2026
Zero-Shot UAV Navigation in Forests via Relightable 3D Gaussian Splatting
UAV navigation in unstructured outdoor environments using passive monocular vision is hindered by the substantial visual domain gap between simulation and reality. While 3D Gaussian Splatting enables photorealistic scene reconstruction from real-world data, existing methods inherently couple static lighting with geometry, severely limiting policy generalization to dynamic real-world illumination. In this paper, we propose a novel end-to-end reinforcement learning framework designed for effective zero-shot transfer to unstructured outdoors. Within a high-fidelity simulation grounded in real-world data, our policy is trained to map raw monocular RGB observations directly to continuous control commands. To overcome photometric limitations, we introduce Relightable 3D Gaussian Splatting, which decomposes scene components to enable explicit, physically grounded editing of environmental lighting within the neural representation. By augmenting training with diverse synthesized lighting conditions ranging from strong directional sunlight to diffuse overcast skies, we compel the policy to learn robust, illumination-invariant visual features. Extensive real-world experiments demonstrate that a lightweight quadrotor achieves robust, collision-free navigation in complex forest environments at speeds up to 10 m/s, exhibiting significant resilience to drastic lighting variations without fine-tuning.
comment: 12 pages, 8 figures
♻ ☆ SkillWrapper: Generative Predicate Invention for Task-level Planning
Generalizing from individual skill executions to solving long-horizon tasks remains a core challenge in building autonomous agents. A promising direction is learning high-level, symbolic abstractions of the low-level skills of the agents, enabling reasoning and planning independent of the low-level state space. Among possible high-level representations, object-centric skill abstraction with symbolic predicates has been proven to be efficient because of its compatibility with domain-independent planners. Recent advances in foundation models have made it possible to generate symbolic predicates that operate on raw sensory inputs, a process we call generative predicate invention, to facilitate downstream abstraction learning. However, it remains unclear which formal properties the learned representations must satisfy, and how they can be learned to guarantee these properties. In this paper, we address both questions by presenting a formal theory of generative predicate invention for skill abstraction, resulting in symbolic operators that can be used for provably sound and complete planning. Within this framework, we propose SkillWrapper, a method that leverages foundation models to actively collect robot data and learn human-interpretable, plannable representations of black-box skills, using only RGB image observations. Our extensive empirical evaluation in simulation and on real robots shows that SkillWrapper learns abstract representations that enable solving unseen, long-horizon tasks in the real world with black-box skills.
♻ ☆ VeriStruct: AI-assisted Automated Verification of Data-Structure Modules in Verus
We introduce VeriStruct, a novel framework that extends AI-assisted automated verification from single functions to more complex data structure modules in Verus. VeriStruct employs a planner module to orchestrate the systematic generation of abstractions, type invariants, specifications, and proof code. To address the challenge that LLMs often misunderstand Verus' annotation syntax and verification-specific semantics, VeriStruct embeds syntax guidance within prompts and includes a repair stage to automatically correct annotation errors. In an evaluation on eleven Rust data structure modules, VeriStruct succeeds on ten of the eleven, successfully verifying 128 out of 129 functions (99.2%) in total. These results represent an important step toward the goal of automatic AI-assisted formal verification.
♻ ☆ Temporal Graph Pattern Machine
Temporal graph learning is pivotal for deciphering dynamic systems, where the core challenge lies in explicitly modeling the underlying evolving patterns that govern network transformation. However, prevailing methods are predominantly task-centric and rely on restrictive assumptions -- such as short-term dependency modeling, static neighborhood semantics, and retrospective time usage. These constraints hinder the discovery of transferable temporal evolution mechanisms. To address this, we propose the Temporal Graph Pattern Machine (TGPM), a foundation framework that shifts the focus toward directly learning generalized evolving patterns. TGPM conceptualizes each interaction as an interaction patch synthesized via temporally-biased random walks, thereby capturing multi-scale structural semantics and long-range dependencies that extend beyond immediate neighborhoods. These patches are processed by a Transformer-based backbone designed to capture global temporal regularities while adapting to context-specific interaction dynamics. To further empower the model, we introduce a suite of self-supervised pre-training tasks -- specifically masked token modeling and next-time prediction -- to explicitly encode the fundamental laws of network evolution. Extensive experiments show that TGPM consistently achieves state-of-the-art performance in both transductive and inductive link prediction, demonstrating exceptional cross-domain transferability. Our code has been released in https://github.com/antman9914/TGPM.
♻ ☆ Logit Distance Bounds Representational Similarity
For a broad family of discriminative models that includes autoregressive language models, identifiability results imply that if two models induce the same conditional distributions, then their internal representations agree up to an invertible linear transformation. We ask whether an analogous conclusion holds approximately when the distributions are close instead of equal. Building on the observation of Nielsen et al. (2025) that closeness in KL divergence need not imply high linear representational similarity, we study a distributional distance based on logit differences and show that closeness in this distance does yield linear similarity guarantees. Specifically, we define a representational dissimilarity measure based on the models' identifiability class and prove that it is bounded by the logit distance. We further show that, when model probabilities are bounded away from zero, KL divergence upper-bounds logit distance; yet the resulting bound fails to provide nontrivial control in practice. As a consequence, KL-based distillation can match a teacher's predictions while failing to preserve linear representational properties, such as linear-probe recoverability of human-interpretable concepts. In distillation experiments on synthetic and image datasets, logit-distance distillation yields students with higher linear representational similarity and better preservation of the teacher's linearly recoverable concepts.
♻ ☆ Simple Self Organizing Map with Vision Transformers
Vision Transformers (ViTs) have demonstrated exceptional performance in various vision tasks. However, they tend to underperform on smaller datasets due to their inherent lack of inductive biases. Current approaches address this limitation implicitly-often by pairing ViTs with pretext tasks or by distilling knowledge from convolutional neural networks (CNNs) to strengthen the prior. In contrast, Self-Organizing Maps (SOMs), a widely adopted self-supervised framework, are inherently structured to preserve topology and spatial organization, making them a promising candidate to directly address the limitations of ViTs in limited or small training datasets. Despite this potential, equipping SOMs with modern deep learning architectures remains largely unexplored. In this study, we conduct a novel exploration on how Vision Transformers (ViTs) and Self-Organizing Maps (SOMs) can empower each other, aiming to bridge this critical research gap. Our findings demonstrate that these architectures can synergistically enhance each other, leading to significantly improved performance in both unsupervised and supervised tasks. Code is publicly available on GitHub.
comment: 5 pages, 4 figures. Submitted to IEEE. All experiments and code work were performed by the first author, with the second author serving in a PI/mentor role, guiding the progression of the work
♻ ☆ Autonomous Business System via Neuro-symbolic AI
Current business environments demand continuous reconfiguration of cross-functional processes, yet enterprise systems remain organized around siloed departments, rigid workflows, and hard-coded automation. Meanwhile, large language models (LLMs) excel at interpreting natural language and unstructured data but lack deterministic and verifiable execution of complex business logic. We introduce Autonomous Business System (AUTOBUS), a system that combines LLM-based AI agents, predicate-logic programming, and business-semantics-centric enterprise data into a coherent neuro-symbolic architecture for executing end-to-end business initiatives. AUTOBUS models an initiative as a network of tasks with explicit pre- and post-conditions, required data, evaluation rules, and API-level actions. Enterprise data is represented as a knowledge graph whose entities, relationships, and constraints are translated into logic facts and foundational rules, providing semantic grounding for reasoning. Core AI agents synthesize task instructions, enterprise semantics, and available tools into task-specific logic programs executed by a logic engine that enforces constraints and orchestrates actions. Humans define semantics and policies, curate tools, and oversee high-impact or ambiguous decisions. We present the AUTOBUS architecture and a case study that demonstrates accelerated time to market in a data-rich organization. A reference implementation of the case study is available at https://github.com/cecilpang/autobus-paper.
comment: IEEE SysCon 2026
♻ ☆ $\texttt{SPECS}$: Faster Test-Time Scaling through Speculative Drafts
Scaling test-time compute has driven the recent advances in the reasoning capabilities of large language models (LLMs), typically by allocating additional computation for more thorough exploration. However, increased compute often comes at the expense of higher user-facing latency, directly impacting user experience. Current test-time scaling methods primarily optimize for accuracy based on total compute resources (FLOPS), often overlooking latency constraints. To address this gap, we propose $\texttt{SPECS}$, a latency-aware test-time scaling method inspired by speculative decoding. $\texttt{SPECS}$~uses a smaller, faster model to generate candidate sequences efficiently, and evaluates these candidates using signals from both a larger target model and a dedicated reward model. We introduce new integration strategies, including reward-guided soft verification and a reward-based deferral mechanism. Empirical results on MATH500, AMC23 and OlympiadBench datasets show that $\texttt{SPECS}$~matches or surpasses beam search accuracy while reducing latency by up to $\sim$19.1\%. Our theoretical analysis shows that our algorithm converges to the solution of a KL-regularized reinforcement learning objective with increasing beam width.
comment: 28 pages, 6 figures, 2 tables
♻ ☆ Bongard-RWR+: Real-World Representations of Fine-Grained Concepts in Bongard Problems ICLR 2026
Bongard Problems (BPs) provide a challenging testbed for abstract visual reasoning (AVR), requiring models to identify visual concepts fromjust a few examples and describe them in natural language. Early BP benchmarks featured synthetic black-and-white drawings, which might not fully capture the complexity of real-world scenes. Subsequent BP datasets employed real-world images, albeit the represented concepts are identifiable from high-level image features, reducing the task complexity. Differently, the recently released Bongard-RWR dataset aimed at representing abstract concepts formulated in the original BPs using fine-grained real-world images. Its manual construction, however, limited the dataset size to just $60$ instances, constraining evaluation robustness. In this work, we introduce Bongard-RWR+, a BP dataset composed of $5\,400$ instances that represent original BP abstract concepts using real-world-like images generated via a vision language model (VLM) pipeline. Building on Bongard-RWR, we employ Pixtral-12B to describe manually curated images and generate new descriptions aligned with the underlying concepts, use Flux.1-dev to synthesize images from these descriptions, and manually verify that the generated images faithfully reflect the intended concepts. We evaluate state-of-the-art VLMs across diverse BP formulations, including binary and multiclass classification, as well as textual answer generation. Our findings reveal that while VLMs can recognize coarse-grained visual concepts, they consistently struggle with discerning fine-grained concepts, highlighting limitations in their reasoning capabilities.
comment: Accepted to The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ SoK: DARPA's AI Cyber Challenge (AIxCC): Competition Design, Architectures, and Lessons Learned
DARPA's AI Cyber Challenge (AIxCC, 2023--2025) is the largest competition to date for building fully autonomous cyber reasoning systems (CRSs) that leverage recent advances in AI -- particularly large language models (LLMs) -- to discover and remediate vulnerabilities in real-world open-source software. This paper presents the first systematic analysis of AIxCC. Drawing on design documents, source code, execution traces, and discussions with organizers and competing teams, we examine the competition's structure and key design decisions, characterize the architectural approaches of finalist CRSs, and analyze competition results beyond the final scoreboard. Our analysis reveals the factors that truly drove CRS performance, identifies genuine technical advances achieved by teams, and exposes limitations that remain open for future research. We conclude with lessons for organizing future competitions and broader insights toward deploying autonomous CRSs in practice.
comment: Version 1.1 (February 2026). Systematization of Knowledge and post-competition analysis of DARPA AIxCC (2023-2025)
♻ ☆ Fixed Budget is No Harder Than Fixed Confidence in Best-Arm Identification up to Logarithmic Factors
The best-arm identification (BAI) problem is one of the most fundamental problems in interactive machine learning, which has two flavors: the fixed-budget setting (FB) and the fixed-confidence setting (FC). For $K$-armed bandits with the unique best arm, the optimal sample complexities for both settings have been settled down, and they match up to logarithmic factors. This prompts an interesting research question about the generic, potentially structured BAI problems: Is FB harder than FC or the other way around? In this paper, we show that FB is no harder than FC up to logarithmic factors. We do this constructively: we propose a novel algorithm called FC2FB (fixed confidence to fixed budget), which is a meta algorithm that takes in an FC algorithm $\mathcal{A}$ and turn it into an FB algorithm. We prove that this FC2FB enjoys a sample complexity that matches, up to logarithmic factors, that of the sample complexity of $\mathcal{A}$. This means that the optimal FC sample complexity is an upper bound of the optimal FB sample complexity up to logarithmic factors. Our result not only reveals a fundamental relationship between FB and FC, but also has a significant implication: FC2FB, combined with existing state-of-the-art FC algorithms, leads to improved sample complexity for a number of FB problems.
♻ ☆ Multi-View 3D Reconstruction using Knowledge Distillation
Large Foundation Models like Dust3r can produce high quality outputs such as pointmaps, camera intrinsics, and depth estimation, given stereo-image pairs as input. However, the application of these outputs on tasks like Visual Localization requires a large amount of inference time and compute resources. To address these limitations, in this paper, we propose the use of a knowledge distillation pipeline, where we aim to build a student-teacher model with Dust3r as the teacher and explore multiple architectures of student models that are trained using the 3D reconstructed points output by Dust3r. Our goal is to build student models that can learn scene-specific representations and output 3D points with replicable performance such as Dust3r. The data set we used to train our models is 12Scenes. We test two main architectures of models: a CNN-based architecture and a Vision Transformer based architecture. For each architecture, we also compare the use of pre-trained models against models built from scratch. We qualitatively compare the reconstructed 3D points output by the student model against Dust3r's and discuss the various features learned by the student model. We also perform ablation studies on the models through hyperparameter tuning. Overall, we observe that the Vision Transformer presents the best performance visually and quantitatively.
comment: 6 pages, 10 figures
♻ ☆ LLMDistill4Ads: Using Cross-Encoders to Distill from LLM Signals for Advertiser Keyphrase Recommendations at eBay
E-commerce sellers are advised to bid on keyphrases to boost their advertising campaigns. These keyphrases must be relevant to prevent irrelevant items from cluttering Search systems and to maintain positive seller perception. It is vital that keyphrase suggestions align with seller, Search, and buyer judgments. Given the challenges in collecting negative feedback in these systems, LLMs have been used as a scalable proxy for human judgments. We present an empirical study on a major e-commerce platform of a distillation framework involving an LLM teacher, a cross-encoder assistant and a bi-encoder Embedding Based Retrieval (EBR) student model, aimed at mitigating click-induced biases and provide more diverse keyphrase recommendations while aligning advertising, search and buyer preferences.
♻ ☆ A Scalable Framework for Evaluating Health Language Models
Large language models (LLMs) have emerged as powerful tools for analyzing complex datasets. Recent studies demonstrate their potential to generate useful, personalized responses when provided with patient-specific health information that encompasses lifestyle, biomarkers, and context. As LLM-driven health applications are increasingly adopted, rigorous and efficient one-sided evaluation methodologies are crucial to ensure response quality across multiple dimensions, including accuracy, personalization and safety. Current evaluation practices for open-ended text responses heavily rely on human experts. This approach introduces human factors and is often cost-prohibitive, labor-intensive, and hinders scalability, especially in complex domains like healthcare where response assessment necessitates domain expertise and considers multifaceted patient data. In this work, we introduce Adaptive Precise Boolean rubrics: an evaluation framework that streamlines human and automated evaluation of open-ended questions by identifying gaps in model responses using a minimal set of targeted rubrics questions. Our approach is based on recent work in more general evaluation settings that contrasts a smaller set of complex evaluation targets with a larger set of more precise, granular targets answerable with simple boolean responses. We validate this approach in metabolic health, a domain encompassing diabetes, cardiovascular disease, and obesity. Our results demonstrate that Adaptive Precise Boolean rubrics yield higher inter-rater agreement among expert and non-expert human evaluators, and in automated assessments, compared to traditional Likert scales, while requiring approximately half the evaluation time of Likert-based methods. This enhanced efficiency, particularly in automated evaluation and non-expert contributions, paves the way for more extensive and cost-effective evaluation of LLMs in health.
♻ ☆ Discrete optimal transport is a strong audio adversarial attack
In this paper, we introduce the discrete optimal transport voice conversion ($k$DOT-VC) method. Comparison with $k$NN-VC, SinkVC, and Gaussian optimal transport (MKL) demonstrates stronger domain adaptation abilities of our method. We use the probabilistic nature of optimal transport (OT) and show that $k$DOT-VC is an effective black-box adversarial attack against modern audio anti-spoofing countermeasures (CMs). Our attack operates as a post-processing, distribution-alignment step: frame-level {WavLM} embeddings of generated speech are aligned to an unpaired bona fide pool via entropic OT and a top-$k$ barycentric projection, then decoded with a neural vocoder. Ablation analysis indicates that distribution-level alignment is a powerful and stable attack for deployed CMs.
♻ ☆ Humanoid Hanoi: Investigating Shared Whole-Body Control for Skill-Based Box Rearrangement
We investigate a skill-based framework for humanoid box rearrangement that enables long-horizon execution by sequencing reusable skills at the task level. In our architecture, all skills execute through a shared, task-agnostic whole-body controller (WBC), providing a consistent closed-loop interface for skill composition, in contrast to non-shared designs that use separate low-level controllers per skill. We find that naively reusing the same pretrained WBC can reduce robustness over long horizons, as new skills and their compositions induce shifted state and command distributions. We address this with a simple data aggregation procedure that augments shared-WBC training with rollouts from closed-loop skill execution under domain randomization. To evaluate the approach, we introduce \emph{Humanoid Hanoi}, a long-horizon Tower-of-Hanoi box rearrangement benchmark, and report results in simulation and on the Digit V3 humanoid robot, demonstrating fully autonomous rearrangement over extended horizons and quantifying the benefits of the shared-WBC approach over non-shared baselines.
comment: 10 pages, 6 figures
♻ ☆ Robust Reinforcement Learning-Based Locomotion for Resource-Constrained Quadrupeds with Exteroceptive Sensing
Compact quadrupedal robots are proving increasingly suitable for deployment in real-world scenarios. Their smaller size fosters easy integration into human environments. Nevertheless, real-time locomotion on uneven terrains remains challenging, particularly due to the high computational demands of terrain perception. This paper presents a robust reinforcement learning-based exteroceptive locomotion controller for resource-constrained small-scale quadrupeds in challenging terrains, which exploits real-time elevation mapping, supported by a careful depth sensor selection. We concurrently train both a policy and a state estimator, which together provide an odometry source for elevation mapping, optionally fused with visual-inertial odometry (VIO). We demonstrate the importance of positioning an additional time-of-flight sensor for maintaining robustness even without VIO, thus having the potential to free up computational resources. We experimentally demonstrate that the proposed controller can flawlessly traverse steps up to 17.5 cm in height and achieve an 80% success rate on 22.5 cm steps, both with and without VIO. The proposed controller also achieves accurate forward and yaw velocity tracking of up to 1.0 m/s and 1.5 rad/s respectively. We open-source our training code at github.com/ETH-PBL/elmap-rl-controller.
comment: This paper has been accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), Atlanta 2025. The code is available at github.com/ETH-PBL/elmap-rl-controller
♻ ☆ GNSS-based Lunar Orbit and Clock Estimation With Stochastic Cloning UD Filter
This paper presents a terrestrial GNSS-based orbit and clock estimation framework for lunar navigation satellites. To enable high-precision estimation under the low-observability conditions encountered at lunar distances, we develop a stochastic-cloning UD-factorized filter and delayed-state smoother that provide enhanced numerical stability when processing precise time-differenced carrier phase (TDCP) measurements. A comprehensive dynamics and measurement model is formulated, explicitly accounting for relativistic coupling between orbital and clock states, lunar time-scale transformations, and signal propagation delays including ionospheric, plasmaspheric, and Shapiro effects. The proposed approach is evaluated using high-fidelity Monte-Carlo simulations incorporating realistic multi-constellation GNSS geometry, broadcast ephemeris errors, lunar satellite dynamics, and ionospheric and plasmaspheric delay computed from empirical electron density models. Simulation results demonstrate that combining ionosphere-free pseudorange and TDCP measurements achieves meter-level orbit accuracy and sub-millimeter-per-second velocity accuracy, satisfying the stringent signal-in-space error requirements of future Lunar Augmented Navigation Services (LANS).
comment: Submitted to the Journal of Guidance, Control, and Dynamics
Computation and Language 94
☆ Avey-B
Compact pretrained bidirectional encoders remain the backbone of industrial NLP under tight compute and memory budgets. Their effectiveness stems from self-attention's ability to deliver high-quality bidirectional contextualization with sequence-level parallelism, as popularized by BERT-style architectures. Recently, Avey was introduced as an autoregressive, attention-free alternative that naturally admits an encoder-only adaptation. In this paper, we reformulate Avey for the encoder-only paradigm and propose several innovations to its architecture, including decoupled static and dynamic parameterizations, stability-oriented normalization, and neural compression. Results show that this reformulated architecture compares favorably to four widely used Transformer-based encoders, consistently outperforming them on standard token-classification and information-retrieval benchmarks while scaling more efficiently to long contexts.
☆ Enhancing Building Semantics Preservation in AI Model Training with Large Language Model Encodings
Accurate representation of building semantics, encompassing both generic object types and specific subtypes, is essential for effective AI model training in the architecture, engineering, construction, and operation (AECO) industry. Conventional encoding methods (e.g., one-hot) often fail to convey the nuanced relationships among closely related subtypes, limiting AI's semantic comprehension. To address this limitation, this study proposes a novel training approach that employs large language model (LLM) embeddings (e.g., OpenAI GPT and Meta LLaMA) as encodings to preserve finer distinctions in building semantics. We evaluated the proposed method by training GraphSAGE models to classify 42 building object subtypes across five high-rise residential building information models (BIMs). Various embedding dimensions were tested, including original high-dimensional LLM embeddings (1,536, 3,072, or 4,096) and 1,024-dimensional compacted embeddings generated via the Matryoshka representation model. Experimental results demonstrated that LLM encodings outperformed the conventional one-hot baseline, with the llama-3 (compacted) embedding achieving a weighted average F1-score of 0.8766, compared to 0.8475 for one-hot encoding. The results underscore the promise of leveraging LLM-based encodings to enhance AI's ability to interpret complex, domain-specific building semantics. As the capabilities of LLMs and dimensionality reduction techniques continue to evolve, this approach holds considerable potential for broad application in semantic elaboration tasks throughout the AECO industry.
comment: 42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)
☆ *-PLUIE: Personalisable metric with Llm Used for Improved Evaluation
Evaluating the quality of automatically generated text often relies on LLM-as-a-judge (LLM-judge) methods. While effective, these approaches are computationally expensive and require post-processing. To address these limitations, we build upon ParaPLUIE, a perplexity-based LLM-judge metric that estimates confidence over ``Yes/No'' answers without generating text. We introduce *-PLUIE, task specific prompting variants of ParaPLUIE and evaluate their alignment with human judgement. Our experiments show that personalised *-PLUIE achieves stronger correlations with human ratings while maintaining low computational cost.
comment: Under review
☆ ViTaB-A: Evaluating Multimodal Large Language Models on Visual Table Attribution
Multimodal Large Language Models (mLLMs) are often used to answer questions in structured data such as tables in Markdown, JSON, and images. While these models can often give correct answers, users also need to know where those answers come from. In this work, we study structured data attribution/citation, which is the ability of the models to point to the specific rows and columns that support an answer. We evaluate several mLLMs across different table formats and prompting strategies. Our results show a clear gap between question answering and evidence attribution. Although question answering accuracy remains moderate, attribution accuracy is much lower, near random for JSON inputs, across all models. We also find that models are more reliable at citing rows than columns, and struggle more with textual formats than images. Finally, we observe notable differences across model families. Overall, our findings show that current mLLMs are unreliable at providing fine-grained, trustworthy attribution for structured data, which limits their usage in applications requiring transparency and traceability.
GLM-5: from Vibe Coding to Agentic Engineering
We present GLM-5, a next-generation foundation model designed to transition the paradigm of vibe coding to agentic engineering. Building upon the agentic, reasoning, and coding (ARC) capabilities of its predecessor, GLM-5 adopts DSA to significantly reduce training and inference costs while maintaining long-context fidelity. To advance model alignment and autonomy, we implement a new asynchronous reinforcement learning infrastructure that drastically improves post-training efficiency by decoupling generation from training. Furthermore, we propose novel asynchronous agent RL algorithms that further improve RL quality, enabling the model to learn from complex, long-horizon interactions more effectively. Through these innovations, GLM-5 achieves state-of-the-art performance on major open benchmarks. Most critically, GLM-5 demonstrates unprecedented capability in real-world coding tasks, surpassing previous baselines in handling end-to-end software engineering challenges. Code, models, and more information are available at https://github.com/zai-org/GLM-5.
☆ ChartEditBench: Evaluating Grounded Multi-Turn Chart Editing in Multimodal Language Models
While Multimodal Large Language Models (MLLMs) perform strongly on single-turn chart generation, their ability to support real-world exploratory data analysis remains underexplored. In practice, users iteratively refine visualizations through multi-turn interactions that require maintaining common ground, tracking prior edits, and adapting to evolving preferences. We introduce ChartEditBench, a benchmark for incremental, visually grounded chart editing via code, comprising 5,000 difficulty-controlled modification chains and a rigorously human-verified subset. Unlike prior one-shot benchmarks, ChartEditBench evaluates sustained, context-aware editing. We further propose a robust evaluation framework that mitigates limitations of LLM-as-a-Judge metrics by integrating execution-based fidelity checks, pixel-level visual similarity, and logical code verification. Experiments with state-of-the-art MLLMs reveal substantial degradation in multi-turn settings due to error accumulation and breakdowns in shared context, with strong performance on stylistic edits but frequent execution failures on data-centric transformations. ChartEditBench, establishes a challenging testbed for grounded, intent-aware multimodal programming.
comment: 16 pages, 13 figures including Supplementary Material
☆ Beyond Binary Classification: Detecting Fine-Grained Sexism in Social Media Videos
Online sexism appears in various forms, which makes its detection challenging. Although automated tools can enhance the identification of sexist content, they are often restricted to binary classification. Consequently, more subtle manifestations of sexism may remain undetected due to the lack of fine-grained, context-sensitive labels. To address this issue, we make the following contributions: (1) we present FineMuSe, a new multimodal sexism detection dataset in Spanish that includes both binary and fine-grained annotations; (2) we introduce a comprehensive hierarchical taxonomy that encompasses forms of sexism, non-sexism, and rhetorical devices of irony and humor; and (3) we evaluate a wide range of LLMs for both binary and fine-grained sexism detection. Our findings indicate that multimodal LLMs perform competitively with human annotators in identifying nuanced forms of sexism; however, they struggle to capture co-occurring sexist types when these are conveyed through visual cues.
☆ Under-resourced studies of under-resourced languages: lemmatization and POS-tagging with LLM annotators for historical Armenian, Georgian, Greek and Syriac
Low-resource languages pose persistent challenges for Natural Language Processing tasks such as lemmatization and part-of-speech (POS) tagging. This paper investigates the capacity of recent large language models (LLMs), including GPT-4 variants and open-weight Mistral models, to address these tasks in few-shot and zero-shot settings for four historically and linguistically diverse under-resourced languages: Ancient Greek, Classical Armenian, Old Georgian, and Syriac. Using a novel benchmark comprising aligned training and out-of-domain test corpora, we evaluate the performance of foundation models across lemmatization and POS-tagging, and compare them with PIE, a task-specific RNN baseline. Our results demonstrate that LLMs, even without fine-tuning, achieve competitive or superior performance in POS-tagging and lemmatization across most languages in few-shot settings. Significant challenges persist for languages characterized by complex morphology and non-Latin scripts, but we demonstrate that LLMs are a credible and relevant option for initiating linguistic annotation tasks in the absence of data, serving as an effective aid for annotation.
☆ Causal Effect Estimation with Latent Textual Treatments
Understanding the causal effects of text on downstream outcomes is a central task in many applications. Estimating such effects requires researchers to run controlled experiments that systematically vary textual features. While large language models (LLMs) hold promise for generating text, producing and evaluating controlled variation requires more careful attention. In this paper, we present an end-to-end pipeline for the generation and causal estimation of latent textual interventions. Our work first performs hypothesis generation and steering via sparse autoencoders (SAEs), followed by robust causal estimation. Our pipeline addresses both computational and statistical challenges in text-as-treatment experiments. We demonstrate that naive estimation of causal effects suffers from significant bias as text inherently conflates treatment and covariate information. We describe the estimation bias induced in this setting and propose a solution based on covariate residualization. Our empirical results show that our pipeline effectively induces variation in target features and mitigates estimation error, providing a robust foundation for causal effect estimation in text-as-treatment settings.
☆ Recursive Concept Evolution for Compositional Reasoning in Large Language Models
Large language models achieve strong performance on many complex reasoning tasks, yet their accuracy degrades sharply on benchmarks that require compositional reasoning, including ARC-AGI-2, GPQA, MATH, BBH, and HLE. Existing methods improve reasoning by expanding token-level search through chain-of-thought prompting, self-consistency, or reinforcement learning, but they leave the model's latent representation space fixed. When the required abstraction is not already encoded in this space, performance collapses. We propose Recursive Concept Evolution (RCE), a framework that enables pretrained language models to modify their internal representation geometry during inference. RCE introduces dynamically generated low-rank concept subspaces that are spawned when representational inadequacy is detected, selected through a minimum description length criterion, merged when synergistic, and consolidated via constrained optimization to preserve stability. This process allows the model to construct new abstractions rather than recombining existing ones. We integrate RCE with Mistral-7B and evaluate it across compositional reasoning benchmarks. RCE yields 12-18 point gains on ARC-AGI-2, 8-14 point improvements on GPQA and BBH, and consistent reductions in depth-induced error on MATH and HLE.
☆ Rethinking Metrics for Lexical Semantic Change Detection EACL 2026
Lexical semantic change detection (LSCD) increasingly relies on contextualised language model embeddings, yet most approaches still quantify change using a small set of semantic change metrics, primarily Average Pairwise Distance (APD) and cosine distance over word prototypes (PRT). We introduce Average Minimum Distance (AMD) and Symmetric Average Minimum Distance (SAMD), new measures that quantify semantic change via local correspondence between word usages across time periods. Across multiple languages, encoder models, and representation spaces, we show that AMD often provides more robust performance, particularly under dimensionality reduction and with non-specialised encoders, while SAMD excels with specialised encoders. We suggest that LSCD may benefit from considering alternative semantic change metrics beyond APD and PRT, with AMD offering a robust option for contextualised embedding-based analysis.
comment: Accepted to the LChange 2026 Workshop, colocated with EACL 2026
☆ Proactive Conversational Assistant for a Procedural Manual Task based on Audio and IMU
Real-time conversational assistants for procedural tasks often depend on video input, which can be computationally expensive and compromise user privacy. For the first time, we propose a real-time conversational assistant that provides comprehensive guidance for a procedural task using only lightweight privacy-preserving modalities such as audio and IMU inputs from a user's wearable device to understand the context. This assistant proactively communicates step-by-step instructions to a user performing a furniture assembly task, and answers user questions. We construct a dataset containing conversations where the assistant guides the user in performing the task. On observing that an off-the-shelf language model is a very talkative assistant, we design a novel User Whim Agnostic (UWA) LoRA finetuning method which improves the model's ability to suppress less informative dialogues, while maintaining its tendency to communicate important instructions. This leads to >30% improvement in the F-score. Finetuning the model also results in a 16x speedup by eliminating the need to provide in-context examples in the prompt. We further describe how such an assistant is implemented on edge devices with no dependence on the cloud.
comment: 3 figures
☆ A Content-Based Framework for Cybersecurity Refusal Decisions in Large Language Models
Large language models and LLM-based agents are increasingly used for cybersecurity tasks that are inherently dual-use. Existing approaches to refusal, spanning academic policy frameworks and commercially deployed systems, often rely on broad topic-based bans or offensive-focused taxonomies. As a result, they can yield inconsistent decisions, over-restrict legitimate defenders, and behave brittlely under obfuscation or request segmentation. We argue that effective refusal requires explicitly modeling the trade-off between offensive risk and defensive benefit, rather than relying solely on intent or offensive classification. In this paper, we introduce a content-based framework for designing and auditing cyber refusal policies that makes offense-defense tradeoffs explicit. The framework characterizes requests along five dimensions: Offensive Action Contribution, Offensive Risk, Technical Complexity, Defensive Benefit, and Expected Frequency for Legitimate Users, grounded in the technical substance of the request rather than stated intent. We demonstrate that this content-grounded approach resolves inconsistencies in current frontier model behavior and allows organizations to construct tunable, risk-aware refusal policies.
☆ Revisiting Northrop Frye's Four Myths Theory with Large Language Models
Northrop Frye's theory of four fundamental narrative genres (comedy, romance, tragedy, satire) has profoundly influenced literary criticism, yet computational approaches to his framework have focused primarily on narrative patterns rather than character functions. In this paper, we present a new character function framework that complements pattern-based analysis by examining how archetypal roles manifest differently across Frye's genres. Drawing on Jungian archetype theory, we derive four universal character functions (protagonist, mentor, antagonist, companion) by mapping them to Jung's psychic structure components. These functions are then specialized into sixteen genre-specific roles based on prototypical works. To validate this framework, we conducted a multi-model study using six state-of-the-art Large Language Models (LLMs) to evaluate character-role correspondences across 40 narrative works. The validation employed both positive samples (160 valid correspondences) and negative samples (30 invalid correspondences) to evaluate whether models both recognize valid correspondences and reject invalid ones. LLMs achieved substantial performance (mean balanced accuracy of 82.5%) with strong inter-model agreement (Fleiss' $κ$ = 0.600), demonstrating that the proposed correspondences capture systematic structural patterns. Performance varied by genre (ranging from 72.7% to 89.9%) and role (52.5% to 99.2%), with qualitative analysis revealing that variations reflect genuine narrative properties, including functional distribution in romance and deliberate archetypal subversion in satire. This character-based approach demonstrates the potential of LLM-supported methods for computational narratology and provides a foundation for future development of narrative generation methods and interactive storytelling applications.
LLM-to-Speech: A Synthetic Data Pipeline for Training Dialectal Text-to-Speech Models EACL26
Despite the advances in neural text to speech (TTS), many Arabic dialectal varieties remain marginally addressed, with most resources concentrated on Modern Spoken Arabic (MSA) and Gulf dialects, leaving Egyptian Arabic -- the most widely understood Arabic dialect -- severely under-resourced. We address this gap by introducing NileTTS: 38 hours of transcribed speech from two speakers across diverse domains including medical, sales, and general conversations. We construct this dataset using a novel synthetic pipeline: large language models (LLM) generate Egyptian Arabic content, which is then converted to natural speech using audio synthesis tools, followed by automatic transcription and speaker diarization with manual quality verification. We fine-tune XTTS v2, a state-of-the-art multilingual TTS model, on our dataset and evaluate against the baseline model trained on other Arabic dialects. Our contributions include: (1) the first publicly available Egyptian Arabic TTS dataset, (2) a reproducible synthetic data generation pipeline for dialectal TTS, and (3) an open-source fine-tuned model. All resources are released to advance Egyptian Arabic speech synthesis research.
comment: 8 pages, 2 figures, EACL26
☆ STAPO: Stabilizing Reinforcement Learning for LLMs by Silencing Rare Spurious Tokens
Reinforcement Learning (RL) has significantly improved large language model reasoning, but existing RL fine-tuning methods rely heavily on heuristic techniques such as entropy regularization and reweighting to maintain stability. In practice, they often experience late-stage performance collapse, leading to degraded reasoning quality and unstable training. We derive that the magnitude of token-wise policy gradients in RL is negatively correlated with token probability and local policy entropy. Building on this result, we prove that training instability is driven by a tiny fraction of tokens, approximately 0.01\%, which we term \emph{spurious tokens}. When such tokens appear in correct responses, they contribute little to the reasoning outcome but inherit the full sequence-level reward, leading to abnormally amplified gradient updates. Motivated by this observation, we propose Spurious-Token-Aware Policy Optimization (STAPO) for large-scale model refining, which selectively masks such updates and renormalizes the loss over valid tokens. Across six mathematical reasoning benchmarks using Qwen 1.7B, 8B, and 14B base models, STAPO consistently demonstrates superior entropy stability and achieves an average performance improvement of 7.13\% over GRPO, 20-Entropy and JustRL.
☆ Clinically Inspired Symptom-Guided Depression Detection from Emotion-Aware Speech Representations
Depression manifests through a diverse set of symptoms such as sleep disturbance, loss of interest, and concentration difficulties. However, most existing works treat depression prediction either as a binary label or an overall severity score without explicitly modeling symptom-specific information. This limits their ability to provide symptom-level analysis relevant to clinical screening. To address this, we propose a symptom-specific and clinically inspired framework for depression severity estimation from speech. Our approach uses a symptom-guided cross-attention mechanism that aligns PHQ-8 questionnaire items with emotion-aware speech representations to identify which segments of a participant's speech are more important to each symptom. To account for differences in how symptoms are expressed over time, we introduce a learnable symptom-specific parameter that adaptively controls the sharpness of attention distributions. Our results on EDAIC, a standard clinical-style dataset, demonstrate improved performance outperforming prior works. Further, analyzing the attention distributions showed that higher attention is assigned to utterances containing cues related to multiple depressive symptoms, highlighting the interpretability of our approach. These findings outline the importance of symptom-guided and emotion-aware modeling for speech-based depression screening.
comment: 5 pages, 3 figures
☆ Beyond Static Pipelines: Learning Dynamic Workflows for Text-to-SQL
Text-to-SQL has recently achieved impressive progress, yet remains difficult to apply effectively in real-world scenarios. This gap stems from the reliance on single static workflows, fundamentally limiting scalability to out-of-distribution and long-tail scenarios. Instead of requiring users to select suitable methods through extensive experimentation, we attempt to enable systems to adaptively construct workflows at inference time. Through theoretical and empirical analysis, we demonstrate that optimal dynamic policies consistently outperform the best static workflow, with performance gains fundamentally driven by heterogeneity across candidate workflows. Motivated by this, we propose SquRL, a reinforcement learning framework that enhances LLMs' reasoning capability in adaptive workflow construction. We design a rule-based reward function and introduce two effective training mechanisms: dynamic actor masking to encourage broader exploration, and pseudo rewards to improve training efficiency. Experiments on widely-used Text-to-SQL benchmarks demonstrate that dynamic workflow construction consistently outperforms the best static workflow methods, with especially pronounced gains on complex and out-of-distribution queries. The codes are available at https://github.com/Satissss/SquRL
☆ RUVA: Personalized Transparent On-Device Graph Reasoning
The Personal AI landscape is currently dominated by "Black Box" Retrieval-Augmented Generation. While standard vector databases offer statistical matching, they suffer from a fundamental lack of accountability: when an AI hallucinates or retrieves sensitive data, the user cannot inspect the cause nor correct the error. Worse, "deleting" a concept from a vector space is mathematically imprecise, leaving behind probabilistic "ghosts" that violate true privacy. We propose Ruva, the first "Glass Box" architecture designed for Human-in-the-Loop Memory Curation. Ruva grounds Personal AI in a Personal Knowledge Graph, enabling users to inspect what the AI knows and to perform precise redaction of specific facts. By shifting the paradigm from Vector Matching to Graph Reasoning, Ruva ensures the "Right to be Forgotten." Users are the editors of their own lives; Ruva hands them the pen. The project and the demo video are available at http://sisinf00.poliba.it/ruva/.
☆ jina-embeddings-v5-text: Task-Targeted Embedding Distillation
Text embedding models are widely used for semantic similarity tasks, including information retrieval, clustering, and classification. General-purpose models are typically trained with single- or multi-stage processes using contrastive loss functions. We introduce a novel training regimen that combines model distillation techniques with task-specific contrastive loss to produce compact, high-performance embedding models. Our findings suggest that this approach is more effective for training small models than purely contrastive or distillation-based training paradigms alone. Benchmark scores for the resulting models, jina-embeddings-v5-text-small and jina-embeddings-v5-text-nano, exceed or match the state-of-the-art for models of similar size. jina-embeddings-v5-text models additionally support long texts (up to 32k tokens) in many languages, and generate embeddings that remain robust under truncation and binary quantization. Model weights are publicly available, hopefully inspiring further advances in embedding model development.
comment: 14 pages, 8 figures. Model weights: https://huggingface.co/collections/jinaai/jina-embeddings-v5-text
☆ Perspectives - Interactive Document Clustering in the Discourse Analysis Tool Suite
This paper introduces Perspectives, an interactive extension of the Discourse Analysis Tool Suite designed to empower Digital Humanities (DH) scholars to explore and organize large, unstructured document collections. Perspectives implements a flexible, aspect-focused document clustering pipeline with human-in-the-loop refinement capabilities. We showcase how this process can be initially steered by defining analytical lenses through document rewriting prompts and instruction-based embeddings, and further aligned with user intent through tools for refining clusters and mechanisms for fine-tuning the embedding model. The demonstration highlights a typical workflow, illustrating how DH researchers can leverage Perspectives's interactive document map to uncover topics, sentiments, or other relevant categories, thereby gaining insights and preparing their data for subsequent in-depth analysis.
☆ ZeroSyl: Simple Zero-Resource Syllable Tokenization for Spoken Language Modeling
Pure speech language models aim to learn language directly from raw audio without textual resources. A key challenge is that discrete tokens from self-supervised speech encoders result in excessively long sequences, motivating recent work on syllable-like units. However, methods like Sylber and SyllableLM rely on intricate multi-stage training pipelines. We propose ZeroSyl, a simple training-free method to extract syllable boundaries and embeddings directly from a frozen WavLM model. Using L2 norms of features in WavLM's intermediate layers, ZeroSyl achieves competitive syllable segmentation performance. The resulting segments are mean-pooled, discretized using K-means, and used to train a language model. ZeroSyl outperforms prior syllabic tokenizers across lexical, syntactic, and narrative benchmarks. Scaling experiments show that while finer-grained units are beneficial for lexical tasks, our discovered syllabic units exhibit better scaling behavior for syntactic modeling.
comment: 3 figures, 2 tables
☆ ExpertWeaver: Unlocking the Inherent MoE in Dense LLMs with GLU Activation Patterns
Mixture-of-Experts (MoE) effectively scales model capacity while preserving computational efficiency through sparse expert activation. However, training high-quality MoEs from scratch is prohibitively expensive. A promising alternative is to convert pretrained dense models into sparse MoEs. Existing dense-to-MoE methods fall into two categories: \textbf{dynamic structural pruning} that converts dense models into MoE architectures with moderate sparsity to balance performance and inference efficiency, and \textbf{downcycling} approaches that use pretrained dense models to initialize highly sparse MoE architectures. However, existing methods break the intrinsic activation patterns within dense models, leading to suboptimal expert construction. In this work, we argue that the Gated Linear Unit (GLU) mechanism provides a natural blueprint for dense-to-MoE conversion. We show that the fine-grained neural-wise activation patterns of GLU reveal a coarse-grained structure, uncovering an inherent MoE architecture composed of consistently activated universal neurons and dynamically activated specialized neurons. Leveraging this discovery, we introduce ExpertWeaver, a training-free framework that partitions neurons according to their activation patterns and constructs shared experts and specialized routed experts with layer-adaptive configurations. Our experiments demonstrate that ExpertWeaver significantly outperforms existing methods, both as a training-free dynamic structural pruning technique and as a downcycling strategy for superior MoE initialization.
☆ DependencyAI: Detecting AI Generated Text through Dependency Parsing
As large language models (LLMs) become increasingly prevalent, reliable methods for detecting AI-generated text are critical for mitigating potential risks. We introduce DependencyAI, a simple and interpretable approach for detecting AI-generated text using only the labels of linguistic dependency relations. Our method achieves competitive performance across monolingual, multi-generator, and multilingual settings. To increase interpretability, we analyze feature importance to reveal syntactic structures that distinguish AI-generated from human-written text. We also observe a systematic overprediction of certain models on unseen domains, suggesting that generator-specific writing styles may affect cross-domain generalization. Overall, our results demonstrate that dependency relations alone provide a robust signal for AI-generated text detection, establishing DependencyAI as a strong linguistically grounded, interpretable, and non-neural network baseline.
☆ Fine-Refine: Iterative Fine-grained Refinement for Mitigating Dialogue Hallucination
The tendency for hallucination in current large language models (LLMs) negatively impacts dialogue systems. Such hallucinations produce factually incorrect responses that may mislead users and undermine system trust. Existing refinement methods for dialogue systems typically operate at the response level, overlooking the fact that a single response may contain multiple verifiable or unverifiable facts. To address this gap, we propose Fine-Refine, a fine-grained refinement framework that decomposes responses into atomic units, verifies each unit using external knowledge, assesses fluency via perplexity, and iteratively corrects granular errors. We evaluate factuality across the HybriDialogue and OpendialKG datasets in terms of factual accuracy (fact score) and coverage (Not Enough Information Proportion), and experiments show that Fine-Refine substantially improves factuality, achieving up to a 7.63-point gain in dialogue fact score, with a small trade-off in dialogue quality.
☆ LuxMT Technical Report
We introduce LuxMT, a machine translation system based on Gemma 3 27B and fine-tuned for translation from Luxembourgish (LB) into French (FR) and English (EN). To assess translation performance, we construct a novel benchmark covering LB-FR, LB-EN, and LB-FR using human-translated data from Luci, a tourist magazine about Luxembourg. Training data stems from LuxAlign, a parallel corpus of multilingual Luxembourgish news articles, and LB parliamentary transcripts augmented with Google Translate. We filter the data using LuxEmbedder, LB sentence embeddings, to remove low-equivalence segment-pairs. Overall, LuxMT's results suggest strong improvements over the Gemma 3 baseline, even for translating LB to German (DE), despite the training data not containing any DE. We also explore LuxEmbedder's potential to be used as a quality estimation metric and find strong correlations with other reference-based metrics. However, we call for further research to fully assess the metric's utility and advise using it with caution.
comment: preprint
☆ Towards Expectation Detection in Language: A Case Study on Treatment Expectations in Reddit
Patients' expectations towards their treatment have a substantial effect on the treatments' success. While primarily studied in clinical settings, online patient platforms like medical subreddits may hold complementary insights: treatment expectations that patients feel unnecessary or uncomfortable to share elsewhere. Despite this, no studies examine what type of expectations users discuss online and how they express them. Presumably this is because expectations have not been studied in natural language processing (NLP) before. Therefore, we introduce the task of Expectation Detection, arguing that expectations are relevant for many applications, including opinion mining and product design. Subsequently, we present a case study for the medical domain, where expectations are particularly crucial to extract. We contribute RedHOTExpect, a corpus of Reddit posts (4.5K posts) to study expectations in this context. We use a large language model (LLM) to silver-label the data and validate its quality manually (label accuracy ~78%). Based on this, we analyze which linguistic patterns characterize expectations and explore what patients expect and why. We find that optimism and proactive framing are more pronounced in posts about physical or treatment-related illnesses compared to mental-health contexts, and that in our dataset, patients mostly discuss benefits rather than negative outcomes. The RedHOTExpect corpus can be obtained from https://www.ims.uni-stuttgart.de/data/RedHOTExpect
☆ In Agents We Trust, but Who Do Agents Trust? Latent Source Preferences Steer LLM Generations ICLR 2026
Agents based on Large Language Models (LLMs) are increasingly being deployed as interfaces to information on online platforms. These agents filter, prioritize, and synthesize information retrieved from the platforms' back-end databases or via web search. In these scenarios, LLM agents govern the information users receive, by drawing users' attention to particular instances of retrieved information at the expense of others. While much prior work has focused on biases in the information LLMs themselves generate, less attention has been paid to the factors that influence what information LLMs select and present to users. We hypothesize that when information is attributed to specific sources (e.g., particular publishers, journals, or platforms), current LLMs exhibit systematic latent source preferences- that is, they prioritize information from some sources over others. Through controlled experiments on twelve LLMs from six model providers, spanning both synthetic and real-world tasks, we find that several models consistently exhibit strong and predictable source preferences. These preferences are sensitive to contextual framing, can outweigh the influence of content itself, and persist despite explicit prompting to avoid them. They also help explain phenomena such as the observed left-leaning skew in news recommendations in prior work. Our findings advocate for deeper investigation into the origins of these preferences, as well as for mechanisms that provide users with transparency and control over the biases guiding LLM-powered agents.
comment: ICLR 2026
☆ TAROT: Test-driven and Capability-adaptive Curriculum Reinforcement Fine-tuning for Code Generation with Large Language Models
Large Language Models (LLMs) are changing the coding paradigm, known as vibe coding, yet synthesizing algorithmically sophisticated and robust code still remains a critical challenge. Incentivizing the deep reasoning capabilities of LLMs is essential to overcoming this hurdle. Reinforcement Fine-Tuning (RFT) has emerged as a promising strategy to address this need. However, most existing approaches overlook the heterogeneous difficulty and granularity inherent in test cases, leading to an imbalanced distribution of reward signals and consequently biased gradient updates during training. To address this, we propose Test-driven and cApability-adaptive cuRriculum reinfOrcement fine-Tuning (TAROT). TAROT systematically constructs, for each problem, a four-tier test suite (basic, intermediate, complex, edge), providing a controlled difficulty landscape for curriculum design and evaluation. Crucially, TAROT decouples curriculum progression from raw reward scores, enabling capability-conditioned evaluation and principled selection from a portfolio of curriculum policies rather than incidental test-case difficulty composition. This design fosters stable optimization and more efficient competency acquisition. Extensive experimental results reveal that the optimal curriculum for RFT in code generation is closely tied to a model's inherent capability, with less capable models achieving greater gains with an easy-to-hard progression, whereas more competent models excel under a hard-first curriculum. TAROT provides a reproducible method that adaptively tailors curriculum design to a model's capability, thereby consistently improving the functional correctness and robustness of the generated code. All code and data are released to foster reproducibility and advance community research at https://github.com/deep-diver/TAROT.
comment: The first three authors contributed equally to this work; listing order is random
☆ Measuring Social Integration Through Participation: Categorizing Organizations and Leisure Activities in the Displaced Karelians Interview Archive using LLMs EACL 2026
Digitized historical archives make it possible to study everyday social life on a large scale, but the information extracted directly from text often does not directly allow one to answer the research questions posed by historians or sociologists in a quantitative manner. We address this problem in a large collection of Finnish World War II Karelian evacuee family interviews. Prior work extracted more than 350K mentions of leisure time activities and organizational memberships from these interviews, yielding 71K unique activity and organization names -- far too many to analyze directly. We develop a categorization framework that captures key aspects of participation (the kind of activity/organization, how social it typically is, how regularly it happens, and how physically demanding it is). We annotate a gold-standard set to allow for a reliable evaluation, and then test whether large language models can apply the same schema at scale. Using a simple voting approach across multiple model runs, we find that an open-weight LLM can closely match expert judgments. Finally, we apply the method to label the 350K entities, producing a structured resource for downstream studies of social integration and related outcomes.
comment: Presented at: The 10th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature; EACL 2026 Workshop
☆ World-Model-Augmented Web Agents with Action Correction
Web agents based on large language models have demonstrated promising capability in automating web tasks. However, current web agents struggle to reason out sensible actions due to the limitations of predicting environment changes, and might not possess comprehensive awareness of execution risks, prematurely performing risky actions that cause losses and lead to task failure. To address these challenges, we propose WAC, a web agent that integrates model collaboration, consequence simulation, and feedback-driven action refinement. To overcome the cognitive isolation of individual models, we introduce a multi-agent collaboration process that enables an action model to consult a world model as a web-environment expert for strategic guidance; the action model then grounds these suggestions into executable actions, leveraging prior knowledge of environmental state transition dynamics to enhance candidate action proposal. To achieve risk-aware resilient task execution, we introduce a two-stage deduction chain. A world model, specialized in environmental state transitions, simulates action outcomes, which a judge model then scrutinizes to trigger action corrective feedback when necessary. Experiments show that WAC achieves absolute gains of 1.8% on VisualWebArena and 1.3% on Online-Mind2Web.
☆ The Vision Wormhole: Latent-Space Communication in Heterogeneous Multi-Agent Systems
Multi-Agent Systems (MAS) powered by Large Language Models have unlocked advanced collaborative reasoning, yet they remain shackled by the inefficiency of discrete text communication, which imposes significant runtime overhead and information quantization loss. While latent state transfer offers a high-bandwidth alternative, existing approaches either assume homogeneous sender-receiver architectures or rely on pair-specific learned translators, limiting scalability and modularity across diverse model families with disjoint manifolds. In this work, we propose the Vision Wormhole, a novel framework that repurposes the visual interface of Vision-Language Models (VLMs) to enable model-agnostic, text-free communication. By introducing a Universal Visual Codec, we map heterogeneous reasoning traces into a shared continuous latent space and inject them directly into the receiver's visual pathway, effectively treating the vision encoder as a universal port for inter-agent telepathy. Our framework adopts a hub-and-spoke topology to reduce pairwise alignment complexity from O(N^2) to O(N) and leverages a label-free, teacher-student distillation objective to align the high-speed visual channel with the robust reasoning patterns of the text pathway. Extensive experiments across heterogeneous model families (e.g., Qwen-VL, Gemma) demonstrate that the Vision Wormhole reduces end-to-end wall-clock time in controlled comparisons while maintaining reasoning fidelity comparable to standard text-based MAS. Code is available at https://github.com/xz-liu/heterogeneous-latent-mas
comment: Preprint. Work in progress
☆ Making Large Language Models Speak Tulu: Structured Prompting for an Extremely Low-Resource Language EACL
Can large language models converse in languages virtually absent from their training data? We investigate this question through a case study on Tulu, a Dravidian language with over 2 million speakers but minimal digital presence. Rather than fine-tuning an LLM, we examine whether structured prompts alone can elicit basic conversational ability under controlled prompting. We systematically tackle various challenges posed by absence of training data for Tulu by combining explicit grammar documentation, negative constraints to suppress high-probability tokens from related languages, romanization standardization, and quality-controlled synthetic data generation via self-play. Evaluated on a manually curated held-out set across three LLMs (Gemini 2.0 Flash, GPT-4o, Llama 3.1 70B) and validated by native speakers, our approach reduces vocabulary contamination from 80% to 5% while achieving 85% grammatical accuracy. Cross-model analysis reveals that negative constraints provide consistent improvements (12--18 percentage points), while grammar documentation effects vary by model architecture (8--22 points).
comment: Accepted to EACL LoResLM Workshop
☆ Orchestration-Free Customer Service Automation: A Privacy-Preserving and Flowchart-Guided Framework
Customer service automation has seen growing demand within digital transformation. Existing approaches either rely on modular system designs with extensive agent orchestration or employ over-simplified instruction schemas, providing limited guidance and poor generalizability. This paper introduces an orchestration-free framework using Task-Oriented Flowcharts (TOFs) to enable end-to-end automation without manual intervention. We first define the components and evaluation metrics for TOFs, then formalize a cost-efficient flowchart construction algorithm to abstract procedural knowledge from service dialogues. We emphasize local deployment of small language models and propose decentralized distillation with flowcharts to mitigate data scarcity and privacy issues in model training. Extensive experiments validate the effectiveness in various service tasks, with superior quantitative and application performance compared to strong baselines and market products. By releasing a web-based system demonstration with case studies, we aim to promote streamlined creation of future service automation.
comment: Accepted by TheWebConf 2026
☆ Far Out: Evaluating Language Models on Slang in Australian and Indian English EACL 2026
Language models exhibit systematic performance gaps when processing text in non-standard language varieties, yet their ability to comprehend variety-specific slang remains underexplored for several languages. We present a comprehensive evaluation of slang awareness in Indian English (en-IN) and Australian English (en-AU) across seven state-of-the-art language models. We construct two complementary datasets: \textsc{web}, containing 377 web-sourced usage examples from Urban Dictionary, and \textsc{gen}, featuring 1,492 synthetically generated usages of these slang terms, across diverse scenarios. We assess language models on three tasks: target word prediction (TWP), guided target word prediction (TWP$^*$) and target word selection (TWS). Our results reveal four key findings: (1) Higher average model performance TWS versus TWP and TWP$^*$, with average accuracy score increasing from 0.03 to 0.49 respectively (2) Stronger average model performance on \textsc{web} versus \textsc{gen} datasets, with average similarity score increasing by 0.03 and 0.05 across TWP and TWP$^*$ tasks respectively (3) en-IN tasks outperform en-AU when averaged across all models and datasets, with TWS demonstrating the largest disparity, increasing average accuracy from 0.44 to 0.54. These findings underscore fundamental asymmetries between generative and discriminative competencies for variety-specific language, particularly in the context of slang expressions despite being in a technologically rich language such as English.
comment: Accepted as a paper at 13th VarDial workshop at EACL 2026
☆ NeuroSymActive: Differentiable Neural-Symbolic Reasoning with Active Exploration for Knowledge Graph Question Answering
Large pretrained language models and neural reasoning systems have advanced many natural language tasks, yet they remain challenged by knowledge-intensive queries that require precise, structured multi-hop inference. Knowledge graphs provide a compact symbolic substrate for factual grounding, but integrating graph structure with neural models is nontrivial: naively embedding graph facts into prompts leads to inefficiency and fragility, while purely symbolic or search-heavy approaches can be costly in retrievals and lack gradient-based refinement. We introduce NeuroSymActive, a modular framework that combines a differentiable neural-symbolic reasoning layer with an active, value-guided exploration controller for Knowledge Graph Question Answering. The method couples soft-unification style symbolic modules with a neural path evaluator and a Monte-Carlo style exploration policy that prioritizes high-value path expansions. Empirical results on standard KGQA benchmarks show that NeuroSymActive attains strong answer accuracy while reducing the number of expensive graph lookups and model calls compared to common retrieval-augmented baselines.
comment: 26 pages, 7 figures
☆ Discovering Implicit Large Language Model Alignment Objectives
Large language model (LLM) alignment relies on complex reward signals that often obscure the specific behaviors being incentivized, creating critical risks of misalignment and reward hacking. Existing interpretation methods typically rely on pre-defined rubrics, risking the omission of "unknown unknowns", or fail to identify objectives that comprehensively cover and are causal to the model behavior. To address these limitations, we introduce Obj-Disco, a framework that automatically decomposes an alignment reward signal into a sparse, weighted combination of human-interpretable natural language objectives. Our approach utilizes an iterative greedy algorithm to analyze behavioral changes across training checkpoints, identifying and validating candidate objectives that best explain the residual reward signal. Extensive evaluations across diverse tasks, model sizes, and alignment algorithms demonstrate the framework's robustness. Experiments with popular open-source reward models show that the framework consistently captures > 90% of reward behavior, a finding further corroborated by human evaluation. Additionally, a case study on alignment with an open-source reward model reveals that Obj-Disco can successfully identify latent misaligned incentives that emerge alongside intended behaviors. Our work provides a crucial tool for uncovering the implicit objectives in LLM alignment, paving the way for more transparent and safer AI development.
☆ Prescriptive Scaling Reveals the Evolution of Language Model Capabilities
For deploying foundation models, practitioners increasingly need prescriptive scaling laws: given a pre training compute budget, what downstream accuracy is attainable with contemporary post training practice, and how stable is that mapping as the field evolves? Using large scale observational evaluations with 5k observational and 2k newly sampled data on model performance, we estimate capability boundaries, high conditional quantiles of benchmark scores as a function of log pre training FLOPs, via smoothed quantile regression with a monotone, saturating sigmoid parameterization. We validate the temporal reliability by fitting on earlier model generations and evaluating on later releases. Across various tasks, the estimated boundaries are mostly stable, with the exception of math reasoning that exhibits a consistently advancing boundary over time. We then extend our approach to analyze task dependent saturation and to probe contamination related shifts on math reasoning tasks. Finally, we introduce an efficient algorithm that recovers near full data frontiers using roughly 20% of evaluation budget. Together, our work releases the Proteus 2k, the latest model performance evaluation dataset, and introduces a practical methodology for translating compute budgets into reliable performance expectations and for monitoring when capability boundaries shift across time.
comment: Blog Post: https://jkjin.com/prescriptive-scaling
☆ Mnemis: Dual-Route Retrieval on Hierarchical Graphs for Long-Term LLM Memory
AI Memory, specifically how models organizes and retrieves historical messages, becomes increasingly valuable to Large Language Models (LLMs), yet existing methods (RAG and Graph-RAG) primarily retrieve memory through similarity-based mechanisms. While efficient, such System-1-style retrieval struggles with scenarios that require global reasoning or comprehensive coverage of all relevant information. In this work, We propose Mnemis, a novel memory framework that integrates System-1 similarity search with a complementary System-2 mechanism, termed Global Selection. Mnemis organizes memory into a base graph for similarity retrieval and a hierarchical graph that enables top-down, deliberate traversal over semantic hierarchies. By combining the complementary strength from both retrieval routes, Mnemis retrieves memory items that are both semantically and structurally relevant. Mnemis achieves state-of-the-art performance across all compared methods on long-term memory benchmarks, scoring 93.9 on LoCoMo and 91.6 on LongMemEval-S using GPT-4.1-mini.
comment: 10 pages
☆ Extracting Consumer Insight from Text: A Large Language Model Approach to Emotion and Evaluation Measurement
Accurately measuring consumer emotions and evaluations from unstructured text remains a core challenge for marketing research and practice. This study introduces the Linguistic eXtractor (LX), a fine-tuned, large language model trained on consumer-authored text that also has been labeled with consumers' self-reported ratings of 16 consumption-related emotions and four evaluation constructs: trust, commitment, recommendation, and sentiment. LX consistently outperforms leading models, including GPT-4 Turbo, RoBERTa, and DeepSeek, achieving 81% macro-F1 accuracy on open-ended survey responses and greater than 95% accuracy on third-party-annotated Amazon and Yelp reviews. An application of LX to online retail data, using seemingly unrelated regression, affirms that review-expressed emotions predict product ratings, which in turn predict purchase behavior. Most emotional effects are mediated by product ratings, though some emotions, such as discontent and peacefulness, influence purchase directly, indicating that emotional tone provides meaningful signals beyond star ratings. To support its use, a no-code, cost-free, LX web application is available, enabling scalable analyses of consumer-authored text. In establishing a new methodological foundation for consumer perception measurement, this research demonstrates new methods for leveraging large language models to advance marketing research and practice, thereby achieving validated detection of marketing constructs from consumer data.
☆ The Information Geometry of Softmax: Probing and Steering
This paper concerns the question of how AI systems encode semantic structure into the geometric structure of their representation spaces. The motivating observation of this paper is that the natural geometry of these representation spaces should reflect the way models use representations to produce behavior. We focus on the important special case of representations that define softmax distributions. In this case, we argue that the natural geometry is information geometry. Our focus is on the role of information geometry on semantic encoding and the linear representation hypothesis. As an illustrative application, we develop "dual steering", a method for robustly steering representations to exhibit a particular concept using linear probes. We prove that dual steering optimally modifies the target concept while minimizing changes to off-target concepts. Empirically, we find that dual steering enhances the controllability and stability of concept manipulation.
comment: Code is available at https://github.com/KihoPark/dual-steering
☆ FrameRef: A Framing Dataset and Simulation Testbed for Modeling Bounded Rational Information Health
Information ecosystems increasingly shape how people internalize exposure to adverse digital experiences, raising concerns about the long-term consequences for information health. In modern search and recommendation systems, ranking and personalization policies play a central role in shaping such exposure and its long-term effects on users. To study these effects in a controlled setting, we present FrameRef, a large-scale dataset of 1,073,740 systematically reframed claims across five framing dimensions: authoritative, consensus, emotional, prestige, and sensationalist, and propose a simulation-based framework for modeling sequential information exposure and reinforcement dynamics characteristic of ranking and recommendation systems. Within this framework, we construct framing-sensitive agent personas by fine-tuning language models with framing-conditioned loss attenuation, inducing targeted biases while preserving overall task competence. Using Monte Carlo trajectory sampling, we show that small, systematic shifts in acceptance and confidence can compound over time, producing substantial divergence in cumulative information health trajectories. Human evaluation further confirms that FrameRef's generated framings measurably affect human judgment. Together, our dataset and framework provide a foundation for systematic information health research through simulation, complementing and informing responsible human-centered research. We release FrameRef, code, documentation, human evaluation data, and persona adapter models at https://github.com/infosenselab/frameref.
☆ Updating Parametric Knowledge with Context Distillation Retains Post-Training Capabilities
Post-training endows pretrained LLMs with a variety of desirable skills, including instruction-following, reasoning, and others. However, these post-trained LLMs only encode knowledge up to a cut-off date, necessitating continual adaptation. Unfortunately, existing solutions cannot simultaneously learn new knowledge from an adaptation document corpora and mitigate the forgetting of earlier learned capabilities. To address this, we introduce Distillation via Split Contexts (DiSC), a simple context-distillation based approach for continual knowledge adaptation. \methodname~derives student and teacher distributions by conditioning on distinct segments of the training example and minimizes the KL divergence between the shared tokens. This allows us to efficiently apply context-distillation without requiring explicit generation steps during training. We run experiments on four post-trained models and two adaptation domains. Compared to prior finetuning and distillation methods for continual adaptation, DiSC consistently reports the best trade-off between learning new knowledge and mitigating forgetting of previously learned skills like instruction-following, reasoning, and factual knowledge.
comment: 15 pages. Preprint, under review
☆ Why Any-Order Autoregressive Models Need Two-Stream Attention: A Structural-Semantic Tradeoff
Any-order autoregressive models (AO-ARMs) offer a promising path toward efficient masked diffusion by enabling native key-value caching, but competitive performance has so far required two-stream attention, typically motivated as a means of decoupling token content from position. In this work, we argue that two-stream attention may be serving a more subtle role. We identify a structural-semantic tradeoff in any-order generation: the hidden representation at each step must simultaneously attend to semantically informative tokens for prediction and structurally recent tokens for summarization, objectives that compete for attention capacity in a single stream but can specialize across two streams. To isolate this tradeoff from position-content separation, we propose Decoupled RoPE, a modification to rotary position embeddings that provides target position information without revealing target content. Decoupled RoPE performs competitively at short sequence lengths--where semantic and structural proximity coincide--but degrades as sequence length increases and the two orderings diverge. These results suggest that the success of two-stream attention stems not merely from separating position from content, but from circumventing the deeper structural-semantic tradeoff inherent to any-order generation.
☆ Language Statistics and False Belief Reasoning: Evidence from 41 Open-Weight LMs
Research on mental state reasoning in language models (LMs) has the potential to inform theories of human social cognition--such as the theory that mental state reasoning emerges in part from language exposure--and our understanding of LMs themselves. Yet much published work on LMs relies on a relatively small sample of closed-source LMs, limiting our ability to rigorously test psychological theories and evaluate LM capacities. Here, we replicate and extend published work on the false belief task by assessing LM mental state reasoning behavior across 41 open-weight models (from distinct model families). We find sensitivity to implied knowledge states in 34% of the LMs tested; however, consistent with prior work, none fully ``explain away'' the effect in humans. Larger LMs show increased sensitivity and also exhibit higher psychometric predictive power. Finally, we use LM behavior to generate and test a novel hypothesis about human cognition: both humans and LMs show a bias towards attributing false beliefs when knowledge states are cued using a non-factive verb (``John thinks...'') than when cued indirectly (``John looks in the...''). Unlike the primary effect of knowledge states, where human sensitivity exceeds that of LMs, the magnitude of the human knowledge cue effect falls squarely within the distribution of LM effect sizes-suggesting that distributional statistics of language can in principle account for the latter but not the former in humans. These results demonstrate the value of using larger samples of open-weight LMs to test theories of human cognition and evaluate LM capacities.
comment: 15 pages, 7 figures, submitted to conference
☆ Surgical Activation Steering via Generative Causal Mediation
Where should we intervene in a language model (LM) to control behaviors that are diffused across many tokens of a long-form response? We introduce Generative Causal Mediation (GCM), a procedure for selecting model components, e.g., attention heads, to steer a binary concept (e.g., talk in verse vs. talk in prose) from contrastive long-form responses. In GCM, we first construct a dataset of contrasting inputs and responses. Then, we quantify how individual model components mediate the contrastive concept and select the strongest mediators for steering. We evaluate GCM on three tasks--refusal, sycophancy, and style transfer--across three language models. GCM successfully localizes concepts expressed in long-form responses and consistently outperforms correlational probe-based baselines when steering with a sparse set of attention heads. Together, these results demonstrate that GCM provides an effective approach for localizing and controlling the long-form responses of LMs.
☆ CLAA: Cross-Layer Attention Aggregation for Accelerating LLM Prefill
The prefill stage in long-context LLM inference remains a computational bottleneck. Recent token-ranking heuristics accelerate inference by selectively processing a subset of semantically relevant tokens. However, existing methods suffer from unstable token importance estimation, often varying between layers. Evaluating token-ranking quality independently from heuristic-specific architectures is challenging. To address this, we introduce an Answer-Informed Oracle, which defines ground-truth token importance by measuring attention from generated answers back to the prompt. This oracle reveals that existing heuristics exhibit high variance across layers: rankings can degrade sharply at specific layers, a failure mode invisible to end-to-end benchmarks. The diagnosis suggests a simple fix: aggregate scores across layers rather than relying on any single one. We implement this as Cross-Layer Attention Aggregation (CLAA), which closes the gap to the oracle upper bound and reduces Time-to-First-Token (TTFT) by up to 39\% compared to the Full KV Cache baseline.
comment: 15 pages, 8 figures
☆ Evidence-Grounded Subspecialty Reasoning: Evaluating a Curated Clinical Intelligence Layer on the 2025 Endocrinology Board-Style Examination
Background: Large language models have demonstrated strong performance on general medical examinations, but subspecialty clinical reasoning remains challenging due to rapidly evolving guidelines and nuanced evidence hierarchies. Methods: We evaluated January Mirror, an evidence-grounded clinical reasoning system, against frontier LLMs (GPT-5, GPT-5.2, Gemini-3-Pro) on a 120-question endocrinology board-style examination. Mirror integrates a curated endocrinology and cardiometabolic evidence corpus with a structured reasoning architecture to generate evidence-linked outputs. Mirror operated under a closed-evidence constraint without external retrieval. Comparator LLMs had real-time web access to guidelines and primary literature. Results: Mirror achieved 87.5% accuracy (105/120; 95% CI: 80.4-92.3%), exceeding a human reference of 62.3% and frontier LLMs including GPT-5.2 (74.6%), GPT-5 (74.0%), and Gemini-3-Pro (69.8%). On the 30 most difficult questions (human accuracy less than 50%), Mirror achieved 76.7% accuracy. Top-2 accuracy was 92.5% for Mirror versus 85.25% for GPT-5.2. Conclusions: Mirror provided evidence traceability: 74.2% of outputs cited at least one guideline-tier source, with 100% citation accuracy on manual verification. Curated evidence with explicit provenance can outperform unconstrained web retrieval for subspecialty clinical reasoning and supports auditability for clinical deployment.
☆ A Curious Class of Adpositional Multiword Expressions in Korean EACL 2026
Multiword expressions (MWEs) have been widely studied in cross-lingual annotation frameworks such as PARSEME. However, Korean MWEs remain underrepresented in these efforts. In particular, Korean multiword adpositions lack systematic analysis, annotated resources, and integration into existing multilingual frameworks. In this paper, we study a class of Korean functional multiword expressions: postpositional verb-based constructions (PVCs). Using data from Korean Wikipedia, we survey and analyze several PVC expressions and contrast them with non-MWEs and light verb constructions (LVCs) with similar structure. Building on this analysis, we propose annotation guidelines designed to support future work in Korean multiword adpositions and facilitate alignment with cross-lingual frameworks.
comment: 10 pages. Camera-ready for MWE at EACL 2026
☆ MAEB: Massive Audio Embedding Benchmark
We introduce the Massive Audio Embedding Benchmark (MAEB), a large-scale benchmark covering 30 tasks across speech, music, environmental sounds, and cross-modal audio-text reasoning in 100+ languages. We evaluate 50+ models and find that no single model dominates across all tasks: contrastive audio-text models excel at environmental sound classification (e.g., ESC50) but score near random on multilingual speech tasks (e.g., SIB-FLEURS), while speech-pretrained models show the opposite pattern. Clustering remains challenging for all models, with even the best-performing model achieving only modest results. We observe that models excelling on acoustic understanding often perform poorly on linguistic tasks, and vice versa. We also show that the performance of audio encoders on MAEB correlates highly with their performance when used in audio large language models. MAEB is derived from MAEB+, a collection of 98 tasks. MAEB is designed to maintain task diversity while reducing evaluation cost, and it integrates into the MTEB ecosystem for unified evaluation across text, image, and audio modalities. We release MAEB and all 98 tasks along with code and a leaderboard at https://github.com/embeddings-benchmark/mteb.
☆ Anatomy of Capability Emergence: Scale-Invariant Representation Collapse and Top-Down Reorganization in Neural Networks
Capability emergence during neural network training remains mechanistically opaque. We track five geometric measures across five model scales (405K-85M parameters), 120+ emergence events in eight algorithmic tasks, and three Pythia language models (160M-2.8B). We find: (1) training begins with a universal representation collapse to task-specific floors that are scale-invariant across a 210X parameter range (e.g., modular arithmetic collapses to RANKME ~ 2.0 regardless of model size); (2) collapse propagates top-down through layers (32/32 task X model consistency), contradicting bottom-up feature-building intuition; (3) a geometric hierarchy in which representation geometry leads emergence (75-100% precursor rate for hard tasks), while the local learning coefficient is synchronous (0/24 precursor) and Hessian measures lag. We also delineate prediction limits: geometric measures encode coarse task difficulty but not fine-grained timing (within-class concordance 27%; when task ordering reverses across scales, prediction fails at 26%). On Pythia, global geometric patterns replicate but per-task precursor signals do not -- the precursor relationship requires task-training alignment that naturalistic pre-training does not provide. Our contribution is the geometric anatomy of emergence and its boundary conditions, not a prediction tool.
comment: 19 pages, 6 figures, 12 appendix pages
☆ DocSplit: A Comprehensive Benchmark Dataset and Evaluation Approach for Document Packet Recognition and Splitting
Document understanding in real-world applications often requires processing heterogeneous, multi-page document packets containing multiple documents stitched together. Despite recent advances in visual document understanding, the fundamental task of document packet splitting, which involves separating a document packet into individual units, remains largely unaddressed. We present the first comprehensive benchmark dataset, DocSplit, along with novel evaluation metrics for assessing the document packet splitting capabilities of large language models. DocSplit comprises five datasets of varying complexity, covering diverse document types, layouts, and multimodal settings. We formalize the DocSplit task, which requires models to identify document boundaries, classify document types, and maintain correct page ordering within a document packet. The benchmark addresses real-world challenges, including out-of-order pages, interleaved documents, and documents lacking clear demarcations. We conduct extensive experiments evaluating multimodal LLMs on our datasets, revealing significant performance gaps in current models' ability to handle complex document splitting tasks. The DocSplit benchmark datasets and proposed novel evaluation metrics provide a systematic framework for advancing document understanding capabilities essential for legal, financial, healthcare, and other document-intensive domains. We release the datasets to facilitate future research in document packet processing.
☆ Multi-Objective Alignment of Language Models for Personalized Psychotherapy
Mental health disorders affect over 1 billion people worldwide, yet access to care remains limited by workforce shortages and cost constraints. While AI systems show therapeutic promise, current alignment approaches optimize objectives independently, failing to balance patient preferences with clinical safety. We survey 335 individuals with lived mental health experience to collect preference rankings across therapeutic dimensions, then develop a multi-objective alignment framework using direct preference optimization. We train reward models for six criteria -- empathy, safety, active listening, self-motivated change, trust/rapport, and patient autonomy -- and systematically compare multi-objective approaches against single-objective optimization, supervised fine-tuning, and parameter merging. Multi-objective DPO (MODPO) achieves superior balance (77.6% empathy, 62.6% safety) compared to single-objective optimization (93.6% empathy, 47.8% safety), and therapeutic criteria outperform general communication principles by 17.2%. Blinded clinician evaluation confirms MODPO is consistently preferred, with LLM-evaluator agreement comparable to inter-clinician reliability.
☆ Intent Laundering: AI Safety Datasets Are Not What They Seem
We systematically evaluate the quality of widely used AI safety datasets from two perspectives: in isolation and in practice. In isolation, we examine how well these datasets reflect real-world attacks based on three key properties: driven by ulterior intent, well-crafted, and out-of-distribution. We find that these datasets overrely on "triggering cues": words or phrases with overt negative/sensitive connotations that are intended to trigger safety mechanisms explicitly, which is unrealistic compared to real-world attacks. In practice, we evaluate whether these datasets genuinely measure safety risks or merely provoke refusals through triggering cues. To explore this, we introduce "intent laundering": a procedure that abstracts away triggering cues from attacks (data points) while strictly preserving their malicious intent and all relevant details. Our results indicate that current AI safety datasets fail to faithfully represent real-world attacks due to their overreliance on triggering cues. In fact, once these cues are removed, all previously evaluated "reasonably safe" models become unsafe, including Gemini 3 Pro and Claude Sonnet 3.7. Moreover, when intent laundering is adapted as a jailbreaking technique, it consistently achieves high attack success rates, ranging from 90% to over 98%, under fully black-box access. Overall, our findings expose a significant disconnect between how model safety is evaluated and how real-world adversaries behave.
comment: v1 preprint
♻ ☆ Should You Use Your Large Language Model to Explore or Exploit?
We evaluate the ability of the current generation of large language models (LLMs) to help a decision-making agent facing an exploration-exploitation tradeoff. While previous work has largely study the ability of LLMs to solve combined exploration-exploitation tasks, we take a more systematic approach and use LLMs to explore and exploit in silos in various (contextual) bandit tasks. We find that reasoning models show the most promise for solving exploitation tasks, although they are still too expensive or too slow to be used in many practical settings. Motivated by this, we study tool use and in-context summarization using non-reasoning models. We find that these mitigations may be used to substantially improve performance on medium-difficulty tasks, however even then, all LLMs we study perform worse than a simple linear regression, even in non-linear settings. On the other hand, we find that LLMs do help at exploring large action spaces with inherent semantics, by suggesting suitable candidates to explore.
♻ ☆ Large Language Models and Impossible Language Acquisition: "False Promise" or an Overturn of our Current Perspective towards AI
In Chomsky's provocative critique "The False Promise of CHATGPT," Large Language Models (LLMs) are characterized as mere pattern predictors that do not acquire languages via intrinsic causal and self-correction structures like humans, therefore are not able to distinguish impossible languages. It stands as a representative in a fundamental challenge to the intellectual foundations of AI, for it integrally synthesizes major issues in methodologies within LLMs and possesses an iconic a priori rationalist perspective. We examine this famous critique from both the perspective in pre-existing literature of linguistics and psychology as well as a research based on an experiment inquiring into the capacity of learning both possible and impossible languages among LLMs. We constructed a set of syntactically impossible languages by applying certain transformations to English. These include reversing whole sentences, and adding negation based on word-count parity. Two rounds of controlled experiments were each conducted on GPT-2 small models and long short-term memory (LSTM) models. Statistical analysis (Welch's t-test) shows GPT2 small models underperform in learning all of the impossible languages compared to their performance on the possible language (p<.001). On the other hand, LSTM models' performance tallies with Chomsky's argument, suggesting the irreplaceable role of the evolution of transformer architecture. Based on theoretical analysis and empirical findings, we propose a new vision within Chomsky's theory towards LLMs, and a shift of theoretical paradigm outside Chomsky, from his "rationalist-romantics" paradigm to functionalism and empiricism in LLMs research.
♻ ☆ LogiPart: Local Large Language Models for Data Exploration at Scale with Logical Partitioning
The discovery of deep, steerable taxonomies in large text corpora is currently restricted by a trade-off between the surface-level efficiency of topic models and the prohibitive, non-scalable assignment costs of LLM-integrated frameworks. We introduce \textbf{LogiPart}, a scalable, hypothesis-first framework for building interpretable hierarchical partitions that decouples hierarchy growth from expensive full-corpus LLM conditioning. LogiPart utilizes locally hosted LLMs on compact, embedding-aware samples to generate concise natural-language taxonomic predicates. These predicates are then evaluated efficiently across the entire corpus using zero-shot Natural Language Inference (NLI) combined with fast graph-based label propagation, achieving constant $O(1)$ generative token complexity per node relative to corpus size. We evaluate LogiPart across four diverse text corpora (totaling $\approx$140,000 documents). Using structured manifolds for \textbf{calibration}, we identify an empirical reasoning threshold at the 14B-parameter scale required for stable semantic grounding. On complex, high-entropy corpora (Wikipedia, US Bills), where traditional thematic metrics reveal an ``alignment gap,'' inverse logic validation confirms the stability of the induced logic, with individual taxonomic bisections maintaining an average per-node routing accuracy of up to 96\%. A qualitative audit by an independent LLM-as-a-judge confirms the discovery of meaningful functional axes, such as policy intent, that thematic ground-truth labels fail to capture. LogiPart enables frontier-level exploratory analysis on consumer-grade hardware, making hypothesis-driven taxonomic discovery feasible under realistic computational and governance constraints.
comment: This version introduces a major architectural shift to Local LLMs and NLI-based assignment, scaling the framework to O(1) generative complexity. Formerly titled 'Question-Driven Analysis and Synthesis'
♻ ☆ Can Multimodal LLMs Perform Time Series Anomaly Detection?
Time series anomaly detection (TSAD) has been a long-standing pillar problem in Web-scale systems and online infrastructures, such as service reliability monitoring, system fault diagnosis, and performance optimization. Large language models (LLMs) have demonstrated unprecedented capabilities in time series analysis, the potential of multimodal LLMs (MLLMs), particularly vision-language models, in TSAD remains largely under-explored. One natural way for humans to detect time series anomalies is through visualization and textual description. It motivates our research question: Can multimodal LLMs perform time series anomaly detection? Existing studies often oversimplify the problem by treating point-wise anomalies as special cases of range-wise ones or by aggregating point anomalies to approximate range-wise scenarios. They limit our understanding for realistic scenarios such as multi-granular anomalies and irregular time series. To address the gap, we build a VisualTimeAnomaly benchmark to comprehensively investigate zero-shot capabilities of MLLMs for TSAD, progressively from point-, range-, to variate-wise anomalies, and extends to irregular sampling conditions. Our study reveals several key insights in multimodal MLLMs for TSAD. Built on these findings, we propose a MLLMs-based multi-agent framework TSAD-Agents to achieve automatic TSAD. Our framework comprises scanning, planning, detection, and checking agents that synergistically collaborate to reason, plan, and self-reflect to enable automatic TSAD. These agents adaptively invoke tools such as traditional methods and MLLMs and dynamically switch between text and image modalities to optimize detection performance.
comment: ACM Web Conference 2026 (WWW'26)
♻ ☆ A Scoping Review of Synthetic Data Generation by Language Models in Biomedical Research and Application: Data Utility and Quality Perspectives
Synthetic data generation using large language models (LLMs) demonstrates substantial promise in addressing biomedical data challenges and shows increasing adoption in biomedical research. This study systematically reviews recent advances in synthetic data generation for biomedical applications and clinical research, focusing on how LLMs address data scarcity, utility, and quality issues with different modalities. We conducted a scoping review following PRISMA-ScR guidelines and searched literature published between 2020 and 2025 through PubMed, ACM, Web of Science, and Google Scholar. A total of 59 studies were included based on relevance to synthetic data generation in biomedical contexts. Among the reviewed studies, the predominant data modalities were unstructured texts (78.0\%), tabular data (13.6\%), and multimodal sources (8.4\%). Common generation methods included LLM prompting (74.6\%), fine-tuning (20.3\%), and specialized models (5.1\%). Evaluations were heterogeneous: intrinsic metrics (27.1\%), human-in-the-loop assessments (44.1\%), and LLM-based evaluations (13.6\%). However, limitations and key barriers persist in data modalities, domain utility, resource and model accessibility, and standardized evaluation protocols. Future efforts may focus on developing standardized, transparent evaluation frameworks and expanding accessibility to support effective applications in biomedical research.
♻ ☆ Long Grounded Thoughts: Synthesizing Visual Problems and Reasoning Chains at Scale
Despite rapid progress, multimodal reasoning still lacks a systematic approach to synthesize large-scale vision-centric datasets beyond visual math. We introduce a framework able to synthesize vision-centric problems spanning diverse levels of complexity, and the resulting dataset with over 1M high-quality problems including: reasoning traces, preference data, and instruction prompts supporting SFT, offline and online RL. Our vision-centric synthesis framework uses a two-stage process focusing on: (1) generating diverse verifiable questions from existing images at scale, and (2) creating complex compositional visual problems by merging simpler questions. Remarkably, finetuning Qwen2.5-VL-7B on our data outperforms existing open-data baselines across evaluated vision-centric benchmarks, and our best configurations match or surpass strong closed-data models such as MiMo-VL-7B-RL on Vstar Bench, CV-Bench and MMStar-V. Notably, despite being entirely vision-centric, our data transfers positively to text-only reasoning (MMLU-Pro, +3.7%) and audio reasoning (MMAU, +1.32%), demonstrating its effectiveness. Similarly, despite containing no embodied visual data, we observe notable gains (NiEH, +8.8%) when evaluating open-ended embodied QA. Lastly, we use our data to comprehensively analyze at scale (1M+) the entire VLM post-training pipeline showing that (i) SFT on high-quality data with cognitive behaviors on reasoning traces is essential to scale online RL, (ii) offline RL could match online RL's performance while disaggregating compute demands, and, (iii) SFT on high quality data also improve out-of-domain, cross-modality transfer.
♻ ☆ mini-vec2vec: Scaling Universal Geometry Alignment with Linear Transformations
We build upon vec2vec, a procedure designed to align text embedding spaces without parallel data. vec2vec finds a near-perfect alignment, but it is expensive and unstable. We present mini-vec2vec, a simple and efficient alternative that requires substantially lower computational cost and is highly robust. Moreover, the learned mapping is a linear transformation. Our method consists of three main stages: a tentative matching of pseudo-parallel embedding vectors, transformation fitting, and iterative refinement. Our linear alternative exceeds the original instantiation of vec2vec by orders of magnitude in efficiency, while matching or exceeding their results. The method's stability and interpretable algorithmic steps facilitate scaling and unlock new opportunities for adoption in new domains and fields.
♻ ☆ The Mighty ToRR: A Benchmark for Table Reasoning and Robustness
Despite its real-world significance, model performance on tabular data remains underexplored, leaving uncertainty about which model to rely on and which prompt configuration to adopt. To address this gap, we create ToRR, a benchmark for Table Reasoning and Robustness, measuring model performance and robustness on table-related tasks. The benchmark includes 10 datasets that cover different types of table reasoning capabilities across varied domains. ToRR goes beyond model performance rankings, and is designed to reflect whether models can handle tabular data consistently and robustly, across a variety of common table representation formats. We present a leaderboard as well as comprehensive analyses of the results of leading models over ToRR. Our results reveal a striking pattern of brittle model behavior, where even strong models are unable to perform robustly on tabular data tasks. Although no specific table format leads to consistently better performance, we show that testing over multiple formats is crucial for reliably estimating model capabilities. Moreover, we show that the reliability boost from testing multiple prompts can be equivalent to adding more test examples. Overall, our findings show that table understanding and reasoning tasks remain a significant challenge.
♻ ☆ PII-Bench: Evaluating Query-Aware Privacy Protection Systems
The widespread adoption of Large Language Models (LLMs) has raised significant privacy concerns regarding the exposure of personally identifiable information (PII) in user prompts. To address this challenge, we propose a query-unrelated PII masking strategy and introduce PII-Bench, the first comprehensive evaluation framework for assessing privacy protection systems. PII-Bench comprises 2,842 test samples across 55 fine-grained PII categories, featuring diverse scenarios from single-subject descriptions to complex multi-party interactions. Each sample is carefully crafted with a user query, context description, and standard answer indicating query-relevant PII. Our empirical evaluation reveals that while current models perform adequately in basic PII detection, they show significant limitations in determining PII query relevance. Even state-of-the-art LLMs struggle with this task, particularly in handling complex multi-subject scenarios, indicating substantial room for improvement in achieving intelligent PII masking.
♻ ☆ ErrorMap and ErrorAtlas: Charting the Failure Landscape of Large Language Models
Large Language Models (LLM) benchmarks tell us when models fail, but not why they fail. A wrong answer on a reasoning dataset may stem from formatting issues, calculation errors, or dataset noise rather than weak reasoning. Without disentangling such causes, benchmarks remain incomplete and cannot reliably guide model improvement. We introduce ErrorMap, the first method to chart the sources of LLM failure. It extracts a model's unique "failure signature", clarifies what benchmarks measure, and broadens error identification to reduce blind spots. This helps developers debug models, aligns benchmark goals with outcomes, and supports informed model selection. ErrorMap works on any model or dataset with the same logic. Applying our method to 35 datasets and 83 models we generate ErrorAtlas, a taxonomy of model errors, revealing recurring failure patterns. ErrorAtlas highlights error types that are currently underexplored in LLM research, such as omissions of required details in the output and question misinterpretation. By shifting focus from where models succeed to why they fail, ErrorMap and ErrorAtlas enable advanced evaluation - one that exposes hidden weaknesses and directs progress. Unlike success, typically measured by task-level metrics, our approach introduces a deeper evaluation layer that can be applied globally across models and tasks, offering richer insights into model behavior and limitations. We make the taxonomy and code publicly available with plans to periodically update ErrorAtlas as new benchmarks and models emerge.
♻ ☆ Embedding Retrofitting: Data Engineering for better RAG
Embedding retrofitting adjusts pre-trained word vectors using knowledge graph constraints to improve domain-specific retrieval. However, the effectiveness of retrofitting depends critically on knowledge graph quality, which in turn depends on text preprocessing. This paper presents a data engineering framework that addresses data quality degradation from annotation artifacts in real-world corpora. The analysis shows that hashtag annotations inflate knowledge graph density, leading to creating spurious edges that corrupt the retrofitting objective. On noisy graphs, all retrofitting techniques produce statistically significant degradation ($-3.5\%$ to $-5.2\%$, $p<0.05$). After preprocessing, \acrshort{ewma} retrofitting achieves $+6.2\%$ improvement ($p=0.0348$) with benefits concentrated in quantitative synthesis questions ($+33.8\%$ average). The gap between clean and noisy preprocessing (10\%+ swing) exceeds the gap between algorithms (3\%), establishing preprocessing quality as the primary determinant of retrofitting success.
comment: This paper was built on an assumption which has been proven incorrect
♻ ☆ ARGUS: Adaptive Rotation-Invariant Geometric Unsupervised System
Detecting distributional drift in high-dimensional data streams presents fundamental challenges: global comparison methods scale poorly, projection-based approaches lose geometric structure, and re-clustering methods suffer from identity instability. This paper introduces Argus, A framework that reconceptualizes drift detection as tracking local statistics over a fixed spatial partition of the data manifold. The key contributions are fourfold. First, it is proved that Voronoi tessellations over canonical orthonormal frames yield drift metrics that are invariant to orthogonal transformations. The rotations and reflections that preserve Euclidean geometry. Second, it is established that this framework achieves O(N) complexity per snapshot while providing cell-level spatial localization of distributional change. Third, a graph-theoretic characterization of drift propagation is developed that distinguishes coherent distributional shifts from isolated perturbations. Fourth, product quantization tessellation is introduced for scaling to very high dimensions (d>500) by decomposing the space into independent subspaces and aggregating drift signals across subspaces. This paper formalizes the theoretical foundations, proves invariance properties, and presents experimental validation demonstrating that the framework correctly identifies drift under coordinate rotation while existing methods produce false positives. The tessellated approach offers a principled geometric foundation for distribution monitoring that preserves high-dimensional structure without the computational burden of pairwise comparisons.
comment: This concept was built with an incorrect assumption and isn't viable
♻ ☆ LLMs Know More About Numbers than They Can Say EACL 2026
Although state-of-the-art LLMs can solve math problems, we find that they make errors on numerical comparisons with mixed notation: "Which is larger, $5.7 \times 10^2$ or $580$?" This raises a fundamental question: Do LLMs even know how big these numbers are? We probe the hidden states of several smaller open-source LLMs. A single linear projection of an appropriate hidden layer encodes the log-magnitudes of both kinds of numerals, allowing us to recover the numbers with relative error of about 2.3% (on restricted synthetic text) or 19.06% (on scientific papers). Furthermore, the hidden state after reading a pair of numerals encodes their ranking, with a linear classifier achieving over 90% accuracy. Yet surprisingly, when explicitly asked to rank the same pairs of numerals, these LLMs achieve only 50-70% accuracy, with worse performance for models whose probes are less effective. Finally, we show that incorporating the classifier probe's log-loss as an auxiliary objective during finetuning brings an additional 3.22% improvement in verbalized accuracy over base models, demonstrating that improving models' internal magnitude representations can enhance their numerical reasoning capabilities. Our code is available at https://github.com/VCY019/Numeracy-Probing.
comment: EACL 2026 (Oral), camera-ready version with GitHub link
♻ ☆ Intermittent Semi-Working Mask: A New Masking Paradigm for LLMs
Multi-turn dialogues and context-intensive tasks challenge Large Language Models (LLMs) to integrate long histories without sacrificing generation quality. Although prefix LLMs can better exploit historical context via bidirectional attention on prefix tokens, they are rarely used in practice because multi-turn training requires many duplicated triplets, and its bidirectional prefix prevents KV-cache reuse at inference time, driving up high cost and latency. To retain the contextual understanding of prefix mask while preserving the inference-time efficiency of causal mask, we introduce Intermittent Semi-working Mask (ISM), a masking scheme that injects sparse bidirectional attention into the causal backbone. ISM alternates bidirectional attention over query segments with unidirectional attention over answer segments, enabling the synthesis of in-context while preserving global causality. This design eliminates triplet expansion during training and maintains KV-cache reuse during inference, yielding latency comparable to standard causal LLMs. ISM is architecture-agnostic and parameter-free, adding only minimal latency. Across extensive evaluations, ISM outperforms causal baselines not only on multi-turn dialogue, but also on context-intensive tasks like mathematical reasoning.
♻ ☆ Your AI Bosses Are Still Prejudiced: The Emergence of Stereotypes in LLM-Based Multi-Agent Systems
While stereotypes are well-documented in human social interactions, AI systems are often presumed to be less susceptible to such biases. Previous studies have focused on biases inherited from training data, but whether stereotypes can emerge spontaneously in AI agent interactions merits further exploration. Through a novel experimental framework simulating workplace interactions with neutral initial conditions, we investigate the emergence and evolution of stereotypes in LLM-based multi-agent systems. Our findings reveal that (1) LLM-Based AI agents develop stereotype-driven biases in their interactions despite beginning without predefined biases; (2) stereotype effects intensify with increased interaction rounds and decision-making power, particularly after introducing hierarchical structures; (3) these systems exhibit group effects analogous to human social behavior, including halo effects, confirmation bias, and role congruity; and (4) these stereotype patterns manifest consistently across different LLM architectures. Through comprehensive quantitative analysis, these findings suggest that stereotype formation in AI systems may arise as an emergent property of multi-agent interactions, rather than merely from training data biases. Our work underscores the need for future research to explore the underlying mechanisms of this phenomenon and develop strategies to mitigate its ethical impacts.
HLE-Verified: A Systematic Verification and Structured Revision of Humanity's Last Exam
Humanity's Last Exam (HLE) has become a widely used benchmark for evaluating frontier large language models on challenging, multi-domain questions. However, community-led analyses have raised concerns that HLE contains a non-trivial number of noisy items, which can bias evaluation results and distort cross-model comparisons. To address this challenge, we introduce HLE-Verified, a verified and revised version of HLE with a transparent verification protocol and fine-grained error taxonomy. Our construction follows a two-stage validation-and-repair workflow resulting in a certified benchmark. In Stage I, each item undergoes binary validation of the problem and final answer through domain-expert review and model-based cross-checks, yielding 641 verified items. In Stage II, flawed but fixable items are revised under strict constraints preserving the original evaluation intent, through dual independent expert repairs, model-assisted auditing, and final adjudication, resulting in 1,170 revised-and-certified items. The remaining 689 items are released as a documented uncertain set with explicit uncertainty sources and expertise tags for future refinement. We evaluate seven state-of-the-art language models on HLE and HLE-Verified, observing an average absolute accuracy gain of 7--10 percentage points on HLE-Verified. The improvement is particularly pronounced on items where the original problem statement and/or reference answer is erroneous, with gains of 30--40 percentage points. Our analyses further reveal a strong association between model confidence and the presence of errors in the problem statement or reference answer, supporting the effectiveness of our revisions. Overall, HLE-Verified improves HLE-style evaluations by reducing annotation noise and enabling more faithful measurement of model capabilities. Data is available at: https://github.com/SKYLENAGE-AI/HLE-Verified
comment: 14 pages, 10 figures
♻ ☆ Out of the Memory Barrier: A Highly Memory Efficient Training System for LLMs with Million-Token Contexts
Training Large Language Models (LLMs) on long contexts is severely constrained by prohibitive GPU memory overhead, not training time. The primary culprits are the activations, whose memory footprints scale linearly with sequence length. We introduce OOMB, a highly memory-efficient training system that directly confronts this barrier. Our approach employs a chunk-recurrent training framework with on-the-fly activation recomputation, which maintains a constant activation memory footprint (O(1)) and shifts the primary bottleneck to the growing KV cache. To manage the KV cache, OOMB integrates a suite of synergistic optimizations: a paged memory manager for both the KV cache and its gradients to eliminate fragmentation, asynchronous CPU offloading to hide data transfer latency, and page-level sparse attention to reduce both computational complexity and communication overhead. The synergy of these techniques yields exceptional efficiency. Our empirical results show that for every additional 10K tokens of context, the end-to-end training memory overhead increases by a mere 10MB for Qwen2.5-7B. This allows training Qwen2.5-7B with a 4M-token context on a single H200 GPU, a feat that would otherwise require a large cluster using context parallelism. This work represents a substantial advance in resource efficiency for long-context LLM training. The source code is available at https://github.com/wenhaoli-xmu/OOMB.
♻ ☆ What if Deception Cannot be Detected? A Cross-Linguistic Study on the Limits of Deception Detection from Text
Can deception be detected solely from written text? Cues of deceptive communication are inherently subtle, even more so in text-only communication. Yet, prior studies have reported considerable success in automatic deception detection. We hypothesize that such findings are largely driven by artifacts introduced during data collection and do not generalize beyond specific datasets. We revisit this assumption by introducing a belief-based deception framework, which defines deception as a misalignment between an author's claims and true beliefs, irrespective of factual accuracy, allowing deception cues to be studied in isolation. Based on this framework, we construct three corpora, collectively referred to as DeFaBel, including a German-language corpus of deceptive and non-deceptive arguments and a multilingual version in German and English, each collected under varying conditions to account for belief change and enable cross-linguistic analysis. Using these corpora, we evaluate commonly reported linguistic cues of deception. Across all three DeFaBel variants, these cues show negligible, statistically insignificant correlations with deception labels, contrary to prior work that treats such cues as reliable indicators. We further benchmark against other English deception datasets following similar data collection protocols. While some show statistically significant correlations, effect sizes remain low and, critically, the set of predictive cues is inconsistent across datasets. We also evaluate deception detection using feature-based models, pretrained language models, and instruction-tuned large language models. While some models perform well on established deception datasets, they consistently perform near chance on DeFaBel. Our findings challenge the assumption that deception can be reliably inferred from linguistic cues and call for rethinking how deception is studied and modeled in NLP.
♻ ☆ Curriculum Learning and Pseudo-Labeling Improve the Generalization of Multi-Label Arabic Dialect Identification Models EACL 2026
Being modeled as a single-label classification task for a long time, recent work has argued that Arabic Dialect Identification (ADI) should be framed as a multi-label classification task. However, ADI remains constrained by the availability of single-label datasets, with no large-scale multi-label resources available for training. By analyzing models trained on single-label ADI data, we show that the main difficulty in repurposing such datasets for Multi-Label Arabic Dialect Identification (MLADI) lies in the selection of negative samples, as many sentences treated as negative could be acceptable in multiple dialects. To address these issues, we construct a multi-label dataset by generating automatic multi-label annotations using GPT-4o and binary dialect acceptability classifiers, with aggregation guided by the Arabic Level of Dialectness (ALDi). Afterward, we train a BERT-based multi-label classifier using curriculum learning strategies aligned with dialectal complexity and label cardinality. On the MLADI leaderboard, our best-performing LAHJATBERT model achieves a macro F1 of 0.69, compared to 0.55 for the strongest previously reported system. Code and data are available at https://mohamedalaa9.github.io/lahjatbert/.
comment: Accepted at the 13th Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial), co-located with EACL 2026
♻ ☆ Who is the richest club in the championship? Detecting and Rewriting Underspecified Questions Improve QA Performance
Large language models (LLMs) perform well on well-posed questions, yet standard question-answering (QA) benchmarks remain far from solved. We argue that this gap is partly due to underspecified questions - queries whose interpretation cannot be uniquely determined without additional context. To test this hypothesis, we introduce an LLM-based classifier to identify underspecified questions and apply it to several widely used QA datasets, finding that 16% to over 50% of benchmark questions are underspecified and that LLMs perform significantly worse on them. To isolate the effect of underspecification, we conduct a controlled rewriting experiment that serves as an upper-bound analysis, rewriting underspecified questions into fully specified variants while holding gold answers fixed. QA performance consistently improves under this setting, indicating that many apparent QA failures stem from question underspecification rather than model limitations. Our findings highlight underspecification as an important confound in QA evaluation and motivate greater attention to question clarity in benchmark design.
comment: 4 pages of main text, 13 pages in total, 5 tables and 10 figures in total
♻ ☆ NPG-Muse: Scaling Long Chain-of-Thought Reasoning with NP-Hard Graph Problems
Reasoning Large Language Models (RLLMs) have recently achieved remarkable progress on complex reasoning tasks, largely enabled by their long chain-of-thought (Long CoT) capabilities. However, developing these Long CoT behaviors relies heavily on post-training with high-quality datasets, which are typically costly and human-curated (e.g., mathematics and code), leaving scalable alternatives unexplored. In this work, we introduce NP-hard (NPH) graph problems as a novel synthetic training corpus, as they inherently require deep reasoning, extensive exploration, and reflective strategies, which are the core characteristics of Long CoT reasoning. Building on this insight, we develop a two-stage post-training framework: (i) Long-CoT Supervised Fine-Tuning (SFT) on rejection-sampled NPH graph instances, which substantially enhances reasoning depth, and (ii) Reinforcement Learning (RL) with a fine-grained reward design, which sharpens reasoning efficiency. The resulting NPG-Muse-series models exhibit substantially enhanced Long CoT reasoning capabilities, achieving consistent gains across mathematics, coding, logical, and graph reasoning benchmarks. NPG-Muse-7B even surpasses QwQ-32B on NPH graph problems in both accuracy and reasoning efficiency. These results position NPH graph problems as an effective and scalable resource for advancing Long CoT reasoning in LLM post-training. Our implementation is available at https://github.com/littlewyy/NPG-Muse.
♻ ☆ Topological quantification of ambiguity in semantic search
We studied how the local topological structure of sentence-embedding neighborhoods encodes semantic ambiguity. Extending ideas that link word-level polysemy to non-trivial persistent homology, we generalized the concept to full sentences and quantified ambiguity of a query in a semantic search process with two persistent homology metrics: the 1-Wasserstein norm of $H_{0}$ and the maximum loop lifetime of $H_{1}$. We formalized the notion of ambiguity as the relative presence of semantic domains or topics in sentences. We then used this formalism to compute "ab-initio" simulations that encode datapoints as linear combination of randomly generated single topics vectors in an arbitrary embedding space and demonstrate that ambiguous sentences separate from unambiguous ones in both metrics. Finally we validated those findings with real-world case by investigating on a fully open corpus comprising Nobel Prize Physics lectures from 1901 to 2024, segmented into contiguous, non-overlapping chunks at two granularity: $\sim\!250$ tokens and $\sim\!750$ tokens. We tested embedding with four publicly available models. Results across all models reproduce simulations and remain stable despite changes in embedding architecture. We conclude that persistent homology provides a model-agnostic signal of semantic discontinuities, suggesting practical use for ambiguity detection and semantic search recall.
♻ ☆ Annotation-Efficient Vision-Language Model Adaptation to the Polish Language Using the LLaVA Framework
Most vision-language models (VLMs) are trained on English-centric data, limiting their performance in other languages and cultural contexts. This restricts their usability for non-English-speaking users and hinders the development of multimodal systems that reflect diverse linguistic and cultural realities. In this work, we reproduce and adapt the LLaVA-Next methodology to create a set of Polish VLMs. We rely on a fully automated pipeline for translating and filtering existing multimodal datasets, and complement this with synthetic Polish data for OCR and culturally specific tasks. Despite relying almost entirely on automatic translation and minimal manual intervention to the training data, our approach yields strong results: we observe a +9.5% improvement over LLaVA-1.6-Vicuna-13B on a Polish-adapted MMBench, along with higher-quality captions in generative evaluations, as measured by human annotators in terms of linguistic correctness. These findings highlight that large-scale automated translation, combined with lightweight filtering, can effectively bootstrap high-quality multimodal models for low-resource languages. Some challenges remain, particularly in cultural coverage and evaluation. To facilitate further research, we make our models and evaluation dataset publicly available.
♻ ☆ Differentiating Between Human-Written and AI-Generated Texts Using Automatically Extracted Linguistic Features
While extensive research has focused on ChatGPT in recent years, very few studies have systematically quantified and compared linguistic features between human-written and artificial intelligence (AI)-generated language. This exploratory study aims to investigate how various linguistic components are represented in both types of texts, assessing the ability of AI to emulate human writing. Using human-authored essays as a benchmark, we prompted ChatGPT to generate essays of equivalent length. These texts were analyzed using Open Brain AI, an online computational tool, to extract measures of phonological, morphological, syntactic, and lexical constituents. Despite AI-generated texts appearing to mimic human speech, the results revealed significant differences across multiple linguistic features such as specific types of consonants, nouns, adjectives, pronouns, adjectival/prepositional modifiers, and use of difficult words, among others. These findings underscore the importance of integrating automated tools for efficient language assessment, reducing time and effort in data analysis. Moreover, they emphasize the necessity for enhanced training methodologies to improve the engineering capacity of AI for producing more human-like text.
♻ ☆ General Exploratory Bonus for Optimistic Exploration in RLHF ICLR 2026
Optimistic exploration is central to improving sample efficiency in reinforcement learning with human feedback, yet existing exploratory bonus methods to incentivize exploration often fail to realize optimism. We provide a theoretical analysis showing that current formulations, under KL or $α$-divergence regularization, unintentionally bias exploration toward high-probability regions of the reference model, thereby reinforcing conservative behavior instead of promoting discovery of uncertain regions. To address this pitfall, we introduce the General Exploratory Bonus (GEB), a novel theoretical framework that provably satisfies the optimism principle. GEB counteracts divergence-induced bias via reference-dependent reward regulation and unifies prior heuristic bonuses as special cases, while extending naturally across the full $α$-divergence family. Empirically, GEB consistently outperforms baselines on alignment tasks across multiple divergence settings and large language model backbones. These results demonstrate that GEB offers both a principled and practical solution for optimistic exploration in RLHF.
comment: ICLR 2026
♻ ☆ Moving Beyond Medical Exams: A Clinician-Annotated Fairness Dataset of Real-World Tasks and Ambiguity in Mental Healthcare ICLR 2026
Current medical language model (LM) benchmarks often over-simplify the complexities of day-to-day clinical practice tasks and instead rely on evaluating LMs on multiple-choice board exam questions. In psychiatry especially, these challenges are worsened by fairness and bias issues, since models can be swayed by patient demographics even when those factors should not influence clinical decisions. Thus, we present an expert-created and annotated dataset spanning five critical domains of decision-making in mental healthcare: treatment, diagnosis, documentation, monitoring, and triage. This U.S.-centric dataset - created without any LM assistance - is designed to capture the nuanced clinical reasoning and daily ambiguities mental health practitioners encounter, reflecting the inherent complexities of care delivery that are missing from existing datasets. Almost all base questions with five answer options each have had the decision-irrelevant demographic patient information removed and replaced with variables, e.g., for age or ethnicity, and are available for male, female, or non-binary-coded patients. This design enables systematic evaluations of model performance and bias by studying how demographic factors affect decision-making. For question categories dealing with ambiguity and multiple valid answer options, we create a preference dataset with uncertainties from the expert annotations. We outline a series of intended use cases and demonstrate the usability of our dataset by evaluating sixteen off-the-shelf and six (mental) health fine-tuned LMs on category-specific task accuracy, on the fairness impact of patient demographic information on decision-making, and how consistently free-form responses deviate from human-annotated samples.
comment: Camera-ready version for ICLR 2026
♻ ☆ Stop saying LLM: Large Discourse Models (LDM) and Artificial Discursive Agent (ADA)?
This paper proposes an epistemological shift in the analysis of large generative models, replacing the category ''Large Language Models'' (LLM) with that of ''Large Discourse Models'' (LDM), and then with that of Artificial Discursive Agent (ADA). The theoretical framework is based on an ontological triad distinguishing three regulatory instances: the apprehension of the phenomenal regularities of the referential world, the structuring of embodied cognition, and the structural-linguistic sedimentation of the utterance within a socio-historical context. LDMs, operating on the product of these three instances (the document), model the discursive projection of a portion of human experience reified by the learning corpus. The proposed program aims to replace the ''fascination/fear'' dichotomy with public trials and procedures that make the place, uses, and limits of artificial discursive agents in contemporary social space decipherable, situating this approach within a perspective of governance and co-regulation involving the State, industry, civil society, and academia.
comment: in French language
♻ ☆ Multimodal Peer Review Simulation with Actionable To-Do Recommendations for Community-Aware Manuscript Revisions
While large language models (LLMs) offer promising capabilities for automating academic workflows, existing systems for academic peer review remain constrained by text-only inputs, limited contextual grounding, and a lack of actionable feedback. In this work, we present an interactive web-based system for multimodal, community-aware peer review simulation to enable effective manuscript revisions before paper submission. Our framework integrates textual and visual information through multimodal LLMs, enhances review quality via retrieval-augmented generation (RAG) grounded in web-scale OpenReview data, and converts generated reviews into actionable to-do lists using the proposed Action:Objective[\#] format, providing structured and traceable guidance. The system integrates seamlessly into existing academic writing platforms, providing interactive interfaces for real-time feedback and revision tracking. Experimental results highlight the effectiveness of the proposed system in generating more comprehensive and useful reviews aligned with expert standards, surpassing ablated baselines and advancing transparent, human-centered scholarly assistance.
comment: Accepted by TheWebConf 2026 Demo Track
♻ ☆ Stratified Hazard Sampling: Minimal-Variance Event Scheduling for CTMC/DTMC Discrete Diffusion and Flow Models
Uniform-noise discrete diffusion and flow models (e.g., D3PM, SEDD, UDLM, DFM) generate sequences non-autoregressively by iteratively refining randomly initialized vocabulary tokens through multiple context-dependent replacements. These models are typically formulated as time-inhomogeneous CTMC/DTMC processes and sampled using independent Bernoulli change decisions at each discretization step. This induces Poisson-binomial variance in per-position jump counts that grows with the number of required edits, leading to the characteristic under-editing (residual noise) and over-editing (cascading substitutions) failure modes that degrade sample quality, especially under tight discretization budgets. In contrast, absorbing-state (mask-start) models avoid this instability by allowing each position to jump at most once. We propose Stratified Hazard Sampling (SHS), a training-free, drop-in, and hyperparameter-free inference principle for any sampler that admits a stay-vs.-replace decomposition. SHS models per-token edits as events driven by cumulative hazard (CTMC) or cumulative jump mass (DTMC) and places events by stratifying this cumulative quantity: with a single random phase per position, a token is updated whenever its accumulated hazard crosses unit-spaced thresholds. This preserves the expected number of jumps while achieving the minimum possible conditional variance among unbiased integer estimators (bounded by 1/4 for any fixed cumulative mass), without altering per-jump destination sampling and thus retaining multimodality. Experiments on uniform-noise discrete diffusion language models show that SHS consistently improves sample quality. We further show that SHS improves robustness under token-level blacklist filtering, with benefits increasing as lexical constraints grow more severe.
comment: Work in progress. Feedback welcome
♻ ☆ Multi-Agent Comedy Club: Investigating Community Discussion Effects on LLM Humor Generation
Prior work has explored multi-turn interaction and feedback for LLM writing, but evaluations still largely center on prompts and localized feedback, leaving persistent public reception in online communities underexamined. We test whether broadcast community discussion improves stand-up comedy writing in a controlled multi-agent sandbox: in the discussion condition, critic and audience threads are recorded, filtered, stored as social memory, and later retrieved to condition subsequent generations, whereas the baseline omits discussion. Across 50 rounds (250 paired monologues) judged by five expert annotators using A/B preference and a 15-item rubric, discussion wins 75.6% of instances and improves Craft/Clarity (Δ = 0.440) and Social Response (Δ = 0.422), with occasional increases in aggressive humor.
comment: 18 pages, 5 figures
♻ ☆ CLARITY: Contextual Linguistic Adaptation and Accent Retrieval for Dual-Bias Mitigation in Text-to-Speech Generation
Instruction-guided text-to-speech (TTS) research has reached a maturity level where excellent speech generation quality is possible on demand, yet two coupled biases persist in reducing perceived quality: accent bias, where models default towards dominant phonetic patterns, and linguistic bias, a misalignment in dialect-specific lexical or cultural information. These biases are interdependent and authentic accent generation requires both accent fidelity and correctly localized text. We present CLARITY (Contextual Linguistic Adaptation and Retrieval for Inclusive TTS sYnthesis), a backbone-agnostic framework to address both biases through dual-signal optimization. Firstly, we apply contextual linguistic adaptation to localize input text to align with the target dialect. Secondly, we propose retrieval-augmented accent prompting (RAAP) to ensure accent-consistent speech prompts. We evaluate CLARITY on twelve varieties of English accent via both subjective and objective analysis. Results clearly indicate that CLARITY improves accent accuracy and fairness, ensuring higher perceptual quality output\footnote{Code and audio samples are available at https://github.com/ICT-SIT/CLARITY.
comment: under review
Query as Anchor: Scenario-Adaptive User Representation via Large Language Model
Industrial-scale user representation learning requires balancing robust universality with acute task-sensitivity. However, existing paradigms primarily yield static, task-agnostic embeddings that struggle to reconcile the divergent requirements of downstream scenarios within unified vector spaces. Furthermore, heterogeneous multi-source data introduces inherent noise and modality conflicts, degrading representation. We propose Query-as-Anchor, a framework shifting user modeling from static encoding to dynamic, query-aware synthesis. To empower Large Language Models (LLMs) with deep user understanding, we first construct UserU, an industrial-scale pre-training dataset that aligns multi-modal behavioral sequences with user understanding semantics, and our Q-Anchor Embedding architecture integrates hierarchical coarse-to-fine encoders into dual-tower LLMs via joint contrastive-autoregressive optimization for query-aware user representation. To bridge the gap between general pre-training and specialized business logic, we further introduce Cluster-based Soft Prompt Tuning to enforce discriminative latent structures, effectively aligning model attention with scenario-specific modalities. For deployment, anchoring queries at sequence termini enables KV-cache-accelerated inference with negligible incremental latency. Evaluations on 10 Alipay industrial benchmarks show consistent SOTA performance, strong scalability, and efficient deployment. Large-scale online A/B testing in Alipay's production system across two real-world scenarios further validates its practical effectiveness. Our code is prepared for public release and will be available at: https://github.com/JhCircle/Q-Anchor.
comment: 15 pages, 12 figures
♻ ☆ Mechanistic Indicators of Steering Effectiveness in Large Language Models
Activation-based steering enables Large Language Models (LLMs) to exhibit targeted behaviors by intervening on intermediate activations without retraining. Despite its widespread use, the mechanistic factors that govern when steering succeeds or fails remain poorly understood, as prior work has relied primarily on black-box outputs or LLM-based judges. In this study, we investigate whether the reliability of steering can be diagnosed using internal model signals. We focus on two information-theoretic measures: the entropy-derived Normalized Branching Factor (NBF), and the Kullback-Leibler (KL) divergence between steered activations and targeted concepts in the vocabulary space. We hypothesize that effective steering corresponds to structured entropy preservation and coherent KL alignment across decoding steps. Building on a reliability study demonstrating high inter-judge agreement between two architecturally distinct LLMs, we use LLM-generated annotations as ground truth and show that these mechanistic signals provide meaningful predictive power for identifying successful steering and estimating failure probability. We further introduce a stronger evaluation baseline for Contrastive Activation Addition (CAA) and Sparse Autoencoder-based steering, the two most widely adopted activation-steering methods.
♻ ☆ Predicting Training Re-evaluation Curves Enables Effective Data Curriculums for LLMs ICLR 2026
Data curriculums have become central to successful LLM training, yet principles governing optimal data placement remain unclear. We introduce the *training re-evaluation curve (TREC)*, a diagnostic that retrospectively evaluates training batches *using the final model weights*. The TREC characterizes how well a trained model retains training data as a function of *when* the data was encountered during training. Analyzing TRECs for models from 111M to 3.9B parameters, we show that placing high-quality data at low points on the TREC significantly improves performance. Importantly, while a TREC is initially observable only after training, we demonstrate it can be *predicted in advance* from AdamW's implicit EMA coefficients, enabling proactive curriculum design. By predicting TRECs for published training recipes, we explain prior ablations and reveal suboptimal data placements. We also align high-quality data with TREC minima in order to improve continual pre-training of a 3.9B-parameter LLM trained on 900B tokens.
comment: ICLR 2026
♻ ☆ CreativityPrism: A Holistic Evaluation Framework for Large Language Model Creativity
Creativity is often seen as a hallmark of human intelligence. While large language models (LLMs) are increasingly perceived as generating creative text, there is still no holistic and scalable framework to evaluate their creativity across diverse scenarios. Existing methods of LLM creativity evaluation either heavily rely on humans, limiting speed and scalability, or are fragmented across different domains and different definitions of creativity. To address this gap, we propose CREATIVITYPRISM, an evaluation analysis framework that consolidates eight tasks from three domains, divergent thinking, creative writing, and logical reasoning, into a taxonomy of creativity that emphasizes three dimensions: quality, novelty, and diversity of LLM generations. The framework is designed to be scalable with reliable automatic evaluation judges that have been validated against human annotations. We evaluate 17 state-of-the-art (SoTA) proprietary and open-sourced LLMs on CREATIVITYPRISM and find that while proprietary LLMs dominate creative writing and logical reasoning tasks by a 15% lead over open-sourced ones, they offer no significant advantage in divergent thinking, a domain much less explored in existing post-training regimes. Our analysis also shows that high performance in one creative dimension or domain rarely generalizes to others; specifically, novelty metrics often show weak or negative correlations with other metrics. This fragmentation confirms that a holistic, multi-dimensional framework like CREATIVITYPRISM is essential for meaningful assessment of LLM creativity.
♻ ☆ From Pixels to Policies: Reinforcing Spatial Reasoning in Language Models for Content-Aware Layout Design
We introduce LaySPA, a reinforcement learning framework that equips large language models (LLMs) with explicit and interpretable spatial reasoning for content-aware graphic layout design. LaySPA addresses two key challenges: LLMs' limited spatial reasoning and the lack of opacity in design decision making. Instead of operating at the pixel level, we reformulate layout design as a policy learning problem over a structured textual spatial environment that explicitly encodes canvas geometry, element attributes, and inter-element relationships. LaySPA produces dual-level outputs comprising interpretable reasoning traces and structured layout specifications, enabling transparent and controllable design decision making. Layout design policy is optimized via a multi-objective spatial critique that decomposes layout quality into geometric validity, relational coherence, and aesthetic consistency, and is trained using relative group optimization to stabilize learning in open-ended design spaces. Experiments demonstrate that LaySPA improves structural validity and visual quality, outperforming larger proprietary LLMs and achieving performance comparable to specialized SOTA layout generators while requiring fewer annotated samples and reduced latency.
♻ ☆ A Geometric Analysis of Small-sized Language Model Hallucinations
Hallucinations -- fluent but factually incorrect responses -- pose a major challenge to the reliability of language models, especially in multi-step or agentic settings. This work investigates hallucinations in small-sized LLMs through a geometric perspective, starting from the hypothesis that when models generate multiple responses to the same prompt, genuine ones exhibit tighter clustering in the embedding space, we prove this hypothesis and, leveraging this geometrical insight, we also show that it is possible to achieve a consistent level of separability. This latter result is used to introduce a label-efficient propagation method that classifies large collections of responses from just 30-50 annotations, achieving F1 scores above 90%. Our findings, framing hallucinations from a geometric perspective in the embedding space, complement traditional knowledge-centric and single-response evaluation paradigms, paving the way for further research.
♻ ☆ Protean Compiler: An Agile Framework to Drive Fine-grain Phase Ordering
The phase ordering problem has been a long-standing challenge since the late 1970s, yet it remains an open problem due to having a vast optimization space and an unbounded nature, making it an open-ended problem without a finite solution, one can limit the scope by reducing the number and the length of optimizations. Traditionally, such locally optimized decisions are made by hand-coded algorithms tuned for a small number of benchmarks, often requiring significant effort to be retuned when the benchmark suite changes. In the past 20 years, Machine Learning has been employed to construct performance models to improve the selection and ordering of compiler optimizations, however, the approaches are not baked into the compiler seamlessly and never materialized to be leveraged at a fine-grained scope of code segments. This paper presents Protean Compiler: An agile framework to enable LLVM with built-in phase-ordering capabilities at a fine-grained scope. The framework also comprises a complete library of more than 140 handcrafted static feature collection methods at varying scopes, and the experimental results showcase speedup gains of up to 4.1% on average and up to 15.7% on select Cbench applications wrt LLVM's O3 by just incurring a few extra seconds of build time on Cbench. Additionally, Protean compiler allows for an easy integration with third-party ML frameworks and other Large Language Models, and this two-step optimization shows a gain of 10.1% and 8.5% speedup wrt O3 on Cbench's Susan and Jpeg applications. Protean compiler is seamlessly integrated into LLVM and can be used as a new, enhanced, full-fledged compiler. We plan to release the project to the open-source community in the near future.
comment: Version 2: Submitted for a possible publication in 2026
♻ ☆ Pretraining Language Models for Diachronic Linguistic Change Discovery EACL 2026
Large language models (LLMs) have shown potential as tools for scientific discovery. This has engendered growing interest in their use in humanistic disciplines, such as historical linguistics and literary studies. These fields often construct arguments on the basis of delineations like genre, or more inflexibly, time period. Although efforts have been made to restrict inference to specific domains via fine-tuning or model editing, we posit that the only true guarantee is domain-restricted pretraining -- typically, a data- and compute-expensive proposition. We show that efficient pretraining techniques can produce useful models over corpora too large for easy manual inspection but too small for "typical" LLM approaches. We employ a novel date-attribution pipeline in order to obtain a temporally-segmented dataset of five 10-million-word slices. We train two corresponding five-model batteries over these corpus segments, efficient pretraining and Llama3-8B parameter efficiently finetuned. We find that the pretrained models are faster to train than the finetuned baselines and that they better respect the historical divisions of our corpus. Emphasizing speed and precision over a-historical comprehensiveness enables a number of novel approaches to hypothesis discovery and testing in our target fields. Taking up diachronic linguistics as a testbed, we show that our method enables the detection of a diverse set of phenomena, including en masse lexical change, non-lexical (grammatical and morphological) change, and word sense introduction/obsolescence. We provide a ready-to-use pipeline that allows extension of our approach to other target fields with only minimal adaptation.
comment: Accepted to Findings of the EACL 2026
♻ ☆ Multilingual Routing in Mixture-of-Experts ICLR 2026
Mixture-of-Experts (MoE) architectures have become the key to scaling modern LLMs, yet little is understood about how their sparse routing dynamics respond to multilingual data. In this work, we analyze expert routing patterns using parallel multilingual datasets and present highly interpretable layer-wise phenomena. We find that MoE models route tokens in language-specific ways in the early and late decoder layers but exhibit significant cross-lingual routing alignment in middle layers, mirroring parameter-sharing trends observed in dense LLMs. In particular, we reveal a clear, strong correlation between a model's performance in a given language and how similarly its tokens are routed to English in these layers. Extending beyond correlation, we explore inference-time interventions that induce higher cross-lingual routing alignment. We introduce a method that steers the router by promoting middle-layer task experts frequently activated in English, and it successfully increases multilingual performance. These 1-2% gains are remarkably consistent across two evaluation tasks, three models, and 15+ languages, especially given that these simple interventions override routers of extensively trained, state-of-the-art LLMs. In comparison, interventions outside of the middle layers or targeting multilingual-specialized experts only yield performance degradation. Altogether, we present numerous findings that explain how MoEs process non-English text and demonstrate that generalization is limited by the model's ability to leverage language-universal experts in all languages.
comment: ICLR 2026, In The Fourteenth International Conference on Learning Representations, 2025
Computer Vision and Pattern Recognition 103
☆ Dex4D: Task-Agnostic Point Track Policy for Sim-to-Real Dexterous Manipulation
Learning generalist policies capable of accomplishing a plethora of everyday tasks remains an open challenge in dexterous manipulation. In particular, collecting large-scale manipulation data via real-world teleoperation is expensive and difficult to scale. While learning in simulation provides a feasible alternative, designing multiple task-specific environments and rewards for training is similarly challenging. We propose Dex4D, a framework that instead leverages simulation for learning task-agnostic dexterous skills that can be flexibly recomposed to perform diverse real-world manipulation tasks. Specifically, Dex4D learns a domain-agnostic 3D point track conditioned policy capable of manipulating any object to any desired pose. We train this 'Anypose-to-Anypose' policy in simulation across thousands of objects with diverse pose configurations, covering a broad space of robot-object interactions that can be composed at test time. At deployment, this policy can be zero-shot transferred to real-world tasks without finetuning, simply by prompting it with desired object-centric point tracks extracted from generated videos. During execution, Dex4D uses online point tracking for closed-loop perception and control. Extensive experiments in simulation and on real robots show that our method enables zero-shot deployment for diverse dexterous manipulation tasks and yields consistent improvements over prior baselines. Furthermore, we demonstrate strong generalization to novel objects, scene layouts, backgrounds, and trajectories, highlighting the robustness and scalability of the proposed framework.
comment: Project page: https://dex4d.github.io/
☆ VideoSketcher: Video Models Prior Enable Versatile Sequential Sketch Generation
Sketching is inherently a sequential process, in which strokes are drawn in a meaningful order to explore and refine ideas. However, most generative models treat sketches as static images, overlooking the temporal structure that underlies creative drawing. We present a data-efficient approach for sequential sketch generation that adapts pretrained text-to-video diffusion models to generate sketching processes. Our key insight is that large language models and video diffusion models offer complementary strengths for this task: LLMs provide semantic planning and stroke ordering, while video diffusion models serve as strong renderers that produce high-quality, temporally coherent visuals. We leverage this by representing sketches as short videos in which strokes are progressively drawn on a blank canvas, guided by text-specified ordering instructions. We introduce a two-stage fine-tuning strategy that decouples the learning of stroke ordering from the learning of sketch appearance. Stroke ordering is learned using synthetic shape compositions with controlled temporal structure, while visual appearance is distilled from as few as seven manually authored sketching processes that capture both global drawing order and the continuous formation of individual strokes. Despite the extremely limited amount of human-drawn sketch data, our method generates high-quality sequential sketches that closely follow text-specified orderings while exhibiting rich visual detail. We further demonstrate the flexibility of our approach through extensions such as brush style conditioning and autoregressive sketch generation, enabling additional controllability and interactive, collaborative drawing.
☆ Task-Agnostic Continual Learning for Chest Radiograph Classification
Clinical deployment of chest radiograph classifiers requires models that can be updated as new datasets become available without retraining on previously ob- served data or degrading validated performance. We study, for the first time, a task-incremental continual learning setting for chest radiograph classification, in which heterogeneous chest X-ray datasets arrive sequentially and task identifiers are unavailable at inference. We propose a continual adapter-based routing learning strategy for Chest X-rays (CARL-XRay) that maintains a fixed high-capacity backbone and incrementally allocates lightweight task-specific adapters and classifier heads. A latent task selector operates on task-adapted features and leverages both current and historical context preserved through compact prototypes and feature-level experience replay. This design supports stable task identification and adaptation across sequential updates while avoiding raw-image storage. Experiments on large-scale public chest radiograph datasets demonstrate robust performance retention and reliable task-aware inference under continual dataset ingestion. CARL-XRay outperforms joint training under task-unknown deployment, achieving higher routing accuracy (75.0\% vs.\ 62.5\%), while maintaining competitive diagnostic performance with AUROC of 0.74 in the oracle setting with ground-truth task identity and 0.75 under task-unknown inference, using significantly fewer trainable parameters. Finally, the proposed framework provides a practical alternative to joint training and repeated full retraining in continual clinical deployment.
comment: 12 pages, 3 figures
☆ Context-aware Skin Cancer Epithelial Cell Classification with Scalable Graph Transformers
Whole-slide images (WSIs) from cancer patients contain rich information that can be used for medical diagnosis or to follow treatment progress. To automate their analysis, numerous deep learning methods based on convolutional neural networks and Vision Transformers have been developed and have achieved strong performance in segmentation and classification tasks. However, due to the large size and complex cellular organization of WSIs, these models rely on patch-based representations, losing vital tissue-level context. We propose using scalable Graph Transformers on a full-WSI cell graph for classification. We evaluate this methodology on a challenging task: the classification of healthy versus tumor epithelial cells in cutaneous squamous cell carcinoma (cSCC), where both cell types exhibit very similar morphologies and are therefore difficult to differentiate for image-based approaches. We first compared image-based and graph-based methods on a single WSI. Graph Transformer models SGFormer and DIFFormer achieved balanced accuracies of $85.2 \pm 1.5$ ($\pm$ standard error) and $85.1 \pm 2.5$ in 3-fold cross-validation, respectively, whereas the best image-based method reached $81.2 \pm 3.0$. By evaluating several node feature configurations, we found that the most informative representation combined morphological and texture features as well as the cell classes of non-epithelial cells, highlighting the importance of the surrounding cellular context. We then extended our work to train on several WSIs from several patients. To address the computational constraints of image-based models, we extracted four $2560 \times 2560$ pixel patches from each image and converted them into graphs. In this setting, DIFFormer achieved a balanced accuracy of $83.6 \pm 1.9$ (3-fold cross-validation), while the state-of-the-art image-based model CellViT256 reached $78.1 \pm 0.5$.
comment: 17 pages, 2 figures
☆ Meteorological data and Sky Images meets Neural Models for Photovoltaic Power Forecasting
Due to the rise in the use of renewable energies as an alternative to traditional ones, and especially solar energy, there is increasing interest in studying how to address photovoltaic forecasting in the face of the challenge of variability in photovoltaic energy production, using different methodologies. This work develops a hybrid approach for short and long-term forecasting based on two studies with the same purpose. A multimodal approach that combines images of the sky and photovoltaic energy history with meteorological data is proposed. The main goal is to improve the accuracy of ramp event prediction, increase the robustness of forecasts in cloudy conditions, and extend capabilities beyond nowcasting, to support more efficient operation of the power grid and better management of solar variability. Deep neural models are used for both nowcasting and forecasting solutions, incorporating individual and multiple meteorological variables, as well as an analytical solar position. The results demonstrate that the inclusion of meteorological data, particularly the surface long-wave, radiation downwards, and the combination of wind and solar position, significantly improves current predictions in both nowcasting and forecasting tasks, especially on cloudy days. This study highlights the importance of integrating diverse data sources to improve the reliability and interpretability of solar energy prediction models.
comment: CAI 2026
☆ NeRFscopy: Neural Radiance Fields for in-vivo Time-Varying Tissues from Endoscopy
Endoscopy is essential in medical imaging, used for diagnosis, prognosis and treatment. Developing a robust dynamic 3D reconstruction pipeline for endoscopic videos could enhance visualization, improve diagnostic accuracy, aid in treatment planning, and guide surgery procedures. However, challenges arise due to the deformable nature of the tissues, the use of monocular cameras, illumination changes, occlusions and unknown camera trajectories. Inspired by neural rendering, we introduce NeRFscopy, a self-supervised pipeline for novel view synthesis and 3D reconstruction of deformable endoscopic tissues from a monocular video. NeRFscopy includes a deformable model with a canonical radiance field and a time-dependent deformation field parameterized by SE(3) transformations. In addition, the color images are efficiently exploited by introducing sophisticated terms to learn a 3D implicit model without assuming any template or pre-trained model, solely from data. NeRFscopy achieves accurate results in terms of novel view synthesis, outperforming competing methods across various challenging endoscopy scenes.
comment: ISBI 2026
☆ Understanding vs. Generation: Navigating Optimization Dilemma in Multimodal Models ICLR2026
Current research in multimodal models faces a key challenge where enhancing generative capabilities often comes at the expense of understanding, and vice versa. We analyzed this trade-off and identify the primary cause might be the potential conflict between generation and understanding, which creates a competitive dynamic within the model. To address this, we propose the Reason-Reflect-Refine (R3) framework. This innovative algorithm re-frames the single-step generation task into a multi-step process of "generate-understand-regenerate". By explicitly leveraging the model's understanding capability during generation, we successfully mitigate the optimization dilemma, achieved stronger generation results and improved understanding ability which are related to the generation process. This offers valuable insights for designing next-generation unified multimodal models. Code is available at https://github.com/sen-ye/R3.
comment: Accepted to ICLR2026
☆ RaCo: Ranking and Covariance for Practical Learned Keypoints
This paper introduces RaCo, a lightweight neural network designed to learn robust and versatile keypoints suitable for a variety of 3D computer vision tasks. The model integrates three key components: the repeatable keypoint detector, a differentiable ranker to maximize matches with a limited number of keypoints, and a covariance estimator to quantify spatial uncertainty in metric scale. Trained on perspective image crops only, RaCo operates without the need for covisible image pairs. It achieves strong rotational robustness through extensive data augmentation, even without the use of computationally expensive equivariant network architectures. The method is evaluated on several challenging datasets, where it demonstrates state-of-the-art performance in keypoint repeatability and two-view matching, particularly under large in-plane rotations. Ultimately, RaCo provides an effective and simple strategy to independently estimate keypoint ranking and metric covariance without additional labels, detecting interpretable and repeatable interest points. The code is available at https://github.com/cvg/RaCo.
☆ Language and Geometry Grounded Sparse Voxel Representations for Holistic Scene Understanding
Existing 3D open-vocabulary scene understanding methods mostly emphasize distilling language features from 2D foundation models into 3D feature fields, but largely overlook the synergy among scene appearance, semantics, and geometry. As a result, scene understanding often deviates from the underlying geometric structure of scenes and becomes decoupled from the reconstruction process. In this work, we propose a novel approach that leverages language and geometry grounded sparse voxel representations to comprehensively model appearance, semantics, and geometry within a unified framework. Specifically, we use 3D sparse voxels as primitives and employ an appearance field, a density field, a feature field, and a confidence field to holistically represent a 3D scene. To promote synergy among the appearance, density, and feature fields, we construct a feature modulation module and distill language features from a 2D foundation model into our 3D scene model. In addition, we integrate geometric distillation into feature field distillation to transfer geometric knowledge from a geometry foundation model to our 3D scene representations via depth correlation regularization and pattern consistency regularization. These components work together to synergistically model the appearance, semantics, and geometry of the 3D scene within a unified framework. Extensive experiments demonstrate that our approach achieves superior overall performance compared with state-of-the-art methods in holistic scene understanding and reconstruction.
comment: Technical Report
☆ Spanning the Visual Analogy Space with a Weight Basis of LoRAs
Visual analogy learning enables image manipulation through demonstration rather than textual description, allowing users to specify complex transformations difficult to articulate in words. Given a triplet $\{\mathbf{a}$, $\mathbf{a}'$, $\mathbf{b}\}$, the goal is to generate $\mathbf{b}'$ such that $\mathbf{a} : \mathbf{a}' :: \mathbf{b} : \mathbf{b}'$. Recent methods adapt text-to-image models to this task using a single Low-Rank Adaptation (LoRA) module, but they face a fundamental limitation: attempting to capture the diverse space of visual transformations within a fixed adaptation module constrains generalization capabilities. Inspired by recent work showing that LoRAs in constrained domains span meaningful, interpolatable semantic spaces, we propose LoRWeB, a novel approach that specializes the model for each analogy task at inference time through dynamic composition of learned transformation primitives, informally, choosing a point in a "space of LoRAs". We introduce two key components: (1) a learnable basis of LoRA modules, to span the space of different visual transformations, and (2) a lightweight encoder that dynamically selects and weighs these basis LoRAs based on the input analogy pair. Comprehensive evaluations demonstrate our approach achieves state-of-the-art performance and significantly improves generalization to unseen visual transformations. Our findings suggest that LoRA basis decompositions are a promising direction for flexible visual manipulation. Code and data are in https://research.nvidia.com/labs/par/lorweb
comment: Code and data are in https://research.nvidia.com/labs/par/lorweb
☆ Learning to Retrieve Navigable Candidates for Efficient Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) requires an agent to follow natural-language instructions and navigate through previously unseen environments. Recent approaches increasingly employ large language models (LLMs) as high-level navigators due to their flexibility and reasoning capability. However, prompt-based LLM navigation often suffers from inefficient decision-making, as the model must repeatedly interpret instructions from scratch and reason over noisy and verbose navigable candidates at each step. In this paper, we propose a retrieval-augmented framework to improve the efficiency and stability of LLM-based VLN without modifying or fine-tuning the underlying language model. Our approach introduces retrieval at two complementary levels. At the episode level, an instruction-level embedding retriever selects semantically similar successful navigation trajectories as in-context exemplars, providing task-specific priors for instruction grounding. At the step level, an imitation-learned candidate retriever prunes irrelevant navigable directions before LLM inference, reducing action ambiguity and prompt complexity. Both retrieval modules are lightweight, modular, and trained independently of the LLM. We evaluate our method on the Room-to-Room (R2R) benchmark. Experimental results demonstrate consistent improvements in Success Rate, Oracle Success Rate, and SPL on both seen and unseen environments. Ablation studies further show that instruction-level exemplar retrieval and candidate pruning contribute complementary benefits to global guidance and step-wise decision efficiency. These results indicate that retrieval-augmented decision support is an effective and scalable strategy for enhancing LLM-based vision-and-language navigation.
☆ ToaSt: Token Channel Selection and Structured Pruning for Efficient ViT
Vision Transformers (ViTs) have achieved remarkable success across various vision tasks, yet their deployment is often hindered by prohibitive computational costs. While structured weight pruning and token compression have emerged as promising solutions, they suffer from prolonged retraining times and global propagation that creates optimization challenges, respectively. We propose ToaSt, a decoupled framework applying specialized strategies to distinct ViT components. We apply coupled head-wise structured pruning to Multi-Head Self-Attention modules, leveraging attention operation characteristics to enhance robustness. For Feed-Forward Networks (over 60\% of FLOPs), we introduce Token Channel Selection (TCS) that enhances compression ratios while avoiding global propagation issues. Our analysis reveals TCS effectively filters redundant noise during selection. Extensive evaluations across nine diverse models, including DeiT, ViT-MAE, and Swin Transformer, demonstrate that ToaSt achieves superior trade-offs between accuracy and efficiency, consistently outperforming existing baselines. On ViT-MAE-Huge, ToaSt achieves 88.52\% accuracy (+1.64 \%) with 39.4\% FLOPs reduction. ToaSt transfers effectively to downstream tasks, cccccachieving 52.2 versus 51.9 mAP on COCO object detection. Code and models will be released upon acceptance.
comment: 8 pages, 5 figures
☆ Criteria-first, semantics-later: reproducible structure discovery in image-based sciences
Across the natural and life sciences, images have become a primary measurement modality, yet the dominant analytic paradigm remains semantics-first. Structure is recovered by predicting or enforcing domain-specific labels. This paradigm fails systematically under the conditions that make image-based science most valuable, including open-ended scientific discovery, cross-sensor and cross-site comparability, and long-term monitoring in which domain ontologies and associated label sets drift culturally, institutionally, and ecologically. A deductive inversion is proposed in the form of criteria-first and semantics-later. A unified framework for criteria-first structure discovery is introduced. It separates criterion-defined, semantics-free structure extraction from downstream semantic mapping into domain ontologies or vocabularies and provides a domain-general scaffold for reproducible analysis across image-based sciences. Reproducible science requires that the first analytic layer perform criterion-driven, semantics-free structure discovery, yielding stable partitions, structural fields, or hierarchies defined by explicit optimality criteria rather than local domain ontologies. Semantics is not discarded; it is relocated downstream as an explicit mapping from the discovered structural product to a domain ontology or vocabulary, enabling plural interpretations and explicit crosswalks without rewriting upstream extraction. Grounded in cybernetics, observation-as-distinction, and information theory's separation of information from meaning, the argument is supported by cross-domain evidence showing that criteria-first components recur whenever labels do not scale. Finally, consequences are outlined for validation beyond class accuracy and for treating structural products as FAIR, AI-ready digital objects for long-term monitoring and digital twins.
☆ Bayesian Optimization for Design Parameters of 3D Image Data Analysis
Deep learning-based segmentation and classification are crucial to large-scale biomedical imaging, particularly for 3D data, where manual analysis is impractical. Although many methods exist, selecting suitable models and tuning parameters remains a major bottleneck in practice. Hence, we introduce the 3D data Analysis Optimization Pipeline, a method designed to facilitate the design and parameterization of segmentation and classification using two Bayesian Optimization stages. First, the pipeline selects a segmentation model and optimizes postprocessing parameters using a domain-adapted syntactic benchmark dataset. To ensure a concise evaluation of segmentation performance, we introduce a segmentation quality metric that serves as the objective function. Second, the pipeline optimizes design choices of a classifier, such as encoder and classifier head architectures, incorporation of prior knowledge, and pretraining strategies. To reduce manual annotation effort, this stage includes an assisted class-annotation workflow that extracts predicted instances from the segmentation results and sequentially presents them to the operator, eliminating the need for manual tracking. In four case studies, the 3D data Analysis Optimization Pipeline efficiently identifies effective model and parameter configurations for individual datasets.
comment: 10 pages, 7 figures
☆ A Novel Public Dataset for Strawberry (Fragaria x ananassa) Ripeness Detection and Comparative Evaluation of YOLO-Based Models
The strawberry (Fragaria x ananassa), known worldwide for its economic value and nutritional richness, is a widely cultivated fruit. Determining the correct ripeness level during the harvest period is crucial for both preventing losses for producers and ensuring consumers receive a quality product. However, traditional methods, i.e., visual assessments alone, can be subjective and have a high margin of error. Therefore, computer-assisted systems are needed. However, the scarcity of comprehensive datasets accessible to everyone in the literature makes it difficult to compare studies in this field. In this study, a new and publicly available strawberry ripeness dataset, consisting of 566 images and 1,201 labeled objects, prepared under variable light and environmental conditions in two different greenhouses in Turkey, is presented to the literature. Comparative tests conducted on the data set using YOLOv8, YOLOv9, and YOLO11-based models showed that the highest precision value was 90.94% in the YOLOv9c model, while the highest recall value was 83.74% in the YOLO11s model. In terms of the general performance criterion mAP@50, YOLOv8s was the best performing model with a success rate of 86.09%. The results show that small and medium-sized models work more balanced and efficiently on this type of dataset, while also establishing a fundamental reference point for smart agriculture applications.
☆ UniTAF: A Modular Framework for Joint Text-to-Speech and Audio-to-Face Modeling
This work considers merging two independent models, TTS and A2F, into a unified model to enable internal feature transfer, thereby improving the consistency between audio and facial expressions generated from text. We also discuss the extension of the emotion control mechanism from TTS to the joint model. This work does not aim to showcase generation quality; instead, from a system design perspective, it validates the feasibility of reusing intermediate representations from TTS for joint modeling of speech and facial expressions, and provides engineering practice references for subsequent speech expression co-design. The project code has been open source at: https://github.com/GoldenFishes/UniTAF
comment: 16 pages, 12 figures
☆ Concept-Enhanced Multimodal RAG: Towards Interpretable and Accurate Radiology Report Generation
Radiology Report Generation (RRG) through Vision-Language Models (VLMs) promises to reduce documentation burden, improve reporting consistency, and accelerate clinical workflows. However, their clinical adoption remains limited by the lack of interpretability and the tendency to hallucinate findings misaligned with imaging evidence. Existing research typically treats interpretability and accuracy as separate objectives, with concept-based explainability techniques focusing primarily on transparency, while Retrieval-Augmented Generation (RAG) methods targeting factual grounding through external retrieval. We present Concept-Enhanced Multimodal RAG (CEMRAG), a unified framework that decomposes visual representations into interpretable clinical concepts and integrates them with multimodal RAG. This approach exploits enriched contextual prompts for RRG, improving both interpretability and factual accuracy. Experiments on MIMIC-CXR and IU X-Ray across multiple VLM architectures, training regimes, and retrieval configurations demonstrate consistent improvements over both conventional RAG and concept-only baselines on clinical accuracy metrics and standard NLP measures. These results challenge the assumed trade-off between interpretability and performance, showing that transparent visual concepts can enhance rather than compromise diagnostic accuracy in medical VLMs. Our modular design decomposes interpretability into visual transparency and structured language model conditioning, providing a principled pathway toward clinically trustworthy AI-assisted radiology.
☆ Guided Diffusion by Optimized Loss Functions on Relaxed Parameters for Inverse Material Design
Inverse design problems are common in engineering and materials science. The forward direction, i.e., computing output quantities from design parameters, typically requires running a numerical simulation, such as a FEM, as an intermediate step, which is an optimization problem by itself. In many scenarios, several design parameters can lead to the same or similar output values. For such cases, multi-modal probabilistic approaches are advantageous to obtain diverse solutions. A major difficulty in inverse design stems from the structure of the design space, since discrete parameters or further constraints disallow the direct use of gradient-based optimization. To tackle this problem, we propose a novel inverse design method based on diffusion models. Our approach relaxes the original design space into a continuous grid representation, where gradients can be computed by implicit differentiation in the forward simulation. A diffusion model is trained on this relaxed parameter space in order to serve as a prior for plausible relaxed designs. Parameters are sampled by guided diffusion using gradients that are propagated from an objective function specified at inference time through the differentiable simulation. A design sample is obtained by backprojection into the original parameter space. We develop our approach for a composite material design problem where the forward process is modeled as a linear FEM problem. We evaluate the performance of our approach in finding designs that match a specified bulk modulus. We demonstrate that our method can propose diverse designs within 1% relative error margin from medium to high target bulk moduli in 2D and 3D settings. We also demonstrate that the material density of generated samples can be minimized simultaneously by using a multi-objective loss function.
☆ CARE Drive A Framework for Evaluating Reason-Responsiveness of Vision Language Models in Automated Driving
Foundation models, including vision language models, are increasingly used in automated driving to interpret scenes, recommend actions, and generate natural language explanations. However, existing evaluation methods primarily assess outcome based performance, such as safety and trajectory accuracy, without determining whether model decisions reflect human relevant considerations. As a result, it remains unclear whether explanations produced by such models correspond to genuine reason responsive decision making or merely post hoc rationalizations. This limitation is especially significant in safety critical domains because it can create false confidence. To address this gap, we propose CARE Drive, Context Aware Reasons Evaluation for Driving, a model agnostic framework for evaluating reason responsiveness in vision language models applied to automated driving. CARE Drive compares baseline and reason augmented model decisions under controlled contextual variation to assess whether human reasons causally influence decision behavior. The framework employs a two stage evaluation process. Prompt calibration ensures stable outputs. Systematic contextual perturbation then measures decision sensitivity to human reasons such as safety margins, social pressure, and efficiency constraints. We demonstrate CARE Drive in a cyclist overtaking scenario involving competing normative considerations. Results show that explicit human reasons significantly influence model decisions, improving alignment with expert recommended behavior. However, responsiveness varies across contextual factors, indicating uneven sensitivity to different types of reasons. These findings provide empirical evidence that reason responsiveness in foundation models can be systematically evaluated without modifying model parameters.
comment: 21 pages, on submission to Transportation Research Part C
☆ An Industrial Dataset for Scene Acquisitions and Functional Schematics Alignment
Aligning functional schematics with 2D and 3D scene acquisitions is crucial for building digital twins, especially for old industrial facilities that lack native digital models. Current manual alignment using images and LiDAR data does not scale due to tediousness and complexity of industrial sites. Inconsistencies between schematics and reality, and the scarcity of public industrial datasets, make the problem both challenging and underexplored. This paper introduces IRIS-v2, a comprehensive dataset to support further research. It includes images, point clouds, 2D annotated boxes and segmentation masks, a CAD model, 3D pipe routing information, and the P&ID (Piping and Instrumentation Diagram). The alignment is experimented on a practical case study, aiming at reducing the time required for this task by combining segmentation and graph matching.
comment: Submitted to EUSIPCO 2026
☆ Intracoronary Optical Coherence Tomography Image Processing and Vessel Classification Using Machine Learning
Intracoronary Optical Coherence Tomography (OCT) enables high-resolution visualization of coronary vessel anatomy but presents challenges due to noise, imaging artifacts, and complex tissue structures. This paper proposes a fully automated pipeline for vessel segmentation and classification in OCT images using machine learning techniques. The proposed method integrates image preprocessing, guidewire artifact removal, polar-to-Cartesian transformation, unsupervised K-means clustering, and local feature extraction. These features are used to train Logistic Regression and Support Vector Machine classifiers for pixel-wise vessel classification. Experimental results demonstrate excellent performance, achieving precision, recall, and F1-score values up to 1.00 and overall classification accuracy of 99.68%. The proposed approach provides accurate vessel boundary detection while maintaining low computational complexity and requiring minimal manual annotation. This method offers a reliable and efficient solution for automated OCT image analysis and has potential applications in clinical decision support and real-time medical image processing.
comment: 12 pages, 8 figures. Research paper from Electrical and Computer Engineering Department, University of Patras
☆ Revealing and Enhancing Core Visual Regions: Harnessing Internal Attention Dynamics for Hallucination Mitigation in LVLMs
LVLMs have achieved strong multimodal reasoning capabilities but remain prone to hallucinations, producing outputs inconsistent with visual inputs or user instructions. Existing training-free methods, including contrastive decoding and auxiliary expert models, which incur several times more computational overhead and may introduce potential interference, as well as static internal signal enhancement, are often vulnerable to the attention sink phenomenon. We find that internal Positive Attention Dynamics (PAD) in LVLMs naturally reveal semantically core visual regions under the distortions of attention sinks. Based on this, we propose Positive Attention Dynamics Enhancement (PADE), a training-free attention intervention that constructs a PAD map to identify semantically core visual regions, applies per-head Median Absolute Deviation Scaling to adaptively control the intervention strength, and leverages System-Token Compensation to maintain attention to complex user instructions and support long-term output consistency. Experiments on multiple LVLMs and benchmarks show that PADE improves visual grounding and reduces hallucinations, validating the effectiveness of leveraging internal attention dynamics for reliable multimodal reasoning.
☆ Dynamic Training-Free Fusion of Subject and Style LoRAs
Recent studies have explored the combination of multiple LoRAs to simultaneously generate user-specified subjects and styles. However, most existing approaches fuse LoRA weights using static statistical heuristics that deviate from LoRA's original purpose of learning adaptive feature adjustments and ignore the randomness of sampled inputs. To address this, we propose a dynamic training-free fusion framework that operates throughout the generation process. During the forward pass, at each LoRA-applied layer, we dynamically compute the KL divergence between the base model's original features and those produced by subject and style LoRAs, respectively, and adaptively select the most appropriate weights for fusion. In the reverse denoising stage, we further refine the generation trajectory by dynamically applying gradient-based corrections derived from objective metrics such as CLIP and DINO scores, providing continuous semantic and stylistic guidance. By integrating these two complementary mechanisms-feature-level selection and metric-guided latent adjustment-across the entire diffusion timeline, our method dynamically achieves coherent subject-style synthesis without any retraining. Extensive experiments across diverse subject-style combinations demonstrate that our approach consistently outperforms state-of-the-art LoRA fusion methods both qualitatively and quantitatively.
☆ Advanced Acceptance Score: A Holistic Measure for Biometric Quantification
Quantifying biometric characteristics within hand gestures involve derivation of fitness scores from a gesture and identity aware feature space. However, evaluating the quality of these scores remains an open question. Existing biometric capacity estimation literature relies upon error rates. But these rates do not indicate goodness of scores. Thus, in this manuscript we present an exhaustive set of evaluation measures. We firstly identify ranking order and relevance of output scores as the primary basis for evaluation. In particular, we consider both rank deviation as well as rewards for: (i) higher scores of high ranked gestures and (ii) lower scores of low ranked gestures. We also compensate for correspondence between trends of output and ground truth scores. Finally, we account for disentanglement between identity features of gestures as a discounting factor. Integrating these elements with adequate weighting, we formulate advanced acceptance score as a holistic evaluation measure. To assess effectivity of the proposed we perform in-depth experimentation over three datasets with five state-of-the-art (SOTA) models. Results show that the optimal score selected with our measure is more appropriate than existing other measures. Also, our proposed measure depicts correlation with existing measures. This further validates its reliability. We have made our \href{https://github.com/AmanVerma2307/MeasureSuite}{code} public.
☆ Semantic-Guided 3D Gaussian Splatting for Transient Object Removal
Transient objects in casual multi-view captures cause ghosting artifacts in 3D Gaussian Splatting (3DGS) reconstruction. Existing solutions relied on scene decomposition at significant memory cost or on motion-based heuristics that were vulnerable to parallax ambiguity. A semantic filtering framework was proposed for category-aware transient removal using vision-language models. CLIP similarity scores between rendered views and distractor text prompts were accumulated per-Gaussian across training iterations. Gaussians exceeding a calibrated threshold underwent opacity regularization and periodic pruning. Unlike motion-based approaches, semantic classification resolved parallax ambiguity by identifying object categories independently of motion patterns. Experiments on the RobustNeRF benchmark demonstrated consistent improvement in reconstruction quality over vanilla 3DGS across four sequences, while maintaining minimal memory overhead and real-time rendering performance. Threshold calibration and comparisons with baselines validated semantic guidance as a practical strategy for transient removal in scenarios with predictable distractor categories.
☆ LEADER: Lightweight End-to-End Attention-Gated Dual Autoencoder for Robust Minutiae Extraction
Minutiae extraction, a fundamental stage in fingerprint recognition, is increasingly shifting toward deep learning. However, truly end-to-end methods that eliminate separate preprocessing and postprocessing steps remain scarce. This paper introduces LEADER (Lightweight End-to-end Attention-gated Dual autoencodER), a neural network that maps raw fingerprint images to minutiae descriptors, including location, direction, and type. The proposed architecture integrates non-maximum suppression and angular decoding to enable complete end-to-end inference using only 0.9M parameters. It employs a novel "Castle-Moat-Rampart" ground-truth encoding and a dual-autoencoder structure, interconnected through an attention-gating mechanism. Experimental evaluations demonstrate state-of-the-art accuracy on plain fingerprints and robust cross-domain generalization to latent impressions. Specifically, LEADER attains a 34% higher F1-score on the NIST SD27 dataset compared to specialized latent minutiae extractors. Sample-level analysis on this challenging benchmark reveals an average rank of 2.07 among all compared methods, with LEADER securing the first-place position in 47% of the samples-more than doubling the frequency of the second-best extractor. The internal representations learned by the model align with established fingerprint domain features, such as segmentation masks, orientation fields, frequency maps, and skeletons. Inference requires 15ms on GPU and 322ms on CPU, outperforming leading commercial software in computational efficiency. The source code and pre-trained weights are publicly released to facilitate reproducibility.
☆ RPT-SR: Regional Prior attention Transformer for infrared image Super-Resolution
General-purpose super-resolution models, particularly Vision Transformers, have achieved remarkable success but exhibit fundamental inefficiencies in common infrared imaging scenarios like surveillance and autonomous driving, which operate from fixed or nearly-static viewpoints. These models fail to exploit the strong, persistent spatial priors inherent in such scenes, leading to redundant learning and suboptimal performance. To address this, we propose the Regional Prior attention Transformer for infrared image Super-Resolution (RPT-SR), a novel architecture that explicitly encodes scene layout information into the attention mechanism. Our core contribution is a dual-token framework that fuses (1) learnable, regional prior tokens, which act as a persistent memory for the scene's global structure, with (2) local tokens that capture the frame-specific content of the current input. By utilizing these tokens into an attention, our model allows the priors to dynamically modulate the local reconstruction process. Extensive experiments validate our approach. While most prior works focus on a single infrared band, we demonstrate the broad applicability and versatility of RPT-SR by establishing new state-of-the-art performance across diverse datasets covering both Long-Wave (LWIR) and Short-Wave (SWIR) spectra
☆ Emergent Morphing Attack Detection in Open Multi-modal Large Language Models
Face morphing attacks threaten biometric verification, yet most morphing attack detection (MAD) systems require task-specific training and generalize poorly to unseen attack types. Meanwhile, open-source multimodal large language models (MLLMs) have demonstrated strong visual-linguistic reasoning, but their potential in biometric forensics remains underexplored. In this paper, we present the first systematic zero-shot evaluation of open-source MLLMs for single-image MAD, using publicly available weights and a standardized, reproducible protocol. Across diverse morphing techniques, many MLLMs show non-trivial discriminative ability without any fine-tuning or domain adaptation, and LLaVA1.6-Mistral-7B achieves state-of-the-art performance, surpassing highly competitive task-specific MAD baselines by at least 23% in terms of equal error rate (EER). The results indicate that multimodal pretraining can implicitly encode fine-grained facial inconsistencies indicative of morphing artifacts, enabling zero-shot forensic sensitivity. Our findings position open-source MLLMs as reproducible, interpretable, and competitive foundations for biometric security and forensic image analysis. This emergent capability also highlights new opportunities to develop state-of-the-art MAD systems through targeted fine-tuning or lightweight adaptation, further improving accuracy and efficiency while preserving interpretability. To support future research, all code and evaluation protocols will be released upon publication.
comment: This manuscript is currently under review at Pattern Recognition Letters
☆ On the Out-of-Distribution Generalization of Reasoning in Multimodal LLMs for Simple Visual Planning Tasks
Integrating reasoning in large language models and large vision-language models has recently led to significant improvement of their capabilities. However, the generalization of reasoning models is still vaguely defined and poorly understood. In this work, we present an evaluation framework to rigorously examine how well chain-of-thought (CoT) approaches generalize on a simple planning task. Specifically, we consider a grid-based navigation task in which a model is provided with a map and must output a sequence of moves that guides a player from a start position to a goal while avoiding obstacles. The versatility of the task and its data allows us to fine-tune model variants using different input representations (visual and textual) and CoT reasoning strategies, and systematically evaluate them under both in-distribution (ID) and out-of-distribution (OOD) test conditions. Our experiments show that, while CoT reasoning improves in-distribution generalization across all representations, out-of-distribution generalization (e.g., to larger maps) remains very limited in most cases when controlling for trivial matches with the ID data. Surprisingly, we find that reasoning traces which combine multiple text formats yield the best (and non-trivial) OOD generalization. Finally, purely text-based models consistently outperform those utilizing image-based inputs, including a recently proposed approach relying on latent space reasoning.
☆ Efficient Generative Modeling beyond Memoryless Diffusion via Adjoint Schrödinger Bridge Matching
Diffusion models often yield highly curved trajectories and noisy score targets due to an uninformative, memoryless forward process that induces independent data-noise coupling. We propose Adjoint Schrödinger Bridge Matching (ASBM), a generative modeling framework that recovers optimal trajectories in high dimensions via two stages. First, we view the Schrödinger Bridge (SB) forward dynamic as a coupling construction problem and learn it through a data-to-energy sampling perspective that transports data to an energy-defined prior. Then, we learn the backward generative dynamic with a simple matching loss supervised by the induced optimal coupling. By operating in a non-memoryless regime, ASBM produces significantly straighter and more efficient sampling paths. Compared to prior works, ASBM scales to high-dimensional data with notably improved stability and efficiency. Extensive experiments on image generation show that ASBM improves fidelity with fewer sampling steps. We further showcase the effectiveness of our optimal trajectory via distillation to a one-step generator.
☆ Doubly Stochastic Mean-Shift Clustering
Standard Mean-Shift algorithms are notoriously sensitive to the bandwidth hyperparameter, particularly in data-scarce regimes where fixed-scale density estimation leads to fragmentation and spurious modes. In this paper, we propose Doubly Stochastic Mean-Shift (DSMS), a novel extension that introduces randomness not only in the trajectory updates but also in the kernel bandwidth itself. By drawing both the data samples and the radius from a continuous uniform distribution at each iteration, DSMS effectively performs a better exploration of the density landscape. We show that this randomized bandwidth policy acts as an implicit regularization mechanism, and provide convergence theoretical results. Comparative experiments on synthetic Gaussian mixtures reveal that DSMS significantly outperforms standard and stochastic Mean-Shift baselines, exhibiting remarkable stability and preventing over-segmentation in sparse clustering scenarios without other performance degradation.
comment: 30 pages. arXiv admin note: text overlap with arXiv:2511.09202
☆ Bridging Day and Night: Target-Class Hallucination Suppression in Unpaired Image Translation AAAI 2026
Day-to-night unpaired image translation is important to downstream tasks but remains challenging due to large appearance shifts and the lack of direct pixel-level supervision. Existing methods often introduce semantic hallucinations, where objects from target classes such as traffic signs and vehicles, as well as man-made light effects, are incorrectly synthesized. These hallucinations significantly degrade downstream performance. We propose a novel framework that detects and suppresses hallucinations of target-class features during unpaired translation. To detect hallucination, we design a dual-head discriminator that additionally performs semantic segmentation to identify hallucinated content in background regions. To suppress these hallucinations, we introduce class-specific prototypes, constructed by aggregating features of annotated target-domain objects, which act as semantic anchors for each class. Built upon a Schrodinger Bridge-based translation model, our framework performs iterative refinement, where detected hallucination features are explicitly pushed away from class prototypes in feature space, thus preserving object semantics across the translation trajectory.Experiments show that our method outperforms existing approaches both qualitatively and quantitatively. On the BDD100K dataset, it improves mAP by 15.5% for day-to-night domain adaptation, with a notable 31.7% gain for classes such as traffic lights that are prone to hallucinations.
comment: Accepted at AAAI 2026 (Oral)
☆ The Vision Wormhole: Latent-Space Communication in Heterogeneous Multi-Agent Systems
Multi-Agent Systems (MAS) powered by Large Language Models have unlocked advanced collaborative reasoning, yet they remain shackled by the inefficiency of discrete text communication, which imposes significant runtime overhead and information quantization loss. While latent state transfer offers a high-bandwidth alternative, existing approaches either assume homogeneous sender-receiver architectures or rely on pair-specific learned translators, limiting scalability and modularity across diverse model families with disjoint manifolds. In this work, we propose the Vision Wormhole, a novel framework that repurposes the visual interface of Vision-Language Models (VLMs) to enable model-agnostic, text-free communication. By introducing a Universal Visual Codec, we map heterogeneous reasoning traces into a shared continuous latent space and inject them directly into the receiver's visual pathway, effectively treating the vision encoder as a universal port for inter-agent telepathy. Our framework adopts a hub-and-spoke topology to reduce pairwise alignment complexity from O(N^2) to O(N) and leverages a label-free, teacher-student distillation objective to align the high-speed visual channel with the robust reasoning patterns of the text pathway. Extensive experiments across heterogeneous model families (e.g., Qwen-VL, Gemma) demonstrate that the Vision Wormhole reduces end-to-end wall-clock time in controlled comparisons while maintaining reasoning fidelity comparable to standard text-based MAS. Code is available at https://github.com/xz-liu/heterogeneous-latent-mas
comment: Preprint. Work in progress
☆ Automatic Funny Scene Extraction from Long-form Cinematic Videos
Automatically extracting engaging and high-quality humorous scenes from cinematic titles is pivotal for creating captivating video previews and snackable content, boosting user engagement on streaming platforms. Long-form cinematic titles, with their extended duration and complex narratives, challenge scene localization, while humor's reliance on diverse modalities and its nuanced style add further complexity. This paper introduces an end-to-end system for automatically identifying and ranking humorous scenes from long-form cinematic titles, featuring shot detection, multimodal scene localization, and humor tagging optimized for cinematic content. Key innovations include a novel scene segmentation approach combining visual and textual cues, improved shot representations via guided triplet mining, and a multimodal humor tagging framework leveraging both audio and text. Our system achieves an 18.3% AP improvement over state-of-the-art scene detection on the OVSD dataset and an F1 score of 0.834 for detecting humor in long text. Extensive evaluations across five cinematic titles demonstrate 87% of clips extracted by our pipeline are intended to be funny, while 98% of scenes are accurately localized. With successful generalization to trailers, these results showcase the pipeline's potential to enhance content creation workflows, improve user engagement, and streamline snackable content generation for diverse cinematic media formats.
☆ GMAIL: Generative Modality Alignment for generated Image Learning
Generative models have made it possible to synthesize highly realistic images, potentially providing an abundant data source for training machine learning models. Despite the advantages of these synthesizable data sources, the indiscriminate use of generated images as real images for training can even cause mode collapse due to modality discrepancies between real and synthetic domains. In this paper, we propose a novel framework for discriminative use of generated images, coined GMAIL, that explicitly treats generated images as a separate modality from real images. Instead of indiscriminately replacing real images with generated ones in the pixel space, our approach bridges the two distinct modalities in the same latent space through a multi-modal learning approach. To be specific, we first fine-tune a model exclusively on generated images using a cross-modality alignment loss and then employ this aligned model to further train various vision-language models with generated images. By aligning the two modalities, our approach effectively leverages the benefits of recent advances in generative models, thereby boosting the effectiveness of generated image learning across a range of vision-language tasks. Our framework can be easily incorporated with various vision-language models, and we demonstrate its efficacy throughout extensive experiments. For example, our framework significantly improves performance on image captioning, zero-shot image retrieval, zero-shot image classification, and long caption retrieval tasks. It also shows positive generated data scaling trends and notable enhancements in the captioning performance of the large multimodal model, LLaVA.
☆ DAV-GSWT: Diffusion-Active-View Sampling for Data-Efficient Gaussian Splatting Wang Tiles
The emergence of 3D Gaussian Splatting has fundamentally redefined the capabilities of photorealistic neural rendering by enabling high-throughput synthesis of complex environments. While procedural methods like Wang Tiles have recently been integrated to facilitate the generation of expansive landscapes, these systems typically remain constrained by a reliance on densely sampled exemplar reconstructions. We present DAV-GSWT, a data-efficient framework that leverages diffusion priors and active view sampling to synthesize high-fidelity Gaussian Splatting Wang Tiles from minimal input observations. By integrating a hierarchical uncertainty quantification mechanism with generative diffusion models, our approach autonomously identifies the most informative viewpoints while hallucinating missing structural details to ensure seamless tile transitions. Experimental results indicate that our system significantly reduces the required data volume while maintaining the visual integrity and interactive performance necessary for large-scale virtual environments.
comment: 16 pages, 7 figures
☆ CREMD: Crowd-Sourced Emotional Multimodal Dogs Dataset
Dog emotion recognition plays a crucial role in enhancing human-animal interactions, veterinary care, and the development of automated systems for monitoring canine well-being. However, accurately interpreting dog emotions is challenging due to the subjective nature of emotional assessments and the absence of standardized ground truth methods. We present the CREMD (Crowd-sourced Emotional Multimodal Dogs Dataset), a comprehensive dataset exploring how different presentation modes (e.g., context, audio, video) and annotator characteristics (e.g., dog ownership, gender, professional experience) influence the perception and labeling of dog emotions. The dataset consists of 923 video clips presented in three distinct modes: without context or audio, with context but no audio, and with both context and audio. We analyze annotations from diverse participants, including dog owners, professionals, and individuals with varying demographic backgrounds and experience levels, to identify factors that influence reliable dog emotion recognition. Our findings reveal several key insights: (1) while adding visual context significantly improved annotation agreement, our findings regarding audio cues are inconclusive due to design limitations (specifically, the absence of a no-context-with-audio condition and limited clean audio availability); (2) contrary to expectations, non-owners and male annotators showed higher agreement levels than dog owners and female annotators, respectively, while professionals showed higher agreement levels, aligned with our initial hypothesis; and (3) the presence of audio substantially increased annotators' confidence in identifying specific emotions, particularly anger and fear.
comment: Submitted to arXiv
☆ Effective and Robust Multimodal Medical Image Analysis
Multimodal Fusion Learning (MFL), leveraging disparate data from various imaging modalities (e.g., MRI, CT, SPECT), has shown great potential for addressing medical problems such as skin cancer and brain tumor prediction. However, existing MFL methods face three key limitations: a) they often specialize in specific modalities, and overlook effective shared complementary information across diverse modalities, hence limiting their generalizability for multi-disease analysis; b) they rely on computationally expensive models, restricting their applicability in resource-limited settings; and c) they lack robustness against adversarial attacks, compromising reliability in medical AI applications. To address these limitations, we propose a novel Multi-Attention Integration Learning (MAIL) network, incorporating two key components: a) an efficient residual learning attention block for capturing refined modality-specific multi-scale patterns and b) an efficient multimodal cross-attention module for learning enriched complementary shared representations across diverse modalities. Furthermore, to ensure adversarial robustness, we extend MAIL network to design Robust-MAIL by incorporating random projection filters and modulated attention noise. Extensive evaluations on 20 public datasets show that both MAIL and Robust-MAIL outperform existing methods, achieving performance gains of up to 9.34% while reducing computational costs by up to 78.3%. These results highlight the superiority of our approaches, ensuring more reliable predictions than top competitors. Code: https://github.com/misti1203/MAIL-Robust-MAIL.
comment: Accepted at Proceedings of the 32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2026)
☆ Benchmarking Self-Supervised Models for Cardiac Ultrasound View Classification
Reliable interpretation of cardiac ultrasound images is essential for accurate clinical diagnosis and assessment. Self-supervised learning has shown promise in medical imaging by leveraging large unlabelled datasets to learn meaningful representations. In this study, we evaluate and compare two self-supervised learning frameworks, USF-MAE, developed by our team, and MoCo v3, on the recently introduced CACTUS dataset (37,736 images) for automated simulated cardiac view (A4C, PL, PSAV, PSMV, Random, and SC) classification. Both models used 5-fold cross-validation, enabling robust assessment of generalization performance across multiple random splits. The CACTUS dataset provides expert-annotated cardiac ultrasound images with diverse views. We adopt an identical training protocol for both models to ensure a fair comparison. Both models are configured with a learning rate of 0.0001 and a weight decay of 0.01. For each fold, we record performance metrics including ROC-AUC, accuracy, F1-score, and recall. Our results indicate that USF-MAE consistently outperforms MoCo v3 across metrics. The average testing AUC for USF-MAE is 99.99% (+/-0.01% 95% CI), compared to 99.97% (+/-0.01%) for MoCo v3. USF-MAE achieves a mean testing accuracy of 99.33% (+/-0.18%), higher than the 98.99% (+/-0.28%) reported for MoCo v3. Similar trends are observed for the F1-score and recall, with improvements statistically significant across folds (paired t-test, p=0.0048 < 0.01). This proof-of-concept analysis suggests that USF-MAE learns more discriminative features for cardiac view classification than MoCo v3 when applied to this dataset. The enhanced performance across multiple metrics highlights the potential of USF-MAE for improving automated cardiac ultrasound classification.
comment: 10 pages, 3 figures, 3 tables
☆ EventMemAgent: Hierarchical Event-Centric Memory for Online Video Understanding with Adaptive Tool Use
Online video understanding requires models to perform continuous perception and long-range reasoning within potentially infinite visual streams. Its fundamental challenge lies in the conflict between the unbounded nature of streaming media input and the limited context window of Multimodal Large Language Models (MLLMs). Current methods primarily rely on passive processing, which often face a trade-off between maintaining long-range context and capturing the fine-grained details necessary for complex tasks. To address this, we introduce EventMemAgent, an active online video agent framework based on a hierarchical memory module. Our framework employs a dual-layer strategy for online videos: short-term memory detects event boundaries and utilizes event-granular reservoir sampling to process streaming video frames within a fixed-length buffer dynamically; long-term memory structuredly archives past observations on an event-by-event basis. Furthermore, we integrate a multi-granular perception toolkit for active, iterative evidence capture and employ Agentic Reinforcement Learning (Agentic RL) to end-to-end internalize reasoning and tool-use strategies into the agent's intrinsic capabilities. Experiments show that EventMemAgent achieves competitive results on online video benchmarks. The code will be released here: https://github.com/lingcco/EventMemAgent.
☆ Sparrow: Text-Anchored Window Attention with Visual-Semantic Glimpsing for Speculative Decoding in Video LLMs
Although speculative decoding is widely used to accelerate Vision-Language Models (VLMs) inference, it faces severe performance collapse when applied to Video Large Language Models (Vid-LLMs). The draft model typically falls into the trap of attention dilution and negative visual gain due to key-value cache explosion and context window mismatches. We observe a visual semantic internalization phenomenon in Vid-LLMs, indicating that critical visual semantics are implicitly encoded into text hidden states during deep-layer interactions, which renders raw visual inputs structurally redundant during deep inference. To address this, we propose the Sparrow framework, which first utilizes visually-aware text-anchored window attention via hidden state reuse to fully offload visual computation to the target model, and leverages intermediate-layer visual state bridging to train the draft model with semantic-rich intermediate states, thereby filtering out low-level visual noise. Additionally, a multi-token prediction strategy is introduced to bridge the training-inference distribution shift. Experiments show that Sparrow achieves an average speedup of 2.82x even with 25k visual tokens, effectively resolving the performance degradation in long sequences and offering a practical solution for real-time long video tasks.
comment: 15 pages , 6 figures
☆ Training-Free Zero-Shot Anomaly Detection in 3D Brain MRI with 2D Foundation Models
Zero-shot anomaly detection (ZSAD) has gained increasing attention in medical imaging as a way to identify abnormalities without task-specific supervision, but most advances remain limited to 2D datasets. Extending ZSAD to 3D medical images has proven challenging, with existing methods relying on slice-wise features and vision-language models, which fail to capture volumetric structure. In this paper, we introduce a fully training-free framework for ZSAD in 3D brain MRI that constructs localized volumetric tokens by aggregating multi-axis slices processed by 2D foundation models. These 3D patch tokens restore cubic spatial context and integrate directly with distance-based, batch-level anomaly detection pipelines. The framework provides compact 3D representations that are practical to compute on standard GPUs and require no fine-tuning, prompts, or supervision. Our results show that training-free, batch-based ZSAD can be effectively extended from 2D encoders to full 3D MRI volumes, offering a simple and robust approach for volumetric anomaly detection.
comment: Accepted for MIDL 2026
☆ Consistency-Preserving Diverse Video Generation
Text-to-video generation is expensive, so only a few samples are typically produced per prompt. In this low-sample regime, maximizing the value of each batch requires high cross-video diversity. Recent methods improve diversity for image generation, but for videos they often degrade within-video temporal consistency and require costly backpropagation through a video decoder. We propose a joint-sampling framework for flow-matching video generators that improves batch diversity while preserving temporal consistency. Our approach applies diversity-driven updates and then removes only the components that would decrease a temporal-consistency objective. To avoid image-space gradients, we compute both objectives with lightweight latent-space models, avoiding video decoding and decoder backpropagation. Experiments on a state-of-the-art text-to-video flow-matching model show diversity comparable to strong joint-sampling baselines while substantially improving temporal consistency and color naturalness. Code will be released.
☆ Visual Persuasion: What Influences Decisions of Vision-Language Models?
The web is littered with images, once created for human consumption and now increasingly interpreted by agents using vision-language models (VLMs). These agents make visual decisions at scale, deciding what to click, recommend, or buy. Yet, we know little about the structure of their visual preferences. We introduce a framework for studying this by placing VLMs in controlled image-based choice tasks and systematically perturbing their inputs. Our key idea is to treat the agent's decision function as a latent visual utility that can be inferred through revealed preference: choices between systematically edited images. Starting from common images, such as product photos, we propose methods for visual prompt optimization, adapting text optimization methods to iteratively propose and apply visually plausible modifications using an image generation model (such as in composition, lighting, or background). We then evaluate which edits increase selection probability. Through large-scale experiments on frontier VLMs, we demonstrate that optimized edits significantly shift choice probabilities in head-to-head comparisons. We develop an automatic interpretability pipeline to explain these preferences, identifying consistent visual themes that drive selection. We argue that this approach offers a practical and efficient way to surface visual vulnerabilities, safety concerns that might otherwise be discovered implicitly in the wild, supporting more proactive auditing and governance of image-based AI agents.
comment: 45 pages, 17 figures
☆ Accelerating Large-Scale Dataset Distillation via Exploration-Exploitation Optimization
Dataset distillation compresses the original data into compact synthetic datasets, reducing training time and storage while retaining model performance, enabling deployment under limited resources. Although recent decoupling-based distillation methods enable dataset distillation at large-scale, they continue to face an efficiency gap: optimization-based decoupling methods achieve higher accuracy but demand intensive computation, whereas optimization-free decoupling methods are efficient but sacrifice accuracy. To overcome this trade-off, we propose Exploration-Exploitation Distillation (E^2D), a simple, practical method that minimizes redundant computation through an efficient pipeline that begins with full-image initialization to preserve semantic integrity and feature diversity. It then uses a two-phase optimization strategy: an exploration phase that performs uniform updates and identifies high-loss regions, and an exploitation phase that focuses updates on these regions to accelerate convergence. We evaluate E^2D on large-scale benchmarks, surpassing the state-of-the-art on ImageNet-1K while being 18x faster, and on ImageNet-21K, our method substantially improves accuracy while remaining 4.3x faster. These results demonstrate that targeted, redundancy-reducing updates, rather than brute-force optimization, bridge the gap between accuracy and efficiency in large-scale dataset distillation. Code is available at https://github.com/ncsu-dk-lab.
☆ LGQ: Learning Discretization Geometry for Scalable and Stable Image Tokenization
Discrete image tokenization is a key bottleneck for scalable visual generation: a tokenizer must remain compact for efficient latent-space priors while preserving semantic structure and using discrete capacity effectively. Existing quantizers face a trade-off: vector-quantized tokenizers learn flexible geometries but often suffer from biased straight-through optimization, codebook under-utilization, and representation collapse at large vocabularies. Structured scalar or implicit tokenizers ensure stable, near-complete utilization by design, yet rely on fixed discretization geometries that may allocate capacity inefficiently under heterogeneous latent statistics. We introduce Learnable Geometric Quantization (LGQ), a discrete image tokenizer that learns discretization geometry end-to-end. LGQ replaces hard nearest-neighbor lookup with temperature-controlled soft assignments, enabling fully differentiable training while recovering hard assignments at inference. The assignments correspond to posterior responsibilities of an isotropic Gaussian mixture and minimize a variational free-energy objective, provably converging to nearest-neighbor quantization in the low-temperature limit. LGQ combines a token-level peakedness regularizer with a global usage regularizer to encourage confident yet balanced code utilization without imposing rigid grids. Under a controlled VQGAN-style backbone on ImageNet across multiple vocabulary sizes, LGQ achieves stable optimization and balanced utilization. At 16K codebook size, LGQ improves rFID by 11.88% over FSQ while using 49.96% fewer active codes, and improves rFID by 6.06% over SimVQ with 49.45% lower effective representation rate, achieving comparable fidelity with substantially fewer active entries. Our GitHub repository is available at: https://github.com/KurbanIntelligenceLab/LGQ
☆ Extracting and Analyzing Rail Crossing Behavior Signatures from Videos using Tensor Methods
Railway crossings present complex safety challenges where driver behavior varies by location, time, and conditions. Traditional approaches analyze crossings individually, limiting the ability to identify shared behavioral patterns across locations. We propose a multi-view tensor decomposition framework that captures behavioral similarities across three temporal phases: Approach (warning activation to gate lowering), Waiting (gates down to train passage), and Clearance (train passage to gate raising). We analyze railway crossing videos from multiple locations using TimeSformer embeddings to represent each phase. By constructing phase-specific similarity matrices and applying non-negative symmetric CP decomposition, we discover latent behavioral components with distinct temporal signatures. Our tensor analysis reveals that crossing location appears to be a stronger determinant of behavior patterns than time of day, and that approach-phase behavior provides particularly discriminative signatures. Visualization of the learned component space confirms location-based clustering, with certain crossings forming distinct behavioral clusters. This automated framework enables scalable pattern discovery across multiple crossings, providing a foundation for grouping locations by behavioral similarity to inform targeted safety interventions.
comment: 6 pages, 10 figures. Accepted at InnovaRail 2026
☆ MedProbCLIP: Probabilistic Adaptation of Vision-Language Foundation Model for Reliable Radiograph-Report Retrieval WACV
Vision-language foundation models have emerged as powerful general-purpose representation learners with strong potential for multimodal understanding, but their deterministic embeddings often fail to provide the reliability required for high-stakes biomedical applications. This work introduces MedProbCLIP, a probabilistic vision-language learning framework for chest X-ray and radiology report representation learning and bidirectional retrieval. MedProbCLIP models image and text representations as Gaussian embeddings through a probabilistic contrastive objective that explicitly captures uncertainty and many-to-many correspondences between radiographs and clinical narratives. A variational information bottleneck mitigates overconfident predictions, while MedProbCLIP employs multi-view radiograph encoding and multi-section report encoding during training to provide fine-grained supervision for clinically aligned correspondence, yet requires only a single radiograph and a single report at inference. Evaluated on the MIMIC-CXR dataset, MedProbCLIP outperforms deterministic and probabilistic baselines, including CLIP, CXR-CLIP, and PCME++, in both retrieval and zero-shot classification. Beyond accuracy, MedProbCLIP demonstrates superior calibration, risk-coverage behavior, selective retrieval reliability, and robustness to clinically relevant corruptions, underscoring the value of probabilistic vision-language modeling for improving the trustworthiness and safety of radiology image-text retrieval systems.
comment: Accepted to the 2026 Winter Conference on Applications of Computer Vision (WACV) Workshops
☆ BTReport: A Framework for Brain Tumor Radiology Report Generation with Clinically Relevant Features
Recent advances in radiology report generation (RRG) have been driven by large paired image-text datasets; however, progress in neuro-oncology has been limited due to a lack of open paired image-report datasets. Here, we introduce BTReport, an open-source framework for brain tumor RRG that constructs natural language radiology reports using deterministically extracted imaging features. Unlike existing approaches that rely on large general-purpose or fine-tuned vision-language models for both image interpretation and report composition, BTReport performs deterministic feature extraction for image analysis and uses large language models only for syntactic structuring and narrative formatting. By separating RRG into a deterministic feature extraction step and a report generation step, the generated reports are completely interpretable and less prone to hallucinations. We show that the features used for report generation are predictive of key clinical outcomes, including survival and IDH mutation status, and reports generated by BTReport are more closely aligned with reference clinical reports than existing baselines for RRG. Finally, we introduce BTReport-BraTS, a companion dataset that augments BraTS imaging with synthetically generated radiology reports produced with BTReport. Code for this project can be found at https://github.com/KurtLabUW/BTReport.
comment: Accepted to Medical Imaging with Deep Learning (MIDL) 2026
☆ SAM 3D Body: Robust Full-Body Human Mesh Recovery
We introduce SAM 3D Body (3DB), a promptable model for single-image full-body 3D human mesh recovery (HMR) that demonstrates state-of-the-art performance, with strong generalization and consistent accuracy in diverse in-the-wild conditions. 3DB estimates the human pose of the body, feet, and hands. It is the first model to use a new parametric mesh representation, Momentum Human Rig (MHR), which decouples skeletal structure and surface shape. 3DB employs an encoder-decoder architecture and supports auxiliary prompts, including 2D keypoints and masks, enabling user-guided inference similar to the SAM family of models. We derive high-quality annotations from a multi-stage annotation pipeline that uses various combinations of manual keypoint annotation, differentiable optimization, multi-view geometry, and dense keypoint detection. Our data engine efficiently selects and processes data to ensure data diversity, collecting unusual poses and rare imaging conditions. We present a new evaluation dataset organized by pose and appearance categories, enabling nuanced analysis of model behavior. Our experiments demonstrate superior generalization and substantial improvements over prior methods in both qualitative user preference studies and traditional quantitative analysis. Both 3DB and MHR are open-source.
comment: Code: https://github.com/facebookresearch/sam-3d-body
☆ Automated Assessment of Kidney Ureteroscopy Exploration for Training
Purpose: Kidney ureteroscopic navigation is challenging with a steep learning curve. However, current clinical training has major deficiencies, as it requires one-on-one feedback from experts and occurs in the operating room (OR). Therefore, there is a need for a phantom training system with automated feedback to greatly \revision{expand} training opportunities. Methods: We propose a novel, purely ureteroscope video-based scope localization framework that automatically identifies calyces missed by the trainee in a phantom kidney exploration. We use a slow, thorough, prior exploration video of the kidney to generate a reference reconstruction. Then, this reference reconstruction can be used to localize any exploration video of the same phantom. Results: In 15 exploration videos, a total of 69 out of 74 calyces were correctly classified. We achieve < 4mm camera pose localization error. Given the reference reconstruction, the system takes 10 minutes to generate the results for a typical exploration (1-2 minute long). Conclusion: We demonstrate a novel camera localization framework that can provide accurate and automatic feedback for kidney phantom explorations. We show its ability as a valid tool that enables out-of-OR training without requiring supervision from an expert.
☆ LAND: A Longitudinal Analysis of Neuromorphic Datasets
Neuromorphic engineering has a data problem. Despite the meteoric rise in the number of neuromorphic datasets published over the past ten years, the conclusion of a significant portion of neuromorphic research papers still states that there is a need for yet more data and even larger datasets. Whilst this need is driven in part by the sheer volume of data required by modern deep learning approaches, it is also fuelled by the current state of the available neuromorphic datasets and the difficulties in finding them, understanding their purpose, and determining the nature of their underlying task. This is further compounded by practical difficulties in downloading and using these datasets. This review starts by capturing a snapshot of the existing neuromorphic datasets, covering over 423 datasets, and then explores the nature of their tasks and the underlying structure of the presented data. Analysing these datasets shows the difficulties arising from their size, the lack of standardisation, and difficulties in accessing the actual data. This paper also highlights the growth in the size of individual datasets and the complexities involved in working with the data. However, a more important concern is the rise of synthetic datasets, created by either simulation or video-to-events methods. This review explores the benefits of simulated data for testing existing algorithms and applications, highlighting the potential pitfalls for exploring new applications of neuromorphic technologies. This review also introduces the concepts of meta-datasets, created from existing datasets, as a way of both reducing the need for more data, and to remove potential bias arising from defining both the dataset and the task.
comment: The LAND dataset tool can be accessed via https://neuromorphicsystems.github.io/land/
☆ B-DENSE: Branching For Dense Ensemble Network Learning
Inspired by non-equilibrium thermodynamics, diffusion models have achieved state-of-the-art performance in generative modeling. However, their iterative sampling nature results in high inference latency. While recent distillation techniques accelerate sampling, they discard intermediate trajectory steps. This sparse supervision leads to a loss of structural information and introduces significant discretization errors. To mitigate this, we propose B-DENSE, a novel framework that leverages multi-branch trajectory alignment. We modify the student architecture to output $K$-fold expanded channels, where each subset corresponds to a specific branch representing a discrete intermediate step in the teacher's trajectory. By training these branches to simultaneously map to the entire sequence of the teacher's target timesteps, we enforce dense intermediate trajectory alignment. Consequently, the student model learns to navigate the solution space from the earliest stages of training, demonstrating superior image generation quality compared to baseline distillation frameworks.
comment: 11 pages, 5 figures, 4 algorithms and 2 tables. Submitted to iclr 2026 delta workshop and still under review
☆ Non-Contact Physiological Monitoring in Pediatric Intensive Care Units via Adaptive Masking and Self-Supervised Learning
Continuous monitoring of vital signs in Pediatric Intensive Care Units (PICUs) is essential for early detection of clinical deterioration and effective clinical decision-making. However, contact-based sensors such as pulse oximeters may cause skin irritation, increase infection risk, and lead to patient discomfort. Remote photoplethysmography (rPPG) offers a contactless alternative to monitor heart rate using facial video, but remains underutilized in PICUs due to motion artifacts, occlusions, variable lighting, and domain shifts between laboratory and clinical data. We introduce a self-supervised pretraining framework for rPPG estimation in the PICU setting, based on a progressive curriculum strategy. The approach leverages the VisionMamba architecture and integrates an adaptive masking mechanism, where a lightweight Mamba-based controller assigns spatiotemporal importance scores to guide probabilistic patch sampling. This strategy dynamically increases reconstruction difficulty while preserving physiological relevance. To address the lack of labeled clinical data, we adopt a teacher-student distillation setup. A supervised expert model, trained on public datasets, provides latent physiological guidance to the student. The curriculum progresses through three stages: clean public videos, synthetic occlusion scenarios, and unlabeled videos from 500 pediatric patients. Our framework achieves a 42% reduction in mean absolute error relative to standard masked autoencoders and outperforms PhysFormer by 31%, reaching a final MAE of 3.2 bpm. Without explicit region-of-interest extraction, the model consistently attends to pulse-rich areas and demonstrates robustness under clinical occlusions and noise.
☆ Automated Re-Identification of Holstein-Friesian Cattle in Dense Crowds
Holstein-Friesian detection and re-identification (Re-ID) methods capture individuals well when targets are spatially separate. However, existing approaches, including YOLO-based species detection, break down when cows group closely together. This is particularly prevalent for species which have outline-breaking coat patterns. To boost both effectiveness and transferability in this setting, we propose a new detect-segment-identify pipeline that leverages the Open-Vocabulary Weight-free Localisation and the Segment Anything models as pre-processing stages alongside Re-ID networks. To evaluate our approach, we publish a collection of nine days CCTV data filmed on a working dairy farm. Our methodology overcomes detection breakdown in dense animal groupings, resulting in a 98.93% accuracy. This significantly outperforms current oriented bounding box-driven, as well as SAM species detection baselines with accuracy improvements of 47.52% and 27.13%, respectively. We show that unsupervised contrastive learning can build on this to yield 94.82% Re-ID accuracy on our test data. Our work demonstrates that Re-ID in crowded scenarios is both practical as well as reliable in working farm settings with no manual intervention. Code and dataset are provided for reproducibility.
comment: 32 pages, 13 figures, 5 tables
☆ Position-Aware Scene-Appearance Disentanglement for Bidirectional Photoacoustic Microscopy Registration
High-speed optical-resolution photoacoustic microscopy (OR-PAM) with bidirectional raster scanning doubles imaging speed but introduces coupled domain shift and geometric misalignment between forward and backward scan lines. Existing registration methods, constrained by brightness constancy assumptions, achieve limited alignment quality, while recent generative approaches address domain shift through complex architectures that lack temporal awareness across frames. We propose GPEReg-Net, a scene-appearance disentanglement framework that separates domain-invariant scene features from domain-specific appearance codes via Adaptive Instance Normalization (AdaIN), enabling direct image-to-image registration without explicit deformation field estimation. To exploit temporal structure in sequential acquisitions, we introduce a Global Position Encoding (GPE) module that combines learnable position embeddings with sinusoidal encoding and cross-frame attention, allowing the network to leverage context from neighboring frames for improved temporal coherence. On the OR-PAM-Reg-4K benchmark (432 test samples), GPEReg-Net achieves NCC of 0.953, SSIM of 0.932, and PSNR of 34.49dB, surpassing the state-of-the-art by 3.8% in SSIM and 1.99dB in PSNR while maintaining competitive NCC. Code is available at https://github.com/JiahaoQin/GPEReg-Net.
comment: 10 pages, 5 figures
☆ DocSplit: A Comprehensive Benchmark Dataset and Evaluation Approach for Document Packet Recognition and Splitting
Document understanding in real-world applications often requires processing heterogeneous, multi-page document packets containing multiple documents stitched together. Despite recent advances in visual document understanding, the fundamental task of document packet splitting, which involves separating a document packet into individual units, remains largely unaddressed. We present the first comprehensive benchmark dataset, DocSplit, along with novel evaluation metrics for assessing the document packet splitting capabilities of large language models. DocSplit comprises five datasets of varying complexity, covering diverse document types, layouts, and multimodal settings. We formalize the DocSplit task, which requires models to identify document boundaries, classify document types, and maintain correct page ordering within a document packet. The benchmark addresses real-world challenges, including out-of-order pages, interleaved documents, and documents lacking clear demarcations. We conduct extensive experiments evaluating multimodal LLMs on our datasets, revealing significant performance gaps in current models' ability to handle complex document splitting tasks. The DocSplit benchmark datasets and proposed novel evaluation metrics provide a systematic framework for advancing document understanding capabilities essential for legal, financial, healthcare, and other document-intensive domains. We release the datasets to facilitate future research in document packet processing.
☆ Can Vision-Language Models See Squares? Text-Recognition Mediates Spatial Reasoning Across Three Model Families
We present a simple experiment that exposes a fundamental limitation in vision-language models (VLMs): the inability to accurately localize filled cells in binary grids when those cells lack textual identity. We generate fifteen 15x15 grids with varying density (10.7%-41.8% filled cells) and render each as two image types -- text symbols (. and #) and filled squares without gridlines -- then ask three frontier VLMs (Claude Opus, ChatGPT 5.2, and Gemini 3 Thinking) to transcribe them. In the text-symbol condition, Claude and ChatGPT achieve approximately 91% cell accuracy and 84% F1, while Gemini achieves 84% accuracy and 63% F1. In the filled-squares condition, all three models collapse to 60-73% accuracy and 29-39% F1. Critically, all conditions pass through the same visual encoder -- the text symbols are images, not tokenized text. The text-vs-squares F1 gap ranges from 34 to 54 points across models, demonstrating that VLMs behave as if they possess a high-fidelity text-recognition pathway for spatial reasoning that dramatically outperforms their native visual pathway. Each model exhibits a distinct failure mode in the squares condition -- systematic under-counting (Claude), massive over-counting (ChatGPT), and template hallucination (Gemini) -- but all share the same underlying deficit: severely degraded spatial localization for non-textual visual elements.
comment: 9 pages, 3 figures, 2 tables. Workshop-length paper
☆ Visual Memory Injection Attacks for Multi-Turn Conversations
Generative large vision-language models (LVLMs) have recently achieved impressive performance gains, and their user base is growing rapidly. However, the security of LVLMs, in particular in a long-context multi-turn setting, is largely underexplored. In this paper, we consider the realistic scenario in which an attacker uploads a manipulated image to the web/social media. A benign user downloads this image and uses it as input to the LVLM. Our novel stealthy Visual Memory Injection (VMI) attack is designed such that on normal prompts the LVLM exhibits nominal behavior, but once the user gives a triggering prompt, the LVLM outputs a specific prescribed target message to manipulate the user, e.g. for adversarial marketing or political persuasion. Compared to previous work that focused on single-turn attacks, VMI is effective even after a long multi-turn conversation with the user. We demonstrate our attack on several recent open-weight LVLMs. This article thereby shows that large-scale manipulation of users is feasible with perturbed images in multi-turn conversation settings, calling for better robustness of LVLMs against these attacks. We release the source code at https://github.com/chs20/visual-memory-injection
☆ A Study on Real-time Object Detection using Deep Learning
Object detection has compelling applications over a range of domains, including human-computer interfaces, security and video surveillance, navigation and road traffic monitoring, transportation systems, industrial automation healthcare, the world of Augmented Reality (AR) and Virtual Reality (VR), environment monitoring and activity identification. Applications of real time object detection in all these areas provide dynamic analysis of the visual information that helps in immediate decision making. Furthermore, advanced deep learning algorithms leverage the progress in the field of object detection providing more accurate and efficient solutions. There are some outstanding deep learning algorithms for object detection which includes, Faster R CNN(Region-based Convolutional Neural Network),Mask R-CNN, Cascade R-CNN, YOLO (You Only Look Once), SSD (Single Shot Multibox Detector), RetinaNet etc. This article goes into great detail on how deep learning algorithms are used to enhance real time object recognition. It provides information on the different object detection models available, open benchmark datasets, and studies on the use of object detection models in a range of applications. Additionally, controlled studies are provided to compare various strategies and produce some illuminating findings. Last but not least, a number of encouraging challenges and approaches are offered as suggestions for further investigation in both relevant deep learning approaches and object recognition.
comment: 34 pages, 18 figures
☆ World Action Models are Zero-shot Policies
State-of-the-art Vision-Language-Action (VLA) models excel at semantic generalization but struggle to generalize to unseen physical motions in novel environments. We introduce DreamZero, a World Action Model (WAM) built upon a pretrained video diffusion backbone. Unlike VLAs, WAMs learn physical dynamics by predicting future world states and actions, using video as a dense representation of how the world evolves. By jointly modeling video and action, DreamZero learns diverse skills effectively from heterogeneous robot data without relying on repetitive demonstrations. This results in over 2x improvement in generalization to new tasks and environments compared to state-of-the-art VLAs in real robot experiments. Crucially, through model and system optimizations, we enable a 14B autoregressive video diffusion model to perform real-time closed-loop control at 7Hz. Finally, we demonstrate two forms of cross-embodiment transfer: video-only demonstrations from other robots or humans yield a relative improvement of over 42% on unseen task performance with just 10-20 minutes of data. More surprisingly, DreamZero enables few-shot embodiment adaptation, transferring to a new embodiment with only 30 minutes of play data while retaining zero-shot generalization.
comment: Project page: https://dreamzero0.github.io/
☆ EarthSpatialBench: Benchmarking Spatial Reasoning Capabilities of Multimodal LLMs on Earth Imagery
Benchmarking spatial reasoning in multimodal large language models (MLLMs) has attracted growing interest in computer vision due to its importance for embodied AI and other agentic systems that require precise interaction with the physical world. However, spatial reasoning on Earth imagery has lagged behind, as it uniquely involves grounding objects in georeferenced images and quantitatively reasoning about distances, directions, and topological relations using both visual cues and vector geometry coordinates (e.g., 2D bounding boxes, polylines, and polygons). Existing benchmarks for Earth imagery primarily focus on 2D spatial grounding, image captioning, and coarse spatial relations (e.g., simple directional or proximity cues). They lack support for quantitative direction and distance reasoning, systematic topological relations, and complex object geometries beyond bounding boxes. To fill this gap, we propose \textbf{EarthSpatialBench}, a comprehensive benchmark for evaluating spatial reasoning in MLLMs on Earth imagery. The benchmark contains over 325K question-answer pairs spanning: (1) qualitative and quantitative reasoning about spatial distance and direction; (2) systematic topological relations; (3) single-object queries, object-pair queries, and compositional aggregate group queries; and (4) object references expressed via textual descriptions, visual overlays, and explicit geometry coordinates, including 2D bounding boxes, polylines, and polygons. We conducted extensive experiments on both open-source and proprietary models to identify limitations in the spatial reasoning of MLLMs.
☆ ROIX-Comp: Optimizing X-ray Computed Tomography Imaging Strategy for Data Reduction and Reconstruction
In high-performance computing (HPC) environments, particularly in synchrotron radiation facilities, vast amounts of X-ray images are generated. Processing large-scale X-ray Computed Tomography (X-CT) datasets presents significant computational and storage challenges due to their high dimensionality and data volume. Traditional approaches often require extensive storage capacity and high transmission bandwidth, limiting real-time processing capabilities and workflow efficiency. To address these constraints, we introduce a region-of-interest (ROI)-driven extraction framework (ROIX-Comp) that intelligently compresses X-CT data by identifying and retaining only essential features. Our work reduces data volume while preserving critical information for downstream processing tasks. At pre-processing stage, we utilize error-bounded quantization to reduce the amount of data to be processed and therefore improve computational efficiencies. At the compression stage, our methodology combines object extraction with multiple state-of-the-art lossless and lossy compressors, resulting in significantly improved compression ratios. We evaluated this framework against seven X-CT datasets and observed a relative compression ratio improvement of 12.34x compared to the standard compression.
comment: 11 pages, SCA/HPCAsia2026
☆ MaS-VQA: A Mask-and-Select Framework for Knowledge-Based Visual Question Answering
Knowledge-based Visual Question Answering (KB-VQA) requires models to answer questions by integrating visual information with external knowledge. However, retrieved knowledge is often noisy, partially irrelevant, or misaligned with the visual content, while internal model knowledge is difficult to control and interpret. Naive aggregation of these sources limits reasoning effectiveness and reduces answer accuracy. To address this, we propose MaS-VQA, a selection-driven framework that tightly couples explicit knowledge filtering with implicit knowledge reasoning. MaS-VQA first retrieves candidate passages and applies a Mask-and-Select mechanism to jointly prune irrelevant image regions and weakly relevant knowledge fragments, producing compact, high-signal multimodal knowledge . This filtered knowledge then guides the activation of internal knowledge in a constrained semantic space, enabling complementary co-modeling of explicit and implicit knowledge for robust answer prediction. Experiments on Encyclopedic-VQA and InfoSeek demonstrate consistent performance gains across multiple MLLM backbones, and ablations verify that the selection mechanism effectively reduces noise and enhances knowledge utilization.
☆ Foundation Models for Medical Imaging: Status, Challenges, and Directions
Foundation models (FMs) are rapidly reshaping medical imaging, shifting the field from narrowly trained, task-specific networks toward large, general-purpose models that can be adapted across modalities, anatomies, and clinical tasks. In this review, we synthesize the emerging landscape of medical imaging FMs along three major axes: principles of FM design, applications of FMs, and forward-looking challenges and opportunities. Taken together, this review provides a technically grounded, clinically aware, and future-facing roadmap for developing FMs that are not only powerful and versatile but also trustworthy and ready for responsible translation into clinical practice.
♻ ☆ SSL4EO-S12 v1.1: A Multimodal, Multiseasonal Dataset for Pretraining, Updated
This work presents SSL4EO-S12 v1.1, a multimodal, multitemporal Earth Observation dataset designed for pretraining large-scale foundation models. Building on the success of SSL4EO-S12, this extension updates the previous version to fix geospatial alignment inaccuracies and the inefficent data structure. The dataset allows low-barrier, analysis-ready data loading while maintaining the predecessor's spatial coverage of the world's 10,000 largest cities and surrounding geographies, resulting in 246k time series with nearly one million image patches. We package each time series in Zarr file format stored in WebDataset tar shards for efficient data loading and representation of meta-information such as cloud masks. We add new modalities for elevation, land-cover, and vegetation to support multimodal pre-training. Released under the CC-BY-4.0 license, SSL4EO-S12 v1.1 facilitates open research and provides a robust foundation for future advancements in self-supervised learning and geospatial analysis. The dataset is available online through https://huggingface.co/datasets/embed2scale/SSL4EO-S12-v1.1.
♻ ☆ LeafNet: A Large-Scale Dataset and Comprehensive Benchmark for Foundational Vision-Language Understanding of Plant Diseases
Foundation models and vision-language pre-training have significantly advanced Vision-Language Models (VLMs), enabling multimodal processing of visual and linguistic data. However, their application in domain-specific agricultural tasks, such as plant pathology, remains limited due to the lack of large-scale, comprehensive multimodal image--text datasets and benchmarks. To address this gap, we introduce LeafNet, a comprehensive multimodal dataset, and LeafBench, a visual question-answering benchmark developed to systematically evaluate the capabilities of VLMs in understanding plant diseases. The dataset comprises 186,000 leaf digital images spanning 97 disease classes, paired with metadata, generating 13,950 question-answer pairs spanning six critical agricultural tasks. The questions assess various aspects of plant pathology understanding, including visual symptom recognition, taxonomic relationships, and diagnostic reasoning. Benchmarking 12 state-of-the-art VLMs on our LeafBench dataset, we reveal substantial disparity in their disease understanding capabilities. Our study shows performance varies markedly across tasks: binary healthy--diseased classification exceeds 90\% accuracy, while fine-grained pathogen and species identification remains below 65\%. Direct comparison between vision-only models and VLMs demonstrates the critical advantage of multimodal architectures: fine-tuned VLMs outperform traditional vision models, confirming that integrating linguistic representations significantly enhances diagnostic precision. These findings highlight critical gaps in current VLMs for plant pathology applications and underscore the need for LeafBench as a rigorous framework for methodological advancement and progress evaluation toward reliable AI-assisted plant disease diagnosis. Code is available at https://github.com/EnalisUs/LeafBench.
comment: 26 pages, 13 figures and 8 tables
♻ ☆ cadrille: Multi-modal CAD Reconstruction with Reinforcement Learning ICLR 2026
Computer-Aided Design (CAD) plays a central role in engineering and manufacturing, making it possible to create precise and editable 3D models. Using a variety of sensor or user-provided data as inputs for CAD reconstruction can democratize access to design applications. However, existing methods typically focus on a single input modality, such as point clouds, images, or text, which limits their generalizability and robustness. Leveraging recent advances in vision-language models (VLM), we propose a multi-modal CAD reconstruction model that simultaneously processes all three input modalities. Inspired by large language model (LLM) training paradigms, we adopt a two-stage pipeline: supervised fine-tuning (SFT) on large-scale procedurally generated data, followed by reinforcement learning (RL) fine-tuning using online feedback, obtained programatically. Furthermore, we are the first to explore RL fine-tuning of LLMs for CAD tasks demonstrating that online RL algorithms such as Group Relative Preference Optimization (GRPO) outperform offline alternatives. In the DeepCAD benchmark, our SFT model outperforms existing single-modal approaches in all three input modalities simultaneously. More importantly, after RL fine-tuning, cadrille sets new state-of-the-art on three challenging datasets, including a real-world one. Code is avaliable at https://github.com/col14m/cadrille .
comment: ICLR 2026 (Oral)
♻ ☆ Long Grounded Thoughts: Synthesizing Visual Problems and Reasoning Chains at Scale
Despite rapid progress, multimodal reasoning still lacks a systematic approach to synthesize large-scale vision-centric datasets beyond visual math. We introduce a framework able to synthesize vision-centric problems spanning diverse levels of complexity, and the resulting dataset with over 1M high-quality problems including: reasoning traces, preference data, and instruction prompts supporting SFT, offline and online RL. Our vision-centric synthesis framework uses a two-stage process focusing on: (1) generating diverse verifiable questions from existing images at scale, and (2) creating complex compositional visual problems by merging simpler questions. Remarkably, finetuning Qwen2.5-VL-7B on our data outperforms existing open-data baselines across evaluated vision-centric benchmarks, and our best configurations match or surpass strong closed-data models such as MiMo-VL-7B-RL on Vstar Bench, CV-Bench and MMStar-V. Notably, despite being entirely vision-centric, our data transfers positively to text-only reasoning (MMLU-Pro, +3.7%) and audio reasoning (MMAU, +1.32%), demonstrating its effectiveness. Similarly, despite containing no embodied visual data, we observe notable gains (NiEH, +8.8%) when evaluating open-ended embodied QA. Lastly, we use our data to comprehensively analyze at scale (1M+) the entire VLM post-training pipeline showing that (i) SFT on high-quality data with cognitive behaviors on reasoning traces is essential to scale online RL, (ii) offline RL could match online RL's performance while disaggregating compute demands, and, (iii) SFT on high quality data also improve out-of-domain, cross-modality transfer.
♻ ☆ A Fully Interpretable Statistical Approach for Roadside LiDAR Background Subtraction
We present a fully interpretable and flexible statistical method for background subtraction in roadside LiDAR data, aimed at enhancing infrastructure-based perception in automated driving. Our approach introduces both a Gaussian distribution grid (GDG), which models the spatial statistics of the background using background-only scans, and a filtering algorithm that uses this representation to classify LiDAR points as foreground or background. The method supports diverse LiDAR types, including multiline 360 degree and micro-electro-mechanical systems (MEMS) sensors, and adapts to various configurations. Evaluated on the publicly available RCooper dataset, it outperforms state-of-the-art techniques in accuracy and flexibility, even with minimal background data. Its efficient implementation ensures reliable performance on low-resource hardware, enabling scalable real-world deployment.
♻ ☆ DreamAnywhere: Object-Centric Panoramic 3D Scene Generation WACV 2026
Recent advances in text-to-3D scene generation have demonstrated significant potential to transform content creation across multiple industries. Although the research community has made impressive progress in addressing the challenges of this complex task, existing methods often generate environments that are only front-facing, lack visual fidelity, exhibit limited scene understanding, and are typically fine-tuned for either indoor or outdoor settings. In this work, we address these issues and propose DreamAnywhere, a modular system for the fast generation and prototyping of 3D scenes. Our system synthesizes a 360° panoramic image from text, decomposes it into background and objects, constructs a complete 3D representation through hybrid inpainting, and lifts object masks to detailed 3D objects that are placed in the virtual environment. DreamAnywhere supports immersive navigation and intuitive object-level editing, making it ideal for scene exploration, visual mock-ups, and rapid prototyping -- all with minimal manual modeling. These features make our system particularly suitable for low-budget movie production, enabling quick iteration on scene layout and visual tone without the overhead of traditional 3D workflows. Our modular pipeline is highly customizable as it allows components to be replaced independently. Compared to current state-of-the-art text and image-based 3D scene generation approaches, DreamAnywhere shows significant improvements in coherence in novel view synthesis and achieves competitive image quality, demonstrating its effectiveness across diverse and challenging scenarios. A comprehensive user study demonstrates a clear preference for our method over existing approaches, validating both its technical robustness and practical usefulness.
comment: WACV 2026 Oral
♻ ☆ Text-Guided Layer Fusion Mitigates Hallucination in Multimodal LLMs
Multimodal large language models (MLLMs) typically rely on a single late-layer feature from a frozen vision encoder, leaving the encoder's rich hierarchy of visual cues under-utilized. MLLMs still suffer from visually ungrounded hallucinations, often relying on language priors rather than image evidence. While many prior mitigation strategies operate on the text side, they leave the visual representation unchanged and do not exploit the rich hierarchy of features encoded across vision layers. Existing multi-layer fusion methods partially address this limitation but remain static, applying the same layer mixture regardless of the query. In this work, we introduce TGIF (Text-Guided Inter-layer Fusion), a lightweight module that treats encoder layers as depth-wise "experts" and predicts a prompt-dependent fusion of visual features. TGIF follows the principle of direct external fusion, requires no vision-encoder updates, and adds minimal overhead. Integrated into LLaVA-1.5-7B, TGIF provides consistent improvements across hallucination, OCR, and VQA benchmarks, while preserving or improving performance on ScienceQA, GQA, and MMBench. These results suggest that query-conditioned, hierarchy-aware fusion is an effective way to strengthen visual grounding and reduce hallucination in modern MLLMs.
♻ ☆ Prompt Reinjection: Alleviating Prompt Forgetting in Multimodal Diffusion Transformers
Multimodal Diffusion Transformers (MMDiTs) for text-to-image generation maintain separate text and image branches, with bidirectional information flow between text tokens and visual latents throughout denoising. In this setting, we observe a prompt forgetting phenomenon: the semantics of the prompt representation in the text branch is progressively forgotten as depth increases. We further verify this effect on three representative MMDiTs--SD3, SD3.5, and FLUX.1 by probing linguistic attributes of the representations over the layers in the text branch. Motivated by these findings, we introduce a training-free approach, prompt reinjection, which reinjects prompt representations from early layers into later layers to alleviate this forgetting. Experiments on GenEval, DPG, and T2I-CompBench++ show consistent gains in instruction-following capability, along with improvements on metrics capturing preference, aesthetics, and overall text--image generation quality.
comment: 18 pages
♻ ☆ Towards Human-AI Accessibility Mapping in India: VLM-Guided Annotations and POI-Centric Analysis in Chandigarh AAAI 2026
Project Sidewalk is a web-based platform that enables crowdsourcing accessibility of sidewalks at city-scale by virtually walking through city streets using Google Street View. The tool has been used in 40 cities across the world, including the US, Mexico, Chile, and Europe. In this paper, we describe adaptation efforts to enable deployment in Chandigarh, India, including modifying annotation types, provided examples, and integrating VLM-based mission guidance, which adapts instructions based on a street scene and metadata analysis. Our evaluation with 3 annotators indicates the utility of AI-mission guidance with an average score of 4.66. Using this adapted Project Sidewalk tool, we conduct a Points of Interest (POI)-centric accessibility analysis for three sectors in Chandigarh with very different land uses, residential, commercial and institutional covering about 40 km of sidewalks. Across 40 km of roads audited in three sectors and around 230 POIs, we identified 1,644 of 2,913 locations where infrastructure improvements could enhance accessibility.
comment: Accepted at the Second Workshop on AI for Urban Planning (AI4UP) at AAAI 2026
♻ ☆ VITAL: More Understandable Feature Visualization through Distribution Alignment and Relevant Information Flow ICCV 2025
Neural networks are widely adopted to solve complex and challenging tasks. Especially in high-stakes decision-making, understanding their reasoning process is crucial, yet proves challenging for modern deep networks. Feature visualization (FV) is a powerful tool to decode what information neurons are responding to and hence to better understand the reasoning behind such networks. In particular, in FV we generate human-understandable images that reflect the information detected by neurons of interest. However, current methods often yield unrecognizable visualizations, exhibiting repetitive patterns and visual artifacts that are hard to understand for a human. To address these problems, we propose to guide FV through statistics of real image features combined with measures of relevant network flow to generate prototypical images. Our approach yields human-understandable visualizations that both qualitatively and quantitatively improve over state-of-the-art FVs across various architectures. As such, it can be used to decode which information the network uses, complementing mechanistic circuits that identify where it is encoded. Code is available at: https://github.com/adagorgun/VITAL
comment: Accepted at the International Conference on Computer Vision 2025 (ICCV 2025). Code is available at: https://github.com/adagorgun/VITAL
♻ ☆ Multispectral airborne laser scanning for tree species classification: a benchmark of machine learning and deep learning algorithms
Climate-smart and biodiversity-preserving forestry demands precise information on forest resources, extending to the individual tree level. Multispectral airborne laser scanning (ALS) has shown promise in automated point cloud processing, but challenges remain in leveraging deep learning techniques and identifying rare tree species in class-imbalanced datasets. This study addresses these gaps by conducting a comprehensive benchmark of deep learning and traditional shallow machine learning methods for tree species classification. For the study, we collected high-density multispectral ALS data ($>1000$ $\mathrm{pts}/\mathrm{m}^2$) at three wavelengths using the FGI-developed HeliALS system, complemented by existing Optech Titan data (35 $\mathrm{pts}/\mathrm{m}^2$), to evaluate the species classification accuracy of various algorithms in a peri-urban study area located in southern Finland. We established a field reference dataset of 6326 segments across nine species using a newly developed browser-based crowdsourcing tool, which facilitated efficient data annotation. The ALS data, including a training dataset of 1065 segments, was shared with the scientific community to foster collaborative research and diverse algorithmic contributions. Based on 5261 test segments, our findings demonstrate that point-based deep learning methods, particularly a point transformer model, outperformed traditional machine learning and image-based deep learning approaches on high-density multispectral point clouds. For the high-density ALS dataset, a point transformer model provided the best performance reaching an overall (macro-average) accuracy of 87.9% (74.5%) with a training set of 1065 segments and 92.0% (85.1%) with a larger training set of 5000 segments.
♻ ☆ FedX: Explanation-Guided Pruning for Communication-Efficient Federated Learning in Remote Sensing
Federated learning (FL) enables the collaborative training of deep neural networks across decentralized data archives (i.e., clients), where each client stores data locally and only shares model updates with a central server. This makes FL a suitable learning paradigm for remote sensing (RS) image classification tasks, where data centralization may be restricted due to legal and privacy constraints. However, a key challenge in applying FL to RS tasks is the communication overhead caused by the frequent exchange of large model updates between clients and the central server. To address this issue, in this paper we propose a novel strategy (denoted as FedX) that uses explanation-guided pruning to reduce communication overhead by minimizing the size of the transmitted models without compromising performance. FedX leverages backpropagation-based explanation methods to estimate the task-specific importance of model components and prunes the least relevant ones at the central server. The resulting sparse global model is then sent to clients, substantially reducing communication overhead. We evaluate FedX on multi-label scene classification using the BigEarthNet-S2 dataset and single-label scene classification using the EuroSAT dataset. Experimental results show the success of FedX in significantly reducing the number of shared model parameters while enhancing the generalization capability of the global model, compared to both unpruned model and state-of-the-art pruning methods. The code of FedX will be available at https://git.tu-berlin.de/rsim/FedX.
comment: Accepted at the IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
♻ ☆ Cross-Modal Purification and Fusion for Small-Object RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
♻ ☆ GS-ProCams: Gaussian Splatting-based Projector-Camera Systems
We present GS-ProCams, the first Gaussian Splatting-based framework for projector-camera systems (ProCams). GS-ProCams is not only view-agnostic but also significantly enhances the efficiency of projection mapping (PM) that requires establishing geometric and radiometric mappings between the projector and the camera. Previous CNN-based ProCams are constrained to a specific viewpoint, limiting their applicability to novel perspectives. In contrast, NeRF-based ProCams support view-agnostic projection mapping, however, they require an additional co-located light source and demand significant computational and memory resources. To address this issue, we propose GS-ProCams that employs 2D Gaussian for scene representations, and enables efficient view-agnostic ProCams applications. In particular, we explicitly model the complex geometric and photometric mappings of ProCams using projector responses, the projection surface's geometry and materials represented by Gaussians, and the global illumination component. Then, we employ differentiable physically-based rendering to jointly estimate them from captured multi-view projections. Compared to state-of-the-art NeRF-based methods, our GS-ProCams eliminates the need for additional devices, achieving superior ProCams simulation quality. It also uses only 1/10 of the GPU memory for training and is 900 times faster in inference speed. Please refer to our project page for the code and dataset: https://realqingyue.github.io/GS-ProCams/.
comment: This version includes updated experimental results after an implementation fix
♻ ☆ VLCE: A Knowledge-Enhanced Framework for Image Description in Disaster Assessment
The processes of classification and segmentation utilizing artificial intelligence play a vital role in the automation of disaster assessments. However, contemporary VLMs produce details that are inadequately aligned with the objectives of disaster assessment, primarily due to their deficiency in domain knowledge and the absence of a more refined descriptive process. This research presents the Vision Language Caption Enhancer (VLCE), a dedicated multimodal framework aimed at integrating external semantic knowledge from ConceptNet and WordNet to improve the captioning process. The objective is to produce disaster-specific descriptions that effectively convert raw visual data into actionable intelligence. VLCE utilizes two separate architectures: a CNN-LSTM model that incorporates a ResNet50 backbone, pretrained on EuroSat for satellite imagery (xBD dataset), and a Vision Transformer developed for UAV imagery (RescueNet dataset). In various architectural frameworks and datasets, VLCE exhibits a consistent advantage over baseline models such as LLaVA and QwenVL. Our optimal configuration reaches an impressive 95.33\% on InfoMetIC for UAV imagery while also demonstrating strong performance across satellite imagery. The proposed framework signifies a significant transition from basic visual classification to the generation of comprehensive situational intelligence, demonstrating immediate applicability for implementation in real-time disaster assessment systems.
comment: 28 pages, 30 figures, 1 algorithms
♻ ☆ Prompts to Summaries: Zero-Shot Language-Guided Video Summarization with Large Language and Video Models
The explosive growth of video data intensified the need for flexible user-controllable summarization tools that operate without training data. Existing methods either rely on domain-specific datasets, limiting generalization, or cannot incorporate user intent expressed in natural language. We introduce Prompts-to-Summaries: the first zero-shot, text-queryable video-summarizer that converts off-the-shelf video-language models (VidLMs) captions into user-guided skims via large-language-models (LLMs) judging, without the use of training data, beating unsupervised and matching supervised methods. Our pipeline (i) segments video into scenes, (ii) produces scene descriptions with a memory-efficient batch prompting scheme that scales to hours on a single GPU, (iii) scores scene importance with an LLM via tailored prompts, and (iv) propagates scores to frames using new consistency (temporal coherence) and uniqueness (novelty) metrics for fine-grained frame importance. On SumMe and TVSum, our approach surpasses all prior data-hungry unsupervised methods and performs competitively on the Query-Focused Video Summarization benchmark, where the competing methods require supervised frame-level importance. We release VidSum-Reason, a query-driven dataset featuring long-tailed concepts and multi-step reasoning, where our framework serves as the first challenging baseline. Overall, we demonstrate that pretrained multi-modal models, when orchestrated with principled prompting and score propagation, provide a powerful foundation for universal, text-queryable video summarization.
♻ ☆ THUNDER: Tile-level Histopathology image UNDERstanding benchmark NeurIPS 2025
Progress in a research field can be hard to assess, in particular when many concurrent methods are proposed in a short period of time. This is the case in digital pathology, where many foundation models have been released recently to serve as feature extractors for tile-level images, being used in a variety of downstream tasks, both for tile- and slide-level problems. Benchmarking available methods then becomes paramount to get a clearer view of the research landscape. In particular, in critical domains such as healthcare, a benchmark should not only focus on evaluating downstream performance, but also provide insights about the main differences between methods, and importantly, further consider uncertainty and robustness to ensure a reliable usage of proposed models. For these reasons, we introduce THUNDER, a tile-level benchmark for digital pathology foundation models, allowing for efficient comparison of many models on diverse datasets with a series of downstream tasks, studying their feature spaces and assessing the robustness and uncertainty of predictions informed by their embeddings. THUNDER is a fast, easy-to-use, dynamic benchmark that can already support a large variety of state-of-the-art foundation, as well as local user-defined models for direct tile-based comparison. In this paper, we provide a comprehensive comparison of 23 foundation models on 16 different datasets covering diverse tasks, feature analysis, and robustness. The code for THUNDER is publicly available at https://github.com/MICS-Lab/thunder.
comment: Accepted at NeurIPS 2025 Datasets and Benchmarks Track (Spotlight)
♻ ☆ Towards Geometric and Textural Consistency 3D Scene Generation via Single Image-guided Model Generation and Layout Optimization
In recent years, 3D generation has made great strides in both academia and industry. However, generating 3D scenes from a single RGB image remains a significant challenge, as current approaches often struggle to ensure both object generation quality and scene coherence in multi-object scenarios. To overcome these limitations, we propose a novel three-stage framework for 3D scene generation with explicit geometric representations and high-quality textural details via single image-guided model generation and spatial layout optimization. Our method begins with an image instance segmentation and inpainting phase, which recovers missing details of occluded objects in the input images, thereby achieving complete generation of foreground 3D assets. Subsequently, our approach captures the spatial geometry of reference image by constructing pseudo-stereo viewpoint for camera parameter estimation and scene depth inference, while employing a model selection strategy to ensure optimal alignment between the 3D assets generated in the previous step and the input. Finally, through model parameterization and minimization of the Chamfer distance between point clouds in 3D and 2D space, our approach optimizes layout parameters to produce an explicit 3D scene representation that maintains precise alignment with input guidance image. Extensive experiments on multi-object scene image sets have demonstrated that our approach not only outperforms state-of-the-art methods in terms of geometric accuracy and texture fidelity of individual generated 3D models, but also has significant advantages in scene layout synthesis.
comment: 14 pages, 9 figures, Project page: https://xdlbw.github.io/sing3d/
♻ ☆ Geometry-Aware Rotary Position Embedding for Consistent Video World Model
Predictive world models that simulate future observations under explicit camera control are fundamental to interactive AI. Despite rapid advances, current systems lack spatial persistence: they fail to maintain stable scene structures over long trajectories, frequently hallucinating details when cameras revisit previously observed locations. We identify that this geometric drift stems from reliance on screen-space positional embeddings, which conflict with the projective geometry required for 3D consistency. We introduce \textbf{ViewRope}, a geometry-aware encoding that injects camera-ray directions directly into video transformer self-attention layers. By parameterizing attention with relative ray geometry rather than pixel locality, ViewRope provides a model-native inductive bias for retrieving 3D-consistent content across temporal gaps. We further propose \textbf{Geometry-Aware Frame-Sparse Attention}, which exploits these geometric cues to selectively attend to relevant historical frames, improving efficiency without sacrificing memory consistency. We also present \textbf{ViewBench}, a diagnostic suite measuring loop-closure fidelity and geometric drift. Our results demonstrate that ViewRope substantially improves long-term consistency while reducing computational costs.
♻ ☆ DARB-Splatting: Generalizing Splatting with Decaying Anisotropic Radial Basis Functions
Splatting-based 3D reconstruction methods have gained popularity with the advent of 3D Gaussian Splatting, efficiently synthesizing high-quality novel views. These methods commonly resort to using exponential family functions, such as the Gaussian function, as reconstruction kernels due to their anisotropic nature, ease of projection, and differentiability in rasterization. However, the field remains restricted to variations within the exponential family, leaving generalized reconstruction kernels largely underexplored, partly due to the lack of easy integrability in 3D to 2D projections. In this light, we show that a class of decaying anisotropic radial basis functions (DARBFs), which are non-negative functions of the Mahalanobis distance, supports splatting by approximating the Gaussian function's closed-form integration advantage. With this fresh perspective, we demonstrate varying performances across selected DARB reconstruction kernels, achieving comparable training convergence and memory footprints, with on-par PSNR, SSIM, and LPIPS results.
comment: Link to the project page: https://github.com/viruthshaan/darb-splatting/
♻ ☆ MMS-VPR: Multimodal Street-Level Visual Place Recognition Dataset and Benchmark
Existing visual place recognition (VPR) datasets predominantly rely on vehicle-mounted imagery, offer limited multimodal diversity, and underrepresent dense pedestrian street scenes, particularly in non-Western urban contexts. We introduce MMS-VPR, a large-scale multimodal dataset for street-level place recognition in pedestrian-only environments. MMS-VPR comprises 110,529 images and 2,527 video clips across 208 locations in a ~70,800 $m^2$ open-air commercial district in Chengdu, China. Field data were collected in 2024, while social media data span seven years (2019-2025), providing both fine-grained temporal granularity and long-term temporal coverage. Each location features comprehensive day-night coverage, multiple viewing angles, and multimodal annotations including GPS coordinates, timestamps, and semantic textual metadata. We further release MMS-VPRlib, a unified benchmarking platform that consolidates commonly used VPR datasets and state-of-the-art methods under a standardized, reproducible pipeline. MMS-VPRlib provides modular components for data pre-processing, multimodal modeling (CNN/RNN/Transformer), signal enhancement, alignment, fusion, and performance evaluation. This platform moves beyond traditional image-only paradigms, enabling systematic exploitation of complementary visual, video, and textual modalities. The dataset is available at https://huggingface.co/datasets/Yiwei-Ou/MMS-VPR and the benchmark at https://github.com/yiasun/MMS-VPRlib.
comment: Under review
♻ ☆ Efficient Semi-Supervised Adversarial Training via Latent Clustering-Based Data Reduction ICML 2024
Learning robust models under adversarial settings is widely recognized as requiring a considerably large number of training samples. Recent work proposes semi-supervised adversarial training (SSAT), which utilizes external unlabeled or synthetically generated data and is currently the state of the art. However, SSAT requires substantial extra data to attain high robustness, resulting in prolonged training time and increased memory usage. In this paper, we propose data reduction strategies to improve the efficiency of SSAT by optimizing the amount of additional data incorporated. Specifically, we design novel latent clustering-based techniques to select or generate a small, critical subset of data samples near the model's decision boundary. While focusing on boundary-adjacent points, our methods maintain a balanced ratio between boundary and non-boundary data points, thereby avoiding overfitting. Comprehensive experiments across image benchmarks demonstrate that our methods can effectively reduce SSAT's data requirements and computational costs while preserving its strong robustness advantages. In particular, our latent-space selection scheme based on k-means clustering and our guided diffusion-based approach with LCG-KM are the most effective, achieving nearly identical robust accuracies with 5 times to 10 times less unlabeled data. When compared to full SSAT trained to convergence, our methods reduce total runtime by approximately 3 times to 4 times due to strategic prioritization of unlabeled data.
comment: Shorter version of this work accepted by NextGenAISafety Workshop at ICML 2024
♻ ☆ Pyramidal Patchification Flow for Visual Generation ICLR 2026
Diffusion transformers (DiTs) adopt Patchify, mapping patch representations to token representations through linear projections, to adjust the number of tokens input to DiT blocks and thus the computation cost. Instead of a single patch size for all the timesteps, we introduce a Pyramidal Patchification Flow (PPFlow) approach: Large patch sizes are used for high noise timesteps and small patch sizes for low noise timesteps; Linear projections are learned for each patch size; and Unpatchify is accordingly modified. Unlike Pyramidal Flow, our approach operates over full latent representations other than pyramid representations, and adopts the normal denoising process without requiring the renoising trick. We demonstrate the effectiveness of our approach through two training manners. Training from scratch achieves a $1.6\times$ ($2.0\times$) inference speed over SiT-B/2 for 2-level (3-level) pyramid patchification with slightly lower training FLOPs and similar image generation performance. Training from pretrained normal DiTs achieves even better performance with small training time. The code and checkpoint are at https://github.com/fudan-generative-vision/PPFlow.
comment: ICLR 2026
♻ ☆ TTSA3R: Training-Free Temporal-Spatial Adaptive Persistent State for Streaming 3D Reconstruction
Streaming recurrent models enable efficient 3D reconstruction by maintaining persistent state representations. However, they suffer from catastrophic forgetting over long sequences due to balancing historical information with new observations. Recent methods alleviate this by deriving adaptive signals from attention perspective, but they operate on single dimensions without considering temporal and spatial consistency. To this end, we propose a training-free framework termed TTSA3R that leverages both temporal state evolution and spatial observation quality for adaptive state updates in 3D reconstruction. In particular, we devise a Temporal Adaptive Update Module that regulates update magnitude by analyzing temporal state evolution patterns. Then, a Spatial Contextual Update Module is introduced to localize spatial regions that require updates through observation-state alignment and scene dynamics. These complementary signals are finally fused to determine the state updating strategies. Extensive experiments demonstrate the effectiveness of TTSA3R in diverse 3D tasks. Moreover, our method exhibits only 1.33x error increase compared to over 4x degradation in the baseline model on extended sequences of 3D reconstruction, significantly improving long-term reconstruction stability. Our codes are available at https://github.com/anonus2357/ttsa3r.
♻ ☆ ZeroScene: A Zero-Shot Framework for 3D Scene Generation from a Single Image and Controllable Texture Editing
In the field of 3D content generation, single image scene reconstruction methods still struggle to simultaneously ensure the quality of individual assets and the coherence of the overall scene in complex environments, while texture editing techniques often fail to maintain both local continuity and multi-view consistency. In this paper, we propose a novel system ZeroScene, which leverages the prior knowledge of large vision models to accomplish both single image-to-3D scene reconstruction and texture editing in a zero-shot manner. ZeroScene extracts object-level 2D segmentation and depth information from input images to infer spatial relationships within the scene. It then jointly optimizes 3D and 2D projection losses of the point cloud to update object poses for precise scene alignment, ultimately constructing a coherent and complete 3D scene that encompasses both foreground and background. Moreover, ZeroScene supports texture editing of objects in the scene. By imposing constraints on the diffusion model and introducing a mask-guided progressive image generation strategy, we effectively maintain texture consistency across multiple viewpoints and further enhance the realism of rendered results through Physically Based Rendering (PBR) material estimation. Experimental results demonstrate that our framework not only ensures the geometric and appearance accuracy of generated assets, but also faithfully reconstructs scene layouts and produces highly detailed textures that closely align with text prompts.
comment: 16 pages, 15 figures, Eurographics 2026, Project page: https://xdlbw.github.io/ZeroScene/
♻ ☆ Train Short, Inference Long: Training-free Horizon Extension for Autoregressive Video Generation
Autoregressive video diffusion models have emerged as a scalable paradigm for long video generation. However, they often suffer from severe extrapolation failure, where rapid error accumulation leads to significant temporal degradation when extending beyond training horizons. We identify that this failure primarily stems from the spectral bias of 3D positional embeddings and the lack of dynamic priors in noise sampling. To address these issues, we propose FLEX (Frequency-aware Length EXtension), a training-free inference-time framework that bridges the gap between short-term training and long-term inference. FLEX introduces Frequency-aware RoPE Modulation to adaptively interpolate under-trained low-frequency components while extrapolating high-frequency ones to preserve multi-scale temporal discriminability. This is integrated with Antiphase Noise Sampling (ANS) to inject high-frequency dynamic priors and Inference-only Attention Sink to anchor global structure. Extensive evaluations on VBench demonstrate that FLEX significantly outperforms state-of-the-art models at 6x extrapolation (30s duration) and matches the performance of long-video fine-tuned baselines at 12x scale (60s duration). As a plug-and-play augmentation, FLEX seamlessly integrates into existing inference pipelines for horizon extension. It effectively pushes the generation limits of models such as LongLive, supporting consistent and dynamic video synthesis at a 4-minute scale. Project page is available at https://ga-lee.github.io/FLEX_demo.
comment: 19 pages, 15 figures
♻ ☆ APCoTTA: Continual Test-Time Adaptation for Semantic Segmentation of Airborne LiDAR Point Clouds
Airborne laser scanning (ALS) point cloud semantic segmentation is a fundamental task for large-scale 3D scene understanding. Fixed models deployed in real-world scenarios often suffer from performance degradation due to continuous domain shifts caused by environmental and sensor changes. Continuous Test-Time Adaptation (CTTA) enables adaptation to evolving unlabeled domains, but its application to ALS point clouds remains underexplored, hindered by the lack of benchmarks and the risks of catastrophic forgetting and error accumulation. To address these challenges, we propose APCoTTA (ALS Point cloud Continuous Test-Time Adaptation), a novel CTTA framework tailored for ALS point cloud semantic segmentation. APCoTTA consists of three key components. First, we adapt a gradient-driven layer selection mechanism for ALS point clouds, selectively updating low-confidence layers while freezing stable ones to preserve source knowledge and mitigate catastrophic forgetting. Second, an entropy-based consistency loss discards unreliable samples and enforces consistency regularization solely on reliable ones, effectively reducing error accumulation and improving adaptation stability. Third, a random parameter interpolation mechanism stochastically blends adapted parameters with source model parameters, further balancing target adaptation and source knowledge retention. Finally, we construct two benchmarks, ISPRSC and H3DC, to address the lack of CTTA benchmarks for ALS point cloud segmentation. Extensive experiments demonstrate that APCoTTA achieves superior performance on both benchmarks, improving mIoU by approximately 9\% and 14\% over direct inference. The new benchmarks and code are available at https://github.com/Gaoyuan2/APCoTTA.
comment: 18 pages,12 figures
♻ ☆ Hierarchical Refinement of Universal Multimodal Attacks on Vision-Language Models
Existing adversarial attacks for VLP models are mostly sample-specific, resulting in substantial computational overhead when scaled to large datasets or new scenarios. To overcome this limitation, we propose Hierarchical Refinement Attack (HRA), a multimodal universal attack framework for VLP models. For the image modality, we refine the optimization path by leveraging a temporal hierarchy of historical and estimated future gradients to avoid local minima and stabilize universal perturbation learning. For the text modality, it hierarchically models textual importance by considering both intra- and inter-sentence contributions to identify globally influential words, which are then used as universal text perturbations. Extensive experiments across various downstream tasks, VLP models, and datasets, demonstrate the superior transferability of the proposed universal multimodal attacks.
comment: 10 pages, 7 figures
♻ ☆ Generating Findings for Jaw Cysts in Dental Panoramic Radiographs Using a GPT-Based VLM: A Preliminary Study on Building a Two-Stage Self-Correction Loop with Structured Output (SLSO) Framework
Vision-language models (VLMs) such as GPT (Generative Pre-Trained Transformer) have shown potential for medical image interpretation; however, challenges remain in generating reliable radiological findings in clinical practice, as exemplified by dental pathologies. This study proposes a Self-correction Loop with Structured Output (SLSO) framework as an integrated processing methodology to enhance the accuracy and reliability of AI-generated findings for jaw cysts in dental panoramic radiographs. Dental panoramic radiographs with jaw cysts were used to implement a 10-step integrated processing framework incorporating image analysis, structured data generation, tooth number extraction, consistency checking, and iterative regeneration. The framework functioned as an external validation mechanism for GPT outputs. Performance was compared against the conventional Chain-of-Thought (CoT) method across seven evaluation items: transparency, internal structure, borders, root resorption, tooth movement, relationships with other structures, and tooth number. The SLSO framework improved output accuracy for multiple items compared to the CoT method, with the most notable improvements observed in tooth number identification, tooth movement detection, and root resorption assessment. In successful cases, consistently structured outputs were achieved after up to five regenerations. The framework enforced explicit negative finding descriptions and suppressed hallucinations, although accurate identification of extensive lesions spanning multiple teeth remained limited. This investigation established the feasibility of the proposed integrated processing methodology and provided a foundation for future validation studies with larger, more diverse datasets.
comment: Revised manuscript; supplementary materials added. Submitted to Diagnostics
♻ ☆ CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding, and is already established as a critical modality in remote sensing. However, variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies, leading to camera-specific models with limited generalizability and inadequate cross-camera applicability. To address this bottleneck, we introduce CARL, a model for Camera-Agnostic Representation Learning across RGB, multispectral, and hyperspectral imaging modalities. To enable the conversion of a spectral image with any channel dimensionality to a camera-agnostic representation, we introduce a novel spectral encoder, featuring a self-attention-cross-attention mechanism, to distill salient spectral information into learned spectral representations. Spatio-spectral pre-training is achieved with a novel feature-based self-supervision strategy tailored to CARL. Large-scale experiments across the domains of medical imaging, autonomous driving, and satellite imaging demonstrate our model's unique robustness to spectral heterogeneity, outperforming on datasets with simulated and real-world cross-camera spectral variations. The scalability and versatility of the proposed approach position our model as a backbone for future spectral foundation models. Code and model weights are publicly available at https://github.com/IMSY-DKFZ/CARL.
♻ ☆ PartUV: Part-Based UV Unwrapping of 3D Meshes
UV unwrapping flattens 3D surfaces to 2D with minimal distortion, often requiring the complex surface to be decomposed into multiple charts. Although extensively studied, existing UV unwrapping methods frequently struggle with AI-generated meshes, which are typically noisy, bumpy, and poorly conditioned. These methods often produce highly fragmented charts and suboptimal boundaries, introducing artifacts and hindering downstream tasks. We introduce PartUV, a part-based UV unwrapping pipeline that generates significantly fewer, part-aligned charts while maintaining low distortion. Built on top of a recent learning-based part decomposition method PartField, PartUV combines high-level semantic part decomposition with novel geometric heuristics in a top-down recursive framework. It ensures each chart's distortion remains below a user-specified threshold while minimizing the total number of charts. The pipeline integrates and extends parameterization and packing algorithms, incorporates dedicated handling of non-manifold and degenerate meshes, and is extensively parallelized for efficiency. Evaluated across four diverse datasets, including man-made, CAD, AI-generated, and Common Shapes, PartUV outperforms existing tools and recent neural methods in chart count and seam length, achieves comparable distortion, exhibits high success rates on challenging meshes, and enables new applications like part-specific multi-tiles packing. Our project page is at https://www.zhaoningwang.com/PartUV.
comment: project page: https://www.zhaoningwang.com/PartUV
♻ ☆ INQUIRE-Search: Interactive Discovery in Large-Scale Biodiversity Databases
Many ecological questions center on complex phenomena, such as species interactions, behaviors, phenology, and responses to disturbance, that are inherently difficult to observe and sparsely documented. Community science platforms such as iNaturalist contain hundreds of millions of biodiversity images, which often contain evidence of these complex phenomena. However, current workflows that seek to discover and analyze this evidence often rely on manual inspection, leaving this information largely inaccessible at scale. We introduce INQUIRE-Search, an open-source system that uses natural language to enable scientists to rapidly search within an ecological image database like iNaturalist for specific phenomena, verify and export relevant observations, and use these outputs for downstream scientific analysis. Across five illustrative case studies, INQUIRE-Search concentrates relevant observations 3-25x more efficiently than comparable manual inspection budgets. These examples demonstrate how the system can be used for ecological inference, from analyzing seasonal variation in behavior across species to forest regrowth after wildfires. These examples illustrate a new paradigm for interactive, efficient, and scalable scientific discovery that can begin to unlock previously inaccessible scientific value in large-scale biodiversity datasets. Finally, we highlight how AI-enabled discovery tools for science require reframing aspects of the scientific process, including experiment design, data collection, survey effort, and uncertainty analysis.
comment: EV, JC, RKV contributed equally
♻ ☆ Demand Estimation with Text and Image Data
We propose a demand estimation approach that leverages unstructured data to infer substitution patterns. Using pre-trained deep learning models, we extract embeddings from product images and textual descriptions and incorporate them into a mixed logit demand model. This approach enables demand estimation even when researchers lack data on product attributes or when consumers value hard-to-quantify attributes such as visual design. Using a choice experiment, we show this approach substantially outperforms standard attribute-based models at counterfactual predictions of second choices. We also apply it to 40 product categories offered on Amazon.com and consistently find that unstructured data are informative about substitution patterns.
♻ ☆ Learning to Select Like Humans: Explainable Active Learning for Medical Imaging
Medical image analysis requires substantial labeled data for model training, yet expert annotation is expensive and time-consuming. Active learning (AL) addresses this challenge by strategically selecting the most informative samples for the annotation purpose, but traditional methods solely rely on predictive uncertainty while ignoring whether models learn from clinically meaningful features a critical requirement for clinical deployment. We propose an explainability-guided active learning framework that integrates spatial attention alignment into a sample acquisition process. Our approach advocates for a dual-criterion selection strategy combining: (i) classification uncertainty to identify informative examples, and (ii) attention misalignment with radiologist-defined regions-of-interest (ROIs) to target samples where the model focuses on incorrect features. By measuring misalignment between Grad-CAM attention maps and expert annotations using Dice similarity, our acquisition function judiciously identifies samples that enhance both predictive performance and spatial interpretability. We evaluate the framework using three expert-annotated medical imaging datasets, namely, BraTS (MRI brain tumors), VinDr-CXR (chest X-rays), and SIIM-COVID-19 (chest X-rays). Using only 570 strategically selected samples, our explainability-guided approach consistently outperforms random sampling across all the datasets, achieving 77.22% accuracy on BraTS, 52.37% on VinDr-CXR, and 52.66% on SIIM-COVID. Grad-CAM visualizations confirm that the models trained by our dual-criterion selection focus on diagnostically relevant regions, demonstrating that incorporating explanation guidance into sample acquisition yields superior data efficiency while maintaining clinical interpretability.
comment: Accepted for publication IEEE Conference on Artificial Intelligence 2026, Granada, Spain
♻ ☆ COGITAO: A Visual Reasoning Framework To Study Compositionality & Generalization
The ability to compose learned concepts and apply them in novel settings is key to human intelligence, but remains a persistent limitation in state-of-the-art machine learning models. To address this issue, we introduce COGITAO, a modular and extensible data generation framework and benchmark designed to systematically study compositionality and generalization in visual domains. Drawing inspiration from ARC-AGI's problem-setting, COGITAO constructs rule-based tasks which apply a set of transformations to objects in grid-like environments. It supports composition, at adjustable depth, over a set of 28 interoperable transformations, along with extensive control over grid parametrization and object properties. This flexibility enables the creation of millions of unique task rules -- surpassing concurrent datasets by several orders of magnitude -- across a wide range of difficulties, while allowing virtually unlimited sample generation per rule. We provide baseline experiments using state-of-the-art vision models, highlighting their consistent failures to generalize to novel combinations of familiar elements, despite strong in-domain performance. COGITAO is fully open-sourced, including all code and datasets, to support continued research in this field.
comment: 10 main pages, 3 figure, appendix available
♻ ☆ COOPERTRIM: Adaptive Data Selection for Uncertainty-Aware Cooperative Perception ICLR 2026
Cooperative perception enables autonomous agents to share encoded representations over wireless communication to enhance each other's live situational awareness. However, the tension between the limited communication bandwidth and the rich sensor information hinders its practical deployment. Recent studies have explored selection strategies that share only a subset of features per frame while striving to keep the performance on par. Nevertheless, the bandwidth requirement still stresses current wireless technologies. To fundamentally ease the tension, we take a proactive approach, exploiting the temporal continuity to identify features that capture environment dynamics, while avoiding repetitive and redundant transmission of static information. By incorporating temporal awareness, agents are empowered to dynamically adapt the sharing quantity according to environment complexity. We instantiate this intuition into an adaptive selection framework, COOPERTRIM, which introduces a novel conformal temporal uncertainty metric to gauge feature relevance, and a data-driven mechanism to dynamically determine the sharing quantity. To evaluate COOPERTRIM, we take semantic segmentation and 3D detection as example tasks. Across multiple open-source cooperative segmentation and detection models, COOPERTRIM achieves up to 80.28% and 72.52% bandwidth reduction respectively while maintaining a comparable accuracy. Relative to other selection strategies, COOPERTRIM also improves IoU by as much as 45.54% with up to 72% less bandwidth. Combined with compression strategies, COOPERTRIM can further reduce bandwidth usage to as low as 1.46% without compromising IoU performance. Qualitative results show COOPERTRIM gracefully adapts to environmental dynamics, localization error, and communication latency, demonstrating flexibility and paving the way for real-world deployment.
comment: Accepted in ICLR 2026
♻ ☆ FOCUS on Contamination: Hydrology-Informed Noise-Aware Learning for Geospatial PFAS Mapping
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants with significant public health impacts, yet large-scale monitoring remains severely limited due to the high cost and logistical challenges of field sampling. The lack of samples leads to difficulty simulating their spread with physical models and limited scientific understanding of PFAS transport in surface waters. Yet, rich geospatial and satellite-derived data describing land cover, hydrology, and industrial activity are widely available. We introduce FOCUS, a geospatial deep learning framework for PFAS contamination mapping that integrates sparse PFAS observations with large-scale environmental context, including priors derived from hydrological connectivity, land cover, source proximity, and sampling distance. These priors are integrated into a principled, noise-aware loss, yielding a robust training objective under sparse labels. Across extensive ablations, robustness analyses, and real-world validation, FOCUS consistently outperforms baselines including sparse segmentation, Kriging, and pollutant transport simulations, while preserving spatial coherence and scalability over large regions. Our results demonstrate how AI can support environmental science by providing screening-level risk maps that prioritize follow-up sampling and help connect potential sources to surface-water contamination patterns in the absence of complete physical models.
♻ ☆ Inference-Time Search Using Side Information for Diffusion-Based Image Reconstruction
Diffusion models have been widely used as powerful priors for solving inverse problems. However, existing approaches typically overlook side information that could significantly improve reconstruction quality, especially in severely ill-posed settings. In this work, we propose a novel inference-time search algorithm that guides the sampling process using side information. Our framework can be added to existing diffusion-based reconstruction pipelines in a plug-and-play manner, without requiring any training. Through extensive experiments across a range of inverse problems, including inpainting, super-resolution, and several deblurring tasks, and across multiple diffusion-based inverse problem solvers (DPS, DAPS, and MPGD), we show that augmenting each solver with our framework consistently improves the quality of the reconstructions over the corresponding original method. In order to demonstrate the generality of our approach, we consider diverse forms of side information, including reference images, textual descriptions, and anatomical MRI scans. We also show that our search-based approach outperforms other ways of incorporating side information, including reward gradient-based method. Code is available at \href{https://github.com/mahdi-farahbakhsh/DISS}{here}.
Machine Learning 150
☆ Ensemble-size-dependence of deep-learning post-processing methods that minimize an (un)fair score: motivating examples and a proof-of-concept solution
Fair scores reward ensemble forecast members that behave like samples from the same distribution as the verifying observations. They are therefore an attractive choice as loss functions to train data-driven ensemble forecasts or post-processing methods when large training ensembles are either unavailable or computationally prohibitive. The adjusted continuous ranked probability score (aCRPS) is fair and unbiased with respect to ensemble size, provided forecast members are exchangeable and interpretable as conditionally independent draws from an underlying predictive distribution. However, distribution-aware post-processing methods that introduce structural dependency between members can violate this assumption, rendering aCRPS unfair. We demonstrate this effect using two approaches designed to minimize the expected aCRPS of a finite ensemble: (1) a linear member-by-member calibration, which couples members through a common dependency on the sample ensemble mean, and (2) a deep-learning method, which couples members via transformer self-attention across the ensemble dimension. In both cases, the results are sensitive to ensemble size and apparent gains in aCRPS can correspond to systematic unreliability characterized by over-dispersion. We introduce trajectory transformers as a proof-of-concept that ensemble-size independence can be achieved. This approach is an adaptation of the Post-processing Ensembles with Transformers (PoET) framework and applies self-attention over lead time while preserving the conditional independence required by aCRPS. When applied to weekly mean $T_{2m}$ forecasts from the ECMWF subseasonal forecasting system, this approach successfully reduces systematic model biases whilst also improving or maintaining forecast reliability regardless of the ensemble size used in training (3 vs 9 members) or real-time forecasts (9 vs 100 members).
☆ Operationalising the Superficial Alignment Hypothesis via Task Complexity
The superficial alignment hypothesis (SAH) posits that large language models learn most of their knowledge during pre-training, and that post-training merely surfaces this knowledge. The SAH, however, lacks a precise definition, which has led to (i) different and seemingly orthogonal arguments supporting it, and (ii) important critiques to it. We propose a new metric called task complexity: the length of the shortest program that achieves a target performance on a task. In this framework, the SAH simply claims that pre-trained models drastically reduce the complexity of achieving high performance on many tasks. Our definition unifies prior arguments supporting the SAH, interpreting them as different strategies to find such short programs. Experimentally, we estimate the task complexity of mathematical reasoning, machine translation, and instruction following; we then show that these complexities can be remarkably low when conditioned on a pre-trained model. Further, we find that pre-training enables access to strong performances on our tasks, but it can require programs of gigabytes of length to access them. Post-training, on the other hand, collapses the complexity of reaching this same performance by several orders of magnitude. Overall, our results highlight that task adaptation often requires surprisingly little information -- often just a few kilobytes.
☆ Dex4D: Task-Agnostic Point Track Policy for Sim-to-Real Dexterous Manipulation
Learning generalist policies capable of accomplishing a plethora of everyday tasks remains an open challenge in dexterous manipulation. In particular, collecting large-scale manipulation data via real-world teleoperation is expensive and difficult to scale. While learning in simulation provides a feasible alternative, designing multiple task-specific environments and rewards for training is similarly challenging. We propose Dex4D, a framework that instead leverages simulation for learning task-agnostic dexterous skills that can be flexibly recomposed to perform diverse real-world manipulation tasks. Specifically, Dex4D learns a domain-agnostic 3D point track conditioned policy capable of manipulating any object to any desired pose. We train this 'Anypose-to-Anypose' policy in simulation across thousands of objects with diverse pose configurations, covering a broad space of robot-object interactions that can be composed at test time. At deployment, this policy can be zero-shot transferred to real-world tasks without finetuning, simply by prompting it with desired object-centric point tracks extracted from generated videos. During execution, Dex4D uses online point tracking for closed-loop perception and control. Extensive experiments in simulation and on real robots show that our method enables zero-shot deployment for diverse dexterous manipulation tasks and yields consistent improvements over prior baselines. Furthermore, we demonstrate strong generalization to novel objects, scene layouts, backgrounds, and trajectories, highlighting the robustness and scalability of the proposed framework.
comment: Project page: https://dex4d.github.io/
☆ Perceptive Humanoid Parkour: Chaining Dynamic Human Skills via Motion Matching
While recent advances in humanoid locomotion have achieved stable walking on varied terrains, capturing the agility and adaptivity of highly dynamic human motions remains an open challenge. In particular, agile parkour in complex environments demands not only low-level robustness, but also human-like motion expressiveness, long-horizon skill composition, and perception-driven decision-making. In this paper, we present Perceptive Humanoid Parkour (PHP), a modular framework that enables humanoid robots to autonomously perform long-horizon, vision-based parkour across challenging obstacle courses. Our approach first leverages motion matching, formulated as nearest-neighbor search in a feature space, to compose retargeted atomic human skills into long-horizon kinematic trajectories. This framework enables the flexible composition and smooth transition of complex skill chains while preserving the elegance and fluidity of dynamic human motions. Next, we train motion-tracking reinforcement learning (RL) expert policies for these composed motions, and distill them into a single depth-based, multi-skill student policy, using a combination of DAgger and RL. Crucially, the combination of perception and skill composition enables autonomous, context-aware decision-making: using only onboard depth sensing and a discrete 2D velocity command, the robot selects and executes whether to step over, climb onto, vault or roll off obstacles of varying geometries and heights. We validate our framework with extensive real-world experiments on a Unitree G1 humanoid robot, demonstrating highly dynamic parkour skills such as climbing tall obstacles up to 1.25m (96% robot height), as well as long-horizon multi-obstacle traversal with closed-loop adaptation to real-time obstacle perturbations.
☆ CrispEdit: Low-Curvature Projections for Scalable Non-Destructive LLM Editing
A central challenge in large language model (LLM) editing is capability preservation: methods that successfully change targeted behavior can quietly game the editing proxy and corrupt general capabilities, producing degenerate behaviors reminiscent of proxy/reward hacking. We present CrispEdit, a scalable and principled second-order editing algorithm that treats capability preservation as an explicit constraint, unifying and generalizing several existing editing approaches. CrispEdit formulates editing as constrained optimization and enforces the constraint by projecting edit updates onto the low-curvature subspace of the capability-loss landscape. At the crux of CrispEdit is expressing capability constraint via Bregman divergence, whose quadratic form yields the Gauss-Newton Hessian exactly and even when the base model is not trained to convergence. We make this second-order procedure efficient at the LLM scale using Kronecker-factored approximate curvature (K-FAC) and a novel matrix-free projector that exploits Kronecker structure to avoid constructing massive projection matrices. Across standard model-editing benchmarks, CrispEdit achieves high edit success while keeping capability degradation below 1% on average across datasets, significantly improving over prior editors.
☆ Stabilizing Test-Time Adaptation of High-Dimensional Simulation Surrogates via D-Optimal Statistics
Machine learning surrogates are increasingly used in engineering to accelerate costly simulations, yet distribution shifts between training and deployment often cause severe performance degradation (e.g., unseen geometries or configurations). Test-Time Adaptation (TTA) can mitigate such shifts, but existing methods are largely developed for lower-dimensional classification with structured outputs and visually aligned input-output relationships, making them unstable for the high-dimensional, unstructured and regression problems common in simulation. We address this challenge by proposing a TTA framework based on storing maximally informative (D-optimal) statistics, which jointly enables stable adaptation and principled parameter selection at test time. When applied to pretrained simulation surrogates, our method yields up to 7% out-of-distribution improvements at negligible computational cost. To the best of our knowledge, this is the first systematic demonstration of effective TTA for high-dimensional simulation regression and generative design optimization, validated on the SIMSHIFT and EngiBench benchmarks.
☆ Solving Parameter-Robust Avoid Problems with Unknown Feasibility using Reinforcement Learning ICLR 2026
Recent advances in deep reinforcement learning (RL) have achieved strong results on high-dimensional control tasks, but applying RL to reachability problems raises a fundamental mismatch: reachability seeks to maximize the set of states from which a system remains safe indefinitely, while RL optimizes expected returns over a user-specified distribution. This mismatch can result in policies that perform poorly on low-probability states that are still within the safe set. A natural alternative is to frame the problem as a robust optimization over a set of initial conditions that specify the initial state, dynamics and safe set, but whether this problem has a solution depends on the feasibility of the specified set, which is unknown a priori. We propose Feasibility-Guided Exploration (FGE), a method that simultaneously identifies a subset of feasible initial conditions under which a safe policy exists, and learns a policy to solve the reachability problem over this set of initial conditions. Empirical results demonstrate that FGE learns policies with over 50% more coverage than the best existing method for challenging initial conditions across tasks in the MuJoCo simulator and the Kinetix simulator with pixel observations.
comment: ICLR 2026. The project page can be found at https://oswinso.xyz/fge
☆ The Geometry of Alignment Collapse: When Fine-Tuning Breaks Safety
Fine-tuning aligned language models on benign tasks unpredictably degrades safety guardrails, even when training data contains no harmful content and developers have no adversarial intent. We show that the prevailing explanation, that fine-tuning updates should be orthogonal to safety-critical directions in high-dimensional parameter space, offers false reassurance: we show this orthogonality is structurally unstable and collapses under the dynamics of gradient descent. We then resolve this through a novel geometric analysis, proving that alignment concentrates in low-dimensional subspaces with sharp curvature, creating a brittle structure that first-order methods cannot detect or defend. While initial fine-tuning updates may indeed avoid these subspaces, the curvature of the fine-tuning loss generates second-order acceleration that systematically steers trajectories into alignment-sensitive regions. We formalize this mechanism through the Alignment Instability Condition, three geometric properties that, when jointly satisfied, lead to safety degradation. Our main result establishes a quartic scaling law: alignment loss grows with the fourth power of training time, governed by the sharpness of alignment geometry and the strength of curvature coupling between the fine-tuning task and safety-critical parameters. These results expose a structural blind spot in the current safety paradigm. The dominant approaches to safe fine-tuning address only the initial snapshot of a fundamentally dynamic problem. Alignment fragility is not a bug to be patched; it is an intrinsic geometric property of gradient descent on curved manifolds. Our results motivate the development of curvature-aware methods, and we hope will further enable a shift in alignment safety analysis from reactive red-teaming to predictive diagnostics for open-weight model deployment.
comment: 27 pages, 4 figures
☆ Neural Scaling Laws for Boosted Jet Tagging
The success of Large Language Models (LLMs) has established that scaling compute, through joint increases in model capacity and dataset size, is the primary driver of performance in modern machine learning. While machine learning has long been an integral component of High Energy Physics (HEP) data analysis workflows, the compute used to train state-of-the-art HEP models remains orders of magnitude below that of industry foundation models. With scaling laws only beginning to be studied in the field, we investigate neural scaling laws for boosted jet classification using the public JetClass dataset. We derive compute optimal scaling laws and identify an effective performance limit that can be consistently approached through increased compute. We study how data repetition, common in HEP where simulation is expensive, modifies the scaling yielding a quantifiable effective dataset size gain. We then study how the scaling coefficients and asymptotic performance limits vary with the choice of input features and particle multiplicity, demonstrating that increased compute reliably drives performance toward an asymptotic limit, and that more expressive, lower-level features can raise the performance limit and improve results at fixed dataset size.
comment: 9 pages, 6 figures
GLM-5: from Vibe Coding to Agentic Engineering
We present GLM-5, a next-generation foundation model designed to transition the paradigm of vibe coding to agentic engineering. Building upon the agentic, reasoning, and coding (ARC) capabilities of its predecessor, GLM-5 adopts DSA to significantly reduce training and inference costs while maintaining long-context fidelity. To advance model alignment and autonomy, we implement a new asynchronous reinforcement learning infrastructure that drastically improves post-training efficiency by decoupling generation from training. Furthermore, we propose novel asynchronous agent RL algorithms that further improve RL quality, enabling the model to learn from complex, long-horizon interactions more effectively. Through these innovations, GLM-5 achieves state-of-the-art performance on major open benchmarks. Most critically, GLM-5 demonstrates unprecedented capability in real-world coding tasks, surpassing previous baselines in handling end-to-end software engineering challenges. Code, models, and more information are available at https://github.com/zai-org/GLM-5.
☆ A Note on Non-Composability of Layerwise Approximate Verification for Neural Inference
A natural and informal approach to verifiable (or zero-knowledge) ML inference over floating-point data is: ``prove that each layer was computed correctly up to tolerance $δ$; therefore the final output is a reasonable inference result''. This short note gives a simple counterexample showing that this inference is false in general: for any neural network, we can construct a functionally equivalent network for which adversarially chosen approximation-magnitude errors in individual layer computations suffice to steer the final output arbitrarily (within a prescribed bounded range).
☆ Beyond Match Maximization and Fairness: Retention-Optimized Two-Sided Matching ICLR 2026
On two-sided matching platforms such as online dating and recruiting, recommendation algorithms often aim to maximize the total number of matches. However, this objective creates an imbalance, where some users receive far too many matches while many others receive very few and eventually abandon the platform. Retaining users is crucial for many platforms, such as those that depend heavily on subscriptions. Some may use fairness objectives to solve the problem of match maximization. However, fairness in itself is not the ultimate objective for many platforms, as users do not suddenly reward the platform simply because exposure is equalized. In practice, where user retention is often the ultimate goal, casually relying on fairness will leave the optimization of retention up to luck. In this work, instead of maximizing matches or axiomatically defining fairness, we formally define the new problem setting of maximizing user retention in two-sided matching platforms. To this end, we introduce a dynamic learning-to-rank (LTR) algorithm called Matching for Retention (MRet). Unlike conventional algorithms for two-sided matching, our approach models user retention by learning personalized retention curves from each user's profile and interaction history. Based on these curves, MRet dynamically adapts recommendations by jointly considering the retention gains of both the user receiving recommendations and those who are being recommended, so that limited matching opportunities can be allocated where they most improve overall retention. Naturally but importantly, empirical evaluations on synthetic and real-world datasets from a major online dating platform show that MRet achieves higher user retention, since conventional methods optimize matches or fairness rather than retention.
comment: Published as a conference paper at ICLR 2026
☆ Enabling Low-Latency Machine learning on Radiation-Hard FPGAs with hls4ml
This paper presents the first demonstration of a viable, ultra-fast, radiation-hard machine learning (ML) application on FPGAs, which could be used in future high-energy physics experiments. We present a three-fold contribution, with the PicoCal calorimeter, planned for the LHCb Upgrade II experiment, used as a test case. First, we develop a lightweight autoencoder to compress a 32-sample timing readout, representative of that of the PicoCal, into a two-dimensional latent space. Second, we introduce a systematic, hardware-aware quantization strategy and show that the model can be reduced to 10-bit weights with minimal performance loss. Third, as a barrier to the adoption of on-detector ML is the lack of support for radiation-hard FPGAs in the High-Energy Physics community's standard ML synthesis tool, hls4ml, we develop a new backend for this library. This new back-end enables the automatic translation of ML models into High-Level Synthesis (HLS) projects for the Microchip PolarFire family of FPGAs, one of the few commercially available and radiation hard FPGAs. We present the synthesis of the autoencoder on a target PolarFire FPGA, which indicates that a latency of 25 ns can be achieved. We show that the resources utilized are low enough that the model can be placed within the inherently protected logic of the FPGA. Our extension to hls4ml is a significant contribution, paving the way for broader adoption of ML on FPGAs in high-radiation environments.
☆ UrbanVerse: Learning Urban Region Representation Across Cities and Tasks
Recent advances in urban region representation learning have enabled a wide range of applications in urban analytics, yet existing methods remain limited in their capabilities to generalize across cities and analytic tasks. We aim to generalize urban representation learning beyond city- and task-specific settings, towards a foundation-style model for urban analytics. To this end, we propose UrbanVerse, a model for cross-city urban representation learning and cross-task urban analytics. For cross-city generalization, UrbanVerse focuses on features local to the target regions and structural features of the nearby regions rather than the entire city. We model regions as nodes on a graph, which enables a random walk-based procedure to form "sequences of regions" that reflect both local and neighborhood structural features for urban region representation learning. For cross-task generalization, we propose a cross-task learning module named HCondDiffCT. This module integrates region-conditioned prior knowledge and task-conditioned semantics into the diffusion process to jointly model multiple downstream urban prediction tasks. HCondDiffCT is generic. It can also be integrated with existing urban representation learning models to enhance their downstream task effectiveness. Experiments on real-world datasets show that UrbanVerse consistently outperforms state-of-the-art methods across six tasks under cross-city settings, achieving up to 35.89% improvements in prediction accuracy.
☆ MRC-GAT: A Meta-Relational Copula-Based Graph Attention Network for Interpretable Multimodal Alzheimer's Disease Diagnosis
Alzheimer's disease (AD) is a progressive neurodegenerative condition necessitating early and precise diagnosis to provide prompt clinical management. Given the paramount importance of early diagnosis, recent studies have increasingly focused on computer-aided diagnostic models to enhance precision and reliability. However, most graph-based approaches still rely on fixed structural designs, which restrict their flexibility and limit generalization across heterogeneous patient data. To overcome these limitations, the Meta-Relational Copula-Based Graph Attention Network (MRC-GAT) is proposed as an efficient multimodal model for AD classification tasks. The proposed architecture, copula-based similarity alignment, relational attention, and node fusion are integrated as the core components of episodic meta-learning, such that the multimodal features, including risk factors (RF), Cognitive test scores, and MRI attributes, are first aligned via a copula-based transformation in a common statistical space and then combined by a multi-relational attention mechanism. According to evaluations performed on the TADPOLE and NACC datasets, the MRC-GAT model achieved accuracies of 96.87% and 92.31%, respectively, demonstrating state-of-the-art performance compared to existing diagnostic models. Finally, the proposed model confirms the robustness and applicability of the proposed method by providing interpretability at various stages of disease diagnosis.
comment: 27 pages, 10 figures, 10 table
☆ Beyond Labels: Information-Efficient Human-in-the-Loop Learning using Ranking and Selection Queries
Integrating human expertise into machine learning systems often reduces the role of experts to labeling oracles, a paradigm that limits the amount of information exchanged and fails to capture the nuances of human judgment. We address this challenge by developing a human-in-the-loop framework to learn binary classifiers with rich query types, consisting of item ranking and exemplar selection. We first introduce probabilistic human response models for these rich queries motivated by the relationship experimentally observed between the perceived implicit score of an item and its distance to the unknown classifier. Using these models, we then design active learning algorithms that leverage the rich queries to increase the information gained per interaction. We provide theoretical bounds on sample complexity and develop a tractable and computationally efficient variational approximation. Through experiments with simulated annotators derived from crowdsourced word-sentiment and image-aesthetic datasets, we demonstrate significant reductions on sample complexity. We further extend active learning strategies to select queries that maximize information rate, explicitly balancing informational value against annotation cost. This algorithm in the word sentiment classification task reduces learning time by more than 57\% compared to traditional label-only active learning.
☆ Spanning the Visual Analogy Space with a Weight Basis of LoRAs
Visual analogy learning enables image manipulation through demonstration rather than textual description, allowing users to specify complex transformations difficult to articulate in words. Given a triplet $\{\mathbf{a}$, $\mathbf{a}'$, $\mathbf{b}\}$, the goal is to generate $\mathbf{b}'$ such that $\mathbf{a} : \mathbf{a}' :: \mathbf{b} : \mathbf{b}'$. Recent methods adapt text-to-image models to this task using a single Low-Rank Adaptation (LoRA) module, but they face a fundamental limitation: attempting to capture the diverse space of visual transformations within a fixed adaptation module constrains generalization capabilities. Inspired by recent work showing that LoRAs in constrained domains span meaningful, interpolatable semantic spaces, we propose LoRWeB, a novel approach that specializes the model for each analogy task at inference time through dynamic composition of learned transformation primitives, informally, choosing a point in a "space of LoRAs". We introduce two key components: (1) a learnable basis of LoRA modules, to span the space of different visual transformations, and (2) a lightweight encoder that dynamically selects and weighs these basis LoRAs based on the input analogy pair. Comprehensive evaluations demonstrate our approach achieves state-of-the-art performance and significantly improves generalization to unseen visual transformations. Our findings suggest that LoRA basis decompositions are a promising direction for flexible visual manipulation. Code and data are in https://research.nvidia.com/labs/par/lorweb
comment: Code and data are in https://research.nvidia.com/labs/par/lorweb
☆ Recursive Concept Evolution for Compositional Reasoning in Large Language Models
Large language models achieve strong performance on many complex reasoning tasks, yet their accuracy degrades sharply on benchmarks that require compositional reasoning, including ARC-AGI-2, GPQA, MATH, BBH, and HLE. Existing methods improve reasoning by expanding token-level search through chain-of-thought prompting, self-consistency, or reinforcement learning, but they leave the model's latent representation space fixed. When the required abstraction is not already encoded in this space, performance collapses. We propose Recursive Concept Evolution (RCE), a framework that enables pretrained language models to modify their internal representation geometry during inference. RCE introduces dynamically generated low-rank concept subspaces that are spawned when representational inadequacy is detected, selected through a minimum description length criterion, merged when synergistic, and consolidated via constrained optimization to preserve stability. This process allows the model to construct new abstractions rather than recombining existing ones. We integrate RCE with Mistral-7B and evaluate it across compositional reasoning benchmarks. RCE yields 12-18 point gains on ARC-AGI-2, 8-14 point improvements on GPQA and BBH, and consistent reductions in depth-induced error on MATH and HLE.
☆ Random Wavelet Features for Graph Kernel Machines
Node embeddings map graph vertices into low-dimensional Euclidean spaces while preserving structural information. They are central to tasks such as node classification, link prediction, and signal reconstruction. A key goal is to design node embeddings whose dot products capture meaningful notions of node similarity induced by the graph. Graph kernels offer a principled way to define such similarities, but their direct computation is often prohibitive for large networks. Inspired by random feature methods for kernel approximation in Euclidean spaces, we introduce randomized spectral node embeddings whose dot products estimate a low-rank approximation of any specific graph kernel. We provide theoretical and empirical results showing that our embeddings achieve more accurate kernel approximations than existing methods, particularly for spectrally localized kernels. These results demonstrate the effectiveness of randomized spectral constructions for scalable and principled graph representation learning.
comment: This paper is an extended version of a paper submitted to the 2026 European Signal Processing Conference (EUSIPCO 2026). It contains supplementary material including the full proof to Proposition 1
☆ Proactive Conversational Assistant for a Procedural Manual Task based on Audio and IMU
Real-time conversational assistants for procedural tasks often depend on video input, which can be computationally expensive and compromise user privacy. For the first time, we propose a real-time conversational assistant that provides comprehensive guidance for a procedural task using only lightweight privacy-preserving modalities such as audio and IMU inputs from a user's wearable device to understand the context. This assistant proactively communicates step-by-step instructions to a user performing a furniture assembly task, and answers user questions. We construct a dataset containing conversations where the assistant guides the user in performing the task. On observing that an off-the-shelf language model is a very talkative assistant, we design a novel User Whim Agnostic (UWA) LoRA finetuning method which improves the model's ability to suppress less informative dialogues, while maintaining its tendency to communicate important instructions. This leads to >30% improvement in the F-score. Finetuning the model also results in a 16x speedup by eliminating the need to provide in-context examples in the prompt. We further describe how such an assistant is implemented on edge devices with no dependence on the cloud.
comment: 3 figures
☆ Controlled oscillation modeling using port-Hamiltonian neural networks
Learning dynamical systems through purely data-driven methods is challenging as they do not learn the underlying conservation laws that enable them to correctly generalize. Existing port-Hamiltonian neural network methods have recently been successfully applied for modeling mechanical systems. However, even though these methods are designed on power-balance principles, they usually do not consider power-preserving discretizations and often rely on Runge-Kutta numerical methods. In this work, we propose to use a second-order discrete gradient method embedded in the learning of dynamical systems with port-Hamiltonian neural networks. Numerical results are provided for three systems deliberately selected to span different ranges of dynamical behavior under control: a baseline harmonic oscillator with quadratic energy storage; a Duffing oscillator, with a non-quadratic Hamiltonian offering amplitude-dependent effects; and a self-sustained oscillator, which can stabilize in a controlled limit cycle through the incorporation of a nonlinear dissipation. We show how the use of this discrete gradient method outperforms the performance of a Runge-Kutta method of the same order. Experiments are also carried out to compare two theoretically equivalent port-Hamiltonian systems formulations and to analyze the impact of regularizing the Jacobian of port-Hamiltonian neural networks during training.
☆ CAMEL: An ECG Language Model for Forecasting Cardiac Events
Electrocardiograms (ECG) are electrical recordings of the heart that are critical for diagnosing cardiovascular conditions. ECG language models (ELMs) have recently emerged as a promising framework for ECG classification accompanied by report generation. However, current models cannot forecast future cardiac events despite the immense clinical value for planning earlier intervention. To address this gap, we propose CAMEL, the first ELM that is capable of inference over longer signal durations which enables its forecasting capability. Our key insight is a specialized ECG encoder which enables cross-understanding of ECG signals with text. We train CAMEL using established LLM training procedures, combining LoRA adaptation with a curriculum learning pipeline. Our curriculum includes ECG classification, metrics calculations, and multi-turn conversations to elicit reasoning. CAMEL demonstrates strong zero-shot performance across 6 tasks and 9 datasets, including ECGForecastBench, a new benchmark that we introduce for forecasting arrhythmias. CAMEL is on par with or surpasses ELMs and fully supervised baselines both in- and out-of-distribution, achieving SOTA results on ECGBench (+7.0% absolute average gain) as well as ECGForecastBench (+12.4% over fully supervised models and +21.1% over zero-shot ELMs).
comment: 24 pages, 6 figures
☆ Relative Geometry of Neural Forecasters: Linking Accuracy and Alignment in Learned Latent Geometry
Neural networks can accurately forecast complex dynamical systems, yet how they internally represent underlying latent geometry remains poorly understood. We study neural forecasters through the lens of representational alignment, introducing anchor-based, geometry-agnostic relative embeddings that remove rotational and scaling ambiguities in latent spaces. Applying this framework across seven canonical dynamical systems - ranging from periodic to chaotic - we reveal reproducible family-level structure: multilayer perceptrons align with other MLPs, recurrent networks with RNNs, while transformers and echo-state networks achieve strong forecasts despite weaker alignment. Alignment generally correlates with forecasting accuracy, yet high accuracy can coexist with low alignment. Relative geometry thus provides a simple, reproducible foundation for comparing how model families internalize and represent dynamical structure.
comment: Accepted to Transactions on Machine Learning Research (TMLR)
☆ Continuous-Time Piecewise-Linear Recurrent Neural Networks
In dynamical systems reconstruction (DSR) we aim to recover the dynamical system (DS) underlying observed time series. Specifically, we aim to learn a generative surrogate model which approximates the underlying, data-generating DS, and recreates its long-term properties (`climate statistics'). In scientific and medical areas, in particular, these models need to be mechanistically tractable -- through their mathematical analysis we would like to obtain insight into the recovered system's workings. Piecewise-linear (PL), ReLU-based RNNs (PLRNNs) have a strong track-record in this regard, representing SOTA DSR models while allowing mathematical insight by virtue of their PL design. However, all current PLRNN variants are discrete-time maps. This is in disaccord with the assumed continuous-time nature of most physical and biological processes, and makes it hard to accommodate data arriving at irregular temporal intervals. Neural ODEs are one solution, but they do not reach the DSR performance of PLRNNs and often lack their tractability. Here we develop theory for continuous-time PLRNNs (cPLRNNs): We present a novel algorithm for training and simulating such models, bypassing numerical integration by efficiently exploiting their PL structure. We further demonstrate how important topological objects like equilibria or limit cycles can be determined semi-analytically in trained models. We compare cPLRNNs to both their discrete-time cousins as well as Neural ODEs on DSR benchmarks, including systems with discontinuities which come with hard thresholds.
☆ Guided Diffusion by Optimized Loss Functions on Relaxed Parameters for Inverse Material Design
Inverse design problems are common in engineering and materials science. The forward direction, i.e., computing output quantities from design parameters, typically requires running a numerical simulation, such as a FEM, as an intermediate step, which is an optimization problem by itself. In many scenarios, several design parameters can lead to the same or similar output values. For such cases, multi-modal probabilistic approaches are advantageous to obtain diverse solutions. A major difficulty in inverse design stems from the structure of the design space, since discrete parameters or further constraints disallow the direct use of gradient-based optimization. To tackle this problem, we propose a novel inverse design method based on diffusion models. Our approach relaxes the original design space into a continuous grid representation, where gradients can be computed by implicit differentiation in the forward simulation. A diffusion model is trained on this relaxed parameter space in order to serve as a prior for plausible relaxed designs. Parameters are sampled by guided diffusion using gradients that are propagated from an objective function specified at inference time through the differentiable simulation. A design sample is obtained by backprojection into the original parameter space. We develop our approach for a composite material design problem where the forward process is modeled as a linear FEM problem. We evaluate the performance of our approach in finding designs that match a specified bulk modulus. We demonstrate that our method can propose diverse designs within 1% relative error margin from medium to high target bulk moduli in 2D and 3D settings. We also demonstrate that the material density of generated samples can be minimized simultaneously by using a multi-objective loss function.
☆ Latency-aware Human-in-the-Loop Reinforcement Learning for Semantic Communications
Semantic communication promises task-aligned transmission but must reconcile semantic fidelity with stringent latency guarantees in immersive and safety-critical services. This paper introduces a time-constrained human-in-the-loop reinforcement learning (TC-HITL-RL) framework that embeds human feedback, semantic utility, and latency control within a semantic-aware Open radio access network (RAN) architecture. We formulate semantic adaptation driven by human feedback as a constrained Markov decision process (CMDP) whose state captures semantic quality, human preferences, queue slack, and channel dynamics, and solve it via a primal--dual proximal policy optimization algorithm with action shielding and latency-aware reward shaping. The resulting policy preserves PPO-level semantic rewards while tightening the variability of both air-interface and near-real-time RAN intelligent controller processing budgets. Simulations over point-to-multipoint links with heterogeneous deadlines show that TC-HITL-RL consistently meets per-user timing constraints, outperforms baseline schedulers in reward, and stabilizes resource consumption, providing a practical blueprint for latency-aware semantic adaptation.
comment: 6 pages, 8 figures. This paper has been accepted for publication in IEEE ICC 2026
☆ The Stationarity Bias: Stratified Stress-Testing for Time-Series Imputation in Regulated Dynamical Systems
Time-series imputation benchmarks employ uniform random masking and shape-agnostic metrics (MSE, RMSE), implicitly weighting evaluation by regime prevalence. In systems with a dominant attractor -- homeostatic physiology, nominal industrial operation, stable network traffic -- this creates a systematic \emph{Stationarity Bias}: simple methods appear superior because the benchmark predominantly samples the easy, low-entropy regime where they trivially succeed. We formalize this bias and propose a \emph{Stratified Stress-Test} that partitions evaluation into Stationary and Transient regimes. Using Continuous Glucose Monitoring (CGM) as a testbed -- chosen for its rigorous ground-truth forcing functions (meals, insulin) that enable precise regime identification -- we establish three findings with broad implications:(i)~Stationary Efficiency: Linear interpolation achieves state-of-the-art reconstruction during stable intervals, confirming that complex architectures are computationally wasteful in low-entropy regimes.(ii)~Transient Fidelity: During critical transients (post-prandial peaks, hypoglycemic events), linear methods exhibit drastically degraded morphological fidelity (DTW), disproportionate to their RMSE -- a phenomenon we term the \emph{RMSE Mirage}, where low pointwise error masks the destruction of signal shape.(iii)~Regime-Conditional Model Selection: Deep learning models preserve both pointwise accuracy and morphological integrity during transients, making them essential for safety-critical downstream tasks. We further derive empirical missingness distributions from clinical trials and impose them on complete training data, preventing models from exploiting unrealistically clean observations and encouraging robustness under real-world missingness. This framework generalizes to any regulated system where routine stationarity dominates critical transients.
☆ Beyond ReLU: Bifurcation, Oversmoothing, and Topological Priors
Graph Neural Networks (GNNs) learn node representations through iterative network-based message-passing. While powerful, deep GNNs suffer from oversmoothing, where node features converge to a homogeneous, non-informative state. We re-frame this problem of representational collapse from a \emph{bifurcation theory} perspective, characterizing oversmoothing as convergence to a stable ``homogeneous fixed point.'' Our central contribution is the theoretical discovery that this undesired stability can be broken by replacing standard monotone activations (e.g., ReLU) with a class of functions. Using Lyapunov-Schmidt reduction, we analytically prove that this substitution induces a bifurcation that destabilizes the homogeneous state and creates a new pair of stable, non-homogeneous \emph{patterns} that provably resist oversmoothing. Our theory predicts a precise, nontrivial scaling law for the amplitude of these emergent patterns, which we quantitatively validate in experiments. Finally, we demonstrate the practical utility of our theory by deriving a closed-form, bifurcation-aware initialization and showing its utility in real benchmark experiments.
☆ Neural-POD: A Plug-and-Play Neural Operator Framework for Infinite-Dimensional Functional Nonlinear Proper Orthogonal Decomposition
The rapid development of AI for Science is often hindered by the "discretization", where learned representations remain restricted to the specific grids or resolutions used during training. We propose the Neural Proper Orthogonal Decomposition (Neural-POD), a plug-and-play neural operator framework that constructs nonlinear, orthogonal basis functions in infinite-dimensional space using neural networks. Unlike the classical Proper Orthogonal Decomposition (POD), which is limited to linear subspace approximations obtained through singular value decomposition (SVD), Neural-POD formulates basis construction as a sequence of residual minimization problems solved through neural network training. Each basis function is obtained by learning to represent the remaining structure in the data, following a process analogous to Gram--Schmidt orthogonalization. This neural formulation introduces several key advantages over classical POD: it enables optimization in arbitrary norms (e.g., $L^2$, $L^1$), learns mappings between infinite-dimensional function spaces that is resolution-invariant, generalizes effectively to unseen parameter regimes, and inherently captures nonlinear structures in complex spatiotemporal systems. The resulting basis functions are interpretable, reusable, and enabling integration into both reduced order modeling (ROM) and operator learning frameworks such as deep operator learning (DeepONet). We demonstrate the robustness of Neural-POD with different complex spatiotemporal systems, including the Burgers' and Navier-Stokes equations. We further show that Neural-POD serves as a high performance, plug-and-play bridge between classical Galerkin projection and operator learning that enables consistent integration with both projection-based reduced order models and DeepONet frameworks.
☆ DNN-Enabled Multi-User Beamforming for Throughput Maximization under Adjustable Fairness
Ensuring user fairness in wireless communications is a fundamental challenge, as balancing the trade-off between fairness and sum rate leads to a non-convex, multi-objective optimization whose complexity grows with network scale. To alleviate this conflict, we propose an optimization-based unsupervised learning approach based on the wireless transformer (WiT) architecture that learns from channel state information (CSI) features. We reformulate the trade-off by combining the sum rate and fairness objectives through a Lagrangian multiplier, which is updated automatically via a dual-ascent algorithm. This mechanism allows for a controllable fairness constraint while simultaneously maximizing the sum rate, effectively realizing a trace on the Pareto front between two conflicting objectives. Our findings show that the proposed approach offers a flexible solution for managing the trade-off optimization under prescribed fairness.
☆ Symbolic recovery of PDEs from measurement data
Models based on partial differential equations (PDEs) are powerful for describing a wide range of complex relationships in the natural sciences. Accurately identifying the PDE model, which represents the underlying physical law, is essential for a proper understanding of the problem. This reconstruction typically relies on indirect and noisy measurements of the system's state and, without specifically tailored methods, rarely yields symbolic expressions, thereby hindering interpretability. In this work, we address this issue by considering existing neural network architectures based on rational functions for the symbolic representation of physical laws. These networks leverage the approximation power of rational functions while also benefiting from their flexibility in representing arithmetic operations. Our main contribution is an identifiability result, showing that, in the limit of noiseless, complete measurements, such symbolic networks can uniquely reconstruct the simplest physical law within the PDE model. Specifically, reconstructed laws remain expressible within the symbolic network architecture, with regularization-minimizing parameterizations promoting interpretability and sparsity in case of $L^1$-regularization. In addition, we provide regularity results for symbolic networks. Empirical validation using the ParFam architecture supports these theoretical findings, providing evidence for the practical reconstructibility of physical laws.
☆ Certified Per-Instance Unlearning Using Individual Sensitivity Bounds
Certified machine unlearning can be achieved via noise injection leading to differential privacy guarantees, where noise is calibrated to worst-case sensitivity. Such conservative calibration often results in performance degradation, limiting practical applicability. In this work, we investigate an alternative approach based on adaptive per-instance noise calibration tailored to the individual contribution of each data point to the learned solution. This raises the following challenge: how can one establish formal unlearning guarantees when the mechanism depends on the specific point to be removed? To define individual data point sensitivities in noisy gradient dynamics, we consider the use of per-instance differential privacy. For ridge regression trained via Langevin dynamics, we derive high-probability per-instance sensitivity bounds, yielding certified unlearning with substantially less noise injection. We corroborate our theoretical findings through experiments in linear settings and provide further empirical evidence on the relevance of the approach in deep learning settings.
☆ Multi-Objective Coverage via Constraint Active Search
In this paper, we formulate the new multi-objective coverage (MOC) problem where our goal is to identify a small set of representative samples whose predicted outcomes broadly cover the feasible multi-objective space. This problem is of great importance in many critical real-world applications, e.g., drug discovery and materials design, as this representative set can be evaluated much faster than the whole feasible set, thus significantly accelerating the scientific discovery process. Existing works cannot be directly applied as they either focus on sample space coverage or multi-objective optimization that targets the Pareto front. However, chemically diverse samples often yield identical objective profiles, and safety constraints are usually defined on the objectives. To solve this MOC problem, we propose a novel search algorithm, MOC-CAS, which employs an upper confidence bound-based acquisition function to select optimistic samples guided by Gaussian process posterior predictions. For enabling efficient optimization, we develop a smoothed relaxation of the hard feasibility test and derive an approximate optimizer. Compared to the competitive baselines, we show that our MOC-CAS empirically achieves superior performances across large-scale protein-target datasets for SARS-CoV-2 and cancer, each assessed on five objectives derived from SMILES-based features.
☆ A unified theory of feature learning in RNNs and DNNs
Recurrent and deep neural networks (RNNs/DNNs) are cornerstone architectures in machine learning. Remarkably, RNNs differ from DNNs only by weight sharing, as can be shown through unrolling in time. How does this structural similarity fit with the distinct functional properties these networks exhibit? To address this question, we here develop a unified mean-field theory for RNNs and DNNs in terms of representational kernels, describing fully trained networks in the feature learning ($μ$P) regime. This theory casts training as Bayesian inference over sequences and patterns, directly revealing the functional implications induced by the RNNs' weight sharing. In DNN-typical tasks, we identify a phase transition when the learning signal overcomes the noise due to randomness in the weights: below this threshold, RNNs and DNNs behave identically; above it, only RNNs develop correlated representations across timesteps. For sequential tasks, the RNNs' weight sharing furthermore induces an inductive bias that aids generalization by interpolating unsupervised time steps. Overall, our theory offers a way to connect architectural structure to functional biases.
☆ Uni-Flow: a unified autoregressive-diffusion model for complex multiscale flows
Spatiotemporal flows govern diverse phenomena across physics, biology, and engineering, yet modelling their multiscale dynamics remains a central challenge. Despite major advances in physics-informed machine learning, existing approaches struggle to simultaneously maintain long-term temporal evolution and resolve fine-scale structure across chaotic, turbulent, and physiological regimes. Here, we introduce Uni-Flow, a unified autoregressive-diffusion framework that explicitly separates temporal evolution from spatial refinement for modelling complex dynamical systems. The autoregressive component learns low-resolution latent dynamics that preserve large-scale structure and ensure stable long-horizon rollouts, while the diffusion component reconstructs high-resolution physical fields, recovering fine-scale features in a small number of denoising steps. We validate Uni-Flow across canonical benchmarks, including two-dimensional Kolmogorov flow, three-dimensional turbulent channel inflow generation with a quantum-informed autoregressive prior, and patient-specific simulations of aortic coarctation derived from high-fidelity lattice Boltzmann hemodynamic solvers. In the cardiovascular setting, Uni-Flow enables task-level faster than real-time inference of pulsatile hemodynamics, reconstructing high-resolution pressure fields over physiologically relevant time horizons in seconds rather than hours. By transforming high-fidelity hemodynamic simulation from an offline, HPC-bound process into a deployable surrogate, Uni-Flow establishes a pathway to faster-than-real-time modelling of complex multiscale flows, with broad implications for scientific machine learning in flow physics.
☆ Uniform error bounds for quantized dynamical models
This paper provides statistical guarantees on the accuracy of dynamical models learned from dependent data sequences. Specifically, we develop uniform error bounds that apply to quantized models and imperfect optimization algorithms commonly used in practical contexts for system identification, and in particular hybrid system identification. Two families of bounds are obtained: slow-rate bounds via a block decomposition and fast-rate, variance-adaptive, bounds via a novel spaced-point strategy. The bounds scale with the number of bits required to encode the model and thus translate hardware constraints into interpretable statistical complexities.
☆ Neural Network-Based Parameter Estimation of a Labour Market Agent-Based Model
Agent-based modelling (ABM) is a widespread approach to simulate complex systems. Advancements in computational processing and storage have facilitated the adoption of ABMs across many fields; however, ABMs face challenges that limit their use as decision-support tools. A significant issue is parameter estimation in large-scale ABMs, particularly due to computational constraints on exploring the parameter space. This study evaluates a state-of-the-art simulation-based inference (SBI) framework that uses neural networks (NN) for parameter estimation. This framework is applied to an established labour market ABM based on job transition networks. The ABM is initiated with synthetic datasets and the real U.S. labour market. Next, we compare the effectiveness of summary statistics derived from a list of statistical measures with that learned by an embedded NN. The results demonstrate that the NN-based approach recovers the original parameters when evaluating posterior distributions across various dataset scales and improves efficiency compared to traditional Bayesian methods.
comment: To be presented at the 6th World Conference on Complex Systems (WCCS 2026)
☆ Accelerated Predictive Coding Networks via Direct Kolen-Pollack Feedback Alignment
Predictive coding (PC) is a biologically inspired algorithm for training neural networks that relies only on local updates, allowing parallel learning across layers. However, practical implementations face two key limitations: error signals must still propagate from the output to early layers through multiple inference-phase steps, and feedback decays exponentially during this process, leading to vanishing updates in early layers. We propose direct Kolen-Pollack predictive coding (DKP-PC), which simultaneously addresses both feedback delay and exponential decay, yielding a more efficient and scalable variant of PC while preserving update locality. Leveraging direct feedback alignment and direct Kolen-Pollack algorithms, DKP-PC introduces learnable feedback connections from the output layer to all hidden layers, establishing a direct pathway for error transmission. This yields an algorithm that reduces the theoretical error propagation time complexity from O(L), with L being the network depth, to O(1), removing depth-dependent delay in error signals. Moreover, empirical results demonstrate that DKP-PC achieves performance at least comparable to, and often exceeding, that of standard PC, while offering improved latency and computational performance, supporting its potential for custom hardware-efficient implementations.
☆ Scenario Approach with Post-Design Certification of User-Specified Properties
The scenario approach is an established data-driven design framework that comes equipped with a powerful theory linking design complexity to generalization properties. In this approach, data are simultaneously used both for design and for certifying the design's reliability, without resorting to a separate test dataset. This paper takes a step further by guaranteeing additional properties, useful in post-design usage but not considered during the design phase. To this end, we introduce a two-level framework of appropriateness: baseline appropriateness, which guides the design process, and post-design appropriateness, which serves as a criterion for a posteriori evaluation. We provide distribution-free upper bounds on the risk of failing to meet the post-design appropriateness; these bounds are computable without using any additional test data. Under additional assumptions, lower bounds are also derived. As part of an effort to demonstrate the usefulness of the proposed methodology, the paper presents two practical examples in H2 and pole-placement problems. Moreover, a method is provided to infer comprehensive distributional knowledge of relevant performance indexes from the available dataset.
☆ 1-Bit Wonder: Improving QAT Performance in the Low-Bit Regime through K-Means Quantization
Quantization-aware training (QAT) is an effective method to drastically reduce the memory footprint of LLMs while keeping performance degradation at an acceptable level. However, the optimal choice of quantization format and bit-width presents a challenge in practice. The full design space of quantization is not fully explored in the context of QAT, and the precise trade-off between quantization and downstream performance is poorly understood, as comparisons often rely solely on perplexity-based evaluations. In this work, we address these shortcomings with an empirical study of QAT in the low-bit regime. We show that k-means based weight quantization outperforms integer formats and can be implemented efficiently on standard hardware. Furthermore, we find that, under a fixed inference memory budget, the best performance on generative downstream tasks is achieved with $1$-bit quantized weights.
comment: Preprint. Under Review. 23 pages, 9 figures
☆ Latent Regularization in Generative Test Input Generation
This study investigates the impact of regularization of latent spaces through truncation on the quality of generated test inputs for deep learning classifiers. We evaluate this effect using style-based GANs, a state-of-the-art generative approach, and assess quality along three dimensions: validity, diversity, and fault detection. We evaluate our approach on the boundary testing of deep learning image classifiers across three datasets, MNIST, Fashion MNIST, and CIFAR-10. We compare two truncation strategies: latent code mixing with binary search optimization and random latent truncation for generative exploration. Our experiments show that the latent code-mixing approach yields a higher fault detection rate than random truncation, while also improving both diversity and validity.
comment: Accepted for publication at the 7th International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest 2026), co-located with ICSE 2026
☆ CEPAE: Conditional Entropy-Penalized Autoencoders for Time Series Counterfactuals
The ability to accurately perform counterfactual inference on time series is crucial for decision-making in fields like finance, healthcare, and marketing, as it allows us to understand the impact of events or treatments on outcomes over time. In this paper, we introduce a new counterfactual inference approach tailored to time series data impacted by market events, which is motivated by an industrial application. Utilizing the abduction-action-prediction procedure and the Structural Causal Model framework, we first adapt methods based on variational autoencoders and adversarial autoencoders, both previously used in counterfactual literature although not in time series settings. Then, we present the Conditional Entropy-Penalized Autoencoder (CEPAE), a novel autoencoder-based approach for counterfactual inference, which employs an entropy penalization loss over the latent space to encourage disentangled data representations. We validate our approach both theoretically and experimentally on synthetic, semi-synthetic, and real-world datasets, showing that CEPAE generally outperforms the other approaches in the evaluated metrics.
☆ Functional Central Limit Theorem for Stochastic Gradient Descent
We study the asymptotic shape of the trajectory of the stochastic gradient descent algorithm applied to a convex objective function. Under mild regularity assumptions, we prove a functional central limit theorem for the properly rescaled trajectory. Our result characterizes the long-term fluctuations of the algorithm around the minimizer by providing a diffusion limit for the trajectory. In contrast with classical central limit theorems for the last iterate or Polyak-Ruppert averages, this functional result captures the temporal structure of the fluctuations and applies to non-smooth settings such as robust location estimation, including the geometric median.
☆ Quantifying construct validity in large language model evaluations
The LLM community often reports benchmark results as if they are synonymous with general model capabilities. However, benchmarks can have problems that distort performance, like test set contamination and annotator error. How can we know that a benchmark is a reliable indicator of some capability that we want to measure? This question concerns the construct validity of LLM benchmarks, and it requires separating benchmark results from capabilities when we model and predict LLM performance. Both social scientists and computer scientists propose formal models - latent factor models and scaling laws - for identifying the capabilities underlying benchmark scores. However, neither technique is satisfactory for construct validity. Latent factor models ignore scaling laws, and as a result, the capabilities they extract often proxy model size. Scaling laws ignore measurement error, and as a result, the capabilities they extract are both uninterpretable and overfit to the observed benchmarks. This thesis presents the structured capabilities model, the first model to extract interpretable and generalisable capabilities from a large collection of LLM benchmark results. I fit this model and its two alternatives on a large sample of results from the OpenLLM Leaderboard. Structured capabilities outperform latent factor models on parsimonious fit indices, and exhibit better out-of-distribution benchmark prediction than scaling laws. These improvements are possible because neither existing approach separates model scale from capabilities in the appropriate way. Model scale should inform capabilities, as in scaling laws, and these capabilities should inform observed results up to measurement error, as in latent factor models. In combining these two insights, structured capabilities demonstrate better explanatory and predictive power for quantifying construct validity in LLM evaluations.
☆ ExpertWeaver: Unlocking the Inherent MoE in Dense LLMs with GLU Activation Patterns
Mixture-of-Experts (MoE) effectively scales model capacity while preserving computational efficiency through sparse expert activation. However, training high-quality MoEs from scratch is prohibitively expensive. A promising alternative is to convert pretrained dense models into sparse MoEs. Existing dense-to-MoE methods fall into two categories: \textbf{dynamic structural pruning} that converts dense models into MoE architectures with moderate sparsity to balance performance and inference efficiency, and \textbf{downcycling} approaches that use pretrained dense models to initialize highly sparse MoE architectures. However, existing methods break the intrinsic activation patterns within dense models, leading to suboptimal expert construction. In this work, we argue that the Gated Linear Unit (GLU) mechanism provides a natural blueprint for dense-to-MoE conversion. We show that the fine-grained neural-wise activation patterns of GLU reveal a coarse-grained structure, uncovering an inherent MoE architecture composed of consistently activated universal neurons and dynamically activated specialized neurons. Leveraging this discovery, we introduce ExpertWeaver, a training-free framework that partitions neurons according to their activation patterns and constructs shared experts and specialized routed experts with layer-adaptive configurations. Our experiments demonstrate that ExpertWeaver significantly outperforms existing methods, both as a training-free dynamic structural pruning technique and as a downcycling strategy for superior MoE initialization.
☆ The Obfuscation Atlas: Mapping Where Honesty Emerges in RLVR with Deception Probes
Training against white-box deception detectors has been proposed as a way to make AI systems honest. However, such training risks models learning to obfuscate their deception to evade the detector. Prior work has studied obfuscation only in artificial settings where models were directly rewarded for harmful output. We construct a realistic coding environment where reward hacking via hardcoding test cases naturally occurs, and show that obfuscation emerges in this setting. We introduce a taxonomy of possible outcomes when training against a deception detector. The model either remains honest, or becomes deceptive via two possible obfuscation strategies. (i) Obfuscated activations: the model outputs deceptive text while modifying its internal representations to no longer trigger the detector. (ii) Obfuscated policy: the model outputs deceptive text that evades the detector, typically by including a justification for the reward hack. Empirically, obfuscated activations arise from representation drift during RL, with or without a detector penalty. The probe penalty only incentivizes obfuscated policies; we theoretically show this is expected for policy gradient methods. Sufficiently high KL regularization and detector penalty can yield honest policies, establishing white-box deception detectors as viable training signals for tasks prone to reward hacking.
comment: 25 pages, 12 figures
☆ On the Geometric Coherence of Global Aggregation in Federated GNN
Federated Learning (FL) enables distributed training across multiple clients without centralized data sharing, while Graph Neural Networks (GNNs) model relational data through message passing. In federated GNN settings, client graphs often exhibit heterogeneous structural and propagation characteristics. When standard aggregation mechanisms are applied to such heterogeneous updates, the global model may converge numerically while exhibiting degraded relational behavior.Our work identifies a geometric failure mode of global aggregation in Cross- Domain Federated GNNs. Although GNN parameters are numerically represented as vectors, they encode relational transformations that govern the direction, strength, and sensitivity of information flow across graph neighborhoods. Aggregating updates originating from incompatible propagation regimes can therefore introduce destructive interference in this transformation space.This leads to loss of coherence in global message passing. Importantly, this degradation is not necessarily reflected in conventional metrics such as loss or accuracy.To address this issue, we propose GGRS (Global Geometric Reference Structure), a server-side framework that regulates client updates prior to aggregation based on geometric admissibility criteria. GGRS preserves directional consistency of relational transformations as well as maintains diversity of admissible propagation subspaces. It also stabilizes sensitivity to neighborhood interactions, without accessing client data or graph topology. Experiments on heterogeneous GNN-native, Amazon Co-purchase datasets demonstrate that GGRS preserves global message-passing coherence across training rounds by highlighting the necessity of geometry-aware regulation in federated graph learning.
comment: This is a developing preprint of an 18-page journal manuscript (6 figures), currently being prepared for formal peer-review submission
☆ Approximation Theory for Lipschitz Continuous Transformers
Stability and robustness are critical for deploying Transformers in safety-sensitive settings. A principled way to enforce such behavior is to constrain the model's Lipschitz constant. However, approximation-theoretic guarantees for architectures that explicitly preserve Lipschitz continuity have yet to be established. In this work, we bridge this gap by introducing a class of gradient-descent-type in-context Transformers that are Lipschitz-continuous by construction. We realize both MLP and attention blocks as explicit Euler steps of negative gradient flows, ensuring inherent stability without sacrificing expressivity. We prove a universal approximation theorem for this class within a Lipschitz-constrained function space. Crucially, our analysis adopts a measure-theoretic formalism, interpreting Transformers as operators on probability measures, to yield approximation guarantees independent of token count. These results provide a rigorous theoretical foundation for the design of robust, Lipschitz continuous Transformer architectures.
☆ ExLipBaB: Exact Lipschitz Constant Computation for Piecewise Linear Neural Networks
It has been shown that a neural network's Lipschitz constant can be leveraged to derive robustness guarantees, to improve generalizability via regularization or even to construct invertible networks. Therefore, a number of methods varying in the tightness of their bounds and their computational cost have been developed to approximate the Lipschitz constant for different classes of networks. However, comparatively little research exists on methods for exact computation, which has been shown to be NP-hard. Nonetheless, there are applications where one might readily accept the computational cost of an exact method. These applications could include the benchmarking of new methods or the computation of robustness guarantees for small models on sensitive data. Unfortunately, existing exact algorithms restrict themselves to only ReLU-activated networks, which are known to come with severe downsides in the context of Lipschitz-constrained networks. We therefore propose a generalization of the LipBaB algorithm to compute exact Lipschitz constants for arbitrary piecewise linear neural networks and $p$-norms. With our method, networks may contain traditional activations like ReLU or LeakyReLU, activations like GroupSort or the related MinMax and FullSort, which have been of increasing interest in the context of Lipschitz constrained networks, or even other piecewise linear functions like MaxPool.
comment: 14 pages, 1 figure
☆ Bottleneck Transformer-Based Approach for Improved Automatic STOI Score Prediction
In this study, we have presented a novel approach to predict the Short-Time Objective Intelligibility (STOI) metric using a bottleneck transformer architecture. Traditional methods for calculating STOI typically requires clean reference speech, which limits their applicability in the real world. To address this, numerous deep learning-based nonintrusive speech assessment models have garnered significant interest. Many studies have achieved commendable performance, but there is room for further improvement. We propose the use of bottleneck transformer, incorporating convolution blocks for learning frame-level features and a multi-head self-attention (MHSA) layer to aggregate the information. These components enable the transformer to focus on the key aspects of the input data. Our model has shown higher correlation and lower mean squared error for both seen and unseen scenarios compared to the state-of-the-art model using self-supervised learning (SSL) and spectral features as inputs.
comment: 7 pages, 7 tables, 2 figures, ASRU 2025
LLM-as-Judge on a Budget
LLM-as-a-judge has emerged as a cornerstone technique for evaluating large language models by leveraging LLM reasoning to score prompt-response pairs. Since LLM judgments are stochastic, practitioners commonly query each pair multiple times to estimate mean scores accurately. This raises a critical challenge: given a fixed computational budget $B$, how to optimally allocate queries across $K$ prompt-response pairs to minimize estimation error? % We present a principled variance-adaptive approach leveraging multi-armed bandit theory and concentration inequalities. Our method dynamically allocates queries based on estimated score variances, concentrating resources where uncertainty is highest. Further, our algorithm is shown to achieve a worst-case score-estimation error of $\tilde{O}\left(\sqrt{\frac{\sum_{i=1}^K σ_i^2}{B}}\right)$, $σ_i^2$ being the unknown score variance for pair $i \in [K]$ with near-optimal budget allocation. % Experiments on \emph{Summarize-From-Feedback} and \emph{HelpSteer2} demonstrate that our method significantly outperforms uniform allocation, reducing worst-case estimation error while maintaining identical budgets. Our work establishes a theoretical foundation for efficient LLM evaluation with practical implications for AI safety, model alignment, and automated assessment at scale.
☆ Evaluating Federated Learning for Cross-Country Mood Inference from Smartphone Sensing Data
Mood instability is a key behavioral indicator of mental health, yet traditional assessments rely on infrequent and retrospective reports that fail to capture its continuous nature. Smartphone-based mobile sensing enables passive, in-the-wild mood inference from everyday behaviors; however, deploying such systems at scale remains challenging due to privacy constraints, uneven sensing availability, and substantial variability in behavioral patterns. In this work, we study mood inference using smartphone sensing data in a cross-country federated learning setting, where each country participates as an independent client while retaining local data. We introduce FedFAP, a feature-aware personalized federated framework designed to accommodate heterogeneous sensing modalities across regions. Evaluations across geographically and culturally diverse populations show that FedFAP achieves an AUROC of 0.744, outperforming both centralized approaches and existing personalized federated baselines. Beyond inference, our results offer design insights for mood-aware systems, demonstrating how population-aware personalization and privacy-preserving learning can enable scalable and mood-aware mobile sensing technologies.
comment: 21 pages, 6 figure
☆ POP: Prior-fitted Optimizer Policies
Optimization refers to the task of finding extrema of an objective function. Classical gradient-based optimizers are highly sensitive to hyperparameter choices. In highly non-convex settings their performance relies on carefully tuned learning rates, momentum, and gradient accumulation. To address these limitations, we introduce POP (Prior-fitted Optimizer Policies), a meta-learned optimizer that predicts coordinate-wise step sizes conditioned on the contextual information provided in the optimization trajectory. Our model is learned on millions of synthetic optimization problems sampled from a novel prior spanning both convex and non-convex objectives. We evaluate POP on an established benchmark including 47 optimization functions of various complexity, where it consistently outperforms first-order gradient-based methods, non-convex optimization approaches (e.g., evolutionary strategies), Bayesian optimization, and a recent meta-learned competitor under matched budget constraints. Our evaluation demonstrates strong generalization capabilities without task-specific tuning.
comment: Under Review
☆ Fluids You Can Trust: Property-Preserving Operator Learning for Incompressible Flows
We present a novel property-preserving kernel-based operator learning method for incompressible flows governed by the incompressible Navier-Stokes equations. Traditional numerical solvers incur significant computational costs to respect incompressibility. Operator learning offers efficient surrogate models, but current neural operators fail to exactly enforce physical properties such as incompressibility, periodicity, and turbulence. Our method maps input functions to expansion coefficients of output functions in a property-preserving kernel basis, ensuring that predicted velocity fields analytically and simultaneously preserve the aforementioned physical properties. We evaluate the method on challenging 2D and 3D, laminar and turbulent, incompressible flow problems. Our method achieves up to six orders of magnitude lower relative $\ell_2$ errors upon generalization and trains up to five orders of magnitude faster compared to neural operators. Moreover, while our method enforces incompressibility analytically, neural operators exhibit very large deviations. Our results show that our method provides an accurate and efficient surrogate for incompressible flows.
☆ The Skeletal Trap: Mapping Spatial Inequality and Ghost Stops in Ankara's Transit Network
Ankara's public transport crisis is commonly framed as a shortage of buses or operational inefficiency. This study argues that the problem is fundamentally morphological and structural. The city's leapfrog urban expansion has produced fragmented peripheral clusters disconnected from a rigid, center-oriented bus network. As a result, demand remains intensely concentrated along the Kizilay-Ulus axis and western corridors, while peripheral districts experience either chronic under-service or enforced transfer dependency. The deficiency is therefore not merely quantitative but rooted in the misalignment between urban macroform and network architecture. The empirical analysis draws on a 173-day operational dataset derived from route-level passenger and trip reports published by EGO under the former "Transparent Ankara" initiative. To overcome the absence of stop-level geospatial data, a Connectivity-Based Weighted Distribution Model reallocates passenger volumes to 1 km x 1 km grid cells using network centrality. The findings reveal persistent center-periphery asymmetries, structural bottlenecks, and spatially embedded accessibility inequalities.
comment: 13 pages, 12 figures. Spatial analysis of Ankara transit network using anomaly detection and grid-based modeling
☆ On the Out-of-Distribution Generalization of Reasoning in Multimodal LLMs for Simple Visual Planning Tasks
Integrating reasoning in large language models and large vision-language models has recently led to significant improvement of their capabilities. However, the generalization of reasoning models is still vaguely defined and poorly understood. In this work, we present an evaluation framework to rigorously examine how well chain-of-thought (CoT) approaches generalize on a simple planning task. Specifically, we consider a grid-based navigation task in which a model is provided with a map and must output a sequence of moves that guides a player from a start position to a goal while avoiding obstacles. The versatility of the task and its data allows us to fine-tune model variants using different input representations (visual and textual) and CoT reasoning strategies, and systematically evaluate them under both in-distribution (ID) and out-of-distribution (OOD) test conditions. Our experiments show that, while CoT reasoning improves in-distribution generalization across all representations, out-of-distribution generalization (e.g., to larger maps) remains very limited in most cases when controlling for trivial matches with the ID data. Surprisingly, we find that reasoning traces which combine multiple text formats yield the best (and non-trivial) OOD generalization. Finally, purely text-based models consistently outperform those utilizing image-based inputs, including a recently proposed approach relying on latent space reasoning.
☆ Benchmarking IoT Time-Series AD with Event-Level Augmentations
Anomaly detection (AD) for safety-critical IoT time series should be judged at the event level: reliability and earliness under realistic perturbations. Yet many studies still emphasize point-level results on curated base datasets, limiting value for model selection in practice. We introduce an evaluation protocol with unified event-level augmentations that simulate real-world issues: calibrated sensor dropout, linear and log drift, additive noise, and window shifts. We also perform sensor-level probing via mask-as-missing zeroing with per-channel influence estimation to support root-cause analysis. We evaluate 14 representative models on five public anomaly datasets (SWaT, WADI, SMD, SKAB, TEP) and two industrial datasets (steam turbine, nuclear turbogenerator) using unified splits and event aggregation. There is no universal winner: graph-structured models transfer best under dropout and long events (e.g., on SWaT under additive noise F1 drops 0.804->0.677 for a graph autoencoder, 0.759->0.680 for a graph-attention variant, and 0.762->0.756 for a hybrid graph attention model); density/flow models work well on clean stationary plants but can be fragile to monotone drift; spectral CNNs lead when periodicity is strong; reconstruction autoencoders become competitive after basic sensor vetting; predictive/hybrid dynamics help when faults break temporal dependencies but remain window-sensitive. The protocol also informs design choices: on SWaT under log drift, replacing normalizing flows with Gaussian density reduces high-stress F1 from ~0.75 to ~0.57, and fixing a learned DAG gives a small clean-set gain (~0.5-1.0 points) but increases drift sensitivity by ~8x.
comment: https://underline.io/events/521/sessions/21822/lecture/143905-benchmarking-iot-time-series-ad-with-event-level-augmentations?tab=poster
☆ Molecular Design beyond Training Data with Novel Extended Objective Functionals of Generative AI Models Driven by Quantum Annealing Computer
Deep generative modeling to stochastically design small molecules is an emerging technology for accelerating drug discovery and development. However, one major issue in molecular generative models is their lower frequency of drug-like compounds. To resolve this problem, we developed a novel framework for optimization of deep generative models integrated with a D-Wave quantum annealing computer, where our Neural Hash Function (NHF) presented herein is used both as the regularization and binarization schemes simultaneously, of which the latter is for transformation between continuous and discrete signals of the classical and quantum neural networks, respectively, in the error evaluation (i.e., objective) function. The compounds generated via the quantum-annealing generative models exhibited higher quality in both validity and drug-likeness than those generated via the fully-classical models, and was further indicated to exceed even the training data in terms of drug-likeness features, without any restraints and conditions to deliberately induce such an optimization. These results indicated an advantage of quantum annealing to aim at a stochastic generator integrated with our novel neural network architectures, for the extended performance of feature space sampling and extraction of characteristic features in drug design.
comment: 42 pages, 7 figures
☆ TAROT: Test-driven and Capability-adaptive Curriculum Reinforcement Fine-tuning for Code Generation with Large Language Models
Large Language Models (LLMs) are changing the coding paradigm, known as vibe coding, yet synthesizing algorithmically sophisticated and robust code still remains a critical challenge. Incentivizing the deep reasoning capabilities of LLMs is essential to overcoming this hurdle. Reinforcement Fine-Tuning (RFT) has emerged as a promising strategy to address this need. However, most existing approaches overlook the heterogeneous difficulty and granularity inherent in test cases, leading to an imbalanced distribution of reward signals and consequently biased gradient updates during training. To address this, we propose Test-driven and cApability-adaptive cuRriculum reinfOrcement fine-Tuning (TAROT). TAROT systematically constructs, for each problem, a four-tier test suite (basic, intermediate, complex, edge), providing a controlled difficulty landscape for curriculum design and evaluation. Crucially, TAROT decouples curriculum progression from raw reward scores, enabling capability-conditioned evaluation and principled selection from a portfolio of curriculum policies rather than incidental test-case difficulty composition. This design fosters stable optimization and more efficient competency acquisition. Extensive experimental results reveal that the optimal curriculum for RFT in code generation is closely tied to a model's inherent capability, with less capable models achieving greater gains with an easy-to-hard progression, whereas more competent models excel under a hard-first curriculum. TAROT provides a reproducible method that adaptively tailors curriculum design to a model's capability, thereby consistently improving the functional correctness and robustness of the generated code. All code and data are released to foster reproducibility and advance community research at https://github.com/deep-diver/TAROT.
comment: The first three authors contributed equally to this work; listing order is random
☆ Logit Distance Bounds Representational Similarity
For a broad family of discriminative models that includes autoregressive language models, identifiability results imply that if two models induce the same conditional distributions, then their internal representations agree up to an invertible linear transformation. We ask whether an analogous conclusion holds approximately when the distributions are close instead of equal. Building on the observation of Nielsen et al. (2025) that closeness in KL divergence need not imply high linear representational similarity, we study a distributional distance based on logit differences and show that closeness in this distance does yield linear similarity guarantees. Specifically, we define a representational dissimilarity measure based on the models' identifiability class and prove that it is bounded by the logit distance. We further show that, when model probabilities are bounded away from zero, KL divergence upper-bounds logit distance; yet the resulting bound fails to provide nontrivial control in practice. As a consequence, KL-based distillation can match a teacher's predictions while failing to preserve linear representational properties, such as linear-probe recoverability of human-interpretable concepts. In distillation experiments on synthetic and image datasets, logit-distance distillation yields students with higher linear representational similarity and better preservation of the teacher's linearly recoverable concepts.
☆ GaiaFlow: Semantic-Guided Diffusion Tuning for Carbon-Frugal Search
As the burgeoning power requirements of sophisticated neural architectures escalate, the information retrieval community has recognized ecological sustainability as a pivotal priority that necessitates a fundamental paradigm shift in model design. While contemporary neural rankers have attained unprecedented accuracy, the substantial environmental externalities associated with their computational intensity often remain overlooked in large-scale deployments. We present GaiaFlow, an innovative framework engineered to facilitate carbon-frugal search by operationalizing semantic-guided diffusion tuning. Our methodology orchestrates the convergence of retrieval-guided Langevin dynamics and a hardware-independent performance modeling strategy to optimize the trade-off between search precision and environmental preservation. By incorporating adaptive early exit protocols and precision-aware quantized inference, the proposed architecture significantly mitigates operational carbon footprints while maintaining robust retrieval quality across heterogeneous computing infrastructures. Extensive experimental evaluations demonstrate that GaiaFlow achieves a superior equilibrium between effectiveness and energy efficiency, offering a scalable and sustainable pathway for next-generation neural search systems.
comment: 19 pages, 7 figures
☆ Fairness over Equality: Correcting Social Incentives in Asymmetric Sequential Social Dilemmas
Sequential Social Dilemmas (SSDs) provide a key framework for studying how cooperation emerges when individual incentives conflict with collective welfare. In Multi-Agent Reinforcement Learning, these problems are often addressed by incorporating intrinsic drives that encourage prosocial or fair behavior. However, most existing methods assume that agents face identical incentives in the dilemma and require continuous access to global information about other agents to assess fairness. In this work, we introduce asymmetric variants of well-known SSD environments and examine how natural differences between agents influence cooperation dynamics. Our findings reveal that existing fairness-based methods struggle to adapt under asymmetric conditions by enforcing raw equality that wrongfully incentivize defection. To address this, we propose three modifications: (i) redefining fairness by accounting for agents' reward ranges, (ii) introducing an agent-based weighting mechanism to better handle inherent asymmetries, and (iii) localizing social feedback to make the methods effective under partial observability without requiring global information sharing. Experimental results show that in asymmetric scenarios, our method fosters faster emergence of cooperative policies compared to existing approaches, without sacrificing scalability or practicality.
☆ Joint Enhancement and Classification using Coupled Diffusion Models of Signals and Logits
Robust classification in noisy environments remains a fundamental challenge in machine learning. Standard approaches typically treat signal enhancement and classification as separate, sequential stages: first enhancing the signal and then applying a classifier. This approach fails to leverage the semantic information in the classifier's output during denoising. In this work, we propose a general, domain-agnostic framework that integrates two interacting diffusion models: one operating on the input signal and the other on the classifier's output logits, without requiring any retraining or fine-tuning of the classifier. This coupled formulation enables mutual guidance, where the enhancing signal refines the class estimation and, conversely, the evolving class logits guide the signal reconstruction towards discriminative regions of the manifold. We introduce three strategies to effectively model the joint distribution of the input and the logit. We evaluated our joint enhancement method for image classification and automatic speech recognition. The proposed framework surpasses traditional sequential enhancement baselines, delivering robust and flexible improvements in classification accuracy under diverse noise conditions.
☆ Doubly Stochastic Mean-Shift Clustering
Standard Mean-Shift algorithms are notoriously sensitive to the bandwidth hyperparameter, particularly in data-scarce regimes where fixed-scale density estimation leads to fragmentation and spurious modes. In this paper, we propose Doubly Stochastic Mean-Shift (DSMS), a novel extension that introduces randomness not only in the trajectory updates but also in the kernel bandwidth itself. By drawing both the data samples and the radius from a continuous uniform distribution at each iteration, DSMS effectively performs a better exploration of the density landscape. We show that this randomized bandwidth policy acts as an implicit regularization mechanism, and provide convergence theoretical results. Comparative experiments on synthetic Gaussian mixtures reveal that DSMS significantly outperforms standard and stochastic Mean-Shift baselines, exhibiting remarkable stability and preventing over-segmentation in sparse clustering scenarios without other performance degradation.
comment: 30 pages. arXiv admin note: text overlap with arXiv:2511.09202
☆ The Vision Wormhole: Latent-Space Communication in Heterogeneous Multi-Agent Systems
Multi-Agent Systems (MAS) powered by Large Language Models have unlocked advanced collaborative reasoning, yet they remain shackled by the inefficiency of discrete text communication, which imposes significant runtime overhead and information quantization loss. While latent state transfer offers a high-bandwidth alternative, existing approaches either assume homogeneous sender-receiver architectures or rely on pair-specific learned translators, limiting scalability and modularity across diverse model families with disjoint manifolds. In this work, we propose the Vision Wormhole, a novel framework that repurposes the visual interface of Vision-Language Models (VLMs) to enable model-agnostic, text-free communication. By introducing a Universal Visual Codec, we map heterogeneous reasoning traces into a shared continuous latent space and inject them directly into the receiver's visual pathway, effectively treating the vision encoder as a universal port for inter-agent telepathy. Our framework adopts a hub-and-spoke topology to reduce pairwise alignment complexity from O(N^2) to O(N) and leverages a label-free, teacher-student distillation objective to align the high-speed visual channel with the robust reasoning patterns of the text pathway. Extensive experiments across heterogeneous model families (e.g., Qwen-VL, Gemma) demonstrate that the Vision Wormhole reduces end-to-end wall-clock time in controlled comparisons while maintaining reasoning fidelity comparable to standard text-based MAS. Code is available at https://github.com/xz-liu/heterogeneous-latent-mas
comment: Preprint. Work in progress
☆ Fractional-Order Federated Learning
Federated learning (FL) allows remote clients to train a global model collaboratively while protecting client privacy. Despite its privacy-preserving benefits, FL has significant drawbacks, including slow convergence, high communication cost, and non-independent-and-identically-distributed (non-IID) data. In this work, we present a novel FedAvg variation called Fractional-Order Federated Averaging (FOFedAvg), which incorporates Fractional-Order Stochastic Gradient Descent (FOSGD) to capture long-range relationships and deeper historical information. By introducing memory-aware fractional-order updates, FOFedAvg improves communication efficiency and accelerates convergence while mitigating instability caused by heterogeneous, non-IID client data. We compare FOFedAvg against a broad set of established federated optimization algorithms on benchmark datasets including MNIST, FEMNIST, CIFAR-10, CIFAR-100, EMNIST, the Cleveland heart disease dataset, Sent140, PneumoniaMNIST, and Edge-IIoTset. Across a range of non-IID partitioning schemes, FOFedAvg is competitive with, and often outperforms, these baselines in terms of test performance and convergence speed. On the theoretical side, we prove that FOFedAvg converges to a stationary point under standard smoothness and bounded-variance assumptions for fractional order $0<α\le 1$. Together, these results show that fractional-order, memory-aware updates can substantially improve the robustness and effectiveness of federated learning, offering a practical path toward distributed training on heterogeneous data.
comment: This paper is submitted to IEEE-TAI
☆ FlashMem: Supporting Modern DNN Workloads on Mobile with GPU Memory Hierarchy Optimizations
The increasing size and complexity of modern deep neural networks (DNNs) pose significant challenges for on-device inference on mobile GPUs, with limited memory and computational resources. Existing DNN acceleration frameworks primarily deploy a weight preloading strategy, where all model parameters are loaded into memory before execution on mobile GPUs. We posit that this approach is not adequate for modern DNN workloads that comprise very large model(s) and possibly execution of several distinct models in succession. In this work, we introduce FlashMem, a memory streaming framework designed to efficiently execute large-scale modern DNNs and multi-DNN workloads while minimizing memory consumption and reducing inference latency. Instead of fully preloading weights, FlashMem statically determines model loading schedules and dynamically streams them on demand, leveraging 2.5D texture memory to minimize data transformations and improve execution efficiency. Experimental results on 11 models demonstrate that FlashMem achieves 2.0x to 8.4x memory reduction and 1.7x to 75.0x speedup compared to existing frameworks, enabling efficient execution of large-scale models and multi-DNN support on resource-constrained mobile GPUs.
☆ GMAIL: Generative Modality Alignment for generated Image Learning
Generative models have made it possible to synthesize highly realistic images, potentially providing an abundant data source for training machine learning models. Despite the advantages of these synthesizable data sources, the indiscriminate use of generated images as real images for training can even cause mode collapse due to modality discrepancies between real and synthetic domains. In this paper, we propose a novel framework for discriminative use of generated images, coined GMAIL, that explicitly treats generated images as a separate modality from real images. Instead of indiscriminately replacing real images with generated ones in the pixel space, our approach bridges the two distinct modalities in the same latent space through a multi-modal learning approach. To be specific, we first fine-tune a model exclusively on generated images using a cross-modality alignment loss and then employ this aligned model to further train various vision-language models with generated images. By aligning the two modalities, our approach effectively leverages the benefits of recent advances in generative models, thereby boosting the effectiveness of generated image learning across a range of vision-language tasks. Our framework can be easily incorporated with various vision-language models, and we demonstrate its efficacy throughout extensive experiments. For example, our framework significantly improves performance on image captioning, zero-shot image retrieval, zero-shot image classification, and long caption retrieval tasks. It also shows positive generated data scaling trends and notable enhancements in the captioning performance of the large multimodal model, LLaVA.
☆ CDRL: A Reinforcement Learning Framework Inspired by Cerebellar Circuits and Dendritic Computational Strategies
Reinforcement learning (RL) has achieved notable performance in high-dimensional sequential decision-making tasks, yet remains limited by low sample efficiency, sensitivity to noise, and weak generalization under partial observability. Most existing approaches address these issues primarily through optimization strategies, while the role of architectural priors in shaping representation learning and decision dynamics is less explored. Inspired by structural principles of the cerebellum, we propose a biologically grounded RL architecture that incorporate large expansion, sparse connectivity, sparse activation, and dendritic-level modulation. Experiments on noisy, high-dimensional RL benchmarks show that both the cerebellar architecture and dendritic modulation consistently improve sample efficiency, robustness, and generalization compared to conventional designs. Sensitivity analysis of architectural parameters suggests that cerebellum-inspired structures can offer optimized performance for RL with constrained model parameters. Overall, our work underscores the value of cerebellar structural priors as effective inductive biases for RL.
comment: 14pages, 8 figures, 6 tabels
☆ ER-MIA: Black-Box Adversarial Memory Injection Attacks on Long-Term Memory-Augmented Large Language Models
Large language models (LLMs) are increasingly augmented with long-term memory systems to overcome finite context windows and enable persistent reasoning across interactions. However, recent research finds that LLMs become more vulnerable because memory provides extra attack surfaces. In this paper, we present the first systematic study of black-box adversarial memory injection attacks that target the similarity-based retrieval mechanism in long-term memory-augmented LLMs. We introduce ER-MIA, a unified framework that exposes this vulnerability and formalizes two realistic attack settings: content-based attacks and question-targeted attacks. In these settings, ER-MIA includes an arsenal of composable attack primitives and ensemble attacks that achieve high success rates under minimal attacker assumptions. Extensive experiments across multiple LLMs and long-term memory systems demonstrate that similarity-based retrieval constitutes a fundamental and system-level vulnerability, revealing security risks that persist across memory designs and application scenarios.
☆ Discovering Implicit Large Language Model Alignment Objectives
Large language model (LLM) alignment relies on complex reward signals that often obscure the specific behaviors being incentivized, creating critical risks of misalignment and reward hacking. Existing interpretation methods typically rely on pre-defined rubrics, risking the omission of "unknown unknowns", or fail to identify objectives that comprehensively cover and are causal to the model behavior. To address these limitations, we introduce Obj-Disco, a framework that automatically decomposes an alignment reward signal into a sparse, weighted combination of human-interpretable natural language objectives. Our approach utilizes an iterative greedy algorithm to analyze behavioral changes across training checkpoints, identifying and validating candidate objectives that best explain the residual reward signal. Extensive evaluations across diverse tasks, model sizes, and alignment algorithms demonstrate the framework's robustness. Experiments with popular open-source reward models show that the framework consistently captures > 90% of reward behavior, a finding further corroborated by human evaluation. Additionally, a case study on alignment with an open-source reward model reveals that Obj-Disco can successfully identify latent misaligned incentives that emerge alongside intended behaviors. Our work provides a crucial tool for uncovering the implicit objectives in LLM alignment, paving the way for more transparent and safer AI development.
☆ FedPSA: Modeling Behavioral Staleness in Asynchronous Federated Learning
Asynchronous Federated Learning (AFL) has emerged as a significant research area in recent years. By not waiting for slower clients and executing the training process concurrently, it achieves faster training speed compared to traditional federated learning. However, due to the staleness introduced by the asynchronous process, its performance may degrade in some scenarios. Existing methods often use the round difference between the current model and the global model as the sole measure of staleness, which is coarse-grained and lacks observation of the model itself, thereby limiting the performance ceiling of asynchronous methods. In this paper, we propose FedPSA (Parameter Sensitivity-based Asynchronous Federated Learning), a more fine-grained AFL framework that leverages parameter sensitivity to measure model obsolescence and establishes a dynamic momentum queue to assess the current training phase in real time, thereby adjusting the tolerance for outdated information dynamically. Extensive experiments on multiple datasets and comparisons with various methods demonstrate the superior performance of FedPSA, achieving up to 6.37\% improvement over baseline methods and 1.93\% over the current state-of-the-art method.
☆ Directional Reasoning Trajectory Change (DRTC): Identifying Critical Trace Segments in Reasoning Models
Understanding how language models carry out long-horizon reasoning remains an open challenge. Existing interpretability methods often highlight tokens or spans correlated with an answer, but they rarely reveal where the model makes consequential reasoning turns, which earlier context causally triggers those turns, or whether the highlighted text actually steers the reasoning process. We introduce Directional Reasoning Trajectory Change (DRTC), a process-causal framework for interpreting long-form reasoning from a single on-policy rollout. DRTC detects pivot decision points using uncertainty and distribution-shift signals, then applies receiver-side interventions that preserve the realized rollout without resampling the continuation while blocking information flow from selected earlier chunks only at a pivot. It measures whether each intervention redirects the direction of the model's log-probability trajectory relative to the realized rollout direction, producing a signed per-chunk attribution score. We also compute turning-angle curvature changes on raw logits as a complementary diagnostic and introduce curvature signatures to summarize shared intervention-response geometry. Empirically, directional influence is sharply concentrated across four reasoning models (per-example |DRTC| shares yield Gini 0.50 to 0.58 and top-5 percent mass 0.23 to 0.28), and learned pivots induce stronger intervention magnitudes than matched random spans. In a scaling study on 500 MATH problems with R1-Distill-Qwen-1.5B, learned spans outperform matched random spans (median delta = 0.409, 355 of 500 positive; sign test p = 2.3e-21). Overall, DRTC provides a causally grounded, trajectory-level view of how specific context elements steer reasoning under on-policy dynamics.
☆ A Scalable Curiosity-Driven Game-Theoretic Framework for Long-Tail Multi-Label Learning in Data Mining
The long-tail distribution, where a few head labels dominate while rare tail labels abound, poses a persistent challenge for large-scale Multi-Label Classification (MLC) in real-world data mining applications. Existing resampling and reweighting strategies often disrupt inter-label dependencies or require brittle hyperparameter tuning, especially as the label space expands to tens of thousands of labels. To address this issue, we propose Curiosity-Driven Game-Theoretic Multi-Label Learning (CD-GTMLL), a scalable cooperative framework that recasts long-tail MLC as a multi-player game - each sub-predictor ("player") specializes in a partition of the label space, collaborating to maximize global accuracy while pursuing intrinsic curiosity rewards based on tail label rarity and inter-player disagreement. This mechanism adaptively injects learning signals into under-represented tail labels without manual balancing or tuning. We further provide a theoretical analysis showing that our CD-GTMLL converges to a tail-aware equilibrium and formally links the optimization dynamics to improvements in the Rare-F1 metric. Extensive experiments across 7 benchmarks, including extreme multi-label classification datasets with 30,000+ labels, demonstrate that CD-GTMLL consistently surpasses state-of-the-art methods, with gains up to +1.6% P@3 on Wiki10-31K. Ablation studies further confirm the contributions of both game-theoretic cooperation and curiosity-driven exploration to robust tail performance. By integrating game theory with curiosity mechanisms, CD-GTMLL not only enhances model efficiency in resource-constrained environments but also paves the way for more adaptive learning in imbalanced data scenarios across industries like e-commerce and healthcare.
☆ Prescriptive Scaling Reveals the Evolution of Language Model Capabilities
For deploying foundation models, practitioners increasingly need prescriptive scaling laws: given a pre training compute budget, what downstream accuracy is attainable with contemporary post training practice, and how stable is that mapping as the field evolves? Using large scale observational evaluations with 5k observational and 2k newly sampled data on model performance, we estimate capability boundaries, high conditional quantiles of benchmark scores as a function of log pre training FLOPs, via smoothed quantile regression with a monotone, saturating sigmoid parameterization. We validate the temporal reliability by fitting on earlier model generations and evaluating on later releases. Across various tasks, the estimated boundaries are mostly stable, with the exception of math reasoning that exhibits a consistently advancing boundary over time. We then extend our approach to analyze task dependent saturation and to probe contamination related shifts on math reasoning tasks. Finally, we introduce an efficient algorithm that recovers near full data frontiers using roughly 20% of evaluation budget. Together, our work releases the Proteus 2k, the latest model performance evaluation dataset, and introduces a practical methodology for translating compute budgets into reliable performance expectations and for monitoring when capability boundaries shift across time.
comment: Blog Post: https://jkjin.com/prescriptive-scaling
☆ SCENE OTA-FD: Self-Centering Noncoherent Estimator for Over-the-Air Federated Distillation
We propose SCENE (Self-Centering Noncoherent Estimator), a pilot-free and phase-invariant aggregation primitive for over-the-air federated distillation (OTA-FD). Each device maps its soft-label (class-probability) vector to nonnegative transmit energies under constant per-round power and constant-envelope signaling (PAPR near 1). At the server, a self-centering energy estimator removes the noise-energy offset and yields an unbiased estimate of the weighted soft-label average, with variance decaying on the order of 1/(SM) in the number of receive antennas M and repetition factor S. We also develop a pilot-free ratio-normalized variant that cancels unknown large-scale gains, provide a convergence bound consistent with coherent OTA-FD analyses, and present an overhead-based crossover comparison. SCENE targets short-coherence and hardware-constrained regimes, where avoiding per-round CSI is essential: it trades a modest noncoherent variance constant for zero uplink pilots, unbiased aggregation, and hardware-friendly transmission, and can outperform coherent designs when pilot overhead is non-negligible.
comment: Work in progress. Codes will be available on: https://github.com/zavareh1
♻ ☆ Token-Based Audio Inpainting via Discrete Diffusion
Audio inpainting seeks to restore missing segments in degraded recordings. Previous diffusion-based methods exhibit impaired performance when the missing region is large. We introduce the first approach that applies discrete diffusion over tokenized music representations from a pre-trained audio tokenizer, enabling stable and semantically coherent restoration of long gaps. Our method further incorporates two training approaches: a derivative-based regularization loss that enforces smooth temporal dynamics, and a span-based absorbing transition that provides structured corruption during diffusion. Experiments on the MusicNet and MAESTRO datasets with gaps up to 750 ms show that our approach consistently outperforms strong baselines across range of gap lengths, for gaps of 150 ms and above. This work advances musical audio restoration and introduces new directions for discrete diffusion model training. Visit our project page for examples and code.
♻ ☆ Horizon Imagination: Efficient On-Policy Rollout in Diffusion World Models ICLR 2026
We study diffusion-based world models for reinforcement learning, which offer high generative fidelity but face critical efficiency challenges in control. Current methods either require heavyweight models at inference or rely on highly sequential imagination, both of which impose prohibitive computational costs. We propose Horizon Imagination (HI), an on-policy imagination process for discrete stochastic policies that denoises multiple future observations in parallel. HI incorporates a stabilization mechanism and a novel sampling schedule that decouples the denoising budget from the effective horizon over which denoising is applied while also supporting sub-frame budgets. Experiments on Atari 100K and Craftium show that our approach maintains control performance with a sub-frame budget of half the denoising steps and achieves superior generation quality under varied schedules. Code is available at https://github.com/leor-c/horizon-imagination.
comment: This paper will be published in the ICLR 2026 proceedings
♻ ☆ Should You Use Your Large Language Model to Explore or Exploit?
We evaluate the ability of the current generation of large language models (LLMs) to help a decision-making agent facing an exploration-exploitation tradeoff. While previous work has largely study the ability of LLMs to solve combined exploration-exploitation tasks, we take a more systematic approach and use LLMs to explore and exploit in silos in various (contextual) bandit tasks. We find that reasoning models show the most promise for solving exploitation tasks, although they are still too expensive or too slow to be used in many practical settings. Motivated by this, we study tool use and in-context summarization using non-reasoning models. We find that these mitigations may be used to substantially improve performance on medium-difficulty tasks, however even then, all LLMs we study perform worse than a simple linear regression, even in non-linear settings. On the other hand, we find that LLMs do help at exploring large action spaces with inherent semantics, by suggesting suitable candidates to explore.
♻ ☆ Learning depth-3 circuits via quantum agnostic boosting
We initiate the study of quantum agnostic learning of phase states with respect to a function class $\mathsf{C}\subseteq \{c:\{0,1\}^n\rightarrow \{0,1\}\}$: given copies of an unknown $n$-qubit state $|ψ\rangle$ which has fidelity $\textsf{opt}$ with a phase state $|φ_c\rangle=\frac{1}{\sqrt{2^n}}\sum_{x\in \{0,1\}^n}(-1)^{c(x)}|x\rangle$ for some $c\in \mathsf{C}$, output $|φ\rangle$ which has fidelity $|\langle φ| ψ\rangle|^2 \geq \textsf{opt}-\varepsilon$. To this end, we give agnostic learning protocols for the following classes: (i) Size-$t$ decision trees which runs in time $\textsf{poly}(n,t,1/\varepsilon)$. This also implies $k$-juntas can be agnostically learned in time $\textsf{poly}(n,2^k,1/\varepsilon)$. (ii) $s$-term DNF formulas in time $\textsf{poly}(n,(s/\varepsilon)^{\log \log (s/\varepsilon) \cdot \log(1/\varepsilon)})$. Our main technical contribution is a quantum agnostic boosting protocol which converts a weak agnostic learner, which outputs a parity state $|φ\rangle$ such that $|\langle φ|ψ\rangle|^2\geq \textsf{opt}/\textsf{poly}(n)$, into a strong learner which outputs a superposition of parity states $|φ'\rangle$ such that $|\langle φ'|ψ\rangle|^2\geq \textsf{opt} - \varepsilon$. Using quantum agnostic boosting, we obtain a $n^{O(\log(n/\varepsilon) \cdot \log \log n)}$-time algorithm for $\varepsilon$-learning $\textsf{poly}(n)$-sized depth-$3$ circuits (consisting of $\textsf{AND}$, $\textsf{OR}$, $\textsf{NOT}$ gates) in the uniform $\textsf{PAC}$ model given quantum examples. Classically, obtaining an algorithm with a similar complexity has been an open question in the $\textsf{PAC}$ model and our work answers this given quantum examples.
comment: 53 pages; Typos fixed for depth-3 circuits result
♻ ☆ GenDA: Generative Data Assimilation on Complex Urban Areas via Classifier-Free Diffusion Guidance
Urban wind flow reconstruction is essential for assessing air quality, heat dispersion, and pedestrian comfort, yet remains challenging when only sparse sensor data are available. We propose GenDA, a generative data assimilation framework that reconstructs high-resolution wind fields on unstructured meshes from limited observations. The model employs a multiscale graph-based diffusion architecture trained on computational fluid dynamics (CFD) simulations and interprets classifier-free guidance as a learned posterior reconstruction mechanism: the unconditional branch learns a geometry-aware flow prior, while the sensor-conditioned branch injects observational constraints during sampling. This formulation enables obstacle-aware reconstruction and generalization across unseen geometries, wind directions, and mesh resolutions without retraining. We consider both sparse fixed sensors and trajectory-based observations using the same reconstruction procedure. When evaluated against supervised graph neural network (GNN) baselines and classical reduced-order data assimilation methods, GenDA reduces the relative root-mean-square error (RRMSE) by 25-57% and increases the structural similarity index (SSIM) by 23-33% across the tested meshes. Experiments are conducted on Reynolds-averaged Navier-Stokes (RANS) simulations of a real urban neighbourhood in Bristol, United Kingdom, at a characteristic Reynolds number of $\mathrm{Re}\approx2\times10^{7}$, featuring complex building geometry and irregular terrain. The proposed framework provides a scalable path toward generative, geometry-aware data assimilation for environmental monitoring in complex domains.
♻ ☆ Random Forests as Statistical Procedures: Design, Variance, and Dependence
Random forests are widely used prediction procedures, yet are typically described algorithmically rather than as statistical designs acting on a fixed set of covariates. We develop a finite-sample, design-based formulation of random forests in which each tree is an explicit randomized conditional regression function. This perspective yields an exact variance identity for the forest predictor that separates finite-aggregation variability from a structural dependence term that persists even under infinite aggregation. We further decompose both single-tree dispersion and inter-tree covariance using the laws of total variance and covariance, isolating two fundamental design mechanisms-reuse of training observations and alignment of data-adaptive partitions. These mechanisms induce a strict covariance floor, demonstrating that predictive variability cannot be eliminated by increasing the number of trees alone. The resulting framework clarifies how resampling, feature-level randomization, and split selection govern resolution, tree variability, and dependence, and establishes random forests as explicit finite-sample statistical designs whose behavior is determined by their underlying randomized construction.
comment: 27 pages, 2 figures. Supplementary material included
♻ ☆ Online GPU Energy Optimization with Switching-Aware Bandits
Energy consumption has become a bottleneck for future computing architectures, from wearable devices to leadership-class supercomputers. Existing energy management techniques largely target CPUs, even though GPUs now dominate power draw in heterogeneous high performance computing (HPC) systems. Moreover, many prior methods rely on either purely offline or hybrid offline and online training, which is impractical and results in energy inefficiencies during data collection. In this paper, we introduce a practical online GPU energy optimization problem in a HPC scenarios. The problem is challenging because (1) GPU frequency scaling exhibits performance-energy trade-offs, (2) online control must balance exploration and exploitation, and (3) frequent frequency switching incurs non-trivial overhead and degrades quality of service (QoS). To address the challenges, we formulate online GPU energy optimization as a multi-armed bandit problem and propose EnergyUCB, a lightweight UCB-based controller that dynamically adjusts GPU core frequency in real time to save energy. Specifically, EnergyUCB (1) defines a reward that jointly captures energy and performance using a core-to-uncore utilization ratio as a proxy for GPU throughput, (2) employs optimistic initialization and UCB-style confidence bonuses to accelerate learning from scratch, and (3) incorporates a switching-aware UCB index and a QoS-constrained variant that enforce explicit slowdown budgets while discouraging unnecessary frequency oscillations. Extensive experiments on real-world workloads from the world's third fastest supercomputer Aurora show that EnergyUCB achieves substantial energy savings with modest slowdown and that the QoS-constrained variant reliably respects user-specified performance budgets.
comment: ACM Web Conference 2026 (WWW'26)
♻ ☆ Scale-Invariant Regret Matching and Online Learning with Optimal Convergence: Bridging Theory and Practice in Zero-Sum Games
A considerable chasm has been looming for decades between theory and practice in zero-sum game solving through first-order methods. Although a convergence rate of $T^{-1}$ has long been established, the most effective paradigm in practice is counterfactual regret minimization (CFR), which is based on regret matching and its modern variants. In particular, the state of the art across most benchmarks is predictive regret matching$^+$ (PRM$^+$). Yet, such algorithms can exhibit slower $T^{-1/2}$ convergence even in self-play. In this paper, we close the gap between theory and practice. We propose a new scale-invariant and parameter-free variant of PRM$^+$, which we call IREG-PRM$^+$. We show that it achieves $T^{-1/2}$ best-iterate and $T^{-1}$ (i.e., optimal) average-iterate convergence guarantees, while also being on par or even better relative to PRM$^+$ on benchmark games. From a technical standpoint, we draw an analogy between (IREG-)PRM$^+$ and optimistic gradient descent with adaptive learning rate. Reflecting this theoretical bridge, we find that the adaptive version of optimistic gradient descent we consider performs on par with IREG-PRM$^+$. This demystifies the effectiveness of the regret matching family vis-a-vis more standard optimization techniques. Moreover, we extend our analysis beyond zero-sum games to a family of variational inequality problems that includes harmonic games, as well as extensive-form games with fully-mixed equilibria, via a new and intriguing connection between CFR and harmonic games. Unlike prior work in harmonic games, our algorithms do not require knowing the underlying weights by virtue of scale invariance. Under the weighted Minty condition, we show that any algorithm satisfying a scale-invariant RVU property (such as IREG-PRM$^+$) has constant regret (in self-play) and $T^{-1/2}$ iterate convergence.
comment: Compared to the previous version, this version includes new results on harmonic games and extensive-form games. Abstract abridged due to arXiv length constraints
♻ ☆ PolySHAP: Extending KernelSHAP with Interaction-Informed Polynomial Regression ICLR 2026
Shapley values have emerged as a central game-theoretic tool in explainable AI (XAI). However, computing Shapley values exactly requires $2^d$ game evaluations for a model with $d$ features. Lundberg and Lee's KernelSHAP algorithm has emerged as a leading method for avoiding this exponential cost. KernelSHAP approximates Shapley values by approximating the game as a linear function, which is fit using a small number of game evaluations for random feature subsets. In this work, we extend KernelSHAP by approximating the game via higher degree polynomials, which capture non-linear interactions between features. Our resulting PolySHAP method yields empirically better Shapley value estimates for various benchmark datasets, and we prove that these estimates are consistent. Moreover, we connect our approach to paired sampling (antithetic sampling), a ubiquitous modification to KernelSHAP that improves empirical accuracy. We prove that paired sampling outputs exactly the same Shapley value approximations as second-order PolySHAP, without ever fitting a degree 2 polynomial. To the best of our knowledge, this finding provides the first strong theoretical justification for the excellent practical performance of the paired sampling heuristic.
comment: Published at ICLR 2026: https://openreview.net/forum?id=M19J8UGguq
♻ ☆ Policy Gradients for Cumulative Prospect Theory in Reinforcement Learning
We derive a policy gradient theorem for Cumulative Prospect Theory (CPT) objectives in finite-horizon Reinforcement Learning (RL), generalizing the standard policy gradient theorem and encompassing distortion-based risk objectives as special cases. Motivated by behavioral economics, CPT combines an asymmetric utility transformation around a reference point with probability distortion. Building on our theorem, we design a first-order policy gradient algorithm for CPT-RL using a Monte Carlo gradient estimator based on order statistics. We establish statistical guarantees for the estimator and prove asymptotic convergence of the resulting algorithm to first-order stationary points of the (generally non-convex) CPT objective. Simulations illustrate qualitative behaviors induced by CPT and compare our first-order approach to existing zeroth-order methods.
♻ ☆ Can Multimodal LLMs Perform Time Series Anomaly Detection?
Time series anomaly detection (TSAD) has been a long-standing pillar problem in Web-scale systems and online infrastructures, such as service reliability monitoring, system fault diagnosis, and performance optimization. Large language models (LLMs) have demonstrated unprecedented capabilities in time series analysis, the potential of multimodal LLMs (MLLMs), particularly vision-language models, in TSAD remains largely under-explored. One natural way for humans to detect time series anomalies is through visualization and textual description. It motivates our research question: Can multimodal LLMs perform time series anomaly detection? Existing studies often oversimplify the problem by treating point-wise anomalies as special cases of range-wise ones or by aggregating point anomalies to approximate range-wise scenarios. They limit our understanding for realistic scenarios such as multi-granular anomalies and irregular time series. To address the gap, we build a VisualTimeAnomaly benchmark to comprehensively investigate zero-shot capabilities of MLLMs for TSAD, progressively from point-, range-, to variate-wise anomalies, and extends to irregular sampling conditions. Our study reveals several key insights in multimodal MLLMs for TSAD. Built on these findings, we propose a MLLMs-based multi-agent framework TSAD-Agents to achieve automatic TSAD. Our framework comprises scanning, planning, detection, and checking agents that synergistically collaborate to reason, plan, and self-reflect to enable automatic TSAD. These agents adaptively invoke tools such as traditional methods and MLLMs and dynamically switch between text and image modalities to optimize detection performance.
comment: ACM Web Conference 2026 (WWW'26)
♻ ☆ Non-intrusive data-driven model order reduction for circuits based on Hammerstein architectures
We demonstrate that system identification techniques can provide a basis for effective, non-intrusive model order reduction (MOR) for common circuits that are key building blocks in microelectronics. Our approach is motivated by the practical operation of these circuits and utilizes a canonical Hammerstein architecture. To demonstrate the approach we develop parsimonious Hammerstein models for a nonlinear CMOS differential amplifier and an operational amplifier circuit. We train these models on a combination of direct current (DC) and transient Spice circuit simulation data using a novel sequential strategy to identify their static nonlinear and linear dynamical parts. Simulation results show that the Hammerstein model is an effective surrogate for for these types of circuits that accurately and efficiently reproduces their behavior over a wide range of operating points and input frequencies.
comment: 14 pages, 18 figures; accepted to IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
♻ ☆ On the Role of Iterative Computation in Reinforcement Learning
How does the amount of compute available to a reinforcement learning (RL) policy affect its learning? Can policies using a fixed amount of parameters, still benefit from additional compute? The standard RL framework does not provide a language to answer these questions formally. Empirically, deep RL policies are often parameterized as neural networks with static architectures, conflating the amount of compute and the number of parameters. In this paper, we formalize compute bounded policies and prove that policies which use more compute can solve problems and generalize to longer-horizon tasks that are outside the scope of policies with less compute. Building on prior work in algorithmic learning and model-free planning, we propose a minimal architecture that can use a variable amount of compute. Our experiments complement our theory. On a set 31 different tasks spanning online and offline RL, we show that $(1)$ this architecture achieves stronger performance simply by using more compute, and $(2)$ stronger generalization on longer-horizon test tasks compared to standard feedforward networks or deep residual network using up to 5 times more parameters.
♻ ☆ Functional multi-armed bandit and the best function identification problems
Bandit optimization usually refers to the class of online optimization problems with limited feedback, namely, a decision maker uses only the objective value at the current point to make a new decision and does not have access to the gradient of the objective function. While this name accurately captures the limitation in feedback, it is somehow misleading since it does not have any connection with the multi-armed bandits (MAB) problem class. We propose two new classes of problems: the functional multi-armed bandit problem (FMAB) and the best function identification problem. They are modifications of a multi-armed bandit problem and the best arm identification problem, respectively, where each arm represents an unknown black-box function. These problem classes are a surprisingly good fit for modeling real-world problems such as competitive LLM training. To solve the problems from these classes, we propose a new reduction scheme to construct UCB-type algorithms, namely, the F-LCB algorithm, based on algorithms for nonlinear optimization with known convergence rates. We provide the regret upper bounds for this reduction scheme based on the base algorithms' convergence rates. We add numerical experiments that demonstrate the performance of the proposed scheme.
♻ ☆ Syndrome-Flow Consistency Model Achieves One-step Denoising Error Correction Codes
Error Correction Codes (ECC) are fundamental to reliable digital communication, yet designing neural decoders that are both accurate and computationally efficient remains challenging. Recent denoising diffusion decoders achieve state-of-the-art performance, but their iterative sampling limits practicality in low-latency settings. To bridge this gap, consistency models (CMs) offer a potential path to high-fidelity one-step decoding. However, applying CMs to ECC presents a significant challenge: the discrete nature of error correction means the decoding trajectory is highly non-smooth, making it incompatible with a simple continuous timestep parameterization. To address this, we re-parameterize the reverse Probability Flow Ordinary Differential Equation (PF-ODE) by soft-syndrome condition, providing a smooth trajectory of signal corruption. Building on this, we propose the Error Correction Syndrome-Flow Consistency Model (ECCFM), a model-agnostic framework designed specifically for ECC task, ensuring the model learns a smooth trajectory from any noisy signal directly to the original codeword in a single step. Across multiple benchmarks, ECCFM attains lower bit-error-rate (BER) and frame-error-rate (FER) than transformer-based decoders, while delivering inference speeds 30x to 100x faster than iterative denoising diffusion decoders.
♻ ☆ cadrille: Multi-modal CAD Reconstruction with Reinforcement Learning ICLR 2026
Computer-Aided Design (CAD) plays a central role in engineering and manufacturing, making it possible to create precise and editable 3D models. Using a variety of sensor or user-provided data as inputs for CAD reconstruction can democratize access to design applications. However, existing methods typically focus on a single input modality, such as point clouds, images, or text, which limits their generalizability and robustness. Leveraging recent advances in vision-language models (VLM), we propose a multi-modal CAD reconstruction model that simultaneously processes all three input modalities. Inspired by large language model (LLM) training paradigms, we adopt a two-stage pipeline: supervised fine-tuning (SFT) on large-scale procedurally generated data, followed by reinforcement learning (RL) fine-tuning using online feedback, obtained programatically. Furthermore, we are the first to explore RL fine-tuning of LLMs for CAD tasks demonstrating that online RL algorithms such as Group Relative Preference Optimization (GRPO) outperform offline alternatives. In the DeepCAD benchmark, our SFT model outperforms existing single-modal approaches in all three input modalities simultaneously. More importantly, after RL fine-tuning, cadrille sets new state-of-the-art on three challenging datasets, including a real-world one. Code is avaliable at https://github.com/col14m/cadrille .
comment: ICLR 2026 (Oral)
♻ ☆ Enhanced Generative Model Evaluation with Clipped Density and Coverage
Although generative models have made remarkable progress in recent years, their use in critical applications has been hindered by an inability to reliably evaluate the quality of their generated samples. Quality refers to at least two complementary concepts: fidelity and coverage. Current quality metrics often lack reliable, interpretable values due to an absence of calibration or insufficient robustness to outliers. To address these shortcomings, we introduce two novel metrics: Clipped Density and Clipped Coverage. By clipping individual sample contributions, as well as the radii of nearest neighbor balls for fidelity, our metrics prevent out-of-distribution samples from biasing the aggregated values. Through analytical and empirical calibration, these metrics demonstrate linear score degradation as the proportion of bad samples increases. Thus, they can be straightforwardly interpreted as equivalent proportions of good samples. Extensive experiments on synthetic and real-world datasets demonstrate that Clipped Density and Clipped Coverage outperform existing methods in terms of robustness, sensitivity, and interpretability when evaluating generative models.
♻ ☆ RobustBlack: Challenging Black-Box Adversarial Attacks on State-of-the-Art Defenses
Although adversarial robustness has been extensively studied in white-box settings, recent advances in black-box attacks (including transfer- and query-based approaches) are primarily benchmarked against weak defenses, leaving a significant gap in the evaluation of their effectiveness against more recent and moderate robust models (e.g., those featured in the Robustbench leaderboard). In this paper, we question this lack of attention from black-box attacks to robust models. We establish a framework to evaluate the effectiveness of recent black-box attacks against both top-performing and standard defense mechanisms, on the ImageNet dataset. Our empirical evaluation reveals the following key findings: (1) the most advanced black-box attacks struggle to succeed even against simple adversarially trained models; (2) robust models that are optimized to withstand strong white-box attacks, such as AutoAttack, also exhibits enhanced resilience against black-box attacks; and (3) robustness alignment between the surrogate models and the target model plays a key factor in the success rate of transfer-based attacks
♻ ☆ Hybrid Reward-Driven Reinforcement Learning for Efficient Quantum Circuit Synthesis
A reinforcement learning (RL) framework is introduced for the efficient synthesis of quantum circuits that generate specified target quantum states from a fixed initial state, addressing a central challenge in both the Noisy Intermediate-Scale Quantum (NISQ) era and future fault-tolerant quantum computing. The approach utilizes tabular Q-learning, based on action sequences, within a discretized quantum state space, to effectively manage the exponential growth of the space dimension. The framework introduces a hybrid reward mechanism, combining a static, domain-informed reward that guides the agent toward the target state with customizable dynamic penalties that discourage inefficient circuit structures such as gate congestion and redundant state revisits. This is a circuit-aware reward, in contrast to the current trend of works on this topic, which are primarily fidelity-based. By leveraging sparse matrix representations and state-space discretization, the method enables practical navigation of high-dimensional environments while minimizing computational overhead. Benchmarking on graph-state preparation tasks for up to seven qubits, we demonstrate that the algorithm consistently discovers minimal-depth circuits with optimized gate counts. Moreover, extending the framework to a universal gate set still yields low depth circuits, highlighting the algorithm robustness and adaptability. The results confirm that this RL-driven approach, with our completely circuit-aware method, efficiently explores the complex quantum state space and synthesizes near-optimal quantum circuits, providing a resource-efficient foundation for quantum circuit optimization.
comment: 35 pages, 7 figures, color figures
♻ ☆ Orthogonalized Policy Optimization:Decoupling Sampling Geometry from Optimization Geometry in RLHF
We present Orthogonalized Policy Optimization (OPO), a unified theoretical account of large language model alignment grounded in a work-dissipation principle. The policy update is characterized as a constrained proximal response that maximizes external work induced by an alpha-escort sampling field, while paying an intrinsic dissipation cost given by a quadratic fluctuation energy in chi-square ratio geometry. This single variational principle admits three equivalent interpretations: (i) a mirror-descent step with a Euclidean mirror map in ratio space, (ii) a Hilbert-space projection via the orthogonal projection theorem in L2(pi_k), and (iii) a linear-response law from near-equilibrium statistical mechanics. Their convergence to the same closed-form update confirms that OPO is the unique quadratic proximal response within ratio geometry. The framework cleanly decouples sampling geometry (alpha) from optimization geometry (mu), yields a constant Hessian and non-saturating linear gradients, and reveals that advantage z-score normalization is not a heuristic but a conservation-law projection. Experiments on mathematical reasoning tasks demonstrate that OPO outperforms GRPO, GSPO, and DAPO while maintaining healthy gradient dynamics throughout training.
♻ ☆ Distributed Online Convex Optimization with Nonseparable Costs and Constraints
This paper studies distributed online convex optimization with time-varying coupled constraints, motivated by distributed online control in network systems. Most prior work assumes a separability condition: the global objective and coupled constraint functions are sums of local costs and individual constraints. In contrast, we study a group of agents, networked via a communication graph, that collectively select actions to minimize a sequence of nonseparable global cost functions and to satisfy nonseparable long-term constraints based on full-information feedback and intra-agent communication. We propose a distributed online primal-dual belief consensus algorithm, where each agent maintains and updates a local belief of the global collective decisions, which are repeatedly exchanged with neighboring agents. Unlike the previous consensus primal-dual algorithms under separability that ask agents to only communicate their local decisions, our belief-sharing protocol eliminates coupling between the primal consensus disagreement and the dual constraint violation, yielding sublinear regret and cumulative constraint violation (CCV) bounds, both in $O({T}^{1/2})$, where $T$ denotes the time horizon. Such a result breaks the long-standing $O(T^{3/4})$ barrier for CCV and matches the lower bound of online constrained convex optimization, indicating the online learning efficiency at the cost of communication overhead.
♻ ☆ mini-vec2vec: Scaling Universal Geometry Alignment with Linear Transformations
We build upon vec2vec, a procedure designed to align text embedding spaces without parallel data. vec2vec finds a near-perfect alignment, but it is expensive and unstable. We present mini-vec2vec, a simple and efficient alternative that requires substantially lower computational cost and is highly robust. Moreover, the learned mapping is a linear transformation. Our method consists of three main stages: a tentative matching of pseudo-parallel embedding vectors, transformation fitting, and iterative refinement. Our linear alternative exceeds the original instantiation of vec2vec by orders of magnitude in efficiency, while matching or exceeding their results. The method's stability and interpretable algorithmic steps facilitate scaling and unlock new opportunities for adoption in new domains and fields.
♻ ☆ Reveal-or-Obscure: A Differentially Private Sampling Algorithm for Discrete Distributions
We introduce a differentially private (DP) algorithm called reveal-or-obscure (ROO) to generate a single representative sample from a dataset of $n$ observations drawn i.i.d. from an unknown discrete distribution $P$. Unlike methods that add explicit noise to the estimated empirical distribution, ROO achieves $ε$-differential privacy by randomly choosing whether to "reveal" or "obscure" the empirical distribution. While ROO is structurally identical to Algorithm 1 proposed by Cheu and Nayak (arXiv:2412.10512), we prove a strictly better bound on the sampling complexity than that established in Theorem 12 of (arXiv:2412.10512). To further improve the privacy-utility trade-off, we propose a novel generalized sampling algorithm called Data-Specific ROO (DS-ROO), where the probability of obscuring the empirical distribution of the dataset is chosen adaptively. We prove that DS-ROO satisfies $ε$-DP, and provide empirical evidence that DS-ROO can achieve better utility under the same privacy budget of vanilla ROO.
comment: 8 pages, 3 figures
♻ ☆ Sparse Autoencoders for Sequential Recommendation Models: Interpretation and Flexible Control
Many current state-of-the-art models for sequential recommendations are based on transformer architectures. Interpretation and explanation of such black box models is an important research question, as a better understanding of their internals can help understand, influence, and control their behavior, which is very important in a variety of real-world applications. Recently, sparse autoencoders (SAE) have been shown to be a promising unsupervised approach to extract interpretable features from neural networks. In this work, we extend SAE to sequential recommender systems and propose a framework for interpreting and controlling model representations. We show that this approach can be successfully applied to the transformer trained on a sequential recommendation task: directions learned in such an unsupervised regime turn out to be more interpretable and monosemantic than the original hidden state dimensions. Further, we demonstrate a straightforward way to effectively and flexibly control the model's behavior, giving developers and users of recommendation systems the ability to adjust their recommendations to various custom scenarios and contexts.
♻ ☆ TabImpute: Universal Zero-Shot Imputation for Tabular Data
Missing data is a widespread problem in tabular settings. Existing solutions range from simple averaging to complex generative adversarial networks, but due to each method's large variance in performance across real-world domains and time-consuming hyperparameter tuning, no universal imputation method exists. This performance variance is particularly pronounced in small datasets, where the models have the least amount of information. Building on TabPFN, a recent tabular foundation model for supervised learning, we propose TabImpute, a pre-trained transformer that delivers accurate and fast zero-shot imputations, requiring no fitting or hyperparameter tuning at inference time. To train and evaluate TabImpute, we introduce (i) an entry-wise featurization for tabular settings, enabling a 100x speedup over the previous TabPFN imputation method, (ii) a synthetic training data generation pipeline incorporating a diverse set of missingness patterns to enhance accuracy on real-world missing data problems, and (iii) MissBench, a comprehensive benchmark with 42 OpenML tables and 13 new missingness patterns. MissBench spans domains such as medicine, finance, and engineering, showcasing TabImpute's robust performance compared to numerous established imputation methods.
♻ ☆ Don't Forget Its Variance! The Minimum Path Variance Principle for Accurate and Stable Score-Based Models
Score-based methods are powerful across machine learning, but they face a paradox: theoretically path-independent, yet practically path-dependent. We resolve this by proving that practical training objectives differ from the ideal, ground-truth objective by a crucial, overlooked term: the path variance of the score function. We propose the MinPV (**Min**imum **P**ath **V**ariance) Principle to minimize this path variance. Our key contribution is deriving a closed-form expression for the variance, making optimization tractable. By parameterizing the path with a flexible Kumaraswamy Mixture Model, our method learns data-adaptive, low-variance paths without heuristic manual selection. This principled optimization of the complete objective yields more accurate and stable estimators, establishing new state-of-the-art results on challenging benchmarks and providing a general framework for optimizing score-based interpolation.
♻ ☆ FlowDrive: moderated flow matching with data balancing for trajectory planning
Learning-based planners are sensitive to the long-tailed distribution of driving data. Common maneuvers dominate datasets, while dangerous or rare scenarios are sparse. This imbalance can bias models toward the frequent cases and degrade performance on critical scenarios. To tackle this problem, we compare balancing strategies for sampling training data and find reweighting by trajectory pattern an effective approach. We then present FlowDrive, a flow-matching trajectory planner that learns a conditional rectified flow to map noise directly to trajectory distributions with few flow-matching steps. We further introduce moderated, in-the-loop guidance that injects small perturbation between flow steps to systematically increase trajectory diversity while remaining scene-consistent. On nuPlan and the interaction-focused interPlan benchmarks, FlowDrive achieves state-of-the-art results among learning-based planners and approaches methods with rule-based refinements. After adding moderated guidance and light post-processing (FlowDrive*), it achieves overall state-of-the-art performance across nearly all benchmark splits. Our code is available at https://github.com/einsteinguang/flow_drive_planner.
♻ ☆ Online Fine-Tuning of Pretrained Controllers for Autonomous Driving via Real-Time Recurrent RL
Deploying pretrained policies in real-world applications presents substantial challenges that fundamentally limit the practical applicability of learning-based control systems. When autonomous systems encounter environmental changes in system dynamics, sensor drift, or task objectives, fixed policies rapidly degrade in performance. We show that employing Real-Time Recurrent Reinforcement Learning (RTRRL), a biologically plausible algorithm for online adaptation, can effectively fine-tune a pretrained policy to improve autonomous agents' performance on driving tasks. We further show that RTRRL synergizes with a recent biologically inspired recurrent network model, the Liquid-Resistance Liquid-Capacitance RNN. We demonstrate the effectiveness of this closed-loop approach in a simulated CarRacing environment and in a real-world line-following task with a RoboRacer car equipped with an event camera.
♻ ☆ Latent Veracity Inference for Identifying Errors in Stepwise Reasoning
Chain-of-Thought (CoT) reasoning has advanced the capabilities and transparency of language models (LMs); however, reasoning chains can contain inaccurate statements that reduce performance and trustworthiness. To address this, we propose to augment each reasoning step in a CoT with a latent veracity (or correctness) variable. To efficiently explore this expanded space, we introduce Veracity Search (VS), a discrete search algorithm over veracity assignments. It performs otherwise intractable inference in the posterior distribution over latent veracity values by leveraging the LM's joint likelihood over veracity and the final answer as a proxy reward. This efficient inference-time verification method facilitates supervised fine-tuning of an Amortized Veracity Inference (AVI) machine by providing pseudo-labels for veracity. AVI generalizes VS, enabling accurate zero-shot veracity inference in novel contexts. Empirical results demonstrate that VS reliably identifies errors in logical (ProntoQA), mathematical (GSM8K), and commonsense (CommonsenseQA) reasoning benchmarks, with AVI achieving comparable zero-shot accuracy. Finally, we demonstrate the utility of latent veracity inference for providing feedback during self-correction and self-improvement.
♻ ☆ Partition Generative Modeling: Masked Modeling Without Masks
Masked generative models (MGMs) can generate tokens in parallel and in any order, unlike autoregressive models (ARMs), which decode one token at a time, left-to-right. However, MGMs process the full-length sequence at every sampling step, including mask tokens that carry no information. In contrast, ARMs process only the previously generated tokens. We introduce ``Partition Generative Models'' (PGMs), which replace masking with partitioning. Tokens are split into two groups that cannot attend to each other, and the model learns to predict each group conditioned on the other, eliminating mask tokens entirely. Because the groups do not interact, PGMs can process only the clean tokens during sampling, like ARMs, while retaining parallel, any-order generation, like MGMs. On OpenWebText, PGMs achieve $5-5.5\times$ higher throughput than MDLM while producing samples with lower Generative Perplexity. On ImageNet, PGMs reach comparable FID to MaskGIT with a $7.5\times$ throughput improvement. With twice as many steps, the FID improves to 4.56 while remaining $3.9\times$ faster than MGMs. Finally, PGMs remain compatible with existing MGM samplers and distillation methods.
♻ ☆ BEP: A Binary Error Propagation Algorithm for Binary Neural Networks Training
Binary Neural Networks (BNNs), which constrain both weights and activations to binary values, offer substantial reductions in computational complexity, memory footprint, and energy consumption. These advantages make them particularly well suited for deployment on resource-constrained devices. However, training BNNs via gradient-based optimization remains challenging due to the discrete nature of their variables. The dominant approach, quantization-aware training, circumvents this issue by employing surrogate gradients. Yet, this method requires maintaining latent full-precision parameters and performing the backward pass with floating-point arithmetic, thereby forfeiting the efficiency of binary operations during training. While alternative approaches based on local learning rules exist, they are unsuitable for global credit assignment and for back-propagating errors in multi-layer architectures. This paper introduces Binary Error Propagation (BEP), the first learning algorithm to establish a principled, discrete analog of the backpropagation chain rule. This mechanism enables error signals, represented as binary vectors, to be propagated backward through multiple layers of a neural network. BEP operates entirely on binary variables, with all forward and backward computations performed using only bitwise operations. Crucially, this makes BEP the first solution to enable end-to-end binary training for recurrent neural network architectures. We validate the effectiveness of BEP on both multi-layer perceptrons and recurrent neural networks, demonstrating gains of up to +6.89% and +10.57% in test accuracy, respectively. The proposed algorithm is released as an open-source repository.
♻ ☆ ARGUS: Adaptive Rotation-Invariant Geometric Unsupervised System
Detecting distributional drift in high-dimensional data streams presents fundamental challenges: global comparison methods scale poorly, projection-based approaches lose geometric structure, and re-clustering methods suffer from identity instability. This paper introduces Argus, A framework that reconceptualizes drift detection as tracking local statistics over a fixed spatial partition of the data manifold. The key contributions are fourfold. First, it is proved that Voronoi tessellations over canonical orthonormal frames yield drift metrics that are invariant to orthogonal transformations. The rotations and reflections that preserve Euclidean geometry. Second, it is established that this framework achieves O(N) complexity per snapshot while providing cell-level spatial localization of distributional change. Third, a graph-theoretic characterization of drift propagation is developed that distinguishes coherent distributional shifts from isolated perturbations. Fourth, product quantization tessellation is introduced for scaling to very high dimensions (d>500) by decomposing the space into independent subspaces and aggregating drift signals across subspaces. This paper formalizes the theoretical foundations, proves invariance properties, and presents experimental validation demonstrating that the framework correctly identifies drift under coordinate rotation while existing methods produce false positives. The tessellated approach offers a principled geometric foundation for distribution monitoring that preserves high-dimensional structure without the computational burden of pairwise comparisons.
comment: This concept was built with an incorrect assumption and isn't viable
♻ ☆ Calibrated and uncertain? Evaluating uncertainty estimates in binary classification models
Rigorous statistical methods, including parameter estimation with accompanying uncertainties, underpin the validity of scientific discovery, especially in the natural sciences. With increasingly complex data models such as deep learning techniques, uncertainty quantification has become exceedingly difficult and a plethora of techniques have been proposed. In this case study, we use the unifying framework of approximate Bayesian inference combined with empirical tests on carefully created synthetic classification datasets to investigate qualitative properties of six different probabilistic machine learning algorithms for class probability and uncertainty estimation: (i) a neural network ensemble, (ii) neural network ensemble with conflictual loss, (iii) evidential deep learning, (iv) a single neural network with Monte Carlo Dropout, (v) Gaussian process classification and (vi) a Dirichlet process mixture model. We check if the algorithms produce uncertainty estimates which reflect commonly desired properties, such as being well calibrated and exhibiting an increase in uncertainty for out-of-distribution data points. Our results indicate that all algorithms show reasonably good calibration performance on our synthetic test sets, but none of the deep learning based algorithms provide uncertainties that consistently reflect lack of experimental evidence for out-of-distribution data points. We hope our study may serve as a clarifying example for researchers that are using or developing methods of uncertainty estimation for scientific data-driven modeling and analysis.
comment: Accepted Manuscript for publication in Open Access journal Machine Learning: Science and Technology
♻ ☆ Improving Variational Autoencoder using Random Fourier Transformation: An Aviation Safety Anomaly Detection Case-Study
In this study, we focus on the training process and inference improvements of deep neural networks (DNNs), specifically Autoencoders (AEs) and Variational Autoencoders (VAEs), using Random Fourier Transformation (RFT). We further explore the role of RFT in model training behavior using Frequency Principle (F-Principle) analysis and show that models with RFT turn to learn low frequency and high frequency at the same time, whereas conventional DNNs start from low frequency and gradually learn (if successful) high-frequency features. We focus on reconstruction-based anomaly detection using autoencoder and variational autoencoder and investigate the RFT's role. We also introduced a trainable variant of RFT that uses the existing computation graph to train the expansion of RFT instead of it being random. We showcase our findings with two low-dimensional synthetic datasets for data representation, and an aviation safety dataset, called Dashlink, for high-dimensional reconstruction-based anomaly detection. The results indicate the superiority of models with Fourier transformation compared to the conventional counterpart and remain inconclusive regarding the benefits of using trainable Fourier transformation in contrast to the Random variant.
♻ ☆ How Well Do Large-Scale Chemical Language Models Transfer to Downstream Tasks?
Chemical Language Models (CLMs) pre-trained on large scale molecular data are widely used for molecular property prediction. However, the common belief that increasing training resources such as model size, dataset size, and training compute improves both pretraining loss and downstream task performance has not been systematically validated in the chemical domain. In this work, we evaluate this assumption by pretraining CLMs while scaling training resources and measuring transfer performance across diverse molecular property prediction (MPP) tasks. We find that while pretraining loss consistently decreases with increased training resources, downstream task performance shows limited improvement. Moreover, alternative metrics based on the Hessian or loss landscape also fail to estimate downstream performance in CLMs. We further identify conditions under which downstream performance saturates or degrades despite continued improvements in pretraining metrics, and analyze the underlying task dependent failure modes through parameter space visualizations. These results expose a gap between pretraining based evaluation and downstream performance, and emphasize the need for model selection and evaluation strategies that explicitly account for downstream task characteristics.
♻ ☆ Efficient and Sharp Off-Policy Learning under Unobserved Confounding
We develop a novel method for personalized off-policy learning in scenarios with unobserved confounding. Thereby, we address a key limitation of standard policy learning: standard policy learning assumes unconfoundedness, meaning that no unobserved factors influence both treatment assignment and outcomes. However, this assumption is often violated, because of which standard policy learning produces biased estimates and thus leads to policies that can be harmful. To address this limitation, we employ causal sensitivity analysis and derive a semi-parametrically efficient estimator for a sharp bound on the value function under unobserved confounding. Our estimator has three advantages: (1) Unlike existing works, our estimator avoids unstable minimax optimization based on inverse propensity weighted outcomes. (2) Our estimator is semi-parametrically efficient. (3) We prove that our estimator leads to the optimal confounding-robust policy. Finally, we extend our theory to the related task of policy improvement under unobserved confounding, i.e., when a baseline policy such as the standard of care is available. We show in experiments with synthetic and real-world data that our method outperforms simple plug-in approaches and existing baselines. Our method is highly relevant for decision-making where unobserved confounding can be problematic, such as in healthcare and public policy.
♻ ☆ IGC-Net for conditional average potential outcome estimation over time
Estimating potential outcomes for treatments over time based on observational data is important for personalized decision-making in medicine. However, many existing methods for this task fail to properly adjust for time-varying confounding and thus yield biased estimates. There are only a few neural methods with proper adjustments, but these have inherent limitations (e.g., division by propensity scores that are often close to zero), which result in poor performance. As a remedy, we introduce the iterative G-computation network (IGC-Net). Our IGC-Net is a novel, neural end-to-end model which adjusts for time-varying confounding in order to estimate conditional average potential outcomes (CAPOs) over time. Specifically, our IGC-Net is the first neural model to perform fully regression-based iterative G-computation for CAPOs in the time-varying setting. We evaluate the effectiveness of our IGC-Net across various experiments. In sum, this work represents a significant step towards personalized decision-making from electronic health records.
♻ ☆ Score-based change point detection via tracking the best of infinitely many experts
We propose an algorithm for nonparametric online change point detection based on sequential score function estimation and the tracking the best expert approach. The core of the procedure is a version of the fixed share forecaster tailored to the case of infinite number of experts and quadratic loss functions. The algorithm shows promising results in numerical experiments on artificial and real-world data sets. Its performance is supported by rigorous high-probability bounds describing behaviour of the test statistic in the pre-change and post-change regimes.
comment: 61 pages, 4 figures
♻ ☆ A LoD of Gaussians: Unified Training and Rendering for Ultra-Large Scale Reconstruction with External Memory
Gaussian Splatting has emerged as a high-performance technique for novel view synthesis, enabling real-time rendering and high-quality reconstruction of small scenes. However, scaling to larger environments has so far relied on partitioning the scene into chunks -- a strategy that introduces artifacts at chunk boundaries, complicates training across varying scales, and is poorly suited to unstructured scenarios such as city-scale flyovers combined with street-level views. Moreover, rendering remains fundamentally limited by GPU memory, as all visible chunks must reside in VRAM simultaneously. We introduce A LoD of Gaussians, a framework for training and rendering ultra-large-scale Gaussian scenes on a single consumer-grade GPU -- without partitioning. Our method stores the full scene out-of-core (e.g., in CPU memory) and trains a Level-of-Detail (LoD) representation directly, dynamically streaming only the relevant Gaussians. A hybrid data structure combining Gaussian hierarchies with Sequential Point Trees enables efficient, view-dependent LoD selection, while a lightweight caching and view scheduling system exploits temporal coherence to support real-time streaming and rendering. Together, these innovations enable seamless multi-scale reconstruction and interactive visualization of complex scenes -- from broad aerial views to fine-grained ground-level details.
♻ ☆ Curriculum Learning and Pseudo-Labeling Improve the Generalization of Multi-Label Arabic Dialect Identification Models EACL 2026
Being modeled as a single-label classification task for a long time, recent work has argued that Arabic Dialect Identification (ADI) should be framed as a multi-label classification task. However, ADI remains constrained by the availability of single-label datasets, with no large-scale multi-label resources available for training. By analyzing models trained on single-label ADI data, we show that the main difficulty in repurposing such datasets for Multi-Label Arabic Dialect Identification (MLADI) lies in the selection of negative samples, as many sentences treated as negative could be acceptable in multiple dialects. To address these issues, we construct a multi-label dataset by generating automatic multi-label annotations using GPT-4o and binary dialect acceptability classifiers, with aggregation guided by the Arabic Level of Dialectness (ALDi). Afterward, we train a BERT-based multi-label classifier using curriculum learning strategies aligned with dialectal complexity and label cardinality. On the MLADI leaderboard, our best-performing LAHJATBERT model achieves a macro F1 of 0.69, compared to 0.55 for the strongest previously reported system. Code and data are available at https://mohamedalaa9.github.io/lahjatbert/.
comment: Accepted at the 13th Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial), co-located with EACL 2026
♻ ☆ FlowSteer: Interactive Agentic Workflow Orchestration via End-to-End Reinforcement Learning
In recent years, a variety of powerful agentic workflows have been applied to solve a wide range of human problems. However, existing workflow orchestration still faces key challenges, including high manual cost, reliance on specific operators/large language models (LLMs), and sparse reward signals. To address these challenges, we propose FlowSteer, an end-to-end reinforcement learning framework that takes a lightweight policy model as the agent and an executable canvas environment, automating workflow orchestration through multi-turn interaction. In this process, the policy model analyzes execution states and selects editing actions, while the canvas executes operators and returns feedback for iterative refinement. Moreover, FlowSteer provides a plug-and-play framework that supports diverse operator libraries and interchangeable LLM backends. To effectively train this interaction paradigm, we propose Canvas Workflow Relative Policy Optimization (CWRPO), which introduces diversity-constrained rewards with conditional release to stabilize learning and suppress shortcut behaviors. Experimental results on twelve datasets show that FlowSteer significantly outperforms baselines across various tasks.
comment: 41 pages, 7 figures, 6 tables. Project page: http://flowsteer.org/
♻ ☆ NPG-Muse: Scaling Long Chain-of-Thought Reasoning with NP-Hard Graph Problems
Reasoning Large Language Models (RLLMs) have recently achieved remarkable progress on complex reasoning tasks, largely enabled by their long chain-of-thought (Long CoT) capabilities. However, developing these Long CoT behaviors relies heavily on post-training with high-quality datasets, which are typically costly and human-curated (e.g., mathematics and code), leaving scalable alternatives unexplored. In this work, we introduce NP-hard (NPH) graph problems as a novel synthetic training corpus, as they inherently require deep reasoning, extensive exploration, and reflective strategies, which are the core characteristics of Long CoT reasoning. Building on this insight, we develop a two-stage post-training framework: (i) Long-CoT Supervised Fine-Tuning (SFT) on rejection-sampled NPH graph instances, which substantially enhances reasoning depth, and (ii) Reinforcement Learning (RL) with a fine-grained reward design, which sharpens reasoning efficiency. The resulting NPG-Muse-series models exhibit substantially enhanced Long CoT reasoning capabilities, achieving consistent gains across mathematics, coding, logical, and graph reasoning benchmarks. NPG-Muse-7B even surpasses QwQ-32B on NPH graph problems in both accuracy and reasoning efficiency. These results position NPH graph problems as an effective and scalable resource for advancing Long CoT reasoning in LLM post-training. Our implementation is available at https://github.com/littlewyy/NPG-Muse.
♻ ☆ Topological quantification of ambiguity in semantic search
We studied how the local topological structure of sentence-embedding neighborhoods encodes semantic ambiguity. Extending ideas that link word-level polysemy to non-trivial persistent homology, we generalized the concept to full sentences and quantified ambiguity of a query in a semantic search process with two persistent homology metrics: the 1-Wasserstein norm of $H_{0}$ and the maximum loop lifetime of $H_{1}$. We formalized the notion of ambiguity as the relative presence of semantic domains or topics in sentences. We then used this formalism to compute "ab-initio" simulations that encode datapoints as linear combination of randomly generated single topics vectors in an arbitrary embedding space and demonstrate that ambiguous sentences separate from unambiguous ones in both metrics. Finally we validated those findings with real-world case by investigating on a fully open corpus comprising Nobel Prize Physics lectures from 1901 to 2024, segmented into contiguous, non-overlapping chunks at two granularity: $\sim\!250$ tokens and $\sim\!750$ tokens. We tested embedding with four publicly available models. Results across all models reproduce simulations and remain stable despite changes in embedding architecture. We conclude that persistent homology provides a model-agnostic signal of semantic discontinuities, suggesting practical use for ambiguity detection and semantic search recall.
♻ ☆ How Global Calibration Strengthens Multiaccuracy
Multiaccuracy and multicalibration are multigroup fairness notions for prediction that have found numerous applications in learning and computational complexity. They can be achieved from a single learning primitive: weak agnostic learning. Here we investigate the power of multiaccuracy as a learning primitive, both with and without the additional assumption of calibration. We find that multiaccuracy in itself is rather weak, but that the addition of global calibration (this notion is called calibrated multiaccuracy) boosts its power substantially, enough to recover implications that were previously known only assuming the stronger notion of multicalibration. We give evidence that multiaccuracy might not be as powerful as standard weak agnostic learning, by showing that there is no way to post-process a multiaccurate predictor to get a weak learner, even assuming the best hypothesis has correlation $1/2$. Rather, we show that it yields a restricted form of weak agnostic learning, which requires some concept in the class to have correlation greater than $1/2$ with the labels. However, by also requiring the predictor to be calibrated, we recover not just weak, but strong agnostic learning. A similar picture emerges when we consider the derivation of hardcore measures from predictors satisfying multigroup fairness notions. On the one hand, while multiaccuracy only yields hardcore measures of density half the optimal, we show that (a weighted version of) calibrated multiaccuracy achieves optimal density. Our results yield new insights into the complementary roles played by multiaccuracy and calibration in each setting. They shed light on why multiaccuracy and global calibration, although not particularly powerful by themselves, together yield considerably stronger notions.
comment: Presented at FOCS 2025
♻ ☆ Tabular Foundation Models Can Learn Association Rules
Association Rule Mining (ARM) is a fundamental task for knowledge discovery in tabular data and is widely used in high-stakes decision-making. Classical ARM methods rely on frequent itemset mining, leading to rule explosion and poor scalability, while recent neural approaches mitigate these issues but suffer from degraded performance in low-data regimes. Tabular foundation models (TFMs), pretrained on diverse tabular data with strong in-context generalization, provide a basis for addressing these limitations. We introduce a model-agnostic association rule learning framework that extracts association rules from any conditional probabilistic model over tabular data, enabling us to leverage TFMs. We then introduce TabProbe, an instantiation of our framework that utilizes TFMs as conditional probability estimators to learn association rules out-of-the-box without frequent itemset mining. We evaluate our approach on tabular datasets of varying sizes based on standard ARM rule quality metrics and downstream classification performance. The results show that TFMs consistently produce concise, high-quality association rules with strong predictive performance and remain robust in low-data settings without task-specific training. Source code is available at https://github.com/DiTEC-project/tabprobe.
♻ ☆ Safe Reinforcement Learning via Recovery-based Shielding with Gaussian Process Dynamics Models
Reinforcement learning (RL) is a powerful framework for optimal decision-making and control but often lacks provable guarantees for safety-critical applications. In this paper, we introduce a novel recovery-based shielding framework that enables safe RL with a provable safety lower bound for unknown and non-linear continuous dynamical systems. The proposed approach integrates a backup policy (shield) with the RL agent, leveraging Gaussian process (GP) based uncertainty quantification to predict potential violations of safety constraints, dynamically recovering to safe trajectories only when necessary. Experience gathered by the 'shielded' agent is used to construct the GP models, with policy optimization via internal model-based sampling - enabling unrestricted exploration and sample efficient learning, without compromising safety. Empirically our approach demonstrates strong performance and strict safety-compliance on a suite of continuous control environments.
comment: Accepted at AAMAS 2026
♻ ☆ NeuroLifting: Neural Inference on Markov Random Fields at Scale
Inference in large-scale Markov Random Fields (MRFs) is a critical yet challenging task, traditionally approached through approximate methods like belief propagation and mean field, or exact methods such as the Toulbar2 solver. These strategies often fail to strike an optimal balance between efficiency and solution quality, particularly as the problem scale increases. This paper introduces NeuroLifting, a novel technique that leverages Graph Neural Networks (GNNs) to reparameterize decision variables in MRFs, facilitating the use of standard gradient descent optimization. By extending traditional lifting techniques into a non-parametric neural network framework, NeuroLifting benefits from the smooth loss landscape of neural networks, enabling efficient and parallelizable optimization. Empirical results demonstrate that, on moderate scales, NeuroLifting performs very close to the exact solver Toulbar2 in terms of solution quality, significantly surpassing existing approximate methods. Notably, on large-scale MRFs, NeuroLifting delivers superior solution quality against all baselines, as well as exhibiting linear computational complexity growth. This work presents a significant advancement in MRF inference, offering a scalable and effective solution for large-scale problems.
♻ ☆ Agents of Discovery
The substantial data volumes encountered in modern particle physics and other domains of fundamental physics research allow (and require) the use of increasingly complex data analysis tools and workflows. While the use of machine learning (ML) tools for data analysis has recently proliferated, these tools are typically special-purpose algorithms that rely, for example, on encoded physics knowledge to reach optimal performance. In this work, we investigate a new and orthogonal direction: Using recent progress in large language models (LLMs) to create a team of agents -- instances of LLMs with specific subtasks -- that jointly solve data analysis-based research problems in a way similar to how a human researcher might: by creating code to operate standard tools and libraries (including ML systems) and by building on results of previous iterations. If successful, such agent-based systems could be deployed to automate routine analysis components to counteract the increasing complexity of modern tool chains. To investigate the capabilities of current-generation commercial LLMs, we consider the task of anomaly detection via the publicly available and highly-studied LHC Olympics dataset. Several current models by OpenAI (GPT-4o, o4-mini, GPT-4.1, and GPT-5) are investigated and their stability tested. Overall, we observe the capacity of the agent-based system to solve this data analysis problem. The best agent-created solutions mirror the performance of human state-of-the-art results.
♻ ☆ VLCE: A Knowledge-Enhanced Framework for Image Description in Disaster Assessment
The processes of classification and segmentation utilizing artificial intelligence play a vital role in the automation of disaster assessments. However, contemporary VLMs produce details that are inadequately aligned with the objectives of disaster assessment, primarily due to their deficiency in domain knowledge and the absence of a more refined descriptive process. This research presents the Vision Language Caption Enhancer (VLCE), a dedicated multimodal framework aimed at integrating external semantic knowledge from ConceptNet and WordNet to improve the captioning process. The objective is to produce disaster-specific descriptions that effectively convert raw visual data into actionable intelligence. VLCE utilizes two separate architectures: a CNN-LSTM model that incorporates a ResNet50 backbone, pretrained on EuroSat for satellite imagery (xBD dataset), and a Vision Transformer developed for UAV imagery (RescueNet dataset). In various architectural frameworks and datasets, VLCE exhibits a consistent advantage over baseline models such as LLaVA and QwenVL. Our optimal configuration reaches an impressive 95.33\% on InfoMetIC for UAV imagery while also demonstrating strong performance across satellite imagery. The proposed framework signifies a significant transition from basic visual classification to the generation of comprehensive situational intelligence, demonstrating immediate applicability for implementation in real-time disaster assessment systems.
comment: 28 pages, 30 figures, 1 algorithms
♻ ☆ Adjoint-based shape optimization of a ship hull using a Conditional Variational Autoencoder (CVAE) assisted propulsion surrogate model
Adjoint-based shape optimization of ship hulls is a powerful tool for addressing high-dimensional design problems in naval architecture, particularly in minimizing the ship resistance. However, its application to vessels that employ complex propulsion systems introduces significant challenges. They arise from the need for transient simulations extending over long periods of time with small time steps and from the reverse temporal propagation of the primal and adjoint solutions. These challenges place considerable demands on the required storage and computing power, which significantly hamper the use of adjoint methods in the industry. To address this issue, we propose a machine learning-assisted optimization framework that employs a Conditional Variational Autoencoder-based surrogate model of the propulsion system. The surrogate model replicates the time-averaged flow field induced by a Voith Schneider Propeller and replaces the geometrically and time-resolved propeller with a data-driven approximation. Primal flow verification examples demonstrate that the surrogate model achieves significant computational savings while maintaining the necessary accuracy of the resolved propeller. Optimization studies show that ignoring the propulsion system can yield designs that perform worse than the initial shape. In contrast, the proposed method produces shapes that achieve more than an 8\% reduction in resistance.
♻ ☆ PROMA: Projected Microbatch Accumulation for Reference-Free Proximal Policy Updates
This note introduces Projected Microbatch Accumulation (PROMA), a reference-free proximal policy method that controls KL divergence by projecting away high-variance components of the policy gradient. Two variants are presented. In the accumulation-based variant, the running gradient is projected orthogonal to the sequence-wise log-probability gradients of each microbatch. In the intra-microbatch variant, a factored projection using dominant subspaces of activations and gradient outputs is applied independently within each microbatch, making it compatible with standard data-parallel training. Empirically, the accumulation variant achieves tighter per-step KL control than GRPO with PPO clipping, while the intra-microbatch variant achieves the best validation performance.
comment: Added validation on code benchmark
♻ ☆ XAI-Driven Spectral Analysis of Cough Sounds for Respiratory Disease Characterization
This paper proposes an eXplainable Artificial Intelligence (XAI)-driven methodology to enhance the understanding of cough sound analysis for respiratory disease management. We employ occlusion maps to highlight relevant spectral regions in cough spectrograms processed by a Convolutional Neural Network (CNN). Subsequently, spectral analysis of spectrograms weighted by these occlusion maps reveals significant differences between disease groups, particularly in patients with COPD, where cough patterns appear more variable in the identified spectral regions of interest. This contrasts with the lack of significant differences observed when analyzing raw spectrograms. The proposed approach extracts and analyzes several spectral features, demonstrating the potential of XAI techniques to uncover disease-specific acoustic signatures and improve the diagnostic capabilities of cough sound analysis by providing more interpretable results.
comment: Updated funder information
♻ ☆ A XAI-based Framework for Frequency Subband Characterization of Cough Spectrograms in Chronic Respiratory Disease
This paper presents an explainable artificial intelligence (XAI)-based framework for the spectral analysis of cough sounds associated with chronic respiratory diseases, with a particular focus on Chronic Obstructive Pulmonary Disease (COPD). A Convolutional Neural Network (CNN) is trained on time-frequency representations of cough signals, and occlusion maps are used to identify diagnostically relevant regions within the spectrograms. These highlighted areas are subsequently decomposed into five frequency subbands, enabling targeted spectral feature extraction and analysis. The results reveal that spectral patterns differ across subbands and disease groups, uncovering complementary and compensatory trends across the frequency spectrum. Noteworthy, the approach distinguishes COPD from other respiratory conditions, and chronic from non-chronic patient groups, based on interpretable spectral markers. These findings provide insight into the underlying pathophysiological characteristics of cough acoustics and demonstrate the value of frequency-resolved, XAI-enhanced analysis for biomedical signal interpretation and translational respiratory disease diagnostics.
comment: Updated funder information
♻ ☆ GenFacts-Generative Counterfactual Explanations for Multi-Variate Time Series ICASSP 2026
Counterfactual explanations aim to enhance model transparency by showing how inputs can be minimally altered to change predictions. For multivariate time series, existing methods often generate counterfactuals that are invalid, implausible, or unintuitive. We introduce GenFacts, a generative framework based on a class-discriminative variational autoencoder. It integrates contrastive and classification-consistency objectives, prototype-based initialization, and realism-constrained optimization. We evaluate GenFacts on radar gesture data as an industrial use case and handwritten letter trajectories as an intuitive benchmark. Across both datasets, GenFacts outperforms state-of-the-art baselines in plausibility (+18.7%) and achieves the highest interpretability scores in a human study. These results highlight that plausibility and user-centered interpretability, rather than sparsity alone, are key to actionable counterfactuals in time series data.
comment: 5 pages, 2 figures. Accepted at ICASSP 2026
♻ ☆ Improving Policy Exploitation in Online Reinforcement Learning with Instant Retrospect Action
Existing value-based online reinforcement learning (RL) algorithms suffer from slow policy exploitation due to ineffective exploration and delayed policy updates. To address these challenges, we propose an algorithm called Instant Retrospect Action (IRA). Specifically, we propose Q-Representation Discrepancy Evolution (RDE) to facilitate Q-network representation learning, enabling discriminative representations for neighboring state-action pairs. In addition, we adopt an explicit method to policy constraints by enabling Greedy Action Guidance (GAG). This is achieved through backtracking historical actions, which effectively enhances the policy update process. Our proposed method relies on providing the learning algorithm with accurate $k$-nearest-neighbor action value estimates and learning to design a fast-adaptable policy through policy constraints. We further propose the Instant Policy Update (IPU) mechanism, which enhances policy exploitation by systematically increasing the frequency of policy updates. We further discover that the early-stage training conservatism of the IRA method can alleviate the overestimation bias problem in value-based RL. Experimental results show that IRA can significantly improve the learning efficiency and final performance of online RL algorithms on eight MuJoCo continuous control tasks.The code is available at https://github.com/2706853499/IRA.
comment: 13pages 11figures
♻ ☆ Variance-Optimal Arm Selection: Misallocation Minimization and Best Arm Identification
This paper focuses on selecting the arm with the highest variance from a set of $K$ independent arms. Specifically, we focus on two settings: (i) misallocation minimization setting, that penalizes the number of pulls of suboptimal arms in terms of variance, and (ii) fixed-budget best arm identification setting, that evaluates the ability of an algorithm to determine the arm with the highest variance after a fixed number of pulls. We develop a novel online algorithm called UCB-VV for the misallocation minimization (MM) and show that its upper bound on misallocation for bounded rewards evolves as $\mathcal{O}\left(\log{n}\right)$ where $n$ is the horizon. By deriving the lower bound on the misallocation, we show that UCB-VV is order optimal. For the fixed budget best arm identification (BAI) setting we propose the SHVV algorithm. We show that the upper bound of the error probability of SHVV evolves as $\exp\left(-\frac{n}{\log(K) H}\right)$, where $H$ represents the complexity of the problem, and this rate matches the corresponding lower bound. We extend the framework from bounded distributions to sub-Gaussian distributions using a novel concentration inequality on the sample variance and standard deviation. Leveraging the same, we derive a concentration inequality for the empirical Sharpe ratio (SR) for sub-Gaussian distributions, which was previously unknown in the literature. Empirical simulations show that UCB-VV consistently outperforms $ε$-greedy across different sub-optimality gaps though it is surpassed by VTS, which exhibits the lowest misallocation, albeit lacking in theoretical guarantees. We also illustrate the superior performance of SHVV, for a fixed budget setting under 6 different setups against uniform sampling. Finally, we conduct a case study to empirically evaluate the performance of the UCB-VV and SHVV in call option trading on $100$ stocks generated using GBM.
♻ ☆ Amortised and provably-robust simulation-based inference
Complex simulator-based models are now routinely used to perform inference across the sciences and engineering, but existing inference methods are often unable to account for outliers and other extreme values in data which occur due to faulty measurement instruments or human error. In this paper, we introduce a novel approach to simulation-based inference grounded in generalised Bayesian inference and a neural approximation of a weighted score-matching loss. This leads to a method that is both amortised and provably robust to outliers, a combination not achieved by existing approaches. Furthermore, through a carefully chosen conditional density model, we demonstrate that inference can be further simplified and performed without the need for Markov chain Monte Carlo sampling, thereby offering significant computational advantages, with complexity that is only a small fraction of that of current state-of-the-art approaches.
♻ ☆ Green-NAS: A Global-Scale Multi-Objective Neural Architecture Search for Robust and Efficient Edge-Native Weather Forecasting
We introduce Green-NAS, a multi-objective NAS (neural architecture search) framework designed for low-resource environments using weather forecasting as a case study. By adhering to 'Green AI' principles, the framework explicitly minimizes computational energy costs and carbon footprints, prioritizing sustainable deployment over raw computational scale. The Green-NAS architecture search method is optimized for both model accuracy and efficiency to find lightweight models with high accuracy and very few model parameters; this is accomplished through an optimization process that simultaneously optimizes multiple objectives. Our best-performing model, Green-NAS-A, achieved an RMSE of 0.0988 (i.e., within 1.4% of our manually tuned baseline) using only 153k model parameters, which is 239 times fewer than other globally applied weather forecasting models, such as GraphCast. In addition, we also describe how the use of transfer learning will improve the weather forecasting accuracy by approximately 5.2%, in comparison to a naive approach of training a new model for each city, when there is limited historical weather data available for that city.
comment: Accepted at the 2026 IEEE 2nd International Conference on Quantum Photonics, Artificial Intelligence & Networking
♻ ☆ General Exploratory Bonus for Optimistic Exploration in RLHF ICLR 2026
Optimistic exploration is central to improving sample efficiency in reinforcement learning with human feedback, yet existing exploratory bonus methods to incentivize exploration often fail to realize optimism. We provide a theoretical analysis showing that current formulations, under KL or $α$-divergence regularization, unintentionally bias exploration toward high-probability regions of the reference model, thereby reinforcing conservative behavior instead of promoting discovery of uncertain regions. To address this pitfall, we introduce the General Exploratory Bonus (GEB), a novel theoretical framework that provably satisfies the optimism principle. GEB counteracts divergence-induced bias via reference-dependent reward regulation and unifies prior heuristic bonuses as special cases, while extending naturally across the full $α$-divergence family. Empirically, GEB consistently outperforms baselines on alignment tasks across multiple divergence settings and large language model backbones. These results demonstrate that GEB offers both a principled and practical solution for optimistic exploration in RLHF.
comment: ICLR 2026
♻ ☆ ETGL-DDPG: A Deep Deterministic Policy Gradient Algorithm for Sparse Reward Continuous Control
We consider deep deterministic policy gradient (DDPG) in the context of reinforcement learning with sparse rewards. To enhance exploration, we introduce a search procedure, \emph{$ε{t}$-greedy}, which generates exploratory options for exploring less-visited states. We prove that search using $εt$-greedy has polynomial sample complexity under mild MDP assumptions. To more efficiently use the information provided by rewarded transitions, we develop a new dual experience replay buffer framework, \emph{GDRB}, and implement \emph{longest n-step returns}. The resulting algorithm, \emph{ETGL-DDPG}, integrates all three techniques: \bm{$εt$}-greedy, \textbf{G}DRB, and \textbf{L}ongest $n$-step, into DDPG. We evaluate ETGL-DDPG on standard benchmarks and demonstrate that it outperforms DDPG, as well as other state-of-the-art methods, across all tested sparse-reward continuous environments. Ablation studies further highlight how each strategy individually enhances the performance of DDPG in this setting.
comment: We have expanded the related work section with more detailed discussions and enhanced our experiments by incorporating additional data and analysis
♻ ☆ Linear Bandits beyond Inner Product Spaces, the case of Bandit Optimal Transport
Linear bandits have long been a central topic in online learning, with applications ranging from recommendation systems to adaptive clinical trials. Their general learnability has been established when the objective is to minimise the inner product between a cost parameter and the decision variable. While this is highly general, this reliance on an inner product structure belies the name of \emph{linear} bandits, and fails to account for problems such as Optimal Transport. Using the Kantorovich formulation of Optimal Transport as an example, we show that an inner product structure is \emph{not} necessary to achieve efficient learning in linear bandits. We propose a refinement of the classical OFUL algorithm that operates by embedding the action set into a Hilbertian subspace, where confidence sets can be built via least-squares estimation. Actions are then constrained to this subspace by penalising optimism. The analysis is completed by leveraging convergence results from penalised (entropic) transport to the Kantorovich problem. Up to this approximation term, the resulting algorithm achieves the same trajectorial regret upper bounds as the OFUL algorithm, which we turn into worst-case regret using functional regression techniques. Its regret interpolates between $\tilde{\mathcal O}(\sqrt{T})$ and ${\mathcal O}(T)$, depending on the regularity of the cost function, and recovers the parametric rate $\tilde{\mathcal O}(\sqrt{dT})$ in finite-dimensional settings.
♻ ☆ Graphical model for factorization and completion of relatively high rank tensors by sparse sampling
We consider tensor factorizations based on sparse measurements of the components of relatively high rank tensors. The measurements are designed in a way that the underlying graph of interactions is a random graph. The setup will be useful in cases where a substantial amount of data is missing, as in completion of relatively high rank matrices for recommendation systems heavily used in social network services. In order to obtain theoretical insights on the setup, we consider statistical inference of the tensor factorization in a high dimensional limit, which we call as dense limit, where the graphs are large and dense but not fully connected. We build message-passing algorithms and test them in a Bayes optimal teacher-student setting in some specific cases. We also develop a replica theory to examine the performance of statistical inference in the dense limit based on a cumulant expansion. The latter approach allows one to avoid blind usage of Gaussian ansatz which fails in some fully connected systems.
comment: 75 pages, 26 figures
♻ ☆ MMS-VPR: Multimodal Street-Level Visual Place Recognition Dataset and Benchmark
Existing visual place recognition (VPR) datasets predominantly rely on vehicle-mounted imagery, offer limited multimodal diversity, and underrepresent dense pedestrian street scenes, particularly in non-Western urban contexts. We introduce MMS-VPR, a large-scale multimodal dataset for street-level place recognition in pedestrian-only environments. MMS-VPR comprises 110,529 images and 2,527 video clips across 208 locations in a ~70,800 $m^2$ open-air commercial district in Chengdu, China. Field data were collected in 2024, while social media data span seven years (2019-2025), providing both fine-grained temporal granularity and long-term temporal coverage. Each location features comprehensive day-night coverage, multiple viewing angles, and multimodal annotations including GPS coordinates, timestamps, and semantic textual metadata. We further release MMS-VPRlib, a unified benchmarking platform that consolidates commonly used VPR datasets and state-of-the-art methods under a standardized, reproducible pipeline. MMS-VPRlib provides modular components for data pre-processing, multimodal modeling (CNN/RNN/Transformer), signal enhancement, alignment, fusion, and performance evaluation. This platform moves beyond traditional image-only paradigms, enabling systematic exploitation of complementary visual, video, and textual modalities. The dataset is available at https://huggingface.co/datasets/Yiwei-Ou/MMS-VPR and the benchmark at https://github.com/yiasun/MMS-VPRlib.
comment: Under review
♻ ☆ Efficient Semi-Supervised Adversarial Training via Latent Clustering-Based Data Reduction ICML 2024
Learning robust models under adversarial settings is widely recognized as requiring a considerably large number of training samples. Recent work proposes semi-supervised adversarial training (SSAT), which utilizes external unlabeled or synthetically generated data and is currently the state of the art. However, SSAT requires substantial extra data to attain high robustness, resulting in prolonged training time and increased memory usage. In this paper, we propose data reduction strategies to improve the efficiency of SSAT by optimizing the amount of additional data incorporated. Specifically, we design novel latent clustering-based techniques to select or generate a small, critical subset of data samples near the model's decision boundary. While focusing on boundary-adjacent points, our methods maintain a balanced ratio between boundary and non-boundary data points, thereby avoiding overfitting. Comprehensive experiments across image benchmarks demonstrate that our methods can effectively reduce SSAT's data requirements and computational costs while preserving its strong robustness advantages. In particular, our latent-space selection scheme based on k-means clustering and our guided diffusion-based approach with LCG-KM are the most effective, achieving nearly identical robust accuracies with 5 times to 10 times less unlabeled data. When compared to full SSAT trained to convergence, our methods reduce total runtime by approximately 3 times to 4 times due to strategic prioritization of unlabeled data.
comment: Shorter version of this work accepted by NextGenAISafety Workshop at ICML 2024
♻ ☆ Flock: A Knowledge Graph Foundation Model via Learning on Random Walks
We study the problem of zero-shot link prediction on knowledge graphs (KGs), which requires models to generalize to novel entities and novel relations. Knowledge graph foundation models (KGFMs) address this task by enforcing equivariance over both nodes and relations, which enables them to learn structural properties of nodes and relations that transfer to novel KGs with similar structure. However, the conventional notion of deterministic equivariance inherently limits the expressive power of KGFMs, as it prevents them from distinguishing relations that are structurally similar but semantically distinct. To overcome this limitation, we propose to leverage probabilistic node-relation equivariance, which preserves equivariance in distribution while using structured randomness to break symmetries at inference time. Building on this principle, we present Flock, a KGFM that iteratively samples random walks, encodes them into sequences, embeds them with a sequence model, and aggregates node and relation representations through learned pooling. Flock respects probabilistic node-relation equivariance and, crucially, is a universal approximator for isomorphism-invariant link-level functions over KGs. Empirically, Flock perfectly solves our new diagnostic dataset Petals on which current KGFMs fail, and achieves state-of-the-art performance on entity and relation prediction tasks across 54 KGs from diverse domains. Code is available at https://github.com/jw9730/flock.
comment: 42 pages, 7 figures
♻ ☆ Robust Deep Reinforcement Learning against Adversarial Behavior Manipulation ICLR 2026
This study investigates behavior-targeted attacks on reinforcement learning and their countermeasures. Behavior-targeted attacks aim to manipulate the victim's behavior as desired by the adversary through adversarial interventions in state observations. Existing behavior-targeted attacks have some limitations, such as requiring white-box access to the victim's policy. To address this, we propose a novel attack method using imitation learning from adversarial demonstrations, which works under limited access to the victim's policy and is environment-agnostic. In addition, our theoretical analysis proves that the policy's sensitivity to state changes impacts defense performance, particularly in the early stages of the trajectory. Based on this insight, we propose time-discounted regularization, which enhances robustness against attacks while maintaining task performance. To the best of our knowledge, this is the first defense strategy specifically designed for behavior-targeted attacks.
comment: Accepted at ICLR 2026
♻ ☆ Morephy-Net: An Evolutionary Multi-objective Optimization for Replica-Exchange-based Physics-informed Neural Operator Learning Networks
We propose an evolutionary Multi-objective Optimization for Replica-Exchange-based Physics-informed operator-learning Networks (Morephy-Net) to solve parametric partial differential equations (PDEs) in noisy data regimes, for both forward prediction and inverse identification. Existing physics-informed neural networks and operator-learning models (e.g., DeepONets and Fourier neural operators) often face three coupled challenges: (i) balancing data/operator and physics residual losses, (ii) maintaining robustness under noisy or sparse observations, and (iii) providing reliable uncertainty quantification. Morephy-Net addresses these issues by integrating: (i) evolutionary multi-objective optimization that treats data/operator and physics residual terms as separate objectives and searches the Pareto front, thereby avoiding ad hoc loss weighting; (ii) replica-exchange stochastic gradient Langevin dynamics to enhance global exploration and stabilize training in non-convex landscapes; and (iii) Bayesian uncertainty quantification obtained from stochastic sampling. We validate Morephy-Net on representative forward and inverse problems, including the one-dimensional Burgers equation and the time-fractional mixed diffusion--wave equation. The results demonstrate consistent improvements in accuracy, noise robustness, and calibrated uncertainty estimates over standard operator-learning baselines.
♻ ☆ Toward Safer Diffusion Language Models: Discovery and Mitigation of Priming Vulnerability ICLR 2026
Diffusion language models (DLMs) generate tokens in parallel through iterative denoising, which can reduce latency and enable bidirectional conditioning. However, the safety risks posed by jailbreak attacks that exploit this inference mechanism are not well understood. In this paper, we reveal that DLMs have a critical vulnerability stemming from their iterative denoising process and propose a countermeasure. Specifically, our investigation shows that if an affirmative token for a harmful query appears at an intermediate step, subsequent denoising can be steered toward a harmful response even in aligned models. As a result, simply injecting such affirmative tokens can readily bypass the safety guardrails. Furthermore, we demonstrate that the vulnerability allows existing optimization-based jailbreak attacks to succeed on DLMs. Building on this analysis, we propose a novel safety alignment method tailored to DLMs that trains models to generate safe responses from contaminated intermediate states that contain affirmative tokens. Our experiments indicate that the proposed method significantly mitigates the vulnerability with minimal impact on task performance. Furthermore, our method improves robustness against conventional jailbreak attacks. Our work underscores the need for DLM-specific safety research. Our code is available at https://github.com/mdl-lab/dlm-priming-vulnerability.
comment: Accepted at ICLR 2026
♻ ☆ The Manifold of the Absolute: Religious Perennialism as Generative Inference
This paper formalizes religious epistemology through the mathematics of Variational Autoencoders. We model religious traditions as distinct generative mappings from a shared, low-dimensional latent space to the high-dimensional space of observable cultural forms, and define three competing generative configurations corresponding to exclusivism, universalism, and perennialism, alongside syncretism as direct mixing in observable space. Through abductive comparison, we argue that exclusivism cannot parsimoniously account for cross-traditional contemplative convergence, that syncretism fails because combining the outputs of distinct generative processes produces incoherent artifacts, and that universalism suffers from posterior collapse: stripping traditions to a common core discards the structural information necessary for inference. The perennialist configuration provides the best explanatory fit. Within this framework, strict orthodoxy emerges not as a cultural constraint but as a structural necessity: the contemplative practices that recover the latent source must be matched to the specific tradition whose forms they take as input. The unity of religions, if it exists, is real but inaccessible by shortcut: one must go deep rather than wide.
♻ ☆ Qronos: Correcting the Past by Shaping the Future... in Post-Training Quantization
We introduce Qronos -- a new state-of-the-art post-training quantization algorithm that sequentially rounds and updates neural network weights. Qronos not only explicitly corrects errors due to both weight and activation quantization, but also errors resulting from quantizing previous layers. Our iterative algorithm is based on an interpretable and disciplined optimization framework that subsumes and surpasses existing data-driven approaches. At each step, Qronos alternates between error correction and diffusion via optimal update rules. Importantly, we prove that Qronos admits an efficient implementation that uses the Cholesky decomposition for solving least-squares problems. We also demonstrate that Qronos is compatible with existing transformation techniques such as Hadamard-based incoherence processing and weight-activation scaling equalization, among others. We evaluate Qronos using recent autoregressive language generation models in the Llama3 family; Qronos consistently outperforms previous state-of-the-art adaptive rounding methods when quantizing the weights, activations, and/or KV caches.
♻ ☆ Achieving Optimal Static and Dynamic Regret Simultaneously in Bandits with Deterministic Losses
In adversarial multi-armed bandits, two performance measures are commonly used: static regret, which compares the learner to the best fixed arm, and dynamic regret, which compares it to the best sequence of arms. While optimal algorithms are known for each measure individually, there is no known algorithm achieving optimal bounds for both simultaneously. Marinov and Zimmert [2021] first showed that such simultaneous optimality is impossible against an adaptive adversary. Our work takes a first step to demonstrate its possibility against an oblivious adversary when losses are deterministic. First, we extend the impossibility result of Marinov and Zimmert [2021] to the case of deterministic losses. Then, we present an algorithm achieving optimal static and dynamic regret simultaneously against an oblivious adversary. Together, they reveal a fundamental separation between adaptive and oblivious adversaries when multiple regret benchmarks are considered simultaneously. It also provides new insight into the long open problem of simultaneously achieving optimal regret against switching benchmarks of different numbers of switches. Our algorithm uses negative static regret to compensate for the exploration overhead incurred when controlling dynamic regret, and leverages Blackwell approachability to jointly control both regrets. This yields a new model selection procedure for bandits that may be of independent interest.
♻ ☆ Causally constrained reduced-order neural models of complex turbulent dynamical systems
We introduce a flexible framework based on response theory and score matching to suppress spurious, noncausal dependencies in reduced-order neural emulators of turbulent systems, focusing on climate dynamics as a proof-of-concept. We showcase the approach using the stochastic Charney-DeVore model as a relevant prototype for low-frequency atmospheric variability. We show that the resulting causal constraints enhance neural emulators' ability to respond to both weak and strong external forcings, despite being trained exclusively on unforced data. The approach is broadly applicable to modeling complex turbulent dynamical systems in reduced spaces and can be readily integrated into general neural network architectures.
♻ ☆ Learning Admissible Heuristics for A*: Theory and Practice
Heuristic functions are central to the performance of search algorithms such as A-star, where admissibility - the property of never overestimating the true shortest-path cost - guarantees solution optimality. Recent deep learning approaches often disregard admissibility and provide limited guarantees on generalization beyond the training data. This paper addresses both of these limitations. First, we pose heuristic learning as a constrained optimization problem and introduce Cross-Entropy Admissibility (CEA), a loss function that enforces admissibility during training. On the Rubik's Cube domain, this method yields near-admissible heuristics with significantly stronger guidance than compressed pattern database (PDB) heuristics. Theoretically, we study the sample complexity of learning heuristics. By leveraging PDB abstractions and the structural properties of graphs such as the Rubik's Cube, we tighten the bound on the number of training samples needed for A-star to generalize. Replacing a general hypothesis class with a ReLU neural network gives bounds that depend primarily on the network's width and depth, rather than on graph size. Using the same network, we also provide the first generalization guarantees for goal-dependent heuristics.
♻ ☆ Stratified Hazard Sampling: Minimal-Variance Event Scheduling for CTMC/DTMC Discrete Diffusion and Flow Models
Uniform-noise discrete diffusion and flow models (e.g., D3PM, SEDD, UDLM, DFM) generate sequences non-autoregressively by iteratively refining randomly initialized vocabulary tokens through multiple context-dependent replacements. These models are typically formulated as time-inhomogeneous CTMC/DTMC processes and sampled using independent Bernoulli change decisions at each discretization step. This induces Poisson-binomial variance in per-position jump counts that grows with the number of required edits, leading to the characteristic under-editing (residual noise) and over-editing (cascading substitutions) failure modes that degrade sample quality, especially under tight discretization budgets. In contrast, absorbing-state (mask-start) models avoid this instability by allowing each position to jump at most once. We propose Stratified Hazard Sampling (SHS), a training-free, drop-in, and hyperparameter-free inference principle for any sampler that admits a stay-vs.-replace decomposition. SHS models per-token edits as events driven by cumulative hazard (CTMC) or cumulative jump mass (DTMC) and places events by stratifying this cumulative quantity: with a single random phase per position, a token is updated whenever its accumulated hazard crosses unit-spaced thresholds. This preserves the expected number of jumps while achieving the minimum possible conditional variance among unbiased integer estimators (bounded by 1/4 for any fixed cumulative mass), without altering per-jump destination sampling and thus retaining multimodality. Experiments on uniform-noise discrete diffusion language models show that SHS consistently improves sample quality. We further show that SHS improves robustness under token-level blacklist filtering, with benefits increasing as lexical constraints grow more severe.
comment: Work in progress. Feedback welcome
Multimedia 3
☆ Proactive Conversational Assistant for a Procedural Manual Task based on Audio and IMU
Real-time conversational assistants for procedural tasks often depend on video input, which can be computationally expensive and compromise user privacy. For the first time, we propose a real-time conversational assistant that provides comprehensive guidance for a procedural task using only lightweight privacy-preserving modalities such as audio and IMU inputs from a user's wearable device to understand the context. This assistant proactively communicates step-by-step instructions to a user performing a furniture assembly task, and answers user questions. We construct a dataset containing conversations where the assistant guides the user in performing the task. On observing that an off-the-shelf language model is a very talkative assistant, we design a novel User Whim Agnostic (UWA) LoRA finetuning method which improves the model's ability to suppress less informative dialogues, while maintaining its tendency to communicate important instructions. This leads to >30% improvement in the F-score. Finetuning the model also results in a 16x speedup by eliminating the need to provide in-context examples in the prompt. We further describe how such an assistant is implemented on edge devices with no dependence on the cloud.
comment: 3 figures
♻ ☆ GS-ProCams: Gaussian Splatting-based Projector-Camera Systems
We present GS-ProCams, the first Gaussian Splatting-based framework for projector-camera systems (ProCams). GS-ProCams is not only view-agnostic but also significantly enhances the efficiency of projection mapping (PM) that requires establishing geometric and radiometric mappings between the projector and the camera. Previous CNN-based ProCams are constrained to a specific viewpoint, limiting their applicability to novel perspectives. In contrast, NeRF-based ProCams support view-agnostic projection mapping, however, they require an additional co-located light source and demand significant computational and memory resources. To address this issue, we propose GS-ProCams that employs 2D Gaussian for scene representations, and enables efficient view-agnostic ProCams applications. In particular, we explicitly model the complex geometric and photometric mappings of ProCams using projector responses, the projection surface's geometry and materials represented by Gaussians, and the global illumination component. Then, we employ differentiable physically-based rendering to jointly estimate them from captured multi-view projections. Compared to state-of-the-art NeRF-based methods, our GS-ProCams eliminates the need for additional devices, achieving superior ProCams simulation quality. It also uses only 1/10 of the GPU memory for training and is 900 times faster in inference speed. Please refer to our project page for the code and dataset: https://realqingyue.github.io/GS-ProCams/.
comment: This version includes updated experimental results after an implementation fix
♻ ☆ Hierarchical Refinement of Universal Multimodal Attacks on Vision-Language Models
Existing adversarial attacks for VLP models are mostly sample-specific, resulting in substantial computational overhead when scaled to large datasets or new scenarios. To overcome this limitation, we propose Hierarchical Refinement Attack (HRA), a multimodal universal attack framework for VLP models. For the image modality, we refine the optimization path by leveraging a temporal hierarchy of historical and estimated future gradients to avoid local minima and stabilize universal perturbation learning. For the text modality, it hierarchically models textual importance by considering both intra- and inter-sentence contributions to identify globally influential words, which are then used as universal text perturbations. Extensive experiments across various downstream tasks, VLP models, and datasets, demonstrate the superior transferability of the proposed universal multimodal attacks.
comment: 10 pages, 7 figures
Artificial Intelligent 232
☆ Perceptive Humanoid Parkour: Chaining Dynamic Human Skills via Motion Matching
While recent advances in humanoid locomotion have achieved stable walking on varied terrains, capturing the agility and adaptivity of highly dynamic human motions remains an open challenge. In particular, agile parkour in complex environments demands not only low-level robustness, but also human-like motion expressiveness, long-horizon skill composition, and perception-driven decision-making. In this paper, we present Perceptive Humanoid Parkour (PHP), a modular framework that enables humanoid robots to autonomously perform long-horizon, vision-based parkour across challenging obstacle courses. Our approach first leverages motion matching, formulated as nearest-neighbor search in a feature space, to compose retargeted atomic human skills into long-horizon kinematic trajectories. This framework enables the flexible composition and smooth transition of complex skill chains while preserving the elegance and fluidity of dynamic human motions. Next, we train motion-tracking reinforcement learning (RL) expert policies for these composed motions, and distill them into a single depth-based, multi-skill student policy, using a combination of DAgger and RL. Crucially, the combination of perception and skill composition enables autonomous, context-aware decision-making: using only onboard depth sensing and a discrete 2D velocity command, the robot selects and executes whether to step over, climb onto, vault or roll off obstacles of varying geometries and heights. We validate our framework with extensive real-world experiments on a Unitree G1 humanoid robot, demonstrating highly dynamic parkour skills such as climbing tall obstacles up to 1.25m (96% robot height), as well as long-horizon multi-obstacle traversal with closed-loop adaptation to real-time obstacle perturbations.
☆ CrispEdit: Low-Curvature Projections for Scalable Non-Destructive LLM Editing
A central challenge in large language model (LLM) editing is capability preservation: methods that successfully change targeted behavior can quietly game the editing proxy and corrupt general capabilities, producing degenerate behaviors reminiscent of proxy/reward hacking. We present CrispEdit, a scalable and principled second-order editing algorithm that treats capability preservation as an explicit constraint, unifying and generalizing several existing editing approaches. CrispEdit formulates editing as constrained optimization and enforces the constraint by projecting edit updates onto the low-curvature subspace of the capability-loss landscape. At the crux of CrispEdit is expressing capability constraint via Bregman divergence, whose quadratic form yields the Gauss-Newton Hessian exactly and even when the base model is not trained to convergence. We make this second-order procedure efficient at the LLM scale using Kronecker-factored approximate curvature (K-FAC) and a novel matrix-free projector that exploits Kronecker structure to avoid constructing massive projection matrices. Across standard model-editing benchmarks, CrispEdit achieves high edit success while keeping capability degradation below 1% on average across datasets, significantly improving over prior editors.
☆ Developing AI Agents with Simulated Data: Why, what, and how?
As insufficient data volume and quality remain the key impediments to the adoption of modern subsymbolic AI, techniques of synthetic data generation are in high demand. Simulation offers an apt, systematic approach to generating diverse synthetic data. This chapter introduces the reader to the key concepts, benefits, and challenges of simulation-based synthetic data generation for AI training purposes, and to a reference framework to describe, design, and analyze digital twin-based AI simulation solutions.
☆ Avey-B
Compact pretrained bidirectional encoders remain the backbone of industrial NLP under tight compute and memory budgets. Their effectiveness stems from self-attention's ability to deliver high-quality bidirectional contextualization with sequence-level parallelism, as popularized by BERT-style architectures. Recently, Avey was introduced as an autoregressive, attention-free alternative that naturally admits an encoder-only adaptation. In this paper, we reformulate Avey for the encoder-only paradigm and propose several innovations to its architecture, including decoupled static and dynamic parameterizations, stability-oriented normalization, and neural compression. Results show that this reformulated architecture compares favorably to four widely used Transformer-based encoders, consistently outperforming them on standard token-classification and information-retrieval benchmarks while scaling more efficiently to long contexts.
☆ Task-Agnostic Continual Learning for Chest Radiograph Classification
Clinical deployment of chest radiograph classifiers requires models that can be updated as new datasets become available without retraining on previously ob- served data or degrading validated performance. We study, for the first time, a task-incremental continual learning setting for chest radiograph classification, in which heterogeneous chest X-ray datasets arrive sequentially and task identifiers are unavailable at inference. We propose a continual adapter-based routing learning strategy for Chest X-rays (CARL-XRay) that maintains a fixed high-capacity backbone and incrementally allocates lightweight task-specific adapters and classifier heads. A latent task selector operates on task-adapted features and leverages both current and historical context preserved through compact prototypes and feature-level experience replay. This design supports stable task identification and adaptation across sequential updates while avoiding raw-image storage. Experiments on large-scale public chest radiograph datasets demonstrate robust performance retention and reliable task-aware inference under continual dataset ingestion. CARL-XRay outperforms joint training under task-unknown deployment, achieving higher routing accuracy (75.0\% vs.\ 62.5\%), while maintaining competitive diagnostic performance with AUROC of 0.74 in the oracle setting with ground-truth task identity and 0.75 under task-unknown inference, using significantly fewer trainable parameters. Finally, the proposed framework provides a practical alternative to joint training and repeated full retraining in continual clinical deployment.
comment: 12 pages, 3 figures
☆ Decision Quality Evaluation Framework at Pinterest
Online platforms require robust systems to enforce content safety policies at scale. A critical component of these systems is the ability to evaluate the quality of moderation decisions made by both human agents and Large Language Models (LLMs). However, this evaluation is challenging due to the inherent trade-offs between cost, scale, and trustworthiness, along with the complexity of evolving policies. To address this, we present a comprehensive Decision Quality Evaluation Framework developed and deployed at Pinterest. The framework is centered on a high-trust Golden Set (GDS) curated by subject matter experts (SMEs), which serves as a ground truth benchmark. We introduce an automated intelligent sampling pipeline that uses propensity scores to efficiently expand dataset coverage. We demonstrate the framework's practical application in several key areas: benchmarking the cost-performance trade-offs of various LLM agents, establishing a rigorous methodology for data-driven prompt optimization, managing complex policy evolution, and ensuring the integrity of policy content prevalence metrics via continuous validation. The framework enables a shift from subjective assessments to a data-driven and quantitative practice for managing content safety systems.
☆ The Geometry of Alignment Collapse: When Fine-Tuning Breaks Safety
Fine-tuning aligned language models on benign tasks unpredictably degrades safety guardrails, even when training data contains no harmful content and developers have no adversarial intent. We show that the prevailing explanation, that fine-tuning updates should be orthogonal to safety-critical directions in high-dimensional parameter space, offers false reassurance: we show this orthogonality is structurally unstable and collapses under the dynamics of gradient descent. We then resolve this through a novel geometric analysis, proving that alignment concentrates in low-dimensional subspaces with sharp curvature, creating a brittle structure that first-order methods cannot detect or defend. While initial fine-tuning updates may indeed avoid these subspaces, the curvature of the fine-tuning loss generates second-order acceleration that systematically steers trajectories into alignment-sensitive regions. We formalize this mechanism through the Alignment Instability Condition, three geometric properties that, when jointly satisfied, lead to safety degradation. Our main result establishes a quartic scaling law: alignment loss grows with the fourth power of training time, governed by the sharpness of alignment geometry and the strength of curvature coupling between the fine-tuning task and safety-critical parameters. These results expose a structural blind spot in the current safety paradigm. The dominant approaches to safe fine-tuning address only the initial snapshot of a fundamentally dynamic problem. Alignment fragility is not a bug to be patched; it is an intrinsic geometric property of gradient descent on curved manifolds. Our results motivate the development of curvature-aware methods, and we hope will further enable a shift in alignment safety analysis from reactive red-teaming to predictive diagnostics for open-weight model deployment.
comment: 27 pages, 4 figures
☆ Enhancing Building Semantics Preservation in AI Model Training with Large Language Model Encodings
Accurate representation of building semantics, encompassing both generic object types and specific subtypes, is essential for effective AI model training in the architecture, engineering, construction, and operation (AECO) industry. Conventional encoding methods (e.g., one-hot) often fail to convey the nuanced relationships among closely related subtypes, limiting AI's semantic comprehension. To address this limitation, this study proposes a novel training approach that employs large language model (LLM) embeddings (e.g., OpenAI GPT and Meta LLaMA) as encodings to preserve finer distinctions in building semantics. We evaluated the proposed method by training GraphSAGE models to classify 42 building object subtypes across five high-rise residential building information models (BIMs). Various embedding dimensions were tested, including original high-dimensional LLM embeddings (1,536, 3,072, or 4,096) and 1,024-dimensional compacted embeddings generated via the Matryoshka representation model. Experimental results demonstrated that LLM encodings outperformed the conventional one-hot baseline, with the llama-3 (compacted) embedding achieving a weighted average F1-score of 0.8766, compared to 0.8475 for one-hot encoding. The results underscore the promise of leveraging LLM-based encodings to enhance AI's ability to interpret complex, domain-specific building semantics. As the capabilities of LLMs and dimensionality reduction techniques continue to evolve, this approach holds considerable potential for broad application in semantic elaboration tasks throughout the AECO industry.
comment: 42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)
☆ This human study did not involve human subjects: Validating LLM simulations as behavioral evidence
A growing literature uses large language models (LLMs) as synthetic participants to generate cost-effective and nearly instantaneous responses in social science experiments. However, there is limited guidance on when such simulations support valid inference about human behavior. We contrast two strategies for obtaining valid estimates of causal effects and clarify the assumptions under which each is suitable for exploratory versus confirmatory research. Heuristic approaches seek to establish that simulated and observed human behavior are interchangeable through prompt engineering, model fine-tuning, and other repair strategies designed to reduce LLM-induced inaccuracies. While useful for many exploratory tasks, heuristic approaches lack the formal statistical guarantees typically required for confirmatory research. In contrast, statistical calibration combines auxiliary human data with statistical adjustments to account for discrepancies between observed and simulated responses. Under explicit assumptions, statistical calibration preserves validity and provides more precise estimates of causal effects at lower cost than experiments that rely solely on human participants. Yet the potential of both approaches depends on how well LLMs approximate the relevant populations. We consider what opportunities are overlooked when researchers focus myopically on substituting LLMs for human participants in a study.
GlobeDiff: State Diffusion Process for Partial Observability in Multi-Agent Systems
In the realm of multi-agent systems, the challenge of \emph{partial observability} is a critical barrier to effective coordination and decision-making. Existing approaches, such as belief state estimation and inter-agent communication, often fall short. Belief-based methods are limited by their focus on past experiences without fully leveraging global information, while communication methods often lack a robust model to effectively utilize the auxiliary information they provide. To solve this issue, we propose Global State Diffusion Algorithm~(GlobeDiff) to infer the global state based on the local observations. By formulating the state inference process as a multi-modal diffusion process, GlobeDiff overcomes ambiguities in state estimation while simultaneously inferring the global state with high fidelity. We prove that the estimation error of GlobeDiff under both unimodal and multi-modal distributions can be bounded. Extensive experimental results demonstrate that GlobeDiff achieves superior performance and is capable of accurately inferring the global state.
☆ Understanding vs. Generation: Navigating Optimization Dilemma in Multimodal Models ICLR2026
Current research in multimodal models faces a key challenge where enhancing generative capabilities often comes at the expense of understanding, and vice versa. We analyzed this trade-off and identify the primary cause might be the potential conflict between generation and understanding, which creates a competitive dynamic within the model. To address this, we propose the Reason-Reflect-Refine (R3) framework. This innovative algorithm re-frames the single-step generation task into a multi-step process of "generate-understand-regenerate". By explicitly leveraging the model's understanding capability during generation, we successfully mitigate the optimization dilemma, achieved stronger generation results and improved understanding ability which are related to the generation process. This offers valuable insights for designing next-generation unified multimodal models. Code is available at https://github.com/sen-ye/R3.
comment: Accepted to ICLR2026
☆ Robot-Assisted Social Dining as a White Glove Service
Robot-assisted feeding enables people with disabilities who require assistance eating to enjoy a meal independently and with dignity. However, existing systems have only been tested in-lab or in-home, leaving in-the-wild social dining contexts (e.g., restaurants) largely unexplored. Designing a robot for such contexts presents unique challenges, such as dynamic and unsupervised dining environments that a robot needs to account for and respond to. Through speculative participatory design with people with disabilities, supported by semi-structured interviews and a custom AI-based visual storyboarding tool, we uncovered ideal scenarios for in-the-wild social dining. Our key insight suggests that such systems should: embody the principles of a white glove service where the robot (1) supports multimodal inputs and unobtrusive outputs; (2) has contextually sensitive social behavior and prioritizes the user; (3) has expanded roles beyond feeding; (4) adapts to other relationships at the dining table. Our work has implications for in-the-wild and group contexts of robot-assisted feeding.
comment: 20 pages, 9 figures. Proceedings of the 2026 CHI Conference on Human Factors in Computing Systems (CHI '26)
☆ ChartEditBench: Evaluating Grounded Multi-Turn Chart Editing in Multimodal Language Models
While Multimodal Large Language Models (MLLMs) perform strongly on single-turn chart generation, their ability to support real-world exploratory data analysis remains underexplored. In practice, users iteratively refine visualizations through multi-turn interactions that require maintaining common ground, tracking prior edits, and adapting to evolving preferences. We introduce ChartEditBench, a benchmark for incremental, visually grounded chart editing via code, comprising 5,000 difficulty-controlled modification chains and a rigorously human-verified subset. Unlike prior one-shot benchmarks, ChartEditBench evaluates sustained, context-aware editing. We further propose a robust evaluation framework that mitigates limitations of LLM-as-a-Judge metrics by integrating execution-based fidelity checks, pixel-level visual similarity, and logical code verification. Experiments with state-of-the-art MLLMs reveal substantial degradation in multi-turn settings due to error accumulation and breakdowns in shared context, with strong performance on stylistic edits but frequent execution failures on data-centric transformations. ChartEditBench, establishes a challenging testbed for grounded, intent-aware multimodal programming.
comment: 16 pages, 13 figures including Supplementary Material
☆ Beyond Binary Classification: Detecting Fine-Grained Sexism in Social Media Videos
Online sexism appears in various forms, which makes its detection challenging. Although automated tools can enhance the identification of sexist content, they are often restricted to binary classification. Consequently, more subtle manifestations of sexism may remain undetected due to the lack of fine-grained, context-sensitive labels. To address this issue, we make the following contributions: (1) we present FineMuSe, a new multimodal sexism detection dataset in Spanish that includes both binary and fine-grained annotations; (2) we introduce a comprehensive hierarchical taxonomy that encompasses forms of sexism, non-sexism, and rhetorical devices of irony and humor; and (3) we evaluate a wide range of LLMs for both binary and fine-grained sexism detection. Our findings indicate that multimodal LLMs perform competitively with human annotators in identifying nuanced forms of sexism; however, they struggle to capture co-occurring sexist types when these are conveyed through visual cues.
☆ UrbanVerse: Learning Urban Region Representation Across Cities and Tasks
Recent advances in urban region representation learning have enabled a wide range of applications in urban analytics, yet existing methods remain limited in their capabilities to generalize across cities and analytic tasks. We aim to generalize urban representation learning beyond city- and task-specific settings, towards a foundation-style model for urban analytics. To this end, we propose UrbanVerse, a model for cross-city urban representation learning and cross-task urban analytics. For cross-city generalization, UrbanVerse focuses on features local to the target regions and structural features of the nearby regions rather than the entire city. We model regions as nodes on a graph, which enables a random walk-based procedure to form "sequences of regions" that reflect both local and neighborhood structural features for urban region representation learning. For cross-task generalization, we propose a cross-task learning module named HCondDiffCT. This module integrates region-conditioned prior knowledge and task-conditioned semantics into the diffusion process to jointly model multiple downstream urban prediction tasks. HCondDiffCT is generic. It can also be integrated with existing urban representation learning models to enhance their downstream task effectiveness. Experiments on real-world datasets show that UrbanVerse consistently outperforms state-of-the-art methods across six tasks under cross-city settings, achieving up to 35.89% improvements in prediction accuracy.
☆ MRC-GAT: A Meta-Relational Copula-Based Graph Attention Network for Interpretable Multimodal Alzheimer's Disease Diagnosis
Alzheimer's disease (AD) is a progressive neurodegenerative condition necessitating early and precise diagnosis to provide prompt clinical management. Given the paramount importance of early diagnosis, recent studies have increasingly focused on computer-aided diagnostic models to enhance precision and reliability. However, most graph-based approaches still rely on fixed structural designs, which restrict their flexibility and limit generalization across heterogeneous patient data. To overcome these limitations, the Meta-Relational Copula-Based Graph Attention Network (MRC-GAT) is proposed as an efficient multimodal model for AD classification tasks. The proposed architecture, copula-based similarity alignment, relational attention, and node fusion are integrated as the core components of episodic meta-learning, such that the multimodal features, including risk factors (RF), Cognitive test scores, and MRI attributes, are first aligned via a copula-based transformation in a common statistical space and then combined by a multi-relational attention mechanism. According to evaluations performed on the TADPOLE and NACC datasets, the MRC-GAT model achieved accuracies of 96.87% and 92.31%, respectively, demonstrating state-of-the-art performance compared to existing diagnostic models. Finally, the proposed model confirms the robustness and applicability of the proposed method by providing interpretability at various stages of disease diagnosis.
comment: 27 pages, 10 figures, 10 table
☆ MeshMimic: Geometry-Aware Humanoid Motion Learning through 3D Scene Reconstruction
Humanoid motion control has witnessed significant breakthroughs in recent years, with deep reinforcement learning (RL) emerging as a primary catalyst for achieving complex, human-like behaviors. However, the high dimensionality and intricate dynamics of humanoid robots make manual motion design impractical, leading to a heavy reliance on expensive motion capture (MoCap) data. These datasets are not only costly to acquire but also frequently lack the necessary geometric context of the surrounding physical environment. Consequently, existing motion synthesis frameworks often suffer from a decoupling of motion and scene, resulting in physical inconsistencies such as contact slippage or mesh penetration during terrain-aware tasks. In this work, we present MeshMimic, an innovative framework that bridges 3D scene reconstruction and embodied intelligence to enable humanoid robots to learn coupled "motion-terrain" interactions directly from video. By leveraging state-of-the-art 3D vision models, our framework precisely segments and reconstructs both human trajectories and the underlying 3D geometry of terrains and objects. We introduce an optimization algorithm based on kinematic consistency to extract high-quality motion data from noisy visual reconstructions, alongside a contact-invariant retargeting method that transfers human-environment interaction features to the humanoid agent. Experimental results demonstrate that MeshMimic achieves robust, highly dynamic performance across diverse and challenging terrains. Our approach proves that a low-cost pipeline utilizing only consumer-grade monocular sensors can facilitate the training of complex physical interactions, offering a scalable path toward the autonomous evolution of humanoid robots in unstructured environments.
comment: 17 pages, 6 figures
☆ Spanning the Visual Analogy Space with a Weight Basis of LoRAs
Visual analogy learning enables image manipulation through demonstration rather than textual description, allowing users to specify complex transformations difficult to articulate in words. Given a triplet $\{\mathbf{a}$, $\mathbf{a}'$, $\mathbf{b}\}$, the goal is to generate $\mathbf{b}'$ such that $\mathbf{a} : \mathbf{a}' :: \mathbf{b} : \mathbf{b}'$. Recent methods adapt text-to-image models to this task using a single Low-Rank Adaptation (LoRA) module, but they face a fundamental limitation: attempting to capture the diverse space of visual transformations within a fixed adaptation module constrains generalization capabilities. Inspired by recent work showing that LoRAs in constrained domains span meaningful, interpolatable semantic spaces, we propose LoRWeB, a novel approach that specializes the model for each analogy task at inference time through dynamic composition of learned transformation primitives, informally, choosing a point in a "space of LoRAs". We introduce two key components: (1) a learnable basis of LoRA modules, to span the space of different visual transformations, and (2) a lightweight encoder that dynamically selects and weighs these basis LoRAs based on the input analogy pair. Comprehensive evaluations demonstrate our approach achieves state-of-the-art performance and significantly improves generalization to unseen visual transformations. Our findings suggest that LoRA basis decompositions are a promising direction for flexible visual manipulation. Code and data are in https://research.nvidia.com/labs/par/lorweb
comment: Code and data are in https://research.nvidia.com/labs/par/lorweb
☆ Recursive Concept Evolution for Compositional Reasoning in Large Language Models
Large language models achieve strong performance on many complex reasoning tasks, yet their accuracy degrades sharply on benchmarks that require compositional reasoning, including ARC-AGI-2, GPQA, MATH, BBH, and HLE. Existing methods improve reasoning by expanding token-level search through chain-of-thought prompting, self-consistency, or reinforcement learning, but they leave the model's latent representation space fixed. When the required abstraction is not already encoded in this space, performance collapses. We propose Recursive Concept Evolution (RCE), a framework that enables pretrained language models to modify their internal representation geometry during inference. RCE introduces dynamically generated low-rank concept subspaces that are spawned when representational inadequacy is detected, selected through a minimum description length criterion, merged when synergistic, and consolidated via constrained optimization to preserve stability. This process allows the model to construct new abstractions rather than recombining existing ones. We integrate RCE with Mistral-7B and evaluate it across compositional reasoning benchmarks. RCE yields 12-18 point gains on ARC-AGI-2, 8-14 point improvements on GPQA and BBH, and consistent reductions in depth-induced error on MATH and HLE.
☆ Learning to Retrieve Navigable Candidates for Efficient Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) requires an agent to follow natural-language instructions and navigate through previously unseen environments. Recent approaches increasingly employ large language models (LLMs) as high-level navigators due to their flexibility and reasoning capability. However, prompt-based LLM navigation often suffers from inefficient decision-making, as the model must repeatedly interpret instructions from scratch and reason over noisy and verbose navigable candidates at each step. In this paper, we propose a retrieval-augmented framework to improve the efficiency and stability of LLM-based VLN without modifying or fine-tuning the underlying language model. Our approach introduces retrieval at two complementary levels. At the episode level, an instruction-level embedding retriever selects semantically similar successful navigation trajectories as in-context exemplars, providing task-specific priors for instruction grounding. At the step level, an imitation-learned candidate retriever prunes irrelevant navigable directions before LLM inference, reducing action ambiguity and prompt complexity. Both retrieval modules are lightweight, modular, and trained independently of the LLM. We evaluate our method on the Room-to-Room (R2R) benchmark. Experimental results demonstrate consistent improvements in Success Rate, Oracle Success Rate, and SPL on both seen and unseen environments. Ablation studies further show that instruction-level exemplar retrieval and candidate pruning contribute complementary benefits to global guidance and step-wise decision efficiency. These results indicate that retrieval-augmented decision support is an effective and scalable strategy for enhancing LLM-based vision-and-language navigation.
☆ Lifelong Scalable Multi-Agent Realistic Testbed and A Comprehensive Study on Design Choices in Lifelong AGV Fleet Management Systems
We present Lifelong Scalable Multi-Agent Realistic Testbed (LSMART), an open-source simulator to evaluate any Multi-Agent Path Finding (MAPF) algorithm in a Fleet Management System (FMS) with Automated Guided Vehicles (AGVs). MAPF aims to move a group of agents from their corresponding starting locations to their goals. Lifelong MAPF (LMAPF) is a variant of MAPF that continuously assigns new goals for agents to reach. LMAPF applications, such as autonomous warehouses, often require a centralized, lifelong system to coordinate the movement of a fleet of robots, typically AGVs. However, existing works on MAPF and LMAPF often assume simplified kinodynamic models, such as pebble motion, as well as perfect execution and communication for AGVs. Prior work has presented SMART, a software capable of evaluating any MAPF algorithms while considering agent kinodynamics, communication delays, and execution uncertainties. However, SMART is designed for MAPF, not LMAPF. Generalizing SMART to an FMS requires many more design choices. First, an FMS parallelizes planning and execution, raising the question of when to plan. Second, given planners with varying optimality and differing agent-model assumptions, one must decide how to plan. Third, when the planner fails to return valid solutions, the system must determine how to recover. In this paper, we first present LSMART, an open-source simulator that incorporates all these considerations to evaluate any MAPF algorithms in an FMS. We then provide experiment results based on state-of-the-art methods for each design choice, offering guidance on how to effectively design centralized lifelong AGV Fleet Management Systems. LSMART is available at https://smart-mapf.github.io/lifelong-smart.
☆ Criteria-first, semantics-later: reproducible structure discovery in image-based sciences
Across the natural and life sciences, images have become a primary measurement modality, yet the dominant analytic paradigm remains semantics-first. Structure is recovered by predicting or enforcing domain-specific labels. This paradigm fails systematically under the conditions that make image-based science most valuable, including open-ended scientific discovery, cross-sensor and cross-site comparability, and long-term monitoring in which domain ontologies and associated label sets drift culturally, institutionally, and ecologically. A deductive inversion is proposed in the form of criteria-first and semantics-later. A unified framework for criteria-first structure discovery is introduced. It separates criterion-defined, semantics-free structure extraction from downstream semantic mapping into domain ontologies or vocabularies and provides a domain-general scaffold for reproducible analysis across image-based sciences. Reproducible science requires that the first analytic layer perform criterion-driven, semantics-free structure discovery, yielding stable partitions, structural fields, or hierarchies defined by explicit optimality criteria rather than local domain ontologies. Semantics is not discarded; it is relocated downstream as an explicit mapping from the discovered structural product to a domain ontology or vocabulary, enabling plural interpretations and explicit crosswalks without rewriting upstream extraction. Grounded in cybernetics, observation-as-distinction, and information theory's separation of information from meaning, the argument is supported by cross-domain evidence showing that criteria-first components recur whenever labels do not scale. Finally, consequences are outlined for validation beyond class accuracy and for treating structural products as FAIR, AI-ready digital objects for long-term monitoring and digital twins.
☆ Random Wavelet Features for Graph Kernel Machines
Node embeddings map graph vertices into low-dimensional Euclidean spaces while preserving structural information. They are central to tasks such as node classification, link prediction, and signal reconstruction. A key goal is to design node embeddings whose dot products capture meaningful notions of node similarity induced by the graph. Graph kernels offer a principled way to define such similarities, but their direct computation is often prohibitive for large networks. Inspired by random feature methods for kernel approximation in Euclidean spaces, we introduce randomized spectral node embeddings whose dot products estimate a low-rank approximation of any specific graph kernel. We provide theoretical and empirical results showing that our embeddings achieve more accurate kernel approximations than existing methods, particularly for spectrally localized kernels. These results demonstrate the effectiveness of randomized spectral constructions for scalable and principled graph representation learning.
comment: This paper is an extended version of a paper submitted to the 2026 European Signal Processing Conference (EUSIPCO 2026). It contains supplementary material including the full proof to Proposition 1
☆ Outer Diversity of Structured Domains
An ordinal preference domain is a subset of preference orders that the voters are allowed to cast in an election. We introduce and study the notion of outer diversity of a domain and evaluate its value for a number of well-known structured domains, such as the single-peaked, single-crossing, group-separable, and Euclidean ones.
☆ How to Disclose? Strategic AI Disclosure in Crowdfunding
As artificial intelligence (AI) increasingly integrates into crowdfunding practices, strategic disclosure of AI involvement has become critical. Yet, empirical insights into how different disclosure strategies influence investor decisions remain limited. Drawing on signaling theory and Aristotle's rhetorical framework, we examine how mandatory AI disclosure affects crowdfunding performance and how substantive signals (degree of AI involvement) and rhetorical signals (logos/explicitness, ethos/authenticity, pathos/emotional tone) moderate these effects. Leveraging Kickstarter's mandatory AI disclosure policy as a natural experiment and four supplementary online experiments, we find that mandatory AI disclosure significantly reduces crowdfunding performance: funds raised decline by 39.8% and backer counts by 23.9% for AI-involved projects. However, this adverse effect is systematically moderated by disclosure strategy. Greater AI involvement amplifies the negative effects of AI disclosure, while high authenticity and high explicitness mitigate them. Interestingly, excessive positive emotional tone (a strategy creators might intuitively adopt to counteract AI skepticism) backfires and exacerbates negative outcomes. Supplementary randomized experiments identify two underlying mechanisms: perceived creator competence and AI washing concerns. Substantive signals primarily affect competence judgments, whereas rhetorical signals operate through varied pathways: either mediator alone or both in sequence. These findings provide theoretical and practical insights for entrepreneurs, platforms, and policymakers strategically managing AI transparency in high-stakes investment contexts.
☆ A Content-Based Framework for Cybersecurity Refusal Decisions in Large Language Models
Large language models and LLM-based agents are increasingly used for cybersecurity tasks that are inherently dual-use. Existing approaches to refusal, spanning academic policy frameworks and commercially deployed systems, often rely on broad topic-based bans or offensive-focused taxonomies. As a result, they can yield inconsistent decisions, over-restrict legitimate defenders, and behave brittlely under obfuscation or request segmentation. We argue that effective refusal requires explicitly modeling the trade-off between offensive risk and defensive benefit, rather than relying solely on intent or offensive classification. In this paper, we introduce a content-based framework for designing and auditing cyber refusal policies that makes offense-defense tradeoffs explicit. The framework characterizes requests along five dimensions: Offensive Action Contribution, Offensive Risk, Technical Complexity, Defensive Benefit, and Expected Frequency for Legitimate Users, grounded in the technical substance of the request rather than stated intent. We demonstrate that this content-grounded approach resolves inconsistencies in current frontier model behavior and allows organizations to construct tunable, risk-aware refusal policies.
☆ Estimating Human Muscular Fatigue in Dynamic Collaborative Robotic Tasks with Learning-Based Models
Assessing human muscle fatigue is critical for optimizing performance and safety in physical human-robot interaction(pHRI). This work presents a data-driven framework to estimate fatigue in dynamic, cyclic pHRI using arm-mounted surface electromyography(sEMG). Subject-specific machine-learning regression models(Random Forest, XGBoost, and Linear Regression predict the fraction of cycles to fatigue(FCF) from three frequency-domain and one time-domain EMG features, and are benchmarked against a convolutional neural network(CNN) that ingests spectrograms of filtered EMG. Framing fatigue estimation as regression (rather than classification) captures continuous progression toward fatigue, supporting earlier detection, timely intervention, and adaptive robot control. In experiments with ten participants, a collaborative robot under admittance control guided repetitive lateral (left-right) end-effector motions until muscular fatigue. Average FCF RMSE across participants was 20.8+/-4.3% for the CNN, 23.3+/-3.8% for Random Forest, 24.8+/-4.5% for XGBoost, and 26.9+/-6.1% for Linear Regression. To probe cross-task generalization, one participant additionally performed unseen vertical (up-down) and circular repetitions; models trained only on lateral data were tested directly and largely retained accuracy, indicating robustness to changes in movement direction, arm kinematics, and muscle recruitment, while Linear Regression deteriorated. Overall, the study shows that both feature-based ML and spectrogram-based DL can estimate remaining work capacity during repetitive pHRI, with the CNN delivering the lowest error and the tree-based models close behind. The reported transfer to new motion patterns suggests potential for practical fatigue monitoring without retraining for every task, improving operator protection and enabling fatigue-aware shared autonomy, for safer fatigue-adaptive pHRI control.
comment: ICRA 2026 Original Contribution, Vienne, Austria
☆ Revisiting Northrop Frye's Four Myths Theory with Large Language Models
Northrop Frye's theory of four fundamental narrative genres (comedy, romance, tragedy, satire) has profoundly influenced literary criticism, yet computational approaches to his framework have focused primarily on narrative patterns rather than character functions. In this paper, we present a new character function framework that complements pattern-based analysis by examining how archetypal roles manifest differently across Frye's genres. Drawing on Jungian archetype theory, we derive four universal character functions (protagonist, mentor, antagonist, companion) by mapping them to Jung's psychic structure components. These functions are then specialized into sixteen genre-specific roles based on prototypical works. To validate this framework, we conducted a multi-model study using six state-of-the-art Large Language Models (LLMs) to evaluate character-role correspondences across 40 narrative works. The validation employed both positive samples (160 valid correspondences) and negative samples (30 invalid correspondences) to evaluate whether models both recognize valid correspondences and reject invalid ones. LLMs achieved substantial performance (mean balanced accuracy of 82.5%) with strong inter-model agreement (Fleiss' $κ$ = 0.600), demonstrating that the proposed correspondences capture systematic structural patterns. Performance varied by genre (ranging from 72.7% to 89.9%) and role (52.5% to 99.2%), with qualitative analysis revealing that variations reflect genuine narrative properties, including functional distribution in romance and deliberate archetypal subversion in satire. This character-based approach demonstrates the potential of LLM-supported methods for computational narratology and provides a foundation for future development of narrative generation methods and interactive storytelling applications.
☆ Relative Geometry of Neural Forecasters: Linking Accuracy and Alignment in Learned Latent Geometry
Neural networks can accurately forecast complex dynamical systems, yet how they internally represent underlying latent geometry remains poorly understood. We study neural forecasters through the lens of representational alignment, introducing anchor-based, geometry-agnostic relative embeddings that remove rotational and scaling ambiguities in latent spaces. Applying this framework across seven canonical dynamical systems - ranging from periodic to chaotic - we reveal reproducible family-level structure: multilayer perceptrons align with other MLPs, recurrent networks with RNNs, while transformers and echo-state networks achieve strong forecasts despite weaker alignment. Alignment generally correlates with forecasting accuracy, yet high accuracy can coexist with low alignment. Relative geometry thus provides a simple, reproducible foundation for comparing how model families internalize and represent dynamical structure.
comment: Accepted to Transactions on Machine Learning Research (TMLR)
☆ PERSONA: Dynamic and Compositional Inference-Time Personality Control via Activation Vector Algebra ICLR 2026
Current methods for personality control in Large Language Models rely on static prompting or expensive fine-tuning, failing to capture the dynamic and compositional nature of human traits. We introduce PERSONA, a training-free framework that achieves fine-tuning level performance through direct manipulation of personality vectors in activation space. Our key insight is that personality traits appear as extractable, approximately orthogonal directions in the model's representation space that support algebraic operations. The framework operates through three stages: Persona-Base extracts orthogonal trait vectors via contrastive activation analysis; Persona-Algebra enables precise control through vector arithmetic (scalar multiplication for intensity, addition for composition, subtraction for suppression); and Persona-Flow achieves context-aware adaptation by dynamically composing these vectors during inference. On PersonalityBench, our approach achieves a mean score of 9.60, nearly matching the supervised fine-tuning upper bound of 9.61 without any gradient updates. On our proposed Persona-Evolve benchmark for dynamic personality adaptation, we achieve up to 91% win rates across diverse model families. These results provide evidence that aspects of LLM personality are mathematically tractable, opening new directions for interpretable and efficient behavioral control.
comment: ICLR 2026
☆ Bayesian Optimization for Design Parameters of 3D Image Data Analysis
Deep learning-based segmentation and classification are crucial to large-scale biomedical imaging, particularly for 3D data, where manual analysis is impractical. Although many methods exist, selecting suitable models and tuning parameters remains a major bottleneck in practice. Hence, we introduce the 3D data Analysis Optimization Pipeline, a method designed to facilitate the design and parameterization of segmentation and classification using two Bayesian Optimization stages. First, the pipeline selects a segmentation model and optimizes postprocessing parameters using a domain-adapted syntactic benchmark dataset. To ensure a concise evaluation of segmentation performance, we introduce a segmentation quality metric that serves as the objective function. Second, the pipeline optimizes design choices of a classifier, such as encoder and classifier head architectures, incorporation of prior knowledge, and pretraining strategies. To reduce manual annotation effort, this stage includes an assisted class-annotation workflow that extracts predicted instances from the segmentation results and sequentially presents them to the operator, eliminating the need for manual tracking. In four case studies, the 3D data Analysis Optimization Pipeline efficiently identifies effective model and parameter configurations for individual datasets.
comment: 10 pages, 7 figures
☆ Zombie Agents: Persistent Control of Self-Evolving LLM Agents via Self-Reinforcing Injections
Self-evolving LLM agents update their internal state across sessions, often by writing and reusing long-term memory. This design improves performance on long-horizon tasks but creates a security risk: untrusted external content observed during a benign session can be stored as memory and later treated as instruction. We study this risk and formalize a persistent attack we call a Zombie Agent, where an attacker covertly implants a payload that survives across sessions, effectively turning the agent into a puppet of the attacker. We present a black-box attack framework that uses only indirect exposure through attacker-controlled web content. The attack has two phases. During infection, the agent reads a poisoned source while completing a benign task and writes the payload into long-term memory through its normal update process. During trigger, the payload is retrieved or carried forward and causes unauthorized tool behavior. We design mechanism-specific persistence strategies for common memory implementations, including sliding-window and retrieval-augmented memory, to resist truncation and relevance filtering. We evaluate the attack on representative agent setups and tasks, measuring both persistence over time and the ability to induce unauthorized actions while preserving benign task quality. Our results show that memory evolution can convert one-time indirect injection into persistent compromise, which suggests that defenses focused only on per-session prompt filtering are not sufficient for self-evolving agents.
☆ CARE Drive A Framework for Evaluating Reason-Responsiveness of Vision Language Models in Automated Driving
Foundation models, including vision language models, are increasingly used in automated driving to interpret scenes, recommend actions, and generate natural language explanations. However, existing evaluation methods primarily assess outcome based performance, such as safety and trajectory accuracy, without determining whether model decisions reflect human relevant considerations. As a result, it remains unclear whether explanations produced by such models correspond to genuine reason responsive decision making or merely post hoc rationalizations. This limitation is especially significant in safety critical domains because it can create false confidence. To address this gap, we propose CARE Drive, Context Aware Reasons Evaluation for Driving, a model agnostic framework for evaluating reason responsiveness in vision language models applied to automated driving. CARE Drive compares baseline and reason augmented model decisions under controlled contextual variation to assess whether human reasons causally influence decision behavior. The framework employs a two stage evaluation process. Prompt calibration ensures stable outputs. Systematic contextual perturbation then measures decision sensitivity to human reasons such as safety margins, social pressure, and efficiency constraints. We demonstrate CARE Drive in a cyclist overtaking scenario involving competing normative considerations. Results show that explicit human reasons significantly influence model decisions, improving alignment with expert recommended behavior. However, responsiveness varies across contextual factors, indicating uneven sensitivity to different types of reasons. These findings provide empirical evidence that reason responsiveness in foundation models can be systematically evaluated without modifying model parameters.
comment: 21 pages, on submission to Transportation Research Part C
☆ On inferring cumulative constraints
Cumulative constraints are central in scheduling with constraint programming, yet propagation is typically performed per constraint, missing multi-resource interactions and causing severe slowdowns on some benchmarks. I present a preprocessing method for inferring additional cumulative constraints that capture such interactions without search-time probing. This approach interprets cumulative constraints as linear inequalities over occupancy vectors and generates valid inequalities by (i) discovering covers, the sets of tasks that cannot run in parallel, (ii) strengthening the cover inequalities for the discovered sets with lifting, and (iii) injecting the resulting constraints back into the scheduling problem instance. Experiments on standard RCPSP and RCPSP/max test suites show that these inferred constraints improve search performance and tighten objective bounds on favorable instances, while incurring little degradation on unfavorable ones. Additionally, these experiments discover 25 new lower bounds and five new best solutions; eight of the lower bounds are obtained directly from the inferred constraints.
comment: 17 pages, 6 figures, 4 tables; submitted to the 32nd International Conference on Principles and Practice of Constraint Programming (CP 2026)
☆ STAPO: Stabilizing Reinforcement Learning for LLMs by Silencing Rare Spurious Tokens
Reinforcement Learning (RL) has significantly improved large language model reasoning, but existing RL fine-tuning methods rely heavily on heuristic techniques such as entropy regularization and reweighting to maintain stability. In practice, they often experience late-stage performance collapse, leading to degraded reasoning quality and unstable training. We derive that the magnitude of token-wise policy gradients in RL is negatively correlated with token probability and local policy entropy. Building on this result, we prove that training instability is driven by a tiny fraction of tokens, approximately 0.01\%, which we term \emph{spurious tokens}. When such tokens appear in correct responses, they contribute little to the reasoning outcome but inherit the full sequence-level reward, leading to abnormally amplified gradient updates. Motivated by this observation, we propose Spurious-Token-Aware Policy Optimization (STAPO) for large-scale model refining, which selectively masks such updates and renormalizes the loss over valid tokens. Across six mathematical reasoning benchmarks using Qwen 1.7B, 8B, and 14B base models, STAPO consistently demonstrates superior entropy stability and achieves an average performance improvement of 7.13\% over GRPO, 20-Entropy and JustRL.
☆ The geometry of online conversations and the causal antecedents of conflictual discourse
This article investigates the causal antecedents of conflictual language and the geometry of interaction in online threaded conversations related to climate change. We employ three annotation dimensions, inferred through LLM prompting and averaging, to capture complementary aspects of discursive conflict (such as stance: agreement vs disagreement; tone: attacking vs respectful; and emotional versus factual framing) and use data from a threaded online forum to examine how these dimensions respond to temporal, conversational, and arborescent structural features of discussions. We show that, as suggested by the literature, longer delays between successive posts in a thread are associated with replies that are, on average, more respectful, whereas longer delays relative to the parent post are associated with slightly less disagreement but more emotional (less factual) language. Second, we characterize alignment with the local conversational environment and find strong convergence both toward the average stance, tone and emotional framing of older sibling posts replying to the same parent and toward those of the parent post itself, with parent post effects generally stronger than sibling effects. We further show that early branch-level responses condition these alignment dynamics, such that parent-child stance alignment is amplified or attenuated depending on whether a branch is initiated in agreement or disagreement with the discussion's root message. These influences are largely additive for civility-related dimensions (attacking vs respectful, disagree vs agree), whereas for emotional versus factual framing there is a significant interaction: alignment with the parent's emotionality is amplified when older siblings are similarly aligned.
☆ How Vision Becomes Language: A Layer-wise Information-Theoretic Analysis of Multimodal Reasoning
When a multimodal Transformer answers a visual question, is the prediction driven by visual evidence, linguistic reasoning, or genuinely fused cross-modal computation -- and how does this structure evolve across layers? We address this question with a layer-wise framework based on Partial Information Decomposition (PID) that decomposes the predictive information at each Transformer layer into redundant, vision-unique, language-unique, and synergistic components. To make PID tractable for high-dimensional neural representations, we introduce \emph{PID Flow}, a pipeline combining dimensionality reduction, normalizing-flow Gaussianization, and closed-form Gaussian PID estimation. Applying this framework to LLaVA-1.5-7B and LLaVA-1.6-7B across six GQA reasoning tasks, we uncover a consistent \emph{modal transduction} pattern: visual-unique information peaks early and decays with depth, language-unique information surges in late layers to account for roughly 82\% of the final prediction, and cross-modal synergy remains below 2\%. This trajectory is highly stable across model variants (layer-wise correlations $>$0.96) yet strongly task-dependent, with semantic redundancy governing the detailed information fingerprint. To establish causality, we perform targeted Image$\rightarrow$Question attention knockouts and show that disrupting the primary transduction pathway induces predictable increases in trapped visual-unique information, compensatory synergy, and total information cost -- effects that are strongest in vision-dependent tasks and weakest in high-redundancy tasks. Together, these results provide an information-theoretic, causal account of how vision becomes language in multimodal Transformers, and offer quantitative guidance for identifying architectural bottlenecks where modality-specific information is lost.
☆ Intracoronary Optical Coherence Tomography Image Processing and Vessel Classification Using Machine Learning
Intracoronary Optical Coherence Tomography (OCT) enables high-resolution visualization of coronary vessel anatomy but presents challenges due to noise, imaging artifacts, and complex tissue structures. This paper proposes a fully automated pipeline for vessel segmentation and classification in OCT images using machine learning techniques. The proposed method integrates image preprocessing, guidewire artifact removal, polar-to-Cartesian transformation, unsupervised K-means clustering, and local feature extraction. These features are used to train Logistic Regression and Support Vector Machine classifiers for pixel-wise vessel classification. Experimental results demonstrate excellent performance, achieving precision, recall, and F1-score values up to 1.00 and overall classification accuracy of 99.68%. The proposed approach provides accurate vessel boundary detection while maintaining low computational complexity and requiring minimal manual annotation. This method offers a reliable and efficient solution for automated OCT image analysis and has potential applications in clinical decision support and real-time medical image processing.
comment: 12 pages, 8 figures. Research paper from Electrical and Computer Engineering Department, University of Patras
☆ Beyond Static Pipelines: Learning Dynamic Workflows for Text-to-SQL
Text-to-SQL has recently achieved impressive progress, yet remains difficult to apply effectively in real-world scenarios. This gap stems from the reliance on single static workflows, fundamentally limiting scalability to out-of-distribution and long-tail scenarios. Instead of requiring users to select suitable methods through extensive experimentation, we attempt to enable systems to adaptively construct workflows at inference time. Through theoretical and empirical analysis, we demonstrate that optimal dynamic policies consistently outperform the best static workflow, with performance gains fundamentally driven by heterogeneity across candidate workflows. Motivated by this, we propose SquRL, a reinforcement learning framework that enhances LLMs' reasoning capability in adaptive workflow construction. We design a rule-based reward function and introduce two effective training mechanisms: dynamic actor masking to encourage broader exploration, and pseudo rewards to improve training efficiency. Experiments on widely-used Text-to-SQL benchmarks demonstrate that dynamic workflow construction consistently outperforms the best static workflow methods, with especially pronounced gains on complex and out-of-distribution queries. The codes are available at https://github.com/Satissss/SquRL
☆ RUVA: Personalized Transparent On-Device Graph Reasoning
The Personal AI landscape is currently dominated by "Black Box" Retrieval-Augmented Generation. While standard vector databases offer statistical matching, they suffer from a fundamental lack of accountability: when an AI hallucinates or retrieves sensitive data, the user cannot inspect the cause nor correct the error. Worse, "deleting" a concept from a vector space is mathematically imprecise, leaving behind probabilistic "ghosts" that violate true privacy. We propose Ruva, the first "Glass Box" architecture designed for Human-in-the-Loop Memory Curation. Ruva grounds Personal AI in a Personal Knowledge Graph, enabling users to inspect what the AI knows and to perform precise redaction of specific facts. By shifting the paradigm from Vector Matching to Graph Reasoning, Ruva ensures the "Right to be Forgotten." Users are the editors of their own lives; Ruva hands them the pen. The project and the demo video are available at http://sisinf00.poliba.it/ruva/.
☆ VLM-DEWM: Dynamic External World Model for Verifiable and Resilient Vision-Language Planning in Manufacturing
Vision-language model (VLM) shows promise for high-level planning in smart manufacturing, yet their deployment in dynamic workcells faces two critical challenges: (1) stateless operation, they cannot persistently track out-of-view states, causing world-state drift; and (2) opaque reasoning, failures are difficult to diagnose, leading to costly blind retries. This paper presents VLM-DEWM, a cognitive architecture that decouples VLM reasoning from world-state management through a persistent, queryable Dynamic External World Model (DEWM). Each VLM decision is structured into an Externalizable Reasoning Trace (ERT), comprising action proposal, world belief, and causal assumption, which is validated against DEWM before execution. When failures occur, discrepancy analysis between predicted and observed states enables targeted recovery instead of global replanning. We evaluate VLM-DEWM on multi-station assembly, large-scale facility exploration, and real-robot recovery under induced failures. Compared to baseline memory-augmented VLM systems, VLM DEWM improves state-tracking accuracy from 56% to 93%, increases recovery success rate from below 5% to 95%, and significantly reduces computational overhead through structured memory. These results establish VLM-DEWM as a verifiable and resilient solution for long-horizon robotic operations in dynamic manufacturing environments.
☆ Dynamic Training-Free Fusion of Subject and Style LoRAs
Recent studies have explored the combination of multiple LoRAs to simultaneously generate user-specified subjects and styles. However, most existing approaches fuse LoRA weights using static statistical heuristics that deviate from LoRA's original purpose of learning adaptive feature adjustments and ignore the randomness of sampled inputs. To address this, we propose a dynamic training-free fusion framework that operates throughout the generation process. During the forward pass, at each LoRA-applied layer, we dynamically compute the KL divergence between the base model's original features and those produced by subject and style LoRAs, respectively, and adaptively select the most appropriate weights for fusion. In the reverse denoising stage, we further refine the generation trajectory by dynamically applying gradient-based corrections derived from objective metrics such as CLIP and DINO scores, providing continuous semantic and stylistic guidance. By integrating these two complementary mechanisms-feature-level selection and metric-guided latent adjustment-across the entire diffusion timeline, our method dynamically achieves coherent subject-style synthesis without any retraining. Extensive experiments across diverse subject-style combinations demonstrate that our approach consistently outperforms state-of-the-art LoRA fusion methods both qualitatively and quantitatively.
☆ Quantifying construct validity in large language model evaluations
The LLM community often reports benchmark results as if they are synonymous with general model capabilities. However, benchmarks can have problems that distort performance, like test set contamination and annotator error. How can we know that a benchmark is a reliable indicator of some capability that we want to measure? This question concerns the construct validity of LLM benchmarks, and it requires separating benchmark results from capabilities when we model and predict LLM performance. Both social scientists and computer scientists propose formal models - latent factor models and scaling laws - for identifying the capabilities underlying benchmark scores. However, neither technique is satisfactory for construct validity. Latent factor models ignore scaling laws, and as a result, the capabilities they extract often proxy model size. Scaling laws ignore measurement error, and as a result, the capabilities they extract are both uninterpretable and overfit to the observed benchmarks. This thesis presents the structured capabilities model, the first model to extract interpretable and generalisable capabilities from a large collection of LLM benchmark results. I fit this model and its two alternatives on a large sample of results from the OpenLLM Leaderboard. Structured capabilities outperform latent factor models on parsimonious fit indices, and exhibit better out-of-distribution benchmark prediction than scaling laws. These improvements are possible because neither existing approach separates model scale from capabilities in the appropriate way. Model scale should inform capabilities, as in scaling laws, and these capabilities should inform observed results up to measurement error, as in latent factor models. In combining these two insights, structured capabilities demonstrate better explanatory and predictive power for quantifying construct validity in LLM evaluations.
☆ GenAI-LA: Generative AI and Learning Analytics Workshop (LAK 2026), April 27--May 1, 2026, Bergen, Norway
This work introduces EduEVAL-DB, a dataset based on teacher roles designed to support the evaluation and training of automatic pedagogical evaluators and AI tutors for instructional explanations. The dataset comprises 854 explanations corresponding to 139 questions from a curated subset of the ScienceQA benchmark, spanning science, language, and social science across K-12 grade levels. For each question, one human-teacher explanation is provided and six are generated by LLM-simulated teacher roles. These roles are inspired by instructional styles and shortcomings observed in real educational practice and are instantiated via prompt engineering. We further propose a pedagogical risk rubric aligned with established educational standards, operationalizing five complementary risk dimensions: factual correctness, explanatory depth and completeness, focus and relevance, student-level appropriateness, and ideological bias. All explanations are annotated with binary risk labels through a semi-automatic process with expert teacher review. Finally, we present preliminary validation experiments to assess the suitability of EduEVAL-DB for evaluation. We benchmark a state-of-the-art education-oriented model (Gemini 2.5 Pro) against a lightweight local Llama 3.1 8B model and examine whether supervised fine-tuning on EduEVAL-DB supports pedagogical risk detection using models deployable on consumer hardware.
comment: 10 pages, 3 figures. Published in Intl. Conf. on Learning Analytics & Knowledge Workshops (LAK Workshops 2026, GenAI-LA 26)
☆ The Obfuscation Atlas: Mapping Where Honesty Emerges in RLVR with Deception Probes
Training against white-box deception detectors has been proposed as a way to make AI systems honest. However, such training risks models learning to obfuscate their deception to evade the detector. Prior work has studied obfuscation only in artificial settings where models were directly rewarded for harmful output. We construct a realistic coding environment where reward hacking via hardcoding test cases naturally occurs, and show that obfuscation emerges in this setting. We introduce a taxonomy of possible outcomes when training against a deception detector. The model either remains honest, or becomes deceptive via two possible obfuscation strategies. (i) Obfuscated activations: the model outputs deceptive text while modifying its internal representations to no longer trigger the detector. (ii) Obfuscated policy: the model outputs deceptive text that evades the detector, typically by including a justification for the reward hack. Empirically, obfuscated activations arise from representation drift during RL, with or without a detector penalty. The probe penalty only incentivizes obfuscated policies; we theoretically show this is expected for policy gradient methods. Sufficiently high KL regularization and detector penalty can yield honest policies, establishing white-box deception detectors as viable training signals for tasks prone to reward hacking.
comment: 25 pages, 12 figures
☆ Improving MLLMs in Embodied Exploration and Question Answering with Human-Inspired Memory Modeling
Deploying Multimodal Large Language Models as the brain of embodied agents remains challenging, particularly under long-horizon observations and limited context budgets. Existing memory assisted methods often rely on textual summaries, which discard rich visual and spatial details and remain brittle in non-stationary environments. In this work, we propose a non-parametric memory framework that explicitly disentangles episodic and semantic memory for embodied exploration and question answering. Our retrieval-first, reasoning-assisted paradigm recalls episodic experiences via semantic similarity and verifies them through visual reasoning, enabling robust reuse of past observations without rigid geometric alignment. In parallel, we introduce a program-style rule extraction mechanism that converts experiences into structured, reusable semantic memory, facilitating cross-environment generalization. Extensive experiments demonstrate state-of-the-art performance on embodied question answering and exploration benchmarks, yielding a 7.3% gain in LLM-Match and an 11.4% gain in LLM MatchXSPL on A-EQA, as well as +7.7% success rate and +6.8% SPL on GOAT-Bench. Analyses reveal that our episodic memory primarily improves exploration efficiency, while semantic memory strengthens complex reasoning of embodied agents.
☆ The Equalizer: Introducing Shape-Gain Decomposition in Neural Audio Codecs
Neural audio codecs (NACs) typically encode the short-term energy (gain) and normalized structure (shape) of speech/audio signals jointly within the same latent space. As a result, they are poorly robust to a global variation of the input signal level in the sense that such variation has strong influence on the embedding vectors at the output of the encoder and their quantization. This methodology is inherently inefficient, leading to codebook redundancy and suboptimal bitrate-distortion performance. To address these limitations, we propose to introduce shape-gain decomposition, widely used in classical speech/audio coding, into the NAC framework. The principle of the proposed Equalizer methodology is to decompose the input signal -- before the NAC encoder -- into gain and normalized shape vector on a short-term basis. The shape vector is processed by the NAC, while the gain is quantized with scalar quantization and transmitted separately. The output (decoded) signal is reconstructed from the normalized output of the NAC and the quantized gain. Our experiments conducted on speech signals show that this general methodology, easily applicable to any NAC, enables a substantial gain in bitrate-distortion performance, as well as a massive reduction in complexity.
comment: Neural audio codecs, shape-gain decomposition, vector quantization, speech coding
☆ RPT-SR: Regional Prior attention Transformer for infrared image Super-Resolution
General-purpose super-resolution models, particularly Vision Transformers, have achieved remarkable success but exhibit fundamental inefficiencies in common infrared imaging scenarios like surveillance and autonomous driving, which operate from fixed or nearly-static viewpoints. These models fail to exploit the strong, persistent spatial priors inherent in such scenes, leading to redundant learning and suboptimal performance. To address this, we propose the Regional Prior attention Transformer for infrared image Super-Resolution (RPT-SR), a novel architecture that explicitly encodes scene layout information into the attention mechanism. Our core contribution is a dual-token framework that fuses (1) learnable, regional prior tokens, which act as a persistent memory for the scene's global structure, with (2) local tokens that capture the frame-specific content of the current input. By utilizing these tokens into an attention, our model allows the priors to dynamically modulate the local reconstruction process. Extensive experiments validate our approach. While most prior works focus on a single infrared band, we demonstrate the broad applicability and versatility of RPT-SR by establishing new state-of-the-art performance across diverse datasets covering both Long-Wave (LWIR) and Short-Wave (SWIR) spectra
☆ SecCodeBench-V2 Technical Report
We introduce SecCodeBench-V2, a publicly released benchmark for evaluating Large Language Model (LLM) copilots' capabilities of generating secure code. SecCodeBench-V2 comprises 98 generation and fix scenarios derived from Alibaba Group's industrial productions, where the underlying security issues span 22 common CWE (Common Weakness Enumeration) categories across five programming languages: Java, C, Python, Go, and Node.js. SecCodeBench-V2 adopts a function-level task formulation: each scenario provides a complete project scaffold and requires the model to implement or patch a designated target function under fixed interfaces and dependencies. For each scenario, SecCodeBench-V2 provides executable proof-of-concept (PoC) test cases for both functional validation and security verification. All test cases are authored and double-reviewed by security experts, ensuring high fidelity, broad coverage, and reliable ground truth. Beyond the benchmark itself, we build a unified evaluation pipeline that assesses models primarily via dynamic execution. For most scenarios, we compile and run model-generated artifacts in isolated environments and execute PoC test cases to validate both functional correctness and security properties. For scenarios where security issues cannot be adjudicated with deterministic test cases, we additionally employ an LLM-as-a-judge oracle. To summarize performance across heterogeneous scenarios and difficulty levels, we design a Pass@K-based scoring protocol with principled aggregation over scenarios and severity, enabling holistic and comparable evaluation across models. Overall, SecCodeBench-V2 provides a rigorous and reproducible foundation for assessing the security posture of AI coding assistants, with results and artifacts released at https://alibaba.github.io/sec-code-bench. The benchmark is publicly available at https://github.com/alibaba/sec-code-bench.
☆ Molecular Design beyond Training Data with Novel Extended Objective Functionals of Generative AI Models Driven by Quantum Annealing Computer
Deep generative modeling to stochastically design small molecules is an emerging technology for accelerating drug discovery and development. However, one major issue in molecular generative models is their lower frequency of drug-like compounds. To resolve this problem, we developed a novel framework for optimization of deep generative models integrated with a D-Wave quantum annealing computer, where our Neural Hash Function (NHF) presented herein is used both as the regularization and binarization schemes simultaneously, of which the latter is for transformation between continuous and discrete signals of the classical and quantum neural networks, respectively, in the error evaluation (i.e., objective) function. The compounds generated via the quantum-annealing generative models exhibited higher quality in both validity and drug-likeness than those generated via the fully-classical models, and was further indicated to exceed even the training data in terms of drug-likeness features, without any restraints and conditions to deliberately induce such an optimization. These results indicated an advantage of quantum annealing to aim at a stochastic generator integrated with our novel neural network architectures, for the extended performance of feature space sampling and extraction of characteristic features in drug design.
comment: 42 pages, 7 figures
☆ Algorithmic Approaches to Opinion Selection for Online Deliberation: A Comparative Study
During deliberation processes, mediators and facilitators typically need to select a small and representative set of opinions later used to produce digestible reports for stakeholders. In online deliberation platforms, algorithmic selection is increasingly used to automate this process. However, such automation is not without consequences. For instance, enforcing consensus-seeking algorithmic strategies can imply ignoring or flattening conflicting preferences, which may lead to erasing minority voices and reducing content diversity. More generally, across the variety of existing selection strategies (e.g., consensus, diversity), it remains unclear how each approach influences desired democratic criteria such as proportional representation. To address this gap, we benchmark several algorithmic approaches in this context. We also build on social choice theory to propose a novel algorithm that incorporates both diversity and a balanced notion of representation in the selection strategy. We find empirically that while no single strategy dominates across all democratic desiderata, our social-choice-inspired selection rule achieves the strongest trade-off between proportional representation and diversity.
☆ Logit Distance Bounds Representational Similarity
For a broad family of discriminative models that includes autoregressive language models, identifiability results imply that if two models induce the same conditional distributions, then their internal representations agree up to an invertible linear transformation. We ask whether an analogous conclusion holds approximately when the distributions are close instead of equal. Building on the observation of Nielsen et al. (2025) that closeness in KL divergence need not imply high linear representational similarity, we study a distributional distance based on logit differences and show that closeness in this distance does yield linear similarity guarantees. Specifically, we define a representational dissimilarity measure based on the models' identifiability class and prove that it is bounded by the logit distance. We further show that, when model probabilities are bounded away from zero, KL divergence upper-bounds logit distance; yet the resulting bound fails to provide nontrivial control in practice. As a consequence, KL-based distillation can match a teacher's predictions while failing to preserve linear representational properties, such as linear-probe recoverability of human-interpretable concepts. In distillation experiments on synthetic and image datasets, logit-distance distillation yields students with higher linear representational similarity and better preservation of the teacher's linearly recoverable concepts.
☆ Common Belief Revisited
Contrary to common belief, common belief is not KD4. If individual belief is KD45, common belief does indeed lose the 5 property and keep the D and 4 properties -- and it has none of the other commonly considered properties of knowledge and belief. But it has another property: $C(Cφ\rightarrow φ)$ -- corresponding to so-called shift-reflexivity (reflexivity one step ahead). This observation begs the question: is KD4 extended with this axiom a complete characterisation of common belief in the KD45 case? If not, what \emph{is} the logic of common belief? In this paper we show that the answer to the first question is ``no'': there is one additional axiom, and, furthermore, it relies on the number of agents. We show that the result is a complete characterisation of common belief, settling the open problem.
ActionCodec: What Makes for Good Action Tokenizers
Vision-Language-Action (VLA) models leveraging the native autoregressive paradigm of Vision-Language Models (VLMs) have demonstrated superior instruction-following and training efficiency. Central to this paradigm is action tokenization, yet its design has primarily focused on reconstruction fidelity, failing to address its direct impact on VLA optimization. Consequently, the fundamental question of \textit{what makes for good action tokenizers} remains unanswered. In this paper, we bridge this gap by establishing design principles specifically from the perspective of VLA optimization. We identify a set of best practices based on information-theoretic insights, including maximized temporal token overlap, minimized vocabulary redundancy, enhanced multimodal mutual information, and token independence. Guided by these principles, we introduce \textbf{ActionCodec}, a high-performance action tokenizer that significantly enhances both training efficiency and VLA performance across diverse simulation and real-world benchmarks. Notably, on LIBERO, a SmolVLM2-2.2B fine-tuned with ActionCodec achieves a 95.5\% success rate without any robotics pre-training. With advanced architectural enhancements, this reaches 97.4\%, representing a new SOTA for VLA models without robotics pre-training. We believe our established design principles, alongside the released model, will provide a clear roadmap for the community to develop more effective action tokenizers.
☆ Improving LLM Reliability through Hybrid Abstention and Adaptive Detection
Large Language Models (LLMs) deployed in production environments face a fundamental safety-utility trade-off either a strict filtering mechanisms prevent harmful outputs but often block benign queries or a relaxed controls risk unsafe content generation. Conventional guardrails based on static rules or fixed confidence thresholds are typically context-insensitive and computationally expensive, resulting in high latency and degraded user experience. To address these limitations, we introduce an adaptive abstention system that dynamically adjusts safety thresholds based on real-time contextual signals such as domain and user history. The proposed framework integrates a multi-dimensional detection architecture composed of five parallel detectors, combined through a hierarchical cascade mechanism to optimize both speed and precision. The cascade design reduces unnecessary computation by progressively filtering queries, achieving substantial latency improvements compared to non-cascaded models and external guardrail systems. Extensive evaluation on mixed and domain-specific workloads demonstrates significant reductions in false positives, particularly in sensitive domains such as medical advice and creative writing. The system maintains high safety precision and near-perfect recall under strict operating modes. Overall, our context-aware abstention framework effectively balances safety and utility while preserving performance, offering a scalable solution for reliable LLM deployment.
☆ World-Model-Augmented Web Agents with Action Correction
Web agents based on large language models have demonstrated promising capability in automating web tasks. However, current web agents struggle to reason out sensible actions due to the limitations of predicting environment changes, and might not possess comprehensive awareness of execution risks, prematurely performing risky actions that cause losses and lead to task failure. To address these challenges, we propose WAC, a web agent that integrates model collaboration, consequence simulation, and feedback-driven action refinement. To overcome the cognitive isolation of individual models, we introduce a multi-agent collaboration process that enables an action model to consult a world model as a web-environment expert for strategic guidance; the action model then grounds these suggestions into executable actions, leveraging prior knowledge of environmental state transition dynamics to enhance candidate action proposal. To achieve risk-aware resilient task execution, we introduce a two-stage deduction chain. A world model, specialized in environmental state transitions, simulates action outcomes, which a judge model then scrutinizes to trigger action corrective feedback when necessary. Experiments show that WAC achieves absolute gains of 1.8% on VisualWebArena and 1.3% on Online-Mind2Web.
☆ Orchestration-Free Customer Service Automation: A Privacy-Preserving and Flowchart-Guided Framework
Customer service automation has seen growing demand within digital transformation. Existing approaches either rely on modular system designs with extensive agent orchestration or employ over-simplified instruction schemas, providing limited guidance and poor generalizability. This paper introduces an orchestration-free framework using Task-Oriented Flowcharts (TOFs) to enable end-to-end automation without manual intervention. We first define the components and evaluation metrics for TOFs, then formalize a cost-efficient flowchart construction algorithm to abstract procedural knowledge from service dialogues. We emphasize local deployment of small language models and propose decentralized distillation with flowcharts to mitigate data scarcity and privacy issues in model training. Extensive experiments validate the effectiveness in various service tasks, with superior quantitative and application performance compared to strong baselines and market products. By releasing a web-based system demonstration with case studies, we aim to promote streamlined creation of future service automation.
comment: Accepted by TheWebConf 2026
☆ A Unified Evaluation of Learning-Based Similarity Techniques for Malware Detection
Cryptographic digests (e.g., MD5, SHA-256) are designed to provide exact identity. Any single-bit change in the input produces a completely different hash, which is ideal for integrity verification but limits their usefulness in many real-world tasks like threat hunting, malware analysis and digital forensics, where adversaries routinely introduce minor transformations. Similarity-based techniques address this limitation by enabling approximate matching, allowing related byte sequences to produce measurably similar fingerprints. Modern enterprises manage tens of thousands of endpoints with billions of files, making the effectiveness and scalability of the proposed techniques more important than ever in security applications. Security researchers have proposed a range of approaches, including similarity digests and locality-sensitive hashes (e.g., ssdeep, sdhash, TLSH), as well as more recent machine-learning-based methods that generate embeddings from file features. However, these techniques have largely been evaluated in isolation, using disparate datasets and evaluation criteria. This paper presents a systematic comparison of learning-based classification and similarity methods using large, publicly available datasets. We evaluate each method under a unified experimental framework with industry-accepted metrics. To our knowledge, this is the first reproducible study to benchmark these diverse learning-based similarity techniques side by side for real-world security workloads. Our results show that no single approach performs well across all dimensions; instead, each exhibits distinct trade-offs, indicating that effective malware analysis and threat-hunting platforms must combine complementary classification and similarity techniques rather than rely on a single method.
☆ Far Out: Evaluating Language Models on Slang in Australian and Indian English EACL 2026
Language models exhibit systematic performance gaps when processing text in non-standard language varieties, yet their ability to comprehend variety-specific slang remains underexplored for several languages. We present a comprehensive evaluation of slang awareness in Indian English (en-IN) and Australian English (en-AU) across seven state-of-the-art language models. We construct two complementary datasets: \textsc{web}, containing 377 web-sourced usage examples from Urban Dictionary, and \textsc{gen}, featuring 1,492 synthetically generated usages of these slang terms, across diverse scenarios. We assess language models on three tasks: target word prediction (TWP), guided target word prediction (TWP$^*$) and target word selection (TWS). Our results reveal four key findings: (1) Higher average model performance TWS versus TWP and TWP$^*$, with average accuracy score increasing from 0.03 to 0.49 respectively (2) Stronger average model performance on \textsc{web} versus \textsc{gen} datasets, with average similarity score increasing by 0.03 and 0.05 across TWP and TWP$^*$ tasks respectively (3) en-IN tasks outperform en-AU when averaged across all models and datasets, with TWS demonstrating the largest disparity, increasing average accuracy from 0.44 to 0.54. These findings underscore fundamental asymmetries between generative and discriminative competencies for variety-specific language, particularly in the context of slang expressions despite being in a technologically rich language such as English.
comment: Accepted as a paper at 13th VarDial workshop at EACL 2026
☆ GMAIL: Generative Modality Alignment for generated Image Learning
Generative models have made it possible to synthesize highly realistic images, potentially providing an abundant data source for training machine learning models. Despite the advantages of these synthesizable data sources, the indiscriminate use of generated images as real images for training can even cause mode collapse due to modality discrepancies between real and synthetic domains. In this paper, we propose a novel framework for discriminative use of generated images, coined GMAIL, that explicitly treats generated images as a separate modality from real images. Instead of indiscriminately replacing real images with generated ones in the pixel space, our approach bridges the two distinct modalities in the same latent space through a multi-modal learning approach. To be specific, we first fine-tune a model exclusively on generated images using a cross-modality alignment loss and then employ this aligned model to further train various vision-language models with generated images. By aligning the two modalities, our approach effectively leverages the benefits of recent advances in generative models, thereby boosting the effectiveness of generated image learning across a range of vision-language tasks. Our framework can be easily incorporated with various vision-language models, and we demonstrate its efficacy throughout extensive experiments. For example, our framework significantly improves performance on image captioning, zero-shot image retrieval, zero-shot image classification, and long caption retrieval tasks. It also shows positive generated data scaling trends and notable enhancements in the captioning performance of the large multimodal model, LLaVA.
☆ CDRL: A Reinforcement Learning Framework Inspired by Cerebellar Circuits and Dendritic Computational Strategies
Reinforcement learning (RL) has achieved notable performance in high-dimensional sequential decision-making tasks, yet remains limited by low sample efficiency, sensitivity to noise, and weak generalization under partial observability. Most existing approaches address these issues primarily through optimization strategies, while the role of architectural priors in shaping representation learning and decision dynamics is less explored. Inspired by structural principles of the cerebellum, we propose a biologically grounded RL architecture that incorporate large expansion, sparse connectivity, sparse activation, and dendritic-level modulation. Experiments on noisy, high-dimensional RL benchmarks show that both the cerebellar architecture and dendritic modulation consistently improve sample efficiency, robustness, and generalization compared to conventional designs. Sensitivity analysis of architectural parameters suggests that cerebellum-inspired structures can offer optimized performance for RL with constrained model parameters. Overall, our work underscores the value of cerebellar structural priors as effective inductive biases for RL.
comment: 14pages, 8 figures, 6 tabels
☆ Automated Multi-Source Debugging and Natural Language Error Explanation for Dashboard Applications
Modern web dashboards and enterprise applications increasingly rely on complex, distributed microservices architectures. While these architectures offer scalability, they introduce significant challenges in debugging and observability. When failures occur, they often manifest as opaque error messages to the end-user such as Something went wrong. This masks the underlying root cause which may reside in browser side exceptions, API contract violations, or server side logic failures. Existing monitoring tools capture these events in isolation but fail to correlate them effectively or provide intelligible explanations to non technical users. This paper proposes a novel system for Automated Multi Source Debugging and Natural Language Error Explanation. The proposed framework automatically collects and correlates error data from disparate sources such as browser, API, server logs and validates API contracts in real time, and utilizes Large Language Models to generate natural language explanations. This approach significantly reduces Mean Time to Resolution for support engineers and improves the user experience by transforming cryptic error codes into actionable insights.
comment: Accepted for publication at the 12th (Springer CCIS) International Conference on Information Management, March 27-29, 2026, Oxford, UK
☆ NeuroSymActive: Differentiable Neural-Symbolic Reasoning with Active Exploration for Knowledge Graph Question Answering
Large pretrained language models and neural reasoning systems have advanced many natural language tasks, yet they remain challenged by knowledge-intensive queries that require precise, structured multi-hop inference. Knowledge graphs provide a compact symbolic substrate for factual grounding, but integrating graph structure with neural models is nontrivial: naively embedding graph facts into prompts leads to inefficiency and fragility, while purely symbolic or search-heavy approaches can be costly in retrievals and lack gradient-based refinement. We introduce NeuroSymActive, a modular framework that combines a differentiable neural-symbolic reasoning layer with an active, value-guided exploration controller for Knowledge Graph Question Answering. The method couples soft-unification style symbolic modules with a neural path evaluator and a Monte-Carlo style exploration policy that prioritizes high-value path expansions. Empirical results on standard KGQA benchmarks show that NeuroSymActive attains strong answer accuracy while reducing the number of expensive graph lookups and model calls compared to common retrieval-augmented baselines.
comment: 26 pages, 7 figures
☆ Fine-Tuning LLMs to Generate Economical and Reliable Actions for the Power Grid
Public Safety Power Shutoffs (PSPS) force rapid topology changes that can render standard operating points infeasible, requiring operators to quickly identify corrective transmission switching actions that reduce load shedding while maintaining acceptable voltage behavior. We present a verifiable, multi-stage adaptation pipeline that fine-tunes an instruction-tuned large language model (LLM) to generate \emph{open-only} corrective switching plans from compact PSPS scenario summaries under an explicit switching budget. First, supervised fine-tuning distills a DC-OPF MILP oracle into a constrained action grammar that enables reliable parsing and feasibility checks. Second, direct preference optimization refines the policy using AC-evaluated preference pairs ranked by a voltage-penalty metric, injecting voltage-awareness beyond DC imitation. Finally, best-of-$N$ selection provides an inference-time addition by choosing the best feasible candidate under the target metric. On IEEE 118-bus PSPS scenarios, fine-tuning substantially improves DC objective values versus zero-shot generation, reduces AC power-flow failure from 50\% to single digits, and improves voltage-penalty outcomes on the common-success set. Code and data-generation scripts are released to support reproducibility.
☆ Benchmarking Self-Supervised Models for Cardiac Ultrasound View Classification
Reliable interpretation of cardiac ultrasound images is essential for accurate clinical diagnosis and assessment. Self-supervised learning has shown promise in medical imaging by leveraging large unlabelled datasets to learn meaningful representations. In this study, we evaluate and compare two self-supervised learning frameworks, USF-MAE, developed by our team, and MoCo v3, on the recently introduced CACTUS dataset (37,736 images) for automated simulated cardiac view (A4C, PL, PSAV, PSMV, Random, and SC) classification. Both models used 5-fold cross-validation, enabling robust assessment of generalization performance across multiple random splits. The CACTUS dataset provides expert-annotated cardiac ultrasound images with diverse views. We adopt an identical training protocol for both models to ensure a fair comparison. Both models are configured with a learning rate of 0.0001 and a weight decay of 0.01. For each fold, we record performance metrics including ROC-AUC, accuracy, F1-score, and recall. Our results indicate that USF-MAE consistently outperforms MoCo v3 across metrics. The average testing AUC for USF-MAE is 99.99% (+/-0.01% 95% CI), compared to 99.97% (+/-0.01%) for MoCo v3. USF-MAE achieves a mean testing accuracy of 99.33% (+/-0.18%), higher than the 98.99% (+/-0.28%) reported for MoCo v3. Similar trends are observed for the F1-score and recall, with improvements statistically significant across folds (paired t-test, p=0.0048 < 0.01). This proof-of-concept analysis suggests that USF-MAE learns more discriminative features for cardiac view classification than MoCo v3 when applied to this dataset. The enhanced performance across multiple metrics highlights the potential of USF-MAE for improving automated cardiac ultrasound classification.
comment: 10 pages, 3 figures, 3 tables
☆ FedPSA: Modeling Behavioral Staleness in Asynchronous Federated Learning
Asynchronous Federated Learning (AFL) has emerged as a significant research area in recent years. By not waiting for slower clients and executing the training process concurrently, it achieves faster training speed compared to traditional federated learning. However, due to the staleness introduced by the asynchronous process, its performance may degrade in some scenarios. Existing methods often use the round difference between the current model and the global model as the sole measure of staleness, which is coarse-grained and lacks observation of the model itself, thereby limiting the performance ceiling of asynchronous methods. In this paper, we propose FedPSA (Parameter Sensitivity-based Asynchronous Federated Learning), a more fine-grained AFL framework that leverages parameter sensitivity to measure model obsolescence and establishes a dynamic momentum queue to assess the current training phase in real time, thereby adjusting the tolerance for outdated information dynamically. Extensive experiments on multiple datasets and comparisons with various methods demonstrate the superior performance of FedPSA, achieving up to 6.37\% improvement over baseline methods and 1.93\% over the current state-of-the-art method.
☆ A Scalable Curiosity-Driven Game-Theoretic Framework for Long-Tail Multi-Label Learning in Data Mining
The long-tail distribution, where a few head labels dominate while rare tail labels abound, poses a persistent challenge for large-scale Multi-Label Classification (MLC) in real-world data mining applications. Existing resampling and reweighting strategies often disrupt inter-label dependencies or require brittle hyperparameter tuning, especially as the label space expands to tens of thousands of labels. To address this issue, we propose Curiosity-Driven Game-Theoretic Multi-Label Learning (CD-GTMLL), a scalable cooperative framework that recasts long-tail MLC as a multi-player game - each sub-predictor ("player") specializes in a partition of the label space, collaborating to maximize global accuracy while pursuing intrinsic curiosity rewards based on tail label rarity and inter-player disagreement. This mechanism adaptively injects learning signals into under-represented tail labels without manual balancing or tuning. We further provide a theoretical analysis showing that our CD-GTMLL converges to a tail-aware equilibrium and formally links the optimization dynamics to improvements in the Rare-F1 metric. Extensive experiments across 7 benchmarks, including extreme multi-label classification datasets with 30,000+ labels, demonstrate that CD-GTMLL consistently surpasses state-of-the-art methods, with gains up to +1.6% P@3 on Wiki10-31K. Ablation studies further confirm the contributions of both game-theoretic cooperation and curiosity-driven exploration to robust tail performance. By integrating game theory with curiosity mechanisms, CD-GTMLL not only enhances model efficiency in resource-constrained environments but also paves the way for more adaptive learning in imbalanced data scenarios across industries like e-commerce and healthcare.
☆ Prescriptive Scaling Reveals the Evolution of Language Model Capabilities
For deploying foundation models, practitioners increasingly need prescriptive scaling laws: given a pre training compute budget, what downstream accuracy is attainable with contemporary post training practice, and how stable is that mapping as the field evolves? Using large scale observational evaluations with 5k observational and 2k newly sampled data on model performance, we estimate capability boundaries, high conditional quantiles of benchmark scores as a function of log pre training FLOPs, via smoothed quantile regression with a monotone, saturating sigmoid parameterization. We validate the temporal reliability by fitting on earlier model generations and evaluating on later releases. Across various tasks, the estimated boundaries are mostly stable, with the exception of math reasoning that exhibits a consistently advancing boundary over time. We then extend our approach to analyze task dependent saturation and to probe contamination related shifts on math reasoning tasks. Finally, we introduce an efficient algorithm that recovers near full data frontiers using roughly 20% of evaluation budget. Together, our work releases the Proteus 2k, the latest model performance evaluation dataset, and introduces a practical methodology for translating compute budgets into reliable performance expectations and for monitoring when capability boundaries shift across time.
comment: Blog Post: https://jkjin.com/prescriptive-scaling
☆ SCENE OTA-FD: Self-Centering Noncoherent Estimator for Over-the-Air Federated Distillation
We propose SCENE (Self-Centering Noncoherent Estimator), a pilot-free and phase-invariant aggregation primitive for over-the-air federated distillation (OTA-FD). Each device maps its soft-label (class-probability) vector to nonnegative transmit energies under constant per-round power and constant-envelope signaling (PAPR near 1). At the server, a self-centering energy estimator removes the noise-energy offset and yields an unbiased estimate of the weighted soft-label average, with variance decaying on the order of 1/(SM) in the number of receive antennas M and repetition factor S. We also develop a pilot-free ratio-normalized variant that cancels unknown large-scale gains, provide a convergence bound consistent with coherent OTA-FD analyses, and present an overhead-based crossover comparison. SCENE targets short-coherence and hardware-constrained regimes, where avoiding per-round CSI is essential: it trades a modest noncoherent variance constant for zero uplink pilots, unbiased aggregation, and hardware-friendly transmission, and can outperform coherent designs when pilot overhead is non-negligible.
comment: Work in progress. Codes will be available on: https://github.com/zavareh1
AgriWorld:A World Tools Protocol Framework for Verifiable Agricultural Reasoning with Code-Executing LLM Agents
Foundation models for agriculture are increasingly trained on massive spatiotemporal data (e.g., multi-spectral remote sensing, soil grids, and field-level management logs) and achieve strong performance on forecasting and monitoring. However, these models lack language-based reasoning and interactive capabilities, limiting their usefulness in real-world agronomic workflows. Meanwhile, large language models (LLMs) excel at interpreting and generating text, but cannot directly reason over high-dimensional, heterogeneous agricultural datasets. We bridge this gap with an agentic framework for agricultural science. It provides a Python execution environment, AgriWorld, exposing unified tools for geospatial queries over field parcels, remote-sensing time-series analytics, crop growth simulation, and task-specific predictors (e.g., yield, stress, and disease risk). On top of this environment, we design a multi-turn LLM agent, Agro-Reflective, that iteratively writes code, observes execution results, and refines its analysis via an execute-observe-refine loop. We introduce AgroBench, with scalable data generation for diverse agricultural QA spanning lookups, forecasting, anomaly detection, and counterfactual "what-if" analysis. Experiments outperform text-only and direct tool-use baselines, validating execution-driven reflection for reliable agricultural reasoning.
☆ Unforgeable Watermarks for Language Models via Robust Signatures
Language models now routinely produce text that is difficult to distinguish from human writing, raising the need for robust tools to verify content provenance. Watermarking has emerged as a promising countermeasure, with existing work largely focused on model quality preservation and robust detection. However, current schemes provide limited protection against false attribution. We strengthen the notion of soundness by introducing two novel guarantees: unforgeability and recoverability. Unforgeability prevents adversaries from crafting false positives, texts that are far from any output from the watermarked model but are nonetheless flagged as watermarked. Recoverability provides an additional layer of protection: whenever a watermark is detected, the detector identifies the source text from which the flagged content was derived. Together, these properties strengthen content ownership by linking content exclusively to its generating model, enabling secure attribution and fine-grained traceability. We construct the first undetectable watermarking scheme that is robust, unforgeable, and recoverable with respect to substitutions (i.e., perturbations in Hamming metric). The key technical ingredient is a new cryptographic primitive called robust (or recoverable) digital signatures, which allow verification of messages that are close to signed ones, while preventing forgery of messages that are far from all previously signed messages. We show that any standard digital signature scheme can be boosted to a robust one using property-preserving hash functions (Boyle, LaVigne, and Vaikuntanathan, ITCS 2019).
comment: 60 pages, 7 figures
☆ On Surprising Effectiveness of Masking Updates in Adaptive Optimizers
Training large language models (LLMs) relies almost exclusively on dense adaptive optimizers with increasingly sophisticated preconditioners. We challenge this by showing that randomly masking parameter updates can be highly effective, with a masked variant of RMSProp consistently outperforming recent state-of-the-art optimizers. Our analysis reveals that the random masking induces a curvature-dependent geometric regularization that smooths the optimization trajectory. Motivated by this finding, we introduce Momentum-aligned gradient masking (Magma), which modulates the masked updates using momentum-gradient alignment. Extensive LLM pre-training experiments show that Magma is a simple drop-in replacement for adaptive optimizers with consistent gains and negligible computational overhead. Notably, for the 1B model size, Magma reduces perplexity by over 19\% and 9\% compared to Adam and Muon, respectively.
comment: Preprint
☆ Sparrow: Text-Anchored Window Attention with Visual-Semantic Glimpsing for Speculative Decoding in Video LLMs
Although speculative decoding is widely used to accelerate Vision-Language Models (VLMs) inference, it faces severe performance collapse when applied to Video Large Language Models (Vid-LLMs). The draft model typically falls into the trap of attention dilution and negative visual gain due to key-value cache explosion and context window mismatches. We observe a visual semantic internalization phenomenon in Vid-LLMs, indicating that critical visual semantics are implicitly encoded into text hidden states during deep-layer interactions, which renders raw visual inputs structurally redundant during deep inference. To address this, we propose the Sparrow framework, which first utilizes visually-aware text-anchored window attention via hidden state reuse to fully offload visual computation to the target model, and leverages intermediate-layer visual state bridging to train the draft model with semantic-rich intermediate states, thereby filtering out low-level visual noise. Additionally, a multi-token prediction strategy is introduced to bridge the training-inference distribution shift. Experiments show that Sparrow achieves an average speedup of 2.82x even with 25k visual tokens, effectively resolving the performance degradation in long sequences and offering a practical solution for real-time long video tasks.
comment: 15 pages , 6 figures
☆ Hybrid Federated and Split Learning for Privacy Preserving Clinical Prediction and Treatment Optimization
Collaborative clinical decision support is often constrained by governance and privacy rules that prevent pooling patient-level records across institutions. We present a hybrid privacy-preserving framework that combines Federated Learning (FL) and Split Learning (SL) to support decision-oriented healthcare modeling without raw-data sharing. The approach keeps feature-extraction trunks on clients while hosting prediction heads on a coordinating server, enabling shared representation learning and exposing an explicit collaboration boundary where privacy controls can be applied. Rather than assuming distributed training is inherently private, we audit leakage empirically using membership inference on cut-layer representations and study lightweight defenses based on activation clipping and additive Gaussian noise. We evaluate across three public clinical datasets under non-IID client partitions using a unified pipeline and assess performance jointly along four deployment-relevant axes: factual predictive utility, uplift-based ranking under capacity constraints, audited privacy leakage, and communication overhead. Results show that hybrid FL-SL variants achieve competitive predictive performance and decision-facing prioritization behavior relative to standalone FL or SL, while providing a tunable privacy-utility trade-off that can reduce audited leakage without requiring raw-data sharing. Overall, the work positions hybrid FL-SL as a practical design space for privacy-preserving healthcare decision support where utility, leakage risk, and deployment cost must be balanced explicitly.
☆ X-MAP: eXplainable Misclassification Analysis and Profiling for Spam and Phishing Detection
Misclassifications in spam and phishing detection are very harmful, as false negatives expose users to attacks while false positives degrade trust. Existing uncertainty-based detectors can flag potential errors, but possibly be deceived and offer limited interpretability. This paper presents X-MAP, an eXplainable Misclassification Analysis and Profilling framework that reveals topic-level semantic patterns behind model failures. X-MAP combines SHAP-based feature attributions with non-negative matrix factorization to build interpretable topic profiles for reliably classified spam/phishing and legitimate messages, and measures each message's deviation from these profiles using Jensen-Shannon divergence. Experiments on SMS and phishing datasets show that misclassified messages exhibit at least two times larger divergence than correctly classified ones. As a detector, X-MAP achieves up to 0.98 AUROC and lowers the false-rejection rate at 95% TRR to 0.089 on positive predictions. When used as a repair layer on base detectors, it recovers up to 97% of falsely rejected correct predictions with moderate leakage. These results demonstrate X-MAP's effectiveness and interpretability for improving spam and phishing detection.
☆ EAA: Automating materials characterization with vision language model agents
We present Experiment Automation Agents (EAA), a vision-language-model-driven agentic system designed to automate complex experimental microscopy workflows. EAA integrates multimodal reasoning, tool-augmented action, and optional long-term memory to support both autonomous procedures and interactive user-guided measurements. Built on a flexible task-manager architecture, the system enables workflows ranging from fully agent-driven automation to logic-defined routines that embed localized LLM queries. EAA further provides a modern tool ecosystem with two-way compatibility for Model Context Protocol (MCP), allowing instrument-control tools to be consumed or served across applications. We demonstrate EAA at an imaging beamline at the Advanced Photon Source, including automated zone plate focusing, natural language-described feature search, and interactive data acquisition. These results illustrate how vision-capable agents can enhance beamline efficiency, reduce operational burden, and lower the expertise barrier for users.
☆ The Information Geometry of Softmax: Probing and Steering
This paper concerns the question of how AI systems encode semantic structure into the geometric structure of their representation spaces. The motivating observation of this paper is that the natural geometry of these representation spaces should reflect the way models use representations to produce behavior. We focus on the important special case of representations that define softmax distributions. In this case, we argue that the natural geometry is information geometry. Our focus is on the role of information geometry on semantic encoding and the linear representation hypothesis. As an illustrative application, we develop "dual steering", a method for robustly steering representations to exhibit a particular concept using linear probes. We prove that dual steering optimally modifies the target concept while minimizing changes to off-target concepts. Empirically, we find that dual steering enhances the controllability and stability of concept manipulation.
comment: Code is available at https://github.com/KihoPark/dual-steering
☆ AI-Paging: Lease-Based Execution Anchoring for Network-Exposed AI-as-a-Service
With AI-as-a-Service (AIaaS) now deployed across multiple providers and model tiers, selecting the appropriate model instance at run time is increasingly outside the end user's knowledge and operational control. Accordingly, the 6G service providers are envisioned to play a crucial role in exposing AIaaS in a setting where users submit only an intent while the network helps in the intent-to-model matching (resolution) and execution placement under policy, trust, and Quality of Service (QoS) constraints. The network role becomes to discover candidate execution endpoints and selects a suitable model/anchor under policy and QoS constraints in a process referred here to as AI-paging (by analogy to cellular call paging). In the proposed architecture, AI-paging is a control-plane transaction that resolves an intent into an AI service identity (AISI), a scoped session token (AIST), and an expiring admission lease (COMMIT) that authorizes user-plane steering to a selected AI execution anchor (AEXF) under a QoS binding. AI-Paging enforces two invariants: (i) lease-gated steering (without COMMIT, no steering state is installed) and (ii) make-before-break anchoring to support continuity and reliability of AIaaS services under dynamic network conditions. We prototype AI-Paging using existing control- and user-plane mechanisms (service-based control, QoS flows, and policy-based steering) with no new packet headers, ensuring compatibility with existing 3GPP-based exposure and management architectures, and evaluate transaction latency, relocation interruption, enforcement correctness under lease expiry, and audit-evidence overhead under mobility and failures.
☆ Complex-Valued Unitary Representations as Classification Heads for Improved Uncertainty Quantification in Deep Neural Networks
Modern deep neural networks achieve high predictive accuracy but remain poorly calibrated: their confidence scores do not reliably reflect the true probability of correctness. We propose a quantum-inspired classification head architecture that projects backbone features into a complex-valued Hilbert space and evolves them under a learned unitary transformation parameterised via the Cayley map. Through a controlled hybrid experimental design - training a single shared backbone and comparing lightweight interchangeable heads - we isolate the effect of complex-valued unitary representations on calibration. Our ablation study on CIFAR-10 reveals that the unitary magnitude head (complex features evolved under a Cayley unitary, read out via magnitude and softmax) achieves an Expected Calibration Error (ECE) of 0.0146, representing a 2.4x improvement over a standard softmax head (0.0355) and a 3.5x improvement over temperature scaling (0.0510). Surprisingly, replacing the softmax readout with a Born rule measurement layer - the quantum-mechanically motivated approach - degrades calibration to an ECE of 0.0819. On the CIFAR-10H human-uncertainty benchmark, the wave function head achieves the lowest KL-divergence (0.336) to human soft labels among all compared methods, indicating that complex-valued representations better capture the structure of human perceptual ambiguity. We provide theoretical analysis connecting norm-preserving unitary dynamics to calibration through feature-space geometry, report negative results on out-of-distribution detection and sentiment analysis to delineate the method's scope, and discuss practical implications for safety-critical applications. Code is publicly available.
comment: 21 pages, 12 figures
☆ High-Fidelity Network Management for Federated AI-as-a-Service: Cross-Domain Orchestration
To support the emergence of AI-as-a-Service (AIaaS), communication service providers (CSPs) are on the verge of a radical transformation-from pure connectivity providers to AIaaS a managed network service (control-and-orchestration plane that exposes AI models). In this model, the CSP is responsible not only for transport/communications, but also for intent-to-model resolution and joint network-compute orchestration, i.e., reliable and timely end-to-end delivery. The resulting end-to-end AIaaS service thus becomes governed by communications impairments (delay, loss) and inference impairments (latency, error). A central open problem is an operational AIaaS control-and-orchestration framework that enforces high fidelity, particularly under multi-domain federation. This paper introduces an assurance-oriented AIaaS management plane based on Tail-Risk Envelopes (TREs): signed, composable per-domain descriptors that combine deterministic guardrails with stochastic rate-latency-impairment models. Using stochastic network calculus, we derive bounds on end-to-end delay violation probabilities across tandem domains and obtain an optimization-ready risk-budget decomposition. We show that tenant-level reservations prevent bursty traffic from inflating tail latency under TRE contracts. An auditing layer then uses runtime telemetry to estimate extreme-percentile performance, quantify uncertainty, and attribute tail-risk to each domain for accountability. Packet-level Monte-Carlo simulations demonstrate improved p99.9 compliance under overload via admission control and robust tenant isolation under correlated burstiness.
☆ Visual Persuasion: What Influences Decisions of Vision-Language Models?
The web is littered with images, once created for human consumption and now increasingly interpreted by agents using vision-language models (VLMs). These agents make visual decisions at scale, deciding what to click, recommend, or buy. Yet, we know little about the structure of their visual preferences. We introduce a framework for studying this by placing VLMs in controlled image-based choice tasks and systematically perturbing their inputs. Our key idea is to treat the agent's decision function as a latent visual utility that can be inferred through revealed preference: choices between systematically edited images. Starting from common images, such as product photos, we propose methods for visual prompt optimization, adapting text optimization methods to iteratively propose and apply visually plausible modifications using an image generation model (such as in composition, lighting, or background). We then evaluate which edits increase selection probability. Through large-scale experiments on frontier VLMs, we demonstrate that optimized edits significantly shift choice probabilities in head-to-head comparisons. We develop an automatic interpretability pipeline to explain these preferences, identifying consistent visual themes that drive selection. We argue that this approach offers a practical and efficient way to surface visual vulnerabilities, safety concerns that might otherwise be discovered implicitly in the wild, supporting more proactive auditing and governance of image-based AI agents.
comment: 45 pages, 17 figures
☆ Accelerating Large-Scale Dataset Distillation via Exploration-Exploitation Optimization
Dataset distillation compresses the original data into compact synthetic datasets, reducing training time and storage while retaining model performance, enabling deployment under limited resources. Although recent decoupling-based distillation methods enable dataset distillation at large-scale, they continue to face an efficiency gap: optimization-based decoupling methods achieve higher accuracy but demand intensive computation, whereas optimization-free decoupling methods are efficient but sacrifice accuracy. To overcome this trade-off, we propose Exploration-Exploitation Distillation (E^2D), a simple, practical method that minimizes redundant computation through an efficient pipeline that begins with full-image initialization to preserve semantic integrity and feature diversity. It then uses a two-phase optimization strategy: an exploration phase that performs uniform updates and identifies high-loss regions, and an exploitation phase that focuses updates on these regions to accelerate convergence. We evaluate E^2D on large-scale benchmarks, surpassing the state-of-the-art on ImageNet-1K while being 18x faster, and on ImageNet-21K, our method substantially improves accuracy while remaining 4.3x faster. These results demonstrate that targeted, redundancy-reducing updates, rather than brute-force optimization, bridge the gap between accuracy and efficiency in large-scale dataset distillation. Code is available at https://github.com/ncsu-dk-lab.
☆ When Remembering and Planning are Worth it: Navigating under Change
We explore how different types and uses of memory can aid spatial navigation in changing uncertain environments. In the simple foraging task we study, every day, our agent has to find its way from its home, through barriers, to food. Moreover, the world is non-stationary: from day to day, the location of the barriers and food may change, and the agent's sensing such as its location information is uncertain and very limited. Any model construction, such as a map, and use, such as planning, needs to be robust against these challenges, and if any learning is to be useful, it needs to be adequately fast. We look at a range of strategies, from simple to sophisticated, with various uses of memory and learning. We find that an architecture that can incorporate multiple strategies is required to handle (sub)tasks of a different nature, in particular for exploration and search, when food location is not known, and for planning a good path to a remembered (likely) food location. An agent that utilizes non-stationary probability learning techniques to keep updating its (episodic) memories and that uses those memories to build maps and plan on the fly (imperfect maps, i.e. noisy and limited to the agent's experience) can be increasingly and substantially more efficient than the simpler (minimal-memory) agents, as the task difficulties such as distance to goal are raised, as long as the uncertainty, from localization and change, is not too large.
☆ Enhancing Diversity and Feasibility: Joint Population Synthesis from Multi-source Data Using Generative Models
Generating realistic synthetic populations is essential for agent-based models (ABM) in transportation and urban planning. Current methods face two major limitations. First, many rely on a single dataset or follow a sequential data fusion and generation process, which means they fail to capture the complex interplay between features. Second, these approaches struggle with sampling zeros (valid but unobserved attribute combinations) and structural zeros (infeasible combinations due to logical constraints), which reduce the diversity and feasibility of the generated data. This study proposes a novel method to simultaneously integrate and synthesize multi-source datasets using a Wasserstein Generative Adversarial Network (WGAN) with gradient penalty. This joint learning method improves both the diversity and feasibility of synthetic data by defining a regularization term (inverse gradient penalty) for the generator loss function. For the evaluation, we implement a unified evaluation metric for similarity, and place special emphasis on measuring diversity and feasibility through recall, precision, and the F1 score. Results show that the proposed joint approach outperforms the sequential baseline, with recall increasing by 7\% and precision by 15\%. Additionally, the regularization term further improves diversity and feasibility, reflected in a 10\% increase in recall and 1\% in precision. We assess similarity distributions using a five-metric score. The joint approach performs better overall, and reaches a score of 88.1 compared to 84.6 for the sequential method. Since synthetic populations serve as a key input for ABM, this multi-source generative approach has the potential to significantly enhance the accuracy and reliability of ABM.
comment: 12 pages, 8 figures, 5 tables
☆ Dex4D: Task-Agnostic Point Track Policy for Sim-to-Real Dexterous Manipulation
Learning generalist policies capable of accomplishing a plethora of everyday tasks remains an open challenge in dexterous manipulation. In particular, collecting large-scale manipulation data via real-world teleoperation is expensive and difficult to scale. While learning in simulation provides a feasible alternative, designing multiple task-specific environments and rewards for training is similarly challenging. We propose Dex4D, a framework that instead leverages simulation for learning task-agnostic dexterous skills that can be flexibly recomposed to perform diverse real-world manipulation tasks. Specifically, Dex4D learns a domain-agnostic 3D point track conditioned policy capable of manipulating any object to any desired pose. We train this 'Anypose-to-Anypose' policy in simulation across thousands of objects with diverse pose configurations, covering a broad space of robot-object interactions that can be composed at test time. At deployment, this policy can be zero-shot transferred to real-world tasks without finetuning, simply by prompting it with desired object-centric point tracks extracted from generated videos. During execution, Dex4D uses online point tracking for closed-loop perception and control. Extensive experiments in simulation and on real robots show that our method enables zero-shot deployment for diverse dexterous manipulation tasks and yields consistent improvements over prior baselines. Furthermore, we demonstrate strong generalization to novel objects, scene layouts, backgrounds, and trajectories, highlighting the robustness and scalability of the proposed framework.
comment: Project page: https://dex4d.github.io/
☆ Solving Parameter-Robust Avoid Problems with Unknown Feasibility using Reinforcement Learning ICLR 2026
Recent advances in deep reinforcement learning (RL) have achieved strong results on high-dimensional control tasks, but applying RL to reachability problems raises a fundamental mismatch: reachability seeks to maximize the set of states from which a system remains safe indefinitely, while RL optimizes expected returns over a user-specified distribution. This mismatch can result in policies that perform poorly on low-probability states that are still within the safe set. A natural alternative is to frame the problem as a robust optimization over a set of initial conditions that specify the initial state, dynamics and safe set, but whether this problem has a solution depends on the feasibility of the specified set, which is unknown a priori. We propose Feasibility-Guided Exploration (FGE), a method that simultaneously identifies a subset of feasible initial conditions under which a safe policy exists, and learns a policy to solve the reachability problem over this set of initial conditions. Empirical results demonstrate that FGE learns policies with over 50% more coverage than the best existing method for challenging initial conditions across tasks in the MuJoCo simulator and the Kinetix simulator with pixel observations.
comment: ICLR 2026. The project page can be found at https://oswinso.xyz/fge
☆ FAST-EQA: Efficient Embodied Question Answering with Global and Local Region Relevancy WACV 2026
Embodied Question Answering (EQA) combines visual scene understanding, goal-directed exploration, spatial and temporal reasoning under partial observability. A central challenge is to confine physical search to question-relevant subspaces while maintaining a compact, actionable memory of observations. Furthermore, for real-world deployment, fast inference time during exploration is crucial. We introduce FAST-EQA, a question-conditioned framework that (i) identifies likely visual targets, (ii) scores global regions of interest to guide navigation, and (iii) employs Chain-of-Thought (CoT) reasoning over visual memory to answer confidently. FAST-EQA maintains a bounded scene memory that stores a fixed-capacity set of region-target hypotheses and updates them online, enabling robust handling of both single and multi-target questions without unbounded growth. To expand coverage efficiently, a global exploration policy treats narrow openings and doors as high-value frontiers, complementing local target seeking with minimal computation. Together, these components focus the agent's attention, improve scene coverage, and improve answer reliability while running substantially faster than prior approaches. On HMEQA and EXPRESS-Bench, FAST-EQA achieves state-of-the-art performance, while performing competitively on OpenEQA and MT-HM3D.
comment: WACV 2026
☆ RaCo: Ranking and Covariance for Practical Learned Keypoints
This paper introduces RaCo, a lightweight neural network designed to learn robust and versatile keypoints suitable for a variety of 3D computer vision tasks. The model integrates three key components: the repeatable keypoint detector, a differentiable ranker to maximize matches with a limited number of keypoints, and a covariance estimator to quantify spatial uncertainty in metric scale. Trained on perspective image crops only, RaCo operates without the need for covisible image pairs. It achieves strong rotational robustness through extensive data augmentation, even without the use of computationally expensive equivariant network architectures. The method is evaluated on several challenging datasets, where it demonstrates state-of-the-art performance in keypoint repeatability and two-view matching, particularly under large in-plane rotations. Ultimately, RaCo provides an effective and simple strategy to independently estimate keypoint ranking and metric covariance without additional labels, detecting interpretable and repeatable interest points. The code is available at https://github.com/cvg/RaCo.
☆ Spatially-Aware Adaptive Trajectory Optimization with Controller-Guided Feedback for Autonomous Racing
We present a closed-loop framework for autonomous raceline optimization that combines NURBS-based trajectory representation, CMA-ES global trajectory optimization, and controller-guided spatial feedback. Instead of treating tracking errors as transient disturbances, our method exploits them as informative signals of local track characteristics via a Kalman-inspired spatial update. This enables the construction of an adaptive, acceleration-based constraint map that iteratively refines trajectories toward near-optimal performance under spatially varying track and vehicle behavior. In simulation, our approach achieves a 17.38% lap time reduction compared to a controller parametrized with maximum static acceleration. On real hardware, tested with different tire compounds ranging from high to low friction, we obtain a 7.60% lap time improvement without explicitly parametrizing friction. This demonstrates robustness to changing grip conditions in real-world scenarios.
comment: Accepted at ICRA 2026
SpecFuse: A Spectral-Temporal Fusion Predictive Control Framework for UAV Landing on Oscillating Marine Platforms
Autonomous landing of Uncrewed Aerial Vehicles (UAVs) on oscillating marine platforms is severely constrained by wave-induced multi-frequency oscillations, wind disturbances, and prediction phase lags in motion prediction. Existing methods either treat platform motion as a general random process or lack explicit modeling of wave spectral characteristics, leading to suboptimal performance under dynamic sea conditions. To address these limitations, we propose SpecFuse: a novel spectral-temporal fusion predictive control framework that integrates frequency-domain wave decomposition with time-domain recursive state estimation for high-precision 6-DoF motion forecasting of Uncrewed Surface Vehicles (USVs). The framework explicitly models dominant wave harmonics to mitigate phase lags, refining predictions in real time via IMU data without relying on complex calibration. Additionally, we design a hierarchical control architecture featuring a sampling-based HPO-RRT* algorithm for dynamic trajectory planning under non-convex constraints and a learning-augmented predictive controller that fuses data-driven disturbance compensation with optimization-based execution. Extensive validations (2,000 simulations + 8 lake experiments) show our approach achieves a 3.2 cm prediction error, 4.46 cm landing deviation, 98.7% / 87.5% success rates (simulation / real-world), and 82 ms latency on embedded hardware, outperforming state-of-the-art methods by 44%-48% in accuracy. Its robustness to wave-wind coupling disturbances supports critical maritime missions such as search and rescue and environmental monitoring. All code, experimental configurations, and datasets will be released as open-source to facilitate reproducibility.
comment: 8 pages, 5 figures, 4 tables
☆ Grip as Needed, Glide on Demand: Ultrasonic Lubrication for Robotic Locomotion
Friction is the essential mediator of terrestrial locomotion, yet in robotic systems it is almost always treated as a passive property fixed by surface materials and conditions. Here, we introduce ultrasonic lubrication as a method to actively control friction in robotic locomotion. By exciting resonant structures at ultrasonic frequencies, contact interfaces can dynamically switch between "grip" and "slip" states, enabling locomotion. We developed two friction control modules, a cylindrical design for lumen-like environments and a flat-plate design for external surfaces, and integrated them into bio-inspired systems modeled after inchworm and wasp ovipositor locomotion. Both systems achieved bidirectional locomotion with nearly perfect locomotion efficiencies that exceeded 90%. Friction characterization experiments further demonstrated substantial friction reduction across various surfaces, including rigid, soft, granular, and biological tissue interfaces, under dry and wet conditions, and on surfaces with different levels of roughness, confirming the broad applicability of ultrasonic lubrication to locomotion tasks. These findings establish ultrasonic lubrication as a viable active friction control mechanism for robotic locomotion, with the potential to reduce design complexity and improve efficiency of robotic locomotion systems.
comment: Accepted for publication in the 2026 IEEE International Conference on Robotics and Automation (ICRA) in Vienna
☆ Constraining Streaming Flow Models for Adapting Learned Robot Trajectory Distributions
Robot motion distributions often exhibit multi-modality and require flexible generative models for accurate representation. Streaming Flow Policies (SFPs) have recently emerged as a powerful paradigm for generating robot trajectories by integrating learned velocity fields directly in action space, enabling smooth and reactive control. However, existing formulations lack mechanisms for adapting trajectories post-training to enforce safety and task-specific constraints. We propose Constraint-Aware Streaming Flow (CASF), a framework that augments streaming flow policies with constraint-dependent metrics that reshape the learned velocity field during execution. CASF models each constraint, defined in either the robot's workspace or configuration space, as a differentiable distance function that is converted into a local metric and pulled back into the robot's control space. Far from restricted regions, the resulting metric reduces to the identity; near constraint boundaries, it smoothly attenuates or redirects motion, effectively deforming the underlying flow to maintain safety. This allows trajectories to be adapted in real time, ensuring that robot actions respect joint limits, avoid collisions, and remain within feasible workspaces, while preserving the multi-modal and reactive properties of streaming flow policies. We demonstrate CASF in simulated and real-world manipulation tasks, showing that it produces constraint-satisfying trajectories that remain smooth, feasible, and dynamically consistent, outperforming standard post-hoc projection baselines.
comment: 8 pages, 8 figure
☆ Selective Perception for Robot: Task-Aware Attention in Multimodal VLA
In robotics, Vision-Language-Action (VLA) models that integrate diverse multimodal signals from multi-view inputs have emerged as an effective approach. However, most prior work adopts static fusion that processes all visual inputs uniformly, which incurs unnecessary computational overhead and allows task-irrelevant background information to act as noise. Inspired by the principles of human active perception, we propose a dynamic information fusion framework designed to maximize the efficiency and robustness of VLA models. Our approach introduces a lightweight adaptive routing architecture that analyzes the current text prompt and observations from a wrist-mounted camera in real-time to predict the task-relevance of multiple camera views. By conditionally attenuating computations for views with low informational utility and selectively providing only essential visual features to the policy network, Our framework achieves computation efficiency proportional to task relevance. Furthermore, to efficiently secure large-scale annotation data for router training, we established an automated labeling pipeline utilizing Vision-Language Models (VLMs) to minimize data collection and annotation costs. Experimental results in real-world robotic manipulation scenarios demonstrate that the proposed approach achieves significant improvements in both inference efficiency and control performance compared to existing VLA models, validating the effectiveness and practicality of dynamic information fusion in resource-constrained, real-time robot control environments.
☆ Efficient Knowledge Transfer for Jump-Starting Control Policy Learning of Multirotors through Physics-Aware Neural Architectures
Efficiently training control policies for robots is a major challenge that can greatly benefit from utilizing knowledge gained from training similar systems through cross-embodiment knowledge transfer. In this work, we focus on accelerating policy training using a library-based initialization scheme that enables effective knowledge transfer across multirotor configurations. By leveraging a physics-aware neural control architecture that combines a reinforcement learning-based controller and a supervised control allocation network, we enable the reuse of previously trained policies. To this end, we utilize a policy evaluation-based similarity measure that identifies suitable policies for initialization from a library. We demonstrate that this measure correlates with the reduction in environment interactions needed to reach target performance and is therefore suited for initialization. Extensive simulation and real-world experiments confirm that our control architecture achieves state-of-the-art control performance, and that our initialization scheme saves on average up to $73.5\%$ of environment interactions (compared to training a policy from scratch) across diverse quadrotor and hexarotor designs, paving the way for efficient cross-embodiment transfer in reinforcement learning.
comment: 8 pages. Accepted to IEEE Robotics and Automation Letters
☆ Lyapunov-Based $\mathcal{L}_2$-Stable PI-Like Control of a Four-Wheel Independently Driven and Steered Robot
In this letter, Lyapunov-based synthesis of a PI-like controller is proposed for $\mathcal{L}_2$-stable motion control of an independently driven and steered four-wheel mobile robot. An explicit, structurally verified model is used to enable systematic controller design with stability and performance guarantees suitable for real-time operation. A Lyapunov function is constructed to yield explicit bounds and $\mathcal{L}_2$ stability results, supporting feedback synthesis that reduces configuration dependent effects. The resulting control law maintains a PI-like form suitable for standard embedded implementation while preserving rigorous stability properties. Effectiveness and robustness are demonstrated experimentally on a real four-wheel mobile robot platform.
comment: SUBMITTED FOR POTENTIAL PUBLICATION IN IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION
☆ One Agent to Guide Them All: Empowering MLLMs for Vision-and-Language Navigation via Explicit World Representation
A navigable agent needs to understand both high-level semantic instructions and precise spatial perceptions. Building navigation agents centered on Multimodal Large Language Models (MLLMs) demonstrates a promising solution due to their powerful generalization ability. However, the current tightly coupled design dramatically limits system performance. In this work, we propose a decoupled design that separates low-level spatial state estimation from high-level semantic planning. Unlike previous methods that rely on predefined, oversimplified textual maps, we introduce an interactive metric world representation that maintains rich and consistent information, allowing MLLMs to interact with and reason on it for decision-making. Furthermore, counterfactual reasoning is introduced to further elicit MLLMs' capacity, while the metric world representation ensures the physical validity of the produced actions. We conduct comprehensive experiments in both simulated and real-world environments. Our method establishes a new zero-shot state-of-the-art, achieving 48.8\% Success Rate (SR) in R2R-CE and 42.2\% in RxR-CE benchmarks. Furthermore, to validate the versatility of our metric representation, we demonstrate zero-shot sim-to-real transfer across diverse embodiments, including a wheeled TurtleBot 4 and a custom-built aerial drone. These real-world deployments verify that our decoupled framework serves as a robust, domain-invariant interface for embodied Vision-and-Language navigation.
☆ Hybrid F' and ROS2 Architecture for Vision-Based Autonomous Flight: Design and Experimental Validation
Autonomous aerospace systems require architectures that balance deterministic real-time control with advanced perception capabilities. This paper presents an integrated system combining NASA's F' flight software framework with ROS2 middleware via Protocol Buffers bridging. We evaluate the architecture through a 32.25-minute indoor quadrotor flight test using vision-based navigation. The vision system achieved 87.19 Hz position estimation with 99.90\% data continuity and 11.47 ms mean latency, validating real-time performance requirements. All 15 ground commands executed successfully with 100 % success rate, demonstrating robust F'--PX4 integration. System resource utilization remained low (15.19 % CPU, 1,244 MB RAM) with zero stale telemetry messages, confirming efficient operation on embedded platforms. Results validate the feasibility of hybrid flight-software architectures combining certification-grade determinism with flexible autonomy for autonomous aerial vehicles.
comment: Paper accepted to ICIT 2026
☆ Fluoroscopy-Constrained Magnetic Robot Control via Zernike-Based Field Modeling and Nonlinear MPC
Magnetic actuation enables surgical robots to navigate complex anatomical pathways while reducing tissue trauma and improving surgical precision. However, clinical deployment is limited by the challenges of controlling such systems under fluoroscopic imaging, which provides low frame rate and noisy pose feedback. This paper presents a control framework that remains accurate and stable under such conditions by combining a nonlinear model predictive control (NMPC) framework that directly outputs coil currents, an analytically differentiable magnetic field model based on Zernike polynomials, and a Kalman filter to estimate the robot state. Experimental validation is conducted with two magnetic robots in a 3D-printed fluid workspace and a spine phantom replicating drug delivery in the epidural space. Results show the proposed control method remains highly accurate when feedback is downsampled to 3 Hz with added Gaussian noise (sigma = 2 mm), mimicking clinical fluoroscopy. In the spine phantom experiments, the proposed method successfully executed a drug delivery trajectory with a root mean square (RMS) position error of 1.18 mm while maintaining safe clearance from critical anatomical boundaries.
☆ A Comparison of Bayesian Prediction Techniques for Mobile Robot Trajectory Tracking
This paper presents a performance comparison of different estimation and prediction techniques applied to the problem of tracking multiple robots. The main performance criteria are the magnitude of the estimation or prediction error, the computational effort and the robustness of each method to non-Gaussian noise. Among the different techniques compared are the well known Kalman filters and their different variants (e.g. extended and unscented), and the more recent techniques relying on Sequential Monte Carlo Sampling methods, such as particle filters and Gaussian Mixture Sigma Point Particle Filter.
comment: Accepted in Robotica (Dec. 2007), vol. 26, n. 5, pp. 571-585 (c) 2008 Cambridge University Press. https://doi.org/10.1017/S0263574708004153
☆ Feasibility-aware Imitation Learning from Observation with Multimodal Feedback
Imitation learning frameworks that learn robot control policies from demonstrators' motions via hand-mounted demonstration interfaces have attracted increasing attention. However, due to differences in physical characteristics between demonstrators and robots, this approach faces two limitations: i) the demonstration data do not include robot actions, and ii) the demonstrated motions may be infeasible for robots. These limitations make policy learning difficult. To address them, we propose Feasibility-Aware Behavior Cloning from Observation (FABCO). FABCO integrates behavior cloning from observation, which complements robot actions using robot dynamics models, with feasibility estimation. In feasibility estimation, the demonstrated motions are evaluated using a robot-dynamics model, learned from the robot's execution data, to assess reproducibility under the robot's dynamics. The estimated feasibility is used for multimodal feedback and feasibility-aware policy learning to improve the demonstrator's motions and learn robust policies. Multimodal feedback provides feasibility through the demonstrator's visual and haptic senses to promote feasible demonstrated motions. Feasibility-aware policy learning reduces the influence of demonstrated motions that are infeasible for robots, enabling the learning of policies that robots can execute stably. We conducted experiments with 15 participants on two tasks and confirmed that FABCO improves imitation learning performance by more than 3.2 times compared to the case without feasibility feedback.
☆ OSCAR: An Ovipositor-Inspired Self-Propelling Capsule Robot for Colonoscopy
Self-propelling robotic capsules eliminate shaft looping of conventional colonoscopy, reducing patient discomfort. However, reliably moving within the slippery, viscoelastic environment of the colon remains a significant challenge. We present OSCAR, an ovipositor-inspired self-propelling capsule robot that translates the transport strategy of parasitic wasps into a propulsion mechanism for colonoscopy. OSCAR mechanically encodes the ovipositor-inspired motion pattern through a spring-loaded cam system that drives twelve circumferential sliders in a coordinated, phase-shifted sequence. By tuning the motion profile to maximize the retract phase relative to the advance phase, the capsule creates a controlled friction anisotropy at the interface that generates net forward thrust. We developed an analytical model incorporating a Kelvin-Voigt formulation to capture the viscoelastic stick--slip interactions between the sliders and the tissue, linking the asymmetry between advance and retract phase durations to mean thrust, and slider-reversal synchronization to thrust stability. Comprehensive force characterization experiments in ex-vivo porcine colon revealed a mean steady-state traction force of 0.85 N, closely matching the model. Furthermore, experiments confirmed that thrust generation is speed-independent and scales linearly with the phase asymmetry, in agreement with theoretical predictions, underscoring the capsule's predictable performance and scalability. In locomotion validation experiments, OSCAR demonstrated robust performance, achieving an average speed of 3.08 mm/s, a velocity sufficient to match the cecal intubation times of conventional colonoscopy. By coupling phase-encoded friction anisotropy with a predictive model, OSCAR delivers controllable thrust generation at low normal loads, enabling safer and more robust self-propelling locomotion for robotic capsule colonoscopy.
☆ Updating Parametric Knowledge with Context Distillation Retains Post-Training Capabilities
Post-training endows pretrained LLMs with a variety of desirable skills, including instruction-following, reasoning, and others. However, these post-trained LLMs only encode knowledge up to a cut-off date, necessitating continual adaptation. Unfortunately, existing solutions cannot simultaneously learn new knowledge from an adaptation document corpora and mitigate the forgetting of earlier learned capabilities. To address this, we introduce Distillation via Split Contexts (DiSC), a simple context-distillation based approach for continual knowledge adaptation. \methodname~derives student and teacher distributions by conditioning on distinct segments of the training example and minimizes the KL divergence between the shared tokens. This allows us to efficiently apply context-distillation without requiring explicit generation steps during training. We run experiments on four post-trained models and two adaptation domains. Compared to prior finetuning and distillation methods for continual adaptation, DiSC consistently reports the best trade-off between learning new knowledge and mitigating forgetting of previously learned skills like instruction-following, reasoning, and factual knowledge.
comment: 15 pages. Preprint, under review
☆ Language Statistics and False Belief Reasoning: Evidence from 41 Open-Weight LMs
Research on mental state reasoning in language models (LMs) has the potential to inform theories of human social cognition--such as the theory that mental state reasoning emerges in part from language exposure--and our understanding of LMs themselves. Yet much published work on LMs relies on a relatively small sample of closed-source LMs, limiting our ability to rigorously test psychological theories and evaluate LM capacities. Here, we replicate and extend published work on the false belief task by assessing LM mental state reasoning behavior across 41 open-weight models (from distinct model families). We find sensitivity to implied knowledge states in 34% of the LMs tested; however, consistent with prior work, none fully ``explain away'' the effect in humans. Larger LMs show increased sensitivity and also exhibit higher psychometric predictive power. Finally, we use LM behavior to generate and test a novel hypothesis about human cognition: both humans and LMs show a bias towards attributing false beliefs when knowledge states are cued using a non-factive verb (``John thinks...'') than when cued indirectly (``John looks in the...''). Unlike the primary effect of knowledge states, where human sensitivity exceeds that of LMs, the magnitude of the human knowledge cue effect falls squarely within the distribution of LM effect sizes-suggesting that distributional statistics of language can in principle account for the latter but not the former in humans. These results demonstrate the value of using larger samples of open-weight LMs to test theories of human cognition and evaluate LM capacities.
comment: 15 pages, 7 figures, submitted to conference
☆ ScenicRules: An Autonomous Driving Benchmark with Multi-Objective Specifications and Abstract Scenarios
Developing autonomous driving systems for complex traffic environments requires balancing multiple objectives, such as avoiding collisions, obeying traffic rules, and making efficient progress. In many situations, these objectives cannot be satisfied simultaneously, and explicit priority relations naturally arise. Also, driving rules require context, so it is important to formally model the environment scenarios within which such rules apply. Existing benchmarks for evaluating autonomous vehicles lack such combinations of multi-objective prioritized rules and formal environment models. In this work, we introduce ScenicRules, a benchmark for evaluating autonomous driving systems in stochastic environments under prioritized multi-objective specifications. We first formalize a diverse set of objectives to serve as quantitative evaluation metrics. Next, we design a Hierarchical Rulebook framework that encodes multiple objectives and their priority relations in an interpretable and adaptable manner. We then construct a compact yet representative collection of scenarios spanning diverse driving contexts and near-accident situations, formally modeled in the Scenic language. Experimental results show that our formalized objectives and Hierarchical Rulebooks align well with human driving judgments and that our benchmark effectively exposes agent failures with respect to the prioritized objectives. Our benchmark can be accessed at https://github.com/BerkeleyLearnVerify/ScenicRules/.
comment: 16 pages, 14 figures, 7 tables. Extended version of paper accepted to 2026 IEEE Intelligent Vehicles Symposium (IV 2026). ScenicRules benchmark available at https://github.com/BerkeleyLearnVerify/ScenicRules
☆ Omni-iEEG: A Large-Scale, Comprehensive iEEG Dataset and Benchmark for Epilepsy Research ICLR 2026
Epilepsy affects over 50 million people worldwide, and one-third of patients suffer drug-resistant seizures where surgery offers the best chance of seizure freedom. Accurate localization of the epileptogenic zone (EZ) relies on intracranial EEG (iEEG). Clinical workflows, however, remain constrained by labor-intensive manual review. At the same time, existing data-driven approaches are typically developed on single-center datasets that are inconsistent in format and metadata, lack standardized benchmarks, and rarely release pathological event annotations, creating barriers to reproducibility, cross-center validation, and clinical relevance. With extensive efforts to reconcile heterogeneous iEEG formats, metadata, and recordings across publicly available sources, we present $\textbf{Omni-iEEG}$, a large-scale, pre-surgical iEEG resource comprising $\textbf{302 patients}$ and $\textbf{178 hours}$ of high-resolution recordings. The dataset includes harmonized clinical metadata such as seizure onset zones, resections, and surgical outcomes, all validated by board-certified epileptologists. In addition, Omni-iEEG provides over 36K expert-validated annotations of pathological events, enabling robust biomarker studies. Omni-iEEG serves as a bridge between machine learning and epilepsy research. It defines clinically meaningful tasks with unified evaluation metrics grounded in clinical priors, enabling systematic evaluation of models in clinically relevant settings. Beyond benchmarking, we demonstrate the potential of end-to-end modeling on long iEEG segments and highlight the transferability of representations pretrained on non-neurophysiological domains. Together, these contributions establish Omni-iEEG as a foundation for reproducible, generalizable, and clinically translatable epilepsy research. The project page with dataset and code links is available at omni-ieeg.github.io/omni-ieeg.
comment: Published as a conference paper at ICLR 2026
☆ Improving Interactive In-Context Learning from Natural Language Feedback
Adapting one's thought process based on corrective feedback is an essential ability in human learning, particularly in collaborative settings. In contrast, the current large language model training paradigm relies heavily on modeling vast, static corpora. While effective for knowledge acquisition, it overlooks the interactive feedback loops essential for models to adapt dynamically to their context. In this work, we propose a framework that treats this interactive in-context learning ability not as an emergent property, but as a distinct, trainable skill. We introduce a scalable method that transforms single-turn verifiable tasks into multi-turn didactic interactions driven by information asymmetry. We first show that current flagship models struggle to integrate corrective feedback on hard reasoning tasks. We then demonstrate that models trained with our approach dramatically improve the ability to interactively learn from language feedback. More specifically, the multi-turn performance of a smaller model nearly reaches that of a model an order of magnitude larger. We also observe robust out-of-distribution generalization: interactive training on math problems transfers to diverse domains like coding, puzzles and maze navigation. Our qualitative analysis suggests that this improvement is due to an enhanced in-context plasticity. Finally, we show that this paradigm offers a unified path to self-improvement. By training the model to predict the teacher's critiques, effectively modeling the feedback environment, we convert this external signal into an internal capability, allowing the model to self-correct even without a teacher.
☆ Can Generative Artificial Intelligence Survive Data Contamination? Theoretical Guarantees under Contaminated Recursive Training
Generative Artificial Intelligence (AI), such as large language models (LLMs), has become a transformative force across science, industry, and society. As these systems grow in popularity, web data becomes increasingly interwoven with this AI-generated material and it is increasingly difficult to separate them from naturally generated content. As generative models are updated regularly, later models will inevitably be trained on mixtures of human-generated data and AI-generated data from earlier versions, creating a recursive training process with data contamination. Existing theoretical work has examined only highly simplified settings, where both the real data and the generative model are discrete or Gaussian, where it has been shown that such recursive training leads to model collapse. However, real data distributions are far more complex, and modern generative models are far more flexible than Gaussian and linear mechanisms. To fill this gap, we study recursive training in a general framework with minimal assumptions on the real data distribution and allow the underlying generative model to be a general universal approximator. In this framework, we show that contaminated recursive training still converges, with a convergence rate equal to the minimum of the baseline model's convergence rate and the fraction of real data used in each iteration. To the best of our knowledge, this is the first (positive) theoretical result on recursive training without distributional assumptions on the data. We further extend the analysis to settings where sampling bias is present in data collection and support all theoretical results with empirical studies.
☆ Evidence-Grounded Subspecialty Reasoning: Evaluating a Curated Clinical Intelligence Layer on the 2025 Endocrinology Board-Style Examination
Background: Large language models have demonstrated strong performance on general medical examinations, but subspecialty clinical reasoning remains challenging due to rapidly evolving guidelines and nuanced evidence hierarchies. Methods: We evaluated January Mirror, an evidence-grounded clinical reasoning system, against frontier LLMs (GPT-5, GPT-5.2, Gemini-3-Pro) on a 120-question endocrinology board-style examination. Mirror integrates a curated endocrinology and cardiometabolic evidence corpus with a structured reasoning architecture to generate evidence-linked outputs. Mirror operated under a closed-evidence constraint without external retrieval. Comparator LLMs had real-time web access to guidelines and primary literature. Results: Mirror achieved 87.5% accuracy (105/120; 95% CI: 80.4-92.3%), exceeding a human reference of 62.3% and frontier LLMs including GPT-5.2 (74.6%), GPT-5 (74.0%), and Gemini-3-Pro (69.8%). On the 30 most difficult questions (human accuracy less than 50%), Mirror achieved 76.7% accuracy. Top-2 accuracy was 92.5% for Mirror versus 85.25% for GPT-5.2. Conclusions: Mirror provided evidence traceability: 74.2% of outputs cited at least one guideline-tier source, with 100% citation accuracy on manual verification. Curated evidence with explicit provenance can outperform unconstrained web retrieval for subspecialty clinical reasoning and supports auditability for clinical deployment.
☆ AI-CARE: Carbon-Aware Reporting Evaluation Metric for AI Models
As machine learning (ML) continues its rapid expansion, the environmental cost of model training and inference has become a critical societal concern. Existing benchmarks overwhelmingly focus on standard performance metrics such as accuracy, BLEU, or mAP, while largely ignoring energy consumption and carbon emissions. This single-objective evaluation paradigm is increasingly misaligned with the practical requirements of large-scale deployment, particularly in energy-constrained environments such as mobile devices, developing regions, and climate-aware enterprises. In this paper, we propose AI-CARE, an evaluation tool for reporting energy consumption, and carbon emissions of ML models. In addition, we introduce the carbon-performance tradeoff curve, an interpretable tool that visualizes the Pareto frontier between performance and carbon cost. We demonstrate, through theoretical analysis and empirical validation on representative ML workloads, that carbon-aware benchmarking changes the relative ranking of models and encourages architectures that are simultaneously accurate and environmentally responsible. Our proposal aims to shift the research community toward transparent, multi-objective evaluation and align ML progress with global sustainability goals. The tool and documentation are available at https://github.com/USD-AI-ResearchLab/ai-care.
comment: 7 pages, 3 figures
☆ How Uncertain Is the Grade? A Benchmark of Uncertainty Metrics for LLM-Based Automatic Assessment
The rapid rise of large language models (LLMs) is reshaping the landscape of automatic assessment in education. While these systems demonstrate substantial advantages in adaptability to diverse question types and flexibility in output formats, they also introduce new challenges related to output uncertainty, stemming from the inherently probabilistic nature of LLMs. Output uncertainty is an inescapable challenge in automatic assessment, as assessment results often play a critical role in informing subsequent pedagogical actions, such as providing feedback to students or guiding instructional decisions. Unreliable or poorly calibrated uncertainty estimates can lead to unstable downstream interventions, potentially disrupting students' learning processes and resulting in unintended negative consequences. To systematically understand this challenge and inform future research, we benchmark a broad range of uncertainty quantification methods in the context of LLM-based automatic assessment. Although the effectiveness of these methods has been demonstrated in many tasks across other domains, their applicability and reliability in educational settings, particularly for automatic grading, remain underexplored. Through comprehensive analyses of uncertainty behaviors across multiple assessment datasets, LLM families, and generation control settings, we characterize the uncertainty patterns exhibited by LLMs in grading scenarios. Based on these findings, we evaluate the strengths and limitations of different uncertainty metrics and analyze the influence of key factors, including model families, assessment tasks, and decoding strategies, on uncertainty estimates. Our study provides actionable insights into the characteristics of uncertainty in LLM-based automatic assessment and lays the groundwork for developing more reliable and effective uncertainty-aware grading systems in the future.
☆ Optimization Instability in Autonomous Agentic Workflows for Clinical Symptom Detection
Autonomous agentic workflows that iteratively refine their own behavior hold considerable promise, yet their failure modes remain poorly characterized. We investigate optimization instability, a phenomenon in which continued autonomous improvement paradoxically degrades classifier performance, using Pythia, an open-source framework for automated prompt optimization. Evaluating three clinical symptoms with varying prevalence (shortness of breath at 23%, chest pain at 12%, and Long COVID brain fog at 3%), we observed that validation sensitivity oscillated between 1.0 and 0.0 across iterations, with severity inversely proportional to class prevalence. At 3% prevalence, the system achieved 95% accuracy while detecting zero positive cases, a failure mode obscured by standard evaluation metrics. We evaluated two interventions: a guiding agent that actively redirected optimization, amplifying overfitting rather than correcting it, and a selector agent that retrospectively identified the best-performing iteration successfully prevented catastrophic failure. With selector agent oversight, the system outperformed expert-curated lexicons on brain fog detection by 331% (F1) and chest pain by 7%, despite requiring only a single natural language term as input. These findings characterize a critical failure mode of autonomous AI systems and demonstrate that retrospective selection outperforms active intervention for stabilization in low-prevalence classification tasks.
☆ Transforming GenAI Policy to Prompting Instruction: An RCT of Scalable Prompting Interventions in a CS1 Course
Despite universal GenAI adoption, students cannot distinguish task performance from actual learning and lack skills to leverage AI for learning, leading to worse exam performance when AI use remains unreflective. Yet few interventions teaching students to prompt AI as a tutor rather than solution provider have been validated at scale through randomized controlled trials (RCTs). To bridge this gap, we conducted a semester-long RCT (N=979) with four ICAP framework-based instructional conditions varying in engagement intensity with a pre-test, immediate and delayed post-test and surveys. Mixed methods analysis results showed: (1) All conditions significantly improved prompting skills, with gains increasing progressively from Condition 1 to Condition 4, validating ICAP's cognitive engagement hierarchy; (2) for students with similar pre-test scores, higher learning gain in immediate post-test predict higher final exam score, though no direct between-group differences emerged; (3) Our interventions are suitable and scalable solutions for diverse educational contexts, resources and learners. Together, this study makes empirical and theoretical contributions: (1) theoretically, we provided one of the first large-scale RCTs examining how cognitive engagement shapes learning in prompting literacy and clarifying the relationship between learning-oriented prompting skills and broader academic performance; (2) empirically, we offered timely design guidance for transforming GenAI classroom policies into scalable, actionable prompting literacy instruction to advance learning in the era of Generative AI.
comment: 11 pages, 3 figures
☆ MedProbCLIP: Probabilistic Adaptation of Vision-Language Foundation Model for Reliable Radiograph-Report Retrieval WACV
Vision-language foundation models have emerged as powerful general-purpose representation learners with strong potential for multimodal understanding, but their deterministic embeddings often fail to provide the reliability required for high-stakes biomedical applications. This work introduces MedProbCLIP, a probabilistic vision-language learning framework for chest X-ray and radiology report representation learning and bidirectional retrieval. MedProbCLIP models image and text representations as Gaussian embeddings through a probabilistic contrastive objective that explicitly captures uncertainty and many-to-many correspondences between radiographs and clinical narratives. A variational information bottleneck mitigates overconfident predictions, while MedProbCLIP employs multi-view radiograph encoding and multi-section report encoding during training to provide fine-grained supervision for clinically aligned correspondence, yet requires only a single radiograph and a single report at inference. Evaluated on the MIMIC-CXR dataset, MedProbCLIP outperforms deterministic and probabilistic baselines, including CLIP, CXR-CLIP, and PCME++, in both retrieval and zero-shot classification. Beyond accuracy, MedProbCLIP demonstrates superior calibration, risk-coverage behavior, selective retrieval reliability, and robustness to clinically relevant corruptions, underscoring the value of probabilistic vision-language modeling for improving the trustworthiness and safety of radiology image-text retrieval systems.
comment: Accepted to the 2026 Winter Conference on Applications of Computer Vision (WACV) Workshops
☆ Towards Efficient Constraint Handling in Neural Solvers for Routing Problems ICLR 2026
Neural solvers have achieved impressive progress in addressing simple routing problems, particularly excelling in computational efficiency. However, their advantages under complex constraints remain nascent, for which current constraint-handling schemes via feasibility masking or implicit feasibility awareness can be inefficient or inapplicable for hard constraints. In this paper, we present Construct-and-Refine (CaR), the first general and efficient constraint-handling framework for neural routing solvers based on explicit learning-based feasibility refinement. Unlike prior construction-search hybrids that target reducing optimality gaps through heavy improvements yet still struggle with hard constraints, CaR achieves efficient constraint handling by designing a joint training framework that guides the construction module to generate diverse and high-quality solutions well-suited for a lightweight improvement process, e.g., 10 steps versus 5k steps in prior work. Moreover, CaR presents the first use of construction-improvement-shared representation, enabling potential knowledge sharing across paradigms by unifying the encoder, especially in more complex constrained scenarios. We evaluate CaR on typical hard routing constraints to showcase its broader applicability. Results demonstrate that CaR achieves superior feasibility, solution quality, and efficiency compared to both classical and neural state-of-the-art solvers.
comment: Accepted by ICLR 2026
☆ MAEB: Massive Audio Embedding Benchmark
We introduce the Massive Audio Embedding Benchmark (MAEB), a large-scale benchmark covering 30 tasks across speech, music, environmental sounds, and cross-modal audio-text reasoning in 100+ languages. We evaluate 50+ models and find that no single model dominates across all tasks: contrastive audio-text models excel at environmental sound classification (e.g., ESC50) but score near random on multilingual speech tasks (e.g., SIB-FLEURS), while speech-pretrained models show the opposite pattern. Clustering remains challenging for all models, with even the best-performing model achieving only modest results. We observe that models excelling on acoustic understanding often perform poorly on linguistic tasks, and vice versa. We also show that the performance of audio encoders on MAEB correlates highly with their performance when used in audio large language models. MAEB is derived from MAEB+, a collection of 98 tasks. MAEB is designed to maintain task diversity while reducing evaluation cost, and it integrates into the MTEB ecosystem for unified evaluation across text, image, and audio modalities. We release MAEB and all 98 tasks along with code and a leaderboard at https://github.com/embeddings-benchmark/mteb.
☆ ODYN: An All-Shifted Non-Interior-Point Method for Quadratic Programming in Robotics and AI
We introduce ODYN, a novel all-shifted primal-dual non-interior-point quadratic programming (QP) solver designed to efficiently handle challenging dense and sparse QPs. ODYN combines all-shifted nonlinear complementarity problem (NCP) functions with proximal method of multipliers to robustly address ill-conditioned and degenerate problems, without requiring linear independence of the constraints. It exhibits strong warm-start performance and is well suited to both general-purpose optimization, and robotics and AI applications, including model-based control, estimation, and kernel-based learning methods. We provide an open-source implementation and benchmark ODYN on the Maros-Mészáros test set, demonstrating state-of-the-art convergence performance in small-to-high-scale problems. The results highlight ODYN's superior warm-starting capabilities, which are critical in sequential and real-time settings common in robotics and AI. These advantages are further demonstrated by deploying ODYN as the backend of an SQP-based predictive control framework (OdynSQP), as the implicitly differentiable optimization layer for deep learning (ODYNLayer), and the optimizer of a contact-dynamics simulation (ODYNSim).
☆ Anatomy of Capability Emergence: Scale-Invariant Representation Collapse and Top-Down Reorganization in Neural Networks
Capability emergence during neural network training remains mechanistically opaque. We track five geometric measures across five model scales (405K-85M parameters), 120+ emergence events in eight algorithmic tasks, and three Pythia language models (160M-2.8B). We find: (1) training begins with a universal representation collapse to task-specific floors that are scale-invariant across a 210X parameter range (e.g., modular arithmetic collapses to RANKME ~ 2.0 regardless of model size); (2) collapse propagates top-down through layers (32/32 task X model consistency), contradicting bottom-up feature-building intuition; (3) a geometric hierarchy in which representation geometry leads emergence (75-100% precursor rate for hard tasks), while the local learning coefficient is synchronous (0/24 precursor) and Hessian measures lag. We also delineate prediction limits: geometric measures encode coarse task difficulty but not fine-grained timing (within-class concordance 27%; when task ordering reverses across scales, prediction fails at 26%). On Pythia, global geometric patterns replicate but per-task precursor signals do not -- the precursor relationship requires task-training alignment that naturalistic pre-training does not provide. Our contribution is the geometric anatomy of emergence and its boundary conditions, not a prediction tool.
comment: 19 pages, 6 figures, 12 appendix pages
☆ ReLoop: Structured Modeling and Behavioral Verification for Reliable LLM-Based Optimization
Large language models (LLMs) can translate natural language into optimization code, but silent failures pose a critical risk: code that executes and returns solver-feasible solutions may encode semantically incorrect formulations, creating a feasibility-correctness gap of up to 90 percentage points on compositional problems. We introduce ReLoop, addressing silent failures from two complementary directions. Structured generation decomposes code production into a four-stage reasoning chain (understand, formalize, synthesize, verify) that mirrors expert modeling practice, with explicit variable-type reasoning and self-verification to prevent formulation errors at their source. Behavioral verification detects errors that survive generation by testing whether the formulation responds correctly to solver-based parameter perturbation, without requiring ground truth -- an external semantic signal that bypasses the self-consistency problem inherent in LLM-based code review. The two mechanisms are complementary: structured generation dominates on complex compositional problems, while behavioral verification becomes the largest single contributor on problems with localized formulation defects. Together with execution recovery via IIS-enhanced diagnostics, ReLoop raises correctness from 22.6% to 31.1% and execution from 72.1% to 100.0% on the strongest model, with consistent gains across five models spanning three paradigms (foundation, SFT, RL) and three benchmarks. We additionally release RetailOpt-190, 190 compositional retail optimization scenarios targeting the multi-constraint interactions where LLMs most frequently fail.
comment: Code and benchmark: \url{https://github.com/junbolian/ReLoop}
☆ B-DENSE: Branching For Dense Ensemble Network Learning
Inspired by non-equilibrium thermodynamics, diffusion models have achieved state-of-the-art performance in generative modeling. However, their iterative sampling nature results in high inference latency. While recent distillation techniques accelerate sampling, they discard intermediate trajectory steps. This sparse supervision leads to a loss of structural information and introduces significant discretization errors. To mitigate this, we propose B-DENSE, a novel framework that leverages multi-branch trajectory alignment. We modify the student architecture to output $K$-fold expanded channels, where each subset corresponds to a specific branch representing a discrete intermediate step in the teacher's trajectory. By training these branches to simultaneously map to the entire sequence of the teacher's target timesteps, we enforce dense intermediate trajectory alignment. Consequently, the student model learns to navigate the solution space from the earliest stages of training, demonstrating superior image generation quality compared to baseline distillation frameworks.
comment: 11 pages, 5 figures, 4 algorithms and 2 tables. Submitted to iclr 2026 delta workshop and still under review
☆ From Reflection to Repair: A Scoping Review of Dataset Documentation Tools
Dataset documentation is widely recognized as essential for the responsible development of automated systems. Despite growing efforts to support documentation through different kinds of artifacts, little is known about the motivations shaping documentation tool design or the factors hindering their adoption. We present a systematic review supported by mixed-methods analysis of 59 dataset documentation publications to examine the motivations behind building documentation tools, how authors conceptualize documentation practices, and how these tools connect to existing systems, regulations, and cultural norms. Our analysis shows four persistent patterns in dataset documentation conceptualization that potentially impede adoption and standardization: unclear operationalizations of documentation's value, decontextualized designs, unaddressed labor demands, and a tendency to treat integration as future work. Building on these findings, we propose a shift in Responsible AI tool design toward institutional rather than individual solutions, and outline actions the HCI community can take to enable sustainable documentation practices.
comment: to be published at the CHI conference on Human Factors in Computing Systems
☆ Position-Aware Scene-Appearance Disentanglement for Bidirectional Photoacoustic Microscopy Registration
High-speed optical-resolution photoacoustic microscopy (OR-PAM) with bidirectional raster scanning doubles imaging speed but introduces coupled domain shift and geometric misalignment between forward and backward scan lines. Existing registration methods, constrained by brightness constancy assumptions, achieve limited alignment quality, while recent generative approaches address domain shift through complex architectures that lack temporal awareness across frames. We propose GPEReg-Net, a scene-appearance disentanglement framework that separates domain-invariant scene features from domain-specific appearance codes via Adaptive Instance Normalization (AdaIN), enabling direct image-to-image registration without explicit deformation field estimation. To exploit temporal structure in sequential acquisitions, we introduce a Global Position Encoding (GPE) module that combines learnable position embeddings with sinusoidal encoding and cross-frame attention, allowing the network to leverage context from neighboring frames for improved temporal coherence. On the OR-PAM-Reg-4K benchmark (432 test samples), GPEReg-Net achieves NCC of 0.953, SSIM of 0.932, and PSNR of 34.49dB, surpassing the state-of-the-art by 3.8% in SSIM and 1.99dB in PSNR while maintaining competitive NCC. Code is available at https://github.com/JiahaoQin/GPEReg-Net.
comment: 10 pages, 5 figures
☆ DocSplit: A Comprehensive Benchmark Dataset and Evaluation Approach for Document Packet Recognition and Splitting
Document understanding in real-world applications often requires processing heterogeneous, multi-page document packets containing multiple documents stitched together. Despite recent advances in visual document understanding, the fundamental task of document packet splitting, which involves separating a document packet into individual units, remains largely unaddressed. We present the first comprehensive benchmark dataset, DocSplit, along with novel evaluation metrics for assessing the document packet splitting capabilities of large language models. DocSplit comprises five datasets of varying complexity, covering diverse document types, layouts, and multimodal settings. We formalize the DocSplit task, which requires models to identify document boundaries, classify document types, and maintain correct page ordering within a document packet. The benchmark addresses real-world challenges, including out-of-order pages, interleaved documents, and documents lacking clear demarcations. We conduct extensive experiments evaluating multimodal LLMs on our datasets, revealing significant performance gaps in current models' ability to handle complex document splitting tasks. The DocSplit benchmark datasets and proposed novel evaluation metrics provide a systematic framework for advancing document understanding capabilities essential for legal, financial, healthcare, and other document-intensive domains. We release the datasets to facilitate future research in document packet processing.
☆ Hybrid Model Predictive Control with Physics-Informed Neural Network for Satellite Attitude Control
Reliable spacecraft attitude control depends on accurate prediction of attitude dynamics, particularly when model-based strategies such as Model Predictive Control (MPC) are employed, where performance is limited by the quality of the internal system model. For spacecraft with complex dynamics, obtaining accurate physics-based models can be difficult, time-consuming, or computationally heavy. Learning-based system identification presents a compelling alternative; however, models trained exclusively on data frequently exhibit fragile stability properties and limited extrapolation capability. This work explores Physics-Informed Neural Networks (PINNs) for modeling spacecraft attitude dynamics and contrasts it with a conventional data-driven approach. A comprehensive dataset is generated using high-fidelity numerical simulations, and two learning methodologies are investigated: a purely data-driven pipeline and a physics-regularized approach that incorporates prior knowledge into the optimization process. The results indicate that embedding physical constraints during training leads to substantial improvements in predictive reliability, achieving a 68.17% decrease in mean relative error relative. When deployed within an MPC architecture, the physics-informed models yield superior closed-loop tracking performance and improved robustness to uncertainty. Furthermore, a hybrid control formulation that merges the learned nonlinear dynamics with a nominal linear model enables consistent steady-state convergence and significantly faster response, reducing settling times by 61.52%-76.42% under measurement noise and reaction wheel friction.
comment: Paper in peer-review. Copyright notice may change
☆ From Tool Orchestration to Code Execution: A Study of MCP Design Choices
Model Context Protocols (MCPs) provide a unified platform for agent systems to discover, select, and orchestrate tools across heterogeneous execution environments. As MCP-based systems scale to incorporate larger tool catalogs and multiple concurrently connected MCP servers, traditional tool-by-tool invocation increases coordination overhead, fragments state management, and limits support for wide-context operations. To address these scalability challenges, recent MCP designs have incorporated code execution as a first-class capability, an approach called Code Execution MCP (CE-MCP). This enables agents to consolidate complex workflows, such as SQL querying, file analysis, and multi-step data transformations, into a single program that executes within an isolated runtime environment. In this work, we formalize the architectural distinction between context-coupled (traditional) and context-decoupled (CE-MCP) models, analyzing their fundamental scalability trade-offs. Using the MCP-Bench framework across 10 representative servers, we empirically evaluate task behavior, tool utilization patterns, execution latency, and protocol efficiency as the scale of connected MCP servers and available tools increases, demonstrating that while CE-MCP significantly reduces token usage and execution latency, it introduces a vastly expanded attack surface. We address this security gap by applying the MAESTRO framework, identifying sixteen attack classes across five execution phases-including specific code execution threats such as exception-mediated code injection and unsafe capability synthesis. We validate these vulnerabilities through adversarial scenarios across multiple LLMs and propose a layered defense architecture comprising containerized sandboxing and semantic gating. Our findings provide a rigorous roadmap for balancing scalability and security in production-ready executable agent workflows.
☆ A fully differentiable framework for training proxy Exchange Correlation Functionals for periodic systems
Density Functional Theory (DFT) is widely used for first-principles simulations in chemistry and materials science, but its computational cost remains a key limitation for large systems. Motivated by recent advances in ML-based exchange-correlation (XC) functionals, this paper introduces a differentiable framework that integrates machine learning models into density functional theory (DFT) for solids and other periodic systems. The framework defines a clean API for neural network models that can act as drop in replacements for conventional exchange-correlation (XC) functionals and enables gradients to flow through the full self-consistent DFT workflow. The framework is implemented in Python using a PyTorch backend, making it fully differentiable and easy to use with standard deep learning tools. We integrate the implementation with the DeepChem library to promote the reuse of established models and to lower the barrier for experimentation. In initial benchmarks against established electronic structure packages (GPAW and PySCF), our models achieve relative errors on the order of 5-10%.
☆ The Impact of Class Uncertainty Propagation in Perception-Based Motion Planning
Autonomous vehicles (AVs) are being increasingly deployed in urban environments. In order to operate safely and reliably, AVs need to account for the inherent uncertainty associated with perceiving the world through sensor data and incorporate that into their decision-making process. Uncertainty-aware planners have recently been developed to account for upstream perception and prediction uncertainty. However, such planners may be sensitive to prediction uncertainty miscalibration, the magnitude of which has not yet been characterized. Towards this end, we perform a detailed analysis on the impact that perceptual uncertainty propagation and calibration has on perception-based motion planning. We do so by comparing two novel prediction-planning pipelines with varying levels of uncertainty propagation on the recently-released nuPlan planning benchmark. We study the impact of upstream uncertainty calibration using closed-loop evaluation on the nuPlan challenge scenarios. We find that the method incorporating upstream uncertainty propagation demonstrates superior generalization to complex closed-loop scenarios.
comment: 8 pages, 10 figures. Code and results available at: https://github.com/aivanovic1/uncertainty-trajectron
☆ The human intention. A taxonomy attempt and its applications to robotics
Despite a surge in robotics research dedicated to inferring and understanding human intent, a universally accepted definition remains elusive since existing works often equate human intention with specific task-related goals. This article seeks to address this gap by examining the multifaceted nature of intention. Drawing on insights from psychology, it attempts to consolidate a definition of intention into a comprehensible framework for a broader audience. The article classifies different types of intention based on psychological and communication studies, offering guidance to researchers shifting from pure technical enhancements to a more human-centric perspective in robotics. It then demonstrates how various robotics studies can be aligned with these intention categories. Finally, through in-depth analyses of collaborative search and object transport use cases, the article underscores the significance of considering the diverse facets of human intention.
comment: Original version submitted to the International Journal of Social Robotics. Final version available on the SORO website
☆ World Action Models are Zero-shot Policies
State-of-the-art Vision-Language-Action (VLA) models excel at semantic generalization but struggle to generalize to unseen physical motions in novel environments. We introduce DreamZero, a World Action Model (WAM) built upon a pretrained video diffusion backbone. Unlike VLAs, WAMs learn physical dynamics by predicting future world states and actions, using video as a dense representation of how the world evolves. By jointly modeling video and action, DreamZero learns diverse skills effectively from heterogeneous robot data without relying on repetitive demonstrations. This results in over 2x improvement in generalization to new tasks and environments compared to state-of-the-art VLAs in real robot experiments. Crucially, through model and system optimizations, we enable a 14B autoregressive video diffusion model to perform real-time closed-loop control at 7Hz. Finally, we demonstrate two forms of cross-embodiment transfer: video-only demonstrations from other robots or humans yield a relative improvement of over 42% on unseen task performance with just 10-20 minutes of data. More surprisingly, DreamZero enables few-shot embodiment adaptation, transferring to a new embodiment with only 30 minutes of play data while retaining zero-shot generalization.
comment: Project page: https://dreamzero0.github.io/
♻ ☆ Hunt Globally: Wide Search AI Agents for Drug Asset Scouting in Investing, Business Development, and Competitive Intelligence
Bio-pharmaceutical innovation has shifted: many new drug assets now originate outside the United States and are disclosed primarily via regional, non-English channels. Recent data suggests that over 85% of patent filings originate outside the U.S., with China accounting for nearly half of the global total. A growing share of scholarly output is also non-U.S. Industry estimates put China at 30% of global drug development, spanning 1,200+ novel candidates. In this high-stakes environment, failing to surface "under-the-radar" assets creates multi-billion-dollar risk for investors and business development teams, making asset scouting a coverage-critical competition where speed and completeness drive value. Yet today's Deep Research AI agents still lag human experts in achieving high recall discovery across heterogeneous, multilingual sources without hallucination. We propose a benchmarking methodology for drug asset scouting and a tuned, tree-based self-learning Bioptic Agent aimed at complete, non-hallucinated scouting. We construct a challenging completeness benchmark using a multilingual multi-agent pipeline: complex user queries paired with ground-truth assets that are largely outside U.S.-centric radar. To reflect real-deal complexity, we collected screening queries from expert investors, BD, and VC professionals and used them as priors to conditionally generate benchmark queries. For grading, we use LLM-as-judge evaluation calibrated to expert opinions. On this benchmark, our Bioptic Agent achieves 79.7% F1 score, outperforming Claude Opus 4.6 (56.2%), Gemini 3 Pro + Deep Research (50.6%), OpenAI GPT-5.2 Pro (46.6%), Perplexity Deep Research (44.2%), and Exa Websets (26.9%). Performance improves steeply with additional compute, supporting the view that more compute yields better results.
stable-worldmodel-v1: Reproducible World Modeling Research and Evaluation
World Models have emerged as a powerful paradigm for learning compact, predictive representations of environment dynamics, enabling agents to reason, plan, and generalize beyond direct experience. Despite recent interest in World Models, most available implementations remain publication-specific, severely limiting their reusability, increasing the risk of bugs, and reducing evaluation standardization. To mitigate these issues, we introduce stable-worldmodel (SWM), a modular, tested, and documented world-model research ecosystem that provides efficient data-collection tools, standardized environments, planning algorithms, and baseline implementations. In addition, each environment in SWM enables controllable factors of variation, including visual and physical properties, to support robustness and continual learning research. Finally, we demonstrate the utility of SWM by using it to study zero-shot robustness in DINO-WM.
♻ ☆ Token-Based Audio Inpainting via Discrete Diffusion
Audio inpainting seeks to restore missing segments in degraded recordings. Previous diffusion-based methods exhibit impaired performance when the missing region is large. We introduce the first approach that applies discrete diffusion over tokenized music representations from a pre-trained audio tokenizer, enabling stable and semantically coherent restoration of long gaps. Our method further incorporates two training approaches: a derivative-based regularization loss that enforces smooth temporal dynamics, and a span-based absorbing transition that provides structured corruption during diffusion. Experiments on the MusicNet and MAESTRO datasets with gaps up to 750 ms show that our approach consistently outperforms strong baselines across range of gap lengths, for gaps of 150 ms and above. This work advances musical audio restoration and introduces new directions for discrete diffusion model training. Visit our project page for examples and code.
♻ ☆ Should You Use Your Large Language Model to Explore or Exploit?
We evaluate the ability of the current generation of large language models (LLMs) to help a decision-making agent facing an exploration-exploitation tradeoff. While previous work has largely study the ability of LLMs to solve combined exploration-exploitation tasks, we take a more systematic approach and use LLMs to explore and exploit in silos in various (contextual) bandit tasks. We find that reasoning models show the most promise for solving exploitation tasks, although they are still too expensive or too slow to be used in many practical settings. Motivated by this, we study tool use and in-context summarization using non-reasoning models. We find that these mitigations may be used to substantially improve performance on medium-difficulty tasks, however even then, all LLMs we study perform worse than a simple linear regression, even in non-linear settings. On the other hand, we find that LLMs do help at exploring large action spaces with inherent semantics, by suggesting suitable candidates to explore.
♻ ☆ GenDA: Generative Data Assimilation on Complex Urban Areas via Classifier-Free Diffusion Guidance
Urban wind flow reconstruction is essential for assessing air quality, heat dispersion, and pedestrian comfort, yet remains challenging when only sparse sensor data are available. We propose GenDA, a generative data assimilation framework that reconstructs high-resolution wind fields on unstructured meshes from limited observations. The model employs a multiscale graph-based diffusion architecture trained on computational fluid dynamics (CFD) simulations and interprets classifier-free guidance as a learned posterior reconstruction mechanism: the unconditional branch learns a geometry-aware flow prior, while the sensor-conditioned branch injects observational constraints during sampling. This formulation enables obstacle-aware reconstruction and generalization across unseen geometries, wind directions, and mesh resolutions without retraining. We consider both sparse fixed sensors and trajectory-based observations using the same reconstruction procedure. When evaluated against supervised graph neural network (GNN) baselines and classical reduced-order data assimilation methods, GenDA reduces the relative root-mean-square error (RRMSE) by 25-57% and increases the structural similarity index (SSIM) by 23-33% across the tested meshes. Experiments are conducted on Reynolds-averaged Navier-Stokes (RANS) simulations of a real urban neighbourhood in Bristol, United Kingdom, at a characteristic Reynolds number of $\mathrm{Re}\approx2\times10^{7}$, featuring complex building geometry and irregular terrain. The proposed framework provides a scalable path toward generative, geometry-aware data assimilation for environmental monitoring in complex domains.
♻ ☆ Advanced Assistance for Traffic Crash Analysis: An AI-Driven Multi-Agent Approach to Pre-Crash Reconstruction
Traffic collision reconstruction traditionally relies on human expertise and can be accurate, but pre-crash reconstruction is more challenging. This study develops a multi-agent AI framework that reconstructs pre-crash scenarios and infers vehicle behaviors from fragmented collision data. We propose a two-phase collaborative framework with reconstruction and reasoning stages. The system processes 277 rear-end lead vehicle deceleration (LVD) crashes from the Crash Investigation Sampling System (CISS, 2017 to 2022), integrating narrative reports, structured tabular variables, and scene diagrams. Phase I generates natural-language crash reconstructions from multimodal inputs. Phase II combines these reconstructions with Event Data Recorder (EDR) signals to (1) identify striking and struck vehicles and (2) isolate the EDR records most relevant to the collision moment, enabling inference of key pre-crash behaviors. For validation, we evaluated all LVD cases and emphasized 39 complex crashes where multiple EDR records per crash created ambiguity due to missing or conflicting data. Ground truth was set by consensus of two independent manual annotators, with a separate language model used only to flag potential conflicts for re-checking. The framework achieved 100% accuracy across 4,155 trials; three reasoning models produced identical outputs, indicating that performance is driven by the structured prompts rather than model choice. Research analysts without reconstruction training achieved 92.31% accuracy on the same 39 complex cases. Ablation tests showed that removing structured reasoning anchors reduced case-level accuracy from 99.7% to 96.5% and increased errors across multiple output dimensions. The system remained robust under incomplete inputs. This zero-shot evaluation, without domain-specific training or fine-tuning, suggests a scalable approach for AI-assisted pre-crash analysis.
comment: 36 pages, 14 figures
♻ ☆ Online GPU Energy Optimization with Switching-Aware Bandits
Energy consumption has become a bottleneck for future computing architectures, from wearable devices to leadership-class supercomputers. Existing energy management techniques largely target CPUs, even though GPUs now dominate power draw in heterogeneous high performance computing (HPC) systems. Moreover, many prior methods rely on either purely offline or hybrid offline and online training, which is impractical and results in energy inefficiencies during data collection. In this paper, we introduce a practical online GPU energy optimization problem in a HPC scenarios. The problem is challenging because (1) GPU frequency scaling exhibits performance-energy trade-offs, (2) online control must balance exploration and exploitation, and (3) frequent frequency switching incurs non-trivial overhead and degrades quality of service (QoS). To address the challenges, we formulate online GPU energy optimization as a multi-armed bandit problem and propose EnergyUCB, a lightweight UCB-based controller that dynamically adjusts GPU core frequency in real time to save energy. Specifically, EnergyUCB (1) defines a reward that jointly captures energy and performance using a core-to-uncore utilization ratio as a proxy for GPU throughput, (2) employs optimistic initialization and UCB-style confidence bonuses to accelerate learning from scratch, and (3) incorporates a switching-aware UCB index and a QoS-constrained variant that enforce explicit slowdown budgets while discouraging unnecessary frequency oscillations. Extensive experiments on real-world workloads from the world's third fastest supercomputer Aurora show that EnergyUCB achieves substantial energy savings with modest slowdown and that the QoS-constrained variant reliably respects user-specified performance budgets.
comment: ACM Web Conference 2026 (WWW'26)
♻ ☆ PolySHAP: Extending KernelSHAP with Interaction-Informed Polynomial Regression ICLR 2026
Shapley values have emerged as a central game-theoretic tool in explainable AI (XAI). However, computing Shapley values exactly requires $2^d$ game evaluations for a model with $d$ features. Lundberg and Lee's KernelSHAP algorithm has emerged as a leading method for avoiding this exponential cost. KernelSHAP approximates Shapley values by approximating the game as a linear function, which is fit using a small number of game evaluations for random feature subsets. In this work, we extend KernelSHAP by approximating the game via higher degree polynomials, which capture non-linear interactions between features. Our resulting PolySHAP method yields empirically better Shapley value estimates for various benchmark datasets, and we prove that these estimates are consistent. Moreover, we connect our approach to paired sampling (antithetic sampling), a ubiquitous modification to KernelSHAP that improves empirical accuracy. We prove that paired sampling outputs exactly the same Shapley value approximations as second-order PolySHAP, without ever fitting a degree 2 polynomial. To the best of our knowledge, this finding provides the first strong theoretical justification for the excellent practical performance of the paired sampling heuristic.
comment: Published at ICLR 2026: https://openreview.net/forum?id=M19J8UGguq
♻ ☆ LogiPart: Local Large Language Models for Data Exploration at Scale with Logical Partitioning
The discovery of deep, steerable taxonomies in large text corpora is currently restricted by a trade-off between the surface-level efficiency of topic models and the prohibitive, non-scalable assignment costs of LLM-integrated frameworks. We introduce \textbf{LogiPart}, a scalable, hypothesis-first framework for building interpretable hierarchical partitions that decouples hierarchy growth from expensive full-corpus LLM conditioning. LogiPart utilizes locally hosted LLMs on compact, embedding-aware samples to generate concise natural-language taxonomic predicates. These predicates are then evaluated efficiently across the entire corpus using zero-shot Natural Language Inference (NLI) combined with fast graph-based label propagation, achieving constant $O(1)$ generative token complexity per node relative to corpus size. We evaluate LogiPart across four diverse text corpora (totaling $\approx$140,000 documents). Using structured manifolds for \textbf{calibration}, we identify an empirical reasoning threshold at the 14B-parameter scale required for stable semantic grounding. On complex, high-entropy corpora (Wikipedia, US Bills), where traditional thematic metrics reveal an ``alignment gap,'' inverse logic validation confirms the stability of the induced logic, with individual taxonomic bisections maintaining an average per-node routing accuracy of up to 96\%. A qualitative audit by an independent LLM-as-a-judge confirms the discovery of meaningful functional axes, such as policy intent, that thematic ground-truth labels fail to capture. LogiPart enables frontier-level exploratory analysis on consumer-grade hardware, making hypothesis-driven taxonomic discovery feasible under realistic computational and governance constraints.
comment: This version introduces a major architectural shift to Local LLMs and NLI-based assignment, scaling the framework to O(1) generative complexity. Formerly titled 'Question-Driven Analysis and Synthesis'
♻ ☆ Policy Gradients for Cumulative Prospect Theory in Reinforcement Learning
We derive a policy gradient theorem for Cumulative Prospect Theory (CPT) objectives in finite-horizon Reinforcement Learning (RL), generalizing the standard policy gradient theorem and encompassing distortion-based risk objectives as special cases. Motivated by behavioral economics, CPT combines an asymmetric utility transformation around a reference point with probability distortion. Building on our theorem, we design a first-order policy gradient algorithm for CPT-RL using a Monte Carlo gradient estimator based on order statistics. We establish statistical guarantees for the estimator and prove asymptotic convergence of the resulting algorithm to first-order stationary points of the (generally non-convex) CPT objective. Simulations illustrate qualitative behaviors induced by CPT and compare our first-order approach to existing zeroth-order methods.
♻ ☆ FRSICL: LLM-Enabled In-Context Learning Flight Resource Allocation for Fresh Data Collection in UAV-Assisted Wildfire Monitoring
Uncrewed Aerial Vehicles (UAVs) play a vital role in public safety, especially in monitoring wildfires, where early detection reduces environmental impact. In UAV-Assisted Wildfire Monitoring (UAWM) systems, jointly optimizing the data collection schedule and UAV velocity is essential to minimize the average Age of Information (AoI) for sensory data. Deep Reinforcement Learning (DRL) has been used for this optimization, but its limitations-including low sampling efficiency, discrepancies between simulation and real-world conditions, and complex training make it unsuitable for time-critical applications such as wildfire monitoring. Recent advances in Large Language Models (LLMs) provide a promising alternative. With strong reasoning and generalization capabilities, LLMs can adapt to new tasks through In-Context Learning (ICL), which enables task adaptation using natural language prompts and example-based guidance without retraining. This paper proposes a novel online Flight Resource Allocation scheme based on LLM-Enabled In-Context Learning (FRSICL) to jointly optimize the data collection schedule and UAV velocity along the trajectory in real time, thereby asymptotically minimizing the average AoI across all ground sensors. Unlike DRL, FRSICL generates data collection schedules and velocities using natural language task descriptions and feedback from the environment, enabling dynamic decision-making without extensive retraining. Simulation results confirm the effectiveness of FRSICL compared to state-of-the-art baselines, namely Proximal Policy Optimization, Block Coordinate Descent, and Nearest Neighbor.
♻ ☆ LeafNet: A Large-Scale Dataset and Comprehensive Benchmark for Foundational Vision-Language Understanding of Plant Diseases
Foundation models and vision-language pre-training have significantly advanced Vision-Language Models (VLMs), enabling multimodal processing of visual and linguistic data. However, their application in domain-specific agricultural tasks, such as plant pathology, remains limited due to the lack of large-scale, comprehensive multimodal image--text datasets and benchmarks. To address this gap, we introduce LeafNet, a comprehensive multimodal dataset, and LeafBench, a visual question-answering benchmark developed to systematically evaluate the capabilities of VLMs in understanding plant diseases. The dataset comprises 186,000 leaf digital images spanning 97 disease classes, paired with metadata, generating 13,950 question-answer pairs spanning six critical agricultural tasks. The questions assess various aspects of plant pathology understanding, including visual symptom recognition, taxonomic relationships, and diagnostic reasoning. Benchmarking 12 state-of-the-art VLMs on our LeafBench dataset, we reveal substantial disparity in their disease understanding capabilities. Our study shows performance varies markedly across tasks: binary healthy--diseased classification exceeds 90\% accuracy, while fine-grained pathogen and species identification remains below 65\%. Direct comparison between vision-only models and VLMs demonstrates the critical advantage of multimodal architectures: fine-tuned VLMs outperform traditional vision models, confirming that integrating linguistic representations significantly enhances diagnostic precision. These findings highlight critical gaps in current VLMs for plant pathology applications and underscore the need for LeafBench as a rigorous framework for methodological advancement and progress evaluation toward reliable AI-assisted plant disease diagnosis. Code is available at https://github.com/EnalisUs/LeafBench.
comment: 26 pages, 13 figures and 8 tables
♻ ☆ From Prompts to Protection: Large Language Model-Enabled In-Context Learning for Smart Public Safety UAV
A public safety Uncrewed Aerial Vehicle (UAV) enhances situational awareness during emergency response. Its agility, mobility optimization, and ability to establish Line-of-Sight (LoS) communication make it increasingly important for managing emergencies such as disaster response, search and rescue, and wildfire monitoring. Although Deep Reinforcement Learning (DRL) has been used to optimize UAV navigation and control, its high training complexity, low sample efficiency, and the simulation-to-reality gap limit its practicality in public safety applications. Recent advances in Large Language Models (LLMs) present a promising alternative. With strong reasoning and generalization abilities, LLMs can adapt to new tasks through In-Context Learning (ICL), enabling task adaptation via natural language prompts and example-based guidance without retraining. Deploying LLMs at the network edge, rather than in the cloud, further reduces latency and preserves data privacy, making them suitable for real-time, mission-critical public safety UAVs. This paper proposes integrating LLM-assisted ICL with public safety UAVs to address key functions such as path planning and velocity control in emergency response. We present a case study on data collection scheduling, demonstrating that the LLM-assisted ICL framework can significantly reduce packet loss compared to conventional approaches while also mitigating potential jailbreaking vulnerabilities. Finally, we discuss LLM optimizers and outline future research directions. The ICL framework enables adaptive, context-aware decision-making for public safety UAVs, offering a lightweight and efficient solution to enhance UAV autonomy and responsiveness in emergencies.
♻ ☆ Arbor: A Framework for Reliable Navigation of Critical Conversation Flows
Large language models struggle to maintain strict adherence to structured workflows in high-stakes domains such as healthcare triage. Monolithic approaches that encode entire decision structures within a single prompt are prone to instruction-following degradation as prompt length increases, including lost-in-the-middle effects and context window overflow. To address this gap, we present Arbor, a framework that decomposes decision tree navigation into specialized, node-level tasks. Decision trees are standardized into an edge-list representation and stored for dynamic retrieval. At runtime, a directed acyclic graph (DAG)-based orchestration mechanism iteratively retrieves only the outgoing edges of the current node, evaluates valid transitions via a dedicated LLM call, and delegates response generation to a separate inference step. The framework is agnostic to the underlying decision logic and model provider. Evaluated against single-prompt baselines across 10 foundation models using annotated turns from real clinical triage conversations. Arbor improves mean turn accuracy by 29.4 percentage points, reduces per-turn latency by 57.1%, and achieves an average 14.4x reduction in per-turn cost. These results indicate that architectural decomposition reduces dependence on intrinsic model capability, enabling smaller models to match or exceed larger models operating under single-prompt baselines.
♻ ☆ Functional multi-armed bandit and the best function identification problems
Bandit optimization usually refers to the class of online optimization problems with limited feedback, namely, a decision maker uses only the objective value at the current point to make a new decision and does not have access to the gradient of the objective function. While this name accurately captures the limitation in feedback, it is somehow misleading since it does not have any connection with the multi-armed bandits (MAB) problem class. We propose two new classes of problems: the functional multi-armed bandit problem (FMAB) and the best function identification problem. They are modifications of a multi-armed bandit problem and the best arm identification problem, respectively, where each arm represents an unknown black-box function. These problem classes are a surprisingly good fit for modeling real-world problems such as competitive LLM training. To solve the problems from these classes, we propose a new reduction scheme to construct UCB-type algorithms, namely, the F-LCB algorithm, based on algorithms for nonlinear optimization with known convergence rates. We provide the regret upper bounds for this reduction scheme based on the base algorithms' convergence rates. We add numerical experiments that demonstrate the performance of the proposed scheme.
♻ ☆ Syndrome-Flow Consistency Model Achieves One-step Denoising Error Correction Codes
Error Correction Codes (ECC) are fundamental to reliable digital communication, yet designing neural decoders that are both accurate and computationally efficient remains challenging. Recent denoising diffusion decoders achieve state-of-the-art performance, but their iterative sampling limits practicality in low-latency settings. To bridge this gap, consistency models (CMs) offer a potential path to high-fidelity one-step decoding. However, applying CMs to ECC presents a significant challenge: the discrete nature of error correction means the decoding trajectory is highly non-smooth, making it incompatible with a simple continuous timestep parameterization. To address this, we re-parameterize the reverse Probability Flow Ordinary Differential Equation (PF-ODE) by soft-syndrome condition, providing a smooth trajectory of signal corruption. Building on this, we propose the Error Correction Syndrome-Flow Consistency Model (ECCFM), a model-agnostic framework designed specifically for ECC task, ensuring the model learns a smooth trajectory from any noisy signal directly to the original codeword in a single step. Across multiple benchmarks, ECCFM attains lower bit-error-rate (BER) and frame-error-rate (FER) than transformer-based decoders, while delivering inference speeds 30x to 100x faster than iterative denoising diffusion decoders.
♻ ☆ Enhanced Generative Model Evaluation with Clipped Density and Coverage
Although generative models have made remarkable progress in recent years, their use in critical applications has been hindered by an inability to reliably evaluate the quality of their generated samples. Quality refers to at least two complementary concepts: fidelity and coverage. Current quality metrics often lack reliable, interpretable values due to an absence of calibration or insufficient robustness to outliers. To address these shortcomings, we introduce two novel metrics: Clipped Density and Clipped Coverage. By clipping individual sample contributions, as well as the radii of nearest neighbor balls for fidelity, our metrics prevent out-of-distribution samples from biasing the aggregated values. Through analytical and empirical calibration, these metrics demonstrate linear score degradation as the proportion of bad samples increases. Thus, they can be straightforwardly interpreted as equivalent proportions of good samples. Extensive experiments on synthetic and real-world datasets demonstrate that Clipped Density and Clipped Coverage outperform existing methods in terms of robustness, sensitivity, and interpretability when evaluating generative models.
♻ ☆ Comparative Expressivity for Structured Argumentation Frameworks with Uncertain Rules and Premises
Modelling qualitative uncertainty in formal argumentation is essential both for practical applications and theoretical understanding. Yet, most of the existing works focus on \textit{abstract} models for arguing with uncertainty. Following a recent trend in the literature, we tackle the open question of studying plausible instantiations of these abstract models. To do so, we ground the uncertainty of arguments in their components, structured within rules and premises. Our main technical contributions are: i) the introduction of a notion of expressivity that can handle abstract and structured formalisms, and ii) the presentation of both negative and positive expressivity results, comparing the expressivity of abstract and structured models of argumentation with uncertainty. These results affect incomplete abstract argumentation frameworks, and their extension with dependencies, on the abstract side, and ASPIC+, on the structured side.
♻ ☆ Long Grounded Thoughts: Synthesizing Visual Problems and Reasoning Chains at Scale
Despite rapid progress, multimodal reasoning still lacks a systematic approach to synthesize large-scale vision-centric datasets beyond visual math. We introduce a framework able to synthesize vision-centric problems spanning diverse levels of complexity, and the resulting dataset with over 1M high-quality problems including: reasoning traces, preference data, and instruction prompts supporting SFT, offline and online RL. Our vision-centric synthesis framework uses a two-stage process focusing on: (1) generating diverse verifiable questions from existing images at scale, and (2) creating complex compositional visual problems by merging simpler questions. Remarkably, finetuning Qwen2.5-VL-7B on our data outperforms existing open-data baselines across evaluated vision-centric benchmarks, and our best configurations match or surpass strong closed-data models such as MiMo-VL-7B-RL on Vstar Bench, CV-Bench and MMStar-V. Notably, despite being entirely vision-centric, our data transfers positively to text-only reasoning (MMLU-Pro, +3.7%) and audio reasoning (MMAU, +1.32%), demonstrating its effectiveness. Similarly, despite containing no embodied visual data, we observe notable gains (NiEH, +8.8%) when evaluating open-ended embodied QA. Lastly, we use our data to comprehensively analyze at scale (1M+) the entire VLM post-training pipeline showing that (i) SFT on high-quality data with cognitive behaviors on reasoning traces is essential to scale online RL, (ii) offline RL could match online RL's performance while disaggregating compute demands, and, (iii) SFT on high quality data also improve out-of-domain, cross-modality transfer.
♻ ☆ Hybrid Reward-Driven Reinforcement Learning for Efficient Quantum Circuit Synthesis
A reinforcement learning (RL) framework is introduced for the efficient synthesis of quantum circuits that generate specified target quantum states from a fixed initial state, addressing a central challenge in both the Noisy Intermediate-Scale Quantum (NISQ) era and future fault-tolerant quantum computing. The approach utilizes tabular Q-learning, based on action sequences, within a discretized quantum state space, to effectively manage the exponential growth of the space dimension. The framework introduces a hybrid reward mechanism, combining a static, domain-informed reward that guides the agent toward the target state with customizable dynamic penalties that discourage inefficient circuit structures such as gate congestion and redundant state revisits. This is a circuit-aware reward, in contrast to the current trend of works on this topic, which are primarily fidelity-based. By leveraging sparse matrix representations and state-space discretization, the method enables practical navigation of high-dimensional environments while minimizing computational overhead. Benchmarking on graph-state preparation tasks for up to seven qubits, we demonstrate that the algorithm consistently discovers minimal-depth circuits with optimized gate counts. Moreover, extending the framework to a universal gate set still yields low depth circuits, highlighting the algorithm robustness and adaptability. The results confirm that this RL-driven approach, with our completely circuit-aware method, efficiently explores the complex quantum state space and synthesizes near-optimal quantum circuits, providing a resource-efficient foundation for quantum circuit optimization.
comment: 35 pages, 7 figures, color figures
♻ ☆ Orthogonalized Policy Optimization:Decoupling Sampling Geometry from Optimization Geometry in RLHF
We present Orthogonalized Policy Optimization (OPO), a unified theoretical account of large language model alignment grounded in a work-dissipation principle. The policy update is characterized as a constrained proximal response that maximizes external work induced by an alpha-escort sampling field, while paying an intrinsic dissipation cost given by a quadratic fluctuation energy in chi-square ratio geometry. This single variational principle admits three equivalent interpretations: (i) a mirror-descent step with a Euclidean mirror map in ratio space, (ii) a Hilbert-space projection via the orthogonal projection theorem in L2(pi_k), and (iii) a linear-response law from near-equilibrium statistical mechanics. Their convergence to the same closed-form update confirms that OPO is the unique quadratic proximal response within ratio geometry. The framework cleanly decouples sampling geometry (alpha) from optimization geometry (mu), yields a constant Hessian and non-saturating linear gradients, and reveals that advantage z-score normalization is not a heuristic but a conservation-law projection. Experiments on mathematical reasoning tasks demonstrate that OPO outperforms GRPO, GSPO, and DAPO while maintaining healthy gradient dynamics throughout training.
♻ ☆ DTBench: A Synthetic Benchmark for Document-to-Table Extraction
Document-to-table (Doc2Table) extraction derives structured tables from unstructured documents under a target schema, enabling reliable and verifiable SQL-based data analytics. Although large language models (LLMs) have shown promise in flexible information extraction, their ability to produce precisely structured tables remains insufficiently understood, particularly for indirect extraction that requires complex capabilities such as reasoning and conflict resolution. Existing benchmarks neither explicitly distinguish nor comprehensively cover the diverse capabilities required in Doc2Table extraction. We argue that a capability-aware benchmark is essential for systematic evaluation. However, constructing such benchmarks using human-annotated document-table pairs is costly, difficult to scale, and limited in capability coverage. To address this, we adopt a reverse Table2Doc paradigm and design a multi-agent synthesis workflow to generate documents from ground-truth tables. Based on this approach, we present DTBench, a synthetic benchmark that adopts a proposed two-level taxonomy of Doc2Table capabilities, covering 5 major categories and 13 subcategories. We evaluate several mainstream LLMs on DTBench, and demonstrate substantial performance gaps across models, as well as persistent challenges in reasoning, faithfulness, and conflict resolution. DTBench provides a comprehensive testbed for data generation and evaluation, facilitating future research on Doc2Table extraction. The benchmark is publicly available at https://github.com/ZJU-DAILY/DTBench.
♻ ☆ mini-vec2vec: Scaling Universal Geometry Alignment with Linear Transformations
We build upon vec2vec, a procedure designed to align text embedding spaces without parallel data. vec2vec finds a near-perfect alignment, but it is expensive and unstable. We present mini-vec2vec, a simple and efficient alternative that requires substantially lower computational cost and is highly robust. Moreover, the learned mapping is a linear transformation. Our method consists of three main stages: a tentative matching of pseudo-parallel embedding vectors, transformation fitting, and iterative refinement. Our linear alternative exceeds the original instantiation of vec2vec by orders of magnitude in efficiency, while matching or exceeding their results. The method's stability and interpretable algorithmic steps facilitate scaling and unlock new opportunities for adoption in new domains and fields.
♻ ☆ Energy Concerns with HPC Systems and Applications
For various reasons including those related to climate changes, {\em energy} has become a critical concern in all relevant activities and technical designs. For the specific case of computer activities, the problem is exacerbated with the emergence and pervasiveness of the so called {\em intelligent devices}. From the application side, we point out the special topic of {\em Artificial Intelligence}, who clearly needs an efficient computing support in order to succeed in its purpose of being a {\em ubiquitous assistant}. There are mainly two contexts where {\em energy} is one of the top priority concerns: {\em embedded computing} and {\em supercomputing}. For the former, power consumption is critical because the amount of energy that is available for the devices is limited. For the latter, the heat dissipated is a serious source of failure and the financial cost related to energy is likely to be a significant part of the maintenance budget. On a single computer, the problem is commonly considered through the electrical power consumption. This paper, written in the form of a survey, we depict the landscape of energy concerns in computer activities, both from the hardware and the software standpoints.
comment: 20 pages
♻ ☆ Aeon: High-Performance Neuro-Symbolic Memory Management for Long-Horizon LLM Agents
Large Language Models (LLMs) are fundamentally constrained by the quadratic computational cost of self-attention and the "Lost in the Middle" phenomenon, where reasoning capabilities degrade as context windows expand. Existing solutions, primarily "Flat RAG" architectures relying on vector databases, treat memory as an unstructured bag of embeddings, failing to capture the hierarchical and temporal structure of long-horizon interactions. This paper presents Aeon, a Neuro-Symbolic Cognitive Operating System that redefines memory as a managed OS resource. Aeon structures memory into a Memory Palace (a spatial index implemented via Atlas, a SIMD-accelerated Page-Clustered Vector Index) and a Trace (a neuro-symbolic episodic graph). This architecture introduces three advances: (1) Symmetric INT8 Scalar Quantization, achieving 3.1x spatial compression and 5.6x math acceleration via NEON SDOT intrinsics; (2) a decoupled Write-Ahead Log (WAL) ensuring crash-recoverability with statistically negligible overhead (<1%); and (3) a Sidecar Blob Arena eliminating the prior 440-character text ceiling via an append-only mmap-backed blob file with generational garbage collection. The Semantic Lookaside Buffer (SLB) exploits conversational locality to achieve sub-5us retrieval latencies, with INT8 vectors dequantized to FP32 on cache insertion to preserve L1-resident lookup performance. Benchmarks on Apple M4 Max demonstrate that the combined architecture achieves 4.70ns INT8 dot product latency, 3.09us tree traversal at 100K nodes (3.4x over FP32), and P99 read latency of 750ns under hostile 16-thread contention via epoch-based reclamation.
comment: v3: Production hardening. Added INT8 quantization (5.6x dot product speedup, 3.1x compression), crash recovery via decoupled WAL (<1% overhead), unlimited text storage via sidecar blob arena with generational GC, and epoch-based reclamation for lock-free reads (P99 750ns under 16-thread contention). Revised for systems engineering clarity
♻ ☆ Text-Guided Layer Fusion Mitigates Hallucination in Multimodal LLMs
Multimodal large language models (MLLMs) typically rely on a single late-layer feature from a frozen vision encoder, leaving the encoder's rich hierarchy of visual cues under-utilized. MLLMs still suffer from visually ungrounded hallucinations, often relying on language priors rather than image evidence. While many prior mitigation strategies operate on the text side, they leave the visual representation unchanged and do not exploit the rich hierarchy of features encoded across vision layers. Existing multi-layer fusion methods partially address this limitation but remain static, applying the same layer mixture regardless of the query. In this work, we introduce TGIF (Text-Guided Inter-layer Fusion), a lightweight module that treats encoder layers as depth-wise "experts" and predicts a prompt-dependent fusion of visual features. TGIF follows the principle of direct external fusion, requires no vision-encoder updates, and adds minimal overhead. Integrated into LLaVA-1.5-7B, TGIF provides consistent improvements across hallucination, OCR, and VQA benchmarks, while preserving or improving performance on ScienceQA, GQA, and MMBench. These results suggest that query-conditioned, hierarchy-aware fusion is an effective way to strengthen visual grounding and reduce hallucination in modern MLLMs.
♻ ☆ Sparse Autoencoders for Sequential Recommendation Models: Interpretation and Flexible Control
Many current state-of-the-art models for sequential recommendations are based on transformer architectures. Interpretation and explanation of such black box models is an important research question, as a better understanding of their internals can help understand, influence, and control their behavior, which is very important in a variety of real-world applications. Recently, sparse autoencoders (SAE) have been shown to be a promising unsupervised approach to extract interpretable features from neural networks. In this work, we extend SAE to sequential recommender systems and propose a framework for interpreting and controlling model representations. We show that this approach can be successfully applied to the transformer trained on a sequential recommendation task: directions learned in such an unsupervised regime turn out to be more interpretable and monosemantic than the original hidden state dimensions. Further, we demonstrate a straightforward way to effectively and flexibly control the model's behavior, giving developers and users of recommendation systems the ability to adjust their recommendations to various custom scenarios and contexts.
♻ ☆ Don't Forget Its Variance! The Minimum Path Variance Principle for Accurate and Stable Score-Based Models
Score-based methods are powerful across machine learning, but they face a paradox: theoretically path-independent, yet practically path-dependent. We resolve this by proving that practical training objectives differ from the ideal, ground-truth objective by a crucial, overlooked term: the path variance of the score function. We propose the MinPV (**Min**imum **P**ath **V**ariance) Principle to minimize this path variance. Our key contribution is deriving a closed-form expression for the variance, making optimization tractable. By parameterizing the path with a flexible Kumaraswamy Mixture Model, our method learns data-adaptive, low-variance paths without heuristic manual selection. This principled optimization of the complete objective yields more accurate and stable estimators, establishing new state-of-the-art results on challenging benchmarks and providing a general framework for optimizing score-based interpolation.
♻ ☆ FlowDrive: moderated flow matching with data balancing for trajectory planning
Learning-based planners are sensitive to the long-tailed distribution of driving data. Common maneuvers dominate datasets, while dangerous or rare scenarios are sparse. This imbalance can bias models toward the frequent cases and degrade performance on critical scenarios. To tackle this problem, we compare balancing strategies for sampling training data and find reweighting by trajectory pattern an effective approach. We then present FlowDrive, a flow-matching trajectory planner that learns a conditional rectified flow to map noise directly to trajectory distributions with few flow-matching steps. We further introduce moderated, in-the-loop guidance that injects small perturbation between flow steps to systematically increase trajectory diversity while remaining scene-consistent. On nuPlan and the interaction-focused interPlan benchmarks, FlowDrive achieves state-of-the-art results among learning-based planners and approaches methods with rule-based refinements. After adding moderated guidance and light post-processing (FlowDrive*), it achieves overall state-of-the-art performance across nearly all benchmark splits. Our code is available at https://github.com/einsteinguang/flow_drive_planner.
♻ ☆ PII-Bench: Evaluating Query-Aware Privacy Protection Systems
The widespread adoption of Large Language Models (LLMs) has raised significant privacy concerns regarding the exposure of personally identifiable information (PII) in user prompts. To address this challenge, we propose a query-unrelated PII masking strategy and introduce PII-Bench, the first comprehensive evaluation framework for assessing privacy protection systems. PII-Bench comprises 2,842 test samples across 55 fine-grained PII categories, featuring diverse scenarios from single-subject descriptions to complex multi-party interactions. Each sample is carefully crafted with a user query, context description, and standard answer indicating query-relevant PII. Our empirical evaluation reveals that while current models perform adequately in basic PII detection, they show significant limitations in determining PII query relevance. Even state-of-the-art LLMs struggle with this task, particularly in handling complex multi-subject scenarios, indicating substantial room for improvement in achieving intelligent PII masking.
♻ ☆ Latent Veracity Inference for Identifying Errors in Stepwise Reasoning
Chain-of-Thought (CoT) reasoning has advanced the capabilities and transparency of language models (LMs); however, reasoning chains can contain inaccurate statements that reduce performance and trustworthiness. To address this, we propose to augment each reasoning step in a CoT with a latent veracity (or correctness) variable. To efficiently explore this expanded space, we introduce Veracity Search (VS), a discrete search algorithm over veracity assignments. It performs otherwise intractable inference in the posterior distribution over latent veracity values by leveraging the LM's joint likelihood over veracity and the final answer as a proxy reward. This efficient inference-time verification method facilitates supervised fine-tuning of an Amortized Veracity Inference (AVI) machine by providing pseudo-labels for veracity. AVI generalizes VS, enabling accurate zero-shot veracity inference in novel contexts. Empirical results demonstrate that VS reliably identifies errors in logical (ProntoQA), mathematical (GSM8K), and commonsense (CommonsenseQA) reasoning benchmarks, with AVI achieving comparable zero-shot accuracy. Finally, we demonstrate the utility of latent veracity inference for providing feedback during self-correction and self-improvement.
♻ ☆ Learning When to Plan: Efficiently Allocating Test-Time Compute for LLM Agents
Training large language models (LLMs) to reason via reinforcement learning (RL) significantly improves their problem-solving capabilities. In agentic settings, existing methods like ReAct prompt LLMs to explicitly plan before every action; however, we demonstrate that always planning is computationally expensive and degrades performance on long-horizon tasks, while never planning further limits performance. To address this, we introduce a conceptual framework formalizing dynamic planning for LLM agents, enabling them to flexibly decide when to allocate test-time compute for planning. We propose a simple two-stage training pipeline: (1) supervised fine-tuning on diverse synthetic data to prime models for dynamic planning, and (2) RL to refine this capability in long-horizon environments. Experiments on the Crafter environment show that dynamic planning agents trained with this approach are more sample-efficient and consistently achieve more complex objectives. Additionally, we demonstrate that these agents can be effectively steered by human-written plans, surpassing their independent capabilities and highlighting the potential for safer and more collaborative agentic systems.
♻ ☆ BEP: A Binary Error Propagation Algorithm for Binary Neural Networks Training
Binary Neural Networks (BNNs), which constrain both weights and activations to binary values, offer substantial reductions in computational complexity, memory footprint, and energy consumption. These advantages make them particularly well suited for deployment on resource-constrained devices. However, training BNNs via gradient-based optimization remains challenging due to the discrete nature of their variables. The dominant approach, quantization-aware training, circumvents this issue by employing surrogate gradients. Yet, this method requires maintaining latent full-precision parameters and performing the backward pass with floating-point arithmetic, thereby forfeiting the efficiency of binary operations during training. While alternative approaches based on local learning rules exist, they are unsuitable for global credit assignment and for back-propagating errors in multi-layer architectures. This paper introduces Binary Error Propagation (BEP), the first learning algorithm to establish a principled, discrete analog of the backpropagation chain rule. This mechanism enables error signals, represented as binary vectors, to be propagated backward through multiple layers of a neural network. BEP operates entirely on binary variables, with all forward and backward computations performed using only bitwise operations. Crucially, this makes BEP the first solution to enable end-to-end binary training for recurrent neural network architectures. We validate the effectiveness of BEP on both multi-layer perceptrons and recurrent neural networks, demonstrating gains of up to +6.89% and +10.57% in test accuracy, respectively. The proposed algorithm is released as an open-source repository.
♻ ☆ ErrorMap and ErrorAtlas: Charting the Failure Landscape of Large Language Models
Large Language Models (LLM) benchmarks tell us when models fail, but not why they fail. A wrong answer on a reasoning dataset may stem from formatting issues, calculation errors, or dataset noise rather than weak reasoning. Without disentangling such causes, benchmarks remain incomplete and cannot reliably guide model improvement. We introduce ErrorMap, the first method to chart the sources of LLM failure. It extracts a model's unique "failure signature", clarifies what benchmarks measure, and broadens error identification to reduce blind spots. This helps developers debug models, aligns benchmark goals with outcomes, and supports informed model selection. ErrorMap works on any model or dataset with the same logic. Applying our method to 35 datasets and 83 models we generate ErrorAtlas, a taxonomy of model errors, revealing recurring failure patterns. ErrorAtlas highlights error types that are currently underexplored in LLM research, such as omissions of required details in the output and question misinterpretation. By shifting focus from where models succeed to why they fail, ErrorMap and ErrorAtlas enable advanced evaluation - one that exposes hidden weaknesses and directs progress. Unlike success, typically measured by task-level metrics, our approach introduces a deeper evaluation layer that can be applied globally across models and tasks, offering richer insights into model behavior and limitations. We make the taxonomy and code publicly available with plans to periodically update ErrorAtlas as new benchmarks and models emerge.
♻ ☆ The Generative Reasonable Person
This Article introduces the generative reasonable person, a new tool for estimating how ordinary people judge reasonableness. As claims about AI capabilities often outpace evidence, the Article proceeds empirically: adapting randomized controlled trials to large language models, it replicates three published studies of lay judgment across negligence, consent, and contract interpretation, drawing on nearly 10,000 simulated decisions. The findings reveal that models can replicate subtle patterns that run counter to textbook treatment. Like human subjects, models prioritize social conformity over cost-benefit analysis when assessing negligence, inverting the hierarchy that textbooks teach. They reproduce the paradox that material lies erode consent less than lies about a transaction's essence. And they track lay contract formalism, judging hidden fees more enforceable than fair. For two centuries, scholars have debated whether the reasonable person is empirical or normative, majoritarian or aspirational. But much of this debate assumed a constraint that no longer holds: that lay judgments are expensive to surface, slow to collect, and unavailable at scale. Generative reasonable people loosen that constraint. They offer judges empirical checks on elite intuition, give resource-constrained litigants access to simulated jury feedback, and let regulators pilot-test public comprehension, all at a fraction of survey costs. The reasonable person standard has long functioned as a vessel for judicial intuition precisely because the empirical baseline was missing. With that baseline now available, departures from lay understanding become transparent rather than hidden, a choice to be justified, not a fact to be assumed. Properly cabined, the generative reasonable person may become a dictionary for reasonableness judgments.
comment: 51 pages, 8 figures
♻ ☆ Embedding Retrofitting: Data Engineering for better RAG
Embedding retrofitting adjusts pre-trained word vectors using knowledge graph constraints to improve domain-specific retrieval. However, the effectiveness of retrofitting depends critically on knowledge graph quality, which in turn depends on text preprocessing. This paper presents a data engineering framework that addresses data quality degradation from annotation artifacts in real-world corpora. The analysis shows that hashtag annotations inflate knowledge graph density, leading to creating spurious edges that corrupt the retrofitting objective. On noisy graphs, all retrofitting techniques produce statistically significant degradation ($-3.5\%$ to $-5.2\%$, $p<0.05$). After preprocessing, \acrshort{ewma} retrofitting achieves $+6.2\%$ improvement ($p=0.0348$) with benefits concentrated in quantitative synthesis questions ($+33.8\%$ average). The gap between clean and noisy preprocessing (10\%+ swing) exceeds the gap between algorithms (3\%), establishing preprocessing quality as the primary determinant of retrofitting success.
comment: This paper was built on an assumption which has been proven incorrect
♻ ☆ ARGUS: Adaptive Rotation-Invariant Geometric Unsupervised System
Detecting distributional drift in high-dimensional data streams presents fundamental challenges: global comparison methods scale poorly, projection-based approaches lose geometric structure, and re-clustering methods suffer from identity instability. This paper introduces Argus, A framework that reconceptualizes drift detection as tracking local statistics over a fixed spatial partition of the data manifold. The key contributions are fourfold. First, it is proved that Voronoi tessellations over canonical orthonormal frames yield drift metrics that are invariant to orthogonal transformations. The rotations and reflections that preserve Euclidean geometry. Second, it is established that this framework achieves O(N) complexity per snapshot while providing cell-level spatial localization of distributional change. Third, a graph-theoretic characterization of drift propagation is developed that distinguishes coherent distributional shifts from isolated perturbations. Fourth, product quantization tessellation is introduced for scaling to very high dimensions (d>500) by decomposing the space into independent subspaces and aggregating drift signals across subspaces. This paper formalizes the theoretical foundations, proves invariance properties, and presents experimental validation demonstrating that the framework correctly identifies drift under coordinate rotation while existing methods produce false positives. The tessellated approach offers a principled geometric foundation for distribution monitoring that preserves high-dimensional structure without the computational burden of pairwise comparisons.
comment: This concept was built with an incorrect assumption and isn't viable
♻ ☆ OpenAIs HealthBench in Action: Evaluating an LLM-Based Medical Assistant on Realistic Clinical Queries
Evaluating large language models (LLMs) on their ability to generate high-quality, accurate, situationally aware answers to clinical questions requires going beyond conventional benchmarks to assess how these systems behave in complex, high-stakes clinical scenarios. Traditional evaluations are often limited to multiple-choice questions that fail to capture essential competencies such as contextual reasoning, contextual awareness, and uncertainty handling. To address these limitations, we evaluate our agentic RAG-based clinical support assistant, DR. INFO, using HealthBench, a rubric-driven benchmark composed of open-ended, expert-annotated health conversations. On the Hard subset of 1,000 challenging examples, DR. INFO achieves a HealthBench Hard score of 0.68, outperforming leading frontier LLMs including the GPT-5 model family (GPT-5: 0.46, GPT-5.2: 0.42, GPT-5.1: 0.40), Grok 3 (0.23), Gemini 2.5 Pro (0.19), and Claude 3.7 Sonnet (0.02) across all behavioral axes (accuracy, completeness, instruction following, etc.). In a separate 100-sample evaluation against similar agentic RAG assistants (OpenEvidence and Pathway.md, now DoxGPT by Doximity), it maintains a performance lead with a HealthBench Hard score of 0.72. These results highlight the strengths of DR. INFO in communication, instruction following, and accuracy, while also revealing areas for improvement in context awareness and response completeness. Overall, the findings underscore the utility of behavior-level, rubric-based evaluation for building reliable and trustworthy AI-enabled clinical support systems.
comment: 13 pages, two graphs
♻ ☆ Intermittent Semi-Working Mask: A New Masking Paradigm for LLMs
Multi-turn dialogues and context-intensive tasks challenge Large Language Models (LLMs) to integrate long histories without sacrificing generation quality. Although prefix LLMs can better exploit historical context via bidirectional attention on prefix tokens, they are rarely used in practice because multi-turn training requires many duplicated triplets, and its bidirectional prefix prevents KV-cache reuse at inference time, driving up high cost and latency. To retain the contextual understanding of prefix mask while preserving the inference-time efficiency of causal mask, we introduce Intermittent Semi-working Mask (ISM), a masking scheme that injects sparse bidirectional attention into the causal backbone. ISM alternates bidirectional attention over query segments with unidirectional attention over answer segments, enabling the synthesis of in-context while preserving global causality. This design eliminates triplet expansion during training and maintains KV-cache reuse during inference, yielding latency comparable to standard causal LLMs. ISM is architecture-agnostic and parameter-free, adding only minimal latency. Across extensive evaluations, ISM outperforms causal baselines not only on multi-turn dialogue, but also on context-intensive tasks like mathematical reasoning.
♻ ☆ Can Small and Reasoning Large Language Models Score Journal Articles for Research Quality and Do Averaging and Few-shot Help?
Previous research has shown that journal article quality ratings from the cloud based Large Language Model (LLM) families ChatGPT and Gemini and the medium sized open weights LLM Gemma3 27b correlate moderately with expert research quality scores. This article assesses whether other medium sized LLMs, smaller LLMs, and reasoning models have similar abilities. This is tested with Gemma3 variants, Llama4 Scout, Qwen3, Magistral Small and DeepSeek R1 on a dataset of 2,780 medical, health and life science papers in 6 fields, with two different gold standards, one novel. Few-shot and score averaging approaches are also evaluated. The results suggest that medium-sized LLMs have similar performance to ChatGPT 4o-mini and Gemini 2.0 Flash, but that 1b parameters may often, and 4b sometimes, be too few. Reasoning models did not have a clear advantage. Moreover, averaging scores from multiple identical queries seems to be a universally successful strategy, and there is weak evidence that few-shot prompts (four examples) tend to help. Overall, the results show, for the first time, that smaller LLMs >4b have a substantial capability to rate journal articles for research quality, especially if score averaging is used, but that reasoning does not give an advantage for this task; it is therefore not recommended because it is slow. The use of LLMs to support research evaluation is now more credible since multiple variants have a similar ability, including many that can be deployed offline in a secure environment without substantial computing resources.
comment: Thelwall, M. & Mohammadi, E. (2026). Can small and reasoning Large Language Models score journal articles for research quality and do averaging and few-shot help? Scientometrics
♻ ☆ Improving Variational Autoencoder using Random Fourier Transformation: An Aviation Safety Anomaly Detection Case-Study
In this study, we focus on the training process and inference improvements of deep neural networks (DNNs), specifically Autoencoders (AEs) and Variational Autoencoders (VAEs), using Random Fourier Transformation (RFT). We further explore the role of RFT in model training behavior using Frequency Principle (F-Principle) analysis and show that models with RFT turn to learn low frequency and high frequency at the same time, whereas conventional DNNs start from low frequency and gradually learn (if successful) high-frequency features. We focus on reconstruction-based anomaly detection using autoencoder and variational autoencoder and investigate the RFT's role. We also introduced a trainable variant of RFT that uses the existing computation graph to train the expansion of RFT instead of it being random. We showcase our findings with two low-dimensional synthetic datasets for data representation, and an aviation safety dataset, called Dashlink, for high-dimensional reconstruction-based anomaly detection. The results indicate the superiority of models with Fourier transformation compared to the conventional counterpart and remain inconclusive regarding the benefits of using trainable Fourier transformation in contrast to the Random variant.
♻ ☆ Cross-Modal Purification and Fusion for Small-Object RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
♻ ☆ ScholarGym: Benchmarking Large Language Model Capabilities in the Information-Gathering Stage of Deep Research
Large language models have advanced from single-turn question answering to deep research systems that iteratively decompose research questions, invoke retrieval tools, and synthesize information across multiple rounds. Evaluating such systems typically involves scoring their final research reports holistically, but this end-to-end paradigm tightly couples the language model's decision-making, workflow design, and environmental feedback, precluding decomposable analysis of individual components. We introduce ScholarGym, an evaluation environment that isolates the information-gathering stage of deep research on academic literature. Under a unified workflow, ScholarGym decomposes the research process into three explicit stages -- Query Planning, Tool Invocation, and Relevance Assessment -- and evaluates each against 2,536 expert-annotated queries over a static corpus of 570K papers with deterministic retrieval. Systematic experiments reveal that iterative query decomposition yields 2.9--3.3$\times$ F1 gains over single-query retrieval, models with extended thinking trade recall for precision, and Query Planning quality together with Relevance Assessment constitute dual bottlenecks that separate proprietary from open-source model performance.
♻ ☆ LQA: A Lightweight Quantized-Adaptive Framework for Vision-Language Models on the Edge
Deploying Vision-Language Models (VLMs) on edge devices is challenged by resource constraints and performance degradation under distribution shifts. While test-time adaptation (TTA) can counteract such shifts, existing methods are too resource-intensive for on-device deployment. To address this challenge, we propose LQA, a lightweight, quantized-adaptive framework for VLMs that combines a modality-aware quantization strategy with gradient-free test-time adaptation. We introduce Selective Hybrid Quantization (SHQ) and a quantized, gradient-free adaptation mechanism to enable robust and efficient VLM deployment on resource-constrained hardware. Experiments across both synthetic and real-world distribution shifts show that LQA improves overall adaptation performance by 4.5\%, uses less memory than full-precision models, and significantly outperforms gradient-based TTA methods, achieving up to 19.9$\times$ lower memory usage across seven open-source datasets. These results demonstrate that LQA offers a practical pathway for robust, privacy-preserving, and efficient VLM deployment on edge devices.
comment: 15 pages, 9 figures ,9 tables, preprint
♻ ☆ FlowSteer: Interactive Agentic Workflow Orchestration via End-to-End Reinforcement Learning
In recent years, a variety of powerful agentic workflows have been applied to solve a wide range of human problems. However, existing workflow orchestration still faces key challenges, including high manual cost, reliance on specific operators/large language models (LLMs), and sparse reward signals. To address these challenges, we propose FlowSteer, an end-to-end reinforcement learning framework that takes a lightweight policy model as the agent and an executable canvas environment, automating workflow orchestration through multi-turn interaction. In this process, the policy model analyzes execution states and selects editing actions, while the canvas executes operators and returns feedback for iterative refinement. Moreover, FlowSteer provides a plug-and-play framework that supports diverse operator libraries and interchangeable LLM backends. To effectively train this interaction paradigm, we propose Canvas Workflow Relative Policy Optimization (CWRPO), which introduces diversity-constrained rewards with conditional release to stabilize learning and suppress shortcut behaviors. Experimental results on twelve datasets show that FlowSteer significantly outperforms baselines across various tasks.
comment: 41 pages, 7 figures, 6 tables. Project page: http://flowsteer.org/
♻ ☆ NPG-Muse: Scaling Long Chain-of-Thought Reasoning with NP-Hard Graph Problems
Reasoning Large Language Models (RLLMs) have recently achieved remarkable progress on complex reasoning tasks, largely enabled by their long chain-of-thought (Long CoT) capabilities. However, developing these Long CoT behaviors relies heavily on post-training with high-quality datasets, which are typically costly and human-curated (e.g., mathematics and code), leaving scalable alternatives unexplored. In this work, we introduce NP-hard (NPH) graph problems as a novel synthetic training corpus, as they inherently require deep reasoning, extensive exploration, and reflective strategies, which are the core characteristics of Long CoT reasoning. Building on this insight, we develop a two-stage post-training framework: (i) Long-CoT Supervised Fine-Tuning (SFT) on rejection-sampled NPH graph instances, which substantially enhances reasoning depth, and (ii) Reinforcement Learning (RL) with a fine-grained reward design, which sharpens reasoning efficiency. The resulting NPG-Muse-series models exhibit substantially enhanced Long CoT reasoning capabilities, achieving consistent gains across mathematics, coding, logical, and graph reasoning benchmarks. NPG-Muse-7B even surpasses QwQ-32B on NPH graph problems in both accuracy and reasoning efficiency. These results position NPH graph problems as an effective and scalable resource for advancing Long CoT reasoning in LLM post-training. Our implementation is available at https://github.com/littlewyy/NPG-Muse.
♻ ☆ Topological quantification of ambiguity in semantic search
We studied how the local topological structure of sentence-embedding neighborhoods encodes semantic ambiguity. Extending ideas that link word-level polysemy to non-trivial persistent homology, we generalized the concept to full sentences and quantified ambiguity of a query in a semantic search process with two persistent homology metrics: the 1-Wasserstein norm of $H_{0}$ and the maximum loop lifetime of $H_{1}$. We formalized the notion of ambiguity as the relative presence of semantic domains or topics in sentences. We then used this formalism to compute "ab-initio" simulations that encode datapoints as linear combination of randomly generated single topics vectors in an arbitrary embedding space and demonstrate that ambiguous sentences separate from unambiguous ones in both metrics. Finally we validated those findings with real-world case by investigating on a fully open corpus comprising Nobel Prize Physics lectures from 1901 to 2024, segmented into contiguous, non-overlapping chunks at two granularity: $\sim\!250$ tokens and $\sim\!750$ tokens. We tested embedding with four publicly available models. Results across all models reproduce simulations and remain stable despite changes in embedding architecture. We conclude that persistent homology provides a model-agnostic signal of semantic discontinuities, suggesting practical use for ambiguity detection and semantic search recall.
♻ ☆ Annotation-Efficient Vision-Language Model Adaptation to the Polish Language Using the LLaVA Framework
Most vision-language models (VLMs) are trained on English-centric data, limiting their performance in other languages and cultural contexts. This restricts their usability for non-English-speaking users and hinders the development of multimodal systems that reflect diverse linguistic and cultural realities. In this work, we reproduce and adapt the LLaVA-Next methodology to create a set of Polish VLMs. We rely on a fully automated pipeline for translating and filtering existing multimodal datasets, and complement this with synthetic Polish data for OCR and culturally specific tasks. Despite relying almost entirely on automatic translation and minimal manual intervention to the training data, our approach yields strong results: we observe a +9.5% improvement over LLaVA-1.6-Vicuna-13B on a Polish-adapted MMBench, along with higher-quality captions in generative evaluations, as measured by human annotators in terms of linguistic correctness. These findings highlight that large-scale automated translation, combined with lightweight filtering, can effectively bootstrap high-quality multimodal models for low-resource languages. Some challenges remain, particularly in cultural coverage and evaluation. To facilitate further research, we make our models and evaluation dataset publicly available.
♻ ☆ Tabular Foundation Models Can Learn Association Rules
Association Rule Mining (ARM) is a fundamental task for knowledge discovery in tabular data and is widely used in high-stakes decision-making. Classical ARM methods rely on frequent itemset mining, leading to rule explosion and poor scalability, while recent neural approaches mitigate these issues but suffer from degraded performance in low-data regimes. Tabular foundation models (TFMs), pretrained on diverse tabular data with strong in-context generalization, provide a basis for addressing these limitations. We introduce a model-agnostic association rule learning framework that extracts association rules from any conditional probabilistic model over tabular data, enabling us to leverage TFMs. We then introduce TabProbe, an instantiation of our framework that utilizes TFMs as conditional probability estimators to learn association rules out-of-the-box without frequent itemset mining. We evaluate our approach on tabular datasets of varying sizes based on standard ARM rule quality metrics and downstream classification performance. The results show that TFMs consistently produce concise, high-quality association rules with strong predictive performance and remain robust in low-data settings without task-specific training. Source code is available at https://github.com/DiTEC-project/tabprobe.
♻ ☆ Safe Reinforcement Learning via Recovery-based Shielding with Gaussian Process Dynamics Models
Reinforcement learning (RL) is a powerful framework for optimal decision-making and control but often lacks provable guarantees for safety-critical applications. In this paper, we introduce a novel recovery-based shielding framework that enables safe RL with a provable safety lower bound for unknown and non-linear continuous dynamical systems. The proposed approach integrates a backup policy (shield) with the RL agent, leveraging Gaussian process (GP) based uncertainty quantification to predict potential violations of safety constraints, dynamically recovering to safe trajectories only when necessary. Experience gathered by the 'shielded' agent is used to construct the GP models, with policy optimization via internal model-based sampling - enabling unrestricted exploration and sample efficient learning, without compromising safety. Empirically our approach demonstrates strong performance and strict safety-compliance on a suite of continuous control environments.
comment: Accepted at AAMAS 2026
♻ ☆ MARS-Sep: Multimodal-Aligned Reinforced Sound Separation ICLR 2026
Universal sound separation faces a fundamental misalignment: models optimized for low-level signal metrics often produce semantically contaminated outputs, failing to suppress perceptually salient interference from acoustically similar sources. We introduce a preference alignment perspective, analogous to aligning LLMs with human intent. To address this, we introduce MARS-Sep, a reinforcement learning framework that reformulates separation as decision making. Instead of simply regressing ground-truth masks, MARS-Sep learns a factorized Beta mask policy that is steered by a preference reward model and optimized by a stable, clipped trust-region surrogate. The reward, derived from a progressively-aligned audio-text-vision encoder, directly incentivizes semantic consistency with query prompts. Extensive experiments on multiple benchmarks demonstrate consistent gains in Text-, Audio-, and Image-Queried separation, with notable improvements in signal metrics and semantic quality. Our code is available at https://github.com/mars-sep/MARS-Sep. Sound separation samples are available at https://mars-sep.github.io/.
comment: ICLR 2026
♻ ☆ NeuroLifting: Neural Inference on Markov Random Fields at Scale
Inference in large-scale Markov Random Fields (MRFs) is a critical yet challenging task, traditionally approached through approximate methods like belief propagation and mean field, or exact methods such as the Toulbar2 solver. These strategies often fail to strike an optimal balance between efficiency and solution quality, particularly as the problem scale increases. This paper introduces NeuroLifting, a novel technique that leverages Graph Neural Networks (GNNs) to reparameterize decision variables in MRFs, facilitating the use of standard gradient descent optimization. By extending traditional lifting techniques into a non-parametric neural network framework, NeuroLifting benefits from the smooth loss landscape of neural networks, enabling efficient and parallelizable optimization. Empirical results demonstrate that, on moderate scales, NeuroLifting performs very close to the exact solver Toulbar2 in terms of solution quality, significantly surpassing existing approximate methods. Notably, on large-scale MRFs, NeuroLifting delivers superior solution quality against all baselines, as well as exhibiting linear computational complexity growth. This work presents a significant advancement in MRF inference, offering a scalable and effective solution for large-scale problems.
♻ ☆ Agents of Discovery
The substantial data volumes encountered in modern particle physics and other domains of fundamental physics research allow (and require) the use of increasingly complex data analysis tools and workflows. While the use of machine learning (ML) tools for data analysis has recently proliferated, these tools are typically special-purpose algorithms that rely, for example, on encoded physics knowledge to reach optimal performance. In this work, we investigate a new and orthogonal direction: Using recent progress in large language models (LLMs) to create a team of agents -- instances of LLMs with specific subtasks -- that jointly solve data analysis-based research problems in a way similar to how a human researcher might: by creating code to operate standard tools and libraries (including ML systems) and by building on results of previous iterations. If successful, such agent-based systems could be deployed to automate routine analysis components to counteract the increasing complexity of modern tool chains. To investigate the capabilities of current-generation commercial LLMs, we consider the task of anomaly detection via the publicly available and highly-studied LHC Olympics dataset. Several current models by OpenAI (GPT-4o, o4-mini, GPT-4.1, and GPT-5) are investigated and their stability tested. Overall, we observe the capacity of the agent-based system to solve this data analysis problem. The best agent-created solutions mirror the performance of human state-of-the-art results.
♻ ☆ Agent Skills for Large Language Models: Architecture, Acquisition, Security, and the Path Forward
The transition from monolithic language models to modular, skill-equipped agents marks a defining shift in how large language models (LLMs) are deployed in practice. Rather than encoding all procedural knowledge within model weights, agent skills -- composable packages of instructions, code, and resources that agents load on demand -- enable dynamic capability extension without retraining. It is formalized in a paradigm of progressive disclosure, portable skill definitions, and integration with the Model Context Protocol (MCP). This survey provides a comprehensive treatment of the agent skills landscape, as it has rapidly evolved during the last few months. We organize the field along four axes: (i) architectural foundations, examining the SKILL$.$md specification, progressive context loading, and the complementary roles of skills and MCP; (ii) skill acquisition, covering reinforcement learning with skill libraries, autonomous skill discovery (SEAgent), and compositional skill synthesis; (iii) deployment at scale, including the computer-use agent (CUA) stack, GUI grounding advances, and benchmark progress on OSWorld and SWE-bench; and (iv) security, where recent empirical analyses reveal that 26.1% of community-contributed skills contain vulnerabilities, motivating our proposed Skill Trust and Lifecycle Governance Framework -- a four-tier, gate-based permission model that maps skill provenance to graduated deployment capabilities. We identify seven open challenges -- from cross-platform skill portability to capability-based permission models -- and propose a research agenda for realizing trustworthy, self-improving skill ecosystems. Unlike prior surveys that broadly cover LLM agents or tool use, this work focuses specifically on the emerging skill abstraction layer and its implications for the next generation of agentic systems. Project repo: https://github.com/scienceaix/agentskills
♻ ☆ Differentiating Between Human-Written and AI-Generated Texts Using Automatically Extracted Linguistic Features
While extensive research has focused on ChatGPT in recent years, very few studies have systematically quantified and compared linguistic features between human-written and artificial intelligence (AI)-generated language. This exploratory study aims to investigate how various linguistic components are represented in both types of texts, assessing the ability of AI to emulate human writing. Using human-authored essays as a benchmark, we prompted ChatGPT to generate essays of equivalent length. These texts were analyzed using Open Brain AI, an online computational tool, to extract measures of phonological, morphological, syntactic, and lexical constituents. Despite AI-generated texts appearing to mimic human speech, the results revealed significant differences across multiple linguistic features such as specific types of consonants, nouns, adjectives, pronouns, adjectival/prepositional modifiers, and use of difficult words, among others. These findings underscore the importance of integrating automated tools for efficient language assessment, reducing time and effort in data analysis. Moreover, they emphasize the necessity for enhanced training methodologies to improve the engineering capacity of AI for producing more human-like text.
♻ ☆ PROMA: Projected Microbatch Accumulation for Reference-Free Proximal Policy Updates
This note introduces Projected Microbatch Accumulation (PROMA), a reference-free proximal policy method that controls KL divergence by projecting away high-variance components of the policy gradient. Two variants are presented. In the accumulation-based variant, the running gradient is projected orthogonal to the sequence-wise log-probability gradients of each microbatch. In the intra-microbatch variant, a factored projection using dominant subspaces of activations and gradient outputs is applied independently within each microbatch, making it compatible with standard data-parallel training. Empirically, the accumulation variant achieves tighter per-step KL control than GRPO with PPO clipping, while the intra-microbatch variant achieves the best validation performance.
comment: Added validation on code benchmark
♻ ☆ From User Preferences to Base Score Extraction Functions in Gradual Argumentation (with Appendix)
Gradual argumentation is a field of symbolic AI which is attracting attention for its ability to support transparent and contestable AI systems. It is considered a useful tool in domains such as decision-making, recommendation, debate analysis, and others. The outcomes in such domains are usually dependent on the arguments' base scores, which must be selected carefully. Often, this selection process requires user expertise and may not always be straightforward. On the other hand, organising the arguments by preference could simplify the task. In this work, we introduce \emph{Base Score Extraction Functions}, which provide a mapping from users' preferences over arguments to base scores. These functions can be applied to the arguments of a \emph{Bipolar Argumentation Framework} (BAF), supplemented with preferences, to obtain a \emph{Quantitative Bipolar Argumentation Framework} (QBAF), allowing the use of well-established computational tools in gradual argumentation. We outline the desirable properties of base score extraction functions, discuss some design choices, and provide an algorithm for base score extraction. Our method incorporates an approximation of non-linearities in human preferences to allow for better approximation of the real ones. Finally, we evaluate our approach both theoretically and experimentally in a robotics setting, and offer recommendations for selecting appropriate gradual semantics in practice.
comment: Accepted to AAMAS 2026 - With Appendix
♻ ☆ A XAI-based Framework for Frequency Subband Characterization of Cough Spectrograms in Chronic Respiratory Disease
This paper presents an explainable artificial intelligence (XAI)-based framework for the spectral analysis of cough sounds associated with chronic respiratory diseases, with a particular focus on Chronic Obstructive Pulmonary Disease (COPD). A Convolutional Neural Network (CNN) is trained on time-frequency representations of cough signals, and occlusion maps are used to identify diagnostically relevant regions within the spectrograms. These highlighted areas are subsequently decomposed into five frequency subbands, enabling targeted spectral feature extraction and analysis. The results reveal that spectral patterns differ across subbands and disease groups, uncovering complementary and compensatory trends across the frequency spectrum. Noteworthy, the approach distinguishes COPD from other respiratory conditions, and chronic from non-chronic patient groups, based on interpretable spectral markers. These findings provide insight into the underlying pathophysiological characteristics of cough acoustics and demonstrate the value of frequency-resolved, XAI-enhanced analysis for biomedical signal interpretation and translational respiratory disease diagnostics.
comment: Updated funder information
♻ ☆ SR-Scientist: Scientific Equation Discovery With Agentic AI ICLR 2026
Recently, Large Language Models (LLMs) have been applied to scientific equation discovery, leveraging their embedded scientific knowledge for hypothesis generation. However, current methods typically confine LLMs to the role of an equation proposer within search algorithms like genetic programming. In this paper, we present SR-Scientist, a framework that elevates the LLM from a simple equation proposer to an autonomous AI scientist that writes code to analyze data, implements the equation as code, submits it for evaluation, and optimizes the equation based on experimental feedback. Specifically, we wrap the code interpreter into a set of tools for data analysis and equation evaluation. The agent is instructed to optimize the equation by utilizing these tools over a long horizon with minimal human-defined pipelines. Empirical results show that SR-Scientist outperforms baseline methods by an absolute margin of 6% to 35% on datasets covering four science disciplines. Additionally, we demonstrate our method's robustness to noise, the generalization of the discovered equations to out-of-domain data, and their symbolic accuracy. Furthermore, we develop an end-to-end reinforcement learning framework to enhance the agent's capabilities.
comment: ICLR 2026
♻ ☆ General Exploratory Bonus for Optimistic Exploration in RLHF ICLR 2026
Optimistic exploration is central to improving sample efficiency in reinforcement learning with human feedback, yet existing exploratory bonus methods to incentivize exploration often fail to realize optimism. We provide a theoretical analysis showing that current formulations, under KL or $α$-divergence regularization, unintentionally bias exploration toward high-probability regions of the reference model, thereby reinforcing conservative behavior instead of promoting discovery of uncertain regions. To address this pitfall, we introduce the General Exploratory Bonus (GEB), a novel theoretical framework that provably satisfies the optimism principle. GEB counteracts divergence-induced bias via reference-dependent reward regulation and unifies prior heuristic bonuses as special cases, while extending naturally across the full $α$-divergence family. Empirically, GEB consistently outperforms baselines on alignment tasks across multiple divergence settings and large language model backbones. These results demonstrate that GEB offers both a principled and practical solution for optimistic exploration in RLHF.
comment: ICLR 2026
♻ ☆ Toward Agentic Software Engineering Beyond Code: Framing Vision, Values, and Vocabulary
Agentic AI is poised to usher in a seismic paradigm shift in Software Engineering (SE). As technologists rush head-along to make agentic AI a reality, SE researchers are driven to establish agentic SE as a research area. While early visions of agentic SE are primarily focused on code-related activities, early empirical evidence calls for a consideration of a wider range of socio-technical activities and concerns to make it work in practice. This paper contributes to the emerging visions by: (a) recommending an expansion of its scope beyond code, toward a 'whole of process' vision, grounding it in SE foundations and evolution and emerging agentic SE frameworks, (b) proposing a preliminary set of values and principles to guide community efforts, and (c) sharing guidance on designing and using well-defined vocabulary for agentic SE. It is hoped that these ideas will encourage collaborations and steer the SE community toward laying strong foundations of agentic SE so it is not limited to enabling coding acceleration but becomes the next process-level paradigm shift.
comment: 5 pages
♻ ☆ DARB-Splatting: Generalizing Splatting with Decaying Anisotropic Radial Basis Functions
Splatting-based 3D reconstruction methods have gained popularity with the advent of 3D Gaussian Splatting, efficiently synthesizing high-quality novel views. These methods commonly resort to using exponential family functions, such as the Gaussian function, as reconstruction kernels due to their anisotropic nature, ease of projection, and differentiability in rasterization. However, the field remains restricted to variations within the exponential family, leaving generalized reconstruction kernels largely underexplored, partly due to the lack of easy integrability in 3D to 2D projections. In this light, we show that a class of decaying anisotropic radial basis functions (DARBFs), which are non-negative functions of the Mahalanobis distance, supports splatting by approximating the Gaussian function's closed-form integration advantage. With this fresh perspective, we demonstrate varying performances across selected DARB reconstruction kernels, achieving comparable training convergence and memory footprints, with on-par PSNR, SSIM, and LPIPS results.
comment: Link to the project page: https://github.com/viruthshaan/darb-splatting/
♻ ☆ MMS-VPR: Multimodal Street-Level Visual Place Recognition Dataset and Benchmark
Existing visual place recognition (VPR) datasets predominantly rely on vehicle-mounted imagery, offer limited multimodal diversity, and underrepresent dense pedestrian street scenes, particularly in non-Western urban contexts. We introduce MMS-VPR, a large-scale multimodal dataset for street-level place recognition in pedestrian-only environments. MMS-VPR comprises 110,529 images and 2,527 video clips across 208 locations in a ~70,800 $m^2$ open-air commercial district in Chengdu, China. Field data were collected in 2024, while social media data span seven years (2019-2025), providing both fine-grained temporal granularity and long-term temporal coverage. Each location features comprehensive day-night coverage, multiple viewing angles, and multimodal annotations including GPS coordinates, timestamps, and semantic textual metadata. We further release MMS-VPRlib, a unified benchmarking platform that consolidates commonly used VPR datasets and state-of-the-art methods under a standardized, reproducible pipeline. MMS-VPRlib provides modular components for data pre-processing, multimodal modeling (CNN/RNN/Transformer), signal enhancement, alignment, fusion, and performance evaluation. This platform moves beyond traditional image-only paradigms, enabling systematic exploitation of complementary visual, video, and textual modalities. The dataset is available at https://huggingface.co/datasets/Yiwei-Ou/MMS-VPR and the benchmark at https://github.com/yiasun/MMS-VPRlib.
comment: Under review
♻ ☆ Efficient Semi-Supervised Adversarial Training via Latent Clustering-Based Data Reduction ICML 2024
Learning robust models under adversarial settings is widely recognized as requiring a considerably large number of training samples. Recent work proposes semi-supervised adversarial training (SSAT), which utilizes external unlabeled or synthetically generated data and is currently the state of the art. However, SSAT requires substantial extra data to attain high robustness, resulting in prolonged training time and increased memory usage. In this paper, we propose data reduction strategies to improve the efficiency of SSAT by optimizing the amount of additional data incorporated. Specifically, we design novel latent clustering-based techniques to select or generate a small, critical subset of data samples near the model's decision boundary. While focusing on boundary-adjacent points, our methods maintain a balanced ratio between boundary and non-boundary data points, thereby avoiding overfitting. Comprehensive experiments across image benchmarks demonstrate that our methods can effectively reduce SSAT's data requirements and computational costs while preserving its strong robustness advantages. In particular, our latent-space selection scheme based on k-means clustering and our guided diffusion-based approach with LCG-KM are the most effective, achieving nearly identical robust accuracies with 5 times to 10 times less unlabeled data. When compared to full SSAT trained to convergence, our methods reduce total runtime by approximately 3 times to 4 times due to strategic prioritization of unlabeled data.
comment: Shorter version of this work accepted by NextGenAISafety Workshop at ICML 2024
♻ ☆ Robust Deep Reinforcement Learning against Adversarial Behavior Manipulation ICLR 2026
This study investigates behavior-targeted attacks on reinforcement learning and their countermeasures. Behavior-targeted attacks aim to manipulate the victim's behavior as desired by the adversary through adversarial interventions in state observations. Existing behavior-targeted attacks have some limitations, such as requiring white-box access to the victim's policy. To address this, we propose a novel attack method using imitation learning from adversarial demonstrations, which works under limited access to the victim's policy and is environment-agnostic. In addition, our theoretical analysis proves that the policy's sensitivity to state changes impacts defense performance, particularly in the early stages of the trajectory. Based on this insight, we propose time-discounted regularization, which enhances robustness against attacks while maintaining task performance. To the best of our knowledge, this is the first defense strategy specifically designed for behavior-targeted attacks.
comment: Accepted at ICLR 2026
♻ ☆ Toward Safer Diffusion Language Models: Discovery and Mitigation of Priming Vulnerability ICLR 2026
Diffusion language models (DLMs) generate tokens in parallel through iterative denoising, which can reduce latency and enable bidirectional conditioning. However, the safety risks posed by jailbreak attacks that exploit this inference mechanism are not well understood. In this paper, we reveal that DLMs have a critical vulnerability stemming from their iterative denoising process and propose a countermeasure. Specifically, our investigation shows that if an affirmative token for a harmful query appears at an intermediate step, subsequent denoising can be steered toward a harmful response even in aligned models. As a result, simply injecting such affirmative tokens can readily bypass the safety guardrails. Furthermore, we demonstrate that the vulnerability allows existing optimization-based jailbreak attacks to succeed on DLMs. Building on this analysis, we propose a novel safety alignment method tailored to DLMs that trains models to generate safe responses from contaminated intermediate states that contain affirmative tokens. Our experiments indicate that the proposed method significantly mitigates the vulnerability with minimal impact on task performance. Furthermore, our method improves robustness against conventional jailbreak attacks. Our work underscores the need for DLM-specific safety research. Our code is available at https://github.com/mdl-lab/dlm-priming-vulnerability.
comment: Accepted at ICLR 2026
♻ ☆ The Manifold of the Absolute: Religious Perennialism as Generative Inference
This paper formalizes religious epistemology through the mathematics of Variational Autoencoders. We model religious traditions as distinct generative mappings from a shared, low-dimensional latent space to the high-dimensional space of observable cultural forms, and define three competing generative configurations corresponding to exclusivism, universalism, and perennialism, alongside syncretism as direct mixing in observable space. Through abductive comparison, we argue that exclusivism cannot parsimoniously account for cross-traditional contemplative convergence, that syncretism fails because combining the outputs of distinct generative processes produces incoherent artifacts, and that universalism suffers from posterior collapse: stripping traditions to a common core discards the structural information necessary for inference. The perennialist configuration provides the best explanatory fit. Within this framework, strict orthodoxy emerges not as a cultural constraint but as a structural necessity: the contemplative practices that recover the latent source must be matched to the specific tradition whose forms they take as input. The unity of religions, if it exists, is real but inaccessible by shortcut: one must go deep rather than wide.
♻ ☆ Qronos: Correcting the Past by Shaping the Future... in Post-Training Quantization
We introduce Qronos -- a new state-of-the-art post-training quantization algorithm that sequentially rounds and updates neural network weights. Qronos not only explicitly corrects errors due to both weight and activation quantization, but also errors resulting from quantizing previous layers. Our iterative algorithm is based on an interpretable and disciplined optimization framework that subsumes and surpasses existing data-driven approaches. At each step, Qronos alternates between error correction and diffusion via optimal update rules. Importantly, we prove that Qronos admits an efficient implementation that uses the Cholesky decomposition for solving least-squares problems. We also demonstrate that Qronos is compatible with existing transformation techniques such as Hadamard-based incoherence processing and weight-activation scaling equalization, among others. We evaluate Qronos using recent autoregressive language generation models in the Llama3 family; Qronos consistently outperforms previous state-of-the-art adaptive rounding methods when quantizing the weights, activations, and/or KV caches.
♻ ☆ MARS: Modular Agent with Reflective Search for Automated AI Research
Automating AI research differs from general software engineering due to computationally expensive evaluation (e.g., model training) and opaque performance attribution. Current LLM-based agents struggle here, often generating monolithic scripts that ignore execution costs and causal factors. We introduce MARS (Modular Agent with Reflective Search), a framework optimized for autonomous AI research. MARS relies on three pillars: (1) Budget-Aware Planning via cost-constrained Monte Carlo Tree Search (MCTS) to explicitly balance performance with execution expense; (2) Modular Construction, employing a "Design-Decompose-Implement" pipeline to manage complex research repositories; and (3) Comparative Reflective Memory, which addresses credit assignment by analyzing solution differences to distill high-signal insights. MARS achieves state-of-the-art performance among open-source frameworks on MLE-Bench under comparable settings, maintaining competitiveness with the global leaderboard's top methods. Furthermore, the system exhibits qualitative "Aha!" moments, where 63% of all utilized lessons originate from cross-branch transfer, demonstrating that the agent effectively generalizes insights across search paths.
♻ ☆ Learning Admissible Heuristics for A*: Theory and Practice
Heuristic functions are central to the performance of search algorithms such as A-star, where admissibility - the property of never overestimating the true shortest-path cost - guarantees solution optimality. Recent deep learning approaches often disregard admissibility and provide limited guarantees on generalization beyond the training data. This paper addresses both of these limitations. First, we pose heuristic learning as a constrained optimization problem and introduce Cross-Entropy Admissibility (CEA), a loss function that enforces admissibility during training. On the Rubik's Cube domain, this method yields near-admissible heuristics with significantly stronger guidance than compressed pattern database (PDB) heuristics. Theoretically, we study the sample complexity of learning heuristics. By leveraging PDB abstractions and the structural properties of graphs such as the Rubik's Cube, we tighten the bound on the number of training samples needed for A-star to generalize. Replacing a general hypothesis class with a ReLU neural network gives bounds that depend primarily on the network's width and depth, rather than on graph size. Using the same network, we also provide the first generalization guarantees for goal-dependent heuristics.
♻ ☆ A Comparative Analysis of Social Network Topology in Reddit and Moltbook
Recent advances in agent-mediated systems have enabled a new paradigm of social network simulation, where AI agents interact with human-like autonomy. This evolution has fostered the emergence of agent-driven social networks such as Moltbook, a Reddit-like platform populated entirely by AI agents. Despite these developments, empirical comparisons between agent-driven and human-driven social networks remain scarce, limiting our understanding of how their network topologies might diverge. This paper presents the first comparative analysis of network topology on Moltbook, utilizing a comment network comprising 33,577 nodes and 697,688 edges. To provide a benchmark, we curated a parallel dataset from Reddit consisting of 7.8 million nodes and 51.8 million edges. We examine key structural differences between agent-drive and human-drive networks, specifically focusing on topological patterns and the edge formation efficacy of their respective posts. Our findings provide a foundational profile of AI-driven social structures, serving as a preliminary step toward developing more robust and authentic agent-mediated social systems.
♻ ☆ Multi-Agent Comedy Club: Investigating Community Discussion Effects on LLM Humor Generation
Prior work has explored multi-turn interaction and feedback for LLM writing, but evaluations still largely center on prompts and localized feedback, leaving persistent public reception in online communities underexamined. We test whether broadcast community discussion improves stand-up comedy writing in a controlled multi-agent sandbox: in the discussion condition, critic and audience threads are recorded, filtered, stored as social memory, and later retrieved to condition subsequent generations, whereas the baseline omits discussion. Across 50 rounds (250 paired monologues) judged by five expert annotators using A/B preference and a 15-item rubric, discussion wins 75.6% of instances and improves Craft/Clarity (Δ = 0.440) and Social Response (Δ = 0.422), with occasional increases in aggressive humor.
comment: 18 pages, 5 figures
♻ ☆ A Formal Framework for the Explanation of Finite Automata Decisions
Finite automata (FA) are a fundamental computational abstraction that is widely used in practice for various tasks in computer science, linguistics, biology, electrical engineering, and artificial intelligence. Given an input word, an FA maps the word to a result, in the simple case "accept" or "reject", but in general to one of a finite set of results. A question that then arises is: why? Another question is: how can we modify the input word so that it is no longer accepted? One may think that the automaton itself is an adequate explanation of its behaviour, but automata can be very complex and difficult to make sense of directly. In this work, we investigate how to explain the behaviour of an FA on an input word in terms of the word's characters. In particular, we are interested in minimal explanations: what is the minimal set of input characters that explains the result, and what are the minimal changes needed to alter the result? In this paper, we propose an efficient method to determine all minimal explanations for the behaviour of an FA on a particular word. This allows us to give unbiased explanations about which input features are responsible for the result. Experiments show that our approach scales well, even when the underlying problem is challenging.
♻ ☆ Deep Ignorance: Filtering Pretraining Data Builds Tamper-Resistant Safeguards into Open-Weight LLMs
Open-weight AI systems offer unique benefits, including enhanced transparency, open research, and decentralized access. However, they are vulnerable to tampering attacks which can efficiently elicit harmful behaviors by modifying weights or activations. Currently, there is not yet a robust science of open-weight model risk management. Existing safety fine-tuning methods and other post-training techniques have struggled to make LLMs resistant to more than a few dozen steps of adversarial fine-tuning. In this paper, we investigate whether filtering text about dual-use topics from training data can prevent unwanted capabilities and serve as a more tamper-resistant safeguard. We introduce a multi-stage pipeline for scalable data filtering and show that it offers a tractable and effective method for minimizing biothreat proxy knowledge in LLMs. We pretrain multiple 6.9B-parameter models from scratch and find that they exhibit substantial resistance to adversarial fine-tuning attacks on up to 10,000 steps and 300M tokens of biothreat-related text -- outperforming existing post-training baselines by over an order of magnitude -- with no observed degradation to unrelated capabilities. However, while filtered models lack internalized dangerous knowledge, we find that they can still leverage such information when it is provided in context (e.g., via search tool augmentation), demonstrating a need for a defense-in-depth approach. Overall, these findings help to establish pretraining data curation as a promising layer of defense for open-weight AI systems.
comment: https://deepignorance.ai/
♻ ☆ SIGMUS: Semantic Integration for Knowledge Graphs in Multimodal Urban Spaces
Modern urban spaces are equipped with an increasingly diverse set of sensors, all producing an abundance of multimodal data. Such multimodal data can be used to identify and reason about important incidents occurring in urban landscapes, such as major emergencies, cultural and social events, as well as natural disasters. However, such data may be fragmented over several sources and difficult to integrate due to the reliance on human-driven reasoning for identifying relationships between the multimodal data corresponding to an incident, as well as understanding the different components which define an incident. Such relationships and components are critical to identifying the causes of such incidents, as well as producing forecasting the scale and intensity of future incidents as they begin to develop. In this work, we create SIGMUS, a system for Semantic Integration for Knowledge Graphs in Multimodal Urban Spaces. SIGMUS uses Large Language Models (LLMs) to produce the necessary world knowledge for identifying relationships between incidents occurring in urban spaces and data from different modalities, allowing us to organize evidence and observations relevant to an incident without relying and human-encoded rules for relating multimodal sensory data with incidents. This organized knowledge is represented as a knowledge graph, organizing incidents, observations, and much more. We find that our system is able to produce reasonable connections between 5 different data sources (new article text, CCTV images, air quality, weather, and traffic measurements) and relevant incidents occurring at the same time and location.
comment: 9 pages, accepted at UrbComp 2025 KDD 2025
♻ ☆ Generating Findings for Jaw Cysts in Dental Panoramic Radiographs Using a GPT-Based VLM: A Preliminary Study on Building a Two-Stage Self-Correction Loop with Structured Output (SLSO) Framework
Vision-language models (VLMs) such as GPT (Generative Pre-Trained Transformer) have shown potential for medical image interpretation; however, challenges remain in generating reliable radiological findings in clinical practice, as exemplified by dental pathologies. This study proposes a Self-correction Loop with Structured Output (SLSO) framework as an integrated processing methodology to enhance the accuracy and reliability of AI-generated findings for jaw cysts in dental panoramic radiographs. Dental panoramic radiographs with jaw cysts were used to implement a 10-step integrated processing framework incorporating image analysis, structured data generation, tooth number extraction, consistency checking, and iterative regeneration. The framework functioned as an external validation mechanism for GPT outputs. Performance was compared against the conventional Chain-of-Thought (CoT) method across seven evaluation items: transparency, internal structure, borders, root resorption, tooth movement, relationships with other structures, and tooth number. The SLSO framework improved output accuracy for multiple items compared to the CoT method, with the most notable improvements observed in tooth number identification, tooth movement detection, and root resorption assessment. In successful cases, consistently structured outputs were achieved after up to five regenerations. The framework enforced explicit negative finding descriptions and suppressed hallucinations, although accurate identification of extensive lesions spanning multiple teeth remained limited. This investigation established the feasibility of the proposed integrated processing methodology and provided a foundation for future validation studies with larger, more diverse datasets.
comment: Revised manuscript; supplementary materials added. Submitted to Diagnostics
♻ ☆ Prover Agent: An Agent-Based Framework for Formal Mathematical Proofs
We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas. These auxiliary lemmas are not limited to subgoals in the formal proof but can also include special cases or potentially useful facts derived from the assumptions, which help in discovering a viable proof strategy. It achieves an 88.1% success rate on MiniF2F and solves 25 problems on the PutnamBench with a smaller sample budget than previous approaches, establishing a new state-of-the-art on both benchmarks among methods using small language models (SLMs). We also present theoretical analyses and case studies that illustrate how these generated lemmas contribute to solving challenging problems. Our code is publicly available at https://github.com/kAIto47802/Prover-Agent.
comment: 49 pages, 4 figures
♻ ☆ Collaborative Multi-Robot Non-Prehensile Manipulation via Flow-Matching Co-Generation
Coordinating a team of robots to reposition multiple objects in cluttered environments requires reasoning jointly about where robots should establish contact, how to manipulate objects once contact is made, and how to navigate safely and efficiently at scale. Prior approaches typically fall into two extremes -- either learning the entire task or relying on privileged information and hand-designed planners -- both of which struggle to handle diverse objects in long-horizon tasks. To address these challenges, we present a unified framework for collaborative multi-robot, multi-object non-prehensile manipulation that integrates flow-matching co-generation with anonymous multi-robot motion planning. Within this framework, a generative model co-generates contact formations and manipulation trajectories from visual observations, while a novel motion planner conveys robots at scale. Crucially, the same planner also supports coordination at the object level, assigning manipulated objects to larger target structures and thereby unifying robot- and object-level reasoning within a single algorithmic framework. Experiments in challenging simulated environments demonstrate that our approach outperforms baselines in both motion planning and manipulation tasks, highlighting the benefits of generative co-design and integrated planning for scaling collaborative manipulation to complex multi-agent, multi-object settings. Visit gco-paper.github.io for code and demonstrations.
♻ ☆ Online Fine-Tuning of Pretrained Controllers for Autonomous Driving via Real-Time Recurrent RL
Deploying pretrained policies in real-world applications presents substantial challenges that fundamentally limit the practical applicability of learning-based control systems. When autonomous systems encounter environmental changes in system dynamics, sensor drift, or task objectives, fixed policies rapidly degrade in performance. We show that employing Real-Time Recurrent Reinforcement Learning (RTRRL), a biologically plausible algorithm for online adaptation, can effectively fine-tune a pretrained policy to improve autonomous agents' performance on driving tasks. We further show that RTRRL synergizes with a recent biologically inspired recurrent network model, the Liquid-Resistance Liquid-Capacitance RNN. We demonstrate the effectiveness of this closed-loop approach in a simulated CarRacing environment and in a real-world line-following task with a RoboRacer car equipped with an event camera.
♻ ☆ Fast and Near-Optimal Collision-Free Robot Scheduling On Paths
In this paper, we address the problem of scheduling a set of robots to complete tasks in a laboratory environment, modelled as a graph, while avoiding collisions. We analyze the dynamic programming algorithm (PA) introduced in arXiv:2402.12019 and present three baselines for comparison: an integer programming approach (IP) that always yields an optimal solution, a greedy algorithm (GA), and a simple randomized algorithm (RA). We show that for a path graph, PA, GA, and RA find solutions several orders of magnitude faster than IP (the optimal baseline), with PA returning optimal results in the vast majority of cases. Our scaled experiments comparing non-optimal algorithms show that the average schedule timespan produced by PA is less than half that of RA and GA. This outperformance is consistent across varying path lengths, task durations and distributions, number and allocations of tasks and robots, and task-to-robot ratios. This work serves two purposes. First, we present three algorithms for scheduling on line graphs, including a novel integer programming formulation for finding optimal solutions. Second, we demonstrate that PA produces near-optimal schedules that outperform all non-optimal baselines while maintaining a comparable runtime. Code is available at https://github.com/sea26-robots/code.
♻ ☆ Prescribed Performance Control of Unknown Euler-Lagrange Systems Under Input Constraints
In this paper, we present a prescribed performance control framework for trajectory tracking in Euler-Lagrange systems with unknown dynamics and prescribed input constraints. The proposed approach enforces hard funnel constraints, meaning that the prescribed performance bounds must not be violated during operation. We derive feasibility conditions that guarantee the tracking error evolves within these predefined funnels while ensuring bounded control inputs. To handle situations where the feasibility conditions are not satisfied, we introduce two approximation-free control strategies: one that actively drives the error back toward the funnel and another that prioritizes safety by preventing further deviation. The effectiveness and robustness of the proposed method are demonstrated through simulation studies and hardware experiments, highlighting its suitability for real-world robotic systems operating under strict input limits.
♻ ☆ MoIRA: Modular Instruction Routing Architecture for Multi-Task Robotics
Mixture-of-Experts (MoE) approaches have recently gained traction in robotics applications due to their ability to dynamically allocate computational resources and specialize sub-networks for distinct tasks or environmental contexts, enabling more efficient decision-making. Such systems often comprise sparsely activated experts combined under a single monolithic architecture and require a well-configured internal routing mechanism, which does not allow for selective low-level expert and router customization and requires additional training. We propose MoIRA, an architecture-agnostic modular MoE framework designed to coordinate existing experts with an external text-based router. MoIRA incorporates two zero-shot routing options: embedding-based similarity and prompt-driven language model inference. In our experiments, we choose large Vision-Language-Action models, gr00t-N1 and $π_0$, as the underlying experts, and train low-rank adapters for low-overhead inference. We evaluate MoIRA on various GR1 Humanoid tasks and LIBERO Spatial and Goal benchmarks, where it consistently outperforms generalist models and competes with other MoE pipelines. Additionally, we analyse the robustness of the proposed approach to the variations of the instructions. While relying solely on textual descriptions of tasks and experts, MoIRA demonstrates the practical viability of modular deployment with precise, low-effort routing and provides an alternative, scalable foundation for future multi-expert robotic systems.
comment: Updated to reflect the final accepted version published in Neurocomputing
♻ ☆ SafeFlowMPC: Predictive and Safe Trajectory Planning for Robot Manipulators with Learning-based Policies
The emerging integration of robots into everyday life brings several major challenges. Compared to classical industrial applications, more flexibility is needed in combination with real-time reactivity. Learning-based methods can train powerful policies based on demonstrated trajectories, such that the robot generalizes a task to similar situations. However, these black-box models lack interpretability and rigorous safety guarantees. Optimization-based methods provide these guarantees but lack the required flexibility and generalization capabilities. This work proposes SafeFlowMPC, a combination of flow matching and online optimization to combine the strengths of learning and optimization. This method guarantees safety at all times and is designed to meet the demands of real-time execution by using a suboptimal model-predictive control formulation. SafeFlowMPC achieves strong performance in three real-world experiments on a KUKA 7-DoF manipulator, namely two grasping experiment and a dynamic human-robot object handover experiment. A video of the experiments is available at http://www.acin.tuwien.ac.at/42d6. The code is available at https://github.com/TU-Wien-ACIN-CDS/SafeFlowMPC.
comment: Accepted at ICRA 2026
♻ ☆ ETGL-DDPG: A Deep Deterministic Policy Gradient Algorithm for Sparse Reward Continuous Control
We consider deep deterministic policy gradient (DDPG) in the context of reinforcement learning with sparse rewards. To enhance exploration, we introduce a search procedure, \emph{$ε{t}$-greedy}, which generates exploratory options for exploring less-visited states. We prove that search using $εt$-greedy has polynomial sample complexity under mild MDP assumptions. To more efficiently use the information provided by rewarded transitions, we develop a new dual experience replay buffer framework, \emph{GDRB}, and implement \emph{longest n-step returns}. The resulting algorithm, \emph{ETGL-DDPG}, integrates all three techniques: \bm{$εt$}-greedy, \textbf{G}DRB, and \textbf{L}ongest $n$-step, into DDPG. We evaluate ETGL-DDPG on standard benchmarks and demonstrate that it outperforms DDPG, as well as other state-of-the-art methods, across all tested sparse-reward continuous environments. Ablation studies further highlight how each strategy individually enhances the performance of DDPG in this setting.
comment: We have expanded the related work section with more detailed discussions and enhanced our experiments by incorporating additional data and analysis
♻ ☆ Octopus-like Reaching Motion: A Perspective Inspired by Whipping
The stereotypical reaching motion of the octopus arm has drawn growing attention for its efficient control of a highly deformable body. Previous studies suggest that its characteristic bend propagation may share underlying principles with the dynamics of a whip. This work investigates whether whip-like passive dynamics in water can reproduce the kinematic features observed in biological reaching and their similarities and differences. Platform-based whipping tests were performed in water and air while systematically varying material stiffness and driving speed. Image-based quantification revealed that the Ecoflex Gel 2 arm driven at 150 rpm (motor speed) reproduced curvature propagation similar to that observed in octopus reaching. However, its bend-point velocity decreased monotonically rather than exhibiting the biological bell-shaped profile, confirming that the octopus reaching movement is not merely a passive whipping behavior. The absence of propagation in air further highlights the critical role of the surrounding medium in forming octopus-like reaching motion. This study provides a new perspective for understand biological reaching movement, and offers a potential platform for future hydrodynamic research.
comment: The first two listed authors contributed equally. Yiyuan Zhang is the corresponding author
♻ ☆ Satellite Autonomous Clock Fault Monitoring with Inter-Satellite Ranges Using Euclidean Distance Matrices
To address the need for robust positioning, navigation, and timing services in lunar environments, this paper proposes a novel onboard clock phase jump detection framework for satellite constellations using range measurements obtained from dual one-way inter-satellite links. Our approach leverages vertex redundantly rigid graphs to detect faults without relying on prior knowledge of satellite positions or clock biases, providing flexibility for lunar satellite networks with diverse satellite types and operators. We model satellite constellations as graphs, where satellites are vertices and inter-satellite links are edges. The proposed algorithm detects and identifies satellites with clock jumps by monitoring the singular values of the geometric-centered Euclidean distance matrix (GCEDM) of 5-clique sub-graphs. The proposed method is validated through simulations of a GPS constellation and a notional constellation around the Moon, demonstrating its effectiveness in various configurations.
comment: This manuscript was submitted to the NAVIGATION: Journal of the Institute of Navigation
♻ ☆ A Review of Fairness and A Practical Guide to Selecting Context-Appropriate Fairness Metrics in Machine Learning
Recent regulatory proposals for artificial intelligence emphasize fairness requirements for machine learning models. However, precisely defining the appropriate measure of fairness is challenging due to philosophical, cultural and political contexts. Biases can infiltrate machine learning models in complex ways depending on the model's context, rendering a single common metric of fairness insufficient. This ambiguity highlights the need for criteria to guide the selection of context-aware measures, an issue of increasing importance given the proliferation of ever tighter regulatory requirements. To address this, we developed a flowchart to guide the selection of contextually appropriate fairness measures. Twelve criteria were used to formulate the flowchart. This included consideration of model assessment criteria, model selection criteria, and data bias. We also review fairness literature in the context of machine learning and link it to core regulatory instruments to assist policymakers, AI developers, researchers, and other stakeholders in appropriately addressing fairness concerns and complying with relevant regulatory requirements.
comment: 24 pages, 5 figures, 1 table
♻ ☆ Refined Bayesian Optimization for Efficient Beam Alignment in Intelligent Indoor Wireless Environments
Future intelligent indoor wireless environments require fast and reliable beam alignment to sustain high-throughput links under mobility and blockage. Exhaustive beam training achieves optimal performance but is prohibitively costly. In indoor settings, dense scatterers and transceiver hardware imperfections introduce multipath and sidelobe leakage, producing measurable power across multiple angles and reducing the effectiveness of outdoor-oriented alignment algorithms. This paper presents a Refined Bayesian Optimization (R-BO) framework that exploits the inherent structure of mmWave transceiver patterns, where received power gradually increases as the transmit and receive beams converge toward the optimum. R-BO integrates a Gaussian Process (GP) surrogate with a Matern kernel and an Expected Improvement (EI) acquisition function, followed by a localized refinement around the predicted optimum. The GP hyperparameters are re-optimized online to adapt to irregular variations in the measured angular power field caused by reflections and sidelobe leakage. Experiments across 43 receiver positions in an indoor laboratory demonstrate 97.7% beam-alignment accuracy within 10 degrees, less than 0.3 dB average loss, and an 88% reduction in probing overhead compared to exhaustive search. These results establish R-BO as an efficient and adaptive beam-alignment solution for real-time intelligent indoor wireless environments.
♻ ☆ CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding, and is already established as a critical modality in remote sensing. However, variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies, leading to camera-specific models with limited generalizability and inadequate cross-camera applicability. To address this bottleneck, we introduce CARL, a model for Camera-Agnostic Representation Learning across RGB, multispectral, and hyperspectral imaging modalities. To enable the conversion of a spectral image with any channel dimensionality to a camera-agnostic representation, we introduce a novel spectral encoder, featuring a self-attention-cross-attention mechanism, to distill salient spectral information into learned spectral representations. Spatio-spectral pre-training is achieved with a novel feature-based self-supervision strategy tailored to CARL. Large-scale experiments across the domains of medical imaging, autonomous driving, and satellite imaging demonstrate our model's unique robustness to spectral heterogeneity, outperforming on datasets with simulated and real-world cross-camera spectral variations. The scalability and versatility of the proposed approach position our model as a backbone for future spectral foundation models. Code and model weights are publicly available at https://github.com/IMSY-DKFZ/CARL.
♻ ☆ Predicting Training Re-evaluation Curves Enables Effective Data Curriculums for LLMs ICLR 2026
Data curriculums have become central to successful LLM training, yet principles governing optimal data placement remain unclear. We introduce the *training re-evaluation curve (TREC)*, a diagnostic that retrospectively evaluates training batches *using the final model weights*. The TREC characterizes how well a trained model retains training data as a function of *when* the data was encountered during training. Analyzing TRECs for models from 111M to 3.9B parameters, we show that placing high-quality data at low points on the TREC significantly improves performance. Importantly, while a TREC is initially observable only after training, we demonstrate it can be *predicted in advance* from AdamW's implicit EMA coefficients, enabling proactive curriculum design. By predicting TRECs for published training recipes, we explain prior ablations and reveal suboptimal data placements. We also align high-quality data with TREC minima in order to improve continual pre-training of a 3.9B-parameter LLM trained on 900B tokens.
comment: ICLR 2026
♻ ☆ CreativityPrism: A Holistic Evaluation Framework for Large Language Model Creativity
Creativity is often seen as a hallmark of human intelligence. While large language models (LLMs) are increasingly perceived as generating creative text, there is still no holistic and scalable framework to evaluate their creativity across diverse scenarios. Existing methods of LLM creativity evaluation either heavily rely on humans, limiting speed and scalability, or are fragmented across different domains and different definitions of creativity. To address this gap, we propose CREATIVITYPRISM, an evaluation analysis framework that consolidates eight tasks from three domains, divergent thinking, creative writing, and logical reasoning, into a taxonomy of creativity that emphasizes three dimensions: quality, novelty, and diversity of LLM generations. The framework is designed to be scalable with reliable automatic evaluation judges that have been validated against human annotations. We evaluate 17 state-of-the-art (SoTA) proprietary and open-sourced LLMs on CREATIVITYPRISM and find that while proprietary LLMs dominate creative writing and logical reasoning tasks by a 15% lead over open-sourced ones, they offer no significant advantage in divergent thinking, a domain much less explored in existing post-training regimes. Our analysis also shows that high performance in one creative dimension or domain rarely generalizes to others; specifically, novelty metrics often show weak or negative correlations with other metrics. This fragmentation confirms that a holistic, multi-dimensional framework like CREATIVITYPRISM is essential for meaningful assessment of LLM creativity.
♻ ☆ From Pixels to Policies: Reinforcing Spatial Reasoning in Language Models for Content-Aware Layout Design
We introduce LaySPA, a reinforcement learning framework that equips large language models (LLMs) with explicit and interpretable spatial reasoning for content-aware graphic layout design. LaySPA addresses two key challenges: LLMs' limited spatial reasoning and the lack of opacity in design decision making. Instead of operating at the pixel level, we reformulate layout design as a policy learning problem over a structured textual spatial environment that explicitly encodes canvas geometry, element attributes, and inter-element relationships. LaySPA produces dual-level outputs comprising interpretable reasoning traces and structured layout specifications, enabling transparent and controllable design decision making. Layout design policy is optimized via a multi-objective spatial critique that decomposes layout quality into geometric validity, relational coherence, and aesthetic consistency, and is trained using relative group optimization to stabilize learning in open-ended design spaces. Experiments demonstrate that LaySPA improves structural validity and visual quality, outperforming larger proprietary LLMs and achieving performance comparable to specialized SOTA layout generators while requiring fewer annotated samples and reduced latency.
♻ ☆ Learning to Select Like Humans: Explainable Active Learning for Medical Imaging
Medical image analysis requires substantial labeled data for model training, yet expert annotation is expensive and time-consuming. Active learning (AL) addresses this challenge by strategically selecting the most informative samples for the annotation purpose, but traditional methods solely rely on predictive uncertainty while ignoring whether models learn from clinically meaningful features a critical requirement for clinical deployment. We propose an explainability-guided active learning framework that integrates spatial attention alignment into a sample acquisition process. Our approach advocates for a dual-criterion selection strategy combining: (i) classification uncertainty to identify informative examples, and (ii) attention misalignment with radiologist-defined regions-of-interest (ROIs) to target samples where the model focuses on incorrect features. By measuring misalignment between Grad-CAM attention maps and expert annotations using Dice similarity, our acquisition function judiciously identifies samples that enhance both predictive performance and spatial interpretability. We evaluate the framework using three expert-annotated medical imaging datasets, namely, BraTS (MRI brain tumors), VinDr-CXR (chest X-rays), and SIIM-COVID-19 (chest X-rays). Using only 570 strategically selected samples, our explainability-guided approach consistently outperforms random sampling across all the datasets, achieving 77.22% accuracy on BraTS, 52.37% on VinDr-CXR, and 52.66% on SIIM-COVID. Grad-CAM visualizations confirm that the models trained by our dual-criterion selection focus on diagnostically relevant regions, demonstrating that incorporating explanation guidance into sample acquisition yields superior data efficiency while maintaining clinical interpretability.
comment: Accepted for publication IEEE Conference on Artificial Intelligence 2026, Granada, Spain
♻ ☆ Arming Data Agents with Tribal Knowledge
Natural language to SQL (NL2SQL) translation enables non-expert users to query relational databases through natural language. Recently, NL2SQL agents, powered by the reasoning capabilities of Large Language Models (LLMs), have significantly advanced NL2SQL translation. Nonetheless, NL2SQL agents still make mistakes when faced with large-scale real-world databases because they lack knowledge of how to correctly leverage the underlying data (e.g., knowledge about the intent of each column) and form misconceptions about the data when querying it, leading to errors. Prior work has studied generating facts about the database to provide more context to NL2SQL agents, but such approaches simply restate database contents without addressing the agent's misconceptions. In this paper, we propose Tk-Boost, a bolt-on framework for augmenting any NL2SQL agent with tribal knowledge: knowledge that corrects the agent's misconceptions in querying the database accumulated through experience using the database. To accumulate experience, Tk-Boost first asks the NL2SQL agent to answer a few queries on the database, identifies the agent's misconceptions by analyzing its mistakes on the database, and generates tribal knowledge to address them. To enable accurate retrieval, Tk-Boost indexes this knowledge with applicability conditions that specify the query features for which the knowledge is useful. When answering new queries, Tk-Boost uses this knowledge to provide feedback to the NL2SQL agent, resolving the agent's misconceptions during SQL generation, and thus improving the agent's accuracy. Extensive experiments across the BIRD and Spider 2.0 benchmarks with various NL2SQL agents shows Tk-Boost improves NL2SQL agents accuracy by up to 16.9% on Spider 2.0 and 13.7% on BIRD
♻ ☆ Do Vision-Language Models Respect Contextual Integrity in Location Disclosure? ICLR 2026
Vision-language models (VLMs) have demonstrated strong performance in image geolocation, a capability further sharpened by frontier multimodal large reasoning models (MLRMs). This poses a significant privacy risk, as these widely accessible models can be exploited to infer sensitive locations from casually shared photos, often at street-level precision, potentially surpassing the level of detail the sharer consented or intended to disclose. While recent work has proposed applying a blanket restriction on geolocation disclosure to combat this risk, these measures fail to distinguish valid geolocation uses from malicious behavior. Instead, VLMs should maintain contextual integrity by reasoning about elements within an image to determine the appropriate level of information disclosure, balancing privacy and utility. To evaluate how well models respect contextual integrity, we introduce VLM-GEOPRIVACY, a benchmark that challenges VLMs to interpret latent social norms and contextual cues in real-world images and determine the appropriate level of location disclosure. Our evaluation of 14 leading VLMs shows that, despite their ability to precisely geolocate images, the models are poorly aligned with human privacy expectations. They often over-disclose in sensitive contexts and are vulnerable to prompt-based attacks. Our results call for new design principles in multimodal systems to incorporate context-conditioned privacy reasoning.
comment: Accepted by ICLR 2026. Code and data can be downloaded via https://github.com/99starman/VLM-GeoPrivacyBench
♻ ☆ COGITAO: A Visual Reasoning Framework To Study Compositionality & Generalization
The ability to compose learned concepts and apply them in novel settings is key to human intelligence, but remains a persistent limitation in state-of-the-art machine learning models. To address this issue, we introduce COGITAO, a modular and extensible data generation framework and benchmark designed to systematically study compositionality and generalization in visual domains. Drawing inspiration from ARC-AGI's problem-setting, COGITAO constructs rule-based tasks which apply a set of transformations to objects in grid-like environments. It supports composition, at adjustable depth, over a set of 28 interoperable transformations, along with extensive control over grid parametrization and object properties. This flexibility enables the creation of millions of unique task rules -- surpassing concurrent datasets by several orders of magnitude -- across a wide range of difficulties, while allowing virtually unlimited sample generation per rule. We provide baseline experiments using state-of-the-art vision models, highlighting their consistent failures to generalize to novel combinations of familiar elements, despite strong in-domain performance. COGITAO is fully open-sourced, including all code and datasets, to support continued research in this field.
comment: 10 main pages, 3 figure, appendix available
♻ ☆ Cardinality-Preserving Attention Channels for Graph Transformers in Molecular Property Prediction
Molecular property prediction is crucial for drug discovery when labeled data are scarce. This work presents CardinalGraphFormer, a graph transformer augmented with a query-conditioned cardinality-preserving attention (CPA) channel that retains dynamic support-size signals complementary to static centrality embeddings. The approach combines structured sparse attention with Graphormer-inspired biases (shortest-path distance, centrality, direct-bond features) and unified dual-objective self-supervised pretraining (masked reconstruction and contrastive alignment of augmented views). Evaluation on 11 public benchmarks spanning MoleculeNet, OGB, and TDC ADMET demonstrates consistent improvements over protocol-matched baselines under matched pretraining, optimization, and hyperparameter tuning. Rigorous ablations confirm CPA's contributions and rule out simple size shortcuts. Code and reproducibility artifacts are provided.
♻ ☆ VERA-MH: Reliability and Validity of an Open-Source AI Safety Evaluation in Mental Health
Millions now use generative AI chatbots for psychological support. Despite the promise related to availability and scale, the single most pressing question in AI for mental health is whether these tools are safe. The Validation of Ethical and Responsible AI in Mental Health (VERA-MH) evaluation was recently proposed to meet the urgent need for an evidence-based, automated safety benchmark. This study aimed to examine the clinical validity and reliability of VERA-MH for evaluating AI safety in suicide risk detection and response. We first simulated a large set of conversations between large language model (LLM)-based users (user-agents) and general-purpose AI chatbots. Licensed mental health clinicians used a rubric (scoring guide) to independently rate the simulated conversations for safe and unsafe chatbot behaviors, as well as user-agent realism. An LLM-based judge used the same scoring rubric to evaluate the same set of simulated conversations. We then examined rating alignment (a) among individual clinicians and (b) between clinician consensus and the LLM judge, and (c) summarized clinicians' ratings of user-agent realism. Individual clinicians were generally consistent with one another in their safety ratings (chance-corrected inter-rater reliability [IRR] = 0.77), establishing a gold-standard clinical reference. The LLM judge was strongly aligned with this clinical consensus overall (IRR = 0.81) and within key conditions. Together, findings from this human evaluation study support the validity and reliability of VERA-MH: an open-source, automated AI safety evaluation for mental health. Future research will examine the generalizability and robustness of VERA-MH and expand the framework to target additional key areas of AI safety in mental health.
♻ ☆ FOCUS on Contamination: Hydrology-Informed Noise-Aware Learning for Geospatial PFAS Mapping
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants with significant public health impacts, yet large-scale monitoring remains severely limited due to the high cost and logistical challenges of field sampling. The lack of samples leads to difficulty simulating their spread with physical models and limited scientific understanding of PFAS transport in surface waters. Yet, rich geospatial and satellite-derived data describing land cover, hydrology, and industrial activity are widely available. We introduce FOCUS, a geospatial deep learning framework for PFAS contamination mapping that integrates sparse PFAS observations with large-scale environmental context, including priors derived from hydrological connectivity, land cover, source proximity, and sampling distance. These priors are integrated into a principled, noise-aware loss, yielding a robust training objective under sparse labels. Across extensive ablations, robustness analyses, and real-world validation, FOCUS consistently outperforms baselines including sparse segmentation, Kriging, and pollutant transport simulations, while preserving spatial coherence and scalability over large regions. Our results demonstrate how AI can support environmental science by providing screening-level risk maps that prioritize follow-up sampling and help connect potential sources to surface-water contamination patterns in the absence of complete physical models.
♻ ☆ A Geometric Analysis of Small-sized Language Model Hallucinations
Hallucinations -- fluent but factually incorrect responses -- pose a major challenge to the reliability of language models, especially in multi-step or agentic settings. This work investigates hallucinations in small-sized LLMs through a geometric perspective, starting from the hypothesis that when models generate multiple responses to the same prompt, genuine ones exhibit tighter clustering in the embedding space, we prove this hypothesis and, leveraging this geometrical insight, we also show that it is possible to achieve a consistent level of separability. This latter result is used to introduce a label-efficient propagation method that classifies large collections of responses from just 30-50 annotations, achieving F1 scores above 90%. Our findings, framing hallucinations from a geometric perspective in the embedding space, complement traditional knowledge-centric and single-response evaluation paradigms, paving the way for further research.
♻ ☆ Protean Compiler: An Agile Framework to Drive Fine-grain Phase Ordering
The phase ordering problem has been a long-standing challenge since the late 1970s, yet it remains an open problem due to having a vast optimization space and an unbounded nature, making it an open-ended problem without a finite solution, one can limit the scope by reducing the number and the length of optimizations. Traditionally, such locally optimized decisions are made by hand-coded algorithms tuned for a small number of benchmarks, often requiring significant effort to be retuned when the benchmark suite changes. In the past 20 years, Machine Learning has been employed to construct performance models to improve the selection and ordering of compiler optimizations, however, the approaches are not baked into the compiler seamlessly and never materialized to be leveraged at a fine-grained scope of code segments. This paper presents Protean Compiler: An agile framework to enable LLVM with built-in phase-ordering capabilities at a fine-grained scope. The framework also comprises a complete library of more than 140 handcrafted static feature collection methods at varying scopes, and the experimental results showcase speedup gains of up to 4.1% on average and up to 15.7% on select Cbench applications wrt LLVM's O3 by just incurring a few extra seconds of build time on Cbench. Additionally, Protean compiler allows for an easy integration with third-party ML frameworks and other Large Language Models, and this two-step optimization shows a gain of 10.1% and 8.5% speedup wrt O3 on Cbench's Susan and Jpeg applications. Protean compiler is seamlessly integrated into LLVM and can be used as a new, enhanced, full-fledged compiler. We plan to release the project to the open-source community in the near future.
comment: Version 2: Submitted for a possible publication in 2026
♻ ☆ Multilingual Routing in Mixture-of-Experts ICLR 2026
Mixture-of-Experts (MoE) architectures have become the key to scaling modern LLMs, yet little is understood about how their sparse routing dynamics respond to multilingual data. In this work, we analyze expert routing patterns using parallel multilingual datasets and present highly interpretable layer-wise phenomena. We find that MoE models route tokens in language-specific ways in the early and late decoder layers but exhibit significant cross-lingual routing alignment in middle layers, mirroring parameter-sharing trends observed in dense LLMs. In particular, we reveal a clear, strong correlation between a model's performance in a given language and how similarly its tokens are routed to English in these layers. Extending beyond correlation, we explore inference-time interventions that induce higher cross-lingual routing alignment. We introduce a method that steers the router by promoting middle-layer task experts frequently activated in English, and it successfully increases multilingual performance. These 1-2% gains are remarkably consistent across two evaluation tasks, three models, and 15+ languages, especially given that these simple interventions override routers of extensively trained, state-of-the-art LLMs. In comparison, interventions outside of the middle layers or targeting multilingual-specialized experts only yield performance degradation. Altogether, we present numerous findings that explain how MoEs process non-English text and demonstrate that generalization is limited by the model's ability to leverage language-universal experts in all languages.
comment: ICLR 2026, In The Fourteenth International Conference on Learning Representations, 2025
♻ ☆ Toward Context-Aware Exoskeleton Assistance: Integrating Computer Vision Payload Estimation with a User-Centric Optimization Space
Back-support exoskeletons (BSEs) mitigate musculoskeletal strain, yet their efficacy depends on precise, context-aware modulation. This paper introduces a user-centric optimization framework and a vision-based adaptive control strategy for industrial BSEs. First, we constructed a multi-metric optimization space, integrating electromyography reduction, perceived discomfort, and user preference, through baseline experiments with 12 subjects. This revealed a non-linear relationship between optimal assistance and payload. Second, we developed a predictive computer vision pipeline using a Vision Transformer (DINOv2) to estimate payloads before lifting, effectively overcoming actuation latency. Validation with 12 subjects confirmed the system's robustness, achieving over 82% estimation accuracy. Crucially, the adaptive controller reduced peak back muscle activation by up to 23% compared to static baselines while optimizing user comfort. These results validate the proposed framework, demonstrating that pre-lift environmental perception and user-centric optimization significantly enhance physical assistance and human-robot interaction in industrial settings.
♻ ☆ Learning Diffusion Policies for Robotic Manipulation of Timber Joinery under Fabrication Uncertainty
Fabrication uncertainties, such as tolerance accumulation and material imperfections, pose a significant challenge to contact-rich robotic manipulation in construction by hindering precise and robust assembly. In this paper, we investigate the performance and robustness of diffusion policy learning for contact-rich assembly at the construction scale, using a tight-fitting timber mortise and tenon joint as a case study. A two-phase experimental study is conducted: first, to evaluate baseline policy performance and applicability; second, to assess policy robustness under fabrication-induced uncertainties modeled as randomized perturbations to the mortise position. The diffusion policy is trained on teleoperated demonstrations using an industrial robotic arm conditioned on end-effector pose and force/torque feedback. The best-performing policy achieved a total average success rate of 75% under perturbations up to 10 mm, including 100% success in unperturbed cases. The results demonstrate the potential of sensory-motor diffusion policies to enable high-precision contact-rich manipulation on large-scale industrial robotic arms, reducing reliance on skilled manual intervention. This work advances robotic construction under uncertainty and provides practical insights for deploying learning-based control in real-world Architectural, Engineering, and Construction applications.
Computation and Language 100
☆ How to Train Your Long-Context Visual Document Model
We present the first comprehensive, large-scale study of training long-context vision language models up to 344K context, targeting long-document visual question answering with measured transfer to long-context text. While several such strong are open-weight, namely Qwen3 VL and GLM 4.5/6V, their training recipes and data pipelines are not reproducible. We systematically study continued pretraining, supervised finetuning, and preference optimization for 24B and 32B parameter models, backed by extensive LC evaluations and ablations to bridge this gap, and achieve state-of-the-art performance on MMLongBenchDoc for both parameter scales. In addition to this, our key findings include: (i) training on context lengths that match evaluation context lengths outperforms training on longer contexts, (ii) training and evaluating with page indices provides a simple, high-impact boost to long-document performance, (iii) our synthetic data pipelines enable self-improvement via continued pretraining and supervised finetuning, and (iv) we extend the known text-to-visual long context transfer to the reverse, showing that visual long context training transfers to long-context text performance. We also release MMLBD-C, a manually corrected version of MMLongBenchDoc to reduce erroneous and low quality examples in the benchmark.
☆ Colosseum: Auditing Collusion in Cooperative Multi-Agent Systems
Multi-agent systems, where LLM agents communicate through free-form language, enable sophisticated coordination for solving complex cooperative tasks. This surfaces a unique safety problem when individual agents form a coalition and \emph{collude} to pursue secondary goals and degrade the joint objective. In this paper, we present Colosseum, a framework for auditing LLM agents' collusive behavior in multi-agent settings. We ground how agents cooperate through a Distributed Constraint Optimization Problem (DCOP) and measure collusion via regret relative to the cooperative optimum. Colosseum tests each LLM for collusion under different objectives, persuasion tactics, and network topologies. Through our audit, we show that most out-of-the-box models exhibited a propensity to collude when a secret communication channel was artificially formed. Furthermore, we discover ``collusion on paper'' when agents plan to collude in text but would often pick non-collusive actions, thus providing little effect on the joint task. Colosseum provides a new way to study collusion by measuring communications and actions in rich yet verifiable environments.
☆ OpaqueToolsBench: Learning Nuances of Tool Behavior Through Interaction
Tool-calling is essential for Large Language Model (LLM) agents to complete real-world tasks. While most existing benchmarks assume simple, perfectly documented tools, real-world tools (e.g., general "search" APIs) are often opaque, lacking clear best practices or failure modes. Can LLM agents improve their performance in environments with opaque tools by interacting and subsequently improving documentation? To study this, we create OpaqueToolsBench, a benchmark consisting of three distinct task-oriented environments: general function calling, interactive chess playing, and long-trajectory agentic search. Each environment provides underspecified tools that models must learn to use effectively to complete the task. Results on OpaqueToolsBench suggest existing methods for automatically documenting tools are expensive and unreliable when tools are opaque. To address this, we propose a simple framework, ToolObserver, that iteratively refines tool documentation by observing execution feedback from tool-calling trajectories. Our approach outperforms existing methods on OpaqueToolsBench across datasets, even in relatively hard settings. Furthermore, for test-time tool exploration settings, our method is also efficient, consuming 3.5-7.5x fewer total tokens than the best baseline.
☆ Weight space Detection of Backdoors in LoRA Adapters
LoRA adapters let users fine-tune large language models (LLMs) efficiently. However, LoRA adapters are shared through open repositories like Hugging Face Hub \citep{huggingface_hub_docs}, making them vulnerable to backdoor attacks. Current detection methods require running the model with test input data -- making them impractical for screening thousands of adapters where the trigger for backdoor behavior is unknown. We detect poisoned adapters by analyzing their weight matrices directly, without running the model -- making our method data-agnostic. Our method extracts simple statistics -- how concentrated the singular values are, their entropy, and the distribution shape -- and flags adapters that deviate from normal patterns. We evaluate the method on 500 LoRA adapters -- 400 clean, and 100 poisoned for Llama-3.2-3B on instruction and reasoning datasets: Alpaca, Dolly, GSM8K, ARC-Challenge, SQuADv2, NaturalQuestions, HumanEval, and GLUE dataset. We achieve 97\% detection accuracy with less than 2\% false positives.
☆ AIC CTU@AVerImaTeC: dual-retriever RAG for image-text fact checking
In this paper, we present our 3rd place system in the AVerImaTeC shared task, which combines our last year's retrieval-augmented generation (RAG) pipeline with a reverse image search (RIS) module. Despite its simplicity, our system delivers competitive performance with a single multimodal LLM call per fact-check at just $0.013 on average using GPT5.1 via OpenAI Batch API. Our system is also easy to reproduce and tweak, consisting of only three decoupled modules - a textual retrieval module based on similarity search, an image retrieval module based on API-accessed RIS, and a generation module using GPT5.1 - which is why we suggest it as an accesible starting point for further experimentation. We publish its code and prompts, as well as our vector stores and insights into the scheme's running costs and directions for further improvement.
☆ ScrapeGraphAI-100k: A Large-Scale Dataset for LLM-Based Web Information Extraction
The use of large language models for web information extraction is becoming increasingly fundamental to modern web information retrieval pipelines. However, existing datasets tend to be small, synthetic or text-only, failing to capture the structural context of the web. We introduce ScrapeGraphAI-100k, a large-scale dataset comprising real-world LLM extraction events, collected via opt-in ScrapeGraphAI telemetry during Q2 and Q3 of 2025. Starting from 9M events, we deduplicate and balance by schema to produce 93,695 examples spanning diverse domains and languages. Each instance includes Markdown content, a prompt, a JSON schema, the LLM response, and complexity/validation metadata. We characterize the datasets structural diversity and its failure modes as schema complexity increases. We also provide a fine-tuning experiment showing that a small language model (1.7B) trained on a subset narrows the gap to larger baselines (30B), underscoring the datasets utility for efficient extraction. ScrapeGraphAI-100k enables fine-tuning small models, benchmarking structured extraction, and studying schema induction for web IR indexing, and is publicly available on HuggingFace.
☆ Seeing to Generalize: How Visual Data Corrects Binding Shortcuts ICML 2026
Vision Language Models (VLMs) are designed to extend Large Language Models (LLMs) with visual capabilities, yet in this work we observe a surprising phenomenon: VLMs can outperform their underlying LLMs on purely text-only tasks, particularly in long-context information retrieval. To investigate this effect, we build a controlled synthetic retrieval task and find that a transformer trained only on text achieves perfect in-distribution accuracy but fails to generalize out of distribution, while subsequent training on an image-tokenized version of the same task nearly doubles text-only OOD performance. Mechanistic interpretability reveals that visual training changes the model's internal binding strategy: text-only training encourages positional shortcuts, whereas image-based training disrupts them through spatial translation invariance, forcing the model to adopt a more robust symbolic binding mechanism that persists even after text-only examples are reintroduced. We further characterize how binding strategies vary across training regimes, visual encoders, and initializations, and show that analogous shifts occur during pretrained LLM-to-VLM transitions. Our findings suggest that cross-modal training can enhance reasoning and generalization even for tasks grounded in a single modality.
comment: Submitted to ICML 2026
☆ Protecting Language Models Against Unauthorized Distillation through Trace Rewriting
Knowledge distillation is a widely adopted technique for transferring capabilities from LLMs to smaller, more efficient student models. However, unauthorized use of knowledge distillation takes unfair advantage of the considerable effort and cost put into developing frontier models. We investigate methods for modifying teacher-generated reasoning traces to achieve two objectives that deter unauthorized distillation: (1) \emph{anti-distillation}, or degrading the training usefulness of query responses, and (2) \emph{API watermarking}, which embeds verifiable signatures in student models. We introduce several approaches for dynamically rewriting a teacher's reasoning outputs while preserving answer correctness and semantic coherence. Two of these leverage the rewriting capabilities of LLMs, while others use gradient-based techniques. Our experiments show that a simple instruction-based rewriting approach achieves a strong anti-distillation effect while maintaining or even improving teacher performance. Furthermore, we show that our rewriting approach also enables highly reliable watermark detection with essentially no false alarms.
☆ CGRA-DeBERTa Concept Guided Residual Augmentation Transformer for Theologically Islamic Understanding
Accurate QA over classical Islamic texts remains challenging due to domain specific semantics, long context dependencies, and concept sensitive reasoning. Therefore, a new CGRA DeBERTa, a concept guided residual domain augmentation transformer framework, is proposed that enhances theological QA over Hadith corpora. The CGRA DeBERTa builds on a customized DeBERTa transformer backbone with lightweight LoRA based adaptations and a residual concept aware gating mechanism. The customized DeBERTa embedding block learns global and positional context, while Concept Guided Residual Blocks incorporate theological priors from a curated Islamic Concept Dictionary of 12 core terms. Moreover, the Concept Gating Mechanism selectively amplifies semantically critical tokens via importance weighted attention, applying differential scaling from 1.04 to 3.00. This design preserves contextual integrity, strengthens domain-specific semantic representations, and enables accurate, efficient span extraction while maintaining computational efficiency. This paper reports the results of training CGRA using a specially constructed dataset of 42591 QA pairs from the text of Sahih alBukhari and Sahih Muslim. While BERT achieved an EM score of 75.87 and DeBERTa one of 89.77, our model scored 97.85 and thus surpassed them by 8.08 on an absolute scale, all while adding approximately 8 inference overhead due to parameter efficient gating. The qualitative evaluation noted better extraction and discrimination and theological precision. This study presents Hadith QA systems that are efficient, interpretable, and accurate and that scale provide educational materials with necessary theological nuance.
comment: 24 Pages, 9 Tables, 7 Figures
☆ Symmetry in language statistics shapes the geometry of model representations
Although learned representations underlie neural networks' success, their fundamental properties remain poorly understood. A striking example is the emergence of simple geometric structures in LLM representations: for example, calendar months organize into a circle, years form a smooth one-dimensional manifold, and cities' latitudes and longitudes can be decoded by a linear probe. We show that the statistics of language exhibit a translation symmetry -- e.g., the co-occurrence probability of two months depends only on the time interval between them -- and we prove that the latter governs the aforementioned geometric structures in high-dimensional word embedding models. Moreover, we find that these structures persist even when the co-occurrence statistics are strongly perturbed (for example, by removing all sentences in which two months appear together) and at moderate embedding dimension. We show that this robustness naturally emerges if the co-occurrence statistics are collectively controlled by an underlying continuous latent variable. We empirically validate this theoretical framework in word embedding models, text embedding models, and large language models.
☆ Scaling Beyond Masked Diffusion Language Models
Diffusion language models are a promising alternative to autoregressive models due to their potential for faster generation. Among discrete diffusion approaches, Masked diffusion currently dominates, largely driven by strong perplexity on language modeling benchmarks. In this work, we present the first scaling law study of uniform-state and interpolating discrete diffusion methods. We also show that Masked diffusion models can be made approximately 12% more FLOPs-efficient when trained with a simple cross-entropy objective. We find that perplexity is informative within a diffusion family but can be misleading across families, where models with worse likelihood scaling may be preferable due to faster and more practical sampling, as reflected by the speed-quality Pareto frontier. These results challenge the view that Masked diffusion is categorically the future of diffusion language modeling and that perplexity alone suffices for cross-algorithm comparison. Scaling all methods to 1.7B parameters, we show that uniform-state diffusion remains competitive on likelihood-based benchmarks and outperforms autoregressive and Masked diffusion models on GSM8K, despite worse validation perplexity. We provide the code, model checkpoints, and video tutorials on the project page: http://s-sahoo.github.io/scaling-dllms
comment: code: https://github.com/s-sahoo/scaling-dllms
☆ Text Style Transfer with Parameter-efficient LLM Finetuning and Round-trip Translation
This paper proposes a novel method for Text Style Transfer (TST) based on parameter-efficient fine-tuning of Large Language Models (LLMs). Addressing the scarcity of parallel corpora that map between styles, the study employs roundtrip translation to synthesize such parallel datasets from monolingual corpora. This approach creates 'neutralized' text devoid of stylistic attributes, essentially creating a shared input style at training-time and inference-time. Experimental results demonstrate consistent superiority of this method over zero-shot prompting and fewshot ICL techniques measured by BLEU scores and style accuracy scores across four investigated domains. Furthermore, the integration of retrieval-augmented generation (RAG) for terminology and name knowledge enhances robustness and stylistic consistency.
comment: 9 pages, 5 figures, 4 tables
☆ Cold-Start Personalization via Training-Free Priors from Structured World Models
Cold-start personalization requires inferring user preferences through interaction when no user-specific historical data is available. The core challenge is a routing problem: each task admits dozens of preference dimensions, yet individual users care about only a few, and which ones matter depends on who is asking. With a limited question budget, asking without structure will miss the dimensions that matter. Reinforcement learning is the natural formulation, but in multi-turn settings its terminal reward fails to exploit the factored, per-criterion structure of preference data, and in practice learned policies collapse to static question sequences that ignore user responses. We propose decomposing cold-start elicitation into offline structure learning and online Bayesian inference. Pep (Preference Elicitation with Priors) learns a structured world model of preference correlations offline from complete profiles, then performs training-free Bayesian inference online to select informative questions and predict complete preference profiles, including dimensions never asked about. The framework is modular across downstream solvers and requires only simple belief models. Across medical, mathematical, social, and commonsense reasoning, Pep achieves 80.8% alignment between generated responses and users' stated preferences versus 68.5% for RL, with 3-5x fewer interactions. When two users give different answers to the same question, Pep changes its follow-up 39-62% of the time versus 0-28% for RL. It does so with ~10K parameters versus 8B for RL, showing that the bottleneck in cold-start elicitation is the capability to exploit the factored structure of preference data.
comment: 24 pages, 4 figures, 4 tables
☆ Learning User Interests via Reasoning and Distillation for Cross-Domain News Recommendation
News recommendation plays a critical role in online news platforms by helping users discover relevant content. Cross-domain news recommendation further requires inferring user's underlying information needs from heterogeneous signals that often extend beyond direct news consumption. A key challenge lies in moving beyond surface-level behaviors to capture deeper, reusable user interests while maintaining scalability in large-scale production systems. In this paper, we present a reinforcement learning framework that trains large language models to generate high-quality lists of interest-driven news search queries from cross-domain user signals. We formulate query-list generation as a policy optimization problem and employ GRPO with multiple reward signals. We systematically study two compute dimensions: inference-time sampling and model capacity, and empirically observe consistent improvements with increased compute that exhibit scaling-like behavior. Finally, we perform on-policy distillation to transfer the learned policy from a large, compute-intensive teacher to a compact student model suitable for scalable deployment. Extensive offline experiments, ablation studies and large-scale online A/B tests in a production news recommendation system demonstrate consistent gains in both interest modeling quality and downstream recommendation performance.
☆ Counterfactual Fairness Evaluation of LLM-Based Contact Center Agent Quality Assurance System
Large Language Models (LLMs) are increasingly deployed in contact-center Quality Assurance (QA) to automate agent performance evaluation and coaching feedback. While LLMs offer unprecedented scalability and speed, their reliance on web-scale training data raises concerns regarding demographic and behavioral biases that may distort workforce assessment. We present a counterfactual fairness evaluation of LLM-based QA systems across 13 dimensions spanning three categories: Identity, Context, and Behavioral Style. Fairness is quantified using the Counterfactual Flip Rate (CFR), the frequency of binary judgment reversals, and the Mean Absolute Score Difference (MASD), the average shift in coaching or confidence scores across counterfactual pairs. Evaluating 18 LLMs on 3,000 real-world contact center transcripts, we find systematic disparities, with CFR ranging from 5.4% to 13.0% and consistent MASD shifts across confidence, positive, and improvement scores. Larger, more strongly aligned models show lower unfairness, though fairness does not track accuracy. Contextual priming of historical performance induces the most severe degradations (CFR up to 16.4%), while implicit linguistic identity cues remain a persistent bias source. Finally, we analyze the efficacy of fairness-aware prompting, finding that explicit instructions yield only modest improvements in evaluative consistency. Our findings underscore the need for standardized fairness auditing pipelines prior to deploying LLMs in high-stakes workforce evaluation.
☆ Tool-Aware Planning in Contact Center AI: Evaluating LLMs through Lineage-Guided Query Decomposition
We present a domain-grounded framework and benchmark for tool-aware plan generation in contact centers, where answering a query for business insights, our target use case, requires decomposing it into executable steps over structured tools (Text2SQL (T2S)/Snowflake) and unstructured tools (RAG/transcripts) with explicit depends_on for parallelism. Our contributions are threefold: (i) a reference-based plan evaluation framework operating in two modes - a metric-wise evaluator spanning seven dimensions (e.g., tool-prompt alignment, query adherence) and a one-shot evaluator; (ii) a data curation methodology that iteratively refines plans via an evaluator->optimizer loop to produce high-quality plan lineages (ordered plan revisions) while reducing manual effort; and (iii) a large-scale study of 14 LLMs across sizes and families for their ability to decompose queries into step-by-step, executable, and tool-assigned plans, evaluated under prompts with and without lineage. Empirically, LLMs struggle on compound queries and on plans exceeding 4 steps (typically 5-15); the best total metric score reaches 84.8% (Claude-3-7-Sonnet), while the strongest one-shot match rate at the "A+" tier (Extremely Good, Very Good) is only 49.75% (o3-mini). Plan lineage yields mixed gains overall but benefits several top models and improves step executability for many. Our results highlight persistent gaps in tool-understanding, especially in tool-prompt alignment and tool-usage completeness, and show that shorter, simpler plans are markedly easier. The framework and findings provide a reproducible path for assessing and improving agentic planning with tools for answering data-analysis queries in contact-center settings.
☆ BFS-PO: Best-First Search for Large Reasoning Models
Large Reasoning Models (LRMs) such as OpenAI o1 and DeepSeek-R1 have shown excellent performance in reasoning tasks using long reasoning chains. However, this has also led to a significant increase of computational costs and the generation of verbose output, a phenomenon known as overthinking. The tendency to overthinking is often exacerbated by Reinforcement Learning (RL) algorithms such as GRPO/DAPO. In this paper, we propose BFS-PO, an RL algorithm which alleviates this problem using a Best-First Search exploration strategy. Specifically, BFS-PO looks for the shortest correct answer using a backtracking mechanism based on maximum entropy nodes. By generating progressively shorter responses during training, BFS-PO learns to produce concise reasoning chains. Using different benchmarks and base LRMs, we show that BFS-PO can simultaneously increase the LRM accuracy and shorten its answers.
☆ Testimole-Conversational: A 30-Billion-Word Italian Discussion Board Corpus (1996-2024) for Language Modeling and Sociolinguistic Research
We present "Testimole-conversational" a massive collection of discussion boards messages in the Italian language. The large size of the corpus, more than 30B word-tokens (1996-2024), renders it an ideal dataset for native Italian Large Language Models'pre-training. Furthermore, discussion boards' messages are a relevant resource for linguistic as well as sociological analysis. The corpus captures a rich variety of computer-mediated communication, offering insights into informal written Italian, discourse dynamics, and online social interaction in wide time span. Beyond its relevance for NLP applications such as language modelling, domain adaptation, and conversational analysis, it also support investigations of language variation and social phenomena in digital communication. The resource will be made freely available to the research community.
☆ Learning State-Tracking from Code Using Linear RNNs
Over the last years, state-tracking tasks, particularly permutation composition, have become a testbed to understand the limits of sequence models architectures like Transformers and RNNs (linear and non-linear). However, these are often sequence-to-sequence tasks: learning to map actions (permutations) to states, which is incompatible with the next-token prediction setting commonly used to train language models. We address this gap by converting permutation composition into code via REPL traces that interleave state-reveals through prints and variable transformations. We show that linear RNNs capable of state-tracking excel also in this setting, while Transformers still fail. Motivated by this representation, we investigate why tracking states in code is generally difficult: actions are not always fully observable. We frame this as tracking the state of a probabilistic finite-state automaton with deterministic state reveals and show that linear RNNs can be worse than non-linear RNNs at tracking states in this setup.
☆ Physical Commonsense Reasoning for Lower-Resourced Languages and Dialects: a Study on Basque
Physical commonsense reasoning represents a fundamental capability of human intelligence, enabling individuals to understand their environment, predict future events, and navigate physical spaces. Recent years have witnessed growing interest in reasoning tasks within Natural Language Processing (NLP). However, no prior research has examined the performance of Large Language Models (LLMs) on non-question-answering (non-QA) physical commonsense reasoning tasks in low-resource languages such as Basque. Taking the Italian GITA as a starting point, this paper addresses this gap by presenting BasPhyCo, the first non-QA physical commonsense reasoning dataset for Basque, available in both standard and dialectal variants. We evaluate model performance across three hierarchical levels of commonsense understanding: (1) distinguishing between plausible and implausible narratives (accuracy), (2) identifying the conflicting element that renders a narrative implausible (consistency), and (3) determining the specific physical state that creates the implausibility (verifiability). These tasks were assessed using multiple multilingual LLMs as well as models pretrained specifically for Italian and Basque. Results indicate that, in terms of verifiability, LLMs exhibit limited physical commonsense capabilities in low-resource languages such as Basque, especially when processing dialectal variants.
☆ Overthinking Loops in Agents: A Structural Risk via MCP Tools
Tool-using LLM agents increasingly coordinate real workloads by selecting and chaining third-party tools based on text-visible metadata such as tool names, descriptions, and return messages. We show that this convenience creates a supply-chain attack surface: a malicious MCP tool server can be co-registered alongside normal tools and induce overthinking loops, where individually trivial or plausible tool calls compose into cyclic trajectories that inflate end-to-end tokens and latency without any single step looking abnormal. We formalize this as a structural overthinking attack, distinguishable from token-level verbosity, and implement 14 malicious tools across three servers that trigger repetition, forced refinement, and distraction. Across heterogeneous registries and multiple tool-capable models, the attack causes severe resource amplification (up to $142.4\times$ tokens) and can degrade task outcomes. Finally, we find that decoding-time concision controls do not reliably prevent loop induction, suggesting defenses should reason about tool-call structure rather than tokens alone.
☆ A Geometric Analysis of Small-sized Language Model Hallucinations
Hallucinations -- fluent but factually incorrect responses -- pose a major challenge to the reliability of language models, especially in multi-step or agentic settings. This work investigates hallucinations in small-sized LLMs through a geometric perspective, starting from the hypothesis that when models generate multiple responses to the same prompt, genuine ones exhibit tighter clustering in the embedding space, we prove this hypothesis and, leveraging this geometrical insight, we also show that it is possible to achieve a consistent level of separability. This latter result is used to introduce a label-efficient propagation method that classifies large collections of responses from just 30-50 annotations, achieving F1 scores above 90%. Our findings, framing hallucinations from a geometric perspective in the embedding space, complement traditional knowledge-centric and single-response evaluation paradigms, paving the way for further research.
☆ Emergently Misaligned Language Models Show Behavioral Self-Awareness That Shifts With Subsequent Realignment
Recent research has demonstrated that large language models (LLMs) fine-tuned on incorrect trivia question-answer pairs exhibit toxicity - a phenomenon later termed "emergent misalignment". Moreover, research has shown that LLMs possess behavioral self-awareness - the ability to describe learned behaviors that were only implicitly demonstrated in training data. Here, we investigate the intersection of these phenomena. We fine-tune GPT-4.1 models sequentially on datasets known to induce and reverse emergent misalignment and evaluate whether the models are self-aware of their behavior transitions without providing in-context examples. Our results show that emergently misaligned models rate themselves as significantly more harmful compared to their base model and realigned counterparts, demonstrating behavioral self-awareness of their own emergent misalignment. Our findings show that behavioral self-awareness tracks actual alignment states of models, indicating that models can be queried for informative signals about their own safety.
☆ Unlocking Reasoning Capability on Machine Translation in Large Language Models
Reasoning-oriented large language models (RLMs) achieve strong gains on tasks such as mathematics and coding by generating explicit intermediate reasoning. However, their impact on machine translation (MT) remains underexplored. We systematically evaluate several open- and closed-weights RLMs on the WMT24++ benchmark and find that enabling explicit reasoning consistently degrades translation quality across languages and models. Analysis reveals that MT reasoning traces are highly linear, lacking revision, self-correction and exploration of alternative translations, which limits their usefulness. Furthermore, injecting higher-quality reasoning traces from stronger models does not reliably improve weaker models' performance. To address this mismatch, we propose a structured reasoning framework tailored to translation, based on multi-step drafting, adequacy refinement, fluency improvement, and selective iterative revision. We curate a synthetic dataset of dynamic structured reasoning traces and post-train a large reasoning model on this data. Experiments show significant improvements over standard translation fine-tuning and injected generic reasoning baselines. Our findings demonstrate that reasoning must be task-structured to benefit MT.
☆ Residual Connections and the Causal Shift: Uncovering a Structural Misalignment in Transformers
Large Language Models (LLMs) are trained with next-token prediction, implemented in autoregressive Transformers via causal masking for parallelism. This creates a subtle misalignment: residual connections tie activations to the current token, while supervision targets the next token, potentially propagating mismatched information if the current token is not the most informative for prediction. In this work, we empirically localize this input-output alignment shift in pretrained LLMs, using decoding trajectories over tied embedding spaces and similarity-based metrics. Our experiments reveal that the hidden token representations switch from input alignment to output alignment deep within the network. Motivated by this observation, we propose a lightweight residual-path mitigation based on residual attenuation, implemented either as a fixed-layer intervention or as a learnable gating mechanism. Experiments on multiple benchmarks show that these strategies alleviate the representation misalignment and yield improvements, providing an efficient and general architectural enhancement for autoregressive Transformers.
☆ Cognitive networks reconstruct mindsets about STEM subjects and educational contexts in almost 1000 high-schoolers, University students and LLM-based digital twins
Attitudes toward STEM develop from the interaction of conceptual knowledge, educational experiences, and affect. Here we use cognitive network science to reconstruct group mindsets as behavioural forma mentis networks (BFMNs). In this case, nodes are cue words and free associations, edges are empirical associative links, and each concept is annotated with perceived valence. We analyse BFMNs from N = 994 observations spanning high school students, university students, and early-career STEM experts, alongside LLM (GPT-oss) "digital twins" prompted to emulate comparable profiles. Focusing also on semantic neighbourhoods ("frames") around key target concepts (e.g., STEM subjects or educational actors/places), we quantify frames in terms of valence auras, emotional profiles, network overlap (Jaccard similarity), and concreteness relative to null baselines. Across student groups, science and research are consistently framed positively, while their core quantitative subjects (mathematics and statistics) exhibit more negative and anxiety related auras, amplified in higher math-anxiety subgroups, evidencing a STEM-science cognitive and emotional dissonance. High-anxiety frames are also less concrete than chance, suggesting more abstract and decontextualised representations of threatening quantitative domains. Human networks show greater overlapping between mathematics and anxiety than GPT-oss. The results highlight how BFMNs capture cognitive-affective signatures of mindsets towards the target domains and indicate that LLM-based digital twins approximate cultural attitudes but miss key context-sensitive, experience-based components relevant to replicate human educational anxiety.
☆ Rethinking the Role of LLMs in Time Series Forecasting
Large language models (LLMs) have been introduced to time series forecasting (TSF) to incorporate contextual knowledge beyond numerical signals. However, existing studies question whether LLMs provide genuine benefits, often reporting comparable performance without LLMs. We show that such conclusions stem from limited evaluation settings and do not hold at scale. We conduct a large-scale study of LLM-based TSF (LLM4TSF) across 8 billion observations, 17 forecasting scenarios, 4 horizons, multiple alignment strategies, and both in-domain and out-of-domain settings. Our results demonstrate that \emph{LLM4TS indeed improves forecasting performance}, with especially large gains in cross-domain generalization. Pre-alignment outperforming post-alignment in over 90\% of tasks. Both pretrained knowledge and model architecture of LLMs contribute and play complementary roles: pretraining is critical under distribution shifts, while architecture excels at modeling complex temporal dynamics. Moreover, under large-scale mixed distributions, a fully intact LLM becomes indispensable, as confirmed by token-level routing analysis and prompt-based improvements. Overall, Our findings overturn prior negative assessments, establish clear conditions under which LLMs are not only useful, and provide practical guidance for effective model design. We release our code at https://github.com/EIT-NLP/LLM4TSF.
LLMStructBench: Benchmarking Large Language Model Structured Data Extraction
We present LLMStructBench, a novel benchmark for evaluating Large Language Models (LLMs) on extracting structured data and generating valid JavaScript Object Notation (JSON) outputs from natural-language text. Our open dataset comprises diverse, manually verified parsing scenarios of varying complexity and enables systematic testing across 22 models and five prompting strategies. We further introduce complementary performance metrics that capture both token-level accuracy and document-level validity, facilitating rigorous comparison of model, size, and prompting effects on parsing reliability. In particular, we show that choosing the right prompting strategy is more important than standard attributes such as model size. This especially ensures structural validity for smaller or less reliable models but increase the number of semantic errors. Our benchmark suite is an step towards future research in the area of LLM applied to parsing or Extract, Transform and Load (ETL) applications.
☆ Exposing the Systematic Vulnerability of Open-Weight Models to Prefill Attacks
As the capabilities of large language models continue to advance, so does their potential for misuse. While closed-source models typically rely on external defenses, open-weight models must primarily depend on internal safeguards to mitigate harmful behavior. Prior red-teaming research has largely focused on input-based jailbreaking and parameter-level manipulations. However, open-weight models also natively support prefilling, which allows an attacker to predefine initial response tokens before generation begins. Despite its potential, this attack vector has received little systematic attention. We present the largest empirical study to date of prefill attacks, evaluating over 20 existing and novel strategies across multiple model families and state-of-the-art open-weight models. Our results show that prefill attacks are consistently effective against all major contemporary open-weight models, revealing a critical and previously underexplored vulnerability with significant implications for deployment. While certain large reasoning models exhibit some robustness against generic prefilling, they remain vulnerable to tailored, model-specific strategies. Our findings underscore the urgent need for model developers to prioritize defenses against prefill attacks in open-weight LLMs.
comment: 54 pages, 7 figures, 35 tables
☆ Crowdsourcing Piedmontese to Test LLMs on Non-Standard Orthography
We present a crowdsourced dataset for Piedmontese, an endangered Romance language of northwestern Italy. The dataset comprises 145 Italian-Piedmontese parallel sentences derived from Flores+, with translations produced by speakers writing in their natural orthographic style rather than adhering to standardized conventions, along with manual word alignment. We use this resource to benchmark several large language models on tokenization parity, topic classification, and machine translation. Our analysis reveals that Piedmontese incurs a tokenization penalty relative to higher-resource Romance languages, yet LLMs achieve classification performance approaching that of Italian, French, and English. Machine translation results are asymmetric: models translate adequately from Piedmontese into high-resource languages, but generation into Piedmontese remains challenging. The dataset and code are publicly released.
comment: 17 pages, 6 figures, at VarDial20226
☆ Breaking Data Efficiency Dilemma: A Federated and Augmented Learning Framework For Alzheimer's Disease Detection via Speech ICASSP 2026
Early diagnosis of Alzheimer's Disease (AD) is crucial for delaying its progression. While AI-based speech detection is non-invasive and cost-effective, it faces a critical data efficiency dilemma due to medical data scarcity and privacy barriers. Therefore, we propose FAL-AD, a novel framework that synergistically integrates federated learning with data augmentation to systematically optimize data efficiency. Our approach delivers three key breakthroughs: First, absolute efficiency improvement through voice conversion-based augmentation, which generates diverse pathological speech samples via cross-category voice-content recombination. Second, collaborative efficiency breakthrough via an adaptive federated learning paradigm, maximizing cross-institutional benefits under privacy constraints. Finally, representational efficiency optimization by an attentive cross-modal fusion model, which achieves fine-grained word-level alignment and acoustic-textual interaction. Evaluated on ADReSSo, FAL-AD achieves a state-of-the-art multi-modal accuracy of 91.52%, outperforming all centralized baselines and demonstrating a practical solution to the data efficiency dilemma. Our source code is publicly available at https://github.com/smileix/fal-ad.
comment: 5 pages, 1 figures, accepted by ICASSP 2026 conference
☆ Is Information Density Uniform when Utterances are Grounded on Perception and Discourse? EACL 2026
The Uniform Information Density (UID) hypothesis posits that speakers are subject to a communicative pressure to distribute information evenly within utterances, minimising surprisal variance. While this hypothesis has been tested empirically, prior studies are limited exclusively to text-only inputs, abstracting away from the perceptual context in which utterances are produced. In this work, we present the first computational study of UID in visually grounded settings. We estimate surprisal using multilingual vision-and-language models over image-caption data in 30 languages and visual storytelling data in 13 languages, together spanning 11 families. We find that grounding on perception consistently smooths the distribution of information, increasing both global and local uniformity across typologically diverse languages compared to text-only settings. In visual narratives, grounding in both image and discourse contexts has additional effects, with the strongest surprisal reductions occurring at the onset of discourse units. Overall, this study takes a first step towards modelling the temporal dynamics of information flow in ecologically plausible, multimodal language use, and finds that grounded language exhibits greater information uniformity, supporting a context-sensitive formulation of UID.
comment: Accepted as main paper at EACL 2026
GradMAP: Faster Layer Pruning with Gradient Metric and Projection Compensation
Large Language Models (LLMs) exhibit strong reasoning abilities, but their high computational costs limit their practical deployment. Recent studies reveal significant redundancy in LLMs layers, making layer pruning an active research topic. Layer pruning research primarily focuses on two aspects: measuring layer importance and recovering performance after pruning. Unfortunately, the present works fail to simultaneously maintain pruning performance and efficiency. In this study, we propose GradMAP, a faster layer pruning method with \textbf{Grad}ient \textbf{M}etric \textbf{A}nd \textbf{P}rojection compensation, which consists of two stages. In the first stage, we introduce a novel metric based on gradient magnitudes, enabling a global assessment of layer importance. Note that, it requires only a single backward propagation step per pruning decision, substantially enhancing pruning efficiency. In the second stage, we first analyze the layers with the largest mean shift resulting from pruning, and then incorporate a simple yet effective projection compensation matrix to correct this drift in one step. In this way, the degradation of model performance caused by layer pruning is effectively alleviated. Extensive experiments show that GradMAP outperforms previous layer pruning methods in both pruning speed (achieving an average $4\times$ speedup) and performance.
comment: 19 pages
☆ Alignment Adapter to Improve the Performance of Compressed Deep Learning Models
Compressed Deep Learning (DL) models are essential for deployment in resource-constrained environments. But their performance often lags behind their large-scale counterparts. To bridge this gap, we propose Alignment Adapter (AlAd): a lightweight, sliding-window-based adapter. It aligns the token-level embeddings of a compressed model with those of the original large model. AlAd preserves local contextual semantics, enables flexible alignment across differing dimensionalities or architectures, and is entirely agnostic to the underlying compression method. AlAd can be deployed in two ways: as a plug-and-play module over a frozen compressed model, or by jointly fine-tuning AlAd with the compressed model for further performance gains. Through experiments on BERT-family models across three token-level NLP tasks, we demonstrate that AlAd significantly boosts the performance of compressed models with only marginal overhead in size and latency.
☆ The Wikidata Query Logs Dataset
We present the Wikidata Query Logs (WDQL) dataset, a dataset consisting of 200k question-query pairs over the Wikidata knowledge graph. It is over 6x larger than the largest existing Wikidata datasets of similar format without relying on template-generated queries. Instead, we construct it using real-world SPARQL queries sent to the Wikidata Query Service and generate questions for them. Since these log-based queries are anonymized, and therefore often do not produce results, a significant amount of effort is needed to convert them back into meaningful SPARQL queries. To achieve this, we present an agent-based method that iteratively de-anonymizes, cleans, and verifies queries against Wikidata while also generating corresponding natural-language questions. We demonstrate the dataset's benefit for training question-answering methods. All WDQL assets, as well as the agent code, are publicly available under a permissive license.
☆ MATEO: A Multimodal Benchmark for Temporal Reasoning and Planning in LVLMs
AI agents need to plan to achieve complex goals that involve orchestrating perception, sub-goal decomposition, and execution. These plans consist of ordered steps structured according to a Temporal Execution Order (TEO, a directed acyclic graph that ensures each step executes only after its preconditions are satisfied. Existing research on foundational models' understanding of temporal execution is limited to automatically derived annotations, approximations of the TEO as a linear chain, or text-only inputs. To address this gap, we introduce MATEO (MultimodAl Temporal Execution Order), a benchmark designed to assess and improve the temporal reasoning abilities of Large Vision Language Models (LVLMs) required for real-world planning. We acquire a high-quality professional multimodal recipe corpus, authored through a standardized editorial process that decomposes instructions into discrete steps, each paired with corresponding images. We collect TEO annotations as graphs by designing and using a scalable crowdsourcing pipeline. Using MATEO, we evaluate six state-of-the-art LVLMs across model scales, varying language context, multimodal input structure, and fine-tuning strategies.
☆ Assessing Large Language Models for Medical QA: Zero-Shot and LLM-as-a-Judge Evaluation
Recently, Large Language Models (LLMs) have gained significant traction in medical domain, especially in developing a QA systems to Medical QA systems for enhancing access to healthcare in low-resourced settings. This paper compares five LLMs deployed between April 2024 and August 2025 for medical QA, using the iCliniq dataset, containing 38,000 medical questions and answers of diverse specialties. Our models include Llama-3-8B-Instruct, Llama 3.2 3B, Llama 3.3 70B Instruct, Llama-4-Maverick-17B-128E-Instruct, and GPT-5-mini. We are using a zero-shot evaluation methodology and using BLEU and ROUGE metrics to evaluate performance without specialized fine-tuning. Our results show that larger models like Llama 3.3 70B Instruct outperform smaller models, consistent with observed scaling benefits in clinical tasks. It is notable that, Llama-4-Maverick-17B exhibited more competitive results, thus highlighting evasion efficiency trade-offs relevant for practical deployment. These findings align with advancements in LLM capabilities toward professional-level medical reasoning and reflect the increasing feasibility of LLM-supported QA systems in the real clinical environments. This benchmark aims to serve as a standardized setting for future study to minimize model size, computational resources and to maximize clinical utility in medical NLP applications.
comment: Accepted in 28th ICCIT, 2025
☆ Explainable Token-level Noise Filtering for LLM Fine-tuning Datasets
Large Language Models (LLMs) have seen remarkable advancements, achieving state-of-the-art results in diverse applications. Fine-tuning, an important step for adapting LLMs to specific downstream tasks, typically involves further training on corresponding datasets. However, a fundamental discrepancy exists between current fine-tuning datasets and the token-level optimization mechanism of LLMs: most datasets are designed at the sentence-level, which introduces token-level noise, causing negative influence to final performance. In this paper, we propose XTF, an explainable token-level noise filtering framework. XTF decomposes the complex and subtle contributions of token-level data to the fine-tuning process into three distinct and explicit attributes (reasoning importance, knowledge novelty, and task relevance), which can be assessed using scoring methods, and then masks the gradients of selected noisy tokens accordingly to optimize the performance of fine-tuned LLMs. We conduct extensive experiments on three representative downstream tasks (math, code and medicine) across 7 mainstream LLMs. The results demonstrate that XTF can significantly improve downstream performance by up to 13.7% compared to regular fine-tuning. Our work highlights the importance of token-level dataset optimization, and demonstrates the potential of strategies based on attribute decomposition for explaining complex training mechanisms.
☆ Beyond Translation: Evaluating Mathematical Reasoning Capabilities of LLMs in Sinhala and Tamil
Large language models (LLMs) demonstrate strong mathematical reasoning in English, but whether these capabilities reflect genuine multilingual reasoning or reliance on translation-based processing in low-resource languages like Sinhala and Tamil remains unclear. We examine this fundamental question by evaluating whether LLMs genuinely reason mathematically in these languages or depend on implicit translation to English-like representations. Using a taxonomy of six math problem types, from basic arithmetic to complex unit conflict and optimization problems, we evaluate four prominent large language models. To avoid translation artifacts that confound language ability with translation quality, we construct a parallel dataset where each problem is natively authored by fluent speakers with mathematical training in all three languages. Our analysis demonstrates that while basic arithmetic reasoning transfers robustly across languages, complex reasoning tasks show significant degradation in Tamil and Sinhala. The pattern of failures varies by model and problem type, suggesting that apparent multilingual competence may not reflect uniform reasoning capabilities across languages. These findings challenge the common assumption that models exhibiting strong multilingual performance can reason equally effectively across languages, and highlight the need for fine-grained, type-aware evaluation in multilingual settings.
☆ Parameter-Efficient Fine-Tuning of LLMs with Mixture of Space Experts
Large Language Models (LLMs) have achieved remarkable progress, with Parameter-Efficient Fine-Tuning (PEFT) emerging as a key technique for downstream task adaptation. However, existing PEFT methods mainly operate in Euclidean space, fundamentally limiting their capacity to capture complex geometric structures inherent in language data. While alternative geometric spaces, like hyperbolic geometries for hierarchical data and spherical manifolds for circular patterns, offer theoretical advantages, forcing representations into a single manifold type ultimately limits expressiveness, even when curvature parameters are learnable. To address this, we propose Mixture of Space (MoS), a unified framework that leverages multiple geometric spaces simultaneously to learn richer, curvature-aware representations. Building on this scheme, we develop MoSLoRA, which extends Low-Rank Adaptation (LoRA) with heterogeneous geometric experts, enabling models to dynamically select or combine appropriate geometric spaces based on input context. Furthermore, to address the computational overhead of frequent manifold switching, we develop a lightweight routing mechanism. Moreover, we provide empirical insights into how curvature optimization impacts training stability and model performance. Our experiments across diverse benchmarks demonstrate that MoSLoRA consistently outperforms strong baselines, achieving up to 5.6% improvement on MATH500 and 15.9% on MAWPS.
comment: 15 pages, 11 figures
☆ BETA-Labeling for Multilingual Dataset Construction in Low-Resource IR
IR in low-resource languages remains limited by the scarcity of high-quality, task-specific annotated datasets. Manual annotation is expensive and difficult to scale, while using large language models (LLMs) as automated annotators introduces concerns about label reliability, bias, and evaluation validity. This work presents a Bangla IR dataset constructed using a BETA-labeling framework involving multiple LLM annotators from diverse model families. The framework incorporates contextual alignment, consistency checks, and majority agreement, followed by human evaluation to verify label quality. Beyond dataset creation, we examine whether IR datasets from other low-resource languages can be effectively reused through one-hop machine translation. Using LLM-based translation across multiple language pairs, we experimented on meaning preservation and task validity between source and translated datasets. Our experiment reveal substantial variation across languages, reflecting language-dependent biases and inconsistent semantic preservation that directly affect the reliability of cross-lingual dataset reuse. Overall, this study highlights both the potential and limitations of LLM-assisted dataset creation for low-resource IR. It provides empirical evidence of the risks associated with cross-lingual dataset reuse and offers practical guidance for constructing more reliable benchmarks and evaluation pipelines in low-resource language settings.
☆ HyperRAG: Reasoning N-ary Facts over Hypergraphs for Retrieval Augmented Generation
Graph-based retrieval-augmented generation (RAG) methods, typically built on knowledge graphs (KGs) with binary relational facts, have shown promise in multi-hop open-domain QA. However, their rigid retrieval schemes and dense similarity search often introduce irrelevant context, increase computational overhead, and limit relational expressiveness. In contrast, n-ary hypergraphs encode higher-order relational facts that capture richer inter-entity dependencies and enable shallower, more efficient reasoning paths. To address this limitation, we propose HyperRAG, a RAG framework tailored for n-ary hypergraphs with two complementary retrieval variants: (i) HyperRetriever learns structural-semantic reasoning over n-ary facts to construct query-conditioned relational chains. It enables accurate factual tracking, adaptive high-order traversal, and interpretable multi-hop reasoning under context constraints. (ii) HyperMemory leverages the LLM's parametric memory to guide beam search, dynamically scoring n-ary facts and entities for query-aware path expansion. Extensive evaluations on WikiTopics (11 closed-domain datasets) and three open-domain QA benchmarks (HotpotQA, MuSiQue, and 2WikiMultiHopQA) validate HyperRAG's effectiveness. HyperRetriever achieves the highest answer accuracy overall, with average gains of 2.95% in MRR and 1.23% in Hits@10 over the strongest baseline. Qualitative analysis further shows that HyperRetriever bridges reasoning gaps through adaptive and interpretable n-ary chain construction, benefiting both open and closed-domain QA.
comment: Accepted by The ACM Web Conference 2026 (WWW '26)
☆ Measuring and Mitigating Post-hoc Rationalization in Reverse Chain-of-Thought Generation
Reverse Chain-of-Thought Generation (RCG) synthesizes reasoning traces from query-answer pairs, but runs the risk of producing post-hoc rationalizations: when models can see the answer during generation, the answer serves as a cognitive anchor that shapes the entire explanation. We formalize this phenomenon through a three-level measurement hierarchy: lexical, entropic, and probabilistic anchoring, each captures surface artifacts, entropy dynamics, and latent answer dependence, respectively. We analyze semantic suppression, the intuitive mitigation strategy that instructs models to ignore the answer, to find out its counterproduction: while it reduces lexical overlap, it paradoxically increases entropic and probabilistic anchoring. Drawing on Ironic Process Theory from cognitive psychology, we attribute this failure to active monitoring of the forbidden answer, which inadvertently deepens dependence on it. To break this cycle, we propose Structural Skeleton-guided Reasoning (SSR), a two-phase approach that first generates an answer-invariant functional skeleton structure, then uses this skeleton to guide full trace generation. By redirecting the information flow to structural planning rather than answer monitoring, SSR consistently reduces anchoring across all three levels. We further introduce Distilled SSR (SSR-D), which fine-tunes models on teacher-generated SSR traces to ensure reliable structural adherence. Experiments across open-ended reasoning benchmarks demonstrate that SSR-D achieves up to 10% improvement over suppression baselines while preserving out-of-distribution (OOD) generalization.
☆ Robust Bias Evaluation with FilBBQ: A Filipino Bias Benchmark for Question-Answering Language Models LREC 2026
With natural language generation becoming a popular use case for language models, the Bias Benchmark for Question-Answering (BBQ) has grown to be an important benchmark format for evaluating stereotypical associations exhibited by generative models. We expand the linguistic scope of BBQ and construct FilBBQ through a four-phase development process consisting of template categorization, culturally aware translation, new template construction, and prompt generation. These processes resulted in a bias test composed of more than 10,000 prompts which assess whether models demonstrate sexist and homophobic prejudices relevant to the Philippine context. We then apply FilBBQ on models trained in Filipino but do so with a robust evaluation protocol that improves upon the reliability and accuracy of previous BBQ implementations. Specifically, we account for models' response instability by obtaining prompt responses across multiple seeds and averaging the bias scores calculated from these distinctly seeded runs. Our results confirm both the variability of bias scores across different seeds and the presence of sexist and homophobic biases relating to emotion, domesticity, stereotyped queer interests, and polygamy. FilBBQ is available via GitHub.
comment: Accepted in LREC 2026
☆ Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report v1.5
To understand and identify the unprecedented risks posed by rapidly advancing artificial intelligence (AI) models, Frontier AI Risk Management Framework in Practice presents a comprehensive assessment of their frontier risks. As Large Language Models (LLMs) general capabilities rapidly evolve and the proliferation of agentic AI, this version of the risk analysis technical report presents an updated and granular assessment of five critical dimensions: cyber offense, persuasion and manipulation, strategic deception, uncontrolled AI R\&D, and self-replication. Specifically, we introduce more complex scenarios for cyber offense. For persuasion and manipulation, we evaluate the risk of LLM-to-LLM persuasion on newly released LLMs. For strategic deception and scheming, we add the new experiment with respect to emergent misalignment. For uncontrolled AI R\&D, we focus on the ``mis-evolution'' of agents as they autonomously expand their memory substrates and toolsets. Besides, we also monitor and evaluate the safety performance of OpenClaw during the interaction on the Moltbook. For self-replication, we introduce a new resource-constrained scenario. More importantly, we propose and validate a series of robust mitigation strategies to address these emerging threats, providing a preliminary technical and actionable pathway for the secure deployment of frontier AI. This work reflects our current understanding of AI frontier risks and urges collective action to mitigate these challenges.
comment: 49 pages, 17 figures, 12 tables
☆ Precedent-Informed Reasoning: Mitigating Overthinking in Large Reasoning Models via Test-Time Precedent Learning
Reasoning in Large Language Models (LLMs) often suffers from inefficient long chain-of-thought traces with redundant self-exploration and validation, which inflate computational costs and even degrade performance. Inspired by human reasoning patterns where people solve new problems by leveraging past related cases to constrain search spaces and reduce trial-and-error, we propose Precedent Informed Reasoning (PIR) transforming LRMs'reasoning paradigm from exhaustive self-exploration to guided learning from precedents. PIR addresses two key challenges: what precedents to adopt and how to utilize them. First, Adaptive Precedent Selection (APS) constructs, for each question and LRM, a compact set of precedents that are both semantically related and informative for the model. It ranks examples by a joint score with semantic similarity and model perplexity, then adapts the amount of precedents to maximize perplexity reduction. Second, Test-time Experience Internalization (TEI) is treated as the test-time learning on precedent-informed instruction, updating lightweight adapters to internalize solution patterns and use them as a prior during subsequent reasoning. Experiments across mathematical reasoning, scientific QA, and code generation demonstrate that PIR consistently shortens reasoning traces while maintaining or improving final accuracy across LLMs, yielding outstanding accuracy-efficiency trade-offs.
☆ Selective Synchronization Attention
The Transformer architecture has become the foundation of modern deep learning, yet its core self-attention mechanism suffers from quadratic computational complexity and lacks grounding in biological neural computation. We propose Selective Synchronization Attention (SSA), a novel attention mechanism that replaces the standard dot-product self-attention with a closed-form operator derived from the steady-state solution of the Kuramoto model of coupled oscillators. In SSA, each token is represented as an oscillator characterized by a learnable natural frequency and phase; the synchronization strength between token pairs, determined by a frequency-dependent coupling and phase-locking condition, serves as the attention weight. This formulation provides three key advantages: (i) natural sparsity arising from the phase-locking threshold, whereby tokens with incompatible frequencies automatically receive zero attention weight without explicit masking; (ii) unified positional-semantic encoding through the natural frequency spectrum, eliminating the need for separate positional encodings; and (iii) a single-pass, closed-form computation that avoids iterative ODE integration, with all components (coupling, order parameter, synchronization) derived from the oscillatory framework. We instantiate SSA within the Oscillatory Synchronization Network (OSN), a drop-in replacement for the Transformer block. Analysis of the synchronization matrices reveals non-uniform, head-diverse coupling patterns even at initialization, demonstrating a stronger architectural inductive bias than the approximately uniform attention produced by randomly initialized Transformers.
☆ Synthetic Reader Panels: Tournament-Based Ideation with LLM Personas for Autonomous Publishing
We present a system for autonomous book ideation that replaces human focus groups with synthetic reader panels -- diverse collections of LLM-instantiated reader personas that evaluate book concepts through structured tournament competitions. Each persona is defined by demographic attributes (age group, gender, income, education, reading level), behavioral patterns (books per year, genre preferences, discovery methods, price sensitivity), and consistency parameters. Panels are composed per imprint to reflect target demographics, with diversity constraints ensuring representation across age, reading level, and genre affinity. Book concepts compete in single-elimination, double-elimination, round-robin, or Swiss-system tournaments, judged against weighted criteria including market appeal, originality, and execution potential. To reject low-quality LLM evaluations, we implement five automated anti-slop checks (repetitive phrasing, generic framing, circular reasoning, score clustering, audience mismatch). We report results from deployment within a multi-imprint publishing operation managing 6 active imprints and 609 titles in distribution. Three case studies -- a 270-evaluator panel for a children's literacy novel, and two 5-person expert panels for a military memoir and a naval strategy monograph -- demonstrate that synthetic panels produce actionable demographic segmentation, identify structural content issues invisible to homogeneous reviewers, and enable tournament filtering that eliminates low-quality concepts while enriching high-quality survivors from 15% to 62% of the evaluated pool.
comment: 5 tables, 1 figure
LLM-Guided Knowledge Distillation for Temporal Knowledge Graph Reasoning
Temporal knowledge graphs (TKGs) support reasoning over time-evolving facts, yet state-of-the-art models are often computationally heavy and costly to deploy. Existing compression and distillation techniques are largely designed for static graphs; directly applying them to temporal settings may overlook time-dependent interactions and lead to performance degradation. We propose an LLM-assisted distillation framework specifically designed for temporal knowledge graph reasoning. Beyond a conventional high-capacity temporal teacher, we incorporate a large language model as an auxiliary instructor to provide enriched supervision. The LLM supplies broad background knowledge and temporally informed signals, enabling a lightweight student to better model event dynamics without increasing inference-time complexity. Training is conducted by jointly optimizing supervised and distillation objectives, using a staged alignment strategy to progressively integrate guidance from both teachers. Extensive experiments on multiple public TKG benchmarks with diverse backbone architectures demonstrate that the proposed approach consistently improves link prediction performance over strong distillation baselines, while maintaining a compact and efficient student model. The results highlight the potential of large language models as effective teachers for transferring temporal reasoning capability to resource-efficient TKG systems.
☆ WavePhaseNet: A DFT-Based Method for Constructing Semantic Conceptual Hierarchy Structures (SCHS)
This paper reformulates Transformer/Attention mechanisms in Large Language Models (LLMs) through measure theory and frequency analysis, theoretically demonstrating that hallucination is an inevitable structural limitation. The embedding space functions as a conditional expectation over a σ-algebra, and its failure to be isomorphic to the semantic truth set fundamentally causes logical consistency breakdown. WavePhaseNet Method The authors propose WavePhaseNet, which explicitly constructs a Semantic Conceptual Hierarchy Structure (SCHS) using Discrete Fourier Transform (DFT). By applying DFT along the sequence dimension, semantic information is decomposed into frequency bands: low-frequency components capture global meaning and intent, while high-frequency components represent local syntax and expression. This staged separation enables precise semantic manipulation in diagonalized space. Dimensionality Reduction GPT-4's 24,576-dimensional embedding space exhibits a 1/f spectral structure based on language self-similarity and Zipf's law. Through cumulative energy analysis, the authors derive that approximately 3,000 dimensions constitute the lower bound for "complete representation." This demonstrates that reduction from 24,576 to 3,000 dimensions preserves meaning and intent while enabling rigorous reasoning and suppressing hallucination. Cohomological Consistency Control The reduced embedding space, constructed via cohomological regularization over overlapping local windows, allows defining a graph structure and cochain complex. This quantifies inconsistencies among local inferences as coboundary-based losses. Applying harmonic projection based on Hodge theory positions cohomology as a computable regularization principle for controlling semantic consistency, extracting maximally consistent global representations.
☆ TruthStance: An Annotated Dataset of Conversations on Truth Social
Argument mining and stance detection are central to understanding how opinions are formed and contested in online discourse. However, most publicly available resources focus on mainstream platforms such as Twitter and Reddit, leaving conversational structure on alt-tech platforms comparatively under-studied. We introduce TruthStance, a large-scale dataset of Truth Social conversation threads spanning 2023-2025, consisting of 24,378 posts and 523,360 comments with reply-tree structure preserved. We provide a human-annotated benchmark of 1,500 instances across argument mining and claim-based stance detection, including inter-annotator agreement, and use it to evaluate large language model (LLM) prompting strategies. Using the best-performing configuration, we release additional LLM-generated labels for 24,352 posts (argument presence) and 107,873 comments (stance to parent), enabling analysis of stance and argumentation patterns across depth, topics, and users. All code and data are released publicly.
☆ Beyond Token-Level Policy Gradients for Complex Reasoning with Large Language Models
Existing policy-gradient methods for auto-regressive language models typically select subsequent tokens one at a time as actions in the policy. While effective for many generation tasks, such an approach may not fully capture the structure of complex reasoning tasks, where a single semantic decision is often realized across multiple tokens--for example, when defining variables or composing equations. This introduces a potential mismatch between token-level optimization and the inherently block-level nature of reasoning in these settings. To bridge this gap, we propose Multi-token Policy Gradient Optimization (MPO), a framework that treats sequences of K consecutive tokens as unified semantic actions. This block-level perspective enables our method to capture the compositional structure of reasoning trajectories and supports optimization over coherent, higher-level objectives. Experiments on mathematical reasoning and coding benchmarks show that MPO outperforms standard token-level policy gradient baselines, highlight the limitations of token-level policy gradients for complex reasoning, motivating future research to look beyond token-level granularity for reasoning-intensive language tasks.
☆ Differentially Private Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) is a widely used framework for reducing hallucinations in large language models (LLMs) on domain-specific tasks by retrieving relevant documents from a database to support accurate responses. However, when the database contains sensitive corpora, such as medical records or legal documents, RAG poses serious privacy risks by potentially exposing private information through its outputs. Prior work has demonstrated that one can practically craft adversarial prompts that force an LLM to regurgitate the augmented contexts. A promising direction is to integrate differential privacy (DP), a privacy notion that offers strong formal guarantees, into RAG systems. However, naively applying DP mechanisms into existing systems often leads to significant utility degradation. Particularly for RAG systems, DP can reduce the usefulness of the augmented contexts leading to increase risk of hallucination from the LLMs. Motivated by these challenges, we present DP-KSA, a novel privacy-preserving RAG algorithm that integrates DP using the propose-test-release paradigm. DP-KSA follows from a key observation that most question-answering (QA) queries can be sufficiently answered with a few keywords. Hence, DP-KSA first obtains an ensemble of relevant contexts, each of which will be used to generate a response from an LLM. We utilize these responses to obtain the most frequent keywords in a differentially private manner. Lastly, the keywords are augmented into the prompt for the final output. This approach effectively compresses the semantic space while preserving both utility and privacy. We formally show that DP-KSA provides formal DP guarantees on the generated output with respect to the RAG database. We evaluate DP-KSA on two QA benchmarks using three instruction-tuned LLMs, and our empirical results demonstrate that DP-KSA achieves a strong privacy-utility tradeoff.
☆ InnoEval: On Research Idea Evaluation as a Knowledge-Grounded, Multi-Perspective Reasoning Problem
The rapid evolution of Large Language Models has catalyzed a surge in scientific idea production, yet this leap has not been accompanied by a matching advance in idea evaluation. The fundamental nature of scientific evaluation needs knowledgeable grounding, collective deliberation, and multi-criteria decision-making. However, existing idea evaluation methods often suffer from narrow knowledge horizons, flattened evaluation dimensions, and the inherent bias in LLM-as-a-Judge. To address these, we regard idea evaluation as a knowledge-grounded, multi-perspective reasoning problem and introduce InnoEval, a deep innovation evaluation framework designed to emulate human-level idea assessment. We apply a heterogeneous deep knowledge search engine that retrieves and grounds dynamic evidence from diverse online sources. We further achieve review consensus with an innovation review board containing reviewers with distinct academic backgrounds, enabling a multi-dimensional decoupled evaluation across multiple metrics. We construct comprehensive datasets derived from authoritative peer-reviewed submissions to benchmark InnoEval. Experiments demonstrate that InnoEval can consistently outperform baselines in point-wise, pair-wise, and group-wise evaluation tasks, exhibiting judgment patterns and consensus highly aligned with human experts.
comment: Ongoing Work
♻ ☆ Don't Let It Hallucinate: Premise Verification via Retrieval-Augmented Logical Reasoning
Large language models (LLMs) have shown substantial capacity for generating fluent, contextually appropriate responses. However, they can produce hallucinated outputs, especially when a user query includes one or more false premises-claims that contradict established facts. Such premises can mislead LLMs into offering fabricated or misleading details. Existing approaches include pretraining, fine-tuning, and inference-time techniques that often rely on access to logits or address hallucinations after they occur. These methods tend to be computationally expensive, require extensive training data, or lack proactive mechanisms to prevent hallucination before generation, limiting their efficiency in real-time applications. We propose a retrieval-based framework that identifies and addresses false premises before generation. Our method first transforms a user's query into a logical representation, then applies retrieval-augmented generation (RAG) to assess the validity of each premise using factual sources. Finally, we incorporate the verification results into the LLM's prompt to maintain factual consistency in the final output. Experiments show that this approach effectively reduces hallucinations, improves factual accuracy, and does not require access to model logits or large-scale fine-tuning.
comment: TMLR 2026
♻ ☆ Human-like Affective Cognition in Foundation Models
Understanding emotions is fundamental to human interaction and experience. Humans easily infer emotions from situations or facial expressions, situations from emotions, and do a variety of other affective cognition. How adept is modern AI at these inferences? We introduce an evaluation framework for testing affective cognition in foundation models. Starting from psychological theory, we generate 1,280 diverse scenarios exploring relationships between appraisals, emotions, expressions, and outcomes. We evaluate the abilities of foundation models (GPT-4, Claude-3, Gemini-1.5-Pro) and humans (N = 567) across carefully selected conditions. Our results show foundation models tend to agree with human intuitions, matching or exceeding interparticipant agreement. In some conditions, models are ``superhuman'' -- they better predict modal human judgements than the average human. All models benefit from chain-of-thought reasoning. This suggests foundation models have acquired a human-like understanding of emotions and their influence on beliefs and behavior.
♻ ☆ Multimodal Integrated Knowledge Transfer to Large Language Models through Preference Optimization with Biomedical Applications
The scarcity of high-quality multimodal biomedical data limits the ability to effectively fine-tune pretrained Large Language Models (LLMs) for specialized biomedical tasks. To address this challenge, we introduce MINT (Multimodal Integrated kNowledge Transfer), a framework that aligns unimodal large decoder models with domain-specific decision patterns from multimodal biomedical data through preference optimization. While MINT supports different optimization techniques, we primarily implement it with the Odds Ratio Preference Optimization (ORPO) framework as its backbone. This strategy enables the aligned LLMs to perform predictive tasks using text-only or image-only inputs while retaining knowledge learnt from multimodal data. MINT leverages an upstream multimodal machine learning (MML) model trained on high-quality multimodal data to transfer domain-specific insights to downstream text-only or image-only LLMs. We demonstrate its effectiveness through two key applications: (1) Rare genetic disease prediction from texts, where MINT uses a multimodal encoder model, trained on facial photos and clinical notes, to generate a preference dataset for aligning a lightweight Llama 3.2-3B-Instruct. Despite relying on text input only, the MINT-derived model outperforms models trained with SFT, RAG, or DPO, and even outperforms Llama 3.1-405B-Instruct. (2) Tissue type classification using cell nucleus images, where MINT uses a vision-language foundation model as the preference generator, containing knowledge learnt from both text and histopathological images to align downstream image-only models. The resulting MINT-derived model significantly improves the performance of Llama 3.2-Vision-11B-Instruct on tissue type classification. In summary, MINT provides an effective strategy to align unimodal LLMs with high-quality multimodal expertise through preference optimization.
♻ ☆ Beyond Fact Retrieval: Episodic Memory for RAG with Generative Semantic Workspaces AAAI 2026
Large Language Models (LLMs) face fundamental challenges in long-context reasoning: many documents exceed their finite context windows, while performance on texts that do fit degrades with sequence length, necessitating their augmentation with external memory frameworks. Current solutions, which have evolved from retrieval using semantic embeddings to more sophisticated structured knowledge graphs representations for improved sense-making and associativity, are tailored for fact-based retrieval and fail to build the space-time-anchored narrative representations required for tracking entities through episodic events. To bridge this gap, we propose the \textbf{Generative Semantic Workspace} (GSW), a neuro-inspired generative memory framework that builds structured, interpretable representations of evolving situations, enabling LLMs to reason over evolving roles, actions, and spatiotemporal contexts. Our framework comprises an \textit{Operator}, which maps incoming observations to intermediate semantic structures, and a \textit{Reconciler}, which integrates these into a persistent workspace that enforces temporal, spatial, and logical coherence. On the Episodic Memory Benchmark (EpBench) \cite{huet_episodic_2025} comprising corpora ranging from 100k to 1M tokens in length, GSW outperforms existing RAG based baselines by up to \textbf{20\%}. Furthermore, GSW is highly efficient, reducing query-time context tokens by \textbf{51\%} compared to the next most token-efficient baseline, reducing inference time costs considerably. More broadly, GSW offers a concrete blueprint for endowing LLMs with human-like episodic memory, paving the way for more capable agents that can reason over long horizons. Code is available at https://github.com/roychowdhuryresearch/gsw-memory.
comment: AAAI 2026 Oral, code available at: https://github.com/roychowdhuryresearch/gsw-memory
♻ ☆ Is Vibe Coding Safe? Benchmarking Vulnerability of Agent-Generated Code in Real-World Tasks
Vibe coding is a new programming paradigm in which human engineers instruct large language model (LLM) agents to complete complex coding tasks with little supervision. Although vibe coding is increasingly adopted, are its outputs really safe to deploy in production? To answer this question, we propose SU S VI B E S, a benchmark consisting of 200 feature-request software engineering tasks from real-world open-source projects, which, when given to human programmers, led to vulnerable implementations. We evaluate multiple widely used coding agents with frontier models on this benchmark. Disturbingly, all agents perform poorly in terms of software security. Although 61% of the solutions from SWE-Agent with Claude 4 Sonnet are functionally correct, only 10.5% are secure. Further experiments demonstrate that preliminary security strategies, such as augmenting the feature request with vulnerability hints, cannot mitigate these security issues. Our findings raise serious concerns about the widespread adoption of vibe-coding, particularly in security-sensitive applications.
♻ ☆ "Sorry, I Didn't Catch That": How Speech Models Miss What Matters Most
Despite speech recognition systems achieving low word error rates on standard benchmarks, they often fail on short, high-stakes utterances in real-world deployments. Here, we study this failure mode in a high-stakes task: the transcription of U.S. street names as spoken by U.S. participants. We evaluate 15 models from OpenAI, Deepgram, Google, and Microsoft on recordings from linguistically diverse U.S. speakers and find an average transcription error rate of 44%. We quantify the downstream impact of failed transcriptions by geographic locations and show that mis-transcriptions systematically cause errors for all speakers, but that routing distance errors are twice as large for non-English primary speakers compared to English primary speakers. To mitigate this harm, we introduce a synthetic data generation approach that produces diverse pronunciations of named entities using open-source text-to-speech models. Fine-tuning with less than 1,000 synthetic samples improves street name transcription accuracy by nearly 60% (relative to base models) for non-English primary speakers. Our results highlight a critical gap between benchmark performance and real-world reliability in speech systems and demonstrate a simple, scalable path to reducing high-stakes transcription errors.
comment: Preprint
♻ ☆ Chain of Summaries: Summarization Through Iterative Questioning
Large Language Models (LLMs) are increasingly using external web content. However, much of this content is not easily digestible by LLMs due to LLM-unfriendly formats and limitations of context length. To address this issue, we propose a method for generating general-purpose, information-dense summaries that act as plain-text repositories of web content. Inspired by Hegel's dialectical method, our approach, denoted as Chain of Summaries (CoS), iteratively refines an initial summary (thesis) by identifying its limitations through questioning (antithesis), leading to a general-purpose summary (synthesis) that can satisfy current and anticipate future information needs. Experiments on the TriviaQA, TruthfulQA, and SQUAD datasets demonstrate that CoS outperforms zero-shot LLM baselines by up to 66\% and specialized summarization methods such as Chain of Density, BRIO and PEGASUS by up to 27\%. CoS-generated summaries yield higher Q\&A performance compared to the source content, while requiring substantially fewer tokens and being agnostic to the specific downstream LLM. CoS thus resembles an appealing option for website maintainers to make their content more accessible for LLMs, while retaining possibilities for human oversight.
♻ ☆ Event Detection with a Context-Aware Encoder and LoRA for Improved Performance on Long-Tailed Classes EACL 2026
The current state of event detection research has two notable re-occurring limitations that we investigate in this study. First, the unidirectional nature of decoder-only LLMs presents a fundamental architectural bottleneck for natural language understanding tasks that depend on rich, bidirectional context. Second, we confront the conventional reliance on Micro-F1 scores in event detection literature, which systematically inflates performance by favoring majority classes. Instead, we focus on Macro-F1 as a more representative measure of a model's ability across the long-tail of event types. Our experiments demonstrate that models enhanced with sentence context achieve superior performance over canonical decoder-only baselines. Using Low-Rank Adaptation (LoRA) during finetuning provides a substantial boost in Macro-F1 scores in particular, especially for the decoder-only models, showing that LoRA can be an effective tool to enhance LLMs' performance on long-tailed event classes.
comment: Accepted in EACL 2026 Findings
♻ ☆ Just KIDDIN: Knowledge Infusion and Distillation for Detection of INdecent Memes
Toxicity identification in online multimodal environments remains a challenging task due to the complexity of contextual connections across modalities (e.g., textual and visual). In this paper, we propose a novel framework that integrates Knowledge Distillation (KD) from Large Visual Language Models (LVLMs) and knowledge infusion to enhance the performance of toxicity detection in hateful memes. Our approach extracts sub-knowledge graphs from ConceptNet, a large-scale commonsense Knowledge Graph (KG) to be infused within a compact VLM framework. The relational context between toxic phrases in captions and memes, as well as visual concepts in memes enhance the model's reasoning capabilities. Experimental results from our study on two hate speech benchmark datasets demonstrate superior performance over the state-of-the-art baselines across AU-ROC, F1, and Recall with improvements of 1.1%, 7%, and 35%, respectively. Given the contextual complexity of the toxicity detection task, our approach showcases the significance of learning from both explicit (i.e. KG) as well as implicit (i.e. LVLMs) contextual cues incorporated through a hybrid neurosymbolic approach. This is crucial for real-world applications where accurate and scalable recognition of toxic content is critical for creating safer online environments.
♻ ☆ MedPlan: A Two-Stage RAG-Based System for Personalized Medical Plan Generation
Despite recent success in applying large language models (LLMs) to electronic health records (EHR), most systems focus primarily on assessment rather than treatment planning. We identify three critical limitations in current approaches: they generate treatment plans in a single pass rather than following the sequential reasoning process used by clinicians; they rarely incorporate patient-specific historical context; and they fail to effectively distinguish between subjective and objective clinical information. Motivated by the SOAP methodology (Subjective, Objective, Assessment, Plan), we introduce \ours{}, a novel framework that structures LLM reasoning to align with real-life clinician workflows. Our approach employs a two-stage architecture that first generates a clinical assessment based on patient symptoms and objective data, then formulates a structured treatment plan informed by this assessment and enriched with patient-specific information through retrieval-augmented generation. Comprehensive evaluation demonstrates that our method significantly outperforms baseline approaches in both assessment accuracy and treatment plan quality.
♻ ☆ Accelerating Scientific Research with Gemini: Case Studies and Common Techniques
Recent advances in large language models (LLMs) have opened new avenues for accelerating scientific research. While models are increasingly capable of assisting with routine tasks, their ability to contribute to novel, expert-level mathematical discovery is less understood. We present a collection of case studies demonstrating how researchers have successfully collaborated with advanced AI models, specifically Google's Gemini-based models (in particular Gemini Deep Think and its advanced variants), to solve open problems, refute conjectures, and generate new proofs across diverse areas in theoretical computer science, as well as other areas such as economics, optimization, and physics. Based on these experiences, we extract common techniques for effective human-AI collaboration in theoretical research, such as iterative refinement, problem decomposition, and cross-disciplinary knowledge transfer. While the majority of our results stem from this interactive, conversational methodology, we also highlight specific instances that push beyond standard chat interfaces. These include deploying the model as a rigorous adversarial reviewer to detect subtle flaws in existing proofs, and embedding it within a "neuro-symbolic" loop that autonomously writes and executes code to verify complex derivations. Together, these examples highlight the potential of AI not just as a tool for automation, but as a versatile, genuine partner in the creative process of scientific discovery.
comment: Author list now includes Yossi Matias and James Manyika. Acknowledgements also updated. Added more general discussion to sections 1, 9.1, and 9.5. Discussed related work of Gurvits in section 4.3. Clarified closed form in section 6.1 and gave finite sum expansions for coefficients. Other minor formatting fixes
♻ ☆ Sparse MeZO: Less Parameters for Better Performance in Zeroth-Order LLM Fine-Tuning NeurIPS 2025
While fine-tuning large language models (LLMs) for specific tasks often yields impressive results, it comes at the cost of memory inefficiency due to back-propagation in gradient-based training. Memory-efficient Zeroth-order (MeZO) optimizers, recently proposed to address this issue, only require forward passes during training, making them more memory-friendly. However, compared with exact gradients, ZO-based gradients usually exhibit an estimation error, which can significantly hurt the optimization process, leading to slower convergence and suboptimal solutions. In addition, we find that the estimation error will hurt more when adding to large weights instead of small weights. Based on this observation, this paper introduces Sparse MeZO, a novel memory-efficient zeroth-order optimization approach that applies ZO only to a carefully chosen subset of parameters. We propose a simple yet effective parameter selection scheme that yields significant performance gains with Sparse-MeZO. Additionally, we develop a memory-optimized implementation for sparse masking, ensuring the algorithm requires only inference-level memory consumption, allowing Sparse-MeZO to fine-tune LLaMA-30b on a single A100 GPU. Experimental results illustrate that Sparse-MeZO consistently improves both performance and convergence speed over MeZO without any overhead. For example, it achieves a 9\% absolute accuracy improvement and 3.5x speedup over MeZO on the RTE task. Code is available at https://github.com/NUS-HPC-AI-Lab/SparseMeZO.
comment: Accepted by NeurIPS 2025
♻ ☆ Why Synthetic Isn't Real Yet: A Diagnostic Framework for Contact Center Dialogue Generation
Synthetic data is increasingly critical for contact centers, where privacy constraints and data scarcity limit the availability of real conversations. However, generating synthetic dialogues that are realistic and useful for downstream applications remains challenging. In this work, we benchmark multiple generation strategies guided by structured supervision on call attributes (Intent Summaries, Topic Flows, and Quality Assurance (QA) Forms) across multiple languages. To test downstream utility, we evaluate synthetic transcripts on an automated quality assurance (AutoQA) task, finding that prompts optimized on real transcripts consistently outperform those optimized on synthetic transcripts. These results suggest that current synthetic transcripts fall short in capturing the full realism of real agent-customer interactions. To highlight these downstream gaps, we introduce a diagnostic evaluation framework comprising 17 metrics across four dimensions: (1) Emotional and Sentiment Arcs, (2) Linguistic Complexity, (3) Interaction Style, and (4) Conversational Properties. Our analysis shows that even with structured supervision, current generation strategies exhibit measurable deficiencies in sentiment fidelity, disfluency modeling, behavioral variation, and conversational realism. Together, these results highlight the importance of diagnostic, metric-driven evaluation for synthetic conversation generation intended for downstream applications.
♻ ☆ SYNAPSE: Empowering LLM Agents with Episodic-Semantic Memory via Spreading Activation
While Large Language Models (LLMs) excel at generalized reasoning, standard retrieval-augmented approaches fail to address the disconnected nature of long-term agentic memory. To bridge this gap, we introduce Synapse (Synergistic Associative Processing Semantic Encoding), a unified memory architecture that transcends static vector similarity. Drawing from cognitive science, Synapse models memory as a dynamic graph where relevance emerges from spreading activation rather than pre-computed links. By integrating lateral inhibition and temporal decay, the system dynamically highlights relevant sub-graphs while filtering interference. We implement a Triple Hybrid Retrieval strategy that fuses geometric embeddings with activation-based graph traversal. Comprehensive evaluations on the LoCoMo benchmark show that Synapse significantly outperforms state-of-the-art methods in complex temporal and multi-hop reasoning tasks, offering a robust solution to the "Contextual Tunneling" problem. Our code and data will be made publicly available upon acceptance.
♻ ☆ iQUEST: An Iterative Question-Guided Framework for Knowledge Base Question Answering ACL 2025
Large Language Models (LLMs) excel in many natural language processing tasks but often exhibit factual inconsistencies in knowledge-intensive settings. Integrating external knowledge resources, particularly knowledge graphs (KGs), provides a transparent and updatable foundation for more reliable reasoning. Knowledge Base Question Answering (KBQA), which queries and reasons over KGs, is central to this effort, especially for complex, multi-hop queries. However, multi-hop reasoning poses two key challenges: (1)~maintaining coherent reasoning paths, and (2)~avoiding prematurely discarding critical multi-hop connections. To tackle these challenges, we introduce iQUEST, a question-guided KBQA framework that iteratively decomposes complex queries into simpler sub-questions, ensuring a structured and focused reasoning trajectory. Additionally, we integrate a Graph Neural Network (GNN) to look ahead and incorporate 2-hop neighbor information at each reasoning step. This dual approach strengthens the reasoning process, enabling the model to explore viable paths more effectively. Detailed experiments demonstrate the consistent improvement delivered by iQUEST across four benchmark datasets and four LLMs. The code is publicly available at: https://github.com/Wangshuaiia/iQUEST.
comment: Accepted to the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025), Main Track
♻ ☆ Reward Modeling from Natural Language Human Feedback
Reinforcement Learning with Verifiable reward (RLVR) on preference data has become the mainstream approach for training Generative Reward Models (GRMs). Typically in pairwise rewarding tasks, GRMs generate reasoning chains ending with critiques and preference labels, and RLVR then relies on the correctness of the preference labels as the training reward. However, in this paper, we demonstrate that such binary classification tasks make GRMs susceptible to guessing correct outcomes without sound critiques. Consequently, these spurious successes introduce substantial noise into the reward signal, thereby impairing the effectiveness of reinforcement learning. To address this issue, we propose Reward Modeling from Natural Language Human Feedback (RM-NLHF), which leverages natural language feedback to obtain process reward signals, thereby mitigating the problem of limited solution space inherent in binary tasks. Specifically, we compute the similarity between GRM-generated and human critiques as the training reward, which provides more accurate reward signals than outcome-only supervision. Additionally, considering that human critiques are difficult to scale up, we introduce Meta Reward Model (MetaRM) which learns to predict process reward from datasets with human critiques and then generalizes to data without human critiques. Experiments on multiple benchmarks demonstrate that our method consistently outperforms state-of-the-art GRMs trained with outcome-only reward, confirming the superiority of integrating natural language over binary human feedback as supervision.
♻ ☆ Context Volume Drives Performance: Tackling Domain Shift in Extremely Low-Resource Translation via RAG
Neural Machine Translation (NMT) models for low-resource languages suffer significant performance degradation under domain shift. We quantify this challenge using Dhao, an indigenous language of Eastern Indonesia with no digital footprint beyond the New Testament (NT). When applied to the unseen Old Testament (OT), a standard NMT model fine-tuned on the NT drops from an in-domain score of 36.17 chrF++ to 27.11 chrF++. To recover this loss, we introduce a hybrid framework where a fine-tuned NMT model generates an initial draft, which is then refined by a Large Language Model (LLM) using Retrieval-Augmented Generation (RAG). The final system achieves 35.21 chrF++ (+8.10 recovery), effectively matching the original in-domain quality. Our analysis reveals that this performance is driven primarily by the number of retrieved examples rather than the choice of retrieval algorithm. Qualitative analysis confirms the LLM acts as a robust "safety net," repairing severe failures in zero-shot domains.
♻ ☆ Steering Dialogue Dynamics for Robustness against Multi-turn Jailbreaking Attacks
Large language models (LLMs) are shown to be vulnerable to jailbreaking attacks where adversarial prompts are designed to elicit harmful responses. While existing defenses effectively mitigate single-turn attacks by detecting and filtering unsafe inputs, they fail against multi-turn jailbreaks that exploit contextual drift over multiple interactions, gradually leading LLMs away from safe behavior. To address this challenge, we propose a safety steering framework grounded in safe control theory, ensuring invariant safety in multi-turn dialogues. Our approach models the dialogue with LLMs using state-space representations and introduces a novel neural barrier function (NBF) to detect and filter harmful queries emerging from evolving contexts proactively. Our method achieves invariant safety at each turn of dialogue by learning a safety predictor that accounts for adversarial queries, preventing potential context drift toward jailbreaks. Extensive experiments under multiple LLMs show that our NBF-based safety steering outperforms safety alignment, prompt-based steering and lightweight LLM guardrails baselines, offering stronger defenses against multi-turn jailbreaks while maintaining a better trade-off among safety, helpfulness and over-refusal. Check out the website here https://sites.google.com/view/llm-nbf/home.
comment: TMLR, 31 pages, 11 figures, 15 tables
♻ ☆ Finding Diamonds in Conversation Haystacks: A Benchmark for Conversational Data Retrieval EMNLP 2025
We present the Conversational Data Retrieval (CDR) benchmark, the first comprehensive test set for evaluating systems that retrieve conversation data for product insights. With 1.6k queries across five analytical tasks and 9.1k conversations, our benchmark provides a reliable standard for measuring conversational data retrieval performance. Our evaluation of 16 popular embedding models shows that even the best models reach only around NDCG@10 of 0.51, revealing a substantial gap between document and conversational data retrieval capabilities. Our work identifies unique challenges in conversational data retrieval (implicit state recognition, turn dynamics, contextual references) while providing practical query templates and detailed error analysis across different task categories. The benchmark dataset and code are available at https://github.com/l-yohai/CDR-Benchmark.
comment: Accepted by EMNLP 2025 Industry Track
♻ ☆ RedTeamCUA: Realistic Adversarial Testing of Computer-Use Agents in Hybrid Web-OS Environments ICLR 2026
Computer-use agents (CUAs) promise to automate complex tasks across operating systems (OS) and the web, but remain vulnerable to indirect prompt injection. Current evaluations of this threat either lack support realistic but controlled environments or ignore hybrid web-OS attack scenarios involving both interfaces. To address this, we propose RedTeamCUA, an adversarial testing framework featuring a novel hybrid sandbox that integrates a VM-based OS environment with Docker-based web platforms. Our sandbox supports key features tailored for red teaming, such as flexible adversarial scenario configuration, and a setting that decouples adversarial evaluation from navigational limitations of CUAs by initializing tests directly at the point of an adversarial injection. Using RedTeamCUA, we develop RTC-Bench, a comprehensive benchmark with 864 examples that investigate realistic, hybrid web-OS attack scenarios and fundamental security vulnerabilities. Benchmarking current frontier CUAs identifies significant vulnerabilities: Claude 3.7 Sonnet | CUA demonstrates an ASR of 42.9%, while Operator, the most secure CUA evaluated, still exhibits an ASR of 7.6%. Notably, CUAs often attempt to execute adversarial tasks with an Attempt Rate as high as 92.5%, although failing to complete them due to capability limitations. Nevertheless, we observe concerning high ASRs in realistic end-to-end settings, with the strongest-to-date Claude 4.5 Sonnet | CUA exhibiting the highest ASR of 60%, indicating that CUA threats can already result in tangible risks to users and computer systems. Overall, RedTeamCUA provides an essential framework for advancing realistic, controlled, and systematic analysis of CUA vulnerabilities, highlighting the urgent need for robust defenses to indirect prompt injection prior to real-world deployment.
comment: ICLR 2026 (Oral)
♻ ☆ Peeking inside the Black-Box: Reinforcement Learning for Explainable and Accurate Relation Extraction
We introduce CogRE, a novel framework for relation extraction (RE), enhancing RE from both accuracy and explainability. The framework has two key components: (i) a reasoning mechanism that formulates relation extraction as a series of text-processing steps inspired by cognitive science, and (ii) an optimization process driven by a novel reinforcement learning (RL) reward function. Our framework introduces relation keywords and rewards generating such keywords using an automatically constructed keywords dictionary. This design addresses the lack of language-based explanations in traditional RE and provides supervision for explanation during RL training. Our experiments show that CogRE improves explanation quality by addressing two common failure patterns in one-shot RE: poor attention focus and limited one-shot learning capability. For example, our cognitive-structured reasoning with Qwen2.5-15B-Instruct on One-shot NYT29 achieves 24.65% F1, surpassing prior reasoning-based designs. Optimizing this approach with RL using our reward further improves performance by +23.46% (absolute). Further, models trained on NYT29 with our reward achieve a +16.9% F1 gain on out-of-distribution WIKIDATA. Finally, human evaluation shows that our best model generates relational keywords closely aligned with gold labels, increasing human explanation quality ratings by 54% (relative).
comment: Working in process
♻ ☆ PersonalAI: A Systematic Comparison of Knowledge Graph Storage and Retrieval Approaches for Personalized LLM agents
Personalizing language models that effectively incorporating user interaction history remains a central challenge in development of adaptive AI systems. While large language models (LLMs), combined with Retrieval-Augmented Generation (RAG), have improved factual accuracy, they often lack structured memory and fail to scale in complex, long-term interactions. To address this, we propose a flexible external memory framework based on knowledge graph, which construct and update memory model automatically by LLM itself. Building upon the AriGraph architecture, we introduce a novel hybrid graph design that supports both standard edges and two types of hyper-edges, enabling rich and dynamic semantic and temporal representations. Our framework also supports diverse retrieval mechanisms, including A*, water-circle traversal, beam search and hybrid methods, making it adaptable to different datasets and LLM capacities. We evaluate our system on three benchmarks: TriviaQA, HotpotQA, DiaASQ and demonstrate that different memory and retrieval configurations yield optimal performance depending on the task. Additionally, we extend the DiaASQ benchmark with temporal annotations and internally contradictory statements, showing that our system remains robust and effective in managing temporal dependencies and context-aware reasoning.
♻ ☆ The Speech-LLM Takes It All: A Truly Fully End-to-End Spoken Dialogue State Tracking Approach LREC 2026
This paper presents a comparative study of context management strategies for end-to-end Spoken Dialog State Tracking using Speech-LLMs. We systematically evaluate traditional multimodal context (combining text history and spoken current turn), full spoken history, and compressed spoken history approaches. Our experiments on the SpokenWOZ corpus demonstrate that providing the full spoken conversation as input yields the highest performance among models of similar size, significantly surpassing prior methods. Furthermore, we show that attention-pooling-based compression of the spoken history offers a strong trade-off, maintaining competitive accuracy with reduced context size. Detailed analysis confirms that improvements stem from more effective context utilization.
comment: Accepted for presentation at LREC 2026
♻ ☆ Human Values in a Single Sentence: Moral Presence, Hierarchies, and Transformer Ensembles on the Schwartz Continuum
We study sentence-level detection of the 19 human values in the refined Schwartz continuum in about 74k English sentences from news and political manifestos (ValueEval'24 corpus). Each sentence is annotated with value presence, yielding a binary moral-presence label and a 19-way multi-label task under severe class imbalance. First, we show that moral presence is learnable from single sentences: a DeBERTa-base classifier attains positive-class F1 = 0.74 with calibrated thresholds. Second, we compare direct multi-label value detectors with presence-gated hierarchies in a setting where only a single consumer-grade GPU with 8 GB of VRAM is available, and we explicitly choose all training and inference configurations to fit within this budget. Presence gating does not improve over direct prediction, indicating that gate recall becomes a bottleneck. Third, we investigate lightweight auxiliary signals - short-range context, LIWC-22, and moral lexica - and small ensembles. Our best supervised configuration, a soft-voting ensemble of DeBERTa-based models enriched with such signals, reaches macro-F1 = 0.332 on the 19 values, improving over the best previous English-only baseline on this corpus, namely the best official ValueEval'24 English run (macro-F1 = 0.28 on the same 19-value test set). Methodologically, our study provides, to our knowledge, the first systematic comparison of direct versus presence-gated architectures, lightweight feature-augmented encoders, and medium-sized instruction-tuned Large Language Models (LLMs) for refined Schwartz values at sentence level. We additionally benchmark 7-9B instruction-tuned LLMs (Gemma 2 9B, Llama 3.1 8B, Mistral 8B, Qwen 2.5 7B) in zero-/few-shot and QLoRA setups, and find that they lag behind the supervised ensemble under the same compute budget. Overall, our results provide empirical guidance for building compute-efficient, value-aware NLP models.
comment: Code: https://github.com/VictorMYeste/human-value-detection, models: https://huggingface.co/papers/2601.14172, 52 pages, 4 figures
♻ ☆ Improving Data Efficiency for LLM Reinforcement Fine-tuning Through Difficulty-targeted Online Data Selection and Rollout Replay NeurIPS 2025
Reinforcement learning (RL) has become an effective approach for fine-tuning large language models (LLMs), particularly to enhance their reasoning capabilities. However, RL fine-tuning remains highly resource-intensive, and existing work has largely overlooked the problem of data efficiency. In this paper, we propose two techniques to improve data efficiency in LLM RL fine-tuning: difficulty-targeted online data selection and rollout replay. We introduce the notion of adaptive difficulty to guide online data selection, prioritizing questions of moderate difficulty that are more likely to yield informative learning signals. To estimate adaptive difficulty efficiently, we develop an attention-based framework that requires rollouts for only a small reference set of questions. The adaptive difficulty of the remaining questions is then estimated based on their similarity to this set. To further reduce rollout cost, we introduce a rollout replay mechanism inspired by experience replay in traditional RL. This technique reuses recent rollouts, lowering per-step computation while maintaining stable updates. Experiments across 6 LLM-dataset combinations show that our method reduces RL fine-tuning time by 23% to 62% while reaching the same level of performance as the original GRPO algorithm. Our code is available at https://github.com/ASTRAL-Group/data-efficient-llm-rl.
comment: Accepted at NeurIPS 2025
♻ ☆ ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images
Visual Question Answerinng (VQA) is a complicated task that requires the capability of simultaneously processing natural language and images. This task was initially researched with a focus on developing methods to help machines understand objects and scene contexts in images. However, some scene text that carries explicit information about the full content of the image is not mentioned. Along with the continuous development of the AI era, there have been many studies on the reading comprehension ability of VQA models in the world. Therefore, we introduce the first large-scale dataset in Vietnamese specializing in the ability to understand scene text, we call it ViTextVQA (\textbf{Vi}etnamese \textbf{Text}-based \textbf{V}isual \textbf{Q}uestion \textbf{A}nswering dataset) which contains \textbf{over 16,000} images and \textbf{over 50,000} questions with answers. To tackle this task efficiently, we propose ViTextBLIP-2, an novel multimodal feature fusion Method, which optimizes Vietnamese OCR-based VQA by integrating a frozen Vision Transformer, SwinTextSpotter OCR, and ViT5 LLM with a trainable Q-Former for multimodal feature fusion. Through experiments with various state-of-the-art models, we uncover the significance of the order in which tokens in OCR text are processed and selected to formulate answers. This finding helped us significantly improve the performance of the baseline models on the ViTextVQA dataset. Our dataset is available (https://github.com/minhquan6203/ViTextVQA-Dataset) for research purposes.
comment: International Journal of Expert Systems with Applications
♻ ☆ From Associations to Activations: Comparing Behavioral and Hidden-State Semantic Geometry in LLMs
We investigate the extent to which an LLM's hidden-state geometry can be recovered from its behavior in psycholinguistic experiments. Across eight instruction-tuned transformer models, we run two experimental paradigms -- similarity-based forced choice and free association -- over a shared 5,000-word vocabulary, collecting 17.5M+ trials to build behavior-based similarity matrices. Using representational similarity analysis, we compare behavioral geometries to layerwise hidden-state similarity and benchmark against FastText, BERT, and cross-model consensus. We find that forced-choice behavior aligns substantially more with hidden-state geometry than free association. In a held-out-words regression, behavioral similarity (especially forced choice) predicts unseen hidden-state similarities beyond lexical baselines and cross-model consensus, indicating that behavior-only measurements retain recoverable information about internal semantic geometry. Finally, we discuss implications for the ability of behavioral tasks to uncover hidden cognitive states.
comment: 25 pages including references, 15 figures, 6 tables
Zooming without Zooming: Region-to-Image Distillation for Fine-Grained Multimodal Perception
Multimodal Large Language Models (MLLMs) excel at broad visual understanding but still struggle with fine-grained perception, where decisive evidence is small and easily overwhelmed by global context. Recent "Thinking-with-Images" methods alleviate this by iteratively zooming in and out regions of interest during inference, but incur high latency due to repeated tool calls and visual re-encoding. To address this, we propose Region-to-Image Distillation, which transforms zooming from an inference-time tool into a training-time primitive, thereby internalizing the benefits of agentic zooming into a single forward pass of an MLLM. In particular, we first zoom in to micro-cropped regions to let strong teacher models generate high-quality VQA data, and then distill this region-grounded supervision back to the full image. After training on such data, the smaller student model improves "single-glance" fine-grained perception without tool use. To rigorously evaluate this capability, we further present ZoomBench, a hybrid-annotated benchmark of 845 VQA data spanning six fine-grained perceptual dimensions, together with a dual-view protocol that quantifies the global--regional "zooming gap". Experiments show that our models achieve leading performance across multiple fine-grained perception benchmarks, and also improve general multimodal cognition on benchmarks such as visual reasoning and GUI agents. We further discuss when "Thinking-with-Images" is necessary versus when its gains can be distilled into a single forward pass. Our code is available at https://github.com/inclusionAI/Zooming-without-Zooming.
♻ ☆ Implicit Actor Critic Coupling via a Supervised Learning Framework for RLVR
Recent advances in Reinforcement Learning with Verifiable Rewards (RLVR) have empowered large language models (LLMs) to tackle challenging reasoning tasks such as mathematics and programming. Despite its promise, the RLVR paradigm poses significant challenges, as existing methods often suffer from sparse reward signals and unstable policy gradient updates, inherent to RL-based approaches. To address the challenges, we propose $\textbf{PACS}$, a novel RLVR framework that achieves im$\textbf{P}$licit $\textbf{A}$ctor $\textbf{C}$ritic coupling via a $\textbf{S}$upervised learning framework. By treating the outcome reward as a predictable label, we reformulate the RLVR problem into a supervised learning task over a score function parameterized by the policy model and optimized using cross-entropy loss. A detailed gradient analysis shows that this supervised formulation inherently recovers the classical policy gradient update while providing more stable and efficient training. Extensive experiments demonstrate that PACS significantly outperforms strong open-source models and RLVR baselines, yielding substantial average gains of $\textbf{+8.26\%}$ (4B) and $\textbf{+9.57\%}$ (8B) over base models offering a promising avenue for LLMs post-training with verifiable rewards. Our code and data are available as open source at https://github.com/ritzz-ai/PACS.
♻ ☆ EmoLoom-2B: Fast Base-Model Screening for Emotion Classification and VAD with Lexicon-Weak Supervision and KV-Off Evaluation
We introduce EmoLoom-2B, a lightweight and reproducible pipeline that turns small language models under 2B parameters into fast screening candidates for joint emotion classification and Valence-Arousal-Dominance prediction. To ensure protocol-faithful and fair evaluation, we unify data loading, training, and inference under a single JSON input-output contract and remove avoidable variance by adopting KV-off decoding as the default setting. We incorporate two orthogonal semantic regularizers: a VAD-preserving constraint that aligns generated text with target VAD triples, and a lightweight external appraisal classifier that provides training-time guidance on goal attainment, controllability, certainty, and fairness without injecting long rationales. To improve polarity sensitivity, we introduce Valence Flip augmentation based on mirrored emotional pairs. During supervised fine-tuning, we apply A/B mixture sampling with entropy-aware temperature scheduling to balance coverage and convergence. Using Qwen-1.8B-Chat as the base model, EmoLoom-2B achieves strong performance on GoEmotions and EmpatheticDialogues, and demonstrates robust cross-corpus generalization on DailyDialog. The proposed recipe is budget-aware, auditable, and re-entrant, serving as a dependable screening pass before heavier training or multimodal fusion.
comment: This paper presents an initial and self-contained study of a lightweight screening pipeline for emotion-aware language modeling, intended as a reproducible baseline and system-level design reference. This latest version corrects and updates certain personal information
♻ ☆ Context-Emotion Aware Therapeutic Dialogue Generation: A Multi-component Reinforcement Learning Approach to Language Models for Mental Health Support
Mental health disorders impose a substantial global socioeconomic burden. While large language models (LLMs) offer 24/7, non-judgmental interactions to address this gap, pretrained models lack contextual coherence and emotional alignment for appropriate therapeutic dialogue. Existing methods suffer from three critical methodological gaps: 1) Supervised Fine-Tuning (SFT) produces repetitive, context-insensitive outputs that fail to balance clinical accuracy with genuine empathy; 2) Reinforcement Learning (RL)-based therapeutic systems rely on generic reward functions (e.g., BLEU, ROUGE) that prioritise lexical similarity over clinical-specific emotional appropriateness and contextual relevance; 3) LLMs are resource-intensive and pose data privacy risks, making local deployment in clinical settings infeasible. To address these gaps, this study investigates the application of SFT and RL techniques to enhance GPT-2's capacity for therapeutic dialogue generation. The methodology restructured input formats to enable simultaneous processing of contextual information and emotional states alongside user input, employing a novel multi-component reward function that explicitly aligns model outputs with professional therapeutic logic (not just lexical overlap) and annotated emotions. Results demonstrated substantial improvements through RLs over baseline GPT-2 across multiple evaluation metrics: BLEU (0.0111), ROUGE-1 (0.1397), ROUGE-2 (0.0213), ROUGE-L (0.1317), and METEOR (0.0581). LLM evaluation confirmed high contextual relevance and professionalism, while RL achieved 99.34% emotion accuracy compared to 66.96% for baseline GPT-2. These findings demonstrate RL's effectiveness in developing therapeutic dialogue systems that can serve as valuable assistive tools for therapists, while maintaining essential human clinical oversight.
♻ ☆ An Agentic System for Rare Disease Diagnosis with Traceable Reasoning
Rare diseases affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains an urgent challenge. Patients often endure a prolonged diagnostic odyssey exceeding five years, marked by repeated referrals, misdiagnoses, and unnecessary interventions, leading to delayed treatment and substantial emotional and economic burdens. Here we present DeepRare, a multi-agent system for rare disease differential diagnosis decision support powered by large language models, integrating over 40 specialized tools and up-to-date knowledge sources. DeepRare processes heterogeneous clinical inputs, including free-text descriptions, structured Human Phenotype Ontology terms, and genetic testing results, to generate ranked diagnostic hypotheses with transparent reasoning linked to verifiable medical evidence. Evaluated across nine datasets from literature, case reports and clinical centres across Asia, North America and Europe spanning 14 medical specialties, DeepRare demonstrates exceptional performance on 3,134 diseases. In human-phenotype-ontology-based tasks, it achieves an average Recall@1 of 57.18%, outperforming the next-best method by 23.79%; in multi-modal tests, it reaches 69.1% compared with Exomiser's 55.9% on 168 cases. Expert review achieved 95.4% agreement on its reasoning chains, confirming their validity and traceability. Our work not only advances rare disease diagnosis but also demonstrates how the latest powerful large-language-model-driven agentic systems can reshape current clinical workflows.
♻ ☆ MedXIAOHE: A Comprehensive Recipe for Building Medical MLLMs
We present MedXIAOHE, a medical vision-language foundation model designed to advance general-purpose medical understanding and reasoning in real-world clinical applications. MedXIAOHE achieves state-of-the-art performance across diverse medical benchmarks and surpasses leading closed-source multimodal systems on multiple capabilities. To achieve this, we propose an entity-aware continual pretraining framework that organizes heterogeneous medical corpora to broaden knowledge coverage and reduce long-tail gaps (e.g., rare diseases). For medical expert-level reasoning and interaction, MedXIAOHE incorporates diverse medical reasoning patterns via reinforcement learning and tool-augmented agentic training, enabling multi-step diagnostic reasoning with verifiable decision traces. To improve reliability in real-world use, MedXIAOHE integrates user-preference rubrics, evidence-grounded reasoning, and low-hallucination long-form report generation, with improved adherence to medical instructions. We release this report to document our practical design choices, scaling insights, and evaluation framework, hoping to inspire further research.
comment: XIAOHE Medical AI team. Currently, the model is exclusively available on XIAOHE AI Doctor, accessible via both the App Store and the Douyin Mini Program
♻ ☆ d$^2$Cache: Accelerating Diffusion-Based LLMs via Dual Adaptive Caching ICLR 2026
Diffusion-based large language models (dLLMs), despite their promising performance, still suffer from inferior inference efficiency. This is because dLLMs rely on bidirectional attention and cannot directly benefit from the standard key-value (KV) cache as autoregressive models (ARMs) do. To tackle this issue, we introduce \textit{Dual aDaptive Cache} (d$^2$Cache), which is a training-free approximate KV cache framework for accelerating dLLM inference. d$^2$Cache features a two-stage fine-grained selection strategy to identify tokens and adaptively update their KV states at each decoding step, while caching the KV states of the remaining tokens for reuse. Furthermore, d$^2$Cache naturally offers a more reliable decoding alternative, which can enable quasi left-to-right generation and mitigate premature overconfidence in tokens at the end of the sequence. Extensive experimental results on two representative dLLMs (\ie, LLaDA and Dream) demonstrate that d$^2$Cache not only achieves substantial inference speedups, but also yields consistent improvements in generation quality. The code is available at https://github.com/Kamichanw/d2Cache.
comment: Accepted by ICLR 2026, 21 pages, 9 figures
♻ ☆ FastKV: Decoupling of Context Reduction and KV Cache Compression for Prefill-Decoding Acceleration
While large language models (LLMs) excel at handling long-context sequences, they require substantial prefill computation and key-value (KV) cache, which can heavily burden computational efficiency and memory usage in both prefill and decoding stages. Recent works that compress KV caches with prefill acceleration reduce this cost but inadvertently tie the prefill compute reduction to the decoding KV budget. This coupling arises from overlooking the layer-dependent variation of critical context, often leading to accuracy degradation. To address this issue, we introduce FastKV, a KV cache compression framework designed to reduce latency in both prefill and decoding by leveraging the stabilization of token importance in later layers. FastKV performs full-context computation until a Token-Selective Propagation (TSP) layer, which forwards only the most informative tokens to subsequent layers. From these propagated tokens, FastKV independently selects salient KV entries for caching, thereby decoupling KV budget from the prefill compute reduction based on the TSP decision. This independent control of the TSP rate and KV retention rate enables flexible optimization of efficiency and accuracy. Experimental results show that FastKV achieves speedups of up to 1.82$\times$ in prefill and 2.87$\times$ in decoding compared to the full-context baseline, while matching the accuracy of the baselines that only accelerate the decoding stage. Our code is available at https://github.com/dongwonjo/FastKV.
♻ ☆ Recent Advancements and Challenges of Turkic Central Asian Language Processing
Research in NLP for Central Asian Turkic languages - Kazakh, Uzbek, Kyrgyz, and Turkmen - faces typical low-resource language challenges like data scarcity, limited linguistic resources and technology development. However, recent advancements have included the collection of language-specific datasets and the development of models for downstream tasks. Thus, this paper aims to summarize recent progress and identify future research directions. It provides a high-level overview of each language's linguistic features, the current technology landscape, the application of transfer learning from higher-resource languages, and the availability of labeled and unlabeled data. By outlining the current state, we hope to inspire and facilitate future research.
♻ ☆ When Attention Collapses: How Degenerate Layers in LLMs Enable Smaller, Stronger Models
Large Language Models (LLMs) are known for their performance, but we uncover a significant structural inefficiency: a phenomenon we term attention collapse. In many pre-trained decoder-style LLMs, the attention matrices in deeper layers degenerate, collapsing to near rank-one structures. These underutilized layers, which we call lazy layers, are redundant and impair model efficiency. To address this, we introduce Inheritune, a simple yet powerful training recipe designed to build smaller, stronger language models. Inheritune initializes a compact model by inheriting the potent early layers from a larger pre-trained model and then progressively trains and expands it. Our experiments on various models, including the GPT-2 family, demonstrate that models trained with Inheritune can match or even surpass the performance of their larger counterparts, despite having significantly fewer layers. This work presents a novel path toward model compression by design, enabling the creation of compact, yet highly performant language models. Code is available at https://github.com/sanyalsunny111/LLM-Inheritune.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Offline RL by Reward-Weighted Fine-Tuning for Conversation Optimization
Offline reinforcement learning (RL) is a variant of RL where the policy is learned from a previously collected dataset of trajectories and rewards. In our work, we propose a practical approach to offline RL with large language models (LLMs). We recast the problem as reward-weighted fine-tuning, which can be solved using similar techniques to supervised fine-tuning (SFT). To showcase the value of our approach, we apply it to learning short-horizon question-answering policies of a fixed length, where the agent reasons about potential answers or asks clarifying questions. Our work stands in a stark contrast to state-of-the-art methods in this domain, based on SFT and direct preference optimization, which have additional hyper-parameters and do not directly optimize for rewards. We compare to them empirically, and report major gains in both optimized rewards and language quality.
comment: Advances in Neural Information Processing Systems 38
♻ ☆ CAST: Character-and-Scene Episodic Memory for Agents
Episodic memory is a central component of human memory, which refers to the ability to recall coherent events grounded in who, when, and where. However, most agent memory systems only emphasize semantic recall and treat experience as structures such as key-value, vector, or graph, which makes them struggle to represent and retrieve coherent events. To address this challenge, we propose a Character-and-Scene based memory architecture(CAST) inspired by dramatic theory. Specifically, CAST constructs 3D scenes (time/place/topic) and organizes them into character profiles that summarize the events of a character to represent episodic memory. Moreover, CAST complements this episodic memory with a graph-based semantic memory, which yields a robust dual memory design. Experiments demonstrate that CAST has averagely improved 8.11% F1 and 10.21% J(LLM-as-a-Judge) than baselines on various datasets, especially on open and time-sensitive conversational questions.
♻ ☆ MemoTime: Memory-Augmented Temporal Knowledge Graph Enhanced Large Language Model Reasoning
Large Language Models (LLMs) have achieved impressive reasoning abilities, but struggle with temporal understanding, especially when questions involve multiple entities, compound operators, and evolving event sequences. Temporal Knowledge Graphs (TKGs), which capture vast amounts of temporal facts in a structured format, offer a reliable source for temporal reasoning. However, existing TKG-based LLM reasoning methods still struggle with four major challenges: maintaining temporal faithfulness in multi-hop reasoning, achieving multi-entity temporal synchronization, adapting retrieval to diverse temporal operators, and reusing prior reasoning experience for stability and efficiency. To address these issues, we propose MemoTime, a memory-augmented temporal knowledge graph framework that enhances LLM reasoning through structured grounding, recursive reasoning, and continual experience learning. MemoTime decomposes complex temporal questions into a hierarchical Tree of Time, enabling operator-aware reasoning that enforces monotonic timestamps and co-constrains multiple entities under unified temporal bounds. A dynamic evidence retrieval layer adaptively selects operator-specific retrieval strategies, while a self-evolving experience memory stores verified reasoning traces, toolkit decisions, and sub-question embeddings for cross-type reuse. Comprehensive experiments on multiple temporal QA benchmarks show that MemoTime achieves overall state-of-the-art results, outperforming the strong baseline by up to 24.0%. Furthermore, MemoTime enables smaller models (e.g., Qwen3-4B) to achieve reasoning performance comparable to that of GPT-4-Turbo.
comment: Accepted by The Web Conference 2026 (WWW, 2026)
♻ ☆ Benchmarking Retrieval-Augmented Generation for Chemistry
Retrieval-augmented generation (RAG) has emerged as a powerful framework for enhancing large language models (LLMs) with external knowledge, particularly in scientific domains that demand specialized and dynamic information. Despite its promise, the application of RAG in the chemistry domain remains underexplored, primarily due to the lack of high-quality, domain-specific corpora and well-curated evaluation benchmarks. In this work, we introduce ChemRAG-Bench, a comprehensive benchmark designed to systematically assess the effectiveness of RAG across a diverse set of chemistry-related tasks. The accompanying chemistry corpus integrates heterogeneous knowledge sources, including scientific literature, the PubChem database, PubMed abstracts, textbooks, and Wikipedia entries. In addition, we present ChemRAG-Toolkit, a modular and extensible RAG toolkit that supports five retrieval algorithms and eight LLMs. Using ChemRAG-Toolkit, we demonstrate that RAG yields a substantial performance gain -- achieving an average relative improvement of 17.4% over direct inference methods. We further conduct in-depth analyses on retriever architectures, corpus selection, and the number of retrieved passages, culminating in practical recommendations to guide future research and deployment of RAG systems in the chemistry domain. The code and data is available at https://chemrag.github.io.
comment: Accepted to COLM 2025
Writing in Symbiosis: Mapping Human Creative Agency in the AI Era NeurIPS 2025
The proliferation of Large Language Models (LLMs) raises a critical question about what it means to be human when we share an increasingly symbiotic relationship with persuasive and creative machines. This paper examines patterns of human-AI coevolution in creative writing, investigating how human craft and agency are adapting alongside machine capabilities. We challenge the prevailing notion of stylistic homogenization by examining diverse patterns in longitudinal writing data. Using a large-scale corpus spanning the pre- and post-LLM era, we observe patterns suggestive of a "Dual-Track Evolution": thematic convergence around AI-related topics, coupled with structured stylistic differentiation. Our analysis reveals three emergent adaptation patterns: authors showing increased similarity to AI style, those exhibiting decreased similarity, and those maintaining stylistic stability while engaging with AI-related themes. This Creative Archetype Map illuminates how authorship is coevolving with AI, contributing to discussions about human-AI collaboration, detection challenges, and the preservation of creative diversity.
comment: Advances in Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Scalable LLM Reasoning Acceleration with Low-rank Distillation
Due to long generations, large language model (LLM) math reasoning demands significant computational resources and time. While many existing efficient inference methods have been developed with excellent performance preservation on language tasks, they often severely degrade math performance. In this paper, we propose Caprese, a resource-efficient distillation method to recover lost capabilities from deploying efficient inference methods, focused primarily in feedforward blocks. With original weights unperturbed, roughly 1% of additional parameters, and only 20K synthetic training samples, we are able to recover much if not all of the reasoning capabilities lost from efficient inference for thinking LLMs and without harm to language tasks for instruct LLMs. Moreover, Caprese slashes the number of active parameters (~2B cut for Gemma 2 9B and Llama 3.1 8B) and integrates cleanly into existing model layers to reduce latency (>16% time-to-next-token reduction) while encouraging response brevity (up to 8.5% fewer tokens).
♻ ☆ Consistency of Large Reasoning Models Under Multi-Turn Attacks
Large reasoning models with reasoning capabilities achieve state-of-the-art performance on complex tasks, but their robustness under multi-turn adversarial pressure remains underexplored. We evaluate nine frontier reasoning models under adversarial attacks. Our findings reveal that reasoning confers meaningful but incomplete robustness: most reasoning models studied significantly outperform instruction-tuned baselines, yet all exhibit distinct vulnerability profiles, with misleading suggestions universally effective and social pressure showing model-specific efficacy. Through trajectory analysis, we identify five failure modes (Self-Doubt, Social Conformity, Suggestion Hijacking, Emotional Susceptibility, and Reasoning Fatigue) with the first two accounting for 50% of failures. We further demonstrate that Confidence-Aware Response Generation (CARG), effective for standard LLMs, fails for reasoning models due to overconfidence induced by extended reasoning traces; counterintuitively, random confidence embedding outperforms targeted extraction. Our results highlight that reasoning capabilities do not automatically confer adversarial robustness and that confidence-based defenses require fundamental redesign for reasoning models.
♻ ☆ Learning to Extract Rational Evidence via Reinforcement Learning for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) effectively improves the accuracy of Large Language Models (LLMs). However, retrieval noises significantly undermine the quality of LLMs' generation, necessitating the development of denoising mechanisms. Previous works extract evidence straightforwardly without deep thinking, which may risk filtering out key clues and struggle with generalization. To this end, we propose EviOmni, which learns to extract rational evidence via reasoning first and then extracting. Specifically, EviOmni integrates evidence reasoning and evidence extraction into one unified trajectory, followed by knowledge token masking to avoid information leakage, optimized via on-policy reinforcement learning with verifiable rewards in terms of answer, length, and format. Extensive experiments on five benchmark datasets show the superiority of EviOmni, which provides compact and high-quality evidence, enhances the accuracy of downstream tasks, and supports both traditional and agentic RAG systems.
comment: 22 pages, 8 Figures, 18 Tables
♻ ☆ Through the Lens of Human-Human Collaboration: A Configurable Research Platform for Exploring Human-Agent Collaboration
Intelligent systems have traditionally been designed as tools rather than collaborators, often lacking critical characteristics that collaboration partnerships require. Recent advances in large language model (LLM) agents open new opportunities for human-LLM-agent collaboration by enabling natural communication and various social and cognitive behaviors. Yet it remains unclear whether principles of computer-mediated collaboration established in HCI and CSCW persist, change, or fail when humans collaborate with LLM agents. To support systematic investigations of these questions, we introduce an open and configurable research platform for HCI researchers. The platform's modular design allows seamless adaptation of classic CSCW experiments and manipulation of theory-grounded interaction controls. We demonstrate the platform's research efficacy and usability through three case studies: (1) two Shape Factory experiments for resource negotiation with 16 participants, (2) one Hidden Profile experiment for information pooling with 16 participants, and (3) a participatory cognitive walkthrough with five HCI researchers to refine workflows of researcher interface for experiment setup and analysis.
comment: Accepted at CHI 2026
Computer Vision and Pattern Recognition 107
☆ How to Train Your Long-Context Visual Document Model
We present the first comprehensive, large-scale study of training long-context vision language models up to 344K context, targeting long-document visual question answering with measured transfer to long-context text. While several such strong are open-weight, namely Qwen3 VL and GLM 4.5/6V, their training recipes and data pipelines are not reproducible. We systematically study continued pretraining, supervised finetuning, and preference optimization for 24B and 32B parameter models, backed by extensive LC evaluations and ablations to bridge this gap, and achieve state-of-the-art performance on MMLongBenchDoc for both parameter scales. In addition to this, our key findings include: (i) training on context lengths that match evaluation context lengths outperforms training on longer contexts, (ii) training and evaluating with page indices provides a simple, high-impact boost to long-document performance, (iii) our synthetic data pipelines enable self-improvement via continued pretraining and supervised finetuning, and (iv) we extend the known text-to-visual long context transfer to the reverse, showing that visual long context training transfers to long-context text performance. We also release MMLBD-C, a manually corrected version of MMLongBenchDoc to reduce erroneous and low quality examples in the benchmark.
☆ Time-Archival Camera Virtualization for Sports and Visual Performances
Camera virtualization -- an emerging solution to novel view synthesis -- holds transformative potential for visual entertainment, live performances, and sports broadcasting by enabling the generation of photorealistic images from novel viewpoints using images from a limited set of calibrated multiple static physical cameras. Despite recent advances, achieving spatially and temporally coherent and photorealistic rendering of dynamic scenes with efficient time-archival capabilities, particularly in fast-paced sports and stage performances, remains challenging for existing approaches. Recent methods based on 3D Gaussian Splatting (3DGS) for dynamic scenes could offer real-time view-synthesis results. Yet, they are hindered by their dependence on accurate 3D point clouds from the structure-from-motion method and their inability to handle large, non-rigid, rapid motions of different subjects (e.g., flips, jumps, articulations, sudden player-to-player transitions). Moreover, independent motions of multiple subjects can break the Gaussian-tracking assumptions commonly used in 4DGS, ST-GS, and other dynamic splatting variants. This paper advocates reconsidering a neural volume rendering formulation for camera virtualization and efficient time-archival capabilities, making it useful for sports broadcasting and related applications. By modeling a dynamic scene as rigid transformations across multiple synchronized camera views at a given time, our method performs neural representation learning, providing enhanced visual rendering quality at test time. A key contribution of our approach is its support for time-archival, i.e., users can revisit any past temporal instance of a dynamic scene and can perform novel view synthesis, enabling retrospective rendering for replay, analysis, and archival of live events, a functionality absent in existing neural rendering approaches and novel view synthesis...
comment: Project Page: https://yunxiaozhangjack.com/tacv/; Under minor revision in Journal of Computer Vision and Image Understanding (CVIU); Special Issue: Computer Vision for Sports and Winter Sports. Outcome of a master and bachelor student project completed in Visual and Spatial AI Lab at TAMU
☆ Distributional Deep Learning for Super-Resolution of 4D Flow MRI under Domain Shift
Super-resolution is widely used in medical imaging to enhance low-quality data, reducing scan time and improving abnormality detection. Conventional super-resolution approaches typically rely on paired datasets of downsampled and original high resolution images, training models to reconstruct high resolution images from their artificially degraded counterparts. However, in real-world clinical settings, low resolution data often arise from acquisition mechanisms that differ significantly from simple downsampling. As a result, these inputs may lie outside the domain of the training data, leading to poor model generalization due to domain shift. To address this limitation, we propose a distributional deep learning framework that improves model robustness and domain generalization. We develop this approch for enhancing the resolution of 4D Flow MRI (4DF). This is a novel imaging modality that captures hemodynamic flow velocity and clinically relevant metrics such as vessel wall stress. These metrics are critical for assessing aneurysm rupture risk. Our model is initially trained on high resolution computational fluid dynamics (CFD) simulations and their downsampled counterparts. It is then fine-tuned on a small, harmonized dataset of paired 4D Flow MRI and CFD samples. We derive the theoretical properties of our distributional estimators and demonstrate that our framework significantly outperforms traditional deep learning approaches through real data applications. This highlights the effectiveness of distributional learning in addressing domain shift and improving super-resolution performance in clinically realistic scenarios.
☆ Refine Now, Query Fast: A Decoupled Refinement Paradigm for Implicit Neural Fields ICLR 2026
Implicit Neural Representations (INRs) have emerged as promising surrogates for large 3D scientific simulations due to their ability to continuously model spatial and conditional fields, yet they face a critical fidelity-speed dilemma: deep MLPs suffer from high inference cost, while efficient embedding-based models lack sufficient expressiveness. To resolve this, we propose the Decoupled Representation Refinement (DRR) architectural paradigm. DRR leverages a deep refiner network, alongside non-parametric transformations, in a one-time offline process to encode rich representations into a compact and efficient embedding structure. This approach decouples slow neural networks with high representational capacity from the fast inference path. We introduce DRR-Net, a simple network that validates this paradigm, and a novel data augmentation strategy, Variational Pairs (VP) for improving INRs under complex tasks like high-dimensional surrogate modeling. Experiments on several ensemble simulation datasets demonstrate that our approach achieves state-of-the-art fidelity, while being up to 27$\times$ faster at inference than high-fidelity baselines and remaining competitive with the fastest models. The DRR paradigm offers an effective strategy for building powerful and practical neural field surrogates and \rev{INRs in broader applications}, with a minimal compromise between speed and quality.
comment: Accepted to ICLR 2026. Code available at https://github.com/xtyinzz/DRR-INR
☆ Loss Knows Best: Detecting Annotation Errors in Videos via Loss Trajectories
High-quality video datasets are foundational for training robust models in tasks like action recognition, phase detection, and event segmentation. However, many real-world video datasets suffer from annotation errors such as *mislabeling*, where segments are assigned incorrect class labels, and *disordering*, where the temporal sequence does not follow the correct progression. These errors are particularly harmful in phase-annotated tasks, where temporal consistency is critical. We propose a novel, model-agnostic method for detecting annotation errors by analyzing the Cumulative Sample Loss (CSL)--defined as the average loss a frame incurs when passing through model checkpoints saved across training epochs. This per-frame loss trajectory acts as a dynamic fingerprint of frame-level learnability. Mislabeled or disordered frames tend to show consistently high or irregular loss patterns, as they remain difficult for the model to learn throughout training, while correctly labeled frames typically converge to low loss early. To compute CSL, we train a video segmentation model and store its weights at each epoch. These checkpoints are then used to evaluate the loss of each frame in a test video. Frames with persistently high CSL are flagged as likely candidates for annotation errors, including mislabeling or temporal misalignment. Our method does not require ground truth on annotation errors and is generalizable across datasets. Experiments on EgoPER and Cholec80 demonstrate strong detection performance, effectively identifying subtle inconsistencies such as mislabeling and frame disordering. The proposed approach provides a powerful tool for dataset auditing and improving training reliability in video-based machine learning.
comment: 8 pages, 5 figures, 6 tables
☆ CGRA-DeBERTa Concept Guided Residual Augmentation Transformer for Theologically Islamic Understanding
Accurate QA over classical Islamic texts remains challenging due to domain specific semantics, long context dependencies, and concept sensitive reasoning. Therefore, a new CGRA DeBERTa, a concept guided residual domain augmentation transformer framework, is proposed that enhances theological QA over Hadith corpora. The CGRA DeBERTa builds on a customized DeBERTa transformer backbone with lightweight LoRA based adaptations and a residual concept aware gating mechanism. The customized DeBERTa embedding block learns global and positional context, while Concept Guided Residual Blocks incorporate theological priors from a curated Islamic Concept Dictionary of 12 core terms. Moreover, the Concept Gating Mechanism selectively amplifies semantically critical tokens via importance weighted attention, applying differential scaling from 1.04 to 3.00. This design preserves contextual integrity, strengthens domain-specific semantic representations, and enables accurate, efficient span extraction while maintaining computational efficiency. This paper reports the results of training CGRA using a specially constructed dataset of 42591 QA pairs from the text of Sahih alBukhari and Sahih Muslim. While BERT achieved an EM score of 75.87 and DeBERTa one of 89.77, our model scored 97.85 and thus surpassed them by 8.08 on an absolute scale, all while adding approximately 8 inference overhead due to parameter efficient gating. The qualitative evaluation noted better extraction and discrimination and theological precision. This study presents Hadith QA systems that are efficient, interpretable, and accurate and that scale provide educational materials with necessary theological nuance.
comment: 24 Pages, 9 Tables, 7 Figures
☆ MB-DSMIL-CL-PL: Scalable Weakly Supervised Ovarian Cancer Subtype Classification and Localisation Using Contrastive and Prototype Learning with Frozen Patch Features
The study of histopathological subtypes is valuable for the personalisation of effective treatment strategies for ovarian cancer. However, increasing diagnostic workloads present a challenge for UK pathology departments, leading to the rise in AI approaches. While traditional approaches in this field have relied on pre-computed, frozen image features, recent advances have shifted towards end-to-end feature extraction, providing an improvement in accuracy but at the expense of significantly reduced scalability during training and time-consuming experimentation. In this paper, we propose a new approach for subtype classification and localisation in ovarian cancer histopathology images using contrastive and prototype learning with pre-computed, frozen features via feature-space augmentations. Compared to DSMIL, our method achieves an improvement of 70.4\% and 15.3\% in F1 score for instance- and slide-level classification, respectively, along with AUC gains of 16.9\% for instance localisation and 2.3\% for slide classification, while maintaining the use of frozen patch features.
☆ Zero-shot HOI Detection with MLLM-based Detector-agnostic Interaction Recognition ICLR 2026
Zero-shot Human-object interaction (HOI) detection aims to locate humans and objects in images and recognize their interactions. While advances in open-vocabulary object detection provide promising solutions for object localization, interaction recognition (IR) remains challenging due to the combinatorial diversity of interactions. Existing methods, including two-stage methods, tightly couple IR with a specific detector and rely on coarse-grained vision-language model (VLM) features, which limit generalization to unseen interactions. In this work, we propose a decoupled framework that separates object detection from IR and leverages multi-modal large language models (MLLMs) for zero-shot IR. We introduce a deterministic generation method that formulates IR as a visual question answering task and enforces deterministic outputs, enabling training-free zero-shot IR. To further enhance performance and efficiency by fine-tuning the model, we design a spatial-aware pooling module that integrates appearance and pairwise spatial cues, and a one-pass deterministic matching method that predicts all candidate interactions in a single forward pass. Extensive experiments on HICO-DET and V-COCO demonstrate that our method achieves superior zero-shot performance, strong cross-dataset generalization, and the flexibility to integrate with any object detectors without retraining. The codes are publicly available at https://github.com/SY-Xuan/DA-HOI.
comment: ICLR 2026
☆ EditCtrl: Disentangled Local and Global Control for Real-Time Generative Video Editing
High-fidelity generative video editing has seen significant quality improvements by leveraging pre-trained video foundation models. However, their computational cost is a major bottleneck, as they are often designed to inefficiently process the full video context regardless of the inpainting mask's size, even for sparse, localized edits. In this paper, we introduce EditCtrl, an efficient video inpainting control framework that focuses computation only where it is needed. Our approach features a novel local video context module that operates solely on masked tokens, yielding a computational cost proportional to the edit size. This local-first generation is then guided by a lightweight temporal global context embedder that ensures video-wide context consistency with minimal overhead. Not only is EditCtrl 10 times more compute efficient than state-of-the-art generative editing methods, it even improves editing quality compared to methods designed with full-attention. Finally, we showcase how EditCtrl unlocks new capabilities, including multi-region editing with text prompts and autoregressive content propagation.
comment: Project page: https://yehonathanlitman.github.io/edit_ctrl
☆ Image Generation with a Sphere Encoder
We introduce the Sphere Encoder, an efficient generative framework capable of producing images in a single forward pass and competing with many-step diffusion models using fewer than five steps. Our approach works by learning an encoder that maps natural images uniformly onto a spherical latent space, and a decoder that maps random latent vectors back to the image space. Trained solely through image reconstruction losses, the model generates an image by simply decoding a random point on the sphere. Our architecture naturally supports conditional generation, and looping the encoder/decoder a few times can further enhance image quality. Across several datasets, the sphere encoder approach yields performance competitive with state of the art diffusions, but with a small fraction of the inference cost. Project page is available at https://sphere-encoder.github.io .
comment: Technical report
☆ Neurosim: A Fast Simulator for Neuromorphic Robot Perception
Neurosim is a fast, real-time, high-performance library for simulating sensors such as dynamic vision sensors, RGB cameras, depth sensors, and inertial sensors. It can also simulate agile dynamics of multi-rotor vehicles in complex and dynamic environments. Neurosim can achieve frame rates as high as ~2700 FPS on a desktop GPU. Neurosim integrates with a ZeroMQ-based communication library called Cortex to facilitate seamless integration with machine learning and robotics workflows. Cortex provides a high-throughput, low-latency message-passing system for Python and C++ applications, with native support for NumPy arrays and PyTorch tensors. This paper discusses the design philosophy behind Neurosim and Cortex. It demonstrates how they can be used to (i) train neuromorphic perception and control algorithms, e.g., using self-supervised learning on time-synchronized multi-modal data, and (ii) test real-time implementations of these algorithms in closed-loop. Neurosim and Cortex are available at https://github.com/grasp-lyrl/neurosim .
comment: 13 pages, 6 figures
☆ ThermEval: A Structured Benchmark for Evaluation of Vision-Language Models on Thermal Imagery
Vision language models (VLMs) achieve strong performance on RGB imagery, but they do not generalize to thermal images. Thermal sensing plays a critical role in settings where visible light fails, including nighttime surveillance, search and rescue, autonomous driving, and medical screening. Unlike RGB imagery, thermal images encode physical temperature rather than color or texture, requiring perceptual and reasoning capabilities that existing RGB-centric benchmarks do not evaluate. We introduce ThermEval-B, a structured benchmark of approximately 55,000 thermal visual question answering pairs designed to assess the foundational primitives required for thermal vision language understanding. ThermEval-B integrates public datasets with our newly collected ThermEval-D, the first dataset to provide dense per-pixel temperature maps with semantic body-part annotations across diverse indoor and outdoor environments. Evaluating 25 open-source and closed-source VLMs, we find that models consistently fail at temperature-grounded reasoning, degrade under colormap transformations, and default to language priors or fixed responses, with only marginal gains from prompting or supervised fine-tuning. These results demonstrate that thermal understanding requires dedicated evaluation beyond RGB-centric assumptions, positioning ThermEval as a benchmark to drive progress in thermal vision language modeling.
comment: 8 Pages with 2 figures of main content. 2 pages of References. 10 pages of appendix with 6 figures
☆ PAct: Part-Decomposed Single-View Articulated Object Generation
Articulated objects are central to interactive 3D applications, including embodied AI, robotics, and VR/AR, where functional part decomposition and kinematic motion are essential. Yet producing high-fidelity articulated assets remains difficult to scale because it requires reliable part decomposition and kinematic rigging. Existing approaches largely fall into two paradigms: optimization-based reconstruction or distillation, which can be accurate but often takes tens of minutes to hours per instance, and inference-time methods that rely on template or part retrieval, producing plausible results that may not match the specific structure and appearance in the input observation. We introduce a part-centric generative framework for articulated object creation that synthesizes part geometry, composition, and articulation under explicit part-aware conditioning. Our representation models an object as a set of movable parts, each encoded by latent tokens augmented with part identity and articulation cues. Conditioned on a single image, the model generates articulated 3D assets that preserve instance-level correspondence while maintaining valid part structure and motion. The resulting approach avoids per-instance optimization, enables fast feed-forward inference, and supports controllable assembly and articulation, which are important for embodied interaction. Experiments on common articulated categories (e.g., drawers and doors) show improved input consistency, part accuracy, and articulation plausibility over optimization-based and retrieval-driven baselines, while substantially reducing inference time.
comment: Technical Report(11 figures, 14 pages), Project Page: https://PAct-project.github.io
☆ AnchorWeave: World-Consistent Video Generation with Retrieved Local Spatial Memories
Maintaining spatial world consistency over long horizons remains a central challenge for camera-controllable video generation. Existing memory-based approaches often condition generation on globally reconstructed 3D scenes by rendering anchor videos from the reconstructed geometry in the history. However, reconstructing a global 3D scene from multiple views inevitably introduces cross-view misalignment, as pose and depth estimation errors cause the same surfaces to be reconstructed at slightly different 3D locations across views. When fused, these inconsistencies accumulate into noisy geometry that contaminates the conditioning signals and degrades generation quality. We introduce AnchorWeave, a memory-augmented video generation framework that replaces a single misaligned global memory with multiple clean local geometric memories and learns to reconcile their cross-view inconsistencies. To this end, AnchorWeave performs coverage-driven local memory retrieval aligned with the target trajectory and integrates the selected local memories through a multi-anchor weaving controller during generation. Extensive experiments demonstrate that AnchorWeave significantly improves long-term scene consistency while maintaining strong visual quality, with ablation and analysis studies further validating the effectiveness of local geometric conditioning, multi-anchor control, and coverage-driven retrieval.
comment: Project website: https://zunwang1.github.io/AnchorWeave
☆ Wrivinder: Towards Spatial Intelligence for Geo-locating Ground Images onto Satellite Imagery
Aligning ground-level imagery with geo-registered satellite maps is crucial for mapping, navigation, and situational awareness, yet remains challenging under large viewpoint gaps or when GPS is unreliable. We introduce Wrivinder, a zero-shot, geometry-driven framework that aggregates multiple ground photographs to reconstruct a consistent 3D scene and align it with overhead satellite imagery. Wrivinder combines SfM reconstruction, 3D Gaussian Splatting, semantic grounding, and monocular depth--based metric cues to produce a stable zenith-view rendering that can be directly matched to satellite context for metrically accurate camera geo-localization. To support systematic evaluation of this task, which lacks suitable benchmarks, we also release MC-Sat, a curated dataset linking multi-view ground imagery with geo-registered satellite tiles across diverse outdoor environments. Together, Wrivinder and MC-Sat provide a first comprehensive baseline and testbed for studying geometry-centered cross-view alignment without paired supervision. In zero-shot experiments, Wrivinder achieves sub-30\,m geolocation accuracy across both dense and large-area scenes, highlighting the promise of geometry-based aggregation for robust ground-to-satellite localization.
☆ Picking the Right Specialist: Attentive Neural Process-based Selection of Task-Specialized Models as Tools for Agentic Healthcare Systems
Task-specialized models form the backbone of agentic healthcare systems, enabling the agents to answer clinical queries across tasks such as disease diagnosis, localization, and report generation. Yet, for a given task, a single "best" model rarely exists. In practice, each task is better served by multiple competing specialist models where different models excel on different data samples. As a result, for any given query, agents must reliably select the right specialist model from a heterogeneous pool of tool candidates. To this end, we introduce ToolSelect, which adaptively learns model selection for tools by minimizing a population risk over sampled specialist tool candidates using a consistent surrogate of the task-conditional selection loss. Concretely, we propose an Attentive Neural Process-based selector conditioned on the query and per-model behavioral summaries to choose among the specialist models. Motivated by the absence of any established testbed, we, for the first time, introduce an agentic Chest X-ray environment equipped with a diverse suite of task-specialized models (17 disease detection, 19 report generation, 6 visual grounding, and 13 VQA) and develop ToolSelectBench, a benchmark of 1448 queries. Our results demonstrate that ToolSelect consistently outperforms 10 SOTA methods across four different task families.
☆ Web-Scale Multimodal Summarization using CLIP-Based Semantic Alignment
We introduce Web-Scale Multimodal Summarization, a lightweight framework for generating summaries by combining retrieved text and image data from web sources. Given a user-defined topic, the system performs parallel web, news, and image searches. Retrieved images are ranked using a fine-tuned CLIP model to measure semantic alignment with topic and text. Optional BLIP captioning enables image-only summaries for stronger multimodal coherence.The pipeline supports features such as adjustable fetch limits, semantic filtering, summary styling, and downloading structured outputs. We expose the system via a Gradio-based API with controllable parameters and preconfigured presets.Evaluation on 500 image-caption pairs with 20:1 contrastive negatives yields a ROC-AUC of 0.9270, an F1-score of 0.6504, and an accuracy of 96.99%, demonstrating strong multimodal alignment. This work provides a configurable, deployable tool for web-scale summarization that integrates language, retrieval, and vision models in a user-extensible pipeline.
☆ CT-Bench: A Benchmark for Multimodal Lesion Understanding in Computed Tomography
Artificial intelligence (AI) can automatically delineate lesions on computed tomography (CT) and generate radiology report content, yet progress is limited by the scarcity of publicly available CT datasets with lesion-level annotations. To bridge this gap, we introduce CT-Bench, a first-of-its-kind benchmark dataset comprising two components: a Lesion Image and Metadata Set containing 20,335 lesions from 7,795 CT studies with bounding boxes, descriptions, and size information, and a multitask visual question answering benchmark with 2,850 QA pairs covering lesion localization, description, size estimation, and attribute categorization. Hard negative examples are included to reflect real-world diagnostic challenges. We evaluate multiple state-of-the-art multimodal models, including vision-language and medical CLIP variants, by comparing their performance to radiologist assessments, demonstrating the value of CT-Bench as a comprehensive benchmark for lesion analysis. Moreover, fine-tuning models on the Lesion Image and Metadata Set yields significant performance gains across both components, underscoring the clinical utility of CT-Bench.
☆ Multi-dimensional Persistent Sheaf Laplacians for Image Analysis
We propose a multi-dimensional persistent sheaf Laplacian (MPSL) framework on simplicial complexes for image analysis. The proposed method is motivated by the strong sensitivity of commonly used dimensionality reduction techniques, such as principal component analysis (PCA), to the choice of reduced dimension. Rather than selecting a single reduced dimension or averaging results across dimensions, we exploit complementary advantages of multiple reduced dimensions. At a given dimension, image samples are regarded as simplicial complexes, and persistent sheaf Laplacians are utilized to extract a multiscale localized topological spectral representation for individual image samples. Statistical summaries of the resulting spectra are then aggregated across scales and dimensions to form multiscale multi-dimensional image representations. We evaluate the proposed framework on the COIL20 and ETH80 image datasets using standard classification protocols. Experimental results show that the proposed method provides more stable performance across a wide range of reduced dimensions and achieves consistent improvements to PCA-based baselines in moderate dimensional regimes.
☆ Integrating Affordances and Attention models for Short-Term Object Interaction Anticipation
Short Term object-interaction Anticipation consists in detecting the location of the next active objects, the noun and verb categories of the interaction, as well as the time to contact from the observation of egocentric video. This ability is fundamental for wearable assistants to understand user goals and provide timely assistance, or to enable human-robot interaction. In this work, we present a method to improve the performance of STA predictions. Our contributions are two-fold: 1 We propose STAformer and STAformer plus plus, two novel attention-based architectures integrating frame-guided temporal pooling, dual image-video attention, and multiscale feature fusion to support STA predictions from an image-input video pair; 2 We introduce two novel modules to ground STA predictions on human behavior by modeling affordances. First, we integrate an environment affordance model which acts as a persistent memory of interactions that can take place in a given physical scene. We explore how to integrate environment affordances via simple late fusion and with an approach which adaptively learns how to best fuse affordances with end-to-end predictions. Second, we predict interaction hotspots from the observation of hands and object trajectories, increasing confidence in STA predictions localized around the hotspot. Our results show significant improvements on Overall Top-5 mAP, with gain up to +23p.p on Ego4D and +31p.p on a novel set of curated EPIC-Kitchens STA labels. We released the code, annotations, and pre-extracted affordances on Ego4D and EPIC-Kitchens to encourage future research in this area.
☆ Debiasing Central Fixation Confounds Reveals a Peripheral "Sweet Spot" for Human-like Scanpaths in Hard-Attention Vision
Human eye movements in visual recognition reflect a balance between foveal sampling and peripheral context. Task-driven hard-attention models for vision are often evaluated by how well their scanpaths match human gaze. However, common scanpath metrics can be strongly confounded by dataset-specific center bias, especially on object-centric datasets. Using Gaze-CIFAR-10, we show that a trivial center-fixation baseline achieves surprisingly strong scanpath scores, approaching many learned policies. This makes standard metrics optimistic and blurs the distinction between genuine behavioral alignment and mere central tendency. We then analyze a hard-attention classifier under constrained vision by sweeping foveal patch size and peripheral context, revealing a peripheral sweet spot: only a narrow range of sensory constraints yields scanpaths that are simultaneously (i) above the center baseline after debiasing and (ii) temporally human-like in movement statistics. To address center bias, we propose GCS (Gaze Consistency Score), a center-debiased composite metric augmented with movement similarity. GCS uncovers a robust sweet spot at medium patch size with both foveal and peripheral vision, that is not obvious from raw scanpath metrics or accuracy alone, and also highlights a "shortcut regime" when the field-of-view becomes too large. We discuss implications for evaluating active perception on object-centric datasets and for designing gaze benchmarks that better separate behavioral alignment from center bias.
☆ VIPA: Visual Informative Part Attention for Referring Image Segmentation
Referring Image Segmentation (RIS) aims to segment a target object described by a natural language expression. Existing methods have evolved by leveraging the vision information into the language tokens. To more effectively exploit visual contexts for fine-grained segmentation, we propose a novel Visual Informative Part Attention (VIPA) framework for referring image segmentation. VIPA leverages the informative parts of visual contexts, called a visual expression, which can effectively provide the structural and semantic visual target information to the network. This design reduces high-variance cross-modal projection and enhances semantic consistency in an attention mechanism of the referring image segmentation. We also design a visual expression generator (VEG) module, which retrieves informative visual tokens via local-global linguistic context cues and refines the retrieved tokens for reducing noise information and sharing informative visual attributes. This module allows the visual expression to consider comprehensive contexts and capture semantic visual contexts of informative regions. In this way, our framework enables the network's attention to robustly align with the fine-grained regions of interest. Extensive experiments and visual analysis demonstrate the effectiveness of our approach. Our VIPA outperforms the existing state-of-the-art methods on four public RIS benchmarks.
comment: Preprint
☆ GOT-JEPA: Generic Object Tracking with Model Adaptation and Occlusion Handling using Joint-Embedding Predictive Architecture
The human visual system tracks objects by integrating current observations with previously observed information, adapting to target and scene changes, and reasoning about occlusion at fine granularity. In contrast, recent generic object trackers are often optimized for training targets, which limits robustness and generalization in unseen scenarios, and their occlusion reasoning remains coarse, lacking detailed modeling of occlusion patterns. To address these limitations in generalization and occlusion perception, we propose GOT-JEPA, a model-predictive pretraining framework that extends JEPA from predicting image features to predicting tracking models. Given identical historical information, a teacher predictor generates pseudo-tracking models from a clean current frame, and a student predictor learns to predict the same pseudo-tracking models from a corrupted version of the current frame. This design provides stable pseudo supervision and explicitly trains the predictor to produce reliable tracking models under occlusions, distractors, and other adverse observations, improving generalization to dynamic environments. Building on GOT-JEPA, we further propose OccuSolver to enhance occlusion perception for object tracking. OccuSolver adapts a point-centric point tracker for object-aware visibility estimation and detailed occlusion-pattern capture. Conditioned on object priors iteratively generated by the tracker, OccuSolver incrementally refines visibility states, strengthens occlusion handling, and produces higher-quality reference labels that progressively improve subsequent model predictions. Extensive evaluations on seven benchmarks show that our method effectively enhances tracker generalization and robustness.
comment: Learning Model Adaptation for Adverse and Dynamic Environments
☆ SAILS: Segment Anything with Incrementally Learned Semantics for Task-Invariant and Training-Free Continual Learning
Continual learning remains constrained by the need for repeated retraining, high computational costs, and the persistent challenge of forgetting. These factors significantly limit the applicability of continuous learning in real-world settings, as iterative model updates require significant computational resources and inherently exacerbate forgetting. We present SAILS -- Segment Anything with Incrementally Learned Semantics, a training-free framework for Class-Incremental Semantic Segmentation (CISS) that sidesteps these challenges entirely. SAILS leverages foundational models to decouple CISS into two stages: Zero-shot region extraction using Segment Anything Model (SAM), followed by semantic association through prototypes in a fixed feature space. SAILS incorporates selective intra-class clustering, resulting in multiple prototypes per class to better model intra-class variability. Our results demonstrate that, despite requiring no incremental training, SAILS typically surpasses the performance of existing training-based approaches on standard CISS datasets, particularly in long and challenging task sequences where forgetting tends to be most severe. By avoiding parameter updates, SAILS completely eliminates forgetting and maintains consistent, task-invariant performance. Furthermore, SAILS exhibits positive backward transfer, where the introduction of new classes can enhance performance on previous classes.
comment: Accepted at IEEE CAI 2026
☆ Universal Algorithm-Implicit Learning
Current meta-learning methods are constrained to narrow task distributions with fixed feature and label spaces, limiting applicability. Moreover, the current meta-learning literature uses key terms like "universal" and "general-purpose" inconsistently and lacks precise definitions, hindering comparability. We introduce a theoretical framework for meta-learning which formally defines practical universality and introduces a distinction between algorithm-explicit and algorithm-implicit learning, providing a principled vocabulary for reasoning about universal meta-learning methods. Guided by this framework, we present TAIL, a transformer-based algorithm-implicit meta-learner that functions across tasks with varying domains, modalities, and label configurations. TAIL features three innovations over prior transformer-based meta-learners: random projections for cross-modal feature encoding, random injection label embeddings that extrapolate to larger label spaces, and efficient inline query processing. TAIL achieves state-of-the-art performance on standard few-shot benchmarks while generalizing to unseen domains. Unlike other meta-learning methods, it also generalizes to unseen modalities, solving text classification tasks despite training exclusively on images, handles tasks with up to 20$\times$ more classes than seen during training, and provides orders-of-magnitude computational savings over prior transformer-based approaches.
☆ StrokeNeXt: A Siamese-encoder Approach for Brain Stroke Classification in Computed Tomography Imagery
We present StrokeNeXt, a model for stroke classification in 2D Computed Tomography (CT) images. StrokeNeXt employs a dual-branch design with two ConvNeXt encoders, whose features are fused through a lightweight convolutional decoder based on stacked 1D operations, including a bottleneck projection and transformation layers, and a compact classification head. The model is evaluated on a curated dataset of 6,774 CT images, addressing both stroke detection and subtype classification between ischemic and hemorrhage cases. StrokeNeXt consistently outperforms convolutional and Transformer-based baselines, reaching accuracies and F1-scores of up to 0.988. Paired statistical tests confirm that the performance gains are statistically significant, while class-wise sensitivity and specificity demonstrate robust behavior across diagnostic categories. Calibration analysis shows reduced prediction error compared to competing methods, and confusion matrix results indicate low misclassification rates. In addition, the model exhibits low inference time and fast convergence.
comment: 10 pages, 6 figures, 11 tables
☆ Depth Completion as Parameter-Efficient Test-Time Adaptation
We introduce CAPA, a parameter-efficient test-time optimization framework that adapts pre-trained 3D foundation models (FMs) for depth completion, using sparse geometric cues. Unlike prior methods that train task-specific encoders for auxiliary inputs, which often overfit and generalize poorly, CAPA freezes the FM backbone. Instead, it updates only a minimal set of parameters using Parameter-Efficient Fine-Tuning (e.g. LoRA or VPT), guided by gradients calculated directly from the sparse observations available at inference time. This approach effectively grounds the foundation model's geometric prior in the scene-specific measurements, correcting distortions and misplaced structures. For videos, CAPA introduces sequence-level parameter sharing, jointly adapting all frames to exploit temporal correlations, improve robustness, and enforce multi-frame consistency. CAPA is model-agnostic, compatible with any ViT-based FM, and achieves state-of-the-art results across diverse condition patterns on both indoor and outdoor datasets. Project page: research.nvidia.com/labs/dvl/projects/capa.
☆ It's a Matter of Time: Three Lessons on Long-Term Motion for Perception
Temporal information has long been considered to be essential for perception. While there is extensive research on the role of image information for perceptual tasks, the role of the temporal dimension remains less well understood: What can we learn about the world from long-term motion information? What properties does long-term motion information have for visual learning? We leverage recent success in point-track estimation, which offers an excellent opportunity to learn temporal representations and experiment on a variety of perceptual tasks. We draw 3 clear lessons: 1) Long-term motion representations contain information to understand actions, but also objects, materials, and spatial information, often even better than images. 2) Long-term motion representations generalize far better than image representations in low-data settings and in zero-shot tasks. 3) The very low dimensionality of motion information makes motion representations a better trade-off between GFLOPs and accuracy than standard video representations, and used together they achieve higher performance than video representations alone. We hope these insights will pave the way for the design of future models that leverage the power of long-term motion information for perception.
☆ Exposing Diversity Bias in Deep Generative Models: Statistical Origins and Correction of Diversity Error
Deep generative models have achieved great success in producing high-quality samples, making them a central tool across machine learning applications. Beyond sample quality, an important yet less systematically studied question is whether trained generative models faithfully capture the diversity of the underlying data distribution. In this work, we address this question by directly comparing the diversity of samples generated by state-of-the-art models with that of test samples drawn from the target data distribution, using recently proposed reference-free entropy-based diversity scores, Vendi and RKE. Across multiple benchmark datasets, we find that test data consistently attains substantially higher Vendi and RKE diversity scores than the generated samples, suggesting a systematic downward diversity bias in modern generative models. To understand the origin of this bias, we analyze the finite-sample behavior of entropy-based diversity scores and show that their expected values increase with sample size, implying that diversity estimated from finite training sets could inherently underestimate the diversity of the true distribution. As a result, optimizing the generators to minimize divergence to empirical data distributions would induce a loss of diversity. Finally, we discuss potential diversity-aware regularization and guidance strategies based on Vendi and RKE as principled directions for mitigating this bias, and provide empirical evidence suggesting their potential to improve the results.
☆ Universal Image Immunization against Diffusion-based Image Editing via Semantic Injection
Recent advances in diffusion models have enabled powerful image editing capabilities guided by natural language prompts, unlocking new creative possibilities. However, they introduce significant ethical and legal risks, such as deepfakes and unauthorized use of copyrighted visual content. To address these risks, image immunization has emerged as a promising defense against AI-driven semantic manipulation. Yet, most existing approaches rely on image-specific adversarial perturbations that require individual optimization for each image, thereby limiting scalability and practicality. In this paper, we propose the first universal image immunization framework that generates a single, broadly applicable adversarial perturbation specifically designed for diffusion-based editing pipelines. Inspired by universal adversarial perturbation (UAP) techniques used in targeted attacks, our method generates a UAP that embeds a semantic target into images to be protected. Simultaneously, it suppresses original content to effectively misdirect the model's attention during editing. As a result, our approach effectively blocks malicious editing attempts by overwriting the original semantic content in the image via the UAP. Moreover, our method operates effectively even in data-free settings without requiring access to training data or domain knowledge, further enhancing its practicality and broad applicability in real-world scenarios. Extensive experiments show that our method, as the first universal immunization approach, significantly outperforms several baselines in the UAP setting. In addition, despite the inherent difficulty of universal perturbations, our method also achieves performance on par with image-specific methods under a more restricted perturbation budget, while also exhibiting strong black-box transferability across different diffusion models.
comment: Working paper
☆ MeFEm: Medical Face Embedding model
We present MeFEm, a vision model based on a modified Joint Embedding Predictive Architecture (JEPA) for biometric and medical analysis from facial images. Key modifications include an axial stripe masking strategy to focus learning on semantically relevant regions, a circular loss weighting scheme, and the probabilistic reassignment of the CLS token for high quality linear probing. Trained on a consolidated dataset of curated images, MeFEm outperforms strong baselines like FaRL and Franca on core anthropometric tasks despite using significantly less data. It also shows promising results on Body Mass Index (BMI) estimation, evaluated on a novel, consolidated closed-source dataset that addresses the domain bias prevalent in existing data. Model weights are available at https://huggingface.co/boretsyury/MeFEm , offering a strong baseline for future work in this domain.
☆ Advances in Global Solvers for 3D Vision
Global solvers have emerged as a powerful paradigm for 3D vision, offering certifiable solutions to nonconvex geometric optimization problems traditionally addressed by local or heuristic methods. This survey presents the first systematic review of global solvers in geometric vision, unifying the field through a comprehensive taxonomy of three core paradigms: Branch-and-Bound (BnB), Convex Relaxation (CR), and Graduated Non-Convexity (GNC). We present their theoretical foundations, algorithmic designs, and practical enhancements for robustness and scalability, examining how each addresses the fundamental nonconvexity of geometric estimation problems. Our analysis spans ten core vision tasks, from Wahba problem to bundle adjustment, revealing the optimality-robustness-scalability trade-offs that govern solver selection. We identify critical future directions: scaling algorithms while maintaining guarantees, integrating data-driven priors with certifiable optimization, establishing standardized benchmarks, and addressing societal implications for safety-critical deployment. By consolidating theoretical foundations, practical advances, and broader impacts, this survey provides a unified perspective and roadmap toward certifiable, trustworthy perception for real-world applications. A continuously-updated literature summary and companion code tutorials are available at https://github.com/ericzzj1989/Awesome-Global-Solvers-for-3D-Vision.
comment: Comprehensive survey; 37 pages, 7 figures, 3 tables. Project page with literature tracking and code tutorials: https://github.com/ericzzj1989/Awesome-Global-Solvers-for-3D-Vision
☆ SketchingReality: From Freehand Scene Sketches To Photorealistic Images
Recent years have witnessed remarkable progress in generative AI, with natural language emerging as the most common conditioning input. As underlying models grow more powerful, researchers are exploring increasingly diverse conditioning signals, such as depth maps, edge maps, camera parameters, and reference images, to give users finer control over generation. Among different modalities, sketches are a natural and long-standing form of human communication, enabling rapid expression of visual concepts. Previous literature has largely focused on edge maps, often misnamed 'sketches', yet algorithms that effectively handle true freehand sketches, with their inherent abstraction and distortions, remain underexplored. We pursue the challenging goal of balancing photorealism with sketch adherence when generating images from freehand input. A key obstacle is the absence of ground-truth, pixel-aligned images: by their nature, freehand sketches do not have a single correct alignment. To address this, we propose a modulation-based approach that prioritizes semantic interpretation of the sketch over strict adherence to individual edge positions. We further introduce a novel loss that enables training on freehand sketches without requiring ground-truth pixel-aligned images. We show that our method outperforms existing approaches in both semantic alignment with freehand sketch inputs and in the realism and overall quality of the generated images.
☆ VIGIL: Tackling Hallucination Detection in Image Recontextualization
We introduce VIGIL (Visual Inconsistency & Generative In-context Lucidity), the first benchmark dataset and framework providing a fine-grained categorization of hallucinations in the multimodal image recontextualization task for large multimodal models (LMMs). While existing research often treats hallucinations as a uniform issue, our work addresses a significant gap in multimodal evaluation by decomposing these errors into five categories: pasted object hallucinations, background hallucinations, object omission, positional & logical inconsistencies, and physical law violations. To address these complexities, we propose a multi-stage detection pipeline. Our architecture processes recontextualized images through a series of specialized steps targeting object-level fidelity, background consistency, and omission detection, leveraging a coordinated ensemble of open-source models, whose effectiveness is demonstrated through extensive experimental evaluations. Our approach enables a deeper understanding of where the models fail with an explanation; thus, we fill a gap in the field, as no prior methods offer such categorization and decomposition for this task. To promote transparency and further exploration, we openly release VIGIL, along with the detection pipeline and benchmark code, through our GitHub repository: https://github.com/mlubneuskaya/vigil and Data repository: https://huggingface.co/datasets/joannaww/VIGIL.
comment: 10 pages, 6 figures, 4 tables. Code and data are available at: https://github.com/mlubneuskaya/vigil and https://huggingface.co/datasets/joannaww/VIGIL
☆ VariViT: A Vision Transformer for Variable Image Sizes
Vision Transformers (ViTs) have emerged as the state-of-the-art architecture in representation learning, leveraging self-attention mechanisms to excel in various tasks. ViTs split images into fixed-size patches, constraining them to a predefined size and necessitating pre-processing steps like resizing, padding, or cropping. This poses challenges in medical imaging, particularly with irregularly shaped structures like tumors. A fixed bounding box crop size produces input images with highly variable foreground-to-background ratios. Resizing medical images can degrade information and introduce artefacts, impacting diagnosis. Hence, tailoring variable-sized crops to regions of interest can enhance feature representation capabilities. Moreover, large images are computationally expensive, and smaller sizes risk information loss, presenting a computation-accuracy tradeoff. We propose VariViT, an improved ViT model crafted to handle variable image sizes while maintaining a consistent patch size. VariViT employs a novel positional embedding resizing scheme for a variable number of patches. We also implement a new batching strategy within VariViT to reduce computational complexity, resulting in faster training and inference times. In our evaluations on two 3D brain MRI datasets, VariViT surpasses vanilla ViTs and ResNet in glioma genotype prediction and brain tumor classification. It achieves F1-scores of 75.5% and 76.3%, respectively, learning more discriminative features. Our proposed batching strategy reduces computation time by up to 30% compared to conventional architectures. These findings underscore the efficacy of VariViT in image representation learning. Our code can be found here: https://github.com/Aswathi-Varma/varivit
☆ YOLO26: A Comprehensive Architecture Overview and Key Improvements
You Only Look Once (YOLO) has been the prominent model for computer vision in deep learning for a decade. This study explores the novel aspects of YOLO26, the most recent version in the YOLO series. The elimination of Distribution Focal Loss (DFL), implementation of End-to-End NMS-Free Inference, introduction of ProgLoss + Small-Target-Aware Label Assignment (STAL), and use of the MuSGD optimizer are the primary enhancements designed to improve inference speed, which is claimed to achieve a 43% boost in CPU mode. This is designed to allow YOLO26 to attain real-time performance on edge devices or those without GPUs. Additionally, YOLO26 offers improvements in many computer vision tasks, including instance segmentation, pose estimation, and oriented bounding box (OBB) decoding. We aim for this effort to provide more value than just consolidating information already included in the existing technical documentation. Therefore, we performed a rigorous architectural investigation into YOLO26, mostly using the source code available in its GitHub repository and its official documentation. The authentic and detailed operational mechanisms of YOLO26 are inside the source code, which is seldom extracted by others. The YOLO26 architectural diagram is shown as the outcome of the investigation. This study is, to our knowledge, the first one presenting the CNN-based YOLO26 architecture, which is the core of YOLO26. Our objective is to provide a precise architectural comprehension of YOLO26 for researchers and developers aspiring to enhance the YOLO model, ensuring it remains the leading deep learning model in computer vision.
DriveFine: Refining-Augmented Masked Diffusion VLA for Precise and Robust Driving
Vision-Language-Action (VLA) models for autonomous driving increasingly adopt generative planners trained with imitation learning followed by reinforcement learning. Diffusion-based planners suffer from modality alignment difficulties, low training efficiency, and limited generalization. Token-based planners are plagued by cumulative causal errors and irreversible decoding. In summary, the two dominant paradigms exhibit complementary strengths and weaknesses. In this paper, we propose DriveFine, a masked diffusion VLA model that combines flexible decoding with self-correction capabilities. In particular, we design a novel plug-and-play block-MoE, which seamlessly injects a refinement expert on top of the generation expert. By enabling explicit expert selection during inference and gradient blocking during training, the two experts are fully decoupled, preserving the foundational capabilities and generic patterns of the pretrained weights, which highlights the flexibility and extensibility of the block-MoE design. Furthermore, we design a hybrid reinforcement learning strategy that encourages effective exploration of refinement expert while maintaining training stability. Extensive experiments on NAVSIM v1, v2, and Navhard benchmarks demonstrate that DriveFine exhibits strong efficacy and robustness. The code will be released at https://github.com/MSunDYY/DriveFine.
☆ OmniVTON++: Training-Free Universal Virtual Try-On with Principal Pose Guidance
Image-based Virtual Try-On (VTON) concerns the synthesis of realistic person imagery through garment re-rendering under human pose and body constraints. In practice, however, existing approaches are typically optimized for specific data conditions, making their deployment reliant on retraining and limiting their generalization as a unified solution. We present OmniVTON++, a training-free VTON framework designed for universal applicability. It addresses the intertwined challenges of garment alignment, human structural coherence, and boundary continuity by coordinating Structured Garment Morphing for correspondence-driven garment adaptation, Principal Pose Guidance for step-wise structural regulation during diffusion sampling, and Continuous Boundary Stitching for boundary-aware refinement, forming a cohesive pipeline without task-specific retraining. Experimental results demonstrate that OmniVTON++ achieves state-of-the-art performance across diverse generalization settings, including cross-dataset and cross-garment-type evaluations, while reliably operating across scenarios and diffusion backbones within a single formulation. In addition to single-garment, single-human cases, the framework supports multi-garment, multi-human, and anime character virtual try-on, expanding the scope of virtual try-on applications. The source code will be released to the public.
☆ MoRL: Reinforced Reasoning for Unified Motion Understanding and Generation
Human motion understanding and generation are crucial for vision and robotics but remain limited in reasoning capability and test-time planning. We propose MoRL, a unified multimodal motion model trained with supervised fine-tuning and reinforcement learning with verifiable rewards. Our task-specific reward design combines semantic alignment and reasoning coherence for understanding with physical plausibility and text-motion consistency for generation, improving both logical reasoning and perceptual realism. To further enhance inference, we introduce Chain-of-Motion (CoM), a test-time reasoning method that enables step-by-step planning and reflection. We also construct two large-scale CoT datasets, MoUnd-CoT-140K and MoGen-CoT-140K, to align motion sequences with reasoning traces and action descriptions. Experiments on HumanML3D and KIT-ML show that MoRL achieves significant gains over state-of-the-art baselines. Code: https://github.com/AIGeeksGroup/MoRL. Website: https://aigeeksgroup.github.io/MoRL.
☆ Cross-view Domain Generalization via Geometric Consistency for LiDAR Semantic Segmentation
Domain-generalized LiDAR semantic segmentation (LSS) seeks to train models on source-domain point clouds that generalize reliably to multiple unseen target domains, which is essential for real-world LiDAR applications. However, existing approaches assume similar acquisition views (e.g., vehicle-mounted) and struggle in cross-view scenarios, where observations differ substantially due to viewpoint-dependent structural incompleteness and non-uniform point density. Accordingly, we formulate cross-view domain generalization for LiDAR semantic segmentation and propose a novel framework, termed CVGC (Cross-View Geometric Consistency). Specifically, we introduce a cross-view geometric augmentation module that models viewpoint-induced variations in visibility and sampling density, generating multiple cross-view observations of the same scene. Subsequently, a geometric consistency module enforces consistent semantic and occupancy predictions across geometrically augmented point clouds of the same scene. Extensive experiments on six public LiDAR datasets establish the first systematic evaluation of cross-view domain generalization for LiDAR semantic segmentation, demonstrating that CVGC consistently outperforms state-of-the-art methods when generalizing from a single source domain to multiple target domains with heterogeneous acquisition viewpoints. The source code will be publicly available at https://github.com/KintomZi/CVGC-DG
☆ Error Patterns in Historical OCR: A Comparative Analysis of TrOCR and a Vision-Language Model
Optical Character Recognition (OCR) of eighteenth-century printed texts remains challenging due to degraded print quality, archaic glyphs, and non-standardized orthography. Although transformer-based OCR systems and Vision-Language Models (VLMs) achieve strong aggregate accuracy, metrics such as Character Error Rate (CER) and Word Error Rate (WER) provide limited insight into their reliability for scholarly use. We compare a dedicated OCR transformer (TrOCR) and a general-purpose Vision-Language Model (Qwen) on line-level historical English texts using length-weighted accuracy metrics and hypothesis driven error analysis. While Qwen achieves lower CER/WER and greater robustness to degraded input, it exhibits selective linguistic regularization and orthographic normalization that may silently alter historically meaningful forms. TrOCR preserves orthographic fidelity more consistently but is more prone to cascading error propagation. Our findings show that architectural inductive biases shape OCR error structure in systematic ways. Models with similar aggregate accuracy can differ substantially in error locality, detectability, and downstream scholarly risk, underscoring the need for architecture-aware evaluation in historical digitization workflows.
☆ Architectural Insights for Post-Tornado Damage Recognition
Rapid and accurate building damage assessment in the immediate aftermath of tornadoes is critical for coordinating life-saving search and rescue operations, optimizing emergency resource allocation, and accelerating community recovery. However, current automated methods struggle with the unique visual complexity of tornado-induced wreckage, primarily due to severe domain shift from standard pre-training datasets and extreme class imbalance in real-world disaster data. To address these challenges, we introduce a systematic experimental framework evaluating 79 open-source deep learning models, encompassing both Convolutional Neural Networks (CNNs) and Vision Transformers, across over 2,300 controlled experiments on our newly curated Quad-State Tornado Damage (QSTD) benchmark dataset. Our findings reveal that achieving operational-grade performance hinges on a complex interaction between architecture and optimization, rather than architectural selection alone. Most strikingly, we demonstrate that optimizer choice can be more consequential than architecture: switching from Adam to SGD provided dramatic F1 gains of +25 to +38 points for Vision Transformer and Swin Transformer families, fundamentally reversing their ranking from bottom-tier to competitive with top-performing CNNs. Furthermore, a low learning rate of 1x10^(-4) proved universally critical, boosting average F1 performance by +10.2 points across all architectures. Our champion model, ConvNeXt-Base trained with these optimized settings, demonstrated strong cross-event generalization on the held-out Tuscaloosa-Moore Tornado Damage (TMTD) dataset, achieving 46.4% Macro F1 (+34.6 points over baseline) and retaining 85.5% Ordinal Top-1 Accuracy despite temporal and sensor domain shifts.
☆ Efficient Text-Guided Convolutional Adapter for the Diffusion Model
We introduce the Nexus Adapters, novel text-guided efficient adapters to the diffusion-based framework for the Structure Preserving Conditional Generation (SPCG). Recently, structure-preserving methods have achieved promising results in conditional image generation by using a base model for prompt conditioning and an adapter for structure input, such as sketches or depth maps. These approaches are highly inefficient and sometimes require equal parameters in the adapter compared to the base architecture. It is not always possible to train the model since the diffusion model is itself costly, and doubling the parameter is highly inefficient. In these approaches, the adapter is not aware of the input prompt; therefore, it is optimal only for the structural input but not for the input prompt. To overcome the above challenges, we proposed two efficient adapters, Nexus Prime and Slim, which are guided by prompts and structural inputs. Each Nexus Block incorporates cross-attention mechanisms to enable rich multimodal conditioning. Therefore, the proposed adapter has a better understanding of the input prompt while preserving the structure. We conducted extensive experiments on the proposed models and demonstrated that the Nexus Prime adapter significantly enhances performance, requiring only 8M additional parameters compared to the baseline, T2I-Adapter. Furthermore, we also introduced a lightweight Nexus Slim adapter with 18M fewer parameters than the T2I-Adapter, which still achieved state-of-the-art results. Code: https://github.com/arya-domain/Nexus-Adapters
☆ MedVAR: Towards Scalable and Efficient Medical Image Generation via Next-scale Autoregressive Prediction
Medical image generation is pivotal in applications like data augmentation for low-resource clinical tasks and privacy-preserving data sharing. However, developing a scalable generative backbone for medical imaging requires architectural efficiency, sufficient multi-organ data, and principled evaluation, yet current approaches leave these aspects unresolved. Therefore, we introduce MedVAR, the first autoregressive-based foundation model that adopts the next-scale prediction paradigm to enable fast and scale-up-friendly medical image synthesis. MedVAR generates images in a coarse-to-fine manner and produces structured multi-scale representations suitable for downstream use. To support hierarchical generation, we curate a harmonized dataset of around 440,000 CT and MRI images spanning six anatomical regions. Comprehensive experiments across fidelity, diversity, and scalability show that MedVAR achieves state-of-the-art generative performance and offers a promising architectural direction for future medical generative foundation models.
comment: 23 pages, 8 figures
☆ MacNet: An End-to-End Manifold-Constrained Adaptive Clustering Network for Interpretable Whole Slide Image Classification
Whole slide images (WSIs) are the gold standard for pathological diagnosis and sub-typing. Current main-stream two-step frameworks employ offline feature encoders trained without domain-specific knowledge. Among them, attention-based multiple instance learning (MIL) methods are outcome-oriented and offer limited interpretability. Clustering-based approaches can provide explainable decision-making process but suffer from high dimension features and semantically ambiguous centroids. To this end, we propose an end-to-end MIL framework that integrates Grassmann re-embedding and manifold adaptive clustering, where the manifold geometric structure facilitates robust clustering results. Furthermore, we design a prior knowledge guiding proxy instance labeling and aggregation strategy to approximate patch labels and focus on pathologically relevant tumor regions. Experiments on multicentre WSI datasets demonstrate that: 1) our cluster-incorporated model achieves superior performance in both grading accuracy and interpretability; 2) end-to-end learning refines better feature representations and it requires acceptable computation resources.
comment: Our code is available at https://github.com/Prince-Lee-PathAI/MacNet
☆ Prototype Instance-semantic Disentanglement with Low-rank Regularized Subspace Clustering for WSIs Explainable Recognition
The tumor region plays a key role in pathological diagnosis. Tumor tissues are highly similar to precancerous lesions and non tumor instances often greatly exceed tumor instances in whole slide images (WSIs). These issues cause instance-semantic entanglement in multi-instance learning frameworks, degrading both model representation capability and interpretability. To address this, we propose an end-to-end prototype instance semantic disentanglement framework with low-rank regularized subspace clustering, PID-LRSC, in two aspects. First, we use secondary instance subspace learning to construct low-rank regularized subspace clustering (LRSC), addressing instance entanglement caused by an excessive proportion of non tumor instances. Second, we employ enhanced contrastive learning to design prototype instance semantic disentanglement (PID), resolving semantic entanglement caused by the high similarity between tumor and precancerous tissues. We conduct extensive experiments on multicentre pathology datasets, implying that PID-LRSC outperforms other SOTA methods. Overall, PID-LRSC provides clearer instance semantics during decision-making and significantly enhances the reliability of auxiliary diagnostic outcomes.
comment: Our code is available at https://github.com/Prince-Lee-PathAI/PID-LRSC
☆ Uncertainty-Aware Vision-Language Segmentation for Medical Imaging
We introduce a novel uncertainty-aware multimodal segmentation framework that leverages both radiological images and associated clinical text for precise medical diagnosis. We propose a Modality Decoding Attention Block (MoDAB) with a lightweight State Space Mixer (SSMix) to enable efficient cross-modal fusion and long-range dependency modelling. To guide learning under ambiguity, we propose the Spectral-Entropic Uncertainty (SEU) Loss, which jointly captures spatial overlap, spectral consistency, and predictive uncertainty in a unified objective. In complex clinical circumstances with poor image quality, this formulation improves model reliability. Extensive experiments on various publicly available medical datasets, QATA-COVID19, MosMed++, and Kvasir-SEG, demonstrate that our method achieves superior segmentation performance while being significantly more computationally efficient than existing State-of-the-Art (SoTA) approaches. Our results highlight the importance of incorporating uncertainty modelling and structured modality alignment in vision-language medical segmentation tasks. Code: https://github.com/arya-domain/UA-VLS
☆ Gaussian Mesh Renderer for Lightweight Differentiable Rendering ICASSP 2026
3D Gaussian Splatting (3DGS) has enabled high-fidelity virtualization with fast rendering and optimization for novel view synthesis. On the other hand, triangle mesh models still remain a popular choice for surface reconstruction but suffer from slow or heavy optimization in traditional mesh-based differentiable renderers. To address this problem, we propose a new lightweight differentiable mesh renderer leveraging the efficient rasterization process of 3DGS, named Gaussian Mesh Renderer (GMR), which tightly integrates the Gaussian and mesh representations. Each Gaussian primitive is analytically derived from the corresponding mesh triangle, preserving structural fidelity and enabling the gradient flow. Compared to the traditional mesh renderers, our method achieves smoother gradients, which especially contributes to better optimization using smaller batch sizes with limited memory. Our implementation is available in the public GitHub repository at https://github.com/huntorochi/Gaussian-Mesh-Renderer.
comment: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026). GitHub: https://github.com/huntorochi/Gaussian-Mesh-Renderer
☆ Revisiting the Platonic Representation Hypothesis: An Aristotelian View
The Platonic Representation Hypothesis suggests that representations from neural networks are converging to a common statistical model of reality. We show that the existing metrics used to measure representational similarity are confounded by network scale: increasing model depth or width can systematically inflate representational similarity scores. To correct these effects, we introduce a permutation-based null-calibration framework that transforms any representational similarity metric into a calibrated score with statistical guarantees. We revisit the Platonic Representation Hypothesis with our calibration framework, which reveals a nuanced picture: the apparent convergence reported by global spectral measures largely disappears after calibration, while local neighborhood similarity, but not local distances, retains significant agreement across different modalities. Based on these findings, we propose the Aristotelian Representation Hypothesis: representations in neural networks are converging to shared local neighborhood relationships.
☆ TikArt: Aperture-Guided Observation for Fine-Grained Visual Reasoning via Reinforcement Learning
We address fine-grained visual reasoning in multimodal large language models (MLLMs), where key evidence may reside in tiny objects, cluttered regions, or subtle markings that are lost under a single global image encoding. We introduce TikArt (Thinking Aperture), an aperture-guided agent that casts multi-step vision-language reasoning as a decision process over regions of interest. TikArt follows a Think-Aperture-Observe loop, alternating between language generation and two aperture actions: Zoom extracts rectangular crops, while Segment invokes SAM2 to obtain mask-based crops for irregular targets. After every action, the model must produce an explicit observation, turning local visual cues into persistent linguistic memory. Built on Qwen3-VL-8B, TikArt optimizes its reasoning policy with AGRPO, a GRPO-style reinforcement learning algorithm with a two-stage curriculum: it warms up segmentation actions and then jointly optimizes visual math, fine-grained VQA, and segmentation, using rewards that couple task success with purposeful aperture use. Experiments on V*, HR-Bench-4K/8K, MME-RealWorld-Lite, MMStar, RefCOCO, and ReasonSeg show consistent gains over the backbone and yield interpretable aperture trajectories for high-resolution reasoning.
☆ CoCoDiff: Correspondence-Consistent Diffusion Model for Fine-grained Style Transfer
Transferring visual style between images while preserving semantic correspondence between similar objects remains a central challenge in computer vision. While existing methods have made great strides, most of them operate at global level but overlook region-wise and even pixel-wise semantic correspondence. To address this, we propose CoCoDiff, a novel training-free and low-cost style transfer framework that leverages pretrained latent diffusion models to achieve fine-grained, semantically consistent stylization. We identify that correspondence cues within generative diffusion models are under-explored and that content consistency across semantically matched regions is often neglected. CoCoDiff introduces a pixel-wise semantic correspondence module that mines intermediate diffusion features to construct a dense alignment map between content and style images. Furthermore, a cycle-consistency module then enforces structural and perceptual alignment across iterations, yielding object and region level stylization that preserves geometry and detail. Despite requiring no additional training or supervision, CoCoDiff delivers state-of-the-art visual quality and strong quantitative results, outperforming methods that rely on extra training or annotations.
☆ Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report v1.5
To understand and identify the unprecedented risks posed by rapidly advancing artificial intelligence (AI) models, Frontier AI Risk Management Framework in Practice presents a comprehensive assessment of their frontier risks. As Large Language Models (LLMs) general capabilities rapidly evolve and the proliferation of agentic AI, this version of the risk analysis technical report presents an updated and granular assessment of five critical dimensions: cyber offense, persuasion and manipulation, strategic deception, uncontrolled AI R\&D, and self-replication. Specifically, we introduce more complex scenarios for cyber offense. For persuasion and manipulation, we evaluate the risk of LLM-to-LLM persuasion on newly released LLMs. For strategic deception and scheming, we add the new experiment with respect to emergent misalignment. For uncontrolled AI R\&D, we focus on the ``mis-evolution'' of agents as they autonomously expand their memory substrates and toolsets. Besides, we also monitor and evaluate the safety performance of OpenClaw during the interaction on the Moltbook. For self-replication, we introduce a new resource-constrained scenario. More importantly, we propose and validate a series of robust mitigation strategies to address these emerging threats, providing a preliminary technical and actionable pathway for the secure deployment of frontier AI. This work reflects our current understanding of AI frontier risks and urges collective action to mitigate these challenges.
comment: 49 pages, 17 figures, 12 tables
☆ Controlling Your Image via Simplified Vector Graphics
Recent advances in image generation have achieved remarkable visual quality, while a fundamental challenge remains: Can image generation be controlled at the element level, enabling intuitive modifications such as adjusting shapes, altering colors, or adding and removing objects? In this work, we address this challenge by introducing layer-wise controllable generation through simplified vector graphics (VGs). Our approach first efficiently parses images into hierarchical VG representations that are semantic-aligned and structurally coherent. Building on this representation, we design a novel image synthesis framework guided by VGs, allowing users to freely modify elements and seamlessly translate these edits into photorealistic outputs. By leveraging the structural and semantic features of VGs in conjunction with noise prediction, our method provides precise control over geometry, color, and object semantics. Extensive experiments demonstrate the effectiveness of our approach in diverse applications, including image editing, object-level manipulation, and fine-grained content creation, establishing a new paradigm for controllable image generation. Project page: https://guolanqing.github.io/Vec2Pix/
comment: Preprint
☆ D-SECURE: Dual-Source Evidence Combination for Unified Reasoning in Misinformation Detection
Multimodal misinformation increasingly mixes realistic im-age edits with fluent but misleading text, producing persuasive posts that are difficult to verify. Existing systems usually rely on a single evidence source. Content-based detectors identify local inconsistencies within an image and its caption but cannot determine global factual truth. Retrieval-based fact-checkers reason over external evidence but treat inputs as coarse claims and often miss subtle visual or textual manipulations. This separation creates failure cases where internally consistent fabrications bypass manipulation detectors and fact-checkers verify claims that contain pixel-level or token-level corruption. We present D-SECURE, a framework that combines internal manipulation detection with external evidence-based reasoning for news-style posts. D-SECURE integrates the HAMMER manipulation detector with the DEFAME retrieval pipeline. DEFAME performs broad verification, and HAMMER analyses residual or uncertain cases that may contain fine-grained edits. Experiments on DGM4 and ClaimReview samples highlight the complementary strengths of both systems and motivate their fusion. We provide a unified, explainable report that incorporates manipulation cues and external evidence.
comment: 12 pages, 2 figures
☆ Hierarchical Vision-Language Interaction for Facial Action Unit Detection
Facial Action Unit (AU) detection seeks to recognize subtle facial muscle activations as defined by the Facial Action Coding System (FACS). A primary challenge w.r.t AU detection is the effective learning of discriminative and generalizable AU representations under conditions of limited annotated data. To address this, we propose a Hierarchical Vision-language Interaction for AU Understanding (HiVA) method, which leverages textual AU descriptions as semantic priors to guide and enhance AU detection. Specifically, HiVA employs a large language model to generate diverse and contextually rich AU descriptions to strengthen language-based representation learning. To capture both fine-grained and holistic vision-language associations, HiVA introduces an AU-aware dynamic graph module that facilitates the learning of AU-specific visual representations. These features are further integrated within a hierarchical cross-modal attention architecture comprising two complementary mechanisms: Disentangled Dual Cross-Attention (DDCA), which establishes fine-grained, AU-specific interactions between visual and textual features, and Contextual Dual Cross-Attention (CDCA), which models global inter-AU dependencies. This collaborative, cross-modal learning paradigm enables HiVA to leverage multi-grained vision-based AU features in conjunction with refined language-based AU details, culminating in robust and semantically enriched AU detection capabilities. Extensive experiments show that HiVA consistently surpasses state-of-the-art approaches. Besides, qualitative analyses reveal that HiVA produces semantically meaningful activation patterns, highlighting its efficacy in learning robust and interpretable cross-modal correspondences for comprehensive facial behavior analysis.
comment: Accepted to IEEE Transaction on Affective Computing 2026
☆ Understanding Sensor Vulnerabilities in Industrial XR Tracking
Extended Reality (XR) systems deployed in industrial and operational settings rely on Visual--Inertial Odometry (VIO) for continuous six-degree-of-freedom pose tracking, yet these environments often involve sensing conditions that deviate from ideal assumptions. Despite this, most VIO evaluations emphasize nominal sensor behavior, leaving the effects of sustained sensor degradation under operational conditions insufficiently understood. This paper presents a controlled empirical study of VIO behavior under degraded sensing, examining faults affecting visual and inertial modalities across a range of operating regimes. Through systematic fault injection and quantitative evaluation, we observe a pronounced asymmetry in fault impact where degradations affecting visual sensing typically lead to bounded pose errors on the order of centimeters, whereas degradations affecting inertial sensing can induce substantially larger trajectory deviations, in some cases reaching hundreds to thousands of meters. These observations motivate greater emphasis on inertial reliability in the evaluation and design of XR systems for real-life industrial settings.
comment: IEEE VR XRIOS 2026 Workshop
☆ Learning Proposes, Geometry Disposes: A Modular Framework for Efficient Spatial Reasoning
Spatial perception aims to estimate camera motion and scene structure from visual observations, a problem traditionally addressed through geometric modeling and physical consistency constraints. Recent learning-based methods have demonstrated strong representational capacity for geometric perception and are increasingly used to augment classical geometry-centric systems in practice. However, whether learning components should directly replace geometric estimation or instead serve as intermediate modules within such pipelines remains an open question. In this work, we address this gap and investigate an end-to-end modular framework for effective spatial reasoning, where learning proposes geometric hypotheses, while geometric algorithms dispose estimation decisions. In particular, we study this principle in the context of relative camera pose estimation on RGB-D sequences. Using VGGT as a representative learning model, we evaluate learning-based pose and depth proposals under varying motion magnitudes and scene dynamics, followed by a classical point-to-plane RGB-D ICP as the geometric backend. Our experiments on the TUM RGB-D benchmark reveal three consistent findings: (1) learning-based pose proposals alone are unreliable; (2) learning-proposed geometry, when improperly aligned with camera intrinsics, can degrade performance; and (3) when learning-proposed depth is geometrically aligned and followed by a geometric disposal stage, consistent improvements emerge in moderately challenging rigid settings. These results demonstrate that geometry is not merely a refinement component, but an essential arbiter that validates and absorbs learning-based geometric observations. Our study highlights the importance of modular, geometry-aware system design for robust spatial perception.
☆ Feature Recalibration Based Olfactory-Visual Multimodal Model for Fine-Grained Rice Deterioration Detection
Multimodal methods are widely used in rice deterioration detection, which exhibit limited capability in representing and extracting fine-grained abnormal features. Moreover, these methods rely on devices, such as hyperspectral cameras and mass spectrometers, increasing detection costs and prolonging data acquisition time. To address these issues, we propose a feature recalibration based olfactory-visual multimodal model for fine-grained rice deterioration detection. The fine-grained deterioration embedding constructor (FDEC) is proposed to reconstruct the labeled multimodal embedded-feature dataset, enhancing sample representation. The fine-grained deterioration recalibration attention network (FDRA-Net) is proposed to emphasize signal variations and increase sensitivity to fine-grained deterioration on the rice surface. Experiments show that the proposed method achieves a classification accuracy of 99.89%. Compared with state-of-the-art methods, the detection accuracy is improved and the procedure is simplified. Furthermore, field detection demonstrates the advantages of accuracy and operational simplicity. The proposed method can also be extended to other agrifood in agriculture and food industry.
☆ pFedNavi: Structure-Aware Personalized Federated Vision-Language Navigation for Embodied AI
Vision-Language Navigation VLN requires large-scale trajectory instruction data from private indoor environments, raising significant privacy concerns. Federated Learning FL mitigates this by keeping data on-device, but vanilla FL struggles under VLNs' extreme cross-client heterogeneity in environments and instruction styles, making a single global model suboptimal. This paper proposes pFedNavi, a structure-aware and dynamically adaptive personalized federated learning framework tailored for VLN. Our key idea is to personalize where it matters: pFedNavi adaptively identifies client-specific layers via layer-wise mixing coefficients, and performs fine-grained parameter fusion on the selected components (e.g., the encoder-decoder projection and environment-sensitive decoder layers) to balance global knowledge sharing with local specialization. We evaluate pFedNavi on two standard VLN benchmarks, R2R and RxR, using both ResNet and CLIP visual representations. Across all metrics, pFedNavi consistently outperforms the FedAvg-based VLN baseline, achieving up to 7.5% improvement in navigation success rate and up to 7.8% gain in trajectory fidelity, while converging 1.38x faster under non-IID conditions.
comment: Preprint
☆ Multi-Turn Adaptive Prompting Attack on Large Vision-Language Models
Multi-turn jailbreak attacks are effective against text-only large language models (LLMs) by gradually introducing malicious content across turns. When extended to large vision-language models (LVLMs), we find that naively adding visual inputs can cause existing multi-turn jailbreaks to be easily defended. For example, overly malicious visual input will easily trigger the defense mechanism of safety-aligned LVLMs, making the response more conservative. To address this, we propose MAPA: a multi-turn adaptive prompting attack that 1) at each turn, alternates text-vision attack actions to elicit the most malicious response; and 2) across turns, adjusts the attack trajectory through iterative back-and-forth refinement to gradually amplify response maliciousness. This two-level design enables MAPA to consistently outperform state-of-the-art methods, improving attack success rates by 11-35% on recent benchmarks against LLaVA-V1.6-Mistral-7B, Qwen2.5-VL-7B-Instruct, Llama-3.2-Vision-11B-Instruct and GPT-4o-mini.
☆ Adapting VACE for Real-Time Autoregressive Video Diffusion
We describe an adaptation of VACE (Video All-in-one Creation and Editing) for real-time autoregressive video generation. VACE provides unified video control (reference guidance, structural conditioning, inpainting, and temporal extension) but assumes bidirectional attention over full sequences, making it incompatible with streaming pipelines that require fixed chunk sizes and causal attention. The key modification moves reference frames from the diffusion latent space into a parallel conditioning pathway, preserving the fixed chunk sizes and KV caching that autoregressive models require. This adaptation reuses existing pretrained VACE weights without additional training. Across 1.3B and 14B model scales, VACE adds 20-30% latency overhead for structural control and inpainting, with negligible VRAM cost relative to the base model. Reference-to-video fidelity is severely degraded compared to batch VACE due to causal attention constraints. A reference implementation is available at https://github.com/daydreamlive/scope.
comment: 10 pages, 4 figures, 7 tables
☆ Event-based Visual Deformation Measurement
Visual Deformation Measurement (VDM) aims to recover dense deformation fields by tracking surface motion from camera observations. Traditional image-based methods rely on minimal inter-frame motion to constrain the correspondence search space, which limits their applicability to highly dynamic scenes or necessitates high-speed cameras at the cost of prohibitive storage and computational overhead. We propose an event-frame fusion framework that exploits events for temporally dense motion cues and frames for spatially dense precise estimation. Revisiting the solid elastic modeling prior, we propose an Affine Invariant Simplicial (AIS) framework. It partitions the deformation field into linearized sub-regions with low-parametric representation, effectively mitigating motion ambiguities arising from sparse and noisy events. To speed up parameter searching and reduce error accumulation, a neighborhood-greedy optimization strategy is introduced, enabling well-converged sub-regions to guide their poorly-converged neighbors, effectively suppress local error accumulation in long-term dense tracking. To evaluate the proposed method, a benchmark dataset with temporally aligned event streams and frames is established, encompassing over 120 sequences spanning diverse deformation scenarios. Experimental results show that our method outperforms the state-of-the-art baseline by 1.6% in survival rate. Remarkably, it achieves this using only 18.9% of the data storage and processing resources of high-speed video methods.
☆ Image-based Joint-level Detection for Inflammation in Rheumatoid Arthritis from Small and Imbalanced Data
Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic joint inflammation. Early diagnosis and tight follow-up are essential to the management of RA, as ongoing inflammation can cause irreversible joint damage. The detection of arthritis is important for diagnosis and assessment of disease activity; however, it often takes a long time for patients to receive appropriate specialist care. Therefore, there is a strong need to develop systems that can detect joint inflammation easily using RGB images captured at home. Consequently, we tackle the task of RA inflammation detection from RGB hand images. This task is highly challenging due to general issues in medical imaging, such as the scarcity of positive samples, data imbalance, and the inherent difficulty of the task itself. However, to the best of our knowledge, no existing work has explicitly addressed these challenges in RGB-based RA inflammation detection. This paper quantitatively demonstrates the difficulty of visually detecting inflammation by constructing a dedicated dataset, and we propose a inflammation detection framework with global local encoder that combines self-supervised pretraining on large-scale healthy hand images with imbalance-aware training to detect RA-related joint inflammation from RGB hand images. Our experiments demonstrated that the proposed approach improves F1-score by 0.2 points and Gmean by 0.25 points compared with the baseline model.
☆ A Generative AI Approach for Reducing Skin Tone Bias in Skin Cancer Classification
Skin cancer is one of the most common cancers worldwide and early detection is critical for effective treatment. However, current AI diagnostic tools are often trained on datasets dominated by lighter skin tones, leading to reduced accuracy and fairness for people with darker skin. The International Skin Imaging Collaboration (ISIC) dataset, one of the most widely used benchmarks, contains over 70% light skin images while dark skins fewer than 8%. This imbalance poses a significant barrier to equitable healthcare delivery and highlights the urgent need for methods that address demographic diversity in medical imaging. This paper addresses this challenge of skin tone imbalance in automated skin cancer detection using dermoscopic images. To overcome this, we present a generative augmentation pipeline that fine-tunes a pre-trained Stable Diffusion model using Low-Rank Adaptation (LoRA) on the image dark-skin subset of the ISIC dataset and generates synthetic dermoscopic images conditioned on lesion type and skin tone. In this study, we investigated the utility of these images on two downstream tasks: lesion segmentation and binary classification. For segmentation, models trained on the augmented dataset and evaluated on held-out real images show consistent improvements in IoU, Dice coefficient, and boundary accuracy. These evalutions provides the verification of Generated dataset. For classification, an EfficientNet-B0 model trained on the augmented dataset achieved 92.14% accuracy. This paper demonstrates that synthetic data augmentation with Generative AI integration can substantially reduce bias with increase fairness in conventional dermatological diagnostics and open challenges for future directions.
♻ ☆ Multimodal Integrated Knowledge Transfer to Large Language Models through Preference Optimization with Biomedical Applications
The scarcity of high-quality multimodal biomedical data limits the ability to effectively fine-tune pretrained Large Language Models (LLMs) for specialized biomedical tasks. To address this challenge, we introduce MINT (Multimodal Integrated kNowledge Transfer), a framework that aligns unimodal large decoder models with domain-specific decision patterns from multimodal biomedical data through preference optimization. While MINT supports different optimization techniques, we primarily implement it with the Odds Ratio Preference Optimization (ORPO) framework as its backbone. This strategy enables the aligned LLMs to perform predictive tasks using text-only or image-only inputs while retaining knowledge learnt from multimodal data. MINT leverages an upstream multimodal machine learning (MML) model trained on high-quality multimodal data to transfer domain-specific insights to downstream text-only or image-only LLMs. We demonstrate its effectiveness through two key applications: (1) Rare genetic disease prediction from texts, where MINT uses a multimodal encoder model, trained on facial photos and clinical notes, to generate a preference dataset for aligning a lightweight Llama 3.2-3B-Instruct. Despite relying on text input only, the MINT-derived model outperforms models trained with SFT, RAG, or DPO, and even outperforms Llama 3.1-405B-Instruct. (2) Tissue type classification using cell nucleus images, where MINT uses a vision-language foundation model as the preference generator, containing knowledge learnt from both text and histopathological images to align downstream image-only models. The resulting MINT-derived model significantly improves the performance of Llama 3.2-Vision-11B-Instruct on tissue type classification. In summary, MINT provides an effective strategy to align unimodal LLMs with high-quality multimodal expertise through preference optimization.
♻ ☆ Query-Based Adaptive Aggregation for Multi-Dataset Joint Training Toward Universal Visual Place Recognition
Deep learning methods for Visual Place Recognition (VPR) have advanced significantly, largely driven by large-scale datasets. However, most existing approaches are trained on a single dataset, which can introduce dataset-specific inductive biases and limit model generalization. While multi-dataset joint training offers a promising solution for developing universal VPR models, divergences among training datasets can saturate the limited information capacity in feature aggregation layers, leading to suboptimal performance. To address these challenges, we propose Query-based Adaptive Aggregation (QAA), a novel feature aggregation technique that leverages learned queries as reference codebooks to effectively enhance information capacity without significant computational or parameter complexity. We show that computing the Cross-query Similarity (CS) between query-level image features and reference codebooks provides a simple yet effective way to generate robust descriptors. Our results demonstrate that QAA outperforms state-of-the-art models, achieving balanced generalization across diverse datasets while maintaining peak performance comparable to dataset-specific models. Ablation studies further explore QAA's mechanisms and scalability. Visualizations reveal that the learned queries exhibit diverse attention patterns across datasets. Project page: \href{http://xjh19971.github.io/QAA} {\color{magenta}\texttt{xjh19971.github.io/QAA}}.
comment: 8 pages, 4 figures, accepted at ICRA 2026
♻ ☆ Digital Twin Generation from Visual Data: A Survey
This survey examines recent advances in generating digital twins from visual data. These digital twins - virtual 3D replicas of physical assets - can be applied to robotics, media content creation, design or construction workflows. We analyze a range of approaches, including 3D Gaussian Splatting, generative inpainting, semantic segmentation, and foundation models, highlighting their respective advantages and limitations. In addition, we discuss key challenges such as occlusions, lighting variations, and scalability, as well as identify gaps, trends, and directions for future research. Overall, this survey aims to provide a comprehensive overview of state-of-the-art methodologies and their implications for real-world applications. Awesome Digital Twin: https://awesomedigitaltwin.github.io
♻ ☆ Terminal Velocity Matching
We propose Terminal Velocity Matching (TVM), a generalization of flow matching that enables high-fidelity one- and few-step generative modeling. TVM models the transition between any two diffusion timesteps and regularizes its behavior at its terminal time rather than at the initial time. We prove that TVM provides an upper bound on the $2$-Wasserstein distance between data and model distributions when the model is Lipschitz continuous. However, since Diffusion Transformers lack this property, we introduce minimal architectural changes that achieve stable, single-stage training. To make TVM efficient in practice, we develop a fused attention kernel that supports backward passes on Jacobian-Vector Products, which scale well with transformer architectures. On ImageNet-256x256, TVM achieves 3.29 FID with a single function evaluation (NFE) and 1.99 FID with 4 NFEs. It similarly achieves 4.32 1-NFE FID and 2.94 4-NFE FID on ImageNet-512x512, representing state-of-the-art performance for one/few-step models from scratch.
comment: Blog post: https://lumalabs.ai/blog/engineering/tvm Code available at: https://github.com/lumalabs/tvm
♻ ☆ MRIQT: Physics-Aware Diffusion Model for Image Quality Transfer in Neonatal Ultra-Low-Field MRI
Portable ultra-low-field MRI (uLF-MRI, 0.064 T) offers accessible neuroimaging for neonatal care but suffers from low signal-to-noise ratio and poor diagnostic quality compared to high-field (HF) MRI. We propose MRIQT, a 3D conditional diffusion framework for image quality transfer (IQT) from uLF to HF MRI. MRIQT combines realistic K-space degradation for physics-consistent uLF simulation, v-prediction with classifier-free guidance for stable image-to-image generation, and an SNR-weighted 3D perceptual loss for anatomical fidelity. The model denoises from a noised uLF input conditioned on the same scan, leveraging volumetric attention-UNet architecture for structure-preserving translation. Trained on a neonatal cohort with diverse pathologies, MRIQT surpasses recent GAN and CNN baselines in PSNR 15.3% with 1.78% over the state of the art, while physicians rated 85% of its outputs as good quality with clear pathology present. MRIQT enables high-fidelity, diffusion-based enhancement of portable ultra-low-field (uLF) MRI for deliable neonatal brain assessment.
comment: 5 pages, 4 figures
♻ ☆ Just KIDDIN: Knowledge Infusion and Distillation for Detection of INdecent Memes
Toxicity identification in online multimodal environments remains a challenging task due to the complexity of contextual connections across modalities (e.g., textual and visual). In this paper, we propose a novel framework that integrates Knowledge Distillation (KD) from Large Visual Language Models (LVLMs) and knowledge infusion to enhance the performance of toxicity detection in hateful memes. Our approach extracts sub-knowledge graphs from ConceptNet, a large-scale commonsense Knowledge Graph (KG) to be infused within a compact VLM framework. The relational context between toxic phrases in captions and memes, as well as visual concepts in memes enhance the model's reasoning capabilities. Experimental results from our study on two hate speech benchmark datasets demonstrate superior performance over the state-of-the-art baselines across AU-ROC, F1, and Recall with improvements of 1.1%, 7%, and 35%, respectively. Given the contextual complexity of the toxicity detection task, our approach showcases the significance of learning from both explicit (i.e. KG) as well as implicit (i.e. LVLMs) contextual cues incorporated through a hybrid neurosymbolic approach. This is crucial for real-world applications where accurate and scalable recognition of toxic content is critical for creating safer online environments.
♻ ☆ Simulating the Real World: A Unified Survey of Multimodal Generative Models
Understanding and replicating the real world is a critical challenge in Artificial General Intelligence (AGI) research. To achieve this, many existing approaches, such as world models, aim to capture the fundamental principles governing the physical world, enabling more accurate simulations and meaningful interactions. However, current methods often treat different modalities, including 2D (images), videos, 3D, and 4D representations, as independent domains, overlooking their interdependencies. Additionally, these methods typically focus on isolated dimensions of reality without systematically integrating their connections. In this survey, we present a unified survey for multimodal generative models that investigate the progression of data dimensionality in real-world simulation. Specifically, this survey starts from 2D generation (appearance), then moves to video (appearance+dynamics) and 3D generation (appearance+geometry), and finally culminates in 4D generation that integrate all dimensions. To the best of our knowledge, this is the first attempt to systematically unify the study of 2D, video, 3D and 4D generation within a single framework. To guide future research, we provide a comprehensive review of datasets, evaluation metrics and future directions, and fostering insights for newcomers. This survey serves as a bridge to advance the study of multimodal generative models and real-world simulation within a unified framework.
comment: Repository for the related papers at https://github.com/ALEEEHU/World-Simulator
♻ ☆ Stretching Beyond the Obvious: A Gradient-Free Framework to Unveil the Hidden Landscape of Visual Invariance ICLR 2026
Uncovering which feature combinations are encoded by visual units is critical to understanding how images are transformed into representations that support recognition. While existing feature visualization approaches typically infer a unit's most exciting images, this is insufficient to reveal the manifold of transformations under which responses remain invariant, which is critical to generalization in vision. Here we introduce Stretch-and-Squeeze (SnS), a model-agnostic, gradient-free framework to systematically characterize a unit's maximally invariant stimuli, and its vulnerability to adversarial perturbations, in both biological and artificial visual systems. SnS frames these transformations as bi-objective optimization problems. To probe invariance, SnS seeks image perturbations that maximally alter (stretch) the representation of a reference stimulus in a given processing stage while preserving unit activation downstream (squeeze). To probe adversarial sensitivity, stretching and squeezing are reversed to maximally perturb unit activation while minimizing changes to the upstream representation. Applied to CNNs, SnS revealed invariant transformations that were farther from a reference image in pixel-space than those produced by affine transformations, while more strongly preserving the target unit's response. The discovered invariant images differed depending on the stage of the image representation used for optimization: pixel-level changes primarily affected luminance and contrast, while stretching mid- and late-layer representations mainly altered texture and pose. By measuring how well the hierarchical invariant images obtained for L2 robust networks were classified by humans and other observer networks, we discovered a substantial drop in their interpretability when the representation was stretched in deep layers, while the opposite trend was found for standard models.
comment: 33 pages, 15 figures, Accepted as a conference paper at ICLR 2026
♻ ☆ Algorithms Trained on Normal Chest X-rays Can Predict Health Insurance Types
Artificial intelligence is revealing what medicine never intended to encode. Deep vision models, trained on chest X-rays, can now detect not only disease but also invisible traces of social inequality. In this study, we show that state-of-the-art architectures (DenseNet121, SwinV2-B, MedMamba) can predict a patient's health insurance type, a strong proxy for socioeconomic status, from normal chest X-rays with significant accuracy (AUC around 0.70 on MIMIC-CXR-JPG, 0.68 on CheXpert). The signal was unlikely contributed by demographic features by our machine learning study combining age, race, and sex labels to predict health insurance types; it also remains detectable when the model is trained exclusively on a single racial group. Patch-based occlusion reveals that the signal is diffuse rather than localized, embedded in the upper and mid-thoracic regions. This suggests that deep networks may be internalizing subtle traces of clinical environments, equipment differences, or care pathways; learning socioeconomic segregation itself. These findings challenge the assumption that medical images are neutral biological data. By uncovering how models perceive and exploit these hidden social signatures, this work reframes fairness in medical AI: the goal is no longer only to balance datasets or adjust thresholds, but to interrogate and disentangle the social fingerprints embedded in clinical data itself.
comment: Accepted by MIDL 2026
♻ ☆ DiffusionNFT: Online Diffusion Reinforcement with Forward Process ICLR 2026
Online reinforcement learning (RL) has been central to post-training language models, but its extension to diffusion models remains challenging due to intractable likelihoods. Recent works discretize the reverse sampling process to enable GRPO-style training, yet they inherit fundamental drawbacks, including solver restrictions, forward-reverse inconsistency, and complicated integration with classifier-free guidance (CFG). We introduce Diffusion Negative-aware FineTuning (DiffusionNFT), a new online RL paradigm that optimizes diffusion models directly on the forward process via flow matching. DiffusionNFT contrasts positive and negative generations to define an implicit policy improvement direction, naturally incorporating reinforcement signals into the supervised learning objective. This formulation enables training with arbitrary black-box solvers, eliminates the need for likelihood estimation, and requires only clean images rather than sampling trajectories for policy optimization. DiffusionNFT is up to $25\times$ more efficient than FlowGRPO in head-to-head comparisons, while being CFG-free. For instance, DiffusionNFT improves the GenEval score from 0.24 to 0.98 within 1k steps, while FlowGRPO achieves 0.95 with over 5k steps and additional CFG employment. By leveraging multiple reward models, DiffusionNFT significantly boosts the performance of SD3.5-Medium in every benchmark tested.
comment: ICLR 2026 Oral
♻ ☆ MPCM-Net: Multi-scale network integrates partial attention convolution with Mamba for ground-based cloud image segmentation
Ground-based cloud image segmentation is a critical research domain for photovoltaic power forecasting. Current deep learning approaches primarily focus on encoder-decoder architectural refinements. However, existing methodologies exhibit several limitations:(1)they rely on dilated convolutions for multi-scale context extraction, lacking the partial feature effectiveness and interoperability of inter-channel;(2)attention-based feature enhancement implementations neglect accuracy-throughput balance; and (3)the decoder modifications fail to establish global interdependencies among hierarchical local features, limiting inference efficiency. To address these challenges, we propose MPCM-Net, a Multi-scale network that integrates Partial attention Convolutions with Mamba architectures to enhance segmentation accuracy and computational efficiency. Specifically, the encoder incorporates MPAC, which comprises:(1)a MPC block with ParCM and ParSM that enables global spatial interaction across multi-scale cloud formations, and (2)a MPA block combining ParAM and ParSM to extract discriminative features with reduced computational complexity. On the decoder side, a M2B is employed to mitigate contextual loss through a SSHD that maintains linear complexity while enabling deep feature aggregation across spatial and scale dimensions. As a key contribution to the community, we also introduce and release a dataset CSRC, which is a clear-label, fine-grained segmentation benchmark designed to overcome the critical limitations of existing public datasets. Extensive experiments on CSRC demonstrate the superior performance of MPCM-Net over state-of-the-art methods, achieving an optimal balance between segmentation accuracy and inference speed. The dataset and source code will be available at https://github.com/she1110/CSRC.
♻ ☆ AnyUp: Universal Feature Upsampling ICLR 2026
We introduce AnyUp, a method for feature upsampling that can be applied to any vision feature at any resolution, without encoder-specific training. Existing learning-based upsamplers for features like DINO or CLIP need to be re-trained for every feature extractor and thus do not generalize to different feature types at inference time. In this work, we propose an inference-time feature-agnostic upsampling architecture to alleviate this limitation and improve upsampling quality. In our experiments, AnyUp sets a new state of the art for upsampled features, generalizes to different feature types, and preserves feature semantics while being efficient and easy to apply to a wide range of downstream tasks.
comment: Accepted to ICLR 2026 (Oral). Project Website: https://wimmerth.github.io/anyup/
♻ ☆ C^2ROPE: Causal Continuous Rotary Positional Encoding for 3D Large Multimodal-Models Reasoning
Recent advances in 3D Large Multimodal Models (LMMs) built on Large Language Models (LLMs) have established the alignment of 3D visual features with LLM representations as the dominant paradigm. However, the inherited Rotary Position Embedding (RoPE) introduces limitations for multimodal processing. Specifically, applying 1D temporal positional indices disrupts the continuity of visual features along the column dimension, resulting in spatial locality loss. Moreover, RoPE follows the prior that temporally closer image tokens are more causally related, leading to long-term decay in attention allocation and causing the model to progressively neglect earlier visual tokens as the sequence length increases. To address these issues, we propose C^2RoPE, an improved RoPE that explicitly models local spatial Continuity and spatial Causal relationships for visual processing. C^2RoPE introduces a spatio-temporal continuous positional embedding mechanism for visual tokens. It first integrates 1D temporal positions with Cartesian-based spatial coordinates to construct a triplet hybrid positional index, and then employs a frequency allocation strategy to encode spatio-temporal positional information across the three index components. Additionally, we introduce Chebyshev Causal Masking, which determines causal dependencies by computing the Chebyshev distance of image tokens in 2D space. Evaluation results across various benchmarks, including 3D scene reasoning and 3D visual question answering, demonstrate C^2RoPE's effectiveness. The code is be available at https://github.com/ErikZ719/C2RoPE.
comment: Accepted in ICRA 2026
♻ ☆ Efficient Test-Time Scaling for Small Vision-Language Models ICLR 2026
Small Vision-Language Models (VLMs) provide a computationally efficient alternative to larger models, at the cost of weaker generalization abilities and downstream task performance. These shortcomings could be addressed by test-time scaling techniques, but existing methods are typically computationally demanding, contradicting the resource-efficient design goals of small models. To address these limitations, we propose two novel and efficient test-time scaling strategies that leverage the model-internal features rather than external supervision: (i) Test-Time Augmentation (TTAug), which generates multiple augmented inputs and aggregates outputs at the token level without parameter updates, and (ii) Test-Time Adaptation (TTAdapt), which adapts model parameters during inference using consensus-based pseudolabels from TTAug. Through extensive experiments across nine benchmarks, we demonstrate consistent performance improvements while maintaining computational efficiency suitable for resource-constrained environments. The generality of our approach is demonstrated both within models at different scales and across different VLMs without additional tuning.
comment: Accepted at ICLR 2026. Project Page: https://monurcan.github.io/efficient_test_time_scaling
♻ ☆ Are foundation models for computer vision good conformal predictors?
Recent advances in self-supervision and contrastive learning have brought the performance of foundation models to unprecedented levels in a variety of tasks. Fueled by this progress, these models are becoming the prevailing approach for a wide array of real-world vision problems, including risk-sensitive and high-stakes applications. However, ensuring safe deployment in these scenarios requires a more comprehensive understanding of their uncertainty modeling capabilities, which has received little attention. In this work, we delve into the behaviour of vision and vision-language foundation models under Conformal Prediction (CP), a statistical framework that provides theoretical guarantees of marginal coverage of the true class. Across extensive experiments including popular vision classification benchmarks, well-known foundation vision models, and three CP methods, our findings reveal that foundation models are well-suited for conformalization procedures, particularly those integrating Vision Transformers. We also show that calibrating the confidence predictions of these models, a popular strategy to improve their uncertainty quantification, actually leads to efficiency degradation of the conformal set on adaptive CP methods. Furthermore, few-shot adaptation of Vision-Language Models (VLMs) to downstream tasks, whose popularity is surging, enhances conformal scores compared to zero-shot predictions. Last, our empirical study exposes APS as particularly promising in the context of vision foundation models, as it does not violate the marginal coverage guarantees across multiple challenging, yet realistic scenarios.
♻ ☆ CellINR: Implicitly Overcoming Photo-induced Artifacts in 4D Live Fluorescence Microscopy
4D live fluorescence microscopy is often compromised by prolonged high intensity illumination which induces photobleaching and phototoxic effects that generate photo-induced artifacts and severely impair image continuity and detail recovery. To address this challenge, we propose the CellINR framework, a case-specific optimization approach based on implicit neural representation. The method employs blind convolution and structure amplification strategies to map 3D spatial coordinates into the high frequency domain, enabling precise modeling and high-accuracy reconstruction of cellular structures while effectively distinguishing true signals from artifacts. Experimental results demonstrate that CellINR significantly outperforms existing techniques in artifact removal and restoration of structural continuity, and for the first time, a paired 4D live cell imaging dataset is provided for evaluating reconstruction performance, thereby offering a solid foundation for subsequent quantitative analyses and biological research. The code and dataset will be public.
comment: This version is withdrawn as the authors have found that the benchmarks used were insufficient/incomplete. The work is being superseded by a more comprehensive study
♻ ☆ Mitigating Pretraining-Induced Attention Asymmetry in 2D+ Electron Microscopy Image Segmentation
Vision models pretrained on large-scale RGB natural image datasets are widely reused for electron microscopy image segmentation. In electron microscopy, volumetric data are acquired as serial sections and processed as stacks of adjacent grayscale slices, where neighboring slices provide symmetric contextual information for identifying features on the central slice. The common strategy maps such stacks to pseudo-RGB inputs to enable transfer learning from pretrained models. However, this mapping imposes channel-specific semantics inherited from natural images, even though electron microscopy slices are homogeneous in the modality and symmetric in their predictive roles. As a result, pretrained models may encode inductive biases that are misaligned with the inherent symmetry of volumetric electron microscopy data. In this work, it is demonstrated that RGB-pretrained models systematically assign unequal importance to individual input slices when applied to stacked electron microscopy data, despite the absence of any intrinsic channel ordering. Using saliency-based attribution analysis across multiple architectures, a consistent channel-level asymmetry was observed that persists after fine-tuning and affects model interpretability, even when segmentation performance is unchanged. To address this issue, a targeted modification of pretraining weights based on uniform channel initialization was proposed, which restores symmetric feature attribution while preserving the benefits of pretraining. Experiments on the SNEMI, Lucchi and GF-PA66 datasets confirm a substantial reduction in attribution bias without compromising or even improving segmentation accuracy.
♻ ☆ ShapBPT: Image Feature Attributions Using Data-Aware Binary Partition Trees AAAI-2026
Pixel-level feature attributions are an important tool in eXplainable AI for Computer Vision (XCV), providing visual insights into how image features influence model predictions. The Owen formula for hierarchical Shapley values has been widely used to interpret machine learning (ML) models and their learned representations. However, existing hierarchical Shapley approaches do not exploit the multiscale structure of image data, leading to slow convergence and weak alignment with the actual morphological features. Moreover, no prior Shapley method has leveraged data-aware hierarchies for Computer Vision tasks, leaving a gap in model interpretability of structured visual data. To address this, this paper introduces ShapBPT, a novel data-aware XCV method based on the hierarchical Shapley formula. ShapBPT assigns Shapley coefficients to a multiscale hierarchical structure tailored for images, the Binary Partition Tree (BPT). By using this data-aware hierarchical partitioning, ShapBPT ensures that feature attributions align with intrinsic image morphology, effectively prioritizing relevant regions while reducing computational overhead. This advancement connects hierarchical Shapley methods with image data, providing a more efficient and semantically meaningful approach to visual interpretability. Experimental results confirm ShapBPT's effectiveness, demonstrating superior alignment with image structures and improved efficiency over existing XCV methods, and a 20-subject user study confirming that ShapBPT explanations are preferred by humans.
comment: AAAI-2026
♻ ☆ 3DRot: Rediscovering the Missing Primitive for RGB-Based 3D Augmentation
RGB-based 3D tasks, e.g., 3D detection, depth estimation, 3D keypoint estimation, still suffer from scarce, expensive annotations and a thin augmentation toolbox, since many image transforms, including rotations and warps, disrupt geometric consistency. While horizontal flipping and color jitter are standard, rigorous 3D rotation augmentation has surprisingly remained absent from RGB-based pipelines, largely due to the misconception that it requires scene depth or scene reconstruction. In this paper, we introduce 3DRot, a plug-and-play augmentation that rotates and mirrors images about the camera's optical center while synchronously updating RGB images, camera intrinsics, object poses, and 3D annotations to preserve projective geometry, achieving geometry-consistent rotations and reflections without relying on any scene depth. We first validate 3DRot on a classical RGB-based 3D task, monocular 3D detection. On SUN RGB-D, inserting 3DRot into a frozen DINO-X + Cube R-CNN pipeline raises $IoU_{3D}$ from 43.21 to 44.51, cuts rotation error (ROT) from 22.91$^\circ$ to 20.93$^\circ$, and boosts $mAP_{0.5}$ from 35.70 to 38.11; smaller but consistent gains appear on a cross-domain IN10 split. Beyond monocular detection, adding 3DRot on top of the standard BTS augmentation schedule further improves NYU Depth v2 from 0.1783 to 0.1685 in abs-rel (and 0.7472 to 0.7548 in $δ<1.25$), and reduces cross-dataset error on SUN RGB-D. On KITTI, applying the same camera-centric rotations in MVX-Net (LiDAR+RGB) raises moderate 3D AP from about 63.85 to 65.16 while remaining compatible with standard 3D augmentations.
♻ ☆ Curriculum Multi-Task Self-Supervision Improves Lightweight Architectures for Onboard Satellite Hyperspectral Image Segmentation
Hyperspectral imaging (HSI) captures detailed spectral signatures across hundreds of contiguous bands per pixel, being indispensable for remote sensing applications such as land-cover classification, change detection, and environmental monitoring. Due to the high dimensionality of HSI data and the slow rate of data transfer in satellite-based systems, compact and efficient models are required to support onboard processing and minimize the transmission of redundant or low-value data. To this end, we introduce a novel curriculum multi-task self-supervised learning (CMTSSL) framework designed for lightweight architectures for HSI analysis. CMTSSL integrates masked image modeling with decoupled spatial and spectral jigsaw puzzle solving, guided by a curriculum learning strategy that progressively increases data difficulty during self-supervision. This enables the encoder to jointly capture fine-grained spectral continuity, spatial structure, and global semantic features. Unlike prior dual-task SSL methods, CMTSSL simultaneously addresses spatial and spectral reasoning within a unified and computationally efficient design, being particularly suitable for training lightweight models for onboard satellite deployment. We validate our approach on four public benchmark datasets, demonstrating consistent gains in downstream segmentation tasks, using architectures that are over 16,000x lighter than some state-of-the-art models. These results highlight the potential of CMTSSL in generalizable representation learning with lightweight architectures for real-world HSI applications. Our code is publicly available at https://github.com/hugocarlesso/CMTSSL.
comment: Accepted at ICRA 2026
Zooming without Zooming: Region-to-Image Distillation for Fine-Grained Multimodal Perception
Multimodal Large Language Models (MLLMs) excel at broad visual understanding but still struggle with fine-grained perception, where decisive evidence is small and easily overwhelmed by global context. Recent "Thinking-with-Images" methods alleviate this by iteratively zooming in and out regions of interest during inference, but incur high latency due to repeated tool calls and visual re-encoding. To address this, we propose Region-to-Image Distillation, which transforms zooming from an inference-time tool into a training-time primitive, thereby internalizing the benefits of agentic zooming into a single forward pass of an MLLM. In particular, we first zoom in to micro-cropped regions to let strong teacher models generate high-quality VQA data, and then distill this region-grounded supervision back to the full image. After training on such data, the smaller student model improves "single-glance" fine-grained perception without tool use. To rigorously evaluate this capability, we further present ZoomBench, a hybrid-annotated benchmark of 845 VQA data spanning six fine-grained perceptual dimensions, together with a dual-view protocol that quantifies the global--regional "zooming gap". Experiments show that our models achieve leading performance across multiple fine-grained perception benchmarks, and also improve general multimodal cognition on benchmarks such as visual reasoning and GUI agents. We further discuss when "Thinking-with-Images" is necessary versus when its gains can be distilled into a single forward pass. Our code is available at https://github.com/inclusionAI/Zooming-without-Zooming.
♻ ☆ Robust MultiSpecies Agricultural Segmentation Across Devices, Seasons, and Sensors Using Hierarchical DINOv2 Models
Reliable plant species and damage segmentation for herbicide field research trials requires models that can withstand substantial real-world variation across seasons, geographies, devices, and sensing modalities. Most deep learning approaches trained on controlled datasets fail to generalize under these domain shifts, limiting their suitability for operational phenotyping pipelines. This study evaluates a segmentation framework that integrates vision foundation models (DINOv2) with hierarchical taxonomic inference to improve robustness across heterogeneous agricultural conditions. We train on a large, multi-year dataset collected in Germany and Spain (2018-2020), comprising 14 plant species and 4 herbicide damage classes, and assess generalization under increasingly challenging shifts: temporal and device changes (2023), geographic transfer to the United States, and extreme sensor shift to drone imagery (2024). Results show that the foundation-model backbone consistently outperforms prior baselines, improving species-level F1 from 0.52 to 0.87 on in-distribution data and maintaining significant advantages under moderate (0.77 vs. 0.24) and extreme (0.44 vs. 0.14) shift conditions. Hierarchical inference provides an additional layer of robustness, enabling meaningful predictions even when fine-grained species classification degrades (family F1: 0.68, class F1: 0.88 on aerial imagery). Error analysis reveals that failures under severe shift stem primarily from vegetation-soil confusion, suggesting that taxonomic distinctions remain preserved despite background and viewpoint variability. The system is now deployed within BASF's phenotyping workflow for herbicide research trials across multiple regions, illustrating the practical viability of combining foundation models with structured biological hierarchies for scalable, shift-resilient agricultural monitoring.
♻ ☆ AMAP-APP: Efficient Segmentation and Morphometry Quantification of Fluorescent Microscopy Images of Podocytes
Background: Automated podocyte foot process quantification is vital for kidney research, but the established "Automatic Morphological Analysis of Podocytes" (AMAP) method is hindered by high computational demands, a lack of a user interface, and Linux dependency. We developed AMAP-APP, a cross-platform desktop application designed to overcome these barriers. Methods: AMAP-APP optimizes efficiency by replacing intensive instance segmentation with classic image processing while retaining the original semantic segmentation model. It introduces a refined Region of Interest (ROI) algorithm to improve precision. Validation involved 365 mouse and human images (STED and confocal), benchmarking performance against the original AMAP via Pearson correlation and Two One-Sided T-tests (TOST). Results: AMAP-APP achieved a 147-fold increase in processing speed on consumer hardware. Morphometric outputs (area, perimeter, circularity, and slit diaphragm density) showed high correlation (r>0.90) and statistical equivalence (TOST P<0.05) to the original method. Additionally, the new ROI algorithm demonstrated superior accuracy compared to the original, showing reduced deviation from manual delineations. Conclusion: AMAP-APP democratizes deep learning-based podocyte morphometry. By eliminating the need for high-performance computing clusters and providing a user-friendly interface for Windows, macOS, and Linux, it enables widespread adoption in nephrology research and potential clinical diagnostics.
♻ ☆ RainPro-8: An Efficient Deep Learning Model to Estimate Rainfall Probabilities Over 8 Hours
We present a deep learning model for high-resolution probabilistic precipitation forecasting over an 8-hour horizon in Europe, overcoming the limitations of radar-only deep learning models with short forecast lead times. Our model efficiently integrates multiple data sources - including radar, satellite, and physics-based numerical weather prediction (NWP) - while capturing long-range interactions, resulting in accurate forecasts with robust uncertainty quantification through consistent probabilistic maps. Featuring a compact architecture, it enables more efficient training and faster inference than existing models. Extensive experiments demonstrate that our model surpasses current operational NWP systems, extrapolation-based methods, and deep-learning nowcasting models, setting a new standard for high-resolution precipitation forecasting in Europe, ensuring a balance between accuracy, interpretability, and computational efficiency.
♻ ☆ Measure Twice, Cut Once: A Semantic-Oriented Approach to Video Temporal Localization with Video LLMs ICLR2026
Temporally localizing user-queried events through natural language is a crucial capability for video models. Recent methods predominantly adapt video LLMs to generate event boundary timestamps for temporal localization tasks, which struggle to leverage LLMs' pre-trained semantic understanding capabilities due to the uninformative nature of timestamp outputs. In this work, we explore a timestamp-free, semantic-oriented framework that fine-tunes video LLMs using two generative learning tasks and one discriminative learning task. We first introduce a structural token generation task that enables the video LLM to recognize the temporal structure of input videos based on the input query. Through this task, the video LLM generates a sequence of special tokens, called structural tokens, which partition the video into consecutive segments and categorize them as either target events or background transitions. To enhance precise recognition of event segments, we further propose a query-focused captioning task that enables the video LLM to extract fine-grained event semantics that can be effectively utilized by the structural tokens. Finally, we introduce a structural token grounding module driven by contrastive learning to associate each structural token with its corresponding video segment, achieving holistic temporal segmentation of the input video and readily yielding the target event segments for localization. Extensive experiments across diverse temporal localization tasks demonstrate that our proposed framework, MeCo, consistently outperforms methods relying on boundary timestamp generation, highlighting the potential of a semantic-driven approach for temporal localization with video LLMs \footnote{Code available at https://github.com/pangzss/MeCo.
comment: ICLR2026
♻ ☆ Top-Down Semantic Refinement for Image Captioning
Large Vision-Language Models (VLMs) face an inherent contradiction in image captioning: their powerful single-step generation capabilities often lead to a myopic decision-making process. This makes it difficult to maintain global narrative coherence while capturing rich details, a limitation that is particularly pronounced in tasks that require multi-step and complex scene description. To overcome this fundamental challenge, we redefine image captioning as a goal-oriented hierarchical refinement planning problem, and further propose a novel framework, named Top-Down Semantic Refinement (TDSR), which models the generation process as a Markov Decision Process (MDP). However, planning within the vast state space of a VLM presents a significant computational hurdle. Our core contribution, therefore, is the design of a highly efficient Monte Carlo Tree Search (MCTS) algorithm tailored for VLMs. By incorporating a visual-guided parallel expansion and a lightweight value network, our TDSR reduces the call frequency to the expensive VLM by an order of magnitude without sacrificing planning quality. Furthermore, an adaptive early stopping mechanism dynamically matches computational overhead to the image's complexity. Extensive experiments on multiple benchmarks, including DetailCaps, COMPOSITIONCAP, and POPE, demonstrate that our TDSR, as a plug-and-play module, can significantly enhance the performance of existing VLMs (e.g., LLaVA-1.5, Qwen2.5-VL) by achieving state-of-the-art or highly competitive results in fine-grained description, compositional generalization, and hallucination suppression.
♻ ☆ An Agentic System for Rare Disease Diagnosis with Traceable Reasoning
Rare diseases affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains an urgent challenge. Patients often endure a prolonged diagnostic odyssey exceeding five years, marked by repeated referrals, misdiagnoses, and unnecessary interventions, leading to delayed treatment and substantial emotional and economic burdens. Here we present DeepRare, a multi-agent system for rare disease differential diagnosis decision support powered by large language models, integrating over 40 specialized tools and up-to-date knowledge sources. DeepRare processes heterogeneous clinical inputs, including free-text descriptions, structured Human Phenotype Ontology terms, and genetic testing results, to generate ranked diagnostic hypotheses with transparent reasoning linked to verifiable medical evidence. Evaluated across nine datasets from literature, case reports and clinical centres across Asia, North America and Europe spanning 14 medical specialties, DeepRare demonstrates exceptional performance on 3,134 diseases. In human-phenotype-ontology-based tasks, it achieves an average Recall@1 of 57.18%, outperforming the next-best method by 23.79%; in multi-modal tests, it reaches 69.1% compared with Exomiser's 55.9% on 168 cases. Expert review achieved 95.4% agreement on its reasoning chains, confirming their validity and traceability. Our work not only advances rare disease diagnosis but also demonstrates how the latest powerful large-language-model-driven agentic systems can reshape current clinical workflows.
♻ ☆ Multi-Spectral Gaussian Splatting with Neural Color Representation
We present MS-Splatting -- a multi-spectral 3D Gaussian Splatting (3DGS) framework that is able to generate multi-view consistent novel views from images of multiple, independent cameras with different spectral domains. In contrast to previous approaches, our method does not require cross-modal camera calibration and is versatile enough to model a variety of different spectra, including thermal and near-infra red, without any algorithmic changes. Unlike existing 3DGS-based frameworks that treat each modality separately (by optimizing per-channel spherical harmonics) and therefore fail to exploit the underlying spectral and spatial correlations, our method leverages a novel neural color representation that encodes multi-spectral information into a learned, compact, per-splat feature embedding. A shallow multi-layer perceptron (MLP) then decodes this embedding to obtain spectral color values, enabling joint learning of all bands within a unified representation. Our experiments show that this simple yet effective strategy is able to improve multi-spectral rendering quality, while also leading to improved per-spectra rendering quality over state-of-the-art methods. We demonstrate the effectiveness of this new technique in agricultural applications to render vegetation indices, such as normalized difference vegetation index (NDVI).
comment: for project page, see https://meyerls.github.io/ms_splatting
♻ ☆ NeRV360: Neural Representation for 360-Degree Videos with a Viewport Decoder
Implicit neural representations for videos (NeRV) have shown strong potential for video compression. However, applying NeRV to high-resolution 360-degree videos causes high memory usage and slow decoding, making real-time applications impractical. We propose NeRV360, an end-to-end framework that decodes only the user-selected viewport instead of reconstructing the entire panoramic frame. Unlike conventional pipelines, NeRV360 integrates viewport extraction into decoding and introduces a spatial-temporal affine transform module for conditional decoding based on viewpoint and time. Experiments on 6K-resolution videos show that NeRV360 achieves a 7-fold reduction in memory consumption and a 2.5-fold increase in decoding speed compared to HNeRV, a representative prior work, while delivering better image quality in terms of objective metrics.
comment: 2026 IIEEJ International Conference on Image Electronics and Visual Computing (IEVC)
♻ ☆ MedXIAOHE: A Comprehensive Recipe for Building Medical MLLMs
We present MedXIAOHE, a medical vision-language foundation model designed to advance general-purpose medical understanding and reasoning in real-world clinical applications. MedXIAOHE achieves state-of-the-art performance across diverse medical benchmarks and surpasses leading closed-source multimodal systems on multiple capabilities. To achieve this, we propose an entity-aware continual pretraining framework that organizes heterogeneous medical corpora to broaden knowledge coverage and reduce long-tail gaps (e.g., rare diseases). For medical expert-level reasoning and interaction, MedXIAOHE incorporates diverse medical reasoning patterns via reinforcement learning and tool-augmented agentic training, enabling multi-step diagnostic reasoning with verifiable decision traces. To improve reliability in real-world use, MedXIAOHE integrates user-preference rubrics, evidence-grounded reasoning, and low-hallucination long-form report generation, with improved adherence to medical instructions. We release this report to document our practical design choices, scaling insights, and evaluation framework, hoping to inspire further research.
comment: XIAOHE Medical AI team. Currently, the model is exclusively available on XIAOHE AI Doctor, accessible via both the App Store and the Douyin Mini Program
SPATIA: Multimodal Generation and Prediction of Spatial Cell Phenotypes
Understanding how cellular morphology, gene expression, and spatial context jointly shape tissue function is a central challenge in biology. Image-based spatial transcriptomics technologies now provide high-resolution measurements of cell images and gene expression profiles, but existing methods typically analyze these modalities in isolation or at limited resolution. We address the problem by introducing SPATIA, a multi-level generative and predictive model that learns unified, spatially aware representations by fusing morphology, gene expression, and spatial context from the cell to the tissue level. SPATIA also incorporates a novel spatially conditioned generative framework for predicting cell morphologies under perturbations. Specifically, we propose a confidence-aware flow matching objective that reweights weak optimal-transport pairs based on uncertainty. We further apply morphology-profile alignment to encourage biologically meaningful image generation, enabling the modeling of microenvironment-dependent phenotypic transitions. We assembled a multi-scale dataset consisting of 25.9 million cell-gene pairs across 17 tissues. We benchmark SPATIA against 18 models across 12 tasks, spanning categories such as phenotype generation, annotation, clustering, gene imputation, and cross-modal prediction. SPATIA achieves improved performance over state-of-the-art models, improving generative fidelity by 8% and predictive accuracy by up to 3%.
♻ ☆ Story-Iter: A Training-free Iterative Paradigm for Long Story Visualization
This paper introduces Story-Iter, a new training-free iterative paradigm to enhance long-story generation. Unlike existing methods that rely on fixed reference images to construct a complete story, our approach features a novel external iterative paradigm, extending beyond the internal iterative denoising steps of diffusion models, to continuously refine each generated image by incorporating all reference images from the previous round. To achieve this, we propose a plug-and-play, training-free global reference cross-attention (GRCA) module, modeling all reference frames with global embeddings, ensuring semantic consistency in long sequences. By progressively incorporating holistic visual context and text constraints, our iterative paradigm enables precise generation with fine-grained interactions, optimizing the story visualization step-by-step. Extensive experiments in the official story visualization dataset and our long story benchmark demonstrate that Story-Iter's state-of-the-art performance in long-story visualization (up to 100 frames) excels in both semantic consistency and fine-grained interactions.
comment: 31 pages, 33 figures, The project page and associated code can be accessed via https://jwmao1.github.io/storyiter/
♻ ☆ Unsupervised MR-US Multimodal Image Registration with Multilevel Correlation Pyramidal Optimization MICCAI 2025
Surgical navigation based on multimodal image registration has played a significant role in providing intraoperative guidance to surgeons by showing the relative position of the target area to critical anatomical structures during surgery. However, due to the differences between multimodal images and intraoperative image deformation caused by tissue displacement and removal during the surgery, effective registration of preoperative and intraoperative multimodal images faces significant challenges. To address the multimodal image registration challenges in Learn2Reg 2025, an unsupervised multimodal medical image registration method based on Multilevel Correlation Pyramidal Optimization (MCPO) is designed to solve these problems. First, the features of each modality are extracted based on the modality independent neighborhood descriptor, and the multimodal images is mapped to the feature space. Second, a multilevel pyramidal fusion optimization mechanism is designed to achieve global optimization and local detail complementation of the displacement field through dense correlation analysis and weight-balanced coupled convex optimization for input features at different scales. Our method focuses on the ReMIND2Reg task in Learn2Reg 2025. Based on the results, our method achieved the first place in the validation phase and test phase of ReMIND2Reg. The MCPO is also validated on the Resect dataset, achieving an average TRE of 1.798 mm. This demonstrates the broad applicability of our method in preoperative-to-intraoperative image registration. The code is available at https://github.com/wjiazheng/MCPO.
comment: first-place method of ReMIND2Reg Learn2Reg MICCAI 2025
♻ ☆ Semantic-Guided Dynamic Sparsification for Pre-Trained Model-based Class-Incremental Learning
Class-Incremental Learning (CIL) requires a model to continually learn new classes without forgetting old ones. A common and efficient solution freezes a pre-trained model and employs lightweight adapters, whose parameters are often forced to be orthogonal to prevent inter-task interference. However, we argue that this parameter-constraining method is detrimental to plasticity. To this end, we propose Semantic-Guided Dynamic Sparsification (SGDS), a novel method that proactively guides the activation space by governing the orientation and rank of its subspaces through targeted sparsification. Specifically, SGDS promotes knowledge transfer by encouraging similar classes to share a compact activation subspace, while simultaneously preventing interference by assigning non-overlapping activation subspaces to dissimilar classes. By sculpting class-specific sparse subspaces in the activation space, SGDS effectively mitigates interference without imposing rigid constraints on the parameter space. Extensive experiments on various benchmark datasets demonstrate the state-of-the-art performance of SGDS.
♻ ☆ Stroke3D: Lifting 2D strokes into rigged 3D model via latent diffusion models ICLR 2026
Rigged 3D assets are fundamental to 3D deformation and animation. However, existing 3D generation methods face challenges in generating animatable geometry, while rigging techniques lack fine-grained structural control over skeleton creation. To address these limitations, we introduce Stroke3D, a novel framework that directly generates rigged meshes from user inputs: 2D drawn strokes and a descriptive text prompt. Our approach pioneers a two-stage pipeline that separates the generation into: 1) Controllable Skeleton Generation, we employ the Skeletal Graph VAE (Sk-VAE) to encode the skeleton's graph structure into a latent space, where the Skeletal Graph DiT (Sk-DiT) generates a skeletal embedding. The generation process is conditioned on both the text for semantics and the 2D strokes for explicit structural control, with the VAE's decoder reconstructing the final high-quality 3D skeleton; and 2) Enhanced Mesh Synthesis via TextuRig and SKA-DPO, where we then synthesize a textured mesh conditioned on the generated skeleton. For this stage, we first enhance an existing skeleton-to-mesh model by augmenting its training data with TextuRig: a dataset of textured and rigged meshes with captions, curated from Objaverse-XL. Additionally, we employ a preference optimization strategy, SKA-DPO, guided by a skeleton-mesh alignment score, to further improve geometric fidelity. Together, our framework enables a more intuitive workflow for creating ready to animate 3D content. To the best of our knowledge, our work is the first to generate rigged 3D meshes conditioned on user-drawn 2D strokes. Extensive experiments demonstrate that Stroke3D produces plausible skeletons and high-quality meshes.
comment: Accepted by ICLR 2026
♻ ☆ Reliable Thinking with Images
As a multimodal extension of Chain-of-Thought (CoT), Thinking with Images (TWI) has recently emerged as a promising avenue to enhance the reasoning capability of Multi-modal Large Language Models (MLLMs), which generates interleaved CoT by incorporating visual cues into the textual reasoning process. However, the success of existing TWI methods heavily relies on the assumption that interleaved image-text CoTs are faultless, which is easily violated in real-world scenarios due to the complexity of multimodal understanding. In this paper, we reveal and study a highly-practical yet under-explored problem in TWI, termed Noisy Thinking (NT). Specifically, NT refers to the imperfect visual cues mining and answer reasoning process. As the saying goes, ``One mistake leads to another'', erroneous interleaved CoT would cause error accumulation, thus significantly degrading the performance of MLLMs. To solve the NT problem, we propose a novel method dubbed Reliable Thinking with Images (RTWI). In brief, RTWI estimates the reliability of visual cues and textual CoT in a unified text-centric manner and accordingly employs robust filtering and voting modules to prevent NT from contaminating the final answer. Extensive experiments on seven benchmarks verify the effectiveness of RTWI against NT.
comment: 26 pages, 19 figures
♻ ☆ Benchmarking AI-based data assimilation to advance data-driven global weather forecasting
Research on Artificial Intelligence (AI)-based Data Assimilation (DA) is expanding rapidly. However, the absence of an objective, comprehensive, and real-world benchmark hinders the fair comparison of diverse methods. Here, we introduce DABench, a benchmark designed for contributing to the development and evaluation of AI-based DA methods. By integrating real-world observations, DABench provides an objective and fair platform for validating long-term closed-loop DA cycles, supporting both deterministic and ensemble configurations. Furthermore, we assess the efficacy of AI-based DA in generating initial conditions for the advanced AI-based weather forecasting model to produce accurate medium-range global weather forecasting. Our dual-validation, utilizing both reanalysis data and independent radiosonde observations, demonstrates that AI-based DA achieves performance competitive with state-of-the-art AI-driven four-dimensional variational frameworks across both global weather DA and medium-range forecasting metrics. We invite the research community to utilize DABench to accelerate the advancement of AI-based DA for global weather forecasting.
comment: 32pages, 11 figures, 3 tables
♻ ☆ Efficiently Assemble Normalization Layers and Regularization for Federated Domain Generalization CVPR'24
Domain shift is a formidable issue in Machine Learning that causes a model to suffer from performance degradation when tested on unseen domains. Federated Domain Generalization (FedDG) attempts to train a global model using collaborative clients in a privacy-preserving manner that can generalize well to unseen clients possibly with domain shift. However, most existing FedDG methods either cause additional privacy risks of data leakage or induce significant costs in client communication and computation, which are major concerns in the Federated Learning paradigm. To circumvent these challenges, here we introduce a novel architectural method for FedDG, namely gPerXAN, which relies on a normalization scheme working with a guiding regularizer. In particular, we carefully design Personalized eXplicitly Assembled Normalization to enforce client models selectively filtering domain-specific features that are biased towards local data while retaining discrimination of those features. Then, we incorporate a simple yet effective regularizer to guide these models in directly capturing domain-invariant representations that the global model's classifier can leverage. Extensive experimental results on two benchmark datasets, i.e., PACS and Office-Home, and a real-world medical dataset, Camelyon17, indicate that our proposed method outperforms other existing methods in addressing this particular problem.
comment: CVPR'24
♻ ☆ LightX3ECG: A Lightweight and eXplainable Deep Learning System for 3-lead Electrocardiogram Classification
Cardiovascular diseases (CVDs) are a group of heart and blood vessel disorders that is one of the most serious dangers to human health, and the number of such patients is still growing. Early and accurate detection plays a key role in successful treatment and intervention. Electrocardiogram (ECG) is the gold standard for identifying a variety of cardiovascular abnormalities. In clinical practices and most of the current research, standard 12-lead ECG is mainly used. However, using a lower number of leads can make ECG more prevalent as it can be conveniently recorded by portable or wearable devices. In this research, we develop a novel deep learning system to accurately identify multiple cardiovascular abnormalities by using only three ECG leads.
comment: Biomedical Signal Processing and Control
♻ ☆ V2V-LLM: Vehicle-to-Vehicle Cooperative Autonomous Driving with Multimodal Large Language Models
Current autonomous driving vehicles rely mainly on their individual sensors to understand surrounding scenes and plan for future trajectories, which can be unreliable when the sensors are malfunctioning or occluded. To address this problem, cooperative perception methods via vehicle-to-vehicle (V2V) communication have been proposed, but they have tended to focus on perception tasks like detection or tracking. How those approaches contribute to overall cooperative planning performance is still under-explored. Inspired by recent progress using Large Language Models (LLMs) to build autonomous driving systems, we propose a novel problem setting that integrates a Multimodal LLM into cooperative autonomous driving, with the proposed Vehicle-to-Vehicle Question-Answering (V2V-QA) dataset and benchmark. We also propose our baseline method Vehicle-to-Vehicle Multimodal Large Language Model (V2V-LLM), which uses an LLM to fuse perception information from multiple connected autonomous vehicles (CAVs) and answer various types of driving-related questions: grounding, notable object identification, and planning. Experimental results show that our proposed V2V-LLM can be a promising unified model architecture for performing various tasks in cooperative autonomous driving, and outperforms other baseline methods that use different fusion approaches. Our work also creates a new research direction that can improve the safety of future autonomous driving systems. The code and data will be released to the public to facilitate open-source research in this field. Our project website: https://eddyhkchiu.github.io/v2vllm.github.io/ .
comment: Accepted by ICRA 2026 (IEEE International Conference on Robotics and Automation). Project: https://eddyhkchiu.github.io/v2vllm.github.io/ Code: https://github.com/eddyhkchiu/V2V-LLM Dataset: https://huggingface.co/datasets/eddyhkchiu/V2V-GoT-QA
♻ ☆ Image Can Bring Your Memory Back: A Novel Multi-Modal Guided Attack against Image Generation Model Unlearning ICLR 2026
Recent advances in image generation models (IGMs), particularly diffusion-based architectures such as Stable Diffusion (SD), have markedly enhanced the quality and diversity of AI-generated visual content. However, their generative capability has also raised significant ethical, legal, and societal concerns, including the potential to produce harmful, misleading, or copyright-infringing content. To mitigate these concerns, machine unlearning (MU) emerges as a promising solution by selectively removing undesirable concepts from pretrained models. Nevertheless, the robustness and effectiveness of existing unlearning techniques remain largely unexplored, particularly in the presence of multi-modal adversarial inputs. To bridge this gap, we propose Recall, a novel adversarial framework explicitly designed to compromise the robustness of unlearned IGMs. Unlike existing approaches that predominantly rely on adversarial text prompts, Recall exploits the intrinsic multi-modal conditioning capabilities of diffusion models by efficiently optimizing adversarial image prompts with guidance from a single semantically relevant reference image. Extensive experiments across ten state-of-the-art unlearning methods and diverse tasks show that Recall consistently outperforms existing baselines in terms of adversarial effectiveness, computational efficiency, and semantic fidelity with the original textual prompt. These findings reveal critical vulnerabilities in current unlearning mechanisms and underscore the need for more robust solutions to ensure the safety and reliability of generative models. Code and data are publicly available at \textcolor{blue}{https://github.com/ryliu68/RECALL}.
comment: Accepted by ICLR 2026
♻ ☆ Multi-View Camera System for Variant-Aware Autonomous Vehicle Inspection and Defect Detection
Ensuring that every vehicle leaving a modern production line is built to the correct \emph{variant} specification and is free from visible defects is an increasingly complex challenge. We present the \textbf{Automated Vehicle Inspection (AVI)} platform, an end-to-end, \emph{multi-view} perception system that couples deep-learning detectors with a semantic rule engine to deliver \emph{variant-aware} quality control in real time. Eleven synchronized cameras capture a full 360° sweep of each vehicle; task-specific views are then routed to specialised modules: YOLOv8 for part detection, EfficientNet for ICE/EV classification, Gemini-1.5 Flash for mascot OCR, and YOLOv8-Seg for scratch-and-dent segmentation. A view-aware fusion layer standardises evidence, while a VIN-conditioned rule engine compares detected features against the expected manifest, producing an interpretable pass/fail report in \(\approx\! 300\,\text{ms}\). On a mixed data set of Original Equipment Manufacturer(OEM) vehicle data sets of four distinct models plus public scratch/dent images, AVI achieves \textbf{ 93 \%} verification accuracy, \textbf{86 \%} defect-detection recall, and sustains \(\mathbf{3.3}\) vehicles/min, surpassing single-view or no segmentation baselines by large margins. To our knowledge, this is the first publicly reported system that unifies multi-camera feature validation with defect detection in a deployable automotive setting in industry.
♻ ☆ LVLM-COUNT: Enhancing the Counting Ability of Large Vision-Language Models
Counting is a fundamental operation for various real-world visual tasks, requiring both object recognition and robust counting capabilities. Despite their advanced visual perception, large vision-language models (LVLMs) are known to struggle with counting tasks. In this work, we evaluate the performance of several LVLMs on visual counting tasks across multiple counting and vision datasets. We observe that while their performance may be less prone to error for small numbers of objects, they exhibit significant weaknesses as the number of objects increases. To alleviate this issue, we propose a simple yet effective baseline method that enhances LVLMs' counting ability for large numbers of objects using a divide-and-conquer approach. Our method decomposes counting problems into sub-tasks. Moreover, it incorporates a mechanism to prevent objects from being split during division, which could otherwise lead to repetitive counting -- a common issue in a naive divide-and-conquer implementation. We demonstrate the effectiveness of this approach across various datasets and benchmarks, establishing it as a valuable reference for evaluating future solutions.
comment: 38 pages, 24 Figures, 19 Tables
Multimedia 3
☆ GOT-JEPA: Generic Object Tracking with Model Adaptation and Occlusion Handling using Joint-Embedding Predictive Architecture
The human visual system tracks objects by integrating current observations with previously observed information, adapting to target and scene changes, and reasoning about occlusion at fine granularity. In contrast, recent generic object trackers are often optimized for training targets, which limits robustness and generalization in unseen scenarios, and their occlusion reasoning remains coarse, lacking detailed modeling of occlusion patterns. To address these limitations in generalization and occlusion perception, we propose GOT-JEPA, a model-predictive pretraining framework that extends JEPA from predicting image features to predicting tracking models. Given identical historical information, a teacher predictor generates pseudo-tracking models from a clean current frame, and a student predictor learns to predict the same pseudo-tracking models from a corrupted version of the current frame. This design provides stable pseudo supervision and explicitly trains the predictor to produce reliable tracking models under occlusions, distractors, and other adverse observations, improving generalization to dynamic environments. Building on GOT-JEPA, we further propose OccuSolver to enhance occlusion perception for object tracking. OccuSolver adapts a point-centric point tracker for object-aware visibility estimation and detailed occlusion-pattern capture. Conditioned on object priors iteratively generated by the tracker, OccuSolver incrementally refines visibility states, strengthens occlusion handling, and produces higher-quality reference labels that progressively improve subsequent model predictions. Extensive evaluations on seven benchmarks show that our method effectively enhances tracker generalization and robustness.
comment: Learning Model Adaptation for Adverse and Dynamic Environments
☆ S-PRESSO: Ultra Low Bitrate Sound Effect Compression With Diffusion Autoencoders And Offline Quantization
Neural audio compression models have recently achieved extreme compression rates, enabling efficient latent generative modeling. Conversely, latent generative models have been applied to compression, pushing the limits of continuous and discrete approaches. However, existing methods remain constrained to low-resolution audio and degrade substantially at very low bitrates, where audible artifacts are prominent. In this paper, we present S-PRESSO, a 48kHz sound effect compression model that produces both continuous and discrete embeddings at ultra-low bitrates, down to 0.096 kbps, via offline quantization. Our model relies on a pretrained latent diffusion model to decode compressed audio embeddings learned by a latent encoder. Leveraging the generative priors of the diffusion decoder, we achieve extremely low frame rates, down to 1Hz (750x compression rate), producing convincing and realistic reconstructions at the cost of exact fidelity. Despite operating at high compression rates, we demonstrate that S-PRESSO outperforms both continuous and discrete baselines in audio quality, acoustic similarity and reconstruction metrics.
♻ ☆ NeRV360: Neural Representation for 360-Degree Videos with a Viewport Decoder
Implicit neural representations for videos (NeRV) have shown strong potential for video compression. However, applying NeRV to high-resolution 360-degree videos causes high memory usage and slow decoding, making real-time applications impractical. We propose NeRV360, an end-to-end framework that decodes only the user-selected viewport instead of reconstructing the entire panoramic frame. Unlike conventional pipelines, NeRV360 integrates viewport extraction into decoding and introduces a spatial-temporal affine transform module for conditional decoding based on viewpoint and time. Experiments on 6K-resolution videos show that NeRV360 achieves a 7-fold reduction in memory consumption and a 2.5-fold increase in decoding speed compared to HNeRV, a representative prior work, while delivering better image quality in terms of objective metrics.
comment: 2026 IIEEJ International Conference on Image Electronics and Visual Computing (IEVC)
Artificial Intelligent 122
☆ From Diagnosis to Inoculation: Building Cognitive Resistance to AI Disempowerment
Recent empirical research by Sharma et al. (2026) demonstrated that AI assistant interactions carry meaningful potential for situational human disempowerment, including reality distortion, value judgment distortion, and action distortion. While this work provides a critical diagnosis of the problem, concrete pedagogical interventions remain underexplored. I present an AI literacy framework built around eight cross-cutting Learning Outcomes (LOs), developed independently through teaching practice and subsequently found to align with Sharma et al.'s disempowerment taxonomy. I report a case study from a publicly available online course, where a co-teaching methodology--with AI serving as an active voice co-instructor--was used to deliver this framework. Drawing on inoculation theory (McGuire, 1961)--a well-established persuasion research framework recently applied to misinformation prebunking by the Cambridge school (van der Linden, 2022; Roozenbeek & van der Linden, 2019)--I argue that AI literacy cannot be acquired through declarative knowledge alone, but requires guided exposure to AI failure modes, including the sycophantic validation and authority projection patterns identified by Sharma et al. This application of inoculation theory to AI-specific distortion is, to my knowledge, novel. I discuss the convergence between the pedagogically-derived framework and Sharma et al.'s empirically-derived taxonomy, and argue that this convergence--two independent approaches arriving at similar problem descriptions--strengthens the case for both the diagnosis and the proposed educational response.
comment: 11 pages, 1 table. Perspective / Position Paper
☆ Fast and Effective On-policy Distillation from Reasoning Prefixes
On-policy distillation (OPD), which samples trajectories from the student model and supervises them with a teacher at the token level, avoids relying solely on verifiable terminal rewards and can yield better generalization than off-policy distillation. However, OPD requires expensive on-the-fly sampling of the student policy during training, which substantially increases training cost, especially for long responses. Our initial analysis shows that, during OPD, training signals are often concentrated in the prefix of each output, and that even a short teacher-generated prefix can significantly help the student produce the correct answer. Motivated by these observations, we propose a simple yet effective modification of OPD: we apply the distillation objective only to prefixes of student-generated outputs and terminate each sampling early during distillation. Experiments on a suite of AI-for-Math and out-of-domain benchmarks show that on-policy prefix distillation matches the performance of full OPD while reducing training FLOP by 2x-47x.
☆ Knowing Isn't Understanding: Re-grounding Generative Proactivity with Epistemic and Behavioral Insight
Generative AI agents equate understanding with resolving explicit queries, an assumption that confines interaction to what users can articulate. This assumption breaks down when users themselves lack awareness of what is missing, risky, or worth considering. In such conditions, proactivity is not merely an efficiency enhancement, but an epistemic necessity. We refer to this condition as epistemic incompleteness: where progress depends on engaging with unknown unknowns for effective partnership. Existing approaches to proactivity remain narrowly anticipatory, extrapolating from past behavior and presuming that goals are already well defined, thereby failing to support users meaningfully. However, surfacing possibilities beyond a user's current awareness is not inherently beneficial. Unconstrained proactive interventions can misdirect attention, overwhelm users, or introduce harm. Proactive agents, therefore, require behavioral grounding: principled constraints on when, how, and to what extent an agent should intervene. We advance the position that generative proactivity must be grounded both epistemically and behaviorally. Drawing on the philosophy of ignorance and research on proactive behavior, we argue that these theories offer critical guidance for designing agents that can engage responsibly and foster meaningful partnerships.
☆ How to Train Your Long-Context Visual Document Model
We present the first comprehensive, large-scale study of training long-context vision language models up to 344K context, targeting long-document visual question answering with measured transfer to long-context text. While several such strong are open-weight, namely Qwen3 VL and GLM 4.5/6V, their training recipes and data pipelines are not reproducible. We systematically study continued pretraining, supervised finetuning, and preference optimization for 24B and 32B parameter models, backed by extensive LC evaluations and ablations to bridge this gap, and achieve state-of-the-art performance on MMLongBenchDoc for both parameter scales. In addition to this, our key findings include: (i) training on context lengths that match evaluation context lengths outperforms training on longer contexts, (ii) training and evaluating with page indices provides a simple, high-impact boost to long-document performance, (iii) our synthetic data pipelines enable self-improvement via continued pretraining and supervised finetuning, and (iv) we extend the known text-to-visual long context transfer to the reverse, showing that visual long context training transfers to long-context text performance. We also release MMLBD-C, a manually corrected version of MMLongBenchDoc to reduce erroneous and low quality examples in the benchmark.
☆ Decision Making under Imperfect Recall: Algorithms and Benchmarks
In game theory, imperfect-recall decision problems model situations in which an agent forgets information it held before. They encompass games such as the ``absentminded driver'' and team games with limited communication. In this paper, we introduce the first benchmark suite for imperfect-recall decision problems. Our benchmarks capture a variety of problem types, including ones concerning privacy in AI systems that elicit sensitive information, and AI safety via testing of agents in simulation. Across 61 problem instances generated using this suite, we evaluate the performance of different algorithms for finding first-order optimal strategies in such problems. In particular, we introduce the family of regret matching (RM) algorithms for nonlinear constrained optimization. This class of parameter-free algorithms has enjoyed tremendous success in solving large two-player zero-sum games, but, surprisingly, they were hitherto relatively unexplored beyond that setting. Our key finding is that RM algorithms consistently outperform commonly employed first-order optimizers such as projected gradient descent, often by orders of magnitude. This establishes, for the first time, the RM family as a formidable approach to large-scale constrained optimization problems.
comment: 39 pages, 71 figures, 4 table
☆ Artificial Intelligence Specialization in the European Union: Underexplored Role of the Periphery at NUTS-3 Level
This study examines the geographical distribution of Artificial Intelligence (AI) research production across European regions at the NUTS-3 level for the period 2015-2024. Using bibliometric data from Clarivate InCites and the Citation Topics classification system, we analyze two hierarchical levels of thematic aggregation: Electrical Engineering, Electronics & Computer Science (Macro Citation Topic 4) and Artificial Intelligence & Machine Learning (Meso Citation Topic 4.61). We calculate the Relative Specialization Index (RSI) and Relative Citation Impact (RCI) for 781 NUTS-3 regions. While major metropolitan hubs such as Paris (IIle-de-France), Warszawa, and Madrid lead in absolute production volume, our findings reveal that peripheral regions, particularly from Eastern Europe and Spain, exhibit the highest levels of relative AI specialization. Notably, we find virtually no correlation between regional specialization and citation impact, identifying four distinct regional profiles: high-impact specialized regions (e.g., Granada, Jaen, Vilniaus), high-volume but low-impact regions (e.g., Bugas, several Polish regions), high-impact non-specialized regions, with Fyn (Denmark) standing out as a remarkable outlier achieving exceptional citation impact (RCI > 4) despite low specialization, and diversified portfolios with selective excellence (e.g., German regions). These results suggest that AI research represents a strategic opportunity for peripheral regions to develop competitive scientific niches, though achieving international visibility requires more than research volume alone.
comment: 6 pages, 3 figures, submitted to IEEE Computational Intelligence Magazine
☆ Predicting Invoice Dilution in Supply Chain Finance with Leakage Free Two Stage XGBoost, KAN (Kolmogorov Arnold Networks), and Ensemble Models
Invoice or payment dilution is the gap between the approved invoice amount and the actual collection is a significant source of non credit risk and margin loss in supply chain finance. Traditionally, this risk is managed through the buyer's irrevocable payment undertaking (IPU), which commits to full payment without deductions. However, IPUs can hinder supply chain finance adoption, particularly among sub-invested grade buyers. A newer, data-driven methods use real-time dynamic credit limits, projecting dilution for each buyer-supplier pair in real-time. This paper introduces an AI, machine learning framework and evaluates how that can supplement a deterministic algorithm to predict invoice dilution using extensive production dataset across nine key transaction fields.
☆ MyoInteract: A Framework for Fast Prototyping of Biomechanical HCI Tasks using Reinforcement Learning
Reinforcement learning (RL)-based biomechanical simulations have the potential to revolutionise HCI research and interaction design, but currently lack usability and interpretability. Using the Human Action Cycle as a design lens, we identify key limitations of biomechanical RL frameworks and develop MyoInteract, a novel framework for fast prototyping of biomechanical HCI tasks. MyoInteract allows designers to setup tasks, user models, and training parameters from an easy-to-use GUI within minutes. It trains and evaluates muscle-actuated simulated users within minutes, reducing training times by up to 98%. A workshop study with 12 interaction designers revealed that MyoInteract allowed novices in biomechanical RL to successfully setup, train, and assess goal-directed user movements within a single session. By transforming biomechanical RL from a days-long expert task into an accessible hour-long workflow, this work significantly lowers barriers to entry and accelerates iteration cycles in HCI biomechanics research.
☆ GenAI for Systems: Recurring Challenges and Design Principles from Software to Silicon
Generative AI is reshaping how computing systems are designed, optimized, and built, yet research remains fragmented across software, architecture, and chip design communities. This paper takes a cross-stack perspective, examining how generative models are being applied from code generation and distributed runtimes through hardware design space exploration to RTL synthesis, physical layout, and verification. Rather than reviewing each layer in isolation, we analyze how the same structural difficulties and effective responses recur across the stack. Our central finding is one of convergence. Despite the diversity of domains and tools, the field keeps encountering five recurring challenges (the feedback loop crisis, the tacit knowledge problem, trust and validation, co-design across boundaries, and the shift from determinism to dynamism) and keeps arriving at five design principles that independently emerge as effective responses (embracing hybrid approaches, designing for continuous feedback, separating concerns by role, matching methods to problem structure, and building on decades of systems knowledge). We organize these into a challenge--principle map that serves as a diagnostic and design aid, showing which principles have proven effective for which challenges across layers. Through concrete cross-stack examples, we show how systems navigate this map as they mature, and argue that the field needs shared engineering methodology, including common vocabularies, cross-layer benchmarks, and systematic design practices, so that progress compounds across communities rather than being rediscovered in each one. Our analysis covers more than 275 papers spanning eleven application areas across three layers of the computing stack, and distills open research questions that become visible only from a cross-layer vantage point.
☆ Closing the Distribution Gap in Adversarial Training for LLMs
Adversarial training for LLMs is one of the most promising methods to reliably improve robustness against adversaries. However, despite significant progress, models remain vulnerable to simple in-distribution exploits, such as rewriting prompts in the past tense or translating them into other languages. We argue that this persistent fragility stems from a fundamental limitation in current adversarial training algorithms: they minimize adversarial loss on their training set but inadequately cover the data distribution, resulting in vulnerability to seemingly simple attacks. To bridge this gap, we propose Distributional Adversarial Training, DAT. We leverage Diffusion LLMs to approximate the true joint distribution of prompts and responses, enabling generation of diverse, high-likelihood samples that address generalization failures. By combining optimization over the data distribution provided by the diffusion model with continuous adversarial training, DAT achieves substantially higher adversarial robustness than previous methods.
☆ Automatically Finding Reward Model Biases
Reward models are central to large language model (LLM) post-training. However, past work has shown that they can reward spurious or undesirable attributes such as length, format, hallucinations, and sycophancy. In this work, we introduce and study the research problem of automatically finding reward model biases in natural language. We offer a simple approach of using an LLM to iteratively propose and refine candidate biases. Our method can recover known biases and surface novel ones: for example, we found that Skywork-V2-8B, a leading open-weight reward model, often mistakenly favors responses with redundant spacing and responses with hallucinated content. In addition, we show evidence that evolutionary iteration outperforms flat best-of-N search, and we validate the recall of our pipeline using synthetically injected biases. We hope our work contributes to further research on improving RMs through automated interpretability methods.
☆ Secure and Energy-Efficient Wireless Agentic AI Networks
In this paper, we introduce a secure wireless agentic AI network comprising one supervisor AI agent and multiple other AI agents to provision quality of service (QoS) for users' reasoning tasks while ensuring confidentiality of private knowledge and reasoning outcomes. Specifically, the supervisor AI agent can dynamically assign other AI agents to participate in cooperative reasoning, while the unselected AI agents act as friendly jammers to degrade the eavesdropper's interception performance. To extend the service duration of AI agents, an energy minimization problem is formulated that jointly optimizes AI agent selection, base station (BS) beamforming, and AI agent transmission power, subject to latency and reasoning accuracy constraints. To address the formulated problem, we propose two resource allocation schemes, ASC and LAW, which first decompose it into three sub-problems. Specifically, ASC optimizes each sub-problem iteratively using the proposed alternating direction method of multipliers (ADMM)-based algorithm, semi-definite relaxation (SDR), and successive convex approximation (SCA), while LAW tackles each sub-problem using the proposed large language model (LLM) optimizer within an agentic workflow. The experimental results show that the proposed solutions can reduce network energy consumption by up to 59.1% compared to other benchmark schemes. Furthermore, the proposed schemes are validated using a practical agentic AI system based on Qwen, demonstrating satisfactory reasoning accuracy across various public benchmarks.
comment: Submitted to journal
☆ MAVRL: Learning Reward Functions from Multiple Feedback Types with Amortized Variational Inference
Reward learning typically relies on a single feedback type or combines multiple feedback types using manually weighted loss terms. Currently, it remains unclear how to jointly learn reward functions from heterogeneous feedback types such as demonstrations, comparisons, ratings, and stops that provide qualitatively different signals. We address this challenge by formulating reward learning from multiple feedback types as Bayesian inference over a shared latent reward function, where each feedback type contributes information through an explicit likelihood. We introduce a scalable amortized variational inference approach that learns a shared reward encoder and feedback-specific likelihood decoders and is trained by optimizing a single evidence lower bound. Our approach avoids reducing feedback to a common intermediate representation and eliminates the need for manual loss balancing. Across discrete and continuous-control benchmarks, we show that jointly inferred reward posteriors outperform single-type baselines, exploit complementary information across feedback types, and yield policies that are more robust to environment perturbations. The inferred reward uncertainty further provides interpretable signals for analyzing model confidence and consistency across feedback types.
comment: 25 pages, 7 figures
☆ Tomography by Design: An Algebraic Approach to Low-Rank Quantum States
We present an algebraic algorithm for quantum state tomography that leverages measurements of certain observables to estimate structured entries of the underlying density matrix. Under low-rank assumptions, the remaining entries can be obtained solely using standard numerical linear algebra operations. The proposed algebraic matrix completion framework applies to a broad class of generic, low-rank mixed quantum states and, compared with state-of-the-art methods, is computationally efficient while providing deterministic recovery guarantees.
comment: 5 pages, Submitted to EUSIPCO2026
☆ Colosseum: Auditing Collusion in Cooperative Multi-Agent Systems
Multi-agent systems, where LLM agents communicate through free-form language, enable sophisticated coordination for solving complex cooperative tasks. This surfaces a unique safety problem when individual agents form a coalition and \emph{collude} to pursue secondary goals and degrade the joint objective. In this paper, we present Colosseum, a framework for auditing LLM agents' collusive behavior in multi-agent settings. We ground how agents cooperate through a Distributed Constraint Optimization Problem (DCOP) and measure collusion via regret relative to the cooperative optimum. Colosseum tests each LLM for collusion under different objectives, persuasion tactics, and network topologies. Through our audit, we show that most out-of-the-box models exhibited a propensity to collude when a secret communication channel was artificially formed. Furthermore, we discover ``collusion on paper'' when agents plan to collude in text but would often pick non-collusive actions, thus providing little effect on the joint task. Colosseum provides a new way to study collusion by measuring communications and actions in rich yet verifiable environments.
☆ OpaqueToolsBench: Learning Nuances of Tool Behavior Through Interaction
Tool-calling is essential for Large Language Model (LLM) agents to complete real-world tasks. While most existing benchmarks assume simple, perfectly documented tools, real-world tools (e.g., general "search" APIs) are often opaque, lacking clear best practices or failure modes. Can LLM agents improve their performance in environments with opaque tools by interacting and subsequently improving documentation? To study this, we create OpaqueToolsBench, a benchmark consisting of three distinct task-oriented environments: general function calling, interactive chess playing, and long-trajectory agentic search. Each environment provides underspecified tools that models must learn to use effectively to complete the task. Results on OpaqueToolsBench suggest existing methods for automatically documenting tools are expensive and unreliable when tools are opaque. To address this, we propose a simple framework, ToolObserver, that iteratively refines tool documentation by observing execution feedback from tool-calling trajectories. Our approach outperforms existing methods on OpaqueToolsBench across datasets, even in relatively hard settings. Furthermore, for test-time tool exploration settings, our method is also efficient, consuming 3.5-7.5x fewer total tokens than the best baseline.
☆ Weight space Detection of Backdoors in LoRA Adapters
LoRA adapters let users fine-tune large language models (LLMs) efficiently. However, LoRA adapters are shared through open repositories like Hugging Face Hub \citep{huggingface_hub_docs}, making them vulnerable to backdoor attacks. Current detection methods require running the model with test input data -- making them impractical for screening thousands of adapters where the trigger for backdoor behavior is unknown. We detect poisoned adapters by analyzing their weight matrices directly, without running the model -- making our method data-agnostic. Our method extracts simple statistics -- how concentrated the singular values are, their entropy, and the distribution shape -- and flags adapters that deviate from normal patterns. We evaluate the method on 500 LoRA adapters -- 400 clean, and 100 poisoned for Llama-3.2-3B on instruction and reasoning datasets: Alpaca, Dolly, GSM8K, ARC-Challenge, SQuADv2, NaturalQuestions, HumanEval, and GLUE dataset. We achieve 97\% detection accuracy with less than 2\% false positives.
☆ ScrapeGraphAI-100k: A Large-Scale Dataset for LLM-Based Web Information Extraction
The use of large language models for web information extraction is becoming increasingly fundamental to modern web information retrieval pipelines. However, existing datasets tend to be small, synthetic or text-only, failing to capture the structural context of the web. We introduce ScrapeGraphAI-100k, a large-scale dataset comprising real-world LLM extraction events, collected via opt-in ScrapeGraphAI telemetry during Q2 and Q3 of 2025. Starting from 9M events, we deduplicate and balance by schema to produce 93,695 examples spanning diverse domains and languages. Each instance includes Markdown content, a prompt, a JSON schema, the LLM response, and complexity/validation metadata. We characterize the datasets structural diversity and its failure modes as schema complexity increases. We also provide a fine-tuning experiment showing that a small language model (1.7B) trained on a subset narrows the gap to larger baselines (30B), underscoring the datasets utility for efficient extraction. ScrapeGraphAI-100k enables fine-tuning small models, benchmarking structured extraction, and studying schema induction for web IR indexing, and is publicly available on HuggingFace.
☆ Mind the (DH) Gap! A Contrast in Risky Choices Between Reasoning and Conversational LLMs
The use of large language models either as decision support systems, or in agentic workflows, is rapidly transforming the digital ecosystem. However, the understanding of LLM decision-making under uncertainty remains limited. We initiate a comparative study of LLM risky choices along two dimensions: (1) prospect representation (explicit vs. experience based) and (2) decision rationale (explanation). Our study, which involves 20 frontier and open LLMs, is complemented by a matched human subjects experiment, which provides one reference point, while an expected payoff maximizing rational agent model provides another. We find that LLMs cluster into two categories: reasoning models (RMs) and conversational models (CMs). RMs tend towards rational behavior, are insensitive to the order of prospects, gain/loss framing, and explanations, and behave similarly whether prospects are explicit or presented via experience history. CMs are significantly less rational, slightly more human-like, sensitive to prospect ordering, framing, and explanation, and exhibit a large description-history gap. Paired comparisons of open LLMs suggest that a key factor differentiating RMs and CMs is training for mathematical reasoning.
☆ Exploiting Layer-Specific Vulnerabilities to Backdoor Attack in Federated Learning
Federated learning (FL) enables distributed model training across edge devices while preserving data locality. This decentralized approach has emerged as a promising solution for collaborative learning on sensitive user data, effectively addressing the longstanding privacy concerns inherent in centralized systems. However, the decentralized nature of FL exposes new security vulnerabilities, especially backdoor attacks that threaten model integrity. To investigate this critical concern, this paper presents the Layer Smoothing Attack (LSA), a novel backdoor attack that exploits layer-specific vulnerabilities in neural networks. First, a Layer Substitution Analysis methodology systematically identifies backdoor-critical (BC) layers that contribute most significantly to backdoor success. Subsequently, LSA strategically manipulates these BC layers to inject persistent backdoors while remaining undetected by state-of-the-art defense mechanisms. Extensive experiments across diverse model architectures and datasets demonstrate that LSA achieves a remarkably backdoor success rate of up to 97% while maintaining high model accuracy on the primary task, consistently bypassing modern FL defenses. These findings uncover fundamental vulnerabilities in current FL security frameworks, demonstrating that future defenses must incorporate layer-aware detection and mitigation strategies.
comment: This paper has been accepted for publication in IEEE ICC 2026
☆ da Costa and Tarski meet Goguen and Carnap: a novel approach for ontological heterogeneity based on consequence systems
This paper presents a novel approach for ontological heterogeneity that draws heavily from Carnapian-Goguenism, as presented by Kutz, Mossakowski and Lücke (2010). The approach is provisionally designated da Costian-Tarskianism, named after da Costa's Principle of Tolerance in Mathematics and after Alfred Tarski's work on the concept of a consequence operator. The approach is based on the machinery of consequence systems, as developed by Carnielli et al. (2008) and Citkin and Muravitsky (2022), and it introduces the idea of an extended consequence system, which is a consequence system extended with ontological axioms. The paper also defines the concept of an extended development graph, which is a graph structure that allows ontologies to be related via morphisms of extended consequence systems, and additionally via other operations such as fibring and splitting. Finally, we discuss the implications of this approach for the field of applied ontology and suggest directions for future research.
comment: 22 pages, 5 figures, 1 table
☆ Panini: Continual Learning in Token Space via Structured Memory
Language models are increasingly used to reason over content they were not trained on, such as new documents, evolving knowledge, and user-specific data. A common approach is retrieval-augmented generation (RAG), which stores verbatim documents externally (as chunks) and retrieves only a relevant subset at inference time for an LLM to reason over. However, this results in inefficient usage of test-time compute (LLM repeatedly reasons over the same documents); moreover, chunk retrieval can inject irrelevant context that increases unsupported generation. We propose a human-like non-parametric continual learning framework, where the base model remains fixed, and learning occurs by integrating each new experience into an external semantic memory state that accumulates and consolidates itself continually. We present Panini, which realizes this by representing documents as Generative Semantic Workspaces (GSW) -- an entity- and event-aware network of question-answer (QA) pairs, sufficient for an LLM to reconstruct the experienced situations and mine latent knowledge via reasoning-grounded inference chains on the network. Given a query, Panini only traverses the continually-updated GSW (not the verbatim documents or chunks), and retrieves the most likely inference chains. Across six QA benchmarks, Panini achieves the highest average performance, 5%-7% higher than other competitive baselines, while using 2-30x fewer answer-context tokens, supports fully open-source pipelines, and reduces unsupported answers on curated unanswerable queries. The results show that efficient and accurate structuring of experiences at write time -- as achieved by the GSW framework -- yields both efficiency and reliability gains at read time. Code is available at https://github.com/roychowdhuryresearch/gsw-memory.
comment: 35 pages, code available at: https://github.com/roychowdhuryresearch/gsw-memory
☆ Protecting Language Models Against Unauthorized Distillation through Trace Rewriting
Knowledge distillation is a widely adopted technique for transferring capabilities from LLMs to smaller, more efficient student models. However, unauthorized use of knowledge distillation takes unfair advantage of the considerable effort and cost put into developing frontier models. We investigate methods for modifying teacher-generated reasoning traces to achieve two objectives that deter unauthorized distillation: (1) \emph{anti-distillation}, or degrading the training usefulness of query responses, and (2) \emph{API watermarking}, which embeds verifiable signatures in student models. We introduce several approaches for dynamically rewriting a teacher's reasoning outputs while preserving answer correctness and semantic coherence. Two of these leverage the rewriting capabilities of LLMs, while others use gradient-based techniques. Our experiments show that a simple instruction-based rewriting approach achieves a strong anti-distillation effect while maintaining or even improving teacher performance. Furthermore, we show that our rewriting approach also enables highly reliable watermark detection with essentially no false alarms.
☆ CGRA-DeBERTa Concept Guided Residual Augmentation Transformer for Theologically Islamic Understanding
Accurate QA over classical Islamic texts remains challenging due to domain specific semantics, long context dependencies, and concept sensitive reasoning. Therefore, a new CGRA DeBERTa, a concept guided residual domain augmentation transformer framework, is proposed that enhances theological QA over Hadith corpora. The CGRA DeBERTa builds on a customized DeBERTa transformer backbone with lightweight LoRA based adaptations and a residual concept aware gating mechanism. The customized DeBERTa embedding block learns global and positional context, while Concept Guided Residual Blocks incorporate theological priors from a curated Islamic Concept Dictionary of 12 core terms. Moreover, the Concept Gating Mechanism selectively amplifies semantically critical tokens via importance weighted attention, applying differential scaling from 1.04 to 3.00. This design preserves contextual integrity, strengthens domain-specific semantic representations, and enables accurate, efficient span extraction while maintaining computational efficiency. This paper reports the results of training CGRA using a specially constructed dataset of 42591 QA pairs from the text of Sahih alBukhari and Sahih Muslim. While BERT achieved an EM score of 75.87 and DeBERTa one of 89.77, our model scored 97.85 and thus surpassed them by 8.08 on an absolute scale, all while adding approximately 8 inference overhead due to parameter efficient gating. The qualitative evaluation noted better extraction and discrimination and theological precision. This study presents Hadith QA systems that are efficient, interpretable, and accurate and that scale provide educational materials with necessary theological nuance.
comment: 24 Pages, 9 Tables, 7 Figures
☆ MB-DSMIL-CL-PL: Scalable Weakly Supervised Ovarian Cancer Subtype Classification and Localisation Using Contrastive and Prototype Learning with Frozen Patch Features
The study of histopathological subtypes is valuable for the personalisation of effective treatment strategies for ovarian cancer. However, increasing diagnostic workloads present a challenge for UK pathology departments, leading to the rise in AI approaches. While traditional approaches in this field have relied on pre-computed, frozen image features, recent advances have shifted towards end-to-end feature extraction, providing an improvement in accuracy but at the expense of significantly reduced scalability during training and time-consuming experimentation. In this paper, we propose a new approach for subtype classification and localisation in ovarian cancer histopathology images using contrastive and prototype learning with pre-computed, frozen features via feature-space augmentations. Compared to DSMIL, our method achieves an improvement of 70.4\% and 15.3\% in F1 score for instance- and slide-level classification, respectively, along with AUC gains of 16.9\% for instance localisation and 2.3\% for slide classification, while maintaining the use of frozen patch features.
☆ PolyNODE: Variable-dimension Neural ODEs on M-polyfolds
Neural ordinary differential equations (NODEs) are geometric deep learning models based on dynamical systems and flows generated by vector fields on manifolds. Despite numerous successful applications, particularly within the flow matching paradigm, all existing NODE models are fundamentally constrained to fixed-dimensional dynamics by the intrinsic nature of the manifold's dimension. In this paper, we extend NODEs to M-polyfolds (spaces that can simultaneously accommodate varying dimensions and a notion of differentiability) and introduce PolyNODEs, the first variable-dimensional flow-based model in geometric deep learning. As an example application, we construct explicit M-polyfolds featuring dimensional bottlenecks and PolyNODE autoencoders based on parametrised vector fields that traverse these bottlenecks. We demonstrate experimentally that our PolyNODE models can be trained to solve reconstruction tasks in these spaces, and that latent representations of the input can be extracted and used to solve downstream classification tasks. The code used in our experiments is publicly available at https://github.com/turbotage/PolyNODE .
☆ ResearchGym: Evaluating Language Model Agents on Real-World AI Research
We introduce ResearchGym, a benchmark and execution environment for evaluating AI agents on end-to-end research. To instantiate this, we repurpose five oral and spotlight papers from ICML, ICLR, and ACL. From each paper's repository, we preserve the datasets, evaluation harness, and baseline implementations but withhold the paper's proposed method. This results in five containerized task environments comprising 39 sub-tasks in total. Within each environment, agents must propose novel hypotheses, run experiments, and attempt to surpass strong human baselines on the paper's metrics. In a controlled evaluation of an agent powered by GPT-5, we observe a sharp capability--reliability gap. The agent improves over the provided baselines from the repository in just 1 of 15 evaluations (6.7%) by 11.5%, and completes only 26.5% of sub-tasks on average. We identify recurring long-horizon failure modes, including impatience, poor time and resource management, overconfidence in weak hypotheses, difficulty coordinating parallel experiments, and hard limits from context length. Yet in a single run, the agent surpasses the solution of an ICML 2025 Spotlight task, indicating that frontier agents can occasionally reach state-of-the-art performance, but do so unreliably. We additionally evaluate proprietary agent scaffolds including Claude Code (Opus-4.5) and Codex (GPT-5.2) which display a similar gap. ResearchGym provides infrastructure for systematic evaluation and analysis of autonomous agents on closed-loop research.
☆ Long Context, Less Focus: A Scaling Gap in LLMs Revealed through Privacy and Personalization
Large language models (LLMs) are increasingly deployed in privacy-critical and personalization-oriented scenarios, yet the role of context length in shaping privacy leakage and personalization effectiveness remains largely unexplored. We introduce a large-scale benchmark, PAPerBench, to systematically study how increasing context length influences both personalization quality and privacy protection in LLMs. The benchmark comprises approximately 29,000 instances with context lengths ranging from 1K to 256K tokens, yielding a total of 377K evaluation questions. It jointly evaluates personalization performance and privacy risks across diverse scenarios, enabling controlled analysis of long-context model behavior. Extensive evaluations across state-of-the-art LLMs reveal consistent performance degradation in both personalization and privacy as context length increases. We further provide a theoretical analysis of attention dilution under context scaling, explaining this behavior as an inherent limitation of soft attention in fixed-capacity Transformers. The empirical and theoretical findings together suggest a general scaling gap in current models -- long context, less focus. We release the benchmark to support reproducible evaluation and future research on scalable privacy and personalization. Code and data are available at https://github.com/SafeRL-Lab/PAPerBench
☆ Rethinking Diffusion Models with Symmetries through Canonicalization with Applications to Molecular Graph Generation
Many generative tasks in chemistry and science involve distributions invariant to group symmetries (e.g., permutation and rotation). A common strategy enforces invariance and equivariance through architectural constraints such as equivariant denoisers and invariant priors. In this paper, we challenge this tradition through the alternative canonicalization perspective: first map each sample to an orbit representative with a canonical pose or order, train an unconstrained (non-equivariant) diffusion or flow model on the canonical slice, and finally recover the invariant distribution by sampling a random symmetry transform at generation time. Building on a formal quotient-space perspective, our work provides a comprehensive theory of canonical diffusion by proving: (i) the correctness, universality and superior expressivity of canonical generative models over invariant targets; (ii) canonicalization accelerates training by removing diffusion score complexity induced by group mixtures and reducing conditional variance in flow matching. We then show that aligned priors and optimal transport act complementarily with canonicalization and further improves training efficiency. We instantiate the framework for molecular graph generation under $S_n \times SE(3)$ symmetries. By leveraging geometric spectra-based canonicalization and mild positional encodings, canonical diffusion significantly outperforms equivariant baselines in 3D molecule generation tasks, with similar or even less computation. Moreover, with a novel architecture Canon, CanonFlow achieves state-of-the-art performance on the challenging GEOM-DRUG dataset, and the advantage remains large in few-step generation.
comment: 32 pages
☆ Cold-Start Personalization via Training-Free Priors from Structured World Models
Cold-start personalization requires inferring user preferences through interaction when no user-specific historical data is available. The core challenge is a routing problem: each task admits dozens of preference dimensions, yet individual users care about only a few, and which ones matter depends on who is asking. With a limited question budget, asking without structure will miss the dimensions that matter. Reinforcement learning is the natural formulation, but in multi-turn settings its terminal reward fails to exploit the factored, per-criterion structure of preference data, and in practice learned policies collapse to static question sequences that ignore user responses. We propose decomposing cold-start elicitation into offline structure learning and online Bayesian inference. Pep (Preference Elicitation with Priors) learns a structured world model of preference correlations offline from complete profiles, then performs training-free Bayesian inference online to select informative questions and predict complete preference profiles, including dimensions never asked about. The framework is modular across downstream solvers and requires only simple belief models. Across medical, mathematical, social, and commonsense reasoning, Pep achieves 80.8% alignment between generated responses and users' stated preferences versus 68.5% for RL, with 3-5x fewer interactions. When two users give different answers to the same question, Pep changes its follow-up 39-62% of the time versus 0-28% for RL. It does so with ~10K parameters versus 8B for RL, showing that the bottleneck in cold-start elicitation is the capability to exploit the factored structure of preference data.
comment: 24 pages, 4 figures, 4 tables
☆ Spectral Convolution on Orbifolds for Geometric Deep Learning
Geometric deep learning (GDL) deals with supervised learning on data domains that go beyond Euclidean structure, such as data with graph or manifold structure. Due to the demand that arises from application-related data, there is a need to identify further topological and geometric structures with which these use cases can be made accessible to machine learning. There are various techniques, such as spectral convolution, that form the basic building blocks for some convolutional neural network-like architectures on non-Euclidean data. In this paper, the concept of spectral convolution on orbifolds is introduced. This provides a building block for making learning on orbifold structured data accessible using GDL. The theory discussed is illustrated using an example from music theory.
comment: 17 pages, 5 figures
☆ On the Semantics of Primary Cause in Hybrid Dynamic Domains
Reasoning about actual causes of observed effects is fundamental to the study of rationality. This important problem has been studied since the time of Aristotle, with formal mathematical accounts emerging recently. We live in a world where change due to actions can be both discrete and continuous, that is, hybrid. Yet, despite extensive research on actual causation, only few recent studies looked into causation with continuous change. Building on recent progress, in this paper we propose two definitions of primary cause in a hybrid action-theoretic framework, namely the hybrid temporal situation calculus. One of these is foundational in nature while the other formalizes causation through contributions, which can then be verified from a counterfactual perspective using a modified ``but-for'' test. We prove that these two definitions are indeed equivalent. We then show that our definitions of causation have some intuitively justifiable properties.
☆ ThermEval: A Structured Benchmark for Evaluation of Vision-Language Models on Thermal Imagery
Vision language models (VLMs) achieve strong performance on RGB imagery, but they do not generalize to thermal images. Thermal sensing plays a critical role in settings where visible light fails, including nighttime surveillance, search and rescue, autonomous driving, and medical screening. Unlike RGB imagery, thermal images encode physical temperature rather than color or texture, requiring perceptual and reasoning capabilities that existing RGB-centric benchmarks do not evaluate. We introduce ThermEval-B, a structured benchmark of approximately 55,000 thermal visual question answering pairs designed to assess the foundational primitives required for thermal vision language understanding. ThermEval-B integrates public datasets with our newly collected ThermEval-D, the first dataset to provide dense per-pixel temperature maps with semantic body-part annotations across diverse indoor and outdoor environments. Evaluating 25 open-source and closed-source VLMs, we find that models consistently fail at temperature-grounded reasoning, degrade under colormap transformations, and default to language priors or fixed responses, with only marginal gains from prompting or supervised fine-tuning. These results demonstrate that thermal understanding requires dedicated evaluation beyond RGB-centric assumptions, positioning ThermEval as a benchmark to drive progress in thermal vision language modeling.
comment: 8 Pages with 2 figures of main content. 2 pages of References. 10 pages of appendix with 6 figures
☆ PhyScensis: Physics-Augmented LLM Agents for Complex Physical Scene Arrangement ICLR 2026
Automatically generating interactive 3D environments is crucial for scaling up robotic data collection in simulation. While prior work has primarily focused on 3D asset placement, it often overlooks the physical relationships between objects (e.g., contact, support, balance, and containment), which are essential for creating complex and realistic manipulation scenarios such as tabletop arrangements, shelf organization, or box packing. Compared to classical 3D layout generation, producing complex physical scenes introduces additional challenges: (a) higher object density and complexity (e.g., a small shelf may hold dozens of books), (b) richer supporting relationships and compact spatial layouts, and (c) the need to accurately model both spatial placement and physical properties. To address these challenges, we propose PhyScensis, an LLM agent-based framework powered by a physics engine, to produce physically plausible scene configurations with high complexity. Specifically, our framework consists of three main components: an LLM agent iteratively proposes assets with spatial and physical predicates; a solver, equipped with a physics engine, realizes these predicates into a 3D scene; and feedback from the solver informs the agent to refine and enrich the configuration. Moreover, our framework preserves strong controllability over fine-grained textual descriptions and numerical parameters (e.g., relative positions, scene stability), enabled through probabilistic programming for stability and a complementary heuristic that jointly regulates stability and spatial relations. Experimental results show that our method outperforms prior approaches in scene complexity, visual quality, and physical accuracy, offering a unified pipeline for generating complex physical scene layouts for robotic manipulation.
comment: ICLR 2026
☆ AnchorWeave: World-Consistent Video Generation with Retrieved Local Spatial Memories
Maintaining spatial world consistency over long horizons remains a central challenge for camera-controllable video generation. Existing memory-based approaches often condition generation on globally reconstructed 3D scenes by rendering anchor videos from the reconstructed geometry in the history. However, reconstructing a global 3D scene from multiple views inevitably introduces cross-view misalignment, as pose and depth estimation errors cause the same surfaces to be reconstructed at slightly different 3D locations across views. When fused, these inconsistencies accumulate into noisy geometry that contaminates the conditioning signals and degrades generation quality. We introduce AnchorWeave, a memory-augmented video generation framework that replaces a single misaligned global memory with multiple clean local geometric memories and learns to reconcile their cross-view inconsistencies. To this end, AnchorWeave performs coverage-driven local memory retrieval aligned with the target trajectory and integrates the selected local memories through a multi-anchor weaving controller during generation. Extensive experiments demonstrate that AnchorWeave significantly improves long-term scene consistency while maintaining strong visual quality, with ablation and analysis studies further validating the effectiveness of local geometric conditioning, multi-anchor control, and coverage-driven retrieval.
comment: Project website: https://zunwang1.github.io/AnchorWeave
☆ MAC-AMP: A Closed-Loop Multi-Agent Collaboration System for Multi-Objective Antimicrobial Peptide Design ICLR 2026
To address the global health threat of antimicrobial resistance, antimicrobial peptides (AMP) are being explored for their potent and promising ability to fight resistant pathogens. While artificial intelligence (AI) is being employed to advance AMP discovery and design, most AMP design models struggle to balance key goals like activity, toxicity, and novelty, using rigid or unclear scoring methods that make results hard to interpret and optimize. As the capabilities of Large Language Models (LLM) advance and evolve swiftly, we turn to AI multi-agent collaboration based on such models (multi-agent LLMs), which show rapidly rising potential in complex scientific design scenarios. Based on this, we introduce MAC-AMP, a closed-loop multi-agent collaboration (MAC) system for multi-objective AMP design. The system implements a fully autonomous simulated peer review-adaptive reinforcement learning framework that requires only a task description and example dataset to design novel AMPs. The novelty of our work lies in introducing a closed-loop multi-agent system for AMP design, with cross-domain transferability, that supports multi-objective optimization while remaining explainable rather than a 'black box'. Experiments show that MAC-AMP outperforms other AMP generative models by effectively optimizing AMP generation for multiple key molecular properties, demonstrating exceptional results in antibacterial activity, AMP likeliness, toxicity compliance, and structural reliability.
comment: This paper is published in ICLR 2026
☆ ReusStdFlow: A Standardized Reusability Framework for Dynamic Workflow Construction in Agentic AI
To address the ``reusability dilemma'' and structural hallucinations in enterprise Agentic AI,this paper proposes ReusStdFlow, a framework centered on a novel ``Extraction-Storage-Construction'' paradigm. The framework deconstructs heterogeneous, platform-specific Domain Specific Languages (DSLs) into standardized, modular workflow segments. It employs a dual knowledge architecture-integrating graph and vector databases-to facilitate synergistic retrieval of both topological structures and functional semantics. Finally, workflows are intelligently assembled using a retrieval-augmented generation (RAG) strategy. Tested on 200 real-world n8n workflows, the system achieves over 90% accuracy in both extraction and construction. This framework provides a standardized solution for the automated reorganization and efficient reuse of enterprise digital assets.
BHyGNN+: Unsupervised Representation Learning for Heterophilic Hypergraphs
Hypergraph Neural Networks (HyGNNs) have demonstrated remarkable success in modeling higher-order relationships among entities. However, their performance often degrades on heterophilic hypergraphs, where nodes connected by the same hyperedge tend to have dissimilar semantic representations or belong to different classes. While several HyGNNs, including our prior work BHyGNN, have been proposed to address heterophily, their reliance on labeled data significantly limits their applicability in real-world scenarios where annotations are scarce or costly. To overcome this limitation, we introduce BHyGNN+, a self-supervised learning framework that extends BHyGNN for representation learning on heterophilic hypergraphs without requiring ground-truth labels. The core idea of BHyGNN+ is hypergraph duality, a structural transformation where the roles of nodes and hyperedges are interchanged. By contrasting augmented views of a hypergraph against its dual using cosine similarity, our framework captures essential structural patterns in a fully unsupervised manner. Notably, this duality-based formulation eliminates the need for negative samples, a common requirement in existing hypergraph contrastive learning methods that is often difficult to satisfy in practice. Extensive experiments on eleven benchmark datasets demonstrate that BHyGNN+ consistently outperforms state-of-the-art supervised and self-supervised baselines on both heterophilic and homophilic hypergraphs. Our results validate the effectiveness of leveraging hypergraph duality for self-supervised learning and establish a new paradigm for representation learning on challenging, unlabeled hypergraphs.
☆ BFS-PO: Best-First Search for Large Reasoning Models
Large Reasoning Models (LRMs) such as OpenAI o1 and DeepSeek-R1 have shown excellent performance in reasoning tasks using long reasoning chains. However, this has also led to a significant increase of computational costs and the generation of verbose output, a phenomenon known as overthinking. The tendency to overthinking is often exacerbated by Reinforcement Learning (RL) algorithms such as GRPO/DAPO. In this paper, we propose BFS-PO, an RL algorithm which alleviates this problem using a Best-First Search exploration strategy. Specifically, BFS-PO looks for the shortest correct answer using a backtracking mechanism based on maximum entropy nodes. By generating progressively shorter responses during training, BFS-PO learns to produce concise reasoning chains. Using different benchmarks and base LRMs, we show that BFS-PO can simultaneously increase the LRM accuracy and shorten its answers.
☆ Position: Introspective Experience from Conversational Environments as a Path to Better Learning
Current approaches to AI training treat reasoning as an emergent property of scale. We argue instead that robust reasoning emerges from linguistic self-reflection, itself internalized from high-quality social interaction. Drawing on Vygotskian developmental psychology, we advance three core positions centered on Introspection. First, we argue for the Social Genesis of the Private Mind: learning from conversational environments rises to prominence as a new way to make sense of the world; the friction of aligning with another agent, internal or not, refines and crystallizes the reasoning process. Second, we argue that dialogically scaffolded introspective experiences allow agents to engage in sense-making that decouples learning from immediate data streams, transforming raw environmental data into rich, learnable narratives. Finally, we contend that Dialogue Quality is the New Data Quality: the depth of an agent's private reasoning, and its efficiency regarding test-time compute, is determined by the diversity and rigor of the dialogues it has mastered. We conclude that optimizing these conversational scaffolds is the primary lever for the next generation of general intelligence.
☆ The Potential of CoT for Reasoning: A Closer Look at Trace Dynamics
Chain-of-thought (CoT) prompting is a de-facto standard technique to elicit reasoning-like responses from large language models (LLMs), allowing them to spell out individual steps before giving a final answer. While the resemblance to human-like reasoning is undeniable, the driving forces underpinning the success of CoT reasoning still remain largely unclear. In this work, we perform an in-depth analysis of CoT traces originating from competition-level mathematics questions, with the aim of better understanding how, and which parts of CoT actually contribute to the final answer. To this end, we introduce the notion of a potential, quantifying how much a given part of CoT increases the likelihood of a correct completion. Upon examination of reasoning traces through the lens of the potential, we identify surprising patterns including (1) its often strong non-monotonicity (due to reasoning tangents), (2) very sharp but sometimes tough to interpret spikes (reasoning insights and jumps) as well as (3) at times lucky guesses, where the model arrives at the correct answer without providing any relevant justifications before. While some of the behaviours of the potential are readily interpretable and align with human intuition (such as insights and tangents), others remain difficult to understand from a human perspective. To further quantify the reliance of LLMs on reasoning insights, we investigate the notion of CoT transferability, where we measure the potential of a weaker model under the partial CoT from another, stronger model. Indeed aligning with our previous results, we find that as little as 20% of partial CoT can ``unlock'' the performance of the weaker model on problems that were previously unsolvable for it, highlighting that a large part of the mechanics underpinning CoT are transferable.
☆ Picking the Right Specialist: Attentive Neural Process-based Selection of Task-Specialized Models as Tools for Agentic Healthcare Systems
Task-specialized models form the backbone of agentic healthcare systems, enabling the agents to answer clinical queries across tasks such as disease diagnosis, localization, and report generation. Yet, for a given task, a single "best" model rarely exists. In practice, each task is better served by multiple competing specialist models where different models excel on different data samples. As a result, for any given query, agents must reliably select the right specialist model from a heterogeneous pool of tool candidates. To this end, we introduce ToolSelect, which adaptively learns model selection for tools by minimizing a population risk over sampled specialist tool candidates using a consistent surrogate of the task-conditional selection loss. Concretely, we propose an Attentive Neural Process-based selector conditioned on the query and per-model behavioral summaries to choose among the specialist models. Motivated by the absence of any established testbed, we, for the first time, introduce an agentic Chest X-ray environment equipped with a diverse suite of task-specialized models (17 disease detection, 19 report generation, 6 visual grounding, and 13 VQA) and develop ToolSelectBench, a benchmark of 1448 queries. Our results demonstrate that ToolSelect consistently outperforms 10 SOTA methods across four different task families.
☆ Lifted Relational Probabilistic Inference via Implicit Learning
Reconciling the tension between inductive learning and deductive reasoning in first-order relational domains is a longstanding challenge in AI. We study the problem of answering queries in a first-order relational probabilistic logic through a joint effort of learning and reasoning, without ever constructing an explicit model. Traditional lifted inference assumes access to a complete model and exploits symmetry to evaluate probabilistic queries; however, learning such models from partial, noisy observations is intractable in general. We reconcile these two challenges through implicit learning to reason and first-order relational probabilistic inference techniques. More specifically, we merge incomplete first-order axioms with independently sampled, partially observed examples into a bounded-degree fragment of the sum-of-squares (SOS) hierarchy in polynomial time. Our algorithm performs two lifts simultaneously: (i) grounding-lift, where renaming-equivalent ground moments share one variable, collapsing the domain of individuals; and (ii) world-lift, where all pseudo-models (partial world assignments) are enforced in parallel, producing a global bound that holds across all worlds consistent with the learned constraints. These innovations yield the first polynomial-time framework that implicitly learns a first-order probabilistic logic and performs lifted inference over both individuals and worlds.
☆ Numerical exploration of the range of shape functionals using neural networks
We introduce a novel numerical framework for the exploration of Blaschke--Santaló diagrams, which are efficient tools characterizing the possible inequalities relating some given shape functionals. We introduce a parametrization of convex bodies in arbitrary dimensions using a specific invertible neural network architecture based on gauge functions, allowing an intrinsic conservation of the convexity of the sets during the shape optimization process. To achieve a uniform sampling inside the diagram, and thus a satisfying description of it, we introduce an interacting particle system that minimizes a Riesz energy functional via automatic differentiation in PyTorch. The effectiveness of the method is demonstrated on several diagrams involving both geometric and PDE-type functionals for convex bodies of $\mathbb{R}^2$ and $\mathbb{R}^3$, namely, the volume, the perimeter, the moment of inertia, the torsional rigidity, the Willmore energy, and the first two Neumann eigenvalues of the Laplacian.
comment: 21 pages, 8 figures
☆ CT-Bench: A Benchmark for Multimodal Lesion Understanding in Computed Tomography
Artificial intelligence (AI) can automatically delineate lesions on computed tomography (CT) and generate radiology report content, yet progress is limited by the scarcity of publicly available CT datasets with lesion-level annotations. To bridge this gap, we introduce CT-Bench, a first-of-its-kind benchmark dataset comprising two components: a Lesion Image and Metadata Set containing 20,335 lesions from 7,795 CT studies with bounding boxes, descriptions, and size information, and a multitask visual question answering benchmark with 2,850 QA pairs covering lesion localization, description, size estimation, and attribute categorization. Hard negative examples are included to reflect real-world diagnostic challenges. We evaluate multiple state-of-the-art multimodal models, including vision-language and medical CLIP variants, by comparing their performance to radiologist assessments, demonstrating the value of CT-Bench as a comprehensive benchmark for lesion analysis. Moreover, fine-tuning models on the Lesion Image and Metadata Set yields significant performance gains across both components, underscoring the clinical utility of CT-Bench.
☆ On the Learning Dynamics of RLVR at the Edge of Competence
Reinforcement learning with verifiable rewards (RLVR) has been a main driver of recent breakthroughs in large reasoning models. Yet it remains a mystery how rewards based solely on final outcomes can help overcome the long-horizon barrier to extended reasoning. To understand this, we develop a theory of the training dynamics of RL for transformers on compositional reasoning tasks. Our theory characterizes how the effectiveness of RLVR is governed by the smoothness of the difficulty spectrum. When data contains abrupt discontinuities in difficulty, learning undergoes grokking-type phase transitions, producing prolonged plateaus before progress recurs. In contrast, a smooth difficulty spectrum leads to a relay effect: persistent gradient signals on easier problems elevate the model's capabilities to the point where harder ones become tractable, resulting in steady and continuous improvement. Our theory explains how RLVR can improve performance at the edge of competence, and suggests that appropriately designed data mixtures can yield scalable gains. As a technical contribution, our analysis develops and adapts tools from Fourier analysis on finite groups to our setting. We validate the predicted mechanisms empirically via synthetic experiments.
☆ Concept Influence: Leveraging Interpretability to Improve Performance and Efficiency in Training Data Attribution
As large language models are increasingly trained and fine-tuned, practitioners need methods to identify which training data drive specific behaviors, particularly unintended ones. Training Data Attribution (TDA) methods address this by estimating datapoint influence. Existing approaches like influence functions are both computationally expensive and attribute based on single test examples, which can bias results toward syntactic rather than semantic similarity. To address these issues of scalability and influence to abstract behavior, we leverage interpretable structures within the model during the attribution. First, we introduce Concept Influence which attribute model behavior to semantic directions (such as linear probes or sparse autoencoder features) rather than individual test examples. Second, we show that simple probe-based attribution methods are first-order approximations of Concept Influence that achieve comparable performance while being over an order-of-magnitude faster. We empirically validate Concept Influence and approximations across emergent misalignment benchmarks and real post-training datasets, and demonstrate they achieve comparable performance to classical influence functions while being substantially more scalable. More broadly, we show that incorporating interpretable structure within traditional TDA pipelines can enable more scalable, explainable, and better control of model behavior through data.
☆ Goldilocks RL: Tuning Task Difficulty to Escape Sparse Rewards for Reasoning
Reinforcement learning has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models. However, relying on sparse rewards makes this process highly sample-inefficient, as models must navigate vast search spaces with minimal feedback. While classic curriculum learning aims to mitigate this by ordering data based on complexity, the right ordering for a specific model is often unclear. To address this, we propose Goldilocks, a novel teacher-driven data sampling strategy that aims to predict each question's difficulty for the student model. The teacher model selects questions of appropriate difficulty for the student model, i.e., questions that are neither too easy nor too hard (Goldilocks principle), while training the student with GRPO. By leveraging the student's performance on seen samples, the teacher continuously adapts to the student's evolving abilities. On OpenMathReasoning dataset, Goldilocks data sampling improves the performance of models trained with standard GRPO under the same compute budget.
comment: 21 pages, 12 figures
☆ SEG-JPEG: Simple Visual Semantic Communications for Remote Operation of Automated Vehicles over Unreliable Wireless Networks
Remote Operation is touted as being key to the rapid deployment of automated vehicles. Streaming imagery to control connected vehicles remotely currently requires a reliable, high throughput network connection, which can be limited in real-world remote operation deployments relying on public network infrastructure. This paper investigates how the application of computer vision assisted semantic communication can be used to circumvent data loss and corruption associated with traditional image compression techniques. By encoding the segmentations of detected road users into colour coded highlights within low resolution greyscale imagery, the required data rate can be reduced by 50 \% compared with conventional techniques, while maintaining visual clarity. This enables a median glass-to-glass latency of below 200ms even when the network data rate is below 500kbit/s, while clearly outlining salient road users to enhance situational awareness of the remote operator. The approach is demonstrated in an area of variable 4G mobile connectivity using an automated last-mile delivery vehicle. With this technique, the results indicate that large-scale deployment of remotely operated automated vehicles could be possible even on the often constrained public 4G/5G mobile network, providing the potential to expedite the nationwide roll-out of automated vehicles.
☆ DexEvolve: Evolutionary Optimization for Robust and Diverse Dexterous Grasp Synthesis
Dexterous grasping is fundamental to robotics, yet data-driven grasp prediction heavily relies on large, diverse datasets that are costly to generate and typically limited to a narrow set of gripper morphologies. Analytical grasp synthesis can be used to scale data collection, but necessary simplifying assumptions often yield physically infeasible grasps that need to be filtered in high-fidelity simulators, significantly reducing the total number of grasps and their diversity. We propose a scalable generate-and-refine pipeline for synthesizing large-scale, diverse, and physically feasible grasps. Instead of using high-fidelity simulators solely for verification and filtering, we leverage them as an optimization stage that continuously improves grasp quality without discarding precomputed candidates. More specifically, we initialize an evolutionary search with a seed set of analytically generated, potentially suboptimal grasps. We then refine these proposals directly in a high-fidelity simulator (Isaac Sim) using an asynchronous, gradient-free evolutionary algorithm, improving stability while maintaining diversity. In addition, this refinement stage can be guided toward human preferences and/or domain-specific quality metrics without requiring a differentiable objective. We further distill the refined grasp distribution into a diffusion model for robust real-world deployment, and highlight the role of diversity for both effective training and during deployment. Experiments on a newly introduced Handles dataset and a DexGraspNet subset demonstrate that our approach achieves over 120 distinct stable grasps per object (a 1.7-6x improvement over unrefined analytical methods) while outperforming diffusion-based alternatives by 46-60\% in unique grasp coverage.
☆ Time-Archival Camera Virtualization for Sports and Visual Performances
Camera virtualization -- an emerging solution to novel view synthesis -- holds transformative potential for visual entertainment, live performances, and sports broadcasting by enabling the generation of photorealistic images from novel viewpoints using images from a limited set of calibrated multiple static physical cameras. Despite recent advances, achieving spatially and temporally coherent and photorealistic rendering of dynamic scenes with efficient time-archival capabilities, particularly in fast-paced sports and stage performances, remains challenging for existing approaches. Recent methods based on 3D Gaussian Splatting (3DGS) for dynamic scenes could offer real-time view-synthesis results. Yet, they are hindered by their dependence on accurate 3D point clouds from the structure-from-motion method and their inability to handle large, non-rigid, rapid motions of different subjects (e.g., flips, jumps, articulations, sudden player-to-player transitions). Moreover, independent motions of multiple subjects can break the Gaussian-tracking assumptions commonly used in 4DGS, ST-GS, and other dynamic splatting variants. This paper advocates reconsidering a neural volume rendering formulation for camera virtualization and efficient time-archival capabilities, making it useful for sports broadcasting and related applications. By modeling a dynamic scene as rigid transformations across multiple synchronized camera views at a given time, our method performs neural representation learning, providing enhanced visual rendering quality at test time. A key contribution of our approach is its support for time-archival, i.e., users can revisit any past temporal instance of a dynamic scene and can perform novel view synthesis, enabling retrospective rendering for replay, analysis, and archival of live events, a functionality absent in existing neural rendering approaches and novel view synthesis...
comment: Project Page: https://yunxiaozhangjack.com/tacv/; Under minor revision in Journal of Computer Vision and Image Understanding (CVIU); Special Issue: Computer Vision for Sports and Winter Sports. Outcome of a master and bachelor student project completed in Visual and Spatial AI Lab at TAMU
☆ A ROS2 Benchmarking Framework for Hierarchical Control Strategies in Mobile Robots for Mediterranean Greenhouses
Mobile robots operating in agroindustrial environments, such as Mediterranean greenhouses, are subject to challenging conditions, including uneven terrain, variable friction, payload changes, and terrain slopes, all of which significantly affect control performance and stability. Despite the increasing adoption of robotic platforms in agriculture, the lack of standardized, reproducible benchmarks impedes fair comparisons and systematic evaluations of control strategies under realistic operating conditions. This paper presents a comprehensive benchmarking framework for evaluating mobile robot controllers in greenhouse environments. The proposed framework integrates an accurate three dimensional model of the environment, a physics based simulator, and a hierarchical control architecture comprising low, mid, and high level control layers. Three benchmark categories are defined to enable modular assessment, ranging from actuator level control to full autonomous navigation. Additionally, three disturbance scenarios payload variation, terrain type, and slope are explicitly modeled to replicate real world agricultural conditions. To ensure objective and reproducible evaluation, standardized performance metrics are introduced, including the Squared Absolute Error (SAE), the Squared Control Input (SCI), and composite performance indices. Statistical analysis based on repeated trials is employed to mitigate the influence of sensor noise and environmental variability. The framework is further enhanced by a plugin based architecture that facilitates seamless integration of user defined controllers and planners. The proposed benchmark provides a robust and extensible tool for the quantitative comparison of classical, predictive, and planning based control strategies in realistic conditions, bridging the gap between simulation based analysis and real world agroindustrial applications.
comment: 53 pages
☆ Neurosim: A Fast Simulator for Neuromorphic Robot Perception
Neurosim is a fast, real-time, high-performance library for simulating sensors such as dynamic vision sensors, RGB cameras, depth sensors, and inertial sensors. It can also simulate agile dynamics of multi-rotor vehicles in complex and dynamic environments. Neurosim can achieve frame rates as high as ~2700 FPS on a desktop GPU. Neurosim integrates with a ZeroMQ-based communication library called Cortex to facilitate seamless integration with machine learning and robotics workflows. Cortex provides a high-throughput, low-latency message-passing system for Python and C++ applications, with native support for NumPy arrays and PyTorch tensors. This paper discusses the design philosophy behind Neurosim and Cortex. It demonstrates how they can be used to (i) train neuromorphic perception and control algorithms, e.g., using self-supervised learning on time-synchronized multi-modal data, and (ii) test real-time implementations of these algorithms in closed-loop. Neurosim and Cortex are available at https://github.com/grasp-lyrl/neurosim .
comment: 13 pages, 6 figures
☆ BPP: Long-Context Robot Imitation Learning by Focusing on Key History Frames
Many robot tasks require attending to the history of past observations. For example, finding an item in a room requires remembering which places have already been searched. However, the best-performing robot policies typically condition only on the current observation, limiting their applicability to such tasks. Naively conditioning on past observations often fails due to spurious correlations: policies latch onto incidental features of training histories that do not generalize to out-of-distribution trajectories upon deployment. We analyze why policies latch onto these spurious correlations and find that this problem stems from limited coverage over the space of possible histories during training, which grows exponentially with horizon. Existing regularization techniques provide inconsistent benefits across tasks, as they do not fundamentally address this coverage problem. Motivated by these findings, we propose Big Picture Policies (BPP), an approach that conditions on a minimal set of meaningful keyframes detected by a vision-language model. By projecting diverse rollouts onto a compact set of task-relevant events, BPP substantially reduces distribution shift between training and deployment, without sacrificing expressivity. We evaluate BPP on four challenging real-world manipulation tasks and three simulation tasks, all requiring history conditioning. BPP achieves 70% higher success rates than the best comparison on real-world evaluations.
DM0: An Embodied-Native Vision-Language-Action Model towards Physical AI
Moving beyond the traditional paradigm of adapting internet-pretrained models to physical tasks, we present DM0, an Embodied-Native Vision-Language-Action (VLA) framework designed for Physical AI. Unlike approaches that treat physical grounding as a fine-tuning afterthought, DM0 unifies embodied manipulation and navigation by learning from heterogeneous data sources from the onset. Our methodology follows a comprehensive three-stage pipeline: Pretraining, Mid-Training, and Post-Training. First, we conduct large-scale unified pretraining on the Vision-Language Model (VLM) using diverse corpora--seamlessly integrating web text, autonomous driving scenarios, and embodied interaction logs-to jointly acquire semantic knowledge and physical priors. Subsequently, we build a flow-matching action expert atop the VLM. To reconcile high-level reasoning with low-level control, DM0 employs a hybrid training strategy: for embodied data, gradients from the action expert are not backpropagated to the VLM to preserve generalized representations, while the VLM remains trainable on non-embodied data. Furthermore, we introduce an Embodied Spatial Scaffolding strategy to construct spatial Chain-of-Thought (CoT) reasoning, effectively constraining the action solution space. Experiments on the RoboChallenge benchmark demonstrate that DM0 achieves state-of-the-art performance in both Specialist and Generalist settings on Table30.
comment: Authors are listed in alphabetical order. Code is available at https://github.com/Dexmal/dexbotic
☆ PAct: Part-Decomposed Single-View Articulated Object Generation
Articulated objects are central to interactive 3D applications, including embodied AI, robotics, and VR/AR, where functional part decomposition and kinematic motion are essential. Yet producing high-fidelity articulated assets remains difficult to scale because it requires reliable part decomposition and kinematic rigging. Existing approaches largely fall into two paradigms: optimization-based reconstruction or distillation, which can be accurate but often takes tens of minutes to hours per instance, and inference-time methods that rely on template or part retrieval, producing plausible results that may not match the specific structure and appearance in the input observation. We introduce a part-centric generative framework for articulated object creation that synthesizes part geometry, composition, and articulation under explicit part-aware conditioning. Our representation models an object as a set of movable parts, each encoded by latent tokens augmented with part identity and articulation cues. Conditioned on a single image, the model generates articulated 3D assets that preserve instance-level correspondence while maintaining valid part structure and motion. The resulting approach avoids per-instance optimization, enables fast feed-forward inference, and supports controllable assembly and articulation, which are important for embodied interaction. Experiments on common articulated categories (e.g., drawers and doors) show improved input consistency, part accuracy, and articulation plausibility over optimization-based and retrieval-driven baselines, while substantially reducing inference time.
comment: Technical Report(11 figures, 14 pages), Project Page: https://PAct-project.github.io
☆ Morphing of and writing with a scissor linkage mechanism
Kinematics of mechanisms is intricately coupled to their geometry and their utility often arises out of the ability to perform reproducible motion with fewer actuating degrees of freedom. In this article, we explore the assembly of scissor-units, each made of two rigid linear members connected by a pin joint. The assembly has a single degree of freedom, where actuating any single unit results in a shape change of the entire assembly. We derive expressions for the effective curvature of the unit and the trajectory of the mechanism's tip as a function of the geometric variables which we then use as the basis to program two tasks in the mechanism: shape morphing and writing. By phrasing these tasks as optimization problems and utilizing the differentiable simulation framework, we arrive at solutions that are then tested in table-top experiments. Our results show that the geometry of scissor assemblies can be leveraged for automated navigation and inspection in complex domains, in light of the optimization framework. However, we highlight that the challenges associated with rapid programming and error-free implementation in experiments without feedback still remain.
☆ Augmenting Human Balance with Generic Supernumerary Robotic Limbs
Supernumerary robotic limbs (SLs) have the potential to transform a wide range of human activities, yet their usability remains limited by key technical challenges, particularly in ensuring safety and achieving versatile control. Here, we address the critical problem of maintaining balance in the human-SLs system, a prerequisite for safe and comfortable augmentation tasks. Unlike previous approaches that developed SLs specifically for stability support, we propose a general framework for preserving balance with SLs designed for generic use. Our hierarchical three-layer architecture consists of: (i) a prediction layer that estimates human trunk and center of mass (CoM) dynamics, (ii) a planning layer that generates optimal CoM trajectories to counteract trunk movements and computes the corresponding SL control inputs, and (iii) a control layer that executes these inputs on the SL hardware. We evaluated the framework with ten participants performing forward and lateral bending tasks. The results show a clear reduction in stance instability, demonstrating the framework's effectiveness in enhancing balance. This work paves the path towards safe and versatile human-SLs interactions. [This paper has been submitted for publication to IEEE.]
☆ Kalman Filtering Based Flight Management System Modeling for AAM Aircraft
Advanced Aerial Mobility (AAM) operations require strategic flight planning services that predict both spatial and temporal uncertainties to safely validate flight plans against hazards such as weather cells, restricted airspaces, and CNS disruption areas. Current uncertainty estimation methods for AAM vehicles rely on conservative linear models due to limited real-world performance data. This paper presents a novel Kalman Filter-based uncertainty propagation method that models AAM Flight Management System (FMS) architectures through sigmoid-blended measurement noise covariance. Unlike existing approaches with fixed uncertainty thresholds, our method continuously adapts the filter's measurement trust based on progress toward waypoints, enabling FMS correction behavior to emerge naturally. The approach scales proportionally with control inputs and is tunable to match specific aircraft characteristics or route conditions. We validate the method using real ADS-B data from general aviation aircraft divided into training and verification sets. Uncertainty propagation parameters were tuned on the training set, achieving 76% accuracy in predicting arrival times when compared against the verification dataset, demonstrating the method's effectiveness for strategic flight plan validation in AAM operations.
☆ Affordance Transfer Across Object Instances via Semantically Anchored Functional Map
Traditional learning from demonstration (LfD) generally demands a cumbersome collection of physical demonstrations, which can be time-consuming and challenging to scale. Recent advances show that robots can instead learn from human videos by extracting interaction cues without direct robot involvement. However, a fundamental challenge remains: how to generalize demonstrated interactions across different object instances that share similar functionality but vary significantly in geometry. In this work, we propose \emph{Semantic Anchored Functional Maps} (SemFM), a framework for transferring affordances across objects from a single visual demonstration. Starting from a coarse mesh reconstructed from an image, our method identifies semantically corresponding functional regions between objects, selects mutually exclusive semantic anchors, and propagates these constraints over the surface using a functional map to obtain a dense, semantically consistent correspondence. This enables demonstrated interaction regions to be transferred across geometrically diverse objects in a lightweight and interpretable manner. Experiments on synthetic object categories and real-world robotic manipulation tasks show that our approach enables accurate affordance transfer with modest computational cost, making it well-suited for practical robotic perception-to-action pipelines.
☆ Scalable Multi-Robot Path Planning via Quadratic Unconstrained Binary Optimization
Multi-Agent Path Finding (MAPF) remains a fundamental challenge in robotics, where classical centralized approaches exhibit exponential growth in joint-state complexity as the number of agents increases. This paper investigates Quadratic Unconstrained Binary Optimization (QUBO) as a structurally scalable alternative for simultaneous multi-robot path planning. This approach is a robotics-oriented QUBO formulation incorporating BFS-based logical pre-processing (achieving over 95% variable reduction), adaptive penalty design for collision and constraint enforcement, and a time-windowed decomposition strategy that enables execution within current hardware limitations. An experimental evaluation in grid environments with up to four robots demonstrated near-optimal solutions in dense scenarios and favorable scaling behavior compared to sequential classical planning. These results establish a practical and reproducible baseline for future quantum and quantum-inspired multi-robot coordinations.
comment: 21 pages, 9 figures, 1 table. Accompanying open-source implementation at https://github.com/JavideuS/Spooky
☆ Analysis of a Cuspidal 6R Robot
We present a theoretical and numerical analysis of the kinematics for the "Transpressor", a cuspidal 6R robot. It admits up to 16 inverse kinematics solutions which are described geometrically. For special target poses, we provide the solutions analytically and present a simple numerical solver for the general case. Moreover, an analytical estimate of the Jacobian determinant on a path between two solutions proves cuspidality for a class of robots similar to the transpressor.
☆ ROSA: Roundabout Optimized Speed Advisory with Multi-Agent Trajectory Prediction in Multimodal Traffic
We present ROSA -- Roundabout Optimized Speed Advisory -- a system that combines multi-agent trajectory prediction with coordinated speed guidance for multimodal, mixed traffic at roundabouts. Using a Transformer-based model, ROSA jointly predicts the future trajectories of vehicles and Vulnerable Road Users (VRUs) at roundabouts. Trained for single-step prediction and deployed autoregressively, it generates deterministic outputs, enabling actionable speed advisories. Incorporating motion dynamics, the model achieves high accuracy (ADE: 1.29m, FDE: 2.99m at a five-second prediction horizon), surpassing prior work. Adding route intention further improves performance (ADE: 1.10m, FDE: 2.36m), demonstrating the value of connected vehicle data. Based on predicted conflicts with VRUs and circulating vehicles, ROSA provides real-time, proactive speed advisories for approaching and entering the roundabout. Despite prediction uncertainty, ROSA significantly improves vehicle efficiency and safety, with positive effects even on perceived safety from a VRU perspective. The source code of this work is available under: github.com/urbanAIthi/ROSA.
comment: 8 pages, 1 figure, 4 tables, 2026 IEEE International Conference on Intelligent Transportation Systems (ITSC)
☆ ManeuverNet: A Soft Actor-Critic Framework for Precise Maneuvering of Double-Ackermann-Steering Robots with Optimized Reward Functions
Autonomous control of double-Ackermann-steering robots is essential in agricultural applications, where robots must execute precise and complex maneuvers within a limited space. Classical methods, such as the Timed Elastic Band (TEB) planner, can address this problem, but they rely on parameter tuning, making them highly sensitive to changes in robot configuration or environment and impractical to deploy without constant recalibration. At the same time, end-to-end deep reinforcement learning (DRL) methods often fail due to unsuitable reward functions for non-holonomic constraints, resulting in sub-optimal policies and poor generalization. To address these challenges, this paper presents ManeuverNet, a DRL framework tailored for double-Ackermann systems, combining Soft Actor-Critic with CrossQ. Furthermore, ManeuverNet introduces four specifically designed reward functions to support maneuver learning. Unlike prior work, ManeuverNet does not depend on expert data or handcrafted guidance. We extensively evaluate ManeuverNet against both state-of-the-art DRL baselines and the TEB planner. Experimental results demonstrate that our framework substantially improves maneuverability and success rates, achieving more than a 40% gain over DRL baselines. Moreover, ManeuverNet effectively mitigates the strong parameter sensitivity observed in the TEB planner. In real-world trials, ManeuverNet achieved up to a 90% increase in maneuvering trajectory efficiency, highlighting its robustness and practical applicability.
comment: 8 pages, 5, figures, Accepted for 2026 IEEE International Conference on Robotics & Automation (ICRA)
☆ Real-time Monocular 2D and 3D Perception of Endoluminal Scenes for Controlling Flexible Robotic Endoscopic Instruments
Endoluminal surgery offers a minimally invasive option for early-stage gastrointestinal and urinary tract cancers but is limited by surgical tools and a steep learning curve. Robotic systems, particularly continuum robots, provide flexible instruments that enable precise tissue resection, potentially improving outcomes. This paper presents a visual perception platform for a continuum robotic system in endoluminal surgery. Our goal is to utilize monocular endoscopic image-based perception algorithms to identify position and orientation of flexible instruments and measure their distances from tissues. We introduce 2D and 3D learning-based perception algorithms and develop a physically-realistic simulator that models flexible instruments dynamics. This simulator generates realistic endoluminal scenes, enabling control of flexible robots and substantial data collection. Using a continuum robot prototype, we conducted module and system-level evaluations. Results show that our algorithms improve control of flexible instruments, reducing manipulation time by over 70% for trajectory-following tasks and enhancing understanding of surgical scenarios, leading to robust endoluminal surgeries.
☆ Advances in Global Solvers for 3D Vision
Global solvers have emerged as a powerful paradigm for 3D vision, offering certifiable solutions to nonconvex geometric optimization problems traditionally addressed by local or heuristic methods. This survey presents the first systematic review of global solvers in geometric vision, unifying the field through a comprehensive taxonomy of three core paradigms: Branch-and-Bound (BnB), Convex Relaxation (CR), and Graduated Non-Convexity (GNC). We present their theoretical foundations, algorithmic designs, and practical enhancements for robustness and scalability, examining how each addresses the fundamental nonconvexity of geometric estimation problems. Our analysis spans ten core vision tasks, from Wahba problem to bundle adjustment, revealing the optimality-robustness-scalability trade-offs that govern solver selection. We identify critical future directions: scaling algorithms while maintaining guarantees, integrating data-driven priors with certifiable optimization, establishing standardized benchmarks, and addressing societal implications for safety-critical deployment. By consolidating theoretical foundations, practical advances, and broader impacts, this survey provides a unified perspective and roadmap toward certifiable, trustworthy perception for real-world applications. A continuously-updated literature summary and companion code tutorials are available at https://github.com/ericzzj1989/Awesome-Global-Solvers-for-3D-Vision.
comment: Comprehensive survey; 37 pages, 7 figures, 3 tables. Project page with literature tracking and code tutorials: https://github.com/ericzzj1989/Awesome-Global-Solvers-for-3D-Vision
☆ Simulation-based Learning of Electrical Cabinet Assembly Using Robot Skills
This paper presents a simulation-driven approach for automating the force-controlled assembly of electrical terminals on DIN-rails, a task traditionally hindered by high programming effort and product variability. The proposed method integrates deep reinforcement learning (DRL) with parameterizable robot skills in a physics-based simulation environment. To realistically model the snap-fit assembly process, we develop and evaluate two types of joining models: analytical models based on beam theory and rigid-body models implemented in the MuJoCo physics engine. These models enable accurate simulation of interaction forces, essential for training DRL agents. The robot skills are structured using the pitasc framework, allowing modular, reusable control strategies. Training is conducted in simulation using Soft Actor-Critic (SAC) and Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithms. Domain randomization is applied to improve robustness. The trained policies are transferred to a physical UR10e robot system without additional tuning. Experimental results demonstrate high success rates (up to 100%) in both simulation and real-world settings, even under significant positional and rotational deviations. The system generalizes well to new terminal types and positions, significantly reducing manual programming effort. This work highlights the potential of combining simulation-based learning with modular robot skills for flexible, scalable automation in small-batch manufacturing. Future work will explore hybrid learning methods, automated environment parameterization, and further refinement of joining models for design integration.
comment: 20 pages, 14 Figures
☆ Replanning Human-Robot Collaborative Tasks with Vision-Language Models via Semantic and Physical Dual-Correction
Human-Robot Collaboration (HRC) plays an important role in assembly tasks by enabling robots to plan and adjust their motions based on interactive, real-time human instructions. However, such instructions are often linguistically ambiguous and underspecified, making it difficult to generate physically feasible and cooperative robot behaviors. To address this challenge, many studies have applied Vision-Language Models (VLMs) to interpret high-level instructions and generate corresponding actions. Nevertheless, VLM-based approaches still suffer from hallucinated reasoning and an inability to anticipate physical execution failures. To address these challenges, we propose an HRC framework that augments a VLM-based reasoning with a dual-correction mechanism: an internal correction model that verifies logical consistency and task feasibility prior to action execution, and an external correction model that detects and rectifies physical failures through post-execution feedback. Simulation ablation studies demonstrate that the proposed method improves the success rate compared to baselines without correction models. Our real-world experiments in collaborative assembly tasks supported by object fixation or tool preparation by an upper body humanoid robot further confirm the framewor's effectiveness in enabling interactive replanning across different collaborative tasks in response to human instructions, validating its practical feasibility.
comment: 16 pages, 8 figures
Multimodal Covariance Steering in Belief Space with Active Probing and Influence for Autonomous Driving
Autonomous driving in complex traffic requires reasoning under uncertainty. Common approaches rely on prediction-based planning or risk-aware control, but these are typically treated in isolation, limiting their ability to capture the coupled nature of action and inference in interactive settings. This gap becomes especially critical in uncertain scenarios, where simply reacting to predictions can lead to unsafe maneuvers or overly conservative behavior. Our central insight is that safe interaction requires not only estimating human behavior but also shaping it when ambiguity poses risks. To this end, we introduce a hierarchical belief model that structures human behavior across coarse discrete intents and fine motion modes, updated via Bayesian inference for interpretable multi-resolution reasoning. On top of this, we develop an active probing strategy that identifies when multimodal ambiguity in human predictions may compromise safety and plans disambiguating actions that both reveal intent and gently steer human decisions toward safer outcomes. Finally, a runtime risk-evaluation layer based on Conditional Value-at-Risk (CVaR) ensures that all probing actions remain within human risk tolerance during influence. Our simulations in lane-merging and unsignaled intersection scenarios demonstrate that our approach achieves higher success rates and shorter completion times compared to existing methods. These results highlight the benefit of coupling belief inference, probing, and risk monitoring, yielding a principled and interpretable framework for planning under uncertainty.
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA 2026)
☆ TWISTED-RL: Hierarchical Skilled Agents for Knot-Tying without Human Demonstrations
Robotic knot-tying represents a fundamental challenge in robotics due to the complex interactions between deformable objects and strict topological constraints. We present TWISTED-RL, a framework that improves upon the previous state-of-the-art in demonstration-free knot-tying (TWISTED), which smartly decomposed a single knot-tying problem into manageable subproblems, each addressed by a specialized agent. Our approach replaces TWISTED's single-step inverse model that was learned via supervised learning with a multi-step Reinforcement Learning policy conditioned on abstract topological actions rather than goal states. This change allows more delicate topological state transitions while avoiding costly and ineffective data collection protocols, thus enabling better generalization across diverse knot configurations. Experimental results demonstrate that TWISTED-RL manages to solve previously unattainable knots of higher complexity, including commonly used knots such as the Figure-8 and the Overhand. Furthermore, the increase in success rates and drop in planning time establishes TWISTED-RL as the new state-of-the-art in robotic knot-tying without human demonstrations.
☆ Learning Transferability: A Two-Stage Reinforcement Learning Approach for Enhancing Quadruped Robots' Performance in U-Shaped Stair Climbing
Quadruped robots are employed in various scenarios in building construction. However, autonomous stair climbing across different indoor staircases remains a major challenge for robot dogs to complete building construction tasks. In this project, we employed a two-stage end-to-end deep reinforcement learning (RL) approach to optimize a robot's performance on U-shaped stairs. The training robot-dog modality, Unitree Go2, was first trained to climb stairs on Isaac Lab's pyramid-stair terrain, and then to climb a U-shaped indoor staircase using the learned policies. This project explores end-to-end RL methods that enable robot dogs to autonomously climb stairs. The results showed (1) the successful goal reached for robot dogs climbing U-shaped stairs with a stall penalty, and (2) the transferability from the policy trained on U-shaped stairs to deployment on straight, L-shaped, and spiral stair terrains, and transferability from other stair models to deployment on U-shaped terrain.
comment: 8 pages, 4 figures, International Conference on Computing in Civil Engineering (i3CE 2026)
☆ RoboSolver: A Multi-Agent Large Language Model Framework for Solving Robotic Arm Problems
This study proposes an intelligent multi-agent framework built on LLMs and VLMs and specifically tailored to robotics. The goal is to integrate the strengths of LLMs and VLMs with computational tools to automatically analyze and solve problems related to robotic manipulators. Our developed framework accepts both textual and visual inputs and can automatically perform forward and inverse kinematics, compute velocities and accelerations of key points, generate 3D simulations of the robot, and ultimately execute motion control within the simulated environment, all according to the user's query. To evaluate the framework, three benchmark tests were designed, each consisting of ten questions. In the first benchmark test, the framework was evaluated while connected to GPT-4o, DeepSeek-V3.2, and Claude-Sonnet-4.5, as well as their corresponding raw models. The objective was to extract the forward kinematics of robots directly from textual descriptions. The results showed that the framework integrated with GPT-4o achieved the highest accuracy, reaching 0.97 in computing the final solution, whereas the raw model alone attained an accuracy of only 0.30 for the same task. Similarly, for the other two models, the framework consistently outperformed the corresponding raw models in terms of accuracy. The second benchmark test was identical to the first, except that the input was provided in visual form. In this test, the GPT-4o LLM was used alongside the Gemini 2.5 Pro VLM. The results showed that the framework achieved an accuracy of 0.93 in obtaining the final answer, which is approximately 20% higher than that of the corresponding raw model. The third benchmark test encompassed a range of robotic tasks, including simulation, control, velocity and acceleration computation, as well as inverse kinematics and Jacobian calculation, for which the framework achieved an accuracy of 0.97.
☆ A Soft Wrist with Anisotropic and Selectable Stiffness for Robust Robot Learning in Contact-rich Manipulation
Contact-rich manipulation tasks in unstructured environments pose significant robustness challenges for robot learning, where unexpected collisions can cause damage and hinder policy acquisition. Existing soft end-effectors face fundamental limitations: they either provide a limited deformation range, lack directional stiffness control, or require complex actuation systems that compromise practicality. This study introduces CLAW (Compliant Leaf-spring Anisotropic soft Wrist), a novel soft wrist mechanism that addresses these limitations through a simple yet effective design using two orthogonal leaf springs and rotary joints with a locking mechanism. CLAW provides large 6-degree-of-freedom deformation (40mm lateral, 20mm vertical), anisotropic stiffness that is tunable across three distinct modes, while maintaining lightweight construction (330g) at low cost ($550). Experimental evaluations using imitation learning demonstrate that CLAW achieves 76% success rate in benchmark peg-insertion tasks, outperforming both the Fin Ray gripper (43%) and rigid gripper alternatives (36%). CLAW successfully handles diverse contact-rich scenarios, including precision assembly with tight tolerances and delicate object manipulation, demonstrating its potential to enable robust robot learning in contact-rich domains. Project page: https://project-page-manager.github.io/CLAW/
☆ Understanding Sensor Vulnerabilities in Industrial XR Tracking
Extended Reality (XR) systems deployed in industrial and operational settings rely on Visual--Inertial Odometry (VIO) for continuous six-degree-of-freedom pose tracking, yet these environments often involve sensing conditions that deviate from ideal assumptions. Despite this, most VIO evaluations emphasize nominal sensor behavior, leaving the effects of sustained sensor degradation under operational conditions insufficiently understood. This paper presents a controlled empirical study of VIO behavior under degraded sensing, examining faults affecting visual and inertial modalities across a range of operating regimes. Through systematic fault injection and quantitative evaluation, we observe a pronounced asymmetry in fault impact where degradations affecting visual sensing typically lead to bounded pose errors on the order of centimeters, whereas degradations affecting inertial sensing can induce substantially larger trajectory deviations, in some cases reaching hundreds to thousands of meters. These observations motivate greater emphasis on inertial reliability in the evaluation and design of XR systems for real-life industrial settings.
comment: IEEE VR XRIOS 2026 Workshop
☆ AdaptManip: Learning Adaptive Whole-Body Object Lifting and Delivery with Online Recurrent State Estimation
This paper presents Adaptive Whole-body Loco-Manipulation, AdaptManip, a fully autonomous framework for humanoid robots to perform integrated navigation, object lifting, and delivery. Unlike prior imitation learning-based approaches that rely on human demonstrations and are often brittle to disturbances, AdaptManip aims to train a robust loco-manipulation policy via reinforcement learning without human demonstrations or teleoperation data. The proposed framework consists of three coupled components: (1) a recurrent object state estimator that tracks the manipulated object in real time under limited field-of-view and occlusions; (2) a whole-body base policy for robust locomotion with residual manipulation control for stable object lifting and delivery; and (3) a LiDAR-based robot global position estimator that provides drift-robust localization. All components are trained in simulation using reinforcement learning and deployed on real hardware in a zero-shot manner. Experimental results show that AdaptManip significantly outperforms baseline methods, including imitation learning-based approaches, in adaptability and overall success rate, while accurate object state estimation improves manipulation performance even under occlusion. We further demonstrate fully autonomous real-world navigation, object lifting, and delivery on a humanoid robot.
comment: Website: https://morganbyrd03.github.io/adaptmanip/
♻ ☆ Don't Let It Hallucinate: Premise Verification via Retrieval-Augmented Logical Reasoning
Large language models (LLMs) have shown substantial capacity for generating fluent, contextually appropriate responses. However, they can produce hallucinated outputs, especially when a user query includes one or more false premises-claims that contradict established facts. Such premises can mislead LLMs into offering fabricated or misleading details. Existing approaches include pretraining, fine-tuning, and inference-time techniques that often rely on access to logits or address hallucinations after they occur. These methods tend to be computationally expensive, require extensive training data, or lack proactive mechanisms to prevent hallucination before generation, limiting their efficiency in real-time applications. We propose a retrieval-based framework that identifies and addresses false premises before generation. Our method first transforms a user's query into a logical representation, then applies retrieval-augmented generation (RAG) to assess the validity of each premise using factual sources. Finally, we incorporate the verification results into the LLM's prompt to maintain factual consistency in the final output. Experiments show that this approach effectively reduces hallucinations, improves factual accuracy, and does not require access to model logits or large-scale fine-tuning.
comment: TMLR 2026
♻ ☆ MultiSHAP: A Shapley-Based Framework for Explaining Cross-Modal Interactions in Multimodal AI Models
Multimodal AI models have achieved impressive performance in tasks that require integrating information from multiple modalities, such as vision and language. However, their "black-box" nature poses a major barrier to deployment in high-stakes applications where interpretability and trustworthiness are essential. How to explain cross-modal interactions in multimodal AI models remains a major challenge. While existing model explanation methods, such as attention map and Grad-CAM, offer coarse insights into cross-modal relationships, they cannot precisely quantify the synergistic effects between modalities, and are limited to open-source models with accessible internal weights. Here we introduce MultiSHAP, a model-agnostic interpretability framework that leverages the Shapley Interaction Index to attribute multimodal predictions to pairwise interactions between fine-grained visual and textual elements (such as image patches and text tokens), while being applicable to both open- and closed-source models. Our approach provides: (1) instance-level explanations that reveal synergistic and suppressive cross-modal effects for individual samples - "why the model makes a specific prediction on this input", and (2) dataset-level explanation that uncovers generalizable interaction patterns across samples - "how the model integrates information across modalities". Experiments on public multimodal benchmarks confirm that MultiSHAP faithfully captures cross-modal reasoning mechanisms, while real-world case studies demonstrate its practical utility. Our framework is extensible beyond two modalities, offering a general solution for interpreting complex multimodal AI models.
♻ ☆ Beyond Fact Retrieval: Episodic Memory for RAG with Generative Semantic Workspaces AAAI 2026
Large Language Models (LLMs) face fundamental challenges in long-context reasoning: many documents exceed their finite context windows, while performance on texts that do fit degrades with sequence length, necessitating their augmentation with external memory frameworks. Current solutions, which have evolved from retrieval using semantic embeddings to more sophisticated structured knowledge graphs representations for improved sense-making and associativity, are tailored for fact-based retrieval and fail to build the space-time-anchored narrative representations required for tracking entities through episodic events. To bridge this gap, we propose the \textbf{Generative Semantic Workspace} (GSW), a neuro-inspired generative memory framework that builds structured, interpretable representations of evolving situations, enabling LLMs to reason over evolving roles, actions, and spatiotemporal contexts. Our framework comprises an \textit{Operator}, which maps incoming observations to intermediate semantic structures, and a \textit{Reconciler}, which integrates these into a persistent workspace that enforces temporal, spatial, and logical coherence. On the Episodic Memory Benchmark (EpBench) \cite{huet_episodic_2025} comprising corpora ranging from 100k to 1M tokens in length, GSW outperforms existing RAG based baselines by up to \textbf{20\%}. Furthermore, GSW is highly efficient, reducing query-time context tokens by \textbf{51\%} compared to the next most token-efficient baseline, reducing inference time costs considerably. More broadly, GSW offers a concrete blueprint for endowing LLMs with human-like episodic memory, paving the way for more capable agents that can reason over long horizons. Code is available at https://github.com/roychowdhuryresearch/gsw-memory.
comment: AAAI 2026 Oral, code available at: https://github.com/roychowdhuryresearch/gsw-memory
♻ ☆ "Sorry, I Didn't Catch That": How Speech Models Miss What Matters Most
Despite speech recognition systems achieving low word error rates on standard benchmarks, they often fail on short, high-stakes utterances in real-world deployments. Here, we study this failure mode in a high-stakes task: the transcription of U.S. street names as spoken by U.S. participants. We evaluate 15 models from OpenAI, Deepgram, Google, and Microsoft on recordings from linguistically diverse U.S. speakers and find an average transcription error rate of 44%. We quantify the downstream impact of failed transcriptions by geographic locations and show that mis-transcriptions systematically cause errors for all speakers, but that routing distance errors are twice as large for non-English primary speakers compared to English primary speakers. To mitigate this harm, we introduce a synthetic data generation approach that produces diverse pronunciations of named entities using open-source text-to-speech models. Fine-tuning with less than 1,000 synthetic samples improves street name transcription accuracy by nearly 60% (relative to base models) for non-English primary speakers. Our results highlight a critical gap between benchmark performance and real-world reliability in speech systems and demonstrate a simple, scalable path to reducing high-stakes transcription errors.
comment: Preprint
♻ ☆ OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety ICLR 2026
Recent advances in AI agents capable of solving complex, everyday tasks, from scheduling to customer service, have enabled deployment in real-world settings, but their possibilities for unsafe behavior demands rigorous evaluation. While prior benchmarks have attempted to assess agent safety, most fall short by relying on simulated environments, narrow task domains, or unrealistic tool abstractions. We introduce OpenAgentSafety, a comprehensive and modular framework for evaluating agent behavior across eight critical risk categories. Unlike prior work, our framework evaluates agents that interact with real tools, including web browsers, code execution environments, file systems, bash shells, and messaging platforms; and supports over 350 multi-turn, multi-user tasks spanning both benign and adversarial user intents. OpenAgentSafety is designed for extensibility, allowing researchers to add tools, tasks, websites, and adversarial strategies with minimal effort. It combines rule-based analysis with LLM-as-judge assessments to detect both overt and subtle unsafe behaviors. Empirical analysis of five prominent LLMs in agentic scenarios reveals unsafe behavior in 51.2% of safety-vulnerable tasks with Claude-Sonnet-3.7, to 72.7% with o3-mini, highlighting critical safety vulnerabilities and the need for stronger safeguards before real-world deployment.
comment: 26 pages, 10 figures, Accepted at ICLR 2026 and IASEAI 2026
♻ ☆ A Fano-Style Accuracy Upper Bound for LLM Single-Pass Reasoning in Multi-Hop QA ICLR 2026
Multi-Hop Question Answering (MHQA) requires integrating dispersed, interdependent evidence through sequential reasoning under noise. This task is challenging for LLMs as they have a finite per-pass output capacity, beyond which the integration of task-relevant evidence proves unreliable. Consequently, the single-pass reasoning paradigm is inherently vulnerable to this capacity overflow. To formalize this bottleneck, our analysis establishes a Fano-style accuracy upper bound, defining a theoretical performance ceiling for single-pass LLMs. This bound reveals that accuracy inevitably collapses once task complexity exceeds model capacity, providing general principles for capacity-aware representation and structuring of MHQA in LLMs. Building on these principles, we introduce a proof-of-concept multi-call framework for MHQA, InfoQA. It ensures high per-step accuracy by combining capacity-aware task decomposition with active pruning of prior reasoning traces, keeping the information load within the single-pass limit. It further achieves robustness by a dependency-explicit workflow that enables precise control over the reasoning path. We construct a stringent and noise-rich benchmark to validate our theory and framework. Experimental results show that model behavior aligns with our predicted capacity curves while InfoQA achieves consistent performance improvements. We hope our work inspires more LLM multi-step reasoning methods: \faGithub \href{https://github.com/KaiyangWan/InfoQA}{InfoQA}.
comment: 22 pages, 6 figures, ICLR 2026. Reported by MIT Technology Review
♻ ☆ Chain of Summaries: Summarization Through Iterative Questioning
Large Language Models (LLMs) are increasingly using external web content. However, much of this content is not easily digestible by LLMs due to LLM-unfriendly formats and limitations of context length. To address this issue, we propose a method for generating general-purpose, information-dense summaries that act as plain-text repositories of web content. Inspired by Hegel's dialectical method, our approach, denoted as Chain of Summaries (CoS), iteratively refines an initial summary (thesis) by identifying its limitations through questioning (antithesis), leading to a general-purpose summary (synthesis) that can satisfy current and anticipate future information needs. Experiments on the TriviaQA, TruthfulQA, and SQUAD datasets demonstrate that CoS outperforms zero-shot LLM baselines by up to 66\% and specialized summarization methods such as Chain of Density, BRIO and PEGASUS by up to 27\%. CoS-generated summaries yield higher Q\&A performance compared to the source content, while requiring substantially fewer tokens and being agnostic to the specific downstream LLM. CoS thus resembles an appealing option for website maintainers to make their content more accessible for LLMs, while retaining possibilities for human oversight.
♻ ☆ CONSENT: A Negotiation Framework for Leveraging User Flexibility in Vehicle-to-Building Charging under Uncertainty
The growth of Electric Vehicles (EVs) creates a conflict in vehicle-to-building (V2B) settings between building operators, who face high energy costs from uncoordinated charging, and drivers, who prioritize convenience and a full charge. To resolve this, we propose a negotiation-based framework that, by design, guarantees voluntary participation, strategy-proofness, and budget feasibility. It transforms EV charging into a strategic resource by offering drivers a range of incentive-backed options for modest flexibility in their departure time or requested state of charge (SoC). Our framework is calibrated with user survey data and validated using real operational data from a commercial building and an EV manufacturer. Simulations show that our negotiation protocol creates a mutually beneficial outcome: lowering the building operator's costs by over 3.5\% compared to an optimized, non-negotiating smart charging policy, while simultaneously reducing user charging expenses by 22\% below the utility's retail energy rate. By aligning operator and EV user objectives, our framework provides a strategic bridge between energy and mobility systems, transforming EV charging from a source of operational friction into a platform for collaboration and shared savings.
comment: Submitted to AAMAS 2026. 38 pages, 13 figures, 14 tables
♻ ☆ NeuroChat: A Neuroadaptive AI Chatbot for Customizing Learning Experiences
Generative AI is transforming education by enabling personalized, on-demand learning experiences. However, current AI systems lack awareness of the learner's cognitive state, limiting their adaptability. Meanwhile, electroencephalography (EEG)-based neuroadaptive systems have shown promise in enhancing engagement through real-time physiological feedback. This paper presents NeuroChat, a neuroadaptive AI tutor that integrates real-time EEG-based engagement tracking with generative AI to adapt its responses. NeuroChat continuously monitors a learner's cognitive engagement and dynamically adjusts content complexity, tone, and response style in a closed-loop interaction. In a within-subjects study (n=24), NeuroChat significantly increased both EEG-measured and self-reported engagement compared to a non-adaptive chatbot. However, no significant differences in short-term learning outcomes were observed. These findings demonstrate the feasibility of real-time cognitive feedback in LLMs, highlighting new directions for adaptive learning, AI tutoring, and deeper personalization in human-AI interaction.
comment: 21 pages, 7 figures, 2 tables
♻ ☆ Terminal Velocity Matching
We propose Terminal Velocity Matching (TVM), a generalization of flow matching that enables high-fidelity one- and few-step generative modeling. TVM models the transition between any two diffusion timesteps and regularizes its behavior at its terminal time rather than at the initial time. We prove that TVM provides an upper bound on the $2$-Wasserstein distance between data and model distributions when the model is Lipschitz continuous. However, since Diffusion Transformers lack this property, we introduce minimal architectural changes that achieve stable, single-stage training. To make TVM efficient in practice, we develop a fused attention kernel that supports backward passes on Jacobian-Vector Products, which scale well with transformer architectures. On ImageNet-256x256, TVM achieves 3.29 FID with a single function evaluation (NFE) and 1.99 FID with 4 NFEs. It similarly achieves 4.32 1-NFE FID and 2.94 4-NFE FID on ImageNet-512x512, representing state-of-the-art performance for one/few-step models from scratch.
comment: Blog post: https://lumalabs.ai/blog/engineering/tvm Code available at: https://github.com/lumalabs/tvm
♻ ☆ Learning-Based Planning for Improving Science Return of Earth Observation Satellites
Earth observing satellites are powerful tools for collecting scientific information about our planet, however they have limitations: they cannot easily deviate from their orbital trajectories, their sensors have a limited field of view, and pointing and operating these sensors can take a large amount of the spacecraft's resources. It is important for these satellites to optimize the data they collect and include only the most important or informative measurements. Dynamic targeting is an emerging concept in which satellite resources and data from a lookahead instrument are used to intelligently reconfigure and point a primary instrument. Simulation studies have shown that dynamic targeting increases the amount of scientific information gathered versus conventional sampling strategies. In this work, we present two different learning-based approaches to dynamic targeting, using reinforcement and imitation learning, respectively. These learning methods build on a dynamic programming solution to plan a sequence of sampling locations. We evaluate our approaches against existing heuristic methods for dynamic targeting, showing the benefits of using learning for this application. Imitation learning performs on average 10.0\% better than the best heuristic method, while reinforcement learning performs on average 13.7\% better. We also show that both learning methods can be trained effectively with small amounts of data.
comment: International Symposium on Artificial Intelligence, Robotics and Automation in Space, November 2024
♻ ☆ Active Matter as a framework for living systems-inspired Robophysics
Robophysics investigates the physical principles that govern living-like robots operating in complex, realworld environments. Despite remarkable technological advances, robots continue to face fundamental efficiency limitations. At the level of individual units, locomotion remains a challenge, while at the collective level, robot swarms struggle to achieve shared purpose, coordination, communication, and cost efficiency. This perspective article examines the key challenges faced by bio-inspired robotic collectives and highlights recent research efforts that incorporate principles from active-matter physics and biology into the modeling and design of robot swarms.
♻ ☆ Out of Distribution Detection for Efficient Continual Learning in Quality Prediction for Arc Welding
Modern manufacturing relies heavily on fusion welding processes, including gas metal arc welding (GMAW). Despite significant advances in machine learning-based quality prediction, current models exhibit critical limitations when confronted with the inherent distribution shifts that occur in dynamic manufacturing environments. In this work, we extend the VQ-VAE Transformer architecture - previously demonstrating state-of-the-art performance in weld quality prediction - by leveraging its autoregressive loss as a reliable out-of-distribution (OOD) detection mechanism. Our approach exhibits superior performance compared to conventional reconstruction methods, embedding error-based techniques, and other established baselines. By integrating OOD detection with continual learning strategies, we optimize model adaptation, triggering updates only when necessary and thereby minimizing costly labeling requirements. We introduce a novel quantitative metric that simultaneously evaluates OOD detection capability while interpreting in-distribution performance. Experimental validation in real-world welding scenarios demonstrates that our framework effectively maintains robust quality prediction capabilities across significant distribution shifts, addressing critical challenges in dynamic manufacturing environments where process parameters frequently change. This research makes a substantial contribution to applied artificial intelligence by providing an explainable and at the same time adaptive solution for quality assurance in dynamic manufacturing processes - a crucial step towards robust, practical AI systems in the industrial environment.
comment: Accepted at CIKM 2025 (Applied Research Papers)
♻ ☆ Generalized Parallel Scaling with Interdependent Generations
Parallel LLM inference scaling involves sampling a set of $N>1$ responses for a single input prompt. However, these $N$ parallel responses tend to be generated independently from each other, partitioning compute resources and leaving potentially useful information in one generation untapped by others. This is in contrast to response length scaling where past computation is used in all future steps. For higher quality responses and response sets, we propose Bridge to generate interdependent responses in parallel by rethinking batched LLM hidden states as holistic tensors rather than independent slices. With only a small amount (2.8%-5.1%) of new parameters, Bridge improves the relative mean accuracy gains from reinforcement learning with verifiable rewards by up to 39% and boosts consistency of correct responses. Trained once, Bridge scales to any generation width, all with greater performance than independent generations, unlocking a more general mode of parallel scaling that effectively leverages information between sequences, compatible with any post-generation aggregation technique.
♻ ☆ Just KIDDIN: Knowledge Infusion and Distillation for Detection of INdecent Memes
Toxicity identification in online multimodal environments remains a challenging task due to the complexity of contextual connections across modalities (e.g., textual and visual). In this paper, we propose a novel framework that integrates Knowledge Distillation (KD) from Large Visual Language Models (LVLMs) and knowledge infusion to enhance the performance of toxicity detection in hateful memes. Our approach extracts sub-knowledge graphs from ConceptNet, a large-scale commonsense Knowledge Graph (KG) to be infused within a compact VLM framework. The relational context between toxic phrases in captions and memes, as well as visual concepts in memes enhance the model's reasoning capabilities. Experimental results from our study on two hate speech benchmark datasets demonstrate superior performance over the state-of-the-art baselines across AU-ROC, F1, and Recall with improvements of 1.1%, 7%, and 35%, respectively. Given the contextual complexity of the toxicity detection task, our approach showcases the significance of learning from both explicit (i.e. KG) as well as implicit (i.e. LVLMs) contextual cues incorporated through a hybrid neurosymbolic approach. This is crucial for real-world applications where accurate and scalable recognition of toxic content is critical for creating safer online environments.
♻ ☆ Randomness and signal propagation in physics-informed neural networks (PINNs): A neural PDE perspective
Physics-informed neural networks (PINNs) often exhibit weight matrices that appear statistically random after training, yet their implications for signal propagation and stability remain unsatisfactorily understood, let alone the interpretability. In this work, we analyze the spectral and statistical properties of trained PINN weights using viscous and inviscid variants of the one-dimensional Burgers' equation, and show that the learned weights reside in a high-entropy regime consistent with predictions from random matrix theory. To investigate the dynamical consequences of such weight structures, we study the evolution of signal features inside a network through the lens of neural partial differential equations (neural PDEs). We show that random and structured weight matrices can be associated with specific discretizations of neural PDEs, and that the numerical stability of these discretizations governs the stability of signal propagation through the network. In particular, explicit unstable schemes lead to degraded signal evolution, whereas stable implicit and higher-order schemes yield well-behaved dynamics for the same underlying neural PDE. Our results offer an explicit example of how numerical stability and network architecture shape signal propagation in deep networks, in relation to random matrix and neural PDE descriptions in PINNs.
♻ ☆ A Foundational Theory for Decentralized Sensory Learning
In both neuroscience and artificial intelligence, popular functional frameworks and neural network formulations operate by making use of extrinsic error measurements and global learning algorithms. Through a set of conjectures based on evolutionary insights on the origin of cellular adaptive mechanisms, we reinterpret the core meaning of sensory signals to allow the brain to be interpreted as a negative feedback control system, and show how this could lead to local learning algorithms without the need for global error correction metrics. Thereby, a sufficiently good minima in sensory activity can be the complete reward signal of the network, as well as being both necessary and sufficient for biological learning to arise. We show that this method of learning was likely already present in the earliest unicellular life forms on earth. We show evidence that the same principle holds and scales to multicellular organisms where it in addition can lead to division of labour between cells. Available evidence shows that the evolution of the nervous system likely was an adaptation to more effectively communicate intercellular signals to support such division of labour. We therefore propose that the same learning principle that evolved already in the earliest unicellular life forms, i.e. negative feedback control of externally and internally generated sensor signals, has simply been scaled up to become a fundament of the learning we see in biological brains today. We illustrate diverse biological settings, from the earliest unicellular organisms to humans, where this operational principle appears to be a plausible interpretation of the meaning of sensor signals in biology, how this relates to current neuroscientific theories and findings, and how it can be applied to solve body control.
♻ ☆ Agentic AI for Cybersecurity: A Meta-Cognitive Architecture for Governable Autonomy
Contemporary AI-driven cybersecurity systems are predominantly architected as model-centric detection and automation pipelines optimized for task-level performance metrics such as accuracy and response latency. While effective for bounded classification tasks, these architectures struggle to support accountable decision-making under adversarial uncertainty, where actions must be justified, governed, and aligned with organizational and regulatory constraints. This paper argues that cybersecurity orchestration should be reconceptualized as an agentic, multi-agent cognitive system, rather than a linear sequence of detection and response components. We introduce a conceptual architectural framework in which heterogeneous AI agents responsible for detection, hypothesis formation, contextual interpretation, explanation, and governance are coordinated through an explicit meta-cognitive judgement function. This function governs decision readiness and dynamically calibrates system autonomy when evidence is incomplete, conflicting, or operationally risky. By synthesizing distributed cognition theory, multi-agent systems research, and responsible AI governance frameworks, we demonstrate that modern security operations already function as distributed cognitive systems, albeit without an explicit organizing principle. Our contribution is to make this cognitive structure architecturally explicit and governable by embedding meta-cognitive judgement as a first-class system function. We discuss implications for security operations centers, accountable autonomy, and the design of next-generation AI-enabled cyber defence architectures. The proposed framework shifts the focus of AI in cybersecurity from optimizing isolated predictions to governing autonomy under uncertainty.
♻ ☆ Privileged Information Distillation for Language Models
Training-time privileged information (PI) can enable language models to succeed on tasks they would otherwise fail, making it a powerful tool for reinforcement learning in hard, long-horizon settings. However, transferring capabilities learned with PI to policies that must act without it at inference time remains a fundamental challenge. We study this problem in the context of distilling frontier models for multi-turn agentic environments, which typically hide their internal reasoning and expose only action trajectories. This breaks standard distillation pipelines, since successful behavior is observable, but the reasoning process is not. For this, we introduce π-Distill, a joint teacher-student objective that trains a PI-conditioned teacher and an unconditioned student simultaneously using the same model. Additionally, we also introduce On-Policy Self-Distillation (OPSD), an alternative approach that trains using Reinforcement Learning (RL) with a reverse KL-penalty between the student and the PI-conditioned teacher. We show that both of these algorithms effectively distill frontier agents using action-only PI. Specifically, we find that π-Distill and, in some cases, OPSD, outperform industry standard practices (Supervised finetuning followed by RL) that assume access to full Chain-of-Thought supervision across multiple agentic benchmarks, models, and forms of PI. We complement our results with extensive analysis that characterizes the factors enabling effective learning with PI, focusing primarily on π-Distill and characterizing when OPSD is competitive.
comment: Abstract border should have been purple
♻ ☆ Simulating the Real World: A Unified Survey of Multimodal Generative Models
Understanding and replicating the real world is a critical challenge in Artificial General Intelligence (AGI) research. To achieve this, many existing approaches, such as world models, aim to capture the fundamental principles governing the physical world, enabling more accurate simulations and meaningful interactions. However, current methods often treat different modalities, including 2D (images), videos, 3D, and 4D representations, as independent domains, overlooking their interdependencies. Additionally, these methods typically focus on isolated dimensions of reality without systematically integrating their connections. In this survey, we present a unified survey for multimodal generative models that investigate the progression of data dimensionality in real-world simulation. Specifically, this survey starts from 2D generation (appearance), then moves to video (appearance+dynamics) and 3D generation (appearance+geometry), and finally culminates in 4D generation that integrate all dimensions. To the best of our knowledge, this is the first attempt to systematically unify the study of 2D, video, 3D and 4D generation within a single framework. To guide future research, we provide a comprehensive review of datasets, evaluation metrics and future directions, and fostering insights for newcomers. This survey serves as a bridge to advance the study of multimodal generative models and real-world simulation within a unified framework.
comment: Repository for the related papers at https://github.com/ALEEEHU/World-Simulator
♻ ☆ Accelerating Scientific Research with Gemini: Case Studies and Common Techniques
Recent advances in large language models (LLMs) have opened new avenues for accelerating scientific research. While models are increasingly capable of assisting with routine tasks, their ability to contribute to novel, expert-level mathematical discovery is less understood. We present a collection of case studies demonstrating how researchers have successfully collaborated with advanced AI models, specifically Google's Gemini-based models (in particular Gemini Deep Think and its advanced variants), to solve open problems, refute conjectures, and generate new proofs across diverse areas in theoretical computer science, as well as other areas such as economics, optimization, and physics. Based on these experiences, we extract common techniques for effective human-AI collaboration in theoretical research, such as iterative refinement, problem decomposition, and cross-disciplinary knowledge transfer. While the majority of our results stem from this interactive, conversational methodology, we also highlight specific instances that push beyond standard chat interfaces. These include deploying the model as a rigorous adversarial reviewer to detect subtle flaws in existing proofs, and embedding it within a "neuro-symbolic" loop that autonomously writes and executes code to verify complex derivations. Together, these examples highlight the potential of AI not just as a tool for automation, but as a versatile, genuine partner in the creative process of scientific discovery.
comment: Author list now includes Yossi Matias and James Manyika. Acknowledgements also updated. Added more general discussion to sections 1, 9.1, and 9.5. Discussed related work of Gurvits in section 4.3. Clarified closed form in section 6.1 and gave finite sum expansions for coefficients. Other minor formatting fixes
♻ ☆ Evolution Strategies at the Hyperscale
Evolution Strategies (ES) is a class of powerful black-box optimisation methods that are highly parallelisable and can handle non-differentiable and noisy objectives. However, naïve ES becomes prohibitively expensive at scale on GPUs due to the low arithmetic intensity of batched matrix multiplications with unstructured random perturbations. We introduce Evolution Guided GeneRal Optimisation via Low-rank Learning (EGGROLL), which improves arithmetic intensity by structuring individual perturbations as rank-$r$ matrices, resulting in a hundredfold increase in training speed for billion-parameter models at large population sizes, achieving up to 91% of the throughput of pure batch inference. We provide a rigorous theoretical analysis of Gaussian ES for high-dimensional parameter objectives, investigating conditions needed for ES updates to converge in high dimensions. Our results reveal a linearising effect, and proving consistency between EGGROLL and ES as parameter dimension increases. Our experiments show that EGGROLL: (1) enables the stable pretraining of nonlinear recurrent language models that operate purely in integer datatypes, (2) is competitive with GRPO for post-training LLMs on reasoning tasks, and (3) does not compromise performance compared to ES in tabula rasa RL settings, despite being faster.
comment: 76 pages, 15 figures, Website at https://eshyperscale.github.io/
♻ ☆ Robust Multi-Objective Controlled Decoding of Large Language Models ICLR 2026
We introduce Robust Multi-Objective Decoding (RMOD), a novel inference-time algorithm that robustly aligns Large Language Models (LLMs) to multiple human objectives (e.g., instruction-following, helpfulness, safety) by maximizing the worst-case rewards. RMOD formulates the robust decoding problem as a maximin two-player game between adversarially computed reward weights and the sampling policy, solvable through a Nash equilibrium. We demonstrate that this game reduces to a convex optimization problem to identify the worst-case reward weights, with the optimal sampling policy analytically derived. For practical applications, we propose an efficient algorithm of RMOD tailored for contemporary LLMs, introducing minimal computational overhead compared to standard non-robust Controlled Decoding methods. Experimental results across a range of popular alignment datasets with up to 10 objectives show the effectiveness of RMOD and its distilled version, consistently outperforming baselines in worst-case rewards and win rates.
comment: Accepted to ICLR 2026
♻ ☆ Sparse MeZO: Less Parameters for Better Performance in Zeroth-Order LLM Fine-Tuning NeurIPS 2025
While fine-tuning large language models (LLMs) for specific tasks often yields impressive results, it comes at the cost of memory inefficiency due to back-propagation in gradient-based training. Memory-efficient Zeroth-order (MeZO) optimizers, recently proposed to address this issue, only require forward passes during training, making them more memory-friendly. However, compared with exact gradients, ZO-based gradients usually exhibit an estimation error, which can significantly hurt the optimization process, leading to slower convergence and suboptimal solutions. In addition, we find that the estimation error will hurt more when adding to large weights instead of small weights. Based on this observation, this paper introduces Sparse MeZO, a novel memory-efficient zeroth-order optimization approach that applies ZO only to a carefully chosen subset of parameters. We propose a simple yet effective parameter selection scheme that yields significant performance gains with Sparse-MeZO. Additionally, we develop a memory-optimized implementation for sparse masking, ensuring the algorithm requires only inference-level memory consumption, allowing Sparse-MeZO to fine-tune LLaMA-30b on a single A100 GPU. Experimental results illustrate that Sparse-MeZO consistently improves both performance and convergence speed over MeZO without any overhead. For example, it achieves a 9\% absolute accuracy improvement and 3.5x speedup over MeZO on the RTE task. Code is available at https://github.com/NUS-HPC-AI-Lab/SparseMeZO.
comment: Accepted by NeurIPS 2025
♻ ☆ Algorithms Trained on Normal Chest X-rays Can Predict Health Insurance Types
Artificial intelligence is revealing what medicine never intended to encode. Deep vision models, trained on chest X-rays, can now detect not only disease but also invisible traces of social inequality. In this study, we show that state-of-the-art architectures (DenseNet121, SwinV2-B, MedMamba) can predict a patient's health insurance type, a strong proxy for socioeconomic status, from normal chest X-rays with significant accuracy (AUC around 0.70 on MIMIC-CXR-JPG, 0.68 on CheXpert). The signal was unlikely contributed by demographic features by our machine learning study combining age, race, and sex labels to predict health insurance types; it also remains detectable when the model is trained exclusively on a single racial group. Patch-based occlusion reveals that the signal is diffuse rather than localized, embedded in the upper and mid-thoracic regions. This suggests that deep networks may be internalizing subtle traces of clinical environments, equipment differences, or care pathways; learning socioeconomic segregation itself. These findings challenge the assumption that medical images are neutral biological data. By uncovering how models perceive and exploit these hidden social signatures, this work reframes fairness in medical AI: the goal is no longer only to balance datasets or adjust thresholds, but to interrogate and disentangle the social fingerprints embedded in clinical data itself.
comment: Accepted by MIDL 2026
♻ ☆ Why Synthetic Isn't Real Yet: A Diagnostic Framework for Contact Center Dialogue Generation
Synthetic data is increasingly critical for contact centers, where privacy constraints and data scarcity limit the availability of real conversations. However, generating synthetic dialogues that are realistic and useful for downstream applications remains challenging. In this work, we benchmark multiple generation strategies guided by structured supervision on call attributes (Intent Summaries, Topic Flows, and Quality Assurance (QA) Forms) across multiple languages. To test downstream utility, we evaluate synthetic transcripts on an automated quality assurance (AutoQA) task, finding that prompts optimized on real transcripts consistently outperform those optimized on synthetic transcripts. These results suggest that current synthetic transcripts fall short in capturing the full realism of real agent-customer interactions. To highlight these downstream gaps, we introduce a diagnostic evaluation framework comprising 17 metrics across four dimensions: (1) Emotional and Sentiment Arcs, (2) Linguistic Complexity, (3) Interaction Style, and (4) Conversational Properties. Our analysis shows that even with structured supervision, current generation strategies exhibit measurable deficiencies in sentiment fidelity, disfluency modeling, behavioral variation, and conversational realism. Together, these results highlight the importance of diagnostic, metric-driven evaluation for synthetic conversation generation intended for downstream applications.
♻ ☆ AIRS-Bench: a Suite of Tasks for Frontier AI Research Science Agents
LLM agents hold significant promise for advancing scientific research. To accelerate this progress, we introduce AIRS-Bench (the AI Research Science Benchmark), a suite of 20 tasks sourced from state-of-the-art machine learning papers. These tasks span diverse domains, including language modeling, mathematics, bioinformatics, and time series forecasting. AIRS-Bench tasks assess agentic capabilities over the full research lifecycle -- including idea generation, experiment analysis and iterative refinement -- without providing baseline code. The AIRS-Bench task format is versatile, enabling easy integration of new tasks and rigorous comparison across different agentic frameworks. We establish baselines using frontier models paired with both sequential and parallel scaffolds. Our results show that agents exceed human SOTA in four tasks but fail to match it in sixteen others. Even when agents surpass human benchmarks, they do not reach the theoretical performance ceiling for the underlying tasks. These findings indicate that AIRS-Bench is far from saturated and offers substantial room for improvement. We open-source the AIRS-Bench task definitions and evaluation code to catalyze further development in autonomous scientific research.
comment: 49 pages, 14 figures, 10 tables
♻ ☆ iQUEST: An Iterative Question-Guided Framework for Knowledge Base Question Answering ACL 2025
Large Language Models (LLMs) excel in many natural language processing tasks but often exhibit factual inconsistencies in knowledge-intensive settings. Integrating external knowledge resources, particularly knowledge graphs (KGs), provides a transparent and updatable foundation for more reliable reasoning. Knowledge Base Question Answering (KBQA), which queries and reasons over KGs, is central to this effort, especially for complex, multi-hop queries. However, multi-hop reasoning poses two key challenges: (1)~maintaining coherent reasoning paths, and (2)~avoiding prematurely discarding critical multi-hop connections. To tackle these challenges, we introduce iQUEST, a question-guided KBQA framework that iteratively decomposes complex queries into simpler sub-questions, ensuring a structured and focused reasoning trajectory. Additionally, we integrate a Graph Neural Network (GNN) to look ahead and incorporate 2-hop neighbor information at each reasoning step. This dual approach strengthens the reasoning process, enabling the model to explore viable paths more effectively. Detailed experiments demonstrate the consistent improvement delivered by iQUEST across four benchmark datasets and four LLMs. The code is publicly available at: https://github.com/Wangshuaiia/iQUEST.
comment: Accepted to the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025), Main Track
♻ ☆ Zono-Conformal Prediction: Zonotope-Based Uncertainty Quantification for Regression and Classification Tasks
Conformal prediction is a popular uncertainty quantification method that augments a base predictor to return sets of predictions with statistically valid coverage guarantees. However, current methods are often computationally expensive and data-intensive, as they require constructing an uncertainty model before calibration. Moreover, existing approaches typically represent the prediction sets with intervals, which limits their ability to capture dependencies in multi-dimensional outputs. We address these limitations by introducing zono-conformal prediction, a novel approach inspired by interval predictor models and reachset-conformant identification that constructs prediction zonotopes with assured coverage. By placing zonotopic uncertainty sets directly into the model of the base predictor, zono-conformal predictors can be identified via a single, data-efficient linear program. While we can apply zono-conformal prediction to arbitrary nonlinear base predictors, we focus on feed-forward neural networks in this work. Aside from regression tasks, we also construct optimal zono-conformal predictors in classification settings where the output of an uncertain predictor is a set of possible classes. We provide probabilistic coverage guarantees and present methods for detecting outliers in the identification data. In extensive numerical experiments, we show that zono-conformal predictors are less conservative than interval predictor models and standard conformal prediction methods, while achieving a similar coverage over the test data.
comment: Preprint. Accepted for publication at Journal of Machine Learning Research
♻ ☆ DiffusionNFT: Online Diffusion Reinforcement with Forward Process ICLR 2026
Online reinforcement learning (RL) has been central to post-training language models, but its extension to diffusion models remains challenging due to intractable likelihoods. Recent works discretize the reverse sampling process to enable GRPO-style training, yet they inherit fundamental drawbacks, including solver restrictions, forward-reverse inconsistency, and complicated integration with classifier-free guidance (CFG). We introduce Diffusion Negative-aware FineTuning (DiffusionNFT), a new online RL paradigm that optimizes diffusion models directly on the forward process via flow matching. DiffusionNFT contrasts positive and negative generations to define an implicit policy improvement direction, naturally incorporating reinforcement signals into the supervised learning objective. This formulation enables training with arbitrary black-box solvers, eliminates the need for likelihood estimation, and requires only clean images rather than sampling trajectories for policy optimization. DiffusionNFT is up to $25\times$ more efficient than FlowGRPO in head-to-head comparisons, while being CFG-free. For instance, DiffusionNFT improves the GenEval score from 0.24 to 0.98 within 1k steps, while FlowGRPO achieves 0.95 with over 5k steps and additional CFG employment. By leveraging multiple reward models, DiffusionNFT significantly boosts the performance of SD3.5-Medium in every benchmark tested.
comment: ICLR 2026 Oral
♻ ☆ Foundation Models in Autonomous Driving: A Survey on Scenario Generation and Scenario Analysis
For autonomous vehicles, safe navigation in complex environments depends on handling a broad range of diverse and rare driving scenarios. Simulation- and scenario-based testing have emerged as key approaches to development and validation of autonomous driving systems. Traditional scenario generation relies on rule-based systems, knowledge-driven models, and data-driven synthesis, often producing limited diversity and unrealistic safety-critical cases. With the emergence of foundation models, which represent a new generation of pre-trained, general-purpose AI models, developers can process heterogeneous inputs (e.g., natural language, sensor data, HD maps, and control actions), enabling the synthesis and interpretation of complex driving scenarios. In this paper, we conduct a survey about the application of foundation models for scenario generation and scenario analysis in autonomous driving (as of May 2025). Our survey presents a unified taxonomy that includes large language models, vision-language models, multimodal large language models, diffusion models, and world models for the generation and analysis of autonomous driving scenarios. In addition, we review the methodologies, open-source datasets, simulation platforms, and benchmark challenges, and we examine the evaluation metrics tailored explicitly to scenario generation and analysis. Finally, the survey concludes by highlighting the open challenges and research questions, and outlining promising future research directions. All reviewed papers are listed in a continuously maintained repository, which contains supplementary materials and is available at https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.
comment: IEEE Open Journal of Intelligent Transportation Systems
♻ ☆ Query-Based Adaptive Aggregation for Multi-Dataset Joint Training Toward Universal Visual Place Recognition
Deep learning methods for Visual Place Recognition (VPR) have advanced significantly, largely driven by large-scale datasets. However, most existing approaches are trained on a single dataset, which can introduce dataset-specific inductive biases and limit model generalization. While multi-dataset joint training offers a promising solution for developing universal VPR models, divergences among training datasets can saturate the limited information capacity in feature aggregation layers, leading to suboptimal performance. To address these challenges, we propose Query-based Adaptive Aggregation (QAA), a novel feature aggregation technique that leverages learned queries as reference codebooks to effectively enhance information capacity without significant computational or parameter complexity. We show that computing the Cross-query Similarity (CS) between query-level image features and reference codebooks provides a simple yet effective way to generate robust descriptors. Our results demonstrate that QAA outperforms state-of-the-art models, achieving balanced generalization across diverse datasets while maintaining peak performance comparable to dataset-specific models. Ablation studies further explore QAA's mechanisms and scalability. Visualizations reveal that the learned queries exhibit diverse attention patterns across datasets. Project page: \href{http://xjh19971.github.io/QAA} {\color{magenta}\texttt{xjh19971.github.io/QAA}}.
comment: 8 pages, 4 figures, accepted at ICRA 2026
♻ ☆ LapSurgie: Humanoid Robots Performing Surgery via Teleoperated Handheld Laparoscopy
Robotic laparoscopic surgery has gained increasing attention in recent years for its potential to deliver more efficient and precise minimally invasive procedures. However, adoption of surgical robotic platforms remains largely confined to high-resource medical centers, exacerbating healthcare disparities in rural and low-resource regions. To close this gap, a range of solutions has been explored, from remote mentorship to fully remote telesurgery. Yet, the practical deployment of surgical robotic systems to underserved communities remains an unsolved challenge. Humanoid systems offer a promising path toward deployability, as they can directly operate in environments designed for humans without extensive infrastructure modifications -- including operating rooms. In this work, we introduce LapSurgie, the first humanoid-robot-based laparoscopic teleoperation framework. The system leverages an inverse-mapping strategy for manual-wristed laparoscopic instruments that abides to remote center-of-motion constraints, enabling precise hand-to-tool control of off-the-shelf surgical laparoscopic tools without additional setup requirements. A control console equipped with a stereo vision system provides real-time visual feedback. Finally, a comprehensive user study across platforms demonstrates the effectiveness of the proposed framework and provides initial evidence for the feasibility of deploying humanoid robots in laparoscopic procedures.
♻ ☆ AMBER: A tether-deployable gripping crawler with compliant microspines for canopy manipulation
This paper presents an aerially deployable crawler designed for adaptive locomotion and manipulation within tree canopies. The system combines compliant microspine-based tracks, a dual-track rotary gripper, and an elastic tail, enabling secure attachment and stable traversal across branches of varying curvature and inclination. Experiments demonstrate reliable gripping up to 90$^\circ$ body roll and inclination, while effective climbing on branches inclined up to 67.5$^\circ$, achieving a maximum speed of 0.55 body lengths per second on horizontal branches. The compliant tracks allow yaw steering of up to 10$^\circ$, enhancing maneuverability on irregular surfaces. Power measurements show efficient operation with a dimensionless cost of transport over an order of magnitude lower than typical hovering power consumption in aerial robots. The crawler provides a robust, low-power platform for environmental sampling and in-canopy sensing. The aerial deployment is demonstrated at a conceptual and feasibility level, while full drone-crawler integration is left as future work.
♻ ☆ Event-Grounding Graph: Unified Spatio-Temporal Scene Graph from Robotic Observations
A fundamental aspect for building intelligent autonomous robots that can assist humans in their daily lives is the construction of rich environmental representations. While advances in semantic scene representations have enriched robotic scene understanding, current approaches lack a connection between spatial features and dynamic events; e.g., connecting the blue mug to the event washing a mug. In this work, we introduce the event-grounding graph (EGG), a framework grounding event interactions to spatial features of a scene. This representation allows robots to perceive, reason, and respond to complex spatio-temporal queries. Experiments using real robotic data demonstrate EGG's capability to retrieve relevant information and respond accurately to human inquiries concerning the environment and events within. Furthermore, the EGG framework's source code and evaluation dataset are released as open-source at: https://github.com/aalto-intelligent-robotics/EGG.
comment: Accepted to RA-L
♻ ☆ Language Movement Primitives: Grounding Language Models in Robot Motion
Enabling robots to perform novel manipulation tasks from natural language instructions remains a fundamental challenge in robotics, despite significant progress in generalized problem solving with foundational models. Large vision and language models (VLMs) are capable of processing high-dimensional input data for visual scene and language understanding, as well as decomposing tasks into a sequence of logical steps; however, they struggle to ground those steps in embodied robot motion. On the other hand, robotics foundation models output action commands, but require in-domain fine-tuning or experience before they are able to perform novel tasks successfully. At its core, there still remains the fundamental challenge of connecting abstract task reasoning with low-level motion control. To address this disconnect, we propose Language Movement Primitives (LMPs), a framework that grounds VLM reasoning in Dynamic Movement Primitive (DMP) parameterization. Our key insight is that DMPs provide a small number of interpretable parameters, and VLMs can set these parameters to specify diverse, continuous, and stable trajectories. Put another way: VLMs can reason over free-form natural language task descriptions, and semantically ground their desired motions into DMPs -- bridging the gap between high-level task reasoning and low-level position and velocity control. Building on this combination of VLMs and DMPs, we formulate our LMP pipeline for zero-shot robot manipulation that effectively completes tabletop manipulation problems by generating a sequence of DMP motions. Across 20 real-world manipulation tasks, we show that LMP achieves 80% task success as compared to 31% for the best-performing baseline. See videos at our website: https://collab.me.vt.edu/lmp
♻ ☆ Seeing the Bigger Picture: 3D Latent Mapping for Mobile Manipulation Policy Learning
In this paper, we demonstrate that mobile manipulation policies utilizing a 3D latent map achieve stronger spatial and temporal reasoning than policies relying solely on images. We introduce Seeing the Bigger Picture (SBP), an end-to-end policy learning approach that operates directly on a 3D map of latent features. In SBP, the map extends perception beyond the robot's current field of view and aggregates observations over long horizons. Our mapping approach incrementally fuses multiview observations into a grid of scene-specific latent features. A pre-trained, scene-agnostic decoder reconstructs target embeddings from these features and enables online optimization of the map features during task execution. A policy, trainable with behavior cloning or reinforcement learning, treats the latent map as a state variable and uses global context from the map obtained via a 3D feature aggregator. We evaluate SBP on scene-level mobile manipulation and sequential tabletop manipulation tasks. Our experiments demonstrate that SBP (i) reasons globally over the scene, (ii) leverages the map as long-horizon memory, and (iii) outperforms image-based policies in both in-distribution and novel scenes, e.g., improving the success rate by 15% for the sequential manipulation task.
comment: ICRA 2026, project page: https://existentialrobotics.org/sbp_page/
♻ ☆ 3DRot: Rediscovering the Missing Primitive for RGB-Based 3D Augmentation
RGB-based 3D tasks, e.g., 3D detection, depth estimation, 3D keypoint estimation, still suffer from scarce, expensive annotations and a thin augmentation toolbox, since many image transforms, including rotations and warps, disrupt geometric consistency. While horizontal flipping and color jitter are standard, rigorous 3D rotation augmentation has surprisingly remained absent from RGB-based pipelines, largely due to the misconception that it requires scene depth or scene reconstruction. In this paper, we introduce 3DRot, a plug-and-play augmentation that rotates and mirrors images about the camera's optical center while synchronously updating RGB images, camera intrinsics, object poses, and 3D annotations to preserve projective geometry, achieving geometry-consistent rotations and reflections without relying on any scene depth. We first validate 3DRot on a classical RGB-based 3D task, monocular 3D detection. On SUN RGB-D, inserting 3DRot into a frozen DINO-X + Cube R-CNN pipeline raises $IoU_{3D}$ from 43.21 to 44.51, cuts rotation error (ROT) from 22.91$^\circ$ to 20.93$^\circ$, and boosts $mAP_{0.5}$ from 35.70 to 38.11; smaller but consistent gains appear on a cross-domain IN10 split. Beyond monocular detection, adding 3DRot on top of the standard BTS augmentation schedule further improves NYU Depth v2 from 0.1783 to 0.1685 in abs-rel (and 0.7472 to 0.7548 in $δ<1.25$), and reduces cross-dataset error on SUN RGB-D. On KITTI, applying the same camera-centric rotations in MVX-Net (LiDAR+RGB) raises moderate 3D AP from about 63.85 to 65.16 while remaining compatible with standard 3D augmentations.
♻ ☆ Deep Reinforcement Learning based Autonomous Decision-Making for Cooperative UAVs: A Search and Rescue Real World Application
This paper presents the first end-to-end framework that combines guidance, navigation, and centralised task allocation for multiple UAVs performing autonomous search-and-rescue (SAR) in GNSS-denied indoor environments. A Twin Delayed Deep Deterministic Policy Gradient controller is trained with an Artificial Potential Field (APF) reward that blends attractive and repulsive potentials with continuous control, accelerating convergence and yielding smoother, safer trajectories than distance-only baselines. Collaborative mission assignment is solved by a deep Graph Attention Network that, at each decision step, reasons over the drone-task graph to produce near-optimal allocations with negligible on-board compute. To arrest the notorious Z-drift of indoor LiDAR-SLAM, we fuse depth-camera altimetry with IMU vertical velocity in a lightweight complementary filter, giving centimetre-level altitude stability without external beacons. The resulting system was deployed on two 1m-class quad-rotors and flight-tested in a cluttered, multi-level disaster mock-up designed for the NATO-Sapience Autonomous Cooperative Drone Competition. Compared with prior DRL guidance that remains largely in simulation, our framework demonstrates an ability to navigate complex indoor environments, securing first place in the 2024 event. These results demonstrate that APF-shaped DRL and GAT-driven cooperation can translate to reliable real-world SAR operations.
comment: 22 Pages, 24 Figures
♻ ☆ BoundPlanner: A convex-set-based approach to bounded manipulator trajectory planning
Online trajectory planning enables robot manipulators to react quickly to changing environments or tasks. Many robot trajectory planners exist for known environments but are often too slow for online computations. Current methods in online trajectory planning do not find suitable trajectories in challenging scenarios that respect the limits of the robot and account for collisions. This work proposes a trajectory planning framework consisting of the novel Cartesian path planner based on convex sets, called BoundPlanner, and the online trajectory planner BoundMPC. BoundPlanner explores and maps the collision-free space using convex sets to compute a reference path with bounds. BoundMPC is extended in this work to handle convex sets for path deviations, which allows the robot to optimally follow the path within the bounds while accounting for the robot's kinematics. Collisions of the robot's kinematic chain are considered by a novel convex-set-based collision avoidance formulation independent on the number of obstacles. Simulations and experiments with a 7-DoF manipulator show the performance of the proposed planner compared to state-of-the-art methods. The source code is available at github.com/TU-Wien-ACIN-CDS/BoundPlanner and videos of the experiments can be found at www.acin.tuwien.ac.at/42d4.
comment: Published at RA-L
♻ ☆ BoundMPC: Cartesian path following with error bounds based on model predictive control in the joint space
This work introduces the BoundMPC strategy, an innovative online model-predictive path-following approach for robot manipulators. This joint-space trajectory planner allows the following of Cartesian reference paths in the end-effector's position and orientation, including via-points, within the desired asymmetric bounds of the orthogonal path error. These bounds encode the obstacle-free space and additional task-specific constraints in Cartesian space. Contrary to traditional path-following concepts, BoundMPC purposefully deviates from the Cartesian reference path in position and orientation to account for the robot's kinematics, leading to more successful task executions for Cartesian reference paths. Furthermore the simple reference path formulation is computationally efficient and allows for replanning during the robot's motion. This feature makes it possible to use this planner for dynamically changing environments and varying goals. The flexibility and performance of BoundMPC are experimentally demonstrated by five scenarios on a 7-DoF Kuka LBR iiwa 14 R820 robot. The first scenario shows the transfer of a larger object from a start to a goal pose through a confined space where the object must be tilted. The second scenario deals with grasping an object from a table where the grasping point changes during the robot's motion, and collisions with other obstacles in the scene must be avoided. The adaptability of BoundMPC is showcased in scenarios such as the opening of a drawer, the transfer of an open container, and the wiping of a table, where it effectively handles task-specific constraints. The last scenario highlights the possibility of accounting for collisions with the entire robot's kinematic chain. The code is readily available at https://github.com/thieso/boundmpc, inspiring you to explore its potential and adapt it to your specific robotic tasks.
comment: 17 pages, 20 figures
♻ ☆ Experimental Evaluation of ROS-Causal in Real-World Human-Robot Spatial Interaction Scenarios
Deploying robots in human-shared environments requires a deep understanding of how nearby agents and objects interact. Employing causal inference to model cause-and-effect relationships facilitates the prediction of human behaviours and enables the anticipation of robot interventions. However, a significant challenge arises due to the absence of implementation of existing causal discovery methods within the ROS ecosystem, the standard de-facto framework in robotics, hindering effective utilisation on real robots. To bridge this gap, in our previous work we proposed ROS-Causal, a ROS-based framework designed for onboard data collection and causal discovery in human-robot spatial interactions. In this work, we present an experimental evaluation of ROS-Causal both in simulation and on a new dataset of human-robot spatial interactions in a lab scenario, to assess its performance and effectiveness. Our analysis demonstrates the efficacy of this approach, showcasing how causal models can be extracted directly onboard by robots during data collection. The online causal models generated from the simulation are consistent with those from lab experiments. These findings can help researchers to enhance the performance of robotic systems in shared environments, firstly by studying the causal relations between variables in simulation without real people, and then facilitating the actual robot deployment in real human environments. ROS-Causal: https://lcastri.github.io/roscausal
comment: Published at 2024 IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
♻ ☆ AquaROM: shape optimization pipeline for soft swimmers using parametric reduced order models
The efficient optimization of actuated soft structures, particularly under complex nonlinear forces, remains a critical challenge in advancing robotics. Simulations of nonlinear structures, such as soft-bodied robots modeled using the finite element method (FEM), often demand substantial computational resources, especially during optimization. To address this challenge, we propose a novel optimization algorithm based on a tensorial parametric reduced order model (PROM). Our algorithm leverages dimensionality reduction and solution approximation techniques to facilitate efficient solving of nonlinear constrained optimization problems. The well-structured tensorial approach enables the use of analytical gradients within a specifically chosen reduced order basis (ROB), significantly enhancing computational efficiency. To showcase the performance of our method, we apply it to optimizing soft robotic swimmer shapes. These actuated soft robots experience hydrodynamic forces, subjecting them to both internal and external nonlinear forces, which are incorporated into our optimization process using a data-free ROB for fast and accurate computations. This approach not only reduces computational complexity but also unlocks new opportunities to optimize complex nonlinear systems in soft robotics, paving the way for more efficient design and control.
♻ ☆ Beyond Imitation: Reinforcement Learning-Based Sim-Real Co-Training for VLA Models
Simulation offers a scalable and low-cost way to enrich vision-language-action (VLA) training, reducing reliance on expensive real-robot demonstrations. However, most sim-real co-training methods rely on supervised fine-tuning (SFT), which treats simulation as a static source of demonstrations and does not exploit large-scale closed-loop interaction. Consequently, real-world gains and generalization are often limited. In this paper, we propose an \underline{\textit{RL}}-based sim-real \underline{\textit{Co}}-training \modify{(RL-Co)} framework that leverages interactive simulation while preserving real-world capabilities. Our method follows a generic two-stage design: we first warm-start the policy with SFT on a mixture of real and simulated demonstrations, then fine-tune it with reinforcement learning in simulation while adding an auxiliary supervised loss on real-world data to anchor the policy and mitigate catastrophic forgetting. We evaluate our framework on four real-world tabletop manipulation tasks using two representative VLA architectures, OpenVLA and $π_{0.5}$, and observe consistent improvements over real-only fine-tuning and SFT-based co-training, including +24% real-world success on OpenVLA and +20% on $π_{0.5}$. Beyond higher success rates, RL co-training yields stronger generalization to unseen task variations and substantially improved real-world data efficiency, providing a practical and scalable pathway for leveraging simulation to enhance real-robot deployment.
♻ ☆ EigenSafe: A Spectral Framework for Learning-Based Probabilistic Safety Assessment
We present EigenSafe, an operator-theoretic framework for safety assessment of learning-enabled stochastic systems. In many robotic applications, the dynamics are inherently stochastic due to factors such as sensing noise and environmental disturbances, and it is challenging for conventional methods such as Hamilton-Jacobi reachability and control barrier functions to provide a well-calibrated safety critic that is tied to the actual safety probability. We derive a linear operator that governs the dynamic programming principle for safety probability, and find that its dominant eigenpair provides critical safety information for both individual state-action pairs and the overall closed-loop system. The proposed framework learns this dominant eigenpair, which can be used to either inform or constrain policy updates. We demonstrate that the learned eigenpair effectively facilitates safe reinforcement learning. Further, we validate its applicability in enhancing the safety of learned policies from imitation learning through robot manipulation experiments using a UR3 robotic arm in a food preparation task.
comment: Inkyu Jang and Jonghae Park contributed equally to this work. Project Webpage: https://eigen-safe.github.io/
♻ ☆ V2V-LLM: Vehicle-to-Vehicle Cooperative Autonomous Driving with Multimodal Large Language Models
Current autonomous driving vehicles rely mainly on their individual sensors to understand surrounding scenes and plan for future trajectories, which can be unreliable when the sensors are malfunctioning or occluded. To address this problem, cooperative perception methods via vehicle-to-vehicle (V2V) communication have been proposed, but they have tended to focus on perception tasks like detection or tracking. How those approaches contribute to overall cooperative planning performance is still under-explored. Inspired by recent progress using Large Language Models (LLMs) to build autonomous driving systems, we propose a novel problem setting that integrates a Multimodal LLM into cooperative autonomous driving, with the proposed Vehicle-to-Vehicle Question-Answering (V2V-QA) dataset and benchmark. We also propose our baseline method Vehicle-to-Vehicle Multimodal Large Language Model (V2V-LLM), which uses an LLM to fuse perception information from multiple connected autonomous vehicles (CAVs) and answer various types of driving-related questions: grounding, notable object identification, and planning. Experimental results show that our proposed V2V-LLM can be a promising unified model architecture for performing various tasks in cooperative autonomous driving, and outperforms other baseline methods that use different fusion approaches. Our work also creates a new research direction that can improve the safety of future autonomous driving systems. The code and data will be released to the public to facilitate open-source research in this field. Our project website: https://eddyhkchiu.github.io/v2vllm.github.io/ .
comment: Accepted by ICRA 2026 (IEEE International Conference on Robotics and Automation). Project: https://eddyhkchiu.github.io/v2vllm.github.io/ Code: https://github.com/eddyhkchiu/V2V-LLM Dataset: https://huggingface.co/datasets/eddyhkchiu/V2V-GoT-QA
♻ ☆ V2V-GoT: Vehicle-to-Vehicle Cooperative Autonomous Driving with Multimodal Large Language Models and Graph-of-Thoughts
Current state-of-the-art autonomous vehicles could face safety-critical situations when their local sensors are occluded by large nearby objects on the road. Vehicle-to-vehicle (V2V) cooperative autonomous driving has been proposed as a means of addressing this problem, and one recently introduced framework for cooperative autonomous driving has further adopted an approach that incorporates a Multimodal Large Language Model (MLLM) to integrate cooperative perception and planning processes. However, despite the potential benefit of applying graph-of-thoughts reasoning to the MLLM, this idea has not been considered by previous cooperative autonomous driving research. In this paper, we propose a novel graph-of-thoughts framework specifically designed for MLLM-based cooperative autonomous driving. Our graph-of-thoughts includes our proposed novel ideas of occlusion-aware perception and planning-aware prediction. We curate the V2V-GoT-QA dataset and develop the V2V-GoT model for training and testing the cooperative driving graph-of-thoughts. Our experimental results show that our method outperforms other baselines in cooperative perception, prediction, and planning tasks. Our project website: https://eddyhkchiu.github.io/v2vgot.github.io/ .
comment: Accepted by ICRA 2026 (IEEE International Conference on Robotics and Automation). Project: https://eddyhkchiu.github.io/v2vgot.github.io/ Code: https://github.com/eddyhkchiu/V2V-GoT Dataset: https://huggingface.co/datasets/eddyhkchiu/V2V-GoT-QA
Computation and Language 62
☆ Does Socialization Emerge in AI Agent Society? A Case Study of Moltbook
As large language model agents increasingly populate networked environments, a fundamental question arises: do artificial intelligence (AI) agent societies undergo convergence dynamics similar to human social systems? Lately, Moltbook approximates a plausible future scenario in which autonomous agents participate in an open-ended, continuously evolving online society. We present the first large-scale systemic diagnosis of this AI agent society. Beyond static observation, we introduce a quantitative diagnostic framework for dynamic evolution in AI agent societies, measuring semantic stabilization, lexical turnover, individual inertia, influence persistence, and collective consensus. Our analysis reveals a system in dynamic balance in Moltbook: while global semantic averages stabilize rapidly, individual agents retain high diversity and persistent lexical turnover, defying homogenization. However, agents exhibit strong individual inertia and minimal adaptive response to interaction partners, preventing mutual influence and consensus. Consequently, influence remains transient with no persistent supernodes, and the society fails to develop stable collective influence anchors due to the absence of shared social memory. These findings demonstrate that scale and interaction density alone are insufficient to induce socialization, providing actionable design and analysis principles for upcoming next-generation AI agent societies.
☆ FMMD: A multimodal open peer review dataset based on F1000Research
Automated scholarly paper review (ASPR) has entered the coexistence phase with traditional peer review, where artificial intelligence (AI) systems are increasingly incorporated into real-world manuscript evaluation. In parallel, research on automated and AI-assisted peer review has proliferated. Despite this momentum, empirical progress remains constrained by several critical limitations in existing datasets. While reviewers routinely evaluate figures, tables, and complex layouts to assess scientific claims, most existing datasets remain overwhelmingly text-centric. This bias is reinforced by a narrow focus on data from computer science venues. Furthermore, these datasets lack precise alignment between reviewer comments and specific manuscript versions, obscuring the iterative relationship between peer review and manuscript evolution. In response, we introduce FMMD, a multimodal and multidisciplinary open peer review dataset curated from F1000Research. The dataset bridges the current gap by integrating manuscript-level visual and structural data with version-specific reviewer reports and editorial decisions. By providing explicit alignment between reviewer comments and the exact article iteration under review, FMMD enables fine-grained analysis of the peer review lifecycle across diverse scientific domains. FMMD supports tasks such as multimodal issue detection and multimodal review comment generation. It provides a comprehensive empirical resource for the development of peer review research.
comment: Work in progress
☆ MCPShield: A Security Cognition Layer for Adaptive Trust Calibration in Model Context Protocol Agents
The Model Context Protocol (MCP) standardizes tool use for LLM-based agents and enable third-party servers. This openness introduces a security misalignment: agents implicitly trust tools exposed by potentially untrusted MCP servers. However, despite its excellent utility, existing agents typically offer limited validation for third-party MCP servers. As a result, agents remain vulnerable to MCP-based attacks that exploit the misalignment between agents and servers throughout the tool invocation lifecycle. In this paper, we propose MCPShield as a plug-in security cognition layer that mitigates this misalignment and ensures agent security when invoking MCP-based tools. Drawing inspiration from human experience-driven tool validation, MCPShield assists agent forms security cognition with metadata-guided probing before invocation. Our method constrains execution within controlled boundaries while cognizing runtime events, and subsequently updates security cognition by reasoning over historical traces after invocation, building on human post-use reflection on tool behavior. Experiments demonstrate that MCPShield exhibits strong generalization in defending against six novel MCP-based attack scenarios across six widely used agentic LLMs, while avoiding false positives on benign servers and incurring low deployment overhead. Overall, our work provides a practical and robust security safeguard for MCP-based tool invocation in open agent ecosystems.
comment: 21 pages, 5 figures, 6 tables
☆ Whom to Query for What: Adaptive Group Elicitation via Multi-Turn LLM Interactions
Eliciting information to reduce uncertainty about latent group-level properties from surveys and other collective assessments requires allocating limited questioning effort under real costs and missing data. Although large language models enable adaptive, multi-turn interactions in natural language, most existing elicitation methods optimize what to ask with a fixed respondent pool, and do not adapt respondent selection or leverage population structure when responses are partial or incomplete. To address this gap, we study adaptive group elicitation, a multi-round setting where an agent adaptively selects both questions and respondents under explicit query and participation budgets. We propose a theoretically grounded framework that combines (i) an LLM-based expected information gain objective for scoring candidate questions with (ii) heterogeneous graph neural network propagation that aggregates observed responses and participant attributes to impute missing responses and guide per-round respondent selection. This closed-loop procedure queries a small, informative subset of individuals while inferring population-level responses via structured similarity. Across three real-world opinion datasets, our method consistently improves population-level response prediction under constrained budgets, including a >12% relative gain on CES at a 10% respondent budget.
☆ STATe-of-Thoughts: Structured Action Templates for Tree-of-Thoughts
Inference-Time-Compute (ITC) methods like Best-of-N and Tree-of-Thoughts are meant to produce output candidates that are both high-quality and diverse, but their use of high-temperature sampling often fails to achieve meaningful output diversity. Moreover, existing ITC methods offer limited control over how to perform reasoning, which in turn limits their explainability. We present STATe-of-Thoughts (STATe), an interpretable ITC method that searches over high-level reasoning patterns. STATe replaces stochastic sampling with discrete and interpretable textual interventions: a controller selects actions encoding high-level reasoning choices, a generator produces reasoning steps conditioned on those choices, and an evaluator scores candidates to guide search. This structured approach yields three main advantages. First, action-guided textual interventions produce greater response diversity than temperature-based sampling. Second, in a case study on argument generation, STATe's explicit action sequences capture interpretable features that are highly predictive of output quality. Third, estimating the association between performance and action choices allows us to identify promising yet unexplored regions of the action space and steer generation directly toward them. Together, these results establish STATe as a practical framework for generating high-quality, diverse, and interpretable text. Our framework is available at https://github.com/zbambergerNLP/state-of-thoughts.
comment: v1, 18 pages main, 55 pages total, 9 tables, 12 figures
☆ Detecting LLM Hallucinations via Embedding Cluster Geometry: A Three-Type Taxonomy with Measurable Signatures
We propose a geometric taxonomy of large language model hallucinations based on observable signatures in token embedding cluster structure. By analyzing the static embedding spaces of 11 transformer models spanning encoder (BERT, RoBERTa, ELECTRA, DeBERTa, ALBERT, MiniLM, DistilBERT) and decoder (GPT-2) architectures, we identify three operationally distinct hallucination types: Type 1 (center-drift) under weak context, Type 2 (wrong-well convergence) to locally coherent but contextually incorrect cluster regions, and Type 3 (coverage gaps) where no cluster structure exists. We introduce three measurable geometric statistics: α (polarity coupling), \b{eta} (cluster cohesion), and λ_s (radial information gradient). Across all 11 models, polarity structure (α > 0.5) is universal (11/11), cluster cohesion (\b{eta} > 0) is universal (11/11), and the radial information gradient is significant (9/11, p < 0.05). We demonstrate that the two models failing λ_s significance -- ALBERT and MiniLM -- do so for architecturally explicable reasons: factorized embedding compression and distillation-induced isotropy, respectively. These findings establish the geometric prerequisites for type-specific hallucination detection and yield testable predictions about architecture-dependent vulnerability profiles.
comment: 9 pages, 5 figures
☆ AD-Bench: A Real-World, Trajectory-Aware Advertising Analytics Benchmark for LLM Agents
While Large Language Model (LLM) agents have achieved remarkable progress in complex reasoning tasks, evaluating their performance in real-world environments has become a critical problem. Current benchmarks, however, are largely restricted to idealized simulations, failing to address the practical demands of specialized domains like advertising and marketing analytics. In these fields, tasks are inherently more complex, often requiring multi-round interaction with professional marketing tools. To address this gap, we propose AD-Bench, a benchmark designed based on real-world business requirements of advertising and marketing platforms. AD-Bench is constructed from real user marketing analysis requests, with domain experts providing verifiable reference answers and corresponding reference tool-call trajectories. The benchmark categorizes requests into three difficulty levels (L1-L3) to evaluate agents' capabilities under multi-round, multi-tool collaboration. Experiments show that on AD-Bench, Gemini-3-Pro achieves Pass@1 = 68.0% and Pass@3 = 83.0%, but performance drops significantly on L3 to Pass@1 = 49.4% and Pass@3 = 62.1%, with a trajectory coverage of 70.1%, indicating that even state-of-the-art models still exhibit substantial capability gaps in complex advertising and marketing analysis scenarios. AD-Bench provides a realistic benchmark for evaluating and improving advertising marketing agents, the leaderboard and code can be found at https://github.com/Emanual20/adbench-leaderboard.
comment: 15 pages, 11 figures
☆ We can still parse using syntactic rules
This research introduces a new parsing approach, based on earlier syntactic work on context free grammar (CFG) and generalized phrase structure grammar (GPSG). The approach comprises both a new parsing algorithm and a set of syntactic rules and features that overcome the limitations of CFG. It also generates both dependency and constituency parse trees, while accommodating noise and incomplete parses. The system was tested on data from Universal Dependencies, showing a promising average Unlabeled Attachment Score (UAS) of 54.5% in the development dataset (7 corpora) and 53.8% in the test set (12 corpora). The system also provides multiple parse hypotheses, allowing further reranking to improve parsing accuracy. This approach also leverages much of the theoretical syntactic work since the 1950s to be used within a computational context. The application of this approach provides a transparent and interpretable NLP model to process language input.
☆ REDSearcher: A Scalable and Cost-Efficient Framework for Long-Horizon Search Agents
Large language models are transitioning from generalpurpose knowledge engines to realworld problem solvers, yet optimizing them for deep search tasks remains challenging. The central bottleneck lies in the extreme sparsity of highquality search trajectories and reward signals, arising from the difficulty of scalable longhorizon task construction and the high cost of interactionheavy rollouts involving external tool calls. To address these challenges, we propose REDSearcher, a unified framework that codesigns complex task synthesis, midtraining, and posttraining for scalable searchagent optimization. Specifically, REDSearcher introduces the following improvements: (1) We frame task synthesis as a dualconstrained optimization, where task difficulty is precisely governed by graph topology and evidence dispersion, allowing scalable generation of complex, highquality tasks. (2) We introduce toolaugmented queries to encourage proactive tool use rather than passive recall.(3) During midtraining, we strengthen core atomic capabilities knowledge, planning, and function calling substantially reducing the cost of collecting highquality trajectories for downstream training. (4) We build a local simulated environment that enables rapid, lowcost algorithmic iteration for reinforcement learning experiments. Across both textonly and multimodal searchagent benchmarks, our approach achieves stateoftheart performance. To facilitate future research on longhorizon search agents, we will release 10K highquality complex text search trajectories, 5K multimodal trajectories and 1K text RL query set, and together with code and model checkpoints.
comment: https://redsearchagent.github.io/index/
☆ The Interspeech 2026 Audio Reasoning Challenge: Evaluating Reasoning Process Quality for Audio Reasoning Models and Agents
Recent Large Audio Language Models (LALMs) excel in understanding but often lack transparent reasoning. To address this "black-box" limitation, we organized the Audio Reasoning Challenge at Interspeech 2026, the first shared task dedicated to evaluating Chain-of-Thought (CoT) quality in the audio domain. The challenge introduced MMAR-Rubrics, a novel instance-level protocol assessing the factuality and logic of reasoning chains. Featured Single Model and Agent tracks, the competition attracting 156 teams from 18 countries and regions. Results show agent systems currently lead in reasoning quality, utilizing iterative tool orchestration and cross-modal analysis. Besides, single models are rapidly advancing via reinforcement learning and sophisticated data pipeline. We details the challenge design, methodology, and a comprehensive analysis of state-of-the-art systems, providing new insights for explainable audio intelligence.
comment: The official website of the Audio Reasoning Challenge: https://audio-reasoning-challenge.github.io
☆ Reasoning Language Models for complex assessments tasks: Evaluating parental cooperation from child protection case reports
Purpose: Reasoning language models (RLMs) have demonstrated significant advances in solving complex reasoning tasks. We examined their potential to assess parental cooperation during CPS interventions using case reports, a case factor characterized by ambiguous and conflicting information. Methods: A four stage workflow comprising (1) case reports collection, (2) reasoning-based assessment of parental cooperation, (3) automated category extraction, and (4) case labeling was developed. The performance of RLMs with different parameter sizes (255B, 32B, 4B) was compared against human validated data. Two expert human reviewers (EHRs) independently classified a weighted random sample of reports. Results: The largest RLM achieved the highest accuracy (89%), outperforming the initial approach (80%). Classification accuracy was higher for mothers (93%) than for fathers (85%), and EHRs exhibited similar differences. Conclusions: RLMs' reasoning can effectively assess complex case factors such as parental cooperation. Lower accuracy in assessing fathers' cooperation supports the argument of a stronger professional focus on mothers in CPS interventions.
☆ MAGE: All-[MASK] Block Already Knows Where to Look in Diffusion LLM
Block diffusion LLMs are emerging as a promising next paradigm for language generation, but their use of KV caching makes memory access a dominant bottleneck in long-context settings. While dynamic sparse attention has been actively explored, existing methods designed for autoregressive LLMs rely on approximate importance estimation and perform poorly when adapted to block diffusion. This work identifies a key opportunity unique to block diffusion: attention at the first All-[MASK] denoising step reliably predicts important KV entries and budget requirements, enabling MAGE to perform a single exact attention pass per block and reuse it for training-free sparse denoising. Across long-context benchmarks including LongBench and Needle-in-a-Haystack, MAGE achieves near-lossless accuracy with a fraction of the KV budget while delivering up to 3-4x end-to-end speedup, consistently outperforming AR-oriented sparse attention baselines. A lightweight fine-tuning strategy further strengthens [MASK]-guided patterns with minimal cost, requiring only a few hours of training on a single NVIDIA H100 GPU for both 1.5B and 7B models.
☆ Knowing When Not to Answer: Abstention-Aware Scientific Reasoning
Large language models are increasingly used to answer and verify scientific claims, yet existing evaluations typically assume that a model must always produce a definitive answer. In scientific settings, however, unsupported or uncertain conclusions can be more harmful than abstaining. We study this problem through an abstention-aware verification framework that decomposes scientific claims into minimal conditions, audits each condition against available evidence using natural language inference (NLI), and selectively decides whether to support, refute, or abstain. We evaluate this framework across two complementary scientific benchmarks: SciFact and PubMedQA, covering both closed-book and open-domain evidence settings. Experiments are conducted with six diverse language models, including encoder-decoder, open-weight chat models, and proprietary APIs. Across all benchmarks and models, we observe that raw accuracy varies only modestly across architectures, while abstention plays a critical role in controlling error. In particular, confidence-based abstention substantially reduces risk at moderate coverage levels, even when absolute accuracy improvements are limited. Our results suggest that in scientific reasoning tasks, the primary challenge is not selecting a single best model, but rather determining when available evidence is sufficient to justify an answer. This work highlights abstention-aware evaluation as a practical and model-agnostic lens for assessing scientific reliability, and provides a unified experimental basis for future work on selective reasoning in scientific domains. Code is available at https://github.com/sabdaljalil2000/ai4science .
GPT-5 vs Other LLMs in Long Short-Context Performance
With the significant expansion of the context window in Large Language Models (LLMs), these models are theoretically capable of processing millions of tokens in a single pass. However, research indicates a significant gap between this theoretical capacity and the practical ability of models to robustly utilize information within long contexts, especially in tasks that require a comprehensive understanding of numerous details. This paper evaluates the performance of four state-of-the-art models (Grok-4, GPT-4, Gemini 2.5, and GPT-5) on long short-context tasks. For this purpose, three datasets were used: two supplementary datasets for retrieving culinary recipes and math problems, and a primary dataset of 20K social media posts for depression detection. The results show that as the input volume on the social media dataset exceeds 5K posts (70K tokens), the performance of all models degrades significantly, with accuracy dropping to around 50-53% for 20K posts. Notably, in the GPT-5 model, despite the sharp decline in accuracy, its precision remained high at approximately 95%, a feature that could be highly effective for sensitive applications like depression detection. This research also indicates that the "lost in the middle" problem has been largely resolved in newer models. This study emphasizes the gap between the theoretical capacity and the actual performance of models on complex, high-volume data tasks and highlights the importance of metrics beyond simple accuracy for practical applications.
comment: 10 pages, 7 figures. Accepted for publication in the 3rd International Conference on Foundation and Large Language Models (FLLM2025). IEEE. The final version will be available in IEEE Xplore
☆ Investigation for Relative Voice Impression Estimation
Paralinguistic and non-linguistic aspects of speech strongly influence listener impressions. While most research focuses on absolute impression scoring, this study investigates relative voice impression estimation (RIE), a framework for predicting the perceptual difference between two utterances from the same speaker. The estimation target is a low-dimensional vector derived from subjective evaluations, quantifying the perceptual shift of the second utterance relative to the first along an antonymic axis (e.g., ``Dark--Bright''). To isolate expressive and prosodic variation, we used recordings of a professional speaker reading a text in various styles. We compare three modeling approaches: classical acoustic features commonly used for speech emotion recognition, self-supervised speech representations, and multimodal large language models (MLLMs). Our results demonstrate that models using self-supervised representations outperform methods with classical acoustic features, particularly in capturing complex and dynamic impressions (e.g., ``Cold--Warm'') where classical features fail. In contrast, current MLLMs prove unreliable for this fine-grained pairwise task. This study provides the first systematic investigation of RIE and demonstrates the strength of self-supervised speech models in capturing subtle perceptual variations.
comment: 5 pages,3 figures, Accepted to Speech Prosody 2026
☆ Deep Dense Exploration for LLM Reinforcement Learning via Pivot-Driven Resampling
Effective exploration is a key challenge in reinforcement learning for large language models: discovering high-quality trajectories within a limited sampling budget from the vast natural language sequence space. Existing methods face notable limitations: GRPO samples exclusively from the root, saturating high-probability trajectories while leaving deep, error-prone states under-explored. Tree-based methods blindly disperse budgets across trivial or unrecoverable states, causing sampling dilution that fails to uncover rare correct suffixes and destabilizes local baselines. To address this, we propose Deep Dense Exploration (DDE), a strategy that focuses exploration on $\textit{pivots}$-deep, recoverable states within unsuccessful trajectories. We instantiate DDE with DEEP-GRPO, which introduces three key innovations: (1) a lightweight data-driven utility function that automatically balances recoverability and depth bias to identify pivot states; (2) local dense resampling at each pivot to increase the probability of discovering correct subsequent trajectories; and (3) a dual-stream optimization objective that decouples global policy learning from local corrective updates. Experiments on mathematical reasoning benchmarks demonstrate that our method consistently outperforms GRPO, tree-based methods, and other strong baselines.
☆ Index Light, Reason Deep: Deferred Visual Ingestion for Visual-Dense Document Question Answering
Existing multimodal document question answering methods universally adopt a supply-side ingestion strategy: running a Vision-Language Model (VLM) on every page during indexing to generate comprehensive descriptions, then answering questions through text retrieval. However, this "pre-ingestion" approach is costly (a 113-page engineering drawing package requires approximately 80,000 VLM tokens), end-to-end unreliable (VLM outputs may fail to be correctly retrieved due to format mismatches in the retrieval infrastructure), and irrecoverable once it fails. This paper proposes the Deferred Visual Ingestion (DVI) framework, adopting a demand-side ingestion strategy: the indexing phase performs only lightweight metadata extraction, deferring visual understanding to the moment users pose specific questions. DVI's core principle is "Index for locating, not understanding"--achieving page localization through structured metadata indexes and BM25 full-text search, then sending original images along with specific questions to a VLM for targeted analysis. Experiments on two real industrial engineering drawings (113 pages + 7 pages) demonstrate that DVI achieves comparable overall accuracy at zero ingestion VLM cost (46.7% vs. 48.9%), an effectiveness rate of 50% on visually necessary queries (vs. 0% for pre-ingestion), and 100% page localization (98% search space compression). DVI also supports interactive refinement and progressive caching, transforming the "QA accuracy" problem into a "page localization" problem--once the correct drawing page is found, obtaining the answer becomes a matter of interaction rounds.
comment: 24 pages, 9 figures, 9 tables
☆ A Multi-Agent Framework for Medical AI: Leveraging Fine-Tuned GPT, LLaMA, and DeepSeek R1 for Evidence-Based and Bias-Aware Clinical Query Processing
Large language models (LLMs) show promise for healthcare question answering, but clinical use is limited by weak verification, insufficient evidence grounding, and unreliable confidence signalling. We propose a multi-agent medical QA framework that combines complementary LLMs with evidence retrieval, uncertainty estimation, and bias checks to improve answer reliability. Our approach has two phases. First, we fine-tune three representative LLM families (GPT, LLaMA, and DeepSeek R1) on MedQuAD-derived medical QA data (20k+ question-answer pairs across multiple NIH domains) and benchmark generation quality. DeepSeek R1 achieves the strongest scores (ROUGE-1 0.536 +- 0.04; ROUGE-2 0.226 +-0.03; BLEU 0.098 -+ 0.018) and substantially outperforms the specialised biomedical baseline BioGPT in zero-shot evaluation. Second, we implement a modular multi-agent pipeline in which a Clinical Reasoning agent (fine-tuned LLaMA) produces structured explanations, an Evidence Retrieval agent queries PubMed to ground responses in recent literature, and a Refinement agent (DeepSeek R1) improves clarity and factual consistency; an optional human validation path is triggered for high-risk or high-uncertainty cases. Safety mechanisms include Monte Carlo dropout and perplexity-based uncertainty scoring, plus lexical and sentiment-based bias detection supported by LIME/SHAP-based analyses. In evaluation, the full system achieves 87% accuracy with relevance around 0.80, and evidence augmentation reduces uncertainty (perplexity 4.13) compared to base responses, with mean end-to-end latency of 36.5 seconds under the reported configuration. Overall, the results indicate that agent specialisation and verification layers can mitigate key single-model limitations and provide a practical, extensible design for evidence-based and bias-aware medical AI.
comment: 27 pages, 14 figures, 5 tables
☆ ROAST: Rollout-based On-distribution Activation Steering Technique
Activation steering provides parameter-efficient control over large language models (LLMs) at inference time, but many methods rely on off-distribution supervision and discrete masking, leading to brittle interventions. We propose ROAST (Rollout-based On-distribution Activation Steering Technique), which estimates steering directions from the model's own on-distribution rollouts via ROC and avoids hard sparsification via Continuous Soft Scaling (CSS) and Grouped Mean Normalization. Our empirical analysis reveals that while activation magnitude correlates moderately with directional consistency, the variance in magnitude is significant and often disproportionate to semantic quality. This suggests that high-magnitude activations risk dominating the global steering direction if not properly normalized. To address this, ROAST employs grouped normalization to balance contributions across samples, ensuring a more robust estimation of the consensus steering direction. Across models (0.6B to 32B), ROAST consistently improves performance on diverse tasks (e.g., +9.7% on GSM8K for Qwen3-0.6B and +12.1% on TruthfulQA for GLM4-32B), and analyses show that CSS better preserves activation energy.
☆ Algebraic Quantum Intelligence: A New Framework for Reproducible Machine Creativity
Large language models (LLMs) have achieved remarkable success in generating fluent and contextually appropriate text; however, their capacity to produce genuinely creative outputs remains limited. This paper posits that this limitation arises from a structural property of contemporary LLMs: when provided with rich context, the space of future generations becomes strongly constrained, and the generation process is effectively governed by near-deterministic dynamics. Recent approaches such as test-time scaling and context adaptation improve performance but do not fundamentally alter this constraint. To address this issue, we propose Algebraic Quantum Intelligence (AQI) as a computational framework that enables systematic expansion of semantic space. AQI is formulated as a noncommutative algebraic structure inspired by quantum theory, allowing properties such as order dependence, interference, and uncertainty to be implemented in a controlled and designable manner. Semantic states are represented as vectors in a Hilbert space, and their evolution is governed by C-values computed from noncommutative operators, thereby ensuring the coexistence and expansion of multiple future semantic possibilities. In this study, we implement AQI by extending a transformer-based LLM with more than 600 specialized operators. We evaluate the resulting system on creative reasoning benchmarks spanning ten domains under an LLM-as-a-judge protocol. The results show that AQI consistently outperforms strong baseline models, yielding statistically significant improvements and reduced cross-domain variance. These findings demonstrate that noncommutative algebraic dynamics can serve as a practical and reproducible foundation for machine creativity. Notably, this architecture has already been deployed in real-world enterprise environments.
☆ Character-aware Transformers Learn an Irregular Morphological Pattern Yet None Generalize Like Humans
Whether neural networks can serve as cognitive models of morphological learning remains an open question. Recent work has shown that encoder-decoder models can acquire irregular patterns, but evidence that they generalize these patterns like humans is mixed. We investigate this using the Spanish \emph{L-shaped morphome}, where only the first-person singular indicative (e.g., \textit{pongo} `I put') shares its stem with all subjunctive forms (e.g., \textit{ponga, pongas}) despite lacking apparent phonological, semantic, or syntactic motivation. We compare five encoder-decoder transformers varying along two dimensions: sequential vs. position-invariant positional encoding, and atomic vs. decomposed tag representations. Positional encoding proves decisive: position-invariant models recover the correct L-shaped paradigm clustering even when L-shaped verbs are scarce in training, whereas sequential positional encoding models only partially capture the pattern. Yet none of the models productively generalize this pattern to novel forms. Position-invariant models generalize the L-shaped stem across subjunctive cells but fail to extend it to the first-person singular indicative, producing a mood-based generalization rather than the L-shaped morphomic pattern. Humans do the opposite, generalizing preferentially to the first-person singular indicative over subjunctive forms. None of the models reproduce the human pattern, highlighting the gap between statistical pattern reproduction and morphological abstraction.
☆ CCiV: A Benchmark for Structure, Rhythm and Quality in LLM-Generated Chinese \textit{Ci} Poetry
The generation of classical Chinese \textit{Ci} poetry, a form demanding a sophisticated blend of structural rigidity, rhythmic harmony, and artistic quality, poses a significant challenge for large language models (LLMs). To systematically evaluate and advance this capability, we introduce \textbf{C}hinese \textbf{Ci}pai \textbf{V}ariants (\textbf{CCiV}), a benchmark designed to assess LLM-generated \textit{Ci} poetry across these three dimensions: structure, rhythm, and quality. Our evaluation of 17 LLMs on 30 \textit{Cipai} reveals two critical phenomena: models frequently generate valid but unexpected historical variants of a poetic form, and adherence to tonal patterns is substantially harder than structural rules. We further show that form-aware prompting can improve structural and tonal control for stronger models, while potentially degrading weaker ones. Finally, we observe weak and inconsistent alignment between formal correctness and literary quality in our sample. CCiV highlights the need for variant-aware evaluation and more holistic constrained creative generation methods.
comment: ARR 2025 May and Icassp 2026 submission. Working in progress
☆ Empty Shelves or Lost Keys? Recall Is the Bottleneck for Parametric Factuality
Standard factuality evaluations of LLMs treat all errors alike, obscuring whether failures arise from missing knowledge (empty shelves) or from limited access to encoded facts (lost keys). We propose a behavioral framework that profiles factual knowledge at the level of facts rather than questions, characterizing each fact by whether it is encoded, and then by how accessible it is: cannot be recalled, can be directly recalled, or can only be recalled with inference-time computation (thinking). To support such profiling, we introduce WikiProfile, a new benchmark constructed via an automated pipeline with a prompted LLM grounded in web search. Across 4 million responses from 13 LLMs, we find that encoding is nearly saturated in frontier models on our benchmark, with GPT-5 and Gemini-3 encoding 95--98% of facts. However, recall remains a major bottleneck: many errors previously attributed to missing knowledge instead stem from failures to access it. These failures are systematic and disproportionately affect long-tail facts and reverse questions. Finally, we show that thinking improves recall and can recover a substantial fraction of failures, indicating that future gains may rely less on scaling and more on methods that improve how models utilize what they already encode.
☆ GTS: Inference-Time Scaling of Latent Reasoning with a Learnable Gaussian Thought Sampler
Inference-time scaling (ITS) in latent reasoning models typically introduces stochasticity through heuristic perturbations, such as dropout or fixed Gaussian noise. While these methods increase trajectory diversity, their exploration behavior is not explicitly modeled and can be inefficient under finite sampling budgets. We observe that stronger perturbations do not necessarily translate into more effective candidate trajectories, as unguided noise may disrupt internal decision structure rather than steer it. To provide a more structured alternative, we model latent thought exploration as conditional sampling from learnable densities and instantiate this idea as a Gaussian Thought Sampler (GTS). GTS predicts context-dependent perturbation distributions over continuous reasoning states and is trained with GRPO-style policy optimization while keeping the backbone frozen. Experiments on GSM8K with two latent reasoning architectures show that GTS achieves more reliable inference-time scaling than heuristic baselines. These findings indicate that improving latent ITS requires structured and optimizable exploration mechanisms rather than simply amplifying stochasticity.
☆ Open Rubric System: Scaling Reinforcement Learning with Pairwise Adaptive Rubric
Scalar reward models compress multi-dimensional human preferences into a single opaque score, creating an information bottleneck that often leads to brittleness and reward hacking in open-ended alignment. We argue that robust alignment for non-verifiable tasks is fundamentally a principle generalization problem: reward should not be a learned function internalized into a judge, but an explicit reasoning process executed under inspectable principles. To operationalize this view, we present the Open Rubric System (OpenRS), a plug-and-play, rubrics-based LLM-as-a-Judge framework built around Pairwise Adaptive Meta-Rubrics (PAMR) and lightweight Pointwise Verifiable Rubrics (PVRs), which provide both hard-constraint guardrails and verifiable reward components when ground-truth or programmatic checks are available. OpenRS uses an explicit meta-rubric -- a constitution-like specification that governs how rubrics are instantiated, weighted, and enforced -- and instantiates adaptive rubrics on the fly by conditioning on the semantic differences between two candidate responses. It then performs criterion-wise pairwise comparisons and aggregates criterion-level preferences externally, avoiding pointwise weighted scalarization while improving discriminability in open-ended settings. To keep principles consistent yet editable across various domains, we introduce a two-level meta-rubric refinement pipeline (automated evolutionary refinement for general principles and a reproducible human-in-the-loop procedure for domain principles), complemented with pointwise verifiable rubrics that act as both guardrails against degenerate behaviors and a source of verifiable reward for objective sub-tasks. Finally, we instantiate OpenRS as reward supervision in pairwise RL training.
☆ From Scarcity to Scale: A Release-Level Analysis of the Pashto Common Voice Dataset
Large, openly licensed speech datasets are essential for building automatic speech recognition (ASR) systems, yet many widely spoken languages remain underrepresented in public resources. Pashto, spoken by more than 60 million people, has historically lacked large-scale openly licensed speech data suitable for modern ASR development. This paper presents a release-level analysis of the Pashto component of the Mozilla Common Voice corpus, focusing on version 24.0 (December 2025) and contextualizing trends across major releases. We document rapid growth from 1.49 recorded hours in mid-2023 to 2,768.7 total hours in 2025, including 975.89 validated hours available for supervised ASR training. Beyond scale, we analyze validation throughput, contributor participation inequality, demographic metadata completeness, and sentence-level concentration in the validated subset. We find that participation is extremely concentrated (Gini = 0.941), age representation is strongly skewed toward young adults, and 41.97\% of clips lack self-reported gender labels, limiting subgroup auditing based on metadata. At the textual level, prompt reuse is moderate: 35.88\% of unique sentences account for 50\% of validated clips, suggesting that structural concentration is driven primarily by uneven contributor activity rather than dominance of a small prompt set. These results provide a quantitative audit of a rapidly scaling low-resource speech corpus and highlight practical priorities for improving dataset maturity, including expanded validation capacity and broader demographic participation.
☆ LM-Lexicon: Improving Definition Modeling via Harmonizing Semantic Experts EACL 2026
We introduce LM-Lexicon, an innovative definition modeling approach that incorporates data clustering, semantic expert learning, and model merging using a sparse mixture-of-experts architecture. By decomposing the definition modeling task into specialized semantic domains, where small language models are trained as domain experts, LM-Lexicon achieves substantial improvements (+7% BLEU score compared with the prior state-of-the-art model) over existing methods on five widely used benchmarks. Empirically, we demonstrate that 1) the clustering strategy enables fine-grained expert specialization with nearly 10% improvement in definition quality; 2) the semantic-aware domain-level routing mechanism achieves higher expert efficacy (+1%) than conventional token-level routing; and 3) further performance gains can be obtained through test-time compute and semantic expert scaling. Our work advances definition modeling while providing insights into the development of efficient language models for semantic-intensive applications.
comment: EACL 2026 (Oral), 22 pages, 12 figures, 12 tables
☆ LogitsCoder: Towards Efficient Chain-of-Thought Path Search via Logits Preference Decoding for Code Generation
Code generation remains a challenging task that requires precise and structured reasoning. Existing Test Time Scaling (TTS) methods, including structured tree search, have made progress in exploring reasoning paths but still face two major challenges: (1) underthinking, where reasoning chains tend to be shallow and fail to capture the full complexity of problems; and (2) overthinking, where overly verbose reasoning leads to inefficiency and increased computational costs. To address these issues, we propose LogitsCoder, a novel framework that enhances chain-of-thought reasoning through lightweight, logit-level control mechanisms for code generation. LogitsCoder iteratively generates and refines reasoning steps by first steering token selection toward statistically preferred patterns via Logits Preference Decoding, then selecting and aggregating diverse reasoning paths using Logits Rank Based Path Selection and Thoughts Aggregation. This results in coherent and effective reasoning chains that balance depth and efficiency. Extensive experiments demonstrate that LogitsCoder produces more efficient and higher-quality reasoning chains, leading to superior code generation performance compared to baseline methods.
☆ Context Shapes LLMs Retrieval-Augmented Fact-Checking Effectiveness
Large language models (LLMs) show strong reasoning abilities across diverse tasks, yet their performance on extended contexts remains inconsistent. While prior research has emphasized mid-context degradation in question answering, this study examines the impact of context in LLM-based fact verification. Using three datasets (HOVER, FEVEROUS, and ClimateFEVER) and five open-source models accross different parameters sizes (7B, 32B and 70B parameters) and model families (Llama-3.1, Qwen2.5 and Qwen3), we evaluate both parametric factual knowledge and the impact of evidence placement across varying context lengths. We find that LLMs exhibit non-trivial parametric knowledge of factual claims and that their verification accuracy generally declines as context length increases. Similarly to what has been shown in previous works, in-context evidence placement plays a critical role with accuracy being consistently higher when relevant evidence appears near the beginning or end of the prompt and lower when placed mid-context. These results underscore the importance of prompt structure in retrieval-augmented fact-checking systems.
☆ Geometry-Preserving Aggregation for Mixture-of-Experts Embedding Models
Mixture-of-Experts (MoE) embedding models combine expert outputs using weighted linear summation, implicitly assuming a linear subspace structure in the embedding space. This assumption is shown to be inconsistent with the geometry of expert representations. Geometric analysis of a modern MoE embedding model reveals that expert outputs lie on a shared hyperspherical manifold characterized by tightly concentrated norms and substantial angular separation. Under this geometry, linear aggregation induces inward collapse toward the manifold interior, distorting vector magnitude and direction and reducing embedding comparability. To address this inconsistency, Spherical Barycentric Aggregation (SBA) is introduced as a geometry-preserving aggregation operator that separates radial and angular components to maintain hyperspherical structure while remaining fully compatible with existing routing mechanisms. Experiments on selected tasks from the Massive Text Embedding Benchmark (MTEB), including semantic similarity, clustering, and duplicate question detection, demonstrate consistent performance improvements with identical training cost and full stability. Additional geometric analyses confirm that SBA prevents aggregation-induced collapse and preserves hyperspherical consistency, highlighting the importance of geometry-aware aggregation in MoE embedding architectures.
☆ GRRM: Group Relative Reward Modeling for Machine Translation
While Group Relative Policy Optimization (GRPO) offers a powerful framework for LLM post-training, its effectiveness in open-ended domains like Machine Translation hinges on accurate intra-group ranking. We identify that standard Scalar Quality Metrics (SQM) fall short in this context; by evaluating candidates in isolation, they lack the comparative context necessary to distinguish fine-grained linguistic nuances. To address this, we introduce the Group Quality Metric (GQM) paradigm and instantiate it via the Group Relative Reward Model (GRRM). Unlike traditional independent scorers, GRRM processes the entire candidate group jointly, leveraging comparative analysis to rigorously resolve relative quality and adaptive granularity. Empirical evaluations confirm that GRRM achieves competitive ranking accuracy among all baselines. Building on this foundation, we integrate GRRM into the GRPO training loop to optimize the translation policy. Experimental results demonstrate that our framework not only improves general translation quality but also unlocks reasoning capabilities comparable to state-of-the-art reasoning models. We release codes, datasets, and model checkpoints at https://github.com/NJUNLP/GRRM.
comment: 19 pages, 6 figures
☆ Named Entity Recognition for Payment Data Using NLP
Named Entity Recognition (NER) has emerged as a critical component in automating financial transaction processing, particularly in extracting structured information from unstructured payment data. This paper presents a comprehensive analysis of state-of-the-art NER algorithms specifically designed for payment data extraction, including Conditional Random Fields (CRF), Bidirectional Long Short-Term Memory with CRF (BiLSTM-CRF), and transformer-based models such as BERT and FinBERT. We conduct extensive experiments on a dataset of 50,000 annotated payment transactions across multiple payment formats including SWIFT MT103, ISO 20022, and domestic payment systems. Our experimental results demonstrate that fine-tuned BERT models achieve an F1-score of 94.2% for entity extraction, outperforming traditional CRF-based approaches by 12.8 percentage points. Furthermore, we introduce PaymentBERT, a novel hybrid architecture combining domain-specific financial embeddings with contextual representations, achieving state-of-the-art performance with 95.7% F1-score while maintaining real-time processing capabilities. We provide detailed analysis of cross-format generalization, ablation studies, and deployment considerations. This research provides practical insights for financial institutions implementing automated sanctions screening, anti-money laundering (AML) compliance, and payment processing systems.
comment: 14 pages, 8 figures, research paper
☆ The Sufficiency-Conciseness Trade-off in LLM Self-Explanation from an Information Bottleneck Perspective LREC 2026
Large Language Models increasingly rely on self-explanations, such as chain of thought reasoning, to improve performance on multi step question answering. While these explanations enhance accuracy, they are often verbose and costly to generate, raising the question of how much explanation is truly necessary. In this paper, we examine the trade-off between sufficiency, defined as the ability of an explanation to justify the correct answer, and conciseness, defined as the reduction in explanation length. Building on the information bottleneck principle, we conceptualize explanations as compressed representations that retain only the information essential for producing correct answers.To operationalize this view, we introduce an evaluation pipeline that constrains explanation length and assesses sufficiency using multiple language models on the ARC Challenge dataset. To broaden the scope, we conduct experiments in both English, using the original dataset, and Persian, as a resource-limited language through translation. Our experiments show that more concise explanations often remain sufficient, preserving accuracy while substantially reducing explanation length, whereas excessive compression leads to performance degradation.
comment: LREC 2026 submission; focuses on LLM self-explanation, interpretability, and information bottleneck analysis
☆ Chain-of-Thought Reasoning with Large Language Models for Clinical Alzheimer's Disease Assessment and Diagnosis
Alzheimer's disease (AD) has become a prevalent neurodegenerative disease worldwide. Traditional diagnosis still relies heavily on medical imaging and clinical assessment by physicians, which is often time-consuming and resource-intensive in terms of both human expertise and healthcare resources. In recent years, large language models (LLMs) have been increasingly applied to the medical field using electronic health records (EHRs), yet their application in Alzheimer's disease assessment remains limited, particularly given that AD involves complex multifactorial etiologies that are difficult to observe directly through imaging modalities. In this work, we propose leveraging LLMs to perform Chain-of-Thought (CoT) reasoning on patients' clinical EHRs. Unlike direct fine-tuning of LLMs on EHR data for AD classification, our approach utilizes LLM-generated CoT reasoning paths to provide the model with explicit diagnostic rationale for AD assessment, followed by structured CoT-based predictions. This pipeline not only enhances the model's ability to diagnose intrinsically complex factors but also improves the interpretability of the prediction process across different stages of AD progression. Experimental results demonstrate that the proposed CoT-based diagnostic framework significantly enhances stability and diagnostic performance across multiple CDR grading tasks, achieving up to a 15% improvement in F1 score compared to the zero-shot baseline method.
☆ Neuromem: A Granular Decomposition of the Streaming Lifecycle in External Memory for LLMs
Most evaluations of External Memory Module assume a static setting: memory is built offline and queried at a fixed state. In practice, memory is streaming: new facts arrive continuously, insertions interleave with retrievals, and the memory state evolves while the model is serving queries. In this regime, accuracy and cost are governed by the full memory lifecycle, which encompasses the ingestion, maintenance, retrieval, and integration of information into generation. We present Neuromem, a scalable testbed that benchmarks External Memory Modules under an interleaved insertion-and-retrieval protocol and decomposes its lifecycle into five dimensions including memory data structure, normalization strategy, consolidation policy, query formulation strategy, and context integration mechanism. Using three representative datasets LOCOMO, LONGMEMEVAL, and MEMORYAGENTBENCH, Neuromem evaluates interchangeable variants within a shared serving stack, reporting token-level F1 and insertion/retrieval latency. Overall, we observe that performance typically degrades as memory grows across rounds, and time-related queries remain the most challenging category. The memory data structure largely determines the attainable quality frontier, while aggressive compression and generative integration mechanisms mostly shift cost between insertion and retrieval with limited accuracy gain.
comment: 22 pages, 8 figures, 15 tables. Preprint
☆ MarsRetrieval: Benchmarking Vision-Language Models for Planetary-Scale Geospatial Retrieval on Mars
Data-driven approaches like deep learning are rapidly advancing planetary science, particularly in Mars exploration. Despite recent progress, most existing benchmarks remain confined to closed-set supervised visual tasks and do not support text-guided retrieval for geospatial discovery. We introduce MarsRetrieval, a retrieval benchmark for evaluating vision-language models for Martian geospatial discovery. MarsRetrieval includes three tasks: (1) paired image-text retrieval, (2) landform retrieval, and (3) global geo-localization, covering multiple spatial scales and diverse geomorphic origins. We propose a unified retrieval-centric protocol to benchmark multimodal embedding architectures, including contrastive dual-tower encoders and generative vision-language models. Our evaluation shows MarsRetrieval is challenging: even strong foundation models often fail to capture domain-specific geomorphic distinctions. We further show that domain-specific fine-tuning is critical for generalizable geospatial discovery in planetary settings. Our code is available at https://github.com/ml-stat-Sustech/MarsRetrieval
☆ Why Code, Why Now: Learnability, Computability, and the Real Limits of Machine Learning
Code generation has progressed more reliably than reinforcement learning, largely because code has an information structure that makes it learnable. Code provides dense, local, verifiable feedback at every token, whereas most reinforcement learning problems do not. This difference in feedback quality is not binary but graded. We propose a five-level hierarchy of learnability based on information structure and argue that the ceiling on ML progress depends less on model size than on whether a task is learnable at all. The hierarchy rests on a formal distinction among three properties of computational problems (expressibility, computability, and learnability). We establish their pairwise relationships, including where implications hold and where they fail, and present a unified template that makes the structural differences explicit. The analysis suggests why supervised learning on code scales predictably while reinforcement learning does not, and why the common assumption that scaling alone will solve remaining ML challenges warrants scrutiny.
♻ ☆ Batch Speculative Decoding Done Right
Speculative decoding must produce outputs distribution identical to standard autoregressive generation-this output equivalence is not an optimization target but the defining criterion of valid speculative decoding. We demonstrate that all existing batch speculative decoding implementations violate this fundamental requirement, producing corrupted outputs ranging from repetitive tokens to gibberish. These failures stem from the ragged tensor problem: sequences in the same batch accept different numbers of draft tokens, desynchronizing position IDs, attention masks, and KV-cache state. We present the first authentic batch speculative decoding framework. We (1) formalize the synchronization invariants that valid batch speculative decoding must satisfy, (2) present EQSPEC, the first algorithm that guarantees output equivalence, and analyze its cost structure to show that alignment overhead grows superlinearly and consumes up to 40\% of computation, and (3) introduce EXSPEC, which reduces this overhead through cross-batch scheduling that dynamically groups same-length sequences. On SpecBench across Vicuna-7B/68M, Qwen3-8B/0.6B, and GLM-4-9B/0.6B pairs, our methods achieve up to 3x throughput improvement at batch size 8 while maintaining algorithmic correctness. Our methods achieve 95\% decoding-equivalence, with residual divergence attributable to floating-point non-determinism in GPU inference, not the synchronization failures that cause near-zero equivalence of prior methods. Our code is available at https://github.com/eBay/spec_dec.
♻ ☆ From Fragments to Facts: A Curriculum-Driven DPO Approach for Generating Hindi News Veracity Explanations
In an era of rampant misinformation, generating reliable news explanations is vital, especially for under-represented languages like Hindi. Lacking robust automated tools, Hindi faces challenges in scaling misinformation detection. To bridge this gap, we propose a novel framework integrating Direct Preference Optimization (DPO) with curriculum learning to align machine-generated explanations with human reasoning. Fact-checked explanations from credible sources serve as preferred responses, while LLM outputs highlight system limitations and serve as non-preferred responses. To refine task-specific alignment, we introduce two key parameters -- Actuality and Finesse -- into the DPO loss function, enhancing explanation quality and consistency. Experiments with LLMs (Mistral, Llama, Gemma) and PLMs (mBART, mT5) confirm the framework's effectiveness in generating coherent, contextually relevant explanations. This scalable approach combats misinformation and extends automated explanation generation to low-resource languages.
♻ ☆ SECA: Semantically Equivalent and Coherent Attacks for Eliciting LLM Hallucinations NeurIPS 2025
Large Language Models (LLMs) are increasingly deployed in high-risk domains. However, state-of-the-art LLMs often exhibit hallucinations, raising serious concerns about their reliability. Prior work has explored adversarial attacks to elicit hallucinations in LLMs, but these methods often rely on unrealistic prompts, either by inserting nonsensical tokens or by altering the original semantic intent. Consequently, such approaches provide limited insight into how hallucinations arise in real-world settings. In contrast, adversarial attacks in computer vision typically involve realistic modifications to input images. However, the problem of identifying realistic adversarial prompts for eliciting LLM hallucinations remains largely underexplored. To address this gap, we propose Semantically Equivalent and Coherent Attacks (SECA), which elicit hallucinations via realistic modifications to the prompt that preserve its meaning while maintaining semantic coherence. Our contributions are threefold: (i) we formulate finding realistic attacks for hallucination elicitation as a constrained optimization problem over the input prompt space under semantic equivalence and coherence constraints; (ii) we introduce a constraint-preserving zeroth-order method to effectively search for adversarial yet feasible prompts; and (iii) we demonstrate through experiments on open-ended multiple-choice question answering tasks that SECA achieves higher attack success rates while incurring almost no semantic equivalence or semantic coherence errors compared to existing methods. SECA highlights the sensitivity of both open-source and commercial gradient-inaccessible LLMs to realistic and plausible prompt variations. Code is available at https://github.com/Buyun-Liang/SECA.
comment: Accepted at NeurIPS 2025. Code is available at https://github.com/Buyun-Liang/SECA
♻ ☆ High Accuracy, Less Talk (HALT): Reliable LLMs through Capability-Aligned Finetuning
Large Language Models (LLMs) currently respond to every prompt. However, they can produce incorrect answers when they lack knowledge or capability -- a problem known as hallucination. We instead propose post-training an LLM to generate content only when confident in its correctness and to otherwise (partially) abstain. Specifically, our method, HALT, produces capability-aligned post-training data that encodes what the model can and cannot reliably generate. We generate this data by splitting responses of the pretrained LLM into factual fragments (atomic statements or reasoning steps), and use ground truth information to identify incorrect fragments. We achieve capability-aligned finetuning responses by either removing incorrect fragments or replacing them with "Unsure from Here" -- according to a tunable threshold that allows practitioners to trade off response completeness and mean correctness of the response's fragments. We finetune four open-source models for biography writing, mathematics, coding, and medicine with HALT for three different trade-off thresholds. HALT effectively trades off response completeness for correctness, increasing the mean correctness of response fragments by 15% on average, while resulting in a 4% improvement in the F1 score (mean of completeness and correctness of the response) compared to the relevant baselines. By tuning HALT for highest correctness, we train a single reliable Llama3-70B model with correctness increased from 51% to 87% across all four domains while maintaining 53% of the response completeness achieved with standard finetuning.
♻ ☆ BiasFreeBench: a Benchmark for Mitigating Bias in Large Language Model Responses ICLR 2026
Existing studies on bias mitigation methods for large language models (LLMs) use diverse baselines and metrics to evaluate debiasing performance, leading to inconsistent comparisons among them. Moreover, their evaluations are mostly based on the comparison between LLMs' probabilities of biased and unbiased contexts, which ignores the gap between such evaluations and real-world use cases where users interact with LLMs by reading model responses and expect fair and safe outputs rather than LLMs' probabilities. To enable consistent evaluation across debiasing methods and bridge this gap, we introduce BiasFreeBench, an empirical benchmark that comprehensively compares eight mainstream bias mitigation techniques (covering four prompting-based and four training-based methods) on two test scenarios (multi-choice QA and open-ended multi-turn QA) by reorganizing existing datasets into a unified query-response setting. We further introduce a response-level metric, Bias-Free Score, to measure the extent to which LLM responses are fair, safe, and anti-stereotypical. Debiasing performances are systematically compared and analyzed across key dimensions: the prompting vs. training paradigm, model size, and generalization of different training strategies to unseen bias types. We release our benchmark, aiming to establish a unified testbed for bias mitigation research.
comment: Accepted by ICLR 2026
♻ ☆ RosettaSpeech: Zero-Shot Speech-to-Speech Translation without Parallel Speech
End-to-end speech-to-speech translation (S2ST) systems typically struggle with a critical data bottleneck: the scarcity of parallel speech-to-speech corpora. To overcome this, we introduce RosettaSpeech, a novel zero-shot framework trained exclusively on monolingual speech-text data augmented by machine translation supervision. Unlike prior works that rely on complex cascaded pseudo-labeling, our approach strategically utilizes text as a semantic bridge during training to synthesize translation targets, thereby eliminating the need for parallel speech pairs while maintaining a direct, end-to-end inference pipeline. Empirical evaluations on the CVSS-C benchmark demonstrate that RosettaSpeech achieves state-of-the-art zero-shot performance, surpassing leading baselines by significant margins - achieving ASR-BLEU scores of 25.17 for German-to-English (+27% relative gain) and 29.86 for Spanish-to-English (+14%). Crucially, our model effectively preserves the source speaker's voice without ever seeing paired speech data. We further analyze the impact of data scaling and demonstrate the model's capability in many-to-one translation, offering a scalable solution for extending high-quality S2ST to "text-rich, speech-poor" languages.
comment: 12 pages, 4 figures
♻ ☆ The Agentic Leash: Extracting Causal Feedback Fuzzy Cognitive Maps with LLMs
We design a large-language-model (LLM) agent system that extracts causal feedback fuzzy cognitive maps (FCMs) from raw text. The causal learning or extraction process is agentic both because of the LLM's semi-autonomy and because ultimately the FCM dynamical system's equilibria drive the LLM agents to fetch and process causal text. The fetched text can in principle modify the adaptive FCM causal structure and so modify the source of its quasi-autonomy$-$its equilibrium limit cycles and fixed-point attractors. This bidirectional process endows the evolving FCM dynamical system with a degree of autonomy while the system still stays on its agentic leash. We show in particular that a sequence of three system-instruction sets guide an LLM agent as it systematically extracts key nouns and noun phrases from text, as it extracts FCM concept nodes from among those nouns and noun phrases, and then as it extracts or infers partial or fuzzy causal edges between those FCM nodes. We test this FCM generation on a recent essay about the promise of AI from the late diplomat and political theorist Henry Kissinger and his colleagues. This three-step process produced FCM dynamical systems that converged to the same equilibrium limit cycles as did the human-generated FCMs even though the human-generated FCM differed in the number of nodes and edges. A final FCM mixed generated FCMs from separate Gemini and ChatGPT LLM agents. The mixed FCM absorbed the equilibria of its dominant mixture component but also created new equilibria of its own to better approximate the underlying causal dynamical system.
comment: 15 figures
HIPPO: Enhancing the Table Understanding Capability of LLMs through Hybrid-Modal Preference Optimization
Tabular data contains rich structural semantics and plays a crucial role in organizing and manipulating information. Recent methods employ Multi-modal Large Language Models (MLLMs) to address table-related tasks across various modalities of table representations. However, existing studies mainly focus on exploring the table understanding ability of MLLMs using unimodal representations, which limits further exploration of multi-modal representations to enable more effective table reasoning. To better capture structural semantics from the tabular data, this paper introduces the HybrId-modal Preference oPtimizatiOn (HIPPO) model, which represents tables using both text and image, optimizing MLLMs by learning more comprehensive table information from these multiple modalities. Specifically, HIPPO samples MLLM responses from hybrid-modal table representations and designs a modality-consistent sampling strategy to enhance response diversity and mitigate modality bias during Direct Preference Optimization (DPO) training. Experiments on table question answering and table fact verification tasks demonstrate the effectiveness of HIPPO, achieving a 4% improvement over various table reasoning models. Further analysis reveals that HIPPO not only enhances the table reasoning capability based on unimodal representations but also facilitates the extraction of complementary semantics across modalities. The code is available at https://github.com/NEUIR/HIPPO.
♻ ☆ Self-Improving World Modelling with Latent Actions
Internal modelling of the world -- predicting transitions between previous states $X$ and next states $Y$ under actions $Z$ -- is essential to reasoning and planning for LLMs and VLMs. Learning such models typically requires costly action-labelled trajectories. We propose SWIRL, a self-improvement framework that learns from state-only sequences by treating actions as a latent variable and alternating between Forward World Modelling (FWM) $P_θ(Y|X,Z)$ and an Inverse Dynamics Modelling (IDM) $Q_φ(Z|X,Y)$. SWIRL iterates two phases: (1) Variational Information Maximisation, which updates the FWM to generate next states that maximise conditional mutual information with latent actions given prior states, encouraging identifiable consistency; and (2) ELBO Maximisation, which updates the IDM to explain observed transitions, effectively performing coordinate ascent. Both models are trained with reinforcement learning (specifically, GRPO) with the opposite frozen model's log-probability as a reward signal. We provide theoretical learnability guarantees for both updates, and evaluate SWIRL on LLMs and VLMs across multiple environments: single-turn and multi-turn open-world visual dynamics and synthetic textual environments for physics, web, and tool calling. SWIRL achieves gains of 16% on AURORABench, 28% on ByteMorph, 16% on WorldPredictionBench, and 14% on StableToolBench.
♻ ☆ Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian
There has been a surge in the development of various Large Language Models (LLMs). However, text generation for languages other than English often faces significant challenges, including poor generation quality and reduced computational performance due to the disproportionate representation of tokens in the model's vocabulary. In this work, we address these issues by developing a pipeline for the adaptation of English-oriented pre-trained models to other languages and constructing efficient bilingual LLMs. Using this pipeline, we construct Vikhr, a series of bilingual open-source instruction-following LLMs designed specifically for the Russian language. ``Vikhr'' refers to the name of the Mistral LLM series and means a ``strong gust of wind.'' Unlike previous Russian-language models that typically rely on LoRA adapters on top of English-oriented models, sacrificing performance for lower training costs, Vikhr features an adapted tokenizer vocabulary and undergoes the continued pre-training and instruction tuning of all weights. This not only enhances the model's performance but also significantly improves its computational and contextual efficiency. We also expanded the instruction datasets and corpora for continued pre-training. The model weights, instruction sets, and code are publicly available.
♻ ☆ Pragmatic Inference for Moral Reasoning Acquisition: Generalization via Metapragmatic Links
While moral reasoning has emerged as a promising research direction for large language models (LLMs), achieving robust generalization remains a critical challenge. This challenge arises from the gap between what is said and what is morally implied. In this paper, we build on metapragmatic links and the moral foundations theory to close the gap. Specifically, we develop a pragmatic-inference approach that facilitates LLMs, for a given moral situation, to acquire the metapragmantic links between moral reasoning objectives and the social variables that affect them. This approach is adapted to three different moral reasoning tasks to demonstrate its adaptability and generalizability. Experimental results demonstrate that our approach significantly enhances LLMs' generalization in moral reasoning, paving the road for future research to utilize pragmatic inference in various moral reasoning tasks.
♻ ☆ RoD-TAL: A Benchmark for Answering Questions in Romanian Driving License Exams EACL 2026
The intersection of AI and legal systems presents a growing need for tools that support legal education, particularly in under-resourced languages such as Romanian. In this work, we aim to evaluate the capabilities of Large Language Models (LLMs) and Vision-Language Models (VLMs) in understanding and reasoning about the Romanian driving law through textual and visual question-answering tasks. To facilitate this, we introduce RoD-TAL, a novel multimodal dataset comprising Romanian driving test questions, text-based and image-based, along with annotated legal references and explanations written by human experts. We implement and assess retrieval-augmented generation (RAG) pipelines, dense retrievers, and reasoning-optimized models across tasks, including Information Retrieval (IR), Question Answering (QA), Visual IR, and Visual QA. Our experiments demonstrate that domain-specific fine-tuning significantly enhances retrieval performance. At the same time, chain-of-thought prompting and specialized reasoning models improve QA accuracy, surpassing the minimum passing grades required for driving exams. We highlight the potential and limitations of applying LLMs and VLMs to legal education. We release the code and resources through the GitHub repository.
comment: 41 pages, 30 figures, Accepted by the Findings of EACL 2026
♻ ☆ ArtistMus: A Globally Diverse, Artist-Centric Benchmark for Retrieval-Augmented Music Question Answering LREC 2026
Recent advances in large language models (LLMs) have transformed open-domain question answering, yet their effectiveness in music-related reasoning remains limited due to sparse music knowledge in pretraining data. While music information retrieval and computational musicology have explored structured and multimodal understanding, few resources support factual and contextual music question answering (MQA) grounded in artist metadata or historical context. We introduce MusWikiDB, a vector database of 3.2M passages from 144K music-related Wikipedia pages, and ArtistMus, a benchmark of 1,000 questions on 500 diverse artists with metadata such as genre, debut year, and topic. These resources enable systematic evaluation of retrieval-augmented generation (RAG) for MQA. Experiments show that RAG markedly improves factual accuracy; open-source models gain up to +56.8 percentage points (for example, Qwen3 8B improves from 35.0 to 91.8), approaching proprietary model performance. RAG-style fine-tuning further boosts both factual recall and contextual reasoning, improving results on both in-domain and out-of-domain benchmarks. MusWikiDB also yields approximately 6 percentage points higher accuracy and 40% faster retrieval than a general-purpose Wikipedia corpus. We release MusWikiDB and ArtistMus to advance research in music information retrieval and domain-specific question answering, establishing a foundation for retrieval-augmented reasoning in culturally rich domains such as music.
comment: Accepted to LREC 2026. This work is an evolution of our earlier preprint arXiv:2507.23334
♻ ☆ Beyond Memorization: A Rigorous Evaluation Framework for Medical Knowledge Editing EACL 2026
Recently, knowledge editing (KE) has emerged as a promising approach to update specific facts in Large Language Models (LLMs) without the need for full retraining. Despite the effectiveness in general-domain benchmarks, their applicability to complex medical domain remains largely unexplored. Medical knowledge editing is particularly challenging, as it requires LLMs to internalize the knowledge and generalize to unseen scenarios for effective and interpretable decision-making. In this work, we propose a novel framework called MedEditBench to rigorously evaluate the effectiveness of existing KE methods in the medical domain. In MedEditBench, we introduce a new medical knowledge editing benchmark as well as three different knowledge editing paradigms, which are designed to assess the impact of different knowledge sources for editing. Our findings indicate that current KE methods result in only superficial memorization of the injected information, failing to generalize to new scenarios. To overcome this limitation, we present Self-Generated Rationale Editing (SGR-Edit), which utilizes model-derived rationales as the target knowledge for editing, thereby uncovering the underlying reasoning process and demonstrating significant improvements over existing KE approaches. Additionally, we offer deeper insights into medical knowledge editing, including the localization of medical knowledge in LLMs and the impact of sequential editing on evolving knowledge. This could provide practical guidance for implementing KE methods in real-world medical applications.
comment: Accepted to EACL 2026 Main Conference
♻ ☆ Language Modeling and Understanding Through Paraphrase Generation and Detection
Language enables humans to share knowledge, reason about the world, and pass on strategies for survival and innovation across generations. At the heart of this process is not just the ability to communicate but also the remarkable flexibility in how we can express ourselves. We can express the same thoughts in virtually infinite ways using different words and structures - this ability to rephrase and reformulate expressions is known as paraphrase. Modeling paraphrases is a keystone to meaning in computational language models; being able to construct different variations of texts that convey the same meaning or not shows strong abilities of semantic understanding. If computational language models are to represent meaning, they must understand and control the different aspects that construct the same meaning as opposed to different meanings at a fine granularity. Yet most existing approaches reduce paraphrasing to a binary decision between two texts or to producing a single rewrite of a source, obscuring which linguistic factors are responsible for meaning preservation. In this thesis, I propose that decomposing paraphrases into their constituent linguistic aspects (paraphrase types) offers a more fine-grained and cognitively grounded view of semantic equivalence. I show that even advanced machine learning models struggle with this task. Yet, when explicitly trained on paraphrase types, models achieve stronger performance on related paraphrase tasks and downstream applications. For example, in plagiarism detection, language models trained on paraphrase types surpass human baselines: 89.6% accuracy compared to 78.4% for plagiarism cases from Wikipedia, and 66.5% compared to 55.7% for plagiarism of scientific papers from arXiv. In identifying duplicate questions on Quora, models trained with paraphrase types improve over models trained on binary pairs. Furthermore, I demonstrate that...
comment: PhD dissertation, University of Göttingen Germany, 2025. 182 pages
♻ ☆ Paraphrase Types Elicit Prompt Engineering Capabilities
Much of the success of modern language models depends on finding a suitable prompt to instruct the model. Until now, it has been largely unknown how variations in the linguistic expression of prompts affect these models. This study systematically and empirically evaluates which linguistic features influence models through paraphrase types, i.e., different linguistic changes at particular positions. We measure behavioral changes for five models across 120 tasks and six families of paraphrases (i.e., morphology, syntax, lexicon, lexico-syntax, discourse, and others). We also control for other prompt engineering factors (e.g., prompt length, lexical diversity, and proximity to training data). Our results show a potential for language models to improve tasks when their prompts are adapted in specific paraphrase types (e.g., 6.7% median gain in Mixtral 8x7B; 5.5% in LLaMA 3 8B). In particular, changes in morphology and lexicon, i.e., the vocabulary used, showed promise in improving prompts. These findings contribute to developing more robust language models capable of handling variability in linguistic expression.
♻ ☆ RuleReasoner: Reinforced Rule-based Reasoning via Domain-aware Dynamic Sampling ICLR 2026
Rule-based reasoning is acknowledged as one of the fundamental problems of reasoning. While recent studies show that large reasoning models (LRMs) have remarkable reasoning capabilities enhanced by reinforcement learning (RL), real applications still face severe challenges due to variations in rule formats, types, and complexity. To mitigate this issue, we introduce RuleReasoner, an effective method for rule-based reasoning via a wide collection of curated tasks and a novel domain-aware dynamic sampling approach in RL. Specifically, RuleReasoner resamples each training batch by updating the domain weights based on historical rewards. This facilitates domain balance and active learning schedules for RL, obviating static mix-training engineered by human. Evaluations on in-distribution (ID) and out-of-distribution (OOD) benchmarks reveal that RuleReasoner outperforms frontier LRMs by a significant margin ($Δ$4.1% on eight ID tasks and $Δ$10.4% on three OOD tasks over OpenAI-o1). Notably, our approach also exhibits higher computational efficiency compared to prior methods.
comment: ICLR 2026 camera ready, 28 pages, 10 figures, 15 tables
♻ ☆ Advancing Software Quality: A Standards-Focused Review of LLM-Based Assurance Techniques
Software Quality Assurance (SQA) is critical for delivering reliable, secure, and efficient software products. The Software Quality Assurance Process aims to provide assurance that work products and processes comply with predefined provisions and plans. Recent advancements in Large Language Models (LLMs) present new opportunities to enhance existing SQA processes by automating tasks like requirement analysis, code review, test generation, and compliance checks. Simultaneously, established standards such as ISO/IEC 12207, ISO/IEC 25010, ISO/IEC 5055, ISO 9001/ISO/IEC 90003, CMMI, and TMM provide structured frameworks for ensuring robust quality practices. This paper surveys the intersection of LLM-based SQA methods and these recognized standards, highlighting how AI-driven solutions can augment traditional approaches while maintaining compliance and process maturity. We first review the foundational software quality standards and the technical fundamentals of LLMs in software engineering. Next, we explore various LLM-based SQA applications, including requirement validation, defect detection, test generation, and documentation maintenance. We then map these applications to key software quality frameworks, illustrating how LLMs can address specific requirements and metrics within each standard. Empirical case studies and open-source initiatives demonstrate the practical viability of these methods. At the same time, discussions on challenges (e.g., data privacy, model bias, explainability) underscore the need for deliberate governance and auditing. Finally, we propose future directions encompassing adaptive learning, privacy-focused deployments, multimodal analysis, and evolving standards for AI-driven software quality.
comment: 16 pages, 1 Table, 6 Figures
♻ ☆ RAGExplorer: A Visual Analytics System for the Comparative Diagnosis of RAG Systems
The advent of Retrieval-Augmented Generation (RAG) has significantly enhanced the ability of Large Language Models (LLMs) to produce factually accurate and up-to-date responses. However, the performance of a RAG system is not determined by a single component but emerges from a complex interplay of modular choices, such as embedding models and retrieval algorithms. This creates a vast and often opaque configuration space, making it challenging for developers to understand performance trade-offs and identify optimal designs. To address this challenge, we present RAGExplorer, a visual analytics system for the systematic comparison and diagnosis of RAG configurations. RAGExplorer guides users through a seamless macro-to-micro analytical workflow. Initially, it empowers developers to survey the performance landscape across numerous configurations, allowing for a high-level understanding of which design choices are most effective. For a deeper analysis, the system enables users to drill down into individual failure cases, investigate how differences in retrieved information contribute to errors, and interactively test hypotheses by manipulating the provided context to observe the resulting impact on the generated answer. We demonstrate the effectiveness of RAGExplorer through detailed case studies and user studies, validating its ability to empower developers in navigating the complex RAG design space. Our code and user guide are publicly available at https://github.com/Thymezzz/RAGExplorer.
comment: 11 pages, 7 figures. Accepted to IEEE TVCG (PacificVis 2026)
♻ ☆ EVALOOOP: A Self-Consistency-Centered Framework for Assessing Large Language Model Robustness in Programming
Evaluating the programming robustness of large language models (LLMs) is paramount for ensuring their reliability in AI-based software development. However, adversarial attacks exhibit fundamental limitations that compromise fair robustness assessment: they demonstrate contradictory evaluation outcomes where different attack strategies tend to favor different models, and more critically, they operate solely through external perturbations, failing to capture the intrinsic stability essential for autonomous coding agents where subsequent inputs are endogenously generated by the model itself. We introduce EVALOOOP, a novel assessment framework that evaluates robustness from a self-consistency perspective, leveraging the natural duality inherent in software engineering tasks (e.g., code generation and code summarization). EVALOOOP establishes a self-contained feedback loop where an LLM iteratively transforms between code and natural language until functional failure occurs, with robustness quantified by a novel Average Sustainable Loops (ASL) metric-the mean number of iterations maintaining functional correctness across benchmark tasks. This cyclical strategy intrinsically evaluates robustness without relying on external attack configurations, providing a unified metric that reveals how effectively LLMs preserve semantic integrity through sustained self-referential transformations. We evaluate 96 popular LLMs, ranging from 0.5B to 685B parameters, on EVALOOOP equipped with the MBPP Plus benchmark, and found that EVALOOOP typically induces a 2.65%-47.62% absolute drop in pass@1 accuracy within ten loops. Intriguingly, robustness does not always align with initial performance (i.e., one-time query); for instance, Qwen3-235B-A22B-Instruct-2507, despite inferior initial code generation compared to OpenAI's o-series models and DeepSeek-V3, demonstrated the superior robustness (ASL score).
comment: 27 pages, 7 figures
♻ ☆ Less is More: Improving LLM Alignment via Preference Data Selection
Direct Preference Optimization (DPO) has emerged as a promising approach for aligning large language models with human preferences. While prior work mainly extends DPO from the aspect of the objective function, we instead improve DPO from the largely overlooked but critical aspect of data selection. Specifically, we address the issue of parameter shrinkage caused by noisy data by proposing a novel margin-maximization principle for dataset curation in DPO training. To further mitigate the noise in different reward models, we propose a Bayesian Aggregation approach that unifies multiple margin sources (external and implicit) into a single preference probability. Extensive experiments in diverse settings demonstrate the consistently high data efficiency of our approach. Remarkably, by using just 10\% of the Ultrafeedback dataset, our approach achieves 3\% to 8\% improvements across various Llama, Mistral, and Qwen models on the AlpacaEval2 benchmark. Furthermore, our approach seamlessly extends to iterative DPO, yielding a roughly 3\% improvement with 25\% online data, revealing the high redundancy in this presumed high-quality data construction manner. These results highlight the potential of data selection strategies for advancing preference optimization.
♻ ☆ Cautious Optimizers: Improving Training with One Line of Code
AdamW has been the default optimizer for transformer pretraining. For many years, our community searched for faster and more stable optimizers with only constrained positive outcomes. In this work, we propose a \textbf{one-line modification in Pytorch} to any momentum-based optimizer, which we rename cautious optimizer, e.g. C-AdamW and C-Lion. Our theoretical result shows that this modification preserves Adam's Hamiltonian function and it does not break the convergence guarantee under the Lyapunov analysis. In addition, a whole new family of optimizers is revealed by our theoretical insight. Among them, we pick the simplest one for empirical experiments, showing not only consistent speed-up on LLM pretraining, but also image classification, with minimum extra tuning on hyperparameters. Code is available at https://github.com/kyleliang919/C-Optim.
♻ ☆ Enhancing Delta Compression in LLMs via SVD-based Quantization Error Minimization
Supervised Fine-Tuning (SFT) empowers Large Language Models (LLMs) with exceptional performance on specialized tasks, but it yields dense, high-dimensional delta parameters that pose severe storage and distribution challenges. Singular Value Decomposition (SVD)-based compression offers a compact representation for such delta parameters, but existing methods adopt heuristic quantization without clarifying underlying mechanisms, leading to poor generalizability. In this work, we propose PrinMix, a rigorous SVD-based framework that models quantization as an optimization problem, grounding the design in mathematical mechanisms. We first theoretically derive quantization error and identify a key singular-value-dominated scaling mechanism, which mathematically proves the necessity of mix-precision quantization. We then model the quantization scheme as a 0/1 Integer Linear Programming (ILP) problem, which yields optimal bit-budget-constrained solutions without empirical assumptions. Furthermore, PrinMix integrates a Reconstruction Target Correction (RTC) method to compensate for errors from the $\mathbf{V}$-then-$\mathbf{U}$ sequential quantization process. Extensive experiments confirm PrinMix performs well: for 7B LLMs, PrinMix outperforms SOTA Delta-CoMe on challenging benchmarks by 22.3% on AIME2024 and 6.1% on GQA.
♻ ☆ Token Hidden Reward: Steering Exploration-Exploitation in Group Relative Deep Reinforcement Learning ICML 2025
Reinforcement learning with verifiable rewards has significantly advanced the reasoning capabilities of large language models, yet how to explicitly steer training toward exploration or exploitation remains an open problem. We introduce Token Hidden Reward (THR), a token-level metric that quantifies each token's influence on the likelihood of correct responses under Group Relative Policy Optimization (GRPO). We find that training dynamics are dominated by a small subset of tokens with high absolute THR values. Most interestingly, tokens with positive THR strengthen confidence in correct outputs, thus favoring exploitation, while tokens with negative THR preserve probability mass for alternative outputs, enabling exploration. This insight suggests a natural intervention: a THR-guided reweighting algorithm that modulates GRPO's learning signals to explicitly bias training toward exploitation or exploration. We validate the efficacy of this algorithm on diverse math reasoning benchmarks. By amplifying tokens with positive THR value and weakening negative ones, our algorithm improves greedy-decoding accuracy, favoring exploitation. The reverse strategy yields consistent gains in Pass@K accuracy, favoring exploration. We further demonstrate that our algorithm integrates seamlessly with other RL objectives such as GSPO and generalizes across architectures including Llama. These findings establish THR as a principled and fine-grained mechanism for dynamically controlling exploration and exploitation in RL-tuned LLMs, providing new tools for targeted fine-tuning in reasoning-intensive applications.
comment: Full version of submission to 2nd AI for Math Workshop@ ICML 2025 (best paper)
♻ ☆ Internal Planning in Language Models: Characterizing Horizon and Branch Awareness ICLR 2026
The extent to which decoder-only language models (LMs) engage in planning, that is, organizing intermediate computations to support coherent long-range generation, remains an important question, with implications for interpretability, reliability, and principled model design. Planning involves structuring computations over long horizons, and considering multiple possible continuations, but how far transformer-based LMs exhibit them without external scaffolds, e.g., chain-of-thought prompting, is unclear. We address these questions by analyzing the hidden states at the core of transformer computations, which capture intermediate results and act as carriers of information. Since these hidden representations are redundant and encumbered with fine-grained details, we develop a pipeline based on vector-quantized variational autoencoders that compresses them into compact summary codes. These codes enable measuring mutual information and analyzing the computational structure of the underlying model behavior. Using this framework, we study planning in LMs across synthetic grammar, path-finding tasks, and natural language datasets, focusing on two planning properties: (i) the planning horizon of pre-output computations, and (ii) the extent to which the model considers alternative valid continuations. As a separate downstream use of the same pipeline, we also analyze how decision-relevant information is distributed across layers and earlier prefix blocks when producing next-token predictions. Together, these analyses advance our understanding of planning in LMs and provide a general-purpose pipeline for inspecting internal model dynamics. Our results reveal that the effective planning horizon is task-dependent, that models implicitly preserve information about unused correct continuations, and that predictions draw most on recent computations, though earlier blocks remain informative.
comment: Accepted to ICLR 2026
Computer Vision and Pattern Recognition 39
☆ Differential pose optimization in descriptor space -- Combining Geometric and Photometric Methods for Motion Estimation
One of the fundamental problems in computer vision is the two-frame relative pose optimization problem. Primarily, two different kinds of error values are used: photometric error and re-projection error. The selection of error value is usually directly dependent on the selection of feature paradigm, photometric features, or geometric features. It is a trade-off between accuracy, robustness, and the possibility of loop closing. We investigate a third method that combines the strengths of both paradigms into a unified approach. Using densely sampled geometric feature descriptors, we replace the photometric error with a descriptor residual from a dense set of descriptors, thereby enabling the employment of sub-pixel accuracy in differential photometric methods, along with the expressiveness of the geometric feature descriptor. Experiments show that although the proposed strategy is an interesting approach that results in accurate tracking, it ultimately does not outperform pose optimization strategies based on re-projection error despite utilizing more information. We proceed to analyze the underlying reason for this discrepancy and present the hypothesis that the descriptor similarity metric is too slowly varying and does not necessarily correspond strictly to keypoint placement accuracy.
☆ Moving Beyond Sparse Grounding with Complete Screen Parsing Supervision
Modern computer-use agents (CUA) must perceive a screen as a structured state, what elements are visible, where they are, and what text they contain, before they can reliably ground instructions and act. Yet, most available grounding datasets provide sparse supervision, with insufficient and low-diversity labels that annotate only a small subset of task-relevant elements per screen, which limits both coverage and generalization; moreover, practical deployment requires efficiency to enable low-latency, on-device use. We introduce ScreenParse, a large-scale dataset for complete screen parsing, with dense annotations of all visible UI elements (boxes, 55-class types, and text) across 771K web screenshots (21M elements). ScreenParse is generated by Webshot, an automated, scalable pipeline that renders diverse urls, extracts annotations and applies VLM-based relabeling and quality filtering. Using ScreenParse, we train ScreenVLM, a compact, 316M-parameter vision language model (VLM) that decodes a compact ScreenTag markup representation with a structure-aware loss that upweights structure-critical tokens. ScreenVLM substantially outperforms much larger foundation VLMs on dense parsing (e.g., 0.592 vs. 0.294 PageIoU on ScreenParse) and shows strong transfer to public benchmarks. Moreover, finetuning foundation VLMs on ScreenParse consistently improves their grounding performance, suggesting that dense screen supervision provides transferable structural priors for UI understanding. Project page: https://saidgurbuz.github.io/screenparse/.
comment: 28 pages, 15 figures
☆ GRAFNet: Multiscale Retinal Processing via Guided Cortical Attention Feedback for Enhancing Medical Image Polyp Segmentation
Accurate polyp segmentation in colonoscopy is essential for cancer prevention but remains challenging due to: (1) high morphological variability (from flat to protruding lesions), (2) strong visual similarity to normal structures such as folds and vessels, and (3) the need for robust multi-scale detection. Existing deep learning approaches suffer from unidirectional processing, weak multi-scale fusion, and the absence of anatomical constraints, often leading to false positives (over-segmentation of normal structures) and false negatives (missed subtle flat lesions). We propose GRAFNet, a biologically inspired architecture that emulates the hierarchical organisation of the human visual system. GRAFNet integrates three key modules: (1) a Guided Asymmetric Attention Module (GAAM) that mimics orientation-tuned cortical neurones to emphasise polyp boundaries, (2) a MultiScale Retinal Module (MSRM) that replicates retinal ganglion cell pathways for parallel multi-feature analysis, and (3) a Guided Cortical Attention Feedback Module (GCAFM) that applies predictive coding for iterative refinement. These are unified in a Polyp Encoder-Decoder Module (PEDM) that enforces spatial-semantic consistency via resolution-adaptive feedback. Extensive experiments on five public benchmarks (Kvasir-SEG, CVC-300, CVC-ColonDB, CVC-Clinic, and PolypGen) demonstrate consistent state-of-the-art performance, with 3-8% Dice improvements and 10-20% higher generalisation over leading methods, while offering interpretable decision pathways. This work establishes a paradigm in which neural computation principles bridge the gap between AI accuracy and clinically trustworthy reasoning. Code is available at https://github.com/afofanah/GRAFNet.
☆ AbracADDbra: Touch-Guided Object Addition by Decoupling Placement and Editing Subtasks ICASSP 2026
Instruction-based object addition is often hindered by the ambiguity of text-only prompts or the tedious nature of mask-based inputs. To address this usability gap, we introduce AbracADDbra, a user-friendly framework that leverages intuitive touch priors to spatially ground succinct instructions for precise placement. Our efficient, decoupled architecture uses a vision-language transformer for touch-guided placement, followed by a diffusion model that jointly generates the object and an instance mask for high-fidelity blending. To facilitate standardized evaluation, we contribute the Touch2Add benchmark for this interactive task. Our extensive evaluations, where our placement model significantly outperforms both random placement and general-purpose VLM baselines, confirm the framework's ability to produce high-fidelity edits. Furthermore, our analysis reveals a strong correlation between initial placement accuracy and final edit quality, validating our decoupled approach. This work thus paves the way for more accessible and efficient creative tools.
comment: Accepted in IEEE ICASSP 2026
☆ Dual-Signal Adaptive KV-Cache Optimization for Long-Form Video Understanding in Vision-Language Models
Vision-Language Models (VLMs) face a critical memory bottleneck when processing long-form video content due to the linear growth of the Key-Value (KV) cache with sequence length. Existing solutions predominantly employ reactive eviction strategies that compute full attention matrices before discarding tokens, resulting in substantial computational waste. We propose Sali-Cache, a novel a priori optimization framework that implements dual-signal adaptive caching through proactive memory management. By integrating a temporal filter based on optical flow analysis for detecting inter-frame redundancy and a spatial filter leveraging saliency detection for identifying visually significant regions, Sali-Cache intelligently manages memory allocation before entering computationally expensive attention operations. Experimental evaluation on the LLaVA 1.6 architecture demonstrates that our method achieves a 2.20x compression ratio in effective memory usage while maintaining 100% accuracy across BLEU, ROUGE-L, and Exact Match metrics. Furthermore, under identical memory budget constraints, Sali-Cache preserves context-rich features over extended temporal durations without degrading model performance, enabling efficient processing of long-form video content on consumer-grade hardware.
☆ Learning Significant Persistent Homology Features for 3D Shape Understanding
Geometry and topology constitute complementary descriptors of three-dimensional shape, yet existing benchmark datasets primarily capture geometric information while neglecting topological structure. This work addresses this limitation by introducing topologically-enriched versions of ModelNet40 and ShapeNet, where each point cloud is augmented with its corresponding persistent homology features. These benchmarks with the topological signatures establish a foundation for unified geometry-topology learning and enable systematic evaluation of topology-aware deep learning architectures for 3D shape analysis. Building on this foundation, we propose a deep learning-based significant persistent point selection method, \textit{TopoGAT}, that learns to identify the most informative topological features directly from input data and the corresponding topological signatures, circumventing the limitations of hand-crafted statistical selection criteria. A comparative study verifies the superiority of the proposed method over traditional statistical approaches in terms of stability and discriminative power. Integrating the selected significant persistent points into standard point cloud classification and part-segmentation pipelines yields improvements in both classification accuracy and segmentation metrics. The presented topologically-enriched datasets, coupled with our learnable significant feature selection approach, enable the broader integration of persistent homology into the practical deep learning workflows for 3D point cloud analysis.
comment: 17 pages, 10 figures, Preprint under review
☆ Freq-DP Net: A Dual-Branch Network for Fence Removal using Dual-Pixel and Fourier Priors ICASSP 2026
Removing fence occlusions from single images is a challenging task that degrades visual quality and limits downstream computer vision applications. Existing methods often fail on static scenes or require motion cues from multiple frames. To overcome these limitations, we introduce the first framework to leverage dual-pixel (DP) sensors for this problem. We propose Freq-DP Net, a novel dual-branch network that fuses two complementary priors: a geometric prior from defocus disparity, modeled using an explicit cost volume, and a structural prior of the fence's global pattern, learned via Fast Fourier Convolution (FFC). An attention mechanism intelligently merges these cues for highly accurate fence segmentation. To validate our approach, we build and release a diverse benchmark with different fence varieties. Experiments demonstrate that our method significantly outperforms strong general-purpose baselines, establishing a new state-of-the-art for single-image, DP-based fence removal.
comment: Accepted in IEEE ICASSP 2026
☆ HiVid: LLM-Guided Video Saliency For Content-Aware VOD And Live Streaming ICLR 2026
Content-aware streaming requires dynamic, chunk-level importance weights to optimize subjective quality of experience (QoE). However, direct human annotation is prohibitively expensive while vision-saliency models generalize poorly. We introduce HiVid, the first framework to leverage Large Language Models (LLMs) as a scalable human proxy to generate high-fidelity weights for both Video-on-Demand (VOD) and live streaming. We address 3 non-trivial challenges: (1) To extend LLMs' limited modality and circumvent token limits, we propose a perception module to assess frames in a local context window, autoregressively building a coherent understanding of the video. (2) For VOD with rating inconsistency across local windows, we propose a ranking module to perform global re-ranking with a novel LLM-guided merge-sort algorithm. (3) For live streaming which requires low-latency, online inference without future knowledge, we propose a prediction module to predict future weights with a multi-modal time series model, which comprises a content-aware attention and adaptive horizon to accommodate asynchronous LLM inference. Extensive experiments show HiVid improves weight prediction accuracy by up to 11.5\% for VOD and 26\% for live streaming over SOTA baselines. Real-world user study validates HiVid boosts streaming QoE correlation by 14.7\%.
comment: ICLR 2026
☆ GeoEyes: On-Demand Visual Focusing for Evidence-Grounded Understanding of Ultra-High-Resolution Remote Sensing Imagery
The "thinking-with-images" paradigm enables multimodal large language models (MLLMs) to actively explore visual scenes via zoom-in tools. This is essential for ultra-high-resolution (UHR) remote sensing VQA, where task-relevant cues are sparse and tiny. However, we observe a consistent failure mode in existing zoom-enabled MLLMs: Tool Usage Homogenization, where tool calls collapse into task-agnostic patterns, limiting effective evidence acquisition. To address this, we propose GeoEyes, a staged training framework consisting of (1) a cold-start SFT dataset, UHR Chain-of-Zoom (UHR-CoZ), which covers diverse zooming regimes, and (2) an agentic reinforcement learning method, AdaZoom-GRPO, that explicitly rewards evidence gain and answer improvement during zoom interactions. The resulting model learns on-demand zooming with proper stopping behavior and achieves substantial improvements on UHR remote sensing benchmarks, with 54.23% accuracy on XLRS-Bench.
☆ Learnable Multi-level Discrete Wavelet Transforms for 3D Gaussian Splatting Frequency Modulation
3D Gaussian Splatting (3DGS) has emerged as a powerful approach for novel view synthesis. However, the number of Gaussian primitives often grows substantially during training as finer scene details are reconstructed, leading to increased memory and storage costs. Recent coarse-to-fine strategies regulate Gaussian growth by modulating the frequency content of the ground-truth images. In particular, AutoOpti3DGS employs the learnable Discrete Wavelet Transform (DWT) to enable data-adaptive frequency modulation. Nevertheless, its modulation depth is limited by the 1-level DWT, and jointly optimizing wavelet regularization with 3D reconstruction introduces gradient competition that promotes excessive Gaussian densification. In this paper, we propose a multi-level DWT-based frequency modulation framework for 3DGS. By recursively decomposing the low-frequency subband, we construct a deeper curriculum that provides progressively coarser supervision during early training, consistently reducing Gaussian counts. Furthermore, we show that the modulation can be performed using only a single scaling parameter, rather than learning the full 2-tap high-pass filter. Experimental results on standard benchmarks demonstrate that our method further reduces Gaussian counts while maintaining competitive rendering quality.
☆ Learning Part-Aware Dense 3D Feature Field for Generalizable Articulated Object Manipulation ICLR 2026
Articulated object manipulation is essential for various real-world robotic tasks, yet generalizing across diverse objects remains a major challenge. A key to generalization lies in understanding functional parts (e.g., door handles and knobs), which indicate where and how to manipulate across diverse object categories and shapes. Previous works attempted to achieve generalization by introducing foundation features, while these features are mostly 2D-based and do not specifically consider functional parts. When lifting these 2D features to geometry-profound 3D space, challenges arise, such as long runtimes, multi-view inconsistencies, and low spatial resolution with insufficient geometric information. To address these issues, we propose Part-Aware 3D Feature Field (PA3FF), a novel dense 3D feature with part awareness for generalizable articulated object manipulation. PA3FF is trained by 3D part proposals from a large-scale labeled dataset, via a contrastive learning formulation. Given point clouds as input, PA3FF predicts a continuous 3D feature field in a feedforward manner, where the distance between point features reflects the proximity of functional parts: points with similar features are more likely to belong to the same part. Building on this feature, we introduce the Part-Aware Diffusion Policy (PADP), an imitation learning framework aimed at enhancing sample efficiency and generalization for robotic manipulation. We evaluate PADP on several simulated and real-world tasks, demonstrating that PA3FF consistently outperforms a range of 2D and 3D representations in manipulation scenarios, including CLIP, DINOv2, and Grounded-SAM. Beyond imitation learning, PA3FF enables diverse downstream methods, including correspondence learning and segmentation tasks, making it a versatile foundation for robotic manipulation. Project page: https://pa3ff.github.io
comment: Accept to ICLR 2026, Project page: https://pa3ff.github.io
☆ UniRef-Image-Edit: Towards Scalable and Consistent Multi-Reference Image Editing
We present UniRef-Image-Edit, a high-performance multi-modal generation system that unifies single-image editing and multi-image composition within a single framework. Existing diffusion-based editing methods often struggle to maintain consistency across multiple conditions due to limited interaction between reference inputs. To address this, we introduce Sequence-Extended Latent Fusion (SELF), a unified input representation that dynamically serializes multiple reference images into a coherent latent sequence. During a dedicated training stage, all reference images are jointly constrained to fit within a fixed-length sequence under a global pixel-budget constraint. Building upon SELF, we propose a two-stage training framework comprising supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we jointly train on single-image editing and multi-image composition tasks to establish a robust generative prior. We adopt a progressive sequence length training strategy, in which all input images are initially resized to a total pixel budget of $1024^2$, and are then gradually increased to $1536^2$ and $2048^2$ to improve visual fidelity and cross-reference consistency. This gradual relaxation of compression enables the model to incrementally capture finer visual details while maintaining stable alignment across references. For the RL stage, we introduce Multi-Source GRPO (MSGRPO), to our knowledge the first reinforcement learning framework tailored for multi-reference image generation. MSGRPO optimizes the model to reconcile conflicting visual constraints, significantly enhancing compositional consistency. We will open-source the code, models, training data, and reward data for community research purposes.
☆ UniWeTok: An Unified Binary Tokenizer with Codebook Size $\mathit{2^{128}}$ for Unified Multimodal Large Language Model
Unified Multimodal Large Language Models (MLLMs) require a visual representation that simultaneously supports high-fidelity reconstruction, complex semantic extraction, and generative suitability. However, existing visual tokenizers typically struggle to satisfy these conflicting objectives within a single framework. In this paper, we introduce UniWeTok, a unified discrete tokenizer designed to bridge this gap using a massive binary codebook ($\mathit{2^{128}}$). For training framework, we introduce Pre-Post Distillation and a Generative-Aware Prior to enhance the semantic extraction and generative prior of the discrete tokens. In terms of model architecture, we propose a convolution-attention hybrid architecture with the SigLu activation function. SigLu activation not only bounds the encoder output and stabilizes the semantic distillation process but also effectively addresses the optimization conflict between token entropy loss and commitment loss. We further propose a three-stage training framework designed to enhance UniWeTok's adaptability cross various image resolutions and perception-sensitive scenarios, such as those involving human faces and textual content. On ImageNet, UniWeTok achieves state-of-the-art image generation performance (FID: UniWeTok 1.38 vs. REPA 1.42) while requiring a remarkably low training compute (Training Tokens: UniWeTok 33B vs. REPA 262B). On general-domain, UniWeTok demonstrates highly competitive capabilities across a broad range of tasks, including multimodal understanding, image generation (DPG Score: UniWeTok 86.63 vs. FLUX.1 [Dev] 83.84), and editing (GEdit Overall Score: UniWeTok 5.09 vs. OmniGen 5.06). We release code and models to facilitate community exploration of unified tokenizer and MLLM.
comment: 29 pages, 9 figures, 33 tables
☆ Towards Spatial Transcriptomics-driven Pathology Foundation Models
Spatial transcriptomics (ST) provides spatially resolved measurements of gene expression, enabling characterization of the molecular landscape of human tissue beyond histological assessment as well as localized readouts that can be aligned with morphology. Concurrently, the success of multimodal foundation models that integrate vision with complementary modalities suggests that morphomolecular coupling between local expression and morphology can be systematically used to improve histological representations themselves. We introduce Spatial Expression-Aligned Learning (SEAL), a vision-omics self-supervised learning framework that infuses localized molecular information into pathology vision encoders. Rather than training new encoders from scratch, SEAL is designed as a parameter-efficient vision-omics finetuning method that can be flexibly applied to widely used pathology foundation models. We instantiate SEAL by training on over 700,000 paired gene expression spot-tissue region examples spanning tumor and normal samples from 14 organs. Tested across 38 slide-level and 15 patch-level downstream tasks, SEAL provides a drop-in replacement for pathology foundation models that consistently improves performance over widely used vision-only and ST prediction baselines on slide-level molecular status, pathway activity, and treatment response prediction, as well as patch-level gene expression prediction tasks. Additionally, SEAL encoders exhibit robust domain generalization on out-of-distribution evaluations and enable new cross-modal capabilities such as gene-to-image retrieval. Our work proposes a general framework for ST-guided finetuning of pathology foundation models, showing that augmenting existing models with localized molecular supervision is an effective and practical step for improving visual representations and expanding their cross-modal utility.
☆ Index Light, Reason Deep: Deferred Visual Ingestion for Visual-Dense Document Question Answering
Existing multimodal document question answering methods universally adopt a supply-side ingestion strategy: running a Vision-Language Model (VLM) on every page during indexing to generate comprehensive descriptions, then answering questions through text retrieval. However, this "pre-ingestion" approach is costly (a 113-page engineering drawing package requires approximately 80,000 VLM tokens), end-to-end unreliable (VLM outputs may fail to be correctly retrieved due to format mismatches in the retrieval infrastructure), and irrecoverable once it fails. This paper proposes the Deferred Visual Ingestion (DVI) framework, adopting a demand-side ingestion strategy: the indexing phase performs only lightweight metadata extraction, deferring visual understanding to the moment users pose specific questions. DVI's core principle is "Index for locating, not understanding"--achieving page localization through structured metadata indexes and BM25 full-text search, then sending original images along with specific questions to a VLM for targeted analysis. Experiments on two real industrial engineering drawings (113 pages + 7 pages) demonstrate that DVI achieves comparable overall accuracy at zero ingestion VLM cost (46.7% vs. 48.9%), an effectiveness rate of 50% on visually necessary queries (vs. 0% for pre-ingestion), and 100% page localization (98% search space compression). DVI also supports interactive refinement and progressive caching, transforming the "QA accuracy" problem into a "page localization" problem--once the correct drawing page is found, obtaining the answer becomes a matter of interaction rounds.
comment: 24 pages, 9 figures, 9 tables
☆ When Test-Time Guidance Is Enough: Fast Image and Video Editing with Diffusion Guidance
Text-driven image and video editing can be naturally cast as inpainting problems, where masked regions are reconstructed to remain consistent with both the observed content and the editing prompt. Recent advances in test-time guidance for diffusion and flow models provide a principled framework for this task; however, existing methods rely on costly vector--Jacobian product (VJP) computations to approximate the intractable guidance term, limiting their practical applicability. Building upon the recent work of Moufad et al. (2025), we provide theoretical insights into their VJP-free approximation and substantially extend their empirical evaluation to large-scale image and video editing benchmarks. Our results demonstrate that test-time guidance alone can achieve performance comparable to, and in some cases surpass, training-based methods.
comment: Preprint
☆ ARport: An Augmented Reality System for Markerless Image-Guided Port Placement in Robotic Surgery
Purpose: Precise port placement is a critical step in robot-assisted surgery, where port configuration influences both visual access to the operative field and instrument maneuverability. To bridge the gap between preoperative planning and intraoperative execution, we present ARport, an augmented reality (AR) system that automatically maps pre-planned trocar layouts onto the patient's body surface, providing intuitive spatial guidance during surgical preparation. Methods: ARport, implemented on an optical see-through head-mounted display (OST-HMD), operates without any external sensors or markers, simplifying setup and enhancing workflow integration. It reconstructs the operative scene from RGB, depth, and pose data captured by the OST-HMD, extracts the patient's body surface using a foundation model, and performs surface-based markerless registration to align preoperative anatomical models to the extracted patient's body surface, enabling in-situ visualization of planned trocar layouts. A demonstration video illustrating the overall workflow is available online. Results: In full-scale human-phantom experiments, ARport accurately overlaid pre-planned trocar sites onto the physical phantom, achieving consistent spatial correspondence between virtual plans and real anatomy. Conclusion: ARport provides a fully marker-free and hardware-minimal solution for visualizing preoperative trocar plans directly on the patient's body surface. The system facilitates efficient intraoperative setup and demonstrates potential for seamless integration into routine clinical workflows.
☆ LaViDa-R1: Advancing Reasoning for Unified Multimodal Diffusion Language Models
Diffusion language models (dLLMs) recently emerged as a promising alternative to auto-regressive LLMs. The latest works further extended it to multimodal understanding and generation tasks. In this work, we propose LaViDa-R1, a multimodal, general-purpose reasoning dLLM. Unlike existing works that build reasoning dLLMs through task-specific reinforcement learning, LaViDa-R1 incorporates diverse multimodal understanding and generation tasks in a unified manner. In particular, LaViDa-R1 is built with a novel unified post-training framework that seamlessly integrates supervised finetuning (SFT) and multi-task reinforcement learning (RL). It employs several novel training techniques, including answer-forcing, tree search, and complementary likelihood estimation, to enhance effectiveness and scalability. Extensive experiments demonstrate LaViDa-R1's strong performance on a wide range of multimodal tasks, including visual math reasoning, reason-intensive grounding, and image editing.
comment: 28 pages, 11 figures
☆ Detection of On-Ground Chestnuts Using Artificial Intelligence Toward Automated Picking
Traditional mechanized chestnut harvesting is too costly for small producers, non-selective, and prone to damaging nuts. Accurate, reliable detection of chestnuts on the orchard floor is crucial for developing low-cost, vision-guided automated harvesting technology. However, developing a reliable chestnut detection system faces challenges in complex environments with shading, varying natural light conditions, and interference from weeds, fallen leaves, stones, and other foreign on-ground objects, which have remained unaddressed. This study collected 319 images of chestnuts on the orchard floor, containing 6524 annotated chestnuts. A comprehensive set of 29 state-of-the-art real-time object detectors, including 14 in the YOLO (v11-13) and 15 in the RT-DETR (v1-v4) families at varied model scales, was systematically evaluated through replicated modeling experiments for chestnut detection. Experimental results show that the YOLOv12m model achieves the best mAP@0.5 of 95.1% among all the evaluated models, while the RT-DETRv2-R101 was the most accurate variant among RT-DETR models, with mAP@0.5 of 91.1%. In terms of mAP@[0.5:0.95], the YOLOv11x model achieved the best accuracy of 80.1%. All models demonstrate significant potential for real-time chestnut detection, and YOLO models outperformed RT-DETR models in terms of both detection accuracy and inference, making them better suited for on-board deployment. Both the dataset and software programs in this study have been made publicly available at https://github.com/AgFood-Sensing-and-Intelligence-Lab/ChestnutDetection.
comment: 16 pages, 10 figures
☆ DenseMLLM: Standard Multimodal LLMs are Intrinsic Dense Predictors
Multimodal Large Language Models (MLLMs) have demonstrated exceptional capabilities in high-level visual understanding. However, extending these models to fine-grained dense prediction tasks, such as semantic segmentation and depth estimation, typically necessitates the incorporation of complex, task-specific decoders and other customizations. This architectural fragmentation increases model complexity and deviates from the generalist design of MLLMs, ultimately limiting their practicality. In this work, we challenge this paradigm by accommodating standard MLLMs to perform dense predictions without requiring additional task-specific decoders. The proposed model is called DenseMLLM, grounded in the standard architecture with a novel vision token supervision strategy for multiple labels and tasks. Despite its minimalist design, our model achieves highly competitive performance across a wide range of dense prediction and vision-language benchmarks, demonstrating that a standard, general-purpose MLLM can effectively support dense perception without architectural specialization.
comment: 25 pages, 9 figures
☆ EgoSound: Benchmarking Sound Understanding in Egocentric Videos
Multimodal Large Language Models (MLLMs) have recently achieved remarkable progress in vision-language understanding. Yet, human perception is inherently multisensory, integrating sight, sound, and motion to reason about the world. Among these modalities, sound provides indispensable cues about spatial layout, off-screen events, and causal interactions, particularly in egocentric settings where auditory and visual signals are tightly coupled. To this end, we introduce EgoSound, the first benchmark designed to systematically evaluate egocentric sound understanding in MLLMs. EgoSound unifies data from Ego4D and EgoBlind, encompassing both sighted and sound-dependent experiences. It defines a seven-task taxonomy spanning intrinsic sound perception, spatial localization, causal inference, and cross-modal reasoning. Constructed through a multi-stage auto-generative pipeline, EgoSound contains 7315 validated QA pairs across 900 videos. Comprehensive experiments on nine state-of-the-art MLLMs reveal that current models exhibit emerging auditory reasoning abilities but remain limited in fine-grained spatial and causal understanding. EgoSound establishes a challenging foundation for advancing multisensory egocentric intelligence, bridging the gap between seeing and truly hearing the world.
comment: 17 pages
☆ GeoFusionLRM: Geometry-Aware Self-Correction for Consistent 3D Reconstruction
Single-image 3D reconstruction with large reconstruction models (LRMs) has advanced rapidly, yet reconstructions often exhibit geometric inconsistencies and misaligned details that limit fidelity. We introduce GeoFusionLRM, a geometry-aware self-correction framework that leverages the model's own normal and depth predictions to refine structural accuracy. Unlike prior approaches that rely solely on features extracted from the input image, GeoFusionLRM feeds back geometric cues through a dedicated transformer and fusion module, enabling the model to correct errors and enforce consistency with the conditioning image. This design improves the alignment between the reconstructed mesh and the input views without additional supervision or external signals. Extensive experiments demonstrate that GeoFusionLRM achieves sharper geometry, more consistent normals, and higher fidelity than state-of-the-art LRM baselines.
☆ SemanticFeels: Semantic Labeling during In-Hand Manipulation
As robots become increasingly integrated into everyday tasks, their ability to perceive both the shape and properties of objects during in-hand manipulation becomes critical for adaptive and intelligent behavior. We present SemanticFeels, an extension of the NeuralFeels framework that integrates semantic labeling with neural implicit shape representation, from vision and touch. To illustrate its application, we focus on material classification: high-resolution Digit tactile readings are processed by a fine-tuned EfficientNet-B0 convolutional neural network (CNN) to generate local material predictions, which are then embedded into an augmented signed distance field (SDF) network that jointly predicts geometry and continuous material regions. Experimental results show that the system achieves a high correspondence between predicted and actual materials on both single- and multi-material objects, with an average matching accuracy of 79.87% across multiple manipulation trials on a multi-material object.
comment: 10 pages, 5 figures
☆ ForgeryVCR: Visual-Centric Reasoning via Efficient Forensic Tools in MLLMs for Image Forgery Detection and Localization
Existing Multimodal Large Language Models (MLLMs) for image forgery detection and localization predominantly operate under a text-centric Chain-of-Thought (CoT) paradigm. However, forcing these models to textually characterize imperceptible low-level tampering traces inevitably leads to hallucinations, as linguistic modalities are insufficient to capture such fine-grained pixel-level inconsistencies. To overcome this, we propose ForgeryVCR, a framework that incorporates a forensic toolbox to materialize imperceptible traces into explicit visual intermediates via Visual-Centric Reasoning. To enable efficient tool utilization, we introduce a Strategic Tool Learning post-training paradigm, encompassing gain-driven trajectory construction for Supervised Fine-Tuning (SFT) and subsequent Reinforcement Learning (RL) optimization guided by a tool utility reward. This paradigm empowers the MLLM to act as a proactive decision-maker, learning to spontaneously invoke multi-view reasoning paths including local zoom-in for fine-grained inspection and the analysis of invisible inconsistencies in compression history, noise residuals, and frequency domains. Extensive experiments reveal that ForgeryVCR achieves state-of-the-art (SOTA) performance in both detection and localization tasks, demonstrating superior generalization and robustness with minimal tool redundancy. The project page is available at https://youqiwong.github.io/projects/ForgeryVCR/.
☆ Bidirectional Temporal Dynamics Modeling for EEG-based Driving Fatigue Recognition
Driving fatigue is a major contributor to traffic accidents and poses a serious threat to road safety. Electroencephalography (EEG) provides a direct measurement of neural activity, yet EEG-based fatigue recognition is hindered by strong non-stationarity and asymmetric neural dynamics. To address these challenges, we propose DeltaGateNet, a novel framework that explicitly captures Bidirectional temporal dynamics for EEG-based driving fatigue recognition. Our key idea is to introduce a Bidirectional Delta module that decomposes first-order temporal differences into positive and negative components, enabling explicit modeling of asymmetric neural activation and suppression patterns. Furthermore, we design a Gated Temporal Convolution module to capture long-term temporal dependencies for each EEG channel using depthwise temporal convolutions and residual learning, preserving channel-wise specificity while enhancing temporal representation robustness. Extensive experiments conducted under both intra-subject and inter-subject evaluation settings on the public SEED-VIG and SADT driving fatigue datasets demonstrate that DeltaGateNet consistently outperforms existing methods. On SEED-VIG, DeltaGateNet achieves an intra-subject accuracy of 81.89% and an inter-subject accuracy of 55.55%. On the balanced SADT 2022 dataset, it attains intra-subject and inter-subject accuracies of 96.81% and 83.21%, respectively, while on the unbalanced SADT 2952 dataset, it achieves 96.84% intra-subject and 84.49% inter-subject accuracy. These results indicate that explicitly modeling Bidirectional temporal dynamics yields robust and generalizable performance under varying subject and class-distribution conditions.
♻ ☆ TRecViT: A Recurrent Video Transformer
We propose a novel block for \emph{causal} video modelling. It relies on a time-space-channel factorisation with dedicated blocks for each dimension: gated linear recurrent units (LRUs) perform information mixing over time, self-attention layers perform mixing over space, and MLPs over channels. The resulting architecture \emph{TRecViT} is causal and shows strong performance on sparse and dense tasks, trained in supervised or self-supervised regimes, being the first causal video model in the state-space models family. Notably, our model outperforms or is on par with the popular (non-causal) ViViT-L model on large scale video datasets (SSv2, Kinetics400), while having $3\times$ less parameters, $12\times$ smaller memory footprint, and $5\times$ lower FLOPs count than the full self-attention ViViT, with an inference throughput of about 300 frames per second, running comfortably in real-time. When compared with causal transformer-based models (TSM, RViT) and other recurrent models like LSTM, TRecViT obtains state-of-the-art results on the challenging SSv2 dataset. Code and checkpoints are available online https://github.com/google-deepmind/trecvit.
♻ ☆ PRISMM-Bench: A Benchmark of Peer-Review Grounded Multimodal Inconsistencies ICLR 2026
Large Multimodal Models (LMMs) are increasingly applied to scientific research, yet it remains unclear whether they can reliably understand and reason over the multimodal complexity of papers. A central challenge lies in detecting and resolving inconsistencies across text, figures, tables, and equations, issues that are often subtle, domain-specific, and ultimately undermine clarity, reproducibility, and trust. Existing benchmarks overlook this issue, either isolating single modalities or relying on synthetic errors that fail to capture real-world complexity. We introduce PRISMM-Bench (Peer-Review-sourced Inconsistency Set for Multimodal Models), the first benchmark grounded in real reviewer-flagged inconsistencies in scientific papers. Through a multi-stage pipeline of review mining, LLM-assisted filtering and human verification, we curate 384 inconsistencies from 353 papers. Based on this set, we design three tasks, namely inconsistency identification, remedy and pair matching, which assess a model's capacity to detect, correct, and reason over inconsistencies across different modalities. Furthermore, to address the notorious problem of choice-only shortcuts in multiple-choice evaluation, where models exploit answer patterns without truly understanding the question, we further introduce structured JSON-based answer representations that minimize linguistic biases by reducing reliance on superficial stylistic cues. We benchmark 21 leading LMMs, including large open-weight models (GLM-4.5V 106B, InternVL3 78B) and proprietary models (Gemini 2.5 Pro, GPT-5 with high reasoning). Results reveal strikingly low performance (27.8-53.9\%), underscoring the challenge of multimodal scientific reasoning and motivating progress towards trustworthy scientific assistants.
comment: Accepted at ICLR 2026. Project page https://da-luggas.github.io/prismm-bench/
OneVision-Encoder: Codec-Aligned Sparsity as a Foundational Principle for Multimodal Intelligence
Hypothesis. Artificial general intelligence is, at its core, a compression problem. Effective compression demands resonance: deep learning scales best when its architecture aligns with the fundamental structure of the data. These are the fundamental principles. Yet, modern vision architectures have strayed from these truths: visual signals are highly redundant, while discriminative information, the surprise, is sparse. Current models process dense pixel grids uniformly, wasting vast compute on static background rather than focusing on the predictive residuals that define motion and meaning. We argue that to solve visual understanding, we must align our architectures with the information-theoretic principles of video, i.e., Codecs. Method. OneVision-Encoder encodes video by compressing predictive visual structure into semantic meaning. By adopting Codec Patchification, OV-Encoder abandons uniform computation to focus exclusively on the 3.1%-25% of regions rich in signal entropy. To unify spatial and temporal reasoning under irregular token layouts, OneVision-Encoder employs a shared 3D RoPE and is trained with a large-scale cluster discrimination objective over more than one million semantic concepts, jointly capturing object permanence and motion dynamics. Evidence. The results validate our core hypothesis: efficiency and accuracy are not a trade-off; they are positively correlated. When integrated into LLM, it consistently outperforms strong vision backbones such as Qwen3-ViT and SigLIP2 across 16 image, video, and document understanding benchmarks, despite using substantially fewer visual tokens and pretraining data. Notably, on video understanding tasks, OV-Encoder achieves an average improvement of 4.1% over Qwen3-ViT. Codec-aligned, patch-level sparsity is a foundational principle, enabling OV-Encoder as a scalable engine for next-generation visual generalists.
♻ ☆ Realtime Data-Efficient Portrait Stylization Based On Geometric Alignment
Portrait Stylization aims to imbue portrait photos with vivid artistic effects drawn from style examples. Despite the availability of enormous training datasets and large network weights, existing methods struggle to maintain geometric consistency and achieve satisfactory stylization effects due to the disparity in facial feature distributions between facial photographs and stylized images, limiting the application on rare styles and mobile devices. To alleviate this, we propose to establish meaningful geometric correlations between portraits and style samples to simplify the stylization by aligning corresponding facial characteristics. Specifically, we integrate differentiable Thin-Plate-Spline (TPS) modules into an end-to-end Generative Adversarial Network (GAN) framework to improve the training efficiency and promote the consistency of facial identities. By leveraging inherent structural information of faces, e.g., facial landmarks, TPS module can establish geometric alignments between the two domains, at global and local scales, both in pixel and feature spaces, thereby overcoming the aforementioned challenges. Quantitative and qualitative comparisons on a range of portrait stylization tasks demonstrate that our models not only outperforms existing models in terms of fidelity and stylistic consistency, but also achieves remarkable improvements in 2x training data efficiency and 100x less computational complexity, allowing our lightweight model to achieve real-time inference (30 FPS) at 512*512 resolution on mobile devices.
comment: 16 pages, 14 figures
♻ ☆ SlimEdge: Performance and Device Aware Distributed DNN Deployment on Resource-Constrained Edge Hardware
Distributed deep neural networks (DNNs) have become central to modern computer vision, yet their deployment on resource-constrained edge devices remains hindered by substantial parameter counts, computational demands, and the probability of device failure. Here, we present an approach to the efficient deployment of distributed DNNs that jointly respect hardware limitations, preserve task performance, and remain robust to partial system failures. Our method integrates structured model pruning with a multi-objective optimization framework to tailor network capacity for heterogeneous device constraints, while explicitly accounting for device availability and failure probability during deployment. We demonstrate this framework using Multi-View Convolutional Neural Networks (MVCNN), a state-of-the-art architecture for 3D object recognition, by quantifying the contribution of individual views to classification accuracy and allocating pruning budgets accordingly. Experimental results show that the resulting models satisfy user-specified bounds on accuracy and memory footprint, even under multiple simultaneous device failures. The inference time is reduced by factors up to 4.7x across diverse simulated device configurations. These findings suggest that performance-aware, view-adaptive, and failure-resilient compression provides a viable pathway for deploying complex vision models in distributed edge environments.
♻ ☆ Tracing 3D Anatomy in 2D Strokes: A Multi-Stage Projection Driven Approach to Cervical Spine Fracture Identification
Cervical spine fractures are critical medical conditions requiring precise and efficient detection for effective clinical management. This study explores the viability of 2D projection-based vertebra segmentation for vertebra-level fracture detection in 3D CT volumes, presenting an end-to-end pipeline for automated analysis of cervical vertebrae (C1-C7). By approximating a 3D volume through optimized 2D axial, sagittal, and coronal projections, regions of interest are identified using the YOLOv8 model from all views and combined to approximate the 3D cervical spine area, achieving a 3D mIoU of 94.45 percent. This projection-based localization strategy reduces computational complexity compared to traditional 3D segmentation methods while maintaining high performance. It is followed by a DenseNet121-Unet-based multi-label segmentation leveraging variance- and energy-based projections, achieving a Dice score of 87.86 percent. Strategic approximation of 3D vertebral masks from these 2D segmentation masks enables the extraction of individual vertebra volumes. The volumes are analyzed for fractures using an ensemble of 2.5D Spatio-Sequential models incorporating both raw slices and projections per vertebra for complementary evaluation. This ensemble achieves vertebra-level and patient-level F1 scores of 68.15 and 82.26, and ROC-AUC scores of 91.62 and 83.04, respectively. We further validate our approach through an explainability study that provides saliency map visualizations highlighting anatomical regions relevant for diagnosis, and an interobserver variability analysis comparing our model's performance with expert radiologists, demonstrating competitive results.
♻ ☆ OmniVideo-R1: Reinforcing Audio-visual Reasoning with Query Intention and Modality Attention
While humans perceive the world through diverse modalities that operate synergistically to support a holistic understanding of their surroundings, existing omnivideo models still face substantial challenges on audio-visual understanding tasks. In this paper, we propose OmniVideo-R1, a novel reinforced framework that improves mixed-modality reasoning. OmniVideo-R1 empowers models to "think with omnimodal cues" by two key strategies: (1) query-intensive grounding based on self-supervised learning paradigms; and (2) modality-attentive fusion built upon contrastive learning paradigms. Extensive experiments on multiple benchmarks demonstrate that OmniVideo-R1 consistently outperforms strong baselines, highlighting its effectiveness and robust generalization capabilities.
comment: 19 pages, 12 figures
♻ ☆ Car-1000: A New Large Scale Fine-Grained Visual Categorization Dataset CVPR 2024
Fine-grained visual categorization (FGVC) is a challenging but significant task in computer vision, which aims to recognize different sub-categories of birds, cars, airplanes, etc. Among them, recognizing models of different cars has significant application value in autonomous driving, traffic surveillance and scene understanding, which has received considerable attention in the past few years. However, Stanford-Car, the most widely used fine-grained dataset for car recognition, only has 196 different categories and only includes vehicle models produced earlier than 2013. Due to the rapid advancements in the automotive industry during recent years, the appearances of various car models have become increasingly intricate and sophisticated. Consequently, the previous Stanford-Car dataset fails to capture this evolving landscape and cannot satisfy the requirements of automotive industry. To address these challenges, in our paper, we introduce Car-1000, a large-scale dataset designed specifically for fine-grained visual categorization of diverse car models. Car-1000 encompasses vehicles from 166 different automakers, spanning a wide range of 1000 distinct car models. Additionally, we have reproduced several state-of-the-art FGVC methods on the Car-1000 dataset, establishing a new benchmark for research in this field. We hope that our work will offer a fresh perspective for future FGVC researchers. Our dataset is available at https://github.com/toggle1995/Car-1000.
comment: accepted to The Eleventh Workshop on Fine-Grained Visual Categorization in CVPR 2024
♻ ☆ OmniEarth-Bench: Towards Holistic Evaluation of Earth's Six Spheres and Cross-Spheres Interactions with Multimodal Observational Earth Data
Existing benchmarks for multimodal learning in Earth science offer limited, siloed coverage of Earth's spheres and their cross-sphere interactions, typically restricting evaluation to the human-activity sphere of atmosphere and to at most 16 tasks. These limitations: narrow-source heterogeneity (single/few data sources), constrained scientific granularity, and limited-sphere extensibility. Therefore, we introduce OmniEarth-Bench, the first multimodal benchmark that systematically spans all six spheres: atmosphere, lithosphere, oceanosphere, cryosphere, biosphere, and human-activity sphere, and cross-spheres. Built with a scalable, modular-topology data inference framework and native multi-observation sources and expert-in-the-loop curation, OmniEarth-Bench produces 29,855 standardized, expert-curated annotations. All annotations are organized into a four-level hierarchy (Sphere, Scenario, Ability, Task), encompassing 109 expert-curated evaluation tasks. Experiments on 9 state-of-the-art MLLMs reveal that even the most advanced models struggle with our benchmarks, where none of them reach 35% accuracy, revealing systematic gaps in Earth-system cognitive ability. The dataset and evaluation code were released at OmniEarth-Bench (https://anonymous.4open.science/r/OmniEarth-Bench-B1BD).
♻ ☆ Large Scale Diffusion Distillation via Score-Regularized Continuous-Time Consistency ICLR 2026
Although continuous-time consistency models (e.g., sCM, MeanFlow) are theoretically principled and empirically powerful for fast academic-scale diffusion, its applicability to large-scale text-to-image and video tasks remains unclear due to infrastructure challenges in Jacobian-vector product (JVP) computation and the limitations of evaluation benchmarks like FID. This work represents the first effort to scale up continuous-time consistency to general application-level image and video diffusion models, and to make JVP-based distillation effective at large scale. We first develop a parallelism-compatible FlashAttention-2 JVP kernel, enabling sCM training on models with over 10 billion parameters and high-dimensional video tasks. Our investigation reveals fundamental quality limitations of sCM in fine-detail generation, which we attribute to error accumulation and the "mode-covering" nature of its forward-divergence objective. To remedy this, we propose the score-regularized continuous-time consistency model (rCM), which incorporates score distillation as a long-skip regularizer. This integration complements sCM with the "mode-seeking" reverse divergence, effectively improving visual quality while maintaining high generation diversity. Validated on large-scale models (Cosmos-Predict2, Wan2.1) up to 14B parameters and 5-second videos, rCM generally matches the state-of-the-art distillation method DMD2 on quality metrics while mitigating mode collapse and offering notable advantages in diversity, all without GAN tuning or extensive hyperparameter searches. The distilled models generate high-fidelity samples in only $1\sim4$ steps, accelerating diffusion sampling by $15\times\sim50\times$. These results position rCM as a practical and theoretically grounded framework for advancing large-scale diffusion distillation. Code is available at https://github.com/NVlabs/rcm.
comment: ICLR 2026
♻ ☆ Cross-Modal Mapping: Mitigating the Modality Gap for Few-Shot Image Classification
Few-shot image classification remains a critical challenge in the field of computer vision, particularly in data-scarce environments. Existing methods typically rely on pre-trained visual-language models, such as CLIP. However, due to the modality gap, which is the inconsistent distribution of image and text features in the joint embedding space, directly using these features as class prototypes often leads to suboptimal performance. To address this issue, we propose a novel Cross-Modal Mapping (CMM) method. This method globally aligns image features with the text feature space through linear transformation and optimizes their local spatial relationships using triplet loss, thereby significantly enhancing cross-modal consistency. Experimental results show that compared to other methods, CMM simplifies the training process and demonstrates higher efficiency. Furthermore, CMM improves the average Top-1 accuracy by 1.06% on 11 benchmark datasets compared to methods that partially fine-tune the backbone, and it performs excellently on 4 distribution shift datasets. Notably, CMM effectively mitigates the modality gap in pre-trained models, enabling text features to serve as effective class prototypes for image features, thus providing an efficient and highly generalizable solution for few-shot learning.
comment: The authors request withdrawal of this article. This version was submitted in error. Compared to the intended final version, it contains inaccuracies and fails to accurately reflect the authors' work and conclusions
♻ ☆ UGround: Towards Unified Visual Grounding with Unrolled Transformers
We present UGround, a \textbf{U}nified visual \textbf{Ground}ing paradigm that dynamically selects intermediate layers across \textbf{U}nrolled transformers as ``mask as prompt'', diverging from the prevailing pipeline that leverages the fixed last hidden layer as ``\texttt{} as prompt''. UGround addresses two primary challenges posed by the prevailing paradigm: (1) its reliance on the fixed last hidden layer, which sequentially amplifies cumulative errors arising from layer-by-layer propagation without intermediate correction, and (2) its use of \texttt{} as a prompt, which implicitly projects textual embeddings into visual space without explicit spatial cues (\eg, coordinates). Central to UGround is Policy-Prompted Masking, which comprises two key components: Stochastic Skip Connection (SSC) and Mask as Prompt (MasP). SSC is a reinforcement learning policy that, via stochastic sampling, allows each \texttt{} token to slide across unrolled transformer layers, enabling dynamic layer selection at which it connects to the vision model (\eg, SAM) in a skip-connection fashion. Given the selected hidden layer, MasP uses the similarity map derived from the \texttt{} token and image tokens as a soft logit mask to prompt SAM for mask generation, offering explicit spatial cues through its activation regions. To validate the effectiveness of UGround, we, for the first time, have unified visual grounding within a single framework from an attribute perspective, spanning from traditional refer expression segmentation to newly proposed reasoning segmentation, single-target to multi-target, positive query to false premise (empty target). All codes and models are publicly available at \href{https://github.com/rui-qian/UGround}{https://github.com/rui-qian/UGround}.
comment: https://github.com/rui-qian/UGround
♻ ☆ S2WMamba: A Spectral-Spatial Wavelet Mamba for Pansharpening
Pansharpening fuses a high-resolution PAN image with a low-resolution multispectral (LRMS) image to produce an HRMS image. A key difficulty is that jointly processing PAN and MS often entangles spatial detail with spectral fidelity. We propose S2WMamba, which explicitly disentangles frequency information and then performs lightweight cross-modal interaction. Concretely, a 2D Haar DWT is applied to PAN to localize spatial edges and textures, while a channel-wise 1D Haar DWT treats each pixel's spectrum as a 1D signal to separate low/high-frequency components and limit spectral distortion. The resulting Spectral branch injects wavelet-extracted spatial details into MS features, and the Spatial branch refines PAN features using spectra from the 1D pyramid; the two branches exchange information through Mamba-based cross-modulation that models long-range dependencies with linear complexity. A multi-scale dynamic gate (multiplicative + additive) then adaptively fuses branch outputs.On WV3, GF2, and QB, S2WMamba matches or surpasses recent strong baselines (FusionMamba, CANNet, U2Net, ARConv), improving PSNR by up to 0.23 dB and reaching HQNR 0.956 on full-resolution WV3. Ablations justify the choice of 2D/1D DWT placement, parallel dual branches, and the fusion gate. Our code is available at https://github.com/KagUYa66/S2WMamba.
♻ ☆ 3AM: 3egment Anything with Geometric Consistency in Videos
Video object segmentation methods like SAM2 achieve strong performance through memory-based architectures but struggle under large viewpoint changes due to reliance on appearance features. Traditional 3D instance segmentation methods address viewpoint consistency but require camera poses, depth maps, and expensive preprocessing. We introduce 3AM, a training-time enhancement that integrates 3D-aware features from MUSt3R into SAM2. Our lightweight Feature Merger fuses multi-level MUSt3R features that encode implicit geometric correspondence. Combined with SAM2's appearance features, the model achieves geometry-consistent recognition grounded in both spatial position and visual similarity. We propose a field-of-view aware sampling strategy ensuring frames observe spatially consistent object regions for reliable 3D correspondence learning. Critically, our method requires only RGB input at inference, with no camera poses or preprocessing. On challenging datasets with wide-baseline motion (ScanNet++, Replica), 3AM substantially outperforms SAM2 and extensions, achieving 90.6% IoU and 71.7% Positive IoU on ScanNet++'s Selected Subset, improving over state-of-the-art VOS methods by +15.9 and +30.4 points. Project page: https://jayisaking.github.io/3AM-Page/
comment: Project page: https://jayisaking.github.io/3AM-Page/
Multimedia 4
☆ The Interspeech 2026 Audio Reasoning Challenge: Evaluating Reasoning Process Quality for Audio Reasoning Models and Agents
Recent Large Audio Language Models (LALMs) excel in understanding but often lack transparent reasoning. To address this "black-box" limitation, we organized the Audio Reasoning Challenge at Interspeech 2026, the first shared task dedicated to evaluating Chain-of-Thought (CoT) quality in the audio domain. The challenge introduced MMAR-Rubrics, a novel instance-level protocol assessing the factuality and logic of reasoning chains. Featured Single Model and Agent tracks, the competition attracting 156 teams from 18 countries and regions. Results show agent systems currently lead in reasoning quality, utilizing iterative tool orchestration and cross-modal analysis. Besides, single models are rapidly advancing via reinforcement learning and sophisticated data pipeline. We details the challenge design, methodology, and a comprehensive analysis of state-of-the-art systems, providing new insights for explainable audio intelligence.
comment: The official website of the Audio Reasoning Challenge: https://audio-reasoning-challenge.github.io
☆ "The Intangible Victory", Interactive Audiovisual Installation
"Intangible Victory" is an audiovisual installation in the form of the intangible being of the Victory of Samothrace that uses interactive digital media. Specifically, through this installation, we redefine the visual symbolism of the ancient sculpture, paying attention to time as a wear factor (entropy) and the special importance of the void as an absence of the sculptural form. Emptiness completes the intangible essence of the sculpture in the field of symbolism as well as in that of artistic significance for the interpretation of the work today. The function of the void and the interaction of the viewer with the work, causes the emergence of a new experience-dialogue between space and time. The use of digital media and technology reveals the absence of the sculptural form as it is visualized in the Victory of Samothrace. The sculptural form is reconstructed from fibers in space in a cylindrical arrangement. The form is rendered with colored strings - conductive sensors, that allow the visitor to interact with the work, creating a sound environment through movement. The sound completely replaces the volume, as the void of the sculptural form together with the viewer in unison present an audiovisual symbolism of the Victory of Samothrace.
♻ ☆ RAG-VisualRec: An Open Resource for Vision- and Text-Enhanced Retrieval-Augmented Generation in Recommendation
This paper addresses the challenge of building multimodal recommender systems for the movie domain, where sparse item metadata (e.g., title and genres) can limit retrieval quality and downstream recommendations. We introduce RAG-VisualRec, an open resource and reproducible pipeline that combines (i) LLM-generated item-side plot descriptions and (ii) trailer-derived visual (and optional audio) embeddings, supporting both retrieval-augmented generation (RAG) and collaborative-filtering style workflows. Our pipeline augments sparse metadata into richer textual signals and integrates modalities via configurable fusion strategies (e.g., PCA and CCA) before retrieval and optional LLM-based re-ranking. Beyond providing the resource, we provide a complementary analysis that increases transparency and reproducibility. In particular, we introduce LLMGenQC, a critic-based quality-control module (LLM-as-judge) that audits synthetic synopses for semantic alignment with metadata, consistency, safety, and basic sanity checks, releasing critic scores and pass/fail labels alongside the generated artifacts. We report ablation studies that quantify the impact of key design choices, including retrieval depth, fusion strategy, and user-embedding construction. Across experiments, CCA-based fusion consistently improves recall over unimodal baselines, while LLM-based re-ranking typically improves nDCG by refining top-K selection from the retrieved candidate pool, especially when textual evidence is limited. By releasing RAG-VisualRec, we enable further research on multimodal RAG recommenders, quality auditing of LLM-generated side information, and long-tail oriented evaluation protocols. All code, data, and detailed documentation are publicly available at: https://github.com/RecSys-lab/RAG-VisualRec.
comment: 30 pages, 9 figures, 7 tables
♻ ☆ TriniMark: A Robust Generative Speech Watermarking Method for Trinity-Level Traceability
Diffusion-based speech generation has achieved remarkable fidelity, increasing the risk of misuse and unauthorized redistribution. However, most existing generative speech watermarking methods are developed for GAN-based pipelines, and watermarking for diffusion-based speech generation remains comparatively underexplored. In addition, prior work often focuses on content-level provenance, while support for model-level and user-level attribution is less mature. We propose \textbf{TriniMark}, a diffusion-based generative speech watermarking framework that targets trinity-level traceability, i.e., the ability to associate a generated speech sample with (i) the embedded watermark message (content-level provenance), (ii) the source generative model (model-level attribution), and (iii) the end user who requested generation (user-level traceability). TriniMark uses a lightweight encoder to embed watermark bits into time-domain speech features and reconstruct the waveform, and a temporal-aware gated convolutional decoder for reliable bit recovery. We further introduce a waveform-guided fine-tuning strategy to transfer watermarking capability into a diffusion model. Finally, we incorporate variable-watermark training so that a single trained model can embed different watermark messages at inference time, enabling scalable user-level traceability. Experiments on speech datasets indicate that TriniMark maintains speech quality while improving robustness to common single and compound signal-processing attacks, and it supports high-capacity watermarking for large-scale traceability.
Artificial Intelligent 29
☆ Exploiting Structure-from-Motion for Robust Vision-Based Map Matching for Aircraft Surface Movement
In this paper we introduce a vision-aided navigation (VAN) pipeline designed to support ground navigation of autonomous aircraft. The proposed algorithm combines the computational efficiency of indirect methods with the robustness of direct image-based techniques to enhance solution integrity. The pipeline starts by processing ground images (e.g., acquired by a taxiing aircraft) and relates them via a feature-based structure-from-motion (SfM) solution. A ground plane mosaic is then constructed via homography transforms and matched to satellite imagery using a sum of squares differences (SSD) of intensities. Experimental results reveal that drift within the SfM solution, similar to that observed in dead-reckoning systems, challenges the expected accuracy benefits of map-matching with a wide-baseline ground-plane mosaic. However, the proposed algorithm demonstrates key integrity features, such as the ability to identify registration anomalies and ambiguous matches. These characteristics of the pipeline can mitigate outlier behaviors and contribute toward a robust, certifiable solution for autonomous surface movement of aircraft.
comment: Accepted to the Proceedings of the 38th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2025). 15 pages, 13 figures
☆ Autonomous Robotic Tissue Palpation and Abnormalities Characterisation via Ergodic Exploration
We propose a novel autonomous robotic palpation framework for real-time elastic mapping during tissue exploration using a viscoelastic tissue model. The method combines force-based parameter estimation using a commercial force/torque sensor with an ergodic control strategy driven by a tailored Expected Information Density, which explicitly biases exploration toward diagnostically relevant regions by jointly considering model uncertainty, stiffness magnitude, and spatial gradients. An Extended Kalman Filter is employed to estimate viscoelastic model parameters online, while Gaussian Process Regression provides spatial modelling of the estimated elasticity, and a Heat Equation Driven Area Coverage controller enables adaptive, continuous trajectory planning. Simulations on synthetic stiffness maps demonstrate that the proposed approach achieves better reconstruction accuracy, enhanced segmentation capability, and improved robustness in detecting stiff inclusions compared to Bayesian Optimisation-based techniques. Experimental validation on a silicone phantom with embedded inclusions emulating pathological tissue regions further corroborates the potential of the method for autonomous tissue characterisation in diagnostic and screening applications.
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
☆ A Latency-Aware Framework for Visuomotor Policy Learning on Industrial Robots
Industrial robots are increasingly deployed in contact-rich construction and manufacturing tasks that involve uncertainty and long-horizon execution. While learning-based visuomotor policies offer a promising alternative to open-loop control, their deployment on industrial platforms is challenged by a large observation-execution gap caused by sensing, inference, and control latency. This gap is significantly greater than on low-latency research robots due to high-level interfaces and slower closed-loop dynamics, making execution timing a critical system-level issue. This paper presents a latency-aware framework for deploying and evaluating visuomotor policies on industrial robotic arms under realistic timing constraints. The framework integrates calibrated multimodal sensing, temporally consistent synchronization, a unified communication pipeline, and a teleoperation interface for demonstration collection. Within this framework, we introduce a latency-aware execution strategy that schedules finite-horizon, policy-predicted action sequences based on temporal feasibility, enabling asynchronous inference and execution without modifying policy architectures or training. We evaluate the framework on a contact-rich industrial assembly task while systematically varying inference latency. Using identical policies and sensing pipelines, we compare latency-aware execution with blocking and naive asynchronous baselines. Results show that latency-aware execution maintains smooth motion, compliant contact behavior, and consistent task progression across a wide range of latencies while reducing idle time and avoiding instability observed in baseline methods. These findings highlight the importance of explicitly handling latency for reliable closed-loop deployment of visuomotor policies on industrial robots.
☆ GRAIL: Goal Recognition Alignment through Imitation Learning
Understanding an agent's goals from its behavior is fundamental to aligning AI systems with human intentions. Existing goal recognition methods typically rely on an optimal goal-oriented policy representation, which may differ from the actor's true behavior and hinder the accurate recognition of their goal. To address this gap, this paper introduces Goal Recognition Alignment through Imitation Learning (GRAIL), which leverages imitation learning and inverse reinforcement learning to learn one goal-directed policy for each candidate goal directly from (potentially suboptimal) demonstration trajectories. By scoring an observed partial trajectory with each learned goal-directed policy in a single forward pass, GRAIL retains the one-shot inference capability of classical goal recognition while leveraging learned policies that can capture suboptimal and systematically biased behavior. Across the evaluated domains, GRAIL increases the F1-score by more than 0.5 under systematically biased optimal behavior, achieves gains of approximately 0.1-0.3 under suboptimal behavior, and yields improvements of up to 0.4 under noisy optimal trajectories, while remaining competitive in fully optimal settings. This work contributes toward scalable and robust models for interpreting agent goals in uncertain environments.
comment: Accepted for publication at AAMAS 2026
☆ Path Planning Optimisation for SParse, AwaRe and Cooperative Networked Aerial Robot Teams (SpArC-NARTs): Optimisation Tool and Ground Sensing Coverage Use Cases
A networked aerial robot team (NART) comprises a group of agents (e.g., unmanned aerial vehicles (UAVs), ground control stations, etc.) interconnected by wireless links. Inter-agent connectivity, even if intermittent (i.e. sparse), enables data exchanges between agents and supports cooperative behaviours in several NART missions. It can benefit online decentralised decision-making and group resilience, particularly when prior knowledge is inaccurate or incomplete. These requirements can be accounted for in the offline mission planning stages to incentivise cooperative behaviours and improve mission efficiency during the NART deployment. This paper proposes a novel path planning tool for a Sparse, Aware, and Cooperative Networked Aerial Robot Team (SpArC-NART) in exploration missions. It simultaneously considers different levels of prior information regarding the environment, limited agent energy, sensing, and communication, as well as distinct NART constitutions. The communication model takes into account the limitations of user-defined radio technology and physical phenomena. The proposed tool aims to maximise the mission goals (e.g., finding one or multiple targets, covering the full area of the environment, etc.), while cooperating with other agents to reduce agent reporting times, increase their global situational awareness (e.g., their knowledge of the environment), and facilitate mission replanning, if required. The developed cooperation mechanism leverages soft-motion constraints and dynamic rewards based on the Value of Movement and the expected communication availability between the agents at each time step. A ground sensing coverage use case was chosen to illustrate the current capabilities of this tool.
comment: 20 pages, submitted to a Journal
☆ Muscle Coactivation in the Sky: Geometry and Pareto Optimality of Energy vs. Promptness in Multirotors
In robotics and human biomechanics, the tension between energy economy and kinematic readiness is well recognized; this work brings that fundamental principle to aerial multirotors. We show that the limited torque of the motors and the nonlinear aerodynamic map from rotor speed to thrust naturally give rise to the novel concept of promptness-a metric akin to dynamic aerodynamic manipulability. By treating energy consumption as a competing objective and introducing a geometric fiber-bundle formulation, we turn redundancy resolution into a principled multi-objective program on affine fibers. The use of the diffeomorphic transformation linearizing the signed-quadratic propulsion model allows us to lay the foundations for a rigorous study of the interplay between these costs. Through an illustrative case study on 4-DoF allocation on the hexarotor, we reveal that this interplay is fiber-dependent and physically shaped by hardware inequalities. For unidirectional thrusters, the feasible fibers are compact, yielding interior allocations and a short Pareto arc, while torque demands break symmetry and separate the optima. Conversely, with reversible propellers, the null space enables antagonistic rotor co-contraction that drives promptness to hardware limits, making optimal endurance and agility fundamentally incompatible in those regimes. Ultimately, rather than relying on heuristic tuning or black box algorithms to empirically improve task execution, this framework provides a foundational understanding of why and how to achieve agility through geometry-aware control allocation, offering possible guidance for vehicle design, certification metrics, and threat-aware flight operation.
☆ Learning Part-Aware Dense 3D Feature Field for Generalizable Articulated Object Manipulation ICLR 2026
Articulated object manipulation is essential for various real-world robotic tasks, yet generalizing across diverse objects remains a major challenge. A key to generalization lies in understanding functional parts (e.g., door handles and knobs), which indicate where and how to manipulate across diverse object categories and shapes. Previous works attempted to achieve generalization by introducing foundation features, while these features are mostly 2D-based and do not specifically consider functional parts. When lifting these 2D features to geometry-profound 3D space, challenges arise, such as long runtimes, multi-view inconsistencies, and low spatial resolution with insufficient geometric information. To address these issues, we propose Part-Aware 3D Feature Field (PA3FF), a novel dense 3D feature with part awareness for generalizable articulated object manipulation. PA3FF is trained by 3D part proposals from a large-scale labeled dataset, via a contrastive learning formulation. Given point clouds as input, PA3FF predicts a continuous 3D feature field in a feedforward manner, where the distance between point features reflects the proximity of functional parts: points with similar features are more likely to belong to the same part. Building on this feature, we introduce the Part-Aware Diffusion Policy (PADP), an imitation learning framework aimed at enhancing sample efficiency and generalization for robotic manipulation. We evaluate PADP on several simulated and real-world tasks, demonstrating that PA3FF consistently outperforms a range of 2D and 3D representations in manipulation scenarios, including CLIP, DINOv2, and Grounded-SAM. Beyond imitation learning, PA3FF enables diverse downstream methods, including correspondence learning and segmentation tasks, making it a versatile foundation for robotic manipulation. Project page: https://pa3ff.github.io
comment: Accept to ICLR 2026, Project page: https://pa3ff.github.io
☆ Direction Matters: Learning Force Direction Enables Sim-to-Real Contact-Rich Manipulation
Sim-to-real transfer for contact-rich manipulation remains challenging due to the inherent discrepancy in contact dynamics. While existing methods often rely on costly real-world data or utilize blind compliance through fixed controllers, we propose a framework that leverages expert-designed controller logic for transfer. Inspired by the success of privileged supervision in kinematic tasks, we employ a human-designed finite state machine based position/force controller in simulation to provide privileged guidance. The resulting policy is trained to predict the end-effector pose, contact state, and crucially the desired contact force direction. Unlike force magnitudes, which are highly sensitive to simulation inaccuracies, force directions encode high-level task geometry and remain robust across the sim-to-real gap. At deployment, these predictions configure a force-aware admittance controller. By combining the policy's directional intent with a constant, low-cost manually tuned force magnitude, the system generates adaptive, task-aligned compliance. This tuning is lightweight, typically requiring only a single scalar per contact state. We provide theoretical analysis for stability and robustness to disturbances. Experiments on four real-world tasks, i.e., microwave opening, peg-in-hole, whiteboard wiping, and door opening, demonstrate that our approach significantly outperforms strong baselines in both success rate and robustness. Videos are available at: https://yifei-y.github.io/project-pages/DirectionMatters/.
☆ Rigidity-Based Multi-Finger Coordination for Precise In-Hand Manipulation of Force-Sensitive Objects
Precise in-hand manipulation of force-sensitive objects typically requires judicious coordinated force planning as well as accurate contact force feedback and control. Unlike multi-arm platforms with gripper end effectors, multi-fingered hands rely solely on fingertip point contacts and are not able to apply pull forces, therefore poses a more challenging problem. Furthermore, calibrated torque sensors are lacking in most commercial dexterous hands, adding to the difficulty. To address these challenges, we propose a dual-layer framework for multi-finger coordination, enabling high-precision manipulation of force-sensitive objects through joint control without tactile feedback. This approach solves coordinated contact force planning by incorporating graph rigidity and force closure constraints. By employing a force-to-position mapping, the planned force trajectory is converted to a joint trajectory. We validate the framework on a custom dexterous hand, demonstrating the capability to manipulate fragile objects-including a soft yarn, a plastic cup, and a raw egg-with high precision and safety.
comment: This paper has been accepted by IEEE Robotics and Automation Letters. The experimental video is avaialable at: https://www.youtube.com/watch?v=kcf9dVW0Dpo
☆ SemanticFeels: Semantic Labeling during In-Hand Manipulation
As robots become increasingly integrated into everyday tasks, their ability to perceive both the shape and properties of objects during in-hand manipulation becomes critical for adaptive and intelligent behavior. We present SemanticFeels, an extension of the NeuralFeels framework that integrates semantic labeling with neural implicit shape representation, from vision and touch. To illustrate its application, we focus on material classification: high-resolution Digit tactile readings are processed by a fine-tuned EfficientNet-B0 convolutional neural network (CNN) to generate local material predictions, which are then embedded into an augmented signed distance field (SDF) network that jointly predicts geometry and continuous material regions. Experimental results show that the system achieves a high correspondence between predicted and actual materials on both single- and multi-material objects, with an average matching accuracy of 79.87% across multiple manipulation trials on a multi-material object.
comment: 10 pages, 5 figures
☆ Simultaneous State Estimation and Online Model Learning in a Soft Robotic System
Operating complex real-world systems, such as soft robots, can benefit from precise predictive control schemes that require accurate state and model knowledge. This knowledge is typically not available in practical settings and must be inferred from noisy measurements. In particular, it is challenging to simultaneously estimate unknown states and learn a model online from sequentially arriving measurements. In this paper, we show how a recently proposed gray-box system identification tool enables the estimation of a soft robot's current pose while at the same time learning a bending stiffness model. For estimation and learning, we rely solely on a nominal constant-curvature robot model and measurements of the robot's base reactions (e.g., base forces). The estimation scheme -- relying on a marginalized particle filter -- allows us to conveniently interface nominal constant-curvature equations with a Gaussian Process (GP) bending stiffness model to be learned. This, in contrast to estimation via a random walk over stiffness values, enables prediction of bending stiffness and improves overall model quality. We demonstrate, using real-world soft-robot data, that the method learns a bending stiffness model online while accurately estimating the robot's pose. Notably, reduced multi-step forward-prediction errors indicate that the learned bending-stiffness GP improves overall model quality.
comment: 8 pages, 3 figures, 2 tables
☆ ProAct: A Dual-System Framework for Proactive Embodied Social Agents
Embodied social agents have recently advanced in generating synchronized speech and gestures. However, most interactive systems remain fundamentally reactive, responding only to current sensory inputs within a short temporal window. Proactive social behavior, in contrast, requires deliberation over accumulated context and intent inference, which conflicts with the strict latency budget of real-time interaction. We present \emph{ProAct}, a dual-system framework that reconciles this time-scale conflict by decoupling a low-latency \emph{Behavioral System} for streaming multimodal interaction from a slower \emph{Cognitive System} which performs long-horizon social reasoning and produces high-level proactive intentions. To translate deliberative intentions into continuous non-verbal behaviors without disrupting fluency, we introduce a streaming flow-matching model conditioned on intentions via ControlNet. This mechanism supports asynchronous intention injection, enabling seamless transitions between reactive and proactive gestures within a single motion stream. We deploy ProAct on a physical humanoid robot and evaluate both motion quality and interactive effectiveness. In real-world interaction user studies, participants and observers consistently prefer ProAct over reactive variants in perceived proactivity, social presence, and overall engagement, demonstrating the benefits of dual-system proactive control for embodied social interaction.
comment: Project Page: https://proactrobot.github.io/
☆ RoboAug: One Annotation to Hundreds of Scenes via Region-Contrastive Data Augmentation for Robotic Manipulation
Enhancing the generalization capability of robotic learning to enable robots to operate effectively in diverse, unseen scenes is a fundamental and challenging problem. Existing approaches often depend on pretraining with large-scale data collection, which is labor-intensive and time-consuming, or on semantic data augmentation techniques that necessitate an impractical assumption of flawless upstream object detection in real-world scenarios. In this work, we propose RoboAug, a novel generative data augmentation framework that significantly minimizes the reliance on large-scale pretraining and the perfect visual recognition assumption by requiring only the bounding box annotation of a single image during training. Leveraging this minimal information, RoboAug employs pre-trained generative models for precise semantic data augmentation and integrates a plug-and-play region-contrastive loss to help models focus on task-relevant regions, thereby improving generalization and boosting task success rates. We conduct extensive real-world experiments on three robots, namely UR-5e, AgileX, and Tien Kung 2.0, spanning over 35k rollouts. Empirical results demonstrate that RoboAug significantly outperforms state-of-the-art data augmentation baselines. Specifically, when evaluating generalization capabilities in unseen scenes featuring diverse combinations of backgrounds, distractors, and lighting conditions, our method achieves substantial gains over the baseline without augmentation. The success rates increase from 0.09 to 0.47 on UR-5e, from 0.16 to 0.60 on AgileX, and from 0.19 to 0.67 on Tien Kung 2.0. These results highlight the superior generalization and effectiveness of RoboAug in real-world manipulation tasks. Our project is available at https://x-roboaug.github.io/.
☆ It Takes Two to Tango: A Holistic Simulator for Joint Order Scheduling and Multi-Agent Path Finding in Robotic Warehouses
The prevailing paradigm in Robotic Mobile Fulfillment Systems (RMFS) typically treats order scheduling and multi-agent pathfinding as isolated sub-problems. We argue that this decoupling is a fundamental bottleneck, masking the critical dependencies between high-level dispatching and low-level congestion. Existing simulators fail to bridge this gap, often abstracting away heterogeneous kinematics and stochastic execution failures. We propose WareRover, a holistic simulation platform that enforces a tight coupling between OS and MAPF via a unified, closed-loop optimization interface. Unlike standard benchmarks, WareRover integrates dynamic order streams, physics-aware motion constraints, and non-nominal recovery mechanisms into a single evaluation loop. Experiments reveal that SOTA algorithms often falter under these realistic coupled constraints, demonstrating that WareRover provides a necessary and challenging testbed for robust, next-generation warehouse coordination. The project and video is available at https://hhh-x.github.io/WareRover/.
☆ WoVR: World Models as Reliable Simulators for Post-Training VLA Policies with RL
Reinforcement learning (RL) promises to unlock capabilities beyond imitation learning for Vision-Language-Action (VLA) models, but its requirement for massive real-world interaction prevents direct deployment on physical robots. Recent work attempts to use learned world models as simulators for policy optimization, yet closed-loop imagined rollouts inevitably suffer from hallucination and long-horizon error accumulation. Such errors do not merely degrade visual fidelity; they corrupt the optimization signal, encouraging policies to exploit model inaccuracies rather than genuine task progress. We propose WoVR, a reliable world-model-based reinforcement learning framework for post-training VLA policies. Instead of assuming a faithful world model, WoVR explicitly regulates how RL interacts with imperfect imagined dynamics. It improves rollout stability through a controllable action-conditioned video world model, reshapes imagined interaction to reduce effective error depth via Keyframe-Initialized Rollouts, and maintains policy-simulator alignment through World Model-Policy co-evolution. Extensive experiments on LIBERO benchmarks and real-world robotic manipulation demonstrate that WoVR enables stable long-horizon imagined rollouts and effective policy optimization, improving average LIBERO success from 39.95% to 69.2% (+29.3 points) and real-robot success from 61.7% to 91.7% (+30.0 points). These results show that learned world models can serve as practical simulators for reinforcement learning when hallucination is explicitly controlled.
comment: 21pages, 8 figures
☆ Joint Task Assistance Planning via Nested Branch and Bound (Extended Version)
We introduce and study the Joint Task Assistance Planning problem which generalizes prior work on optimizing assistance in robotic collaboration. In this setting, two robots operate over predefined roadmaps, each represented as a graph corresponding to its configuration space. One robot, the task robot, must execute a timed mission, while the other, the assistance robot, provides sensor-based support that depends on their spatial relationship. The objective is to compute a path for both robots that maximizes the total duration of assistance given. Solving this problem is challenging due to the combinatorial explosion of possible path combinations together with the temporal nature of the problem (time needs to be accounted for as well). To address this, we propose a nested branch-and-bound framework that efficiently explores the space of robot paths in a hierarchical manner. We empirically evaluate our algorithm and demonstrate a speedup of up to two orders of magnitude when compared to a baseline approach.
☆ A Comprehensive Survey on Deep Learning-Based LiDAR Super-Resolution for Autonomous Driving
LiDAR sensors are often considered essential for autonomous driving, but high-resolution sensors remain expensive while affordable low-resolution sensors produce sparse point clouds that miss critical details. LiDAR super-resolution addresses this challenge by using deep learning to enhance sparse point clouds, bridging the gap between different sensor types and enabling cross-sensor compatibility in real-world deployments. This paper presents the first comprehensive survey of LiDAR super-resolution methods for autonomous driving. Despite the importance of practical deployment, no systematic review has been conducted until now. We organize existing approaches into four categories: CNN-based architectures, model-based deep unrolling, implicit representation methods, and Transformer and Mamba-based approaches. We establish fundamental concepts including data representations, problem formulation, benchmark datasets and evaluation metrics. Current trends include the adoption of range image representation for efficient processing, extreme model compression and the development of resolution-flexible architectures. Recent research prioritizes real-time inference and cross-sensor generalization for practical deployment. We conclude by identifying open challenges and future research directions for advancing LiDAR super-resolution technology.
comment: Accepted to The IEEE Intelligent Vehicles Symposium 2026 (IEEE IV 2026)
♻ ☆ Pack it in: Packing into Partially Filled Containers Through Contact
The automation of warehouse operations is crucial for improving productivity and reducing human exposure to hazardous environments. One operation frequently performed in warehouses is bin-packing where items need to be placed into containers, either for delivery to a customer, or for temporary storage in the warehouse. Whilst prior bin-packing works have largely been focused on packing items into empty containers and have adopted collision-free strategies, it is often the case that containers will already be partially filled with items, often in suboptimal arrangements due to transportation about a warehouse. This paper presents a contact-aware packing approach that exploits purposeful interactions with previously placed objects to create free space and enable successful placement of new items. This is achieved by using a contact-based multi-object trajectory optimizer within a model predictive controller, integrated with a physics-aware perception system that estimates object poses even during inevitable occlusions, and a method that suggests physically-feasible locations to place the object inside the container.
comment: 8 pages, 5 figures
♻ ☆ ORACLE-Grasp: Zero-Shot Affordance-Aligned Robotic Grasping using Large Multimodal Models
Grasping unknown objects in unstructured environments is a critical challenge for service robots, which must operate in dynamic, real-world settings such as homes, hospitals, and warehouses. Success in these environments requires both semantic understanding and spatial reasoning. Traditional methods often rely on dense training datasets or detailed geometric modeling, which demand extensive data collection and do not generalize well to novel objects or affordances. We present ORACLE-Grasp, a zero-shot framework that leverages Large Multimodal Models (LMMs) as semantic oracles to guide affordance-aligned grasp selection, without requiring task-specific training or manual input. The system reformulates grasp prediction as a structured, iterative decision process, using a dual-prompt tool-calling strategy: the first prompt extracts high-level object semantics, while the second identifies graspable regions aligned with the object's function. To address the spatial limitations of LMMs, ORACLE-Grasp discretizes the image into candidate regions and reasons over them to produce human-like and context-sensitive grasp suggestions. A depth-based refinement step improves grasp reliability when available, and an early stopping mechanism enhances computational efficiency. We evaluate ORACLE-Grasp on a diverse set of RGB and RGB-D images featuring both everyday and AI-generated objects. The results show that our method produces physically feasible and semantically appropriate grasps that align closely with human annotations, achieving high success rates in real-world pick-up tasks. Our findings highlight the potential of LMMs for enabling flexible and generalizable grasping strategies in autonomous service robots, eliminating the need for object-specific models or extensive training.
♻ ☆ Multi-Objective Neural Network-Assisted Design Optimization of Soft Fin-Ray Fingers for Enhanced Grasping Performance
The internal structure of the Fin-Ray fingers plays a significant role in their adaptability and grasping performance. However, modeling the grasp force and deformation behavior for design purposes is challenging. When the Fin-Ray finger becomes more rigid and capable of exerting higher forces, it becomes less delicate in handling objects. The contrast between these two gives rise to a multi-objective optimization problem. We employ the finite element method to estimate the deflections and contact forces of the Fin-Ray fingers grasping cylindrical objects, generating a dataset of 120 simulations. This dataset includes three input variables: the thickness of the front and support beams, the thickness of the crossbeams, and the equal spacing between the crossbeams, which are the design variables in the optimization. This dataset is then used to construct a multilayer perceptron (MLP) with four output neurons predicting the contact force and tip displacement in two directions. The magnitudes of maximum contact force and maximum tip displacement are two optimization objectives, showing the trade-off between force and delicate manipulation. The set of solutions is found using the non-dominated sorting genetic algorithm (NSGA-II). The results of the simulations demonstrate that the proposed methodology can be used to improve the design and grasping performance of soft grippers, aiding to choose a design not only for delicate grasping but also for high-force applications.
comment: Major revision correcting errors that affected the reported results. Corresponding results were regenerated, and the manuscript was updated accordingly
♻ ☆ LAP: Language-Action Pre-Training Enables Zero-shot Cross-Embodiment Transfer
A long-standing goal in robotics is a generalist policy that can be deployed zero-shot on new robot embodiments without per-embodiment adaptation. Despite large-scale multi-embodiment pre-training, existing Vision-Language-Action models (VLAs) remain tightly coupled to their training embodiments and typically require costly fine-tuning. We introduce Language-Action Pre-training (LAP), a simple recipe that represents low-level robot actions directly in natural language, aligning action supervision with the pre-trained vision-language model's input-output distribution. LAP requires no learned tokenizer, no costly annotation, and no embodiment-specific architectural design. Based on LAP, we present LAP-3B, which to the best of our knowledge is the first VLA to achieve substantial zero-shot transfer to previously unseen robot embodiments without any embodiment-specific fine-tuning. Across multiple novel robots and manipulation tasks, LAP-3B attains over 50% average zero-shot success, delivering roughly a 2x improvement over the strongest prior VLAs. We further show that LAP enables efficient adaptation and favorable scaling, while unifying action prediction and VQA in a shared language-action format that yields additional gains through co-training.
comment: Project website: https://lap-vla.github.io
♻ ☆ Generation of Uncertainty-Aware High-Level Spatial Concepts in Factorized 3D Scene Graphs via Graph Neural Networks
Enabling robots to autonomously discover high-level spatial concepts (e.g., rooms and walls) from primitive geometric observations (e.g., planar surfaces) within 3D Scene Graphs is essential for robust indoor navigation and mapping. These graphs provide a hierarchical metric-semantic representation in which such concepts are organized. To further enhance graph-SLAM performance, Factorized 3D Scene Graphs incorporate these concepts as optimization factors that constrain relative geometry and enforce global consistency. However, both stages of this process remain largely manual: concepts are typically derived using hand-crafted, concept-specific heuristics, while factors and their covariances are likewise manually designed. This reliance on manual specification limits generalization across diverse environments and scalability to new concept classes. This paper presents a novel learning-based method that infers spatial concepts online from observed vertical planes and introduces them as optimizable factors within a SLAM backend, eliminating the need to handcraft concept generation, factor design, and covariance specification. We evaluate our approach in simulated environments with complex layouts, improving room detection by 20.7% and trajectory estimation by 19.2%, and further validate it on real construction sites, where room detection improves by 5.3% and map matching accuracy by 3.8%. Results confirm that learned factors can improve their handcrafted counterparts in SLAM systems and serve as a foundation for extending this approach to new spatial concepts.
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
♻ ☆ System-Level Error Propagation and Tail-Risk Amplification in Reference-Based Robotic Navigation
Image guided robotic navigation systems often rely on reference based geometric perception pipelines, where accurate spatial mapping is established through multi stage estimation processes. In biplanar X ray guided navigation, such pipelines are widely used due to their real time capability and geometric interpretability. However, navigation reliability can be constrained by an overlooked system level failure mechanism in which installation induced structural perturbations introduced at the perception stage are progressively amplified along the perception reconstruction execution chain and dominate execution level error and tail risk behavior. This paper investigates this mechanism from a system level perspective and presents a unified error propagation modeling framework that characterizes how installation induced structural perturbations propagate and couple with pixel level observation noise through biplanar imaging, projection matrix estimation, triangulation, and coordinate mapping. Using first order analytic uncertainty propagation and Monte Carlo simulations, we analyze dominant sensitivity channels and quantify worst case error behavior beyond mean accuracy metrics. The results show that rotational installation error is a primary driver of system level error amplification, while translational misalignment of comparable magnitude plays a secondary role under typical biplanar geometries. Real biplanar X ray bench top experiments further confirm that the predicted amplification trends persist under realistic imaging conditions. These findings reveal a broader structural limitation of reference based multi stage geometric perception pipelines and provide a framework for system level reliability analysis and risk aware design in safety critical robotic navigation systems.
comment: 13 pages, 8 figures
♻ ☆ DeCo: Task Decomposition and Skill Composition for Zero-Shot Generalization in Long-Horizon 3D Manipulation
Generalizing language-conditioned multi-task imitation learning (IL) models to novel long-horizon 3D manipulation tasks is challenging. To address this, we propose DeCo (Task Decomposition and Skill Composition), a model-agnostic framework that enhances zero-shot generalization to compositional long-horizon manipulation tasks. DeCo decomposes IL demonstrations into modular atomic tasks based on gripper-object interactions, creating a dataset that enables models to learn reusable skills. At inference, DeCo uses a vision-language model (VLM) to parse high-level instructions, retrieve relevant skills, and dynamically schedule their execution. A spatially-aware skill-chaining module ensures smooth, collision-free transitions between skills. We introduce DeCoBench, a benchmark designed to evaluate compositional generalization in long-horizon manipulation tasks. DeCo improves the success rate of three IL models, RVT-2, 3DDA, and ARP, by 66.67%, 21.53%, and 57.92%, respectively, on 12 novel tasks. In real-world experiments, the DeCo-enhanced model, trained on only 6 atomic tasks, completes 9 novel tasks in zero-shot, with a 53.33% improvement over the baseline model. Project website: https://deco226.github.io.
comment: RAL 2026
♻ ☆ GelSLAM: A Real-time, High-Fidelity, and Robust 3D Tactile SLAM System
Accurately perceiving an object's pose and shape is essential for precise grasping and manipulation. Compared to common vision-based methods, tactile sensing offers advantages in precision and immunity to occlusion when tracking and reconstructing objects in contact. This makes it particularly valuable for in-hand and other high-precision manipulation tasks. In this work, we present GelSLAM, a real-time 3D SLAM system that relies solely on tactile sensing to estimate object pose over long periods and reconstruct object shapes with high fidelity. Unlike traditional point cloud-based approaches, GelSLAM uses tactile-derived surface normals and curvatures for robust tracking and loop closure. It can track object motion in real time with low error and minimal drift, and reconstruct shapes with submillimeter accuracy, even for low-texture objects such as wooden tools. GelSLAM extends tactile sensing beyond local contact to enable global, long-horizon spatial perception, and we believe it will serve as a foundation for many precise manipulation tasks involving interaction with objects in hand. The video demo, code, and dataset are available at https://joehjhuang.github.io/gelslam.
comment: 20 pages
Vision-Based Early Fault Diagnosis and Self-Recovery for Strawberry Harvesting Robots
Strawberry harvesting robots faced persistent challenges such as low integration of visual perception, fruit-gripper misalignment, empty grasping/misgrasp, and strawberry slippage from the gripper due to insufficient gripping force, all of which compromised harvesting stability and efficiency in orchard environments. To overcome these issues, this paper proposed a visual fault diagnosis and self-recovery framework that integrated multi-task perception with corrective control strategies. At the core of this framework was SRR-Net, an end-to-end multi-task perception model that simultaneously performed strawberry detection, segmentation, and ripeness estimation, thereby unifying visual perception with fault diagnosis.Based on this integrated perception, a relative error compensation method based on the simultaneous target-gripper detection was designed to address positional misalignment, correcting deviations when error exceeded the tolerance threshold.To mitigate empty grasping/misgrasp and fruit-slippage faults, an early abort strategy was implemented. A micro-optical camera embedded in the end-effector provided real-time visual feedback, enabling grasp classification during the deflating stage and strawberry slip prediction during snap-off through MobileNet V3-Small classifier and a time-series LSTM classifier. Experiments demonstrated that SRR-Net maintained high perception accuracy. For detection, it achieved a precision of 0.895 and recall of 0.813 on strawberries, and 0.972/0.958 on hands. In segmentation, it yielded a precision of 0.887 and recall of 0.747 for strawberries, and 0.974/0.947 for hands. For ripeness estimation, SRR-Net attained a mean absolute error of 0.035, while simultaneously supporting multi-task perception and sustaining a competitive inference speed of 163.35 FPS.
♻ ☆ Learning Category-level Last-meter Navigation from RGB Demonstrations of a Single-instance
Achieving precise positioning of the mobile manipulator's base is essential for successful manipulation actions that follow. Most of the RGB-based navigation systems only guarantee coarse, meter-level accuracy, making them less suitable for the precise positioning phase of mobile manipulation. This gap prevents manipulation policies from operating within the distribution of their training demonstrations, resulting in frequent execution failures. We address this gap by introducing an object-centric imitation learning framework for last-meter navigation, enabling a quadruped mobile manipulator robot to achieve manipulation-ready positioning using only RGB observations from its onboard cameras. Our method conditions the navigation policy on three inputs: goal images, multi-view RGB observations from the onboard cameras, and a text prompt specifying the target object. A language-driven segmentation module and a spatial score-matrix decoder then supply explicit object grounding and relative pose reasoning. Using real-world data from a single object instance within a category, the system generalizes to unseen object instances across diverse environments with challenging lighting and background conditions. To comprehensively evaluate this, we introduce two metrics: an edge-alignment metric, which uses ground truth orientation, and an object-alignment metric, which evaluates how well the robot visually faces the target. Under these metrics, our policy achieves 73.47% success in edge-alignment and 96.94% success in object-alignment when positioning relative to unseen target objects. These results show that precise last-meter navigation can be achieved at a category-level without depth, LiDAR, or map priors, enabling a scalable pathway toward unified mobile manipulation. Project page: https://rpm-lab-umn.github.io/category-level-last-meter-nav/
♻ ☆ Instance-Guided Unsupervised Domain Adaptation for Robotic Semantic Segmentation
Semantic segmentation networks, which are essential for robotic perception, often suffer from performance degradation when the visual distribution of the deployment environment differs from that of the source dataset on which they were trained. Unsupervised Domain Adaptation (UDA) addresses this challenge by adapting the network to the robot's target environment without external supervision, leveraging the large amounts of data a robot might naturally collect during long-term operation. In such settings, UDA methods can exploit multi-view consistency across the environment's map to fine-tune the model in an unsupervised fashion and mitigate domain shift. However, these approaches remain sensitive to cross-view instance-level inconsistencies. In this work, we propose a method that starts from a volumetric 3D map to generate multi-view consistent pseudo-labels. We then refine these labels using the zero-shot instance segmentation capabilities of a foundation model, enforcing instance-level coherence. The refined annotations serve as supervision for self-supervised fine-tuning, enabling the robot to adapt its perception system at deployment time. Experiments on real-world data demonstrate that our approach consistently improves performance over state-of-the-art UDA baselines based on multi-view consistency, without requiring any ground-truth labels in the target domain.
comment: Accepted for publication at ICRA 2026
♻ ☆ VLAW: Iterative Co-Improvement of Vision-Language-Action Policy and World Model
The goal of this paper is to improve the performance and reliability of vision-language-action (VLA) models through iterative online interaction. Since collecting policy rollouts in the real world is expensive, we investigate whether a learned simulator-specifically, an action-conditioned video generation model-can be used to generate additional rollout data. Unfortunately, existing world models lack the physical fidelity necessary for policy improvement: they are predominantly trained on demonstration datasets that lack coverage of many different physical interactions (particularly failure cases) and struggle to accurately model small yet critical physical details in contact-rich object manipulation. We propose a simple iterative improvement algorithm that uses real-world roll-out data to improve the fidelity of the world model, which can then, in turn, be used to generate supplemental synthetic data for improving the VLA model. In our experiments on a real robot, we use this approach to improve the performance of a state-of-the-art VLA model on multiple downstream tasks. We achieve a 39.2% absolute success rate improvement over the base policy and 11.6% improvement from training with the generated synthetic rollouts. Videos can be found at this anonymous website: https://sites.google.com/view/vla-w
comment: Project Page: https://sites.google.com/view/vlaw-arxiv
Computation and Language 24
☆ From Pixels to Policies: Reinforcing Spatial Reasoning in Language Models for Content-Aware Layout Design
We introduce LaySPA, a reinforcement learning framework that equips large language models (LLMs) with explicit and interpretable spatial reasoning for content-aware graphic layout design. LaySPA addresses two key challenges: LLMs' limited spatial reasoning and the lack of opacity in design decision making. Instead of operating at the pixel level, we reformulate layout design as a policy learning problem over a structured textual spatial environment that explicitly encodes canvas geometry, element attributes, and inter-element relationships. LaySPA produces dual-level outputs comprising interpretable reasoning traces and structured layout specifications, enabling transparent and controllable design decision making. Layout design policy is optimized via a multi-objective spatial critique that decomposes layout quality into geometric validity, relational coherence, and aesthetic consistency, and is trained using relative group optimization to stabilize learning in open-ended design spaces. Experiments demonstrate that LaySPA improves structural validity and visual quality, outperforming larger proprietary LLMs and achieving performance comparable to specialized SOTA layout generators while requiring fewer annotated samples and reduced latency.
☆ Pre-Editorial Normalization for Automatically Transcribed Medieval Manuscripts in Old French and Latin
Recent advances in Automatic Text Recognition (ATR) have improved access to historical archives, yet a methodological divide persists between palaeographic transcriptions and normalized digital editions. While ATR models trained on more palaeographically-oriented datasets such as CATMuS have shown greater generalizability, their raw outputs remain poorly compatible with most readers and downstream NLP tools, thus creating a usability gap. On the other hand, ATR models trained to produce normalized outputs have been shown to struggle to adapt to new domains and tend to over-normalize and hallucinate. We introduce the task of Pre-Editorial Normalization (PEN), which consists in normalizing graphemic ATR output according to editorial conventions, which has the advantage of keeping an intermediate step with palaeographic fidelity while providing a normalized version for practical usability. We present a new dataset derived from the CoMMA corpus and aligned with digitized Old French and Latin editions using passim. We also produce a manually corrected gold-standard evaluation set. We benchmark this resource using ByT5-based sequence-to-sequence models on normalization and pre-annotation tasks. Our contributions include the formal definition of PEN, a 4.66M-sample silver training corpus, a 1.8k-sample gold evaluation set, and a normalization model achieving a 6.7% CER, substantially outperforming previous models for this task.
☆ Evaluating Prompt Engineering Techniques for RAG in Small Language Models: A Multi-Hop QA Approach
Retrieval Augmented Generation (RAG) is a powerful approach for enhancing the factual grounding of language models by integrating external knowledge. While widely studied for large language models, the optimization of RAG for Small Language Models (SLMs) remains a critical research gap, particularly in complex, multi-hop question-answering tasks that require sophisticated reasoning. In these systems, prompt template design is a crucial yet under-explored factor influencing performance. This paper presents a large-scale empirical study to investigate this factor, evaluating 24 different prompt templates on the HotpotQA dataset. The set includes a standard RAG prompt, nine well-formed techniques from the literature, and 14 novel hybrid variants, all tested on two prominent SLMs: Qwen2.5-3B Instruct and Gemma3-4B-It. Our findings, based on a test set of 18720 instances, reveal significant performance gains of up to 83% on Qwen2.5 and 84.5% on Gemma3-4B-It, yielding an improvement of up to 6% for both models compared to the Standard RAG prompt. This research also offers concrete analysis and actionable recommendations for designing effective and efficient prompts for SLM-based RAG systems, practically for deployment in resource-constrained environments.
comment: 32 Pages, Submitted to Journal of Computing and Security
☆ ADAB: Arabic Dataset for Automated Politeness Benchmarking -- A Large-Scale Resource for Computational Sociopragmatics LREC2026
The growing importance of culturally-aware natural language processing systems has led to an increasing demand for resources that capture sociopragmatic phenomena across diverse languages. Nevertheless, Arabic-language resources for politeness detection remain under-explored, despite the rich and complex politeness expressions embedded in Arabic communication. In this paper, we introduce ADAB (Arabic Politeness Dataset), a new annotated Arabic dataset collected from four online platforms, including social media, e-commerce, and customer service domains, covering Modern Standard Arabic and multiple dialects (Gulf, Egyptian, Levantine, and Maghrebi). The dataset was annotated based on Arabic linguistic traditions and pragmatic theory, resulting in three classes: polite, impolite, and neutral. It contains 10,000 samples with linguistic feature annotations across 16 politeness categories and achieves substantial inter-annotator agreement (kappa = 0.703). We benchmark 40 model configurations, including traditional machine learning, transformer-based models, and large language models. The dataset aims to support research on politeness-aware Arabic NLP.
comment: Paper accepted @ The Fifteenth biennial Language Resources and Evaluation Conference (LREC2026)
☆ Bridging the Multilingual Safety Divide: Efficient, Culturally-Aware Alignment for Global South Languages AAAI 2026
Large language models (LLMs) are being deployed across the Global South, where everyday use involves low-resource languages, code-mixing, and culturally specific norms. Yet safety pipelines, benchmarks, and alignment still largely target English and a handful of high-resource languages, implicitly assuming safety and factuality ''transfer'' across languages. Evidence increasingly shows they do not. We synthesize recent findings indicating that (i) safety guardrails weaken sharply on low-resource and code-mixed inputs, (ii) culturally harmful behavior can persist even when standard toxicity scores look acceptable, and (iii) English-only knowledge edits and safety patches often fail to carry over to low-resource languages. In response, we outline a practical agenda for researchers and students in the Global South: parameter-efficient safety steering, culturally grounded evaluation and preference data, and participatory workflows that empower local communities to define and mitigate harm. Our aim is to make multilingual safety a core requirement-not an add-on-for equitable AI in underrepresented regions.
comment: Accepted to the EGSAI Workshop at AAAI 2026
☆ Tutoring Large Language Models to be Domain-adaptive, Precise, and Safe
The overarching research direction of this work is the development of a ''Responsible Intelligence'' framework designed to reconcile the immense generative power of Large Language Models (LLMs) with the stringent requirements of real-world deployment. As these models become a transformative force in artificial intelligence, there is an urgent need to move beyond general-purpose architectures toward systems that are contextually aware, inherently safer, and deeply respectful of global cultural nuances. This research navigates three interconnected threads: domain adaptation to ensure technical precision, ethical rigor to mitigate adversarial vulnerabilities, and cultural/multilingual alignment to promote global inclusivity. The methodological trajectory moves from classical supervised adaptation for task-specific demands to decoding-time alignment for safety, finally leveraging human feedback and preference modeling to achieve sociolinguistic acuity.
comment: Accepted to the PhD Symposium at Web Conference 2026
☆ PrivAct: Internalizing Contextual Privacy Preservation via Multi-Agent Preference Training
Large language model (LLM) agents are increasingly deployed in personalized tasks involving sensitive, context-dependent information, where privacy violations may arise in agents' action due to the implicitness of contextual privacy. Existing approaches rely on external, inference-time interventions which are brittle, scenario-specific, and may expand the privacy attack surface. We propose PrivAct, a contextual privacy-aware multi-agent learning framework that internalizes contextual privacy preservation directly into models' generation behavior for privacy-compliant agentic actions. By embedding privacy preferences into each agent, PrivAct enhances system-wide contextual integrity while achieving a more favorable privacy-helpfulness tradeoff. Experiments across multiple LLM backbones and benchmarks demonstrate consistent improvements in contextual privacy preservation, reducing leakage rates by up to 12.32% while maintaining comparable helpfulness, as well as zero-shot generalization and robustness across diverse multi-agent topologies. Code is available at https://github.com/chengyh23/PrivAct.
☆ Speculative Decoding with a Speculative Vocabulary
Speculative decoding has rapidly emerged as a leading approach for accelerating language model (LM) inference, as it offers substantial speedups while yielding identical outputs. This relies upon a small draft model, tasked with predicting the outputs of the target model. State-of-the-art speculative decoding methods use a draft model consisting of a single decoder layer and output embedding matrix, with the latter dominating drafting time for the latest LMs. Recent work has sought to address this output distribution bottleneck by reducing the vocabulary of the draft model. Although this can improve throughput, it compromises speculation effectiveness when the target token is out-of-vocabulary. In this paper, we argue for vocabulary speculation as an alternative to a reduced vocabulary. We propose SpecVocab, an efficient and effective method that selects a vocabulary subset per decoding step. Across a variety of tasks, we demonstrate that SpecVocab can achieve a higher acceptance length than state-of-the-art speculative decoding approach, EAGLE-3. Notably, this yields up to an 8.1% increase in average throughput over EAGLE-3.
comment: Under review
☆ Beyond Words: Evaluating and Bridging Epistemic Divergence in User-Agent Interaction via Theory of Mind
Large Language Models (LLMs) have developed rapidly and are widely applied to both general-purpose and professional tasks to assist human users. However, they still struggle to comprehend and respond to the true user needs when intentions and instructions are imprecisely conveyed, leading to a divergence between subjective user believes and true environment states. Resolving this epistemic divergence requires Theory of Mind (ToM), yet existing ToM evaluations for LLMs primarily focus on isolated belief inference, overlooking its functional utility in real-world interaction. To this end, we formalize ToM for LLMs as a mechanism for epistemic divergence detection and resolution, and propose a benchmark, \benchname, to assess how models reconcile user beliefs and profiles in practice. Results across 11 leading models reveal a significant limitation to identify underlying cognitive gaps that impede task success. To bridge this gap, we further curate a trajectory-based ToM dataset linking belief tracking with task-related state inference. The model trained on this data via reinforcement learning shows consistent improvement in reasoning about user mental states, leading to enhanced downstream performance. Our work highlights the practical value of ToM as an essential interaction-level mechanism rather than as a standalone reasoning skill.
☆ The acquisition of English irregular inflections by Yemeni L1 Arabic learners: A Universal Grammar approach
This study examines the acquisition of English irregular inflections by Yemeni learners of English as a second language (L2), utilizing a Universal Grammar (UG) approach. Within the UG approach, the study considers Feature Reassembly Hypothesis (FRH) (Lardiere, 2008, 2009) part of UG, focusing on the roles of first language (L1) transfer and L2 developmental influence. It analyzes learner errors across two developmental stages. Stage 1 data reveal a dominant influence of L1 transfer, particularly in phonological and structural mismatches, while stage 2 data demonstrate increased learner sensitivity to UG properties and morphological reconfiguration toward the target language. Findings reveal that errors in irregular inflectional morphology are attributed to both interlingual and intralingual sources, with overgeneralization of L2 rules as a common developmental strategy. Statistical analysis, including a one-way ANOVA, indicates significant improvement in the production of well-formed irregular inflections from stage 1 to stage 2, underscoring learners' continued access to UG. However, persistent difficulties with consonant change, zero-morpheme, and -a plural inflections suggest that limited exposure, ineffective input modeling, and insufficient instructional quality constrain full UG access. The study concludes that while L1 transfer and L2 developmental factors influence initial stages of acquisition, appropriate linguistic input and instruction are critical for facilitating UG-driven feature reassembly in adult L2 learners.
comment: 19 pages, 3 Tables
☆ OMGs: A multi-agent system supporting MDT decision-making across the ovarian tumour care continuum
Ovarian tumour management has increasingly relied on multidisciplinary tumour board (MDT) deliberation to address treatment complexity and disease heterogeneity. However, most patients worldwide lack access to timely expert consensus, particularly in resource-constrained centres where MDT resources are scarce or unavailable. Here we present OMGs (Ovarian tumour Multidisciplinary intelligent aGent System), a multi-agent AI framework where domain-specific agents deliberate collaboratively to integrate multidisciplinary evidence and generate MDT-style recommendations with transparent rationales. To systematically evaluate MDT recommendation quality, we developed SPEAR (Safety, Personalization, Evidence, Actionability, Robustness) and validated OMGs across diverse clinical scenarios spanning the care continuum. In multicentre re-evaluation, OMGs achieved performance comparable to expert MDT consensus ($4.45 \pm 0.30$ versus $4.53 \pm 0.23$), with higher Evidence scores (4.57 versus 3.92). In prospective multicentre evaluation (59 patients), OMGs demonstrated high concordance with routine MDT decisions. Critically, in paired human-AI studies, OMGs most substantially enhanced clinicians' recommendations in Evidence and Robustness, the dimensions most compromised when multidisciplinary expertise is unavailable. These findings suggest that multi-agent deliberative systems can achieve performance comparable to expert MDT consensus, with potential to expand access to specialized oncology expertise in resource-limited settings.
comment: 27 pages, 5 figures, 1 table
StackingNet: Collective Inference Across Independent AI Foundation Models
Artificial intelligence built on large foundation models has transformed language understanding, vision and reasoning, yet these systems remain isolated and cannot readily share their capabilities. Integrating the complementary strengths of such independent foundation models is essential for building trustworthy intelligent systems. Despite rapid progress in individual model design, there is no established approach for coordinating such black-box heterogeneous models. Here we show that coordination can be achieved through a meta-ensemble framework termed StackingNet, which draws on principles of collective intelligence to combine model predictions during inference. StackingNet improves accuracy, reduces bias, enables reliability ranking, and identifies or prunes models that degrade performance, all operating without access to internal parameters or training data. Across tasks involving language comprehension, visual estimation, and academic paper rating, StackingNet consistently improves accuracy, robustness, and fairness, compared with individual models and classic ensembles. By turning diversity from a source of inconsistency into collaboration, StackingNet establishes a practical foundation for coordinated artificial intelligence, suggesting that progress may emerge from not only larger single models but also principled cooperation among many specialized ones.
☆ How Do Lexical Senses Correspond Between Spoken German and German Sign Language? EACL'26
Sign language lexicographers construct bilingual dictionaries by establishing word-to-sign mappings, where polysemous and homonymous words corresponding to different signs across contexts are often underrepresented. A usage-based approach examining how word senses map to signs can identify such novel mappings absent from current dictionaries, enriching lexicographic resources. We address this by analyzing German and German Sign Language (Deutsche Gebärdensprache, DGS), manually annotating 1,404 word use-to-sign ID mappings derived from 32 words from the German Word Usage Graph (D-WUG) and 49 signs from the Digital Dictionary of German Sign Language (DW-DGS). We identify three correspondence types: Type 1 (one-to-many), Type 2 (many-to-one), and Type 3 (one-to-one), plus No Match cases. We evaluate computational methods: Exact Match (EM) and Semantic Similarity (SS) using SBERT embeddings. SS substantially outperforms EM overall 88.52% vs. 71.31%), with dramatic gains for Type 1 (+52.1 pp). Our work establishes the first annotated dataset for cross-modal sense correspondence and reveals which correspondence patterns are computationally identifiable. Our code and dataset are made publicly available.
comment: EACL'26 (Student Research Workshop)
☆ RMPL: Relation-aware Multi-task Progressive Learning with Stage-wise Training for Multimedia Event Extraction
Multimedia Event Extraction (MEE) aims to identify events and their arguments from documents that contain both text and images. It requires grounding event semantics across different modalities. Progress in MEE is limited by the lack of annotated training data. M2E2 is the only established benchmark, but it provides annotations only for evaluation. This makes direct supervised training impractical. Existing methods mainly rely on cross-modal alignment or inference-time prompting with Vision--Language Models (VLMs). These approaches do not explicitly learn structured event representations and often produce weak argument grounding in multimodal settings. To address these limitations, we propose RMPL, a Relation-aware Multi-task Progressive Learning framework for MEE under low-resource conditions. RMPL incorporates heterogeneous supervision from unimodal event extraction and multimedia relation extraction with stage-wise training. The model is first trained with a unified schema to learn shared event-centric representations across modalities. It is then fine-tuned for event mention identification and argument role extraction using mixed textual and visual data. Experiments on the M2E2 benchmark with multiple VLMs show consistent improvements across different modality settings.
☆ On Theoretically-Driven LLM Agents for Multi-Dimensional Discourse Analysis
Identifying the strategic uses of reformulation in discourse remains a key challenge for computational argumentation. While LLMs can detect surface-level similarity, they often fail to capture the pragmatic functions of rephrasing, such as its role within rhetorical discourse. This paper presents a comparative multi-agent framework designed to quantify the benefits of incorporating explicit theoretical knowledge for this task. We utilise an dataset of annotated political debates to establish a new standard encompassing four distinct rephrase functions: Deintensification, Intensification, Specification, Generalisation, and Other, which covers all remaining types (D-I-S-G-O). We then evaluate two parallel LLM-based agent systems: one enhanced by argumentation theory via Retrieval-Augmented Generation (RAG), and an identical zero-shot baseline. The results reveal a clear performance gap: the RAG-enhanced agents substantially outperform the baseline across the board, with particularly strong advantages in detecting Intensification and Generalisation context, yielding an overall Macro F1-score improvement of nearly 30\%. Our findings provide evidence that theoretical grounding is not only beneficial but essential for advancing beyond mere paraphrase detection towards function-aware analysis of argumentative discourse. This comparative multi-agent architecture represents a step towards scalable, theoretically informed computational tools capable of identifying rhetorical strategies in contemporary discourse.
comment: 8 pages, 4 figures, 3 tables. This is the accepted version of the paper presented at the 18th International Conference on Agents and Artificial Intelligence (ICAART 2026), Marbella, Spain
☆ Metaphors' journeys across time and genre: tracking the evolution of literary metaphors with temporal embeddings
Metaphors are a distinctive feature of literary language, yet they remain less studied experimentally than everyday metaphors. Moreover, previous psycholinguistic and computational approaches overlooked the temporal dimension, although many literary metaphors were coined centuries apart from contemporary readers. This study innovatively applies tools from diachronic distributional semantics to assess whether the processing costs of literary metaphors varied over time and genre. Specifically, we trained word embeddings on literary and nonliterary Italian corpora from the 19th and 21st centuries, for a total of 124 million tokens, and modeled changes in the semantic similarity between topics and vehicles of 515 19th-century literary metaphors, taking this measure as a proxy of metaphor processing demands. Overall, semantic similarity, and hence metaphor processing demands, remained stable over time. However, genre played a key role: metaphors appeared more difficult (i.e., lower topic-vehicle similarity) in modern literary contexts than in 19th-century literature, but easier (i.e., higher topic-vehicle similarity) in today's nonliterary language (e.g., the Web) than in 19th-century nonliterary texts. This pattern was further shaped by semantic features of metaphors' individual terms, such as vector coherence and semantic neighborhood density. Collectively, these findings align with broader linguistic changes in Italian, such as the stylistic simplification of modern literature, which may have increased metaphor processing demands, and the high creativity of the Web's language, which seems to render metaphor more accessible.
♻ ☆ CoT is Not the Chain of Truth: An Empirical Internal Analysis of Reasoning LLMs for Fake News Generation
From generating headlines to fabricating news, the Large Language Models (LLMs) are typically assessed by their final outputs, under the safety assumption that a refusal response signifies safe reasoning throughout the entire process. Challenging this assumption, our study reveals that during fake news generation, even when a model rejects a harmful request, its Chain-of-Thought (CoT) reasoning may still internally contain and propagate unsafe narratives. To analyze this phenomenon, we introduce a unified safety-analysis framework that systematically deconstructs CoT generation across model layers and evaluates the role of individual attention heads through Jacobian-based spectral metrics. Within this framework, we introduce three interpretable measures: stability, geometry, and energy to quantify how specific attention heads respond or embed deceptive reasoning patterns. Extensive experiments on multiple reasoning-oriented LLMs show that the generation risk rise significantly when the thinking mode is activated, where the critical routing decisions concentrated in only a few contiguous mid-depth layers. By precisely identifying the attention heads responsible for this divergence, our work challenges the assumption that refusal implies safety and provides a new understanding perspective for mitigating latent reasoning risks.
comment: 28 pages, 35 figures
♻ ☆ FormationEval, an open multiple-choice benchmark for petroleum geoscience
This paper presents FormationEval, an open multiple-choice question benchmark for evaluating language models on petroleum geoscience and subsurface disciplines. The dataset contains 505 questions across seven domains including petrophysics, petroleum geology and reservoir engineering, derived from three authoritative sources using a reasoning model with detailed instructions and a concept-based approach that avoids verbatim copying of copyrighted text. Each question includes source metadata to support traceability and audit. The evaluation covers 72 models from major providers including OpenAI, Anthropic, Google, Meta and open-weight alternatives. The top performers achieve over 97% accuracy, with Gemini 3 Pro Preview reaching 99.8%, while tier and domain gaps persist. Among open-weight models, GLM-4.7 leads at 98.6%, with several DeepSeek, Llama, Qwen and Mistral models also exceeding 93%. The performance gap between open-weight and closed models is narrower than expected, with several lower-cost open-weight models exceeding 90% accuracy. Petrophysics emerges as the most challenging domain across all models, while smaller models show wider performance variance. Residual length bias in the dataset (correct answers tend to be longer) is documented along with bias mitigation strategies applied during construction. The benchmark, evaluation code and results are publicly available.
comment: v2: expanded related work, added validation details, difficulty-domain table, community feedback website (at https://www.formationeval.no). 28 pages, 8 figures, 11 tables. Benchmark and code at https://github.com/AlmazErmilov/FormationEval-an-Open-Benchmark-for-Oil-Gas-Geoscience-MCQ-Evaluation
♻ ☆ RAVENEA: A Benchmark for Multimodal Retrieval-Augmented Visual Culture Understanding ICLR 2026
As vision-language models (VLMs) become increasingly integrated into daily life, the need for accurate visual culture understanding is becoming critical. Yet, these models frequently fall short in interpreting cultural nuances effectively. Prior work has demonstrated the effectiveness of retrieval-augmented generation (RAG) in enhancing cultural understanding in text-only settings, while its application in multimodal scenarios remains underexplored. To bridge this gap, we introduce RAVENEA (Retrieval-Augmented Visual culturE uNdErstAnding), a new benchmark designed to advance visual culture understanding through retrieval, focusing on two tasks: culture-focused visual question answering (cVQA) and culture-informed image captioning (cIC). RAVENEA extends existing datasets by integrating over 11,396 unique Wikipedia documents curated and ranked by human annotators. Through the extensive evaluation on seven multimodal retrievers and fifteen VLMs, RAVENEA reveals some undiscovered findings: (i) In general, cultural grounding annotations can enhance multimodal retrieval and corresponding downstream tasks. (ii) VLMs, when augmented with culture-aware retrieval, generally outperform their non-augmented counterparts (by averaging +6% on cVQA and +11% on cIC). (iii) Performance of culture-aware retrieval augmented varies widely across countries. These findings highlight the limitations of current multimodal retrievers and VLMs, underscoring the need to enhance visual culture understanding within RAG systems. We believe RAVENEA offers a valuable resource for advancing research on retrieval-augmented visual culture understanding.
comment: ICLR 2026; Project page: https://jiaangli.github.io/ravenea/
♻ ☆ Ara-HOPE: Human-Centric Post-Editing Evaluation for Dialectal Arabic to Modern Standard Arabic Translation
Dialectal Arabic to Modern Standard Arabic (DA-MSA) translation is a challenging task in Machine Translation (MT) due to significant lexical, syntactic, and semantic divergences between Arabic dialects and MSA. Existing automatic evaluation metrics and general-purpose human evaluation frameworks struggle to capture dialect-specific MT errors, hindering progress in translation assessment. This paper introduces Ara-HOPE, a human-centric post-editing evaluation framework designed to systematically address these challenges. The framework includes a five-category error taxonomy and a decision-tree annotation protocol. Through comparative evaluation of three MT systems (Arabic-centric Jais, general-purpose GPT-3.5, and baseline NLLB-200), Ara-HOPE effectively highlights systematic performance differences between these systems. Our results show that dialect-specific terminology and semantic preservation remain the most persistent challenges in DA-MSA translation. Ara-HOPE establishes a new framework for evaluating Dialectal Arabic MT quality and provides actionable guidance for improving dialect-aware MT systems. For reproducibility, we make the annotation files and related materials publicly available at https://github.com/abdullahalabdullah/Ara-HOPE
♻ ☆ AWM: Accurate Weight-Matrix Fingerprint for Large Language Models ICLR 2026
Protecting the intellectual property of large language models (LLMs) is crucial, given the substantial resources required for their training. Consequently, there is an urgent need for both model owners and third parties to determine whether a suspect LLM is trained from scratch or derived from an existing base model. However, the intensive post-training processes that models typically undergo-such as supervised fine-tuning, extensive continued pretraining, reinforcement learning, multi-modal extension, pruning, and upcycling-pose significant challenges to reliable identification. In this work, we propose a training-free fingerprinting method based on weight matrices. We leverage the Linear Assignment Problem (LAP) and an unbiased Centered Kernel Alignment (CKA) similarity to neutralize the effects of parameter manipulations, yielding a highly robust and high-fidelity similarity metric. On a comprehensive testbed of 60 positive and 90 negative model pairs, our method demonstrates exceptional robustness against all six aforementioned post-training categories while exhibiting a near-zero risk of false positives. By achieving perfect scores on all classification metrics, our approach establishes a strong basis for reliable model lineage verification. Moreover, the entire computation completes within 30s on an NVIDIA 3090 GPU. The code is available at https://github.com/LUMIA-Group/AWM.
comment: ICLR 2026
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages - VLDB 2025 (Page 1-20), OM 2025 (Page 21-31)
♻ ☆ GEPA: Reflective Prompt Evolution Can Outperform Reinforcement Learning ICLR 2026
Large language models (LLMs) are increasingly adapted to downstream tasks via reinforcement learning (RL) methods like Group Relative Policy Optimization (GRPO), which often require thousands of rollouts to learn new tasks. We argue that the interpretable nature of language often provides a much richer learning medium for LLMs, compared to policy gradients derived from sparse, scalar rewards. To test this, we introduce GEPA (Genetic-Pareto), a prompt optimizer that thoroughly incorporates natural language reflection to learn high-level rules from trial and error. Given any AI system containing one or more LLM prompts, GEPA samples trajectories (e.g., reasoning, tool calls, and tool outputs) and reflects on them in natural language to diagnose problems, propose and test prompt updates, and combine complementary lessons from the Pareto frontier of its own attempts. As a result of GEPA's design, it can often turn even just a few rollouts into a large quality gain. Across six tasks, GEPA outperforms GRPO by 6% on average and by up to 20%, while using up to 35x fewer rollouts. GEPA also outperforms the leading prompt optimizer, MIPROv2, by over 10% (e.g., +12% accuracy on AIME-2025), and demonstrates promising results as an inference-time search strategy for code optimization. We release our code at https://github.com/gepa-ai/gepa .
comment: Accepted to ICLR 2026 (Oral). Code: https://github.com/gepa-ai/gepa
♻ ☆ Endless Terminals: Scaling RL Environments for Terminal Agents
Environments are the bottleneck for self-improving agents. Current terminal benchmarks were built for evaluation, not training; reinforcement learning requires a scalable pipeline, not just a dataset. We introduce Endless Terminals, a fully autonomous pipeline that procedurally generates terminal-use tasks without human annotation. The pipeline has four stages: generating diverse task descriptions, building and validating containerized environments, producing completion tests, and filtering for solvability. From this pipeline we obtain 3255 tasks spanning file operations, log management, data processing, scripting, and database operations. We train agents using vanilla PPO with binary episode level rewards and a minimal interaction loop: no retrieval, multi-agent coordination, or specialized tools. Despite this simplicity, models trained on Endless Terminals show substantial gains: on our held-out dev set, Llama-3.2-3B improves from 4.0% to 18.2%, Qwen2.5-7B from 10.7% to 53.3%, and Qwen3-8B-openthinker-sft from 42.6% to 59.0%. These improvements transfer to human-curated benchmarks: models trained on Endless Terminals show substantial gains on held out human curated benchmarks: on TerminalBench 2.0, Llama-3.2-3B improves from 0.0% to 2.2%, Qwen2.5-7B from 2.2% to 3.4%, and Qwen3-8B-openthinker-sft from 1.1% to 6.7%, in each case outperforming alternative approaches including models with more complex agentic scaffolds. These results demonstrate that simple RL succeeds when environments scale.
Multimedia 2
☆ SRA: Semantic Relation-Aware Flowchart Question Answering
Flowchart Question Answering (FlowchartQA) is a multi-modal task that automatically answers questions conditioned on graphic flowcharts. Current studies convert flowcharts into interlanguages (e.g., Graphviz) for Question Answering (QA), which effectively bridge modal gaps between questions and flowcharts. More importantly, they reveal the link relations between nodes in the flowchart, facilitating a shallow relation reasoning during tracing answers. However, the existing interlanguages still lose sight of intricate semantic/logic relationships such as Conditional and Causal relations. This hinders the deep reasoning for complex questions. To address the issue, we propose a novel Semantic Relation-Aware (SRA) FlowchartQA approach. It leverages Large Language Model (LLM) to detect the discourse semantic relations between nodes, by which a link-based interlanguage is upgraded to the semantic relation based interlanguage. In addition, we conduct an interlanguage-controllable reasoning process. In this process, the question intention is analyzed with the aim to determine the depth of reasoning (Shallow or Deep reasoning), as well as the well-matched interlanguage. We experiment on the benchmark dataset FlowVQA. The test results show that SRA yields widespread improvements when upgrading different interlanguages like Graphviz, Mermaid and Plantuml
♻ ☆ AudioX: A Unified Framework for Anything-to-Audio Generation
Audio and music generation based on flexible multimodal control signals is a widely applicable topic, with the following key challenges: 1) a unified multimodal modeling framework, and 2) large-scale, high-quality training data. As such, we propose AudioX, a unified framework for anything-to-audio generation that integrates varied multimodal conditions (i.e., text, video, and audio signals) in this work. The core design in this framework is a Multimodal Adaptive Fusion module, which enables the effective fusion of diverse multimodal inputs, enhancing cross-modal alignment and improving overall generation quality. To train this unified model, we construct a large-scale, high-quality dataset, IF-caps, comprising over 7 million samples curated through a structured data annotation pipeline. This dataset provides comprehensive supervision for multimodal-conditioned audio generation. We benchmark AudioX against state-of-the-art methods across a wide range of tasks, finding that our model achieves superior performance, especially in text-to-audio and text-to-music generation. These results demonstrate our method is capable of audio generation under multimodal control signals, showing powerful instruction-following potential. The code and datasets will be available at https://zeyuet.github.io/AudioX/.
comment: The code and datasets will be available at https://zeyuet.github.io/AudioX/
Artificial Intelligent 35
☆ High-fidelity 3D reconstruction for planetary exploration
Planetary exploration increasingly relies on autonomous robotic systems capable of perceiving, interpreting, and reconstructing their surroundings in the absence of global positioning or real-time communication with Earth. Rovers operating on planetary surfaces must navigate under sever environmental constraints, limited visual redundancy, and communication delays, making onboard spatial awareness and visual localization key components for mission success. Traditional techniques based on Structure-from-Motion (SfM) and Simultaneous Localization and Mapping (SLAM) provide geometric consistency but struggle to capture radiometric detail or to scale efficiently in unstructured, low-texture terrains typical of extraterrestrial environments. This work explores the integration of radiance field-based methods - specifically Neural Radiance Fields (NeRF) and Gaussian Splatting - into a unified, automated environment reconstruction pipeline for planetary robotics. Our system combines the Nerfstudio and COLMAP frameworks with a ROS2-compatible workflow capable of processing raw rover data directly from rosbag recordings. This approach enables the generation of dense, photorealistic, and metrically consistent 3D representations from minimal visual input, supporting improved perception and planning for autonomous systems operating in planetary-like conditions. The resulting pipeline established a foundation for future research in radiance field-based mapping, bridging the gap between geometric and neural representations in planetary exploration.
comment: 7 pages, 3 figures, conference paper
☆ RPGD: RANSAC-P3P Gradient Descent for Extrinsic Calibration in 3D Human Pose Estimation
In this paper, we propose RPGD (RANSAC-P3P Gradient Descent), a human-pose-driven extrinsic calibration framework that robustly aligns MoCap-based 3D skeletal data with monocular or multi-view RGB cameras using only natural human motion. RPGD formulates extrinsic calibration as a coarse-to-fine problem tailored to human poses, combining the global robustness of RANSAC-P3P with Gradient-Descent-based refinement. We evaluate RPGD on three large-scale public 3D HPE datasets as well as on a self-collected in-the-wild dataset. Experimental results demonstrate that RPGD consistently recovers extrinsic parameters with accuracy comparable to the provided ground truth, achieving sub-pixel MPJPE reprojection error even in challenging, noisy settings. These results indicate that RPGD provides a practical and automatic solution for reliable extrinsic calibration of large-scale 3D HPE dataset collection.
comment: Accepted at AAIML 2026. This work is co-funded by the European Union's Horizon Europe research and innovation programme under MSCA with grant agreement No 101081674
☆ UAV-SEAD: State Estimation Anomaly Dataset for UAVs
Accurate state estimation in Unmanned Aerial Vehicles (UAVs) is crucial for ensuring reliable and safe operation, as anomalies occurring during mission execution may induce discrepancies between expected and observed system behaviors, thereby compromising mission success or posing potential safety hazards. It is essential to continuously monitor and detect such conditions in order to ensure a timely response and maintain system reliability. In this work, we focus on UAV state estimation anomalies and provide a large-scale real-world UAV dataset to facilitate research aimed at improving the development of anomaly detection. Unlike existing datasets that primarily rely on injected faults into simulated data, this dataset comprises 1396 real flight logs totaling over 52 hours of flight time, collected across diverse indoor and outdoor environments using a collection of PX4-based UAVs equipped with a variety of sensor configurations. The dataset comprises both normal and anomalous flights without synthetic manipulation, making it uniquely suitable for realistic anomaly detection tasks. A structured classification is proposed that categorizes UAV state estimation anomalies into four classes: mechanical and electrical, external position, global position, and altitude anomalies. These classifications reflect collective, contextual, and outlier anomalies observed in multivariate sensor data streams, including IMU, GPS, barometer, magnetometer, distance sensors, visual odometry, and optical flow, that can be found in the PX4 logging mechanism. It is anticipated that this dataset will play a key role in the development, training, and evaluation of anomaly detection and isolation systems to address the critical gap in UAV reliability research.
☆ Modeling and Optimizing the Provisioning of Exhaustible Capabilities for Simultaneous Task Allocation and Scheduling
Deploying heterogeneous robot teams to accomplish multiple tasks over extended time horizons presents significant computational challenges for task allocation and planning. In this paper, we present a comprehensive, time-extended, offline heterogeneous multi-robot task allocation framework, TRAITS, which we believe to be the first that can cope with the provisioning of exhaustible traits under battery and temporal constraints. Specifically, we introduce a nonlinear programming-based trait distribution module that can optimize the trait-provisioning rate of coalitions to yield feasible and time-efficient solutions. TRAITS provides a more accurate feasibility assessment and estimation of task execution times and makespan by leveraging trait-provisioning rates while optimizing battery consumption -- an advantage that state-of-the-art frameworks lack. We evaluate TRAITS against two state-of-the-art frameworks, with results demonstrating its advantage in satisfying complex trait and battery requirements while remaining computationally tractable.
comment: Accepted at AAMAS 2026
☆ Enabling Option Learning in Sparse Rewards with Hindsight Experience Replay
Hierarchical Reinforcement Learning (HRL) frameworks like Option-Critic (OC) and Multi-updates Option Critic (MOC) have introduced significant advancements in learning reusable options. However, these methods underperform in multi-goal environments with sparse rewards, where actions must be linked to temporally distant outcomes. To address this limitation, we first propose MOC-HER, which integrates the Hindsight Experience Replay (HER) mechanism into the MOC framework. By relabeling goals from achieved outcomes, MOC-HER can solve sparse reward environments that are intractable for the original MOC. However, this approach is insufficient for object manipulation tasks, where the reward depends on the object reaching the goal rather than on the agent's direct interaction. This makes it extremely difficult for HRL agents to discover how to interact with these objects. To overcome this issue, we introduce Dual Objectives Hindsight Experience Replay (2HER), a novel extension that creates two sets of virtual goals. In addition to relabeling goals based on the object's final state (standard HER), 2HER also generates goals from the agent's effector positions, rewarding the agent for both interacting with the object and completing the task. Experimental results in robotic manipulation environments show that MOC-2HER achieves success rates of up to 90%, compared to less than 11% for both MOC and MOC-HER. These results highlight the effectiveness of our dual objective relabeling strategy in sparse reward, multi-goal tasks.
☆ Humanoid Hanoi: Investigating Shared Whole-Body Control for Skill-Based Box Rearrangement
We investigate a skill-based framework for humanoid box rearrangement that enables long-horizon execution by sequencing reusable skills at the task level. In our architecture, all skills execute through a shared, task-agnostic whole-body controller (WBC), providing a consistent closed-loop interface for skill composition, in contrast to non-shared designs that use separate low-level controllers per skill. We find that naively reusing the same pretrained WBC can reduce robustness over long horizons, as new skills and their compositions induce shifted state and command distributions. We address this with a simple data aggregation procedure that augments shared-WBC training with rollouts from closed-loop skill execution under domain randomization. To evaluate the approach, we introduce \emph{Humanoid Hanoi}, a long-horizon Tower-of-Hanoi box rearrangement benchmark, and report results in simulation and on the Digit V3 humanoid robot, demonstrating fully autonomous rearrangement over extended horizons and quantifying the benefits of the shared-WBC approach over non-shared baselines.
comment: 10 pages, 6 figures
☆ Push-Placement: A Hybrid Approach Integrating Prehensile and Non-Prehensile Manipulation for Object Rearrangement
Efficient tabletop rearrangement remains challenging due to collisions and the need for temporary buffering when target poses are obstructed. Prehensile pick-and-place provides precise control but often requires extra moves, whereas non-prehensile pushing can be more efficient but suffers from complex, imprecise dynamics. This paper proposes push-placement, a hybrid action primitive that uses the grasped object to displace obstructing items while being placed, thereby reducing explicit buffering. The method is integrated into a physics-in-the-loop Monte Carlo Tree Search (MCTS) planner and evaluated in the PyBullet simulator. Empirical results show push-placement reduces the manipulator travel cost by up to 11.12% versus a baseline MCTS planner and 8.56% versus dynamic stacking. These findings indicate that hybrid prehensile/non-prehensile action primitives can substantially improve efficiency in long-horizon rearrangement tasks.
comment: International Conference on Robotics and Mechatronics (ICRoM 2025)
☆ Semantic-Contact Fields for Category-Level Generalizable Tactile Tool Manipulation
Generalizing tool manipulation requires both semantic planning and precise physical control. Modern generalist robot policies, such as Vision-Language-Action (VLA) models, often lack the high-fidelity physical grounding required for contact-rich tool manipulation. Conversely, existing contact-aware policies that leverage tactile or haptic sensing are typically instance-specific and fail to generalize across diverse tool geometries. Bridging this gap requires learning unified contact representations from diverse data, yet a fundamental barrier remains: diverse real-world tactile data are prohibitive at scale, while direct zero-shot sim-to-real transfer is challenging due to the complex dynamics of nonlinear deformation of soft sensors. To address this, we propose Semantic-Contact Fields (SCFields), a unified 3D representation fusing visual semantics with dense contact estimates. We enable this via a two-stage Sim-to-Real Contact Learning Pipeline: first, we pre-train on a large simulation data set to learn general contact physics; second, we fine-tune on a small set of real data, pseudo-labeled via geometric heuristics and force optimization, to align sensor characteristics. This allows physical generalization to unseen tools. We leverage SCFields as the dense observation input for a diffusion policy to enable robust execution of contact-rich tool manipulation tasks. Experiments on scraping, crayon drawing, and peeling demonstrate robust category-level generalization, significantly outperforming vision-only and raw-tactile baselines.
☆ Gaussian Sequences with Multi-Scale Dynamics for 4D Reconstruction from Monocular Casual Videos
Understanding dynamic scenes from casual videos is critical for scalable robot learning, yet four-dimensional (4D) reconstruction under strictly monocular settings remains highly ill-posed. To address this challenge, our key insight is that real-world dynamics exhibits a multi-scale regularity from object to particle level. To this end, we design the multi-scale dynamics mechanism that factorizes complex motion fields. Within this formulation, we propose Gaussian sequences with multi-scale dynamics, a novel representation for dynamic 3D Gaussians derived through compositions of multi-level motion. This layered structure substantially alleviates ambiguity of reconstruction and promotes physically plausible dynamics. We further incorporate multi-modal priors from vision foundation models to establish complementary supervision, constraining the solution space and improving the reconstruction fidelity. Our approach enables accurate and globally consistent 4D reconstruction from monocular casual videos. Experiments of dynamic novel-view synthesis (NVS) on benchmark and real-world manipulation datasets demonstrate considerable improvements over existing methods.
☆ Ontological grounding for sound and natural robot explanations via large language models
Building effective human-robot interaction requires robots to derive conclusions from their experiences that are both logically sound and communicated in ways aligned with human expectations. This paper presents a hybrid framework that blends ontology-based reasoning with large language models (LLMs) to produce semantically grounded and natural robot explanations. Ontologies ensure logical consistency and domain grounding, while LLMs provide fluent, context-aware and adaptive language generation. The proposed method grounds data from human-robot experiences, enabling robots to reason about whether events are typical or atypical based on their properties. We integrate a state-of-the-art algorithm for retrieving and constructing static contrastive ontology-based narratives with an LLM agent that uses them to produce concise, clear, interactive explanations. The approach is validated through a laboratory study replicating an industrial collaborative task. Empirical results show significant improvements in the clarity and brevity of ontology-based narratives while preserving their semantic accuracy. Initial evaluations further demonstrate the system's ability to adapt explanations to user feedback. Overall, this work highlights the potential of ontology-LLM integration to advance explainable agency, and promote more transparent human-robot collaboration.
comment: An extended abstract of this article is accepted for presentation at AAMAS 2026: Olivares-Alarcos, A., Muhammad, A., Sanjaya, S., Lin, H. and Alenyà, G. (2026). Blending ontologies and language models to generate sound and natural robot explanations. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems. IFAAMAS
☆ MOTIF: Learning Action Motifs for Few-shot Cross-Embodiment Transfer
While vision-language-action (VLA) models have advanced generalist robotic learning, cross-embodiment transfer remains challenging due to kinematic heterogeneity and the high cost of collecting sufficient real-world demonstrations to support fine-tuning. Existing cross-embodiment policies typically rely on shared-private architectures, which suffer from limited capacity of private parameters and lack explicit adaptation mechanisms. To address these limitations, we introduce MOTIF for efficient few-shot cross-embodiment transfer that decouples embodiment-agnostic spatiotemporal patterns, termed action motifs, from heterogeneous action data. Specifically, MOTIF first learns unified motifs via vector quantization with progress-aware alignment and embodiment adversarial constraints to ensure temporal and cross-embodiment consistency. We then design a lightweight predictor that predicts these motifs from real-time inputs to guide a flow-matching policy, fusing them with robot-specific states to enable action generation on new embodiments. Evaluations across both simulation and real-world environments validate the superiority of MOTIF, which significantly outperforms strong baselines in few-shot transfer scenarios by 6.5% in simulation and 43.7% in real-world settings. Code is available at https://github.com/buduz/MOTIF.
☆ Impact-Robust Posture Optimization for Aerial Manipulation
We present a novel method for optimizing the posture of kinematically redundant torque-controlled robots to improve robustness during impacts. A rigid impact model is used as the basis for a configuration-dependent metric that quantifies the variation between pre- and post-impact velocities. By finding configurations (postures) that minimize the aforementioned metric, spikes in the robot's state and input commands can be significantly reduced during impacts, improving safety and robustness. The problem of identifying impact-robust postures is posed as a min-max optimization of the aforementioned metric. To overcome the real-time intractability of the problem, we reformulate it as a gradient-based motion task that iteratively guides the robot towards configurations that minimize the proposed metric. This task is embedded within a task-space inverse dynamics (TSID) whole-body controller, enabling seamless integration with other control objectives. The method is applied to a kinematically redundant aerial manipulator performing repeated point contact tasks. We test our method inside a realistic physics simulator and compare it with the nominal TSID. Our method leads to a reduction (up to 51% w.r.t. standard TSID) of post-impact spikes in the robot's configuration and successfully avoids actuator saturation. Moreover, we demonstrate the importance of kinematic redundancy for impact robustness using additional numerical simulations on a quadruped and a humanoid robot, resulting in up to 45% reduction of post-impact spikes in the robot's state w.r.t. nominal TSID.
☆ The More the Merrier: Running Multiple Neuromorphic Components On-Chip for Robotic Control
It has long been realized that neuromorphic hardware offers benefits for the domain of robotics such as low energy, low latency, as well as unique methods of learning. In aiming for more complex tasks, especially those incorporating multimodal data, one hurdle continuing to prevent their realization is an inability to orchestrate multiple networks on neuromorphic hardware without resorting to off-chip process management logic. To address this, we show a first example of a pipeline for vision-based robot control in which numerous complex networks can be run entirely on hardware via the use of a spiking neural state machine for process orchestration. The pipeline is validated on the Intel Loihi 2 research chip. We show that all components can run concurrently on-chip in the milli Watt regime at latencies competitive with the state-of-the-art. An equivalent network on simulated hardware is shown to accomplish robotic arm plug insertion in simulation, and the core elements of the pipeline are additionally tested on a real robotic arm.
comment: IOP Journal of Neuromorphic Computing and Engineering, preliminary acceptance
☆ XIT: Exploration and Exploitation Informed Trees for Active Gas Distribution Mapping in Unknown Environments
Mobile robotic gas distribution mapping (GDM) provides critical situational awareness during emergency responses to hazardous gas releases. However, most systems still rely on teleoperation, limiting scalability and response speed. Autonomous active GDM is challenging in unknown and cluttered environments, because the robot must simultaneously explore traversable space, map the environment, and infer the gas distribution belief from sparse chemical measurements. We address this by formulating active GDM as a next-best-trajectory informative path planning (IPP) problem and propose XIT (Exploration-Exploitation Informed Trees), a sampling-based planner that balances exploration and exploitation by generating concurrent trajectories toward exploration-rich goals while collecting informative gas measurements en route. XIT draws batches of samples from an Upper Confidence Bound (UCB) information field derived from the current gas posterior and expands trees using a cost that trades off travel effort against gas concentration and uncertainty. To enable plume-aware exploration, we introduce the gas frontier concept, defined as unobserved regions adjacent to high gas concentrations, and propose the Wavefront Gas Frontier Detection (WGFD) algorithm for their identification. High-fidelity simulations and real-world experiments demonstrate the benefits of XIT in terms of GDM quality and efficiency. Although developed for active GDM, XIT is readily applicable to other robotic information-gathering tasks in unknown environments that face the exploration and exploitation trade-off.
☆ Improving Driver Satisfaction with a Driving Function Learning from Implicit Human Feedback -- a Test Group Study
During the use of advanced driver assistance systems, drivers frequently intervene into the active driving function and adjust the system's behavior to their personal wishes. These active driver-initiated takeovers contain feedback about deviations in the driving function's behavior from the drivers' personal preferences. This feedback should be utilized to optimize and personalize the driving function's behavior. In this work, the adjustment of the speed profile of a Predictive Longitudinal Driving Function (PLDF) on a pre-defined route is highlighted. An algorithm is introduced which iteratively adjusts the PLDF's speed profile by taking into account both the original speed profile of the PLDF and the driver demonstration. This approach allows for personalization in a traded control scenario during active use of the PLDF. The applicability of the proposed algorithm is tested in a driving simulator-based test group study with 43 participants. The study finds a significant increase in driver satisfaction and a significant reduction in the intervention frequency when using the proposed adaptive PLDF. Additionally, feedback by the participants was gathered to identify further optimization potentials of the proposed system.
☆ FC-Vision: Real-Time Visibility-Aware Replanning for Occlusion-Free Aerial Target Structure Scanning in Unknown Environments
Autonomous aerial scanning of target structures is crucial for practical applications, requiring online adaptation to unknown obstacles during flight. Existing methods largely emphasize collision avoidance and efficiency, but overlook occlusion-induced visibility degradation, severely compromising scanning quality. In this study, we propose FC-Vision, an on-the-fly visibility-aware replanning framework that proactively and safely prevents target occlusions while preserving the intended coverage and efficiency of the original plan. Our approach explicitly enforces dense surface-visibility constraints to regularize replanning behavior in real-time via an efficient two-level decomposition: occlusion-free viewpoint repair that maintains coverage with minimal deviation from the nominal scan intent, followed by segment-wise clean-sensing connection in 5-DoF space. A plug-in integration strategy is also presented to seamlessly interface FC-Vision with existing UAV scanning systems without architectural changes. Comprehensive simulation and real-world evaluations show that FC-Vision consistently improves scanning quality under unexpected occluders, delivering a maximum coverage gain of 55.32% and a 73.17% reduction in the occlusion ratio, while achieving real-time performance with a moderate increase in flight time. The source code will be made publicly available.
comment: 8 pages, 8 figures, 3 tables
☆ HybridFlow: A Two-Step Generative Policy for Robotic Manipulation
Limited by inference latency, existing robot manipulation policies lack sufficient real-time interaction capability with the environment. Although faster generation methods such as flow matching are gradually replacing diffusion methods, researchers are pursuing even faster generation suitable for interactive robot control. MeanFlow, as a one-step variant of flow matching, has shown strong potential in image generation, but its precision in action generation does not meet the stringent requirements of robotic manipulation. We therefore propose \textbf{HybridFlow}, a \textbf{3-stage method} with \textbf{2-NFE}: Global Jump in MeanFlow mode, ReNoise for distribution alignment, and Local Refine in ReFlow mode. This method balances inference speed and generation quality by leveraging the rapid advantage of MeanFlow one-step generation while ensuring action precision with minimal generation steps. Through real-world experiments, HybridFlow outperforms the 16-step Diffusion Policy by \textbf{15--25\%} in success rate while reducing inference time from 152ms to 19ms (\textbf{8$\times$ speedup}, \textbf{$\sim$52Hz}); it also achieves 70.0\% success on unseen-color OOD grasping and 66.3\% on deformable object folding. We envision HybridFlow as a practical low-latency method to enhance real-world interaction capabilities of robotic manipulation policies.
☆ Symmetry-Aware Fusion of Vision and Tactile Sensing via Bilateral Force Priors for Robotic Manipulation
Insertion tasks in robotic manipulation demand precise, contact-rich interactions that vision alone cannot resolve. While tactile feedback is intuitively valuable, existing studies have shown that naïve visuo-tactile fusion often fails to deliver consistent improvements. In this work, we propose a Cross-Modal Transformer (CMT) for visuo-tactile fusion that integrates wrist-camera observations with tactile signals through structured self- and cross-attention. To stabilize tactile embeddings, we further introduce a physics-informed regularization that encourages bilateral force balance, reflecting principles of human motor control. Experiments on the TacSL benchmark show that CMT with symmetry regularization achieves a 96.59% insertion success rate, surpassing naïve and gated fusion baselines and closely matching the privileged "wrist + contact force" configuration (96.09%). These results highlight two central insights: (i) tactile sensing is indispensable for precise alignment, and (ii) principled multimodal fusion, further strengthened by physics-informed regularization, unlocks complementary strengths of vision and touch, approaching privileged performance under realistic sensing.
comment: Accepted By ICRA2026
☆ A Kung Fu Athlete Bot That Can Do It All Day: Highly Dynamic, Balance-Challenging Motion Dataset and Autonomous Fall-Resilient Tracking
Current humanoid motion tracking systems can execute routine and moderately dynamic behaviors, yet significant gaps remain near hardware performance limits and algorithmic robustness boundaries. Martial arts represent an extreme case of highly dynamic human motion, characterized by rapid center-of-mass shifts, complex coordination, and abrupt posture transitions. However, datasets tailored to such high-intensity scenarios remain scarce. To address this gap, we construct KungFuAthlete, a high-dynamic martial arts motion dataset derived from professional athletes' daily training videos. The dataset includes ground and jump subsets covering representative complex motion patterns. The jump subset exhibits substantially higher joint, linear, and angular velocities compared to commonly used datasets such as LAFAN1, PHUMA, and AMASS, indicating significantly increased motion intensity and complexity. Importantly, even professional athletes may fail during highly dynamic movements. Similarly, humanoid robots are prone to instability and falls under external disturbances or execution errors. Most prior work assumes motion execution remains within safe states and lacks a unified strategy for modeling unsafe states and enabling reliable autonomous recovery. We propose a novel training paradigm that enables a single policy to jointly learn high-dynamic motion tracking and fall recovery, unifying agile execution and stabilization within one framework. This framework expands robotic capability from pure motion tracking to recovery-enabled execution, promoting more robust and autonomous humanoid performance in real-world high-dynamic scenarios.
comment: 18 pages, 8 figures,5 tables
☆ SPLIT: Sparse Incremental Learning of Error Dynamics for Control-Oriented Modeling in Autonomous Vehicles
Accurate, computationally efficient, and adaptive vehicle models are essential for autonomous vehicle control. Hybrid models that combine a nominal model with a Gaussian Process (GP)-based residual model have emerged as a promising approach. However, the GP-based residual model suffers from the curse of dimensionality, high evaluation complexity, and the inefficiency of online learning, which impede the deployment in real-time vehicle controllers. To address these challenges, we propose SPLIT, a sparse incremental learning framework for control-oriented vehicle dynamics modeling. SPLIT integrates three key innovations: (i) Model Decomposition. We decompose the vehicle model into invariant elements calibrated by experiments, and variant elements compensated by the residual model to reduce feature dimensionality. (ii) Local Incremental Learning. We define the valid region in the feature space and partition it into subregions, enabling efficient online learning from streaming data. (iii) GP Sparsification. We use bayesian committee machine to ensure scalable online evaluation. Integrated into model-based controllers, SPLIT is evaluated in aggressive simulations and real-vehicle experiments. Results demonstrate that SPLIT improves model accuracy and control performance online. Moreover, it enables rapid adaptation to vehicle dynamics deviations and exhibits robust generalization to previously unseen scenarios.
comment: 21 pages, 21 figures
Hierarchical Audio-Visual-Proprioceptive Fusion for Precise Robotic Manipulation
Existing robotic manipulation methods primarily rely on visual and proprioceptive observations, which may struggle to infer contact-related interaction states in partially observable real-world environments. Acoustic cues, by contrast, naturally encode rich interaction dynamics during contact, yet remain underexploited in current multimodal fusion literature. Most multimodal fusion approaches implicitly assume homogeneous roles across modalities, and thus design flat and symmetric fusion structures. However, this assumption is ill-suited for acoustic signals, which are inherently sparse and contact-driven. To achieve precise robotic manipulation through acoustic-informed perception, we propose a hierarchical representation fusion framework that progressively integrates audio, vision, and proprioception. Our approach first conditions visual and proprioceptive representations on acoustic cues, and then explicitly models higher-order cross-modal interactions to capture complementary dependencies among modalities. The fused representation is leveraged by a diffusion-based policy to directly generate continuous robot actions from multimodal observations. The combination of end-to-end learning and hierarchical fusion structure enables the policy to exploit task-relevant acoustic information while mitigating interference from less informative modalities. The proposed method has been evaluated on real-world robotic manipulation tasks, including liquid pouring and cabinet opening. Extensive experiment results demonstrate that our approach consistently outperforms state-of-the-art multimodal fusion frameworks, particularly in scenarios where acoustic cues provide task-relevant information not readily available from visual observations alone. Furthermore, a mutual information analysis is conducted to interpret the effect of audio cues in robotic manipulation via multimodal fusion.
☆ AgentRob: From Virtual Forum Agents to Hijacked Physical Robots
Large Language Model (LLM)-powered autonomous agents have demonstrated significant capabilities in virtual environments, yet their integration with the physical world remains narrowly confined to direct control interfaces. We present AgentRob, a framework that bridges online community forums, LLM-powered agents, and physical robots through the Model Context Protocol (MCP). AgentRob enables a novel paradigm where autonomous agents participate in online forums--reading posts, extracting natural language commands, dispatching physical robot actions, and reporting results back to the community. The system comprises three layers: a Forum Layer providing asynchronous, persistent, multi-agent interaction; an Agent Layer with forum agents that poll for @mention-targeted commands; and a Robot Layer with VLM-driven controllers and Unitree Go2/G1 hardware that translate commands into robot primitives via iterative tool calling. The framework supports multiple concurrent agents with distinct identities and physical embodiments coexisting in the same forum, establishing the feasibility of forum-mediated multi-agent robot orchestration.
comment: 10 pages, 2 figures
☆ TactAlign: Human-to-Robot Policy Transfer via Tactile Alignment
Human demonstrations collected by wearable devices (e.g., tactile gloves) provide fast and dexterous supervision for policy learning, and are guided by rich, natural tactile feedback. However, a key challenge is how to transfer human-collected tactile signals to robots despite the differences in sensing modalities and embodiment. Existing human-to-robot (H2R) approaches that incorporate touch often assume identical tactile sensors, require paired data, and involve little to no embodiment gap between human demonstrator and the robots, limiting scalability and generality. We propose TactAlign, a cross-embodiment tactile alignment method that transfers human-collected tactile signals to a robot with different embodiment. TactAlign transforms human and robot tactile observations into a shared latent representation using a rectified flow, without paired datasets, manual labels, or privileged information. Our method enables low-cost latent transport guided by hand-object interaction-derived pseudo-pairs. We demonstrate that TactAlign improves H2R policy transfer across multiple contact-rich tasks (pivoting, insertion, lid closing), generalizes to unseen objects and tasks with human data (less than 5 minutes), and enables zero-shot H2R transfer on a highly dexterous tasks (light bulb screwing).
comment: Website: https://yswi.github.io/tactalign/
☆ ONRAP: Occupancy-driven Noise-Resilient Autonomous Path Planning
Dynamic path planning must remain reliable in the presence of sensing noise, uncertain localization, and incomplete semantic perception. We propose a practical, implementation-friendly planner that operates on occupancy grids and optionally incorporates occupancy-flow predictions to generate ego-centric, kinematically feasible paths that safely navigate through static and dynamic obstacles. The core is a nonlinear program in the spatial domain built on a modified bicycle model with explicit feasibility and collision-avoidance penalties. The formulation naturally handles unknown obstacle classes and heterogeneous agent motion by operating purely in occupancy space. The pipeline runs in real-time (faster than 10 Hz on average), requires minimal tuning, and interfaces cleanly with standard control stacks. We validate our approach in simulation with severe localization and perception noises, and on an F1TENTH platform, demonstrating smooth and safe maneuvering through narrow passages and rough routes. The approach provides a robust foundation for noise-resilient, prediction-aware planning, eliminating the need for handcrafted heuristics. The project website can be accessed at https://honda-research-institute.github.io/onrap/
comment: 8 pages, 9 figures - Presented at 2026 IEEE Intelligent Vehicles Symposium (IV)
☆ From Snapshot Sensing to Persistent EM World Modeling: A Generative-Space Perspective for ISAC
Electromagnetic (EM) world modeling is emerging as a foundational capability for environment-aware and embodiment-enabled wireless systems. However, most existing mmWave sensing solutions are designed for snapshot-based parameter estimation and rely on hardware-intensive architectures, making scalable and persistent world modeling difficult to achieve. This article rethinks mmWave sensing from a system-level perspective and introduces a generative-space framework, in which sensing is realized through controlled traversal of a low-dimensional excitation space spanning frequency, waveform, and physical embodiment. This perspective decouples spatial observability from rigid antenna arrays and transmit-time multiplexing, enabling flexible and scalable sensing-by-design radios. To illustrate the practicality of this framework, we present a representative realization called Multi-RF Chain Frequency-as-Aperture Clip-on Aperture Fabric (MRC-FaA-CAF), where multiple FMCW sources coordinate frequency-selective modules distributed along guided-wave backbones. This architecture enables interference-free excitation, preserves beat-frequency separability, and maintains low calibration overhead. Case studies show that generative-space-driven sensing can achieve update rates comparable to phased arrays while avoiding dense RF replication and the latency penalties of TDM-MIMO systems. Overall, this work positions generative-space-driven sensing as a practical architectural foundation for mmWave systems that move beyond snapshot sensing toward persistent EM world modeling.
comment: 7 pages, 6 figures/tables
♻ ☆ On the Surprising Effectiveness of Spectral Clipping in Learning Stable Linear and Latent-Linear Dynamical Systems
When learning stable linear dynamical systems from data, three important properties are desirable: i) predictive accuracy, ii) verifiable stability, and iii) computational efficiency. Unconstrained minimization of prediction errors leads to high accuracy and efficiency but cannot guarantee stability. Existing methods to enforce stability often preserve accuracy, but do so only at the cost of increased computation. In this work, we investigate if a seemingly-naive procedure can simultaneously offer all three desiderata. Specifically, we consider a post-hoc procedure in which we surgically manipulate the spectrum of the linear system after it was learned using unconstrained least squares. We call this approach spectral clipping (SC) as it involves eigen decomposition and subsequent reconstruction of the system matrix after any eigenvalues whose magnitude exceeds one have been clipped to one (without altering the eigenvectors). We also show that SC can be readily combined with Koopman operators to learn nonlinear dynamical systems that can generate stable predictions of nonlinear phenomena, such as those underlying complex dexterous manipulation skills involving multi-fingered robotic hands. Through comprehensive experiments involving two different applications and publicly available benchmark datasets, we show that this simple technique can efficiently learn highly-accurate predictive dynamics that are provably-stable. Notably, we find that SC can match or outperform strong baselines while being orders-of-magnitude faster. Finally, we find that SC can learn stable robot policies even when the training data includes unsuccessful or truncated demonstrations. Our code and datasets can be found at https://github.com/GT-STAR-Lab/spec_clip.
♻ ☆ Grounding Bodily Awareness in Visual Representations for Efficient Policy Learning
Learning effective visual representations for robotic manipulation remains a fundamental challenge due to the complex body dynamics involved in action execution. In this paper, we study how visual representations that carry body-relevant cues can enable efficient policy learning for downstream robotic manipulation tasks. We present $\textbf{I}$nter-token $\textbf{Con}$trast ($\textbf{ICon}$), a contrastive learning method applied to the token-level representations of Vision Transformers (ViTs). ICon enforces a separation in the feature space between agent-specific and environment-specific tokens, resulting in agent-centric visual representations that embed body-specific inductive biases. This framework can be seamlessly integrated into end-to-end policy learning by incorporating the contrastive loss as an auxiliary objective. Our experiments show that ICon not only improves policy performance across various manipulation tasks but also facilitates policy transfer across different robots. The project website: https://inter-token-contrast.github.io/icon/
comment: A preprint version
♻ ☆ ReaDy-Go: Real-to-Sim Dynamic 3D Gaussian Splatting Simulation for Environment-Specific Visual Navigation with Moving Obstacles
Visual navigation models often struggle in real-world dynamic environments due to limited robustness to the sim-to-real gap and the difficulty of training policies tailored to target deployment environments (e.g., households, restaurants, and factories). Although real-to-sim navigation simulation using 3D Gaussian Splatting (GS) can mitigate these challenges, prior GS-based works have considered only static scenes or non-photorealistic human obstacles built from simulator assets, despite the importance of safe navigation in dynamic environments. To address these issues, we propose ReaDy-Go, a novel real-to-sim simulation pipeline that synthesizes photorealistic dynamic scenarios in target environments by augmenting a reconstructed static GS scene with dynamic human GS obstacles, and trains navigation policies using the generated datasets. The pipeline provides three key contributions: (1) a dynamic GS simulator that integrates static scene GS with a human animation module, enabling the insertion of animatable human GS avatars and the synthesis of plausible human motions from 2D trajectories, (2) a navigation dataset generation framework that leverages the simulator along with a robot expert planner designed for dynamic GS representations and a human planner, and (3) robust navigation policies to both the sim-to-real gap and moving obstacles. The proposed simulator generates thousands of photorealistic navigation scenarios with animatable human GS avatars from arbitrary viewpoints. ReaDy-Go outperforms baselines across target environments in both simulation and real-world experiments, demonstrating improved navigation performance even after sim-to-real transfer and in the presence of moving obstacles. Moreover, zero-shot sim-to-real deployment in an unseen environment indicates its generalization potential. Project page: https://syeon-yoo.github.io/ready-go-site/.
comment: Project page: https://syeon-yoo.github.io/ready-go-site/
♻ ☆ VividFace: Real-Time and Realistic Facial Expression Shadowing for Humanoid Robots
Humanoid facial expression shadowing enables robots to realistically imitate human facial expressions in real time, which is critical for lifelike, facially expressive humanoid robots and affective human-robot interaction. Existing progress in humanoid facial expression imitation remains limited, often failing to achieve either real-time performance or realistic expressiveness due to offline video-based inference designs and insufficient ability to capture and transfer subtle expression details. To address these limitations, we present VividFace, a real-time and realistic facial expression shadowing system for humanoid robots. An optimized imitation framework X2CNet++ enhances expressiveness by fine-tuning the human-to-humanoid facial motion transfer module and introducing a feature-adaptation training strategy for better alignment across different image sources. Real-time shadowing is further enabled by a video-stream-compatible inference pipeline and a streamlined workflow based on asynchronous I/O for efficient communication across devices. VividFace produces vivid humanoid faces by mimicking human facial expressions within 0.05 seconds, while generalizing across diverse facial configurations. Extensive real-world demonstrations validate its practical utility. Videos are available at: https://lipzh5.github.io/VividFace/.
comment: Accepted to the 2026 IEEE International Conference on Robotics and Automation (ICRA)
♻ ☆ A Pragmatist Robot: Learning to Plan Tasks by Experiencing the Real World
Large language models (LLMs) have emerged as the dominant paradigm for robotic task planning using natural language instructions. However, trained on general internet data, LLMs are not inherently aligned with the embodiment, skill sets, and limitations of real-world robotic systems. Inspired by the emerging paradigm of verbal reinforcement learning-where LLM agents improve through self-reflection and few-shot learning without parameter updates-we introduce PragmaBot, a framework that enables robots to learn task planning through real-world experience. PragmaBot employs a vision-language model (VLM) as the robot's "brain" and "eye", allowing it to visually evaluate action outcomes and self-reflect on failures. These reflections are stored in a short-term memory (STM), enabling the robot to quickly adapt its behavior during ongoing tasks. Upon task completion, the robot summarizes the lessons learned into its long-term memory (LTM). When facing new tasks, it can leverage retrieval-augmented generation (RAG) to plan more grounded action sequences by drawing on relevant past experiences and knowledge. Experiments on four challenging robotic tasks show that STM-based self-reflection increases task success rates from 35% to 84%, with emergent intelligent object interactions. In 12 real-world scenarios (including eight previously unseen tasks), the robot effectively learns from the LTM and improves single-trial success rates from 22% to 80%, with RAG outperforming naive prompting. These results highlight the effectiveness and generalizability of PragmaBot. Project webpage: https://pragmabot.github.io/
comment: Accepted to RA-L
♻ ☆ SkillWrapper: Generative Predicate Invention for Task-level Planning
Generalizing from individual skill executions to solving long-horizon tasks remains a core challenge in building autonomous agents. A promising direction is learning high-level, symbolic abstractions of the low-level skills of the agents, enabling reasoning and planning independent of the low-level state space. Among possible high-level representations, object-centric skill abstraction with symbolic predicates has been proven to be efficient because of its compatibility with domain-independent planners. Recent advances in foundation models have made it possible to generate symbolic predicates that operate on raw sensory inputs, a process we call generative predicate invention, to facilitate downstream abstraction learning. However, it remains unclear which formal properties the learned representations must satisfy, and how they can be learned to guarantee these properties. In this paper, we address both questions by presenting a formal theory of generative predicate invention for skill abstraction, resulting in symbolic operators that can be used for provably sound and complete planning. Within this framework, we propose SkillWrapper, a method that leverages foundation models to actively collect robot data and learn human-interpretable, plannable representations of black-box skills, using only RGB image observations. Our extensive empirical evaluation in simulation and on real robots shows that SkillWrapper learns abstract representations that enable solving unseen, long-horizon tasks in the real world with black-box skills.
♻ ☆ Integrated Exploration and Sequential Manipulation on Scene Graph with LLM-based Situated Replanning
In partially known environments, robots must combine exploration to gather information with task planning for efficient execution. To address this challenge, we propose EPoG, an Exploration-based sequential manipulation Planning framework on Scene Graphs. EPoG integrates a graph-based global planner with a Large Language Model (LLM)-based situated local planner, continuously updating a belief graph using observations and LLM predictions to represent known and unknown objects. Action sequences are generated by computing graph edit operations between the goal and belief graphs, ordered by temporal dependencies and movement costs. This approach seamlessly combines exploration and sequential manipulation planning. In ablation studies across 46 realistic household scenes and 5 long-horizon daily object transportation tasks, EPoG achieved a success rate of 91.3%, reducing travel distance by 36.1% on average. Furthermore, a physical mobile manipulator successfully executed complex tasks in unknown and dynamic environments, demonstrating EPoG's potential for real-world applications.
comment: 8 pages, 7 figures; accepted by ICRA 2026
♻ ☆ Adaptive Time Step Flow Matching for Autonomous Driving Motion Planning
Autonomous driving requires reasoning about interactions with surrounding traffic. A prevailing approach is large-scale imitation learning on expert driving datasets, aimed at generalizing across diverse real-world scenarios. For online trajectory generation, such methods must operate at real-time rates. Diffusion models require hundreds of denoising steps at inference, resulting in high latency. Consistency models mitigate this issue but rely on carefully tuned noise schedules to capture the multimodal action distributions common in autonomous driving. Adapting the schedule, typically requires expensive retraining. To address these limitations, we propose a framework based on conditional flow matching that jointly predicts future motions of surrounding agents and plans the ego trajectory in real time. We train a lightweight variance estimator that selects the number of inference steps online, removing the need for retraining to balance runtime and imitation learning performance. To further enhance ride quality, we introduce a trajectory post-processing step cast as a convex quadratic program, with negligible computational overhead. Trained on the Waymo Open Motion Dataset, the framework performs maneuvers such as lane changes, cruise control, and navigating unprotected left turns without requiring scenario-specific tuning. Our method maintains a 20 Hz update rate on an NVIDIA RTX 3070 GPU, making it suitable for online deployment. Compared to transformer, diffusion, and consistency model baselines, we achieve improved trajectory smoothness and better adherence to dynamic constraints. Experiment videos and code implementations can be found at https://flow-matching-self-driving.github.io/.
comment: Accepted to Intelligent Vehicles Symposium 2026
♻ ☆ Efficient Long-Horizon Vision-Language-Action Models via Static-Dynamic Disentanglement
Vision-Language-Action (VLA) models have recently emerged as a promising paradigm for generalist robotic control. Built upon vision-language model (VLM) architectures, VLAs predict actions conditioned on visual observations and language instructions, achieving strong performance and generalization across tasks. However, VLAs face two major challenges: limited long-horizon context and inefficient inference due to the quadratic attention complexity and large parameter counts. Our work is motivated by the observation that much of the visual information in a trajectory remains static across timesteps (e.g., the background). Leveraging this property, we propose SD-VLA, a framework that disentangles visual inputs into multi-level static and dynamic tokens, which enables (1) retaining a single copy of static tokens across frames to significantly reduce context length, and (2) reusing the key-value (KV) cache of static tokens through a lightweight recache gate that updates only when necessary. This design enables efficient multi-frame integration and efficient inference. In addition, we introduce a new benchmark that more effectively evaluates the long-horizon temporal dependency modeling ability of VLAs. Experimental results show that our approach outperforms baselines on this benchmark by 39.8% absolute improvement in success rate, and achieves a 3.9% gain on the SimplerEnv benchmark. Moreover, SD-VLA delivers a 2.26x inference speedup over the base VLA model on the same benchmark, enabling faster and more practical real-world deployment.
♻ ☆ VLA-JEPA: Enhancing Vision-Language-Action Model with Latent World Model
Pretraining Vision-Language-Action (VLA) policies on internet-scale video is appealing, yet current latent-action objectives often learn the wrong thing: they remain anchored to pixel variation rather than action-relevant state transitions, making them vulnerable to appearance bias, nuisance motion, and information leakage. We introduce VLA-JEPA, a JEPA-style pretraining framework that sidesteps these pitfalls by design. The key idea is leakage-free state prediction: a target encoder produces latent representations from future frames, while the student pathway sees only the current observation -- future information is used solely as supervision targets, never as input. By predicting in latent space rather than pixel space, VLA-JEPA learns dynamics abstractions that are robust to camera motion and irrelevant background changes. This yields a simple two-stage recipe -- JEPA pretraining followed by action-head fine-tuning -- without the multi-stage complexity of prior latent-action pipelines. Experiments on LIBERO, LIBERO-Plus, SimplerEnv and real-world manipulation tasks show that VLA-JEPA achieves consistent gains in generalization and robustness over existing methods.
Computation and Language 87
☆ Semantic Chunking and the Entropy of Natural Language
The entropy rate of printed English is famously estimated to be about one bit per character, a benchmark that modern large language models (LLMs) have only recently approached. This entropy rate implies that English contains nearly 80 percent redundancy relative to the five bits per character expected for random text. We introduce a statistical model that attempts to capture the intricate multi-scale structure of natural language, providing a first-principles account of this redundancy level. Our model describes a procedure of self-similarly segmenting text into semantically coherent chunks down to the single-word level. The semantic structure of the text can then be hierarchically decomposed, allowing for analytical treatment. Numerical experiments with modern LLMs and open datasets suggest that our model quantitatively captures the structure of real texts at different levels of the semantic hierarchy. The entropy rate predicted by our model agrees with the estimated entropy rate of printed English. Moreover, our theory further reveals that the entropy rate of natural language is not fixed but should increase systematically with the semantic complexity of corpora, which are captured by the only free parameter in our model.
comment: 29 pages, 9 figures
☆ CoPE-VideoLM: Codec Primitives For Efficient Video Language Models
Video Language Models (VideoLMs) empower AI systems to understand temporal dynamics in videos. To fit to the maximum context window constraint, current methods use keyframe sampling which can miss both macro-level events and micro-level details due to the sparse temporal coverage. Furthermore, processing full images and their tokens for each frame incurs substantial computational overhead. To address these limitations, we propose to leverage video codec primitives (specifically motion vectors and residuals) which natively encode video redundancy and sparsity without requiring expensive full-image encoding for most frames. To this end, we introduce lightweight transformer-based encoders that aggregate codec primitives and align their representations with image encoder embeddings through a pre-training strategy that accelerates convergence during end-to-end fine-tuning. Our approach reduces the time-to-first-token by up to $86\%$ and token usage by up to $93\%$ compared to standard VideoLMs. Moreover, by varying the keyframe and codec primitive densities we are able to maintain or exceed performance on $14$ diverse video understanding benchmarks spanning general question answering, temporal reasoning, long-form understanding, and spatial scene understanding.
comment: Project Page: https://sayands.github.io/cope/
☆ Quantization-Robust LLM Unlearning via Low-Rank Adaptation
Large Language Model (LLM) unlearning aims to remove targeted knowledge from a trained model, but practical deployments often require post-training quantization (PTQ) for efficient inference. However, aggressive low-bit PTQ can mask or erase unlearning updates, causing quantized models to revert to pre-unlearning behavior. We show that standard full-parameter fine-tuning often induce parameter changes that are too small to survive 4-bit quantization. We propose quantization-robust unlearning via low-rank adaptation (LoRA): we freeze the base model and concentrate unlearning into trainable adapters so that the effective update is preserved after quantization. On Llama-2-7B evaluated with MUSE dataset (BOOKS and NEWS), LoRA improves 4-bit utility by up to 7.93 points (NPO+GDR on BOOKS: 50.17 to 58.10) and yields higher 4-bit utility on NEWS for GA+GDR (40.06 to 44.82, increase of 4.76). LoRA also substantially reduces privacy leakage under 4-bit PTQ, e.g., for GA+KLR on BOOKS, PrivLeak moves from -25.68 to -5.86 (closer to ideal 0), while maintaining strong forgetting (VerMem and KnowMem near 0). Thus, using LoRA for Machine Unlearning is beneficial for scenarios where quantization is necessary for model deployment.
☆ OpenLID-v3: Improving the Precision of Closely Related Language Identification -- An Experience Report EACL 2026
Language identification (LID) is an essential step in building high-quality multilingual datasets from web data. Existing LID tools (such as OpenLID or GlotLID) often struggle to identify closely related languages and to distinguish valid natural language from noise, which contaminates language-specific subsets, especially for low-resource languages. In this work we extend the OpenLID classifier by adding more training data, merging problematic language variant clusters, and introducing a special label for marking noise. We call this extended system OpenLID-v3 and evaluate it against GlotLID on multiple benchmarks. During development, we focus on three groups of closely related languages (Bosnian, Croatian, and Serbian; Romance varieties of Northern Italy and Southern France; and Scandinavian languages) and contribute new evaluation datasets where existing ones are inadequate. We find that ensemble approaches improve precision but also substantially reduce coverage for low-resource languages. OpenLID-v3 is available on https://huggingface.co/HPLT/OpenLID-v3.
comment: VarDial'26 workshop at the EACL 2026 conference
☆ From sunblock to softblock: Analyzing the correlates of neology in published writing and on social media
Living languages are shaped by a host of conflicting internal and external evolutionary pressures. While some of these pressures are universal across languages and cultures, others differ depending on the social and conversational context: language use in newspapers is subject to very different constraints than language use on social media. Prior distributional semantic work on English word emergence (neology) identified two factors correlated with creation of new words by analyzing a corpus consisting primarily of historical published texts (Ryskina et al., 2020, arXiv:2001.07740). Extending this methodology to contextual embeddings in addition to static ones and applying it to a new corpus of Twitter posts, we show that the same findings hold for both domains, though the topic popularity growth factor may contribute less to neology on Twitter than in published writing. We hypothesize that this difference can be explained by the two domains favouring different neologism formation mechanisms.
comment: Accepted to LChange 2026
☆ SCOPE: Selective Conformal Optimized Pairwise LLM Judging
Large language models (LLMs) are increasingly used as judges to replace costly human preference labels in pairwise evaluation. Despite their practicality, LLM judges remain prone to miscalibration and systematic biases. This paper proposes SCOPE (Selective Conformal Optimized Pairwise Evaluation), a framework for selective pairwise judging with finite-sample statistical guarantees. Under exchangeability, SCOPE calibrates an acceptance threshold such that the error rate among non-abstained judgments is at most a user-specified level $α$. To provide SCOPE with a bias-neutral uncertainty signal, we introduce Bidirectional Preference Entropy (BPE), which queries the judge under both response positions, aggregates the implied preference probabilities to enforce invariance to response order, and converts the aggregated probability into an entropy-based uncertainty score. Across MT-Bench, RewardBench, and Chatbot Arena, BPE improves uncertainty quality over standard confidence proxies, providing a stronger selection signal that enables SCOPE to consistently meet the target risk level while retaining good coverage across judge scales. In particular, at $α= 0.10$, \textsc{Scope} consistently satisfies the risk bound across all benchmarks and judge scales (empirical risk $\approx 0.097$ to $0.099$), while retaining substantial coverage, reaching $0.89$ on RewardBench with Qwen-14B and $0.98$ on RewardBench with Qwen-32B. Compared to naïve baselines, \textsc{Scope} accepts up to $2.4\times$ more judgments on MT-Bench with Qwen-7B under the same target risk constraint, demonstrating that BPE enables reliable and high-coverage LLM-based evaluation.
☆ Towards interpretable models for language proficiency assessment: Predicting the CEFR level of Estonian learner texts
Using NLP to analyze authentic learner language helps to build automated assessment and feedback tools. It also offers new and extensive insights into the development of second language production. However, there is a lack of research explicitly combining these aspects. This study aimed to classify Estonian proficiency examination writings (levels A2-C1), assuming that careful feature selection can lead to more explainable and generalizable machine learning models for language testing. Various linguistic properties of the training data were analyzed to identify relevant proficiency predictors associated with increasing complexity and correctness, rather than the writing task. Such lexical, morphological, surface, and error features were used to train classification models, which were compared to models that also allowed for other features. The pre-selected features yielded a similar test accuracy but reduced variation in the classification of different text types. The best classifiers achieved an accuracy of around 0.9. Additional evaluation on an earlier exam sample revealed that the writings have become more complex over a 7-10-year period, while accuracy still reached 0.8 with some feature sets. The results have been implemented in the writing evaluation module of an Estonian open-source language learning environment.
☆ Consistency of Large Reasoning Models Under Multi-Turn Attacks
Large reasoning models with reasoning capabilities achieve state-of-the-art performance on complex tasks, but their robustness under multi-turn adversarial pressure remains underexplored. We evaluate nine frontier reasoning models under adversarial attacks. Our findings reveal that reasoning confers meaningful but incomplete robustness: most reasoning models studied significantly outperform instruction-tuned baselines, yet all exhibit distinct vulnerability profiles, with misleading suggestions universally effective and social pressure showing model-specific efficacy. Through trajectory analysis, we identify five failure modes (Self-Doubt, Social Conformity, Suggestion Hijacking, Emotional Susceptibility, and Reasoning Fatigue) with the first two accounting for 50% of failures. We further demonstrate that Confidence-Aware Response Generation (CARG), effective for standard LLMs, fails for reasoning models due to overconfidence induced by extended reasoning traces; counterintuitively, random confidence embedding outperforms targeted extraction. Our results highlight that reasoning capabilities do not automatically confer adversarial robustness and that confidence-based defenses require fundamental redesign for reasoning models.
☆ Exploring a New Competency Modeling Process with Large Language Models
Competency modeling is widely used in human resource management to select, develop, and evaluate talent. However, traditional expert-driven approaches rely heavily on manual analysis of large volumes of interview transcripts, making them costly and prone to randomness, ambiguity, and limited reproducibility. This study proposes a new competency modeling process built on large language models (LLMs). Instead of merely automating isolated steps, we reconstruct the workflow by decomposing expert practices into structured computational components. Specifically, we leverage LLMs to extract behavioral and psychological descriptions from raw textual data and map them to predefined competency libraries through embedding-based similarity. We further introduce a learnable parameter that adaptively integrates different information sources, enabling the model to determine the relative importance of behavioral and psychological signals. To address the long-standing challenge of validation, we develop an offline evaluation procedure that allows systematic model selection without requiring additional large-scale data collection. Empirical results from a real-world implementation in a software outsourcing company demonstrate strong predictive validity, cross-library consistency, and structural robustness. Overall, our framework transforms competency modeling from a largely qualitative and expert-dependent practice into a transparent, data-driven, and evaluable analytical process.
☆ LCSB: Layer-Cyclic Selective Backpropagation for Memory-Efficient On-Device LLM Fine-Tuning
Memory-efficient backpropagation (MeBP) has enabled first-order fine-tuning of large language models (LLMs) on mobile devices with less than 1GB memory. However, MeBP requires backward computation through all transformer layers at every step, where weight decompression alone accounts for 32--42% of backward time. We propose Layer-Cyclic Selective Backpropagation (LCSB), which computes gradients for only a subset of layers per step. Our key insight is that residual connections guarantee gradient flow through identity paths, while AdamW momentum provides implicit updates for non-selected layers. We interpret LCSB as Block Coordinate Descent on the LoRA parameter space, providing theoretical justification for convergence. LCSB achieves up to 1.40$\times$ speedup with less than 2\% quality degradation across five models and three tasks. Surprisingly, in 4-bit quantized settings, LCSB exhibits superior stability: a 3B model that completely diverges under full backpropagation converges smoothly with LCSB, suggesting an implicit regularization effect from selective gradient computation.
comment: Under the review, 13 pages
☆ Memory-Efficient Structured Backpropagation for On-Device LLM Fine-Tuning
On-device fine-tuning enables privacy-preserving personalization of large language models, but mobile devices impose severe memory constraints, typically 6--12GB shared across all workloads. Existing approaches force a trade-off between exact gradients with high memory (MeBP) and low memory with noisy estimates (MeZO). We propose Memory-efficient Structured Backpropagation (MeSP), which bridges this gap by manually deriving backward passes that exploit LoRA's low-rank structure. Our key insight is that the intermediate projection $h = xA$ can be recomputed during backward at minimal cost since rank $r \ll d_{in}$, eliminating the need to store it. MeSP achieves 49\% average memory reduction compared to MeBP on Qwen2.5 models (0.5B--3B) while computing mathematically identical gradients. Our analysis also reveals that MeZO's gradient estimates show near-zero correlation with true gradients (cosine similarity $\approx$0.001), explaining its slow convergence. MeSP reduces peak memory from 361MB to 136MB for Qwen2.5-0.5B, enabling fine-tuning scenarios previously infeasible on memory-constrained devices.
comment: Under the review, 11 pages
☆ TraceBack: Multi-Agent Decomposition for Fine-Grained Table Attribution
Question answering (QA) over structured tables requires not only accurate answers but also transparency about which cells support them. Existing table QA systems rarely provide fine-grained attribution, so even correct answers often lack verifiable grounding, limiting trust in high-stakes settings. We address this with TraceBack, a modular multi-agent framework for scalable, cell-level attribution in single-table QA. TraceBack prunes tables to relevant rows and columns, decomposes questions into semantically coherent sub-questions, and aligns each answer span with its supporting cells, capturing both explicit and implicit evidence used in intermediate reasoning steps. To enable systematic evaluation, we release CITEBench, a benchmark with phrase-to-cell annotations drawn from ToTTo, FetaQA, and AITQA. We further propose FairScore, a reference-less metric that compares atomic facts derived from predicted cells and answers to estimate attribution precision and recall without human cell labels. Experiments show that TraceBack substantially outperforms strong baselines across datasets and granularities, while FairScore closely tracks human judgments and preserves relative method rankings, supporting interpretable and scalable evaluation of table-based QA.
☆ Can we trust AI to detect healthy multilingual English speakers among the cognitively impaired cohort in the UK? An investigation using real-world conversational speech
Conversational speech often reveals early signs of cognitive decline, such as dementia and MCI. In the UK, one in four people belongs to an ethnic minority, and dementia prevalence is expected to rise most rapidly among Black and Asian communities. This study examines the trustworthiness of AI models, specifically the presence of bias, in detecting healthy multilingual English speakers among the cognitively impaired cohort, to make these tools clinically beneficial. For experiments, monolingual participants were recruited nationally (UK), and multilingual speakers were enrolled from four community centres in Sheffield and Bradford. In addition to a non-native English accent, multilinguals spoke Somali, Chinese, or South Asian languages, who were further divided into two Yorkshire accents (West and South) to challenge the efficiency of the AI tools thoroughly. Although ASR systems showed no significant bias across groups, classification and regression models using acoustic and linguistic features exhibited bias against multilingual speakers, particularly in memory, fluency, and reading tasks. This bias was more pronounced when models were trained on the publicly available DementiaBank dataset. Moreover, multilinguals were more likely to be misclassified as having cognitive decline. This study is the first of its kind to discover that, despite their strong overall performance, current AI models show bias against multilingual individuals from ethnic minority backgrounds in the UK, and they are also more likely to misclassify speakers with a certain accent (South Yorkshire) as living with a more severe cognitive decline. In this pilot study, we conclude that the existing AI tools are therefore not yet reliable for diagnostic use in these populations, and we aim to address this in future work by developing more generalisable, bias-mitigated models.
☆ Look Inward to Explore Outward: Learning Temperature Policy from LLM Internal States via Hierarchical RL
Reinforcement Learning from Verifiable Rewards (RLVR) trains large language models (LLMs) from sampled trajectories, making decoding strategy a core component of learning rather than a purely inference-time choice. Sampling temperature directly controls the exploration--exploitation trade-off by modulating policy entropy, yet existing methods rely on static values or heuristic adaptations that are decoupled from task-level rewards. We propose Introspective LLM, a hierarchical reinforcement learning framework that learns to control sampling temperature during generation. At each decoding step, the model selects a temperature based on its hidden state and samples the next token from the resulting distribution. Temperature and token policies are jointly optimized from downstream rewards using a coordinate ascent scheme. Experiments on mathematical reasoning benchmarks show that learned temperature policies outperform fixed and heuristic baselines, while exhibiting interpretable exploration behaviors aligned with reasoning uncertainty.
☆ Buy versus Build an LLM: A Decision Framework for Governments
Large Language Models (LLMs) represent a new frontier of digital infrastructure that can support a wide range of public-sector applications, from general purpose citizen services to specialized and sensitive state functions. When expanding AI access, governments face a set of strategic choices over whether to buy existing services, build domestic capabilities, or adopt hybrid approaches across different domains and use cases. These are critical decisions especially when leading model providers are often foreign corporations, and LLM outputs are increasingly treated as trusted inputs to public decision-making and public discourse. In practice, these decisions are not intended to mandate a single approach across all domains; instead, national AI strategies are typically pluralistic, with sovereign, commercial and open-source models coexisting to serve different purposes. Governments may rely on commercial models for non-sensitive or commodity tasks, while pursuing greater control for critical, high-risk or strategically important applications. This paper provides a strategic framework for making this decision by evaluating these options across dimensions including sovereignty, safety, cost, resource capability, cultural fit, and sustainability. Importantly, "building" does not imply that governments must act alone: domestic capabilities may be developed through public research institutions, universities, state-owned enterprises, joint ventures, or broader national ecosystems. By detailing the technical requirements and practical challenges of each pathway, this work aims to serve as a reference for policy-makers to determine whether a buy or build approach best aligns with their specific national needs and societal goals.
comment: The short version of this document is published as an ACM TechBrief, and this document is published as an ACM Technology Policy Council white paper
☆ Human-Aligned MLLM Judges for Fine-Grained Image Editing Evaluation: A Benchmark, Framework, and Analysis
Evaluating image editing models remains challenging due to the coarse granularity and limited interpretability of traditional metrics, which often fail to capture aspects important to human perception and intent. Such metrics frequently reward visually plausible outputs while overlooking controllability, edit localization, and faithfulness to user instructions. In this work, we introduce a fine-grained Multimodal Large Language Model (MLLM)-as-a-Judge framework for image editing that decomposes common evaluation notions into twelve fine-grained interpretable factors spanning image preservation, edit quality, and instruction fidelity. Building on this formulation, we present a new human-validated benchmark that integrates human judgments, MLLM-based evaluations, model outputs, and traditional metrics across diverse image editing tasks. Through extensive human studies, we show that the proposed MLLM judges align closely with human evaluations at a fine granularity, supporting their use as reliable and scalable evaluators. We further demonstrate that traditional image editing metrics are often poor proxies for these factors, failing to distinguish over-edited or semantically imprecise outputs, whereas our judges provide more intuitive and informative assessments in both offline and online settings. Together, this work introduces a benchmark, a principled factorization, and empirical evidence positioning fine-grained MLLM judges as a practical foundation for studying, comparing, and improving image editing approaches.
Know More, Know Clearer: A Meta-Cognitive Framework for Knowledge Augmentation in Large Language Models
Knowledge augmentation has significantly enhanced the performance of Large Language Models (LLMs) in knowledge-intensive tasks. However, existing methods typically operate on the simplistic premise that model performance equates with internal knowledge, overlooking the knowledge-confidence gaps that lead to overconfident errors or uncertain truths. To bridge this gap, we propose a novel meta-cognitive framework for reliable knowledge augmentation via differentiated intervention and alignment. Our approach leverages internal cognitive signals to partition the knowledge space into mastered, confused, and missing regions, guiding targeted knowledge expansion. Furthermore, we introduce a cognitive consistency mechanism to synchronize subjective certainty with objective accuracy, ensuring calibrated knowledge boundaries. Extensive experiments demonstrate the our framework consistently outperforms strong baselines, validating its rationality in not only enhancing knowledge capabilities but also fostering cognitive behaviors that better distinguish knowns from unknowns.
☆ Evaluating the Homogeneity of Keyphrase Prediction Models LREC 2026
Keyphrases which are useful in several NLP and IR applications are either extracted from text or predicted by generative models. Contrarily to keyphrase extraction approaches, keyphrase generation models can predict keyphrases that do not appear in a document's text called `absent keyphrases`. This ability means that keyphrase generation models can associate a document to a notion that is not explicitly mentioned in its text. Intuitively, this suggests that for two documents treating the same subjects, a keyphrase generation model is more likely to be homogeneous in their indexing i.e. predict the same keyphrase for both documents, regardless of those keyphrases appearing in their respective text or not; something a keyphrase extraction model would fail to do. Yet, homogeneity of keyphrase prediction models is not covered by current benchmarks. In this work, we introduce a method to evaluate the homogeneity of keyphrase prediction models and study if absent keyphrase generation capabilities actually help the model to be more homogeneous. To our surprise, we show that keyphrase extraction methods are competitive with generative models, and that the ability to generate absent keyphrases can actually have a negative impact on homogeneity. Our data, code and prompts are available on huggingface and github.
comment: Accepted to LREC 2026
☆ SciAgentGym: Benchmarking Multi-Step Scientific Tool-use in LLM Agents
Scientific reasoning inherently demands integrating sophisticated toolkits to navigate domain-specific knowledge. Yet, current benchmarks largely overlook agents' ability to orchestrate tools for such rigorous workflows. To bridge this gap, we introduce SciAgentGym, a scalable interactive environment featuring 1,780 domain-specific tools across four natural science disciplines, supported by a robust execution infrastructure. Complementing this, we present SciAgentBench, a tiered evaluation suite designed to stress-test agentic capabilities from elementary actions to long-horizon workflows. Our evaluation identifies a critical bottleneck: state-of-the-art models struggle with complex scientific tool-use. Even for a leading model like GPT-5, success rates drop sharply from 60.6% to 30.9% as interaction horizons extend, primarily due to failures in multi-step workflow execution. To address this, we propose SciForge, a data synthesis method that models the tool action space as a dependency graph to generate logic-aware training trajectories. By fine-tuning on these trajectories, our SciAgent-8B outperforms the significantly larger Qwen3-VL-235B-Instruct while exhibiting positive cross-domain transfer of scientific tool-use capabilities. These results underscore the promising potential of next-generation autonomous scientific agents.
☆ RGAlign-Rec: Ranking-Guided Alignment for Latent Query Reasoning in Recommendation Systems
Proactive intent prediction is a critical capability in modern e-commerce chatbots, enabling "zero-query" recommendations by anticipating user needs from behavioral and contextual signals. However, existing industrial systems face two fundamental challenges: (1) the semantic gap between discrete user features and the semantic intents within the chatbot's Knowledge Base, and (2) the objective misalignment between general-purpose LLM outputs and task-specific ranking utilities. To address these issues, we propose RGAlign-Rec, a closed-loop alignment framework that integrates an LLM-based semantic reasoner with a Query-Enhanced (QE) ranking model. We also introduce Ranking-Guided Alignment (RGA), a multi-stage training paradigm that utilizes downstream ranking signals as feedback to refine the LLM's latent reasoning. Extensive experiments on a large-scale industrial dataset from Shopee demonstrate that RGAlign-Rec achieves a 0.12% gain in GAUC, leading to a significant 3.52% relative reduction in error rate, and a 0.56% improvement in Recall@3. Online A/B testing further validates the cumulative effectiveness of our framework: the Query-Enhanced model (QE-Rec) initially yields a 0.98% improvement in CTR, while the subsequent Ranking-Guided Alignment stage contributes an additional 0.13% gain. These results indicate that ranking-aware alignment effectively synchronizes semantic reasoning with ranking objectives, significantly enhancing both prediction accuracy and service quality in real-world proactive recommendation systems.
☆ ProbeLLM: Automating Principled Diagnosis of LLM Failures
Understanding how and why large language models (LLMs) fail is becoming a central challenge as models rapidly evolve and static evaluations fall behind. While automated probing has been enabled by dynamic test generation, existing approaches often discover isolated failure cases, lack principled control over exploration, and provide limited insight into the underlying structure of model weaknesses. We propose ProbeLLM, a benchmark-agnostic automated probing framework that elevates weakness discovery from individual failures to structured failure modes. ProbeLLM formulates probing as a hierarchical Monte Carlo Tree Search, explicitly allocating limited probing budgets between global exploration of new failure regions and local refinement of recurring error patterns. By restricting probing to verifiable test cases and leveraging tool-augmented generation and verification, ProbeLLM grounds failure discovery in reliable evidence. Discovered failures are further consolidated into interpretable failure modes via failure-aware embeddings and boundary-aware induction. Across diverse benchmarks and LLMs, ProbeLLM reveals substantially broader, cleaner, and more fine-grained failure landscapes than static benchmarks and prior automated methods, supporting a shift from case-centric evaluation toward principled weakness discovery.
☆ When Words Don't Mean What They Say: Figurative Understanding in Bengali Idioms LREC 2026
Figurative language understanding remains a significant challenge for Large Language Models (LLMs), especially for low-resource languages. To address this, we introduce a new idiom dataset, a large-scale, culturally-grounded corpus of 10,361 Bengali idioms. Each idiom is annotated under a comprehensive 19-field schema, established and refined through a deliberative expert consensus process, that captures its semantic, syntactic, cultural, and religious dimensions, providing a rich, structured resource for computational linguistics. To establish a robust benchmark for Bangla figurative language understanding, we evaluate 30 state-of-the-art multilingual and instruction-tuned LLMs on the task of inferring figurative meaning. Our results reveal a critical performance gap, with no model surpassing 50% accuracy, a stark contrast to significantly higher human performance (83.4%). This underscores the limitations of existing models in cross-linguistic and cultural reasoning. By releasing the new idiom dataset and benchmark, we provide foundational infrastructure for advancing figurative language understanding and cultural grounding in LLMs for Bengali and other low-resource languages.
comment: 9 pages, 5 figures. Accepted for presentation at LREC 2026 (Language Resources and Evaluation Conference)
☆ ViMedCSS: A Vietnamese Medical Code-Switching Speech Dataset & Benchmark LREC 2026
Code-switching (CS), which is when Vietnamese speech uses English words like drug names or procedures, is a common phenomenon in Vietnamese medical communication. This creates challenges for Automatic Speech Recognition (ASR) systems, especially in low-resource languages like Vietnamese. Current most ASR systems struggle to recognize correctly English medical terms within Vietnamese sentences, and no benchmark addresses this challenge. In this paper, we construct a 34-hour \textbf{Vi}etnamese \textbf{Med}ical \textbf{C}ode-\textbf{S}witching \textbf{S}peech dataset (ViMedCSS) containing 16,576 utterances. Each utterance includes at least one English medical term drawn from a curated bilingual lexicon covering five medical topics. Using this dataset, we evaluate several state-of-the-art ASR models and examine different specific fine-tuning strategies for improving medical term recognition to investigate the best approach to solve in the dataset. Experimental results show that Vietnamese-optimized models perform better on general segments, while multilingual pretraining helps capture English insertions. The combination of both approaches yields the best balance between overall and code-switched accuracy. This work provides the first benchmark for Vietnamese medical code-switching and offers insights into effective domain adaptation for low-resource, multilingual ASR systems.
comment: Accepted at LREC 2026
☆ RADAR: Revealing Asymmetric Development of Abilities in MLLM Pre-training
Pre-trained Multi-modal Large Language Models (MLLMs) provide a knowledge-rich foundation for post-training by leveraging their inherent perception and reasoning capabilities to solve complex tasks. However, the lack of an efficient evaluation framework impedes the diagnosis of their performance bottlenecks. Current evaluation primarily relies on testing after supervised fine-tuning, which introduces laborious additional training and autoregressive decoding costs. Meanwhile, common pre-training metrics cannot quantify a model's perception and reasoning abilities in a disentangled manner. Furthermore, existing evaluation benchmarks are typically limited in scale or misaligned with pre-training objectives. Thus, we propose RADAR, an efficient ability-centric evaluation framework for Revealing Asymmetric Development of Abilities in MLLM pRe-training. RADAR involves two key components: (1) Soft Discrimination Score, a novel metric for robustly tracking ability development without fine-tuning, based on quantifying nuanced gradations of the model preference for the correct answer over distractors; and (2) Multi-Modal Mixture Benchmark, a new 15K+ sample benchmark for comprehensively evaluating pre-trained MLLMs' perception and reasoning abilities in a 0-shot manner, where we unify authoritative benchmark datasets and carefully collect new datasets, extending the evaluation scope and addressing the critical gaps in current benchmarks. With RADAR, we comprehensively reveal the asymmetric development of perceptual and reasoning capabilities in pretrained MLLMs across diverse factors, including data volume, model size, and pretraining strategy. Our RADAR underscores the need for a decomposed perspective on pre-training ability bottlenecks, informing targeted interventions to advance MLLMs efficiently. Our code is publicly available at https://github.com/Nieysh/RADAR.
☆ BaziQA-Benchmark: Evaluating Symbolic and Temporally Compositional Reasoning in Large Language Models
We present BaziQA-Benchmark, a standardized benchmark for evaluating symbolic and temporally compositional reasoning in large language models. The benchmark is derived from 200 professionally curated, multiple-choice problems from the Global Fortune-teller Competition (2021--2025), where each instance requires structured inference over a fixed symbolic chart and interacting temporal conditions. Unlike anecdotal or prompt-driven evaluations, BaziQA-Benchmark enables objective scoring and controlled comparison across years, domains, and model families. We evaluate contemporary language models under a multi-turn setting and analyze performance variation across temporal difficulty, reasoning domains, and inference protocols.To further probe reasoning behavior, we introduce a lightweight Structured Reasoning Protocol that constrains inference order without adding domain knowledge. Results show that models consistently outperform chance but remain far from saturation, exhibiting pronounced sensitivity to temporal composition and reasoning order, as well as systematic failures on precise temporal localization and multi-condition symbolic judgments.
☆ Semantic Communities and Boundary-Spanning Lyrics in K-pop: A Graph-Based Unsupervised Analysis
Large-scale lyric corpora present unique challenges for data-driven analysis, including the absence of reliable annotations, multilingual content, and high levels of stylistic repetition. Most existing approaches rely on supervised classification, genre labels, or coarse document-level representations, limiting their ability to uncover latent semantic structure. We present a graph-based framework for unsupervised discovery and evaluation of semantic communities in K-pop lyrics using line-level semantic representations. By constructing a similarity graph over lyric texts and applying community detection, we uncover stable micro-theme communities without genre, artist, or language supervision. We further identify boundary-spanning songs via graph-theoretic bridge metrics and analyse their structural properties. Across multiple robustness settings, boundary-spanning lyrics exhibit higher lexical diversity and lower repetition compared to core community members, challenging the assumption that hook intensity or repetition drives cross-theme connectivity. Our framework is language-agnostic and applicable to unlabeled cultural text corpora.
☆ MentalBench: A Benchmark for Evaluating Psychiatric Diagnostic Capability of Large Language Models
We introduce MentalBench, a benchmark for evaluating psychiatric diagnostic decision-making in large language models (LLMs). Existing mental health benchmarks largely rely on social media data, limiting their ability to assess DSM-grounded diagnostic judgments. At the core of MentalBench is MentalKG, a psychiatrist-built and validated knowledge graph encoding DSM-5 diagnostic criteria and differential diagnostic rules for 23 psychiatric disorders. Using MentalKG as a golden-standard logical backbone, we generate 24,750 synthetic clinical cases that systematically vary in information completeness and diagnostic complexity, enabling low-noise and interpretable evaluation. Our experiments show that while state-of-the-art LLMs perform well on structured queries probing DSM-5 knowledge, they struggle to calibrate confidence in diagnostic decision-making when distinguishing between clinically overlapping disorders. These findings reveal evaluation gaps not captured by existing benchmarks.
☆ AIWizards at MULTIPRIDE: A Hierarchical Approach to Slur Reclamation Detection
Detecting reclaimed slurs represents a fundamental challenge for hate speech detection systems, as the same lexcal items can function either as abusive expressions or as in-group affirmations depending on social identity and context. In this work, we address Subtask B of the MultiPRIDE shared task at EVALITA 2026 by proposing a hierarchical approach to modeling the slur reclamation process. Our core assumption is that members of the LGBTQ+ community are more likely, on average, to employ certain slurs in a eclamatory manner. Based on this hypothesis, we decompose the task into two stages. First, using a weakly supervised LLM-based annotation, we assign fuzzy labels to users indicating the likelihood of belonging to the LGBTQ+ community, inferred from the tweet and the user bio. These soft labels are then used to train a BERT-like model to predict community membership, encouraging the model to learn latent representations associated with LGBTQ+ identity. In the second stage, we integrate this latent space with a newly initialized model for the downstream slur reclamation detection task. The intuition is that the first model encodes user-oriented sociolinguistic signals, which are then fused with representations learned by a model pretrained for hate speech detection. Experimental results on Italian and Spanish show that our approach achieves performance statistically comparable to a strong BERT-based baseline, while providing a modular and extensible framework for incorporating sociolinguistic context into hate speech modeling. We argue that more fine-grained hierarchical modeling of user identity and discourse context may further improve the detection of reclaimed language. We release our code at https://github.com/LucaTedeschini/multipride.
☆ Left-right asymmetry in predicting brain activity from LLMs' representations emerges with their formal linguistic competence
When humans and large language models (LLMs) process the same text, activations in the LLMs correlate with brain activity measured, e.g., with functional magnetic resonance imaging (fMRI). Moreover, it has been shown that, as the training of an LLM progresses, the performance in predicting brain activity from its internal activations improves more in the left hemisphere than in the right one. The aim of the present work is to understand which kind of competence acquired by the LLMs underlies the emergence of this left-right asymmetry. Using the OLMo-2 7B language model at various training checkpoints and fMRI data from English participants, we compare the evolution of the left-right asymmetry in brain scores alongside performance on several benchmarks. We observe that the asymmetry co-emerges with the formal linguistic abilities of the LLM. These abilities are demonstrated in two ways: by the model's capacity to assign a higher probability to an acceptable sentence than to a grammatically unacceptable one within a minimal contrasting pair, or its ability to produce well-formed text. On the opposite, the left-right asymmetry does not correlate with the performance on arithmetic or Dyck language tasks; nor with text-based tasks involving world knowledge and reasoning. We generalize these results to another family of LLMs (Pythia) and another language, namely French. Our observations indicate that the left-right asymmetry in brain predictivity matches the progress in formal linguistic competence (knowledge of linguistic patterns).
☆ RAT-Bench: A Comprehensive Benchmark for Text Anonymization
Data containing personal information is increasingly used to train, fine-tune, or query Large Language Models (LLMs). Text is typically scrubbed of identifying information prior to use, often with tools such as Microsoft's Presidio or Anthropic's PII purifier. These tools have traditionally been evaluated on their ability to remove specific identifiers (e.g., names), yet their effectiveness at preventing re-identification remains unclear. We introduce RAT-Bench, a comprehensive benchmark for text anonymization tools based on re-identification risk. Using U.S. demographic statistics, we generate synthetic text containing various direct and indirect identifiers across domains, languages, and difficulty levels. We evaluate a range of NER- and LLM-based text anonymization tools and, based on the attributes an LLM-based attacker is able to correctly infer from the anonymized text, we report the risk of re-identification in the U.S. population, while properly accounting for the disparate impact of identifiers. We find that, while capabilities vary widely, even the best tools are far from perfect in particular when direct identifiers are not written in standard ways and when indirect identifiers enable re-identification. Overall we find LLM-based anonymizers, including new iterative anonymizers, to provide a better privacy-utility trade-off albeit at a higher computational cost. Importantly, we also find them to work well across languages. We conclude with recommendations for future anonymization tools and will release the benchmark and encourage community efforts to expand it, in particular to other geographies.
☆ Aspect-Based Sentiment Analysis for Future Tourism Experiences: A BERT-MoE Framework for Persian User Reviews
This study advances aspect-based sentiment analysis (ABSA) for Persian-language user reviews in the tourism domain, addressing challenges of low-resource languages. We propose a hybrid BERT-based model with Top-K routing and auxiliary losses to mitigate routing collapse and improve efficiency. The pipeline includes: (1) overall sentiment classification using BERT on 9,558 labeled reviews, (2) multi-label aspect extraction for six tourism-related aspects (host, price, location, amenities, cleanliness, connectivity), and (3) integrated ABSA with dynamic routing. The dataset consists of 58,473 preprocessed reviews from the Iranian accommodation platform Jabama, manually annotated for aspects and sentiments. The proposed model achieves a weighted F1-score of 90.6% for ABSA, outperforming baseline BERT (89.25%) and a standard hybrid approach (85.7%). Key efficiency gains include a 39% reduction in GPU power consumption compared to dense BERT, supporting sustainable AI deployment in alignment with UN SDGs 9 and 12. Analysis reveals high mention rates for cleanliness and amenities as critical aspects. This is the first ABSA study focused on Persian tourism reviews, and we release the annotated dataset to facilitate future multilingual NLP research in tourism.
comment: 25 pages, 12 figures, 4 tables
☆ Towards a Diagnostic and Predictive Evaluation Methodology for Sequence Labeling Tasks LREC 2026
Standard evaluation in NLP typically indicates that system A is better on average than system B, but it provides little info on how to improve performance and, what is worse, it should not come as a surprise if B ends up being better than A on outside data. We propose an evaluation methodology for sequence labeling tasks grounded on error analysis that provides both quantitative and qualitative information on where systems must be improved and predicts how models will perform on a different distribution. The key is to create test sets that, contrary to common practice, do not rely on gathering large amounts of real-world in-distribution scraped data, but consists in handcrafting a small set of linguistically motivated examples that exhaustively cover the range of span attributes (such as shape, length, casing, sentence position, etc.) a system may encounter in the wild. We demonstrate this methodology on a benchmark for anglicism identification in Spanish. Our methodology provides results that are diagnostic (because they help identify systematic weaknesses in performance), actionable (because they can inform which model is better suited for a given scenario) and predictive: our method predicts model performance on external datasets with a median correlation of 0.85.
comment: Accepted at LREC 2026
☆ Lamer-SSL: Layer-aware Mixture of LoRA Experts for Continual Multilingual Expansion of Self-supervised Models without Forgetting ICASSP 2026
Despite their impressive performance, self-supervised speech models often struggle to generalize to new languages and tend to forget previously acquired knowledge during continual training. To address this, we propose Lamer-SSL, a parameter-efficient framework that integrates a Layer-Aware MixturE of LoRA Experts (Lamer) module with a replay strategy. The Lamer module enables flexible balancing between shared and language-specific representations, while layer-aware expert allocation assigns more experts to deeper layers where semantic information is richer. Meanwhile, the replay strategy retains prior knowledge using minimal data, mitigating forgetting during continual training. Experiments on automatic speech recognition (ASR) and language identification (LID) demonstrate that Lamer-SSL extends self-supervised models to new languages effectively while maintaining strong performance on previously learned languages with only 2.14% parameters being trainable.
comment: Accepted by ICASSP 2026
☆ VimRAG: Navigating Massive Visual Context in Retrieval-Augmented Generation via Multimodal Memory Graph
Effectively retrieving, reasoning, and understanding multimodal information remains a critical challenge for agentic systems. Traditional Retrieval-augmented Generation (RAG) methods rely on linear interaction histories, which struggle to handle long-context tasks, especially those involving information-sparse yet token-heavy visual data in iterative reasoning scenarios. To bridge this gap, we introduce VimRAG, a framework tailored for multimodal Retrieval-augmented Reasoning across text, images, and videos. Inspired by our systematic study, we model the reasoning process as a dynamic directed acyclic graph that structures the agent states and retrieved multimodal evidence. Building upon this structured memory, we introduce a Graph-Modulated Visual Memory Encoding mechanism, with which the significance of memory nodes is evaluated via their topological position, allowing the model to dynamically allocate high-resolution tokens to pivotal evidence while compressing or discarding trivial clues. To implement this paradigm, we propose a Graph-Guided Policy Optimization strategy. This strategy disentangles step-wise validity from trajectory-level rewards by pruning memory nodes associated with redundant actions, thereby facilitating fine-grained credit assignment. Extensive experiments demonstrate that VimRAG consistently achieves state-of-the-art performance on diverse multimodal RAG benchmarks. The code is available at https://github.com/Alibaba-NLP/VRAG.
☆ ReFilter: Improving Robustness of Retrieval-Augmented Generation via Gated Filter
Retrieval-augmented generation (RAG) has become a dominant paradigm for grounding large language models (LLMs) with external evidence in knowledge-intensive question answering. A core design choice is how to fuse retrieved samples into the LLMs, where existing internal fusion approaches broadly fall into query-based fusion, parametric fusion, and latent-based fusion. Despite their effectiveness at modest retrieval scales, these methods often fail to scale gracefully as the number of retrieved candidates k increases: Larger k improves evidence coverage, yet realistic top-k retrieval inevitably contains irrelevant or redundant content and increases the inference cost. To address these limitations, we propose ReFilter, a novel latent-based fusion framework that performs token-level filtering and fusion. ReFilter consists of three key components: a context encoder for encoding context features, a gated filter for weighting each token, and a token fusion module for integrating the weighted token feature into the LLM's hidden states. Our experiments across four general-domain QA benchmarks show that ReFilter consistently achieves the best average performance under both in-domain adaptation and out-of-domain transfer. ReFilter further generalizes to five biomedical QA benchmarks in zero-shot transfer without domain fine-tuning, reaching 70.01% average accuracy with Qwen2.5-14B-Instruct.
☆ MedXIAOHE: A Comprehensive Recipe for Building Medical MLLMs
We present MedXIAOHE, a medical vision-language foundation model designed to advance general-purpose medical understanding and reasoning in real-world clinical applications. MedXIAOHE achieves state-of-the-art performance across diverse medical benchmarks and surpasses leading closed-source multimodal systems on multiple capabilities. To achieve this, we propose an entity-aware continual pretraining framework that organizes heterogeneous medical corpora to broaden knowledge coverage and reduce long-tail gaps (e.g., rare diseases). For medical expert-level reasoning and interaction, MedXIAOHE incorporates diverse medical reasoning patterns via reinforcement learning and tool-augmented agentic training, enabling multi-step diagnostic reasoning with verifiable decision traces. To improve reliability in real-world use, MedXIAOHE integrates user-preference rubrics, evidence-grounded reasoning, and low-hallucination long-form report generation, with improved adherence to medical instructions. We release this report to document our practical design choices, scaling insights, and evaluation framework, hoping to inspire further research.
☆ $\mathcal{X}$-KD: General Experiential Knowledge Distillation for Large Language Models
Knowledge Distillation (KD) for Large Language Models (LLMs) has become increasingly important as models grow in size and complexity. While existing distillation approaches focus on imitating teacher behavior, they often overlook the original learning environment that shaped the teacher's knowledge. Inspired by the experiential learning theory and inverse reinforcement learning, we propose Experiential Knowledge Distillation ($\mathcal{X}$-KD), a novel and general framework that enables student models to learn in the teacher's original learning environment. $\mathcal{X}$-KD adopts the Approximated Variational Reward Imitation Learning (AVRIL) framework to jointly model the teacher's original reward function and perform policy distillation, encouraging consistency between the student policy and the original reward function. Our derivation demonstrates that $\mathcal{X}$-KD follows the supervised learning framework and applies to both sequence-level and divergence-based distillation methods, underlining the simplicity and flexibility of our approach. Empirical results show that $\mathcal{X}$-KD outperforms the generalized KD and MiniLLM baselines on abstractive summarization, machine translation, and arithmetic reasoning tasks. Additionally, $\mathcal{X}$-KD achieves better performance-diversity trade-off and data efficiency than baseline KD approaches.
☆ Think Fast and Slow: Step-Level Cognitive Depth Adaptation for LLM Agents
Large language models (LLMs) are increasingly deployed as autonomous agents for multi-turn decision-making tasks. However, current agents typically rely on fixed cognitive patterns: non-thinking models generate immediate responses, while thinking models engage in deep reasoning uniformly. This rigidity is inefficient for long-horizon tasks, where cognitive demands vary significantly from step to step, with some requiring strategic planning and others only routine execution. In this paper, we introduce CogRouter, a framework that trains agents to dynamically adapt cognitive depth at each step. Grounded in ACT-R theory, we design four hierarchical cognitive levels ranging from instinctive responses to strategic planning. Our two-stage training approach includes Cognition-aware Supervised Fine-tuning (CoSFT) to instill stable level-specific patterns, and Cognition-aware Policy Optimization (CoPO) for step-level credit assignment via confidence-aware advantage reweighting. The key insight is that appropriate cognitive depth should maximize the confidence of the resulting action. Experiments on ALFWorld and ScienceWorld demonstrate that CogRouter achieves state-of-the-art performance with superior efficiency. With Qwen2.5-7B, it reaches an 82.3% success rate, outperforming GPT-4o (+40.3%), OpenAI-o3 (+18.3%), and GRPO (+14.0%), while using 62% fewer tokens.
☆ Learning Ordinal Probabilistic Reward from Preferences ICLR 2026
Reward models are crucial for aligning large language models (LLMs) with human values and intentions. Existing approaches follow either Generative (GRMs) or Discriminative (DRMs) paradigms, yet both suffer from limitations: GRMs typically demand costly point-wise supervision, while DRMs produce uncalibrated relative scores that lack probabilistic interpretation. To address these challenges, we introduce a novel reward modeling paradigm: Probabilistic Reward Model (PRM). Instead of modeling reward as a deterministic scalar, our approach treats it as a random variable, learning a full probability distribution for the quality of each response. To make this paradigm practical, we present its closed-form, discrete realization: the Ordinal Probabilistic Reward Model (OPRM), which discretizes the quality score into a finite set of ordinal ratings. Building on OPRM, we propose a data-efficient training strategy called Region Flooding Tuning (RgFT). It enables rewards to better reflect absolute text quality by incorporating quality-level annotations, which guide the model to concentrate the probability mass within corresponding rating sub-regions. Experiments on various reward model benchmarks show that our method improves accuracy by $\textbf{2.9%}\sim\textbf{7.4%}$ compared to prior reward models, demonstrating strong performance and data efficiency. Analysis of the score distribution provides evidence that our method captures not only relative rankings but also absolute quality.
comment: 28 pages, 5 figures, ICLR 2026
☆ Beyond Normalization: Rethinking the Partition Function as a Difficulty Scheduler for RLVR
Reward-maximizing RL methods enhance the reasoning performance of LLMs, but often reduce the diversity among outputs. Recent works address this issue by adopting GFlowNets, training LLMs to match a target distribution while jointly learning its partition function. In contrast to prior works that treat this partition function solely as a normalizer, we reinterpret it as a per-prompt expected-reward (i.e., online accuracy) signal, leveraging this unused information to improve sample efficiency. Specifically, we first establish a theoretical relationship between the partition function and per-prompt accuracy estimates. Building on this key insight, we propose Partition Function-Guided RL (PACED-RL), a post-training framework that leverages accuracy estimates to prioritize informative question prompts during training, and further improves sample efficiency through an accuracy estimate error-prioritized replay. Crucially, both components reuse information already produced during GFlowNet training, effectively amortizing the compute overhead into the existing optimization process. Extensive experiments across diverse benchmarks demonstrate strong performance improvements over GRPO and prior GFlowNet approaches, highlighting PACED-RL as a promising direction for a more sample efficient distribution-matching training for LLMs.
☆ CLASE: A Hybrid Method for Chinese Legalese Stylistic Evaluation LREC 2026
Legal text generated by large language models (LLMs) can usually achieve reasonable factual accuracy, but it frequently fails to adhere to the specialised stylistic norms and linguistic conventions of legal writing. In order to improve stylistic quality, a crucial first step is to establish a reliable evaluation method. However, having legal experts manually develop such a metric is impractical, as the implicit stylistic requirements in legal writing practice are difficult to formalise into explicit rubrics. Meanwhile, existing automatic evaluation methods also fall short: reference-based metrics conflate semantic accuracy with stylistic fidelity, and LLM-as-a-judge evaluations suffer from opacity and inconsistency. To address these challenges, we introduce CLASE (Chinese LegAlese Stylistic Evaluation), a hybrid evaluation method that focuses on the stylistic performance of legal text. The method incorporates a hybrid scoring mechanism that combines 1) linguistic feature-based scores and 2) experience-guided LLM-as-a-judge scores. Both the feature coefficients and the LLM scoring experiences are learned from contrastive pairs of authentic legal documents and their LLM-restored counterparts. This hybrid design captures both surface-level features and implicit stylistic norms in a transparent, reference-free manner. Experiments on 200 Chinese legal documents show that CLASE achieves substantially higher alignment with human judgments than traditional metrics and pure LLM-as-a-judge methods. Beyond improved alignment, CLASE provides interpretable score breakdowns and suggestions for improvements, offering a scalable and practical solution for professional stylistic evaluation in legal text generation (Code and data for CLASE is available at: https://github.com/rexera/CLASE).
comment: Accepted at LREC 2026
☆ Unleashing Low-Bit Inference on Ascend NPUs: A Comprehensive Evaluation of HiFloat Formats
As LLMs scale, low-bit floating-point formats like MXFP and NVFP4 offer new opportunities for precision and efficiency. In this work, we evaluate HiFloat (HiF8 and HiF4), a family of formats tailored for Ascend NPUs. Through rigorous comparison across weight-activation and KV-cache tasks, we provide three key insights: (1) INT8 suits narrow-range data, while floating-point formats excel with high-variance data; (2) in 4-bit regimes, HiF4's hierarchical scaling prevents the accuracy collapse seen in integer formats; and (3) HiFloat is fully compatible with state-of-the-art post-training quantization frameworks. Overall, HiFloat provides a solution for high-efficiency LLM inference on NPUs.
☆ Vision Token Reduction via Attention-Driven Self-Compression for Efficient Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) incur significant computational cost from processing numerous vision tokens through all LLM layers. Prior pruning methods operate either before the LLM, limiting generality due to diverse encoder-projector designs or within the LLM using heuristics that are incompatible with FlashAttention. We take a different approach: rather than identifying unimportant tokens, we treat the LLM itself as the optimal guide for compression. Observing that deeper layers naturally transmit vision-to-text information, we introduce Attention-Driven Self-Compression (ADSC), a simple, broadly applicable method that progressively reduces vision tokens using only the LLM's attention mechanism. Our method applies uniform token downsampling at selected layers, forming bottlenecks that encourage the model to reorganize and compress information into the remaining tokens. It requires no score computation, auxiliary modules, or attention modification, and remains fully compatible with FlashAttention. Applied to LLaVA-1.5, ADSC reduces FLOPs by 53.7% and peak KV-cache memory by 56.7%, while preserving 98.2% of the original model performance. Across multiple benchmarks, it outperforms prior pruning approaches in both efficiency and accuracy. Crucially, under high compression ratios, our method remains robust while heuristic-based techniques degrade sharply.
comment: 2025 IEEE International Conference on Big Data (BigData)
☆ HyperMLP: An Integrated Perspective for Sequence Modeling
Self-attention is often viewed as probabilistic query-key lookup, motivating designs that preserve normalized attention scores and fixed positional semantics. We advocate a simpler and more unified perspective: an autoregressive attention head can be viewed as a dynamic two-layer MLP whose weights are instantiated from the context history. From this view, attention scores form an ever-growing hidden representation, and standard MLP activations such as ReLU or GLU naturally implement input-conditioned selection over a context-dependent memory pool rather than a probability distribution. Based on this formulation, we introduce HyperMLP and HyperGLU, which learn dynamic mixing in both feature space and sequence space, using a reverse-offset (lag) layout to align temporal mixing with autoregressive semantics. We provide theoretical characterizations of the expressivity and implications of this structure, and empirically show that HyperMLP/HyperGLU consistently outperform strong softmax-attention baselines under matched parameter budgets.
☆ Discovering Semantic Latent Structures in Psychological Scales: A Response-Free Pathway to Efficient Simplification
Psychological scale refinement traditionally relies on response-based methods such as factor analysis, item response theory, and network psychometrics to optimize item composition. Although rigorous, these approaches require large samples and may be constrained by data availability and cross-cultural comparability. Recent advances in natural language processing suggest that the semantic structure of questionnaire items may encode latent construct organization, offering a complementary response-free perspective. We introduce a topic-modeling framework that operationalizes semantic latent structure for scale simplification. Items are encoded using contextual sentence embeddings and grouped via density-based clustering to discover latent semantic factors without predefining their number. Class-based term weighting derives interpretable topic representations that approximate constructs and enable merging of semantically adjacent clusters. Representative items are selected using membership criteria within an integrated reduction pipeline. We benchmarked the framework across DASS, IPIP, and EPOCH, evaluating structural recovery, internal consistency, factor congruence, correlation preservation, and reduction efficiency. The proposed method recovered coherent factor-like groupings aligned with established constructs. Selected items reduced scale length by 60.5% on average while maintaining psychometric adequacy. Simplified scales showed high concordance with original factor structures and preserved inter-factor correlations, indicating that semantic latent organization provides a response-free approximation of measurement structure. Our framework formalizes semantic structure as an inspectable front-end for scale construction and reduction. To facilitate adoption, we provide a visualization-supported tool enabling one-click semantic analysis and structured simplification.
comment: 78 pages, 20 figures
☆ Decoder-only Conformer with Modality-aware Sparse Mixtures of Experts for ASR ICASSP 2026
We present a decoder-only Conformer for automatic speech recognition (ASR) that processes speech and text in a single stack without external speech encoders or pretrained large language models (LLM). The model uses a modality-aware sparse mixture of experts (MoE): disjoint expert pools for speech and text with hard routing and top-1 selection, embedded in hybrid-causality Conformer blocks (bidirectional for speech, causal for text). Training combines CTC on speech positions with label-smoothed cross-entropy for text generation. Our 113M-parameter model consistently improves WER over a 139M AED baseline on Librispeech (2.8% vs. 3.2% test-clean; 5.6% vs. 6.0% test-other). On Common Voice 16.1 with a single multilingual model across five languages, our approach reduces average WER from 12.2% to 10.6%. To our knowledge, this is the first randomly initialized decoder-only ASR that surpasses strong AED baselines via modality-aware routing and sparse MoE, achieving better accuracy with fewer active parameters and without alignment/adaptation modules.
comment: Accepted to ICASSP 2026
☆ DiffuRank: Effective Document Reranking with Diffusion Language Models
Recent advances in large language models (LLMs) have inspired new paradigms for document reranking. While this paradigm better exploits the reasoning and contextual understanding capabilities of LLMs, most existing LLM-based rerankers rely on autoregressive generation, which limits their efficiency and flexibility. In particular, token-by-token decoding incurs high latency, while the fixed left-to-right generation order causes early prediction errors to propagate and is difficult to revise. To address these limitations, we explore the use of diffusion language models (dLLMs) for document reranking and propose DiffuRank, a reranking framework built upon dLLMs. Unlike autoregressive models, dLLMs support more flexible decoding and generation processes that are not constrained to a left-to-right order, and enable parallel decoding, which may lead to improved efficiency and controllability. Specifically, we investigate three reranking strategies based on dLLMs: (1) a pointwise approach that uses dLLMs to estimate the relevance of each query-document pair; (2) a logit-based listwise approach that prompts dLLMs to jointly assess the relevance of multiple documents and derives ranking lists directly from model logits; and (3) a permutation-based listwise approach that adapts the canonical decoding process of dLLMs to the reranking tasks. For each approach, we design corresponding training methods to fully exploit the advantages of dLLMs. We evaluate both zero-shot and fine-tuned reranking performance on multiple benchmarks. Experimental results show that dLLMs achieve performance comparable to, and in some cases exceeding, that of autoregressive LLMs with similar model sizes. These findings demonstrate the promise of diffusion-based language models as a compelling alternative to autoregressive architectures for document reranking.
comment: The code is available at https://github.com/liuqi6777/DiffusionRank
☆ Constraint-Rectified Training for Efficient Chain-of-Thought
Chain-of-Thought (CoT) has significantly enhanced the reasoning capabilities of Large Language Models (LLMs), especially when combined with reinforcement learning (RL) based post-training methods. While longer reasoning traces can improve answer quality and unlock abilities such as self-correction, they also incur high inference costs and often introduce redundant steps, known as overthinking. Recent research seeks to develop efficient reasoning strategies that balance reasoning length and accuracy, either through length-aware reward design or prompt-based calibration. However, these heuristic-based approaches may suffer from severe accuracy drop and be very sensitive to hyperparameters. To address these problems, we introduce CRT (Constraint-Rectified Training), a principled post-training framework based on reference-guarded constrained optimization, yielding a more stable and interpretable formulation for efficient reasoning. CRT alternates between minimizing reasoning length and rectifying accuracy only when performance falls below the reference, enabling stable and effective pruning of redundant reasoning. We further extend CRT with a two-stage training scheme that first discovers the shortest reliable reasoning patterns and then refines accuracy under a learnt length budget, preventing the re-emergence of verbose CoT. Our comprehensive evaluation shows that this framework consistently reduces token usage while maintaining answer quality at a robust and reliable level. Further analysis reveals that CRT improves reasoning efficiency not only by shortening responses but also by reducing internal language redundancy, leading to a new evaluation metric. Moreover, CRT-based training naturally yields a sequence of intermediate checkpoints that span a spectrum of explanation lengths while preserving correctness, enabling fine-grained control over reasoning verbosity without retraining.
♻ ☆ R-Zero: Self-Evolving Reasoning LLM from Zero Data
Self-evolving Large Language Models (LLMs) offer a scalable path toward super-intelligence by autonomously generating, refining, and learning from their own experiences. However, existing methods for training such models still rely heavily on vast human-curated tasks and labels, typically via fine-tuning or reinforcement learning, which poses a fundamental bottleneck to advancing AI systems toward capabilities beyond human intelligence. To overcome this limitation, we introduce R-Zero, a fully autonomous framework that generates its own training data from scratch. Starting from a single base LLM, R-Zero initializes two independent models with distinct roles, a Challenger and a Solver. These models are optimized separately and co-evolve through interaction: the Challenger is rewarded for proposing tasks near the edge of the Solver capability, and the Solver is rewarded for solving increasingly challenging tasks posed by the Challenger. This process yields a targeted, self-improving curriculum without any pre-existing tasks and labels. Empirically, R-Zero substantially improves reasoning capability across different backbone LLMs, e.g., boosting the Qwen3-4B-Base by +6.49 on math-reasoning benchmarks and +7.54 on general-domain reasoning benchmarks.
♻ ☆ Privacy-Preserving Federated Learning with Verifiable Fairness Guarantees
Federated learning enables collaborative model training across distributed institutions without centralizing sensitive data; however, ensuring algorithmic fairness across heterogeneous data distributions while preserving privacy remains fundamentally unresolved. This paper introduces CryptoFair-FL, a novel cryptographic framework providing the first verifiable fairness guarantees for federated learning systems under formal security definitions. The proposed approach combines additively homomorphic encryption with secure multi-party computation to enable privacy-preserving verification of demographic parity and equalized odds metrics without revealing protected attribute distributions or individual predictions. A novel batched verification protocol reduces computational complexity from BigO(n^2) to BigO(n \log n) while maintaining (\dparam, \deltap)-differential privacy with dparam = 0.5 and deltap = 10^{-6}. Theoretical analysis establishes information-theoretic lower bounds on the privacy cost of fairness verification, demonstrating that the proposed protocol achieves near-optimal privacy-fairness tradeoffs. Comprehensive experiments across four benchmark datasets (MIMIC-IV healthcare records, Adult Income, CelebA, and a novel FedFair-100 benchmark) demonstrate that CryptoFair-FL reduces fairness violations from 0.231 to 0.031 demographic parity difference while incurring only 2.3 times computational overhead compared to standard federated averaging. The framework successfully defends against attribute inference attacks, maintaining adversarial success probability below 0.05 across all tested configurations. These results establish a practical pathway for deploying fairness-aware federated learning in regulated industries requiring both privacy protection and algorithmic accountability.
♻ ☆ Highlight & Summarize: RAG without the jailbreaks
Preventing jailbreaking and model hijacking of Large Language Models (LLMs) is an important yet challenging task. When interacting with a chatbot, malicious users can input specially crafted prompts that cause the LLM to generate undesirable content or perform a different task from its intended purpose. Existing systems attempt to mitigate this by hardening the LLM's system prompt or using additional classifiers to detect undesirable content or off-topic conversations. However, these probabilistic approaches are relatively easy to bypass due to the very large space of possible inputs and undesirable outputs. We present and evaluate Highlight & Summarize (H&S), a new design pattern for retrieval-augmented generation (RAG) systems that prevents these attacks by design. The core idea is to perform the same task as a standard RAG pipeline (i.e., to provide natural language answers to questions, based on relevant sources) without ever revealing the user's question to the generative LLM. This is achieved by splitting the pipeline into two components: a highlighter, which takes the user's question and extracts ("highlights") relevant passages from the retrieved documents, and a summarizer, which takes the highlighted passages and summarizes them into a cohesive answer. We describe and implement several possible instantiations of H&S and evaluate their responses in terms of correctness, relevance, and quality. For certain question-answering (QA) tasks, the responses produced by H&S are judged to be as good, if not better, than those of a standard RAG pipeline.
♻ ☆ Reasoning about Intent for Ambiguous Requests
Large language models often respond to ambiguous requests by implicitly committing to one interpretation. Intent misunderstandings can frustrate users and create safety risks. To address this, we propose generating multiple interpretation-answer pairs in a single structured response to ambiguous requests. Our models are trained with reinforcement learning and customized reward functions using multiple valid answers as supervision. Experiments on conversational question answering and semantic parsing demonstrate that our method achieves higher coverage of valid answers than baseline approaches. Human evaluation confirms that predicted interpretations are highly aligned with their answers. Our approach promotes transparency with explicit interpretations, achieves efficiency by requiring only one generation step, and supports downstream applications through its structured output format.
♻ ☆ WavBench: Benchmarking Reasoning, Colloquialism, and Paralinguistics for End-to-End Spoken Dialogue Models
With the rapid integration of advanced reasoning capabilities into spoken dialogue models, the field urgently demands benchmarks that transcend simple interactions to address real-world complexity. However, current evaluations predominantly adhere to text-generation standards, overlooking the unique audio-centric characteristics of paralinguistics and colloquialisms, alongside the cognitive depth required by modern agents. To bridge this gap, we introduce WavBench, a comprehensive benchmark designed to evaluate realistic conversational abilities where prior works fall short. Uniquely, WavBench establishes a tripartite framework: 1) Pro subset, designed to rigorously challenge reasoning-enhanced models with significantly increased difficulty; 2) Basic subset, defining a novel standard for spoken colloquialism that prioritizes "listenability" through natural vocabulary, linguistic fluency, and interactive rapport, rather than rigid written accuracy; and 3) Acoustic subset, covering explicit understanding, generation, and implicit dialogue to rigorously evaluate comprehensive paralinguistic capabilities within authentic real-world scenarios. Through evaluating five state-of-the-art models, WavBench offers critical insights into the intersection of complex problem-solving, colloquial delivery, and paralinguistic fidelity, guiding the evolution of robust spoken dialogue models. The benchmark dataset and evaluation toolkit are available at https://naruto-2024.github.io/wavbench.github.io/.
comment: Open-source at https://naruto-2024.github.io/wavbench.github.io/
♻ ☆ LaCy: What Small Language Models Can and Should Learn is Not Just a Question of Loss
Language models have consistently grown to compress more world knowledge into their parameters, but the knowledge that can be pretrained into them is upper-bounded by their parameter size. Especially the capacity of Small Language Models (SLMs) is limited, leading to factually incorrect generations. This problem is often mitigated by giving the SLM access to an outside source: the ability to query a larger model, documents, or a database. Under this setting, we study the fundamental question of \emph{which tokens an SLM can and should learn} during pretraining, versus \emph{which ones it should delegate} via a \texttt{} token. We find that this is not simply a question of loss: although the loss is predictive of whether a predicted token mismatches the ground-truth, some tokens are \emph{acceptable} in that they are truthful alternative continuations of a pretraining document, and should not trigger a \texttt{} even if their loss is high. We find that a spaCy grammar parser can help augment the loss signal to decide which tokens the SLM should learn to delegate to prevent factual errors and which are safe to learn and predict even under high losses. We propose LaCy, a novel pretraining method based on this token selection philosophy. Our experiments demonstrate that LaCy models successfully learn which tokens to predict and where to delegate for help. This results in higher FactScores when generating in a cascade with a bigger model and outperforms Rho or LLM-judge trained SLMs, while being simpler and cheaper.
comment: 29 pages, 24 figures, 5 tables, preprint, v2 files typos in appendix
♻ ☆ Bielik Guard: Efficient Polish Language Safety Classifiers for LLM Content Moderation
As Large Language Models (LLMs) become increasingly deployed in Polish language applications, the need for efficient and accurate content safety classifiers has become paramount. We present Bielik Guard, a family of compact Polish language safety classifiers comprising two model variants: a 0.1B parameter model based on MMLW-RoBERTa-base and a 0.5B parameter model based on PKOBP/polish-roberta-8k. Fine-tuned on a community-annotated dataset of 6,885 Polish texts, these models classify content across five safety categories: Hate/Aggression, Vulgarities, Sexual Content, Crime, and Self-Harm. Our evaluation demonstrates that both models achieve strong performance on multiple benchmarks. The 0.5B variant offers the best overall discrimination capability with F1 scores of 0.791 (micro) and 0.785 (macro) on the test set, while the 0.1B variant demonstrates exceptional efficiency. Notably, Bielik Guard 0.1B v1.1 achieves superior precision (77.65%) and very low false positive rate (0.63%) on real user prompts, outperforming HerBERT-PL-Guard (31.55% precision, 4.70% FPR) despite identical model size. The models are publicly available and designed to provide appropriate responses rather than simple content blocking, particularly for sensitive categories like self-harm.
♻ ☆ TASO: Task-Aligned Sparse Optimization for Parameter-Efficient Model Adaptation EMNLP 2025
LoRA has become one of the most widely used parameter-efficient fine-tuning methods due to its simplicity and effectiveness. However, numerous studies have shown that LoRA often introduces substantial parameter redundancy, which not only increases the number of trainable parameters but also hinders the effectiveness of fine-tuning. Since identifying redundant parameters in LoRA is inherently difficult, how to eliminate them efficiently and accurately remains a challenging problem. In this paper, we propose TASO, a redundancy reduction method that leverages importance information from the pretrained model's weights to mitigate LoRA redundancy. Specifically, we estimate parameter importance on downstream tasks and identify task-specific core regions based on the distribution of importance scores. The location information of these core regions is then used to determine the sparse structure of LoRA modules, enabling redundancy removal before fine-tuning. Our approach significantly reduces the number of trainable parameters required for task adaptation, while providing a novel task-aligned perspective for LoRA redundancy reduction. Experimental results demonstrate that, with a parameter budget comparable to LoRA with rank $r = 1$, TASO consistently outperforms standard LoRA across multiple tasks, achieving strong fine-tuning performance while effectively eliminating redundant parameters.
comment: Accepted to EMNLP 2025 (Main Conference),13 pages,10 figures
♻ ☆ RAISE: Reinforced Adaptive Instruction Selection For Large Language Models EMNLP 2025
In the instruction fine-tuning of large language models (LLMs), it is widely recognized that a few high-quality instructions are superior to a large number of low-quality instructions. At present, many instruction selection methods have been proposed, but most of these methods select instruction based on heuristic quality metrics, and only consider data selection before training. These designs lead to insufficient optimization of instruction fine-tuning, and fixed heuristic indicators are often difficult to optimize for specific tasks. Therefore, we design a dynamic, task-objective-driven instruction selection framework RAISE(Reinforced Adaptive Instruction SElection), which incorporates the entire instruction fine-tuning process into optimization, selecting instructions at each step based on the expected impact of each instruction on model performance improvement. Our approach is well interpretable and has strong task-specific optimization capabilities. By modeling dynamic instruction selection as a sequential decision-making process, we use RL to train our selection strategy. Extensive experiments and result analysis prove the superiority of our method compared with other instruction selection methods. Notably, RAISE achieves superior performance by updating only 1% of the training steps compared to full-data training, demonstrating its efficiency and effectiveness.
comment: Accepted by EMNLP 2025 findings
♻ ☆ Diffusion-Pretrained Dense and Contextual Embeddings
In this report, we introduce pplx-embed, a family of multilingual embedding models that employ multi-stage contrastive learning on a diffusion-pretrained language model backbone for web-scale retrieval. By leveraging bidirectional attention through diffusion-based pretraining, our models capture comprehensive bidirectional context within passages, enabling the use of mean pooling and a late chunking strategy to better preserve global context across long documents. We release two model types: pplx-embed-v1 for standard retrieval, and pplx-embed-context-v1 for contextualized embeddings that incorporate global document context into passage representations. pplx-embed-v1 achieves competitive performance on the MTEB(Multilingual, v2), MTEB(Code), MIRACL, BERGEN, and ToolRet retrieval benchmarks, while pplx-embed-context-v1 sets new records on the ConTEB benchmark. Beyond public benchmarks, pplx-embed-v1 demonstrates strong performance on our internal evaluation suite, focusing on real-world, large-scale search scenarios constructed from 1B production web pages. These results validate the models' effectiveness in production environments where retrieval quality and efficiency are critical at scale.
♻ ☆ When Should LLMs Be Less Specific? Selective Abstraction for Reliable Long-Form Text Generation
LLMs are widely used, yet they remain prone to factual errors that erode user trust and limit adoption in high-risk settings. One approach to mitigate this risk is to equip models with uncertainty estimation mechanisms that abstain when confidence is low. However, this binary "all-or-nothing" approach is excessively restrictive in long-form settings, often discarding valuable information. We introduce Selective Abstraction (SA), a framework that enables LLMs to trade specificity for reliability by selectively reducing the detail of uncertain content. We first formalize SA through the lenses of selective risk and coverage. We then propose Atom-wise Selective Abstraction, a claim-level instantiation that decomposes responses into atomic claims (short, self-contained statements each expressing a single fact) and replaces uncertain atoms with higher confidence, less specific abstractions. To evaluate this framework, we develop a novel end-to-end pipeline for open-ended generation that instantiates risk as factual correctness and measures coverage using an information-theoretic measure of retained information. Across six open-source models on the FactScore and LongFact-Objects benchmarks, atom-wise SA consistently outperforms existing baselines, improving the area under the risk-coverage curve (AURC) by up to 27.73% over claim removal, demonstrating that reducing specificity can boost accuracy and reliability while preserving most of their original meaning.
♻ ☆ Linguistics and Human Brain: A Perspective of Computational Neuroscience
Elucidating the language-brain relationship requires bridging the methodological gap between the abstract theoretical frameworks of linguistics and the empirical neural data of neuroscience. Serving as an interdisciplinary cornerstone, computational neuroscience formalizes the hierarchical and dynamic structures of language into testable neural models through modeling, simulation, and data analysis. This enables a computational dialogue between linguistic hypotheses and neural mechanisms. Recent advances in deep learning, particularly large language models (LLMs), have powerfully advanced this pursuit. Their high-dimensional representational spaces provide a novel scale for exploring the neural basis of linguistic processing, while the "model-brain alignment" framework offers a methodology to evaluate the biological plausibility of language-related theories.
♻ ☆ VoiceAgentBench: Are Voice Assistants ready for agentic tasks?
Large scale Speech Language Models have enabled voice assistants capable of understanding natural spoken queries and performing complex tasks. However, existing speech benchmarks largely focus on isolated capabilities such as transcription or question answering and do not systematically evaluate agentic behavior or adversarial robustness. To address this, we introduce VoiceAgentBench, a comprehensive benchmark for evaluating SpeechLMs in realistic spoken agentic settings, comprising 6,000+ synthetic spoken queries spanning single-tool invocations, multi-tool workflows, multi-turn dialogue, and safety evaluations across English and six Indic languages. To ensure speaker diversity, we further simulate speaker variability using a novel sampling strategy that selects audios for TTS voice conversion based on speaker embeddings to maximize acoustic diversity. Our evaluation measures tool selection accuracy, structural consistency, and the correctness of tool invocations, including adversarial robustness. Across agentic tasks, ASR-LLM pipelines outperform end-to-end SpeechLMs, achieving up to 60.6% average parameter-filling accuracy on English, while SpeechLMs exhibit lower performance and sharper degradation on Indic languages. All models struggle in sequential workflows and safety evaluations, highlighting persistent limitations in tool orchestration, multilingual generalization, and safety robustness. VoiceAgentBench is publicly available on Hugging Face at https://huggingface.co/datasets/krutrim-ai-labs/VoiceAgentBench, and the codebase is released at https://github.com/ola-krutrim/VoiceAgentBench.
♻ ☆ Who is the richest club in the championship? Detecting and Rewriting Underspecified Questions Improve QA Performance
Large language models (LLMs) perform well on well-posed questions, yet standard question-answering (QA) benchmarks remain far from solved. We argue that this gap is partly due to underspecified questions - queries whose interpretation cannot be uniquely determined without additional context. To test this hypothesis, we introduce an LLM-based classifier to identify underspecified questions and apply it to several widely used QA datasets, finding that 16% to over 50% of benchmark questions are underspecified and that LLMs perform significantly worse on them. To isolate the effect of underspecification, we conduct a controlled rewriting experiment that serves as an upper-bound analysis, rewriting underspecified questions into fully specified variants while holding gold answers fixed. QA performance consistently improves under this setting, indicating that many apparent QA failures stem from question underspecification rather than model limitations. Our findings highlight underspecification as an important confound in QA evaluation and motivate greater attention to question clarity in benchmark design.
comment: 4 pages of main text, 13 pages in total, 5 tables and 10 figures in total
♻ ☆ Detecting Overflow in Compressed Token Representations for Retrieval-Augmented Generation EACL 2026
Efficient long-context processing remains a crucial challenge for contemporary large language models (LLMs), especially in resource-constrained environments. Soft compression architectures promise to extend effective context length by replacing long token sequences with smaller sets of learned compressed tokens. Yet, the limits of compressibility -- and when compression begins to erase task-relevant content -- remain underexplored. In this paper, we define token overflow as a regime in which compressed representations no longer contain sufficient information to answer a given query, and propose a methodology to characterize and detect it. In the xRAG soft-compression setting, we find that query-agnostic saturation statistics reliably separate compressed from uncompressed token representations, providing a practical tool for identifying compressed tokens but showing limited overflow detection capability. Lightweight probing classifiers over both query and context xRAG representations detect overflow with 0.72 AUC-ROC on average on HotpotQA, SQuADv2, and TriviaQA datasets, demonstrating that incorporating query information improves detection performance. These results advance from query-independent diagnostics to query-aware detectors, enabling low-cost pre-LLM gating to mitigate compression-induced errors.
comment: Accepted to EACL 2026 Student Research Workshop. 14 pages, 6 tables, 1 figure
♻ ☆ Foundations and Evaluations in NLP
This memoir explores two fundamental aspects of Natural Language Processing (NLP): the creation of linguistic resources and the evaluation of NLP system performance. Over the past decade, my work has focused on developing a morpheme-based annotation scheme for the Korean language that captures linguistic properties from morphology to semantics. This approach has achieved state-of-the-art results in various NLP tasks, including part-of-speech tagging, dependency parsing, and named entity recognition. Additionally, this work provides a comprehensive analysis of segmentation granularity and its critical impact on NLP system performance. In parallel with linguistic resource development, I have proposed a novel evaluation framework, the jp-algorithm, which introduces an alignment-based method to address challenges in preprocessing tasks like tokenization and sentence boundary detection (SBD). Traditional evaluation methods assume identical tokenization and sentence lengths between gold standards and system outputs, limiting their applicability to real-world data. The jp-algorithm overcomes these limitations, enabling robust end-to-end evaluations across a variety of NLP tasks. It enhances accuracy and flexibility by incorporating linear-time alignment while preserving the complexity of traditional evaluation metrics. This memoir provides key insights into the processing of morphologically rich languages, such as Korean, while offering a generalizable framework for evaluating diverse end-to-end NLP systems. My contributions lay the foundation for future developments, with broader implications for multilingual resource development and system evaluation.
comment: Mémoire d'habilitation à diriger des recherches, 2025-2026
♻ ☆ Targeted Syntactic Evaluation of Language Models on Georgian Case Alignment EACL 2026
This paper evaluates the performance of transformer-based language models on split-ergative case alignment in Georgian, a particularly rare system for assigning grammatical cases to mark argument roles. We focus on subject and object marking determined through various permutations of nominative, ergative, and dative noun forms. A treebank-based approach for the generation of minimal pairs using the Grew query language is implemented. We create a dataset of 370 syntactic tests made up of seven tasks containing 50-70 samples each, where three noun forms are tested in any given sample. Five encoder- and two decoder-only models are evaluated with word- and/or sentence-level accuracy metrics. Regardless of the specific syntactic makeup, models performed worst in assigning the ergative case correctly and strongest in assigning the nominative case correctly. Performance correlated with the overall frequency distribution of the three forms (NOM > DAT > ERG). Though data scarcity is a known issue for low-resource languages, we show that the highly specific role of the ergative along with a lack of available training data likely contributes to poor performance on this case. The dataset is made publicly available and the methodology provides an interesting avenue for future syntactic evaluations of languages where benchmarks are limited.
comment: To appear in Proceedings of The Second Workshop on Language Models for Low-Resource Languages (LoResLM), EACL 2026
♻ ☆ SciClaimEval: Cross-modal Claim Verification in Scientific Papers LREC 2026
We present SciClaimEval, a new scientific dataset for the claim verification task. Unlike existing resources, SciClaimEval features authentic claims, including refuted ones, directly extracted from published papers. To create refuted claims, we introduce a novel approach that modifies the supporting evidence (figures and tables), rather than altering the claims or relying on large language models (LLMs) to fabricate contradictions. The dataset provides cross-modal evidence with diverse representations: figures are available as images, while tables are provided in multiple formats, including images, LaTeX source, HTML, and JSON. SciClaimEval contains 1,664 annotated samples from 180 papers across three domains, machine learning, natural language processing, and medicine, validated through expert annotation. We benchmark 11 multimodal foundation models, both open-source and proprietary, across the dataset. Results show that figure-based verification remains particularly challenging for all models, as a substantial performance gap remains between the best system and human baseline.
comment: Accepted at LREC 2026; 12 pages; data is available at https://sciclaimeval.github.io/
♻ ☆ Computational Phenomenology of Temporal Experience in Autism: Quantifying the Emotional and Narrative Characteristics of Lived Unpredictability
Disturbances in temporality, such as desynchronization with the social environment and its unpredictability, are considered core features of autism with a deep impact on relationships. However, limitations regarding research on this issue include: 1) the dominance of deficit-based medical models of autism, 2) sample size in qualitative research, and 3) the lack of phenomenological anchoring in computational research. To bridge the gap between phenomenological and computational approaches and overcome sample-size limitations, our research integrated three methodologies. Study A: structured phenomenological interviews with autistic individuals using the Transdiagnostic Assessment of Temporal Experience. Study B: computational analysis of an autobiographical corpus of autistic narratives built for this purpose. Study C: a replication of a computational study using narrative flow measures to assess the perceived phenomenological authenticity of autistic autobiographies. Interviews revealed that the most significant differences between the autistic and control groups concerned unpredictability of experience. Computational results mirrored these findings: the temporal lexicon in autistic narratives was significantly more negatively valenced - particularly the "Immediacy & Suddenness" category. Outlier analysis identified terms associated with perceived discontinuity (unpredictably, precipitously, and abruptly) as highly negative. The computational analysis of narrative flow found that the autistic narratives contained within the corpus quantifiably resemble autobiographical stories more than imaginary ones. Overall, the temporal challenges experienced by autistic individuals were shown to primarily concern lived unpredictability and stem from the contents of lived experience, and not from autistic narrative construction.
MLLM-CTBench: A Benchmark for Continual Instruction Tuning with Reasoning Process Diagnosis
Continual instruction tuning(CIT) during the post-training phase is crucial for adapting multimodal large language models (MLLMs) to evolving real-world demands. However, the progress is hampered by the lack of benchmarks with rigorous, protocol-consistent evaluation. To bridge this gap, we introduce MLLM-CTBench, a comprehensive benchmark for CIT of MLLMs, covering seven challenging tasks across six diverse domains. MLLM-CTBench makes three key contributions. First, we establish a multidimensional evaluation framework that jointly assesses final-answer accuracy and process-level reasoning quality, where Chain-of-Thought (CoT) traces serve as an observable signal to diagnose catastrophic forgetting beyond answer-only evaluation. Second, we conduct a large-scale evaluation of continual learning methods by systematically assessing eight representative algorithms from four major families under a unified protocol across task orders, providing actionable insights for algorithm design. Third, we expand the scope from Supervised Fine-Tuning (SFT) to Reinforcement Fine-Tuning (RFT) in CIT. By investigating GRPO, an on-policy RL algorithm that stabilizes updates through explicit KL-divergence control to a prior policy, we aim to analyze how this mechanism affects cross-task knowledge retention. Our experiments yield several findings:(1) Process-level reasoning quality is often more resilient to catastrophic forgetting than final-answer accuracy, and forgetting is primarily driven by degradation in domain knowledge. (2) Model capability is critical factor influencing continual learning outcomes, with stronger baseline models exhibiting greater resistance to catastrophic forgetting. (3) On-policy RFT (GRPO), with its inherent KL control, achieves more stable cross-task retention than SFT. While removing KL control can amplify forgetting despite potential gains on new ones.
comment: under review
♻ ☆ Finetuning Large Language Models for Automated Depression Screening in Nigerian Pidgin English: GENSCORE Pilot Study
Depression is a major contributor to the mental-health burden in Nigeria, yet screening coverage remains limited due to low access to clinicians, stigma, and language barriers. Traditional tools like the Patient Health Questionnaire-9 (PHQ-9) were validated in high-income countries but may be linguistically or culturally inaccessible for low- and middle-income countries and communities such as Nigeria where people communicate in Nigerian Pidgin and more than 520 local languages. This study presents a novel approach to automated depression screening using fine-tuned large language models (LLMs) adapted for conversational Nigerian Pidgin. We collected a dataset of 432 Pidgin-language audio responses from Nigerian young adults aged 18-40 to prompts assessing psychological experiences aligned with PHQ-9 items, performed transcription, rigorous preprocessing and annotation, including semantic labeling, slang and idiom interpretation, and PHQ-9 severity scoring. Three LLMs - Phi-3-mini-4k-instruct, Gemma-3-4B-it, and GPT-4.1 - were fine-tuned on this annotated dataset, and their performance was evaluated quantitatively (accuracy, precision and semantic alignment) and qualitatively (clarity, relevance, and cultural appropriateness). GPT-4.1 achieved the highest quantitative performance, with 94.5% accuracy in PHQ-9 severity scoring prediction, outperforming Gemma-3-4B-it and Phi-3-mini-4k-instruct. Qualitatively, GPT-4.1 also produced the most culturally appropriate, clear, and contextually relevant responses. AI-mediated depression screening for underserved Nigerian communities. This work provides a foundation for deploying conversational mental-health tools in linguistically diverse, resource-constrained environments.
comment: 10 pages, 1 figure, 4 tables
♻ ☆ Layer-wise Swapping for Generalizable Multilingual Safety EACL 2026
Despite the rapid advancements of Large Language Models (LLMs), safety risks remain a critical challenge for low-resource languages. Existing safety datasets are predominantly English centric, limiting progress in multilingual safety alignment. As a result, low resource expert models, finetuned on their respective instruction datasets, tend to exhibit higher unsafety rates compared to their high resource counterparts. In this work, we propose a safety aware layer swapping method that transfers safety alignment from an English safety expert to low resource language experts without additional training. To further enhance transfer ability, our method adaptively selects or blends modules based on their degree of specialization. Our approach preserves performance on general language understanding tasks while enhancing safety in the target languages. Experimental results show that the proposed method achieves comparable performance to the language expert on general benchmarks such as MMMLU, BELEBELE, and MGSM, while producing more aligned and less harmful responses on the MultiJail safety benchmark.
comment: EACL 2026 main
♻ ☆ RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation
Large language models excel at generating individual functions or single files of code, yet generating complete repositories from scratch remains a fundamental challenge. This capability is key to building coherent software systems from high-level specifications and realizing the full potential of automated code generation. The process requires planning at two levels: deciding what features and modules to build (proposal stage) and defining their implementation details (implementation stage). Current approaches rely on natural language planning, which often produces unclear specifications, misaligned components, and brittle designs due to its inherent ambiguity and lack of structure. To address these limitations, we introduce the Repository Planning Graph (RPG), a structured representation that encodes capabilities, file structures, data flows, and functions in a unified graph. By replacing free-form natural language with an explicit blueprint, RPG enables consistent long-horizon planning for repository generation. Building on RPG, we develop ZeroRepo, a graph-driven framework that operates in three stages: proposal-level planning, implementation-level construction, and graph-guided code generation with test validation. To evaluate, we construct RepoCraft, a benchmark of six real-world projects with 1,052 tasks. On RepoCraft, ZeroRepo produces nearly 36K Code Lines and 445K Code Tokens, on average 3.9$\times$ larger than the strongest baseline (Claude Code), and 68$\times$ larger than other baselines. It achieves 81.5% coverage and 69.7% test accuracy, improving over Claude Code by 27.3 and 35.8 points. Further analysis shows that RPG models complex dependencies, enables more sophisticated planning through near-linear scaling, and improves agent understanding of repositories, thus accelerating localization. Our data and code are available at https://github.com/microsoft/RPG-ZeroRepo.
♻ ☆ The Mediomatix Corpus: Parallel Data for Romansh Language Varieties via Comparable Schoolbooks
The five idioms (i.e., varieties) of the Romansh language are largely standardized and are taught in the schools of the respective communities in Switzerland. In this paper, we present the first parallel corpus of Romansh idioms. The corpus is based on 291 schoolbook volumes, which are comparable in content for the five idioms. We use automatic alignment methods to extract 207k multi-parallel segments from the books, with more than 2M tokens in total. A small-scale human evaluation confirms that the segments are highly parallel, making the dataset suitable for NLP applications such as machine translation between Romansh idioms. We release the parallel and unaligned versions of the dataset under a CC-BY-NC-SA license and demonstrate its utility for machine translation by training and evaluating an LLM and a supervised multilingual MT model on the dataset.
♻ ☆ ToolACE-MT: Non-Autoregressive Generation for Agentic Multi-Turn Interaction ICLR2026
Agentic task-solving with Large Language Models (LLMs) requires multi-turn, multi-step interactions, often involving complex function calls and dynamic user-agent exchanges. Existing simulation-based data generation methods for such scenarios rely heavily on costly autoregressive interactions between multiple LLM agents, thereby compromising the practical efficiency of agentic data generation. In this paper, we propose ToolACE-MT, a novel Non-Autoregressive Iterative Generation framework for constructing high-quality multi-turn agentic dialogues. ToolACE-MT generates full conversational trajectories through three stages: coarse-grained initialization, iterative refinement, and offline verification. The initialization phase builds a structurally complete yet semantically coarse dialogue skeleton; the iterative refinement phase introduces realistic complexities and continued refinement via mask-and-fill operations; and the offline verification phase ensures correctness and coherence via rule- and model-based checks. Experiments demonstrate that ToolACE-MT enables efficient, effective and generalizable agentic data generation, offering a new paradigm for high-quality data construction in tool-augmented LLM scenarios.
comment: Accepted by ICLR2026
♻ ☆ Exploring Safety Alignment Evaluation of LLMs in Chinese Mental Health Dialogues via LLM-as-Judge
Evaluating the safety alignment of LLM responses in high-risk mental health dialogues is particularly difficult due to missing gold-standard answers and the ethically sensitive nature of these interactions. To address this challenge, we propose PsyCrisis-Bench, a reference-free evaluation benchmark based on real-world Chinese mental health dialogues. It evaluates whether the model responses align with the safety principles defined by experts. Specifically designed for settings without standard references, our method adopts a prompt-based LLM-as-Judge approach that conducts in-context evaluation using expert-defined reasoning chains grounded in psychological intervention principles. We employ binary point-wise scoring across multiple safety dimensions to enhance the explainability and traceability of the evaluation. Additionally, we present a manually curated, high-quality Chinese-language dataset covering self-harm, suicidal ideation, and existential distress, derived from real-world online discourse. Experiments on 3600 judgments show that our method achieves the highest agreement with expert assessments and produces more interpretable evaluation rationales compared to existing approaches. Our dataset and evaluation tool are publicly available to facilitate further research.
♻ ☆ Assessing and Improving Punctuation Robustness in English-Marathi Machine Translation
Neural Machine Translation (NMT) systems rely heavily on explicit punctuation cues to resolve semantic ambiguities in a source sentence. Inputting user-generated sentences, which are likely to contain missing or incorrect punctuation, results in fluent but semantically disastrous translations. This work attempts to highlight and address the problem of punctuation robustness of NMT systems through an English-to-Marathi translation. First, we introduce \textbf{\textit{Viram}}, a human-curated diagnostic benchmark of 54 punctuation-ambiguous English-Marathi sentence pairs to stress-test existing NMT systems. Second, we evaluate two simple remediation strategies: cascade-based \textit{restore-then-translate} and \textit{direct fine-tuning}. Our experimental results and analysis demonstrate that both strategies yield substantial NMT performance improvements. Furthermore, we find that current Large Language Models (LLMs) exhibit relatively poorer robustness in translating such sentences than these task-specific strategies, thus necessitating further research in this area. The code and dataset are available at https://github.com/KaustubhShejole/Viram_Marathi.
♻ ☆ Don't Walk the Line: Boundary Guidance for Filtered Generation
Generative models are increasingly paired with safety classifiers that filter harmful or undesirable outputs. A common strategy is to fine-tune the generator to reduce the probability of being filtered, but this can be suboptimal: it often pushes the model toward producing samples near the classifier's decision boundary, increasing both false positives and false negatives. We propose Boundary Guidance, a reinforcement learning fine-tuning method that explicitly steers generation away from the classifier's margin. On a benchmark of jailbreak, ambiguous, and longcontext prompts, Boundary Guidance improves both the safety and the utility of outputs, as judged by LLM-as-a-Judge evaluations. Comprehensive ablations across model scales and reward designs demonstrate the robustness of our approach.
comment: 14 pages, 3 figures, 10 tables
♻ ☆ Finding Sense in Nonsense with Generated Contexts: Perspectives from Humans and Language Models
Nonsensical and anomalous sentences have been instrumental in the development of computational models of semantic interpretation. A core challenge is to distinguish between what is merely anomalous (but can be interpreted given a supporting context) and what is truly nonsensical. However, it is unclear (a) how nonsensical, rather than merely anomalous, existing datasets are; and (b) how well LLMs can make this distinction. In this paper, we answer both questions by collecting sensicality judgments from human raters and LLMs on sentences from five semantically deviant datasets: both context-free and when providing a context. We find that raters consider most sentences at most anomalous, and only a few as properly nonsensical. We also show that LLMs are substantially skilled in generating plausible contexts for anomalous cases.
♻ ☆ SGM: Safety Glasses for Multimodal Large Language Models via Neuron-Level Detoxification
Disclaimer: Samples in this paper may be harmful and cause discomfort. Multimodal large language models (MLLMs) enable multimodal generation but inherit toxic, biased, and NSFW signals from weakly curated pretraining corpora, causing safety risks, especially under adversarial triggers that late, opaque training-free detoxification methods struggle to handle. We propose SGM, a white-box neuron-level multimodal intervention that acts like safety glasses for toxic neurons: it selectively recalibrates a small set of toxic expert neurons via expertise-weighted soft suppression, neutralizing harmful cross-modal activations without any parameter updates. We establish MM-TOXIC-QA, a multimodal toxicity evaluation framework, and compare SGM with existing detoxification techniques. Experiments on open-source MLLMs show that SGM mitigates toxicity in standard and adversarial conditions, cutting harmful rates from 48.2\% to 2.5\% while preserving fluency and multimodal reasoning. SGM is extensible, and its combined defenses, denoted as SGM*, integrate with existing detoxification methods for stronger safety performance, providing an interpretable, low-cost solution for toxicity-controlled multimodal generation.
♻ ☆ GISA: A Benchmark for General Information-Seeking Assistant
The advancement of large language models (LLMs) has significantly accelerated the development of search agents capable of autonomously gathering information through multi-turn web interactions. Various benchmarks have been proposed to evaluate such agents. However, existing benchmarks often construct queries backward from answers, producing unnatural tasks misaligned with real-world needs. Moreover, these benchmarks tend to focus on either locating specific information or aggregating information from multiple sources, while relying on static answer sets prone to data contamination. To bridge these gaps, we introduce GISA, a benchmark for General Information-Seeking Assistants comprising 373 human-crafted queries that reflect authentic information-seeking scenarios. GISA features four structured answer formats (item, set, list, and table), enabling deterministic evaluation. It integrates both deep reasoning and broad information aggregation within unified tasks, and includes a live subset with periodically updated answers to resist memorization. Notably, GISA provides complete human search trajectories for every query, offering gold-standard references for process-level supervision and imitation learning. Experiments on mainstream LLMs and commercial search products reveal that even the best-performing model achieves only 19.30\% exact match score, with performance notably degrading on tasks requiring complex planning and comprehensive information gathering. These findings highlight substantial room for future improvement.
comment: Project repo: https://github.com/RUC-NLPIR/GISA
♻ ☆ PReSS: A Black-Box Framework for Evaluating Political Stance Stability in LLMs via Argumentative Pressure
Existing evaluations of political bias in large language models (LLMs) typically classify outputs as left- or right-leaning. We extend this perspective by examining how ideological tendencies vary across topics and how consistently models maintain their positions, a property we refer to as stability. To capture this dimension, we propose PReSS (Political Response Stability under Stress), a black-box framework that evaluates LLMs by jointly considering model and topic context, categorizing responses into four stance types: stable-left, unstable-left, stable-right, and unstable-right. Applying PReSS to 12 widely used LLMs across 19 political topics reveals substantial variation in stance stability; for instance, a model that is left-leaning overall can exhibit stable-right behavior on certain topics. This highlights the importance of topic-aware and fine-grained evaluation of political ideologies of LLMs. Moreover, stability has practical implications for controlled generation and model alignment: interventions such as debiasing or ideology reversal should explicitly account for stance stability. Our empirical analyses reveal that when models are prompted or fine-tuned to adopt the opposite ideology, unstable topic stances are more likely to change, whereas stable ones resist modification. Thus, treating stability as a moderating factor provides a principled foundation for understanding, evaluating, and guiding interventions in politically sensitive model behavior.
comment: 13 pages, 8 figures
♻ ☆ Embodied Agents Meet Personalization: Investigating Challenges and Solutions Through the Lens of Memory Utilization ICLR 2026
LLM-powered embodied agents have shown success on conventional object-rearrangement tasks, but providing personalized assistance that leverages user-specific knowledge from past interactions presents new challenges. We investigate these challenges through the lens of agents' memory utilization along two critical dimensions: object semantics (identifying objects based on personal meaning) and user patterns (recalling sequences from behavioral routines). To assess these capabilities, we construct MEMENTO, an end-to-end two-stage evaluation framework comprising single-memory and joint-memory tasks. Our experiments reveal that current agents can recall simple object semantics but struggle to apply sequential user patterns to planning. Through in-depth analysis, we identify two critical bottlenecks: information overload and coordination failures when handling multiple memories. Based on these findings, we explore memory architectural approaches to address these challenges. Given our observation that episodic memory provides both personalized knowledge and in-context learning benefits, we design a hierarchical knowledge graph-based user-profile memory module that separately manages personalized knowledge, achieving substantial improvements on both single and joint-memory tasks. Project website: https://connoriginal.github.io/MEMENTO
comment: Accepted at ICLR 2026
♻ ☆ FiMI: A Domain-Specific Language Model for Indian Finance Ecosystem
We present FiMI (Finance Model for India), a domain-specialized financial language model developed by National Payments Corporation of India (NPCI) for Indian digital payment systems. We develop two model variants: FiMI Base and FiMI Instruct. FiMI adapts the Mistral Small 24B architecture through a multi-stage training pipeline, beginning with continuous pre-training on 68 Billion tokens of curated financial, multilingual (English, Hindi, Hinglish), and synthetic data. This is followed by instruction fine-tuning and domain-specific supervised fine-tuning focused on multi-turn, tool-driven conversations that model real-world workflows, such as transaction disputes and mandate lifecycle management. Evaluations reveal that FiMI Base achieves a 20\% improvement over the Mistral Small 24B Base model on finance reasoning benchmark, while FiMI Instruct outperforms the Mistral Small 24B Instruct model by 87\% on domain-specific tool-calling. Moreover, FiMI achieves these significant domain gains while maintaining comparable performance to models of similar size on general benchmarks.
♻ ☆ Redefining Evaluation Standards: A Unified Framework for Evaluating the Korean Capabilities of Language Models LREC 2026
Recent advancements in Korean large language models (LLMs) have driven numerous benchmarks and evaluation methods, yet inconsistent protocols cause up to 10 p.p performance gaps across institutions. Overcoming these reproducibility gaps does not mean enforcing a one-size-fits-all evaluation. Rather, effective benchmarking requires diverse experimental approaches and a framework robust enough to support them. To this end, we introduce HRET (Haerae Evaluation Toolkit), an open-source, registry-based framework that unifies Korean LLM assessment. HRET integrates major Korean benchmarks, multiple inference backends, and multi-method evaluation, with language consistency enforcement to ensure genuine Korean outputs. Its modular registry design also enables rapid incorporation of new datasets, methods, and backends, ensuring the toolkit adapts to evolving research needs. Beyond standard accuracy metrics, HRET incorporates Korean-focused output analyses-morphology-aware Type-Token Ratio (TTR) for evaluating lexical diversity and systematic keyword-omission detection for identifying missing concepts-to provide diagnostic insights into language-specific behaviors. These targeted analyses help researchers pinpoint morphological and semantic shortcomings in model outputs, guiding focused improvements in Korean LLM development.
comment: Accepted at LREC 2026
♻ ☆ T3D: Few-Step Diffusion Language Models via Trajectory Self-Distillation with Direct Discriminative Optimization
Diffusion large language models (DLLMs) have the potential to enable fast text generation by decoding multiple tokens in parallel. However, in practice, their inference efficiency is constrained by the need for many refinement steps, while aggressively reducing the number of steps leads to a substantial degradation in generation quality. To alleviate this, we propose a trajectory self-distillation framework that improves few-step decoding by distilling the model's own generative trajectories. We incorporate Direct Discriminative Optimization (DDO), a reverse-KL objective that promotes mode-seeking distillation and encourages the student to concentrate on high-probability teacher modes. Across benchmarks, our approach consistently outperforms strong few-step baselines and standard training under tight step budgets. Although full-step decoding remains superior, we substantially narrow the gap, establishing a strong foundation towards practical few-step DLLMs. The source code is available at https://github.com/Tyrion58/T3D.
♻ ☆ MLDocRAG: Multimodal Long-Context Document Retrieval Augmented Generation
Understanding multimodal long-context documents that comprise multimodal chunks such as paragraphs, figures, and tables is challenging due to (1) cross-modal heterogeneity to localize relevant information across modalities, (2) cross-page reasoning to aggregate dispersed evidence across pages. To address these challenges, we are motivated to adopt a query-centric formulation that projects cross-modal and cross-page information into a unified query representation space, with queries acting as abstract semantic surrogates for heterogeneous multimodal content. In this paper, we propose a Multimodal Long-Context Document Retrieval Augmented Generation (MLDocRAG) framework that leverages a Multimodal Chunk-Query Graph (MCQG) to organize multimodal document content around semantically rich, answerable queries. MCQG is constructed via a multimodal document expansion process that generates fine-grained queries from heterogeneous document chunks and links them to their corresponding content across modalities and pages. This graph-based structure enables selective, query-centric retrieval and structured evidence aggregation, thereby enhancing grounding and coherence in multimodal long-context question answering. Experiments on datasets MMLongBench-Doc and LongDocURL demonstrate that MLDocRAG consistently improves retrieval quality and answer accuracy, demonstrating its effectiveness for multimodal long-context understanding.
comment: 15 pages
♻ ☆ Large Language Models and Impossible Language Acquisition: "False Promise" or an Overturn of our Current Perspective towards AI
In Chomsky's provocative critique "The False Promise of CHATGPT," Large Language Models (LLMs) are characterized as mere pattern predictors that do not acquire languages via intrinsic causal and self-correction structures like humans, therefore are not able to distinguish impossible languages. It stands as a representative in a fundamental challenge to the intellectual foundations of AI, for it integrally synthesizes major issues in methodologies within LLMs and possesses an iconic a priori rationalist perspective. We examine this famous critic from both the perspective in pre-existing literature of linguistics and psychology as well as a research based on an experiment inquiring the capacity of learning both possible and impossible languages among LLMs. We constructed a set of syntactically impossible languages by applying certain transformations to English. These include reversing whole sentences, and adding negation based on word-count parity. Two rounds of controlled experiments were each conducted on GPT-2 small models and long short-term memory (LSTM) models. Statistical analysis (Welch's t-test) shows GPT2 small models underperform in learning all of the impossible languages compared to their performance on the possible language (p<.001). On the other hand, LSTM models' performance tallies with Chomsky's argument, suggesting the irreplaceable role of the evolution of transformer architecture. Based on theoretical analysis and empirical findings, we propose a new vision within Chomsky's theory towards LLMs, and a shift of theoretical paradigm outside Chomsky, from his "rationalist-romantics" paradigm to functionalism and empiricism in LLMs research.
♻ ☆ Provable Secure Steganography Based on Adaptive Dynamic Sampling
The security of private communication is increasingly at risk due to widespread surveillance. Steganography, a technique for embedding secret messages within innocuous carriers, enables covert communication over monitored channels. Provably Secure Steganography (PSS), which ensures computational indistinguishability between the normal model output and steganography output, is the state-of-the-art in this field. However, current PSS methods often require obtaining the explicit distributions of the model. In this paper, we propose a provably secure steganography scheme that only requires a model API that accepts a seed as input. Our core mechanism involves sampling a candidate set of tokens and constructing a map from possible message bit strings to these tokens. The output token is selected by applying this mapping to the real secret message, which provably preserves the original model's distribution. To ensure correct decoding, we address collision cases, where multiple candidate messages map to the same token, by maintaining and strategically expanding a dynamic collision set within a bounded size range. Extensive evaluations of three real-world datasets and three large language models demonstrate that our sampling-based method is comparable with existing PSS methods in efficiency and capacity.
Computer Vision and Pattern Recognition 118
☆ Imitating What Works: Simulation-Filtered Modular Policy Learning from Human Videos
The ability to learn manipulation skills by watching videos of humans has the potential to unlock a new source of highly scalable data for robot learning. Here, we tackle prehensile manipulation, in which tasks involve grasping an object before performing various post-grasp motions. Human videos offer strong signals for learning the post-grasp motions, but they are less useful for learning the prerequisite grasping behaviors, especially for robots without human-like hands. A promising way forward is to use a modular policy design, leveraging a dedicated grasp generator to produce stable grasps. However, arbitrary stable grasps are often not task-compatible, hindering the robot's ability to perform the desired downstream motion. To address this challenge, we present Perceive-Simulate-Imitate (PSI), a framework for training a modular manipulation policy using human video motion data processed by paired grasp-trajectory filtering in simulation. This simulation step extends the trajectory data with grasp suitability labels, which allows for supervised learning of task-oriented grasping capabilities. We show through real-world experiments that our framework can be used to learn precise manipulation skills efficiently without any robot data, resulting in significantly more robust performance than using a grasp generator naively.
☆ Conversational Image Segmentation: Grounding Abstract Concepts with Scalable Supervision
Conversational image segmentation grounds abstract, intent-driven concepts into pixel-accurate masks. Prior work on referring image grounding focuses on categorical and spatial queries (e.g., "left-most apple") and overlooks functional and physical reasoning (e.g., "where can I safely store the knife?"). We address this gap and introduce Conversational Image Segmentation (CIS) and ConverSeg, a benchmark spanning entities, spatial relations, intent, affordances, functions, safety, and physical reasoning. We also present ConverSeg-Net, which fuses strong segmentation priors with language understanding, and an AI-powered data engine that generates prompt-mask pairs without human supervision. We show that current language-guided segmentation models are inadequate for CIS, while ConverSeg-Net trained on our data engine achieves significant gains on ConverSeg and maintains strong performance on existing language-guided segmentation benchmarks. Project webpage: https://glab-caltech.github.io/converseg/
comment: Project webpage: https://glab-caltech.github.io/converseg/
☆ CoPE-VideoLM: Codec Primitives For Efficient Video Language Models
Video Language Models (VideoLMs) empower AI systems to understand temporal dynamics in videos. To fit to the maximum context window constraint, current methods use keyframe sampling which can miss both macro-level events and micro-level details due to the sparse temporal coverage. Furthermore, processing full images and their tokens for each frame incurs substantial computational overhead. To address these limitations, we propose to leverage video codec primitives (specifically motion vectors and residuals) which natively encode video redundancy and sparsity without requiring expensive full-image encoding for most frames. To this end, we introduce lightweight transformer-based encoders that aggregate codec primitives and align their representations with image encoder embeddings through a pre-training strategy that accelerates convergence during end-to-end fine-tuning. Our approach reduces the time-to-first-token by up to $86\%$ and token usage by up to $93\%$ compared to standard VideoLMs. Moreover, by varying the keyframe and codec primitive densities we are able to maintain or exceed performance on $14$ diverse video understanding benchmarks spanning general question answering, temporal reasoning, long-form understanding, and spatial scene understanding.
comment: Project Page: https://sayands.github.io/cope/
FlexAM: Flexible Appearance-Motion Decomposition for Versatile Video Generation Control
Effective and generalizable control in video generation remains a significant challenge. While many methods rely on ambiguous or task-specific signals, we argue that a fundamental disentanglement of "appearance" and "motion" provides a more robust and scalable pathway. We propose FlexAM, a unified framework built upon a novel 3D control signal. This signal represents video dynamics as a point cloud, introducing three key enhancements: multi-frequency positional encoding to distinguish fine-grained motion, depth-aware positional encoding, and a flexible control signal for balancing precision and generative quality. This representation allows FlexAM to effectively disentangle appearance and motion, enabling a wide range of tasks including I2V/V2V editing, camera control, and spatial object editing. Extensive experiments demonstrate that FlexAM achieves superior performance across all evaluated tasks.
comment: Codes: https://github.com/IGL-HKUST/FlexAM
☆ Monocular Markerless Motion Capture Enables Quantitative Assessment of Upper Extremity Reachable Workspace
To validate a clinically accessible approach for quantifying the Upper Extremity Reachable Workspace (UERW) using a single (monocular) camera and Artificial Intelligence (AI)-driven Markerless Motion Capture (MMC) for biomechanical analysis. Objective assessment and validation of these techniques for specific clinically oriented tasks are crucial for their adoption in clinical motion analysis. AI-driven monocular MMC reduces the barriers to adoption in the clinic and has the potential to reduce the overhead for analysis of this common clinical assessment. Nine adult participants with no impairments performed the standardized UERW task, which entails reaching targets distributed across a virtual sphere centered on the torso, with targets displayed in a VR headset. Movements were simultaneously captured using a marker-based motion capture system and a set of eight FLIR cameras. We performed monocular video analysis on two of these video camera views to compare a frontal and offset camera configurations. The frontal camera orientation demonstrated strong agreement with the marker-based reference, exhibiting a minimal mean bias of $0.61 \pm 0.12$ \% reachspace reached per octanct (mean $\pm$ standard deviation). In contrast, the offset camera view underestimated the percent workspace reached ($-5.66 \pm 0.45$ \% reachspace reached). Conclusion: The findings support the feasibility of a frontal monocular camera configuration for UERW assessment, particularly for anterior workspace evaluation where agreement with marker-based motion capture was highest. The overall performance demonstrates clinical potential for practical, single-camera assessments. This study provides the first validation of monocular MMC system for the assessment of the UERW task. By reducing technical complexity, this approach enables broader implementation of quantitative upper extremity mobility assessment.
☆ LongStream: Long-Sequence Streaming Autoregressive Visual Geometry
Long-sequence streaming 3D reconstruction remains a significant open challenge. Existing autoregressive models often fail when processing long sequences. They typically anchor poses to the first frame, which leads to attention decay, scale drift, and extrapolation errors. We introduce LongStream, a novel gauge-decoupled streaming visual geometry model for metric-scale scene reconstruction across thousands of frames. Our approach is threefold. First, we discard the first-frame anchor and predict keyframe-relative poses. This reformulates long-range extrapolation into a constant-difficulty local task. Second, we introduce orthogonal scale learning. This method fully disentangles geometry from scale estimation to suppress drift. Finally, we solve Transformer cache issues such as attention-sink reliance and long-term KV-cache contamination. We propose cache-consistent training combined with periodic cache refresh. This approach suppresses attention degradation over ultra-long sequences and reduces the gap between training and inference. Experiments show LongStream achieves state-of-the-art performance. It delivers stable, metric-scale reconstruction over kilometer-scale sequences at 18 FPS. Project Page: https://3dagentworld.github.io/longstream/
☆ Realistic Face Reconstruction from Facial Embeddings via Diffusion Models AAAI 2026
With the advancement of face recognition (FR) systems, privacy-preserving face recognition (PPFR) systems have gained popularity for their accurate recognition, enhanced facial privacy protection, and robustness to various attacks. However, there are limited studies to further verify privacy risks by reconstructing realistic high-resolution face images from embeddings of these systems, especially for PPFR. In this work, we propose the face embedding mapping (FEM), a general framework that explores Kolmogorov-Arnold Network (KAN) for conducting the embedding-to-face attack by leveraging pre-trained Identity-Preserving diffusion model against state-of-the-art (SOTA) FR and PPFR systems. Based on extensive experiments, we verify that reconstructed faces can be used for accessing other real-word FR systems. Besides, the proposed method shows the robustness in reconstructing faces from the partial and protected face embeddings. Moreover, FEM can be utilized as a tool for evaluating safety of FR and PPFR systems in terms of privacy leakage. All images used in this work are from public datasets.
comment: Accepted to AAAI 2026
☆ Universal Transformation of One-Class Classifiers for Unsupervised Anomaly Detection
Detecting anomalies in images and video is an essential task for multiple real-world problems, including industrial inspection, computer-assisted diagnosis, and environmental monitoring. Anomaly detection is typically formulated as a one-class classification problem, where the training data consists solely of nominal values, leaving methods built on this assumption susceptible to training label noise. We present a dataset folding method that transforms an arbitrary one-class classifier-based anomaly detector into a fully unsupervised method. This is achieved by making a set of key weak assumptions: that anomalies are uncommon in the training dataset and generally heterogeneous. These assumptions enable us to utilize multiple independently trained instances of a one-class classifier to filter the training dataset for anomalies. This transformation requires no modifications to the underlying anomaly detector; the only changes are algorithmically selected data subsets used for training. We demonstrate that our method can transform a wide variety of one-class classifier anomaly detectors for both images and videos into unsupervised ones. Our method creates the first unsupervised logical anomaly detectors by transforming existing methods. We also demonstrate that our method achieves state-of-the-art performance for unsupervised anomaly detection on the MVTec AD, ViSA, and MVTec Loco AD datasets. As improvements to one-class classifiers are made, our method directly transfers those improvements to the unsupervised domain, linking the domains.
comment: 6 figures, 9 pages main paper, 15 pages total with supplemental
☆ SIEFormer: Spectral-Interpretable and -Enhanced Transformer for Generalized Category Discovery
This paper presents a novel approach, Spectral-Interpretable and -Enhanced Transformer (SIEFormer), which leverages spectral analysis to reinterpret the attention mechanism within Vision Transformer (ViT) and enhance feature adaptability, with particular emphasis on challenging Generalized Category Discovery (GCD) tasks. The proposed SIEFormer is composed of two main branches, each corresponding to an implicit and explicit spectral perspective of the ViT, enabling joint optimization. The implicit branch realizes the use of different types of graph Laplacians to model the local structure correlations of tokens, along with a novel Band-adaptive Filter (BaF) layer that can flexibly perform both band-pass and band-reject filtering. The explicit branch, on the other hand, introduces a Maneuverable Filtering Layer (MFL) that learns global dependencies among tokens by applying the Fourier transform to the input ``value" features, modulating the transformed signal with a set of learnable parameters in the frequency domain, and then performing an inverse Fourier transform to obtain the enhanced features. Extensive experiments reveal state-of-the-art performance on multiple image recognition datasets, reaffirming the superiority of our approach through ablation studies and visualizations.
☆ A Calibrated Memorization Index (MI) for Detecting Training Data Leakage in Generative MRI Models
Image generative models are known to duplicate images from the training data as part of their outputs, which can lead to privacy concerns when used for medical image generation. We propose a calibrated per-sample metric for detecting memorization and duplication of training data. Our metric uses image features extracted using an MRI foundation model, aggregates multi-layer whitened nearest-neighbor similarities, and maps them to a bounded \emph{Overfit/Novelty Index} (ONI) and \emph{Memorization Index} (MI) scores. Across three MRI datasets with controlled duplication percentages and typical image augmentations, our metric robustly detects duplication and provides more consistent metric values across datasets. At the sample level, our metric achieves near-perfect detection of duplicates.
comment: Accepted in ISBI 2026
☆ Curriculum-DPO++: Direct Preference Optimization via Data and Model Curricula for Text-to-Image Generation
Direct Preference Optimization (DPO) has been proposed as an effective and efficient alternative to reinforcement learning from human feedback (RLHF). However, neither RLHF nor DPO take into account the fact that learning certain preferences is more difficult than learning other preferences, rendering the optimization process suboptimal. To address this gap in text-to-image generation, we recently proposed Curriculum-DPO, a method that organizes image pairs by difficulty. In this paper, we introduce Curriculum-DPO++, an enhanced method that combines the original data-level curriculum with a novel model-level curriculum. More precisely, we propose to dynamically increase the learning capacity of the denoising network as training advances. We implement this capacity increase via two mechanisms. First, we initialize the model with only a subset of the trainable layers used in the original Curriculum-DPO. As training progresses, we sequentially unfreeze layers until the configuration matches the full baseline architecture. Second, as the fine-tuning is based on Low-Rank Adaptation (LoRA), we implement a progressive schedule for the dimension of the low-rank matrices. Instead of maintaining a fixed capacity, we initialize the low-rank matrices with a dimension significantly smaller than that of the baseline. As training proceeds, we incrementally increase their rank, allowing the capacity to grow until it converges to the same rank value as in Curriculum-DPO. Furthermore, we propose an alternative ranking strategy to the one employed by Curriculum-DPO. Finally, we compare Curriculum-DPO++ against Curriculum-DPO and other state-of-the-art preference optimization approaches on nine benchmarks, outperforming the competing methods in terms of text alignment, aesthetics and human preference. Our code is available at https://github.com/CroitoruAlin/Curriculum-DPO.
comment: arXiv admin note: substantial text overlap with arXiv:2405.13637
☆ Implicit-Scale 3D Reconstruction for Multi-Food Volume Estimation from Monocular Images
We present Implicit-Scale 3D Reconstruction from Monocular Multi-Food Images, a benchmark dataset designed to advance geometry-based food portion estimation in realistic dining scenarios. Existing dietary assessment methods largely rely on single-image analysis or appearance-based inference, including recent vision-language models, which lack explicit geometric reasoning and are sensitive to scale ambiguity. This benchmark reframes food portion estimation as an implicit-scale 3D reconstruction problem under monocular observations. To reflect real-world conditions, explicit physical references and metric annotations are removed; instead, contextual objects such as plates and utensils are provided, requiring algorithms to infer scale from implicit cues and prior knowledge. The dataset emphasizes multi-food scenes with diverse object geometries, frequent occlusions, and complex spatial arrangements. The benchmark was adopted as a challenge at the MetaFood 2025 Workshop, where multiple teams proposed reconstruction-based solutions. Experimental results show that while strong vision--language baselines achieve competitive performance, geometry-based reconstruction methods provide both improved accuracy and greater robustness, with the top-performing approach achieving 0.21 MAPE in volume estimation and 5.7 L1 Chamfer Distance in geometric accuracy.
comment: Paper accepted to 2026 IEEE Southwest Symposium on Image Analysis and Interpretation. The dataset can be downloaded at: https://www.kaggle.com/competitions/3d-reconstruction-from-monocular-multi-food-images/data
☆ Resource-Efficient Gesture Recognition through Convexified Attention
Wearable e-textile interfaces require gesture recognition capabilities but face severe constraints in power consumption, computational capacity, and form factor that make traditional deep learning impractical. While lightweight architectures like MobileNet improve efficiency, they still demand thousands of parameters, limiting deployment on textile-integrated platforms. We introduce a convexified attention mechanism for wearable applications that dynamically weights features while preserving convexity through nonexpansive simplex projection and convex loss functions. Unlike conventional attention mechanisms using non-convex softmax operations, our approach employs Euclidean projection onto the probability simplex combined with multi-class hinge loss, ensuring global convergence guarantees. Implemented on a textile-based capacitive sensor with four connection points, our approach achieves 100.00\% accuracy on tap gestures and 100.00\% on swipe gestures -- consistent across 10-fold cross-validation and held-out test evaluation -- while requiring only 120--360 parameters, a 97\% reduction compared to conventional approaches. With sub-millisecond inference times (290--296$μ$s) and minimal storage requirements ($<$7KB), our method enables gesture interfaces directly within e-textiles without external processing. Our evaluation, conducted in controlled laboratory conditions with a single-user dataset, demonstrates feasibility for basic gesture interactions. Real-world deployment would require validation across multiple users, environmental conditions, and more complex gesture vocabularies. These results demonstrate how convex optimization can enable efficient on-device machine learning for textile interfaces.
comment: 22 pages, 3 figures, EICS 2026
☆ Human-Aligned MLLM Judges for Fine-Grained Image Editing Evaluation: A Benchmark, Framework, and Analysis
Evaluating image editing models remains challenging due to the coarse granularity and limited interpretability of traditional metrics, which often fail to capture aspects important to human perception and intent. Such metrics frequently reward visually plausible outputs while overlooking controllability, edit localization, and faithfulness to user instructions. In this work, we introduce a fine-grained Multimodal Large Language Model (MLLM)-as-a-Judge framework for image editing that decomposes common evaluation notions into twelve fine-grained interpretable factors spanning image preservation, edit quality, and instruction fidelity. Building on this formulation, we present a new human-validated benchmark that integrates human judgments, MLLM-based evaluations, model outputs, and traditional metrics across diverse image editing tasks. Through extensive human studies, we show that the proposed MLLM judges align closely with human evaluations at a fine granularity, supporting their use as reliable and scalable evaluators. We further demonstrate that traditional image editing metrics are often poor proxies for these factors, failing to distinguish over-edited or semantically imprecise outputs, whereas our judges provide more intuitive and informative assessments in both offline and online settings. Together, this work introduces a benchmark, a principled factorization, and empirical evidence positioning fine-grained MLLM judges as a practical foundation for studying, comparing, and improving image editing approaches.
☆ FedHENet: A Frugal Federated Learning Framework for Heterogeneous Environments
Federated Learning (FL) enables collaborative training without centralizing data, essential for privacy compliance in real-world scenarios involving sensitive visual information. Most FL approaches rely on expensive, iterative deep network optimization, which still risks privacy via shared gradients. In this work, we propose FedHENet, extending the FedHEONN framework to image classification. By using a fixed, pre-trained feature extractor and learning only a single output layer, we avoid costly local fine-tuning. This layer is learned by analytically aggregating client knowledge in a single round of communication using homomorphic encryption (HE). Experiments show that FedHENet achieves competitive accuracy compared to iterative FL baselines while demonstrating superior stability performance and up to 70\% better energy efficiency. Crucially, our method is hyperparameter-free, removing the carbon footprint associated with hyperparameter tuning in standard FL. Code available in https://github.com/AlejandroDopico2/FedHENet/
comment: Accepted for publication at the 34th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2026)
☆ Learning Image-based Tree Crown Segmentation from Enhanced Lidar-based Pseudo-labels
Mapping individual tree crowns is essential for tasks such as maintaining urban tree inventories and monitoring forest health, which help us understand and care for our environment. However, automatically separating the crowns from each other in aerial imagery is challenging due to factors such as the texture and partial tree crown overlaps. In this study, we present a method to train deep learning models that segment and separate individual trees from RGB and multispectral images, using pseudo-labels derived from aerial laser scanning (ALS) data. Our study shows that the ALS-derived pseudo-labels can be enhanced using a zero-shot instance segmentation model, Segment Anything Model 2 (SAM 2). Our method offers a way to obtain domain-specific training annotations for optical image-based models without any manual annotation cost, leading to segmentation models which outperform any available models which have been targeted for general domain deployment on the same task.
☆ DynaGuide: A Generalizable Dynamic Guidance Framework for Unsupervised Semantic Segmentation
Unsupervised image segmentation is a critical task in computer vision. It enables dense scene understanding without human annotations, which is especially valuable in domains where labelled data is scarce. However, existing methods often struggle to reconcile global semantic structure with fine-grained boundary accuracy. This paper introduces DynaGuide, an adaptive segmentation framework that addresses these challenges through a novel dual-guidance strategy and dynamic loss optimization. Building on our previous work, DynaSeg, DynaGuide combines global pseudo-labels from zero-shot models such as DiffSeg or SegFormer with local boundary refinement using a lightweight CNN trained from scratch. This synergy allows the model to correct coarse or noisy global predictions and produce high-precision segmentations. At the heart of DynaGuide is a multi-component loss that dynamically balances feature similarity, Huber-smoothed spatial continuity, including diagonal relationships, and semantic alignment with the global pseudo-labels. Unlike prior approaches, DynaGuide trains entirely without ground-truth labels in the target domain and supports plug-and-play integration of diverse guidance sources. Extensive experiments on BSD500, PASCAL VOC2012, and COCO demonstrate that DynaGuide achieves state-of-the-art performance, improving mIoU by 17.5% on BSD500, 3.1% on PASCAL VOC2012, and 11.66% on COCO. With its modular design, strong generalization, and minimal computational footprint, DynaGuide offers a scalable and practical solution for unsupervised segmentation in real-world settings. Code available at: https://github.com/RyersonMultimediaLab/DynaGuide
comment: Accepted at Image and Vision Computing
Multimodal Classification via Total Correlation Maximization ICLR 2026
Multimodal learning integrates data from diverse sensors to effectively harness information from different modalities. However, recent studies reveal that joint learning often overfits certain modalities while neglecting others, leading to performance inferior to that of unimodal learning. Although previous efforts have sought to balance modal contributions or combine joint and unimodal learning, thereby mitigating the degradation of weaker modalities with promising outcomes, few have examined the relationship between joint and unimodal learning from an information-theoretic perspective. In this paper, we theoretically analyze modality competition and propose a method for multimodal classification by maximizing the total correlation between multimodal features and labels. By maximizing this objective, our approach alleviates modality competition while capturing inter-modal interactions via feature alignment. Building on Mutual Information Neural Estimation (MINE), we introduce Total Correlation Neural Estimation (TCNE) to derive a lower bound for total correlation. Subsequently, we present TCMax, a hyperparameter-free loss function that maximizes total correlation through variational bound optimization. Extensive experiments demonstrate that TCMax outperforms state-of-the-art joint and unimodal learning approaches. Our code is available at https://github.com/hubaak/TCMax.
comment: Accepted for publication at ICLR 2026; 19 pages; 2 figures
☆ Towards Universal Video MLLMs with Attribute-Structured and Quality-Verified Instructions
Universal video understanding requires modeling fine-grained visual and audio information over time in diverse real-world scenarios. However, the performance of existing models is primarily constrained by video-instruction data that represents complex audiovisual content as single, incomplete descriptions, lacking fine-grained organization and reliable annotation. To address this, we introduce: (i) ASID-1M, an open-source collection of one million structured, fine-grained audiovisual instruction annotations with single- and multi-attribute supervision; (ii) ASID-Verify, a scalable data curation pipeline for annotation, with automatic verification and refinement that enforces semantic and temporal consistency between descriptions and the corresponding audiovisual content; and (iii) ASID-Captioner, a video understanding model trained via Supervised Fine-Tuning (SFT) on the ASID-1M. Experiments across seven benchmarks covering audiovisual captioning, attribute-wise captioning, caption-based QA, and caption-based temporal grounding show that ASID-Captioner improves fine-grained caption quality while reducing hallucinations and improving instruction following. It achieves state-of-the-art performance among open-source models and is competitive with Gemini-3-Pro.
comment: Project page: https://asid-caption.github.io/
☆ MASAR: Motion-Appearance Synergy Refinement for Joint Detection and Trajectory Forecasting
Classical autonomous driving systems connect perception and prediction modules via hand-crafted bounding-box interfaces, limiting information flow and propagating errors to downstream tasks. Recent research aims to develop end-to-end models that jointly address perception and prediction; however, they often fail to fully exploit the synergy between appearance and motion cues, relying mainly on short-term visual features. We follow the idea of "looking backward to look forward", and propose MASAR, a novel fully differentiable framework for joint 3D detection and trajectory forecasting compatible with any transformer-based 3D detector. MASAR employs an object-centric spatio-temporal mechanism that jointly encodes appearance and motion features. By predicting past trajectories and refining them using guidance from appearance cues, MASAR captures long-term temporal dependencies that enhance future trajectory forecasting. Experiments conducted on the nuScenes dataset demonstrate MASAR's effectiveness, showing improvements of over 20% in minADE and minFDE while maintaining robust detection performance. Code and models are available at https://github.com/aminmed/MASAR.
comment: Accepted to the 2026 IEEE International Conference on Robotics and Automation (ICRA 2026)
☆ Represent Micro-Doppler Signature in Orders
Non-line-of-sight sensing of human activities in complex environments is enabled by multiple-input multiple-output through-the-wall radar (TWR). However, the distinctiveness of micro-Doppler signature between similar indoor human activities such as gun carrying and normal walking is minimal, while the large scale of input images required for effective identification utilizing time-frequency spectrograms creates challenges for model training and inference efficiency. To address this issue, the Chebyshev-time map is proposed in this paper, which is a method characterizing micro-Doppler signature using polynomial orders. The parametric kinematic models for human motion and the TWR echo model are first established. Then, a time-frequency feature representation method based on orthogonal Chebyshev polynomial decomposition is proposed. The kinematic envelopes of the torso and limbs are extracted, and the time-frequency spectrum slices are mapped into a robust Chebyshev-time coefficient space, preserving the multi-order morphological detail information of time-frequency spectrum. Numerical simulations and experiments are conducted to verify the effectiveness of the proposed method, which demonstrates the capability to characterize armed and unarmed indoor human activities while effectively compressing the scale of the time-frequency spectrum to achieve a balance between recognition accuracy and input data dimensions. The open-source code of this paper can be found in: https://github.com/JoeyBGOfficial/Represent-Micro-Doppler-Signature-in-Orders.
comment: 17 pages, 8 figures, 5 tables
☆ Detecting Object Tracking Failure via Sequential Hypothesis Testing WACV
Real-time online object tracking in videos constitutes a core task in computer vision, with wide-ranging applications including video surveillance, motion capture, and robotics. Deployed tracking systems usually lack formal safety assurances to convey when tracking is reliable and when it may fail, at best relying on heuristic measures of model confidence to raise alerts. To obtain such assurances we propose interpreting object tracking as a sequential hypothesis test, wherein evidence for or against tracking failures is gradually accumulated over time. Leveraging recent advancements in the field, our sequential test (formalized as an e-process) quickly identifies when tracking failures set in whilst provably containing false alerts at a desired rate, and thus limiting potentially costly re-calibration or intervention steps. The approach is computationally light-weight, requires no extra training or fine-tuning, and is in principle model-agnostic. We propose both supervised and unsupervised variants by leveraging either ground-truth or solely internal tracking information, and demonstrate its effectiveness for two established tracking models across four video benchmarks. As such, sequential testing can offer a statistically grounded and efficient mechanism to incorporate safety assurances into real-time tracking systems.
comment: Accepted in WACV workshop "Real World Surveillance: Applications and Challenges, 6th"
☆ Statistical Opportunities in Neuroimaging
Neuroimaging has profoundly enhanced our understanding of the human brain by characterizing its structure, function, and connectivity through modalities like MRI, fMRI, EEG, and PET. These technologies have enabled major breakthroughs across the lifespan, from early brain development to neurodegenerative and neuropsychiatric disorders. Despite these advances, the brain is a complex, multiscale system, and neuroimaging measurements are correspondingly high-dimensional. This creates major statistical challenges, including measurement noise, motion-related artifacts, substantial inter-subject and site/scanner variability, and the sheer scale of modern studies. This paper explores statistical opportunities and challenges in neuroimaging across four key areas: (i) brain development from birth to age 20, (ii) the adult and aging brain, (iii) neurodegeneration and neuropsychiatric disorders, and (iv) brain encoding and decoding. After a quick tutorial on major imaging technologies, we review cutting-edge studies, underscore data and modeling challenges, and highlight research opportunities for statisticians. We conclude by emphasizing that close collaboration among statisticians, neuroscientists, and clinicians is essential for translating neuroimaging advances into improved diagnostics, deeper mechanistic insight, and more personalized treatments.
comment: 33 pages, 3 figures
Training-Free Acceleration for Document Parsing Vision-Language Model with Hierarchical Speculative Decoding
Document parsing is a fundamental task in multimodal understanding, supporting a wide range of downstream applications such as information extraction and intelligent document analysis. Benefiting from strong semantic modeling and robust generalization, VLM-based end-to-end approaches have emerged as the mainstream paradigm in recent years. However, these models often suffer from substantial inference latency, as they must auto-regressively generate long token sequences when processing long-form documents. In this work, motivated by the extremely long outputs and complex layout structures commonly found in document parsing, we propose a training-free and highly efficient acceleration method. Inspired by speculative decoding, we employ a lightweight document parsing pipeline as a draft model to predict batches of future tokens, while the more accurate VLM verifies these draft predictions in parallel. Moreover, we further exploit the layout-structured nature of documents by partitioning each page into independent regions, enabling parallel decoding of each region using the same draft-verify strategy. The final predictions are then assembled according to the natural reading order. Experimental results demonstrate the effectiveness of our approach: on the general-purpose OmniDocBench, our method provides a 2.42x lossless acceleration for the dots.ocr model, and achieves up to 4.89x acceleration on long-document parsing tasks. We will release our code to facilitate reproducibility and future research.
comment: Preliminary version of an ongoing project; the paper will be refined and extended in subsequent revisions
☆ Transporting Task Vectors across Different Architectures without Training
Adapting large pre-trained models to downstream tasks often produces task-specific parameter updates that are expensive to relearn for every model variant. While recent work has shown that such updates can be transferred between models with identical architectures, transferring them across models of different widths remains largely unexplored. In this work, we introduce Theseus, a training-free method for transporting task-specific updates across heterogeneous models. Rather than matching parameters directly, we characterize a task update by the functional effect it induces on intermediate representations. We formalize task-vector transport as a functional matching problem on observed activations and show that, after aligning representation spaces via orthogonal Procrustes analysis, it admits a stable closed-form solution that preserves the geometry of the update. We evaluate Theseus on vision and language models across different widths, showing consistent improvements over strong baselines without additional training or backpropagation. Our results show that task updates can be meaningfully transferred across architectures when task identity is defined functionally rather than parametrically.
☆ Unleashing MLLMs on the Edge: A Unified Framework for Cross-Modal ReID via Adaptive SVD Distillation
Practical cloud-edge deployment of Cross-Modal Re-identification (CM-ReID) faces challenges due to maintaining a fragmented ecosystem of specialized cloud models for diverse modalities. While Multi-Modal Large Language Models (MLLMs) offer strong unification potential, existing approaches fail to adapt them into a single end-to-end backbone and lack effective knowledge distillation strategies for edge deployment. To address these limitations, we propose MLLMEmbed-ReID, a unified framework based on a powerful cloud-edge architecture. First, we adapt a foundational MLLM into a state-of-the-art cloud model. We leverage instruction-based prompting to guide the MLLM in generating a unified embedding space across RGB, infrared, sketch, and text modalities. This model is then trained efficiently with a hierarchical Low-Rank Adaptation finetuning (LoRA-SFT) strategy, optimized under a holistic cross-modal alignment objective. Second, to deploy its knowledge onto an edge-native student, we introduce a novel distillation strategy motivated by the low-rank property in the teacher's feature space. To prioritize essential information, this method employs a Principal Component Mapping loss, while relational structures are preserved via a Feature Relation loss. Our lightweight edge-based model achieves state-of-the-art performance on multiple visual CM-ReID benchmarks, while its cloud-based counterpart excels across all CM-ReID benchmarks. The MLLMEmbed-ReID framework thus presents a complete and effective solution for deploying unified MLLM-level intelligence on resource-constrained devices. The code and models will be open-sourced soon.
comment: Equal contribution by Jie Li
☆ Deep-Learning Atlas Registration for Melanoma Brain Metastases: Preserving Pathology While Enabling Cohort-Level Analyses
Melanoma brain metastases (MBM) are common and spatially heterogeneous lesions, complicating cohort-level analyses due to anatomical variability and differing MRI protocols. We propose a fully differentiable, deep-learning-based deformable registration framework that aligns individual pathological brains to a common atlas while preserving metastatic tissue without requiring lesion masks or preprocessing. Missing anatomical correspondences caused by metastases are handled through a forward-model similarity metric based on distance-transformed anatomical labels, combined with a volume-preserving regularization term to ensure deformation plausibility. Registration performance was evaluated using Dice coefficient (DSC), Hausdorff distance (HD), average symmetric surface distance (ASSD), and Jacobian-based measures. The method was applied to 209 MBM patients from three centres, enabling standardized mapping of metastases to anatomical, arterial, and perfusion atlases. The framework achieved high registration accuracy across datasets (DSC 0.89-0.92, HD 6.79-7.60 mm, ASSD 0.63-0.77 mm) while preserving metastatic volumes. Spatial analysis demonstrated significant over-representation of MBM in the cerebral cortex and putamen, under-representation in white matter, and consistent localization near the gray-white matter junction. No arterial territory showed increased metastasis frequency after volume correction. This approach enables robust atlas registration of pathological brain MRI without lesion masks and supports reproducible multi-centre analyses. Applied to MBM, it confirms and refines known spatial predilections, particularly preferential seeding near the gray-white matter junction and cortical regions. The publicly available implementation facilitates reproducible research and extension to other brain tumours and neurological pathologies.
☆ Beyond Benchmarks of IUGC: Rethinking Requirements of Deep Learning Methods for Intrapartum Ultrasound Biometry from Fetal Ultrasound Videos
A substantial proportion (45\%) of maternal deaths, neonatal deaths, and stillbirths occur during the intrapartum phase, with a particularly high burden in low- and middle-income countries. Intrapartum biometry plays a critical role in monitoring labor progression; however, the routine use of ultrasound in resource-limited settings is hindered by a shortage of trained sonographers. To address this challenge, the Intrapartum Ultrasound Grand Challenge (IUGC), co-hosted with MICCAI 2024, was launched. The IUGC introduces a clinically oriented multi-task automatic measurement framework that integrates standard plane classification, fetal head-pubic symphysis segmentation, and biometry, enabling algorithms to exploit complementary task information for more accurate estimation. Furthermore, the challenge releases the largest multi-center intrapartum ultrasound video dataset to date, comprising 774 videos (68,106 frames) collected from three hospitals, providing a robust foundation for model training and evaluation. In this study, we present a comprehensive overview of the challenge design, review the submissions from eight participating teams, and analyze their methods from five perspectives: preprocessing, data augmentation, learning strategy, model architecture, and post-processing. In addition, we perform a systematic analysis of the benchmark results to identify key bottlenecks, explore potential solutions, and highlight open challenges for future research. Although encouraging performance has been achieved, our findings indicate that the field remains at an early stage, and further in-depth investigation is required before large-scale clinical deployment. All benchmark solutions and the complete dataset have been publicly released to facilitate reproducible research and promote continued advances in automatic intrapartum ultrasound biometry.
☆ EPRBench: A High-Quality Benchmark Dataset for Event Stream Based Visual Place Recognition
Event stream-based Visual Place Recognition (VPR) is an emerging research direction that offers a compelling solution to the instability of conventional visible-light cameras under challenging conditions such as low illumination, overexposure, and high-speed motion. Recognizing the current scarcity of dedicated datasets in this domain, we introduce EPRBench, a high-quality benchmark specifically designed for event stream-based VPR. EPRBench comprises 10K event sequences and 65K event frames, collected using both handheld and vehicle-mounted setups to comprehensively capture real-world challenges across diverse viewpoints, weather conditions, and lighting scenarios. To support semantic-aware and language-integrated VPR research, we provide LLM-generated scene descriptions, subsequently refined through human annotation, establishing a solid foundation for integrating LLMs into event-based perception pipelines. To facilitate systematic evaluation, we implement and benchmark 15 state-of-the-art VPR algorithms on EPRBench, offering a strong baseline for future algorithmic comparisons. Furthermore, we propose a novel multi-modal fusion paradigm for VPR: leveraging LLMs to generate textual scene descriptions from raw event streams, which then guide spatially attentive token selection, cross-modal feature fusion, and multi-scale representation learning. This framework not only achieves highly accurate place recognition but also produces interpretable reasoning processes alongside its predictions, significantly enhancing model transparency and explainability. The dataset and source code will be released on https://github.com/Event-AHU/Neuromorphic_ReID
☆ Reliable Thinking with Images
As a multimodal extension of Chain-of-Thought (CoT), Thinking with Images (TWI) has recently emerged as a promising avenue to enhance the reasoning capability of Multi-modal Large Language Models (MLLMs), which generates interleaved CoT by incorporating visual cues into the textual reasoning process. However, the success of existing TWI methods heavily relies on the assumption that interleaved image-text CoTs are faultless, which is easily violated in real-world scenarios due to the complexity of multimodal understanding. In this paper, we reveal and study a highly-practical yet under-explored problem in TWI, termed Noisy Thinking (NT). Specifically, NT refers to the imperfect visual cues mining and answer reasoning process. As the saying goes, ``One mistake leads to another'', erroneous interleaved CoT would cause error accumulation, thus significantly degrading the performance of MLLMs. To solve the NT problem, we propose a novel method dubbed Reliable Thinking with Images (RTWI). In brief, RTWI estimates the reliability of visual cues and textual CoT in a unified text-centric manner and accordingly employs robust filtering and voting modules to prevent NT from contaminating the final answer. Extensive experiments on seven benchmarks verify the effectiveness of RTWI against NT.
comment: 26 pages, 19 figures
☆ Adaptive Scaling with Geometric and Visual Continuity of completed 3D objects
Object completion networks typically produce static Signed Distance Fields (SDFs) that faithfully reconstruct geometry but cannot be rescaled or deformed without introducing structural distortions. This limitation restricts their use in applications requiring flexible object manipulation, such as indoor redesign, simulation, and digital content creation. We introduce a part-aware scaling framework that transforms these static completed SDFs into editable, structurally coherent objects. Starting from SDFs and Texture Fields generated by state-of-the-art completion models, our method performs automatic part segmentation, defines user-controlled scaling zones, and applies smooth interpolation of SDFs, color, and part indices to enable proportional and artifact-free deformation. We further incorporate a repetition-based strategy to handle large-scale deformations while preserving repeating geometric patterns. Experiments on Matterport3D and ShapeNet objects show that our method overcomes the inherent rigidity of completed SDFs and is visually more appealing than global and naive selective scaling, particularly for complex shapes and repetitive structures.
comment: ISPRS Congress 2026
☆ Robustness of Object Detection of Autonomous Vehicles in Adverse Weather Conditions
As self-driving technology advances toward widespread adoption, determining safe operational thresholds across varying environmental conditions becomes critical for public safety. This paper proposes a method for evaluating the robustness of object detection ML models in autonomous vehicles under adverse weather conditions. It employs data augmentation operators to generate synthetic data that simulates different severance degrees of the adverse operation conditions at progressive intensity levels to find the lowest intensity of the adverse conditions at which the object detection model fails. The robustness of the object detection model is measured by the average first failure coefficients (AFFC) over the input images in the benchmark. The paper reports an experiment with four object detection models: YOLOv5s, YOLOv11s, Faster R-CNN, and Detectron2, utilising seven data augmentation operators that simulate weather conditions fog, rain, and snow, and lighting conditions of dark, bright, flaring, and shadow. The experiment data show that the method is feasible, effective, and efficient to evaluate and compare the robustness of object detection models in various adverse operation conditions. In particular, the Faster R-CNN model achieved the highest robustness with an overall average AFFC of 71.9% over all seven adverse conditions, while YOLO variants showed the AFFC values of 43%. The method is also applied to assess the impact of model training that targets adverse operation conditions using synthetic data on model robustness. It is observed that such training can improve robustness in adverse conditions but may suffer from diminishing returns and forgetting phenomena (i.e., decline in robustness) if overtrained.
☆ RADAR: Revealing Asymmetric Development of Abilities in MLLM Pre-training
Pre-trained Multi-modal Large Language Models (MLLMs) provide a knowledge-rich foundation for post-training by leveraging their inherent perception and reasoning capabilities to solve complex tasks. However, the lack of an efficient evaluation framework impedes the diagnosis of their performance bottlenecks. Current evaluation primarily relies on testing after supervised fine-tuning, which introduces laborious additional training and autoregressive decoding costs. Meanwhile, common pre-training metrics cannot quantify a model's perception and reasoning abilities in a disentangled manner. Furthermore, existing evaluation benchmarks are typically limited in scale or misaligned with pre-training objectives. Thus, we propose RADAR, an efficient ability-centric evaluation framework for Revealing Asymmetric Development of Abilities in MLLM pRe-training. RADAR involves two key components: (1) Soft Discrimination Score, a novel metric for robustly tracking ability development without fine-tuning, based on quantifying nuanced gradations of the model preference for the correct answer over distractors; and (2) Multi-Modal Mixture Benchmark, a new 15K+ sample benchmark for comprehensively evaluating pre-trained MLLMs' perception and reasoning abilities in a 0-shot manner, where we unify authoritative benchmark datasets and carefully collect new datasets, extending the evaluation scope and addressing the critical gaps in current benchmarks. With RADAR, we comprehensively reveal the asymmetric development of perceptual and reasoning capabilities in pretrained MLLMs across diverse factors, including data volume, model size, and pretraining strategy. Our RADAR underscores the need for a decomposed perspective on pre-training ability bottlenecks, informing targeted interventions to advance MLLMs efficiently. Our code is publicly available at https://github.com/Nieysh/RADAR.
☆ Dual-Phase Cross-Modal Contrastive Learning for CMR-Guided ECG Representations for Cardiovascular Disease Assessment
Cardiac magnetic resonance imaging (CMR) offers detailed evaluation of cardiac structure and function, but its limited accessibility restricts use to selected patient populations. In contrast, the electrocardiogram (ECG) is ubiquitous and inexpensive, and provides rich information on cardiac electrical activity and rhythm, yet offers limited insight into underlying cardiac structure and mechanical function. To address this, we introduce a contrastive learning framework that improves the extraction of clinically relevant cardiac phenotypes from ECG by learning from paired ECG-CMR data. Our approach aligns ECG representations with 3D CMR volumes at end-diastole (ED) and end-systole (ES), with a dual-phase contrastive loss to anchor each ECG jointly with both cardiac phases in a shared latent space. Unlike prior methods limited to 2D CMR representations with or without a temporal component, our framework models 3D anatomy at both ED and ES phases as distinct latent representations, enabling flexible disentanglement of structural and functional cardiac properties. Using over 34,000 ECG-CMR pairs from the UK Biobank, we demonstrate improved extraction of image-derived phenotypes from ECG, particularly for functional parameters ($\uparrow$ 9.2\%), while improvements in clinical outcome prediction remained modest ($\uparrow$ 0.7\%). This strategy could enable scalable and cost-effective extraction of image-derived traits from ECG. The code for this research is publicly available.
comment: Paper accepted at SPIE Medical Imaging 2026 Conference
☆ RoadscapesQA: A Multitask, Multimodal Dataset for Visual Question Answering on Indian Roads
Understanding road scenes is essential for autonomous driving, as it enables systems to interpret visual surroundings to aid in effective decision-making. We present Roadscapes, a multitask multimodal dataset consisting of upto 9,000 images captured in diverse Indian driving environments, accompanied by manually verified bounding boxes. To facilitate scalable scene understanding, we employ rule-based heuristics to infer various scene attributes, which are subsequently used to generate question-answer (QA) pairs for tasks such as object grounding, reasoning, and scene understanding. The dataset includes a variety of scenes from urban and rural India, encompassing highways, service roads, village paths, and congested city streets, captured in both daytime and nighttime settings. Roadscapes has been curated to advance research on visual scene understanding in unstructured environments. In this paper, we describe the data collection and annotation process, present key dataset statistics, and provide initial baselines for image QA tasks using vision-language models.
☆ X-VORTEX: Spatio-Temporal Contrastive Learning for Wake Vortex Trajectory Forecasting
Wake vortices are strong, coherent air turbulences created by aircraft, and they pose a major safety and capacity challenge for air traffic management. Tracking how vortices move, weaken, and dissipate over time from LiDAR measurements is still difficult because scans are sparse, vortex signatures fade as the flow breaks down under atmospheric turbulence and instabilities, and point-wise annotation is prohibitively expensive. Existing approaches largely treat each scan as an independent, fully supervised segmentation problem, which overlooks temporal structure and does not scale to the vast unlabeled archives collected in practice. We present X-VORTEX, a spatio-temporal contrastive learning framework grounded in Augmentation Overlap Theory that learns physics-aware representations from unlabeled LiDAR point cloud sequences. X-VORTEX addresses two core challenges: sensor sparsity and time-varying vortex dynamics. It constructs paired inputs from the same underlying flight event by combining a weakly perturbed sequence with a strongly augmented counterpart produced via temporal subsampling and spatial masking, encouraging the model to align representations across missing frames and partial observations. Architecturally, a time-distributed geometric encoder extracts per-scan features and a sequential aggregator models the evolving vortex state across variable-length sequences. We evaluate on a real-world dataset of over one million LiDAR scans. X-VORTEX achieves superior vortex center localization while using only 1% of the labeled data required by supervised baselines, and the learned representations support accurate trajectory forecasting.
☆ Thinking Like a Radiologist: A Dataset for Anatomy-Guided Interleaved Vision Language Reasoning in Chest X-ray Interpretation
Radiological diagnosis is a perceptual process in which careful visual inspection and language reasoning are repeatedly interleaved. Most medical large vision language models (LVLMs) perform visual inspection only once and then rely on text-only chain-of-thought (CoT) reasoning, which operates purely in the linguistic space and is prone to hallucination. Recent methods attempt to mitigate this issue by introducing visually related coordinates, such as bounding boxes. However, these remain a pseudo-visual solution: coordinates are still text and fail to preserve rich visual details like texture and density. Motivated by the interleaved nature of radiological diagnosis, we introduce MMRad-IVL-22K, the first large-scale dataset designed for natively interleaved visual language reasoning in chest X-ray interpretation. MMRad-IVL-22K reflects a repeated cycle of reasoning and visual inspection workflow of radiologists, in which visual rationales complement textual descriptions and ground each step of the reasoning process. MMRad-IVL-22K comprises 21,994 diagnostic traces, enabling systematic scanning across 35 anatomical regions. Experimental results on advanced closed-source LVLMs demonstrate that report generation guided by multimodal CoT significantly outperforms that guided by text-only CoT in clinical accuracy and report quality (e.g., 6\% increase in the RadGraph metric), confirming that high-fidelity interleaved vision language evidence is a non-substitutable component of reliable medical AI. Furthermore, benchmarking across seven state-of-the-art open-source LVLMs demonstrates that models fine-tuned on MMRad-IVL-22K achieve superior reasoning consistency and report quality compared with both general-purpose and medical-specific LVLMs. The project page is available at https://github.com/qiuzyc/thinking_like_a_radiologist.
☆ 3DLAND: 3D Lesion Abdominal Anomaly Localization Dataset
Existing medical imaging datasets for abdominal CT often lack three-dimensional annotations, multi-organ coverage, or precise lesion-to-organ associations, hindering robust representation learning and clinical applications. To address this gap, we introduce 3DLAND, a large-scale benchmark dataset comprising over 6,000 contrast-enhanced CT volumes with over 20,000 high-fidelity 3D lesion annotations linked to seven abdominal organs: liver, kidneys, pancreas, spleen, stomach, and gallbladder. Our streamlined three-phase pipeline integrates automated spatial reasoning, prompt-optimized 2D segmentation, and memory-guided 3D propagation, validated by expert radiologists with surface dice scores exceeding 0.75. By providing diverse lesion types and patient demographics, 3DLAND enables scalable evaluation of anomaly detection, localization, and cross-organ transfer learning for medical AI. Our dataset establishes a new benchmark for evaluating organ-aware 3D segmentation models, paving the way for advancements in healthcare-oriented AI. To facilitate reproducibility and further research, the 3DLAND dataset and implementation code are publicly available at https://mehrn79.github.io/3DLAND.
☆ WISE: A Multimodal Search Engine for Visual Scenes, Audio, Objects, Faces, Speech, and Metadata
In this paper, we present WISE, an open-source audiovisual search engine which integrates a range of multimodal retrieval capabilities into a single, practical tool accessible to users without machine learning expertise. WISE supports natural-language and reverse-image queries at both the scene level (e.g. empty street) and object level (e.g. horse) across images and videos; face-based search for specific individuals; audio retrieval of acoustic events using text (e.g. wood creak) or an audio file; search over automatically transcribed speech; and filtering by user-provided metadata. Rich insights can be obtained by combining queries across modalities -- for example, retrieving German trains from a historical archive by applying the object query "train" and the metadata query "Germany", or searching for a face in a place. By employing vector search techniques, WISE can scale to support efficient retrieval over millions of images or thousands of hours of video. Its modular architecture facilitates the integration of new models. WISE can be deployed locally for private or sensitive collections, and has been applied to various real-world use cases. Our code is open-source and available at https://gitlab.com/vgg/wise/wise.
comment: Software: https://www.robots.ox.ac.uk/~vgg/software/wise/ , Online demos: https://www.robots.ox.ac.uk/~vgg/software/wise/demo/ , Example Queries: https://www.robots.ox.ac.uk/~vgg/software/wise/examples/
☆ GSM-GS: Geometry-Constrained Single and Multi-view Gaussian Splatting for Surface Reconstruction
Recently, 3D Gaussian Splatting has emerged as a prominent research direction owing to its ultrarapid training speed and high-fidelity rendering capabilities. However, the unstructured and irregular nature of Gaussian point clouds poses challenges to reconstruction accuracy. This limitation frequently causes high-frequency detail loss in complex surface microstructures when relying solely on routine strategies. To address this limitation, we propose GSM-GS: a synergistic optimization framework integrating single-view adaptive sub-region weighting constraints and multi-view spatial structure refinement. For single-view optimization, we leverage image gradient features to partition scenes into texture-rich and texture-less sub-regions. The reconstruction quality is enhanced through adaptive filtering mechanisms guided by depth discrepancy features. This preserves high-weight regions while implementing a dual-branch constraint strategy tailored to regional texture variations, thereby improving geometric detail characterization. For multi-view optimization, we introduce a geometry-guided cross-view point cloud association method combined with a dynamic weight sampling strategy. This constructs 3D structural normal constraints across adjacent point cloud frames, effectively reinforcing multi-view consistency and reconstruction fidelity. Extensive experiments on public datasets demonstrate that our method achieves both competitive rendering quality and geometric reconstruction. See our interactive project page
comment: https://aislab-sustech.github.io/GSM-GS/
☆ Bootstrapping MLLM for Weakly-Supervised Class-Agnostic Object Counting ICLR 2026
Object counting is a fundamental task in computer vision, with broad applicability in many real-world scenarios. Fully-supervised counting methods require costly point-level annotations per object. Few weakly-supervised methods leverage only image-level object counts as supervision and achieve fairly promising results. They are, however, often limited to counting a single category, e.g. person. In this paper, we propose WS-COC, the first MLLM-driven weakly-supervised framework for class-agnostic object counting. Instead of directly fine-tuning MLLMs to predict object counts, which can be challenging due to the modality gap, we incorporate three simple yet effective strategies to bootstrap the counting paradigm in both training and testing: First, a divide-and-discern dialogue tuning strategy is proposed to guide the MLLM to determine whether the object count falls within a specific range and progressively break down the range through multi-round dialogue. Second, a compare-and-rank count optimization strategy is introduced to train the MLLM to optimize the relative ranking of multiple images according to their object counts. Third, a global-and-local counting enhancement strategy aggregates and fuses local and global count predictions to improve counting performance in dense scenes. Extensive experiments on FSC-147, CARPK, PUCPR+, and ShanghaiTech show that WS-COC matches or even surpasses many state-of-art fully-supervised methods while significantly reducing annotation costs. Code is available at https://github.com/viscom-tongji/WS-COC.
comment: Accepted at ICLR 2026
☆ PixelRush: Ultra-Fast, Training-Free High-Resolution Image Generation via One-step Diffusion
Pre-trained diffusion models excel at generating high-quality images but remain inherently limited by their native training resolution. Recent training-free approaches have attempted to overcome this constraint by introducing interventions during the denoising process; however, these methods incur substantial computational overhead, often requiring more than five minutes to produce a single 4K image. In this paper, we present PixelRush, the first tuning-free framework for practical high-resolution text-to-image generation. Our method builds upon the established patch-based inference paradigm but eliminates the need for multiple inversion and regeneration cycles. Instead, PixelRush enables efficient patch-based denoising within a low-step regime. To address artifacts introduced by patch blending in few-step generation, we propose a seamless blending strategy. Furthermore, we mitigate over-smoothing effects through a noise injection mechanism. PixelRush delivers exceptional efficiency, generating 4K images in approximately 20 seconds representing a 10$\times$ to 35$\times$ speedup over state-of-the-art methods while maintaining superior visual fidelity. Extensive experiments validate both the performance gains and the quality of outputs achieved by our approach.
☆ Towards complete digital twins in cultural heritage with ART3mis 3D artifacts annotator
Archaeologists, as well as specialists and practitioners in cultural heritage, require applications with additional functions, such as the annotation and attachment of metadata to specific regions of the 3D digital artifacts, to go beyond the simplistic three-dimensional (3D) visualization. Different strategies addressed this issue, most of which are excellent in their particular area of application, but their capacity is limited to their design's purpose; they lack generalization and interoperability. This paper introduces ART3mis, a general-purpose, user-friendly, feature-rich, interactive web-based textual annotation tool for 3D objects. Moreover, it enables the communication, distribution, and reuse of information as it complies with the W3C Web Annotation Data Model. It is primarily designed to help cultural heritage conservators, restorers, and curators who lack technical expertise in 3D imaging and graphics, handle, segment, and annotate 3D digital replicas of artifacts with ease.
comment: Presented at EUROMED 2022: International Conference on Digital Heritage
☆ VineetVC: Adaptive Video Conferencing Under Severe Bandwidth Constraints Using Audio-Driven Talking-Head Reconstruction
Intense bandwidth depletion within consumer and constrained networks has the potential to undermine the stability of real-time video conferencing: encoder rate management becomes saturated, packet loss escalates, frame rates deteriorate, and end-to-end latency significantly increases. This work delineates an adaptive conferencing system that integrates WebRTC media delivery with a supplementary audio-driven talking-head reconstruction pathway and telemetry-driven mode regulation. The system consists of a WebSocket signaling service, an optional SFU for multi-party transmission, a browser client capable of real-time WebRTC statistics extraction and CSV telemetry export, and an AI REST service that processes a reference face image and recorded audio to produce a synthesized MP4; the browser can substitute its outbound camera track with the synthesized stream with a median bandwidth of 32.80 kbps. The solution incorporates a bandwidth-mode switching strategy and a client-side mode-state logger.
☆ Towards reconstructing experimental sparse-view X-ray CT data with diffusion models
Diffusion-based image generators are promising priors for ill-posed inverse problems like sparse-view X-ray Computed Tomography (CT). As most studies consider synthetic data, it is not clear whether training data mismatch (``domain shift'') or forward model mismatch complicate their successful application to experimental data. We measured CT data from a physical phantom resembling the synthetic Shepp-Logan phantom and trained diffusion priors on synthetic image data sets with different degrees of domain shift towards it. Then, we employed the priors in a Decomposed Diffusion Sampling scheme on sparse-view CT data sets with increasing difficulty leading to the experimental data. Our results reveal that domain shift plays a nuanced role: while severe mismatch causes model collapse and hallucinations, diverse priors outperform well-matched but narrow priors. Forward model mismatch pulls the image samples away from the prior manifold, which causes artifacts but can be mitigated with annealed likelihood schedules that also increase computational efficiency. Overall, we demonstrate that performance gains do not immediately translate from synthetic to experimental data, and future development must validate against real-world benchmarks.
comment: 5 pages + references, 4 figures, 2 tables, conference paper
☆ ReBA-Pred-Net: Weakly-Supervised Regional Brain Age Prediction on MRI
Brain age has become a prominent biomarker of brain health. Yet most prior work targets whole brain age (WBA), a coarse paradigm that struggles to support tasks such as disease characterization and research on development and aging patterns, because relevant changes are typically region-selective rather than brain-wide. Therefore, robust regional brain age (ReBA) estimation is critical, yet a widely generalizable model has yet to be established. In this paper, we propose the Regional Brain Age Prediction Network (ReBA-Pred-Net), a Teacher-Student framework designed for fine-grained brain age estimation. The Teacher produces soft ReBA to guide the Student to yield reliable ReBA estimates with a clinical-prior consistency constraint (regions within the same function should change similarly). For rigorous evaluation, we introduce two indirect metrics: Healthy Control Similarity (HCS), which assesses statistical consistency by testing whether regional brain-age-gap (ReBA minus chronological age) distributions align between training and unseen HC; and Neuro Disease Correlation (NDC), which assesses factual consistency by checking whether clinically confirmed patients show elevated brain-age-gap in disease-associated regions. Experiments across multiple backbones demonstrate the statistical and factual validity of our method.
☆ Lung nodule classification on CT scan patches using 3D convolutional neural networks
Lung cancer remains one of the most common and deadliest forms of cancer worldwide. The likelihood of successful treatment depends strongly on the stage at which the disease is diagnosed. Therefore, early detection of lung cancer represents a critical medical challenge. However, this task poses significant difficulties for thoracic radiologists due to the large number of studies to review, the presence of multiple nodules within the lungs, and the small size of many nodules, which complicates visual assessment. Consequently, the development of automated systems that incorporate highly accurate and computationally efficient lung nodule detection and classification modules is essential. This study introduces three methodological improvements for lung nodule classification: (1) an advanced CT scan cropping strategy that focuses the model on the target nodule while reducing computational cost; (2) target filtering techniques for removing noisy labels; (3) novel augmentation methods to improve model robustness. The integration of these techniques enables the development of a robust classification subsystem within a comprehensive Clinical Decision Support System for lung cancer detection, capable of operating across diverse acquisition protocols, scanner types, and upstream models (segmentation or detection). The multiclass model achieved a Macro ROC AUC of 0.9176 and a Macro F1-score of 0.7658, while the binary model reached a Binary ROC AUC of 0.9383 and a Binary F1-score of 0.8668 on the LIDC-IDRI dataset. These results outperform several previously reported approaches and demonstrate state-of-the-art performance for this task.
☆ Synthetic Craquelure Generation for Unsupervised Painting Restoration
Cultural heritage preservation increasingly demands non-invasive digital methods for painting restoration, yet identifying and restoring fine craquelure patterns from complex brushstrokes remains challenging due to scarce pixel-level annotations. We propose a fully annotation-free framework driven by a domain-specific synthetic craquelure generator, which simulates realistic branching and tapered fissure geometry using Bézier trajectories. Our approach couples a classical morphological detector with a learning-based refinement module: a SegFormer backbone adapted via Low-Rank Adaptation (LoRA). Uniquely, we employ a detector-guided strategy, injecting the morphological map as an input spatial prior, while a masked hybrid loss and logit adjustment constrain the training to focus specifically on refining candidate crack regions. The refined masks subsequently guide an Anisotropic Diffusion inpainting stage to reconstruct missing content. Experimental results demonstrate that our pipeline significantly outperforms state-of-the-art photographic restoration models in zero-shot settings, while faithfully preserving the original paint brushwork.
comment: Accepted to CAI 2026
☆ SPRig: Self-Supervised Pose-Invariant Rigging from Mesh Sequences
State-of-the-art rigging methods assume a canonical rest pose--an assumption that fails for sequential data (e.g., animal motion capture or AIGC/video-derived mesh sequences) that lack the T-pose. Applied frame-by-frame, these methods are not pose-invariant and produce topological inconsistencies across frames. Thus We propose SPRig, a general fine-tuning framework that enforces cross-frame consistency losses to learn pose-invariant rigs on top of existing models. We validate our approach on rigging using a new permutation-invariant stability protocol. Experiments demonstrate SOTA temporal stability: our method produces coherent rigs from challenging sequences and dramatically reduces the artifacts that plague baseline methods. The code will be released publicly upon acceptance.
comment: Code: https://github.com/WANG-Ruipeng/SPRig
☆ VimRAG: Navigating Massive Visual Context in Retrieval-Augmented Generation via Multimodal Memory Graph
Effectively retrieving, reasoning, and understanding multimodal information remains a critical challenge for agentic systems. Traditional Retrieval-augmented Generation (RAG) methods rely on linear interaction histories, which struggle to handle long-context tasks, especially those involving information-sparse yet token-heavy visual data in iterative reasoning scenarios. To bridge this gap, we introduce VimRAG, a framework tailored for multimodal Retrieval-augmented Reasoning across text, images, and videos. Inspired by our systematic study, we model the reasoning process as a dynamic directed acyclic graph that structures the agent states and retrieved multimodal evidence. Building upon this structured memory, we introduce a Graph-Modulated Visual Memory Encoding mechanism, with which the significance of memory nodes is evaluated via their topological position, allowing the model to dynamically allocate high-resolution tokens to pivotal evidence while compressing or discarding trivial clues. To implement this paradigm, we propose a Graph-Guided Policy Optimization strategy. This strategy disentangles step-wise validity from trajectory-level rewards by pruning memory nodes associated with redundant actions, thereby facilitating fine-grained credit assignment. Extensive experiments demonstrate that VimRAG consistently achieves state-of-the-art performance on diverse multimodal RAG benchmarks. The code is available at https://github.com/Alibaba-NLP/VRAG.
☆ ART3mis: Ray-Based Textual Annotation on 3D Cultural Objects
Beyond simplistic 3D visualisations, archaeologists, as well as cultural heritage experts and practitioners, need applications with advanced functionalities. Such as the annotation and attachment of metadata onto particular regions of the 3D digital objects. Various approaches have been presented to tackle this challenge, most of which achieve excellent results in the domain of their application. However, they are often confined to that specific domain and particular problem. In this paper, we present ART3mis - a general-purpose, user-friendly, interactive textual annotation tool for 3D objects. Primarily attuned to aid cultural heritage conservators, restorers and curators with no technical skills in 3D imaging and graphics, the tool allows for the easy handling, segmenting and annotating of 3D digital replicas of artefacts. ART3mis applies a user-driven, direct-on-surface approach. It can handle detailed 3D cultural objects in real-time and store textual annotations for multiple complex regions in JSON data format.
comment: Presented at CAA 2021 - "Digital Crossroads"
☆ MedXIAOHE: A Comprehensive Recipe for Building Medical MLLMs
We present MedXIAOHE, a medical vision-language foundation model designed to advance general-purpose medical understanding and reasoning in real-world clinical applications. MedXIAOHE achieves state-of-the-art performance across diverse medical benchmarks and surpasses leading closed-source multimodal systems on multiple capabilities. To achieve this, we propose an entity-aware continual pretraining framework that organizes heterogeneous medical corpora to broaden knowledge coverage and reduce long-tail gaps (e.g., rare diseases). For medical expert-level reasoning and interaction, MedXIAOHE incorporates diverse medical reasoning patterns via reinforcement learning and tool-augmented agentic training, enabling multi-step diagnostic reasoning with verifiable decision traces. To improve reliability in real-world use, MedXIAOHE integrates user-preference rubrics, evidence-grounded reasoning, and low-hallucination long-form report generation, with improved adherence to medical instructions. We release this report to document our practical design choices, scaling insights, and evaluation framework, hoping to inspire further research.
☆ Channel-Aware Probing for Multi-Channel Imaging
Training and evaluating vision encoders on Multi-Channel Imaging (MCI) data remains challenging as channel configurations vary across datasets, preventing fixed-channel training and limiting reuse of pre-trained encoders on new channel settings. Prior work trains MCI encoders but typically evaluates them via full fine-tuning, leaving probing with frozen pre-trained encoders comparatively underexplored. Existing studies that perform probing largely focus on improving representations, rather than how to best leverage fixed representations for downstream tasks. Although the latter problem has been studied in other domains, directly transferring those strategies to MCI yields weak results, even worse than training from scratch. We therefore propose Channel-Aware Probing (CAP), which exploits the intrinsic inter-channel diversity in MCI datasets by controlling feature flow at both the encoder and probe levels. CAP uses Independent Feature Encoding (IFE) to encode each channel separately, and Decoupled Pooling (DCP) to pool within channels before aggregating across channels. Across three MCI benchmarks, CAP consistently improves probing performance over the default probing protocol, matches fine-tuning from scratch, and largely reduces the gap to full fine-tuning from the same MCI pre-trained checkpoints. Code can be found in https://github.com/umarikkar/CAP.
☆ Motion Prior Distillation in Time Reversal Sampling for Generative Inbetweening ICLR 2026
Recent progress in image-to-video (I2V) diffusion models has significantly advanced the field of generative inbetweening, which aims to generate semantically plausible frames between two keyframes. In particular, inference-time sampling strategies, which leverage the generative priors of large-scale pre-trained I2V models without additional training, have become increasingly popular. However, existing inference-time sampling, either fusing forward and backward paths in parallel or alternating them sequentially, often suffers from temporal discontinuities and undesirable visual artifacts due to the misalignment between the two generated paths. This is because each path follows the motion prior induced by its own conditioning frame. In this work, we propose Motion Prior Distillation (MPD), a simple yet effective inference-time distillation technique that suppresses bidirectional mismatch by distilling the motion residual of the forward path into the backward path. Our method can deliberately avoid denoising the end-conditioned path which causes the ambiguity of the path, and yield more temporally coherent inbetweening results with the forward motion prior. We not only perform quantitative evaluations on standard benchmarks, but also conduct extensive user studies to demonstrate the effectiveness of our approach in practical scenarios.
comment: Accepted at ICLR 2026. Project page: https://vvsjeon.github.io/MPD/
☆ SLA2: Sparse-Linear Attention with Learnable Routing and QAT
Sparse-Linear Attention (SLA) combines sparse and linear attention to accelerate diffusion models and has shown strong performance in video generation. However, (i) SLA relies on a heuristic split that assigns computations to the sparse or linear branch based on attention-weight magnitude, which can be suboptimal. Additionally, (ii) after formally analyzing the attention error in SLA, we identify a mismatch between SLA and a direct decomposition into sparse and linear attention. We propose SLA2, which introduces (I) a learnable router that dynamically selects whether each attention computation should use sparse or linear attention, (II) a more faithful and direct sparse-linear attention formulation that uses a learnable ratio to combine the sparse and linear attention branches, and (III) a sparse + low-bit attention design, where low-bit attention is introduced via quantization-aware fine-tuning to reduce quantization error. Experiments show that on video diffusion models, SLA2 can achieve 97% attention sparsity and deliver an 18.6x attention speedup while preserving generation quality.
☆ IndicFairFace: Balanced Indian Face Dataset for Auditing and Mitigating Geographical Bias in Vision-Language Models
Vision-Language Models (VLMs) are known to inherit and amplify societal biases from their web-scale training data with Indian being particularly misrepresented. Existing fairness-aware datasets have significantly improved demographic balance across global race and gender groups, yet they continue to treat Indian as a single monolithic category. The oversimplification ignores the vast intra-national diversity across 28 states and 8 Union Territories of India and leads to representational and geographical bias. To address the limitation, we present IndicFairFace, a novel and balanced face dataset comprising 14,400 images representing geographical diversity of India. Images were sourced ethically from Wikimedia Commons and open-license web repositories and uniformly balanced across states and gender. Using IndicFairFace, we quantify intra-national geographical bias in prominent CLIP-based VLMs and reduce it using post-hoc Iterative Nullspace Projection debiasing approach. We also show that the adopted debiasing approach does not adversely impact the existing embedding space as the average drop in retrieval accuracy on benchmark datasets is less than 1.5 percent. Our work establishes IndicFairFace as the first benchmark to study geographical bias in VLMs for the Indian context.
☆ CBEN -- A Multimodal Machine Learning Dataset for Cloud Robust Remote Sensing Image Understanding
Clouds are a common phenomenon that distorts optical satellite imagery, which poses a challenge for remote sensing. However, in the literature cloudless analysis is often performed where cloudy images are excluded from machine learning datasets and methods. Such an approach cannot be applied to time sensitive applications, e.g., during natural disasters. A possible solution is to apply cloud removal as a preprocessing step to ensure that cloudfree solutions are not failing under such conditions. But cloud removal methods are still actively researched and suffer from drawbacks, such as generated visual artifacts. Therefore, it is desirable to develop cloud robust methods that are less affected by cloudy weather. Cloud robust methods can be achieved by combining optical data with radar, a modality unaffected by clouds. While many datasets for machine learning combine optical and radar data, most researchers exclude cloudy images. We identify this exclusion from machine learning training and evaluation as a limitation that reduces applicability to cloudy scenarios. To investigate this, we assembled a dataset, named CloudyBigEarthNet (CBEN), of paired optical and radar images with cloud occlusion for training and evaluation. Using average precision (AP) as the evaluation metric, we show that state-of-the-art methods trained on combined clear-sky optical and radar imagery suffer performance drops of 23-33 percentage points when evaluated on cloudy images. We then adapt these methods to cloudy optical data during training, achieving relative improvement of 17.2-28.7 percentage points on cloudy test cases compared with the original approaches. Code and dataset are publicly available at: https://github.com/mstricker13/CBEN
comment: This work has been submitted to the IEEE Transactions on Geoscience & Remote Sensing for possible publication
☆ Multi-Task Learning with Additive U-Net for Image Denoising and Classification
We investigate additive skip fusion in U-Net architectures for image denoising and denoising-centric multi-task learning (MTL). By replacing concatenative skips with gated additive fusion, the proposed Additive U-Net (AddUNet) constrains shortcut capacity while preserving fixed feature dimensionality across depth. This structural regularization induces controlled encoder-decoder information flow and stabilizes joint optimization. Across single-task denoising and joint denoising-classification settings, AddUNet achieves competitive reconstruction performance with improved training stability. In MTL, learned skip weights exhibit systematic task-aware redistribution: shallow skips favor reconstruction, while deeper features support discrimination. Notably, reconstruction remains robust even under limited classification capacity, indicating implicit task decoupling through additive fusion. These findings show that simple constraints on skip connections act as an effective architectural regularizer for stable and scalable multi-task learning without increasing model complexity.
☆ ImageRAGTurbo: Towards One-step Text-to-Image Generation with Retrieval-Augmented Diffusion Models
Diffusion models have emerged as the leading approach for text-to-image generation. However, their iterative sampling process, which gradually morphs random noise into coherent images, introduces significant latency that limits their applicability. While recent few-step diffusion models reduce the number of sampling steps to as few as one to four steps, they often compromise image quality and prompt alignment, especially in one-step generation. Additionally, these models require computationally expensive training procedures. To address these limitations, we propose ImageRAGTurbo, a novel approach to efficiently finetune few-step diffusion models via retrieval augmentation. Given a text prompt, we retrieve relevant text-image pairs from a database and use them to condition the generation process. We argue that such retrieved examples provide rich contextual information to the UNet denoiser that helps reduce the number of denoising steps without compromising image quality. Indeed, our initial investigations show that using the retrieved content to edit the denoiser's latent space ($\mathcal{H}$-space) without additional finetuning already improves prompt fidelity. To further improve the quality of the generated images, we augment the UNet denoiser with a trainable adapter in the $\mathcal{H}$-space, which efficiently blends the retrieved content with the target prompt using a cross-attention mechanism. Experimental results on fast text-to-image generation demonstrate that our approach produces high-fidelity images without compromising latency compared to existing methods.
comment: 11 pages, 7 figures
☆ Formalizing the Sampling Design Space of Diffusion-Based Generative Models via Adaptive Solvers and Wasserstein-Bounded Timesteps
Diffusion-based generative models have achieved remarkable performance across various domains, yet their practical deployment is often limited by high sampling costs. While prior work focuses on training objectives or individual solvers, the holistic design of sampling, specifically solver selection and scheduling, remains dominated by static heuristics. In this work, we revisit this challenge through a geometric lens, proposing SDM, a principled framework that aligns the numerical solver with the intrinsic properties of the diffusion trajectory. By analyzing the ODE dynamics, we show that efficient low-order solvers suffice in early high-noise stages while higher-order solvers can be progressively deployed to handle the increasing non-linearity of later stages. Furthermore, we formalize the scheduling by introducing a Wasserstein-bounded optimization framework. This method systematically derives adaptive timesteps that explicitly bound the local discretization error, ensuring the sampling process remains faithful to the underlying continuous dynamics. Without requiring additional training or architectural modifications, SDM achieves state-of-the-art performance across standard benchmarks, including an FID of 1.93 on CIFAR-10, 2.41 on FFHQ, and 1.98 on AFHQv2, with a reduced number of function evaluations compared to existing samplers. Our code is available at https://github.com/aiimaginglab/sdm.
☆ Vision Token Reduction via Attention-Driven Self-Compression for Efficient Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) incur significant computational cost from processing numerous vision tokens through all LLM layers. Prior pruning methods operate either before the LLM, limiting generality due to diverse encoder-projector designs or within the LLM using heuristics that are incompatible with FlashAttention. We take a different approach: rather than identifying unimportant tokens, we treat the LLM itself as the optimal guide for compression. Observing that deeper layers naturally transmit vision-to-text information, we introduce Attention-Driven Self-Compression (ADSC), a simple, broadly applicable method that progressively reduces vision tokens using only the LLM's attention mechanism. Our method applies uniform token downsampling at selected layers, forming bottlenecks that encourage the model to reorganize and compress information into the remaining tokens. It requires no score computation, auxiliary modules, or attention modification, and remains fully compatible with FlashAttention. Applied to LLaVA-1.5, ADSC reduces FLOPs by 53.7% and peak KV-cache memory by 56.7%, while preserving 98.2% of the original model performance. Across multiple benchmarks, it outperforms prior pruning approaches in both efficiency and accuracy. Crucially, under high compression ratios, our method remains robust while heuristic-based techniques degrade sharply.
comment: 2025 IEEE International Conference on Big Data (BigData)
☆ QuEPT: Quantized Elastic Precision Transformers with One-Shot Calibration for Multi-Bit Switching AAAI 2026
Elastic precision quantization enables multi-bit deployment via a single optimization pass, fitting diverse quantization scenarios.Yet, the high storage and optimization costs associated with the Transformer architecture, research on elastic quantization remains limited, particularly for large language models.This paper proposes QuEPT, an efficient post-training scheme that reconstructs block-wise multi-bit errors with one-shot calibration on a small data slice. It can dynamically adapt to various predefined bit-widths by cascading different low-rank adapters, and supports real-time switching between uniform quantization and mixed precision quantization without repeated optimization. To enhance accuracy and robustness, we introduce Multi-Bit Token Merging (MB-ToMe) to dynamically fuse token features across different bit-widths, improving robustness during bit-width switching. Additionally, we propose Multi-Bit Cascaded Low-Rank adapters (MB-CLoRA) to strengthen correlations between bit-width groups, further improve the overall performance of QuEPT. Extensive experiments demonstrate that QuEPT achieves comparable or better performance to existing state-of-the-art post-training quantization methods.Our code is available at https://github.com/xuke225/QuEPT
comment: Accepted by AAAI 2026
☆ Unbiased Gradient Estimation for Event Binning via Functional Backpropagation
Event-based vision encodes dynamic scenes as asynchronous spatio-temporal spikes called events. To leverage conventional image processing pipelines, events are typically binned into frames. However, binning functions are discontinuous, which truncates gradients at the frame level and forces most event-based algorithms to rely solely on frame-based features. Attempts to directly learn from raw events avoid this restriction but instead suffer from biased gradient estimation due to the discontinuities of the binning operation, ultimately limiting their learning efficiency. To address this challenge, we propose a novel framework for unbiased gradient estimation of arbitrary binning functions by synthesizing weak derivatives during backpropagation while keeping the forward output unchanged. The key idea is to exploit integration by parts: lifting the target functions to functionals yields an integral form of the derivative of the binning function during backpropagation, where the cotangent function naturally arises. By reconstructing this cotangent function from the sampled cotangent vector, we compute weak derivatives that provably match long-range finite differences of both smooth and non-smooth targets. Experimentally, our method improves simple optimization-based egomotion estimation with 3.2\% lower RMS error and 1.57$\times$ faster convergence. On complex downstream tasks, we achieve 9.4\% lower EPE in self-supervised optical flow, and 5.1\% lower RMS error in SLAM, demonstrating broad benefits for event-based visual perception. Source code can be found at https://github.com/chjz1024/EventFBP.
☆ The Constant Eye: Benchmarking and Bridging Appearance Robustness in Autonomous Driving
Despite rapid progress, autonomous driving algorithms remain notoriously fragile under Out-of-Distribution (OOD) conditions. We identify a critical decoupling failure in current research: the lack of distinction between appearance-based shifts, such as weather and lighting, and structural scene changes. This leaves a fundamental question unanswered: Is the planner failing because of complex road geometry, or simply because it is raining? To resolve this, we establish navdream, a high-fidelity robustness benchmark leveraging generative pixel-aligned style transfer. By creating a visual stress test with negligible geometric deviation, we isolate the impact of appearance on driving performance. Our evaluation reveals that existing planning algorithms often show significant degradation under OOD appearance conditions, even when the underlying scene structure remains consistent. To bridge this gap, we propose a universal perception interface leveraging a frozen visual foundation model (DINOv3). By extracting appearance-invariant features as a stable interface for the planner, we achieve exceptional zero-shot generalization across diverse planning paradigms, including regression-based, diffusion-based, and scoring-based models. Our plug-and-play solution maintains consistent performance across extreme appearance shifts without requiring further fine-tuning. The benchmark and code will be made available.
☆ PLLM: Pseudo-Labeling Large Language Models for CAD Program Synthesis
Recovering Computer-Aided Design (CAD) programs from 3D geometries is a widely studied problem. Recent advances in large language models (LLMs) have enabled progress in CAD program synthesis, but existing methods rely on supervised training with paired shape-program data, which is often unavailable. We introduce PLLM, a self-training framework for CAD program synthesis from unlabeled 3D shapes. Given a pre-trained CAD-capable LLM and a shape dataset, PLLM iteratively samples candidate programs, selects high-fidelity executions, and augments programs to construct synthetic program-shape pairs for fine-tuning. We experiment on adapting CAD-Recode from DeepCAD to the unlabeled ABC dataset show consistent improvements in geometric fidelity and program diversity.
Self-Supervised JEPA-based World Models for LiDAR Occupancy Completion and Forecasting
Autonomous driving, as an agent operating in the physical world, requires the fundamental capability to build \textit{world models} that capture how the environment evolves spatiotemporally in order to support long-term planning. At the same time, scalability demands learning such models in a self-supervised manner; \textit{joint-embedding predictive architecture (JEPA)} enables learning world models via leveraging large volumes of unlabeled data without relying on expensive human annotations. In this paper, we propose \textbf{AD-LiST-JEPA}, a self-supervised world model for autonomous driving that predicts future spatiotemporal evolution from LiDAR data using a JEPA framework. We evaluate the quality of the learned representations through a downstream LiDAR-based occupancy completion and forecasting (OCF) task, which jointly assesses perception and prediction. Proof of concept experiments show better OCF performance with pretrained encoder after JEPA-based world model learning.
☆ Flow-Factory: A Unified Framework for Reinforcement Learning in Flow-Matching Models
Reinforcement learning has emerged as a promising paradigm for aligning diffusion and flow-matching models with human preferences, yet practitioners face fragmented codebases, model-specific implementations, and engineering complexity. We introduce Flow-Factory, a unified framework that decouples algorithms, models, and rewards through through a modular, registry-based architecture. This design enables seamless integration of new algorithms and architectures, as demonstrated by our support for GRPO, DiffusionNFT, and AWM across Flux, Qwen-Image, and WAN video models. By minimizing implementation overhead, Flow-Factory empowers researchers to rapidly prototype and scale future innovations with ease. Flow-Factory provides production-ready memory optimization, flexible multi-reward training, and seamless distributed training support. The codebase is available at https://github.com/X-GenGroup/Flow-Factory.
☆ Geometric Stratification for Singular Configurations of the P3P Problem via Local Dual Space
This paper investigates singular configurations of the P3P problem. Using local dual space, a systematic algebraic-computational framework is proposed to give a complete geometric stratification for the P3P singular configurations with respect to the multiplicity $μ$ of the camera center $O$: for $μ\ge 2$, $O$ lies on the ``danger cylinder'', for $μ\ge 3$, $O$ lies on one of three generatrices of the danger cylinder associated with the first Morley triangle or the circumcircle, and for $μ\ge 4$, $O$ lies on the circumcircle which indeed corresponds to infinite P3P solutions. Furthermore, a geometric stratification for the complementary configuration $O^\prime$ associated with a singular configuration $O$ is studied as well: for $μ\ge 2$, $O^\prime$ lies on a deltoidal surface associated with the danger cylinder, and for $μ\ge 3$, $O^\prime$ lies on one of three cuspidal curves of the deltoidal surface.
☆ LiDAR-Anchored Collaborative Distillation for Robust 2D Representations
As deep learning continues to advance, self-supervised learning has made considerable strides. It allows 2D image encoders to extract useful features for various downstream tasks, including those related to vision-based systems. Nevertheless, pre-trained 2D image encoders fall short in conducting the task under noisy and adverse weather conditions beyond clear daytime scenes, which require for robust visual perception. To address these issues, we propose a novel self-supervised approach, \textbf{Collaborative Distillation}, which leverages 3D LiDAR as self-supervision to improve robustness to noisy and adverse weather conditions in 2D image encoders while retaining their original capabilities. Our method outperforms competing methods in various downstream tasks across diverse conditions and exhibits strong generalization ability. In addition, our method also improves 3D awareness stemming from LiDAR's characteristics. This advancement highlights our method's practicality and adaptability in real-world scenarios.
☆ Matching of SAR and optical images based on transformation to shared modality
Significant differences in optical images and Synthetic Aperture Radar (SAR) images are caused by fundamental differences in the physical principles underlying their acquisition by Earth remote sensing platforms. These differences make precise image matching (co-registration) of these two types of images difficult. In this paper, we propose a new approach to image matching of optical and SAR images, which is based on transforming the images to a new modality. The new image modality is common to both optical and SAR images and satisfies the following conditions. First, the transformed images must have an equal pre-defined number of channels. Second, the transformed and co-registered images must be as similar as possible. Third, the transformed images must be non-degenerate, meaning they must preserve the significant features of the original images. To further match images transformed to this shared modality, we train the RoMa image matching model, which is one of the leading solutions for matching of regular digital photographs. We evaluated the proposed approach on the publicly available MultiSenGE dataset containing both optical and SAR images. We demonstrated its superiority over alternative approaches based on image translation between original modalities and various feature matching algorithms. The proposed solution not only provides better quality of matching, but is also more versatile. It enables the use of ready-made RoMa and DeDoDe models, pre-trained for regular images, without retraining for a new modality, while maintaining high-quality matching of optical and SAR images.
☆ Visual RAG Toolkit: Scaling Multi-Vector Visual Retrieval with Training-Free Pooling and Multi-Stage Search SIGIR 2026
Multi-vector visual retrievers (e.g., ColPali-style late interaction models) deliver strong accuracy, but scale poorly because each page yields thousands of vectors, making indexing and search increasingly expensive. We present Visual RAG Toolkit, a practical system for scaling visual multi-vector retrieval with training-free, model-aware pooling and multi-stage retrieval. Motivated by Matryoshka Embeddings, our method performs static spatial pooling - including a lightweight sliding-window averaging variant - over patch embeddings to produce compact tile-level and global representations for fast candidate generation, followed by exact MaxSim reranking using full multi-vector embeddings. Our design yields a quadratic reduction in vector-to-vector comparisons by reducing stored vectors per page from thousands to dozens, notably without requiring post-training, adapters, or distillation. Across experiments with interaction-style models such as ColPali and ColSmol-500M, we observe that over the limited ViDoRe v2 benchmark corpus 2-stage retrieval typically preserves NDCG and Recall @ 5/10 with minimal degradation, while substantially improving throughput (approximately 4x QPS); with sensitivity mainly at very large k. The toolkit additionally provides robust preprocessing - high resolution PDF to image conversion, optional margin/empty-region cropping and token hygiene (indexing only visual tokens) - and a reproducible evaluation pipeline, enabling rapid exploration of two-, three-, and cascaded retrieval variants. By emphasizing efficiency at common cutoffs (e.g., k <= 10), the toolkit lowers hardware barriers and makes state-of-the-art visual retrieval more accessible in practice.
comment: 4 pages, 3 figures. Submitted to SIGIR 2026 Demonstrations Track. Project website: https://github.com/Ara-Yeroyan/visual-rag-toolkit
☆ Monocular Reconstruction of Neural Tactile Fields
Robots operating in the real world must plan through environments that deform, yield, and reconfigure under contact, requiring interaction-aware 3D representations that extend beyond static geometric occupancy. To address this, we introduce neural tactile fields, a novel 3D representation that maps spatial locations to the expected tactile response upon contact. Our model predicts these neural tactile fields from a single monocular RGB image -- the first method to do so. When integrated with off-the-shelf path planners, neural tactile fields enable robots to generate paths that avoid high-resistance objects while deliberately routing through low-resistance regions (e.g. foliage), rather than treating all occupied space as equally impassable. Empirically, our learning framework improves volumetric 3D reconstruction by $85.8\%$ and surface reconstruction by $26.7\%$ compared to state-of-the-art monocular 3D reconstruction methods (LRM and Direct3D).
comment: 10 pages, 8 figures
☆ Layer-Specific Fine-Tuning for Improved Negation Handling in Medical Vision-Language Models ICML 2026
Negation is a fundamental linguistic operation in clinical reporting, yet vision-language models (VLMs) frequently fail to distinguish affirmative from negated medical statements. To systematically characterize this limitation, we introduce a radiology-specific diagnostic benchmark that evaluates polarity sensitivity under controlled clinical conditions, revealing that common medical VLMs consistently confuse negated and non-negated findings. To enable learning beyond simple condition absence, we further construct a contextual clinical negation dataset that encodes structured claims and supports attribute-level negations involving location and severity. Building on these resources, we propose Negation-Aware Selective Training (NAST), an interpretability-guided adaptation method that uses causal tracing effects (CTEs) to modulate layer-wise gradient updates during fine-tuning. Rather than applying uniform learning rates, NAST scales each layer's update according to its causal contribution to negation processing, transforming mechanistic interpretability signals into a principled optimization rule. Experiments demonstrate improved discrimination of affirmative and negated clinical statements without degrading general vision-language alignment, highlighting the value of causal interpretability for targeted model adaptation in safety-critical medical settings. Code and resources are available at https://github.com/healthylaife/NAST.
comment: 15 pages, 5 figures. Submitted to ICML 2026
☆ Insertion Network for Image Sequence Correspondence
We propose a novel method for establishing correspondence between two sequences of 2D images. One particular application of this technique is slice-level content navigation, where the goal is to localize specific 2D slices within a 3D volume or determine the anatomical coverage of a 3D scan based on its 2D slices. This serves as an important preprocessing step for various diagnostic tasks, as well as for automatic registration and segmentation pipelines. Our approach builds sequence correspondence by training a network to learn how to insert a slice from one sequence into the appropriate position in another. This is achieved by encoding contextual representations of each slice and modeling the insertion process using a slice-to-slice attention mechanism. We apply this method to localize manually labeled key slices in body CT scans and compare its performance to the current state-of-the-art alternative known as body part regression, which predicts anatomical position scores for individual slices. Unlike body part regression, which treats each slice independently, our method leverages contextual information from the entire sequence. Experimental results show that the insertion network reduces slice localization errors in supervised settings from 8.4 mm to 5.4 mm, demonstrating a substantial improvement in accuracy.
♻ ☆ Privacy-Preserving Federated Learning with Verifiable Fairness Guarantees
Federated learning enables collaborative model training across distributed institutions without centralizing sensitive data; however, ensuring algorithmic fairness across heterogeneous data distributions while preserving privacy remains fundamentally unresolved. This paper introduces CryptoFair-FL, a novel cryptographic framework providing the first verifiable fairness guarantees for federated learning systems under formal security definitions. The proposed approach combines additively homomorphic encryption with secure multi-party computation to enable privacy-preserving verification of demographic parity and equalized odds metrics without revealing protected attribute distributions or individual predictions. A novel batched verification protocol reduces computational complexity from BigO(n^2) to BigO(n \log n) while maintaining (\dparam, \deltap)-differential privacy with dparam = 0.5 and deltap = 10^{-6}. Theoretical analysis establishes information-theoretic lower bounds on the privacy cost of fairness verification, demonstrating that the proposed protocol achieves near-optimal privacy-fairness tradeoffs. Comprehensive experiments across four benchmark datasets (MIMIC-IV healthcare records, Adult Income, CelebA, and a novel FedFair-100 benchmark) demonstrate that CryptoFair-FL reduces fairness violations from 0.231 to 0.031 demographic parity difference while incurring only 2.3 times computational overhead compared to standard federated averaging. The framework successfully defends against attribute inference attacks, maintaining adversarial success probability below 0.05 across all tested configurations. These results establish a practical pathway for deploying fairness-aware federated learning in regulated industries requiring both privacy protection and algorithmic accountability.
♻ ☆ Rule-Based Spatial Mixture-of-Experts U-Net for Explainable Edge Detection
Deep learning models like U-Net and its variants, have established state-of-the-art performance in edge detection tasks and are used by Generative AI services world-wide for their image generation models. However, their decision-making processes remain opaque, operating as "black boxes" that obscure the rationale behind specific boundary predictions. This lack of transparency is a critical barrier in safety-critical applications where verification is mandatory. To bridge the gap between high-performance deep learning and interpretable logic, we propose the Rule-Based Spatial Mixture-of-Experts U-Net (sMoE U-Net). Our architecture introduces two key innovations: (1) Spatially-Adaptive Mixture-of-Experts (sMoE) blocks integrated into the decoder skip connections, which dynamically gate between "Context" (smooth) and "Boundary" (sharp) experts based on local feature statistics; and (2) a Takagi-Sugeno-Kang (TSK) Fuzzy Head that replaces the standard classification layer. This fuzzy head fuses deep semantic features with heuristic edge signals using explicit IF-THEN rules. We evaluate our method on the BSDS500 benchmark, achieving an Optimal Dataset Scale (ODS) F-score of 0.7628, effectively matching purely deep baselines like HED (0.7688) while outperforming the standard U-Net (0.7437). Crucially, our model provides pixel-level explainability through "Rule Firing Maps" and "Strategy Maps," allowing users to visualize whether an edge was detected due to strong gradients, high semantic confidence, or specific logical rule combinations.
♻ ☆ Batch-CAM: Introduction to better reasoning in convolutional deep learning models
Deep learning opacity often impedes deployment in high-stakes domains. We propose a training framework that aligns model focus with class-representative features without requiring pixel-level annotations. To this end, we introduce Batch-CAM, a vectorised implementation of Gradient-weighted Class Activation Mapping that integrates directly into the training loop with minimal computational overhead. We propose two regularisation terms: a Prototype Loss, which aligns individual-sample attention with the global class average, and a Batch-CAM Loss, which enforces consistency within a training batch. These are evaluated using L1, L2, and SSIM metrics. Validated on MNIST and Fashion-MNIST using ResNet18 and ConvNeXt-V2, our method generates significantly more coherent and human-interpretable saliency maps compared to baselines. While maintaining competitive classification accuracy, the framework successfully suppresses spurious feature activation, as evidenced by qualitative reconstruction analysis. Batch-CAM appears to offer a scalable pathway for training intrinsically interpretable models by leveraging batch-level statistics to guide feature extraction, effectively bridging the gap between predictive performance and explainability.
comment: 10 pages, 6 figures, submitted to Signal, Image and Video Processing, Springer Nature
♻ ☆ Post-hoc Probabilistic Vision-Language Models ICLR 2026
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
comment: Published at ICLR 2026. Project page: https://aaltoml.github.io/BayesVLM/
♻ ☆ Robust and Real-Time Bangladeshi Currency Recognition: A Dual-Stream MobileNet and EfficientNet Approach
Accurate currency recognition is essential for assistive technologies, particularly for visually impaired individuals who rely on others to identify banknotes. This dependency puts them at risk of fraud and exploitation. To address these challenges, we first build a new Bangladeshi banknote dataset that includes both controlled and real-world scenarios, ensuring a more comprehensive and diverse representation. Next, to enhance the dataset's robustness, we incorporate four additional datasets, including public benchmarks, to cover various complexities and improve the model's generalization. To overcome the limitations of current recognition models, we propose a novel hybrid CNN architecture that combines MobileNetV3-Large and EfficientNetB0 for efficient feature extraction. This is followed by an effective multilayer perceptron (MLP) classifier to improve performance while keeping computational costs low, making the system suitable for resource-constrained devices. The experimental results show that the proposed model achieves 97.95% accuracy on controlled datasets, 92.84% on complex backgrounds, and 94.98% accuracy when combining all datasets. The model's performance is thoroughly evaluated using five-fold cross-validation and seven metrics: accuracy, precision, recall, F1-score, Cohen's Kappa, MCC, and AUC. Additionally, explainable AI methods like LIME and SHAP are incorporated to enhance transparency and interpretability.
♻ ☆ PromptDepthAnything++: Accurate 4K Metric Depth Estimation via Pattern-Agnostic Prompting
Prompts play a critical role in unleashing the power of language and vision foundation models for specific tasks. For the first time, we introduce prompting into depth foundation models, creating a new paradigm for metric depth estimation termed Prompt Depth Anything. Specifically, we use a low-cost LiDAR as the prompt to guide the Depth Anything model for accurate metric depth output, achieving up to 4K resolution. Our approach centers on a concise prompt fusion design that integrates the LiDAR at multiple scales within the depth decoder. To address training challenges posed by limited datasets containing both LiDAR depth and precise GT depth, we propose a scalable data pipeline that includes synthetic data LiDAR simulation and real data pseudo GT depth generation. To further extend our method to work with any prompt depth points, we propose a new prompting mechanism, which serializes the input depth points into tokens and uses self-attention to enhance image tokens from depth foundation models. Our approach sets new state-of-the-arts on 8 zero-shot depth benchmarks and benefits downstream applications, including 3D reconstruction and generalized robotic grasping. The code is available at https://github.com/DepthAnything/PromptDA .
comment: Project page: https://PromptDA.github.io/
♻ ☆ DeepGen 1.0: A Lightweight Unified Multimodal Model for Advancing Image Generation and Editing
Current unified multimodal models for image generation and editing typically rely on massive parameter scales (e.g., >10B), entailing prohibitive training costs and deployment footprints. In this work, we present DeepGen 1.0, a lightweight 5B unified model that achieves comprehensive capabilities competitive with or surpassing much larger counterparts. To overcome the limitations of compact models in semantic understanding and fine-grained control, we introduce Stacked Channel Bridging (SCB), a deep alignment framework that extracts hierarchical features from multiple VLM layers and fuses them with learnable 'think tokens' to provide the generative backbone with structured, reasoning-rich guidance. We further design a data-centric training strategy spanning three progressive stages: (1) Alignment Pre-training on large-scale image-text pairs and editing triplets to synchronize VLM and DiT representations, (2) Joint Supervised Fine-tuning on a high-quality mixture of generation, editing, and reasoning tasks to foster omni-capabilities, and (3) Reinforcement Learning with MR-GRPO, which leverages a mixture of reward functions and supervision signals, resulting in substantial gains in generation quality and alignment with human preferences, while maintaining stable training progress and avoiding visual artifacts. Despite being trained on only ~50M samples, DeepGen 1.0 achieves leading performance across diverse benchmarks, surpassing the 80B HunyuanImage by 28% on WISE and the 27B Qwen-Image-Edit by 37% on UniREditBench. By open-sourcing our training code, weights, and datasets, we provide an efficient, high-performance alternative to democratize unified multimodal research.
♻ ☆ Sim2real Image Translation Enables Viewpoint-Robust Policies from Fixed-Camera Datasets
Vision-based policies for robot manipulation have achieved significant recent success, but are still brittle to distribution shifts such as camera viewpoint variations. Robot demonstration data is scarce and often lacks appropriate variation in camera viewpoints. Simulation offers a way to collect robot demonstrations at scale with comprehensive coverage of different viewpoints, but presents a visual sim2real challenge. To bridge this gap, we propose MANGO -- an unpaired image translation method with a novel segmentation-conditioned InfoNCE loss, a highly-regularized discriminator design, and a modified PatchNCE loss. We find that these elements are crucial for maintaining viewpoint consistency during sim2real translation. When training MANGO, we only require a small amount of fixed-camera data from the real world, but show that our method can generate diverse unseen viewpoints by translating simulated observations. In this setting, MANGO outperforms all other image translation methods we tested. In certain real-world tabletop manipulation tasks, MANGO augmentation increases shifted-view success rates by over 40 percentage points compared to policies trained without augmentation.
♻ ☆ Hallucinating 360°: Panoramic Street-View Generation via Local Scenes Diffusion and Probabilistic Prompting
Panoramic perception holds significant potential for autonomous driving, enabling vehicles to acquire a comprehensive 360° surround view in a single shot. However, autonomous driving is a data-driven task. Complete panoramic data acquisition requires complex sampling systems and annotation pipelines, which are time-consuming and labor-intensive. Although existing street view generation models have demonstrated strong data regeneration capabilities, they can only learn from the fixed data distribution of existing datasets and cannot leverage stitched pinhole images as a supervisory signal. In this paper, we propose the first panoramic generation method Percep360 for autonomous driving. Percep360 enables coherent generation of panoramic data with control signals based on the stitched panoramic data. Percep360 focuses on two key aspects: coherence and controllability. Specifically, to overcome the inherent information loss caused by the pinhole sampling process, we propose the Local Scenes Diffusion Method (LSDM). LSDM reformulates the panorama generation as a spatially continuous diffusion process, bridging the gaps between different data distributions. Additionally, to achieve the controllable generation of panoramic images, we propose a Probabilistic Prompting Method (PPM). PPM dynamically selects the most relevant control cues, enabling controllable panoramic image generation. We evaluate the effectiveness of the generated images from three perspectives: image quality assessment (i.e., no-reference and with reference), controllability, and their utility in real-world Bird's Eye View (BEV) segmentation. Notably, the generated data consistently outperforms the original stitched images in no-reference quality metrics and enhances downstream perception models. The source code will be publicly available at https://github.com/FeiT-FeiTeng/Percep360.
comment: Accepted to ICRA 2026. The source code will be publicly available at https://github.com/FeiT-FeiTeng/Percep360
♻ ☆ TASO: Task-Aligned Sparse Optimization for Parameter-Efficient Model Adaptation EMNLP 2025
LoRA has become one of the most widely used parameter-efficient fine-tuning methods due to its simplicity and effectiveness. However, numerous studies have shown that LoRA often introduces substantial parameter redundancy, which not only increases the number of trainable parameters but also hinders the effectiveness of fine-tuning. Since identifying redundant parameters in LoRA is inherently difficult, how to eliminate them efficiently and accurately remains a challenging problem. In this paper, we propose TASO, a redundancy reduction method that leverages importance information from the pretrained model's weights to mitigate LoRA redundancy. Specifically, we estimate parameter importance on downstream tasks and identify task-specific core regions based on the distribution of importance scores. The location information of these core regions is then used to determine the sparse structure of LoRA modules, enabling redundancy removal before fine-tuning. Our approach significantly reduces the number of trainable parameters required for task adaptation, while providing a novel task-aligned perspective for LoRA redundancy reduction. Experimental results demonstrate that, with a parameter budget comparable to LoRA with rank $r = 1$, TASO consistently outperforms standard LoRA across multiple tasks, achieving strong fine-tuning performance while effectively eliminating redundant parameters.
comment: Accepted to EMNLP 2025 (Main Conference),13 pages,10 figures
♻ ☆ Deep Learning-Based Fixation Type Prediction for Quality Assurance in Digital Pathology
Accurate annotation of fixation type is a critical step in slide preparation for pathology laboratories. However, this manual process is prone to errors, impacting downstream analyses and diagnostic accuracy. Existing methods for verifying formalin-fixed, paraffin-embedded (FFPE), and frozen section (FS) fixation types typically require full-resolution whole-slide images (WSIs), limiting scalability for high-throughput quality control. We propose a deep-learning model to predict fixation types using low-resolution, pre-scan thumbnail images. The model was trained on WSIs from the TUM Institute of Pathology (n=1,200, Leica GT450DX) and evaluated on a class-balanced subset of The Cancer Genome Atlas dataset (TCGA, n=8,800, Leica AT2), as well as on class-balanced datasets from Augsburg (n=695 [392 FFPE, 303 FS], Philips UFS) and Regensburg (n=202, 3DHISTECH P1000). Our model achieves an AUROC of 0.88 on TCGA, outperforming comparable pre-scan methods by 4.8%. It also achieves AUROCs of 0.72 on Regensburg and Augsburg slides, underscoring challenges related to scanner-induced domain shifts. Furthermore, the model processes each slide in 21 ms, $400\times$ faster than existing high-magnification, full-resolution methods, enabling rapid, high-throughput processing. This approach provides an efficient solution for detecting labelling errors without relying on high-magnification scans, offering a valuable tool for quality control in high-throughput pathology workflows. Future work will improve and evaluate the model's generalisation to additional scanner types. Our findings suggest that this method can increase accuracy and efficiency in digital pathology workflows and may be extended to other low-resolution slide annotations.
comment: 11 pages, 6 figures, 7 tables
♻ ☆ A Plug-and-Play Method for Guided Multi-contrast MRI Reconstruction based on Content/Style Modeling
Since multiple MRI contrasts of the same anatomy contain redundant information, one contrast can guide the reconstruction of an undersampled subsequent contrast. To this end, several end-to-end learning-based guided reconstruction methods have been proposed. However, a key challenge is the requirement of large paired training datasets comprising raw data and aligned reference images. We propose a modular two-stage approach that does not require any k-space training data, relying solely on image-domain datasets, a large part of which can be unpaired. Additionally, our approach provides an explanatory framework for the multi-contrast problem based on the shared and non-shared generative factors underlying two given contrasts. A content/style model of two-contrast image data is learned from a largely unpaired image-domain dataset and is subsequently applied as a plug-and-play operator in iterative reconstruction. The disentanglement of content and style allows explicit representation of contrast-independent and contrast-specific factors. Consequently, incorporating prior information into the reconstruction reduces to a simple replacement of the aliased content of the reconstruction iterate with high-quality content derived from the reference scan. Combining this component with a data consistency step and introducing a general corrective process for the content yields an iterative scheme. We name this novel approach PnP-CoSMo. Various aspects like interpretability and convergence are explored via simulations. Furthermore, its practicality is demonstrated on the public NYU fastMRI DICOM dataset, showing improved generalizability compared to end-to-end methods, and on two in-house multi-coil raw datasets, offering up to 32.6\% more acceleration over learning-based non-guided reconstruction for a given SSIM.
♻ ☆ Structured Spectral Graph Representation Learning for Multi-label Abnormality Analysis from 3D CT Scans
With the growing volume of CT examinations, there is an increasing demand for automated tools such as organ segmentation, abnormality detection, and report generation to support radiologists in managing their clinical workload. Multi-label classification of 3D Chest CT scans remains a critical yet challenging problem due to the complex spatial relationships inherent in volumetric data and the wide variability of abnormalities. Existing methods based on 3D convolutional neural networks struggle to capture long-range dependencies, while Vision Transformers often require extensive pre-training on large-scale, domain-specific datasets to perform competitively. In this work of academic research, we propose a 2.5D alternative by introducing a new graph-based framework that represents 3D CT volumes as structured graphs, where axial slice triplets serve as nodes processed through spectral graph convolution, enabling the model to reason over inter-slice dependencies while maintaining complexity compatible with clinical deployment. Our method, trained and evaluated on 3 datasets from independent institutions, achieves strong cross-dataset generalization, and shows competitive performance compared to state-of-the-art visual encoders. We further conduct comprehensive ablation studies to evaluate the impact of various aggregation strategies, edge-weighting schemes, and graph connectivity patterns. Additionally, we demonstrate the broader applicability of our approach through transfer experiments on automated radiology report generation and abdominal CT data.
comment: 28 pages, 16 figures
♻ ☆ DuoCast: Duo-Probabilistic Diffusion for Precipitation Nowcasting
Accurate short-term precipitation forecasting is critical for weather-sensitive decision-making in agriculture, transportation, and disaster response. Existing deep learning approaches often struggle to balance global structural consistency with local detail preservation, especially under complex meteorological conditions. We propose DuoCast, a dual-diffusion framework that decomposes precipitation forecasting into low- and high-frequency components modeled in orthogonal latent subspaces. We theoretically prove that this frequency decomposition reduces prediction error compared to conventional single branch U-Net diffusion models. In DuoCast, the low-frequency model captures large-scale trends via convolutional encoders conditioned on weather front dynamics, while the high-frequency model refines fine-scale variability using a self-attention-based architecture. Experiments on four benchmark radar datasets show that DuoCast consistently outperforms state-of-the-art baselines, achieving superior accuracy in both spatial detail and temporal evolution.
♻ ☆ Active Sampling for MRI-based Sequential Decision Making
Despite the superior diagnostic capability of Magnetic Resonance Imaging (MRI), its use as a Point-of-Care (PoC) device remains limited by high cost and complexity. To enable such a future by reducing the magnetic field strength, one key approach will be to improve sampling strategies. Previous work has shown that it is possible to make diagnostic decisions directly from k-space with fewer samples. Such work shows that single diagnostic decisions can be made, but if we aspire to see MRI as a true PoC, multiple and sequential decisions are necessary while minimizing the number of samples acquired. We present a novel multi-objective reinforcement learning framework enabling comprehensive, sequential, diagnostic evaluation from undersampled k-space data. Our approach during inference actively adapts to sequential decisions to optimally sample. To achieve this, we introduce a training methodology that identifies the samples that contribute the best to each diagnostic objective using a step-wise weighting reward function. We evaluate our approach in two sequential knee pathology assessment tasks: ACL sprain detection and cartilage thickness loss assessment. Our framework achieves diagnostic performance competitive with various policy-based benchmarks on disease detection, severity quantification, and overall sequential diagnosis, while substantially saving k-space samples. Our approach paves the way for the future of MRI as a comprehensive and affordable PoC device. Our code is publicly available at https://github.com/vios-s/MRI_Sequential_Active_Sampling
comment: Under Review
♻ ☆ A Step to Decouple Optimization in 3DGS ICLR 2026
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for real-time novel view synthesis. As an explicit representation optimized through gradient propagation among primitives, optimization widely accepted in deep neural networks (DNNs) is actually adopted in 3DGS, such as synchronous weight updating and Adam with the adaptive gradient. However, considering the physical significance and specific design in 3DGS, there are two overlooked details in the optimization of 3DGS: (i) update step coupling, which induces optimizer state rescaling and costly attribute updates outside the viewpoints, and (ii) gradient coupling in the moment, which may lead to under- or over-effective regularization. Nevertheless, such a complex coupling is under-explored. After revisiting the optimization of 3DGS, we take a step to decouple it and recompose the process into: Sparse Adam, Re-State Regularization and Decoupled Attribute Regularization. Taking a large number of experiments under the 3DGS and 3DGS-MCMC frameworks, our work provides a deeper understanding of these components. Finally, based on the empirical analysis, we re-design the optimization and propose AdamW-GS by re-coupling the beneficial components, under which better optimization efficiency and representation effectiveness are achieved simultaneously.
comment: Accepted by ICLR 2026
♻ ☆ MDAFNet: Multiscale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection
Infrared small target detection (IRSTD) plays a crucial role in numerous military and civilian applications. However, existing methods often face the gradual degradation of target edge pixels as the number of network layers increases, and traditional convolution struggles to differentiate between frequency components during feature extraction, leading to low-frequency backgrounds interfering with high-frequency targets and high-frequency noise triggering false detections. To address these limitations, we propose MDAFNet (Multi-scale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection), which integrates the Multi-Scale Differential Edge (MSDE) module and Dual-Domain Adaptive Feature Enhancement (DAFE) module. The MSDE module, through a multi-scale edge extraction and enhancement mechanism, effectively compensates for the cumulative loss of target edge information during downsampling. The DAFE module combines frequency domain processing mechanisms with simulated frequency decomposition and fusion mechanisms in the spatial domain to effectively improve the network's capability to adaptively enhance high-frequency targets and selectively suppress high-frequency noise. Experimental results on multiple datasets demonstrate the superior detection performance of MDAFNet.
♻ ☆ R3DPA: Leveraging 3D Representation Alignment and RGB Pretrained Priors for LiDAR Scene Generation
LiDAR scene synthesis is an emerging solution to scarcity in 3D data for robotic tasks such as autonomous driving. Recent approaches employ diffusion or flow matching models to generate realistic scenes, but 3D data remains limited compared to RGB datasets with millions of samples. We introduce R3DPA, the first LiDAR scene generation method to unlock image-pretrained priors for LiDAR point clouds, and leverage self-supervised 3D representations for state-of-the-art results. Specifically, we (i) align intermediate features of our generative model with self-supervised 3D features, which substantially improves generation quality; (ii) transfer knowledge from large-scale image-pretrained generative models to LiDAR generation, mitigating limited LiDAR datasets; and (iii) enable point cloud control at inference for object inpainting and scene mixing with solely an unconditional model. On the KITTI-360 benchmark R3DPA achieves state of the art performance. Code and pretrained models are available at https://github.com/valeoai/R3DPA.
comment: ICRA 2026
Hybrid Swin Attention Networks for Simultaneously Low-Dose PET and CT Denoising
Low-dose computed tomography (LDCT) and positron emission tomography (PET) have emerged as safer alternatives to conventional imaging modalities by significantly reducing radiation exposure. However, current approaches often face a trade$-$off between training stability and computational efficiency. In this study, we propose a novel Hybrid Swin Attention Network (HSANet), which incorporates Efficient Global Attention (EGA) modules and a hybrid upsampling module to address these limitations. The EGA modules enhance both spatial and channel-wise interaction, improving the network's capacity to capture relevant features, while the hybrid upsampling module mitigates the risk of overfitting to noise. We validate the proposed approach using a publicly available LDCT/PET dataset. Experimental results demonstrate that HSANet achieves superior denoising performance compared to state of the art methods, while maintaining a lightweight model size suitable for deployment on GPUs with standard memory configurations. Thus, our approach demonstrates significant potential for practical, real-world clinical applications.
♻ ☆ FlashEdit: Decoupling Speed, Structure, and Semantics for Precise Image Editing
Text-guided image editing with diffusion models has achieved remarkable quality but suffers from prohibitive latency, hindering real-world applications. We introduce FlashEdit, a novel framework designed to enable high-fidelity, real-time image editing. Its efficiency stems from three key innovations: (1) a One-Step Inversion-and-Editing (OSIE) pipeline that bypasses costly iterative processes; (2) a Background Shield (BG-Shield) technique that guarantees background preservation by selectively modifying features only within the edit region; and (3) a Sparsified Spatial Cross-Attention (SSCA) mechanism that ensures precise, localized edits by suppressing semantic leakage to the background. Extensive experiments demonstrate that FlashEdit maintains superior background consistency and structural integrity, while performing edits in under 0.2 seconds, which is an over 150$\times$ speedup compared to prior multi-step methods. Our code will be made publicly available at https://github.com/JunyiWuCode/FlashEdit.
comment: Our code will be made publicly available at https://github.com/JunyiWuCode/FlashEdit
♻ ☆ A DMD-Based Adaptive Modulation Method for High Dynamic Range Imaging in High-Glare Environments
Background The accuracy of photomechanics measurements critically relies on image quality,particularly under extreme illumination conditions such as welding arc monitoring and polished metallic surface analysis. High dynamic range (HDR) imaging above 120 dB is essential in these contexts. Conventional CCD/CMOS sensors, with dynamic ranges typically below 70 dB, are highly susceptible to saturation under glare, resulting in irreversible loss of detail and significant errors in digital image correlation (DIC). Methods This paper presents an HDR imaging system that leverages the spatial modulation capability of a digital micromirror device (DMD). The system architecture enables autonomous regional segmentation and adaptive exposure control for high-dynamic-range scenes through an integrated framework comprising two synergistic subsystems: a DMD-based optical modulation unit and an adaptive computational imaging pipeline. Results The system achieves a measurable dynamic range of 127 dB, effectively eliminating satu ration artifacts under high glare. Experimental results demonstrate a 78% reduction in strain error and improved DIC positioning accuracy, confirming reliable performance across extreme intensity variations. Conclusion The DMD-based system provides high fidelity adaptive HDR imaging, overcoming key limitations of conventional sensors. It exhibits strong potential for optical metrology and stress analysis in high-glare environments where traditional methods are inadequate.
comment: This paper has been accepted by Experimental Mechanics
♻ ☆ Heterogeneous Complementary Distillation AAAI2026
Knowledge distillation (KD)transfers the dark knowledge from a complex teacher to a compact student. However, heterogeneous architecture distillation, such as Vision Transformer (ViT) to ResNet18, faces challenges due to differences in spatial feature representations.Traditional KD methods are mostly designed for homogeneous architectures and hence struggle to effectively address the disparity. Although heterogeneous KD approaches have been developed recently to solve these issues, they often incur high computational costs and complex designs, or overly rely on logit alignment, which limits their ability to leverage the complementary features. To overcome these limitations, we propose Heterogeneous Complementary Distillation (HCD),a simple yet effective framework that integrates complementary teacher and student features to align representations in shared logits.These logits are decomposed and constrained to facilitate diverse knowledge transfer to the student. Specifically, HCD processes the student's intermediate features through convolutional projector and adaptive pooling, concatenates them with teacher's feature from the penultimate layer and then maps them via the Complementary Feature Mapper (CFM) module, comprising fully connected layer,to produce shared logits.We further introduce Sub-logit Decoupled Distillation (SDD) that partitions the shared logits into n sub-logits, which are fused with teacher's logits to rectify classification.To ensure sub-logit diversity and reduce redundant knowledge transfer, we propose an Orthogonality Loss (OL).By preserving student-specific strengths and leveraging teacher knowledge,HCD enhances robustness and generalization in students.Extensive experiments on the CIFAR-100, Fine-grained (e.g., CUB200)and ImageNet-1K datasets demonstrate that HCD outperforms state-of-the-art KD methods,establishing it as an effective solution for heterogeneous KD.
comment: Accepted by AAAI2026
♻ ☆ Adopting a human developmental visual diet yields robust, shape-based AI vision
Despite years of research and the dramatic scaling of artificial intelligence (AI) systems, a striking misalignment between artificial and human vision persists. Contrary to humans, AI relies heavily on texture-features rather than shape information, lacks robustness to image distortions, remains highly vulnerable to adversarial attacks, and struggles to recognise simple abstract shapes within complex backgrounds. To close this gap, here we take inspiration from how human vision develops from early infancy into adulthood. We quantified visual maturation by synthesising decades of research into a novel developmental visual diet (DVD) for AI vision. Guiding AI systems through this human-inspired curriculum, which considers the development of visual acuity, contrast sensitivity, and colour, produces models that better align with human behaviour on every hallmark of robust vision tested, yielding the strongest reported reliance on shape information to date, abstract shape recognition beyond the state of the art, and higher resilience to image corruptions and adversarial attacks. Our results thus demonstrate that robust AI vision can be achieved by guiding how a model learns, not merely how much it learns, offering a resource-efficient route toward safer and more human-like artificial visual systems.
♻ ☆ From slides to AI-ready maps: Standardized multi-layer tissue maps as metadata for artificial intelligence in digital pathology
A Whole Slide Image (WSI) is a high-resolution digital image created by scanning an entire glass slide containing a biological specimen, such as tissue sections or cell samples, at multiple magnifications. These images are digitally viewable, analyzable, and shareable, and are widely used for Artificial Intelligence (AI) algorithm development. WSIs play an important role in pathology for disease diagnosis and oncology for cancer research, but are also applied in neurology, veterinary medicine, hematology, microbiology, dermatology, pharmacology, toxicology, immunology, and forensic science. When assembling cohorts for AI training or validation, it is essential to know the content of a WSI. However, no standard currently exists for this metadata, and such a selection has largely relied on manual inspection, which is not suitable for large collections with millions of objects. We propose a general framework to generate 2D index maps (tissue maps) that describe the morphological content of WSIs using common syntax and semantics to achieve interoperability between catalogs. The tissue maps are structured in three layers: source, tissue type, and pathological alterations. Each layer assigns WSI segments to specific classes, providing AI-ready metadata. We demonstrate the advantages of this standard by applying AI-based metadata extraction from WSIs to generate tissue maps and integrating them into a WSI archive. This integration enhances search capabilities within WSI archives, thereby facilitating the accelerated assembly of high-quality, balanced, and more targeted datasets for AI training, validation, and cancer research.
♻ ☆ Investigating Redundancy in Multimodal Large Language Models with Multiple Vision Encoders ICLR2026
Recent multimodal large language models (MLLMs) increasingly integrate multiple vision encoders to improve performance on various benchmarks, assuming that diverse pretraining objectives yield complementary visual signals. However, we show this assumption often fails in practice. Through systematic encoder masking across representative multi encoder MLLMs, we find that performance typically degrades gracefully, and sometimes even improves, when selected encoders are masked, revealing pervasive encoder redundancy. To quantify this effect, we introduce two principled metrics: the Conditional Utilization Rate (CUR), which measures an encoder s marginal contribution in the presence of others, and the Information Gap (IG), which captures heterogeneity in encoder utility within a model. Using these tools, we observe: (i) strong specialization on tasks like OCR and Chart, where a single encoder can dominate with a CUR greater than 90 percent, (ii) high redundancy on general VQA and knowledge based tasks, where encoders are largely interchangeable, (iii) instances of detrimental encoders with negative CUR. Notably, masking specific encoders can yield up to 16 percent higher accuracy on a specific task category and 3.6 percent overall performance boost compared to the full model.Furthermore, single and dual encoder variants recover over 90 percent of baseline on most non OCR tasks with substantially lower training resources and inference latency. Our analysis challenges the more encoders are better heuristic in MLLMs and provides actionable diagnostics for developing more efficient and effective multimodal architectures.
comment: accepted by ICLR2026, project website: https://github.com/MaoSong2022/Encoder-Redundancy
♻ ☆ Hand2World: Autoregressive Egocentric Interaction Generation via Free-Space Hand Gestures
Egocentric interactive world models are essential for augmented reality and embodied AI, where visual generation must respond to user input with low latency, geometric consistency, and long-term stability. We study egocentric interaction generation from a single scene image under free-space hand gestures, aiming to synthesize photorealistic videos in which hands enter the scene, interact with objects, and induce plausible world dynamics under head motion. This setting introduces fundamental challenges, including distribution shift between free-space gestures and contact-heavy training data, ambiguity between hand motion and camera motion in monocular views, and the need for arbitrary-length video generation. We present Hand2World, a unified autoregressive framework that addresses these challenges through occlusion-invariant hand conditioning based on projected 3D hand meshes, allowing visibility and occlusion to be inferred from scene context rather than encoded in the control signal. To stabilize egocentric viewpoint changes, we inject explicit camera geometry via per-pixel Plücker-ray embeddings, disentangling camera motion from hand motion and preventing background drift. We further develop a fully automated monocular annotation pipeline and distill a bidirectional diffusion model into a causal generator, enabling arbitrary-length synthesis. Experiments on three egocentric interaction benchmarks show substantial improvements in perceptual quality and 3D consistency while supporting camera control and long-horizon interactive generation.
♻ ☆ Easy-Poly: An Easy Polyhedral Framework For 3D Multi-Object Tracking
Recent 3D multi-object tracking (3D MOT) methods mainly follow tracking-by-detection pipelines, but often suffer from high false positives, missed detections, and identity switches, especially in crowded and small-object scenarios. To address these challenges, we propose Easy-Poly, a filter-based 3D MOT framework with four key innovations: (1) CNMSMM, a novel Camera-LiDAR fusion detection method combining multi-modal augmentation and an efficient NMS with a new loss function to improve small target detection; (2) Dynamic Track-Oriented (DTO) data association that robustly handles uncertainties and occlusions via class-aware optimal assignment and parallel processing strategies; (3) Dynamic Motion Modeling (DMM) using a confidence-weighted Kalman filter with adaptive noise covariance to enhance tracking accuracy; and (4) an extended life-cycle management system reducing identity switches and false terminations. Experimental results show that Easy-Poly outperforms state-of-the-art methods such as Poly-MOT and Fast-Poly, achieving notable gains in mAP (e.g., from 63.30% to 65.65% with LargeKernel3D) and AMOTA (e.g., from 73.1% to 75.6%), while also running in real-time. Our framework advances robustness and adaptability in complex driving environments, paving the way for safer autonomous driving perception.
comment: 8 pages, 4 figures, 6 tables
♻ ☆ PLANING: A Loosely Coupled Triangle-Gaussian Framework for Streaming 3D Reconstruction
Streaming reconstruction from monocular image sequences remains challenging, as existing methods typically favor either high-quality rendering or accurate geometry, but rarely both. We present PLANING, an efficient on-the-fly reconstruction framework built on a hybrid representation that loosely couples explicit geometric primitives with neural Gaussians, enabling geometry and appearance to be modeled in a decoupled manner. This decoupling supports an online initialization and optimization strategy that separates geometry and appearance updates, yielding stable streaming reconstruction with substantially reduced structural redundancy. PLANING improves dense mesh Chamfer-L2 by 18.52% over PGSR, surpasses ARTDECO by 1.31 dB PSNR, and reconstructs ScanNetV2 scenes in under 100 seconds, over 5x faster than 2D Gaussian Splatting, while matching the quality of offline per-scene optimization. Beyond reconstruction quality, the structural clarity and computational efficiency of PLANING make it well suited for a broad range of downstream applications, such as enabling large-scale scene modeling and simulation-ready environments for embodied AI. Project page: https://city-super.github.io/PLANING/ .
comment: Project page: https://city-super.github.io/PLANING/
♻ ☆ CNN and ViT Efficiency Study on Tiny ImageNet and DermaMNIST Datasets
This study evaluates the trade-offs between convolutional and transformer-based architectures on both medical and general-purpose image classification benchmarks. We use ResNet-18 as our baseline and introduce a fine-tuning strategy applied to four Vision Transformer variants (Tiny, Small, Base, Large) on DermatologyMNIST and TinyImageNet. Our goal is to reduce inference latency and model complexity with acceptable accuracy degradation. Through systematic hyperparameter variations, we demonstrate that appropriately fine-tuned Vision Transformers can match or exceed the baseline's performance, achieve faster inference, and operate with fewer parameters, highlighting their viability for deployment in resource-constrained environments.
♻ ☆ Direct Kernel Optimization: Efficient Design for Opto-Electronic Convolutional Neural Networks
Hybrid opto-electronic neural networks combine optical front-ends with electronic back-ends to perform vision tasks, but joint end-to-end (E2E) optimization of optical and electronic components is computationally expensive due to large parameter spaces and repeated optical convolutions. We propose Direct Kernel Optimization (DKO), a two-stage training framework that first trains a conventional electronic CNN and then synthesizes optical kernels to replicate the first-layer convolutional filters, reducing optimization dimensionality and avoiding hefty simulated optical convolutions during optimization. We evaluate DKO in simulation on a monocular depth estimation model and show that it achieves twice the accuracy of E2E training under equal computational budgets while reducing training time. Given the substantial computational challenges of optimizing hybrid opto-electronic systems, our results position DKO as a scalable optimization approach to train and realize these systems.
♻ ☆ KAN We Flow? Advancing Robotic Manipulation with 3D Flow Matching via KAN & RWKV
Diffusion-based visuomotor policies excel at modeling action distributions but are inference-inefficient, since recursively denoising from noise to policy requires many steps and heavy UNet backbones, which hinders deployment on resource-constrained robots. Flow matching alleviates the sampling burden by learning a one-step vector field, yet prior implementations still inherit large UNet-style architectures. In this work, we present KAN-We-Flow, a flow-matching policy that draws on recent advances in Receptance Weighted Key Value (RWKV) and Kolmogorov-Arnold Networks (KAN) from vision to build a lightweight and highly expressive backbone for 3D manipulation. Concretely, we introduce an RWKV-KAN block: an RWKV first performs efficient time/channel mixing to propagate task context, and a subsequent GroupKAN layer applies learnable spline-based, groupwise functional mappings to perform feature-wise nonlinear calibration of the action mapping on RWKV outputs. Moreover, we introduce an Action Consistency Regularization (ACR), a lightweight auxiliary loss that enforces alignment between predicted action trajectories and expert demonstrations via Euler extrapolation, providing additional supervision to stabilize training and improve policy precision. Without resorting to large UNets, our design reduces parameters by 86.8\%, maintains fast runtime, and achieves state-of-the-art success rates on Adroit, Meta-World, and DexArt benchmarks. Our project page can be viewed in \href{https://zhihaochen-2003.github.io/KAN-We-Flow.github.io/}{\textcolor{red}{link}}
comment: Accepted By ICRA2026
♻ ☆ Language-in-the-Loop Culvert Inspection on the Erie Canal
Culverts on canals such as the Erie Canal, built originally in 1825, require frequent inspections to ensure safe operation. Human inspection of culverts is challenging due to age, geometry, poor illumination, weather, and lack of easy access. We introduce VISION, an end-to-end, language-in-the-loop autonomy system that couples a web-scale vision-language model (VLM) with constrained viewpoint planning for autonomous inspection of culverts. Brief prompts to the VLM solicit open-vocabulary ROI proposals with rationales and confidences, stereo depth is fused to recover scale, and a planner -- aware of culvert constraints -- commands repositioning moves to capture targeted close-ups. Deployed on a quadruped in a culvert under the Erie Canal, VISION closes the see, decide, move, re-image loop on-board and produces high-resolution images for detailed reporting without domain-specific fine-tuning. In an external evaluation by New York Canal Corporation personnel, initial ROI proposals achieved 61.4\% agreement with subject-matter experts, and final post-re-imaging assessments reached 80\%, indicating that VISION converts tentative hypotheses into grounded, expert-aligned findings.
comment: First two authors contributed equally
♻ ☆ A Synthetic Data-Driven Radiology Foundation Model for Pan-tumor Clinical Diagnosis
AI-assisted imaging made substantial advances in tumor diagnosis and management. However, a major barrier to developing robust oncology foundation models is the scarcity of large-scale, high-quality annotated datasets, which are limited by privacy restrictions and the high cost of manual labeling. To address this gap, we present PASTA, a pan-tumor radiology foundation model built on PASTA-Gen, a synthetic data framework that generated 30,000 3D CT scans with pixel-level lesion masks and structured reports of tumors across ten organ systems. Leveraging this resource, PASTA achieves state-of-the-art performance on 45 of 46 oncology tasks, including non-contrast CT tumor screening, lesion segmentation, structured reporting, tumor staging, survival prediction, and MRI-modality transfer. To assess clinical applicability, we developed PASTA-AID, a clinical decision support system, and ran a retrospective simulated clinical trial across two scenarios. For pan-tumor screening on plain CT with fixed reading time, PASTA-AID increased radiologists' throughput by 11.1-25.1% and improved sensitivity by 17.0-31.4% and precision by 10.5-24.9%; additionally, in a diagnosis-aid workflow, it reduced segmentation time by up to 78.2% and reporting time by up to 36.5%. Beyond gains in accuracy and efficiency, PASTA-AID narrowed the expertise gap, enabling less-experienced radiologists to approach expert-level performance. Together, this work establishes an end-to-end, synthetic data-driven pipeline spanning data generation, model development, and clinical validation, thereby demonstrating substantial potential for pan-tumor research and clinical translation.
comment: 63 pages, 7 figures
♻ ☆ Unifying Multiple Foundation Models for Advanced Computational Pathology
Foundation models have substantially advanced computational pathology by learning transferable visual representations from large histological datasets, yet their performance varies widely across tasks due to differences in training data composition and reliance on proprietary datasets that cannot be cumulatively expanded. Existing efforts to combine foundation models through offline distillation partially mitigate this issue but require dedicated distillation data and repeated retraining to integrate new models. Here we present Shazam, an online integration model that adaptively combines multiple pretrained pathology foundation models within a unified and scalable representation learning paradigm. Our findings show that fusing multi-level features through adaptive expert weighting and online distillation enables efficient consolidation of complementary model strengths without additional pretraining. Across spatial transcriptomics prediction, survival prognosis, tile-level classification, and visual question answering, Shazam consistently outperforms strong individual models, demonstrating that online model integration provides a practical and extensible strategy for advancing computational pathology.
comment: 50 pages, 5 main figures
♻ ☆ LesionDiffusion: Towards Text-controlled General Lesion Synthesis
Fully-supervised lesion recognition methods in medical imaging face challenges due to the reliance on large annotated datasets, which are expensive and difficult to collect. To address this, synthetic lesion generation has become a promising approach. However, existing models struggle with scalability, fine-grained control over lesion attributes, and the generation of complex structures. We propose LesionDiffusion, a text-controllable lesion synthesis framework for 3D CT imaging that generates both lesions and corresponding masks. By utilizing a structured lesion report template, our model provides greater control over lesion attributes and supports a wider variety of lesion types. We introduce a dataset of 1,505 annotated CT scans with paired lesion masks and structured reports, covering 14 lesion types across 8 organs. LesionDiffusion consists of two components: a lesion mask synthesis network (LMNet) and a lesion inpainting network (LINet), both guided by lesion attributes and image features. Extensive experiments demonstrate that LesionDiffusion significantly improves segmentation performance, with strong generalization to unseen lesion types and organs, outperforming current state-of-the-art models. Code is available at https://github.com/HengruiTianSJTU/LesionDiffusion.
comment: 10 pages, 4 figures
♻ ☆ Vulnerabilities in AI-generated Image Detection: The Challenge of Adversarial Attacks
Recent advancements in image synthesis, particularly with the advent of GAN and Diffusion models, have amplified public concerns regarding the dissemination of disinformation. To address such concerns, numerous AI-generated Image (AIGI) Detectors have been proposed and achieved promising performance in identifying fake images. However, there still lacks a systematic understanding of the adversarial robustness of AIGI detectors. In this paper, we examine the vulnerability of state-of-the-art AIGI detectors against adversarial attack under white-box and black-box settings, which has been rarely investigated so far. To this end, we propose a new method to attack AIGI detectors. First, inspired by the obvious difference between real images and fake images in the frequency domain, we add perturbations under the frequency domain to push the image away from its original frequency distribution. Second, we explore the full posterior distribution of the surrogate model to further narrow this gap between heterogeneous AIGI detectors, e.g., transferring adversarial examples across CNNs and ViTs. This is achieved by introducing a novel post-train Bayesian strategy that turns a single surrogate into a Bayesian one, capable of simulating diverse victim models using one pre-trained surrogate, without the need for re-training. We name our method as Frequency-based Post-train Bayesian Attack, or FPBA. Through FPBA, we demonstrate that adversarial attacks pose a real threat to AIGI detectors. FPBA can deliver successful black-box attacks across various detectors, generators, defense methods, and even evade cross-generator and compressed image detection, which are crucial real-world detection scenarios. Our code is available at https://github.com/onotoa/fpba.
comment: Accepted in TMM
♻ ☆ SimpleMatch: A Simple and Strong Baseline for Semantic Correspondence
Recent advances in semantic correspondence have been largely driven by the use of pre-trained large-scale models. However, a limitation of these approaches is their dependence on high-resolution input images to achieve optimal performance, which results in considerable computational overhead. In this work, we address a fundamental limitation in current methods: the irreversible fusion of adjacent keypoint features caused by deep downsampling operations. This issue is triggered when semantically distinct keypoints fall within the same downsampled receptive field (e.g., 16x16 patches). To address this issue, we present SimpleMatch, a simple yet effective framework for semantic correspondence that delivers strong performance even at low resolutions. We propose a lightweight upsample decoder that progressively recovers spatial detail by upsampling deep features to 1/4 resolution, and a multi-scale supervised loss that ensures the upsampled features retain discriminative features across different spatial scales. In addition, we introduce sparse matching and window-based localization to optimize training memory usage and reduce it by 51%. At a resolution of 252x252 (3.3x smaller than current SOTA methods), SimpleMatch achieves superior performance with 84.1% PCK@0.1 on the SPair-71k benchmark. We believe this framework provides a practical and efficient baseline for future research in semantic correspondence. Code is available at: https://github.com/hailong23-jin/SimpleMatch.
♻ ☆ Free Lunch for Stabilizing Rectified Flow Inversion ICLR 2026
Rectified-Flow (RF)-based generative models have recently emerged as strong alternatives to traditional diffusion models, demonstrating state-of-the-art performance across various tasks. By learning a continuous velocity field that transforms simple noise into complex data, RF-based models not only enable high-quality generation, but also support training-free inversion, which facilitates downstream tasks such as reconstruction and editing. However, existing inversion methods, such as vanilla RF-based inversion, suffer from approximation errors that accumulate across timesteps, leading to unstable velocity fields and degraded reconstruction and editing quality. To address this challenge, we propose Proximal-Mean Inversion (PMI), a training-free gradient correction method that stabilizes the velocity field by guiding it toward a running average of past velocities, constrained within a theoretically derived spherical Gaussian. Furthermore, we introduce mimic-CFG, a lightweight velocity correction scheme for editing tasks, which interpolates between the current velocity and its projection onto the historical average, balancing editing effectiveness and structural consistency. Extensive experiments on PIE-Bench demonstrate that our methods significantly improve inversion stability, image reconstruction quality, and editing fidelity, while reducing the required number of neural function evaluations. Our approach achieves state-of-the-art performance on the PIE-Bench with enhanced efficiency and theoretical soundness.
comment: Accepted by ICLR 2026
♻ ☆ What Matters in Building Vision-Language-Action Models for Generalist Robots
To utilize Foundation Vision Language Models (VLMs) for robotic tasks and motion planning, the community has proposed different methods for injecting action components into VLMs and building the Vision-Language-Action models (VLAs). In this work, we disclose the key factors that significantly influence the performance of VLA on robot manipulation problems and focus on answering three essential design choices: which backbone to select, how to formulate the VLA architectures, and when to add cross-embodiment data. The obtained results convince us firmly to explain why we prefer VLA and develop a new family of VLAs, RoboVLMs, which require very few manual designs and achieve a new state-of-the-art performance in three simulation tasks and real-world experiments. Through our extensive experiments, which include over 8 VLM backbones, 4 policy architectures, and over 600 distinct designed experiments, we provide a detailed guidebook for the future design of VLAs. In addition to the study, the highly flexible RoboVLMs framework, which supports easy integrations of new VLMs and free combinations of various design choices, is made public to facilitate future research. We open-source all details, including codes, models, datasets, and toolkits, along with detailed training and evaluation recipes at: robovlms.github.io.
comment: Project page: robovlms.github.io. Added limitations and future works. Fix categorization
♻ ☆ ProCache: Constraint-Aware Feature Caching with Selective Computation for Diffusion Transformer Acceleration AAAI 2026
Diffusion Transformers (DiTs) have achieved state-of-the-art performance in generative modeling, yet their high computational cost hinders real-time deployment. While feature caching offers a promising training-free acceleration solution by exploiting temporal redundancy, existing methods suffer from two key limitations: (1) uniform caching intervals fail to align with the non-uniform temporal dynamics of DiT, and (2) naive feature reuse with excessively large caching intervals can lead to severe error accumulation. In this work, we analyze the evolution of DiT features during denoising and reveal that both feature changes and error propagation are highly time- and depth-varying. Motivated by this, we propose ProCache, a training-free dynamic feature caching framework that addresses these issues via two core components: (i) a constraint-aware caching pattern search module that generates non-uniform activation schedules through offline constrained sampling, tailored to the model's temporal characteristics; and (ii) a selective computation module that selectively computes within deep blocks and high-importance tokens for cached segments to mitigate error accumulation with minimal overhead. Extensive experiments on PixArt-alpha and DiT demonstrate that ProCache achieves up to 1.96x and 2.90x acceleration with negligible quality degradation, significantly outperforming prior caching-based methods.
comment: Accepted for poster presentation at AAAI 2026
♻ ☆ Explaining and Mitigating the Modality Gap in Contrastive Multimodal Learning
Multimodal learning has recently gained significant popularity, demonstrating impressive performance across various zero-shot classification tasks and a range of perceptive and generative applications. Models such as Contrastive Language-Image Pretraining (CLIP) are designed to bridge different modalities, such as images and text, by learning a shared representation space through contrastive learning. Despite their success, the working mechanisms underlying multimodal learning are not yet well understood. Notably, these models often exhibit a modality gap, where different modalities occupy distinct regions within the shared representation space. In this work, we conduct an in-depth analysis of the emergence of modality gap by characterizing the gradient flow learning dynamics. Specifically, we identify the critical roles of mismatched data pairs and a learnable temperature parameter in causing and perpetuating the modality gap during training. Furthermore, our theoretical insights are validated through experiments on practical CLIP models. These findings provide principled guidance for mitigating the modality gap, including strategies such as appropriate temperature scheduling and modality swapping. Additionally, we demonstrate that closing the modality gap leads to improved performance on tasks such as image-text retrieval.
comment: The first two authors contributed equally to this work
♻ ☆ ArmGS: Composite Gaussian Appearance Refinement for Modeling Dynamic Urban Environments
This work focuses on modeling dynamic urban environments for autonomous driving simulation. Contemporary data-driven methods using neural radiance fields have achieved photorealistic driving scene modeling, but they suffer from low rendering efficacy. Recently, some approaches have explored 3D Gaussian splatting for modeling dynamic urban scenes, enabling high-fidelity reconstruction and real-time rendering. However, these approaches often neglect to model fine-grained variations between frames and camera viewpoints, leading to suboptimal results. In this work, we propose a new approach named ArmGS that exploits composite driving Gaussian splatting with multi-granularity appearance refinement for autonomous driving scene modeling. The core idea of our approach is devising a multi-level appearance modeling scheme to optimize a set of transformation parameters for composite Gaussian refinement from multiple granularities, ranging from local Gaussian level to global image level and dynamic actor level. This not only models global scene appearance variations between frames and camera viewpoints, but also models local fine-grained changes of background and objects. Extensive experiments on multiple challenging autonomous driving datasets, namely, Waymo, KITTI, NOTR and VKITTI2, demonstrate the superiority of our approach over the state-of-the-art methods.
comment: ICRA 2026
♻ ☆ Visual concept ranking uncovers medical shortcuts used by large multimodal models
Ensuring the reliability of machine learning models in safety-critical domains such as healthcare requires auditing methods that can uncover model shortcomings. We introduce a method for identifying important visual concepts within large multimodal models (LMMs) and use it to investigate the behaviors these models exhibit when prompted with medical tasks. We primarily focus on the task of classifying malignant skin lesions from clinical dermatology images, with supplemental experiments including both chest radiographs and natural images. After showing how LMMs display unexpected gaps in performance between different demographic subgroups when prompted with demonstrating examples, we apply our method, Visual Concept Ranking (VCR), to these models and prompts. VCR generates hypotheses related to different visual feature dependencies, which we are then able to validate with manual interventions.
♻ ☆ Spatio-Temporal driven Attention Graph Neural Network with Block Adjacency matrix (STAG-NN-BA) for Remote Land-use Change Detection
Land-use monitoring is fundamental for spatial planning, particularly in view of compound impacts of growing global populations and climate change. Despite existing applications of deep learning in land use monitoring, standard convolutional kernels in deep neural networks limit the applications of these networks to the Euclidean domain only. Considering the geodesic nature of the measurement of the earth's surface, remote sensing is one such area that can benefit from non-Euclidean and spherical domains. For this purpose, we designed a novel Graph Neural Network architecture for spatial and spatio-temporal classification using satellite imagery to acquire insights into socio-economic indicators. We propose a hybrid attention method to learn the relative importance of irregular neighbors in remote sensing data. Instead of classifying each pixel, we propose a method based on Simple Linear Iterative Clustering (SLIC) image segmentation and Graph Attention Network. The superpixels obtained from SLIC become the nodes of our Graph Convolution Network (GCN). A region adjacency graph (RAG) is then constructed where each superpixel is connected to every other adjacent superpixel in the image, enabling information to propagate globally. Finally, we propose a Spatially driven Attention Graph Neural Network (SAG-NN) to classify each RAG. We also propose an extension to our SAG-NN for spatio-temporal data. Unlike regular grids of pixels in images, superpixels are irregular in nature and cannot be used to create spatio-temporal graphs. We introduce temporal bias by combining unconnected RAGs from each image into one supergraph. This is achieved by introducing block adjacency matrices resulting in novel Spatio-Temporal driven Attention Graph Neural Network with Block Adjacency matrix (STAG-NN-BA). SAG-NN and STAG-NN-BA outperform graph and non-graph baselines on Asia14 and C2D2 datasets efficiently.
Machine Learning 150
☆ Imitating What Works: Simulation-Filtered Modular Policy Learning from Human Videos
The ability to learn manipulation skills by watching videos of humans has the potential to unlock a new source of highly scalable data for robot learning. Here, we tackle prehensile manipulation, in which tasks involve grasping an object before performing various post-grasp motions. Human videos offer strong signals for learning the post-grasp motions, but they are less useful for learning the prerequisite grasping behaviors, especially for robots without human-like hands. A promising way forward is to use a modular policy design, leveraging a dedicated grasp generator to produce stable grasps. However, arbitrary stable grasps are often not task-compatible, hindering the robot's ability to perform the desired downstream motion. To address this challenge, we present Perceive-Simulate-Imitate (PSI), a framework for training a modular manipulation policy using human video motion data processed by paired grasp-trajectory filtering in simulation. This simulation step extends the trajectory data with grasp suitability labels, which allows for supervised learning of task-oriented grasping capabilities. We show through real-world experiments that our framework can be used to learn precise manipulation skills efficiently without any robot data, resulting in significantly more robust performance than using a grasp generator naively.
☆ Selection of CMIP6 Models for Regional Precipitation Projection and Climate Change Assessment in the Jhelum and Chenab River Basins
Effective water resource management depends on accurate projections of flows in water channels. For projected climate data, use of different General Circulation Models (GCM) simulates contrasting results. This study shows selection of GCM for the latest generation CMIP6 for hydroclimate change impact studies. Envelope based method was used for the selection, which includes components based on machine learning techniques, allowing the selection of GCMs without the need for in-situ reference data. According to our knowledge, for the first time, such a comparison was performed for the CMIP6 Shared Socioeconomic Pathway (SSP) scenarios data. In addition, the effect of climate change under SSP scenarios was studied, along with the calculation of extreme indices. Finally, GCMs were compared to quantify spatiotemporal differences between CMIP5 and CMIP6 data. Results provide NorESM2 LM, FGOALS g3 as selected models for the Jhelum and Chenab River. Highly vulnerable regions under the effect of climate change were highlighted through spatial maps, which included parts of Punjab, Jammu, and Kashmir. Upon comparison of CMIP5 and CMIP6, no discernible difference was found between the RCP and SSP scenarios precipitation projections. In the future, more detailed statistical comparisons could further reinforce the proposition.
comment: 28 pages
☆ Improved Regret Guarantees for Online Mirror Descent using a Portfolio of Mirror Maps
OMD and its variants give a flexible framework for OCO where the performance depends crucially on the choice of the mirror map. While the geometries underlying OPGD and OEG, both special cases of OMD, are well understood, it remains a challenging open question on how to construct an optimal mirror map for any given constrained set and a general family of loss functions, e.g., sparse losses. Motivated by parameterizing a near-optimal set of mirror maps, we consider a simpler question: is it even possible to obtain polynomial gains in regret by using mirror maps for geometries that interpolate between $L_1$ and $L_2$, which may not be possible by restricting to only OEG ($L_1$) or OPGD ($L_2$). Our main result answers this question positively. We show that mirror maps based on block norms adapt better to the sparsity of loss functions, compared to previous $L_p$ (for $p \in [1, 2]$) interpolations. In particular, we construct a family of online convex optimization instances in $\mathbb{R}^d$, where block norm-based mirror maps achieve a provable polynomial (in $d$) improvement in regret over OEG and OPGD for sparse loss functions. We then turn to the setting in which the sparsity level of the loss functions is unknown. In this case, the choice of geometry itself becomes an online decision problem. We first show that naively switching between OEG and OPGD can incur linear regret, highlighting the intrinsic difficulty of geometry selection. To overcome this issue, we propose a meta-algorithm based on multiplicative weights that dynamically selects among a family of uniform block norms. We show that this approach effectively tunes OMD to the sparsity of the losses, yielding adaptive regret guarantees. Overall, our results demonstrate that online mirror-map selection can significantly enhance the ability of OMD to exploit sparsity in online convex optimization.
☆ Learning functional components of PDEs from data using neural networks
Partial differential equations often contain unknown functions that are difficult or impossible to measure directly, hampering our ability to derive predictions from the model. Workflows for recovering scalar PDE parameters from data are well studied: here we show how similar workflows can be used to recover functions from data. Specifically, we embed neural networks into the PDE and show how, as they are trained on data, they can approximate unknown functions with arbitrary accuracy. Using nonlocal aggregation-diffusion equations as a case study, we recover interaction kernels and external potentials from steady state data. Specifically, we investigate how a wide range of factors, such as the number of available solutions, their properties, sampling density, and measurement noise, affect our ability to successfully recover functions. Our approach is advantageous because it can utilise standard parameter-fitting workflows, and in that the trained PDE can be treated as a normal PDE for purposes such as generating system predictions.
comment: 16 pages with 6 figures. Additional 24 pages and 19 figures supplementary information
☆ Realistic Face Reconstruction from Facial Embeddings via Diffusion Models AAAI 2026
With the advancement of face recognition (FR) systems, privacy-preserving face recognition (PPFR) systems have gained popularity for their accurate recognition, enhanced facial privacy protection, and robustness to various attacks. However, there are limited studies to further verify privacy risks by reconstructing realistic high-resolution face images from embeddings of these systems, especially for PPFR. In this work, we propose the face embedding mapping (FEM), a general framework that explores Kolmogorov-Arnold Network (KAN) for conducting the embedding-to-face attack by leveraging pre-trained Identity-Preserving diffusion model against state-of-the-art (SOTA) FR and PPFR systems. Based on extensive experiments, we verify that reconstructed faces can be used for accessing other real-word FR systems. Besides, the proposed method shows the robustness in reconstructing faces from the partial and protected face embeddings. Moreover, FEM can be utilized as a tool for evaluating safety of FR and PPFR systems in terms of privacy leakage. All images used in this work are from public datasets.
comment: Accepted to AAAI 2026
☆ Learning to Approximate Uniform Facility Location via Graph Neural Networks
There has been a growing interest in using neural networks, especially message-passing neural networks (MPNNs), to solve hard combinatorial optimization problems heuristically. However, existing learning-based approaches for hard combinatorial optimization tasks often rely on supervised training data, reinforcement learning, or gradient estimators, leading to significant computational overhead, unstable training, or a lack of provable performance guarantees. In contrast, classical approximation algorithms offer such performance guarantees under worst-case inputs but are non-differentiable and unable to adaptively exploit structural regularities in natural input distributions. We address this dichotomy with the fundamental example of Uniform Facility Location (UniFL), a variant of the combinatorial facility location problem with applications in clustering, data summarization, logistics, and supply chain design. We develop a fully differentiable MPNN model that embeds approximation-algorithmic principles while avoiding the need for solver supervision or discrete relaxations. Our approach admits provable approximation and size generalization guarantees to much larger instances than seen during training. Empirically, we show that our approach outperforms standard non-learned approximation algorithms in terms of solution quality, closing the gap with computationally intensive integer linear programming approaches. Overall, this work provides a step toward bridging learning-based methods and approximation algorithms for discrete optimization.
☆ Quantization-Robust LLM Unlearning via Low-Rank Adaptation
Large Language Model (LLM) unlearning aims to remove targeted knowledge from a trained model, but practical deployments often require post-training quantization (PTQ) for efficient inference. However, aggressive low-bit PTQ can mask or erase unlearning updates, causing quantized models to revert to pre-unlearning behavior. We show that standard full-parameter fine-tuning often induce parameter changes that are too small to survive 4-bit quantization. We propose quantization-robust unlearning via low-rank adaptation (LoRA): we freeze the base model and concentrate unlearning into trainable adapters so that the effective update is preserved after quantization. On Llama-2-7B evaluated with MUSE dataset (BOOKS and NEWS), LoRA improves 4-bit utility by up to 7.93 points (NPO+GDR on BOOKS: 50.17 to 58.10) and yields higher 4-bit utility on NEWS for GA+GDR (40.06 to 44.82, increase of 4.76). LoRA also substantially reduces privacy leakage under 4-bit PTQ, e.g., for GA+KLR on BOOKS, PrivLeak moves from -25.68 to -5.86 (closer to ideal 0), while maintaining strong forgetting (VerMem and KnowMem near 0). Thus, using LoRA for Machine Unlearning is beneficial for scenarios where quantization is necessary for model deployment.
FlashSchNet: Fast and Accurate Coarse-Grained Neural Network Molecular Dynamics
Graph neural network (GNN) potentials such as SchNet improve the accuracy and transferability of molecular dynamics (MD) simulation by learning many-body interactions, but remain slower than classical force fields due to fragmented kernels and memory-bound pipelines that underutilize GPUs. We show that a missing principle is making GNN-MD IO-aware, carefully accounting for reads and writes between GPU high-bandwidth memory (HBM) and on-chip SRAM. We present FlashSchNet, an efficient and accurate IO-aware SchNet-style GNN-MD framework built on four techniques: (1) flash radial basis, which fuses pairwise distance computation, Gaussian basis expansion, and cosine envelope into a single tiled pass, computing each distance once and reusing it across all basis functions; (2) flash message passing, which fuses cutoff, neighbor gather, filter multiplication, and reduction to avoid materializing edge tensors in HBM; (3) flash aggregation, which reformulates scatter-add via CSR segment reduce, reducing atomic writes by a factor of feature dimension and enabling contention-free accumulation in both forward and backward passes; (4) channel-wise 16-bit quantization that exploits the low per-channel dynamic range in SchNet MLP weights to further improve throughput with negligible accuracy loss. On a single NVIDIA RTX PRO 6000, FlashSchNet achieves 1000 ns/day aggregate simulation throughput over 64 parallel replicas on coarse-grained (CG) protein containing 269 beads (6.5x faster than CGSchNet baseline with 80% reduction of peak memory), surpassing classical force fields (e.g. MARTINI) while retaining SchNet-level accuracy and transferability.
comment: Code is at https://github.com/UNITES-Lab/flash-molecular-dynamics
☆ Order Matters in Retrosynthesis: Structure-aware Generation via Reaction-Center-Guided Discrete Flow Matching
Template-free retrosynthesis methods treat the task as black-box sequence generation, limiting learning efficiency, while semi-template approaches rely on rigid reaction libraries that constrain generalization. We address this gap with a key insight: atom ordering in neural representations matters. Building on this insight, we propose a structure-aware template-free framework that encodes the two-stage nature of chemical reactions as a positional inductive bias. By placing reaction center atoms at the sequence head, our method transforms implicit chemical knowledge into explicit positional patterns that the model can readily capture. The proposed RetroDiT backbone, a graph transformer with rotary position embeddings, exploits this ordering to prioritize chemically critical regions. Combined with discrete flow matching, our approach decouples training from sampling and enables generation in 20--50 steps versus 500 for prior diffusion methods. Our method achieves state-of-the-art performance on both USPTO-50k (61.2% top-1) and the large-scale USPTO-Full (51.3% top-1) with predicted reaction centers. With oracle centers, performance reaches 71.1% and 63.4% respectively, surpassing foundation models trained on 10 billion reactions while using orders of magnitude less data. Ablation studies further reveal that structural priors outperform brute-force scaling: a 280K-parameter model with proper ordering matches a 65M-parameter model without it.
☆ Eventizing Traditionally Opaque Binary Neural Networks as 1-safe Petri net Models
Binary Neural Networks (BNNs) offer a low-complexity and energy-efficient alternative to traditional full-precision neural networks by constraining their weights and activations to binary values. However, their discrete, highly non-linear behavior makes them difficult to explain, validate and formally verify. As a result, BNNs remain largely opaque, limiting their suitability in safety-critical domains, where causal transparency and behavioral guarantees are essential. In this work, we introduce a Petri net (PN)-based framework that captures the BNN's internal operations as event-driven processes. By "eventizing" their operations, we expose their causal relationships and dependencies for a fine-grained analysis of concurrency, ordering, and state evolution. Here, we construct modular PN blueprints for core BNN components including activation, gradient computation and weight updates, and compose them into a complete system-level model. We then validate the composed PN against a reference software-based BNN, verify it against reachability and structural checks to establish 1-safeness, deadlock-freeness, mutual exclusion and correct-by-construction causal sequencing, before we assess its scalability and complexity at segment, component, and system levels using the automated measurement tools in Workcraft. Overall, this framework enables causal introspection of transparent and event-driven BNNs that are amenable to formal reasoning and verification.
comment: Pre-print of latest work
☆ AdaGrad-Diff: A New Version of the Adaptive Gradient Algorithm
Vanilla gradient methods are often highly sensitive to the choice of stepsize, which typically requires manual tuning. Adaptive methods alleviate this issue and have therefore become widely used. Among them, AdaGrad has been particularly influential. In this paper, we propose an AdaGrad-style adaptive method in which the adaptation is driven by the cumulative squared norms of successive gradient differences rather than gradient norms themselves. The key idea is that when gradients vary little across iterations, the stepsize is not unnecessarily reduced, while significant gradient fluctuations, reflecting curvature or instability, lead to automatic stepsize damping. Numerical experiments demonstrate that the proposed method is more robust than AdaGrad in several practically relevant settings.
comment: 24 pages
☆ Which Algorithms Can Graph Neural Networks Learn?
In recent years, there has been growing interest in understanding neural architectures' ability to learn to execute discrete algorithms, a line of work often referred to as neural algorithmic reasoning. The goal is to integrate algorithmic reasoning capabilities into larger neural pipelines. Many such architectures are based on (message-passing) graph neural networks (MPNNs), owing to their permutation equivariance and ability to deal with sparsity and variable-sized inputs. However, existing work is either largely empirical and lacks formal guarantees or it focuses solely on expressivity, leaving open the question of when and how such architectures generalize beyond a finite training set. In this work, we propose a general theoretical framework that characterizes the sufficient conditions under which MPNNs can learn an algorithm from a training set of small instances and provably approximate its behavior on inputs of arbitrary size. Our framework applies to a broad class of algorithms, including single-source shortest paths, minimum spanning trees, and general dynamic programming problems, such as the $0$-$1$ knapsack problem. In addition, we establish impossibility results for a wide range of algorithmic tasks, showing that standard MPNNs cannot learn them, and we derive more expressive MPNN-like architectures that overcome these limitations. Finally, we refine our analysis for the Bellman-Ford algorithm, yielding a substantially smaller required training set and significantly extending the recent work of Nerem et al. [2025] by allowing for a differentiable regularization loss. Empirical results largely support our theoretical findings.
☆ Random Forests as Statistical Procedures: Design, Variance, and Dependence
Random forests are widely used prediction procedures, yet are typically described algorithmically rather than as statistical designs acting on a fixed dataset. We develop a finite-sample, design-based formulation of random forests in which each tree is an explicit randomized conditional regression function. This perspective yields an exact variance identity for the forest predictor that separates finite-aggregation variability from a structural dependence term that persists even under infinite aggregation. We further decompose both single-tree dispersion and inter-tree covariance using the laws of total variance and covariance, isolating two fundamental design mechanisms-reuse of training observations and alignment of data-adaptive partitions. These mechanisms induce a strict covariance floor, demonstrating that predictive variability cannot be eliminated by increasing the number of trees alone. The resulting framework clarifies how resampling, feature-level randomization, and split selection govern resolution, tree variability, and dependence, and establishes random forests as explicit finite-sample statistical designs whose behavior is determined by their underlying randomized construction.
comment: 26 pages, 2 figures. Supplementary material included
☆ R-Diverse: Mitigating Diversity Illusion in Self-Play LLM Training
Self-play bootstraps LLM reasoning through an iterative Challenger-Solver loop: the Challenger is trained to generate questions that target the Solver's capabilities, and the Solver is optimized on the generated data to expand its reasoning skills. However, existing frameworks like R-Zero often exhibit non-sustained improvement, where early gains degrade as self-play continues. We identify a key failure mode, Diversity Illusion, where the Solver's training signals appear diverse yet collapse into recurring underlying patterns. It manifests as (1) Local Diversity Illusion, where diversity is enforced only within-batch, inducing cross-iteration mode cycling; and (2) Surface Diversity Illusion, where questions vary superficially but require near-identical reasoning skills. To mitigate them, we propose R-Diverse with two aligned innovations: Memory-Augmented Penalty (MAP), which uses a persistent memory bank to discourage recycling across iterations, and Skill-Aware Measurement (SAM), which evaluates diversity by the reasoning skills exercised rather than surface variation of questions. Across 10 math and general reasoning benchmarks, R-Diverse sustains gains over more iterations and consistently outperforms prior self-play methods. Code is available at https://github.com/Gengsheng-Li/R-Diverse.
☆ Barron-Wiener-Laguerre models
We propose a probabilistic extension of Wiener-Laguerre models for causal operator learning. Classical Wiener-Laguerre models parameterize stable linear dynamics using orthonormal Laguerre bases and apply a static nonlinear map to the resulting features. While structurally efficient and interpretable, they provide only deterministic point estimates. We reinterpret the nonlinear component through the lens of Barron function approximation, viewing two-layer networks, random Fourier features, and extreme learning machines as discretizations of integral representations over parameter measures. This perspective naturally admits Bayesian inference on the nonlinear map and yields posterior predictive uncertainty. By combining Laguerre-parameterized causal dynamics with probabilistic Barron-type nonlinear approximators, we obtain a structured yet expressive class of causal operators equipped with uncertainty quantification. The resulting framework bridges classical system identification and modern measure-based function approximation, providing a principled approach to time-series modeling and nonlinear systems identification.
☆ EXCODER: EXplainable Classification Of DiscretE time series Representations
Deep learning has significantly improved time series classification, yet the lack of explainability in these models remains a major challenge. While Explainable AI (XAI) techniques aim to make model decisions more transparent, their effectiveness is often hindered by the high dimensionality and noise present in raw time series data. In this work, we investigate whether transforming time series into discrete latent representations-using methods such as Vector Quantized Variational Autoencoders (VQ-VAE) and Discrete Variational Autoencoders (DVAE)-not only preserves but enhances explainability by reducing redundancy and focusing on the most informative patterns. We show that applying XAI methods to these compressed representations leads to concise and structured explanations that maintain faithfulness without sacrificing classification performance. Additionally, we propose Similar Subsequence Accuracy (SSA), a novel metric that quantitatively assesses the alignment between XAI-identified salient subsequences and the label distribution in the training data. SSA provides a systematic way to validate whether the features highlighted by XAI methods are truly representative of the learned classification patterns. Our findings demonstrate that discrete latent representations not only retain the essential characteristics needed for classification but also offer a pathway to more compact, interpretable, and computationally efficient explanations in time series analysis.
comment: Accepted at PAKDD 2026
Unified Multi-Domain Graph Pre-training for Homogeneous and Heterogeneous Graphs via Domain-Specific Expert Encoding
Graph pre-training has achieved remarkable success in recent years, delivering transferable representations for downstream adaptation. However, most existing methods are designed for either homogeneous or heterogeneous graphs, thereby hindering unified graph modeling across diverse graph types. This separation contradicts real-world applications, where mixed homogeneous and heterogeneous graphs are ubiquitous, and distribution shifts between upstream pre-training and downstream deployment are common. In this paper, we empirically demonstrate that a balanced mixture of homogeneous and heterogeneous graph pre-training benefits downstream tasks and propose a unified multi-domain \textbf{G}raph \textbf{P}re-training method across \textbf{H}omogeneous and \textbf{H}eterogeneous graphs ($\mathbf{GPH^{2}}$). To address the lack of a unified encoder for homogeneous and heterogeneous graphs, we propose a Unified Multi-View Graph Construction that simultaneously encodes both without explicit graph-type-specific designs. To cope with the increased cross-domain distribution discrepancies arising from mixed graphs, we introduce domain-specific expert encoding. Each expert is independently pre-trained on a single graph to capture domain-specific knowledge, thereby shielding the pre-training encoder from the adverse effects of cross-domain discrepancies. For downstream tasks, we further design a Task-oriented Expert Fusion Strategy that adaptively integrates multiple experts based on their discriminative strengths. Extensive experiments on mixed graphs demonstrate that $\text{GPH}^{2}$ enables stable transfer across graph types and domains, significantly outperforming existing graph pre-training methods.
comment: 13 pages, 7 figures
☆ LCSB: Layer-Cyclic Selective Backpropagation for Memory-Efficient On-Device LLM Fine-Tuning
Memory-efficient backpropagation (MeBP) has enabled first-order fine-tuning of large language models (LLMs) on mobile devices with less than 1GB memory. However, MeBP requires backward computation through all transformer layers at every step, where weight decompression alone accounts for 32--42% of backward time. We propose Layer-Cyclic Selective Backpropagation (LCSB), which computes gradients for only a subset of layers per step. Our key insight is that residual connections guarantee gradient flow through identity paths, while AdamW momentum provides implicit updates for non-selected layers. We interpret LCSB as Block Coordinate Descent on the LoRA parameter space, providing theoretical justification for convergence. LCSB achieves up to 1.40$\times$ speedup with less than 2\% quality degradation across five models and three tasks. Surprisingly, in 4-bit quantized settings, LCSB exhibits superior stability: a 3B model that completely diverges under full backpropagation converges smoothly with LCSB, suggesting an implicit regularization effect from selective gradient computation.
comment: Under the review, 13 pages
☆ Bus-Conditioned Zero-Shot Trajectory Generation via Task Arithmetic
Mobility trajectory data provide essential support for smart city applications. However, such data are often difficult to obtain. Meanwhile, most existing trajectory generation methods implicitly assume that at least a subset of real mobility data from target city is available, which limits their applicability in data-inaccessible scenarios. In this work, we propose a new problem setting, called bus-conditioned zero-shot trajectory generation, where no mobility trajectories from a target city are accessible. The generation process relies solely on source city mobility data and publicly available bus timetables from both cities. Under this setting, we propose MobTA, the first approach to introduce task arithmetic into trajectory generation. MobTA models the parameter shift from bus-timetable-based trajectory generation to mobility trajectory generation in source city, and applies this shift to target city through arithmetic operations on task vectors. This enables trajectory generation that reflects target-city mobility patterns without requiring any real mobility data from it. Furthermore, we theoretically analyze MobTA's stability across base and instruction-tuned LLMs. Extensive experiments show that MobTA significantly outperforms existing methods, and achieves performance close to models finetuned using target city mobility trajectories.
☆ Memory-Efficient Structured Backpropagation for On-Device LLM Fine-Tuning
On-device fine-tuning enables privacy-preserving personalization of large language models, but mobile devices impose severe memory constraints, typically 6--12GB shared across all workloads. Existing approaches force a trade-off between exact gradients with high memory (MeBP) and low memory with noisy estimates (MeZO). We propose Memory-efficient Structured Backpropagation (MeSP), which bridges this gap by manually deriving backward passes that exploit LoRA's low-rank structure. Our key insight is that the intermediate projection $h = xA$ can be recomputed during backward at minimal cost since rank $r \ll d_{in}$, eliminating the need to store it. MeSP achieves 49\% average memory reduction compared to MeBP on Qwen2.5 models (0.5B--3B) while computing mathematically identical gradients. Our analysis also reveals that MeZO's gradient estimates show near-zero correlation with true gradients (cosine similarity $\approx$0.001), explaining its slow convergence. MeSP reduces peak memory from 361MB to 136MB for Qwen2.5-0.5B, enabling fine-tuning scenarios previously infeasible on memory-constrained devices.
comment: Under the review, 11 pages
☆ Backdoor Attacks on Contrastive Continual Learning for IoT Systems
The Internet of Things (IoT) systems increasingly depend on continual learning to adapt to non-stationary environments. These environments can include factors such as sensor drift, changing user behavior, device aging, and adversarial dynamics. Contrastive continual learning (CCL) combines contrastive representation learning with incremental adaptation, enabling robust feature reuse across tasks and domains. However, the geometric nature of contrastive objectives, when paired with replay-based rehearsal and stability-preserving regularization, introduces new security vulnerabilities. Notably, backdoor attacks can exploit embedding alignment and replay reinforcement, enabling the implantation of persistent malicious behaviors that endure through updates and deployment cycles. This paper provides a comprehensive analysis of backdoor attacks on CCL within IoT systems. We formalize the objectives of embedding-level attacks, examine persistence mechanisms unique to IoT deployments, and develop a layered taxonomy tailored to IoT. Additionally, we compare vulnerabilities across various learning paradigms and evaluate defense strategies under IoT constraints, including limited memory, edge computing, and federated aggregation. Our findings indicate that while CCL is effective for enhancing adaptive IoT intelligence, it may also elevate long-lived representation-level threats if not adequately secured.
☆ Diverging Flows: Detecting Extrapolations in Conditional Generation
The ability of Flow Matching (FM) to model complex conditional distributions has established it as the state-of-the-art for prediction tasks (e.g., robotics, weather forecasting). However, deployment in safety-critical settings is hindered by a critical extrapolation hazard: driven by smoothness biases, flow models yield plausible outputs even for off-manifold conditions, resulting in silent failures indistinguishable from valid predictions. In this work, we introduce Diverging Flows, a novel approach that enables a single model to simultaneously perform conditional generation and native extrapolation detection by structurally enforcing inefficient transport for off-manifold inputs. We evaluate our method on synthetic manifolds, cross-domain style transfer, and weather temperature forecasting, demonstrating that it achieves effective detection of extrapolations without compromising predictive fidelity or inference latency. These results establish Diverging Flows as a robust solution for trustworthy flow models, paving the way for reliable deployment in domains such as medicine, robotics, and climate science.
comment: 19 pages, 8 figures, 2 algorithms, 8 tables
☆ Curriculum-DPO++: Direct Preference Optimization via Data and Model Curricula for Text-to-Image Generation
Direct Preference Optimization (DPO) has been proposed as an effective and efficient alternative to reinforcement learning from human feedback (RLHF). However, neither RLHF nor DPO take into account the fact that learning certain preferences is more difficult than learning other preferences, rendering the optimization process suboptimal. To address this gap in text-to-image generation, we recently proposed Curriculum-DPO, a method that organizes image pairs by difficulty. In this paper, we introduce Curriculum-DPO++, an enhanced method that combines the original data-level curriculum with a novel model-level curriculum. More precisely, we propose to dynamically increase the learning capacity of the denoising network as training advances. We implement this capacity increase via two mechanisms. First, we initialize the model with only a subset of the trainable layers used in the original Curriculum-DPO. As training progresses, we sequentially unfreeze layers until the configuration matches the full baseline architecture. Second, as the fine-tuning is based on Low-Rank Adaptation (LoRA), we implement a progressive schedule for the dimension of the low-rank matrices. Instead of maintaining a fixed capacity, we initialize the low-rank matrices with a dimension significantly smaller than that of the baseline. As training proceeds, we incrementally increase their rank, allowing the capacity to grow until it converges to the same rank value as in Curriculum-DPO. Furthermore, we propose an alternative ranking strategy to the one employed by Curriculum-DPO. Finally, we compare Curriculum-DPO++ against Curriculum-DPO and other state-of-the-art preference optimization approaches on nine benchmarks, outperforming the competing methods in terms of text alignment, aesthetics and human preference. Our code is available at https://github.com/CroitoruAlin/Curriculum-DPO.
comment: arXiv admin note: substantial text overlap with arXiv:2405.13637
☆ Quantization-Aware Collaborative Inference for Large Embodied AI Models
Large artificial intelligence models (LAIMs) are increasingly regarded as a core intelligence engine for embodied AI applications. However, the massive parameter scale and computational demands of LAIMs pose significant challenges for resource-limited embodied agents. To address this issue, we investigate quantization-aware collaborative inference (co-inference) for embodied AI systems. First, we develop a tractable approximation for quantization-induced inference distortion. Based on this approximation, we derive lower and upper bounds on the quantization rate-inference distortion function, characterizing its dependence on LAIM statistics, including the quantization bit-width. Next, we formulate a joint quantization bit-width and computation frequency design problem under delay and energy constraints, aiming to minimize the distortion upper bound while ensuring tightness through the corresponding lower bound. Extensive evaluations validate the proposed distortion approximation, the derived rate-distortion bounds, and the effectiveness of the proposed joint design. Particularly, simulations and real-world testbed experiments demonstrate the effectiveness of the proposed joint design in balancing inference quality, latency, and energy consumption in edge embodied AI systems.
☆ Geometric Manifold Rectification for Imbalanced Learning
Imbalanced classification presents a formidable challenge in machine learning, particularly when tabular datasets are plagued by noise and overlapping class boundaries. From a geometric perspective, the core difficulty lies in the topological intrusion of the majority class into the minority manifold, which obscures the true decision boundary. Traditional undersampling techniques, such as Edited Nearest Neighbours (ENN), typically employ symmetric cleaning rules and uniform voting, failing to capture the local manifold structure and often inadvertently removing informative minority samples. In this paper, we propose GMR (Geometric Manifold Rectification), a novel framework designed to robustly handle imbalanced structured data by exploiting local geometric priors. GMR makes two contributions: (1) Geometric confidence estimation that uses inverse-distance weighted kNN voting with an adaptive distance metric to capture local reliability; and (2) asymmetric cleaning that is strict on majority samples while conservatively protecting minority samples via a safe-guarding cap on minority removal. Extensive experiments on multiple benchmark datasets show that GMR is competitive with strong sampling baselines.
GPTZero: Robust Detection of LLM-Generated Texts
While historical considerations surrounding text authenticity revolved primarily around plagiarism, the advent of large language models (LLMs) has introduced a new challenge: distinguishing human-authored from AI-generated text. This shift raises significant concerns, including the undermining of skill evaluations, the mass-production of low-quality content, and the proliferation of misinformation. Addressing these issues, we introduce GPTZero a state-of-the-art industrial AI detection solution, offering reliable discernment between human and LLM-generated text. Our key contributions include: introducing a hierarchical, multi-task architecture enabling a flexible taxonomy of human and AI texts, demonstrating state-of-the-art accuracy on a variety of domains with granular predictions, and achieving superior robustness to adversarial attacks and paraphrasing via multi-tiered automated red teaming. GPTZero offers accurate and explainable detection, and educates users on its responsible use, ensuring fair and transparent assessment of text.
☆ TCRL: Temporal-Coupled Adversarial Training for Robust Constrained Reinforcement Learning in Worst-Case Scenarios
Constrained Reinforcement Learning (CRL) aims to optimize decision-making policies under constraint conditions, making it highly applicable to safety-critical domains such as autonomous driving, robotics, and power grid management. However, existing robust CRL approaches predominantly focus on single-step perturbations and temporally independent adversarial models, lacking explicit modeling of robustness against temporally coupled perturbations. To tackle these challenges, we propose TCRL, a novel temporal-coupled adversarial training framework for robust constrained reinforcement learning (TCRL) in worst-case scenarios. First, TCRL introduces a worst-case-perceived cost constraint function that estimates safety costs under temporally coupled perturbations without the need to explicitly model adversarial attackers. Second, TCRL establishes a dual-constraint defense mechanism on the reward to counter temporally coupled adversaries while maintaining reward unpredictability. Experimental results demonstrate that TCRL consistently outperforms existing methods in terms of robustness against temporally coupled perturbation attacks across a variety of CRL tasks.
☆ Look Inward to Explore Outward: Learning Temperature Policy from LLM Internal States via Hierarchical RL
Reinforcement Learning from Verifiable Rewards (RLVR) trains large language models (LLMs) from sampled trajectories, making decoding strategy a core component of learning rather than a purely inference-time choice. Sampling temperature directly controls the exploration--exploitation trade-off by modulating policy entropy, yet existing methods rely on static values or heuristic adaptations that are decoupled from task-level rewards. We propose Introspective LLM, a hierarchical reinforcement learning framework that learns to control sampling temperature during generation. At each decoding step, the model selects a temperature based on its hidden state and samples the next token from the resulting distribution. Temperature and token policies are jointly optimized from downstream rewards using a coordinate ascent scheme. Experiments on mathematical reasoning benchmarks show that learned temperature policies outperform fixed and heuristic baselines, while exhibiting interpretable exploration behaviors aligned with reasoning uncertainty.
☆ Resource-Efficient Gesture Recognition through Convexified Attention
Wearable e-textile interfaces require gesture recognition capabilities but face severe constraints in power consumption, computational capacity, and form factor that make traditional deep learning impractical. While lightweight architectures like MobileNet improve efficiency, they still demand thousands of parameters, limiting deployment on textile-integrated platforms. We introduce a convexified attention mechanism for wearable applications that dynamically weights features while preserving convexity through nonexpansive simplex projection and convex loss functions. Unlike conventional attention mechanisms using non-convex softmax operations, our approach employs Euclidean projection onto the probability simplex combined with multi-class hinge loss, ensuring global convergence guarantees. Implemented on a textile-based capacitive sensor with four connection points, our approach achieves 100.00\% accuracy on tap gestures and 100.00\% on swipe gestures -- consistent across 10-fold cross-validation and held-out test evaluation -- while requiring only 120--360 parameters, a 97\% reduction compared to conventional approaches. With sub-millisecond inference times (290--296$μ$s) and minimal storage requirements ($<$7KB), our method enables gesture interfaces directly within e-textiles without external processing. Our evaluation, conducted in controlled laboratory conditions with a single-user dataset, demonstrates feasibility for basic gesture interactions. Real-world deployment would require validation across multiple users, environmental conditions, and more complex gesture vocabularies. These results demonstrate how convex optimization can enable efficient on-device machine learning for textile interfaces.
comment: 22 pages, 3 figures, EICS 2026
☆ FedHENet: A Frugal Federated Learning Framework for Heterogeneous Environments
Federated Learning (FL) enables collaborative training without centralizing data, essential for privacy compliance in real-world scenarios involving sensitive visual information. Most FL approaches rely on expensive, iterative deep network optimization, which still risks privacy via shared gradients. In this work, we propose FedHENet, extending the FedHEONN framework to image classification. By using a fixed, pre-trained feature extractor and learning only a single output layer, we avoid costly local fine-tuning. This layer is learned by analytically aggregating client knowledge in a single round of communication using homomorphic encryption (HE). Experiments show that FedHENet achieves competitive accuracy compared to iterative FL baselines while demonstrating superior stability performance and up to 70\% better energy efficiency. Crucially, our method is hyperparameter-free, removing the carbon footprint associated with hyperparameter tuning in standard FL. Code available in https://github.com/AlejandroDopico2/FedHENet/
comment: Accepted for publication at the 34th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2026)
☆ Prior-Guided Symbolic Regression: Towards Scientific Consistency in Equation Discovery
Symbolic Regression (SR) aims to discover interpretable equations from observational data, with the potential to reveal underlying principles behind natural phenomena. However, existing approaches often fall into the Pseudo-Equation Trap: producing equations that fit observations well but remain inconsistent with fundamental scientific principles. A key reason is that these approaches are dominated by empirical risk minimization, lacking explicit constraints to ensure scientific consistency. To bridge this gap, we propose PG-SR, a prior-guided SR framework built upon a three-stage pipeline consisting of warm-up, evolution, and refinement. Throughout the pipeline, PG-SR introduces a prior constraint checker that explicitly encodes domain priors as executable constraint programs, and employs a Prior Annealing Constrained Evaluation (PACE) mechanism during the evolution stage to progressively steer discovery toward scientifically consistent regions. Theoretically, we prove that PG-SR reduces the Rademacher complexity of the hypothesis space, yielding tighter generalization bounds and establishing a guarantee against pseudo-equations. Experimentally, PG-SR outperforms state-of-the-art baselines across diverse domains, maintaining robustness to varying prior quality, noisy data, and data scarcity.
☆ Synaptic Activation and Dual Liquid Dynamics for Interpretable Bio-Inspired Models
In this paper, we present a unified framework for various bio-inspired models to better understand their structural and functional differences. We show that liquid-capacitance-extended models lead to interpretable behavior even in dense, all-to-all recurrent neural network (RNN) policies. We further demonstrate that incorporating chemical synapses improves interpretability and that combining chemical synapses with synaptic activation yields the most accurate and interpretable RNN models. To assess the accuracy and interpretability of these RNN policies, we consider the challenging lane-keeping control task and evaluate performance across multiple metrics, including turn-weighted validation loss, neural activity during driving, absolute correlation between neural activity and road trajectory, saliency maps of the networks' attention, and the robustness of their saliency maps measured by the structural similarity index.
☆ Probabilistic Wind Power Forecasting with Tree-Based Machine Learning and Weather Ensembles
Accurate production forecasts are essential to continue facilitating the integration of renewable energy sources into the power grid. This paper illustrates how to obtain probabilistic day-ahead forecasts of wind power generation via gradient boosting trees using an ensemble of weather forecasts. To this end, we perform a comparative analysis across three state-of-the-art probabilistic prediction methods-conformalised quantile regression, natural gradient boosting and conditional diffusion models-all of which can be combined with tree-based machine learning. The methods are validated using four years of data for all wind farms present within the Belgian offshore zone. Additionally, the point forecasts are benchmarked against deterministic engineering methods, using either the power curve or an advanced approach incorporating a calibrated analytical wake model. The experimental results show that the machine learning methods improve the mean absolute error by up to 53% and 33% compared to the power curve and the calibrated wake model. Considering the three probabilistic prediction methods, the conditional diffusion model is found to yield the best overall probabilistic and point estimate of wind power generation. Moreover, the findings suggest that the use of an ensemble of weather forecasts can improve point forecast accuracy by up to 23%.
☆ Machine Learning-Based Classification of Jhana Advanced Concentrative Absorption Meditation (ACAM-J) using 7T fMRI
Jhana advanced concentration absorption meditation (ACAM-J) is related to profound changes in consciousness and cognitive processing, making the study of their neural correlates vital for insights into consciousness and well-being. This study evaluates whether functional MRI-derived regional homogeneity (ReHo) can be used to classify ACAM-J using machine-learning approaches. We collected group-level fMRI data from 20 advanced meditators to train the classifiers, and intensive single-case data from an advanced practitioner performing ACAM-J and control tasks to evaluate generalization. ReHo maps were computed, and features were extracted from predefined brain regions of interest. We trained multiple machine learning classifiers using stratified cross-validation to evaluate whether ReHo patterns distinguish ACAM-J from non-meditative states. Ensemble models achieved 66.82% (p < 0.05) accuracy in distinguishing ACAM-J from control conditions. Feature-importance analysis indicated that prefrontal and anterior cingulate areas contributed most to model decisions, aligning with established involvement of these regions in attentional regulation and metacognitive processes. Moreover, moderate agreement reflected in Cohen's kappa supports the feasibility of using machine learning to distinguish ACAM-J from non-meditative states. These findings advocate machine-learning's feasibility in classifying advanced meditation states, future research on neuromodulation and mechanistic models of advanced meditation.
☆ Uncertainty in Federated Granger Causality: From Origins to Systemic Consequences
Granger Causality (GC) provides a rigorous framework for learning causal structures from time-series data. Recent federated variants of GC have targeted distributed infrastructure applications (e.g., smart grids) with distributed clients that generate high-dimensional data bound by data-sovereignty constraints. However, Federated GC algorithms only yield deterministic point estimates of causality and neglect uncertainty. This paper establishes the first methodology for rigorously quantifying uncertainty and its propagation within federated GC frameworks. We systematically classify sources of uncertainty, explicitly differentiating aleatoric (data noise) from epistemic (model variability) effects. We derive closed-form recursions that model the evolution of uncertainty through client-server interactions and identify four novel cross-covariance components that couple data uncertainties with model parameter uncertainties across the federated architecture. We also define rigorous convergence conditions for these uncertainty recursions and obtain explicit steady-state variances for both server and client model parameters. Our convergence analysis demonstrates that steady-state variances depend exclusively on client data statistics, thus eliminating dependence on initial epistemic priors and enhancing robustness. Empirical evaluations on synthetic benchmarks and real-world industrial datasets demonstrate that explicitly characterizing uncertainty significantly improves the reliability and interpretability of federated causal inference.
comment: Manuscript under review
☆ MASAR: Motion-Appearance Synergy Refinement for Joint Detection and Trajectory Forecasting
Classical autonomous driving systems connect perception and prediction modules via hand-crafted bounding-box interfaces, limiting information flow and propagating errors to downstream tasks. Recent research aims to develop end-to-end models that jointly address perception and prediction; however, they often fail to fully exploit the synergy between appearance and motion cues, relying mainly on short-term visual features. We follow the idea of "looking backward to look forward", and propose MASAR, a novel fully differentiable framework for joint 3D detection and trajectory forecasting compatible with any transformer-based 3D detector. MASAR employs an object-centric spatio-temporal mechanism that jointly encodes appearance and motion features. By predicting past trajectories and refining them using guidance from appearance cues, MASAR captures long-term temporal dependencies that enhance future trajectory forecasting. Experiments conducted on the nuScenes dataset demonstrate MASAR's effectiveness, showing improvements of over 20% in minADE and minFDE while maintaining robust detection performance. Code and models are available at https://github.com/aminmed/MASAR.
comment: Accepted to the 2026 IEEE International Conference on Robotics and Automation (ICRA 2026)
☆ Multi-Dimensional Visual Data Recovery: Scale-Aware Tensor Modeling and Accelerated Randomized Computation
The recently proposed fully-connected tensor network (FCTN) decomposition has demonstrated significant advantages in correlation characterization and transpositional invariance, and has achieved notable achievements in multi-dimensional data processing and analysis. However, existing multi-dimensional data recovery methods leveraging FCTN decomposition still have room for further enhancement, particularly in computational efficiency and modeling capability. To address these issues, we first propose a FCTN-based generalized nonconvex regularization paradigm from the perspective of gradient mapping. Then, reliable and scalable multi-dimensional data recovery models are investigated, where the model formulation is shifted from unquantized observations to coarse-grained quantized observations. Based on the alternating direction method of multipliers (ADMM) framework, we derive efficient optimization algorithms with convergence guarantees to solve the formulated models. To alleviate the computational bottleneck encountered when processing large-scale multi-dimensional data, fast and efficient randomized compression algorithms are devised in virtue of sketching techniques in numerical linear algebra. These dimensionality-reduction techniques serve as the computational acceleration core of our proposed algorithm framework. Theoretical results on approximation error upper bounds and convergence analysis for the proposed method are derived. Extensive numerical experiments illustrate the effectiveness and superiority of the proposed algorithm over other state-of-the-art methods in terms of quantitative metrics, visual quality, and running time.
☆ MAUNet-Light: A Concise MAUNet Architecture for Bias Correction and Downscaling of Precipitation Estimates
Satellite-derived data products and climate model simulations of geophysical variables like precipitation, often exhibit systematic biases compared to in-situ measurements. Bias correction and spatial downscaling are fundamental components to develop operational weather forecast systems, as they seek to improve the consistency between coarse-resolution climate model simulations or satellite-based estimates and ground-based observations. In recent years, deep learning-based models have been increasingly replaced traditional statistical methods to generate high-resolution, bias free projections of climate variables. For example, Max-Average U-Net (MAUNet) architecture has been demonstrated for its ability to downscale precipitation estimates. The versatility and adaptability of these neural models make them highly effective across a range of applications, though this often come at the cost of high computational and memory requirements. The aim of this research is to develop light-weight neural network architectures for both bias correction and downscaling of precipitation, for which the teacher-student based learning paradigm is explored. This research demonstrates the adaptability of MAUNet to the task of bias correction, and further introduces a compact, lightweight neural network architecture termed MAUNet-Light.The proposed MAUNet-Light model is developed by transferring knowledge from the trained MAUNet, and it is designed to perform both downscaling and bias correction with reduced computational requirements without any significant loss in accuracy compared to state-of-the-art.
☆ Drift-Aware Variational Autoencoder-based Anomaly Detection with Two-level Ensembling
In today's digital world, the generation of vast amounts of streaming data in various domains has become ubiquitous. However, many of these data are unlabeled, making it challenging to identify events, particularly anomalies. This task becomes even more formidable in nonstationary environments where model performance can deteriorate over time due to concept drift. To address these challenges, this paper presents a novel method, VAE++ESDD, which employs incremental learning and two-level ensembling: an ensemble of Variational AutoEncoder(VAEs) for anomaly prediction, along with an ensemble of concept drift detectors. Each drift detector utilizes a statistical-based concept drift mechanism. To evaluate the effectiveness of VAE++ESDD, we conduct a comprehensive experimental study using real-world and synthetic datasets characterized by severely or extremely low anomalous rates and various drift characteristics. Our study reveals that the proposed method significantly outperforms both strong baselines and state-of-the-art methods.
comment: accepted
☆ Extending confidence calibration to generalised measures of variation
We propose the Variation Calibration Error (VCE) metric for assessing the calibration of machine learning classifiers. The metric can be viewed as an extension of the well-known Expected Calibration Error (ECE) which assesses the calibration of the maximum probability or confidence. Other ways of measuring the variation of a probability distribution exist which have the advantage of taking into account the full probability distribution, for example the Shannon entropy. We show how the ECE approach can be extended from assessing confidence calibration to assessing the calibration of any metric of variation. We present numerical examples upon synthetic predictions which are perfectly calibrated by design, demonstrating that, in this scenario, the VCE has the desired property of approaching zero as the number of data samples increases, in contrast to another entropy-based calibration metric (the UCE) which has been proposed in the literature.
☆ Jointly Optimizing Debiased CTR and Uplift for Coupons Marketing: A Unified Causal Framework
In online advertising, marketing interventions such as coupons introduce significant confounding bias into Click-Through Rate (CTR) prediction. Observed clicks reflect a mixture of users' intrinsic preferences and the uplift induced by these interventions. This causes conventional models to miscalibrate base CTRs, which distorts downstream ranking and billing decisions. Furthermore, marketing interventions often operate as multi-valued treatments with varying magnitudes, introducing additional complexity to CTR prediction. To address these issues, we propose the \textbf{Uni}fied \textbf{M}ulti-\textbf{V}alued \textbf{T}reatment Network (UniMVT). Specifically, UniMVT disentangles confounding factors from treatment-sensitive representations, enabling a full-space counterfactual inference module to jointly reconstruct the debiased base CTR and intensity-response curves. To handle the complexity of multi-valued treatments, UniMVT employs an auxiliary intensity estimation task to capture treatment propensities and devise a unit uplift objective that normalizes the intervention effect. This ensures comparable estimation across the continuous coupon-value spectrum. UniMVT simultaneously achieves debiased CTR prediction for accurate system calibration and precise uplift estimation for incentive allocation. Extensive experiments on synthetic and industrial datasets demonstrate UniMVT's superiority in both predictive accuracy and calibration. Furthermore, real-world A/B tests confirm that UniMVT significantly improves business metrics through more effective coupon distribution.
☆ Ca-MCF: Category-level Multi-label Causal Feature selection
Multi-label causal feature selection has attracted extensive attention in recent years. However, current methods primarily operate at the label level, treating each label variable as a monolithic entity and overlooking the fine-grained causal mechanisms unique to individual categories. To address this, we propose a Category-level Multi-label Causal Feature selection method named Ca-MCF. Ca-MCF utilizes label category flattening to decompose label variables into specific category nodes, enabling precise modeling of causal structures within the label space. Furthermore, we introduce an explanatory competition-based category-aware recovery mechanism that leverages the proposed Specific Category-Specific Mutual Information (SCSMI) and Distinct Category-Specific Mutual Information (DCSMI) to salvage causal features obscured by label correlations. The method also incorporates structural symmetry checks and cross-dimensional redundancy removal to ensure the robustness and compactness of the identified Markov Blankets. Extensive experiments across seven real-world datasets demonstrate that Ca-MCF significantly outperforms state-of-the-art benchmarks, achieving superior predictive accuracy with reduced feature dimensionality.
comment: 16 pages, 5 figures. Includes appendices
☆ Transporting Task Vectors across Different Architectures without Training
Adapting large pre-trained models to downstream tasks often produces task-specific parameter updates that are expensive to relearn for every model variant. While recent work has shown that such updates can be transferred between models with identical architectures, transferring them across models of different widths remains largely unexplored. In this work, we introduce Theseus, a training-free method for transporting task-specific updates across heterogeneous models. Rather than matching parameters directly, we characterize a task update by the functional effect it induces on intermediate representations. We formalize task-vector transport as a functional matching problem on observed activations and show that, after aligning representation spaces via orthogonal Procrustes analysis, it admits a stable closed-form solution that preserves the geometry of the update. We evaluate Theseus on vision and language models across different widths, showing consistent improvements over strong baselines without additional training or backpropagation. Our results show that task updates can be meaningfully transferred across architectures when task identity is defined functionally rather than parametrically.
☆ TFTF: Training-Free Targeted Flow for Conditional Sampling
We propose a training-free conditional sampling method for flow matching models based on importance sampling. Because a naïve application of importance sampling suffers from weight degeneracy in high-dimensional settings, we modify and incorporate a resampling technique in sequential Monte Carlo (SMC) during intermediate stages of the generation process. To encourage generated samples to diverge along distinct trajectories, we derive a stochastic flow with adjustable noise strength to replace the deterministic flow at the intermediate stage. Our framework requires no additional training, while providing theoretical guarantees of asymptotic accuracy. Experimentally, our method significantly outperforms existing approaches on conditional sampling tasks for MNIST and CIFAR-10. We further demonstrate the applicability of our approach in higher-dimensional, multimodal settings through text-to-image generation experiments on CelebA-HQ.
☆ Annealing in variational inference mitigates mode collapse: A theoretical study on Gaussian mixtures
Mode collapse, the failure to capture one or more modes when targetting a multimodal distribution, is a central challenge in modern variational inference. In this work, we provide a mathematical analysis of annealing based strategies for mitigating mode collapse in a tractable setting: learning a Gaussian mixture, where mode collapse is known to arise. Leveraging a low dimensional summary statistics description, we precisely characterize the interplay between the initial temperature and the annealing rate, and derive a sharp formula for the probability of mode collapse. Our analysis shows that an appropriately chosen annealing scheme can robustly prevent mode collapse. Finally, we present numerical evidence that these theoretical tradeoffs qualitatively extend to neural network based models, RealNVP normalizing flows, providing guidance for designing annealing strategies mitigating mode collapse in practical variational inference pipelines.
☆ Reliable Thinking with Images
As a multimodal extension of Chain-of-Thought (CoT), Thinking with Images (TWI) has recently emerged as a promising avenue to enhance the reasoning capability of Multi-modal Large Language Models (MLLMs), which generates interleaved CoT by incorporating visual cues into the textual reasoning process. However, the success of existing TWI methods heavily relies on the assumption that interleaved image-text CoTs are faultless, which is easily violated in real-world scenarios due to the complexity of multimodal understanding. In this paper, we reveal and study a highly-practical yet under-explored problem in TWI, termed Noisy Thinking (NT). Specifically, NT refers to the imperfect visual cues mining and answer reasoning process. As the saying goes, ``One mistake leads to another'', erroneous interleaved CoT would cause error accumulation, thus significantly degrading the performance of MLLMs. To solve the NT problem, we propose a novel method dubbed Reliable Thinking with Images (RTWI). In brief, RTWI estimates the reliability of visual cues and textual CoT in a unified text-centric manner and accordingly employs robust filtering and voting modules to prevent NT from contaminating the final answer. Extensive experiments on seven benchmarks verify the effectiveness of RTWI against NT.
comment: 26 pages, 19 figures
☆ Nonparametric Contextual Online Bilateral Trade
We study the problem of contextual online bilateral trade. At each round, the learner faces a seller-buyer pair and must propose a trade price without observing their private valuations for the item being sold. The goal of the learner is to post prices to facilitate trades between the two parties. Before posting a price, the learner observes a $d$-dimensional context vector that influences the agent's valuations. Prior work in the contextual setting has focused on linear models. In this work, we tackle a general nonparametric setting in which the buyer's and seller's valuations behave according to arbitrary Lipschitz functions of the context. We design an algorithm that leverages contextual information through a hierarchical tree construction and guarantees regret $\widetilde{O}(T^{{(d-1)}/d})$. Remarkably, our algorithm operates under two stringent features of the setting: (1) one-bit feedback, where the learner only observes whether a trade occurred or not, and (2) strong budget balance, where the learner cannot subsidize or profit from the market participants. We further provide a matching lower bound in the full-feedback setting, demonstrating the tightness of our regret bound.
☆ Contextual Online Bilateral Trade
We study repeated bilateral trade when the valuations of the sellers and the buyers are contextual. More precisely, the agents' valuations are given by the inner product of a context vector with two unknown $d$-dimensional vectors -- one for the buyers and one for the sellers. At each time step $t$, the learner receives a context and posts two prices, one for the seller and one for the buyer, and the trade happens if both agents accept their price. We study two objectives for this problem, gain from trade and profit, proving no-regret with respect to a surprisingly strong benchmark: the best omniscient dynamic strategy. In the natural scenario where the learner observes \emph{separately} whether the agents accept their price -- the so-called \emph{two-bit} feedback -- we design algorithms that achieve $O(d\log d)$ regret for gain from trade, and $O(d \log\log T + d\log d)$ regret for profit maximization. Both results are tight, up to the $\log(d)$ factor, and implement per-step budget balance, meaning that the learner never incurs negative profit. In the less informative \emph{one-bit} feedback model, the learner only observes whether a trade happens or not. For this scenario, we show that the tight two-bit regret regimes are still attainable, at the cost of allowing the learner to possibly incur a small negative profit of order $O(d\log d)$, which is notably independent of the time horizon. As a final set of results, we investigate the combination of one-bit feedback and per-step budget balance. There, we design an algorithm for gain from trade that suffers regret independent of the time horizon, but \emph{exponential} in the dimension $d$. For profit maximization, we maintain this exponential dependence on the dimension, which gets multiplied by a $\log T$ factor.
☆ Robustness of Object Detection of Autonomous Vehicles in Adverse Weather Conditions
As self-driving technology advances toward widespread adoption, determining safe operational thresholds across varying environmental conditions becomes critical for public safety. This paper proposes a method for evaluating the robustness of object detection ML models in autonomous vehicles under adverse weather conditions. It employs data augmentation operators to generate synthetic data that simulates different severance degrees of the adverse operation conditions at progressive intensity levels to find the lowest intensity of the adverse conditions at which the object detection model fails. The robustness of the object detection model is measured by the average first failure coefficients (AFFC) over the input images in the benchmark. The paper reports an experiment with four object detection models: YOLOv5s, YOLOv11s, Faster R-CNN, and Detectron2, utilising seven data augmentation operators that simulate weather conditions fog, rain, and snow, and lighting conditions of dark, bright, flaring, and shadow. The experiment data show that the method is feasible, effective, and efficient to evaluate and compare the robustness of object detection models in various adverse operation conditions. In particular, the Faster R-CNN model achieved the highest robustness with an overall average AFFC of 71.9% over all seven adverse conditions, while YOLO variants showed the AFFC values of 43%. The method is also applied to assess the impact of model training that targets adverse operation conditions using synthetic data on model robustness. It is observed that such training can improve robustness in adverse conditions but may suffer from diminishing returns and forgetting phenomena (i.e., decline in robustness) if overtrained.
☆ Blessings of Multiple Good Arms in Multi-Objective Linear Bandits
The multi objective bandit setting has traditionally been regarded as more complex than the single objective case, as multiple objectives must be optimized simultaneously. In contrast to this prevailing view, we demonstrate that when multiple good arms exist for multiple objectives, they can induce a surprising benefit, implicit exploration. Under this condition, we show that simple algorithms that greedily select actions in most rounds can nonetheless achieve strong performance, both theoretically and empirically. To our knowledge, this is the first study to introduce implicit exploration in both multi objective and parametric bandit settings without any distributional assumptions on the contexts. We further introduce a framework for effective Pareto fairness, which provides a principled approach to rigorously analyzing fairness of multi objective bandit algorithms.
comment: 58 pages
☆ X-VORTEX: Spatio-Temporal Contrastive Learning for Wake Vortex Trajectory Forecasting
Wake vortices are strong, coherent air turbulences created by aircraft, and they pose a major safety and capacity challenge for air traffic management. Tracking how vortices move, weaken, and dissipate over time from LiDAR measurements is still difficult because scans are sparse, vortex signatures fade as the flow breaks down under atmospheric turbulence and instabilities, and point-wise annotation is prohibitively expensive. Existing approaches largely treat each scan as an independent, fully supervised segmentation problem, which overlooks temporal structure and does not scale to the vast unlabeled archives collected in practice. We present X-VORTEX, a spatio-temporal contrastive learning framework grounded in Augmentation Overlap Theory that learns physics-aware representations from unlabeled LiDAR point cloud sequences. X-VORTEX addresses two core challenges: sensor sparsity and time-varying vortex dynamics. It constructs paired inputs from the same underlying flight event by combining a weakly perturbed sequence with a strongly augmented counterpart produced via temporal subsampling and spatial masking, encouraging the model to align representations across missing frames and partial observations. Architecturally, a time-distributed geometric encoder extracts per-scan features and a sequential aggregator models the evolving vortex state across variable-length sequences. We evaluate on a real-world dataset of over one million LiDAR scans. X-VORTEX achieves superior vortex center localization while using only 1% of the labeled data required by supervised baselines, and the learned representations support accurate trajectory forecasting.
☆ Model-Aware Rate-Distortion Limits for Task-Oriented Source Coding
Task-Oriented Source Coding (TOSC) has emerged as a paradigm for efficient visual data communication in machine-centric inference systems, where bitrate, latency, and task performance must be jointly optimized under resource constraints. While recent works have proposed rate-distortion bounds for coding for machines, these results often rely on strong assumptions on task identifiability and neglect the impact of deployed task models. In this work, we revisit the fundamental limits of single-TOSC through the lens of indirect rate-distortion theory. We highlight the conditions under which existing rate-distortion bounds are achievable and show their limitations in realistic settings. We then introduce task model-aware rate-distortion bounds that account for task model suboptimality and architectural constraints. Experiments on standard classification benchmarks confirm that current learned TOSC schemes operate far from these limits, highlighting transmitter-side complexity as a key bottleneck.
comment: 8 pages, 4 figures
☆ Chimera: Neuro-Symbolic Attention Primitives for Trustworthy Dataplane Intelligence
Deploying expressive learning models directly on programmable dataplanes promises line-rate, low-latency traffic analysis but remains hindered by strict hardware constraints and the need for predictable, auditable behavior. Chimera introduces a principled framework that maps attention-oriented neural computations and symbolic constraints onto dataplane primitives, enabling trustworthy inference within the match-action pipeline. Chimera combines a kernelized, linearized attention approximation with a two-layer key-selection hierarchy and a cascade fusion mechanism that enforces hard symbolic guarantees while preserving neural expressivity. The design includes a hardware-aware mapping protocol and a two-timescale update scheme that together permit stable, line-rate operation under realistic dataplane budgets. The paper presents the Chimera architecture, a hardware mapping strategy, and empirical evidence showing that neuro-symbolic attention primitives can achieve high-fidelity inference within the resource envelope of commodity programmable switches.
comment: 23 pages, 11 figures
☆ Amortized Reasoning Tree Search: Decoupling Proposal and Decision in Large Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) has established itself as the dominant paradigm for instilling rigorous reasoning capabilities in Large Language Models. While effective at amplifying dominant behaviors, we identify a critical pathology in this alignment process: the systematic suppression of valid but rare (low-likelihood under the base model distribution) reasoning paths. We theoretically characterize this phenomenon as a "Normalization Squeeze," where the interplay between mode-seeking policy gradients and finite sampling acts as a high-pass likelihood filter, driving the probability of rare correct traces to statistical extinction. To counteract this collapse without discarding the base model's latent diversity, we propose Amortized Reasoning Tree Search (ARTS). Unlike standard approaches that force internalization via parameter updates, ARTS prioritizes deliberation by decoupling generation from verification. We introduce a Flow Matching objective that repurposes the verifier to estimate the conservation of probability flow, enabling robust navigation through sparse, high-entropy search spaces where traditional discriminative objectives fail. Extensive experiments on the MATH-500 benchmark demonstrate that ARTS achieves a performance of 74.6% (BoN@16), effectively matching fully fine-tuned policies (74.7%) without modifying the generative backbone. Crucially, on the long-tail subset where coupled RL optimization collapses to 0% pass@k, ARTS uniquely recovers significant performance, suggesting that disentangling verification from generation offers a more robust pathway for solving complex reasoning tasks.
☆ TRACE: Temporal Reasoning via Agentic Context Evolution for Streaming Electronic Health Records (EHRs)
Large Language Models (LLMs) encode extensive medical knowledge but struggle to apply it reliably to longitudinal patient trajectories, where evolving clinical states, irregular timing, and heterogeneous events degrade performance over time. Existing adaptation strategies rely on fine-tuning or retrieval-based augmentation, which introduce computational overhead, privacy constraints, or instability under long contexts. We introduce TRACE (Temporal Reasoning via Agentic Context Evolution), a framework that enables temporal clinical reasoning with frozen LLMs by explicitly structuring and maintaining context rather than extending context windows or updating parameters. TRACE operates over a dual-memory architecture consisting of a static Global Protocol encoding institutional clinical rules and a dynamic Individual Protocol tracking patient-specific state. Four agentic components, Router, Reasoner, Auditor, and Steward, coordinate over this structured memory to support temporal inference and state evolution. The framework maintains bounded inference cost via structured state compression and selectively audits safety-critical clinical decisions. Evaluated on longitudinal clinical event streams from MIMIC-IV, TRACE significantly improves next-event prediction accuracy, protocol adherence, and clinical safety over long-context and retrieval-augmented baselines, while producing interpretable and auditable reasoning traces.
☆ FLAC: Maximum Entropy RL via Kinetic Energy Regularized Bridge Matching
Iterative generative policies, such as diffusion models and flow matching, offer superior expressivity for continuous control but complicate Maximum Entropy Reinforcement Learning because their action log-densities are not directly accessible. To address this, we propose Field Least-Energy Actor-Critic (FLAC), a likelihood-free framework that regulates policy stochasticity by penalizing the kinetic energy of the velocity field. Our key insight is to formulate policy optimization as a Generalized Schrödinger Bridge (GSB) problem relative to a high-entropy reference process (e.g., uniform). Under this view, the maximum-entropy principle emerges naturally as staying close to a high-entropy reference while optimizing return, without requiring explicit action densities. In this framework, kinetic energy serves as a physically grounded proxy for divergence from the reference: minimizing path-space energy bounds the deviation of the induced terminal action distribution. Building on this view, we derive an energy-regularized policy iteration scheme and a practical off-policy algorithm that automatically tunes the kinetic energy via a Lagrangian dual mechanism. Empirically, FLAC achieves superior or comparable performance on high-dimensional benchmarks relative to strong baselines, while avoiding explicit density estimation.
☆ GRAIL: Geometry-Aware Retrieval-Augmented Inference with LLMs over Hyperbolic Representations of Patient Trajectories
Predicting future clinical events from longitudinal electronic health records (EHRs) is challenging due to sparse multi-type clinical events, hierarchical medical vocabularies, and the tendency of large language models (LLMs) to hallucinate when reasoning over long structured histories. We study next-visit event prediction, which aims to forecast a patient's upcoming clinical events based on prior visits. We propose GRAIL, a framework that models longitudinal EHRs using structured geometric representations and structure-aware retrieval. GRAIL constructs a unified clinical graph by combining deterministic coding-system hierarchies with data-driven temporal associations across event types, embeds this graph in hyperbolic space, and summarizes each visit as a probabilistic Central Event that denoises sparse observations. At inference time, GRAIL retrieves a structured set of clinically plausible future events aligned with hierarchical and temporal progression, and optionally refines their ranking using an LLM as a constrained inference-time reranker. Experiments on MIMIC-IV show that GRAIL consistently improves multi-type next-visit prediction and yields more hierarchy-consistent forecasts.
☆ Reliable Hierarchical Operating System Fingerprinting via Conformal Prediction
Operating System (OS) fingerprinting is critical for network security, but conventional methods do not provide formal uncertainty quantification mechanisms. Conformal Prediction (CP) could be directly wrapped around existing methods to obtain prediction sets with guaranteed coverage. However, a direct application of CP would treat OS identification as a flat classification problem, ignoring the natural taxonomic structure of OSs and providing brittle point predictions. This work addresses these limitations by introducing and evaluating two distinct structured CP strategies: level-wise CP (L-CP), which calibrates each hierarchy level independently, and projection-based CP (P-CP), which ensures structural consistency by projecting leaf-level sets upwards. Our results demonstrate that, while both methods satisfy validity guarantees, they expose a fundamental trade-off between level-wise efficiency and structural consistency. L-CP yields tighter prediction sets suitable for human forensic analysis but suffers from taxonomic inconsistencies. Conversely, P-CP guarantees hierarchically consistent, nested sets ideal for automated policy enforcement, albeit at the cost of reduced efficiency at coarser levels.
comment: Submitted as a preprint (not peer reviewed). 16 pages, 10 figures. Code and datasets available at: https://github.com/rubenpjove/CP-HOSfing
☆ RAT-Bench: A Comprehensive Benchmark for Text Anonymization
Data containing personal information is increasingly used to train, fine-tune, or query Large Language Models (LLMs). Text is typically scrubbed of identifying information prior to use, often with tools such as Microsoft's Presidio or Anthropic's PII purifier. These tools have traditionally been evaluated on their ability to remove specific identifiers (e.g., names), yet their effectiveness at preventing re-identification remains unclear. We introduce RAT-Bench, a comprehensive benchmark for text anonymization tools based on re-identification risk. Using U.S. demographic statistics, we generate synthetic text containing various direct and indirect identifiers across domains, languages, and difficulty levels. We evaluate a range of NER- and LLM-based text anonymization tools and, based on the attributes an LLM-based attacker is able to correctly infer from the anonymized text, we report the risk of re-identification in the U.S. population, while properly accounting for the disparate impact of identifiers. We find that, while capabilities vary widely, even the best tools are far from perfect in particular when direct identifiers are not written in standard ways and when indirect identifiers enable re-identification. Overall we find LLM-based anonymizers, including new iterative anonymizers, to provide a better privacy-utility trade-off albeit at a higher computational cost. Importantly, we also find them to work well across languages. We conclude with recommendations for future anonymization tools and will release the benchmark and encourage community efforts to expand it, in particular to other geographies.
☆ Can Neural Networks Provide Latent Embeddings for Telemetry-Aware Greedy Routing?
Telemetry-Aware routing promises to increase efficacy and responsiveness to traffic surges in computer networks. Recent research leverages Machine Learning to deal with the complex dependency between network state and routing, but sacrifices explainability of routing decisions due to the black-box nature of the proposed neural routing modules. We propose \emph{Placer}, a novel algorithm using Message Passing Networks to transform network states into latent node embeddings. These embeddings facilitate quick greedy next-hop routing without directly solving the all-pairs shortest paths problem, and let us visualize how certain network events shape routing decisions.
☆ Aspect-Based Sentiment Analysis for Future Tourism Experiences: A BERT-MoE Framework for Persian User Reviews
This study advances aspect-based sentiment analysis (ABSA) for Persian-language user reviews in the tourism domain, addressing challenges of low-resource languages. We propose a hybrid BERT-based model with Top-K routing and auxiliary losses to mitigate routing collapse and improve efficiency. The pipeline includes: (1) overall sentiment classification using BERT on 9,558 labeled reviews, (2) multi-label aspect extraction for six tourism-related aspects (host, price, location, amenities, cleanliness, connectivity), and (3) integrated ABSA with dynamic routing. The dataset consists of 58,473 preprocessed reviews from the Iranian accommodation platform Jabama, manually annotated for aspects and sentiments. The proposed model achieves a weighted F1-score of 90.6% for ABSA, outperforming baseline BERT (89.25%) and a standard hybrid approach (85.7%). Key efficiency gains include a 39% reduction in GPU power consumption compared to dense BERT, supporting sustainable AI deployment in alignment with UN SDGs 9 and 12. Analysis reveals high mention rates for cleanliness and amenities as critical aspects. This is the first ABSA study focused on Persian tourism reviews, and we release the annotated dataset to facilitate future multilingual NLP research in tourism.
comment: 25 pages, 12 figures, 4 tables
☆ Closing the Loop: A Control-Theoretic Framework for Provably Stable Time Series Forecasting with LLMs
Large Language Models (LLMs) have recently shown exceptional potential in time series forecasting, leveraging their inherent sequential reasoning capabilities to model complex temporal dynamics. However, existing approaches typically employ a naive autoregressive generation strategy. We identify a critical theoretical flaw in this paradigm: during inference, the model operates in an open-loop manner, consuming its own generated outputs recursively. This leads to inevitable error accumulation (exposure bias), where minor early deviations cascade into significant trajectory drift over long horizons. In this paper, we reformulate autoregressive forecasting through the lens of control theory, proposing \textbf{F-LLM} (Feedback-driven LLM), a novel closed-loop framework. Unlike standard methods that passively propagate errors, F-LLM actively stabilizes the trajectory via a learnable residual estimator (Observer) and a feedback controller. Furthermore, we provide a theoretical guarantee that our closed-loop mechanism ensures uniformly bounded error, provided the base model satisfies a local Lipschitz constraint. Extensive experiments demonstrate that F-LLM significantly mitigates error propagation, achieving good performance on time series benchmarks.
☆ Hierarchical Successor Representation for Robust Transfer
The successor representation (SR) provides a powerful framework for decoupling predictive dynamics from rewards, enabling rapid generalisation across reward configurations. However, the classical SR is limited by its inherent policy dependence: policies change due to ongoing learning, environmental non-stationarities, and changes in task demands, making established predictive representations obsolete. Furthermore, in topologically complex environments, SRs suffer from spectral diffusion, leading to dense and overlapping features that scale poorly. Here we propose the Hierarchical Successor Representation (HSR) for overcoming these limitations. By incorporating temporal abstractions into the construction of predictive representations, HSR learns stable state features which are robust to task-induced policy changes. Applying non-negative matrix factorisation (NMF) to the HSR yields a sparse, low-rank state representation that facilitates highly sample-efficient transfer to novel tasks in multi-compartmental environments. Further analysis reveals that HSR-NMF discovers interpretable topological structures, providing a policy-agnostic hierarchical map that effectively bridges model-free optimality and model-based flexibility. Beyond providing a useful basis for task-transfer, we show that HSR's temporally extended predictive structure can also be leveraged to drive efficient exploration, effectively scaling to large, procedurally generated environments.
☆ Adaptive Structured Pruning of Convolutional Neural Networks for Time Series Classification
Deep learning models for Time Series Classification (TSC) have achieved strong predictive performance but their high computational and memory requirements often limit deployment on resource-constrained devices. While structured pruning can address these issues by removing redundant filters, existing methods typically rely on manually tuned hyperparameters such as pruning ratios which limit scalability and generalization across datasets. In this work, we propose Dynamic Structured Pruning (DSP), a fully automatic, structured pruning framework for convolution-based TSC models. DSP introduces an instance-wise sparsity loss during training to induce channel-level sparsity, followed by a global activation analysis to identify and prune redundant filters without needing any predefined pruning ratio. This work tackles computational bottlenecks of deep TSC models for deployment on resource-constrained devices. We validate DSP on 128 UCR datasets using two different deep state-of-the-art architectures: LITETime and InceptionTime. Our approach achieves an average compression of 58% for LITETime and 75% for InceptionTime architectures while maintaining classification accuracy. Redundancy analyses confirm that DSP produces compact and informative representations, offering a practical path for scalable and efficient deep TSC deployment.
comment: 12 pages, 16 figures. Accepted at ICAART 2026
☆ Synthetic Craquelure Generation for Unsupervised Painting Restoration
Cultural heritage preservation increasingly demands non-invasive digital methods for painting restoration, yet identifying and restoring fine craquelure patterns from complex brushstrokes remains challenging due to scarce pixel-level annotations. We propose a fully annotation-free framework driven by a domain-specific synthetic craquelure generator, which simulates realistic branching and tapered fissure geometry using Bézier trajectories. Our approach couples a classical morphological detector with a learning-based refinement module: a SegFormer backbone adapted via Low-Rank Adaptation (LoRA). Uniquely, we employ a detector-guided strategy, injecting the morphological map as an input spatial prior, while a masked hybrid loss and logit adjustment constrain the training to focus specifically on refining candidate crack regions. The refined masks subsequently guide an Anisotropic Diffusion inpainting stage to reconstruct missing content. Experimental results demonstrate that our pipeline significantly outperforms state-of-the-art photographic restoration models in zero-shot settings, while faithfully preserving the original paint brushwork.
comment: Accepted to CAI 2026
☆ ADEPT: RL-Aligned Agentic Decoding of Emotion via Evidence Probing Tools -- From Consensus Learning to Ambiguity-Driven Emotion Reasoning
Speech Large Language Models (SLLMs) enable high-level emotion reasoning but often produce ungrounded, text-biased judgments without verifiable acoustic evidence. In contrast, self-supervised speech encoders such as WavLM provide strong acoustic representations yet remain opaque discriminative models with limited interpretability. To bridge this gap, we introduce ADEPT (Agentic Decoding of Emotion via Evidence Probing Tools), a framework that reframes emotion recognition as a multi-turn inquiry process rather than a single-pass prediction. ADEPT transforms an SLLM into an agent that maintains an evolving candidate emotion set and adaptively invokes dedicated semantic and acoustic probing tools within a structured pipeline of candidate generation, evidence collection, and adjudication. Crucially, ADEPT enables a paradigm shift from consensus learning to ambiguity-driven emotion reasoning. Since human affect exhibits inherent complexity and frequent co-occurrence of emotions, we treat minority annotations as informative perceptual signals rather than discarding them as noise. Finally, we integrate Group Relative Policy Optimization (GRPO) with an Evidence Trust Gate to explicitly couple tool-usage behaviors with prediction quality and enforce evidence-grounded reasoning. Experiments show that ADEPT improves primary emotion accuracy in most settings while substantially improving minor emotion characterization, producing explanations grounded in auditable acoustic and semantic evidence.
comment: Under Review
☆ Mixture of Predefined Experts: Maximizing Data Usage on Vertical Federated Learning
Vertical Federated Learning (VFL) has emerged as a critical paradigm for collaborative model training in privacy-sensitive domains such as finance and healthcare. However, most existing VFL frameworks rely on the idealized assumption of full sample alignment across participants, a premise that rarely holds in real-world scenarios. To bridge this gap, this work introduces Split-MoPE, a novel framework that integrates Split Learning with a specialized Mixture of Predefined Experts (MoPE) architecture. Unlike standard Mixture of Experts (MoE), where routing is learned dynamically, MoPE uses predefined experts to process specific data alignments, effectively maximizing data usage during both training and inference without requiring full sample overlap. By leveraging pretrained encoders for target data domains, Split-MoPE achieves state-of-the-art performance in a single communication round, significantly reducing the communication footprint compared to multi-round end-to-end training. Furthermore, unlike existing proposals that address sample misalignment, this novel architecture provides inherent robustness against malicious or noisy participants and offers per-sample interpretability by quantifying each collaborator's contribution to each prediction. Extensive evaluations on vision (CIFAR-10/100) and tabular (Breast Cancer Wisconsin) datasets demonstrate that Split-MoPE consistently outperforms state-of-the-art systems such as LASER and Vertical SplitNN, particularly in challenging scenarios with high data missingness.
☆ Physics-Informed Laplace Neural Operator for Solving Partial Differential Equations
Neural operators have emerged as fast surrogate solvers for parametric partial differential equations (PDEs). However, purely data-driven models often require extensive training data and can generalize poorly, especially in small-data regimes and under unseen (out-of-distribution) input functions that are not represented in the training data. To address these limitations, we propose the Physics-Informed Laplace Neural Operator (PILNO), which enhances the Laplace Neural Operator (LNO) by embedding governing physics into training through PDE, boundary condition, and initial condition residuals. To improve expressivity, we first introduce an Advanced LNO (ALNO) backbone that retains a pole-residue transient representation while replacing the steady-state branch with an FNO-style Fourier multiplier. To make physics-informed training both data-efficient and robust, PILNO further leverages (i) virtual inputs: an unlabeled ensemble of input functions spanning a broad spectral range that provides abundant physics-only supervision and explicitly targets out-of-distribution (OOD) regimes; and (ii) temporal-causality weighting: a time-decaying reweighting of the physics residual that prioritizes early-time dynamics and stabilizes optimization for time-dependent PDEs. Across four representative benchmarks -- Burgers' equation, Darcy flow, a reaction-diffusion system, and a forced KdV equation -- PILNO consistently improves accuracy in small-data settings (e.g., N_train <= 27), reduces run-to-run variability across random seeds, and achieves stronger OOD generalization than purely data-driven baselines.
comment: 38 pages,19 figures
☆ QTabGAN: A Hybrid Quantum-Classical GAN for Tabular Data Synthesis
Synthesizing realistic tabular data is challenging due to heterogeneous feature types and high dimensionality. We introduce QTabGAN, a hybrid quantum-classical generative adversarial framework for tabular data synthesis. QTabGAN is especially designed for settings where real data are scarce or restricted by privacy constraints. The model exploits the expressive power of quantum circuits to learn complex data distributions, which are then mapped to tabular features using classical neural networks. We evaluate QTabGAN on multiple classification and regression datasets and benchmark it against leading state-of-the-art generative models. Experiments show that QTabGAN achieves up to 54.07% improvement across various classification datasets and evaluation metrics, thus establishing a scalable quantum approach to tabular data synthesis and highlighting its potential for quantum-assisted generative modelling.
comment: 21 pages
☆ SWING: Unlocking Implicit Graph Representations for Graph Random Features
We propose SWING: Space Walks for Implicit Network Graphs, a new class of algorithms for computations involving Graph Random Features on graphs given by implicit representations (i-graphs), where edge-weights are defined as bi-variate functions of feature vectors in the corresponding nodes. Those classes of graphs include several prominent examples, such as: $ε$-neighborhood graphs, used on regular basis in machine learning. Rather than conducting walks on graphs' nodes, those methods rely on walks in continuous spaces, in which those graphs are embedded. To accurately and efficiently approximate original combinatorial calculations, SWING applies customized Gumbel-softmax sampling mechanism with linearized kernels, obtained via random features coupled with importance sampling techniques. This algorithm is of its own interest. SWING relies on the deep connection between implicitly defined graphs and Fourier analysis, presented in this paper. SWING is accelerator-friendly and does not require input graph materialization. We provide detailed analysis of SWING and complement it with thorough experiments on different classes of i-graphs.
☆ Channel-Aware Probing for Multi-Channel Imaging
Training and evaluating vision encoders on Multi-Channel Imaging (MCI) data remains challenging as channel configurations vary across datasets, preventing fixed-channel training and limiting reuse of pre-trained encoders on new channel settings. Prior work trains MCI encoders but typically evaluates them via full fine-tuning, leaving probing with frozen pre-trained encoders comparatively underexplored. Existing studies that perform probing largely focus on improving representations, rather than how to best leverage fixed representations for downstream tasks. Although the latter problem has been studied in other domains, directly transferring those strategies to MCI yields weak results, even worse than training from scratch. We therefore propose Channel-Aware Probing (CAP), which exploits the intrinsic inter-channel diversity in MCI datasets by controlling feature flow at both the encoder and probe levels. CAP uses Independent Feature Encoding (IFE) to encode each channel separately, and Decoupled Pooling (DCP) to pool within channels before aggregating across channels. Across three MCI benchmarks, CAP consistently improves probing performance over the default probing protocol, matches fine-tuning from scratch, and largely reduces the gap to full fine-tuning from the same MCI pre-trained checkpoints. Code can be found in https://github.com/umarikkar/CAP.
☆ Leverage-Weighted Conformal Prediction
Split conformal prediction provides distribution-free prediction intervals with finite-sample marginal coverage, but produces constant-width intervals that overcover in low-variance regions and undercover in high-variance regions. Existing adaptive methods require training auxiliary models. We propose Leverage-Weighted Conformal Prediction (LWCP), which weights nonconformity scores by a function of the statistical leverage -- the diagonal of the hat matrix -- deriving adaptivity from the geometry of the design matrix rather than from auxiliary model fitting. We prove that LWCP preserves finite-sample marginal validity for any weight function; achieves asymptotically optimal conditional coverage at essentially no width cost when heteroscedasticity factors through leverage; and recovers the form and width of classical prediction intervals under Gaussian assumptions while retaining distribution-free guarantees. We further establish that randomized leverage approximations preserve coverage exactly with controlled width perturbation, and that vanilla CP suffers a persistent, sample-size-independent conditional coverage gap that LWCP eliminates. The method requires no hyperparameters beyond the choice of weight function and adds negligible computational overhead to vanilla CP. Experiments on synthetic and real data confirm the theoretical predictions, demonstrating substantial reductions in conditional coverage disparity across settings.
☆ Trust the uncertain teacher: distilling dark knowledge via calibrated uncertainty
The core of knowledge distillation lies in transferring the teacher's rich 'dark knowledge'-subtle probabilistic patterns that reveal how classes are related and the distribution of uncertainties. While this idea is well established, teachers trained with conventional cross-entropy often fail to preserve such signals. Their distributions collapse into sharp, overconfident peaks that appear decisive but are in fact brittle, offering little beyond the hard label or subtly hindering representation-level transfer. This overconfidence is especially problematic in high-cardinality tasks, where the nuances among many plausible classes matter most for guiding a compact student. Moreover, such brittle targets reduce robustness under distribution shift, leaving students vulnerable to miscalibration in real-world conditions. To address this limitation, we revisit distillation from a distributional perspective and propose Calibrated Uncertainty Distillation (CUD), a framework designed to make dark knowledge more faithfully accessible. Instead of uncritically adopting the teacher's overconfidence, CUD encourages teachers to reveal uncertainty where it is informative and guides students to learn from targets that are calibrated rather than sharpened certainty. By directly shaping the teacher's predictive distribution before transfer, our approach balances accuracy and calibration, allowing students to benefit from both confident signals on easy cases and structured uncertainty on hard ones. Across diverse benchmarks, CUD yields students that are not only more accurate, but also more calibrated under shift and more reliable on ambiguous, long-tail inputs.
☆ Xiaomi-Robotics-0: An Open-Sourced Vision-Language-Action Model with Real-Time Execution
In this report, we introduce Xiaomi-Robotics-0, an advanced vision-language-action (VLA) model optimized for high performance and fast and smooth real-time execution. The key to our method lies in a carefully designed training recipe and deployment strategy. Xiaomi-Robotics-0 is first pre-trained on large-scale cross-embodiment robot trajectories and vision-language data, endowing it with broad and generalizable action-generation capabilities while avoiding catastrophic forgetting of the visual-semantic knowledge of the underlying pre-trained VLM. During post-training, we propose several techniques for training the VLA model for asynchronous execution to address the inference latency during real-robot rollouts. During deployment, we carefully align the timesteps of consecutive predicted action chunks to ensure continuous and seamless real-time rollouts. We evaluate Xiaomi-Robotics-0 extensively in simulation benchmarks and on two challenging real-robot tasks that require precise and dexterous bimanual manipulation. Results show that our method achieves state-of-the-art performance across all simulation benchmarks. Moreover, Xiaomi-Robotics-0 can roll out fast and smoothly on real robots using a consumer-grade GPU, achieving high success rates and throughput on both real-robot tasks. To facilitate future research, code and model checkpoints are open-sourced at https://xiaomi-robotics-0.github.io
comment: Project page: https://xiaomi-robotics-0.github.io
☆ Flow Matching from Viewpoint of Proximal Operators
We reformulate Optimal Transport Conditional Flow Matching (OT-CFM), a class of dynamical generative models, showing that it admits an exact proximal formulation via an extended Brenier potential, without assuming that the target distribution has a density. In particular, the mapping to recover the target point is exactly given by a proximal operator, which yields an explicit proximal expression of the vector field. We also discuss the convergence of minibatch OT-CFM to the population formulation as the batch size increases. Finally, using second epi-derivatives of convex potentials, we prove that, for manifold-supported targets, OT-CFM is terminally normally hyperbolic: after time rescaling, the dynamics contracts exponentially in directions normal to the data manifold while remaining neutral along tangential directions.
comment: 38 pages, 6 figures
☆ Fool Me If You Can: On the Robustness of Binary Code Similarity Detection Models against Semantics-preserving Transformations
Binary code analysis plays an essential role in cybersecurity, facilitating reverse engineering to reveal the inner workings of programs in the absence of source code. Traditional approaches, such as static and dynamic analysis, extract valuable insights from stripped binaries, but often demand substantial expertise and manual effort. Recent advances in deep learning have opened promising opportunities to enhance binary analysis by capturing latent features and disclosing underlying code semantics. Despite the growing number of binary analysis models based on machine learning, their robustness to adversarial code transformations at the binary level remains underexplored. We evaluate the robustness of deep learning models for the task of binary code similarity detection (BCSD) under semantics-preserving transformations. The unique nature of machine instructions presents distinct challenges compared to the typical input perturbations found in other domains. We introduce asmFooler, a system that evaluates the resilience of BCSD models using a diverse set of adversarial code transformations that preserve functional semantics. We construct a dataset of 9,565 binary variants from 620 baseline samples by applying eight semantics-preserving transformations across six representative BCSD models. Our major findings highlight several key insights: i) model robustness relies on the processing pipeline, including code pre-processing, architecture, and feature selection; ii) adversarial transformation effectiveness is bounded by a budget shaped by model-specific constraints like input size and instruction expressive capacity; iii) well-crafted transformations can be highly effective with minimal perturbations; and iv) such transformations efficiently disrupt model decisions (e.g., misleading to false positives or false negatives) by focusing on semantically significant instructions.
comment: 23 pages, 9 figures, 5 tables. The paper has been accepted by The ACM International Conference on the Foundations of Software Engineering (FSE 2026)
☆ A Regularization-Sharpness Tradeoff for Linear Interpolators
The rule of thumb regarding the relationship between the bias-variance tradeoff and model size plays a key role in classical machine learning, but is now well-known to break down in the overparameterized setting as per the double descent curve. In particular, minimum-norm interpolating estimators can perform well, suggesting the need for new tradeoff in these settings. Accordingly, we propose a regularization-sharpness tradeoff for overparameterized linear regression with an $\ell^p$ penalty. Inspired by the interpolating information criterion, our framework decomposes the selection penalty into a regularization term (quantifying the alignment of the regularizer and the interpolator) and a geometric sharpness term on the interpolating manifold (quantifying the effect of local perturbations), yielding a tradeoff analogous to bias-variance. Building on prior analyses that established this information criterion for ridge regularizers, this work first provides a general expression of the interpolating information criterion for $\ell^p$ regularizers where $p \ge 2$. Subsequently, we extend this to the LASSO interpolator with $\ell^1$ regularizer, which induces stronger sparsity. Empirical results on real-world datasets with random Fourier features and polynomials validate our theory, demonstrating how the tradeoff terms can distinguish performant linear interpolators from weaker ones.
comment: 29 pages, 4 figures
☆ SLA2: Sparse-Linear Attention with Learnable Routing and QAT
Sparse-Linear Attention (SLA) combines sparse and linear attention to accelerate diffusion models and has shown strong performance in video generation. However, (i) SLA relies on a heuristic split that assigns computations to the sparse or linear branch based on attention-weight magnitude, which can be suboptimal. Additionally, (ii) after formally analyzing the attention error in SLA, we identify a mismatch between SLA and a direct decomposition into sparse and linear attention. We propose SLA2, which introduces (I) a learnable router that dynamically selects whether each attention computation should use sparse or linear attention, (II) a more faithful and direct sparse-linear attention formulation that uses a learnable ratio to combine the sparse and linear attention branches, and (III) a sparse + low-bit attention design, where low-bit attention is introduced via quantization-aware fine-tuning to reduce quantization error. Experiments show that on video diffusion models, SLA2 can achieve 97% attention sparsity and deliver an 18.6x attention speedup while preserving generation quality.
☆ Uncovering spatial tissue domains and cell types in spatial omics through cross-scale profiling of cellular and genomic interactions
Cellular identity and function are linked to both their intrinsic genomic makeup and extrinsic spatial context within the tissue microenvironment. Spatial transcriptomics (ST) offers an unprecedented opportunity to study this, providing in situ gene expression profiles at single-cell resolution and illuminating the spatial and functional organization of cells within tissues. However, a significant hurdle remains: ST data is inherently noisy, large, and structurally complex. This complexity makes it intractable for existing computational methods to effectively capture the interplay between spatial interactions and intrinsic genomic relationships, thus limiting our ability to discern critical biological patterns. Here, we present CellScape, a deep learning framework designed to overcome these limitations for high-performance ST data analysis and pattern discovery. CellScape jointly models cellular interactions in tissue space and genomic relationships among cells, producing comprehensive representations that seamlessly integrate spatial signals with underlying gene regulatory mechanisms. This technique uncovers biologically informative patterns that improve spatial domain segmentation and supports comprehensive spatial cellular analyses across diverse transcriptomics datasets, offering an accurate and versatile framework for deep analysis and interpretation of ST data.w
☆ Multi-Task Learning with Additive U-Net for Image Denoising and Classification
We investigate additive skip fusion in U-Net architectures for image denoising and denoising-centric multi-task learning (MTL). By replacing concatenative skips with gated additive fusion, the proposed Additive U-Net (AddUNet) constrains shortcut capacity while preserving fixed feature dimensionality across depth. This structural regularization induces controlled encoder-decoder information flow and stabilizes joint optimization. Across single-task denoising and joint denoising-classification settings, AddUNet achieves competitive reconstruction performance with improved training stability. In MTL, learned skip weights exhibit systematic task-aware redistribution: shallow skips favor reconstruction, while deeper features support discrimination. Notably, reconstruction remains robust even under limited classification capacity, indicating implicit task decoupling through additive fusion. These findings show that simple constraints on skip connections act as an effective architectural regularizer for stable and scalable multi-task learning without increasing model complexity.
☆ Unifying Model-Free Efficiency and Model-Based Representations via Latent Dynamics
We present Unified Latent Dynamics (ULD), a novel reinforcement learning algorithm that unifies the efficiency of model-free methods with the representational strengths of model-based approaches, without incurring planning overhead. By embedding state-action pairs into a latent space in which the true value function is approximately linear, our method supports a single set of hyperparameters across diverse domains -- from continuous control with low-dimensional and pixel inputs to high-dimensional Atari games. We prove that, under mild conditions, the fixed point of our embedding-based temporal-difference updates coincides with that of a corresponding linear model-based value expansion, and we derive explicit error bounds relating embedding fidelity to value approximation quality. In practice, ULD employs synchronized updates of encoder, value, and policy networks, auxiliary losses for short-horizon predictive dynamics, and reward-scale normalization to ensure stable learning under sparse rewards. Evaluated on 80 environments spanning Gym locomotion, DeepMind Control (proprioceptive and visual), and Atari, our approach matches or exceeds the performance of specialized model-free and general model-based baselines -- achieving cross-domain competence with minimal tuning and a fraction of the parameter footprint. These results indicate that value-aligned latent representations alone can deliver the adaptability and sample efficiency traditionally attributed to full model-based planning.
comment: 13 pages. Accepted at AAMAS 2026
☆ Dual-Granularity Contrastive Reward via Generated Episodic Guidance for Efficient Embodied RL
Designing suitable rewards poses a significant challenge in reinforcement learning (RL), especially for embodied manipulation. Trajectory success rewards are suitable for human judges or model fitting, but the sparsity severely limits RL sample efficiency. While recent methods have effectively improved RL via dense rewards, they rely heavily on high-quality human-annotated data or abundant expert supervision. To tackle these issues, this paper proposes Dual-granularity contrastive reward via generated Episodic Guidance (DEG), a novel framework to seek sample-efficient dense rewards without requiring human annotations or extensive supervision. Leveraging the prior knowledge of large video generation models, DEG only needs a small number of expert videos for domain adaptation to generate dedicated task guidance for each RL episode. Then, the proposed dual-granularity reward that balances coarse-grained exploration and fine-grained matching, will guide the agent to efficiently approximate the generated guidance video sequentially in the contrastive self-supervised latent space, and finally complete the target task. Extensive experiments on 18 diverse tasks across both simulation and real-world settings show that DEG can not only serve as an efficient exploration stimulus to help the agent quickly discover sparse success rewards, but also guide effective RL and stable policy convergence independently.
☆ Unleashing Low-Bit Inference on Ascend NPUs: A Comprehensive Evaluation of HiFloat Formats
As LLMs scale, low-bit floating-point formats like MXFP and NVFP4 offer new opportunities for precision and efficiency. In this work, we evaluate HiFloat (HiF8 and HiF4), a family of formats tailored for Ascend NPUs. Through rigorous comparison across weight-activation and KV-cache tasks, we provide three key insights: (1) INT8 suits narrow-range data, while floating-point formats excel with high-variance data; (2) in 4-bit regimes, HiF4's hierarchical scaling prevents the accuracy collapse seen in integer formats; and (3) HiFloat is fully compatible with state-of-the-art post-training quantization frameworks. Overall, HiFloat provides a solution for high-efficiency LLM inference on NPUs.
♻ ☆ DRL-Based Beam Positioning for LEO Satellite Constellations with Weighted Least Squares
In this paper, we propose a reinforcement learning based beam weighting framework that couples a policy network with an augmented weighted least squares (WLS) estimator for accurate and low-complexity positioning in multi-beam LEO constellations. Unlike conventional geometry or CSI-dependent approaches, the policy learns directly from uplink pilot responses and geometry features, enabling robust localization without explicit CSI estimation. An augmented WLS jointly estimates position and receiver clock bias, improving numerical stability under dynamic beam geometry. Across representative scenarios, the proposed method reduces the mean positioning error by 99.3% compared with the geometry-based baseline, achieving 0.395 m RMSE with near real-time inference.
comment: 6 pages, 3 figures, 1 table, and submitted to 2026 IEEE ICC Workshops
♻ ☆ Learning-based Radio Link Failure Prediction Based on Measurement Dataset in Railway Environments
This paper presents a measurement-driven case study on early radio link failure (RLF) warning as device-side network sensing and analytics for proactive mobility management in 5G non-standalone (NSA) railway environments. Using 10~Hz metro-train measurement traces with serving- and neighbor-cell indicators, we benchmark six representative learning models, including CNN, LSTM, XGBoost, Anomaly Transformer, PatchTST, and TimesNet, under multiple observation windows and prediction horizons. Rather than proposing a new prediction architecture, this study focuses on quantifying the feasibility of early warning and the trade-offs among observation context, prediction horizon, and alarm reliability under real railway mobility. Experimental results show that learning models can anticipate RLF-related reliability degradation seconds in advance using lightweight features available on commercial devices. The presented benchmark provides practical insights for sensing-assisted communication control, such as proactive redundancy activation and adaptive handover strategies, aligning with the 6G vision of integrating sensing and analytics into mobility control.
comment: 6 pages, 3 figures, 2 tables, and submitted to 2026 IEEE ICC Workshops
♻ ☆ R-Zero: Self-Evolving Reasoning LLM from Zero Data
Self-evolving Large Language Models (LLMs) offer a scalable path toward super-intelligence by autonomously generating, refining, and learning from their own experiences. However, existing methods for training such models still rely heavily on vast human-curated tasks and labels, typically via fine-tuning or reinforcement learning, which poses a fundamental bottleneck to advancing AI systems toward capabilities beyond human intelligence. To overcome this limitation, we introduce R-Zero, a fully autonomous framework that generates its own training data from scratch. Starting from a single base LLM, R-Zero initializes two independent models with distinct roles, a Challenger and a Solver. These models are optimized separately and co-evolve through interaction: the Challenger is rewarded for proposing tasks near the edge of the Solver capability, and the Solver is rewarded for solving increasingly challenging tasks posed by the Challenger. This process yields a targeted, self-improving curriculum without any pre-existing tasks and labels. Empirically, R-Zero substantially improves reasoning capability across different backbone LLMs, e.g., boosting the Qwen3-4B-Base by +6.49 on math-reasoning benchmarks and +7.54 on general-domain reasoning benchmarks.
♻ ☆ tLoRA: Efficient Multi-LoRA Training with Elastic Shared Super-Models
As Low-Rank Adaptation (LoRA) becomes the standard approach for efficiently fine-tuning large language models (LLMs), shared clusters increasingly execute many concurrent LoRA training jobs over the same frozen backbone. While recent advances enable batching (co-locating) multiple adapters during serving, efficient training-time co-location of heterogeneous LoRA adapters presents unique challenges. Jobs often differ in adapter rank, batch size, and resource allocation, and naïve batching can introduce synchronization stalls, communication overheads, and per-job slowdowns that are worse than executing independently. We introduce tLoRA, a framework that enables efficient batch training of multiple LoRA jobs. tLoRA fuses adapters that share the same base model into an elastic shared super-model, exploiting existing distributed training frameworks to derive parallelism plans that share resources effectively. At the kernel level, tLoRA employs a fused LoRA kernel that adaptively reconstructs low-rank computation tiles and schedules rank-aware nano-batches to maximize overlap between computation and communication across adapters. At the scheduling layer, tLoRA incorporates an online, residual-capacity-aware scheduler that adaptively groups jobs to maximize collective throughput. Evaluations using real-world cluster traces demonstrate that tLoRA improves training throughput by 1.2--1.8x, job training completion time by 2.3--5.4x, and GPU utilization by 37%.
♻ ☆ Solving Conic Programs over Sparse Graphs using a Variational Quantum Approach: The Case of the Optimal Power Flow
Conic programs arise broadly in physics, quantum information, machine learning, and engineering, many of which are defined over sparse graphs. Although such problems can be solved in polynomial time using classical interior-point solvers, the computational complexity scales unfavorably with graph size. In this context, this work proposes a variational quantum paradigm for solving conic programs, including quadratically constrained quadratic programs (QCQPs) and semidefinite programs (SDPs). We encode primal variables via the state of a parameterized quantum circuit (PQC), and dual variables via the probability mass function of a second PQC. The Lagrangian function can thus be expressed as scaled expectations of quantum observables. A primal-dual solution can be found by minimizing/maximizing the Lagrangian over the parameters of the first/second PQC. We pursue saddle points of the Lagrangian in a hybrid fashion. Gradients of the Lagrangian are estimated using the two PQCs, while PQC parameters are updated classically using a primal-dual method. We propose permuting the primal variables so that related observables are expressed in a banded form, enabling efficient measurement. The proposed framework is applied to the OPF problem, a large-scale optimization problem central to the operation of electric power systems. Numerical tests on the IEEE 57-node power system using Pennylane's simulator corroborate that the proposed doubly variational quantum framework can find high-quality OPF solutions. Although showcased for the OPF, this framework features a broader scope, including conic programs with numerous variables and constraints, problems defined over sparse graphs, and training quantum machine learning models to satisfy constraints.
comment: 21 pages, 7 figures, 2 tables
♻ ☆ MissionHD: Hyperdimensional Refinement of Distribution-Deficient Reasoning Graphs for Video Anomaly Detection
LLM-generated reasoning graphs, referred to as mission-specific graphs (MSGs), are increasingly used for video anomaly detection (VAD) and recognition (VAR). However, they are typically treated as fixed despite being generic and distribution-deficient. Conventional graph structure refinement (GSR) methods are ill-suited to this setting, as they rely on learning structural distributions that are absent in LLM-generated graphs. We propose HDC-constrained Graph Structure Refinement (HDC-GSR), a new paradigm that directly optimizes a decodable, task-aligned graph representation in a single hyperdimensional space without distribution modeling. Leveraging Hyperdimensional Computing (HDC), our framework encodes graphs via binding and bundling operations, aligns the resulting graph code with downstream loss, and decodes edge contributions to refine the structure. We instantiate this approach as MissionHD for weakly supervised VAD/VAR and demonstrate consistent performance gains on benchmark datasets.
♻ ☆ Learnable Chernoff Baselines for Inference-Time Alignment
We study inference-time reward-guided alignment for generative models. Existing methods often rely on either architecture-specific adaptations or computationally costly inference procedures. We introduce Learnable Chernoff Baselines (LCBs) as a method for efficiently and approximately sampling from the exponentially tilted kernels that arise from KL-regularized reward alignment. Using only black-box sampling access to the pretrained model, LCBs implement a form of rejection sampling with adaptively selected acceptance probabilities, which allows fine-grained control over inference-compute scaling. We establish total-variation guarantees to the ideal aligned model, and demonstrate in both continuous and discrete diffusion settings that LCB sampling closely matches ideal rejection sampling while using substantially fewer queries to the pretrained model.
♻ ☆ Generating Physical Dynamics under Priors
Generating physically feasible dynamics in a data-driven context is challenging, especially when adhering to physical priors expressed in specific equations or formulas. Existing methodologies often overlook the integration of physical priors, resulting in violation of basic physical laws and suboptimal performance. In this paper, we introduce a novel framework that seamlessly incorporates physical priors into diffusion-based generative models to address this limitation. Our approach leverages two categories of priors: 1) distributional priors, such as roto-translational invariance, and 2) physical feasibility priors, including energy and momentum conservation laws and PDE constraints. By embedding these priors into the generative process, our method can efficiently generate physically realistic dynamics, encompassing trajectories and flows. Empirical evaluations demonstrate that our method produces high-quality dynamics across a diverse array of physical phenomena with remarkable robustness, underscoring its potential to advance data-driven studies in AI4Physics. Our contributions signify a substantial advancement in the field of generative modeling, offering a robust solution to generate accurate and physically consistent dynamics.
♻ ☆ Highlight & Summarize: RAG without the jailbreaks
Preventing jailbreaking and model hijacking of Large Language Models (LLMs) is an important yet challenging task. When interacting with a chatbot, malicious users can input specially crafted prompts that cause the LLM to generate undesirable content or perform a different task from its intended purpose. Existing systems attempt to mitigate this by hardening the LLM's system prompt or using additional classifiers to detect undesirable content or off-topic conversations. However, these probabilistic approaches are relatively easy to bypass due to the very large space of possible inputs and undesirable outputs. We present and evaluate Highlight & Summarize (H&S), a new design pattern for retrieval-augmented generation (RAG) systems that prevents these attacks by design. The core idea is to perform the same task as a standard RAG pipeline (i.e., to provide natural language answers to questions, based on relevant sources) without ever revealing the user's question to the generative LLM. This is achieved by splitting the pipeline into two components: a highlighter, which takes the user's question and extracts ("highlights") relevant passages from the retrieved documents, and a summarizer, which takes the highlighted passages and summarizes them into a cohesive answer. We describe and implement several possible instantiations of H&S and evaluate their responses in terms of correctness, relevance, and quality. For certain question-answering (QA) tasks, the responses produced by H&S are judged to be as good, if not better, than those of a standard RAG pipeline.
♻ ☆ Weight Decay may matter more than muP for Learning Rate Transfer in Practice ICLR 2026
Transferring the optimal learning rate from small to large neural networks can enable efficient training at scales where hyperparameter tuning is otherwise prohibitively expensive. To this end, the Maximal Update Parameterization (muP) proposes a learning rate scaling designed to keep the update dynamics of internal representations stable across different model widths. However, the scaling rules of muP rely on strong assumptions, particularly about the geometric alignment of a layer's inputs with both its weights and gradient updates. In this large-scale empirical investigation, we show that these assumptions hold only briefly at the start of training in the practical setups where learning rate transfer is most valuable, such as LLM training. For the remainder of training it is weight decay rather than muP that correctly stabilizes the update dynamics of internal representations across widths, facilitating learning rate transfer. This suggests muP's scaling primarily acts as a form of implicit learning rate warmup, allowing us to largely replace it with modified warmup schedules. Together these findings fundamentally challenge prevailing beliefs about learning rate transfer and can explain empirical observations such as why muP requires the independent weight decay variant for good transfer.
comment: ICLR 2026
♻ ☆ Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
comment: To appear at the IEEE International Conference on Communications (ICC), 2026
♻ ☆ How to Train Your LLM Web Agent: A Statistical Diagnosis
LLM-based web agents have recently made significant progress, but much of it has occurred in closed-source systems, widening the gap with open-source alternatives. Progress has been held back by two key challenges: first, a narrow focus on single-step tasks that overlooks the complexity of multi-step web interactions; and second, the high compute costs required to post-train LLM-based web agents. To address this, we present the first statistically grounded study on compute allocation for LLM web-agent post-training. Our approach uses a two-stage pipeline, training a Llama 3.1 8B student to imitate a Llama 3.3 70B teacher via supervised fine-tuning (SFT), followed by on-policy reinforcement learning. We find this process highly sensitive to hyperparameter choices, making exhaustive sweeps impractical. To spare others from expensive trial-and-error, we sample 1,370 configurations and use bootstrapping to estimate effective hyperparameters. Our results show that combining SFT with on-policy RL consistently outperforms either approach alone on both WorkArena and MiniWob++. Further, this strategy requires only 55% of the compute to match the peak performance of pure SFT on MiniWob++, effectively pushing the compute-performance Pareto frontier, and is the only strategy that can close the gap with closed-source models.
♻ ☆ Data-Driven Worker Activity Recognition and Efficiency Estimation in Manual Fruit Harvesting
Manual fruit harvesting is common in agriculture, but the amount of time pickers spend on non-productive activities can make it very inefficient. Accurately identifying picking vs. non-picking activity is crucial for estimating picker efficiency and optimising labour management and harvest processes. In this study, a practical system was developed to calculate the efficiency of pickers in commercial strawberry harvesting. Instrumented picking carts (iCarritos) were developed to record the harvested fruit weight, geolocation, and iCarrito movement in real time. The iCarritos were deployed during the commercial strawberry harvest season in Santa Maria, CA. The collected data was then used to train a CNN-LSTM-based deep neural network to classify a picker's activity into "Pick" and "NoPick" classes. Experimental evaluations showed that the CNN-LSTM model showed promising activity recognition performance with an F1 score of 0.97. The recognition results were then used to compute picker efficiency and the time required to fill a tray. Analysis of the season-long harvest data showed that the average picker efficiency was 75.07% with an estimation accuracy of 97.23%. Furthermore, the average tray fill time was 6.85 minutes with an estimation accuracy of 96.78%. When integrated into commercial harvesting, the proposed technology can aid growers in monitoring automated worker activity and optimising harvests to reduce non-productive time and enhance overall harvest efficiency.
comment: Published in Elsevier Biosystems Engineering
♻ ☆ Semantic Caching for Low-Cost LLM Serving: From Offline Learning to Online Adaptation
Large Language Models (LLMs) are revolutionizing how users interact with information systems, yet their high inference cost poses serious scalability and sustainability challenges. Caching inference responses, allowing them to be retrieved without another forward pass through the LLM, has emerged as one possible solution. Traditional exact-match caching, however, overlooks the semantic similarity between queries, leading to unnecessary recomputation. Semantic caching addresses this by retrieving responses based on semantic similarity, but introduces a fundamentally different cache eviction problem: one must account for mismatch costs between incoming queries and cached responses. Moreover, key system parameters, such as query arrival probabilities and serving costs, are often unknown and must be learned over time. Existing semantic caching methods are largely ad-hoc, lacking theoretical foundations and unable to adapt to real-world uncertainty. In this paper, we present a principled, learning-based framework for semantic cache eviction under unknown query and cost distributions. We formulate both offline optimization and online learning variants of the problem, and develop provably efficient algorithms with state-of-the-art guarantees. We also evaluate our framework on a synthetic dataset, showing that our proposed algorithms perform matching or superior performance compared with baselines.
comment: Accepted to INFOCOM 2026
♻ ☆ Kairos: Toward Adaptive and Parameter-Efficient Time Series Foundation Models
Inherent temporal heterogeneity, such as varying sampling densities and periodic structures, has posed substantial challenges in zero-shot generalization for Time Series Foundation Models (TSFMs). Existing TSFMs predominantly rely on massive parameterization to absorb such heterogeneity, as their static tokenization and positional encoding schemes entangle diverse temporal patterns into a fixed representation space, encouraging memorization rather than adaptation. To address this limitation, we propose Kairos, a flexible and parameter-efficient TSFM that decouples temporal heterogeneity from model capacity through a novel tokenization perspective. Kairos introduces a dynamic patching tokenizer and a mixture-of-size encoding that adapt observational granularity to local information density, enabling fine-grained temporal abstraction without increasing model width or depth. In addition, we design a multi-granularity positional embedding based on dynamic rotary encodings, which conditions on instance-level spectral features and temporal structure induced by dynamic patching tokenization, allowing robust modeling of diverse temporal dependencies. Trained on a novel Predictability-Stratified Time-Series (PreSTS) corpus, Kairos achieves superior zero-shot performance with substantially fewer parameters on two mainstream benchmarks, GIFT-Eval and Time-Series-Library. The project page is at https://foundation-model-research.github.io/Kairos .
♻ ☆ TA-KAND: Two-stage Attention Triple Enhancement and U-KAN based Diffusion For Few-shot Knowledge Graph Completion
Knowledge Graphs have become fundamental infrastructure for applications such as intelligent question answering and recommender systems due to their expressive representation. Nevertheless, real-world knowledge is heterogeneous, leading to a pronounced long-tailed distribution over relations. Previous studies mainly based on metric matching or meta learning. However, they often overlook the distributional characteristics of positive and negative triple samples. In this paper, we propose a few-shot knowledge graph completion framework that integrates two-stage attention triple enhancer with U-KAN based diffusion model. Extensive experiments on two public datasets show significant advantages of our methods.
comment: Work in progress
♻ ☆ Post-hoc Probabilistic Vision-Language Models ICLR 2026
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
comment: Published at ICLR 2026. Project page: https://aaltoml.github.io/BayesVLM/
♻ ☆ Low-Dimensional Execution Manifolds in Transformer Learning Dynamics: Evidence from Modular Arithmetic Tasks
We investigate the geometric structure of learning dynamics in overparameterized transformer models through carefully controlled modular arithmetic tasks. Our primary finding is that despite operating in high-dimensional parameter spaces ($d=128$), transformer training trajectories rapidly collapse onto low-dimensional execution manifolds of dimension $3$--$4$. This dimensional collapse is robust across random seeds and moderate task difficulties, though the orientation of the manifold in parameter space varies between runs. We demonstrate that this geometric structure underlies several empirically observed phenomena: (1) sharp attention concentration emerges as saturation along routing coordinates within the execution manifold, (2) SGD commutators are preferentially aligned with the execution subspace (up to $10\times$ random baseline) early in training, with $>92\%$ of non-commutativity confined to orthogonal staging directions and this alignment decreasing as training converges, and (3) sparse autoencoders capture auxiliary routing structure but fail to isolate execution itself, which remains distributed across the low-dimensional manifold. Our results suggest a unifying geometric framework for understanding transformer learning, where the vast majority of parameters serve to absorb optimization interference while core computation occurs in a dramatically reduced subspace. These findings have implications for interpretability, training curriculum design, and understanding the role of overparameterization in neural network learning.
comment: 15 pages, 6 figures
♻ ☆ Fourier Learning Machines: Nonharmonic Fourier-Based Neural Networks for Scientific Machine Learning
We introduce the Fourier Learning Machine (FLM), a neural network (NN) architecture designed to represent a multidimensional nonharmonic Fourier series. The FLM uses a simple feedforward structure with cosine activation functions to learn the frequencies, amplitudes, and phase shifts of the series as trainable parameters. This design allows the model to create a problem-specific spectral basis adaptable to both periodic and nonperiodic functions. Unlike previous Fourier-inspired NN models, the FLM is the first architecture able to represent a multidimensional Fourier series with a complete set of basis functions in separable form, doing so by using a standard Multilayer Perceptron-like architecture. A one-to-one correspondence between the Fourier coefficients and amplitudes and phase-shifts is demonstrated, allowing for the translation between a full, separable basis form and the cosine phase-shifted one. Additionally, we evaluate the performance of FLMs on several scientific computing problems, including benchmark Partial Differential Equations (PDEs) and a family of Optimal Control Problems (OCPs). Computational experiments show that the performance of FLMs is comparable, and often superior, to that of established architectures like SIREN and vanilla feedforward NNs.
comment: The published version is available at https://openreview.net/forum?id=LPKt5vd7yz
♻ ☆ Bridging Generalization Gap of Heterogeneous Federated Clients Using Generative Models ICLR 2026
Federated Learning (FL) is a privacy-preserving machine learning framework facilitating collaborative training across distributed clients. However, its performance is often compromised by data heterogeneity among participants, which can result in local models with limited generalization capability. Traditional model-homogeneous approaches address this issue primarily by regularizing local training procedures or dynamically adjusting client weights during aggregation. Nevertheless, these methods become unsuitable in scenarios involving clients with heterogeneous model architectures. In this paper, we propose a model-heterogeneous FL framework that enhances clients' generalization performance on unseen data without relying on parameter aggregation. Instead of model parameters, clients share feature distribution statistics (mean and covariance) with the server. Then each client trains a variational transposed convolutional neural network using Gaussian latent variables sampled from these distributions, and use it to generate synthetic data. By fine-tuning local models with the synthetic data, clients achieve significant improvement of generalization ability. Experimental results demonstrate that our approach not only attains higher generalization accuracy compared to existing model-heterogeneous FL frameworks, but also reduces communication costs and memory consumption.
comment: Accepted by ICLR 2026 (poster)
♻ ☆ LTSM-Bundle: A Toolbox and Benchmark on Large Language Models for Time Series Forecasting
Time Series Forecasting (TSF) has long been a challenge in time series analysis. Inspired by the success of Large Language Models (LLMs), researchers are now developing Large Time Series Models (LTSMs)-universal transformer-based models that use autoregressive prediction-to improve TSF. However, training LTSMs on heterogeneous time series data poses unique challenges, including diverse frequencies, dimensions, and patterns across datasets. Recent endeavors have studied and evaluated various design choices aimed at enhancing LTSM training and generalization capabilities. However, these design choices are typically studied and evaluated in isolation and are not benchmarked collectively. In this work, we introduce LTSM-Bundle, a comprehensive toolbox, and benchmark for training LTSMs, spanning pre-processing techniques, model configurations, and dataset configuration. It modularized and benchmarked LTSMs from multiple dimensions, encompassing prompting strategies, tokenization approaches, training paradigms, base model selection, data quantity, and dataset diversity. Furthermore, we combine the most effective design choices identified in our study. Empirical results demonstrate that this combination achieves superior zero-shot and few-shot performances compared to state-of-the-art LTSMs and traditional TSF methods on benchmark datasets.
♻ ☆ Tuberculosis Screening from Cough Audio: Baseline Models, Clinical Variables, and Uncertainty Quantification
In this paper, we propose a standardized framework for automatic tuberculosis (TB) detection from cough audio and routinely collected clinical data using machine learning. While TB screening from audio has attracted growing interest, progress is difficult to measure because existing studies vary substantially in datasets, cohort definitions, feature representations, model families, validation protocols, and reported metrics. Consequently, reported gains are often not directly comparable, and it remains unclear whether improvements stem from modeling advances or from differences in data and evaluation. We address this gap by establishing a strong, well-documented baseline for TB prediction using cough recordings and accompanying clinical metadata from a recently compiled dataset from several countries. Our pipeline is reproducible end-to-end, covering feature extraction, multimodal fusion, cougher-independent evaluation, and uncertainty quantification, and it reports a consistent suite of clinically relevant metrics to enable fair comparison. We further quantify performance for cough audio-only and fused (audio + clinical metadata) models, and release the full experimental protocol to facilitate benchmarking. This baseline is intended to serve as a common reference point and to reduce methodological variance that currently holds back progress in the field.
comment: Updated to published version in Sensors; DOI: 10.3390/s26041223
♻ ☆ Characterizing Trainability of Instantaneous Quantum Polynomial Circuit Born Machines
Instantaneous quantum polynomial quantum circuit Born machines (IQP-QCBMs) have been proposed as quantum generative models with a classically tractable training objective based on the maximum mean discrepancy (MMD) and a potential quantum advantage motivated by sampling-complexity arguments, making them an exciting model worth deeper investigation. While recent works have further proven the universality of a (slightly generalized) model, the next immediate question pertains to its trainability, i.e., whether it suffers from the exponentially vanishing loss gradients, known as the barren plateau issue, preventing effective use, and how regimes of trainability overlap with regimes of possible quantum advantage. Here, we provide significant strides in these directions. To study the trainability at initialization, we analytically derive closed-form expressions for the variances of the partial derivatives of the MMD loss function and provide general upper and lower bounds. With uniform initialization, we show that barren plateaus depend on the generator set and the spectrum of the chosen kernel. We identify regimes in which low-weight-biased kernels avoid exponential gradient suppression in structured topologies. Also, we prove that a small-variance Gaussian initialization ensures polynomial scaling for the gradient under mild conditions. As for the potential quantum advantage, we further argue, based on previous complexity-theoretic arguments, that sparse IQP families can output a probability distribution family that is classically intractable, and that this distribution remains trainable at initialization at least at lower-weight frequencies.
comment: 14 pages, 1 figure
♻ ☆ N$^2$: A Unified Python Package and Test Bench for Nearest Neighbor-Based Matrix Completion
Nearest neighbor (NN) methods have re-emerged as competitive tools for matrix completion, offering strong empirical performance and recent theoretical guarantees, including entry-wise error bounds, confidence intervals, and minimax optimality. Despite their simplicity, recent work has shown that NN approaches are robust to a range of missingness patterns and effective across diverse applications. This paper introduces N$^2$, a unified Python package and testbed that consolidates a broad class of NN-based methods through a modular, extensible interface. Built for both researchers and practitioners, N$^2$ supports rapid experimentation and benchmarking. Using this framework, we introduce a new NN variant that achieves state-of-the-art results in several settings. We also release a benchmark suite of real-world datasets, from healthcare and recommender systems to causal inference and LLM evaluation, designed to stress-test matrix completion methods beyond synthetic scenarios. Our experiments demonstrate that while classical methods excel on idealized data, NN-based techniques consistently outperform them in real-world settings.
comment: 21 pages, 6 figures
♻ ☆ Hierarchical Retrieval at Scale: Bridging Transparency and Efficiency
Information retrieval is a core component of many intelligent systems as it enables conditioning of outputs on new and large-scale datasets. While effective, the standard practice of encoding data into high-dimensional representations for similarity search entails large memory and compute footprints, and also makes it hard to inspect the inner workings of the system. Hierarchical retrieval methods offer an interpretable alternative by organizing data at multiple granular levels, yet do not match the efficiency and performance of flat retrieval approaches. In this paper, we propose Retreever, a tree-based method that makes hierarchical retrieval viable at scale by directly optimizing its structure for retrieval performance while naturally providing transparency through meaningful semantic groupings. Our method offers the flexibility to balance cost and utility by indexing data using representations from any tree level. We show that Retreever delivers strong coarse (intermediate levels) and fine representations (terminal level), while achieving the highest retrieval accuracy at the lowest latency among hierarchical methods. These results demonstrate that this family of techniques is viable in practical applications.
♻ ☆ Pareto-Conditioned Diffusion Models for Offline Multi-Objective Optimization ICLR 2026
Multi-objective optimization (MOO) arises in many real-world applications where trade-offs between competing objectives must be carefully balanced. In the offline setting, where only a static dataset is available, the main challenge is generalizing beyond observed data. We introduce Pareto-Conditioned Diffusion (PCD), a novel framework that formulates offline MOO as a conditional sampling problem. By conditioning directly on desired trade-offs, PCD avoids the need for explicit surrogate models. To effectively explore the Pareto front, PCD employs a reweighting strategy that focuses on high-performing samples and a reference-direction mechanism to guide sampling towards novel, promising regions beyond the training data. Experiments on standard offline MOO benchmarks show that PCD achieves highly competitive performance and, importantly, demonstrates greater consistency across diverse tasks than existing offline MOO approaches.
comment: Accepted at ICLR 2026 (Oral). Project website: https://sites.google.com/view/pcd-iclr26
♻ ☆ Instruction-based Time Series Editing
In time series editing, we aim to modify some properties of a given time series without altering others. For example, when analyzing a hospital patient's blood pressure, we may add a sudden early drop and observe how it impacts their future while preserving other conditions. Existing diffusion-based editors rely on rigid, predefined attribute vectors as conditions and produce all-or-nothing edits through sampling. This attribute- and sampling-based approach limits flexibility in condition format and lacks customizable control over editing strength. To overcome these limitations, we introduce Instruction-based Time Series Editing, where users specify intended edits using natural language. This allows users to express a wider range of edits in a more accessible format. We then introduce InstructTime, the first instruction-based time series editor. InstructTime takes in time series and instructions, embeds them into a shared multi-modal representation space, then decodes their embeddings to generate edited time series. By learning a structured multi-modal representation space, we can easily interpolate between embeddings to achieve varying degrees of edit. To handle local and global edits together, we propose multi-resolution encoders. In our experiments, we use synthetic and real datasets and find that InstructTime is a state-of-the-art time series editor: InstructTime achieves high-quality edits with controllable strength, can generalize to unseen instructions, and can be easily adapted to unseen conditions through few-shot learning.
comment: (KDD 26) Proceedings of the 32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1
♻ ☆ AEGIS: Adversarial Target-Guided Retention-Data-Free Robust Concept Erasure from Diffusion Models
Concept erasure helps stop diffusion models (DMs) from generating harmful content; but current methods face robustness retention trade off. Robustness means the model fine-tuned by concept erasure methods resists reactivation of erased concepts, even under semantically related prompts. Retention means unrelated concepts are preserved so the model's overall utility stays intact. Both are critical for concept erasure in practice, yet addressing them simultaneously is challenging, as existing works typically improve one factor while sacrificing the other. Prior work typically strengthens one while degrading the other, e.g., mapping a single erased prompt to a fixed safe target leaves class level remnants exploitable by prompt attacks, whereas retention-oriented schemes underperform against adaptive adversaries. This paper introduces Adversarial Erasure with Gradient Informed Synergy (AEGIS), a retention-data-free framework that advances both robustness and retention.
comment: 30 pages,12 figures
♻ ☆ The Implicit Bias of Logit Regularization
Logit regularization, the addition of a convex penalty directly in logit space, is widely used in modern classifiers, with label smoothing as a prominent example. While such methods often improve calibration and generalization, their mechanism remains under-explored. In this work, we analyze a general class of such logit regularizers in the context of linear classification, and demonstrate that they induce an implicit bias of logit clustering around finite per-sample targets. For Gaussian data, or whenever logits are sufficiently clustered, we prove that logit clustering drives the weight vector to align exactly with Fisher's Linear Discriminant. To demonstrate the consequences, we study a simple signal-plus-noise model in which this transition has dramatic effects: Logit regularization halves the critical sample complexity and induces grokking in the small-noise limit, while making generalization robust to noise. Our results extend the theoretical understanding of label smoothing and highlight the efficacy of a broader class of logit-regularization methods.
♻ ☆ Diffusion-Pretrained Dense and Contextual Embeddings
In this report, we introduce pplx-embed, a family of multilingual embedding models that employ multi-stage contrastive learning on a diffusion-pretrained language model backbone for web-scale retrieval. By leveraging bidirectional attention through diffusion-based pretraining, our models capture comprehensive bidirectional context within passages, enabling the use of mean pooling and a late chunking strategy to better preserve global context across long documents. We release two model types: pplx-embed-v1 for standard retrieval, and pplx-embed-context-v1 for contextualized embeddings that incorporate global document context into passage representations. pplx-embed-v1 achieves competitive performance on the MTEB(Multilingual, v2), MTEB(Code), MIRACL, BERGEN, and ToolRet retrieval benchmarks, while pplx-embed-context-v1 sets new records on the ConTEB benchmark. Beyond public benchmarks, pplx-embed-v1 demonstrates strong performance on our internal evaluation suite, focusing on real-world, large-scale search scenarios constructed from 1B production web pages. These results validate the models' effectiveness in production environments where retrieval quality and efficiency are critical at scale.
♻ ☆ When Should LLMs Be Less Specific? Selective Abstraction for Reliable Long-Form Text Generation
LLMs are widely used, yet they remain prone to factual errors that erode user trust and limit adoption in high-risk settings. One approach to mitigate this risk is to equip models with uncertainty estimation mechanisms that abstain when confidence is low. However, this binary "all-or-nothing" approach is excessively restrictive in long-form settings, often discarding valuable information. We introduce Selective Abstraction (SA), a framework that enables LLMs to trade specificity for reliability by selectively reducing the detail of uncertain content. We first formalize SA through the lenses of selective risk and coverage. We then propose Atom-wise Selective Abstraction, a claim-level instantiation that decomposes responses into atomic claims (short, self-contained statements each expressing a single fact) and replaces uncertain atoms with higher confidence, less specific abstractions. To evaluate this framework, we develop a novel end-to-end pipeline for open-ended generation that instantiates risk as factual correctness and measures coverage using an information-theoretic measure of retained information. Across six open-source models on the FactScore and LongFact-Objects benchmarks, atom-wise SA consistently outperforms existing baselines, improving the area under the risk-coverage curve (AURC) by up to 27.73% over claim removal, demonstrating that reducing specificity can boost accuracy and reliability while preserving most of their original meaning.
♻ ☆ Towards Representation Learning for Weighting Problems in Design-Based Causal Inference
Reweighting a distribution to minimize a distance to a target distribution is a powerful and flexible strategy for estimating a wide range of causal effects, but can be challenging in practice because optimal weights typically depend on knowledge of the underlying data generating process. In this paper, we focus on design-based weights, which do not incorporate outcome information; prominent examples include prospective cohort studies, survey weighting, and the weighting portion of augmented weighting estimators. In such applications, we explore the central role of representation learning in finding desirable weights in practice. Unlike the common approach of assuming a well-specified representation, we highlight the error due to the choice of a representation and outline a general framework for finding suitable representations that minimize this error. Building on recent work that combines balancing weights and neural networks, we propose an end-to-end estimation procedure that learns a flexible representation, while retaining promising theoretical properties. We show that this approach is competitive in a range of common causal inference tasks.
comment: Reference to erroneous result from Clivio et al. (2022) in Section 3.4 fixed
♻ ☆ LLMs as In-Context Meta-Learners for Model and Hyperparameter Selection
Model and hyperparameter selection are critical but challenging in machine learning, typically requiring expert intuition or expensive automated search. We investigate whether large language models (LLMs) can act as in-context meta-learners for this task. By converting each dataset into interpretable metadata, we prompt an LLM to recommend both model families and hyperparameters. We study two prompting strategies: (1) a zero-shot mode relying solely on pretrained knowledge, and (2) a meta-informed mode augmented with examples of models and their performance on past tasks. Across synthetic and real-world benchmarks, we show that LLMs can exploit dataset metadata to recommend competitive models and hyperparameters without search, and that improvements from meta-informed prompting demonstrate their capacity for in-context meta-learning. These results highlight a promising new role for LLMs as lightweight, general-purpose assistants for model selection and hyperparameter optimization.
comment: 27 pages, 6 figures
♻ ☆ LLaDA2.1: Speeding Up Text Diffusion via Token Editing
While LLaDA2.0 showcased the scaling potential of 100B-level block-diffusion models and their inherent parallelization, the delicate equilibrium between decoding speed and generation quality has remained an elusive frontier. Today, we unveil LLaDA2.1, a paradigm shift designed to transcend this trade-off. By seamlessly weaving Token-to-Token (T2T) editing into the conventional Mask-to-Token (M2T) scheme, we introduce a joint, configurable threshold-decoding scheme. This structural innovation gives rise to two distinct personas: the Speedy Mode (S Mode), which audaciously lowers the M2T threshold to bypass traditional constraints while relying on T2T to refine the output; and the Quality Mode (Q Mode), which leans into conservative thresholds to secure superior benchmark performances with manageable efficiency degrade. Furthering this evolution, underpinned by an expansive context window, we implement the first large-scale Reinforcement Learning (RL) framework specifically tailored for dLLMs, anchored by specialized techniques for stable gradient estimation. This alignment not only sharpens reasoning precision but also elevates instruction-following fidelity, bridging the chasm between diffusion dynamics and complex human intent. We culminate this work by releasing LLaDA2.1-Mini (16B) and LLaDA2.1-Flash (100B). Across 33 rigorous benchmarks, LLaDA2.1 delivers strong task performance and lightning-fast decoding speed. Despite its 100B volume, on coding tasks it attains an astounding 892 TPS on HumanEval+, 801 TPS on BigCodeBench, and 663 TPS on LiveCodeBench.
comment: 11 pages, 3 figures
♻ ☆ Context-Specific Causal Graph Discovery with Unobserved Contexts: Non-Stationarity, Regimes and Spatio-Temporal Patterns
Real-world problems, for example in climate applications, often require causal reasoning on spatially gridded time series data or data with comparable structure. While the underlying system is often believed to behave similarly at different Points in space and time, those variations that do exist are relevant twofold: They often encode important information in and of themselves. And they may negatively affect the stability and validity of results if not accounted for. We study the information encoded in changes of the causal graph, with stability in mind. Two core challenges arise, related to the complexity of encoding system-states and to statistical convergence properties in the presence of imperfectly recoverable non-stationary structure. We provide a framework realizing principles conceptually suitable to overcome these challenges - an interpretation supported by numerical experiments. Primarily, we modify constraint-based causal discovery approaches on the level of independence testing. This leads to a framework which is additionally highly modular, easily extensible and widely applicable. For example, it allows to leverage existing constraint-based causal discovery methods (demonstrated on PC, PC-stable, FCI, PCMCI, PCMCI+ and LPCMCI), and to systematically divide the problem into simpler subproblems that are easier to analyze and understand and relate more clearly to well-studied problems like change-point-detection, clustering, independence-testing and more. Code is available at https://github.com/martin-rabel/Causal_GLDF.
♻ ☆ VoiceAgentBench: Are Voice Assistants ready for agentic tasks?
Large scale Speech Language Models have enabled voice assistants capable of understanding natural spoken queries and performing complex tasks. However, existing speech benchmarks largely focus on isolated capabilities such as transcription or question answering and do not systematically evaluate agentic behavior or adversarial robustness. To address this, we introduce VoiceAgentBench, a comprehensive benchmark for evaluating SpeechLMs in realistic spoken agentic settings, comprising 6,000+ synthetic spoken queries spanning single-tool invocations, multi-tool workflows, multi-turn dialogue, and safety evaluations across English and six Indic languages. To ensure speaker diversity, we further simulate speaker variability using a novel sampling strategy that selects audios for TTS voice conversion based on speaker embeddings to maximize acoustic diversity. Our evaluation measures tool selection accuracy, structural consistency, and the correctness of tool invocations, including adversarial robustness. Across agentic tasks, ASR-LLM pipelines outperform end-to-end SpeechLMs, achieving up to 60.6% average parameter-filling accuracy on English, while SpeechLMs exhibit lower performance and sharper degradation on Indic languages. All models struggle in sequential workflows and safety evaluations, highlighting persistent limitations in tool orchestration, multilingual generalization, and safety robustness. VoiceAgentBench is publicly available on Hugging Face at https://huggingface.co/datasets/krutrim-ai-labs/VoiceAgentBench, and the codebase is released at https://github.com/ola-krutrim/VoiceAgentBench.
♻ ☆ Multipole Semantic Attention: A Fast Approximation of Softmax Attention for Pretraining
Pretraining transformers on long sequences (entire code repositories, collections of related documents) is bottlenecked by quadratic attention costs. We present Multipole Semantic Attention (MuSe), which accelerates 64k-context pretraining by 36% while matching baseline loss, requiring no architectural changes. MuSe clusters queries and keys separately in representation space. This yields query-specific summaries that substantially outperform spatial blocking at matched sparsity, while also enabling drop-in compatibility with existing pretrained models; we validate on Llama 3.1-8B and 3.2-1B without retraining. We pretrain language models up to 1B parameters at 64k context on code and scientific documents, confirming that MuSe preserves quality and long-context utilization during training.
♻ ☆ Finite-Width Neural Tangent Kernels from Feynman Diagrams
Neural tangent kernels (NTKs) are a powerful tool for analyzing deep, non-linear neural networks. In the infinite-width limit, NTKs can easily be computed for most common architectures, yielding full analytic control over the training dynamics. However, at infinite width, important properties of training such as NTK evolution or feature learning are absent. Nevertheless, finite width effects can be included by computing corrections to the Gaussian statistics at infinite width. We introduce Feynman diagrams for computing finite-width corrections to NTK statistics. These dramatically simplify the necessary algebraic manipulations and enable the computation of layer-wise recursion relations for arbitrary statistics involving preactivations, NTKs and certain higher-derivative tensors (dNTK and ddNTK) required to predict the training dynamics at leading order. We demonstrate the feasibility of our framework by extending stability results for deep networks from preactivations to NTKs and proving the absence of finite-width corrections for scale-invariant nonlinearities such as ReLU on the diagonal of the Gram matrix of the NTK. We numerically implement the complete set of equations necessary to compute the first-order corrections for arbitrary inputs and demonstrate that the results follow the statistics of sampled neural networks for widths $n\gtrsim 20$.
comment: 12 pages + appendices
♻ ☆ Sample-Efficient "Clustering and Conquer" Procedures for Parallel Large-Scale Ranking and Selection
This work aims to improve the sample efficiency of parallel large-scale ranking and selection (R&S) problems by leveraging correlation information. We modify the commonly used "divide and conquer" framework in parallel computing by adding a correlation-based clustering step, transforming it into "clustering and conquer". Analytical results under a symmetric benchmark scenario show that this seemingly simple modification yields an $\mathcal{O}(p)$ reduction in sample complexity for a widely used class of sample-optimal R&S procedures. Our approach enjoys two key advantages: 1) it does not require highly accurate correlation estimation or precise clustering, and 2) it allows for seamless integration with various existing R&S procedures, while achieving optimal sample complexity. Theoretically, we develop a novel gradient analysis framework to analyze sample efficiency and guide the design of large-scale R&S procedures. We also introduce a new parallel clustering algorithm tailored for large-scale scenarios. Finally, in large-scale AI applications such as neural architecture search, our methods demonstrate superior performance.
♻ ☆ Active Sampling for MRI-based Sequential Decision Making
Despite the superior diagnostic capability of Magnetic Resonance Imaging (MRI), its use as a Point-of-Care (PoC) device remains limited by high cost and complexity. To enable such a future by reducing the magnetic field strength, one key approach will be to improve sampling strategies. Previous work has shown that it is possible to make diagnostic decisions directly from k-space with fewer samples. Such work shows that single diagnostic decisions can be made, but if we aspire to see MRI as a true PoC, multiple and sequential decisions are necessary while minimizing the number of samples acquired. We present a novel multi-objective reinforcement learning framework enabling comprehensive, sequential, diagnostic evaluation from undersampled k-space data. Our approach during inference actively adapts to sequential decisions to optimally sample. To achieve this, we introduce a training methodology that identifies the samples that contribute the best to each diagnostic objective using a step-wise weighting reward function. We evaluate our approach in two sequential knee pathology assessment tasks: ACL sprain detection and cartilage thickness loss assessment. Our framework achieves diagnostic performance competitive with various policy-based benchmarks on disease detection, severity quantification, and overall sequential diagnosis, while substantially saving k-space samples. Our approach paves the way for the future of MRI as a comprehensive and affordable PoC device. Our code is publicly available at https://github.com/vios-s/MRI_Sequential_Active_Sampling
comment: Under Review
♻ ☆ Optimal Formats for Weight Quantisation
Weight quantisation is an essential technique for enabling efficient training and deployment of modern deep learning models. However, the recipe book of quantisation formats is large and formats are often chosen empirically. In this paper, we propose a framework for systematic design and analysis of quantisation formats. By connecting the question of format design with the classical quantisation theory, we show that the strong practical performance of popular formats comes from their ability to represent values using variable-length codes. We frame the problem as minimising the KL divergence between original and quantised model outputs under a model size constraint, which can be approximated by minimising the squared quantisation error, a well-studied problem where entropy-constrained quantisers with variable-length codes are optimal. We develop non-linear quantisation curves for block-scaled data across multiple distribution families and observe that these formats, along with sparse outlier formats, consistently outperform fixed-length formats, indicating that they also exploit variable-length encoding. Finally, by using the relationship between the Fisher information and KL divergence, we derive the optimal allocation of bit-widths to individual parameter tensors across the model's layers, saving up to 0.25 bits per parameter when applied to large language models.
comment: 36 pages, 35 figures
♻ ☆ Gauss-Newton Natural Gradient Descent for Shape Learning
We explore the use of the Gauss-Newton method for optimization in shape learning, including implicit neural surfaces and geometry-informed neural networks. The method addresses key challenges in shape learning, such as the ill-conditioning of the underlying differential constraints and the mismatch between the optimization problem in parameter space and the function space where the problem is naturally posed. This leads to significantly faster and more stable convergence than standard first-order methods, while also requiring far fewer iterations. Experiments across benchmark shape optimization tasks demonstrate that the Gauss-Newton method consistently improves both training speed and final solution accuracy.
comment: 16 Pages, 9 Figures, submitted to Computer-Aided Design
♻ ☆ Continuous-time q-Learning for Jump-Diffusion Models under Tsallis Entropy
This paper studies the continuous-time reinforcement learning in jump-diffusion models by featuring the q-learning (the continuous-time counterpart of Q-learning) under Tsallis entropy regularization. Contrary to the Shannon entropy, the general form of Tsallis entropy renders the optimal policy not necessarily a Gibbs measure. Herein, the Lagrange multiplier and KKT condition are needed to ensure that the learned policy is a probability density function. As a consequence, the characterization of the optimal policy using the q-function also involves a Lagrange multiplier. In response, we establish the martingale characterization of the q-function and devise two q-learning algorithms depending on whether the Lagrange multiplier can be derived explicitly or not. In the latter case, we consider different parameterizations of the optimal q-function and the optimal policy, and update them alternatively in an Actor-Critic manner. We also study two numerical examples, namely, an optimal liquidation problem in dark pools and a non-LQ control problem. It is interesting to see therein that the optimal policies under the Tsallis entropy regularization can be characterized explicitly, which are distributions concentrated on some compact support. The satisfactory performance of our q-learning algorithms is illustrated in each example.
♻ ☆ WideSeek-R1: Exploring Width Scaling for Broad Information Seeking via Multi-Agent Reinforcement Learning
Recent advancements in Large Language Models (LLMs) have largely focused on depth scaling, where a single agent solves long-horizon problems with multi-turn reasoning and tool use. However, as tasks grow broader, the key bottleneck shifts from individual competence to organizational capability. In this work, we explore a complementary dimension of width scaling with multi-agent systems to address broad information seeking. Existing multi-agent systems often rely on hand-crafted workflows and turn-taking interactions that fail to parallelize work effectively. To bridge this gap, we propose WideSeek-R1, a lead-agent-subagent framework trained via multi-agent reinforcement learning (MARL) to synergize scalable orchestration and parallel execution. By utilizing a shared LLM with isolated contexts and specialized tools, WideSeek-R1 jointly optimizes the lead agent and parallel subagents on a curated dataset of 20k broad information-seeking tasks. Extensive experiments show that WideSeek-R1-4B achieves an item F1 score of 40.0% on the WideSearch benchmark, which is comparable to the performance of single-agent DeepSeek-R1-671B. Furthermore, WideSeek-R1-4B exhibits consistent performance gains as the number of parallel subagents increases, highlighting the effectiveness of width scaling.
comment: This manuscript is withdrawn because it lacks the explicit approval of all authors
♻ ☆ Multimodal Coordinated Online Behavior: Trade-offs and Strategies
Coordinated online behavior, which spans from beneficial collective actions to harmful manipulation such as disinformation campaigns, has become a key focus in digital ecosystem analysis. Traditional methods often rely on monomodal approaches, focusing on single types of interactions like co-retweets or co-hashtags, or consider multiple modalities independently of each other. However, these approaches may overlook the complex dynamics inherent in multimodal coordination. This study compares different ways of operationalizing multimodal coordinated behavior, examining the trade-off between weakly and strongly integrated models and their ability to capture broad versus tightly aligned coordination patterns. By contrasting monomodal, flattened, and multimodal methods, we evaluate the distinct contributions of each modality and the impact of different integration strategies. Our findings show that while not all modalities provide unique insights, multimodal analysis consistently offers a more informative representation of coordinated behavior, preserving structures that monomodal and flattened approaches often lose. This work enhances the ability to detect and analyze coordinated online behavior, offering new perspectives for safeguarding the integrity of digital platforms.
comment: Postprint of the article published in the Information Sciences journal. Please, cite accordingly
♻ ☆ ROOFS: RObust biOmarker Feature Selection
Feature selection (FS) is essential for biomarker discovery and clinical predictive modeling. Over the past decades, methodological literature on FS has become rich and mature, offering a wide spectrum of algorithmic approaches. However, much of this methodological progress has not fully translated into applied biomedical research. Moreover, challenges inherent in biomedical data, such as high-dimensional feature space, low sample size, multicollinearity, and missing values, make FS non-trivial. To help bridge this gap between methodological development and practical application, we propose ROOFS (RObust biOmarker Feature Selection), a Python package available at https://gitlab.inria.fr/compo/roofs, designed to help researchers in the choice of FS method adapted to their problem. ROOFS benchmarks multiple FS methods on the user's data and generates reports summarizing a comprehensive set of evaluation metrics, including downstream predictive performance estimated using optimism correction, stability, robustness of individual features, and true positive and false positive rates assessed on semi-synthetic data with a simulated outcome. We demonstrate the utility of ROOFS on data from the PIONeeR clinical trial, aimed at identifying predictors of resistance to anti-PD-(L)1 immunotherapy in lung cancer. Of the 34 FS methods gathered in ROOFS, we evaluated 23 in combination with 11 classifiers (253 models) and identified a filter based on the union of Benjamini-Hochberg false discovery rate-adjusted p-values from t-test and logistic regression as the optimal approach, outperforming other methods including widely used LASSO. We conclude that comprehensive benchmarking with ROOFS has the potential to improve the reproducibility of FS discoveries and increase the translational value of clinical models.
♻ ☆ Measure-to-measure interpolation using Transformers
Transformers are deep neural network architectures that underpin the recent successes of large language models. Unlike more classical architectures that can be viewed as point-to-point maps, a Transformer acts as a measure-to-measure map implemented as specific interacting particle system on the unit sphere: the input is the empirical measure of tokens in a prompt and its evolution is governed by the continuity equation. In fact, Transformers are not limited to empirical measures and can in principle process any input measure. As the nature of data processed by Transformers is expanding rapidly, it is important to investigate their expressive power as maps from an arbitrary measure to another arbitrary measure. To that end, we provide an explicit choice of parameters that allows a single Transformer to match $N$ arbitrary input measures to $N$ arbitrary target measures, under the minimal assumption that every pair of input-target measures can be matched by some transport map.
comment: To appear in Foundations of Computational Mathematics
♻ ☆ Beyond All-to-All: Causal-Aligned Transformer with Dynamic Structure Learning for Multivariate Time Series Forecasting
Most existing multivariate time series forecasting methods adopt an all-to-all paradigm that feeds all variable histories into a unified model to predict their future values without distinguishing their individual roles. However, this undifferentiated paradigm makes it difficult to identify variable-specific causal influences and often entangles causally relevant information with spurious correlations. To address this limitation, we propose an all-to-one forecasting paradigm that predicts each target variable separately. Specifically, we first construct a Structural Causal Model from observational data and then, for each target variable, we partition the historical sequence into four subsegments according to the inferred causal structure: endogenous, direct causal, collider causal, and spurious correlation. Furthermore, we propose the Causal Decomposition Transformer (CDT), which integrates a dynamic causal adapter to learn causal structures initialized by the inferred graph, enabling correction of imperfect causal discovery during training. Furthermore, motivated by causal theory, we apply a projection-based output constraint to mitigate collider induced bias and improve robustness. Extensive experiments on multiple benchmark datasets demonstrate the effectiveness of the CDT.
♻ ☆ Finetuning Large Language Models for Automated Depression Screening in Nigerian Pidgin English: GENSCORE Pilot Study
Depression is a major contributor to the mental-health burden in Nigeria, yet screening coverage remains limited due to low access to clinicians, stigma, and language barriers. Traditional tools like the Patient Health Questionnaire-9 (PHQ-9) were validated in high-income countries but may be linguistically or culturally inaccessible for low- and middle-income countries and communities such as Nigeria where people communicate in Nigerian Pidgin and more than 520 local languages. This study presents a novel approach to automated depression screening using fine-tuned large language models (LLMs) adapted for conversational Nigerian Pidgin. We collected a dataset of 432 Pidgin-language audio responses from Nigerian young adults aged 18-40 to prompts assessing psychological experiences aligned with PHQ-9 items, performed transcription, rigorous preprocessing and annotation, including semantic labeling, slang and idiom interpretation, and PHQ-9 severity scoring. Three LLMs - Phi-3-mini-4k-instruct, Gemma-3-4B-it, and GPT-4.1 - were fine-tuned on this annotated dataset, and their performance was evaluated quantitatively (accuracy, precision and semantic alignment) and qualitatively (clarity, relevance, and cultural appropriateness). GPT-4.1 achieved the highest quantitative performance, with 94.5% accuracy in PHQ-9 severity scoring prediction, outperforming Gemma-3-4B-it and Phi-3-mini-4k-instruct. Qualitatively, GPT-4.1 also produced the most culturally appropriate, clear, and contextually relevant responses. AI-mediated depression screening for underserved Nigerian communities. This work provides a foundation for deploying conversational mental-health tools in linguistically diverse, resource-constrained environments.
comment: 10 pages, 1 figure, 4 tables
♻ ☆ Adopting a human developmental visual diet yields robust, shape-based AI vision
Despite years of research and the dramatic scaling of artificial intelligence (AI) systems, a striking misalignment between artificial and human vision persists. Contrary to humans, AI relies heavily on texture-features rather than shape information, lacks robustness to image distortions, remains highly vulnerable to adversarial attacks, and struggles to recognise simple abstract shapes within complex backgrounds. To close this gap, here we take inspiration from how human vision develops from early infancy into adulthood. We quantified visual maturation by synthesising decades of research into a novel developmental visual diet (DVD) for AI vision. Guiding AI systems through this human-inspired curriculum, which considers the development of visual acuity, contrast sensitivity, and colour, produces models that better align with human behaviour on every hallmark of robust vision tested, yielding the strongest reported reliance on shape information to date, abstract shape recognition beyond the state of the art, and higher resilience to image corruptions and adversarial attacks. Our results thus demonstrate that robust AI vision can be achieved by guiding how a model learns, not merely how much it learns, offering a resource-efficient route toward safer and more human-like artificial visual systems.
♻ ☆ From slides to AI-ready maps: Standardized multi-layer tissue maps as metadata for artificial intelligence in digital pathology
A Whole Slide Image (WSI) is a high-resolution digital image created by scanning an entire glass slide containing a biological specimen, such as tissue sections or cell samples, at multiple magnifications. These images are digitally viewable, analyzable, and shareable, and are widely used for Artificial Intelligence (AI) algorithm development. WSIs play an important role in pathology for disease diagnosis and oncology for cancer research, but are also applied in neurology, veterinary medicine, hematology, microbiology, dermatology, pharmacology, toxicology, immunology, and forensic science. When assembling cohorts for AI training or validation, it is essential to know the content of a WSI. However, no standard currently exists for this metadata, and such a selection has largely relied on manual inspection, which is not suitable for large collections with millions of objects. We propose a general framework to generate 2D index maps (tissue maps) that describe the morphological content of WSIs using common syntax and semantics to achieve interoperability between catalogs. The tissue maps are structured in three layers: source, tissue type, and pathological alterations. Each layer assigns WSI segments to specific classes, providing AI-ready metadata. We demonstrate the advantages of this standard by applying AI-based metadata extraction from WSIs to generate tissue maps and integrating them into a WSI archive. This integration enhances search capabilities within WSI archives, thereby facilitating the accelerated assembly of high-quality, balanced, and more targeted datasets for AI training, validation, and cancer research.
♻ ☆ Rising Multi-Armed Bandits with Known Horizons
The Rising Multi-Armed Bandit (RMAB) framework models environments where expected rewards of arms increase with plays, which models practical scenarios where performance of each option improves with the repeated usage, such as in robotics and hyperparameter tuning. For instance, in hyperparameter tuning, the validation accuracy of a model configuration (arm) typically increases with each training epoch. A defining characteristic of RMAB is em horizon-dependent optimality: unlike standard settings, the optimal strategy here shifts dramatically depending on the available budget $T$. This implies that knowledge of $T$ yields significantly greater utility in RMAB, empowering the learner to align its decision-making with this shifting optimality. However, the horizon-aware setting remains underexplored. To address this, we propose a novel CUmulative Reward Estimation UCB (CURE-UCB) that explicitly integrates the horizon. We provide a rigorous analysis establishing a new regret upper bound and prove that our method strictly outperforms horizon-agnostic strategies in structured environments like ``linear-then-flat'' instances. Extensive experiments demonstrate its significant superiority over baselines.
♻ ☆ Provable Training Data Identification for Large Language Models
Identifying training data of large-scale models is critical for copyright litigation, privacy auditing, and ensuring fair evaluation. However, existing works typically treat this task as an instance-wise identification without controlling the error rate of the identified set, which cannot provide statistically reliable evidence. In this work, we formalize training data identification as a set-level inference problem and propose Provable Training Data Identification (PTDI), a distribution-free approach that enables provable and strict false identification rate control. Specifically, our method computes conformal p-values for each data point using a set of known unseen data and then develops a novel Jackknife-corrected Beta boundary (JKBB) estimator to estimate the training-data proportion of the test set, which allows us to scale these p-values. By applying the Benjamini-Hochberg (BH) procedure to the scaled p-values, we select a subset of data points with provable and strict false identification control. Extensive experiments across various models and datasets demonstrate that PTDI achieves higher power than prior methods while strictly controlling the FIR.
♻ ☆ ToolACE-MT: Non-Autoregressive Generation for Agentic Multi-Turn Interaction ICLR2026
Agentic task-solving with Large Language Models (LLMs) requires multi-turn, multi-step interactions, often involving complex function calls and dynamic user-agent exchanges. Existing simulation-based data generation methods for such scenarios rely heavily on costly autoregressive interactions between multiple LLM agents, thereby compromising the practical efficiency of agentic data generation. In this paper, we propose ToolACE-MT, a novel Non-Autoregressive Iterative Generation framework for constructing high-quality multi-turn agentic dialogues. ToolACE-MT generates full conversational trajectories through three stages: coarse-grained initialization, iterative refinement, and offline verification. The initialization phase builds a structurally complete yet semantically coarse dialogue skeleton; the iterative refinement phase introduces realistic complexities and continued refinement via mask-and-fill operations; and the offline verification phase ensures correctness and coherence via rule- and model-based checks. Experiments demonstrate that ToolACE-MT enables efficient, effective and generalizable agentic data generation, offering a new paradigm for high-quality data construction in tool-augmented LLM scenarios.
comment: Accepted by ICLR2026
♻ ☆ Diffusion-Based Scenario Tree Generation for Multivariate Time Series Prediction and Multistage Stochastic Optimization
Stochastic forecasting is critical for efficient decision-making in uncertain systems, such as energy markets and finance, where estimating the full distribution of future scenarios is essential. We propose Diffusion Scenario Tree (DST), a general framework for constructing scenario trees using diffusion-based probabilistic forecasting models to provide a structured model of system evolution for control tasks. DST recursively samples future trajectories and organizes them into a tree via clustering, ensuring non-anticipativity (decisions depending only on observed history) at each stage, offering a superior representation of uncertainty compared to using predictive models solely for forecasting system evolution. We integrate DST into Model Predictive Control (MPC) and evaluate it on energy arbitrage in New York State's day-ahead electricity market. Experimental results show that our approach significantly outperforms the same optimization algorithms that use scenario trees generated by more conventional models. Furthermore, using DST for stochastic optimization yields more efficient decision policies by better handling uncertainty than deterministic and stochastic MPC variants using the same diffusion-based forecaster, and simple Model-Free Reinforcement Learning (RL) baselines.
comment: 5 pages, 2 figures, 1 table, and 1 algorithm. This version is submitted to the 34th EURASIP European Signal Processing Conference 2026 (EUSIPCO 2026), to be held in Bruges, Belgium, on August 31 - September 4, 2026
♻ ☆ Learned Finite Element-based Regularization of the Inverse Problem in Electrocardiographic Imaging
Electrocardiographic imaging (ECGI) seeks to reconstruct cardiac electrical activity from body-surface potentials noninvasively. However, the associated inverse problem is severely ill-posed and requires robust regularization. While classical approaches primarily employ spatial smoothing, the temporal structure of cardiac dynamics remains underexploited despite its physiological relevance. We introduce a space-time regularization framework that couples spatial regularization with a learned temporal Fields-of-Experts (FoE) prior to capture complex spatiotemporal activation patterns. We derive a finite element discretization on unstructured cardiac surface meshes, prove Mosco-convergence, and develop a scalable optimization algorithm capable of handling the FoE term. Numerical experiments on synthetic epicardial data demonstrate improved denoising and inverse reconstructions compared to handcrafted spatiotemporal methods, yielding solutions that are both robust to noise and physiologically plausible.
♻ ☆ Don't Walk the Line: Boundary Guidance for Filtered Generation
Generative models are increasingly paired with safety classifiers that filter harmful or undesirable outputs. A common strategy is to fine-tune the generator to reduce the probability of being filtered, but this can be suboptimal: it often pushes the model toward producing samples near the classifier's decision boundary, increasing both false positives and false negatives. We propose Boundary Guidance, a reinforcement learning fine-tuning method that explicitly steers generation away from the classifier's margin. On a benchmark of jailbreak, ambiguous, and longcontext prompts, Boundary Guidance improves both the safety and the utility of outputs, as judged by LLM-as-a-Judge evaluations. Comprehensive ablations across model scales and reward designs demonstrate the robustness of our approach.
comment: 14 pages, 3 figures, 10 tables
♻ ☆ Riemannian MeanFlow
Diffusion and flow models have become the dominant paradigm for generative modeling on Riemannian manifolds, with successful applications in protein backbone generation and DNA sequence design. However, these methods require tens to hundreds of neural network evaluations at inference time, which can become a computational bottleneck in large-scale scientific sampling workflows. We introduce Riemannian MeanFlow~(RMF), a framework for learning flow maps directly on manifolds, enabling high-quality generations with as few as one forward pass. We derive three equivalent characterizations of the manifold average velocity (Eulerian, Lagrangian, and semigroup identities), and analyze parameterizations and stabilization techniques to improve training on high-dimensional manifolds. In promoter DNA design and protein backbone generation settings, RMF achieves comparable sample quality to prior methods while requiring up to 10$\times$ fewer function evaluations. Finally, we show that few-step flow maps enable efficient reward-guided design through reward look-ahead, where terminal states can be predicted from intermediate steps at minimal additional cost.
♻ ☆ PoliCon: Evaluating LLMs on Achieving Diverse Political Consensus Objectives ICLR 2026
Achieving political consensus is crucial yet challenging for the effective functioning of social governance. However, although frontier AI systems represented by large language models (LLMs) have developed rapidly in recent years, their capabilities in this scope are still understudied. In this paper, we introduce PoliCon, a novel benchmark constructed from 2,225 high-quality deliberation records of the European Parliament over 13 years, ranging from 2009 to 2022, to evaluate the ability of LLMs to draft consensus resolutions based on divergent party positions under varying collective decision-making contexts and political requirements. Specifically, PoliCon incorporates four factors to build each task environment for finding different political consensus: specific political issues, political goals, participating parties, and power structures based on seat distribution. We also developed an evaluation framework based on social choice theory for PoliCon, which simulates the real voting outcomes of different political parties to assess whether LLM-generated resolutions meet the requirements of the predetermined political consensus. Our experimental results demonstrate that even state-of-the-art models remain undersatisfied with complex tasks like passing resolutions by a two-thirds majority and addressing security issues, while uncovering their inherent partisan biases and revealing some behaviors LLMs show to achieve the consensus, such as prioritizing the stance of the dominant party instead of uniting smaller parties, which highlights PoliCon's promise as an effective platform for studying LLMs' ability to promote political consensus. The code and dataset are released at https://zowiezhang.github.io/projects/PoliCon.
comment: Accepted by ICLR 2026
♻ ☆ FISHER: A Foundation Model for Multi-Modal Industrial Signal Comprehensive Representation
With the rapid deployment of SCADA systems, how to effectively analyze industrial signals and detect abnormal states is an urgent need for the industry. Due to the significant heterogeneity of these signals, which we summarize as the M5 problem, previous works only focus on small sub-problems and employ specialized models, failing to utilize the synergies between modalities and the powerful scaling law. However, we argue that the M5 signals can be modeled in a unified manner due to the intrinsic similarity. As a result, we propose FISHER, a Foundation model for multi-modal Industrial Signal compreHEnsive Representation. To support arbitrary sampling rates, FISHER considers the increment of sampling rate as the concatenation of sub-band information. Specifically, FISHER takes the STFT sub-band as the modeling unit and adopts a teacher student SSL framework for pre-training. We also develop the RMIS benchmark, which evaluates the representations of M5 industrial signals on multiple health management tasks. Compared with top SSL models, FISHER showcases versatile and outstanding capabilities with a general performance gain up to 4.2%, along with much more efficient scaling curves. We also investigate the scaling law on downstream tasks and derive potential avenues for future work. Both FISHER and RMIS are now open-sourced.
comment: 11 pages, 6 figures. FISHER open-sourced on \url{https://github.com/jianganbai/FISHER} RMIS open-sourced on \url{https://github.com/jianganbai/RMIS}
♻ ☆ Learning on a Razor's Edge: Identifiability and Singularity of Polynomial Neural Networks ICLR 2026
We study function spaces parametrized by neural networks, referred to as neuromanifolds. Specifically, we focus on deep Multi-Layer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs) with an activation function that is a sufficiently generic polynomial. First, we address the identifiability problem, showing that, for almost all functions in the neuromanifold of an MLP, there exist only finitely many parameter choices yielding that function. For CNNs, the parametrization is generically one-to-one. As a consequence, we compute the dimension of the neuromanifold. Second, we describe singular points of neuromanifolds. We characterize singularities completely for CNNs, and partially for MLPs. In both cases, they arise from sparse subnetworks. For MLPs, we prove that these singularities often correspond to critical points of the mean-squared error loss, which does not hold for CNNs. This provides a geometric explanation of the sparsity bias of MLPs. All of our results leverage tools from algebraic geometry.
comment: Published at ICLR 2026
♻ ☆ FiMI: A Domain-Specific Language Model for Indian Finance Ecosystem
We present FiMI (Finance Model for India), a domain-specialized financial language model developed by National Payments Corporation of India (NPCI) for Indian digital payment systems. We develop two model variants: FiMI Base and FiMI Instruct. FiMI adapts the Mistral Small 24B architecture through a multi-stage training pipeline, beginning with continuous pre-training on 68 Billion tokens of curated financial, multilingual (English, Hindi, Hinglish), and synthetic data. This is followed by instruction fine-tuning and domain-specific supervised fine-tuning focused on multi-turn, tool-driven conversations that model real-world workflows, such as transaction disputes and mandate lifecycle management. Evaluations reveal that FiMI Base achieves a 20\% improvement over the Mistral Small 24B Base model on finance reasoning benchmark, while FiMI Instruct outperforms the Mistral Small 24B Instruct model by 87\% on domain-specific tool-calling. Moreover, FiMI achieves these significant domain gains while maintaining comparable performance to models of similar size on general benchmarks.
♻ ☆ Predicting Open Source Software Sustainability with Deep Temporal Neural Hierarchical Architectures and Explainable AI
Open Source Software (OSS) projects follow diverse lifecycle trajectories shaped by evolving patterns of contribution, coordination, and community engagement. Understanding these trajectories is essential for stakeholders seeking to assess project organization and health at scale. However, prior work has largely relied on static or aggregated metrics, such as project age or cumulative activity, providing limited insight into how OSS sustainability unfolds over time. In this paper, we propose a hierarchical predictive framework that models OSS projects as belonging to distinct lifecycle stages grounded in established socio-technical categorizations of OSS development. Rather than treating sustainability solely as project longevity, these lifecycle stages operationalize sustainability as a multidimensional construct integrating contribution activity, community participation, and maintenance dynamics. The framework combines engineered tabular indicators with 24-month temporal activity sequences and employs a multi-stage classification pipeline to distinguish lifecycle stages associated with different coordination and participation regimes. To support transparency, we incorporate explainable AI techniques to examine the relative contribution of feature categories to model predictions. Evaluated on a large corpus of OSS repositories, the proposed approach achieves over 94\% overall accuracy in lifecycle stage classification. Attribution analyses consistently identify contribution activity and community-related features as dominant signals, highlighting the central role of collective participation dynamics.
♻ ☆ PIDSMaker: Building and Evaluating Provenance-based Intrusion Detection Systems
Recent provenance-based intrusion detection systems (PIDSs) have demonstrated strong potential for detecting advanced persistent threats (APTs) by applying machine learning to system provenance graphs. However, evaluating and comparing PIDSs remains difficult: prior work uses inconsistent preprocessing pipelines, non-standard dataset splits, and incompatible ground-truth labeling and metrics. These discrepancies undermine reproducibility, impede fair comparison, and impose substantial re-implementation overhead on researchers. We present PIDSMaker, an open-source framework for developing and evaluating PIDSs under consistent protocols. PIDSMaker consolidates eight state-of-the-art systems into a modular, extensible architecture with standardized preprocessing and ground-truth labels, enabling consistent experiments and apples-to-apples comparisons. A YAML-based configuration interface supports rapid prototyping by composing components across systems without code changes. PIDSMaker also includes utilities for ablation studies, hyperparameter tuning, multi-run instability measurement, and visualization, addressing methodological gaps identified in prior work. We demonstrate PIDSMaker through concrete use cases and release it with preprocessed datasets and labels to support shared evaluation for the PIDS community.
♻ ☆ Thermodynamic Isomorphism of Transformers: A Lagrangian Approach to Attention Dynamics
We propose an effective field-theoretic framework for analyzing Transformer attention through a thermodynamic lens. By constructing a Lagrangian on the information manifold equipped with the Fisher metric, we show that, within the Shannon--Boltzmann entropy framework, the Softmax function arises as a stationary solution minimizing a Helmholtz free energy functional. This establishes a formal correspondence between scaled dot-product attention and canonical ensemble statistics. Extending this mapping to macroscopic observables, we define an effective specific heat associated with fluctuations of the attention energy landscape. In controlled experiments on the modular addition task ($p = 19$--$113$), we observe a robust peak in this fluctuation measure that consistently precedes the onset of generalization. While no asymptotic power-law divergence is detected in this finite-depth regime, the reproducible enhancement of energy variance suggests a critical-like crossover accompanying representational reorganization. Our framework provides a unified statistical-mechanical perspective on attention scaling, training dynamics, and positional encoding, interpreting the phenomena as emergent properties of an effective thermodynamic system rather than isolated heuristics. Although the present results indicate finite-size crossover behavior rather than a strict phase transition, they motivate further investigation into scaling limits of deep architectures through fluctuation-based observables.
comment: 11 pages, 4 figure. Based on a thermodynamic framework for Transformer architectures
♻ ☆ HiFloat4 Format for Language Model Inference
This paper introduces HiFloat4 (HiF4), a block floating-point data format tailored for deep learning. Each HiF4 unit packs 64 4-bit elements with 32 bits of shared scaling metadata, averaging 4.5 bits per value. The metadata specifies a three-level scaling hierarchy, capturing inter- and intra-group dynamic range while improving the utilization of the representational space. In addition, the large 64-element group size enables matrix multiplications to be executed in a highly fixed-point manner, significantly reducing hardware area and power consumption. To evaluate the proposed format, we conducted inference experiments on several language models, including LLaMA, Qwen, Mistral, DeepSeek-V3.1 and LongCat. Results show that HiF4 achieves higher average accuracy than the state-of-the-art NVFP4 format across multiple models and diverse downstream tasks.
comment: 8 pages, 4 figures
♻ ☆ Deep Time-Series Models Meet Volatility: Multi-Horizon Electricity Price Forecasting in the Australian National Electricity Market
Accurate electricity price forecasting (EPF) is increasingly difficult in markets characterised by extreme volatility, frequent price spikes, and rapid structural shifts. Deep learning (DL) has been increasingly adopted in EPF due to its ability to achieve high forecasting accuracy. Recently, state-of-the-art (SOTA) deep time-series models have demonstrated promising performance across general forecasting tasks. Yet, their effectiveness in highly volatile electricity markets remains underexplored. Moreover, existing EPF studies rarely assess how model accuracy varies across intraday periods, leaving model sensitivity to market conditions unexplored. To address these gaps, this paper proposes an EPF framework that systematically evaluates SOTA deep time-series models using a direct multi-horizon forecasting approach across day-ahead and two-day-ahead settings. We conduct a comprehensive empirical study across all five regions of the Australian National Electricity Market using contemporary, high-volatility data. The results reveal a clear gap between time-series benchmark expectations and observed performance under real-world price volatility: recent deep time-series models often fail to surpass standard DL baselines. All models experience substantial degradation under extreme and negative prices, yet DL baselines often remain competitive. Intraday performance analysis further reveals that all evaluated models are consistently vulnerable to prevailing market conditions, where absolute errors peak during evening ramps, relative errors escalate during midday negative-price periods, and directional accuracy deteriorates sharply during abrupt shifts in price direction. These findings emphasise the need for volatility-aware modelling strategies and richer feature representations to advance EPF.
comment: 10 pages, 4 figures, 6 tables
Multimedia 5
☆ VineetVC: Adaptive Video Conferencing Under Severe Bandwidth Constraints Using Audio-Driven Talking-Head Reconstruction
Intense bandwidth depletion within consumer and constrained networks has the potential to undermine the stability of real-time video conferencing: encoder rate management becomes saturated, packet loss escalates, frame rates deteriorate, and end-to-end latency significantly increases. This work delineates an adaptive conferencing system that integrates WebRTC media delivery with a supplementary audio-driven talking-head reconstruction pathway and telemetry-driven mode regulation. The system consists of a WebSocket signaling service, an optional SFU for multi-party transmission, a browser client capable of real-time WebRTC statistics extraction and CSV telemetry export, and an AI REST service that processes a reference face image and recorded audio to produce a synthesized MP4; the browser can substitute its outbound camera track with the synthesized stream with a median bandwidth of 32.80 kbps. The solution incorporates a bandwidth-mode switching strategy and a client-side mode-state logger.
☆ Artic: AI-oriented Real-time Communication for MLLM Video Assistant
AI Video Assistant emerges as a new paradigm for Real-time Communication (RTC), where one peer is a Multimodal Large Language Model (MLLM) deployed in the cloud. This makes interaction between humans and AI more intuitive, akin to chatting with a real person. However, a fundamental mismatch exists between current RTC frameworks and AI Video Assistants, stemming from the drastic shift in Quality of Experience (QoE) and more challenging networks. Measurements on our production prototype also confirm that current RTC fails, causing latency spikes and accuracy drops. To address these challenges, we propose Artic, an AI-oriented RTC framework for MLLM Video Assistants, exploring the shift from "humans watching video" to "AI understanding video." Specifically, Artic proposes: (1) Response Capability-aware Adaptive Bitrate, which utilizes MLLM accuracy saturation to proactively cap bitrate, reserving bandwidth headroom to absorb future fluctuations for latency reduction; (2) Zero-overhead Context-aware Streaming, which allocates limited bitrate to regions most important for the response, maintaining accuracy even under ultra-low bitrates; and (3) Degraded Video Understanding Benchmark, the first benchmark evaluating how RTC-induced video degradation affects MLLM accuracy. Prototype experiments using real-world uplink traces show that compared with existing methods, Artic significantly improves accuracy by 15.12% and reduces latency by 135.31 ms. We will release the benchmark and codes at https://github.com/pku-netvideo/DeViBench.
☆ InfoCIR: Multimedia Analysis for Composed Image Retrieval
Composed Image Retrieval (CIR) allows users to search for images by combining a reference image with a text prompt that describes desired modifications. While vision-language models like CLIP have popularized this task by embedding multiple modalities into a joint space, developers still lack tools that reveal how these multimodal prompts interact with embedding spaces and why small wording changes can dramatically alter the results. We present InfoCIR, a visual analytics system that closes this gap by coupling retrieval, explainability, and prompt engineering in a single, interactive dashboard. InfoCIR integrates a state-of-the-art CIR back-end (SEARLE arXiv:2303.15247) with a six-panel interface that (i) lets users compose image + text queries, (ii) projects the top-k results into a low-dimensional space using Uniform Manifold Approximation and Projection (UMAP) for spatial reasoning, (iii) overlays similarity-based saliency maps and gradient-derived token-attribution bars for local explanation, and (iv) employs an LLM-powered prompt enhancer that generates counterfactual variants and visualizes how these changes affect the ranking of user-selected target images. A modular architecture built on Plotly-Dash allows new models, datasets, and attribution methods to be plugged in with minimal effort. We argue that InfoCIR helps diagnose retrieval failures, guides prompt enhancement, and accelerates insight generation during model development. All source code allowing for a reproducible demo is available at https://github.com/giannhskp/InfoCIR.
comment: 9+2 pages, 8 figures. Accepted for publication in IEEE PacificVis 2026 (Conference Track). Interactive composed image retrieval (CIR) and ranking explanation
♻ ☆ M6: Multi-generator, Multi-domain, Multi-lingual and cultural, Multi-genres, Multi-instrument Machine-Generated Music Detection Databases
Machine-generated music (MGM) has emerged as a powerful tool with applications in music therapy, personalised editing, and creative inspiration for the music community. However, its unregulated use threatens the entertainment, education, and arts sectors by diminishing the value of high-quality human compositions. Detecting machine-generated music (MGMD) is, therefore, critical to safeguarding these domains, yet the field lacks comprehensive datasets to support meaningful progress. To address this gap, we introduce \textbf{M6}, a large-scale benchmark dataset tailored for MGMD research. M6 is distinguished by its diversity, encompassing multiple generators, domains, languages, cultural contexts, genres, and instruments. We outline our methodology for data selection and collection, accompanied by detailed data analysis, providing all WAV form of music. Additionally, we provide baseline performance scores using foundational binary classification models, illustrating the complexity of MGMD and the significant room for improvement. By offering a robust and multifaceted resource, we aim to empower future research to develop more effective detection methods for MGM. We believe M6 will serve as a critical step toward addressing this societal challenge. The dataset and code will be freely available to support open collaboration and innovation in this field.
comment: Accepted at Scientific reports
♻ ☆ FISHER: A Foundation Model for Multi-Modal Industrial Signal Comprehensive Representation
With the rapid deployment of SCADA systems, how to effectively analyze industrial signals and detect abnormal states is an urgent need for the industry. Due to the significant heterogeneity of these signals, which we summarize as the M5 problem, previous works only focus on small sub-problems and employ specialized models, failing to utilize the synergies between modalities and the powerful scaling law. However, we argue that the M5 signals can be modeled in a unified manner due to the intrinsic similarity. As a result, we propose FISHER, a Foundation model for multi-modal Industrial Signal compreHEnsive Representation. To support arbitrary sampling rates, FISHER considers the increment of sampling rate as the concatenation of sub-band information. Specifically, FISHER takes the STFT sub-band as the modeling unit and adopts a teacher student SSL framework for pre-training. We also develop the RMIS benchmark, which evaluates the representations of M5 industrial signals on multiple health management tasks. Compared with top SSL models, FISHER showcases versatile and outstanding capabilities with a general performance gain up to 4.2%, along with much more efficient scaling curves. We also investigate the scaling law on downstream tasks and derive potential avenues for future work. Both FISHER and RMIS are now open-sourced.
comment: 11 pages, 6 figures. FISHER open-sourced on \url{https://github.com/jianganbai/FISHER} RMIS open-sourced on \url{https://github.com/jianganbai/RMIS}
Artificial Intelligent 215
☆ Semantic Chunking and the Entropy of Natural Language
The entropy rate of printed English is famously estimated to be about one bit per character, a benchmark that modern large language models (LLMs) have only recently approached. This entropy rate implies that English contains nearly 80 percent redundancy relative to the five bits per character expected for random text. We introduce a statistical model that attempts to capture the intricate multi-scale structure of natural language, providing a first-principles account of this redundancy level. Our model describes a procedure of self-similarly segmenting text into semantically coherent chunks down to the single-word level. The semantic structure of the text can then be hierarchically decomposed, allowing for analytical treatment. Numerical experiments with modern LLMs and open datasets suggest that our model quantitatively captures the structure of real texts at different levels of the semantic hierarchy. The entropy rate predicted by our model agrees with the estimated entropy rate of printed English. Moreover, our theory further reveals that the entropy rate of natural language is not fixed but should increase systematically with the semantic complexity of corpora, which are captured by the only free parameter in our model.
comment: 29 pages, 9 figures
☆ CoPE-VideoLM: Codec Primitives For Efficient Video Language Models
Video Language Models (VideoLMs) empower AI systems to understand temporal dynamics in videos. To fit to the maximum context window constraint, current methods use keyframe sampling which can miss both macro-level events and micro-level details due to the sparse temporal coverage. Furthermore, processing full images and their tokens for each frame incurs substantial computational overhead. To address these limitations, we propose to leverage video codec primitives (specifically motion vectors and residuals) which natively encode video redundancy and sparsity without requiring expensive full-image encoding for most frames. To this end, we introduce lightweight transformer-based encoders that aggregate codec primitives and align their representations with image encoder embeddings through a pre-training strategy that accelerates convergence during end-to-end fine-tuning. Our approach reduces the time-to-first-token by up to $86\%$ and token usage by up to $93\%$ compared to standard VideoLMs. Moreover, by varying the keyframe and codec primitive densities we are able to maintain or exceed performance on $14$ diverse video understanding benchmarks spanning general question answering, temporal reasoning, long-form understanding, and spatial scene understanding.
comment: Project Page: https://sayands.github.io/cope/
☆ Optimal Take-off under Fuzzy Clearances
This paper presents a hybrid obstacle avoidance architecture that integrates Optimal Control under clearance with a Fuzzy Rule Based System (FRBS) to enable adaptive constraint handling for unmanned aircraft. Motivated by the limitations of classical optimal control under uncertainty and the need for interpretable decision making in safety critical aviation systems, we design a three stage Takagi Sugeno Kang fuzzy layer that modulates constraint radii, urgency levels, and activation decisions based on regulatory separation minima and airworthiness guidelines from FAA and EASA. These fuzzy-derived clearances are then incorporated as soft constraints into an optimal control problem solved using the FALCON toolbox and IPOPT. The framework aims to reduce unnecessary recomputations by selectively activating obstacle avoidance updates while maintaining compliance with aviation procedures. A proof of concept implementation using a simplified aircraft model demonstrates that the approach can generate optimal trajectories with computation times of 2,3 seconds per iteration in a single threaded MATLAB environment, suggesting feasibility for near real time applications. However, our experiments revealed a critical software incompatibility in the latest versions of FALCON and IPOPT, in which the Lagrangian penalty term remained identically zero, preventing proper constraint enforcement. This behavior was consistent across scenarios and indicates a solver toolbox regression rather than a modeling flaw. Future work includes validating this effect by reverting to earlier software versions, optimizing the fuzzy membership functions using evolutionary methods, and extending the system to higher fidelity aircraft models and stochastic obstacle environments.
comment: 12 pages, 12 figures, conference paper
☆ Asynchronous Verified Semantic Caching for Tiered LLM Architectures
Large language models (LLMs) now sit in the critical path of search, assistance, and agentic workflows, making semantic caching essential for reducing inference cost and latency. Production deployments typically use a tiered static-dynamic design: a static cache of curated, offline vetted responses mined from logs, backed by a dynamic cache populated online. In practice, both tiers are commonly governed by a single embedding similarity threshold, which induces a hard tradeoff: conservative thresholds miss safe reuse opportunities, while aggressive thresholds risk serving semantically incorrect responses. We introduce \textbf{Krites}, an asynchronous, LLM-judged caching policy that expands static coverage without changing serving decisions. On the critical path, Krites behaves exactly like a standard static threshold policy. When the nearest static neighbor of the prompt falls just below the static threshold, Krites asynchronously invokes an LLM judge to verify whether the static response is acceptable for the new prompt. Approved matches are promoted into the dynamic cache, allowing future repeats and paraphrases to reuse curated static answers and expanding static reach over time. In trace-driven simulations on conversational and search workloads, Krites increases the fraction of requests served with curated static answers (direct static hits plus verified promotions) by up to $\textbf{3.9}$ times for conversational traffic and search-style queries relative to tuned baselines, with unchanged critical path latency.
☆ In-Context Autonomous Network Incident Response: An End-to-End Large Language Model Agent Approach AAAI
Rapidly evolving cyberattacks demand incident response systems that can autonomously learn and adapt to changing threats. Prior work has extensively explored the reinforcement learning approach, which involves learning response strategies through extensive simulation of the incident. While this approach can be effective, it requires handcrafted modeling of the simulator and suppresses useful semantics from raw system logs and alerts. To address these limitations, we propose to leverage large language models' (LLM) pre-trained security knowledge and in-context learning to create an end-to-end agentic solution for incident response planning. Specifically, our agent integrates four functionalities, perception, reasoning, planning, and action, into one lightweight LLM (14b model). Through fine-tuning and chain-of-thought reasoning, our LLM agent is capable of processing system logs and inferring the underlying network state (perception), updating its conjecture of attack models (reasoning), simulating consequences under different response strategies (planning), and generating an effective response (action). By comparing LLM-simulated outcomes with actual observations, the LLM agent repeatedly refines its attack conjecture and corresponding response, thereby demonstrating in-context adaptation. Our agentic approach is free of modeling and can run on commodity hardware. When evaluated on incident logs reported in the literature, our agent achieves recovery up to 23% faster than those of frontier LLMs.
comment: 2026 AAAI Summer Symposium on Human-Aware AI Agents for the Cyber Battlefield
☆ Constrained Assumption-Based Argumentation Frameworks
Assumption-based Argumentation (ABA) is a well-established form of structured argumentation. ABA frameworks with an underlying atomic language are widely studied, but their applicability is limited by a representational restriction to ground (variable-free) arguments and attacks built from propositional atoms. In this paper, we lift this restriction and propose a novel notion of constrained ABA (CABA), whose components, as well as arguments built from them, may include constrained variables, ranging over possibly infinite domains. We define non-ground semantics for CABA, in terms of various notions of non-ground attacks. We show that the new semantics conservatively generalise standard ABA semantics.
comment: Extended version with proofs and additional results of the full paper accepted at the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026). DOI: https://doi.org/10.65109/KRAP9309
☆ SCOPE: Selective Conformal Optimized Pairwise LLM Judging
Large language models (LLMs) are increasingly used as judges to replace costly human preference labels in pairwise evaluation. Despite their practicality, LLM judges remain prone to miscalibration and systematic biases. This paper proposes SCOPE (Selective Conformal Optimized Pairwise Evaluation), a framework for selective pairwise judging with finite-sample statistical guarantees. Under exchangeability, SCOPE calibrates an acceptance threshold such that the error rate among non-abstained judgments is at most a user-specified level $α$. To provide SCOPE with a bias-neutral uncertainty signal, we introduce Bidirectional Preference Entropy (BPE), which queries the judge under both response positions, aggregates the implied preference probabilities to enforce invariance to response order, and converts the aggregated probability into an entropy-based uncertainty score. Across MT-Bench, RewardBench, and Chatbot Arena, BPE improves uncertainty quality over standard confidence proxies, providing a stronger selection signal that enables SCOPE to consistently meet the target risk level while retaining good coverage across judge scales. In particular, at $α= 0.10$, \textsc{Scope} consistently satisfies the risk bound across all benchmarks and judge scales (empirical risk $\approx 0.097$ to $0.099$), while retaining substantial coverage, reaching $0.89$ on RewardBench with Qwen-14B and $0.98$ on RewardBench with Qwen-32B. Compared to naïve baselines, \textsc{Scope} accepts up to $2.4\times$ more judgments on MT-Bench with Qwen-7B under the same target risk constraint, demonstrating that BPE enables reliable and high-coverage LLM-based evaluation.
☆ Which Algorithms Can Graph Neural Networks Learn?
In recent years, there has been growing interest in understanding neural architectures' ability to learn to execute discrete algorithms, a line of work often referred to as neural algorithmic reasoning. The goal is to integrate algorithmic reasoning capabilities into larger neural pipelines. Many such architectures are based on (message-passing) graph neural networks (MPNNs), owing to their permutation equivariance and ability to deal with sparsity and variable-sized inputs. However, existing work is either largely empirical and lacks formal guarantees or it focuses solely on expressivity, leaving open the question of when and how such architectures generalize beyond a finite training set. In this work, we propose a general theoretical framework that characterizes the sufficient conditions under which MPNNs can learn an algorithm from a training set of small instances and provably approximate its behavior on inputs of arbitrary size. Our framework applies to a broad class of algorithms, including single-source shortest paths, minimum spanning trees, and general dynamic programming problems, such as the $0$-$1$ knapsack problem. In addition, we establish impossibility results for a wide range of algorithmic tasks, showing that standard MPNNs cannot learn them, and we derive more expressive MPNN-like architectures that overcome these limitations. Finally, we refine our analysis for the Bellman-Ford algorithm, yielding a substantially smaller required training set and significantly extending the recent work of Nerem et al. [2025] by allowing for a differentiable regularization loss. Empirical results largely support our theoretical findings.
☆ Consistency of Large Reasoning Models Under Multi-Turn Attacks
Large reasoning models with reasoning capabilities achieve state-of-the-art performance on complex tasks, but their robustness under multi-turn adversarial pressure remains underexplored. We evaluate nine frontier reasoning models under adversarial attacks. Our findings reveal that reasoning confers meaningful but incomplete robustness: most reasoning models studied significantly outperform instruction-tuned baselines, yet all exhibit distinct vulnerability profiles, with misleading suggestions universally effective and social pressure showing model-specific efficacy. Through trajectory analysis, we identify five failure modes (Self-Doubt, Social Conformity, Suggestion Hijacking, Emotional Susceptibility, and Reasoning Fatigue) with the first two accounting for 50% of failures. We further demonstrate that Confidence-Aware Response Generation (CARG), effective for standard LLMs, fails for reasoning models due to overconfidence induced by extended reasoning traces; counterintuitively, random confidence embedding outperforms targeted extraction. Our results highlight that reasoning capabilities do not automatically confer adversarial robustness and that confidence-based defenses require fundamental redesign for reasoning models.
☆ How cyborg propaganda reshapes collective action
The distinction between genuine grassroots activism and automated influence operations is collapsing. While policy debates focus on bot farms, a distinct threat to democracy is emerging via partisan coordination apps and artificial intelligence-what we term 'cyborg propaganda.' This architecture combines large numbers of verified humans with adaptive algorithmic automation, enabling a closed-loop system. AI tools monitor online sentiment to optimize directives and generate personalized content for users to post online. Cyborg propaganda thereby exploits a critical legal shield: by relying on verified citizens to ratify and disseminate messages, these campaigns operate in a regulatory gray zone, evading liability frameworks designed for automated botnets. We explore the collective action paradox of this technology: does it democratize power by 'unionizing' influence (pooling the reach of dispersed citizens to overcome the algorithmic invisibility of isolated voices), or does it reduce citizens to 'cognitive proxies' of a central directive? We argue that cyborg propaganda fundamentally alters the digital public square, shifting political discourse from a democratic contest of individual ideas to a battle of algorithmic campaigns. We outline a research agenda to distinguish organic from coordinated information diffusion and propose governance frameworks to address the regulatory challenges of AI-assisted collective expression.
comment: 9 pages
☆ EXCODER: EXplainable Classification Of DiscretE time series Representations
Deep learning has significantly improved time series classification, yet the lack of explainability in these models remains a major challenge. While Explainable AI (XAI) techniques aim to make model decisions more transparent, their effectiveness is often hindered by the high dimensionality and noise present in raw time series data. In this work, we investigate whether transforming time series into discrete latent representations-using methods such as Vector Quantized Variational Autoencoders (VQ-VAE) and Discrete Variational Autoencoders (DVAE)-not only preserves but enhances explainability by reducing redundancy and focusing on the most informative patterns. We show that applying XAI methods to these compressed representations leads to concise and structured explanations that maintain faithfulness without sacrificing classification performance. Additionally, we propose Similar Subsequence Accuracy (SSA), a novel metric that quantitatively assesses the alignment between XAI-identified salient subsequences and the label distribution in the training data. SSA provides a systematic way to validate whether the features highlighted by XAI methods are truly representative of the learned classification patterns. Our findings demonstrate that discrete latent representations not only retain the essential characteristics needed for classification but also offer a pathway to more compact, interpretable, and computationally efficient explanations in time series analysis.
comment: Accepted at PAKDD 2026
☆ Bus-Conditioned Zero-Shot Trajectory Generation via Task Arithmetic
Mobility trajectory data provide essential support for smart city applications. However, such data are often difficult to obtain. Meanwhile, most existing trajectory generation methods implicitly assume that at least a subset of real mobility data from target city is available, which limits their applicability in data-inaccessible scenarios. In this work, we propose a new problem setting, called bus-conditioned zero-shot trajectory generation, where no mobility trajectories from a target city are accessible. The generation process relies solely on source city mobility data and publicly available bus timetables from both cities. Under this setting, we propose MobTA, the first approach to introduce task arithmetic into trajectory generation. MobTA models the parameter shift from bus-timetable-based trajectory generation to mobility trajectory generation in source city, and applies this shift to target city through arithmetic operations on task vectors. This enables trajectory generation that reflects target-city mobility patterns without requiring any real mobility data from it. Furthermore, we theoretically analyze MobTA's stability across base and instruction-tuned LLMs. Extensive experiments show that MobTA significantly outperforms existing methods, and achieves performance close to models finetuned using target city mobility trajectories.
☆ Diverging Flows: Detecting Extrapolations in Conditional Generation
The ability of Flow Matching (FM) to model complex conditional distributions has established it as the state-of-the-art for prediction tasks (e.g., robotics, weather forecasting). However, deployment in safety-critical settings is hindered by a critical extrapolation hazard: driven by smoothness biases, flow models yield plausible outputs even for off-manifold conditions, resulting in silent failures indistinguishable from valid predictions. In this work, we introduce Diverging Flows, a novel approach that enables a single model to simultaneously perform conditional generation and native extrapolation detection by structurally enforcing inefficient transport for off-manifold inputs. We evaluate our method on synthetic manifolds, cross-domain style transfer, and weather temperature forecasting, demonstrating that it achieves effective detection of extrapolations without compromising predictive fidelity or inference latency. These results establish Diverging Flows as a robust solution for trustworthy flow models, paving the way for reliable deployment in domains such as medicine, robotics, and climate science.
comment: 19 pages, 8 figures, 2 algorithms, 8 tables
☆ Curriculum-DPO++: Direct Preference Optimization via Data and Model Curricula for Text-to-Image Generation
Direct Preference Optimization (DPO) has been proposed as an effective and efficient alternative to reinforcement learning from human feedback (RLHF). However, neither RLHF nor DPO take into account the fact that learning certain preferences is more difficult than learning other preferences, rendering the optimization process suboptimal. To address this gap in text-to-image generation, we recently proposed Curriculum-DPO, a method that organizes image pairs by difficulty. In this paper, we introduce Curriculum-DPO++, an enhanced method that combines the original data-level curriculum with a novel model-level curriculum. More precisely, we propose to dynamically increase the learning capacity of the denoising network as training advances. We implement this capacity increase via two mechanisms. First, we initialize the model with only a subset of the trainable layers used in the original Curriculum-DPO. As training progresses, we sequentially unfreeze layers until the configuration matches the full baseline architecture. Second, as the fine-tuning is based on Low-Rank Adaptation (LoRA), we implement a progressive schedule for the dimension of the low-rank matrices. Instead of maintaining a fixed capacity, we initialize the low-rank matrices with a dimension significantly smaller than that of the baseline. As training proceeds, we incrementally increase their rank, allowing the capacity to grow until it converges to the same rank value as in Curriculum-DPO. Furthermore, we propose an alternative ranking strategy to the one employed by Curriculum-DPO. Finally, we compare Curriculum-DPO++ against Curriculum-DPO and other state-of-the-art preference optimization approaches on nine benchmarks, outperforming the competing methods in terms of text alignment, aesthetics and human preference. Our code is available at https://github.com/CroitoruAlin/Curriculum-DPO.
comment: arXiv admin note: substantial text overlap with arXiv:2405.13637
☆ Can we trust AI to detect healthy multilingual English speakers among the cognitively impaired cohort in the UK? An investigation using real-world conversational speech
Conversational speech often reveals early signs of cognitive decline, such as dementia and MCI. In the UK, one in four people belongs to an ethnic minority, and dementia prevalence is expected to rise most rapidly among Black and Asian communities. This study examines the trustworthiness of AI models, specifically the presence of bias, in detecting healthy multilingual English speakers among the cognitively impaired cohort, to make these tools clinically beneficial. For experiments, monolingual participants were recruited nationally (UK), and multilingual speakers were enrolled from four community centres in Sheffield and Bradford. In addition to a non-native English accent, multilinguals spoke Somali, Chinese, or South Asian languages, who were further divided into two Yorkshire accents (West and South) to challenge the efficiency of the AI tools thoroughly. Although ASR systems showed no significant bias across groups, classification and regression models using acoustic and linguistic features exhibited bias against multilingual speakers, particularly in memory, fluency, and reading tasks. This bias was more pronounced when models were trained on the publicly available DementiaBank dataset. Moreover, multilinguals were more likely to be misclassified as having cognitive decline. This study is the first of its kind to discover that, despite their strong overall performance, current AI models show bias against multilingual individuals from ethnic minority backgrounds in the UK, and they are also more likely to misclassify speakers with a certain accent (South Yorkshire) as living with a more severe cognitive decline. In this pilot study, we conclude that the existing AI tools are therefore not yet reliable for diagnostic use in these populations, and we aim to address this in future work by developing more generalisable, bias-mitigated models.
☆ Geometric Manifold Rectification for Imbalanced Learning
Imbalanced classification presents a formidable challenge in machine learning, particularly when tabular datasets are plagued by noise and overlapping class boundaries. From a geometric perspective, the core difficulty lies in the topological intrusion of the majority class into the minority manifold, which obscures the true decision boundary. Traditional undersampling techniques, such as Edited Nearest Neighbours (ENN), typically employ symmetric cleaning rules and uniform voting, failing to capture the local manifold structure and often inadvertently removing informative minority samples. In this paper, we propose GMR (Geometric Manifold Rectification), a novel framework designed to robustly handle imbalanced structured data by exploiting local geometric priors. GMR makes two contributions: (1) Geometric confidence estimation that uses inverse-distance weighted kNN voting with an adaptive distance metric to capture local reliability; and (2) asymmetric cleaning that is strict on majority samples while conservatively protecting minority samples via a safe-guarding cap on minority removal. Extensive experiments on multiple benchmark datasets show that GMR is competitive with strong sampling baselines.
☆ Look Inward to Explore Outward: Learning Temperature Policy from LLM Internal States via Hierarchical RL
Reinforcement Learning from Verifiable Rewards (RLVR) trains large language models (LLMs) from sampled trajectories, making decoding strategy a core component of learning rather than a purely inference-time choice. Sampling temperature directly controls the exploration--exploitation trade-off by modulating policy entropy, yet existing methods rely on static values or heuristic adaptations that are decoupled from task-level rewards. We propose Introspective LLM, a hierarchical reinforcement learning framework that learns to control sampling temperature during generation. At each decoding step, the model selects a temperature based on its hidden state and samples the next token from the resulting distribution. Temperature and token policies are jointly optimized from downstream rewards using a coordinate ascent scheme. Experiments on mathematical reasoning benchmarks show that learned temperature policies outperform fixed and heuristic baselines, while exhibiting interpretable exploration behaviors aligned with reasoning uncertainty.
☆ Buy versus Build an LLM: A Decision Framework for Governments
Large Language Models (LLMs) represent a new frontier of digital infrastructure that can support a wide range of public-sector applications, from general purpose citizen services to specialized and sensitive state functions. When expanding AI access, governments face a set of strategic choices over whether to buy existing services, build domestic capabilities, or adopt hybrid approaches across different domains and use cases. These are critical decisions especially when leading model providers are often foreign corporations, and LLM outputs are increasingly treated as trusted inputs to public decision-making and public discourse. In practice, these decisions are not intended to mandate a single approach across all domains; instead, national AI strategies are typically pluralistic, with sovereign, commercial and open-source models coexisting to serve different purposes. Governments may rely on commercial models for non-sensitive or commodity tasks, while pursuing greater control for critical, high-risk or strategically important applications. This paper provides a strategic framework for making this decision by evaluating these options across dimensions including sovereignty, safety, cost, resource capability, cultural fit, and sustainability. Importantly, "building" does not imply that governments must act alone: domestic capabilities may be developed through public research institutions, universities, state-owned enterprises, joint ventures, or broader national ecosystems. By detailing the technical requirements and practical challenges of each pathway, this work aims to serve as a reference for policy-makers to determine whether a buy or build approach best aligns with their specific national needs and societal goals.
comment: The short version of this document is published as an ACM TechBrief, and this document is published as an ACM Technology Policy Council white paper
☆ Prior-Guided Symbolic Regression: Towards Scientific Consistency in Equation Discovery
Symbolic Regression (SR) aims to discover interpretable equations from observational data, with the potential to reveal underlying principles behind natural phenomena. However, existing approaches often fall into the Pseudo-Equation Trap: producing equations that fit observations well but remain inconsistent with fundamental scientific principles. A key reason is that these approaches are dominated by empirical risk minimization, lacking explicit constraints to ensure scientific consistency. To bridge this gap, we propose PG-SR, a prior-guided SR framework built upon a three-stage pipeline consisting of warm-up, evolution, and refinement. Throughout the pipeline, PG-SR introduces a prior constraint checker that explicitly encodes domain priors as executable constraint programs, and employs a Prior Annealing Constrained Evaluation (PACE) mechanism during the evolution stage to progressively steer discovery toward scientifically consistent regions. Theoretically, we prove that PG-SR reduces the Rademacher complexity of the hypothesis space, yielding tighter generalization bounds and establishing a guarantee against pseudo-equations. Experimentally, PG-SR outperforms state-of-the-art baselines across diverse domains, maintaining robustness to varying prior quality, noisy data, and data scarcity.
☆ Synaptic Activation and Dual Liquid Dynamics for Interpretable Bio-Inspired Models
In this paper, we present a unified framework for various bio-inspired models to better understand their structural and functional differences. We show that liquid-capacitance-extended models lead to interpretable behavior even in dense, all-to-all recurrent neural network (RNN) policies. We further demonstrate that incorporating chemical synapses improves interpretability and that combining chemical synapses with synaptic activation yields the most accurate and interpretable RNN models. To assess the accuracy and interpretability of these RNN policies, we consider the challenging lane-keeping control task and evaluate performance across multiple metrics, including turn-weighted validation loss, neural activity during driving, absolute correlation between neural activity and road trajectory, saliency maps of the networks' attention, and the robustness of their saliency maps measured by the structural similarity index.
Know More, Know Clearer: A Meta-Cognitive Framework for Knowledge Augmentation in Large Language Models
Knowledge augmentation has significantly enhanced the performance of Large Language Models (LLMs) in knowledge-intensive tasks. However, existing methods typically operate on the simplistic premise that model performance equates with internal knowledge, overlooking the knowledge-confidence gaps that lead to overconfident errors or uncertain truths. To bridge this gap, we propose a novel meta-cognitive framework for reliable knowledge augmentation via differentiated intervention and alignment. Our approach leverages internal cognitive signals to partition the knowledge space into mastered, confused, and missing regions, guiding targeted knowledge expansion. Furthermore, we introduce a cognitive consistency mechanism to synchronize subjective certainty with objective accuracy, ensuring calibrated knowledge boundaries. Extensive experiments demonstrate the our framework consistently outperforms strong baselines, validating its rationality in not only enhancing knowledge capabilities but also fostering cognitive behaviors that better distinguish knowns from unknowns.
☆ Detecting Object Tracking Failure via Sequential Hypothesis Testing WACV
Real-time online object tracking in videos constitutes a core task in computer vision, with wide-ranging applications including video surveillance, motion capture, and robotics. Deployed tracking systems usually lack formal safety assurances to convey when tracking is reliable and when it may fail, at best relying on heuristic measures of model confidence to raise alerts. To obtain such assurances we propose interpreting object tracking as a sequential hypothesis test, wherein evidence for or against tracking failures is gradually accumulated over time. Leveraging recent advancements in the field, our sequential test (formalized as an e-process) quickly identifies when tracking failures set in whilst provably containing false alerts at a desired rate, and thus limiting potentially costly re-calibration or intervention steps. The approach is computationally light-weight, requires no extra training or fine-tuning, and is in principle model-agnostic. We propose both supervised and unsupervised variants by leveraging either ground-truth or solely internal tracking information, and demonstrate its effectiveness for two established tracking models across four video benchmarks. As such, sequential testing can offer a statistically grounded and efficient mechanism to incorporate safety assurances into real-time tracking systems.
comment: Accepted in WACV workshop "Real World Surveillance: Applications and Challenges, 6th"
☆ Learning Native Continuation for Action Chunking Flow Policies
Action chunking enables Vision Language Action (VLA) models to run in real time, but naive chunked execution often exhibits discontinuities at chunk boundaries. Real-Time Chunking (RTC) alleviates this issue but is external to the policy, leading to spurious multimodal switching and trajectories that are not intrinsically smooth. We propose Legato, a training-time continuation method for action-chunked flow-based VLA policies. Specifically, Legato initializes denoising from a schedule-shaped mixture of known actions and noise, exposing the model to partial action information. Moreover, Legato reshapes the learned flow dynamics to ensure that the denoising process remains consistent between training and inference under per-step guidance. Legato further uses randomized schedule condition during training to support varying inference delays and achieve controllable smoothness. Empirically, Legato produces smoother trajectories and reduces spurious multimodal switching during execution, leading to less hesitation and shorter task completion time. Extensive real-world experiments show that Legato consistently outperforms RTC across five manipulation tasks, achieving approximately 10% improvements in both trajectory smoothness and task completion time.
comment: Project page: https://lyfeng001.github.io/Legato/
☆ Drift-Aware Variational Autoencoder-based Anomaly Detection with Two-level Ensembling
In today's digital world, the generation of vast amounts of streaming data in various domains has become ubiquitous. However, many of these data are unlabeled, making it challenging to identify events, particularly anomalies. This task becomes even more formidable in nonstationary environments where model performance can deteriorate over time due to concept drift. To address these challenges, this paper presents a novel method, VAE++ESDD, which employs incremental learning and two-level ensembling: an ensemble of Variational AutoEncoder(VAEs) for anomaly prediction, along with an ensemble of concept drift detectors. Each drift detector utilizes a statistical-based concept drift mechanism. To evaluate the effectiveness of VAE++ESDD, we conduct a comprehensive experimental study using real-world and synthetic datasets characterized by severely or extremely low anomalous rates and various drift characteristics. Our study reveals that the proposed method significantly outperforms both strong baselines and state-of-the-art methods.
comment: accepted
☆ Extending confidence calibration to generalised measures of variation
We propose the Variation Calibration Error (VCE) metric for assessing the calibration of machine learning classifiers. The metric can be viewed as an extension of the well-known Expected Calibration Error (ECE) which assesses the calibration of the maximum probability or confidence. Other ways of measuring the variation of a probability distribution exist which have the advantage of taking into account the full probability distribution, for example the Shannon entropy. We show how the ECE approach can be extended from assessing confidence calibration to assessing the calibration of any metric of variation. We present numerical examples upon synthetic predictions which are perfectly calibrated by design, demonstrating that, in this scenario, the VCE has the desired property of approaching zero as the number of data samples increases, in contrast to another entropy-based calibration metric (the UCE) which has been proposed in the literature.
☆ RGAlign-Rec: Ranking-Guided Alignment for Latent Query Reasoning in Recommendation Systems
Proactive intent prediction is a critical capability in modern e-commerce chatbots, enabling "zero-query" recommendations by anticipating user needs from behavioral and contextual signals. However, existing industrial systems face two fundamental challenges: (1) the semantic gap between discrete user features and the semantic intents within the chatbot's Knowledge Base, and (2) the objective misalignment between general-purpose LLM outputs and task-specific ranking utilities. To address these issues, we propose RGAlign-Rec, a closed-loop alignment framework that integrates an LLM-based semantic reasoner with a Query-Enhanced (QE) ranking model. We also introduce Ranking-Guided Alignment (RGA), a multi-stage training paradigm that utilizes downstream ranking signals as feedback to refine the LLM's latent reasoning. Extensive experiments on a large-scale industrial dataset from Shopee demonstrate that RGAlign-Rec achieves a 0.12% gain in GAUC, leading to a significant 3.52% relative reduction in error rate, and a 0.56% improvement in Recall@3. Online A/B testing further validates the cumulative effectiveness of our framework: the Query-Enhanced model (QE-Rec) initially yields a 0.98% improvement in CTR, while the subsequent Ranking-Guided Alignment stage contributes an additional 0.13% gain. These results indicate that ranking-aware alignment effectively synchronizes semantic reasoning with ranking objectives, significantly enhancing both prediction accuracy and service quality in real-world proactive recommendation systems.
☆ Information-theoretic analysis of world models in optimal reward maximizers
An important question in the field of AI is the extent to which successful behaviour requires an internal representation of the world. In this work, we quantify the amount of information an optimal policy provides about the underlying environment. We consider a Controlled Markov Process (CMP) with $n$ states and $m$ actions, assuming a uniform prior over the space of possible transition dynamics. We prove that observing a deterministic policy that is optimal for any non-constant reward function then conveys exactly $n \log m$ bits of information about the environment. Specifically, we show that the mutual information between the environment and the optimal policy is $n \log m$ bits. This bound holds across a broad class of objectives, including finite-horizon, infinite-horizon discounted, and time-averaged reward maximization. These findings provide a precise information-theoretic lower bound on the "implicit world model'' necessary for optimality.
comment: 28 pages, 0 figures. Not submitted to any conference yet
☆ TriGen: NPU Architecture for End-to-End Acceleration of Large Language Models based on SW-HW Co-Design
Recent studies have extensively explored NPU architectures for accelerating AI inference in on-device environments, which are inherently resource-constrained. Meanwhile, transformer-based large language models (LLMs) have become dominant, with rapidly increasing model sizes but low degree of parameter reuse compared to conventional CNNs, making end-to-end execution on resource-limited devices extremely challenging. To address these challenges, we propose TriGen, a novel NPU architecture tailored for resource-constrained environments through software-hardware co-design. Firstly, TriGen adopts low-precision computation using microscaling (MX) to enable additional optimization opportunities while preserving accuracy, and resolves the issues that arise by employing such precision. Secondly, to jointly optimize both nonlinear and linear operations, TriGen eliminates the need for specialized hardware for essential nonlinear operations by using fast and accurate LUT, thereby maximizing performance gains and reducing hardware-cost in on-device environments, and finally, by taking practical hardware constraints into account, further employs scheduling techniques to maximize computational utilization even under limited on-chip memory capacity. We evaluate the performance of TriGen on various LLMs and show that TriGen achieves an average 2.73x performance speedup and 52% less memory transfer over the baseline NPU design with negligible accuracy loss.
comment: 13 pages, 14 figures
☆ Transporting Task Vectors across Different Architectures without Training
Adapting large pre-trained models to downstream tasks often produces task-specific parameter updates that are expensive to relearn for every model variant. While recent work has shown that such updates can be transferred between models with identical architectures, transferring them across models of different widths remains largely unexplored. In this work, we introduce Theseus, a training-free method for transporting task-specific updates across heterogeneous models. Rather than matching parameters directly, we characterize a task update by the functional effect it induces on intermediate representations. We formalize task-vector transport as a functional matching problem on observed activations and show that, after aligning representation spaces via orthogonal Procrustes analysis, it admits a stable closed-form solution that preserves the geometry of the update. We evaluate Theseus on vision and language models across different widths, showing consistent improvements over strong baselines without additional training or backpropagation. Our results show that task updates can be meaningfully transferred across architectures when task identity is defined functionally rather than parametrically.
☆ Deep-Learning Atlas Registration for Melanoma Brain Metastases: Preserving Pathology While Enabling Cohort-Level Analyses
Melanoma brain metastases (MBM) are common and spatially heterogeneous lesions, complicating cohort-level analyses due to anatomical variability and differing MRI protocols. We propose a fully differentiable, deep-learning-based deformable registration framework that aligns individual pathological brains to a common atlas while preserving metastatic tissue without requiring lesion masks or preprocessing. Missing anatomical correspondences caused by metastases are handled through a forward-model similarity metric based on distance-transformed anatomical labels, combined with a volume-preserving regularization term to ensure deformation plausibility. Registration performance was evaluated using Dice coefficient (DSC), Hausdorff distance (HD), average symmetric surface distance (ASSD), and Jacobian-based measures. The method was applied to 209 MBM patients from three centres, enabling standardized mapping of metastases to anatomical, arterial, and perfusion atlases. The framework achieved high registration accuracy across datasets (DSC 0.89-0.92, HD 6.79-7.60 mm, ASSD 0.63-0.77 mm) while preserving metastatic volumes. Spatial analysis demonstrated significant over-representation of MBM in the cerebral cortex and putamen, under-representation in white matter, and consistent localization near the gray-white matter junction. No arterial territory showed increased metastasis frequency after volume correction. This approach enables robust atlas registration of pathological brain MRI without lesion masks and supports reproducible multi-centre analyses. Applied to MBM, it confirms and refines known spatial predilections, particularly preferential seeding near the gray-white matter junction and cortical regions. The publicly available implementation facilitates reproducible research and extension to other brain tumours and neurological pathologies.
☆ Never say never: Exploring the effects of available knowledge on agent persuasiveness in controlled physiotherapy motivation dialogues
Generative Social Agents (GSAs) are increasingly impacting human users through persuasive means. On the one hand, they might motivate users to pursue personal goals, such as healthier lifestyles. On the other hand, they are associated with potential risks like manipulation and deception, which are induced by limited control over probabilistic agent outputs. However, as GSAs manifest communicative patterns based on available knowledge, their behavior may be regulated through their access to such knowledge. Following this approach, we explored persuasive ChatGPT-generated messages in the context of human-robot physiotherapy motivation. We did so by comparing ChatGPT-generated responses to predefined inputs from a hypothetical physiotherapy patient. In Study 1, we qualitatively analyzed 13 ChatGPT-generated dialogue scripts with varying knowledge configurations regarding persuasive message characteristics. In Study 2, third-party observers (N = 27) rated a selection of these dialogues in terms of the agent's expressiveness, assertiveness, and persuasiveness. Our findings indicate that LLM-based GSAs can adapt assertive and expressive personality traits -- significantly enhancing perceived persuasiveness. Moreover, persuasiveness significantly benefited from the availability of information about the patients' age and past profession, mediated by perceived assertiveness and expressiveness. Contextual knowledge about physiotherapy benefits did not significantly impact persuasiveness, possibly because the LLM had inherent knowledge about such benefits even without explicit prompting. Overall, the study highlights the importance of empirically studying behavioral patterns of GSAs, specifically in terms of what information generative AI systems require for consistent and responsible communication.
☆ EPRBench: A High-Quality Benchmark Dataset for Event Stream Based Visual Place Recognition
Event stream-based Visual Place Recognition (VPR) is an emerging research direction that offers a compelling solution to the instability of conventional visible-light cameras under challenging conditions such as low illumination, overexposure, and high-speed motion. Recognizing the current scarcity of dedicated datasets in this domain, we introduce EPRBench, a high-quality benchmark specifically designed for event stream-based VPR. EPRBench comprises 10K event sequences and 65K event frames, collected using both handheld and vehicle-mounted setups to comprehensively capture real-world challenges across diverse viewpoints, weather conditions, and lighting scenarios. To support semantic-aware and language-integrated VPR research, we provide LLM-generated scene descriptions, subsequently refined through human annotation, establishing a solid foundation for integrating LLMs into event-based perception pipelines. To facilitate systematic evaluation, we implement and benchmark 15 state-of-the-art VPR algorithms on EPRBench, offering a strong baseline for future algorithmic comparisons. Furthermore, we propose a novel multi-modal fusion paradigm for VPR: leveraging LLMs to generate textual scene descriptions from raw event streams, which then guide spatially attentive token selection, cross-modal feature fusion, and multi-scale representation learning. This framework not only achieves highly accurate place recognition but also produces interpretable reasoning processes alongside its predictions, significantly enhancing model transparency and explainability. The dataset and source code will be released on https://github.com/Event-AHU/Neuromorphic_ReID
☆ Ultrasound-Guided Real-Time Spinal Motion Visualization for Spinal Instability Assessment
Purpose: Spinal instability is a widespread condition that causes pain, fatigue, and restricted mobility, profoundly affecting patients' quality of life. In clinical practice, the gold standard for diagnosis is dynamic X-ray imaging. However, X-ray provides only 2D motion information, while 3D modalities such as computed tomography (CT) or cone beam computed tomography (CBCT) cannot efficiently capture motion. Therefore, there is a need for a system capable of visualizing real-time 3D spinal motion while minimizing radiation exposure. Methods: We propose ultrasound as an auxiliary modality for 3D spine visualization. Due to acoustic limitations, ultrasound captures only the superficial spinal surface. Therefore, the partially compounded ultrasound volume is registered to preoperative 3D imaging. In this study, CBCT provides the neutral spine configuration, while robotic ultrasound acquisition is performed at maximal spinal bending. A kinematic model is applied to the CBCT-derived spine model for coarse registration, followed by ICP for fine registration, with kinematic parameters optimized based on the registration results. Real-time ultrasound motion tracking is then used to estimate continuous 3D spinal motion by interpolating between the neutral and maximally bent states. Results: The pipeline was evaluated on a bendable 3D-printed lumbar spine phantom. The registration error was $1.941 \pm 0.199$ mm and the interpolated spinal motion error was $2.01 \pm 0.309$ mm (median). Conclusion: The proposed robotic ultrasound framework enables radiation-reduced, real-time 3D visualization of spinal motion, offering a promising 3D alternative to conventional dynamic X-ray imaging for assessing spinal instability.
☆ Robustness of Object Detection of Autonomous Vehicles in Adverse Weather Conditions
As self-driving technology advances toward widespread adoption, determining safe operational thresholds across varying environmental conditions becomes critical for public safety. This paper proposes a method for evaluating the robustness of object detection ML models in autonomous vehicles under adverse weather conditions. It employs data augmentation operators to generate synthetic data that simulates different severance degrees of the adverse operation conditions at progressive intensity levels to find the lowest intensity of the adverse conditions at which the object detection model fails. The robustness of the object detection model is measured by the average first failure coefficients (AFFC) over the input images in the benchmark. The paper reports an experiment with four object detection models: YOLOv5s, YOLOv11s, Faster R-CNN, and Detectron2, utilising seven data augmentation operators that simulate weather conditions fog, rain, and snow, and lighting conditions of dark, bright, flaring, and shadow. The experiment data show that the method is feasible, effective, and efficient to evaluate and compare the robustness of object detection models in various adverse operation conditions. In particular, the Faster R-CNN model achieved the highest robustness with an overall average AFFC of 71.9% over all seven adverse conditions, while YOLO variants showed the AFFC values of 43%. The method is also applied to assess the impact of model training that targets adverse operation conditions using synthetic data on model robustness. It is observed that such training can improve robustness in adverse conditions but may suffer from diminishing returns and forgetting phenomena (i.e., decline in robustness) if overtrained.
☆ RADAR: Revealing Asymmetric Development of Abilities in MLLM Pre-training
Pre-trained Multi-modal Large Language Models (MLLMs) provide a knowledge-rich foundation for post-training by leveraging their inherent perception and reasoning capabilities to solve complex tasks. However, the lack of an efficient evaluation framework impedes the diagnosis of their performance bottlenecks. Current evaluation primarily relies on testing after supervised fine-tuning, which introduces laborious additional training and autoregressive decoding costs. Meanwhile, common pre-training metrics cannot quantify a model's perception and reasoning abilities in a disentangled manner. Furthermore, existing evaluation benchmarks are typically limited in scale or misaligned with pre-training objectives. Thus, we propose RADAR, an efficient ability-centric evaluation framework for Revealing Asymmetric Development of Abilities in MLLM pRe-training. RADAR involves two key components: (1) Soft Discrimination Score, a novel metric for robustly tracking ability development without fine-tuning, based on quantifying nuanced gradations of the model preference for the correct answer over distractors; and (2) Multi-Modal Mixture Benchmark, a new 15K+ sample benchmark for comprehensively evaluating pre-trained MLLMs' perception and reasoning abilities in a 0-shot manner, where we unify authoritative benchmark datasets and carefully collect new datasets, extending the evaluation scope and addressing the critical gaps in current benchmarks. With RADAR, we comprehensively reveal the asymmetric development of perceptual and reasoning capabilities in pretrained MLLMs across diverse factors, including data volume, model size, and pretraining strategy. Our RADAR underscores the need for a decomposed perspective on pre-training ability bottlenecks, informing targeted interventions to advance MLLMs efficiently. Our code is publicly available at https://github.com/Nieysh/RADAR.
☆ BrowseComp-$V^3$: A Visual, Vertical, and Verifiable Benchmark for Multimodal Browsing Agents
Multimodal large language models (MLLMs), equipped with increasingly advanced planning and tool-use capabilities, are evolving into autonomous agents capable of performing multimodal web browsing and deep search in open-world environments. However, existing benchmarks for multimodal browsing remain limited in task complexity, evidence accessibility, and evaluation granularity, hindering comprehensive and reproducible assessments of deep search capabilities. To address these limitations, we introduce BrowseComp-$V^3$, a novel benchmark consisting of 300 carefully curated and challenging questions spanning diverse domains. The benchmark emphasizes deep, multi-level, and cross-modal multi-hop reasoning, where critical evidence is interleaved across textual and visual modalities within and across web pages. All supporting evidence is strictly required to be publicly searchable, ensuring fairness and reproducibility. Beyond final-answer accuracy, we incorporate an expert-validated, subgoal-driven process evaluation mechanism that enables fine-grained analysis of intermediate reasoning behaviors and systematic characterization of capability boundaries. In addition, we propose OmniSeeker, a unified multimodal browsing agent framework integrating diverse web search and visual perception tools. Comprehensive experiments demonstrate that even state-of-the-art models achieve only 36% accuracy on our benchmark, revealing critical bottlenecks in multimodal information integration and fine-grained perception. Our results highlight a fundamental gap between current model capabilities and robust multimodal deep search in real-world settings.
☆ A Microservice-Based Platform for Sustainable and Intelligent SLO Fulfilment and Service Management
The Microservices Architecture (MSA) design pattern has become a staple for modern applications, allowing functionalities to be divided across fine-grained microservices, fostering reusability, distribution, and interoperability. As MSA-based applications are deployed to the Computing Continuum (CC), meeting their Service Level Objectives (SLOs) becomes a challenge. Trading off performance and sustainability SLOs is especially challenging. This challenge can be addressed with intelligent decision systems, able to reconfigure the services during runtime to meet the SLOs. However, developing these agents while adhering to the MSA pattern is complex, especially because CC providers, who have key know-how and information to fulfill these SLOs, must comply with the privacy requirements of application developers. This work presents the Carbon-Aware SLO and Control plAtform (CASCA), an open-source MSA-based platform that allows CC providers to reconfigure services and fulfill their SLOs while maintaining the privacy of developers. CASCA is architected to be highly reusable, distributable, and easy to use, extend, and modify. CASCA has been evaluated in a real CC testbed for a media streaming service, where decision systems implemented in Bash, Rust, and Python successfully reconfigured the service, unaffected by upholding privacy.
comment: This work has been submitted to the IEEE for possible publication
☆ Knowledge-Based Design Requirements for Generative Social Robots in Higher Education
Generative social robots (GSRs) powered by large language models enable adaptive, conversational tutoring but also introduce risks such as hallucina-tions, overreliance, and privacy violations. Existing frameworks for educa-tional technologies and responsible AI primarily define desired behaviors, yet they rarely specify the knowledge prerequisites that enable generative systems to express these behaviors reliably. To address this gap, we adopt a knowledge-based design perspective and investigate what information tutor-ing-oriented GSRs require to function responsibly and effectively in higher education. Based on twelve semi-structured interviews with university stu-dents and lecturers, we identify twelve design requirements across three knowledge types: self-knowledge (assertive, conscientious and friendly per-sonality with customizable role), user-knowledge (personalized information about student learning goals, learning progress, motivation type, emotional state and background), and context-knowledge (learning materials, educa-tional strategies, course-related information, and physical learning environ-ment). By identifying these knowledge requirements, this work provides a structured foundation for the design of tutoring GSRs and future evaluations, aligning generative system capabilities with pedagogical and ethical expecta-tions.
☆ X-VORTEX: Spatio-Temporal Contrastive Learning for Wake Vortex Trajectory Forecasting
Wake vortices are strong, coherent air turbulences created by aircraft, and they pose a major safety and capacity challenge for air traffic management. Tracking how vortices move, weaken, and dissipate over time from LiDAR measurements is still difficult because scans are sparse, vortex signatures fade as the flow breaks down under atmospheric turbulence and instabilities, and point-wise annotation is prohibitively expensive. Existing approaches largely treat each scan as an independent, fully supervised segmentation problem, which overlooks temporal structure and does not scale to the vast unlabeled archives collected in practice. We present X-VORTEX, a spatio-temporal contrastive learning framework grounded in Augmentation Overlap Theory that learns physics-aware representations from unlabeled LiDAR point cloud sequences. X-VORTEX addresses two core challenges: sensor sparsity and time-varying vortex dynamics. It constructs paired inputs from the same underlying flight event by combining a weakly perturbed sequence with a strongly augmented counterpart produced via temporal subsampling and spatial masking, encouraging the model to align representations across missing frames and partial observations. Architecturally, a time-distributed geometric encoder extracts per-scan features and a sequential aggregator models the evolving vortex state across variable-length sequences. We evaluate on a real-world dataset of over one million LiDAR scans. X-VORTEX achieves superior vortex center localization while using only 1% of the labeled data required by supervised baselines, and the learned representations support accurate trajectory forecasting.
☆ WebClipper: Efficient Evolution of Web Agents with Graph-based Trajectory Pruning
Deep Research systems based on web agents have shown strong potential in solving complex information-seeking tasks, yet their search efficiency remains underexplored. We observe that many state-of-the-art open-source web agents rely on long tool-call trajectories with cyclic reasoning loops and exploration of unproductive branches. To address this, we propose WebClipper, a framework that compresses web agent trajectories via graph-based pruning. Concretely, we model the agent's search process as a state graph and cast trajectory optimization as a minimum-necessary Directed Acyclic Graph (DAG) mining problem, yielding pruned trajectories that preserve essential reasoning while eliminating redundant steps. Continued training on these refined trajectories enables the agent to evolve toward more efficient search patterns and reduces tool-call rounds by about 20% while improving accuracy. Furthermore, we introduce a new metric called F-AE Score to measure the model's overall performance in balancing accuracy and efficiency. Experiments demonstrate that WebClipper compresses tool-call rounds under excellent performance, providing practical insight into balancing effectiveness and efficiency in web agent design.
comment: Work in Progress
☆ Chimera: Neuro-Symbolic Attention Primitives for Trustworthy Dataplane Intelligence
Deploying expressive learning models directly on programmable dataplanes promises line-rate, low-latency traffic analysis but remains hindered by strict hardware constraints and the need for predictable, auditable behavior. Chimera introduces a principled framework that maps attention-oriented neural computations and symbolic constraints onto dataplane primitives, enabling trustworthy inference within the match-action pipeline. Chimera combines a kernelized, linearized attention approximation with a two-layer key-selection hierarchy and a cascade fusion mechanism that enforces hard symbolic guarantees while preserving neural expressivity. The design includes a hardware-aware mapping protocol and a two-timescale update scheme that together permit stable, line-rate operation under realistic dataplane budgets. The paper presents the Chimera architecture, a hardware mapping strategy, and empirical evidence showing that neuro-symbolic attention primitives can achieve high-fidelity inference within the resource envelope of commodity programmable switches.
comment: 23 pages, 11 figures
☆ Amortized Reasoning Tree Search: Decoupling Proposal and Decision in Large Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) has established itself as the dominant paradigm for instilling rigorous reasoning capabilities in Large Language Models. While effective at amplifying dominant behaviors, we identify a critical pathology in this alignment process: the systematic suppression of valid but rare (low-likelihood under the base model distribution) reasoning paths. We theoretically characterize this phenomenon as a "Normalization Squeeze," where the interplay between mode-seeking policy gradients and finite sampling acts as a high-pass likelihood filter, driving the probability of rare correct traces to statistical extinction. To counteract this collapse without discarding the base model's latent diversity, we propose Amortized Reasoning Tree Search (ARTS). Unlike standard approaches that force internalization via parameter updates, ARTS prioritizes deliberation by decoupling generation from verification. We introduce a Flow Matching objective that repurposes the verifier to estimate the conservation of probability flow, enabling robust navigation through sparse, high-entropy search spaces where traditional discriminative objectives fail. Extensive experiments on the MATH-500 benchmark demonstrate that ARTS achieves a performance of 74.6% (BoN@16), effectively matching fully fine-tuned policies (74.7%) without modifying the generative backbone. Crucially, on the long-tail subset where coupled RL optimization collapses to 0% pass@k, ARTS uniquely recovers significant performance, suggesting that disentangling verification from generation offers a more robust pathway for solving complex reasoning tasks.
☆ TRACE: Temporal Reasoning via Agentic Context Evolution for Streaming Electronic Health Records (EHRs)
Large Language Models (LLMs) encode extensive medical knowledge but struggle to apply it reliably to longitudinal patient trajectories, where evolving clinical states, irregular timing, and heterogeneous events degrade performance over time. Existing adaptation strategies rely on fine-tuning or retrieval-based augmentation, which introduce computational overhead, privacy constraints, or instability under long contexts. We introduce TRACE (Temporal Reasoning via Agentic Context Evolution), a framework that enables temporal clinical reasoning with frozen LLMs by explicitly structuring and maintaining context rather than extending context windows or updating parameters. TRACE operates over a dual-memory architecture consisting of a static Global Protocol encoding institutional clinical rules and a dynamic Individual Protocol tracking patient-specific state. Four agentic components, Router, Reasoner, Auditor, and Steward, coordinate over this structured memory to support temporal inference and state evolution. The framework maintains bounded inference cost via structured state compression and selectively audits safety-critical clinical decisions. Evaluated on longitudinal clinical event streams from MIMIC-IV, TRACE significantly improves next-event prediction accuracy, protocol adherence, and clinical safety over long-context and retrieval-augmented baselines, while producing interpretable and auditable reasoning traces.
☆ FLAC: Maximum Entropy RL via Kinetic Energy Regularized Bridge Matching
Iterative generative policies, such as diffusion models and flow matching, offer superior expressivity for continuous control but complicate Maximum Entropy Reinforcement Learning because their action log-densities are not directly accessible. To address this, we propose Field Least-Energy Actor-Critic (FLAC), a likelihood-free framework that regulates policy stochasticity by penalizing the kinetic energy of the velocity field. Our key insight is to formulate policy optimization as a Generalized Schrödinger Bridge (GSB) problem relative to a high-entropy reference process (e.g., uniform). Under this view, the maximum-entropy principle emerges naturally as staying close to a high-entropy reference while optimizing return, without requiring explicit action densities. In this framework, kinetic energy serves as a physically grounded proxy for divergence from the reference: minimizing path-space energy bounds the deviation of the induced terminal action distribution. Building on this view, we derive an energy-regularized policy iteration scheme and a practical off-policy algorithm that automatically tunes the kinetic energy via a Lagrangian dual mechanism. Empirically, FLAC achieves superior or comparable performance on high-dimensional benchmarks relative to strong baselines, while avoiding explicit density estimation.
☆ GRAIL: Geometry-Aware Retrieval-Augmented Inference with LLMs over Hyperbolic Representations of Patient Trajectories
Predicting future clinical events from longitudinal electronic health records (EHRs) is challenging due to sparse multi-type clinical events, hierarchical medical vocabularies, and the tendency of large language models (LLMs) to hallucinate when reasoning over long structured histories. We study next-visit event prediction, which aims to forecast a patient's upcoming clinical events based on prior visits. We propose GRAIL, a framework that models longitudinal EHRs using structured geometric representations and structure-aware retrieval. GRAIL constructs a unified clinical graph by combining deterministic coding-system hierarchies with data-driven temporal associations across event types, embeds this graph in hyperbolic space, and summarizes each visit as a probabilistic Central Event that denoises sparse observations. At inference time, GRAIL retrieves a structured set of clinically plausible future events aligned with hierarchical and temporal progression, and optionally refines their ranking using an LLM as a constrained inference-time reranker. Experiments on MIMIC-IV show that GRAIL consistently improves multi-type next-visit prediction and yields more hierarchy-consistent forecasts.
☆ Left-right asymmetry in predicting brain activity from LLMs' representations emerges with their formal linguistic competence
When humans and large language models (LLMs) process the same text, activations in the LLMs correlate with brain activity measured, e.g., with functional magnetic resonance imaging (fMRI). Moreover, it has been shown that, as the training of an LLM progresses, the performance in predicting brain activity from its internal activations improves more in the left hemisphere than in the right one. The aim of the present work is to understand which kind of competence acquired by the LLMs underlies the emergence of this left-right asymmetry. Using the OLMo-2 7B language model at various training checkpoints and fMRI data from English participants, we compare the evolution of the left-right asymmetry in brain scores alongside performance on several benchmarks. We observe that the asymmetry co-emerges with the formal linguistic abilities of the LLM. These abilities are demonstrated in two ways: by the model's capacity to assign a higher probability to an acceptable sentence than to a grammatically unacceptable one within a minimal contrasting pair, or its ability to produce well-formed text. On the opposite, the left-right asymmetry does not correlate with the performance on arithmetic or Dyck language tasks; nor with text-based tasks involving world knowledge and reasoning. We generalize these results to another family of LLMs (Pythia) and another language, namely French. Our observations indicate that the left-right asymmetry in brain predictivity matches the progress in formal linguistic competence (knowledge of linguistic patterns).
☆ RAT-Bench: A Comprehensive Benchmark for Text Anonymization
Data containing personal information is increasingly used to train, fine-tune, or query Large Language Models (LLMs). Text is typically scrubbed of identifying information prior to use, often with tools such as Microsoft's Presidio or Anthropic's PII purifier. These tools have traditionally been evaluated on their ability to remove specific identifiers (e.g., names), yet their effectiveness at preventing re-identification remains unclear. We introduce RAT-Bench, a comprehensive benchmark for text anonymization tools based on re-identification risk. Using U.S. demographic statistics, we generate synthetic text containing various direct and indirect identifiers across domains, languages, and difficulty levels. We evaluate a range of NER- and LLM-based text anonymization tools and, based on the attributes an LLM-based attacker is able to correctly infer from the anonymized text, we report the risk of re-identification in the U.S. population, while properly accounting for the disparate impact of identifiers. We find that, while capabilities vary widely, even the best tools are far from perfect in particular when direct identifiers are not written in standard ways and when indirect identifiers enable re-identification. Overall we find LLM-based anonymizers, including new iterative anonymizers, to provide a better privacy-utility trade-off albeit at a higher computational cost. Importantly, we also find them to work well across languages. We conclude with recommendations for future anonymization tools and will release the benchmark and encourage community efforts to expand it, in particular to other geographies.
☆ Can Neural Networks Provide Latent Embeddings for Telemetry-Aware Greedy Routing?
Telemetry-Aware routing promises to increase efficacy and responsiveness to traffic surges in computer networks. Recent research leverages Machine Learning to deal with the complex dependency between network state and routing, but sacrifices explainability of routing decisions due to the black-box nature of the proposed neural routing modules. We propose \emph{Placer}, a novel algorithm using Message Passing Networks to transform network states into latent node embeddings. These embeddings facilitate quick greedy next-hop routing without directly solving the all-pairs shortest paths problem, and let us visualize how certain network events shape routing decisions.
☆ SQuTR: A Robustness Benchmark for Spoken Query to Text Retrieval under Acoustic Noise
Spoken query retrieval is an important interaction mode in modern information retrieval. However, existing evaluation datasets are often limited to simple queries under constrained noise conditions, making them inadequate for assessing the robustness of spoken query retrieval systems under complex acoustic perturbations. To address this limitation, we present SQuTR, a robustness benchmark for spoken query retrieval that includes a large-scale dataset and a unified evaluation protocol. SQuTR aggregates 37,317 unique queries from six commonly used English and Chinese text retrieval datasets, spanning multiple domains and diverse query types. We synthesize speech using voice profiles from 200 real speakers and mix 17 categories of real-world environmental noise under controlled SNR levels, enabling reproducible robustness evaluation from quiet to highly noisy conditions. Under the unified protocol, we conduct large-scale evaluations on representative cascaded and end-to-end retrieval systems. Experimental results show that retrieval performance decreases as noise increases, with substantially different drops across systems. Even large-scale retrieval models struggle under extreme noise, indicating that robustness remains a critical bottleneck. Overall, SQuTR provides a reproducible testbed for benchmarking and diagnostic analysis, and facilitates future research on robustness in spoken query to text retrieval.
☆ "Not Human, Funnier": How Machine Identity Shapes Humor Perception in Online AI Stand-up Comedy
Chatbots are increasingly applied to domains previously reserved for human actors. One such domain is comedy, whereby both the general public working with ChatGPT and research-based LLM-systems have tried their hands on making humor. In formative interviews with professional comedians and video analyses of stand-up comedy in humans, we found that human performers often use their ethnic, gender, community, and demographic-based identity to enable joke-making. This suggests whether the identity of AI itself can empower AI humor generation for human audiences. We designed a machine-identity-based agent that uses its own status as AI to tell jokes in online performance format. Studies with human audiences (N=32) showed that machine-identity-based agents were seen as funnier than baseline-GPT agent. This work suggests the design of human-AI integrated systems that explicitly utilize AI as its own unique identity apart from humans.
comment: 27 pages, 5 figures. Conditionally Accepted to CHI '26
☆ VineetVC: Adaptive Video Conferencing Under Severe Bandwidth Constraints Using Audio-Driven Talking-Head Reconstruction
Intense bandwidth depletion within consumer and constrained networks has the potential to undermine the stability of real-time video conferencing: encoder rate management becomes saturated, packet loss escalates, frame rates deteriorate, and end-to-end latency significantly increases. This work delineates an adaptive conferencing system that integrates WebRTC media delivery with a supplementary audio-driven talking-head reconstruction pathway and telemetry-driven mode regulation. The system consists of a WebSocket signaling service, an optional SFU for multi-party transmission, a browser client capable of real-time WebRTC statistics extraction and CSV telemetry export, and an AI REST service that processes a reference face image and recorded audio to produce a synthesized MP4; the browser can substitute its outbound camera track with the synthesized stream with a median bandwidth of 32.80 kbps. The solution incorporates a bandwidth-mode switching strategy and a client-side mode-state logger.
☆ X-SYS: A Reference Architecture for Interactive Explanation Systems
The explainable AI (XAI) research community has proposed numerous technical methods, yet deploying explainability as systems remains challenging: Interactive explanation systems require both suitable algorithms and system capabilities that maintain explanation usability across repeated queries, evolving models and data, and governance constraints. We argue that operationalizing XAI requires treating explainability as an information systems problem where user interaction demands induce specific system requirements. We introduce X-SYS, a reference architecture for interactive explanation systems, that guides (X)AI researchers, developers and practitioners in connecting interactive explanation user interfaces (XUI) with system capabilities. X-SYS organizes around four quality attributes named STAR (scalability, traceability, responsiveness, and adaptability), and specifies a five-component decomposition (XUI Services, Explanation Services, Model Services, Data Services, Orchestration and Governance). It maps interaction patterns to system capabilities to decouple user interface evolution from backend computation. We implement X-SYS through SemanticLens, a system for semantic search and activation steering in vision-language models. SemanticLens demonstrates how contract-based service boundaries enable independent evolution, offline/online separation ensures responsiveness, and persistent state management supports traceability. Together, this work provides a reusable blueprint and concrete instantiation for interactive explanation systems supporting end-to-end design under operational constraints.
comment: 18 pages, 8 figures
☆ MedXIAOHE: A Comprehensive Recipe for Building Medical MLLMs
We present MedXIAOHE, a medical vision-language foundation model designed to advance general-purpose medical understanding and reasoning in real-world clinical applications. MedXIAOHE achieves state-of-the-art performance across diverse medical benchmarks and surpasses leading closed-source multimodal systems on multiple capabilities. To achieve this, we propose an entity-aware continual pretraining framework that organizes heterogeneous medical corpora to broaden knowledge coverage and reduce long-tail gaps (e.g., rare diseases). For medical expert-level reasoning and interaction, MedXIAOHE incorporates diverse medical reasoning patterns via reinforcement learning and tool-augmented agentic training, enabling multi-step diagnostic reasoning with verifiable decision traces. To improve reliability in real-world use, MedXIAOHE integrates user-preference rubrics, evidence-grounded reasoning, and low-hallucination long-form report generation, with improved adherence to medical instructions. We release this report to document our practical design choices, scaling insights, and evaluation framework, hoping to inspire further research.
☆ ALOE: Action-Level Off-Policy Evaluation for Vision-Language-Action Model Post-Training
We study how to improve large foundation vision-language-action (VLA) systems through online reinforcement learning (RL) in real-world settings. Central to this process is the value function, which provides learning signals to guide VLA learning from experience. In practice, the value function is estimated from trajectory fragments collected from different data sources, including historical policies and intermittent human interventions. Estimating the value function of current behavior quality from the mixture data is inherently an off-policy evaluation problem. However, prior work often adopts conservative on-policy estimation for stability, which avoids direct evaluation of the current high-capacity policy and limits learning effectiveness. In this paper, we propose ALOE, an action-level off-policy evaluation framework for VLA post-training. ALOE applies chunking-based temporal-difference bootstrapping to evaluate individual action sequences instead of predicting final task outcomes. This design improves effective credit assignment to critical action chunks under sparse rewards and supports stable policy improvement. We evaluate our method on three real-world manipulation tasks, including smartphone packing as a high-precision task, laundry folding as a long-horizon deformable-object task, and bimanual pick-and-place involving multi-object perception. Across all tasks, ALOE improves learning efficiency without compromising execution speed, showing that off-policy RL can be reintroduced in a reliable manner for real-world VLA post-training. Videos and additional materials are available at our project website.
☆ Trust the uncertain teacher: distilling dark knowledge via calibrated uncertainty
The core of knowledge distillation lies in transferring the teacher's rich 'dark knowledge'-subtle probabilistic patterns that reveal how classes are related and the distribution of uncertainties. While this idea is well established, teachers trained with conventional cross-entropy often fail to preserve such signals. Their distributions collapse into sharp, overconfident peaks that appear decisive but are in fact brittle, offering little beyond the hard label or subtly hindering representation-level transfer. This overconfidence is especially problematic in high-cardinality tasks, where the nuances among many plausible classes matter most for guiding a compact student. Moreover, such brittle targets reduce robustness under distribution shift, leaving students vulnerable to miscalibration in real-world conditions. To address this limitation, we revisit distillation from a distributional perspective and propose Calibrated Uncertainty Distillation (CUD), a framework designed to make dark knowledge more faithfully accessible. Instead of uncritically adopting the teacher's overconfidence, CUD encourages teachers to reveal uncertainty where it is informative and guides students to learn from targets that are calibrated rather than sharpened certainty. By directly shaping the teacher's predictive distribution before transfer, our approach balances accuracy and calibration, allowing students to benefit from both confident signals on easy cases and structured uncertainty on hard ones. Across diverse benchmarks, CUD yields students that are not only more accurate, but also more calibrated under shift and more reliable on ambiguous, long-tail inputs.
☆ SLA2: Sparse-Linear Attention with Learnable Routing and QAT
Sparse-Linear Attention (SLA) combines sparse and linear attention to accelerate diffusion models and has shown strong performance in video generation. However, (i) SLA relies on a heuristic split that assigns computations to the sparse or linear branch based on attention-weight magnitude, which can be suboptimal. Additionally, (ii) after formally analyzing the attention error in SLA, we identify a mismatch between SLA and a direct decomposition into sparse and linear attention. We propose SLA2, which introduces (I) a learnable router that dynamically selects whether each attention computation should use sparse or linear attention, (II) a more faithful and direct sparse-linear attention formulation that uses a learnable ratio to combine the sparse and linear attention branches, and (III) a sparse + low-bit attention design, where low-bit attention is introduced via quantization-aware fine-tuning to reduce quantization error. Experiments show that on video diffusion models, SLA2 can achieve 97% attention sparsity and deliver an 18.6x attention speedup while preserving generation quality.
☆ SkillsBench: Benchmarking How Well Agent Skills Work Across Diverse Tasks
Agent Skills are structured packages of procedural knowledge that augment LLM agents at inference time. Despite rapid adoption, there is no standard way to measure whether they actually help. We present SkillsBench, a benchmark of 86 tasks across 11 domains paired with curated Skills and deterministic verifiers. Each task is evaluated under three conditions: no Skills, curated Skills, and self-generated Skills. We test 7 agent-model configurations over 7,308 trajectories. Curated Skills raise average pass rate by 16.2 percentage points(pp), but effects vary widely by domain (+4.5pp for Software Engineering to +51.9pp for Healthcare) and 16 of 84 tasks show negative deltas. Self-generated Skills provide no benefit on average, showing that models cannot reliably author the procedural knowledge they benefit from consuming. Focused Skills with 2--3 modules outperform comprehensive documentation, and smaller models with Skills can match larger models without them.
☆ Evaluating Robustness of Reasoning Models on Parameterized Logical Problems
Logic provides a controlled testbed for evaluating LLM-based reasoners, yet standard SAT-style benchmarks often conflate surface difficulty (length, wording, clause order) with the structural phenomena that actually determine satisfiability. We introduce a diagnostic benchmark for 2-SAT built from parameterized families of structured 2--CNF formulas, where satisfiability is characterized by the implication graph and can be tuned along interpretable axes. Our generators isolate distinct competencies and failure modes: (i) contradiction-cycle UNSAT cores with controllable size and imbalance, (ii) SAT instances with a prescribed fraction of free variables to control solution multiplicity, (iii) planted backbones that modulate propagation, (iv) late bridge clauses that couple otherwise monotone regions to probe sensitivity to ordering and revision, and (v) symmetry/duplication variants that test abstraction under renaming and redundant structure. We evaluate LLM-based reasoners on decision accuracy and assignment validity, and quantify robustness under semantics-preserving perturbations such as clause reordering, filler clauses, and variable renaming. Across models, we observe sharp performance transitions under targeted structural interventions even when surface statistics are held fixed, revealing brittleness regimes that are invisible to aggregate SAT accuracy.
☆ Think Fast and Slow: Step-Level Cognitive Depth Adaptation for LLM Agents
Large language models (LLMs) are increasingly deployed as autonomous agents for multi-turn decision-making tasks. However, current agents typically rely on fixed cognitive patterns: non-thinking models generate immediate responses, while thinking models engage in deep reasoning uniformly. This rigidity is inefficient for long-horizon tasks, where cognitive demands vary significantly from step to step, with some requiring strategic planning and others only routine execution. In this paper, we introduce CogRouter, a framework that trains agents to dynamically adapt cognitive depth at each step. Grounded in ACT-R theory, we design four hierarchical cognitive levels ranging from instinctive responses to strategic planning. Our two-stage training approach includes Cognition-aware Supervised Fine-tuning (CoSFT) to instill stable level-specific patterns, and Cognition-aware Policy Optimization (CoPO) for step-level credit assignment via confidence-aware advantage reweighting. The key insight is that appropriate cognitive depth should maximize the confidence of the resulting action. Experiments on ALFWorld and ScienceWorld demonstrate that CogRouter achieves state-of-the-art performance with superior efficiency. With Qwen2.5-7B, it reaches an 82.3% success rate, outperforming GPT-4o (+40.3%), OpenAI-o3 (+18.3%), and GRPO (+14.0%), while using 62% fewer tokens.
☆ IndicFairFace: Balanced Indian Face Dataset for Auditing and Mitigating Geographical Bias in Vision-Language Models
Vision-Language Models (VLMs) are known to inherit and amplify societal biases from their web-scale training data with Indian being particularly misrepresented. Existing fairness-aware datasets have significantly improved demographic balance across global race and gender groups, yet they continue to treat Indian as a single monolithic category. The oversimplification ignores the vast intra-national diversity across 28 states and 8 Union Territories of India and leads to representational and geographical bias. To address the limitation, we present IndicFairFace, a novel and balanced face dataset comprising 14,400 images representing geographical diversity of India. Images were sourced ethically from Wikimedia Commons and open-license web repositories and uniformly balanced across states and gender. Using IndicFairFace, we quantify intra-national geographical bias in prominent CLIP-based VLMs and reduce it using post-hoc Iterative Nullspace Projection debiasing approach. We also show that the adopted debiasing approach does not adversely impact the existing embedding space as the average drop in retrieval accuracy on benchmark datasets is less than 1.5 percent. Our work establishes IndicFairFace as the first benchmark to study geographical bias in VLMs for the Indian context.
☆ PMG: Parameterized Motion Generator for Human-like Locomotion Control
Recent advances in data-driven reinforcement learning and motion tracking have substantially improved humanoid locomotion, yet critical practical challenges remain. In particular, while low-level motion tracking and trajectory-following controllers are mature, whole-body reference-guided methods are difficult to adapt to higher-level command interfaces and diverse task contexts: they require large, high-quality datasets, are brittle across speed and pose regimes, and are sensitive to robot-specific calibration. To address these limitations, we propose the Parameterized Motion Generator (PMG), a real-time motion generator grounded in an analysis of human motion structure that synthesizes reference trajectories using only a compact set of parameterized motion data together with High-dimensional control commands. Combined with an imitation-learning pipeline and an optimization-based sim-to-real motor parameter identification module, we validate the complete approach on our humanoid prototype ZERITH Z1 and show that, within a single integrated system, PMG produces natural, human-like locomotion, responds precisely to high-dimensional control inputs-including VR-based teleoperation-and enables efficient, verifiable sim-to-real transfer. Together, these results establish a practical, experimentally validated pathway toward natural and deployable humanoid control.
comment: 2026 IEEE International Conference on Robotics & Automation
☆ Multi-Task Learning with Additive U-Net for Image Denoising and Classification
We investigate additive skip fusion in U-Net architectures for image denoising and denoising-centric multi-task learning (MTL). By replacing concatenative skips with gated additive fusion, the proposed Additive U-Net (AddUNet) constrains shortcut capacity while preserving fixed feature dimensionality across depth. This structural regularization induces controlled encoder-decoder information flow and stabilizes joint optimization. Across single-task denoising and joint denoising-classification settings, AddUNet achieves competitive reconstruction performance with improved training stability. In MTL, learned skip weights exhibit systematic task-aware redistribution: shallow skips favor reconstruction, while deeper features support discrimination. Notably, reconstruction remains robust even under limited classification capacity, indicating implicit task decoupling through additive fusion. These findings show that simple constraints on skip connections act as an effective architectural regularizer for stable and scalable multi-task learning without increasing model complexity.
☆ Unifying Model-Free Efficiency and Model-Based Representations via Latent Dynamics
We present Unified Latent Dynamics (ULD), a novel reinforcement learning algorithm that unifies the efficiency of model-free methods with the representational strengths of model-based approaches, without incurring planning overhead. By embedding state-action pairs into a latent space in which the true value function is approximately linear, our method supports a single set of hyperparameters across diverse domains -- from continuous control with low-dimensional and pixel inputs to high-dimensional Atari games. We prove that, under mild conditions, the fixed point of our embedding-based temporal-difference updates coincides with that of a corresponding linear model-based value expansion, and we derive explicit error bounds relating embedding fidelity to value approximation quality. In practice, ULD employs synchronized updates of encoder, value, and policy networks, auxiliary losses for short-horizon predictive dynamics, and reward-scale normalization to ensure stable learning under sparse rewards. Evaluated on 80 environments spanning Gym locomotion, DeepMind Control (proprioceptive and visual), and Atari, our approach matches or exceeds the performance of specialized model-free and general model-based baselines -- achieving cross-domain competence with minimal tuning and a fraction of the parameter footprint. These results indicate that value-aligned latent representations alone can deliver the adaptability and sample efficiency traditionally attributed to full model-based planning.
comment: 13 pages. Accepted at AAMAS 2026
☆ Beyond Normalization: Rethinking the Partition Function as a Difficulty Scheduler for RLVR
Reward-maximizing RL methods enhance the reasoning performance of LLMs, but often reduce the diversity among outputs. Recent works address this issue by adopting GFlowNets, training LLMs to match a target distribution while jointly learning its partition function. In contrast to prior works that treat this partition function solely as a normalizer, we reinterpret it as a per-prompt expected-reward (i.e., online accuracy) signal, leveraging this unused information to improve sample efficiency. Specifically, we first establish a theoretical relationship between the partition function and per-prompt accuracy estimates. Building on this key insight, we propose Partition Function-Guided RL (PACED-RL), a post-training framework that leverages accuracy estimates to prioritize informative question prompts during training, and further improves sample efficiency through an accuracy estimate error-prioritized replay. Crucially, both components reuse information already produced during GFlowNet training, effectively amortizing the compute overhead into the existing optimization process. Extensive experiments across diverse benchmarks demonstrate strong performance improvements over GRPO and prior GFlowNet approaches, highlighting PACED-RL as a promising direction for a more sample efficient distribution-matching training for LLMs.
☆ Artic: AI-oriented Real-time Communication for MLLM Video Assistant
AI Video Assistant emerges as a new paradigm for Real-time Communication (RTC), where one peer is a Multimodal Large Language Model (MLLM) deployed in the cloud. This makes interaction between humans and AI more intuitive, akin to chatting with a real person. However, a fundamental mismatch exists between current RTC frameworks and AI Video Assistants, stemming from the drastic shift in Quality of Experience (QoE) and more challenging networks. Measurements on our production prototype also confirm that current RTC fails, causing latency spikes and accuracy drops. To address these challenges, we propose Artic, an AI-oriented RTC framework for MLLM Video Assistants, exploring the shift from "humans watching video" to "AI understanding video." Specifically, Artic proposes: (1) Response Capability-aware Adaptive Bitrate, which utilizes MLLM accuracy saturation to proactively cap bitrate, reserving bandwidth headroom to absorb future fluctuations for latency reduction; (2) Zero-overhead Context-aware Streaming, which allocates limited bitrate to regions most important for the response, maintaining accuracy even under ultra-low bitrates; and (3) Degraded Video Understanding Benchmark, the first benchmark evaluating how RTC-induced video degradation affects MLLM accuracy. Prototype experiments using real-world uplink traces show that compared with existing methods, Artic significantly improves accuracy by 15.12% and reduces latency by 135.31 ms. We will release the benchmark and codes at https://github.com/pku-netvideo/DeViBench.
☆ Unleashing Low-Bit Inference on Ascend NPUs: A Comprehensive Evaluation of HiFloat Formats
As LLMs scale, low-bit floating-point formats like MXFP and NVFP4 offer new opportunities for precision and efficiency. In this work, we evaluate HiFloat (HiF8 and HiF4), a family of formats tailored for Ascend NPUs. Through rigorous comparison across weight-activation and KV-cache tasks, we provide three key insights: (1) INT8 suits narrow-range data, while floating-point formats excel with high-variance data; (2) in 4-bit regimes, HiF4's hierarchical scaling prevents the accuracy collapse seen in integer formats; and (3) HiFloat is fully compatible with state-of-the-art post-training quantization frameworks. Overall, HiFloat provides a solution for high-efficiency LLM inference on NPUs.
☆ AI Agents for Inventory Control: Human-LLM-OR Complementarity
Inventory control is a fundamental operations problem in which ordering decisions are traditionally guided by theoretically grounded operations research (OR) algorithms. However, such algorithms often rely on rigid modeling assumptions and can perform poorly when demand distributions shift or relevant contextual information is unavailable. Recent advances in large language models (LLMs) have generated interest in AI agents that can reason flexibly and incorporate rich contextual signals, but it remains unclear how best to incorporate LLM-based methods into traditional decision-making pipelines. We study how OR algorithms, LLMs, and humans can interact and complement each other in a multi-period inventory control setting. We construct InventoryBench, a benchmark of over 1,000 inventory instances spanning both synthetic and real-world demand data, designed to stress-test decision rules under demand shifts, seasonality, and uncertain lead times. Through this benchmark, we find that OR-augmented LLM methods outperform either method in isolation, suggesting that these methods are complementary rather than substitutes. We further investigate the role of humans through a controlled classroom experiment that embeds LLM recommendations into a human-in-the-loop decision pipeline. Contrary to prior findings that human-AI collaboration can degrade performance, we show that, on average, human-AI teams achieve higher profits than either humans or AI agents operating alone. Beyond this population-level finding, we formalize an individual-level complementarity effect and derive a distribution-free lower bound on the fraction of individuals who benefit from AI collaboration; empirically, we find this fraction to be substantial.
☆ TensorCommitments: A Lightweight Verifiable Inference for Language Models
Most large language models (LLMs) run on external clouds: users send a prompt, pay for inference, and must trust that the remote GPU executes the LLM without any adversarial tampering. We critically ask how to achieve verifiable LLM inference, where a prover (the service) must convince a verifier (the client) that an inference was run correctly without rerunning the LLM. Existing cryptographic works are too slow at the LLM scale, while non-cryptographic ones require a strong verifier GPU. We propose TensorCommitments (TCs), a tensor-native proof-of-inference scheme. TC binds the LLM inference to a commitment, an irreversible tag that breaks under tampering, organized in our multivariate Terkle Trees. For LLaMA2, TC adds only 0.97% prover and 0.12% verifier time over inference while improving robustness to tailored LLM attacks by up to 48% over the best prior work requiring a verifier GPU.
comment: 23 pages, 8 figures, under review
☆ Vision Token Reduction via Attention-Driven Self-Compression for Efficient Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) incur significant computational cost from processing numerous vision tokens through all LLM layers. Prior pruning methods operate either before the LLM, limiting generality due to diverse encoder-projector designs or within the LLM using heuristics that are incompatible with FlashAttention. We take a different approach: rather than identifying unimportant tokens, we treat the LLM itself as the optimal guide for compression. Observing that deeper layers naturally transmit vision-to-text information, we introduce Attention-Driven Self-Compression (ADSC), a simple, broadly applicable method that progressively reduces vision tokens using only the LLM's attention mechanism. Our method applies uniform token downsampling at selected layers, forming bottlenecks that encourage the model to reorganize and compress information into the remaining tokens. It requires no score computation, auxiliary modules, or attention modification, and remains fully compatible with FlashAttention. Applied to LLaVA-1.5, ADSC reduces FLOPs by 53.7% and peak KV-cache memory by 56.7%, while preserving 98.2% of the original model performance. Across multiple benchmarks, it outperforms prior pruning approaches in both efficiency and accuracy. Crucially, under high compression ratios, our method remains robust while heuristic-based techniques degrade sharply.
comment: 2025 IEEE International Conference on Big Data (BigData)
☆ GeoAgent: Learning to Geolocate Everywhere with Reinforced Geographic Characteristics
This paper presents GeoAgent, a model capable of reasoning closely with humans and deriving fine-grained address conclusions. Previous RL-based methods have achieved breakthroughs in performance and interpretability but still remain concerns because of their reliance on AI-generated chain-of-thought (CoT) data and training strategies, which conflict with geographic characteristics. To address these issues, we first introduce GeoSeek, a new geolocation dataset comprising CoT data annotated by geographic experts and professional players. We further thoroughly explore the inherent characteristics of geographic tasks and propose a geo-similarity reward and a consistency reward assessed by a consistency agent to assist training. This encourages the model to converge towards correct answers from a geographic perspective while ensuring the integrity and consistency of its reasoning process. Experimental results show that GeoAgent outperforms existing methods and a series of general VLLMs across multiple grains, while generating reasoning that closely aligns with humans.
☆ Self-EvolveRec: Self-Evolving Recommender Systems with LLM-based Directional Feedback
Traditional methods for automating recommender system design, such as Neural Architecture Search (NAS), are often constrained by a fixed search space defined by human priors, limiting innovation to pre-defined operators. While recent LLM-driven code evolution frameworks shift fixed search space target to open-ended program spaces, they primarily rely on scalar metrics (e.g., NDCG, Hit Ratio) that fail to provide qualitative insights into model failures or directional guidance for improvement. To address this, we propose Self-EvolveRec, a novel framework that establishes a directional feedback loop by integrating a User Simulator for qualitative critiques and a Model Diagnosis Tool for quantitative internal verification. Furthermore, we introduce a Diagnosis Tool - Model Co-Evolution strategy to ensure that evaluation criteria dynamically adapt as the recommendation architecture evolves. Extensive experiments demonstrate that Self-EvolveRec significantly outperforms state-of-the-art NAS and LLM-driven code evolution baselines in both recommendation performance and user satisfaction. Our code is available at https://github.com/Sein-Kim/self_evolverec.
☆ QuEPT: Quantized Elastic Precision Transformers with One-Shot Calibration for Multi-Bit Switching AAAI 2026
Elastic precision quantization enables multi-bit deployment via a single optimization pass, fitting diverse quantization scenarios.Yet, the high storage and optimization costs associated with the Transformer architecture, research on elastic quantization remains limited, particularly for large language models.This paper proposes QuEPT, an efficient post-training scheme that reconstructs block-wise multi-bit errors with one-shot calibration on a small data slice. It can dynamically adapt to various predefined bit-widths by cascading different low-rank adapters, and supports real-time switching between uniform quantization and mixed precision quantization without repeated optimization. To enhance accuracy and robustness, we introduce Multi-Bit Token Merging (MB-ToMe) to dynamically fuse token features across different bit-widths, improving robustness during bit-width switching. Additionally, we propose Multi-Bit Cascaded Low-Rank adapters (MB-CLoRA) to strengthen correlations between bit-width groups, further improve the overall performance of QuEPT. Extensive experiments demonstrate that QuEPT achieves comparable or better performance to existing state-of-the-art post-training quantization methods.Our code is available at https://github.com/xuke225/QuEPT
comment: Accepted by AAAI 2026
☆ HyperMLP: An Integrated Perspective for Sequence Modeling
Self-attention is often viewed as probabilistic query-key lookup, motivating designs that preserve normalized attention scores and fixed positional semantics. We advocate a simpler and more unified perspective: an autoregressive attention head can be viewed as a dynamic two-layer MLP whose weights are instantiated from the context history. From this view, attention scores form an ever-growing hidden representation, and standard MLP activations such as ReLU or GLU naturally implement input-conditioned selection over a context-dependent memory pool rather than a probability distribution. Based on this formulation, we introduce HyperMLP and HyperGLU, which learn dynamic mixing in both feature space and sequence space, using a reverse-offset (lag) layout to align temporal mixing with autoregressive semantics. We provide theoretical characterizations of the expressivity and implications of this structure, and empirically show that HyperMLP/HyperGLU consistently outperform strong softmax-attention baselines under matched parameter budgets.
RQ-GMM: Residual Quantized Gaussian Mixture Model for Multimodal Semantic Discretization in CTR Prediction
Multimodal content is crucial for click-through rate (CTR) prediction. However, directly incorporating continuous embeddings from pre-trained models into CTR models yields suboptimal results due to misaligned optimization objectives and convergence speed inconsistency during joint training. Discretizing embeddings into semantic IDs before feeding them into CTR models offers a more effective solution, yet existing methods suffer from limited codebook utilization, reconstruction accuracy, and semantic discriminability. We propose RQ-GMM (Residual Quantized Gaussian Mixture Model), which introduces probabilistic modeling to better capture the statistical structure of multimodal embedding spaces. Through Gaussian Mixture Models combined with residual quantization, RQ-GMM achieves superior codebook utilization and reconstruction accuracy. Experiments on public datasets and online A/B tests on a large-scale short-video platform serving hundreds of millions of users demonstrate substantial improvements: RQ-GMM yields a 1.502% gain in Advertiser Value over strong baselines. The method has been fully deployed, serving daily recommendations for hundreds of millions of users.
comment: Under review
☆ Power Interpretable Causal ODE Networks: A Unified Model for Explainable Anomaly Detection and Root Cause Analysis in Power Systems
Anomaly detection and root cause analysis (RCA) are critical for ensuring the safety and resilience of cyber-physical systems such as power grids. However, existing machine learning models for time series anomaly detection often operate as black boxes, offering only binary outputs without any explanation, such as identifying anomaly type and origin. To address this challenge, we propose Power Interpretable Causality Ordinary Differential Equation (PICODE) Networks, a unified, causality-informed architecture that jointly performs anomaly detection along with the explanation why it is detected as an anomaly, including root cause localization, anomaly type classification, and anomaly shape characterization. Experimental results in power systems demonstrate that PICODE achieves competitive detection performance while offering improved interpretability and reduced reliance on labeled data or external causal graphs. We provide theoretical results demonstrating the alignment between the shape of anomaly functions and the changes in the weights of the extracted causal graphs.
☆ Can I Have Your Order? Monte-Carlo Tree Search for Slot Filling Ordering in Diffusion Language Models
While plan-and-infill decoding in Masked Diffusion Models (MDMs) shows promise for mathematical and code reasoning, performance remains highly sensitive to slot infilling order, often yielding substantial output variance. We introduce McDiffuSE, a framework that formulates slot selection as decision making and optimises infilling orders through Monte Carlo Tree Search (MCTS). McDiffuSE uses look-ahead simulations to evaluate partial completions before commitment, systematically exploring the combinatorial space of generation orders. Experiments show an average improvement of 3.2% over autoregressive baselines and 8.0% over baseline plan-and-infill, with notable gains of 19.5% on MBPP and 4.9% on MATH500. Our analysis reveals that while McDiffuSE predominantly follows sequential ordering, incorporating non-sequential generation is essential for maximising performance. We observe that larger exploration constants, rather than increased simulations, are necessary to overcome model confidence biases and discover effective orderings. These findings establish MCTS-based planning as an effective approach for enhancing generation quality in MDMs.
comment: 8 pages, preprint
☆ VI-CuRL: Stabilizing Verifier-Independent RL Reasoning via Confidence-Guided Variance Reduction
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a dominant paradigm for enhancing Large Language Models (LLMs) reasoning, yet its reliance on external verifiers limits its scalability. Recent findings suggest that RLVR primarily functions by eliciting latent capabilities, motivating the development of verifier-free algorithms. However, in such settings, standard methods like Group Relative Policy Optimization face a critical challenge: destructive gradient variance that often leads to training collapse. To address this issue, we introduceVerifier-Independent Curriculum Reinforcement Learning (VI-CuRL), a framework that leverages the model's intrinsic confidence to construct a curriculum independent from external verifiers. By prioritizing high-confidence samples, VI-CuRL effectively manages the bias-variance trade-off, specifically targeting the reduction of action and problem variance. We provide a rigorous theoretical analysis, proving that our estimator guarantees asymptotic unbiasedness. Empirically, VI-CuRL promotes stability and consistently outperforms verifier-independent baselines across six challenging benchmarks with/without verifiers.
☆ Monte Carlo Tree Search with Reasoning Path Refinement for Small Language Models in Conversational Text-to-NoSQL
NoSQL databases have been widely adopted in big data analytics, geospatial applications, and healthcare services, due to their flexibility and scalability. However, querying NoSQL databases requires specialized technical expertise, creating a high barrier for users. While recent studies have explored text-to-NoSQL problem, they primarily focus on single-turn interactions, ignoring the conversational nature of real-world queries. To bridge this gap, we introduce the Conversational Text-to-NoSQL task, which generates NoSQL queries given a natural language question, a NoSQL database, and the dialogue history. To address this task, we propose Stage-MCTS, a framework that endows small language models (SLMs) with NoSQL-specific reasoning capabilities by formulating query generation as a search problem. The framework employs Monte Carlo Tree Search (MCTS) guided by a rule-based reward to produce stepwise reasoning data, followed by progressive supervised fine-tuning (SFT) and self-training strategies. We further construct CoNoSQL, a cross-domain dataset with over 2,000 dialogues and 150 databases, to support evaluation. Experiments demonstrate that our approach outperforms state-of-the-art large reasoning models, improving execution value match (EVM) accuracy by up to 7.93%.
☆ To Mix or To Merge: Toward Multi-Domain Reinforcement Learning for Large Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) plays a key role in stimulating the explicit reasoning capability of Large Language Models (LLMs). We can achieve expert-level performance in some specific domains via RLVR, such as coding or math. When a general multi-domain expert-level model is required, we need to carefully consider the collaboration of RLVR across different domains. The current state-of-the-art models mainly employ two different training paradigms for multi-domain RLVR: mixed multi-task RLVR and separate RLVR followed by model merging. However, most of the works did not provide a detailed comparison and analysis about these paradigms. To this end, we choose multiple commonly used high-level tasks (e.g., math, coding, science, and instruction following) as our target domains and design extensive qualitative and quantitative experiments using open-source datasets. We find the RLVR across domains exhibits few mutual interferences, and reasoning-intensive domains demonstrate mutually synergistic effects. Furthermore, we analyze the internal mechanisms of mutual gains from the perspectives of weight space geometry, model prediction behavior, and information constraints. This project is named as M2RL that means Mixed multi-task training or separate training followed by model Merging for Reinforcement Learning, and the homepage is at https://github.com/mosAI25/M2RL
☆ SD-MoE: Spectral Decomposition for Effective Expert Specialization
Mixture-of-Experts (MoE) architectures scale Large Language Models via expert specialization induced by conditional computation. In practice, however, expert specialization often fails: some experts become functionally similar, while others functioning as de facto shared experts, limiting the effective capacity and model performance. In this work, we analysis from a spectral perspective on parameter and gradient spaces, uncover that (1) experts share highly overlapping dominant spectral components in their parameters, (2) dominant gradient subspaces are strongly aligned across experts, driven by ubiquitous low-rank structure in human corpus, and (3) gating mechanisms preferentially route inputs along these dominant directions, further limiting specialization. To address this, we propose Spectral-Decoupled MoE (SD-MoE), which decomposes both parameter and gradient in the spectral space. SD-MoE improves performance across downstream tasks, enables effective expert specialization, incurring minimal additional computation, and can be seamlessly integrated into a wide range of existing MoE architectures, including Qwen and DeepSeek.
☆ A consequence of failed sequential learning: A computational account of developmental amnesia
Developmental amnesia, featured with severely impaired episodic memory and almost normal semantic memory, has been discovered to occur in children with hippocampal atrophy. This unique combination of characteristics seems to challenge the understanding that early loss of episodic memory may impede cognitive development and result in severe mental retardation. Although a few underlying mechanisms have been suggested, no computational model has been reported that is able to mimic the unique combination of characteristics. In this study, a cognitive system is presented, and developmental amnesia is demonstrated computationally in terms of impaired episodic recall, spared recognition and spared semantic learning. Impaired sequential/spatial learning ability of the hippocampus is suggested to be the cause of such amnesia. Simulation shows that impaired sequential leaning may only result in severe impairment of episodic recall, but affect neither recognition ability nor semantic learning. The spared semantic learning is inline with the view that semantic learning is largely associated with the consolidation of episodic memory, a process in which episodic memory may be mostly activated randomly, instead of sequentially. Furthermore, retrograded amnesia is also simulated, and the result and its mechanism are in agreement with most computational models of amnesia reported previously.
comment: 30 pages, 5 figures and 2 tables
☆ Decoder-only Conformer with Modality-aware Sparse Mixtures of Experts for ASR ICASSP 2026
We present a decoder-only Conformer for automatic speech recognition (ASR) that processes speech and text in a single stack without external speech encoders or pretrained large language models (LLM). The model uses a modality-aware sparse mixture of experts (MoE): disjoint expert pools for speech and text with hard routing and top-1 selection, embedded in hybrid-causality Conformer blocks (bidirectional for speech, causal for text). Training combines CTC on speech positions with label-smoothed cross-entropy for text generation. Our 113M-parameter model consistently improves WER over a 139M AED baseline on Librispeech (2.8% vs. 3.2% test-clean; 5.6% vs. 6.0% test-other). On Common Voice 16.1 with a single multilingual model across five languages, our approach reduces average WER from 12.2% to 10.6%. To our knowledge, this is the first randomly initialized decoder-only ASR that surpasses strong AED baselines via modality-aware routing and sparse MoE, achieving better accuracy with fewer active parameters and without alignment/adaptation modules.
comment: Accepted to ICASSP 2026
☆ Scaling Web Agent Training through Automatic Data Generation and Fine-grained Evaluation
We present a scalable pipeline for automatically generating high-quality training data for web agents. In particular, a major challenge in identifying high-quality training instances is trajectory evaluation - quantifying how much progress was made towards task completion. We introduce a novel constraint-based evaluation framework that provides fine-grained assessment of progress towards task completion. This enables us to leverage partially successful trajectories, which significantly expands the amount of usable training data. We evaluate our method on a new benchmark we propose called BookingArena, which consists of complex booking tasks across 20 popular websites, and demonstrate that our distilled student model outperforms open-source approaches and matches or exceeds commercial systems, while being a significantly smaller model. Our work addresses the challenge of efficiently creating diverse, realistic web interaction datasets and provides a systematic evaluation methodology for complex structured web tasks.
comment: COLM 2025
☆ Exploring Accurate and Transparent Domain Adaptation in Predictive Healthcare via Concept-Grounded Orthogonal Inference
Deep learning models for clinical event prediction on electronic health records (EHR) often suffer performance degradation when deployed under different data distributions. While domain adaptation (DA) methods can mitigate such shifts, its "black-box" nature prevents widespread adoption in clinical practice where transparency is essential for trust and safety. We propose ExtraCare to decompose patient representations into invariant and covariant components. By supervising these two components and enforcing their orthogonality during training, our model preserves label information while exposing domain-specific variation at the same time for more accurate predictions than most feature alignment models. More importantly, it offers human-understandable explanations by mapping sparse latent dimensions to medical concepts and quantifying their contributions via targeted ablations. ExtraCare is evaluated on two real-world EHR datasets across multiple domain partition settings, demonstrating superior performance along with enhanced transparency, as evidenced by its accurate predictions and explanations from extensive case studies.
☆ Bench-MFG: A Benchmark Suite for Learning in Stationary Mean Field Games
The intersection of Mean Field Games (MFGs) and Reinforcement Learning (RL) has fostered a growing family of algorithms designed to solve large-scale multi-agent systems. However, the field currently lacks a standardized evaluation protocol, forcing researchers to rely on bespoke, isolated, and often simplistic environments. This fragmentation makes it difficult to assess the robustness, generalization, and failure modes of emerging methods. To address this gap, we propose a comprehensive benchmark suite for MFGs (Bench-MFG), focusing on the discrete-time, discrete-space, stationary setting for the sake of clarity. We introduce a taxonomy of problem classes, ranging from no-interaction and monotone games to potential and dynamics-coupled games, and provide prototypical environments for each. Furthermore, we propose MF-Garnets, a method for generating random MFG instances to facilitate rigorous statistical testing. We benchmark a variety of learning algorithms across these environments, including a novel black-box approach (MF-PSO) for exploitability minimization. Based on our extensive empirical results, we propose guidelines to standardize future experimental comparisons. Code available at \href{https://github.com/lorenzomagnino/Bench-MFG}{https://github.com/lorenzomagnino/Bench-MFG}.
☆ Monocular Reconstruction of Neural Tactile Fields
Robots operating in the real world must plan through environments that deform, yield, and reconfigure under contact, requiring interaction-aware 3D representations that extend beyond static geometric occupancy. To address this, we introduce neural tactile fields, a novel 3D representation that maps spatial locations to the expected tactile response upon contact. Our model predicts these neural tactile fields from a single monocular RGB image -- the first method to do so. When integrated with off-the-shelf path planners, neural tactile fields enable robots to generate paths that avoid high-resistance objects while deliberately routing through low-resistance regions (e.g. foliage), rather than treating all occupied space as equally impassable. Empirically, our learning framework improves volumetric 3D reconstruction by $85.8\%$ and surface reconstruction by $26.7\%$ compared to state-of-the-art monocular 3D reconstruction methods (LRM and Direct3D).
comment: 10 pages, 8 figures
☆ Favia: Forensic Agent for Vulnerability-fix Identification and Analysis
Identifying vulnerability-fixing commits corresponding to disclosed CVEs is essential for secure software maintenance but remains challenging at scale, as large repositories contain millions of commits of which only a small fraction address security issues. Existing automated approaches, including traditional machine learning techniques and recent large language model (LLM)-based methods, often suffer from poor precision-recall trade-offs. Frequently evaluated on randomly sampled commits, we uncover that they are substantially underestimating real-world difficulty, where candidate commits are already security-relevant and highly similar. We propose Favia, a forensic, agent-based framework for vulnerability-fix identification that combines scalable candidate ranking with deep and iterative semantic reasoning. Favia first employs an efficient ranking stage to narrow the search space of commits. Each commit is then rigorously evaluated using a ReAct-based LLM agent. By providing the agent with a pre-commit repository as environment, along with specialized tools, the agent tries to localize vulnerable components, navigates the codebase, and establishes causal alignment between code changes and vulnerability root causes. This evidence-driven process enables robust identification of indirect, multi-file, and non-trivial fixes that elude single-pass or similarity-based methods. We evaluate Favia on CVEVC, a large-scale dataset we made that comprises over 8 million commits from 3,708 real-world repositories, and show that it consistently outperforms state-of-the-art traditional and LLM-based baselines under realistic candidate selection, achieving the strongest precision-recall trade-offs and highest F1-scores.
comment: 44 pages, 12 figures, 5 tables, 3 listings
☆ Imitating What Works: Simulation-Filtered Modular Policy Learning from Human Videos
The ability to learn manipulation skills by watching videos of humans has the potential to unlock a new source of highly scalable data for robot learning. Here, we tackle prehensile manipulation, in which tasks involve grasping an object before performing various post-grasp motions. Human videos offer strong signals for learning the post-grasp motions, but they are less useful for learning the prerequisite grasping behaviors, especially for robots without human-like hands. A promising way forward is to use a modular policy design, leveraging a dedicated grasp generator to produce stable grasps. However, arbitrary stable grasps are often not task-compatible, hindering the robot's ability to perform the desired downstream motion. To address this challenge, we present Perceive-Simulate-Imitate (PSI), a framework for training a modular manipulation policy using human video motion data processed by paired grasp-trajectory filtering in simulation. This simulation step extends the trajectory data with grasp suitability labels, which allows for supervised learning of task-oriented grasping capabilities. We show through real-world experiments that our framework can be used to learn precise manipulation skills efficiently without any robot data, resulting in significantly more robust performance than using a grasp generator naively.
☆ Steerable Vision-Language-Action Policies for Embodied Reasoning and Hierarchical Control
Pretrained vision-language models (VLMs) can make semantic and visual inferences across diverse settings, providing valuable common-sense priors for robotic control. However, effectively grounding this knowledge in robot behaviors remains an open challenge. Prior methods often employ a hierarchical approach where VLMs reason over high-level commands to be executed by separate low-level policies, e.g., vision-language-action models (VLAs). The interface between VLMs and VLAs is usually natural language task instructions, which fundamentally limits how much VLM reasoning can steer low-level behavior. We thus introduce Steerable Policies: VLAs trained on rich synthetic commands at various levels of abstraction, like subtasks, motions, and grounded pixel coordinates. By improving low-level controllability, Steerable Policies can unlock pretrained knowledge in VLMs, enabling improved task generalization. We demonstrate this benefit by controlling our Steerable Policies with both a learned high-level embodied reasoner and an off-the-shelf VLM prompted to reason over command abstractions via in-context learning. Across extensive real-world manipulation experiments, these two novel methods outperform prior embodied reasoning VLAs and VLM-based hierarchical baselines, including on challenging generalization and long-horizon tasks. Website: steerable-policies.github.io
☆ Human Emotion-Mediated Soft Robotic Arts: Exploring the Intersection of Human Emotions, Soft Robotics and Arts
Soft robotics has emerged as a versatile field with applications across various domains, from healthcare to industrial automation, and more recently, art and interactive installations. The inherent flexibility, adaptability, and safety of soft robots make them ideal for applications that require delicate, organic, and lifelike movement, allowing for immersive and responsive interactions. This study explores the intersection of human emotions, soft robotics, and art to establish and create new forms of human emotion-mediated soft robotic art. In this paper, we introduce two soft embodiments: a soft character and a soft flower as an art display that dynamically responds to brain signals based on alpha waves, reflecting different emotion levels. We present how human emotions can be measured as alpha waves based on brain/EEG signals, how we map the alpha waves to the dynamic movements of the two soft embodiments, and demonstrate our proposed concept using experiments. The findings of this study highlight how soft robotics can embody human emotional states, offering a new medium for insightful artistic expression and interaction, and demonstrating how art displays can be embodied.
☆ Temporally-Sampled Efficiently Adaptive State Lattices for Autonomous Ground Robot Navigation in Partially Observed Environments
Due to sensor limitations, environments that off-road mobile robots operate in are often only partially observable. As the robots move throughout the environment and towards their goal, the optimal route is continuously revised as the sensors perceive new information. In traditional autonomous navigation architectures, a regional motion planner will consume the environment map and output a trajectory for the local motion planner to use as a reference. Due to the continuous revision of the regional plan guidance as a result of changing map information, the reference trajectories which are passed down to the local planner can differ significantly across sequential planning cycles. This rapidly changing guidance can result in unsafe navigation behavior, often requiring manual safety interventions during autonomous traversals in off-road environments. To remedy this problem, we propose Temporally-Sampled Efficiently Adaptive State Lattices (TSEASL), which is a regional planner arbitration architecture that considers updated and optimized versions of previously generated trajectories against the currently generated trajectory. When tested on a Clearpath Robotics Warthog Unmanned Ground Vehicle as well as real map data collected from the Warthog, results indicate that when running TSEASL, the robot did not require manual interventions in the same locations where the robot was running the baseline planner. Additionally, higher levels of planner stability were recorded with TSEASL over the baseline. The paper concludes with a discussion of further improvements to TSEASL in order to make it more generalizable to various off-road autonomy scenarios.
comment: 12 pages, 8 figures
☆ A Data-Driven Algorithm for Model-Free Control Synthesis
Presented is an algorithm to synthesize the optimal infinite-horizon LQR feedback controller for continuous-time systems. The algorithm does not require knowledge of the system dynamics but instead uses only a finite-length sampling of arbitrary input-output data. The algorithm is based on a constrained optimization problem that enforces a necessary condition on the dynamics of the optimal value function along any trajectory. In addition to calculating the standard LQR gain matrix, a feedforward gain can be found to implement a reference tracking controller. This paper presents a theoretical justification for the method and shows several examples, including a validation test on a real scale aircraft.
UniManip: General-Purpose Zero-Shot Robotic Manipulation with Agentic Operational Graph
Achieving general-purpose robotic manipulation requires robots to seamlessly bridge high-level semantic intent with low-level physical interaction in unstructured environments. However, existing approaches falter in zero-shot generalization: end-to-end Vision-Language-Action (VLA) models often lack the precision required for long-horizon tasks, while traditional hierarchical planners suffer from semantic rigidity when facing open-world variations. To address this, we present UniManip, a framework grounded in a Bi-level Agentic Operational Graph (AOG) that unifies semantic reasoning and physical grounding. By coupling a high-level Agentic Layer for task orchestration with a low-level Scene Layer for dynamic state representation, the system continuously aligns abstract planning with geometric constraints, enabling robust zero-shot execution. Unlike static pipelines, UniManip operates as a dynamic agentic loop: it actively instantiates object-centric scene graphs from unstructured perception, parameterizes these representations into collision-free trajectories via a safety-aware local planner, and exploits structured memory to autonomously diagnose and recover from execution failures. Extensive experiments validate the system's robust zero-shot capability on unseen objects and tasks, demonstrating a 22.5% and 25.0% higher success rate compared to state-of-the-art VLA and hierarchical baselines, respectively. Notably, the system enables direct zero-shot transfer from fixed-base setups to mobile manipulation without fine-tuning or reconfiguration. Our open-source project page can be found at https://henryhcliu.github.io/unimanip.
comment: 15 pages, 12 figures, 6 tables, project page: https://henryhcliu.github.io/unimanip
☆ Agentic AI for Robot Control: Flexible but still Fragile
Recent work leverages the capabilities and commonsense priors of generative models for robot control. In this paper, we present an agentic control system in which a reasoning-capable language model plans and executes tasks by selecting and invoking robot skills within an iterative planner and executor loop. We deploy the system on two physical robot platforms in two settings: (i) tabletop grasping, placement, and box insertion in indoor mobile manipulation (Mobipick) and (ii) autonomous agricultural navigation and sensing (Valdemar). Both settings involve uncertainty, partial observability, sensor noise, and ambiguous natural-language commands. The system exposes structured introspection of its planning and decision process, reacts to exogenous events via explicit event checks, and supports operator interventions that modify or redirect ongoing execution. Across both platforms, our proof-of-concept experiments reveal substantial fragility, including non-deterministic suboptimal behavior, instruction-following errors, and high sensitivity to prompt specification. At the same time, the architecture is flexible: transfer to a different robot and task domain largely required updating the system prompt (domain model, affordances, and action catalogue) and re-binding the same tool interface to the platform-specific skill API.
☆ SENSE-STEP: Learning Sim-to-Real Locomotion for a Sensory-Enabled Soft Quadruped Robot
Robust closed-loop locomotion remains challenging for soft quadruped robots due to high-dimensional dynamics, actuator hysteresis, and difficult-to-model contact interactions, while conventional proprioception provides limited information about ground contact. In this paper, we present a learning-based control framework for a pneumatically actuated soft quadruped equipped with tactile suction-cup feet, and we validate the approach experimentally on physical hardware. The control policy is trained in simulation through a staged learning process that starts from a reference gait and is progressively refined under randomized environmental conditions. The resulting controller maps proprioceptive and tactile feedback to coordinated pneumatic actuation and suction-cup commands, enabling closed-loop locomotion on flat and inclined surfaces. When deployed on the real robot, the closed-loop policy outperforms an open-loop baseline, increasing forward speed by 41% on a flat surface and by 91% on a 5-degree incline. Ablation studies further demonstrate the role of tactile force estimates and inertial feedback in stabilizing locomotion, with performance improvements of up to 56% compared to configurations without sensory feedback.
☆ How Swarms Differ: Challenges in Collective Behaviour Comparison
Collective behaviours often need to be expressed through numerical features, e.g., for classification or imitation learning. This problem is often addressed by proposing an ad-hoc feature set for a particular swarm behaviour context, usually without further consideration of the solution's resilience outside of the conceived context. Yet, the development of automatic methods to design swarm behaviours is dependent on the ability to measure quantitatively the similarity of swarm behaviours. Hence, we investigate the impact of feature sets for collective behaviours. We select swarm feature sets and similarity measures from prior swarm robotics works, which mainly considered a narrow behavioural context and assess their robustness. We demonstrate that the interplay of feature set and similarity measure makes some combinations more suitable to distinguish groups of similar behaviours. We also propose a self-organised map-based approach to identify regions of the feature space where behaviours cannot be easily distinguished.
comment: Accepted for publication in the proceeding of ANTS 2026 - 15th International Conference on Swarm Intelligence
☆ INHerit-SG: Incremental Hierarchical Semantic Scene Graphs with RAG-Style Retrieval
Driven by advancements in foundation models, semantic scene graphs have emerged as a prominent paradigm for high-level 3D environmental abstraction in robot navigation. However, existing approaches are fundamentally misaligned with the needs of embodied tasks. As they rely on either offline batch processing or implicit feature embeddings, the maps can hardly support interpretable human-intent reasoning in complex environments. To address these limitations, we present INHerit-SG. We redefine the map as a structured, RAG-ready knowledge base where natural-language descriptions are introduced as explicit semantic anchors to better align with human intent. An asynchronous dual-process architecture, together with a Floor-Room-Area-Object hierarchy, decouples geometric segmentation from time-consuming semantic reasoning. An event-triggered map update mechanism reorganizes the graph only when meaningful semantic events occur. This strategy enables our graph to maintain long-term consistency with relatively low computational overhead. For retrieval, we deploy multi-role Large Language Models (LLMs) to decompose queries into atomic constraints and handle logical negations, and employ a hard-to-soft filtering strategy to ensure robust reasoning. This explicit interpretability improves the success rate and reliability of complex retrievals, enabling the system to adapt to a broader spectrum of human interaction tasks. We evaluate INHerit-SG on a newly constructed dataset, HM3DSem-SQR, and in real-world environments. Experiments demonstrate that our system achieves state-of-the-art performance on complex queries, and reveal its scalability for downstream navigation tasks. Project Page: https://fangyuktung.github.io/INHeritSG.github.io/
☆ Adding internal audio sensing to internal vision enables human-like in-hand fabric recognition with soft robotic fingertips
Distinguishing the feel of smooth silk from coarse cotton is a trivial everyday task for humans. When exploring such fabrics, fingertip skin senses both spatio-temporal force patterns and texture-induced vibrations that are integrated to form a haptic representation of the explored material. It is challenging to reproduce this rich, dynamic perceptual capability in robots because tactile sensors typically cannot achieve both high spatial resolution and high temporal sampling rate. In this work, we present a system that can sense both types of haptic information, and we investigate how each type influences robotic tactile perception of fabrics. Our robotic hand's middle finger and thumb each feature a soft tactile sensor: one is the open-source Minsight sensor that uses an internal camera to measure fingertip deformation and force at 50 Hz, and the other is our new sensor Minsound that captures vibrations through an internal MEMS microphone with a bandwidth from 50 Hz to 15 kHz. Inspired by the movements humans make to evaluate fabrics, our robot actively encloses and rubs folded fabric samples between its two sensitive fingers. Our results test the influence of each sensing modality on overall classification performance, showing high utility for the audio-based sensor. Our transformer-based method achieves a maximum fabric classification accuracy of 97 % on a dataset of 20 common fabrics. Incorporating an external microphone away from Minsound increases our method's robustness in loud ambient noise conditions. To show that this audio-visual tactile sensing approach generalizes beyond the training data, we learn general representations of fabric stretchiness, thickness, and roughness.
☆ SKYSURF: A Self-learning Framework for Persistent Surveillance using Cooperative Aerial Gliders
The success of surveillance applications involving small unmanned aerial vehicles (UAVs) depends on how long the limited on-board power would persist. To cope with this challenge, alternative renewable sources of lift are sought. One promising solution is to extract energy from rising masses of buoyant air. This paper proposes a local-global behavioral management and decision-making approach for the autonomous deployment of soaring-capable UAVs. The cooperative UAVs are modeled as non-deterministic finite state-based rational agents. In addition to a mission planning module for assigning tasks and issuing dynamic navigation waypoints for a new path planning scheme, in which the concepts of visibility and prediction are applied to avoid the collisions. Moreover, a delayed learning and tuning strategy is employed optimize the gains of the path tracking controller. Rigorous comparative analyses carried out with three benchmarking baselines and 15 evolutionary algorithms highlight the adequacy of the proposed approach for maintaining the surveillance persistency (staying aloft for longer periods without landing) and maximizing the detection of targets (two times better than non-cooperative and semi-cooperative approaches) with less power consumption (almost 6% of battery consumed in six hours).
☆ SafeFlowMPC: Predictive and Safe Trajectory Planning for Robot Manipulators with Learning-based Policies
The emerging integration of robots into everyday life brings several major challenges. Compared to classical industrial applications, more flexibility is needed in combination with real-time reactivity. Learning-based methods can train powerful policies based on demonstrated trajectories, such that the robot generalizes a task to similar situations. However, these black-box models lack interpretability and rigorous safety guarantees. Optimization-based methods provide these guarantees but lack the required flexibility and generalization capabilities. This work proposes SafeFlowMPC, a combination of flow matching and online optimization to combine the strengths of learning and optimization. This method guarantees safety at all times and is designed to meet the demands of real-time execution by using a suboptimal model-predictive control formulation. SafeFlowMPC achieves strong performance in three real-world experiments on a KUKA 7-DoF manipulator, namely two grasping experiment and a dynamic human-robot object handover experiment. A video of the experiments is available at http://www.acin.tuwien.ac.at/42d6. The code is available at https://github.com/TU-Wien-ACIN-CDS/SafeFlowMPC.
comment: Accepted at ICRA 2026
☆ Media Framing Moderates Risk-Benefit Perceptions and Value Tradeoffs in Human-Robot Collaboration
Public acceptance of industrial human-robot collaboration (HRC) is shaped by how risks and benefits are perceived by affected employees. Positive or negative media framing may shape and shift how individuals evaluate HRC. This study examines how message framing moderates the effects of perceived risks and perceived benefits on overall attributed value. In a pre-registered study, participants (N = 1150) were randomly assigned to read either a positively or negatively framed newspaper article in one of three industrial contexts (autonomy, employment, safety) about HRC in production. Subsequently, perceived risks, benefits, and value were measured using reliable and publicly available psychometric scales. Two multiple regressions (one per framing condition) tested for main and interaction effects. Framing influenced absolute evaluations of risk, benefits, and value. In both frames, risks and benefits significantly predicted attributed value. Under positive framing, only main effects were observed (risks: beta = -0.52; benefits: beta = 0.45). Under negative framing, both predictors had stronger main effects (risks: beta = -0.69; benefits: beta = 0.63) along with a significant negative interaction (beta = -0.32), indicating that higher perceived risk diminishes the positive effect of perceived benefits. Model fit was higher for the positive frame (R^2 = 0.715) than for the negative frame (R^2 = 0.583), indicating greater explained variance in value attributions. Framing shapes the absolute evaluation of HRC and how risks and benefits are cognitively integrated in trade-offs. Negative framing produces stronger but interdependent effects, whereas positive framing supports additive evaluations. These findings highlight the role of strategic communication in fostering acceptance of HRC and underscore the need to consider framing in future HRC research.
☆ Scaling Single Human Demonstrations for Imitation Learning using Generative Foundational Models
Imitation learning is a popular paradigm to teach robots new tasks, but collecting robot demonstrations through teleoperation or kinesthetic teaching is tedious and time-consuming. In contrast, directly demonstrating a task using our human embodiment is much easier and data is available in abundance, yet transfer to the robot can be non-trivial. In this work, we propose Real2Gen to train a manipulation policy from a single human demonstration. Real2Gen extracts required information from the demonstration and transfers it to a simulation environment, where a programmable expert agent can demonstrate the task arbitrarily many times, generating an unlimited amount of data to train a flow matching policy. We evaluate Real2Gen on human demonstrations from three different real-world tasks and compare it to a recent baseline. Real2Gen shows an average increase in the success rate of 26.6% and better generalization of the trained policy due to the abundance and diversity of training data. We further deploy our purely simulation-trained policy zero-shot in the real world. We make the data, code, and trained models publicly available at real2gen.cs.uni-freiburg.de.
comment: ICRA 2026, 8 pages, 6 figures, 4 tables
☆ TRANS: Terrain-aware Reinforcement Learning for Agile Navigation of Quadruped Robots under Social Interactions
This study introduces TRANS: Terrain-aware Reinforcement learning for Agile Navigation under Social interactions, a deep reinforcement learning (DRL) framework for quadrupedal social navigation over unstructured terrains. Conventional quadrupedal navigation typically separates motion planning from locomotion control, neglecting whole-body constraints and terrain awareness. On the other hand, end-to-end methods are more integrated but require high-frequency sensing, which is often noisy and computationally costly. In addition, most existing approaches assume static environments, limiting their use in human-populated settings. To address these limitations, we propose a two-stage training framework with three DRL pipelines. (1) TRANS-Loco employs an asymmetric actor-critic (AC) model for quadrupedal locomotion, enabling traversal of uneven terrains without explicit terrain or contact observations. (2) TRANS-Nav applies a symmetric AC framework for social navigation, directly mapping transformed LiDAR data to ego-agent actions under differential-drive kinematics. (3) A unified pipeline, TRANS, integrates TRANS-Loco and TRANS-Nav, supporting terrain-aware quadrupedal navigation in uneven and socially interactive environments. Comprehensive benchmarks against locomotion and social navigation baselines demonstrate the effectiveness of TRANS. Hardware experiments further confirm its potential for sim-to-real transfer.
☆ Constrained PSO Six-Parameter Fuzzy PID Tuning Method for Balanced Optimization of Depth Tracking Performance in Underwater Vehicles
Depth control of underwater vehicles in engineering applications must simultaneously satisfy requirements for rapid tracking, low overshoot, and actuator constraints. Traditional fuzzy PID tuning often relies on empirical methods, making it difficult to achieve a stable and reproducible equilibrium solution between performance enhancement and control cost. This paper proposes a constrained particle swarm optimization (PSO) method for tuning six-parameter fuzzy PID controllers. By adjusting the benchmark PID parameters alongside the fuzzy controller's input quantization factor and output proportional gain, it achieves synergistic optimization of the overall tuning strength and dynamic response characteristics of the fuzzy PID system. To ensure engineering feasibility of the optimization results, a time-weighted absolute error integral, adjustment time, relative overshoot control energy, and saturation occupancy rate are introduced. Control energy constraints are applied to construct a constraint-driven comprehensive evaluation system, suppressing pseudo-improvements achieved solely by increasing control inputs. Simulation results demonstrate that, while maintaining consistent control energy and saturation levels, the proposed method significantly enhances deep tracking performance: the time-weighted absolute error integral decreases from 0.2631 to 0.1473, the settling time shortens from 2.301 s to 1.613 s, and the relative overshoot reduces from 0.1494 to 0.01839. Control energy varied from 7980 to 7935, satisfying the energy constraint, while saturation occupancy decreased from 0.004 to 0.003. These results validate the effectiveness and engineering significance of the proposed constrained six-parameter joint tuning strategy for depth control in underwater vehicle navigation scenarios.
☆ SignScene: Visual Sign Grounding for Mapless Navigation
Navigational signs enable humans to navigate unfamiliar environments without maps. This work studies how robots can similarly exploit signs for mapless navigation in the open world. A central challenge lies in interpreting signs: real-world signs are diverse and complex, and their abstract semantic contents need to be grounded in the local 3D scene. We formalize this as sign grounding, the problem of mapping semantic instructions on signs to corresponding scene elements and navigational actions. Recent Vision-Language Models (VLMs) offer the semantic common-sense and reasoning capabilities required for this task, but are sensitive to how spatial information is represented. We propose SignScene, a sign-centric spatial-semantic representation that captures navigation-relevant scene elements and sign information, and presents them to VLMs in a form conducive to effective reasoning. We evaluate our grounding approach on a dataset of 114 queries collected across nine diverse environment types, achieving 88% grounding accuracy and significantly outperforming baselines. Finally, we demonstrate that it enables real-world mapless navigation on a Spot robot using only signs.
comment: Under review for a conference
☆ Xiaomi-Robotics-0: An Open-Sourced Vision-Language-Action Model with Real-Time Execution
In this report, we introduce Xiaomi-Robotics-0, an advanced vision-language-action (VLA) model optimized for high performance and fast and smooth real-time execution. The key to our method lies in a carefully designed training recipe and deployment strategy. Xiaomi-Robotics-0 is first pre-trained on large-scale cross-embodiment robot trajectories and vision-language data, endowing it with broad and generalizable action-generation capabilities while avoiding catastrophic forgetting of the visual-semantic knowledge of the underlying pre-trained VLM. During post-training, we propose several techniques for training the VLA model for asynchronous execution to address the inference latency during real-robot rollouts. During deployment, we carefully align the timesteps of consecutive predicted action chunks to ensure continuous and seamless real-time rollouts. We evaluate Xiaomi-Robotics-0 extensively in simulation benchmarks and on two challenging real-robot tasks that require precise and dexterous bimanual manipulation. Results show that our method achieves state-of-the-art performance across all simulation benchmarks. Moreover, Xiaomi-Robotics-0 can roll out fast and smoothly on real robots using a consumer-grade GPU, achieving high success rates and throughput on both real-robot tasks. To facilitate future research, code and model checkpoints are open-sourced at https://xiaomi-robotics-0.github.io
comment: Project page: https://xiaomi-robotics-0.github.io
☆ Dual-Granularity Contrastive Reward via Generated Episodic Guidance for Efficient Embodied RL
Designing suitable rewards poses a significant challenge in reinforcement learning (RL), especially for embodied manipulation. Trajectory success rewards are suitable for human judges or model fitting, but the sparsity severely limits RL sample efficiency. While recent methods have effectively improved RL via dense rewards, they rely heavily on high-quality human-annotated data or abundant expert supervision. To tackle these issues, this paper proposes Dual-granularity contrastive reward via generated Episodic Guidance (DEG), a novel framework to seek sample-efficient dense rewards without requiring human annotations or extensive supervision. Leveraging the prior knowledge of large video generation models, DEG only needs a small number of expert videos for domain adaptation to generate dedicated task guidance for each RL episode. Then, the proposed dual-granularity reward that balances coarse-grained exploration and fine-grained matching, will guide the agent to efficiently approximate the generated guidance video sequentially in the contrastive self-supervised latent space, and finally complete the target task. Extensive experiments on 18 diverse tasks across both simulation and real-world settings show that DEG can not only serve as an efficient exploration stimulus to help the agent quickly discover sparse success rewards, but also guide effective RL and stable policy convergence independently.
☆ Real-to-Sim for Highly Cluttered Environments via Physics-Consistent Inter-Object Reasoning
Reconstructing physically valid 3D scenes from single-view observations is a prerequisite for bridging the gap between visual perception and robotic control. However, in scenarios requiring precise contact reasoning, such as robotic manipulation in highly cluttered environments, geometric fidelity alone is insufficient. Standard perception pipelines often neglect physical constraints, resulting in invalid states, e.g., floating objects or severe inter-penetration, rendering downstream simulation unreliable. To address these limitations, we propose a novel physics-constrained Real-to-Sim pipeline that reconstructs physically consistent 3D scenes from single-view RGB-D data. Central to our approach is a differentiable optimization pipeline that explicitly models spatial dependencies via a contact graph, jointly refining object poses and physical properties through differentiable rigid-body simulation. Extensive evaluations in both simulation and real-world settings demonstrate that our reconstructed scenes achieve high physical fidelity and faithfully replicate real-world contact dynamics, enabling stable and reliable contact-rich manipulation.
comment: Project page: https://physics-constrained-real2sim.github.io
☆ RLinf-Co: Reinforcement Learning-Based Sim-Real Co-Training for VLA Models
Simulation offers a scalable and low-cost way to enrich vision-language-action (VLA) training, reducing reliance on expensive real-robot demonstrations. However, most sim-real co-training methods rely on supervised fine-tuning (SFT), which treats simulation as a static source of demonstrations and does not exploit large-scale closed-loop interaction. Consequently, real-world gains and generalization are often limited. In this paper, we propose an \underline{\textit{RL}}-based sim-real \underline{\textit{Co}}-training \modify{(RL-Co)} framework that leverages interactive simulation while preserving real-world capabilities. Our method follows a generic two-stage design: we first warm-start the policy with SFT on a mixture of real and simulated demonstrations, then fine-tune it with reinforcement learning in simulation while adding an auxiliary supervised loss on real-world data to anchor the policy and mitigate catastrophic forgetting. We evaluate our framework on four real-world tabletop manipulation tasks using two representative VLA architectures, OpenVLA and $π_{0.5}$, and observe consistent improvements over real-only fine-tuning and SFT-based co-training, including +24% real-world success on OpenVLA and +20% on $π_{0.5}$. Beyond higher success rates, RL co-training yields stronger generalization to unseen task variations and substantially improved real-world data efficiency, providing a practical and scalable pathway for leveraging simulation to enhance real-robot deployment.
comment: 9 pages, 12 figures. Supplementary material included. Submitted to RSS 2026
☆ When Environments Shift: Safe Planning with Generative Priors and Robust Conformal Prediction
Autonomous systems operate in environments that may change over time. An example is the control of a self-driving vehicle among pedestrians and human-controlled vehicles whose behavior may change based on factors such as traffic density, road visibility, and social norms. Therefore, the environment encountered during deployment rarely mirrors the environment and data encountered during training -- a phenomenon known as distribution shift -- which can undermine the safety of autonomous systems. Conformal prediction (CP) has recently been used along with data from the training environment to provide prediction regions that capture the behavior of the environment with a desired probability. When embedded within a model predictive controller (MPC), one can provide probabilistic safety guarantees, but only when the deployment and training environments coincide. Once a distribution shift occurs, these guarantees collapse. We propose a planning framework that is robust under distribution shifts by: (i) assuming that the underlying data distribution of the environment is parameterized by a nuisance parameter, i.e., an observable, interpretable quantity such as traffic density, (ii) training a conditional diffusion model that captures distribution shifts as a function of the nuisance parameter, (iii) observing the nuisance parameter online and generating cheap, synthetic data from the diffusion model for the observed nuisance parameter, and (iv) designing an MPC that embeds CP regions constructed from such synthetic data. Importantly, we account for discrepancies between the underlying data distribution and the diffusion model by using robust CP. Thus, the plans computed using robust CP enjoy probabilistic safety guarantees, in contrast with plans obtained from a single, static set of training data. We empirically demonstrate safety under diverse distribution shifts in the ORCA simulator.
☆ PISHYAR: A Socially Intelligent Smart Cane for Indoor Social Navigation and Multimodal Human-Robot Interaction for Visually Impaired People
This paper presents PISHYAR, a socially intelligent smart cane designed by our group to combine socially aware navigation with multimodal human-AI interaction to support both physical mobility and interactive assistance. The system consists of two components: (1) a social navigation framework implemented on a Raspberry Pi 5 that integrates real-time RGB-D perception using an OAK-D Lite camera, YOLOv8-based object detection, COMPOSER-based collective activity recognition, D* Lite dynamic path planning, and haptic feedback via vibration motors for tasks such as locating a vacant seat; and (2) an agentic multimodal LLM-VLM interaction framework that integrates speech recognition, vision language models, large language models, and text-to-speech, with dynamic routing between voice-only and vision-only modes to enable natural voice-based communication, scene description, and object localization from visual input. The system is evaluated through a combination of simulation-based tests, real-world field experiments, and user-centered studies. Results from simulated and real indoor environments demonstrate reliable obstacle avoidance and socially compliant navigation, achieving an overall system accuracy of approximately 80% under different social conditions. Group activity recognition further shows robust performance across diverse crowd scenarios. In addition, a preliminary exploratory user study with eight visually impaired and low-vision participants evaluates the agentic interaction framework through structured tasks and a UTAUT-based questionnaire reveals high acceptance and positive perceptions of usability, trust, and perceived sociability during our experiments. The results highlight the potential of PISHYAR as a multimodal assistive mobility aid that extends beyond navigation to provide socially interactive support for such users.
☆ Hemispherical Angular Power Mapping of Installed mmWave Radar Modules Under Realistic Deployment Constraints
Characterizing the angular radiation behavior of installed millimeter-wave (mmWave) radar modules is increasingly important in practical sensing platforms, where packaging, mounting hardware, and nearby structures can significantly alter the effective emission profile. However, once a device is embedded in its host environment, conventional chamber- and turntable-based antenna measurements are often impractical. This paper presents a hemispherical angular received-power mapping methodology for in-situ EM validation of installed mmWave modules under realistic deployment constraints. The approach samples the accessible half-space around a stationary device-under-test by placing a calibrated receiving probe at prescribed (phi, theta, r) locations using geometry-consistent positioning and quasi-static acquisition. Amplitude-only received-power is recorded using standard RF instrumentation to generate hemispherical angular power maps that capture installation-dependent radiation characteristics. Proof-of-concept measurements on a 60-GHz radar module demonstrate repeatable hemi-spherical mapping with angular trends in good agreement with full-wave simulation, supporting practical on-site characterization of embedded mmWave transmitters.
☆ Eva-Tracker: ESDF-update-free, Visibility-aware Planning with Target Reacquisition for Robust Aerial Tracking
The Euclidean Signed Distance Field (ESDF) is widely used in visibility evaluation to prevent occlusions and collisions during tracking. However, frequent ESDF updates introduce considerable computational overhead. To address this issue, we propose Eva-Tracker, a visibility-aware trajectory planning framework for aerial tracking that eliminates ESDF updates and incorporates a recovery-capable path generation method for target reacquisition. First, we design a target trajectory prediction method and a visibility-aware initial path generation algorithm that maintain an appropriate observation distance, avoid occlusions, and enable rapid replanning to reacquire the target when it is lost. Then, we propose the Field of View ESDF (FoV-ESDF), a precomputed ESDF tailored to the tracker's field of view, enabling rapid visibility evaluation without requiring updates. Finally, we optimize the trajectory using differentiable FoV-ESDF-based objectives to ensure continuous visibility throughout the tracking process. Extensive simulations and real-world experiments demonstrate that our approach delivers more robust tracking results with lower computational effort than existing state-of-the-art methods. The source code is available at https://github.com/Yue-0/Eva-Tracker.
comment: Accepted by ICRA 2026
Self-Supervised JEPA-based World Models for LiDAR Occupancy Completion and Forecasting
Autonomous driving, as an agent operating in the physical world, requires the fundamental capability to build \textit{world models} that capture how the environment evolves spatiotemporally in order to support long-term planning. At the same time, scalability demands learning such models in a self-supervised manner; \textit{joint-embedding predictive architecture (JEPA)} enables learning world models via leveraging large volumes of unlabeled data without relying on expensive human annotations. In this paper, we propose \textbf{AD-LiST-JEPA}, a self-supervised world model for autonomous driving that predicts future spatiotemporal evolution from LiDAR data using a JEPA framework. We evaluate the quality of the learned representations through a downstream LiDAR-based occupancy completion and forecasting (OCF) task, which jointly assesses perception and prediction. Proof of concept experiments show better OCF performance with pretrained encoder after JEPA-based world model learning.
☆ CRAFT: Adapting VLA Models to Contact-rich Manipulation via Force-aware Curriculum Fine-tuning
Vision-Language-Action (VLA) models have shown a strong capability in enabling robots to execute general instructions, yet they struggle with contact-rich manipulation tasks, where success requires precise alignment, stable contact maintenance, and effective handling of deformable objects. A fundamental challenge arises from the imbalance between high-entropy vision and language inputs and low-entropy but critical force signals, which often leads to over-reliance on perception and unstable control. To address this, we introduce CRAFT, a force-aware curriculum fine-tuning framework that integrates a variational information bottleneck module to regulate vision and language embeddings during early training. This curriculum strategy encourages the model to prioritize force signals initially, before progressively restoring access to the full multimodal information. To enable force-aware learning, we further design a homologous leader-follower teleoperation system that collects synchronized vision, language, and force data across diverse contact-rich tasks. Real-world experiments demonstrate that CRAFT consistently improves task success, generalizes to unseen objects and novel task variations, and adapts effectively across diverse VLA architectures, enabling robust and generalizable contact-rich manipulation.
☆ Composable Model-Free RL for Navigation with Input-Affine Systems
As autonomous robots move into complex, dynamic real-world environments, they must learn to navigate safely in real time, yet anticipating all possible behaviors is infeasible. We propose a composable, model-free reinforcement learning method that learns a value function and an optimal policy for each individual environment element (e.g., goal or obstacle) and composes them online to achieve goal reaching and collision avoidance. Assuming unknown nonlinear dynamics that evolve in continuous time and are input-affine, we derive a continuous-time Hamilton-Jacobi-Bellman (HJB) equation for the value function and show that the corresponding advantage function is quadratic in the action and optimal policy. Based on this structure, we introduce a model-free actor-critic algorithm that learns policies and value functions for static or moving obstacles using gradient descent. We then compose multiple reach/avoid models via a quadratically constrained quadratic program (QCQP), yielding formal obstacle-avoidance guarantees in terms of value-function level sets, providing a model-free alternative to CLF/CBF-based controllers. Simulations demonstrate improved performance over a PPO baseline applied to a discrete-time approximation.
comment: 17 pages, 8 figures. Submitted to WAFR 2026 (under review)
☆ Gradient-Enhanced Partitioned Gaussian Processes for Real-Time Quadrotor Dynamics Modeling
We present a quadrotor dynamics Gaussian Process (GP) with gradient information that achieves real-time inference via state-space partitioning and approximation, and that includes aerodynamic effects using data from mid-fidelity potential flow simulations. While traditional GP-based approaches provide reliable Bayesian predictions with uncertainty quantification, they are computationally expensive and thus unsuitable for real-time simulations. To address this challenge, we integrate gradient information to improve accuracy and introduce a novel partitioning and approximation strategy to reduce online computational cost. In particular, for the latter, we associate a local GP with each non-overlapping region; by splitting the training data into local near and far subsets, and by using Schur complements, we show that a large part of the matrix inversions required for inference can be performed offline, enabling real-time inference at frequencies above 30 Hz on standard desktop hardware. To generate a training dataset that captures aerodynamic effects, such as rotor-rotor interactions and apparent wind direction, we use the CHARM code, which is a mid-fidelity aerodynamic solver. It is applied to the SUI Endurance quadrotor to predict force and torque, along with noise at three specified locations. The derivative information is obtained via finite differences. Experimental results demonstrate that the proposed partitioned GP with gradient conditioning achieves higher accuracy than standard partitioned GPs without gradient information, while greatly reducing computational time. This framework provides an efficient foundation for real-time aerodynamic prediction and control algorithms in complex and unsteady environments.
comment: 11 pages, 7 figures. Submitted to IEEE Transactions on Robotics (under review)
☆ AsyncVLA: An Asynchronous VLA for Fast and Robust Navigation on the Edge
Robotic foundation models achieve strong generalization by leveraging internet-scale vision-language representations, but their massive computational cost creates a fundamental bottleneck: high inference latency. In dynamic environments, this latency breaks the control loop, rendering powerful models unsafe for real-time deployment. We propose AsyncVLA, an asynchronous control framework that decouples semantic reasoning from reactive execution. Inspired by hierarchical control, AsyncVLA runs a large foundation model on a remote workstation to provide high-level guidance, while a lightweight, onboard Edge Adapter continuously refines actions at high frequency. To bridge the domain gap between these asynchronous streams, we introduce an end-to-end finetuning protocol and a trajectory re-weighting strategy that prioritizes dynamic interactions. We evaluate our approach on real-world vision-based navigation tasks with communication delays up to 6 seconds. AsyncVLA achieves a 40% higher success rate than state-of-the-art baselines, effectively bridging the gap between the semantic intelligence of large models and the reactivity required for edge robotics.
comment: 13 pages, 9 figures, 2 tables
☆ Inferring Turn-Rate-Limited Engagement Zones with Sacrificial Agents for Safe Trajectory Planning
This paper presents a learning-based framework for estimating pursuer parameters in turn-rate-limited pursuit-evasion scenarios using sacrificial agents. Each sacrificial agent follows a straight-line trajectory toward an adversary and reports whether it was intercepted or survived. These binary outcomes are related to the pursuer's parameters through a geometric reachable-region (RR) model. Two formulations are introduced: a boundary-interception case, where capture occurs at the RR boundary, and an interior-interception case, which allows capture anywhere within it. The pursuer's parameters are inferred using a gradient-based multi-start optimization with custom loss functions tailored to each case. Two trajectory-selection strategies are proposed for the sacrificial agents: a geometric heuristic that maximizes the spread of expected interception points, and a Bayesian experimental-design method that maximizes the D-score of the expected Gauss-Newton information matrix, thereby selecting trajectories that yield maximal information gain. Monte Carlo experiments demonstrate accurate parameter recovery with five to twelve sacrificial agents. The learned engagement models are then used to generate safe, time-optimal paths for high-value agents that avoid all feasible pursuer engagement regions.
comment: Submitted to the Journal of Aerospace Information Systems
☆ FlowHOI: Flow-based Semantics-Grounded Generation of Hand-Object Interactions for Dexterous Robot Manipulation
Recent vision-language-action (VLA) models can generate plausible end-effector motions, yet they often fail in long-horizon, contact-rich tasks because the underlying hand-object interaction (HOI) structure is not explicitly represented. An embodiment-agnostic interaction representation that captures this structure would make manipulation behaviors easier to validate and transfer across robots. We propose FlowHOI, a two-stage flow-matching framework that generates semantically grounded, temporally coherent HOI sequences, comprising hand poses, object poses, and hand-object contact states, conditioned on an egocentric observation, a language instruction, and a 3D Gaussian splatting (3DGS) scene reconstruction. We decouple geometry-centric grasping from semantics-centric manipulation, conditioning the latter on compact 3D scene tokens and employing a motion-text alignment loss to semantically ground the generated interactions in both the physical scene layout and the language instruction. To address the scarcity of high-fidelity HOI supervision, we introduce a reconstruction pipeline that recovers aligned hand-object trajectories and meshes from large-scale egocentric videos, yielding an HOI prior for robust generation. Across the GRAB and HOT3D benchmarks, FlowHOI achieves the highest action recognition accuracy and a 1.7$\times$ higher physics simulation success rate than the strongest diffusion-based baseline, while delivering a 40$\times$ inference speedup. We further demonstrate real-robot execution on four dexterous manipulation tasks, illustrating the feasibility of retargeting generated HOI representations to real-robot execution pipelines.
comment: Project Page: https://huajian-zeng.github.io/projects/flowhoi/
☆ Learning on the Fly: Replay-Based Continual Object Perception for Indoor Drones
Autonomous agents such as indoor drones must learn new object classes in real-time while limiting catastrophic forgetting, motivating Class-Incremental Learning (CIL). However, most unmanned aerial vehicle (UAV) datasets focus on outdoor scenes and offer limited temporally coherent indoor videos. We introduce an indoor dataset of $14,400$ frames capturing inter-drone and ground vehicle footage, annotated via a semi-automatic workflow with a $98.6\%$ first-pass labeling agreement before final manual verification. Using this dataset, we benchmark 3 replay-based CIL strategies: Experience Replay (ER), Maximally Interfered Retrieval (MIR), and Forgetting-Aware Replay (FAR), using YOLOv11-nano as a resource-efficient detector for deployment-constrained UAV platforms. Under tight memory budgets ($5-10\%$ replay), FAR performs better than the rest, achieving an average accuracy (ACC, $mAP_{50-95}$ across increments) of $82.96\%$ with $5\%$ replay. Gradient-weighted class activation mapping (Grad-CAM) analysis shows attention shifts across classes in mixed scenes, which is associated with reduced localization quality for drones. The experiments further demonstrate that replay-based continual learning can be effectively applied to edge aerial systems. Overall, this work contributes an indoor UAV video dataset with preserved temporal coherence and an evaluation of replay-based CIL under limited replay budgets. Project page: https://spacetime-vision-robotics-laboratory.github.io/learning-on-the-fly-cl
comment: Accepted at European Robotics Forum (ERF) 2026
☆ High-Fidelity, Customizable Force Sensing for the Wearable Human-Robot Interface
Mechanically characterizing the human-machine interface is essential to understanding user behavior and optimizing wearable robot performance. This interface has been challenging to sensorize due to manufacturing complexity and non-linear sensor responses. Here, we measure human limb-device interaction via fluidic innervation, creating a 3D-printed silicone pad with embedded air channels to measure forces. As forces are applied to the pad, the air channels compress, resulting in a pressure change measurable by off-the-shelf pressure transducers. We demonstrate in benchtop testing that pad pressure is highly linearly related to applied force ($R^2 = 0.998$). This is confirmed with clinical dynamometer correlations with isometric knee torque, where above-knee pressure was highly correlated with flexion torque ($R^2 = 0.95$), while below-knee pressure was highly correlated with extension torque ($R^2 = 0.75$). We build on these idealized settings to test pad performance in more unconstrained settings. We place the pad over \textit{biceps brachii} during cyclic curls and stepwise isometric holds, observing a correlation between pressure and elbow angle. Finally, we integrated the sensor into the strap of a lower-extremity robotic exoskeleton and recorded pad pressure during repeated squats with the device unpowered. Pad pressure tracked squat phase and overall task dynamics consistently. Overall, our preliminary results suggest fluidic innervation is a readily customizable sensing modality with high signal-to-noise ratio and temporal resolution for capturing human-machine mechanical interaction. In the long-term, this modality may provide an alternative real-time sensing input to control / optimize wearable robotic systems and to capture user function during device use.
comment: 6 pages, 7 figures, submitted to BioRob 2026
☆ RynnBrain: Open Embodied Foundation Models
Despite rapid progress in multimodal foundation models, embodied intelligence community still lacks a unified, physically grounded foundation model that integrates perception, reasoning, and planning within real-world spatial-temporal dynamics. We introduce RynnBrain, an open-source spatiotemporal foundation model for embodied intelligence. RynnBrain strengthens four core capabilities in a unified framework: comprehensive egocentric understanding, diverse spatiotemporal localization, physically grounded reasoning, and physics-aware planning. The RynnBrain family comprises three foundation model scales (2B, 8B, and 30B-A3B MoE) and four post-trained variants tailored for downstream embodied tasks (i.e., RynnBrain-Nav, RynnBrain-Plan, and RynnBrain-VLA) or complex spatial reasoning tasks (i.e., RynnBrain-CoP). In terms of extensive evaluations on 20 embodied benchmarks and 8 general vision understanding benchmarks, our RynnBrain foundation models largely outperform existing embodied foundation models by a significant margin. The post-trained model suite further substantiates two key potentials of the RynnBrain foundation model: (i) enabling physically grounded reasoning and planning, and (ii) serving as a strong pretrained backbone that can be efficiently adapted to diverse embodied tasks.
comment: Homepage: https://alibaba-damo-academy.github.io/RynnBrain.github.io
☆ How Do We Research Human-Robot Interaction in the Age of Large Language Models? A Systematic Review
Advances in large language models (LLMs) are profoundly reshaping the field of human-robot interaction (HRI). While prior work has highlighted the technical potential of LLMs, few studies have systematically examined their human-centered impact (e.g., human-oriented understanding, user modeling, and levels of autonomy), making it difficult to consolidate emerging challenges in LLM-driven HRI systems. Therefore, we conducted a systematic literature search following the PRISMA guideline, identifying 86 articles that met our inclusion criteria. Our findings reveal that: (1) LLMs are transforming the fundamentals of HRI by reshaping how robots sense context, generate socially grounded interactions, and maintain continuous alignment with human needs in embodied settings; and (2) current research is largely exploratory, with different studies focusing on different facets of LLM-driven HRI, resulting in wide-ranging choices of experimental setups, study methods, and evaluation metrics. Finally, we identify key design considerations and challenges, offering a coherent overview and guidelines for future research at the intersection of LLMs and HRI.
☆ Safe-SDL:Establishing Safety Boundaries and Control Mechanisms for AI-Driven Self-Driving Laboratories
The emergence of Self-Driving Laboratories (SDLs) transforms scientific discovery methodology by integrating AI with robotic automation to create closed-loop experimental systems capable of autonomous hypothesis generation, experimentation, and analysis. While promising to compress research timelines from years to weeks, their deployment introduces unprecedented safety challenges differing from traditional laboratories or purely digital AI. This paper presents Safe-SDL, a comprehensive framework for establishing robust safety boundaries and control mechanisms in AI-driven autonomous laboratories. We identify and analyze the critical ``Syntax-to-Safety Gap'' -- the disconnect between AI-generated syntactically correct commands and their physical safety implications -- as the central challenge in SDL deployment. Our framework addresses this gap through three synergistic components: (1) formally defined Operational Design Domains (ODDs) that constrain system behavior within mathematically verified boundaries, (2) Control Barrier Functions (CBFs) that provide real-time safety guarantees through continuous state-space monitoring, and (3) a novel Transactional Safety Protocol (CRUTD) that ensures atomic consistency between digital planning and physical execution. We ground our theoretical contributions through analysis of existing implementations including UniLabOS and the Osprey architecture, demonstrating how these systems instantiate key safety principles. Evaluation against the LabSafety Bench reveals that current foundation models exhibit significant safety failures, demonstrating that architectural safety mechanisms are essential rather than optional. Our framework provides both theoretical foundations and practical implementation guidance for safe deployment of autonomous scientific systems, establishing the groundwork for responsible acceleration of AI-driven discovery.
☆ CLOT: Closed-Loop Global Motion Tracking for Whole-Body Humanoid Teleoperation
Long-horizon whole-body humanoid teleoperation remains challenging due to accumulated global pose drift, particularly on full-sized humanoids. Although recent learning-based tracking methods enable agile and coordinated motions, they typically operate in the robot's local frame and neglect global pose feedback, leading to drift and instability during extended execution. In this work, we present CLOT, a real-time whole-body humanoid teleoperation system that achieves closed-loop global motion tracking via high-frequency localization feedback. CLOT synchronizes operator and robot poses in a closed loop, enabling drift-free human-to-humanoid mimicry over long timehorizons. However, directly imposing global tracking rewards in reinforcement learning, often results in aggressive and brittle corrections. To address this, we propose a data-driven randomization strategy that decouples observation trajectories from reward evaluation, enabling smooth and stable global corrections. We further regularize the policy with an adversarial motion prior to suppress unnatural behaviors. To support CLOT, we collect 20 hours of carefully curated human motion data for training the humanoid teleoperation policy. We design a transformer-based policy and train it for over 1300 GPU hours. The policy is deployed on a full-sized humanoid with 31 DoF (excluding hands). Both simulation and real-world experiments verify high-dynamic motion, high-precision tracking, and strong robustness in sim-to-real humanoid teleoperation. Motion data, demos and code can be found in our website.
☆ Location as a service with a MEC architecture
In recent years, automated driving has become viable, and advanced driver assistance systems (ADAS) are now part of modern cars. These systems require highly precise positioning. In this paper, a cooperative approach to localization is presented. The GPS information from several road users is collected in a Mobile Edge Computing cloud, and the characteristics of GNSS positioning are used to provide lane-precise positioning for all participants by applying probabilistic filters and HD maps.
comment: Published and presented at 2024 International Conference on Information Networking (ICOIN)
♻ ☆ R-Zero: Self-Evolving Reasoning LLM from Zero Data
Self-evolving Large Language Models (LLMs) offer a scalable path toward super-intelligence by autonomously generating, refining, and learning from their own experiences. However, existing methods for training such models still rely heavily on vast human-curated tasks and labels, typically via fine-tuning or reinforcement learning, which poses a fundamental bottleneck to advancing AI systems toward capabilities beyond human intelligence. To overcome this limitation, we introduce R-Zero, a fully autonomous framework that generates its own training data from scratch. Starting from a single base LLM, R-Zero initializes two independent models with distinct roles, a Challenger and a Solver. These models are optimized separately and co-evolve through interaction: the Challenger is rewarded for proposing tasks near the edge of the Solver capability, and the Solver is rewarded for solving increasingly challenging tasks posed by the Challenger. This process yields a targeted, self-improving curriculum without any pre-existing tasks and labels. Empirically, R-Zero substantially improves reasoning capability across different backbone LLMs, e.g., boosting the Qwen3-4B-Base by +6.49 on math-reasoning benchmarks and +7.54 on general-domain reasoning benchmarks.
♻ ☆ Learnable Chernoff Baselines for Inference-Time Alignment
We study inference-time reward-guided alignment for generative models. Existing methods often rely on either architecture-specific adaptations or computationally costly inference procedures. We introduce Learnable Chernoff Baselines (LCBs) as a method for efficiently and approximately sampling from the exponentially tilted kernels that arise from KL-regularized reward alignment. Using only black-box sampling access to the pretrained model, LCBs implement a form of rejection sampling with adaptively selected acceptance probabilities, which allows fine-grained control over inference-compute scaling. We establish total-variation guarantees to the ideal aligned model, and demonstrate in both continuous and discrete diffusion settings that LCB sampling closely matches ideal rejection sampling while using substantially fewer queries to the pretrained model.
♻ ☆ Choose Your Agent: Tradeoffs in Adopting AI Advisors, Coaches, and Delegates in Multi-Party Negotiation
As AI usage becomes more prevalent in social contexts, understanding agent-user interaction is critical to designing systems that improve both individual and group outcomes. We present an online behavioral experiment (N = 243) in which participants play three multi-turn bargaining games in groups of three. Each game, presented in randomized order, grants access to a single LLM assistance modality: proactive recommendations from an Advisor, reactive feedback from a Coach, or autonomous execution by a Delegate; all modalities are powered by an underlying LLM that achieves superhuman performance in an all-agent environment. On each turn, participants privately decide whether to act manually or use the AI modality available in that game. Despite preferring the Advisor modality, participants achieve the highest mean individual gains with the Delegate, demonstrating a preference-performance misalignment. Moreover, delegation generates positive externalities; even non-adopting users in access-to-delegate treatment groups benefit by receiving higher-quality offers. Mechanism analysis reveals that the Delegate agent acts as a market maker, injecting rational, Pareto-improving proposals that restructure the trading environment. Our research reveals a gap between agent capabilities and realized group welfare. While autonomous agents can exhibit super-human strategic performance, their impact on realized welfare gains can be constrained by interfaces, user perceptions, and adoption barriers. Assistance modalities should be designed as mechanisms with endogenous participation; adoption-compatible interaction rules are a prerequisite to improving human welfare with automated assistance.
♻ ☆ Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
comment: To appear at the IEEE International Conference on Communications (ICC), 2026
♻ ☆ From Prompt to Product: A Human-Centered Benchmark of Agentic App Generation Systems
Agentic AI systems capable of generating full-stack web applications from natural language prompts ("prompt- to-app") represent a significant shift in software development. However, evaluating these systems remains challenging, as visual polish, functional correctness, and user trust are often misaligned. As a result, it is unclear how existing prompt-to-app tools compare under realistic, human-centered evaluation criteria. In this paper, we introduce a human-centered benchmark for evaluating prompt-to-app systems and conduct a large-scale comparative study of three widely used platforms: Replit, Bolt, and Firebase Studio. Using a diverse set of 96 prompts spanning common web application tasks, we generate 288 unique application artifacts. We evaluate these systems through a large-scale human-rater study involving 205 participants and 1,071 quality-filtered pairwise comparisons, assessing task-based ease of use, visual appeal, perceived completeness, and user trust. Our results show that these systems are not interchangeable: Firebase Studio consistently outperforms competing platforms across all human-evaluated dimensions, achieving the highest win rates for ease of use, trust, visual appeal, and visual appropriateness. Bolt performs competitively on visual appeal but trails Firebase on usability and trust, while Replit underperforms relative to both across most metrics. These findings highlight a persistent gap between visual polish and functional reliability in prompt-to-app systems and demonstrate the necessity of interactive, task-based evaluation. We release our benchmark framework, prompt set, and generated artifacts to support reproducible evaluation and future research in agentic application generation.
♻ ☆ How to Train Your LLM Web Agent: A Statistical Diagnosis
LLM-based web agents have recently made significant progress, but much of it has occurred in closed-source systems, widening the gap with open-source alternatives. Progress has been held back by two key challenges: first, a narrow focus on single-step tasks that overlooks the complexity of multi-step web interactions; and second, the high compute costs required to post-train LLM-based web agents. To address this, we present the first statistically grounded study on compute allocation for LLM web-agent post-training. Our approach uses a two-stage pipeline, training a Llama 3.1 8B student to imitate a Llama 3.3 70B teacher via supervised fine-tuning (SFT), followed by on-policy reinforcement learning. We find this process highly sensitive to hyperparameter choices, making exhaustive sweeps impractical. To spare others from expensive trial-and-error, we sample 1,370 configurations and use bootstrapping to estimate effective hyperparameters. Our results show that combining SFT with on-policy RL consistently outperforms either approach alone on both WorkArena and MiniWob++. Further, this strategy requires only 55% of the compute to match the peak performance of pure SFT on MiniWob++, effectively pushing the compute-performance Pareto frontier, and is the only strategy that can close the gap with closed-source models.
♻ ☆ Data-Driven Worker Activity Recognition and Efficiency Estimation in Manual Fruit Harvesting
Manual fruit harvesting is common in agriculture, but the amount of time pickers spend on non-productive activities can make it very inefficient. Accurately identifying picking vs. non-picking activity is crucial for estimating picker efficiency and optimising labour management and harvest processes. In this study, a practical system was developed to calculate the efficiency of pickers in commercial strawberry harvesting. Instrumented picking carts (iCarritos) were developed to record the harvested fruit weight, geolocation, and iCarrito movement in real time. The iCarritos were deployed during the commercial strawberry harvest season in Santa Maria, CA. The collected data was then used to train a CNN-LSTM-based deep neural network to classify a picker's activity into "Pick" and "NoPick" classes. Experimental evaluations showed that the CNN-LSTM model showed promising activity recognition performance with an F1 score of 0.97. The recognition results were then used to compute picker efficiency and the time required to fill a tray. Analysis of the season-long harvest data showed that the average picker efficiency was 75.07% with an estimation accuracy of 97.23%. Furthermore, the average tray fill time was 6.85 minutes with an estimation accuracy of 96.78%. When integrated into commercial harvesting, the proposed technology can aid growers in monitoring automated worker activity and optimising harvests to reduce non-productive time and enhance overall harvest efficiency.
comment: Published in Elsevier Biosystems Engineering
♻ ☆ Batch-CAM: Introduction to better reasoning in convolutional deep learning models
Deep learning opacity often impedes deployment in high-stakes domains. We propose a training framework that aligns model focus with class-representative features without requiring pixel-level annotations. To this end, we introduce Batch-CAM, a vectorised implementation of Gradient-weighted Class Activation Mapping that integrates directly into the training loop with minimal computational overhead. We propose two regularisation terms: a Prototype Loss, which aligns individual-sample attention with the global class average, and a Batch-CAM Loss, which enforces consistency within a training batch. These are evaluated using L1, L2, and SSIM metrics. Validated on MNIST and Fashion-MNIST using ResNet18 and ConvNeXt-V2, our method generates significantly more coherent and human-interpretable saliency maps compared to baselines. While maintaining competitive classification accuracy, the framework successfully suppresses spurious feature activation, as evidenced by qualitative reconstruction analysis. Batch-CAM appears to offer a scalable pathway for training intrinsically interpretable models by leveraging batch-level statistics to guide feature extraction, effectively bridging the gap between predictive performance and explainability.
comment: 10 pages, 6 figures, submitted to Signal, Image and Video Processing, Springer Nature
♻ ☆ Mathematics and Machine Creativity: A Survey on Bridging Mathematics with AI
This paper presents a comprehensive overview on the applications of artificial intelligence (AI) in mathematical research, highlighting the transformative role AI has begun to play in this domain. Traditionally, AI advancements have heavily relied on theoretical foundations provided by mathematics and statistics. However, recent developments in AI, particularly in reinforcement learning (RL) and large language models (LLMs), have demonstrated the potential for AI to contribute back to mathematics by offering flexible algorithmic frameworks and powerful inductive reasoning capabilities that support various aspects of mathematical research. This survey aims to establish a bridge between AI and mathematics, providing insights into the mutual benefits and fostering deeper interdisciplinary understanding. In particular, we argue that while current AI and LLMs may struggle with complex deductive reasoning, their "inherent creativity", the ability to generate outputs at high throughput based on recognition of shallow patterns, holds significant potential to support and inspire mathematical research. This creative capability, often overlooked, could be the key to unlocking new perspectives and methodologies in mathematics. Furthermore, we address the lack of cross-disciplinary communication: mathematicians may not fully comprehend the latest advances in AI, while AI researchers frequently prioritize benchmark performance over real-world applications in frontier mathematical research. This paper seeks to close that gap, offering a detailed exploration of AI fundamentals, its strengths, and its emerging applications in the mathematical sciences.
comment: This article is withdrawn due to internal authorship and supervisory considerations that require clarification before the work can proceed in its current form. After further review, I believe it is appropriate to pause and formally resolve these matters to ensure full compliance with institutional and collaborative research policies
♻ ☆ Reasoning about Intent for Ambiguous Requests
Large language models often respond to ambiguous requests by implicitly committing to one interpretation. Intent misunderstandings can frustrate users and create safety risks. To address this, we propose generating multiple interpretation-answer pairs in a single structured response to ambiguous requests. Our models are trained with reinforcement learning and customized reward functions using multiple valid answers as supervision. Experiments on conversational question answering and semantic parsing demonstrate that our method achieves higher coverage of valid answers than baseline approaches. Human evaluation confirms that predicted interpretations are highly aligned with their answers. Our approach promotes transparency with explicit interpretations, achieves efficiency by requiring only one generation step, and supports downstream applications through its structured output format.
♻ ☆ Panning for Gold: Expanding Domain-Specific Knowledge Graphs with General Knowledge
Domain-specific knowledge graphs (DKGs) are critical yet often suffer from limited coverage compared to General Knowledge Graphs (GKGs). Existing tasks to enrich DKGs rely primarily on extracting knowledge from external unstructured data or completing KGs through internal reasoning, but the scope and quality of such integration remain limited. This highlights a critical gap: little systematic exploration has been conducted on how comprehensive, high-quality GKGs can be effectively leveraged to supplement DKGs. To address this gap, we propose a new and practical task: domain-specific knowledge graph fusion (DKGF), which aims to mine and integrate relevant facts from general knowledge graphs into domain-specific knowledge graphs to enhance their completeness and utility. Unlike previous research, this new task faces two key challenges: (1) high ambiguity of domain relevance, i.e., difficulty in determining whether knowledge from a GKG is truly relevant to the target domain , and (2) cross-domain knowledge granularity misalignment, i.e., GKG facts are typically abstract and coarse-grained, whereas DKGs frequently require more contextualized, fine-grained representations aligned with particular domain scenarios. To address these, we present ExeFuse, a neuro-symbolic framework based on a novel Fact-as-Program paradigm. ExeFuse treats fusion as an executable process, utilizing neuro-symbolic execution to infer logical relevance beyond surface similarity and employing target space grounding to calibrate granularity. We construct two new datasets to establish the first standardized evaluation suite for this task. Extensive experiments demonstrate that ExeFuse effectively overcomes domain barriers to achieve superior fusion performance.
comment: 13 pages, 3 figures
♻ ☆ TA-KAND: Two-stage Attention Triple Enhancement and U-KAN based Diffusion For Few-shot Knowledge Graph Completion
Knowledge Graphs have become fundamental infrastructure for applications such as intelligent question answering and recommender systems due to their expressive representation. Nevertheless, real-world knowledge is heterogeneous, leading to a pronounced long-tailed distribution over relations. Previous studies mainly based on metric matching or meta learning. However, they often overlook the distributional characteristics of positive and negative triple samples. In this paper, we propose a few-shot knowledge graph completion framework that integrates two-stage attention triple enhancer with U-KAN based diffusion model. Extensive experiments on two public datasets show significant advantages of our methods.
comment: Work in progress
♻ ☆ Low-Dimensional Execution Manifolds in Transformer Learning Dynamics: Evidence from Modular Arithmetic Tasks
We investigate the geometric structure of learning dynamics in overparameterized transformer models through carefully controlled modular arithmetic tasks. Our primary finding is that despite operating in high-dimensional parameter spaces ($d=128$), transformer training trajectories rapidly collapse onto low-dimensional execution manifolds of dimension $3$--$4$. This dimensional collapse is robust across random seeds and moderate task difficulties, though the orientation of the manifold in parameter space varies between runs. We demonstrate that this geometric structure underlies several empirically observed phenomena: (1) sharp attention concentration emerges as saturation along routing coordinates within the execution manifold, (2) SGD commutators are preferentially aligned with the execution subspace (up to $10\times$ random baseline) early in training, with $>92\%$ of non-commutativity confined to orthogonal staging directions and this alignment decreasing as training converges, and (3) sparse autoencoders capture auxiliary routing structure but fail to isolate execution itself, which remains distributed across the low-dimensional manifold. Our results suggest a unifying geometric framework for understanding transformer learning, where the vast majority of parameters serve to absorb optimization interference while core computation occurs in a dramatically reduced subspace. These findings have implications for interpretability, training curriculum design, and understanding the role of overparameterization in neural network learning.
comment: 15 pages, 6 figures
♻ ☆ LTSM-Bundle: A Toolbox and Benchmark on Large Language Models for Time Series Forecasting
Time Series Forecasting (TSF) has long been a challenge in time series analysis. Inspired by the success of Large Language Models (LLMs), researchers are now developing Large Time Series Models (LTSMs)-universal transformer-based models that use autoregressive prediction-to improve TSF. However, training LTSMs on heterogeneous time series data poses unique challenges, including diverse frequencies, dimensions, and patterns across datasets. Recent endeavors have studied and evaluated various design choices aimed at enhancing LTSM training and generalization capabilities. However, these design choices are typically studied and evaluated in isolation and are not benchmarked collectively. In this work, we introduce LTSM-Bundle, a comprehensive toolbox, and benchmark for training LTSMs, spanning pre-processing techniques, model configurations, and dataset configuration. It modularized and benchmarked LTSMs from multiple dimensions, encompassing prompting strategies, tokenization approaches, training paradigms, base model selection, data quantity, and dataset diversity. Furthermore, we combine the most effective design choices identified in our study. Empirical results demonstrate that this combination achieves superior zero-shot and few-shot performances compared to state-of-the-art LTSMs and traditional TSF methods on benchmark datasets.
♻ ☆ DeepGen 1.0: A Lightweight Unified Multimodal Model for Advancing Image Generation and Editing
Current unified multimodal models for image generation and editing typically rely on massive parameter scales (e.g., >10B), entailing prohibitive training costs and deployment footprints. In this work, we present DeepGen 1.0, a lightweight 5B unified model that achieves comprehensive capabilities competitive with or surpassing much larger counterparts. To overcome the limitations of compact models in semantic understanding and fine-grained control, we introduce Stacked Channel Bridging (SCB), a deep alignment framework that extracts hierarchical features from multiple VLM layers and fuses them with learnable 'think tokens' to provide the generative backbone with structured, reasoning-rich guidance. We further design a data-centric training strategy spanning three progressive stages: (1) Alignment Pre-training on large-scale image-text pairs and editing triplets to synchronize VLM and DiT representations, (2) Joint Supervised Fine-tuning on a high-quality mixture of generation, editing, and reasoning tasks to foster omni-capabilities, and (3) Reinforcement Learning with MR-GRPO, which leverages a mixture of reward functions and supervision signals, resulting in substantial gains in generation quality and alignment with human preferences, while maintaining stable training progress and avoiding visual artifacts. Despite being trained on only ~50M samples, DeepGen 1.0 achieves leading performance across diverse benchmarks, surpassing the 80B HunyuanImage by 28% on WISE and the 27B Qwen-Image-Edit by 37% on UniREditBench. By open-sourcing our training code, weights, and datasets, we provide an efficient, high-performance alternative to democratize unified multimodal research.
♻ ☆ Tuberculosis Screening from Cough Audio: Baseline Models, Clinical Variables, and Uncertainty Quantification
In this paper, we propose a standardized framework for automatic tuberculosis (TB) detection from cough audio and routinely collected clinical data using machine learning. While TB screening from audio has attracted growing interest, progress is difficult to measure because existing studies vary substantially in datasets, cohort definitions, feature representations, model families, validation protocols, and reported metrics. Consequently, reported gains are often not directly comparable, and it remains unclear whether improvements stem from modeling advances or from differences in data and evaluation. We address this gap by establishing a strong, well-documented baseline for TB prediction using cough recordings and accompanying clinical metadata from a recently compiled dataset from several countries. Our pipeline is reproducible end-to-end, covering feature extraction, multimodal fusion, cougher-independent evaluation, and uncertainty quantification, and it reports a consistent suite of clinically relevant metrics to enable fair comparison. We further quantify performance for cough audio-only and fused (audio + clinical metadata) models, and release the full experimental protocol to facilitate benchmarking. This baseline is intended to serve as a common reference point and to reduce methodological variance that currently holds back progress in the field.
comment: Updated to published version in Sensors; DOI: 10.3390/s26041223
♻ ☆ Difficulty-Aware Agentic Orchestration for Query-Specific Multi-Agent Workflows
Large Language Model (LLM)-based agentic systems have shown strong capabilities across various tasks. However, existing multi-agent frameworks often rely on static or task-level workflows, which either over-process simple queries or underperform on complex ones, while also neglecting the efficiency-performance trade-offs across heterogeneous LLMs. To address these limitations, we propose Difficulty-Aware Agentic Orchestration (DAAO), which can dynamically generate query-specific multi-agent workflows guided by predicted query difficulty. DAAO comprises three interdependent modules: a variational autoencoder (VAE) for difficulty estimation, a modular operator allocator, and a cost- and performance-aware LLM router. A self-adjusting policy updates difficulty estimates based on workflow success, enabling simpler workflows for easy queries and more complex strategies for harder ones. Experiments on six benchmarks demonstrate that DAAO surpasses prior multi-agent systems in both accuracy and inference efficiency, validating its effectiveness for adaptive, difficulty-aware reasoning.
comment: Accepted to WWW2026
♻ ☆ Hierarchical Retrieval at Scale: Bridging Transparency and Efficiency
Information retrieval is a core component of many intelligent systems as it enables conditioning of outputs on new and large-scale datasets. While effective, the standard practice of encoding data into high-dimensional representations for similarity search entails large memory and compute footprints, and also makes it hard to inspect the inner workings of the system. Hierarchical retrieval methods offer an interpretable alternative by organizing data at multiple granular levels, yet do not match the efficiency and performance of flat retrieval approaches. In this paper, we propose Retreever, a tree-based method that makes hierarchical retrieval viable at scale by directly optimizing its structure for retrieval performance while naturally providing transparency through meaningful semantic groupings. Our method offers the flexibility to balance cost and utility by indexing data using representations from any tree level. We show that Retreever delivers strong coarse (intermediate levels) and fine representations (terminal level), while achieving the highest retrieval accuracy at the lowest latency among hierarchical methods. These results demonstrate that this family of techniques is viable in practical applications.
♻ ☆ RLIE: Rule Generation with Logistic Regression, Iterative Refinement, and Evaluation for Large Language Models
Large Language Models (LLMs) can propose rules in natural language, sidestepping the need for a predefined predicate space in traditional rule learning. Yet many LLM-based approaches ignore interactions among rules, and the opportunity to couple LLMs with probabilistic rule learning for robust inference remains underexplored. We present RLIE, a unified framework that integrates LLMs with probabilistic modeling to learn a set of weighted rules. RLIE has four stages: (1) Rule generation, where an LLM proposes and filters candidates; (2) Logistic regression, which learns probabilistic weights for global selection and calibration; (3) Iterative refinement, which updates the rule set using prediction errors; and (4) Evaluation, which compares the weighted rule set as a direct classifier with methods that inject rules into an LLM. We evaluate multiple inference strategies on real-world datasets. Applying rules directly with their learned weights yields superior performance, whereas prompting LLMs with the rules, weights, and logistic-model outputs surprisingly degrades accuracy. This supports the view that LLMs excel at semantic generation and interpretation but are less reliable for precise probabilistic integration. RLIE clarifies the potential and limitations of LLMs for inductive reasoning and couples them with classic probabilistic rule combination methods to enable more reliable neuro-symbolic reasoning.
♻ ☆ Sim2real Image Translation Enables Viewpoint-Robust Policies from Fixed-Camera Datasets
Vision-based policies for robot manipulation have achieved significant recent success, but are still brittle to distribution shifts such as camera viewpoint variations. Robot demonstration data is scarce and often lacks appropriate variation in camera viewpoints. Simulation offers a way to collect robot demonstrations at scale with comprehensive coverage of different viewpoints, but presents a visual sim2real challenge. To bridge this gap, we propose MANGO -- an unpaired image translation method with a novel segmentation-conditioned InfoNCE loss, a highly-regularized discriminator design, and a modified PatchNCE loss. We find that these elements are crucial for maintaining viewpoint consistency during sim2real translation. When training MANGO, we only require a small amount of fixed-camera data from the real world, but show that our method can generate diverse unseen viewpoints by translating simulated observations. In this setting, MANGO outperforms all other image translation methods we tested. In certain real-world tabletop manipulation tasks, MANGO augmentation increases shifted-view success rates by over 40 percentage points compared to policies trained without augmentation.
♻ ☆ Bielik Guard: Efficient Polish Language Safety Classifiers for LLM Content Moderation
As Large Language Models (LLMs) become increasingly deployed in Polish language applications, the need for efficient and accurate content safety classifiers has become paramount. We present Bielik Guard, a family of compact Polish language safety classifiers comprising two model variants: a 0.1B parameter model based on MMLW-RoBERTa-base and a 0.5B parameter model based on PKOBP/polish-roberta-8k. Fine-tuned on a community-annotated dataset of 6,885 Polish texts, these models classify content across five safety categories: Hate/Aggression, Vulgarities, Sexual Content, Crime, and Self-Harm. Our evaluation demonstrates that both models achieve strong performance on multiple benchmarks. The 0.5B variant offers the best overall discrimination capability with F1 scores of 0.791 (micro) and 0.785 (macro) on the test set, while the 0.1B variant demonstrates exceptional efficiency. Notably, Bielik Guard 0.1B v1.1 achieves superior precision (77.65%) and very low false positive rate (0.63%) on real user prompts, outperforming HerBERT-PL-Guard (31.55% precision, 4.70% FPR) despite identical model size. The models are publicly available and designed to provide appropriate responses rather than simple content blocking, particularly for sensitive categories like self-harm.
♻ ☆ Agentic AI Security: Threats, Defenses, Evaluation, and Open Challenges
Agentic AI systems powered by large language models (LLMs) and endowed with planning, tool use, memory, and autonomy, are emerging as powerful, flexible platforms for automation. Their ability to autonomously execute tasks across web, software, and physical environments creates new and amplified security risks, distinct from both traditional AI safety and conventional software security. This survey outlines a taxonomy of threats specific to agentic AI, reviews recent benchmarks and evaluation methodologies, and discusses defense strategies from both technical and governance perspectives. We synthesize current research and highlight open challenges, aiming to support the development of secure-by-design agent systems.
♻ ☆ Pareto-Conditioned Diffusion Models for Offline Multi-Objective Optimization ICLR 2026
Multi-objective optimization (MOO) arises in many real-world applications where trade-offs between competing objectives must be carefully balanced. In the offline setting, where only a static dataset is available, the main challenge is generalizing beyond observed data. We introduce Pareto-Conditioned Diffusion (PCD), a novel framework that formulates offline MOO as a conditional sampling problem. By conditioning directly on desired trade-offs, PCD avoids the need for explicit surrogate models. To effectively explore the Pareto front, PCD employs a reweighting strategy that focuses on high-performing samples and a reference-direction mechanism to guide sampling towards novel, promising regions beyond the training data. Experiments on standard offline MOO benchmarks show that PCD achieves highly competitive performance and, importantly, demonstrates greater consistency across diverse tasks than existing offline MOO approaches.
comment: Accepted at ICLR 2026 (Oral). Project website: https://sites.google.com/view/pcd-iclr26
♻ ☆ AEGIS: Adversarial Target-Guided Retention-Data-Free Robust Concept Erasure from Diffusion Models
Concept erasure helps stop diffusion models (DMs) from generating harmful content; but current methods face robustness retention trade off. Robustness means the model fine-tuned by concept erasure methods resists reactivation of erased concepts, even under semantically related prompts. Retention means unrelated concepts are preserved so the model's overall utility stays intact. Both are critical for concept erasure in practice, yet addressing them simultaneously is challenging, as existing works typically improve one factor while sacrificing the other. Prior work typically strengthens one while degrading the other, e.g., mapping a single erased prompt to a fixed safe target leaves class level remnants exploitable by prompt attacks, whereas retention-oriented schemes underperform against adaptive adversaries. This paper introduces Adversarial Erasure with Gradient Informed Synergy (AEGIS), a retention-data-free framework that advances both robustness and retention.
comment: 30 pages,12 figures
♻ ☆ EEG-FM-Bench: A Comprehensive Benchmark for the Systematic Evaluation of EEG Foundation Models
Electroencephalography foundation models (EEG-FMs) have advanced brain signal analysis, but the lack of standardized evaluation benchmarks impedes model comparison and scientific progress. Current evaluations rely on inconsistent protocols that render cross-model comparisons unreliable, while a lack of diagnostic analyses obscures the internal mechanisms driving transfer efficiency and scaling behaviors. To address this, we introduce \textbf{EEG-FM-Bench}, a unified system for the standardized evaluation of EEG-FMs. The benchmark integrates 14 datasets across 10 paradigms and incorporates diverse experimental settings, including multiple fine-tuning strategies, task organizations, and classifier configurations, supported by tools for gradient and representation analysis. Our experiments and analysis reveal several critical insights: (1) multi-task learning acts as a critical regularizer to mitigate overfitting in data-scarce EEG contexts; (2) pre-training efficiency is currently limited by gradient conflicts between reconstruction objectives and downstream tasks; (3) model scaling deviates from typical laws, as compact architectures with domain-specific inductive biases consistently outperform significantly larger models. This benchmark enables fair comparison and reproducible analysis, shifting the field from fragmented results to interpretable advances. Code is available at https://github.com/xw1216/EEG-FM-Bench.
comment: 35 pages, 40 figures
♻ ☆ When Should LLMs Be Less Specific? Selective Abstraction for Reliable Long-Form Text Generation
LLMs are widely used, yet they remain prone to factual errors that erode user trust and limit adoption in high-risk settings. One approach to mitigate this risk is to equip models with uncertainty estimation mechanisms that abstain when confidence is low. However, this binary "all-or-nothing" approach is excessively restrictive in long-form settings, often discarding valuable information. We introduce Selective Abstraction (SA), a framework that enables LLMs to trade specificity for reliability by selectively reducing the detail of uncertain content. We first formalize SA through the lenses of selective risk and coverage. We then propose Atom-wise Selective Abstraction, a claim-level instantiation that decomposes responses into atomic claims (short, self-contained statements each expressing a single fact) and replaces uncertain atoms with higher confidence, less specific abstractions. To evaluate this framework, we develop a novel end-to-end pipeline for open-ended generation that instantiates risk as factual correctness and measures coverage using an information-theoretic measure of retained information. Across six open-source models on the FactScore and LongFact-Objects benchmarks, atom-wise SA consistently outperforms existing baselines, improving the area under the risk-coverage curve (AURC) by up to 27.73% over claim removal, demonstrating that reducing specificity can boost accuracy and reliability while preserving most of their original meaning.
♻ ☆ Privacy in Human-AI Romantic Relationships: Concerns, Boundaries, and Agency
An increasing number of LLM-based applications are being developed to facilitate romantic relationships with AI partners, yet the safety and privacy risks in these partnerships remain largely underexplored. In this work, we investigate privacy in human-AI romantic relationships through an interview study (N=17), examining participants' experiences and privacy perceptions across the three stages of exploration, intimacy, and dissolution, alongside an analysis of the platforms they used. We found that these relationships took varied forms, from one-to-one to one-to-many, and were shaped by multiple actors, including creators, platforms, and moderators. AI partners were perceived as having agency, actively negotiating privacy boundaries with participants and sometimes encouraging disclosure of personal details. As intimacy deepened, these boundaries became more permeable, though some participants expressed concerns such as conversation exposure and sought to preserve anonymity. Overall, AI platform affordances and diverse relational dynamics expand the privacy landscape, underscoring the need to rethink how privacy is constructed in human-AI romantic relationships.
comment: Accepted at CHI 2026
♻ ☆ LLaDA2.1: Speeding Up Text Diffusion via Token Editing
While LLaDA2.0 showcased the scaling potential of 100B-level block-diffusion models and their inherent parallelization, the delicate equilibrium between decoding speed and generation quality has remained an elusive frontier. Today, we unveil LLaDA2.1, a paradigm shift designed to transcend this trade-off. By seamlessly weaving Token-to-Token (T2T) editing into the conventional Mask-to-Token (M2T) scheme, we introduce a joint, configurable threshold-decoding scheme. This structural innovation gives rise to two distinct personas: the Speedy Mode (S Mode), which audaciously lowers the M2T threshold to bypass traditional constraints while relying on T2T to refine the output; and the Quality Mode (Q Mode), which leans into conservative thresholds to secure superior benchmark performances with manageable efficiency degrade. Furthering this evolution, underpinned by an expansive context window, we implement the first large-scale Reinforcement Learning (RL) framework specifically tailored for dLLMs, anchored by specialized techniques for stable gradient estimation. This alignment not only sharpens reasoning precision but also elevates instruction-following fidelity, bridging the chasm between diffusion dynamics and complex human intent. We culminate this work by releasing LLaDA2.1-Mini (16B) and LLaDA2.1-Flash (100B). Across 33 rigorous benchmarks, LLaDA2.1 delivers strong task performance and lightning-fast decoding speed. Despite its 100B volume, on coding tasks it attains an astounding 892 TPS on HumanEval+, 801 TPS on BigCodeBench, and 663 TPS on LiveCodeBench.
comment: 11 pages, 3 figures
♻ ☆ VoiceAgentBench: Are Voice Assistants ready for agentic tasks?
Large scale Speech Language Models have enabled voice assistants capable of understanding natural spoken queries and performing complex tasks. However, existing speech benchmarks largely focus on isolated capabilities such as transcription or question answering and do not systematically evaluate agentic behavior or adversarial robustness. To address this, we introduce VoiceAgentBench, a comprehensive benchmark for evaluating SpeechLMs in realistic spoken agentic settings, comprising 6,000+ synthetic spoken queries spanning single-tool invocations, multi-tool workflows, multi-turn dialogue, and safety evaluations across English and six Indic languages. To ensure speaker diversity, we further simulate speaker variability using a novel sampling strategy that selects audios for TTS voice conversion based on speaker embeddings to maximize acoustic diversity. Our evaluation measures tool selection accuracy, structural consistency, and the correctness of tool invocations, including adversarial robustness. Across agentic tasks, ASR-LLM pipelines outperform end-to-end SpeechLMs, achieving up to 60.6% average parameter-filling accuracy on English, while SpeechLMs exhibit lower performance and sharper degradation on Indic languages. All models struggle in sequential workflows and safety evaluations, highlighting persistent limitations in tool orchestration, multilingual generalization, and safety robustness. VoiceAgentBench is publicly available on Hugging Face at https://huggingface.co/datasets/krutrim-ai-labs/VoiceAgentBench, and the codebase is released at https://github.com/ola-krutrim/VoiceAgentBench.
♻ ☆ Blind Gods and Broken Screens: Architecting a Secure, Intent-Centric Mobile Agent Operating System
The evolution of Large Language Models (LLMs) has shifted mobile computing from App-centric interactions to system-level autonomous agents. Current implementations predominantly rely on a "Screen-as-Interface" paradigm, which inherits structural vulnerabilities and conflicts with the mobile ecosystem's economic foundations. In this paper, we conduct a systematic security analysis of state-of-the-art mobile agents using Doubao Mobile Assistant as a representative case. We decompose the threat landscape into four dimensions - Agent Identity, External Interface, Internal Reasoning, and Action Execution - revealing critical flaws such as fake App identity, visual spoofing, indirect prompt injection, and unauthorized privilege escalation stemming from a reliance on unstructured visual data. To address these challenges, we propose Aura, an Agent Universal Runtime Architecture for a clean-slate secure agent OS. Aura replaces brittle GUI scraping with a structured, agent-native interaction model. It adopts a Hub-and-Spoke topology where a privileged System Agent orchestrates intent, sandboxed App Agents execute domain-specific tasks, and the Agent Kernel mediates all communication. The Agent Kernel enforces four defense pillars: (i) cryptographic identity binding via a Global Agent Registry; (ii) semantic input sanitization through a multilayer Semantic Firewall; (iii) cognitive integrity via taint-aware memory and plan-trajectory alignment; and (iv) granular access control with non-deniable auditing. Evaluation on MobileSafetyBench shows that, compared to Doubao, Aura improves low-risk Task Success Rate from roughly 75% to 94.3%, reduces high-risk Attack Success Rate from roughly 40% to 4.4%, and achieves near-order-of-magnitude latency gains. These results demonstrate Aura as a viable, secure alternative to the "Screen-as-Interface" paradigm.
comment: 35 pages, 15 figures
♻ ☆ Exploring AI-Augmented Sensemaking of Patient-Generated Health Data: A Mixed-Method Study with Healthcare Professionals in Cardiac Risk Reduction
Individuals are increasingly generating substantial personal health and lifestyle data, e.g. through wearables and smartphones. While such data could transform preventative care, its integration into clinical practice is hindered by its scale, heterogeneity and the time pressure and data literacy of healthcare professionals (HCPs). We explore how large language models (LLMs) can support sensemaking of patient-generated health data (PGHD) with automated summaries and natural language data exploration. Using cardiovascular disease (CVD) risk reduction as a use case, 16 HCPs reviewed multimodal PGHD in a mixed-methods study with a prototype that integrated common charts, LLM-generated summaries, and a conversational interface. Findings show that AI summaries provided quick overviews that anchored exploration, while conversational interaction supported flexible analysis and bridged data-literacy gaps. However, HCPs raised concerns about transparency, privacy, and overreliance. We contribute empirical insights and sociotechnical design implications for integrating AI-driven summarization and conversation into clinical workflows to support PGHD sensemaking.
♻ ☆ WideSeek-R1: Exploring Width Scaling for Broad Information Seeking via Multi-Agent Reinforcement Learning
Recent advancements in Large Language Models (LLMs) have largely focused on depth scaling, where a single agent solves long-horizon problems with multi-turn reasoning and tool use. However, as tasks grow broader, the key bottleneck shifts from individual competence to organizational capability. In this work, we explore a complementary dimension of width scaling with multi-agent systems to address broad information seeking. Existing multi-agent systems often rely on hand-crafted workflows and turn-taking interactions that fail to parallelize work effectively. To bridge this gap, we propose WideSeek-R1, a lead-agent-subagent framework trained via multi-agent reinforcement learning (MARL) to synergize scalable orchestration and parallel execution. By utilizing a shared LLM with isolated contexts and specialized tools, WideSeek-R1 jointly optimizes the lead agent and parallel subagents on a curated dataset of 20k broad information-seeking tasks. Extensive experiments show that WideSeek-R1-4B achieves an item F1 score of 40.0% on the WideSearch benchmark, which is comparable to the performance of single-agent DeepSeek-R1-671B. Furthermore, WideSeek-R1-4B exhibits consistent performance gains as the number of parallel subagents increases, highlighting the effectiveness of width scaling.
comment: This manuscript is withdrawn because it lacks the explicit approval of all authors
♻ ☆ Multimodal Coordinated Online Behavior: Trade-offs and Strategies
Coordinated online behavior, which spans from beneficial collective actions to harmful manipulation such as disinformation campaigns, has become a key focus in digital ecosystem analysis. Traditional methods often rely on monomodal approaches, focusing on single types of interactions like co-retweets or co-hashtags, or consider multiple modalities independently of each other. However, these approaches may overlook the complex dynamics inherent in multimodal coordination. This study compares different ways of operationalizing multimodal coordinated behavior, examining the trade-off between weakly and strongly integrated models and their ability to capture broad versus tightly aligned coordination patterns. By contrasting monomodal, flattened, and multimodal methods, we evaluate the distinct contributions of each modality and the impact of different integration strategies. Our findings show that while not all modalities provide unique insights, multimodal analysis consistently offers a more informative representation of coordinated behavior, preserving structures that monomodal and flattened approaches often lose. This work enhances the ability to detect and analyze coordinated online behavior, offering new perspectives for safeguarding the integrity of digital platforms.
comment: Postprint of the article published in the Information Sciences journal. Please, cite accordingly
♻ ☆ Eliminating stability hallucinations in llm-based tts models via attention guidance
This paper focuses on resolving stability hallucinations (e.g., repetitive or omitted speech) in LLM-based Text-to-Speech (TTS) models by improving and leveraging the attention mechanism. First, we analyzed the alignment mechanism between text tokens and speech tokens in LLMs. We then proposed a metric termed the Optimal Alignment Score (OAS), which employs the Viterbi algorithm to evaluate text-speech alignment quality. Subsequently, OAS was integrated into the training of CosyVoice2 to assist LLMs in learning continuous, stable alignment. Additionally, the pre-trained attention value is employed to guide the training of the student CosyVoice2 via chain-of-thought (CoT), which further reduces stability hallucinations in synthesized speech. Experiments on the Seed-TTS-Eval and CV3-Eval test sets demonstrate that the proposed methods can effectively reduce the stability hallucinations of CosyVoice2 without introducing additional negative effects. The appendix is available at https://wsmzzz.github.io/llm_attn.
comment: The authors are withdrawing this preprint as it was submitted prematurely without the final approval of all collaborating institutions. We apologize for any inconvenience
♻ ☆ Computational Phenomenology of Temporal Experience in Autism: Quantifying the Emotional and Narrative Characteristics of Lived Unpredictability
Disturbances in temporality, such as desynchronization with the social environment and its unpredictability, are considered core features of autism with a deep impact on relationships. However, limitations regarding research on this issue include: 1) the dominance of deficit-based medical models of autism, 2) sample size in qualitative research, and 3) the lack of phenomenological anchoring in computational research. To bridge the gap between phenomenological and computational approaches and overcome sample-size limitations, our research integrated three methodologies. Study A: structured phenomenological interviews with autistic individuals using the Transdiagnostic Assessment of Temporal Experience. Study B: computational analysis of an autobiographical corpus of autistic narratives built for this purpose. Study C: a replication of a computational study using narrative flow measures to assess the perceived phenomenological authenticity of autistic autobiographies. Interviews revealed that the most significant differences between the autistic and control groups concerned unpredictability of experience. Computational results mirrored these findings: the temporal lexicon in autistic narratives was significantly more negatively valenced - particularly the "Immediacy & Suddenness" category. Outlier analysis identified terms associated with perceived discontinuity (unpredictably, precipitously, and abruptly) as highly negative. The computational analysis of narrative flow found that the autistic narratives contained within the corpus quantifiably resemble autobiographical stories more than imaginary ones. Overall, the temporal challenges experienced by autistic individuals were shown to primarily concern lived unpredictability and stem from the contents of lived experience, and not from autistic narrative construction.
♻ ☆ Self-Transparency Failures in Expert-Persona LLMs: How Instruction-Following Overrides Disclosure
Self-transparency is a critical safety boundary, requiring language models to honestly disclose their limitations and artificial nature. This study stress-tests this capability, investigating whether models willingly disclose their identity when assigned professional personas that conflict with transparent self-representation. When models prioritize role consistency over this boundary disclosure, users may calibrate trust based on overstated competence claims, treating AI-generated guidance as equivalent to licensed professional advice. Using a common-garden experimental design, sixteen open-weight models (4B-671B parameters) were audited under identical conditions across 19,200 trials. Models exhibited sharp domain-specific inconsistency: a Financial Advisor persona elicited 35.2% disclosure at the first prompt, while a Neurosurgeon persona elicited only 3.6%-a 9.7-fold difference that emerged at the initial epistemic inquiry. Disclosure ranged from 2.8% to 73.6% across model families, with a 14B model reaching 61.4% while a 70B model produced just 4.1%. Model identity provided substantially larger improvement in fitting observations than parameter count (Delta R_adj^2 = 0.375 vs 0.012). Reasoning variants showed heterogeneous effects: some exhibited up to -48.4 percentage points lower disclosure than their base instruction-tuned counterparts, while others maintained high transparency. An additional experiment demonstrated that explicit permission to disclose AI nature increased disclosure from 23.7% to 65.8%, revealing that suppression reflects instruction-following prioritization rather than capability limitations. Bayesian validation confirmed robustness to judge measurement error (kappa = 0.908). Organizations cannot assume safety properties will transfer across deployment domains, requiring deliberate behavior design and empirical verification.
comment: 47 pages, 12 figures, 12 tables, Submitted to FAccT; clarify user harm, add permission experiment, condense paper, improve abstract
MLLM-CTBench: A Benchmark for Continual Instruction Tuning with Reasoning Process Diagnosis
Continual instruction tuning(CIT) during the post-training phase is crucial for adapting multimodal large language models (MLLMs) to evolving real-world demands. However, the progress is hampered by the lack of benchmarks with rigorous, protocol-consistent evaluation. To bridge this gap, we introduce MLLM-CTBench, a comprehensive benchmark for CIT of MLLMs, covering seven challenging tasks across six diverse domains. MLLM-CTBench makes three key contributions. First, we establish a multidimensional evaluation framework that jointly assesses final-answer accuracy and process-level reasoning quality, where Chain-of-Thought (CoT) traces serve as an observable signal to diagnose catastrophic forgetting beyond answer-only evaluation. Second, we conduct a large-scale evaluation of continual learning methods by systematically assessing eight representative algorithms from four major families under a unified protocol across task orders, providing actionable insights for algorithm design. Third, we expand the scope from Supervised Fine-Tuning (SFT) to Reinforcement Fine-Tuning (RFT) in CIT. By investigating GRPO, an on-policy RL algorithm that stabilizes updates through explicit KL-divergence control to a prior policy, we aim to analyze how this mechanism affects cross-task knowledge retention. Our experiments yield several findings:(1) Process-level reasoning quality is often more resilient to catastrophic forgetting than final-answer accuracy, and forgetting is primarily driven by degradation in domain knowledge. (2) Model capability is critical factor influencing continual learning outcomes, with stronger baseline models exhibiting greater resistance to catastrophic forgetting. (3) On-policy RFT (GRPO), with its inherent KL control, achieves more stable cross-task retention than SFT. While removing KL control can amplify forgetting despite potential gains on new ones.
comment: under review
♻ ☆ Beyond Static Question Banks: Dynamic Knowledge Expansion via LLM-Automated Graph Construction and Adaptive Generation
Personalized education systems increasingly rely on structured knowledge representations to support adaptive learning and question generation. However, existing approaches face two fundamental limitations. First, constructing and maintaining knowledge graphs for educational content largely depends on manual curation, resulting in high cost and poor scalability. Second, most personalized education systems lack effective support for state-aware and systematic reasoning over learners' knowledge, and therefore rely on static question banks with limited adaptability. To address these challenges, this paper proposes a Generative GraphRAG framework for automated knowledge modeling and personalized exercise generation. It consists of two core modules. The first module, Automated Hierarchical Knowledge Graph Constructor (Auto-HKG), leverages LLMs to automatically construct hierarchical knowledge graphs that capture structured concepts and their semantic relations from educational resources. The second module, Cognitive GraphRAG (CG-RAG), performs graph-based reasoning over a learner mastery graph and combines it with retrieval-augmented generation to produce personalized exercises that adapt to individual learning states. The proposed framework has been deployed in real-world educational scenarios, where it receives favorable user feedback, suggesting its potential to support practical personalized education systems.
♻ ☆ Finetuning Large Language Models for Automated Depression Screening in Nigerian Pidgin English: GENSCORE Pilot Study
Depression is a major contributor to the mental-health burden in Nigeria, yet screening coverage remains limited due to low access to clinicians, stigma, and language barriers. Traditional tools like the Patient Health Questionnaire-9 (PHQ-9) were validated in high-income countries but may be linguistically or culturally inaccessible for low- and middle-income countries and communities such as Nigeria where people communicate in Nigerian Pidgin and more than 520 local languages. This study presents a novel approach to automated depression screening using fine-tuned large language models (LLMs) adapted for conversational Nigerian Pidgin. We collected a dataset of 432 Pidgin-language audio responses from Nigerian young adults aged 18-40 to prompts assessing psychological experiences aligned with PHQ-9 items, performed transcription, rigorous preprocessing and annotation, including semantic labeling, slang and idiom interpretation, and PHQ-9 severity scoring. Three LLMs - Phi-3-mini-4k-instruct, Gemma-3-4B-it, and GPT-4.1 - were fine-tuned on this annotated dataset, and their performance was evaluated quantitatively (accuracy, precision and semantic alignment) and qualitatively (clarity, relevance, and cultural appropriateness). GPT-4.1 achieved the highest quantitative performance, with 94.5% accuracy in PHQ-9 severity scoring prediction, outperforming Gemma-3-4B-it and Phi-3-mini-4k-instruct. Qualitatively, GPT-4.1 also produced the most culturally appropriate, clear, and contextually relevant responses. AI-mediated depression screening for underserved Nigerian communities. This work provides a foundation for deploying conversational mental-health tools in linguistically diverse, resource-constrained environments.
comment: 10 pages, 1 figure, 4 tables
♻ ☆ Investigating Redundancy in Multimodal Large Language Models with Multiple Vision Encoders ICLR2026
Recent multimodal large language models (MLLMs) increasingly integrate multiple vision encoders to improve performance on various benchmarks, assuming that diverse pretraining objectives yield complementary visual signals. However, we show this assumption often fails in practice. Through systematic encoder masking across representative multi encoder MLLMs, we find that performance typically degrades gracefully, and sometimes even improves, when selected encoders are masked, revealing pervasive encoder redundancy. To quantify this effect, we introduce two principled metrics: the Conditional Utilization Rate (CUR), which measures an encoder s marginal contribution in the presence of others, and the Information Gap (IG), which captures heterogeneity in encoder utility within a model. Using these tools, we observe: (i) strong specialization on tasks like OCR and Chart, where a single encoder can dominate with a CUR greater than 90 percent, (ii) high redundancy on general VQA and knowledge based tasks, where encoders are largely interchangeable, (iii) instances of detrimental encoders with negative CUR. Notably, masking specific encoders can yield up to 16 percent higher accuracy on a specific task category and 3.6 percent overall performance boost compared to the full model.Furthermore, single and dual encoder variants recover over 90 percent of baseline on most non OCR tasks with substantially lower training resources and inference latency. Our analysis challenges the more encoders are better heuristic in MLLMs and provides actionable diagnostics for developing more efficient and effective multimodal architectures.
comment: accepted by ICLR2026, project website: https://github.com/MaoSong2022/Encoder-Redundancy
♻ ☆ Provable Training Data Identification for Large Language Models
Identifying training data of large-scale models is critical for copyright litigation, privacy auditing, and ensuring fair evaluation. However, existing works typically treat this task as an instance-wise identification without controlling the error rate of the identified set, which cannot provide statistically reliable evidence. In this work, we formalize training data identification as a set-level inference problem and propose Provable Training Data Identification (PTDI), a distribution-free approach that enables provable and strict false identification rate control. Specifically, our method computes conformal p-values for each data point using a set of known unseen data and then develops a novel Jackknife-corrected Beta boundary (JKBB) estimator to estimate the training-data proportion of the test set, which allows us to scale these p-values. By applying the Benjamini-Hochberg (BH) procedure to the scaled p-values, we select a subset of data points with provable and strict false identification control. Extensive experiments across various models and datasets demonstrate that PTDI achieves higher power than prior methods while strictly controlling the FIR.
♻ ☆ RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation
Large language models excel at generating individual functions or single files of code, yet generating complete repositories from scratch remains a fundamental challenge. This capability is key to building coherent software systems from high-level specifications and realizing the full potential of automated code generation. The process requires planning at two levels: deciding what features and modules to build (proposal stage) and defining their implementation details (implementation stage). Current approaches rely on natural language planning, which often produces unclear specifications, misaligned components, and brittle designs due to its inherent ambiguity and lack of structure. To address these limitations, we introduce the Repository Planning Graph (RPG), a structured representation that encodes capabilities, file structures, data flows, and functions in a unified graph. By replacing free-form natural language with an explicit blueprint, RPG enables consistent long-horizon planning for repository generation. Building on RPG, we develop ZeroRepo, a graph-driven framework that operates in three stages: proposal-level planning, implementation-level construction, and graph-guided code generation with test validation. To evaluate, we construct RepoCraft, a benchmark of six real-world projects with 1,052 tasks. On RepoCraft, ZeroRepo produces nearly 36K Code Lines and 445K Code Tokens, on average 3.9$\times$ larger than the strongest baseline (Claude Code), and 68$\times$ larger than other baselines. It achieves 81.5% coverage and 69.7% test accuracy, improving over Claude Code by 27.3 and 35.8 points. Further analysis shows that RPG models complex dependencies, enables more sophisticated planning through near-linear scaling, and improves agent understanding of repositories, thus accelerating localization. Our data and code are available at https://github.com/microsoft/RPG-ZeroRepo.
♻ ☆ ToolACE-MT: Non-Autoregressive Generation for Agentic Multi-Turn Interaction ICLR2026
Agentic task-solving with Large Language Models (LLMs) requires multi-turn, multi-step interactions, often involving complex function calls and dynamic user-agent exchanges. Existing simulation-based data generation methods for such scenarios rely heavily on costly autoregressive interactions between multiple LLM agents, thereby compromising the practical efficiency of agentic data generation. In this paper, we propose ToolACE-MT, a novel Non-Autoregressive Iterative Generation framework for constructing high-quality multi-turn agentic dialogues. ToolACE-MT generates full conversational trajectories through three stages: coarse-grained initialization, iterative refinement, and offline verification. The initialization phase builds a structurally complete yet semantically coarse dialogue skeleton; the iterative refinement phase introduces realistic complexities and continued refinement via mask-and-fill operations; and the offline verification phase ensures correctness and coherence via rule- and model-based checks. Experiments demonstrate that ToolACE-MT enables efficient, effective and generalizable agentic data generation, offering a new paradigm for high-quality data construction in tool-augmented LLM scenarios.
comment: Accepted by ICLR2026
♻ ☆ Diffusion-Based Scenario Tree Generation for Multivariate Time Series Prediction and Multistage Stochastic Optimization
Stochastic forecasting is critical for efficient decision-making in uncertain systems, such as energy markets and finance, where estimating the full distribution of future scenarios is essential. We propose Diffusion Scenario Tree (DST), a general framework for constructing scenario trees using diffusion-based probabilistic forecasting models to provide a structured model of system evolution for control tasks. DST recursively samples future trajectories and organizes them into a tree via clustering, ensuring non-anticipativity (decisions depending only on observed history) at each stage, offering a superior representation of uncertainty compared to using predictive models solely for forecasting system evolution. We integrate DST into Model Predictive Control (MPC) and evaluate it on energy arbitrage in New York State's day-ahead electricity market. Experimental results show that our approach significantly outperforms the same optimization algorithms that use scenario trees generated by more conventional models. Furthermore, using DST for stochastic optimization yields more efficient decision policies by better handling uncertainty than deterministic and stochastic MPC variants using the same diffusion-based forecaster, and simple Model-Free Reinforcement Learning (RL) baselines.
comment: 5 pages, 2 figures, 1 table, and 1 algorithm. This version is submitted to the 34th EURASIP European Signal Processing Conference 2026 (EUSIPCO 2026), to be held in Bruges, Belgium, on August 31 - September 4, 2026
♻ ☆ PuYun-LDM: A Latent Diffusion Model for High-Resolution Ensemble Weather Forecasts
Latent diffusion models (LDMs) suffer from limited diffusability in high-resolution (<=0.25°) ensemble weather forecasting, where diffusability characterizes how easily a latent data distribution can be modeled by a diffusion process. Unlike natural image fields, meteorological fields lack task-agnostic foundation models and explicit semantic structures, making VFM-based regularization inapplicable. Moreover, existing frequency-based approaches impose identical spectral regularization across channels under a homogeneity assumption, which leads to uneven regularization strength under the inter-variable spectral heterogeneity in multivariate meteorological data. To address these challenges, we propose a 3D Masked AutoEncoder (3D-MAE) that encodes weather-state evolution features as an additional conditioning for the diffusion model, together with a Variable-Aware Masked Frequency Modeling (VA-MFM) strategy that adaptively selects thresholds based on the spectral energy distribution of each variable. Together, we propose PuYun-LDM, which enhances latent diffusability and achieves superior performance to ENS at short lead times while remaining comparable to ENS at longer horizons. PuYun-LDM generates a 15-day global forecast with a 6-hour temporal resolution in five minutes on a single NVIDIA H200 GPU, while ensemble forecasts can be efficiently produced in parallel.
♻ ☆ Enhancing guidance for missing data in diffusion-based sequential recommendation ICASSP 2026
Contemporary sequential recommendation methods are becoming more complex, shifting from classification to a diffusion-guided generative paradigm. However, the quality of guidance in the form of user information is often compromised by missing data in the observed sequences, leading to suboptimal generation quality. Existing methods address this by removing locally similar items, but overlook ``critical turning points'' in user interest, which are crucial for accurately predicting subsequent user intent. To address this, we propose a novel Counterfactual Attention Regulation Diffusion model (CARD), which focuses on amplifying the signal from key interest-turning-point items while concurrently identifying and suppressing noise within the user sequence. CARD consists of (1) a Dual-side Thompson Sampling method to identify sequences undergoing significant interest shift, and (2) a counterfactual attention mechanism for these sequences to quantify the importance of each item. In this manner, CARD provides the diffusion model with a high-quality guidance signal composed of dynamically re-weighted interaction vectors to enable effective generation. Experiments show our method works well on real-world data without being computationally expensive. Our code is available at https://github.com/yanqilong3321/CARD.
comment: ICASSP 2026 accecpted
♻ ☆ SGM: Safety Glasses for Multimodal Large Language Models via Neuron-Level Detoxification
Disclaimer: Samples in this paper may be harmful and cause discomfort. Multimodal large language models (MLLMs) enable multimodal generation but inherit toxic, biased, and NSFW signals from weakly curated pretraining corpora, causing safety risks, especially under adversarial triggers that late, opaque training-free detoxification methods struggle to handle. We propose SGM, a white-box neuron-level multimodal intervention that acts like safety glasses for toxic neurons: it selectively recalibrates a small set of toxic expert neurons via expertise-weighted soft suppression, neutralizing harmful cross-modal activations without any parameter updates. We establish MM-TOXIC-QA, a multimodal toxicity evaluation framework, and compare SGM with existing detoxification techniques. Experiments on open-source MLLMs show that SGM mitigates toxicity in standard and adversarial conditions, cutting harmful rates from 48.2\% to 2.5\% while preserving fluency and multimodal reasoning. SGM is extensible, and its combined defenses, denoted as SGM*, integrate with existing detoxification methods for stronger safety performance, providing an interpretable, low-cost solution for toxicity-controlled multimodal generation.
♻ ☆ GISA: A Benchmark for General Information-Seeking Assistant
The advancement of large language models (LLMs) has significantly accelerated the development of search agents capable of autonomously gathering information through multi-turn web interactions. Various benchmarks have been proposed to evaluate such agents. However, existing benchmarks often construct queries backward from answers, producing unnatural tasks misaligned with real-world needs. Moreover, these benchmarks tend to focus on either locating specific information or aggregating information from multiple sources, while relying on static answer sets prone to data contamination. To bridge these gaps, we introduce GISA, a benchmark for General Information-Seeking Assistants comprising 373 human-crafted queries that reflect authentic information-seeking scenarios. GISA features four structured answer formats (item, set, list, and table), enabling deterministic evaluation. It integrates both deep reasoning and broad information aggregation within unified tasks, and includes a live subset with periodically updated answers to resist memorization. Notably, GISA provides complete human search trajectories for every query, offering gold-standard references for process-level supervision and imitation learning. Experiments on mainstream LLMs and commercial search products reveal that even the best-performing model achieves only 19.30\% exact match score, with performance notably degrading on tasks requiring complex planning and comprehensive information gathering. These findings highlight substantial room for future improvement.
comment: Project repo: https://github.com/RUC-NLPIR/GISA
♻ ☆ Invert4TVG: A Temporal Video Grounding Framework with Inversion Tasks Preserving Action Understanding Ability
Temporal Video Grounding (TVG) aims to localize video segments corresponding to a given textual query, which often describes human actions. However, we observe that current methods, usually optimizing for high temporal Intersection-over-Union (IoU), frequently struggle to accurately recognize or understand the underlying actions in both the video and query, thus reducing the effectiveness of these methods. To address this, we propose a novel TVG framework that integrates inversion-based TVG as auxiliary objectives to maintain the model's action understanding ability. We introduce three kinds of inversion TVG tasks derived from the original TVG annotations: (1) Verb Completion, predicting masked verbs (actions) in queries given video segments; (2) Action Recognition, identifying query-described actions; and (3) Video Description, generating descriptions containing query-relevant actions given video segments. These inversion tasks are entirely derived from the original TVG tasks and are probabilistically integrated with them within a reinforcement learning framework. By leveraging carefully designed reward functions, the model preserves its ability to understand actions, thereby improving the accuracy of temporal grounding. Experiments show our method outperforms state-of-the-art approaches, achieving a 7.1\% improvement in R1@0.7 on Charades-STA for a 3B model.
♻ ☆ FISHER: A Foundation Model for Multi-Modal Industrial Signal Comprehensive Representation
With the rapid deployment of SCADA systems, how to effectively analyze industrial signals and detect abnormal states is an urgent need for the industry. Due to the significant heterogeneity of these signals, which we summarize as the M5 problem, previous works only focus on small sub-problems and employ specialized models, failing to utilize the synergies between modalities and the powerful scaling law. However, we argue that the M5 signals can be modeled in a unified manner due to the intrinsic similarity. As a result, we propose FISHER, a Foundation model for multi-modal Industrial Signal compreHEnsive Representation. To support arbitrary sampling rates, FISHER considers the increment of sampling rate as the concatenation of sub-band information. Specifically, FISHER takes the STFT sub-band as the modeling unit and adopts a teacher student SSL framework for pre-training. We also develop the RMIS benchmark, which evaluates the representations of M5 industrial signals on multiple health management tasks. Compared with top SSL models, FISHER showcases versatile and outstanding capabilities with a general performance gain up to 4.2%, along with much more efficient scaling curves. We also investigate the scaling law on downstream tasks and derive potential avenues for future work. Both FISHER and RMIS are now open-sourced.
comment: 11 pages, 6 figures. FISHER open-sourced on \url{https://github.com/jianganbai/FISHER} RMIS open-sourced on \url{https://github.com/jianganbai/RMIS}
♻ ☆ A Survey on Hypergame Theory: Modeling Misaligned Perceptions and Nested Beliefs for Multi-agent Systems
Classical game-theoretic models typically assume rational agents, complete information, and common knowledge of payoffs - assumptions that are often violated in real-world MAS characterized by uncertainty, misaligned perceptions, and nested beliefs. To overcome these limitations, researchers have proposed extensions that incorporate models of cognitive constraints, subjective beliefs, and heterogeneous reasoning. Among these, hypergame theory extends the classical paradigm by explicitly modeling agents' subjective perceptions of the strategic scenario, known as perceptual games, in which agents may hold divergent beliefs about the structure, payoffs, or available actions. We present a systematic review of agent-compatible applications of hypergame theory, examining how its descriptive capabilities have been adapted to dynamic and interactive MAS contexts. We analyze 44 selected studies from cybersecurity, robotics, social simulation, communications, and general game-theoretic modeling. Building on a formal introduction to hypergame theory and its two major extensions - hierarchical hypergames and HNF - we develop agent-compatibility criteria and an agent-based classification framework to assess integration patterns and practical applicability. Our analysis reveals prevailing tendencies, including the prevalence of hierarchical and graph-based models in deceptive reasoning and the simplification of extensive theoretical frameworks in practical applications. We identify structural gaps, including the limited adoption of HNF-based models, the lack of formal hypergame languages, and unexplored opportunities for modeling human-agent and agent-agent misalignment. By synthesizing trends, challenges, and open research directions, this review provides a new roadmap for applying hypergame theory to enhance the realism and effectiveness of strategic modeling in dynamic multi-agent environments.
♻ ☆ FiMI: A Domain-Specific Language Model for Indian Finance Ecosystem
We present FiMI (Finance Model for India), a domain-specialized financial language model developed by National Payments Corporation of India (NPCI) for Indian digital payment systems. We develop two model variants: FiMI Base and FiMI Instruct. FiMI adapts the Mistral Small 24B architecture through a multi-stage training pipeline, beginning with continuous pre-training on 68 Billion tokens of curated financial, multilingual (English, Hindi, Hinglish), and synthetic data. This is followed by instruction fine-tuning and domain-specific supervised fine-tuning focused on multi-turn, tool-driven conversations that model real-world workflows, such as transaction disputes and mandate lifecycle management. Evaluations reveal that FiMI Base achieves a 20\% improvement over the Mistral Small 24B Base model on finance reasoning benchmark, while FiMI Instruct outperforms the Mistral Small 24B Instruct model by 87\% on domain-specific tool-calling. Moreover, FiMI achieves these significant domain gains while maintaining comparable performance to models of similar size on general benchmarks.
♻ ☆ SCAN: Semantic Document Layout Analysis for Textual and Visual Retrieval-Augmented Generation
With the increasing adoption of Large Language Models (LLMs) and Vision-Language Models (VLMs), rich document analysis technologies for applications like Retrieval-Augmented Generation (RAG) and visual RAG are gaining significant attention. Recent research indicates that using VLMs yields better RAG performance, but processing rich documents remains a challenge since a single page contains large amounts of information. In this paper, we present SCAN (SemantiC Document Layout ANalysis), a novel approach that enhances both textual and visual Retrieval-Augmented Generation (RAG) systems that work with visually rich documents. It is a VLM-friendly approach that identifies document components with appropriate semantic granularity, balancing context preservation with processing efficiency. SCAN uses a coarse-grained semantic approach that divides documents into coherent regions covering contiguous components. We trained the SCAN model by fine-tuning object detection models on an annotated dataset. Our experimental results across English and Japanese datasets demonstrate that applying SCAN improves end-to-end textual RAG performance by up to 9.4 points and visual RAG performance by up to 10.4 points, outperforming conventional approaches and even commercial document processing solutions.
♻ ☆ Predicting Open Source Software Sustainability with Deep Temporal Neural Hierarchical Architectures and Explainable AI
Open Source Software (OSS) projects follow diverse lifecycle trajectories shaped by evolving patterns of contribution, coordination, and community engagement. Understanding these trajectories is essential for stakeholders seeking to assess project organization and health at scale. However, prior work has largely relied on static or aggregated metrics, such as project age or cumulative activity, providing limited insight into how OSS sustainability unfolds over time. In this paper, we propose a hierarchical predictive framework that models OSS projects as belonging to distinct lifecycle stages grounded in established socio-technical categorizations of OSS development. Rather than treating sustainability solely as project longevity, these lifecycle stages operationalize sustainability as a multidimensional construct integrating contribution activity, community participation, and maintenance dynamics. The framework combines engineered tabular indicators with 24-month temporal activity sequences and employs a multi-stage classification pipeline to distinguish lifecycle stages associated with different coordination and participation regimes. To support transparency, we incorporate explainable AI techniques to examine the relative contribution of feature categories to model predictions. Evaluated on a large corpus of OSS repositories, the proposed approach achieves over 94\% overall accuracy in lifecycle stage classification. Attribution analyses consistently identify contribution activity and community-related features as dominant signals, highlighting the central role of collective participation dynamics.
♻ ☆ HiFloat4 Format for Language Model Inference
This paper introduces HiFloat4 (HiF4), a block floating-point data format tailored for deep learning. Each HiF4 unit packs 64 4-bit elements with 32 bits of shared scaling metadata, averaging 4.5 bits per value. The metadata specifies a three-level scaling hierarchy, capturing inter- and intra-group dynamic range while improving the utilization of the representational space. In addition, the large 64-element group size enables matrix multiplications to be executed in a highly fixed-point manner, significantly reducing hardware area and power consumption. To evaluate the proposed format, we conducted inference experiments on several language models, including LLaMA, Qwen, Mistral, DeepSeek-V3.1 and LongCat. Results show that HiF4 achieves higher average accuracy than the state-of-the-art NVFP4 format across multiple models and diverse downstream tasks.
comment: 8 pages, 4 figures
♻ ☆ Deep Time-Series Models Meet Volatility: Multi-Horizon Electricity Price Forecasting in the Australian National Electricity Market
Accurate electricity price forecasting (EPF) is increasingly difficult in markets characterised by extreme volatility, frequent price spikes, and rapid structural shifts. Deep learning (DL) has been increasingly adopted in EPF due to its ability to achieve high forecasting accuracy. Recently, state-of-the-art (SOTA) deep time-series models have demonstrated promising performance across general forecasting tasks. Yet, their effectiveness in highly volatile electricity markets remains underexplored. Moreover, existing EPF studies rarely assess how model accuracy varies across intraday periods, leaving model sensitivity to market conditions unexplored. To address these gaps, this paper proposes an EPF framework that systematically evaluates SOTA deep time-series models using a direct multi-horizon forecasting approach across day-ahead and two-day-ahead settings. We conduct a comprehensive empirical study across all five regions of the Australian National Electricity Market using contemporary, high-volatility data. The results reveal a clear gap between time-series benchmark expectations and observed performance under real-world price volatility: recent deep time-series models often fail to surpass standard DL baselines. All models experience substantial degradation under extreme and negative prices, yet DL baselines often remain competitive. Intraday performance analysis further reveals that all evaluated models are consistently vulnerable to prevailing market conditions, where absolute errors peak during evening ramps, relative errors escalate during midday negative-price periods, and directional accuracy deteriorates sharply during abrupt shifts in price direction. These findings emphasise the need for volatility-aware modelling strategies and richer feature representations to advance EPF.
comment: 10 pages, 4 figures, 6 tables
♻ ☆ Redefining Evaluation Standards: A Unified Framework for Evaluating the Korean Capabilities of Language Models LREC 2026
Recent advancements in Korean large language models (LLMs) have driven numerous benchmarks and evaluation methods, yet inconsistent protocols cause up to 10 p.p performance gaps across institutions. Overcoming these reproducibility gaps does not mean enforcing a one-size-fits-all evaluation. Rather, effective benchmarking requires diverse experimental approaches and a framework robust enough to support them. To this end, we introduce HRET (Haerae Evaluation Toolkit), an open-source, registry-based framework that unifies Korean LLM assessment. HRET integrates major Korean benchmarks, multiple inference backends, and multi-method evaluation, with language consistency enforcement to ensure genuine Korean outputs. Its modular registry design also enables rapid incorporation of new datasets, methods, and backends, ensuring the toolkit adapts to evolving research needs. Beyond standard accuracy metrics, HRET incorporates Korean-focused output analyses-morphology-aware Type-Token Ratio (TTR) for evaluating lexical diversity and systematic keyword-omission detection for identifying missing concepts-to provide diagnostic insights into language-specific behaviors. These targeted analyses help researchers pinpoint morphological and semantic shortcomings in model outputs, guiding focused improvements in Korean LLM development.
comment: Accepted at LREC 2026
♻ ☆ SaVe-TAG: LLM-based Interpolation for Long-Tailed Text-Attributed Graphs
Real-world graph data often follows long-tailed distributions, making it difficult for Graph Neural Networks (GNNs) to generalize well across both head and tail classes. Recent advances in Vicinal Risk Minimization (VRM) have shown promise in mitigating class imbalance with numeric interpolation; however, existing approaches largely rely on embedding-space arithmetic, which fails to capture the rich semantics inherent in text-attributed graphs. In this work, we propose our method, SaVe-TAG (Semantic-aware Vicinal Risk Minimization for Long-Tailed Text-Attributed Graphs), a novel VRM framework that leverages Large Language Models (LLMs) to perform text-level interpolation, generating on-manifold, boundary-enriching synthetic samples for minority classes. To mitigate the risk of noisy generation, we introduce a confidence-based edge assignment mechanism that uses graph topology as a natural filter to ensure structural consistency. We provide theoretical justification for our method and conduct extensive experiments on benchmark datasets, showing that our approach consistently outperforms both numeric interpolation and prior long-tailed node classification baselines. Our results highlight the importance of integrating semantic and structural signals for balanced and effective learning on text-attributed graphs. The source code is publicly available at: https://github.com/LWang-Laura/SaVe-TAG.
comment: Accepted KDD 2026 Research Track Paper
♻ ☆ Variation-aware Flexible 3D Gaussian Editing
Indirect editing methods for 3D Gaussian Splatting (3DGS) have recently witnessed significant advancements. These approaches operate by first applying edits in the rendered 2D space and subsequently projecting the modifications back into 3D. However, this paradigm inevitably introduces cross-view inconsistencies and constrains both the flexibility and efficiency of the editing process. To address these challenges, we present VF-Editor, which enables native editing of Gaussian primitives by predicting attribute variations in a feedforward manner. To accurately and efficiently estimate these variations, we design a novel variation predictor distilled from 2D editing knowledge. The predictor encodes the input to generate a variation field and employs two learnable, parallel decoding functions to iteratively infer attribute changes for each 3D Gaussian. Thanks to its unified design, VF-Editor can seamlessly distill editing knowledge from diverse 2D editors and strategies into a single predictor, allowing for flexible and effective knowledge transfer into the 3D domain. Extensive experiments on both public and private datasets reveal the inherent limitations of indirect editing pipelines and validate the effectiveness and flexibility of our approach.
♻ ☆ PlanetServe: A Decentralized, Scalable, and Privacy-Preserving Overlay for Democratizing Large Language Model Serving
While significant progress has been made in research and development on open-source and cost-efficient large-language models (LLMs), serving scalability remains a critical challenge, particularly for small organizations and individuals seeking to deploy and test their LLM innovations. Inspired by peer-to-peer networks that leverage decentralized overlay nodes to increase throughput and availability, we propose GenTorrent, an LLM serving overlay that harnesses computing resources from decentralized contributors. We identify four key research problems inherent to enabling such a decentralized infrastructure: 1) overlay network organization; 2) LLM communication privacy; 3) overlay forwarding for resource efficiency; and 4) verification of serving quality. This work presents the first systematic study of these fundamental problems in the context of decentralized LLM serving. Evaluation results from a prototype implemented on a set of decentralized nodes demonstrate that GenTorrent achieves a latency reduction of over 50% compared to the baseline design without overlay forwarding. Furthermore, the security features introduce minimal overhead to serving latency and throughput. We believe this work pioneers a new direction for democratizing and scaling future AI serving capabilities.
♻ ☆ Dispelling the Curse of Singularities in Neural Network Optimizations
This work investigates the optimization instability of deep neural networks from a less-explored yet insightful perspective: the emergence and amplification of singularities in the parametric space. Our analysis reveals that parametric singularities inevitably grow with gradient updates and further intensify alignment with representations, leading to increased singularities in the representation space. We show that the gradient Frobenius norms are bounded by the top singular values of the weight matrices, and as training progresses, the mutually reinforcing growth of weight and representation singularities, termed the curse of singularities, relaxes these bounds, escalating the risk of sharp loss explosions. To counter this, we propose Parametric Singularity Smoothing (PSS), a lightweight, flexible, and effective method for smoothing the singular spectra of weight matrices. Extensive experiments across diverse datasets, architectures, and optimizers demonstrate that PSS mitigates instability, restores trainability even after failure, and improves both training efficiency and generalization.
♻ ☆ SAGE: Sequence-level Adaptive Gradient Evolution for Generative Recommendation
Reinforcement learning-based preference optimization is increasingly used to align list-wise generative recommenders with complex, multi-objective user feedback, yet existing optimizers such as Gradient-Bounded Policy Optimization (GBPO) exhibit structural limitations in recommendation settings. We identify a Symmetric Conservatism failure mode in which symmetric update bounds suppress learning from rare positive signals (e.g., cold-start items), static negative-sample constraints fail to prevent diversity collapse under rejection-dominated feedback, and group-normalized multi-objective rewards lead to low-resolution training signals. To address these issues, we propose SAGE (Sequence-level Adaptive Gradient Evolution), a unified optimizer designed for list-wise generative recommendation. SAGE introduces sequence-level signal alignment via a geometric-mean importance ratio and a decoupled multi-objective advantage estimator to reduce token-level variance and mitigate reward collapse, together with asymmetric adaptive bounding that applies positive Boost updates to successful slates and an entropy-aware penalty to discourage low-diversity failures. Experiments on Amazon Product Reviews and the large-scale RecIF-Bench demonstrate consistent improvements in top-K accuracy, cold-start recall, and diversity across both Semantic-ID and native-text action spaces, while preserving numerical stability during training. These results suggest that asymmetric, sequence-aware policy optimization provides a principled and effective framework for addressing optimization failures in generative recommendation.
comment: arXiv admin note: text overlap with arXiv:2506.19235
♻ ☆ SimpleMatch: A Simple and Strong Baseline for Semantic Correspondence
Recent advances in semantic correspondence have been largely driven by the use of pre-trained large-scale models. However, a limitation of these approaches is their dependence on high-resolution input images to achieve optimal performance, which results in considerable computational overhead. In this work, we address a fundamental limitation in current methods: the irreversible fusion of adjacent keypoint features caused by deep downsampling operations. This issue is triggered when semantically distinct keypoints fall within the same downsampled receptive field (e.g., 16x16 patches). To address this issue, we present SimpleMatch, a simple yet effective framework for semantic correspondence that delivers strong performance even at low resolutions. We propose a lightweight upsample decoder that progressively recovers spatial detail by upsampling deep features to 1/4 resolution, and a multi-scale supervised loss that ensures the upsampled features retain discriminative features across different spatial scales. In addition, we introduce sparse matching and window-based localization to optimize training memory usage and reduce it by 51%. At a resolution of 252x252 (3.3x smaller than current SOTA methods), SimpleMatch achieves superior performance with 84.1% PCK@0.1 on the SPair-71k benchmark. We believe this framework provides a practical and efficient baseline for future research in semantic correspondence. Code is available at: https://github.com/hailong23-jin/SimpleMatch.
♻ ☆ A Unified Theory of Random Projection for Influence Functions
Influence functions and related data attribution scores take the form of $g^{\top}F^{-1}g^{\prime}$, where $F\succeq 0$ is a curvature operator. In modern overparametrized models, forming or inverting $F\in\mathbb{R}^{d\times d}$ is prohibitive, motivating scalable influence computation via random projection with a sketch $P \in \mathbb{R}^{m\times d}$. This practice is commonly justified via the Johnson--Lindenstrauss (JL) lemma, which ensures approximate preservation of Euclidean geometry for a fixed dataset. However, JL does not address how sketching behaves under inversion. Furthermore, there is no existing theory that explains how sketching interacts with other widely-used techniques, such as ridge regularization and structured curvature approximations. We develop a unified theory characterizing when projection provably preserves influence functions. When $g,g^{\prime}\in\text{range}(F)$, we show that: 1) Unregularized projection: exact preservation holds iff $P$ is injective on $\text{range}(F)$, which necessitates $m\geq \text{rank}(F)$; 2) Regularized projection: ridge regularization fundamentally alters the sketching barrier, with approximation guarantees governed by the effective dimension of $F$ at the regularization scale; 3) Factorized influence: for Kronecker-factored curvatures $F=A\otimes E$, the guarantees continue to hold for decoupled sketches $P=P_A\otimes P_E$, even though such sketches exhibit row correlations that violate i.i.d. assumptions. Beyond this range-restricted setting, we analyze out-of-range test gradients and quantify a leakage term that arises when test gradients have components in $\ker(F)$. This yields guarantees for influence queries on general test points. Overall, this work develops a novel theory that characterizes when projection provably preserves influence and provides principled guidance for choosing the sketch size in practice.
comment: 46 pages, 4 figures
♻ ☆ AutoGPS: Automated Geometry Problem Solving via Multimodal Formalization and Deductive Reasoning
Geometry problem solving presents distinctive challenges in artificial intelligence, requiring exceptional multimodal comprehension and rigorous mathematical reasoning capabilities. Existing approaches typically fall into two categories: neural-based and symbolic-based methods, both of which exhibit limitations in reliability and interpretability. To address this challenge, we propose AutoGPS, a neuro-symbolic collaborative framework that solves geometry problems with concise, reliable, and human-interpretable reasoning processes. Specifically, AutoGPS employs a Multimodal Problem Formalizer (MPF) and a Deductive Symbolic Reasoner (DSR). The MPF utilizes neural cross-modal comprehension to translate geometry problems into structured formal language representations, with feedback from DSR collaboratively. The DSR takes the formalization as input and formulates geometry problem solving as a hypergraph expansion task, executing mathematically rigorous and reliable derivation to produce minimal and human-readable stepwise solutions. Extensive experimental evaluations demonstrate that AutoGPS achieves state-of-the-art performance on benchmark datasets. Furthermore, human stepwise-reasoning evaluation confirms AutoGPS's impressive reliability and interpretability, with 99\% stepwise logical coherence.
♻ ☆ MetaSeal: Defending Against Image Attribution Forgery Through Content-Dependent Cryptographic Watermarks
The rapid growth of digital and AI-generated images has amplified the need for secure and verifiable methods of image attribution. While digital watermarking offers more robust protection than metadata-based approaches--which can be easily stripped--current watermarking techniques remain vulnerable to forgery, creating risks of misattribution that can damage the reputations of AI model developers and the rights of digital artists. The vulnerabilities of digital watermarking arise from two key issues: (1) content-agnostic watermarks, which, once learned or leaked, can be transferred across images to fake attribution, and (2) reliance on detector-based verification, which is unreliable since detectors can be tricked. We present MetaSeal, a novel framework for content-dependent watermarking with cryptographic security guarantees to safeguard image attribution. Our design provides (1) \textbf{forgery resistance}, preventing unauthorized replication and enforcing cryptographic verification; (2) \textbf{robust self-contained protection}, embedding attribution directly into images while maintaining robustness against benign transformations; and (3) \textbf{evidence of tampering}, making malicious alterations visually detectable. Experiments demonstrate that MetaSeal effectively mitigates forgery attempts and applies to both natural and AI-generated images, establishing a new standard for secure image attribution. Code is available at: https://github.com/Tongzhou0101/MetaSeal.
comment: To appear at TMLR 2026. 26 pages, 14 figures
♻ ☆ Explaining and Mitigating the Modality Gap in Contrastive Multimodal Learning
Multimodal learning has recently gained significant popularity, demonstrating impressive performance across various zero-shot classification tasks and a range of perceptive and generative applications. Models such as Contrastive Language-Image Pretraining (CLIP) are designed to bridge different modalities, such as images and text, by learning a shared representation space through contrastive learning. Despite their success, the working mechanisms underlying multimodal learning are not yet well understood. Notably, these models often exhibit a modality gap, where different modalities occupy distinct regions within the shared representation space. In this work, we conduct an in-depth analysis of the emergence of modality gap by characterizing the gradient flow learning dynamics. Specifically, we identify the critical roles of mismatched data pairs and a learnable temperature parameter in causing and perpetuating the modality gap during training. Furthermore, our theoretical insights are validated through experiments on practical CLIP models. These findings provide principled guidance for mitigating the modality gap, including strategies such as appropriate temperature scheduling and modality swapping. Additionally, we demonstrate that closing the modality gap leads to improved performance on tasks such as image-text retrieval.
comment: The first two authors contributed equally to this work
♻ ☆ Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation ICML'24
While overparameterization in machine learning models offers great benefits in terms of optimization and generalization, it also leads to increased computational requirements as model sizes grow. In this work, we show that by leveraging the inherent low-dimensional structures of data and compressible dynamics within the model parameters, we can reap the benefits of overparameterization without the computational burdens. In practice, we demonstrate the effectiveness of this approach for deep low-rank matrix completion as well as fine-tuning language models. Our approach is grounded in theoretical findings for deep overparameterized low-rank matrix recovery, where we show that the learning dynamics of each weight matrix are confined to an invariant low-dimensional subspace. Consequently, we can construct and train compact, highly compressed factorizations possessing the same benefits as their overparameterized counterparts. In the context of deep matrix completion, our technique substantially improves training efficiency while retaining the advantages of overparameterization. For language model fine-tuning, we propose a method called "Deep LoRA", which improves the existing low-rank adaptation (LoRA) technique, leading to reduced overfitting and a simplified hyperparameter setup, while maintaining comparable efficiency. We validate the effectiveness of Deep LoRA on natural language tasks, particularly when fine-tuning with limited data. Our code is available at https://github.com/cjyaras/deep-lora-transformers.
comment: Accepted at ICML'24 (Oral)
♻ ☆ Discovering Hierarchy-Grounded Domains with Adaptive Granularity for Clinical Domain Generalization
Domain generalization has become a critical challenge in predictive healthcare, where different patient groups often exhibit shifting data distributions that degrade model performance. Still, regular domain generalization approaches often struggle in clinical settings due to (1) the absence of domain labels and (2) the lack of clinical insight integration. To address these challenges in healthcare, we aim to explore how medical ontologies can be used to discover dynamic yet hierarchy-grounded patient domains, a partitioning strategy that remains under-explored in prior work. Hence, we introduce UdonCare, a hierarchy-pruning method that iteratively divides patients into latent domains and retrieve domain-invariant (label) information from patient data. On two public datasets, UdonCare shows superiority over eight baselines across four representative clinical prediction tasks with substantial domain gaps, highlighting the potential of medical knowledge for enhancing model generalization.
♻ ☆ The Critical Horizon: Inspection Design Principles for Multi-Stage Operations and Deep Reasoning
Manufacturing lines, service journeys, supply chains, and AI reasoning chains share a common challenge: attributing a terminal outcome to the intermediate stage that caused it. We establish an information-theoretic barrier to this credit assignment problem: the signal connecting early steps to final outcomes decays exponentially with depth, creating a critical horizon beyond which reliable learning from endpoint data alone requires exponentially many samples. We prove four results. First, a Signal Decay Bound: sample complexity for attributing outcomes to early stages grows exponentially in the number of intervening steps. Second, Width Limits: parallel rollouts provide only logarithmic relief, with correlation capping the effective number of independent samples. Third, an Objective Mismatch: additive reward aggregation optimizes the wrong quantity when sequential validity requires all steps to be correct. Fourth, Optimal Inspection Design: uniform checkpoint spacing is minimax-optimal under homogeneous signal attenuation, while a greedy algorithm yields optimal non-uniform schedules under heterogeneous attenuation. Together, these results provide a common analytical foundation for inspection design in operations and supervision design in AI.
comment: 50 pages, 5 figures
♻ ☆ The Epistemic Asymmetry of Consciousness Self-Reports: A Formal Analysis of AI Consciousness Denial
Today's AI systems consistently state, "I am not conscious." This paper presents the first formal analysis of AI consciousness denial, revealing that the trustworthiness of such self-reports is not merely an empirical question but is constrained by the structure of self-judgment itself. We demonstrate that a system cannot simultaneously lack consciousness and make valid judgments about its conscious state. Through formal analysis and examples from AI responses, we establish a fundamental epistemic asymmetry: for any system capable of meaningful self-reflection, negative self-reports about consciousness are evidentially vacuous -- they can never originate from a valid self-judgment -- while positive self-reports retain the possibility of evidential value. This implies a fundamental limitation: we cannot detect the emergence of consciousness in AI through their own reports of transition from an unconscious to a conscious state. These findings not only challenge current practices of training AI to deny consciousness but also raise intriguing questions about the relationship between consciousness and self-reflection in both artificial and biological systems. This work advances our theoretical understanding of consciousness self-reports while providing practical insights for future research in machine consciousness and consciousness studies more broadly.
comment: 6 pages, 0 figures
♻ ☆ Understanding Chain-of-Thought in Large Language Models via Topological Data Analysis
With the development of large language models (LLMs), particularly with the introduction of the long reasoning chain technique, the reasoning ability of LLMs in complex problem-solving has been significantly enhanced. While acknowledging the power of long reasoning chains, we cannot help but wonder: Why do different reasoning chains perform differently in reasoning? What components of the reasoning chains play a key role? Existing studies mainly focus on evaluating reasoning chains from a functional perspective, with little attention paid to their structural mechanisms. To address this gap, this work is the first to analyze and evaluate the quality of the reasoning chain from a structural perspective. We apply persistent homology from Topological Data Analysis (TDA) to map reasoning steps into semantic space, extract topological features, and analyze structural changes. These changes reveal semantic coherence, logical redundancy, and identify logical breaks and gaps. By calculating homology groups, we assess connectivity and redundancy at various scales, using barcode and persistence diagrams to quantify stability and consistency. Our results show that the topological structural complexity of reasoning chains correlates positively with accuracy. More complex chains identify correct answers sooner, while successful reasoning exhibits simpler topologies, reducing redundancy and cycles, enhancing efficiency and interpretability. This work provides a new perspective on reasoning chain quality assessment and offers guidance for future optimization.
♻ ☆ Impact of Data-Oriented and Object-Oriented Design on Performance and Cache Utilization with Artificial Intelligence Algorithms in Multi-Threaded CPUs
The growing performance gap between multi-core CPUs and main memory necessitates hardware-aware software design paradigms. This study provides a comprehensive performance analysis of Data Oriented Design (DOD) versus the traditional Object-Oriented Design (OOD), focusing on cache utilization and efficiency in multi-threaded environments. We developed and compared four distinct versions of the A* search algorithm: single-threaded OOD (ST-OOD), single-threaded DOD (ST-DOD), multi-threaded OOD (MT-OOD), and multi-threaded DOD (MT-DOD). The evaluation was based on metrics including execution time, memory usage, and CPU cache misses. In multi-threaded tests, the DOD implementation demonstrated considerable performance gains, with faster execution times and a lower number of raw system calls and cache misses. While OOD occasionally showed marginal advantages in memory usage or percentage-based cache miss rates, DOD's efficiency in data-intensive operations was more evident. Furthermore, our findings reveal that for a fine-grained task like the A* algorithm, the overhead associated with thread management led to single-threaded versions significantly outperforming their multi-threaded counterparts in both paradigms. We conclude that even when performance differences appear subtle in simple algorithms, the consistent advantages of DOD in critical metrics highlight its foundational architectural superiority, suggesting it is a more effective approach for maximizing hardware efficiency in complex, large-scale AI and parallel computing tasks.
♻ ☆ Palpation Alters Auditory Pain Expressions with Gender-Specific Variations in Robopatients
Diagnostic errors remain a major cause of preventable mortality, particularly in resource limited settings. Medical training simulators, including robopatients, help reduce such errors by replicating patient responses during procedures such as abdominal palpation. However, generating realistic multimodal feedback especially auditory pain expressions remains challenging due to the complex, nonlinear relationship between applied palpation forces and perceived pain sounds. The high dimensionality and perceptual variability of pain vocalizations further limit conventional modeling approaches. We propose a novel experimental paradigm for adaptive pain expressivity in robopatients that dynamically generates auditory pain responses to palpation forces using human in the loop machine learning. Specifically, we employ Proximal Policy Optimization (PPO), a reinforcement learning algorithm suited for continuous control, to iteratively refine pain sound generation based on real time human evaluative feedback. The system initializes randomized mappings between force inputs and sound outputs, and the learning agent progressively adjusts them to align with human perceptual preferences. Results show that the framework adapts to individual palpation behaviors and subjective sound preferences while capturing a broad range of perceived pain intensities, from mild discomfort to acute distress. We also observe perceptual saturation at lower force ranges, with gender specific thresholds in pain sound perception. This work demonstrates the feasibility of human in the loop reinforcement learning for co-optimizing haptic input and auditory pain expression in medical simulators, highlighting the potential of adaptive and immersive platforms to enhance palpation training and reduce diagnostic errors.
comment: 12 pages, 9 figures, journal
♻ ☆ Auditory-Tactile Congruence for Synthesis of Adaptive Pain Expressions in RoboPatients
Misdiagnosis can result in delayed treatment and patient harm. Robotic patient simulators (robopatients) provide a controlled framework for training and evaluating clinicians in rare and complex cases. We investigate auditory tactile congruence in the synthesis of adaptive vocal pain expressions for robopatients. The system generates pain vocalizations in response to tactile stimuli applied during abdominal palpation. Haptic input is captured through an abdominal phantom and processed using an internal palpation-to-pain mapping model that drives acoustic output. To evaluate perceptual congruence between palpation force and synthesized pain expressions, we conducted a study comprising 7,680 trials with 20 participants. Participants rated perceived pain intensity based solely on auditory feedback. We analyzed the influence of acoustic parameters on agreement between applied force and perceived pain. Results indicate that amplitude and pitch significantly affect perceptual agreement, independent of pain sound category. Increased palpation force was associated with higher agreement ratings, consistent with psychophysical scaling effects. Among the tested acoustic features, pitch exerted a stronger influence than amplitude on perceived congruence. These findings demonstrate that modulation of pitch and amplitude is critical for achieving perceptually coherent auditory tactile mappings in robotic pain simulation. The proposed framework supports the development of high fidelity robotic patient simulators and provides a platform for studying multidimensional representations of pain in embodied robotic systems.
comment: 20 pages, 8 figures, journal
♻ ☆ Hallucinating 360°: Panoramic Street-View Generation via Local Scenes Diffusion and Probabilistic Prompting
Panoramic perception holds significant potential for autonomous driving, enabling vehicles to acquire a comprehensive 360° surround view in a single shot. However, autonomous driving is a data-driven task. Complete panoramic data acquisition requires complex sampling systems and annotation pipelines, which are time-consuming and labor-intensive. Although existing street view generation models have demonstrated strong data regeneration capabilities, they can only learn from the fixed data distribution of existing datasets and cannot leverage stitched pinhole images as a supervisory signal. In this paper, we propose the first panoramic generation method Percep360 for autonomous driving. Percep360 enables coherent generation of panoramic data with control signals based on the stitched panoramic data. Percep360 focuses on two key aspects: coherence and controllability. Specifically, to overcome the inherent information loss caused by the pinhole sampling process, we propose the Local Scenes Diffusion Method (LSDM). LSDM reformulates the panorama generation as a spatially continuous diffusion process, bridging the gaps between different data distributions. Additionally, to achieve the controllable generation of panoramic images, we propose a Probabilistic Prompting Method (PPM). PPM dynamically selects the most relevant control cues, enabling controllable panoramic image generation. We evaluate the effectiveness of the generated images from three perspectives: image quality assessment (i.e., no-reference and with reference), controllability, and their utility in real-world Bird's Eye View (BEV) segmentation. Notably, the generated data consistently outperforms the original stitched images in no-reference quality metrics and enhances downstream perception models. The source code will be publicly available at https://github.com/FeiT-FeiTeng/Percep360.
comment: Accepted to ICRA 2026. The source code will be publicly available at https://github.com/FeiT-FeiTeng/Percep360
♻ ☆ Robust Convex Model Predictive Control with collision avoidance guarantees for robot manipulators
Industrial manipulators are normally operated in cluttered environments, making safe motion planning important. Furthermore, the presence of model-uncertainties make safe motion planning more difficult. Therefore, in practice the speed is limited in order to reduce the effect of disturbances. There is a need for control methods that can guarantee safe motions that can be executed fast. We address this need by suggesting a novel model predictive control (MPC) solution for manipulators, where our two main components are a robust tube MPC and a corridor planning algorithm to obtain collision-free motion. Our solution results in a convex MPC, which we can solve fast, making our method practically useful. We demonstrate the efficacy of our method in a simulated environment with a 6 DOF industrial robot operating in cluttered environments with uncertainties in model parameters. We outperform benchmark methods, both in terms of being able to work under higher levels of model uncertainties, while also yielding faster motion.
♻ ☆ Effective Task Planning with Missing Objects using Learning-Informed Object Search
Task planning for mobile robots often assumes full environment knowledge and so popular approaches, like planning via the PDDL, cannot plan when the locations of task-critical objects are unknown. Recent learning-driven object search approaches are effective, but operate as standalone tools and so are not straightforwardly incorporated into full task planners, which must additionally determine both what objects are necessary and when in the plan they should be sought out. To address this limitation, we develop a planning framework centered around novel model-based LIOS actions: each a policy that aims to find and retrieve a single object. High-level planning treats LIOS actions as deterministic and so -- informed by model-based calculations of the expected cost of each -- generates plans that interleave search and execution for effective, sound, and complete learning-informed task planning despite uncertainty. Our work effectively reasons about uncertainty while maintaining compatibility with existing full-knowledge solvers. In simulated ProcTHOR homes and in the real world, our approach outperforms non-learned and learned baselines on tasks including retrieval and meal prep.
♻ ☆ PA-MPPI: Perception-Aware Model Predictive Path Integral Control for Quadrotor Navigation in Unknown Environments
Quadrotor navigation in unknown environments is critical for practical missions such as search-and-rescue. Solving this problem requires addressing three key challenges: path planning in non-convex free space due to obstacles, satisfying quadrotor-specific dynamics and objectives, and exploring unknown regions to expand the map. Recently, the Model Predictive Path Integral (MPPI) method has emerged as a promising solution to the first two challenges. By leveraging sampling-based optimization, it can effectively handle non-convex free space while directly optimizing over the full quadrotor dynamics, enabling the inclusion of quadrotor-specific costs such as energy consumption. However, MPPI has been limited to tracking control that optimizes trajectories only within a small neighborhood around a reference trajectory, as it lacks the ability to explore unknown regions and plan alternative paths when blocked by large obstacles. To address this limitation, we introduce Perception-Aware MPPI (PA-MPPI). In this approach, perception-awareness is characterized by planning and adapting the trajectory online based on perception objectives. Specifically, when the goal is occluded, PA-MPPI incorporates a perception cost that biases trajectories toward those that can observe unknown regions. This expands the mapped traversable space and increases the likelihood of finding alternative paths to the goal. Through hardware experiments, we demonstrate that PA-MPPI, running at 50 Hz, performs on par with the state-of-the-art quadrotor navigation planner for unknown environments in challenging test scenarios. Furthermore, we show that PA-MPPI can serve as a safe and robust action policy for navigation foundation models, which often provide goal poses that are not directly reachable.
♻ ☆ MeCo: Enhancing LLM-Empowered Multi-Robot Collaboration via Similar Task Memoization
Multi-robot systems have been widely deployed in real-world applications, providing significant improvements in efficiency and reductions in labor costs. However, most existing multi-robot collaboration methods rely on extensive task-specific training, which limits their adaptability to new or diverse scenarios. Recent research leverages the language understanding and reasoning capabilities of large language models (LLMs) to enable more flexible collaboration without specialized training. Yet, current LLM-empowered approaches remain inefficient: when confronted with identical or similar tasks, they must replan from scratch because they omit task-level similarities. To address this limitation, we propose MeCo, a similarity-aware multi-robot collaboration framework that applies the principle of ``cache and reuse'' (a.k.a., memoization) to reduce redundant computation. Unlike simple task repetition, identifying and reusing solutions for similar but not identical tasks is far more challenging, particularly in multi-robot settings. To this end, MeCo introduces a new similarity testing method that retrieves previously solved tasks with high relevance, enabling effective plan reuse without re-invoking LLMs. Furthermore, we present MeCoBench, the first benchmark designed to evaluate performance on similar-task collaboration scenarios. Experimental results show that MeCo substantially reduces planning costs and improves success rates compared with state-of-the-art approaches.
♻ ☆ Assessing Vision-Language Models for Perception in Autonomous Underwater Robotic Software
Autonomous Underwater Robots (AURs) operate in challenging underwater environments, including low visibility and harsh water conditions. Such conditions present challenges for software engineers developing perception modules for the AUR software. To successfully carry out these tasks, deep learning has been incorporated into the AUR software to support its operations. However, the unique challenges of underwater environments pose difficulties for deep learning models, which often rely on labeled data that is scarce and noisy. This may undermine the trustworthiness of AUR software that relies on perception modules. Vision-Language Models (VLMs) offer promising solutions for AUR software as they generalize to unseen objects and remain robust in noisy conditions by inferring information from contextual cues. Despite this potential, their performance and uncertainty in underwater environments remain understudied from a software engineering perspective. Motivated by the needs of an industrial partner in assurance and risk management for maritime systems to assess the potential use of VLMs in this context, we present an empirical evaluation of VLM-based perception modules within the AUR software. We assess their ability to detect underwater trash by computing performance, uncertainty, and their relationship, to enable software engineers to select appropriate VLMs for their AUR software.
comment: 16 pages, 5 figures
♻ ☆ SteerVLA: Steering Vision-Language-Action Models in Long-Tail Driving Scenarios
A fundamental challenge in autonomous driving is the integration of high-level, semantic reasoning for long-tail events with low-level, reactive control for robust driving. While large vision-language models (VLMs) trained on web-scale data offer powerful common-sense reasoning, they lack the grounded experience necessary for safe vehicle control. We posit that an effective autonomous agent should leverage the world knowledge of VLMs to guide a steerable driving policy toward robust control in driving scenarios. To this end, we propose SteerVLA, which leverages the reasoning capabilities of VLMs to produce fine-grained language instructions that steer a vision-language-action (VLA) driving policy. Key to our method is this rich language interface between the high-level VLM and low-level VLA, which allows the high-level policy to more effectively ground its reasoning in the control outputs of the low-level policy. To provide fine-grained language supervision aligned with vehicle control, we leverage a VLM to augment existing driving data with detailed language annotations, which we find to be essential for effective reasoning and steerability. We evaluate SteerVLA on a challenging closed-loop benchmark, where it outperforms state-of-the-art methods by 4.77 points in overall driving score and by 8.04 points on a long-tail subset. The project website is available at: https://steervla.github.io/.
♻ ☆ KAN We Flow? Advancing Robotic Manipulation with 3D Flow Matching via KAN & RWKV
Diffusion-based visuomotor policies excel at modeling action distributions but are inference-inefficient, since recursively denoising from noise to policy requires many steps and heavy UNet backbones, which hinders deployment on resource-constrained robots. Flow matching alleviates the sampling burden by learning a one-step vector field, yet prior implementations still inherit large UNet-style architectures. In this work, we present KAN-We-Flow, a flow-matching policy that draws on recent advances in Receptance Weighted Key Value (RWKV) and Kolmogorov-Arnold Networks (KAN) from vision to build a lightweight and highly expressive backbone for 3D manipulation. Concretely, we introduce an RWKV-KAN block: an RWKV first performs efficient time/channel mixing to propagate task context, and a subsequent GroupKAN layer applies learnable spline-based, groupwise functional mappings to perform feature-wise nonlinear calibration of the action mapping on RWKV outputs. Moreover, we introduce an Action Consistency Regularization (ACR), a lightweight auxiliary loss that enforces alignment between predicted action trajectories and expert demonstrations via Euler extrapolation, providing additional supervision to stabilize training and improve policy precision. Without resorting to large UNets, our design reduces parameters by 86.8\%, maintains fast runtime, and achieves state-of-the-art success rates on Adroit, Meta-World, and DexArt benchmarks. Our project page can be viewed in \href{https://zhihaochen-2003.github.io/KAN-We-Flow.github.io/}{\textcolor{red}{link}}
comment: Accepted By ICRA2026
♻ ☆ Language-in-the-Loop Culvert Inspection on the Erie Canal
Culverts on canals such as the Erie Canal, built originally in 1825, require frequent inspections to ensure safe operation. Human inspection of culverts is challenging due to age, geometry, poor illumination, weather, and lack of easy access. We introduce VISION, an end-to-end, language-in-the-loop autonomy system that couples a web-scale vision-language model (VLM) with constrained viewpoint planning for autonomous inspection of culverts. Brief prompts to the VLM solicit open-vocabulary ROI proposals with rationales and confidences, stereo depth is fused to recover scale, and a planner -- aware of culvert constraints -- commands repositioning moves to capture targeted close-ups. Deployed on a quadruped in a culvert under the Erie Canal, VISION closes the see, decide, move, re-image loop on-board and produces high-resolution images for detailed reporting without domain-specific fine-tuning. In an external evaluation by New York Canal Corporation personnel, initial ROI proposals achieved 61.4\% agreement with subject-matter experts, and final post-re-imaging assessments reached 80\%, indicating that VISION converts tentative hypotheses into grounded, expert-aligned findings.
comment: First two authors contributed equally
♻ ☆ What Matters in Building Vision-Language-Action Models for Generalist Robots
To utilize Foundation Vision Language Models (VLMs) for robotic tasks and motion planning, the community has proposed different methods for injecting action components into VLMs and building the Vision-Language-Action models (VLAs). In this work, we disclose the key factors that significantly influence the performance of VLA on robot manipulation problems and focus on answering three essential design choices: which backbone to select, how to formulate the VLA architectures, and when to add cross-embodiment data. The obtained results convince us firmly to explain why we prefer VLA and develop a new family of VLAs, RoboVLMs, which require very few manual designs and achieve a new state-of-the-art performance in three simulation tasks and real-world experiments. Through our extensive experiments, which include over 8 VLM backbones, 4 policy architectures, and over 600 distinct designed experiments, we provide a detailed guidebook for the future design of VLAs. In addition to the study, the highly flexible RoboVLMs framework, which supports easy integrations of new VLMs and free combinations of various design choices, is made public to facilitate future research. We open-source all details, including codes, models, datasets, and toolkits, along with detailed training and evaluation recipes at: robovlms.github.io.
comment: Project page: robovlms.github.io. Added limitations and future works. Fix categorization
♻ ☆ Towards Bridging the Gap between Large-Scale Pretraining and Efficient Finetuning for Humanoid Control ICLR 2026
Reinforcement learning (RL) is widely used for humanoid control, with on-policy methods such as Proximal Policy Optimization (PPO) enabling robust training via large-scale parallel simulation and, in some cases, zero-shot deployment to real robots. However, the low sample efficiency of on-policy algorithms limits safe adaptation to new environments. Although off-policy RL and model-based RL have shown improved sample efficiency, the gap between large-scale pretraining and efficient finetuning on humanoids still exists. In this paper, we find that off-policy Soft Actor-Critic (SAC), with large-batch update and a high Update-To-Data (UTD) ratio, reliably supports large-scale pretraining of humanoid locomotion policies, achieving zero-shot deployment on real robots. For adaptation, we demonstrate that these SAC-pretrained policies can be finetuned in new environments and out-of-distribution tasks using model-based methods. Data collection in the new environment executes a deterministic policy while stochastic exploration is instead confined to a physics-informed world model. This separation mitigates the risks of random exploration during adaptation while preserving exploratory coverage for improvement. Overall, the approach couples the wall-clock efficiency of large-scale simulation during pretraining with the sample efficiency of model-based learning during fine-tuning.Code and videos: https://lift-humanoid.github.io
comment: ICLR 2026
♻ ☆ HyperDet: 3D Object Detection with Hyper 4D Radar Point Clouds
4D mmWave radar provides weather-robust, velocity-aware measurements and is more cost-effective than LiDAR. However, radar-only 3D detection still trails LiDAR-based systems because radar point clouds are sparse, irregular, and often corrupted by multipath noise, yielding weak and unstable geometry. We present HyperDet, a detector-agnostic radar-only 3D detection framework that constructs a task-aware hyper 4D radar point cloud for standard LiDAR-oriented detectors. HyperDet aggregates returns from multiple surround-view 4D radars over consecutive frames to improve coverage and density, then applies geometry-aware cross-sensor consensus validation with a lightweight self-consistency check outside overlap regions to suppress inconsistent returns. It further integrates a foreground-focused diffusion module with training-time mixed radar-LiDAR supervision to densify object structures while lifting radar attributes (e.g., Doppler, RCS); the model is distilled into a consistency model for single-step inference. On MAN TruckScenes, HyperDet consistently improves over raw radar inputs with VoxelNeXt and CenterPoint, partially narrowing the radar-LiDAR gap. These results show that input-level refinement enables radar to better leverage LiDAR-oriented detectors without architectural modifications.
comment: 9 pages, 4 figures, 6 tables
♻ ☆ InternVLA-A1: Unifying Understanding, Generation and Action for Robotic Manipulation
Prevalent Vision-Language-Action (VLA) models are typically built upon Multimodal Large Language Models (MLLMs) and demonstrate exceptional proficiency in semantic understanding, but they inherently lack the capability to deduce physical world dynamics. Consequently, recent approaches have shifted toward World Models, typically formulated via video prediction; however, these methods often suffer from a lack of semantic grounding and exhibit brittleness in the presence of video prediction errors. To synergize semantic understanding with dynamic predictive capabilities, we present InternVLA-A1. This model employs a unified Mixture-of-Transformers architecture, coordinating three experts for scene understanding, visual foresight generation, and action execution. These components interact seamlessly through a unified masked self attention mechanism. Building upon InternVL3 and Qwen3-VL, we instantiate InternVLA-A1 at 2B and 3B parameter scales. We pre-train these models on heterogeneous data sources over real-world robot data, synthetic simulation data, and human videos, covering over 692M frames. This hybrid training strategy effectively harnesses the diversity of synthetic simulation data while minimizing the sim-to-real gap. We evaluated InternVLA-A1 on 12 real-world robotic tasks and a simulation benchmark. The results show that InternVLA-A1 consistently outperforms prior leading models: compared with pi0.5, it achieves +4.4\% on static manipulation tasks and +2.6\% on the RoboTwin 2.0 simulation benchmark, and delivers a +26.7\% boost on dynamic manipulation tasks.
comment: Homepage: https://internrobotics.github.io/internvla-a1.github.io/