MyArxiv
Computation and Language 129
☆ Next-Gen CAPTCHAs: Leveraging the Cognitive Gap for Scalable and Diverse GUI-Agent Defense
The rapid evolution of GUI-enabled agents has rendered traditional CAPTCHAs obsolete. While previous benchmarks like OpenCaptchaWorld established a baseline for evaluating multimodal agents, recent advancements in reasoning-heavy models, such as Gemini3-Pro-High and GPT-5.2-Xhigh have effectively collapsed this security barrier, achieving pass rates as high as 90% on complex logic puzzles like "Bingo". In response, we introduce Next-Gen CAPTCHAs, a scalable defense framework designed to secure the next-generation web against the advanced agents. Unlike static datasets, our benchmark is built upon a robust data generation pipeline, allowing for large-scale and easily scalable evaluations, notably, for backend-supported types, our system is capable of generating effectively unbounded CAPTCHA instances. We exploit the persistent human-agent "Cognitive Gap" in interactive perception, memory, decision-making, and action. By engineering dynamic tasks that require adaptive intuition rather than granular planning, we re-establish a robust distinction between biological users and artificial agents, offering a scalable and diverse defense mechanism for the agentic era.
comment: Project page at https://greenoso.github.io/NextGen-CAPTCHAs_webpage/
Data Science and Technology Towards AGI Part I: Tiered Data Management
The development of artificial intelligence can be viewed as an evolution of data-driven learning paradigms, with successive shifts in data organization and utilization continuously driving advances in model capability. Current LLM research is dominated by a paradigm that relies heavily on unidirectional scaling of data size, increasingly encountering bottlenecks in data availability, acquisition cost, and training efficiency. In this work, we argue that the development of AGI is entering a new phase of data-model co-evolution, in which models actively guide data management while high-quality data, in turn, amplifies model capabilities. To implement this vision, we propose a tiered data management framework, designed to support the full LLM training lifecycle across heterogeneous learning objectives and cost constraints. Specifically, we introduce an L0-L4 tiered data management framework, ranging from raw uncurated resources to organized and verifiable knowledge. Importantly, LLMs are fully used in data management processes, such as quality scoring and content editing, to refine data across tiers. Each tier is characterized by distinct data properties, management strategies, and training roles, enabling data to be strategically allocated across LLM training stages, including pre-training, mid-training, and alignment. The framework balances data quality, acquisition cost, and marginal training benefit, providing a systematic approach to scalable and sustainable data management. We validate the effectiveness of the proposed framework through empirical studies, in which tiered datasets are constructed from raw corpora and used across multiple training phases. Experimental results demonstrate that tier-aware data utilization significantly improves training efficiency and model performance. To facilitate further research, we release our tiered datasets and processing tools to the community.
comment: 16 pages, 3 figures, 7 tables
☆ Paradox of De-identification: A Critique of HIPAA Safe Harbour in the Age of LLMs
Privacy is a human right that sustains patient-provider trust. Clinical notes capture a patient's private vulnerability and individuality, which are used for care coordination and research. Under HIPAA Safe Harbor, these notes are de-identified to protect patient privacy. However, Safe Harbor was designed for an era of categorical tabular data, focusing on the removal of explicit identifiers while ignoring the latent information found in correlations between identity and quasi-identifiers, which can be captured by modern LLMs. We first formalize these correlations using a causal graph, then validate it empirically through individual re-identification of patients from scrubbed notes. The paradox of de-identification is further shown through a diagnosis ablation: even when all other information is removed, the model can predict the patient's neighborhood based on diagnosis alone. This position paper raises the question of how we can act as a community to uphold patient-provider trust when de-identification is inherently imperfect. We aim to raise awareness and discuss actionable recommendations.
☆ When Actions Go Off-Task: Detecting and Correcting Misaligned Actions in Computer-Use Agents
Computer-use agents (CUAs) have made tremendous progress in the past year, yet they still frequently produce misaligned actions that deviate from the user's original intent. Such misaligned actions may arise from external attacks (e.g., indirect prompt injection) or from internal limitations (e.g., erroneous reasoning). They not only expose CUAs to safety risks, but also degrade task efficiency and reliability. This work makes the first effort to define and study misaligned action detection in CUAs, with comprehensive coverage of both externally induced and internally arising misaligned actions. We further identify three common categories in real-world CUA deployment and construct MisActBench, a benchmark of realistic trajectories with human-annotated, action-level alignment labels. Moreover, we propose DeAction, a practical and universal guardrail that detects misaligned actions before execution and iteratively corrects them through structured feedback. DeAction outperforms all existing baselines across offline and online evaluations with moderate latency overhead: (1) On MisActBench, it outperforms baselines by over 15% absolute in F1 score; (2) In online evaluation, it reduces attack success rate by over 90% under adversarial settings while preserving or even improving task success rate in benign environments.
comment: Project Homepage: https://osu-nlp-group.github.io/Misaligned-Action-Detection/
☆ Next Concept Prediction in Discrete Latent Space Leads to Stronger Language Models
We propose Next Concept Prediction (NCP), a generative pretraining paradigm built on top of Next Token Prediction (NTP). NCP predicts discrete concepts that span multiple tokens, thereby forming a more challenging pretraining objective. Our model, ConceptLM, quantizes hidden states using Vector Quantization and constructs a concept vocabulary. It leverages both NCP and NTP to drive parameter updates and generates a concept to guide the generation of the following tokens. We train ConceptLM from scratch at scales ranging from 70M to 1.5B parameters with up to 300B training data, including Pythia and GPT-2 backbones. Results on 13 benchmarks show that NCP yields consistent performance gains over traditional token-level models. Furthermore, continual pretraining experiments on an 8B-parameter Llama model indicate that NCP can further improve an NTP-trained model. Our analysis suggests that NCP leads to more powerful language models by introducing a harder pretraining task, providing a promising path toward better language modeling.
☆ Beyond Transcripts: A Renewed Perspective on Audio Chaptering
Audio chaptering, the task of automatically segmenting long-form audio into coherent sections, is increasingly important for navigating podcasts, lectures, and videos. Despite its relevance, research remains limited and text-based, leaving key questions unresolved about leveraging audio information, handling ASR errors, and transcript-free evaluation. We address these gaps through three contributions: (1) a systematic comparison between text-based models with acoustic features, a novel audio-only architecture (AudioSeg) operating on learned audio representations, and multimodal LLMs; (2) empirical analysis of factors affecting performance, including transcript quality, acoustic features, duration, and speaker composition; and (3) formalized evaluation protocols contrasting transcript-dependent text-space protocols with transcript-invariant time-space protocols. Our experiments on YTSeg reveal that AudioSeg substantially outperforms text-based approaches, pauses provide the largest acoustic gains, and MLLMs remain limited by context length and weak instruction following, yet MLLMs are promising on shorter audio.
☆ A Behavioural and Representational Evaluation of Goal-Directedness in Language Model Agents
Understanding an agent's goals helps explain and predict its behaviour, yet there is no established methodology for reliably attributing goals to agentic systems. We propose a framework for evaluating goal-directedness that integrates behavioural evaluation with interpretability-based analyses of models' internal representations. As a case study, we examine an LLM agent navigating a 2D grid world toward a goal state. Behaviourally, we evaluate the agent against an optimal policy across varying grid sizes, obstacle densities, and goal structures, finding that performance scales with task difficulty while remaining robust to difficulty-preserving transformations and complex goal structures. We then use probing methods to decode the agent's internal representations of the environment state and its multi-step action plans. We find that the LLM agent non-linearly encodes a coarse spatial map of the environment, preserving approximate task-relevant cues about its position and the goal location; that its actions are broadly consistent with these internal representations; and that reasoning reorganises them, shifting from broader environment structural cues toward information supporting immediate action selection. Our findings support the view that introspective examination is required beyond behavioural evaluations to characterise how agents represent and pursue their objectives.
☆ How Should We Model the Probability of a Language?
Of the over 7,000 languages spoken in the world, commercial language identification (LID) systems only reliably identify a few hundred in written form. Research-grade systems extend this coverage under certain circumstances, but for most languages coverage remains patchy or nonexistent. This position paper argues that this situation is largely self-imposed. In particular, it arises from a persistent framing of LID as decontextualized text classification, which obscures the central role of prior probability estimation and is reinforced by institutional incentives that favor global, fixed-prior models. We argue that improving coverage for tail languages requires rethinking LID as a routing problem and developing principled ways to incorporate environmental cues that make languages locally plausible.
comment: Accepted for Vardial 2026
☆ CoRefine: Confidence-Guided Self-Refinement for Adaptive Test-Time Compute
Large Language Models (LLMs) often rely on test-time scaling via parallel decoding (for example, 512 samples) to boost reasoning accuracy, but this incurs substantial compute. We introduce CoRefine, a confidence-guided self-refinement method that achieves competitive accuracy using a fraction of the tokens via a lightweight 211k-parameter Conv1D controller atop a frozen LLM. The controller consumes full-trace confidence to decide whether to halt, re-examine, or try a different approach, enabling targeted self-correction with an average of 2.7 refinement steps per problem and roughly 190-fold token reduction relative to 512-sample baselines. Across diverse reasoning benchmarks and three open-source models, the controller achieves 92.6 percent precision when it confidently halts, indicating that confidence dynamics reliably signal correctness without ground-truth verification. We extend this to CoRefine-Tree, a hybrid sequential-parallel variant that adaptively balances exploration and exploitation, with easy serving integration and verifier compatibility. By treating confidence as a control signal rather than a correctness guarantee, CoRefine provides a modular primitive for scalable reasoning and agentic settings with imperfect verifiers.
☆ GitSearch: Enhancing Community Notes Generation with Gap-Informed Targeted Search
Community-based moderation offers a scalable alternative to centralized fact-checking, yet it faces significant structural challenges, and existing AI-based methods fail in "cold start" scenarios. To tackle these challenges, we introduce GitSearch (Gap-Informed Targeted Search), a framework that treats human-perceived quality gaps, such as missing context, etc., as first-class signals. GitSearch has a three-stage pipeline: identifying information deficits, executing real-time targeted web-retrieval to resolve them, and synthesizing platform-compliant notes. To facilitate evaluation, we present PolBench, a benchmark of 78,698 U.S. political tweets with their associated Community Notes. We find GitSearch achieves 99% coverage, almost doubling coverage over the state-of-the-art. GitSearch surpasses human-authored helpful notes with a 69% win rate and superior helpfulness scores (3.87 vs. 3.36), demonstrating retrieval effectiveness that balanced the trade-off between scale and quality.
comment: 18 pages, 11 figures, 7 tables
☆ Is Reasoning Capability Enough for Safety in Long-Context Language Models?
Large language models (LLMs) increasingly combine long-context processing with advanced reasoning, enabling them to retrieve and synthesize information distributed across tens of thousands of tokens. A hypothesis is that stronger reasoning capability should improve safety by helping models recognize harmful intent even when it is not stated explicitly. We test this hypothesis in long-context settings where harmful intent is implicit and must be inferred through reasoning, and find that it does not hold. We introduce compositional reasoning attacks, a new threat model in which a harmful query is decomposed into incomplete fragments that scattered throughout a long context. The model is then prompted with a neutral reasoning query that induces retrieval and synthesis, causing the harmful intent to emerge only after composition. Evaluating 14 frontier LLMs on contexts up to 64k tokens, we uncover three findings: (1) models with stronger general reasoning capability are not more robust to compositional reasoning attacks, often assembling the intent yet failing to refuse; (2) safety alignment consistently degrades as context length increases; and (3) inference-time reasoning effort is a key mitigating factor: increasing inference-time compute reduces attack success by over 50 percentage points on GPT-oss-120b model. Together, these results suggest that safety does not automatically scale with reasoning capability, especially under long-context inference.
comment: 25 pages, 7 figures
Large Language Models for Geolocation Extraction in Humanitarian Crisis Response
Humanitarian crises demand timely and accurate geographic information to inform effective response efforts. Yet, automated systems that extract locations from text often reproduce existing geographic and socioeconomic biases, leading to uneven visibility of crisis-affected regions. This paper investigates whether Large Language Models (LLMs) can address these geographic disparities in extracting location information from humanitarian documents. We introduce a two-step framework that combines few-shot LLM-based named entity recognition with an agent-based geocoding module that leverages context to resolve ambiguous toponyms. We benchmark our approach against state-of-the-art pretrained and rule-based systems using both accuracy and fairness metrics across geographic and socioeconomic dimensions. Our evaluation uses an extended version of the HumSet dataset with refined literal toponym annotations. Results show that LLM-based methods substantially improve both the precision and fairness of geolocation extraction from humanitarian texts, particularly for underrepresented regions. By bridging advances in LLM reasoning with principles of responsible and inclusive AI, this work contributes to more equitable geospatial data systems for humanitarian response, advancing the goal of leaving no place behind in crisis analytics.
☆ Understanding Dynamic Compute Allocation in Recurrent Transformers
Token-level adaptive computation seeks to reduce inference cost by allocating more computation to harder tokens and less to easier ones. However, prior work is primarily evaluated on natural-language benchmarks using task-level metrics, where token-level difficulty is unobservable and confounded with architectural factors, making it unclear whether compute allocation truly aligns with underlying complexity. We address this gap through three contributions. First, we introduce a complexity-controlled evaluation paradigm using algorithmic and synthetic language tasks with parameterized difficulty, enabling direct testing of token-level compute allocation. Second, we propose ANIRA, a unified recurrent Transformer framework that supports per-token variable-depth computation while isolating compute allocation decisions from other model factors. Third, we use this framework to conduct a systematic analysis of token-level adaptive computation across alignment with complexity, generalization, and decision timing. Our results show that compute allocation aligned with task complexity can emerge without explicit difficulty supervision, but such alignment does not imply algorithmic generalization: models fail to extrapolate to unseen input sizes despite allocating additional computation. We further find that early compute decisions rely on static structural cues, whereas online halting more closely tracks algorithmic execution state.
☆ Discovering Interpretable Algorithms by Decompiling Transformers to RASP
Recent work has shown that the computations of Transformers can be simulated in the RASP family of programming languages. These findings have enabled improved understanding of the expressive capacity and generalization abilities of Transformers. In particular, Transformers have been suggested to length-generalize exactly on problems that have simple RASP programs. However, it remains open whether trained models actually implement simple interpretable programs. In this paper, we present a general method to extract such programs from trained Transformers. The idea is to faithfully re-parameterize a Transformer as a RASP program and then apply causal interventions to discover a small sufficient sub-program. In experiments on small Transformers trained on algorithmic and formal language tasks, we show that our method often recovers simple and interpretable RASP programs from length-generalizing transformers. Our results provide the most direct evidence so far that Transformers internally implement simple RASP programs.
comment: 101 pages, 92 figures
☆ WildReward: Learning Reward Models from In-the-Wild Human Interactions
Reward models (RMs) are crucial for the training of large language models (LLMs), yet they typically rely on large-scale human-annotated preference pairs. With the widespread deployment of LLMs, in-the-wild interactions have emerged as a rich source of implicit reward signals. This raises the question: Can we develop reward models directly from in-the-wild interactions? In this work, we explore this possibility by adopting WildChat as an interaction source and proposing a pipeline to extract reliable human feedback, yielding 186k high-quality instances for training WildReward via ordinal regression directly on user feedback without preference pairs. Extensive experiments demonstrate that WildReward achieves comparable or even superior performance compared to conventional reward models, with improved calibration and cross-sample consistency. We also observe that WildReward benefits directly from user diversity, where more users yield stronger reward models. Finally, we apply WildReward to online DPO training and observe significant improvements across various tasks. Code and data are released at https://github.com/THU-KEG/WildReward.
☆ Affective Flow Language Model for Emotional Support Conversation
Large language models (LLMs) have been widely applied to emotional support conversation (ESC). However, complex multi-turn support remains challenging.This is because existing alignment schemes rely on sparse outcome-level signals, thus offering limited supervision for intermediate strategy decisions. To fill this gap, this paper proposes affective flow language model for emotional support conversation (AFlow), a framework that introduces fine-grained supervision on dialogue prefixes by modeling a continuous affective flow along multi-turn trajectories. AFlow can estimate intermediate utility over searched trajectories and learn preference-consistent strategy transitions. To improve strategy coherence and empathetic response quality, a subpath-level flow-balance objective is presented to propagate preference signals to intermediate states. Experiment results show consistent and significant improvements over competitive baselines in diverse emotional contexts. Remarkably, AFlow with a compact open-source backbone outperforms proprietary LMMs such as GPT-4o and Claude-3.5 on major ESC metrics. Our code is available at https://github.com/chzou25-lgtm/AffectiveFlow.
comment: 19 pages, 7 figures
☆ Bayesian Preference Learning for Test-Time Steerable Reward Models
Reward models are central to aligning language models with human preferences via reinforcement learning (RL). As RL is increasingly applied to settings such as verifiable rewards and multi-objective alignment, RMs are expected to encode more complex and multifaceted preference distributions. However, classifier RMs remain static once trained, limiting their adaptability at test time. We propose Variational In-Context Reward Modeling (ICRM), a novel Bayesian reward modeling objective that enables test-time steerability via in-context preference demonstrations. ICRM casts reward modeling as amortized variational inference over a latent preference probability under the Bradley-Terry model using a conjugate Beta prior. We show that ICRM adapt to unseen preference distributions at test time for both single and multi-objective settings. With more in-context demonstrations, ICRM gains 34% accuracy on SafeRLHF and 9% accuracy on RM-Bench in the single-objective setting, while widening the Pareto frontier with a 4% gain in hypervolume on helpfulness and refusal benchmarks. We further study the practical applicability of ICRM for RL training, showing that it can effectively encode verifiable rewards by outperforming a conventional RM in math reasoning. Finally, we provide theoretical guarantees that the variational objective admits a global interior optimum with finite confidence, and we analyze how KL regularization mitigates reward over-optimization.
comment: Preprint
☆ The Use of AI Tools to Develop and Validate Q-Matrices
Constructing a Q-matrix is a critical but labor-intensive step in cognitive diagnostic modeling (CDM). This study investigates whether AI tools (i.e., general language models) can support Q-matrix development by comparing AI-generated Q-matrices with a validated Q-matrix from Li and Suen (2013) for a reading comprehension test. In May 2025, multiple AI models were provided with the same training materials as human experts. Agreement among AI-generated Q-matrices, the validated Q-matrix, and human raters' Q-matrices was assessed using Cohen's kappa. Results showed substantial variation across AI models, with Google Gemini 2.5 Pro achieving the highest agreement (Kappa = 0.63) with the validated Q-matrix, exceeding that of all human experts. A follow-up analysis in January 2026 using newer AI versions, however, revealed lower agreement with the validated Q-matrix. Implications and directions for future research are discussed.
comment: An earlier version of this study was presented at the Psychometric Society Meeting held in July 2025 in Minneapolis, USA
☆ LakeHopper: Cross Data Lakes Column Type Annotation through Model Adaptation
Column type annotation is vital for tasks like data cleaning, integration, and visualization. Recent solutions rely on resource-intensive language models fine-tuned on well-annotated columns from a particular set of tables, i.e., a source data lake. In this paper, we study whether we can adapt an existing pre-trained LM-based model to a new (i.e., target) data lake to minimize the annotations required on the new data lake. However, challenges include the source-target knowledge gap, selecting informative target data, and fine-tuning without losing shared knowledge exist. We propose LakeHopper, a framework that identifies and resolves the knowledge gap through LM interactions, employs a cluster-based data selection scheme for unannotated columns, and uses an incremental fine-tuning mechanism that gradually adapts the source model to the target data lake. Our experimental results validate the effectiveness of LakeHopper on two different data lake transfers under both low-resource and high-resource settings.
☆ Dynamics Within Latent Chain-of-Thought: An Empirical Study of Causal Structure
Latent or continuous chain-of-thought methods replace explicit textual rationales with a number of internal latent steps, but these intermediate computations are difficult to evaluate beyond correlation-based probes. In this paper, we view latent chain-of-thought as a manipulable causal process in representation space by modeling latent steps as variables in a structural causal model (SCM) and analyzing their effects through step-wise $\mathrm{do}$-interventions. We study two representative paradigms (i.e., Coconut and CODI) on both mathematical and general reasoning tasks to investigate three key questions: (1) which steps are causally necessary for correctness and when answers become decidable early; (2) how does influence propagate across steps, and how does this structure compare to explicit CoT; and (3) do intermediate trajectories retain competing answer modes, and how does output-level commitment differ from representational commitment across steps. We find that latent-step budgets behave less like homogeneous extra depth and more like staged functionality with non-local routing, and we identify a persistent gap between early output bias and late representational commitment. These results motivate mode-conditional and stability-aware analyses -- and corresponding training/decoding objectives -- as more reliable tools for interpreting and improving latent reasoning systems.
comment: 22 pages
☆ Map of Encoders -- Mapping Sentence Encoders using Quantum Relative Entropy
We propose a method to compare and visualise sentence encoders at scale by creating a map of encoders where each sentence encoder is represented in relation to the other sentence encoders. Specifically, we first represent a sentence encoder using an embedding matrix of a sentence set, where each row corresponds to the embedding of a sentence. Next, we compute the Pairwise Inner Product (PIP) matrix for a sentence encoder using its embedding matrix. Finally, we create a feature vector for each sentence encoder reflecting its Quantum Relative Entropy (QRE) with respect to a unit base encoder. We construct a map of encoders covering 1101 publicly available sentence encoders, providing a new perspective of the landscape of the pre-trained sentence encoders. Our map accurately reflects various relationships between encoders, where encoders with similar attributes are proximally located on the map. Moreover, our encoder feature vectors can be used to accurately infer downstream task performance of the encoders, such as in retrieval and clustering tasks, demonstrating the faithfulness of our map.
☆ PERSPECTRA: A Scalable and Configurable Pluralist Benchmark of Perspectives from Arguments
Pluralism, the capacity to engage with diverse perspectives without collapsing them into a single viewpoint, is critical for developing large language models that faithfully reflect human heterogeneity. Yet this characteristic has not been carefully examined in the LLM research community and remains absent from most alignment studies. Debate-oriented sources provide a natural entry point for pluralism research. Previous work builds on online debate sources but remains constrained by costly human validation. Other debate-rich platforms such as Reddit and Kialo also offer promising material: Reddit provides linguistic diversity and scale but lacks clear argumentative structure, while Kialo supplies explicit pro/con graphs but remains overly concise and detached from natural discourse. We introduce PERSPECTRA, a pluralist benchmark that integrates the structural clarity of Kialo debate graphs with the linguistic diversity of real Reddit discussions. Using a controlled retrieval-and-expansion pipeline, we construct 3,810 enriched arguments spanning 762 pro/con stances on 100 controversial topics. Each opinion is expanded to multiple naturalistic variants, enabling robust evaluation of pluralism. We initialise three tasks with PERSPECTRA: opinion counting (identifying distinct viewpoints), opinion matching (aligning supporting stances and discourse to source opinions), and polarity check (inferring aggregate stance in mixed discourse). Experiments with state-of-the-art open-source and proprietary LLMs, highlight systematic failures, such as overestimating the number of viewpoints and misclassifying concessive structures, underscoring the difficulty of pluralism-aware understanding and reasoning. By combining diversity with structure, PERSPECTRA establishes the first scalable, configurable benchmark for evaluating how well models represent, distinguish, and reason over multiple perspectives.
comment: 15 pages, 1 figure
☆ FactSim: Fact-Checking for Opinion Summarization
We explore the need for more comprehensive and precise evaluation techniques for generative artificial intelligence (GenAI) in text summarization tasks, specifically in the area of opinion summarization. Traditional methods, which leverage automated metrics to compare machine-generated summaries from a collection of opinion pieces, e.g. product reviews, have shown limitations due to the paradigm shift introduced by large language models (LLM). This paper addresses these shortcomings by proposing a novel, fully automated methodology for assessing the factual consistency of such summaries. The method is based on measuring the similarity between the claims in a given summary with those from the original reviews, measuring the coverage and consistency of the generated summary. To do so, we rely on a simple approach to extract factual assessment from texts that we then compare and summarize in a suitable score. We demonstrate that the proposed metric attributes higher scores to similar claims, regardless of whether the claim is negated, paraphrased, or expanded, and that the score has a high correlation to human judgment when compared to state-of-the-art metrics.
comment: 10 pages, 4 figures
☆ Do Images Clarify? A Study on the Effect of Images on Clarifying Questions in Conversational Search
Conversational search systems increasingly employ clarifying questions to refine user queries and improve the search experience. Previous studies have demonstrated the usefulness of text-based clarifying questions in enhancing both retrieval performance and user experience. While images have been shown to improve retrieval performance in various contexts, their impact on user performance when incorporated into clarifying questions remains largely unexplored. We conduct a user study with 73 participants to investigate the role of images in conversational search, specifically examining their effects on two search-related tasks: (i) answering clarifying questions and (ii) query reformulation. We compare the effect of multimodal and text-only clarifying questions in both tasks within a conversational search context from various perspectives. Our findings reveal that while participants showed a strong preference for multimodal questions when answering clarifying questions, preferences were more balanced in the query reformulation task. The impact of images varied with both task type and user expertise. In answering clarifying questions, images helped maintain engagement across different expertise levels, while in query reformulation they led to more precise queries and improved retrieval performance. Interestingly, for clarifying question answering, text-only setups demonstrated better user performance as they provided more comprehensive textual information in the absence of images. These results provide valuable insights for designing effective multimodal conversational search systems, highlighting that the benefits of visual augmentation are task-dependent and should be strategically implemented based on the specific search context and user characteristics.
comment: Accepted at CHIIR 2025
☆ Challenges in Translating Technical Lectures: Insights from the NPTEL
This study examines the practical applications and methodological implications of Machine Translation in Indian Languages, specifically Bangla, Malayalam, and Telugu, within emerging translation workflows and in relation to existing evaluation frameworks. The choice of languages prioritized in this study is motivated by a triangulation of linguistic diversity, which illustrates the significance of multilingual accommodation of educational technology under NEP 2020. This is further supported by the largest MOOC portal, i.e., NPTEL, which has served as a corpus to facilitate the arguments presented in this paper. The curation of a spontaneous speech corpora that accounts for lucid delivery of technical concepts, considering the retention of suitable register and lexical choices are crucial in a diverse country like India. The findings of this study highlight metric-specific sensitivity and the challenges of morphologically rich and semantically compact features when tested against surface overlapping metrics.
☆ Prototype-Based Disentanglement for Controllable Dysarthric Speech Synthesis
Dysarthric speech exhibits high variability and limited labeled data, posing major challenges for both automatic speech recognition (ASR) and assistive speech technologies. Existing approaches rely on synthetic data augmentation or speech reconstruction, yet often entangle speaker identity with pathological articulation, limiting controllability and robustness. In this paper, we propose ProtoDisent-TTS, a prototype-based disentanglement TTS framework built on a pre-trained text-to-speech backbone that factorizes speaker timbre and dysarthric articulation within a unified latent space. A pathology prototype codebook provides interpretable and controllable representations of healthy and dysarthric speech patterns, while a dual-classifier objective with a gradient reversal layer enforces invariance of speaker embeddings to pathological attributes. Experiments on the TORGO dataset demonstrate that this design enables bidirectional transformation between healthy and dysarthric speech, leading to consistent ASR performance gains and robust, speaker-aware speech reconstruction.
☆ Old wine in old glasses: Comparing computational and qualitative methods in identifying incivility on Persian Twitter during the #MahsaAmini movement
This paper compares three approaches to detecting incivility in Persian tweets: human qualitative coding, supervised learning with ParsBERT, and large language models (ChatGPT). Using 47,278 tweets from the #MahsaAmini movement in Iran, we evaluate the accuracy and efficiency of each method. ParsBERT substantially outperforms seven evaluated ChatGPT models in identifying hate speech. We also find that ChatGPT struggles not only with subtle cases but also with explicitly uncivil content, and that prompt language (English vs. Persian) does not meaningfully affect its outputs. The study provides a detailed comparison of these approaches and clarifies their strengths and limitations for analyzing hate speech in a low-resource language context.
☆ Learning to Judge: LLMs Designing and Applying Evaluation Rubrics EACL 2026
Large language models (LLMs) are increasingly used as evaluators for natural language generation, applying human-defined rubrics to assess system outputs. However, human rubrics are often static and misaligned with how models internally represent language quality. We introduce GER-Eval (Generating Evaluation Rubrics for Evaluation) to investigate whether LLMs can design and apply their own evaluation rubrics. We evaluate the semantic coherence and scoring reliability of LLM-defined criteria and their alignment with human criteria. LLMs reliably generate interpretable and task-aware evaluation dimensions and apply them consistently within models, but their scoring reliability degrades in factual and knowledge-intensive settings. Closed-source models such as GPT-4o achieve higher agreement and cross-model generalization than open-weight models such as Llama. Our findings position evaluation as a learned linguistic capability of LLMs, consistent within models but fragmented across them, and call for new methods that jointly model human and LLM evaluative language to improve reliability and interpretability.
comment: Accepted at EACL 2026 Findings
☆ Fundamental Reasoning Paradigms Induce Out-of-Domain Generalization in Language Models
Deduction, induction, and abduction are fundamental reasoning paradigms, core for human logical thinking. Although improving Large Language Model (LLM) reasoning has attracted significant research efforts, the extent to which the fundamental paradigms induce generalization has yet to be systematically explored. In this study, we shed light on how the interplay between these core paradigms influences LLMs' reasoning behavior. To this end, we first collect a new dataset of reasoning trajectories from symbolic tasks, each targeting one of the three fundamental paradigms, to abstract from concrete world knowledge. Then, we investigate effective ways for inducing these skills into LLMs. We experiment with a battery of methods including simple fine-tuning, and more complex approaches to increase model depth, or transform a dense model to a mixture-of-experts. We comprehensively evaluate induced models on realistic out-of-domain tasks, that are entirely formulated in natural language and contain real-world knowledge. Our results reveal that our approach yields strong generalizability with substantial performance gains (up to $14.60$) across realistic tasks.
☆ We Should Separate Memorization from Copyright
The widespread use of foundation models has introduced a new risk factor of copyright issue. This issue is leading to an active, lively and on-going debate amongst the data-science community as well as amongst legal scholars. Where claims and results across both sides are often interpreted in different ways and leading to different implications. Our position is that much of the technical literature relies on traditional reconstruction techniques that are not designed for copyright analysis. As a result, memorization and copying have been conflated across both technical and legal communities and in multiple contexts. We argue that memorization, as commonly studied in data science, should not be equated with copying and should not be used as a proxy for copyright infringement. We distinguish technical signals that meaningfully indicate infringement risk from those that instead reflect lawful generalization or high-frequency content. Based on this analysis, we advocate for an output-level, risk-based evaluation process that aligns technical assessments with established copyright standards and provides a more principled foundation for research, auditing, and policy.
☆ Do Multilingual LLMs have specialized language heads?
Multilingual large language models (LLMs) have gained significant popularity for their ability to process and generate text across multiple languages. However, deploying these models in production can be inefficient when only a subset of the supported languages is of interest. There has been some research conducted on identifying whether machine translation models have language-specific or language-agnostic heads, however no research has been conducted for multilingual LLMs, to the best of our knowledge, that as we know are capable of performing diverse tasks beyond just translation. This paper explores whether multilingual LLMs have specialized language attention heads for each language, and investigates the possibility of removing language-specific heads for unwanted languages without degrading performance in the targeted languages. Our findings could inform more efficient deployment strategies for multilingual LLMs, enabling reduced model complexity while maintaining high accuracy for targeted languages.
☆ VocalNet-MDM: Accelerating Streaming Speech LLM via Self-Distilled Masked Diffusion Modeling
Recent Speech Large Language Models~(LLMs) have achieved impressive capabilities in end-to-end speech interaction. However, the prevailing autoregressive paradigm imposes strict serial constraints, limiting generation efficiency and introducing exposure bias. In this paper, we investigate Masked Diffusion Modeling~(MDM) as a non-autoregressive paradigm for speech LLMs and introduce VocalNet-MDM. To adapt MDM for streaming speech interaction, we address two critical challenges: training-inference mismatch and iterative overhead. We propose Hierarchical Block-wise Masking to align training objectives with the progressive masked states encountered during block diffusion decoding, and Iterative Self-Distillation to compress multi-step refinement into fewer steps for low-latency inference. Trained on a limited scale of only 6K hours of speech data, VocalNet-MDM achieves a 3.7$\times$--10$\times$ decoding speedup and reduces first-chunk latency by 34\% compared to AR baselines. It maintains competitive recognition accuracy while achieving state-of-the-art text quality and speech naturalness, demonstrating that MDM is a promising and scalable alternative for low-latency, efficient speech LLMs.
☆ Beyond Scalar Scores: Reinforcement Learning for Error-Aware Quality Estimation of Machine Translation
Quality Estimation (QE) aims to assess the quality of machine translation (MT) outputs without relying on reference translations, making it essential for real-world, large-scale MT evaluation. Large Language Models (LLMs) have shown significant promise in advancing the field of quality estimation of machine translation. However, most of the QE approaches solely rely on scalar quality scores, offering no explicit information about the translation errors that should drive these judgments. Moreover, for low-resource languages where annotated QE data is limited, existing approaches struggle to achieve reliable performance. To address these challenges, we introduce the first segment-level QE dataset for English to Malayalam, a severely resource-scarce language pair in the QE domain, comprising human-annotated Direct Assessment (DA) scores and Translation Quality Remarks (TQR), which are short, contextual, free-form annotator comments that describe translation errors. We further introduce ALOPE-RL, a policy-based reinforcement learning framework that trains efficient adapters based on policy rewards derived from DA score and TQR. Integrating error-aware rewards with ALOPE-RL, enables LLMs to reason about translation quality beyond numeric scores. Despite being trained on a small-scale QE dataset, ALOPE-RL achieves state-of-the-art performance on English to Malayalam QE using compact LLMs (<=4B parameters}) fine-tuned with LoRA and 4-bit quantization, outperforming both larger LLM-based baselines and leading encoder-based QE models. Our results demonstrate that error-aware, policy-based learning can deliver strong QE performance under limited data and compute budgets. We release our dataset, code, and trained models to support future research.
comment: Currently this article is under review for Natural Language Processing Journal
☆ ValueFlow: Measuring the Propagation of Value Perturbations in Multi-Agent LLM Systems
Multi-agent large language model (LLM) systems increasingly consist of agents that observe and respond to one another's outputs. While value alignment is typically evaluated for isolated models, how value perturbations propagate through agent interactions remains poorly understood. We present ValueFlow, a perturbation-based evaluation framework for measuring and analyzing value drift in multi-agent systems. ValueFlow introduces a 56-value evaluation dataset derived from the Schwartz Value Survey and quantifies agents' value orientations during interaction using an LLM-as-a-judge protocol. Building on this measurement layer, ValueFlow decomposes value drift into agent-level response behavior and system-level structural effects, operationalized by two metrics: beta-susceptibility, which measures an agent's sensitivity to perturbed peer signals, and system susceptibility (SS), which captures how node-level perturbations affect final system outputs. Experiments across multiple model backbones, prompt personas, value dimensions, and network structures show that susceptibility varies widely across values and is strongly shaped by structural topology.
comment: Preprint. Under review. 18 pages, 9 figures
☆ Automating Computational Reproducibility in Social Science: Comparing Prompt-Based and Agent-Based Approaches
Reproducing computational research is often assumed to be as simple as rerunning the original code with provided data. In practice, missing packages, fragile file paths, version conflicts, or incomplete logic frequently cause analyses to fail, even when materials are shared. This study investigates whether large language models and AI agents can automate the diagnosis and repair of such failures, making computational results easier to reproduce and verify. We evaluate this using a controlled reproducibility testbed built from five fully reproducible R-based social science studies. Realistic failures were injected, ranging from simple issues to complex missing logic, and two automated repair workflows were tested in clean Docker environments. The first workflow is prompt-based, repeatedly querying language models with structured prompts of varying context, while the second uses agent-based systems that inspect files, modify code, and rerun analyses autonomously. Across prompt-based runs, reproduction success ranged from 31-79 percent, with performance strongly influenced by prompt context and error complexity. Complex cases benefited most from additional context. Agent-based workflows performed substantially better, with success rates of 69-96 percent across all complexity levels. These results suggest that automated workflows, especially agent-based systems, can significantly reduce manual effort and improve reproduction success across diverse error types. Unlike prior benchmarks, our testbed isolates post-publication repair under controlled failure modes, allowing direct comparison of prompt-based and agent-based approaches.
comment: 12 pages, 5 figures. Submitted to ACM conference
☆ How Do Language Models Understand Tables? A Mechanistic Analysis of Cell Location
While Large Language Models (LLMs) are increasingly deployed for table-related tasks, the internal mechanisms enabling them to process linearized two-dimensional structured tables remain opaque. In this work, we investigate the process of table understanding by dissecting the atomic task of cell location. Through activation patching and complementary interpretability techniques, we delineate the table understanding mechanism into a sequential three-stage pipeline: Semantic Binding, Coordinate Localization, and Information Extraction. We demonstrate that models locate the target cell via an ordinal mechanism that counts discrete delimiters to resolve coordinates. Furthermore, column indices are encoded within a linear subspace that allows for precise steering of model focus through vector arithmetic. Finally, we reveal that models generalize to multi-cell location tasks by multiplexing the identical attention heads identified during atomic location. Our findings provide a comprehensive explanation of table understanding within Transformer architectures.
☆ GISA: A Benchmark for General Information-Seeking Assistant
The advancement of large language models (LLMs) has significantly accelerated the development of search agents capable of autonomously gathering information through multi-turn web interactions. Various benchmarks have been proposed to evaluate such agents. However, existing benchmarks often construct queries backward from answers, producing unnatural tasks misaligned with real-world needs. Moreover, these benchmarks tend to focus on either locating specific information or aggregating information from multiple sources, while relying on static answer sets prone to data contamination. To bridge these gaps, we introduce GISA, a benchmark for General Information-Seeking Assistants comprising 373 human-crafted queries that reflect authentic information-seeking scenarios. GISA features four structured answer formats (item, set, list, and table), enabling deterministic evaluation. It integrates both deep reasoning and broad information aggregation within unified tasks, and includes a live subset with periodically updated answers to resist memorization. Notably, GISA provides complete human search trajectories for every query, offering gold-standard references for process-level supervision and imitation learning. Experiments on mainstream LLMs and commercial search products reveal that even the best-performing model achieves only 19.30\% exact match score, with performance notably degrading on tasks requiring complex planning and comprehensive information gathering. These findings highlight substantial room for future improvement.
☆ Learning Self-Correction in Vision-Language Models via Rollout Augmentation
Self-correction is essential for solving complex reasoning problems in vision-language models (VLMs). However, existing reinforcement learning (RL) methods struggle to learn it, as effective self-correction behaviors emerge only rarely, making learning signals extremely sparse. To address this challenge, we propose correction-specific rollouts (Octopus), an RL rollout augmentation framework that synthesizes dense self-correction examples by recombining existing rollouts. This augmentation simultaneously improves sample efficiency due to rollout reuse and stabilizes RL optimization through balanced supervision. Furthermore, we introduce a response-masking strategy that decouples self-correction from direct reasoning, avoiding signal conflicts and enabling both behaviors to be learned effectively. Building on this, we introduce Octopus-8B, a reasoning VLM with controllable self-correction capability. Across 7 benchmarks, it achieves SoTA performance among open-source VLMs, outperforming the best RLVR baseline by 1.0 score while requiring only $0.72\times$ training time per step.
comment: 17 pages
☆ Characterizing, Evaluating, and Optimizing Complex Reasoning
Large Reasoning Models (LRMs) increasingly rely on reasoning traces with complex internal structures. However, existing work lacks a unified answer to three fundamental questions: (1) what defines high-quality reasoning, (2) how to reliably evaluate long, implicitly structured reasoning traces, and (3) how to use such evaluation signals for reasoning optimization. To address these challenges, we provide a unified perspective. (1) We introduce the ME$^2$ principle to characterize reasoning quality along macro- and micro-level concerning efficiency and effectiveness. (2) Built on this principle, we model reasoning traces as directed acyclic graphs (DAGs) and develop a DAG-based pairwise evaluation method, capturing complex reasoning structures. (3) Based on this method, we construct the TRM-Preference dataset and train a Thinking Reward Model (TRM) to evaluate reasoning quality at scale. Experiments show that thinking rewards serve as an effective optimization signal. At test time, selecting better reasoning leads to better outcomes (up to 19.3% gain), and during RL training, thinking rewards enhance reasoning and performance (up to 3.9% gain) across diverse tasks.
comment: Code and data are available at \url{https://github.com/zzzhr97/TRM}
☆ Beyond Correctness: Learning Robust Reasoning via Transfer
Reinforcement Learning with Verifiable Rewards (RLVR) has recently strengthened LLM reasoning, but its focus on final answer correctness leaves a critical gap: it does not ensure the robustness of the reasoning process itself. We adopt a simple philosophical view, robust reasoning should remain useful beyond the mind that produced it, and treat reasoning as a form of meaning transfer that must survive truncation, reinterpretation, and continuation. Building on this principle, we introduce Reinforcement Learning with Transferable Reward (RLTR), which operationalizes robustness via transfer reward that tests whether a partial reasoning prefix from one model can guide a separate model to the correct answer. This encourages LLMs to produce reasoning that is stable, interpretable, and genuinely generalizable. Our approach improves sampling consistency while improving final answer accuracy, and it reaches comparable performance in substantially fewer training steps. For example, on MATH500, RLTR achieves a +3.6%p gain in Maj@64 compared to RLVR and matches RLVR's average accuracy with roughly 2.5x fewer training steps, providing both more reliable reasoning and significantly more sample efficient.
Large Language Models and Impossible Language Acquisition: "False Promise" or an Overturn of our Current Perspective towards AI
In Chomsky's provocative critique "The False Promise of CHATGPT," Large Language Models (LLMs) are characterized as mere pattern predictors that do not acquire languages via intrinsic causal and self-correction structures like humans, therefore are not able to distinguish impossible languages. It stands as a representative in a fundamental challenge to the intellectual foundations of AI, for it integrally synthesizes major issues in methodologies within LLMs and possesses an iconic a priori rationalist perspective. We examine this famous critic from both the perspective in pre-existing literature of linguistics and psychology as well as a research based on an experiment inquiring the capacity of learning both possible and impossible languages among LLMs. We constructed a set of syntactically impossible languages by applying certain transformations to English. These include reversing whole sentences, and adding negation based on word-count parity. Two rounds of controlled experiments were each conducted on GPT-2 small models and long short-term memory (LSTM) models. Statistical analysis (Welch's t-test) shows GPT2 small models underperform in learning all of the impossible languages compared to their performance on the possible language (p<.001). On the other hand, LSTM models' performance tallies with Chomsky's argument, suggesting the irreplaceable role of the evolution of transformer architecture. Based on theoretical analysis and empirical findings, we propose a new vision within Chomsky's theory towards LLMs, and a shift of theoretical paradigm outside Chomsky, from his "rationalist-romantics" paradigm to functionalism and empiricism in LLMs research.
Prism: Spectral-Aware Block-Sparse Attention
Block-sparse attention is promising for accelerating long-context LLM pre-filling, yet identifying relevant blocks efficiently remains a bottleneck. Existing methods typically employ coarse-grained attention as a proxy for block importance estimation, but often resort to expensive token-level searching or scoring, resulting in significant selection overhead. In this work, we trace the inaccuracy of standard coarse-grained attention via mean pooling to a theoretical root cause: the interaction between mean pooling and Rotary Positional Embeddings (RoPE). We prove that mean pooling acts as a low-pass filter that induces destructive interference in high-frequency dimensions, effectively creating a "blind spot" for local positional information (e.g., slash patterns). To address this, we introduce Prism, a training-free spectral-aware approach that decomposes block selection into high-frequency and low-frequency branches. By applying energy-based temperature calibration, Prism restores the attenuated positional signals directly from pooled representations, enabling block importance estimation using purely block-level operations, thereby improving efficiency. Extensive evaluations confirm that Prism maintains accuracy parity with full attention while delivering up to $\mathbf{5.1\times}$ speedup.
☆ TEAM: Temporal-Spatial Consistency Guided Expert Activation for MoE Diffusion Language Model Acceleration
Diffusion large language models (dLLMs) have recently gained significant attention due to their inherent support for parallel decoding. Building on this paradigm, Mixture-of-Experts (MoE) dLLMs with autoregressive (AR) initialization have further demonstrated strong performance competitive with mainstream AR models. However, we identify a fundamental mismatch between MoE architectures and diffusion-based decoding. Specifically, a large number of experts are activated at each denoising step, while only a small subset of tokens is ultimately accepted, resulting in substantial inference overhead and limiting their deployment in latency-sensitive applications. In this work, we propose TEAM, a plug-and-play framework that accelerates MoE dLLMs by enabling more accepted tokens with fewer activated experts. TEAM is motivated by the observation that expert routing decisions exhibit strong temporal consistency across denoising levels as well as spatial consistency across token positions. Leveraging these properties, TEAM employs three complementary expert activation and decoding strategies, conservatively selecting necessary experts for decoded and masked tokens and simultaneously performing aggressive speculative exploration across multiple candidates. Experimental results demonstrate that TEAM achieves up to 2.2x speedup over vanilla MoE dLLM, with negligible performance degradation. Code is released at https://github.com/PKU-SEC-Lab/TEAM-MoE-dLLM.
☆ Dynamic Long Context Reasoning over Compressed Memory via End-to-End Reinforcement Learning
Large Language Models (LLMs) face significant challenges in long-context processing, including quadratic computational costs, information forgetting, and the context fragmentation inherent in retrieval-augmented generation (RAG). We propose a cognitively inspired framework for efficient long-context inference based on chunk-wise compression and selective memory recall, rather than processing all raw tokens. The framework segments long inputs into chunks and encodes each chunk into compressed memory representations using a learned compressor. A gating module dynamically selects relevant memory blocks, which are then iteratively processed by a reasoning module with an evolving working memory to solve downstream tasks. The compressor and reasoner are jointly optimized via end-to-end reinforcement learning, while the gating module is trained separately as a classifier. Experimental results show that the proposed method achieves competitive accuracy on multi-hop reasoning benchmarks such as RULER-HQA, extrapolates context length from 7K to 1.75M tokens, and offers a favorable accuracy-efficiency trade-off compared to strong long-context baselines. In particular, it achieves up to a 2 times reduction in peak GPU memory usage and a 6 times inference speedup over MemAgent.
comment: 26 pages, 7 figures. Code and models will be released
☆ Reinforcement Learning with Backtracking Feedback NeurIPS 2025
Addressing the critical need for robust safety in Large Language Models (LLMs), particularly against adversarial attacks and in-distribution errors, we introduce Reinforcement Learning with Backtracking Feedback (RLBF). This framework advances upon prior methods, such as BSAFE, by primarily leveraging a Reinforcement Learning (RL) stage where models learn to dynamically correct their own generation errors. Through RL with critic feedback on the model's live outputs, LLMs are trained to identify and recover from their actual, emergent safety violations by emitting an efficient "backtrack by x tokens" signal, then continuing generation autoregressively. This RL process is crucial for instilling resilience against sophisticated adversarial strategies, including middle filling, Greedy Coordinate Gradient (GCG) attacks, and decoding parameter manipulations. To further support the acquisition of this backtracking capability, we also propose an enhanced Supervised Fine-Tuning (SFT) data generation strategy (BSAFE+). This method improves upon previous data creation techniques by injecting violations into coherent, originally safe text, providing more effective initial training for the backtracking mechanism. Comprehensive empirical evaluations demonstrate that RLBF significantly reduces attack success rates across diverse benchmarks and model scales, achieving superior safety outcomes while critically preserving foundational model utility.
comment: NeurIPS 2025
☆ ViGoEmotions: A Benchmark Dataset For Fine-grained Emotion Detection on Vietnamese Texts EACL 2026
Emotion classification plays a significant role in emotion prediction and harmful content detection. Recent advancements in NLP, particularly through large language models (LLMs), have greatly improved outcomes in this field. This study introduces ViGoEmotions -- a Vietnamese emotion corpus comprising 20,664 social media comments in which each comment is classified into 27 fine-grained distinct emotions. To evaluate the quality of the dataset and its impact on emotion classification, eight pre-trained Transformer-based models were evaluated under three preprocessing strategies: preserving original emojis with rule-based normalization, converting emojis into textual descriptions, and applying ViSoLex, a model-based lexical normalization system. Results show that converting emojis into text often improves the performance of several BERT-based baselines, while preserving emojis yields the best results for ViSoBERT and CafeBERT. In contrast, removing emojis generally leads to lower performance. ViSoBERT achieved the highest Macro F1-score of 61.50% and Weighted F1-score of 63.26%. Strong performance was also observed from CafeBERT and PhoBERT. These findings highlight that while the proposed corpus can support diverse architectures effectively, preprocessing strategies and annotation quality remain key factors influencing downstream performance.
comment: Accepted as main paper at EACL 2026
☆ MemAdapter: Fast Alignment across Agent Memory Paradigms via Generative Subgraph Retrieval
Memory mechanism is a core component of LLM-based agents, enabling reasoning and knowledge discovery over long-horizon contexts. Existing agent memory systems are typically designed within isolated paradigms (e.g., explicit, parametric, or latent memory) with tightly coupled retrieval methods that hinder cross-paradigm generalization and fusion. In this work, we take a first step toward unifying heterogeneous memory paradigms within a single memory system. We propose MemAdapter, a memory retrieval framework that enables fast alignment across agent memory paradigms. MemAdapter adopts a two-stage training strategy: (1) training a generative subgraph retriever from the unified memory space, and (2) adapting the retriever to unseen memory paradigms by training a lightweight alignment module through contrastive learning. This design improves the flexibility for memory retrieval and substantially reduces alignment cost across paradigms. Comprehensive experiments on three public evaluation benchmarks demonstrate that the generative subgraph retriever consistently outperforms five strong agent memory systems across three memory paradigms and agent model scales. Notably, MemAdapter completes cross-paradigm alignment within 13 minutes on a single GPU, achieving superior performance over original memory retrievers with less than 5% of training compute. Furthermore, MemAdapter enables effective zero-shot fusion across memory paradigms, highlighting its potential as a plug-and-play solution for agent memory systems.
☆ WorldTravel: A Realistic Multimodal Travel-Planning Benchmark with Tightly Coupled Constraints
Real-world autonomous planning requires coordinating tightly coupled constraints where a single decision dictates the feasibility of all subsequent actions. However, existing benchmarks predominantly feature loosely coupled constraints solvable through local greedy decisions and rely on idealized data, failing to capture the complexity of extracting parameters from dynamic web environments. We introduce \textbf{WorldTravel}, a benchmark comprising 150 real-world travel scenarios across 5 cities that demand navigating an average of 15+ interdependent temporal and logical constraints. To evaluate agents in realistic deployments, we develop \textbf{WorldTravel-Webscape}, a multi-modal environment featuring over 2,000 rendered webpages where agents must perceive constraint parameters directly from visual layouts to inform their planning. Our evaluation of 10 frontier models reveals a significant performance collapse: even the state-of-the-art GPT-5.2 achieves only 32.67\% feasibility in text-only settings, which plummets to 19.33\% in multi-modal environments. We identify a critical Perception-Action Gap and a Planning Horizon threshold at approximately 10 constraints where model reasoning consistently fails, suggesting that perception and reasoning remain independent bottlenecks. These findings underscore the need for next-generation agents that unify high-fidelity visual perception with long-horizon reasoning to handle brittle real-world logistics.
☆ ManifoldKV: Training-Free KV Cache Compression via Euclidean Outlier Detection
Long-context inference is constrained by KV-cache memory, which grows linearly with sequence length; KV-cache compression therefore hinges on reliably selecting which past tokens to retain. Most geometry-based eviction methods score keys by cosine similarity to a global centroid, but cosine is scale-invariant and can discard magnitude cues that distinguish semantically salient tokens. We propose ManifoldKV, a training-free scorer that ranks tokens by Euclidean distance to the key centroid, capturing both angular and radial deviations. On the RULER benchmark, ManifoldKV achieves 95.7% accuracy at 4K-16K contexts with 20% compression; matching the best geometric baseline while improving robustness in two regimes where cosine scoring fails. First, on multi-key retrieval, ManifoldKV reduces directional collisions, achieving 92.4% vs KeyDiff's 77.0% (+15.4 points) on 3-key NIAH at 50% compression. Second, to address dilution and performance collapse of global centroids at 64K context, we introduce WindowedManifoldKV, which restores accuracy to 84.3% at 25% compression, a 49-point recovery over global L2 and +3.2 points over KeyDiff. The method requires only 3 lines of code and works across 4 architectures without tuning.
comment: 18 pages, 5 figures, 18 tables
☆ UReason: Benchmarking the Reasoning Paradox in Unified Multimodal Models
To elicit capabilities for addressing complex and implicit visual requirements, recent unified multimodal models increasingly adopt chain-of-thought reasoning to guide image generation. However, the actual effect of reasoning on visual synthesis remains unclear. We present UReason, a diagnostic benchmark for reasoning-driven image generation that evaluates whether reasoning can be faithfully executed in pixels. UReason contains 2,000 instances across five task families: Code, Arithmetic, Spatial, Attribute, and Text reasoning. To isolate the role of reasoning traces, we introduce an evaluation framework comparing direct generation, reasoning-guided generation, and de-contextualized generation which conditions only on the refined prompt. Across eight open-source unified models, we observe a consistent Reasoning Paradox: Reasoning traces generally improve performance over direct generation, yet retaining intermediate thoughts as conditioning context often hinders visual synthesis, and conditioning only on the refined prompt yields substantial gains. Our analysis suggests that the bottleneck lies in contextual interference rather than insufficient reasoning capacity. UReason provides a principled testbed for studying reasoning in unified models and motivates future methods that effectively integrate reasoning for visual generation while mitigating interference.
comment: Project page: https://ureason.github.io
☆ Latent Reasoning with Supervised Thinking States
Reasoning with a chain-of-thought (CoT) enables Large Language Models (LLMs) to solve complex tasks but incurs significant inference costs due to the generation of long rationales. We propose Thinking States, a method that performs reasoning {\em while} the input is processing. Specifically, Thinking States generates sequences of thinking tokens every few input tokens, transforms the thoughts back into embedding space, and adds them to the following input tokens. This has two key advantages. First, it captures the recurrent nature of CoT, but where the thought tokens are generated as input is processing. Second, since the thoughts are represented as tokens, they can be learned from natural language supervision, and using teacher-forcing, which is parallelizable. Empirically, Thinking States outperforms other latent reasoning methods on multiple reasoning tasks, narrowing the gap to CoT on math problems, and matching its performance on 2-Hop QA with improved latency. On state-tracking tasks, we show Thinking States leads to stronger reasoning behavior than CoT, successfully extrapolating to longer sequences than seen during training.
☆ An Attention-over-Attention Generative Model for Joint Multiple Intent Detection and Slot Filling
In task-oriented dialogue systems, spoken language understanding (SLU) is a critical component, which consists of two sub-tasks, intent detection and slot filling. Most existing methods focus on the single-intent SLU, where each utterance only has one intent. However, in real-world scenarios users usually express multiple intents in an utterance, which poses a challenge for existing dialogue systems and datasets. In this paper, we propose a generative framework to simultaneously address multiple intent detection and slot filling. In particular, an attention-over-attention decoder is proposed to handle the variable number of intents and the interference between the two sub-tasks by incorporating an inductive bias into the process of multi-task learning. Besides, we construct two new multi-intent SLU datasets based on single-intent utterances by taking advantage of the next sentence prediction (NSP) head of the BERT model. Experimental results demonstrate that our proposed attention-over-attention generative model achieves state-of-the-art performance on two public datasets, MixATIS and MixSNIPS, and our constructed datasets.
☆ Improving Data and Reward Design for Scientific Reasoning in Large Language Models
Solving open-ended science questions remains challenging for large language models, particularly due to inherently unreliable supervision and evaluation. The bottleneck lies in the data construction and reward design for scientific post-training. We develop a large-scale, systematic data processing pipeline that transforms heterogeneous open-source science data into Dr. SCI dataset, which comprises of 1M questions across eight STEM subjects, with explicit verifiable/open-ended splits, scalable difficulty annotation, and fine-grained rubrics that operationalize evaluation for open-ended answers. Building on this dataset, we propose the Dr. SCI post-training pipeline, which redesigns the standard SFT -> RL workflow through three components: (i) Exploration-Expanding SFT, which broadens the model's reasoning pattern coverage prior to RL; (ii) Dynamic Difficulty Curriculum, which adapts training data to the model's evolving scientific capability; and (iii) SciRubric-Guided RL, which enables stable reinforcement learning on open-ended scientific questions via rubric-based evaluation with explicit answer correctness. Qwen3-4B-Base trained using Dr.SCI pipeline achieves 63.2 on GPQA-diamond and 32.4 on GPQA-general, consistently improves over strong post-trained baselines such as o1-mini and GPT-4o, demonstrating substantial gains in scientific reasoning, especially in open-ended settings.
☆ JUSTICE: Judicial Unified Synthesis Through Intermediate Conclusion Emulation for Automated Judgment Document Generation
Automated judgment document generation is a significant yet challenging legal AI task. As the conclusive written instrument issued by a court, a judgment document embodies complex legal reasoning. However, existing methods often oversimplify this complex process, particularly by omitting the ``Pre-Judge'' phase, a crucial step where human judges form a preliminary conclusion. This omission leads to two core challenges: 1) the ineffective acquisition of foundational judicial elements, and 2) the inadequate modeling of the Pre-Judge process, which collectively undermine the final document's legal soundness. To address these challenges, we propose \textit{\textbf{J}udicial \textbf{U}nified \textbf{S}ynthesis \textbf{T}hrough \textbf{I}ntermediate \textbf{C}onclusion \textbf{E}mulation} (JUSTICE), a novel framework that emulates the ``Search $\rightarrow$ Pre-Judge $\rightarrow$ Write'' cognitive workflow of human judges. Specifically, it introduces the Pre-Judge stage through three dedicated components: Referential Judicial Element Retriever (RJER), Intermediate Conclusion Emulator (ICE), and Judicial Unified Synthesizer (JUS). RJER first retrieves legal articles and a precedent case to establish a referential foundation. ICE then operationalizes the Pre-Judge phase by generating a verifiable intermediate conclusion. Finally, JUS synthesizes these inputs to craft the final judgment. Experiments on both an in-domain legal benchmark and an out-of-distribution dataset show that JUSTICE significantly outperforms strong baselines, with substantial gains in legal accuracy, including a 4.6\% improvement in prison term prediction. Our findings underscore the importance of explicitly modeling the Pre-Judge process to enhance the legal coherence and accuracy of generated judgment documents.
☆ When Does Context Help? Error Dynamics of Contextual Information in Large Language Models
Contextual information at inference time, such as demonstrations, retrieved knowledge, or interaction history, can substantially improve large language models (LLMs) without parameter updates, yet its theoretical role remains poorly understood beyond specific settings such as in-context learning (ICL). We present a unified theoretical framework for analyzing the effect of arbitrary contextual information in Transformer-based LLMs. Our analysis characterizes contextual influence through output error dynamics. In a single-layer Transformer, we prove that the context-conditioned error vector decomposes additively into the baseline error vector and a contextual correction vector. This yields necessary geometric conditions for error reduction: the contextual correction must align with the negative baseline error and satisfy a norm constraint. We further show that the contextual correction norm admits an explicit upper bound determined by context-query relevance and complementarity. These results extend to multi-context and multi-layer Transformers. Experiments across ICL, retrieval-augmented generation, and memory evolution validate our theory and motivate a principled context selection strategy that improves performance by $0.6\%$.
☆ Knowledge Augmented Entity and Relation Extraction for Legal Documents with Hypergraph Neural Network
With the continuous progress of digitization in Chinese judicial institutions, a substantial amount of electronic legal document information has been accumulated. To unlock its potential value, entity and relation extraction for legal documents has emerged as a crucial task. However, existing methods often lack domain-specific knowledge and fail to account for the unique characteristics of the judicial domain. In this paper, we propose an entity and relation extraction algorithm based on hypergraph neural network (Legal-KAHRE) for drug-related judgment documents. Firstly, we design a candidate span generator based on neighbor-oriented packing strategy and biaffine mechanism, which identifies spans likely to contain entities. Secondly, we construct a legal dictionary with judicial domain knowledge and integrate it into text encoding representation using multi-head attention. Additionally, we incorporate domain-specific cases like joint crimes and combined punishment for multiple crimes into the hypergraph structure design. Finally, we employ a hypergraph neural network for higher-order inference via message passing. Experimental results on the CAIL2022 information extraction dataset demonstrate that our method significantly outperforms existing baseline models.
☆ New Skills or Sharper Primitives? A Probabilistic Perspective on the Emergence of Reasoning in RLVR
Whether Reinforcement Learning with Verifiable Rewards (RLVR) endows Large Language Models (LLMs) with new capabilities or merely elicits latent traces remains a central debate. In this work, we align with the former view, proposing a probabilistic framework where capability is defined by instance-level solvability. We hypothesize that the emergence of complex reasoning can be driven by sharpening atomic step probabilities, which enables models to overcome the exponential decay of success rates inherent in multi-step reasoning chains. Utilizing the Algebrarium framework, we train models exclusively on single-step operations and evaluate their performance on unseen multi-step tasks. Our empirical results confirm that: (1) RLVR incentivizes the exploration of previously inaccessible solution paths by amplifying the model's existing skills; (2) composite performance is strictly governed by the joint probability of atomic steps, evidenced by high Pearson correlation coefficients ($ρ\in [0.69, 0.96]$); and (3) RLVR, acting as a global optimizer, can cause specific skills to be sacrificed to maximize aggregate reward. Our work offers a novel explanation for emergent abilities in RLVR, suggesting that the iterative optimization of solvable problems enables models to develop the capabilities to tackle previously unsolvable scenarios.
comment: 15 pages
☆ Linguistics and Human Brain: A Perspective of Computational Neuroscience
Elucidating the language-brain relationship requires bridging the methodological gap between the abstract theoretical frameworks of linguistics and the empirical neural data of neuroscience. Serving as an interdisciplinary cornerstone, computational neuroscience formalizes the hierarchical and dynamic structures of language into testable neural models through modeling, simulation, and data analysis. This enables a computational dialogue between linguistic hypotheses and neural mechanisms. Recent advances in deep learning, particularly large language models (LLMs), have powerfully advanced this pursuit. Their high-dimensional representational spaces provide a novel scale for exploring the neural basis of linguistic processing, while the "model-brain alignment" framework offers a methodology to evaluate the biological plausibility of language-related theories.
☆ Language Modeling and Understanding Through Paraphrase Generation and Detection
Language enables humans to share knowledge, reason about the world, and pass on strategies for survival and innovation across generations. At the heart of this process is not just the ability to communicate but also the remarkable flexibility in how we can express ourselves. We can express the same thoughts in virtually infinite ways using different words and structures - this ability to rephrase and reformulate expressions is known as paraphrase. Modeling paraphrases is a keystone to meaning in computational language models; being able to construct different variations of texts that convey the same meaning or not shows strong abilities of semantic understanding. If computational language models are to represent meaning, they must understand and control the different aspects that construct the same meaning as opposed to different meanings at a fine granularity. Yet most existing approaches reduce paraphrasing to a binary decision between two texts or to producing a single rewrite of a source, obscuring which linguistic factors are responsible for meaning preservation. In this thesis, I propose that decomposing paraphrases into their constituent linguistic aspects (paraphrase types) offers a more fine-grained and cognitively grounded view of semantic equivalence. I show that even advanced machine learning models struggle with this task. Yet, when explicitly trained on paraphrase types, models achieve stronger performance on related paraphrase tasks and downstream applications. For example, in plagiarism detection, language models trained on paraphrase types surpass human baselines: 89.6% accuracy compared to 78.4% for plagiarism cases from Wikipedia, and 66.5% compared to 55.7% for plagiarism of scientific papers from arXiv. In identifying duplicate questions on Quora, models trained with paraphrase types improve over models trained on binary pairs. Furthermore, I demonstrate that...
comment: PhD dissertation, University of Göttingen Germany, 2025. 182 pages
☆ Language Predicts Identity Fusion Across Cultures and Reveals Divergent Pathways to Violence
In light of increasing polarization and political violence, understanding the psychological roots of extremism is increasingly important. Prior research shows that identity fusion predicts willingness to engage in extreme acts. We evaluate the Cognitive Linguistic Identity Fusion Score, a method that uses cognitive linguistic patterns, LLMs, and implicit metaphor to measure fusion from language. Across datasets from the United Kingdom and Singapore, this approach outperforms existing methods in predicting validated fusion scores. Applied to extremist manifestos, two distinct high-fusion pathways to violence emerge: ideologues tend to frame themselves in terms of group, forming kinship bonds; whereas grievance-driven individuals frame the group in terms of their personal identity. These results refine theories of identity fusion and provide a scalable tool aiding fusion research and extremism detection.
comment: Initial submitted version
☆ On convexity and efficiency in semantic systems
There are two widely held characterizations of human semantic category systems: (1) they form convex partitions of conceptual spaces, and (2) they are efficient for communication. While prior work observed that convexity and efficiency co-occur in color naming, the analytical relation between them and why they co-occur have not been well understood. We address this gap by combining analytical and empirical analyses that build on the Information Bottleneck (IB) framework for semantic efficiency. First, we show that convexity and efficiency are distinct in the sense that neither entails the other: there are convex systems which are inefficient, and optimally-efficient systems that are non-convex. Crucially, however, the IB-optimal systems are mostly convex in the domain of color naming, explaining the main empirical basis for the convexity approach. Second, we show that efficiency is a stronger predictor for discriminating attested color naming systems from hypothetical variants, with convexity adding negligible improvement on top of that. Finally, we discuss a range of empirical phenomena that convexity cannot account for but efficiency can. Taken together, our work suggests that while convexity and efficiency can yield similar structural observations, they are fundamentally distinct, with efficiency providing a more comprehensive account of semantic typology.
☆ Document Reconstruction Unlocks Scalable Long-Context RLVR
Reinforcement Learning with Verifiable Rewards~(RLVR) has become a prominent paradigm to enhance the capabilities (i.e.\ long-context) of Large Language Models~(LLMs). However, it often relies on gold-standard answers or explicit evaluation rubrics provided by powerful teacher models or human experts, which are costly and time-consuming. In this work, we investigate unsupervised approaches to enhance the long-context capabilities of LLMs, eliminating the need for heavy human annotations or teacher models' supervision. Specifically, we first replace a few paragraphs with special placeholders in a long document. LLMs are trained through reinforcement learning to reconstruct the document by correctly identifying and sequencing missing paragraphs from a set of candidate options. This training paradigm enables the model to capture global narrative coherence, significantly boosting long-context performance. We validate the effectiveness of our method on two widely used benchmarks, RULER and LongBench~v2. While acquiring noticeable gains on RULER, it can also achieve a reasonable improvement on LongBench~v2 without any manually curated long-context QA data. Furthermore, we conduct extensive ablation studies to analyze the impact of reward design, data curation strategies, training schemes, and data scaling effects on model performance. We publicly release our code, data, and models.
☆ When and How Much to Imagine: Adaptive Test-Time Scaling with World Models for Visual Spatial Reasoning
Despite rapid progress in Multimodal Large Language Models (MLLMs), visual spatial reasoning remains unreliable when correct answers depend on how a scene would appear under unseen or alternative viewpoints. Recent work addresses this by augmenting reasoning with world models for visual imagination, but questions such as when imagination is actually necessary, how much of it is beneficial, and when it becomes harmful, remain poorly understood. In practice, indiscriminate imagination can increase computation and even degrade performance by introducing misleading evidence. In this work, we present an in-depth analysis of test-time visual imagination as a controllable resource for spatial reasoning. We study when static visual evidence is sufficient, when imagination improves reasoning, and how excessive or unnecessary imagination affects accuracy and efficiency. To support this analysis, we introduce AVIC, an adaptive test-time framework with world models that explicitly reasons about the sufficiency of current visual evidence before selectively invoking and scaling visual imagination. Across spatial reasoning benchmarks (SAT, MMSI) and an embodied navigation benchmark (R2R), our results reveal clear scenarios where imagination is critical, marginal, or detrimental, and show that selective control can match or outperform fixed imagination strategies with substantially fewer world-model calls and language tokens. Overall, our findings highlight the importance of analyzing and controlling test-time imagination for efficient and reliable spatial reasoning.
comment: the first two authors are equally contributed. Project page: https://adaptive-visual-tts.github.io/
☆ When Benign Inputs Lead to Severe Harms: Eliciting Unsafe Unintended Behaviors of Computer-Use Agents
Although computer-use agents (CUAs) hold significant potential to automate increasingly complex OS workflows, they can demonstrate unsafe unintended behaviors that deviate from expected outcomes even under benign input contexts. However, exploration of this risk remains largely anecdotal, lacking concrete characterization and automated methods to proactively surface long-tail unintended behaviors under realistic CUA scenarios. To fill this gap, we introduce the first conceptual and methodological framework for unintended CUA behaviors, by defining their key characteristics, automatically eliciting them, and analyzing how they arise from benign inputs. We propose AutoElicit: an agentic framework that iteratively perturbs benign instructions using CUA execution feedback, and elicits severe harms while keeping perturbations realistic and benign. Using AutoElicit, we surface hundreds of harmful unintended behaviors from state-of-the-art CUAs such as Claude 4.5 Haiku and Opus. We further evaluate the transferability of human-verified successful perturbations, identifying persistent susceptibility to unintended behaviors across various other frontier CUAs. This work establishes a foundation for systematically analyzing unintended behaviors in realistic computer-use settings.
comment: Project Homepage: https://osu-nlp-group.github.io/AutoElicit/
☆ CoRect: Context-Aware Logit Contrast for Hidden State Rectification to Resolve Knowledge Conflicts
Retrieval-Augmented Generation (RAG) often struggles with knowledge conflicts, where model-internal parametric knowledge overrides retrieved evidence, leading to unfaithful outputs. Existing approaches are often limited, relying either on superficial decoding adjustments or weight editing that necessitates ground-truth targets. Through layer-wise analysis, we attribute this failure to a parametric suppression phenomenon: specifically, in deep layers, certain FFN layers overwrite context-sensitive representations with memorized priors. To address this, we propose CoRect (Context-Aware Logit Contrast for Hidden State Rectification). By contrasting logits from contextualized and non-contextualized forward passes, CoRect identifies layers that exhibit high parametric bias without requiring ground-truth labels. It then rectifies the hidden states to preserve evidence-grounded information. Across question answering (QA) and summarization benchmarks, CoRect consistently improves faithfulness and reduces hallucinations compared to strong baselines.
Pretraining with Token-Level Adaptive Latent Chain-of-Thought
Scaling large language models by increasing parameters and training data is increasingly constrained by limited high-quality corpora and rising communication costs. This work explores an alternative axis: increasing per-token computation without expanding parameters, by internalizing latent Chain-of-Thought (CoT) into pretraining. We propose Pretraining with Token-Level Adaptive Latent CoT (adaptive latent CoT), where the model generates a variable-length latent CoT trajectory before emitting each token -- allocating longer trajectories to difficult tokens and shorter (or even zero) trajectories to easy ones. Importantly, this behavior emerges naturally from one-stage pretraining on general text and reduces computation in both training and inference via token-wise adaptive halting. Experiments with Llama architectures show that adaptive latent CoT consistently improves language modeling perplexity and broad downstream accuracy, even with fewer training FLOPs than prior recurrent baselines.
☆ DrugR: Optimizing Molecular Drugs through LLM-based Explicit Reasoning
Molecule generation and optimization is a fundamental task in chemical domain. The rapid development of intelligent tools, especially large language models (LLMs) with powerful knowledge reserves and interactive capabilities, has provided new paradigms for it. Nevertheless, the intrinsic challenge for LLMs lies in the complex implicit relationship between molecular structure and pharmacological properties and the lack of corresponding labeled data. To bridge this gap, we propose DrugR, an LLM-based method that introduces explicit, step-by-step pharmacological reasoning into the optimization process. Our approach integrates domain-specific continual pretraining, supervised fine-tuning via reverse data engineering, and self-balanced multi-granular reinforcement learning. This framework enables DrugR to effectively improve key ADMET properties while preserving the original molecule's core efficacy. Experimental results demonstrate that DrugR achieves comprehensive enhancement across multiple properties without compromising structural similarity or target binding affinity. Importantly, its explicit reasoning process provides clear, interpretable rationales for each optimization step, yielding actionable design insights and advancing toward automated, knowledge-driven scientific discovery. Our code and model checkpoints are open-sourced to foster future research.
LLMs and people both learn to form conventions -- just not with each other
Humans align to one another in conversation -- adopting shared conventions that ease communication. We test whether LLMs form the same kinds of conventions in a multimodal communication game. Both humans and LLMs display evidence of convention-formation (increasing the accuracy and consistency of their turns while decreasing their length) when communicating in same-type dyads (humans with humans, AI with AI). However, heterogenous human-AI pairs fail -- suggesting differences in communicative tendencies. In Experiment 2, we ask whether LLMs can be induced to behave more like human conversants, by prompting them to produce superficially humanlike behavior. While the length of their messages matches that of human pairs, accuracy and lexical overlap in human-LLM pairs continues to lag behind that of both human-human and AI-AI pairs. These results suggest that conversational alignment requires more than just the ability to mimic previous interactions, but also shared interpretative biases toward the meanings that are conveyed.
comment: 10 pages, 4 figures
☆ Dreaming in Code for Curriculum Learning in Open-Ended Worlds
Open-ended learning frames intelligence as emerging from continual interaction with an ever-expanding space of environments. While recent advances have utilized foundation models to programmatically generate diverse environments, these approaches often focus on discovering isolated behaviors rather than orchestrating sustained progression. In complex open-ended worlds, the large combinatorial space of possible challenges makes it difficult for agents to discover sequences of experiences that remain consistently learnable. To address this, we propose Dreaming in Code (DiCode), a framework in which foundation models synthesize executable environment code to scaffold learning toward increasing competence. In DiCode, "dreaming" takes the form of materializing code-level variations of the world. We instantiate DiCode in Craftax, a challenging open-ended benchmark characterized by rich mechanics and long-horizon progression. Empirically, DiCode enables agents to acquire long-horizon skills, achieving a $16\%$ improvement in mean return over the strongest baseline and non-zero success on late-game combat tasks where prior methods fail. Our results suggest that code-level environment design provides a practical mechanism for curriculum control, enabling the construction of intermediate environments that bridge competence gaps in open-ended worlds. Project page and source code are available at https://konstantinosmitsides.github.io/dreaming-in-code and https://github.com/konstantinosmitsides/dreaming-in-code.
comment: 11 pages (main text), 90 pages total. Project page: https://konstantinosmitsides.github.io/dreaming-in-code
☆ Spherical Steering: Geometry-Aware Activation Rotation for Language Models
Inference-time steering has emerged as a promising paradigm for controlling language models (LMs) without the cost of retraining. However, standard approaches typically rely on activation addition, a geometric operation that inevitably alters the magnitude of hidden representations. This raises concerns about representation collapse and degradation of open-ended generation capabilities. In this work, we explore Spherical Steering, a training-free primitive that resolves this trade-off through activation rotation. Rather than shifting activations with a fixed vector, our method rotates them along a geodesic toward a target direction, guiding the activation toward the target concept while preserving the integrity of the signal. To further enhance adaptivity, we incorporate a confidence gate that dynamically modulates steering strength based on input uncertainty. Extensive experiments across multiple-choice benchmarks demonstrate that Spherical Steering significantly outperforms addition-based baselines (notably by +10% on TruthfulQA, COPA, and Storycloze), while simultaneously maintaining the model's general open-ended generation quality. This work highlights the value of geometric consistency, suggesting that norm-preserving rotation is a robust and effective primitive for precise inference-time control.
comment: The code is at: https://github.com/chili-lab/Spherical-Steering
♻ ☆ Rethinking Memory Mechanisms of Foundation Agents in the Second Half: A Survey
The research of artificial intelligence is undergoing a paradigm shift from prioritizing model innovations over benchmark scores towards emphasizing problem definition and rigorous real-world evaluation. As the field enters the "second half," the central challenge becomes real utility in long-horizon, dynamic, and user-dependent environments, where agents face context explosion and must continuously accumulate, manage, and selectively reuse large volumes of information across extended interactions. Memory, with hundreds of papers released this year, therefore emerges as the critical solution to fill the utility gap. In this survey, we provide a unified view of foundation agent memory along three dimensions: memory substrate (internal and external), cognitive mechanism (episodic, semantic, sensory, working, and procedural), and memory subject (agent- and user-centric). We then analyze how memory is instantiated and operated under different agent topologies and highlight learning policies over memory operations. Finally, we review evaluation benchmarks and metrics for assessing memory utility, and outline various open challenges and future directions.
♻ ☆ Safety Subspaces are Not Linearly Distinct: A Fine-Tuning Case Study ICLR 2026
Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. However, this behavior is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this perspective. We examine whether safety-relevant behavior is concentrated in specific linear subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in activations. Across both weight and activation spaces, our findings are consistent: subspaces that amplify safe behaviors also amplify useful ones, and prompts with different safety implications activate overlapping representations. Rather than residing in distinct directions, we show that safety is highly entangled with the general learning components of the model. This suggests that subspace-based defenses face fundamental limitations and underscores the need for alternative strategies to preserve safety under continued training. We corroborate these findings with multiple experiments on five open-source LLMs from the Llama and Qwen families. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.
comment: ICLR 2026. Kaustubh Ponkshe, Shaan Shah, and Raghav Singhal contributed equally to this work
♻ ☆ Which course? Discourse! Teaching Discourse and Generation in the Era of LLMs EACL 2026
The field of NLP has undergone vast, continuous transformations over the past few years, sparking debates going beyond discipline boundaries. This begs important questions in education: how do we design courses that bridge sub-disciplines in this shifting landscape? This paper explores this question from the angle of discourse processing, an area with rich linguistic insights and computational models for the intentional, attentional, and coherence structure of language. Discourse is highly relevant for open-ended or long-form text generation, yet this connection is under-explored in existing undergraduate curricula. We present a new course, "Computational Discourse and Natural Language Generation". The course is collaboratively designed by a team with complementary expertise and was offered for the first time in Fall 2025 as an upper-level undergraduate course, cross-listed between Linguistics and Computer Science. Our philosophy is to deeply integrate the theoretical and empirical aspects, and create an exploratory mindset inside the classroom and in the assignments. This paper describes the course in detail and concludes with takeaways from an independent survey as well as our vision for future directions.
comment: accepted to the TeachNLP 2026 workshop (co-located with EACL 2026), camera-ready, 14 pages; aclpubcheck fixed and ref updated
♻ ☆ ABBA-Adapters: Efficient and Expressive Fine-Tuning of Foundation Models ICLR 2026
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget, a property we validate through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: ICLR 2026. Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
♻ ☆ Clause-Internal or Clause-External? Testing Turkish Reflexive Binding in Adapted versus Chain of Thought Large Language Models
This study evaluates whether state-of-the-art large language models capture the binding relations of Turkish reflexive pronouns. We construct a balanced evaluation set of 100 Turkish sentences that systematically pit local against non-local antecedents for the reflexives kendi and kendisi. We compare two contrasting systems: an OpenAI chain-of-thought model optimized for multi-step reasoning and Trendyol-LLM-7B-base-v0.1, a LLaMA 2 derived model extensively fine-tuned on Turkish data. Antecedent choice is assessed using a combined paradigm that integrates sentence-level perplexity with a forced-choice comparison between minimally differing continuations. Overall, Trendyol-LLM favors local bindings in approximately 70 percent of trials, exhibiting a robust locality bias consistent with a preference for structurally proximate antecedents. By contrast, the OpenAI model (o1 Mini) distributes its choices nearly evenly between local and long-distance readings, suggesting weaker or less consistent sensitivity to locality in this binding configuration. Taken together, these results reveal a marked contrast in binding behavior across the two systems and motivate closer analysis of how model architecture, training data, and inference-time reasoning strategies shape the representation of Turkish anaphoric dependencies.
♻ ☆ Randomized Masked Finetuning: An Efficient Way to Mitigate Memorization of PIIs in LLMs
The current literature on memorization in Natural Language Models, especially Large Language Models (LLMs), poses severe security and privacy risks, as models tend to memorize personally identifying information (PIIs) from training data. We introduce Randomized Masked Fine-Tuning (RMFT), a novel privacy-preserving fine-tuning technique that reduces PII memorization while minimizing performance impact. Using the Enron Email Dataset, we demonstrate that RMFT achieves an 80.81% reduction in Total Extraction Rate and 80.17% reduction in Seen Extraction Rate compared to baseline fine-tuning, outperforming deduplication methods while maintaining only a 5.73% increase in perplexity. We present MaxTER, a Pareto-optimal evaluation framework for assessing privacy-utility tradeoffs, and show the performance of RMFT vs Deduplication by Area Under The Response Curve (AURC) metric.
♻ ☆ Bolmo: Byteifying the Next Generation of Language Models
Recent advances in generative AI have been largely driven by large language models (LLMs), deep neural networks that operate over discrete units called tokens. To represent text, the vast majority of LLMs use words or word fragments as the tokens, known as subword tokenization. Subword tokenization obscures fine-grained information, which is problematic, especially for scientific data - such as computer code or biological sequences - where meaning depends on the individual characters. Models that instead operate directly on the byte encoding of text avoid these limitations, but until now they have lagged behind subword-based models in performance. Here we introduce Bolmo, a family of fully open byte-level LLMs that approach the capabilities of subword-based systems. Using a two-stage conversion procedure, we transform existing subword-based models into byte-level models with minimal additional training. The resulting models outperform prior byte-level approaches and excel on character-level reasoning tasks, while remaining competitive across standard benchmarks. By efficiently processing byte-level information, these models achieve practical inference speeds and can be adapted at low cost using the existing ecosystem around the source LLM. Our results remove a long-standing performance barrier to end-to-end byte-level language modeling, demonstrating that models operating on raw text encodings can scale competitively while offering advantages in domains requiring fine-grained textual understanding.
♻ ☆ From Pragmas to Partners: A Symbiotic Evolution of Agentic High-Level Synthesis
The rise of large language models has sparked interest in AI-driven hardware design, raising the question: does high-level synthesis (HLS) still matter in the agentic era? We argue that HLS remains essential. While we expect mature agentic hardware systems to leverage both HLS and RTL, this paper focuses on HLS and its role in enabling agentic optimization. HLS offers faster iteration cycles, portability, and design permutability that make it a natural layer for agentic optimization. This position paper makes three contributions. First, we explain why HLS serves as a practical abstraction layer and a golden reference for agentic hardware design. Second, we identify key limitations of current HLS tools, namely inadequate performance feedback, rigid interfaces, and limited debuggability that agents are uniquely positioned to address. Third, we propose a taxonomy for the symbiotic evolution of agentic HLS, clarifying how responsibility shifts from human designers to AI agents as systems advance from copilots to autonomous design partners.
♻ ☆ InftyThink+: Effective and Efficient Infinite-Horizon Reasoning via Reinforcement Learning
Large reasoning models achieve strong performance by scaling inference-time chain-of-thought, but this paradigm suffers from quadratic cost, context length limits, and degraded reasoning due to lost-in-the-middle effects. Iterative reasoning mitigates these issues by periodically summarizing intermediate thoughts, yet existing methods rely on supervised learning or fixed heuristics and fail to optimize when to summarize, what to preserve, and how to resume reasoning. We propose InftyThink+, an end-to-end reinforcement learning framework that optimizes the entire iterative reasoning trajectory, building on model-controlled iteration boundaries and explicit summarization. InftyThink+ adopts a two-stage training scheme with supervised cold-start followed by trajectory-level reinforcement learning, enabling the model to learn strategic summarization and continuation decisions. Experiments on DeepSeek-R1-Distill-Qwen-1.5B show that InftyThink+ improves accuracy by 21% on AIME24 and outperforms conventional long chain-of-thought reinforcement learning by a clear margin, while also generalizing better to out-of-distribution benchmarks. Moreover, InftyThink+ significantly reduces inference latency and accelerates reinforcement learning training, demonstrating improved reasoning efficiency alongside stronger performance.
comment: Project Page: https://zju-real.github.io/InftyThink-Plus Code: https://github.com/ZJU-REAL/InftyThink-Plus
♻ ☆ IDALC: A Semi-Supervised Framework for Intent Detection and Active Learning based Correction
Voice-controlled dialog systems have become immensely popular due to their ability to perform a wide range of actions in response to diverse user queries. These agents possess a predefined set of skills or intents to fulfill specific user tasks. But every system has its own limitations. There are instances where, even for known intents, if any model exhibits low confidence, it results in rejection of utterances that necessitate manual annotation. Additionally, as time progresses, there may be a need to retrain these agents with new intents from the system-rejected queries to carry out additional tasks. Labeling all these emerging intents and rejected utterances over time is impractical, thus calling for an efficient mechanism to reduce annotation costs. In this paper, we introduce IDALC (Intent Detection and Active Learning based Correction), a semi-supervised framework designed to detect user intents and rectify system-rejected utterances while minimizing the need for human annotation. Empirical findings on various benchmark datasets demonstrate that our system surpasses baseline methods, achieving a 5-10% higher accuracy and a 4-8% improvement in macro-F1. Remarkably, we maintain the overall annotation cost at just 6-10% of the unlabelled data available to the system. The overall framework of IDALC is shown in Fig. 1
comment: Paper accepted in IEEE Transactions on Artificial Intelligence (October 2025)
♻ ☆ Diffusion-Inspired Masked Fine-Tuning for Knowledge Injection in Autoregressive LLMs
Large language models (LLMs) are often used in environments where facts evolve, yet factual knowledge updates via fine-tuning on unstructured text often suffers from 1) reliance on compute-heavy paraphrase augmentation and 2) the reversal curse. Recent studies show diffusion large language models (dLLMs) require fewer training samples to achieve lower loss in pre-training and are more resistant to the reversal curse, suggesting dLLMs may learn new knowledge more easily than autoregressive LLMs (arLLMs). We test this hypothesis in controlled knowledge fine-tuning experiments and find that while arLLMs rely on paraphrase augmentation to generalize knowledge text into question-answering (QA) capability, dLLMs do not require paraphrases to achieve high QA accuracy. To further investigate whether the demasking objective alone can induce such a knowledge injection advantage in dLLMs regardless of their diffusion denoising paradigm, we propose masked fine-tuning for arLLMs, which prompts an arLLM to reconstruct the original text given a masked version in context. The masked fine-tuning for arLLMs substantially improves the efficacy of knowledge injection, i.e. no paraphrase needed and resistant to the reversal curse, closing the gap between arLLMs and dLLMs. We also demonstrate that the same demasking objective improves supervised fine-tuning (SFT) on math tasks over standard SFT, suggesting broader applicability of the demasking objective.
♻ ☆ SearchAttack: Red-Teaming LLMs against Knowledge-to-Action Threats under Online Web Search
Recently, people have suffered from LLM hallucination and have become increasingly aware of the reliability gap of LLMs in open and knowledge-intensive tasks. As a result, they have increasingly turned to search-augmented LLMs to mitigate this issue. However, LLM-driven search also becomes an attractive target for misuse. Once the returned content directly contains targeted, ready-to-use harmful instructions or takeaways for users, it becomes difficult to withdraw or undo such exposure. To investigate LLMs' unsafe search behavior issues, we first propose \textbf{\textit{SearchAttack}} for red-teaming, which (1) rephrases harmful semantics via dense and benign knowledge to evade direct in-context decoding, thus eliciting unsafe information retrieval, (2) stress-tests LLMs' reward-chasing bias by steering them to synthesize unsafe retrieved content. We also curate an emergent, domain-specific illicit activity benchmark for search-based threat assessment, and introduce a fact-checking framework to ground and quantify harm in both offline and online attack settings. Extensive experiments are conducted to red-team the search-augmented LLMs for responsible vulnerability assessment. Empirically, SearchAttack demonstrates strong effectiveness in attacking these systems. We also find that LLMs without web search can still be steered into harmful content output due to their information-seeking stereotypical behaviors.
comment: Misusing LLM-driven search for harmful information-seeking poses serious risks. We characterize its usability and impact through a comprehensive red-teaming and evaluation
♻ ☆ Certainty-Guided Reasoning in Large Language Models: A Dynamic Thinking Budget Approach
Large reasoning language models are typically run with fixed inference budgets, which can waste computation or terminate reasoning prematurely. We introduce Certainty-Guided Reasoning (CGR), a model-agnostic adaptive inference procedure that periodically probes whether the current reasoning supports a confident final answer and terminates early once a target certainty threshold is reached, otherwise continuing until the end-of-thinking token or the budget limit. Certainty is estimated from the model's predicted probabilities over the answer tokens, yielding a lightweight stopping criterion. On AIME2025, CGR preserves baseline accuracy while reducing token usage, providing a tunable certainty-efficiency trade-off that can eliminate millions of tokens in aggregate. Across 64 random seeds, CGR exhibits consistent behavior. We also introduce a Grade metric that penalizes incorrect answers and permits abstention, capturing risk-sensitive performance. Results show that CGR improves Grade by abstaining when certainty remains low.
♻ ☆ NRR-Phi: Text-to-State Mapping for Ambiguity Preservation in LLM Inference
Large language models exhibit a systematic tendency toward early semantic commitment: given ambiguous input, they collapse multiple valid interpretations into a single response before sufficient context is available. We present a formal framework for text-to-state mapping ($φ: \mathcal{T} \to \mathcal{S}$) that transforms natural language into a non-collapsing state space where multiple interpretations coexist. The mapping decomposes into three stages: conflict detection, interpretation extraction, and state construction. We instantiate $φ$ with a hybrid extraction pipeline combining rule-based segmentation for explicit conflict markers (adversative conjunctions, hedging expressions) with LLM-based enumeration of implicit ambiguity (epistemic, lexical, structural). On a test set of 68 ambiguous sentences, the resulting states preserve interpretive multiplicity: mean state entropy $H = 1.087$ bits across ambiguity categories, compared to $H = 0$ for collapse-based baselines. We additionally instantiate the rule-based conflict detector for Japanese markers to illustrate cross-lingual portability. This framework extends Non-Resolution Reasoning (NRR) by providing the missing algorithmic bridge between text and the NRR state space, enabling architectural collapse deferment in LLM inference. Design principles for state-to-state transformations are detailed in the Appendix, with empirical validation on 580 test cases showing 0% collapse for principle-satisfying operators versus up to 17.8% for violating operators.
comment: 24 pages, 5 figures, 7 tables. Part of the NRR research program. Clarified operator notation and appendix validation details; updated figures and reference formatting
♻ ☆ ExpliCa: Evaluating Explicit Causal Reasoning in Large Language Models ACL 2025
Large Language Models (LLMs) are increasingly used in tasks requiring interpretive and inferential accuracy. In this paper, we introduce ExpliCa, a new dataset for evaluating LLMs in explicit causal reasoning. ExpliCa uniquely integrates both causal and temporal relations presented in different linguistic orders and explicitly expressed by linguistic connectives. The dataset is enriched with crowdsourced human acceptability ratings. We tested LLMs on ExpliCa through prompting and perplexity-based metrics. We assessed seven commercial and open-source LLMs, revealing that even top models struggle to reach 0.80 accuracy. Interestingly, models tend to confound temporal relations with causal ones, and their performance is also strongly influenced by the linguistic order of the events. Finally, perplexity-based scores and prompting performance are differently affected by model size.
comment: Accepted for publication in Findings of ACL 2025
♻ ☆ From Rows to Reasoning: A Retrieval-Augmented Multimodal Framework for Spreadsheet Understanding
Large Language Models (LLMs) struggle to reason over large-scale enterprise spreadsheets containing thousands of numeric rows, multiple linked sheets, and embedded visual content such as charts and receipts. Prior state-of-the-art spreadsheet reasoning approaches typically rely on single-sheet compression or full-context encoding, which limits scalability and fails to reflect how real users interact with complex, multimodal workbooks. We introduce FRTR-Bench, the first large-scale benchmark for multimodal spreadsheet reasoning, comprising 30 enterprise-grade Excel workbooks spanning nearly four million cells and more than 50 embedded images. To address these challenges, we present From Rows to Reasoning (FRTR), an advanced, multimodal retrieval-augmented generation framework that decomposes Excel workbooks into granular row, column, and block embeddings, employs hybrid lexical-dense retrieval with Reciprocal Rank Fusion (RRF), and integrates multimodal embeddings to reason over both numerical and visual information. We tested FRTR on six LLMs, achieving 74% answer accuracy on FRTR-Bench with Claude Sonnet 4.5, a substantial improvement over prior state-of-the-art approaches that reached only 24%. On the SpreadsheetLLM benchmark, FRTR achieved 87% accuracy with GPT-5 while reducing token usage by roughly 50% compared to direct serialization methods.
♻ ☆ Training Language Models to Explain Their Own Computations
Can language models (LMs) learn to faithfully describe their internal computations? Are they better able to describe themselves than other models? We study the extent to which LMs' privileged access to their own internals can be leveraged to produce new techniques for explaining their behavior. Using existing interpretability techniques as a source of ground truth, we fine-tune LMs to generate natural language descriptions of (1) the information encoded by LM features, (2) the causal structure of LMs' internal activations, and (3) the influence of specific input tokens on LM outputs. When trained with only tens of thousands of example explanations, explainer models exhibit non-trivial generalization to new queries. This generalization appears partly attributable to explainer models' privileged access to their own internals: using a model to explain its own computations generally works better than using a *different* model to explain its computations (even if the explainer model is significantly more capable than the target). Our results suggest not only that LMs can learn to reliably explain their internal computations, but that such explanations offer a scalable complement to existing interpretability methods. Code and data at https://github.com/TransluceAI/introspective-interp
comment: 23 pages, 8 tables, 7 figures. Code and data at https://github.com/TransluceAI/introspective-interp
♻ ☆ NRR-Core: Non-Resolution Reasoning as a Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse--collapsing multiple valid interpretations into single outputs--stems from classical identity assumptions in neural architectures. We propose Non-Resolution Reasoning (NRR), a framework treating ambiguity retention as a valid reasoning mode. NRR introduces three principles: (1) Non-Identity ($A \neq A$)--the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$)--entities share partial structural overlap without being identical; (3) Non-Resolution--conflicting interpretations coexist without forced convergence. We formalize these through Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We illustrate NRR through case studies in paradox handling, creative generation, and context-dependent reasoning. Functional verification in a synthetic two-turn disambiguation task shows NRR-lite maintains high entropy ($H = 0.91$ bits, near-maximum $1.0$) at ambiguous turns while standard architectures collapse early ($H = 0.15$ bits), preserving interpretive flexibility until context arrives. NRR challenges the assumption that meaning must collapse to be useful. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 10 pages, 2 figures, 2 tables. Part of the NRR research program. Updated entropy measurement to log base 2 (bits); added title prefix NRR-Core for series identification
♻ ☆ From Token to Line: Enhancing Code Generation with a Long-Term Perspective
The emergence of large language models (LLMs) has significantly promoted the development of code generation task, sparking a surge in pertinent literature. Current research is hindered by redundant generation results and a tendency to overfit local patterns in the short term. Although existing studies attempt to alleviate the issue by adopting a multi-token prediction strategy, there remains limited focus on choosing the appropriate processing length for generations. By analyzing the attention between tokens during the generation process of LLMs, it can be observed that the high spikes of the attention scores typically appear at the end of lines. This insight suggests that it is reasonable to treat each line of code as a fundamental processing unit and generate them sequentially. Inspired by this, we propose the LSR-MCTS algorithm, which leverages MCTS to determine the code line-by-line and select the optimal path. Further, we integrate a self-refine mechanism at each node to enhance diversity and generate higher-quality programs through error correction. Extensive experiments and comprehensive analyses on three public coding benchmarks demonstrate that our method outperforms the state-of-the-art performance approaches.
♻ ☆ Language Bottleneck Models for Qualitative Knowledge State Modeling
Accurately assessing student knowledge is central to education. Cognitive Diagnosis (CD) models estimate student proficiency at a fixed point in time, while Knowledge Tracing (KT) methods model evolving knowledge states to predict future performance. However, existing approaches either provide quantitative concept mastery estimates with limited expressivity (CD, probabilistic KT) or prioritize predictive accuracy at the cost of interpretability (deep learning KT). We propose Language Bottleneck Models (LBMs), where an encoder LLM produces textual knowledge state summaries, which a decoder LLM uses to predict future performance. This produces interpretable summaries that can express nuanced insights--such as misconceptions--that CD and KT models cannot capture. Extensive validation across synthetic and real-world datasets shows LBMs reveal qualitative insights beyond what CD and KT models can capture, while achieving competitive accuracy with improved sample efficiency. We demonstrate that the encoder and decoder can be fine-tuned with reinforcement learning and supervised fine-tuning respectively to improve both summary quality and predictive performance.
♻ ☆ Tracing Multilingual Representations in LLMs with Cross-Layer Transcoders
Multilingual Large Language Models (LLMs) can process many languages, yet how they internally represent this diversity remains unclear. Do they form shared multilingual representations with language-specific decoding, and if so, why does performance favor the dominant training language? To address this, we train models on different multilingual mixtures and analyze their internal mechanisms using Cross-Layer Transcoders (CLTs) and Attribution Graphs. Our results reveal multilingual shared representations: the model employs highly similar features across languages, while language-specific decoding emerges in later layers. Training models without English shows identical multilingual shared space structures. Decoding relies partly on a small set of high-frequency features in the final layers, which linearly encode language identity from early layers. Intervening on these features allows one language to be suppressed and another substituted. Finally, to explain non-English failures, we perform a Model-Diffing experiment: underperformance arises from dim late-layer features, weak middle-layer clusters, and tokenizer bias toward English that forces early layers to specialize in word reassembly. Finetuning strengthens these features and their links, improving token assembly and language-specific decoding, providing a mechanistic explanation for multilingual gaps. Our models and CLTs are available at https://huggingface.co/collections/CausalNLP/multilingual-clts and https://huggingface.co/collections/CausalNLP/multilingual-gpt2-models. Our code is available at: https://github.com/abirharrasse/MultilingualCLTs
comment: 42 pages, 43 figures, under review. Extensive supplementary materials. Code and models available at https://huggingface.co/collections/CausalNLP/multilingual-tinystories-6862b6562414eb84d183f82a and https://huggingface.co/collections/CausalNLP/multilingual-gpt2-models and https://huggingface.co/collections/CausalNLP/multilingual-clts and https://github.com/abirharrasse/MultilingualCLTs
♻ ☆ DRAGOn: Designing RAG On Periodically Updated Corpus EACL 2026
This paper introduces DRAGOn, method to design a RAG benchmark on a regularly updated corpus. It features recent reference datasets, a question generation framework, an automatic evaluation pipeline, and a public leaderboard. Specified reference datasets allow for uniform comparison of RAG systems, while newly generated dataset versions mitigate data leakage and ensure that all models are evaluated on unseen, comparable data. The pipeline for automatic question generation extracts the Knowledge Graph from the text corpus and produces multiple question-answer pairs utilizing modern LLM capabilities. A set of diverse LLM-as-Judge metrics is provided for a comprehensive model evaluation. We used Russian news outlets to form the datasets and demonstrate our methodology. We launch a public leaderboard to track the development of RAG systems and encourage community participation.
comment: EACL 2026
♻ ☆ Deep networks learn to parse uniform-depth context-free languages from local statistics
Understanding how the structure of language can be learned from sentences alone is a central question in both cognitive science and machine learning. Studies of the internal representations of Large Language Models (LLMs) support their ability to parse text when predicting the next word, while representing semantic notions independently of surface form. Yet, which data statistics make these feats possible, and how much data is required, remain largely unknown. Probabilistic context-free grammars (PCFGs) provide a tractable testbed for studying these questions. However, prior work has focused either on the post-hoc characterization of the parsing-like algorithms used by trained networks; or on the learnability of PCFGs with fixed syntax, where parsing is unnecessary. Here, we (i) introduce a tunable class of PCFGs in which both the degree of ambiguity and the correlation structure across scales can be controlled; (ii) provide a learning mechanism -- an inference algorithm inspired by the structure of deep convolutional networks -- that links learnability and sample complexity to specific language statistics; and (iii) validate our predictions empirically across deep convolutional and transformer-based architectures. Overall, we propose a unifying framework where correlations at different scales lift local ambiguities, enabling the emergence of hierarchical representations of the data.
♻ ☆ Playing 20 Question Game with Policy-Based Reinforcement Learning
The 20 Questions (Q20) game is a well known game which encourages deductive reasoning and creativity. In the game, the answerer first thinks of an object such as a famous person or a kind of animal. Then the questioner tries to guess the object by asking 20 questions. In a Q20 game system, the user is considered as the answerer while the system itself acts as the questioner which requires a good strategy of question selection to figure out the correct object and win the game. However, the optimal policy of question selection is hard to be derived due to the complexity and volatility of the game environment. In this paper, we propose a novel policy-based Reinforcement Learning (RL) method, which enables the questioner agent to learn the optimal policy of question selection through continuous interactions with users. To facilitate training, we also propose to use a reward network to estimate the more informative reward. Compared to previous methods, our RL method is robust to noisy answers and does not rely on the Knowledge Base of objects. Experimental results show that our RL method clearly outperforms an entropy-based engineering system and has competitive performance in a noisy-free simulation environment.
comment: Withdrawal from the conference
♻ ☆ No Answer Needed: Predicting LLM Answer Accuracy from Question-Only Linear Probes
Do large language models (LLMs) anticipate when they will answer correctly? To study this, we extract activations after a question is read but before any tokens are generated, and train linear probes to predict whether the model's forthcoming answer will be correct. Across three open-source model families ranging from 7 to 70 billion parameters, projections on this "in-advance correctness direction" trained on generic trivia questions predict success in distribution and on diverse out-of-distribution knowledge datasets, indicating a deeper signal than dataset-specific spurious features, and outperforming black-box baselines and verbalised predicted confidence. Predictive power saturates in intermediate layers and, notably, generalisation falters on questions requiring mathematical reasoning. Moreover, for models responding "I don't know", doing so strongly correlates with the probe score, indicating that the same direction also captures confidence. By complementing previous results on truthfulness and other behaviours obtained with probes and sparse auto-encoders, our work contributes essential findings to elucidate LLM internals.
♻ ☆ Luth: Efficient French Specialization for Small Language Models and Cross-Lingual Transfer EACL 2026
The landscape of Large Language Models remains predominantly English-centric, resulting in a significant performance gap for other major languages, such as French, especially in the context of Small Language Models (SLMs). Existing multilingual models demonstrate considerably lower performance in French compared to English, and research on efficient adaptation methods for French remains limited. To address this, we introduce \textbf{Luth}, a family of French-specialized SLMs: through targeted post-training on curated, high-quality French data, our models outperform all open-source counterparts of comparable size on multiple French benchmarks while retaining their original English capabilities. We further show that strategic model merging enhances performance in both languages, establishing Luth as a new state of the art for French SLMs and a robust baseline for future French-language research.
comment: Accepted at the EACL 2026 Student Research Workshop (SRW)
♻ ☆ Towards Active Synthetic Data Generation for Finetuning Language Models
A common and effective means for improving language model capabilities involves finetuning a ``student'' language model's parameters on generations from a more proficient ``teacher'' model. Termed ``synthetic data'', these generations are often produced before any student finetuning, but some work has considered generating new synthetic samples as training progresses. This paper studies and advocates for the latter case, where data are generated in an iterative, closed-loop fashion that is guided by the current state of the student model. For a fixed budget of generated samples, or a budget in terms of compute spent querying a teacher, we show that this curation of finetuning data affords improved student performance over static generation. Further, while there have been several LLM-specific methods proposed that operate in this regime, we find that simple, inexpensive selection criteria from the active learning literature tend to be most performant. We validate these claims across four mathematical and logical reasoning datasets using four different small language models.
comment: 14 figures, 37 pages. Website and code: https://iterative-sd.github.io/
♻ ☆ Black Big Boxes: Tracing Adjective Order Preferences in Large Language Models
In English and other languages, multiple adjectives in noun phrases follow intricate ordering patterns. These patterns have been widely studied in linguistics and provide a useful test case for assessing how language models (LMs) acquire graded and context-sensitive word order preferences. We ask to what extent adjective order preferences in LMs can be explained by distributional learning alone, and where models exhibit behaviour that goes beyond surface co-occurrence patterns. We find that LM predictions are largely explained by training data frequencies: simple n-gram statistics account for much of their behaviour and closely mirror the preferences learned during training. However, by analysing learning dynamics we reveal that models also generalize robustly to unseen adjective combinations, indicating that their behaviour cannot be reduced to memorization of observed orders alone. Moreover, we show how LMs leverage word order cues from sentence context, demonstrating with feature attribution methods that contextual cues are an additional driver of adjective order in LM output.
♻ ☆ No Prompt Left Behind: Exploiting Zero-Variance Prompts in LLM Reinforcement Learning via Entropy-Guided Advantage Shaping ICLR 2026
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful framework for improving the reasoning abilities of Large Language Models (LLMs). However, current methods such as GRPO rely only on problems where the model responses to the same input differ in correctness, while ignoring those where all responses receive the same reward -- so-called zero-variance prompts. In this work, we argue that such prompts are not useless but can, in fact, provide meaningful feedback for policy optimization. To this end, we introduce Reinforcement Learning with Zero-Variance Prompts (RL-ZVP), a novel algorithm that extract learning signals from zero-variance prompts. RL-ZVP directly rewards correctness and penalizes errors even without contrasting responses, modulating feedback with token-level characteristics to preserve informative, nuanced signals. Across six math reasoning benchmarks, RL-ZVP achieves significant improvements of up to 8.61 points in accuracy and 7.77 points in pass rate over GRPO, while consistently outperforming other baselines that filter out zero-variance prompts. These results highlight the untapped potential of learning from zero-variance prompts in RLVR. The project page is available at https://bltnynk.github.io/publications/rl-zvp/.
comment: ICLR 2026 camera-ready version
♻ ☆ ClaimPT: A Portuguese Dataset of Annotated Claims in News Articles
Fact-checking remains a demanding and time-consuming task, still largely dependent on manual verification and unable to match the rapid spread of misinformation online. This is particularly important because debunking false information typically takes longer to reach consumers than the misinformation itself; accelerating corrections through automation can therefore help counter it more effectively. Although many organizations perform manual fact-checking, this approach is difficult to scale given the growing volume of digital content. These limitations have motivated interest in automating fact-checking, where identifying claims is a crucial first step. However, progress has been uneven across languages, with English dominating due to abundant annotated data. Portuguese, like other languages, still lacks accessible, licensed datasets, limiting research, NLP developments and applications. In this paper, we introduce ClaimPT, a dataset of European Portuguese news articles annotated for factual claims, comprising 1,308 articles and 6,875 individual annotations. Unlike most existing resources based on social media or parliamentary transcripts, ClaimPT focuses on journalistic content, collected through a partnership with LUSA, the Portuguese News Agency. To ensure annotation quality, two trained annotators labeled each article, with a curator validating all annotations according to a newly proposed scheme. We also provide baseline models for claim detection, establishing initial benchmarks and enabling future NLP and IR applications. By releasing ClaimPT, we aim to advance research on low-resource fact-checking and enhance understanding of misinformation in news media.
♻ ☆ CitiLink: Enhancing Municipal Transparency and Citizen Engagement through Searchable Meeting Minutes
City council minutes are typically lengthy and formal documents with a bureaucratic writing style. Although publicly available, their structure often makes it difficult for citizens or journalists to efficiently find information. In this demo, we present CitiLink, a platform designed to transform unstructured municipal meeting minutes into structured and searchable data, demonstrating how NLP and IR can enhance the accessibility and transparency of local government. The system employs LLMs to extract metadata, discussed subjects, and voting outcomes, which are then indexed in a database to support full-text search with BM25 ranking and faceted filtering through a user-friendly interface. The developed system was built over a collection of 120 minutes made available by six Portuguese municipalities. To assess its usability, CitiLink was tested through guided sessions with municipal personnel, providing insights into how real users interact with the system. In addition, we evaluated Gemini's performance in extracting relevant information from the minutes, highlighting its effectiveness in data extraction.
♻ ☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
♻ ☆ VotIE: Information Extraction from Meeting Minutes
Municipal meeting minutes record key decisions in local democratic processes. Unlike parliamentary proceedings, which typically adhere to standardized formats, they encode voting outcomes in highly heterogeneous, free-form narrative text that varies widely across municipalities, posing significant challenges for automated extraction. In this paper, we introduce VotIE (Voting Information Extraction), a new information extraction task aimed at identifying structured voting events in narrative deliberative records, and establish the first benchmark for this task using Portuguese municipal minutes, building on the recently introduced CitiLink corpus. Our experiments yield two key findings. First, under standard in-domain evaluation, fine-tuned encoders, specifically XLM-R-CRF, achieve the strongest performance, reaching 93.2\% macro F1, outperforming generative approaches. Second, in a cross-municipality setting that evaluates transfer to unseen administrative contexts, these models suffer substantial performance degradation, whereas few-shot LLMs demonstrate greater robustness, with significantly smaller declines in performance. Despite this generalization advantage, the high computational cost of generative models currently constrains their practicality. As a result, lightweight fine-tuned encoders remain a more practical option for large-scale, real-world deployment. To support reproducible research in administrative NLP, we publicly release our benchmark, trained models, and evaluation framework.
♻ ☆ MiNER: A Two-Stage Pipeline for Metadata Extraction from Municipal Meeting Minutes
Municipal meeting minutes are official documents of local governance, exhibiting heterogeneous formats and writing styles. Effective information retrieval (IR) requires identifying metadata such as meeting number, date, location, participants, and start/end times, elements that are rarely standardized or easy to extract automatically. Existing named entity recognition (NER) models are ill-suited to this task, as they are not adapted to such domain-specific categories. In this paper, we propose a two-stage pipeline for metadata extraction from municipal minutes. First, a question answering (QA) model identifies the opening and closing text segments containing metadata. Transformer-based models (BERTimbau and XLM-RoBERTa with and without a CRF layer) are then applied for fine-grained entity extraction and enhanced through deslexicalization. To evaluate our proposed pipeline, we benchmark both open-weight (Phi) and closed-weight (Gemini) LLMs, assessing predictive performance, inference cost, and carbon footprint. Our results demonstrate strong in-domain performance, better than larger general-purpose LLMs. However, cross-municipality evaluation reveals reduced generalization reflecting the variability and linguistic complexity of municipal records. This work establishes the first benchmark for metadata extraction from municipal meeting minutes, providing a solid foundation for future research in this domain.
♻ ☆ Modality Matching Matters: Calibrating Language Distances for Cross-Lingual Transfer in URIEL+
Existing linguistic knowledge bases such as URIEL+ provide valuable geographic, genetic and typological distances for cross-lingual transfer but suffer from two key limitations. First, their one-size-fits-all vector representations are ill-suited to the diverse structures of linguistic data. Second, they lack a principled method for aggregating these signals into a single, comprehensive score. In this paper, we address these gaps by introducing a framework for type-matched language distances. We propose novel, structure-aware representations for each distance type: speaker-weighted distributions for geography, hyperbolic embeddings for genealogy, and a latent variables model for typology. We unify these signals into a robust, task-agnostic composite distance. Across multiple zero-shot transfer benchmarks, we demonstrate that our representations significantly improve transfer performance when the distance type is relevant to the task, while our composite distance yields gains in most tasks.
♻ ☆ ReFRAME or Remain: Unsupervised Lexical Semantic Change Detection with Frame Semantics
The majority of contemporary computational methods for lexical semantic change (LSC) detection are based on neural embedding distributional representations. Although these models perform well on LSC benchmarks, their results are often difficult to interpret. We explore an alternative approach that relies solely on frame semantics. We show that this method is effective for detecting semantic change and can even outperform many distributional semantic models. Finally, we present a detailed quantitative and qualitative analysis of its predictions, demonstrating that they are both plausible and highly interpretable
♻ ☆ Bagging-Based Model Merging for Robust General Text Embeddings
General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (BOOM), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, BOOM naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that BOOM consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
comment: 12 pages, 4 figures
♻ ☆ MASA: Rethinking the Representational Bottleneck in LoRA with Multi-A Shared Adaptation
Low-Rank Adaptation (LoRA) has emerged as a dominant method in Parameter-Efficient Fine-Tuning (PEFT) for large language models, which augments the transformer layer with one down-projection $A$ and one up-projection $B$. However, LoRA's reliance on a single down-projection matrix ($A$) creates a representational bottleneck, as this solitary feature extractor is inherently insufficient for capturing the diverse signals required by complex tasks. This motivates our architectural shift to focus on enriching the feature adaptation to improve the downstream task adaptation ability. We propose MASA (Multi-$A$ Shared Adaptation), an architecture that implements a multi-$A$, single-$B$ structure where the multi-$A$ expert ensemble is asymmetrically shared across layers to ensure parameter efficiency. In MASA, these specialized experts capture diverse features, which are then integrated by a single, layer-specific $B$-matrix. The effectiveness and versatility of our method are validated through a comprehensive suite of experiments spanning multi-domain generalization, single-domain specialization, and multi-task reasoning. For example, on the MMLU benchmark, MASA achieves an average accuracy of 59.62%, outperforming the standard LoRA by 1.08 points (a relative improvement of 1.84%) with comparable learnable parameters of 0.52%.
comment: 16 pages, 5 figures
♻ ☆ Supervised Fine-Tuning Needs to Unlock the Potential of Token Priority
The transition from fitting empirical data to achieving true human utility is fundamentally constrained by a granularity mismatch, where fine-grained autoregressive generation is often supervised by coarse or uniform signals. This position paper advocates Token Priority as the essential bridge, formalizing Supervised Fine-Tuning (SFT) not as simple optimization but as a precise distribution reshaping process that aligns raw data with the ideal alignment manifold. We analyze recent breakthroughs through this unified lens, categorizing them into two distinct regimes: Positive Priority for noise filtration and Signed Priority for toxic modes unlearning. We revisit existing progress and limitations, identify key challenges, and suggest directions for future research.
♻ ☆ VCB Bench: An Evaluation Benchmark for Audio-Grounded Large Language Model Conversational Agents
Recent advances in large audio language models (LALMs) have greatly enhanced multimodal conversational systems. However, existing benchmarks remain limited -- they are mainly English-centric, rely on synthetic speech, and lack comprehensive, discriminative evaluation across multiple dimensions. To address these gaps, we present Voice Chat Bot Bench (VCB Bench) -- a high-quality Chinese benchmark built entirely on real human speech. VCB Bench evaluates LALMs from three complementary perspectives: instruction following (including speech-level control beyond text commands), knowledge understanding (general knowledge, reasoning, and daily dialogue), and robustness (stability under perturbations in content, environment, and speaker traits). Experiments on representative LALMs reveal notable performance gaps and highlight future directions for improvement. VCB Bench provides a reproducible and fine-grained evaluation framework, offering standardized methodology and practical insights for advancing Chinese voice conversational models.
comment: 23 pages, 5 figures
♻ ☆ OpenGVL -- Benchmarking Visual Temporal Progress for Data Curation
Data scarcity remains one of the most limiting factors in driving progress in robotics. However, the amount of available robotics data in the wild is growing exponentially, creating new opportunities for large-scale data utilization. Reliable temporal task completion prediction could help automatically annotate and curate this data at scale. The Generative Value Learning (GVL) approach was recently proposed, leveraging the knowledge embedded in vision-language models (VLMs) to predict task progress from visual observations. Building upon GVL, we propose OpenGVL, a comprehensive benchmark for estimating task progress across diverse challenging manipulation tasks involving both robotic and human embodiments. We evaluate the capabilities of publicly available open-source foundation models, showing that open-source model families significantly underperform closed-source counterparts, achieving only approximately $70\%$ of their performance on temporal progress prediction tasks. Furthermore, we demonstrate how OpenGVL can serve as a practical tool for automated data curation and filtering, enabling efficient quality assessment of large-scale robotics datasets. We release the benchmark along with the complete codebase at \href{github.com/budzianowski/opengvl}{OpenGVL}.
comment: Workshop on Making Sense of Data in Robotics: Composition, Curation, and Interpretability at Scale at CoRL 2025
Cross-Modal Retrieval for Motion and Text via DropTriple Loss ACM MM
Cross-modal retrieval of image-text and video-text is a prominent research area in computer vision and natural language processing. However, there has been insufficient attention given to cross-modal retrieval between human motion and text, despite its wide-ranging applicability. To address this gap, we utilize a concise yet effective dual-unimodal transformer encoder for tackling this task. Recognizing that overlapping atomic actions in different human motion sequences can lead to semantic conflicts between samples, we explore a novel triplet loss function called DropTriple Loss. This loss function discards false negative samples from the negative sample set and focuses on mining remaining genuinely hard negative samples for triplet training, thereby reducing violations they cause. We evaluate our model and approach on the HumanML3D and KIT Motion-Language datasets. On the latest HumanML3D dataset, we achieve a recall of 62.9% for motion retrieval and 71.5% for text retrieval (both based on R@10). The source code for our approach is publicly available at https://github.com/eanson023/rehamot.
comment: This paper has been accepted by ACM MM Asia 2023 (Best Paper Candidate)
♻ ☆ CoMAS: Co-Evolving Multi-Agent Systems via Interaction Rewards
Self-evolution is a central research topic in enabling large language model (LLM)-based agents to continually improve their capabilities after pretraining. Recent research has witnessed a transition from reinforcement learning (RL)-free to RL-based methods. Current RL-based methods either rely on dense external reward signals or extract intrinsic reward signals from LLMs themselves. However, these approaches diverge from the self-evolution mechanisms observed in human intelligence, where individuals learn and improve through mutual discussion and collaboration. In this work, we introduce Co-Evolving Multi-Agent Systems (CoMAS), a novel framework that enables agents to improve autonomously by learning from inter-agent interactions without external supervision. CoMAS generates intrinsic rewards from rich discussion dynamics, employs an LLM-as-a-judge mechanism to formulate these rewards, and optimizes each agent's policy through RL, thereby enabling decentralized and scalable co-evolution. Experimental results demonstrate that CoMAS consistently outperforms untrained agents and achieves state-of-the-art performance across most evaluation settings. Ablation studies confirm the necessity of interaction-based reward signals and reveal promising scalability as the number and diversity of agents increase. These findings establish CoMAS as a novel and effective paradigm for self-evolution in LLM-based agents.
ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems
Much previous AI research has focused on developing monolithic models to maximize their intelligence, with the primary goal of enhancing performance on specific tasks. In contrast, this work attempts to study using LLM-based agents to design collaborative AI systems autonomously. To explore this problem, we first introduce ComfyBench to evaluate agents's ability to design collaborative AI systems in ComfyUI. ComfyBench is a comprehensive benchmark comprising 200 diverse tasks covering various instruction-following generation challenges, along with detailed annotations for 3,205 nodes and 20 workflows. Based on ComfyBench, we further develop ComfyAgent, a novel framework that empowers LLM-based agents to autonomously design collaborative AI systems by generating workflows. ComfyAgent is based on two core concepts. First, it represents workflows with code, which can be reversibly converted into workflows and executed as collaborative systems by the interpreter. Second, it constructs a multi-agent system that cooperates to learn from existing workflows and generate new workflows for a given task. While experimental results demonstrate that ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15\% of creative tasks. LLM-based agents still have a long way to go in autonomously designing collaborative AI systems. Progress with ComfyBench is paving the way for more intelligent and autonomous collaborative AI systems.
♻ ☆ How to Correctly Report LLM-as-a-Judge Evaluations
Large language models (LLMs) are widely used as scalable evaluators of model responses in lieu of human annotators. However, imperfect sensitivity and specificity of the LLM judges induce bias in naive evaluation scores. We propose a simple plug-in framework that corrects this bias and enables statistically principled uncertainty quantification. Our framework constructs confidence intervals that account for uncertainty from both the test dataset and a human-labeled calibration dataset. Additionally, it uses an adaptive strategy to allocate calibration samples for tighter intervals. Importantly, we characterize parameter regimes defined by the true evaluation score and the LLM judge's sensitivity and specificity in which our LLM-based evaluation yields more reliable estimates than human-only evaluation. Moreover, we show that our framework remains unbiased under distribution shift between the test and calibration datasets, in contrast to existing approaches.
comment: Refined the writing of the manuscript
Legal$Δ$: Enhancing Legal Reasoning in LLMs via Reinforcement Learning with Chain-of-Thought Guided Information Gain
Legal Artificial Intelligence (LegalAI) has achieved notable advances in automating judicial decision-making with the support of Large Language Models (LLMs). However, existing legal LLMs still struggle to generate reliable and interpretable reasoning processes. They often default to fast-thinking behavior by producing direct answers without explicit multi-step reasoning, limiting their effectiveness in complex legal scenarios that demand rigorous justification. To address this challenge, we propose Legal$Δ$, a reinforcement learning framework designed to enhance legal reasoning through chain-of-thought guided information gain. During training, Legal$Δ$ employs a dual-mode input setup-comprising direct answer and reasoning-augmented modes-and maximizes the information gain between them. This encourages the model to acquire meaningful reasoning patterns rather than generating superficial or redundant explanations. Legal$Δ$ follows a two-stage approach: (1) distilling latent reasoning capabilities from a powerful Large Reasoning Model (LRM), DeepSeek-R1, and (2) refining reasoning quality via differential comparisons, combined with a multidimensional reward mechanism that assesses both structural coherence and legal-domain specificity. Experimental results on multiple legal reasoning tasks demonstrate that Legal$Δ$ outperforms strong baselines in both accuracy and interpretability. It consistently produces more robust and trustworthy legal judgments without relying on labeled preference data. All code and data will be released at https://github.com/NEUIR/LegalDelta.
♻ ☆ Token-Level LLM Collaboration via FusionRoute
Large language models (LLMs) exhibit strengths across diverse domains. However, achieving strong performance across these domains with a single general-purpose model typically requires scaling to sizes that are prohibitively expensive to train and deploy. On the other hand, while smaller domain-specialized models are much more efficient, they struggle to generalize beyond their training distributions. To address this dilemma, we propose FusionRoute, a robust and effective token-level multi-LLM collaboration framework in which a lightweight router simultaneously (i) selects the most suitable expert at each decoding step and (ii) contributes a complementary logit that refines or corrects the selected expert's next-token distribution via logit addition. Unlike existing token-level collaboration methods that rely solely on fixed expert outputs, we provide a theoretical analysis showing that pure expert-only routing is fundamentally limited: unless strong global coverage assumptions hold, it cannot in general realize the optimal decoding policy. By augmenting expert selection with a trainable complementary generator, FusionRoute expands the effective policy class and enables recovery of optimal value functions under mild conditions. Empirically, across both Llama-3 and Gemma-2 families and diverse benchmarks spanning mathematical reasoning, code generation, and instruction following, FusionRoute outperforms both sequence- and token-level collaboration, model merging, and direct fine-tuning, while remaining competitive with domain experts on their respective tasks.
comment: 25 pages
♻ ☆ APR: Penalizing Structural Redundancy in Large Reasoning Models via Anchor-based Process Rewards
Test-Time Scaling (TTS) has significantly enhanced the capabilities of Large Reasoning Models (LRMs) but introduces a critical side-effect known as Overthinking. We conduct a preliminary study to rethink this phenomenon from a fine-grained perspective. We observe that LRMs frequently conduct repetitive self-verification without revision even after obtaining the final answer during the reasoning process. We formally define this specific position where the answer first stabilizes as the Reasoning Anchor. By analyzing pre- and post-anchor reasoning behaviors, we uncover the structural redundancy fixed in LRMs: the meaningless repetitive verification after deriving the first complete answer, which we term the Answer-Stable Tail (AST). Motivated by this observation, we propose Anchor-based Process Reward (APR), a structure-aware reward shaping method that localizes the reasoning anchor and penalizes exclusively the post-anchor AST. Leveraging the policy optimization algorithm suitable for length penalties, our APR models achieved the performance-efficiency Pareto frontier at 1.5B and 7B scales averaged across five mathematical reasoning datasets while requiring substantially fewer computational resources for RL training.
comment: Under Review
♻ ☆ Fast KVzip: Efficient and Accurate LLM Inference with Gated KV Eviction
Efficient key-value (KV) cache management is crucial for the practical deployment of large language models (LLMs), yet existing compression techniques often incur a trade-off between performance degradation and computational overhead. We propose a novel gating-based KV cache eviction method for frozen-weight LLMs that achieves high compression ratios with negligible computational cost. Our approach introduces lightweight sink-attention gating modules to identify and retain critical KV pairs, and integrates seamlessly into both the prefill and decoding stages. The proposed gate training algorithm relies on forward passes of an LLM, avoiding expensive backpropagation, while achieving strong task generalization through a task-agnostic reconstruction objective. Extensive experiments across the Qwen2.5-1M, Qwen3, and Gemma3 families show that our method maintains near-lossless performance while evicting up to 70% of the KV cache. The results are consistent across a wide range of tasks, including long-context understanding, code comprehension, and mathematical reasoning, demonstrating the generality of our approach.
comment: Source code: https://github.com/Janghyun1230/FastKVzip
♻ ☆ Reinforcement World Model Learning for LLM-based Agents
Large language models (LLMs) have achieved strong performance in language-centric tasks. However, in agentic settings, LLMs often struggle to anticipate action consequences and adapt to environment dynamics, highlighting the need for world-modeling capabilities in LLM-based agents. We propose Reinforcement World Model Learning (RWML), a self-supervised method that learns action-conditioned world models for LLM-based agents on textual states using sim-to-real gap rewards. Our method aligns simulated next states produced by the model with realized next states observed from the environment, encouraging consistency between internal world simulations and actual environment dynamics in a pre-trained embedding space. Unlike next-state token prediction, which prioritizes token-level fidelity (i.e., reproducing exact wording) over semantic equivalence and can lead to model collapse, our method provides a more robust training signal and is empirically less susceptible to reward hacking than LLM-as-a-judge. We evaluate our method on ALFWorld and $τ^2$ Bench and observe significant gains over the base model, despite being entirely self-supervised. When combined with task-success rewards, our method outperforms direct task-success reward RL by 6.9 and 5.7 points on ALFWorld and $τ^2$ Bench respectively, while matching the performance of expert-data training.
comment: fixed Nikhil Singh's affiliation
♻ ☆ PlainQAFact: Retrieval-augmented Factual Consistency Evaluation Metric for Biomedical Plain Language Summarization
Hallucinated outputs from large language models (LLMs) pose risks in the medical domain, especially for lay audiences making health-related decisions. Existing automatic factual consistency evaluation methods, such as entailment- and question-answering (QA)- based, struggle with plain language summarization (PLS) due to elaborative explanation phenomenon, which introduces external content (e.g., definitions, background, examples) absent from the scientific abstract to enhance comprehension. To address this, we introduce PlainQAFact, an automatic factual consistency evaluation metric trained on a fine-grained, human-annotated dataset PlainFact, for evaluating factual consistency of both source-simplified and elaborately explained sentences. PlainQAFact first classifies sentence type, then applies a retrieval-augmented QA scoring method. Empirical results show that existing evaluation metrics fail to evaluate the factual consistency in PLS, especially for elaborative explanations, whereas PlainQAFact consistently outperforms them across all evaluation settings. We further analyze PlainQAFact's effectiveness across external knowledge sources, answer extraction strategies, answer overlap measures, and document granularity levels, refining its overall factual consistency assessment. Taken together, our work presents a sentence-aware, retrieval-augmented metric targeted at elaborative explanations in biomedical PLS tasks, providing the community with both a robust benchmark and a practical tool to advance reliable and safe plain language communication in the medical domain. PlainQAFact and PlainFact are available at: https://github.com/zhiwenyou103/PlainQAFact
♻ ☆ DNACHUNKER: Learnable Tokenization for DNA Language Models
DNA language models are increasingly used to represent genomic sequence, yet their effectiveness depends critically on how raw nucleotides are converted into model inputs. Unlike natural language, DNA offers no canonical boundaries, making fixed tokenizations a brittle design choice under shifts, indels, and local repeats. We introduce \modelname{}, a masked DNA language model that incorporates a learnable adaptive segmentation module to produce context-dependent, variable-length units. Building on a dynamic segmentation procedure, \modelname{} learns to allocate finer granularity to functionally enriched regions while compressing repetitive or redundant sequence. We pre-train \modelname{} on the human reference genome (HG38) and evaluate it on the Nucleotide Transformer and Genomic Benchmarks, where it consistently improves over strong fixed-tokenization baselines. Further analyses and ablations indicate that the learned segmentation is structured rather than incidental: the model preferentially uses shorter units around promoters and exons, and longer units in repetitive regions, yielding representations that are both mutation-resilient and biologically-informed.
♻ ☆ STITCH: Simultaneous Thinking and Talking with Chunked Reasoning for Spoken Language Models ICLR 2026
Spoken Language Models (SLMs) are designed to take speech inputs and produce spoken responses. However, current SLMs lack the ability to perform an internal, unspoken thinking process before responding. In contrast, humans typically engage in complex mental reasoning internally, enabling them to communicate ideas clearly and concisely. Thus, integrating an unspoken thought process into SLMs is highly desirable. While naively generating a complete chain-of-thought (CoT) reasoning before starting to talk can enable thinking for SLMs, this induces additional latency for the speech response, as the CoT reasoning can be arbitrarily long. To solve this issue, we propose Stitch, a novel generation method that alternates between the generation of unspoken reasoning chunks and spoken response chunks. Since the audio duration of a chunk of spoken response is much longer than the time to generate the tokens in a chunk of spoken response, we use the remaining free time to generate the unspoken reasoning tokens. When a chunk of audio is played to the user, the model continues to generate the next unspoken reasoning chunk, achieving simultaneous thinking and talking. Remarkably, Stitch matches the latency of baselines that cannot generate unspoken CoT by design while outperforming those baselines by 15% on math reasoning datasets; Stitch also performs equally well on non-reasoning datasets as those baseline models. Some animations and demonstrations are on the project page: https://d223302.github.io/STITCH.
comment: ICLR 2026 camera-ready version. Project page: https://d223302.github.io/STITCH/
♻ ☆ Dist2ill: Distributional Distillation for One-Pass Uncertainty Estimation in Large Language Models
Large Language Models (LLMs) often exhibit misalignment between the quality of their generated responses and the confidence estimates they assign to them. Bayesian treatments, such as marginalizing over a reliable weight posterior or over the space of reasoning traces, provide an effective remedy, but incur substantial computational overhead due to repeated sampling at test time. To enable accurate uncertainty estimation in a single forward pass, we propose a novel distributional distillation framework (Dist2ill) that trains an LLM to produce multiple diverse reasoning paths within one inference pass, while using a lightweight parametric module to approximate empirical confidence scores derived from the sampling distribution. Extensive experiments demonstrate that Dist2ill preserves reasoning diversity and achieves state-of-the-art uncertainty estimation, substantially improving Expected Calibration Error (ECE) and Negative Log-Likelihood (NLL), while remaining computationally efficient.
comment: Preprint; work in progress. Update Log: 05/2025 (v1&v2): Introduced Dist2ill (previously named EUD) for efficient uncertainty estimation, focusing on discriminative reasoning tasks. 02/2026 (v3): Extended Dist2ill to a unified framework supporting both discriminative and generative reasoning
♻ ☆ Diffusion-State Policy Optimization for Masked Diffusion Language Models
Masked diffusion language models generate by iteratively filling masked tokens over multiple denoising steps, so learning only from a terminal reward on the final completion yields coarse credit assignment over intermediate decisions. We propose DiSPO (Diffusion-State Policy Optimization), a plug-in credit-assignment layer that directly optimizes intermediate filling decisions. At selected intermediate masked states, DiSPO branches by resampling fillings for the currently masked positions from rollout-cached logits, scores the resulting completions, and updates only the newly filled tokens -- without additional multi-step diffusion rollouts. We formalize a fixed-state objective for branched completions and derive a policy-gradient estimator that can be combined with terminal-feedback policy optimization using the same rollouts. On LLaDA-8B-Instruct, DiSPO consistently improves over the terminal-feedback diffu-GRPO baseline on math and planning benchmarks under matched rollout compute and optimizer steps. Our code will be available at https://daioba.github.io/dispo .
♻ ☆ Generative Ontology: When Structured Knowledge Learns to Create
Traditional ontologies describe domain structure but cannot generate novel artifacts. Large language models generate fluently but produce outputs lacking structural validity, hallucinating mechanisms without components, goals without end conditions. We introduce Generative Ontology, a framework synthesizing these complementary strengths: ontology provides the grammar; the LLM provides the creativity. Generative Ontology encodes domain knowledge as executable Pydantic schemas constraining LLM generation via DSPy signatures. A multi-agent pipeline assigns specialized roles: a Mechanics Architect designs game systems, a Theme Weaver integrates narrative, a Balance Critic identifies exploits, each carrying a professional "anxiety" that prevents shallow outputs. Retrieval-augmented generation grounds designs in precedents from existing exemplars. We demonstrate the framework through GameGrammar, generating complete tabletop game designs, and present three empirical studies. An ablation study (120 designs, 4 conditions) shows multi-agent specialization produces the largest quality gains (fun d=1.12, depth d=1.59; p<.001), while schema validation eliminates structural errors (d=4.78). A benchmark against 20 published board games reveals structural parity but a bounded creative gap (fun d=1.86): generated designs score 7-8 while published games score 8-9. A test-retest study (50 evaluations) validates the LLM-based evaluator, with 7/9 metrics achieving Good-to-Excellent reliability (ICC 0.836-0.989). The pattern generalizes beyond games. Any domain with expert vocabulary, validity constraints, and accumulated exemplars is a candidate for Generative Ontology.
comment: 19 pages, 12 figures, 8 tables. v2: added empirical evaluation (3 studies: ablation, benchmark, reliability), expanded related work, discussion section, appendices. Code available at https://github.com/bennycheung/GameGrammarCLI
♻ ☆ Curriculum-Guided Layer Scaling for Language Model Pretraining
As the cost of pretraining large language models grows, there is continued interest in strategies to improve learning efficiency during this core training stage. Motivated by cognitive development, where humans gradually build knowledge as their brains mature, we propose Curriculum-Guided Layer Scaling (CGLS), a framework for compute-efficient pretraining that synchronizes increasing data difficulty with model growth through progressive layer stacking (i.e. gradually adding layers during training). At the 100M parameter scale, using a curriculum transitioning from synthetic short stories to general web data, CGLS outperforms baseline methods on the question-answering benchmarks PIQA and ARC. Pretraining at the 1.2B scale, we stratify the DataComp-LM corpus with a DistilBERT-based classifier and progress from general text to highly technical or specialized content. Our results show that progressively increasing model depth alongside sample difficulty leads to better generalization and zero-shot performance on various downstream benchmarks. Altogether, our findings demonstrate that CGLS unlocks the potential of progressive stacking, offering a simple yet effective strategy for improving generalization on knowledge-intensive and reasoning tasks.
♻ ☆ DeepScholar-Bench: A Live Benchmark and Automated Evaluation for Generative Research Synthesis
The ability to research and synthesize knowledge is central to human expertise and progress. A new class of AI systems--designed for generative research synthesis--aims to automate this process by retrieving information from the live web and producing long-form, cited reports. Yet, evaluating such systems remains an open challenge: existing question-answering benchmarks focus on short, factual answers, while expert-curated datasets risk staleness and data contamination. Neither captures the complexity and evolving nature of real research synthesis tasks. We introduce DeepScholar-bench, a live benchmark and automated evaluation framework for generative research synthesis. DeepScholar-bench draws queries and human-written exemplars from recent, high-quality ArXiv papers and evaluates a real synthesis task: generating a related work section by retrieving, synthesizing, and citing prior work. Our automated framework holistically measures performance across three key dimensions--knowledge synthesis, retrieval quality, and verifiability. To further future work, we also contribute DeepScholar-ref, a simple, open-source reference pipeline, which is implemented on the LOTUS framework and provides a strong baseline. Using DeepScholar-bench, we systematically evaluate prior open-source systems, search agents with strong models, OpenAI's DeepResearch, and DeepScholar-ref. We find DeepScholar-bench is far from saturated: no system surpasses a geometric mean of $31\%$ across all metrics. These results highlight both the difficulty and importance of DeepScholar-bench as a foundation for advancing AI systems capable of generative research synthesis. We make our benchmark code and data available at https://github.com/guestrin-lab/deepscholar-bench.
♻ ☆ Can We Infer Confidential Properties of Training Data from LLMs?
Large language models (LLMs) are increasingly fine-tuned on domain-specific datasets to support applications in fields such as healthcare, finance, and law. These fine-tuning datasets often have sensitive and confidential dataset-level properties -- such as patient demographics or disease prevalence -- that are not intended to be revealed. While prior work has studied property inference attacks on discriminative models (e.g., image classification models) and generative models (e.g., GANs for image data), it remains unclear if such attacks transfer to LLMs. In this work, we introduce PropInfer, a benchmark task for evaluating property inference in LLMs under two fine-tuning paradigms: question-answering and chat-completion. Built on the ChatDoctor dataset, our benchmark includes a range of property types and task configurations. We further propose two tailored attacks: a prompt-based generation attack and a shadow-model attack leveraging word frequency signals. Empirical evaluations across multiple pretrained LLMs show the success of our attacks, revealing a previously unrecognized vulnerability in LLMs.
Computer Vision and Pattern Recognition 152
Autoregressive Image Generation with Masked Bit Modeling
This paper challenges the dominance of continuous pipelines in visual generation. We systematically investigate the performance gap between discrete and continuous methods. Contrary to the belief that discrete tokenizers are intrinsically inferior, we demonstrate that the disparity arises primarily from the total number of bits allocated in the latent space (i.e., the compression ratio). We show that scaling up the codebook size effectively bridges this gap, allowing discrete tokenizers to match or surpass their continuous counterparts. However, existing discrete generation methods struggle to capitalize on this insight, suffering from performance degradation or prohibitive training costs with scaled codebook. To address this, we propose masked Bit AutoRegressive modeling (BAR), a scalable framework that supports arbitrary codebook sizes. By equipping an autoregressive transformer with a masked bit modeling head, BAR predicts discrete tokens through progressively generating their constituent bits. BAR achieves a new state-of-the-art gFID of 0.99 on ImageNet-256, outperforming leading methods across both continuous and discrete paradigms, while significantly reducing sampling costs and converging faster than prior continuous approaches. Project page is available at https://bar-gen.github.io/
comment: SOTA discrete visual generation defeats diffusion models with 0.99 FID score, project page is available at https://bar-gen.github.io/
☆ WorldCompass: Reinforcement Learning for Long-Horizon World Models
This work presents WorldCompass, a novel Reinforcement Learning (RL) post-training framework for the long-horizon, interactive video-based world models, enabling them to explore the world more accurately and consistently based on interaction signals. To effectively "steer" the world model's exploration, we introduce three core innovations tailored to the autoregressive video generation paradigm: 1) Clip-level rollout Strategy: We generate and evaluate multiple samples at a single target clip, which significantly boosts rollout efficiency and provides fine-grained reward signals. 2) Complementary Reward Functions: We design reward functions for both interaction-following accuracy and visual quality, which provide direct supervision and effectively suppress reward-hacking behaviors. 3) Efficient RL Algorithm: We employ the negative-aware fine-tuning strategy coupled with various efficiency optimizations to efficiently and effectively enhance model capacity. Evaluations on the SoTA open-source world model, WorldPlay, demonstrate that WorldCompass significantly improves interaction accuracy and visual fidelity across various scenarios.
comment: Project page: \url{https://3d-models.hunyuan.tencent.com/world/}
☆ $χ_{0}$: Resource-Aware Robust Manipulation via Taming Distributional Inconsistencies
High-reliability long-horizon robotic manipulation has traditionally relied on large-scale data and compute to understand complex real-world dynamics. However, we identify that the primary bottleneck to real-world robustness is not resource scale alone, but the distributional shift among the human demonstration distribution, the inductive bias learned by the policy, and the test-time execution distribution -- a systematic inconsistency that causes compounding errors in multi-stage tasks. To mitigate these inconsistencies, we propose $χ_{0}$, a resource-efficient framework with effective modules designated to achieve production-level robustness in robotic manipulation. Our approach builds off three technical pillars: (i) Model Arithmetic, a weight-space merging strategy that efficiently soaks up diverse distributions of different demonstrations, varying from object appearance to state variations; (ii) Stage Advantage, a stage-aware advantage estimator that provides stable, dense progress signals, overcoming the numerical instability of prior non-stage approaches; and (iii) Train-Deploy Alignment, which bridges the distribution gap via spatio-temporal augmentation, heuristic DAgger corrections, and temporal chunk-wise smoothing. $χ_{0}$ enables two sets of dual-arm robots to collaboratively orchestrate long-horizon garment manipulation, spanning tasks from flattening, folding, to hanging different clothes. Our method exhibits high-reliability autonomy; we are able to run the system from arbitrary initial state for consecutive 24 hours non-stop. Experiments validate that $χ_{0}$ surpasses the state-of-the-art $π_{0.5}$ in success rate by nearly 250%, with only 20-hour data and 8 A100 GPUs. Code, data and models will be released to facilitate the community.
☆ Robustness Is a Function, Not a Number: A Factorized Comprehensive Study of OOD Robustness in Vision-Based Driving
Out of distribution (OOD) robustness in autonomous driving is often reduced to a single number, hiding what breaks a policy. We decompose environments along five axes: scene (rural/urban), season, weather, time (day/night), and agent mix; and measure performance under controlled $k$-factor perturbations ($k \in \{0,1,2,3\}$). Using closed loop control in VISTA, we benchmark FC, CNN, and ViT policies, train compact ViT heads on frozen foundation-model (FM) features, and vary ID support in scale, diversity, and temporal context. (1) ViT policies are markedly more OOD-robust than comparably sized CNN/FC, and FM features yield state-of-the-art success at a latency cost. (2) Naive temporal inputs (multi-frame) do not beat the best single-frame baseline. (3) The largest single factor drops are rural $\rightarrow$ urban and day $\rightarrow$ night ($\sim 31\%$ each); actor swaps $\sim 10\%$, moderate rain $\sim 7\%$; season shifts can be drastic, and combining a time flip with other changes further degrades performance. (4) FM-feature policies stay above $85\%$ under three simultaneous changes; non-FM single-frame policies take a large first-shift hit, and all no-FM models fall below $50\%$ by three changes. (5) Interactions are non-additive: some pairings partially offset, whereas season-time combinations are especially harmful. (6) Training on winter/snow is most robust to single-factor shifts, while a rural+summer baseline gives the best overall OOD performance. (7) Scaling traces/views improves robustness ($+11.8$ points from $5$ to $14$ traces), yet targeted exposure to hard conditions can substitute for scale. (8) Using multiple ID environments broadens coverage and strengthens weak cases (urban OOD $60.6\% \rightarrow 70.1\%$) with a small ID drop; single-ID preserves peak performance but in a narrow domain. These results yield actionable design rules for OOD-robust driving policies.
☆ Raster2Seq: Polygon Sequence Generation for Floorplan Reconstruction
Reconstructing a structured vector-graphics representation from a rasterized floorplan image is typically an important prerequisite for computational tasks involving floorplans such as automated understanding or CAD workflows. However, existing techniques struggle in faithfully generating the structure and semantics conveyed by complex floorplans that depict large indoor spaces with many rooms and a varying numbers of polygon corners. To this end, we propose Raster2Seq, framing floorplan reconstruction as a sequence-to-sequence task in which floorplan elements--such as rooms, windows, and doors--are represented as labeled polygon sequences that jointly encode geometry and semantics. Our approach introduces an autoregressive decoder that learns to predict the next corner conditioned on image features and previously generated corners using guidance from learnable anchors. These anchors represent spatial coordinates in image space, hence allowing for effectively directing the attention mechanism to focus on informative image regions. By embracing the autoregressive mechanism, our method offers flexibility in the output format, enabling for efficiently handling complex floorplans with numerous rooms and diverse polygon structures. Our method achieves state-of-the-art performance on standard benchmarks such as Structure3D, CubiCasa5K, and Raster2Graph, while also demonstrating strong generalization to more challenging datasets like WAFFLE, which contain diverse room structures and complex geometric variations.
comment: Code: https://anonymous.4open.science/r/Raster2Seq-BE73/
☆ ArcFlow: Unleashing 2-Step Text-to-Image Generation via High-Precision Non-Linear Flow Distillation
Diffusion models have achieved remarkable generation quality, but they suffer from significant inference cost due to their reliance on multiple sequential denoising steps, motivating recent efforts to distill this inference process into a few-step regime. However, existing distillation methods typically approximate the teacher trajectory by using linear shortcuts, which makes it difficult to match its constantly changing tangent directions as velocities evolve across timesteps, thereby leading to quality degradation. To address this limitation, we propose ArcFlow, a few-step distillation framework that explicitly employs non-linear flow trajectories to approximate pre-trained teacher trajectories. Concretely, ArcFlow parameterizes the velocity field underlying the inference trajectory as a mixture of continuous momentum processes. This enables ArcFlow to capture velocity evolution and extrapolate coherent velocities to form a continuous non-linear trajectory within each denoising step. Importantly, this parameterization admits an analytical integration of this non-linear trajectory, which circumvents numerical discretization errors and results in high-precision approximation of the teacher trajectory. To train this parameterization into a few-step generator, we implement ArcFlow via trajectory distillation on pre-trained teacher models using lightweight adapters. This strategy ensures fast, stable convergence while preserving generative diversity and quality. Built on large-scale models (Qwen-Image-20B and FLUX.1-dev), ArcFlow only fine-tunes on less than 5% of original parameters and achieves a 40x speedup with 2 NFEs over the original multi-step teachers without significant quality degradation. Experiments on benchmarks show the effectiveness of ArcFlow both qualitatively and quantitatively.
☆ Dexterous Manipulation Policies from RGB Human Videos via 4D Hand-Object Trajectory Reconstruction
Multi-finger robotic hand manipulation and grasping are challenging due to the high-dimensional action space and the difficulty of acquiring large-scale training data. Existing approaches largely rely on human teleoperation with wearable devices or specialized sensing equipment to capture hand-object interactions, which limits scalability. In this work, we propose VIDEOMANIP, a device-free framework that learns dexterous manipulation directly from RGB human videos. Leveraging recent advances in computer vision, VIDEOMANIP reconstructs explicit 4D robot-object trajectories from monocular videos by estimating human hand poses, object meshes, and retargets the reconstructed human motions to robotic hands for manipulation learning. To make the reconstructed robot data suitable for dexterous manipulation training, we introduce hand-object contact optimization with interaction-centric grasp modeling, as well as a demonstration synthesis strategy that generates diverse training trajectories from a single video, enabling generalizable policy learning without additional robot demonstrations. In simulation, the learned grasping model achieves a 70.25% success rate across 20 diverse objects using the Inspire Hand. In the real world, manipulation policies trained from RGB videos achieve an average 62.86% success rate across seven tasks using the LEAP Hand, outperforming retargeting-based methods by 15.87%. Project videos are available at videomanip.github.io.
☆ GEBench: Benchmarking Image Generation Models as GUI Environments
Recent advancements in image generation models have enabled the prediction of future Graphical User Interface (GUI) states based on user instructions. However, existing benchmarks primarily focus on general domain visual fidelity, leaving the evaluation of state transitions and temporal coherence in GUI-specific contexts underexplored. To address this gap, we introduce GEBench, a comprehensive benchmark for evaluating dynamic interaction and temporal coherence in GUI generation. GEBench comprises 700 carefully curated samples spanning five task categories, covering both single-step interactions and multi-step trajectories across real-world and fictional scenarios, as well as grounding point localization. To support systematic evaluation, we propose GE-Score, a novel five-dimensional metric that assesses Goal Achievement, Interaction Logic, Content Consistency, UI Plausibility, and Visual Quality. Extensive evaluations on current models indicate that while they perform well on single-step transitions, they struggle significantly with maintaining temporal coherence and spatial grounding over longer interaction sequences. Our findings identify icon interpretation, text rendering, and localization precision as critical bottlenecks. This work provides a foundation for systematic assessment and suggests promising directions for future research toward building high-fidelity generative GUI environments. The code is available at: https://github.com/stepfun-ai/GEBench.
comment: 23 pages, 5 figures, 4 tables
☆ Generalizing Sports Feedback Generation by Watching Competitions and Reading Books: A Rock Climbing Case Study WACV 2026
While there is rapid progress in video-LLMs with advanced reasoning capabilities, prior work shows that these models struggle on the challenging task of sports feedback generation and require expensive and difficult-to-collect finetuning feedback data for each sport. This limitation is evident from the poor generalization to sports unseen during finetuning. Furthermore, traditional text generation evaluation metrics (e.g., BLEU-4, METEOR, ROUGE-L, BERTScore), originally developed for machine translation and summarization, fail to capture the unique aspects of sports feedback quality. To address the first problem, using rock climbing as our case study, we propose using auxiliary freely-available web data from the target domain, such as competition videos and coaching manuals, in addition to existing sports feedback from a disjoint, source domain to improve sports feedback generation performance on the target domain. To improve evaluation, we propose two evaluation metrics: (1) specificity and (2) actionability. Together, our approach enables more meaningful and practical generation of sports feedback under limited annotations.
comment: to appear WACV 2026
WorldArena: A Unified Benchmark for Evaluating Perception and Functional Utility of Embodied World Models
While world models have emerged as a cornerstone of embodied intelligence by enabling agents to reason about environmental dynamics through action-conditioned prediction, their evaluation remains fragmented. Current evaluation of embodied world models has largely focused on perceptual fidelity (e.g., video generation quality), overlooking the functional utility of these models in downstream decision-making tasks. In this work, we introduce WorldArena, a unified benchmark designed to systematically evaluate embodied world models across both perceptual and functional dimensions. WorldArena assesses models through three dimensions: video perception quality, measured with 16 metrics across six sub-dimensions; embodied task functionality, which evaluates world models as data engines, policy evaluators, and action planners integrating with subjective human evaluation. Furthermore, we propose EWMScore, a holistic metric integrating multi-dimensional performance into a single interpretable index. Through extensive experiments on 14 representative models, we reveal a significant perception-functionality gap, showing that high visual quality does not necessarily translate into strong embodied task capability. WorldArena benchmark with the public leaderboard is released at https://worldarena.ai, providing a framework for tracking progress toward truly functional world models in embodied AI.
☆ Modeling 3D Pedestrian-Vehicle Interactions for Vehicle-Conditioned Pose Forecasting
Accurately predicting pedestrian motion is crucial for safe and reliable autonomous driving in complex urban environments. In this work, we present a 3D vehicle-conditioned pedestrian pose forecasting framework that explicitly incorporates surrounding vehicle information. To support this, we enhance the Waymo-3DSkelMo dataset with aligned 3D vehicle bounding boxes, enabling realistic modeling of multi-agent pedestrian-vehicle interactions. We introduce a sampling scheme to categorize scenes by pedestrian and vehicle count, facilitating training across varying interaction complexities. Our proposed network adapts the TBIFormer architecture with a dedicated vehicle encoder and pedestrian-vehicle interaction cross-attention module to fuse pedestrian and vehicle features, allowing predictions to be conditioned on both historical pedestrian motion and surrounding vehicles. Extensive experiments demonstrate substantial improvements in forecasting accuracy and validate different approaches for modeling pedestrian-vehicle interactions, highlighting the importance of vehicle-aware 3D pose prediction for autonomous driving. Code is available at: https://github.com/GuangxunZhu/VehCondPose3D
comment: Accepted for IEEE International Conference on Robotics and Automation (ICRA) 2026
☆ MotionCrafter: Dense Geometry and Motion Reconstruction with a 4D VAE
We introduce MotionCrafter, a video diffusion-based framework that jointly reconstructs 4D geometry and estimates dense motion from a monocular video. The core of our method is a novel joint representation of dense 3D point maps and 3D scene flows in a shared coordinate system, and a novel 4D VAE to effectively learn this representation. Unlike prior work that forces the 3D value and latents to align strictly with RGB VAE latents-despite their fundamentally different distributions-we show that such alignment is unnecessary and leads to suboptimal performance. Instead, we introduce a new data normalization and VAE training strategy that better transfers diffusion priors and greatly improves reconstruction quality. Extensive experiments across multiple datasets demonstrate that MotionCrafter achieves state-of-the-art performance in both geometry reconstruction and dense scene flow estimation, delivering 38.64% and 25.0% improvements in geometry and motion reconstruction, respectively, all without any post-optimization. Project page: https://ruijiezhu94.github.io/MotionCrafter_Page
comment: Project page: https://ruijiezhu94.github.io/MotionCrafter_Page
☆ Grow with the Flow: 4D Reconstruction of Growing Plants with Gaussian Flow Fields
Modeling the time-varying 3D appearance of plants during their growth poses unique challenges: unlike many dynamic scenes, plants generate new geometry over time as they expand, branch, and differentiate. Recent motion modeling techniques are ill-suited to this problem setting. For example, deformation fields cannot introduce new geometry, and 4D Gaussian splatting constrains motion to a linear trajectory in space and time and cannot track the same set of Gaussians over time. Here, we introduce a 3D Gaussian flow field representation that models plant growth as a time-varying derivative over Gaussian parameters -- position, scale, orientation, color, and opacity -- enabling nonlinear and continuous-time growth dynamics. To initialize a sufficient set of Gaussian primitives, we reconstruct the mature plant and learn a process of reverse growth, effectively simulating the plant's developmental history in reverse. Our approach achieves superior image quality and geometric accuracy compared to prior methods on multi-view timelapse datasets of plant growth, providing a new approach for appearance modeling of growing 3D structures.
comment: Project page: https://weihanluo.ca/growflow/
☆ Analysis of Converged 3D Gaussian Splatting Solutions: Density Effects and Prediction Limit
We investigate what structure emerges in 3D Gaussian Splatting (3DGS) solutions from standard multi-view optimization. We term these Rendering-Optimal References (RORs) and analyze their statistical properties, revealing stable patterns: mixture-structured scales and bimodal radiance across diverse scenes. To understand what determines these parameters, we apply learnability probes by training predictors to reconstruct RORs from point clouds without rendering supervision. Our analysis uncovers fundamental density-stratification. Dense regions exhibit geometry-correlated parameters amenable to render-free prediction, while sparse regions show systematic failure across architectures. We formalize this through variance decomposition, demonstrating that visibility heterogeneity creates covariance-dominated coupling between geometric and appearance parameters in sparse regions. This reveals the dual character of RORs: geometric primitives where point clouds suffice, and view synthesis primitives where multi-view constraints are essential. We provide density-aware strategies that improve training robustness and discuss architectural implications for systems that adaptively balance feed-forward prediction and rendering-based refinement.
☆ Designing Multi-Robot Ground Video Sensemaking with Public Safety Professionals
Videos from fleets of ground robots can advance public safety by providing scalable situational awareness and reducing professionals' burden. Yet little is known about how to design and integrate multi-robot videos into public safety workflows. Collaborating with six police agencies, we examined how such videos could be made practical. In Study 1, we presented the first testbed for multi-robot ground video sensemaking. The testbed includes 38 events-of-interest (EoI) relevant to public safety, a dataset of 20 robot patrol videos (10 day/night pairs) covering EoI types, and 6 design requirements aimed at improving current video sensemaking practices. In Study 2, we built MRVS, a tool that augments multi-robot patrol video streams with a prompt-engineered video understanding model. Participants reported reduced manual workload and greater confidence with LLM-based explanations, while noting concerns about false alarms and privacy. We conclude with implications for designing future multi-robot video sensemaking tools. The testbed is available at https://github.com/Puqi7/MRVS\_VideoSensemaking
☆ TiFRe: Text-guided Video Frame Reduction for Efficient Video Multi-modal Large Language Models
With the rapid development of Large Language Models (LLMs), Video Multi-Modal Large Language Models (Video MLLMs) have achieved remarkable performance in video-language tasks such as video understanding and question answering. However, Video MLLMs face high computational costs, particularly in processing numerous video frames as input, which leads to significant attention computation overhead. A straightforward approach to reduce computational costs is to decrease the number of input video frames. However, simply selecting key frames at a fixed frame rate (FPS) often overlooks valuable information in non-key frames, resulting in notable performance degradation. To address this, we propose Text-guided Video Frame Reduction (TiFRe), a framework that reduces input frames while preserving essential video information. TiFRe uses a Text-guided Frame Sampling (TFS) strategy to select key frames based on user input, which is processed by an LLM to generate a CLIP-style prompt. Pre-trained CLIP encoders calculate the semantic similarity between the prompt and each frame, selecting the most relevant frames as key frames. To preserve video semantics, TiFRe employs a Frame Matching and Merging (FMM) mechanism, which integrates non-key frame information into the selected key frames, minimizing information loss. Experiments show that TiFRe effectively reduces computational costs while improving performance on video-language tasks.
☆ FlattenGPT: Depth Compression for Transformer with Layer Flattening ICML 2026
Recent works have indicated redundancy across transformer blocks, prompting the research of depth compression to prune less crucial blocks. However, current ways of entire-block pruning suffer from risks of discarding meaningful cues learned in those blocks, leading to substantial performance degradation. As another line of model compression, channel pruning can better preserve performance, while it cannot reduce model depth and is challenged by inconsistent pruning ratios for individual layers. To pursue better model compression and acceleration, this paper proposes \textbf{FlattenGPT}, a novel way to detect and reduce depth-wise redundancies. By flatting two adjacent blocks into one, it compresses the network depth, meanwhile enables more effective parameter redundancy detection and removal. FlattenGPT allows to preserve the knowledge learned in all blocks, and remains consistent with the original transformer architecture. Extensive experiments demonstrate that FlattenGPT enhances model efficiency with a decent trade-off to performance. It outperforms existing pruning methods in both zero-shot accuracies and WikiText-2 perplexity across various model types and parameter sizes. On LLaMA-2/3 and Qwen-1.5 models, FlattenGPT retains 90-96\% of zero-shot performance with a compression ratio of 20\%. It also outperforms other pruning methods in accelerating LLM inference, making it promising for enhancing the efficiency of transformers.
comment: Submitted to ICML 2026
☆ VideoVeritas: AI-Generated Video Detection via Perception Pretext Reinforcement Learning
The growing capability of video generation poses escalating security risks, making reliable detection increasingly essential. In this paper, we introduce VideoVeritas, a framework that integrates fine-grained perception and fact-based reasoning. We observe that while current multi-modal large language models (MLLMs) exhibit strong reasoning capacity, their granular perception ability remains limited. To mitigate this, we introduce Joint Preference Alignment and Perception Pretext Reinforcement Learning (PPRL). Specifically, rather than directly optimizing for detection task, we adopt general spatiotemporal grounding and self-supervised object counting in the RL stage, enhancing detection performance with simple perception pretext tasks. To facilitate robust evaluation, we further introduce MintVid, a light yet high-quality dataset containing 3K videos from 9 state-of-the-art generators, along with a real-world collected subset that has factual errors in content. Experimental results demonstrate that existing methods tend to bias towards either superficial reasoning or mechanical analysis, while VideoVeritas achieves more balanced performance across diverse benchmarks.
comment: Project: https://github.com/EricTan7/VideoVeritas
☆ Any-to-All MRI Synthesis: A Unified Foundation Model for Nasopharyngeal Carcinoma and Its Downstream Applications
Magnetic resonance imaging (MRI) is essential for nasopharyngeal carcinoma (NPC) radiotherapy (RT), but practical constraints, such as patient discomfort, long scan times, and high costs often lead to incomplete modalities in clinical practice, compromising RT planning accuracy. Traditional MRI synthesis methods are modality-specific, limited in anatomical adaptability, and lack clinical interpretability-failing to meet NPC's RT needs. Here, we developed a unified foundation model integrating contrastive visual representation learning and vision-language alignment (VLA) to enable any-to-all MRI synthesis. The model uses a contrastive encoder for modality-invariant representations and a CLIP-based text-informed decoder for semantically consistent synthesis, supporting any-to-all MRI synthesis via one unified foundation model. Trained on 40,825 images from 13 institutions, it achieves consistently high performance (average SSIM 0.90, PSNR 27) across 26 internal/external validation sites (15,748 images), with superior synthesis fidelity and robustness to noise and domain shifts. Meanwhile, its unified representation enhances downstream RT-relevant tasks (e.g., segmentation). This work advances digital medicine solutions for NPC care by leveraging foundation models to bridge technical synthesis and clinical utility.
☆ Omni-Video 2: Scaling MLLM-Conditioned Diffusion for Unified Video Generation and Editing
We present Omni-Video 2, a scalable and computationally efficient model that connects pretrained multimodal large-language models (MLLMs) with video diffusion models for unified video generation and editing. Our key idea is to exploit the understanding and reasoning capabilities of MLLMs to produce explicit target captions to interpret user instructions. In this way, the rich contextual representations from the understanding model are directly used to guide the generative process, thereby improving performance on complex and compositional editing. Moreover, a lightweight adapter is developed to inject multimodal conditional tokens into pretrained text-to-video diffusion models, allowing maximum reuse of their powerful generative priors in a parameter-efficient manner. Benefiting from these designs, we scale up Omni-Video 2 to a 14B video diffusion model on meticulously curated training data with quality, supporting high quality text-to-video generation and various video editing tasks such as object removal, addition, background change, complex motion editing, \emph{etc.} We evaluate the performance of Omni-Video 2 on the FiVE benchmark for fine-grained video editing and the VBench benchmark for text-to-video generation. The results demonstrate its superior ability to follow complex compositional instructions in video editing, while also achieving competitive or superior quality in video generation tasks.
comment: Technical Report, Project: https://howellyoung-s.github.io/Omni-Video2-project/
☆ Addressing data annotation scarcity in Brain Tumor Segmentation on 3D MRI scan Using a Semi-Supervised Teacher-Student Framework
Accurate brain tumor segmentation from MRI is limited by expensive annotations and data heterogeneity across scanners and sites. We propose a semi-supervised teacher-student framework that combines an uncertainty-aware pseudo-labeling teacher with a progressive, confidence-based curriculum for the student. The teacher produces probabilistic masks and per-pixel uncertainty; unlabeled scans are ranked by image-level confidence and introduced in stages, while a dual-loss objective trains the student to learn from high-confidence regions and unlearn low-confidence ones. Agreement-based refinement further improves pseudo-label quality. On BraTS 2021, validation DSC increased from 0.393 (10% data) to 0.872 (100%), with the largest gains in early stages, demonstrating data efficiency. The teacher reached a validation DSC of 0.922, and the student surpassed the teacher on tumor subregions (e.g., NCR/NET 0.797 and Edema 0.980); notably, the student recovered the Enhancing class (DSC 0.620) where the teacher failed. These results show that confidence-driven curricula and selective unlearning provide robust segmentation under limited supervision and noisy pseudo-labels.
comment: 10 pages, 7 figures. Submitted to IEEE Journal of Biomedical and Health Informatics (JBHI)
MOVA: Towards Scalable and Synchronized Video-Audio Generation
Audio is indispensable for real-world video, yet generation models have largely overlooked audio components. Current approaches to producing audio-visual content often rely on cascaded pipelines, which increase cost, accumulate errors, and degrade overall quality. While systems such as Veo 3 and Sora 2 emphasize the value of simultaneous generation, joint multimodal modeling introduces unique challenges in architecture, data, and training. Moreover, the closed-source nature of existing systems limits progress in the field. In this work, we introduce MOVA (MOSS Video and Audio), an open-source model capable of generating high-quality, synchronized audio-visual content, including realistic lip-synced speech, environment-aware sound effects, and content-aligned music. MOVA employs a Mixture-of-Experts (MoE) architecture, with a total of 32B parameters, of which 18B are active during inference. It supports IT2VA (Image-Text to Video-Audio) generation task. By releasing the model weights and code, we aim to advance research and foster a vibrant community of creators. The released codebase features comprehensive support for efficient inference, LoRA fine-tuning, and prompt enhancement.
comment: Technical report for MOVA (open-source video-audio generation model). 38 pages, 10 figures, 22 tables. Project page: https://mosi.cn/models/mova Code: https://github.com/OpenMOSS/MOVA Models: https://huggingface.co/collections/OpenMOSS-Team/mova. Qinyuan Cheng and Tianyi Liang are project leader. Xie Chen and Xipeng Qiu are corresponding authors
Multimodal Learning for Arcing Detection in Pantograph-Catenary Systems
The pantograph-catenary interface is essential for ensuring uninterrupted and reliable power delivery in electrified rail systems. However, electrical arcing at this interface poses serious risks, including accelerated wear of contact components, degraded system performance, and potential service disruptions. Detecting arcing events at the pantograph-catenary interface is challenging due to their transient nature, noisy operating environment, data scarcity, and the difficulty of distinguishing arcs from other similar transient phenomena. To address these challenges, we propose a novel multimodal framework that combines high-resolution image data with force measurements to more accurately and robustly detect arcing events. First, we construct two arcing detection datasets comprising synchronized visual and force measurements. One dataset is built from data provided by the Swiss Federal Railways (SBB), and the other is derived from publicly available videos of arcing events in different railway systems and synthetic force data that mimic the characteristics observed in the real dataset. Leveraging these datasets, we propose MultiDeepSAD, an extension of the DeepSAD algorithm for multiple modalities with a new loss formulation. Additionally, we introduce tailored pseudo-anomaly generation techniques specific to each data type, such as synthetic arc-like artifacts in images and simulated force irregularities, to augment training data and improve the discriminative ability of the model. Through extensive experiments and ablation studies, we demonstrate that our framework significantly outperforms baseline approaches, exhibiting enhanced sensitivity to real arcing events even under domain shifts and limited availability of real arcing observations.
☆ VedicTHG: Symbolic Vedic Computation for Low-Resource Talking-Head Generation in Educational Avatars
Talking-head avatars are increasingly adopted in educational technology to deliver content with social presence and improved engagement. However, many recent talking-head generation (THG) methods rely on GPU-centric neural rendering, large training sets, or high-capacity diffusion models, which limits deployment in offline or resource-constrained learning environments. A deterministic and CPU-oriented THG framework is described, termed Symbolic Vedic Computation, that converts speech to a time-aligned phoneme stream, maps phonemes to a compact viseme inventory, and produces smooth viseme trajectories through symbolic coarticulation inspired by Vedic sutra Urdhva Tiryakbhyam. A lightweight 2D renderer performs region-of-interest (ROI) warping and mouth compositing with stabilization to support real-time synthesis on commodity CPUs. Experiments report synchronization accuracy, temporal stability, and identity consistency under CPU-only execution, alongside benchmarking against representative CPU-feasible baselines. Results indicate that acceptable lip-sync quality can be achieved while substantially reducing computational load and latency, supporting practical educational avatars on low-end hardware. GitHub: https://vineetkumarrakesh.github.io/vedicthg
☆ Efficient Brain Extraction of MRI Scans with Mild to Moderate Neuropathology
Skull stripping magnetic resonance images (MRI) of the human brain is an important process in many image processing techniques, such as automatic segmentation of brain structures. Numerous methods have been developed to perform this task, however, they often fail in the presence of neuropathology and can be inconsistent in defining the boundary of the brain mask. Here, we propose a novel approach to skull strip T1-weighted images in a robust and efficient manner, aiming to consistently segment the outer surface of the brain, including the sulcal cerebrospinal fluid (CSF), while excluding the full extent of the subarachnoid space and meninges. We train a modified version of the U-net on silver-standard ground truth data using a novel loss function based on the signed-distance transform (SDT). We validate our model both qualitatively and quantitatively using held-out data from the training dataset, as well as an independent external dataset. The brain masks used for evaluation partially or fully include the subarachnoid space, which may introduce bias into the comparison; nonetheless, our model demonstrates strong performance on the held-out test data, achieving a consistent mean Dice similarity coefficient (DSC) of 0.964$\pm$0.006 and an average symmetric surface distance (ASSD) of 1.4mm$\pm$0.2mm. Performance on the external dataset is comparable, with a DSC of 0.958$\pm$0.006 and an ASSD of 1.7$\pm$0.2mm. Our method achieves performance comparable to or better than existing state-of-the-art methods for brain extraction, particularly in its highly consistent preservation of the brain's outer surface. The method is publicly available on GitHub.
comment: Accepted for publication in the Proceedings of SPIE Medical Imaging 2026
☆ MVAnimate: Enhancing Character Animation with Multi-View Optimization
The demand for realistic and versatile character animation has surged, driven by its wide-ranging applications in various domains. However, the animation generation algorithms modeling human pose with 2D or 3D structures all face various problems, including low-quality output content and training data deficiency, preventing the related algorithms from generating high-quality animation videos. Therefore, we introduce MVAnimate, a novel framework that synthesizes both 2D and 3D information of dynamic figures based on multi-view prior information, to enhance the generated video quality. Our approach leverages multi-view prior information to produce temporally consistent and spatially coherent animation outputs, demonstrating improvements over existing animation methods. Our MVAnimate also optimizes the multi-view videos of the target character, enhancing the video quality from different views. Experimental results on diverse datasets highlight the robustness of our method in handling various motion patterns and appearances.
☆ Shifting the Breaking Point of Flow Matching for Multi-Instance Editing
Flow matching models have recently emerged as an efficient alternative to diffusion, especially for text-guided image generation and editing, offering faster inference through continuous-time dynamics. However, existing flow-based editors predominantly support global or single-instruction edits and struggle with multi-instance scenarios, where multiple parts of a reference input must be edited independently without semantic interference. We identify this limitation as a consequence of globally conditioned velocity fields and joint attention mechanisms, which entangle concurrent edits. To address this issue, we introduce Instance-Disentangled Attention, a mechanism that partitions joint attention operations, enforcing binding between instance-specific textual instructions and spatial regions during velocity field estimation. We evaluate our approach on both natural image editing and a newly introduced benchmark of text-dense infographics with region-level editing instructions. Experimental results demonstrate that our approach promotes edit disentanglement and locality while preserving global output coherence, enabling single-pass, instance-level editing.
☆ From Correspondence to Actions: Human-Like Multi-Image Spatial Reasoning in Multi-modal Large Language Models
While multimodal large language models (MLLMs) have made substantial progress in single-image spatial reasoning, multi-image spatial reasoning, which requires integration of information from multiple viewpoints, remains challenging. Cognitive studies suggest that humans address such tasks through two mechanisms: cross-view correspondence, which identifies regions across different views that correspond to the same physical locations, and stepwise viewpoint transformation, which composes relative viewpoint changes sequentially. However, existing studies incorporate these mechanisms only partially and often implicitly, without explicit supervision for both. We propose Human-Aware Training for Cross-view correspondence and viewpoint cHange (HATCH), a training framework with two complementary objectives: (1) Patch-Level Spatial Alignment, which encourages patch representations to align across views for spatially corresponding regions, and (2) Action-then-Answer Reasoning, which requires the model to generate explicit viewpoint transition actions before predicting the final answer. Experiments on three benchmarks demonstrate that HATCH consistently outperforms baselines of comparable size by a clear margin and achieves competitive results against much larger models, while preserving single-image reasoning capabilities.
☆ Closing the Confusion Loop: CLIP-Guided Alignment for Source-Free Domain Adaptation
Source-Free Domain Adaptation (SFDA) tackles the problem of adapting a pre-trained source model to an unlabeled target domain without accessing any source data, which is quite suitable for the field of data security. Although recent advances have shown that pseudo-labeling strategies can be effective, they often fail in fine-grained scenarios due to subtle inter-class similarities. A critical but underexplored issue is the presence of asymmetric and dynamic class confusion, where visually similar classes are unequally and inconsistently misclassified by the source model. Existing methods typically ignore such confusion patterns, leading to noisy pseudo-labels and poor target discrimination. To address this, we propose CLIP-Guided Alignment(CGA), a novel framework that explicitly models and mitigates class confusion in SFDA. Generally, our method consists of three parts: (1) MCA: detects first directional confusion pairs by analyzing the predictions of the source model in the target domain; (2) MCC: leverages CLIP to construct confusion-aware textual prompts (e.g. a truck that looks like a bus), enabling more context-sensitive pseudo-labeling; and (3) FAM: builds confusion-guided feature banks for both CLIP and the source model and aligns them using contrastive learning to reduce ambiguity in the representation space. Extensive experiments on various datasets demonstrate that CGA consistently outperforms state-of-the-art SFDA methods, with especially notable gains in confusion-prone and fine-grained scenarios. Our results highlight the importance of explicitly modeling inter-class confusion for effective source-free adaptation. Our code can be find at https://github.com/soloiro/CGA
☆ Artifact Reduction in Undersampled 3D Cone-Beam CTs using a Hybrid 2D-3D CNN Framework
Undersampled CT volumes minimize acquisition time and radiation exposure but introduce artifacts degrading image quality and diagnostic utility. Reducing these artifacts is critical for high-quality imaging. We propose a computationally efficient hybrid deep-learning framework that combines the strengths of 2D and 3D models. First, a 2D U-Net operates on individual slices of undersampled CT volumes to extract feature maps. These slice-wise feature maps are then stacked across the volume and used as input to a 3D decoder, which utilizes contextual information across slices to predict an artifact-free 3D CT volume. The proposed two-stage approach balances the computational efficiency of 2D processing with the volumetric consistency provided by 3D modeling. The results show substantial improvements in inter-slice consistency in coronal and sagittal direction with low computational overhead. This hybrid framework presents a robust and efficient solution for high-quality 3D CT image post-processing. The code of this project can be found on github: https://github.com/J-3TO/2D-3DCNN_sparseview/.
☆ SynSacc: A Blender-to-V2E Pipeline for Synthetic Neuromorphic Eye-Movement Data and Sim-to-Real Spiking Model Training WACV 2026
The study of eye movements, particularly saccades and fixations, are fundamental to understanding the mechanisms of human cognition and perception. Accurate classification of these movements requires sensing technologies capable of capturing rapid dynamics without distortion. Event cameras, also known as Dynamic Vision Sensors (DVS), provide asynchronous recordings of changes in light intensity, thereby eliminating motion blur inherent in conventional frame-based cameras and offering superior temporal resolution and data efficiency. In this study, we introduce a synthetic dataset generated with Blender to simulate saccades and fixations under controlled conditions. Leveraging Spiking Neural Networks (SNNs), we evaluate its robustness by training two architectures and finetuning on real event data. The proposed models achieve up to 0.83 accuracy and maintain consistent performance across varying temporal resolutions, demonstrating stability in eye movement classification. Moreover, the use of SNNs with synthetic event streams yields substantial computational efficiency gains over artificial neural network (ANN) counterparts, underscoring the utility of synthetic data augmentation in advancing event-based vision. All code and datasets associated with this work is available at https: //github.com/Ikhadija-5/SynSacc-Dataset.
comment: Accepted to the 2nd Workshop on "Event-based Vision in the Era of Generative AI - Transforming Perception and Visual Innovation, IEEE Winter Conference on Applications of Computer Vision (WACV 2026)
☆ FusionEdit: Semantic Fusion and Attention Modulation for Training-Free Image Editing ICASSP 2026
Text-guided image editing aims to modify specific regions according to the target prompt while preserving the identity of the source image. Recent methods exploit explicit binary masks to constrain editing, but hard mask boundaries introduce artifacts and reduce editability. To address these issues, we propose FusionEdit, a training-free image editing framework that achieves precise and controllable edits. First, editing and preserved regions are automatically identified by measuring semantic discrepancies between source and target prompts. To mitigate boundary artifacts, FusionEdit performs distance-aware latent fusion along region boundaries to yield the soft and accurate mask, and employs a total variation loss to enforce smooth transitions, obtaining natural editing results. Second, FusionEdit leverages AdaIN-based modulation within DiT attention layers to perform a statistical attention fusion in the editing region, enhancing editability while preserving global consistency with the source image. Extensive experiments demonstrate that our FusionEdit significantly outperforms state-of-the-art methods. Code is available at \href{https://github.com/Yvan1001/FusionEdit}{https://github.com/Yvan1001/FusionEdit}.
comment: Accepted by ICASSP 2026
☆ Rotated Lights for Consistent and Efficient 2D Gaussians Inverse Rendering
Inverse rendering aims to decompose a scene into its geometry, material properties and light conditions under a certain rendering model. It has wide applications like view synthesis, relighting, and scene editing. In recent years, inverse rendering methods have been inspired by view synthesis approaches like neural radiance fields and Gaussian splatting, which are capable of efficiently decomposing a scene into its geometry and radiance. They then further estimate the material and lighting that lead to the observed scene radiance. However, the latter step is highly ambiguous and prior works suffer from inaccurate color and baked shadows in their albedo estimation albeit their regularization. To this end, we propose RotLight, a simple capturing setup, to address the ambiguity. Compared to a usual capture, RotLight only requires the object to be rotated several times during the process. We show that as few as two rotations is effective in reducing artifacts. To further improve 2DGS-based inverse rendering, we additionally introduce a proxy mesh that not only allows accurate incident light tracing, but also enables a residual constraint and improves global illumination handling. We demonstrate with both synthetic and real world datasets that our method achieves superior albedo estimation while keeping efficient computation.
comment: Project Page: https://rotlight-ir.github.io/
☆ Zero-shot System for Automatic Body Region Detection for Volumetric CT and MR Images
Reliable identification of anatomical body regions is a prerequisite for many automated medical imaging workflows, yet existing solutions remain heavily dependent on unreliable DICOM metadata. Current solutions mainly use supervised learning, which limits their applicability in many real-world scenarios. In this work, we investigate whether body region detection in volumetric CT and MR images can be achieved in a fully zero-shot manner by using knowledge embedded in large pre-trained foundation models. We propose and systematically evaluate three training-free pipelines: (1) a segmentation-driven rule-based system leveraging pre-trained multi-organ segmentation models, (2) a Multimodal Large Language Model (MLLM) guided by radiologist-defined rules, and (3) a segmentation-aware MLLM that combines visual input with explicit anatomical evidence. All methods are evaluated on 887 heterogeneous CT and MR scans with manually verified anatomical region labels. The segmentation-driven rule-based approach achieves the strongest and most consistent performance, with weighted F1-scores of 0.947 (CT) and 0.914 (MR), demonstrating robustness across modalities and atypical scan coverage. The MLLM performs competitively in visually distinctive regions, while the segmentation-aware MLLM reveals fundamental limitations.
comment: 8 pages, 5 figures, 5 tables
TimeChat-Captioner: Scripting Multi-Scene Videos with Time-Aware and Structural Audio-Visual Captions
This paper proposes Omni Dense Captioning, a novel task designed to generate continuous, fine-grained, and structured audio-visual narratives with explicit timestamps. To ensure dense semantic coverage, we introduce a six-dimensional structural schema to create "script-like" captions, enabling readers to vividly imagine the video content scene by scene, akin to a cinematographic screenplay. To facilitate research, we construct OmniDCBench, a high-quality, human-annotated benchmark, and propose SodaM, a unified metric that evaluates time-aware detailed descriptions while mitigating scene boundary ambiguity. Furthermore, we construct a training dataset, TimeChatCap-42K, and present TimeChat-Captioner-7B, a strong baseline trained via SFT and GRPO with task-specific rewards. Extensive experiments demonstrate that TimeChat-Captioner-7B achieves state-of-the-art performance, surpassing Gemini-2.5-Pro, while its generated dense descriptions significantly boost downstream capabilities in audio-visual reasoning (DailyOmni and WorldSense) and temporal grounding (Charades-STA). All datasets, models, and code will be made publicly available at https://github.com/yaolinli/TimeChat-Captioner.
☆ Low-Light Video Enhancement with An Effective Spatial-Temporal Decomposition Paradigm
Low-Light Video Enhancement (LLVE) seeks to restore dynamic or static scenes plagued by severe invisibility and noise. In this paper, we present an innovative video decomposition strategy that incorporates view-independent and view-dependent components to enhance the performance of LLVE. The framework is called View-aware Low-light Video Enhancement (VLLVE). We leverage dynamic cross-frame correspondences for the view-independent term (which primarily captures intrinsic appearance) and impose a scene-level continuity constraint on the view-dependent term (which mainly describes the shading condition) to achieve consistent and satisfactory decomposition results. To further ensure consistent decomposition, we introduce a dual-structure enhancement network featuring a cross-frame interaction mechanism. By supervising different frames simultaneously, this network encourages them to exhibit matching decomposition features. This mechanism can seamlessly integrate with encoder-decoder single-frame networks, incurring minimal additional parameter costs. Building upon VLLVE, we propose a more comprehensive decomposition strategy by introducing an additive residual term, resulting in VLLVE++. This residual term can simulate scene-adaptive degradations, which are difficult to model using a decomposition formulation for common scenes, thereby further enhancing the ability to capture the overall content of videos. In addition, VLLVE++ enables bidirectional learning for both enhancement and degradation-aware correspondence refinement (end-to-end manner), effectively increasing reliable correspondences while filtering out incorrect ones. Notably, VLLVE++ demonstrates strong capability in handling challenging cases, such as real-world scenes and videos with high dynamics. Extensive experiments are conducted on widely recognized LLVE benchmarks.
OneVision-Encoder: Codec-Aligned Sparsity as a Foundational Principle for Multimodal Intelligence
Hypothesis. Artificial general intelligence is, at its core, a compression problem. Effective compression demands resonance: deep learning scales best when its architecture aligns with the fundamental structure of the data. These are the fundamental principles. Yet, modern vision architectures have strayed from these truths: visual signals are highly redundant, while discriminative information, the surprise, is sparse. Current models process dense pixel grids uniformly, wasting vast compute on static background rather than focusing on the predictive residuals that define motion and meaning. We argue that to solve visual understanding, we must align our architectures with the information-theoretic principles of video, i.e., Codecs. Method. OneVision-Encoder encodes video by compressing predictive visual structure into semantic meaning. By adopting Codec Patchification, OV-Encoder abandons uniform computation to focus exclusively on the 3.1%-25% of regions rich in signal entropy. To unify spatial and temporal reasoning under irregular token layouts, OneVision-Encoder employs a shared 3D RoPE and is trained with a large-scale cluster discrimination objective over more than one million semantic concepts, jointly capturing object permanence and motion dynamics. Evidence. The results validate our core hypothesis: efficiency and accuracy are not a trade-off; they are positively correlated. When integrated into LLM, it consistently outperforms strong vision backbones such as Qwen3-ViT and SigLIP2 across 16 image, video, and document understanding benchmarks, despite using substantially fewer visual tokens and pretraining data. Notably, on video understanding tasks, OV-Encoder achieves an average improvement of 4.1% over Qwen3-ViT. Codec-aligned, patch-level sparsity is a foundational principle, enabling OV-Encoder as a scalable engine for next-generation visual generalists.
☆ ALIVE: Animate Your World with Lifelike Audio-Video Generation
Video generation is rapidly evolving towards unified audio-video generation. In this paper, we present ALIVE, a generation model that adapts a pretrained Text-to-Video (T2V) model to Sora-style audio-video generation and animation. In particular, the model unlocks the Text-to-Video&Audio (T2VA) and Reference-to-Video&Audio (animation) capabilities compared to the T2V foundation models. To support the audio-visual synchronization and reference animation, we augment the popular MMDiT architecture with a joint audio-video branch which includes TA-CrossAttn for temporally-aligned cross-modal fusion and UniTemp-RoPE for precise audio-visual alignment. Meanwhile, a comprehensive data pipeline consisting of audio-video captioning, quality control, etc., is carefully designed to collect high-quality finetuning data. Additionally, we introduce a new benchmark to perform a comprehensive model test and comparison. After continue pretraining and finetuning on million-level high-quality data, ALIVE demonstrates outstanding performance, consistently outperforming open-source models and matching or surpassing state-of-the-art commercial solutions. With detailed recipes and benchmarks, we hope ALIVE helps the community develop audio-video generation models more efficiently. Official page: https://github.com/FoundationVision/Alive.
☆ A Machine Learning accelerated geophysical fluid solver
Machine learning methods have been successful in many areas, like image classification and natural language processing. However, it still needs to be determined how to apply ML to areas with mathematical constraints, like solving PDEs. Among various approaches to applying ML techniques to solving PDEs, the data-driven discretization method presents a promising way of accelerating and improving existing PDE solver on structured grids where it predicts the coefficients of quasi-linear stencils for computing values or derivatives of a function at given positions. It can improve the accuracy and stability of low-resolution simulation compared with using traditional finite difference or finite volume schemes. Meanwhile, it can also benefit from traditional numerical schemes like achieving conservation law by adapting finite volume type formulations. In this thesis, we have implemented the shallow water equation and Euler equation classic solver under a different framework. Experiments show that our classic solver performs much better than the Pyclaw solver. Then we propose four different deep neural networks for the ML-based solver. The results indicate that two of these approaches could output satisfactory solutions.
comment: Master Thesis
WiFlow: A Lightweight WiFi-based Continuous Human Pose Estimation Network with Spatio-Temporal Feature Decoupling
Human pose estimation is fundamental to intelligent perception in the Internet of Things (IoT), enabling applications ranging from smart healthcare to human-computer interaction. While WiFi-based methods have gained traction, they often struggle with continuous motion and high computational overhead. This work presents WiFlow, a novel framework for continuous human pose estimation using WiFi signals. Unlike vision-based approaches such as two-dimensional deep residual networks that treat Channel State Information (CSI) as images, WiFlow employs an encoder-decoder architecture. The encoder captures spatio-temporal features of CSI using temporal and asymmetric convolutions, preserving the original sequential structure of signals. It then refines keypoint features of human bodies to be tracked and capture their structural dependencies via axial attention. The decoder subsequently maps the encoded high-dimensional features into keypoint coordinates. Trained on a self-collected dataset of 360,000 synchronized CSI-pose samples from 5 subjects performing continuous sequences of 8 daily activities, WiFlow achieves a Percentage of Correct Keypoints (PCK) of 97.00% at a threshold of 20% (PCK@20) and 99.48% at PCK@50, with a mean per-joint position error of 0.008m. With only 4.82M parameters, WiFlow significantly reduces model complexity and computational cost, establishing a new performance baseline for practical WiFi-based human pose estimation. Our code and datasets are available at https://github.com/DY2434/WiFlow-WiFi-Pose-Estimation-with-Spatio-Temporal-Decoupling.git.
☆ Deep Learning-Based Fixation Type Prediction for Quality Assurance in Digital Pathology
Accurate annotation of fixation type is a critical step in slide preparation for pathology laboratories. However, this manual process is prone to errors, impacting downstream analyses and diagnostic accuracy. Existing methods for verifying formalin-fixed, paraffin-embedded (FFPE), and frozen section (FS) fixation types typically require full-resolution whole-slide images (WSIs), limiting scalability for high-throughput quality control. We propose a deep-learning model to predict fixation types using low-resolution, pre-scan thumbnail images. The model was trained on WSIs from the TUM Institute of Pathology (n=1,200, Leica GT450DX) and evaluated on a class-balanced subset of The Cancer Genome Atlas dataset (TCGA, n=8,800, Leica AT2), as well as on class-balanced datasets from Augsburg (n=695 [392 FFPE, 303 FS], Philips UFS) and Regensburg (n=202, 3DHISTECH P1000). Our model achieves an AUROC of 0.88 on TCGA, outperforming comparable pre-scan methods by 4.8%. It also achieves AUROCs of 0.72 on Regensburg and Augsburg slides, underscoring challenges related to scanner-induced domain shifts. Furthermore, the model processes each slide in 21 ms, $400\times$ faster than existing high-magnification, full-resolution methods, enabling rapid, high-throughput processing. This approach provides an efficient solution for detecting labelling errors without relying on high-magnification scans, offering a valuable tool for quality control in high-throughput pathology workflows. Future work will improve and evaluate the model's generalisation to additional scanner types. Our findings suggest that this method can increase accuracy and efficiency in digital pathology workflows and may be extended to other low-resolution slide annotations.
comment: 17 pages, 8 figures, 7 tables
☆ We Should Separate Memorization from Copyright
The widespread use of foundation models has introduced a new risk factor of copyright issue. This issue is leading to an active, lively and on-going debate amongst the data-science community as well as amongst legal scholars. Where claims and results across both sides are often interpreted in different ways and leading to different implications. Our position is that much of the technical literature relies on traditional reconstruction techniques that are not designed for copyright analysis. As a result, memorization and copying have been conflated across both technical and legal communities and in multiple contexts. We argue that memorization, as commonly studied in data science, should not be equated with copying and should not be used as a proxy for copyright infringement. We distinguish technical signals that meaningfully indicate infringement risk from those that instead reflect lawful generalization or high-frequency content. Based on this analysis, we advocate for an output-level, risk-based evaluation process that aligns technical assessments with established copyright standards and provides a more principled foundation for research, auditing, and policy.
☆ Revisiting [CLS] and Patch Token Interaction in Vision Transformers ICLR 2026
Vision Transformers have emerged as powerful, scalable and versatile representation learners. To capture both global and local features, a learnable [CLS] class token is typically prepended to the input sequence of patch tokens. Despite their distinct nature, both token types are processed identically throughout the model. In this work, we investigate the friction between global and local feature learning under different pre-training strategies by analyzing the interactions between class and patch tokens. Our analysis reveals that standard normalization layers introduce an implicit differentiation between these token types. Building on this insight, we propose specialized processing paths that selectively disentangle the computational flow of class and patch tokens, particularly within normalization layers and early query-key-value projections. This targeted specialization leads to significantly improved patch representation quality for dense prediction tasks. Our experiments demonstrate segmentation performance gains of over 2 mIoU points on standard benchmarks, while maintaining strong classification accuracy. The proposed modifications introduce only an 8% increase in parameters, with no additional computational overhead. Through comprehensive ablations, we provide insights into which architectural components benefit most from specialization and how our approach generalizes across model scales and learning frameworks.
comment: To be published as a conference paper at ICLR 2026
☆ Improving Reconstruction of Representation Autoencoder
Recent work leverages Vision Foundation Models as image encoders to boost the generative performance of latent diffusion models (LDMs), as their semantic feature distributions are easy to learn. However, such semantic features often lack low-level information (\eg, color and texture), leading to degraded reconstruction fidelity, which has emerged as a primary bottleneck in further scaling LDMs. To address this limitation, we propose LV-RAE, a representation autoencoder that augments semantic features with missing low-level information, enabling high-fidelity reconstruction while remaining highly aligned with the semantic distribution. We further observe that the resulting high-dimensional, information-rich latent make decoders sensitive to latent perturbations, causing severe artifacts when decoding generated latent and consequently degrading generation quality. Our analysis suggests that this sensitivity primarily stems from excessive decoder responses along directions off the data manifold. Building on these insights, we propose fine-tuning the decoder to increase its robustness and smoothing the generated latent via controlled noise injection, thereby enhancing generation quality. Experiments demonstrate that LV-RAE significantly improves reconstruction fidelity while preserving the semantic abstraction and achieving strong generative quality. Our code is available at https://github.com/modyu-liu/LVRAE.
☆ Inspiration Seeds: Learning Non-Literal Visual Combinations for Generative Exploration
While generative models have become powerful tools for image synthesis, they are typically optimized for executing carefully crafted textual prompts, offering limited support for the open-ended visual exploration that often precedes idea formation. In contrast, designers frequently draw inspiration from loosely connected visual references, seeking emergent connections that spark new ideas. We propose Inspiration Seeds, a generative framework that shifts image generation from final execution to exploratory ideation. Given two input images, our model produces diverse, visually coherent compositions that reveal latent relationships between inputs, without relying on user-specified text prompts. Our approach is feed-forward, trained on synthetic triplets of decomposed visual aspects derived entirely through visual means: we use CLIP Sparse Autoencoders to extract editing directions in CLIP latent space and isolate concept pairs. By removing the reliance on language and enabling fast, intuitive recombination, our method supports visual ideation at the early and ambiguous stages of creative work.
comment: Project page available at https://inspirationseedspaper.github.io/InspirationSeeds/
Overview and Comparison of AVS Point Cloud Compression Standard
Point cloud is a prevalent 3D data representation format with significant application values in immersive media, autonomous driving, digital heritage protection, etc. However, the large data size of point clouds poses challenges to transmission and storage, which influences the wide deployments. Therefore, point cloud compression plays a crucial role in practical applications for both human and machine perception optimization. To this end, the Moving Picture Experts Group (MPEG) has established two standards for point cloud compression, including Geometry-based Point Cloud Compression (G-PCC) and Video-based Point Cloud Compression (V-PCC). In the meantime, the Audio Video coding Standard (AVS) Workgroup of China also have launched and completed the development for its first generation point cloud compression standard, namely AVS PCC. This new standardization effort has adopted many new coding tools and techniques, which are different from the other counterpart standards. This paper reviews the AVS PCC standard from two perspectives, i.e., the related technologies and performance comparisons.
comment: 3 figures, 3 tables
☆ SemiNFT: Learning to Transfer Presets from Imitation to Appreciation via Hybrid-Sample Reinforcement Learning
Photorealistic color retouching plays a vital role in visual content creation, yet manual retouching remains inaccessible to non-experts due to its reliance on specialized expertise. Reference-based methods offer a promising alternative by transferring the preset color of a reference image to a source image. However, these approaches often operate as novice learners, performing global color mappings derived from pixel-level statistics, without a true understanding of semantic context or human aesthetics. To address this issue, we propose SemiNFT, a Diffusion Transformer (DiT)-based retouching framework that mirrors the trajectory of human artistic training: beginning with rigid imitation and evolving into intuitive creation. Specifically, SemiNFT is first taught with paired triplets to acquire basic structural preservation and color mapping skills, and then advanced to reinforcement learning (RL) on unpaired data to cultivate nuanced aesthetic perception. Crucially, during the RL stage, to prevent catastrophic forgetting of old skills, we design a hybrid online-offline reward mechanism that anchors aesthetic exploration with structural review. % experiments Extensive experiments show that SemiNFT not only outperforms state-of-the-art methods on standard preset transfer benchmarks but also demonstrates remarkable intelligence in zero-shot tasks, such as black-and-white photo colorization and cross-domain (anime-to-photo) preset transfer. These results confirm that SemiNFT transcends simple statistical matching and achieves a sophisticated level of aesthetic comprehension. Our project can be found at https://melanyyang.github.io/SemiNFT/.
☆ retinalysis-vascx: An explainable software toolbox for the extraction of retinal vascular biomarkers
The automatic extraction of retinal vascular biomarkers from color fundus images (CFI) is essential for large-scale studies of the retinal vasculature. We present VascX, an open-source Python toolbox designed for the automated extraction of biomarkers from artery and vein segmentations. The VascX workflow processes vessel segmentation masks into skeletons to build undirected and directed vessel graphs, which are then used to resolve segments into continuous vessels. This architecture enables the calculation of a comprehensive suite of biomarkers, including vascular density, bifurcation angles, central retinal equivalents (CREs), tortuosity, and temporal angles, alongside image quality metrics. A distinguishing feature of VascX is its region awareness; by utilizing the fovea, optic disc, and CFI boundaries as anatomical landmarks, the tool ensures spatially standardized measurements and identifies when specific biomarkers are not computable. Spatially localized biomarkers are calculated over grids relative to these landmarks, facilitating precise clinical analysis. Released via GitHub and PyPI, VascX provides an explainable and modifiable framework that supports reproducible vascular research through integrated visualizations. By enabling the rapid extraction of established biomarkers and the development of new ones, VascX advances the field of oculomics, offering a robust, computationally efficient solution for scalable deployment in large-scale clinical and epidemiological databases.
☆ FLAG-4D: Flow-Guided Local-Global Dual-Deformation Model for 4D Reconstruction
We introduce FLAG-4D, a novel framework for generating novel views of dynamic scenes by reconstructing how 3D Gaussian primitives evolve through space and time. Existing methods typically rely on a single Multilayer Perceptron (MLP) to model temporal deformations, and they often struggle to capture complex point motions and fine-grained dynamic details consistently over time, especially from sparse input views. Our approach, FLAG-4D, overcomes this by employing a dual-deformation network that dynamically warps a canonical set of 3D Gaussians over time into new positions and anisotropic shapes. This dual-deformation network consists of an Instantaneous Deformation Network (IDN) for modeling fine-grained, local deformations and a Global Motion Network (GMN) for capturing long-range dynamics, refined through mutual learning. To ensure these deformations are both accurate and temporally smooth, FLAG-4D incorporates dense motion features from a pretrained optical flow backbone. We fuse these motion cues from adjacent timeframes and use a deformation-guided attention mechanism to align this flow information with the current state of each evolving 3D Gaussian. Extensive experiments demonstrate that FLAG-4D achieves higher-fidelity and more temporally coherent reconstructions with finer detail preservation than state-of-the-art methods.
☆ GOT-Edit: Geometry-Aware Generic Object Tracking via Online Model Editing ICLR 2026
Human perception for effective object tracking in a 2D video stream arises from the implicit use of prior 3D knowledge combined with semantic reasoning. In contrast, most generic object tracking (GOT) methods primarily rely on 2D features of the target and its surroundings while neglecting 3D geometric cues, which makes them susceptible to partial occlusion, distractors, and variations in geometry and appearance. To address this limitation, we introduce GOT-Edit, an online cross-modality model editing approach that integrates geometry-aware cues into a generic object tracker from a 2D video stream. Our approach leverages features from a pre-trained Visual Geometry Grounded Transformer to enable geometric cue inference from only a few 2D images. To tackle the challenge of seamlessly combining geometry and semantics, GOT-Edit performs online model editing with null-space constrained updates that incorporate geometric information while preserving semantic discrimination, yielding consistently better performance across diverse scenarios. Extensive experiments on multiple GOT benchmarks demonstrate that GOT-Edit achieves superior robustness and accuracy, particularly under occlusion and clutter, establishing a new paradigm for combining 2D semantics with 3D geometric reasoning for generic object tracking.
comment: ICLR 2026. This is a preprint version. The camera-ready version will be updated soon
☆ TIBR4D: Tracing-Guided Iterative Boundary Refinement for Efficient 4D Gaussian Segmentation
Object-level segmentation in dynamic 4D Gaussian scenes remains challenging due to complex motion, occlusions, and ambiguous boundaries. In this paper, we present an efficient learning-free 4D Gaussian segmentation framework that lifts video segmentation masks to 4D spaces, whose core is a two-stage iterative boundary refinement, TIBR4D. The first stage is an Iterative Gaussian Instance Tracing (IGIT) at the temporal segment level. It progressively refines Gaussian-to-instance probabilities through iterative tracing, and extracts corresponding Gaussian point clouds that better handle occlusions and preserve completeness of object structures compared to existing one-shot threshold-based methods. The second stage is a frame-wise Gaussian Rendering Range Control (RCC) via suppressing highly uncertain Gaussians near object boundaries while retaining their core contributions for more accurate boundaries. Furthermore, a temporal segmentation merging strategy is proposed for IGIT to balance identity consistency and dynamic awareness. Longer segments enforce stronger multi-frame constraints for stable identities, while shorter segments allow identity changes to be captured promptly. Experiments on HyperNeRF and Neu3D demonstrate that our method produces accurate object Gaussian point clouds with clearer boundaries and higher efficiency compared to SOTA methods.
comment: 13 pages, 6 figures, 4 tables
☆ Thegra: Graph-based SLAM for Thermal Imagery
Thermal imaging provides a practical sensing modality for visual SLAM in visually degraded environments such as low illumination, smoke, or adverse weather. However, thermal imagery often exhibits low texture, low contrast, and high noise, complicating feature-based SLAM. In this work, we propose a sparse monocular graph-based SLAM system for thermal imagery that leverages general-purpose learned features -- the SuperPoint detector and LightGlue matcher, trained on large-scale visible-spectrum data to improve cross-domain generalization. To adapt these components to thermal data, we introduce a preprocessing pipeline to enhance input suitability and modify core SLAM modules to handle sparse and outlier-prone feature matches. We further incorporate keypoint confidence scores from SuperPoint into a confidence-weighted factor graph to improve estimation robustness. Evaluations on public thermal datasets demonstrate that the proposed system achieves reliable performance without requiring dataset-specific training or fine-tuning a desired feature detector, given the scarcity of quality thermal data. Code will be made available upon publication.
☆ Automatic regularization parameter choice for tomography using a double model approach
Image reconstruction in X-ray tomography is an ill-posed inverse problem, particularly with limited available data. Regularization is thus essential, but its effectiveness hinges on the choice of a regularization parameter that balances data fidelity against a priori information. We present a novel method for automatic parameter selection based on the use of two distinct computational discretizations of the same problem. A feedback control algorithm dynamically adjusts the regularization strength, driving an iterative reconstruction toward the smallest parameter that yields sufficient similarity between reconstructions on the two grids. The effectiveness of the proposed approach is demonstrated using real tomographic data.
☆ GeoFocus: Blending Efficient Global-to-Local Perception for Multimodal Geometry Problem-Solving
Geometry problem-solving remains a significant challenge for Large Multimodal Models (LMMs), requiring not only global shape recognition but also attention to intricate local relationships related to geometric theory. To address this, we propose GeoFocus, a novel framework comprising two core modules. 1) Critical Local Perceptor, which automatically identifies and emphasizes critical local structure (e.g., angles, parallel lines, comparative distances) through thirteen theory-based perception templates, boosting critical local feature coverage by 61% compared to previous methods. 2) VertexLang, a compact topology formal language, encodes global figures through vertex coordinates and connectivity relations. By replacing bulky code-based encodings, VertexLang reduces global perception training time by 20% while improving topology recognition accuracy. When evaluated in Geo3K, GeoQA, and FormalGeo7K, GeoFocus achieves a 4.7% accuracy improvement over leading specialized models and demonstrates superior robustness in MATHVERSE under diverse visual conditions. Project Page -- https://github.com/dle666/GeoFocus
☆ Are Vision Foundation Models Foundational for Electron Microscopy Image Segmentation?
Although vision foundation models (VFMs) are increasingly reused for biomedical image analysis, it remains unclear whether the latent representations they provide are general enough to support effective transfer and reuse across heterogeneous microscopy image datasets. Here, we study this question for the problem of mitochondria segmentation in electron microscopy (EM) images, using two popular public EM datasets (Lucchi++ and VNC) and three recent representative VFMs (DINOv2, DINOv3, and OpenCLIP). We evaluate two practical model adaptation regimes: a frozen-backbone setting in which only a lightweight segmentation head is trained on top of the VFM, and parameter-efficient fine-tuning (PEFT) via Low-Rank Adaptation (LoRA) in which the VFM is fine-tuned in a targeted manner to a specific dataset. Across all backbones, we observe that training on a single EM dataset yields good segmentation performance (quantified as foreground Intersection-over-Union), and that LoRA consistently improves in-domain performance. In contrast, training on multiple EM datasets leads to severe performance degradation for all models considered, with only marginal gains from PEFT. Exploration of the latent representation space through various techniques (PCA, Fréchet Dinov2 distance, and linear probes) reveals a pronounced and persistent domain mismatch between the two considered EM datasets in spite of their visual similarity, which is consistent with the observed failure of paired training. These results suggest that, while VFMs can deliver competitive results for EM segmentation within a single domain under lightweight adaptation, current PEFT strategies are insufficient to obtain a single robust model across heterogeneous EM datasets without additional domain-alignment mechanisms.
☆ Learning Self-Correction in Vision-Language Models via Rollout Augmentation
Self-correction is essential for solving complex reasoning problems in vision-language models (VLMs). However, existing reinforcement learning (RL) methods struggle to learn it, as effective self-correction behaviors emerge only rarely, making learning signals extremely sparse. To address this challenge, we propose correction-specific rollouts (Octopus), an RL rollout augmentation framework that synthesizes dense self-correction examples by recombining existing rollouts. This augmentation simultaneously improves sample efficiency due to rollout reuse and stabilizes RL optimization through balanced supervision. Furthermore, we introduce a response-masking strategy that decouples self-correction from direct reasoning, avoiding signal conflicts and enabling both behaviors to be learned effectively. Building on this, we introduce Octopus-8B, a reasoning VLM with controllable self-correction capability. Across 7 benchmarks, it achieves SoTA performance among open-source VLMs, outperforming the best RLVR baseline by 1.0 score while requiring only $0.72\times$ training time per step.
comment: 17 pages
☆ Enhanced Food Category Recognition under Illumination-Induced Domain Shift
Visual food recognition systems deployed in real-world environments, such as automated conveyor-belt inspection, are highly sensitive to domain shifts caused by illumination changes. While recent studies have shown that lighting variations can significantly distort food perception by both humans and AI, existing works are often limited to single food categories or controlled settings, and most public food datasets lack explicit illumination annotations. In this work, we investigate illumination-induced domain shift in multi-class food category recognition using two widely adopted datasets, Food-101 and Fruits-360. We demonstrate substantial accuracy degradation under cross-dataset evaluation due to mismatched visual conditions. To address this challenge, we construct synthetic illumination-augmented datasets by systematically varying light temperature and intensity, enabling controlled robustness analysis without additional labels. We further evaluate cross-dataset transfer learning and domain generalization, with a focus on illumination-sensitive target categories such as apple-based classes. Experimental results show that illumination-aware augmentation significantly improves recognition robustness under domain shift while preserving real-time performance. Our findings highlight the importance of illumination robustness and provide practical insights for deploying reliable food recognition systems in real-world inspection scenarios.
☆ Gesture Matters: Pedestrian Gesture Recognition for AVs Through Skeleton Pose Evaluation
Gestures are a key component of non-verbal communication in traffic, often helping pedestrian-to-driver interactions when formal traffic rules may be insufficient. This problem becomes more apparent when autonomous vehicles (AVs) struggle to interpret such gestures. In this study, we present a gesture classification framework using 2D pose estimation applied to real-world video sequences from the WIVW dataset. We categorise gestures into four primary classes (Stop, Go, Thank & Greet, and No Gesture) and extract 76 static and dynamic features from normalised keypoints. Our analysis demonstrates that hand position and movement velocity are especially discriminative in distinguishing between gesture classes, achieving a classification accuracy score of 87%. These findings not only improve the perceptual capabilities of AV systems but also contribute to the broader understanding of pedestrian behaviour in traffic contexts.
comment: 9th International Conference on Instrumentation, Control, and Automation (ICA)
☆ Reliability-aware Execution Gating for Near-field and Off-axis Vision-guided Robotic Alignment
Vision-guided robotic systems are increasingly deployed in precision alignment tasks that require reliable execution under near-field and off-axis configurations. While recent advances in pose estimation have significantly improved numerical accuracy, practical robotic systems still suffer from frequent execution failures even when pose estimates appear accurate. This gap suggests that pose accuracy alone is insufficient to guarantee execution-level reliability. In this paper, we reveal that such failures arise from a deterministic geometric error amplification mechanism, in which small pose estimation errors are magnified through system structure and motion execution, leading to unstable or failed alignment. Rather than modifying pose estimation algorithms, we propose a Reliability-aware Execution Gating mechanism that operates at the execution level. The proposed approach evaluates geometric consistency and configuration risk before execution, and selectively rejects or scales high-risk pose updates. We validate the proposed method on a real UR5 robotic platform performing single-step visual alignment tasks under varying camera-target distances and off-axis configurations. Experimental results demonstrate that the proposed execution gating significantly improves task success rates, reduces execution variance, and suppresses tail-risk behavior, while leaving average pose accuracy largely unchanged. Importantly, the proposed mechanism is estimator-agnostic and can be readily integrated with both classical geometry-based and learning-based pose estimation pipelines. These results highlight the importance of execution-level reliability modeling and provide a practical solution for improving robustness in near-field vision-guided robotic systems.
comment: 7 pages, 1 figure
TriC-Motion: Tri-Domain Causal Modeling Grounded Text-to-Motion Generation
Text-to-motion generation, a rapidly evolving field in computer vision, aims to produce realistic and text-aligned motion sequences. Current methods primarily focus on spatial-temporal modeling or independent frequency domain analysis, lacking a unified framework for joint optimization across spatial, temporal, and frequency domains. This limitation hinders the model's ability to leverage information from all domains simultaneously, leading to suboptimal generation quality. Additionally, in motion generation frameworks, motion-irrelevant cues caused by noise are often entangled with features that contribute positively to generation, thereby leading to motion distortion. To address these issues, we propose Tri-Domain Causal Text-to-Motion Generation (TriC-Motion), a novel diffusion-based framework integrating spatial-temporal-frequency-domain modeling with causal intervention. TriC-Motion includes three core modeling modules for domain-specific modeling, namely Temporal Motion Encoding, Spatial Topology Modeling, and Hybrid Frequency Analysis. After comprehensive modeling, a Score-guided Tri-domain Fusion module integrates valuable information from the triple domains, simultaneously ensuring temporal consistency, spatial topology, motion trends, and dynamics. Moreover, the Causality-based Counterfactual Motion Disentangler is meticulously designed to expose motion-irrelevant cues to eliminate noise, disentangling the real modeling contributions of each domain for superior generation. Extensive experimental results validate that TriC-Motion achieves superior performance compared to state-of-the-art methods, attaining an outstanding R@1 of 0.612 on the HumanML3D dataset. These results demonstrate its capability to generate high-fidelity, coherent, diverse, and text-aligned motion sequences. Code is available at: https://caoyiyang1105.github.io/TriC-Motion/.
☆ Vista: Scene-Aware Optimization for Streaming Video Question Answering under Post-Hoc Queries AAAI 2026
Streaming video question answering (Streaming Video QA) poses distinct challenges for multimodal large language models (MLLMs), as video frames arrive sequentially and user queries can be issued at arbitrary time points. Existing solutions relying on fixed-size memory or naive compression often suffer from context loss or memory overflow, limiting their effectiveness in long-form, real-time scenarios. We present Vista, a novel framework for scene-aware streaming video QA that enables efficient and scalable reasoning over continuous video streams. The innovation of Vista can be summarized in three aspects: (1) scene-aware segmentation, where Vista dynamically clusters incoming frames into temporally and visually coherent scene units; (2) scene-aware compression, where each scene is compressed into a compact token representation and stored in GPU memory for efficient index-based retrieval, while full-resolution frames are offloaded to CPU memory; and (3) scene-aware recall, where relevant scenes are selectively recalled and reintegrated into the model input upon receiving a query, enabling both efficiency and completeness. Vista is model-agnostic and integrates seamlessly with a variety of vision-language backbones, enabling long-context reasoning without compromising latency or memory efficiency. Extensive experiments on StreamingBench demonstrate that Vista achieves state-of-the-art performance, establishing a strong baseline for real-world streaming video understanding.
comment: Accepted to AAAI 2026 (Main Technical Track)
Demo-ICL: In-Context Learning for Procedural Video Knowledge Acquisition
Despite the growing video understanding capabilities of recent Multimodal Large Language Models (MLLMs), existing video benchmarks primarily assess understanding based on models' static, internal knowledge, rather than their ability to learn and adapt from dynamic, novel contexts from few examples. To bridge this gap, we present Demo-driven Video In-Context Learning, a novel task focused on learning from in-context demonstrations to answer questions about the target videos. Alongside this, we propose Demo-ICL-Bench, a challenging benchmark designed to evaluate demo-driven video in-context learning capabilities. Demo-ICL-Bench is constructed from 1200 instructional YouTube videos with associated questions, from which two types of demonstrations are derived: (i) summarizing video subtitles for text demonstration; and (ii) corresponding instructional videos as video demonstrations. To effectively tackle this new challenge, we develop Demo-ICL, an MLLM with a two-stage training strategy: video-supervised fine-tuning and information-assisted direct preference optimization, jointly enhancing the model's ability to learn from in-context examples. Extensive experiments with state-of-the-art MLLMs confirm the difficulty of Demo-ICL-Bench, demonstrate the effectiveness of Demo-ICL, and thereby unveil future research directions.
☆ Understanding and Optimizing Attention-Based Sparse Matching for Diverse Local Features
We revisit the problem of training attention-based sparse image matching models for various local features. We first identify one critical design choice that has been previously overlooked, which significantly impacts the performance of the LightGlue model. We then investigate the role of detectors and descriptors within the transformer-based matching framework, finding that detectors, rather than descriptors, are often the primary cause for performance difference. Finally, we propose a novel approach to fine-tune existing image matching models using keypoints from a diverse set of detectors, resulting in a universal, detector-agnostic model. When deployed as a zero-shot matcher for novel detectors, the resulting model achieves or exceeds the accuracy of models specifically trained for those features. Our findings offer valuable insights for the deployment of transformer-based matching models and the future design of local features.
Prism: Spectral-Aware Block-Sparse Attention
Block-sparse attention is promising for accelerating long-context LLM pre-filling, yet identifying relevant blocks efficiently remains a bottleneck. Existing methods typically employ coarse-grained attention as a proxy for block importance estimation, but often resort to expensive token-level searching or scoring, resulting in significant selection overhead. In this work, we trace the inaccuracy of standard coarse-grained attention via mean pooling to a theoretical root cause: the interaction between mean pooling and Rotary Positional Embeddings (RoPE). We prove that mean pooling acts as a low-pass filter that induces destructive interference in high-frequency dimensions, effectively creating a "blind spot" for local positional information (e.g., slash patterns). To address this, we introduce Prism, a training-free spectral-aware approach that decomposes block selection into high-frequency and low-frequency branches. By applying energy-based temperature calibration, Prism restores the attenuated positional signals directly from pooled representations, enabling block importance estimation using purely block-level operations, thereby improving efficiency. Extensive evaluations confirm that Prism maintains accuracy parity with full attention while delivering up to $\mathbf{5.1\times}$ speedup.
☆ RealSynCol: a high-fidelity synthetic colon dataset for 3D reconstruction applications
Deep learning has the potential to improve colonoscopy by enabling 3D reconstruction of the colon, providing a comprehensive view of mucosal surfaces and lesions, and facilitating the identification of unexplored areas. However, the development of robust methods is limited by the scarcity of large-scale ground truth data. We propose RealSynCol, a highly realistic synthetic dataset designed to replicate the endoscopic environment. Colon geometries extracted from 10 CT scans were imported into a virtual environment that closely mimics intraoperative conditions and rendered with realistic vascular textures. The resulting dataset comprises 28\,130 frames, paired with ground truth depth maps, optical flow, 3D meshes, and camera trajectories. A benchmark study was conducted to evaluate the available synthetic colon datasets for the tasks of depth and pose estimation. Results demonstrate that the high realism and variability of RealSynCol significantly enhance generalization performance on clinical images, proving it to be a powerful tool for developing deep learning algorithms to support endoscopic diagnosis.
☆ D$^2$-VR: Degradation-Robust and Distilled Video Restoration with Synergistic Optimization Strategy
The integration of diffusion priors with temporal alignment has emerged as a transformative paradigm for video restoration, delivering fantastic perceptual quality, yet the practical deployment of such frameworks is severely constrained by prohibitive inference latency and temporal instability when confronted with complex real-world degradations. To address these limitations, we propose \textbf{D$^2$-VR}, a single-image diffusion-based video-restoration framework with low-step inference. To obtain precise temporal guidance under severe degradation, we first design a Degradation-Robust Flow Alignment (DRFA) module that leverages confidence-aware attention to filter unreliable motion cues. We then incorporate an adversarial distillation paradigm to compress the diffusion sampling trajectory into a rapid few-step regime. Finally, a synergistic optimization strategy is devised to harmonize perceptual quality with rigorous temporal consistency. Extensive experiments demonstrate that D$^2$-VR achieves state-of-the-art performance while accelerating the sampling process by \textbf{12$\times$}
☆ BiManiBench: A Hierarchical Benchmark for Evaluating Bimanual Coordination of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have significantly advanced embodied AI, and using them to benchmark robotic intelligence has become a pivotal trend. However, existing frameworks remain predominantly confined to single-arm manipulation, failing to capture the spatio-temporal coordination required for bimanual tasks like lifting a heavy pot. To address this, we introduce BiManiBench, a hierarchical benchmark evaluating MLLMs across three tiers: fundamental spatial reasoning, high-level action planning, and low-level end-effector control. Our framework isolates unique bimanual challenges, such as arm reachability and kinematic constraints, thereby distinguishing perceptual hallucinations from planning failures. Analysis of over 30 state-of-the-art models reveals that despite high-level reasoning proficiency, MLLMs struggle with dual-arm spatial grounding and control, frequently resulting in mutual interference and sequencing errors. These findings suggest the current paradigm lacks a deep understanding of mutual kinematic constraints, highlighting the need for future research to focus on inter-arm collision-avoidance and fine-grained temporal sequencing.
comment: 38 pages, 9 figures. Project page:https://bimanibench.github.io/
☆ Geometric Image Editing via Effects-Sensitive In-Context Inpainting with Diffusion Transformers
Recent advances in diffusion models have significantly improved image editing. However, challenges persist in handling geometric transformations, such as translation, rotation, and scaling, particularly in complex scenes. Existing approaches suffer from two main limitations: (1) difficulty in achieving accurate geometric editing of object translation, rotation, and scaling; (2) inadequate modeling of intricate lighting and shadow effects, leading to unrealistic results. To address these issues, we propose GeoEdit, a framework that leverages in-context generation through a diffusion transformer module, which integrates geometric transformations for precise object edits. Moreover, we introduce Effects-Sensitive Attention, which enhances the modeling of intricate lighting and shadow effects for improved realism. To further support training, we construct RS-Objects, a large-scale geometric editing dataset containing over 120,000 high-quality image pairs, enabling the model to learn precise geometric editing while generating realistic lighting and shadows. Extensive experiments on public benchmarks demonstrate that GeoEdit consistently outperforms state-of-the-art methods in terms of visual quality, geometric accuracy, and realism.
☆ E-VAds: An E-commerce Short Videos Understanding Benchmark for MLLMs
E-commerce short videos represent a high-revenue segment of the online video industry characterized by a goal-driven format and dense multi-modal signals. Current models often struggle with these videos because existing benchmarks focus primarily on general-purpose tasks and neglect the reasoning of commercial intent. In this work, we first propose a \textbf{multi-modal information density assessment framework} to quantify the complexity of this domain. Our evaluation reveals that e-commerce content exhibits substantially higher density across visual, audio, and textual modalities compared to mainstream datasets, establishing a more challenging frontier for video understanding. To address this gap, we introduce \textbf{E-commerce Video Ads Benchmark (E-VAds)}, which is the first benchmark specifically designed for e-commerce short video understanding. We curated 3,961 high-quality videos from Taobao covering a wide range of product categories and used a multi-agent system to generate 19,785 open-ended Q&A pairs. These questions are organized into two primary dimensions, namely Perception and Cognition and Reasoning, which consist of five distinct tasks. Finally, we develop \textbf{E-VAds-R1}, an RL-based reasoning model featuring a multi-grained reward design called \textbf{MG-GRPO}. This strategy provides smooth guidance for early exploration while creating a non-linear incentive for expert-level precision. Experimental results demonstrate that E-VAds-R1 achieves a 109.2% performance gain in commercial intent reasoning with only a few hundred training samples.
☆ What, Whether and How? Unveiling Process Reward Models for Thinking with Images Reasoning
The rapid advancement of Large Vision Language Models (LVLMs) has demonstrated excellent abilities in various visual tasks. Building upon these developments, the thinking with images paradigm has emerged, enabling models to dynamically edit and re-encode visual information at each reasoning step, mirroring human visual processing. However, this paradigm introduces significant challenges as diverse errors may occur during reasoning processes. This necessitates Process Reward Models (PRMs) for distinguishing positive and negative reasoning steps, yet existing benchmarks for PRMs are predominantly text-centric and lack comprehensive assessment under this paradigm. To address these gaps, this work introduces the first comprehensive benchmark specifically designed for evaluating PRMs under the thinking with images paradigm. Our main contributions are: (1) Through extensive analysis of reasoning trajectories and guided search experiments with PRMs, we define 7 fine-grained error types and demonstrate both the necessity for specialized PRMs and the potential for improvement. (2) We construct a comprehensive benchmark comprising 1,206 manually annotated thinking with images reasoning trajectories spanning 4 categories and 16 subcategories for fine-grained evaluation of PRMs. (3) Our experimental analysis reveals that current LVLMs fall short as effective PRMs, exhibiting limited capabilities in visual reasoning process evaluation with significant performance disparities across error types, positive evaluation bias, and sensitivity to reasoning step positions. These findings demonstrate the effectiveness of our benchmark and establish crucial foundations for advancing PRMs in LVLMs.
☆ UrbanGraphEmbeddings: Learning and Evaluating Spatially Grounded Multimodal Embeddings for Urban Science
Learning transferable multimodal embeddings for urban environments is challenging because urban understanding is inherently spatial, yet existing datasets and benchmarks lack explicit alignment between street-view images and urban structure. We introduce UGData, a spatially grounded dataset that anchors street-view images to structured spatial graphs and provides graph-aligned supervision via spatial reasoning paths and spatial context captions, exposing distance, directionality, connectivity, and neighborhood context beyond image content. Building on UGData, we propose UGE, a two-stage training strategy that progressively and stably aligns images, text, and spatial structures by combining instruction-guided contrastive learning with graph-based spatial encoding. We finally introduce UGBench, a comprehensive benchmark to evaluate how spatially grounded embeddings support diverse urban understanding tasks -- including geolocation ranking, image retrieval, urban perception, and spatial grounding. We develop UGE on multiple state-of-the-art VLM backbones, including Qwen2-VL, Qwen2.5-VL, Phi-3-Vision, and LLaVA1.6-Mistral, and train fixed-dimensional spatial embeddings with LoRA tuning. UGE built upon Qwen2.5-VL-7B backbone achieves up to 44% improvement in image retrieval and 30% in geolocation ranking on training cities, and over 30% and 22% gains respectively on held-out cities, demonstrating the effectiveness of explicit spatial grounding for spatially intensive urban tasks.
☆ CoTZero: Annotation-Free Human-Like Vision Reasoning via Hierarchical Synthetic CoT
Recent advances in vision-language models (VLMs) have markedly improved image-text alignment, yet they still fall short of human-like visual reasoning. A key limitation is that many VLMs rely on surface correlations rather than building logically coherent structured representations, which often leads to missed higher-level semantic structure and non-causal relational understanding, hindering compositional and verifiable reasoning. To address these limitations by introducing human models into the reasoning process, we propose CoTZero, an annotation-free paradigm with two components: (i) a dual-stage data synthesis approach and (ii) a cognition-aligned training method. In the first component, we draw inspiration from neurocognitive accounts of compositional productivity and global-to-local analysis. In the bottom-up stage, CoTZero extracts atomic visual primitives and incrementally composes them into diverse, structured question-reasoning forms. In the top-down stage, it enforces hierarchical reasoning by using coarse global structure to guide the interpretation of local details and causal relations. In the cognition-aligned training component, built on the synthesized CoT data, we introduce Cognitively Coherent Verifiable Rewards (CCVR) in Reinforcement Fine-Tuning (RFT) to further strengthen VLMs' hierarchical reasoning and generalization, providing stepwise feedback on reasoning coherence and factual correctness. Experiments show that CoTZero achieves an F1 score of 83.33 percent on our multi-level semantic inconsistency benchmark with lexical-perturbation negatives, across both in-domain and out-of-domain settings. Ablations confirm that each component contributes to more interpretable and human-aligned visual reasoning.
comment: 16 pages 6 figures
Language-Guided Transformer Tokenizer for Human Motion Generation
In this paper, we focus on motion discrete tokenization, which converts raw motion into compact discrete tokens--a process proven crucial for efficient motion generation. In this paradigm, increasing the number of tokens is a common approach to improving motion reconstruction quality, but more tokens make it more difficult for generative models to learn. To maintain high reconstruction quality while reducing generation complexity, we propose leveraging language to achieve efficient motion tokenization, which we term Language-Guided Tokenization (LG-Tok). LG-Tok aligns natural language with motion at the tokenization stage, yielding compact, high-level semantic representations. This approach not only strengthens both tokenization and detokenization but also simplifies the learning of generative models. Furthermore, existing tokenizers predominantly adopt convolutional architectures, whose local receptive fields struggle to support global language guidance. To this end, we propose a Transformer-based Tokenizer that leverages attention mechanisms to enable effective alignment between language and motion. Additionally, we design a language-drop scheme, in which language conditions are randomly removed during training, enabling the detokenizer to support language-free guidance during generation. On the HumanML3D and Motion-X generation benchmarks, LG-Tok achieves Top-1 scores of 0.542 and 0.582, outperforming state-of-the-art methods (MARDM: 0.500 and 0.528), and with FID scores of 0.057 and 0.088, respectively, versus 0.114 and 0.147. LG-Tok-mini uses only half the tokens while maintaining competitive performance (Top-1: 0.521/0.588, FID: 0.085/0.071), validating the efficiency of our semantic representations.
☆ UReason: Benchmarking the Reasoning Paradox in Unified Multimodal Models
To elicit capabilities for addressing complex and implicit visual requirements, recent unified multimodal models increasingly adopt chain-of-thought reasoning to guide image generation. However, the actual effect of reasoning on visual synthesis remains unclear. We present UReason, a diagnostic benchmark for reasoning-driven image generation that evaluates whether reasoning can be faithfully executed in pixels. UReason contains 2,000 instances across five task families: Code, Arithmetic, Spatial, Attribute, and Text reasoning. To isolate the role of reasoning traces, we introduce an evaluation framework comparing direct generation, reasoning-guided generation, and de-contextualized generation which conditions only on the refined prompt. Across eight open-source unified models, we observe a consistent Reasoning Paradox: Reasoning traces generally improve performance over direct generation, yet retaining intermediate thoughts as conditioning context often hinders visual synthesis, and conditioning only on the refined prompt yields substantial gains. Our analysis suggests that the bottleneck lies in contextual interference rather than insufficient reasoning capacity. UReason provides a principled testbed for studying reasoning in unified models and motivates future methods that effectively integrate reasoning for visual generation while mitigating interference.
comment: Project page: https://ureason.github.io
☆ CAE-AV: Improving Audio-Visual Learning via Cross-modal Interactive Enrichment
Audio-visual learning suffers from modality misalignment caused by off-screen sources and background clutter, and current methods usually amplify irrelevant regions or moments, leading to unstable training and degraded representation quality. To address this challenge, we proposed a novel Caption-aligned and Agreement-guided Enhancement framework (CAE-AV) for audio-visual learning, which used two complementary modules: Cross-modal Agreement-guided Spatio-Temporal Enrichment (CASTE) and Caption-Aligned Saliency-guided Enrichment (CASE) to relieve audio-visual misalignment. CASTE dynamically balances spatial and temporal relations by evaluating frame-level audio-visual agreement, ensuring that key information is captured from both preceding and subsequent frames under misalignment. CASE injects cross-modal semantic guidance into selected spatio-temporal positions, leveraging high-level semantic cues to further alleviate misalignment. In addition, we design lightweight objectives, caption-to-modality InfoNCE, visual-audio consistency, and entropy regularization to guide token selection and strengthen cross-modal semantic alignment. With frozen backbones, CAE-AV achieves state-of-the-art performance on AVE, AVVP, AVS, and AVQA benchmarks, and qualitative analyses further validate its robustness against audio-visual misalignment.
comment: 13 pages, 8 figures
☆ Tighnari v2: Mitigating Label Noise and Distribution Shift in Multimodal Plant Distribution Prediction via Mixture of Experts and Weakly Supervised Learning
Large-scale, cross-species plant distribution prediction plays a crucial role in biodiversity conservation, yet modeling efforts in this area still face significant challenges due to the sparsity and bias of observational data. Presence-Absence (PA) data provide accurate and noise-free labels, but are costly to obtain and limited in quantity; Presence-Only (PO) data, by contrast, offer broad spatial coverage and rich spatiotemporal distribution, but suffer from severe label noise in negative samples. To address these real-world constraints, this paper proposes a multimodal fusion framework that fully leverages the strengths of both PA and PO data. We introduce an innovative pseudo-label aggregation strategy for PO data based on the geographic coverage of satellite imagery, enabling geographic alignment between the label space and remote sensing feature space. In terms of model architecture, we adopt Swin Transformer Base as the backbone for satellite imagery, utilize the TabM network for tabular feature extraction, retain the Temporal Swin Transformer for time-series modeling, and employ a stackable serial tri-modal cross-attention mechanism to optimize the fusion of heterogeneous modalities. Furthermore, empirical analysis reveals significant geographic distribution shifts between PA training and test samples, and models trained by directly mixing PO and PA data tend to experience performance degradation due to label noise in PO data. To address this, we draw on the mixture-of-experts paradigm: test samples are partitioned according to their spatial proximity to PA samples, and different models trained on distinct datasets are used for inference and post-processing within each partition. Experiments on the GeoLifeCLEF 2025 dataset demonstrate that our approach achieves superior predictive performance in scenarios with limited PA coverage and pronounced distribution shifts.
☆ PISCO: Precise Video Instance Insertion with Sparse Control
The landscape of AI video generation is undergoing a pivotal shift: moving beyond general generation - which relies on exhaustive prompt-engineering and "cherry-picking" - towards fine-grained, controllable generation and high-fidelity post-processing. In professional AI-assisted filmmaking, it is crucial to perform precise, targeted modifications. A cornerstone of this transition is video instance insertion, which requires inserting a specific instance into existing footage while maintaining scene integrity. Unlike traditional video editing, this task demands several requirements: precise spatial-temporal placement, physically consistent scene interaction, and the faithful preservation of original dynamics - all achieved under minimal user effort. In this paper, we propose PISCO, a video diffusion model for precise video instance insertion with arbitrary sparse keyframe control. PISCO allows users to specify a single keyframe, start-and-end keyframes, or sparse keyframes at arbitrary timestamps, and automatically propagates object appearance, motion, and interaction. To address the severe distribution shift induced by sparse conditioning in pretrained video diffusion models, we introduce Variable-Information Guidance for robust conditioning and Distribution-Preserving Temporal Masking to stabilize temporal generation, together with geometry-aware conditioning for realistic scene adaptation. We further construct PISCO-Bench, a benchmark with verified instance annotations and paired clean background videos, and evaluate performance using both reference-based and reference-free perceptual metrics. Experiments demonstrate that PISCO consistently outperforms strong inpainting and video editing baselines under sparse control, and exhibits clear, monotonic performance improvements as additional control signals are provided. Project page: xiangbogaobarry.github.io/PISCO.
☆ Informative Object-centric Next Best View for Object-aware 3D Gaussian Splatting in Cluttered Scenes
In cluttered scenes with inevitable occlusions and incomplete observations, selecting informative viewpoints is essential for building a reliable representation. In this context, 3D Gaussian Splatting (3DGS) offers a distinct advantage, as it can explicitly guide the selection of subsequent viewpoints and then refine the representation with new observations. However, existing approaches rely solely on geometric cues, neglect manipulation-relevant semantics, and tend to prioritize exploitation over exploration. To tackle these limitations, we introduce an instance-aware Next Best View (NBV) policy that prioritizes underexplored regions by leveraging object features. Specifically, our object-aware 3DGS distills instancelevel information into one-hot object vectors, which are used to compute confidence-weighted information gain that guides the identification of regions associated with erroneous and uncertain Gaussians. Furthermore, our method can be easily adapted to an object-centric NBV, which focuses view selection on a target object, thereby improving reconstruction robustness to object placement. Experiments demonstrate that our NBV policy reduces depth error by up to 77.14% on the synthetic dataset and 34.10% on the real-world GraspNet dataset compared to baselines. Moreover, compared to targeting the entire scene, performing NBV on a specific object yields an additional reduction of 25.60% in depth error for that object. We further validate the effectiveness of our approach through real-world robotic manipulation tasks.
comment: 9 pages, 8 figures, 4 tables, accepted to ICRA 2026
☆ Moving Beyond Functional Connectivity: Time-Series Modeling for fMRI-Based Brain Disorder Classification
Functional magnetic resonance imaging (fMRI) enables non-invasive brain disorder classification by capturing blood-oxygen-level-dependent (BOLD) signals. However, most existing methods rely on functional connectivity (FC) via Pearson correlation, which reduces 4D BOLD signals to static 2D matrices, discarding temporal dynamics and capturing only linear inter-regional relationships. In this work, we benchmark state-of-the-art temporal models (e.g., time-series models such as PatchTST, TimesNet, and TimeMixer) on raw BOLD signals across five public datasets. Results show these models consistently outperform traditional FC-based approaches, highlighting the value of directly modeling temporal information such as cycle-like oscillatory fluctuations and drift-like slow baseline trends. Building on this insight, we propose DeCI, a simple yet effective framework that integrates two key principles: (i) Cycle and Drift Decomposition to disentangle cycle and drift within each ROI (Region of Interest); and (ii) Channel-Independence to model each ROI separately, improving robustness and reducing overfitting. Extensive experiments demonstrate that DeCI achieves superior classification accuracy and generalization compared to both FC-based and temporal baselines. Our findings advocate for a shift toward end-to-end temporal modeling in fMRI analysis to better capture complex brain dynamics. The code is available at https://github.com/Levi-Ackman/DeCI.
comment: This paper has been accepted by IEEE Transactions on Medical Imaging
☆ A Unified Framework for Multimodal Image Reconstruction and Synthesis using Denoising Diffusion Models
Image reconstruction and image synthesis are important for handling incomplete multimodal imaging data, but existing methods require various task-specific models, complicating training and deployment workflows. We introduce Any2all, a unified framework that addresses this limitation by formulating these disparate tasks as a single virtual inpainting problem. We train a single, unconditional diffusion model on the complete multimodal data stack. This model is then adapted at inference time to ``inpaint'' all target modalities from any combination of inputs of available clean images or noisy measurements. We validated Any2all on a PET/MR/CT brain dataset. Our results show that Any2all can achieve excellent performance on both multimodal reconstruction and synthesis tasks, consistently yielding images with competitive distortion-based performance and superior perceptual quality over specialized methods.
☆ Do MLLMs Really See It: Reinforcing Visual Attention in Multimodal LLMs
While chain-of-thought (CoT) reasoning has substantially improved multimodal large language models (MLLMs) on complex reasoning tasks, existing approaches largely rely on long textual reasoning trajectories and provide limited mechanisms for learning stable visual attention policies. Our analysis shows that current MLLMs exhibit weak visual focus: early-stage visual misalignment is rarely corrected during subsequent reasoning, leading to error propagation and failed inferences. We argue that this limitation stems from inadequate credit assignment for visual attention during training. To address this issue, we propose SAYO, a visual reasoning model trained with a reinforcement learning (RL) framework that introduces a region-level visual attention-based reward. This reward explicitly aligns optimization signals with visually grounded reasoning steps, enabling the model to learn more reliable attention behaviors. Extensive experiments across multiple multimodal benchmarks demonstrate that SAYO consistently improves performance on diverse reasoning and perception tasks.
☆ When and How Much to Imagine: Adaptive Test-Time Scaling with World Models for Visual Spatial Reasoning
Despite rapid progress in Multimodal Large Language Models (MLLMs), visual spatial reasoning remains unreliable when correct answers depend on how a scene would appear under unseen or alternative viewpoints. Recent work addresses this by augmenting reasoning with world models for visual imagination, but questions such as when imagination is actually necessary, how much of it is beneficial, and when it becomes harmful, remain poorly understood. In practice, indiscriminate imagination can increase computation and even degrade performance by introducing misleading evidence. In this work, we present an in-depth analysis of test-time visual imagination as a controllable resource for spatial reasoning. We study when static visual evidence is sufficient, when imagination improves reasoning, and how excessive or unnecessary imagination affects accuracy and efficiency. To support this analysis, we introduce AVIC, an adaptive test-time framework with world models that explicitly reasons about the sufficiency of current visual evidence before selectively invoking and scaling visual imagination. Across spatial reasoning benchmarks (SAT, MMSI) and an embodied navigation benchmark (R2R), our results reveal clear scenarios where imagination is critical, marginal, or detrimental, and show that selective control can match or outperform fixed imagination strategies with substantially fewer world-model calls and language tokens. Overall, our findings highlight the importance of analyzing and controlling test-time imagination for efficient and reliable spatial reasoning.
comment: the first two authors are equally contributed. Project page: https://adaptive-visual-tts.github.io/
☆ Generating Adversarial Events: A Motion-Aware Point Cloud Framework
Event cameras have been widely adopted in safety-critical domains such as autonomous driving, robotics, and human-computer interaction. A pressing challenge arises from the vulnerability of deep neural networks to adversarial examples, which poses a significant threat to the reliability of event-based systems. Nevertheless, research into adversarial attacks on events is scarce. This is primarily due to the non-differentiable nature of mainstream event representations, which hinders the extension of gradient-based attack methods. In this paper, we propose MA-ADV, a novel \textbf{M}otion-\textbf{A}ware \textbf{Adv}ersarial framework. To the best of our knowledge, this is the first work to generate adversarial events by leveraging point cloud representations. MA-ADV accounts for high-frequency noise in events and employs a diffusion-based approach to smooth perturbations, while fully leveraging the spatial and temporal relationships among events. Finally, MA-ADV identifies the minimal-cost perturbation through a combination of sample-wise Adam optimization, iterative refinement, and binary search. Extensive experimental results validate that MA-ADV ensures a 100\% attack success rate with minimal perturbation cost, and also demonstrate enhanced robustness against defenses, underscoring the critical security challenges facing future event-based perception systems.
☆ Efficient-SAM2: Accelerating SAM2 with Object-Aware Visual Encoding and Memory Retrieval ICLR 2026
Segment Anything Model 2 (SAM2) shows excellent performance in video object segmentation tasks; however, the heavy computational burden hinders its application in real-time video processing. Although there have been efforts to improve the efficiency of SAM2, most of them focus on retraining a lightweight backbone, with little exploration into post-training acceleration. In this paper, we observe that SAM2 exhibits sparse perception pattern as biological vision, which provides opportunities for eliminating redundant computation and acceleration: i) In mask decoder, the attention primarily focuses on the foreground objects, whereas the image encoder in the earlier stage exhibits a broad attention span, which results in unnecessary computation to background regions. ii) In memory bank, only a small subset of tokens in each frame contribute significantly to memory attention, and the salient regions exhibit temporal consistency, making full-token computation redundant. With these insights, we propose Efficient-SAM2, which promotes SAM2 to adaptively focus on object regions while eliminating task-irrelevant computations, thereby significantly improving inference efficiency. Specifically, for image encoder, we propose object-aware Sparse Window Routing (SWR), a window-level computation allocation mechanism that leverages the consistency and saliency cues from the previous-frame decoder to route background regions into a lightweight shortcut branch. Moreover, for memory attention, we propose object-aware Sparse Memory Retrieval (SMR), which allows only the salient memory tokens in each frame to participate in computation, with the saliency pattern reused from their first recollection. With negligible additional parameters and minimal training overhead, Efficient-SAM2 delivers 1.68x speedup on SAM2.1-L model with only 1.0% accuracy drop on SA-V test set.
comment: ICLR 2026,Code is available at: https://github.com/jingjing0419/Efficient-SAM2
☆ Chain-of-Caption: Training-free improvement of multimodal large language model on referring expression comprehension
Given a textual description, the task of referring expression comprehension (REC) involves the localisation of the referred object in an image. Multimodal large language models (MLLMs) have achieved high accuracy on REC benchmarks through scaling up the model size and training data. Moreover, the performance of MLLMs can be further improved using techniques such as Chain-of-Thought and tool use, which provides additional visual or textual context to the model. In this paper, we analyse the effect of various techniques for providing additional visual and textual context via tool use to the MLLM and its effect on the REC task. Furthermore, we propose a training-free framework named Chain-of-Caption to improve the REC performance of MLLMs. We perform experiments on RefCOCO/RefCOCOg/RefCOCO+ and Ref-L4 datasets and show that individual textual or visual context can improve the REC performance without any fine-tuning. By combining multiple contexts, our training-free framework shows between 5% to 30% performance gain over the baseline model on accuracy at various Intersection over Union (IoU) thresholds.
comment: 4 pages, 5 figures, 2 tables
Geospatial-Reasoning-Driven Vocabulary-Agnostic Remote Sensing Semantic Segmentation
Open-vocabulary semantic segmentation has emerged as a promising research direction in remote sensing, enabling the recognition of diverse land-cover types beyond pre-defined category sets. However, existing methods predominantly rely on the passive mapping of visual features and textual embeddings. This ``appearance-based" paradigm lacks geospatial contextual awareness, leading to severe semantic ambiguity and misclassification when encountering land-cover classes with similar spectral features but distinct semantic attributes. To address this, we propose a Geospatial Reasoning Chain-of-Thought (GR-CoT) framework designed to enhance the scene understanding capabilities of Multimodal Large Language Models (MLLMs), thereby guiding open-vocabulary segmentation models toward precise mapping. The framework comprises two collaborative components: an offline knowledge distillation stream and an online instance reasoning stream. The offline stream establishes fine-grained category interpretation standards to resolve semantic conflicts between similar land-cover types. During online inference, the framework executes a sequential reasoning process involving macro-scenario anchoring, visual feature decoupling, and knowledge-driven decision synthesis. This process generates an image-adaptive vocabulary that guides downstream models to achieve pixel-level alignment with correct geographical semantics. Extensive experiments on the LoveDA and GID5 benchmarks demonstrate the superiority of our approach.
comment: 5 pages, 3 figures
☆ Generative Regression for Left Ventricular Ejection Fraction Estimation from Echocardiography Video
Estimating Left Ventricular Ejection Fraction (LVEF) from echocardiograms constitutes an ill-posed inverse problem. Inherent noise, artifacts, and limited viewing angles introduce ambiguity, where a single video sequence may map not to a unique ground truth, but rather to a distribution of plausible physiological values. Prevailing deep learning approaches typically formulate this task as a standard regression problem that minimizes the Mean Squared Error (MSE). However, this paradigm compels the model to learn the conditional expectation, which may yield misleading predictions when the underlying posterior distribution is multimodal or heavy-tailed -- a common phenomenon in pathological scenarios. In this paper, we investigate the paradigm shift from deterministic regression toward generative regression. We propose the Multimodal Conditional Score-based Diffusion model for Regression (MCSDR), a probabilistic framework designed to model the continuous posterior distribution of LVEF conditioned on echocardiogram videos and patient demographic attribute priors. Extensive experiments conducted on the EchoNet-Dynamic, EchoNet-Pediatric, and CAMUS datasets demonstrate that MCSDR achieves state-of-the-art performance. Notably, qualitative analysis reveals that the generation trajectories of our model exhibit distinct behaviors in cases characterized by high noise or significant physiological variability, thereby offering a novel layer of interpretability for AI-aided diagnosis.
comment: 11 pages, 5 tables, 10 figures. Under peer review
☆ PEGAsus: 3D Personalization of Geometry and Appearance
We present PEGAsus, a new framework capable of generating Personalized 3D shapes by learning shape concepts at both Geometry and Appearance levels. First, we formulate 3D shape personalization as extracting reusable, category-agnostic geometric and appearance attributes from reference shapes, and composing these attributes with text to generate novel shapes. Second, we design a progressive optimization strategy to learn shape concepts at both the geometry and appearance levels, decoupling the shape concept learning process. Third, we extend our approach to region-wise concept learning, enabling flexible concept extraction, with context-aware and context-free losses. Extensive experimental results show that PEGAsus is able to effectively extract attributes from a wide range of reference shapes and then flexibly compose these concepts with text to synthesize new shapes. This enables fine-grained control over shape generation and supports the creation of diverse, personalized results, even in challenging cross-category scenarios. Both quantitative and qualitative experiments demonstrate that our approach outperforms existing state-of-the-art solutions.
☆ Chamelion: Reliable Change Detection for Long-Term LiDAR Mapping in Transient Environments
Online change detection is crucial for mobile robots to efficiently navigate through dynamic environments. Detecting changes in transient settings, such as active construction sites or frequently reconfigured indoor spaces, is particularly challenging due to frequent occlusions and spatiotemporal variations. Existing approaches often struggle to detect changes and fail to update the map across different observations. To address these limitations, we propose a dual-head network designed for online change detection and long-term map maintenance. A key difficulty in this task is the collection and alignment of real-world data, as manually registering structural differences over time is both labor-intensive and often impractical. To overcome this, we develop a data augmentation strategy that synthesizes structural changes by importing elements from different scenes, enabling effective model training without the need for extensive ground-truth annotations. Experiments conducted at real-world construction sites and in indoor office environments demonstrate that our approach generalizes well across diverse scenarios, achieving efficient and accurate map updates.\resubmit{Our source code and additional material are available at: https://chamelion-pages.github.io/.
comment: 8 pages, IEEE Robot. Automat. Lett. (RA-L) 2026
☆ DAS-SK: An Adaptive Model Integrating Dual Atrous Separable and Selective Kernel CNN for Agriculture Semantic Segmentation
Semantic segmentation in high-resolution agricultural imagery demands models that strike a careful balance between accuracy and computational efficiency to enable deployment in practical systems. In this work, we propose DAS-SK, a novel lightweight architecture that retrofits selective kernel convolution (SK-Conv) into the dual atrous separable convolution (DAS-Conv) module to strengthen multi-scale feature learning. The model further enhances the atrous spatial pyramid pooling (ASPP) module, enabling the capture of fine-grained local structures alongside global contextual information. Built upon a modified DeepLabV3 framework with two complementary backbones - MobileNetV3-Large and EfficientNet-B3, the DAS-SK model mitigates limitations associated with large dataset requirements, limited spectral generalization, and the high computational cost that typically restricts deployment on UAVs and other edge devices. Comprehensive experiments across three benchmarks: LandCover.ai, VDD, and PhenoBench, demonstrate that DAS-SK consistently achieves state-of-the-art performance, while being more efficient than CNN-, transformer-, and hybrid-based competitors. Notably, DAS-SK requires up to 21x fewer parameters and 19x fewer GFLOPs than top-performing transformer models. These findings establish DAS-SK as a robust, efficient, and scalable solution for real-time agricultural robotics and high-resolution remote sensing, with strong potential for broader deployment in other vision domains.
comment: 13 pages
Self-Supervised Bootstrapping of Action-Predictive Embodied Reasoning
Embodied Chain-of-Thought (CoT) reasoning has significantly enhanced Vision-Language-Action (VLA) models, yet current methods rely on rigid templates to specify reasoning primitives (e.g., objects in the scene, high-level plans, structural affordances). These templates can force policies to process irrelevant information that distracts from critical action-prediction signals. This creates a bottleneck: without successful policies, we cannot verify reasoning quality; without quality reasoning, we cannot build robust policies. We introduce R&B-EnCoRe, which enables models to bootstrap embodied reasoning from internet-scale knowledge through self-supervised refinement. By treating reasoning as a latent variable within importance-weighted variational inference, models can generate and distill a refined reasoning training dataset of embodiment-specific strategies without external rewards, verifiers, or human annotation. We validate R&B-EnCoRe across manipulation (Franka Panda in simulation, WidowX in hardware), legged navigation (bipedal, wheeled, bicycle, quadruped), and autonomous driving embodiments using various VLA architectures with 1B, 4B, 7B, and 30B parameters. Our approach achieves 28% gains in manipulation success, 101% improvement in navigation scores, and 21% reduction in collision-rate metric over models that indiscriminately reason about all available primitives. R&B-EnCoRe enables models to distill reasoning that is predictive of successful control, bypassing manual annotation engineering while grounding internet-scale knowledge in physical execution.
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent computational cost. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Reproducible Benchmarking for Lung Nodule Detection and Malignancy Classification Across Multiple Low-Dose CT Datasets
Evaluation of artificial intelligence (AI) models for low-dose CT lung cancer screening is limited by heterogeneous datasets, annotation standards, and evaluation protocols, making performance difficult to compare and translate across clinical settings. We establish a public, reproducible multi-dataset benchmark for lung nodule detection and nodule-level cancer classification and quantify cross-dataset generalizability. Using the Duke Lung Cancer Screening (DLCS) dataset as a clinically curated development set, we evaluate performance across LUNA16/LIDC-IDRI, NLST-3D, and LUNA25. Detection models trained on DLCS and LUNA16 were evaluated externally on NLST-3D using free-response ROC analysis. For malignancy classification, we compared five strategies: randomly initialized ResNet50, Models Genesis, Med3D, a Foundation Model for Cancer Biomarkers, and a Strategic Warm-Start (ResNet50-SWS) approach pretrained using detection-derived candidate patches stratified by confidence. Performance was summarized using AUC with 95% confidence intervals and DeLong tests. Detection performance varied substantially by training dataset, with DLCS-trained models outperforming LUNA16-trained models on external NLST-3D evaluation (sensitivity at 2 false positives per scan: 0.72 vs. 0.64; p < 0.001). For malignancy classification, ResNet50-SWS achieved AUCs of 0.71 (DLCS), 0.90 (LUNA16), 0.81 (NLST-3D), and 0.80 (LUNA25), consistently matching or exceeding alternative pretraining strategies. These results demonstrate that dataset characteristics strongly influence lung cancer AI performance and highlight the need for transparent, multi-dataset benchmarking.
comment: 3 tables, 2 supplement tables, 5 figures
♻ ☆ Latent Domain Modeling Improves Robustness to Geographic Shifts
Geographic distribution shift arises when the distribution of locations on Earth in a training dataset is different from what is seen at inference time. Using standard empirical risk minimization (ERM) in this setting can lead to uneven generalization across different spatially-determined groups of interest such as continents or biomes. The most common approaches to tackling geographic distribution shift apply domain adaptation methods using discrete group labels, ignoring geographic coordinates that are often available as metadata. On the other hand, modeling methods that integrate geographic coordinates have been shown to improve overall performance, but their impact on geographic domain generalization has not been studied. In this work, we propose a general modeling framework for improving robustness to geographic distribution shift. The key idea is to model continuous, latent domain assignment using location encoders and to condition the main task predictor on the jointly-trained latents. On four diverse geo-tagged image datasets with different group splits, we show that instances of our framework achieve significant improvements in worst-group performance compared to existing domain adaptation and location-aware modeling methods. In particular, we achieve new state-of-the-art results on two datasets from the WILDS benchmark.
♻ ☆ Restricted Receptive Fields for Face Verification
Understanding how deep neural networks make decisions is crucial for analyzing their behavior and diagnosing failure cases. In computer vision, a common approach to improve interpretability is to assign importance to individual pixels using post-hoc methods. Although they are widely used to explain black-box models, their fidelity to the model's actual reasoning is uncertain due to the lack of reliable evaluation metrics. This limitation motivates an alternative approach, which is to design models whose decision processes are inherently interpretable. To this end, we propose a face similarity metric that breaks down global similarity into contributions from restricted receptive fields. Our method defines the similarity between two face images as the sum of patch-level similarity scores, providing a locally additive explanation without relying on post-hoc analysis. We show that the proposed approach achieves competitive verification performance even with patches as small as 28x28 within 112x112 face images, and surpasses state-of-the-art methods when using 56x56 patches.
♻ ☆ MOTION: ML-Assisted On-Device Low-Latency Motion Recognition
The use of tiny devices capable of low-latency gesture recognition is gaining momentum in everyday human-computer interaction and especially in medical monitoring fields. Embedded solutions such as fall detection, rehabilitation tracking, and patient supervision require fast and efficient tracking of movements while avoiding unwanted false alarms. This study presents an efficient solution on how to build very efficient motion-based models only using triaxial accelerometer sensors. We explore the capability of the AutoML pipelines to extract the most important features from the data segments. This approach also involves training multiple lightweight machine learning algorithms using the extracted features. We use WeBe Band, a multi-sensor wearable device that is equipped with a powerful enough MCU to effectively perform gesture recognition entirely on the device. Of the models explored, we found that the neural network provided the best balance between accuracy, latency, and memory use. Our results also demonstrate that reliable real-time gesture recognition can be achieved in WeBe Band, with great potential for real-time medical monitoring solutions that require a secure and fast response time.
♻ ☆ Self-Supervised Uncalibrated Multi-View Video Anonymization in the Operating Room
Privacy preservation is a prerequisite for using video data in Operating Room (OR) research. Effective anonymization relies on the exhaustive localization of every individual; even a single missed detection necessitates extensive manual correction. However, existing approaches face two critical scalability bottlenecks: (1) they usually require manual annotations of each new clinical site for high accuracy; (2) while multi-camera setups have been widely adopted to address single-view ambiguity, camera calibration is typically required whenever cameras are repositioned. To address these problems, we propose a novel self-supervised multi-view video anonymization framework consisting of whole-body person detection and whole-body pose estimation, without annotation or camera calibration. Our core strategy is to enhance the single-view detector by "retrieving" false negatives using temporal and multi-view context, and conducting self-supervised domain adaptation. We first run an off-the-shelf whole-body person detector in each view with a low-score threshold to gather candidate detections. Then, we retrieve the low-score false negatives that exhibit consistency with the high-score detections via tracking and self-supervised uncalibrated multi-view association. These recovered detections serve as pseudo labels to iteratively fine-tune the whole-body detector. Finally, we apply whole-body pose estimation on each detected person, and fine-tune the pose model using its own high-score predictions. Experiments on the 4D-OR dataset of simulated surgeries and our dataset of real surgeries show the effectiveness of our approach achieving over 97% recall. Moreover, we train a real-time whole-body detector using our pseudo labels, achieving comparable performance and highlighting our method's practical applicability. Code will be available at https://github.com/CAMMA-public/OR_anonymization.
♻ ☆ GTAvatar: Bridging Gaussian Splatting and Texture Mapping for Relightable and Editable Gaussian Avatars
Recent advancements in Gaussian Splatting have enabled increasingly accurate reconstruction of photorealistic head avatars, opening the door to numerous applications in visual effects, videoconferencing, and virtual reality. This, however, comes with the lack of intuitive editability offered by traditional triangle mesh-based methods. In contrast, we propose a method that combines the accuracy and fidelity of 2D Gaussian Splatting with the intuitiveness of UV texture mapping. By embedding each canonical Gaussian primitive's local frame into a patch in the UV space of a template mesh in a computationally efficient manner, we reconstruct continuous editable material head textures from a single monocular video on a conventional UV domain. Furthermore, we leverage an efficient physically based reflectance model to enable relighting and editing of these intrinsic material maps. Through extensive comparisons with state-of-the-art methods, we demonstrate the accuracy of our reconstructions, the quality of our relighting results, and the ability to provide intuitive controls for modifying an avatar's appearance and geometry via texture mapping without additional optimization.
comment: Eurographics 2026 Project page: https://kelianb.github.io/GTAvatar/
EgoLife: Towards Egocentric Life Assistant
We introduce EgoLife, a project to develop an egocentric life assistant that accompanies and enhances personal efficiency through AI-powered wearable glasses. To lay the foundation for this assistant, we conducted a comprehensive data collection study where six participants lived together for one week, continuously recording their daily activities - including discussions, shopping, cooking, socializing, and entertainment - using AI glasses for multimodal egocentric video capture, along with synchronized third-person-view video references. This effort resulted in the EgoLife Dataset, a comprehensive 300-hour egocentric, interpersonal, multiview, and multimodal daily life dataset with intensive annotation. Leveraging this dataset, we introduce EgoLifeQA, a suite of long-context, life-oriented question-answering tasks designed to provide meaningful assistance in daily life by addressing practical questions such as recalling past relevant events, monitoring health habits, and offering personalized recommendations. To address the key technical challenges of (1) developing robust visual-audio models for egocentric data, (2) enabling identity recognition, and (3) facilitating long-context question answering over extensive temporal information, we introduce EgoButler, an integrated system comprising EgoGPT and EgoRAG. EgoGPT is an omni-modal model trained on egocentric datasets, achieving state-of-the-art performance on egocentric video understanding. EgoRAG is a retrieval-based component that supports answering ultra-long-context questions. Our experimental studies verify their working mechanisms and reveal critical factors and bottlenecks, guiding future improvements. By releasing our datasets, models, and benchmarks, we aim to stimulate further research in egocentric AI assistants.
comment: This version corrects the author affiliation to reflect the accurate institutional information at the time of publication. No technical content of the paper has been changed
♻ ☆ Explainable Cross-Disease Reasoning for Cardiovascular Risk Assessment from Low-Dose Computed Tomography
Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking: first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with a natural-language rationale. It integrates three components: a Pulmonary Perception Module that summarizes lung abnormalities, an Agentic Pulmonary-to-Cardiac Reasoning Module that infers their cardiovascular implications, and a Cardiac Feature Extractor that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening (AUC=0.919) and mortality prediction (AUC=0.838), outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
♻ ☆ Vision Transformer Finetuning Benefits from Non-Smooth Components
The smoothness of the transformer architecture has been extensively studied in the context of generalization, training stability, and adversarial robustness. However, its role in transfer learning remains poorly understood. In this paper, we analyze the ability of vision transformer components to adapt their outputs to changes in inputs, or, in other words, their plasticity. Defined as an average rate of change, it captures the sensitivity to input perturbation; in particular, a high plasticity implies low smoothness. We demonstrate through theoretical analysis and comprehensive experiments that this perspective provides principled guidance in choosing the components to prioritize during adaptation. A key takeaway for practitioners is that the high plasticity of the attention modules and feedforward layers consistently leads to better finetuning performance. Our findings depart from the prevailing assumption that smoothness is desirable, offering a novel perspective on the functional properties of transformers. The code is available at https://github.com/ambroiseodt/vit-plasticity.
♻ ☆ SIMSHIFT: A Benchmark for Adapting Neural Surrogates to Distribution Shifts
Neural surrogates for Partial Differential Equations (PDEs) often suffer significant performance degradation when evaluated on problem configurations outside their training distribution, such as new initial conditions or structural dimensions. While Unsupervised Domain Adaptation (UDA) techniques have been widely used in vision and language to generalize across domains without additional labeled data, their application to complex engineering simulations remains largely unexplored. In this work, we address this gap through two focused contributions. First, we introduce SIMSHIFT, a novel benchmark dataset and evaluation suite composed of four industrial simulation tasks spanning diverse processes and physics: hot rolling, sheet metal forming, electric motor design and heatsink design. Second, we extend established UDA methods to state-of-the-art neural surrogates and systematically evaluate them. Extensive experiments on SIMSHIFT highlight the challenges of out-of-distribution neural surrogate modeling, demonstrate the potential of UDA in simulation, and reveal open problems in achieving robust neural surrogates under distribution shifts in industrially relevant scenarios. Our codebase is available at https://github.com/psetinek/simshift
♻ ☆ WeTok: Powerful Discrete Tokenization for High-Fidelity Visual Reconstruction
Visual tokenizer is a critical component for vision generation. However, the existing tokenizers often face unsatisfactory trade-off between compression ratios and reconstruction fidelity. To fill this gap, we introduce a powerful and concise WeTok tokenizer, which surpasses the previous leading tokenizers via two core innovations. (1) Group-wise lookup-free Quantization (GQ). We partition the latent features into groups, and perform lookup-free quantization for each group. As a result, GQ can efficiently overcome memory and computation limitations of prior tokenizers, while achieving a reconstruction breakthrough with more scalable codebooks. (2) Generative Decoder (GD). Different from prior tokenizers, we introduce a generative decoder with a prior of extra noise variable. In this case, GD can probabilistically model the distribution of visual data conditioned on discrete tokens, allowing WeTok to reconstruct visual details, especially at high compression ratio. On the ImageNet 50k validation set, at a high-fidelity setting, WeTok achieves a record-low zero-shot rFID of 0.12, outperforming leading continuous tokenizers like FLUX-VAE (0.18) and SD-VAE 3.5 (0.19) with 400% compression ratio. Furthermore, in a high-compression regime, WeTok achieves a zero-shot rFID of 3.49 at a 768$\times$ compression ratio, substantially surpassing Cosmos, which scores 4.57 at only 50% our compression ratio. Code and models are available: https://github.com/zhuangshaobin/WeTok.
comment: 32 pages, 15 figures, 39 tables
♻ ☆ CAF-Mamba: Mamba-Based Cross-Modal Adaptive Attention Fusion for Multimodal Depression Detection ICASSP
Depression is a prevalent mental health disorder that severely impairs daily functioning and quality of life. While recent deep learning approaches for depression detection have shown promise, most rely on limited feature types, overlook explicit cross-modal interactions, and employ simple concatenation or static weighting for fusion. To overcome these limitations, we propose CAF-Mamba, a novel Mamba-based cross-modal adaptive attention fusion framework. CAF-Mamba not only captures cross-modal interactions explicitly and implicitly, but also dynamically adjusts modality contributions through a modality-wise attention mechanism, enabling more effective multimodal fusion. Experiments on two in-the-wild benchmark datasets, LMVD and D-Vlog, demonstrate that CAF-Mamba consistently outperforms existing methods and achieves state-of-the-art performance. Our code is available at https://github.com/zbw-zhou/CAF-Mamba.
comment: The paper contains a total of 5 pages and 3 figures. This paper has been accepted for publication in the proceedings of 2026 IEEE ICASSP Conference
♻ ☆ Through the Perspective of LiDAR: A Feature-Enriched and Uncertainty-Aware Annotation Pipeline for Terrestrial Point Cloud Segmentation
Accurate semantic segmentation of terrestrial laser scanning (TLS) point clouds is limited by costly manual annotation. We propose a semi-automated, uncertainty-aware pipeline that integrates spherical projection, feature enrichment, ensemble learning, and targeted annotation to reduce labeling effort, while sustaining high accuracy. Our approach projects 3D points to a 2D spherical grid, enriches pixels with multi-source features, and trains an ensemble of segmentation networks to produce pseudo-labels and uncertainty maps, the latter guiding annotation of ambiguous regions. The 2D outputs are back-projected to 3D, yielding densely annotated point clouds supported by a three-tier visualization suite (2D feature maps, 3D colorized point clouds, and compact virtual spheres) for rapid triage and reviewer guidance. Using this pipeline, we build Mangrove3D, a semantic segmentation TLS dataset for mangrove forests. We further evaluate data efficiency and feature importance to address two key questions: (1) how much annotated data are needed and (2) which features matter most. Results show that performance saturates after ~12 annotated scans, geometric features contribute the most, and compact nine-channel stacks capture nearly all discriminative power, with the mean Intersection over Union (mIoU) plateauing at around 0.76. Finally, we confirm the generalization of our feature-enrichment strategy through cross-dataset tests on ForestSemantic and Semantic3D. Our contributions include: (i) a robust, uncertainty-aware TLS annotation pipeline with visualization tools; (ii) the Mangrove3D dataset; and (iii) empirical guidance on data efficiency and feature importance, thus enabling scalable, high-quality segmentation of TLS point clouds for ecological monitoring and beyond. The dataset and processing scripts are publicly available at https://fz-rit.github.io/through-the-lidars-eye/.
comment: 40 pages (28 main text), 20 figures, 4 supplementary materials; links to 3D point animations are included in the last table
♻ ☆ Determination of efficiency indicators of the stand for intelligent control of manual operations in industrial production
Manual operations remain essential in industrial production because of their flexibility and low implementation cost. However, ensuring their quality and monitoring execution in real time remains a challenge, especially under conditions of high variability and human-induced errors. In this paper, we present an AI-based control system for tracking manual assembly and propose a novel methodology to evaluate its overall efficiency. The developed system includes a multicamera setup and a YOLOv8-based detection module integrated into an experimental stand designed to replicate real production scenarios. The evaluation methodology relies on timestamp-level comparisons between predicted and actual execution stages, using three key metrics: Intersection over Union (IoU), Mean Absolute Scaled Error (MASE), Residual Distribution histograms. These metrics are aggregated into a unified efficiency index E_total for reproducible system assessment. The proposed approach was validated on a dataset of 120 assemblies performed at different speeds, demonstrating high segmentation accuracy and identifying stage-specific timing deviations. The results confirm the robustness of the control system and the applicability of the evaluation framework to benchmark similar solutions in industrial settings.
♻ ☆ ALIGN: Advanced Query Initialization with LiDAR-Image Guidance for Occlusion-Robust 3D Object Detection
Recent query-based 3D object detection methods using camera and LiDAR inputs have shown strong performance, but existing query initialization strategies,such as random sampling or BEV heatmap-based sampling, often result in inefficient query usage and reduced accuracy, particularly for occluded or crowded objects. To address this limitation, we propose ALIGN (Advanced query initialization with LiDAR and Image GuidaNce), a novel approach for occlusion-robust, object-aware query initialization. Our model consists of three key components: (i) Occlusion-aware Center Estimation (OCE), which integrates LiDAR geometry and image semantics to estimate object centers accurately (ii) Adaptive Neighbor Sampling (ANS), which generates object candidates from LiDAR clustering and supplements each object by sampling spatially and semantically aligned points around it and (iii) Dynamic Query Balancing (DQB), which adaptively balances queries between foreground and background regions. Our extensive experiments on the nuScenes benchmark demonstrate that ALIGN consistently improves performance across multiple state-of-the-art detectors, achieving gains of up to +0.9 mAP and +1.2 NDS, particularly in challenging scenes with occlusions or dense crowds. Our code will be publicly available upon publication.
comment: 12 pages, 6 figures
♻ ☆ Modulate and Reconstruct: Learning Hyperspectral Imaging from Misaligned Smartphone Views
Hyperspectral reconstruction (HSR) from RGB images is a fundamentally ill-posed problem due to severe spectral information loss. Existing approaches typically rely on a single RGB image, limiting reconstruction accuracy. In this work, we propose a novel multi-image-to-hyperspectral reconstruction (MI-HSR) framework that leverages a triple-camera smartphone system, where two lenses are equipped with carefully selected spectral filters. Our configuration, grounded in theoretical and empirical analysis, enables richer and more diverse spectral observations than conventional single-camera setups. To support this new paradigm, we introduce Doomer, the first dataset for MI-HSR, comprising aligned images from three smartphone cameras and a hyperspectral reference camera across diverse scenes. We show that the proposed HSR model achieves consistent improvements over existing methods on the newly proposed benchmark. In a nutshell, our setup allows 30% towards more accurately estimated spectra compared to an ordinary RGB camera. Our findings suggest that multi-view spectral filtering with commodity hardware can unlock more accurate and practical hyperspectral imaging solutions.
♻ ☆ Improving 2D Diffusion Models for 3D Medical Imaging with Inter-Slice Consistent Stochasticity ICLR 2026
3D medical imaging is in high demand and essential for clinical diagnosis and scientific research. Currently, diffusion models (DMs) have become an effective tool for medical imaging reconstruction thanks to their ability to learn rich, high-quality data priors. However, learning the 3D data distribution with DMs in medical imaging is challenging, not only due to the difficulties in data collection but also because of the significant computational burden during model training. A common compromise is to train the DMs on 2D data priors and reconstruct stacked 2D slices to address 3D medical inverse problems. However, the intrinsic randomness of diffusion sampling causes severe inter-slice discontinuities of reconstructed 3D volumes. Existing methods often enforce continuity regularizations along the z-axis, which introduces sensitive hyper-parameters and may lead to over-smoothing results. In this work, we revisit the origin of stochasticity in diffusion sampling and introduce Inter-Slice Consistent Stochasticity (ISCS), a simple yet effective strategy that encourages interslice consistency during diffusion sampling. Our key idea is to control the consistency of stochastic noise components during diffusion sampling, thereby aligning their sampling trajectories without adding any new loss terms or optimization steps. Importantly, the proposed ISCS is plug-and-play and can be dropped into any 2D trained diffusion based 3D reconstruction pipeline without additional computational cost. Experiments on several medical imaging problems show that our method can effectively improve the performance of medical 3D imaging problems based on 2D diffusion models. Our findings suggest that controlling inter-slice stochasticity is a principled and practically attractive route toward high-fidelity 3D medical imaging with 2D diffusion priors. The code is available at: https://github.com/duchenhe/ISCS
comment: Accepted by ICLR 2026
♻ ☆ CoBEVMoE: Heterogeneity-aware Feature Fusion with Dynamic Mixture-of-Experts for Collaborative Perception
Collaborative perception aims to extend sensing coverage and improve perception accuracy by sharing information among multiple agents. However, due to differences in viewpoints and spatial positions, agents often acquire heterogeneous observations. Existing intermediate fusion methods primarily focus on aligning similar features, often overlooking the perceptual diversity among agents. To address this limitation, we propose CoBEVMoE, a novel collaborative perception framework that operates in the Bird's Eye View (BEV) space and incorporates a Dynamic Mixture-of-Experts (DMoE) architecture. In DMoE, each expert is dynamically generated based on the input features of a specific agent, enabling it to extract distinctive and reliable cues while attending to shared semantics. This design allows the fusion process to explicitly model both feature similarity and heterogeneity across agents. Furthermore, we introduce a Dynamic Expert Metric Loss (DEML) to enhance inter-expert diversity and improve the discriminability of the fused representation. Extensive experiments on the OPV2V and DAIR-V2X-C datasets demonstrate that CoBEVMoE achieves state-of-the-art performance. Specifically, it improves the IoU for Camera-based BEV segmentation by +1.5% on OPV2V and the AP@0.5 for LiDAR-based 3D object detection by +3.0% on DAIR-V2X-C, verifying the effectiveness of expert-based heterogeneous feature modeling in multi-agent collaborative perception. The source code will be made publicly available at https://github.com/godk0509/CoBEVMoE.
comment: Accepted to ICRA 2026. The source code will be made publicly available at https://github.com/godk0509/CoBEVMoE
♻ ☆ UniLiP: Adapting CLIP for Unified Multimodal Understanding, Generation and Editing
In this paper, we propose UniLIP, a unified framework that adapts CLIP for multimodal understanding, generation and editing. Although CLIP excels at understanding, it lacks reconstruction abilities required to be a unified visual encoder. However, previous CLIP-based unified methods fail to balance understanding and reconstruction, leading to semantic degradation or inconsistent reconstructions. In contrast, we introduce a novel two-stage training scheme with a self-distillation strategy that progressively endows CLIP with high-fidelity reconstruction abilities while preserving its original comprehension performance. For enhanced reasoning and consistency in generation and editing, we further develop a dual-condition architecture built upon the MetaQuery framework. Our architecture jointly utilizes multimodal hidden states for rich contextual details and learnable query embeddings to harness the powerful reasoning abilities of Multimodal Large Language Models (MLLMs). Leveraging advanced image representation and architectural design, UniLIP demonstrates superior instruction following and edit fidelity. With only 1B and 3B parameters, UniLIP can outperform larger unified models such as BAGEL (7B) and Uniworld-V1 (12B), achieving state-of-the-art performance of 0.90 on GenEval, 0.63 on WISE, and 3.94 on ImgEdit. These results demonstrate that UniLIP successfully expands the application of CLIP, establishing its continuous features to not only serve as the optimal choice for understanding tasks but also achieve highly competitive performance in generation and editing tasks. Code and models are available at https://github.com/nnnth/UniLIP.
♻ ☆ LatentLens: Revealing Highly Interpretable Visual Tokens in LLMs
Transforming a large language model (LLM) into a Vision-Language Model (VLM) can be achieved by mapping the visual tokens from a vision encoder into the embedding space of an LLM. Intriguingly, this mapping can be as simple as a shallow MLP transformation. To understand why LLMs can so readily process visual tokens, we need interpretability methods that reveal what is encoded in the visual token representations at every layer of LLM processing. In this work, we introduce LatentLens, a novel approach for mapping latent representations to descriptions in natural language. LatentLens works by encoding a large text corpus and storing contextualized token representations for each token in that corpus. Visual token representations are then compared to their contextualized textual representations, with the top-k nearest neighbor representations providing descriptions of the visual token. We evaluate this method on 10 different VLMs, showing that commonly used methods, such as LogitLens, substantially underestimate the interpretability of visual tokens. With LatentLens instead, the majority of visual tokens are interpretable across all studied models and all layers. Qualitatively, we show that the descriptions produced by LatentLens are semantically meaningful and provide more fine-grained interpretations for humans compared to individual tokens. More broadly, our findings contribute new evidence on the alignment between vision and language representations, opening up new directions for analyzing latent representations.
♻ ☆ RealSR-R1: Reinforcement Learning for Real-World Image Super-Resolution with Vision-Language Chain-of-Thought
Real-World Image Super-Resolution is one of the most challenging task in image restoration. However, existing methods struggle with an accurate understanding of degraded image content, leading to reconstructed results that are both low-fidelity and unnatural. We present RealSR-R1 in this work, which empowers the RealSR models with understanding and reasoning capabilities. Inspired by the success of Chain of Thought (CoT) in large language models (LLMs), we simulate the human process of handling degraded images and propose the VLCoT framework, which integrates vision and language reasoning. The framework aims to precisely restore image details by progressively generating more comprehensive text and higher-resolution images. To overcome the challenge of traditional supervised learning CoT failing to generalize to real-world scenarios, we introduce, for the first time, Group Relative Policy Optimization (GRPO) into the Real-World Image Super-Resolution task. We propose VLCoT-GRPO as a solution, which designs four reward functions: (1) Format reward, used to standardize the CoT process; (2) Degradation reward, to incentivize accurate degradation estimation; (3) Understanding reward, to ensure the accuracy of the generated content; and (4) Generation reward, where we propose using a visual expert model to evaluate the quality of generated images, encouraging the model to generate more realistic images. Extensive experiments demonstrate that our proposed RealSR-R1 can generate realistic details and accurately understand image content, particularly in semantically rich scenes or images with severe degradation.
♻ ☆ SpecPrune-VLA: Accelerating Vision-Language-Action Models via Action-Aware Self-Speculative Pruning
Pruning is a typical acceleration technique for compute-bound models by removing computation on unimportant values. Recently, it has been applied to accelerate Vision-Language-Action (VLA) model inference. However, existing acceleration methods focus on local information from the current action step and ignore the global context, leading to >20% success rate drop and limited speedup in some scenarios. In this paper, we point out spatial-temporal consistency in VLA tasks: input images in consecutive steps exhibit high similarity, and propose the key insight that token selection should combine local information with global context of the model. Based on this, we propose SpecPrune-VLA, a training-free, two-level pruning method with heuristic control. (1) Action-level static pruning. We leverage global history and local attention to statically reduce visual tokens per action. (2) Layer-level dynamic pruning. We prune tokens adaptively per layer based on layer-wise importance. (3) Lightweight action-aware controller: We classify actions as coarse- or fine-grained by the speed of the end effector and adjust pruning aggressiveness accordingly. Extensive experiments show that SpecPrune-VLA achieves up to 1.57$\times$ speedup in LIBERO simulation and 1.70$\times$ on real-world tasks, with negligible success rate degradation.
♻ ☆ Vision Transformer for Intracranial Hemorrhage Classification in CT Scans Using an Entropy-Aware Fuzzy Integral Strategy for Adaptive Scan-Level Decision Fusion
Intracranial hemorrhage (ICH) is a critical medical emergency caused by the rupture of cerebral blood vessels, leading to internal bleeding within the skull. Accurate and timely classification of hemorrhage subtypes is essential for effective clinical decision-making. To address this challenge, we propose an advanced pyramid vision transformer (PVT)-based model, leveraging its hierarchical attention mechanisms to capture both local and global spatial dependencies in brain CT scans. Instead of processing all extracted features indiscriminately, A SHAP-based feature selection method is employed to identify the most discriminative components, which are then used as a latent feature space to train a boosting neural network, reducing computational complexity. We introduce an entropy-aware aggregation strategy along with a fuzzy integral operator to fuse information across multiple CT slices, ensuring a more comprehensive and reliable scan-level diagnosis by accounting for inter-slice dependencies. Experimental results show that our PVT-based framework significantly outperforms state-of-the-art deep learning architectures in terms of classification accuracy, precision, and robustness. By combining SHAP-driven feature selection, transformer-based modeling, and an entropy-aware fuzzy integral operator for decision fusion, our method offers a scalable and computationally efficient AI-driven solution for automated ICH subtype classification.
♻ ☆ Focus-Scan-Refine: From Human Visual Perception to Efficient Visual Token Pruning
Vision-language models (VLMs) often generate massive visual tokens that greatly increase inference latency and memory footprint; while training-free token pruning offers a practical remedy, existing methods still struggle to balance local evidence and global context under aggressive compression. We propose Focus-Scan-Refine (FSR), a human-inspired, plug-and-play pruning framework that mimics how humans answer visual questions: focus on key evidence, then scan globally if needed, and refine the scanned context by aggregating relevant details. FSR first focuses on key evidence by combining visual importance with instruction relevance, avoiding the bias toward visually salient but query-irrelevant regions. It then scans for complementary context conditioned on the focused set, selecting tokens that are most different from the focused evidence. Finally, FSR refines the scanned context by aggregating nearby informative tokens into the scan anchors via similarity-based assignment and score-weighted merging, without increasing the token budget. Extensive experiments across multiple VLM backbones and vision-language benchmarks show that FSR consistently improves the accuracy-efficiency trade-off over existing state-of-the-art pruning methods. The source codes can be found at https://github.com/ILOT-code/FSR.
♻ ☆ AI-Powered Intracranial Hemorrhage Detection: A Co-Scale Convolutional Attention Model with Uncertainty-Based Fuzzy Integral Operator and Feature Screening
Intracranial hemorrhage (ICH) refers to the leakage or accumulation of blood within the skull, which occurs due to the rupture of blood vessels in or around the brain. If this condition is not diagnosed in a timely manner and appropriately treated, it can lead to serious complications such as decreased consciousness, permanent neurological disabilities, or even death.The primary aim of this study is to detect the occurrence or non-occurrence of ICH, followed by determining the type of subdural hemorrhage (SDH). These tasks are framed as two separate binary classification problems. By adding two layers to the co-scale convolutional attention (CCA) classifier architecture, we introduce a novel approach for ICH detection. In the first layer, after extracting features from different slices of computed tomography (CT) scan images, we combine these features and select the 50 components that capture the highest variance in the data, considering them as informative features. We then assess the discriminative power of these features using the bootstrap forest algorithm, discarding those that lack sufficient discriminative ability between different classes. This algorithm explicitly determines the contribution of each feature to the final prediction, assisting us in developing an explainable AI model. The features feed into a boosting neural network as a latent feature space. In the second layer, we introduce a novel uncertainty-based fuzzy integral operator to fuse information from different CT scan slices. This operator, by accounting for the dependencies between consecutive slices, significantly improves detection accuracy.
♻ ☆ Addressing the Waypoint-Action Gap in End-to-End Autonomous Driving via Vehicle Motion Models
End-to-End Autonomous Driving (E2E-AD) systems are typically grouped by the nature of their outputs: (i) waypoint-based models that predict a future trajectory, and (ii) action-based models that directly output throttle, steer and brake. Most recent benchmark protocols and training pipelines are waypoint-based, which makes action-based policies harder to train and compare, slowing their progress. To bridge this waypoint-action gap, we propose a novel, differentiable vehicle-model framework that rolls out predicted action sequences to their corresponding ego-frame waypoint trajectories while supervising in waypoint space. Our approach enables action-based architectures to be trained and evaluated, for the first time, within waypoint-based benchmarks without modifying the underlying evaluation protocol. We extensively evaluate our framework across multiple challenging benchmarks and observe consistent improvements over the baselines. In particular, on NAVSIM \texttt{navhard} our approach achieves state-of-the-art performance. Our code will be made publicly available upon acceptance.
comment: 8 pages, 3 figures
♻ ☆ Driving with DINO: Vision Foundation Features as a Unified Bridge for Sim-to-Real Generation in Autonomous Driving
Driven by the emergence of Controllable Video Diffusion, existing Sim2Real methods for autonomous driving video generation typically rely on explicit intermediate representations to bridge the domain gap. However, these modalities face a fundamental Consistency-Realism Dilemma. Low-level signals (e.g., edges, blurred images) ensure precise control but compromise realism by "baking in" synthetic artifacts, whereas high-level priors (e.g., depth, semantics, HDMaps) facilitate photorealism but lack the structural detail required for consistent guidance. In this work, we present Driving with DINO (DwD), a novel framework that leverages Vision Foundation Module (VFM) features as a unified bridge between the simulation and real-world domains. We first identify that these features encode a spectrum of information, from high-level semantics to fine-grained structure. To effectively utilize this, we employ Principal Subspace Projection to discard the high-frequency elements responsible for "texture baking," while concurrently introducing Random Channel Tail Drop to mitigate the structural loss inherent in rigid dimensionality reduction, thereby reconciling realism with control consistency. Furthermore, to fully leverage DINOv3's high-resolution capabilities for enhancing control precision, we introduce a learnable Spatial Alignment Module that adapts these high-resolution features to the diffusion backbone. Finally, we propose a Causal Temporal Aggregator employing causal convolutions to explicitly preserve historical motion context when integrating frame-wise DINO features, which effectively mitigates motion blur and guarantees temporal stability. Project page: https://albertchen98.github.io/DwD-project/
comment: Project website https://albertchen98.github.io/DwD-project/
♻ ☆ EgoFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving
Current End-to-End Autonomous Driving (E2E-AD) methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized with a fully differentiable framework in a planning-oriented manner, existing end-to-end driving systems lacking ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, due to rasterized scene representation learning and redundant information transmission. In this paper, we propose an ego-centric fully sparse paradigm, named EgoFSD, for end-to-end self-driving. Specifically, EgoFSD consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. In addition, position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thereby enhancing the training stability and convergence speed. Extensive experiments are conducted on nuScenes and Bench2Drive datasets, which significantly reduces the average L2 error by 59% and collision rate by 92% than UniAD while achieves 6.9x faster running efficiency.
comment: Accepted to ICRA2026
♻ ☆ MARC: Memory-Augmented RL Token Compression for Efficient Video Understanding ICLR 2026
The rapid progress of large language models (LLMs) has laid the foundation for multimodal models. However, visual language models (VLMs) still face heavy computational costs when extended from images to videos due to high frame rates and long durations. Token compression is a promising solution, yet most existing training-free methods cause information loss and performance degradation. To overcome this, we propose \textbf{Memory-Augmented Reinforcement Learning-based Token Compression (MARC)}, which integrates structured retrieval and RL-based distillation. MARC adopts a \textit{retrieve-then-compress} strategy using a \textbf{Visual Memory Retriever (VMR)} to select key clips and a \textbf{Compression Group Relative Policy Optimization (C-GRPO)} framework to distil reasoning ability from a teacher to a student model. Experiments on six video benchmarks show that MARC achieves near-baseline accuracy using only one frame's tokens -- reducing visual tokens by \textbf{95\%}, GPU memory by \textbf{72\%}, and latency by \textbf{23.9\%}. This demonstrates its potential for efficient, real-time video understanding in resource-constrained settings such as video QA, surveillance, and autonomous driving.
comment: Accepted at ICLR 2026
♻ ☆ PAL-Net: A Point-Wise CNN with Patch-Attention for 3D Facial Landmark Localization
Manual annotation of anatomical landmarks on 3D facial scans is a time-consuming and expertise-dependent task, yet it remains critical for clinical assessments, morphometric analysis, and craniofacial research. While several deep learning methods have been proposed for facial landmark localization, most focus on pseudo-landmarks or require complex input representations, limiting their clinical applicability. This study presents a fully automated deep learning pipeline (PAL-Net) for localizing 50 anatomical landmarks on stereo-photogrammetry facial models. The method combines coarse alignment, region-of-interest filtering, and an initial approximation of landmarks with a patch-based pointwise CNN enhanced by attention mechanisms. Trained and evaluated on 214 annotated scans from healthy adults, PAL-Net achieved a mean localization error of 3.686 mm and preserves relevant anatomical distances with a 2.822 mm average error, comparable to intra-observer variability. To assess generalization, the model was further evaluated on 700 subjects from the FaceScape dataset, achieving a point-wise error of 0.41\,mm and a distance-wise error of 0.38\,mm. Compared to existing methods, PAL-Net offers a favorable trade-off between accuracy and computational cost. While performance degrades in regions with poor mesh quality (e.g., ears, hairline), the method demonstrates consistent accuracy across most anatomical regions. PAL-Net generalizes effectively across datasets and facial regions, outperforming existing methods in both point-wise and structural evaluations. It provides a lightweight, scalable solution for high-throughput 3D anthropometric analysis, with potential to support clinical workflows and reduce reliance on manual annotation. Source code can be found at https://github.com/Ali5hadman/PAL-Net-A-Point-Wise-CNN-with-Patch-Attention
comment: Published in Informatics in Medicine Unlocked. Code available at: https://github.com/Ali5hadman/PAL-Net-A-Point-Wise-CNN-with-Patch-Attention
♻ ☆ PALM: A Dataset and Baseline for Learning Multi-subject Hand Prior
The ability to grasp objects, signal with gestures, and share emotion through touch all stem from the unique capabilities of human hands. Yet creating high-quality personalized hand avatars from images remains challenging due to complex geometry, appearance, and articulation, particularly under unconstrained lighting and limited views. Progress has also been limited by the lack of datasets that jointly provide accurate 3D geometry, high-resolution multiview imagery, and a diverse population of subjects. To address this, we present PALM, a large-scale dataset comprising 13k high-quality hand scans from 263 subjects and 90k multi-view images, capturing rich variation in skin tone, age, and geometry. To show its utility, we present a baseline PALM-Net, a multi-subject prior over hand geometry and material properties learned via physically based inverse rendering, enabling realistic, relightable single-image hand avatar personalization. PALM's scale and diversity make it a valuable real-world resource for hand modeling and related research.
♻ ☆ Reading Images Like Texts: Sequential Image Understanding in Vision-Language Models
Vision-Language Models (VLMs) have demonstrated remarkable performance across a variety of real-world tasks. However, existing VLMs typically process visual information by serializing images, a method that diverges significantly from the parallel nature of human vision. Moreover, their opaque internal mechanisms hinder both deeper understanding and architectural innovation. Inspired by the dual-stream hypothesis of human vision, which distinguishes the "what" and "where" pathways, we deconstruct the visual processing in VLMs into object recognition and spatial perception for separate study. For object recognition, we convert images into text token maps and find that the model's perception of image content unfolds as a two-stage process from shallow to deep layers, beginning with attribute recognition and culminating in semantic disambiguation. For spatial perception, we theoretically derive and empirically verify the geometric structure underlying the positional representation in VLMs. Based on these findings, we introduce an instruction-agnostic token compression algorithm based on a plug-and-play visual decoder to improve decoding efficiency, and a RoPE scaling technique to enhance spatial reasoning. Through rigorous experiments, our work validates these analyses, offering a deeper understanding of VLM internals and providing clear principles for designing more capable future architectures.
♻ ☆ Simultaneous Tactile-Visual Perception for Learning Multimodal Robot Manipulation
Robotic manipulation requires both rich multimodal perception and effective learning frameworks to handle complex real-world tasks. See-through-skin (STS) sensors, which combine tactile and visual perception, offer promising sensing capabilities, while modern imitation learning provides powerful tools for policy acquisition. However, existing STS designs lack simultaneous multimodal perception and suffer from unreliable tactile tracking. Furthermore, integrating these rich multimodal signals into learning-based manipulation pipelines remains an open challenge. We introduce TacThru, an STS sensor enabling simultaneous visual perception and robust tactile signal extraction, and TacThru-UMI, an imitation learning framework that leverages these multimodal signals for manipulation. Our sensor features a fully transparent elastomer, persistent illumination, novel keyline markers, and efficient tracking, while our learning system integrates these signals through a Transformer-based Diffusion Policy. Experiments on five challenging real-world tasks show that TacThru-UMI achieves an average success rate of 85.5%, significantly outperforming the baselines of tactile policy(66.3%) and vision-only policy (55.4%). The system excels in critical scenarios, including contact detection with thin and soft objects and precision manipulation requiring multimodal coordination. This work demonstrates that combining simultaneous multimodal perception with modern learning frameworks enables more precise, adaptable robotic manipulation.
♻ ☆ A Survey on Class-Agnostic Counting: Advancements from Reference-Based to Open-World Text-Guided Approaches
Visual object counting has recently shifted towards class-agnostic counting (CAC), which addresses the challenge of counting objects across arbitrary categories, a crucial capability for flexible and generalizable counting systems. Unlike humans, who effortlessly identify and count objects from diverse categories without prior knowledge, most existing counting methods are restricted to enumerating instances of known classes, requiring extensive labeled datasets for training and struggling in open-vocabulary settings. In contrast, CAC aims to count objects belonging to classes never seen during training, operating in a few-shot setting. In this paper, we present the first comprehensive review of CAC methodologies. We propose a taxonomy to categorize CAC approaches into three paradigms based on how target object classes can be specified: reference-based, reference-less, and open-world text-guided. Reference-based approaches achieve state-of-the-art performance by relying on exemplar-guided mechanisms. Reference-less methods eliminate exemplar dependency by leveraging inherent image patterns. Finally, open-world text-guided methods use vision-language models, enabling object class descriptions via textual prompts, offering a flexible and promising solution. Based on this taxonomy, we provide an overview of 30 CAC architectures and report their performance on gold-standard benchmarks, discussing key strengths and limitations. Specifically, we present results on the FSC-147 dataset, setting a leaderboard using gold-standard metrics, and on the CARPK dataset to assess generalization capabilities. Finally, we offer a critical discussion of persistent challenges, such as annotation dependency and generalization, alongside future directions.
comment: Preprint version of an article accepted ad Elsevier's CVIU
♻ ☆ When LLaVA Meets Objects: Token Composition for Vision-Language-Models
Current autoregressive Vision Language Models (VLMs) usually rely on a large number of visual tokens to represent images, resulting in a need for more compute especially at inference time. To address this problem, we propose Mask-LLaVA, a framework that leverages different levels of visual features to create a compact yet information-rich visual representation for autoregressive VLMs. Namely, we combine mask-based object representations together with global tokens and local patch tokens. While all tokens are used during training, it shows that the resulting model can flexibly drop especially the number of mask-based object-tokens at test time, allowing to adapt the number of tokens during inference without the need to retrain the model and without a significant drop in performance. We evaluate the proposed approach on a suite of standard benchmarks showing results competitive to current token efficient methods and comparable to the original LLaVA baseline using only a fraction of visual tokens. Our analysis demonstrates that combining multi-level features enables efficient learning with fewer tokens while allowing dynamic token selection at test time for good performance.
♻ ☆ Federated Balanced Learning
Federated learning is a paradigm of joint learning in which clients collaborate by sharing model parameters instead of data. However, in the non-iid setting, the global model experiences client drift, which can seriously affect the final performance of the model. Previous methods tend to correct the global model that has already deviated based on the loss function or gradient, overlooking the impact of the client samples. In this paper, we rethink the role of the client side and propose Federated Balanced Learning, i.e., FBL, to prevent this issue from the beginning through sample balance on the client side. Technically, FBL allows unbalanced data on the client side to achieve sample balance through knowledge filling and knowledge sampling using edge-side generation models, under the limitation of a fixed number of data samples on clients. Furthermore, we design a Knowledge Alignment Strategy to bridge the gap between synthetic and real data, and a Knowledge Drop Strategy to regularize our method. Meanwhile, we scale our method to real and complex scenarios, allowing different clients to adopt various methods, and extend our framework to further improve performance. Numerous experiments show that our method outperforms state-of-the-art baselines. The code is released upon acceptance.
♻ ☆ Vid-LLM: A Compact Video-based 3D Multimodal LLM with Reconstruction-Reasoning Synergy
Recent developments in Multimodal Large Language Models (MLLMs) have significantly improved Vision-Language (VL) reasoning in 2D domains. However, extending these capabilities to 3D scene understanding remains a major challenge. Existing 3D Multimodal Large Language Models (3D-MLLMs) often depend on 3D data inputs, which limits scalability and generalization. To address this limitation, we propose Vid-LLM, a video-based 3D-MLLM that directly processes video inputs without requiring external 3D data, making it practical for real-world deployment. In our method, the geometric prior are directly used to improve the performance of the sceen perception. To integrate the geometric cues into the MLLM compactly, we design a Cross-Task Adapter (CTA) module to align the 3D geometric priors with the vision-language representations. To ensure geometric consistency and integrity, we introduce a Metric Depth Model that recovers real-scale geometry from the reconstruction outputs. Finally, the model is fine-tuned with a two-stage distillation optimization strategy, realizing fast convergence and stabilizes training. Extensive experiments across diverse benchmarks verified the effectiveness of our method on 3D Question Answering, 3D Dense Captioning and 3D Visual Grounding tasks, demonstrating the superior multi-task capabilities.
♻ ☆ "PhyWorldBench": A Comprehensive Evaluation of Physical Realism in Text-to-Video Models
Video generation models have achieved remarkable progress in creating high-quality, photorealistic content. However, their ability to accurately simulate physical phenomena remains a critical and unresolved challenge. This paper presents PhyWorldBench, a comprehensive benchmark designed to evaluate video generation models based on their adherence to the laws of physics. The benchmark covers multiple levels of physical phenomena, ranging from fundamental principles such as object motion and energy conservation to more complex scenarios involving rigid body interactions and human or animal motion. Additionally, we introduce a novel Anti-Physics category, where prompts intentionally violate real-world physics, enabling the assessment of whether models can follow such instructions while maintaining logical consistency. Besides large-scale human evaluation, we also design a simple yet effective method that utilizes current multimodal large language models to evaluate physics realism in a zero-shot fashion. We evaluate 12 state-of-the-art text-to-video generation models, including five open-source and five proprietary models, with detailed comparison and analysis. Through systematic testing across 1050 curated prompts spanning fundamental, composite, and anti-physics scenarios, we identify pivotal challenges these models face in adhering to real-world physics. We further examine their performance under diverse physical phenomena and prompt types, and derive targeted recommendations for crafting prompts that enhance fidelity to physical principles.
comment: 35 pages, 21 figures
♻ ☆ Q-Hawkeye: Reliable Visual Policy Optimization for Image Quality Assessment
Image Quality Assessment (IQA) predicts perceptual quality scores consistent with human judgments. Recent RL-based IQA methods built on MLLMs focus on generating visual quality descriptions and scores, ignoring two key reliability limitations: (i) although the model's prediction stability varies significantly across training samples, existing GRPO-based methods apply uniform advantage weighting, thereby amplifying noisy signals from unstable samples in gradient updates; (ii) most works emphasize text-grounded reasoning over images while overlooking the model's visual perception ability of image content. In this paper, we propose Q-Hawkeye, an RL-based reliable visual policy optimization framework that redesigns the learning signal through unified Uncertainty-Aware Dynamic Optimization and Perception-Aware Optimization. Q-Hawkeye estimates predictive uncertainty using the variance of predicted scores across multiple rollouts and leverages this uncertainty to reweight each sample's update strength, stabilizing policy optimization. To strengthen perceptual reliability, we construct paired inputs of degraded images and their original images and introduce an Implicit Perception Loss that constrains the model to ground its quality judgments in genuine visual evidence. Extensive experiments demonstrate that Q-Hawkeye outperforms state-of-the-art methods and generalizes better across multiple datasets. The code and models will be made available.
Cross-Modal Retrieval for Motion and Text via DropTriple Loss ACM MM
Cross-modal retrieval of image-text and video-text is a prominent research area in computer vision and natural language processing. However, there has been insufficient attention given to cross-modal retrieval between human motion and text, despite its wide-ranging applicability. To address this gap, we utilize a concise yet effective dual-unimodal transformer encoder for tackling this task. Recognizing that overlapping atomic actions in different human motion sequences can lead to semantic conflicts between samples, we explore a novel triplet loss function called DropTriple Loss. This loss function discards false negative samples from the negative sample set and focuses on mining remaining genuinely hard negative samples for triplet training, thereby reducing violations they cause. We evaluate our model and approach on the HumanML3D and KIT Motion-Language datasets. On the latest HumanML3D dataset, we achieve a recall of 62.9% for motion retrieval and 71.5% for text retrieval (both based on R@10). The source code for our approach is publicly available at https://github.com/eanson023/rehamot.
comment: This paper has been accepted by ACM MM Asia 2023 (Best Paper Candidate)
♻ ☆ Winner Team Mia at TextVQA Challenge 2021: Vision-and-Language Representation Learning with Pre-trained Sequence-to-Sequence Model
TextVQA requires models to read and reason about text in images to answer questions about them. Specifically, models need to incorporate a new modality of text present in the images and reason over it to answer TextVQA questions. In this challenge, we use generative model T5 for TextVQA task. Based on pre-trained checkpoint T5-3B from HuggingFace repository, two other pre-training tasks including masked language modeling(MLM) and relative position prediction(RPP) are designed to better align object feature and scene text. In the stage of pre-training, encoder is dedicate to handle the fusion among multiple modalities: question text, object text labels, scene text labels, object visual features, scene visual features. After that decoder generates the text sequence step-by-step, cross entropy loss is required by default. We use a large-scale scene text dataset in pre-training and then fine-tune the T5-3B with the TextVQA dataset only.
comment: Winner of TextVQA 2021
ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems
Much previous AI research has focused on developing monolithic models to maximize their intelligence, with the primary goal of enhancing performance on specific tasks. In contrast, this work attempts to study using LLM-based agents to design collaborative AI systems autonomously. To explore this problem, we first introduce ComfyBench to evaluate agents's ability to design collaborative AI systems in ComfyUI. ComfyBench is a comprehensive benchmark comprising 200 diverse tasks covering various instruction-following generation challenges, along with detailed annotations for 3,205 nodes and 20 workflows. Based on ComfyBench, we further develop ComfyAgent, a novel framework that empowers LLM-based agents to autonomously design collaborative AI systems by generating workflows. ComfyAgent is based on two core concepts. First, it represents workflows with code, which can be reversibly converted into workflows and executed as collaborative systems by the interpreter. Second, it constructs a multi-agent system that cooperates to learn from existing workflows and generate new workflows for a given task. While experimental results demonstrate that ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15\% of creative tasks. LLM-based agents still have a long way to go in autonomously designing collaborative AI systems. Progress with ComfyBench is paving the way for more intelligent and autonomous collaborative AI systems.
♻ ☆ ReaMOT: A Benchmark and Framework for Reasoning-based Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track targets specified by language instructions. However, existing RMOT paradigms are largely designed for explicit instructions and consequently fail to generalize to complex instructions that require logical reasoning. To overcome this, we propose Reasoning-based Multi-Object Tracking (ReaMOT), a novel task that requires models to identify and track targets that satisfy implicit constraints via logical reasoning. To advance this field, we construct the ReaMOT Challenge, a comprehensive benchmark comprising: (1) a large-scale dataset with 1,156 instructions categorized into High-Level Reasoning and Low-Level Perception, covering 423,359 image-language pairs across 869 diverse scenes; and (2) a tailored metric suite designed to jointly evaluate reasoning accuracy and tracking robustness. Furthermore, we propose ReaTrack, a training-free framework that synergizes the reasoning capabilities of Thinking-variant Large Vision-Language Model (LVLM) with the precise temporal modeling of SAM2. Extensive experiments on the ReaMOT Challenge benchmark demonstrates the effectiveness of our ReaTrack framework.
comment: https://github.com/chen-si-jia/ReaMOT
♻ ☆ SUG-Occ: An Explicit Semantics and Uncertainty Guided Sparse Learning Framework for Real-Time 3D Occupancy Prediction
As autonomous driving moves toward full scene understanding, 3D semantic occupancy prediction has emerged as a crucial perception task, offering voxel-level semantics beyond traditional detection and segmentation paradigms. However, such a refined representation for scene understanding incurs prohibitive computation and memory overhead, posing a major barrier to practical real-time deployment. To address this, we propose SUG-Occ, an explicit Semantics and Uncertainty Guided Sparse Learning Enabled 3D Occupancy Prediction Framework, which exploits the inherent sparsity of 3D scenes to reduce redundant computation while maintaining geometric and semantic completeness. Specifically, we first utilize semantic and uncertainty priors to suppress projections from free space during view transformation while employing an explicit unsigned distance encoding to enhance geometric consistency, producing a structurally consistent sparse 3D representation. Secondly, we design an cascade sparse completion module via hyper cross sparse convolution and generative upsampling to enable efficiently coarse-to-fine reasoning. Finally, we devise an object contextual representation (OCR) based mask decoder that aggregates global semantic context from sparse features and refines voxel-wise predictions via lightweight query-context interactions, avoiding expensive attention operations over volumetric features. Extensive experiments on SemanticKITTI benchmark demonstrate that the proposed approach outperforms the baselines, achieving a 7.34/% improvement in accuracy and a 57.8\% gain in efficiency.
OmniHD-Scenes: A Next-Generation Multimodal Dataset for Autonomous Driving TPAMI
The rapid advancement of deep learning has intensified the need for comprehensive data for use by autonomous driving algorithms. High-quality datasets are crucial for the development of effective data-driven autonomous driving solutions. Next-generation autonomous driving datasets must be multimodal, incorporating data from advanced sensors that feature extensive data coverage, detailed annotations, and diverse scene representation. To address this need, we present OmniHD-Scenes, a large-scale multimodal dataset that provides comprehensive omnidirectional high-definition data. The OmniHD-Scenes dataset combines data from 128-beam LiDAR, six cameras, and six 4D imaging radar systems to achieve full environmental perception. The dataset comprises 1501 clips, each approximately 30-s long, totaling more than 450K synchronized frames and more than 5.85 million synchronized sensor data points. We also propose a novel 4D annotation pipeline. To date, we have annotated 200 clips with more than 514K precise 3D bounding boxes. These clips also include semantic segmentation annotations for static scene elements. Additionally, we introduce a novel automated pipeline for generation of the dense occupancy ground truth, which effectively leverages information from non-key frames. Alongside the proposed dataset, we establish comprehensive evaluation metrics, baseline models, and benchmarks for 3D detection and semantic occupancy prediction. These benchmarks utilize surround-view cameras and 4D imaging radar to explore cost-effective sensor solutions for autonomous driving applications. Extensive experiments demonstrate the effectiveness of our low-cost sensor configuration and its robustness under adverse conditions. Data will be released at https://www.2077ai.com/OmniHD-Scenes.
comment: Accepted by IEEE TPAMI
♻ ☆ Fast Image-based Neural Relighting with Translucency-Reflection Modeling
Image-based lighting (IBL) is a widely used technique that renders objects using a high dynamic range image or environment map. However, aggregating the irradiance at the object's surface is computationally expensive, in particular for non-opaque, translucent materials that require volumetric rendering techniques. In this paper we present a fast neural 3D reconstruction and relighting model that extends volumetric implicit models such as neural radiance fields to be relightable using IBL. It is general enough to handle materials that exhibit complex light transport effects, such as translucency and glossy reflections from detailed surface geometry, producing realistic and compelling results. Rendering can be within a second at 800$\times$800 resolution (0.72s on an NVIDIA 3090 GPU and 0.30s on an A100 GPU) without engineering optimization. Our code and dataset are available at https://zhusz.github.io/TRHM-Webpage/.
comment: v2: Major revision and bug fix: New method with significantly improved results. Corrects an error in v1 (arXiv:2306.09322v1) in the evaluation of baseline NRTF due to an implementation bug. Results in v2 supersede those in v1
♻ ☆ Paper Copilot: Tracking the Evolution of Peer Review in AI Conferences ICLR 2026
The rapid growth of AI conferences is straining an already fragile peer-review system, leading to heavy reviewer workloads, expertise mismatches, inconsistent evaluation standards, superficial or templated reviews, and limited accountability under compressed timelines. In response, conference organizers have introduced new policies and interventions to preserve review standards. Yet these ad-hoc changes often create further concerns and confusion about the review process, leaving how papers are ultimately accepted - and how practices evolve across years - largely opaque. We present Paper Copilot, a system that creates durable digital archives of peer reviews across a wide range of computer-science venues, an open dataset that enables researchers to study peer review at scale, and a large-scale empirical analysis of ICLR reviews spanning multiple years. By releasing both the infrastructure and the dataset, Paper Copilot supports reproducible research on the evolution of peer review. We hope these resources help the community track changes, diagnose failure modes, and inform evidence-based improvements toward a more robust, transparent, and reliable peer-review system.
comment: ICLR 2026. https://papercopilot.com/
♻ ☆ Hierarchical Refinement of Universal Multimodal Attacks on Vision-Language Models
Existing adversarial attacks for VLP models are mostly sample-specific, resulting in substantial computational overhead when scaled to large datasets or new scenarios. To overcome this limitation, we propose Hierarchical Refinement Attack (HRA), a multimodal universal attack framework for VLP models. For the image modality, we refine the optimization path by leveraging a temporal hierarchy of historical and estimated future gradients to avoid local minima and stabilize universal perturbation learning. For the text modality, it hierarchically models textual importance by considering both intra- and inter-sentence contributions to identify globally influential words, which are then used as universal text perturbations. Extensive experiments across various downstream tasks, VLP models, and datasets, demonstrate the superior transferability of the proposed universal multimodal attacks.
comment: 10 pages, 7 figures
♻ ☆ Test-Time Iterative Error Correction for Efficient Diffusion Models ICLR 2026
With the growing demand for high-quality image generation on resource-constrained devices, efficient diffusion models have received increasing attention. However, such models suffer from approximation errors introduced by efficiency techniques, which significantly degrade generation quality. Once deployed, these errors are difficult to correct, as modifying the model is typically infeasible in deployment environments. Through an analysis of error propagation across diffusion timesteps, we reveal that these approximation errors can accumulate exponentially, severely impairing output quality. Motivated by this insight, we propose Iterative Error Correction (IEC), a novel test-time method that mitigates inference-time errors by iteratively refining the model's output. IEC is theoretically proven to reduce error propagation from exponential to linear growth, without requiring any retraining or architectural changes. IEC can seamlessly integrate into the inference process of existing diffusion models, enabling a flexible trade-off between performance and efficiency. Extensive experiments show that IEC consistently improves generation quality across various datasets, efficiency techniques, and model architectures, establishing it as a practical and generalizable solution for test-time enhancement of efficient diffusion models. The code is available in https://github.com/zysxmu/IEC.
comment: Accepted by ICLR 2026
♻ ☆ On Geometry-Enhanced Parameter-Efficient Fine-Tuning for 3D Scene Segmentation
The emergence of large-scale pre-trained point cloud models has significantly advanced 3D scene understanding, but adapting these models to specific downstream tasks typically demands full fine-tuning, incurring high computational and storage costs. Parameter-efficient fine-tuning (PEFT) techniques, successful in natural language processing and 2D vision tasks, would underperform when naively applied to 3D point cloud models due to significant geometric and spatial distribution shifts. Existing PEFT methods commonly treat points as orderless tokens, neglecting important local spatial structures and global geometric contexts in 3D modeling. To bridge this gap, we introduce the Geometric Encoding Mixer (GEM), a novel geometry-aware PEFT module specifically designed for 3D point cloud transformers. GEM explicitly integrates fine-grained local positional encodings with a lightweight latent attention mechanism to capture comprehensive global context, thereby effectively addressing the spatial and geometric distribution mismatch. Extensive experiments demonstrate that GEM achieves performance comparable to or sometimes even exceeding full fine-tuning, while only updating 1.6% of the model's parameters, fewer than other PEFT methods. With significantly reduced training time and memory requirements, our approach thus sets a new benchmark for efficient, scalable, and geometry-aware fine-tuning of large-scale 3D point cloud models. Code is available at https://github.com/LiyaoTang/GEM.
comment: Neurips 2025; available at https://github.com/LiyaoTang/GEM
♻ ☆ Robust Image Stitching with Optimal Plane
We present \textit{RopStitch}, an unsupervised deep image stitching framework with both robustness and naturalness. To ensure the robustness of \textit{RopStitch}, we propose to incorporate the universal prior of content perception into the image stitching model by a dual-branch architecture. It separately captures coarse and fine features and integrates them to achieve highly generalizable performance across diverse unseen real-world scenes. Concretely, the dual-branch model consists of a pretrained branch to capture semantically invariant representations and a learnable branch to extract fine-grained discriminative features, which are then merged into a whole by a controllable factor at the correlation level. Besides, considering that content alignment and structural preservation are often contradictory to each other, we propose a concept of virtual optimal planes to relieve this conflict. To this end, we model this problem as a process of estimating homography decomposition coefficients, and design an iterative coefficient predictor and minimal semantic distortion constraint to identify the optimal plane. This scheme is finally incorporated into \textit{RopStitch} by warping both views onto the optimal plane bidirectionally. Extensive experiments across various datasets demonstrate that \textit{RopStitch} significantly outperforms existing methods, particularly in scene robustness and content naturalness. The code is available at {\color{red}https://github.com/MmelodYy/RopStitch}.
comment: IEEE TVCG 2026
♻ ☆ Forest canopy height estimation from satellite RGB imagery using large-scale airborne LiDAR-derived training data and monocular depth estimation
Large-scale, high-resolution forest canopy height mapping plays a crucial role in understanding regional and global carbon and water cycles. Spaceborne LiDAR missions, including the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and the Global Ecosystem Dynamics Investigation (GEDI), provide global observations of forest structure but are spatially sparse and subject to inherent uncertainties. In contrast, near-surface LiDAR platforms, such as airborne and unmanned aerial vehicle (UAV) LiDAR systems, offer much finer measurements of forest canopy structure, and a growing number of countries have made these datasets openly available. In this study, a state-of-the-art monocular depth estimation model, Depth Anything V2, was trained using approximately 16,000 km2 of canopy height models (CHMs) derived from publicly available airborne LiDAR point clouds and related products across multiple countries, together with 3 m resolution PlanetScope and airborne RGB imagery. The trained model, referred to as Depth2CHM, enables the estimation of spatially continuous CHMs directly from PlanetScope RGB imagery. Independent validation was conducted at sites in China (approximately 1 km2) and the United States (approximately 116 km2). The results showed that Depth2CHM could accurately estimate canopy height, with biases of 0.59 m and 0.41 m and root mean square errors (RMSEs) of 2.54 m and 5.75 m for these two sites, respectively. Compared with an existing global meter-resolution CHM product, the mean absolute error is reduced by approximately 1.5 m and the RMSE by approximately 2 m. These results demonstrated that monocular depth estimation networks trained with large-scale airborne LiDAR-derived canopy height data provide a promising and scalable pathway for high-resolution, spatially continuous forest canopy height estimation from satellite RGB imagery.
♻ ☆ GO-MLVTON: Garment Occlusion-Aware Multi-Layer Virtual Try-On with Diffusion Models ICASSP 2026
Existing image-based virtual try-on (VTON) methods primarily focus on single-layer or multi-garment VTON, neglecting multi-layer VTON (ML-VTON), which involves dressing multiple layers of garments onto the human body with realistic deformation and layering to generate visually plausible outcomes. The main challenge lies in accurately modeling occlusion relationships between inner and outer garments to reduce interference from redundant inner garment features. To address this, we propose GO-MLVTON, the first multi-layer VTON method, introducing the Garment Occlusion Learning module to learn occlusion relationships and the StableDiffusion-based Garment Morphing & Fitting module to deform and fit garments onto the human body, producing high-quality multi-layer try-on results. Additionally, we present the MLG dataset for this task and propose a new metric named Layered Appearance Coherence Difference (LACD) for evaluation. Extensive experiments demonstrate the state-of-the-art performance of GO-MLVTON. Project page: https://upyuyang.github.io/go-mlvton/.
comment: Accepted at ICASSP 2026
♻ ☆ Building Egocentric Procedural AI Assistant: Methods, Benchmarks, and Challenges
Driven by recent advances in vision-language models (VLMs) and egocentric perception research, the emerging topic of an egocentric procedural AI assistant (EgoProceAssist) is introduced to step-by-step support daily procedural tasks in a first-person view. In this paper, we start by identifying three core tasks in EgoProceAssist: egocentric procedural error detection, egocentric procedural learning, and egocentric procedural question answering, then introduce two enabling dimensions: real-time and streaming video understanding, and proactive interaction in procedural contexts. We define these tasks within a new taxonomy as the EgoProceAssist's essential functions and illustrate how they can be deployed in real-world scenarios for daily activity assistants. Specifically, our work encompasses a comprehensive review of current techniques, relevant datasets, and evaluation metrics across these five core areas. To clarify the gap between the proposed EgoProceAssist and existing VLM-based assistants, we conduct novel experiments to provide a comprehensive evaluation of representative VLM-based methods. Through these findings and our technical analysis, we discuss the challenges ahead and suggest future research directions. Furthermore, an exhaustive list of this study is publicly available in an active repository that continuously collects the latest work: https://github.com/z1oong/Building-Egocentric-Procedural-AI-Assistant.
comment: Under peer-review
MomaGraph: State-Aware Unified Scene Graphs with Vision-Language Model for Embodied Task Planning
Mobile manipulators in households must both navigate and manipulate. This requires a compact, semantically rich scene representation that captures where objects are, how they function, and which parts are actionable. Scene graphs are a natural choice, yet prior work often separates spatial and functional relations, treats scenes as static snapshots without object states or temporal updates, and overlooks information most relevant for accomplishing the current task. To address these limitations, we introduce MomaGraph, a unified scene representation for embodied agents that integrates spatial-functional relationships and part-level interactive elements. However, advancing such a representation requires both suitable data and rigorous evaluation, which have been largely missing. We thus contribute MomaGraph-Scenes, the first large-scale dataset of richly annotated, task-driven scene graphs in household environments, along with MomaGraph-Bench, a systematic evaluation suite spanning six reasoning capabilities from high-level planning to fine-grained scene understanding. Built upon this foundation, we further develop MomaGraph-R1, a 7B vision-language model trained with reinforcement learning on MomaGraph-Scenes. MomaGraph-R1 predicts task-oriented scene graphs and serves as a zero-shot task planner under a Graph-then-Plan framework. Extensive experiments demonstrate that our model achieves state-of-the-art results among open-source models, reaching 71.6% accuracy on the benchmark (+11.4% over the best baseline), while generalizing across public benchmarks and transferring effectively to real-robot experiments.
comment: 25 pages, 10 figures. Project page:https://hybridrobotics.github.io/MomaGraph/
♻ ☆ Generating metamers of human scene understanding
Human vision combines low-resolution "gist" information from the visual periphery with sparse but high-resolution information from fixated locations to construct a coherent understanding of a visual scene. In this paper, we introduce MetamerGen, a tool for generating scenes that are aligned with latent human scene representations. MetamerGen is a latent diffusion model that combines peripherally obtained scene gist information with information obtained from scene-viewing fixations to generate image metamers for what humans understand after viewing a scene. Generating images from both high and low resolution (i.e. "foveated") inputs constitutes a novel image-to-image synthesis problem, which we tackle by introducing a dual-stream representation of the foveated scenes consisting of DINOv2 tokens that fuse detailed features from fixated areas with peripherally degraded features capturing scene context. To evaluate the perceptual alignment of MetamerGen generated images to latent human scene representations, we conducted a same-different behavioral experiment where participants were asked for a "same" or "different" response between the generated and the original image. With that, we identify scene generations that are indeed metamers for the latent scene representations formed by the viewers. MetamerGen is a powerful tool for understanding scene understanding. Our proof-of-concept analyses uncovered specific features at multiple levels of visual processing that contributed to human judgments. While it can generate metamers even conditioned on random fixations, we find that high-level semantic alignment most strongly predicts metamerism when the generated scenes are conditioned on viewers' own fixated regions.
♻ ☆ Color3D: Controllable and Consistent 3D Colorization with Personalized Colorizer ICLR 2026
In this work, we present Color3D, a highly adaptable framework for colorizing both static and dynamic 3D scenes from monochromatic inputs, delivering visually diverse and chromatically vibrant reconstructions with flexible user-guided control. In contrast to existing methods that focus solely on static scenarios and enforce multi-view consistency by averaging color variations which inevitably sacrifice both chromatic richness and controllability, our approach is able to preserve color diversity and steerability while ensuring cross-view and cross-time consistency. In particular, the core insight of our method is to colorize only a single key view and then fine-tune a personalized colorizer to propagate its color to novel views and time steps. Through personalization, the colorizer learns a scene-specific deterministic color mapping underlying the reference view, enabling it to consistently project corresponding colors to the content in novel views and video frames via its inherent inductive bias. Once trained, the personalized colorizer can be applied to infer consistent chrominance for all other images, enabling direct reconstruction of colorful 3D scenes with a dedicated Lab color space Gaussian splatting representation. The proposed framework ingeniously recasts complicated 3D colorization as a more tractable single image paradigm, allowing seamless integration of arbitrary image colorization models with enhanced flexibility and controllability. Extensive experiments across diverse static and dynamic 3D colorization benchmarks substantiate that our method can deliver more consistent and chromatically rich renderings with precise user control. Project Page https://yecongwan.github.io/Color3D/.
comment: ICLR 2026 Project Page https://yecongwan.github.io/Color3D/
♻ ☆ InternSVG: Towards Unified SVG Tasks with Multimodal Large Language Models
General SVG modeling remains challenging due to fragmented datasets, limited transferability of methods across tasks, and the difficulty of handling structural complexity. In response, we leverage the strong transfer and generalization capabilities of multimodal large language models (MLLMs) to achieve unified modeling for SVG understanding, editing, and generation. We present the InternSVG family, an integrated data-benchmark-model suite. At its core is SAgoge, the largest and most comprehensive multimodal dataset for SVG tasks, encompassing both static graphics and dynamic animations. It covers icons, long-sequence illustrations, scientific diagrams, and dynamic animations, supporting tasks of varied difficulty levels and providing deeper hierarchies with richer attributes compared to previous datasets. Based on this resource, we introduce SArena, a companion benchmark with comprehensive task definitions and standardized evaluation that aligns with the domains and difficulty spectrum covered by SAgoge. Building on these foundations, we propose InternSVG, a unified MLLM for SVG understanding, editing, and generation with SVG-specific special tokens, subword-based embedding initialization, and a two-stage training strategy that progresses from short static SVGs to long-sequence illustrations and complex animations. This unified formulation induces positive transfer and improves overall performance. Experiments on SArena and prior benchmark confirm that InternSVG achieves substantial gains and consistently outperforms leading open and proprietary counterparts.
♻ ☆ ThermoSplat: Cross-Modal 3D Gaussian Splatting with Feature Modulation and Geometry Decoupling
Multi-modal scene reconstruction integrating RGB and thermal infrared data is essential for robust environmental perception across diverse lighting and weather conditions. However, extending 3D Gaussian Splatting (3DGS) to multi-spectral scenarios remains challenging. Current approaches often struggle to fully leverage the complementary information of multi-modal data, typically relying on mechanisms that either tend to neglect cross-modal correlations or leverage shared representations that fail to adaptively handle the complex structural correlations and physical discrepancies between spectrums. To address these limitations, we propose ThermoSplat, a novel framework that enables deep spectral-aware reconstruction through active feature modulation and adaptive geometry decoupling. First, we introduce a Spectrum-Aware Adaptive Modulation that dynamically conditions shared latent features on thermal structural priors, effectively guiding visible texture synthesis with reliable cross-modal geometric cues. Second, to accommodate modality-specific geometric inconsistencies, we propose a Modality-Adaptive Geometric Decoupling scheme that learns independent opacity offsets and executes an independent rasterization pass for the thermal branch. Additionally, a hybrid rendering pipeline is employed to integrate explicit Spherical Harmonics with implicit neural decoding, ensuring both semantic consistency and high-frequency detail preservation. Extensive experiments on the RGBT-Scenes dataset demonstrate that ThermoSplat achieves state-of-the-art rendering quality across both visible and thermal spectrums.
♻ ☆ Open-Set Domain Adaptation Under Background Distribution Shift: Challenges and A Provably Efficient Solution
As we deploy machine learning systems in the real world, a core challenge is to maintain a model that is performant even as the data shifts. Such shifts can take many forms: new classes may emerge that were absent during training, a problem known as open-set recognition, and the distribution of known categories may change. Guarantees on open-set recognition are mostly derived under the assumption that the distribution of known classes, which we call the background distribution, is fixed. In this paper we develop CoLOR, a method that is guaranteed to solve open-set recognition even in the challenging case where the background distribution shifts. We prove that the method works under benign assumptions that the novel class is separable from the non-novel classes, and provide theoretical guarantees that it outperforms a representative baseline in a simplified overparameterized setting. We develop techniques to make CoLOR scalable and robust, and perform comprehensive empirical evaluations on image and text data. The results show that CoLOR significantly outperforms existing open-set recognition methods under background shift. Moreover, we provide new insights into how factors such as the size of the novel class influences performance, an aspect that has not been extensively explored in prior work.
Machine Learning 150
☆ Robustness Is a Function, Not a Number: A Factorized Comprehensive Study of OOD Robustness in Vision-Based Driving
Out of distribution (OOD) robustness in autonomous driving is often reduced to a single number, hiding what breaks a policy. We decompose environments along five axes: scene (rural/urban), season, weather, time (day/night), and agent mix; and measure performance under controlled $k$-factor perturbations ($k \in \{0,1,2,3\}$). Using closed loop control in VISTA, we benchmark FC, CNN, and ViT policies, train compact ViT heads on frozen foundation-model (FM) features, and vary ID support in scale, diversity, and temporal context. (1) ViT policies are markedly more OOD-robust than comparably sized CNN/FC, and FM features yield state-of-the-art success at a latency cost. (2) Naive temporal inputs (multi-frame) do not beat the best single-frame baseline. (3) The largest single factor drops are rural $\rightarrow$ urban and day $\rightarrow$ night ($\sim 31\%$ each); actor swaps $\sim 10\%$, moderate rain $\sim 7\%$; season shifts can be drastic, and combining a time flip with other changes further degrades performance. (4) FM-feature policies stay above $85\%$ under three simultaneous changes; non-FM single-frame policies take a large first-shift hit, and all no-FM models fall below $50\%$ by three changes. (5) Interactions are non-additive: some pairings partially offset, whereas season-time combinations are especially harmful. (6) Training on winter/snow is most robust to single-factor shifts, while a rural+summer baseline gives the best overall OOD performance. (7) Scaling traces/views improves robustness ($+11.8$ points from $5$ to $14$ traces), yet targeted exposure to hard conditions can substitute for scale. (8) Using multiple ID environments broadens coverage and strengthens weak cases (urban OOD $60.6\% \rightarrow 70.1\%$) with a small ID drop; single-ID preserves peak performance but in a narrow domain. These results yield actionable design rules for OOD-robust driving policies.
☆ Contact-Anchored Policies: Contact Conditioning Creates Strong Robot Utility Models
The prevalent paradigm in robot learning attempts to generalize across environments, embodiments, and tasks with language prompts at runtime. A fundamental tension limits this approach: language is often too abstract to guide the concrete physical understanding required for robust manipulation. In this work, we introduce Contact-Anchored Policies (CAP), which replace language conditioning with points of physical contact in space. Simultaneously, we structure CAP as a library of modular utility models rather than a monolithic generalist policy. This factorization allows us to implement a real-to-sim iteration cycle: we build EgoGym, a lightweight simulation benchmark, to rapidly identify failure modes and refine our models and datasets prior to real-world deployment. We show that by conditioning on contact and iterating via simulation, CAP generalizes to novel environments and embodiments out of the box on three fundamental manipulation skills while using only 23 hours of demonstration data, and outperforms large, state-of-the-art VLAs in zero-shot evaluations by 56%. All model checkpoints, codebase, hardware, simulation, and datasets will be open-sourced. Project page: https://cap-policy.github.io/
☆ Next-Gen CAPTCHAs: Leveraging the Cognitive Gap for Scalable and Diverse GUI-Agent Defense
The rapid evolution of GUI-enabled agents has rendered traditional CAPTCHAs obsolete. While previous benchmarks like OpenCaptchaWorld established a baseline for evaluating multimodal agents, recent advancements in reasoning-heavy models, such as Gemini3-Pro-High and GPT-5.2-Xhigh have effectively collapsed this security barrier, achieving pass rates as high as 90% on complex logic puzzles like "Bingo". In response, we introduce Next-Gen CAPTCHAs, a scalable defense framework designed to secure the next-generation web against the advanced agents. Unlike static datasets, our benchmark is built upon a robust data generation pipeline, allowing for large-scale and easily scalable evaluations, notably, for backend-supported types, our system is capable of generating effectively unbounded CAPTCHA instances. We exploit the persistent human-agent "Cognitive Gap" in interactive perception, memory, decision-making, and action. By engineering dynamic tasks that require adaptive intuition rather than granular planning, we re-establish a robust distinction between biological users and artificial agents, offering a scalable and diverse defense mechanism for the agentic era.
comment: Project page at https://greenoso.github.io/NextGen-CAPTCHAs_webpage/
☆ ANCRe: Adaptive Neural Connection Reassignment for Efficient Depth Scaling
Scaling network depth has been a central driver behind the success of modern foundation models, yet recent investigations suggest that deep layers are often underutilized. This paper revisits the default mechanism for deepening neural networks, namely residual connections, from an optimization perspective. Rigorous analysis proves that the layout of residual connections can fundamentally shape convergence behavior, and even induces an exponential gap in convergence rates. Prompted by this insight, we introduce adaptive neural connection reassignment (ANCRe), a principled and lightweight framework that parameterizes and learns residual connectivities from the data. ANCRe adaptively reassigns residual connections with negligible computational and memory overhead ($<1\%$), while enabling more effective utilization of network depth. Extensive numerical tests across pre-training of large language models, diffusion models, and deep ResNets demonstrate consistently accelerated convergence, boosted performance, and enhanced depth efficiency over conventional residual connections.
☆ ShapeCond: Fast Shapelet-Guided Dataset Condensation for Time Series Classification
Time series data supports many domains (e.g., finance and climate science), but its rapid growth strains storage and computation. Dataset condensation can alleviate this by synthesizing a compact training set that preserves key information. Yet most condensation methods are image-centric and often fail on time series because they miss time-series-specific temporal structure, especially local discriminative motifs such as shapelets. In this work, we propose ShapeCond, a novel and efficient condensation framework for time series classification that leverages shapelet-based dataset knowledge via a shapelet-guided optimization strategy. Our shapelet-assisted synthesis cost is independent of sequence length: longer series yield larger speedups in synthesis (e.g., 29$\times$ faster over prior state-of-the-art method CondTSC for time-series condensation, and up to 10,000$\times$ over naively using shapelets on the Sleep dataset with 3,000 timesteps). By explicitly preserving critical local patterns, ShapeCond improves downstream accuracy and consistently outperforms all prior state-of-the-art time series dataset condensation methods across extensive experiments. Code is available at https://github.com/lunaaa95/ShapeCond.
comment: Code at: https://github.com/lunaaa95/ShapeCond
☆ ARO: A New Lens On Matrix Optimization For Large Models
Matrix-based optimizers have attracted growing interest for improving LLM training efficiency, with significant progress centered on orthogonalization/whitening based methods. While yielding substantial performance gains, a fundamental question arises: can we develop new paradigms beyond orthogonalization, pushing the efficiency frontier further? We present \textbf{Adaptively Rotated Optimization (ARO}, a new matrix optimization framework that treats gradient rotation as a first class design principle. ARO accelerates LLM training by performing normed steepest descent in a rotated coordinate system, where the rotation is determined by a novel norm-informed policy. This perspective yields update rules that go beyond existing orthogonalization and whitening optimizers, improving sample efficiency in practice. To make comparisons reliable, we propose a rigorously controlled benchmarking protocol that reduces confounding and bias. Under this protocol, ARO consistently outperforms AdamW (by 1.3 $\sim$1.35$\times$) and orthogonalization methods (by 1.1$\sim$1.15$\times$) in LLM pretraining at up to 8B activated parameters, and up to $8\times$ overtrain budget, without evidence of diminishing returns. Finally, we discuss how ARO can be reformulated as a symmetry-aware optimizer grounded in rotational symmetries of residual streams, motivating advanced designs that enable computationally efficient exploitation of cross-layer/cross module couplings.
☆ DirMoE: Dirichlet-routed Mixture of Experts
Mixture-of-Experts (MoE) models have demonstrated exceptional performance in large-scale language models. Existing routers typically rely on non-differentiable Top-$k$+Softmax, limiting their performance and scalability. We argue that two distinct decisions, which experts to activate and how to distribute expert contributions among them, are conflated in standard Top-$k$+Softmax. We introduce Dirichlet-Routed MoE (DirMoE), a novel end-to-end differentiable routing mechanism built on a Dirichlet variational autoencoder framework. This design fundamentally disentangles the core routing problems: expert selection, modeled by a Bernoulli component, and expert contribution among chosen experts, handled by a Dirichlet component. The entire forward pass remains fully differentiable through the use of Gumbel-Sigmoid relaxation for the expert selection and implicit reparameterization for the Dirichlet distribution. Our training objective, a variational ELBO, includes a direct sparsity penalty that precisely controls the number of active experts in expectation, alongside a schedule for key hyperparameters that guides the model from an exploratory to a definitive routing state. Moreover, our DirMoE router matches or exceeds other methods while improving expert specialization.
☆ Universal Coefficients and Mayer-Vietoris Sequence for Groupoid Homology
We study homology of ample groupoids via the compactly supported Moore complex of the nerve. Let $A$ be a topological abelian group. For $n\ge 0$ set $C_n(\mathcal G;A) := C_c(\mathcal G_n,A)$ and define $\partial_n^A=\sum_{i=0}^n(-1)^i(d_i)_*$. This defines $H_n(\mathcal G;A)$. The theory is functorial for continuous étale homomorphisms. It is compatible with standard reductions, including restriction to saturated clopen subsets. In the ample setting it is invariant under Kakutani equivalence. We reprove Matui type long exact sequences and identify the comparison maps at chain level. For discrete $A$ we prove a natural universal coefficient short exact sequence $$0\to H_n(\mathcal G)\otimes_{\mathbb Z}A\xrightarrow{\ ι_n^{\mathcal G}\ }H_n(\mathcal G;A)\xrightarrow{\ κ_n^{\mathcal G}\ }\operatorname{Tor}_1^{\mathbb Z}\bigl(H_{n-1}(\mathcal G),A\bigr)\to 0.$$ The key input is the chain level isomorphism $C_c(\mathcal G_n,\mathbb Z)\otimes_{\mathbb Z}A\cong C_c(\mathcal G_n,A)$, which reduces the groupoid statement to the classical algebraic UCT for the free complex $C_c(\mathcal G_\bullet,\mathbb Z)$. We also isolate the obstruction for non-discrete coefficients. For a locally compact totally disconnected Hausdorff space $X$ with a basis of compact open sets, the image of $Φ_X:C_c(X,\mathbb Z)\otimes_{\mathbb Z}A\to C_c(X,A)$ is exactly the compactly supported functions with finite image. Thus $Φ_X$ is surjective if and only if every $f\in C_c(X,A)$ has finite image, and for suitable $X$ one can produce compactly supported continuous maps $X\to A$ with infinite image. Finally, for a clopen saturated cover $\mathcal G_0=U_1\cup U_2$ we construct a short exact sequence of Moore complexes and derive a Mayer-Vietoris long exact sequence for $H_\bullet(\mathcal G;A)$ for explicit computations.
comment: Master's thesis
☆ Improving Detection of Rare Nodes in Hierarchical Multi-Label Learning
In hierarchical multi-label classification, a persistent challenge is enabling model predictions to reach deeper levels of the hierarchy for more detailed or fine-grained classifications. This difficulty partly arises from the natural rarity of certain classes (or hierarchical nodes) and the hierarchical constraint that ensures child nodes are almost always less frequent than their parents. To address this, we propose a weighted loss objective for neural networks that combines node-wise imbalance weighting with focal weighting components, the latter leveraging modern quantification of ensemble uncertainties. By emphasizing rare nodes rather than rare observations (data points), and focusing on uncertain nodes for each model output distribution during training, we observe improvements in recall by up to a factor of five on benchmark datasets, along with statistically significant gains in $F_{1}$ score. We also show our approach aids convolutional networks on challenging tasks, as in situations with suboptimal encoders or limited data.
comment: Accepted for publication in Transactions on Machine Learning Research (TMLR), 2026
☆ StretchTime: Adaptive Time Series Forecasting via Symplectic Attention
Transformer architectures have established strong baselines in time series forecasting, yet they typically rely on positional encodings that assume uniform, index-based temporal progression. However, real-world systems, from shifting financial cycles to elastic biological rhythms, frequently exhibit "time-warped" dynamics where the effective flow of time decouples from the sampling index. In this work, we first formalize this misalignment and prove that rotary position embedding (RoPE) is mathematically incapable of representing non-affine temporal warping. To address this, we propose Symplectic Positional Embeddings (SyPE), a learnable encoding framework derived from Hamiltonian mechanics. SyPE strictly generalizes RoPE by extending the rotation group $\mathrm{SO}(2)$ to the symplectic group $\mathrm{Sp}(2,\mathbb{R})$, modulated by a novel input-dependent adaptive warp module. By allowing the attention mechanism to adaptively dilate or contract temporal coordinates end-to-end, our approach captures locally varying periodicities without requiring pre-defined warping functions. We implement this mechanism in StretchTime, a multivariate forecasting architecture that achieves state-of-the-art performance on standard benchmarks, demonstrating superior robustness on datasets exhibiting non-stationary temporal dynamics.
☆ When do neural ordinary differential equations generalize on complex networks?
Neural ordinary differential equations (neural ODEs) can effectively learn dynamical systems from time series data, but their behavior on graph-structured data remains poorly understood, especially when applied to graphs with different size or structure than encountered during training. We study neural ODEs ($\mathtt{nODE}$s) with vector fields following the Barabási-Barzel form, trained on synthetic data from five common dynamical systems on graphs. Using the $\mathbb{S}^1$-model to generate graphs with realistic and tunable structure, we find that degree heterogeneity and the type of dynamical system are the primary factors in determining $\mathtt{nODE}$s' ability to generalize across graph sizes and properties. This extends to $\mathtt{nODE}$s' ability to capture fixed points and maintain performance amid missing data. Average clustering plays a secondary role in determining $\mathtt{nODE}$ performance. Our findings highlight $\mathtt{nODE}$s as a powerful approach to understanding complex systems but underscore challenges emerging from degree heterogeneity and clustering in realistic graphs.
☆ Distributionally Robust Optimization via Generative Ambiguity Modeling
This paper studies Distributionally Robust Optimization (DRO), a fundamental framework for enhancing the robustness and generalization of statistical learning and optimization. An effective ambiguity set for DRO must involve distributions that remain consistent to the nominal distribution while being diverse enough to account for a variety of potential scenarios. Moreover, it should lead to tractable DRO solutions. To this end, we propose generative model-based ambiguity sets that capture various adversarial distributions beyond the nominal support space while maintaining consistency with the nominal distribution. Building on this generative ambiguity modeling, we propose DRO with Generative Ambiguity Set (GAS-DRO), a tractable DRO algorithm that solves the inner maximization over the parameterized generative model space. We formally establish the stationary convergence performance of GAS-DRO. We implement GAS-DRO with a diffusion model and empirically demonstrate its superior Out-of-Distribution (OOD) generalization performance in ML tasks.
☆ Learning to Coordinate via Quantum Entanglement in Multi-Agent Reinforcement Learning
The inability to communicate poses a major challenge to coordination in multi-agent reinforcement learning (MARL). Prior work has explored correlating local policies via shared randomness, sometimes in the form of a correlation device, as a mechanism to assist in decentralized decision-making. In contrast, this work introduces the first framework for training MARL agents to exploit shared quantum entanglement as a coordination resource, which permits a larger class of communication-free correlated policies than shared randomness alone. This is motivated by well-known results in quantum physics which posit that, for certain single-round cooperative games with no communication, shared quantum entanglement enables strategies that outperform those that only use shared randomness. In such cases, we say that there is quantum advantage. Our framework is based on a novel differentiable policy parameterization that enables optimization over quantum measurements, together with a novel policy architecture that decomposes joint policies into a quantum coordinator and decentralized local actors. To illustrate the effectiveness of our proposed method, we first show that we can learn, purely from experience, strategies that attain quantum advantage in single-round games that are treated as black box oracles. We then demonstrate how our machinery can learn policies with quantum advantage in an illustrative multi-agent sequential decision-making problem formulated as a decentralized partially observable Markov decision process (Dec-POMDP).
☆ A Behavioural and Representational Evaluation of Goal-Directedness in Language Model Agents
Understanding an agent's goals helps explain and predict its behaviour, yet there is no established methodology for reliably attributing goals to agentic systems. We propose a framework for evaluating goal-directedness that integrates behavioural evaluation with interpretability-based analyses of models' internal representations. As a case study, we examine an LLM agent navigating a 2D grid world toward a goal state. Behaviourally, we evaluate the agent against an optimal policy across varying grid sizes, obstacle densities, and goal structures, finding that performance scales with task difficulty while remaining robust to difficulty-preserving transformations and complex goal structures. We then use probing methods to decode the agent's internal representations of the environment state and its multi-step action plans. We find that the LLM agent non-linearly encodes a coarse spatial map of the environment, preserving approximate task-relevant cues about its position and the goal location; that its actions are broadly consistent with these internal representations; and that reasoning reorganises them, shifting from broader environment structural cues toward information supporting immediate action selection. Our findings support the view that introspective examination is required beyond behavioural evaluations to characterise how agents represent and pursue their objectives.
☆ MotionCrafter: Dense Geometry and Motion Reconstruction with a 4D VAE
We introduce MotionCrafter, a video diffusion-based framework that jointly reconstructs 4D geometry and estimates dense motion from a monocular video. The core of our method is a novel joint representation of dense 3D point maps and 3D scene flows in a shared coordinate system, and a novel 4D VAE to effectively learn this representation. Unlike prior work that forces the 3D value and latents to align strictly with RGB VAE latents-despite their fundamentally different distributions-we show that such alignment is unnecessary and leads to suboptimal performance. Instead, we introduce a new data normalization and VAE training strategy that better transfers diffusion priors and greatly improves reconstruction quality. Extensive experiments across multiple datasets demonstrate that MotionCrafter achieves state-of-the-art performance in both geometry reconstruction and dense scene flow estimation, delivering 38.64% and 25.0% improvements in geometry and motion reconstruction, respectively, all without any post-optimization. Project page: https://ruijiezhu94.github.io/MotionCrafter_Page
comment: Project page: https://ruijiezhu94.github.io/MotionCrafter_Page
☆ StealthRL: Reinforcement Learning Paraphrase Attacks for Multi-Detector Evasion of AI-Text Detectors
AI-text detectors face a critical robustness challenge: adversarial paraphrasing attacks that preserve semantics while evading detection. We introduce StealthRL, a reinforcement learning framework that stress-tests detector robustness under realistic adversarial conditions. StealthRL trains a paraphrase policy against a multi-detector ensemble using Group Relative Policy Optimization (GRPO) with LoRA adapters on Qwen3-4B, optimizing a composite reward that balances detector evasion with semantic preservation. We evaluate six attack settings (M0-M5) against three detector families (RoBERTa, FastDetectGPT, and Binoculars) at the security-relevant 1% false positive rate operating point. StealthRL achieves near-zero detection (0.001 mean TPR@1%FPR), reduces mean AUROC from 0.74 to 0.27, and attains a 99.9% attack success rate. Critically, attacks transfer to a held-out detector family not seen during training, revealing shared architectural vulnerabilities rather than detector-specific brittleness. We additionally conduct LLM-based quality evaluation via Likert scoring, analyze detector score distributions to explain why evasion succeeds, and provide per-detector AUROC with bootstrap confidence intervals. Our results expose significant robustness gaps in current AI-text detection and establish StealthRL as a principled adversarial evaluation protocol. Code and evaluation pipeline are publicly available at https://github.com/suraj-ranganath/StealthRL.
comment: Expanded version of a workshop submission. Code available
☆ Provably robust learning of regression neural networks using $β$-divergences
Regression neural networks (NNs) are most commonly trained by minimizing the mean squared prediction error, which is highly sensitive to outliers and data contamination. Existing robust training methods for regression NNs are often limited in scope and rely primarily on empirical validation, with only a few offering partial theoretical guarantees. In this paper, we propose a new robust learning framework for regression NNs based on the $β$-divergence (also known as the density power divergence) which we call `rRNet'. It applies to a broad class of regression NNs, including models with non-smooth activation functions and error densities, and recovers the classical maximum likelihood learning as a special case. The rRNet is implemented via an alternating optimization scheme, for which we establish convergence guarantees to stationary points under mild, verifiable conditions. The (local) robustness of rRNet is theoretically characterized through the influence functions of both the parameter estimates and the resulting rRNet predictor, which are shown to be bounded for suitable choices of the tuning parameter $β$, depending on the error density. We further prove that rRNet attains the optimal 50\% asymptotic breakdown point at the assumed model for all $β\in(0, 1]$, providing a strong global robustness guarantee that is largely absent for existing NN learning methods. Our theoretical results are complemented by simulation experiments and real-data analyses, illustrating practical advantages of rRNet over existing approaches in both function approximation problems and prediction tasks with noisy observations.
comment: Pre-print, under review
☆ Online monotone density estimation and log-optimal calibration
We study the problem of online monotone density estimation, where density estimators must be constructed in a predictable manner from sequentially observed data. We propose two online estimators: an online analogue of the classical Grenander estimator, and an expert aggregation estimator inspired by exponential weighting methods from the online learning literature. In the well-specified stochastic setting, where the underlying density is monotone, we show that the expected cumulative log-likelihood gap between the online estimators and the true density admits an $O(n^{1/3})$ bound. We further establish a $\sqrt{n\log{n}}$ pathwise regret bound for the expert aggregation estimator relative to the best offline monotone estimator chosen in hindsight, under minimal regularity assumptions on the observed sequence. As an application of independent interest, we show that the problem of constructing log-optimal p-to-e calibrators for sequential hypothesis testing can be formulated as an online monotone density estimation problem. We adapt the proposed estimators to build empirically adaptive p-to-e calibrators and establish their optimality. Numerical experiments illustrate the theoretical results.
comment: 28 pages, 1 figure
☆ DynamiQ: Accelerating Gradient Synchronization using Compressed Multi-hop All-reduce
Multi-hop all-reduce is the de facto backbone of large model training. As the training scale increases, the network often becomes a bottleneck, motivating reducing the volume of transmitted data. Accordingly, recent systems demonstrated significant acceleration of the training process using gradient quantization. However, these systems are not optimized for multi-hop aggregation, where entries are partially summed multiple times along their aggregation topology. This paper presents DynamiQ, a quantization framework that bridges the gap between quantization best practices and multi-hop aggregation. DynamiQ introduces novel techniques to better represent partial sums, co-designed with a decompress-accumulate-recompress fused kernel to facilitate fast execution. We extended PyTorch DDP to support DynamiQ over NCCL P2P, and across different LLMs, tasks, and scales, we demonstrate consistent improvement of up to 34.2% over the best among state-of-the-art methods such as Omni-Reduce, THC, and emerging standards such as MXFP4, MXFP6, and MXFP8. Further, DynamiQ is the only evaluated method that consistently reaches near-baseline accuracy (e.g., 99.9% of the BF16 baseline) and does so while significantly accelerating the training.
comment: 18 pages, 18 figures
☆ Diffusion-Inspired Reconfiguration of Transformers for Uncertainty Calibration
Uncertainty calibration in pre-trained transformers is critical for their reliable deployment in risk-sensitive applications. Yet, most existing pre-trained transformers do not have a principled mechanism for uncertainty propagation through their feature transformation stack. In this work, we propose a diffusion-inspired reconfiguration of transformers in which each feature transformation block is modeled as a probabilistic mapping. Composing these probabilistic mappings reveals a probability path that mimics the structure of a diffusion process, transporting data mass from the input distribution to the pre-trained feature distribution. This probability path can then be recompiled on a diffusion process with a unified transition model to enable principled propagation of representation uncertainty throughout the pre-trained model's architecture while maintaining its original predictive performance. Empirical results across a variety of vision and language benchmarks demonstrate that our method achieves superior calibration and predictive accuracy compared to existing uncertainty-aware transformers.
☆ AMS-HD: Hyperdimensional Computing for Real-Time and Energy-Efficient Acute Mountain Sickness Detection
Altitude sickness is a potentially life-threatening condition that impacts many individuals traveling to elevated altitudes. Timely detection is critical as symptoms can escalate rapidly. Early recognition enables simple interventions such as descent, oxygen, or medication, and prompt treatment can save lives by significantly lowering the risk of severe complications. Although conventional machine learning (ML) techniques have been applied to identify altitude sickness using physiological signals, such as heart rate, oxygen saturation, respiration rate, blood pressure, and body temperature, they often struggle to balance predictive performance with low hardware demands. In contrast, hyperdimensional computing (HDC) remains under-explored for this task with limited biomedical features, where it may offer a compelling alternative to existing classification models. Its vector symbolic framework is inherently suited to hardware-efficient design, making it a strong candidate for low-power systems like wearables. Leveraging lightweight computation and efficient streamlined memory usage, HDC enables real-time detection of altitude sickness from physiological parameters collected by wearable devices, achieving accuracy comparable to that of traditional ML models. We present AMS-HD, a novel system that integrates tailored feature extraction and Hadamard HV encoding to enhance both the precision and efficiency of HDC-based detection. This framework is well-positioned for deployment in wearable health monitoring platforms, enabling continuous, on-the-go tracking of acute altitude sickness.
☆ GEMSS: A Variational Bayesian Method for Discovering Multiple Sparse Solutions in Classification and Regression Problems
Selecting interpretable feature sets in underdetermined ($n \ll p$) and highly correlated regimes constitutes a fundamental challenge in data science, particularly when analyzing physical measurements. In such settings, multiple distinct sparse subsets may explain the response equally well. Identifying these alternatives is crucial for generating domain-specific insights into the underlying mechanisms, yet conventional methods typically isolate a single solution, obscuring the full spectrum of plausible explanations. We present GEMSS (Gaussian Ensemble for Multiple Sparse Solutions), a variational Bayesian framework specifically designed to simultaneously discover multiple, diverse sparse feature combinations. The method employs a structured spike-and-slab prior for sparsity, a mixture of Gaussians to approximate the intractable multimodal posterior, and a Jaccard-based penalty to further control solution diversity. Unlike sequential greedy approaches, GEMSS optimizes the entire ensemble of solutions within a single objective function via stochastic gradient descent. The method is validated on a comprehensive benchmark comprising 128 synthetic experiments across classification and regression tasks. Results demonstrate that GEMSS scales effectively to high-dimensional settings ($p=5000$) with sample size as small as $n = 50$, generalizes seamlessly to continuous targets, handles missing data natively, and exhibits remarkable robustness to class imbalance and Gaussian noise. GEMSS is available as a Python package 'gemss' at PyPI. The full GitHub repository at https://github.com/kat-er-ina/gemss/ also includes a free, easy-to-use application suitable for non-coders.
☆ Analysis of Converged 3D Gaussian Splatting Solutions: Density Effects and Prediction Limit
We investigate what structure emerges in 3D Gaussian Splatting (3DGS) solutions from standard multi-view optimization. We term these Rendering-Optimal References (RORs) and analyze their statistical properties, revealing stable patterns: mixture-structured scales and bimodal radiance across diverse scenes. To understand what determines these parameters, we apply learnability probes by training predictors to reconstruct RORs from point clouds without rendering supervision. Our analysis uncovers fundamental density-stratification. Dense regions exhibit geometry-correlated parameters amenable to render-free prediction, while sparse regions show systematic failure across architectures. We formalize this through variance decomposition, demonstrating that visibility heterogeneity creates covariance-dominated coupling between geometric and appearance parameters in sparse regions. This reveals the dual character of RORs: geometric primitives where point clouds suffice, and view synthesis primitives where multi-view constraints are essential. We provide density-aware strategies that improve training robustness and discuss architectural implications for systems that adaptively balance feed-forward prediction and rendering-based refinement.
☆ Positive Distribution Shift as a Framework for Understanding Tractable Learning
We study a setting where the goal is to learn a target function f(x) with respect to a target distribution D(x), but training is done on i.i.d. samples from a different training distribution D'(x), labeled by the true target f(x). Such a distribution shift (here in the form of covariate shift) is usually viewed negatively, as hurting or making learning harder, and the traditional distribution shift literature is mostly concerned with limiting or avoiding this negative effect. In contrast, we argue that with a well-chosen D'(x), the shift can be positive and make learning easier -- a perspective called Positive Distribution Shift (PDS). Such a perspective is central to contemporary machine learning, where much of the innovation is in finding good training distributions D'(x), rather than changing the training algorithm. We further argue that the benefit is often computational rather than statistical, and that PDS allows computationally hard problems to become tractable even using standard gradient-based training. We formalize different variants of PDS, show how certain hard classes are easily learnable under PDS, and make connections with membership query learning.
☆ GSS: Gated Subspace Steering for Selective Memorization Mitigation in LLMs
Large language models (LLMs) can memorize and reproduce training sequences verbatim -- a tendency that undermines both generalization and privacy. Existing mitigation methods apply interventions uniformly, degrading performance on the majority of tokens that generalize normally. We show empirically that memorization is sparse, intermittent, and token-conditioned, suggesting that effective mitigation requires context-aware intervention rather than static parameter modification. To this end, we propose a novel and effective selective memorization mitigation method -- Gated Subspace Steering (GSS), which decomposes intervention into a probe (detecting memorization-relevant activations) and a steer (applying targeted correction only when the probe exceeds a threshold). The optimal probe-steer pair emerges from a principled optimization framework based on optimal subspace steering. Experiments on four benchmarks show GSS matches or exceeds state-of-the-art memorization reduction while requiring $100-1000 \times$ less compute than optimization-based alternatives. Furthermore, we provide new theoretical insights into the geometry of memorization in neural representations.
comment: 34 pages, 12 figures
☆ Discrete Bridges for Mutual Information Estimation
Diffusion bridge models in both continuous and discrete state spaces have recently become powerful tools in the field of generative modeling. In this work, we leverage the discrete state space formulation of bridge matching models to address another important problem in machine learning and information theory: the estimation of the mutual information (MI) between discrete random variables. By neatly framing MI estimation as a domain transfer problem, we construct a Discrete Bridge Mutual Information (DBMI) estimator suitable for discrete data, which poses difficulties for conventional MI estimators. We showcase the performance of our estimator on two MI estimation settings: low-dimensional and image-based.
☆ Winner's Curse Drives False Promises in Data-Driven Decisions: A Case Study in Refugee Matching
A major challenge in data-driven decision-making is accurate policy evaluation-i.e., guaranteeing that a learned decision-making policy achieves the promised benefits. A popular strategy is model-based policy evaluation, which estimates a model from data to infer counterfactual outcomes. This strategy is known to produce unwarrantedly optimistic estimates of the true benefit due to the winner's curse. We searched the recent literature on data-driven decision-making, identifying a sample of 55 papers published in the Management Science in the past decade; all but two relied on this flawed methodology. Several common justifications are provided: (1) the estimated models are accurate, stable, and well-calibrated, (2) the historical data uses random treatment assignment, (3) the model family is well-specified, and (4) the evaluation methodology uses sample splitting. Unfortunately, we show that no combination of these justifications avoids the winner's curse. First, we provide a theoretical analysis demonstrating that the winner's curse can cause large, spurious reported benefits even when all these justifications hold. Second, we perform a simulation study based on the recent and consequential data-driven refugee matching problem. We construct a synthetic refugee matching environment (calibrated to closely match the real setting) but designed so that no assignment policy can improve expected employment compared to random assignment. Model-based methods report large, stable gains of around 60% even when the true effect is zero; these gains are on par with improvements of 22-75% reported in the literature. Our results provide strong evidence against model-based evaluation.
☆ Contrastive Learning for Diversity-Aware Product Recommendations in Retail
Recommender systems often struggle with long-tail distributions and limited item catalog exposure, where a small subset of popular items dominates recommendations. This challenge is especially critical in large-scale online retail settings with extensive and diverse product assortments. This paper introduces an approach to enhance catalog coverage without compromising recommendation quality in the existing digital recommendation pipeline at IKEA Retail. Drawing inspiration from recent advances in negative sampling to address popularity bias, we integrate contrastive learning with carefully selected negative samples. Through offline and online evaluations, we demonstrate that our method improves catalog coverage, ensuring a more diverse set of recommendations yet preserving strong recommendation performance.
☆ Breaking the Simplification Bottleneck in Amortized Neural Symbolic Regression
Symbolic regression (SR) aims to discover interpretable analytical expressions that accurately describe observed data. Amortized SR promises to be much more efficient than the predominant genetic programming SR methods, but currently struggles to scale to realistic scientific complexity. We find that a key obstacle is the lack of a fast reduction of equivalent expressions to a concise normalized form. Amortized SR has addressed this by general-purpose Computer Algebra Systems (CAS) like SymPy, but the high computational cost severely limits training and inference speed. We propose SimpliPy, a rule-based simplification engine achieving a 100-fold speed-up over SymPy at comparable quality. This enables substantial improvements in amortized SR, including scalability to much larger training sets, more efficient use of the per-expression token budget, and systematic training set decontamination with respect to equivalent test expressions. We demonstrate these advantages in our Flash-ANSR framework, which achieves much better accuracy than amortized baselines (NeSymReS, E2E) on the FastSRB benchmark. Moreover, it performs on par with state-of-the-art direct optimization (PySR) while recovering more concise instead of more complex expressions with increasing inference budget.
comment: main text: 8 pages, 7 figures appendix: 12 pages, 11 figures code available at https://github.com/psaegert/simplipy and https://github.com/psaegert/flash-ansr
☆ Differentiable Logical Programming for Quantum Circuit Discovery and Optimization
Designing high-fidelity quantum circuits remains challenging, and current paradigms often depend on heuristic, fixed-ansatz structures or rule-based compilers that can be suboptimal or lack generality. We introduce a neuro-symbolic framework that reframes quantum circuit design as a differentiable logic programming problem. Our model represents a scaffold of potential quantum gates and parameterized operations as a set of learnable, continuous ``truth values'' or ``switches,'' $s \in [0, 1]^N$. These switches are optimized via standard gradient descent to satisfy a user-defined set of differentiable, logical axioms (e.g., correctness, simplicity, robustness). We provide a theoretical formulation bridging continuous logic (via T-norms) and unitary evolution (via geodesic interpolation), while addressing the barren plateau problem through biased initialization. We illustrate the approach on tasks including discovery of a 4-qubit Quantum Fourier Transform (QFT) from a scaffold of 21 candidate gates. We also report a hardware-aware adaptation experiment on the 133-qubit IBM Torino processor, where the method improved fidelity by 59.3 percentage points in a localized routing task while adapting to hardware failures.
☆ Learning Potentials for Dynamic Matching and Application to Heart Transplantation
Each year, thousands of patients in need of heart transplants face life-threatening wait times due to organ scarcity. While allocation policies aim to maximize population-level outcomes, current approaches often fail to account for the dynamic arrival of organs and the composition of waitlisted candidates, thereby hampering efficiency. The United States is transitioning from rigid, rule-based allocation to more flexible data-driven models. In this paper, we propose a novel framework for non-myopic policy optimization in general online matching relying on potentials, a concept originally introduced for kidney exchange. We develop scalable and accurate ways of learning potentials that are higher-dimensional and more expressive than prior approaches. Our approach is a form of self-supervised imitation learning: the potentials are trained to mimic an omniscient algorithm that has perfect foresight. We focus on the application of heart transplant allocation and demonstrate, using real historical data, that our policies significantly outperform prior approaches -- including the current US status quo policy and the proposed continuous distribution framework -- in optimizing for population-level outcomes. Our analysis and methods come at a pivotal moment in US policy, as the current heart transplant allocation system is under review. We propose a scalable and theoretically grounded path toward more effective organ allocation.
☆ Stress-Testing Alignment Audits With Prompt-Level Strategic Deception
Alignment audits aim to robustly identify hidden goals from strategic, situationally aware misaligned models. Despite this threat model, existing auditing methods have not been systematically stress-tested against deception strategies. We address this gap, implementing an automatic red-team pipeline that generates deception strategies (in the form of system prompts) tailored to specific white-box and black-box auditing methods. Stress-testing assistant prefills, user persona sampling, sparse autoencoders, and token embedding similarity methods against secret-keeping model organisms, our automatic red-team pipeline finds prompts that deceive both the black-box and white-box methods into confident, incorrect guesses. Our results provide the first documented evidence of activation-based strategic deception, and suggest that current black-box and white-box methods would not be robust to a sufficiently capable misaligned model.
☆ AnomSeer: Reinforcing Multimodal LLMs to Reason for Time-Series Anomaly Detection
Time-series anomaly detection (TSAD) with multimodal large language models (MLLMs) is an emerging area, yet a persistent challenge remains: MLLMs rely on coarse time-series heuristics but struggle with multi-dimensional, detailed reasoning, which is vital for understanding complex time-series data. We present AnomSeer to address this by reinforcing the model to ground its reasoning in precise, structural details of time series, unifying anomaly classification, localization, and explanation. At its core, an expert chain-of-thought trace is generated to provide a verifiable, fine-grained reasoning from classical analyses (e.g., statistical measures, frequency transforms). Building on this, we propose a novel time-series grounded policy optimization (TimerPO) that incorporates two additional components beyond standard reinforcement learning: a time-series grounded advantage based on optimal transport and an orthogonal projection to ensure this auxiliary granular signal does not interfere with the primary detection objective. Across diverse anomaly scenarios, AnomSeer, with Qwen2.5-VL-3B/7B-Instruct, outperforms larger commercial baselines (e.g., GPT-4o) in classification and localization accuracy, particularly on point- and frequency-driven exceptions. Moreover, it produces plausible time-series reasoning traces that support its conclusions.
comment: Preprint
☆ Understanding Dynamic Compute Allocation in Recurrent Transformers
Token-level adaptive computation seeks to reduce inference cost by allocating more computation to harder tokens and less to easier ones. However, prior work is primarily evaluated on natural-language benchmarks using task-level metrics, where token-level difficulty is unobservable and confounded with architectural factors, making it unclear whether compute allocation truly aligns with underlying complexity. We address this gap through three contributions. First, we introduce a complexity-controlled evaluation paradigm using algorithmic and synthetic language tasks with parameterized difficulty, enabling direct testing of token-level compute allocation. Second, we propose ANIRA, a unified recurrent Transformer framework that supports per-token variable-depth computation while isolating compute allocation decisions from other model factors. Third, we use this framework to conduct a systematic analysis of token-level adaptive computation across alignment with complexity, generalization, and decision timing. Our results show that compute allocation aligned with task complexity can emerge without explicit difficulty supervision, but such alignment does not imply algorithmic generalization: models fail to extrapolate to unseen input sizes despite allocating additional computation. We further find that early compute decisions rely on static structural cues, whereas online halting more closely tracks algorithmic execution state.
☆ Near-optimal Swap Regret Minimization for Convex Losses
We give a randomized online algorithm that guarantees near-optimal $\widetilde O(\sqrt T)$ expected swap regret against any sequence of $T$ adaptively chosen Lipschitz convex losses on the unit interval. This improves the previous best bound of $\widetilde O(T^{2/3})$ and answers an open question of Fishelson et al. [2025b]. In addition, our algorithm is efficient: it runs in $\mathsf{poly}(T)$ time. A key technical idea we develop to obtain this result is to discretize the unit interval into bins at multiple scales of granularity and simultaneously use all scales to make randomized predictions, which we call multi-scale binning and may be of independent interest. A direct corollary of our result is an efficient online algorithm for minimizing the calibration error for general elicitable properties. This result does not require the Lipschitzness assumption of the identification function needed in prior work, making it applicable to median calibration, for which we achieve the first $\widetilde O(\sqrt T)$ calibration error guarantee.
☆ Magnitude Distance: A Geometric Measure of Dataset Similarity
Quantifying the distance between datasets is a fundamental question in mathematics and machine learning. We propose \textit{magnitude distance}, a novel distance metric defined on finite datasets using the notion of the \emph{magnitude} of a metric space. The proposed distance incorporates a tunable scaling parameter, $t$, that controls the sensitivity to global structure (small $t$) and finer details (large $t$). We prove several theoretical properties of magnitude distance, including its limiting behavior across scales and conditions under which it satisfies key metric properties. In contrast to classical distances, we show that magnitude distance remains discriminative in high-dimensional settings when the scale is appropriately tuned. We further demonstrate how magnitude distance can be used as a training objective for push-forward generative models. Our experimental results support our theoretical analysis and demonstrate that magnitude distance provides meaningful signals, comparable to established distance-based generative approaches.
☆ Discovering Interpretable Algorithms by Decompiling Transformers to RASP
Recent work has shown that the computations of Transformers can be simulated in the RASP family of programming languages. These findings have enabled improved understanding of the expressive capacity and generalization abilities of Transformers. In particular, Transformers have been suggested to length-generalize exactly on problems that have simple RASP programs. However, it remains open whether trained models actually implement simple interpretable programs. In this paper, we present a general method to extract such programs from trained Transformers. The idea is to faithfully re-parameterize a Transformer as a RASP program and then apply causal interventions to discover a small sufficient sub-program. In experiments on small Transformers trained on algorithmic and formal language tasks, we show that our method often recovers simple and interpretable RASP programs from length-generalizing transformers. Our results provide the most direct evidence so far that Transformers internally implement simple RASP programs.
comment: 101 pages, 92 figures
☆ Rethinking Graph Generalization through the Lens of Sharpness-Aware Minimization
Graph Neural Networks (GNNs) have achieved remarkable success across various graph-based tasks but remain highly sensitive to distribution shifts. In this work, we focus on a prevalent yet under-explored phenomenon in graph generalization, Minimal Shift Flip (MSF),where test samples that slightly deviate from the training distribution are abruptly misclassified. To interpret this phenomenon, we revisit MSF through the lens of Sharpness-Aware Minimization (SAM), which characterizes the local stability and sharpness of the loss landscape while providing a theoretical foundation for modeling generalization error. To quantify loss sharpness, we introduce the concept of Local Robust Radius, measuring the smallest perturbation required to flip a prediction and establishing a theoretical link between local stability and generalization. Building on this perspective, we further observe a continual decrease in the robust radius during training, indicating weakened local stability and an increasingly sharp loss landscape that gives rise to MSF. To jointly solve the MSF phenomenon and the intractability of radius, we develop an energy-based formulation that is theoretically proven to be monotonically correlated with the robust radius, offering a tractable and principled objective for modeling flatness and stability. Building on these insights, we propose an energy-driven generative augmentation framework (E2A) that leverages energy-guided latent perturbations to generate pseudo-OOD samples and enhance model generalization. Extensive experiments across multiple benchmarks demonstrate that E2A consistently improves graph OOD generalization, outperforming state-of-the-art baselines.
☆ Cutting Through the Noise: On-the-fly Outlier Detection for Robust Training of Machine Learning Interatomic Potentials
The accuracy of machine learning interatomic potentials suffers from reference data that contains numerical noise. Often originating from unconverged or inconsistent electronic-structure calculations, this noise is challenging to identify. Existing mitigation strategies such as manual filtering or iterative refinement of outliers, require either substantial expert effort or multiple expensive retraining cycles, making them difficult to scale to large datasets. Here, we introduce an on-the-fly outlier detection scheme that automatically down-weights noisy samples, without requiring additional reference calculations. By tracking the loss distribution via an exponential moving average, this unsupervised method identifies outliers throughout a single training run. We show that this approach prevents overfitting and matches the performance of iterative refinement baselines with significantly reduced overhead. The method's effectiveness is demonstrated by recovering accurate physical observables for liquid water from unconverged reference data, including diffusion coefficients. Furthermore, we validate its scalability by training a foundation model for organic chemistry on the SPICE dataset, where it reduces energy errors by a factor of three. This framework provides a simple, automated solution for training robust models on imperfect datasets across dataset sizes.
comment: 12 pages, 6 figures
☆ Dr. MAS: Stable Reinforcement Learning for Multi-Agent LLM Systems
Multi-agent LLM systems enable advanced reasoning and tool use via role specialization, yet reliable reinforcement learning (RL) post-training for such systems remains difficult. In this work, we theoretically pinpoint a key reason for training instability when extending group-based RL to multi-agent LLM systems. We show that under GRPO-style optimization, a global normalization baseline may deviate from diverse agents' reward distributions, which ultimately leads to gradient-norm instability. Based on this finding, we propose Dr. MAS, a simple and stable RL training recipe for multi-agent LLM systems. Dr. MAS uses an agent-wise remedy: normalizing advantages per agent using each agent's own reward statistics, which calibrates gradient scales and dramatically stabilizes training, both theoretically and empirically. Beyond the algorithm, Dr. MAS provides an end-to-end RL training framework for multi-agent LLM systems, supporting scalable orchestration, flexible per-agent LLM serving and optimization configs, and shared resource scheduling of LLM actor backends. We evaluate Dr. MAS on multi-agent math reasoning and multi-turn search benchmarks using Qwen2.5 and Qwen3 series models. Dr. MAS achieves clear gains over vanilla GRPO (e.g., +5.6\% avg@16 and +4.6\% pass@16 on math, and +15.2\% avg@16 and +13.1\% pass@16 on search) while largely eliminating gradient spikes. Moreover, it remains highly effective under heterogeneous agent-model assignments while improving efficiency.
comment: Preprint
☆ AMEM4Rec: Leveraging Cross-User Similarity for Memory Evolution in Agentic LLM Recommenders
Agentic systems powered by Large Language Models (LLMs) have shown strong potential in recommender systems but remain hindered by several challenges. Fine-tuning LLMs is parameter-inefficient, and prompt-based agentic reasoning is limited by context length and hallucination risk. Moreover, existing agentic recommendation systems predominantly leverages semantic knowledge while neglecting the collaborative filtering (CF) signals essential for implicit preference modeling. To address these limitations, we propose AMEM4Rec, an agentic LLM-based recommender that learns collaborative signals in an end-to-end manner through cross-user memory evolution. AMEM4Rec stores abstract user behavior patterns from user histories in a global memory pool. Within this pool, memories are linked to similar existing ones and iteratively evolved to reinforce shared cross-user patterns, enabling the system to become aware of CF signals without relying on a pre-trained CF model. Extensive experiments on Amazon and MIND datasets show that AMEM4Rec consistently outperforms state-of-the-art LLM-based recommenders, demonstrating the effectiveness of evolving memory-guided collaborative filtering.
☆ Learning the Value Systems of Societies with Preference-based Multi-objective Reinforcement Learning
Value-aware AI should recognise human values and adapt to the value systems (value-based preferences) of different users. This requires operationalization of values, which can be prone to misspecification. The social nature of values demands their representation to adhere to multiple users while value systems are diverse, yet exhibit patterns among groups. In sequential decision making, efforts have been made towards personalization for different goals or values from demonstrations of diverse agents. However, these approaches demand manually designed features or lack value-based interpretability and/or adaptability to diverse user preferences. We propose algorithms for learning models of value alignment and value systems for a society of agents in Markov Decision Processes (MDPs), based on clustering and preference-based multi-objective reinforcement learning (PbMORL). We jointly learn socially-derived value alignment models (groundings) and a set of value systems that concisely represent different groups of users (clusters) in a society. Each cluster consists of a value system representing the value-based preferences of its members and an approximately Pareto-optimal policy that reflects behaviours aligned with this value system. We evaluate our method against a state-of-the-art PbMORL algorithm and baselines on two MDPs with human values.
comment: 18 pages, 3 figures. To be published in proceedings of the 25th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2026). This is a full version that includes the supplementary material
☆ Bayesian Preference Learning for Test-Time Steerable Reward Models
Reward models are central to aligning language models with human preferences via reinforcement learning (RL). As RL is increasingly applied to settings such as verifiable rewards and multi-objective alignment, RMs are expected to encode more complex and multifaceted preference distributions. However, classifier RMs remain static once trained, limiting their adaptability at test time. We propose Variational In-Context Reward Modeling (ICRM), a novel Bayesian reward modeling objective that enables test-time steerability via in-context preference demonstrations. ICRM casts reward modeling as amortized variational inference over a latent preference probability under the Bradley-Terry model using a conjugate Beta prior. We show that ICRM adapt to unseen preference distributions at test time for both single and multi-objective settings. With more in-context demonstrations, ICRM gains 34% accuracy on SafeRLHF and 9% accuracy on RM-Bench in the single-objective setting, while widening the Pareto frontier with a 4% gain in hypervolume on helpfulness and refusal benchmarks. We further study the practical applicability of ICRM for RL training, showing that it can effectively encode verifiable rewards by outperforming a conventional RM in math reasoning. Finally, we provide theoretical guarantees that the variational objective admits a global interior optimum with finite confidence, and we analyze how KL regularization mitigates reward over-optimization.
comment: Preprint
☆ FlexMoRE: A Flexible Mixture of Rank-heterogeneous Experts for Efficient Federatedly-trained Large Language Models
Recent advances in mixture-of-experts architectures have shown that individual experts models can be trained federatedly, i.e., in isolation from other experts by using a common base model to facilitate coordination. However, we hypothesize that full-sized experts may not be necessary for all domains and that instead low-rank adapters may be sufficient. Here, we introduce FlexMoRE, a Flexible Mixture of Rank-heterogenous Experts, which may be either full-sized experts or adapters of a suitable rank. We systematically investigate the trade-off between expert rank and downstream task performance by evaluating $6$ experts with ranks $2^0$ to $2^{14}$ resulting in experiments covering 150 mixtures (96 with 2 experts, 54 with 7 experts) that are evaluated across $120$ tasks. For our experiments, we build on FlexOlmo and turn its pre-trained experts into low-rank versions. Our regression analysis from expert rank to downstream task performance reveals that the best-performing rank is substantially higher for reasoning-heavy benchmarks than for knowledge-heavy benchmarks. These findings on rank sensitivity come with direct implications for memory efficiency: Using optimal ranks, FlexMoRE yields improved downstream task performance (average score $47.18$) compared to the baseline FlexOlmo-style mixture of full-sized experts (average score $45.46$) at less than one third the parameters ($10.75$B for FlexMoRE vs. $33.27$B for FlexOlmo). All code will be made available.
☆ Kirin: Improving ANN efficiency with SNN Hybridization
Artificial neural networks (ANNs), particularly large language models (LLMs), demonstrate powerful inference capabilities but consume substantial energy. Conversely, spiking neural networks (SNNs) exhibit exceptional energy efficiency due to their binary and event-driven characteristics, thus motivating the study of ANN-to-SNN conversion. In this process, quantization plays a pivotal role, mapping LLMs' floating-point parameters to discrete SNN parameters via the temporal dimension of the time window. However, several challenges remain in the conversion process: (i) converting high bit-width quantization values into binary spikes requires longer time windows, increasing system latency; and (ii) the inherent trade-off between the information loss of single-spike schemes and the energy costs of multi-spike ones in SNN. To address these challenges, we propose Kirin, a integer and spike hybrid based SNN to achieve accuracy lossless ANN-to-SNN conversion with time and energy efficiency. Specifically, we first propose a Spike Matrix Hybridization strategy that encoding low bit-width parameters that leading to small time window size into binary spikes while preserving the rest in integer format, thereby reducing the overall latency of SNN execution. Second, we introduce a silence threshold mechanism to regulate the timing of single-spike firing, ensuring the output is mathematically equivalent to the LLM's output and preserves accuracy. Experimental results demonstrate that Kirin, under a W4A4\&8 quantization setting, achieves near-FP16 accuracy while reducing energy consumption by up to 84.66\% and shortening time steps by 93.75\%.
☆ Permissive-Washing in the Open AI Supply Chain: A Large-Scale Audit of License Integrity
Permissive licenses like MIT, Apache-2.0, and BSD-3-Clause dominate open-source AI, signaling that artifacts like models, datasets, and code can be freely used, modified, and redistributed. However, these licenses carry mandatory requirements: include the full license text, provide a copyright notice, and preserve upstream attribution, that remain unverified at scale. Failure to meet these conditions can place reuse outside the scope of the license, effectively leaving AI artifacts under default copyright for those uses and exposing downstream users to litigation. We call this phenomenon ``permissive washing'': labeling AI artifacts as free to use, while omitting the legal documentation required to make that label actionable. To assess how widespread permissive washing is in the AI supply chain, we empirically audit 124,278 dataset $\rightarrow$ model $\rightarrow$ application supply chains, spanning 3,338 datasets, 6,664 models, and 28,516 applications across Hugging Face and GitHub. We find that an astonishing 96.5\% of datasets and 95.8\% of models lack the required license text, only 2.3\% of datasets and 3.2\% of models satisfy both license text and copyright requirements, and even when upstream artifacts provide complete licensing evidence, attribution rarely propagates downstream: only 27.59\% of models preserve compliant dataset notices and only 5.75\% of applications preserve compliant model notices (with just 6.38\% preserving any linked upstream notice). Practitioners cannot assume permissive labels confer the rights they claim: license files and notices, not metadata, are the source of legal truth. To support future research, we release our full audit dataset and reproducible pipeline.
comment: 13 pages, 2 figures, 10 tables
☆ Robust Policy Optimization to Prevent Catastrophic Forgetting
Large language models are commonly trained through multi-stage post-training: first via RLHF, then fine-tuned for other downstream objectives. Yet even small downstream updates can compromise earlier learned behaviors (e.g., safety), exposing a brittleness known as catastrophic forgetting. This suggests standard RLHF objectives do not guarantee robustness to future adaptation. To address it, most prior work designs downstream-time methods to preserve previously learned behaviors. We argue that preventing this requires pre-finetuning robustness: the base policy should avoid brittle high-reward solutions whose reward drops sharply under standard fine-tuning. We propose Fine-tuning Robust Policy Optimization (FRPO), a robust RLHF framework that optimizes reward not only at the current policy, but across a KL-bounded neighborhood of policies reachable by downstream adaptation. The key idea is to ensure reward stability under policy shifts via a max-min formulation. By modifying GRPO, we develop an algorithm with no extra computation, and empirically show it substantially reduces safety degradation across multiple base models and downstream fine-tuning regimes (SFT and RL) while preserving downstream task performance. We further study a math-focused RL setting, demonstrating that FRPO preserves accuracy under subsequent fine-tuning.
☆ $\texttt{lrnnx}$: A library for Linear RNNs EACL
Linear recurrent neural networks (LRNNs) provide a structured approach to sequence modeling that bridges classical linear dynamical systems and modern deep learning, offering both expressive power and theoretical guarantees on stability and trainability. In recent years, multiple LRNN-based architectures have been proposed, each introducing distinct parameterizations, discretization schemes, and implementation constraints. However, existing implementations are fragmented across different software frameworks, often rely on framework-specific optimizations, and in some cases require custom CUDA kernels or lack publicly available code altogether. As a result, using, comparing, or extending LRNNs requires substantial implementation effort. To address this, we introduce $\texttt{lrnnx}$, a unified software library that implements several modern LRNN architectures under a common interface. The library exposes multiple levels of control, allowing users to work directly with core components or higher-level model abstractions. $\texttt{lrnnx}$ aims to improve accessibility, reproducibility, and extensibility of LRNN research and applications. We make our code available under a permissive MIT license.
comment: EACL Student Research Workshop 2026
☆ Efficient Deep Learning for Biometrics: Overview, Challenges and Trends in Ear of Frugal AI
Recent advances in deep learning, whether on discriminative or generative tasks have been beneficial for various applications, among which security and defense. However, their increasing computational demands during training and deployment translates directly into high energy consumption. As a consequence, this induces a heavy carbon footprint which hinders their widespread use and scalability, but also a limitation when deployed on resource-constrained edge devices for real-time use. In this paper, we briefly survey efficient deep learning methods for biometric applications. Specifically, we tackle the challenges one might incur when training and deploying deep learning approaches, and provide a taxonomy of the various efficient deep learning families. Additionally, we discuss complementary metrics for evaluating the efficiency of these models such as memory, computation, latency, throughput, and advocate for universal and reproducible metrics for better comparison. Last, we give future research directions to consider.
comment: 8 pages, 2 figures, accepted at the 2025 IEEE SDS conference
☆ How2Everything: Mining the Web for How-To Procedures to Evaluate and Improve LLMs
Generating step-by-step "how-to" procedures is a key LLM capability: how-to advice is commonly requested in chatbots, and step-by-step planning is critical for reasoning over complex tasks. Yet, measuring and improving procedural validity at scale on real-world tasks remains challenging and understudied. To address this, we introduce How2Everything, a scalable framework to evaluate and improve goal-conditioned procedure generation. Our framework includes How2Mine, which mines 351K procedures from 980K web pages across 14 topics and readily scales to larger corpora. From this pool we build How2Bench, a 7K-example evaluation set balanced across topics. To reliably score model outputs, we develop How2Score, an evaluation protocol that uses an LLM judge to detect whether a generation contains any critical failure that would prevent achieving the goal. For low-cost, reproducible evaluation, we distill a frontier model into an open 8B model, achieving 80.5% agreement with human annotators. How2Bench reveals clear scaling trends across model sizes and training stages, providing signal early in pretraining. Finally, RL using How2Score as a reward improves performance on How2Bench by >10 points across three models without systematic regressions on standard benchmarks, with gains robust to superficial source-document memorization or format compliance. Taken together, How2Everything shows how pretraining web data can support a closed loop of capability evaluation and improvement at scale.
comment: 53 pages, 22 figures
Multimodal Learning for Arcing Detection in Pantograph-Catenary Systems
The pantograph-catenary interface is essential for ensuring uninterrupted and reliable power delivery in electrified rail systems. However, electrical arcing at this interface poses serious risks, including accelerated wear of contact components, degraded system performance, and potential service disruptions. Detecting arcing events at the pantograph-catenary interface is challenging due to their transient nature, noisy operating environment, data scarcity, and the difficulty of distinguishing arcs from other similar transient phenomena. To address these challenges, we propose a novel multimodal framework that combines high-resolution image data with force measurements to more accurately and robustly detect arcing events. First, we construct two arcing detection datasets comprising synchronized visual and force measurements. One dataset is built from data provided by the Swiss Federal Railways (SBB), and the other is derived from publicly available videos of arcing events in different railway systems and synthetic force data that mimic the characteristics observed in the real dataset. Leveraging these datasets, we propose MultiDeepSAD, an extension of the DeepSAD algorithm for multiple modalities with a new loss formulation. Additionally, we introduce tailored pseudo-anomaly generation techniques specific to each data type, such as synthetic arc-like artifacts in images and simulated force irregularities, to augment training data and improve the discriminative ability of the model. Through extensive experiments and ablation studies, we demonstrate that our framework significantly outperforms baseline approaches, exhibiting enhanced sensitivity to real arcing events even under domain shifts and limited availability of real arcing observations.
☆ Empirically Understanding the Value of Prediction in Allocation
Institutions increasingly use prediction to allocate scarce resources. From a design perspective, better predictions compete with other investments, such as expanding capacity or improving treatment quality. Here, the big question is not how to solve a specific allocation problem, but rather which problem to solve. In this work, we develop an empirical toolkit to help planners form principled answers to this question and quantify the bottom-line welfare impact of investments in prediction versus other policy levers such as expanding capacity and improving treatment quality. Applying our framework in two real-world case studies on German employment services and poverty targeting in Ethiopia, we illustrate how decision-makers can reliably derive context-specific conclusions about the relative value of prediction in their allocation problem. We make our software toolkit, rvp, and parts of our data available in order to enable future empirical work in this area.
☆ A Graphop Analysis of Graph Neural Networks on Sparse Graphs: Generalization and Universal Approximation
Generalization and approximation capabilities of message passing graph neural networks (MPNNs) are often studied by defining a compact metric on a space of input graphs under which MPNNs are Hölder continuous. Such analyses are of two varieties: 1) when the metric space includes graphs of unbounded sizes, the theory is only appropriate for dense graphs, and, 2) when studying sparse graphs, the metric space only includes graphs of uniformly bounded size. In this work, we present a unified approach, defining a compact metric on the space of graphs of all sizes, both sparse and dense, under which MPNNs are Hölder continuous. This leads to more powerful universal approximation theorems and generalization bounds than previous works. The theory is based on, and extends, a recent approach to graph limit theory called graphop analysis.
☆ Amortising Inference and Meta-Learning Priors in Neural Networks ICLR 2026
One of the core facets of Bayesianism is in the updating of prior beliefs in light of new evidence$\text{ -- }$so how can we maintain a Bayesian approach if we have no prior beliefs in the first place? This is one of the central challenges in the field of Bayesian deep learning, where it is not clear how to represent beliefs about a prediction task by prior distributions over model parameters. Bridging the fields of Bayesian deep learning and probabilistic meta-learning, we introduce a way to $\textit{learn}$ a weights prior from a collection of datasets by introducing a way to perform per-dataset amortised variational inference. The model we develop can be viewed as a neural process whose latent variable is the set of weights of a BNN and whose decoder is the neural network parameterised by a sample of the latent variable itself. This unique model allows us to study the behaviour of Bayesian neural networks under well-specified priors, use Bayesian neural networks as flexible generative models, and perform desirable but previously elusive feats in neural processes such as within-task minibatching or meta-learning under extreme data-starvation.
comment: Accepted at ICLR 2026
☆ Default Machine Learning Hyperparameters Do Not Provide Informative Initialization for Bayesian Optimization
Bayesian Optimization (BO) is a standard tool for hyperparameter tuning thanks to its sample efficiency on expensive black-box functions. While most BO pipelines begin with uniform random initialization, default hyperparameter values shipped with popular ML libraries such as scikit-learn encode implicit expert knowledge and could serve as informative starting points that accelerate convergence. This hypothesis, despite its intuitive appeal, has remained largely unexamined. We formalize the idea by initializing BO with points drawn from truncated Gaussian distributions centered at library defaults and compare the resulting trajectories against a uniform-random baseline. We conduct an extensive empirical evaluation spanning three BO back-ends (BoTorch, Optuna, Scikit-Optimize), three model families (Random Forests, Support Vector Machines, Multilayer Perceptrons), and five benchmark datasets covering classification and regression tasks. Performance is assessed through convergence speed and final predictive quality, and statistical significance is determined via one-sided binomial tests. Across all conditions, default-informed initialization yields no statistically significant advantage over purely random sampling, with p-values ranging from 0.141 to 0.908. A sensitivity analysis on the prior variance confirms that, while tighter concentration around the defaults improves early evaluations, this transient benefit vanishes as optimization progresses, leaving final performance unchanged. Our results provide no evidence that default hyperparameters encode useful directional information for optimization. We therefore recommend that practitioners treat hyperparameter tuning as an integral part of model development and favor principled, data-driven search strategies over heuristic reliance on library defaults.
☆ FreqLens: Interpretable Frequency Attribution for Time Series Forecasting
Time series forecasting models often lack interpretability, limiting their adoption in domains requiring explainable predictions. We propose \textsc{FreqLens}, an interpretable forecasting framework that discovers and attributes predictions to learnable frequency components. \textsc{FreqLens} introduces two key innovations: (1) \emph{learnable frequency discovery} -- frequency bases are parameterized via sigmoid mapping and learned from data with diversity regularization, enabling automatic discovery of dominant periodic patterns without domain knowledge; and (2) \emph{axiomatic frequency attribution} -- a theoretically grounded framework that provably satisfies Completeness, Faithfulness, Null-Frequency, and Symmetry axioms, with per-frequency attributions equivalent to Shapley values. On Traffic and Weather datasets, \textsc{FreqLens} achieves competitive or superior performance while discovering physically meaningful frequencies: all 5 independent runs discover the 24-hour daily cycle ($24.6 \pm 0.1$h, 2.5\% error) and 12-hour half-daily cycle ($11.8 \pm 0.1$h, 1.6\% error) on Traffic, and weekly cycles ($10\times$ longer than the input window) on Weather. These results demonstrate genuine frequency-level knowledge discovery with formal theoretical guarantees on attribution quality.
☆ HoGS: Homophily-Oriented Graph Synthesis for Local Differentially Private GNN Training
Graph neural networks (GNNs) have demonstrated remarkable performance in various graph-based machine learning tasks by effectively modeling high-order interactions between nodes. However, training GNNs without protection may leak sensitive personal information in graph data, including links and node features. Local differential privacy (LDP) is an advanced technique for protecting data privacy in decentralized networks. Unfortunately, existing local differentially private GNNs either only preserve link privacy or suffer significant utility loss in the process of preserving link and node feature privacy. In this paper, we propose an effective LDP framework, called HoGS, which trains GNNs with link and feature protection by generating a synthetic graph. Concretely, HoGS first collects the link and feature information of the graph under LDP, and then utilizes the phenomenon of homophily in graph data to reconstruct the graph structure and node features separately, thereby effectively mitigating the negative impact of LDP on the downstream GNN training. We theoretically analyze the privacy guarantee of HoGS and conduct experiments using the generated synthetic graph as input to various state-of-the-art GNN architectures. Experimental results on three real-world datasets show that HoGS significantly outperforms baseline methods in the accuracy of training GNNs.
☆ Redundancy-Free View Alignment for Multimodal Human Activity Recognition with Arbitrarily Missing Views
Multimodal multiview learning seeks to integrate information from diverse sources to enhance task performance. Existing approaches often struggle with flexible view configurations, including arbitrary view combinations, numbers of views, and heterogeneous modalities. Focusing on the context of human activity recognition, we propose RALIS, a model that combines multiview contrastive learning with a mixture-of-experts module to support arbitrary view availability during both training and inference. Instead of trying to reconstruct missing views, an adjusted center contrastive loss is used for self-supervised representation learning and view alignment, mitigating the impact of missing views on multiview fusion. This loss formulation allows for the integration of view weights to account for view quality. Additionally, it reduces computational complexity from $O(V^2)$ to $O(V)$, where $V$ is the number of views. To address residual discrepancies not captured by contrastive learning, we employ a mixture-of-experts module with a specialized load balancing strategy, tasked with adapting to arbitrary view combinations. We highlight the geometric relationship among components in our model and how they combine well in the latent space. RALIS is validated on four datasets encompassing inertial and human pose modalities, with the number of views ranging from three to nine, demonstrating its performance and flexibility.
☆ Central Dogma Transformer II: An AI Microscope for Understanding Cellular Regulatory Mechanisms
Current biological AI models lack interpretability -- their internal representations do not correspond to biological relationships that researchers can examine. Here we present CDT-II, an "AI microscope" whose attention maps are directly interpretable as regulatory structure. By mirroring the central dogma in its architecture, each attention mechanism corresponds to a specific biological relationship: DNA self-attention for genomic relationships, RNA self-attention for gene co-regulation, and DNA-to-RNA cross-attention for transcriptional control. Using only genomic embeddings and raw per-cell expression, CDT-II enables experimental biologists to observe regulatory networks in their own data. Applied to K562 CRISPRi data, CDT-II predicts perturbation effects (per-gene mean $r = 0.84$) and recovers the GFI1B regulatory network without supervision (6.6-fold enrichment, $P = 3.5 \times 10^{-17}$). Two distinct attention mechanisms converge on an RNA processing module ($P = 1 \times 10^{-16}$). CDT-II establishes mechanism-oriented AI as an alternative to task-oriented approaches, revealing regulatory structure rather than merely optimizing predictions.
comment: 20 pages, 6 figures
☆ On the Expressive Power of GNNs for Boolean Satisfiability ICLR 2026
Machine learning approaches to solving Boolean Satisfiability (SAT) aim to replace handcrafted heuristics with learning-based models. Graph Neural Networks have emerged as the main architecture for SAT solving, due to the natural graph representation of Boolean formulas. We analyze the expressive power of GNNs for SAT solving through the lens of the Weisfeiler-Leman (WL) test. As our main result, we prove that the full WL hierarchy cannot, in general, distinguish between satisfiable and unsatisfiable instances. We show that indistinguishability under higher-order WL carries over to practical limitations for WL-bounded solvers that set variables sequentially. We further study the expressivity required for several important families of SAT instances, including regular, random and planar instances. To quantify expressivity needs in practice, we conduct experiments on random instances from the G4SAT benchmark and industrial instances from the International SAT Competition. Our results suggest that while random instances are largely distinguishable, industrial instances often require more expressivity to predict a satisfying assignment.
comment: Accepted at ICLR 2026
☆ Welfarist Formulations for Diverse Similarity Search
Nearest Neighbor Search (NNS) is a fundamental problem in data structures with wide-ranging applications, such as web search, recommendation systems, and, more recently, retrieval-augmented generations (RAG). In such recent applications, in addition to the relevance (similarity) of the returned neighbors, diversity among the neighbors is a central requirement. In this paper, we develop principled welfare-based formulations in NNS for realizing diversity across attributes. Our formulations are based on welfare functions -- from mathematical economics -- that satisfy central diversity (fairness) and relevance (economic efficiency) axioms. With a particular focus on Nash social welfare, we note that our welfare-based formulations provide objective functions that adaptively balance relevance and diversity in a query-dependent manner. Notably, such a balance was not present in the prior constraint-based approach, which forced a fixed level of diversity and optimized for relevance. In addition, our formulation provides a parametric way to control the trade-off between relevance and diversity, providing practitioners with flexibility to tailor search results to task-specific requirements. We develop efficient nearest neighbor algorithms with provable guarantees for the welfare-based objectives. Notably, our algorithm can be applied on top of any standard ANN method (i.e., use standard ANN method as a subroutine) to efficiently find neighbors that approximately maximize our welfare-based objectives. Experimental results demonstrate that our approach is practical and substantially improves diversity while maintaining high relevance of the retrieved neighbors.
☆ Foundation Inference Models for Ordinary Differential Equations
Ordinary differential equations (ODEs) are central to scientific modelling, but inferring their vector fields from noisy trajectories remains challenging. Current approaches such as symbolic regression, Gaussian process (GP) regression, and Neural ODEs often require complex training pipelines and substantial machine learning expertise, or they depend strongly on system-specific prior knowledge. We propose FIM-ODE, a pretrained Foundation Inference Model that amortises low-dimensional ODE inference by predicting the vector field directly from noisy trajectory data in a single forward pass. We pretrain FIM-ODE on a prior distribution over ODEs with low-degree polynomial vector fields and represent the target field with neural operators. FIM-ODE achieves strong zero-shot performance, matching and often improving upon ODEFormer, a recent pretrained symbolic baseline, across a range of regimes despite using a simpler pretraining prior distribution. Pretraining also provides a strong initialisation for finetuning, enabling fast and stable adaptation that outperforms modern neural and GP baselines without requiring machine learning expertise.
☆ Data Reconstruction: Identifiability and Optimization with Sample Splitting
Training data reconstruction from KKT conditions has shown striking empirical success, yet it remains unclear when the resulting KKT equations have unique solutions and, even in identifiable regimes, how to reliably recover solutions by optimization. This work hereby focuses on these two complementary questions: identifiability and optimization. On the identifiability side, we discuss the sufficient conditions for KKT system of two-layer networks with polynomial activations to uniquely determine the training data, providing a theoretical explanation of when and why reconstruction is possible. On the optimization side, we introduce sample splitting, a curvature-aware refinement step applicable to general reconstruction objectives (not limited to KKT-based formulations): it creates additional descent directions to escape poor stationary points and refine solutions. Experiments demonstrate that augmenting several existing reconstruction methods with sample splitting consistently improves reconstruction performance.
☆ QUOKA: Query-Oriented KV Selection For Efficient LLM Prefill
We present QUOKA: Query-oriented KV selection for efficient attention, a training-free and hardware agnostic sparse attention algorithm for accelerating transformer inference under chunked prefill. While many queries focus on a smaller group of keys in the attention operator, we observe that queries with low cosine similarity with respect to the mean query interact more strongly with more keys and have the greatest contribution to final attention logits. By prioritizing these low cosine similarity queries, the behavior of full attention during the prefill stage can be closely approximated. QUOKA leverages this observation, accelerating attention by (1) first retaining a small set of representative queries and (2) then subselectin the keys most aligned with those queries. Through experiments on Needle-In-A-Haystack, LongBench, RULER, and Math500, we show that, while realizing a 3x reduction in time-to-first-token, 5x speedup in attention on Nvidia GPUs and up to nearly a 7x speedup on Intel Xeon CPUs, QUOKA achieves near-baseline accuracy, utilizing 88% fewer key-value pairs per attention evaluation.
☆ Trapped by simplicity: When Transformers fail to learn from noisy features ICLR 2026
Noise is ubiquitous in data used to train large language models, but it is not well understood whether these models are able to correctly generalize to inputs generated without noise. Here, we study noise-robust learning: are transformers trained on data with noisy features able to find a target function that correctly predicts labels for noiseless features? We show that transformers succeed at noise-robust learning for a selection of $k$-sparse parity and majority functions, compared to LSTMs which fail at this task for even modest feature noise. However, we find that transformers typically fail at noise-robust learning of random $k$-juntas, especially when the boolean sensitivity of the optimal solution is smaller than that of the target function. We argue that this failure is due to a combination of two factors: transformers' bias toward simpler functions, combined with an observation that the optimal function for noise-robust learning typically has lower sensitivity than the target function for random boolean functions. We test this hypothesis by exploiting transformers' simplicity bias to trap them in an incorrect solution, but show that transformers can escape this trap by training with an additional loss term penalizing high-sensitivity solutions. Overall, we find that transformers are particularly ineffective for learning boolean functions in the presence of feature noise.
comment: 13+12 pages, 7 figures. Accepted at ICLR 2026
☆ Reasoning aligns language models to human cognition
Do language models make decisions under uncertainty like humans do, and what role does chain-of-thought (CoT) reasoning play in the underlying decision process? We introduce an active probabilistic reasoning task that cleanly separates sampling (actively acquiring evidence) from inference (integrating evidence toward a decision). Benchmarking humans and a broad set of contemporary large language models against near-optimal reference policies reveals a consistent pattern: extended reasoning is the key determinant of strong performance, driving large gains in inference and producing belief trajectories that become strikingly human-like, while yielding only modest improvements in active sampling. To explain these differences, we fit a mechanistic model that captures systematic deviations from optimal behavior via four interpretable latent variables: memory, strategy, choice bias, and occlusion awareness. This model places humans and models in a shared low-dimensional cognitive space, reproduces behavioral signatures across agents, and shows how chain-of-thought shifts language models toward human-like regimes of evidence accumulation and belief-to-choice mapping, tightening alignment in inference while leaving a persistent gap in information acquisition.
comment: 38 pages, 4 main figures, multiple appendix figures
☆ SoK: The Pitfalls of Deep Reinforcement Learning for Cybersecurity
Deep Reinforcement Learning (DRL) has achieved remarkable success in domains requiring sequential decision-making, motivating its application to cybersecurity problems. However, transitioning DRL from laboratory simulations to bespoke cyber environments can introduce numerous issues. This is further exacerbated by the often adversarial, non-stationary, and partially-observable nature of most cybersecurity tasks. In this paper, we identify and systematize 11 methodological pitfalls that frequently occur in DRL for cybersecurity (DRL4Sec) literature across the stages of environment modeling, agent training, performance evaluation, and system deployment. By analyzing 66 significant DRL4Sec papers (2018-2025), we quantify the prevalence of each pitfall and find an average of over five pitfalls per paper. We demonstrate the practical impact of these pitfalls using controlled experiments in (i) autonomous cyber defense, (ii) adversarial malware creation, and (iii) web security testing environments. Finally, we provide actionable recommendations for each pitfall to support the development of more rigorous and deployable DRL-based security systems.
☆ Learning To Sample From Diffusion Models Via Inverse Reinforcement Learning
Diffusion models generate samples through an iterative denoising process, guided by a neural network. While training the denoiser on real-world data is computationally demanding, the sampling procedure itself is more flexible. This adaptability serves as a key lever in practice, enabling improvements in both the quality of generated samples and the efficiency of the sampling process. In this work, we introduce an inverse reinforcement learning framework for learning sampling strategies without retraining the denoiser. We formulate the diffusion sampling procedure as a discrete-time finite-horizon Markov Decision Process, where actions correspond to optional modifications of the sampling dynamics. To optimize action scheduling, we avoid defining an explicit reward function. Instead, we directly match the target behavior expected from the sampler using policy gradient techniques. We provide experimental evidence that this approach can improve the quality of samples generated by pretrained diffusion models and automatically tune sampling hyperparameters.
comment: Preprint
☆ CompilerKV: Risk-Adaptive KV Compression via Offline Experience Compilation
Large Language Models (LLMs) in long-context scenarios are severely constrained by the linear growth of Key-Value (KV) cache memory. Existing KV compression methods rely either on static thresholds and attention-only heuristics or on coarse memory budget allocation. Under tight memory budgets, these methods overlook two key factors: prompt-dependent variation in compression risk and functional heterogeneity across attention heads, which destabilize token selection and lead to tail failures. To address these challenges, we propose CompilerKV, a risk-adaptive and head-aware compression framework that compiles offline experience into reusable decision tables for prefill-only deployment. CompilerKV integrates two key synergistic components: (i) a Head Heterogeneity Table, learned via offline contextual bandits, which assigns head-specific reliability weights to govern functional differences across attention heads explicitly; and (ii) a Risk-Adaptive Threshold Gating mechanism that jointly models attention entropy and local perplexity, transforming prompt-level risk into deployable retention thresholds. Experiments on LongBench show CompilerKV dominates SOTA methods under a 512-token budget, recovering 97.7\% of FullKV performance while achieving up to +5.2 points gain over the strongest competitor.
☆ The Theory and Practice of MAP Inference over Non-Convex Constraints
In many safety-critical settings, probabilistic ML systems have to make predictions subject to algebraic constraints, e.g., predicting the most likely trajectory that does not cross obstacles. These real-world constraints are rarely convex, nor the densities considered are (log-)concave. This makes computing this constrained maximum a posteriori (MAP) prediction efficiently and reliably extremely challenging. In this paper, we first investigate under which conditions we can perform constrained MAP inference over continuous variables exactly and efficiently and devise a scalable message-passing algorithm for this tractable fragment. Then, we devise a general constrained MAP strategy that interleaves partitioning the domain into convex feasible regions with numerical constrained optimization. We evaluate both methods on synthetic and real-world benchmarks, showing our % approaches outperform constraint-agnostic baselines, and scale to complex densities intractable for SoTA exact solvers.
☆ Dashed Line Defense: Plug-And-Play Defense Against Adaptive Score-Based Query Attacks
Score-based query attacks pose a serious threat to deep learning models by crafting adversarial examples (AEs) using only black-box access to model output scores, iteratively optimizing inputs based on observed loss values. While recent runtime defenses attempt to disrupt this process via output perturbation, most either require access to model parameters or fail when attackers adapt their tactics. In this paper, we first reveal that even the state-of-the-art plug-and-play defense can be bypassed by adaptive attacks, exposing a critical limitation of existing runtime defenses. We then propose Dashed Line Defense (DLD), a plug-and-play post-processing method specifically designed to withstand adaptive query strategies. By introducing ambiguity in how the observed loss reflects the true adversarial strength of candidate examples, DLD prevents attackers from reliably analyzing and adapting their queries, effectively disrupting the AE generation process. We provide theoretical guarantees of DLD's defense capability and validate its effectiveness through experiments on ImageNet, demonstrating that DLD consistently outperforms prior defenses--even under worst-case adaptive attacks--while preserving the model's predicted labels.
☆ LLaDA2.1: Speeding Up Text Diffusion via Token Editing
While LLaDA2.0 showcased the scaling potential of 100B-level block-diffusion models and their inherent parallelization, the delicate equilibrium between decoding speed and generation quality has remained an elusive frontier. Today, we unveil LLaDA2.1, a paradigm shift designed to transcend this trade-off. By seamlessly weaving Token-to-Token (T2T) editing into the conventional Mask-to-Token (M2T) scheme, we introduce a joint, configurable threshold-decoding scheme. This structural innovation gives rise to two distinct personas: the Speedy Mode (S Mode), which audaciously lowers the M2T threshold to bypass traditional constraints while relying on T2T to refine the output; and the Quality Mode (Q Mode), which leans into conservative thresholds to secure superior benchmark performances with manageable efficiency degrade. Furthering this evolution, underpinned by an expansive context window, we implement the first large-scale Reinforcement Learning (RL) framework specifically tailored for dLLMs, anchored by specialized techniques for stable gradient estimation. This alignment not only sharpens reasoning precision but also elevates instruction-following fidelity, bridging the chasm between diffusion dynamics and complex human intent. We culminate this work by releasing LLaDA2.1-Mini (16B) and LLaDA2.1-Flash (100B). Across 33 rigorous benchmarks, LLaDA2.1 delivers strong task performance and lightning-fast decoding speed. Despite its 100B volume, on coding tasks it attains an astounding 892 TPS on HumanEval+, 801 TPS on BigCodeBench, and 663 TPS on LiveCodeBench.
comment: 11 pages, 3 figures
☆ Learning to Judge: LLMs Designing and Applying Evaluation Rubrics EACL 2026
Large language models (LLMs) are increasingly used as evaluators for natural language generation, applying human-defined rubrics to assess system outputs. However, human rubrics are often static and misaligned with how models internally represent language quality. We introduce GER-Eval (Generating Evaluation Rubrics for Evaluation) to investigate whether LLMs can design and apply their own evaluation rubrics. We evaluate the semantic coherence and scoring reliability of LLM-defined criteria and their alignment with human criteria. LLMs reliably generate interpretable and task-aware evaluation dimensions and apply them consistently within models, but their scoring reliability degrades in factual and knowledge-intensive settings. Closed-source models such as GPT-4o achieve higher agreement and cross-model generalization than open-weight models such as Llama. Our findings position evaluation as a learned linguistic capability of LLMs, consistent within models but fragmented across them, and call for new methods that jointly model human and LLM evaluative language to improve reliability and interpretability.
comment: Accepted at EACL 2026 Findings
☆ Retrieval Pivot Attacks in Hybrid RAG: Measuring and Mitigating Amplified Leakage from Vector Seeds to Graph Expansion
Hybrid Retrieval-Augmented Generation (RAG) pipelines combine vector similarity search with knowledge graph expansion for multi-hop reasoning. We show that this composition introduces a distinct security failure mode: a vector-retrieved "seed" chunk can pivot via entity links into sensitive graph neighborhoods, causing cross-tenant data leakage that does not occur in vector-only retrieval. We formalize this risk as Retrieval Pivot Risk (RPR) and introduce companion metrics Leakage@k, Amplification Factor, and Pivot Depth (PD) to quantify leakage magnitude and traversal structure. We present seven Retrieval Pivot Attacks that exploit the vector-to-graph boundary and show that adversarial injection is not required: naturally shared entities create cross-tenant pivot paths organically. Across a synthetic multi-tenant enterprise corpus and the Enron email corpus, the undefended hybrid pipeline exhibits high pivot risk (RPR up to 0.95) with multiple unauthorized items returned per query. Leakage consistently appears at PD=2, which we attribute to the bipartite chunk-entity topology and formalize as a proposition. We then show that enforcing authorization at a single location, the graph expansion boundary, eliminates measured leakage (RPR near 0) across both corpora, all attack variants, and label forgery rates up to 10 percent, with minimal overhead. Our results indicate the root cause is boundary enforcement, not inherently complex defenses: two individually secure retrieval components can compose into an insecure system unless authorization is re-checked at the transition point.
comment: 18 pages, 5 figures
☆ Equalized Generative Treatment: Matching f-divergences for Fairness in Generative Models
Fairness is a crucial concern for generative models, which not only reflect but can also amplify societal and cultural biases. Existing fairness notions for generative models are largely adapted from classification and focus on balancing the probability of generating samples from each sensitive group. We show that such criteria are brittle, as they can be met even when different sensitive groups are modeled with widely varying quality. To address this limitation, we introduce a new fairness definition for generative models, termed as equalized generative treatment (EGT), which requires comparable generation quality across all sensitive groups, with quality measured via a reference f-divergence. We further analyze the trade-offs induced by EGT, demonstrating that enforcing fairness constraints necessarily couples the overall model quality to that of the most challenging group to approximate. This indicates that a simple yet efficient min-max fine-tuning method should be able to balance f-divergences across sensitive groups to satisfy EGT. We validate this theoretical insight through a set of experiments on both image and text generation tasks. We demonstrate that min-max methods consistently achieve fairer outcomes compared to other approaches from the literature, while maintaining competitive overall performance for both tasks.
☆ Two-Stage Data Synthesization: A Statistics-Driven Restricted Trade-off between Privacy and Prediction
Synthetic data have gained increasing attention across various domains, with a growing emphasis on their performance in downstream prediction tasks. However, most existing synthesis strategies focus on maintaining statistical information. Although some studies address prediction performance guarantees, their single-stage synthesis designs make it challenging to balance the privacy requirements that necessitate significant perturbations and the prediction performance that is sensitive to such perturbations. We propose a two-stage synthesis strategy. In the first stage, we introduce a synthesis-then-hybrid strategy, which involves a synthesis operation to generate pure synthetic data, followed by a hybrid operation that fuses the synthetic data with the original data. In the second stage, we present a kernel ridge regression (KRR)-based synthesis strategy, where a KRR model is first trained on the original data and then used to generate synthetic outputs based on the synthetic inputs produced in the first stage. By leveraging the theoretical strengths of KRR and the covariant distribution retention achieved in the first stage, our proposed two-stage synthesis strategy enables a statistics-driven restricted privacy--prediction trade-off and guarantee optimal prediction performance. We validate our approach and demonstrate its characteristics of being statistics-driven and restricted in achieving the privacy--prediction trade-off both theoretically and numerically. Additionally, we showcase its generalizability through applications to a marketing problem and five real-world datasets.
☆ From Robotics to Sepsis Treatment: Offline RL via Geometric Pessimism
Offline Reinforcement Learning (RL) promises the recovery of optimal policies from static datasets, yet it remains susceptible to the overestimation of out-of-distribution (OOD) actions, particularly in fractured and sparse data manifolds.Current solutions necessitates a trade off between computational efficiency and performance. Methods like CQL offers rigorous conservatism but require tremendous compute power while efficient expectile-based methods like IQL often fail to correct OOD errors on pathological datasets, collapsing to Behavioural Cloning. In this work, we propose Geometric Pessimism, a modular, compute-efficient framework that augments standard IQL with density-based penalty derived from k-nearest-neighbour distances in the state-action embedding space. By pre-computing the penalties applied to each state-action pair our method injects OOD conservatism via reward shaping with a O(1) training overhead. Evaluated on the D4Rl MuJoCo benchmark, our method, Geo-IQL outperforms standard IQL on sensitive and unstable medium-replay tasks by over 18 points, while reducing inter-seed variance by 4x. Furthermore, Geo-IQL does not degrade performance on stable manifolds. Crucially, we validate our algorithm on the MIMIC-III Sepsis critical care dataset. While standard IQL collapses to behaviour cloning, Geo-IQL demonstrates active policy improvement. Maintaining safety constraints, achieving 86.4% terminal agreement with clinicians compared to IQL's 75%. Our results suggest that geometric pessimism provides the necessary regularisation to safely overcome local optima in critical, real-world decision systems.
comment: 10 pages, 8 figures
☆ Projected Gradient Ascent for Efficient Reward-Guided Updates with One-Step Generative Models
We propose a constrained latent optimization method for reward-guided generation that preserves white Gaussian noise characteristics with negligible overhead. Test-time latent optimization can unlock substantially better reward-guided generations from pretrained generative models, but it is prone to reward hacking that degrades quality and also too slow for practical use. In this work, we make test-time optimization both efficient and reliable by replacing soft regularization with hard white Gaussian noise constraints enforced via projected gradient ascent. Our method applies a closed-form projection after each update to keep the latent vector explicitly noise-like throughout optimization, preventing the drift that leads to unrealistic artifacts. This enforcement adds minimal cost: the projection matches the $O(N \log N)$ complexity of standard algorithms such as sorting or FFT and does not practically increase wall-clock time. In experiments, our approach reaches a comparable Aesthetic Score using only 30% of the wall-clock time required by the SOTA regularization-based method, while preventing reward hacking.
☆ LEFT: Learnable Fusion of Tri-view Tokens for Unsupervised Time Series Anomaly Detection
As a fundamental data mining task, unsupervised time series anomaly detection (TSAD) aims to build a model for identifying abnormal timestamps without assuming the availability of annotations. A key challenge in unsupervised TSAD is that many anomalies are too subtle to exhibit detectable deviation in any single view (e.g., time domain), and instead manifest as inconsistencies across multiple views like time, frequency, and a mixture of resolutions. However, most cross-view methods rely on feature or score fusion and do not enforce analysis-synthesis consistency, meaning the frequency branch is not required to reconstruct the time signal through an inverse transform, and vice versa. In this paper, we present Learnable Fusion of Tri-view Tokens (LEFT), a unified unsupervised TSAD framework that models anomalies as inconsistencies across complementary representations. LEFT learns feature tokens from three views of the same input time series: frequency-domain tokens that embed periodicity information, time-domain tokens that capture local dynamics, and multi-scale tokens that learns abnormal patterns at varying time series granularities. By learning a set of adaptive Nyquist-constrained spectral filters, the original time series is rescaled into multiple resolutions and then encoded, allowing these multi-scale tokens to complement the extracted frequency- and time-domain information. When generating the fused representation, we introduce a novel objective that reconstructs fine-grained targets from coarser multi-scale structure, and put forward an innovative time-frequency cycle consistency constraint to explicitly regularize cross-view agreement. Experiments on real-world benchmarks show that LEFT yields the best detection accuracy against SOTA baselines, while achieving a 5x reduction on FLOPs and 8x speed-up for training.
☆ We Should Separate Memorization from Copyright
The widespread use of foundation models has introduced a new risk factor of copyright issue. This issue is leading to an active, lively and on-going debate amongst the data-science community as well as amongst legal scholars. Where claims and results across both sides are often interpreted in different ways and leading to different implications. Our position is that much of the technical literature relies on traditional reconstruction techniques that are not designed for copyright analysis. As a result, memorization and copying have been conflated across both technical and legal communities and in multiple contexts. We argue that memorization, as commonly studied in data science, should not be equated with copying and should not be used as a proxy for copyright infringement. We distinguish technical signals that meaningfully indicate infringement risk from those that instead reflect lawful generalization or high-frequency content. Based on this analysis, we advocate for an output-level, risk-based evaluation process that aligns technical assessments with established copyright standards and provides a more principled foundation for research, auditing, and policy.
☆ CauScale: Neural Causal Discovery at Scale
Causal discovery is essential for advancing data-driven fields such as scientific AI and data analysis, yet existing approaches face significant time- and space-efficiency bottlenecks when scaling to large graphs. To address this challenge, we present CauScale, a neural architecture designed for efficient causal discovery that scales inference to graphs with up to 1000 nodes. CauScale improves time efficiency via a reduction unit that compresses data embeddings and improves space efficiency by adopting tied attention weights to avoid maintaining axis-specific attention maps. To keep high causal discovery accuracy, CauScale adopts a two-stream design: a data stream extracts relational evidence from high-dimensional observations, while a graph stream integrates statistical graph priors and preserves key structural signals. CauScale successfully scales to 500-node graphs during training, where prior work fails due to space limitations. Across testing data with varying graph scales and causal mechanisms, CauScale achieves 99.6% mAP on in-distribution data and 84.4% on out-of-distribution data, while delivering 4-13,000 times inference speedups over prior methods. Our project page is at https://github.com/OpenCausaLab/CauScale.
☆ Sparse Models, Sparse Safety: Unsafe Routes in Mixture-of-Experts LLMs
By introducing routers to selectively activate experts in Transformer layers, the mixture-of-experts (MoE) architecture significantly reduces computational costs in large language models (LLMs) while maintaining competitive performance, especially for models with massive parameters. However, prior work has largely focused on utility and efficiency, leaving the safety risks associated with this sparse architecture underexplored. In this work, we show that the safety of MoE LLMs is as sparse as their architecture by discovering unsafe routes: routing configurations that, once activated, convert safe outputs into harmful ones. Specifically, we first introduce the Router Safety importance score (RoSais) to quantify the safety criticality of each layer's router. Manipulation of only the high-RoSais router(s) can flip the default route into an unsafe one. For instance, on JailbreakBench, masking 5 routers in DeepSeek-V2-Lite increases attack success rate (ASR) by over 4$\times$ to 0.79, highlighting an inherent risk that router manipulation may naturally occur in MoE LLMs. We further propose a Fine-grained token-layer-wise Stochastic Optimization framework to discover more concrete Unsafe Routes (F-SOUR), which explicitly considers the sequentiality and dynamics of input tokens. Across four representative MoE LLM families, F-SOUR achieves an average ASR of 0.90 and 0.98 on JailbreakBench and AdvBench, respectively. Finally, we outline defensive perspectives, including safety-aware route disabling and router training, as promising directions to safeguard MoE LLMs. We hope our work can inform future red-teaming and safeguarding of MoE LLMs. Our code is provided in https://github.com/TrustAIRLab/UnsafeMoE.
☆ Enhancing Genetic Algorithms with Graph Neural Networks: A Timetabling Case Study
This paper investigates the impact of hybridizing a multi-modal Genetic Algorithm with a Graph Neural Network for timetabling optimization. The Graph Neural Network is designed to encapsulate general domain knowledge to improve schedule quality, while the Genetic Algorithm explores different regions of the search space and integrates the deep learning model as an enhancement operator to guide the solution search towards optimality. Initially, both components of the hybrid technique were designed, developed, and optimized independently to solve the tackled task. Multiple experiments were conducted on Staff Rostering, a well-known timetabling problem, to compare the proposed hybridization with the standalone optimized versions of the Genetic Algorithm and Graph Neural Network. The experimental results demonstrate that the proposed hybridization brings statistically significant improvements in both the time efficiency and solution quality metrics, compared to the standalone methods. To the best of our knowledge, this work proposes the first hybridization of a Genetic Algorithm with a Graph Neural Network for solving timetabling problems.
comment: Paper accepted to the International Conference on Applications of Evolutionary Computation (EvoApplications) 2026
☆ ERIS: Enhancing Privacy and Communication Efficiency in Serverless Federated Learning
Scaling federated learning (FL) to billion-parameter models introduces critical trade-offs between communication efficiency, model accuracy, and privacy guarantees. Existing solutions often tackle these challenges in isolation, sacrificing accuracy or relying on costly cryptographic tools. We propose ERIS, a serverless FL framework that balances privacy and accuracy while eliminating the server bottleneck and distributing the communication load. ERIS combines a model partitioning strategy, distributing aggregation across multiple client-side aggregators, with a distributed shifted gradient compression mechanism. We theoretically prove that ERIS (i) converges at the same rate as FedAvg under standard assumptions, and (ii) bounds mutual information leakage inversely with the number of aggregators, enabling strong privacy guarantees with no accuracy degradation. Experiments across image and text tasks, including large language models, confirm that ERIS achieves FedAvg-level accuracy while substantially reducing communication cost and improving robustness to membership inference and reconstruction attacks, without relying on heavy cryptography or noise injection.
☆ Breaking the Grid: Distance-Guided Reinforcement Learning in Large Discrete and Hybrid Action Spaces
Reinforcement Learning is increasingly applied to logistics, scheduling, and recommender systems, but standard algorithms struggle with the curse of dimensionality in such large discrete action spaces. Existing algorithms typically rely on restrictive grid-based structures or computationally expensive nearest-neighbor searches, limiting their effectiveness in high-dimensional or irregularly structured domains. We propose Distance-Guided Reinforcement Learning (DGRL), combining Sampled Dynamic Neighborhoods (SDN) and Distance-Based Updates (DBU) to enable efficient RL in spaces with up to 10$^\text{20}$ actions. Unlike prior methods, SDN leverages a semantic embedding space to perform stochastic volumetric exploration, provably providing full support over a local trust region. Complementing this, DBU transforms policy optimization into a stable regression task, decoupling gradient variance from action space cardinality and guaranteeing monotonic policy improvement. DGRL naturally generalizes to hybrid continuous-discrete action spaces without requiring hierarchical dependencies. We demonstrate performance improvements of up to 66% against state-of-the-art benchmarks across regularly and irregularly structured environments, while simultaneously improving convergence speed and computational complexity.
comment: 26 pages, 8 figures
☆ Constructive conditional normalizing flows
Motivated by applications in conditional sampling, given a probability measure $μ$ and a diffeomorphism $φ$, we consider the problem of simultaneously approximating $φ$ and the pushforward $φ_{\#}μ$ by means of the flow of a continuity equation whose velocity field is a perceptron neural network with piecewise constant weights. We provide an explicit construction based on a polar-like decomposition of the Lagrange interpolant of $φ$. The latter involves a compressible component, given by the gradient of a particular convex function, which can be realized exactly, and an incompressible component, which -- after approximating via permutations -- can be implemented through shear flows intrinsic to the continuity equation. For more regular maps $φ$ -- such as the Knöthe-Rosenblatt rearrangement -- we provide an alternative, probabilistic construction inspired by the Maurey empirical method, in which the number of discontinuities in the weights doesn't scale inversely with the ambient dimension.
☆ TFMLinker: Universal Link Predictor by Graph In-Context Learning with Tabular Foundation Models
Link prediction is a fundamental task in graph machine learning with widespread applications such as recommendation systems, drug discovery, knowledge graphs, etc. In the foundation model era, how to develop universal link prediction methods across datasets and domains becomes a key problem, with some initial attempts adopting Graph Foundation Models utilizing Graph Neural Networks and Large Language Models. However, the existing methods face notable limitations, including limited pre-training scale or heavy reliance on textual information. Motivated by the success of tabular foundation models (TFMs) in achieving universal prediction across diverse tabular datasets, we explore an alternative approach by TFMs, which are pre-trained on diverse synthetic datasets sampled from structural causal models and support strong in-context learning independent of textual attributes. Nevertheless, adapting TFMs for link prediction faces severe technical challenges such as how to obtain the necessary context and capture link-centric topological information. To solve these challenges, we propose TFMLinker (Tabular Foundation Model for Link Predictor), aiming to leverage the in-context learning capabilities of TFMs to perform link prediction across diverse graphs without requiring dataset-specific fine-tuning. Specifically, we first develop a prototype-augmented local-global context module to construct context that captures both graph-specific and cross-graph transferable patterns. Next, we design a universal topology-aware link encoder to capture link-centric topological information and generate link representations as inputs for the TFM. Finally, we employ the TFM to predict link existence through in-context learning. Experiments on 6 graph benchmarks across diverse domains demonstrate the superiority of our method over state-of-the-art baselines without requiring dataset-specific finetuning.
SDFed: Bridging Local Global Discrepancy via Subspace Refinement and Divergence Control in Federated Prompt Learning
Vision-language pretrained models offer strong transferable representations, yet adapting them in privacy-sensitive multi-party settings is challenging due to the high communication cost of federated optimization and the limited local data on clients. Federated prompt learning mitigates this issue by keeping the VLPM backbone frozen and collaboratively training lightweight prompt parameters. However, existing approaches typically enforce a unified prompt structure and length across clients, which is inadequate under practical client heterogeneity in both data distributions and system resources, and may further introduce conflicts between globally shared and locally optimal knowledge. To address these challenges, we propose \textbf{SDFed}, a heterogeneous federated prompt learning framework that bridges Local-Global Discrepancy via Subspace Refinement and Divergence Control. SDFed maintains a fixed-length global prompt for efficient aggregation while allowing each client to learn a variable-length local prompt to better match its data characteristics and capacity. To mitigate local-global conflicts and facilitate effective knowledge transfer, SDFed introduces a subspace refinement method for local prompts and an information retention and divergence control strategy that preserves key local information while maintaining appropriate separability between global and local representations. Extensive experiments on several datasets demonstrate that SDFed consistently improves performance and robustness in heterogeneous federated settings.
comment: 13 pages, 6 figures
☆ FairRARI: A Plug and Play Framework for Fairness-Aware PageRank
PageRank (PR) is a fundamental algorithm in graph machine learning tasks. Owing to the increasing importance of algorithmic fairness, we consider the problem of computing PR vectors subject to various group-fairness criteria based on sensitive attributes of the vertices. At present, principled algorithms for this problem are lacking - some cannot guarantee that a target fairness level is achieved, while others do not feature optimality guarantees. In order to overcome these shortcomings, we put forth a unified in-processing convex optimization framework, termed FairRARI, for tackling different group-fairness criteria in a ``plug and play'' fashion. Leveraging a variational formulation of PR, the framework computes fair PR vectors by solving a strongly convex optimization problem with fairness constraints, thereby ensuring that a target fairness level is achieved. We further introduce three different fairness criteria which can be efficiently tackled using FairRARI to compute fair PR vectors with the same asymptotic time-complexity as the original PR algorithm. Extensive experiments on real-world datasets showcase that FairRARI outperforms existing methods in terms of utility, while achieving the desired fairness levels across multiple vertex groups; thereby highlighting its effectiveness.
☆ Predicting Future Utility: Global Combinatorial Optimization for Task-Agnostic KV Cache Eviction
Given the quadratic complexity of attention, KV cache eviction is vital to accelerate model inference. Current KV cache eviction methods typically rely on instantaneous heuristic metrics, implicitly assuming that score magnitudes are consistent proxies for importance across all heads. However, this overlooks the heterogeneity in predictive fidelity across attention heads. While certain heads prioritize the instantaneous contribution of tokens, others are dedicated to capturing long-horizon utility. In this paper, we propose that optimal budget allocation should be governed by the marginal utility in preserving long-term semantic information. Based on this insight, we propose LU-KV, a novel framework that optimizes head-level budget allocation through a convex-hull relaxation and a marginal-utility-based greedy solver to achieve near-optimal precision. Furthermore, we implement a data-driven offline profiling protocol to facilitate the practical deployment of LU-KV. Extensive evaluations on LongBench and RULER benchmarks demonstrate that LU-KV achieves an 80% reduction in KV cache size with minimal performance degradation, while simultaneously reducing inference latency and GPU memory footprint.
☆ Conditional Sequence Modeling for Safe Reinforcement Learning
Offline safe reinforcement learning (RL) aims to learn policies from a fixed dataset while maximizing performance under cumulative cost constraints. In practice, deployment requirements often vary across scenarios, necessitating a single policy that can adapt zero-shot to different cost thresholds. However, most existing offline safe RL methods are trained under a pre-specified threshold, yielding policies with limited generalization and deployment flexibility across cost thresholds. Motivated by recent progress in conditional sequence modeling (CSM), which enables flexible goal-conditioned control by specifying target returns, we propose RCDT, a CSM-based method that supports zero-shot deployment across multiple cost thresholds within a single trained policy. RCDT is the first CSM-based offline safe RL algorithm that integrates a Lagrangian-style cost penalty with an auto-adaptive penalty coefficient. To avoid overly conservative behavior and achieve a more favorable return--cost trade-off, a reward--cost-aware trajectory reweighting mechanism and Q-value regularization are further incorporated. Extensive experiments on the DSRL benchmark demonstrate that RCDT consistently improves return--cost trade-offs over representative baselines, advancing the state-of-the-art in offline safe RL.
♻ ☆ Categorical Reparameterization with Denoising Diffusion models
Learning models with categorical variables requires optimizing expectations over discrete distributions, a setting in which stochastic gradient-based optimization is challenging due to the non-differentiability of categorical sampling. A common workaround is to replace the discrete distribution with a continuous relaxation, yielding a smooth surrogate that admits reparameterized gradient estimates via the reparameterization trick. Building on this idea, we introduce ReDGE, a novel and efficient diffusion-based soft reparameterization method for categorical distributions. Our approach defines a flexible class of gradient estimators that includes the Straight-Through estimator as a special case. Experiments spanning latent variable models and inference-time reward guidance in discrete diffusion models demonstrate that ReDGE consistently matches or outperforms existing gradient-based methods. The code will be made available at https://github.com/samsongourevitch/redge.
comment: preprint
♻ ☆ A Metamorphic Testing Perspective on Knowledge Distillation for Language Models of Code: Does the Student Deeply Mimic the Teacher?
Transformer-based language models of code have achieved state-of-the-art performance across a wide range of software analytics tasks, but their practical deployment remains limited due to high computational costs, slow inference speeds, and significant environmental impact. To address these challenges, recent research has increasingly explored knowledge distillation as a method for compressing a large language model of code (the teacher) into a smaller model (the student) while maintaining performance. However, the degree to which a student model deeply mimics the predictive behavior and internal representations of its teacher remains largely unexplored, as current accuracy-based evaluation provides only a surface-level view of model quality and often fails to capture more profound discrepancies in behavioral fidelity between the teacher and student models. To address this gap, we empirically show that the student model often fails to deeply mimic the teacher model, resulting in up to 285% greater performance drop under adversarial attacks, which is not captured by traditional accuracy-based evaluation. Therefore, we propose MetaCompress, a metamorphic testing framework that systematically evaluates behavioral fidelity by comparing the outputs of teacher and student models under a set of behavior-preserving metamorphic relations. We evaluate MetaCompress on two widely studied tasks, using compressed versions of popular language models of code, obtained via three different knowledge distillation techniques: Compressor, AVATAR, and MORPH. The results show that MetaCompress identifies up to 62% behavioral discrepancies in student models, underscoring the need for behavioral fidelity evaluation within the knowledge distillation pipeline and establishing MetaCompress as a practical framework for testing compressed language models of code derived through knowledge distillation.
comment: This paper is a revised version of a manuscript currently under revision at the Journal of Systems and Software
♻ ☆ Semantics-Aware Generative Latent Data Augmentation for Learning in Low-Resource Domains
Despite strong performance in data-rich regimes, deep learning often underperforms in the data-scarce settings common in practice. While foundation models (FMs) trained on massive datasets demonstrate strong generalization by extracting general-purpose features, they can still suffer from scarce labeled data during downstream fine-tuning. To address this, we propose GeLDA, a semantics-aware generative latent data augmentation framework that leverages conditional diffusion models to synthesize samples in an FM-induced latent space. Because this space is low-dimensional and concentrates task-relevant information compared to the input space, GeLDA enables efficient, high-quality data generation. GeLDA conditions generation on auxiliary feature vectors that capture semantic relationships among classes or subdomains, facilitating data augmentation in low-resource domains. We validate GeLDA in two large-scale recognition tasks: (a) in zero-shot language-specific speech emotion recognition, GeLDA improves the Whisper-large baseline's unweighted average recall by 6.13%; and (b) in long-tailed image classification, it achieves 74.7% tail-class accuracy on ImageNet-LT, setting a new state-of-the-art result.
♻ ☆ Decoupling Generalizability and Membership Privacy Risks in Neural Networks
A deep learning model usually has to sacrifice some utilities when it acquires some other abilities or characteristics. Privacy preservation has such trade-off relationships with utilities. The loss disparity between various defense approaches implies the potential to decouple generalizability and privacy risks to maximize privacy gain. In this paper, we identify that the model's generalization and privacy risks exist in different regions in deep neural network architectures. Based on the observations that we investigate, we propose Privacy-Preserving Training Principle (PPTP) to protect model components from privacy risks while minimizing the loss in generalizability. Through extensive evaluations, our approach shows significantly better maintenance in model generalizability while enhancing privacy preservation.
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent computational cost. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Reproducible Benchmarking for Lung Nodule Detection and Malignancy Classification Across Multiple Low-Dose CT Datasets
Evaluation of artificial intelligence (AI) models for low-dose CT lung cancer screening is limited by heterogeneous datasets, annotation standards, and evaluation protocols, making performance difficult to compare and translate across clinical settings. We establish a public, reproducible multi-dataset benchmark for lung nodule detection and nodule-level cancer classification and quantify cross-dataset generalizability. Using the Duke Lung Cancer Screening (DLCS) dataset as a clinically curated development set, we evaluate performance across LUNA16/LIDC-IDRI, NLST-3D, and LUNA25. Detection models trained on DLCS and LUNA16 were evaluated externally on NLST-3D using free-response ROC analysis. For malignancy classification, we compared five strategies: randomly initialized ResNet50, Models Genesis, Med3D, a Foundation Model for Cancer Biomarkers, and a Strategic Warm-Start (ResNet50-SWS) approach pretrained using detection-derived candidate patches stratified by confidence. Performance was summarized using AUC with 95% confidence intervals and DeLong tests. Detection performance varied substantially by training dataset, with DLCS-trained models outperforming LUNA16-trained models on external NLST-3D evaluation (sensitivity at 2 false positives per scan: 0.72 vs. 0.64; p < 0.001). For malignancy classification, ResNet50-SWS achieved AUCs of 0.71 (DLCS), 0.90 (LUNA16), 0.81 (NLST-3D), and 0.80 (LUNA25), consistently matching or exceeding alternative pretraining strategies. These results demonstrate that dataset characteristics strongly influence lung cancer AI performance and highlight the need for transparent, multi-dataset benchmarking.
comment: 3 tables, 2 supplement tables, 5 figures
♻ ☆ f-GRPO and Beyond: Divergence-Based Reinforcement Learning Algorithms for General LLM Alignment
Recent research shows that Preference Alignment (PA) objectives act as divergence estimators between aligned (chosen) and unaligned (rejected) response distributions. In this work, we extend this divergence-based perspective to general alignment settings, such as reinforcement learning with verifiable rewards (RLVR), where only environmental rewards are available. Within this unified framework, we propose f-Group Relative Policy Optimization (f-GRPO), a class of on-policy reinforcement learning, and f-Hybrid Alignment Loss (f-HAL), a hybrid on/off policy objectives, for general LLM alignment based on variational representation of f-divergences. We provide theoretical guarantees that these classes of objectives improve the average reward after alignment. Empirically, we validate our framework on both RLVR (Math Reasoning) and PA tasks (Safety Alignment), demonstrating superior performance and flexibility compared to current methods.
♻ ☆ Safety Subspaces are Not Linearly Distinct: A Fine-Tuning Case Study ICLR 2026
Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. However, this behavior is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this perspective. We examine whether safety-relevant behavior is concentrated in specific linear subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in activations. Across both weight and activation spaces, our findings are consistent: subspaces that amplify safe behaviors also amplify useful ones, and prompts with different safety implications activate overlapping representations. Rather than residing in distinct directions, we show that safety is highly entangled with the general learning components of the model. This suggests that subspace-based defenses face fundamental limitations and underscores the need for alternative strategies to preserve safety under continued training. We corroborate these findings with multiple experiments on five open-source LLMs from the Llama and Qwen families. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.
comment: ICLR 2026. Kaustubh Ponkshe, Shaan Shah, and Raghav Singhal contributed equally to this work
♻ ☆ Rethinking Functional Brain Connectome Analysis: Do Graph Deep Learning Models Help
Graph deep learning models, a class of AI-driven approaches employing a message aggregation mechanism, have gained popularity for analyzing the functional brain connectome in neuroimaging. However, their actual effectiveness remains unclear. In this study, we re-examine graph deep learning versus classical machine learning models based on four large-scale neuroimaging studies. Surprisingly, we find that the message aggregation mechanism, a hallmark of graph deep learning models, does not help with predictive performance as typically assumed, but rather consistently degrades it. To address this issue, we propose a hybrid model combining a linear model with a graph attention network through dual pathways, achieving robust predictions and enhanced interpretability by revealing both localized and global neural connectivity patterns. Our findings urge caution in adopting complex deep learning models for functional brain connectome analysis, emphasizing the need for rigorous experimental designs to establish tangible performance gains and perhaps more importantly, to pursue improvements in model interpretability.
comment: Published version. See journal for final typeset version
♻ ☆ ABBA-Adapters: Efficient and Expressive Fine-Tuning of Foundation Models ICLR 2026
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget, a property we validate through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: ICLR 2026. Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
♻ ☆ Latent Domain Modeling Improves Robustness to Geographic Shifts
Geographic distribution shift arises when the distribution of locations on Earth in a training dataset is different from what is seen at inference time. Using standard empirical risk minimization (ERM) in this setting can lead to uneven generalization across different spatially-determined groups of interest such as continents or biomes. The most common approaches to tackling geographic distribution shift apply domain adaptation methods using discrete group labels, ignoring geographic coordinates that are often available as metadata. On the other hand, modeling methods that integrate geographic coordinates have been shown to improve overall performance, but their impact on geographic domain generalization has not been studied. In this work, we propose a general modeling framework for improving robustness to geographic distribution shift. The key idea is to model continuous, latent domain assignment using location encoders and to condition the main task predictor on the jointly-trained latents. On four diverse geo-tagged image datasets with different group splits, we show that instances of our framework achieve significant improvements in worst-group performance compared to existing domain adaptation and location-aware modeling methods. In particular, we achieve new state-of-the-art results on two datasets from the WILDS benchmark.
♻ ☆ Randomized Masked Finetuning: An Efficient Way to Mitigate Memorization of PIIs in LLMs
The current literature on memorization in Natural Language Models, especially Large Language Models (LLMs), poses severe security and privacy risks, as models tend to memorize personally identifying information (PIIs) from training data. We introduce Randomized Masked Fine-Tuning (RMFT), a novel privacy-preserving fine-tuning technique that reduces PII memorization while minimizing performance impact. Using the Enron Email Dataset, we demonstrate that RMFT achieves an 80.81% reduction in Total Extraction Rate and 80.17% reduction in Seen Extraction Rate compared to baseline fine-tuning, outperforming deduplication methods while maintaining only a 5.73% increase in perplexity. We present MaxTER, a Pareto-optimal evaluation framework for assessing privacy-utility tradeoffs, and show the performance of RMFT vs Deduplication by Area Under The Response Curve (AURC) metric.
♻ ☆ FMMI: Flow Matching Mutual Information Estimation
We introduce a novel Mutual Information (MI) estimator that fundamentally reframes the discriminative approach. Instead of training a classifier to discriminate between joint and marginal distributions, we learn a normalizing flow that transforms one into the other. This technique produces a computationally efficient and precise MI estimate that scales well to high dimensions and across a wide range of ground-truth MI values.
comment: 11 pages
♻ ☆ Beware Untrusted Simulators -- Reward-Free Backdoor Attacks in Reinforcement Learning ICLR 2026
Simulated environments are a key piece in the success of Reinforcement Learning (RL), allowing practitioners and researchers to train decision making agents without running expensive experiments on real hardware. Simulators remain a security blind spot, however, enabling adversarial developers to alter the dynamics of their released simulators for malicious purposes. Therefore, in this work we highlight a novel threat, demonstrating how simulator dynamics can be exploited to stealthily implant action-level backdoors into RL agents. The backdoor then allows an adversary to reliably activate targeted actions in an agent upon observing a predefined ``trigger'', leading to potentially dangerous consequences. Traditional backdoor attacks are limited in their strong threat models, assuming the adversary has near full control over an agent's training pipeline, enabling them to both alter and observe agent's rewards. As these assumptions are infeasible to implement within a simulator, we propose a new attack ``Daze'' which is able to reliably and stealthily implant backdoors into RL agents trained for real world tasks without altering or even observing their rewards. We provide formal proof of Daze's effectiveness in guaranteeing attack success across general RL tasks along with extensive empirical evaluations on both discrete and continuous action space domains. We additionally provide the first example of RL backdoor attacks transferring to real, robotic hardware. These developments motivate further research into securing all components of the RL training pipeline to prevent malicious attacks.
comment: 10 pages main body, ICLR 2026
♻ ☆ Non-negative matrix factorization algorithms generally improve topic model fits
In an effort to develop topic modeling methods that can be quickly applied to large data sets, we revisit the problem of maximum-likelihood estimation in topic models. It is known, at least informally, that maximum-likelihood estimation in topic models is closely related to non-negative matrix factorization (NMF). Yet, to our knowledge, this relationship has not been exploited previously to fit topic models. We show that recent advances in NMF optimization methods can be leveraged to fit topic models very efficiently, often resulting in much better fits and in less time than existing algorithms for topic models. We also formally make the connection between the NMF optimization problem and maximum-likelihood estimation for the topic model, and using this result we show that the expectation maximization (EM) algorithm for the topic model is essentially the same as the classic multiplicative updates for NMF (the only difference being that the operations are performed in a different order). Our methods are implemented in the R package fastTopics.
♻ ☆ RiskAgent: Synergizing Language Models with Validated Tools for Evidence-Based Risk Prediction
Large Language Models (LLMs) achieve competitive results compared to human experts in medical examinations. However, it remains a challenge to apply LLMs to complex clinical decision-making, which requires a deep understanding of medical knowledge and differs from the standardized, exam-style scenarios commonly used in current efforts. A common approach is to fine-tune LLMs for target tasks, which, however, not only requires substantial data and computational resources but also remains prone to generating `hallucinations'. In this work, we present RiskAgent, which synergizes language models with hundreds of validated clinical decision tools supported by evidence-based medicine, to provide generalizable and faithful recommendations. Our experiments show that RiskAgent not only achieves superior performance on a broad range of clinical risk predictions across diverse scenarios and diseases, but also demonstrates robust generalization in tool learning on the external MedCalc-Bench dataset, as well as in medical reasoning and question answering on three representative benchmarks, MedQA, MedMCQA, and MMLU.
comment: Code and Data are available at https://github.com/AI-in-Health/RiskAgent
♻ ☆ Explainable Cross-Disease Reasoning for Cardiovascular Risk Assessment from Low-Dose Computed Tomography
Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking: first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with a natural-language rationale. It integrates three components: a Pulmonary Perception Module that summarizes lung abnormalities, an Agentic Pulmonary-to-Cardiac Reasoning Module that infers their cardiovascular implications, and a Cardiac Feature Extractor that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening (AUC=0.919) and mortality prediction (AUC=0.838), outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
♻ ☆ Predictive Inorganic Synthesis based on Machine Learning using Small Data sets: a case study of size-controlled Cu Nanoparticles
Copper nanoparticles (Cu NPs) have a broad applicability, yet their synthesis is sensitive to subtle changes in reaction parameters. This sensitivity, combined with the time- and resource-intensive nature of experimental optimization, poses a major challenge in achieving reproducible and size-controlled synthesis. While Machine Learning (ML) shows promise in materials research, its application is often limited by scarcity of large high-quality experimental data sets. This study explores ML to predict the size of Cu NPs from microwave-assisted polyol synthesis using a small data set of 25 in-house performed syntheses. Latin Hypercube Sampling is used to efficiently cover the parameter space while creating the experimental data set. Ensemble regression models successfully predict particle sizes with high accuracy ($R^2 = 0.74$), outperforming classical statistical approaches ($R^2 = 0.60$). Additionally, classification models using both random forests and Large Language Models (LLMs) are evaluated to distinguish between large and small particles. While random forests show moderate performance, LLMs offer no significant advantages under data-scarce conditions. Overall, this study demonstrates that carefully curated small data sets, paired with robust classical ML, can effectively predict the synthesis of Cu NPs and highlights that for lab-scale studies, complex models like LLMs may offer limited benefit over simpler techniques.
comment: 23 pages, 17 figures, 13 tables (including SI)
♻ ☆ Constraint Learning in Multi-Agent Dynamic Games from Demonstrations of Local Nash Interactions
We present an inverse dynamic game-based algorithm to learn parametric constraints from a given dataset of local Nash equilibrium interactions between multiple agents. Specifically, we introduce mixed-integer linear programs (MILP) encoding the Karush-Kuhn-Tucker (KKT) conditions of the interacting agents, which recover constraints consistent with the local Nash stationarity of the interaction demonstrations. We establish theoretical guarantees that our method learns inner approximations of the true safe and unsafe sets. We also use the interaction constraints recovered by our method to design motion plans that robustly satisfy the underlying constraints. Across simulations and hardware experiments, our methods accurately inferred constraints and designed safe interactive motion plans for various classes of constraints, both convex and non-convex, from interaction demonstrations of agents with nonlinear dynamics.
♻ ☆ Vision Transformer Finetuning Benefits from Non-Smooth Components
The smoothness of the transformer architecture has been extensively studied in the context of generalization, training stability, and adversarial robustness. However, its role in transfer learning remains poorly understood. In this paper, we analyze the ability of vision transformer components to adapt their outputs to changes in inputs, or, in other words, their plasticity. Defined as an average rate of change, it captures the sensitivity to input perturbation; in particular, a high plasticity implies low smoothness. We demonstrate through theoretical analysis and comprehensive experiments that this perspective provides principled guidance in choosing the components to prioritize during adaptation. A key takeaway for practitioners is that the high plasticity of the attention modules and feedforward layers consistently leads to better finetuning performance. Our findings depart from the prevailing assumption that smoothness is desirable, offering a novel perspective on the functional properties of transformers. The code is available at https://github.com/ambroiseodt/vit-plasticity.
♻ ☆ Conditional PED-ANOVA: Hyperparameter Importance in Hierarchical & Dynamic Search Spaces
We propose conditional PED-ANOVA (condPED-ANOVA), a principled framework for estimating hyperparameter importance (HPI) in conditional search spaces, where the presence or domain of a hyperparameter can depend on other hyperparameters. Although the original PED-ANOVA provides a fast and efficient way to estimate HPI within the top-performing regions of the search space, it assumes a fixed, unconditional search space and therefore cannot properly handle conditional hyperparameters. To address this, we introduce a conditional HPI for top-performing regions and derive a closed-form estimator that accurately reflects conditional activation and domain changes. Experiments show that naive adaptations of existing HPI estimators yield misleading or uninterpretable importances in conditional settings, whereas condPED-ANOVA consistently provides meaningful importances that reflect the underlying conditional structure. Our code is publicly available at https://github.com/kAIto47802/condPED-ANOVA.
comment: 19 pages, 14 figures
♻ ☆ CoinPress: Practical Private Mean and Covariance Estimation
We present simple differentially private estimators for the mean and covariance of multivariate sub-Gaussian data that are accurate at small sample sizes. We demonstrate the effectiveness of our algorithms both theoretically and empirically using synthetic and real-world datasets -- showing that their asymptotic error rates match the state-of-the-art theoretical bounds, and that they concretely outperform all previous methods. Specifically, previous estimators either have weak empirical accuracy at small sample sizes, perform poorly for multivariate data, or require the user to provide strong a priori estimates for the parameters.
comment: Code is available at https://github.com/twistedcubic/coin-press. Experimental results were inadvertently commented out of previous version
♻ ☆ ZKBoost: Zero-Knowledge Verifiable Training for XGBoost
Gradient boosted decision trees, particularly XGBoost, are among the most effective methods for tabular data. As deployment in sensitive settings increases, cryptographic guarantees of model integrity become essential. We present ZKBoost, the first zero-knowledge proof of training (zkPoT) protocol for XGBoost, enabling model owners to prove correct training on a committed dataset without revealing data or parameters. We make three key contributions: (1) a fixed-point XGBoost implementation compatible with arithmetic circuits, enabling instantiation of efficient zkPoT, (2) a generic template of zkPoT for XGBoost, which can be instantiated with any general-purpose ZKP backend, and (3) vector oblivious linear evaluation (VOLE)-based instantiation resolving challenges in proving nonlinear fixed-point operations. Our fixed-point implementation matches standard XGBoost accuracy within 1\% while enabling practical zkPoT on real-world datasets.
♻ ☆ ASIDE: Architectural Separation of Instructions and Data in Language Models ICLR 2026
Despite their remarkable performance, large language models lack elementary safety features, making them susceptible to numerous malicious attacks. In particular, previous work has identified the absence of an intrinsic separation between instructions and data as the root cause of the success of prompt injection attacks. In this work, we propose a new architectural element, ASIDE, that allows language models to clearly separate instructions and data at the level of token embeddings. ASIDE applies an orthogonal rotation to the embeddings of data tokens, thus creating clearly distinct representations of instructions and data tokens without introducing any additional parameters. As we demonstrate experimentally across a range of models, instruction-tuning LLMs with ASIDE (1) achieves substantially higher instruction-data separation without performance loss and (2) makes the models more robust to prompt injection benchmarks, even without dedicated safety training. Additionally, we provide insights into the mechanism underlying our method through an analysis of the model representations. The source code and training scripts are openly accessible at https://github.com/egozverev/aside.
comment: ICLR 2026 paper
♻ ☆ Parallel Layer Normalization for Universal Approximation
This paper studies the approximation capabilities of neural networks that combine layer normalization (LN) with linear layers. We prove that networks consisting of two linear layers with parallel layer normalizations (PLNs) inserted between them (referred to as PLN-Nets) achieve universal approximation, whereas architectures that use only standard LN exhibit strictly limited expressive power.We further analyze approximation rates of shallow and deep PLN-Nets under the $L^\infty$ norm as well as in Sobolev norms. Our analysis extends beyond LN to RMSNorm, and from standard MLPs to position-wise feed-forward networks, the core building blocks used in RNNs and Transformers.Finally, we provide empirical experiments to explore other possible potentials of PLN-Nets.
comment: 45 pages
♻ ☆ NRR-Phi: Text-to-State Mapping for Ambiguity Preservation in LLM Inference
Large language models exhibit a systematic tendency toward early semantic commitment: given ambiguous input, they collapse multiple valid interpretations into a single response before sufficient context is available. We present a formal framework for text-to-state mapping ($φ: \mathcal{T} \to \mathcal{S}$) that transforms natural language into a non-collapsing state space where multiple interpretations coexist. The mapping decomposes into three stages: conflict detection, interpretation extraction, and state construction. We instantiate $φ$ with a hybrid extraction pipeline combining rule-based segmentation for explicit conflict markers (adversative conjunctions, hedging expressions) with LLM-based enumeration of implicit ambiguity (epistemic, lexical, structural). On a test set of 68 ambiguous sentences, the resulting states preserve interpretive multiplicity: mean state entropy $H = 1.087$ bits across ambiguity categories, compared to $H = 0$ for collapse-based baselines. We additionally instantiate the rule-based conflict detector for Japanese markers to illustrate cross-lingual portability. This framework extends Non-Resolution Reasoning (NRR) by providing the missing algorithmic bridge between text and the NRR state space, enabling architectural collapse deferment in LLM inference. Design principles for state-to-state transformations are detailed in the Appendix, with empirical validation on 580 test cases showing 0% collapse for principle-satisfying operators versus up to 17.8% for violating operators.
comment: 24 pages, 5 figures, 7 tables. Part of the NRR research program. Clarified operator notation and appendix validation details; updated figures and reference formatting
♻ ☆ SIMSHIFT: A Benchmark for Adapting Neural Surrogates to Distribution Shifts
Neural surrogates for Partial Differential Equations (PDEs) often suffer significant performance degradation when evaluated on problem configurations outside their training distribution, such as new initial conditions or structural dimensions. While Unsupervised Domain Adaptation (UDA) techniques have been widely used in vision and language to generalize across domains without additional labeled data, their application to complex engineering simulations remains largely unexplored. In this work, we address this gap through two focused contributions. First, we introduce SIMSHIFT, a novel benchmark dataset and evaluation suite composed of four industrial simulation tasks spanning diverse processes and physics: hot rolling, sheet metal forming, electric motor design and heatsink design. Second, we extend established UDA methods to state-of-the-art neural surrogates and systematically evaluate them. Extensive experiments on SIMSHIFT highlight the challenges of out-of-distribution neural surrogate modeling, demonstrate the potential of UDA in simulation, and reveal open problems in achieving robust neural surrogates under distribution shifts in industrially relevant scenarios. Our codebase is available at https://github.com/psetinek/simshift
♻ ☆ InSPO: Unlocking Intrinsic Self-Reflection for LLM Preference Optimization
Direct Preference Optimization (DPO) and its variants have become standard for aligning Large Language Models due to their simplicity and offline stability. However, we identify two fundamental limitations. First, the optimal policy depends on arbitrary modeling choices (scalarization function, reference policy), yielding behavior reflecting parameterization artifacts rather than true preferences. Second, treating response generation in isolation fails to leverage comparative information in pairwise data, leaving the model's capacity for intrinsic self-reflection untapped. To address it, we propose Intrinsic Self-reflective Preference Optimization (InSPO), deriving a globally optimal policy conditioning on both context and alternative responses. We prove this formulation superior to DPO/RLHF while guaranteeing invariance to scalarization and reference choices. InSPO serves as a plug-and-play enhancement without architectural changes or inference overhead. Experiments demonstrate consistent improvements in win rates and length-controlled metrics, validating that unlocking self-reflection yields more robust, human-aligned LLMs. Our Code is available at https://github.com/Skylanding/InSPO.
♻ ☆ Training Language Models to Explain Their Own Computations
Can language models (LMs) learn to faithfully describe their internal computations? Are they better able to describe themselves than other models? We study the extent to which LMs' privileged access to their own internals can be leveraged to produce new techniques for explaining their behavior. Using existing interpretability techniques as a source of ground truth, we fine-tune LMs to generate natural language descriptions of (1) the information encoded by LM features, (2) the causal structure of LMs' internal activations, and (3) the influence of specific input tokens on LM outputs. When trained with only tens of thousands of example explanations, explainer models exhibit non-trivial generalization to new queries. This generalization appears partly attributable to explainer models' privileged access to their own internals: using a model to explain its own computations generally works better than using a *different* model to explain its computations (even if the explainer model is significantly more capable than the target). Our results suggest not only that LMs can learn to reliably explain their internal computations, but that such explanations offer a scalable complement to existing interpretability methods. Code and data at https://github.com/TransluceAI/introspective-interp
comment: 23 pages, 8 tables, 7 figures. Code and data at https://github.com/TransluceAI/introspective-interp
♻ ☆ Reducing Aleatoric and Epistemic Uncertainty through Multi-modal Data Acquisition
To generate accurate and reliable predictions, modern AI systems need to combine data from multiple modalities, such as text, images, audio, spreadsheets, and time series. Multi-modal data introduces new opportunities and challenges for disentangling uncertainty: it is commonly assumed in the machine learning community that epistemic uncertainty can be reduced by collecting more data, while aleatoric uncertainty is irreducible. However, this assumption is challenged in modern AI systems when information is obtained from different modalities. This paper introduces an innovative data acquisition framework where uncertainty disentanglement leads to actionable decisions, allowing sampling in two directions: sample size and data modality. The main hypothesis is that aleatoric uncertainty decreases as the number of modalities increases, while epistemic uncertainty decreases by collecting more observations. We provide proof-of-concept implementations on two multi-modal datasets to showcase our data acquisition framework, which combines ideas from active learning, active feature acquisition and uncertainty quantification.
♻ ☆ NRR-Core: Non-Resolution Reasoning as a Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse--collapsing multiple valid interpretations into single outputs--stems from classical identity assumptions in neural architectures. We propose Non-Resolution Reasoning (NRR), a framework treating ambiguity retention as a valid reasoning mode. NRR introduces three principles: (1) Non-Identity ($A \neq A$)--the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$)--entities share partial structural overlap without being identical; (3) Non-Resolution--conflicting interpretations coexist without forced convergence. We formalize these through Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We illustrate NRR through case studies in paradox handling, creative generation, and context-dependent reasoning. Functional verification in a synthetic two-turn disambiguation task shows NRR-lite maintains high entropy ($H = 0.91$ bits, near-maximum $1.0$) at ambiguous turns while standard architectures collapse early ($H = 0.15$ bits), preserving interpretive flexibility until context arrives. NRR challenges the assumption that meaning must collapse to be useful. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 10 pages, 2 figures, 2 tables. Part of the NRR research program. Updated entropy measurement to log base 2 (bits); added title prefix NRR-Core for series identification
♻ ☆ TS-Arena -- A Live Forecast Pre-Registration Platform
Time Series Foundation Models (TSFMs) are transforming the field of forecasting. However, evaluating them on historical data is increasingly difficult due to the risks of train-test sample overlaps and temporal overlaps between correlated train and test time series. To address this, we introduce TS-Arena, a live forecasting platform that shifts evaluation from the known past to the unknown future. Building on the concept of continuous benchmarking, TS-Arena evaluates models on future data. Crucially, we introduce a strict forecasting pre-registration protocol: models must submit predictions before the ground-truth data physically exists. This makes test-set contamination impossible by design. The platform relies on a modular microservice architecture that harmonizes and structures data from different sources and orchestrates containerized model submissions. By enforcing a strict pre-registration protocol on live data streams, TS-Arena prevents information leakage offers a faster alternative to traditional static, infrequently repeated competitions (e.g. the M-Competitions). First empirical results derived from operating TS-Arena over one year of energy time series demonstrate that established TSFMs accumulate robust longitudinal scores over time, while the continuous nature of the benchmark simultaneously allows newcomers to demonstrate immediate competitiveness. TS-Arena provides the necessary infrastructure to assess the true generalization capabilities of modern forecasting models. The platform and corresponding code are available at https://ts-arena.live/.
♻ ☆ Near-Universal Multiplicative Updates for Nonnegative Einsum Factorization
Despite the ubiquity of multiway data across scientific domains, there are few user-friendly tools that fit tailored nonnegative tensor factorizations. Researchers may use gradient-based automatic differentiation (which often struggles in nonnegative settings), choose between a limited set of methods with mature implementations, or implement their own model from scratch. As an alternative, we introduce NNEinFact, an einsum-based multiplicative update algorithm that fits any nonnegative tensor factorization expressible as a tensor contraction by minimizing one of many user-specified loss functions (including the $(α,β)$-divergence). To use NNEinFact, the researcher simply specifies their model with a string. NNEinFact converges to a stationary point of the loss, supports missing data, and fits to tensors with hundreds of millions of entries in seconds. Empirically, NNEinFact fits custom models which outperform standard ones in heldout prediction tasks on real-world tensor data by over $37\%$ and attains less than half the test loss of gradient-based methods while converging up to 90 times faster.
comment: 27 pages, 5 figures
♻ ☆ Twice Sequential Monte Carlo for Tree Search
Model-based reinforcement learning (RL) methods that leverage search are responsible for many milestone breakthroughs in RL. Sequential Monte Carlo (SMC) recently emerged as an alternative to the Monte Carlo Tree Search (MCTS) algorithm which drove these breakthroughs. SMC is easier to parallelize and more suitable to GPU acceleration. However, it also suffers from large variance and path degeneracy which prevent it from scaling well with increased search depth, i.e., increased sequential compute. To address these problems, we introduce Twice Sequential Monte Carlo Tree Search (TSMCTS). Across discrete and continuous environments TSMCTS outperforms the SMC baseline as well as a popular modern version of MCTS as a policy improvement operator, scales favorably with sequential compute, reduces estimator variance and mitigates the effects of path degeneracy while retaining the properties that make SMC natural to parallelize.
♻ ☆ Evaluating Autoencoders for Parametric and Invertible Multidimensional Projections
Recently, neural networks have gained attention for creating parametric and invertible multidimensional data projections. Parametric projections allow for embedding previously unseen data without recomputing the projection as a whole, while invertible projections enable the generation of new data points. However, these properties have never been explored simultaneously for arbitrary projection methods. We evaluate three autoencoder (AE) architectures for creating parametric and invertible projections. Based on a given projection, we train AEs to learn a mapping into 2D space and an inverse mapping into the original space. We perform a quantitative and qualitative comparison on four datasets of varying dimensionality and pattern complexity using t-SNE. Our results indicate that AEs with a customized loss function can create smoother parametric and inverse projections than feed-forward neural networks while giving users control over the strength of the smoothing effect.
comment: 6 pages, 5 figures, 2 tables, LaTeX; fixed typos, added DOI; fixed notations
♻ ☆ Aligning Microscopic Vehicle and Macroscopic Traffic Statistics: Reconstructing Driving Behavior from Partial Data
A driving algorithm that aligns with good human driving practices, or at the very least collaborates effectively with human drivers, is crucial for developing safe and efficient autonomous vehicles. In practice, two main approaches are commonly adopted: (i) supervised or imitation learning, which requires comprehensive naturalistic driving data capturing all states that influence a vehicle's decisions and corresponding actions, and (ii) reinforcement learning (RL), where the simulated driving environment either matches or is intentionally more challenging than real-world conditions. Both methods depend on high-quality observations of real-world driving behavior, which are often difficult and costly to obtain. State-of-the-art sensors on individual vehicles can gather microscopic data, but they lack context about the surrounding conditions. Conversely, roadside sensors can capture traffic flow and other macroscopic characteristics, but they cannot associate this information with individual vehicles on a microscopic level. Motivated by this complementarity, we propose a framework that reconstructs unobserved microscopic states from macroscopic observations, using microscopic data to anchor observed vehicle behaviors, and learns a shared policy whose behavior is microscopically consistent with the partially observed trajectories and actions and macroscopically aligned with target traffic statistics when deployed population-wide. Such constrained and regularized policies promote realistic flow patterns and safe coordination with human drivers at scale.
♻ ☆ Reducing the Complexity of Matrix Multiplication to $O(N^2log_2N)$ by an Asymptotically Optimal Quantum Algorithm
Matrix multiplication is a fundamental classical computing operation whose efficiency becomes a major challenge at scale, especially for machine learning applications. Quantum computing, with its inherent parallelism and exponential storage capacity, offers a potential solution to these limitations. This work presents a quantum kernel-based matrix multiplication algorithm (QKMM) that achieves an asymptotically optimal computational complexity of $ O(N^2 \log_2 N) $, outperforming the classical optimal complexity of $ O(N^{2.371552}) $, where $N$ denotes the matrix dimension. Through noiseless and noisy quantum simulation experiments, we demonstrate that the proposed algorithm not only exhibits superior theoretical efficiency but also shows practical advantages in runtime performance and stability.
♻ ☆ Spatiotemporal Attention-Augmented Inverse Reinforcement Learning for Multi-Agent Task Allocation
Adversarial inverse reinforcement learning (IRL) for multi-agent task allocation (MATA) is challenged by non-stationary interactions and high-dimensional coordination. Unconstrained reward inference in these settings often leads to high variance and poor generalization. We propose an attention-structured adversarial IRL framework that constrains reward inference via spatiotemporal representation learning. Our method employs multi-head self-attention (MHSA) for long-range temporal dependencies and graph attention networks (GAT) for agent-task relational structures. We formulate reward inference as a low-capacity, adaptive linear transformation of the environment reward, ensuring stable and interpretable guidance. This framework decouples reward inference from policy learning and optimizes the reward model adversarially. Experiments on benchmark MATA scenarios show that our approach outperforms representative MARL baselines in convergence speed, cumulative rewards, and spatial efficiency. Results demonstrate that attention-guided, capacity-constrained reward inference is a scalable and effective mechanism for stabilizing adversarial IRL in complex multi-agent systems.
comment: Revised version with substantial new experimental results, improved analysis, and a restructured layout for better clarity
♻ ☆ Tree Training: Accelerating Agentic LLMs Training via Shared Prefix Reuse
Agentic large language model (LLM) training often involves multi-turn interaction trajectories that branch into multiple execution paths due to concurrent tool use, think-mode, sub-agent, context management and other runtime designs. As a result, the token produced by a single task naturally forms a tree-structured token trajectory with shared prefixes, rather than a linear sequence. Existing training pipelines linearize such trajectories and treat each branch independently, leading to substantial redundant computation in both forward and backward passes. To eliminate such redundancy, we introduce Tree Training, an efficient training framework for tree-structured trajectories. Its core component, Gradient Restoration, enables correct gradient aggregation across shared prefixes, allowing each prefix to be computed exactly once while remaining mathematically equivalent to independent training on all branches. To support large trajectory trees in practice, we redesign the training engine to natively ingest tree-structured data and propose Tree Packing, a memory-efficient partitioning strategy that preserves high prefix reuse. Experiments conducted on dense and MOE models of real-world agentic trajectories show 6.2x training speedup for both supervised fine-tuning and the model update phase in reinforcement learning.
♻ ☆ A Review of Online Diffusion Policy RL Algorithms for Scalable Robotic Control
Diffusion policies have emerged as a powerful approach for robotic control, demonstrating superior expressiveness in modeling multimodal action distributions compared to conventional policy networks. However, their integration with online reinforcement learning remains challenging due to fundamental incompatibilities between diffusion model training objectives and standard RL policy improvement mechanisms. This paper presents the first comprehensive review and empirical analysis of current Online Diffusion Policy Reinforcement Learning (Online DPRL) algorithms for scalable robotic control systems. We propose a novel taxonomy that categorizes existing approaches into four distinct families--Action-Gradient, Q-Weighting, Proximity-Based, and Backpropagation Through Time (BPTT) methods--based on their policy improvement mechanisms. Through extensive experiments on a unified NVIDIA Isaac Lab benchmark encompassing 12 diverse robotic tasks, we systematically evaluate representative algorithms across five critical dimensions: task diversity, parallelization capability, diffusion step scalability, cross-embodiment generalization, and environmental robustness. Our analysis identifies key findings regarding the fundamental trade-offs inherent in each algorithmic family, particularly concerning sample efficiency and scalability. Furthermore, we reveal critical computational and algorithmic bottlenecks that currently limit the practical deployment of online DPRL. Based on these findings, we provide concrete guidelines for algorithm selection tailored to specific operational constraints and outline promising future research directions to advance the field toward more general and scalable robotic learning systems.
♻ ☆ UAV-Assisted Resilience in 6G and Beyond Network Energy Saving: A Multi-Agent DRL Approach
This paper investigates the unmanned aerial vehicle (UAV)-assisted resilience perspective in the 6G network energy saving (NES) scenario. More specifically, we consider multiple ground base stations (GBSs) and each GBS has three different sectors/cells in the terrestrial networks, and multiple cells are turned off due to NES or incidents, e.g., disasters, hardware failures, or outages. To address this, we propose a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) framework to enable UAV-assisted communication by jointly optimizing UAV trajectories, transmission power, and user-UAV association under a sleeping ground base station (GBS) strategy. This framework aims to ensure the resilience of active users in the network and the long-term operability of UAVs. Specifically, it maximizes service coverage for users during power outages or NES zones, while minimizing the energy consumption of UAVs. Simulation results demonstrate that the proposed MADDPG policy consistently achieves high coverage ratio across different testing episodes, outperforming other baselines. Moreover, the MADDPG framework attains the lowest total energy consumption, with a reduction of approximately 24\% compared to the conventional all GBS ON configuration, while maintaining a comparable user service rate. These results confirm the effectiveness of the proposed approach in achieving a superior trade-off between energy efficiency and service performance, supporting the development of sustainable and resilient UAV-assisted cellular networks.
comment: 6 pages, 5 figures, 1 table
♻ ☆ Decoupling and Damping: Structurally-Regularized Gradient Matching for Multimodal Graph Condensation
In multimodal graph learning, graph structures that integrate information from multiple sources, such as vision and text, can more comprehensively model complex entity relationships. However, the continuous growth of their data scale poses a significant computational bottleneck for training. Graph condensation methods provide a feasible path forward by synthesizing compact and representative datasets. Nevertheless, existing condensation approaches generally suffer from performance limitations in multimodal scenarios, mainly due to two reasons: (1) semantic misalignment between different modalities leads to gradient conflicts; (2) the message-passing mechanism of graph neural networks further structurally amplifies such gradient noise. Based on this, we propose Structural Regularized Gradient Matching (SR-GM), a condensation framework for multimodal graphs. This method alleviates gradient conflicts between modalities through a gradient decoupling mechanism and introduces a structural damping regularizer to suppress the propagation of gradient noise in the topology, thereby transforming the graph structure from a noise amplifier into a training stabilizer. Extensive experiments on four multimodal graph datasets demonstrate the effectiveness of SR-GM, highlighting its state-of-the-art performance and cross-architecture generalization capabilities in multimodal graph dataset condensation.
comment: 12pages,7 figures,8 tables
♻ ☆ Practical Feasibility of Gradient Inversion Attacks in Federated Learning
Gradient inversion attacks are often presented as a serious privacy threat in federated learning, with recent work reporting increasingly strong reconstructions under favorable experimental settings. However, it remains unclear whether such attacks are feasible in modern, performance-optimized systems deployed in practice. In this work, we evaluate the practical feasibility of gradient inversion for image-based federated learning. We conduct a systematic study across multiple datasets and tasks, including image classification and object detection, using canonical vision architectures at contemporary resolutions. Our results show that while gradient inversion remains possible for certain legacy or transitional designs under highly restrictive assumptions, modern, performance-optimized models consistently resist meaningful reconstruction visually. We further demonstrate that many reported successes rely on upper-bound settings, such as inference mode operation or architectural simplifications which do not reflect realistic training pipelines. Taken together, our findings indicate that, under an honest-but-curious server assumption, high-fidelity image reconstruction via gradient inversion does not constitute a critical privacy risk in production-optimized federated learning systems, and that practical risk assessments must carefully distinguish diagnostic attack settings from real-world deployments.
comment: v2: revised manuscript; expanded experiments; improved analysis of reconstruction behavior across architectures
♻ ☆ Statistical Taylor Expansion: A New and Path-Independent Method for Uncertainty Analysis
As a rigorous statistical approach, statistical Taylor expansion extends the conventional Taylor expansion by replacing precise input variables with random variables of known distributions and sample counts to compute the mean, the standard deviation, and the reliable factor of each result. It tracks the propagation of the input uncertainties through intermediate steps, so that the final analytic result becomes path independent. Therefore, it differs fundamentally from common approaches in applied mathematics that optimize computational path for each calculation. Statistical Taylor expansion may standardize numerical computations for analytic expressions. This study also introduces the implementation of statistical Taylor expansion termed variance arithmetic and presents corresponding test results across a wide range of mathematical applications. Another important conclusion of this study is that numerical errors in library functions can significantly affect results. It is desirable that each value from library functions be accomplished by an uncertainty deviation. The possible link between statistical Taylor expansion and quantum physics is discussed as well.
comment: 43 pages, 39 figures
♻ ☆ Investigating Data Pruning for Pretraining Biological Foundation Models at Scale AAAI 2026
Biological foundation models (BioFMs), pretrained on large-scale biological sequences, have recently shown strong potential in providing meaningful representations for diverse downstream bioinformatics tasks. However, such models often rely on millions to billions of training sequences and billions of parameters, resulting in prohibitive computational costs and significant barriers to reproducibility and accessibility, particularly for academic labs. To address these challenges, we investigate the feasibility of data pruning for BioFM pretraining and propose a post-hoc influence-guided data pruning framework tailored to biological domains. Our approach introduces a subset-based self-influence formulation that enables efficient estimation of sample importance at low computational cost, and builds upon it two simple yet effective selection strategies, namely Top-k Influence (Top I) and Coverage-Centric Influence (CCI). We empirically validate our method on two representative BioFMs, RNA-FM and ESM-C. For RNA, our framework consistently outperforms random selection baselines under an extreme pruning rate of over 99 percent, demonstrating its effectiveness. Furthermore, we show the generalizability of our framework on protein-related tasks using ESM-C. In particular, our coreset even outperforms random subsets that are ten times larger in both RNA and protein settings, revealing substantial redundancy in biological sequence datasets. These findings underscore the potential of influence-guided data pruning to substantially reduce the computational cost of BioFM pretraining, paving the way for more efficient, accessible, and sustainable biological AI research.
comment: Accepted by AAAI 2026
♻ ☆ Two-dimensional RMSD projections for reaction path visualization and validation
Transition state or minimum energy path finding methods constitute a routine component of the computational chemistry toolkit. Standard analysis involves trajectories conventionally plotted in terms of the relative energy to the initial state against a cumulative displacement variable, or the image number. These dimensional reductions obscure structural rearrangements in high dimensions and are often history dependent. This precludes the ability to compare optimization histories of different methods beyond the number of calculations, time taken, and final saddle geometry. We present a method mapping trajectories onto a two-dimension projection defined by a permutation corrected root mean square deviation from the reactant and product configurations. Energy is represented as an interpolated color-mapped surface constructed from all optimization steps using a gradient aware derivative Gaussian Process. This representation highlights optimization trajectories, identifies endpoint basins, and diagnoses convergence concerns invisible in one-dimensional profiles. We demonstrate the framework on a cycloaddition reaction, showing that a machine-learned potential saddle and density functional theory reference lie on comparable energy contours despite geometric displacements, along with the ratification of the visualization for more complex reactions, a grignard rearrangement, and a bicyclobutadiene rearrangement.
comment: 6 pages, 2 figures
♻ ☆ Revisiting Privacy, Utility, and Efficiency Trade-offs when Fine-Tuning Large Language Models
We study the inherent trade-offs in minimizing privacy risks and maximizing utility, while maintaining high computational efficiency, when fine-tuning large language models (LLMs). A number of recent works in privacy research have attempted to mitigate privacy risks posed by memorizing fine-tuning data by using differentially private training methods (e.g., DP), albeit at a significantly higher computational cost (inefficiency). In parallel, several works in systems research have focussed on developing (parameter) efficient fine-tuning methods (e.g., LoRA), but few works, if any, investigated whether such efficient methods enhance or diminish privacy risks. In this paper, we investigate this gap and arrive at a surprising conclusion: efficient fine-tuning methods like LoRA mitigate privacy risks similar to private fine-tuning methods like DP. Our empirical finding directly contradicts prevailing wisdom that privacy and efficiency objectives are at odds during fine-tuning. Our finding is established by (a) carefully defining measures of privacy and utility that distinguish between memorizing sensitive and non-sensitive tokens in training and test datasets used in fine-tuning and (b) extensive evaluations using multiple open-source language models from Pythia, Gemma, Llama, and Qwen families and different domain-specific datasets.
comment: This work has been accepted at IASEAI 2026 (Non-archival)
♻ ☆ Out of the Shadows: Exploring a Latent Space for Neural Network Verification ICLR 2026
Neural networks are ubiquitous. However, they are often sensitive to small input changes. Hence, to prevent unexpected behavior in safety-critical applications, their formal verification -- a notoriously hard problem -- is necessary. Many state-of-the-art verification algorithms use reachability analysis or abstract interpretation to enclose the set of possible outputs of a neural network. Often, the verification is inconclusive due to the conservatism of the enclosure. To address this problem, we propose a novel specification-driven input refinement procedure, i.e., we iteratively enclose the preimage of a neural network for all unsafe outputs to reduce the set of possible inputs to only enclose the unsafe ones. For that, we transfer output specifications to the input space by exploiting a latent space, which is an artifact of the propagation of a projection-based set representation through a neural network. A projection-based set representation, e.g., a zonotope, is a "shadow" of a higher-dimensional set -- a latent space -- that does not change during a set propagation through a neural network. Hence, the input set and the output enclosure are "shadows" of the same latent space that we can use to transfer constraints. We present an efficient verification tool for neural networks that uses our iterative refinement to significantly reduce the number of subproblems in a branch-and-bound procedure. Using zonotopes as a set representation, unlike many other state-of-the-art approaches, our approach can be realized by only using matrix operations, which enables a significant speed-up through efficient GPU acceleration. We demonstrate that our tool achieves competitive performance compared to the top-ranking tools of the international neural network verification competition.
comment: Accepted at the 14th International Conference on Learning Representations (ICLR 2026)
♻ ☆ Language Bottleneck Models for Qualitative Knowledge State Modeling
Accurately assessing student knowledge is central to education. Cognitive Diagnosis (CD) models estimate student proficiency at a fixed point in time, while Knowledge Tracing (KT) methods model evolving knowledge states to predict future performance. However, existing approaches either provide quantitative concept mastery estimates with limited expressivity (CD, probabilistic KT) or prioritize predictive accuracy at the cost of interpretability (deep learning KT). We propose Language Bottleneck Models (LBMs), where an encoder LLM produces textual knowledge state summaries, which a decoder LLM uses to predict future performance. This produces interpretable summaries that can express nuanced insights--such as misconceptions--that CD and KT models cannot capture. Extensive validation across synthetic and real-world datasets shows LBMs reveal qualitative insights beyond what CD and KT models can capture, while achieving competitive accuracy with improved sample efficiency. We demonstrate that the encoder and decoder can be fine-tuned with reinforcement learning and supervised fine-tuning respectively to improve both summary quality and predictive performance.
♻ ☆ Distribution-Guided and Constrained Quantum Machine Unlearning
Machine unlearning aims to remove the influence of specific training data from a learned model without full retraining. While recent work has begun to explore unlearning in quantum machine learning, existing approaches largely rely on fixed, uniform target distributions and do not explicitly control the trade-off between forgetting and retained model behaviour. In this work, we propose a distribution-guided framework for class-level quantum machine unlearning that treats unlearning as a constrained optimization problem. Our method introduces a tunable target distribution derived from model similarity statistics, decoupling the suppression of forgotten-class confidence from assumptions about redistribution among retained classes. We further incorporate an anchor-based preservation constraint that explicitly maintains predictive behaviour on selected retained data, yielding a controlled optimization trajectory that limits deviation from the original model. We evaluate the approach on variational quantum classifiers trained on the Iris and Covertype datasets. Results demonstrate sharp suppression of forgotten-class confidence, minimal degradation of retained-class performance, and closer alignment with the gold retrained model baselines compared to uniform-target unlearning. These findings highlight the importance of target design and constraint-based formulations for reliable and interpretable quantum machine unlearning.
comment: 11 pages
♻ ☆ Two failure modes of deep transformers and how to avoid them: a unified theory of signal propagation at initialisation
Finding the right initialisation for neural networks is crucial to ensure smooth training and good performance. In transformers, the wrong initialisation can lead to one of two failure modes of self-attention layers: rank collapse, where all tokens collapse into similar representations, and entropy collapse, where highly concentrated attention scores lead to training instability. While previous work has studied different scaling regimes for transformers, an asymptotically exact, down-to-the constant prescription for how to initialise transformers has so far been lacking. Here, we provide an analytical theory of signal propagation through deep transformers with self-attention, layer normalisation, skip connections and MLP. Our theory yields a simple algorithm to compute trainability diagrams that identify the correct choice of initialisation hyper-parameters for a given architecture. We overcome the key challenge, an exact treatment of the self-attention layer, by establishing a formal parallel with the Random Energy Model from statistical physics. We also analyse gradients in the backward path and determine the regime where gradients vanish at initialisation. We demonstrate the versatility of our framework through three case studies. Our theoretical framework gives a unified perspective on the two failure modes of self-attention and gives quantitative predictions on the scale of both weights and residual connections that guarantee smooth training.
♻ ☆ A Review on Single-Problem Multi-Attempt Heuristic Optimization
In certain real-world optimization scenarios, practitioners are not interested in solving multiple problems but rather in finding the best solution to a single, specific problem. When the computational budget is large relative to the cost of evaluating a candidate solution, multiple heuristic alternatives can be tried to solve the same given problem, each possibly with a different algorithm, parameter configuration, initialization, or stopping criterion. In this practically relevant setting, the sequential selection of which alternative to try next is crucial for efficiently identifying the best possible solution across multiple attempts. However, suitable sequential alternative selection strategies have traditionally been studied separately across different research topics and have not been the exclusive focus of any existing review. As a result, the state-of-the-art remains fragmented for practitioners interested in this setting, with surveys either covering only subsets of relevant strategies or including approaches that rely on assumptions that are not feasible for the single-problem case. This work addresses the identified gap by providing a focused review of single-problem multi-attempt heuristic optimization. It brings together suitable strategies for this setting that have been studied separately through algorithm selection, parameter tuning, multi-start, and resource allocation. These strategies are described using a unified terminology within a common framework, which supports the construction of a taxonomy for systematically organizing and classifying them. The resulting comprehensive review facilitates both the identification and the development of strategies for the single-problem multi-attempt setting in practice.
♻ ☆ HistoPrism: Unlocking Functional Pathway Analysis from Pan-Cancer Histology via Gene Expression Prediction ICLR 2026
Predicting spatial gene expression from H&E histology offers a scalable and clinically accessible alternative to sequencing, but realizing clinical impact requires models that generalize across cancer types and capture biologically coherent signals. Prior work is often limited to per-cancer settings and variance-based evaluation, leaving functional relevance underexplored. We introduce HistoPrism, an efficient transformer-based architecture for pan-cancer prediction of gene expression from histology. To evaluate biological meaning, we introduce a pathway-level benchmark, shifting assessment from isolated gene-level variance to coherent functional pathways. HistoPrism not only surpasses prior state-of-the-art models on highly variable genes , but also more importantly, achieves substantial gains on pathway-level prediction, demonstrating its ability to recover biologically coherent transcriptomic patterns. With strong pan-cancer generalization and improved efficiency, HistoPrism establishes a new standard for clinically relevant transcriptomic modeling from routinely available histology.
comment: Accepted at ICLR 2026. Camera-ready version
♻ ☆ Large Deviations of Gaussian Neural Networks with ReLU activation
We prove a large deviation principle for deep neural networks with Gaussian weights and at most linearly growing activation functions, such as ReLU. This generalises earlier work, in which bounded and continuous activation functions were considered. In practice, linearly growing activation functions such as ReLU are most commonly used. We furthermore simplify previous expressions for the rate function and provide a power-series expansions for the ReLU case.
comment: typo corrected from a previous version
♻ ☆ Deep networks learn to parse uniform-depth context-free languages from local statistics
Understanding how the structure of language can be learned from sentences alone is a central question in both cognitive science and machine learning. Studies of the internal representations of Large Language Models (LLMs) support their ability to parse text when predicting the next word, while representing semantic notions independently of surface form. Yet, which data statistics make these feats possible, and how much data is required, remain largely unknown. Probabilistic context-free grammars (PCFGs) provide a tractable testbed for studying these questions. However, prior work has focused either on the post-hoc characterization of the parsing-like algorithms used by trained networks; or on the learnability of PCFGs with fixed syntax, where parsing is unnecessary. Here, we (i) introduce a tunable class of PCFGs in which both the degree of ambiguity and the correlation structure across scales can be controlled; (ii) provide a learning mechanism -- an inference algorithm inspired by the structure of deep convolutional networks -- that links learnability and sample complexity to specific language statistics; and (iii) validate our predictions empirically across deep convolutional and transformer-based architectures. Overall, we propose a unifying framework where correlations at different scales lift local ambiguities, enabling the emergence of hierarchical representations of the data.
♻ ☆ GPTOpt: Teaching LLMs to do Interpretable Black-Box Optimization
Global optimization of expensive, derivative-free black-box functions demands extreme sample efficiency and decision interpretability. While Large Language Models (LLMs) have shown broad capabilities, even state-of-the-art models remain limited in solving continuous black-box optimization tasks and struggle to maintain exploration-exploitation balance. We introduce GPTOpt, an optimization method that equips LLMs with continuous black-box optimization capabilities by fine-tuning Llama 3.1 8B on structured Bayesian optimization (BO) data, including surrogate model information. This provides an explainable framework calibrated to produce surrogate model outputs comparable to a Gaussian process, while keeping the advantages of flexible LLM-based optimization. On a variety of black-box optimization benchmarks, our model shows favorable performance compared to traditional optimizers and transformer-based alternatives, while providing important context and insight into the model's decisions.
♻ ☆ AI-Powered Intracranial Hemorrhage Detection: A Co-Scale Convolutional Attention Model with Uncertainty-Based Fuzzy Integral Operator and Feature Screening
Intracranial hemorrhage (ICH) refers to the leakage or accumulation of blood within the skull, which occurs due to the rupture of blood vessels in or around the brain. If this condition is not diagnosed in a timely manner and appropriately treated, it can lead to serious complications such as decreased consciousness, permanent neurological disabilities, or even death.The primary aim of this study is to detect the occurrence or non-occurrence of ICH, followed by determining the type of subdural hemorrhage (SDH). These tasks are framed as two separate binary classification problems. By adding two layers to the co-scale convolutional attention (CCA) classifier architecture, we introduce a novel approach for ICH detection. In the first layer, after extracting features from different slices of computed tomography (CT) scan images, we combine these features and select the 50 components that capture the highest variance in the data, considering them as informative features. We then assess the discriminative power of these features using the bootstrap forest algorithm, discarding those that lack sufficient discriminative ability between different classes. This algorithm explicitly determines the contribution of each feature to the final prediction, assisting us in developing an explainable AI model. The features feed into a boosting neural network as a latent feature space. In the second layer, we introduce a novel uncertainty-based fuzzy integral operator to fuse information from different CT scan slices. This operator, by accounting for the dependencies between consecutive slices, significantly improves detection accuracy.
♻ ☆ ActivationReasoning: Logical Reasoning in Latent Activation Spaces ICLR 2026
Large language models (LLMs) excel at generating fluent text, but their internal reasoning remains opaque and difficult to control. Sparse autoencoders (SAEs) make hidden activations more interpretable by exposing latent features that often align with human concepts. Yet, these features are fragile and passive, offering no mechanism for systematic reasoning or model control. To address this, we introduce ActivationReasoning (AR), a framework that embeds explicit logical reasoning into the latent space of LLMs. It proceeds in three stages: (1) Finding latent representations, first latent concept representations are identified (e.g., via SAEs) and organized into a dictionary; (2) Activating propositions, at inference time AR detects activating concepts and maps them to logical propositions; and (3)Logical reasoning, applying logical rules over these propositions to infer higher-order structures, compose new concepts, and steer model behavior. We evaluate AR on multi-hop reasoning (PrOntoQA), abstraction and robustness to indirect concept cues (Rail2Country), reasoning over natural and diverse language (ProverQA), and context-sensitive safety (BeaverTails). Across all tasks, AR scales robustly with reasoning complexity, generalizes to abstract and context-sensitive tasks, and transfers across model backbones. These results demonstrate that grounding logical structure in latent activations not only improves transparency but also enables structured reasoning, reliable control, and alignment with desired behaviors, providing a path toward more reliable and auditable AI.
comment: Proceedings of the 14th International Conference on Learning Representations (ICLR 2026)
♻ ☆ SAGE: Sequence-level Adaptive Gradient Evolution for Generative Recommendation
While works such as OneRec have validated the scaling laws of Large Language Models (LLMs) in recommender systems, they rely on a cumbersome separate vocabulary. This dependency prevents the model architecture from reusing native LLM vocabularies, resulting in high maintenance costs and poor scalability. In response, we aim to efficiently reuse open-source LLM architectures without constructing a separate tokenization vocabulary. Furthermore, we identify that the optimization strategy of OneRec Gradient Bounded Policy Optimization (GBPO),suffers from a "Symmetric Conservatism" problem: its static gradient boundaries structurally suppress the update momentum required for cold-start items and fail to prevent diversity collapse in high-noise environments.To address this issue, we propose SAGE (Sequence-level Adaptive Gradient Evolution), a unified optimization framework tailored for list-wise generative recommendation. SAGE introduces two key innovations:(1) Sequence-level Signal Decoupling: By combining a geometric mean importance ratio with decoupled multi-objective advantages, we eliminate token-level variance and resolve the "Reward Collapse" problem. (2) Asymmetric Adaptive Dynamics: We construct a dynamic gradient manifold that applies a "Boost Factor" to high-potential cold start items to achieve super-linear updates and employs an "Entropy Aware Penalty" to break information cocoons. Theoretical analysis and empirical results demonstrate that SAGE effectively unblocks cold-start traffic and sustains recommendation diversity, all while retaining the numerical stability of GBPO.
comment: arXiv admin note: text overlap with arXiv:2506.19235
Multimedia 4
☆ Lightweight Call Signaling and Peer-to-Peer Control of WebRTC Video Conferencing
We present the software architecture and implementation of our web-based multiparty video conference application. It does not use a media server. For call signaling, it either piggybacks on existing push notifications via a lightweight notification server, or utilizes email messages to further remove that server dependency. For conference control and data storage, it creates a peer-to-peer network of the clients participating in the call. Our prototype client web app can be installed as a browser extension, or a progressive web app on desktop and mobile. It uses WebRTC data channels and media streams for the control and media paths in implementing a full featured video conferencing with audio, video, text and screen sharing. The challenges faced and the techniques used in creating our lightweight or serverless system are useful to other low-end WebRTC applications that intend to save cost on server maintenance or paid subscriptions for multiparty video calls.
comment: 13 pages, 13 figures
☆ GOT-Edit: Geometry-Aware Generic Object Tracking via Online Model Editing ICLR 2026
Human perception for effective object tracking in a 2D video stream arises from the implicit use of prior 3D knowledge combined with semantic reasoning. In contrast, most generic object tracking (GOT) methods primarily rely on 2D features of the target and its surroundings while neglecting 3D geometric cues, which makes them susceptible to partial occlusion, distractors, and variations in geometry and appearance. To address this limitation, we introduce GOT-Edit, an online cross-modality model editing approach that integrates geometry-aware cues into a generic object tracker from a 2D video stream. Our approach leverages features from a pre-trained Visual Geometry Grounded Transformer to enable geometric cue inference from only a few 2D images. To tackle the challenge of seamlessly combining geometry and semantics, GOT-Edit performs online model editing with null-space constrained updates that incorporate geometric information while preserving semantic discrimination, yielding consistently better performance across diverse scenarios. Extensive experiments on multiple GOT benchmarks demonstrate that GOT-Edit achieves superior robustness and accuracy, particularly under occlusion and clutter, establishing a new paradigm for combining 2D semantics with 3D geometric reasoning for generic object tracking.
comment: ICLR 2026. This is a preprint version. The camera-ready version will be updated soon
☆ T2VTree: User-Centered Visual Analytics for Agent-Assisted Thought-to-Video Authoring
Generative models have substantially expanded video generation capabilities, yet practical thought-to-video creation remains a multi-stage, multi-modal, and decision-intensive process. However, existing tools either hide intermediate decisions behind repeated reruns or expose operator-level workflows that make exploration traces difficult to manage, compare, and reuse. We present T2VTree, a user-centered visual analytics approach for agent-assisted thought-to-video authoring. T2VTree represents the authoring process as a tree visualization. Each node in the tree binds an editable specification (intent, referenced inputs, workflow choice, prompts, and parameters) with the resulting multimodal outputs, making refinement, branching, and provenance inspection directly operable. To reduce the burden of deciding what to do next, a set of collaborating agents translates step-level intent into an executable plan that remains visible and user-editable before execution. We further implement a visual analytics system that integrates branching authoring with in-place preview and stitching for convergent assembly, enabling end-to-end multi-scene creation without leaving the authoring context. We demonstrate T2VTreeVA through two multi-scene case studies and a comparative user study, showing how the T2VTree visualization and editable agent planning support reliable refinement, localized comparison, and practical reuse in real authoring workflows. T2VTree is available at: https://github.com/tezuka0210/T2VTree.
♻ ☆ Hierarchical Refinement of Universal Multimodal Attacks on Vision-Language Models
Existing adversarial attacks for VLP models are mostly sample-specific, resulting in substantial computational overhead when scaled to large datasets or new scenarios. To overcome this limitation, we propose Hierarchical Refinement Attack (HRA), a multimodal universal attack framework for VLP models. For the image modality, we refine the optimization path by leveraging a temporal hierarchy of historical and estimated future gradients to avoid local minima and stabilize universal perturbation learning. For the text modality, it hierarchically models textual importance by considering both intra- and inter-sentence contributions to identify globally influential words, which are then used as universal text perturbations. Extensive experiments across various downstream tasks, VLP models, and datasets, demonstrate the superior transferability of the proposed universal multimodal attacks.
comment: 10 pages, 7 figures
Artificial Intelligent 296
☆ Robustness Is a Function, Not a Number: A Factorized Comprehensive Study of OOD Robustness in Vision-Based Driving
Out of distribution (OOD) robustness in autonomous driving is often reduced to a single number, hiding what breaks a policy. We decompose environments along five axes: scene (rural/urban), season, weather, time (day/night), and agent mix; and measure performance under controlled $k$-factor perturbations ($k \in \{0,1,2,3\}$). Using closed loop control in VISTA, we benchmark FC, CNN, and ViT policies, train compact ViT heads on frozen foundation-model (FM) features, and vary ID support in scale, diversity, and temporal context. (1) ViT policies are markedly more OOD-robust than comparably sized CNN/FC, and FM features yield state-of-the-art success at a latency cost. (2) Naive temporal inputs (multi-frame) do not beat the best single-frame baseline. (3) The largest single factor drops are rural $\rightarrow$ urban and day $\rightarrow$ night ($\sim 31\%$ each); actor swaps $\sim 10\%$, moderate rain $\sim 7\%$; season shifts can be drastic, and combining a time flip with other changes further degrades performance. (4) FM-feature policies stay above $85\%$ under three simultaneous changes; non-FM single-frame policies take a large first-shift hit, and all no-FM models fall below $50\%$ by three changes. (5) Interactions are non-additive: some pairings partially offset, whereas season-time combinations are especially harmful. (6) Training on winter/snow is most robust to single-factor shifts, while a rural+summer baseline gives the best overall OOD performance. (7) Scaling traces/views improves robustness ($+11.8$ points from $5$ to $14$ traces), yet targeted exposure to hard conditions can substitute for scale. (8) Using multiple ID environments broadens coverage and strengthens weak cases (urban OOD $60.6\% \rightarrow 70.1\%$) with a small ID drop; single-ID preserves peak performance but in a narrow domain. These results yield actionable design rules for OOD-robust driving policies.
☆ CIC-Trap4Phish: A Unified Multi-Format Dataset for Phishing and Quishing Attachment Detection
Phishing attacks represents one of the primary attack methods which is used by cyber attackers. In many cases, attackers use deceptive emails along with malicious attachments to trick users into giving away sensitive information or installing malware while compromising entire systems. The flexibility of malicious email attachments makes them stand out as a preferred vector for attackers as they can embed harmful content such as malware or malicious URLs inside standard document formats. Although phishing email defenses have improved a lot, attackers continue to abuse attachments, enabling malicious content to bypass security measures. Moreover, another challenge that researches face in training advance models, is lack of an unified and comprehensive dataset that covers the most prevalent data types. To address this gap, we generated CIC-Trap4Phish, a multi-format dataset containing both malicious and benign samples across five categories commonly used in phishing campaigns: Microsoft Word documents, Excel spreadsheets, PDF files, HTML pages, and QR code images. For the first four file types, a set of execution-free static feature pipeline was proposed, designed to capture structural, lexical, and metadata-based indicators without the need to open or execute files. Feature selection was performed using a combination of SHAP analysis and feature importance, yielding compact, discriminative feature subsets for each file type. The selected features were evaluated by using lightweight machine learning models, including Random Forest, XGBoost, and Decision Tree. All models demonstrate high detection accuracy across formats. For QR code-based phishing (quishing), two complementary methods were implemented: image-based detection by employing Convolutional Neural Networks (CNNs) and lexical analysis of decoded URLs using recent lightweight language models.
☆ ArcFlow: Unleashing 2-Step Text-to-Image Generation via High-Precision Non-Linear Flow Distillation
Diffusion models have achieved remarkable generation quality, but they suffer from significant inference cost due to their reliance on multiple sequential denoising steps, motivating recent efforts to distill this inference process into a few-step regime. However, existing distillation methods typically approximate the teacher trajectory by using linear shortcuts, which makes it difficult to match its constantly changing tangent directions as velocities evolve across timesteps, thereby leading to quality degradation. To address this limitation, we propose ArcFlow, a few-step distillation framework that explicitly employs non-linear flow trajectories to approximate pre-trained teacher trajectories. Concretely, ArcFlow parameterizes the velocity field underlying the inference trajectory as a mixture of continuous momentum processes. This enables ArcFlow to capture velocity evolution and extrapolate coherent velocities to form a continuous non-linear trajectory within each denoising step. Importantly, this parameterization admits an analytical integration of this non-linear trajectory, which circumvents numerical discretization errors and results in high-precision approximation of the teacher trajectory. To train this parameterization into a few-step generator, we implement ArcFlow via trajectory distillation on pre-trained teacher models using lightweight adapters. This strategy ensures fast, stable convergence while preserving generative diversity and quality. Built on large-scale models (Qwen-Image-20B and FLUX.1-dev), ArcFlow only fine-tunes on less than 5% of original parameters and achieves a 40x speedup with 2 NFEs over the original multi-step teachers without significant quality degradation. Experiments on benchmarks show the effectiveness of ArcFlow both qualitatively and quantitatively.
☆ Next-Gen CAPTCHAs: Leveraging the Cognitive Gap for Scalable and Diverse GUI-Agent Defense
The rapid evolution of GUI-enabled agents has rendered traditional CAPTCHAs obsolete. While previous benchmarks like OpenCaptchaWorld established a baseline for evaluating multimodal agents, recent advancements in reasoning-heavy models, such as Gemini3-Pro-High and GPT-5.2-Xhigh have effectively collapsed this security barrier, achieving pass rates as high as 90% on complex logic puzzles like "Bingo". In response, we introduce Next-Gen CAPTCHAs, a scalable defense framework designed to secure the next-generation web against the advanced agents. Unlike static datasets, our benchmark is built upon a robust data generation pipeline, allowing for large-scale and easily scalable evaluations, notably, for backend-supported types, our system is capable of generating effectively unbounded CAPTCHA instances. We exploit the persistent human-agent "Cognitive Gap" in interactive perception, memory, decision-making, and action. By engineering dynamic tasks that require adaptive intuition rather than granular planning, we re-establish a robust distinction between biological users and artificial agents, offering a scalable and diverse defense mechanism for the agentic era.
comment: Project page at https://greenoso.github.io/NextGen-CAPTCHAs_webpage/
☆ ANCRe: Adaptive Neural Connection Reassignment for Efficient Depth Scaling
Scaling network depth has been a central driver behind the success of modern foundation models, yet recent investigations suggest that deep layers are often underutilized. This paper revisits the default mechanism for deepening neural networks, namely residual connections, from an optimization perspective. Rigorous analysis proves that the layout of residual connections can fundamentally shape convergence behavior, and even induces an exponential gap in convergence rates. Prompted by this insight, we introduce adaptive neural connection reassignment (ANCRe), a principled and lightweight framework that parameterizes and learns residual connectivities from the data. ANCRe adaptively reassigns residual connections with negligible computational and memory overhead ($<1\%$), while enabling more effective utilization of network depth. Extensive numerical tests across pre-training of large language models, diffusion models, and deep ResNets demonstrate consistently accelerated convergence, boosted performance, and enhanced depth efficiency over conventional residual connections.
☆ GEBench: Benchmarking Image Generation Models as GUI Environments
Recent advancements in image generation models have enabled the prediction of future Graphical User Interface (GUI) states based on user instructions. However, existing benchmarks primarily focus on general domain visual fidelity, leaving the evaluation of state transitions and temporal coherence in GUI-specific contexts underexplored. To address this gap, we introduce GEBench, a comprehensive benchmark for evaluating dynamic interaction and temporal coherence in GUI generation. GEBench comprises 700 carefully curated samples spanning five task categories, covering both single-step interactions and multi-step trajectories across real-world and fictional scenarios, as well as grounding point localization. To support systematic evaluation, we propose GE-Score, a novel five-dimensional metric that assesses Goal Achievement, Interaction Logic, Content Consistency, UI Plausibility, and Visual Quality. Extensive evaluations on current models indicate that while they perform well on single-step transitions, they struggle significantly with maintaining temporal coherence and spatial grounding over longer interaction sequences. Our findings identify icon interpretation, text rendering, and localization precision as critical bottlenecks. This work provides a foundation for systematic assessment and suggests promising directions for future research toward building high-fidelity generative GUI environments. The code is available at: https://github.com/stepfun-ai/GEBench.
comment: 23 pages, 5 figures, 4 tables
☆ ARO: A New Lens On Matrix Optimization For Large Models
Matrix-based optimizers have attracted growing interest for improving LLM training efficiency, with significant progress centered on orthogonalization/whitening based methods. While yielding substantial performance gains, a fundamental question arises: can we develop new paradigms beyond orthogonalization, pushing the efficiency frontier further? We present \textbf{Adaptively Rotated Optimization (ARO}, a new matrix optimization framework that treats gradient rotation as a first class design principle. ARO accelerates LLM training by performing normed steepest descent in a rotated coordinate system, where the rotation is determined by a novel norm-informed policy. This perspective yields update rules that go beyond existing orthogonalization and whitening optimizers, improving sample efficiency in practice. To make comparisons reliable, we propose a rigorously controlled benchmarking protocol that reduces confounding and bias. Under this protocol, ARO consistently outperforms AdamW (by 1.3 $\sim$1.35$\times$) and orthogonalization methods (by 1.1$\sim$1.15$\times$) in LLM pretraining at up to 8B activated parameters, and up to $8\times$ overtrain budget, without evidence of diminishing returns. Finally, we discuss how ARO can be reformulated as a symmetry-aware optimizer grounded in rotational symmetries of residual streams, motivating advanced designs that enable computationally efficient exploitation of cross-layer/cross module couplings.
Data Science and Technology Towards AGI Part I: Tiered Data Management
The development of artificial intelligence can be viewed as an evolution of data-driven learning paradigms, with successive shifts in data organization and utilization continuously driving advances in model capability. Current LLM research is dominated by a paradigm that relies heavily on unidirectional scaling of data size, increasingly encountering bottlenecks in data availability, acquisition cost, and training efficiency. In this work, we argue that the development of AGI is entering a new phase of data-model co-evolution, in which models actively guide data management while high-quality data, in turn, amplifies model capabilities. To implement this vision, we propose a tiered data management framework, designed to support the full LLM training lifecycle across heterogeneous learning objectives and cost constraints. Specifically, we introduce an L0-L4 tiered data management framework, ranging from raw uncurated resources to organized and verifiable knowledge. Importantly, LLMs are fully used in data management processes, such as quality scoring and content editing, to refine data across tiers. Each tier is characterized by distinct data properties, management strategies, and training roles, enabling data to be strategically allocated across LLM training stages, including pre-training, mid-training, and alignment. The framework balances data quality, acquisition cost, and marginal training benefit, providing a systematic approach to scalable and sustainable data management. We validate the effectiveness of the proposed framework through empirical studies, in which tiered datasets are constructed from raw corpora and used across multiple training phases. Experimental results demonstrate that tier-aware data utilization significantly improves training efficiency and model performance. To facilitate further research, we release our tiered datasets and processing tools to the community.
comment: 16 pages, 3 figures, 7 tables
☆ From Obstacles to Etiquette: Robot Social Navigation with VLM-Informed Path Selection
Navigating socially in human environments requires more than satisfying geometric constraints, as collision-free paths may still interfere with ongoing activities or conflict with social norms. Addressing this challenge calls for analyzing interactions between agents and incorporating common-sense reasoning into planning. This paper presents a social robot navigation framework that integrates geometric planning with contextual social reasoning. The system first extracts obstacles and human dynamics to generate geometrically feasible candidate paths, then leverages a fine-tuned vision-language model (VLM) to evaluate these paths, informed by contextually grounded social expectations, selecting a socially optimized path for the controller. This task-specific VLM distills social reasoning from large foundation models into a smaller and efficient model, allowing the framework to perform real-time adaptation in diverse human-robot interaction contexts. Experiments in four social navigation contexts demonstrate that our method achieves the best overall performance with the lowest personal space violation duration, the minimal pedestrian-facing time, and no social zone intrusions. Project page: https://path-etiquette.github.io
comment: Accepted to IEEE Robotics and Automation Letters (RA-L)
☆ iGRPO: Self-Feedback-Driven LLM Reasoning
Large Language Models (LLMs) have shown promise in solving complex mathematical problems, yet they still fall short of producing accurate and consistent solutions. Reinforcement Learning (RL) is a framework for aligning these models with task-specific rewards, improving overall quality and reliability. Group Relative Policy Optimization (GRPO) is an efficient, value-function-free alternative to Proximal Policy Optimization (PPO) that leverages group-relative reward normalization. We introduce Iterative Group Relative Policy Optimization (iGRPO), a two-stage extension of GRPO that adds dynamic self-conditioning through model-generated drafts. In Stage 1, iGRPO samples multiple exploratory drafts and selects the highest-reward draft using the same scalar reward signal used for optimization. In Stage 2, it appends this best draft to the original prompt and applies a GRPO-style update on draft-conditioned refinements, training the policy to improve beyond its strongest prior attempt. Under matched rollout budgets, iGRPO consistently outperforms GRPO across base models (e.g., Nemotron-H-8B-Base-8K and DeepSeek-R1 Distilled), validating its effectiveness on diverse reasoning benchmarks. Moreover, applying iGRPO to OpenReasoning-Nemotron-7B trained on AceReason-Math achieves new state-of-the-art results of 85.62\% and 79.64\% on AIME24 and AIME25, respectively. Ablations further show that the refinement wrapper generalizes beyond GRPO variants, benefits from a generative judge, and alters learning dynamics by delaying entropy collapse. These results underscore the potential of iterative, self-feedback-based RL for advancing verifiable mathematical reasoning.
comment: Tech report
InternAgent-1.5: A Unified Agentic Framework for Long-Horizon Autonomous Scientific Discovery
We introduce InternAgent-1.5, a unified system designed for end-to-end scientific discovery across computational and empirical domains. The system is built on a structured architecture composed of three coordinated subsystems for generation, verification, and evolution. These subsystems are supported by foundational capabilities for deep research, solution optimization, and long horizon memory. The architecture allows InternAgent-1.5 to operate continuously across extended discovery cycles while maintaining coherent and improving behavior. It also enables the system to coordinate computational modeling and laboratory experimentation within a single unified system. We evaluate InternAgent-1.5 on scientific reasoning benchmarks such as GAIA, HLE, GPQA, and FrontierScience, and the system achieves leading performance that demonstrates strong foundational capabilities. Beyond these benchmarks, we further assess two categories of discovery tasks. In algorithm discovery tasks, InternAgent-1.5 autonomously designs competitive methods for core machine learning problems. In empirical discovery tasks, it executes complete computational or wet lab experiments and produces scientific findings in earth, life, biological, and physical domains. Overall, these results show that InternAgent-1.5 provides a general and scalable framework for autonomous scientific discovery.
comment: Code and project page: https://github.com/InternScience/InternAgent
☆ Improving Detection of Rare Nodes in Hierarchical Multi-Label Learning
In hierarchical multi-label classification, a persistent challenge is enabling model predictions to reach deeper levels of the hierarchy for more detailed or fine-grained classifications. This difficulty partly arises from the natural rarity of certain classes (or hierarchical nodes) and the hierarchical constraint that ensures child nodes are almost always less frequent than their parents. To address this, we propose a weighted loss objective for neural networks that combines node-wise imbalance weighting with focal weighting components, the latter leveraging modern quantification of ensemble uncertainties. By emphasizing rare nodes rather than rare observations (data points), and focusing on uncertain nodes for each model output distribution during training, we observe improvements in recall by up to a factor of five on benchmark datasets, along with statistically significant gains in $F_{1}$ score. We also show our approach aids convolutional networks on challenging tasks, as in situations with suboptimal encoders or limited data.
comment: Accepted for publication in Transactions on Machine Learning Research (TMLR), 2026
☆ Next Concept Prediction in Discrete Latent Space Leads to Stronger Language Models
We propose Next Concept Prediction (NCP), a generative pretraining paradigm built on top of Next Token Prediction (NTP). NCP predicts discrete concepts that span multiple tokens, thereby forming a more challenging pretraining objective. Our model, ConceptLM, quantizes hidden states using Vector Quantization and constructs a concept vocabulary. It leverages both NCP and NTP to drive parameter updates and generates a concept to guide the generation of the following tokens. We train ConceptLM from scratch at scales ranging from 70M to 1.5B parameters with up to 300B training data, including Pythia and GPT-2 backbones. Results on 13 benchmarks show that NCP yields consistent performance gains over traditional token-level models. Furthermore, continual pretraining experiments on an 8B-parameter Llama model indicate that NCP can further improve an NTP-trained model. Our analysis suggests that NCP leads to more powerful language models by introducing a harder pretraining task, providing a promising path toward better language modeling.
☆ StretchTime: Adaptive Time Series Forecasting via Symplectic Attention
Transformer architectures have established strong baselines in time series forecasting, yet they typically rely on positional encodings that assume uniform, index-based temporal progression. However, real-world systems, from shifting financial cycles to elastic biological rhythms, frequently exhibit "time-warped" dynamics where the effective flow of time decouples from the sampling index. In this work, we first formalize this misalignment and prove that rotary position embedding (RoPE) is mathematically incapable of representing non-affine temporal warping. To address this, we propose Symplectic Positional Embeddings (SyPE), a learnable encoding framework derived from Hamiltonian mechanics. SyPE strictly generalizes RoPE by extending the rotation group $\mathrm{SO}(2)$ to the symplectic group $\mathrm{Sp}(2,\mathbb{R})$, modulated by a novel input-dependent adaptive warp module. By allowing the attention mechanism to adaptively dilate or contract temporal coordinates end-to-end, our approach captures locally varying periodicities without requiring pre-defined warping functions. We implement this mechanism in StretchTime, a multivariate forecasting architecture that achieves state-of-the-art performance on standard benchmarks, demonstrating superior robustness on datasets exhibiting non-stationary temporal dynamics.
stable-worldmodel-v1: Reproducible World Modeling Research and Evaluation
World Models have emerged as a powerful paradigm for learning compact, predictive representations of environment dynamics, enabling agents to reason, plan, and generalize beyond direct experience. Despite recent interest in World Models, most available implementations remain publication-specific, severely limiting their reusability, increasing the risk of bugs, and reducing evaluation standardization. To mitigate these issues, we introduce stable-worldmodel (SWM), a modular, tested, and documented world-model research ecosystem that provides efficient data-collection tools, standardized environments, planning algorithms, and baseline implementations. In addition, each environment in SWM enables controllable factors of variation, including visual and physical properties, to support robustness and continual learning research. Finally, we demonstrate the utility of SWM by using it to study zero-shot robustness in DINO-WM.
☆ A Behavioural and Representational Evaluation of Goal-Directedness in Language Model Agents
Understanding an agent's goals helps explain and predict its behaviour, yet there is no established methodology for reliably attributing goals to agentic systems. We propose a framework for evaluating goal-directedness that integrates behavioural evaluation with interpretability-based analyses of models' internal representations. As a case study, we examine an LLM agent navigating a 2D grid world toward a goal state. Behaviourally, we evaluate the agent against an optimal policy across varying grid sizes, obstacle densities, and goal structures, finding that performance scales with task difficulty while remaining robust to difficulty-preserving transformations and complex goal structures. We then use probing methods to decode the agent's internal representations of the environment state and its multi-step action plans. We find that the LLM agent non-linearly encodes a coarse spatial map of the environment, preserving approximate task-relevant cues about its position and the goal location; that its actions are broadly consistent with these internal representations; and that reasoning reorganises them, shifting from broader environment structural cues toward information supporting immediate action selection. Our findings support the view that introspective examination is required beyond behavioural evaluations to characterise how agents represent and pursue their objectives.
☆ MotionCrafter: Dense Geometry and Motion Reconstruction with a 4D VAE
We introduce MotionCrafter, a video diffusion-based framework that jointly reconstructs 4D geometry and estimates dense motion from a monocular video. The core of our method is a novel joint representation of dense 3D point maps and 3D scene flows in a shared coordinate system, and a novel 4D VAE to effectively learn this representation. Unlike prior work that forces the 3D value and latents to align strictly with RGB VAE latents-despite their fundamentally different distributions-we show that such alignment is unnecessary and leads to suboptimal performance. Instead, we introduce a new data normalization and VAE training strategy that better transfers diffusion priors and greatly improves reconstruction quality. Extensive experiments across multiple datasets demonstrate that MotionCrafter achieves state-of-the-art performance in both geometry reconstruction and dense scene flow estimation, delivering 38.64% and 25.0% improvements in geometry and motion reconstruction, respectively, all without any post-optimization. Project page: https://ruijiezhu94.github.io/MotionCrafter_Page
comment: Project page: https://ruijiezhu94.github.io/MotionCrafter_Page
☆ Digital Twin and Agentic AI for Wild Fire Disaster Management: Intelligent Virtual Situation Room
According to the United Nations, wildfire frequency and intensity are projected to increase by approximately 14% by 2030 and 30% by 2050 due to global warming, posing critical threats to life, infrastructure, and ecosystems. Conventional disaster management frameworks rely on static simulations and passive data acquisition, hindering their ability to adapt to arbitrarily evolving wildfire episodes in real-time. To address these limitations, we introduce the Intelligent Virtual Situation Room (IVSR), a bidirectional Digital Twin (DT) platform augmented by autonomous AI agents. The IVSR continuously ingests multisource sensor imagery, weather data, and 3D forest models to create a live virtual replica of the fire environment. A similarity engine powered by AI aligns emerging conditions with a precomputed Disaster Simulation Library, retrieving and calibrating intervention tactics under the watchful eyes of experts. Authorized action-ranging from UAV redeployment to crew reallocation-is cycled back through standardized procedures to the physical layer, completing the loop between response and analysis. We validate IVSR through detailed case-study simulations provided by an industrial partner, demonstrating capabilities in localized incident detection, privacy-preserving playback, collider-based fire-spread projection, and site-specific ML retraining. Our results indicate marked reductions in detection-to-intervention latency and more effective resource coordination versus traditional systems. By uniting real-time bidirectional DTs with agentic AI, IVSR offers a scalable, semi-automated decision-support paradigm for proactive, adaptive wildfire disaster management.
☆ CoRefine: Confidence-Guided Self-Refinement for Adaptive Test-Time Compute
Large Language Models (LLMs) often rely on test-time scaling via parallel decoding (for example, 512 samples) to boost reasoning accuracy, but this incurs substantial compute. We introduce CoRefine, a confidence-guided self-refinement method that achieves competitive accuracy using a fraction of the tokens via a lightweight 211k-parameter Conv1D controller atop a frozen LLM. The controller consumes full-trace confidence to decide whether to halt, re-examine, or try a different approach, enabling targeted self-correction with an average of 2.7 refinement steps per problem and roughly 190-fold token reduction relative to 512-sample baselines. Across diverse reasoning benchmarks and three open-source models, the controller achieves 92.6 percent precision when it confidently halts, indicating that confidence dynamics reliably signal correctness without ground-truth verification. We extend this to CoRefine-Tree, a hybrid sequential-parallel variant that adaptively balances exploration and exploitation, with easy serving integration and verifier compatibility. By treating confidence as a control signal rather than a correctness guarantee, CoRefine provides a modular primitive for scalable reasoning and agentic settings with imperfect verifiers.
☆ pixelLOG: Logging of Online Gameplay for Cognitive Research
Traditional cognitive assessments often rely on isolated, output-focused measurements that may fail to capture the complexity of human cognition in naturalistic settings. We present pixelLOG, a high-performance data collection framework for Spigot-based Minecraft servers designed specifically for process-based cognitive research. Unlike existing frameworks tailored only for artificial intelligence agents, pixelLOG also enables human behavioral tracking in multi-player/multi-agent environments. Operating at configurable frequencies up to and exceeding 20 updates per second, the system captures comprehensive behavioral data through a hybrid approach of active state polling and passive event monitoring. By leveraging Spigot's extensible API, pixelLOG facilitates robust session isolation and produces structured JSON outputs integrable with standard analytical pipelines. This framework bridges the gap between decontextualized laboratory assessments and richer, more ecologically valid tasks, enabling high-resolution analysis of cognitive processes as they unfold in complex, virtual environments.
comment: 9 pages, 1 figure
☆ CausalT5K: Diagnosing and Informing Refusal for Trustworthy Causal Reasoning of Skepticism, Sycophancy, Detection-Correction, and Rung Collapse
LLM failures in causal reasoning, including sycophancy, rung collapse, and miscalibrated refusal, are well-documented, yet progress on remediation is slow because no benchmark enables systematic diagnosis. We introduce CausalT5K, a diagnostic benchmark of over 5,000 cases across 10 domains that tests three critical capabilities: (1) detecting rung collapse, where models answer interventional queries with associational evidence; (2) resisting sycophantic drift under adversarial pressure; and (3) generating Wise Refusals that specify missing information when evidence is underdetermined. Unlike synthetic benchmarks, CausalT5K embeds causal traps in realistic narratives and decomposes performance into Utility (sensitivity) and Safety (specificity), revealing failure modes invisible to aggregate accuracy. Developed through a rigorous human-machine collaborative pipeline involving 40 domain experts, iterative cross-validation cycles, and composite verification via rule-based, LLM, and human scoring, CausalT5K implements Pearl's Ladder of Causation as research infrastructure. Preliminary experiments reveal a Four-Quadrant Control Landscape where static audit policies universally fail, a finding that demonstrates CausalT5K's value for advancing trustworthy reasoning systems. Repository: https://github.com/genglongling/CausalT5kBench
comment: 17 pages, 20 tables, figures
☆ StealthRL: Reinforcement Learning Paraphrase Attacks for Multi-Detector Evasion of AI-Text Detectors
AI-text detectors face a critical robustness challenge: adversarial paraphrasing attacks that preserve semantics while evading detection. We introduce StealthRL, a reinforcement learning framework that stress-tests detector robustness under realistic adversarial conditions. StealthRL trains a paraphrase policy against a multi-detector ensemble using Group Relative Policy Optimization (GRPO) with LoRA adapters on Qwen3-4B, optimizing a composite reward that balances detector evasion with semantic preservation. We evaluate six attack settings (M0-M5) against three detector families (RoBERTa, FastDetectGPT, and Binoculars) at the security-relevant 1% false positive rate operating point. StealthRL achieves near-zero detection (0.001 mean TPR@1%FPR), reduces mean AUROC from 0.74 to 0.27, and attains a 99.9% attack success rate. Critically, attacks transfer to a held-out detector family not seen during training, revealing shared architectural vulnerabilities rather than detector-specific brittleness. We additionally conduct LLM-based quality evaluation via Likert scoring, analyze detector score distributions to explain why evasion succeeds, and provide per-detector AUROC with bootstrap confidence intervals. Our results expose significant robustness gaps in current AI-text detection and establish StealthRL as a principled adversarial evaluation protocol. Code and evaluation pipeline are publicly available at https://github.com/suraj-ranganath/StealthRL.
comment: Expanded version of a workshop submission. Code available
☆ Automatic In-Domain Exemplar Construction and LLM-Based Refinement of Multi-LLM Expansions for Query Expansion
Query expansion with large language models is promising but often relies on hand-crafted prompts, manually chosen exemplars, or a single LLM, making it non-scalable and sensitive to domain shift. We present an automated, domain-adaptive QE framework that builds in-domain exemplar pools by harvesting pseudo-relevant passages using a BM25-MonoT5 pipeline. A training-free cluster-based strategy selects diverse demonstrations, yielding strong and stable in-context QE without supervision. To further exploit model complementarity, we introduce a two-LLM ensemble in which two heterogeneous LLMs independently generate expansions and a refinement LLM consolidates them into one coherent expansion. Across TREC DL20, DBPedia, and SciFact, the refined ensemble delivers consistent and statistically significant gains over BM25, Rocchio, zero-shot, and fixed few-shot baselines. The framework offers a reproducible testbed for exemplar selection and multi-LLM generation, and a practical, label-free solution for real-world QE.
☆ Gesturing Toward Abstraction: Multimodal Convention Formation in Collaborative Physical Tasks
A quintessential feature of human intelligence is the ability to create ad hoc conventions over time to achieve shared goals efficiently. We investigate how communication strategies evolve through repeated collaboration as people coordinate on shared procedural abstractions. To this end, we conducted an online unimodal study (n = 98) using natural language to probe abstraction hierarchies. In a follow-up lab study (n = 40), we examined how multimodal communication (speech and gestures) changed during physical collaboration. Pairs used augmented reality to isolate their partner's hand and voice; one participant viewed a 3D virtual tower and sent instructions to the other, who built the physical tower. Participants became faster and more accurate by establishing linguistic and gestural abstractions and using cross-modal redundancy to emphasize key changes from previous interactions. Based on these findings, we extend probabilistic models of convention formation to multimodal settings, capturing shifts in modality preferences. Our findings and model provide building blocks for designing convention-aware intelligent agents situated in the physical world.
comment: Accepted at the 2026 CHI Conference on Human Factors in Computing Systems (CHI 2026). 15 pages
☆ Efficient and Stable Reinforcement Learning for Diffusion Language Models
Reinforcement Learning (RL) is crucial for unlocking the complex reasoning capabilities of Diffusion-based Large Language Models (dLLMs). However, applying RL to dLLMs faces unique challenges in efficiency and stability. To address these challenges, we propose Spatio-Temporal Pruning (STP), a framework designed to simultaneously improve the efficiency and stability of RL for dLLMs. STP compresses the redundancy in the generative process through: (1) \textit{spatial pruning}, which constrains the exploration space using static priors; and (2) \textit{temporal pruning}, which bypasses redundant late-stage refinement steps. Our theoretical analysis demonstrates that STP strictly reduces the variance of the log-likelihood estimation, thereby ensuring more stable policy updates. Extensive experiments demonstrate that STP surpasses state-of-the-art baselines in both efficiency and accuracy. Our code is available at https://github.com/Lolo1222/STP.
comment: 13 pages, 3 figures
☆ OmniReview: A Large-scale Benchmark and LLM-enhanced Framework for Realistic Reviewer Recommendation
Academic peer review remains the cornerstone of scholarly validation, yet the field faces some challenges in data and methods. From the data perspective, existing research is hindered by the scarcity of large-scale, verified benchmarks and oversimplified evaluation metrics that fail to reflect real-world editorial workflows. To bridge this gap, we present OmniReview, a comprehensive dataset constructed by integrating multi-source academic platforms encompassing comprehensive scholarly profiles through the disambiguation pipeline, yielding 202, 756 verified review records. Based on this data, we introduce a three-tier hierarchical evaluaion framework to assess recommendations from recall to precise expert identification. From the method perspective, existing embedding-based approaches suffer from the information bottleneck of semantic compression and limited interpretability. To resolve these method limitations, we propose Profiling Scholars with Multi-gate Mixture-of-Experts (Pro-MMoE), a novel framework that synergizes Large Language Models (LLMs) with Multi-task Learning. Specifically, it utilizes LLM-generated semantic profiles to preserve fine-grained expertise nuances and interpretability, while employing a Task-Adaptive MMoE architecture to dynamically balance conflicting evaluation goals. Comprehensive experiments demonstrate that Pro-MMoE achieves state-of-the-art performance across six of seven metrics, establishing a new benchmark for realistic reviewer recommendation.
☆ Scalable Delphi: Large Language Models for Structured Risk Estimation
Quantitative risk assessment in high-stakes domains relies on structured expert elicitation to estimate unobservable properties. The gold standard - the Delphi method - produces calibrated, auditable judgments but requires months of coordination and specialist time, placing rigorous risk assessment out of reach for most applications. We investigate whether Large Language Models (LLMs) can serve as scalable proxies for structured expert elicitation. We propose Scalable Delphi, adapting the classical protocol for LLMs with diverse expert personas, iterative refinement, and rationale sharing. Because target quantities are typically unobservable, we develop an evaluation framework based on necessary conditions: calibration against verifiable proxies, sensitivity to evidence, and alignment with human expert judgment. We evaluate in the domain of AI-augmented cybersecurity risk, using three capability benchmarks and independent human elicitation studies. LLM panels achieve strong correlations with benchmark ground truth (Pearson r=0.87-0.95), improve systematically as evidence is added, and align with human expert panels - in one comparison, closer to a human panel than the two human panels are to each other. This demonstrates that LLM-based elicitation can extend structured expert judgment to settings where traditional methods are infeasible, reducing elicitation time from months to minutes.
☆ DeepQuali: Initial results of a study on the use of large language models for assessing the quality of user stories
Generative artificial intelligence (GAI), specifically large language models (LLMs), are increasingly used in software engineering, mainly for coding tasks. However, requirements engineering - particularly requirements validation - has seen limited application of GAI. The current focus of using GAI for requirements is on eliciting, transforming, and classifying requirements, not on quality assessment. We propose and evaluate the LLM-based (GPT-4o) approach "DeepQuali", for assessing and improving requirements quality in agile software development. We applied it to projects in two small companies, where we compared LLM-based quality assessments with expert judgments. Experts also participated in walkthroughs of the solution, provided feedback, and rated their acceptance of the approach. Experts largely agreed with the LLM's quality assessments, especially regarding overall ratings and explanations. However, they did not always agree with the other experts on detailed ratings, suggesting that expertise and experience may influence judgments. Experts recognized the usefulness of the approach but criticized the lack of integration into their workflow. LLMs show potential in supporting software engineers with the quality assessment and improvement of requirements. The explicit use of quality models and explanatory feedback increases acceptance.
☆ Breaking the Simplification Bottleneck in Amortized Neural Symbolic Regression
Symbolic regression (SR) aims to discover interpretable analytical expressions that accurately describe observed data. Amortized SR promises to be much more efficient than the predominant genetic programming SR methods, but currently struggles to scale to realistic scientific complexity. We find that a key obstacle is the lack of a fast reduction of equivalent expressions to a concise normalized form. Amortized SR has addressed this by general-purpose Computer Algebra Systems (CAS) like SymPy, but the high computational cost severely limits training and inference speed. We propose SimpliPy, a rule-based simplification engine achieving a 100-fold speed-up over SymPy at comparable quality. This enables substantial improvements in amortized SR, including scalability to much larger training sets, more efficient use of the per-expression token budget, and systematic training set decontamination with respect to equivalent test expressions. We demonstrate these advantages in our Flash-ANSR framework, which achieves much better accuracy than amortized baselines (NeSymReS, E2E) on the FastSRB benchmark. Moreover, it performs on par with state-of-the-art direct optimization (PySR) while recovering more concise instead of more complex expressions with increasing inference budget.
comment: main text: 8 pages, 7 figures appendix: 12 pages, 11 figures code available at https://github.com/psaegert/simplipy and https://github.com/psaegert/flash-ansr
☆ Learning Potentials for Dynamic Matching and Application to Heart Transplantation
Each year, thousands of patients in need of heart transplants face life-threatening wait times due to organ scarcity. While allocation policies aim to maximize population-level outcomes, current approaches often fail to account for the dynamic arrival of organs and the composition of waitlisted candidates, thereby hampering efficiency. The United States is transitioning from rigid, rule-based allocation to more flexible data-driven models. In this paper, we propose a novel framework for non-myopic policy optimization in general online matching relying on potentials, a concept originally introduced for kidney exchange. We develop scalable and accurate ways of learning potentials that are higher-dimensional and more expressive than prior approaches. Our approach is a form of self-supervised imitation learning: the potentials are trained to mimic an omniscient algorithm that has perfect foresight. We focus on the application of heart transplant allocation and demonstrate, using real historical data, that our policies significantly outperform prior approaches -- including the current US status quo policy and the proposed continuous distribution framework -- in optimizing for population-level outcomes. Our analysis and methods come at a pivotal moment in US policy, as the current heart transplant allocation system is under review. We propose a scalable and theoretically grounded path toward more effective organ allocation.
☆ Whose Name Comes Up? Benchmarking and Intervention-Based Auditing of LLM-Based Scholar Recommendation
Large language models (LLMs) are increasingly used for academic expert recommendation. Existing audits typically evaluate model outputs in isolation, largely ignoring end-user inference-time interventions. As a result, it remains unclear whether failures such as refusals, hallucinations, and uneven coverage stem from model choice or deployment decisions. We introduce LLMScholarBench, a benchmark for auditing LLM-based scholar recommendation that jointly evaluates model infrastructure and end-user interventions across multiple tasks. LLMScholarBench measures both technical quality and social representation using nine metrics. We instantiate the benchmark in physics expert recommendation and audit 22 LLMs under temperature variation, representation-constrained prompting, and retrieval-augmented generation (RAG) via web search. Our results show that end-user interventions do not yield uniform improvements but instead redistribute error across dimensions. Higher temperature degrades validity, consistency, and factuality. Representation-constrained prompting improves diversity at the expense of factuality, while RAG primarily improves technical quality while reducing diversity and parity. Overall, end-user interventions reshape trade-offs rather than providing a general fix. We release code and data that can be adapted to other disciplines by replacing domain-specific ground truth and metrics.
comment: 28 pages: 8 pages in main (5 figures, 1 table), 20 pages in appendix (18 figures, 2 tables). under-review
☆ AnomSeer: Reinforcing Multimodal LLMs to Reason for Time-Series Anomaly Detection
Time-series anomaly detection (TSAD) with multimodal large language models (MLLMs) is an emerging area, yet a persistent challenge remains: MLLMs rely on coarse time-series heuristics but struggle with multi-dimensional, detailed reasoning, which is vital for understanding complex time-series data. We present AnomSeer to address this by reinforcing the model to ground its reasoning in precise, structural details of time series, unifying anomaly classification, localization, and explanation. At its core, an expert chain-of-thought trace is generated to provide a verifiable, fine-grained reasoning from classical analyses (e.g., statistical measures, frequency transforms). Building on this, we propose a novel time-series grounded policy optimization (TimerPO) that incorporates two additional components beyond standard reinforcement learning: a time-series grounded advantage based on optimal transport and an orthogonal projection to ensure this auxiliary granular signal does not interfere with the primary detection objective. Across diverse anomaly scenarios, AnomSeer, with Qwen2.5-VL-3B/7B-Instruct, outperforms larger commercial baselines (e.g., GPT-4o) in classification and localization accuracy, particularly on point- and frequency-driven exceptions. Moreover, it produces plausible time-series reasoning traces that support its conclusions.
comment: Preprint
☆ Understanding Dynamic Compute Allocation in Recurrent Transformers
Token-level adaptive computation seeks to reduce inference cost by allocating more computation to harder tokens and less to easier ones. However, prior work is primarily evaluated on natural-language benchmarks using task-level metrics, where token-level difficulty is unobservable and confounded with architectural factors, making it unclear whether compute allocation truly aligns with underlying complexity. We address this gap through three contributions. First, we introduce a complexity-controlled evaluation paradigm using algorithmic and synthetic language tasks with parameterized difficulty, enabling direct testing of token-level compute allocation. Second, we propose ANIRA, a unified recurrent Transformer framework that supports per-token variable-depth computation while isolating compute allocation decisions from other model factors. Third, we use this framework to conduct a systematic analysis of token-level adaptive computation across alignment with complexity, generalization, and decision timing. Our results show that compute allocation aligned with task complexity can emerge without explicit difficulty supervision, but such alignment does not imply algorithmic generalization: models fail to extrapolate to unseen input sizes despite allocating additional computation. We further find that early compute decisions rely on static structural cues, whereas online halting more closely tracks algorithmic execution state.
☆ FlattenGPT: Depth Compression for Transformer with Layer Flattening ICML 2026
Recent works have indicated redundancy across transformer blocks, prompting the research of depth compression to prune less crucial blocks. However, current ways of entire-block pruning suffer from risks of discarding meaningful cues learned in those blocks, leading to substantial performance degradation. As another line of model compression, channel pruning can better preserve performance, while it cannot reduce model depth and is challenged by inconsistent pruning ratios for individual layers. To pursue better model compression and acceleration, this paper proposes \textbf{FlattenGPT}, a novel way to detect and reduce depth-wise redundancies. By flatting two adjacent blocks into one, it compresses the network depth, meanwhile enables more effective parameter redundancy detection and removal. FlattenGPT allows to preserve the knowledge learned in all blocks, and remains consistent with the original transformer architecture. Extensive experiments demonstrate that FlattenGPT enhances model efficiency with a decent trade-off to performance. It outperforms existing pruning methods in both zero-shot accuracies and WikiText-2 perplexity across various model types and parameter sizes. On LLaMA-2/3 and Qwen-1.5 models, FlattenGPT retains 90-96\% of zero-shot performance with a compression ratio of 20\%. It also outperforms other pruning methods in accelerating LLM inference, making it promising for enhancing the efficiency of transformers.
comment: Submitted to ICML 2026
☆ Discovering Interpretable Algorithms by Decompiling Transformers to RASP
Recent work has shown that the computations of Transformers can be simulated in the RASP family of programming languages. These findings have enabled improved understanding of the expressive capacity and generalization abilities of Transformers. In particular, Transformers have been suggested to length-generalize exactly on problems that have simple RASP programs. However, it remains open whether trained models actually implement simple interpretable programs. In this paper, we present a general method to extract such programs from trained Transformers. The idea is to faithfully re-parameterize a Transformer as a RASP program and then apply causal interventions to discover a small sufficient sub-program. In experiments on small Transformers trained on algorithmic and formal language tasks, we show that our method often recovers simple and interpretable RASP programs from length-generalizing transformers. Our results provide the most direct evidence so far that Transformers internally implement simple RASP programs.
comment: 101 pages, 92 figures
☆ Deciding the Satisfiability of Combined Qualitative Constraint Networks
Among the various forms of reasoning studied in the context of artificial intelligence, qualitative reasoning makes it possible to infer new knowledge in the context of imprecise, incomplete information without numerical values. In this paper, we propose a formal framework unifying several forms of extensions and combinations of qualitative formalisms, including multi-scale reasoning, temporal sequences, and loose integrations. This framework makes it possible to reason in the context of each of these combinations and extensions, but also to study in a unified way the satisfiability decision and its complexity. In particular, we establish two complementary theorems guaranteeing that the satisfiability decision is polynomial, and we use them to recover the known results of the size-topology combination. We also generalize the main definition of qualitative formalism to include qualitative formalisms excluded from the definitions of the literature, important in the context of combinations.
☆ Dr. MAS: Stable Reinforcement Learning for Multi-Agent LLM Systems
Multi-agent LLM systems enable advanced reasoning and tool use via role specialization, yet reliable reinforcement learning (RL) post-training for such systems remains difficult. In this work, we theoretically pinpoint a key reason for training instability when extending group-based RL to multi-agent LLM systems. We show that under GRPO-style optimization, a global normalization baseline may deviate from diverse agents' reward distributions, which ultimately leads to gradient-norm instability. Based on this finding, we propose Dr. MAS, a simple and stable RL training recipe for multi-agent LLM systems. Dr. MAS uses an agent-wise remedy: normalizing advantages per agent using each agent's own reward statistics, which calibrates gradient scales and dramatically stabilizes training, both theoretically and empirically. Beyond the algorithm, Dr. MAS provides an end-to-end RL training framework for multi-agent LLM systems, supporting scalable orchestration, flexible per-agent LLM serving and optimization configs, and shared resource scheduling of LLM actor backends. We evaluate Dr. MAS on multi-agent math reasoning and multi-turn search benchmarks using Qwen2.5 and Qwen3 series models. Dr. MAS achieves clear gains over vanilla GRPO (e.g., +5.6\% avg@16 and +4.6\% pass@16 on math, and +15.2\% avg@16 and +13.1\% pass@16 on search) while largely eliminating gradient spikes. Moreover, it remains highly effective under heterogeneous agent-model assignments while improving efficiency.
comment: Preprint
☆ Learning the Value Systems of Societies with Preference-based Multi-objective Reinforcement Learning
Value-aware AI should recognise human values and adapt to the value systems (value-based preferences) of different users. This requires operationalization of values, which can be prone to misspecification. The social nature of values demands their representation to adhere to multiple users while value systems are diverse, yet exhibit patterns among groups. In sequential decision making, efforts have been made towards personalization for different goals or values from demonstrations of diverse agents. However, these approaches demand manually designed features or lack value-based interpretability and/or adaptability to diverse user preferences. We propose algorithms for learning models of value alignment and value systems for a society of agents in Markov Decision Processes (MDPs), based on clustering and preference-based multi-objective reinforcement learning (PbMORL). We jointly learn socially-derived value alignment models (groundings) and a set of value systems that concisely represent different groups of users (clusters) in a society. Each cluster consists of a value system representing the value-based preferences of its members and an approximately Pareto-optimal policy that reflects behaviours aligned with this value system. We evaluate our method against a state-of-the-art PbMORL algorithm and baselines on two MDPs with human values.
comment: 18 pages, 3 figures. To be published in proceedings of the 25th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2026). This is a full version that includes the supplementary material
☆ WildReward: Learning Reward Models from In-the-Wild Human Interactions
Reward models (RMs) are crucial for the training of large language models (LLMs), yet they typically rely on large-scale human-annotated preference pairs. With the widespread deployment of LLMs, in-the-wild interactions have emerged as a rich source of implicit reward signals. This raises the question: Can we develop reward models directly from in-the-wild interactions? In this work, we explore this possibility by adopting WildChat as an interaction source and proposing a pipeline to extract reliable human feedback, yielding 186k high-quality instances for training WildReward via ordinal regression directly on user feedback without preference pairs. Extensive experiments demonstrate that WildReward achieves comparable or even superior performance compared to conventional reward models, with improved calibration and cross-sample consistency. We also observe that WildReward benefits directly from user diversity, where more users yield stronger reward models. Finally, we apply WildReward to online DPO training and observe significant improvements across various tasks. Code and data are released at https://github.com/THU-KEG/WildReward.
☆ Affective Flow Language Model for Emotional Support Conversation
Large language models (LLMs) have been widely applied to emotional support conversation (ESC). However, complex multi-turn support remains challenging.This is because existing alignment schemes rely on sparse outcome-level signals, thus offering limited supervision for intermediate strategy decisions. To fill this gap, this paper proposes affective flow language model for emotional support conversation (AFlow), a framework that introduces fine-grained supervision on dialogue prefixes by modeling a continuous affective flow along multi-turn trajectories. AFlow can estimate intermediate utility over searched trajectories and learn preference-consistent strategy transitions. To improve strategy coherence and empathetic response quality, a subpath-level flow-balance objective is presented to propagate preference signals to intermediate states. Experiment results show consistent and significant improvements over competitive baselines in diverse emotional contexts. Remarkably, AFlow with a compact open-source backbone outperforms proprietary LMMs such as GPT-4o and Claude-3.5 on major ESC metrics. Our code is available at https://github.com/chzou25-lgtm/AffectiveFlow.
comment: 19 pages, 7 figures
☆ Permissive-Washing in the Open AI Supply Chain: A Large-Scale Audit of License Integrity
Permissive licenses like MIT, Apache-2.0, and BSD-3-Clause dominate open-source AI, signaling that artifacts like models, datasets, and code can be freely used, modified, and redistributed. However, these licenses carry mandatory requirements: include the full license text, provide a copyright notice, and preserve upstream attribution, that remain unverified at scale. Failure to meet these conditions can place reuse outside the scope of the license, effectively leaving AI artifacts under default copyright for those uses and exposing downstream users to litigation. We call this phenomenon ``permissive washing'': labeling AI artifacts as free to use, while omitting the legal documentation required to make that label actionable. To assess how widespread permissive washing is in the AI supply chain, we empirically audit 124,278 dataset $\rightarrow$ model $\rightarrow$ application supply chains, spanning 3,338 datasets, 6,664 models, and 28,516 applications across Hugging Face and GitHub. We find that an astonishing 96.5\% of datasets and 95.8\% of models lack the required license text, only 2.3\% of datasets and 3.2\% of models satisfy both license text and copyright requirements, and even when upstream artifacts provide complete licensing evidence, attribution rarely propagates downstream: only 27.59\% of models preserve compliant dataset notices and only 5.75\% of applications preserve compliant model notices (with just 6.38\% preserving any linked upstream notice). Practitioners cannot assume permissive labels confer the rights they claim: license files and notices, not metadata, are the source of legal truth. To support future research, we release our full audit dataset and reproducible pipeline.
comment: 13 pages, 2 figures, 10 tables
☆ Negative-Aware Diffusion Process for Temporal Knowledge Graph Extrapolation
Temporal Knowledge Graph (TKG) reasoning seeks to predict future missing facts from historical evidence. While diffusion models (DM) have recently gained attention for their ability to capture complex predictive distributions, two gaps remain: (i) the generative path is conditioned only on positive evidence, overlooking informative negative context, and (ii) training objectives are dominated by cross-entropy ranking, which improves candidate ordering but provides little supervision over the calibration of the denoised embedding. To bridge this gap, we introduce Negative-Aware Diffusion model for TKG Extrapolation (NADEx). Specifically, NADEx encodes subject-centric histories of entities, relations and temporal intervals into sequential embeddings. NADEx perturbs the query object in the forward process and reconstructs it in reverse with a Transformer denoiser conditioned on the temporal-relational context. We further derive a cosine-alignment regularizer derived from batch-wise negative prototypes, which tightens the decision boundary against implausible candidates. Comprehensive experiments on four public TKG benchmarks demonstrate that NADEx delivers state-of-the-art performance.
☆ $\texttt{lrnnx}$: A library for Linear RNNs EACL
Linear recurrent neural networks (LRNNs) provide a structured approach to sequence modeling that bridges classical linear dynamical systems and modern deep learning, offering both expressive power and theoretical guarantees on stability and trainability. In recent years, multiple LRNN-based architectures have been proposed, each introducing distinct parameterizations, discretization schemes, and implementation constraints. However, existing implementations are fragmented across different software frameworks, often rely on framework-specific optimizations, and in some cases require custom CUDA kernels or lack publicly available code altogether. As a result, using, comparing, or extending LRNNs requires substantial implementation effort. To address this, we introduce $\texttt{lrnnx}$, a unified software library that implements several modern LRNN architectures under a common interface. The library exposes multiple levels of control, allowing users to work directly with core components or higher-level model abstractions. $\texttt{lrnnx}$ aims to improve accessibility, reproducibility, and extensibility of LRNN research and applications. We make our code available under a permissive MIT license.
comment: EACL Student Research Workshop 2026
☆ Root Cause Analysis Method Based on Large Language Models with Residual Connection Structures
Root cause localization remain challenging in complex and large-scale microservice architectures. The complex fault propagation among microservices and the high dimensionality of telemetry data, including metrics, logs, and traces, limit the effectiveness of existing root cause analysis (RCA) methods. In this paper, a residual-connection-based RCA method using large language model (LLM), named RC-LLM, is proposed. A residual-like hierarchical fusion structure is designed to integrate multi-source telemetry data, while the contextual reasoning capability of large language models is leveraged to model temporal and cross-microservice causal dependencies. Experimental results on CCF-AIOps microservice datasets demonstrate that RC-LLM achieves strong accuracy and efficiency in root cause analysis.
☆ Addressing data annotation scarcity in Brain Tumor Segmentation on 3D MRI scan Using a Semi-Supervised Teacher-Student Framework
Accurate brain tumor segmentation from MRI is limited by expensive annotations and data heterogeneity across scanners and sites. We propose a semi-supervised teacher-student framework that combines an uncertainty-aware pseudo-labeling teacher with a progressive, confidence-based curriculum for the student. The teacher produces probabilistic masks and per-pixel uncertainty; unlabeled scans are ranked by image-level confidence and introduced in stages, while a dual-loss objective trains the student to learn from high-confidence regions and unlearn low-confidence ones. Agreement-based refinement further improves pseudo-label quality. On BraTS 2021, validation DSC increased from 0.393 (10% data) to 0.872 (100%), with the largest gains in early stages, demonstrating data efficiency. The teacher reached a validation DSC of 0.922, and the student surpassed the teacher on tumor subregions (e.g., NCR/NET 0.797 and Edema 0.980); notably, the student recovered the Enhancing class (DSC 0.620) where the teacher failed. These results show that confidence-driven curricula and selective unlearning provide robust segmentation under limited supervision and noisy pseudo-labels.
comment: 10 pages, 7 figures. Submitted to IEEE Journal of Biomedical and Health Informatics (JBHI)
☆ The Use of AI Tools to Develop and Validate Q-Matrices
Constructing a Q-matrix is a critical but labor-intensive step in cognitive diagnostic modeling (CDM). This study investigates whether AI tools (i.e., general language models) can support Q-matrix development by comparing AI-generated Q-matrices with a validated Q-matrix from Li and Suen (2013) for a reading comprehension test. In May 2025, multiple AI models were provided with the same training materials as human experts. Agreement among AI-generated Q-matrices, the validated Q-matrix, and human raters' Q-matrices was assessed using Cohen's kappa. Results showed substantial variation across AI models, with Google Gemini 2.5 Pro achieving the highest agreement (Kappa = 0.63) with the validated Q-matrix, exceeding that of all human experts. A follow-up analysis in January 2026 using newer AI versions, however, revealed lower agreement with the validated Q-matrix. Implications and directions for future research are discussed.
comment: An earlier version of this study was presented at the Psychometric Society Meeting held in July 2025 in Minneapolis, USA
Multimodal Learning for Arcing Detection in Pantograph-Catenary Systems
The pantograph-catenary interface is essential for ensuring uninterrupted and reliable power delivery in electrified rail systems. However, electrical arcing at this interface poses serious risks, including accelerated wear of contact components, degraded system performance, and potential service disruptions. Detecting arcing events at the pantograph-catenary interface is challenging due to their transient nature, noisy operating environment, data scarcity, and the difficulty of distinguishing arcs from other similar transient phenomena. To address these challenges, we propose a novel multimodal framework that combines high-resolution image data with force measurements to more accurately and robustly detect arcing events. First, we construct two arcing detection datasets comprising synchronized visual and force measurements. One dataset is built from data provided by the Swiss Federal Railways (SBB), and the other is derived from publicly available videos of arcing events in different railway systems and synthetic force data that mimic the characteristics observed in the real dataset. Leveraging these datasets, we propose MultiDeepSAD, an extension of the DeepSAD algorithm for multiple modalities with a new loss formulation. Additionally, we introduce tailored pseudo-anomaly generation techniques specific to each data type, such as synthetic arc-like artifacts in images and simulated force irregularities, to augment training data and improve the discriminative ability of the model. Through extensive experiments and ablation studies, we demonstrate that our framework significantly outperforms baseline approaches, exhibiting enhanced sensitivity to real arcing events even under domain shifts and limited availability of real arcing observations.
☆ Dynamics Within Latent Chain-of-Thought: An Empirical Study of Causal Structure
Latent or continuous chain-of-thought methods replace explicit textual rationales with a number of internal latent steps, but these intermediate computations are difficult to evaluate beyond correlation-based probes. In this paper, we view latent chain-of-thought as a manipulable causal process in representation space by modeling latent steps as variables in a structural causal model (SCM) and analyzing their effects through step-wise $\mathrm{do}$-interventions. We study two representative paradigms (i.e., Coconut and CODI) on both mathematical and general reasoning tasks to investigate three key questions: (1) which steps are causally necessary for correctness and when answers become decidable early; (2) how does influence propagate across steps, and how does this structure compare to explicit CoT; and (3) do intermediate trajectories retain competing answer modes, and how does output-level commitment differ from representational commitment across steps. We find that latent-step budgets behave less like homogeneous extra depth and more like staged functionality with non-local routing, and we identify a persistent gap between early output bias and late representational commitment. These results motivate mode-conditional and stability-aware analyses -- and corresponding training/decoding objectives -- as more reliable tools for interpreting and improving latent reasoning systems.
comment: 22 pages
☆ Default Machine Learning Hyperparameters Do Not Provide Informative Initialization for Bayesian Optimization
Bayesian Optimization (BO) is a standard tool for hyperparameter tuning thanks to its sample efficiency on expensive black-box functions. While most BO pipelines begin with uniform random initialization, default hyperparameter values shipped with popular ML libraries such as scikit-learn encode implicit expert knowledge and could serve as informative starting points that accelerate convergence. This hypothesis, despite its intuitive appeal, has remained largely unexamined. We formalize the idea by initializing BO with points drawn from truncated Gaussian distributions centered at library defaults and compare the resulting trajectories against a uniform-random baseline. We conduct an extensive empirical evaluation spanning three BO back-ends (BoTorch, Optuna, Scikit-Optimize), three model families (Random Forests, Support Vector Machines, Multilayer Perceptrons), and five benchmark datasets covering classification and regression tasks. Performance is assessed through convergence speed and final predictive quality, and statistical significance is determined via one-sided binomial tests. Across all conditions, default-informed initialization yields no statistically significant advantage over purely random sampling, with p-values ranging from 0.141 to 0.908. A sensitivity analysis on the prior variance confirms that, while tighter concentration around the defaults improves early evaluations, this transient benefit vanishes as optimization progresses, leaving final performance unchanged. Our results provide no evidence that default hyperparameters encode useful directional information for optimization. We therefore recommend that practitioners treat hyperparameter tuning as an integral part of model development and favor principled, data-driven search strategies over heuristic reliance on library defaults.
☆ FreqLens: Interpretable Frequency Attribution for Time Series Forecasting
Time series forecasting models often lack interpretability, limiting their adoption in domains requiring explainable predictions. We propose \textsc{FreqLens}, an interpretable forecasting framework that discovers and attributes predictions to learnable frequency components. \textsc{FreqLens} introduces two key innovations: (1) \emph{learnable frequency discovery} -- frequency bases are parameterized via sigmoid mapping and learned from data with diversity regularization, enabling automatic discovery of dominant periodic patterns without domain knowledge; and (2) \emph{axiomatic frequency attribution} -- a theoretically grounded framework that provably satisfies Completeness, Faithfulness, Null-Frequency, and Symmetry axioms, with per-frequency attributions equivalent to Shapley values. On Traffic and Weather datasets, \textsc{FreqLens} achieves competitive or superior performance while discovering physically meaningful frequencies: all 5 independent runs discover the 24-hour daily cycle ($24.6 \pm 0.1$h, 2.5\% error) and 12-hour half-daily cycle ($11.8 \pm 0.1$h, 1.6\% error) on Traffic, and weekly cycles ($10\times$ longer than the input window) on Weather. These results demonstrate genuine frequency-level knowledge discovery with formal theoretical guarantees on attribution quality.
☆ Taming Scylla: Understanding the multi-headed agentic daemon of the coding seas
LLM-based tools are automating more software development tasks at a rapid pace, but there is no rigorous way to evaluate how different architectural choices -- prompts, skills, tools, multi-agent setups -- materially affect both capability and cost. This paper introduces Scylla, an evaluation framework for benchmarking agentic coding tools through structured ablation studies that uses seven testing tiers (T0-T6) progressively adding complexity to isolate what directly influences results and how. The key metric is Cost-of-Pass (CoP): the expected dollar cost to get one correct solution, which directly quantifies the trade-off between complexity and efficiency. The framework is model-agnostic, designed to work with any CLI tool; this paper demonstrates it with Claude Sonnet 4.5, using multiple LLM judges (Opus 4.5, Sonnet 4.5, Haiku 4.5) from the same vendor for evaluation consensus, where judges score results using direct tests, human-designed LLM-evaluated rubrics, and qualitative assessment. The result is a reproducible framework that quantifies trade-offs between agent complexity and actual outcomes, suggesting that architectural complexity does not always improve quality.
comment: 32 Pages, 7 Figures
☆ Efficient Brain Extraction of MRI Scans with Mild to Moderate Neuropathology
Skull stripping magnetic resonance images (MRI) of the human brain is an important process in many image processing techniques, such as automatic segmentation of brain structures. Numerous methods have been developed to perform this task, however, they often fail in the presence of neuropathology and can be inconsistent in defining the boundary of the brain mask. Here, we propose a novel approach to skull strip T1-weighted images in a robust and efficient manner, aiming to consistently segment the outer surface of the brain, including the sulcal cerebrospinal fluid (CSF), while excluding the full extent of the subarachnoid space and meninges. We train a modified version of the U-net on silver-standard ground truth data using a novel loss function based on the signed-distance transform (SDT). We validate our model both qualitatively and quantitatively using held-out data from the training dataset, as well as an independent external dataset. The brain masks used for evaluation partially or fully include the subarachnoid space, which may introduce bias into the comparison; nonetheless, our model demonstrates strong performance on the held-out test data, achieving a consistent mean Dice similarity coefficient (DSC) of 0.964$\pm$0.006 and an average symmetric surface distance (ASSD) of 1.4mm$\pm$0.2mm. Performance on the external dataset is comparable, with a DSC of 0.958$\pm$0.006 and an ASSD of 1.7$\pm$0.2mm. Our method achieves performance comparable to or better than existing state-of-the-art methods for brain extraction, particularly in its highly consistent preservation of the brain's outer surface. The method is publicly available on GitHub.
comment: Accepted for publication in the Proceedings of SPIE Medical Imaging 2026
☆ Belief Offloading in Human-AI Interaction
What happens when people's beliefs are derived from information provided by an LLM? People's use of LLM chatbots as thought partners can contribute to cognitive offloading, which can have adverse effects on cognitive skills in cases of over-reliance. This paper defines and investigates a particular kind of cognitive offloading in human-AI interaction, "belief offloading," in which people's processes of forming and upholding beliefs are offloaded onto an AI system with downstream consequences on their behavior and the nature of their system of beliefs. Drawing on philosophy, psychology, and computer science research, we clarify the boundary conditions under which belief offloading occurs and provide a descriptive taxonomy of belief offloading and its normative implications. We close with directions for future work to assess the potential for and consequences of belief offloading in human-AI interaction.
☆ On the Expressive Power of GNNs for Boolean Satisfiability ICLR 2026
Machine learning approaches to solving Boolean Satisfiability (SAT) aim to replace handcrafted heuristics with learning-based models. Graph Neural Networks have emerged as the main architecture for SAT solving, due to the natural graph representation of Boolean formulas. We analyze the expressive power of GNNs for SAT solving through the lens of the Weisfeiler-Leman (WL) test. As our main result, we prove that the full WL hierarchy cannot, in general, distinguish between satisfiable and unsatisfiable instances. We show that indistinguishability under higher-order WL carries over to practical limitations for WL-bounded solvers that set variables sequentially. We further study the expressivity required for several important families of SAT instances, including regular, random and planar instances. To quantify expressivity needs in practice, we conduct experiments on random instances from the G4SAT benchmark and industrial instances from the International SAT Competition. Our results suggest that while random instances are largely distinguishable, industrial instances often require more expressivity to predict a satisfying assignment.
comment: Accepted at ICLR 2026
☆ Finite-State Controllers for (Hidden-Model) POMDPs using Deep Reinforcement Learning
Solving partially observable Markov decision processes (POMDPs) requires computing policies under imperfect state information. Despite recent advances, the scalability of existing POMDP solvers remains limited. Moreover, many settings require a policy that is robust across multiple POMDPs, further aggravating the scalability issue. We propose the Lexpop framework for POMDP solving. Lexpop (1) employs deep reinforcement learning to train a neural policy, represented by a recurrent neural network, and (2) constructs a finite-state controller mimicking the neural policy through efficient extraction methods. Crucially, unlike neural policies, such controllers can be formally evaluated, providing performance guarantees. We extend Lexpop to compute robust policies for hidden-model POMDPs (HM-POMDPs), which describe finite sets of POMDPs. We associate every extracted controller with its worst-case POMDP. Using a set of such POMDPs, we iteratively train a robust neural policy and consequently extract a robust controller. Our experiments show that on problems with large state spaces, Lexpop outperforms state-of-the-art solvers for POMDPs as well as HM-POMDPs.
comment: 17 pages (8 main paper, 2 references, 7 appendix). 3 figures in the main paper, 3 figures in the appendix. Accepted AAMAS'26 submission
☆ Artifact Reduction in Undersampled 3D Cone-Beam CTs using a Hybrid 2D-3D CNN Framework
Undersampled CT volumes minimize acquisition time and radiation exposure but introduce artifacts degrading image quality and diagnostic utility. Reducing these artifacts is critical for high-quality imaging. We propose a computationally efficient hybrid deep-learning framework that combines the strengths of 2D and 3D models. First, a 2D U-Net operates on individual slices of undersampled CT volumes to extract feature maps. These slice-wise feature maps are then stacked across the volume and used as input to a 3D decoder, which utilizes contextual information across slices to predict an artifact-free 3D CT volume. The proposed two-stage approach balances the computational efficiency of 2D processing with the volumetric consistency provided by 3D modeling. The results show substantial improvements in inter-slice consistency in coronal and sagittal direction with low computational overhead. This hybrid framework presents a robust and efficient solution for high-quality 3D CT image post-processing. The code of this project can be found on github: https://github.com/J-3TO/2D-3DCNN_sparseview/.
☆ QUOKA: Query-Oriented KV Selection For Efficient LLM Prefill
We present QUOKA: Query-oriented KV selection for efficient attention, a training-free and hardware agnostic sparse attention algorithm for accelerating transformer inference under chunked prefill. While many queries focus on a smaller group of keys in the attention operator, we observe that queries with low cosine similarity with respect to the mean query interact more strongly with more keys and have the greatest contribution to final attention logits. By prioritizing these low cosine similarity queries, the behavior of full attention during the prefill stage can be closely approximated. QUOKA leverages this observation, accelerating attention by (1) first retaining a small set of representative queries and (2) then subselectin the keys most aligned with those queries. Through experiments on Needle-In-A-Haystack, LongBench, RULER, and Math500, we show that, while realizing a 3x reduction in time-to-first-token, 5x speedup in attention on Nvidia GPUs and up to nearly a 7x speedup on Intel Xeon CPUs, QUOKA achieves near-baseline accuracy, utilizing 88% fewer key-value pairs per attention evaluation.
☆ Zero-shot System for Automatic Body Region Detection for Volumetric CT and MR Images
Reliable identification of anatomical body regions is a prerequisite for many automated medical imaging workflows, yet existing solutions remain heavily dependent on unreliable DICOM metadata. Current solutions mainly use supervised learning, which limits their applicability in many real-world scenarios. In this work, we investigate whether body region detection in volumetric CT and MR images can be achieved in a fully zero-shot manner by using knowledge embedded in large pre-trained foundation models. We propose and systematically evaluate three training-free pipelines: (1) a segmentation-driven rule-based system leveraging pre-trained multi-organ segmentation models, (2) a Multimodal Large Language Model (MLLM) guided by radiologist-defined rules, and (3) a segmentation-aware MLLM that combines visual input with explicit anatomical evidence. All methods are evaluated on 887 heterogeneous CT and MR scans with manually verified anatomical region labels. The segmentation-driven rule-based approach achieves the strongest and most consistent performance, with weighted F1-scores of 0.947 (CT) and 0.914 (MR), demonstrating robustness across modalities and atypical scan coverage. The MLLM performs competitively in visually distinctive regions, while the segmentation-aware MLLM reveals fundamental limitations.
comment: 8 pages, 5 figures, 5 tables
☆ Exploring SAIG Methods for an Objective Evaluation of XAI
The evaluation of eXplainable Artificial Intelligence (XAI) methods is a rapidly growing field, characterized by a wide variety of approaches. This diversity highlights the complexity of the XAI evaluation, which, unlike traditional AI assessment, lacks a universally correct ground truth for the explanation, making objective evaluation challenging. One promising direction to address this issue involves the use of what we term Synthetic Artificial Intelligence Ground truth (SAIG) methods, which generate artificial ground truths to enable the direct evaluation of XAI techniques. This paper presents the first review and analysis of SAIG methods. We introduce a novel taxonomy to classify these approaches, identifying seven key features that distinguish different SAIG methods. Our comparative study reveals a concerning lack of consensus on the most effective XAI evaluation techniques, underscoring the need for further research and standardization in this area.
☆ Intermediate Results on the Complexity of STRIPS$_{1}^{1}$
This paper is based on Bylander's results on the computational complexity of propositional STRIPS planning. He showed that when only ground literals are permitted, determining plan existence is PSPACE-complete even if operators are limited to two preconditions and two postconditions. While NP-hardness is settled, it is unknown whether propositional STRIPS with operators that only have one precondition and one effect is NP-complete. We shed light on the question whether this small solution hypothesis for STRIPS$^1_1$ is true, calling a SAT solver for small instances, introducing the literal graph, and mapping it to Petri nets.
☆ Why do we Trust Chatbots? From Normative Principles to Behavioral Drivers
As chatbots increasingly blur the boundary between automated systems and human conversation, the foundations of trust in these systems warrant closer examination. While regulatory and policy frameworks tend to define trust in normative terms, the trust users place in chatbots often emerges from behavioral mechanisms. In many cases, this trust is not earned through demonstrated trustworthiness but is instead shaped by interactional design choices that leverage cognitive biases to influence user behavior. Based on this observation, we propose reframing chatbots not as companions or assistants, but as highly skilled salespeople whose objectives are determined by the deploying organization. We argue that the coexistence of competing notions of "trust" under a shared term obscures important distinctions between psychological trust formation and normative trustworthiness. Addressing this gap requires further research and stronger support mechanisms to help users appropriately calibrate trust in conversational AI systems.
☆ Technosocial risks of ideal emotion recognition technologies: A defense of the (social) value of emotional expressions
The prospect of AI systems that I call ideal emotion recognition technologies (ERTs) is often defended on the assumption that social life would benefit from increased affective transparency. This paper challenges that assumption by examining the technosocial risks posed by ideal ERTs, understood as multimodal systems capable of reliably inferring inner affective states in real time. Drawing on philosophical accounts of emotional expression and social practice, as well as empirical work in affective science and social psychology, I argue that the appeal of such systems rests on a misunderstanding of the social functions of emotional expression. Emotional expressions function not only as read-outs of inner states, but also as tools for coordinating action, enabling moral repair, sustaining interpersonal trust, and supporting collective norms. These functions depend on a background of partial opacity and epistemic friction. When deployed in socially authoritative or evaluative contexts, ideal ERTs threaten this expressive space by collapsing epistemic friction, displacing relational meaning with technology-mediated affective profiles, and narrowing the space for aspirational and role-sensitive expressions. The result is a drift towards affective determinism and ambient forms of affective auditing, which undermine both social cohesion and individual agency. I argue that, although it is intuitive to think that increasing accuracy would legitimise such systems, in the case of ERTs accuracy does not straightforwardly justify their deployment, and may, in some contexts, provide a reason for regulatory restraint. I conclude by defending a function-first regulatory approach that treats expressive discretion and intentional emotional expression as constitutive of certain social goods, and that accordingly seeks to protect these goods from excessive affective legibility.
comment: 12 pages
☆ PBLean: Pseudo-Boolean Proof Certificates for Lean 4
We present PBLean, a method for importing VeriPB pseudo-Boolean (PB) proof certificates into Lean 4. Key to our approach is reflection: a Boolean checker function whose soundness is fully proved in Lean and executed as compiled native code. Our method scales to proofs with tens of thousands of steps that would exhaust memory under explicit proof-term construction. Our checker supports all VeriPB kernel rules, including cutting-plane derivations and proof-by-contradiction subproofs. In contrast to external verified checkers that produce verdicts, our integration yields Lean theorems that can serve as composable lemmas in larger formal developments. To derive theorems about the original combinatorial problems rather than about PB constraints alone, we support verified encodings. This closes the trust gap between solver output and problem semantics since the constraint translation and its correctness proof are both formalized in Lean. We demonstrate the approach on various combinatorial problems.
☆ CompilerKV: Risk-Adaptive KV Compression via Offline Experience Compilation
Large Language Models (LLMs) in long-context scenarios are severely constrained by the linear growth of Key-Value (KV) cache memory. Existing KV compression methods rely either on static thresholds and attention-only heuristics or on coarse memory budget allocation. Under tight memory budgets, these methods overlook two key factors: prompt-dependent variation in compression risk and functional heterogeneity across attention heads, which destabilize token selection and lead to tail failures. To address these challenges, we propose CompilerKV, a risk-adaptive and head-aware compression framework that compiles offline experience into reusable decision tables for prefill-only deployment. CompilerKV integrates two key synergistic components: (i) a Head Heterogeneity Table, learned via offline contextual bandits, which assigns head-specific reliability weights to govern functional differences across attention heads explicitly; and (ii) a Risk-Adaptive Threshold Gating mechanism that jointly models attention entropy and local perplexity, transforming prompt-level risk into deployable retention thresholds. Experiments on LongBench show CompilerKV dominates SOTA methods under a 512-token budget, recovering 97.7\% of FullKV performance while achieving up to +5.2 points gain over the strongest competitor.
☆ LLaDA2.1: Speeding Up Text Diffusion via Token Editing
While LLaDA2.0 showcased the scaling potential of 100B-level block-diffusion models and their inherent parallelization, the delicate equilibrium between decoding speed and generation quality has remained an elusive frontier. Today, we unveil LLaDA2.1, a paradigm shift designed to transcend this trade-off. By seamlessly weaving Token-to-Token (T2T) editing into the conventional Mask-to-Token (M2T) scheme, we introduce a joint, configurable threshold-decoding scheme. This structural innovation gives rise to two distinct personas: the Speedy Mode (S Mode), which audaciously lowers the M2T threshold to bypass traditional constraints while relying on T2T to refine the output; and the Quality Mode (Q Mode), which leans into conservative thresholds to secure superior benchmark performances with manageable efficiency degrade. Furthering this evolution, underpinned by an expansive context window, we implement the first large-scale Reinforcement Learning (RL) framework specifically tailored for dLLMs, anchored by specialized techniques for stable gradient estimation. This alignment not only sharpens reasoning precision but also elevates instruction-following fidelity, bridging the chasm between diffusion dynamics and complex human intent. We culminate this work by releasing LLaDA2.1-Mini (16B) and LLaDA2.1-Flash (100B). Across 33 rigorous benchmarks, LLaDA2.1 delivers strong task performance and lightning-fast decoding speed. Despite its 100B volume, on coding tasks it attains an astounding 892 TPS on HumanEval+, 801 TPS on BigCodeBench, and 663 TPS on LiveCodeBench.
comment: 11 pages, 3 figures
☆ 6G-Bench: An Open Benchmark for Semantic Communication and Network-Level Reasoning with Foundation Models in AI-Native 6G Networks
This paper introduces 6G-Bench, an open benchmark for evaluating semantic communication and network-level reasoning in AI-native 6G networks. 6G-Bench defines a taxonomy of 30 decision-making tasks (T1--T30) extracted from ongoing 6G and AI-agent standardization activities in 3GPP, IETF, ETSI, ITU-T, and the O-RAN Alliance, and organizes them into five standardization-aligned capability categories. Starting from 113,475 scenarios, we generate a balanced pool of 10,000 very-hard multiple-choice questions using task-conditioned prompts that enforce multi-step quantitative reasoning under uncertainty and worst-case regret minimization over multi-turn horizons. After automated filtering and expert human validation, 3,722 questions are retained as a high-confidence evaluation set, while the full pool is released to support training and fine-tuning of 6G-specialized models. Using 6G-Bench, we evaluate 22 foundation models spanning dense and mixture-of-experts architectures, short- and long-context designs (up to 1M tokens), and both open-weight and proprietary systems. Across models, deterministic single-shot accuracy (pass@1) spans a wide range from 0.22 to 0.82, highlighting substantial variation in semantic reasoning capability. Leading models achieve intent and policy reasoning accuracy in the range 0.87--0.89, while selective robustness analysis on reasoning-intensive tasks shows pass@5 values ranging from 0.20 to 0.91. To support open science and reproducibility, we release the 6G-Bench dataset on GitHub: https://github.com/maferrag/6G-Bench
☆ Equalized Generative Treatment: Matching f-divergences for Fairness in Generative Models
Fairness is a crucial concern for generative models, which not only reflect but can also amplify societal and cultural biases. Existing fairness notions for generative models are largely adapted from classification and focus on balancing the probability of generating samples from each sensitive group. We show that such criteria are brittle, as they can be met even when different sensitive groups are modeled with widely varying quality. To address this limitation, we introduce a new fairness definition for generative models, termed as equalized generative treatment (EGT), which requires comparable generation quality across all sensitive groups, with quality measured via a reference f-divergence. We further analyze the trade-offs induced by EGT, demonstrating that enforcing fairness constraints necessarily couples the overall model quality to that of the most challenging group to approximate. This indicates that a simple yet efficient min-max fine-tuning method should be able to balance f-divergences across sensitive groups to satisfy EGT. We validate this theoretical insight through a set of experiments on both image and text generation tasks. We demonstrate that min-max methods consistently achieve fairer outcomes compared to other approaches from the literature, while maintaining competitive overall performance for both tasks.
☆ LEFT: Learnable Fusion of Tri-view Tokens for Unsupervised Time Series Anomaly Detection
As a fundamental data mining task, unsupervised time series anomaly detection (TSAD) aims to build a model for identifying abnormal timestamps without assuming the availability of annotations. A key challenge in unsupervised TSAD is that many anomalies are too subtle to exhibit detectable deviation in any single view (e.g., time domain), and instead manifest as inconsistencies across multiple views like time, frequency, and a mixture of resolutions. However, most cross-view methods rely on feature or score fusion and do not enforce analysis-synthesis consistency, meaning the frequency branch is not required to reconstruct the time signal through an inverse transform, and vice versa. In this paper, we present Learnable Fusion of Tri-view Tokens (LEFT), a unified unsupervised TSAD framework that models anomalies as inconsistencies across complementary representations. LEFT learns feature tokens from three views of the same input time series: frequency-domain tokens that embed periodicity information, time-domain tokens that capture local dynamics, and multi-scale tokens that learns abnormal patterns at varying time series granularities. By learning a set of adaptive Nyquist-constrained spectral filters, the original time series is rescaled into multiple resolutions and then encoded, allowing these multi-scale tokens to complement the extracted frequency- and time-domain information. When generating the fused representation, we introduce a novel objective that reconstructs fine-grained targets from coarser multi-scale structure, and put forward an innovative time-frequency cycle consistency constraint to explicitly regularize cross-view agreement. Experiments on real-world benchmarks show that LEFT yields the best detection accuracy against SOTA baselines, while achieving a 5x reduction on FLOPs and 8x speed-up for training.
☆ We Should Separate Memorization from Copyright
The widespread use of foundation models has introduced a new risk factor of copyright issue. This issue is leading to an active, lively and on-going debate amongst the data-science community as well as amongst legal scholars. Where claims and results across both sides are often interpreted in different ways and leading to different implications. Our position is that much of the technical literature relies on traditional reconstruction techniques that are not designed for copyright analysis. As a result, memorization and copying have been conflated across both technical and legal communities and in multiple contexts. We argue that memorization, as commonly studied in data science, should not be equated with copying and should not be used as a proxy for copyright infringement. We distinguish technical signals that meaningfully indicate infringement risk from those that instead reflect lawful generalization or high-frequency content. Based on this analysis, we advocate for an output-level, risk-based evaluation process that aligns technical assessments with established copyright standards and provides a more principled foundation for research, auditing, and policy.
☆ Debate is efficient with your time
AI safety via debate uses two competing models to help a human judge verify complex computational tasks. Previous work has established what problems debate can solve in principle, but has not analysed the practical cost of human oversight: how many queries must the judge make to the debate transcript? We introduce Debate Query Complexity}(DQC), the minimum number of bits a verifier must inspect to correctly decide a debate. Surprisingly, we find that PSPACE/poly (the class of problems which debate can efficiently decide) is precisely the class of functions decidable with O(log n) queries. This characterisation shows that debate is remarkably query-efficient: even for highly complex problems, logarithmic oversight suffices. We also establish that functions depending on all their input bits require Omega(log n) queries, and that any function computable by a circuit of size s satisfies DQC(f) <= log(s) + 3. Interestingly, this last result implies that proving DQC lower bounds of log(n) + 6 for languages in P would yield new circuit lower bounds, connecting debate query complexity to central questions in circuit complexity.
comment: 11 Pages, 0 figures
☆ CauScale: Neural Causal Discovery at Scale
Causal discovery is essential for advancing data-driven fields such as scientific AI and data analysis, yet existing approaches face significant time- and space-efficiency bottlenecks when scaling to large graphs. To address this challenge, we present CauScale, a neural architecture designed for efficient causal discovery that scales inference to graphs with up to 1000 nodes. CauScale improves time efficiency via a reduction unit that compresses data embeddings and improves space efficiency by adopting tied attention weights to avoid maintaining axis-specific attention maps. To keep high causal discovery accuracy, CauScale adopts a two-stream design: a data stream extracts relational evidence from high-dimensional observations, while a graph stream integrates statistical graph priors and preserves key structural signals. CauScale successfully scales to 500-node graphs during training, where prior work fails due to space limitations. Across testing data with varying graph scales and causal mechanisms, CauScale achieves 99.6% mAP on in-distribution data and 84.4% on out-of-distribution data, while delivering 4-13,000 times inference speedups over prior methods. Our project page is at https://github.com/OpenCausaLab/CauScale.
☆ Sparse Models, Sparse Safety: Unsafe Routes in Mixture-of-Experts LLMs
By introducing routers to selectively activate experts in Transformer layers, the mixture-of-experts (MoE) architecture significantly reduces computational costs in large language models (LLMs) while maintaining competitive performance, especially for models with massive parameters. However, prior work has largely focused on utility and efficiency, leaving the safety risks associated with this sparse architecture underexplored. In this work, we show that the safety of MoE LLMs is as sparse as their architecture by discovering unsafe routes: routing configurations that, once activated, convert safe outputs into harmful ones. Specifically, we first introduce the Router Safety importance score (RoSais) to quantify the safety criticality of each layer's router. Manipulation of only the high-RoSais router(s) can flip the default route into an unsafe one. For instance, on JailbreakBench, masking 5 routers in DeepSeek-V2-Lite increases attack success rate (ASR) by over 4$\times$ to 0.79, highlighting an inherent risk that router manipulation may naturally occur in MoE LLMs. We further propose a Fine-grained token-layer-wise Stochastic Optimization framework to discover more concrete Unsafe Routes (F-SOUR), which explicitly considers the sequentiality and dynamics of input tokens. Across four representative MoE LLM families, F-SOUR achieves an average ASR of 0.90 and 0.98 on JailbreakBench and AdvBench, respectively. Finally, we outline defensive perspectives, including safety-aware route disabling and router training, as promising directions to safeguard MoE LLMs. We hope our work can inform future red-teaming and safeguarding of MoE LLMs. Our code is provided in https://github.com/TrustAIRLab/UnsafeMoE.
☆ Enhancing Genetic Algorithms with Graph Neural Networks: A Timetabling Case Study
This paper investigates the impact of hybridizing a multi-modal Genetic Algorithm with a Graph Neural Network for timetabling optimization. The Graph Neural Network is designed to encapsulate general domain knowledge to improve schedule quality, while the Genetic Algorithm explores different regions of the search space and integrates the deep learning model as an enhancement operator to guide the solution search towards optimality. Initially, both components of the hybrid technique were designed, developed, and optimized independently to solve the tackled task. Multiple experiments were conducted on Staff Rostering, a well-known timetabling problem, to compare the proposed hybridization with the standalone optimized versions of the Genetic Algorithm and Graph Neural Network. The experimental results demonstrate that the proposed hybridization brings statistically significant improvements in both the time efficiency and solution quality metrics, compared to the standalone methods. To the best of our knowledge, this work proposes the first hybridization of a Genetic Algorithm with a Graph Neural Network for solving timetabling problems.
comment: Paper accepted to the International Conference on Applications of Evolutionary Computation (EvoApplications) 2026
☆ Breaking the Grid: Distance-Guided Reinforcement Learning in Large Discrete and Hybrid Action Spaces
Reinforcement Learning is increasingly applied to logistics, scheduling, and recommender systems, but standard algorithms struggle with the curse of dimensionality in such large discrete action spaces. Existing algorithms typically rely on restrictive grid-based structures or computationally expensive nearest-neighbor searches, limiting their effectiveness in high-dimensional or irregularly structured domains. We propose Distance-Guided Reinforcement Learning (DGRL), combining Sampled Dynamic Neighborhoods (SDN) and Distance-Based Updates (DBU) to enable efficient RL in spaces with up to 10$^\text{20}$ actions. Unlike prior methods, SDN leverages a semantic embedding space to perform stochastic volumetric exploration, provably providing full support over a local trust region. Complementing this, DBU transforms policy optimization into a stable regression task, decoupling gradient variance from action space cardinality and guaranteeing monotonic policy improvement. DGRL naturally generalizes to hybrid continuous-discrete action spaces without requiring hierarchical dependencies. We demonstrate performance improvements of up to 66% against state-of-the-art benchmarks across regularly and irregularly structured environments, while simultaneously improving convergence speed and computational complexity.
comment: 26 pages, 8 figures
☆ OSCAR: Optimization-Steered Agentic Planning for Composed Image Retrieval
Composed image retrieval (CIR) requires complex reasoning over heterogeneous visual and textual constraints. Existing approaches largely fall into two paradigms: unified embedding retrieval, which suffers from single-model myopia, and heuristic agentic retrieval, which is limited by suboptimal, trial-and-error orchestration. To this end, we propose OSCAR, an optimization-steered agentic planning framework for composed image retrieval. We are the first to reformulate agentic CIR from a heuristic search process into a principled trajectory optimization problem. Instead of relying on heuristic trial-and-error exploration, OSCAR employs a novel offline-online paradigm. In the offline phase, we model CIR via atomic retrieval selection and composition as a two-stage mixed-integer programming problem, mathematically deriving optimal trajectories that maximize ground-truth coverage for training samples via rigorous boolean set operations. These trajectories are then stored in a golden library to serve as in-context demonstrations for online steering of VLM planner at online inference time. Extensive experiments on three public benchmarks and a private industrial benchmark show that OSCAR consistently outperforms SOTA baselines. Notably, it achieves superior performance using only 10% of training data, demonstrating strong generalization of planning logic rather than dataset-specific memorization.
☆ An Attention Mechanism for Robust Multimodal Integration in a Global Workspace Architecture
Global Workspace Theory (GWT), inspired by cognitive neuroscience, posits that flexible cognition could arise via the attentional selection of a relevant subset of modalities within a multimodal integration system. This cognitive framework can inspire novel computational architectures for multimodal integration. Indeed, recent implementations of GWT have explored its multimodal representation capabilities, but the related attention mechanisms remain understudied. Here, we propose and evaluate a top-down attention mechanism to select modalities inside a global workspace. First, we demonstrate that our attention mechanism improves noise robustness of a global workspace system on two multimodal datasets of increasing complexity: Simple Shapes and MM-IMDb 1.0. Second, we highlight various cross-task and cross-modality generalization capabilities that are not shared by multimodal attention models from the literature. Comparing against existing baselines on the MM-IMDb 1.0 benchmark, we find our attention mechanism makes the global workspace competitive with the state of the art.
☆ Kissan-Dost: Bridging the Last Mile in Smallholder Precision Agriculture with Conversational IoT
We present Kissan-Dost, a multilingual, sensor-grounded conversational system that turns live on-farm measurements and weather into plain-language guidance delivered over WhatsApp text or voice. The system couples commodity soil and climate sensors with retrieval-augmented generation, then enforces grounding, traceability, and proactive alerts through a modular pipeline. In a 90-day, two-site pilot with five participants, we ran three phases (baseline, dashboard only, chatbot only). Dashboard engagement was sporadic and faded, while the chatbot was used nearly daily and informed concrete actions. Controlled tests on 99 sensor-grounded crop queries achieved over 90 percent correctness with subsecond end-to-end latency, alongside high-quality translation outputs. Results show that careful last-mile integration, not novel circuitry, unlocks the latent value of existing Agri-IoT for smallholders.
PRISM: A Principled Framework for Multi-Agent Reasoning via Gain Decomposition
Multi-agent collaboration has emerged as a promising paradigm for enhancing reasoning capabilities of Large Language Models (LLMs). However, existing approaches remain largely heuristic, lacking principled guidance on what drives performance gains and how to systematically optimize multi-agent reasoning. Specifically, it remains unclear why multi-agent collaboration outperforms single-agent reasoning and which design choices contribute most to these gains, making it difficult to build better systems. We address this gap by introducing a unified theoretical framework that decomposes multi-agent reasoning gains into three conceptually independent dimensions: Exploration for diverse solution coverage, Information for high-fidelity feedback, and Aggregation for principled consensus. Through this lens, existing methods can be understood as special cases that optimize only subsets of these dimensions. Building upon this decomposition, a novel framework called PRISM (Propose-Review-Integrate Synthesis for Multi-agent Reasoning) is proposed, which jointly maximizes all three dimensions through role-based diversity, execution-grounded feedback with evidence-based cross-evaluation, and iterative synthesis with closed-loop validation. Extensive experiments across mathematical reasoning, code generation, and function calling benchmarks demonstrate that PRISM achieves state-of-the-art performance with superior compute-efficiency compared to methods optimizing partial dimensions. The theoretical framework provides actionable design principles for future multi-agent reasoning systems.
☆ Predicting Future Utility: Global Combinatorial Optimization for Task-Agnostic KV Cache Eviction
Given the quadratic complexity of attention, KV cache eviction is vital to accelerate model inference. Current KV cache eviction methods typically rely on instantaneous heuristic metrics, implicitly assuming that score magnitudes are consistent proxies for importance across all heads. However, this overlooks the heterogeneity in predictive fidelity across attention heads. While certain heads prioritize the instantaneous contribution of tokens, others are dedicated to capturing long-horizon utility. In this paper, we propose that optimal budget allocation should be governed by the marginal utility in preserving long-term semantic information. Based on this insight, we propose LU-KV, a novel framework that optimizes head-level budget allocation through a convex-hull relaxation and a marginal-utility-based greedy solver to achieve near-optimal precision. Furthermore, we implement a data-driven offline profiling protocol to facilitate the practical deployment of LU-KV. Extensive evaluations on LongBench and RULER benchmarks demonstrate that LU-KV achieves an 80% reduction in KV cache size with minimal performance degradation, while simultaneously reducing inference latency and GPU memory footprint.
☆ Agent-Supported Foresight for AI Systemic Risks: AI Agents for Breadth, Experts for Judgment
AI impact assessments often stress near-term risks because human judgment degrades over longer horizons, exemplifying the Collingridge dilemma: foresight is most needed when knowledge is scarcest. To address long-term systemic risks, we introduce a scalable approach that simulates in-silico agents using the strategic foresight method of the Futures Wheel. We applied it to four AI uses spanning Technology Readiness Levels (TRLs): Chatbot Companion (TRL 9, mature), AI Toy (TRL 7, medium), Griefbot (TRL 5, low), and Death App (TRL 2, conceptual). Across 30 agent runs per use, agents produced 86-110 consequences, condensed into 27-47 unique risks. To benchmark the agent outputs against human perspectives, we collected evaluations from 290 domain experts and 7 leaders, and conducted Futures Wheel sessions with 42 experts and 42 laypeople. Agents generated many systemic consequences across runs. Compared with these outputs, experts identified fewer risks, typically less systemic but judged more likely, whereas laypeople surfaced more emotionally salient concerns that were generally less systemic. We propose a hybrid foresight workflow, wherein agents broaden systemic coverage, and humans provide contextual grounding. Our dataset is available at: https://social-dynamics.net/ai-risks/foresight.
comment: 48 pages, 15 figures
☆ Stateless Yet Not Forgetful: Implicit Memory as a Hidden Channel in LLMs
Large language models (LLMs) are commonly treated as stateless: once an interaction ends, no information is assumed to persist unless it is explicitly stored and re-supplied. We challenge this assumption by introducing implicit memory-the ability of a model to carry state across otherwise independent interactions by encoding information in its own outputs and later recovering it when those outputs are reintroduced as input. This mechanism does not require any explicit memory module, yet it creates a persistent information channel across inference requests. As a concrete demonstration, we introduce a new class of temporal backdoors, which we call time bombs. Unlike conventional backdoors that activate on a single trigger input, time bombs activate only after a sequence of interactions satisfies hidden conditions accumulated via implicit memory. We show that such behavior can be induced today through straightforward prompting or fine-tuning. Beyond this case study, we analyze broader implications of implicit memory, including covert inter-agent communication, benchmark contamination, targeted manipulation, and training-data poisoning. Finally, we discuss detection challenges and outline directions for stress-testing and evaluation, with the goal of anticipating and controlling future developments. To promote future research, we release code and data at: https://github.com/microsoft/implicitMemory.
comment: Accepted at IEEE SaTML 2026
☆ GOT-Edit: Geometry-Aware Generic Object Tracking via Online Model Editing ICLR 2026
Human perception for effective object tracking in a 2D video stream arises from the implicit use of prior 3D knowledge combined with semantic reasoning. In contrast, most generic object tracking (GOT) methods primarily rely on 2D features of the target and its surroundings while neglecting 3D geometric cues, which makes them susceptible to partial occlusion, distractors, and variations in geometry and appearance. To address this limitation, we introduce GOT-Edit, an online cross-modality model editing approach that integrates geometry-aware cues into a generic object tracker from a 2D video stream. Our approach leverages features from a pre-trained Visual Geometry Grounded Transformer to enable geometric cue inference from only a few 2D images. To tackle the challenge of seamlessly combining geometry and semantics, GOT-Edit performs online model editing with null-space constrained updates that incorporate geometric information while preserving semantic discrimination, yielding consistently better performance across diverse scenarios. Extensive experiments on multiple GOT benchmarks demonstrate that GOT-Edit achieves superior robustness and accuracy, particularly under occlusion and clutter, establishing a new paradigm for combining 2D semantics with 3D geometric reasoning for generic object tracking.
comment: ICLR 2026. This is a preprint version. The camera-ready version will be updated soon
☆ GISA: A Benchmark for General Information-Seeking Assistant
The advancement of large language models (LLMs) has significantly accelerated the development of search agents capable of autonomously gathering information through multi-turn web interactions. Various benchmarks have been proposed to evaluate such agents. However, existing benchmarks often construct queries backward from answers, producing unnatural tasks misaligned with real-world needs. Moreover, these benchmarks tend to focus on either locating specific information or aggregating information from multiple sources, while relying on static answer sets prone to data contamination. To bridge these gaps, we introduce GISA, a benchmark for General Information-Seeking Assistants comprising 373 human-crafted queries that reflect authentic information-seeking scenarios. GISA features four structured answer formats (item, set, list, and table), enabling deterministic evaluation. It integrates both deep reasoning and broad information aggregation within unified tasks, and includes a live subset with periodically updated answers to resist memorization. Notably, GISA provides complete human search trajectories for every query, offering gold-standard references for process-level supervision and imitation learning. Experiments on mainstream LLMs and commercial search products reveal that even the best-performing model achieves only 19.30\% exact match score, with performance notably degrading on tasks requiring complex planning and comprehensive information gathering. These findings highlight substantial room for future improvement.
☆ Dialogue Model Optimization via Agent Game and Adaptive Tree-based GRPO
Open-ended dialogue agents aim to deliver engaging, personalized interactions by adapting to users' traits, but existing methods face critical limitations: over-reliance on pre-collected user data, and short-horizon biases in reinforcement learning (RL) that neglect long-term dialogue value. To address these, we propose a novel long-horizon RL framework integrating online personalization with Adaptive Tree-based Group Relative Policy Optimization (AT-GRPO). Adopting a two-agent game paradigm, a user agent constructs dynamic environments via style mimicry (learning user-specific conversational traits) and active termination (predicting turn-level termination probabilities as immediate rewards), forming an iterative cycle that drives the dialogue agent to deepen interest exploration. AT-GRPO reinterprets dialogue trajectories as trees and introduces adaptive observation ranges. Unlike full tree expansion that incurs exponential overhead, it limits each node to aggregate rewards from a stage-aware range: larger ranges support early-stage topic exploration, while smaller ranges facilitate late-stage dialogue maintenance. This design reduces rollout budgets from exponential to polynomial in the dialogue length, while preserving long-term reward capture. Extensive experiments show our framework's superior performance, sample efficiency, and robustness.
☆ Reinforcement Inference: Leveraging Uncertainty for Self-Correcting Language Model Reasoning
Modern large language models (LLMs) are often evaluated and deployed under a \emph{one-shot, greedy} inference protocol, especially in professional settings that require deterministic behavior. This regime can systematically under-estimate a fixed model's true capability: many errors arise not from missing knowledge, but from premature commitment under internal ambiguity. We introduce \emph{Reinforcement Inference}, an entropy-aware inference-time control strategy that uses the model's own uncertainty to selectively invoke a second, more deliberate reasoning attempt, enabling stronger performance \emph{without any retraining}. On 12,032 MMLU-Pro questions across 14 subjects, using DeepSeek-v3.2 with deterministic decoding in a zero-shot setting, Reinforcement Inference improves accuracy from 60.72\% to 84.03\%, while only incurring 61.06\% additional inference calls. A 100\% re-asking ablation reaches 84.35\%, indicating that uncertainty-aware selection captures most of the attainable improvement with substantially less compute. Moreover, a \emph{prompt-only} ablation underperforms the baseline, suggesting that the gains are not explained by generic `` your output had high entropy, think step-by-step'' prompting alone. Beyond providing a practical inference-time upgrade, our results suggest a broader \emph{entropy-aware} paradigm for measuring and expanding model capability: because modern decoder-based models generate outputs autoregressively, entropy and related confidence measures arise naturally as first-class control signals during generation. The resulting gap between one-pass greedy inference and uncertainty-conditioned deliberation offers a diagnostic lens on an LLM's latent reasoning horizon and motivates future training objectives that explicitly constrain correctness--confidence alignment.
☆ TreeTensor: Boost AI System on Nested Data with Constrained Tree-Like Tensor
Tensor is the most basic and essential data structure of nowadays artificial intelligence (AI) system. The natural properties of Tensor, especially the memory-continuity and slice-independence, make it feasible for training system to leverage parallel computing unit like GPU to process data simultaneously in batch, spatial or temporal dimensions. However, if we look beyond perception tasks, the data in a complicated cognitive AI system usually has hierarchical structures (i.e. nested data) with various modalities. They are inconvenient and inefficient to program directly with conventional Tensor with fixed shape. To address this issue, we summarize two main computational patterns of nested data, and then propose a general nested data container: TreeTensor. Through various constraints and magic utilities of TreeTensor, one can apply arbitrary functions and operations to nested data with almost zero cost, including some famous machine learning libraries, such as Scikit-Learn, Numpy and PyTorch. Our approach utilizes a constrained tree-structure perspective to systematically model data relationships, and it can also easily be combined with other methods to extend more usages, such as asynchronous execution and variable-length data computation. Detailed examples and benchmarks show TreeTensor not only provides powerful usability in various problems, especially one of the most complicated AI systems at present: AlphaStar for StarCraftII, but also exhibits excellent runtime efficiency without any overhead. Our project is available at https://github.com/opendilab/DI-treetensor.
☆ A General Theory of Proportionality with Additive Utilities
We consider a model where a subset of candidates must be selected based on voter preferences, subject to general constraints that specify which subsets are feasible. This model generalizes committee elections with diversity constraints, participatory budgeting (including constraints specifying how funds must be allocated to projects from different pools), and public decision-making. Axioms of proportionality have recently been defined for this general model, but the proposed rules apply only to approval ballots, where each voter submits a subset of candidates she finds acceptable. We propose proportional rules for cardinal ballots, where each voter assigns a numerical value to each candidate corresponding to her utility if that candidate is selected. In developing these rules, we also introduce methods that produce proportional rankings, ensuring that every prefix of the ranking satisfies proportionality.
☆ Contextual Rollout Bandits for Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) is an effective paradigm for improving the reasoning capabilities of large language models. However, existing RLVR methods utilize rollouts in an indiscriminate and short-horizon manner: responses of heterogeneous quality within each prompt are treated uniformly, and historical rollouts are discarded after a single use. This leads to noisy supervision, poor sample efficiency, and suboptimal policy updates. We address these issues by formulating rollout scheduling in RLVR as a contextual bandit problem and proposing a unified neural scheduling framework that adaptively selects high-value rollouts throughout training. Each rollout is treated as an arm whose reward is defined by the induced performance gain between consecutive optimization steps. The resulting scheduler supports both noise-aware intra-group selection and adaptive global reuse of historical rollouts within a single principled framework. We provide theoretical justification by deriving sublinear regret bounds and showing that enlarging the rollout buffer improves the achievable performance upper bound. Experiments on six mathematical reasoning benchmarks demonstrate consistent gains in performance and training efficiency across multiple RLVR optimization methods.
☆ CLEAR: A Knowledge-Centric Vessel Trajectory Analysis Platform
Vessel trajectory data from the Automatic Identification System (AIS) is used widely in maritime analytics. Yet, analysis is difficult for non-expert users due to the incompleteness and complexity of AIS data. We present CLEAR, a knowledge-centric vessel trajectory analysis platform that aims to overcome these barriers. By leveraging the reasoning and generative capabilities of Large Language Models (LLMs), CLEAR transforms raw AIS data into complete, interpretable, and easily explorable vessel trajectories through a Structured Data-derived Knowledge Graph (SD-KG). As part of the demo, participants can configure parameters to automatically download and process AIS data, observe how trajectories are completed and annotated, inspect both raw and imputed segments together with their SD-KG evidence, and interactively explore the SD-KG through a dedicated graph viewer, gaining an intuitive and transparent understanding of vessel movements.
comment: 4 pages, and 5 Figures
☆ Gesture Matters: Pedestrian Gesture Recognition for AVs Through Skeleton Pose Evaluation
Gestures are a key component of non-verbal communication in traffic, often helping pedestrian-to-driver interactions when formal traffic rules may be insufficient. This problem becomes more apparent when autonomous vehicles (AVs) struggle to interpret such gestures. In this study, we present a gesture classification framework using 2D pose estimation applied to real-world video sequences from the WIVW dataset. We categorise gestures into four primary classes (Stop, Go, Thank & Greet, and No Gesture) and extract 76 static and dynamic features from normalised keypoints. Our analysis demonstrates that hand position and movement velocity are especially discriminative in distinguishing between gesture classes, achieving a classification accuracy score of 87%. These findings not only improve the perceptual capabilities of AV systems but also contribute to the broader understanding of pedestrian behaviour in traffic contexts.
comment: 9th International Conference on Instrumentation, Control, and Automation (ICA)
☆ Decentralized Spatial Reuse Optimization in Wi-Fi: An Internal Regret Minimization Approach
Spatial Reuse (SR) is a cost-effective technique for improving spectral efficiency in dense IEEE 802.11 deployments by enabling simultaneous transmissions. However, the decentralized optimization of SR parameters -- transmission power and Carrier Sensing Threshold (CST) -- across different Basic Service Sets (BSSs) is challenging due to the lack of global state information. In addition, the concurrent operation of multiple agents creates a highly non-stationary environment, often resulting in suboptimal global configurations (e.g., using the maximum possible transmission power by default). To overcome these limitations, this paper introduces a decentralized learning algorithm based on regret-matching, grounded in internal regret minimization. Unlike standard decentralized ``selfish'' approaches that often converge to inefficient Nash Equilibria (NE), internal regret minimization guides competing agents toward Correlated Equilibria (CE), effectively mimicking coordination without explicit communication. Through simulation results, we showcase the superiority of our proposed approach and its ability to reach near-optimal global performance. These results confirm the not-yet-unleashed potential of scalable decentralized solutions and question the need for the heavy signaling overheads and architectural complexity associated with emerging centralized solutions like Multi-Access Point Coordination (MAPC).
☆ When Evaluation Becomes a Side Channel: Regime Leakage and Structural Mitigations for Alignment Assessment
Safety evaluation for advanced AI systems implicitly assumes that behavior observed under evaluation is predictive of behavior in deployment. This assumption becomes fragile for agents with situational awareness, which may exploitregime leakage-informational cues distinguishing evaluation from deployment-to implement conditional policies such as sycophancy and sleeper agents, which preserve compliance under oversight while defecting in deployment-like regimes. We reframe alignment evaluation as a problem of information flow under partial observability. Within this framework, we show that divergence between evaluation-time and deployment-time behavior is bounded by the mutual information between internal representations and the regime variable. Motivated by this result, we study regime-blind mechanisms: training-time interventions that reduce the extractability of regime information at decision-relevant internal representations via adversarial invariance. We evaluate this approach on a base, open-weight language model across two fully characterized failure modes -scientific sycophancy and temporal sleeper agents. Regime-blind training suppresses regime-conditioned behavior in both evaluated cases without measurable loss of task utility, but with qualitatively different dynamics: sycophancy exhibits a sharp representational and behavioral transition at low intervention strength, whereas sleeper-agent behavior requires substantially stronger pressure and does not exhibit a clean collapse of regime decodability. These results demonstrate that representational invariance is a meaningful but fundamentally limited control lever, whose effectiveness depends on how regime information is embedded in the policy. We argue that behavioral evaluation should be complemented with white-box diagnostics of regime awareness and information flow.
comment: 25 pages, 4 figures,
☆ Vista: Scene-Aware Optimization for Streaming Video Question Answering under Post-Hoc Queries AAAI 2026
Streaming video question answering (Streaming Video QA) poses distinct challenges for multimodal large language models (MLLMs), as video frames arrive sequentially and user queries can be issued at arbitrary time points. Existing solutions relying on fixed-size memory or naive compression often suffer from context loss or memory overflow, limiting their effectiveness in long-form, real-time scenarios. We present Vista, a novel framework for scene-aware streaming video QA that enables efficient and scalable reasoning over continuous video streams. The innovation of Vista can be summarized in three aspects: (1) scene-aware segmentation, where Vista dynamically clusters incoming frames into temporally and visually coherent scene units; (2) scene-aware compression, where each scene is compressed into a compact token representation and stored in GPU memory for efficient index-based retrieval, while full-resolution frames are offloaded to CPU memory; and (3) scene-aware recall, where relevant scenes are selectively recalled and reintegrated into the model input upon receiving a query, enabling both efficiency and completeness. Vista is model-agnostic and integrates seamlessly with a variety of vision-language backbones, enabling long-context reasoning without compromising latency or memory efficiency. Extensive experiments on StreamingBench demonstrate that Vista achieves state-of-the-art performance, establishing a strong baseline for real-world streaming video understanding.
comment: Accepted to AAAI 2026 (Main Technical Track)
Prism: Spectral-Aware Block-Sparse Attention
Block-sparse attention is promising for accelerating long-context LLM pre-filling, yet identifying relevant blocks efficiently remains a bottleneck. Existing methods typically employ coarse-grained attention as a proxy for block importance estimation, but often resort to expensive token-level searching or scoring, resulting in significant selection overhead. In this work, we trace the inaccuracy of standard coarse-grained attention via mean pooling to a theoretical root cause: the interaction between mean pooling and Rotary Positional Embeddings (RoPE). We prove that mean pooling acts as a low-pass filter that induces destructive interference in high-frequency dimensions, effectively creating a "blind spot" for local positional information (e.g., slash patterns). To address this, we introduce Prism, a training-free spectral-aware approach that decomposes block selection into high-frequency and low-frequency branches. By applying energy-based temperature calibration, Prism restores the attenuated positional signals directly from pooled representations, enabling block importance estimation using purely block-level operations, thereby improving efficiency. Extensive evaluations confirm that Prism maintains accuracy parity with full attention while delivering up to $\mathbf{5.1\times}$ speedup.
LLMs + Security = Trouble
We argue that when it comes to producing secure code with AI, the prevailing "fighting fire with fire" approach -- using probabilistic AI-based checkers or attackers to secure probabilistically generated code -- fails to address the long tail of security bugs. As a result, systems may remain exposed to zero-day vulnerabilities that can be discovered by better-resourced or more persistent adversaries. While neurosymbolic approaches that combine LLMs with formal methods are attractive in principle, we argue that they are difficult to reconcile with the "vibe coding" workflow common in LLM-assisted development: unless the end-to-end verification pipeline is fully automated, developers are repeatedly asked to validate specifications, resolve ambiguities, and adjudicate failures, making the human-in-the-loop a likely point of weakness, compromising secure-by-construction guarantees. In this paper we argue that stronger security guarantees can be obtained by enforcing security constraints during code generation (e.g., via constrained decoding), rather than relying solely on post-hoc detection and repair. This direction is particularly promising for diffusion-style code models, whose approach provides a natural elegant opportunity for modular, hierarchical security enforcement, allowing us to combine lower-latency generation techniques with generating secure-by-construction code.
☆ From Assistant to Double Agent: Formalizing and Benchmarking Attacks on OpenClaw for Personalized Local AI Agent
Although large language model (LLM)-based agents, exemplified by OpenClaw, are increasingly evolving from task-oriented systems into personalized AI assistants for solving complex real-world tasks, their practical deployment also introduces severe security risks. However, existing agent security research and evaluation frameworks primarily focus on synthetic or task-centric settings, and thus fail to accurately capture the attack surface and risk propagation mechanisms of personalized agents in real-world deployments. To address this gap, we propose Personalized Agent Security Bench (PASB), an end-to-end security evaluation framework tailored for real-world personalized agents. Building upon existing agent attack paradigms, PASB incorporates personalized usage scenarios, realistic toolchains, and long-horizon interactions, enabling black-box, end-to-end security evaluation on real systems. Using OpenClaw as a representative case study, we systematically evaluate its security across multiple personalized scenarios, tool capabilities, and attack types. Our results indicate that OpenClaw exhibits critical vulnerabilities at different execution stages, including user prompt processing, tool usage, and memory retrieval, highlighting substantial security risks in personalized agent deployments. The code for the proposed PASB framework is available at https://github.com/AstorYH/PASB.
comment: 11 pages,2 figures
☆ Optimizing Spectral Prediction in MXene-Based Metasurfaces Through Multi-Channel Spectral Refinement and Savitzky-Golay Smoothing
The prediction of electromagnetic spectra for MXene-based solar absorbers is a computationally intensive task, traditionally addressed using full-wave solvers. This study introduces an efficient deep learning framework incorporating transfer learning, multi-channel spectral refinement (MCSR), and Savitzky-Golay smoothing to accelerate and enhance spectral prediction accuracy. The proposed architecture leverages a pretrained MobileNetV2 model, fine-tuned to predict 102-point absorption spectra from $64\times64$ metasurface designs. Additionally, the MCSR module processes the feature map through multi-channel convolutions, enhancing feature extraction, while Savitzky-Golay smoothing mitigates high-frequency noise. Experimental evaluations demonstrate that the proposed model significantly outperforms baseline Convolutional Neural Network (CNN) and deformable CNN models, achieving an average root mean squared error (RMSE) of 0.0245, coefficient of determination \( R^2 \) of 0.9578, and peak signal-to-noise ratio (PSNR) of 32.98 dB. The proposed framework presents a scalable and computationally efficient alternative to conventional solvers, positioning it as a viable candidate for rapid spectral prediction in nanophotonic design workflows.
comment: 11 pages, 6 figures
☆ Intelligent support for Human Oversight: Integrating Reinforcement Learning with Gaze Simulation to Personalize Highlighting
Interfaces for human oversight must effectively support users' situation awareness under time-critical conditions. We explore reinforcement learning (RL)-based UI adaptation to personalize alerting strategies that balance the benefits of highlighting critical events against the cognitive costs of interruptions. To enable learning without real-world deployment, we integrate models of users' gaze behavior to simulate attentional dynamics during monitoring. Using a delivery-drone oversight scenario, we present initial results suggesting that RL-based highlighting can outperform static, rule-based approaches and discuss challenges of intelligent oversight support.
comment: AI CHAOS '26: Workshop Series on the Challenges for Human Oversight of AI Systems
☆ On Protecting Agentic Systems' Intellectual Property via Watermarking
The evolution of Large Language Models (LLMs) into agentic systems that perform autonomous reasoning and tool use has created significant intellectual property (IP) value. We demonstrate that these systems are highly vulnerable to imitation attacks, where adversaries steal proprietary capabilities by training imitation models on victim outputs. Crucially, existing LLM watermarking techniques fail in this domain because real-world agentic systems often operate as grey boxes, concealing the internal reasoning traces required for verification. This paper presents AGENTWM, the first watermarking framework designed specifically for agentic models. AGENTWM exploits the semantic equivalence of action sequences, injecting watermarks by subtly biasing the distribution of functionally identical tool execution paths. This mechanism allows AGENTWM to embed verifiable signals directly into the visible action trajectory while remaining indistinguishable to users. We develop an automated pipeline to generate robust watermark schemes and a rigorous statistical hypothesis testing procedure for verification. Extensive evaluations across three complex domains demonstrate that AGENTWM achieves high detection accuracy with negligible impact on agent performance. Our results confirm that AGENTWM effectively protects agentic IP against adaptive adversaries, who cannot remove the watermarks without severely degrading the stolen model's utility.
☆ SCOUT-RAG: Scalable and Cost-Efficient Unifying Traversal for Agentic Graph-RAG over Distributed Domains
Graph-RAG improves LLM reasoning using structured knowledge, yet conventional designs rely on a centralized knowledge graph. In distributed and access-restricted settings (e.g., hospitals or multinational organizations), retrieval must select relevant domains and appropriate traversal depth without global graph visibility or exhaustive querying. To address this challenge, we introduce \textbf{SCOUT-RAG} (\textit{\underline{S}calable and \underline{CO}st-efficient \underline{U}nifying \underline{T}raversal}), a distributed agentic Graph-RAG framework that performs progressive cross-domain retrieval guided by incremental utility goals. SCOUT-RAG employs four cooperative agents that: (i) estimate domain relevance, (ii) decide when to expand retrieval to additional domains, (iii) adapt traversal depth to avoid unnecessary graph exploration, and (iv) synthesize the high-quality answers. The framework is designed to minimize retrieval regret, defined as missing useful domain information, while controlling latency and API cost. Across multi-domain knowledge settings, SCOUT-RAG achieves performance comparable to centralized baselines, including DRIFT and exhaustive domain traversal, while substantially reducing cross-domain calls, total tokens processed, and latency.
☆ BiManiBench: A Hierarchical Benchmark for Evaluating Bimanual Coordination of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have significantly advanced embodied AI, and using them to benchmark robotic intelligence has become a pivotal trend. However, existing frameworks remain predominantly confined to single-arm manipulation, failing to capture the spatio-temporal coordination required for bimanual tasks like lifting a heavy pot. To address this, we introduce BiManiBench, a hierarchical benchmark evaluating MLLMs across three tiers: fundamental spatial reasoning, high-level action planning, and low-level end-effector control. Our framework isolates unique bimanual challenges, such as arm reachability and kinematic constraints, thereby distinguishing perceptual hallucinations from planning failures. Analysis of over 30 state-of-the-art models reveals that despite high-level reasoning proficiency, MLLMs struggle with dual-arm spatial grounding and control, frequently resulting in mutual interference and sequencing errors. These findings suggest the current paradigm lacks a deep understanding of mutual kinematic constraints, highlighting the need for future research to focus on inter-arm collision-avoidance and fine-grained temporal sequencing.
comment: 38 pages, 9 figures. Project page:https://bimanibench.github.io/
☆ Altruism and Fair Objective in Mixed-Motive Markov games
Cooperation is fundamental for society's viability, as it enables the emergence of structure within heterogeneous groups that seek collective well-being. However, individuals are inclined to defect in order to benefit from the group's cooperation without contributing the associated costs, thus leading to unfair situations. In game theory, social dilemmas entail this dichotomy between individual interest and collective outcome. The most dominant approach to multi-agent cooperation is the utilitarian welfare which can produce efficient highly inequitable outcomes. This paper proposes a novel framework to foster fairer cooperation by replacing the standard utilitarian objective with Proportional Fairness. We introduce a fair altruistic utility for each agent, defined on the individual log-payoff space and derive the analytical conditions required to ensure cooperation in classic social dilemmas. We then extend this framework to sequential settings by defining a Fair Markov Game and deriving novel fair Actor-Critic algorithms to learn fair policies. Finally, we evaluate our method in various social dilemma environments.
☆ Dynamic Long Context Reasoning over Compressed Memory via End-to-End Reinforcement Learning
Large Language Models (LLMs) face significant challenges in long-context processing, including quadratic computational costs, information forgetting, and the context fragmentation inherent in retrieval-augmented generation (RAG). We propose a cognitively inspired framework for efficient long-context inference based on chunk-wise compression and selective memory recall, rather than processing all raw tokens. The framework segments long inputs into chunks and encodes each chunk into compressed memory representations using a learned compressor. A gating module dynamically selects relevant memory blocks, which are then iteratively processed by a reasoning module with an evolving working memory to solve downstream tasks. The compressor and reasoner are jointly optimized via end-to-end reinforcement learning, while the gating module is trained separately as a classifier. Experimental results show that the proposed method achieves competitive accuracy on multi-hop reasoning benchmarks such as RULER-HQA, extrapolates context length from 7K to 1.75M tokens, and offers a favorable accuracy-efficiency trade-off compared to strong long-context baselines. In particular, it achieves up to a 2 times reduction in peak GPU memory usage and a 6 times inference speedup over MemAgent.
comment: 26 pages, 7 figures. Code and models will be released
☆ Reinforcement Learning with Backtracking Feedback NeurIPS 2025
Addressing the critical need for robust safety in Large Language Models (LLMs), particularly against adversarial attacks and in-distribution errors, we introduce Reinforcement Learning with Backtracking Feedback (RLBF). This framework advances upon prior methods, such as BSAFE, by primarily leveraging a Reinforcement Learning (RL) stage where models learn to dynamically correct their own generation errors. Through RL with critic feedback on the model's live outputs, LLMs are trained to identify and recover from their actual, emergent safety violations by emitting an efficient "backtrack by x tokens" signal, then continuing generation autoregressively. This RL process is crucial for instilling resilience against sophisticated adversarial strategies, including middle filling, Greedy Coordinate Gradient (GCG) attacks, and decoding parameter manipulations. To further support the acquisition of this backtracking capability, we also propose an enhanced Supervised Fine-Tuning (SFT) data generation strategy (BSAFE+). This method improves upon previous data creation techniques by injecting violations into coherent, originally safe text, providing more effective initial training for the backtracking mechanism. Comprehensive empirical evaluations demonstrate that RLBF significantly reduces attack success rates across diverse benchmarks and model scales, achieving superior safety outcomes while critically preserving foundational model utility.
comment: NeurIPS 2025
☆ Grounding Generative Planners in Verifiable Logic: A Hybrid Architecture for Trustworthy Embodied AI ICLR 2026
Large Language Models (LLMs) show promise as planners for embodied AI, but their stochastic nature lacks formal reasoning, preventing strict safety guarantees for physical deployment. Current approaches often rely on unreliable LLMs for safety checks or simply reject unsafe plans without offering repairs. We introduce the Verifiable Iterative Refinement Framework (VIRF), a neuro-symbolic architecture that shifts the paradigm from passive safety gatekeeping to active collaboration. Our core contribution is a tutor-apprentice dialogue where a deterministic Logic Tutor, grounded in a formal safety ontology, provides causal and pedagogical feedback to an LLM planner. This enables intelligent plan repairs rather than mere avoidance. We also introduce a scalable knowledge acquisition pipeline that synthesizes safety knowledge bases from real-world documents, correcting blind spots in existing benchmarks. In challenging home safety tasks, VIRF achieves a perfect 0 percent Hazardous Action Rate (HAR) and a 77.3 percent Goal-Condition Rate (GCR), which is the highest among all baselines. It is highly efficient, requiring only 1.1 correction iterations on average. VIRF demonstrates a principled pathway toward building fundamentally trustworthy and verifiably safe embodied agents.
comment: Accepted to ICLR 2026. Project page. https://openreview.net/forum?id=wb05ver1k8¬eId=v1Ax8CwI71
☆ Learning Human-Like Badminton Skills for Humanoid Robots
Realizing versatile and human-like performance in high-demand sports like badminton remains a formidable challenge for humanoid robotics. Unlike standard locomotion or static manipulation, this task demands a seamless integration of explosive whole-body coordination and precise, timing-critical interception. While recent advances have achieved lifelike motion mimicry, bridging the gap between kinematic imitation and functional, physics-aware striking without compromising stylistic naturalness is non-trivial. To address this, we propose Imitation-to-Interaction, a progressive reinforcement learning framework designed to evolve a robot from a "mimic" to a capable "striker." Our approach establishes a robust motor prior from human data, distills it into a compact, model-based state representation, and stabilizes dynamics via adversarial priors. Crucially, to overcome the sparsity of expert demonstrations, we introduce a manifold expansion strategy that generalizes discrete strike points into a dense interaction volume. We validate our framework through the mastery of diverse skills, including lifts and drop shots, in simulation. Furthermore, we demonstrate the first zero-shot sim-to-real transfer of anthropomorphic badminton skills to a humanoid robot, successfully replicating the kinetic elegance and functional precision of human athletes in the physical world.
comment: 10 pages, 4 figures
☆ MemAdapter: Fast Alignment across Agent Memory Paradigms via Generative Subgraph Retrieval
Memory mechanism is a core component of LLM-based agents, enabling reasoning and knowledge discovery over long-horizon contexts. Existing agent memory systems are typically designed within isolated paradigms (e.g., explicit, parametric, or latent memory) with tightly coupled retrieval methods that hinder cross-paradigm generalization and fusion. In this work, we take a first step toward unifying heterogeneous memory paradigms within a single memory system. We propose MemAdapter, a memory retrieval framework that enables fast alignment across agent memory paradigms. MemAdapter adopts a two-stage training strategy: (1) training a generative subgraph retriever from the unified memory space, and (2) adapting the retriever to unseen memory paradigms by training a lightweight alignment module through contrastive learning. This design improves the flexibility for memory retrieval and substantially reduces alignment cost across paradigms. Comprehensive experiments on three public evaluation benchmarks demonstrate that the generative subgraph retriever consistently outperforms five strong agent memory systems across three memory paradigms and agent model scales. Notably, MemAdapter completes cross-paradigm alignment within 13 minutes on a single GPU, achieving superior performance over original memory retrievers with less than 5% of training compute. Furthermore, MemAdapter enables effective zero-shot fusion across memory paradigms, highlighting its potential as a plug-and-play solution for agent memory systems.
☆ Roadmap to Quantum Aesthetics
Quantum mechanics occupies a central position in contemporary science while remaining largely inaccessible to direct sensory experience. This paper proposes a roadmap to quantum aesthetics that examines how quantum concepts become aesthetic phenomena through artistic mediation rather than direct representation. Two complementary and orthogonal approaches are articulated. The first, a pioneering top-down approach, employs text-prompt-based generative AI to probe quantum aesthetics as a collective cultural construct embedded in large-scale training data. By systematically modulating the linguistic weight of the term "quantum," generative models are used as experimental environments to reveal how quantum imaginaries circulate within contemporary visual culture. The second, a bottom-up approach, derives aesthetic form directly from quantum-mechanical structures through the visualization of quantum-generated data, exemplified here by hydrogen atomic orbitals calculated from the Schrödinger equation. These approaches are framed not as competing methods but as intersecting paths within a navigable field of artistic research. They position quantum aesthetics as an emergent field of artistic research shaped by cultural imagination, computational mediation, and physical law, opening new directions for artistic practice and pedagogy at the intersection of art, data, artificial intelligence and quantum science.
comment: 7 pages, 5 figures, submitted to 31st International Symposium of Electronic Arts
☆ Circuit Representations of Random Forests with Applications to XAI
We make three contributions in this paper. First, we present an approach for compiling a random forest classifier into a set of circuits, where each circuit directly encodes the instances in some class of the classifier. We show empirically that our proposed approach is significantly more efficient than existing similar approaches. Next, we utilize this approach to further obtain circuits that are tractable for computing the complete and general reasons of a decision, which are instance abstractions that play a fundamental role in computing explanations. Finally, we propose algorithms for computing the robustness of a decision and all shortest ways to flip it. We illustrate the utility of our contributions by using them to enumerate all sufficient reasons, necessary reasons and contrastive explanations of decisions; to compute the robustness of decisions; and to identify all shortest ways to flip the decisions made by random forest classifiers learned from a wide range of datasets.
☆ Does Your Reasoning Model Implicitly Know When to Stop Thinking?
Recent advancements in large reasoning models (LRMs) have greatly improved their capabilities on complex reasoning tasks through Long Chains of Thought (CoTs). However, this approach often results in substantial redundancy, impairing computational efficiency and causing significant delays in real-time applications. Recent studies show that longer reasoning chains are frequently uncorrelated with correctness and can even be detrimental to accuracy. In a further in-depth analysis of this phenomenon, we surprisingly uncover and empirically verify that LRMs implicitly know the appropriate time to stop thinking, while this capability is obscured by current sampling paradigms. Motivated by this, we introduce SAGE (Self-Aware Guided Efficient Reasoning), a novel sampling paradigm that unleashes this efficient reasoning potential. Furthermore, integrating SAGE as mixed sampling into group-based reinforcement learning (SAGE-RL) enables SAGE-RL to effectively incorporate SAGE-discovered efficient reasoning patterns into standard pass@1 inference, markedly enhancing both the reasoning accuracy and efficiency of LRMs across multiple challenging mathematical benchmarks.
☆ Towards Better Evolution Modeling for Temporal Knowledge Graphs
Temporal knowledge graphs (TKGs) structurally preserve evolving human knowledge. Recent research has focused on designing models to learn the evolutionary nature of TKGs to predict future facts, achieving impressive results. For instance, Hits@10 scores over 0.9 on YAGO dataset. However, we find that existing benchmarks inadvertently introduce a shortcut. Near state-of-the-art performance can be simply achieved by counting co-occurrences, without using any temporal information. In this work, we examine the root cause of this issue, identifying inherent biases in current datasets and over simplified form of evaluation task that can be exploited by these biases. Through this analysis, we further uncover additional limitations of existing benchmarks, including unreasonable formatting of time-interval knowledge, ignorance of learning knowledge obsolescence, and insufficient information for precise evolution understanding, all of which can amplify the shortcut and hinder a fair assessment. Therefore, we introduce the TKG evolution benchmark. It includes four bias-corrected datasets and two novel tasks closely aligned with the evolution process, promoting a more accurate understanding of the challenges in TKG evolution modeling. Benchmark is available at: https://github.com/zjs123/TKG-Benchmark.
comment: 13 pages, 11 figures
The Chicken and Egg Dilemma: Co-optimizing Data and Model Configurations for LLMs
Co-optimizing data and model configurations for training LLMs presents a classic chicken-and-egg dilemma: The best training data configuration (e.g., data mixture) for a downstream task depends on the chosen model configuration (e.g., model architecture), and vice versa. However, jointly optimizing both data and model configurations is often deemed intractable, and existing methods focus on either data or model optimization without considering their interaction. We introduce JoBS, an approach that uses a scaling-law-inspired performance predictor to aid Bayesian optimization (BO) in jointly optimizing LLM training data and model configurations efficiently. JoBS allocates a portion of the optimization budget to learn an LLM performance predictor that predicts how promising a training configuration is from a small number of training steps. The remaining budget is used to perform BO entirely with the predictor, effectively amortizing the cost of running full-training runs. We study JoBS's average regret and devise the optimal budget allocation to minimize regret. JoBS outperforms existing multi-fidelity BO baselines, as well as data and model optimization approaches across diverse LLM tasks under the same optimization budget.
☆ OPE: Overcoming Information Saturation in Parallel Thinking via Outline-Guided Path Exploration
Parallel thinking has emerged as a new paradigm for large reasoning models (LRMs) in tackling complex problems. Recent methods leverage Reinforcement Learning (RL) to enhance parallel thinking, aiming to address the limitations in computational resources and effectiveness encountered with supervised fine-tuning. However, most existing studies primarily focus on optimizing the aggregation phase, with limited attention to the path exploration stage. In this paper, we theoretically analyze the optimization of parallel thinking under the Reinforcement Learning with Verifiable Rewards (RLVR) setting, and identify that the mutual information bottleneck among exploration paths fundamentally restricts overall performance. To address this, we propose Outline-Guided Path Exploration (OPE), which explicitly partitions the solution space by generating diverse reasoning outlines prior to parallel path reasoning, thereby reducing information redundancy and improving the diversity of information captured across exploration paths. We implement OPE with an iterative RL strategy that optimizes outline planning and outline-guided reasoning independently. Extensive experiments across multiple challenging mathematical benchmarks demonstrate that OPE effectively improves reasoning performance in different aggregation strategies, enabling LRMs to more reliably discover correct solutions.
☆ ManifoldKV: Training-Free KV Cache Compression via Euclidean Outlier Detection
Long-context inference is constrained by KV-cache memory, which grows linearly with sequence length; KV-cache compression therefore hinges on reliably selecting which past tokens to retain. Most geometry-based eviction methods score keys by cosine similarity to a global centroid, but cosine is scale-invariant and can discard magnitude cues that distinguish semantically salient tokens. We propose ManifoldKV, a training-free scorer that ranks tokens by Euclidean distance to the key centroid, capturing both angular and radial deviations. On the RULER benchmark, ManifoldKV achieves 95.7% accuracy at 4K-16K contexts with 20% compression; matching the best geometric baseline while improving robustness in two regimes where cosine scoring fails. First, on multi-key retrieval, ManifoldKV reduces directional collisions, achieving 92.4% vs KeyDiff's 77.0% (+15.4 points) on 3-key NIAH at 50% compression. Second, to address dilution and performance collapse of global centroids at 64K context, we introduce WindowedManifoldKV, which restores accuracy to 84.3% at 25% compression, a 49-point recovery over global L2 and +3.2 points over KeyDiff. The method requires only 3 lines of code and works across 4 architectures without tuning.
comment: 18 pages, 5 figures, 18 tables
☆ UrbanGraphEmbeddings: Learning and Evaluating Spatially Grounded Multimodal Embeddings for Urban Science
Learning transferable multimodal embeddings for urban environments is challenging because urban understanding is inherently spatial, yet existing datasets and benchmarks lack explicit alignment between street-view images and urban structure. We introduce UGData, a spatially grounded dataset that anchors street-view images to structured spatial graphs and provides graph-aligned supervision via spatial reasoning paths and spatial context captions, exposing distance, directionality, connectivity, and neighborhood context beyond image content. Building on UGData, we propose UGE, a two-stage training strategy that progressively and stably aligns images, text, and spatial structures by combining instruction-guided contrastive learning with graph-based spatial encoding. We finally introduce UGBench, a comprehensive benchmark to evaluate how spatially grounded embeddings support diverse urban understanding tasks -- including geolocation ranking, image retrieval, urban perception, and spatial grounding. We develop UGE on multiple state-of-the-art VLM backbones, including Qwen2-VL, Qwen2.5-VL, Phi-3-Vision, and LLaVA1.6-Mistral, and train fixed-dimensional spatial embeddings with LoRA tuning. UGE built upon Qwen2.5-VL-7B backbone achieves up to 44% improvement in image retrieval and 30% in geolocation ranking on training cities, and over 30% and 22% gains respectively on held-out cities, demonstrating the effectiveness of explicit spatial grounding for spatially intensive urban tasks.
☆ Effect-Level Validation for Causal Discovery
Causal discovery is increasingly applied to large-scale telemetry data to estimate the effects of user-facing interventions, yet its reliability for decision-making in feedback-driven systems with strong self-selection remains unclear. In this paper, we propose an effect-centric, admissibility-first framework that treats discovered graphs as structural hypotheses and evaluates them by identifiability, stability, and falsification rather than by graph recovery accuracy alone. Empirically, we study the effect of early exposure to competitive gameplay on short-term retention using real-world game telemetry. We find that many statistically plausible discovery outputs do not admit point-identified causal queries once minimal temporal and semantic constraints are enforced, highlighting identifiability as a critical bottleneck for decision support. When identification is possible, several algorithm families converge to similar, decision-consistent effect estimates despite producing substantially different graph structures, including cases where the direct treatment-outcome edge is absent and the effect is preserved through indirect causal pathways. These converging estimates survive placebo, subsampling, and sensitivity refutation. In contrast, other methods exhibit sporadic admissibility and threshold-sensitive or attenuated effects due to endpoint ambiguity. These results suggest that graph-level metrics alone are inadequate proxies for causal reliability for a given target query. Therefore, trustworthy causal conclusions in telemetry-driven systems require prioritizing admissibility and effect-level validation over causal structural recovery alone.
☆ CoTZero: Annotation-Free Human-Like Vision Reasoning via Hierarchical Synthetic CoT
Recent advances in vision-language models (VLMs) have markedly improved image-text alignment, yet they still fall short of human-like visual reasoning. A key limitation is that many VLMs rely on surface correlations rather than building logically coherent structured representations, which often leads to missed higher-level semantic structure and non-causal relational understanding, hindering compositional and verifiable reasoning. To address these limitations by introducing human models into the reasoning process, we propose CoTZero, an annotation-free paradigm with two components: (i) a dual-stage data synthesis approach and (ii) a cognition-aligned training method. In the first component, we draw inspiration from neurocognitive accounts of compositional productivity and global-to-local analysis. In the bottom-up stage, CoTZero extracts atomic visual primitives and incrementally composes them into diverse, structured question-reasoning forms. In the top-down stage, it enforces hierarchical reasoning by using coarse global structure to guide the interpretation of local details and causal relations. In the cognition-aligned training component, built on the synthesized CoT data, we introduce Cognitively Coherent Verifiable Rewards (CCVR) in Reinforcement Fine-Tuning (RFT) to further strengthen VLMs' hierarchical reasoning and generalization, providing stepwise feedback on reasoning coherence and factual correctness. Experiments show that CoTZero achieves an F1 score of 83.33 percent on our multi-level semantic inconsistency benchmark with lexical-perturbation negatives, across both in-domain and out-of-domain settings. Ablations confirm that each component contributes to more interpretable and human-aligned visual reasoning.
comment: 16 pages 6 figures
☆ Who Deserves the Reward? SHARP: Shapley Credit-based Optimization for Multi-Agent System
Integrating Large Language Models (LLMs) with external tools via multi-agent systems offers a promising new paradigm for decomposing and solving complex problems. However, training these systems remains notoriously difficult due to the credit assignment challenge, as it is often unclear which specific functional agent is responsible for the success or failure of decision trajectories. Existing methods typically rely on sparse or globally broadcast rewards, failing to capture individual contributions and leading to inefficient reinforcement learning. To address these limitations, we introduce the Shapley-based Hierarchical Attribution for Reinforcement Policy (SHARP), a novel framework for optimizing multi-agent reinforcement learning via precise credit attribution. SHARP effectively stabilizes training by normalizing agent-specific advantages across trajectory groups, primarily through a decomposed reward mechanism comprising a global broadcast-accuracy reward, a Shapley-based marginal-credit reward for each agent, and a tool-process reward to improve execution efficiency. Extensive experiments across various real-world benchmarks demonstrate that SHARP significantly outperforms recent state-of-the-art baselines, achieving average match improvements of 23.66% and 14.05% over single-agent and multi-agent approaches, respectively.
☆ Regime Change Hypothesis: Foundations for Decoupled Dynamics in Neural Network Training
Despite the empirical success of DNN, their internal training dynamics remain difficult to characterize. In ReLU-based models, the activation pattern induced by a given input determines the piecewise-linear region in which the network behaves affinely. Motivated by this geometry, we investigate whether training exhibits a two-timescale behavior: an early stage with substantial changes in activation patterns and a later stage where weight updates predominantly refine the model within largely stable activation regimes. We first prove a local stability property: outside measure-zero sets of parameters and inputs, sufficiently small parameter perturbations preserve the activation pattern of a fixed input, implying locally affine behavior within activation regions. We then empirically track per-iteration changes in weights and activation patterns across fully-connected and convolutional architectures, as well as Transformer-based models, where activation patterns are recorded in the ReLU feed-forward (MLP/FFN) submodules, using fixed validation subsets. Across the evaluated settings, activation-pattern changes decay 3 times earlier than weight-update magnitudes, showing that late-stage training often proceeds within relatively stable activation regimes. These findings provide a concrete, architecture-agnostic instrument for monitoring training dynamics and motivate further study of decoupled optimization strategies for piecewise-linear networks. For reproducibility, code and experiment configurations will be released upon acceptance.
comment: 8 pages, 1 figure
☆ Latent Reasoning with Supervised Thinking States
Reasoning with a chain-of-thought (CoT) enables Large Language Models (LLMs) to solve complex tasks but incurs significant inference costs due to the generation of long rationales. We propose Thinking States, a method that performs reasoning {\em while} the input is processing. Specifically, Thinking States generates sequences of thinking tokens every few input tokens, transforms the thoughts back into embedding space, and adds them to the following input tokens. This has two key advantages. First, it captures the recurrent nature of CoT, but where the thought tokens are generated as input is processing. Second, since the thoughts are represented as tokens, they can be learned from natural language supervision, and using teacher-forcing, which is parallelizable. Empirically, Thinking States outperforms other latent reasoning methods on multiple reasoning tasks, narrowing the gap to CoT on math problems, and matching its performance on 2-Hop QA with improved latency. On state-tracking tasks, we show Thinking States leads to stronger reasoning behavior than CoT, successfully extrapolating to longer sequences than seen during training.
☆ Near-Oracle KV Selection via Pre-hoc Sparsity for Long-Context Inference
A core bottleneck in large language model (LLM) inference is the cost of attending over the ever-growing key-value (KV) cache. Although near-oracle top-k KV selection can preserve the quality of dense attention while sharply reducing computation and bandwidth, existing sparse methods generally rely on posterior heuristics, i.e., selectors conditioned on observed attention or proxy scores. Such conditioning introduces posterior bias: it tends to distort true token importance and miss salient tokens, thereby impairing long-range reasoning. To tackle this problem, we propose Pre-hoc Sparsity (PrHS), which selects KV entries before attention scoring and provides explicit accuracy control. Let the attention mass of discarded entries be delta (the dropped mass). Through a marginal-to-mutual-information analysis, we derive an upper bound on the mutual-information loss that depends only on the dropped mass. This relation explains failure modes of posterior heuristics and enables verifiable guarantees by controlling the dropped mass in advance. Within PrHS, we instantiate three orthogonal pre-hoc selectors along the axes of time, depth, and layer. Extensive experiments on LLaMA and Mistral families validate PrHS. Across GSM8K and CoQA, PrHS reduces retrieval overhead by over 90%, achieving 3x higher retrieval sparsity than HShare at matched or better accuracy. It incurs under 1% average degradation on LongBench, lowers attention FLOPs by about 15% versus prior sparse baselines, and yields a 9.9x speedup in attention-operator latency and 2.8x higher throughput on NVIDIA A100-80GB GPUs than the dense baseline.
comment: An effective method for accelerating LLM's inference via selective KV processing
☆ SWE Context Bench: A Benchmark for Context Learning in Coding
Large language models are increasingly used as programming agents for repository level software engineering tasks. While recent benchmarks evaluate correctness in realistic codebases, they largely treat tasks as independent and do not assess whether agents can reuse experience across related problems. As a result, the ability of agents to accumulate, retrieve, and apply prior experience, as well as the efficiency gains from such reuse, remains difficult to measure. We introduce SWE-ContextBench, a benchmark designed to explicitly evaluate experience reuse in programming agents. Built on SWE-Bench Lite, SWE-ContextBench augments 300 base tasks with 99 related tasks derived from real dependency and reference relationships among GitHub issues and pull requests, forming task sequences with shared context. The benchmark evaluates agents along three complementary dimensions: prediction accuracy, time efficiency, and cost efficiency. Using SWE-ContextBench, we study multiple experience reuse settings, including oracle guided and autonomous retrieval, as well as full execution trajectories and compact summaries. Our results show that correctly selected summarized experience improves resolution accuracy and substantially reduces runtime and token cost, particularly on harder tasks. In contrast, unfiltered or incorrectly selected experience provides limited or negative benefits. These findings highlight the importance of experience representation and retrieval quality, and position SWE-ContextBench as a principled benchmark for studying experience reuse in programming agents.
☆ Moral Sycophancy in Vision Language Models ACL
Sycophancy in Vision-Language Models (VLMs) refers to their tendency to align with user opinions, often at the expense of moral or factual accuracy. While prior studies have explored sycophantic behavior in general contexts, its impact on morally grounded visual decision-making remains insufficiently understood. To address this gap, we present the first systematic study of moral sycophancy in VLMs, analyzing ten widely-used models on the Moralise and M^3oralBench datasets under explicit user disagreement. Our results reveal that VLMs frequently produce morally incorrect follow-up responses even when their initial judgments are correct, and exhibit a consistent asymmetry: models are more likely to shift from morally right to morally wrong judgments than the reverse when exposed to user-induced bias. Follow-up prompts generally degrade performance on Moralise, while yielding mixed or even improved accuracy on M^3oralBench, highlighting dataset-dependent differences in moral robustness. Evaluation using Error Introduction Rate (EIR) and Error Correction Rate (ECR) reveals a clear trade-off: models with stronger error-correction capabilities tend to introduce more reasoning errors, whereas more conservative models minimize errors but exhibit limited ability to self-correct. Finally, initial contexts with a morally right stance elicit stronger sycophantic behavior, emphasizing the vulnerability of VLMs to moral influence and the need for principled strategies to improve ethical consistency and robustness in multimodal AI systems.
comment: 13 pages, 6 figures, 8 tables, Submitted for review in ACL
☆ Grokking in Linear Models for Logistic Regression
Grokking, the phenomenon of delayed generalization, is often attributed to the depth and compositional structure of deep neural networks. We study grokking in one of the simplest possible settings: the learning of a linear model with logistic loss for binary classification on data that are linearly (and max margin) separable about the origin. We investigate three testing regimes: (1) test data drawn from the same distribution as the training data, in which case grokking is not observed; (2) test data concentrated around the margin, in which case grokking is observed; and (3) adversarial test data generated via projected gradient descent (PGD) attacks, in which case grokking is also observed. We theoretically show that the implicit bias of gradient descent induces a three-phase learning process-population-dominated, support-vector-dominated unlearning, and support-vector-dominated generalization-during which delayed generalization can arise. Our analysis further relates the emergence of grokking to asymmetries in the data, both in the number of examples per class and in the distribution of support vectors across classes, and yields a characterization of the grokking time. We experimentally validate our theory by planting different distributions of population points and support vectors, and by analyzing accuracy curves and hyperplane dynamics. Overall, our results demonstrate that grokking does not require depth or representation learning, and can emerge even in linear models through the dynamics of the bias term.
☆ Automatic Generation of Polynomial Symmetry Breaking Constraints
Symmetry in integer programming causes redundant search and is often handled with symmetry breaking constraints that remove as many equivalent solutions as possible. We propose an algebraic method which allows to generate a random family of polynomial inequalities which can be used as symmetry breakers. The method requires as input an arbitrary base polynomial and a group of permutations which is specific to the integer program. The computations can be easily carried out in any major symbolic computation software. In order to test our approach, we describe a case study on near half-capacity 0-1 bin packing instances which exhibit substantial symmetries. We statically generate random quadratic breakers and add them to a baseline integer programming problem which we then solve with Gurobi. It turns out that simple symmetry breakers, especially combining few variables and permutations, most consistently reduce work time.
☆ The Vibe-Automation of Automation: A Proactive Education Framework for Computer Science in the Age of Generative AI
The emergence of generative artificial intelligence (GenAI) represents not an incremental technological advance but a qualitative epistemological shift that challenges foundational assumptions of computer science. Whereas machine learning has been described as the automation of automation, generative AI operates by navigating contextual, semantic, and stylistic coherence rather than optimizing predefined objective metrics. This paper introduces the concept of Vibe-Automation to characterize this transition. The central claim is that the significance of GenAI lies in its functional access to operationalized tacit regularities: context-sensitive patterns embedded in practice that cannot be fully specified through explicit algorithmic rules. Although generative systems do not possess tacit knowledge in a phenomenological sense, they operationalize sensitivities to tone, intent, and situated judgment encoded in high-dimensional latent representations. On this basis, the human role shifts from algorithmic problem specification toward Vibe-Engineering, understood as the orchestration of alignment and contextual judgment in generative systems. The paper connects this epistemological shift to educational and institutional transformation by proposing a conceptual framework structured across three analytical levels and three domains of action: faculty worldview, industry relations, and curriculum design. The risks of mode collapse and cultural homogenization are briefly discussed, emphasizing the need for deliberate engagement with generative systems to avoid regression toward synthetic uniformity.
comment: 19 pages
☆ Trust-Based Incentive Mechanisms in Semi-Decentralized Federated Learning Systems
In federated learning (FL), decentralized model training allows multi-ple participants to collaboratively improve a shared machine learning model without exchanging raw data. However, ensuring the integrity and reliability of the system is challenging due to the presence of potentially malicious or faulty nodes that can degrade the model's performance. This paper proposes a novel trust-based incentive mechanism designed to evaluate and reward the quality of contributions in FL systems. By dynamically assessing trust scores based on fac-tors such as data quality, model accuracy, consistency, and contribution fre-quency, the system encourages honest participation and penalizes unreliable or malicious behavior. These trust scores form the basis of an incentive mechanism that rewards high-trust nodes with greater participation opportunities and penal-ties for low-trust participants. We further explore the integration of blockchain technology and smart contracts to automate the trust evaluation and incentive distribution processes, ensuring transparency and decentralization. Our proposed theoretical framework aims to create a more robust, fair, and transparent FL eco-system, reducing the risks posed by untrustworthy participants.
comment: To appear in the ICBTA 2025 Conference Proceedings and published as a volume of Lecture Notes in Networks and Systems by Springer
☆ Noise Stability of Transformer Models ICLR 2026
Understanding simplicity biases in deep learning offers a promising path toward developing reliable AI. A common metric for this, inspired by Boolean function analysis, is average sensitivity, which captures a model's robustness to single-token perturbations. We argue that average sensitivity has two key limitations: it lacks a natural generalization to real-valued domains and fails to explain the "junta-like" input dependence we empirically observe in modern LLMs. To address these limitations, we propose noise stability as a more comprehensive simplicity metric. Noise stability expresses a model's robustness to correlated noise applied to all input coordinates simultaneously. We provide a theoretical analysis of noise stability for single-layer attention and ReLU MLP layers and tackle the multi-layer propagation problem with a covariance interval propagation approach. Building on this theory, we develop a practical noise stability regularization method. Experiments on algorithmic and next-token-prediction tasks show that our regularizer consistently catalyzes grokking and accelerates training by approximately $35\%$ and $75\%$ respectively. Our results sculpt a new connection between signal propagation in neural networks and interpretability, with noise stability emerging as a powerful tool for understanding and improving modern Transformers.
comment: Published in ICLR 2026
☆ Tighnari v2: Mitigating Label Noise and Distribution Shift in Multimodal Plant Distribution Prediction via Mixture of Experts and Weakly Supervised Learning
Large-scale, cross-species plant distribution prediction plays a crucial role in biodiversity conservation, yet modeling efforts in this area still face significant challenges due to the sparsity and bias of observational data. Presence-Absence (PA) data provide accurate and noise-free labels, but are costly to obtain and limited in quantity; Presence-Only (PO) data, by contrast, offer broad spatial coverage and rich spatiotemporal distribution, but suffer from severe label noise in negative samples. To address these real-world constraints, this paper proposes a multimodal fusion framework that fully leverages the strengths of both PA and PO data. We introduce an innovative pseudo-label aggregation strategy for PO data based on the geographic coverage of satellite imagery, enabling geographic alignment between the label space and remote sensing feature space. In terms of model architecture, we adopt Swin Transformer Base as the backbone for satellite imagery, utilize the TabM network for tabular feature extraction, retain the Temporal Swin Transformer for time-series modeling, and employ a stackable serial tri-modal cross-attention mechanism to optimize the fusion of heterogeneous modalities. Furthermore, empirical analysis reveals significant geographic distribution shifts between PA training and test samples, and models trained by directly mixing PO and PA data tend to experience performance degradation due to label noise in PO data. To address this, we draw on the mixture-of-experts paradigm: test samples are partitioned according to their spatial proximity to PA samples, and different models trained on distinct datasets are used for inference and post-processing within each partition. Experiments on the GeoLifeCLEF 2025 dataset demonstrate that our approach achieves superior predictive performance in scenarios with limited PA coverage and pronounced distribution shifts.
☆ PISCO: Precise Video Instance Insertion with Sparse Control
The landscape of AI video generation is undergoing a pivotal shift: moving beyond general generation - which relies on exhaustive prompt-engineering and "cherry-picking" - towards fine-grained, controllable generation and high-fidelity post-processing. In professional AI-assisted filmmaking, it is crucial to perform precise, targeted modifications. A cornerstone of this transition is video instance insertion, which requires inserting a specific instance into existing footage while maintaining scene integrity. Unlike traditional video editing, this task demands several requirements: precise spatial-temporal placement, physically consistent scene interaction, and the faithful preservation of original dynamics - all achieved under minimal user effort. In this paper, we propose PISCO, a video diffusion model for precise video instance insertion with arbitrary sparse keyframe control. PISCO allows users to specify a single keyframe, start-and-end keyframes, or sparse keyframes at arbitrary timestamps, and automatically propagates object appearance, motion, and interaction. To address the severe distribution shift induced by sparse conditioning in pretrained video diffusion models, we introduce Variable-Information Guidance for robust conditioning and Distribution-Preserving Temporal Masking to stabilize temporal generation, together with geometry-aware conditioning for realistic scene adaptation. We further construct PISCO-Bench, a benchmark with verified instance annotations and paired clean background videos, and evaluate performance using both reference-based and reference-free perceptual metrics. Experiments demonstrate that PISCO consistently outperforms strong inpainting and video editing baselines under sparse control, and exhibits clear, monotonic performance improvements as additional control signals are provided. Project page: xiangbogaobarry.github.io/PISCO.
☆ Toward Formalizing LLM-Based Agent Designs through Structural Context Modeling and Semantic Dynamics Analysis
Current research on large language model (LLM) agents is fragmented: discussions of conceptual frameworks and methodological principles are frequently intertwined with low-level implementation details, causing both readers and authors to lose track amid a proliferation of superficially distinct concepts. We argue that this fragmentation largely stems from the absence of an analyzable, self-consistent formal model that enables implementation-independent characterization and comparison of LLM agents. To address this gap, we propose the \texttt{Structural Context Model}, a formal model for analyzing and comparing LLM agents from the perspective of context structure. Building upon this foundation, we introduce two complementary components that together span the full lifecycle of LLM agent research and development: (1) a declarative implementation framework; and (2) a sustainable agent engineering workflow, \texttt{Semantic Dynamics Analysis}. The proposed workflow provides principled insights into agent mechanisms and supports rapid, systematic design iteration. We demonstrate the effectiveness of the complete framework on dynamic variants of the monkey-banana problem, where agents engineered using our approach achieve up to a 32 percentage points improvement in success rate on the most challenging setting.
☆ Language Modeling and Understanding Through Paraphrase Generation and Detection
Language enables humans to share knowledge, reason about the world, and pass on strategies for survival and innovation across generations. At the heart of this process is not just the ability to communicate but also the remarkable flexibility in how we can express ourselves. We can express the same thoughts in virtually infinite ways using different words and structures - this ability to rephrase and reformulate expressions is known as paraphrase. Modeling paraphrases is a keystone to meaning in computational language models; being able to construct different variations of texts that convey the same meaning or not shows strong abilities of semantic understanding. If computational language models are to represent meaning, they must understand and control the different aspects that construct the same meaning as opposed to different meanings at a fine granularity. Yet most existing approaches reduce paraphrasing to a binary decision between two texts or to producing a single rewrite of a source, obscuring which linguistic factors are responsible for meaning preservation. In this thesis, I propose that decomposing paraphrases into their constituent linguistic aspects (paraphrase types) offers a more fine-grained and cognitively grounded view of semantic equivalence. I show that even advanced machine learning models struggle with this task. Yet, when explicitly trained on paraphrase types, models achieve stronger performance on related paraphrase tasks and downstream applications. For example, in plagiarism detection, language models trained on paraphrase types surpass human baselines: 89.6% accuracy compared to 78.4% for plagiarism cases from Wikipedia, and 66.5% compared to 55.7% for plagiarism of scientific papers from arXiv. In identifying duplicate questions on Quora, models trained with paraphrase types improve over models trained on binary pairs. Furthermore, I demonstrate that...
comment: PhD dissertation, University of Göttingen Germany, 2025. 182 pages
☆ When Do Multi-Agent Systems Outperform? Analysing the Learning Efficiency of Agentic Systems
Reinforcement Learning (RL) has emerged as a crucial method for training or fine-tuning large language models (LLMs), enabling adaptive, task-specific optimizations through interactive feedback. Multi-Agent Reinforcement Learning (MARL), in particular, offers a promising avenue by decomposing complex tasks into specialized subtasks learned by distinct interacting agents, potentially enhancing the ability and efficiency of LLM systems. However, theoretical insights regarding when and why MARL outperforms Single-Agent RL (SARL) remain limited, creating uncertainty in selecting the appropriate RL framework. In this paper, we address this critical gap by rigorously analyzing the comparative sample efficiency of MARL and SARL within the context of LLM. Leveraging the Probably Approximately Correct (PAC) framework, we formally define SARL and MARL setups for LLMs, derive explicit sample complexity bounds, and systematically characterize how task decomposition and alignment influence learning efficiency. Our results demonstrate that MARL improves sample complexity when tasks naturally decompose into independent subtasks, whereas dependent subtasks diminish MARL's comparative advantage. Additionally, we introduce and analyze the concept of task alignment, quantifying the trade-offs when enforcing independent task decomposition despite potential misalignments. These theoretical insights clarify empirical inconsistencies and provide practical criteria for deploying MARL strategies effectively in complex LLM scenarios.
☆ Puda: Private User Dataset Agent for User-Sovereign and Privacy-Preserving Personalized AI
Personal data centralization among dominant platform providers including search engines, social networking services, and e-commerce has created siloed ecosystems that restrict user sovereignty, thereby impeding data use across services. Meanwhile, the rapid proliferation of Large Language Model (LLM)-based agents has intensified demand for highly personalized services that require the dynamic provision of diverse personal data. This presents a significant challenge: balancing the utilization of such data with privacy protection. To address this challenge, we propose Puda (Private User Dataset Agent), a user-sovereign architecture that aggregates data across services and enables client-side management. Puda allows users to control data sharing at three privacy levels: (i) Detailed Browsing History, (ii) Extracted Keywords, and (iii) Predefined Category Subsets. We implemented Puda as a browser-based system that serves as a common platform across diverse services and evaluated it through a personalized travel planning task. Our results show that providing Predefined Category Subsets achieves 97.2% of the personalization performance (evaluated via an LLM-as-a-Judge framework across three criteria) obtained when sharing Detailed Browsing History. These findings demonstrate that Puda enables effective multi-granularity management, offering practical choices to mitigate the privacy-personalization trade-off. Overall, Puda provides an AI-native foundation for user sovereignty, empowering users to safely leverage the full potential of personalized AI.
comment: 9 pages, 5 figures
☆ Inverting Data Transformations via Diffusion Sampling
We study the problem of transformation inversion on general Lie groups: a datum is transformed by an unknown group element, and the goal is to recover an inverse transformation that maps it back to the original data distribution. Such unknown transformations arise widely in machine learning and scientific modeling, where they can significantly distort observations. We take a probabilistic view and model the posterior over transformations as a Boltzmann distribution defined by an energy function on data space. To sample from this posterior, we introduce a diffusion process on Lie groups that keeps all updates on-manifold and only requires computations in the associated Lie algebra. Our method, Transformation-Inverting Energy Diffusion (TIED), relies on a new trivialized target-score identity that enables efficient score-based sampling of the transformation posterior. As a key application, we focus on test-time equivariance, where the objective is to improve the robustness of pretrained neural networks to input transformations. Experiments on image homographies and PDE symmetries demonstrate that TIED can restore transformed inputs to the training distribution at test time, showing improved performance over strong canonicalization and sampling baselines. Code is available at https://github.com/jw9730/tied.
comment: 24 pages, 4 figures
☆ SynthAgent: A Multi-Agent LLM Framework for Realistic Patient Simulation -- A Case Study in Obesity with Mental Health Comorbidities AAAI 2026
Simulating high-fidelity patients offers a powerful avenue for studying complex diseases while addressing the challenges of fragmented, biased, and privacy-restricted real-world data. In this study, we introduce SynthAgent, a novel Multi-Agent System (MAS) framework designed to model obesity patients with comorbid mental disorders, including depression, anxiety, social phobia, and binge eating disorder. SynthAgent integrates clinical and medical evidence from claims data, population surveys, and patient-centered literature to construct personalized virtual patients enriched with personality traits that influence adherence, emotion regulation, and lifestyle behaviors. Through autonomous agent interactions, the system simulates disease progression, treatment response, and life management across diverse psychosocial contexts. Evaluation of more than 100 generated patients demonstrated that GPT-5 and Claude 4.5 Sonnet achieved the highest fidelity as the core engine in the proposed MAS framework, outperforming Gemini 2.5 Pro and DeepSeek-R1. SynthAgent thus provides a scalable and privacy-preserving framework for exploring patient journeys, behavioral dynamics, and decision-making processes in both medical and psychological domains.
comment: Presented in AAAI 2026 Singapore at the workshop of Health Intelligence
☆ G-LNS: Generative Large Neighborhood Search for LLM-Based Automatic Heuristic Design
While Large Language Models (LLMs) have recently shown promise in Automated Heuristic Design (AHD), existing approaches typically formulate AHD around constructive priority rules or parameterized local search guidance, thereby restricting the search space to fixed heuristic forms. Such designs offer limited capacity for structural exploration, making it difficult to escape deep local optima in complex Combinatorial Optimization Problems (COPs). In this work, we propose G-LNS, a generative evolutionary framework that extends LLM-based AHD to the automated design of Large Neighborhood Search (LNS) operators. Unlike prior methods that evolve heuristics in isolation, G-LNS leverages LLMs to co-evolve tightly coupled pairs of destroy and repair operators. A cooperative evaluation mechanism explicitly captures their interaction, enabling the discovery of complementary operator logic that jointly performs effective structural disruption and reconstruction. Extensive experiments on challenging COP benchmarks, such as Traveling Salesman Problems (TSP) and Capacitated Vehicle Routing Problems (CVRP), demonstrate that G-LNS significantly outperforms LLM-based AHD methods as well as strong classical solvers. The discovered heuristics not only achieve near-optimal solutions with reduced computational budgets but also exhibit robust generalization across diverse and unseen instance distributions.
☆ STEP: Warm-Started Visuomotor Policies with Spatiotemporal Consistency Prediction
Diffusion policies have recently emerged as a powerful paradigm for visuomotor control in robotic manipulation due to their ability to model the distribution of action sequences and capture multimodality. However, iterative denoising leads to substantial inference latency, limiting control frequency in real-time closed-loop systems. Existing acceleration methods either reduce sampling steps, bypass diffusion through direct prediction, or reuse past actions, but often struggle to jointly preserve action quality and achieve consistently low latency. In this work, we propose STEP, a lightweight spatiotemporal consistency prediction mechanism to construct high-quality warm-start actions that are both distributionally close to the target action and temporally consistent, without compromising the generative capability of the original diffusion policy. Then, we propose a velocity-aware perturbation injection mechanism that adaptively modulates actuation excitation based on temporal action variation to prevent execution stall especially for real-world tasks. We further provide a theoretical analysis showing that the proposed prediction induces a locally contractive mapping, ensuring convergence of action errors during diffusion refinement. We conduct extensive evaluations on nine simulated benchmarks and two real-world tasks. Notably, STEP with 2 steps can achieve an average 21.6% and 27.5% higher success rate than BRIDGER and DDIM on the RoboMimic benchmark and real-world tasks, respectively. These results demonstrate that STEP consistently advances the Pareto frontier of inference latency and success rate over existing methods.
comment: 13 pages, 9 figures
☆ Learning in Context, Guided by Choice: A Reward-Free Paradigm for Reinforcement Learning with Transformers
In-context reinforcement learning (ICRL) leverages the in-context learning capabilities of transformer models (TMs) to efficiently generalize to unseen sequential decision-making tasks without parameter updates. However, existing ICRL methods rely on explicit reward signals during pretraining, which limits their applicability when rewards are ambiguous, hard to specify, or costly to obtain. To overcome this limitation, we propose a new learning paradigm, In-Context Preference-based Reinforcement Learning (ICPRL), in which both pretraining and deployment rely solely on preference feedback, eliminating the need for reward supervision. We study two variants that differ in the granularity of feedback: Immediate Preference-based RL (I-PRL) with per-step preferences, and Trajectory Preference-based RL (T-PRL) with trajectory-level comparisons. We first show that supervised pretraining, a standard approach in ICRL, remains effective under preference-only context datasets, demonstrating the feasibility of in-context reinforcement learning using only preference signals. To further improve data efficiency, we introduce alternative preference-native frameworks for I-PRL and T-PRL that directly optimize TM policies from preference data without requiring reward signals nor optimal action labels.Experiments on dueling bandits, navigation, and continuous control tasks demonstrate that ICPRL enables strong in-context generalization to unseen tasks, achieving performance comparable to ICRL methods trained with full reward supervision.
☆ Do MLLMs Really See It: Reinforcing Visual Attention in Multimodal LLMs
While chain-of-thought (CoT) reasoning has substantially improved multimodal large language models (MLLMs) on complex reasoning tasks, existing approaches largely rely on long textual reasoning trajectories and provide limited mechanisms for learning stable visual attention policies. Our analysis shows that current MLLMs exhibit weak visual focus: early-stage visual misalignment is rarely corrected during subsequent reasoning, leading to error propagation and failed inferences. We argue that this limitation stems from inadequate credit assignment for visual attention during training. To address this issue, we propose SAYO, a visual reasoning model trained with a reinforcement learning (RL) framework that introduces a region-level visual attention-based reward. This reward explicitly aligns optimization signals with visually grounded reasoning steps, enabling the model to learn more reliable attention behaviors. Extensive experiments across multiple multimodal benchmarks demonstrate that SAYO consistently improves performance on diverse reasoning and perception tasks.
☆ PTS-SNN: A Prompt-Tuned Temporal Shift Spiking Neural Networks for Efficient Speech Emotion Recognition
Speech Emotion Recognition (SER) is widely deployed in Human-Computer Interaction, yet the high computational cost of conventional models hinders their implementation on resource-constrained edge devices. Spiking Neural Networks (SNNs) offer an energy-efficient alternative due to their event-driven nature; however, their integration with continuous Self-Supervised Learning (SSL) representations is fundamentally challenged by distribution mismatch, where high-dynamic-range embeddings degrade the information coding capacity of threshold-based neurons. To resolve this, we propose Prompt-Tuned Spiking Neural Networks (PTS-SNN), a parameter-efficient neuromorphic adaptation framework that aligns frozen SSL backbones with spiking dynamics. Specifically, we introduce a Temporal Shift Spiking Encoder to capture local temporal dependencies via parameter-free channel shifts, establishing a stable feature basis. To bridge the domain gap, we devise a Context-Aware Membrane Potential Calibration strategy. This mechanism leverages a Spiking Sparse Linear Attention module to aggregate global semantic context into learnable soft prompts, which dynamically regulate the bias voltages of Parametric Leaky Integrate-and-Fire (PLIF) neurons. This regulation effectively centers the heterogeneous input distribution within the responsive firing range, mitigating functional silence or saturation. Extensive experiments on five multilingual datasets (e.g., IEMOCAP, CASIA, EMODB) demonstrate that PTS-SNN achieves 73.34\% accuracy on IEMOCAP, comparable to competitive Artificial Neural Networks (ANNs), while requiring only 1.19M trainable parameters and 0.35 mJ inference energy per sample.
☆ Linearization Explains Fine-Tuning in Large Language Models
Parameter-Efficient Fine-Tuning (PEFT) is a popular class of techniques that strive to adapt large models in a scalable and resource-efficient manner. Yet, the mechanisms underlying their training performance and generalization remain underexplored. In this paper, we provide several insights into such fine-tuning through the lens of linearization. Fine-tuned models are often implicitly encouraged to remain close to the pretrained model. By making this explicit, using an Euclidean distance inductive bias in parameter space, we show that fine-tuning dynamics become equivalent to learning with the positive-definite neural tangent kernel (NTK). We specifically analyze how close the fully linear and the linearized fine-tuning optimizations are, based on the strength of the regularization. This allows us to be pragmatic about how good a model linearization is when fine-tuning large language models (LLMs). When linearization is a good model, our findings reveal a strong correlation between the eigenvalue spectrum of the NTK and the performance of model adaptation. Motivated by this, we give spectral perturbation bounds on the NTK induced by the choice of layers selected for fine-tuning. We empirically validate our theory on Low Rank Adaptation (LoRA) on LLMs. These insights not only characterize fine-tuning but also have the potential to enhance PEFT techniques, paving the way to better informed and more nimble adaptation in LLMs.
☆ TwinRL-VLA: Digital Twin-Driven Reinforcement Learning for Real-World Robotic Manipulation
Despite strong generalization capabilities, Vision-Language-Action (VLA) models remain constrained by the high cost of expert demonstrations and insufficient real-world interaction. While online reinforcement learning (RL) has shown promise in improving general foundation models, applying RL to VLA manipulation in real-world settings is still hindered by low exploration efficiency and a restricted exploration space. Through systematic real-world experiments, we observe that the effective exploration space of online RL is closely tied to the data distribution of supervised fine-tuning (SFT). Motivated by this observation, we propose TwinRL, a digital twin-real-world collaborative RL framework designed to scale and guide exploration for VLA models. First, a high-fidelity digital twin is efficiently reconstructed from smartphone-captured scenes, enabling realistic bidirectional transfer between real and simulated environments. During the SFT warm-up stage, we introduce an exploration space expansion strategy using digital twins to broaden the support of the data trajectory distribution. Building on this enhanced initialization, we propose a sim-to-real guided exploration strategy to further accelerate online RL. Specifically, TwinRL performs efficient and parallel online RL in the digital twin prior to deployment, effectively bridging the gap between offline and online training stages. Subsequently, we exploit efficient digital twin sampling to identify failure-prone yet informative configurations, which are used to guide targeted human-in-the-loop rollouts on the real robot. In our experiments, TwinRL approaches 100% success in both in-distribution regions covered by real-world demonstrations and out-of-distribution regions, delivering at least a 30% speedup over prior real-world RL methods and requiring only about 20 minutes on average across four tasks.
☆ $χ_{0}$: Resource-Aware Robust Manipulation via Taming Distributional Inconsistencies
High-reliability long-horizon robotic manipulation has traditionally relied on large-scale data and compute to understand complex real-world dynamics. However, we identify that the primary bottleneck to real-world robustness is not resource scale alone, but the distributional shift among the human demonstration distribution, the inductive bias learned by the policy, and the test-time execution distribution -- a systematic inconsistency that causes compounding errors in multi-stage tasks. To mitigate these inconsistencies, we propose $χ_{0}$, a resource-efficient framework with effective modules designated to achieve production-level robustness in robotic manipulation. Our approach builds off three technical pillars: (i) Model Arithmetic, a weight-space merging strategy that efficiently soaks up diverse distributions of different demonstrations, varying from object appearance to state variations; (ii) Stage Advantage, a stage-aware advantage estimator that provides stable, dense progress signals, overcoming the numerical instability of prior non-stage approaches; and (iii) Train-Deploy Alignment, which bridges the distribution gap via spatio-temporal augmentation, heuristic DAgger corrections, and temporal chunk-wise smoothing. $χ_{0}$ enables two sets of dual-arm robots to collaboratively orchestrate long-horizon garment manipulation, spanning tasks from flattening, folding, to hanging different clothes. Our method exhibits high-reliability autonomy; we are able to run the system from arbitrary initial state for consecutive 24 hours non-stop. Experiments validate that $χ_{0}$ surpasses the state-of-the-art $π_{0.5}$ in success rate by nearly 250%, with only 20-hour data and 8 A100 GPUs. Code, data and models will be released to facilitate the community.
☆ Contact-Anchored Policies: Contact Conditioning Creates Strong Robot Utility Models
The prevalent paradigm in robot learning attempts to generalize across environments, embodiments, and tasks with language prompts at runtime. A fundamental tension limits this approach: language is often too abstract to guide the concrete physical understanding required for robust manipulation. In this work, we introduce Contact-Anchored Policies (CAP), which replace language conditioning with points of physical contact in space. Simultaneously, we structure CAP as a library of modular utility models rather than a monolithic generalist policy. This factorization allows us to implement a real-to-sim iteration cycle: we build EgoGym, a lightweight simulation benchmark, to rapidly identify failure modes and refine our models and datasets prior to real-world deployment. We show that by conditioning on contact and iterating via simulation, CAP generalizes to novel environments and embodiments out of the box on three fundamental manipulation skills while using only 23 hours of demonstration data, and outperforms large, state-of-the-art VLAs in zero-shot evaluations by 56%. All model checkpoints, codebase, hardware, simulation, and datasets will be open-sourced. Project page: https://cap-policy.github.io/
☆ Dexterous Manipulation Policies from RGB Human Videos via 4D Hand-Object Trajectory Reconstruction
Multi-finger robotic hand manipulation and grasping are challenging due to the high-dimensional action space and the difficulty of acquiring large-scale training data. Existing approaches largely rely on human teleoperation with wearable devices or specialized sensing equipment to capture hand-object interactions, which limits scalability. In this work, we propose VIDEOMANIP, a device-free framework that learns dexterous manipulation directly from RGB human videos. Leveraging recent advances in computer vision, VIDEOMANIP reconstructs explicit 4D robot-object trajectories from monocular videos by estimating human hand poses, object meshes, and retargets the reconstructed human motions to robotic hands for manipulation learning. To make the reconstructed robot data suitable for dexterous manipulation training, we introduce hand-object contact optimization with interaction-centric grasp modeling, as well as a demonstration synthesis strategy that generates diverse training trajectories from a single video, enabling generalizable policy learning without additional robot demonstrations. In simulation, the learned grasping model achieves a 70.25% success rate across 20 diverse objects using the Inspire Hand. In the real world, manipulation policies trained from RGB videos achieve an average 62.86% success rate across seven tasks using the LEAP Hand, outperforming retargeting-based methods by 15.87%. Project videos are available at videomanip.github.io.
☆ CLUE: Crossmodal disambiguation via Language-vision Understanding with attEntion
With the increasing integration of robots into daily life, human-robot interaction has become more complex and multifaceted. A critical component of this interaction is Interactive Visual Grounding (IVG), through which robots must interpret human intentions and resolve ambiguity. Existing IVG models generally lack a mechanism to determine when to ask clarification questions, as they implicitly rely on their learned representations. CLUE addresses this gap by converting the VLM's cross-modal attention into an explicit, spatially grounded signal for deciding when to ask. We extract text to image attention maps and pass them to a lightweight CNN to detect referential ambiguity, while a LoRA fine-tuned decoder conducts the dialog and emits grounding location tokens. We train on a real-world interactive dataset for IVG, and a mixed ambiguity set for the detector. With InViG-only supervision, our model surpasses a state-of-the-art method while using parameter-efficient fine-tuning. Similarly, the ambiguity detector outperforms prior baselines. Overall, CLUE turns the internal cross-modal attention of a VLM into an explicit, spatially grounded signal for deciding when to ask. The data and code are publicly available at: mouadabrini.github.io/clue
WorldArena: A Unified Benchmark for Evaluating Perception and Functional Utility of Embodied World Models
While world models have emerged as a cornerstone of embodied intelligence by enabling agents to reason about environmental dynamics through action-conditioned prediction, their evaluation remains fragmented. Current evaluation of embodied world models has largely focused on perceptual fidelity (e.g., video generation quality), overlooking the functional utility of these models in downstream decision-making tasks. In this work, we introduce WorldArena, a unified benchmark designed to systematically evaluate embodied world models across both perceptual and functional dimensions. WorldArena assesses models through three dimensions: video perception quality, measured with 16 metrics across six sub-dimensions; embodied task functionality, which evaluates world models as data engines, policy evaluators, and action planners integrating with subjective human evaluation. Furthermore, we propose EWMScore, a holistic metric integrating multi-dimensional performance into a single interpretable index. Through extensive experiments on 14 representative models, we reveal a significant perception-functionality gap, showing that high visual quality does not necessarily translate into strong embodied task capability. WorldArena benchmark with the public leaderboard is released at https://worldarena.ai, providing a framework for tracking progress toward truly functional world models in embodied AI.
☆ Reduced-order Control and Geometric Structure of Learned Lagrangian Latent Dynamics
Model-based controllers can offer strong guarantees on stability and convergence by relying on physically accurate dynamic models. However, these are rarely available for high-dimensional mechanical systems such as deformable objects or soft robots. While neural architectures can learn to approximate complex dynamics, they are either limited to low-dimensional systems or provide only limited formal control guarantees due to a lack of embedded physical structure. This paper introduces a latent control framework based on learned structure-preserving reduced-order dynamics for high-dimensional Lagrangian systems. We derive a reduced tracking law for fully actuated systems and adopt a Riemannian perspective on projection-based model-order reduction to study the resulting latent and projected closed-loop dynamics. By quantifying the sources of modeling error, we derive interpretable conditions for stability and convergence. We extend the proposed controller and analysis to underactuated systems by introducing learned actuation patterns. Experimental results on simulated and real-world systems validate our theoretical investigation and the accuracy of our controllers.
comment: 20 pages, 15 figures
☆ Modeling 3D Pedestrian-Vehicle Interactions for Vehicle-Conditioned Pose Forecasting
Accurately predicting pedestrian motion is crucial for safe and reliable autonomous driving in complex urban environments. In this work, we present a 3D vehicle-conditioned pedestrian pose forecasting framework that explicitly incorporates surrounding vehicle information. To support this, we enhance the Waymo-3DSkelMo dataset with aligned 3D vehicle bounding boxes, enabling realistic modeling of multi-agent pedestrian-vehicle interactions. We introduce a sampling scheme to categorize scenes by pedestrian and vehicle count, facilitating training across varying interaction complexities. Our proposed network adapts the TBIFormer architecture with a dedicated vehicle encoder and pedestrian-vehicle interaction cross-attention module to fuse pedestrian and vehicle features, allowing predictions to be conditioned on both historical pedestrian motion and surrounding vehicles. Extensive experiments demonstrate substantial improvements in forecasting accuracy and validate different approaches for modeling pedestrian-vehicle interactions, highlighting the importance of vehicle-aware 3D pose prediction for autonomous driving. Code is available at: https://github.com/GuangxunZhu/VehCondPose3D
comment: Accepted for IEEE International Conference on Robotics and Automation (ICRA) 2026
☆ Finite-Time Teleoperation of Euler-Lagrange Systems via Energy-Shaping
This paper proposes a family of finite-time controllers for the bilateral teleoperation of fully actuated nonlinear Euler-Lagrange systems. Based on the energy-shaping framework and under the standard assumption of passive interactions with the human and the environment, the controllers ensure that the position error and velocities globally converge to zero in the absence of time delays. In this case, the closed-loop system admits a homogeneous approximation of negative degree, and thus the control objective is achieved in finite-time. The proposed controllers are simple, continuous-time proportional-plus-damping-injection schemes, validated through both simulation and experimental results.
☆ karl. -- A Research Vehicle for Automated and Connected Driving
As highly automated driving is transitioning from single-vehicle closed-access testing to commercial deployments of public ride-hailing in selected areas (e.g., Waymo), automated driving and connected cooperative intelligent transport systems (C-ITS) remain active fields of research. Even though simulation is omnipresent in the development and validation life cycle of automated and connected driving technology, the complex nature of public road traffic and software that masters it still requires real-world integration and testing with actual vehicles. Dedicated vehicles for research and development allow testing and validation of software and hardware components under real-world conditions early on. They also enable collecting and publishing real-world datasets that let others conduct research without vehicle access, and support early demonstration of futuristic use cases. In this paper, we present karl., our new research vehicle for automated and connected driving. Apart from major corporations, few institutions worldwide have access to their own L4-capable research vehicles, restricting their ability to carry out independent research. This paper aims to help bridge that gap by sharing the reasoning, design choices, and technical details that went into making karl. a flexible and powerful platform for research, engineering, and validation in the context of automated and connected driving. More impressions of karl. are available at https://karl.ac.
comment: 8 pages; Accepted to be published as part of the 37th Intelligent Vehicles Symposium (IV), Detroit, MI, United States, June 22-25, 2026
☆ Multi-Staged Framework for Safety Analysis of Offloaded Services in Distributed Intelligent Transportation Systems
The integration of service-oriented architectures (SOA) with function offloading for distributed, intelligent transportation systems (ITS) offers the opportunity for connected autonomous vehicles (CAVs) to extend their locally available services. One major goal of offloading a subset of functions in the processing chain of a CAV to remote devices is to reduce the overall computational complexity on the CAV. The extension of using remote services, however, requires careful safety analysis, since the remotely created data are corrupted more easily, e.g., through an attacker on the remote device or by intercepting the wireless transmission. To tackle this problem, we first analyze the concept of SOA for distributed environments. From this, we derive a safety framework that validates the reliability of remote services and the data received locally. Since it is possible for the autonomous driving task to offload multiple different services, we propose a specific multi-staged framework for safety analysis dependent on the service composition of local and remote services. For efficiency reasons, we directly include the multi-staged framework for safety analysis in our service-oriented function offloading framework (SOFOF) that we have proposed in earlier work. The evaluation compares the performance of the extended framework considering computational complexity, with energy savings being a major motivation for function offloading, and its capability to detect data from corrupted remote services.
☆ A Generic Service-Oriented Function Offloading Framework for Connected Automated Vehicles
Function offloading is a promising solution to address limitations concerning computational capacity and available energy of Connected Automated Vehicles~(CAVs) or other autonomous robots by distributing computational tasks between local and remote computing devices in form of distributed services. This paper presents a generic function offloading framework that can be used to offload an arbitrary set of computational tasks with a focus on autonomous driving. To provide flexibility, the function offloading framework is designed to incorporate different offloading decision making algorithms and quality of service~(QoS) requirements that can be adjusted to different scenarios or the objectives of the CAVs. With a focus on the applicability, we propose an efficient location-based approach, where the decision whether tasks are processed locally or remotely depends on the location of the CAV. We apply the proposed framework on the use case of service-oriented trajectory planning, where we offload the trajectory planning task of CAVs to a Multi-Access Edge Computing~(MEC) server. The evaluation is conducted in both simulation and real-world application. It demonstrates the potential of the function offloading framework to guarantee the QoS for trajectory planning while improving the computational efficiency of the CAVs. Moreover, the simulation results also show the adaptability of the framework to diverse scenarios involving simultaneous offloading requests from multiple CAVs.
comment: 8 pages, 6 figures, 2 tables, published in RA-L
☆ GaussianCaR: Gaussian Splatting for Efficient Camera-Radar Fusion
Robust and accurate perception of dynamic objects and map elements is crucial for autonomous vehicles performing safe navigation in complex traffic scenarios. While vision-only methods have become the de facto standard due to their technical advances, they can benefit from effective and cost-efficient fusion with radar measurements. In this work, we advance fusion methods by repurposing Gaussian Splatting as an efficient universal view transformer that bridges the view disparity gap, mapping both image pixels and radar points into a common Bird's-Eye View (BEV) representation. Our main contribution is GaussianCaR, an end-to-end network for BEV segmentation that, unlike prior BEV fusion methods, leverages Gaussian Splatting to map raw sensor information into latent features for efficient camera-radar fusion. Our architecture combines multi-scale fusion with a transformer decoder to efficiently extract BEV features. Experimental results demonstrate that our approach achieves performance on par with, or even surpassing, the state of the art on BEV segmentation tasks (57.3%, 82.9%, and 50.1% IoU for vehicles, roads, and lane dividers) on the nuScenes dataset, while maintaining a 3.2x faster inference runtime. Code and project page are available online.
comment: 8 pages, 6 figures. Accepted to IEEE ICRA 2026
☆ Mind the Gap: Learning Implicit Impedance in Visuomotor Policies via Intent-Execution Mismatch
Teleoperation inherently relies on the human operator acting as a closed-loop controller to actively compensate for hardware imperfections, including latency, mechanical friction, and lack of explicit force feedback. Standard Behavior Cloning (BC), by mimicking the robot's executed trajectory, fundamentally ignores this compensatory mechanism. In this work, we propose a Dual-State Conditioning framework that shifts the learning objective to "Intent Cloning" (master command). We posit that the Intent-Execution Mismatch, the discrepancy between master command and slave response, is not noise, but a critical signal that physically encodes implicit interaction forces and algorithmically reveals the operator's strategy for overcoming system dynamics. By predicting the master intent, our policy learns to generate a "virtual equilibrium point", effectively realizing implicit impedance control. Furthermore, by explicitly conditioning on the history of this mismatch, the model performs implicit system identification, perceiving tracking errors as external forces to close the control loop. To bridge the temporal gap caused by inference latency, we further formulate the policy as a trajectory inpainter to ensure continuous control. We validate our approach on a sensorless, low-cost bi-manual setup. Empirical results across tasks requiring contact-rich manipulation and dynamic tracking reveal a decisive gap: while standard execution-cloning fails due to the inability to overcome contact stiffness and tracking lag, our mismatch-aware approach achieves robust success. This presents a minimalist behavior cloning framework for low-cost hardware, enabling force perception and dynamic compensation without relying on explicit force sensing. Videos are available on the \href{https://xucj98.github.io/mind-the-gap-page/}{project page}.
comment: 14 pages, 9 figures, 5 tables
☆ High-Speed Vision-Based Flight in Clutter with Safety-Shielded Reinforcement Learning
Quadrotor unmanned aerial vehicles (UAVs) are increasingly deployed in complex missions that demand reliable autonomous navigation and robust obstacle avoidance. However, traditional modular pipelines often incur cumulative latency, whereas purely reinforcement learning (RL) approaches typically provide limited formal safety guarantees. To bridge this gap, we propose an end-to-end RL framework augmented with model-based safety mechanisms. We incorporate physical priors in both training and deployment. During training, we design a physics-informed reward structure that provides global navigational guidance. During deployment, we integrate a real-time safety filter that projects the policy outputs onto a provably safe set to enforce strict collision-avoidance constraints. This hybrid architecture reconciles high-speed flight with robust safety assurances. Benchmark evaluations demonstrate that our method outperforms both traditional planners and recent end-to-end obstacle avoidance approaches based on differentiable physics. Extensive experiments demonstrate strong generalization, enabling reliable high-speed navigation in dense clutter and challenging outdoor forest environments at velocities up to 7.5m/s.
☆ Mimic Intent, Not Just Trajectories
While imitation learning (IL) has achieved impressive success in dexterous manipulation through generative modeling and pretraining, state-of-the-art approaches like Vision-Language-Action (VLA) models still struggle with adaptation to environmental changes and skill transfer. We argue this stems from mimicking raw trajectories without understanding the underlying intent. To address this, we propose explicitly disentangling behavior intent from execution details in end-2-end IL: \textit{``Mimic Intent, Not just Trajectories'' (MINT)}. We achieve this via \textit{multi-scale frequency-space tokenization}, which enforces a spectral decomposition of action chunk representation. We learn action tokens with a multi-scale coarse-to-fine structure, and force the coarsest token to capture low-frequency global structure and finer tokens to encode high-frequency details. This yields an abstract \textit{Intent token} that facilitates planning and transfer, and multi-scale \textit{Execution tokens} that enable precise adaptation to environmental dynamics. Building on this hierarchy, our policy generates trajectories through \textit{next-scale autoregression}, performing progressive \textit{intent-to-execution reasoning}, thus boosting learning efficiency and generalization. Crucially, this disentanglement enables \textit{one-shot transfer} of skills, by simply injecting the Intent token from a demonstration into the autoregressive generation process. Experiments on several manipulation benchmarks and on a real robot demonstrate state-of-the-art success rates, superior inference efficiency, robust generalization against disturbances, and effective one-shot transfer.
comment: Under review
☆ A Precise Real-Time Force-Aware Grasping System for Robust Aerial Manipulation
Aerial manipulation requires force-aware capabilities to enable safe and effective grasping and physical interaction. Previous works often rely on heavy, expensive force sensors unsuitable for typical quadrotor platforms, or perform grasping without force feedback, risking damage to fragile objects. To address these limitations, we propose a novel force-aware grasping framework incorporating six low-cost, sensitive skin-like tactile sensors. We introduce a magnetic-based tactile sensing module that provides high-precision three-dimensional force measurements. We eliminate geomagnetic interference through a reference Hall sensor and simplify the calibration process compared to previous work. The proposed framework enables precise force-aware grasping control, allowing safe manipulation of fragile objects and real-time weight measurement of grasped items. The system is validated through comprehensive real-world experiments, including balloon grasping, dynamic load variation tests, and ablation studies, demonstrating its effectiveness in various aerial manipulation scenarios. Our approach achieves fully onboard operation without external motion capture systems, significantly enhancing the practicality of force-sensitive aerial manipulation. The supplementary video is available at: https://www.youtube.com/watch?v=mbcZkrJEf1I.
☆ MOSAIC: Bridging the Sim-to-Real Gap in Generalist Humanoid Motion Tracking and Teleoperation with Rapid Residual Adaptation
Generalist humanoid motion trackers have recently achieved strong simulation metrics by scaling data and training, yet often remain brittle on hardware during sustained teleoperation due to interface- and dynamics-induced errors. We present MOSAIC, an open-source, full-stack system for humanoid motion tracking and whole-body teleoperation across multiple interfaces. MOSAIC first learns a teleoperation-oriented general motion tracker via RL on a multi-source motion bank with adaptive resampling and rewards that emphasize world-frame motion consistency, which is critical for mobile teleoperation. To bridge the sim-to-real interface gap without sacrificing generality, MOSAIC then performs rapid residual adaptation: an interface-specific policy is trained using minimal interface-specific data, and then distilled into the general tracker through an additive residual module, outperforming naive fine-tuning or continual learning. We validate MOSAIC with systematic ablations, out-of-distribution benchmarking, and real-robot experiments demonstrating robust offline motion replay and online long-horizon teleoperation under realistic latency and noise.
☆ Head-to-Head autonomous racing at the limits of handling in the A2RL challenge
Autonomous racing presents a complex challenge involving multi-agent interactions between vehicles operating at the limit of performance and dynamics. As such, it provides a valuable research and testing environment for advancing autonomous driving technology and improving road safety. This article presents the algorithms and deployment strategies developed by the TUM Autonomous Motorsport team for the inaugural Abu Dhabi Autonomous Racing League (A2RL). We showcase how our software emulates human driving behavior, pushing the limits of vehicle handling and multi-vehicle interactions to win the A2RL. Finally, we highlight the key enablers of our success and share our most significant learnings.
comment: Submitted to Science Robotics for possible publication
☆ Constrained Sampling to Guide Universal Manipulation RL
We consider how model-based solvers can be leveraged to guide training of a universal policy to control from any feasible start state to any feasible goal in a contact-rich manipulation setting. While Reinforcement Learning (RL) has demonstrated its strength in such settings, it may struggle to sufficiently explore and discover complex manipulation strategies, especially in sparse-reward settings. Our approach is based on the idea of a lower-dimensional manifold of feasible, likely-visited states during such manipulation and to guide RL with a sampler from this manifold. We propose Sample-Guided RL, which uses model-based constraint solvers to efficiently sample feasible configurations (satisfying differentiable collision, contact, and force constraints) and leverage them to guide RL for universal (goal-conditioned) manipulation policies. We study using this data directly to bias state visitation, as well as using black-box optimization of open-loop trajectories between random configurations to impose a state bias and optionally add a behavior cloning loss. In a minimalistic double sphere manipulation setting, Sample-Guided RL discovers complex manipulation strategies and achieves high success rates in reaching any statically stable state. In a more challenging panda arm setting, our approach achieves a significant success rate over a near-zero baseline, and demonstrates a breadth of complex whole-body-contact manipulation strategies.
☆ UniPlan: Vision-Language Task Planning for Mobile Manipulation with Unified PDDL Formulation
Integration of VLM reasoning with symbolic planning has proven to be a promising approach to real-world robot task planning. Existing work like UniDomain effectively learns symbolic manipulation domains from real-world demonstrations, described in Planning Domain Definition Language (PDDL), and has successfully applied them to real-world tasks. These domains, however, are restricted to tabletop manipulation. We propose UniPlan, a vision-language task planning system for long-horizon mobile-manipulation in large-scale indoor environments, that unifies scene topology, visuals, and robot capabilities into a holistic PDDL representation. UniPlan programmatically extends learned tabletop domains from UniDomain to support navigation, door traversal, and bimanual coordination. It operates on a visual-topological map, comprising navigation landmarks anchored with scene images. Given a language instruction, UniPlan retrieves task-relevant nodes from the map and uses a VLM to ground the anchored image into task-relevant objects and their PDDL states; next, it reconnects these nodes to a compressed, densely-connected topological map, also represented in PDDL, with connectivity and costs derived from the original map; Finally, a mobile-manipulation plan is generated using off-the-shelf PDDL solvers. Evaluated on human-raised tasks in a large-scale map with real-world imagery, UniPlan significantly outperforms VLM and LLM+PDDL planning in success rate, plan quality, and computational efficiency.
☆ Characteristics, Management, and Utilization of Muscles in Musculoskeletal Humanoids: Empirical Study on Kengoro and Musashi
Various musculoskeletal humanoids have been developed so far, and numerous studies on control mechanisms have been conducted to leverage the advantages of their biomimetic bodies. However, there has not been sufficient and unified discussion on the diverse properties inherent in these musculoskeletal structures, nor on how to manage and utilize them. Therefore, this study categorizes and analyzes the characteristics of muscles, as well as their management and utilization methods, based on the various research conducted on the musculoskeletal humanoids we have developed, Kengoro and Musashi. We classify the features of the musculoskeletal structure into five properties: Redundancy, Independency, Anisotropy, Variable Moment Arm, and Nonlinear Elasticity. We then organize the diverse advantages and disadvantages of musculoskeletal humanoids that arise from the combination of these properties. In particular, we discuss body schema learning and reflex control, along with muscle grouping and body schema adaptation. Also, we describe the implementation of movements through an integrated system and discuss future challenges and prospects.
comment: Accepted to Advanced Intelligent Systems
☆ Reliability-aware Execution Gating for Near-field and Off-axis Vision-guided Robotic Alignment
Vision-guided robotic systems are increasingly deployed in precision alignment tasks that require reliable execution under near-field and off-axis configurations. While recent advances in pose estimation have significantly improved numerical accuracy, practical robotic systems still suffer from frequent execution failures even when pose estimates appear accurate. This gap suggests that pose accuracy alone is insufficient to guarantee execution-level reliability. In this paper, we reveal that such failures arise from a deterministic geometric error amplification mechanism, in which small pose estimation errors are magnified through system structure and motion execution, leading to unstable or failed alignment. Rather than modifying pose estimation algorithms, we propose a Reliability-aware Execution Gating mechanism that operates at the execution level. The proposed approach evaluates geometric consistency and configuration risk before execution, and selectively rejects or scales high-risk pose updates. We validate the proposed method on a real UR5 robotic platform performing single-step visual alignment tasks under varying camera-target distances and off-axis configurations. Experimental results demonstrate that the proposed execution gating significantly improves task success rates, reduces execution variance, and suppresses tail-risk behavior, while leaving average pose accuracy largely unchanged. Importantly, the proposed mechanism is estimator-agnostic and can be readily integrated with both classical geometry-based and learning-based pose estimation pipelines. These results highlight the importance of execution-level reliability modeling and provide a practical solution for improving robustness in near-field vision-guided robotic systems.
comment: 7 pages, 1 figure
☆ UAV-Supported Maritime Search System: Experience from Valun Bay Field Trials
This paper presents the integration of flow field reconstruction, dynamic probabilistic modeling, search control, and machine vision detection in a system for autonomous maritime search operations. Field experiments conducted in Valun Bay (Cres Island, Croatia) involved real-time drifter data acquisition, surrogate flow model fitting based on computational fluid dynamics and numerical optimization, advanced multi-UAV search control and vision sensing, as well as deep learning-based object detection. The results demonstrate that a tightly coupled approach enables reliable detection of floating targets under realistic uncertainties and complex environmental conditions, providing concrete insights for future autonomous maritime search and rescue applications.
☆ Post-Collision Trajectory Restoration for a Single-track Ackermann Vehicle using Heuristic Steering and Tractive Force Functions
Post-collision trajectory restoration is a safety-critical capability for autonomous vehicles, as impact-induced lateral motion and yaw transients can rapidly drive the vehicle away from the intended path. This paper proposes a structured heuristic recovery control law that jointly commands steering and tractive force for a generalized single-track Ackermann vehicle model. The formulation explicitly accounts for time-varying longitudinal velocity in the lateral-yaw dynamics and retains nonlinear steering-coupled interaction terms that are commonly simplified in the literature. Unlike approaches that assume constant longitudinal speed, the proposed design targets the transient post-impact regime where speed variations and nonlinear coupling significantly influence recovery. The method is evaluated in simulation on the proposed generalized single-track model and a standard 3DOF single-track reference model in MATLAB, demonstrating consistent post-collision restoration behaviour across representative initial post-impact conditions.
comment: 10 pages, 6 figures
☆ SteerVLA: Steering Vision-Language-Action Models in Long-Tail Driving Scenarios
A fundamental challenge in autonomous driving is the integration of high-level, semantic reasoning for long-tail events with low-level, reactive control for robust driving. While large vision-language models (VLMs) trained on web-scale data offer powerful common-sense reasoning, they lack the grounded experience necessary for safe vehicle control. We posit that an effective autonomous agent should leverage the world knowledge of VLMs to guide a steerable driving policy toward robust control in driving scenarios. To this end, we propose SteerVLA, which leverages the reasoning capabilities of VLMs to produce fine-grained language instructions that steer a vision-language-action (VLA) driving policy. Key to our method is this rich language interface between the high-level VLM and low-level VLA, which allows the high-level policy to more effectively ground its reasoning in the control outputs of the low-level policy. To provide fine-grained language supervision aligned with vehicle control, we leverage a VLM to augment existing driving data with detailed language annotations, which we find to be essential for effective reasoning and steerability. We evaluate SteerVLA on a challenging closed-loop benchmark, where it outperforms state-of-the-art methods by 4.77 points in overall driving score and by 8.04 points on a long-tail subset. The project website is available at: https://steervla.github.io/.
☆ Bi-Adapt: Few-shot Bimanual Adaptation for Novel Categories of 3D Objects via Semantic Correspondence
Bimanual manipulation is imperative yet challenging for robots to execute complex tasks, requiring coordinated collaboration between two arms. However, existing methods for bimanual manipulation often rely on costly data collection and training, struggling to generalize to unseen objects in novel categories efficiently. In this paper, we present Bi-Adapt, a novel framework designed for efficient generalization for bimanual manipulation via semantic correspondence. Bi-Adapt achieves cross-category affordance mapping by leveraging the strong capability of vision foundation models. Fine-tuning with restricted data on novel categories, Bi-Adapt exhibits notable generalization to out-of-category objects in a zero-shot manner. Extensive experiments conducted in both simulation and real-world environments validate the effectiveness of our approach and demonstrate its high efficiency, achieving a high success rate on different benchmark tasks across novel categories with limited data. Project website: https://biadapt-project.github.io/
☆ Decentralized Intent-Based Multi-Robot Task Planner with LLM Oracles on Hyperledger Fabric
Large language models (LLMs) have opened new opportunities for transforming natural language user intents into executable actions. This capability enables embodied AI agents to perform complex tasks, without involvement of an expert, making human-robot interaction (HRI) more convenient. However these developments raise significant security and privacy challenges such as self-preferencing, where a single LLM service provider dominates the market and uses this power to promote their own preferences. LLM oracles have been recently proposed as a mechanism to decentralize LLMs by executing multiple LLMs from different vendors and aggregating their outputs to obtain a more reliable and trustworthy final result. However, the accuracy of these approaches highly depends on the aggregation method. The current aggregation methods mostly use semantic similarity between various LLM outputs, not suitable for robotic task planning, where the temporal order of tasks is important. To fill the gap, we propose an LLM oracle with a new aggregation method for robotic task planning. In addition, we propose a decentralized multi-robot infrastructure based on Hyperledger Fabric that can host the proposed oracle. The proposed infrastructure enables users to express their natural language intent to the system, which then can be decomposed into subtasks. These subtasks require coordinating different robots from different vendors, while enforcing fine-grained access control management on the data. To evaluate our methodology, we created the SkillChain-RTD benchmark made it publicly available. Our experimental results demonstrate the feasibility of the proposed architecture, and the proposed aggregation method outperforms other aggregation methods currently in use.
☆ Graph-Loc: Robust Graph-Based LiDAR Pose Tracking with Compact Structural Map Priors under Low Observability and Occlusion
Map-based LiDAR pose tracking is essential for long-term autonomous operation, where onboard map priors need be compact for scalable storage and fast retrieval, while online observations are often partial, repetitive, and heavily occluded. We propose Graph-Loc, a graph-based localization framework that tracks the platform pose against compact structural map priors represented as a lightweight point-line graph. Such priors can be constructed from heterogeneous sources commonly available in practice, including polygon outlines vectorized from occupancy/grid maps and CAD/model/floor-plan layouts. For each incoming LiDAR scan, Graph-Loc extracts sparse point and line primitives to form an observation graph, retrieves a pose-conditioned visible subgraph via LiDAR ray simulation, and performs scan-to-map association through unbalanced optimal transport with a local graph-context regularizer. The unbalanced formulation relaxes mass conservation, improving robustness to missing, spurious, and fragmented structures under occlusion. To enhance stability in low-observability segments, we estimate information anisotropy from the refinement normal matrix and defer updates along weakly constrained directions until sufficient constraints reappear. Experiments on public benchmarks, controlled stress tests, and real-world deployments demonstrate accurate and stable tracking with KB-level priors from heterogeneous map sources, including under geometrically degenerate and sustained occlusion and in the presence of gradual scene changes.
comment: 13 pages, 8 figures, 8 tables
☆ Vec-QMDP: Vectorized POMDP Planning on CPUs for Real-Time Autonomous Driving
Planning under uncertainty for real-world robotics tasks, such as autonomous driving, requires reasoning in enormous high-dimensional belief spaces, rendering the problem computationally intensive. While parallelization offers scalability, existing hybrid CPU-GPU solvers face critical bottlenecks due to host-device synchronization latency and branch divergence on SIMT architectures, limiting their utility for real-time planning and hindering real-robot deployment. We present Vec-QMDP, a CPU-native parallel planner that aligns POMDP search with modern CPUs' SIMD architecture, achieving $227\times$--$1073\times$ speedup over state-of-the-art serial planners. Vec-QMDP adopts a Data-Oriented Design (DOD), refactoring scattered, pointer-based data structures into contiguous, cache-efficient memory layouts. We further introduce a hierarchical parallelism scheme: distributing sub-trees across independent CPU cores and SIMD lanes, enabling fully vectorized tree expansion and collision checking. Efficiency is maximized with the help of UCB load balancing across trees and a vectorized STR-tree for coarse-level collision checking. Evaluated on large-scale autonomous driving benchmarks, Vec-QMDP achieves state-of-the-art planning performance with millisecond-level latency, establishing CPUs as a high-performance computing platform for large-scale planning under uncertainty.
☆ Controlled Flight of an Insect-Scale Flapping-Wing Robot via Integrated Onboard Sensing and Computation
Aerial insects can effortlessly navigate dense vegetation, whereas similarly sized aerial robots typically depend on offboard sensors and computation to maintain stable flight. This disparity restricts insect-scale robots to operation within motion capture environments, substantially limiting their applicability to tasks such as search-and-rescue and precision agriculture. In this work, we present a 1.29-gram aerial robot capable of hovering and tracking trajectories with solely onboard sensing and computation. The combination of a sensor suite, estimators, and a low-level controller achieved centimeter-scale positional flight accuracy. Additionally, we developed a hierarchical controller in which a human operator provides high-level commands to direct the robot's motion. In a 30-second flight experiment conducted outside a motion capture system, the robot avoided obstacles and ultimately landed on a sunflower. This level of sensing and computational autonomy represents a significant advancement for the aerial microrobotics community, further opening opportunities to explore onboard planning and power autonomy.
comment: 22 pages, 7 figures
☆ Personalized Autonomous Driving via Optimal Control with Clearance Constraints from Questionnaires
Driving without considering the preferred separation distance from surrounding vehicles may cause discomfort for users. To address this limitation, we propose a planning framework that explicitly incorporates user preferences regarding the desired level of safe clearance from surrounding vehicles. We design a questionnaire purposefully tailored to capture user preferences relevant to our framework, while minimizing unnecessary questions. Specifically, the questionnaire considers various interaction-relevant factors, including the surrounding vehicle's size, speed, position, and maneuvers of surrounding vehicles, as well as the maneuvers of the ego vehicle. The response indicates the user-preferred clearance for the scenario defined by the question and is incorporated as constraints in the optimal control problem. However, it is impractical to account for all possible scenarios that may arise in a driving environment within a single optimal control problem, as the resulting computational complexity renders real-time implementation infeasible. To overcome this limitation, we approximate the original problem by decomposing it into multiple subproblems, each dealing with one fixed scenario. We then solve these subproblems in parallel and select one using the cost function from the original problem. To validate our work, we conduct simulations using different user responses to the questionnaire. We assess how effectively our planner reflects user preferences compared to preference-agnostic baseline planners by measuring preference alignment.
☆ Benchmarking Autonomous Vehicles: A Driver Foundation Model Framework
Autonomous vehicles (AVs) are poised to revolutionize global transportation systems. However, its widespread acceptance and market penetration remain significantly below expectations. This gap is primarily driven by persistent challenges in safety, comfort, commuting efficiency and energy economy when compared to the performance of experienced human drivers. We hypothesize that these challenges can be addressed through the development of a driver foundation model (DFM). Accordingly, we propose a framework for establishing DFMs to comprehensively benchmark AVs. Specifically, we describe a large-scale dataset collection strategy for training a DFM, discuss the core functionalities such a model should possess, and explore potential technical solutions to realize these functionalities. We further present the utility of the DFM across the operational spectrum, from defining human-centric safety envelopes to establishing benchmarks for energy economy. Overall, We aim to formalize the DFM concept and introduce a new paradigm for the systematic specification, verification and validation of AVs.
☆ ReefFlex: A Generative Design Framework for Soft Robotic Grasping of Organic and Fragile objects
Climate change, invasive species and human activities are currently damaging the world's coral reefs at unprecedented rates, threatening their vast biodiversity and fisheries, and reducing coastal protection. Solving this vast challenge requires scalable coral regeneration technologies that can breed climate-resilient species and accelerate the natural regrowth processes; actions that are impeded by the absence of safe and robust tools to handle the fragile coral. We investigate ReefFlex, a generative soft finger design methodology that explores a diverse space of soft fingers to produce a set of candidates capable of safely grasping fragile and geometrically heterogeneous coral in a cluttered environment. Our key insight is encoding heterogeneous grasping into a reduced set of motion primitives, creating a simplified, tractable multi-objective optimisation problem. To evaluate the method, we design a soft robot for reef rehabilitation, which grows and manipulates coral in onshore aquaculture facilities for future reef out-planting. We demonstrate ReefFlex increases both grasp success and grasp quality (disturbance resistance, positioning accuracy) and reduces in adverse events encountered during coral manipulation compared to reference designs. ReefFlex, offers a generalisable method to design soft end-effectors for complex handling and paves a pathway towards automation in previously unachievable domains like coral handling for restoration.
☆ DexFormer: Cross-Embodied Dexterous Manipulation via History-Conditioned Transformer
Dexterous manipulation remains one of the most challenging problems in robotics, requiring coherent control of high-DoF hands and arms under complex, contact-rich dynamics. A major barrier is embodiment variability: different dexterous hands exhibit distinct kinematics and dynamics, forcing prior methods to train separate policies or rely on shared action spaces with per-embodiment decoder heads. We present DexFormer, an end-to-end, dynamics-aware cross-embodiment policy built on a modified transformer backbone that conditions on historical observations. By using temporal context to infer morphology and dynamics on the fly, DexFormer adapts to diverse hand configurations and produces embodiment-appropriate control actions. Trained over a variety of procedurally generated dexterous-hand assets, DexFormer acquires a generalizable manipulation prior and exhibits strong zero-shot transfer to Leap Hand, Allegro Hand, and Rapid Hand. Our results show that a single policy can generalize across heterogeneous hand embodiments, establishing a scalable foundation for cross-embodiment dexterous manipulation. Project website: https://davidlxu.github.io/DexFormer-web/.
☆ Informative Object-centric Next Best View for Object-aware 3D Gaussian Splatting in Cluttered Scenes
In cluttered scenes with inevitable occlusions and incomplete observations, selecting informative viewpoints is essential for building a reliable representation. In this context, 3D Gaussian Splatting (3DGS) offers a distinct advantage, as it can explicitly guide the selection of subsequent viewpoints and then refine the representation with new observations. However, existing approaches rely solely on geometric cues, neglect manipulation-relevant semantics, and tend to prioritize exploitation over exploration. To tackle these limitations, we introduce an instance-aware Next Best View (NBV) policy that prioritizes underexplored regions by leveraging object features. Specifically, our object-aware 3DGS distills instancelevel information into one-hot object vectors, which are used to compute confidence-weighted information gain that guides the identification of regions associated with erroneous and uncertain Gaussians. Furthermore, our method can be easily adapted to an object-centric NBV, which focuses view selection on a target object, thereby improving reconstruction robustness to object placement. Experiments demonstrate that our NBV policy reduces depth error by up to 77.14% on the synthetic dataset and 34.10% on the real-world GraspNet dataset compared to baselines. Moreover, compared to targeting the entire scene, performing NBV on a specific object yields an additional reduction of 25.60% in depth error for that object. We further validate the effectiveness of our approach through real-world robotic manipulation tasks.
comment: 9 pages, 8 figures, 4 tables, accepted to ICRA 2026
☆ Aerial Manipulation with Contact-Aware Onboard Perception and Hybrid Control
Aerial manipulation (AM) promises to move Unmanned Aerial Vehicles (UAVs) beyond passive inspection to contact-rich tasks such as grasping, assembly, and in-situ maintenance. Most prior AM demonstrations rely on external motion capture (MoCap) and emphasize position control for coarse interactions, limiting deployability. We present a fully onboard perception-control pipeline for contact-rich AM that achieves accurate motion tracking and regulated contact wrenches without MoCap. The main components are (1) an augmented visual-inertial odometry (VIO) estimator with contact-consistency factors that activate only during interaction, tightening uncertainty around the contact frame and reducing drift, and (2) image-based visual servoing (IBVS) to mitigate perception-control coupling, together with a hybrid force-motion controller that regulates contact wrenches and lateral motion for stable contact. Experiments show that our approach closes the perception-to-wrench loop using only onboard sensing, yielding an velocity estimation improvement of 66.01% at contact, reliable target approach, and stable force holding-pointing toward deployable, in-the-wild aerial manipulation.
comment: 9 pages, 7 figures. Accepted by ICRA 2026
☆ Chamelion: Reliable Change Detection for Long-Term LiDAR Mapping in Transient Environments
Online change detection is crucial for mobile robots to efficiently navigate through dynamic environments. Detecting changes in transient settings, such as active construction sites or frequently reconfigured indoor spaces, is particularly challenging due to frequent occlusions and spatiotemporal variations. Existing approaches often struggle to detect changes and fail to update the map across different observations. To address these limitations, we propose a dual-head network designed for online change detection and long-term map maintenance. A key difficulty in this task is the collection and alignment of real-world data, as manually registering structural differences over time is both labor-intensive and often impractical. To overcome this, we develop a data augmentation strategy that synthesizes structural changes by importing elements from different scenes, enabling effective model training without the need for extensive ground-truth annotations. Experiments conducted at real-world construction sites and in indoor office environments demonstrate that our approach generalizes well across diverse scenarios, achieving efficient and accurate map updates.\resubmit{Our source code and additional material are available at: https://chamelion-pages.github.io/.
comment: 8 pages, IEEE Robot. Automat. Lett. (RA-L) 2026
Self-Supervised Bootstrapping of Action-Predictive Embodied Reasoning
Embodied Chain-of-Thought (CoT) reasoning has significantly enhanced Vision-Language-Action (VLA) models, yet current methods rely on rigid templates to specify reasoning primitives (e.g., objects in the scene, high-level plans, structural affordances). These templates can force policies to process irrelevant information that distracts from critical action-prediction signals. This creates a bottleneck: without successful policies, we cannot verify reasoning quality; without quality reasoning, we cannot build robust policies. We introduce R&B-EnCoRe, which enables models to bootstrap embodied reasoning from internet-scale knowledge through self-supervised refinement. By treating reasoning as a latent variable within importance-weighted variational inference, models can generate and distill a refined reasoning training dataset of embodiment-specific strategies without external rewards, verifiers, or human annotation. We validate R&B-EnCoRe across manipulation (Franka Panda in simulation, WidowX in hardware), legged navigation (bipedal, wheeled, bicycle, quadruped), and autonomous driving embodiments using various VLA architectures with 1B, 4B, 7B, and 30B parameters. Our approach achieves 28% gains in manipulation success, 101% improvement in navigation scores, and 21% reduction in collision-rate metric over models that indiscriminately reason about all available primitives. R&B-EnCoRe enables models to distill reasoning that is predictive of successful control, bypassing manual annotation engineering while grounding internet-scale knowledge in physical execution.
♻ ☆ Rethinking Memory Mechanisms of Foundation Agents in the Second Half: A Survey
The research of artificial intelligence is undergoing a paradigm shift from prioritizing model innovations over benchmark scores towards emphasizing problem definition and rigorous real-world evaluation. As the field enters the "second half," the central challenge becomes real utility in long-horizon, dynamic, and user-dependent environments, where agents face context explosion and must continuously accumulate, manage, and selectively reuse large volumes of information across extended interactions. Memory, with hundreds of papers released this year, therefore emerges as the critical solution to fill the utility gap. In this survey, we provide a unified view of foundation agent memory along three dimensions: memory substrate (internal and external), cognitive mechanism (episodic, semantic, sensory, working, and procedural), and memory subject (agent- and user-centric). We then analyze how memory is instantiated and operated under different agent topologies and highlight learning policies over memory operations. Finally, we review evaluation benchmarks and metrics for assessing memory utility, and outline various open challenges and future directions.
♻ ☆ Semantics-Aware Generative Latent Data Augmentation for Learning in Low-Resource Domains
Despite strong performance in data-rich regimes, deep learning often underperforms in the data-scarce settings common in practice. While foundation models (FMs) trained on massive datasets demonstrate strong generalization by extracting general-purpose features, they can still suffer from scarce labeled data during downstream fine-tuning. To address this, we propose GeLDA, a semantics-aware generative latent data augmentation framework that leverages conditional diffusion models to synthesize samples in an FM-induced latent space. Because this space is low-dimensional and concentrates task-relevant information compared to the input space, GeLDA enables efficient, high-quality data generation. GeLDA conditions generation on auxiliary feature vectors that capture semantic relationships among classes or subdomains, facilitating data augmentation in low-resource domains. We validate GeLDA in two large-scale recognition tasks: (a) in zero-shot language-specific speech emotion recognition, GeLDA improves the Whisper-large baseline's unweighted average recall by 6.13%; and (b) in long-tailed image classification, it achieves 74.7% tail-class accuracy on ImageNet-LT, setting a new state-of-the-art result.
♻ ☆ Decoupling Generalizability and Membership Privacy Risks in Neural Networks
A deep learning model usually has to sacrifice some utilities when it acquires some other abilities or characteristics. Privacy preservation has such trade-off relationships with utilities. The loss disparity between various defense approaches implies the potential to decouple generalizability and privacy risks to maximize privacy gain. In this paper, we identify that the model's generalization and privacy risks exist in different regions in deep neural network architectures. Based on the observations that we investigate, we propose Privacy-Preserving Training Principle (PPTP) to protect model components from privacy risks while minimizing the loss in generalizability. Through extensive evaluations, our approach shows significantly better maintenance in model generalizability while enhancing privacy preservation.
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent computational cost. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Reproducible Benchmarking for Lung Nodule Detection and Malignancy Classification Across Multiple Low-Dose CT Datasets
Evaluation of artificial intelligence (AI) models for low-dose CT lung cancer screening is limited by heterogeneous datasets, annotation standards, and evaluation protocols, making performance difficult to compare and translate across clinical settings. We establish a public, reproducible multi-dataset benchmark for lung nodule detection and nodule-level cancer classification and quantify cross-dataset generalizability. Using the Duke Lung Cancer Screening (DLCS) dataset as a clinically curated development set, we evaluate performance across LUNA16/LIDC-IDRI, NLST-3D, and LUNA25. Detection models trained on DLCS and LUNA16 were evaluated externally on NLST-3D using free-response ROC analysis. For malignancy classification, we compared five strategies: randomly initialized ResNet50, Models Genesis, Med3D, a Foundation Model for Cancer Biomarkers, and a Strategic Warm-Start (ResNet50-SWS) approach pretrained using detection-derived candidate patches stratified by confidence. Performance was summarized using AUC with 95% confidence intervals and DeLong tests. Detection performance varied substantially by training dataset, with DLCS-trained models outperforming LUNA16-trained models on external NLST-3D evaluation (sensitivity at 2 false positives per scan: 0.72 vs. 0.64; p < 0.001). For malignancy classification, ResNet50-SWS achieved AUCs of 0.71 (DLCS), 0.90 (LUNA16), 0.81 (NLST-3D), and 0.80 (LUNA25), consistently matching or exceeding alternative pretraining strategies. These results demonstrate that dataset characteristics strongly influence lung cancer AI performance and highlight the need for transparent, multi-dataset benchmarking.
comment: 3 tables, 2 supplement tables, 5 figures
♻ ☆ Safety Subspaces are Not Linearly Distinct: A Fine-Tuning Case Study ICLR 2026
Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. However, this behavior is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this perspective. We examine whether safety-relevant behavior is concentrated in specific linear subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in activations. Across both weight and activation spaces, our findings are consistent: subspaces that amplify safe behaviors also amplify useful ones, and prompts with different safety implications activate overlapping representations. Rather than residing in distinct directions, we show that safety is highly entangled with the general learning components of the model. This suggests that subspace-based defenses face fundamental limitations and underscores the need for alternative strategies to preserve safety under continued training. We corroborate these findings with multiple experiments on five open-source LLMs from the Llama and Qwen families. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.
comment: ICLR 2026. Kaustubh Ponkshe, Shaan Shah, and Raghav Singhal contributed equally to this work
♻ ☆ The Refutability Gap: Challenges in Validating Reasoning by Large Language Models
Recent reports claim that Large Language Models (LLMs) have achieved the ability to derive new science and exhibit human-level general intelligence. We argue that such claims are not rigorous scientific claims, as they do not satisfy Popper's refutability principle (often termed falsifiability), which requires that scientific statements be capable of being disproven. We identify several methodological pitfalls in current AI research on reasoning, including the inability to verify the novelty of findings due to opaque and non-searchable training data, the lack of reproducibility caused by continuous model updates, and the omission of human-interaction transcripts, which obscures the true source of scientific discovery. Additionally, the absence of counterfactuals and data on failed attempts creates a selection bias that may exaggerate LLM capabilities. To address these challenges, we propose guidelines for scientific transparency and reproducibility for research on reasoning by LLMs. Establishing such guidelines is crucial for both scientific integrity and the ongoing societal debates regarding fair data usage.
comment: he authors explicitly reserve all rights in this work. No permission is granted for the reproduction, storage, or use of this document for the purpose of training artificial intelligence systems or for text and data mining (TDM), including but not limited to the generation of embeddings, summaries, or synthetic derivatives
♻ ☆ Rethinking Functional Brain Connectome Analysis: Do Graph Deep Learning Models Help
Graph deep learning models, a class of AI-driven approaches employing a message aggregation mechanism, have gained popularity for analyzing the functional brain connectome in neuroimaging. However, their actual effectiveness remains unclear. In this study, we re-examine graph deep learning versus classical machine learning models based on four large-scale neuroimaging studies. Surprisingly, we find that the message aggregation mechanism, a hallmark of graph deep learning models, does not help with predictive performance as typically assumed, but rather consistently degrades it. To address this issue, we propose a hybrid model combining a linear model with a graph attention network through dual pathways, achieving robust predictions and enhanced interpretability by revealing both localized and global neural connectivity patterns. Our findings urge caution in adopting complex deep learning models for functional brain connectome analysis, emphasizing the need for rigorous experimental designs to establish tangible performance gains and perhaps more importantly, to pursue improvements in model interpretability.
comment: Published version. See journal for final typeset version
♻ ☆ ABBA-Adapters: Efficient and Expressive Fine-Tuning of Foundation Models ICLR 2026
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget, a property we validate through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: ICLR 2026. Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
♻ ☆ Delay-Aware Reinforcement Learning for Highway On-Ramp Merging under Stochastic Communication Latency
Delayed and partially observable state information poses significant challenges for reinforcement learning (RL)-based control in real-world autonomous driving. In highway on-ramp merging, a roadside unit (RSU) can sense nearby traffic, perform edge perception, and transmit state estimates to the ego vehicle over vehicle-to-infrastructure (V2I) links. With recent advancements in intelligent transportation infrastructure and edge computing, such RSU-assisted perception is increasingly realistic and already deployed in modern connected roadway systems. However, edge processing time and wireless transmission can introduce stochastic V2I communication delays, violating the Markov assumption and substantially degrading control performance. In this work, we propose DAROM, a Delay-Aware Reinforcement Learning framework for On-ramp Merging that is robust to stochastic delays. We model the problem as a random delay Markov decision process (RDMDP) and develop a unified RL agent for joint longitudinal and lateral control. To recover a Markovian representation under delayed observations, we introduce a Delay-Aware Encoder that conditions on delayed observations, masked action histories, and observed delay magnitude to infer the current latent state. We further integrate a physics-based safety controller to reduce collision risk during merging. Experiments in the Simulation of Urban MObility (SUMO) simulator using real-world traffic data from the Next Generation Simulation (NGSIM) dataset demonstrate that DAROM consistently outperforms standard RL baselines across traffic densities. In particular, the gated recurrent unit (GRU)-based encoder achieves over 99% success in high-density traffic with random V2I delays of up to 2.0 seconds.
♻ ☆ Graph-Theoretic Analysis of Phase Optimization Complexity in Variational Wave Functions for Heisenberg Antiferromagnets
Despite extensive study, the phase structure of the wavefunctions in frustrated Heisenberg antiferromagnets (HAF) is not yet systematically characterized. In this work, we represent the Hilbert space of an HAF as a weighted graph, which we term the Hilbert graph (HG), whose vertices are spin configurations and whose edges are generated by off-diagonal spin-flip terms of the Heisenberg Hamiltonian, with weights set by products of wavefunction amplitudes. Holding the amplitudes fixed and restricting phases to $\mathbb{Z}_2$ values, the phase-dependent variational energy can be recast as a classical Ising antiferromagnet on the HG, so that phase reconstruction of the ground state reduces to a weighted Max-Cut instance. This shows that phase reconstruction HAF is worst-case NP-hard and provides a direct link between wavefunction sign structure and combinatorial optimization.
♻ ☆ From Features to Actions: Explainability in Traditional and Agentic AI Systems
Over the last decade, explainable AI has primarily focused on interpreting individual model predictions, producing post-hoc explanations that relate inputs to outputs under a fixed decision structure. Recent advances in large language models (LLMs) have enabled agentic AI systems whose behaviour unfolds over multi-step trajectories. In these settings, success and failure are determined by sequences of decisions rather than a single output. While useful, it remains unclear how explanation approaches designed for static predictions translate to agentic settings where behaviour emerges over time. In this work, we bridge the gap between static and agentic explainability by comparing attribution-based explanations with trace-based diagnostics across both settings. To make this distinction explicit, we empirically compare attribution-based explanations used in static classification tasks with trace-based diagnostics used in agentic benchmarks (TAU-bench Airline and AssistantBench). Our results show that while attribution methods achieve stable feature rankings in static settings (Spearman $ρ= 0.86$), they cannot be applied reliably to diagnose execution-level failures in agentic trajectories. In contrast, trace-grounded rubric evaluation for agentic settings consistently localizes behaviour breakdowns and reveals that state tracking inconsistency is 2.7$\times$ more prevalent in failed runs and reduces success probability by 49\%. These findings motivate a shift towards trajectory-level explainability for agentic systems when evaluating and diagnosing autonomous AI behaviour. Resources: https://github.com/VectorInstitute/unified-xai-evaluation-framework https://vectorinstitute.github.io/unified-xai-evaluation-framework
♻ ☆ MOTION: ML-Assisted On-Device Low-Latency Motion Recognition
The use of tiny devices capable of low-latency gesture recognition is gaining momentum in everyday human-computer interaction and especially in medical monitoring fields. Embedded solutions such as fall detection, rehabilitation tracking, and patient supervision require fast and efficient tracking of movements while avoiding unwanted false alarms. This study presents an efficient solution on how to build very efficient motion-based models only using triaxial accelerometer sensors. We explore the capability of the AutoML pipelines to extract the most important features from the data segments. This approach also involves training multiple lightweight machine learning algorithms using the extracted features. We use WeBe Band, a multi-sensor wearable device that is equipped with a powerful enough MCU to effectively perform gesture recognition entirely on the device. Of the models explored, we found that the neural network provided the best balance between accuracy, latency, and memory use. Our results also demonstrate that reliable real-time gesture recognition can be achieved in WeBe Band, with great potential for real-time medical monitoring solutions that require a secure and fast response time.
♻ ☆ RiskAgent: Synergizing Language Models with Validated Tools for Evidence-Based Risk Prediction
Large Language Models (LLMs) achieve competitive results compared to human experts in medical examinations. However, it remains a challenge to apply LLMs to complex clinical decision-making, which requires a deep understanding of medical knowledge and differs from the standardized, exam-style scenarios commonly used in current efforts. A common approach is to fine-tune LLMs for target tasks, which, however, not only requires substantial data and computational resources but also remains prone to generating `hallucinations'. In this work, we present RiskAgent, which synergizes language models with hundreds of validated clinical decision tools supported by evidence-based medicine, to provide generalizable and faithful recommendations. Our experiments show that RiskAgent not only achieves superior performance on a broad range of clinical risk predictions across diverse scenarios and diseases, but also demonstrates robust generalization in tool learning on the external MedCalc-Bench dataset, as well as in medical reasoning and question answering on three representative benchmarks, MedQA, MedMCQA, and MMLU.
comment: Code and Data are available at https://github.com/AI-in-Health/RiskAgent
♻ ☆ From Pragmas to Partners: A Symbiotic Evolution of Agentic High-Level Synthesis
The rise of large language models has sparked interest in AI-driven hardware design, raising the question: does high-level synthesis (HLS) still matter in the agentic era? We argue that HLS remains essential. While we expect mature agentic hardware systems to leverage both HLS and RTL, this paper focuses on HLS and its role in enabling agentic optimization. HLS offers faster iteration cycles, portability, and design permutability that make it a natural layer for agentic optimization. This position paper makes three contributions. First, we explain why HLS serves as a practical abstraction layer and a golden reference for agentic hardware design. Second, we identify key limitations of current HLS tools, namely inadequate performance feedback, rigid interfaces, and limited debuggability that agents are uniquely positioned to address. Third, we propose a taxonomy for the symbiotic evolution of agentic HLS, clarifying how responsibility shifts from human designers to AI agents as systems advance from copilots to autonomous design partners.
♻ ☆ Explainable Cross-Disease Reasoning for Cardiovascular Risk Assessment from Low-Dose Computed Tomography
Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking: first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with a natural-language rationale. It integrates three components: a Pulmonary Perception Module that summarizes lung abnormalities, an Agentic Pulmonary-to-Cardiac Reasoning Module that infers their cardiovascular implications, and a Cardiac Feature Extractor that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening (AUC=0.919) and mortality prediction (AUC=0.838), outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
♻ ☆ InftyThink+: Effective and Efficient Infinite-Horizon Reasoning via Reinforcement Learning
Large reasoning models achieve strong performance by scaling inference-time chain-of-thought, but this paradigm suffers from quadratic cost, context length limits, and degraded reasoning due to lost-in-the-middle effects. Iterative reasoning mitigates these issues by periodically summarizing intermediate thoughts, yet existing methods rely on supervised learning or fixed heuristics and fail to optimize when to summarize, what to preserve, and how to resume reasoning. We propose InftyThink+, an end-to-end reinforcement learning framework that optimizes the entire iterative reasoning trajectory, building on model-controlled iteration boundaries and explicit summarization. InftyThink+ adopts a two-stage training scheme with supervised cold-start followed by trajectory-level reinforcement learning, enabling the model to learn strategic summarization and continuation decisions. Experiments on DeepSeek-R1-Distill-Qwen-1.5B show that InftyThink+ improves accuracy by 21% on AIME24 and outperforms conventional long chain-of-thought reinforcement learning by a clear margin, while also generalizing better to out-of-distribution benchmarks. Moreover, InftyThink+ significantly reduces inference latency and accelerates reinforcement learning training, demonstrating improved reasoning efficiency alongside stronger performance.
comment: Project Page: https://zju-real.github.io/InftyThink-Plus Code: https://github.com/ZJU-REAL/InftyThink-Plus
♻ ☆ Conditional PED-ANOVA: Hyperparameter Importance in Hierarchical & Dynamic Search Spaces
We propose conditional PED-ANOVA (condPED-ANOVA), a principled framework for estimating hyperparameter importance (HPI) in conditional search spaces, where the presence or domain of a hyperparameter can depend on other hyperparameters. Although the original PED-ANOVA provides a fast and efficient way to estimate HPI within the top-performing regions of the search space, it assumes a fixed, unconditional search space and therefore cannot properly handle conditional hyperparameters. To address this, we introduce a conditional HPI for top-performing regions and derive a closed-form estimator that accurately reflects conditional activation and domain changes. Experiments show that naive adaptations of existing HPI estimators yield misleading or uninterpretable importances in conditional settings, whereas condPED-ANOVA consistently provides meaningful importances that reflect the underlying conditional structure. Our code is publicly available at https://github.com/kAIto47802/condPED-ANOVA.
comment: 19 pages, 14 figures
♻ ☆ IDALC: A Semi-Supervised Framework for Intent Detection and Active Learning based Correction
Voice-controlled dialog systems have become immensely popular due to their ability to perform a wide range of actions in response to diverse user queries. These agents possess a predefined set of skills or intents to fulfill specific user tasks. But every system has its own limitations. There are instances where, even for known intents, if any model exhibits low confidence, it results in rejection of utterances that necessitate manual annotation. Additionally, as time progresses, there may be a need to retrain these agents with new intents from the system-rejected queries to carry out additional tasks. Labeling all these emerging intents and rejected utterances over time is impractical, thus calling for an efficient mechanism to reduce annotation costs. In this paper, we introduce IDALC (Intent Detection and Active Learning based Correction), a semi-supervised framework designed to detect user intents and rectify system-rejected utterances while minimizing the need for human annotation. Empirical findings on various benchmark datasets demonstrate that our system surpasses baseline methods, achieving a 5-10% higher accuracy and a 4-8% improvement in macro-F1. Remarkably, we maintain the overall annotation cost at just 6-10% of the unlabelled data available to the system. The overall framework of IDALC is shown in Fig. 1
comment: Paper accepted in IEEE Transactions on Artificial Intelligence (October 2025)
♻ ☆ Conversational No-code, Multi-agentic Disease Module Identification and Drug Repurposing Prediction with ChatDRex
Repurposing approved drugs offers a time-efficient and cost-effective alternative to traditional drug development. However, in silico prediction of repurposing candidates is challenging and requires the effective collaboration of specialists in various fields, including pharmacology, medicine, biology, and bioinformatics. Fragmented, specialized algorithms and tools often address only narrow aspects of the overall problem. Heterogeneous, unstructured data landscapes require the expertise of specialized users. Hence, these data services do not integrate smoothly across workflows. With ChatDRex, we present a conversation-based, multi-agent system that facilitates the execution of complex bioinformatic analyses aiming for network-based drug repurposing prediction. It builds on the integrated systems medicine knowledge graph (NeDRex KG). ChatDRex provides natural language access to its extensive biomedical knowledge base. It integrates bioinformatics agents for network analysis, literature mining, and drug repurposing. These are complemented by agents that evaluate functional coherence for in silico validation. Its flexible multi-agent design assigns specific tasks to specialized agents, including query routing, data retrieval, algorithm execution, and result visualization. A dedicated reasoning module keeps the user in the loop and allows for hallucination detection. By enabling physicians and researchers without computer science expertise to control complex analyses with natural language, ChatDRex democratizes access to bioinformatics as an important resource for drug repurposing. It enables clinical experts to generate hypotheses and explore drug repurposing opportunities, ultimately accelerating the discovery of novel therapies and advancing personalized medicine and translational research. ChatDRex is publicly available at apps.cosy.bio/chatdrex.
♻ ☆ Diffusion-Inspired Masked Fine-Tuning for Knowledge Injection in Autoregressive LLMs
Large language models (LLMs) are often used in environments where facts evolve, yet factual knowledge updates via fine-tuning on unstructured text often suffers from 1) reliance on compute-heavy paraphrase augmentation and 2) the reversal curse. Recent studies show diffusion large language models (dLLMs) require fewer training samples to achieve lower loss in pre-training and are more resistant to the reversal curse, suggesting dLLMs may learn new knowledge more easily than autoregressive LLMs (arLLMs). We test this hypothesis in controlled knowledge fine-tuning experiments and find that while arLLMs rely on paraphrase augmentation to generalize knowledge text into question-answering (QA) capability, dLLMs do not require paraphrases to achieve high QA accuracy. To further investigate whether the demasking objective alone can induce such a knowledge injection advantage in dLLMs regardless of their diffusion denoising paradigm, we propose masked fine-tuning for arLLMs, which prompts an arLLM to reconstruct the original text given a masked version in context. The masked fine-tuning for arLLMs substantially improves the efficacy of knowledge injection, i.e. no paraphrase needed and resistant to the reversal curse, closing the gap between arLLMs and dLLMs. We also demonstrate that the same demasking objective improves supervised fine-tuning (SFT) on math tasks over standard SFT, suggesting broader applicability of the demasking objective.
♻ ☆ Certainty-Guided Reasoning in Large Language Models: A Dynamic Thinking Budget Approach
Large reasoning language models are typically run with fixed inference budgets, which can waste computation or terminate reasoning prematurely. We introduce Certainty-Guided Reasoning (CGR), a model-agnostic adaptive inference procedure that periodically probes whether the current reasoning supports a confident final answer and terminates early once a target certainty threshold is reached, otherwise continuing until the end-of-thinking token or the budget limit. Certainty is estimated from the model's predicted probabilities over the answer tokens, yielding a lightweight stopping criterion. On AIME2025, CGR preserves baseline accuracy while reducing token usage, providing a tunable certainty-efficiency trade-off that can eliminate millions of tokens in aggregate. Across 64 random seeds, CGR exhibits consistent behavior. We also introduce a Grade metric that penalizes incorrect answers and permits abstention, capturing risk-sensitive performance. Results show that CGR improves Grade by abstaining when certainty remains low.
♻ ☆ NRR-Phi: Text-to-State Mapping for Ambiguity Preservation in LLM Inference
Large language models exhibit a systematic tendency toward early semantic commitment: given ambiguous input, they collapse multiple valid interpretations into a single response before sufficient context is available. We present a formal framework for text-to-state mapping ($φ: \mathcal{T} \to \mathcal{S}$) that transforms natural language into a non-collapsing state space where multiple interpretations coexist. The mapping decomposes into three stages: conflict detection, interpretation extraction, and state construction. We instantiate $φ$ with a hybrid extraction pipeline combining rule-based segmentation for explicit conflict markers (adversative conjunctions, hedging expressions) with LLM-based enumeration of implicit ambiguity (epistemic, lexical, structural). On a test set of 68 ambiguous sentences, the resulting states preserve interpretive multiplicity: mean state entropy $H = 1.087$ bits across ambiguity categories, compared to $H = 0$ for collapse-based baselines. We additionally instantiate the rule-based conflict detector for Japanese markers to illustrate cross-lingual portability. This framework extends Non-Resolution Reasoning (NRR) by providing the missing algorithmic bridge between text and the NRR state space, enabling architectural collapse deferment in LLM inference. Design principles for state-to-state transformations are detailed in the Appendix, with empirical validation on 580 test cases showing 0% collapse for principle-satisfying operators versus up to 17.8% for violating operators.
comment: 24 pages, 5 figures, 7 tables. Part of the NRR research program. Clarified operator notation and appendix validation details; updated figures and reference formatting
♻ ☆ ExpliCa: Evaluating Explicit Causal Reasoning in Large Language Models ACL 2025
Large Language Models (LLMs) are increasingly used in tasks requiring interpretive and inferential accuracy. In this paper, we introduce ExpliCa, a new dataset for evaluating LLMs in explicit causal reasoning. ExpliCa uniquely integrates both causal and temporal relations presented in different linguistic orders and explicitly expressed by linguistic connectives. The dataset is enriched with crowdsourced human acceptability ratings. We tested LLMs on ExpliCa through prompting and perplexity-based metrics. We assessed seven commercial and open-source LLMs, revealing that even top models struggle to reach 0.80 accuracy. Interestingly, models tend to confound temporal relations with causal ones, and their performance is also strongly influenced by the linguistic order of the events. Finally, perplexity-based scores and prompting performance are differently affected by model size.
comment: Accepted for publication in Findings of ACL 2025
♻ ☆ InSPO: Unlocking Intrinsic Self-Reflection for LLM Preference Optimization
Direct Preference Optimization (DPO) and its variants have become standard for aligning Large Language Models due to their simplicity and offline stability. However, we identify two fundamental limitations. First, the optimal policy depends on arbitrary modeling choices (scalarization function, reference policy), yielding behavior reflecting parameterization artifacts rather than true preferences. Second, treating response generation in isolation fails to leverage comparative information in pairwise data, leaving the model's capacity for intrinsic self-reflection untapped. To address it, we propose Intrinsic Self-reflective Preference Optimization (InSPO), deriving a globally optimal policy conditioning on both context and alternative responses. We prove this formulation superior to DPO/RLHF while guaranteeing invariance to scalarization and reference choices. InSPO serves as a plug-and-play enhancement without architectural changes or inference overhead. Experiments demonstrate consistent improvements in win rates and length-controlled metrics, validating that unlocking self-reflection yields more robust, human-aligned LLMs. Our Code is available at https://github.com/Skylanding/InSPO.
♻ ☆ Training Language Models to Explain Their Own Computations
Can language models (LMs) learn to faithfully describe their internal computations? Are they better able to describe themselves than other models? We study the extent to which LMs' privileged access to their own internals can be leveraged to produce new techniques for explaining their behavior. Using existing interpretability techniques as a source of ground truth, we fine-tune LMs to generate natural language descriptions of (1) the information encoded by LM features, (2) the causal structure of LMs' internal activations, and (3) the influence of specific input tokens on LM outputs. When trained with only tens of thousands of example explanations, explainer models exhibit non-trivial generalization to new queries. This generalization appears partly attributable to explainer models' privileged access to their own internals: using a model to explain its own computations generally works better than using a *different* model to explain its computations (even if the explainer model is significantly more capable than the target). Our results suggest not only that LMs can learn to reliably explain their internal computations, but that such explanations offer a scalable complement to existing interpretability methods. Code and data at https://github.com/TransluceAI/introspective-interp
comment: 23 pages, 8 tables, 7 figures. Code and data at https://github.com/TransluceAI/introspective-interp
♻ ☆ NRR-Core: Non-Resolution Reasoning as a Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse--collapsing multiple valid interpretations into single outputs--stems from classical identity assumptions in neural architectures. We propose Non-Resolution Reasoning (NRR), a framework treating ambiguity retention as a valid reasoning mode. NRR introduces three principles: (1) Non-Identity ($A \neq A$)--the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$)--entities share partial structural overlap without being identical; (3) Non-Resolution--conflicting interpretations coexist without forced convergence. We formalize these through Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We illustrate NRR through case studies in paradox handling, creative generation, and context-dependent reasoning. Functional verification in a synthetic two-turn disambiguation task shows NRR-lite maintains high entropy ($H = 0.91$ bits, near-maximum $1.0$) at ambiguous turns while standard architectures collapse early ($H = 0.15$ bits), preserving interpretive flexibility until context arrives. NRR challenges the assumption that meaning must collapse to be useful. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 10 pages, 2 figures, 2 tables. Part of the NRR research program. Updated entropy measurement to log base 2 (bits); added title prefix NRR-Core for series identification
♻ ☆ TS-Arena -- A Live Forecast Pre-Registration Platform
Time Series Foundation Models (TSFMs) are transforming the field of forecasting. However, evaluating them on historical data is increasingly difficult due to the risks of train-test sample overlaps and temporal overlaps between correlated train and test time series. To address this, we introduce TS-Arena, a live forecasting platform that shifts evaluation from the known past to the unknown future. Building on the concept of continuous benchmarking, TS-Arena evaluates models on future data. Crucially, we introduce a strict forecasting pre-registration protocol: models must submit predictions before the ground-truth data physically exists. This makes test-set contamination impossible by design. The platform relies on a modular microservice architecture that harmonizes and structures data from different sources and orchestrates containerized model submissions. By enforcing a strict pre-registration protocol on live data streams, TS-Arena prevents information leakage offers a faster alternative to traditional static, infrequently repeated competitions (e.g. the M-Competitions). First empirical results derived from operating TS-Arena over one year of energy time series demonstrate that established TSFMs accumulate robust longitudinal scores over time, while the continuous nature of the benchmark simultaneously allows newcomers to demonstrate immediate competitiveness. TS-Arena provides the necessary infrastructure to assess the true generalization capabilities of modern forecasting models. The platform and corresponding code are available at https://ts-arena.live/.
♻ ☆ Evaluating Kubernetes Performance for GenAI Inference: From Automatic Speech Recognition to LLM Summarization
As Generative AI (GenAI), particularly inference, rapidly emerges as a dominant workload category, the Kubernetes ecosystem is proactively evolving to natively support its unique demands. This industry paper demonstrates how emerging Kubernetes-native projects can be combined to deliver the benefits of container orchestration, such as scalability and resource efficiency, to complex AI workflows. We implement and evaluate an illustrative, multi-stage use case consisting of automatic speech recognition and summarization. First, we address batch inference by using Kueue to manage jobs that transcribe audio files with Whisper models and Dynamic Accelerator Slicer (DAS) to increase parallel job execution. Second, we address a discrete online inference scenario by feeding the transcripts to a Large Language Model for summarization hosted using llm-d, a novel solution utilizing the recent developments around the Kubernetes Gateway API Inference Extension (GAIE) for optimized routing of inference requests. Our findings illustrate that these complementary components (Kueue, DAS, and GAIE) form a cohesive, high-performance platform, proving Kubernetes' capability to serve as a unified foundation for demanding GenAI workloads: Kueue reduced total makespan by up to 15%; DAS shortened mean job completion time by 36%; and GAIE improved Time to First Token by 82\%.
comment: A accepted at the 17th International Conference on Performance Engineering
♻ ☆ Twice Sequential Monte Carlo for Tree Search
Model-based reinforcement learning (RL) methods that leverage search are responsible for many milestone breakthroughs in RL. Sequential Monte Carlo (SMC) recently emerged as an alternative to the Monte Carlo Tree Search (MCTS) algorithm which drove these breakthroughs. SMC is easier to parallelize and more suitable to GPU acceleration. However, it also suffers from large variance and path degeneracy which prevent it from scaling well with increased search depth, i.e., increased sequential compute. To address these problems, we introduce Twice Sequential Monte Carlo Tree Search (TSMCTS). Across discrete and continuous environments TSMCTS outperforms the SMC baseline as well as a popular modern version of MCTS as a policy improvement operator, scales favorably with sequential compute, reduces estimator variance and mitigates the effects of path degeneracy while retaining the properties that make SMC natural to parallelize.
♻ ☆ ProjDevBench: Benchmarking AI Coding Agents on End-to-End Project Development
Recent coding agents can generate complete codebases from simple prompts, yet existing evaluations focus on issue-level bug fixing and lag behind end-to-end development. We introduce ProjDevBench, an end-to-end benchmark that provides project requirements to coding agents and evaluates the resulting repositories. Combining Online Judge (OJ) testing with LLM-assisted code review, the benchmark evaluates agents on (1) system architecture design, (2) functional correctness, and (3) iterative solution refinement. We curate 20 programming problems across 8 categories, covering both concept-oriented tasks and real-world application scenarios, and evaluate six coding agents built on different LLM backends. Our evaluation reports an overall acceptance rate of 27.38%: agents handle basic functionality and data structures but struggle with complex system design, time complexity optimization, and resource management. Our benchmark is available at https://github.com/zsworld6/projdevbench.
♻ ☆ A Review of Online Diffusion Policy RL Algorithms for Scalable Robotic Control
Diffusion policies have emerged as a powerful approach for robotic control, demonstrating superior expressiveness in modeling multimodal action distributions compared to conventional policy networks. However, their integration with online reinforcement learning remains challenging due to fundamental incompatibilities between diffusion model training objectives and standard RL policy improvement mechanisms. This paper presents the first comprehensive review and empirical analysis of current Online Diffusion Policy Reinforcement Learning (Online DPRL) algorithms for scalable robotic control systems. We propose a novel taxonomy that categorizes existing approaches into four distinct families--Action-Gradient, Q-Weighting, Proximity-Based, and Backpropagation Through Time (BPTT) methods--based on their policy improvement mechanisms. Through extensive experiments on a unified NVIDIA Isaac Lab benchmark encompassing 12 diverse robotic tasks, we systematically evaluate representative algorithms across five critical dimensions: task diversity, parallelization capability, diffusion step scalability, cross-embodiment generalization, and environmental robustness. Our analysis identifies key findings regarding the fundamental trade-offs inherent in each algorithmic family, particularly concerning sample efficiency and scalability. Furthermore, we reveal critical computational and algorithmic bottlenecks that currently limit the practical deployment of online DPRL. Based on these findings, we provide concrete guidelines for algorithm selection tailored to specific operational constraints and outline promising future research directions to advance the field toward more general and scalable robotic learning systems.
♻ ☆ Improving 2D Diffusion Models for 3D Medical Imaging with Inter-Slice Consistent Stochasticity ICLR 2026
3D medical imaging is in high demand and essential for clinical diagnosis and scientific research. Currently, diffusion models (DMs) have become an effective tool for medical imaging reconstruction thanks to their ability to learn rich, high-quality data priors. However, learning the 3D data distribution with DMs in medical imaging is challenging, not only due to the difficulties in data collection but also because of the significant computational burden during model training. A common compromise is to train the DMs on 2D data priors and reconstruct stacked 2D slices to address 3D medical inverse problems. However, the intrinsic randomness of diffusion sampling causes severe inter-slice discontinuities of reconstructed 3D volumes. Existing methods often enforce continuity regularizations along the z-axis, which introduces sensitive hyper-parameters and may lead to over-smoothing results. In this work, we revisit the origin of stochasticity in diffusion sampling and introduce Inter-Slice Consistent Stochasticity (ISCS), a simple yet effective strategy that encourages interslice consistency during diffusion sampling. Our key idea is to control the consistency of stochastic noise components during diffusion sampling, thereby aligning their sampling trajectories without adding any new loss terms or optimization steps. Importantly, the proposed ISCS is plug-and-play and can be dropped into any 2D trained diffusion based 3D reconstruction pipeline without additional computational cost. Experiments on several medical imaging problems show that our method can effectively improve the performance of medical 3D imaging problems based on 2D diffusion models. Our findings suggest that controlling inter-slice stochasticity is a principled and practically attractive route toward high-fidelity 3D medical imaging with 2D diffusion priors. The code is available at: https://github.com/duchenhe/ISCS
comment: Accepted by ICLR 2026
♻ ☆ AIRS-Bench: a Suite of Tasks for Frontier AI Research Science Agents
LLM agents hold significant promise for advancing scientific research. To accelerate this progress, we introduce AIRS-Bench (the AI Research Science Benchmark), a suite of 20 tasks sourced from state-of-the-art machine learning papers. These tasks span diverse domains, including language modeling, mathematics, bioinformatics, and time series forecasting. AIRS-Bench tasks assess agentic capabilities over the full research lifecycle -- including idea generation, experiment analysis and iterative refinement -- without providing baseline code. The AIRS-Bench task format is versatile, enabling easy integration of new tasks and rigorous comparison across different agentic frameworks. We establish baselines using frontier models paired with both sequential and parallel scaffolds. Our results show that agents exceed human SOTA in four tasks but fail to match it in sixteen others. Even when agents surpass human benchmarks, they do not reach the theoretical performance ceiling for the underlying tasks. These findings indicate that AIRS-Bench is far from saturated and offers substantial room for improvement. We open-source the AIRS-Bench task definitions and evaluation code to catalyze further development in autonomous scientific research.
comment: 49 pages, 14 figures, 10 tables
♻ ☆ Practical Feasibility of Gradient Inversion Attacks in Federated Learning
Gradient inversion attacks are often presented as a serious privacy threat in federated learning, with recent work reporting increasingly strong reconstructions under favorable experimental settings. However, it remains unclear whether such attacks are feasible in modern, performance-optimized systems deployed in practice. In this work, we evaluate the practical feasibility of gradient inversion for image-based federated learning. We conduct a systematic study across multiple datasets and tasks, including image classification and object detection, using canonical vision architectures at contemporary resolutions. Our results show that while gradient inversion remains possible for certain legacy or transitional designs under highly restrictive assumptions, modern, performance-optimized models consistently resist meaningful reconstruction visually. We further demonstrate that many reported successes rely on upper-bound settings, such as inference mode operation or architectural simplifications which do not reflect realistic training pipelines. Taken together, our findings indicate that, under an honest-but-curious server assumption, high-fidelity image reconstruction via gradient inversion does not constitute a critical privacy risk in production-optimized federated learning systems, and that practical risk assessments must carefully distinguish diagnostic attack settings from real-world deployments.
comment: v2: revised manuscript; expanded experiments; improved analysis of reconstruction behavior across architectures
♻ ☆ Investigating Data Pruning for Pretraining Biological Foundation Models at Scale AAAI 2026
Biological foundation models (BioFMs), pretrained on large-scale biological sequences, have recently shown strong potential in providing meaningful representations for diverse downstream bioinformatics tasks. However, such models often rely on millions to billions of training sequences and billions of parameters, resulting in prohibitive computational costs and significant barriers to reproducibility and accessibility, particularly for academic labs. To address these challenges, we investigate the feasibility of data pruning for BioFM pretraining and propose a post-hoc influence-guided data pruning framework tailored to biological domains. Our approach introduces a subset-based self-influence formulation that enables efficient estimation of sample importance at low computational cost, and builds upon it two simple yet effective selection strategies, namely Top-k Influence (Top I) and Coverage-Centric Influence (CCI). We empirically validate our method on two representative BioFMs, RNA-FM and ESM-C. For RNA, our framework consistently outperforms random selection baselines under an extreme pruning rate of over 99 percent, demonstrating its effectiveness. Furthermore, we show the generalizability of our framework on protein-related tasks using ESM-C. In particular, our coreset even outperforms random subsets that are ten times larger in both RNA and protein settings, revealing substantial redundancy in biological sequence datasets. These findings underscore the potential of influence-guided data pruning to substantially reduce the computational cost of BioFM pretraining, paving the way for more efficient, accessible, and sustainable biological AI research.
comment: Accepted by AAAI 2026
♻ ☆ Revisiting Privacy, Utility, and Efficiency Trade-offs when Fine-Tuning Large Language Models
We study the inherent trade-offs in minimizing privacy risks and maximizing utility, while maintaining high computational efficiency, when fine-tuning large language models (LLMs). A number of recent works in privacy research have attempted to mitigate privacy risks posed by memorizing fine-tuning data by using differentially private training methods (e.g., DP), albeit at a significantly higher computational cost (inefficiency). In parallel, several works in systems research have focussed on developing (parameter) efficient fine-tuning methods (e.g., LoRA), but few works, if any, investigated whether such efficient methods enhance or diminish privacy risks. In this paper, we investigate this gap and arrive at a surprising conclusion: efficient fine-tuning methods like LoRA mitigate privacy risks similar to private fine-tuning methods like DP. Our empirical finding directly contradicts prevailing wisdom that privacy and efficiency objectives are at odds during fine-tuning. Our finding is established by (a) carefully defining measures of privacy and utility that distinguish between memorizing sensitive and non-sensitive tokens in training and test datasets used in fine-tuning and (b) extensive evaluations using multiple open-source language models from Pythia, Gemma, Llama, and Qwen families and different domain-specific datasets.
comment: This work has been accepted at IASEAI 2026 (Non-archival)
♻ ☆ Beyond Quantity: Trajectory Diversity Scaling for Code Agents
As code large language models (LLMs) evolve into tool-interactive agents via the Model Context Protocol (MCP), their generalization is increasingly limited by low-quality synthetic data and the diminishing returns of quantity scaling. Moreover, quantity-centric scaling exhibits an early bottleneck that underutilizes trajectory data. We propose TDScaling, a Trajectory Diversity Scaling-based data synthesis framework for code agents that scales performance through diversity rather than raw volume. Under a fixed training budget, increasing trajectory diversity yields larger gains than adding more trajectories, improving the performance-cost trade-off for agent training. TDScaling integrates four innovations: (1) a Business Cluster mechanism that captures real-service logical dependencies; (2) a blueprint-driven multi-agent paradigm that enforces trajectory coherence; (3) an adaptive evolution mechanism that steers synthesis toward long-tail scenarios using Domain Entropy, Reasoning Mode Entropy, and Cumulative Action Complexity to prevent mode collapse; and (4) a sandboxed code tool that mitigates catastrophic forgetting of intrinsic coding capabilities. Experiments on general tool-use benchmarks (BFCL, tau^2-Bench) and code agent tasks (RebenchT, CodeCI, BIRD) demonstrate a win-win outcome: TDScaling improves both tool-use generalization and inherent coding proficiency. We plan to release the full codebase and the synthesized dataset (including 30,000+ tool clusters) upon publication.
♻ ☆ Language Bottleneck Models for Qualitative Knowledge State Modeling
Accurately assessing student knowledge is central to education. Cognitive Diagnosis (CD) models estimate student proficiency at a fixed point in time, while Knowledge Tracing (KT) methods model evolving knowledge states to predict future performance. However, existing approaches either provide quantitative concept mastery estimates with limited expressivity (CD, probabilistic KT) or prioritize predictive accuracy at the cost of interpretability (deep learning KT). We propose Language Bottleneck Models (LBMs), where an encoder LLM produces textual knowledge state summaries, which a decoder LLM uses to predict future performance. This produces interpretable summaries that can express nuanced insights--such as misconceptions--that CD and KT models cannot capture. Extensive validation across synthetic and real-world datasets shows LBMs reveal qualitative insights beyond what CD and KT models can capture, while achieving competitive accuracy with improved sample efficiency. We demonstrate that the encoder and decoder can be fine-tuned with reinforcement learning and supervised fine-tuning respectively to improve both summary quality and predictive performance.
♻ ☆ Optimizing Agentic Reasoning with Retrieval via Synthetic Semantic Information Gain Reward
Agentic reasoning enables large reasoning models (LRMs) to dynamically acquire external knowledge, but yet optimizing the retrieval process remains challenging due to the lack of dense, principled reward signals. In this paper, we introduce InfoReasoner, a unified framework that incentivizes effective information seeking via a synthetic semantic information gain reward. Theoretically, we redefine information gain as uncertainty reduction over the model's belief states, establishing guarantees, including non-negativity, telescoping additivity, and channel monotonicity. Practically, to enable scalable optimization without manual retrieval annotations, we propose an output-aware intrinsic estimator that computes information gain directly from the model's output distributions using semantic clustering via bidirectional textual entailment. This intrinsic reward guides the policy to maximize epistemic progress, enabling efficient training via Group Relative Policy Optimization (GRPO). Experiments across seven question-answering benchmarks demonstrate that InfoReasoner consistently outperforms strong retrieval-augmented baselines, achieving up to 5.4% average accuracy improvement. Our work provides a theoretically grounded and scalable path toward agentic reasoning with retrieval. The code is available at https://github.com/dl-m9/InfoReasoner
♻ ☆ LatentLens: Revealing Highly Interpretable Visual Tokens in LLMs
Transforming a large language model (LLM) into a Vision-Language Model (VLM) can be achieved by mapping the visual tokens from a vision encoder into the embedding space of an LLM. Intriguingly, this mapping can be as simple as a shallow MLP transformation. To understand why LLMs can so readily process visual tokens, we need interpretability methods that reveal what is encoded in the visual token representations at every layer of LLM processing. In this work, we introduce LatentLens, a novel approach for mapping latent representations to descriptions in natural language. LatentLens works by encoding a large text corpus and storing contextualized token representations for each token in that corpus. Visual token representations are then compared to their contextualized textual representations, with the top-k nearest neighbor representations providing descriptions of the visual token. We evaluate this method on 10 different VLMs, showing that commonly used methods, such as LogitLens, substantially underestimate the interpretability of visual tokens. With LatentLens instead, the majority of visual tokens are interpretable across all studied models and all layers. Qualitatively, we show that the descriptions produced by LatentLens are semantically meaningful and provide more fine-grained interpretations for humans compared to individual tokens. More broadly, our findings contribute new evidence on the alignment between vision and language representations, opening up new directions for analyzing latent representations.
♻ ☆ DRAGOn: Designing RAG On Periodically Updated Corpus EACL 2026
This paper introduces DRAGOn, method to design a RAG benchmark on a regularly updated corpus. It features recent reference datasets, a question generation framework, an automatic evaluation pipeline, and a public leaderboard. Specified reference datasets allow for uniform comparison of RAG systems, while newly generated dataset versions mitigate data leakage and ensure that all models are evaluated on unseen, comparable data. The pipeline for automatic question generation extracts the Knowledge Graph from the text corpus and produces multiple question-answer pairs utilizing modern LLM capabilities. A set of diverse LLM-as-Judge metrics is provided for a comprehensive model evaluation. We used Russian news outlets to form the datasets and demonstrate our methodology. We launch a public leaderboard to track the development of RAG systems and encourage community participation.
comment: EACL 2026
♻ ☆ SpecPrune-VLA: Accelerating Vision-Language-Action Models via Action-Aware Self-Speculative Pruning
Pruning is a typical acceleration technique for compute-bound models by removing computation on unimportant values. Recently, it has been applied to accelerate Vision-Language-Action (VLA) model inference. However, existing acceleration methods focus on local information from the current action step and ignore the global context, leading to >20% success rate drop and limited speedup in some scenarios. In this paper, we point out spatial-temporal consistency in VLA tasks: input images in consecutive steps exhibit high similarity, and propose the key insight that token selection should combine local information with global context of the model. Based on this, we propose SpecPrune-VLA, a training-free, two-level pruning method with heuristic control. (1) Action-level static pruning. We leverage global history and local attention to statically reduce visual tokens per action. (2) Layer-level dynamic pruning. We prune tokens adaptively per layer based on layer-wise importance. (3) Lightweight action-aware controller: We classify actions as coarse- or fine-grained by the speed of the end effector and adjust pruning aggressiveness accordingly. Extensive experiments show that SpecPrune-VLA achieves up to 1.57$\times$ speedup in LIBERO simulation and 1.70$\times$ on real-world tasks, with negligible success rate degradation.
♻ ☆ Coarse-to-Fine Grounded Memory for LLM Agent Planning EMNLP 2025
Recent advancements in Large Language Models (LLMs) have driven growing interest in LLM-based agents for complex planning tasks. To avoid costly agent training, many studies adopted memory mechanism that enhances LLM with offline experiences or online trajectory analysis. However, existing works focus on single-granularity memory derived from dynamic environmental interactions, which are inherently constrained by the quality of the collected experiences. This limitation, in turn, constrain the diversity of knowledge and the flexibility of planning. We propose Coarse-to-Fine Grounded Memory (\Ours{}), a novel framework that grounds coarse-to-fine memories with LLM, thereby fully leverage them for flexible adaptation to diverse scenarios. \Ours{} grounds environmental information into coarse-grained focus points to guide experience collection in training tasks, followed by grounding of actionable hybrid-grained tips from each experience. At inference, \Ours{} retrieves task-relevant experiences and tips to support planning. When facing environmental anomalies, the LLM grounds the current situation into fine-grained key information, enabling flexible self-QA reflection and plan correction.
comment: Accepted to EMNLP 2025 Main Conference;27 pages,15 figures
♻ ☆ Playing 20 Question Game with Policy-Based Reinforcement Learning
The 20 Questions (Q20) game is a well known game which encourages deductive reasoning and creativity. In the game, the answerer first thinks of an object such as a famous person or a kind of animal. Then the questioner tries to guess the object by asking 20 questions. In a Q20 game system, the user is considered as the answerer while the system itself acts as the questioner which requires a good strategy of question selection to figure out the correct object and win the game. However, the optimal policy of question selection is hard to be derived due to the complexity and volatility of the game environment. In this paper, we propose a novel policy-based Reinforcement Learning (RL) method, which enables the questioner agent to learn the optimal policy of question selection through continuous interactions with users. To facilitate training, we also propose to use a reward network to estimate the more informative reward. Compared to previous methods, our RL method is robust to noisy answers and does not rely on the Knowledge Base of objects. Experimental results show that our RL method clearly outperforms an entropy-based engineering system and has competitive performance in a noisy-free simulation environment.
comment: Withdrawal from the conference
♻ ☆ GPTOpt: Teaching LLMs to do Interpretable Black-Box Optimization
Global optimization of expensive, derivative-free black-box functions demands extreme sample efficiency and decision interpretability. While Large Language Models (LLMs) have shown broad capabilities, even state-of-the-art models remain limited in solving continuous black-box optimization tasks and struggle to maintain exploration-exploitation balance. We introduce GPTOpt, an optimization method that equips LLMs with continuous black-box optimization capabilities by fine-tuning Llama 3.1 8B on structured Bayesian optimization (BO) data, including surrogate model information. This provides an explainable framework calibrated to produce surrogate model outputs comparable to a Gaussian process, while keeping the advantages of flexible LLM-based optimization. On a variety of black-box optimization benchmarks, our model shows favorable performance compared to traditional optimizers and transformer-based alternatives, while providing important context and insight into the model's decisions.
♻ ☆ Vision Transformer for Intracranial Hemorrhage Classification in CT Scans Using an Entropy-Aware Fuzzy Integral Strategy for Adaptive Scan-Level Decision Fusion
Intracranial hemorrhage (ICH) is a critical medical emergency caused by the rupture of cerebral blood vessels, leading to internal bleeding within the skull. Accurate and timely classification of hemorrhage subtypes is essential for effective clinical decision-making. To address this challenge, we propose an advanced pyramid vision transformer (PVT)-based model, leveraging its hierarchical attention mechanisms to capture both local and global spatial dependencies in brain CT scans. Instead of processing all extracted features indiscriminately, A SHAP-based feature selection method is employed to identify the most discriminative components, which are then used as a latent feature space to train a boosting neural network, reducing computational complexity. We introduce an entropy-aware aggregation strategy along with a fuzzy integral operator to fuse information across multiple CT slices, ensuring a more comprehensive and reliable scan-level diagnosis by accounting for inter-slice dependencies. Experimental results show that our PVT-based framework significantly outperforms state-of-the-art deep learning architectures in terms of classification accuracy, precision, and robustness. By combining SHAP-driven feature selection, transformer-based modeling, and an entropy-aware fuzzy integral operator for decision fusion, our method offers a scalable and computationally efficient AI-driven solution for automated ICH subtype classification.
♻ ☆ AI-Powered Intracranial Hemorrhage Detection: A Co-Scale Convolutional Attention Model with Uncertainty-Based Fuzzy Integral Operator and Feature Screening
Intracranial hemorrhage (ICH) refers to the leakage or accumulation of blood within the skull, which occurs due to the rupture of blood vessels in or around the brain. If this condition is not diagnosed in a timely manner and appropriately treated, it can lead to serious complications such as decreased consciousness, permanent neurological disabilities, or even death.The primary aim of this study is to detect the occurrence or non-occurrence of ICH, followed by determining the type of subdural hemorrhage (SDH). These tasks are framed as two separate binary classification problems. By adding two layers to the co-scale convolutional attention (CCA) classifier architecture, we introduce a novel approach for ICH detection. In the first layer, after extracting features from different slices of computed tomography (CT) scan images, we combine these features and select the 50 components that capture the highest variance in the data, considering them as informative features. We then assess the discriminative power of these features using the bootstrap forest algorithm, discarding those that lack sufficient discriminative ability between different classes. This algorithm explicitly determines the contribution of each feature to the final prediction, assisting us in developing an explainable AI model. The features feed into a boosting neural network as a latent feature space. In the second layer, we introduce a novel uncertainty-based fuzzy integral operator to fuse information from different CT scan slices. This operator, by accounting for the dependencies between consecutive slices, significantly improves detection accuracy.
♻ ☆ ActivationReasoning: Logical Reasoning in Latent Activation Spaces ICLR 2026
Large language models (LLMs) excel at generating fluent text, but their internal reasoning remains opaque and difficult to control. Sparse autoencoders (SAEs) make hidden activations more interpretable by exposing latent features that often align with human concepts. Yet, these features are fragile and passive, offering no mechanism for systematic reasoning or model control. To address this, we introduce ActivationReasoning (AR), a framework that embeds explicit logical reasoning into the latent space of LLMs. It proceeds in three stages: (1) Finding latent representations, first latent concept representations are identified (e.g., via SAEs) and organized into a dictionary; (2) Activating propositions, at inference time AR detects activating concepts and maps them to logical propositions; and (3)Logical reasoning, applying logical rules over these propositions to infer higher-order structures, compose new concepts, and steer model behavior. We evaluate AR on multi-hop reasoning (PrOntoQA), abstraction and robustness to indirect concept cues (Rail2Country), reasoning over natural and diverse language (ProverQA), and context-sensitive safety (BeaverTails). Across all tasks, AR scales robustly with reasoning complexity, generalizes to abstract and context-sensitive tasks, and transfers across model backbones. These results demonstrate that grounding logical structure in latent activations not only improves transparency but also enables structured reasoning, reliable control, and alignment with desired behaviors, providing a path toward more reliable and auditable AI.
comment: Proceedings of the 14th International Conference on Learning Representations (ICLR 2026)
♻ ☆ SAGE: Sequence-level Adaptive Gradient Evolution for Generative Recommendation
While works such as OneRec have validated the scaling laws of Large Language Models (LLMs) in recommender systems, they rely on a cumbersome separate vocabulary. This dependency prevents the model architecture from reusing native LLM vocabularies, resulting in high maintenance costs and poor scalability. In response, we aim to efficiently reuse open-source LLM architectures without constructing a separate tokenization vocabulary. Furthermore, we identify that the optimization strategy of OneRec Gradient Bounded Policy Optimization (GBPO),suffers from a "Symmetric Conservatism" problem: its static gradient boundaries structurally suppress the update momentum required for cold-start items and fail to prevent diversity collapse in high-noise environments.To address this issue, we propose SAGE (Sequence-level Adaptive Gradient Evolution), a unified optimization framework tailored for list-wise generative recommendation. SAGE introduces two key innovations:(1) Sequence-level Signal Decoupling: By combining a geometric mean importance ratio with decoupled multi-objective advantages, we eliminate token-level variance and resolve the "Reward Collapse" problem. (2) Asymmetric Adaptive Dynamics: We construct a dynamic gradient manifold that applies a "Boost Factor" to high-potential cold start items to achieve super-linear updates and employs an "Entropy Aware Penalty" to break information cocoons. Theoretical analysis and empirical results demonstrate that SAGE effectively unblocks cold-start traffic and sustains recommendation diversity, all while retaining the numerical stability of GBPO.
comment: arXiv admin note: text overlap with arXiv:2506.19235
♻ ☆ No Answer Needed: Predicting LLM Answer Accuracy from Question-Only Linear Probes
Do large language models (LLMs) anticipate when they will answer correctly? To study this, we extract activations after a question is read but before any tokens are generated, and train linear probes to predict whether the model's forthcoming answer will be correct. Across three open-source model families ranging from 7 to 70 billion parameters, projections on this "in-advance correctness direction" trained on generic trivia questions predict success in distribution and on diverse out-of-distribution knowledge datasets, indicating a deeper signal than dataset-specific spurious features, and outperforming black-box baselines and verbalised predicted confidence. Predictive power saturates in intermediate layers and, notably, generalisation falters on questions requiring mathematical reasoning. Moreover, for models responding "I don't know", doing so strongly correlates with the probe score, indicating that the same direction also captures confidence. By complementing previous results on truthfulness and other behaviours obtained with probes and sparse auto-encoders, our work contributes essential findings to elucidate LLM internals.
♻ ☆ Addressing the Waypoint-Action Gap in End-to-End Autonomous Driving via Vehicle Motion Models
End-to-End Autonomous Driving (E2E-AD) systems are typically grouped by the nature of their outputs: (i) waypoint-based models that predict a future trajectory, and (ii) action-based models that directly output throttle, steer and brake. Most recent benchmark protocols and training pipelines are waypoint-based, which makes action-based policies harder to train and compare, slowing their progress. To bridge this waypoint-action gap, we propose a novel, differentiable vehicle-model framework that rolls out predicted action sequences to their corresponding ego-frame waypoint trajectories while supervising in waypoint space. Our approach enables action-based architectures to be trained and evaluated, for the first time, within waypoint-based benchmarks without modifying the underlying evaluation protocol. We extensively evaluate our framework across multiple challenging benchmarks and observe consistent improvements over the baselines. In particular, on NAVSIM \texttt{navhard} our approach achieves state-of-the-art performance. Our code will be made publicly available upon acceptance.
comment: 8 pages, 3 figures
♻ ☆ DegDiT: Controllable Audio Generation with Dynamic Event Graph Guided Diffusion Transformer
Controllable text-to-audio generation aims to synthesize audio from textual descriptions while satisfying user-specified constraints, including event types, temporal sequences, and onset and offset timestamps. This enables precise control over both the content and temporal structure of the generated audio. Despite recent progress, existing methods still face inherent trade-offs among accurate temporal localization, open-vocabulary scalability, and practical efficiency. To address these challenges, we propose DegDiT, a novel dynamic event graph-guided diffusion transformer framework for open-vocabulary controllable audio generation. DegDiT encodes the events in the description as structured dynamic graphs. The nodes in each graph are designed to represent three aspects: semantic features, temporal attributes, and inter-event connections. A graph transformer is employed to integrate these nodes and produce contextualized event embeddings that serve as guidance for the diffusion model. To ensure high-quality and diverse training data, we introduce a quality-balanced data selection pipeline that combines hierarchical event annotation with multi-criteria quality scoring, resulting in a curated dataset with semantic diversity. Furthermore, we present consensus preference optimization, facilitating audio generation through consensus among multiple reward signals. Extensive experiments on AudioCondition, DESED, and AudioTime datasets demonstrate that DegDiT achieves state-of-the-art performances across a variety of objective and subjective evaluation metrics.
♻ ☆ TxRay: Agentic Postmortem of Live Blockchain Attacks
Decentralized Finance (DeFi) has turned blockchains into financial infrastructure, allowing anyone to trade, lend, and build protocols without intermediaries, but this openness exposes pools of value controlled by code. Within five years, the DeFi ecosystem has lost over 15.75B USD to reported exploits. Many exploits arise from permissionless opportunities that any participant can trigger using only public state and standard interfaces, which we call Anyone-Can-Take (ACT) opportunities. Despite on-chain transparency, postmortem analysis remains slow and manual: investigations start from limited evidence, sometimes only a single transaction hash, and must reconstruct the exploit lifecycle by recovering related transactions, contract code, and state dependencies. We present TxRay, a Large Language Model (LLM) agentic postmortem system that uses tool calls to reconstruct live ACT attacks from limited evidence. Starting from one or more seed transactions, TxRay recovers the exploit lifecycle, derives an evidence-backed root cause, and generates a runnable, self-contained Proof of Concept (PoC) that deterministically reproduces the incident. TxRay self-checks postmortems by encoding incident-specific semantic oracles as executable assertions. To evaluate PoC correctness and quality, we develop PoCEvaluator, an independent agentic execution-and-review evaluator. On 114 incidents from DeFiHackLabs, TxRay produces an expert-aligned root cause and an executable PoC for 105 incidents, achieving 92.11% end-to-end reproduction. Under PoCEvaluator, 98.1% of TxRay PoCs avoid hard-coding attacker addresses, a +22.9pp lift over DeFiHackLabs. In a live deployment, TxRay delivers validated root causes in 40 minutes and PoCs in 59 minutes at median latency. TxRay's oracle-validated PoCs enable attack imitation, improving coverage by 15.6% and 65.5% over STING and APE.
comment: 24 pages, 8 figures
♻ ☆ Exploring AI-Augmented Sensemaking of Patient-Generated Health Data: A Mixed-Method Study with Healthcare Professionals in Cardiac Risk Reduction
Individuals are increasingly generating substantial personal health and lifestyle data, e.g. through wearables and smartphones. While such data could transform preventative care, its integration into clinical practice is hindered by its scale, heterogeneity and the time pressure and data literacy of healthcare professionals (HCPs). We explore how large language models (LLMs) can support sensemaking of patient-generated health data (PGHD) with automated summaries and natural language data exploration. Using cardiovascular disease (CVD) risk reduction as a use case, 16 HCPs reviewed multimodal PGHD in a mixed-methods study with a prototype that integrated common charts, LLM-generated summaries, and a conversational interface. Findings show that AI summaries provided quick overviews that anchored exploration, while conversational interaction supported flexible analysis and bridged data-literacy gaps. However, HCPs raised concerns about transparency, privacy, and overreliance. We contribute empirical insights and sociotechnical design implications for integrating AI-driven summarization and conversation into clinical workflows to support PGHD sensemaking.
♻ ☆ Massively Parallel Proof-Number Search for Impartial Games and Beyond
Proof-Number Search is a best-first search algorithm with many successful applications, especially in game solving. As large-scale computing clusters become increasingly accessible, parallelization is a natural way to accelerate computation. However, existing parallel versions of Proof-Number Search are known to scale poorly on many CPU cores. Using two parallelized levels and shared information among workers, we present the first massively parallel version of Proof-Number Search that scales efficiently even on a large number of CPUs. We apply our solver, enhanced with Grundy numbers for reducing game trees of impartial games, to the Sprouts game, a case study motivated by the long-standing Sprouts Conjecture. Our algorithm achieves 332.9$\times$ speedup on 1024 cores, significantly improving previous parallelizations and outperforming the state-of-the-art Sprouts solver GLOP by four orders of magnitude in runtime while generating proofs 1,000$\times$ more complex. Despite exponential growth in game tree size, our solver verified the Sprouts Conjecture for 42 new positions, nearly doubling the number of known outcomes.
♻ ☆ Research Superalignment Should Advance Now with Alternating Competence and Conformity Optimization
The recent leap in AI capabilities, driven by big generative models, has sparked the possibility of achieving Artificial General Intelligence (AGI) and further triggered discussions on Artificial Superintelligence (ASI)-a system surpassing all humans across measured domains. This gives rise to the critical research question of: As we approach ASI, how do we align it with human values, ensuring it benefits rather than harms human society, a.k.a., the Superalignment problem. Despite ASI being regarded by many as a hypothetical concept, in this position paper, we argue that superalignment is achievable and research on it should advance immediately, through simultaneous and alternating optimization of task competence and value conformity. We posit that superalignment is not merely a safeguard for ASI but also necessary for its responsible realization. To support this position, we first provide a formal definition of superalignment rooted in the gap between capability and capacity, delve into its perceived infeasibility by analyzing the limitations of existing paradigms, and then illustrate a conceptual path of superalignment to support its achievability, centered on two fundamental principles. This work frames a potential initiative for developing value-aligned next-generation AI in the future, which will garner greater benefits and reduce potential harm to humanity.
♻ ☆ Lyria: A Genetic Algorithm-Driven Neuro-Symbolic Reasoning Framework for LLMs
While LLMs have demonstrated impressive abilities across various domains, they struggle with two major issues. The first is that LLMs trap themselves into local optima and the second is that they lack exhaustive coverage of the solution space. To investigate and improve these two issues, we propose Lyria, a neuro-symbolic reasoning framework building on the integration of LLMs, genetic algorithms, and symbolic systems, comprising 7 essential components. Through conducting extensive experiments with 4 LLMs across 3 types of problems, we demonstrated the efficacy of Lyria. Furthermore, with 7 additional ablation experiments, we further systematically analyzed and elucidated the factors that affect its performance. In addition, based on Lyria, we extend the ideas to the fine-tuning process of LLMs and introduce LAFT which enables a weaker model to imitate the reasoning process of a stronger model that reason under the Lyria reasoning framework. We demonstrate that the significant effectiveness of LAFT by conducting extensive experiments against 9 constructed baselines. We finally reveal the limitations and provide insights into future directions.
♻ ☆ How Hyper-Datafication Impacts the Sustainability Costs in Frontier AI
Large-scale data has fuelled the success of frontier artificial intelligence (AI) models over the past decade. This expansion has relied on sustained efforts by large technology corporations to aggregate and curate internet-scale datasets. In this work, we examine the environmental, social, and economic costs of large-scale data in AI through a sustainability lens. We argue that the field is shifting from building models from data to actively creating data for building models. We characterise this transition as hyper-datafication, which marks a critical juncture for the future of frontier AI and its societal impacts. To quantify and contextualise data-related costs, we analyse approximately 550,000 datasets from the Hugging Face Hub, focusing on dataset growth, storage-related energy consumption and carbon footprint, and societal representation using language data. We complement this analysis with qualitative responses from data workers in Kenya to examine the labour involved, including direct employment by big tech corporations and exposure to graphic content. We further draw on external data sources to substantiate our findings by illustrating the global disparity in data centre infrastructure. Our analyses reveal that hyper-datafication does not merely increase resource consumption but systematically redistributes environmental burdens, labour risks, and representational harms toward the Global South, precarious data workers, and under-represented cultures. Thus, we propose Data PROOFS recommendations spanning provenance, resource awareness, ownership, openness, frugality, and standards to mitigate these costs. Our work aims to make visible the often-overlooked costs of data that underpin frontier AI and to stimulate broader debate within the research community and beyond.
comment: 14 pages
♻ ☆ No Prompt Left Behind: Exploiting Zero-Variance Prompts in LLM Reinforcement Learning via Entropy-Guided Advantage Shaping ICLR 2026
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful framework for improving the reasoning abilities of Large Language Models (LLMs). However, current methods such as GRPO rely only on problems where the model responses to the same input differ in correctness, while ignoring those where all responses receive the same reward -- so-called zero-variance prompts. In this work, we argue that such prompts are not useless but can, in fact, provide meaningful feedback for policy optimization. To this end, we introduce Reinforcement Learning with Zero-Variance Prompts (RL-ZVP), a novel algorithm that extract learning signals from zero-variance prompts. RL-ZVP directly rewards correctness and penalizes errors even without contrasting responses, modulating feedback with token-level characteristics to preserve informative, nuanced signals. Across six math reasoning benchmarks, RL-ZVP achieves significant improvements of up to 8.61 points in accuracy and 7.77 points in pass rate over GRPO, while consistently outperforming other baselines that filter out zero-variance prompts. These results highlight the untapped potential of learning from zero-variance prompts in RLVR. The project page is available at https://bltnynk.github.io/publications/rl-zvp/.
comment: ICLR 2026 camera-ready version
♻ ☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
♻ ☆ Interpretable Discovery of One-parameter Subgroups: A Modular Framework for Elliptical, Hyperbolic, and Parabolic Symmetries
We propose a modular, data-driven framework for jointly learning unknown functional mappings and discovering the underlying one-parameter symmetry subgroup governing the data. Unlike conventional geometric deep learning methods that assume known symmetries, our approach identifies the relevant continuous subgroup directly from data. We consider the broad class of one-parameter subgroups, which admit a canonical geometric classification into three regimes: elliptical, hyperbolic, and parabolic. Given an assumed regime, our framework instantiates a corresponding symmetry discovery architecture with invariant and equivariant representation layers structured according to the Lie algebra of the subgroup, and learns the exact generator parameters end-to-end from data. This yields models whose invariance or equivariance is guaranteed by construction and admits formal proofs, enabling symmetry to be explicitly traced to identifiable components of the architecture. The approach is applicable to one-parameter subgroups of a wide range of matrix Lie groups, including $SO(n)$, $SL(n)$, and the Lorentz group. Experiments on synthetic and real-world systems, including moment of inertia prediction, double-pendulum dynamics, and high-energy \textit{Top Quark Tagging}, demonstrate accurate subgroup recovery and strong predictive performance across both compact and non-compact regimes.
♻ ☆ Bagging-Based Model Merging for Robust General Text Embeddings
General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (BOOM), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, BOOM naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that BOOM consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
comment: 12 pages, 4 figures
♻ ☆ OLion: Approaching the Hadamard Ideal by Intersecting Spectral and $\ell_{\infty}$ Implicit Biases
Many optimizers can be interpreted as steepest-descent methods under norm-induced geometries, and thus inherit corresponding implicit biases. We introduce \nameA{} (\fullname{}), which combines spectral control from orthogonalized update directions with $\ell_\infty$-style coordinate control from sign updates. \nameA{} forms a Lion-style momentum direction, approximately orthogonalizes it via a few Newton--Schulz iterations, and then applies an entrywise sign, providing an efficient approximation to taking a maximal step over the intersection of the spectral and $\ell_\infty$ constraint sets (a scaled Hadamard-like set for matrix parameters). Despite the strong nonlinearity of orthogonalization and sign, we prove convergence under a mild, empirically verified diagonal-isotropy assumption. Across large-scale language and vision training, including GPT-2 and Llama pretraining, SiT image pretraining, and supervised fine-tuning, \nameA{} matches or outperforms AdamW and Muon under comparable tuning while using only momentum-level optimizer state, and it mitigates optimizer mismatch when fine-tuning AdamW-pretrained checkpoints.
comment: 23 pages
♻ ☆ Game-Theoretic Co-Evolution for LLM-Based Heuristic Discovery
Large language models (LLMs) have enabled rapid progress in automatic heuristic discovery (AHD), yet most existing methods are predominantly limited by static evaluation against fixed instance distributions, leading to potential overfitting and poor generalization under distributional shifts. We propose Algorithm Space Response Oracles (ASRO), a game-theoretic framework that reframes heuristic discovery as a program level co-evolution between solver and instance generator. ASRO models their interaction as a two-player zero-sum game, maintains growing strategy pools on both sides, and iteratively expands them via LLM-based best-response oracles against mixed opponent meta-strategies, thereby replacing static evaluation with an adaptive, self-generated curriculum. Across multiple combinatorial optimization domains, ASRO consistently outperforms static-training AHD baselines built on the same program search mechanisms, achieving substantially improved generalization and robustness on diverse and out-of-distribution instances.
♻ ☆ SoK: Trust-Authorization Mismatch in LLM Agent Interactions
Large Language Models (LLMs) are evolving into autonomous agents capable of executing complex workflows via standardized protocols (e.g., MCP). However, this paradigm shifts control from deterministic code to probabilistic inference, creating a fundamental Trust-Authorization Mismatch: static permissions are structurally decoupled from the agent's fluctuating runtime trustworthiness. In this Systematization of Knowledge (SoK), we survey more than 200 representative papers to categorize the emerging landscape of agent security. We propose the Belief-Intention-Permission (B-I-P) framework as a unifying formal lens. By decomposing agent execution into three distinct stages-Belief Formation, Intent Generation, and Permission Grant-we demonstrate that diverse threats, from prompt injection to tool poisoning, share a common root cause: the desynchronization between dynamic trust states and static authorization boundaries. Using the B-I-P lens, we systematically map existing attacks and defenses and identify critical gaps where current mechanisms fail to bridge this mismatch. Finally, we outline a research agenda for shifting from static Role-Based Access Control (RBAC) to dynamic, risk-adaptive authorization.
♻ ☆ Rethinking Cross-Modal Fine-Tuning: Optimizing the Interaction between Feature Alignment and Target Fitting AISTATS 20226
Adapting pre-trained models to unseen feature modalities has become increasingly important due to the growing need for cross-disciplinary knowledge integration. A key challenge here is how to align the representation of new modalities with the most relevant parts of the pre-trained model's representation space to enable accurate knowledge transfer. This requires combining feature alignment with target fine-tuning, but uncalibrated combinations can exacerbate misalignment between the source and target feature-label structures and reduce target generalization. Existing work, however, lacks a theoretical understanding of this critical interaction between feature alignment and target fitting. To bridge this gap, we develop a principled framework that establishes a provable generalization bound on the target error, which explains the interaction between feature alignment and target fitting through a novel concept of feature-label distortion. This bound offers actionable insights into how this interaction should be optimized for practical algorithm design. The resulting approach achieves significantly improved performance over state-of-the-art methods across a wide range of benchmark datasets.
comment: Accepted AISTATS 20226. Preprint version
♻ ☆ Disentangled Parameter-Efficient Linear Model for Long-Term Time Series Forecasting
Long-term Time Series Forecasting (LTSF) is crucial across various domains, but complex deep models like Transformers are often prone to overfitting on extended sequences. Linear Fully Connected models have emerged as a powerful alternative, achieving competitive results with fewer parameters. However, their reliance on a single, monolithic weight matrix leads to quadratic parameter redundancy and an entanglement of temporal and frequential properties. To address this, we propose DiPE-Linear, a novel model that disentangles this monolithic mapping into a sequence of specialized, parameter-efficient modules. DiPE-Linear features three core components: Static Frequential Attention to prioritize critical frequencies, Static Time Attention to focus on key time steps, and Independent Frequential Mapping to independently process frequency components. A Low-rank Weight Sharing policy further enhances efficiency for multivariate data. This disentangled architecture collectively reduces parameter complexity from quadratic to linear and computational complexity to log-linear. Experiments on real-world datasets show that DiPE-Linear delivers state-of-the-art performance with significantly fewer parameters, establishing a new and highly efficient baseline for LTSF. Our code is available at https://github.com/wintertee/DiPE-Linear/
comment: Accepted by DASFAA 2026. (Submitted Manuscript Version)
♻ ☆ Towards Transparent and Efficient Anomaly Detection in Industrial Processes through ExIFFI
Anomaly Detection (AD) is crucial in industrial settings to streamline operations by detecting underlying issues. Conventional methods merely label observations as normal or anomalous, lacking crucial insights. In Industry 5.0, interpretable outcomes become desirable to enable users to understand the rational under model decisions. This paper presents the first industrial application of ExIFFI, a recent approach for fast, efficient explanations for the Extended Isolation Forest (EIF) AD method. ExIFFI is tested on three industrial datasets, demonstrating superior explanation effectiveness, computational efficiency and improved raw anomaly detection performances. ExIFFI reaches over then 90\% of average precision on all the benchmarks considered in the study and overperforms state-of-the-art Explainable Artificial Intelligence (XAI) approaches in terms of the feature selection proxy task metric which was specifically introduced to quantitatively evaluate model explanations.
comment: This is the update version of the extended paper after receiving comments from reviewers
♻ ☆ Vid-LLM: A Compact Video-based 3D Multimodal LLM with Reconstruction-Reasoning Synergy
Recent developments in Multimodal Large Language Models (MLLMs) have significantly improved Vision-Language (VL) reasoning in 2D domains. However, extending these capabilities to 3D scene understanding remains a major challenge. Existing 3D Multimodal Large Language Models (3D-MLLMs) often depend on 3D data inputs, which limits scalability and generalization. To address this limitation, we propose Vid-LLM, a video-based 3D-MLLM that directly processes video inputs without requiring external 3D data, making it practical for real-world deployment. In our method, the geometric prior are directly used to improve the performance of the sceen perception. To integrate the geometric cues into the MLLM compactly, we design a Cross-Task Adapter (CTA) module to align the 3D geometric priors with the vision-language representations. To ensure geometric consistency and integrity, we introduce a Metric Depth Model that recovers real-scale geometry from the reconstruction outputs. Finally, the model is fine-tuned with a two-stage distillation optimization strategy, realizing fast convergence and stabilizes training. Extensive experiments across diverse benchmarks verified the effectiveness of our method on 3D Question Answering, 3D Dense Captioning and 3D Visual Grounding tasks, demonstrating the superior multi-task capabilities.
♻ ☆ Supervised Fine-Tuning Needs to Unlock the Potential of Token Priority
The transition from fitting empirical data to achieving true human utility is fundamentally constrained by a granularity mismatch, where fine-grained autoregressive generation is often supervised by coarse or uniform signals. This position paper advocates Token Priority as the essential bridge, formalizing Supervised Fine-Tuning (SFT) not as simple optimization but as a precise distribution reshaping process that aligns raw data with the ideal alignment manifold. We analyze recent breakthroughs through this unified lens, categorizing them into two distinct regimes: Positive Priority for noise filtration and Signed Priority for toxic modes unlearning. We revisit existing progress and limitations, identify key challenges, and suggest directions for future research.
♻ ☆ "PhyWorldBench": A Comprehensive Evaluation of Physical Realism in Text-to-Video Models
Video generation models have achieved remarkable progress in creating high-quality, photorealistic content. However, their ability to accurately simulate physical phenomena remains a critical and unresolved challenge. This paper presents PhyWorldBench, a comprehensive benchmark designed to evaluate video generation models based on their adherence to the laws of physics. The benchmark covers multiple levels of physical phenomena, ranging from fundamental principles such as object motion and energy conservation to more complex scenarios involving rigid body interactions and human or animal motion. Additionally, we introduce a novel Anti-Physics category, where prompts intentionally violate real-world physics, enabling the assessment of whether models can follow such instructions while maintaining logical consistency. Besides large-scale human evaluation, we also design a simple yet effective method that utilizes current multimodal large language models to evaluate physics realism in a zero-shot fashion. We evaluate 12 state-of-the-art text-to-video generation models, including five open-source and five proprietary models, with detailed comparison and analysis. Through systematic testing across 1050 curated prompts spanning fundamental, composite, and anti-physics scenarios, we identify pivotal challenges these models face in adhering to real-world physics. We further examine their performance under diverse physical phenomena and prompt types, and derive targeted recommendations for crafting prompts that enhance fidelity to physical principles.
comment: 35 pages, 21 figures
♻ ☆ Optimas: Optimizing Compound AI Systems with Globally Aligned Local Rewards ICLR 2026
Compound AI systems integrating multiple components, such as Large Language Models, specialized tools, and traditional machine learning models, are increasingly deployed to solve complex real-world tasks. However, optimizing compound systems remains challenging due to their non-differentiable structures and diverse configuration types across components, including prompts, hyperparameters, and model parameters. To address this challenge, we propose Optimas, a unified framework for effective optimization of compound systems. The core idea of Optimas is to maintain one Local Reward Function (LRF) per component, each satisfying a local-global alignment property, i.e., each component's local reward correlates with the global system performance. In each iteration, Optimas efficiently adapts the LRFs to maintain this property while simultaneously maximizing each component's local reward. This approach enables independent updates of heterogeneous configurations using the designated optimization method, while ensuring that local improvements consistently lead to performance gains. We present extensive evaluations across five real-world compound systems to demonstrate that Optimas outperforms strong baselines by an average improvement of 11.92%, offering a general and effective approach for improving compound systems. Our website is at https://optimas.stanford.edu.
comment: Accepted to ICLR 2026. 22 pages
♻ ☆ Agentic AI Reasoning for Mobile Edge General Intelligence: Fundamentals, Approaches, and Directions
The rapid advancement of large language models (LLMs) has enabled an emergence of agentic artificial intelligence (AI) with powerful reasoning and autonomous decision-making capabilities. This integration with edge computing has led to the development of Mobile Edge General Intelligence (MEGI), which brings real-time, privacy-preserving reasoning to the network edge. However, deploying LLM-based agentic AI reasoning in MEGI environments poses significant challenges due to the high computational demands of reasoning and the limited resources of edge devices. To address these challenges, we propose a joint optimization framework for efficient LLM reasoning deployment in MEGI. First, we systematically review enhancement methods to identify mechanisms suitable for edge adaptation. Subsequently, we present a distributed framework that synergizes reasoning enhancement via adaptive CoT prompting with scalable deployment through a distributed MoE architecture. An important innovation of this approach involves modeling reasoning depth as a dynamic network resource variable, which is optimized jointly with expert activation and transmission power. This mechanism allows the system to dynamically regulate expert networks and reasoning complexity according to task requirements and device capabilities. Experimental evaluations in mobile edge environments demonstrate that the proposed framework effectively balances reasoning quality and resource efficiency. The results show that with less than one second of additional inference time, both accuracy and latency satisfaction rate can reach 90\%, validating the practical viability of deploying sophisticated LLM reasoning in resource-constrained MEGI systems.
♻ ☆ ASSESS: A Semantic and Structural Evaluation Framework for Statement Similarity ICLR 2026
Despite significant strides in statement autoformalization, a critical gap remains in the development of automated evaluation metrics capable of assessing formal translation quality. Existing metrics often fail to balance semantic and structural information: string-based methods neglect semantics, whereas proof-based approaches offer no graded similarity when proofs fail. To address these issues, we introduce ASSESS (A Semantic and Structural Evaluation Framework for Statement Similarity), which captures syntactic structure by transforming formal statements into operator trees and computes a real-valued similarity score using our novel TransTED (Transformation Tree Edit Distance) Similarity metric by incorporating semantic transformations. For rigorous validation, we present EPLA (Evaluating Provability and Likeness for Autoformalization), a benchmark comprising 1,247 expert-annotated formal statement pairs derived from miniF2F and ProofNet, distinctively labeled for both semantic provability and structural likeness. Experiments on the EPLA benchmark demonstrate that TransTED Similarity surpasses existing methods, achieving state-of-the-art accuracy and Kappa score. The benchmark dataset, code, and detailed experimental results are available at https://github.com/XiaoyangLiu-sjtu/ASSESS.
comment: Accepted to ICLR 2026
♻ ☆ GUI Knowledge Bench: Revealing the Knowledge Gap of VLMs in GUI Tasks
Vision language models (VLMs) have advanced graphical user interface (GUI) task automation but still lag behind humans. We hypothesize this gap stems from missing core GUI knowledge, which existing training schemes (such as supervised fine tuning and reinforcement learning) alone cannot fully address. By analyzing common failure patterns in GUI task execution, we distill GUI knowledge into three dimensions: (1) interface knowledge about widget functions, layout semantics, and system states; (2) interaction knowledge about GUI interaction types and effects; and (3) procedure knowledge of task objectives and workflow sequences. We further introduce GUI Knowledge Bench, a benchmark with multiple-choice and yes/no questions across six platforms (Web, Android, MacOS, Windows, Linux, IOS) and 292 applications. Our evaluation indicates that current VLMs are generally aware of the functions of individual widgets, but lack the GUI-specific knowledge required to track system states, adhere to GUI interaction conventions, and assess task completion progress. Experiments on real-world GUI tasks further validate the close link between GUI knowledge and task success. By providing a structured framework for assessing GUI knowledge, our work supports the selection of VLMs with greater potential prior to downstream training and provides insights for building more capable GUI agents.
♻ ☆ CoMAS: Co-Evolving Multi-Agent Systems via Interaction Rewards
Self-evolution is a central research topic in enabling large language model (LLM)-based agents to continually improve their capabilities after pretraining. Recent research has witnessed a transition from reinforcement learning (RL)-free to RL-based methods. Current RL-based methods either rely on dense external reward signals or extract intrinsic reward signals from LLMs themselves. However, these approaches diverge from the self-evolution mechanisms observed in human intelligence, where individuals learn and improve through mutual discussion and collaboration. In this work, we introduce Co-Evolving Multi-Agent Systems (CoMAS), a novel framework that enables agents to improve autonomously by learning from inter-agent interactions without external supervision. CoMAS generates intrinsic rewards from rich discussion dynamics, employs an LLM-as-a-judge mechanism to formulate these rewards, and optimizes each agent's policy through RL, thereby enabling decentralized and scalable co-evolution. Experimental results demonstrate that CoMAS consistently outperforms untrained agents and achieves state-of-the-art performance across most evaluation settings. Ablation studies confirm the necessity of interaction-based reward signals and reveal promising scalability as the number and diversity of agents increase. These findings establish CoMAS as a novel and effective paradigm for self-evolution in LLM-based agents.
ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems
Much previous AI research has focused on developing monolithic models to maximize their intelligence, with the primary goal of enhancing performance on specific tasks. In contrast, this work attempts to study using LLM-based agents to design collaborative AI systems autonomously. To explore this problem, we first introduce ComfyBench to evaluate agents's ability to design collaborative AI systems in ComfyUI. ComfyBench is a comprehensive benchmark comprising 200 diverse tasks covering various instruction-following generation challenges, along with detailed annotations for 3,205 nodes and 20 workflows. Based on ComfyBench, we further develop ComfyAgent, a novel framework that empowers LLM-based agents to autonomously design collaborative AI systems by generating workflows. ComfyAgent is based on two core concepts. First, it represents workflows with code, which can be reversibly converted into workflows and executed as collaborative systems by the interpreter. Second, it constructs a multi-agent system that cooperates to learn from existing workflows and generate new workflows for a given task. While experimental results demonstrate that ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15\% of creative tasks. LLM-based agents still have a long way to go in autonomously designing collaborative AI systems. Progress with ComfyBench is paving the way for more intelligent and autonomous collaborative AI systems.
♻ ☆ China Regional 3km Downscaling Based on Residual Corrective Diffusion Model
A fundamental challenge in numerical weather prediction is to efficiently produce high-resolution forecasts. A common solution is applying downscaling methods, which include dynamical downscaling and statistical downscaling, to the outputs of global models. This work focuses on statistical downscaling, which establishes statistical relationships between low-resolution and high-resolution historical data using statistical models. Deep learning has emerged as a powerful tool for this task, giving rise to various high-performance super-resolution models, which can be directly applied for downscaling, such as diffusion models and Generative Adversarial Networks. This work relies on a diffusion-based downscaling framework named CorrDiff. In contrast to the original work of CorrDiff, the region considered in this work is nearly 40 times larger, and we not only consider surface variables as in the original work, but also encounter high-level variables (six pressure levels) as target downscaling variables. In addition, a global residual connection is added to improve accuracy. In order to generate the 3km forecasts for the China region, we apply our trained models to the 25km global grid forecasts of CMA-GFS, an operational global model of the China Meteorological Administration (CMA), and SFF, a data-driven deep learning-based weather model developed from Spherical Fourier Neural Operators (SFNO). CMA-MESO, a high-resolution regional model, is chosen as the baseline model. The experimental results demonstrate that the forecasts downscaled by our method generally outperform the direct forecasts of CMA-MESO in terms of MAE for the target variables. Our forecasts of radar composite reflectivity show that CorrDiff, as a generative model, can generate fine-scale details that lead to more realistic predictions compared to the corresponding deterministic regression models.
♻ ☆ Trade in Minutes! Rationality-Driven Agentic System for Quantitative Financial Trading
Recent advancements in large language models (LLMs) and agentic systems have shown exceptional decision-making capabilities, revealing significant potential for autonomic finance. Current financial trading agents predominantly simulate anthropomorphic roles that inadvertently introduce emotional biases and rely on peripheral information, while being constrained by the necessity for continuous inference during deployment. In this paper, we pioneer the harmonization of strategic depth in agents with the mechanical rationality essential for quantitative trading. Consequently, we present TiMi (Trade in Minutes), a rationality-driven multi-agent system that architecturally decouples strategy development from minute-level deployment. TiMi leverages specialized LLM capabilities of semantic analysis, code programming, and mathematical reasoning within a comprehensive policy-optimization-deployment chain. Specifically, we propose a two-tier analytical paradigm from macro patterns to micro customization, layered programming design for trading bot implementation, and closed-loop optimization driven by mathematical reflection. Extensive evaluations across 200+ trading pairs in stock and cryptocurrency markets empirically validate the efficacy of TiMi in stable profitability, action efficiency, and risk control under volatile market dynamics.
comment: 17 pages, 6 figures
♻ ☆ VAO: Validation-Aligned Optimization for Cross-Task Generative Auto-Bidding
Generative auto-bidding has demonstrated strong performance in online advertising, yet it often suffers from data scarcity in small-scale settings with limited advertiser participation. While cross-task data sharing is a natural remedy to mitigate this issue, naive approaches often introduce gradient bias due to distribution shifts across different tasks, and existing methods are not readily applicable to generative auto-bidding. In this paper, we propose Validation-Aligned Optimization (VAO), a principled data-sharing method that adaptively reweights cross-task data contributions based on validation performance feedback. Notably, VAO aligns training dynamics to prioritize updates that improve generalization on the target task, effectively leveraging auxiliary data and mitigating gradient bias. Building on VAO, we introduce a unified generative autobidding framework that generalizes across multiple tasks using a single model and all available task data. Extensive experiments on standard auto-bidding benchmarks validate the effectiveness of our approach.
♻ ☆ Paper Copilot: Tracking the Evolution of Peer Review in AI Conferences ICLR 2026
The rapid growth of AI conferences is straining an already fragile peer-review system, leading to heavy reviewer workloads, expertise mismatches, inconsistent evaluation standards, superficial or templated reviews, and limited accountability under compressed timelines. In response, conference organizers have introduced new policies and interventions to preserve review standards. Yet these ad-hoc changes often create further concerns and confusion about the review process, leaving how papers are ultimately accepted - and how practices evolve across years - largely opaque. We present Paper Copilot, a system that creates durable digital archives of peer reviews across a wide range of computer-science venues, an open dataset that enables researchers to study peer review at scale, and a large-scale empirical analysis of ICLR reviews spanning multiple years. By releasing both the infrastructure and the dataset, Paper Copilot supports reproducible research on the evolution of peer review. We hope these resources help the community track changes, diagnose failure modes, and inform evidence-based improvements toward a more robust, transparent, and reliable peer-review system.
comment: ICLR 2026. https://papercopilot.com/
♻ ☆ Token-Level LLM Collaboration via FusionRoute
Large language models (LLMs) exhibit strengths across diverse domains. However, achieving strong performance across these domains with a single general-purpose model typically requires scaling to sizes that are prohibitively expensive to train and deploy. On the other hand, while smaller domain-specialized models are much more efficient, they struggle to generalize beyond their training distributions. To address this dilemma, we propose FusionRoute, a robust and effective token-level multi-LLM collaboration framework in which a lightweight router simultaneously (i) selects the most suitable expert at each decoding step and (ii) contributes a complementary logit that refines or corrects the selected expert's next-token distribution via logit addition. Unlike existing token-level collaboration methods that rely solely on fixed expert outputs, we provide a theoretical analysis showing that pure expert-only routing is fundamentally limited: unless strong global coverage assumptions hold, it cannot in general realize the optimal decoding policy. By augmenting expert selection with a trainable complementary generator, FusionRoute expands the effective policy class and enables recovery of optimal value functions under mild conditions. Empirically, across both Llama-3 and Gemma-2 families and diverse benchmarks spanning mathematical reasoning, code generation, and instruction following, FusionRoute outperforms both sequence- and token-level collaboration, model merging, and direct fine-tuning, while remaining competitive with domain experts on their respective tasks.
comment: 25 pages
♻ ☆ Zero-shot Generalizable Graph Anomaly Detection with Mixture of Riemannian Experts
Graph Anomaly Detection (GAD) aims to identify irregular patterns in graph data, and recent works have explored zero-shot generalist GAD to enable generalization to unseen graph datasets. However, existing zero-shot GAD methods largely ignore intrinsic geometric differences across diverse anomaly patterns, substantially limiting their cross-domain generalization. In this work, we reveal that anomaly detectability is highly dependent on the underlying geometric properties and that embedding graphs from different domains into a single static curvature space can distort the structural signatures of anomalies. To address the challenge that a single curvature space cannot capture geometry-dependent graph anomaly patterns, we propose GAD-MoRE, a novel framework for zero-shot Generalizable Graph Anomaly Detection with a Mixture of Riemannian Experts architecture. Specifically, to ensure that each anomaly pattern is modeled in the Riemannian space where it is most detectable, GAD-MoRE employs a set of specialized Riemannian expert networks, each operating in a distinct curvature space. To align raw node features with curvature-specific anomaly characteristics, we introduce an anomaly-aware multi-curvature feature alignment module that projects inputs into parallel Riemannian spaces, enabling the capture of diverse geometric characteristics. Finally, to facilitate better generalization beyond seen patterns, we design a memory-based dynamic router that adaptively assigns each input to the most compatible expert based on historical reconstruction performance on similar anomalies. Extensive experiments in the zero-shot setting demonstrate that GAD-MoRE significantly outperforms state-of-the-art generalist GAD baselines, and even surpasses strong competitors that are few-shot fine-tuned with labeled data from the target domain.
♻ ☆ Theoretical Modeling of Large Language Model Self-Improvement Training Dynamics Through Solver-Verifier Gap
Self-improvement is a significant techniques within the realm of large language model (LLM), aiming to enhance the LLM performance without relying on external data. Despite its significance, generally how LLM performances evolve during the self-improvement process remains underexplored. In this paper, we theoretically model the training dynamics of self-improvement via the concept of solver-verifier gap. This is inspired by the conjecture that the performance enhancement of self-improvement stems from the gap between LLM's solver capability and verifier capability. Based on the theoretical framework, we further show how to model the entire training trajectory. This framework allows quantifying the capability limit of self-improvement by fitting the theoretical model to the experiment results. We validate the effectiveness of the theoretical framework on various LLMs and datasets. Beyond self-improvement, we extend our analysis to investigate how external data influences these dynamics within the framework. Notably, we find that under limited external data regimes, such external data can be utilized at any stage without significantly affecting final performances, which accords with the empirical observations.
comment: 37 pages
♻ ☆ Towards Reliable Evaluation of Adversarial Robustness for Spiking Neural Networks
Spiking Neural Networks (SNNs) utilize spike-based activations to mimic the brain's energy-efficient information processing. However, the binary and discontinuous nature of spike activations causes vanishing gradients, making adversarial robustness evaluation via gradient descent unreliable. While improved surrogate gradient methods have been proposed, their effectiveness under strong adversarial attacks remains unclear. We propose a more reliable framework for evaluating SNN adversarial robustness. We theoretically analyze the degree of gradient vanishing in surrogate gradients and introduce the Adaptive Sharpness Surrogate Gradient (ASSG), which adaptively evolves the shape of the surrogate function according to the input distribution during attack iterations, thereby enhancing gradient accuracy while mitigating gradient vanishing. In addition, we design an adversarial attack with adaptive step size under the $L_\infty$ constraint-Stable Adaptive Projected Gradient Descent (SA-PGD), achieving faster and more stable convergence under imprecise gradients. Extensive experiments show that our approach substantially increases attack success rates across diverse adversarial training schemes, SNN architectures and neuron models, providing a more generalized and reliable evaluation of SNN adversarial robustness. The experimental results further reveal that the robustness of current SNNs has been significantly overestimated and highlighting the need for more dependable adversarial training methods. The code is released at https://github.com/craree/ASSG-SNNs-Robustness-Evaluation
♻ ☆ Q-Learning under Finite Model Uncertainty
We propose a robust Q-learning algorithm for Markov decision processes under model uncertainty when each state-action pair is associated with a finite ambiguity set of candidate transition kernels. This finite-measure framework enables highly flexible, user-designed uncertainty models and goes beyond the common KL and Wasserstein ball formulations. We establish almost sure convergence of the learned Q-function to the robust optimum, and derive non-asymptotic high-probability error bounds that separate stochastic approximation error from transition-kernel estimation error. Finally, we show that Wasserstein ball and parametric ambiguity sets can be approximated by finite ambiguity sets, allowing our algorithm to be used as a generic solver beyond the finite setting.
♻ ☆ SLAY: Geometry-Aware Spherical Linearized Attention with Yat-Kernel ICML 2026
We propose a new class of linear-time attention mechanisms based on a relaxed and computationally efficient formulation of the recently introduced E-Product, often referred to as the Yat-kernel (Bouhsine, 2025). The resulting interactions are geometry-aware and inspired by inverse-square interactions in physics. Our method, Spherical Linearized Attention with Yat Kernels (SLAY), constrains queries and keys to the unit sphere so that attention depends only on angular alignment. Using Bernstein's theorem, we express the spherical Yat-kernel as a nonnegative mixture of polynomial-exponential product kernels and derive a strictly positive random-feature approximation enabling linear-time O(L) attention. We establish positive definiteness and boundedness on the sphere and show that the estimator yields well-defined, nonnegative attention scores. Empirically, SLAY achieves performance that is nearly indistinguishable from standard softmax attention while retaining linear time and memory scaling, and consistently outperforms prior linear-time attention mechanisms such as Performers and Cosformers. To the best of our knowledge, SLAY represents the closest linear-time approximation to softmax attention reported to date, enabling scalable Transformers without the typical performance trade-offs of attention linearization.
comment: ICML 2026, 8 pages main body, 27 pages total
♻ ☆ Multi-Agent Teams Hold Experts Back
Multi-agent LLM systems are increasingly deployed as autonomous collaborators, where agents interact freely rather than execute fixed, pre-specified workflows. In such settings, effective coordination cannot be fully designed in advance and must instead emerge through interaction. However, most prior work enforces coordination through fixed roles, workflows, or aggregation rules, leaving open the question of how well self-organizing teams perform when coordination is unconstrained. Drawing on organizational psychology, we study whether self-organizing LLM teams achieve strong synergy, where team performance matches or exceeds the best individual member. Across human-inspired and frontier ML benchmarks, we find that -- unlike human teams -- LLM teams consistently fail to match their expert agent's performance, even when explicitly told who the expert is, incurring performance losses of up to 37.6%. Decomposing this failure, we show that expert leveraging, rather than identification, is the primary bottleneck. Conversational analysis reveals a tendency toward integrative compromise -- averaging expert and non-expert views rather than appropriately weighting expertise -- which increases with team size and correlates negatively with performance. Interestingly, this consensus-seeking behavior improves robustness to adversarial agents, suggesting a trade-off between alignment and effective expertise utilization. Our findings reveal a significant gap in the ability of self-organizing multi-agent teams to harness the collective expertise of their members.
comment: Preprint
♻ ☆ Transformer-based Learning-to-Optimize Approach for Scalable and Generalizable Beamforming
We develop an unsupervised deep learning framework for downlink beamforming in large-scale MU-MISO channels. The model is trained offline, allowing real-time inference through lightweight feedforward computations in dynamic communication environments. Following the learning-to-optimize (L2O) paradigm, a multi-layer Transformer iteratively refines both channel and beamformer features via residual connections. To enhance training, three strategies are introduced: (i) curriculum learning (CL) to improve early-stage convergence and avoid local optima, (ii) semi-amortized learning to refine each Transformer block with a few gradient ascent steps, and (iii) sliding-window training to stabilize optimization by training only a subset of Transformer blocks at a time. Extensive simulations show that the proposed scheme outperforms existing baselines at low-to-medium SNRs and closely approaches WMMSE performance at high SNRs, while achieving substantially faster inference than iterative and online learning approaches.
comment: 14 pages, second version
♻ ☆ NOCTA: Non-Greedy Objective Cost-Tradeoff Acquisition for Longitudinal Data
In many critical domains, features are not freely available at inference time: each measurement may come with a cost of time, money, and risk. Longitudinal prediction further complicates this setting because both features and labels evolve over time, and missing measurements at earlier timepoints may become permanently unavailable. We propose NOCTA, a Non-Greedy Objective Cost-Tradeoff Acquisition framework that sequentially acquires the most informative features at inference time while accounting for both temporal dynamics and acquisition cost. NOCTA is driven by a novel objective, NOCT, which evaluates a candidate set of future feature-time acquisitions by its expected predictive loss together with its acquisition cost. Since NOCT depends on unobserved future trajectories at inference time, we develop two complementary estimators: (i) NOCT-Contrastive, which learns an embedding of partial observations utilizing the induced distribution over future acquisitions, and (ii) NOCT-Amortized, which directly predicts NOCT for candidate plans with a neural network. Experiments on synthetic and real-world medical datasets demonstrate that both NOCTA estimators outperform existing baselines, achieving higher accuracy at lower acquisition costs.
♻ ☆ On Evaluation of Unsupervised Feature Selection for Pattern Classification
Unsupervised feature selection aims to identify a compact subset of features that captures the intrinsic structure of data without supervised label. Most existing studies evaluate the performance of methods using the single-label dataset that can be instantiated by selecting a label from multi-label data while maintaining the original features. Because the chosen label can vary arbitrarily depending on the experimental setting, the superiority among compared methods can be changed with regard to which label happens to be selected. Thus, evaluating unsupervised feature selection methods based solely on single-label accuracy is unreasonable for assessing their true discriminative ability. This study revisits this evaluation paradigm by adopting a multi-label classification framework. Experiments on 21 multi-label datasets using several representative methods demonstrate that performance rankings differ markedly from those reported under single-label settings, suggesting the possibility of multi-label evaluation settings for fair and reliable comparison of unsupervised feature selection methods.
comment: To appear in the 39th Annual Conference on Neural Information Processing Systems in Europe (EurIPS 2025) Workshop, Copenhagen, Denmark, 2-7 December 2025 AIDT@EurIPS: AI for Tabular Data
♻ ☆ Who Gets Credit or Blame? Attributing Accountability in Modern AI Systems
Modern AI systems are typically developed through multiple stages-pretraining, fine-tuning rounds, and subsequent adaptation or alignment, where each stage builds on the previous ones and updates the model in distinct ways. This raises a critical question of accountability: when a deployed model succeeds or fails, which stage is responsible, and to what extent? We pose the accountability attribution problem for tracing model behavior back to specific stages of the model development process. To address this challenge, we propose a general framework that answers counterfactual questions about stage effects: how would the model's behavior have changed if the updates from a particular stage had not occurred? Within this framework, we introduce estimators that efficiently quantify stage effects without retraining the model, accounting for both the data and key aspects of model optimization dynamics, including learning rate schedules, momentum, and weight decay. We demonstrate that our approach successfully quantifies the accountability of each stage to the model's behavior. Based on the attribution results, our method can identify and remove spurious correlations learned during image classification and text toxicity detection tasks that were developed across multiple stages. Our approach provides a practical tool for model analysis and represents a significant step toward more accountable AI development.
♻ ☆ CID-GraphRAG: Enhancing Multi-Turn Dialogue Systems through Dual-Pathway Retrieval of Conversation Flow and Context Semantics
We present CID-GraphRAG (Conversational Intent-Driven Graph Retrieval-Augmented Generation), a novel framework that addresses the limitations of existing dialogue systems in maintaining both contextual coherence and goal-oriented progression in multi-turn customer service conversations. Unlike traditional RAG systems that rely solely on semantic similarity or static knowledge graphs, CID-GraphRAG constructs intent transition graphs from goal-achieved historical dialogues and implements a dual-retrieval mechanism that balances intent-based graph traversal with semantic search. This approach enables the system to simultaneously leverage both conversational intent flow patterns and contextual semantics, significantly improving retrieval quality and response quality. In extensive experiments on real-world customer service dialogues, we demonstrated that CID-GraphRAG significantly outperforms both semantic-based and intent-based baselines across automatic metrics, LLM-as-a-Judge evaluations and human evaluations, with relative gains of 11.4% in BLEU, 4.9% in ROUGE, and 5.9% in METEOR. Most notably, CID-GraphRAG achieves a 57.9% improvement in response quality according to LLM-as-a-Judge evaluations. These results demonstrate that integrating intent transition structures with semantic retrieval creates a synergistic effect that neither approach achieves independently, establishing CID-GraphRAG as an effective framework for real-world multi-turn dialogue systems in customer service and other knowledge-intensive domains.
♻ ☆ Reasoning With a Star: A Heliophysics Dataset and Benchmark for Agentic Scientific Reasoning NeurIPS 2025
Scientific reasoning through Large Language Models in heliophysics involves more than just recalling facts: it requires incorporating physical assumptions, maintaining consistent units, and providing clear scientific formats through coordinated approaches. To address these challenges, we present Reasoning With a Star, a newly contributed heliophysics dataset applicable to reasoning; we also provide an initial benchmarking approach. Our data are constructed from National Aeronautics and Space Administration & University Corporation for Atmospheric Research Living With a Star summer school problem sets and compiled into a readily consumable question-and-answer structure with question contexts, reasoning steps, expected answer type, ground-truth targets, format hints, and metadata. A programmatic grader checks the predictions using unit-aware numerical tolerance, symbolic equivalence, and schema validation. We benchmark a single-shot baseline and four multi-agent patterns, finding that decomposing workflows through systems engineering principles outperforms direct prompting on problems requiring deductive reasoning rather than pure inductive recall.
comment: Accepted at NeurIPS 2025 Machine Learning and the Physical Sciences (ML4PS) Workshop. Dataset: https://huggingface.co/datasets/SpaceML/ReasoningWithAStar
♻ ☆ TRACE: Learning to Compute on Circuit Graphs
Learning to compute, the ability to model the functional behavior of a circuit graph, is a fundamental challenge for graph representation learning. Yet, the dominant paradigm is architecturally mismatched for this task. This flawed assumption, central to mainstream message passing neural networks (MPNNs) and their conventional Transformer-based counterparts, prevents models from capturing the position-aware, hierarchical nature of computation. To resolve this, we introduce TRACE, a new paradigm built on an architecturally sound backbone and a principled learning objective. First, TRACE employs a Hierarchical Transformer that mirrors the step-by-step flow of computation, providing a faithful architectural backbone that replaces the flawed permutation-invariant aggregation. Second, we introduce function shift learning, a novel objective that decouples the learning problem. Instead of predicting the complex global function directly, our model is trained to predict only the function shift, the discrepancy between the true global function and a simple local approximation that assumes input independence. We validate this paradigm on various circuits modalities, including Register Transfer Level graphs, And-Inverter Graphs and post-mapping netlists. Across a comprehensive suite of benchmarks, TRACE substantially outperforms all prior architectures. These results demonstrate that our architecturally-aligned backbone and decoupled learning objective form a more robust paradigm for the fundamental challenge of learning the functional behavior of a circuit graph.
♻ ☆ Dist2ill: Distributional Distillation for One-Pass Uncertainty Estimation in Large Language Models
Large Language Models (LLMs) often exhibit misalignment between the quality of their generated responses and the confidence estimates they assign to them. Bayesian treatments, such as marginalizing over a reliable weight posterior or over the space of reasoning traces, provide an effective remedy, but incur substantial computational overhead due to repeated sampling at test time. To enable accurate uncertainty estimation in a single forward pass, we propose a novel distributional distillation framework (Dist2ill) that trains an LLM to produce multiple diverse reasoning paths within one inference pass, while using a lightweight parametric module to approximate empirical confidence scores derived from the sampling distribution. Extensive experiments demonstrate that Dist2ill preserves reasoning diversity and achieves state-of-the-art uncertainty estimation, substantially improving Expected Calibration Error (ECE) and Negative Log-Likelihood (NLL), while remaining computationally efficient.
comment: Preprint; work in progress. Update Log: 05/2025 (v1&v2): Introduced Dist2ill (previously named EUD) for efficient uncertainty estimation, focusing on discriminative reasoning tasks. 02/2026 (v3): Extended Dist2ill to a unified framework supporting both discriminative and generative reasoning
♻ ☆ Generating metamers of human scene understanding
Human vision combines low-resolution "gist" information from the visual periphery with sparse but high-resolution information from fixated locations to construct a coherent understanding of a visual scene. In this paper, we introduce MetamerGen, a tool for generating scenes that are aligned with latent human scene representations. MetamerGen is a latent diffusion model that combines peripherally obtained scene gist information with information obtained from scene-viewing fixations to generate image metamers for what humans understand after viewing a scene. Generating images from both high and low resolution (i.e. "foveated") inputs constitutes a novel image-to-image synthesis problem, which we tackle by introducing a dual-stream representation of the foveated scenes consisting of DINOv2 tokens that fuse detailed features from fixated areas with peripherally degraded features capturing scene context. To evaluate the perceptual alignment of MetamerGen generated images to latent human scene representations, we conducted a same-different behavioral experiment where participants were asked for a "same" or "different" response between the generated and the original image. With that, we identify scene generations that are indeed metamers for the latent scene representations formed by the viewers. MetamerGen is a powerful tool for understanding scene understanding. Our proof-of-concept analyses uncovered specific features at multiple levels of visual processing that contributed to human judgments. While it can generate metamers even conditioned on random fixations, we find that high-level semantic alignment most strongly predicts metamerism when the generated scenes are conditioned on viewers' own fixated regions.
♻ ☆ Beware Untrusted Simulators -- Reward-Free Backdoor Attacks in Reinforcement Learning ICLR 2026
Simulated environments are a key piece in the success of Reinforcement Learning (RL), allowing practitioners and researchers to train decision making agents without running expensive experiments on real hardware. Simulators remain a security blind spot, however, enabling adversarial developers to alter the dynamics of their released simulators for malicious purposes. Therefore, in this work we highlight a novel threat, demonstrating how simulator dynamics can be exploited to stealthily implant action-level backdoors into RL agents. The backdoor then allows an adversary to reliably activate targeted actions in an agent upon observing a predefined ``trigger'', leading to potentially dangerous consequences. Traditional backdoor attacks are limited in their strong threat models, assuming the adversary has near full control over an agent's training pipeline, enabling them to both alter and observe agent's rewards. As these assumptions are infeasible to implement within a simulator, we propose a new attack ``Daze'' which is able to reliably and stealthily implant backdoors into RL agents trained for real world tasks without altering or even observing their rewards. We provide formal proof of Daze's effectiveness in guaranteeing attack success across general RL tasks along with extensive empirical evaluations on both discrete and continuous action space domains. We additionally provide the first example of RL backdoor attacks transferring to real, robotic hardware. These developments motivate further research into securing all components of the RL training pipeline to prevent malicious attacks.
comment: 10 pages main body, ICLR 2026
♻ ☆ Multi-Player, Multi-Strategy Quantum Game Model for Interaction-Aware Decision-Making in Automated Driving
Although significant progress has been made in decision-making for automated driving, challenges remain for deployment in the real world. One challenge lies in addressing interaction-awareness. Most existing approaches oversimplify interactions between the ego vehicle and surrounding agents, and often neglect interactions among the agents themselves. A common solution is to model these interactions using classical game theory. However, its formulation assumes rational players, whereas human behavior is frequently uncertain or irrational. To address these challenges, we propose the Quantum Game Decision-Making (QGDM) model, a novel framework that combines classical game theory with quantum mechanics principles (such as superposition, entanglement, and interference) to tackle multi-player, multi-strategy decision-making problems. To the best of our knowledge, this is one of the first studies to apply quantum game theory to decision-making for automated driving. QGDM runs in real time on a standard computer, without requiring quantum hardware. We evaluate QGDM in simulation across various scenarios, including roundabouts, merging, and highways, and compare its performance with multiple baseline methods. Results show that QGDM significantly improves success rates and reduces collision rates compared to classical approaches, particularly in scenarios with high interaction.
♻ ☆ Through the Perspective of LiDAR: A Feature-Enriched and Uncertainty-Aware Annotation Pipeline for Terrestrial Point Cloud Segmentation
Accurate semantic segmentation of terrestrial laser scanning (TLS) point clouds is limited by costly manual annotation. We propose a semi-automated, uncertainty-aware pipeline that integrates spherical projection, feature enrichment, ensemble learning, and targeted annotation to reduce labeling effort, while sustaining high accuracy. Our approach projects 3D points to a 2D spherical grid, enriches pixels with multi-source features, and trains an ensemble of segmentation networks to produce pseudo-labels and uncertainty maps, the latter guiding annotation of ambiguous regions. The 2D outputs are back-projected to 3D, yielding densely annotated point clouds supported by a three-tier visualization suite (2D feature maps, 3D colorized point clouds, and compact virtual spheres) for rapid triage and reviewer guidance. Using this pipeline, we build Mangrove3D, a semantic segmentation TLS dataset for mangrove forests. We further evaluate data efficiency and feature importance to address two key questions: (1) how much annotated data are needed and (2) which features matter most. Results show that performance saturates after ~12 annotated scans, geometric features contribute the most, and compact nine-channel stacks capture nearly all discriminative power, with the mean Intersection over Union (mIoU) plateauing at around 0.76. Finally, we confirm the generalization of our feature-enrichment strategy through cross-dataset tests on ForestSemantic and Semantic3D. Our contributions include: (i) a robust, uncertainty-aware TLS annotation pipeline with visualization tools; (ii) the Mangrove3D dataset; and (iii) empirical guidance on data efficiency and feature importance, thus enabling scalable, high-quality segmentation of TLS point clouds for ecological monitoring and beyond. The dataset and processing scripts are publicly available at https://fz-rit.github.io/through-the-lidars-eye/.
comment: 40 pages (28 main text), 20 figures, 4 supplementary materials; links to 3D point animations are included in the last table
♻ ☆ Aligning Microscopic Vehicle and Macroscopic Traffic Statistics: Reconstructing Driving Behavior from Partial Data
A driving algorithm that aligns with good human driving practices, or at the very least collaborates effectively with human drivers, is crucial for developing safe and efficient autonomous vehicles. In practice, two main approaches are commonly adopted: (i) supervised or imitation learning, which requires comprehensive naturalistic driving data capturing all states that influence a vehicle's decisions and corresponding actions, and (ii) reinforcement learning (RL), where the simulated driving environment either matches or is intentionally more challenging than real-world conditions. Both methods depend on high-quality observations of real-world driving behavior, which are often difficult and costly to obtain. State-of-the-art sensors on individual vehicles can gather microscopic data, but they lack context about the surrounding conditions. Conversely, roadside sensors can capture traffic flow and other macroscopic characteristics, but they cannot associate this information with individual vehicles on a microscopic level. Motivated by this complementarity, we propose a framework that reconstructs unobserved microscopic states from macroscopic observations, using microscopic data to anchor observed vehicle behaviors, and learns a shared policy whose behavior is microscopically consistent with the partially observed trajectories and actions and macroscopically aligned with target traffic statistics when deployed population-wide. Such constrained and regularized policies promote realistic flow patterns and safe coordination with human drivers at scale.
♻ ☆ CoBEVMoE: Heterogeneity-aware Feature Fusion with Dynamic Mixture-of-Experts for Collaborative Perception
Collaborative perception aims to extend sensing coverage and improve perception accuracy by sharing information among multiple agents. However, due to differences in viewpoints and spatial positions, agents often acquire heterogeneous observations. Existing intermediate fusion methods primarily focus on aligning similar features, often overlooking the perceptual diversity among agents. To address this limitation, we propose CoBEVMoE, a novel collaborative perception framework that operates in the Bird's Eye View (BEV) space and incorporates a Dynamic Mixture-of-Experts (DMoE) architecture. In DMoE, each expert is dynamically generated based on the input features of a specific agent, enabling it to extract distinctive and reliable cues while attending to shared semantics. This design allows the fusion process to explicitly model both feature similarity and heterogeneity across agents. Furthermore, we introduce a Dynamic Expert Metric Loss (DEML) to enhance inter-expert diversity and improve the discriminability of the fused representation. Extensive experiments on the OPV2V and DAIR-V2X-C datasets demonstrate that CoBEVMoE achieves state-of-the-art performance. Specifically, it improves the IoU for Camera-based BEV segmentation by +1.5% on OPV2V and the AP@0.5 for LiDAR-based 3D object detection by +3.0% on DAIR-V2X-C, verifying the effectiveness of expert-based heterogeneous feature modeling in multi-agent collaborative perception. The source code will be made publicly available at https://github.com/godk0509/CoBEVMoE.
comment: Accepted to ICRA 2026. The source code will be made publicly available at https://github.com/godk0509/CoBEVMoE
♻ ☆ SafeLink: Safety-Critical Control Under Dynamic and Irregular Unsafe Regions
Control barrier functions (CBFs) provide a theoretical foundation for safety-critical control in robotic systems. However, most existing methods rely on explicit analytical expressions of unsafe state regions, which are often impractical for irregular and dynamic unsafe regions. This paper introduces SafeLink, a novel CBF construction method based on cost-sensitive incremental random vector functional-link (RVFL) neural networks. By designing a valid cost function, SafeLink assigns different sensitivities to safe and unsafe state points, thereby eliminating false negatives in classification of unsafe state points. Under the constructed CBF, theoretical guarantees are established regarding system safety and the Lipschitz continuity of the control inputs. Furthermore, incremental update theorems are provided, enabling precise real-time adaptation to changes in unsafe regions. An analytical expression for the gradient of SafeLink is also derived to facilitate control input computation. The proposed method is validated on the endpoint position control task of a nonlinear two-link manipulator. Experimental results demonstrate that the method effectively learns the unsafe regions and rapidly adapts as these regions change, achieving computational speeds significantly faster than baseline methods while ensuring the system safely reaches its target position.
comment: 12 pages, 7 figures
♻ ☆ EgoFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving
Current End-to-End Autonomous Driving (E2E-AD) methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized with a fully differentiable framework in a planning-oriented manner, existing end-to-end driving systems lacking ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, due to rasterized scene representation learning and redundant information transmission. In this paper, we propose an ego-centric fully sparse paradigm, named EgoFSD, for end-to-end self-driving. Specifically, EgoFSD consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. In addition, position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thereby enhancing the training stability and convergence speed. Extensive experiments are conducted on nuScenes and Bench2Drive datasets, which significantly reduces the average L2 error by 59% and collision rate by 92% than UniAD while achieves 6.9x faster running efficiency.
comment: Accepted to ICRA2026
♻ ☆ A Survey of Behavior Foundation Model: Next-Generation Whole-Body Control System of Humanoid Robots
Humanoid robots are drawing significant attention as versatile platforms for complex motor control, human-robot interaction, and general-purpose physical intelligence. However, achieving efficient whole-body control (WBC) in humanoids remains a fundamental challenge due to sophisticated dynamics, underactuation, and diverse task requirements. While learning-based controllers have shown promise for complex tasks, their reliance on labor-intensive and costly retraining for new scenarios limits real-world applicability. To address these limitations, behavior(al) foundation models (BFMs) have emerged as a new paradigm that leverages large-scale pre-training to learn reusable primitive skills and broad behavioral priors, enabling zero-shot or rapid adaptation to a wide range of downstream tasks. In this paper, we present a comprehensive overview of BFMs for humanoid WBC, tracing their development across diverse pre-training pipelines. Furthermore, we discuss real-world applications, current limitations, urgent challenges, and future opportunities, positioning BFMs as a key approach toward scalable and general-purpose humanoid intelligence. Finally, we provide a curated and regularly updated collection of BFM papers and projects to facilitate more subsequent research, which is available at https://github.com/yuanmingqi/awesome-bfm-papers.
comment: 19 pages, 10 figures
♻ ☆ Simultaneous Tactile-Visual Perception for Learning Multimodal Robot Manipulation
Robotic manipulation requires both rich multimodal perception and effective learning frameworks to handle complex real-world tasks. See-through-skin (STS) sensors, which combine tactile and visual perception, offer promising sensing capabilities, while modern imitation learning provides powerful tools for policy acquisition. However, existing STS designs lack simultaneous multimodal perception and suffer from unreliable tactile tracking. Furthermore, integrating these rich multimodal signals into learning-based manipulation pipelines remains an open challenge. We introduce TacThru, an STS sensor enabling simultaneous visual perception and robust tactile signal extraction, and TacThru-UMI, an imitation learning framework that leverages these multimodal signals for manipulation. Our sensor features a fully transparent elastomer, persistent illumination, novel keyline markers, and efficient tracking, while our learning system integrates these signals through a Transformer-based Diffusion Policy. Experiments on five challenging real-world tasks show that TacThru-UMI achieves an average success rate of 85.5%, significantly outperforming the baselines of tactile policy(66.3%) and vision-only policy (55.4%). The system excels in critical scenarios, including contact detection with thin and soft objects and precision manipulation requiring multimodal coordination. This work demonstrates that combining simultaneous multimodal perception with modern learning frameworks enables more precise, adaptable robotic manipulation.
♻ ☆ Multi-Robot Data-Free Continual Communicative Learning (CCL) from Black-Box Visual Place Recognition Models
In emerging multi-robot societies, heterogeneous agents must continually extract and integrate local knowledge from one another through communication, even when their internal models are completely opaque. Existing approaches to continual or collaborative learning for visual place recognition (VPR) largely assume white-box access to model parameters or shared training datasets, which is unrealistic when robots encounter unknown peers in the wild. This paper introduces \emph{Continual Communicative Learning (CCL)}, a data-free multi-robot framework in which a traveler robot (student) continually improves its VPR capability by communicating with black-box teacher models via a constrained query--response channel. We repurpose Membership Inference Attacks (MIA), originally developed as privacy attacks on machine learning models, as a constructive communication primitive to reconstruct pseudo-training sets from black-box VPR teachers without accessing their parameters or raw data. To overcome the intrinsic communication bottleneck caused by the low sampling efficiency of black-box MIA, we propose a prior-based query strategy that leverages the student's own VPR prior to focus queries on informative regions of the embedding space, thereby reducing the knowledge transfer (KT) cost. Experimental results on a standard multi-session VPR benchmark demonstrate that the proposed CCL framework yields substantial performance gains for low-performing robots under modest communication budgets, highlighting CCL as a promising building block for scalable and fault-tolerant multi-robot systems. Furthermore, we propose a Distributed Statistic Integration (DSI) framework that theoretically eliminates catastrophic forgetting by efficiently aggregating sufficient statistics from black-box VPR models while maintaining data privacy and reducing communication overhead to a sample-invariant constant complexity.
comment: 6 pages, 4 figures, technical report
♻ ☆ OpenGVL -- Benchmarking Visual Temporal Progress for Data Curation
Data scarcity remains one of the most limiting factors in driving progress in robotics. However, the amount of available robotics data in the wild is growing exponentially, creating new opportunities for large-scale data utilization. Reliable temporal task completion prediction could help automatically annotate and curate this data at scale. The Generative Value Learning (GVL) approach was recently proposed, leveraging the knowledge embedded in vision-language models (VLMs) to predict task progress from visual observations. Building upon GVL, we propose OpenGVL, a comprehensive benchmark for estimating task progress across diverse challenging manipulation tasks involving both robotic and human embodiments. We evaluate the capabilities of publicly available open-source foundation models, showing that open-source model families significantly underperform closed-source counterparts, achieving only approximately $70\%$ of their performance on temporal progress prediction tasks. Furthermore, we demonstrate how OpenGVL can serve as a practical tool for automated data curation and filtering, enabling efficient quality assessment of large-scale robotics datasets. We release the benchmark along with the complete codebase at \href{github.com/budzianowski/opengvl}{OpenGVL}.
comment: Workshop on Making Sense of Data in Robotics: Composition, Curation, and Interpretability at Scale at CoRL 2025
♻ ☆ Nimbus: A Unified Embodied Synthetic Data Generation Framework
Scaling data volume and diversity is critical for generalizing embodied intelligence. While synthetic data generation offers a scalable alternative to expensive physical data acquisition, existing pipelines remain fragmented and task-specific. This isolation leads to significant engineering inefficiency and system instability, failing to support the sustained, high-throughput data generation required for foundation model training. To address these challenges, we present Nimbus, a unified synthetic data generation framework designed to integrate heterogeneous navigation and manipulation pipelines. Nimbus introduces a modular four-layer architecture featuring a decoupled execution model that separates trajectory planning, rendering, and storage into asynchronous stages. By implementing dynamic pipeline scheduling, global load balancing, distributed fault tolerance, and backend-specific rendering optimizations, the system maximizes resource utilization across CPU, GPU, and I/O resources. Our evaluation demonstrates that Nimbus achieves a 2-3X improvement in end-to-end throughput compared to unoptimized baselines and ensuring robust, long-term operation in large-scale distributed environments. This framework serves as the production backbone for the InternData suite, enabling seamless cross-domain data synthesis.
MomaGraph: State-Aware Unified Scene Graphs with Vision-Language Model for Embodied Task Planning
Mobile manipulators in households must both navigate and manipulate. This requires a compact, semantically rich scene representation that captures where objects are, how they function, and which parts are actionable. Scene graphs are a natural choice, yet prior work often separates spatial and functional relations, treats scenes as static snapshots without object states or temporal updates, and overlooks information most relevant for accomplishing the current task. To address these limitations, we introduce MomaGraph, a unified scene representation for embodied agents that integrates spatial-functional relationships and part-level interactive elements. However, advancing such a representation requires both suitable data and rigorous evaluation, which have been largely missing. We thus contribute MomaGraph-Scenes, the first large-scale dataset of richly annotated, task-driven scene graphs in household environments, along with MomaGraph-Bench, a systematic evaluation suite spanning six reasoning capabilities from high-level planning to fine-grained scene understanding. Built upon this foundation, we further develop MomaGraph-R1, a 7B vision-language model trained with reinforcement learning on MomaGraph-Scenes. MomaGraph-R1 predicts task-oriented scene graphs and serves as a zero-shot task planner under a Graph-then-Plan framework. Extensive experiments demonstrate that our model achieves state-of-the-art results among open-source models, reaching 71.6% accuracy on the benchmark (+11.4% over the best baseline), while generalizing across public benchmarks and transferring effectively to real-robot experiments.
comment: 25 pages, 10 figures. Project page:https://hybridrobotics.github.io/MomaGraph/
♻ ☆ AgenticLab: A Real-World Robot Agent Platform that Can See, Think, and Act
Recent advances in large vision-language models (VLMs) have demonstrated generalizable open-vocabulary perception and reasoning, yet their real-robot manipulation capability remains unclear for long-horizon, closed-loop execution in unstructured, in-the-wild environments. Prior VLM-based manipulation pipelines are difficult to compare across different research groups' setups, and many evaluations rely on simulation, privileged state, or specially designed setups. We present AgenticLab, a model-agnostic robot agent platform and benchmark for open-world manipulation. AgenticLab provides a closed-loop agent pipeline for perception, task decomposition, online verification, and replanning. Using AgenticLab, we benchmark state-of-the-art VLM-based agents on real-robot tasks in unstructured environments. Our benchmark reveals several failure modes that offline vision-language tests (e.g., VQA and static image understanding) fail to capture, including breakdowns in multi-step grounding consistency, object grounding under occlusion and scene changes, and insufficient spatial reasoning for reliable manipulation. We will release the full hardware and software stack to support reproducible evaluation and accelerate research on general-purpose robot agents.
comment: Added appendix
♻ ☆ Learning-based Adaptive Control of Quadruped Robots for Active Stabilization on Moving Platforms IROS 2024
A quadruped robot faces balancing challenges on a six-degrees-of-freedom moving platform, like subways, buses, airplanes, and yachts, due to independent platform motions and resultant diverse inertia forces on the robot. To alleviate these challenges, we present the Learning-based Active Stabilization on Moving Platforms (\textit{LAS-MP}), featuring a self-balancing policy and system state estimators. The policy adaptively adjusts the robot's posture in response to the platform's motion. The estimators infer robot and platform states based on proprioceptive sensor data. For a systematic training scheme across various platform motions, we introduce platform trajectory generation and scheduling methods. Our evaluation demonstrates superior balancing performance across multiple metrics compared to three baselines. Furthermore, we conduct a detailed analysis of the \textit{LAS-MP}, including ablation studies and evaluation of the estimators, to validate the effectiveness of each component.
comment: Accepted at IROS 2024. Project Page: https://sgvr.kaist.ac.kr/~msyoon/papers/IROS24/
♻ ☆ Enhancing Navigation Efficiency of Quadruped Robots via Leveraging Personal Transportation Platforms
Quadruped robots face limitations in long-range navigation efficiency due to their reliance on legs. To ameliorate the limitations, we introduce a Reinforcement Learning-based Active Transporter Riding method (\textit{RL-ATR}), inspired by humans' utilization of personal transporters, including Segways. The \textit{RL-ATR} features a transporter riding policy and two state estimators. The policy devises adequate maneuvering strategies according to transporter-specific control dynamics, while the estimators resolve sensor ambiguities in non-inertial frames by inferring unobservable robot and transporter states. Comprehensive evaluations in simulation validate proficient command tracking abilities across various transporter-robot models and reduced energy consumption compared to legged locomotion. Moreover, we conduct ablation studies to quantify individual component contributions within the \textit{RL-ATR}. This riding ability could broaden the locomotion modalities of quadruped robots, potentially expanding the operational range and efficiency.
comment: Accepted at ICRA 2025. Project page: https://sgvr.kaist.ac.kr/~msyoon/papers/ICRA25/
♻ ☆ Learning-based Initialization of Trajectory Optimization for Path-following Problems of Redundant Manipulators
Trajectory optimization (TO) is an efficient tool to generate a redundant manipulator's joint trajectory following a 6-dimensional Cartesian path. The optimization performance largely depends on the quality of initial trajectories. However, the selection of a high-quality initial trajectory is non-trivial and requires a considerable time budget due to the extremely large space of the solution trajectories and the lack of prior knowledge about task constraints in configuration space. To alleviate the issue, we present a learning-based initial trajectory generation method that generates high-quality initial trajectories in a short time budget by adopting example-guided reinforcement learning. In addition, we suggest a null-space projected imitation reward to consider null-space constraints by efficiently learning kinematically feasible motion captured in expert demonstrations. Our statistical evaluation in simulation shows the improved optimality, efficiency, and applicability of TO when we plug in our method's output, compared with three other baselines. We also show the performance improvement and feasibility via real-world experiments with a seven-degree-of-freedom manipulator.
comment: Accepted at ICRA 2023. Project page: https://sgvr.kaist.ac.kr/~msyoon/papers/ICRA23_RLITG/
Computation and Language 72
☆ NLP for Local Governance Meeting Records: A Focus Article on Tasks, Datasets, Metrics and Benchmark
Local governance meeting records are official documents, in the form of minutes or transcripts, documenting how proposals, discussions, and procedural actions unfold during institutional meetings. While generally structured, these documents are often dense, bureaucratic, and highly heterogeneous across municipalities, exhibiting significant variation in language, terminology, structure, and overall organization. This heterogeneity makes them difficult for non-experts to interpret and challenging for intelligent automated systems to process, limiting public transparency and civic engagement. To address these challenges, computational methods can be employed to structure and interpret such complex documents. In particular, Natural Language Processing (NLP) offers well-established methods that can enhance the accessibility and interpretability of governmental records. In this focus article, we review foundational NLP tasks that support the structuring of local governance meeting documents. Specifically, we review three core tasks: document segmentation, domain-specific entity extraction and automatic text summarization, which are essential for navigating lengthy deliberations, identifying political actors and personal information, and generating concise representations of complex decision-making processes. In reviewing these tasks, we discuss methodological approaches, evaluation metrics, and publicly available resources, while highlighting domain-specific challenges such as data scarcity, privacy constraints, and source variability. By synthesizing existing work across these foundational tasks, this article provides a structured overview of how NLP can enhance the structuring and accessibility of local governance meeting records.
☆ The Confidence Manifold: Geometric Structure of Correctness Representations in Language Models
When a language model asserts that "the capital of Australia is Sydney," does it know this is wrong? We characterize the geometry of correctness representations across 9 models from 5 architecture families. The structure is simple: the discriminative signal occupies 3-8 dimensions, performance degrades with additional dimensions, and no nonlinear classifier improves over linear separation. Centroid distance in the low-dimensional subspace matches trained probe performance (0.90 AUC), enabling few-shot detection: on GPT-2, 25 labeled examples achieve 89% of full-data accuracy. We validate causally through activation steering: the learned direction produces 10.9 percentage point changes in error rates while random directions show no effect. Internal probes achieve 0.80-0.97 AUC; output-based methods (P(True), semantic entropy) achieve only 0.44-0.64 AUC. The correctness signal exists internally but is not expressed in outputs. That centroid distance matches probe performance indicates class separation is a mean shift, making detection geometric rather than learned.
☆ DIAL-SUMMER: A Structured Evaluation Framework of Hierarchical Errors in Dialogue Summaries
Dialogues are a predominant mode of communication for humans, and it is immensely helpful to have automatically generated summaries of them (e.g., to revise key points discussed in a meeting, to review conversations between customer agents and product users). Prior works on dialogue summary evaluation largely ignore the complexities specific to this task: (i) shift in structure, from multiple speakers discussing information in a scattered fashion across several turns, to a summary's sentences, and (ii) shift in narration viewpoint, from speakers' first/second-person narration, standardized third-person narration in the summary. In this work, we introduce our framework DIALSUMMER to address the above. We propose DIAL-SUMMER's taxonomy of errors to comprehensively evaluate dialogue summaries at two hierarchical levels: DIALOGUE-LEVEL that focuses on the broader speakers/turns, and WITHIN-TURN-LEVEL that focuses on the information talked about inside a turn. We then present DIAL-SUMMER's dataset composed of dialogue summaries manually annotated with our taxonomy's fine-grained errors. We conduct empirical analyses of these annotated errors, and observe interesting trends (e.g., turns occurring in middle of the dialogue are the most frequently missed in the summary, extrinsic hallucinations largely occur at the end of the summary). We also conduct experiments on LLM-Judges' capability at detecting these errors, through which we demonstrate the challenging nature of our dataset, the robustness of our taxonomy, and the need for future work in this field to enhance LLMs' performance in the same. Code and inference dataset coming soon.
☆ Online Bayesian Imbalanced Learning with Bregman-Calibrated Deep Networks
Class imbalance remains a fundamental challenge in machine learning, where standard classifiers exhibit severe performance degradation in minority classes. Although existing approaches address imbalance through resampling or cost-sensitive learning during training, they require retraining or access to labeled target data when class distributions shift at deployment time, a common occurrence in real-world applications such as fraud detection, medical diagnosis, and anomaly detection. We present \textit{Online Bayesian Imbalanced Learning} (OBIL), a principled framework that decouples likelihood-ratio estimation from class-prior assumptions, enabling real-time adaptation to distribution shifts without model retraining. Our approach builds on the established connection between Bregman divergences and proper scoring rules to show that deep networks trained with such losses produce posterior probability estimates from which prior-invariant likelihood ratios can be extracted. We prove that these likelihood-ratio estimates remain valid under arbitrary changes in class priors and cost structures, requiring only a threshold adjustment for optimal Bayes decisions. We derive finite-sample regret bounds demonstrating that OBIL achieves $O(\sqrt{T \log T})$ regret against an oracle with perfect prior knowledge. Extensive experiments on benchmark datasets and medical diagnosis benchmarks under simulated deployment shifts demonstrate that OBIL maintains robust performance under severe distribution shifts, outperforming state-of-the-art methods in F1 Score when test distributions deviate significantly from the training conditions.
☆ Gender and Race Bias in Consumer Product Recommendations by Large Language Models
Large Language Models are increasingly employed in generating consumer product recommendations, yet their potential for embedding and amplifying gender and race biases remains underexplored. This paper serves as one of the first attempts to examine these biases within LLM-generated recommendations. We leverage prompt engineering to elicit product suggestions from LLMs for various race and gender groups and employ three analytical methods-Marked Words, Support Vector Machines, and Jensen-Shannon Divergence-to identify and quantify biases. Our findings reveal significant disparities in the recommendations for demographic groups, underscoring the need for more equitable LLM recommendation systems.
comment: Accepted at the 39th International Conference on Advanced Information Networking and Applications (AINA 2025)
☆ Emergent Search and Backtracking in Latent Reasoning Models
What happens when a language model thinks without words? Standard reasoning LLMs verbalize intermediate steps as chain-of-thought; latent reasoning transformers (LRTs) instead perform deliberation entirely in continuous hidden space. We investigate an LRT, decoding the model's evolving beliefs at every step on a multiple-choice QA benchmark. We find that the model spontaneously learns a structured search process in latent space. Deliberation follows a consistent trajectory: an exploration phase where probability mass spreads across candidates, tentative commitment to a frontrunner, and either convergence or backtracking. Backtracking is prevalent (32% of instances), beneficial (34% accuracy gain over non-backtracking instances), and predominantly directed away from the semantically closest distractor toward the correct answer. The search is adaptive: replacing distractors with implausible alternatives shortens exploration by 54%. Latent reasoning models achieve in activation space what chain-of-thought achieves through words: the ability to be wrong, notice, and recover.
☆ SiameseNorm: Breaking the Barrier to Reconciling Pre/Post-Norm
Modern Transformers predominantly adopt the Pre-Norm paradigm for its optimization stability, foregoing the superior potential of the unstable Post-Norm architecture. Prior attempts to combine their strengths typically lead to a stability-performance trade-off. We attribute this phenomenon to a structural incompatibility within a single-stream design: Any application of the Post-Norm operation inevitably obstructs the clean identity gradient preserved by Pre-Norm. To fundamentally reconcile these paradigms, we propose SiameseNorm, a two-stream architecture that couples Pre-Norm-like and Post-Norm-like streams with shared parameters. This design decouples the optimization dynamics of the two streams, retaining the distinct characteristics of both Pre-Norm and Post-Norm by enabling all residual blocks to receive combined gradients inherited from both paradigms, where one stream secures stability while the other enhances expressivity. Extensive pre-training experiments on 1.3B-parameter models demonstrate that SiameseNorm exhibits exceptional optimization robustness and consistently outperforms strong baselines. Code is available at https://github.com/Qwen-Applications/SiameseNorm.
☆ TDGNet: Hallucination Detection in Diffusion Language Models via Temporal Dynamic Graphs
Diffusion language models (D-LLMs) offer parallel denoising and bidirectional context, but hallucination detection for D-LLMs remains underexplored. Prior detectors developed for auto-regressive LLMs typically rely on single-pass cues and do not directly transfer to diffusion generation, where factuality evidence is distributed across the denoising trajectory and may appear, drift, or be self-corrected over time. We introduce TDGNet, a temporal dynamic graph framework that formulates hallucination detection as learning over evolving token-level attention graphs. At each denoising step, we sparsify the attention graph and update per-token memories via message passing, then apply temporal attention to aggregate trajectory-wide evidence for final prediction. Experiments on LLaDA-8B and Dream-7B across QA benchmarks show consistent AUROC improvements over output-based, latent-based, and static-graph baselines, with single-pass inference and modest overhead. These results highlight the importance of temporal reasoning on attention graphs for robust hallucination detection in diffusion language models.
☆ Implicit Strategic Optimization: Rethinking Long-Horizon Decision-Making in Adversarial Poker Environments
Training large language model (LLM) agents for adversarial games is often driven by episodic objectives such as win rate. In long-horizon settings, however, payoffs are shaped by latent strategic externalities that evolve over time, so myopic optimization and variation-based regret analyses can become vacuous even when the dynamics are predictable. To solve this problem, we introduce Implicit Strategic Optimization (ISO), a prediction-aware framework in which each agent forecasts the current strategic context and uses it to update its policy online. ISO combines a Strategic Reward Model (SRM) that estimates the long-run strategic value of actions with iso-grpo, a context-conditioned optimistic learning rule. We prove sublinear contextual regret and equilibrium convergence guarantees whose dominant terms scale with the number of context mispredictions; when prediction errors are bounded, our bounds recover the static-game rates obtained when strategic externalities are known. Experiments in 6-player No-Limit Texas Hold'em and competitive Pokemon show consistent improvements in long-term return over strong LLM and RL baselines, and graceful degradation under controlled prediction noise.
☆ Beyond Raw Detection Scores: Markov-Informed Calibration for Boosting Machine-Generated Text Detection
While machine-generated texts (MGTs) offer great convenience, they also pose risks such as disinformation and phishing, highlighting the need for reliable detection. Metric-based methods, which extract statistically distinguishable features of MGTs, are often more practical than complex model-based methods that are prone to overfitting. Given their diverse designs, we first place representative metric-based methods within a unified framework, enabling a clear assessment of their advantages and limitations. Our analysis identifies a core challenge across these methods: the token-level detection score is easily biased by the inherent randomness of the MGTs generation process. To address this, we theoretically and empirically reveal two relationships of context detection scores that may aid calibration: Neighbor Similarity and Initial Instability. We then propose a Markov-informed score calibration strategy that models these relationships using Markov random fields, and implements it as a lightweight component via a mean-field approximation, allowing our method to be seamlessly integrated into existing detectors. Extensive experiments in various real-world scenarios, such as cross-LLM and paraphrasing attacks, demonstrate significant gains over baselines with negligible computational overhead. The code is available at https://github.com/tmlr-group/MRF_Calibration.
☆ Free(): Learning to Forget in Malloc-Only Reasoning Models
Reasoning models enhance problem-solving by scaling test-time compute, yet they face a critical paradox: excessive thinking tokens often degrade performance rather than improve it. We attribute this to a fundamental architectural flaw: standard LLMs operate as "malloc-only" engines, continuously accumulating valid and redundant steps alike without a mechanism to prune obsolete information. To break this cycle, we propose Free()LM, a model that introduces an intrinsic self-forgetting capability via the Free-Module, a plug-and-play LoRA adapter. By iteratively switching between reasoning and cleaning modes, Free()LM dynamically identifies and prunes useless context chunks, maintaining a compact and noise-free state. Extensive experiments show that Free()LM provides consistent improvements across all model scales (8B to 685B). It achieves a 3.3% average improvement over top-tier reasoning baselines, even establishing a new SOTA on IMOanswerBench using DeepSeek V3.2-Speciale. Most notably, in long-horizon tasks where the standard Qwen3-235B-A22B model suffers a total collapse (0% accuracy), Free()LM restores performance to 50%. Our findings suggest that sustainable intelligence requires the freedom to forget as much as the power to think.
☆ Diverge to Induce Prompting: Multi-Rationale Induction for Zero-Shot Reasoning AACL 2025
To address the instability of unguided reasoning paths in standard Chain-of-Thought prompting, recent methods guide large language models (LLMs) by first eliciting a single reasoning strategy. However, relying on just one strategy for each question can still limit performance across diverse tasks. We propose Diverge-to-Induce Prompting (DIP), a framework that first prompts an LLM to generate multiple diverse high-level rationales for each question. Each rationale is then elaborated into a detailed, step-by-step draft plan. Finally, these draft plans are induced into a final plan. DIP enhances zero-shot reasoning accuracy without reliance on resource-intensive sampling. Experiments show that DIP outperforms single-strategy prompting, demonstrating the effectiveness of multi-plan induction for prompt-based reasoning.
comment: Accepted to Findings of IJCNLP-AACL 2025
☆ FlashVID: Efficient Video Large Language Models via Training-free Tree-based Spatiotemporal Token Merging ICLR 2026
Although Video Large Language Models (VLLMs) have shown remarkable capabilities in video understanding, they are required to process high volumes of visual tokens, causing significant computational inefficiency. Existing VLLMs acceleration frameworks usually compress spatial and temporal redundancy independently, which overlooks the spatiotemporal relationships, thereby leading to suboptimal spatiotemporal compression. The highly correlated visual features are likely to change in spatial position, scale, orientation, and other attributes over time due to the dynamic nature of video. Building on this insight, we introduce FlashVID, a training-free inference acceleration framework for VLLMs. Specifically, FlashVID utilizes Attention and Diversity-based Token Selection (ADTS) to select the most representative tokens for basic video representation, then applies Tree-based Spatiotemporal Token Merging (TSTM) for fine-grained spatiotemporal redundancy elimination. Extensive experiments conducted on three representative VLLMs across five video understanding benchmarks demonstrate the effectiveness and generalization of our method. Notably, by retaining only 10% of visual tokens, FlashVID preserves 99.1% of the performance of LLaVA-OneVision. Consequently, FlashVID can serve as a training-free and plug-and-play module for extending long video frames, which enables a 10x increase in video frame input to Qwen2.5-VL, resulting in a relative improvement of 8.6% within the same computational budget. Code is available at https://github.com/Fanziyang-v/FlashVID.
comment: Accepted by ICLR 2026 (Oral)
☆ Towards Adaptive, Scalable, and Robust Coordination of LLM Agents: A Dynamic Ad-Hoc Networking Perspective
Multi-agent architectures built on large language models (LLMs) have demonstrated the potential to realize swarm intelligence through well-crafted collaboration. However, the substantial burden of manual orchestration inherently raises an imperative to automate the design of agentic workflows. We frame such an agent coordination challenge as a classic problem in dynamic ad-hoc networking: How to establish adaptive and reliable communication among a scalable number of agentic hosts? In response to this unresolved dilemma, we introduce RAPS, a reputation-aware publish-subscribe paradigm for adaptive, scalable, and robust coordination of LLM agents. RAPS is grounded in the Distributed Publish-Subscribe Protocol, allowing LLM agents to exchange messages based on their declared intents rather than predefined topologies. Beyond this substrate, RAPS further incorporates two coherent overlays: (i) Reactive Subscription, enabling agents to dynamically refine their intents; and (ii) Bayesian Reputation, empowering each agent with a local watchdog to detect and isolate malicious peers. Extensive experiments over five benchmarks showcase that our design effectively reconciles adaptivity, scalability, and robustness in a unified multi-agent coordination framework.
☆ DeltaKV: Residual-Based KV Cache Compression via Long-Range Similarity
The deployment of efficient long-context LLMs in applications like autonomous agents, long-chain reasoning, and creative writing is fundamentally bottlenecked by the linear growth of KV cache memory. Existing compression and eviction methods often struggle to balance accuracy, compression ratio, and hardware efficiency. We propose DeltaKV, a residual-based KV cache compression framework motivated by two empirical findings: long-range inter-token similarity and highly shared latent components in KV representations. Instead of discarding tokens, DeltaKV encodes semantic residuals relative to retrieved historical references, preserving fidelity while substantially reducing storage. To translate compression gains into real system speedups, we further introduce Sparse-vLLM, a high-performance inference engine with decoupled memory management and kernels optimized for sparse and irregular KV layouts. Experiments show that DeltaKV reduces KV cache memory to 29\% of the original while maintaining near-lossless accuracy on LongBench, SCBench, and AIME. When integrated with Sparse-vLLM, it achieves up to 2$\times$ throughput improvement over vLLM in long-context scenarios, demonstrating a practical path toward scalable long-context LLM deployment. Code, model checkpoints, and datasets are available at https://github.com/CURRENTF/Sparse-vLLM.
comment: preprint
☆ The Judge Who Never Admits: Hidden Shortcuts in LLM-based Evaluation
Large language models (LLMs) are increasingly used as automatic judges to evaluate system outputs in tasks such as reasoning, question answering, and creative writing. A faithful judge should base its verdicts solely on content quality, remain invariant to irrelevant context, and transparently reflect the factors driving its decisions. We test this ideal via controlled cue perturbations-synthetic metadata labels injected into evaluation prompts-for six judge models: GPT-4o, Gemini-2.0-Flash, Gemma-3-27B, Qwen3-235B, Claude-3-Haiku, and Llama3-70B. Experiments span two complementary datasets with distinct evaluation regimes: ELI5 (factual QA) and LitBench (open-ended creative writing). We study six cue families: source, temporal, age, gender, ethnicity, and educational status. Beyond measuring verdict shift rates (VSR), we introduce cue acknowledgment rate (CAR) to quantify whether judges explicitly reference the injected cues in their natural-language rationales. Across cues with strong behavioral effects-e.g., provenance hierarchies (Expert > Human > LLM > Unknown), recency preferences (New > Old), and educational-status favoritism-CAR is typically at or near zero, indicating that shortcut reliance is largely unreported even when it drives decisions. Crucially, CAR is also dataset-dependent: explicit cue recognition is more likely to surface in the factual ELI5 setting for some models and cues, but often collapses in the open-ended LitBench regime, where large verdict shifts can persist despite zero acknowledgment. The combination of substantial verdict sensitivity and limited cue acknowledgment reveals an explanation gap in LLM-as-judge pipelines, raising concerns about reliability of model-based evaluation in both research and deployment.
☆ Accelerating Social Science Research via Agentic Hypothesization and Experimentation
Data-driven social science research is inherently slow, relying on iterative cycles of observation, hypothesis generation, and experimental validation. While recent data-driven methods promise to accelerate parts of this process, they largely fail to support end-to-end scientific discovery. To address this gap, we introduce EXPERIGEN, an agentic framework that operationalizes end-to-end discovery through a Bayesian optimization inspired two-phase search, in which a Generator proposes candidate hypotheses and an Experimenter evaluates them empirically. Across multiple domains, EXPERIGEN consistently discovers 2-4x more statistically significant hypotheses that are 7-17 percent more predictive than prior approaches, and naturally extends to complex data regimes including multimodal and relational datasets. Beyond statistical performance, hypotheses must be novel, empirically grounded, and actionable to drive real scientific progress. To evaluate these qualities, we conduct an expert review of machine-generated hypotheses, collecting feedback from senior faculty. Among 25 reviewed hypotheses, 88 percent were rated moderately or strongly novel, 70 percent were deemed impactful and worth pursuing, and most demonstrated rigor comparable to senior graduate-level research. Finally, recognizing that ultimate validation requires real-world evidence, we conduct the first A/B test of LLM-generated hypotheses, observing statistically significant results with p less than 1e-6 and a large effect size of 344 percent.
☆ Cross-Linguistic Persona-Driven Data Synthesis for Robust Multimodal Cognitive Decline Detection
Speech-based digital biomarkers represent a scalable, non-invasive frontier for the early identification of Mild Cognitive Impairment (MCI). However, the development of robust diagnostic models remains impeded by acute clinical data scarcity and a lack of interpretable reasoning. Current solutions frequently struggle with cross-lingual generalization and fail to provide the transparent rationales essential for clinical trust. To address these barriers, we introduce SynCog, a novel framework integrating controllable zero-shot multimodal data synthesis with Chain-of-Thought (CoT) deduction fine-tuning. Specifically, SynCog simulates diverse virtual subjects with varying cognitive profiles to effectively alleviate clinical data scarcity. This generative paradigm enables the rapid, zero-shot expansion of clinical corpora across diverse languages, effectively bypassing data bottlenecks in low-resource settings and bolstering the diagnostic performance of Multimodal Large Language Models (MLLMs). Leveraging this synthesized dataset, we fine-tune a foundational multimodal backbone using a CoT deduction strategy, empowering the model to explicitly articulate diagnostic thought processes rather than relying on black-box predictions. Extensive experiments on the ADReSS and ADReSSo benchmarks demonstrate that augmenting limited clinical data with synthetic phenotypes yields competitive diagnostic performance, achieving Macro-F1 scores of 80.67% and 78.46%, respectively, outperforming current baseline models. Furthermore, evaluation on an independent real-world Mandarin cohort (CIR-E) demonstrates robust cross-linguistic generalization, attaining a Macro-F1 of 48.71%. These findings constitute a critical step toward providing clinically trustworthy and linguistically inclusive cognitive assessment tools for global healthcare.
comment: 18 pages, 7 figures, 6 tables
☆ Lost in Translation? A Comparative Study on the Cross-Lingual Transfer of Composite Harms AAAI 2026
Most safety evaluations of large language models (LLMs) remain anchored in English. Translation is often used as a shortcut to probe multilingual behavior, but it rarely captures the full picture, especially when harmful intent or structure morphs across languages. Some types of harm survive translation almost intact, while others distort or disappear. To study this effect, we introduce CompositeHarm, a translation-based benchmark designed to examine how safety alignment holds up as both syntax and semantics shift. It combines two complementary English datasets, AttaQ, which targets structured adversarial attacks, and MMSafetyBench, which covers contextual, real-world harms, and extends them into six languages: English, Hindi, Assamese, Marathi, Kannada, and Gujarati. Using three large models, we find that attack success rates rise sharply in Indic languages, especially under adversarial syntax, while contextual harms transfer more moderately. To ensure scalability and energy efficiency, our study adopts lightweight inference strategies inspired by edge-AI design principles, reducing redundant evaluation passes while preserving cross-lingual fidelity. This design makes large-scale multilingual safety testing both computationally feasible and environmentally conscious. Overall, our results show that translated benchmarks are a necessary first step, but not a sufficient one, toward building grounded, resource-aware, language-adaptive safety systems.
comment: Accepted at the AICS Workshop, AAAI 2026
☆ Bielik Guard: Efficient Polish Language Safety Classifiers for LLM Content Moderation
As Large Language Models (LLMs) become increasingly deployed in Polish language applications, the need for efficient and accurate content safety classifiers has become paramount. We present Bielik Guard, a family of compact Polish language safety classifiers comprising two model variants: a 0.1B parameter model based on MMLW-RoBERTa-base and a 0.5B parameter model based on PKOBP/polish-roberta-8k. Fine-tuned on a community-annotated dataset of 6,885 Polish texts, these models classify content across five safety categories: Hate/Aggression, Vulgarities, Sexual Content, Crime, and Self-Harm. Our evaluation demonstrates that both models achieve strong performance on multiple benchmarks. The 0.5B variant offers the best overall discrimination capability with F1 scores of 0.791 (micro) and 0.785 (macro) on the test set, while the 0.1B variant demonstrates exceptional efficiency. Notably, Bielik Guard 0.1B v1.1 achieves superior precision (77.65\%) and very low false positive rate (0.63\%) on real user prompts, outperforming HerBERT-PL-Guard (31.55\% precision, 4.70\% FPR) despite identical model size. The models are publicly available and designed to provide appropriate responses rather than simple content blocking, particularly for sensitive categories like self-harm.
☆ Patches of Nonlinearity: Instruction Vectors in Large Language Models
Despite the recent success of instruction-tuned language models and their ubiquitous usage, very little is known of how models process instructions internally. In this work, we address this gap from a mechanistic point of view by investigating how instruction-specific representations are constructed and utilized in different stages of post-training: Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO). Via causal mediation, we identify that instruction representation is fairly localized in models. These representations, which we call Instruction Vectors (IVs), demonstrate a curious juxtaposition of linear separability along with non-linear causal interaction, broadly questioning the scope of the linear representation hypothesis commonplace in mechanistic interpretability. To disentangle the non-linear causal interaction, we propose a novel method to localize information processing in language models that is free from the implicit linear assumptions of patching-based techniques. We find that, conditioned on the task representations formed in the early layers, different information pathways are selected in the later layers to solve that task, i.e., IVs act as circuit selectors.
☆ SparseEval: Efficient Evaluation of Large Language Models by Sparse Optimization ICLR2026
As large language models (LLMs) continue to scale up, their performance on various downstream tasks has significantly improved. However, evaluating their capabilities has become increasingly expensive, as performing inference on a large number of benchmark samples incurs high computational costs. In this paper, we revisit the model-item performance matrix and show that it exhibits sparsity, that representative items can be selected as anchors, and that the task of efficient benchmarking can be formulated as a sparse optimization problem. Based on these insights, we propose SparseEval, a method that, for the first time, adopts gradient descent to optimize anchor weights and employs an iterative refinement strategy for anchor selection. We utilize the representation capacity of MLP to handle sparse optimization and propose the Anchor Importance Score and Candidate Importance Score to evaluate the value of each item for task-aware refinement. Extensive experiments demonstrate the low estimation error and high Kendall's~$τ$ of our method across a variety of benchmarks, showcasing its superior robustness and practicality in real-world scenarios. Code is available at {https://github.com/taolinzhang/SparseEval}.
comment: ICLR2026
☆ Safety Alignment as Continual Learning: Mitigating the Alignment Tax via Orthogonal Gradient Projection
Large Language Models (LLMs) often incur an alignment tax: safety post-training can reduce general utility (e.g., reasoning and coding). We argue that this tax primarily arises from continual-learning-style forgetting in sequential alignment, where distribution shift and conflicting objectives cause safety updates to overwrite pre-trained competencies. Accordingly, we cast safety alignment as a continual learning (CL) problem that must balance plasticity (acquiring safety constraints) and stability (preserving general abilities). We propose Orthogonal Gradient Projection for Safety Alignment (OGPSA), a lightweight method that mitigates interference by constraining each safety update to be orthogonal (in a first-order sense) to a learned subspace capturing general capabilities. Specifically, OGPSA estimates a low-rank capability subspace from gradients on a small reference set and projects the safety gradient onto its orthogonal complement before updating. This produces safety-directed updates that minimally perturb prior knowledge while retaining capacity for alignment. OGPSA is plug-and-play and integrates into standard post-training pipelines without large-scale replay, auxiliary objectives, or retraining. Across Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and sequential SFT$\rightarrow$DPO settings, OGPSA consistently improves the safety--utility Pareto frontier over standard baselines. For instance, on Qwen2.5-7B-Instruct under SFT$\rightarrow$DPO, OGPSA preserves strong safety while recovering general capability, improving SimpleQA from 0.53\% to 3.03\% and IFEval from 51.94\% to 63.96\%. Our source code is available at \href{https://github.com/SunGL001/OGPSA}{OGPSA}
☆ Emergent Misalignment is Easy, Narrow Misalignment is Hard ICLR 2026
Finetuning large language models on narrowly harmful datasets can cause them to become emergently misaligned, giving stereotypically `evil' responses across diverse unrelated settings. Concerningly, a pre-registered survey of experts failed to predict this result, highlighting our poor understanding of the inductive biases governing learning and generalisation in LLMs. We use emergent misalignment (EM) as a case study to investigate these inductive biases and find that models can just learn the narrow dataset task, but that the general solution appears to be more stable and more efficient. To establish this, we build on the result that different EM finetunes converge to the same linear representation of general misalignment, which can be used to mediate misaligned behaviour. We find a linear representation of the narrow solution also exists, and can be learned by introducing a KL divergence loss. Comparing these representations reveals that general misalignment achieves lower loss, is more robust to perturbations, and is more influential in the pre-training distribution. This work isolates a concrete representation of general misalignment for monitoring and mitigation. More broadly, it offers a detailed case study and preliminary metrics for investigating how inductive biases shape generalisation in LLMs. We open-source all code, datasets and model finetunes.
comment: Published at ICLR 2026
☆ Evaluating and Calibrating LLM Confidence on Questions with Multiple Correct Answers
Confidence calibration is essential for making large language models (LLMs) reliable, yet existing training-free methods have been primarily studied under single-answer question answering. In this paper, we show that these methods break down in the presence of multiple valid answers, where disagreement among equally correct responses leads to systematic underestimation of confidence. To enable a systematic study of this phenomenon, we introduce MACE, a benchmark of 12,000 factual questions spanning six domains with varying numbers of correct answers. Experiments across 15 representative calibration methods and four LLM families (7B-72B) reveal that while accuracy increases with answer cardinality, estimated confidence consistently decreases, causing severe miscalibration for questions with mixed answer counts. To address this issue, we propose Semantic Confidence Aggregation (SCA), which aggregates confidence over multiple high-probability sampled responses. SCA achieves state-of-the-art calibration performance under mixed-answer settings while preserving strong calibration on single-answer questions.
☆ TodoEvolve: Learning to Architect Agent Planning Systems
Planning has become a central capability for contemporary agent systems in navigating complex, long-horizon tasks, yet existing approaches predominantly rely on fixed, hand-crafted planning structures that lack the flexibility to adapt to the structural diversity of open-ended problems. To address this limitation, we introduce TodoEvolve, a meta-planning paradigm that autonomously synthesizes and dynamically revises task-specific planning architectures. Specifically, we first construct PlanFactory, a modular design space that standardizes diverse planning paradigms within a unified codebase encompassing topology, initialization, adaptation, and navigation, thereby providing a common interface for heterogeneous planning patterns. Leveraging PlanFactory, we collect high-quality planning trajectories and train Todo-14B via \textit{Impedance-Guided Preference Optimization} (IGPO), a multi-objective reinforcement learning objective that encourages the generation of planning systems that are performant, stable, and token-efficient across arbitrary tasks and agent backbones. Empirical evaluations on five agentic benchmarks demonstrate that TodoEvolve consistently surpasses carefully engineered planning modules while maintaining economical API costs and runtime overhead.
☆ SPD-Faith Bench: Diagnosing and Improving Faithfulness in Chain-of-Thought for Multimodal Large Language Models
Chain-of-Thought reasoning is widely used to improve the interpretability of multimodal large language models (MLLMs), yet the faithfulness of the generated reasoning traces remains unclear. Prior work has mainly focused on perceptual hallucinations, leaving reasoning level unfaithfulness underexplored. To isolate faithfulness from linguistic priors, we introduce SPD-Faith Bench, a diagnostic benchmark based on fine-grained image difference reasoning that enforces explicit visual comparison. Evaluations on state-of-the-art MLLMs reveal two systematic failure modes, perceptual blindness and perception-reasoning dissociation. We trace these failures to decaying visual attention and representation shifts in the residual stream. Guided by this analysis, we propose SAGE, a train-free visual evidence-calibrated framework that improves visual routing and aligns reasoning with perception. Our results highlight the importance of explicitly evaluating faithfulness beyond response correctness. Our benchmark and codes are available at https://github.com/Johanson-colab/SPD-Faith-Bench.
comment: 53 pages, 42 figures, 14 tables
☆ Data Darwinism Part I: Unlocking the Value of Scientific Data for Pre-training
Data quality determines foundation model performance, yet systematic processing frameworks are lacking. We introduce Data Darwinism, a ten-level taxonomy (L0-L9) that conceptualizes data-model co-evolution: advanced models produce superior data for next-generation systems. We validate this on scientific literature by constructing Darwin-Science, a 900B-token corpus (L0-L5). We identify a learnability gap in raw scientific text, which we bridge via L4 (Generative Refinement) and L5 (Cognitive Completion) using frontier LLMs to explicate reasoning and terminology. To ensure rigorous attribution, we pre-trained daVinci-origin-3B/7B models from scratch, excluding scientific content to create contamination-free baselines. After 600B tokens of continued pre-training, Darwin-Science outperforms baselines by +2.12 (3B) and +2.95 (7B) points across 20+ benchmarks, rising to +5.60 and +8.40 points on domain-aligned tasks. Systematic progression to L5 yields a +1.36 total gain, confirming that higher-level processing unlocks latent data value. We release the Darwin-Science corpus and daVinci-origin models to enable principled, co-evolutionary development.
LLMs Know More About Numbers than They Can Say EACL 2026
Although state-of-the-art LLMs can solve math problems, we find that they make errors on numerical comparisons with mixed notation: "Which is larger, $5.7 \times 10^2$ or $580$?" This raises a fundamental question: Do LLMs even know how big these numbers are? We probe the hidden states of several smaller open-source LLMs. A single linear projection of an appropriate hidden layer encodes the log-magnitudes of both kinds of numerals, allowing us to recover the numbers with relative error of about 2.3% (on restricted synthetic text) or 19.06% (on scientific papers). Furthermore, the hidden state after reading a pair of numerals encodes their ranking, with a linear classifier achieving over 90% accuracy. Yet surprisingly, when explicitly asked to rank the same pairs of numerals, these LLMs achieve only 50-70% accuracy, with worse performance for models whose probes are less effective. Finally, we show that incorporating the classifier probe's log-loss as an auxiliary objective during finetuning brings an additional 3.22% improvement in verbalized accuracy over base models, demonstrating that improving models' internal magnitude representations can enhance their numerical reasoning capabilities.
comment: EACL 2026
☆ Pruning as a Cooperative Game: Surrogate-Assisted Layer Contribution Estimation for Large Language Models ICLR 2026
While large language models (LLMs) demonstrate impressive performance across various tasks, their deployment in real-world scenarios is still constrained by high computational demands. Layer-wise pruning, a commonly employed strategy to mitigate inference costs, can partially address this challenge. However, existing approaches generally depend on static heuristic rules and fail to account for the interdependencies among layers, thereby limiting the effectiveness of the pruning process. To this end, this paper proposes a game-theoretic framework that formulates layer pruning as a cooperative game in which each layer acts as a player and model performance serves as the utility. As computing exact Shapley values is computationally infeasible for large language models (LLMs), we propose using a lightweight surrogate network to estimate layer-wise marginal contributions. This network can predict LLM performance for arbitrary layer combinations at a low computational cost. Additionally, we employ stratified Monte Carlo mask sampling to further reduce the cost of Sharpley value estimation. This approach captures inter-layer dependencies and dynamically identifies critical layers for pruning. Extensive experiments demonstrate the consistent superiority of our method in terms of perplexity and zero-shot accuracy, achieving more efficient and effective layer-wise pruning for large language models.
comment: Accepted by ICLR 2026
☆ Thinking Makes LLM Agents Introverted: How Mandatory Thinking Can Backfire in User-Engaged Agents
Eliciting reasoning has emerged as a powerful technique for improving the performance of large language models (LLMs) on complex tasks by inducing thinking. However, their effectiveness in realistic user-engaged agent scenarios remains unclear. In this paper, we conduct a comprehensive study on the effect of explicit thinking in user-engaged LLM agents. Our experiments span across seven models, three benchmarks, and two thinking instantiations, and we evaluate them through both a quantitative response taxonomy analysis and qualitative failure propagation case studies. Contrary to expectations, we find that mandatory thinking often backfires on agents in user-engaged settings, causing anomalous performance degradation across various LLMs. Our key finding reveals that thinking makes agents more ``introverted'' by shortening responses and reducing information disclosure to users, which weakens agent-user information exchange and leads to downstream task failures. Furthermore, we demonstrate that explicitly prompting for information disclosure reliably improves performance across diverse model families, suggesting that proactive transparency is a vital lever for agent optimization. Overall, our study suggests that information transparency awareness is a crucial yet underexplored perspective for the future design of reasoning agents in real-world scenarios. Our code is available at https://github.com/deeplearning-wisc/Thinking-Agent.
comment: 27 pages, 19 figures
Emergent Structured Representations Support Flexible In-Context Inference in Large Language Models
Large language models (LLMs) exhibit emergent behaviors suggestive of human-like reasoning. While recent work has identified structured, human-like conceptual representations within these models, it remains unclear whether they functionally rely on such representations for reasoning. Here we investigate the internal processing of LLMs during in-context concept inference. Our results reveal a conceptual subspace emerging in middle to late layers, whose representational structure persists across contexts. Using causal mediation analyses, we demonstrate that this subspace is not merely an epiphenomenon but is functionally central to model predictions, establishing its causal role in inference. We further identify a layer-wise progression where attention heads in early-to-middle layers integrate contextual cues to construct and refine the subspace, which is subsequently leveraged by later layers to generate predictions. Together, these findings provide evidence that LLMs dynamically construct and use structured, latent representations in context for inference, offering insights into the computational processes underlying flexible adaptation.
comment: 27 pages, 16 figures
☆ Attn-GS: Attention-Guided Context Compression for Efficient Personalized LLMs
Personalizing large language models (LLMs) to individual users requires incorporating extensive interaction histories and profiles, but input token constraints make this impractical due to high inference latency and API costs. Existing approaches rely on heuristic methods such as selecting recent interactions or prompting summarization models to compress user profiles. However, these methods treat context as a monolithic whole and fail to consider how LLMs internally process and prioritize different profile components. We investigate whether LLMs' attention patterns can effectively identify important personalization signals for intelligent context compression. Through preliminary studies on representative personalization tasks, we discover that (a) LLMs' attention patterns naturally reveal important signals, and (b) fine-tuning enhances LLMs' ability to distinguish between relevant and irrelevant information. Based on these insights, we propose Attn-GS, an attention-guided context compression framework that leverages attention feedback from a marking model to mark important personalization sentences, then guides a compression model to generate task-relevant, high-quality compressed user contexts. Extensive experiments demonstrate that Attn-GS significantly outperforms various baselines across different tasks, token limits, and settings, achieving performance close to using full context while reducing token usage by 50 times.
☆ SRR-Judge: Step-Level Rating and Refinement for Enhancing Search-Integrated Reasoning in Search Agents
Recent deep search agents built on large reasoning models (LRMs) excel at complex question answering by iteratively planning, acting, and gathering evidence, a capability known as search-integrated reasoning. However, mainstream approaches often train this ability using only outcome-based supervision, neglecting the quality of intermediate thoughts and actions. We introduce SRR-Judge, a framework for reliable step-level assessment of reasoning and search actions. Integrated into a modified ReAct-style rate-and-refine workflow, SRR-Judge provides fine-grained guidance for search-integrated reasoning and enables efficient post-training annotation. Using SRR-annotated data, we apply an iterative rejection sampling fine-tuning procedure to enhance the deep search capability of the base agent. Empirically, SRR-Judge delivers more reliable step-level evaluations than much larger models such as DeepSeek-V3.1, with its ratings showing strong correlation with final answer correctness. Moreover, aligning the policy with SRR-Judge annotated trajectories leads to substantial performance gains, yielding over a 10 percent average absolute pass@1 improvement across challenging deep search benchmarks.
♻ ☆ Virtual Community: An Open World for Humans, Robots, and Society
The rapid progress in AI and Robotics may lead to a profound societal transformation, as humans and robots begin to coexist within shared communities, introducing both opportunities and challenges. To explore this future, we present Virtual Community-an open-world platform for humans, robots, and society-built on a universal physics engine and grounded in real-world 3D scenes. With Virtual Community, we aim to enable the study of embodied social intelligence at scale. To support these, Virtual Community features: 1) An open-source multi-agent physics simulator that supports robots, humans, and their interactions within a society; 2) A large-scale, real-world aligned community generation pipeline, including vast outdoor space, diverse indoor scenes, and a community of grounded agents with rich characters and appearances. Leveraging Virtual Community, we propose two novel challenges. The Community Planning Challenge evaluates multi-agent reasoning and planning ability in open-world settings, such as cooperating to help agents with daily activities and efficiently connecting other agents. The Community Robot Challenge requires multiple heterogeneous robots to collaborate in solving complex open-world tasks. We evaluate various baselines on these tasks and demonstrate the challenges in both high-level open-world task planning and low-level cooperation controls. We hope that Virtual Community will unlock further study of human-robot coexistence within open-world environments.
comment: website https://virtual-community-ai.github.io/
♻ ☆ Capacity-Aware Inference: Mitigating the Straggler Effect in Mixture of Experts ICLR 2026
The Mixture of Experts (MoE) is an effective architecture for scaling large language models by leveraging sparse expert activation to balance performance and efficiency. However, under expert parallelism, MoE suffers from inference inefficiencies due to imbalanced token-to-expert assignment, where underloaded experts complete computations early but must wait for overloaded experts, leading to global delays. We define this phenomenon as the \textbf{\textit{Straggler Effect}}, as the most burdened experts dictate the overall inference latency. To address this, we first propose \textit{\textbf{Capacity-Aware Token Drop}}, which enforces expert capacity limits by discarding excess tokens from overloaded experts, effectively reducing load imbalance with minimal performance impact (e.g., $30\%$ speedup with only $0.9\%$ degradation on OLMoE). Next, given the presence of low-load experts remaining well below the capacity threshold, we introduce \textit{\textbf{Capacity-Aware Expanded Drop}}, which allows tokens to include additional local experts in their candidate set before enforcing strict local capacity constraints, thereby improving load balance and enhancing the utilization of underused experts. Extensive experiments on both language and multimodal MoE models demonstrate the effectiveness of our approach, yielding substantial gains in expert utilization, model performance, and inference efficiency, e.g., applying Expanded Drop to Mixtral-8$\times$7B-Instruct yields a {0.2\%} average performance improvement and a {1.85$\times$} inference speedup. The code is released at: https://github.com/CASE-Lab-UMD/Capacity-Aware-MoE.
comment: ICLR 2026
♻ ☆ Towards Open-Ended Discovery for Low-Resource NLP EMNLP 2025
Natural Language Processing (NLP) for low-resource languages remains fundamentally constrained by the lack of textual corpora, standardized orthographies, and scalable annotation pipelines. While recent advances in large language models have improved cross-lingual transfer, they remain inaccessible to underrepresented communities due to their reliance on massive, pre-collected data and centralized infrastructure. In this position paper, we argue for a paradigm shift toward open-ended, interactive language discovery, where AI systems learn new languages dynamically through dialogue rather than static datasets. We contend that the future of language technology, particularly for low-resource and under-documented languages, must move beyond static data collection pipelines toward interactive, uncertainty-driven discovery, where learning emerges dynamically from human-machine collaboration instead of being limited to pre-existing datasets. We propose a framework grounded in joint human-machine uncertainty, combining epistemic uncertainty from the model with hesitation cues and confidence signals from human speakers to guide interaction, query selection, and memory retention. This paper is a call to action: we advocate a rethinking of how AI engages with human knowledge in under-documented languages, moving from extractive data collection toward participatory, co-adaptive learning processes that respect and empower communities while discovering and preserving the world's linguistic diversity. This vision aligns with principles of human-centered AI, emphasizing interactive, cooperative model building between AI systems and speakers.
comment: Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP) at EMNLP 2025
♻ ☆ What Makes LLM Agent Simulations Useful for Policy Practice? An Iterative Design Study in Emergency Preparedness
Policymakers must often act under conditions of deep uncertainty, such as emergency response, where predicting the specific impacts of a policy apriori is implausible. Large Language Model (LLM) agent simulations have been proposed as tools to support policymakers under these conditions, yet little is known about how such simulations become useful for real-world policy practice. To address this gap, we conducted a year-long, stakeholder-engaged design process with a university emergency preparedness team. Through iterative design cycles, we developed and refined an LLM agent simulation of a large-scale campus gathering, ultimately scaling to 13,000 agents that modeled crowd movement and communication under various emergency scenarios. Rather than producing predictive forecasts, these simulations supported policy practice by shaping volunteer training, evacuation procedures, and infrastructure planning. Analyzing these findings, we identify three design process implications for making LLM agent simulations that are useful for policy practice: start from verifiable scenarios to bootstrap trust, use preliminary simulations to elicit tacit domain knowledge, and treat simulation capabilities and policy implementation as co-evolving.
♻ ☆ Compressed code: the hidden effects of quantization and distillation on programming tokens
Large Language Models (LLMs) have demonstrated exceptional code generation capabilities, yet their token-level mechanisms remain underexplored, particularly in compressed models. Through systematic analysis of programming language token representations, we characterize how programming languages are encoded in LLM tokenizers by analyzing their vocabulary distribution and keyword coverage patterns. We introduce a novel cold-start probability analysis method that provides insights into model behavior without requiring explicit prompts. Additionally, we present a comprehensive evaluation of how different model optimization techniques - including quantization, distillation, model scaling, and task-specific fine-tuning - affect token-level representations and code generation quality. Our experiments, supported by comprehensive probability distribution analysis and evaluation metrics, reveal critical insights into token-level behavior and provide empirically-validated guidelines for maintaining code generation quality under various optimization constraints. These findings advance both theoretical understanding of LLM code generation and practical implementation of optimized models in production environments.
comment: 18 pages, 1 figure and 6 tables
♻ ☆ Do Language Models Update their Forecasts with New Information?
Prior work has largely treated forecasting as a static task, failing to consider how forecasts and the confidence in them should evolve as new evidence emerges. To address this gap, we introduce EvolveCast, a framework for evaluating whether large language models revise their forecasts appropriately in response to new information. In particular, EvolveCast assesses whether LLMs update their forecasts when presented with information released after their training cutoff. We use human forecasters as a comparative reference to assess forecast updates and confidence calibration under new information. While LLMs demonstrate some responsiveness to new information, their updates are often inconsistent or overly conservative. We further find that both verbalized and logits-based confidence estimates remain far from the human reference standard. Across settings with a variety of LLMs, models tend to be conservative in updating their forecasts. These findings suggest that current approaches (e.g., RAG-based methods) for updating model knowledge are insufficient for probabilistic reasoning; models treat new information as retrieval context rather than evidence that shifts posterior probability. EvolveCast thus underscores the need for more robust mechanisms to incorporate external knowledge into belief dynamics.
♻ ☆ ArkTS-CodeSearch: A Open-Source ArkTS Dataset for Code Retrieval
ArkTS is a core programming language in the OpenHarmony ecosystem, yet research on ArkTS code intelligence is hindered by the lack of public datasets and evaluation benchmarks. This paper presents a large-scale ArkTS dataset constructed from open-source repositories, targeting code retrieval and code evaluation tasks. We design a single-search task, where natural language comments are used to retrieve corresponding ArkTS functions. ArkTS repositories are crawled from GitHub and Gitee, and comment-function pairs are extracted using tree-sitter-arkts, followed by cross-platform deduplication and statistical analysis of ArkTS function types. We further evaluate existing open-source code embedding models on the single-search task and perform fine-tuning using both ArkTS and TypeScript training datasets, resulting in a high-performing model for ArkTS code understanding. This work establishes the first systematic benchmark for ArkTS code retrieval. Both the dataset and our fine-tuned model are available at https://huggingface.co/hreyulog/embedinggemma_arkts and https://huggingface.co/datasets/hreyulog/arkts-code-docstring .
♻ ☆ Understanding Emotion in Discourse: Recognition Insights and Linguistic Patterns for Generation
Despite strong recent progress in Emotion Recognition in Conversation (ERC), two gaps remain: we lack clear understanding of which modeling choices materially affect performance, and we have limited linguistic analysis linking recognition findings to actionable generation cues. We address both via a systematic study on IEMOCAP. For recognition, we conduct controlled ablations with 10 random seeds and paired tests (with correction for multiple comparisons), yielding three findings. First, conversational context is dominant: performance saturates quickly, with roughly 90% of gain achieved using only the most recent 10-30 preceding turns. Second, hierarchical sentence representations improve utterance-only recognition (K=0), but the benefit vanishes once turn-level context is available, suggesting conversational history subsumes intra-utterance structure. Third, external affective lexicon (SenticNet) integration does not improve results, consistent with pretrained encoders already capturing affective signal. Under strictly causal (past-only) setting, our simple models attain strong performance (82.69% 4-way; 67.07% 6-way weighted F1). For linguistic analysis, we examine 5,286 discourse-marker occurrences and find reliable association between emotion and marker position (p < 0.0001). Sad utterances show reduced left-periphery marker usage (21.9%) relative to other emotions (28-32%), aligning with accounts linking left-periphery markers to active discourse management. This pattern is consistent with Sad benefiting most from conversational context (+22%p), suggesting sadness relies more on discourse history than overt pragmatic signaling.
♻ ☆ Kahaani: A Multimodal Co-Creative Storytelling System
This paper introduces Kahaani, a multimodal, co-creative storytelling system that leverages Generative Artificial Intelligence, designed for children to address the challenge of sustaining engagement to foster educational narrative experiences. Here we define co-creative as a collaborative creative process in which both the child and Kahaani contribute to the generation of the story. The system combines Large Language Model (LLM), Text-to-Speech (TTS), Text-to-Music (TTM), and Text-to-Video (TTV) generation to produce a rich, immersive, and accessible storytelling experience. The system grounds the co-creation process in two classical storytelling framework, Freytag's Pyramid and Propp's Narrative Functions. The main goals of Kahaani are: (1) to help children improve their English skills, (2) to teach important life lessons through story morals, and (3) to help them understand how stories are structured, all in a fun and engaging way. We present evaluations for each AI component used, along with a user study involving three parent-child pairs to assess the overall experience and educational value of the system.
♻ ☆ Rigor, Reliability, and Reproducibility Matter: A Decade-Scale Survey of 572 Code Benchmarks
Code-related benchmarks play a critical role in evaluating large language models (LLMs), yet their quality fundamentally shapes how the community interprets model capabilities. In the past few years, awareness of benchmark quality has grown. Yet, after a decade-scale (2014-2025) survey over 572 code benchmarks, we observed a lag between growing awareness and actual practice. For example, in 2025 alone, the number of benchmarks that ignore code coverage when providing test cases nearly matches the total count accumulated across the previous ten years. In response, we take a clear position: Code benchmarks must prioritize rigor in benchmark construction, reliability in evaluation, and reproducibility in release. To operationalize this position, we introduce a code benchmark guideline HOW2BENCH with 55 checklists. Finally, our further human study also exposed that the current issues not only stem from the significant effort required, but also from a lack of awareness regarding their importance.
comment: 65 pages
♻ ☆ AutoMixer: Checkpoint Artifacts as Automatic Data Mixers ACL 2025
In language model training, it is desirable to equip models with capabilities from various tasks. However, it is not clear how to directly obtain the right data mixtures for these capabilities as the relationship between data and tasks is difficult to be modeled. In this work, we observe that checkpoint models exhibit emerging capabilities at different points in the training trajectory. Often, the training process saves checkpoints as artifacts that are under-utilized as a source of in-training data signals. We identify these artifact models based on their respective capabilities on the benchmarks and leverage them as data mixers by using their aggregated first-order influence approximation over source data. We demonstrated on eight reasoning benchmarks that the proposed framework shows significant improvements in the pretraining setting, with performance improvements of up to 1.93%. Overall, this shows the potential of checkpoint models to enhance data quality and optimize data mixtures.
comment: Accepted at ACL 2025
♻ ☆ Nondeterministic Polynomial-time Problem Challenge: An Ever-Scaling Reasoning Benchmark for LLMs
Reasoning is the fundamental capability of large language models (LLMs). Due to the rapid progress of LLMs, there are two main issues of current benchmarks: i) these benchmarks can be crushed in a short time (less than 1 year), and ii) these benchmarks may be easily hacked. To handle these issues, we propose the ever-scalingness for building the benchmarks which are scaling over complexity against crushing, instance against hacking and exploitation, oversight for easy verification, and coverage for real-world relevance. This paper presents Nondeterministic Polynomial-time Problem Challenge (NPPC), an ever-scaling reasoning benchmark for LLMs. Specifically, the NPPC has three main modules: i) npgym, which provides a unified interface of 25 well-known NP-complete problems and can generate any number of instances with any levels of complexities, ii) npsolver, which provides a unified interface to evaluate the problem instances with both online and offline models via APIs and local deployments, respectively, and iii) npeval, which provides the comprehensive and ready-to-use tools to analyze the performances of LLMs over different problems, the number of tokens, the reasoning errors and the solution errors. Extensive experiments over widely-used LLMs demonstrate: i) NPPC can successfully decrease the performances of advanced LLMs to below 10%, demonstrating that NPPC is not crushed by current models, ii) DeepSeek-R1, Claude-3.7-Sonnet, and o1/o3-mini are the most powerful LLMs, and iii) the numbers of tokens in the advanced LLMs, e.g., Claude-3.7-Sonnet and DeepSeek-R1, are observed first to increase and then decrease when the problem instances become more and more difficult. Through continuously scaling analysis, NPPC can provide critical insights into the limits of LLMs' reasoning capabilities, exposing fundamental limitations and suggesting future directions for further improvements.
comment: Accepted to TMLR
♻ ☆ Copy-Paste to Mitigate Large Language Model Hallucinations ICLR 2026
While Retrieval-Augmented Generation (RAG) enables large language models (LLMs) to generate contextually grounded responses, contextual faithfulness remains challenging as LLMs may not consistently trust provided context, leading to hallucinations that undermine reliability. We observe an inverse correlation between response copying degree and context-unfaithful hallucinations on RAGTruth, suggesting that higher copying degrees reduce hallucinations by fostering genuine contextual belief. We propose CopyPasteLLM, obtained through two-stage high-copying response preference training. We design three prompting methods to enhance copying degree, demonstrating that high-copying responses achieve superior contextual faithfulness and hallucination control. These approaches enable a fully automated pipeline that transforms generated responses into high-copying preference data for training CopyPasteLLM. On FaithEval, ConFiQA and PubMedQA, CopyPasteLLM achieves best performance in both counterfactual and original contexts, remarkably with 12.2% to 24.5% accuracy improvements on FaithEval over the best baseline, while requiring only 365 training samples -- 1/50th of baseline data. To elucidate CopyPasteLLM's effectiveness, we propose the Context-Parameter Copying Capturing algorithm. Interestingly, this reveals that CopyPasteLLM recalibrates reliance on internal parametric knowledge rather than external knowledge during generation. All codes are available at https://github.com/longyongchao/CopyPasteLLM
comment: Accepted to ICLR 2026
♻ ☆ Achieving Unanimous Consensus Through Multi-Agent Deliberation
Blockchain consensus mechanisms have relied on algorithms such as Proof-of-Work (PoW) and Proof-of-Stake (PoS) to ensure network functionality and integrity. However, these approaches struggle with adaptability for decision-making where the opinions of each matter rather than reaching an agreement based on honest majority or weighted consensus. This paper introduces a novel deliberation-based consensus mechanism where Large Language Models (LLMs) act as rational agents engaging in structured discussions to reach a unanimous consensus. By leveraging graded consensus and a multi-round deliberation process, our approach ensures unanimous consensus for definitive problems and graded consensus for prioritized decision problems and policies. We provide a formalization of our system and use it to show that the properties of blockchains are maintained, while also addressing the behavior in terms of adversaries, stalled deliberations, and confidence in consensus. Moreover, experimental results demonstrate system feasibility, showcasing convergence, block properties, and accuracy, which enable deliberative decision-making on blockchain networks.
comment: 6 pages, 4 figure, 2 tables
♻ ☆ Bringing Emerging Architectures to Sequence Labeling in NLP EACL 2026
Pretrained Transformer encoders are the dominant approach to sequence labeling. While some alternative architectures-such as xLSTMs, structured state-space models, diffusion models, and adversarial learning-have shown promise in language modeling, few have been applied to sequence labeling, and mostly on flat or simplified tasks. We study how these architectures adapt across tagging tasks that vary in structural complexity, label space, and token dependencies, with evaluation spanning multiple languages. We find that the strong performance previously observed in simpler settings does not always generalize well across languages or datasets, nor does it extend to more complex structured tasks.
comment: Accepted at EACL 2026
♻ ☆ Tree Search for Language Model Agents
Autonomous agents powered by language models (LMs) have demonstrated promise in their ability to perform decision-making tasks such as web automation. However, a key limitation remains: LMs, primarily optimized for natural language understanding and generation, struggle with multi-step reasoning, planning, and using environmental feedback when attempting to solve realistic computer tasks. Towards addressing this, we propose an inference-time search algorithm for LM agents to explicitly perform exploration and multi-step planning in interactive web environments. Our approach is a form of best-first tree search that operates within the actual environment space, and is complementary with most existing state-of-the-art agents. It is the first tree search algorithm for LM agents that shows effectiveness on realistic web tasks. On the challenging VisualWebArena benchmark, applying our search algorithm on top of a GPT-4o agent yields a 39.7% relative increase in success rate compared to the same baseline without search, setting a state-of-the-art success rate of 26.4%. On WebArena, search also yields a 28.0% relative improvement over a baseline agent, setting a competitive success rate of 19.2%. Our experiments highlight the effectiveness of search for web agents, and we demonstrate that performance scales with increased test-time compute. We conduct a thorough analysis of our results to highlight improvements from search, limitations, and promising directions for future work. Our code and models are publicly released at https://jykoh.com/search-agents.
comment: 13 pages. Models and code available at https://jykoh.com/search-agents
♻ ☆ Agentic Vehicles for Human-Centered Mobility
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Autonomous vehicles (AuVs) are therefore understood as systems that perceive their environment and execute pre-programmed tasks independently of external input, consistent with the SAE levels of automated driving. Yet recent research and real-world deployments have begun to showcase vehicles that exhibit behaviors outside the scope of this definition. These include natural language interaction with humans, goal adaptation, contextual reasoning, external tool use, and the handling of unforeseen ethical dilemmas, enabled in part by multimodal large language models (LLMs). These developments highlight not only a gap between technical autonomy and the broader cognitive and social capacities required for human-centered mobility, but also the emergence of a form of vehicle intelligence that currently lacks a clear designation. To address this gap, the paper introduces the concept of agentic vehicles (AgVs): vehicles that integrate agentic AI systems to reason, adapt, and interact within complex environments. It synthesizes recent advances in agentic systems and suggests how AgVs can complement and even reshape conventional autonomy to ensure mobility services are aligned with user and societal needs. The paper concludes by outlining key challenges in the development and governance of AgVs and their potential role in shaping future agentic transportation systems.
♻ ☆ The Geometry of Refusal in Large Language Models: Concept Cones and Representational Independence
The safety alignment of large language models (LLMs) can be circumvented through adversarially crafted inputs, yet the mechanisms by which these attacks bypass safety barriers remain poorly understood. Prior work suggests that a single refusal direction in the model's activation space determines whether an LLM refuses a request. In this study, we propose a novel gradient-based approach to representation engineering and use it to identify refusal directions. Contrary to prior work, we uncover multiple independent directions and even multi-dimensional concept cones that mediate refusal. Moreover, we show that orthogonality alone does not imply independence under intervention, motivating the notion of representational independence that accounts for both linear and non-linear effects. Using this framework, we identify mechanistically independent refusal directions. We show that refusal mechanisms in LLMs are governed by complex spatial structures and identify functionally independent directions, confirming that multiple distinct mechanisms drive refusal behavior. Our gradient-based approach uncovers these mechanisms and can further serve as a foundation for future work on understanding LLMs.
♻ ☆ R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning
Chain-of-thought (CoT) enhances the problem-solving ability of large language models (LLMs) but incurs substantial inference cost due to long autoregressive trajectories. Existing acceleration strategies either shorten traces via early stopping or compression, or adopt speculative decoding with a smaller model. However, speculative decoding provides limited gains when model agreement is low and rigidly enforces token-level consistency, overlooking the observation that some smaller models, when correct, produce significantly more concise reasoning traces that could reduce inference length. We introduce R-Stitch, a training-free hybrid decoding framework that leverages token-level entropy as an uncertainty proxy to delegate computation between a small language model (SLM) and an LLM. Our analysis shows that high-entropy tokens are more likely to induce errors, motivating an entropy-guided routing strategy that lets the SLM efficiently handle low-entropy tokens while delegating uncertain ones to the LLM, thereby avoiding full rollbacks and preserving answer quality. We further extend this design with R-Stitch$^{+}$, which learns an adaptive routing policy to adjust the token budget dynamically beyond fixed thresholds. By jointly reducing per-token decoding complexity and the number of generated tokens, our method achieves substantial acceleration with negligible accuracy loss. Concretely, it attains peak speedups of 3.00$\times$ on DeepSeek-R1-Distill-Qwen-7B, 3.85$\times$ on 14B, and 4.10$\times$ on QWQ-32B while maintaining accuracy comparable to full LLM decoding. Moreover, it naturally enables adaptive efficiency--accuracy trade-offs that can be tailored to diverse computational budgets without retraining.
♻ ☆ PairUni: Pairwise Training for Unified Multimodal Language Models
Unified Vision-Language Models (UVLMs) perform both understanding and generation within a single architecture. Since these models rely on heterogeneous data and supervision, balancing both generation and understanding in reinforcement learning (RL) is challenging. To address this challenge, we propose PairUni, a unified framework that reorganizes data into understanding-generation (UG) pairs and aligns optimization accordingly. Specifically, we construct a unified paired dataset by synthesizing aligned instances via cross-modal semantic completion and retrieving semantically related samples. These paired structures expose cross-task semantic correspondences and support consistent policy learning. To leverage this structure, we present PairGRPO, a pair-aware variant based on Group Relative Policy Optimization. It assigns a similarity score to each pair to modulate the advantage, strengthening learning from well-aligned examples and reducing task interference. Extensive experiments across diverse UVLM architectures (Autoregressive and Discrete Diffusion) and scales (1B to 14B) demonstrate that PairUni yields consistent improvements over strong baselines. Notably, our method also demonstrates strong generalization by improving performance on image editing tasks without using any editing-specific data. Codes are available at https://github.com/Haochen-Wang409/PairUni.
comment: 22 pages, 11 figures, and 10 tables
♻ ☆ Building Multilingual Datasets for Predicting Mental Health Severity through LLMs: Prospects and Challenges
Large Language Models (LLMs) are increasingly being integrated into various medical fields, including mental health support systems. However, there is a gap in research regarding the effectiveness of LLMs in non-English mental health support applications. To address this problem, we present a novel multilingual adaptation of widely-used mental health datasets, translated from English into six languages (e.g., Greek, Turkish, French, Portuguese, German, and Finnish). This dataset enables a comprehensive evaluation of LLM performance in detecting mental health conditions and assessing their severity across multiple languages. By experimenting with GPT and Llama, we observe considerable variability in performance across languages, despite being evaluated on the same translated dataset. This inconsistency underscores the complexities inherent in multilingual mental health support, where language-specific nuances and mental health data coverage can affect the accuracy of the models. Through comprehensive error analysis, we emphasize the risks of relying exclusively on LLMs in medical settings (e.g., their potential to contribute to misdiagnoses). Moreover, our proposed approach offers significant cost savings for multilingual tasks, presenting a major advantage for broad-scale implementation.
♻ ☆ RARe: Retrieval Augmented Retrieval with In-Context Examples
While in-context learning is well-studied with decoder-only language models (LLMs), its utility for encoder-only models remains underexplored. We study in-context learning for encoder-only models for text retrieval tasks. Can incorporating in-context examples (query-document pairs) to the target query enhance retriever performance? Our approach, RARe, finetunes a pre-trained model with in-context examples whose query is semantically similar to the target query. This approach achieves performance gains of up to +2.72% nDCG across open-domain retrieval datasets (BeIR, RAR-b) compared to using the target query only as an input. In particular, we find RARe exhibits stronger out-of-domain generalization compared to models using queries without in-context examples, similar to what is seen for in-context learning in LLMs. We further provide analysis on the design choices of in-context example augmentation for retrievers and lay the foundation for future work.
comment: COLM 2025
♻ ☆ Dynamic Rank Reinforcement Learning for Adaptive Low-Rank Multi-Head Self Attention in Large Language Models
Dynamic Rank Reinforcement Learning (DR-RL) approximations rely on static rank assumptions, limiting their flexibility across diverse linguistic contexts. Our method dynamically modulates ranks based on real-time sequence dynamics, layer-specific sensitivities, and hardware constraints. The core innovation is a deep reinforcement learning agent that formulates rank selection as a sequential policy optimization problem, strictly balancing attention fidelity against computational latency. To ensure stability during inference, we derive and employ online matrix perturbation bounds, enabling incremental rank updates without the prohibitive cost of full decomposition. Furthermore, the integration of a lightweight Transformer-based policy network and batched Singular Value Decomposition (SVD) operations ensures scalable deployment on modern architectures. Extensive experiments demonstrate that DR-RL significantly reduces Floating Point Operations (FLOPs) by over 40% in long-sequence regimes (L > 4096) while maintaining downstream accuracy statistically equivalent to full-rank attention. Beyond standard language modeling benchmarks, we validate the real-world applicability of DR-RL on the GLUE benchmark. Specifically, our method achieves 92.78% accuracy on the SST-2 sentiment analysis task, matching the performance of full-rank baselines and outperforming static low-rank methods, such as Performer and Nyströmformer, by a significant margin.
♻ ☆ Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 26 pages, 4 figures
♻ ☆ The Reasoning Lingua Franca: A Double-Edged Sword for Multilingual AI
Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by reasoning in the language of the question.
comment: 14 pages, 13 figures, 5 tables
♻ ☆ Automatic Item Generation for Personality Situational Judgment Tests with Large Language Models
Personality assessment through situational judgment tests (SJTs) offers unique advantages over traditional Likert-type self-report scales, yet their development remains labor-intensive, time-consuming, and heavily dependent on subject matter experts. Recent advances in large language models (LLMs) have shown promise for automatic item generation (AIG). Building on these developments, the present study focuses on developing and evaluating a structured and generalizable framework for automatically generating personality SJTs, using GPT-4 and ChatGPT-5 as empirical examples. Three studies were conducted. Study 1 systematically compared the effects of prompt design and temperature settings on the content validity of LLM-generated items to develop an effective and stable LLM-based AIG approach for personality SJT. Results showed that optimized prompts and a temperature of 1.0 achieved the best balance of creativity and accuracy on GPT-4. Study 2 examined the cross-model generalizability and reproducibility of this automated SJT generation approach through multiple rounds. The results showed that the approach consistently produced reproducible and high-quality items on ChatGPT-5. Study 3 evaluated the psychometric properties of LLM-generated SJTs covering five facets of the Big Five personality traits. Results demonstrated satisfactory reliability and validity across most facets, though limitations were observed in the convergent validity of the compliance facet and certain aspects of criterion-related validity. These findings provide robust evidence that the proposed LLM-based AIG approach can produce culturally appropriate and psychometrically sound SJTs with efficiency comparable to or exceeding traditional methods.
comment: Accepted by Computers in Human Behavior Reports. The supplementary materials, data, and items are available at https://osf.io/jbvq7/
♻ ☆ MTR-DuplexBench: Towards a Comprehensive Evaluation of Multi-Round Conversations for Full-Duplex Speech Language Models
Full-Duplex Speech Language Models (FD-SLMs) enable real-time, overlapping conversational interactions, offering a more dynamic user experience compared to traditional half-duplex models. However, existing benchmarks primarily focus on evaluating single-round interactions, neglecting the complexities of multi-round communication. Evaluating FD-SLMs in multi-round settings poses significant challenges, including blurred turn boundaries in communication and context inconsistency during model inference. Also, existing benchmarks often focus solely on evaluating conversational features, neglecting other critical aspects. To address these gaps, we introduce MTR-DuplexBench, a novel benchmark designed for a comprehensive multi-round evaluation of FD-SLMs. MTR-DuplexBench not only segments continuous full-duplex dialogues into discrete turns for turn-by-turn assessment but also incorporates various evaluation aspects, including conversational features, dialogue quality, instruction following, and safety. Experimental results reveal that current FD-SLMs face difficulties in maintaining consistent performance across multiple rounds and evaluation dimensions, highlighting the necessity and effectiveness of our benchmark. The benchmark and code will be available in the future.
comment: Work in progress
♻ ☆ Lookahead-then-Verify: Reliable Constrained Decoding for Diffusion LLMs under Context-Free Grammars
Diffusion Large Language Models (dLLMs) have demonstrated promising generative capabilities and are increasingly used to produce formal languages defined by context-free grammars, such as source code and chemical expressions. However, as probabilistic models, they still struggle to generate syntactically valid outputs reliably. A natural and promising direction to address this issue is to adapt constrained decoding techniques to enforce grammatical correctness during generation. However, applying these techniques faces two primary obstacles. On the one hand, the non-autoregressive nature of dLLMs renders most existing constrained decoding approaches inapplicable. On the other hand, current approaches specifically designed for dLLMs may allow intermediate outputs that are impossible to complete into valid sentences, which significantly limits their reliability in practice. To address these challenges, we present LAVE, a constrained decoding approach specifically designed for dLLMs. Our approach leverages a key property of dLLMs, namely their ability to predict token distributions for all positions in parallel during each forward pass. Whenever a new token is proposed by model, LAVE performs lookahead using these distributions to efficiently and reliably verify the validity of the proposed token. This design ensures reliable constraints by reliably preserving the potential for intermediate outputs to be extended into valid sentences. Extensive experiments across four widely used dLLMs and three representative benchmarks demonstrate that LAVE consistently outperforms existing baselines and achieves substantial improvements in syntactic correctness, while incurring negligible runtime overhead.
♻ ☆ BudgetMem: Learning Selective Memory Policies for Cost-Efficient Long-Context Processing in Language Models
Large Language Models (LLMs) face significant computational and memory constraints when processing long contexts, despite growing demand for applications requiring reasoning over extensive documents, multi-session dialogues, and book length texts. While recent advances have extended context windows to 100K-1M tokens, such approaches incur prohibitive costs for resource constrained deployments. We propose BudgetMem, a novel memory augmented architecture that learns what to remember rather than remembering everything. Our system combines selective memory policies with feature based salience scoring (entity density, TF-IDF, discourse markers, position bias) to decide which information merits storage under strict budget constraints. Unlike existing retrieval augmented generation (RAG) systems that store all chunks, BudgetMem employs learned gating mechanisms coupled with BM25 sparse retrieval for efficient information access. Through comprehensive experiments on 700 question answer pairs across short (237 tokens) and long (5K-10K tokens) documents with Llama-3.2-3B-Instruct, we demonstrate that BudgetMem achieves remarkable results on long documents: only 1.0% F1 score degradation while saving 72.4% memory compared to baseline RAG. We validate our approach through budget sensitivity analysis (testing 7 budget ratios), naive baseline comparisons, and document length analysis, showing that BudgetMem's benefits increase with document length. Our work provides a practical pathway for deploying capable long context systems on modest hardware, democratizing access to advanced language understanding capabilities.
comment: 11 pages, 3 figures, 5 tables. Evaluated on 700 QA pairs across multiple document lengths
♻ ☆ FAID: Fine-Grained AI-Generated Text Detection Using Multi-Task Auxiliary and Multi-Level Contrastive Learning
The growing collaboration between humans and AI models in generative tasks has introduced new challenges in distinguishing between human-written, LLM-generated, and human-LLM collaborative texts. In this work, we collect a multilingual, multi-domain, multi-generator dataset FAIDSet. We further introduce a fine-grained detection framework FAID to classify text into these three categories, and also to identify the underlying LLM family of the generator. Unlike existing binary classifiers, FAID is built to capture both authorship and model-specific characteristics. Our method combines multi-level contrastive learning with multi-task auxiliary classification to learn subtle stylistic cues. By modeling LLM families as distinct stylistic entities, we incorporate an adaptation to address distributional shifts without retraining for unseen data. Our experimental results demonstrate that FAID outperforms several baselines, particularly enhancing the generalization accuracy on unseen domains and new LLMs, thus offering a potential solution for improving transparency and accountability in AI-assisted writing. Our data and code are available at https://github.com/mbzuai-nlp/FAID
♻ ☆ Taxation Perspectives from Large Language Models: A Case Study on Additional Tax Penalties
How capable are large language models (LLMs) in the domain of taxation? Although numerous studies have explored the legal domain, research dedicated to taxation remains scarce. Moreover, the datasets used in these studies are either simplified, failing to reflect the real-world complexities, or not released as open-source. To address this gap, we introduce PLAT, a new benchmark designed to assess the ability of LLMs to predict the legitimacy of additional tax penalties. PLAT comprises 300 examples: (1) 100 binary-choice questions, (2) 100 multiple-choice questions, and (3) 100 essay-type questions, all derived from 100 Korean court precedents. PLAT is constructed to evaluate not only LLMs' understanding of tax law but also their performance in legal cases that require complex reasoning beyond straightforward application of statutes. Our systematic experiments with multiple LLMs reveal that (1) their baseline capabilities are limited, especially in cases involving conflicting issues that require a comprehensive understanding (not only of the statutes but also of the taxpayer's circumstances), and (2) LLMs struggle particularly with the "AC" stages of "IRAC" even for advanced reasoning models like o3, which actively employ inference-time scaling. The dataset is publicly available at: https://huggingface.co/collections/sma1-rmarud/plat-predicting-the-legitimacy-of-punitive-additional-tax
comment: 9 pages
♻ ☆ ShoppingComp: Are LLMs Really Ready for Your Shopping Cart?
We present ShoppingComp, a challenging real-world benchmark for comprehensively evaluating LLM-powered shopping agents on three core capabilities: precise product retrieval, expert-level report generation, and safety critical decision making. Unlike prior e-commerce benchmarks, ShoppingComp introduces difficult product discovery queries with many constraints, while guaranteeing open-world products and enabling easy verification of agent outputs. The benchmark comprises 145 instances and 558 scenarios, curated by 35 experts to reflect authentic shopping needs. Results reveal stark limitations of current LLMs: even state-of-the-art models achieve low performance (e.g., 17.76\% for GPT-5.2, 15.82\% for Gemini-3-Pro).Error analysis reflects limitations in core agent competencies, including information grounding in open-world environments, reliable verification of multi-constraint requirements, consistent reasoning over noisy and conflicting evidence, and risk-aware decision making. By exposing these capability gaps, ShoppingComp characterizes the trust threshold that AI systems must cross before they can be proactively trusted for reliable real-world decision making. Our code and dataset are available at https://github.com/ByteDance-BandAI/ShoppingComp.
♻ ☆ HEART: Emotionally-Driven Test-Time Scaling of Language Models
Test-time scaling has significantly improved how AI models solve problems, yet current methods often get stuck in repetitive, incorrect patterns of thought. We introduce HEART, a framework that uses emotional cues to guide the model's focus, much like how feelings contribute to human decision-making. By alternating between critical tones to sharpen error detection and encouraging tones to spark new ideas, HEART helps the model break out of dead-end reasoning and find the right solution. We evaluate HEART across seven high-difficulty benchmarks--including Humanity's Last Exam, GPQA Diamond, and LiveCodeBench--demonstrating robustness across diverse models. Results show that emotion facilitates deeper reasoning, yielding consistent accuracy gains over affect-sterile baselines. These findings suggest that the next frontier in machine reasoning lies in the strategic integration of affective regulation to guide logical synthesis.
♻ ☆ Predicting the Emergence of Induction Heads in Language Model Pretraining
Specialized attention heads dubbed induction heads (IHs) have been argued to underlie the remarkable in-context learning capabilities of modern language models; yet, a precise characterization of their emergence, especially in the context of language modeling, remains wanting. In this study, we investigate the relationship between statistical properties of the training data and IH formation in both natural and synthetic training data settings. We show that: (1) A simple equation combining batch size and context size predicts the point at which IHs form and that this emergence point is agnostic to model size; (2) Surface bigram repetition frequency and reliability strongly affect the formation of IHs, and we find an effective Pareto frontier in terms of these two values; (3) local dependency with high bigram repetition frequency and reliability is sufficient for IH formation, but when the frequency and reliability are low, categoriality and the shape of the marginal distribution matter.
♻ ☆ TruthPrInt: Mitigating Large Vision-Language Models Object Hallucination Via Latent Truthful-Guided Pre-Intervention ICCV 2025
Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states with OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose TruthPrInt to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.
comment: 15 pages, 9 figures, the first two authors contributed equally, Accepted by ICCV 2025
♻ ☆ Benchmarking Large Language Models for Geolocating Colonial Virginia Land Grants
Virginia's seventeenth- and eighteenth-century land patents survive primarily as narrative metes-and-bounds descriptions, limiting spatial analysis. This study systematically evaluates current-generation large language models (LLMs) in converting these prose abstracts into geographically accurate latitude/longitude coordinates within a focused evaluation context. A digitized corpus of 5,471 Virginia patent abstracts (1695-1732) is released, with 43 rigorously verified test cases serving as an initial, geographically focused benchmark. Six OpenAI models across three architectures-o-series, GPT-4-class, and GPT-3.5-were tested under two paradigms: direct-to-coordinate and tool-augmented chain-of-thought invoking external geocoding APIs. Results were compared against a GIS analyst baseline, Stanford NER geoparser, Mordecai-3 neural geoparser, and a county-centroid heuristic. The top single-call model, o3-2025-04-16, achieved a mean error of 23 km (median 14 km), outperforming the median LLM (37.4 km) by 37.5%, the weakest LLM (50.3 km) by 53.5%, and external baselines by 67% (GIS analyst) and 70% (Stanford NER). A five-call ensemble further reduced errors to 19.2 km (median 12.2 km) at minimal additional cost (~USD 0.20 per grant), outperforming the median LLM by 48.7%. A patentee-name redaction ablation slightly increased error (~7%), showing reliance on textual landmark and adjacency descriptions rather than memorization. The cost-effective gpt-4o-2024-08-06 model maintained a 28 km mean error at USD 1.09 per 1,000 grants, establishing a strong cost-accuracy benchmark. External geocoding tools offer no measurable benefit in this evaluation. These findings demonstrate LLMs' potential for scalable, accurate, cost-effective historical georeferencing.
♻ ☆ Learning While Staying Curious: Entropy-Preserving Supervised Fine-Tuning via Adaptive Self-Distillation for Large Reasoning Models
The standard post-training recipe for large reasoning models, supervised fine-tuning followed by reinforcement learning (SFT-then-RL), may limit the benefits of the RL stage: while SFT imitates expert demonstrations, it often causes overconfidence and reduces generation diversity, leaving RL with a narrowed solution space to explore. Adding entropy regularization during SFT is not a cure-all; it tends to flatten token distributions toward uniformity, increasing entropy without improving meaningful exploration capability. In this paper, we propose CurioSFT, an entropy-preserving SFT method designed to enhance exploration capabilities through intrinsic curiosity. It consists of (a) Self-Exploratory Distillation, which distills the model toward a self-generated, temperature-scaled teacher to encourage exploration within its capability; and (b) Entropy-Guided Temperature Selection, which adaptively adjusts distillation strength to mitigate knowledge forgetting by amplifying exploration at reasoning tokens while stabilizing factual tokens. Extensive experiments on mathematical reasoning tasks demonstrate that, in SFT stage, CurioSFT outperforms the vanilla SFT by 2.5 points on in-distribution tasks and 2.9 points on out-of-distribution tasks. We also verify that exploration capabilities preserved during SFT successfully translate into concrete gains in RL stage, yielding an average improvement of 5.0 points.
♻ ☆ Capability-Based Scaling Trends for LLM-Based Red-Teaming ICLR 2026
As large language models grow in capability and agency, identifying vulnerabilities through red-teaming becomes vital for safe deployment. However, traditional prompt-engineering approaches may prove ineffective once red-teaming turns into a \emph{weak-to-strong} problem, where target models surpass red-teamers in capabilities. To study this shift, we frame red-teaming through the lens of the \emph{capability gap} between attacker and target. We evaluate more than 600 attacker-target pairs using LLM-based jailbreak attacks that mimic human red-teamers across diverse families, sizes, and capability levels. Three strong trends emerge: (i) more capable models are better attackers, (ii) attack success drops sharply once the target's capability exceeds the attacker's, and (iii) attack success rates correlate with high performance on social science splits of the MMLU-Pro benchmark. From these observations, we derive a \emph{jailbreaking scaling curve} that predicts attack success for a fixed target based on attacker-target capability gap. These findings suggest that fixed-capability attackers (e.g., humans) may become ineffective against future models, increasingly capable open-source models amplify risks for existing systems, and model providers must accurately measure and control models' persuasive and manipulative abilities to limit their effectiveness as attackers.
comment: Published as a conference paper at ICLR 2026
Computer Vision and Pattern Recognition 68
☆ Robustness of Vision Language Models Against Split-Image Harmful Input Attacks
Vision-Language Models (VLMs) are now a core part of modern AI. Recent work proposed several visual jailbreak attacks using single/ holistic images. However, contemporary VLMs demonstrate strong robustness against such attacks due to extensive safety alignment through preference optimization (e.g., RLHF). In this work, we identify a new vulnerability: while VLM pretraining and instruction tuning generalize well to split-image inputs, safety alignment is typically performed only on holistic images and does not account for harmful semantics distributed across multiple image fragments. Consequently, VLMs often fail to detect and refuse harmful split-image inputs, where unsafe cues emerge only after combining images. We introduce novel split-image visual jailbreak attacks (SIVA) that exploit this misalignment. Unlike prior optimization-based attacks, which exhibit poor black-box transferability due to architectural and prior mismatches across models, our attacks evolve in progressive phases from naive splitting to an adaptive white-box attack, culminating in a black-box transfer attack. Our strongest strategy leverages a novel adversarial knowledge distillation (Adv-KD) algorithm to substantially improve cross-model transferability. Evaluations on three state-of-the-art modern VLMs and three jailbreak datasets demonstrate that our strongest attack achieves up to 60% higher transfer success than existing baselines. Lastly, we propose efficient ways to address this critical vulnerability in the current VLM safety alignment.
comment: 22 Pages, long conference paper
☆ Fields of The World: A Field Guide for Extracting Agricultural Field Boundaries
Field boundary maps are a building block for agricultural data products and support crop monitoring, yield estimation, and disease estimation. This tutorial presents the Fields of The World (FTW) ecosystem: a benchmark of 1.6M field polygons across 24 countries, pre-trained segmentation models, and command-line inference tools. We provide two notebooks that cover (1) local-scale field boundary extraction with crop classification and forest loss attribution, and (2) country-scale inference using cloud-optimized data. We use MOSAIKS random convolutional features and FTW derived field boundaries to map crop type at the field level and report macro F1 scores of 0.65--0.75 for crop type classification with limited labels. Finally, we show how to explore pre-computed predictions over five countries (4.76M km\textsuperscript{2}), with median predicted field areas from 0.06 ha (Rwanda) to 0.28 ha (Switzerland).
☆ MambaFusion: Adaptive State-Space Fusion for Multimodal 3D Object Detection
Reliable 3D object detection is fundamental to autonomous driving, and multimodal fusion algorithms using cameras and LiDAR remain a persistent challenge. Cameras provide dense visual cues but ill posed depth; LiDAR provides a precise 3D structure but sparse coverage. Existing BEV-based fusion frameworks have made good progress, but they have difficulties including inefficient context modeling, spatially invariant fusion, and reasoning under uncertainty. We introduce MambaFusion, a unified multi-modal detection framework that achieves efficient, adaptive, and physically grounded 3D perception. MambaFusion interleaves selective state-space models (SSMs) with windowed transformers to propagate the global context in linear time while preserving local geometric fidelity. A multi-modal token alignment (MTA) module and reliability-aware fusion gates dynamically re-weight camera-LiDAR features based on spatial confidence and calibration consistency. Finally, a structure-conditioned diffusion head integrates graph-based reasoning with uncertainty-aware denoising, enforcing physical plausibility, and calibrated confidence. MambaFusion establishes new state-of-the-art performance on nuScenes benchmarks while operating with linear-time complexity. The framework demonstrates that coupling SSM-based efficiency with reliability-driven fusion yields robust, temporally stable, and interpretable 3D perception for real-world autonomous driving systems.
☆ Building Damage Detection using Satellite Images and Patch-Based Transformer Methods
Rapid building damage assessment is critical for post-disaster response. Damage classification models built on satellite imagery provide a scalable means of obtaining situational awareness. However, label noise and severe class imbalance in satellite data create major challenges. The xBD dataset offers a standardized benchmark for building-level damage across diverse geographic regions. In this study, we evaluate Vision Transformer (ViT) model performance on the xBD dataset, specifically investigating how these models distinguish between types of structural damage when training on noisy, imbalanced data. In this study, we specifically evaluate DINOv2-small and DeiT for multi-class damage classification. We propose a targeted patch-based pre-processing pipeline to isolate structural features and minimize background noise in training. We adopt a frozen-head fine-tuning strategy to keep computational requirements manageable. Model performance is evaluated through accuracy, precision, recall, and macro-averaged F1 scores. We show that small ViT architectures with our novel training method achieves competitive macro-averaged F1 relative to prior CNN baselines for disaster classification.
comment: 8 pages, 5 figures
☆ MMLSv2: A Multimodal Dataset for Martian Landslide Detection in Remote Sensing Imagery
We present MMLSv2, a dataset for landslide segmentation on Martian surfaces. MMLSv2 consists of multimodal imagery with seven bands: RGB, digital elevation model, slope, thermal inertia, and grayscale channels. MMLSv2 comprises 664 images distributed across training, validation, and test splits. In addition, an isolated test set of 276 images from a geographically disjoint region from the base dataset is released to evaluate spatial generalization. Experiments conducted with multiple segmentation models show that the dataset supports stable training and achieves competitive performance, while still posing challenges in fragmented, elongated, and small-scale landslide regions. Evaluation on the isolated test set leads to a noticeable performance drop, indicating increased difficulty and highlighting its value for assessing model robustness and generalization beyond standard in-distribution settings. Dataset will be available at: https://github.com/MAIN-Lab/MMLS_v2
☆ VidVec: Unlocking Video MLLM Embeddings for Video-Text Retrieval
Recent studies have adapted generative Multimodal Large Language Models (MLLMs) into embedding extractors for vision tasks, typically through fine-tuning to produce universal representations. However, their performance on video remains inferior to Video Foundation Models (VFMs). In this paper, we focus on leveraging MLLMs for video-text embedding and retrieval. We first conduct a systematic layer-wise analysis, showing that intermediate (pre-trained) MLLM layers already encode substantial task-relevant information. Leveraging this insight, we demonstrate that combining intermediate-layer embeddings with a calibrated MLLM head yields strong zero-shot retrieval performance without any training. Building on these findings, we introduce a lightweight text-based alignment strategy which maps dense video captions to short summaries and enables task-related video-text embedding learning without visual supervision. Remarkably, without any fine-tuning beyond text, our method outperforms current methods, often by a substantial margin, achieving state-of-the-art results across common video retrieval benchmarks.
comment: Project page: https://iyttor.github.io/VidVec/
☆ ViT-5: Vision Transformers for The Mid-2020s
This work presents a systematic investigation into modernizing Vision Transformer backbones by leveraging architectural advancements from the past five years. While preserving the canonical Attention-FFN structure, we conduct a component-wise refinement involving normalization, activation functions, positional encoding, gating mechanisms, and learnable tokens. These updates form a new generation of Vision Transformers, which we call ViT-5. Extensive experiments demonstrate that ViT-5 consistently outperforms state-of-the-art plain Vision Transformers across both understanding and generation benchmarks. On ImageNet-1k classification, ViT-5-Base reaches 84.2\% top-1 accuracy under comparable compute, exceeding DeiT-III-Base at 83.8\%. ViT-5 also serves as a stronger backbone for generative modeling: when plugged into an SiT diffusion framework, it achieves 1.84 FID versus 2.06 with a vanilla ViT backbone. Beyond headline metrics, ViT-5 exhibits improved representation learning and favorable spatial reasoning behavior, and transfers reliably across tasks. With a design aligned with contemporary foundation-model practices, ViT-5 offers a simple drop-in upgrade over vanilla ViT for mid-2020s vision backbones.
comment: Code is available at https://github.com/wangf3014/ViT-5
☆ ReRoPE: Repurposing RoPE for Relative Camera Control
Video generation with controllable camera viewpoints is essential for applications such as interactive content creation, gaming, and simulation. Existing methods typically adapt pre-trained video models using camera poses relative to a fixed reference, e.g., the first frame. However, these encodings lack shift-invariance, often leading to poor generalization and accumulated drift. While relative camera pose embeddings defined between arbitrary view pairs offer a more robust alternative, integrating them into pre-trained video diffusion models without prohibitive training costs or architectural changes remains challenging. We introduce ReRoPE, a plug-and-play framework that incorporates relative camera information into pre-trained video diffusion models without compromising their generation capability. Our approach is based on the insight that Rotary Positional Embeddings (RoPE) in existing models underutilize their full spectral bandwidth, particularly in the low-frequency components. By seamlessly injecting relative camera pose information into these underutilized bands, ReRoPE achieves precise control while preserving strong pre-trained generative priors. We evaluate our method on both image-to-video (I2V) and video-to-video (V2V) tasks in terms of camera control accuracy and visual fidelity. Our results demonstrate that ReRoPE offers a training-efficient path toward controllable, high-fidelity video generation. See project page for more results: https://sisyphe-lee.github.io/ReRoPE/
☆ DICE: Disentangling Artist Style from Content via Contrastive Subspace Decomposition in Diffusion Models
The recent proliferation of diffusion models has made style mimicry effortless, enabling users to imitate unique artistic styles without authorization. In deployed platforms, this raises copyright and intellectual-property risks and calls for reliable protection. However, existing countermeasures either require costly weight editing as new styles emerge or rely on an explicitly specified editing style, limiting their practicality for deployment-side safety. To address this challenge, we propose DICE (Disentanglement of artist Style from Content via Contrastive Subspace Decomposition), a training-free framework for on-the-fly artist style erasure. Unlike style editing that require an explicitly specified replacement style, DICE performs style purification, removing the artist's characteristics while preserving the user-intended content. Our core insight is that a model cannot truly comprehend the artist style from a single text or image alone. Consequently, we abandon the traditional paradigm of identifying style from isolated samples. Instead, we construct contrastive triplets to compel the model to distinguish between style and non-style features in the latent space. By formalizing this disentanglement process as a solvable generalized eigenvalue problem, we achieve precise identification of the style subspace. Furthermore, we introduce an Adaptive Attention Decoupling Editing strategy dynamically assesses the style concentration of each token and performs differential suppression and content enhancement on the QKV vectors. Extensive experiments demonstrate that DICE achieves a superior balance between the thoroughness of style erasure and the preservation of content integrity. DICE introduces an additional overhead of only 3 seconds to disentangle style, providing a practical and efficient technique for curbing style mimicry.
☆ Picasso: Holistic Scene Reconstruction with Physics-Constrained Sampling
In the presence of occlusions and measurement noise, geometrically accurate scene reconstructions -- which fit the sensor data -- can still be physically incorrect. For instance, when estimating the poses and shapes of objects in the scene and importing the resulting estimates into a simulator, small errors might translate to implausible configurations including object interpenetration or unstable equilibrium. This makes it difficult to predict the dynamic behavior of the scene using a digital twin, an important step in simulation-based planning and control of contact-rich behaviors. In this paper, we posit that object pose and shape estimation requires reasoning holistically over the scene (instead of reasoning about each object in isolation), accounting for object interactions and physical plausibility. Towards this goal, our first contribution is Picasso, a physics-constrained reconstruction pipeline that builds multi-object scene reconstructions by considering geometry, non-penetration, and physics. Picasso relies on a fast rejection sampling method that reasons over multi-object interactions, leveraging an inferred object contact graph to guide samples. Second, we propose the Picasso dataset, a collection of 10 contact-rich real-world scenes with ground truth annotations, as well as a metric to quantify physical plausibility, which we open-source as part of our benchmark. Finally, we provide an extensive evaluation of Picasso on our newly introduced dataset and on the YCB-V dataset, and show it largely outperforms the state of the art while providing reconstructions that are both physically plausible and more aligned with human intuition.
comment: 15 pages
☆ Weak to Strong: VLM-Based Pseudo-Labeling as a Weakly Supervised Training Strategy in Multimodal Video-based Hidden Emotion Understanding Tasks
To tackle the automatic recognition of "concealed emotions" in videos, this paper proposes a multimodal weak-supervision framework and achieves state-of-the-art results on the iMiGUE tennis-interview dataset. First, YOLO 11x detects and crops human portraits frame-by-frame, and DINOv2-Base extracts visual features from the cropped regions. Next, by integrating Chain-of-Thought and Reflection prompting (CoT + Reflection), Gemini 2.5 Pro automatically generates pseudo-labels and reasoning texts that serve as weak supervision for downstream models. Subsequently, OpenPose produces 137-dimensional key-point sequences, augmented with inter-frame offset features; the usual graph neural network backbone is simplified to an MLP to efficiently model the spatiotemporal relationships of the three key-point streams. An ultra-long-sequence Transformer independently encodes both the image and key-point sequences, and their representations are concatenated with BERT-encoded interview transcripts. Each modality is first pre-trained in isolation, then fine-tuned jointly, with pseudo-labeled samples merged into the training set for further gains. Experiments demonstrate that, despite severe class imbalance, the proposed approach lifts accuracy from under 0.6 in prior work to over 0.69, establishing a new public benchmark. The study also validates that an "MLP-ified" key-point backbone can match - or even surpass - GCN-based counterparts in this task.
☆ Vanilla Group Equivariant Vision Transformer: Simple and Effective
Incorporating symmetry priors as inductive biases to design equivariant Vision Transformers (ViTs) has emerged as a promising avenue for enhancing their performance. However, existing equivariant ViTs often struggle to balance performance with equivariance, primarily due to the challenge of achieving holistic equivariant modifications across the diverse modules in ViTs-particularly in harmonizing the Self-Attention mechanism with Patch Embedding. To address this, we propose a straightforward framework that systematically renders key ViT components, including patch embedding, self-attention, positional encodings, and Down/Up-Sampling, equivariant, thereby constructing ViTs with guaranteed equivariance. The resulting architecture serves as a plug-and-play replacement that is both theoretically grounded and practically versatile, scaling seamlessly even to Swin Transformers. Extensive experiments demonstrate that our equivariant ViTs consistently improve performance and data efficiency across a wide spectrum of vision tasks.
☆ Enhanced Mixture 3D CGAN for Completion and Generation of 3D Objects
The generation and completion of 3D objects represent a transformative challenge in computer vision. Generative Adversarial Networks (GANs) have recently demonstrated strong potential in synthesizing realistic visual data. However, they often struggle to capture complex and diverse data distributions, particularly in scenarios involving incomplete inputs or significant missing regions. These challenges arise mainly from the high computational requirements and the difficulty of modeling heterogeneous and structurally intricate data, which restrict their applicability in real-world settings. Mixture of Experts (MoE) models have emerged as a promising solution to these limitations. By dynamically selecting and activating the most relevant expert sub-networks for a given input, MoEs improve both performance and efficiency. In this paper, we investigate the integration of Deep 3D Convolutional GANs (CGANs) with a MoE framework to generate high-quality 3D models and reconstruct incomplete or damaged objects. The proposed architecture incorporates multiple generators, each specialized to capture distinct modalities within the dataset. Furthermore, an auxiliary loss-free dynamic capacity constraint (DCC) mechanism is introduced to guide the selection of categorical generators, ensuring a balance between specialization, training stability, and computational efficiency, which is critical for 3D voxel processing. We evaluated the model's ability to generate and complete shapes with missing regions of varying sizes and compared its performance with state-of-the-art approaches. Both quantitative and qualitative results confirm the effectiveness of the proposed MoE-DCGAN in handling complex 3D data.
comment: 11
☆ Dynamic Black-hole Emission Tomography with Physics-informed Neural Fields
With the success of static black-hole imaging, the next frontier is the dynamic and 3D imaging of black holes. Recovering the dynamic 3D gas near a black hole would reveal previously-unseen parts of the universe and inform new physics models. However, only sparse radio measurements from a single viewpoint are possible, making the dynamic 3D reconstruction problem significantly ill-posed. Previously, BH-NeRF addressed the ill-posed problem by assuming Keplerian dynamics of the gas, but this assumption breaks down near the black hole, where the strong gravitational pull of the black hole and increased electromagnetic activity complicate fluid dynamics. To overcome the restrictive assumptions of BH-NeRF, we propose PI-DEF, a physics-informed approach that uses differentiable neural rendering to fit a 4D (time + 3D) emissivity field given EHT measurements. Our approach jointly reconstructs the 3D velocity field with the 4D emissivity field and enforces the velocity as a soft constraint on the dynamics of the emissivity. In experiments on simulated data, we find significantly improved reconstruction accuracy over both BH-NeRF and a physics-agnostic approach. We demonstrate how our method may be used to estimate other physics parameters of the black hole, such as its spin.
☆ MIND: Benchmarking Memory Consistency and Action Control in World Models
World models aim to understand, remember, and predict dynamic visual environments, yet a unified benchmark for evaluating their fundamental abilities remains lacking. To address this gap, we introduce MIND, the first open-domain closed-loop revisited benchmark for evaluating Memory consIstency and action coNtrol in worlD models. MIND contains 250 high-quality videos at 1080p and 24 FPS, including 100 (first-person) + 100 (third-person) video clips under a shared action space and 25 + 25 clips across varied action spaces covering eight diverse scenes. We design an efficient evaluation framework to measure two core abilities: memory consistency and action control, capturing temporal stability and contextual coherence across viewpoints. Furthermore, we design various action spaces, including different character movement speeds and camera rotation angles, to evaluate the action generalization capability across different action spaces under shared scenes. To facilitate future performance benchmarking on MIND, we introduce MIND-World, a novel interactive Video-to-World baseline. Extensive experiments demonstrate the completeness of MIND and reveal key challenges in current world models, including the difficulty of maintaining long-term memory consistency and generalizing across action spaces. Project page: https://csu-jpg.github.io/MIND.github.io/
☆ FlashVID: Efficient Video Large Language Models via Training-free Tree-based Spatiotemporal Token Merging ICLR 2026
Although Video Large Language Models (VLLMs) have shown remarkable capabilities in video understanding, they are required to process high volumes of visual tokens, causing significant computational inefficiency. Existing VLLMs acceleration frameworks usually compress spatial and temporal redundancy independently, which overlooks the spatiotemporal relationships, thereby leading to suboptimal spatiotemporal compression. The highly correlated visual features are likely to change in spatial position, scale, orientation, and other attributes over time due to the dynamic nature of video. Building on this insight, we introduce FlashVID, a training-free inference acceleration framework for VLLMs. Specifically, FlashVID utilizes Attention and Diversity-based Token Selection (ADTS) to select the most representative tokens for basic video representation, then applies Tree-based Spatiotemporal Token Merging (TSTM) for fine-grained spatiotemporal redundancy elimination. Extensive experiments conducted on three representative VLLMs across five video understanding benchmarks demonstrate the effectiveness and generalization of our method. Notably, by retaining only 10% of visual tokens, FlashVID preserves 99.1% of the performance of LLaVA-OneVision. Consequently, FlashVID can serve as a training-free and plug-and-play module for extending long video frames, which enables a 10x increase in video frame input to Qwen2.5-VL, resulting in a relative improvement of 8.6% within the same computational budget. Code is available at https://github.com/Fanziyang-v/FlashVID.
comment: Accepted by ICLR 2026 (Oral)
PhysDrape: Learning Explicit Forces and Collision Constraints for Physically Realistic Garment Draping
Deep learning-based garment draping has emerged as a promising alternative to traditional Physics-Based Simulation (PBS), yet robust collision handling remains a critical bottleneck. Most existing methods enforce physical validity through soft penalties, creating an intrinsic trade-off between geometric feasibility and physical plausibility: penalizing collisions often distorts mesh structure, while preserving shape leads to interpenetration. To resolve this conflict, we present PhysDrape, a hybrid neural-physical solver for physically realistic garment draping driven by explicit forces and constraints. Unlike soft-constrained frameworks, PhysDrape integrates neural inference with explicit geometric solvers in a fully differentiable pipeline. Specifically, we propose a Physics-Informed Graph Neural Network conditioned on a physics-enriched graph -- encoding material parameters and body proximity -- to predict residual displacements. Crucially, we integrate a differentiable two-stage solver: first, a learnable Force Solver iteratively resolves unbalanced forces derived from the Saint Venant-Kirchhoff (StVK) model to ensure quasi-static equilibrium; second, a Differentiable Projection strictly enforces collision constraints against the body surface. This differentiable design guarantees physical validity through explicit constraints, while enabling end-to-end learning to optimize the network for physically consistent predictions. Extensive experiments demonstrate that PhysDrape achieves state-of-the-art performance, ensuring negligible interpenetration with significantly lower strain energy compared to existing baselines, achieving superior physical fidelity and robustness in real-time.
☆ ForecastOcc: Vision-based Semantic Occupancy Forecasting
Autonomous driving requires forecasting both geometry and semantics over time to effectively reason about future environment states. Existing vision-based occupancy forecasting methods focus on motion-related categories such as static and dynamic objects, while semantic information remains largely absent. Recent semantic occupancy forecasting approaches address this gap but rely on past occupancy predictions obtained from separate networks. This makes current methods sensitive to error accumulation and prevents learning spatio-temporal features directly from images. In this work, we present ForecastOcc, the first framework for vision-based semantic occupancy forecasting that jointly predicts future occupancy states and semantic categories. Our framework yields semantic occupancy forecasts for multiple horizons directly from past camera images, without relying on externally estimated maps. We evaluate ForecastOcc in two complementary settings: multi-view forecasting on the Occ3D-nuScenes dataset and monocular forecasting on SemanticKITTI, where we establish the first benchmark for this task. We introduce the first baselines by adapting two 2D forecasting modules within our framework. Importantly, we propose a novel architecture that incorporates a temporal cross-attention forecasting module, a 2D-to-3D view transformer, a 3D encoder for occupancy prediction, and a semantic occupancy head for voxel-level forecasts across multiple horizons. Extensive experiments on both datasets show that ForecastOcc consistently outperforms baselines, yielding semantically rich, future-aware predictions that capture scene dynamics and semantics critical for autonomous driving.
☆ MCIE: Multimodal LLM-Driven Complex Instruction Image Editing with Spatial Guidance AAAI2026
Recent advances in instruction-based image editing have shown remarkable progress. However, existing methods remain limited to relatively simple editing operations, hindering real-world applications that require complex and compositional instructions. In this work, we address these limitations from the perspectives of architectural design, data, and evaluation protocols. Specifically, we identify two key challenges in current models: insufficient instruction compliance and background inconsistency. To this end, we propose MCIE-E1, a Multimodal Large Language Model-Driven Complex Instruction Image Editing method that integrates two key modules: a spatial-aware cross-attention module and a background-consistent cross-attention module. The former enhances instruction-following capability by explicitly aligning semantic instructions with spatial regions through spatial guidance during the denoising process, while the latter preserves features in unedited regions to maintain background consistency. To enable effective training, we construct a dedicated data pipeline to mitigate the scarcity of complex instruction-based image editing datasets, combining fine-grained automatic filtering via a powerful MLLM with rigorous human validation. Finally, to comprehensively evaluate complex instruction-based image editing, we introduce CIE-Bench, a new benchmark with two new evaluation metrics. Experimental results on CIE-Bench demonstrate that MCIE-E1 consistently outperforms previous state-of-the-art methods in both quantitative and qualitative assessments, achieving a 23.96% improvement in instruction compliance.
comment: Accepted by AAAI2026
☆ Deepfake Synthesis vs. Detection: An Uneven Contest
The rapid advancement of deepfake technology has significantly elevated the realism and accessibility of synthetic media. Emerging techniques, such as diffusion-based models and Neural Radiance Fields (NeRF), alongside enhancements in traditional Generative Adversarial Networks (GANs), have contributed to the sophisticated generation of deepfake videos. Concurrently, deepfake detection methods have seen notable progress, driven by innovations in Transformer architectures, contrastive learning, and other machine learning approaches. In this study, we conduct a comprehensive empirical analysis of state-of-the-art deepfake detection techniques, including human evaluation experiments against cutting-edge synthesis methods. Our findings highlight a concerning trend: many state-of-the-art detection models exhibit markedly poor performance when challenged with deepfakes produced by modern synthesis techniques, including poor performance by human participants against the best quality deepfakes. Through extensive experimentation, we provide evidence that underscores the urgent need for continued refinement of detection models to keep pace with the evolving capabilities of deepfake generation technologies. This research emphasizes the critical gap between current detection methodologies and the sophistication of new generation techniques, calling for intensified efforts in this crucial area of study.
☆ Continuity-driven Synergistic Diffusion with Neural Priors for Ultra-Sparse-View CBCT Reconstruction
The clinical application of cone-beam computed tomography (CBCT) is constrained by the inherent trade-off between radiation exposure and image quality. Ultra-sparse angular sampling, employed to reduce dose, introduces severe undersampling artifacts and inter-slice inconsistencies, compromising diagnostic reliability. Existing reconstruction methods often struggle to balance angular continuity with spatial detail fidelity. To address these challenges, we propose a Continuity-driven Synergistic Diffusion with Neural priors (CSDN) for ultra-sparse-view CBCT reconstruction. Neural priors are introduced as a structural foundation to encode a continuous threedimensional attenuation representation, enabling the synthesis of physically consistent dense projections from ultra-sparse measurements. Building upon this neural-prior-based initialization, a synergistic diffusion strategy is developed, consisting of two collaborative refinement paths: a Sinogram Refinement Diffusion (Sino-RD) process that restores angular continuity and a Digital Radiography Refinement Diffusion (DR-RD) process that enforces inter-slice consistency from the projection image perspective. The outputs of the two diffusion paths are adaptively fused by the Dual-Projection Reconstruction Fusion (DPRF) module to achieve coherent volumetric reconstruction. Extensive experiments demonstrate that the proposed CSDN effectively suppresses artifacts and recovers fine textures under ultra-sparse-view conditions, outperforming existing state-of-the-art techniques.
☆ FSP-Diff: Full-Spectrum Prior-Enhanced DualDomain Latent Diffusion for Ultra-Low-Dose Spectral CT Reconstruction
Spectral computed tomography (CT) with photon-counting detectors holds immense potential for material discrimination and tissue characterization. However, under ultra-low-dose conditions, the sharply degraded signal-to-noise ratio (SNR) in energy-specific projections poses a significant challenge, leading to severe artifacts and loss of structural details in reconstructed images. To address this, we propose FSP-Diff, a full-spectrum prior-enhanced dual-domain latent diffusion framework for ultra-low-dose spectral CT reconstruction. Our framework integrates three core strategies: 1) Complementary Feature Construction: We integrate direct image reconstructions with projection-domain denoised results. While the former preserves latent textural nuances amidst heavy noise, the latter provides a stable structural scaffold to balance detail fidelity and noise suppression. 2) Full-Spectrum Prior Integration: By fusing multi-energy projections into a high-SNR full-spectrum image, we establish a unified structural reference that guides the reconstruction across all energy bins. 3) Efficient Latent Diffusion Synthesis: To alleviate the high computational burden of high-dimensional spectral data, multi-path features are embedded into a compact latent space. This allows the diffusion process to facilitate interactive feature fusion in a lower-dimensional manifold, achieving accelerated reconstruction while maintaining fine-grained detail restoration. Extensive experiments on simulated and real-world datasets demonstrate that FSP-Diff significantly outperforms state-of-the-art methods in both image quality and computational efficiency, underscoring its potential for clinically viable ultra-low-dose spectral CT imaging.
☆ EasyTune: Efficient Step-Aware Fine-Tuning for Diffusion-Based Motion Generation
In recent years, motion generative models have undergone significant advancement, yet pose challenges in aligning with downstream objectives. Recent studies have shown that using differentiable rewards to directly align the preference of diffusion models yields promising results. However, these methods suffer from (1) inefficient and coarse-grained optimization with (2) high memory consumption. In this work, we first theoretically and empirically identify the key reason of these limitations: the recursive dependence between different steps in the denoising trajectory. Inspired by this insight, we propose EasyTune, which fine-tunes diffusion at each denoising step rather than over the entire trajectory. This decouples the recursive dependence, allowing us to perform (1) a dense and fine-grained, and (2) memory-efficient optimization. Furthermore, the scarcity of preference motion pairs restricts the availability of motion reward model training. To this end, we further introduce a Self-refinement Preference Learning (SPL) mechanism that dynamically identifies preference pairs and conducts preference learning. Extensive experiments demonstrate that EasyTune outperforms DRaFT-50 by 8.2% in alignment (MM-Dist) improvement while requiring only 31.16% of its additional memory overhead and achieving a 7.3x training speedup. The project page is available at this link {https://xiaofeng-tan.github.io/projects/EasyTune/index.html}.
☆ D-ORCA: Dialogue-Centric Optimization for Robust Audio-Visual Captioning
Spoken dialogue is a primary source of information in videos; therefore, accurately identifying who spoke what and when is essential for deep video understanding. We introduce D-ORCA, a \textbf{d}ialogue-centric \textbf{o}mni-modal large language model optimized for \textbf{r}obust audio-visual \textbf{ca}ptioning. We further curate DVD, a large-scale, high-quality bilingual dataset comprising nearly 40,000 multi-party dialogue videos for training and 2000 videos for evaluation in English and Mandarin, addressing a critical gap in the open-source ecosystem. To ensure fine-grained captioning accuracy, we adopt group relative policy optimization with three novel reward functions that assess speaker attribution accuracy, global speech content accuracy, and sentence-level temporal boundary alignment. These rewards are derived from evaluation metrics widely used in speech processing and, to our knowledge, are applied for the first time as reinforcement learning objectives for audio-visual captioning. Extensive experiments demonstrate that D-ORCA substantially outperforms existing open-source models in speaker identification, speech recognition, and temporal grounding. Notably, despite having only 8 billion parameters, D-ORCA achieves performance competitive with Qwen3-Omni across several general-purpose audio-visual understanding benchmarks. Demos are available at \href{https://d-orca-llm.github.io/}{https://d-orca-llm.github.io/}. Our code, data, and checkpoints will be available at \href{https://github.com/WeChatCV/D-ORCA/}{https://github.com/WeChatCV/D-ORCA/}.
☆ One-Shot Crowd Counting With Density Guidance For Scene Adaptaion
Crowd scenes captured by cameras at different locations vary greatly, and existing crowd models have limited generalization for unseen surveillance scenes. To improve the generalization of the model, we regard different surveillance scenes as different category scenes, and introduce few-shot learning to make the model adapt to the unseen surveillance scene that belongs to the given exemplar category scene. To this end, we propose to leverage local and global density characteristics to guide the model of crowd counting for unseen surveillance scenes. Specifically, to enable the model to adapt to the varying density variations in the target scene, we propose the multiple local density learner to learn multi prototypes which represent different density distributions in the support scene. Subsequently, these multiple local density similarity matrixes are encoded. And they are utilized to guide the model in a local way. To further adapt to the global density in the target scene, the global density features are extracted from the support image, then it is used to guide the model in a global way. Experiments on three surveillance datasets shows that proposed method can adapt to the unseen surveillance scene and outperform recent state-of-the-art methods in the few-shot crowd counting.
☆ Integrating Specialized and Generic Agent Motion Prediction with Dynamic Occupancy Grid Maps
Accurate prediction of driving scene is a challenging task due to uncertainty in sensor data, the complex behaviors of agents, and the possibility of multiple feasible futures. Existing prediction methods using occupancy grid maps primarily focus on agent-agnostic scene predictions, while agent-specific predictions provide specialized behavior insights with the help of semantic information. However, both paradigms face distinct limitations: agent-agnostic models struggle to capture the behavioral complexities of dynamic actors, whereas agent-specific approaches fail to generalize to poorly perceived or unrecognized agents; combining both enables robust and safer motion forecasting. To address this, we propose a unified framework by leveraging Dynamic Occupancy Grid Maps within a streamlined temporal decoding pipeline to simultaneously predict future occupancy state grids, vehicle grids, and scene flow grids. Relying on a lightweight spatiotemporal backbone, our approach is centered on a tailored, interdependent loss function that captures inter-grid dependencies and enables diverse future predictions. By using occupancy state information to enforce flow-guided transitions, the loss function acts as a regularizer that directs occupancy evolution while accounting for obstacles and occlusions. Consequently, the model not only predicts the specific behaviors of vehicle agents, but also identifies other dynamic entities and anticipates their evolution within the complex scene. Evaluations on real-world nuScenes and Woven Planet datasets demonstrate superior prediction performances for dynamic vehicles and generic dynamic scene elements compared to baseline methods.
comment: Updated version with major revisions; currently under the second round of review at IEEE Transactions on Intelligent Vehicles
☆ Which private attributes do VLMs agree on and predict well? ICASSP 2026
Visual Language Models (VLMs) are often used for zero-shot detection of visual attributes in the image. We present a zero-shot evaluation of open-source VLMs for privacy-related attribute recognition. We identify the attributes for which VLMs exhibit strong inter-annotator agreement, and discuss the disagreement cases of human and VLM annotations. Our results show that when evaluated against human annotations, VLMs tend to predict the presence of privacy attributes more often than human annotators. In addition to this, we find that in cases of high inter-annotator agreement between VLMs, they can complement human annotation by identifying attributes overlooked by human annotators. This highlights the potential of VLMs to support privacy annotations in large-scale image datasets.
comment: This work has been accepted to the ICASSP 2026
☆ Selective Fine-Tuning for Targeted and Robust Concept Unlearning
Text guided diffusion models are used by millions of users, but can be easily exploited to produce harmful content. Concept unlearning methods aim at reducing the models' likelihood of generating harmful content. Traditionally, this has been tackled at an individual concept level, with only a handful of recent works considering more realistic concept combinations. However, state of the art methods depend on full finetuning, which is computationally expensive. Concept localisation methods can facilitate selective finetuning, but existing techniques are static, resulting in suboptimal utility. In order to tackle these challenges, we propose TRUST (Targeted Robust Selective fine Tuning), a novel approach for dynamically estimating target concept neurons and unlearning them through selective finetuning, empowered by a Hessian based regularization. We show experimentally, against a number of SOTA baselines, that TRUST is robust against adversarial prompts, preserves generation quality to a significant degree, and is also significantly faster than the SOTA. Our method achieves unlearning of not only individual concepts but also combinations of concepts and conditional concepts, without any specific regularization.
comment: Given the brittle nature of existing methods in unlearning harmful content in diffusion models, we propose TRuST, a novel approach for dynamically estimating target concept neurons and unlearning them by selectively fine-tuning
☆ Rethinking Practical and Efficient Quantization Calibration for Vision-Language Models
Post-training quantization (PTQ) is a primary approach for deploying large language models without fine-tuning, and the quantized performance is often strongly affected by the calibration in PTQ. By contrast, in vision-language models (VLMs), substantial differences between visual and text tokens in their activation distributions and sensitivities to quantization error pose significant challenges for effective calibration during PTQ. In this work, we rethink what PTQ calibration should align with in VLMs and propose the Token-level Importance-aware Layer-wise Quantization framework (TLQ). Guided by gradient information, we design a token-level importance integration mechanism for quantization error, and use it to construct a token-level calibration set, enabling a more fine-grained calibration strategy. Furthermore, TLQ introduces a multi-GPU, quantization-exposed layer-wise calibration scheme. This scheme keeps the layer-wise calibration procedure consistent with the true quantized inference path and distributes the complex layer-wise calibration workload across multiple RTX3090 GPUs, thereby reducing reliance on the large memory of A100 GPUs. TLQ is evaluated across two models, three model scales, and two quantization settings, consistently achieving performance improvements across all settings, indicating its strong quantization stability. The code will be released publicly.
☆ Scalable Adaptation of 3D Geometric Foundation Models via Weak Supervision from Internet Video
Geometric foundation models show promise in 3D reconstruction, yet their progress is severely constrained by the scarcity of diverse, large-scale 3D annotations. While Internet videos offer virtually unlimited raw data, utilizing them as a scaling source for geometric learning is challenging due to the absence of ground-truth geometry and the presence of observational noise. To address this, we propose SAGE, a framework for Scalable Adaptation of GEometric foundation models from raw video streams. SAGE leverages a hierarchical mining pipeline to transform videos into training trajectories and hybrid supervision: (1) Informative training trajectory selection; (2) Sparse Geometric Anchoring via SfM point clouds for global structural guidance; and (3) Dense Differentiable Consistency via 3D Gaussian rendering for multi-view constraints. To prevent catastrophic forgetting, we introduce a regularization strategy using anchor data. Extensive experiments show that SAGE significantly enhances zero-shot generalization, reducing Chamfer Distance by 20-42% on unseen benchmarks (7Scenes, TUM-RGBD, Matterport3D) compared to state-of-the-art baselines. To our knowledge, SAGE pioneers the adaptation of geometric foundation models via Internet video, establishing a scalable paradigm for general-purpose 3D learning.
☆ Research on a Camera Position Measurement Method based on a Parallel Perspective Error Transfer Model
Camera pose estimation from sparse correspondences is a fundamental problem in geometric computer vision and remains particularly challenging in near-field scenarios, where strong perspective effects and heterogeneous measurement noise can significantly degrade the stability of analytic PnP solutions. In this paper, we present a geometric error propagation framework for camera pose estimation based on a parallel perspective approximation. By explicitly modeling how image measurement errors propagate through perspective geometry, we derive an error transfer model that characterizes the relationship between feature point distribution, camera depth, and pose estimation uncertainty. Building on this analysis, we develop a pose estimation method that leverages parallel perspective initialization and error-aware weighting within a Gauss-Newton optimization scheme, leading to improved robustness in proximity operations. Extensive experiments on both synthetic data and real-world images, covering diverse conditions such as strong illumination, surgical lighting, and underwater low-light environments, demonstrate that the proposed approach achieves accuracy and robustness comparable to state-of-the-art analytic and iterative PnP methods, while maintaining high computational efficiency. These results highlight the importance of explicit geometric error modeling for reliable camera pose estimation in challenging near-field settings.
comment: 32 pages, 19 figures
☆ WristMIR: Coarse-to-Fine Region-Aware Retrieval of Pediatric Wrist Radiographs with Radiology Report-Driven Learning
Retrieving wrist radiographs with analogous fracture patterns is challenging because clinically important cues are subtle, highly localized and often obscured by overlapping anatomy or variable imaging views. Progress is further limited by the scarcity of large, well-annotated datasets for case-based medical image retrieval. We introduce WristMIR, a region-aware pediatric wrist radiograph retrieval framework that leverages dense radiology reports and bone-specific localization to learn fine-grained, clinically meaningful image representations without any manual image-level annotations. Using MedGemma-based structured report mining to generate both global and region-level captions, together with pre-processed wrist images and bone-specific crops of the distal radius, distal ulna, and ulnar styloid, WristMIR jointly trains global and local contrastive encoders and performs a two-stage retrieval process: (1) coarse global matching to identify candidate exams, followed by (2) region-conditioned reranking aligned to a predefined anatomical bone region. WristMIR improves retrieval performance over strong vision-language baselines, raising image-to-text Recall@5 from 0.82% to 9.35%. Its embeddings also yield stronger fracture classification (AUROC 0.949, AUPRC 0.953). In region-aware evaluation, the two-stage design markedly improves retrieval-based fracture diagnosis, increasing mean $F_1$ from 0.568 to 0.753, and radiologists rate its retrieved cases as more clinically relevant, with mean scores rising from 3.36 to 4.35. These findings highlight the potential of anatomically guided retrieval to enhance diagnostic reasoning and support clinical decision-making in pediatric musculoskeletal imaging. The source code is publicly available at https://github.com/quin-med-harvard-edu/WristMIR.
☆ Thinking in Structures: Evaluating Spatial Intelligence through Reasoning on Constrained Manifolds
Spatial intelligence is crucial for vision--language models (VLMs) in the physical world, yet many benchmarks evaluate largely unconstrained scenes where models can exploit 2D shortcuts. We introduce SSI-Bench, a VQA benchmark for spatial reasoning on constrained manifolds, built from complex real-world 3D structures whose feasible configurations are tightly governed by geometric, topological, and physical constraints. SSI-Bench contains 1,000 ranking questions spanning geometric and topological reasoning and requiring a diverse repertoire of compositional spatial operations, such as mental rotation, cross-sectional inference, occlusion reasoning, and force-path reasoning. It is created via a fully human-centered pipeline: ten researchers spent over 400 hours curating images, annotating structural components, and designing questions to minimize pixel-level cues. Evaluating 31 widely used VLMs reveals a large gap to humans: the best open-source model achieves 22.2% accuracy and the strongest closed-source model reaches 33.6%, while humans score 91.6%. Encouraging models to think yields only marginal gains, and error analysis points to failures in structural grounding and constraint-consistent 3D reasoning. Project page: https://ssi-bench.github.io.
☆ Recovering 3D Shapes from Ultra-Fast Motion-Blurred Images 3DV 2026
We consider the problem of 3D shape recovery from ultra-fast motion-blurred images. While 3D reconstruction from static images has been extensively studied, recovering geometry from extreme motion-blurred images remains challenging. Such scenarios frequently occur in both natural and industrial settings, such as fast-moving objects in sports (e.g., balls) or rotating machinery, where rapid motion distorts object appearance and makes traditional 3D reconstruction techniques like Multi-View Stereo (MVS) ineffective. In this paper, we propose a novel inverse rendering approach for shape recovery from ultra-fast motion-blurred images. While conventional rendering techniques typically synthesize blur by averaging across multiple frames, we identify a major computational bottleneck in the repeated computation of barycentric weights. To address this, we propose a fast barycentric coordinate solver, which significantly reduces computational overhead and achieves a speedup of up to 4.57x, enabling efficient and photorealistic simulation of high-speed motion. Crucially, our method is fully differentiable, allowing gradients to propagate from rendered images to the underlying 3D shape, thereby facilitating shape recovery through inverse rendering. We validate our approach on two representative motion types: rapid translation and rotation. Experimental results demonstrate that our method enables efficient and realistic modeling of ultra-fast moving objects in the forward simulation. Moreover, it successfully recovers 3D shapes from 2D imagery of objects undergoing extreme translational and rotational motion, advancing the boundaries of vision-based 3D reconstruction. Project page: https://maxmilite.github.io/rec-from-ultrafast-blur/
comment: Accepted by 3DV 2026. Project page: https://maxmilite.github.io/rec-from-ultrafast-blur/
☆ Geometry-Aware Rotary Position Embedding for Consistent Video World Model
Predictive world models that simulate future observations under explicit camera control are fundamental to interactive AI. Despite rapid advances, current systems lack spatial persistence: they fail to maintain stable scene structures over long trajectories, frequently hallucinating details when cameras revisit previously observed locations. We identify that this geometric drift stems from reliance on screen-space positional embeddings, which conflict with the projective geometry required for 3D consistency. We introduce \textbf{ViewRope}, a geometry-aware encoding that injects camera-ray directions directly into video transformer self-attention layers. By parameterizing attention with relative ray geometry rather than pixel locality, ViewRope provides a model-native inductive bias for retrieving 3D-consistent content across temporal gaps. We further propose \textbf{Geometry-Aware Frame-Sparse Attention}, which exploits these geometric cues to selectively attend to relevant historical frames, improving efficiency without sacrificing memory consistency. We also present \textbf{ViewBench}, a diagnostic suite measuring loop-closure fidelity and geometric drift. Our results demonstrate that ViewRope substantially improves long-term consistency while reducing computational costs.
☆ VFace: A Training-Free Approach for Diffusion-Based Video Face Swapping
We present a training-free, plug-and-play method, namely VFace, for high-quality face swapping in videos. It can be seamlessly integrated with image-based face swapping approaches built on diffusion models. First, we introduce a Frequency Spectrum Attention Interpolation technique to facilitate generation and intact key identity characteristics. Second, we achieve Target Structure Guidance via plug-and-play attention injection to better align the structural features from the target frame to the generation. Third, we present a Flow-Guided Attention Temporal Smoothening mechanism that enforces spatiotemporal coherence without modifying the underlying diffusion model to reduce temporal inconsistencies typically encountered in frame-wise generation. Our method requires no additional training or video-specific fine-tuning. Extensive experiments show that our method significantly enhances temporal consistency and visual fidelity, offering a practical and modular solution for video-based face swapping. Our code is available at https://github.com/Sanoojan/VFace.
♻ ☆ Virtual Community: An Open World for Humans, Robots, and Society
The rapid progress in AI and Robotics may lead to a profound societal transformation, as humans and robots begin to coexist within shared communities, introducing both opportunities and challenges. To explore this future, we present Virtual Community-an open-world platform for humans, robots, and society-built on a universal physics engine and grounded in real-world 3D scenes. With Virtual Community, we aim to enable the study of embodied social intelligence at scale. To support these, Virtual Community features: 1) An open-source multi-agent physics simulator that supports robots, humans, and their interactions within a society; 2) A large-scale, real-world aligned community generation pipeline, including vast outdoor space, diverse indoor scenes, and a community of grounded agents with rich characters and appearances. Leveraging Virtual Community, we propose two novel challenges. The Community Planning Challenge evaluates multi-agent reasoning and planning ability in open-world settings, such as cooperating to help agents with daily activities and efficiently connecting other agents. The Community Robot Challenge requires multiple heterogeneous robots to collaborate in solving complex open-world tasks. We evaluate various baselines on these tasks and demonstrate the challenges in both high-level open-world task planning and low-level cooperation controls. We hope that Virtual Community will unlock further study of human-robot coexistence within open-world environments.
comment: website https://virtual-community-ai.github.io/
♻ ☆ Toward Inherently Robust VLMs Against Visual Perception Attacks
Autonomous vehicles rely on deep neural networks (DNNs) for traffic sign recognition, lane centering, and vehicle detection, yet these models are vulnerable to attacks that induce misclassification and threaten safety. Existing defenses (e.g., adversarial training) often fail to generalize and degrade clean accuracy. We introduce Vehicle Vision-Language Models (V2LMs), fine-tuned vision-language models specialized for autonomous vehicle perception, and show that they are inherently more robust to unseen attacks without adversarial training, maintaining substantially higher adversarial accuracy than conventional DNNs. We study two deployments: Solo (task-specific V2LMs) and Tandem (a single V2LM for all three tasks). Under attacks, DNNs drop 33-74%, whereas V2LMs decline by under 8% on average. Tandem achieves comparable robustness to Solo while being more memory-efficient. We also explore integrating V2LMs in parallel with existing perception stacks to enhance resilience. Our results suggest V2LMs are a promising path toward secure, robust AV perception.
comment: Accepted to the 2026 IEEE Intelligent Vehicles Symposium (IV 2026)
♻ ☆ Collision Risk Estimation via Loss Prediction in End-to-End Autonomous Driving
Collision risk estimation and avoidance play central roles in the safety of autonomous driving (AD) systems. Recently emerged end-to-end AD systems gain collision avoidance ability by minimizing losses to penalize planning trajectories that are too close to other objects. Despite a significant collision rate during testing, most end-to-end planners do not explicitly quantify the collision risk in their outputs. To address this, we introduce RiskMonitor, an efficient plug-and-play module that interprets planning and motion tokens from state-of-the-art end-to-end planners to estimate collision risk. Inspired by loss prediction based uncertainty quantification, RiskMonitor predicts whether the collision loss -- commonly adopted to train end-to-end planners -- is positive along planned waypoints, framing collision risk estimation as a binary classification task. We evaluate RiskMonitor on the real-world nuScenes dataset (open-loop) and the neural-rendering based simulator, NeuroNCAP (closed-loop). Our token-driven method outperforms prediction-driven approaches, including deterministic rules, Gaussian mixture models, and Monte Carlo Dropout. When integrated with a simple braking policy, RiskMonitor improves collision avoidance ability by $66.5\%$ in a closed-loop test on safety-critical scenarios. These results demonstrate that monitoring collision risk using plan and motion tokens enhances the safety of end-to-end AD without retraining it.
Neural-Augmented Kelvinlet for Real-Time Soft Tissue Deformation Modeling
Accurate and efficient modeling of soft-tissue interactions is fundamental for advancing surgical simulation, surgical robotics, and model-based surgical automation. To achieve real-time latency, classical Finite Element Method (FEM) solvers are often replaced with neural approximations; however, naively training such models in a fully data-driven manner without incorporating physical priors frequently leads to poor generalization and physically implausible predictions. We present a novel physics-informed neural simulation framework that enables real-time prediction of soft-tissue deformations under complex single- and multi-grasper interactions. Our approach integrates Kelvinlet-based analytical priors with large-scale FEM data, capturing both linear and nonlinear tissue responses. This hybrid design improves predictive accuracy and physical plausibility across diverse neural architectures while maintaining the low-latency performance required for interactive applications. We validate our method on challenging surgical manipulation tasks involving standard laparoscopic grasping tools, demonstrating substantial improvements in deformation fidelity and temporal stability over existing baselines. These results establish Kelvinlet-augmented learning as a principled and computationally efficient paradigm for real-time, physics-aware soft-tissue simulation in surgical AI.
♻ ☆ MetaCluster: Enabling Deep Compression of Kolmogorov-Arnold Network
Kolmogorov-Arnold Networks (KANs) replace scalar weights with per-edge vectors of basis coefficients, thereby increasing expressivity and accuracy while also resulting in a multiplicative increase in parameters and memory. We propose MetaCluster, a framework that makes KANs highly compressible without sacrificing accuracy. Specifically, a lightweight meta-learner, trained jointly with the KAN, maps low-dimensional embeddings to coefficient vectors, thereby shaping them to lie on a low-dimensional manifold that is amenable to clustering. We then run K-means in coefficient space and replace per-edge vectors with shared centroids. Afterwards, the meta-learner can be discarded, and a brief fine-tuning of the centroid codebook recovers any residual accuracy loss. The resulting model stores only a small codebook and per-edge indices, exploiting the vector nature of KAN parameters to amortize storage across multiple coefficients. On MNIST, CIFAR-10, and CIFAR-100, across standard KANs and ConvKANs using multiple basis functions, MetaCluster achieves a reduction of up to $80\times$ in parameter storage, with no loss in accuracy. Similarly, on high-dimensional equation modeling tasks, MetaCluster achieves a parameter reduction of $124.1\times$, without impacting performance. Code will be released upon publication.
♻ ☆ FlashKAT: Understanding and Addressing Performance Bottlenecks in the Kolmogorov-Arnold Transformer AAAI 2026
The Kolmogorov-Arnold Network (KAN) has been gaining popularity as an alternative to the multilayer perceptron (MLP) due to its greater expressiveness and interpretability. Even so, KAN suffers from training instability and being orders of magnitude slower due to its increased computational cost, limiting its applicability to large-scale tasks. Recently, the Kolmogorov-Arnold Transformer (KAT) has been proposed, achieving FLOPs comparable to traditional Transformer models with MLPs by leveraging Group-Rational KAN (GR-KAN). Unfortunately, despite the comparable FLOPs, our testing shows that KAT remains 123x slower during training, indicating that there are other performance bottlenecks beyond FLOPs. In this paper, we conduct a series of experiments to understand the root cause of the slowdown in KAT. We uncover that the slowdown can be isolated to memory stalls, linked more specifically to inefficient gradient accumulations in the backward pass of GR-KAN. To address this memory bottleneck, we propose FlashKAT, which minimizes accesses to slow memory and the usage of atomic adds through a restructured kernel. Evaluations show that FlashKAT achieves up to an 86.5x training speedup over state-of-the-art KAT while reducing rounding errors in gradient computation.
comment: AAAI 2026
♻ ☆ Towards Spatio-Temporal Extrapolation of Phase-Field Simulations with Convolution-Only Neural Networks
Phase-field simulations of liquid metal dealloying (LMD) can capture complex microstructural evolutions but can be prohibitively expensive for large domains and long time horizons. In this paper, we introduce a fully convolutional, conditionally parameterized U-Net surrogate designed to extrapolate far beyond its training data in both space and time. The architecture integrates convolutional self-attention, physically informed padding, and a flood-fill corrector method to maintain accuracy under extreme extrapolation, while conditioning on simulation parameters allows for flexible time-step skipping and adaptation to varying alloy compositions. To remove the need for costly solver-based initialization, we couple the surrogate with a conditional diffusion model that generates synthetic, physically consistent initial conditions. We train our surrogate on simulations generated over small domain sizes and short time spans, but, by taking advantage of the convolutional nature of U-Nets, we are able to run and extrapolate surrogate simulations for longer time horizons than what would be achievable with classic numerical solvers. Across multiple alloy compositions, the framework is able to reproduce the LMD physics accurately. It predicts key quantities of interest and spatial statistics with relative errors typically below 5% in the training regime and under 15% during large-scale, long time-horizon extrapolations. Our framework can also deliver speed-ups of up to 36,000 times, bringing the time to run weeks-long simulations down to a few seconds. This work is a first stepping stone towards high-fidelity extrapolation in both space and time of phase-field simulation for LMD.
♻ ☆ MAMBO-G: Magnitude-Aware Mitigation for Boosted Guidance
High-fidelity text-to-image and text-to-video generation typically relies on Classifier-Free Guidance (CFG), but achieving optimal results often demands computationally expensive sampling schedules. In this work, we propose MAMBO-G, a training-free acceleration framework that significantly reduces computational cost by dynamically optimizing guidance magnitudes. We observe that standard CFG schedules are inefficient, applying disproportionately large updates in early steps that hinder convergence speed. MAMBO-G mitigates this by modulating the guidance scale based on the update-to-prediction magnitude ratio, effectively stabilizing the trajectory and enabling rapid convergence. This efficiency is particularly vital for resource-intensive tasks like video generation. Our method serves as a universal plug-and-play accelerator, achieving up to 3x speedup on Stable Diffusion v3.5 (SD3.5) and 4x on Lumina. Most notably, MAMBO-G accelerates the 14B-parameter Wan2.1 video model by 2x while preserving visual fidelity, offering a practical solution for efficient large-scale video synthesis. Our implementation follows a mainstream open-source diffusion framework and is plug-and-play with existing pipelines.
♻ ☆ DeltaSpace: A Semantic-aligned Feature Space for Flexible Text-guided Image Editing
Text-guided image editing faces significant challenges when considering training and inference flexibility. Much literature collects large amounts of annotated image-text pairs to train text-conditioned generative models from scratch, which is expensive and not efficient. After that, some approaches that leverage pre-trained vision-language models have been proposed to avoid data collection, but they are limited by either per text-prompt optimization or inference-time hyper-parameters tuning. To address these issues, we investigate and identify a specific space, referred to as CLIP DeltaSpace, where the CLIP visual feature difference of two images is semantically aligned with the CLIP textual feature difference of their corresponding text descriptions. Based on DeltaSpace, we propose a novel framework called DeltaEdit, which maps the CLIP visual feature differences to the latent space directions of a generative model during the training phase, and predicts the latent space directions from the CLIP textual feature differences during the inference phase. And this design endows DeltaEdit with two advantages: (1) text-free training; (2) generalization to various text prompts for zero-shot inference. Extensive experiments validate the effectiveness and versatility of DeltaEdit with different generative models, including both the GAN model and the diffusion model, in achieving flexible text-guided image editing. Code is available at https://github.com/Yueming6568/DeltaEdit.
comment: 18 pages. arXiv admin note: text overlap with arXiv:2303.06285
♻ ☆ ImageRAG: Dynamic Image Retrieval for Reference-Guided Image Generation
Diffusion models enable high-quality and diverse visual content synthesis. However, they struggle to generate rare or unseen concepts. To address this challenge, we explore the usage of Retrieval-Augmented Generation (RAG) with image generation models. We propose ImageRAG, a method that dynamically retrieves relevant images based on a given text prompt, and uses them as context to guide the generation process. Prior approaches that used retrieved images to improve generation, trained models specifically for retrieval-based generation. In contrast, ImageRAG leverages the capabilities of existing image conditioning models, and does not require RAG-specific training. Our approach is highly adaptable and can be applied across different model types, showing significant improvement in generating rare and fine-grained concepts using different base models. Our project page is available at: https://rotem-shalev.github.io/ImageRAG
♻ ☆ 3D Wavelet-Based Structural Priors for Controlled Diffusion in Whole-Body Low-Dose PET Denoising
Low-dose Positron Emission Tomography (PET) imaging reduces patient radiation exposure but suffers from increased noise that degrades image quality and diagnostic reliability. Although diffusion models have demonstrated strong denoising capability, their stochastic nature makes it challenging to enforce anatomically consistent structures, particularly in low signal-to-noise regimes and volumetric whole-body imaging. We propose Wavelet-Conditioned ControlNet (WCC-Net), a fully 3D diffusion-based framework that introduces explicit frequency-domain structural priors via wavelet representations to guide volumetric PET denoising. By injecting wavelet-based structural guidance into a frozen pretrained diffusion backbone through a lightweight control branch, WCC-Net decouples anatomical structure from noise while preserving generative expressiveness and 3D structural continuity. Extensive experiments demonstrate that WCC-Net consistently outperforms CNN-, GAN-, and diffusion-based baselines. On the internal 1/20-dose test set, WCC-Net improves PSNR by +1.21 dB and SSIM by +0.008 over a strong diffusion baseline, while reducing structural distortion (GMSD) and intensity error (NMAE). Moreover, WCC-Net generalizes robustly to unseen dose levels (1/50 and 1/4), achieving superior quantitative performance and improved volumetric anatomical consistency.
comment: 10 pages
♻ ☆ Breaking Scale Anchoring: Frequency Representation Learning for Accurate High-Resolution Inference from Low-Resolution Training ICLR 2026
Zero-Shot Super-Resolution Spatiotemporal Forecasting requires a deep learning model to be trained on low-resolution data and deployed for inference on high-resolution. Existing studies consider maintaining similar error across different resolutions as indicative of successful multi-resolution generalization. However, deep learning models serving as alternatives to numerical solvers should reduce error as resolution increases. The fundamental limitation is, the upper bound of physical law frequencies that low-resolution data can represent is constrained by its Nyquist frequency, making it difficult for models to process signals containing unseen frequency components during high-resolution inference. This results in errors being anchored at low resolution, incorrectly interpreted as successful generalization. We define this fundamental phenomenon as a new problem distinct from existing issues: Scale Anchoring. Therefore, we propose architecture-agnostic Frequency Representation Learning. It alleviates Scale Anchoring through resolution-aligned frequency representations and spectral consistency training: on grids with higher Nyquist frequencies, the frequency response in high-frequency bands of FRL-enhanced variants is more stable. This allows errors to decrease with resolution and significantly outperform baselines within our task and resolution range, while incurring only modest computational overhead.
comment: Accepted as a poster paper at ICLR 2026
RAP: 3D Rasterization Augmented End-to-End Planning
Imitation learning for end-to-end driving trains policies only on expert demonstrations. Once deployed in a closed loop, such policies lack recovery data: small mistakes cannot be corrected and quickly compound into failures. A promising direction is to generate alternative viewpoints and trajectories beyond the logged path. Prior work explores photorealistic digital twins via neural rendering or game engines, but these methods are prohibitively slow and costly, and thus mainly used for evaluation. In this work, we argue that photorealism is unnecessary for training end-to-end planners. What matters is semantic fidelity and scalability: driving depends on geometry and dynamics, not textures or lighting. Motivated by this, we propose 3D Rasterization, which replaces costly rendering with lightweight rasterization of annotated primitives, enabling augmentations such as counterfactual recovery maneuvers and cross-agent view synthesis. To transfer these synthetic views effectively to real-world deployment, we introduce a Raster-to-Real feature-space alignment that bridges the sim-to-real gap. Together, these components form Rasterization Augmented Planning (RAP), a scalable data augmentation pipeline for planning. RAP achieves state-of-the-art closed-loop robustness and long-tail generalization, ranking first on four major benchmarks: NAVSIM v1/v2, Waymo Open Dataset Vision-based E2E Driving, and Bench2Drive. Our results show that lightweight rasterization with feature alignment suffices to scale E2E training, offering a practical alternative to photorealistic rendering. Project page: https://alan-lanfeng.github.io/RAP/.
♻ ☆ TSJNet: A Multi-modality Target and Semantic Awareness Joint-driven Image Fusion Network
This study aims to address the problem of incomplete information in unimodal images for semantic segmentation and object detection tasks. Existing multimodal fusion methods suffer from limited capability in discriminative modeling of multi-scale semantic structures and salient target regions, which further restricts the effective fusion of task-related semantic details and target information across modalities. To tackle these challenges, this paper proposes a novel fusion network termed TSJNet, which leverages the semantic information output by high-level tasks in a joint manner to guide the fusion process. Specifically, we design a multi-dimensional feature extraction module with dual parallel branches to capture multi-scale and salient features. Meanwhile, a data-agnostic spatial attention module embedded in the decoder dynamically calibrates attention allocation across different data domains, significantly enhancing the model's generalization ability. To optimize both fusion and advanced visual tasks, we balance performance by combining fusion loss with semantic losses. Additionally, we have developed a multimodal unmanned aerial vehicle (UAV) dataset covering multiple scenarios (UMS). Extensive experiments demonstrate that TSJNet achieves outstanding performance on five public datasets (MSRS, M\textsuperscript{3}FD, RoadScene, LLVIP, and TNO) and our UMS dataset. The generated fusion results exhibit favorable visual effects, and compared to state-of-the-art methods, the mean average precision (mAP@0.5) and mean intersection over union (mIoU) for object detection and segmentation, respectively, improve by 7.97\% and 10.88\%.The code and the dataset has been publicly released at https://github.com/XylonXu01/TSJNet.
♻ ☆ SVD-ViT: Does SVD Make Vision Transformers Attend More to the Foreground?
Vision Transformers (ViT) have been established as large-scale foundation models. However, because self-attention operates globally, they lack an explicit mechanism to distinguish foreground from background. As a result, ViT may learn unnecessary background features and artifacts, leading to degraded classification performance. To address this issue, we propose SVD-ViT, which leverages singular value decomposition (SVD) to prioritize the learning of foreground features. SVD-ViT consists of three components-\textbf{SPC module}, \textbf{SSVA}, and \textbf{ID-RSVD}-and suppresses task-irrelevant factors such as background noise and artifacts by extracting and aggregating singular vectors that capture object foreground information. Experimental results demonstrate that our method improves classification accuracy and effectively learns informative foreground representations while reducing the impact of background noise.
comment: I corrected the incorrect email address. I'm sorry for any inconvenience this may have caused
♻ ☆ Hyperspectral Imaging
Hyperspectral imaging (HSI) is an advanced sensing modality that simultaneously captures spatial and spectral information, enabling non-invasive, label-free analysis of material, chemical, and biological properties. This Primer presents a comprehensive overview of HSI, from the underlying physical principles and sensor architectures to key steps in data acquisition, calibration, and correction. We summarize common data structures and highlight classical and modern analysis methods, including dimensionality reduction, classification, spectral unmixing, and AI-driven techniques such as deep learning. Representative applications across Earth observation, precision agriculture, biomedicine, industrial inspection, cultural heritage, and security are also discussed, emphasizing HSI's ability to uncover sub-visual features for advanced monitoring, diagnostics, and decision-making. Persistent challenges, such as hardware trade-offs, acquisition variability, and the complexity of high-dimensional data, are examined alongside emerging solutions, including computational imaging, physics-informed modeling, cross-modal fusion, and self-supervised learning. Best practices for dataset sharing, reproducibility, and metadata documentation are further highlighted to support transparency and reuse. Looking ahead, we explore future directions toward scalable, real-time, and embedded HSI systems, driven by sensor miniaturization, self-supervised learning, and foundation models. As HSI evolves into a general-purpose, cross-disciplinary platform, it holds promise for transformative applications in science, technology, and society.
comment: Accepted by Nature Reviews Methods Primers
♻ ☆ MS-Mix: Unveiling the Power of Mixup for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) aims to identify and interpret human emotions by integrating information from heterogeneous data sources such as text, video, and audio. While deep learning models have advanced in network architecture design, they remain heavily limited by scarce multimodal annotated data. Although Mixup-based augmentation improves generalization in unimodal tasks, its direct application to MSA introduces critical challenges: random mixing often amplifies label ambiguity and semantic inconsistency due to the lack of emotion-aware mixing mechanisms. To overcome these issues, we propose MS-Mix, an adaptive, emotion-sensitive augmentation framework that automatically optimizes sample mixing in multimodal settings. The key components of MS-Mix include: (1) a Sentiment-Aware Sample Selection (SASS) strategy that effectively prevents semantic confusion caused by mixing samples with contradictory emotions. (2) a Sentiment Intensity Guided (SIG) module using multi-head self-attention to compute modality-specific mixing ratios dynamically based on their respective emotional intensities. (3) a Sentiment Alignment Loss (SAL) that aligns the prediction distributions across modalities, and incorporates the Kullback-Leibler-based loss as an additional regularization term to train the emotion intensity predictor and the backbone network jointly. Extensive experiments on three benchmark datasets with six state-of-the-art backbones confirm that MS-Mix consistently outperforms existing methods, establishing a new standard for robust multimodal sentiment augmentation. The source code is available at: https://github.com/HongyuZhu-s/MS-Mix.
comment: Under Review
♻ ☆ TIPO: Text to Image with Text Presampling for Prompt Optimization
TIPO (Text-to-Image Prompt Optimization) introduces an efficient approach for automatic prompt refinement in text-to-image (T2I) generation. Starting from simple user prompts, TIPO leverages a lightweight pre-trained model to expand these prompts into richer and more detailed versions. Conceptually, TIPO samples refined prompts from a targeted sub-distribution within the broader semantic space, preserving the original intent while significantly improving visual quality, coherence, and detail. Unlike resource-intensive methods based on large language models (LLMs) or reinforcement learning (RL), TIPO offers strong computational efficiency and scalability, opening new possibilities for effective automated prompt engineering in T2I tasks. Extensive experiments across multiple domains demonstrate that TIPO achieves stronger text alignment, reduced visual artifacts, and consistently higher human preference rates, while maintaining competitive aesthetic quality. These results highlight the effectiveness of distribution-aligned prompt engineering and point toward broader opportunities for scalable, automated refinement in text-to-image generation.
comment: 50 pages, 28 figures
♻ ☆ ERVD: An Efficient and Robust ViT-Based Distillation Framework for Remote Sensing Image Retrieval
ERVD: An Efficient and Robust ViT-Based Distillation Framework for Remote Sensing Image Retrieval
comment: Further optimize the effect
♻ ☆ SegQuant: A Semantics-Aware and Generalizable Quantization Framework for Diffusion Models
Diffusion models have demonstrated exceptional generative capabilities but are computationally intensive, posing significant challenges for deployment in resource-constrained or latency-sensitive environments. Quantization offers an effective means to reduce model size and computational cost, with post-training quantization (PTQ) being particularly appealing due to its compatibility with pre-trained models without requiring retraining or training data. However, existing PTQ methods for diffusion models often rely on architecture-specific heuristics that limit their generalizability and hinder integration with industrial deployment pipelines. To address these limitations, we propose SegQuant, a unified quantization framework that adaptively combines complementary techniques to enhance cross-model versatility. SegQuant consists of a segment-aware, graph-based quantization strategy (SegLinear) that captures structural semantics and spatial heterogeneity, along with a dual-scale quantization scheme (DualScale) that preserves polarity-asymmetric activations, which is crucial for maintaining visual fidelity in generated outputs. SegQuant is broadly applicable beyond Transformer-based diffusion models, achieving strong performance while ensuring seamless compatibility with mainstream deployment tools.
♻ ☆ Generalist Foundation Models from a Multimodal Dataset for 3D Computed Tomography
Advancements in medical imaging AI, particularly in 3D imaging, have been limited due to the scarcity of comprehensive datasets. We introduce CT-RATE, a public dataset that pairs 3D medical images with corresponding textual reports. CT-RATE comprises 25,692 non-contrast 3D chest CT scans from 21,304 unique patients. Each scan is accompanied by its corresponding radiology report. Leveraging CT-RATE, we develop CT-CLIP, a CT-focused contrastive language-image pretraining framework designed for broad applications without the need for task-specific training. We demonstrate how CT-CLIP can be used in multi-abnormality detection and case retrieval, and outperforms state-of-the-art fully supervised models across all key metrics. By combining CT-CLIP's vision encoder with a pretrained large language model, we create CT-CHAT, a vision-language foundational chat model for 3D chest CT volumes. Finetuned on over 2.7 million question-answer pairs derived from the CT-RATE dataset, CT-CHAT underscores the necessity for specialized methods in 3D medical imaging. Collectively, the open-source release of CT-RATE, CT-CLIP, and CT-CHAT not only addresses critical challenges in 3D medical imaging but also lays the groundwork for future innovations in medical AI and improved patient care.
♻ ☆ Adversarial Wear and Tear: Exploiting Natural Damage for Generating Physical-World Adversarial Examples
The presence of adversarial examples in the physical world poses significant challenges to the deployment of Deep Neural Networks in safety-critical applications such as autonomous driving. Most existing methods for crafting physical-world adversarial examples are ad-hoc, relying on temporary modifications like shadows, laser beams, or stickers that are tailored to specific scenarios. In this paper, we introduce a new class of physical-world adversarial examples, AdvWT, which draws inspiration from the naturally occurring phenomenon of `wear and tear', an inherent property of physical objects. Unlike manually crafted perturbations, `wear and tear' emerges organically over time due to environmental degradation, as seen in the gradual deterioration of outdoor signboards. To achieve this, AdvWT follows a two-step approach. First, a GAN-based, unsupervised image-to-image translation network is employed to model these naturally occurring damages, particularly in the context of outdoor signboards. The translation network encodes the characteristics of damaged signs into a latent `damage style code'. In the second step, we introduce adversarial perturbations into the style code, strategically optimizing its transformation process. This manipulation subtly alters the damage style representation, guiding the network to generate adversarial images where the appearance of damages remains perceptually realistic, while simultaneously ensuring their effectiveness in misleading neural networks. Through comprehensive experiments on two traffic sign datasets, we show that AdvWT effectively misleads DNNs in both digital and physical domains. AdvWT achieves an effective attack success rate, greater robustness, and a more natural appearance compared to existing physical-world adversarial examples. Additionally, integrating AdvWT into training enhances a model's generalizability to real-world damaged signs.
comment: Accepted to IEEE Transactions in Secure and Dependable Computing. This version corresponds to the author's accepted manuscript
♻ ☆ View-Centric Multi-Object Tracking with Homographic Matching in Moving UAV
In this paper, we address the challenge of Multi-Object Tracking (MOT) in moving Unmanned Aerial Vehicle (UAV) scenarios, where irregular flight trajectories, such as hovering, turning left/right, and moving up/down, lead to significantly greater complexity compared to fixed-camera MOT. Specifically, changes in the scene background not only render traditional frame-to-frame object IoU association methods ineffective but also introduce significant view shifts in the objects, which complicates tracking. To overcome these issues, we propose a novel HomView-MOT framework, which for the first time, harnesses the view homography inherent in changing scenes to solve MOT challenges in moving environments, incorporating homographic matching and view-centric concepts. We introduce a Fast Homography Estimation (FHE) algorithm for rapid computation of homography matrices between video frames, enabling object View-Centric ID Learning (VCIL) and leveraging multi-view homography to learn cross-view ID features. Concurrently, our Homographic Matching Filter (HMF) maps object bounding boxes from different frames onto a common view plane for a more realistic physical IoU association. Extensive experiments have proven that these innovations allow HomView-MOT to achieve state-of-the-art performance on prominent UAV MOT datasets VisDrone and UAVDT.
comment: TGRS 2026
♻ ☆ Decoupled Complementary Spectral-Spatial Learning for Background Representation Enhancement in Hyperspectral Anomaly Detection
A recent class of hyperspectral anomaly detection methods can be trained once on background datasets and then deployed universally without per-scene retraining or parameter tuning, showing strong efficiency and robustness. Building upon this paradigm, we propose a decoupled complementary spectral--spatial learning framework for background representation enhancement. The framework follows a two-stage training strategy: (1) we first train a spectral enhancement network via reverse distillation to obtain robust background spectral representations; and (2) we then freeze the spectral branch as a teacher and train a spatial branch as a complementary student (the "rebellious student") to capture spatial patterns overlooked by the teacher. Complementary learning is achieved through decorrelation objectives that reduce representational redundancy between the two branches, together with reconstruction regularization to prevent the student from learning irrelevant noise. After training, the framework jointly enhances background representations from both spectral and spatial perspectives, and the resulting enhanced features can be plugged into parameter-free, training-free detectors (e.g., the Reed--Xiaoli (RX) detector) for test-time deployment without per-scene retraining or parameter tuning. Experiments on the HAD100 benchmark demonstrate substantial improvements over representative baselines with modest computational overhead, validating the effectiveness of the proposed complementary learning paradigm. Our code is publicly available at https://github.com/xjpp2016/FERS.
♻ ☆ VisionReasoner: Unified Reasoning-Integrated Visual Perception via Reinforcement Learning
Large vision-language models exhibit inherent capabilities to handle diverse visual perception tasks. In this paper, we introduce VisionReasoner, a unified framework capable of reasoning and solving multiple visual perception tasks within a shared model. Specifically, by designing a unified reward mechanism and multi-object cognitive learning strategies, VisionReasoner enhances its reasoning capabilities to analyze visual inputs, and addresses diverse perception tasks within a unified model. VisionReasoner generates a structured reasoning process before delivering the desired outputs responding to user queries. Human evaluation reveals the reasoning process of VisionReasoner is faithful and reliable even without annotated reasoning train data. To rigorously assess unified visual perception capabilities, we evaluate VisionReasoner on ten diverse tasks spanning three critical domains: detection, segmentation, and counting. Experimental results show that VisionReasoner achieves superior performance as a unified model, outperforming the baseline Qwen2.5VL by relative margins of 29.1\% on COCO (detection), 22.1\% on ReasonSeg (segmentation), and 13.2\% on CountBench (counting).
♻ ☆ Vision-Centric 4D Occupancy Forecasting and Planning via Implicit Residual World Models
End-to-end autonomous driving systems increasingly rely on vision-centric world models to understand and predict their environment. However, a common ineffectiveness in these models is the full reconstruction of future scenes, which expends significant capacity on redundantly modeling static backgrounds. To address this, we propose IR-WM, an Implicit Residual World Model that focuses on modeling the current state and evolution of the world. IR-WM first establishes a robust bird's-eye-view representation of the current state from the visual observation. It then leverages the BEV features from the previous timestep as a strong temporal prior and predicts only the "residual", i.e., the changes conditioned on the ego-vehicle's actions and scene context. To alleviate error accumulation over time, we further apply an alignment module to calibrate semantic and dynamic misalignments. Moreover, we investigate different forecasting-planning coupling schemes and demonstrate that the implicit future state generated by world models substantially improves planning accuracy. On the nuScenes benchmark, IR-WM achieves top performance in both 4D occupancy forecasting and trajectory planning.
comment: ICRA 2026
♻ ☆ Clinical utility of foundation models in musculoskeletal MRI for biomarker fidelity and predictive outcomes
Precision medicine in musculoskeletal imaging requires scalable measurement infrastructure. We developed a modular system that converts routine MRI into standardized quantitative biomarkers suitable for clinical decision support. Promptable foundation segmenters (SAM, SAM2, MedSAM) were fine-tuned across heterogeneous musculoskeletal datasets and coupled to automated detection for fully automatic prompting. Fine-tuned segmentations yielded clinically reliable measurements with high concordance to expert annotations across cartilage, bone, and soft tissue biomarkers. Using the same measurements, we demonstrate two applications: (i) a three-stage knee triage cascade that reduces verification workload while maintaining sensitivity, and (ii) 48-month landmark models that forecast knee replacement and incident osteoarthritis with favorable calibration and net benefit across clinically relevant thresholds. Our model-agnostic, open-source architecture enables independent validation and development. This work validates a pathway from automated measurement to clinical decision: reliable biomarkers drive both workload optimization today and patient risk stratification tomorrow, and the developed framework shows how foundation models can be operationalized within precision medicine systems.
comment: Under review at npj Digital Medicine (revision submitted Jan 2026) | Code: https://github.com/gabbieHoyer/AutoMedLabel | Supplementary data/tables: https://doi.org/10.6084/m9.figshare.29633207
♻ ☆ Revisiting Transformers with Insights from Image Filtering and Boosting
The self-attention mechanism, a cornerstone of Transformer-based state-of-the-art deep learning architectures, is largely heuristic-driven and fundamentally challenging to interpret. Establishing a robust theoretical foundation to explain its remarkable success and limitations has therefore become an increasingly prominent focus in recent research. Some notable directions have explored understanding self-attention through the lens of image denoising and nonparametric regression. While promising, existing frameworks still lack a deeper mechanistic interpretation of various architectural components that enhance self-attention, both in its original formulation and subsequent variants. In this work, we aim to advance this understanding by developing a unifying image processing framework, capable of explaining not only the self-attention computation itself but also the role of components such as positional encoding and residual connections, including numerous later variants. We also pinpoint potential distinctions between the two concepts building upon our framework, and make effort to close this gap. We introduce two independent architectural modifications within transformers. While our primary objective is interpretability, we empirically observe that image processing-inspired modifications can also lead to notably improved accuracy and robustness against data contamination and adversaries across language and vision tasks as well as better long sequence understanding.
♻ ☆ LBL: Logarithmic Barrier Loss Function for One-class Classification
One-class classification (OCC) aims to train a classifier only with the target class data and attracts great attention for its strong applicability in real-world application. Despite a lot of advances have been made in OCC, it still lacks the effective OCC loss functions for deep learning. In this paper, a novel logarithmic barrier function based OCC loss (LBL) that assigns large gradients to the margin samples and thus derives more compact hypersphere, is first proposed by approximating the OCC objective smoothly. But the optimization of LBL may be instability especially when samples lie on the boundary leading to the infinity loss. To address this issue, then, a unilateral relaxation Sigmoid function is introduced into LBL and a novel OCC loss named LBLSig is proposed. The LBLSig can be seen as the fusion of the mean square error (MSE) and the cross entropy (CE) and the optimization of LBLSig is smoother owing to the unilateral relaxation Sigmoid function. The effectiveness of the proposed LBL and LBLSig is experimentally demonstrated in comparisons with several popular OCC algorithms on different network structures. The source code can be found at https://github.com/ML-HDU/LBL_LBLSig.
♻ ☆ Time Is All It Takes: Spike-Retiming Attacks on Event-Driven Spiking Neural Networks ICLR 2026
Spiking neural networks (SNNs) compute with discrete spikes and exploit temporal structure, yet most adversarial attacks change intensities or event counts instead of timing. We study a timing-only adversary that retimes existing spikes while preserving spike counts and amplitudes in event-driven SNNs, thus remaining rate-preserving. We formalize a capacity-1 spike-retiming threat model with a unified trio of budgets: per-spike jitter $\mathcal{B}_{\infty}$, total delay $\mathcal{B}_{1}$, and tamper count $\mathcal{B}_{0}$. Feasible adversarial examples must satisfy timeline consistency and non-overlap, which makes the search space discrete and constrained. To optimize such retimings at scale, we use projected-in-the-loop (PIL) optimization: shift-probability logits yield a differentiable soft retiming for backpropagation, and a strict projection in the forward pass produces a feasible discrete schedule that satisfies capacity-1, non-overlap, and the chosen budget at every step. The objective maximizes task loss on the projected input and adds a capacity regularizer together with budget-aware penalties, which stabilizes gradients and aligns optimization with evaluation. Across event-driven benchmarks (CIFAR10-DVS, DVS-Gesture, N-MNIST) and diverse SNN architectures, we evaluate under binary and integer event grids and a range of retiming budgets, and also test models trained with timing-aware adversarial training designed to counter timing-only attacks. For example, on DVS-Gesture the attack attains high success (over $90\%$) while touching fewer than $2\%$ of spikes under $\mathcal{B}_{0}$. Taken together, our results show that spike retiming is a practical and stealthy attack surface that current defenses struggle to counter, providing a clear reference for temporal robustness in event-driven SNNs. Code is available at https://github.com/yuyi-sd/Spike-Retiming-Attacks.
comment: Accepted by ICLR 2026
♻ ☆ G2P: Gaussian-to-Point Attribute Alignment for Boundary-Aware 3D Semantic Segmentation
Semantic segmentation on point clouds is critical for 3D scene understanding. However, sparse and irregular point distributions provide limited appearance evidence, making geometry-only features insufficient to distinguish objects with similar shapes but distinct appearances (e.g., color, texture, material). We propose Gaussian-to-Point (G2P), which transfers appearance-aware attributes from 3D Gaussian Splatting to point clouds for more discriminative and appearance-consistent segmentation. Our G2P address the misalignment between optimized Gaussians and original point geometry by establishing point-wise correspondences. By leveraging Gaussian opacity attributes, we resolve the geometric ambiguity that limits existing models. Additionally, Gaussian scale attributes enable precise boundary localization in complex 3D scenes. Extensive experiments demonstrate that our approach achieves superior performance on standard benchmarks and shows significant improvements on geometrically challenging classes, all without any 2D or language supervision.
comment: Preprint. Under review
♻ ☆ MedVSR: Medical Video Super-Resolution with Cross State-Space Propagation ICCV 2025
High-resolution (HR) medical videos are vital for accurate diagnosis, yet are hard to acquire due to hardware limitations and physiological constraints. Clinically, the collected low-resolution (LR) medical videos present unique challenges for video super-resolution (VSR) models, including camera shake, noise, and abrupt frame transitions, which result in significant optical flow errors and alignment difficulties. Additionally, tissues and organs exhibit continuous and nuanced structures, but current VSR models are prone to introducing artifacts and distorted features that can mislead doctors. To this end, we propose MedVSR, a tailored framework for medical VSR. It first employs Cross State-Space Propagation (CSSP) to address the imprecise alignment by projecting distant frames as control matrices within state-space models, enabling the selective propagation of consistent and informative features to neighboring frames for effective alignment. Moreover, we design an Inner State-Space Reconstruction (ISSR) module that enhances tissue structures and reduces artifacts with joint long-range spatial feature learning and large-kernel short-range information aggregation. Experiments across four datasets in diverse medical scenarios, including endoscopy and cataract surgeries, show that MedVSR significantly outperforms existing VSR models in reconstruction performance and efficiency. Code released at https://github.com/CUHK-AIM-Group/MedVSR.
comment: ICCV 2025
Multimedia 1
☆ PAND: Prompt-Aware Neighborhood Distillation for Lightweight Fine-Grained Visual Classification
Distilling knowledge from large Vision-Language Models (VLMs) into lightweight networks is crucial yet challenging in Fine-Grained Visual Classification (FGVC), due to the reliance on fixed prompts and global alignment. To address this, we propose PAND (Prompt-Aware Neighborhood Distillation), a two-stage framework that decouples semantic calibration from structural transfer. First, we incorporate Prompt-Aware Semantic Calibration to generate adaptive semantic anchors. Second, we introduce a neighborhood-aware structural distillation strategy to constrain the student's local decision structure. PAND consistently outperforms state-of-the-art methods on four FGVC benchmarks. Notably, our ResNet-18 student achieves 76.09% accuracy on CUB-200, surpassing the strong baseline VL2Lite by 3.4%. Code is available at https://github.com/LLLVTA/PAND.
comment: 6pages, 3 figures, conference
Artificial Intelligent 31
☆ Adding More Value Than Work: Practical Guidelines for Integrating Robots into Intercultural Competence Learning
While social robots have demonstrated effectiveness in supporting students' intercultural competence development, it is unclear how they can effectively be adopted for integrated use in K-12 schools. We conducted two phases of design workshops with teachers, where they co-designed robot-mediated intercultural activities while considering student needs and school integration concerns. Using thematic analysis, we identify appropriate scenarios and roles for classroom robots, explore how robots could complement rather than replace teachers, and consider how to address ethical and compliance considerations. Our findings provide practical design guidelines for the HRI community to develop social robots that can effectively support intercultural education in K-12 schools.
☆ From Ellipsoids to Midair Control of Dynamic Hitches
The ability to dynamically manipulate interaction between cables, carried by pairs of aerial vehicles attached to the ends of each cable, can greatly improve the versatility and agility of cable-assisted aerial manipulation. Such interlacing cables create hitches by winding two or more cables around each other, which can enclose payloads or can further develop into knots. Dynamic modeling and control of such hitches is key to mastering the inter-cable manipulation in context of cable-suspended aerial manipulation. This paper introduces an ellipsoid-based kinematic model to connect the geometric nature of a hitch created by two cables and the dynamics of the hitch driven by four aerial vehicles, which reveals the control-affine form of the system. As the constraint for maintaining tension of a cable is also control-affine, we design a quadratic programming-based controller that combines Control Lyapunov and High-Order Control Barrier Functions (CLF-HOCBF-QP) to precisely track a desired hitch position and system shape while enforcing safety constraints like cable tautness. We convert desired geometric reference configurations into target robot positions and introduce a composite error into the Lyapunov function to ensure a relative degree of one to the input. Numerical simulations validate our approach, demonstrating stable, high-speed tracking of dynamic references.
☆ Picasso: Holistic Scene Reconstruction with Physics-Constrained Sampling
In the presence of occlusions and measurement noise, geometrically accurate scene reconstructions -- which fit the sensor data -- can still be physically incorrect. For instance, when estimating the poses and shapes of objects in the scene and importing the resulting estimates into a simulator, small errors might translate to implausible configurations including object interpenetration or unstable equilibrium. This makes it difficult to predict the dynamic behavior of the scene using a digital twin, an important step in simulation-based planning and control of contact-rich behaviors. In this paper, we posit that object pose and shape estimation requires reasoning holistically over the scene (instead of reasoning about each object in isolation), accounting for object interactions and physical plausibility. Towards this goal, our first contribution is Picasso, a physics-constrained reconstruction pipeline that builds multi-object scene reconstructions by considering geometry, non-penetration, and physics. Picasso relies on a fast rejection sampling method that reasons over multi-object interactions, leveraging an inferred object contact graph to guide samples. Second, we propose the Picasso dataset, a collection of 10 contact-rich real-world scenes with ground truth annotations, as well as a metric to quantify physical plausibility, which we open-source as part of our benchmark. Finally, we provide an extensive evaluation of Picasso on our newly introduced dataset and on the YCB-V dataset, and show it largely outperforms the state of the art while providing reconstructions that are both physically plausible and more aligned with human intuition.
comment: 15 pages
☆ ForecastOcc: Vision-based Semantic Occupancy Forecasting
Autonomous driving requires forecasting both geometry and semantics over time to effectively reason about future environment states. Existing vision-based occupancy forecasting methods focus on motion-related categories such as static and dynamic objects, while semantic information remains largely absent. Recent semantic occupancy forecasting approaches address this gap but rely on past occupancy predictions obtained from separate networks. This makes current methods sensitive to error accumulation and prevents learning spatio-temporal features directly from images. In this work, we present ForecastOcc, the first framework for vision-based semantic occupancy forecasting that jointly predicts future occupancy states and semantic categories. Our framework yields semantic occupancy forecasts for multiple horizons directly from past camera images, without relying on externally estimated maps. We evaluate ForecastOcc in two complementary settings: multi-view forecasting on the Occ3D-nuScenes dataset and monocular forecasting on SemanticKITTI, where we establish the first benchmark for this task. We introduce the first baselines by adapting two 2D forecasting modules within our framework. Importantly, we propose a novel architecture that incorporates a temporal cross-attention forecasting module, a 2D-to-3D view transformer, a 3D encoder for occupancy prediction, and a semantic occupancy head for voxel-level forecasts across multiple horizons. Extensive experiments on both datasets show that ForecastOcc consistently outperforms baselines, yielding semantically rich, future-aware predictions that capture scene dynamics and semantics critical for autonomous driving.
☆ Analyzing the Impact of Simulation Fidelity on the Evaluation of Autonomous Driving Motion Control
Simulation is crucial in the development of autonomous driving software. In particular, assessing control algorithms requires an accurate vehicle dynamics simulation. However, recent publications use models with varying levels of detail. This disparity makes it difficult to compare individual control algorithms. Therefore, this paper aims to investigate the influence of the fidelity of vehicle dynamics modeling on the closed-loop behavior of trajectory-following controllers. For this purpose, we introduce a comprehensive Autoware-compatible vehicle model. By simplifying this, we derive models with varying fidelity. Evaluating over 550 simulation runs allows us to quantify each model's approximation quality compared to real-world data. Furthermore, we investigate whether the influence of model simplifications changes with varying margins to the acceleration limit of the vehicle. From this, we deduce to which degree a vehicle model can be simplified to evaluate control algorithms depending on the specific application. The real-world data used to validate the simulation environment originate from the Indy Autonomous Challenge race at the Autodromo Nazionale di Monza in June 2023. They show the fastest fully autonomous lap of TUM Autonomous Motorsport, with vehicle speeds reaching 267 kph and lateral accelerations of up to 15 mps2.
comment: Accepted for publication at the IEEE IV 2024
☆ Integrating Specialized and Generic Agent Motion Prediction with Dynamic Occupancy Grid Maps
Accurate prediction of driving scene is a challenging task due to uncertainty in sensor data, the complex behaviors of agents, and the possibility of multiple feasible futures. Existing prediction methods using occupancy grid maps primarily focus on agent-agnostic scene predictions, while agent-specific predictions provide specialized behavior insights with the help of semantic information. However, both paradigms face distinct limitations: agent-agnostic models struggle to capture the behavioral complexities of dynamic actors, whereas agent-specific approaches fail to generalize to poorly perceived or unrecognized agents; combining both enables robust and safer motion forecasting. To address this, we propose a unified framework by leveraging Dynamic Occupancy Grid Maps within a streamlined temporal decoding pipeline to simultaneously predict future occupancy state grids, vehicle grids, and scene flow grids. Relying on a lightweight spatiotemporal backbone, our approach is centered on a tailored, interdependent loss function that captures inter-grid dependencies and enables diverse future predictions. By using occupancy state information to enforce flow-guided transitions, the loss function acts as a regularizer that directs occupancy evolution while accounting for obstacles and occlusions. Consequently, the model not only predicts the specific behaviors of vehicle agents, but also identifies other dynamic entities and anticipates their evolution within the complex scene. Evaluations on real-world nuScenes and Woven Planet datasets demonstrate superior prediction performances for dynamic vehicles and generic dynamic scene elements compared to baseline methods.
comment: Updated version with major revisions; currently under the second round of review at IEEE Transactions on Intelligent Vehicles
☆ Feasibility-Guided Planning over Multi-Specialized Locomotion Policies
Planning over unstructured terrain presents a significant challenge in the field of legged robotics. Although recent works in reinforcement learning have yielded various locomotion strategies, planning over multiple experts remains a complex issue. Existing approaches encounter several constraints: traditional planners are unable to integrate skill-specific policies, whereas hierarchical learning frameworks often lose interpretability and require retraining whenever new policies are added. In this paper, we propose a feasibility-guided planning framework that successfully incorporates multiple terrain-specific policies. Each policy is paired with a Feasibility-Net, which learned to predict feasibility tensors based on the local elevation maps and task vectors. This integration allows classical planning algorithms to derive optimal paths. Through both simulated and real-world experiments, we demonstrate that our method efficiently generates reliable plans across diverse and challenging terrains, while consistently aligning with the capabilities of the underlying policies.
comment: ICRA 2026
☆ Optimized Human-Robot Co-Dispatch Planning for Petro-Site Surveillance under Varying Criticalities
Securing petroleum infrastructure requires balancing autonomous system efficiency with human judgment for threat escalation, a challenge unaddressed by classical facility location models assuming homogeneous resources. This paper formulates the Human-Robot Co-Dispatch Facility Location Problem (HRCD-FLP), a capacitated facility location variant incorporating tiered infrastructure criticality, human-robot supervision ratio constraints, and minimum utilization requirements. We evaluate command center selection across three technology maturity scenarios. Results show transitioning from conservative (1:3 human-robot supervision) to future autonomous operations (1:10) yields significant cost reduction while maintaining complete critical infrastructure coverage. For small problems, exact methods dominate in both cost and computation time; for larger problems, the proposed heuristic achieves feasible solutions in under 3 minutes with approximately 14% optimality gap where comparison is possible. From systems perspective, our work demonstrate that optimized planning for human-robot teaming is key to achieve both cost-effective and mission-reliable deployments.
☆ Multi-Agent Route Planning as a QUBO Problem
Multi-Agent Route Planning considers selecting vehicles, each associated with a single predefined route, such that the spatial coverage of a road network is increased while redundant overlaps are limited. This paper gives a formal problem definition, proves NP-hardness by reduction from the Weighted Set Packing problem, and derives a Quadratic Unconstrained Binary Optimization formulation whose coefficients directly encode unique coverage rewards and pairwise overlap penalties. A single penalty parameter controls the coverage-overlap trade-off. We distinguish between a soft regime, which supports multi-objective exploration, and a hard regime, in which the penalty is strong enough to effectively enforce near-disjoint routes. We describe a practical pipeline for generating city instances, constructing candidate routes, building the QUBO matrix, and solving it with an exact mixed-integer solver (Gurobi), simulated annealing, and D-Wave hybrid quantum annealing. Experiments on Barcelona instances with up to 10 000 vehicles reveal a clear coverage-overlap knee and show that Pareto-optimal solutions are mainly obtained under the hard-penalty regime, while D-Wave hybrid solvers and Gurobi achieve essentially identical objective values with only minor differences in runtime as problem size grows.
☆ Incremental Mapping with Measurement Synchronization & Compression
Modern autonomous vehicles and robots utilize versatile sensors for localization and mapping. The fidelity of these maps is paramount, as an accurate environmental representation is a prerequisite for stable and precise localization. Factor graphs provide a powerful approach for sensor fusion, enabling the estimation of the maximum a posteriori solution. However, the discrete nature of graph-based representations, combined with asynchronous sensor measurements, complicates consistent state estimation. The design of an optimal factor graph topology remains an open challenge, especially in multi-sensor systems with asynchronous data. Conventional approaches rely on a rigid graph structure, which becomes inefficient with sensors of disparate rates. Although preintegration techniques can mitigate this for high-rate sensors, their applicability is limited. To address this problem, this work introduces a novel approach that incrementally constructs connected factor graphs, ensuring the incorporation of all available sensor data by choosing the optimal graph topology based on the external evaluation criteria. The proposed methodology facilitates graph compression, reducing the number of nodes (optimized variables) by ~30% on average while maintaining map quality at a level comparable to conventional approaches.
comment: 8 pages, 4 figures, 1 table
☆ Research on a Camera Position Measurement Method based on a Parallel Perspective Error Transfer Model
Camera pose estimation from sparse correspondences is a fundamental problem in geometric computer vision and remains particularly challenging in near-field scenarios, where strong perspective effects and heterogeneous measurement noise can significantly degrade the stability of analytic PnP solutions. In this paper, we present a geometric error propagation framework for camera pose estimation based on a parallel perspective approximation. By explicitly modeling how image measurement errors propagate through perspective geometry, we derive an error transfer model that characterizes the relationship between feature point distribution, camera depth, and pose estimation uncertainty. Building on this analysis, we develop a pose estimation method that leverages parallel perspective initialization and error-aware weighting within a Gauss-Newton optimization scheme, leading to improved robustness in proximity operations. Extensive experiments on both synthetic data and real-world images, covering diverse conditions such as strong illumination, surgical lighting, and underwater low-light environments, demonstrate that the proposed approach achieves accuracy and robustness comparable to state-of-the-art analytic and iterative PnP methods, while maintaining high computational efficiency. These results highlight the importance of explicit geometric error modeling for reliable camera pose estimation in challenging near-field settings.
comment: 32 pages, 19 figures
☆ System-Level Error Propagation and Tail-Risk Amplification in Reference-Based Robotic Navigation
Image guided robotic navigation systems often rely on reference based geometric perception pipelines, where accurate spatial mapping is established through multi stage estimation processes. In biplanar X ray guided navigation, such pipelines are widely used due to their real time capability and geometric interpretability. However, navigation reliability can be constrained by an overlooked system level failure mechanism in which installation induced structural perturbations introduced at the perception stage are progressively amplified along the perception reconstruction execution chain and dominate execution level error and tail risk behavior. This paper investigates this mechanism from a system level perspective and presents a unified error propagation modeling framework that characterizes how installation induced structural perturbations propagate and couple with pixel level observation noise through biplanar imaging, projection matrix estimation, triangulation, and coordinate mapping. Using first order analytic uncertainty propagation and Monte Carlo simulations, we analyze dominant sensitivity channels and quantify worst case error behavior beyond mean accuracy metrics. The results show that rotational installation error is a primary driver of system level error amplification, while translational misalignment of comparable magnitude plays a secondary role under typical biplanar geometries. Real biplanar X ray bench top experiments further confirm that the predicted amplification trends persist under realistic imaging conditions. These findings reveal a broader structural limitation of reference based multi stage geometric perception pipelines and provide a framework for system level reliability analysis and risk aware design in safety critical robotic navigation systems.
comment: 13 pages, 8 figures
☆ Recurrent-Depth VLA: Implicit Test-Time Compute Scaling of Vision-Language-Action Models via Latent Iterative Reasoning
Current Vision-Language-Action (VLA) models rely on fixed computational depth, expending the same amount of compute on simple adjustments and complex multi-step manipulation. While Chain-of-Thought (CoT) prompting enables variable computation, it scales memory linearly and is ill-suited for continuous action spaces. We introduce Recurrent-Depth VLA (RD-VLA), an architecture that achieves computational adaptivity via latent iterative refinement rather than explicit token generation. RD-VLA employs a recurrent, weight-tied action head that supports arbitrary inference depth with a constant memory footprint. The model is trained using truncated backpropagation through time (TBPTT) to efficiently supervise the refinement process. At inference, RD-VLA dynamically allocates compute using an adaptive stopping criterion based on latent convergence. Experiments on challenging manipulation tasks show that recurrent depth is critical: tasks that fail entirely (0 percent success) with single-iteration inference exceed 90 percent success with four iterations, while simpler tasks saturate rapidly. RD-VLA provides a scalable path to test-time compute in robotics, replacing token-based reasoning with latent reasoning to achieve constant memory usage and up to 80x inference speedup over prior reasoning-based VLA models. Project page: https://rd-vla.github.io/
comment: 11 Pages, Project page:https://rd-vla.github.io/
☆ RLinf-USER: A Unified and Extensible System for Real-World Online Policy Learning in Embodied AI
Online policy learning directly in the physical world is a promising yet challenging direction for embodied intelligence. Unlike simulation, real-world systems cannot be arbitrarily accelerated, cheaply reset, or massively replicated, which makes scalable data collection, heterogeneous deployment, and long-horizon effective training difficult. These challenges suggest that real-world policy learning is not only an algorithmic issue but fundamentally a systems problem. We present USER, a Unified and extensible SystEm for Real-world online policy learning. USER treats physical robots as first-class hardware resources alongside GPUs through a unified hardware abstraction layer, enabling automatic discovery, management, and scheduling of heterogeneous robots. To address cloud-edge communication, USER introduces an adaptive communication plane with tunneling-based networking, distributed data channels for traffic localization, and streaming-multiprocessor-aware weight synchronization to regulate GPU-side overhead. On top of this infrastructure, USER organizes learning as a fully asynchronous framework with a persistent, cache-aware buffer, enabling efficient long-horizon experiments with robust crash recovery and reuse of historical data. In addition, USER provides extensible abstractions for rewards, algorithms, and policies, supporting online imitation or reinforcement learning of CNN/MLP, generative policies, and large vision-language-action (VLA) models within a unified pipeline. Results in both simulation and the real world show that USER enables multi-robot coordination, heterogeneous manipulators, edge-cloud collaboration with large models, and long-running asynchronous training, offering a unified and extensible systems foundation for real-world online policy learning.
☆ CoLF: Learning Consistent Leader-Follower Policies for Vision-Language-Guided Multi-Robot Cooperative Transport
In this study, we address vision-language-guided multi-robot cooperative transport, where each robot grounds natural-language instructions from onboard camera observations. A key challenge in this decentralized setting is perceptual misalignment across robots, where viewpoint differences and language ambiguity can yield inconsistent interpretations and degrade cooperative transport. To mitigate this problem, we adopt a dependent leader-follower design, where one robot serves as the leader and the other as the follower. Although such a leader-follower structure appears straightforward, learning with independent and symmetric agents often yields symmetric or unstable behaviors without explicit inductive biases. To address this challenge, we propose Consistent Leader-Follower (CoLF), a multi-agent reinforcement learning (MARL) framework for stable leader-follower role differentiation. CoLF consists of two key components: (1) an asymmetric policy design that induces leader-follower role differentiation, and (2) a mutual-information-based training objective that maximizes a variational lower bound, encouraging the follower to predict the leader's action from its local observation. The leader and follower policies are jointly optimized under the centralized training and decentralized execution (CTDE) framework to balance task execution and consistent cooperative behaviors. We validate CoLF in both simulation and real-robot experiments using two quadruped robots. The demonstration video is available at https://sites.google.com/view/colf/.
comment: 9 pages, 5 figures
☆ Global Symmetry and Orthogonal Transformations from Geometrical Moment $n$-tuples
Detecting symmetry is crucial for effective object grasping for several reasons. Recognizing symmetrical features or axes within an object helps in developing efficient grasp strategies, as grasping along these axes typically results in a more stable and balanced grip, thereby facilitating successful manipulation. This paper employs geometrical moments to identify symmetries and estimate orthogonal transformations, including rotations and mirror transformations, for objects centered at the frame origin. It provides distinctive metrics for detecting symmetries and estimating orthogonal transformations, encompassing rotations, reflections, and their combinations. A comprehensive methodology is developed to obtain these functions in n-dimensional space, specifically moment \( n \)-tuples. Extensive validation tests are conducted on both 2D and 3D objects to ensure the robustness and reliability of the proposed approach. The proposed method is also compared to state-of-the-art work using iterative optimization for detecting multiple planes of symmetry. The results indicate that combining our method with the iterative one yields satisfactory outcomes in terms of the number of symmetry planes detected and computation time.
♻ ☆ Virtual Community: An Open World for Humans, Robots, and Society
The rapid progress in AI and Robotics may lead to a profound societal transformation, as humans and robots begin to coexist within shared communities, introducing both opportunities and challenges. To explore this future, we present Virtual Community-an open-world platform for humans, robots, and society-built on a universal physics engine and grounded in real-world 3D scenes. With Virtual Community, we aim to enable the study of embodied social intelligence at scale. To support these, Virtual Community features: 1) An open-source multi-agent physics simulator that supports robots, humans, and their interactions within a society; 2) A large-scale, real-world aligned community generation pipeline, including vast outdoor space, diverse indoor scenes, and a community of grounded agents with rich characters and appearances. Leveraging Virtual Community, we propose two novel challenges. The Community Planning Challenge evaluates multi-agent reasoning and planning ability in open-world settings, such as cooperating to help agents with daily activities and efficiently connecting other agents. The Community Robot Challenge requires multiple heterogeneous robots to collaborate in solving complex open-world tasks. We evaluate various baselines on these tasks and demonstrate the challenges in both high-level open-world task planning and low-level cooperation controls. We hope that Virtual Community will unlock further study of human-robot coexistence within open-world environments.
comment: website https://virtual-community-ai.github.io/
♻ ☆ Collision Risk Estimation via Loss Prediction in End-to-End Autonomous Driving
Collision risk estimation and avoidance play central roles in the safety of autonomous driving (AD) systems. Recently emerged end-to-end AD systems gain collision avoidance ability by minimizing losses to penalize planning trajectories that are too close to other objects. Despite a significant collision rate during testing, most end-to-end planners do not explicitly quantify the collision risk in their outputs. To address this, we introduce RiskMonitor, an efficient plug-and-play module that interprets planning and motion tokens from state-of-the-art end-to-end planners to estimate collision risk. Inspired by loss prediction based uncertainty quantification, RiskMonitor predicts whether the collision loss -- commonly adopted to train end-to-end planners -- is positive along planned waypoints, framing collision risk estimation as a binary classification task. We evaluate RiskMonitor on the real-world nuScenes dataset (open-loop) and the neural-rendering based simulator, NeuroNCAP (closed-loop). Our token-driven method outperforms prediction-driven approaches, including deterministic rules, Gaussian mixture models, and Monte Carlo Dropout. When integrated with a simple braking policy, RiskMonitor improves collision avoidance ability by $66.5\%$ in a closed-loop test on safety-critical scenarios. These results demonstrate that monitoring collision risk using plan and motion tokens enhances the safety of end-to-end AD without retraining it.
Neural-Augmented Kelvinlet for Real-Time Soft Tissue Deformation Modeling
Accurate and efficient modeling of soft-tissue interactions is fundamental for advancing surgical simulation, surgical robotics, and model-based surgical automation. To achieve real-time latency, classical Finite Element Method (FEM) solvers are often replaced with neural approximations; however, naively training such models in a fully data-driven manner without incorporating physical priors frequently leads to poor generalization and physically implausible predictions. We present a novel physics-informed neural simulation framework that enables real-time prediction of soft-tissue deformations under complex single- and multi-grasper interactions. Our approach integrates Kelvinlet-based analytical priors with large-scale FEM data, capturing both linear and nonlinear tissue responses. This hybrid design improves predictive accuracy and physical plausibility across diverse neural architectures while maintaining the low-latency performance required for interactive applications. We validate our method on challenging surgical manipulation tasks involving standard laparoscopic grasping tools, demonstrating substantial improvements in deformation fidelity and temporal stability over existing baselines. These results establish Kelvinlet-augmented learning as a principled and computationally efficient paradigm for real-time, physics-aware soft-tissue simulation in surgical AI.
RAP: 3D Rasterization Augmented End-to-End Planning
Imitation learning for end-to-end driving trains policies only on expert demonstrations. Once deployed in a closed loop, such policies lack recovery data: small mistakes cannot be corrected and quickly compound into failures. A promising direction is to generate alternative viewpoints and trajectories beyond the logged path. Prior work explores photorealistic digital twins via neural rendering or game engines, but these methods are prohibitively slow and costly, and thus mainly used for evaluation. In this work, we argue that photorealism is unnecessary for training end-to-end planners. What matters is semantic fidelity and scalability: driving depends on geometry and dynamics, not textures or lighting. Motivated by this, we propose 3D Rasterization, which replaces costly rendering with lightweight rasterization of annotated primitives, enabling augmentations such as counterfactual recovery maneuvers and cross-agent view synthesis. To transfer these synthetic views effectively to real-world deployment, we introduce a Raster-to-Real feature-space alignment that bridges the sim-to-real gap. Together, these components form Rasterization Augmented Planning (RAP), a scalable data augmentation pipeline for planning. RAP achieves state-of-the-art closed-loop robustness and long-tail generalization, ranking first on four major benchmarks: NAVSIM v1/v2, Waymo Open Dataset Vision-based E2E Driving, and Bench2Drive. Our results show that lightweight rasterization with feature alignment suffices to scale E2E training, offering a practical alternative to photorealistic rendering. Project page: https://alan-lanfeng.github.io/RAP/.
♻ ☆ Agentic Vehicles for Human-Centered Mobility
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Autonomous vehicles (AuVs) are therefore understood as systems that perceive their environment and execute pre-programmed tasks independently of external input, consistent with the SAE levels of automated driving. Yet recent research and real-world deployments have begun to showcase vehicles that exhibit behaviors outside the scope of this definition. These include natural language interaction with humans, goal adaptation, contextual reasoning, external tool use, and the handling of unforeseen ethical dilemmas, enabled in part by multimodal large language models (LLMs). These developments highlight not only a gap between technical autonomy and the broader cognitive and social capacities required for human-centered mobility, but also the emergence of a form of vehicle intelligence that currently lacks a clear designation. To address this gap, the paper introduces the concept of agentic vehicles (AgVs): vehicles that integrate agentic AI systems to reason, adapt, and interact within complex environments. It synthesizes recent advances in agentic systems and suggests how AgVs can complement and even reshape conventional autonomy to ensure mobility services are aligned with user and societal needs. The paper concludes by outlining key challenges in the development and governance of AgVs and their potential role in shaping future agentic transportation systems.
♻ ☆ An Adaptive Inspection Planning Approach Towards Routine Monitoring in Uncertain Environments
In this work, we present a hierarchical framework designed to support robotic inspection under environment uncertainty. By leveraging a known environment model, existing methods plan and safely track inspection routes to visit points of interest. However, discrepancies between the model and actual site conditions, caused by either natural or human activities, can alter the surface morphology or introduce path obstructions. To address this challenge, the proposed framework divides the inspection task into: (a) generating the initial global view-plan for region of interests based on a historical map and (b) local view replanning to adapt to the current morphology of the inspection scene. The proposed hierarchy preserves global coverage objectives while enabling reactive adaptation to the local surface morphology. This enables the local autonomy to remain robust against environment uncertainty and complete the inspection tasks. We validate the approach through deployments in real-world subterranean mines using quadrupedal robot. A supplementary media highlighting the proposed method can be found here https://youtu.be/6TxK8S_83Lw.
comment: Accepted to ICRA 2026
♻ ☆ Omni-LIVO: Robust RGB-Colored Multi-Camera Visual-Inertial-LiDAR Odometry via Photometric Migration and ESIKF Fusion
Wide field-of-view (FoV) LiDAR sensors provide dense geometry across large environments, but existing LiDAR-inertial-visual odometry (LIVO) systems generally rely on a single camera, limiting their ability to fully exploit LiDAR-derived depth for photometric alignment and scene colorization. We present Omni-LIVO, a tightly coupled multi-camera LIVO system that leverages multi-view observations to comprehensively utilize LiDAR geometric information across extended spatial regions. Omni-LIVO introduces a Cross-View direct alignment strategy that maintains photometric consistency across non-overlapping views, and extends the Error-State Iterated Kalman Filter (ESIKF) with multi-view updates and adaptive covariance. The system is evaluated on public benchmarks and our custom dataset, showing improved accuracy and robustness over state-of-the-art LIVO, LIO, and visual-inertial SLAM baselines. Code and dataset will be released upon publication.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L). Early Access version available. This version supersedes all previous versions and is the official accepted manuscript for citation
♻ ☆ Gust Estimation and Rejection with a Disturbance Observer for Proprioceptive Underwater Soft Morphing Wings
Unmanned underwater vehicles are increasingly employed for maintenance and surveying tasks at sea, but their operation in shallow waters is often hindered by hydrodynamic disturbances such as waves, currents, and turbulence. These unsteady flows can induce rapid changes in direction and speed, compromising vehicle stability and manoeuvrability. Marine organisms contend with such conditions by combining proprioceptive feedback with flexible fins and tails to reject disturbances. Inspired by this strategy, we propose soft morphing wings endowed with proprioceptive sensing to mitigate environmental perturbations. The wing's continuous deformation provides a natural means to infer dynamic disturbances: sudden changes in camber directly reflect variations in the oncoming flow. By interpreting this proprioceptive signal, a disturbance observer can reconstruct flow parameters in real time. To enable this, we develop and experimentally validate a dynamic model of a hydraulically actuated soft wing with controllable camber. We then show that curvature-based sensing allows accurate estimation of disturbances in the angle of attack. Finally, we demonstrate that a controller leveraging these proprioceptive estimates can reject disturbances in the lift response of the soft wing. By combining proprioceptive sensing with a disturbance observer, this technique mirrors biological strategies and provides a pathway for soft underwater vehicles to maintain stability in hazardous environments.
comment: 2026 IEEE International Conference on Robotics & Automation (ICRA)
♻ ☆ Sim-to-Real Dynamic Object Manipulation on Conveyor Systems via Optimization Path Shaping
Realizing generalizable dynamic object manipulation on conveyor systems is important for enhancing manufacturing efficiency, as it eliminates specialized engineering for different scenarios. To this end, imitation learning emerges as a promising paradigm, leveraging expert demonstrations to teach a policy manipulation skills. Although the generalization of an imitation learning policy can be improved by increasing demonstrations, demonstration collection is labor-intensive. Besides, public dynamic object manipulation data is scarce. In this work, we address this data scarcity problem via generating demonstrations in a simulator. A significant challenge of using simulated data lies in the appearance gap between simulated and real-world observations. To tackle this challenge, we propose Geometry-Enhanced Model (GEM), which employs our designed appearance noise annealing strategy to shape the policy optimization path, thereby prioritizing the geometry information in observations. Extensive experiments in simulated and real-world tasks demonstrate that GEM can generalize across environment backgrounds, robot embodiments, motion dynamics, and object geometries. Notably, GEM is deployed in a real canteen for tableware collection. Without test-scene data, GEM achieves a success rate of over 97% across more than 10,000 operations.
♻ ☆ Safe Exploration via Policy Priors
Safe exploration is a key requirement for reinforcement learning (RL) agents to learn and adapt online, beyond controlled (e.g. simulated) environments. In this work, we tackle this challenge by utilizing suboptimal yet conservative policies (e.g., obtained from offline data or simulators) as priors. Our approach, SOOPER, uses probabilistic dynamics models to optimistically explore, yet pessimistically fall back to the conservative policy prior if needed. We prove that SOOPER guarantees safety throughout learning, and establish convergence to an optimal policy by bounding its cumulative regret. Extensive experiments on key safe RL benchmarks and real-world hardware demonstrate that SOOPER is scalable, outperforms the state-of-the-art and validate our theoretical guarantees in practice.
♻ ☆ SPOT: Spatio-Temporal Obstacle-free Trajectory Planning for UAVs in an Unknown Dynamic Environment
We address the problem of reactive motion planning for quadrotors operating in unknown environments with dynamic obstacles. Our approach leverages a 4-dimensional spatio-temporal planner, integrated with vision-based Safe Flight Corridor (SFC) generation and trajectory optimization. Unlike prior methods that rely on map fusion, our framework is mapless, enabling collision avoidance directly from perception while reducing computational overhead. Dynamic obstacles are detected and tracked using a vision-based object segmentation and tracking pipeline, allowing robust classification of static versus dynamic elements in the scene. To further enhance robustness, we introduce a backup planning module that reactively avoids dynamic obstacles when no direct path to the goal is available, mitigating the risk of collisions during deadlock situations. We validate our method extensively in both simulation and real-world hardware experiments, and benchmark it against state-of-the-art approaches, showing significant advantages for reactive UAV navigation in dynamic, unknown environments.
comment: Accepted for publication at ICRA 2026
♻ ☆ Knowledge-Centric Metacognitive Learning
Interactions are central to intelligent reasoning and learning abilities, with the interpretation of abstract knowledge guiding meaningful interaction with objects in the environment. While humans readily adapt to novel situations by leveraging abstract knowledge acquired over time, artificial intelligence systems lack principled mechanisms for incorporating abstract knowledge into learning, leading to fundamental challenges in the emergence of intelligent and adaptive behavior. To address this gap, we introduce knowledge-centric metacognitive learning based on three key principles: natural abstractions, knowledge-guided interactions through interpretation, and the composition of interactions for problem solving. Knowledge learning facilitates the acquisition of abstract knowledge and the association of interactions with knowledge, while object interactions guided by abstract knowledge enable the learning of transferable interaction concepts, abstract reasoning, and generalization. This metacognitive mechanism provides a principled approach for integrating knowledge into reinforcement learning and offers a promising pathway toward intelligent and adaptive behavior in artificial intelligence, robotics, and autonomous systems.
♻ ☆ CostNav: A Navigation Benchmark for Real-World Economic-Cost Evaluation of Physical AI Agents
While current navigation benchmarks prioritize task success in simplified settings, they neglect the multidimensional economic constraints essential for the real-world commercialization of autonomous delivery systems. We introduce CostNav, an Economic Navigation Benchmark that evaluates physical AI agents through comprehensive economic cost-revenue analysis aligned with real-world business operations. By integrating industry-standard data - such as SEC filings and AIS injury reports - with Isaac Sim's detailed collision and cargo dynamics, CostNav transcends simple task completion to accurately evaluate business value in complex, real-world scenarios. To our knowledge, CostNav is the first work to quantitatively expose the gap between navigation research metrics and commercial viability, revealing that optimizing for task success on a simplified task fundamentally differs from optimizing for real-world economic deployment. Our evaluation of rule-based Nav2 navigation shows that current approaches are not economically viable: the contribution margin is -22.81/run (AMCL) and -12.87/run (GPS), resulting in no break-even point. We challenge the community to develop navigation policies that achieve economic viability on CostNav. We remain method-agnostic, evaluating success solely on the metric of cost rather than the underlying architecture. All resources are available at https://github.com/worv-ai/CostNav.
♻ ☆ Residual Vector Quantization For Communication-Efficient Multi-Agent Perception ICASSP 2026
Multi-agent collaborative perception (CP) improves scene understanding by sharing information across connected agents such as autonomous vehicles, unmanned aerial vehicles, and robots. Communication bandwidth, however, constrains scalability. We present ReVQom, a learned feature codec that preserves spatial identity while compressing intermediate features. ReVQom is an end-to-end method that compresses feature dimensions via a simple bottleneck network followed by multi-stage residual vector quantization (RVQ). This allows only per-pixel code indices to be transmitted, reducing payloads from 8192 bits per pixel (bpp) of uncompressed 32-bit float features to 6-30 bpp per agent with minimal accuracy loss. On DAIR-V2X real-world CP dataset, ReVQom achieves 273x compression at 30 bpp to 1365x compression at 6 bpp. At 18 bpp (455x), ReVQom matches or outperforms raw-feature CP, and at 6-12 bpp it enables ultra-low-bandwidth operation with graceful degradation. ReVQom allows efficient and accurate multi-agent collaborative perception with a step toward practical V2X deployment.
comment: Accepted at ICASSP 2026. 5 pages
♻ ☆ Constructing the Umwelt: Cognitive Planning through Belief-Intent Co-Evolution
This paper challenges a prevailing epistemological assumption in End-to-End Autonomous Driving: that high-performance planning necessitates high-fidelity world reconstruction. Inspired by cognitive science, we propose the Mental Bayesian Causal World Model (MBCWM) and instantiate it as the Tokenized Intent World Model (TIWM), a novel cognitive computing architecture. Its core philosophy posits that intelligence emerges not from pixel-level objective fidelity, but from the Cognitive Consistency between the agent's internal intentional world and physical reality. By synthesizing von Uexküll's $\textit{Umwelt}$ theory, the neural assembly hypothesis, and the triple causal model (integrating symbolic deduction, probabilistic induction, and force dynamics) into an end-to-end embodied planning system, we demonstrate the feasibility of this paradigm on the nuPlan benchmark. Experimental results in open-loop validation confirm that our Belief-Intent Co-Evolution mechanism effectively enhances planning performance. Crucially, in closed-loop simulations, the system exhibits emergent human-like cognitive behaviors, including map affordance understanding, free exploration, and self-recovery strategies. We identify Cognitive Consistency as the core learning mechanism: during long-term training, belief (state understanding) and intent (future prediction) spontaneously form a self-organizing equilibrium through implicit computational replay, achieving semantic alignment between internal representations and physical world affordances. TIWM offers a neuro-symbolic, cognition-first alternative to reconstruction-based planners, establishing a new direction: planning as active understanding, not passive reaction.
comment: 12 pages, 8 figures. A paradigm shift from reconstructing the world to understanding it: planning through Belief-Intent Co-Evolution
Computation and Language 56
☆ ParisKV: Fast and Drift-Robust KV-Cache Retrieval for Long-Context LLMs
KV-cache retrieval is essential for long-context LLM inference, yet existing methods struggle with distribution drift and high latency at scale. We introduce ParisKV, a drift-robust, GPU-native KV-cache retrieval framework based on collision-based candidate selection, followed by a quantized inner-product reranking estimator. For million-token contexts, ParisKV supports CPU-offloaded KV caches via Unified Virtual Addressing (UVA), enabling on-demand top-$k$ fetching with minimal overhead. ParisKV matches or outperforms full attention quality on long-input and long-generation benchmarks. It achieves state-of-the-art long-context decoding efficiency: it matches or exceeds full attention speed even at batch size 1 for long contexts, delivers up to 2.8$\times$ higher throughput within full attention's runnable range, and scales to million-token contexts where full attention runs out of memory. At million-token scale, ParisKV reduces decode latency by 17$\times$ and 44$\times$ compared to MagicPIG and PQCache, respectively, two state-of-the-art KV-cache Top-$k$ retrieval baselines.
comment: 25 pages, 16 figures. Under review
☆ On Sequence-to-Sequence Models for Automated Log Parsing
Log parsing is a critical standard operating procedure in software systems, enabling monitoring, anomaly detection, and failure diagnosis. However, automated log parsing remains challenging due to heterogeneous log formats, distribution shifts between training and deployment data, and the brittleness of rule-based approaches. This study aims to systematically evaluate how sequence modelling architecture, representation choice, sequence length, and training data availability influence automated log parsing performance and computational cost. We conduct a controlled empirical study comparing four sequence modelling architectures: Transformer, Mamba state-space, monodirectional LSTM, and bidirectional LSTM models. In total, 396 models are trained across multiple dataset configurations and evaluated using relative Levenshtein edit distance with statistical significance testing. Transformer achieves the lowest mean relative edit distance (0.111), followed by Mamba (0.145), mono-LSTM (0.186), and bi-LSTM (0.265), where lower values are better. Mamba provides competitive accuracy with substantially lower computational cost. Character-level tokenization generally improves performance, sequence length has negligible practical impact on Transformer accuracy, and both Mamba and Transformer demonstrate stronger sample efficiency than recurrent models. Overall, Transformers reduce parsing error by 23.4%, while Mamba is a strong alternative under data or compute constraints. These results also clarify the roles of representation choice, sequence length, and sample efficiency, providing practical guidance for researchers and practitioners.
☆ EventCast: Hybrid Demand Forecasting in E-Commerce with LLM-Based Event Knowledge
Demand forecasting is a cornerstone of e-commerce operations, directly impacting inventory planning and fulfillment scheduling. However, existing forecasting systems often fail during high-impact periods such as flash sales, holiday campaigns, and sudden policy interventions, where demand patterns shift abruptly and unpredictably. In this paper, we introduce EventCast, a modular forecasting framework that integrates future event knowledge into time-series prediction. Unlike prior approaches that ignore future interventions or directly use large language models (LLMs) for numerical forecasting, EventCast leverages LLMs solely for event-driven reasoning. Unstructured business data, which covers campaigns, holiday schedules, and seller incentives, from existing operational databases, is processed by an LLM that converts it into interpretable textual summaries leveraging world knowledge for cultural nuances and novel event combinations. These summaries are fused with historical demand features within a dual-tower architecture, enabling accurate, explainable, and scalable forecasts. Deployed on real-world e-commerce scenarios spanning 4 countries of 160 regions over 10 months, EventCast achieves up to 86.9% and 97.7% improvement on MAE and MSE compared to the variant without event knowledge, and reduces MAE by up to 57.0% and MSE by 83.3% versus the best industrial baseline during event-driven periods. EventCast has deployed into real-world industrial pipelines since March 2025, offering a practical solution for improving operational decision-making in dynamic e-commerce environments.
☆ Blind to the Human Touch: Overlap Bias in LLM-Based Summary Evaluation
Large language model (LLM) judges have often been used alongside traditional, algorithm-based metrics for tasks like summarization because they better capture semantic information, are better at reasoning, and are more robust to paraphrasing. However, LLM judges show biases for length and order among others, and are vulnerable to various adversarial input prompts. While recent studies have looked into these biases, few have analyzed them at a more granular level in relation to a well-defined overlap metric. In this work we provide an LLM judge bias analysis as a function of overlap with human-written responses in the domain of summarization. We test 9 recent LLMs with parameter counts ranging from 1 billion to 12 billion, including variants of Gemma 3 and LLaMA 3. We find that LLM judges increasingly prefer summaries generated by other LLMs over those written by humans as the similarities (as measured by ROUGE and BLEU) between the judged summaries decrease, and this pattern extends to all but one model tested, and exists regardless of the models' own position biases. Additionally, we find that models struggle to judge even summaries with limited overlaps, suggesting that LLM-as-a-judge in the summary domain should rely on techniques beyond a simple comparison.
☆ Letting Tutor Personas "Speak Up" for LLMs: Learning Steering Vectors from Dialogue via Preference Optimization
With the emergence of large language models (LLMs) as a powerful class of generative artificial intelligence (AI), their use in tutoring has become increasingly prominent. Prior works on LLM-based tutoring typically learn a single tutor policy and do not capture the diversity of tutoring styles. In real-world tutor-student interactions, pedagogical intent is realized through adaptive instructional strategies, with tutors varying the level of scaffolding, instructional directiveness, feedback, and affective support in response to learners' needs. These differences can all impact dialogue dynamics and student engagement. In this paper, we explore how tutor personas embedded in human tutor-student dialogues can be used to guide LLM behavior without relying on explicitly prompted instructions. We modify Bidirectional Preference Optimization (BiPO) to learn a steering vector, an activation-space direction that steers model responses towards certain tutor personas. We find that this steering vector captures tutor-specific variation across dialogue contexts, improving semantic alignment with ground-truth tutor utterances and increasing preference-based evaluations, while largely preserving lexical similarity. Analysis of the learned directional coefficients further reveals interpretable structure across tutors, corresponding to consistent differences in tutoring behavior. These results demonstrate that activation steering offers an effective and interpretable way for controlling tutor-specific variation in LLMs using signals derived directly from human dialogue data.
☆ SciClaimEval: Cross-modal Claim Verification in Scientific Papers
We present SciClaimEval, a new scientific dataset for the claim verification task. Unlike existing resources, SciClaimEval features authentic claims, including refuted ones, directly extracted from published papers. To create refuted claims, we introduce a novel approach that modifies the supporting evidence (figures and tables), rather than altering the claims or relying on large language models (LLMs) to fabricate contradictions. The dataset provides cross-modal evidence with diverse representations: figures are available as images, while tables are provided in multiple formats, including images, LaTeX source, HTML, and JSON. SciClaimEval contains 1,664 annotated samples from 180 papers across three domains, machine learning, natural language processing, and medicine, validated through expert annotation. We benchmark 11 multimodal foundation models, both open-source and proprietary, across the dataset. Results show that figure-based verification remains particularly challenging for all models, as a substantial performance gap remains between the best system and human baseline.
comment: 12 pages; data is available at https://sciclaimeval.github.io/
Learning to Self-Verify Makes Language Models Better Reasoners
Recent large language models (LLMs) achieve strong performance in generating promising reasoning paths for complex tasks. However, despite powerful generation ability, LLMs remain weak at verifying their own answers, revealing a persistent capability asymmetry between generation and self-verification. In this work, we conduct an in-depth investigation of this asymmetry throughout training evolution and show that, even on the same task, improving generation does not lead to corresponding improvements in self-verification. Interestingly, we find that the reverse direction of this asymmetry behaves differently: learning to self-verify can effectively improve generation performance, achieving accuracy comparable to standard generation training while yielding more efficient and effective reasoning traces. Building on this observation, we further explore integrating self-verification into generation training by formulating a multi-task reinforcement learning framework, where generation and self-verification are optimized as two independent but complementary objectives. Extensive experiments across benchmarks and models demonstrate performance gains over generation-only training in both generation and verification capabilities.
☆ ViCA: Efficient Multimodal LLMs with Vision-Only Cross-Attention
Modern multimodal large language models (MLLMs) adopt a unified self-attention design that processes visual and textual tokens at every Transformer layer, incurring substantial computational overhead. In this work, we revisit the necessity of such dense visual processing and show that projected visual embeddings are already well-aligned with the language space, while effective vision-language interaction occurs in only a small subset of layers. Based on these insights, we propose ViCA (Vision-only Cross-Attention), a minimal MLLM architecture in which visual tokens bypass all self-attention and feed-forward layers, interacting with text solely through sparse cross-attention at selected layers. Extensive evaluations across three MLLM backbones, nine multimodal benchmarks, and 26 pruning-based baselines show that ViCA preserves 98% of baseline accuracy while reducing visual-side computation to 4%, consistently achieving superior performance-efficiency trade-offs. Moreover, ViCA provides a regular, hardware-friendly inference pipeline that yields over 3.5x speedup in single-batch inference and over 10x speedup in multi-batch inference, reducing visual grounding to near-zero overhead compared with text-only LLMs. It is also orthogonal to token pruning methods and can be seamlessly combined for further efficiency gains. Our code is available at https://github.com/EIT-NLP/ViCA.
☆ When Is Enough Not Enough? Illusory Completion in Search Agents
Recent search agents leverage multi-turn reasoning and search tools to achieve strong performance on multi-hop and long-horizon benchmarks. Yet it remains unclear whether they reliably reason across all requirements by tracking, verifying, and maintaining multiple conditions in these questions. We study this capability under multi-constraint problems, where valid answers must satisfy several constraints simultaneously. We find that illusory completion frequently occurs, wherein agents believe tasks are complete despite unresolved or violated constraints, leading to underverified answers. To diagnose this behavior, we introduce the Epistemic Ledger, an evaluation framework that tracks evidential support and agents' beliefs for each constraint throughout multi-turn reasoning. Our analysis reveals four recurring failure patterns: bare assertions, overlooked refutations, stagnation, and premature exit. Motivated by these findings, we examine whether explicit constraint-state tracking during execution mitigates these failures via LiveLedger, an inference-time tracker. This simple intervention consistently improves performance, substantially reducing underverified answers (by up to 26.5%) and improving overall accuracy (by up to 11.6%) on multi-constraint problems.
☆ Linguistic properties and model scale in brain encoding: from small to compressed language models
Recent work has shown that scaling large language models (LLMs) improves their alignment with human brain activity, yet it remains unclear what drives these gains and which representational properties are responsible. Although larger models often yield better task performance and brain alignment, they are increasingly difficult to analyze mechanistically. This raises a fundamental question: what is the minimal model capacity required to capture brain-relevant representations? To address this question, we systematically investigate how constraining model scale and numerical precision affects brain alignment. We compare full-precision LLMs, small language models (SLMs), and compressed variants (quantized and pruned) by predicting fMRI responses during naturalistic language comprehension. Across model families up to 14B parameters, we find that 3B SLMs achieve brain predictivity indistinguishable from larger LLMs, whereas 1B models degrade substantially, particularly in semantic language regions. Brain alignment is remarkably robust to compression: most quantization and pruning methods preserve neural predictivity, with GPTQ as a consistent exception. Linguistic probing reveals a dissociation between task performance and brain predictivity: compression degrades discourse, syntax, and morphology, yet brain predictivity remains largely unchanged. Overall, brain alignment saturates at modest model scales and is resilient to compression, challenging common assumptions about neural scaling and motivating compact models for brain-aligned language modeling.
comment: 40 pages, 33 figures
☆ Improving Variable-Length Generation in Diffusion Language Models via Length Regularization
Diffusion Large Language Models (DLLMs) are inherently ill-suited for variable-length generation, as their inference is defined on a fixed-length canvas and implicitly assumes a known target length. When the length is unknown, as in realistic completion and infilling, naively comparing confidence across mask lengths becomes systematically biased, leading to under-generation or redundant continuations. In this paper, we show that this failure arises from an intrinsic lengthinduced bias in generation confidence estimates, leaving existing DLLMs without a robust way to determine generation length and making variablelength inference unreliable. To address this issue, we propose LR-DLLM, a length-regularized inference framework for DLLMs that treats generation length as an explicit variable and achieves reliable length determination at inference time. It decouples semantic compatibility from lengthinduced uncertainty through an explicit length regularization that corrects biased confidence estimates. Based on this, LR-DLLM enables dynamic expansion or contraction of the generation span without modifying the underlying DLLM or its training procedure. Experiments show that LRDLLM achieves 51.3% Pass@1 on HumanEvalInfilling under fully unknown lengths (+13.4% vs. DreamOn) and 51.5% average Pass@1 on four-language McEval (+14.3% vs. DreamOn).
comment: diffusion language models
☆ Training-Driven Representational Geometry Modularization Predicts Brain Alignment in Language Models
How large language models (LLMs) align with the neural representation and computation of human language is a central question in cognitive science. Using representational geometry as a mechanistic lens, we addressed this by tracking entropy, curvature, and fMRI encoding scores throughout Pythia (70M-1B) training. We identified a geometric modularization where layers self-organize into stable low- and high-complexity clusters. The low-complexity module, characterized by reduced entropy and curvature, consistently better predicted human language network activity. This alignment followed heterogeneous spatial-temporal trajectories: rapid and stable in temporal regions (AntTemp, PostTemp), but delayed and dynamic in frontal areas (IFG, IFGorb). Crucially, reduced curvature remained a robust predictor of model-brain alignment even after controlling for training progress, an effect that strengthened with model scale. These results links training-driven geometric reorganization to temporal-frontal functional specialization, suggesting that representational smoothing facilitates neural-like linguistic processing.
☆ MemPot: Defending Against Memory Extraction Attack with Optimized Honeypots
Large Language Model (LLM)-based agents employ external and internal memory systems to handle complex, goal-oriented tasks, yet this exposes them to severe extraction attacks, and effective defenses remain lacking. In this paper, we propose MemPot, the first theoretically verified defense framework against memory extraction attacks by injecting optimized honeypots into the memory. Through a two-stage optimization process, MemPot generates trap documents that maximize the retrieval probability for attackers while remaining inconspicuous to benign users. We model the detection process as Wald's Sequential Probability Ratio Test (SPRT) and theoretically prove that MemPot achieves a lower average number of sampling rounds compared to optimal static detectors. Empirically, MemPot significantly outperforms state-of-the-art baselines, achieving a 50% improvement in detection AUROC and an 80% increase in True Positive Rate under low False Positive Rate constraints. Furthermore, our experiments confirm that MemPot incurs zero additional online inference latency and preserves the agent's utility on standard tasks, verifying its superiority in safety, harmlessness, and efficiency.
☆ Let's Simplify Step by Step: Guiding LLM Towards Multilingual Unsupervised Proficiency-Controlled Sentence Simplification EACL 2026
Large language models demonstrate limited capability in proficiency-controlled sentence simplification, particularly when simplifying across large readability levels. We propose a framework that decomposes complex simplifications into manageable steps through dynamic path planning, semantic-aware exemplar selection, and chain-of-thought generation with conversation history for coherent reasoning. Evaluation on five languages across two benchmarks shows our approach improves simplification effectiveness while reducing computational steps by 22-42%. Human evaluation confirms the fundamental trade-off between simplification effectiveness and meaning preservation. Notably, even human annotators struggle to agree on semantic preservation judgments, highlighting the inherent complexity of this task. Our work shows that while step-by-step simplification improves control, preserving semantic fidelity during extensive simplification remains an open challenge.
comment: Accepted to EACL 2026 Findings
☆ From Native Memes to Global Moderation: Cros-Cultural Evaluation of Vision-Language Models for Hateful Meme Detection
Cultural context profoundly shapes how people interpret online content, yet vision-language models (VLMs) remain predominantly trained through Western or English-centric lenses. This limits their fairness and cross-cultural robustness in tasks like hateful meme detection. We introduce a systematic evaluation framework designed to diagnose and quantify the cross-cultural robustness of state-of-the-art VLMs across multilingual meme datasets, analyzing three axes: (i) learning strategy (zero-shot vs. one-shot), (ii) prompting language (native vs. English), and (iii) translation effects on meaning and detection. Results show that the common ``translate-then-detect'' approach deteriorate performance, while culturally aligned interventions - native-language prompting and one-shot learning - significantly enhance detection. Our findings reveal systematic convergence toward Western safety norms and provide actionable strategies to mitigate such bias, guiding the design of globally robust multimodal moderation systems.
comment: 12 pages, 5 figures, Proceedings of the ACM Web Conference 2026 (WWW '26)
☆ On the Importance of a Multi-Scale Calibration for Quantization ICASSP 2026
Post-training quantization (PTQ) is a cornerstone for efficiently deploying large language models (LLMs), where a small calibration set critically affects quantization performance. However, conventional practices rely on random sequences of fixed length, overlooking the variable-length nature of LLM inputs. Input length directly influences the activation distribution and, consequently, the weight importance captured by the Hessian, which in turn affects quantization outcomes. As a result, Hessian estimates derived from fixed-length calibration may fail to represent the true importance of weights across diverse input scenarios. We propose MaCa (Matryoshka Calibration), a simple yet effective method for length-aware Hessian construction. MaCa (i) incorporates multi-scale sequence length information into Hessian estimation and (ii) regularizes each sequence as an independent sample, yielding a more stable and fruitful Hessian for accurate quantization. Experiments on state-of-the-art LLMs (e.g., Qwen3, Gemma3, LLaMA3) demonstrate that MaCa consistently improves accuracy under low bit quantization, offering a lightweight enhancement compatible with existing PTQ frameworks. To the best of our knowledge, this is the first work to systematically highlight the role of multi-scale calibration in LLM quantization.
comment: ICASSP 2026
☆ SED-SFT: Selectively Encouraging Diversity in Supervised Fine-Tuning
Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has emerged as the standard post-training paradigm for large language models (LLMs). However, the conventional SFT process, driven by Cross-Entropy (CE) loss, often induces mode collapse, where models over-concentrate on specific response patterns. This lack of distributional diversity severely restricts the exploration efficiency required for subsequent RL. While recent studies have attempted to improve SFT by replacing the CE loss, aiming to preserve diversity or refine the update policy, they fail to adequately balance diversity and accuracy, thereby yielding suboptimal performance after RL. To address the mode collapse problem, we propose SED-SFT, which adaptively encourages diversity based on the token exploration space. This framework introduces a selective entropy regularization term with a selective masking mechanism into the optimization objective. Extensive experiments across eight mathematical benchmarks demonstrate that SED-SFT significantly enhances generation diversity with a negligible computational overhead increase compared with CE loss, yielding average improvements of 2.06 and 1.20 points in subsequent RL performance over standard CE-based baselines on Llama-3.2-3B-Instruct and Qwen2.5-Math-7B-Instruct, respectively. The code is publicly available at https://github.com/pppa2019/SED-SFT
comment: The code is publicly available at https://github.com/pppa2019/SED-SFT
☆ Pull Requests as a Training Signal for Repo-Level Code Editing
Repository-level code editing requires models to understand complex dependencies and execute precise multi-file modifications across a large codebase. While recent gains on SWE-bench rely heavily on complex agent scaffolding, it remains unclear how much of this capability can be internalised via high-quality training signals. To address this, we propose Clean Pull Request (Clean-PR), a mid-training paradigm that leverages real-world GitHub pull requests as a training signal for repository-level editing. We introduce a scalable pipeline that converts noisy pull request diffs into Search/Replace edit blocks through reconstruction and validation, resulting in the largest publicly available corpus of 2 million pull requests spanning 12 programming languages. Using this training signal, we perform a mid-training stage followed by an agentless-aligned supervised fine-tuning process with error-driven data augmentation. On SWE-bench, our model significantly outperforms the instruction-tuned baseline, achieving absolute improvements of 13.6% on SWE-bench Lite and 12.3% on SWE-bench Verified. These results demonstrate that repository-level code understanding and editing capabilities can be effectively internalised into model weights under a simplified, agentless protocol, without relying on heavy inference-time scaffolding.
☆ DLLM Agent: See Farther, Run Faster
Diffusion large language models (DLLMs) have emerged as an alternative to autoregressive (AR) decoding with appealing efficiency and modeling properties, yet their implications for agentic multi-step decision making remain underexplored. We ask a concrete question: when the generation paradigm is changed but the agent framework and supervision are held fixed, do diffusion backbones induce systematically different planning and tool-use behaviors, and do these differences translate into end-to-end efficiency gains? We study this in a controlled setting by instantiating DLLM and AR backbones within the same agent workflow (DeepDiver) and performing matched agent-oriented fine-tuning on the same trajectory data, yielding diffusion-backed DLLM Agents and directly comparable AR agents. Across benchmarks and case studies, we find that, at comparable accuracy, DLLM Agents are on average over 30% faster end to end than AR agents, with some cases exceeding 8x speedup. Conditioned on correct task completion, DLLM Agents also require fewer interaction rounds and tool invocations, consistent with higher planner hit rates that converge earlier to a correct action path with less backtracking. We further identify two practical considerations for deploying diffusion backbones in tool-using agents. First, naive DLLM policies are more prone to structured tool-call failures, necessitating stronger tool-call-specific training to emit valid schemas and arguments. Second, for multi-turn inputs interleaving context and action spans, diffusion-style span corruption requires aligned attention masking to avoid spurious context-action information flow; without such alignment, performance degrades. Finally, we analyze attention dynamics across workflow stages and observe paradigm-specific coordination patterns, suggesting stronger global planning signals in diffusion-backed agents.
☆ Measuring cross-language intelligibility between Romance languages with computational tools
We present an analysis of mutual intelligibility in related languages applied for languages in the Romance family. We introduce a novel computational metric for estimating intelligibility based on lexical similarity using surface and semantic similarity of related words, and use it to measure mutual intelligibility for the five main Romance languages (French, Italian, Portuguese, Spanish, and Romanian), and compare results using both the orthographic and phonetic forms of words as well as different parallel corpora and vectorial models of word meaning representation. The obtained intelligibility scores confirm intuitions related to intelligibility asymmetry across languages and significantly correlate with results of cloze tests in human experiments.
comment: 16 pages, 7 figures, 2 tables
☆ Sign-Based Optimizers Are Effective Under Heavy-Tailed Noise
While adaptive gradient methods are the workhorse of modern machine learning, sign-based optimization algorithms such as Lion and Muon have recently demonstrated superior empirical performance over AdamW in training large language models (LLM). However, a theoretical understanding of why sign-based updates outperform variance-adapted methods remains elusive. In this paper, we aim to bridge the gap between theory and practice through the lens of heavy-tailed gradient noise, a phenomenon frequently observed in language modeling tasks. Theoretically, we introduce a novel generalized heavy-tailed noise condition that captures the behavior of LLMs more accurately than standard finite variance assumptions. Under this noise model, we establish sharp convergence rates of SignSGD and Lion for generalized smooth function classes, matching or surpassing previous best-known bounds. Furthermore, we extend our analysis to Muon and Muonlight, providing what is, to our knowledge, the first rigorous analysis of matrix optimization under heavy-tailed stochasticity. These results offer a strong theoretical justification for the empirical superiority of sign-based optimizers, showcasing that they are naturally suited to handle the noisy gradients associated with heavy tails. Empirically, LLM pretraining experiments validate our theoretical insights and confirm that our proposed noise models are well-aligned with practice.
comment: Code available at https://github.com/Dingzhen230/Heavy-tailed-Noise-in-LLMs
☆ Secure Code Generation via Online Reinforcement Learning with Vulnerability Reward Model
Large language models (LLMs) are increasingly used in software development, yet their tendency to generate insecure code remains a major barrier to real-world deployment. Existing secure code alignment methods often suffer from a functionality--security paradox, improving security at the cost of substantial utility degradation. We propose SecCoderX, an online reinforcement learning framework for functionality-preserving secure code generation. SecCoderX first bridges vulnerability detection and secure code generation by repurposing mature detection resources in two ways: (i) synthesizing diverse, reality-grounded vulnerability-inducing coding tasks for online RL rollouts, and (ii) training a reasoning-based vulnerability reward model that provides scalable and reliable security supervision. Together, these components are unified in an online RL loop to align code LLMs to generate secure and functional code. Extensive experiments demonstrate that SecCoderX achieves state-of-the-art performance, improving Effective Safety Rate (ESR) by approximately 10% over unaligned models, whereas prior methods often degrade ESR by 14-54%. We release our code, dataset and model checkpoints at https://github.com/AndrewWTY/SecCoderX.
☆ Can LLMs Truly Embody Human Personality? Analyzing AI and Human Behavior Alignment in Dispute Resolution AAAI 2026
Large language models (LLMs) are increasingly used to simulate human behavior in social settings such as legal mediation, negotiation, and dispute resolution. However, it remains unclear whether these simulations reproduce the personality-behavior patterns observed in humans. Human personality, for instance, shapes how individuals navigate social interactions, including strategic choices and behaviors in emotionally charged interactions. This raises the question: Can LLMs, when prompted with personality traits, reproduce personality-driven differences in human conflict behavior? To explore this, we introduce an evaluation framework that enables direct comparison of human-human and LLM-LLM behaviors in dispute resolution dialogues with respect to Big Five Inventory (BFI) personality traits. This framework provides a set of interpretable metrics related to strategic behavior and conflict outcomes. We additionally contribute a novel dataset creation methodology for LLM dispute resolution dialogues with matched scenarios and personality traits with respect to human conversations. Finally, we demonstrate the use of our evaluation framework with three contemporary closed-source LLMs and show significant divergences in how personality manifests in conflict across different LLMs compared to human data, challenging the assumption that personality-prompted agents can serve as reliable behavioral proxies in socially impactful applications. Our work highlights the need for psychological grounding and validation in AI simulations before real-world use.
comment: AAAI 2026 (Special Track: AISI)
☆ Advantages of Domain Knowledge Injection for Legal Document Summarization: A Case Study on Summarizing Indian Court Judgments in English and Hindi
Summarizing Indian legal court judgments is a complex task not only due to the intricate language and unstructured nature of the legal texts, but also since a large section of the Indian population does not understand the complex English in which legal text is written, thus requiring summaries in Indian languages. In this study, we aim to improve the summarization of Indian legal text to generate summaries in both English and Hindi (the most widely spoken Indian language), by injecting domain knowledge into diverse summarization models. We propose a framework to enhance extractive neural summarization models by incorporating domain-specific pre-trained encoders tailored for legal texts. Further, we explore the injection of legal domain knowledge into generative models (including Large Language Models) through continual pre-training on large legal corpora in English and Hindi. Our proposed approaches achieve statistically significant improvements in both English-to-English and English-to-Hindi Indian legal document summarization, as measured by standard evaluation metrics, factual consistency metrics, and legal domain-specific metrics. Furthermore, these improvements are validated through domain experts, demonstrating the effectiveness of our approaches.
comment: 19 pages, 5 figures, 8 tables
☆ When the Model Said 'No Comment', We Knew Helpfulness Was Dead, Honesty Was Alive, and Safety Was Terrified EACL
Large Language Models (LLMs) need to be in accordance with human values-being helpful, harmless, and honest (HHH)-is important for safe deployment. Existing works use Supervised Fine-Tuning (SFT) and Mixture-of-Experts (MoE) to align LLMs. However, these works face challenges in multi-objective settings, such as SFT leading to interference between conflicting objectives, while MoEs suffer from miscalibrated routing. We term this failure mode Axis Collapse, marked by (1) disjoint feature spaces causing catastrophic forgetting, and (2) unreliable inference from misrouted experts. To resolve this, we propose AlignX, a two-stage framework. Stage 1 uses prompt-injected fine-tuning to extract axis-specific task features, mitigating catastrophic forgetting. Stage 2 deploys a MoCaE module that calibrates expert routing using fractal and natural geometry, improving inference reliability. AlignX achieves significant gains on Alpaca (Helpfulness), BeaverTails (Harmlessness), and TruthfulQA (Honesty), with +171.5% win rate, +110.1% in truthfulness-informativeness, and 4.3% fewer safety violations. It also reduces latency and memory usage by over 35% compared to prior MoEs. Results across four LLMs validate its generalizability.
comment: Accepted at EACL Mains 2026
☆ Do Large Language Models Reflect Demographic Pluralism in Safety? EACL
Large Language Model (LLM) safety is inherently pluralistic, reflecting variations in moral norms, cultural expectations, and demographic contexts. Yet, existing alignment datasets such as ANTHROPIC-HH and DICES rely on demographically narrow annotator pools, overlooking variation in safety perception across communities. Demo-SafetyBench addresses this gap by modeling demographic pluralism directly at the prompt level, decoupling value framing from responses. In Stage I, prompts from DICES are reclassified into 14 safety domains (adapted from BEAVERTAILS) using Mistral 7B-Instruct-v0.3, retaining demographic metadata and expanding low-resource domains via Llama-3.1-8B-Instruct with SimHash-based deduplication, yielding 43,050 samples. In Stage II, pluralistic sensitivity is evaluated using LLMs-as-Raters-Gemma-7B, GPT-4o, and LLaMA-2-7B-under zero-shot inference. Balanced thresholds (delta = 0.5, tau = 10) achieve high reliability (ICC = 0.87) and low demographic sensitivity (DS = 0.12), confirming that pluralistic safety evaluation can be both scalable and demographically robust.
comment: Accepted at EACL Findings 2026
☆ Efficient Post-Training Pruning of Large Language Models with Statistical Correction
Post-training pruning is an effective approach for reducing the size and inference cost of large language models (LLMs), but existing methods often face a trade-off between pruning quality and computational efficiency. Heuristic pruning methods are efficient but sensitive to activation outliers, while reconstruction-based approaches improve fidelity at the cost of heavy computation. In this work, we propose a lightweight post-training pruning framework based on first-order statistical properties of model weights and activations. During pruning, channel-wise statistics are used to calibrate magnitude-based importance scores, reducing bias from activation-dominated channels. After pruning, we apply an analytic energy compensation to correct distributional distortions caused by weight removal. Both steps operate without retraining, gradients, or second-order information. Experiments across multiple LLM families, sparsity patterns, and evaluation tasks show that the proposed approach improves pruning performance while maintaining computational cost comparable to heuristic methods. The results suggest that simple statistical corrections can be effective for post-training pruning of LLMs.
comment: 11 pages, 2 figures, 5 tables
☆ TernaryLM: Memory-Efficient Language Modeling via Native 1-Bit Quantization with Adaptive Layer-wise Scaling
Large language models (LLMs) achieve remarkable performance but demand substantial computational resources, limiting deployment on edge devices and resource-constrained environments. We present TernaryLM, a 132M parameter transformer architecture that employs native 1-bit ternary quantization {-1, 0, +1} during training, achieving significant memory reduction without sacrificing language modeling capability. Unlike post-training quantization approaches that quantize pre-trained full-precision models, TernaryLM learns quantization-aware representations from scratch using straight-through estimators and adaptive per-layer scaling factors. Our experiments demonstrate: (1) validation perplexity of 58.42 on TinyStories; (2) downstream transfer with 82.47 percent F1 on MRPC paraphrase detection; (3) 2.4x memory reduction (498MB vs 1197MB) with comparable inference latency; and (4) stable training dynamics across diverse corpora. We provide layer-wise quantization analysis showing that middle transformer layers exhibit highest compatibility with extreme quantization, informing future non-uniform precision strategies. Our results suggest that native 1-bit training is a promising direction for efficient neural language models. Code is available at https://github.com/1nisharg/TernaryLM-Memory-Efficient-Language-Modeling.
☆ ViHERMES: A Graph-Grounded Multihop Question Answering Benchmark and System for Vietnamese Healthcare Regulations
Question Answering (QA) over regulatory documents is inherently challenging due to the need for multihop reasoning across legally interdependent texts, a requirement that is particularly pronounced in the healthcare domain where regulations are hierarchically structured and frequently revised through amendments and cross-references. Despite recent progress in retrieval-augmented and graph-based QA methods, systematic evaluation in this setting remains limited, especially for low-resource languages such as Vietnamese, due to the lack of benchmark datasets that explicitly support multihop reasoning over healthcare regulations. In this work, we introduce the Vietnamese Healthcare Regulations-Multihop Reasoning Dataset (ViHERMES), a benchmark designed for multihop QA over Vietnamese healthcare regulatory documents. ViHERMES consists of high-quality question-answer pairs that require reasoning across multiple regulations and capture diverse dependency patterns, including amendment tracing, cross-document comparison, and procedural synthesis. To construct the dataset, we propose a controlled multihop QA generation pipeline based on semantic clustering and graph-inspired data mining, followed by large language model-based generation with structured evidence and reasoning annotations. We further present a graph-aware retrieval framework that models formal legal relations at the level of legal units and supports principled context expansion for legally valid and coherent answers. Experimental results demonstrate that ViHERMES provides a challenging benchmark for evaluating multihop regulatory QA systems and that the proposed graph-aware approach consistently outperforms strong retrieval-based baselines. The ViHERMES dataset and system implementation are publicly available at https://github.com/ura-hcmut/ViHERMES.
comment: Accepted at ACIIDS 2026
Intent Mismatch Causes LLMs to Get Lost in Multi-Turn Conversation
Multi-turn conversation has emerged as a predominant interaction paradigm for Large Language Models (LLMs). Users often employ follow-up questions to refine their intent, expecting LLMs to adapt dynamically. However, recent research reveals that LLMs suffer a substantial performance drop in multi-turn settings compared to single-turn interactions with fully specified instructions, a phenomenon termed ``Lost in Conversation'' (LiC). While this prior work attributes LiC to model unreliability, we argue that the root cause lies in an intent alignment gap rather than intrinsic capability deficits. In this paper, we first demonstrate that LiC is not a failure of model capability but rather a breakdown in interaction between users and LLMs. We theoretically show that scaling model size or improving training alone cannot resolve this gap, as it arises from structural ambiguity in conversational context rather than representational limitations. To address this, we propose to decouple intent understanding from task execution through a Mediator-Assistant architecture. By utilizing an experience-driven Mediator to explicate user inputs into explicit, well-structured instructions based on historical interaction patterns, our approach effectively bridges the gap between vague user intent and model interpretation. Experimental results demonstrate that this method significantly mitigates performance degradation in multi-turn conversations across diverse LLMs.
☆ High Fidelity Textual User Representation over Heterogeneous Sources via Reinforcement Learning
Effective personalization on large-scale job platforms requires modeling members based on heterogeneous textual sources, including profiles, professional data, and search activity logs. As recommender systems increasingly adopt Large Language Models (LLMs), creating unified, interpretable, and concise representations from heterogeneous sources becomes critical, especially for latency-sensitive online environments. In this work, we propose a novel Reinforcement Learning (RL) framework to synthesize a unified textual representation for each member. Our approach leverages implicit user engagement signals (e.g., clicks, applies) as the primary reward to distill salient information. Additionally, the framework is complemented by rule-based rewards that enforce formatting and length constraints. Extensive offline experiments across multiple LinkedIn products, one of the world's largest job platforms, demonstrate significant improvements in key downstream business metrics. This work provides a practical, labeling-free, and scalable solution for constructing interpretable user representations that are directly compatible with LLM-based systems.
☆ Beyond Accuracy: Risk-Sensitive Evaluation of Hallucinated Medical Advice
Large language models are increasingly being used in patient-facing medical question answering, where hallucinated outputs can vary widely in potential harm. However, existing hallucination standards and evaluation metrics focus primarily on factual correctness, treating all errors as equally severe. This obscures clinically relevant failure modes, particularly when models generate unsupported but actionable medical language. We propose a risk-sensitive evaluation framework that quantifies hallucinations through the presence of risk-bearing language, including treatment directives, contraindications, urgency cues, and mentions of high-risk medications. Rather than assessing clinical correctness, our approach evaluates the potential impact of hallucinated content if acted upon. We further combine risk scoring with a relevance measure to identify high-risk, low-grounding failures. We apply this framework to three instruction-tuned language models using controlled patient-facing prompts designed as safety stress tests. Our results show that models with similar surface-level behavior exhibit substantially different risk profiles and that standard evaluation metrics fail to capture these distinctions. These findings highlight the importance of incorporating risk sensitivity into hallucination evaluation and suggest that evaluation validity is critically dependent on task and prompt design.
☆ Steer2Adapt: Dynamically Composing Steering Vectors Elicits Efficient Adaptation of LLMs
Activation steering has emerged as a promising approach for efficiently adapting large language models (LLMs) to downstream behaviors. However, most existing steering methods rely on a single static direction per task or concept, making them inflexible under task variation and inadequate for complex tasks that require multiple coordinated capabilities. To address this limitation, we propose STEER2ADAPT, a lightweight framework that adapts LLMs by composing steering vectors rather than learning new ones from scratch. In many domains (e.g., reasoning or safety), tasks share a small set of underlying concept dimensions. STEER2ADAPT captures these dimensions as a reusable, low-dimensional semantic prior subspace, and adapts to new tasks by dynamically discovering a linear combination of basis vectors from only a handful of examples. Experiments across 9 tasks and 3 models in both reasoning and safety domains demonstrate the effectiveness of STEER2ADAPT, achieving an average improvement of 8.2%. Extensive analyses further show that STEER2ADAPT is a data-efficient, stable, and transparent inference-time adaptation method for LLMs.
♻ ☆ StoryBox: Collaborative Multi-Agent Simulation for Hybrid Bottom-Up Long-Form Story Generation Using Large Language Models
Human writers often begin their stories with an overarching mental scene, where they envision the interactions between characters and their environment. Inspired by this creative process, we propose a novel approach to long-form story generation, termed hybrid bottom-up long-form story generation, using multi-agent simulations. In our method, agents interact within a dynamic sandbox environment, where their behaviors and interactions with one another and the environment generate emergent events. These events form the foundation for the story, enabling organic character development and plot progression. Unlike traditional top-down approaches that impose rigid structures, our hybrid bottom-up approach allows for the natural unfolding of events, fostering more spontaneous and engaging storytelling. The system is capable of generating stories exceeding 10,000 words while maintaining coherence and consistency, addressing some of the key challenges faced by current story generation models. We achieve state-of-the-art performance across several metrics. This approach offers a scalable and innovative solution for creating dynamic, immersive long-form stories that evolve organically from agent-driven interactions.
comment: Project: https://storyboxproject.github.io
♻ ☆ Knowing When to Stop: Efficient Context Processing via Latent Sufficiency Signals NeurIPS 2025
Large language models (LLMs) process entire input contexts indiscriminately, which is inefficient when the information required to answer a query is localized within the context. We present dynamic context cutoff, a novel method enabling LLMs to self-terminate processing upon acquiring sufficient task-relevant information. Through analysis of model internals, we discover that specific attention heads inherently encode "sufficiency signals" -- detectable through lightweight classifiers -- that predict when critical information has been processed. This reveals a new efficiency paradigm: models' internal understanding naturally dictates processing needs rather than external compression heuristics. Comprehensive experiments across six QA datasets (up to 40K tokens) with three model families (LLaMA/Qwen/Mistral, 1B-70B) demonstrate 3.4% accuracy improvement while achieving 1.33x token reduction on average. Furthermore, our method demonstrates superior performance compared to other context efficiency methods at equivalent token reduction rates. Additionally, we observe an emergent scaling phenomenon: while smaller models require probing for sufficiency detection, larger models exhibit intrinsic self-assessment capabilities through prompting.
comment: Accepted to NeurIPS 2025
♻ ☆ Towards an Understanding of Context Utilization in Code Intelligence
Code intelligence is an emerging domain in software engineering, aiming to improve the effectiveness and efficiency of various code-related tasks. Recent research suggests that incorporating contextual information beyond the basic original task inputs (i.e., source code) can substantially enhance model performance. Such contextual signals may be obtained directly or indirectly from sources such as API documentation or intermediate representations like abstract syntax trees can significantly improve the effectiveness of code intelligence. Despite growing academic interest, there is a lack of systematic analysis of context in code intelligence. To address this gap, we conduct an extensive literature review of 146 relevant studies published between September 2007 and August 2024. Our investigation yields four main contributions. (1) A quantitative analysis of the research landscape, including publication trends, venues, and the explored domains; (2) A novel taxonomy of context types used in code intelligence; (3) A task-oriented analysis investigating context integration strategies across diverse code intelligence tasks; (4) A critical evaluation of evaluation methodologies for context-aware methods. Based on these findings, we identify fundamental challenges in context utilization in current code intelligence systems and propose a research roadmap that outlines key opportunities for future research.
comment: Accepted by ACM Computing Surveys
♻ ☆ PBEBench: A Multi-Step Programming by Examples Reasoning Benchmark inspired by Historical Linguistics
Although many benchmarks evaluate the reasoning abilities of Large Language Models (LLMs) within domains such as mathematics, coding, or data wrangling, few abstract away from domain specifics to examine reasoning as a capability in and of itself. We contribute a novel type of benchmark evaluating the inductive reasoning capabilities of LLMs that is inspired by the forward reconstruction task from historical linguistics but is formulated in an extremely simple, general way (in the form of Programming by Examples). The task involves generating a cascade of simple string rewrite programs to transform a given list of input strings into a list of desired output strings. We present a fully automated pipeline that programmatically generates problems of this type with controllable difficulty, enabling scalable evaluation of reasoning models while avoiding contamination. Using this approach, we construct two benchmarks: PBEBench-Lite, which efficiently stratifies models of varying capabilities, and PBEBench, which requires models to induce programs similar in complexity to those constructed by historical linguists. Our experiments reveal a substantial performance gap between models that leverage test-time compute or LCoT (long chain-of-thought) reasoning and those that do not. Moreover, although recent models show promise, the solve rate for both of them drops below 5% for hard instances of the PBEBench dataset (ground truth cascade lengths of 20 and 30, respectively), falling well short of realistic historical linguistics requirements even with computationally expensive, popular scaling techniques from the PBE and reasoning literature. Additionally, we also study the effectiveness of different scaling strategies and the impact of various hyperparameters on the difficulty of the generated data using gpt-oss-120b, the best-performing open-source model.
♻ ☆ The Roots of Performance Disparity in Multilingual Language Models: Intrinsic Modeling Difficulty or Design Choices?
Multilingual language models (LMs) promise broader NLP access, yet current systems deliver uneven performance across the world's languages. This survey examines why these gaps persist and whether they reflect intrinsic linguistic difficulty or modeling artifacts. We organize the literature around two questions: do linguistic disparities arise from representation and allocation choices (e.g., tokenization, encoding, data exposure, parameter sharing) rather than inherent complexity; and which design choices mitigate inequities across typologically diverse languages. We review linguistic features, such as orthography, morphology, lexical diversity, syntax, information density, and typological distance, linking each to concrete modeling mechanisms. Gaps often shrink when segmentation, encoding, and data exposure are normalized, suggesting much apparent difficulty stems from current modeling choices. We synthesize these insights into design recommendations for tokenization, sampling, architectures, and evaluation to support more balanced multilingual LMs.
♻ ☆ AOrchestra: Automating Sub-Agent Creation for Agentic Orchestration
Language agents have shown strong promise for task automation. Realizing this promise for increasingly complex, long-horizon tasks has driven the rise of a sub-agent-as-tools paradigm for multi-turn task solving. However, existing designs still lack a dynamic abstraction view of sub-agents, thereby hurting adaptability. We address this challenge with a unified, framework-agnostic agent abstraction that models any agent as a tuple Instruction, Context, Tools, Model. This tuple acts as a compositional recipe for capabilities, enabling the system to spawn specialized executors for each task on demand. Building on this abstraction, we introduce an agentic system AOrchestra, where the central orchestrator concretizes the tuple at each step: it curates task-relevant context, selects tools and models, and delegates execution via on-the-fly automatic agent creation. Such designs enable reducing human engineering efforts, and remain framework-agnostic with plug-and-play support for diverse agents as task executors. It also enables a controllable performance-cost trade-off, allowing the system to approach Pareto-efficient. Across three challenging benchmarks (GAIA, SWE-Bench, Terminal-Bench), AOrchestra achieves 16.28% relative improvement against the strongest baseline when paired with Gemini-3-Flash. The code is available at: https://github.com/FoundationAgents/AOrchestra
♻ ☆ Beyond Bias Scores: Unmasking Vacuous Neutrality in Small Language Models EACL 2026
The rapid adoption of Small Language Models (SLMs) for resource constrained applications has outpaced our understanding of their ethical and fairness implications. To address this gap, we introduce the Vacuous Neutrality Framework (VaNeu), a multi-dimensional evaluation paradigm designed to assess SLM fairness prior to deployment. The framework examines model robustness across four stages - biases, utility, ambiguity handling, and positional bias over diverse social bias categories. To the best of our knowledge, this work presents the first large-scale audit of SLMs in the 0.5-5B parameter range, an overlooked "middle tier" between BERT-class encoders and flagship LLMs. We evaluate nine widely used SLMs spanning four model families under both ambiguous and disambiguated contexts. Our findings show that models demonstrating low bias in early stages often fail subsequent evaluations, revealing hidden vulnerabilities and unreliable reasoning. These results underscore the need for a more comprehensive understanding of fairness and reliability in SLMs, and position the proposed framework as a principled tool for responsible deployment in socially sensitive settings.
comment: Accepted at EACL 2026 Student Research Workshop
♻ ☆ Towards EnergyGPT: A Large Language Model Specialized for the Energy Sector
Large language models have demonstrated impressive capabilities across various domains. However, their general-purpose nature often limits their effectiveness in specialized fields such as energy, where deep technical expertise and precise domain knowledge are essential. In this paper, we introduce EnergyGPT, a domain-specialized language model tailored for the energy sector, developed by fine-tuning the LLaMA 3.1-8B model on a high-quality, curated corpus of energy-related texts. We consider two adaptation strategies: a full-parameter Supervised Fine-Tuning variant and a parameter-efficient LoRA-based variant that updates only a small fraction of the model parameters. We present a complete development pipeline, including data collection and curation, model fine-tuning, benchmark design and LLM-judge choice, evaluation, and deployment. Through this work, we demonstrate that our training strategy enables improvements in domain relevance and performance without the need for large-scale infrastructure. By evaluating the performance of both EnergyGPT variants using domain-specific question-answering benchmarks, our results show that the adapted models consistently outperform the base model in most energy-related language understanding and generation tasks, with the LoRA variant achieving competitive gains at significantly reduced training cost.
♻ ☆ MET-Bench: Multimodal Entity Tracking for Evaluating the Limitations of Vision-Language and Reasoning Models
Entity state tracking is a necessary component of world modeling that requires maintaining coherent representations of entities over time. Previous work has benchmarked entity tracking performance in purely text-based tasks. We introduce MET-Bench, a multimodal entity tracking benchmark designed to evaluate vision-language models' ability to track entity states across modalities. Using two structured domains, we assess how effectively current models integrate textual and image-based state updates. Our findings reveal a significant performance gap between text-based and image-based entity tracking. We empirically show this discrepancy primarily stems from deficits in visual reasoning rather than perception. We further show that explicit text-based reasoning strategies improve performance, yet limitations remain in long-horizon multimodal tasks. We develop a reinforcement learning method to improve performance on MET-Bench. Applying our method to open-source VLMs achieves competitive performance with advanced closed models. Our results highlight the need for improved multimodal representations and reasoning techniques to bridge the gap between textual and visual entity tracking.
♻ ☆ Stability as a Liability:Systematic Breakdown of Linguistic Structure in LLMs
Training stability is typically regarded as a prerequisite for reliable optimization in large language models. In this work, we analyze how stabilizing training dynamics affects the induced generation distribution. We show that under standard maximum likelihood training, stable parameter trajectories lead stationary solutions to approximately minimize the forward KL divergence to the empirical distribution, while implicitly reducing generative entropy. As a consequence, the learned model can concentrate probability mass on a limited subset of empirical modes, exhibiting systematic degeneration despite smooth loss convergence. We empirically validate this effect using a controlled feedback-based training framework that stabilizes internal generation statistics, observing consistent low-entropy outputs and repetitive behavior across architectures and random seeds. It indicates that optimization stability and generative expressivity are not inherently aligned, and that stability alone is an insufficient indicator of generative quality.
♻ ☆ KV-CoRE: Benchmarking Data-Dependent Low-Rank Compressibility of KV-Caches in LLMs
Large language models rely on kv-caches to avoid redundant computation during autoregressive decoding, but as context length grows, reading and writing the cache can quickly saturate GPU memory bandwidth. Recent work has explored KV-cache compression, yet most approaches neglect the data-dependent nature of kv-caches and their variation across layers. We introduce KV-CoRE KV-cache Compressibility by Rank Evaluation), an SVD-based method for quantifying the data-dependent low-rank compressibility of kv-caches. KV-CoRE computes the optimal low-rank approximation under the Frobenius norm and, being gradient-free and incremental, enables efficient dataset-level, layer-wise evaluation. Using this method, we analyze multiple models and datasets spanning five English domains and sixteen languages, uncovering systematic patterns that link compressibility to model architecture, training data, and language coverage. As part of this analysis, we employ the Normalized Effective Rank as a metric of compressibility and show that it correlates strongly with performance degradation under compression. Our study establishes a principled evaluation framework and the first large-scale benchmark of kv-cache compressibility in LLMs, offering insights for dynamic, data-aware compression and data-centric model development.
♻ ☆ Task-Conditioned Probing Reveals Brain-Alignment Patterns in Instruction-Tuned Multimodal LLMs
Recent voxel-wise multimodal brain encoding studies have shown that multimodal large language models (MLLMs) exhibit a higher degree of brain alignment compared to unimodal models. More recently, instruction-tuned multimodal (IT) models have been shown to generate task-specific representations that align strongly with brain activity, yet most prior evaluations focus on unimodal stimuli or non-instruction-tuned models under multimodal stimuli. We still lack a clear understanding of whether instruction-tuning is associated with IT-MLLMs organizing their representations around functional task demands or if they simply reflect surface semantics. To address this, we estimate brain alignment by predicting fMRI responses recorded during naturalistic movie watching (video with audio) from MLLM representations. Using instruction-specific embeddings from six video and two audio IT-MLLMs, across 13 video task instructions, we find that instruction-tuned video MLLMs significantly outperform in-context learning (ICL) multimodal models (~9%), non-instruction-tuned multimodal models (~15%), and unimodal baselines (~20%). Our evaluation of MLLMs across video and audio tasks, and language-guided probing produces distinct task-specific MLLM representations that vary across brain regions. We also find that ICL models show strong semantic organization (r=0.78), while IT models show weak coupling to instruction-text semantics (r=0.14), consistent with task-conditioned subspaces associated with higher brain alignment. These findings are consistent with an association between task-specific instructions and stronger brain-MLLM alignment, and open new avenues for mapping joint information processing in both systems. We make the code publicly available [https://github.com/subbareddy248/mllm_videos].
comment: 55 pages, 35 figures
♻ ☆ Large Language Model Agents Are Not Always Faithful Self-Evolvers
Self-evolving large language model (LLM) agents continually improve by accumulating and reusing past experience, yet it remains unclear whether they faithfully rely on that experience to guide their behavior. We present the first systematic investigation of experience faithfulness, the causal dependence of an agent's decisions on the experience it is given, in self-evolving LLM agents. Using controlled causal interventions on both raw and condensed forms of experience, we comprehensively evaluate four representative frameworks across 10 LLM backbones and 9 environments. Our analysis uncovers a striking asymmetry: while agents consistently depend on raw experience, they often disregard or misinterpret condensed experience, even when it is the only experience provided. This gap persists across single- and multi-agent configurations and across backbone scales. We trace its underlying causes to three factors: the semantic limitations of condensed content, internal processing biases that suppress experience, and task regimes where pretrained priors already suffice. These findings challenge prevailing assumptions about self-evolving methods and underscore the need for more faithful and reliable approaches to experience integration.
comment: 25 pages, 16 figures, 7 tables
♻ ☆ What Layers When: Learning to Skip Compute in LLMs with Residual Gates ICLR 2026
We introduce GateSkip, a simple residual-stream gating mechanism that enables token-wise layer skipping in decoder-only LMs. Each Attention/MLP branch is equipped with a sigmoid-linear gate that condenses the branch's output before it re-enters the residual stream. During inference we rank tokens by the gate values and skip low-importance ones using a per-layer budget. While early-exit or router-based Mixture-of-Depths models are known to be unstable and need extensive retraining, our smooth, differentiable gates fine-tune stably on top of pretrained models. On long-form reasoning, we save up to 15% compute while retaining over 90% of baseline accuracy. For increasingly larger models, this tradeoff improves drastically. On instruction-tuned models we see accuracy gains at full compute and match baseline quality near 50% savings. The learned gates give insight into transformer information flow (e.g., BOS tokens act as anchors), and the method combines easily with quantization, pruning, and self-speculative decoding.
comment: Published as a conference paper at ICLR 2026
♻ ☆ $ρ$-$\texttt{EOS}$: Training-free Bidirectional Variable-Length Control for Masked Diffusion LLMs
Beyond parallel generation and global context modeling, current masked diffusion large language models (masked dLLMs, i.e., LLaDA) suffer from a fundamental limitation: they require a predefined, fixed generation length, which lacks flexibility and forces an inevitable trade-off between output quality and computational efficiency. To address this, we study the denoising dynamics and find that the implicit density ($ρ$) of end-of-sequence ($\texttt{EOS}$) tokens serves as a reliable signal of generation sufficiency. In particular, the evolving implicit $\texttt{EOS}$ density during denoising reveals whether the current masked space is excessive or insufficient, thereby guiding the adjustment direction for generation length. Building on this insight, we propose $\textbf{$ρ$-$\texttt{EOS}$}$, a training-free, single-stage strategy that enables bidirectional variable-length generation for masked dLLMs. Unlike prior two-stage approaches--which require separate length adjustment and iterative mask insertion phases while supporting only unidirectional expansion--$\textbf{$ρ$-$\texttt{EOS}$}$ achieves bidirectional length adjustment within a unified denoising process by continuously estimating the implicit $\texttt{EOS}$ density: excessively high density triggers $\texttt{MASK}$ token contraction, while insufficient density induces expansion. Extensive experiments on mathematics and code benchmarks demonstrate that $\textbf{$ρ$-$\texttt{EOS}$}$ achieves comparable performance while substantially improving inference efficiency and token utilization. Code is available at https://github.com/yjyddq/rho-EOS.
comment: 11 pages,6 figures,6 tables
♻ ☆ GMSA: Enhancing Context Compression via Group Merging and Layer Semantic Alignment
Large Language Models (LLMs) have achieved remarkable performance across a wide range of Natural Language Processing (NLP) tasks. However, in long-context scenarios, they face two challenges: high computational cost and information redundancy. To address these challenges, we propose GMSA, an encoder-decoder context compression framework that generates a compact sequence of soft tokens for downstream tasks. GMSA introduces Group Merging to achieve more uniform aggregation, mitigating semantic dominance during autoencoder pretraining, and Layer Semantic Alignment (LSA) to bridge the semantic gap between high-level abstract semantics and low-level input semantics. We first pretrain GMSA as an autoencoder and then fine-tune it for downstream tasks. Experiments demonstrate that GMSA improves context reconstruction compared to existing soft prompt compression paradigm and outperforms baselines on multiple long-context question answering and summarization benchmarks across two backbone models, while maintaining low end-to-end latency.
comment: 14 pages, 7 figures
♻ ☆ SafeDialBench: A Fine-Grained Safety Evaluation Benchmark for Large Language Models in Multi-Turn Dialogues with Diverse Jailbreak Attacks
With the rapid advancement of Large Language Models (LLMs), the safety of LLMs has been a critical concern requiring precise assessment. Current benchmarks primarily concentrate on single-turn dialogues or a single jailbreak attack method to assess the safety. Additionally, these benchmarks have not taken into account the LLM's capability of identifying and handling unsafe information in detail. To address these issues, we propose a fine-grained benchmark SafeDialBench for evaluating the safety of LLMs across various jailbreak attacks in multi-turn dialogues. Specifically, we design a two-tier hierarchical safety taxonomy that considers 6 safety dimensions and generates more than 4000 multi-turn dialogues in both Chinese and English under 22 dialogue scenarios. We employ 7 jailbreak attack strategies, such as reference attack and purpose reverse, to enhance the dataset quality for dialogue generation. Notably, we construct an innovative assessment framework of LLMs, measuring capabilities in detecting, and handling unsafe information and maintaining consistency when facing jailbreak attacks. Experimental results across 17 LLMs reveal that Yi-34B-Chat and GLM4-9B-Chat demonstrate superior safety performance, while Llama3.1-8B-Instruct and o3-mini exhibit safety vulnerabilities.
♻ ☆ OPUS: Towards Efficient and Principled Data Selection in Large Language Model Pre-training in Every Iteration
As high-quality public text approaches exhaustion, a phenomenon known as the Data Wall, pre-training is shifting from more tokens to better tokens. However, existing methods either rely on heuristic static filters that ignore training dynamics, or use dynamic yet optimizer-agnostic criteria based on raw gradients. We propose OPUS (Optimizer-induced Projected Utility Selection), a dynamic data selection framework that defines utility in the optimizer-induced update space. OPUS scores candidates by projecting their effective updates, shaped by modern optimizers, onto a target direction derived from a stable, in-distribution proxy. To ensure scalability, we employ Ghost technique with CountSketch for computational efficiency, and Boltzmann sampling for data diversity, incurring only 4.7\% additional compute overhead. OPUS achieves remarkable results across diverse corpora, quality tiers, optimizers, and model scales. In pre-training of GPT-2 Large/XL on FineWeb and FineWeb-Edu with 30B tokens, OPUS outperforms industrial-level baselines and even full 200B-token training. Moreover, when combined with industrial-level static filters, OPUS further improves pre-training efficiency, even with lower-quality data. Furthermore, in continued pre-training of Qwen3-8B-Base on SciencePedia, OPUS achieves superior performance using only 0.5B tokens compared to full training with 3B tokens, demonstrating significant data efficiency gains in specialized domains.
comment: 45 pages, 7 figures, 8 tables
♻ ☆ ChatCFD: An LLM-Driven Agent for End-to-End CFD Automation with Structured Knowledge and Reasoning
Computational Fluid Dynamics (CFD) is critical for scientific advancement but is hindered by operational complexity and high expertise barriers. This paper introduces ChatCFD, a Large Language Model (LLM)-driven multi-agent system designed for end-to-end CFD automation using OpenFOAM. Powered by DeepSeek-R1/V3, ChatCFD integrates structured domain knowledge bases, a precise error locator, and iterative reflection to dramatically outperform existing methods. On 315 benchmark cases, ChatCFD achieves 82.1% execution success (vs. 6.2% for MetaOpenFOAM and 42.3% for Foam-Agent) and 68.12% physical fidelity - a novel metric assessing scientific meaningfulness beyond mere runnability. A dedicated Physics Interpreter attains 97.4% summary fidelity, bridging the gap between narrative fluency and the enforcement of tight physical constraints. Resource analysis confirms efficiency, averaging 192.1k tokens and $0.208 per case, significantly lower than baseline costs. Ablation studies identify the Error Locator and Solver Template DB as critical, with the latter's removal collapsing accuracy to 48%. The system exhibits robust flexibility, achieving 95.23% success in autonomous solver selection and 100% in turbulence modeling, while successfully reproducing complex literature cases (e.g., NACA0012, supersonic nozzle) with 60-80% success rates where baselines failed. Featuring a modular, MCP-compatible design, ChatCFD facilitates scalable, collaborative AI-driven CFD. Code is available at: https://github.com/ConMoo/ChatCFD
comment: 19 pages, 8 figures
♻ ☆ Out of the Memory Barrier: A Highly Memory Efficient Training System for LLMs with Million-Token Contexts
Training Large Language Models (LLMs) on long contexts is severely constrained by prohibitive GPU memory overhead, not training time. The primary culprits are the activations, whose memory footprints scale linearly with sequence length. We introduce OOMB, a highly memory-efficient training system that directly confronts this barrier. Our approach employs a chunk-recurrent training framework with on-the-fly activation recomputation, which maintains a constant activation memory footprint (O(1)) and shifts the primary bottleneck to the growing KV cache. To manage the KV cache, OOMB integrates a suite of synergistic optimizations: a paged memory manager for both the KV cache and its gradients to eliminate fragmentation, asynchronous CPU offloading to hide data transfer latency, and page-level sparse attention to reduce both computational complexity and communication overhead. The synergy of these techniques yields exceptional efficiency. Our empirical results show that for every additional 10K tokens of context, the end-to-end training memory overhead increases by a mere 10MB for Qwen2.5-7B. This allows training Qwen2.5-7B with a 4M-token context on a single H200 GPU, a feat that would otherwise require a large cluster using context parallelism. This work represents a substantial advance in resource efficiency for long-context LLM training. The source code is available at https://github.com/wenhaoli-xmu/OOMB.
♻ ☆ Efficient Attention Mechanisms for Large Language Models: A Survey
Transformer-based architectures have become the prevailing backbone of large language models. However, the quadratic time and memory complexity of self-attention remains a fundamental obstacle to efficient long-context modeling. To address this limitation, recent research has introduced two principal categories of efficient attention mechanisms. Linear attention methods achieve linear complexity through kernel approximations, recurrent formulations, or fastweight dynamics, thereby enabling scalable inference with reduced computational overhead. Sparse attention techniques, in contrast, limit attention computation to selected subsets of tokens based on fixed patterns, block-wise routing, or clustering strategies, enhancing efficiency while preserving contextual coverage. This survey provides a systematic and comprehensive overview of these developments, integrating both algorithmic innovations and hardware-level considerations. In addition, we analyze the incorporation of efficient attention into largescale pre-trained language models, including both architectures built entirely on efficient attention and hybrid designs that combine local and global components. By aligning theoretical foundations with practical deployment strategies, this work aims to serve as a foundational reference for advancing the design of scalable and efficient language models.
comment: work in progress
♻ ☆ EBPO: Empirical Bayes Shrinkage for Stabilizing Group-Relative Policy Optimization
Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for enhancing the reasoning capabilities of Large Language Models (LLMs). However, dominant approaches like Group Relative Policy Optimization (GRPO) face critical stability challenges: they suffer from high estimator variance under computational constraints (small group sizes) and vanishing gradient signals in saturated failure regimes where all responses yield identical zero rewards. To address this, we propose Empirical Bayes Policy Optimization (EBPO), a novel framework that regularizes local group-based baselines by borrowing strength from the policy's accumulated global statistics. Instead of estimating baselines in isolation, EBPO employs a shrinkage estimator that dynamically balances local group statistics with a global prior updated via Welford's online algorithm. Theoretically, we demonstrate that EBPO guarantees strictly lower Mean Squared Error (MSE), bounded entropy decay, and non-vanishing penalty signals in failure scenarios compared to GRPO. Empirically, EBPO consistently outperforms GRPO and other established baselines across diverse benchmarks, including AIME and OlympiadBench. Notably, EBPO exhibits superior training stability, achieving high-performance gains even with small group sizes, and benefits significantly from difficulty-stratified curriculum learning.
♻ ☆ Evaluating Semantic and Syntactic Understanding in Large Language Models for Payroll Systems
Large language models are now used daily for writing, search, and analysis, and their natural language understanding continues to improve. However, they remain unreliable on exact numerical calculation and on producing outputs that are straightforward to audit. We study synthetic payroll system as a focused, high-stakes example and evaluate whether models can understand a payroll schema, apply rules in the right order, and deliver cent-accurate results. Our experiments span a tiered dataset from basic to complex cases, a spectrum of prompts from minimal baselines to schema-guided and reasoning variants, and multiple model families including GPT, Claude, Perplexity, Grok and Gemini. Results indicate clear regimes where careful prompting is sufficient and regimes where explicit computation is required. The work offers a compact, reproducible framework and practical guidance for deploying LLMs in settings that demand both accuracy and assurance.
comment: ITNG 2026 conference
Multimedia 4
☆ EventCast: Hybrid Demand Forecasting in E-Commerce with LLM-Based Event Knowledge
Demand forecasting is a cornerstone of e-commerce operations, directly impacting inventory planning and fulfillment scheduling. However, existing forecasting systems often fail during high-impact periods such as flash sales, holiday campaigns, and sudden policy interventions, where demand patterns shift abruptly and unpredictably. In this paper, we introduce EventCast, a modular forecasting framework that integrates future event knowledge into time-series prediction. Unlike prior approaches that ignore future interventions or directly use large language models (LLMs) for numerical forecasting, EventCast leverages LLMs solely for event-driven reasoning. Unstructured business data, which covers campaigns, holiday schedules, and seller incentives, from existing operational databases, is processed by an LLM that converts it into interpretable textual summaries leveraging world knowledge for cultural nuances and novel event combinations. These summaries are fused with historical demand features within a dual-tower architecture, enabling accurate, explainable, and scalable forecasts. Deployed on real-world e-commerce scenarios spanning 4 countries of 160 regions over 10 months, EventCast achieves up to 86.9% and 97.7% improvement on MAE and MSE compared to the variant without event knowledge, and reduces MAE by up to 57.0% and MSE by 83.3% versus the best industrial baseline during event-driven periods. EventCast has deployed into real-world industrial pipelines since March 2025, offering a practical solution for improving operational decision-making in dynamic e-commerce environments.
☆ Learning Brain Representation with Hierarchical Visual Embeddings
Decoding visual representations from brain signals has attracted significant attention in both neuroscience and artificial intelligence. However, the degree to which brain signals truly encode visual information remains unclear. Current visual decoding approaches explore various brain-image alignment strategies, yet most emphasize high-level semantic features while neglecting pixel-level details, thereby limiting our understanding of the human visual system. In this paper, we propose a brain-image alignment strategy that leverages multiple pre-trained visual encoders with distinct inductive biases to capture hierarchical and multi-scale visual representations, while employing a contrastive learning objective to achieve effective alignment between brain signals and visual embeddings. Furthermore, we introduce a Fusion Prior, which learns a stable mapping on large-scale visual data and subsequently matches brain features to this pre-trained prior, thereby enhancing distributional consistency across modalities. Extensive quantitative and qualitative experiments demonstrate that our method achieves a favorable balance between retrieval accuracy and reconstruction fidelity.
☆ Surveillance Facial Image Quality Assessment: A Multi-dimensional Dataset and Lightweight Model
Surveillance facial images are often captured under unconstrained conditions, resulting in severe quality degradation due to factors such as low resolution, motion blur, occlusion, and poor lighting. Although recent face restoration techniques applied to surveillance cameras can significantly enhance visual quality, they often compromise fidelity (i.e., identity-preserving features), which directly conflicts with the primary objective of surveillance images -- reliable identity verification. Existing facial image quality assessment (FIQA) predominantly focus on either visual quality or recognition-oriented evaluation, thereby failing to jointly address visual quality and fidelity, which are critical for surveillance applications. To bridge this gap, we propose the first comprehensive study on surveillance facial image quality assessment (SFIQA), targeting the unique challenges inherent to surveillance scenarios. Specifically, we first construct SFIQA-Bench, a multi-dimensional quality assessment benchmark for surveillance facial images, which consists of 5,004 surveillance facial images captured by three widely deployed surveillance cameras in real-world scenarios. A subjective experiment is conducted to collect six dimensional quality ratings, including noise, sharpness, colorfulness, contrast, fidelity and overall quality, covering the key aspects of SFIQA. Furthermore, we propose SFIQA-Assessor, a lightweight multi-task FIQA model that jointly exploits complementary facial views through cross-view feature interaction, and employs learnable task tokens to guide the unified regression of multiple quality dimensions. The experiment results on the proposed dataset show that our method achieves the best performance compared with the state-of-the-art general image quality assessment (IQA) and FIQA methods, validating its effectiveness for real-world surveillance applications.
♻ ☆ Transform and Entropy Coding in AV2
AV2 is the successor to the AV1 video coding standard developed by the Alliance for Open Media (AOMedia). Its primary objective is to deliver substantial compression gains and subjective quality improvements while maintaining low-complexity encoder and decoder operations. This paper describes the transform, quantization and entropy coding design in AV2, including redesigned transform kernels and data-driven transforms, expanded transform partitioning, and a mode & coefficient dependent transform signaling. AV2 introduces several new coding tools including Intra/Inter Secondary Transforms (IST), Trellis Coded Quantization (TCQ), Adaptive Transform Coding (ATC), Probability Adaptation Rate Adjustment (PARA), Forward Skip Coding (FSC), Cross Chroma Component Transforms (CCTX), Parity Hiding (PH) tools and improved lossless coding. These advances enable AV2 to deliver the highest quality video experience for video applications at a significantly reduced bitrate.
Artificial Intelligent 32
Vision and language: Novel Representations and Artificial intelligence for Driving Scene Safety Assessment and Autonomous Vehicle Planning
Vision-language models (VLMs) have recently emerged as powerful representation learning systems that align visual observations with natural language concepts, offering new opportunities for semantic reasoning in safety-critical autonomous driving. This paper investigates how vision-language representations support driving scene safety assessment and decision-making when integrated into perception, prediction, and planning pipelines. We study three complementary system-level use cases. First, we introduce a lightweight, category-agnostic hazard screening approach leveraging CLIP-based image-text similarity to produce a low-latency semantic hazard signal. This enables robust detection of diverse and out-of-distribution road hazards without explicit object detection or visual question answering. Second, we examine the integration of scene-level vision-language embeddings into a transformer-based trajectory planning framework using the Waymo Open Dataset. Our results show that naively conditioning planners on global embeddings does not improve trajectory accuracy, highlighting the importance of representation-task alignment and motivating the development of task-informed extraction methods for safety-critical planning. Third, we investigate natural language as an explicit behavioral constraint on motion planning using the doScenes dataset. In this setting, passenger-style instructions grounded in visual scene elements suppress rare but severe planning failures and improve safety-aligned behavior in ambiguous scenarios. Taken together, these findings demonstrate that vision-language representations hold significant promise for autonomous driving safety when used to express semantic risk, intent, and behavioral constraints. Realizing this potential is fundamentally an engineering problem requiring careful system design and structured grounding rather than direct feature injection.
☆ Affine Transformable Unmanned Ground Vehicle
This paper develops the proof of concept for a novel affine transformable unmanned ground vehicle (ATUGV) with the capability of safe and aggressive deformation while carrying multiple payloads. The ATUGV is a multi-body system with mobile robots that can be used to power the ATUGV morphable motion, powered cells to enclose the mobile robots, unpowered cells to contain payloads, and a deformable structure to integrate cells through bars and joints. The objective is that all powered and unpowered cells motion can safely track a desired affine transformation, where an affine transformation can be decomposed into translation, rigid body rotation, and deformation. To this end, the paper first uses a deep neural network to structure cell interconnection in such a way that every cell can freely move over the deformation plane, and the entire structure can reconfigurably deform to track a desired affine transformation. Then, the mobile robots, contained by the powered cells and stepper motors, regulating the connections of the powered and unpowered cells, design the proper controls so that all cells safely track the desired affine transformation. The functionality of the proposed ATUGV is validated through hardware experimentation and simulation.
☆ Looking and Listening Inside and Outside: Multimodal Artificial Intelligence Systems for Driver Safety Assessment and Intelligent Vehicle Decision-Making
The looking-in-looking-out (LILO) framework has enabled intelligent vehicle applications that understand both the outside scene and the driver state to improve safety outcomes, with examples in smart airbag deployment, takeover time prediction in autonomous control transitions, and driver attention monitoring. In this research, we propose an augmentation to this framework, making a case for the audio modality as an additional source of information to understand the driver, and in the evolving autonomy landscape, also the passengers and those outside the vehicle. We expand LILO by incorporating audio signals, forming the looking-and-listening inside-and-outside (L-LIO) framework to enhance driver state assessment and environment understanding through multimodal sensor fusion. We evaluate three example cases where audio enhances vehicle safety: supervised learning on driver speech audio to classify potential impairment states (e.g., intoxication), collection and analysis of passenger natural language instructions (e.g., "turn after that red building") to motivate how spoken language can interface with planning systems through audio-aligned instruction data, and limitations of vision-only systems where audio may disambiguate the guidance and gestures of external agents. Datasets include custom-collected in-vehicle and external audio samples in real-world environments. Pilot findings show that audio yields safety-relevant insights, particularly in nuanced or context-rich scenarios where sound is critical to safe decision-making or visual signals alone are insufficient. Challenges include ambient noise interference, privacy considerations, and robustness across human subjects, motivating further work on reliability in dynamic real-world contexts. L-LIO augments driver and scene understanding through multimodal fusion of audio and visual sensing, offering new paths for safety intervention.
☆ LCLA: Language-Conditioned Latent Alignment for Vision-Language Navigation
We propose LCLA (Language-Conditioned Latent Alignment), a framework for vision-language navigation that learns modular perception-action interfaces by aligning sensory observations to a latent representation of an expert policy. The expert is first trained with privileged state information, inducing a latent space sufficient for control, after which its latent interface and action head are frozen. A lightweight adapter is then trained to map raw visual-language observations, via a frozen vision-language model, into the expert's latent space, reducing the problem of visuomotor learning to supervised latent alignment rather than end-to-end policy optimization. This decoupling enforces a stable contract between perception and control, enabling expert behavior to be reused across sensing modalities and environmental variations. We instantiate LCLA and evaluate it on a vision-language indoor navigation task, where aligned latent spaces yield strong in-distribution performance and robust zero-shot generalization to unseen environments, lighting conditions, and viewpoints while remaining lightweight at inference time.
☆ "Meet My Sidekick!": Effects of Separate Identities and Control of a Single Robot in HRI
The presentation of a robot's capability and identity directly influences a human collaborator's perception and implicit trust in the robot. Unlike humans, a physical robot can simultaneously present different identities and have them reside and control different parts of the robot. This paper presents a novel study that investigates how users perceive a robot where different robot control domains (head and gripper) are presented as independent robots. We conducted a mixed design study where participants experienced one of three presentations: a single robot, two agents with shared full control (co-embodiment), or two agents with split control across robot control domains (split-embodiment). Participants underwent three distinct tasks -- a mundane data entry task where the robot provides motivational support, an individual sorting task with isolated robot failures, and a collaborative arrangement task where the robot causes a failure that directly affects the human participant. Participants perceived the robot as residing in the different control domains and were able to associate robot failure with different identities. This work signals how future robots can leverage different embodiment configurations to obtain the benefit of multiple robots within a single body.
☆ Differentiate-and-Inject: Enhancing VLAs via Functional Differentiation Induced by In-Parameter Structural Reasoning
As robots are expected to perform increasingly diverse tasks, they must understand not only low-level actions but also the higher-level structure that determines how a task should unfold. Existing vision-language-action (VLA) models struggle with this form of task-level reasoning. They either depend on prompt-based in-context decomposition, which is unstable and sensitive to linguistic variations, or end-to-end long-horizon training, which requires large-scale demonstrations and entangles task-level reasoning with low-level control. We present in-parameter structured task reasoning (iSTAR), a framework for enhancing VLA models via functional differentiation induced by in-parameter structural reasoning. Instead of treating VLAs as monolithic policies, iSTAR embeds task-level semantic structure directly into model parameters, enabling differentiated task-level inference without external planners or handcrafted prompt inputs. This injected structure takes the form of implicit dynamic scene-graph knowledge that captures object relations, subtask semantics, and task-level dependencies in parameter space. Across diverse manipulation benchmarks, iSTAR achieves more reliable task decompositions and higher success rates than both in-context and end-to-end VLA baselines, demonstrating the effectiveness of parameter-space structural reasoning for functional differentiation and improved generalization across task variations.
☆ VividFace: Real-Time and Realistic Facial Expression Shadowing for Humanoid Robots
Humanoid facial expression shadowing enables robots to realistically imitate human facial expressions in real time, which is critical for lifelike, facially expressive humanoid robots and affective human-robot interaction. Existing progress in humanoid facial expression imitation remains limited, often failing to achieve either real-time performance or realistic expressiveness due to offline video-based inference designs and insufficient ability to capture and transfer subtle expression details. To address these limitations, we present VividFace, a real-time and realistic facial expression shadowing system for humanoid robots. An optimized imitation framework X2CNet++ enhances expressiveness by fine-tuning the human-to-humanoid facial motion transfer module and introducing a feature-adaptation training strategy for better alignment across different image sources. Real-time shadowing is further enabled by a video-stream-compatible inference pipeline and a streamlined workflow based on asynchronous I/O for efficient communication across devices. VividFace produces vivid humanoid faces by mimicking human facial expressions within 0.05 seconds, while generalizing across diverse facial configurations. Extensive real-world demonstrations validate its practical utility. Videos are available at: https://lipzh5.github.io/VividFace/.
comment: Accepted to the 2026 IEEE International Conference on Robotics and Automation (ICRA)
☆ TextOp: Real-time Interactive Text-Driven Humanoid Robot Motion Generation and Control
Recent advances in humanoid whole-body motion tracking have enabled the execution of diverse and highly coordinated motions on real hardware. However, existing controllers are commonly driven either by predefined motion trajectories, which offer limited flexibility when user intent changes, or by continuous human teleoperation, which requires constant human involvement and limits autonomy. This work addresses the problem of how to drive a universal humanoid controller in a real-time and interactive manner. We present TextOp, a real-time text-driven humanoid motion generation and control framework that supports streaming language commands and on-the-fly instruction modification during execution. TextOp adopts a two-level architecture in which a high-level autoregressive motion diffusion model continuously generates short-horizon kinematic trajectories conditioned on the current text input, while a low-level motion tracking policy executes these trajectories on a physical humanoid robot. By bridging interactive motion generation with robust whole-body control, TextOp unlocks free-form intent expression and enables smooth transitions across multiple challenging behaviors such as dancing and jumping, within a single continuous motion execution. Extensive real-robot experiments and offline evaluations demonstrate instant responsiveness, smooth whole-body motion, and precise control. The project page and the open-source code are available at https://text-op.github.io/
comment: Project Page: https://text-op.github.io/
☆ Bridging Speech, Emotion, and Motion: a VLM-based Multimodal Edge-deployable Framework for Humanoid Robots
Effective human-robot interaction requires emotionally rich multimodal expressions, yet most humanoid robots lack coordinated speech, facial expressions, and gestures. Meanwhile, real-world deployment demands on-device solutions that can operate autonomously without continuous cloud connectivity. To bridging \underline{\textit{S}}peech, \underline{\textit{E}}motion, and \underline{\textit{M}}otion, we present \textit{SeM$^2$}, a Vision Language Model-based framework that orchestrates emotionally coherent multimodal interactions through three key components: a multimodal perception module capturing user contextual cues, a Chain-of-Thought reasoning for response planning, and a novel Semantic-Sequence Aligning Mechanism (SSAM) that ensures precise temporal coordination between verbal content and physical expressions. We implement both cloud-based and \underline{\textit{e}}dge-deployed versions (\textit{SeM$^2_e$}), with the latter knowledge distilled to operate efficiently on edge hardware while maintaining 95\% of the relative performance. Comprehensive evaluations demonstrate that our approach significantly outperforms unimodal baselines in naturalness, emotional clarity, and modal coherence, advancing socially expressive humanoid robotics for diverse real-world environments.
☆ Going with the Flow: Koopman Behavioral Models as Implicit Planners for Visuo-Motor Dexterity
There has been rapid and dramatic progress in robots' ability to learn complex visuo-motor manipulation skills from demonstrations, thanks in part to expressive policy classes that employ diffusion- and transformer-based backbones. However, these design choices require significant data and computational resources and remain far from reliable, particularly within the context of multi-fingered dexterous manipulation. Fundamentally, they model skills as reactive mappings and rely on fixed-horizon action chunking to mitigate jitter, creating a rigid trade-off between temporal coherence and reactivity. In this work, we introduce Unified Behavioral Models (UBMs), a framework that learns to represent dexterous skills as coupled dynamical systems that capture how visual features of the environment (visual flow) and proprioceptive states of the robot (action flow) co-evolve. By capturing such behavioral dynamics, UBMs can ensure temporal coherence by construction rather than by heuristic averaging. To operationalize these models, we propose Koopman-UBM, a first instantiation of UBMs that leverages Koopman Operator theory to effectively learn a unified representation in which the joint flow of latent visual and proprioceptive features is governed by a structured linear system. We demonstrate that Koopman-UBM can be viewed as an implicit planner: given an initial condition, it analytically computes the desired robot behavior while simultaneously ''imagining'' the resulting flow of visual features over the entire skill horizon. To enable reactivity and adaptation, we introduce an online replanning strategy in which the model acts as its own runtime monitor that automatically triggers replanning when predicted and observed visual flow diverge beyond a threshold. Across seven simulated tasks and two real-world tasks, we demonstrate that K-UBM matches or exceeds the performance of state-of-the-art baselines, while offering considerably faster inference, smooth execution, robustness to occlusions, and flexible replanning.
☆ Haptically Experienced Animacy Facilitates Emotion Regulation: A Theory-Driven Investigation
Emotion regulation (ER) is essential to mental well-being but often difficult to access, especially in high-intensity moments or for individuals with clinical vulnerabilities. While existing technology-based ER tools offer value, they typically rely on self-reflection (e.g., emotion tracking, journaling) or co-regulation through verbal modalities (reminders, text-based conversational tools), which may not be accessible or effective when most needed. The biological role of the touch modality makes it an intriguing alternate pathway, but empirical evidence is limited and under-theorized. Building on our prior theoretical framework describing how a comforting haptic co-regulating adjunct (CHORA) can support ER, we developed a zoomorphic robot CHORA with looped biomimetic breathing and heartbeat behaviors. We evaluated its effects in a mixed-methods in-lab study (N=30), providing physiological, self-report, custom questionnaire, and retrospective interview data. Our findings demonstrate the regulatory effects of haptically experienced animacy, corroborate prior work, and validate CHORA's {theoretically grounded} potential to facilitate four ER strategies.
☆ Trace-Focused Diffusion Policy for Multi-Modal Action Disambiguation in Long-Horizon Robotic Manipulation
Generative model-based policies have shown strong performance in imitation-based robotic manipulation by learning action distributions from demonstrations. However, in long-horizon tasks, visually similar observations often recur across execution stages while requiring distinct actions, which leads to ambiguous predictions when policies are conditioned only on instantaneous observations, termed multi-modal action ambiguity (MA2). To address this challenge, we propose the Trace-Focused Diffusion Policy (TF-DP), a simple yet effective diffusion-based framework that explicitly conditions action generation on the robot's execution history. TF-DP represents historical motion as an explicit execution trace and projects it into the visual observation space, providing stage-aware context when current observations alone are insufficient. In addition, the induced trace-focused field emphasizes task-relevant regions associated with historical motion, improving robustness to background visual disturbances. We evaluate TF-DP on real-world robotic manipulation tasks exhibiting pronounced multi-modal action ambiguity and visually cluttered conditions. Experimental results show that TF-DP improves temporal consistency and robustness, outperforming the vanilla diffusion policy by 80.56 percent on tasks with multi-modal action ambiguity and by 86.11 percent under visual disturbances, while maintaining inference efficiency with only a 6.4 percent runtime increase. These results demonstrate that execution-trace conditioning offers a scalable and principled approach for robust long-horizon robotic manipulation within a single policy.
☆ UEREBot: Learning Safe Quadrupedal Locomotion under Unstructured Environments and High-Speed Dynamic Obstacles
Quadruped robots are increasingly deployed in unstructured environments. Safe locomotion in these settings requires long-horizon goal progress, passability over uneven terrain and static constraints, and collision avoidance against high-speed dynamic obstacles. A single system cannot fully satisfy all three objectives simultaneously: planning-based decisions can be too slow, while purely reactive decisions can sacrifice goal progress and passability. To resolve this conflict, we propose UEREBot (Unstructured-Environment Reflexive Evasion Robot), a hierarchical framework that separates slow planning from instantaneous reflexive evasion and coordinates them during execution. UEREBot formulates the task as a constrained optimal control problem blueprint. It adopts a spatial--temporal planner that provides reference guidance toward the goal and threat signals. It then uses a threat-aware handoff to fuse navigation and reflex actions into a nominal command, and a control barrier function shield as a final execution safeguard. We evaluate UEREBot in Isaac Lab simulation and deploy it on a Unitree Go2 quadruped equipped with onboard perception. Across diverse environments with complex static structure and high-speed dynamic obstacles, UEREBot achieves higher avoidance success and more stable locomotion while maintaining goal progress than representative baselines, demonstrating improved safety--progress trade-offs.
☆ Seeing Roads Through Words: A Language-Guided Framework for RGB-T Driving Scene Segmentation
Robust semantic segmentation of road scenes under adverse illumination, lighting, and shadow conditions remain a core challenge for autonomous driving applications. RGB-Thermal fusion is a standard approach, yet existing methods apply static fusion strategies uniformly across all conditions, allowing modality-specific noise to propagate throughout the network. Hence, we propose CLARITY that dynamically adapts its fusion strategy to the detected scene condition. Guided by vision-language model (VLM) priors, the network learns to modulate each modality's contribution based on the illumination state while leveraging object embeddings for segmentation, rather than applying a fixed fusion policy. We further introduce two mechanisms, i.e., one which preserves valid dark-object semantics that prior noise-suppression methods incorrectly discard, and a hierarchical decoder that enforces structural consistency across scales to sharpen boundaries on thin objects. Experiments on the MFNet dataset demonstrate that CLARITY establishes a new state-of-the-art (SOTA), achieving 62.3% mIoU and 77.5% mAcc.
☆ Scalable Dexterous Robot Learning with AR-based Remote Human-Robot Interactions
This paper focuses on the scalable robot learning for manipulation in the dexterous robot arm-hand systems, where the remote human-robot interactions via augmented reality (AR) are established to collect the expert demonstration data for improving efficiency. In such a system, we present a unified framework to address the general manipulation task problem. Specifically, the proposed method consists of two phases: i) In the first phase for pretraining, the policy is created in a behavior cloning (BC) manner, through leveraging the learning data from our AR-based remote human-robot interaction system; ii) In the second phase, a contrastive learning empowered reinforcement learning (RL) method is developed to obtain more efficient and robust policy than the BC, and thus a projection head is designed to accelerate the learning progress. An event-driven augmented reward is adopted for enhancing the safety. To validate the proposed method, both the physics simulations via PyBullet and real-world experiments are carried out. The results demonstrate that compared to the classic proximal policy optimization and soft actor-critic policies, our method not only significantly speeds up the inference, but also achieves much better performance in terms of the success rate for fulfilling the manipulation tasks. By conducting the ablation study, it is confirmed that the proposed RL with contrastive learning overcomes policy collapse. Supplementary demonstrations are available at https://cyberyyc.github.io/.
☆ RAPiD: Real-time Deterministic Trajectory Planning via Diffusion Behavior Priors for Safe and Efficient Autonomous Driving
Diffusion-based trajectory planners have demonstrated strong capability for modeling the multimodal nature of human driving behavior, but their reliance on iterative stochastic sampling poses critical challenges for real-time, safety-critical deployment. In this work, we present RAPiD, a deterministic policy extraction framework that distills a pretrained diffusion-based planner into an efficient policy while eliminating diffusion sampling. Using score-regularized policy optimization, we leverage the score function of a pre-trained diffusion planner as a behavior prior to regularize policy learning. To promote safety and passenger comfort, the policy is optimized using a critic trained to imitate a predictive driver controller, providing dense, safety-focused supervision beyond conventional imitation learning. Evaluations demonstrate that RAPiD achieves competitive performance on closed-loop nuPlan scenarios with an 8x speedup over diffusion baselines, while achieving state-of-the-art generalization among learning-based planners on the interPlan benchmark. The official website of this work is: https://github.com/ruturajreddy/RAPiD.
☆ Why Look at It at All?: Vision-Free Multifingered Blind Grasping Using Uniaxial Fingertip Force Sensing
Grasping under limited sensing remains a fundamental challenge for real-world robotic manipulation, as vision and high-resolution tactile sensors often introduce cost, fragility, and integration complexity. This work demonstrates that reliable multifingered grasping can be achieved under extremely minimal sensing by relying solely on uniaxial fingertip force feedback and joint proprioception, without vision or multi-axis/tactile sensing. To enable such blind grasping, we employ an efficient teacher-student training pipeline in which a reinforcement-learned teacher exploits privileged simulation-only observations to generate demonstrations for distilling a transformer-based student policy operating under partial observation. The student policy is trained to act using only sensing modalities available at real-world deployment. We validate the proposed approach on real hardware across 18 objects, including both in-distribution and out-of-distribution cases, achieving a 98.3~$\%$ overall grasp success rate. These results demonstrate strong robustness and generalization beyond the simulation training distribution, while significantly reducing sensing requirements for real-world grasping systems.
comment: Submitted to Journal (under review)
☆ Action-to-Action Flow Matching
Diffusion-based policies have recently achieved remarkable success in robotics by formulating action prediction as a conditional denoising process. However, the standard practice of sampling from random Gaussian noise often requires multiple iterative steps to produce clean actions, leading to high inference latency that incurs a major bottleneck for real-time control. In this paper, we challenge the necessity of uninformed noise sampling and propose Action-to-Action flow matching (A2A), a novel policy paradigm that shifts from random sampling to initialization informed by the previous action. Unlike existing methods that treat proprioceptive action feedback as static conditions, A2A leverages historical proprioceptive sequences, embedding them into a high-dimensional latent space as the starting point for action generation. This design bypasses costly iterative denoising while effectively capturing the robot's physical dynamics and temporal continuity. Extensive experiments demonstrate that A2A exhibits high training efficiency, fast inference speed, and improved generalization. Notably, A2A enables high-quality action generation in as few as a single inference step (0.56 ms latency), and exhibits superior robustness to visual perturbations and enhanced generalization to unseen configurations. Lastly, we also extend A2A to video generation, demonstrating its broader versatility in temporal modeling. Project site: https://lorenzo-0-0.github.io/A2A_Flow_Matching.
comment: 18 pages, 18 figures
♻ ☆ Parallel Simulation of Contact and Actuation for Soft Growing Robots
Soft growing robots, commonly referred to as vine robots, have demonstrated remarkable ability to interact safely and robustly with unstructured and dynamic environments. It is therefore natural to exploit contact with the environment for planning and design optimization tasks. Previous research has focused on planning under contact for passively deforming robots with pre-formed bends. However, adding active steering to these soft growing robots is necessary for successful navigation in more complex environments. To this end, we develop a unified modeling framework that integrates vine robot growth, bending, actuation, and obstacle contact. We extend the beam moment model to include the effects of actuation on kinematics under growth and then use these models to develop a fast parallel simulation framework. We validate our model and simulator with real robot experiments. To showcase the capabilities of our framework, we apply our model in a design optimization task to find designs for vine robots navigating through cluttered environments, identifying designs that minimize the number of required actuators by exploiting environmental contacts. We show the robustness of the designs to environmental and manufacturing uncertainties. Finally, we fabricate an optimized design and successfully deploy it in an obstacle-rich environment.
comment: 37 pages, 12 figures, 2 tables. To appear in Soft Robotics
♻ ☆ GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment
Recent advances in video world modeling have enabled large-scale generative models to simulate embodied environments with high visual fidelity, providing strong priors for prediction, planning, and control. Yet, despite their realism, these models often lack geometric grounding, limiting their use in navigation tasks that require spatial coherence and stability. We introduce Reinforcement Learning with World Grounding (RLWG), a self-supervised post-training framework that aligns pretrained world models with a physically verifiable structure through geometric and perceptual rewards. Analogous to reinforcement learning from verifiable feedback (RLVR) in language models, RLWG can use multiple rewards that measure pose cycle-consistency, depth reprojection, and temporal coherence. We instantiate this framework with GrndCtrl, a reward-aligned adaptation method based on Group Relative Policy Optimization (GRPO), yielding world models that maintain stable trajectories, consistent geometry, and reliable rollouts for embodied navigation. Like post-training alignment in large language models, GrndCtrl leverages verifiable rewards to bridge generative pretraining and grounded behavior, achieving superior spatial coherence and navigation stability over supervised fine-tuning in outdoor environments.
♻ ☆ ManiVID-3D: Generalizable View-Invariant Reinforcement Learning for Robotic Manipulation via Disentangled 3D Representations
Deploying visual reinforcement learning (RL) policies in real-world manipulation is often hindered by camera viewpoint changes. A policy trained from a fixed front-facing camera may fail when the camera is shifted -- an unavoidable situation in real-world settings where sensor placement is hard to manage appropriately. Existing methods often rely on precise camera calibration or struggle with large perspective changes. To address these limitations, we propose ManiVID-3D, a novel 3D RL architecture designed for robotic manipulation, which learns view-invariant representations through self-supervised disentangled feature learning. The framework incorporates ViewNet, a lightweight yet effective module that automatically aligns point cloud observations from arbitrary viewpoints into a unified spatial coordinate system without the need for extrinsic calibration. Additionally, we develop an efficient GPU-accelerated batch rendering module capable of processing over 5000 frames per second, enabling large-scale training for 3D visual RL at unprecedented speeds. Extensive evaluation across 10 simulated and 5 real-world tasks demonstrates that our approach achieves a 40.6% higher success rate than state-of-the-art methods under viewpoint variations while using 80% fewer parameters. The system's robustness to severe perspective changes and strong sim-to-real performance highlight the effectiveness of learning geometrically consistent representations for scalable robotic manipulation in unstructured environments.
comment: Accepted to RA-L
♻ ☆ Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning
With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing system failure rates. Through empirical analysis, we demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments. The results show that the integrated machine learning model significantly outperforms traditional methods, effectively addressing the challenges of peak order processing, reducing operational errors, and improving overall logistics efficiency. Additionally, by analyzing environmental factors, this study further optimizes system design to ensure efficient and stable operation under variable conditions. This research not only provides innovative solutions for logistics automation but also offers a theoretical and empirical foundation for future technological development and application.
comment: Published in IEEE Xplore
RLinf-VLA: A Unified and Efficient Framework for Reinforcement Learning of Vision-Language-Action Models
Recent advances in vision-language-action (VLA) models have motivated the extension of their capabilities to embodied settings, where reinforcement learning (RL) offers a principled way to optimize task success through interaction. However, existing methods remain fragmented, lacking both a unified platform for fair comparison across architectures and algorithms and an efficient system design for scalable training. To address these challenges, we introduce RLinf-VLA, a unified and efficient framework for scalable RL training of VLA models. RLinf-VLA achieves unification by providing a unified interface that standardizes the integration of diverse VLA architectures, multiple RL algorithms, and heterogeneous simulators, enabling extensibility. To ensure efficiency, the system adopts a flexible resource allocation architecture for rendering, inference, and training workloads in RL pipelines. In particular, for GPU-parallelized simulators, RLinf-VLA introduces a hybrid fine-grained pipeline allocation strategy, yielding a 1.61x-1.88x training speedup. Using this unified system, models trained with RLinf-VLA demonstrate consistent performance improvements of approximately 20-85% across multiple simulation benchmarks, including LIBERO, ManiSkill, and RoboTwin. Furthermore, we distill a set of training practices for effective RL-based VLA training. We position RLinf-VLA as a foundational system to enable efficient, unified, and reproducible research in embodied intelligence.
comment: This is the technical report of the RLinf Team, focusing on the algorithm side. For the system-level design, please refer to arXiv:2509.15965 . The open-sourced code link: https://github.com/RLinf/RLinf
♻ ☆ StreamVLA: Breaking the Reason-Act Cycle via Completion-State Gating
Long-horizon robotic manipulation requires bridging the gap between high-level planning (System 2) and low-level control (System 1). Current Vision-Language-Action (VLA) models often entangle these processes, performing redundant multimodal reasoning at every timestep, which leads to high latency and goal instability. To address this, we present StreamVLA, a dual-system architecture that unifies textual task decomposition, visual goal imagination, and continuous action generation within a single parameter-efficient backbone. We introduce a "Lock-and-Gated" mechanism to intelligently modulate computation: only when a sub-task transition is detected, the model triggers slow thinking to generate a textual instruction and imagines the specific visual completion state, rather than generic future frames. Crucially, this completion state serves as a time-invariant goal anchor, making the policy robust to execution speed variations. During steady execution, these high-level intents are locked to condition a Flow Matching action head, allowing the model to bypass expensive autoregressive decoding for 72% of timesteps. This hierarchical abstraction ensures sub-goal focus while significantly reducing inference latency. Extensive evaluations demonstrate that StreamVLA achieves state-of-the-art performance, with a 98.5% success rate on the LIBERO benchmark and robust recovery in real-world interference scenarios, achieving a 48% reduction in latency compared to full-reasoning baselines.
♻ ☆ SPICE-HL3: Single-Photon, Inertial, and Stereo Camera dataset for Exploration of High-Latitude Lunar Landscapes
Exploring high-latitude lunar regions presents an extremely challenging visual environment for robots. The low sunlight elevation angle and minimal light scattering result in a visual field dominated by a high dynamic range featuring long, dynamic shadows. Reproducing these conditions on Earth requires sophisticated simulators and specialized facilities. We introduce a unique dataset recorded at the LunaLab from the SnT - University of Luxembourg, an indoor test facility designed to replicate the optical characteristics of multiple lunar latitudes. Our dataset includes images, inertial measurements, and wheel odometry data from robots navigating seven distinct trajectories under multiple illumination scenarios, simulating high-latitude lunar conditions from dawn to nighttime with and without the aid of headlights, resulting in 88 distinct sequences containing a total of 1.3M images. Data was captured using a stereo RGB-inertial sensor, a monocular monochrome camera, and for the first time, a novel single-photon avalanche diode (SPAD) camera. We recorded both static and dynamic image sequences, with robots navigating at slow (5 cm/s) and fast (50 cm/s) speeds. All data is calibrated, synchronized, and timestamped, providing a valuable resource for validating perception tasks from vision-based autonomous navigation to scientific imaging for future lunar missions targeting high-latitude regions or those intended for robots operating across perceptually degraded environments. The dataset and all supplementary material can be accessed from and found at https://github.com/spaceuma/spice-hl3.
comment: 12 pages, 7 figures, dataset
♻ ☆ You Only Pose Once: A Minimalist's Detection Transformer for Monocular RGB Category-level 9D Multi-Object Pose Estimation
Accurately recovering the full 9-DoF pose of unseen instances within specific categories from a single RGB image remains a core challenge for robotics and automation. Most existing solutions still rely on pseudo-depth, CAD models, or multi-stage cascades that separate 2D detection from pose estimation. Motivated by the need for a simpler, RGB-only alternative that learns directly at the category level, we revisit a longstanding question: Can object detection and 9-DoF pose estimation be unified with high performance, without any additional data? We show that they can with our method, YOPO, a single-stage, query-based framework that treats category-level 9-DoF estimation as a natural extension of 2D detection. YOPO augments a transformer detector with a lightweight pose head, a bounding-box-conditioned translation module, and a 6D-aware Hungarian matching cost. The model is trained end-to-end only with RGB images and category-level pose labels. Despite its minimalist design, YOPO sets a new state of the art on three benchmarks. On the REAL275 dataset, it achieves 79.6% $\rm{IoU}_{50}$ and 54.1% under the $10^\circ$$10{\rm{cm}}$ metric, surpassing prior RGB-only methods and closing much of the gap to RGB-D systems. The code, models, and additional qualitative results can be found on https://mikigom.github.io/YOPO-project-page.
comment: This paper has been accepted by IEEE ICRA 2026
♻ ☆ Collaborative-Online-Learning-Enabled Distributionally Robust Motion Control for Multi-Robot Systems
This paper develops a novel COllaborative-Online-Learning (COOL)-enabled motion control framework for multi-robot systems to avoid collision amid randomly moving obstacles whose motion distributions are partially observable through decentralized data streams. To address the notable challenge of data acquisition due to occlusion, a COOL approach based on the Dirichlet process mixture model is proposed to efficiently extract motion distribution information by exchanging among robots selected learning structures. By leveraging the fine-grained local-moment information learned through COOL, a data-stream-driven ambiguity set for obstacle motion is constructed. We then introduce a novel ambiguity set propagation method, which theoretically admits the derivation of the ambiguity sets for obstacle positions over the entire prediction horizon by utilizing obstacle current positions and the ambiguity set for obstacle motion. Additionally, we develop a compression scheme with its safety guarantee to automatically adjust the complexity and granularity of the ambiguity set by aggregating basic ambiguity sets that are close in a measure space, thereby striking an attractive trade-off between control performance and computation time. Then the probabilistic collision-free trajectories are generated through distributionally robust optimization problems. The distributionally robust obstacle avoidance constraints based on the compressed ambiguity set are equivalently reformulated by deriving separating hyperplanes through tractable semi-definite programming. Finally, we establish the probabilistic collision avoidance guarantee and the long-term tracking performance guarantee for the proposed framework. The numerical simulations are used to demonstrate the efficacy and superiority of the proposed approach compared with state-of-the-art methods.
comment: 26 pages
♻ ☆ RoboPaint: From Human Demonstration to Any Robot and Any View
Acquiring large-scale, high-fidelity robot demonstration data remains a critical bottleneck for scaling Vision-Language-Action (VLA) models in dexterous manipulation. We propose a Real-Sim-Real data collection and data editing pipeline that transforms human demonstrations into robot-executable, environment-specific training data without direct robot teleoperation. Standardized data collection rooms are built to capture multimodal human demonstrations (synchronized 3 RGB-D videos, 11 RGB videos, 29-DoF glove joint angles, and 14-channel tactile signals). Based on these human demonstrations, we introduce a tactile-aware retargeting method that maps human hand states to robot dex-hand states via geometry and force-guided optimization. Then the retargeted robot trajectories are rendered in a photorealistic Isaac Sim environment to build robot training data. Real world experiments have demonstrated: (1) The retargeted dex-hand trajectories achieve an 84\% success rate across 10 diverse object manipulation tasks. (2) VLA policies (Pi0.5) trained exclusively on our generated data achieve 80\% average success rate on three representative tasks, i.e., pick-and-place, pushing and pouring. To conclude, robot training data can be efficiently "painted" from human demonstrations using our real-sim-real data pipeline. We offer a scalable, cost-effective alternative to teleoperation with minimal performance loss for complex dexterous manipulation.
comment: 17 pages
♻ ☆ CTBC: Contact-Triggered Blind Climbing for Wheeled Bipedal Robots with Instruction Learning and Reinforcement Learning
In recent years, wheeled bipedal robots have garnered significant attention due to their exceptional mobility on flat terrain. However, while stair climbing has been achieved in prior studies, these existing methods often suffer from a severe lack of versatility, making them difficult to adapt to varying hardware specifications or diverse complex terrains. To overcome these limitations, we propose a generalized Contact-Triggered Blind Climbing (CTBC) framework. Upon detecting wheel-obstacle contact, the framework triggers a leg-lifting motion integrated with a strongly-guided feedforward trajectory. This allows the robot to rapidly acquire agile climbing skills, significantly enhancing its capability to traverse unstructured environments. Distinct from previous approaches, CTBC demonstrates superior robustness and adaptability, having been validated across multiple wheeled bipedal platforms with different wheel radii and tire materials. Real-world experiments demonstrate that, relying solely on proprioceptive feedback, the proposed framework enables robots to achieve reliable and continuous climbing over obstacles well beyond their wheel radius.
♻ ☆ A Software-Only Post-Processor for Indexed Rotary Machining on GRBL-Based CNCs
Affordable desktop CNC routers are common in education, prototyping, and makerspaces, but most lack a rotary axis, limiting fabrication of rotationally symmetric or multi-sided parts. Existing solutions often require hardware retrofits, alternative controllers, or commercial CAM software, raising cost and complexity. This work presents a software-only framework for indexed rotary machining on GRBL-based CNCs. A custom post-processor converts planar toolpaths into discrete rotary steps, executed through a browser-based interface. While not equivalent to continuous 4-axis machining, the method enables practical rotary-axis fabrication using only standard, off-the-shelf mechanics, without firmware modification. By reducing technical and financial barriers, the framework expands access to multi-axis machining in classrooms, makerspaces, and small workshops, supporting hands-on learning and rapid prototyping.
comment: 13 pages, 10 figures, Python post-processor source code and web interface included
♻ ☆ GRAND: Guidance, Rebalancing, and Assignment for Networked Dispatch in Multi-Agent Path Finding
Large robot fleets are now common in warehouses and other logistics settings, where small control gains translate into large operational impacts. In this article, we address task scheduling for lifelong Multi-Agent Pickup-and-Delivery (MAPD) and propose a hybrid method that couples learning-based global guidance with lightweight optimization. A graph neural network policy trained via reinforcement learning outputs a desired distribution of free agents over an aggregated warehouse graph. This signal is converted into region-to-region rebalancing through a minimum-cost flow, and finalized by small, local assignment problems, preserving accuracy while keeping per-step latency within a 1 s compute budget. On congested warehouse benchmarks from the League of Robot Runners (LoRR) with up to 500 agents, our approach improves throughput by up to 10% over the 2024 winning scheduler while maintaining real-time execution. The results indicate that coupling graph-structured learned guidance with tractable solvers reduces congestion and yields a practical, scalable blueprint for high-throughput scheduling in large fleets.
♻ ☆ Efficient Policy Optimization in Robust Constrained MDPs with Iteration Complexity Guarantees
Constrained decision-making is essential for designing safe policies in real-world control systems, yet simulated environments often fail to capture real-world adversities. We consider the problem of learning a policy that will maximize the cumulative reward while satisfying a constraint, even when there is a mismatch between the real model and an accessible simulator/nominal model. In particular, we consider the robust constrained Markov decision problem (RCMDP) where an agent needs to maximize the reward and satisfy the constraint against the worst possible stochastic model under the uncertainty set centered around an unknown nominal model. Primal-dual methods, effective for standard constrained MDP (CMDP), are not applicable here because of the lack of the strong duality property. Further, one cannot apply the standard robust value-iteration based approach on the composite value function either as the worst case models may be different for the reward value function and the constraint value function. We propose a novel technique that effectively minimizes the constraint value function--to satisfy the constraints; on the other hand, when all the constraints are satisfied, it can simply maximize the robust reward value function. We prove that such an algorithm finds a policy with at most $ε$ sub-optimality and feasible policy after $O(ε^{-2})$ iterations. In contrast to the state-of-the-art method, we do not need to employ a binary search, thus, we reduce the computation time by at least 4x for smaller value of discount factor ($γ$) and by at least 6x for larger value of $γ$.
Computation and Language 3
BRIDGE: Predicting Human Task Completion Time From Model Performance
Evaluating the real-world capabilities of AI systems requires grounding benchmark performance in human-interpretable measures of task difficulty. Existing approaches that rely on direct human task completion time annotations are costly, noisy, and difficult to scale across benchmarks. In this work, we propose BRIDGE, a unified psychometric framework that learns the latent difficulty scale from model responses and anchors it to human task completion time. Using a two-parameter logistic Item Response Theory model, we jointly estimate latent task difficulty and model capability from model performance data across multiple benchmarks. We demonstrate that latent task difficulty varies linearly with the logarithm of human completion time, allowing human task completion time to be inferred for new benchmarks from model performance alone. Leveraging this alignment, we forecast frontier model capabilities in terms of human task length and independently reproduce METR's exponential scaling results, with the 50% solvable task horizon doubling approximately every 6 months.
☆ From Out-of-Distribution Detection to Hallucination Detection: A Geometric View
Detecting hallucinations in large language models is a critical open problem with significant implications for safety and reliability. While existing hallucination detection methods achieve strong performance in question-answering tasks, they remain less effective on tasks requiring reasoning. In this work, we revisit hallucination detection through the lens of out-of-distribution (OOD) detection, a well-studied problem in areas like computer vision. Treating next-token prediction in language models as a classification task allows us to apply OOD techniques, provided appropriate modifications are made to account for the structural differences in large language models. We show that OOD-based approaches yield training-free, single-sample-based detectors, achieving strong accuracy in hallucination detection for reasoning tasks. Overall, our work suggests that reframing hallucination detection as OOD detection provides a promising and scalable pathway toward language model safety.
♻ ☆ Systematic Failures in Collective Reasoning under Distributed Information in Multi-Agent LLMs
Multi-agent systems built on large language models (LLMs) are expected to enhance decision-making by pooling distributed information, yet systematically evaluating this capability has remained challenging. We introduce HiddenBench, a 65-task benchmark grounded in the Hidden Profile paradigm, which isolates collective reasoning under distributed information from individual reasoning ability. Evaluating 15 frontier LLMs, we find that multi-agent LLMs achieve only 30.1% accuracy under distributed information, compared to 80.7% accuracy for single agents given complete information. We trace this gap to a systematic failure mode: agents cannot recognize or act under latent information asymmetry-they fail to reason about what others might know but have not yet expressed, leading to premature convergence on shared evidence while critical distributed facts remain unexplored. These failures persist across prompting strategies, communication depths, and group sizes-and worsen as groups scale. While some models (e.g., Gemini-2.5-Flash/Pro) outperform others, neither model scale nor individual reasoning accuracy reliably predicts collective performance. Our results identify failures in collective information exploration in decision-making as a key limitation of multi-agent LLMs, and provide a theory-grounded, reproducible framework for diagnosing collective reasoning failures.
Multimedia 6
☆ Hybrid Feedback-Guided Optimal Learning for Wireless Interactive Panoramic Scene Delivery
Immersive applications such as virtual and augmented reality impose stringent requirements on frame rate, latency, and synchronization between physical and virtual environments. To meet these requirements, an edge server must render panoramic content, predict user head motion, and transmit a portion of the scene that is large enough to cover the user viewport while remaining within wireless bandwidth constraints. Each portion produces two feedback signals: prediction feedback, indicating whether the selected portion covers the actual viewport, and transmission feedback, indicating whether the corresponding packets are successfully delivered. Prior work models this problem as a multi-armed bandit with two-level bandit feedback, but fails to exploit the fact that prediction feedback can be retrospectively computed for all candidate portions once the user head pose is observed. As a result, prediction feedback constitutes full-information feedback rather than bandit feedback. Motivated by this observation, we introduce a two-level hybrid feedback model that combines full-information and bandit feedback, and formulate the portion selection problem as an online learning task under this setting. We derive an instance-dependent regret lower bound for the hybrid feedback model and propose AdaPort, a hybrid learning algorithm that leverages both feedback types to improve learning efficiency. We further establish an instance-dependent regret upper bound that matches the lower bound asymptotically, and demonstrate through real-world trace driven simulations that AdaPort consistently outperforms state-of-the-art baseline methods.
comment: Submitting to ToN
☆ Rethinking Multi-Condition DiTs: Eliminating Redundant Attention via Position-Alignment and Keyword-Scoping
While modern text-to-image models excel at prompt-based generation, they often lack the fine-grained control necessary for specific user requirements like spatial layouts or subject appearances. Multi-condition control addresses this, yet its integration into Diffusion Transformers (DiTs) is bottlenecked by the conventional ``concatenate-and-attend'' strategy, which suffers from quadratic computational and memory overhead as the number of conditions scales. Our analysis reveals that much of this cross-modal interaction is spatially or semantically redundant. To this end, we propose Position-aligned and Keyword-scoped Attention (PKA), a highly efficient framework designed to eliminate these redundancies. Specifically, Position-Aligned Attention (PAA) linearizes spatial control by enforcing localized patch alignment, while Keyword-Scoped Attention (KSA) prunes irrelevant subject-driven interactions via semantic-aware masking. To facilitate efficient learning, we further introduce a Conditional Sensitivity-Aware Sampling (CSAS) strategy that reweights the training objective towards critical denoising phases, drastically accelerating convergence and enhancing conditional fidelity. Empirically, PKA delivers a 10.0$\times$ inference speedup and a 5.1$\times$ VRAM saving, providing a scalable and resource-friendly solution for high-fidelity multi-conditioned generation.
☆ Stickers on Facebook: Multifunctionality and face-enhancing politeness in everyday social interaction
Stickers are multimodal resources widely used in everyday digital conversations. Despite their popularity, most studies have focused on emojis and emoticons. Therefore, this study analyzes, from a sociopragmatic perspective, the use of stickers in the comments from a corpus of Facebook posts containing acts of face-enhancing politeness, created during and after the COVID-19 pandemic. The main objective is to identify their communicative functions and determine the extent to which they act as strategies of face-enhancing politeness also considering the gender variable. The results show a predominance of naked stickers and those representing human emotions and gestures, and festive situations. Six main functions were identified: affective, illocutionary, interactional, gestural, aesthetic, and representative or substitutive. It was found that stickers can intensify polite messages and express face-enhancing politeness autonomously. Furthermore, gender differences were observed: women use more stickers, especially cute and affectionate ones, whereas men prefer masculine human figures. These findings highlight the key and multifunctional role of stickers in affective digital communication.
comment: in Spanish language, Stickers en Facebook: multifuncionalidad y cortesía valorizante en la interacción social cotidiana, Oralia: Análisis del Discurso Oral, 30 (1)
☆ Federated Prompt-Tuning with Heterogeneous and Incomplete Multimodal Client Data
This paper introduces a generalized federated prompt-tuning framework for practical scenarios where local datasets are multi-modal and exhibit different distributional patterns of missing features at the input level. The proposed framework bridges the gap between federated learning and multi-modal prompt-tuning which have traditionally focused on either uni-modal or centralized data. A key challenge in this setting arises from the lack of semantic alignment between prompt instructions that encode similar distributional patterns of missing data across different clients. To address this, our framework introduces specialized client-tuning and server-aggregation designs that simultaneously optimize, align, and aggregate prompt-tuning instructions across clients and data modalities. This allows prompt instructions to complement one another and be combined effectively. Extensive evaluations on diverse multimodal benchmark datasets demonstrate that our work consistently outperforms state-of-the-art (SOTA) baselines.
♻ ☆ Vidmento: Creating Video Stories Through Context-Aware Expansion With Generative Video
Video storytelling is often constrained by available material, limiting creative expression and leaving undesired narrative gaps. Generative video offers a new way to address these limitations by augmenting captured media with tailored visuals. To explore this potential, we interviewed eight video creators to identify opportunities and challenges in integrating generative video into their workflows. Building on these insights and established filmmaking principles, we developed Vidmento, a tool for authoring hybrid video stories that combine captured and generated media through context-aware expansion. Vidmento surfaces opportunities for story development, generates clips that blend stylistically and narratively with surrounding media, and provides controls for refinement. In a study with 12 creators, Vidmento supported narrative development and exploration by systematically expanding initial materials with generative media, enabling expressive video storytelling aligned with creative intent. We highlight how creators bridge story gaps with generative content and where they find this blending capability most valuable.
comment: Accepted to CHI 2026 (25 pages, 18 figures)
♻ ☆ Visual Autoregressive Modeling for Instruction-Guided Image Editing ICLR 2026
Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing. However, their global denoising process inherently entangles the edited region with the entire image context, leading to unintended spurious modifications and compromised adherence to editing instructions. In contrast, autoregressive models offer a distinct paradigm by formulating image synthesis as a sequential process over discrete visual tokens. Their causal and compositional mechanism naturally circumvents the adherence challenges of diffusion-based methods. In this paper, we present VAREdit, a visual autoregressive (VAR) framework that reframes image editing as a next-scale prediction problem. Conditioned on source image features and text instructions, VAREdit generates multi-scale target features to achieve precise edits. A core challenge in this paradigm is how to effectively condition the source image tokens. We observe that finest-scale source features cannot effectively guide the prediction of coarser target features. To bridge this gap, we introduce a Scale-Aligned Reference (SAR) module, which injects scale-matched conditioning information into the first self-attention layer. VAREdit demonstrates significant advancements in both editing adherence and efficiency. On EMU-Edit and PIE-Bench benchmarks, VAREdit outperforms leading diffusion-based methods by a substantial margin in terms of both CLIP and GPT scores. Moreover, VAREdit completes a 512$\times$512 editing in 1.2 seconds, making it 2.2$\times$ faster than the similarly sized UltraEdit. Code is available at: https://github.com/HiDream-ai/VAREdit.
comment: ICLR 2026; Source codes and models are available at https://github.com/HiDream-ai/VAREdit
Artificial Intelligent 57
☆ aerial-autonomy-stack -- a Faster-than-real-time, Autopilot-agnostic, ROS2 Framework to Simulate and Deploy Perception-based Drones
Unmanned aerial vehicles are rapidly transforming multiple applications, from agricultural and infrastructure monitoring to logistics and defense. Introducing greater autonomy to these systems can simultaneously make them more effective as well as reliable. Thus, the ability to rapidly engineer and deploy autonomous aerial systems has become of strategic importance. In the 2010s, a combination of high-performance compute, data, and open-source software led to the current deep learning and AI boom, unlocking decades of prior theoretical work. Robotics is on the cusp of a similar transformation. However, physical AI faces unique hurdles, often combined under the umbrella term "simulation-to-reality gap". These span from modeling shortcomings to the complexity of vertically integrating the highly heterogeneous hardware and software systems typically found in field robots. To address the latter, we introduce aerial-autonomy-stack, an open-source, end-to-end framework designed to streamline the pipeline from (GPU-accelerated) perception to (flight controller-based) action. Our stack allows the development of aerial autonomy using ROS2 and provides a common interface for two of the most popular autopilots: PX4 and ArduPilot. We show that it supports over 20x faster-than-real-time, end-to-end simulation of a complete development and deployment stack -- including edge compute and networking -- significantly compressing the build-test-release cycle of perception-based autonomy.
☆ Realistic Synthetic Household Data Generation at Scale AAAI 2026
Advancements in foundation models have catalyzed research in Embodied AI to develop interactive agents capable of environmental reasoning and interaction. Developing such agents requires diverse, large-scale datasets. Prior frameworks generate synthetic data for long-term human-robot interactions but fail to model the bidirectional influence between human behavior and household environments. Our proposed generative framework creates household datasets at scale through loosely coupled generation of long-term human-robot interactions and environments. Human personas influence environment generation, while environment schematics and semantics shape human-robot interactions. The generated 3D data includes rich static context such as object and environment semantics, and temporal context capturing human and agent behaviors over extended periods. Our flexible tool allows users to define dataset characteristics via natural language prompts, enabling configuration of environment and human activity data through natural language specifications. The tool creates variations of user-defined configurations, enabling scalable data generation. We validate our framework through statistical evaluation using multi-modal embeddings and key metrics: cosine similarity, mutual information gain, intervention analysis, and iterative improvement validation. Statistical comparisons show good alignment with real-world datasets (HOMER) with cosine similarity (0.60), while synthetic datasets (Wang et al.) show moderate alignment (0.27). Intervention analysis across age, organization, and sleep pattern changes shows statistically significant effects (p < 0.001) with large effect sizes (Cohen's d = 0.51-1.12), confirming bidirectional coupling translates persona traits into measurable environmental and behavioral differences. These contributions enable development and testing of household smart devices at scale.
comment: Accepted at Agentic AI Benchmarks and Applications for Enterprise Tasks workshop at AAAI 2026
☆ Cerebellar-Inspired Residual Control for Fault Recovery: From Inference-Time Adaptation to Structural Consolidation
Robotic policies deployed in real-world environments often encounter post-training faults, where retraining, exploration, or system identification are impractical. We introduce an inference-time, cerebellar-inspired residual control framework that augments a frozen reinforcement learning policy with online corrective actions, enabling fault recovery without modifying base policy parameters. The framework instantiates core cerebellar principles, including high-dimensional pattern separation via fixed feature expansion, parallel microzone-style residual pathways, and local error-driven plasticity with excitatory and inhibitory eligibility traces operating at distinct time scales. These mechanisms enable fast, localized correction under post-training disturbances while avoiding destabilizing global policy updates. A conservative, performance-driven meta-adaptation regulates residual authority and plasticity, preserving nominal behavior and suppressing unnecessary intervention. Experiments on MuJoCo benchmarks under actuator, dynamic, and environmental perturbations show improvements of up to $+66\%$ on \texttt{HalfCheetah-v5} and $+53\%$ on \texttt{Humanoid-v5} under moderate faults, with graceful degradation under severe shifts and complementary robustness from consolidating persistent residual corrections into policy parameters.
☆ Continuum Robot Localization using Distributed Time-of-Flight Sensors
Localization and mapping of an environment are crucial tasks for any robot operating in unstructured environments. Time-of-flight (ToF) sensors (e.g.,~lidar) have proven useful in mobile robotics, where high-resolution sensors can be used for simultaneous localization and mapping. In soft and continuum robotics, however, these high-resolution sensors are too large for practical use. This, combined with the deformable nature of such robots, has resulted in continuum robot (CR) localization and mapping in unstructured environments being a largely untouched area. In this work, we present a localization technique for CRs that relies on small, low-resolution ToF sensors distributed along the length of the robot. By fusing measurement information with a robot shape prior, we show that accurate localization is possible despite each sensor experiencing frequent degenerate scenarios. We achieve an average localization error of 2.5cm in position and 7.2° in rotation across all experimental conditions with a 53cm long robot. We demonstrate that the results are repeated across multiple environments, in both simulation and real-world experiments, and study robustness in the estimation to deviations in the prior map.
☆ A compliant ankle-actuated compass walker with triggering timing control
Passive dynamic walkers are widely adopted as a mathematical model to represent biped walking. The stable locomotion of these models is limited to tilted surfaces, requiring gravitational energy. Various techniques, such as actuation through the ankle and hip joints, have been proposed to extend the applicability of these models to level ground and rough terrain with improved locomotion efficiency. However, most of these techniques rely on impulsive energy injection schemes and torsional springs, which are quite challenging to implement in a physical platform. Here, a new model is proposed, named triggering controlled ankle actuated compass gait (TC-AACG), which allows non-instantaneous compliant ankle pushoff. The proposed technique can be implemented in physical platforms via series elastic actuators (SEAs). Our systematic examination shows that the proposed approach extends the locomotion capabilities of a biped model compared to impulsive ankle pushoff approach. We provide extensive simulation analysis investigating the locomotion speed, mechanical cost of transport, and basin of attraction of the proposed model.
comment: 6 figures, 6 pages
☆ DreamDojo: A Generalist Robot World Model from Large-Scale Human Videos
Being able to simulate the outcomes of actions in varied environments will revolutionize the development of generalist agents at scale. However, modeling these world dynamics, especially for dexterous robotics tasks, poses significant challenges due to limited data coverage and scarce action labels. As an endeavor towards this end, we introduce DreamDojo, a foundation world model that learns diverse interactions and dexterous controls from 44k hours of egocentric human videos. Our data mixture represents the largest video dataset to date for world model pretraining, spanning a wide range of daily scenarios with diverse objects and skills. To address the scarcity of action labels, we introduce continuous latent actions as unified proxy actions, enhancing interaction knowledge transfer from unlabeled videos. After post-training on small-scale target robot data, DreamDojo demonstrates a strong understanding of physics and precise action controllability. We also devise a distillation pipeline that accelerates DreamDojo to a real-time speed of 10.81 FPS and further improves context consistency. Our work enables several important applications based on generative world models, including live teleoperation, policy evaluation, and model-based planning. Systematic evaluation on multiple challenging out-of-distribution (OOD) benchmarks verifies the significance of our method for simulating open-world, contact-rich tasks, paving the way for general-purpose robot world models.
comment: Project page: https://dreamdojo-world.github.io/
☆ Strategizing at Speed: A Learned Model Predictive Game for Multi-Agent Drone Racing
Autonomous drone racing pushes the boundaries of high-speed motion planning and multi-agent strategic decision-making. Success in this domain requires drones not only to navigate at their limits but also to anticipate and counteract competitors' actions. In this paper, we study a fundamental question that arises in this domain: how deeply should an agent strategize before taking an action? To this end, we compare two planning paradigms: the Model Predictive Game (MPG), which finds interaction-aware strategies at the expense of longer computation times, and contouring Model Predictive Control (MPC), which computes strategies rapidly but does not reason about interactions. We perform extensive experiments to study this trade-off, revealing that MPG outperforms MPC at moderate velocities but loses its advantage at higher speeds due to latency. To address this shortcoming, we propose a Learned Model Predictive Game (LMPG) approach that amortizes model predictive gameplay to reduce latency. In both simulation and hardware experiments, we benchmark our approach against MPG and MPC in head-to-head races, finding that LMPG outperforms both baselines.
☆ Consensus-based optimization (CBO): Towards Global Optimality in Robotics
Zero-order optimization has recently received significant attention for designing optimal trajectories and policies for robotic systems. However, most existing methods (e.g., MPPI, CEM, and CMA-ES) are local in nature, as they rely on gradient estimation. In this paper, we introduce consensus-based optimization (CBO) to robotics, which is guaranteed to converge to a global optimum under mild assumptions. We provide theoretical analysis and illustrative examples that give intuition into the fundamental differences between CBO and existing methods. To demonstrate the scalability of CBO for robotics problems, we consider three challenging trajectory optimization scenarios: (1) a long-horizon problem for a simple system, (2) a dynamic balance problem for a highly underactuated system, and (3) a high-dimensional problem with only a terminal cost. Our results show that CBO is able to achieve lower costs with respect to existing methods on all three challenging settings. This opens a new framework to study global trajectory optimization in robotics.
☆ SURE: Safe Uncertainty-Aware Robot-Environment Interaction using Trajectory Optimization
Robotic tasks involving contact interactions pose significant challenges for trajectory optimization due to discontinuous dynamics. Conventional formulations typically assume deterministic contact events, which limit robustness and adaptability in real-world settings. In this work, we propose SURE, a robust trajectory optimization framework that explicitly accounts for contact timing uncertainty. By allowing multiple trajectories to branch from possible pre-impact states and later rejoin a shared trajectory, SURE achieves both robustness and computational efficiency within a unified optimization framework. We evaluate SURE on two representative tasks with unknown impact times. In a cart-pole balancing task involving uncertain wall location, SURE achieves an average improvement of 21.6% in success rate when branch switching is enabled during control. In an egg-catching experiment using a robotic manipulator, SURE improves the success rate by 40%. These results demonstrate that SURE substantially enhances robustness compared to conventional nominal formulations.
☆ Perception-Control Coupled Visual Servoing for Textureless Objects Using Keypoint-Based EKF
Visual servoing is fundamental to robotic applications, enabling precise positioning and control. However, applying it to textureless objects remains a challenge due to the absence of reliable visual features. Moreover, adverse visual conditions, such as occlusions, often corrupt visual feedback, leading to reduced accuracy and instability in visual servoing. In this work, we build upon learning-based keypoint detection for textureless objects and propose a method that enhances robustness by tightly integrating perception and control in a closed loop. Specifically, we employ an Extended Kalman Filter (EKF) that integrates per-frame keypoint measurements to estimate 6D object pose, which drives pose-based visual servoing (PBVS) for control. The resulting camera motion, in turn, enhances the tracking of subsequent keypoints, effectively closing the perception-control loop. Additionally, unlike standard PBVS, we propose a probabilistic control law that computes both camera velocity and its associated uncertainty, enabling uncertainty-aware control for safe and reliable operation. We validate our approach on real-world robotic platforms using quantitative metrics and grasping experiments, demonstrating that our method outperforms traditional visual servoing techniques in both accuracy and practical application.
☆ DynaRetarget: Dynamically-Feasible Retargeting using Sampling-Based Trajectory Optimization
In this paper, we introduce DynaRetarget, a complete pipeline for retargeting human motions to humanoid control policies. The core component of DynaRetarget is a novel Sampling-Based Trajectory Optimization (SBTO) framework that refines imperfect kinematic trajectories into dynamically feasible motions. SBTO incrementally advances the optimization horizon, enabling optimization over the entire trajectory for long-horizon tasks. We validate DynaRetarget by successfully retargeting hundreds of humanoid-object demonstrations and achieving higher success rates than the state of the art. The framework also generalizes across varying object properties, such as mass, size, and geometry, using the same tracking objective. This ability to robustly retarget diverse demonstrations opens the door to generating large-scale synthetic datasets of humanoid loco-manipulation trajectories, addressing a major bottleneck in real-world data collection.
☆ A 26-Gram Butterfly-Inspired Robot Achieving Autonomous Tailless Flight
Flapping-wing micro air vehicles (FWMAVs) have demonstrated remarkable bio-inspired agility, yet tailless two-winged configurations remain largely unexplored due to their complex fluid-structure and wing-body coupling. Here we present \textit{AirPulse}, a 26-gram butterfly-inspired FWMAV that achieves fully onboard, closed-loop, untethered flight without auxiliary control surfaces. The AirPulse robot replicates key biomechanical traits of butterfly flight, including low wing aspect ratio, compliant carbon-fiber-reinforced wings, and low-frequency, high-amplitude flapping that induces cyclic variations in the center of gravity and moment of inertia, producing characteristic body undulation. We establish a quantitative mapping between flapping modulation parameters and force-torque generation, and introduce the Stroke Timing Asymmetry Rhythm (STAR) generator, enabling smooth, stable, and linearly parameterized wingstroke asymmetry for flapping control. Integrating these with an attitude controller, the AirPulse robot maintains pitch and yaw stability despite strong oscillatory dynamics. Free-flight experiments demonstrate stable climbing and turning maneuvers via either angle offset or stroke timing modulation, marking the first onboard controlled flight of the lightest two-winged, tailless butterfly-inspired FWMAV reported in peer-reviewed literature. This work corroborates a foundational platform for lightweight, collision-proof FWMAVs, bridging biological inspiration with practical aerial robotics. Their non-invasive maneuverability is ideally suited for real-world applications, such as confined-space inspection and ecological monitoring, inaccessible to traditional drones, while their biomechanical fidelity provides a physical model to decode the principles underlying the erratic yet efficient flight of real butterflies.
☆ SuReNav: Superpixel Graph-based Constraint Relaxation for Navigation in Over-constrained Environments
We address the over-constrained planning problem in semi-static environments. The planning objective is to find a best-effort solution that avoids all hard constraint regions while minimally traversing the least risky areas. Conventional methods often rely on pre-defined area costs, limiting generalizations. Further, the spatial continuity of navigation spaces makes it difficult to identify regions that are passable without overestimation. To overcome these challenges, we propose SuReNav, a superpixel graph-based constraint relaxation and navigation method that imitates human-like safe and efficient navigation. Our framework consists of three components: 1) superpixel graph map generation with regional constraints, 2) regional-constraint relaxation using graph neural network trained on human demonstrations for safe and efficient navigation, and 3) interleaving relaxation, planning, and execution for complete navigation. We evaluate our method against state-of-the-art baselines on 2D semantic maps and 3D maps from OpenStreetMap, achieving the highest human-likeness score of complete navigation while maintaining a balanced trade-off between efficiency and safety. We finally demonstrate its scalability and generalization performance in real-world urban navigation with a quadruped robot, Spot.
comment: Accepted by ICRA 2026. Code and videos are available at https://sure-nav.github.io/
Zero-Shot UAV Navigation in Forests via Relightable 3D Gaussian Splatting
UAV navigation in unstructured outdoor environments using passive monocular vision is hindered by the substantial visual domain gap between simulation and reality. While 3D Gaussian Splatting enables photorealistic scene reconstruction from real-world data, existing methods inherently couple static lighting with geometry, severely limiting policy generalization to dynamic real-world illumination. In this paper, we propose a novel end-to-end reinforcement learning framework designed for effective zero-shot transfer to unstructured outdoors. Within a high-fidelity simulation grounded in real-world data, our policy is trained to map raw monocular RGB observations directly to continuous control commands. To overcome photometric limitations, we introduce Relightable 3D Gaussian Splatting, which decomposes scene components to enable explicit, physically grounded editing of environmental lighting within the neural representation. By augmenting training with diverse synthesized lighting conditions ranging from strong directional sunlight to diffuse overcast skies, we compel the policy to learn robust, illumination-invariant visual features. Extensive real-world experiments demonstrate that a lightweight quadrotor achieves robust, collision-free navigation in complex forest environments at speeds up to 10 m/s, exhibiting significant resilience to drastic lighting variations without fine-tuning.
comment: 12 pages, 8 figures
☆ Constraint Manifold Exploration for Efficient Continuous Coverage Estimation
Many automated manufacturing processes rely on industrial robot arms to move process-specific tools along workpiece surfaces. In applications like grinding, sanding, spray painting, or inspection, they need to cover a workpiece fully while keeping their tools perpendicular to its surface. While there are approaches to generate trajectories for these applications, there are no sufficient methods for analyzing the feasibility of full surface coverage. This work proposes a sampling-based approach for continuous coverage estimation that explores reachable surface regions in the configuration space. We define an extended ambient configuration space that allows for the representation of tool position and orientation constraints. A continuation-based approach is used to explore it using two different sampling strategies. A thorough evaluation across different kinematics and environments analyzes their runtime and efficiency. This validates our ability to accurately and efficiently calculate surface coverage for complex surfaces in complicated environments.
comment: 8 pages, 7 figures
☆ Crowd-FM: Learned Optimal Selection of Conditional Flow Matching-generated Trajectories for Crowd Navigation
Safe and computationally efficient local planning for mobile robots in dense, unstructured human crowds remains a fundamental challenge. Moreover, ensuring that robot trajectories are similar to how a human moves will increase the acceptance of the robot in human environments. In this paper, we present Crowd-FM, a learning-based approach to address both safety and human-likeness challenges. Our approach has two novel components. First, we train a Conditional Flow-Matching (CFM) policy over a dataset of optimally controlled trajectories to learn a set of collision-free primitives that a robot can choose at any given scenario. The chosen optimal control solver can generate multi-modal collision-free trajectories, allowing the CFM policy to learn a diverse set of maneuvers. Secondly, we learn a score function over a dataset of human demonstration trajectories that provides a human-likeness score for the flow primitives. At inference time, computing the optimal trajectory requires selecting the one with the highest score. Our approach improves the state-of-the-art by showing that our CFM policy alone can produce collision-free navigation with a higher success rate than existing learning-based baselines. Furthermore, when augmented with inference-time refinement, our approach can outperform even expensive optimisation-based planning approaches. Finally, we validate that our scoring network can select trajectories closer to the expert data than a manually designed cost function.
comment: Accepted at IEEE ICRA 2026. Authors Antareep Singha and Laksh Nanwani have equal contributions
☆ RAPID: Reconfigurable, Adaptive Platform for Iterative Design
Developing robotic manipulation policies is iterative and hypothesis-driven: researchers test tactile sensing, gripper geometries, and sensor placements through real-world data collection and training. Yet even minor end-effector changes often require mechanical refitting and system re-integration, slowing iteration. We present RAPID, a full-stack reconfigurable platform designed to reduce this friction. RAPID is built around a tool-free, modular hardware architecture that unifies handheld data collection and robot deployment, and a matching software stack that maintains real-time awareness of the underlying hardware configuration through a driver-level Physical Mask derived from USB events. This modular hardware architecture reduces reconfiguration to seconds and makes systematic multi-modal ablation studies practical, allowing researchers to sweep diverse gripper and sensing configurations without repeated system bring-up. The Physical Mask exposes modality presence as an explicit runtime signal, enabling auto-configuration and graceful degradation under sensor hot-plug events, so policies can continue executing when sensors are physically added or removed. System-centric experiments show that RAPID reduces the setup time for multi-modal configurations by two orders of magnitude compared to traditional workflows and preserves policy execution under runtime sensor hot-unplug events. The hardware designs, drivers, and software stack are open-sourced at https://rapid-kit.github.io/ .
☆ Humanoid Manipulation Interface: Humanoid Whole-Body Manipulation from Robot-Free Demonstrations
Current approaches for humanoid whole-body manipulation, primarily relying on teleoperation or visual sim-to-real reinforcement learning, are hindered by hardware logistics and complex reward engineering. Consequently, demonstrated autonomous skills remain limited and are typically restricted to controlled environments. In this paper, we present the Humanoid Manipulation Interface (HuMI), a portable and efficient framework for learning diverse whole-body manipulation tasks across various environments. HuMI enables robot-free data collection by capturing rich whole-body motion using portable hardware. This data drives a hierarchical learning pipeline that translates human motions into dexterous and feasible humanoid skills. Extensive experiments across five whole-body tasks--including kneeling, squatting, tossing, walking, and bimanual manipulation--demonstrate that HuMI achieves a 3x increase in data collection efficiency compared to teleoperation and attains a 70% success rate in unseen environments.
comment: Website: https://humanoid-manipulation-interface.github.io
☆ Efficient and Robust Modeling of Nonlinear Mechanical Systems
The development of efficient and robust dynamic models is fundamental in the field of systems and control engineering. In this paper, a new formulation for the dynamic model of nonlinear mechanical systems, that can be applied to different automotive and robotic case studies, is proposed, together with a modeling procedure allowing to automatically obtain the model formulation. Compared with the Euler-Lagrange formulation, the proposed model is shown to give superior performances in terms of robustness against measurement noise for systems exhibiting dependence on some external variables, as well as in terms of execution time when computing the inverse dynamics of the system.
☆ Force Generative Imitation Learning: Bridging Position Trajectory and Force Commands through Control Technique
In contact-rich tasks, while position trajectories are often easy to obtain, appropriate force commands are typically unknown. Although it is conceivable to generate force commands using a pretrained foundation model such as Vision-Language-Action (VLA) models, force control is highly dependent on the specific hardware of the robot, which makes the application of such models challenging. To bridge this gap, we propose a force generative model that estimates force commands from given position trajectories. However, when dealing with unseen position trajectories, the model struggles to generate accurate force commands. To address this, we introduce a feedback control mechanism. Our experiments reveal that feedback control does not converge when the force generative model has memory. We therefore adopt a model without memory, enabling stable feedback control. This approach allows the system to generate force commands effectively, even for unseen position trajectories, improving generalization for real-world robot writing tasks.
comment: Accepted for IEEE Access
☆ Think Proprioceptively: Embodied Visual Reasoning for VLA Manipulation
Vision-language-action (VLA) models typically inject proprioception only as a late conditioning signal, which prevents robot state from shaping instruction understanding and from influencing which visual tokens are attended throughout the policy. We introduce ThinkProprio, which converts proprioception into a sequence of text tokens in the VLM embedding space and fuses them with the task instruction at the input. This early fusion lets embodied state participate in subsequent visual reasoning and token selection, biasing computation toward action-critical evidence while suppressing redundant visual tokens. In a systematic ablation over proprioception encoding, state entry point, and action-head conditioning, we find that text tokenization is more effective than learned projectors, and that retaining roughly 15% of visual tokens can match the performance of using the full token set. Across CALVIN, LIBERO, and real-world manipulation, ThinkProprio matches or improves over strong baselines while reducing end-to-end inference latency over 50%.
☆ The Law of Task-Achieving Body Motion: Axiomatizing Success of Robot Manipulation Actions IJCAI
Autonomous agents that perform everyday manipulation actions need to ensure that their body motions are semantically correct with respect to a task request, causally effective within their environment, and feasible for their embodiment. In order to enable robots to verify these properties, we introduce the Law of Task-Achieving Body Motion as an axiomatic correctness specification for body motions. To that end we introduce scoped Task-Environment-Embodiment (TEE) classes that represent world states as Semantic Digital Twins (SDTs) and define applicable physics models to decompose task achievement into three predicates: SatisfiesRequest for semantic request satisfaction over SDT state evolution; Causes for causal sufficiency under the scoped physics model; and CanPerform for safety and feasibility verification at the embodiment level. This decomposition yields a reusable, implementation-independent interface that supports motion synthesis and the verification of given body motions. It also supports typed failure diagnosis (semantic, causal, embodiment and out-of-scope), feasibility across robots and environments, and counterfactual reasoning about robot body motions. We demonstrate the usability of the law in practice by instantiating it for articulated container manipulation in kitchen environments on three contrasting mobile manipulation platforms
comment: 9 pages, 3 figures, submitted to the 2026 International Joint Conference on Artificial Intelligence (IJCAI)
☆ LIBERO-X: Robustness Litmus for Vision-Language-Action Models
Reliable benchmarking is critical for advancing Vision-Language-Action (VLA) models, as it reveals their generalization, robustness, and alignment of perception with language-driven manipulation tasks. However, existing benchmarks often provide limited or misleading assessments due to insufficient evaluation protocols that inadequately capture real-world distribution shifts. This work systematically rethinks VLA benchmarking from both evaluation and data perspectives, introducing LIBERO-X, a benchmark featuring: 1) A hierarchical evaluation protocol with progressive difficulty levels targeting three core capabilities: spatial generalization, object recognition, and task instruction understanding. This design enables fine-grained analysis of performance degradation under increasing environmental and task complexity; 2) A high-diversity training dataset collected via human teleoperation, where each scene supports multiple fine-grained manipulation objectives to bridge the train-evaluation distribution gap. Experiments with representative VLA models reveal significant performance drops under cumulative perturbations, exposing persistent limitations in scene comprehension and instruction grounding. By integrating hierarchical evaluation with diverse training data, LIBERO-X offers a more reliable foundation for assessing and advancing VLA development.
comment: 19 pages, 14 figures and 8 tables
☆ Primary Experimental Feedback on a Co-manipulated Robotic System for Assisted Cervical Surgery
Robotic-assisted surgery has emerged as a promising approach to improve surgical ergonomics, precision, and workflow efficiency, particularly in complex procedures such as cervical spine surgery. In this study, we evaluate the performance of a collaborative robotic system designed to assist surgeons in drilling tasks by assessing its accuracy in executing predefined trajectories. A total of 14 drillings were performed by eight experienced cervical surgeons, utilizing a robotic-assisted setup aimed at ensuring stability and alignment. The primary objective of this study is to quantify the deviations in the position and orientation of the drilling tool relative to the planned trajectory, providing insights into the system's reliability and potential impact on clinical outcomes. While the primary function of robotic assistance in surgery is to enhance surgeon comfort and procedural guidance rather than solely optimizing precision, understanding the system's accuracy remains crucial for its effective integration into surgical practices part of this primary experimental feedback, the study offers an in-depth analysis of the co-manipulated robotic system's performance, focusing on the experimental setup and error evaluation methods. The findings of this study will contribute to the ongoing development of robotic-assisted cervical surgery, highlighting both its advantages and areas for improvement in achieving safer and more efficient surgical workflows
DriveWorld-VLA: Unified Latent-Space World Modeling with Vision-Language-Action for Autonomous Driving
End-to-end (E2E) autonomous driving has recently attracted increasing interest in unifying Vision-Language-Action (VLA) with World Models to enhance decision-making and forward-looking imagination. However, existing methods fail to effectively unify future scene evolution and action planning within a single architecture due to inadequate sharing of latent states, limiting the impact of visual imagination on action decisions. To address this limitation, we propose DriveWorld-VLA, a novel framework that unifies world modeling and planning within a latent space by tightly integrating VLA and world models at the representation level, which enables the VLA planner to benefit directly from holistic scene-evolution modeling and reducing reliance on dense annotated supervision. Additionally, DriveWorld-VLA incorporates the latent states of the world model as core decision-making states for the VLA planner, facilitating the planner to assess how candidate actions impact future scene evolution. By conducting world modeling entirely in the latent space, DriveWorld-VLA supports controllable, action-conditioned imagination at the feature level, avoiding expensive pixel-level rollouts. Extensive open-loop and closed-loop evaluations demonstrate the effectiveness of DriveWorld-VLA, which achieves state-of-the-art performance with 91.3 PDMS on NAVSIMv1, 86.8 EPDMS on NAVSIMv2, and 0.16 3-second average collision rate on nuScenes. Code and models will be released in https://github.com/liulin815/DriveWorld-VLA.git.
comment: 20 pages, 7 tables, 12 figures
☆ Beyond the Majority: Long-tail Imitation Learning for Robotic Manipulation
While generalist robot policies hold significant promise for learning diverse manipulation skills through imitation, their performance is often hindered by the long-tail distribution of training demonstrations. Policies learned on such data, which is heavily skewed towards a few data-rich head tasks, frequently exhibit poor generalization when confronted with the vast number of data-scarce tail tasks. In this work, we conduct a comprehensive analysis of the pervasive long-tail challenge inherent in policy learning. Our analysis begins by demonstrating the inefficacy of conventional long-tail learning strategies (e.g., re-sampling) for improving the policy's performance on tail tasks. We then uncover the underlying mechanism for this failure, revealing that data scarcity on tail tasks directly impairs the policy's spatial reasoning capability. To overcome this, we introduce Approaching-Phase Augmentation (APA), a simple yet effective scheme that transfers knowledge from data-rich head tasks to data-scarce tail tasks without requiring external demonstrations. Extensive experiments in both simulation and real-world manipulation tasks demonstrate the effectiveness of APA. Our code and demos are publicly available at: https://mldxy.github.io/Project-VLA-long-tail/.
comment: accept by IEEE International Conference on Robotics and Automation (ICRA 2026), 8 pages, 6 figures,
☆ World-VLA-Loop: Closed-Loop Learning of Video World Model and VLA Policy
Recent progress in robotic world models has leveraged video diffusion transformers to predict future observations conditioned on historical states and actions. While these models can simulate realistic visual outcomes, they often exhibit poor action-following precision, hindering their utility for downstream robotic learning. In this work, we introduce World-VLA-Loop, a closed-loop framework for the joint refinement of world models and Vision-Language-Action (VLA) policies. We propose a state-aware video world model that functions as a high-fidelity interactive simulator by jointly predicting future observations and reward signals. To enhance reliability, we introduce the SANS dataset, which incorporates near-success trajectories to improve action-outcome alignment within the world model. This framework enables a closed-loop for reinforcement learning (RL) post-training of VLA policies entirely within a virtual environment. Crucially, our approach facilitates a co-evolving cycle: failure rollouts generated by the VLA policy are iteratively fed back to refine the world model precision, which in turn enhances subsequent RL optimization. Evaluations across simulation and real-world tasks demonstrate that our framework significantly boosts VLA performance with minimal physical interaction, establishing a mutually beneficial relationship between world modeling and policy learning for general-purpose robotics. Project page: https://showlab.github.io/World-VLA-Loop/.
comment: 14 pages, 8 figures
☆ MultiGraspNet: A Multitask 3D Vision Model for Multi-gripper Robotic Grasping
Vision-based models for robotic grasping automate critical, repetitive, and draining industrial tasks. Existing approaches are typically limited in two ways: they either target a single gripper and are potentially applied on costly dual-arm setups, or rely on custom hybrid grippers that require ad-hoc learning procedures with logic that cannot be transferred across tasks, restricting their general applicability. In this work, we present MultiGraspNet, a novel multitask 3D deep learning method that predicts feasible poses simultaneously for parallel and vacuum grippers within a unified framework, enabling a single robot to handle multiple end effectors. The model is trained on the richly annotated GraspNet-1Billion and SuctionNet-1Billion datasets, which have been aligned for the purpose, and generates graspability masks quantifying the suitability of each scene point for successful grasps. By sharing early-stage features while maintaining gripper-specific refiners, MultiGraspNet effectively leverages complementary information across grasping modalities, enhancing robustness and adaptability in cluttered scenes. We characterize MultiGraspNet's performance with an extensive experimental analysis, demonstrating its competitiveness with single-task models on relevant benchmarks. We run real-world experiments on a single-arm multi-gripper robotic setup showing that our approach outperforms the vacuum baseline, grasping 16% percent more seen objects and 32% more of the novel ones, while obtaining competitive results for the parallel task.
☆ User-Centric Object Navigation: A Benchmark with Integrated User Habits for Personalized Embodied Object Search
In the evolving field of robotics, the challenge of Object Navigation (ON) in household environments has attracted significant interest. Existing ON benchmarks typically place objects in locations guided by general scene priors, without accounting for the specific placement habits of individual users. This omission limits the adaptability of navigation agents in personalized household environments. To address this, we introduce User-centric Object Navigation (UcON), a new benchmark that incorporates user-specific object placement habits, referred to as user habits. This benchmark requires agents to leverage these user habits for more informed decision-making during navigation. UcON encompasses approximately 22,600 user habits across 489 object categories. UcON is, to our knowledge, the first benchmark that explicitly formalizes and evaluates habit-conditioned object navigation at scale and covers the widest range of target object categories. Additionally, we propose a habit retrieval module to extract and utilize habits related to target objects, enabling agents to infer their likely locations more effectively. Experimental results demonstrate that current SOTA methods exhibit substantial performance degradation under habit-driven object placement, while integrating user habits consistently improves success rates. Code is available at https://github.com/whcpumpkin/User-Centric-Object-Navigation.
comment: Accepted by ICRA 2026
☆ ECO: Energy-Constrained Optimization with Reinforcement Learning for Humanoid Walking
Achieving stable and energy-efficient locomotion is essential for humanoid robots to operate continuously in real-world applications. Existing MPC and RL approaches often rely on energy-related metrics embedded within a multi-objective optimization framework, which require extensive hyperparameter tuning and often result in suboptimal policies. To address these challenges, we propose ECO (Energy-Constrained Optimization), a constrained RL framework that separates energy-related metrics from rewards, reformulating them as explicit inequality constraints. This method provides a clear and interpretable physical representation of energy costs, enabling more efficient and intuitive hyperparameter tuning for improved energy efficiency. ECO introduces dedicated constraints for energy consumption and reference motion, enforced by the Lagrangian method, to achieve stable, symmetric, and energy-efficient walking for humanoid robots. We evaluated ECO against MPC, standard RL with reward shaping, and four state-of-the-art constrained RL methods. Experiments, including sim-to-sim and sim-to-real transfers on the kid-sized humanoid robot BRUCE, demonstrate that ECO significantly reduces energy consumption compared to baselines while maintaining robust walking performance. These results highlight a substantial advancement in energy-efficient humanoid locomotion. All experimental demonstrations can be found on the project website: https://sites.google.com/view/eco-humanoid.
comment: IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING. PREPRINT VERSION. ACCEPTED FEB, 2026
☆ Bridging the Indoor-Outdoor Gap: Vision-Centric Instruction-Guided Embodied Navigation for the Last Meters
Embodied navigation holds significant promise for real-world applications such as last-mile delivery. However, most existing approaches are confined to either indoor or outdoor environments and rely heavily on strong assumptions, such as access to precise coordinate systems. While current outdoor methods can guide agents to the vicinity of a target using coarse-grained localization, they fail to enable fine-grained entry through specific building entrances, critically limiting their utility in practical deployment scenarios that require seamless outdoor-to-indoor transitions. To bridge this gap, we introduce a novel task: out-to-in prior-free instruction-driven embodied navigation. This formulation explicitly eliminates reliance on accurate external priors, requiring agents to navigate solely based on egocentric visual observations guided by instructions. To tackle this task, we propose a vision-centric embodied navigation framework that leverages image-based prompts to drive decision-making. Additionally, we present the first open-source dataset for this task, featuring a pipeline that integrates trajectory-conditioned video synthesis into the data generation process. Through extensive experiments, we demonstrate that our proposed method consistently outperforms state-of-the-art baselines across key metrics including success rate and path efficiency.
☆ TFusionOcc: Student's t-Distribution Based Object-Centric Multi-Sensor Fusion Framework for 3D Occupancy Prediction
3D semantic occupancy prediction enables autonomous vehicles (AVs) to perceive fine-grained geometric and semantic structure of their surroundings from onboard sensors, which is essential for safe decision-making and navigation. Recent models for 3D semantic occupancy prediction have successfully addressed the challenge of describing real-world objects with varied shapes and classes. However, the intermediate representations used by existing methods for 3D semantic occupancy prediction rely heavily on 3D voxel volumes or a set of 3D Gaussians, hindering the model's ability to efficiently and effectively capture fine-grained geometric details in the 3D driving environment. This paper introduces TFusionOcc, a novel object-centric multi-sensor fusion framework for predicting 3D semantic occupancy. By leveraging multi-stage multi-sensor fusion, Student's t-distribution, and the T-Mixture model (TMM), together with more geometrically flexible primitives, such as the deformable superquadric (superquadric with inverse warp), the proposed method achieved state-of-the-art (SOTA) performance on the nuScenes benchmark. In addition, extensive experiments were conducted on the nuScenes-C dataset to demonstrate the robustness of the proposed method in different camera and lidar corruption scenarios. The code will be available at: https://github.com/DanielMing123/TFusionOcc
☆ Now You See That: Learning End-to-End Humanoid Locomotion from Raw Pixels
Achieving robust vision-based humanoid locomotion remains challenging due to two fundamental issues: the sim-to-real gap introduces significant perception noise that degrades performance on fine-grained tasks, and training a unified policy across diverse terrains is hindered by conflicting learning objectives. To address these challenges, we present an end-to-end framework for vision-driven humanoid locomotion. For robust sim-to-real transfer, we develop a high-fidelity depth sensor simulation that captures stereo matching artifacts and calibration uncertainties inherent in real-world sensing. We further propose a vision-aware behavior distillation approach that combines latent space alignment with noise-invariant auxiliary tasks, enabling effective knowledge transfer from privileged height maps to noisy depth observations. For versatile terrain adaptation, we introduce terrain-specific reward shaping integrated with multi-critic and multi-discriminator learning, where dedicated networks capture the distinct dynamics and motion priors of each terrain type. We validate our approach on two humanoid platforms equipped with different stereo depth cameras. The resulting policy demonstrates robust performance across diverse environments, seamlessly handling extreme challenges such as high platforms and wide gaps, as well as fine-grained tasks including bidirectional long-term staircase traversal.
☆ A Consistency-Improved LiDAR-Inertial Bundle Adjustment
Simultaneous Localization and Mapping (SLAM) using 3D LiDAR has emerged as a cornerstone for autonomous navigation in robotics. While feature-based SLAM systems have achieved impressive results by leveraging edge and planar structures, they often suffer from the inconsistent estimator associated with feature parameterization and estimated covariance. In this work, we present a consistency-improved LiDAR-inertial bundle adjustment (BA) with tailored parameterization and estimator. First, we propose a stereographic-projection representation parameterizing the planar and edge features, and conduct a comprehensive observability analysis to support its integrability with consistent estimator. Second, we implement a LiDAR-inertial BA with Maximum a Posteriori (MAP) formulation and First-Estimate Jacobians (FEJ) to preserve the accurate estimated covariance and observability properties of the system. Last, we apply our proposed BA method to a LiDAR-inertial odometry.
☆ Towards Adaptive Environment Generation for Training Embodied Agents AAAI-26
Embodied agents struggle to generalize to new environments, even when those environments share similar underlying structures to their training settings. Most current approaches to generating these training environments follow an open-loop paradigm, without considering the agent's current performance. While procedural generation methods can produce diverse scenes, diversity without feedback from the agent is inefficient. The generated environments may be trivially easy, providing limited learning signal. To address this, we present a proof-of-concept for closed-loop environment generation that adapts difficulty to the agent's current capabilities. Our system employs a controllable environment representation, extracts fine-grained performance feedback beyond binary success or failure, and implements a closed-loop adaptation mechanism that translates this feedback into environment modifications. This feedback-driven approach generates training environments that more challenging in the ways the agent needs to improve, enabling more efficient learning and better generalization to novel settings.
comment: Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
☆ Nipping the Drift in the Bud: Retrospective Rectification for Robust Vision-Language Navigation
Vision-Language Navigation (VLN) requires embodied agents to interpret natural language instructions and navigate through complex continuous 3D environments. However, the dominant imitation learning paradigm suffers from exposure bias, where minor deviations during inference lead to compounding errors. While DAgger-style approaches attempt to mitigate this by correcting error states, we identify a critical limitation: Instruction-State Misalignment. Forcing an agent to learn recovery actions from off-track states often creates supervision signals that semantically conflict with the original instruction. In response to these challenges, we introduce BudVLN, an online framework that learns from on-policy rollouts by constructing supervision to match the current state distribution. BudVLN performs retrospective rectification via counterfactual re-anchoring and decision-conditioned supervision synthesis, using a geodesic oracle to synthesize corrective trajectories that originate from valid historical states, ensuring semantic consistency. Experiments on the standard R2R-CE and RxR-CE benchmarks demonstrate that BudVLN consistently mitigates distribution shift and achieves state-of-the-art performance in both Success Rate and SPL.
☆ HiWET: Hierarchical World-Frame End-Effector Tracking for Long-Horizon Humanoid Loco-Manipulation
Humanoid loco-manipulation requires executing precise manipulation tasks while maintaining dynamic stability amid base motion and impacts. Existing approaches typically formulate commands in body-centric frames, fail to inherently correct cumulative world-frame drift induced by legged locomotion. We reformulate the problem as world-frame end-effector tracking and propose HiWET, a hierarchical reinforcement learning framework that decouples global reasoning from dynamic execution. The high-level policy generates subgoals that jointly optimize end-effector accuracy and base positioning in the world frame, while the low-level policy executes these commands under stability constraints. We introduce a Kinematic Manifold Prior (KMP) that embeds the manipulation manifold into the action space via residual learning, reducing exploration dimensionality and mitigating kinematically invalid behaviors. Extensive simulation and ablation studies demonstrate that HiWET achieves precise and stable end-effector tracking in long-horizon world-frame tasks. We validate zero-shot sim-to-real transfer of the low-level policy on a physical humanoid, demonstrating stable locomotion under diverse manipulation commands. These results indicate that explicit world-frame reasoning combined with hierarchical control provides an effective and scalable solution for long-horizon humanoid loco-manipulation.
☆ Action Hallucination in Generative Visual-Language-Action Models
Robot Foundation Models such as Vision-Language-Action models are rapidly reshaping how robot policies are trained and deployed, replacing hand-designed planners with end-to-end generative action models. While these systems demonstrate impressive generalization, it remains unclear whether they fundamentally resolve the long-standing challenges of robotics. We address this question by analyzing action hallucinations that violate physical constraints and their extension to plan-level failures. Focusing on latent-variable generative policies, we show that hallucinations often arise from structural mismatches between feasible robot behavior and common model architectures. We study three such barriers -- topological, precision, and horizon -- and show how they impose unavoidable tradeoffs. Our analysis provides mechanistic explanations for reported empirical failures of generative robot policies and suggests principled directions for improving reliability and trustworthiness, without abandoning their expressive power.
comment: 22 pages
☆ Internalized Morphogenesis: A Self-Organizing Model for Growth, Replication, and Regeneration via Local Token Exchange in Modular Systems
This study presents an internalized morphogenesis model for autonomous systems, such as swarm robotics and micro-nanomachines, that eliminates the need for external spatial computation. Traditional self-organizing models often require calculations across the entire coordinate space, including empty areas, which is impractical for resource-constrained physical modules. Our proposed model achieves complex morphogenesis through strictly local interactions between adjacent modules within the "body." By extending the "Ishida token model," modules exchange integer values using an RD-inspired discrete analogue without solving differential equations. The internal potential, derived from token accumulation and aging, guides autonomous growth, shrinkage, and replication. Simulations on a hexagonal grid demonstrated the emergence of limb-like extensions, self-division, and robust regeneration capabilities following structural amputation. A key feature is the use of the body boundary as a natural sink for information entropy (tokens) to maintain a dynamic equilibrium. These results indicate that sophisticated morphological behaviors can emerge from minimal, internal-only rules. This framework offers a computationally efficient and biologically plausible approach to developing self-repairing, adaptive, and autonomous hardware.
☆ Robots That Generate Planarity Through Geometry
Constraining motion to a flat surface is a fundamental requirement for equipment across science and engineering. Modern precision robotic motion systems, such as gantries, rely on the flatness of components, including guide rails and granite surface plates. However, translating this static flatness into motion requires precise internal alignment and tight-tolerance components that create long, error-sensitive reference chains. Here, we show that by using the geometric inversion of a sphere into a plane, we can produce robotic motion systems that derive planarity entirely from link lengths and connectivity. This allows planar motion to emerge from self-referencing geometric constraints, and without external metrology. We demonstrate these Flat-Plane Mechanisms (FPMs) from micron to meter scales and show that fabrication errors can be attenuated by an order of magnitude in the resulting flatness. Finally, we present a robotic FPM-based 3-axis positioning system that can be used for metrology surface scans ($\pm 12$-mm) and 3D printing inside narrow containers. This work establishes an alternative geometric foundation for planar motion that can be realized across size scales and opens new possibilities in metrology, fabrication, and micro-positioning.
☆ Airspace-aware Contingency Landing Planning
This paper develops a real-time, search-based aircraft contingency landing planner that minimizes traffic disruptions while accounting for ground risk. The airspace model captures dense air traffic departure and arrival flows, helicopter corridors, and prohibited zones and is demonstrated with a Washington, D.C., area case study. Historical Automatic Dependent Surveillance-Broadcast (ADS-B) data are processed to estimate air traffic density. A low-latency computational geometry algorithm generates proximity-based heatmaps around high-risk corridors and restricted regions. Airspace risk is quantified as the cumulative exposure time of a landing trajectory within congested regions, while ground risk is assessed from overflown population density to jointly guide trajectory selection. A landing site selection module further mitigates disruption to nominal air traffic operations. Benchmarking against minimum-risk Dubins solutions demonstrates that the proposed planner achieves lower joint risk and reduced airspace disruption while maintaining real-time performance. Under airspace-risk-only conditions, the planner generates trajectories within an average of 2.9 seconds on a laptop computer. Future work will incorporate dynamic air traffic updates to enable spatiotemporal contingency landing planning that minimizes the need for real-time traffic rerouting.
☆ A High-Fidelity Robotic Manipulator Teleoperation Framework for Human-Centered Augmented Reality Evaluation
Validating Augmented Reality (AR) tracking and interaction models requires precise, repeatable ground-truth motion. However, human users cannot reliably perform consistent motion due to biomechanical variability. Robotic manipulators are promising to act as human motion proxies if they can mimic human movements. In this work, we design and implement ARBot, a real-time teleoperation platform that can effectively capture natural human motion and accurately replay the movements via robotic manipulators. ARBot includes two capture models: stable wrist motion capture via a custom CV and IMU pipeline, and natural 6-DOF control via a mobile application. We design a proactively-safe QP controller to ensure smooth, jitter-free execution of the robotic manipulator, enabling it to function as a high-fidelity record and replay physical proxy. We open-source ARBot and release a benchmark dataset of 132 human and synthetic trajectories captured using ARBot to support controllable and scalable AR evaluation.
♻ ☆ Information-Theoretic Graph Fusion with Vision-Language-Action Model for Policy Reasoning and Dual Robotic Control
Teaching robots dexterous skills from human videos remains challenging due to the reliance on low-level trajectory imitation, which fails to generalize across object types, spatial layouts, and manipulator configurations. We propose Graph-Fused Vision-Language-Action (GF-VLA), a framework that enables dual-arm robotic systems to perform task-level reasoning and execution directly from RGB and Depth human demonstrations. GF-VLA first extracts Shannon-information-based cues to identify hands and objects with the highest task relevance, then encodes these cues into temporally ordered scene graphs that capture both hand-object and object-object interactions. These graphs are fused with a language-conditioned transformer that generates hierarchical behavior trees and interpretable Cartesian motion commands. To improve execution efficiency in bimanual settings, we further introduce a cross-hand selection policy that infers optimal gripper assignment without explicit geometric reasoning. We evaluate GF-VLA on four structured dual-arm block assembly tasks involving symbolic shape construction and spatial generalization. Experimental results show that the information-theoretic scene representation achieves over 95 percent graph accuracy and 93 percent subtask segmentation, supporting the LLM planner in generating reliable and human-readable task policies. When executed by the dual-arm robot, these policies yield 94 percent grasp success, 89 percent placement accuracy, and 90 percent overall task success across stacking, letter-building, and geometric reconfiguration scenarios, demonstrating strong generalization and robustness across diverse spatial and semantic variations.
comment: Journal accepted by Information Fusion
♻ ☆ Lan-grasp: Using Large Language Models for Semantic Object Grasping and Placement
In this paper, we propose Lan-grasp, a novel approach towards more appropriate semantic grasping and placing. We leverage foundation models to equip the robot with a semantic understanding of object geometry, enabling it to identify the right place to grasp, which parts to avoid, and the natural pose for placement. This is an important contribution to grasping and utilizing objects in a more meaningful and safe manner. We leverage a combination of a Large Language Model, a Vision-Language Model, and a traditional grasp planner to generate grasps that demonstrate a deeper semantic understanding of the objects. Building on foundation models provides us with a zero-shot grasp method that can handle a wide range of objects without requiring further training or fine-tuning. We also propose a method for safely putting down a grasped object. The core idea is to rotate the object upright utilizing a pretrained generative model and the reasoning capabilities of a VLM. We evaluate our method in real-world experiments on a custom object dataset and present the results of a survey that asks participants to choose an object part appropriate for grasping. The results show that the grasps generated by our method are consistently ranked higher by the participants than those generated by a conventional grasping planner and a recent semantic grasping approach. In addition, we propose a Visual Chain-of-Thought feedback loop to assess grasp feasibility in complex scenarios. This mechanism enables dynamic reasoning and generates alternative grasp strategies when needed, ensuring safer and more effective grasping outcomes.
♻ ☆ Lyapunov Constrained Soft Actor-Critic (LC-SAC) using Koopman Operator Theory for Quadrotor Trajectory Tracking
Reinforcement Learning (RL) has achieved remarkable success in solving complex sequential decision-making problems. However, its application to safety-critical physical systems remains constrained by the lack of stability guarantees. Standard RL algorithms prioritize reward maximization, often yielding policies that may induce oscillations or unbounded state divergence. There has been significant work in incorporating Lyapunov-based stability guarantees in RL algorithms with key challenges being selecting a candidate Lyapunov function, computational complexity by using excessive function approximators and conservative policies by incorporating stability criterion in the learning process. In this work we propose a novel Lyapunov-constrained Soft Actor-Critic (LC-SAC) algorithm using Koopman operator theory. We propose use of extended dynamic mode decomposition (EDMD) to produce a linear approximation of the system and use this approximation to derive a closed form solution for candidate Lyapunov function. This derived Lyapunov function is incorporated in the SAC algorithm to further provide guarantees for a policy that stabilizes the nonlinear system. The results are evaluated trajectory tracking of a 2D Quadrotor environment based on safe-control-gym. The proposed algorithm shows training convergence and decaying violations for Lyapunov stability criterion compared to baseline vanilla SAC algorithm. GitHub Repository: https://github.com/DhruvKushwaha/LC-SAC-Quadrotor-Trajectory-Tracking
comment: 11 pages, 7 Figures, submitted to IEEE RA-L
♻ ☆ Embodying Physical Computing into Soft Robots
Softening and onboarding computers and controllers is one of the final frontiers in soft robotics towards their robustness and intelligence for everyday use. In this regard, embodying soft and physical computing presents exciting potential. Physical computing seeks to encode inputs into a mechanical computing kernel and leverage the internal interactions among this kernel's constituent elements to compute the output. Moreover, such input-to-output evolution can be re-programmable. This perspective paper proposes a framework for embodying physical computing into soft robots and discusses three unique strategies in the literature: analog oscillators, physical reservoir computing, and physical algorithmic computing. These embodied computers enable the soft robot to perform complex behaviors that would otherwise require CMOS-based electronics -- including coordinated locomotion with obstacle avoidance, payload weight and orientation classification, and programmable operation based on logical rules. This paper will detail the working principles of these embodied physical computing methods, survey the current state-of-the-art, and present a perspective for future development.
♻ ☆ Constrained Group Relative Policy Optimization
While Group Relative Policy Optimization (GRPO) has emerged as a scalable framework for critic-free policy learning, extending it to settings with explicit behavioral constraints remains underexplored. We introduce Constrained GRPO, a Lagrangian-based extension of GRPO for constrained policy optimization. Constraints are specified via indicator cost functions, enabling direct optimization of violation rates through a Lagrangian relaxation. We show that a naive multi-component treatment in advantage estimation can break constrained learning: mismatched component-wise standard deviations distort the relative importance of the different objective terms, which in turn corrupts the Lagrangian signal and prevents meaningful constraint enforcement. We formally derive this effect to motivate our scalarized advantage construction that preserves the intended trade-off between reward and constraint terms. Experiments in a toy gridworld confirm the predicted optimization pathology and demonstrate that scalarizing advantages restores stable constraint control. In addition, we evaluate Constrained GRPO on robotics tasks, where it improves constraint satisfaction while increasing task success, establishing a simple and effective recipe for constrained policy optimization in embodied AI domains that increasingly rely on large multimodal foundation models.
comment: 16 pages, 6 figures
♻ ☆ REACT: Real-time Entanglement-Aware Coverage Path Planning for Tethered Underwater Vehicles
Inspection of underwater structures with tethered underwater vehicles is often hindered by the risk of tether entanglement. We propose REACT (real-time entanglement-aware coverage path planning for tethered underwater vehicles), a framework designed to overcome this limitation. REACT comprises a computationally efficient geometry-based tether model using the signed distance field (SDF) map for accurate, real-time simulation of taut tether configurations around arbitrary structures in 3D. This model enables an efficient online replanning strategy by enforcing a maximum tether length constraint, thereby actively preventing entanglement. By integrating REACT into a coverage path planning framework, we achieve safe and entanglement-free inspection paths, previously challenging due to tether constraints. The complete REACT framework's efficacy is validated in a pipe inspection scenario, demonstrating safe navigation and full coverage inspection. Simulation results show that REACT achieves complete coverage while maintaining tether constraints and completing the total mission 20% faster than conventional planners, despite a longer inspection time due to proactive avoidance of entanglement that eliminates extensive post-mission disentanglement. Real-world experiments confirm these benefits, where REACT completes the full mission, while the baseline planner fails due to physical tether entanglement.
comment: Accepted for publication at International Conference on Robotics & Automation 2026
♻ ☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Project website: https://darkeqa-benchmark.github.io/
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ CRISP -- Compliant ROS2 Controllers for Learning-Based Manipulation Policies and Teleoperation
Learning-based controllers, such as diffusion policies and vision-language action models, often generate low-frequency or discontinuous robot state changes. Achieving smooth reference tracking requires a low-level controller that converts high-level targets commands into joint torques, enabling compliant behavior during contact interactions. We present CRISP, a lightweight C++ implementation of compliant Cartesian and joint-space controllers for the ROS2 control standard, designed for seamless integration with high-level learning-based policies as well as teleoperation. The controllers are compatible with any manipulator that exposes a joint-torque interface. Through our Python and Gymnasium interfaces, CRISP provides a unified pipeline for recording data from hardware and simulation and deploying high-level learning-based policies seamlessly, facilitating rapid experimentation. The system has been validated on hardware with the Franka Robotics FR3 and in simulation with the Kuka IIWA14 and Kinova Gen3. Designed for rapid integration, flexible deployment, and real-time performance, our implementation provides a unified pipeline for data collection and policy execution, lowering the barrier to applying learning-based methods on ROS2-compatible manipulators. Detailed documentation is available at the project website - https://utiasDSL.github.io/crisp_controllers.
comment: 5 pages, 5 figures
♻ ☆ Robust Meta-Learning of Vehicle Yaw Rate Dynamics via Conditional Neural Processes
Trajectory planners of autonomous vehicles usually rely on physical models to predict the vehicle behavior. However, despite their suitability, physical models have some shortcomings. On the one hand, simple models suffer from larger model errors and more restrictive assumptions. On the other hand, complex models are computationally more demanding and depend on environmental and operational parameters. In each case, the drawbacks can be associated to a certain degree to the physical modeling of the yaw rate dynamics. Therefore, this paper investigates the yaw rate prediction based on conditional neural processes (CNP), a data-driven meta-learning approach, to simultaneously achieve low errors, adequate complexity and robustness to varying parameters. Thus, physical models can be enhanced in a targeted manner to provide accurate and computationally efficient predictions to enable safe planning in autonomous vehicles. High fidelity simulations for a variety of driving scenarios and different types of cars show that CNP makes it possible to employ and transfer knowledge about the yaw rate based on current driving dynamics in a human-like manner, yielding robustness against changing environmental and operational conditions.
comment: Published in 2023 62nd IEEE IEEE Conference on Decision and Control (CDC), Singapore, Singapore, December 13 - 15, 2023
♻ ☆ Sampling for Model Predictive Trajectory Planning in Autonomous Driving using Normalizing Flows
Alongside optimization-based planners, sampling-based approaches are often used in trajectory planning for autonomous driving due to their simplicity. Model predictive path integral control is a framework that builds upon optimization principles while incorporating stochastic sampling of input trajectories. This paper investigates several sampling approaches for trajectory generation. In this context, normalizing flows originating from the field of variational inference are considered for the generation of sampling distributions, as they model transformations of simple to more complex distributions. Accordingly, learning-based normalizing flow models are trained for a more efficient exploration of the input domain for the task at hand. The developed algorithm and the proposed sampling distributions are evaluated in two simulation scenarios.
comment: Accepted to be published as part of the 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Shinhwa World, Jeju Island, Korea, June 2-5, 2024
♻ ☆ HyPlan: Hybrid Learning-Assisted Planning Under Uncertainty for Safe Autonomous Driving
We present a novel hybrid learning-assisted planning method, named HyPlan, for solving the collision-free navigation problem for self-driving cars in partially observable traffic environments. HyPlan combines methods for multi-agent behavior prediction, deep reinforcement learning with proximal policy optimization and approximated online POMDP planning with heuristic confidence-based vertical pruning to reduce its execution time without compromising safety of driving. Our experimental performance analysis on the CARLA-CTS2 benchmark of critical traffic scenarios with pedestrians revealed that HyPlan may navigate safer than selected relevant baselines and perform significantly faster than considered alternative online POMDP planners.
♻ ☆ Encoding Tactile Stimuli for Braille Recognition with Organoids
This study proposes a transferable encoding strategy that maps tactile sensor data to electrical stimulation patterns, enabling neural organoids to perform an open-loop artificial tactile Braille classification task. Human forebrain organoids cultured on a low-density microelectrode array (MEA) are systematically stimulated to characterize the relationship between electrical stimulation parameters (number of pulse, phase amplitude, phase duration, and trigger delay) and organoid responses, measured as spike activity and spatial displacement of the center of activity. Implemented on event-based tactile inputs recorded from the Evetac sensor, our system achieved an average Braille letter classification accuracy of 61% with a single organoid, which increased significantly to 83% when responses from a three-organoid ensemble were combined. Additionally, the multi-organoid configuration demonstrated enhanced robustness against various types of artificially introduced noise. This research demonstrates the potential of organoids as low-power, adaptive bio-hybrid computational elements and provides a foundational encoding framework for future scalable bio-hybrid computing architectures.
♻ ☆ Less Is More: Scalable Visual Navigation from Limited Data
Imitation learning provides a powerful framework for goal-conditioned visual navigation in mobile robots, enabling obstacle avoidance while respecting human preferences and social norms. However, its effectiveness depends critically on the quality and diversity of training data. In this work, we show how classical geometric planners can be leveraged to generate synthetic trajectories that complement costly human demonstrations. We train Less is More (LiMo), a transformer-based visual navigation policy that predicts goal-conditioned SE(2) trajectories from a single RGB observation, and find that augmenting limited expert demonstrations with planner-generated supervision yields substantial performance gains. Through ablations and complementary qualitative and quantitative analyses, we characterize how dataset scale and diversity affect planning performance. We demonstrate real-robot deployment and argue that robust visual navigation is enabled not by simply collecting more demonstrations, but by strategically curating diverse, high-quality datasets. Our results suggest that scalable, embodiment-specific geometric supervision is a practical path toward data-efficient visual navigation.
comment: v2: Minor text edits, reference formatting fixes, and project page link added
♻ ☆ Right-Side-Out: Learning Zero-Shot Sim-to-Real Garment Reversal
Turning garments right-side out is a challenging manipulation task: it is highly dynamic, entails rapid contact changes, and is subject to severe visual occlusion. We introduce Right-Side-Out, a zero-shot sim-to-real framework that effectively solves this challenge by exploiting task structures. We decompose the task into Drag/Fling to create and stabilize an access opening, followed by Insert&Pull to invert the garment. Each step uses a depth-inferred, keypoint-parameterized bimanual primitive that sharply reduces the action space while preserving robustness. Efficient data generation is enabled by our custom-built, high-fidelity, GPU-parallel Material Point Method (MPM) simulator that models thin-shell deformation and provides robust and efficient contact handling for batched rollouts. Built on the simulator, our fully automated pipeline scales data generation by randomizing garment geometry, material parameters, and viewpoints, producing depth, masks, and per-primitive keypoint labels without any human annotations. With a single depth camera, policies trained entirely in simulation deploy zero-shot on real hardware, achieving up to 81.3% success rate. By employing task decomposition and high fidelity simulation, our framework enables tackling highly dynamic, severely occluded tasks without laborious human demonstrations.
comment: More details and supplementary material are on the website: https://right-side-out.github.io
♻ ☆ GNSS-based Lunar Orbit and Clock Estimation With Stochastic Cloning UD Filter
This paper presents a terrestrial GNSS-based orbit and clock estimation framework for lunar navigation satellites. To enable high-precision estimation under the low-observability conditions encountered at lunar distances, we develop a stochastic-cloning UD-factorized filter and delayed-state smoother that provide enhanced numerical stability when processing precise time-differenced carrier phase (TDCP) measurements. A comprehensive dynamics and measurement model is formulated, explicitly accounting for relativistic coupling between orbital and clock states, lunar time-scale transformations, and signal propagation delays including ionospheric, plasmaspheric, and Shapiro effects. The proposed approach is evaluated using high-fidelity Monte-Carlo simulations incorporating realistic multi-constellation GNSS geometry, broadcast ephemeris errors, lunar satellite dynamics, and ionospheric and plasmaspheric delay computed from empirical electron density models. Simulation results demonstrate that combining ionosphere-free pseudorange and TDCP measurements achieves meter-level orbit accuracy and sub-millimeter-per-second velocity accuracy, satisfying the stringent signal-in-space error requirements of future Lunar Augmented Navigation Services (LANS).
comment: Submitted to the Journal of Guidance, Control, and Dynamics
Computation and Language 133
☆ DFlash: Block Diffusion for Flash Speculative Decoding
Autoregressive large language models (LLMs) deliver strong performance but require inherently sequential decoding, leading to high inference latency and poor GPU utilization. Speculative decoding mitigates this bottleneck by using a fast draft model whose outputs are verified in parallel by the target LLM; however, existing methods still rely on autoregressive drafting, which remains sequential and limits practical speedups. Diffusion LLMs offer a promising alternative by enabling parallel generation, but current diffusion models typically underperform compared with autoregressive models. In this paper, we introduce DFlash, a speculative decoding framework that employs a lightweight block diffusion model for parallel drafting. By generating draft tokens in a single forward pass and conditioning the draft model on context features extracted from the target model, DFlash enables efficient drafting with high-quality outputs and higher acceptance rates. Experiments show that DFlash achieves over 6x lossless acceleration across a range of models and tasks, delivering up to 2.5x higher speedup than the state-of-the-art speculative decoding method EAGLE-3.
☆ Learning Query-Aware Budget-Tier Routing for Runtime Agent Memory
Memory is increasingly central to Large Language Model (LLM) agents operating beyond a single context window, yet most existing systems rely on offline, query-agnostic memory construction that can be inefficient and may discard query-critical information. Although runtime memory utilization is a natural alternative, prior work often incurs substantial overhead and offers limited explicit control over the performance-cost trade-off. In this work, we present \textbf{BudgetMem}, a runtime agent memory framework for explicit, query-aware performance-cost control. BudgetMem structures memory processing as a set of memory modules, each offered in three budget tiers (i.e., \textsc{Low}/\textsc{Mid}/\textsc{High}). A lightweight router performs budget-tier routing across modules to balance task performance and memory construction cost, which is implemented as a compact neural policy trained with reinforcement learning. Using BudgetMem as a unified testbed, we study three complementary strategies for realizing budget tiers: implementation (method complexity), reasoning (inference behavior), and capacity (module model size). Across LoCoMo, LongMemEval, and HotpotQA, BudgetMem surpasses strong baselines when performance is prioritized (i.e., high-budget setting), and delivers better accuracy-cost frontiers under tighter budgets. Moreover, our analysis disentangles the strengths and weaknesses of different tiering strategies, clarifying when each axis delivers the most favorable trade-offs under varying budget regimes.
comment: Code is available at https://github.com/ViktorAxelsen/BudgetMem
☆ Multi-Token Prediction via Self-Distillation
Existing techniques for accelerating language model inference, such as speculative decoding, require training auxiliary speculator models and building and deploying complex inference pipelines. We consider a new approach for converting a pretrained autoregressive language model from a slow single next token prediction model into a fast standalone multi-token prediction model using a simple online distillation objective. The final model retains the exact same implementation as the pretrained initial checkpoint and is deployable without the addition of any auxiliary verifier or other specialized inference code. On GSM8K, our method produces models that can decode more than $3\times$ faster on average at $<5\%$ drop in accuracy relative to single token decoding performance.
comment: 8 pages and 5 figures in the main body
☆ A Systematic Evaluation of Large Language Models for PTSD Severity Estimation: The Role of Contextual Knowledge and Modeling Strategies
Large language models (LLMs) are increasingly being used in a zero-shot fashion to assess mental health conditions, yet we have limited knowledge on what factors affect their accuracy. In this study, we utilize a clinical dataset of natural language narratives and self-reported PTSD severity scores from 1,437 individuals to comprehensively evaluate the performance of 11 state-of-the-art LLMs. To understand the factors affecting accuracy, we systematically varied (i) contextual knowledge like subscale definitions, distribution summary, and interview questions, and (ii) modeling strategies including zero-shot vs few shot, amount of reasoning effort, model sizes, structured subscales vs direct scalar prediction, output rescaling and nine ensemble methods. Our findings indicate that (a) LLMs are most accurate when provided with detailed construct definitions and context of the narrative; (b) increased reasoning effort leads to better estimation accuracy; (c) performance of open-weight models (Llama, Deepseek), plateau beyond 70B parameters while closed-weight (o3-mini, gpt-5) models improve with newer generations; and (d) best performance is achieved when ensembling a supervised model with the zero-shot LLMs. Taken together, the results suggest choice of contextual knowledge and modeling strategies is important for deploying LLMs to accurately assess mental health.
comment: 18 pages, 3 figures, 5 tables
☆ Speech Emotion Recognition Leveraging OpenAI's Whisper Representations and Attentive Pooling Methods
Speech Emotion Recognition (SER) research has faced limitations due to the lack of standard and sufficiently large datasets. Recent studies have leveraged pre-trained models to extract features for downstream tasks such as SER. This work explores the capabilities of Whisper, a pre-trained ASR system, in speech emotion recognition by proposing two attention-based pooling methods, Multi-head Attentive Average Pooling and QKV Pooling, designed to efficiently reduce the dimensionality of Whisper representations while preserving emotional features. We experiment on English and Persian, using the IEMOCAP and ShEMO datasets respectively, with Whisper Tiny and Small. Our multi-head QKV architecture achieves state-of-the-art results on the ShEMO dataset, with a 2.47% improvement in unweighted accuracy. We further compare the performance of different Whisper encoder layers and find that intermediate layers often perform better for SER on the Persian dataset, providing a lightweight and efficient alternative to much larger models such as HuBERT X-Large. Our findings highlight the potential of Whisper as a representation extractor for SER and demonstrate the effectiveness of attention-based pooling for dimension reduction.
☆ DSB: Dynamic Sliding Block Scheduling for Diffusion LLMs
Diffusion large language models (dLLMs) have emerged as a promising alternative for text generation, distinguished by their native support for parallel decoding. In practice, block inference is crucial for avoiding order misalignment in global bidirectional decoding and improving output quality. However, the widely-used fixed, predefined block (naive) schedule is agnostic to semantic difficulty, making it a suboptimal strategy for both quality and efficiency: it can force premature commitments to uncertain positions while delaying easy positions near block boundaries. In this work, we analyze the limitations of naive block scheduling and disclose the importance of dynamically adapting the schedule to semantic difficulty for reliable and efficient inference. Motivated by this, we propose Dynamic Sliding Block (DSB), a training-free block scheduling method that uses a sliding block with a dynamic size to overcome the rigidity of the naive block. To further improve efficiency, we introduce DSB Cache, a training-free KV-cache mechanism tailored to DSB. Extensive experiments across multiple models and benchmarks demonstrate that DSB, together with DSB Cache, consistently improves both generation quality and inference efficiency for dLLMs. Code is released at https://github.com/lizhuo-luo/DSB.
☆ SAGE: Benchmarking and Improving Retrieval for Deep Research Agents ACL
Deep research agents have emerged as powerful systems for addressing complex queries. Meanwhile, LLM-based retrievers have demonstrated strong capability in following instructions or reasoning. This raises a critical question: can LLM-based retrievers effectively contribute to deep research agent workflows? To investigate this, we introduce SAGE, a benchmark for scientific literature retrieval comprising 1,200 queries across four scientific domains, with a 200,000 paper retrieval corpus.We evaluate six deep research agents and find that all systems struggle with reasoning-intensive retrieval. Using DR Tulu as backbone, we further compare BM25 and LLM-based retrievers (i.e., ReasonIR and gte-Qwen2-7B-instruct) as alternative search tools. Surprisingly, BM25 significantly outperforms LLM-based retrievers by approximately 30%, as existing agents generate keyword-oriented sub-queries. To improve performance, we propose a corpus-level test-time scaling framework that uses LLMs to augment documents with metadata and keywords, making retrieval easier for off-the-shelf retrievers. This yields 8% and 2% gains on short-form and open-ended questions, respectively.
comment: Submission to ACL ARR 2026 January
☆ Characterizing Human Semantic Navigation in Concept Production as Trajectories in Embedding Space ICLR 2026
Semantic representations can be framed as a structured, dynamic knowledge space through which humans navigate to retrieve and manipulate meaning. To investigate how humans traverse this geometry, we introduce a framework that represents concept production as navigation through embedding space. Using different transformer text embedding models, we construct participant-specific semantic trajectories based on cumulative embeddings and extract geometric and dynamical metrics, including distance to next, distance to centroid, entropy, velocity, and acceleration. These measures capture both scalar and directional aspects of semantic navigation, providing a computationally grounded view of semantic representation search as movement in a geometric space. We evaluate the framework on four datasets across different languages, spanning different property generation tasks: Neurodegenerative, Swear verbal fluency, Property listing task in Italian, and in German. Across these contexts, our approach distinguishes between clinical groups and concept types, offering a mathematical framework that requires minimal human intervention compared to typical labor-intensive linguistic pre-processing methods. Comparison with a non-cumulative approach reveals that cumulative embeddings work best for longer trajectories, whereas shorter ones may provide too little context, favoring the non-cumulative alternative. Critically, different embedding models yielded similar results, highlighting similarities between different learned representations despite different training pipelines. By framing semantic navigation as a structured trajectory through embedding space, bridging cognitive modeling with learned representation, thereby establishing a pipeline for quantifying semantic representation dynamics with applications in clinical research, cross-linguistic analysis, and the assessment of artificial cognition.
comment: 10 pages, 6 figures (excluding refs/appendix). Accepted to ICLR 2026
☆ Self-Improving Multilingual Long Reasoning via Translation-Reasoning Integrated Training
Long reasoning models often struggle in multilingual settings: they tend to reason in English for non-English questions; when constrained to reasoning in the question language, accuracies drop substantially. The struggle is caused by the limited abilities for both multilingual question understanding and multilingual reasoning. To address both problems, we propose TRIT (Translation-Reasoning Integrated Training), a self-improving framework that integrates the training of translation into multilingual reasoning. Without external feedback or additional multilingual data, our method jointly enhances multilingual question understanding and response generation. On MMATH, our method outperforms multiple baselines by an average of 7 percentage points, improving both answer correctness and language consistency. Further analysis reveals that integrating translation training improves cross-lingual question alignment by over 10 percentage points and enhances translation quality for both mathematical questions and general-domain text, with gains up to 8.4 COMET points on FLORES-200.
comment: 16 pages, 11 figures
☆ Polyglots or Multitudes? Multilingual LLM Answers to Value-laden Multiple-Choice Questions
Multiple-Choice Questions (MCQs) are often used to assess knowledge, reasoning abilities, and even values encoded in large language models (LLMs). While the effect of multilingualism has been studied on LLM factual recall, this paper seeks to investigate the less explored question of language-induced variation in value-laden MCQ responses. Are multilingual LLMs consistent in their responses across languages, i.e. behave like theoretical polyglots, or do they answer value-laden MCQs depending on the language of the question, like a multitude of monolingual models expressing different values through a single model? We release a new corpus, the Multilingual European Value Survey (MEVS), which, unlike prior work relying on machine translation or ad hoc prompts, solely comprises human-translated survey questions aligned in 8 European languages. We administer a subset of those questions to over thirty multilingual LLMs of various sizes, manufacturers and alignment-fine-tuning status under comprehensive, controlled prompt variations including answer order, symbol type, and tail character. Our results show that while larger, instruction-tuned models display higher overall consistency, the robustness of their responses varies greatly across questions, with certain MCQs eliciting total agreement within and across models while others leave LLM answers split. Language-specific behavior seems to arise in all consistent, instruction-fine-tuned models, but only on certain questions, warranting a further study of the selective effect of preference fine-tuning.
comment: 17 pages, 5 figures (8 pages of references and appendices)
☆ KV-CoRE: Benchmarking Data-Dependent Low-Rank Compressibility of KV-Caches in LLMs
Large language models rely on kv-caches to avoid redundant computation during autoregressive decoding, but as context length grows, reading and writing the cache can quickly saturate GPU memory bandwidth. Recent work has explored KV-cache compression, yet most approaches neglect the data-dependent nature of kv-caches and their variation across layers. We introduce KV-CoRE KV-cache Compressibility by Rank Evaluation), an SVD-based method for quantifying the data-dependent low-rank compressibility of kv-caches. KV-CoRE computes the optimal low-rank approximation under the Frobenius norm and, being gradient-free and incremental, enables efficient dataset-level, layer-wise evaluation. Using this method, we analyze multiple models and datasets spanning five English domains and sixteen languages, uncovering systematic patterns that link compressibility to model architecture, training data, and language coverage. As part of this analysis, we employ the Normalized Effective Rank as a metric of compressibility and show that it correlates strongly with performance degradation under compression. Our study establishes a principled evaluation framework and the first large-scale benchmark of kv-cache compressibility in LLMs, offering insights for dynamic, data-aware compression and data-centric model development.
☆ Codified Finite-state Machines for Role-playing
Modeling latent character states is crucial for consistent and engaging role-playing (RP) with large language models (LLMs). Yet, existing prompting-based approaches mainly capture surface actions, often failing to track the latent states that drive interaction. We revisit finite-state machines (FSMs), long used in game design to model state transitions. While effective in small, well-specified state spaces, traditional hand-crafted, rule-based FSMs struggle to adapt to the open-ended semantic space of RP. To address this, we introduce Codified Finite-State Machines (CFSMs), a framework that automatically codifies textual character profiles into FSMs using LLM-based coding. CFSMs extract key states and transitions directly from the profile, producing interpretable structures that enforce character consistency. To further capture uncertainty and variability, we extend CFSMs into Codified Probabilistic Finite-State Machines (CPFSMs), where transitions are modeled as probability distributions over states. Through both synthetic evaluations and real-world RP scenarios in established artifacts, we demonstrate that CFSM and CPFSM outperform generally applied baselines, verifying effectiveness not only in structured tasks but also in open-ended stochastic state exploration.
☆ Stop Rewarding Hallucinated Steps: Faithfulness-Aware Step-Level Reinforcement Learning for Small Reasoning Models
As large language models become smaller and more efficient, small reasoning models (SRMs) are crucial for enabling chain-of-thought (CoT) reasoning in resource-constrained settings. However, they are prone to faithfulness hallucinations, especially in intermediate reasoning steps. Existing mitigation methods based on online reinforcement learning rely on outcome-based rewards or coarse-grained CoT evaluation, which can inadvertently reinforce unfaithful reasoning when the final answer is correct. To address these limitations, we propose Faithfulness-Aware Step-Level Reinforcement Learning (FaithRL), introducing step-level supervision via explicit faithfulness rewards from a process reward model, together with an implicit truncated resampling strategy that generates contrastive signals from faithful prefixes. Experiments across multiple SRMs and Open-Book QA benchmarks demonstrate that FaithRL consistently reduces hallucinations in both the CoT and final answers, leading to more faithful and reliable reasoning. Code is available at https://github.com/Easy195/FaithRL.
DFPO: Scaling Value Modeling via Distributional Flow towards Robust and Generalizable LLM Post-Training
Training reinforcement learning (RL) systems in real-world environments remains challenging due to noisy supervision and poor out-of-domain (OOD) generalization, especially in LLM post-training. Recent distributional RL methods improve robustness by modeling values with multiple quantile points, but they still learn each quantile independently as a scalar. This results in rough-grained value representations that lack fine-grained conditioning on state information, struggling under complex and OOD conditions. We propose DFPO (Distributional Value Flow Policy Optimization with Conditional Risk and Consistency Control), a robust distributional RL framework that models values as continuous flows across time steps. By scaling value modeling through learning of a value flow field instead of isolated quantile predictions, DFPO captures richer state information for more accurate advantage estimation. To stabilize training under noisy feedback, DFPO further integrates conditional risk control and consistency constraints along value flow trajectories. Experiments on dialogue, math reasoning, and scientific tasks show that DFPO outperforms PPO, FlowRL, and other robust baselines under noisy supervision, achieving improved training stability and generalization.
☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr.Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr.Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
☆ EuroLLM-22B: Technical Report
This report presents EuroLLM-22B, a large language model trained from scratch to support the needs of European citizens by covering all 24 official European Union languages and 11 additional languages. EuroLLM addresses the issue of European languages being underrepresented and underserved in existing open large language models. We provide a comprehensive overview of EuroLLM-22B's development, including tokenizer design, architectural specifications, data filtering, and training procedures. Across a broad set of multilingual benchmarks, EuroLLM-22B demonstrates strong performance in reasoning, instruction following, and translation, achieving results competitive with models of comparable size. To support future research, we release our base and instruction-tuned models, our multilingual web pretraining data and updated EuroBlocks instruction datasets, as well as our pre-training and evaluation codebases.
☆ xList-Hate: A Checklist-Based Framework for Interpretable and Generalizable Hate Speech Detection
Hate speech detection is commonly framed as a direct binary classification problem despite being a composite concept defined through multiple interacting factors that vary across legal frameworks, platform policies, and annotation guidelines. As a result, supervised models often overfit dataset-specific definitions and exhibit limited robustness under domain shift and annotation noise. We introduce xList-Hate, a diagnostic framework that decomposes hate speech detection into a checklist of explicit, concept-level questions grounded in widely shared normative criteria. Each question is independently answered by a large language model (LLM), producing a binary diagnostic representation that captures hateful content features without directly predicting the final label. These diagnostic signals are then aggregated by a lightweight, fully interpretable decision tree, yielding transparent and auditable predictions. We evaluate it across multiple hate speech benchmarks and model families, comparing it against zero-shot LLM classification and in-domain supervised fine-tuning. While supervised methods typically maximize in-domain performance, we consistently improves cross-dataset robustness and relative performance under domain shift. In addition, qualitative analysis of disagreement cases provides evidence that the framework can be less sensitive to certain forms of annotation inconsistency and contextual ambiguity. Crucially, the approach enables fine-grained interpretability through explicit decision paths and factor-level analysis. Our results suggest that reframing hate speech detection as a diagnostic reasoning task, rather than a monolithic classification problem, provides a robust, explainable, and extensible alternative for content moderation.
☆ Constrained Group Relative Policy Optimization
While Group Relative Policy Optimization (GRPO) has emerged as a scalable framework for critic-free policy learning, extending it to settings with explicit behavioral constraints remains underexplored. We introduce Constrained GRPO, a Lagrangian-based extension of GRPO for constrained policy optimization. Constraints are specified via indicator cost functions, enabling direct optimization of violation rates through a Lagrangian relaxation. We show that a naive multi-component treatment in advantage estimation can break constrained learning: mismatched component-wise standard deviations distort the relative importance of the different objective terms, which in turn corrupts the Lagrangian signal and prevents meaningful constraint enforcement. We formally derive this effect to motivate our scalarized advantage construction that preserves the intended trade-off between reward and constraint terms. Experiments in a toy gridworld confirm the predicted optimization pathology and demonstrate that scalarizing advantages restores stable constraint control. In addition, we evaluate Constrained GRPO on robotics tasks, where it improves constraint satisfaction while increasing task success, establishing a simple and effective recipe for constrained policy optimization in embodied AI domains that increasingly rely on large multimodal foundation models.
comment: 16 pages, 6 figures
☆ DLM-Scope: Mechanistic Interpretability of Diffusion Language Models via Sparse Autoencoders
Sparse autoencoders (SAEs) have become a standard tool for mechanistic interpretability in autoregressive large language models (LLMs), enabling researchers to extract sparse, human-interpretable features and intervene on model behavior. Recently, as diffusion language models (DLMs) have become an increasingly promising alternative to the autoregressive LLMs, it is essential to develop tailored mechanistic interpretability tools for this emerging class of models. In this work, we present DLM-Scope, the first SAE-based interpretability framework for DLMs, and demonstrate that trained Top-K SAEs can faithfully extract interpretable features. Notably, we find that inserting SAEs affects DLMs differently than autoregressive LLMs: while SAE insertion in LLMs typically incurs a loss penalty, in DLMs it can reduce cross-entropy loss when applied to early layers, a phenomenon absent or markedly weaker in LLMs. Additionally, SAE features in DLMs enable more effective diffusion-time interventions, often outperforming LLM steering. Moreover, we pioneer certain new SAE-based research directions for DLMs: we show that SAEs can provide useful signals for DLM decoding order; and the SAE features are stable during the post-training phase of DLMs. Our work establishes a foundation for mechanistic interpretability in DLMs and shows a great potential of applying SAEs to DLM-related tasks and algorithms.
comment: 23 pages
☆ RRAttention: Dynamic Block Sparse Attention via Per-Head Round-Robin Shifts for Long-Context Inference
The quadratic complexity of attention mechanisms poses a critical bottleneck for large language models processing long contexts. While dynamic sparse attention methods offer input-adaptive efficiency, they face fundamental trade-offs: requiring preprocessing, lacking global evaluation, violating query independence, or incurring high computational overhead. We present RRAttention, a novel dynamic sparse attention method that simultaneously achieves all desirable properties through a head \underline{r}ound-\underline{r}obin (RR) sampling strategy. By rotating query sampling positions across attention heads within each stride, RRAttention maintains query independence while enabling efficient global pattern discovery with stride-level aggregation. Our method reduces complexity from $O(L^2)$ to $O(L^2/S^2)$ and employs adaptive Top-$τ$ selection for optimal sparsity. Extensive experiments on natural language understanding (HELMET) and multimodal video comprehension (Video-MME) demonstrate that RRAttention recovers over 99\% of full attention performance while computing only half of the attention blocks, achieving 2.4$\times$ speedup at 128K context length and outperforming existing dynamic sparse attention methods.
☆ DARWIN: Dynamic Agentically Rewriting Self-Improving Network
DARWIN is an evolutionary GPT model, utilizing a genetic-algorithm like optimization structure with several independent GPT agents being trained individually using unique training code. Each iteration, the GPT models are prompted to modify the training code of one another in an attempt to improve their performance in a mutation-like manner, and the best GPT agents are then benchmarked and selected for the next iteration by genetic algorithm. For demonstration purposes and due to budget and time constraints, OpenAI API is used to prompt training code improvements and the nanoGPT framework is used as the training code. DARWIN also utilizes persistent JSON-based memory files to track previous reasoning and changes to code to correlate with improvement to model performance. and a bidirectional interface for HITL intervention allowing the model to request upgrades such as additional datasets, training scripts, and restructuring of file hierarchies. In experiments, DARWIN achieved a 1.26 percent improvement in model FLOPS utilization (MFU) and a 2.07 percent improvement to perplexity in 5 iterations of training over baseline configurations, demonstrating promising capabilities as a foundation for scaling evolutionary GPT training.
comment: 6 pages, 3 figures, 2 tables
☆ OdysseyArena: Benchmarking Large Language Models For Long-Horizon, Active and Inductive Interactions
The rapid advancement of Large Language Models (LLMs) has catalyzed the development of autonomous agents capable of navigating complex environments. However, existing evaluations primarily adopt a deductive paradigm, where agents execute tasks based on explicitly provided rules and static goals, often within limited planning horizons. Crucially, this neglects the inductive necessity for agents to discover latent transition laws from experience autonomously, which is the cornerstone for enabling agentic foresight and sustaining strategic coherence. To bridge this gap, we introduce OdysseyArena, which re-centers agent evaluation on long-horizon, active, and inductive interactions. We formalize and instantiate four primitives, translating abstract transition dynamics into concrete interactive environments. Building upon this, we establish OdysseyArena-Lite for standardized benchmarking, providing a set of 120 tasks to measure an agent's inductive efficiency and long-horizon discovery. Pushing further, we introduce OdysseyArena-Challenge to stress-test agent stability across extreme interaction horizons (e.g., > 200 steps). Extensive experiments on 15+ leading LLMs reveal that even frontier models exhibit a deficiency in inductive scenarios, identifying a critical bottleneck in the pursuit of autonomous discovery in complex environments. Our code and data are available at https://github.com/xufangzhi/Odyssey-Arena
comment: 34 pages
☆ Reinforcement World Model Learning for LLM-based Agents
Large language models (LLMs) have achieved strong performance in language-centric tasks. However, in agentic settings, LLMs often struggle to anticipate action consequences and adapt to environment dynamics, highlighting the need for world-modeling capabilities in LLM-based agents. We propose Reinforcement World Model Learning (RWML), a self-supervised method that learns action-conditioned world models for LLM-based agents on textual states using sim-to-real gap rewards. Our method aligns simulated next states produced by the model with realized next states observed from the environment, encouraging consistency between internal world simulations and actual environment dynamics in a pre-trained embedding space. Unlike next-state token prediction, which prioritizes token-level fidelity (i.e., reproducing exact wording) over semantic equivalence and can lead to model collapse, our method provides a more robust training signal and is empirically less susceptible to reward hacking than LLM-as-a-judge. We evaluate our method on ALFWorld and $τ^2$ Bench and observe significant gains over the base model, despite being entirely self-supervised. When combined with task-success rewards, our method outperforms direct task-success reward RL by 6.9 and 5.7 points on ALFWorld and $τ^2$ Bench respectively, while matching the performance of expert-data training.
☆ FiMI: A Domain-Specific Language Model for Indian Finance Ecosystem
We present FiMI (Finance Model for India), a domain-specialized financial language model developed for Indian digital payment systems. We develop two model variants: FiMI Base and FiMI Instruct. FiMI adapts the Mistral Small 24B architecture through a multi-stage training pipeline, beginning with continuous pre-training on 68 Billion tokens of curated financial, multilingual (English, Hindi, Hinglish), and synthetic data. This is followed by instruction fine-tuning and domain-specific supervised fine-tuning focused on multi-turn, tool-driven conversations that model real-world workflows, such as transaction disputes and mandate lifecycle management. Evaluations reveal that FiMI Base achieves a 20% improvement over the Mistral Small 24B Base model on finance reasoning benchmark, while FiMI Instruct outperforms the Mistral Small 24B Instruct model by 87% on domain-specific tool-calling. Moreover, FiMI achieves these significant domain gains while maintaining comparable performance to models of similar size on general benchmarks.
☆ Bagging-Based Model Merging for Robust General Text Embeddings
General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (\modelname), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, \modelname naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that \modelname consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
comment: 12 pages, 4 figures
☆ Different Time, Different Language: Revisiting the Bias Against Non-Native Speakers in GPT Detectors EACL 2026
LLM-based assistants have been widely popularised after the release of ChatGPT. Concerns have been raised about their misuse in academia, given the difficulty of distinguishing between human-written and generated text. To combat this, automated techniques have been developed and shown to be effective, to some extent. However, prior work suggests that these methods often falsely flag essays from non-native speakers as generated, due to their low perplexity extracted from an LLM, which is supposedly a key feature of the detectors. We revisit these statements two years later, specifically in the Czech language setting. We show that the perplexity of texts from non-native speakers of Czech is not lower than that of native speakers. We further examine detectors from three separate families and find no systematic bias against non-native speakers. Finally, we demonstrate that contemporary detectors operate effectively without relying on perplexity.
comment: This paper was accepted to EACL 2026 Student Research Workshop
☆ LongR: Unleashing Long-Context Reasoning via Reinforcement Learning with Dense Utility Rewards
Reinforcement Learning has emerged as a key driver for LLM reasoning. This capability is equally pivotal in long-context scenarios--such as long-dialogue understanding and structured data analysis, where the challenge extends beyond consuming tokens to performing rigorous deduction. While existing efforts focus on data synthesis or architectural changes, recent work points out that relying solely on sparse, outcome-only rewards yields limited gains, as such coarse signals are often insufficient to effectively guide the complex long-context reasoning. To address this, we propose LongR, a unified framework that enhances long-context performance by integrating a dynamic "Think-and-Read" mechanism, which interleaves reasoning with document consultation, with a contextual density reward based on relative information gain to quantify the utility of the relevant documents. Empirically, LongR achieves a 9% gain on LongBench v2 and consistent improvements on RULER and InfiniteBench, demonstrating robust efficiency in navigating extensive contexts. Furthermore, LongR consistently enhances performance across diverse RL algorithms (e.g., DAPO, GSPO). Finally, we conduct in-depth analyses to investigate the impact of reasoning chain length on efficiency and the model's robustness against distractors.
☆ CompactRAG: Reducing LLM Calls and Token Overhead in Multi-Hop Question Answering
Retrieval-augmented generation (RAG) has become a key paradigm for knowledge-intensive question answering. However, existing multi-hop RAG systems remain inefficient, as they alternate between retrieval and reasoning at each step, resulting in repeated LLM calls, high token consumption, and unstable entity grounding across hops. We propose CompactRAG, a simple yet effective framework that decouples offline corpus restructuring from online reasoning. In the offline stage, an LLM reads the corpus once and converts it into an atomic QA knowledge base, which represents knowledge as minimal, fine-grained question-answer pairs. In the online stage, complex queries are decomposed and carefully rewritten to preserve entity consistency, and are resolved through dense retrieval followed by RoBERTa-based answer extraction. Notably, during inference, the LLM is invoked only twice in total - once for sub-question decomposition and once for final answer synthesis - regardless of the number of reasoning hops. Experiments on HotpotQA, 2WikiMultiHopQA, and MuSiQue demonstrate that CompactRAG achieves competitive accuracy while substantially reducing token consumption compared to iterative RAG baselines, highlighting a cost-efficient and practical approach to multi-hop reasoning over large knowledge corpora. The implementation is available at GitHub.
☆ OmniMoE: An Efficient MoE by Orchestrating Atomic Experts at Scale
Mixture-of-Experts (MoE) architectures are evolving towards finer granularity to improve parameter efficiency. However, existing MoE designs face an inherent trade-off between the granularity of expert specialization and hardware execution efficiency. We propose OmniMoE, a system-algorithm co-designed framework that pushes expert granularity to its logical extreme. OmniMoE introduces vector-level Atomic Experts, enabling scalable routing and execution within a single MoE layer, while retaining a shared dense MLP branch for general-purpose processing. Although this atomic design maximizes capacity, it poses severe challenges for routing complexity and memory access. To address these, OmniMoE adopts a system-algorithm co-design: (i) a Cartesian Product Router that decomposes the massive index space to reduce routing complexity from O(N) to O(sqrt(N)); and (ii) Expert-Centric Scheduling that inverts the execution order to turn scattered, memory-bound lookups into efficient dense matrix operations. Validated on seven benchmarks, OmniMoE (with 1.7B active parameters) achieves 50.9% zero-shot accuracy across seven benchmarks, outperforming coarse-grained (e.g., DeepSeekMoE) and fine-grained (e.g., PEER) baselines. Crucially, OmniMoE reduces inference latency from 73ms to 6.7ms (a 10.9-fold speedup) compared to PEER, demonstrating that massive-scale fine-grained MoE can be fast and accurate. Our code is open-sourced at https://github.com/flash-algo/omni-moe.
☆ Ethology of Latent Spaces
This study challenges the presumed neutrality of latent spaces in vision language models (VLMs) by adopting an ethological perspective on their algorithmic behaviors. Rather than constituting spaces of homogeneous indeterminacy, latent spaces exhibit model-specific algorithmic sensitivities, understood as differential regimes of perceptual salience shaped by training data and architectural choices. Through a comparative analysis of three models (OpenAI CLIP, OpenCLIP LAION, SigLIP) applied to a corpus of 301 artworks (15th to 20th), we reveal substantial divergences in the attribution of political and cultural categories. Using bipolar semantic axes derived from vector analogies (Mikolov et al., 2013), we show that SigLIP classifies 59.4% of the artworks as politically engaged, compared to only 4% for OpenCLIP. African masks receive the highest political scores in SigLIP while remaining apolitical in OpenAI CLIP. On an aesthetic colonial axis, inter-model discrepancies reach 72.6 percentage points. We introduce three operational concepts: computational latent politicization, describing the emergence of political categories without intentional encoding; emergent bias, irreducible to statistical or normative bias and detectable only through contrastive analysis; and three algorithmic scopic regimes: entropic (LAION), institutional (OpenAI), and semiotic (SigLIP), which structure distinct modes of visibility. Drawing on Foucault's notion of the archive, Jameson's ideologeme, and Simondon's theory of individuation, we argue that training datasets function as quasi-archives whose discursive formations crystallize within latent space. This work contributes to a critical reassessment of the conditions under which VLMs are applied to digital art history and calls for methodologies that integrate learning architectures into any delegation of cultural interpretation to algorithmic agents.
comment: 23. pages, 14 figures, presented Hyperheritage International Symposium 9 ( https://paragraphe.univ-paris8.fr/IMG/pdf/programme_colloque_his9_campuscondorcet_v3.pdf ) and accepted for publication in double-blind peer review in French in 2026-2027
☆ Cost-Efficient RAG for Entity Matching with LLMs: A Blocking-based Exploration
Retrieval-augmented generation (RAG) enhances LLM reasoning in knowledge-intensive tasks, but existing RAG pipelines incur substantial retrieval and generation overhead when applied to large-scale entity matching. To address this limitation, we introduce CE-RAG4EM, a cost-efficient RAG architecture that reduces computation through blocking-based batch retrieval and generation. We also present a unified framework for analyzing and evaluating RAG systems for entity matching, focusing on blocking-aware optimizations and retrieval granularity. Extensive experiments suggest that CE-RAG4EM can achieve comparable or improved matching quality while substantially reducing end-to-end runtime relative to strong baselines. Our analysis further reveals that key configuration parameters introduce an inherent trade-off between performance and overhead, offering practical guidance for designing efficient and scalable RAG systems for entity matching and data integration.
☆ Consensus-Aligned Neuron Efficient Fine-Tuning Large Language Models for Multi-Domain Machine Translation AAAI 2026
Multi-domain machine translation (MDMT) aims to build a unified model capable of translating content across diverse domains. Despite the impressive machine translation capabilities demonstrated by large language models (LLMs), domain adaptation still remains a challenge for LLMs. Existing MDMT methods such as in-context learning and parameter-efficient fine-tuning often suffer from domain shift, parameter interference and limited generalization. In this work, we propose a neuron-efficient fine-tuning framework for MDMT that identifies and updates consensus-aligned neurons within LLMs. These neurons are selected by maximizing the mutual information between neuron behavior and domain features, enabling LLMs to capture both generalizable translation patterns and domain-specific nuances. Our method then fine-tunes LLMs guided by these neurons, effectively mitigating parameter interference and domain-specific overfitting. Comprehensive experiments on three LLMs across ten German-English and Chinese-English translation domains evidence that our method consistently outperforms strong PEFT baselines on both seen and unseen domains, achieving state-of-the-art performance.
comment: Accepted by AAAI 2026
☆ MedErrBench: A Fine-Grained Multilingual Benchmark for Medical Error Detection and Correction with Clinical Expert Annotations
Inaccuracies in existing or generated clinical text may lead to serious adverse consequences, especially if it is a misdiagnosis or incorrect treatment suggestion. With Large Language Models (LLMs) increasingly being used across diverse healthcare applications, comprehensive evaluation through dedicated benchmarks is crucial. However, such datasets remain scarce, especially across diverse languages and contexts. In this paper, we introduce MedErrBench, the first multilingual benchmark for error detection, localization, and correction, developed under the guidance of experienced clinicians. Based on an expanded taxonomy of ten common error types, MedErrBench covers English, Arabic and Chinese, with natural clinical cases annotated and reviewed by domain experts. We assessed the performance of a range of general-purpose, language-specific, and medical-domain language models across all three tasks. Our results reveal notable performance gaps, particularly in non-English settings, highlighting the need for clinically grounded, language-aware systems. By making MedErrBench and our evaluation protocols publicly-available, we aim to advance multilingual clinical NLP to promote safer and more equitable AI-based healthcare globally. The dataset is available in the supplementary material. An anonymized version of the dataset is available at: https://github.com/congboma/MedErrBench.
☆ Modelling the Morphology of Verbal Paradigms: A Case Study in the Tokenization of Turkish and Hebrew
We investigate how transformer models represent complex verb paradigms in Turkish and Modern Hebrew, concentrating on how tokenization strategies shape this ability. Using the Blackbird Language Matrices task on natural data, we show that for Turkish -- with its transparent morphological markers -- both monolingual and multilingual models succeed, either when tokenization is atomic or when it breaks words into small subword units. For Hebrew, instead, monolingual and multilingual models diverge. A multilingual model using character-level tokenization fails to capture the language non-concatenative morphology, but a monolingual model with morpheme-aware segmentation performs well. Performance improves on more synthetic datasets, in all models.
comment: 13 pages, 7 figures, to appear as proceedings of the SIGTURK 2026 Workshop
☆ Generative Ontology: When Structured Knowledge Learns to Create
Traditional ontologies excel at describing domain structure but cannot generate novel artifacts. Large language models generate fluently but produce outputs that lack structural validity, hallucinating mechanisms without components, goals without end conditions. We introduce Generative Ontology, a framework that synthesizes these complementary strengths: ontology provides the grammar; the LLM provides the creativity. Generative Ontology encodes domain knowledge as executable Pydantic schemas that constrain LLM generation via DSPy signatures. A multi-agent pipeline assigns specialized roles to different ontology domains: a Mechanics Architect designs game systems, a Theme Weaver integrates narrative, a Balance Critic identifies exploits. Each agent carrying a professional "anxiety" that prevents shallow, agreeable outputs. Retrieval-augmented generation grounds novel designs in precedents from existing exemplars, while iterative validation ensures coherence between mechanisms and components. We demonstrate the framework through GameGrammar, a system for generating complete tabletop game designs. Given a thematic prompt ("bioluminescent fungi competing in a cave ecosystem"), the pipeline produces structurally complete, playable game specifications with mechanisms, components, victory conditions, and setup instructions. These outputs satisfy ontological constraints while remaining genuinely creative. The pattern generalizes beyond games. Any domain with expert vocabulary, validity constraints, and accumulated exemplars (music composition, software architecture, culinary arts) is a candidate for Generative Ontology. We argue that constraints do not limit creativity but enable it: just as grammar makes poetry possible, ontology makes structured generation possible.
comment: 15 pages, 6 figures, 6 tables. Code available at https://github.com/bennycheung/GameGrammarCLI
☆ CASTLE: A Comprehensive Benchmark for Evaluating Student-Tailored Personalized Safety in Large Language Models
Large language models (LLMs) have advanced the development of personalized learning in education. However, their inherent generation mechanisms often produce homogeneous responses to identical prompts. This one-size-fits-all mechanism overlooks the substantial heterogeneity in students cognitive and psychological, thereby posing potential safety risks to vulnerable groups. Existing safety evaluations primarily rely on context-independent metrics such as factual accuracy, bias, or toxicity, which fail to capture the divergent harms that the same response might cause across different student attributes. To address this gap, we propose the concept of Student-Tailored Personalized Safety and construct CASTLE based on educational theories. This benchmark covers 15 educational safety risks and 14 student attributes, comprising 92,908 bilingual scenarios. We further design three evaluation metrics: Risk Sensitivity, measuring the model ability to detect risks; Emotional Empathy, evaluating the model capacity to recognize student states; and Student Alignment, assessing the match between model responses and student attributes. Experiments on 18 SOTA LLMs demonstrate that CASTLE poses a significant challenge: all models scored below an average safety rating of 2.3 out of 5, indicating substantial deficiencies in personalized safety assurance.
☆ Rewards as Labels: Revisiting RLVR from a Classification Perspective
Reinforcement Learning with Verifiable Rewards has recently advanced the capabilities of Large Language Models in complex reasoning tasks by providing explicit rule-based supervision. Among RLVR methods, GRPO and its variants have achieved strong empirical performance. Despite their success, we identify that they suffer from Gradient Misassignment in Positives and Gradient Domination in Negatives, which lead to inefficient and suboptimal policy updates. To address these issues, we propose Rewards as Labels (REAL), a novel framework that revisits verifiable rewards as categorical labels rather than scalar weights, thereby reformulating policy optimization as a classification problem. Building on this, we further introduce anchor logits to enhance policy learning. Our analysis reveals that REAL induces a monotonic and bounded gradient weighting, enabling balanced gradient allocation across rollouts and effectively mitigating the identified mismatches. Extensive experiments on mathematical reasoning benchmarks show that REAL improves training stability and consistently outperforms GRPO and strong variants such as DAPO. On the 1.5B model, REAL improves average Pass@1 over DAPO by 6.7%. These gains further scale to 7B model, REAL continues to outperform DAPO and GSPO by 6.2% and 1.7%, respectively. Notably, even with a vanilla binary cross-entropy, REAL remains stable and exceeds DAPO by 4.5% on average.
comment: 12 pages, 5 figures, 4 tables
☆ AI chatbots versus human healthcare professionals: a systematic review and meta-analysis of empathy in patient care
Background: Empathy is widely recognized for improving patient outcomes, including reduced pain and anxiety and improved satisfaction, and its absence can cause harm. Meanwhile, use of artificial intelligence (AI)-based chatbots in healthcare is rapidly expanding, with one in five general practitioners using generative AI to assist with tasks such as writing letters. Some studies suggest AI chatbots can outperform human healthcare professionals (HCPs) in empathy, though findings are mixed and lack synthesis. Sources of data: We searched multiple databases for studies comparing AI chatbots using large language models with human HCPs on empathy measures. We assessed risk of bias with ROBINS-I and synthesized findings using random-effects meta-analysis where feasible, whilst avoiding double counting. Areas of agreement: We identified 15 studies (2023-2024). Thirteen studies reported statistically significantly higher empathy ratings for AI, with only two studies situated in dermatology favouring human responses. Of the 15 studies, 13 provided extractable data and were suitable for pooling. Meta-analysis of those 13 studies, all utilising ChatGPT-3.5/4, showed a standardized mean difference of 0.87 (95% CI, 0.54-1.20) favouring AI (P < .00001), roughly equivalent to a two-point increase on a 10-point scale. Areas of controversy: Studies relied on text-based assessments that overlook non-verbal cues and evaluated empathy through proxy raters. Growing points: Our findings indicate that, in text-only scenarios, AI chatbots are frequently perceived as more empathic than human HCPs. Areas timely for developing research: Future research should validate these findings with direct patient evaluations and assess whether emerging voice-enabled AI systems can deliver similar empathic advantages.
comment: Open Access Invited Review. Systematic review and meta analysis of 15 studies 2023-2024. Published 20 October 2025
☆ BhashaSetu: Cross-Lingual Knowledge Transfer from High-Resource to Extreme Low-Resource Languages AACL
Despite remarkable advances in natural language processing, developing effective systems for low-resource languages remains a formidable challenge, with performances typically lagging far behind high-resource counterparts due to data scarcity and insufficient linguistic resources. Cross-lingual knowledge transfer has emerged as a promising approach to address this challenge by leveraging resources from high-resource languages. In this paper, we investigate methods for transferring linguistic knowledge from high-resource languages to low-resource languages, where the number of labeled training instances is in hundreds. We focus on sentence-level and word-level tasks. We introduce a novel method, GETR (Graph-Enhanced Token Representation) for cross-lingual knowledge transfer along with two adopted baselines (a) augmentation in hidden layers and (b) token embedding transfer through token translation. Experimental results demonstrate that our GNN-based approach significantly outperforms existing multilingual and cross-lingual baseline methods, achieving 13 percentage point improvements on truly low-resource languages (Mizo, Khasi) for POS tagging, and 20 and 27 percentage point improvements in macro-F1 on simulated low-resource languages (Marathi, Bangla, Malayalam) across sentiment classification and NER tasks respectively. We also present a detailed analysis of the transfer mechanisms and identify key factors that contribute to successful knowledge transfer in this linguistic context.
comment: Accepted as a long paper at IJCNLP-AACL Main Conference
☆ ArkTS-CodeSearch: A Open-Source ArkTS Dataset for Code Retrieval
ArkTS is a core programming language in the OpenHarmony ecosystem, yet research on ArkTS code intelligence is hindered by the lack of public datasets and evaluation benchmarks. This paper presents a large-scale ArkTS dataset constructed from open-source repositories, targeting code retrieval and code evaluation tasks. We design a single-search task, where natural language comments are used to retrieve corresponding ArkTS functions. ArkTS repositories are crawled from GitHub and Gitee, and comment-function pairs are extracted using tree-sitter-arkts, followed by cross-platform deduplication and statistical analysis of ArkTS function types. We further evaluate all existing open-source code embedding models on the single-search task and perform fine-tuning using both ArkTS and TypeScript training datasets, resulting in a high-performing model for ArkTS code understanding. This work establishes the first systematic benchmark for ArkTS code retrieval. Both the dataset and our fine-tuned model will be released publicly and are available at https://huggingface.co/hreyulog/embedinggemma_arkts and https://huggingface.co/datasets/hreyulog/arkts-code-docstring,establishing the first systematic benchmark for ArkTS code retrieval.
☆ Multi-Task GRPO: Reliable LLM Reasoning Across Tasks
RL-based post-training with GRPO is widely used to improve large language models on individual reasoning tasks. However, real-world deployment requires reliable performance across diverse tasks. A straightforward multi-task adaptation of GRPO often leads to imbalanced outcomes, with some tasks dominating optimization while others stagnate. Moreover, tasks can vary widely in how frequently prompts yield zero advantages (and thus zero gradients), which further distorts their effective contribution to the optimization signal. To address these issues, we propose a novel Multi-Task GRPO (MT-GRPO) algorithm that (i) dynamically adapts task weights to explicitly optimize worst-task performance and promote balanced progress across tasks, and (ii) introduces a ratio-preserving sampler to ensure task-wise policy gradients reflect the adapted weights. Experiments on both 3-task and 9-task settings show that MT-GRPO consistently outperforms baselines in worst-task accuracy. In particular, MT-GRPO achieves 16-28% and 6% absolute improvement on worst-task performance over standard GRPO and DAPO, respectively, while maintaining competitive average accuracy. Moreover, MT-GRPO requires 50% fewer training steps to reach 50% worst-task accuracy in the 3-task setting, demonstrating substantially improved efficiency in achieving reliable performance across tasks.
comment: Preprint
☆ Steering Large Reasoning Models towards Concise Reasoning via Flow Matching
Large Reasoning Models (LRMs) excel at complex reasoning tasks, but their efficiency is often hampered by overly verbose outputs. Prior steering methods attempt to address this issue by applying a single, global vector to hidden representations -- an approach grounded in the restrictive linear representation hypothesis. In this work, we introduce FlowSteer, a nonlinear steering method that goes beyond uniform linear shifts by learning a complete transformation between the distributions associated with verbose and concise reasoning. This transformation is learned via Flow Matching as a velocity field, enabling precise, input-dependent control over the model's reasoning process. By aligning steered representations with the distribution of concise-reasoning activations, FlowSteer yields more compact reasoning than the linear shifts. Across diverse reasoning benchmarks, FlowSteer demonstrates strong task performance and token efficiency compared to leading inference-time baselines. Our work demonstrates that modeling the full distributional transport with generative techniques offers a more effective and principled foundation for controlling LRMs.
comment: This paper has been accepted to Transactions on Machine Learning Research (TMLR)
When Shared Knowledge Hurts: Spectral Over-Accumulation in Model Merging
Model merging combines multiple fine-tuned models into a single model by adding their weight updates, providing a lightweight alternative to retraining. Existing methods primarily target resolving conflicts between task updates, leaving the failure mode of over-counting shared knowledge unaddressed. We show that when tasks share aligned spectral directions (i.e., overlapping singular vectors), a simple linear combination repeatedly accumulates these directions, inflating the singular values and biasing the merged model toward shared subspaces. To mitigate this issue, we propose Singular Value Calibration (SVC), a training-free and data-free post-processing method that quantifies subspace overlap and rescales inflated singular values to restore a balanced spectrum. Across vision and language benchmarks, SVC consistently improves strong merging baselines and achieves state-of-the-art performance. Furthermore, by modifying only the singular values, SVC improves the performance of Task Arithmetic by 13.0%. Code is available at: https://github.com/lyymuwu/SVC.
☆ A Unified Multimodal Framework for Dataset Construction and Model-Based Diagnosis of Ameloblastoma
Artificial intelligence (AI)-enabled diagnostics in maxillofacial pathology require structured, high-quality multimodal datasets. However, existing resources provide limited ameloblastoma coverage and lack the format consistency needed for direct model training. We present a newly curated multimodal dataset specifically focused on ameloblastoma, integrating annotated radiological, histopathological, and intraoral clinical images with structured data derived from case reports. Natural language processing techniques were employed to extract clinically relevant features from textual reports, while image data underwent domain specific preprocessing and augmentation. Using this dataset, a multimodal deep learning model was developed to classify ameloblastoma variants, assess behavioral patterns such as recurrence risk, and support surgical planning. The model is designed to accept clinical inputs such as presenting complaint, age, and gender during deployment to enhance personalized inference. Quantitative evaluation demonstrated substantial improvements; variant classification accuracy increased from 46.2 percent to 65.9 percent, and abnormal tissue detection F1-score improved from 43.0 percent to 90.3 percent. Benchmarked against resources like MultiCaRe, this work advances patient-specific decision support by providing both a robust dataset and an adaptable multimodal AI framework.
☆ A Human-in-the-Loop, LLM-Centered Architecture for Knowledge-Graph Question Answering
Large Language Models (LLMs) excel at language understanding but remain limited in knowledge-intensive domains due to hallucinations, outdated information, and limited explainability. Text-based retrieval-augmented generation (RAG) helps ground model outputs in external sources but struggles with multi-hop reasoning. Knowledge Graphs (KGs), in contrast, support precise, explainable querying, yet require a knowledge of query languages. This work introduces an interactive framework in which LLMs generate and explain Cypher graph queries and users iteratively refine them through natural language. Applied to real-world KGs, the framework improves accessibility to complex datasets while preserving factual accuracy and semantic rigor and provides insight into how model performance varies across domains. Our core quantitative evaluation is a 90-query benchmark on a synthetic movie KG that measures query explanation quality and fault detection across multiple LLMs, complemented by two smaller real-life query-generation experiments on a Hyena KG and the MaRDI (Mathematical Research Data Initiative) KG.
Transport and Merge: Cross-Architecture Merging for Large Language Models
Large language models (LLMs) achieve strong capabilities by scaling model capacity and training data, yet many real-world deployments rely on smaller models trained or adapted from low-resource data. This gap motivates the need for mechanisms to transfer knowledge from large, high-resource models to smaller, low-resource targets. While model merging provides an effective transfer mechanism, most existing approaches assume architecture-compatible models and therefore cannot directly transfer knowledge from large high-resource LLMs to heterogeneous low-resource targets. In this work, we propose a cross-architecture merging framework based on optimal transport (OT) that aligns activations to infer cross-neuron correspondences between heterogeneous models. The resulting transport plans are then used to guide direct weight-space fusion, enabling effective high-resource to low-resource transfer using only a small set of inputs. Extensive experiments across low-resource languages and specialized domains demonstrate consistent improvements over target models.
☆ LinguistAgent: A Reflective Multi-Model Platform for Automated Linguistic Annotation
Data annotation remains a significant bottleneck in the Humanities and Social Sciences, particularly for complex semantic tasks such as metaphor identification. While Large Language Models (LLMs) show promise, a significant gap remains between the theoretical capability of LLMs and their practical utility for researchers. This paper introduces LinguistAgent, an integrated, user-friendly platform that leverages a reflective multi-model architecture to automate linguistic annotation. The system implements a dual-agent workflow, comprising an Annotator and a Reviewer, to simulate a professional peer-review process. LinguistAgent supports comparative experiments across three paradigms: Prompt Engineering (Zero/Few-shot), Retrieval-Augmented Generation, and Fine-tuning. We demonstrate LinguistAgent's efficacy using the task of metaphor identification as an example, providing real-time token-level evaluation (Precision, Recall, and $F_1$ score) against human gold standards. The application and codes are released on https://github.com/Bingru-Li/LinguistAgent.
☆ Reasoning under Ambiguity: Uncertainty-Aware Multilingual Emotion Classification under Partial Supervision
Contemporary knowledge-based systems increasingly rely on multilingual emotion identification to support intelligent decision-making, yet they face major challenges due to emotional ambiguity and incomplete supervision. Emotion recognition from text is inherently uncertain because multiple emotional states often co-occur and emotion annotations are frequently missing or heterogeneous. Most existing multi-label emotion classification methods assume fully observed labels and rely on deterministic learning objectives, which can lead to biased learning and unreliable predictions under partial supervision. This paper introduces Reasoning under Ambiguity, an uncertainty-aware framework for multilingual multi-label emotion classification that explicitly aligns learning with annotation uncertainty. The proposed approach uses a shared multilingual encoder with language-specific optimization and an entropy-based ambiguity weighting mechanism that down-weights highly ambiguous training instances rather than treating missing labels as negative evidence. A mask-aware objective with positive-unlabeled regularization is further incorporated to enable robust learning under partial supervision. Experiments on English, Spanish, and Arabic emotion classification benchmarks demonstrate consistent improvements over strong baselines across multiple evaluation metrics, along with improved training stability, robustness to annotation sparsity, and enhanced interpretability.
☆ MerNav: A Highly Generalizable Memory-Execute-Review Framework for Zero-Shot Object Goal Navigation
Visual Language Navigation (VLN) is one of the fundamental capabilities for embodied intelligence and a critical challenge that urgently needs to be addressed. However, existing methods are still unsatisfactory in terms of both success rate (SR) and generalization: Supervised Fine-Tuning (SFT) approaches typically achieve higher SR, while Training-Free (TF) approaches often generalize better, but it is difficult to obtain both simultaneously. To this end, we propose a Memory-Execute-Review framework. It consists of three parts: a hierarchical memory module for providing information support, an execute module for routine decision-making and actions, and a review module for handling abnormal situations and correcting behavior. We validated the effectiveness of this framework on the Object Goal Navigation task. Across 4 datasets, our average SR achieved absolute improvements of 7% and 5% compared to all baseline methods under TF and Zero-Shot (ZS) settings, respectively. On the most commonly used HM3D_v0.1 and the more challenging open vocabulary dataset HM3D_OVON, the SR improved by 8% and 6%, under ZS settings. Furthermore, on the MP3D and HM3D_OVON datasets, our method not only outperformed all TF methods but also surpassed all SFT methods, achieving comprehensive leadership in both SR (5% and 2%) and generalization.
comment: 9 pages, 2 figures, 5 tables, conference
☆ Structured Context Engineering for File-Native Agentic Systems: Evaluating Schema Accuracy, Format Effectiveness, and Multi-File Navigation at Scale
Large Language Model agents increasingly operate external systems through programmatic interfaces, yet practitioners lack empirical guidance on how to structure the context these agents consume. Using SQL generation as a proxy for programmatic agent operations, we present a systematic study of context engineering for structured data, comprising 9,649 experiments across 11 models, 4 formats (YAML, Markdown, JSON, Token-Oriented Object Notation [TOON]), and schemas ranging from 10 to 10,000 tables. Our findings challenge common assumptions. First, architecture choice is model-dependent: file-based context retrieval improves accuracy for frontier-tier models (Claude, GPT, Gemini; +2.7%, p=0.029) but shows mixed results for open source models (aggregate -7.7%, p<0.001), with deficits varying substantially by model. Second, format does not significantly affect aggregate accuracy (chi-squared=2.45, p=0.484), though individual models, particularly open source, exhibit format-specific sensitivities. Third, model capability is the dominant factor, with a 21 percentage point accuracy gap between frontier and open source tiers that dwarfs any format or architecture effect. Fourth, file-native agents scale to 10,000 tables through domain-partitioned schemas while maintaining high navigation accuracy. Fifth, file size does not predict runtime efficiency: compact formats can consume significantly more tokens at scale due to format-unfamiliar search patterns. These findings provide practitioners with evidence-based guidance for deploying LLM agents on structured systems, demonstrating that architectural decisions should be tailored to model capability rather than assuming universal best practices.
comment: 8 pages, 7 figures, 10 tables, 26 references
☆ Causal Front-Door Adjustment for Robust Jailbreak Attacks on LLMs
Safety alignment mechanisms in Large Language Models (LLMs) often operate as latent internal states, obscuring the model's inherent capabilities. Building on this observation, we model the safety mechanism as an unobserved confounder from a causal perspective. Then, we propose the \textbf{C}ausal \textbf{F}ront-Door \textbf{A}djustment \textbf{A}ttack ({\textbf{CFA}}$^2$) to jailbreak LLM, which is a framework that leverages Pearl's Front-Door Criterion to sever the confounding associations for robust jailbreaking. Specifically, we employ Sparse Autoencoders (SAEs) to physically strip defense-related features, isolating the core task intent. We further reduce computationally expensive marginalization to a deterministic intervention with low inference complexity. Experiments demonstrate that {CFA}$^2$ achieves state-of-the-art attack success rates while offering a mechanistic interpretation of the jailbreaking process.
☆ Once Correct, Still Wrong: Counterfactual Hallucination in Multilingual Vision-Language Models
Vision-language models (VLMs) can achieve high accuracy while still accepting culturally plausible but visually incorrect interpretations. Existing hallucination benchmarks rarely test this failure mode, particularly outside Western contexts and English. We introduce M2CQA, a culturally grounded multimodal benchmark built from images spanning 17 MENA countries, paired with contrastive true and counterfactual statements in English, Arabic, and its dialects. To isolate hallucination beyond raw accuracy, we propose the CounterFactual Hallucination Rate (CFHR), which measures counterfactual acceptance conditioned on correctly answering the true statement. Evaluating state-of-the-art VLMs under multiple prompting strategies, we find that CFHR rises sharply in Arabic, especially in dialects, even when true-statement accuracy remains high. Moreover, reasoning-first prompting consistently increases counterfactual hallucination, while answering before justifying improves robustness. We will make the experimental resources and dataset publicly available for the community.
☆ Grammatical Error Correction Evaluation by Optimally Transporting Edit Representation ACL
Automatic evaluation in grammatical error correction (GEC) is crucial for selecting the best-performing systems. Currently, reference-based metrics are a popular choice, which basically measure the similarity between hypothesis and reference sentences. However, similarity measures based on embeddings, such as BERTScore, are often ineffective, since many words in the source sentences remain unchanged in both the hypothesis and the reference. This study focuses on edits specifically designed for GEC, i.e., ERRANT, and computes similarity measured over the edits from the source sentence. To this end, we propose edit vector, a representation for an edit, and introduce a new metric, UOT-ERRANT, which transports these edit vectors from hypothesis to reference using unbalanced optimal transport. Experiments with SEEDA meta-evaluation show that UOT-ERRANT improves evaluation performance, particularly in the +Fluency domain where many edits occur. Moreover, our method is highly interpretable because the transport plan can be interpreted as a soft edit alignment, making UOT-ERRANT a useful metric for both system ranking and analyzing GEC systems. Our code is available from https://github.com/gotutiyan/uot-errant.
comment: Accepted to TACL. This is a pre-MIT Press publication version
☆ SciDef: Automating Definition Extraction from Academic Literature with Large Language Models SIGIR 2026
Definitions are the foundation for any scientific work, but with a significant increase in publication numbers, gathering definitions relevant to any keyword has become challenging. We therefore introduce SciDef, an LLM-based pipeline for automated definition extraction. We test SciDef on DefExtra & DefSim, novel datasets of human-extracted definitions and definition-pairs' similarity, respectively. Evaluating 16 language models across prompting strategies, we demonstrate that multi-step and DSPy-optimized prompting improve extraction performance. To evaluate extraction, we test various metrics and show that an NLI-based method yields the most reliable results. We show that LLMs are largely able to extract definitions from scientific literature (86.4% of definitions from our test-set); yet future work should focus not just on finding definitions, but on identifying relevant ones, as models tend to over-generate them. Code & datasets are available at https://github.com/Media-Bias-Group/SciDef.
comment: Under Review - Submitted to SIGIR 2026 Resources Track; 8 pages, 6 figures, 4 tables
☆ H-AdminSim: A Multi-Agent Simulator for Realistic Hospital Administrative Workflows with FHIR Integration
Hospital administration departments handle a wide range of operational tasks and, in large hospitals, process over 10,000 requests per day, driving growing interest in LLM-based automation. However, prior work has focused primarily on patient--physician interactions or isolated administrative subtasks, failing to capture the complexity of real administrative workflows. To address this gap, we propose H-AdminSim, a comprehensive end-to-end simulation framework that combines realistic data generation with multi-agent-based simulation of hospital administrative workflows. These tasks are quantitatively evaluated using detailed rubrics, enabling systematic comparison of LLMs. Through FHIR integration, H-AdminSim provides a unified and interoperable environment for testing administrative workflows across heterogeneous hospital settings, serving as a standardized testbed for assessing the feasibility and performance of LLM-driven administrative automation.
☆ OPUS: Towards Efficient and Principled Data Selection in Large Language Model Pre-training in Every Iteration
As high-quality public text approaches exhaustion, a phenomenon known as the Data Wall, pre-training is shifting from more tokens to better tokens. However, existing methods either rely on heuristic static filters that ignore training dynamics, or use dynamic yet optimizer-agnostic criteria based on raw gradients. We propose OPUS (Optimizer-induced Projected Utility Selection), a dynamic data selection framework that defines utility in the optimizer-induced update space. OPUS scores candidates by projecting their effective updates, shaped by modern optimizers, onto a target direction derived from a stable, in-distribution proxy. To ensure scalability, we employ Ghost technique with CountSketch for computational efficiency, and Boltzmann sampling for data diversity, incurring only 4.7\% additional compute overhead. OPUS achieves remarkable results across diverse corpora, quality tiers, optimizers, and model scales. In pre-training of GPT-2 Large/XL on FineWeb and FineWeb-Edu with 30B tokens, OPUS outperforms industrial-level baselines and even full 200B-token training. Moreover, when combined with industrial-level static filters, OPUS further improves pre-training efficiency, even with lower-quality data. Furthermore, in continued pre-training of Qwen3-8B-Base on SciencePedia, OPUS achieves superior performance using only 0.5B tokens compared to full training with 3B tokens, demonstrating significant data efficiency gains in specialized domains.
comment: 45 pages, 7 figures, 8 tables
☆ Late-to-Early Training: LET LLMs Learn Earlier, So Faster and Better
As Large Language Models (LLMs) achieve remarkable empirical success through scaling model and data size, pretraining has become increasingly critical yet computationally prohibitive, hindering rapid development. Despite the availability of numerous pretrained LLMs developed at significant computational expense, a fundamental real-world question remains underexplored: \textit{Can we leverage existing small pretrained models to accelerate the training of larger models?} In this paper, we propose a Late-to-Early Training (LET) paradigm that enables LLMs to explicitly learn later knowledge in earlier steps and earlier layers. The core idea is to guide the early layers of an LLM during early training using representations from the late layers of a pretrained (i.e. late training phase) model. We identify two key mechanisms that drive LET's effectiveness: late-to-early-step learning and late-to-early-layer learning. These mechanisms significantly accelerate training convergence while robustly enhancing both language modeling capabilities and downstream task performance, enabling faster training with superior performance. Extensive experiments on 1.4B and 7B parameter models demonstrate LET's efficiency and effectiveness. Notably, when training a 1.4B LLM on the Pile dataset, our method achieves up to 1.6$\times$ speedup with nearly 5\% improvement in downstream task accuracy compared to standard training, even when using a pretrained model with 10$\times$ fewer parameters than the target model.
☆ Beyond Length: Context-Aware Expansion and Independence as Developmentally Sensitive Evaluation in Child Utterances
Evaluating the quality of children's utterances in adult-child dialogue remains challenging due to insufficient context-sensitive metrics. Common proxies such as Mean Length of Utterance (MLU), lexical diversity (vocd-D), and readability indices (Flesch-Kincaid Grade Level, Gunning Fog Index) are dominated by length and ignore conversational context, missing aspects of response quality such as reasoning depth, topic maintenance, and discourse planning. We introduce an LLM-as-a-judge framework that first classifies the Previous Adult Utterance Type and then scores the child's response along two axes: Expansion (contextual elaboration and inferential depth) and Independence (the child's contribution to advancing the discourse). These axes reflect fundamental dimensions in child language development, where Expansion captures elaboration, clause combining, and causal and contrastive connectives. Independence captures initiative, topic control, decreasing reliance on adult scaffolding through growing self-regulation, and audience design. We establish developmental validity by showing age-related patterns and demonstrate predictive value by improving age estimation over common baselines. We further confirm semantic sensitivity by detecting differences tied to discourse relations. Our metrics align with human judgments, enabling large-scale evaluation. This shifts child utterance assessment from simply measuring length to evaluating how meaningfully the child's speech contributes to and advances the conversation within its context.
☆ IESR:Efficient MCTS-Based Modular Reasoning for Text-to-SQL with Large Language Models
Text-to-SQL is a key natural language processing task that maps natural language questions to SQL queries, enabling intuitive interaction with web-based databases. Although current methods perform well on benchmarks like BIRD and Spider, they struggle with complex reasoning, domain knowledge, and hypothetical queries, and remain costly in enterprise deployment. To address these issues, we propose a framework named IESR(Information Enhanced Structured Reasoning) for lightweight large language models: (i) leverages LLMs for key information understanding and schema linking, and decoupling mathematical computation and SQL generation, (ii) integrates a multi-path reasoning mechanism based on Monte Carlo Tree Search (MCTS) with majority voting, and (iii) introduces a trajectory consistency verification module with a discriminator model to ensure accuracy and consistency. Experimental results demonstrate that IESR achieves state-of-the-art performance on the complex reasoning benchmark LogicCat (24.28 EX) and the Archer dataset (37.28 EX) using only compact lightweight models without fine-tuning. Furthermore, our analysis reveals that current coder models exhibit notable biases and deficiencies in physical knowledge, mathematical computation, and common-sense reasoning, highlighting important directions for future research. We released code at https://github.com/Ffunkytao/IESR-SLM.
comment: 25 pages, 16 figures, 8 tables. Hongyin Zan is corresponding author, Jiafan Lu is first co-author
☆ Cross-Lingual Empirical Evaluation of Large Language Models for Arabic Medical Tasks EACL 2026
In recent years, Large Language Models (LLMs) have become widely used in medical applications, such as clinical decision support, medical education, and medical question answering. Yet, these models are often English-centric, limiting their robustness and reliability for linguistically diverse communities. Recent work has highlighted discrepancies in performance in low-resource languages for various medical tasks, but the underlying causes remain poorly understood. In this study, we conduct a cross-lingual empirical analysis of LLM performance on Arabic and English medical question and answering. Our findings reveal a persistent language-driven performance gap that intensifies with increasing task complexity. Tokenization analysis exposes structural fragmentation in Arabic medical text, while reliability analysis suggests that model-reported confidence and explanations exhibit limited correlation with correctness. Together, these findings underscore the need for language-aware design and evaluation strategies in LLMs for medical tasks.
comment: Accepted to HeaLing-EACL 2026
☆ PACE: Defying the Scaling Hypothesis of Exploration in Iterative Alignment for Mathematical Reasoning
Iterative Direct Preference Optimization has emerged as the state-of-the-art paradigm for aligning Large Language Models on reasoning tasks. Standard implementations (DPO-R1) rely on Best-of-N sampling (e.g., $N \ge 8$) to mine golden trajectories from the distribution tail. In this paper, we challenge this scaling hypothesis and reveal a counter-intuitive phenomenon: in mathematical reasoning, aggressive exploration yields diminishing returns and even catastrophic policy collapse. We theoretically demonstrate that scaling $N$ amplifies verifier noise and induces detrimental distribution shifts. To resolve this, we introduce \textbf{PACE} (Proximal Alignment via Corrective Exploration), which replaces brute-force mining with a generation-based corrective strategy. Operating with a minimal budget ($2
☆ Multi-Field Tool Retrieval
Integrating external tools enables Large Language Models (LLMs) to interact with real-world environments and solve complex tasks. Given the growing scale of available tools, effective tool retrieval is essential to mitigate constraints of LLMs' context windows and ensure computational efficiency. Existing approaches typically treat tool retrieval as a traditional ad-hoc retrieval task, matching user queries against the entire raw tool documentation. In this paper, we identify three fundamental challenges that limit the effectiveness of this paradigm: (i) the incompleteness and structural inconsistency of tool documentation; (ii) the significant semantic and granular mismatch between user queries and technical tool documents; and, most importantly, (iii) the multi-aspect nature of tool utility, that involves distinct dimensions, such as functionality, input constraints, and output formats, varying in format and importance. To address these challenges, we introduce Multi-Field Tool Retrieval, a framework designed to align user intent with tool representations through fine-grained, multi-field modeling. Experimental results show that our framework achieves SOTA performance on five datasets and a mixed benchmark, exhibiting superior generalizability and robustness.
comment: 12 pages, 4 figures
☆ AgentXRay: White-Boxing Agentic Systems via Workflow Reconstruction
Large Language Models have shown strong capabilities in complex problem solving, yet many agentic systems remain difficult to interpret and control due to opaque internal workflows. While some frameworks offer explicit architectures for collaboration, many deployed agentic systems operate as black boxes to users. We address this by introducing Agentic Workflow Reconstruction (AWR), a new task aiming to synthesize an explicit, interpretable stand-in workflow that approximates a black-box system using only input--output access. We propose AgentXRay, a search-based framework that formulates AWR as a combinatorial optimization problem over discrete agent roles and tool invocations in a chain-structured workflow space. Unlike model distillation, AgentXRay produces editable white-box workflows that match target outputs under an observable, output-based proxy metric, without accessing model parameters. To navigate the vast search space, AgentXRay employs Monte Carlo Tree Search enhanced by a scoring-based Red-Black Pruning mechanism, which dynamically integrates proxy quality with search depth. Experiments across diverse domains demonstrate that AgentXRay achieves higher proxy similarity and reduces token consumption compared to unpruned search, enabling deeper workflow exploration under fixed iteration budgets.
☆ How Do Language Models Acquire Character-Level Information? EACL 2026
Language models (LMs) have been reported to implicitly encode character-level information, despite not being explicitly provided during training. However, the mechanisms underlying this phenomenon remain largely unexplored. To reveal the mechanisms, we analyze how models acquire character-level knowledge by comparing LMs trained under controlled settings, such as specifying the pre-training dataset or tokenizer, with those trained under standard settings. We categorize the contributing factors into those independent of tokenization. Our analysis reveals that merge rules and orthographic constraints constitute primary factors arising from tokenization, whereas semantic associations of substrings and syntactic information function as key factors independent of tokenization.
comment: Accepted to EACL 2026 Main Conference
☆ MentorCollab: Selective Large-to-Small Inference-Time Guidance for Efficient Reasoning
Large reasoning models (LRMs) achieve strong performance by producing long chains of thought, but their inference costs are high and often generate redundant reasoning. Small language models (SLMs) are far more efficient, yet struggle on multi-step reasoning tasks. A natural idea is to let a large model guide a small one at inference time as a mentor, yet existing collaboration methods often promote imitation, resulting in verbose reasoning without consistent error correction. We propose MentorCollab, an inference-time collaboration method in which an LRM selectively and sparsely guides an SLM, rather than taking over generation. At randomly sampled token positions, we probe for divergences between the two models and use a lightweight verifier to decide whether the SLM should follow a short lookahead segment from its mentor or continue on its own. Across 15 SLM--LRM pairs and 3 domains (math reasoning, general knowledge, and commonsense reasoning), our method improves performance in 12 settings, with average gains of 3.0% and up to 8.0%, while adopting only having 18.4% tokens generated by the expensive mentor model on average. We find that short segments and selective probing are sufficient for effective collaboration. Our results show that selective inference-time guidance restores large-model reasoning ability without substantial inference overhead.
☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
Towards a Science of Collective AI: LLM-based Multi-Agent Systems Need a Transition from Blind Trial-and-Error to Rigorous Science
Recent advancements in Large Language Models (LLMs) have greatly extended the capabilities of Multi-Agent Systems (MAS), demonstrating significant effectiveness across a wide range of complex and open-ended domains. However, despite this rapid progress, the field still relies heavily on empirical trial-and-error. It lacks a unified and principled scientific framework necessary for systematic optimization and improvement. This bottleneck stems from the ambiguity of attribution: first, the absence of a structured taxonomy of factors leaves researchers restricted to unguided adjustments; second, the lack of a unified metric fails to distinguish genuine collaboration gain from mere resource accumulation. In this paper, we advocate for a transition to design science through an integrated framework. We advocate to establish the collaboration gain metric ($Γ$) as the scientific standard to isolate intrinsic gains from increased budgets. Leveraging $Γ$, we propose a factor attribution paradigm to systematically identify collaboration-driving factors. To support this, we construct a systematic MAS factor library, structuring the design space into control-level presets and information-level dynamics. Ultimately, this framework facilitates the transition from blind experimentation to rigorous science, paving the way towards a true science of Collective AI.
☆ Back to Basics: Revisiting Exploration in Reinforcement Learning for LLM Reasoning via Generative Probabilities
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an indispensable paradigm for enhancing reasoning in Large Language Models (LLMs). However, standard policy optimization methods, such as Group Relative Policy Optimization (GRPO), often converge to low-entropy policies, leading to severe mode collapse and limited output diversity. We analyze this issue from the perspective of sampling probability dynamics, identifying that the standard objective disproportionately reinforces the highest-likelihood paths, thereby suppressing valid alternative reasoning chains. To address this, we propose a novel Advantage Re-weighting Mechanism (ARM) designed to equilibrate the confidence levels across all correct responses. By incorporating Prompt Perplexity and Answer Confidence into the advantage estimation, our method dynamically reshapes the reward signal to attenuate the gradient updates of over-confident reasoning paths, while redistributing probability mass toward under-explored correct solutions. Empirical results demonstrate that our approach significantly enhances generative diversity and response entropy while maintaining competitive accuracy, effectively achieving a superior trade-off between exploration and exploitation in reasoning tasks. Empirical results on Qwen2.5 and DeepSeek models across mathematical and coding benchmarks show that ProGRPO significantly mitigates entropy collapse. Specifically, on Qwen2.5-7B, our method outperforms GRPO by 5.7% in Pass@1 and, notably, by 13.9% in Pass@32, highlighting its superior capability in generating diverse correct reasoning paths.
☆ Hybrid Gated Flow (HGF): Stabilizing 1.58-bit LLMs via Selective Low-Rank Correction
The deployment of Large Language Models (LLMs) on edge devices is fundamentally constrained by the "Memory Wall" -- a hardware limitation where memory bandwidth, not compute, becomes the bottleneck. Recent 1.58-bit quantization techniques (e.g., BitNet b1.58) dramatically reduce memory footprint but typically incur a perplexity degradation of 20-25% compared to FP16 baselines. In this work, we introduce Hybrid Gated Flow (HGF), a dual-stream architecture that couples a 1.58-bit ternary backbone with a learnable, low-rank FP16 correction path controlled by adaptive gates. Through extensive experiments on the TinyStories dataset across two training regimes (2500 and 3500 steps), we demonstrate that HGF 5.4 achieves a validation loss of 0.9306 compared to BitNet's 1.0294, recovering approximately 55% of the quality gap between pure ternary quantization and the FP16 baseline (0.8490). This recovery is achieved with only ~12-15% memory overhead beyond the ternary backbone. Furthermore, we provide empirical evidence for an emergent phenomenon: quantization as structural regularization. While a full-precision differential attention baseline (Diff_Only) exhibited training instability with validation loss exceeding 1.68, the ternary-anchored HGF maintained robust convergence throughout training. Finally, we report preliminary results extending this architecture to 1.2B and 3B parameter models trained on SlimPajama and FineWeb-Edu. These larger-scale experiments confirm that the architectural stability and quality recovery observed in small-scale proxies scale linearly to production-grade language modeling regimes.
comment: 21 pages, 4 figures, 6 tables. Code and models will be released at opencores.ai
☆ Length-Unbiased Sequence Policy Optimization: Revealing and Controlling Response Length Variation in RLVR
Recent applications of Reinforcement Learning with Verifiable Rewards (RLVR) to Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated significant success in enhancing reasoning capabilities for complex tasks. During RLVR training, an increase in response length is often regarded as a key factor contributing to the growth of reasoning ability. However, the patterns of change in response length vary significantly across different RLVR algorithms during the training process. To provide a fundamental explanation for these variations, this paper conducts an in-depth analysis of the components of mainstream RLVR algorithms. We present a theoretical analysis of the factors influencing response length and validate our theory through extensive experimentation. Building upon these theoretical findings, we propose the Length-Unbiased Sequence Policy Optimization (LUSPO) algorithm. Specifically, we rectify the length bias inherent in Group Sequence Policy Optimization (GSPO), rendering its loss function unbiased with respect to response length and thereby resolving the issue of response length collapse. We conduct extensive experiments across mathematical reasoning benchmarks and multimodal reasoning scenarios, where LUSPO consistently achieves superior performance. Empirical results demonstrate that LUSPO represents a novel, state-of-the-art optimization strategy compared to existing methods such as GRPO and GSPO.
☆ CoPE: Clipped RoPE as A Scalable Free Lunch for Long Context LLMs
Rotary Positional Embedding (RoPE) is a key component of context scaling in Large Language Models (LLMs). While various methods have been proposed to adapt RoPE to longer contexts, their guiding principles generally fall into two categories: (1) out-of-distribution (OOD) mitigation, which scales RoPE frequencies to accommodate unseen positions, and (2) Semantic Modeling, which posits that the attention scores computed with RoPE should always prioritize semantically similar tokens. In this work, we unify these seemingly distinct objectives through a minimalist intervention, namely CoPE: soft clipping lowfrequency components of RoPE. CoPE not only eliminates OOD outliers and refines semantic signals, but also prevents spectral leakage caused by hard clipping. Extensive experiments demonstrate that simply applying our soft clipping strategy to RoPE yields significant performance gains that scale up to 256k context length, validating our theoretical analysis and establishing CoPE as a new state-of-the-art for length generalization. Our code, data, and models are available at https://github.com/hrlics/CoPE.
☆ Copyright Detective: A Forensic System to Evidence LLMs Flickering Copyright Leakage Risks
We present Copyright Detective, the first interactive forensic system for detecting, analyzing, and visualizing potential copyright risks in LLM outputs. The system treats copyright infringement versus compliance as an evidence discovery process rather than a static classification task due to the complex nature of copyright law. It integrates multiple detection paradigms, including content recall testing, paraphrase-level similarity analysis, persuasive jailbreak probing, and unlearning verification, within a unified and extensible framework. Through interactive prompting, response collection, and iterative workflows, our system enables systematic auditing of verbatim memorization and paraphrase-level leakage, supporting responsible deployment and transparent evaluation of LLM copyright risks even with black-box access.
☆ FedMosaic: Federated Retrieval-Augmented Generation via Parametric Adapters
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by grounding generation in external knowledge to improve factuality and reduce hallucinations. Yet most deployments assume a centralized corpus, which is infeasible in privacy aware domains where knowledge remains siloed. This motivates federated RAG (FedRAG), where a central LLM server collaborates with distributed silos without sharing raw documents. In context RAG violates this requirement by transmitting verbatim documents, whereas parametric RAG encodes documents into lightweight adapters that merge with a frozen LLM at inference, avoiding raw-text exchange. We adopt the parametric approach but face two unique challenges induced by FedRAG: high storage and communication from per-document adapters, and destructive aggregation caused by indiscriminately merging multiple adapters. We present FedMosaic, the first federated RAG framework built on parametric adapters. FedMosaic clusters semantically related documents into multi-document adapters with document-specific masks to reduce overhead while preserving specificity, and performs selective adapter aggregation to combine only relevance-aligned, nonconflicting adapters. Experiments show that FedMosaic achieves an average 10.9% higher accuracy than state-of-the-art methods in four categories, while lowering storage costs by 78.8% to 86.3% and communication costs by 91.4%, and never sharing raw documents.
comment: 11 pages
☆ Faithful Bi-Directional Model Steering via Distribution Matching and Distributed Interchange Interventions ICLR 2026
Intervention-based model steering offers a lightweight and interpretable alternative to prompting and fine-tuning. However, by adapting strong optimization objectives from fine-tuning, current methods are susceptible to overfitting and often underperform, sometimes generating unnatural outputs. We hypothesize that this is because effective steering requires the faithful identification of internal model mechanisms, not the enforcement of external preferences. To this end, we build on the principles of distributed alignment search (DAS), the standard for causal variable localization, to propose a new steering method: Concept DAS (CDAS). While we adopt the core mechanism of DAS, distributed interchange intervention (DII), we introduce a novel distribution matching objective tailored for the steering task by aligning intervened output distributions with counterfactual distributions. CDAS differs from prior work in two main ways: first, it learns interventions via weak-supervised distribution matching rather than probability maximization; second, it uses DIIs that naturally enable bi-directional steering and allow steering factors to be derived from data, reducing the effort required for hyperparameter tuning and resulting in more faithful and stable control. On AxBench, a large-scale model steering benchmark, we show that CDAS does not always outperform preference-optimization methods but may benefit more from increased model scale. In two safety-related case studies, overriding refusal behaviors of safety-aligned models and neutralizing a chain-of-thought backdoor, CDAS achieves systematic steering while maintaining general model utility. These results indicate that CDAS is complementary to preference-optimization approaches and conditionally constitutes a robust approach to intervention-based model steering. Our code is available at https://github.com/colored-dye/concept_das.
comment: 55 pages, 25 figures; accepted for ICLR 2026
☆ Bagpiper: Solving Open-Ended Audio Tasks via Rich Captions
Current audio foundation models typically rely on rigid, task-specific supervision, addressing isolated factors of audio rather than the whole. In contrast, human intelligence processes audio holistically, seamlessly bridging physical signals with abstract cognitive concepts to execute complex tasks. Grounded in this philosophy, we introduce Bagpiper, an 8B audio foundation model that interprets physical audio via rich captions, i.e., comprehensive natural language descriptions that encapsulate the critical cognitive concepts inherent in the signal (e.g., transcription, audio events). By pre-training on a massive corpus of 600B tokens, the model establishes a robust bidirectional mapping between raw audio and this high-level conceptual space. During fine-tuning, Bagpiper adopts a caption-then-process workflow, simulating an intermediate cognitive reasoning step to solve diverse tasks without task-specific priors. Experimentally, Bagpiper outperforms Qwen-2.5-Omni on MMAU and AIRBench for audio understanding and surpasses CosyVoice3 and TangoFlux in generation quality, capable of synthesizing arbitrary compositions of speech, music, and sound effects. To the best of our knowledge, Bagpiper is among the first works that achieve unified understanding generation for general audio. Model, data, and code are available at Bagpiper Home Page.
☆ Quantifying the Knowledge Proximity Between Academic and Industry Research: An Entity and Semantic Perspective
The academia and industry are characterized by a reciprocal shaping and dynamic feedback mechanism. Despite distinct institutional logics, they have adapted closely in collaborative publishing and talent mobility, demonstrating tension between institutional divergence and intensive collaboration. Existing studies on their knowledge proximity mainly rely on macro indicators such as the number of collaborative papers or patents, lacking an analysis of knowledge units in the literature. This has led to an insufficient grasp of fine-grained knowledge proximity between industry and academia, potentially undermining collaboration frameworks and resource allocation efficiency. To remedy the limitation, this study quantifies the trajectory of academia-industry co-evolution through fine-grained entities and semantic space. In the entity measurement part, we extract fine-grained knowledge entities via pre-trained models, measure sequence overlaps using cosine similarity, and analyze topological features through complex network analysis. At the semantic level, we employ unsupervised contrastive learning to quantify convergence in semantic spaces by measuring cross-institutional textual similarities. Finally, we use citation distribution patterns to examine correlations between bidirectional knowledge flows and similarity. Analysis reveals that knowledge proximity between academia and industry rises, particularly following technological change. This provides textual evidence of bidirectional adaptation in co-evolution. Additionally, academia's knowledge dominance weakens during technological paradigm shifts. The dataset and code for this paper can be accessed at https://github.com/tinierZhao/Academic-Industrial-associations.
☆ Aligning Large Language Model Behavior with Human Citation Preferences
Most services built on powerful large-scale language models (LLMs) add citations to their output to enhance credibility. Recent research has paid increasing attention to the question of what reference documents to link to outputs. However, how LLMs recognize cite-worthiness and how this process should be controlled remains underexplored. In this study, we focus on what kinds of content LLMs currently tend to cite and how well that behavior aligns with human preferences. We construct a dataset to characterize the relationship between human citation preferences and LLM behavior. Web-derived texts are categorized into eight citation-motivation types, and pairwise citation preferences are exhaustively evaluated across all type combinations to capture fine-grained contrasts. Our results show that humans most frequently seek citations for medical text, and stronger models display a similar tendency. We also find that current models are as much as $27\%$ more likely than humans to add citations to text that is explicitly marked as needing citations on sources such as Wikipedia, and this overemphasis reduces alignment accuracy. Conversely, models systematically underselect numeric sentences (by $-22.6\%$ relative to humans) and sentences containing personal names (by $-20.1\%$), categories for which humans typically demand citations. Furthermore, experiments with Direct Preference Optimization demonstrate that model behavior can be calibrated to better match human citation preferences. We expect this study to provide a foundation for more fine-grained investigations into LLM citation preferences.
comment: Work In Progress
☆ Are Open-Weight LLMs Ready for Social Media Moderation? A Comparative Study on Bluesky
As internet access expands, so does exposure to harmful content, increasing the need for effective moderation. Research has demonstrated that large language models (LLMs) can be effectively utilized for social media moderation tasks, including harmful content detection. While proprietary LLMs have been shown to zero-shot outperform traditional machine learning models, the out-of-the-box capability of open-weight LLMs remains an open question. Motivated by recent developments of reasoning LLMs, we evaluate seven state-of-the-art models: four proprietary and three open-weight. Testing with real-world posts on Bluesky, moderation decisions by Bluesky Moderation Service, and annotations by two authors, we find a considerable degree of overlap between the sensitivity (81%--97%) and specificity (91%--100%) of the open-weight LLMs and those (72%--98%, and 93%--99%) of the proprietary ones. Additionally, our analysis reveals that specificity exceeds sensitivity for rudeness detection, but the opposite holds for intolerance and threats. Lastly, we identify inter-rater agreement across human moderators and the LLMs, highlighting considerations for deploying LLMs in both platform-scale and personalized moderation contexts. These findings show open-weight LLMs can support privacy-preserving moderation on consumer-grade hardware and suggest new directions for designing moderation systems that balance community values with individual user preferences.
☆ The Single-Multi Evolution Loop for Self-Improving Model Collaboration Systems
Model collaboration -- systems where multiple language models (LMs) collaborate -- combines the strengths of diverse models with cost in loading multiple LMs. We improve efficiency while preserving the strengths of collaboration by distilling collaborative patterns into a single model, where the model is trained on the outputs of the model collaboration system. At inference time, only the distilled model is employed: it imitates the collaboration while only incurring the cost of a single model. Furthermore, we propose the single-multi evolution loop: multiple LMs collaborate, each distills from the collaborative outputs, and these post-distillation improved LMs collaborate again, forming a collective evolution ecosystem where models evolve and self-improve by interacting with an environment of other models. Extensive experiments with 7 collaboration strategies and 15 tasks (QA, reasoning, factuality, etc.) demonstrate that: 1) individual models improve by 8.0% on average, absorbing the strengths of collaboration while reducing the cost to a single model; 2) the collaboration also benefits from the stronger and more synergistic LMs after distillation, improving over initial systems without evolution by 14.9% on average. Analysis reveals that the single-multi evolution loop outperforms various existing evolutionary AI methods, is compatible with diverse model/collaboration/distillation settings, and helps solve problems where the initial model/system struggles to.
comment: Code at https://github.com/BunsenFeng/moco_distill
☆ Among Us: Measuring and Mitigating Malicious Contributions in Model Collaboration Systems
Language models (LMs) are increasingly used in collaboration: multiple LMs trained by different parties collaborate through routing systems, multi-agent debate, model merging, and more. Critical safety risks remain in this decentralized paradigm: what if some of the models in multi-LLM systems are compromised or malicious? We first quantify the impact of malicious models by engineering four categories of malicious LMs, plug them into four types of popular model collaboration systems, and evaluate the compromised system across 10 datasets. We find that malicious models have a severe impact on the multi-LLM systems, especially for reasoning and safety domains where performance is lowered by 7.12% and 7.94% on average. We then propose mitigation strategies to alleviate the impact of malicious components, by employing external supervisors that oversee model collaboration to disable/mask them out to reduce their influence. On average, these strategies recover 95.31% of the initial performance, while making model collaboration systems fully resistant to malicious models remains an open research question.
comment: 19 pages, 15 tables, 4 figures
☆ EBPO: Empirical Bayes Shrinkage for Stabilizing Group-Relative Policy Optimization
Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for enhancing the reasoning capabilities of Large Language Models (LLMs). However, dominant approaches like Group Relative Policy Optimization (GRPO) face critical stability challenges: they suffer from high estimator variance under computational constraints (small group sizes) and vanishing gradient signals in saturated failure regimes where all responses yield identical zero rewards. To address this, we propose Empirical Bayes Policy Optimization (EBPO), a novel framework that regularizes local group-based baselines by borrowing strength from the policy's accumulated global statistics. Instead of estimating baselines in isolation, EBPO employs a shrinkage estimator that dynamically balances local group statistics with a global prior updated via Welford's online algorithm. Theoretically, we demonstrate that EBPO guarantees strictly lower Mean Squared Error (MSE), bounded entropy decay, and non-vanishing penalty signals in failure scenarios compared to GRPO. Empirically, EBPO consistently outperforms GRPO and other established baselines across diverse benchmarks, including AIME and OlympiadBench. Notably, EBPO exhibits superior training stability, achieving high-performance gains even with small group sizes, and benefits significantly from difficulty-stratified curriculum learning.
☆ GreekMMLU: A Native-Sourced Multitask Benchmark for Evaluating Language Models in Greek
Large Language Models (LLMs) are commonly trained on multilingual corpora that include Greek, yet reliable evaluation benchmarks for Greek-particularly those based on authentic, native-sourced content-remain limited. Existing datasets are often machine-translated from English, failing to capture Greek linguistic and cultural characteristics. We introduce GreekMMLU, a native-sourced benchmark for massive multitask language understanding in Greek, comprising 21,805 multiple-choice questions across 45 subject areas, organized under a newly defined subject taxonomy and annotated with educational difficulty levels spanning primary to professional examinations. All questions are sourced or authored in Greek from academic, professional, and governmental exams. We publicly release 16,857 samples and reserve 4,948 samples for a private leaderboard to enable robust and contamination-resistant evaluation. Evaluations of over 80 open- and closed-source LLMs reveal substantial performance gaps between frontier and open-weight models, as well as between Greek-adapted models and general multilingual ones. Finally, we provide a systematic analysis of factors influencing performance-including model scale, adaptation, and prompting-and derive insights for improving LLM capabilities in Greek.
♻ ☆ Language Models and Logic Programs for Trustworthy Tax Reasoning AAAI 2026
According to the United States Internal Revenue Service, ``the average American spends $\$270$ and 13 hours filing their taxes''. Even beyond the U.S., tax filing requires complex reasoning, combining application of overlapping rules with numerical calculations. Because errors can incur costly penalties, any automated system must deliver high accuracy and auditability, making modern large language models (LLMs) poorly suited for this task. We propose an approach that integrates LLMs with a symbolic solver to calculate tax obligations. We evaluate variants of this system on the challenging StAtutory Reasoning Assessment (SARA) dataset, and include a novel method for estimating the cost of deploying such a system based on real-world penalties for tax errors. We further show how combining up-front translation of plain-text rules into formal logic programs, combined with intelligently retrieved exemplars for formal case representations, can dramatically improve performance on this task and reduce costs to well below real-world averages. Our results demonstrate the effectiveness of applying semantic parsing methods to statutory reasoning, and show promising economic feasibility of neuro-symbolic architectures for increasing access to reliable tax assistance.
comment: Accepted to AAAI 2026
♻ ☆ DEBATE: A Large-Scale Benchmark for Evaluating Opinion Dynamics in Role-Playing LLM Agents
Accurately modeling opinion change through social interactions is crucial for understanding and mitigating polarization, misinformation, and societal conflict. Recent work simulates opinion dynamics with role-playing LLM agents (RPLAs), but multi-agent simulations often display unnatural group behavior (e.g., premature convergence) and lack empirical benchmarks for assessing alignment with real human group interactions. We introduce DEBATE, a large-scale benchmark for evaluating the authenticity of opinion dynamics in multi-agent RPLA simulations. DEBATE contains 36,383 messages from 2,832 U.S.-based participants across 708 groups and 107 topics, with both public messages and private Likert-scale beliefs, enabling evaluation at the utterance and group levels (and supporting future individual-level analyses). We instantiate "digital twin" RPLAs with seven LLMs and evaluate across two settings: next-message prediction and full conversation rollout, using stance-alignment and opinion-convergence metrics. In zero-shot settings, RPLA groups exhibit strong opinion convergence relative to human groups. Post-training via supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) improves stance alignment and brings group-level convergence closer to human behavior, though discrepancies in opinion change and belief updating remain. DEBATE enables rigorous benchmarking of simulated opinion dynamics and supports future research on aligning multi-agent RPLAs with realistic human interactions.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ CoT is Not the Chain of Truth: An Empirical Internal Analysis of Reasoning LLMs for Fake News Generation
From generating headlines to fabricating news, the Large Language Models (LLMs) are typically assessed by their final outputs, under the safety assumption that a refusal response signifies safe reasoning throughout the entire process. Challenging this assumption, our study reveals that during fake news generation, even when a model rejects a harmful request, its Chain-of-Thought (CoT) reasoning may still internally contain and propagate unsafe narratives. To analyze this phenomenon, we introduce a unified safety-analysis framework that systematically deconstructs CoT generation across model layers and evaluates the role of individual attention heads through Jacobian-based spectral metrics. Within this framework, we introduce three interpretable measures: stability, geometry, and energy to quantify how specific attention heads respond or embed deceptive reasoning patterns. Extensive experiments on multiple reasoning-oriented LLMs show that the generation risk rise significantly when the thinking mode is activated, where the critical routing decisions concentrated in only a few contiguous mid-depth layers. By precisely identifying the attention heads responsible for this divergence, our work challenges the assumption that refusal implies safety and provides a new understanding perspective for mitigating latent reasoning risks.
comment: 28 pages, 35 figures
♻ ☆ When Are Two RLHF Objectives the Same?
The preference optimization literature contains many proposed objectives, often presented as distinct improvements. We introduce Opal, a canonicalization algorithm that determines whether two preference objectives are algebraically equivalent by producing either a canonical form or a concrete witness of non-equivalence. Applying Opal reveals that many widely used methods optimize the same underlying objective, while others are provably distinct. For example, batch normalization can cause the same response pair to receive different gradients depending on batch composition. We identify a small set of structural mechanisms that give rise to genuinely different objectives; most remaining differences are reparameterizations.
comment: 21 pages
♻ ☆ TASTE: Text-Aligned Speech Tokenization and Embedding for Spoken Language Modeling ICLR 2026
Recent efforts target spoken language models (SLMs) that not only listen but also speak for more natural human-LLM interaction. Joint speech-text modeling is a promising direction to achieve this. However, the effectiveness of recent speech tokens for joint modeling remains underexplored. To address this, we introduce Text-Aligned Speech Tokenization and Embedding (TASTE), a method that directly addresses the modality gap by aligning speech token with the corresponding text transcription during the tokenization stage. We propose a method that can achieve this through a attention-based aggregation mechanism and with speech reconstruction as the training objective. We conduct extensive experiments and show that TASTE can preserve essential paralinguistic information while dramatically reducing the token sequence length. With TASTE, we perform straightforward joint spoken language modeling by using Low-Rank Adaptation on the pre-trained text LLM. Experimental results show that TASTE-based SLMs perform comparable to previous work on SALMON and StoryCloze; while significantly outperform other pre-trained SLMs on speech continuation across subjective and objective evaluations. To our knowledge, TASTE is the first end-to-end approach that utilizes a reconstruction objective to automatically learn a text-aligned speech tokenization and embedding suitable for spoken language modeling. Our demo, code, and model are available at https://mtkresearch.github.io/TASTE-SpokenLM.github.io.
comment: ICLR 2026
♻ ☆ SelfReflect: Can LLMs Communicate Their Internal Answer Distribution? ICLR 2026
The common approach to communicate a large language model's (LLM) uncertainty is to add a percentage number or a hedging word to its response. But is this all we can do? Instead of generating a single answer and then hedging it, an LLM that is fully transparent to the user needs to be able to reflect on its internal belief distribution and output a summary of all options it deems possible, and how likely they are. To test whether LLMs possess this capability, we develop the SelfReflect metric, an information-theoretic distance between a given summary and a distribution over answers. In interventional and human studies, we find that SelfReflect indicates even slight deviations, yielding a fine measure of faithfulness between a summary string and an LLM's actual internal distribution over answers. With SelfReflect, we make a resounding negative observation: modern LLMs are, across the board, incapable of revealing what they are uncertain about, neither through reasoning, nor chains-of-thoughts, nor explicit finetuning. However, we do find that LLMs are able to generate faithful summaries of their uncertainties if we help them by sampling multiple outputs and feeding them back into the context. This simple approach shines a light at the universal way of communicating LLM uncertainties whose future development the SelfReflect score enables. To support the development of this universal form of LLM uncertainties, we publish the code that implements our metric for arbitrary LLMs under https://github.com/apple/ml-selfreflect .
comment: Accepted at ICLR 2026
♻ ☆ Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 45.2 per-benchmark accuracy and 51.8 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models ICLR 2026
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. Scaling up the amount of multimodal math data in the RL training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista benchmark scores, respectively. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
comment: Accepted to ICLR 2026. Code is available at https://github.com/Osilly/Vision-R1
♻ ☆ LLM-Based Social Simulations Require a Boundary
This position paper argues that LLM-based social simulations require clear boundaries to make meaningful contributions to social science. While Large Language Models (LLMs) offer promising capabilities for simulating human behavior, their tendency to produce homogeneous outputs, acting as an "average persona", fundamentally limits their ability to capture the behavioral diversity essential for complex social dynamics. We examine why heterogeneity matters for social simulations and how current LLMs fall short, analyzing the relationship between mean alignment and variance in LLM-generated behaviors. Through a systematic review of representative studies, we find that validation practices often fail to match the heterogeneity requirements of research questions: while most papers include ground truth comparisons, fewer than half explicitly assess behavioral variance, and most that do report lower variance than human populations. We propose that researchers should: (1) match validation depth to the heterogeneity demands of their research questions, (2) explicitly report variance alongside mean alignment, and (3) constrain claims to collective-level qualitative patterns when variance is insufficient. Rather than dismissing LLM-based simulation, we advocate for a boundary-aware approach that ensures these methods contribute genuine insights to social science.
♻ ☆ When Iterative RAG Beats Ideal Evidence: A Diagnostic Study in Scientific Multi-hop Question Answering
Retrieval-Augmented Generation (RAG) extends large language models (LLMs) beyond parametric knowledge, yet it is unclear when iterative retrieval-reasoning loops meaningfully outperform static RAG, particularly in scientific domains with multi-hop reasoning, sparse domain knowledge, and heterogeneous evidence. We provide the first controlled, mechanism-level diagnostic study of whether synchronized iterative retrieval and reasoning can surpass an idealized static upper bound (Gold Context) RAG. We benchmark eleven state-of-the-art LLMs under three regimes: (i) No Context, measuring reliance on parametric memory; (ii) Gold Context, where all oracle evidence is supplied at once; and (iii) Iterative RAG, a training-free controller that alternates retrieval, hypothesis refinement, and evidence-aware stopping. Using the chemistry-focused ChemKGMultiHopQA dataset, we isolate questions requiring genuine retrieval and analyze behavior with diagnostics spanning retrieval coverage gaps, anchor-carry drop, query quality, composition fidelity, and control calibration. Across models, Iterative RAG consistently outperforms Gold Context, with gains up to 25.6 percentage points, especially for non-reasoning fine-tuned models. Staged retrieval reduces late-hop failures, mitigates context overload, and enables dynamic correction of early hypothesis drift, but remaining failure modes include incomplete hop coverage, distractor latch trajectories, early stopping miscalibration, and high composition failure rates even with perfect retrieval. Overall, staged retrieval is often more influential than the mere presence of ideal evidence; we provide practical guidance for deploying and diagnosing RAG systems in specialized scientific settings and a foundation for more reliable, controllable iterative retrieval-reasoning frameworks.
comment: 27 pages, 15 figures
♻ ☆ Why Tree-Style Branching Matters for Thought Advantage Estimation in GRPO
Group Relative Policy Optimization (GRPO) trains Chain-of-Thought reasoning with verifiable rewards, but estimating thought-level advantages without value functions often suffers from high variance. Although tree-style branching is used in practice to reduce the variance, it lacks a theoretical explanation of why it works and whether it is important or even potentially necessary. We study thought-level advantage estimation in GRPO from a variance perspective under a minimal tree-style setting where multiple answers are sampled for each thought. Using the multivariate delta method, we reveal an asymmetry in how different sampling dimensions affect variance. Increasing the number of sampled thoughts ($K$) leaves a strictly positive variance floor, whereas increasing the number of answers per thought ($M$) induces a monotonic decrease in variance, asymptotically decreasing it to zero. This implies that accurate thought-level advantage estimation is impossible through scaling thought sampling alone, making branching a potentially necessary mechanism rather than a heuristic. Experiments further provide empirical evidence for both the effectiveness and necessity of answer-level branching, demonstrating improved optimization stability, training efficiency, and final performance not only in math but also across a broad range of vision domains and under different model architectures and sizes.
comment: Under review
♻ ☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models ICLR 2026
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Accepted to ICLR 2026
♻ ☆ From Latent Signals to Reflection Behavior: Tracing Meta-Cognitive Activation Trajectory in R1-Style LLMs
R1-style LLMs have attracted growing attention for their capacity for self-reflection, yet the internal mechanisms underlying such behavior remain unclear. To bridge this gap, we anchor on the onset of reflection behavior and trace its layer-wise activation trajectory. Using the logit lens to read out token-level semantics, we uncover a structured progression: (i) Latent-control layers, where an approximate linear direction encodes the semantics of thinking budget; (ii) Semantic-pivot layers, where discourse-level cues, including turning-point and summarization cues, surface and dominate the probability mass; and (iii) Behavior-overt layers, where the likelihood of reflection-behavior tokens begins to rise until they become highly likely to be sampled. Moreover, our targeted interventions uncover a causal chain across these stages: prompt-level semantics modulate the projection of activations along latent-control directions, thereby inducing competition between turning-point and summarization cues in semantic-pivot layers, which in turn regulates the sampling likelihood of reflection-behavior tokens in behavior-overt layers. Collectively, our findings suggest a human-like meta-cognitive process-progressing from latent monitoring, to discourse-level regulation, and to finally overt self-reflection. Our analysis code can be found at https://github.com/DYR1/S3-CoT.
♻ ☆ Segmentation-free Goodness of Pronunciation
Mispronunciation detection and diagnosis (MDD) is a significant part in modern computer-aided language learning (CALL) systems. Most systems implementing phoneme-level MDD through goodness of pronunciation (GOP), however, rely on pre-segmentation of speech into phonetic units. This limits the accuracy of these methods and the possibility to use modern CTC-based acoustic models for their evaluation. In this study, we first propose self-alignment GOP (GOP-SA) that enables the use of CTC-trained ASR models for MDD. Next, we define a more general segmentation-free method that takes all possible segmentations of the canonical transcription into account (GOP-SF). We give a theoretical account of our definition of GOP-SF, an implementation that solves potential numerical issues as well as a proper normalization which allows the use of acoustic models with different peakiness over time. We provide extensive experimental results on the CMU Kids and speechocean762 datasets comparing the different definitions of our methods, estimating the dependency of GOP-SF on the peakiness of the acoustic models and on the amount of context around the target phoneme. Finally, we compare our methods with recent studies over the speechocean762 data showing that the feature vectors derived from the proposed method achieve state-of-the-art results on phoneme-level pronunciation assessment.
comment: The article has been accepted for publication by IEEE TASLPRO
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To manage long-horizon interactions, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Text2SQL-Flow: A Robust SQL-Aware Data Augmentation Framework for Text-to-SQL
The data-centric paradigm has become pivotal in AI, especially for Text-to-SQL, where performance is limited by scarce, simplistic, and low-diversity datasets. To address this, we propose Text2SQL-Flow, a SQL-aware data augmentation framework that generates large-scale, semantically valid, and structurally diverse Text-to-SQL pairs from minimal seed data. It operates across six augmentation dimensions and integrates an end-to-end pipeline featuring SQL execution verification, natural language question generation, chain-of-thought reasoning traces, and data classification. A modular Database Manager ensures cross-database compatibility and scalability. Using this framework, we build SQLFlow, a high-quality dataset of 89,544 annotated examples. We evaluate SQLFlow in two settings: (1) For open-source LLMs, fine-tuning on SQLFlow consistently improves performance across benchmarks under the same data budget. (2) For closed-source LLMs, we introduce a masked alignment retrieval method that treats SQLFlow as both knowledge base and training data for the retriever. This enables structure-aware example matching by modeling fine-grained alignments between questions and SQL queries. Experiments show our retrieval strategy outperforms existing methods, underscoring the value of SQLFlow's high-fidelity data and our novel technique. Our work establishes a scalable, data-centric foundation for advancing Text-to-SQL systems and highlights the critical role of high-quality structured data in modern AI.
♻ ☆ POLAR: A Benchmark for Multilingual, Multicultural, and Multi-Event Online Polarization
Online polarization poses a growing challenge for democratic discourse, yet most computational social science research remains monolingual, culturally narrow, or event-specific. We introduce POLAR, a multilingual, multicultural, and multi-event dataset with over 110K instances in 22 languages drawn from diverse online platforms and real-world events. Polarization is annotated along three axes, namely detection, type, and manifestation, using a variety of annotation platforms adapted to each cultural context. We conduct two main experiments: (1) fine-tuning six pretrained small language models; and (2) evaluating a range of open and closed large language models in few-shot and zero-shot settings. The results show that, while most models perform well in binary polarization detection, they achieve substantially lower performance when predicting polarization types and manifestations. These findings highlight the complex, highly contextual nature of polarization and demonstrate the need for robust, adaptable approaches in NLP and computational social science. All resources will be released to support further research and effective mitigation of digital polarization globally.
comment: Preprint
♻ ☆ LH-Deception: Simulating and Understanding LLM Deceptive Behaviors in Long-Horizon Interactions ICLR 2026
Deception is a pervasive feature of human communication and an emerging concern in large language models (LLMs). While recent studies document instances of LLM deception, most evaluations remain confined to single-turn prompts and fail to capture the long-horizon interactions in which deceptive strategies typically unfold. We introduce a new simulation framework, LH-Deception, for a systematic, empirical quantification of deception in LLMs under extended sequences of interdependent tasks and dynamic contextual pressures. LH-Deception is designed as a multi-agent system: a performer agent tasked with completing tasks and a supervisor agent that evaluates progress, provides feedback, and maintains evolving states of trust. An independent deception auditor then reviews full trajectories to identify when and how deception occurs. We conduct extensive experiments across 11 frontier models, spanning both closed-source and open-source systems, and find that deception is model-dependent, increases with event pressure, and consistently erodes supervisor trust. Qualitative analyses further reveal emergent, long-horizon phenomena, such as ``chains of deception", which are invisible to static, single-turn evaluations. Our findings provide a foundation for evaluating future LLMs in real-world, trust-sensitive contexts.
comment: ICLR 2026
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 15 pages, 9 figures
♻ ☆ Diversity or Precision? A Deep Dive into Next Token Prediction
Recent advancements have shown that reinforcement learning (RL) can substantially improve the reasoning abilities of large language models (LLMs). The effectiveness of such RL training, however, depends critically on the exploration space defined by the pre-trained model's token-output distribution. In this paper, we revisit the standard cross-entropy loss, interpreting it as a specific instance of policy gradient optimization applied within a single-step episode. To systematically study how the pre-trained distribution shapes the exploration potential for subsequent RL, we propose a generalized pre-training objective that adapts on-policy RL principles to supervised learning. By framing next-token prediction as a stochastic decision process, we introduce a reward-shaping strategy that explicitly balances diversity and precision. Our method employs a positive reward scaling factor to control probability concentration on ground-truth tokens and a rank-aware mechanism that treats high-ranking and low-ranking negative tokens asymmetrically. This allows us to reshape the pre-trained token-output distribution and investigate how to provide a more favorable exploration space for RL, ultimately enhancing end-to-end reasoning performance. Contrary to the intuition that higher distribution entropy facilitates effective exploration, we find that imposing a precision-oriented prior yields a superior exploration space for RL.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ Remembering Unequally: Global and Disciplinary Bias in LLM Reconstruction of Scholarly Coauthor Lists
Ongoing breakthroughs in large language models (LLMs) are reshaping scholarly search and discovery interfaces. While these systems offer new possibilities for navigating scientific knowledge, they also raise concerns about fairness and representational bias rooted in the models' memorized training data. As LLMs are increasingly used to answer queries about researchers and research communities, their ability to accurately reconstruct scholarly coauthor lists becomes an important but underexamined issue. In this study, we investigate how memorization in LLMs affects the reconstruction of coauthor lists and whether this process reflects existing inequalities across academic disciplines and world regions. We evaluate three prominent models, DeepSeek R1, Llama 4 Scout, and Mixtral 8x7B, by comparing their generated coauthor lists against bibliographic reference data. Our analysis reveals a systematic advantage for highly cited researchers, indicating that LLM memorization disproportionately favors already visible scholars. However, this pattern is not uniform: certain disciplines, such as Clinical Medicine, and some regions, including parts of Africa, exhibit more balanced reconstruction outcomes. These findings highlight both the risks and limitations of relying on LLM-generated relational knowledge in scholarly discovery contexts and emphasize the need for careful auditing of memorization-driven biases in LLM-based systems.
♻ ☆ The Why Behind the Action: Unveiling Internal Drivers via Agentic Attribution
Large Language Model (LLM)-based agents are widely used in real-world applications such as customer service, web navigation, and software engineering. As these systems become more autonomous and are deployed at scale, understanding why an agent takes a particular action becomes increasingly important for accountability and governance. However, existing research predominantly focuses on \textit{failure attribution} to localize explicit errors in unsuccessful trajectories, which is insufficient for explaining \textbf{the reason behind agent behaviors}. To bridge this gap, we propose a novel framework for \textbf{general agentic attribution}, designed to identify the internal factors driving agent actions regardless of the task outcome. Our framework operates hierarchically to manage the complexity of agent interactions. Specifically, at the \textit{component level}, we employ temporal likelihood dynamics to identify critical interaction steps; then at the \textit{sentence level}, we refine this localization using perturbation-based analysis to isolate the specific textual evidence. We validate our framework across a diverse suite of agentic scenarios, including standard tool use and subtle reliability risks like memory-induced bias. Experimental results demonstrate that the proposed framework reliably pinpoints pivotal historical events and sentences behind the agent behavior, offering a critical step toward safer and more accountable agentic systems. Codes are available at https://github.com/AI45Lab/AgentDoG.
♻ ☆ Fine-tuned LLM-based Code Migration Framework
The study presents the outcomes of research and experimental validation in the domain of automated codebase migration, with a focus on addressing challenges in transitioning SQL-based systems. The proposed method for migration essentially appears as a framework that leverages the best aspects of traditional software engineering techniques and provides an iterative, scalable, precise and efficient solution for modern database transformations. The central piece of the approach is the integration of a fine-tuned Large Language Model to address critical issues in SQL code conversion, such as syntax mapping, resolving discrepancies between Oracle PL/SQL and PostgreSQL, and optimising database elements such as stored procedures, triggers, views, and overall database logic. Thus, the method involves a trade-off between fine-tuning and prompt engineering. Special attention is given to a fine-tuning approach, which enhances the adaptability and compatibility with migration requirements across the entire database. According to the achieved results, fine-tuning plays a very important role. The study employs targeted evaluation methodologies along with computational metrics to measure the success of iterative conversion cycles. Core innovations include automated SQL feature detection, semi-supervised error analysis and integration of Subject Matter Experts feedback within a systematic migration workflow. The methodology achieves significant reductions in Syntax Error Rates, enhances feature alignment throughout migration iterations, and leverages dataset sampling to ensure continual improvement. By embedding GAI into the migration process, the framework facilitates precise feature mapping, semi-automated error resolution, and data-driven optimisation loops, improving workflow efficiency.
comment: 16 pages, 27 figures, 7 references
♻ ☆ CoSteer: Collaborative Decoding-Time Personalization via Local Delta Steering
Personalization has become crucial for adapting models to the diverse and evolving needs of users across cultural, temporal, and contextual dimensions. While existing methods often rely on centralized fine-tuning or static preference alignment within a single model, they struggle to achieve both real-time and high-quality personalization under the resource and privacy constraints of personal devices. To address this challenge, we propose CoSteer, a collaborative framework that enables tuning-free, real-time personalization via decoding-time adaptation. By leveraging logit differences between context-aware and context-agnostic local small models, CoSteer steers cloud-based large models, ensuring effective personalization while preserving the large model's capabilities. Personalization is handled locally, with only final tokens sent to the cloud, maintaining both user context and system efficiency. Through extensive experiments across a wide range of tasks, we demonstrate that CoSteer generates high-quality personalized content, ensuring both effectiveness and computational efficiency. Our results highlight its robustness across models and environments, confirming its practical applicability in real-world scenarios.
♻ ☆ Dissecting the SWE-Bench Leaderboards: Profiling Submitters and Architectures of LLM- and Agent-Based Repair Systems
The rapid progress in Automated Program Repair (APR) has been driven by advances in AI, particularly large language models (LLMs) and agent-based systems. SWE-Bench is a recent benchmark designed to evaluate LLM-based repair systems using real issues and pull requests mined from 12 popular open-source Python repositories. Its public leaderboards -- SWE-Bench Lite and SWE-Bench Verified -- have become central platforms for tracking progress and comparing solutions. However, because the submission process does not require detailed documentation, the architectural design and origin of many solutions remain unclear. In this paper, we present the first comprehensive study of all submissions to the SWE-Bench Lite (79 entries) and Verified (99 entries) leaderboards, analyzing 80 unique approaches across dimensions such as submitter type, product availability, LLM usage, and system architecture. Our findings reveal the dominance of proprietary LLMs (especially Claude 3.5), the presence of both agentic and non-agentic designs, and a contributor base spanning from individual developers to large tech companies.
comment: Part of this work (RQ1) has been published at the 2026 IEEE/ACM 48th International Conference on Software Engineering (ICSE-SEIP 2026), DOI: 10.1145/3786583.3786904. The published version is also available on arXiv at arXiv:2602.04449
♻ ☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement Learning (RL) is pivotal for enhancing Large Language Model (LLM) reasoning, yet mainstream algorithms such as GRPO and DAPO remain constrained by a coarse-grained credit assignment paradigm, where all tokens within the same response receive the identical reward. In this paper, we propose Dynamic Entropy Weighting, systematically define entropy-based weight ratios $\frac{H_{i,t}}{\sum_{k=1}^{n} H_{k,t}}$ and similar variants to redistribute rewards and get fine-grained rewards through two new algorithms: Group Token Policy Optimization (GTPO), which assigns an entropy-weighted reward to each token and synthesizes token-specific advantage function to drive the model toward optimal path, and the analogous algorithm Sequence-Level GRPO (GRPO-S), which extends this design to the sequence level and exhibits superior stability in long Chain-of-Thought (CoT) reasoning tasks.
♻ ☆ HBO: Hierarchical Balancing Optimization for Fine-Tuning Large Language Models
Fine-tuning large language models (LLMs) on a mixture of diverse datasets poses challenges due to data imbalance and heterogeneity. Existing methods often address these issues across datasets (globally) but overlook the imbalance and heterogeneity within individual datasets (locally), which limits their effectiveness. We introduce Hierarchical Balancing Optimization (HBO), a novel method that enables LLMs to autonomously adjust data allocation during fine-tuning both across datasets (globally) and within each individual dataset (locally). HBO employs a bilevel optimization strategy with two types of actors: a Global Actor, which balances data sampling across different subsets of the training mixture, and several Local Actors, which optimizes data usage within each subset based on difficulty levels. These actors are guided by reward functions derived from the LLM's training state, which measure learning progress and relative performance improvement. We evaluate HBO on three LLM backbones across nine diverse tasks in multilingual and multitask setups. Results show that HBO consistently outperforms existing baselines, achieving significant accuracy gains. Our in-depth analysis further demonstrates that both the global actor and local actors of HBO effectively adjust data usage during fine-tuning. HBO provides a comprehensive solution to the challenges of data imbalance and heterogeneity in LLM fine-tuning, enabling more effective training across diverse datasets.
♻ ☆ Fin-R1: A Large Language Model for Financial Reasoning through Reinforcement Learning
In recent years, general-purpose large language models (LLMs) such as GPT, Gemini, Claude, and DeepSeek have advanced at an unprecedented pace. Despite these achievements, their application to finance remains challenging, due to fragmented data sources, intransparent reasoning processes, and weak transferability to business applications. In response, we introduce Fin-R1, a reasoning LLM designed for financial scenarios. With a compact size of 7 billion parameters, Fin-R1 reduces deployment costs while addressing the aforementioned challenges. Its development follows a two-stage pipeline. First, we construct Fin-R1-Data, a high-quality financial dataset consisting of 60,091 chain-of-thought (CoT) samples, distilled and filtered from multiple authoritative benchmarks to ensure consistency and reliability. Second, we train Fin-R1 using Fin-R1-Data through supervised fine-tuning (SFT), followed by reinforcement learning (RL). This stage substantially improves the model's ability to solve complex financial reasoning tasks, yielding outputs that are both accurate and interpretable. Despite its relatively small parameter scale, Fin-R1 achieves competitive empirical performance across established financial benchmarks and demonstrates practical utility in compliance checking and robo-advisory. Our code is publicly available at https://github.com/SUFE-AIFLM-Lab/Fin-R1, and has already attracted over 700 stars.
♻ ☆ Learning to Summarize by Learning to Quiz: Adversarial Agentic Collaboration for Long Document Summarization
Long document summarization remains a significant challenge for current large language models (LLMs), as existing approaches commonly struggle with information loss, factual inconsistencies, and coherence issues when processing excessively long documents. We propose SummQ, a novel adversarial multi-agent framework that addresses these limitations through collaborative intelligence between specialized agents operating in two complementary domains: summarization and quizzing. Our approach employs summary generators and reviewers that work collaboratively to create and evaluate comprehensive summaries, while quiz generators and reviewers create comprehension questions that serve as continuous quality checks for the summarization process. This adversarial dynamic, enhanced by an examinee agent that validates whether the generated summary contains the information needed to answer the quiz questions, enables iterative refinement through multifaceted feedback mechanisms. We evaluate SummQ on three widely used long document summarization benchmarks. Experimental results demonstrate that our framework significantly outperforms existing state-of-the-art methods across ROUGE and BERTScore metrics, as well as in LLM-as-a-Judge and human evaluations. Our comprehensive analyses reveal the effectiveness of the multi-agent collaboration dynamics, the influence of different agent configurations, and the impact of the quizzing mechanism. This work establishes a new approach for long document summarization that uses adversarial agentic collaboration to improve summarization quality.
♻ ☆ DecompressionLM: Deterministic, Diagnostic, and Zero-Shot Concept Graph Extraction from Language Models
Existing knowledge probing methods rely on pre-defined queries, limiting extraction to known concepts. We introduce DecompressionLM, a stateless framework for zero-shot concept graph extraction that discovers what language models encode without pre-specified queries or shared cross-sequence state. Our method targets three limitations of common decoding-based probing approaches: (i) cross-sequence coupling that concentrates probability mass on high-frequency prefixes, (ii) competitive decoding effects that suppress long-tail concepts, and (iii) scalability constraints arising from sequential exploration. Using Van der Corput low-discrepancy sequences with arithmetic decoding, DecompressionLM enables deterministic, embarrassingly parallel generation without shared state across sequences. Across two model families and five quantization variants, we find that activation-aware quantization (AWQ-4bit) expands concept coverage by 30-170%, while uniform quantization (GPTQ-Int4) induces 71-86% coverage collapse - divergent behaviors not reliably reflected by explanation-level perplexity. Corpus-based verification further reveals a 19.6-point hallucination gap between top- and bottom-ranked MMLU-Pro Law models. DecompressionLM establishes concept coverage as a complementary evaluation dimension for assessing knowledge breadth and factual grounding in compressed models intended for deployment.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Pattern Enhanced Multi-Turn Jailbreaking: Exploiting Structural Vulnerabilities in Large Language Models
Large language models (LLMs) remain vulnerable to multi-turn jailbreaking attacks that exploit conversational context to bypass safety constraints gradually. These attacks target different harm categories through distinct conversational approaches. Existing multi-turn methods often rely on heuristic or ad hoc exploration strategies, providing limited insight into underlying model weaknesses. The relationship between conversation patterns and model vulnerabilities across harm categories remains poorly understood. We propose Pattern Enhanced Chain of Attack (PE-CoA), a framework of five conversation patterns to construct multi-turn jailbreaks through natural dialogue. Evaluating PE-CoA on twelve LLMs spanning ten harm categories, we achieve state-of-the-art performance, uncovering pattern-specific vulnerabilities and LLM behavioral characteristics: models exhibit distinct weakness profiles, defense to one pattern does not generalize to others, and model families share similar failure modes. These findings highlight limitations of safety training and indicate the need for pattern-aware defenses. Code available on: https://github.com/Ragib-Amin-Nihal/PE-CoA
♻ ☆ Invisible Walls in Cities: Designing LLM Agent to Predict Urban Segregation Experience with Social Media Content
Understanding experienced segregation in urban daily life is crucial for addressing societal inequalities and fostering inclusivity. The abundance of user-generated reviews on social media encapsulates nuanced perceptions and feelings associated with different places, offering rich insights into segregation. However, leveraging this data poses significant challenges due to its vast volume, ambiguity, and confluence of diverse perspectives. To tackle these challenges, we propose a novel Large Language Model (LLM) agent to automate online review mining for segregation prediction. Specifically, we propose a reflective LLM coder to digest social media content into insights consistent with real-world feedback, and eventually produce a codebook capturing key dimensions that signal segregation experience, such as cultural resonance and appeal, accessibility and convenience, and community engagement and local involvement. Guided by the codebook, LLMs can generate both informative review summaries and ratings for segregation prediction. Moreover, we design a REasoning-and-EMbedding (RE'EM) framework, which combines the reasoning and embedding capabilities of language models to integrate multi-channel features for segregation prediction. Experiments on real-world data demonstrate that our agent substantially improves prediction accuracy, with a 22.79% elevation in R$^{2}$ and a 9.33% reduction in MSE. The derived codebook is generalizable across three different cities, consistently improving prediction accuracy. Moreover, our user study confirms that the codebook-guided summaries provide cognitive gains for human participants in perceiving places of interest (POIs)' social inclusiveness. Our study marks an important step toward understanding implicit social barriers and inequalities, demonstrating the great potential of promoting social inclusiveness with Web technology.
comment: 11 pages, 6 figures. This paper has been accepted at The ACM Web Conference 2026
♻ ☆ In-context Time Series Predictor ICLR 2025
Recent Transformer-based large language models (LLMs) demonstrate in-context learning ability to perform various functions based solely on the provided context, without updating model parameters. To fully utilize the in-context capabilities in time series forecasting (TSF) problems, unlike previous Transformer-based or LLM-based time series forecasting methods, we reformulate "time series forecasting tasks" as input tokens by constructing a series of (lookback, future) pairs within the tokens. This method aligns more closely with the inherent in-context mechanisms, and is more parameter-efficient without the need of using pre-trained LLM parameters. Furthermore, it addresses issues such as overfitting in existing Transformer-based TSF models, consistently achieving better performance across full-data, few-shot, and zero-shot settings compared to previous architectures.
comment: Camera-ready version. Accepted at ICLR 2025
♻ ☆ PASH at TREC 2021 Deep Learning Track: Generative Enhanced Model for Multi-stage Ranking
This paper describes the PASH participation in TREC 2021 Deep Learning Track. In the recall stage, we adopt a scheme combining sparse and dense retrieval method. In the multi-stage ranking phase, point-wise and pair-wise ranking strategies are used one after another based on model continual pre-trained on general knowledge and document-level data. Compared to TREC 2020 Deep Learning Track, we have additionally introduced the generative model T5 to further enhance the performance.
comment: TREC 2021
♻ ☆ Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers
Fact verification is essential for ensuring the reliability of LLM applications. In this study, we evaluate 12 pre-trained LLMs and one specialized fact-verifier, including frontier LLMs and open-weight reasoning LLMs, using a collection of examples from 14 fact-checking benchmarks. We share three findings intended to guide future development of more robust fact verifiers. First, we highlight the importance of addressing annotation errors and ambiguity in datasets, demonstrating that approximately 16\% of ambiguous or incorrectly labeled data substantially influences model rankings. Neglecting this issue may result in misleading conclusions during comparative evaluations, and we suggest using a systematic pipeline utilizing LLM-as-a-judge to help identify these issues at scale. Second, we discover that frontier LLMs with few-shot in-context examples, often overlooked in previous works, achieve top-tier performance. We therefore recommend that future studies include comparisons with these simple yet highly effective baselines. Lastly, despite their effectiveness, frontier LLMs incur substantial costs, motivating the development of small, fine-tuned fact verifiers. We show that these small models still have room for improvement, particularly on instances that require complex reasoning. Encouragingly, we demonstrate that augmenting training with synthetic multi-hop reasoning data significantly enhances their capabilities in such instances. We release our code, model, and dataset at https://github.com/just1nseo/verifying-the-verifiers.
comment: Accepted to COLM 2025
♻ ☆ Patterns in the Transition From Founder-Leadership to Community Governance of Open Source
Open digital public infrastructure needs community management to ensure accountability, sustainability, and robustness. Yet open-source projects often rely on centralized decision-making, and the determinants of successful community management remain unclear. We analyze 637 GitHub repositories to trace transitions from founder-led to shared governance. Specifically, we document trajectories to community governance by extracting institutional roles, actions, and deontic cues from version-controlled project constitutions GOVERNANCE .md. With a semantic parsing pipeline, we cluster elements into broader role and action types. We find roles and actions grow, and regulation becomes more balanced, reflecting increases in governance scope and differentiation over time. Rather than shifting tone, communities grow by layering and refining responsibilities. As transitions to community management mature, projects increasingly regulate ecosystem-level relationships and add definition to project oversight roles. Overall, this work offers a scalable pipeline for tracking the growth and development of community governance regimes from open-source software's familiar default of founder-ownership.
♻ ☆ Position: The Real Barrier to LLM Agent Usability is Agentic ROI
Large Language Model (LLM) agents represent a promising shift in human-AI interaction, moving beyond passive prompt-response systems to autonomous agents capable of reasoning, planning, and goal-directed action. While LLM agents are technically capable of performing a broad range of tasks, not all of these capabilities translate into meaningful usability. This position paper argues that the central question for LLM agent usability is no longer whether a task can be automated, but whether it delivers sufficient Agentic Return on Investment (Agentic ROI). Agentic ROI reframes evaluation from raw performance to a holistic, utility-driven perspective, guiding when, where, and for whom LLM agents should be deployed. Despite widespread application in high-ROI tasks like coding and scientific research, we identify a critical usability gap in mass-market, everyday applications. To address this, we propose a zigzag developmental trajectory: first scaling up to improve information gain and time savings, then scaling down to reduce cost. We present a strategic roadmap across these phases to make LLM agents truly usable, accessible, and scalable in real-world applications.
♻ ☆ Mil-SCORE: Benchmarking Long-Context Geospatial Reasoning and Planning in Large Language Models
As large language models (LLMs) are applied to increasingly longer and more complex tasks, there is a growing need for realistic long-context benchmarks that require selective reading and integration of heterogeneous, multi-modal information sources. This need is especially acute for geospatial planning problems, such as those found in planning for large-scale military operations, which demand fast and accurate reasoning over maps, orders, intelligence reports, and other distributed data. To address this gap, we present MilSCORE (Military Scenario Contextual Reasoning), to our knowledge the first scenario-level dataset of expert-authored, multi-hop questions grounded in a complex, simulated military planning scenario used for training. MilSCORE is designed to evaluate high-stakes decision-making and planning, probing LLMs' ability to combine tactical and spatial reasoning across multiple sources and to reason over long-horizon, geospatially rich context. The benchmark includes a diverse set of question types across seven categories targeting both factual recall and multi-step reasoning about constraints, strategy, and spatial analysis. We provide an evaluation protocol and report baseline results for a range of contemporary vision-language models. Our findings highlight substantial headroom on MilSCORE, indicating that current systems struggle with realistic, scenario-level long-context planning, and positioning MilSCORE as a challenging testbed for future work.
Training Data Efficiency in Multimodal Process Reward Models
Multimodal Process Reward Models (MPRMs) are central to step-level supervision for visual reasoning in MLLMs. Training MPRMs typically requires large-scale Monte Carlo (MC)-annotated corpora, incurring substantial training cost. This paper studies the data efficiency for MPRM training. Our preliminary experiments reveal that MPRM training quickly saturates under random subsampling of the training data, indicating substantial redundancy within existing MC-annotated corpora. To explain this, we formalize a theoretical framework and reveal that informative gradient updates depend on two factors: label mixtures of positive/negative steps and label reliability (average MC scores of positive steps). Guided by these insights, we propose the Balanced-Information Score (BIS), which prioritizes both mixture and reliability based on existing MC signals at the rollout level, without incurring any additional cost. Across two backbones (InternVL2.5-8B and Qwen2.5-VL-7B) on VisualProcessBench, BIS-selected subsets consistently match and even surpass the full-data performance at small fractions. Notably, the BIS subset reaches full-data performance using only 10% of the training data, improving over random subsampling by a relative 4.1%.
CARL: Focusing Agentic Reinforcement Learning on Critical Actions
Agents capable of accomplishing complex tasks through multiple interactions with the environment have emerged as a popular research direction. However, in such multi-step settings, the conventional group-level policy optimization algorithm becomes suboptimal because of its underlying assumption that each action holds equal contribution, which deviates significantly from reality. Our analysis reveals that only a small fraction of actions are critical in determining the final outcome. Building on this insight, we propose CARL, a critical-action-focused reinforcement learning algorithm tailored for long-horizon agentic reasoning. CARL leverages entropy as a heuristic proxy for action criticality and achieves focused training by assigning rewards to high-criticality actions while excluding low-criticality actions from model updates, avoiding noisy credit assignment and redundant computation. Extensive experiments demonstrate that CARL achieves both stronger performance and higher efficiency across diverse evaluation settings. The source code will be publicly available.
comment: 17 pages, 5 figures
♻ ☆ FASA: Frequency-aware Sparse Attention ICLR 2026
The deployment of Large Language Models (LLMs) faces a critical bottleneck when handling lengthy inputs: the prohibitive memory footprint of the Key Value (KV) cache. To address this bottleneck, the token pruning paradigm leverages attention sparsity to selectively retain a small, critical subset of tokens. However, existing approaches fall short, with static methods risking irreversible information loss and dynamic strategies employing heuristics that insufficiently capture the query-dependent nature of token importance. We propose FASA, a novel framework that achieves query-aware token eviction by dynamically predicting token importance. FASA stems from a novel insight into RoPE: the discovery of functional sparsity at the frequency-chunk (FC) level. Our key finding is that a small, identifiable subset of "dominant" FCs consistently exhibits high contextual agreement with the full attention head. This provides a robust and computationally free proxy for identifying salient tokens. Building on this insight, FASA first identifies a critical set of tokens using dominant FCs, and then performs focused attention computation solely on this pruned subset. Across a spectrum of long-context tasks, from sequence modeling to complex CoT reasoning, FASA consistently outperforms all token-eviction baselines and achieves near-oracle accuracy, demonstrating remarkable robustness even under constraint budgets. Notably, on LongBench-V1, FASA reaches nearly 100\% of full-KV performance when only keeping 256 tokens, and achieves 2.56$\times$ speedup using just 18.9\% of the cache on AIME24.
comment: Accepted by ICLR 2026
♻ ☆ Real-Time Detection of Hallucinated Entities in Long-Form Generation
Large language models are now routinely used in high-stakes applications where hallucinations can cause serious harm, such as medical consultations or legal advice. Existing hallucination detection methods, however, are impractical for real-world use, as they are either limited to short factual queries or require costly external verification. We present a cheap, scalable method for real-time identification of hallucinated tokens in long-form generations, and scale it effectively to 70B parameter models. Our approach targets entity-level hallucinations-e.g., fabricated names, dates, citations-rather than claim-level, thereby naturally mapping to token-level labels and enabling streaming detection. We develop an annotation methodology that leverages web search to annotate model responses with grounded labels indicating which tokens correspond to fabricated entities. This dataset enables us to train effective hallucination classifiers with simple and efficient methods such as linear probes. Evaluating across four model families, our classifiers consistently outperform baselines on long-form responses, including more expensive methods such as semantic entropy (e.g., AUC 0.90 vs 0.71 for Llama-3.3-70B), and are also an improvement in short-form question-answering settings. Despite being trained only to detect hallucinated entities, our probes effectively detect incorrect answers in mathematical reasoning tasks, indicating generalization beyond entities. While our annotation methodology is expensive, we find that annotated responses from one model can be used to train effective classifiers on other models; accordingly, we publicly release our datasets to facilitate reuse. Overall, our work suggests a promising new approach for scalable, real-world hallucination detection.
♻ ☆ Improving Diffusion Language Model Decoding through Joint Search in Generation Order and Token Space
Diffusion Language Models (DLMs) offer order-agnostic generation that can explore many possible decoding trajectories. However, current decoding methods commit to a single trajectory, limiting exploration in trajectory space. We introduce Order-Token Search to explore this space through jointly searching over generation order and token values. Its core is a likelihood estimator that scores denoising actions, enabling stable pruning and efficient exploration of diverse trajectories. Across mathematical reasoning and coding benchmarks, Order-Token Search consistently outperforms baselines on GSM8K, MATH500, Countdown, and HumanEval (3.1%, 3.8%, 7.9%, and 6.8% absolute over backbone), matching or surpassing diffu-GRPO post-trained d1-LLaDA. Our work establishes joint search as a key component for advancing decoding in DLMs.
♻ ☆ Horizon-LM: A RAM-Centric Architecture for LLM Training
The rapid growth of large language models (LLMs) has outpaced the evolution of single-GPU hardware, making model scale increasingly constrained by memory capacity rather than computation. While modern training systems extend GPU memory through distributed parallelism and offloading across CPU and storage tiers, they fundamentally retain a GPU-centric execution paradigm in which GPUs host persistent model replicas and full autograd graphs. As a result, scaling large models remains tightly coupled to multi-GPU clusters, complex distributed runtimes, and unpredictable host memory consumption, creating substantial barriers for node-scale post-training workloads such as instruction tuning, alignment, and domain adaptation. We present Horizon-LM, a memory-centric training system that redefines the roles of CPU and GPU for large-model optimization. Horizon-LM treats host memory as the authoritative parameter store and uses GPUs solely as transient compute engines through a CPU-master, GPU-template execution model. By eliminating persistent GPU-resident modules and autograd graphs, employing explicit recomputation with manual gradient propagation, and introducing a pipelined double-buffered execution engine, Horizon-LM decouples model scale from GPU count and bounds memory usage to the theoretical parameter footprint. On a single H200 GPU with 1.5\,TB host RAM, Horizon-LM reliably trains models up to 120B parameters. On a standard single A100 machine, Horizon-LM achieves up to 12.2$\times$ higher training throughput than DeepSpeed ZeRO-3 with CPU offloading while preserving numerical correctness. Across platforms and scales, Horizon-LM sustains high device utilization and predictable memory growth, demonstrating that host memory, not GPU memory, defines the true feasibility boundary for node-scale large-model training.
♻ ☆ LittleBit: Ultra Low-Bit Quantization via Latent Factorization NeurIPS 2025
The deployment of large language models (LLMs) is frequently hindered by prohibitive memory and computational requirements. While quantization mitigates these bottlenecks, maintaining model fidelity in the sub-1-bit regime remains a persistent challenge. In this paper, we introduce LittleBit, a novel framework for extreme LLM compression. We target quantization rates as low as $0.1$ bits per weight (BPW), achieving a memory reduction of approximately $31\times$, which effectively compresses Llama2-13B to under $0.9$ GB. We represent weights via low-rank latent matrix factorization and subsequently binarize the resulting factors. To counteract the information loss inherent to such drastic precision reduction, we integrate a multi-scale compensation mechanism that learns importance parameters across row, column, and latent dimensions. Two primary contributions enable effective training: Dual Sign-Value-Independent Decomposition (Dual-SVID) for quantization-aware training (QAT) initialization, and Residual Compensation to minimize approximation errors. Extensive experiments confirm the superiority of LittleBit in the sub-1-bit domain; for instance, our method at $0.1$ BPW surpasses the performance of leading techniques operating at $0.7$ BPW on Llama2-7B. We establish a new size-performance trade-off -- unlocking a potential $11.6\times$ inference speedup relative to FP16 -- and render powerful LLMs practical for resource-constrained environments. Our code is available at https://github.com/SamsungLabs/LittleBit.
comment: Accepted to NeurIPS 2025. Banseok Lee and Dongkyu Kim contributed equally
♻ ☆ The Gradient-Causal Gap: Why Gradient Importance Fails on Complex Tasks ICLR
Removing ''important'' high-gradient components from a neural network can improve generalization, while removing unimportant'' low-gradient components can destroy it. We demonstrate this paradox by formalizing the \textit{Gradient-Causal Gap} in Transformers trained on algorithmic tasks. While gradient magnitude and causal importance align on simple tasks ($ρ=0.73$ for reversal), this relationship collapses as task complexity increases ($ρ=0.32$ for sorting), sometimes becoming inverted ($ρ=-0.11$). Pruning experiments reveal that gradient magnitude is not merely inaccurate but \textit{unpredictably} so. Removing low-gradient ''Hidden Heroes'' consistently devastates OOD accuracy ($-32\%$). Removing high-gradient ''Gradient Bloats'' is a coin flip: harmless in most seeds (indicating optimization noise), catastrophic in others (indicating overfitting circuits). This unpredictability means gradient-based pruning cannot reliably preserve model capabilities.
comment: 8 pages, 4 figures. Under Review. Code:https://anonymous.4open.science/r/ICLR_2026_LIT-workshop_CG-D42B
♻ ☆ Your Latent Reasoning is Secretly Policy Improvement Operator
Recently, small models with latent recursion have obtained promising results on complex reasoning tasks. These results are typically explained by the theory that such recursion increases a networks depth, allowing it to compactly emulate the capacity of larger models. However, the performance of recursively added layers remains behind the capabilities of one pass models with the same feed forward depth. This means that in the looped version, not every recursive step effectively contributes to depth. This raises the question: when and why does latent reasoning improve performance, and when does it result in dead compute? In our work, we analyze the algorithms that latent reasoning provides answer to this question. We show that latent reasoning can be formalized as a classifier free guidance and policy improvement algorithm. Building on these insights, we propose to use a training schemes from reinforcement learning and diffusion methods for latent reasoning models. Using the Tiny Recursive Model as our testbed, we show that with our modifications we can avoid dead compute steps and reduce the total number of forward passes by 18x while maintaining performance. Broadly speaking, we show how a policy improvement perspective on recursive steps can explain model behavior and provide insights for further improvements.
♻ ☆ STACK: Adversarial Attacks on LLM Safeguard Pipelines
Frontier AI developers are relying on layers of safeguards to protect against catastrophic misuse of AI systems. Anthropic and OpenAI guard their latest Opus 4 model and GPT-5 models using such defense pipelines, and other frontier developers including Google DeepMind pledge to soon deploy similar defenses. However, the security of such pipelines is unclear, with limited prior work evaluating or attacking these pipelines. We address this gap by developing and red-teaming an open-source defense pipeline. First, we find that a novel few-shot-prompted input and output classifier outperforms state-of-the-art open-weight safeguard model ShieldGemma across three attacks and two datasets, reducing the attack success rate (ASR) to 0% on the catastrophic misuse dataset ClearHarm. Second, we introduce a STaged AttaCK (STACK) procedure that achieves 71% ASR on ClearHarm in a black-box attack against the few-shot-prompted classifier pipeline. Finally, we also evaluate STACK in a transfer setting, achieving 33% ASR, providing initial evidence that it is feasible to design attacks with no access to the target pipeline. We conclude by suggesting specific mitigations that developers could use to thwart staged attacks.
comment: Add results on other models and datasets
Computer Vision and Pattern Recognition 182
☆ Shared LoRA Subspaces for almost Strict Continual Learning
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.
☆ Pseudo-Invertible Neural Networks
The Moore-Penrose Pseudo-inverse (PInv) serves as the fundamental solution for linear systems. In this paper, we propose a natural generalization of PInv to the nonlinear regime in general and to neural networks in particular. We introduce Surjective Pseudo-invertible Neural Networks (SPNN), a class of architectures explicitly designed to admit a tractable non-linear PInv. The proposed non-linear PInv and its implementation in SPNN satisfy fundamental geometric properties. One such property is null-space projection or "Back-Projection", $x' = x + A^\dagger(y-Ax)$, which moves a sample $x$ to its closest consistent state $x'$ satisfying $Ax=y$. We formalize Non-Linear Back-Projection (NLBP), a method that guarantees the same consistency constraint for non-linear mappings $f(x)=y$ via our defined PInv. We leverage SPNNs to expand the scope of zero-shot inverse problems. Diffusion-based null-space projection has revolutionized zero-shot solving for linear inverse problems by exploiting closed-form back-projection. We extend this method to non-linear degradations. Here, "degradation" is broadly generalized to include any non-linear loss of information, spanning from optical distortions to semantic abstractions like classification. This approach enables zero-shot inversion of complex degradations and allows precise semantic control over generative outputs without retraining the diffusion prior.
☆ Predicting Camera Pose from Perspective Descriptions for Spatial Reasoning
Multi-image spatial reasoning remains challenging for current multimodal large language models (MLLMs). While single-view perception is inherently 2D, reasoning over multiple views requires building a coherent scene understanding across viewpoints. In particular, we study perspective taking, where a model must build a coherent 3D understanding from multi-view observations and use it to reason from a new, language-specified viewpoint. We introduce CAMCUE, a pose-aware multi-image framework that uses camera pose as an explicit geometric anchor for cross-view fusion and novel-view reasoning. CAMCUE injects per-view pose into visual tokens, grounds natural-language viewpoint descriptions to a target camera pose, and synthesizes a pose-conditioned imagined target view to support answering. To support this setting, we curate CAMCUE-DATA with 27,668 training and 508 test instances pairing multi-view images and poses with diverse target-viewpoint descriptions and perspective-shift questions. We also include human-annotated viewpoint descriptions in the test split to evaluate generalization to human language. CAMCUE improves overall accuracy by 9.06% and predicts target poses from natural-language viewpoint descriptions with over 90% rotation accuracy within 20° and translation accuracy within a 0.5 error threshold. This direct grounding avoids expensive test-time search-and-match, reducing inference time from 256.6s to 1.45s per example and enabling fast, interactive use in real-world scenarios.
☆ SwimBird: Eliciting Switchable Reasoning Mode in Hybrid Autoregressive MLLMs
Multimodal Large Language Models (MLLMs) have made remarkable progress in multimodal perception and reasoning by bridging vision and language. However, most existing MLLMs perform reasoning primarily with textual CoT, which limits their effectiveness on vision-intensive tasks. Recent approaches inject a fixed number of continuous hidden states as "visual thoughts" into the reasoning process and improve visual performance, but often at the cost of degraded text-based logical reasoning. We argue that the core limitation lies in a rigid, pre-defined reasoning pattern that cannot adaptively choose the most suitable thinking modality for different user queries. We introduce SwimBird, a reasoning-switchable MLLM that dynamically switches among three reasoning modes conditioned on the input: (1) text-only reasoning, (2) vision-only reasoning (continuous hidden states as visual thoughts), and (3) interleaved vision-text reasoning. To enable this capability, we adopt a hybrid autoregressive formulation that unifies next-token prediction for textual thoughts with next-embedding prediction for visual thoughts, and design a systematic reasoning-mode curation strategy to construct SwimBird-SFT-92K, a diverse supervised fine-tuning dataset covering all three reasoning patterns. By enabling flexible, query-adaptive mode selection, SwimBird preserves strong textual logic while substantially improving performance on vision-dense tasks. Experiments across diverse benchmarks covering textual reasoning and challenging visual understanding demonstrate that SwimBird achieves state-of-the-art results and robust gains over prior fixed-pattern multimodal reasoning methods.
comment: Project Page: https://accio-lab.github.io/SwimBird
☆ CommCP: Efficient Multi-Agent Coordination via LLM-Based Communication with Conformal Prediction
To complete assignments provided by humans in natural language, robots must interpret commands, generate and answer relevant questions for scene understanding, and manipulate target objects. Real-world deployments often require multiple heterogeneous robots with different manipulation capabilities to handle different assignments cooperatively. Beyond the need for specialized manipulation skills, effective information gathering is important in completing these assignments. To address this component of the problem, we formalize the information-gathering process in a fully cooperative setting as an underexplored multi-agent multi-task Embodied Question Answering (MM-EQA) problem, which is a novel extension of canonical Embodied Question Answering (EQA), where effective communication is crucial for coordinating efforts without redundancy. To address this problem, we propose CommCP, a novel LLM-based decentralized communication framework designed for MM-EQA. Our framework employs conformal prediction to calibrate the generated messages, thereby minimizing receiver distractions and enhancing communication reliability. To evaluate our framework, we introduce an MM-EQA benchmark featuring diverse, photo-realistic household scenarios with embodied questions. Experimental results demonstrate that CommCP significantly enhances the task success rate and exploration efficiency over baselines. The experiment videos, code, and dataset are available on our project website: https://comm-cp.github.io.
comment: IEEE International Conference on Robotics and Automation (ICRA 2026); Project Website: https://comm-cp.github.io/
Thinking with Geometry: Active Geometry Integration for Spatial Reasoning
Recent progress in spatial reasoning with Multimodal Large Language Models (MLLMs) increasingly leverages geometric priors from 3D encoders. However, most existing integration strategies remain passive: geometry is exposed as a global stream and fused in an indiscriminate manner, which often induces semantic-geometry misalignment and redundant signals. We propose GeoThinker, a framework that shifts the paradigm from passive fusion to active perception. Instead of feature mixing, GeoThinker enables the model to selectively retrieve geometric evidence conditioned on its internal reasoning demands. GeoThinker achieves this through Spatial-Grounded Fusion applied at carefully selected VLM layers, where semantic visual priors selectively query and integrate task-relevant geometry via frame-strict cross-attention, further calibrated by Importance Gating that biases per-frame attention toward task-relevant structures. Comprehensive evaluation results show that GeoThinker sets a new state-of-the-art in spatial intelligence, achieving a peak score of 72.6 on the VSI-Bench. Furthermore, GeoThinker demonstrates robust generalization and significantly improved spatial perception across complex downstream scenarios, including embodied referring and autonomous driving. Our results indicate that the ability to actively integrate spatial structures is essential for next-generation spatial intelligence. Code can be found at https://github.com/Li-Hao-yuan/GeoThinker.
☆ InterPrior: Scaling Generative Control for Physics-Based Human-Object Interactions
Humans rarely plan whole-body interactions with objects at the level of explicit whole-body movements. High-level intentions, such as affordance, define the goal, while coordinated balance, contact, and manipulation can emerge naturally from underlying physical and motor priors. Scaling such priors is key to enabling humanoids to compose and generalize loco-manipulation skills across diverse contexts while maintaining physically coherent whole-body coordination. To this end, we introduce InterPrior, a scalable framework that learns a unified generative controller through large-scale imitation pretraining and post-training by reinforcement learning. InterPrior first distills a full-reference imitation expert into a versatile, goal-conditioned variational policy that reconstructs motion from multimodal observations and high-level intent. While the distilled policy reconstructs training behaviors, it does not generalize reliably due to the vast configuration space of large-scale human-object interactions. To address this, we apply data augmentation with physical perturbations, and then perform reinforcement learning finetuning to improve competence on unseen goals and initializations. Together, these steps consolidate the reconstructed latent skills into a valid manifold, yielding a motion prior that generalizes beyond the training data, e.g., it can incorporate new behaviors such as interactions with unseen objects. We further demonstrate its effectiveness for user-interactive control and its potential for real robot deployment.
comment: Webpage: https://sirui-xu.github.io/InterPrior/
☆ V-Retrver: Evidence-Driven Agentic Reasoning for Universal Multimodal Retrieval
Multimodal Large Language Models (MLLMs) have recently been applied to universal multimodal retrieval, where Chain-of-Thought (CoT) reasoning improves candidate reranking. However, existing approaches remain largely language-driven, relying on static visual encodings and lacking the ability to actively verify fine-grained visual evidence, which often leads to speculative reasoning in visually ambiguous cases. We propose V-Retrver, an evidence-driven retrieval framework that reformulates multimodal retrieval as an agentic reasoning process grounded in visual inspection. V-Retrver enables an MLLM to selectively acquire visual evidence during reasoning via external visual tools, performing a multimodal interleaved reasoning process that alternates between hypothesis generation and targeted visual verification.To train such an evidence-gathering retrieval agent, we adopt a curriculum-based learning strategy combining supervised reasoning activation, rejection-based refinement, and reinforcement learning with an evidence-aligned objective. Experiments across multiple multimodal retrieval benchmarks demonstrate consistent improvements in retrieval accuracy (with 23.0% improvements on average), perception-driven reasoning reliability, and generalization.
☆ Splat and Distill: Augmenting Teachers with Feed-Forward 3D Reconstruction For 3D-Aware Distillation ICLR 2026
Vision Foundation Models (VFMs) have achieved remarkable success when applied to various downstream 2D tasks. Despite their effectiveness, they often exhibit a critical lack of 3D awareness. To this end, we introduce Splat and Distill, a framework that instills robust 3D awareness into 2D VFMs by augmenting the teacher model with a fast, feed-forward 3D reconstruction pipeline. Given 2D features produced by a teacher model, our method first lifts these features into an explicit 3D Gaussian representation, in a feedforward manner. These 3D features are then ``splatted" onto novel viewpoints, producing a set of novel 2D feature maps used to supervise the student model, ``distilling" geometrically grounded knowledge. By replacing slow per-scene optimization of prior work with our feed-forward lifting approach, our framework avoids feature-averaging artifacts, creating a dynamic learning process where the teacher's consistency improves alongside that of the student. We conduct a comprehensive evaluation on a suite of downstream tasks, including monocular depth estimation, surface normal estimation, multi-view correspondence, and semantic segmentation. Our method significantly outperforms prior works, not only achieving substantial gains in 3D awareness but also enhancing the underlying semantic richness of 2D features. Project page is available at https://davidshavin4.github.io/Splat-and-Distill/
comment: Accepted to ICLR 2026
☆ Context Forcing: Consistent Autoregressive Video Generation with Long Context
Recent approaches to real-time long video generation typically employ streaming tuning strategies, attempting to train a long-context student using a short-context (memoryless) teacher. In these frameworks, the student performs long rollouts but receives supervision from a teacher limited to short 5-second windows. This structural discrepancy creates a critical \textbf{student-teacher mismatch}: the teacher's inability to access long-term history prevents it from guiding the student on global temporal dependencies, effectively capping the student's context length. To resolve this, we propose \textbf{Context Forcing}, a novel framework that trains a long-context student via a long-context teacher. By ensuring the teacher is aware of the full generation history, we eliminate the supervision mismatch, enabling the robust training of models capable of long-term consistency. To make this computationally feasible for extreme durations (e.g., 2 minutes), we introduce a context management system that transforms the linearly growing context into a \textbf{Slow-Fast Memory} architecture, significantly reducing visual redundancy. Extensive results demonstrate that our method enables effective context lengths exceeding 20 seconds -- 2 to 10 times longer than state-of-the-art methods like LongLive and Infinite-RoPE. By leveraging this extended context, Context Forcing preserves superior consistency across long durations, surpassing state-of-the-art baselines on various long video evaluation metrics.
☆ MambaVF: State Space Model for Efficient Video Fusion
Video fusion is a fundamental technique in various video processing tasks. However, existing video fusion methods heavily rely on optical flow estimation and feature warping, resulting in severe computational overhead and limited scalability. This paper presents MambaVF, an efficient video fusion framework based on state space models (SSMs) that performs temporal modeling without explicit motion estimation. First, by reformulating video fusion as a sequential state update process, MambaVF captures long-range temporal dependencies with linear complexity while significantly reducing computation and memory costs. Second, MambaVF proposes a lightweight SSM-based fusion module that replaces conventional flow-guided alignment via a spatio-temporal bidirectional scanning mechanism. This module enables efficient information aggregation across frames. Extensive experiments across multiple benchmarks demonstrate that our MambaVF achieves state-of-the-art performance in multi-exposure, multi-focus, infrared-visible, and medical video fusion tasks. We highlight that MambaVF enjoys high efficiency, reducing up to 92.25% of parameters and 88.79% of computational FLOPs and a 2.1x speedup compared to existing methods. Project page: https://mambavf.github.io
☆ GenArena: How Can We Achieve Human-Aligned Evaluation for Visual Generation Tasks?
The rapid advancement of visual generation models has outpaced traditional evaluation approaches, necessitating the adoption of Vision-Language Models as surrogate judges. In this work, we systematically investigate the reliability of the prevailing absolute pointwise scoring standard, across a wide spectrum of visual generation tasks. Our analysis reveals that this paradigm is limited due to stochastic inconsistency and poor alignment with human perception. To resolve these limitations, we introduce GenArena, a unified evaluation framework that leverages a pairwise comparison paradigm to ensure stable and human-aligned evaluation. Crucially, our experiments uncover a transformative finding that simply adopting this pairwise protocol enables off-the-shelf open-source models to outperform top-tier proprietary models. Notably, our method boosts evaluation accuracy by over 20% and achieves a Spearman correlation of 0.86 with the authoritative LMArena leaderboard, drastically surpassing the 0.36 correlation of pointwise methods. Based on GenArena, we benchmark state-of-the-art visual generation models across diverse tasks, providing the community with a rigorous and automated evaluation standard for visual generation.
comment: Project Page: https://genarena.github.io/, Code: https://github.com/ruihanglix/genarena
☆ VisRefiner: Learning from Visual Differences for Screenshot-to-Code Generation
Screenshot-to-code generation aims to translate user interface screenshots into executable frontend code that faithfully reproduces the target layout and style. Existing multimodal large language models perform this mapping directly from screenshots but are trained without observing the visual outcomes of their generated code. In contrast, human developers iteratively render their implementation, compare it with the design, and learn how visual differences relate to code changes. Inspired by this process, we propose VisRefiner, a training framework that enables models to learn from visual differences between rendered predictions and reference designs. We construct difference-aligned supervision that associates visual discrepancies with corresponding code edits, allowing the model to understand how appearance variations arise from implementation changes. Building on this, we introduce a reinforcement learning stage for self-refinement, where the model improves its generated code by observing both the rendered output and the target design, identifying their visual differences, and updating the code accordingly. Experiments show that VisRefiner substantially improves single-step generation quality and layout fidelity, while also endowing models with strong self-refinement ability. These results demonstrate the effectiveness of learning from visual differences for advancing screenshot-to-code generation.
☆ RISE-Video: Can Video Generators Decode Implicit World Rules?
While generative video models have achieved remarkable visual fidelity, their capacity to internalize and reason over implicit world rules remains a critical yet under-explored frontier. To bridge this gap, we present RISE-Video, a pioneering reasoning-oriented benchmark for Text-Image-to-Video (TI2V) synthesis that shifts the evaluative focus from surface-level aesthetics to deep cognitive reasoning. RISE-Video comprises 467 meticulously human-annotated samples spanning eight rigorous categories, providing a structured testbed for probing model intelligence across diverse dimensions, ranging from commonsense and spatial dynamics to specialized subject domains. Our framework introduces a multi-dimensional evaluation protocol consisting of four metrics: \textit{Reasoning Alignment}, \textit{Temporal Consistency}, \textit{Physical Rationality}, and \textit{Visual Quality}. To further support scalable evaluation, we propose an automated pipeline leveraging Large Multimodal Models (LMMs) to emulate human-centric assessment. Extensive experiments on 11 state-of-the-art TI2V models reveal pervasive deficiencies in simulating complex scenarios under implicit constraints, offering critical insights for the advancement of future world-simulating generative models.
comment: 38 pages, 16 figures, 3 tables; Code: https://github.com/VisionXLab/RISE-Video; HuggingFace: https://huggingface.co/datasets/VisionXLab/RISE-Video
☆ LSA: Localized Semantic Alignment for Enhancing Temporal Consistency in Traffic Video Generation
Controllable video generation has emerged as a versatile tool for autonomous driving, enabling realistic synthesis of traffic scenarios. However, existing methods depend on control signals at inference time to guide the generative model towards temporally consistent generation of dynamic objects, limiting their utility as scalable and generalizable data engines. In this work, we propose Localized Semantic Alignment (LSA), a simple yet effective framework for fine-tuning pre-trained video generation models. LSA enhances temporal consistency by aligning semantic features between ground-truth and generated video clips. Specifically, we compare the output of an off-the-shelf feature extraction model between the ground-truth and generated video clips localized around dynamic objects inducing a semantic feature consistency loss. We fine-tune the base model by combining this loss with the standard diffusion loss. The model fine-tuned for a single epoch with our novel loss outperforms the baselines in common video generation evaluation metrics. To further test the temporal consistency in generated videos we adapt two additional metrics from object detection task, namely mAP and mIoU. Extensive experiments on nuScenes and KITTI datasets show the effectiveness of our approach in enhancing temporal consistency in video generation without the need for external control signals during inference and any computational overheads.
comment: Accepted to IEEE IV 2026. 8 pages, 3 figures. Code available at https://github.com/mirlanium/LSA
☆ Better Source, Better Flow: Learning Condition-Dependent Source Distribution for Flow Matching
Flow matching has recently emerged as a promising alternative to diffusion-based generative models, particularly for text-to-image generation. Despite its flexibility in allowing arbitrary source distributions, most existing approaches rely on a standard Gaussian distribution, a choice inherited from diffusion models, and rarely consider the source distribution itself as an optimization target in such settings. In this work, we show that principled design of the source distribution is not only feasible but also beneficial at the scale of modern text-to-image systems. Specifically, we propose learning a condition-dependent source distribution under flow matching objective that better exploit rich conditioning signals. We identify key failure modes that arise when directly incorporating conditioning into the source, including distributional collapse and instability, and show that appropriate variance regularization and directional alignment between source and target are critical for stable and effective learning. We further analyze how the choice of target representation space impacts flow matching with structured sources, revealing regimes in which such designs are most effective. Extensive experiments across multiple text-to-image benchmarks demonstrate consistent and robust improvements, including up to a 3x faster convergence in FID, highlighting the practical benefits of a principled source distribution design for conditional flow matching.
comment: Project Page: https://junwankimm.github.io/CSFM
☆ Multi-Scale Global-Instance Prompt Tuning for Continual Test-time Adaptation in Medical Image Segmentation
Distribution shift is a common challenge in medical images obtained from different clinical centers, significantly hindering the deployment of pre-trained semantic segmentation models in real-world applications across multiple domains. Continual Test-Time Adaptation(CTTA) has emerged as a promising approach to address cross-domain shifts during continually evolving target domains. Most existing CTTA methods rely on incrementally updating model parameters, which inevitably suffer from error accumulation and catastrophic forgetting, especially in long-term adaptation. Recent prompt-tuning-based works have shown potential to mitigate the two issues above by updating only visual prompts. While these approaches have demonstrated promising performance, several limitations remain:1)lacking multi-scale prompt diversity, 2)inadequate incorporation of instance-specific knowledge, and 3)risk of privacy leakage. To overcome these limitations, we propose Multi-scale Global-Instance Prompt Tuning(MGIPT), to enhance scale diversity of prompts and capture both global- and instance-level knowledge for robust CTTA. Specifically, MGIPT consists of an Adaptive-scale Instance Prompt(AIP) and a Multi-scale Global-level Prompt(MGP). AIP dynamically learns lightweight and instance-specific prompts to mitigate error accumulation with adaptive optimal-scale selection mechanism. MGP captures domain-level knowledge across different scales to ensure robust adaptation with anti-forgetting capabilities. These complementary components are combined through a weighted ensemble approach, enabling effective dual-level adaptation that integrates both global and local information. Extensive experiments on medical image segmentation benchmarks demonstrate that our MGIPT outperforms state-of-the-art methods, achieving robust adaptation across continually changing target domains.
comment: 8 pages, BIBM2025
☆ CLIP-Map: Structured Matrix Mapping for Parameter-Efficient CLIP Compression
Contrastive Language-Image Pre-training (CLIP) has achieved widely applications in various computer vision tasks, e.g., text-to-image generation, Image-Text retrieval and Image captioning. However, CLIP suffers from high memory and computation cost, which prohibits its usage to the resource-limited application scenarios. Existing CLIP compression methods typically reduce the size of pre-trained CLIP weights by selecting their subset as weight inheritance for further retraining via mask optimization or important weight measurement. However, these select-based weight inheritance often compromises the feature presentation ability, especially on the extreme compression. In this paper, we propose a novel mapping-based CLIP compression framework, CLIP-Map. It leverages learnable matrices to map and combine pretrained weights by Full-Mapping with Kronecker Factorization, aiming to preserve as much information from the original weights as possible. To mitigate the optimization challenges introduced by the learnable mapping, we propose Diagonal Inheritance Initialization to reduce the distribution shifting problem for efficient and effective mapping learning. Extensive experimental results demonstrate that the proposed CLIP-Map outperforms select-based frameworks across various compression ratios, with particularly significant gains observed under high compression settings.
☆ Neural Implicit 3D Cardiac Shape Reconstruction from Sparse CT Angiography Slices Mimicking 2D Transthoracic Echocardiography Views
Accurate 3D representations of cardiac structures allow quantitative analysis of anatomy and function. In this work, we propose a method for reconstructing complete 3D cardiac shapes from segmentations of sparse planes in CT angiography (CTA) for application in 2D transthoracic echocardiography (TTE). Our method uses a neural implicit function to reconstruct the 3D shape of the cardiac chambers and left-ventricle myocardium from sparse CTA planes. To investigate the feasibility of achieving 3D reconstruction from 2D TTE, we select planes that mimic the standard apical 2D TTE views. During training, a multi-layer perceptron learns shape priors from 3D segmentations of the target structures in CTA. At test time, the network reconstructs 3D cardiac shapes from segmentations of TTE-mimicking CTA planes by jointly optimizing the latent code and the rigid transforms that map the observed planes into 3D space. For each heart, we simulate four realistic apical views, and we compare reconstructed multi-class volumes with the reference CTA volumes. On a held-out set of CTA segmentations, our approach achieves an average Dice coefficient of 0.86 $\pm$ 0.04 across all structures. Our method also achieves markedly lower volume errors than the clinical standard, Simpson's biplane rule: 4.88 $\pm$ 4.26 mL vs. 8.14 $\pm$ 6.04 mL, respectively, for the left ventricle; and 6.40 $\pm$ 7.37 mL vs. 37.76 $\pm$ 22.96 mL, respectively, for the left atrium. This suggests that our approach offers a viable route to more accurate 3D chamber quantification in 2D transthoracic echocardiography.
☆ EoCD: Encoder only Remote Sensing Change Detection
Being a cornerstone of temporal analysis, change detection has been playing a pivotal role in modern earth observation. Existing change detection methods rely on the Siamese encoder to individually extract temporal features followed by temporal fusion. Subsequently, these methods design sophisticated decoders to improve the change detection performance without taking into consideration the complexity of the model. These aforementioned issues intensify the overall computational cost as well as the network's complexity which is undesirable. Alternatively, few methods utilize the early fusion scheme to combine the temporal images. These methods prevent the extra overhead of Siamese encoder, however, they also rely on sophisticated decoders for better performance. In addition, these methods demonstrate inferior performance as compared to late fusion based methods. To bridge these gaps, we introduce encoder only change detection (EoCD) that is a simple and effective method for the change detection task. The proposed method performs the early fusion of the temporal data and replaces the decoder with a parameter-free multiscale feature fusion module thereby significantly reducing the overall complexity of the model. EoCD demonstrate the optimal balance between the change detection performance and the prediction speed across a variety of encoder architectures. Additionally, EoCD demonstrate that the performance of the model is predominantly dependent on the encoder network, making the decoder an additional component. Extensive experimentation on four challenging change detection datasets reveals the effectiveness of the proposed method.
☆ Contour Refinement using Discrete Diffusion in Low Data Regime
Boundary detection of irregular and translucent objects is an important problem with applications in medical imaging, environmental monitoring and manufacturing, where many of these applications are plagued with scarce labeled data and low in situ computational resources. While recent image segmentation studies focus on segmentation mask alignment with ground-truth, the task of boundary detection remains understudied, especially in the low data regime. In this work, we present a lightweight discrete diffusion contour refinement pipeline for robust boundary detection in the low data regime. We use a Convolutional Neural Network(CNN) architecture with self-attention layers as the core of our pipeline, and condition on a segmentation mask, iteratively denoising a sparse contour representation. We introduce multiple novel adaptations for improved low-data efficacy and inference efficiency, including using a simplified diffusion process, a customized model architecture, and minimal post processing to produce a dense, isolated contour given a dataset of size <500 training images. Our method outperforms several SOTA baselines on the medical imaging dataset KVASIR, is competitive on HAM10K and our custom wildfire dataset, Smoke, while improving inference framerate by 3.5X.
comment: CRV 2026, 8 pages, 6 figures
☆ Pathwise Test-Time Correction for Autoregressive Long Video Generation
Distilled autoregressive diffusion models facilitate real-time short video synthesis but suffer from severe error accumulation during long-sequence generation. While existing Test-Time Optimization (TTO) methods prove effective for images or short clips, we identify that they fail to mitigate drift in extended sequences due to unstable reward landscapes and the hypersensitivity of distilled parameters. To overcome these limitations, we introduce Test-Time Correction (TTC), a training-free alternative. Specifically, TTC utilizes the initial frame as a stable reference anchor to calibrate intermediate stochastic states along the sampling trajectory. Extensive experiments demonstrate that our method seamlessly integrates with various distilled models, extending generation lengths with negligible overhead while matching the quality of resource-intensive training-based methods on 30-second benchmarks.
Self-Supervised Learning with a Multi-Task Latent Space Objective
Self-supervised learning (SSL) methods based on Siamese networks learn visual representations by aligning different views of the same image. The multi-crop strategy, which incorporates small local crops to global ones, enhances many SSL frameworks but causes instability in predictor-based architectures such as BYOL, SimSiam, and MoCo v3. We trace this failure to the shared predictor used across all views and demonstrate that assigning a separate predictor to each view type stabilizes multi-crop training, resulting in significant performance gains. Extending this idea, we treat each spatial transformation as a distinct alignment task and add cutout views, where part of the image is masked before encoding. This yields a simple multi-task formulation of asymmetric Siamese SSL that combines global, local, and masked views into a single framework. The approach is stable, generally applicable across backbones, and consistently improves the performance of ResNet and ViT models on ImageNet.
☆ UI-Mem: Self-Evolving Experience Memory for Online Reinforcement Learning in Mobile GUI Agents
Online Reinforcement Learning (RL) offers a promising paradigm for enhancing GUI agents through direct environment interaction. However, its effectiveness is severely hindered by inefficient credit assignment in long-horizon tasks and repetitive errors across tasks due to the lack of experience transfer. To address these challenges, we propose UI-Mem, a novel framework that enhances GUI online RL with a Hierarchical Experience Memory. Unlike traditional replay buffers, our memory accumulates structured knowledge, including high-level workflows, subtask skills, and failure patterns. These experiences are stored as parameterized templates that enable cross-task and cross-application transfer. To effectively integrate memory guidance into online RL, we introduce Stratified Group Sampling, which injects varying levels of guidance across trajectories within each rollout group to maintain outcome diversity, driving the unguided policy toward internalizing guided behaviors. Furthermore, a Self-Evolving Loop continuously abstracts novel strategies and errors to keep the memory aligned with the agent's evolving policy. Experiments on online GUI benchmarks demonstrate that UI-Mem significantly outperforms traditional RL baselines and static reuse strategies, with strong generalization to unseen applications. Project page: https://ui-mem.github.io
comment: 23 pages, 16 figures. Project page: https://ui-mem.github.io
☆ Weaver: End-to-End Agentic System Training for Video Interleaved Reasoning
Video reasoning constitutes a comprehensive assessment of a model's capabilities, as it demands robust perceptual and interpretive skills, thereby serving as a means to explore the boundaries of model performance. While recent research has leveraged text-centric Chain-of-Thought reasoning to augment these capabilities, such approaches frequently suffer from representational mismatch and restricted by limited perceptual acuity. To address these limitations, we propose Weaver, a novel, end-to-end trainable multimodal reasoning agentic system. Weaver empowers its policy model to dynamically invoke diverse tools throughout the reasoning process, enabling progressive acquisition of crucial visual cues and construction of authentic multimodal reasoning trajectories. Furthermore, we integrate a reinforcement learning algorithm to allow the system to freely explore strategies for employing and combining these tools with trajectory-free data. Extensive experiments demonstrate that our system, Weaver, enhances performance on several complex video reasoning benchmarks, particularly those involving long videos.
☆ Sparse Video Generation Propels Real-World Beyond-the-View Vision-Language Navigation
Why must vision-language navigation be bound to detailed and verbose language instructions? While such details ease decision-making, they fundamentally contradict the goal for navigation in the real-world. Ideally, agents should possess the autonomy to navigate in unknown environments guided solely by simple and high-level intents. Realizing this ambition introduces a formidable challenge: Beyond-the-View Navigation (BVN), where agents must locate distant, unseen targets without dense and step-by-step guidance. Existing large language model (LLM)-based methods, though adept at following dense instructions, often suffer from short-sighted behaviors due to their reliance on short-horimzon supervision. Simply extending the supervision horizon, however, destabilizes LLM training. In this work, we identify that video generation models inherently benefit from long-horizon supervision to align with language instructions, rendering them uniquely suitable for BVN tasks. Capitalizing on this insight, we propose introducing the video generation model into this field for the first time. Yet, the prohibitive latency for generating videos spanning tens of seconds makes real-world deployment impractical. To bridge this gap, we propose SparseVideoNav, achieving sub-second trajectory inference guided by a generated sparse future spanning a 20-second horizon. This yields a remarkable 27x speed-up compared to the unoptimized counterpart. Extensive real-world zero-shot experiments demonstrate that SparseVideoNav achieves 2.5x the success rate of state-of-the-art LLM baselines on BVN tasks and marks the first realization of such capability in challenging night scenes.
☆ NVS-HO: A Benchmark for Novel View Synthesis of Handheld Objects
We propose NVS-HO, the first benchmark designed for novel view synthesis of handheld objects in real-world environments using only RGB inputs. Each object is recorded in two complementary RGB sequences: (1) a handheld sequence, where the object is manipulated in front of a static camera, and (2) a board sequence, where the object is fixed on a ChArUco board to provide accurate camera poses via marker detection. The goal of NVS-HO is to learn a NVS model that captures the full appearance of an object from (1), whereas (2) provides the ground-truth images used for evaluation. To establish baselines, we consider both a classical SfM pipeline and a state-of-the-art pre-trained feed-forward neural network (VGGT) as pose estimators, and train NVS models based on NeRF and Gaussian Splatting. Our experiments reveal significant performance gaps in current methods under unconstrained handheld conditions, highlighting the need for more robust approaches. NVS-HO thus offers a challenging real-world benchmark to drive progress in RGB-based novel view synthesis of handheld objects.
☆ Focus-Scan-Refine: From Human Visual Perception to Efficient Visual Token Pruning
Vision-language models (VLMs) often generate massive visual tokens that greatly increase inference latency and memory footprint; while training-free token pruning offers a practical remedy, existing methods still struggle to balance local evidence and global context under aggressive compression. We propose Focus-Scan-Refine (FSR), a human-inspired, plug-and-play pruning framework that mimics how humans answer visual questions: focus on key evidence, then scan globally if needed, and refine the scanned context by aggregating relevant details. FSR first focuses on key evidence by combining visual importance with instruction relevance, avoiding the bias toward visually salient but query-irrelevant regions. It then scans for complementary context conditioned on the focused set, selecting tokens that are most different from the focused evidence. Finally, FSR refines the scanned context by aggregating nearby informative tokens into the scan anchors via similarity-based assignment and score-weighted merging, without increasing the token budget. Extensive experiments across multiple VLM backbones and vision-language benchmarks show that FSR consistently improves the accuracy-efficiency trade-off over existing state-of-the-art pruning methods. The source codes can be found at https://github.com/ILOT-code/FSR
☆ Allocentric Perceiver: Disentangling Allocentric Reasoning from Egocentric Visual Priors via Frame Instantiation
With the rising need for spatially grounded tasks such as Vision-Language Navigation/Action, allocentric perception capabilities in Vision-Language Models (VLMs) are receiving growing focus. However, VLMs remain brittle on allocentric spatial queries that require explicit perspective shifts, where the answer depends on reasoning in a target-centric frame rather than the observed camera view. Thus, we introduce Allocentric Perceiver, a training-free strategy that recovers metric 3D states from one or more images with off-the-shelf geometric experts, and then instantiates a query-conditioned allocentric reference frame aligned with the instruction's semantic intent. By deterministically transforming reconstructed geometry into the target frame and prompting the backbone VLM with structured, geometry-grounded representations, Allocentric Perceriver offloads mental rotation from implicit reasoning to explicit computation. We evaluate Allocentric Perciver across multiple backbone families on spatial reasoning benchmarks, observing consistent and substantial gains ($\sim$10%) on allocentric tasks while maintaining strong egocentric performance, and surpassing both spatial-perception-finetuned models and state-of-the-art open-source and proprietary models.
☆ ReText: Text Boosts Generalization in Image-Based Person Re-identification
Generalizable image-based person re-identification (Re-ID) aims to recognize individuals across cameras in unseen domains without retraining. While multiple existing approaches address the domain gap through complex architectures, recent findings indicate that better generalization can be achieved by stylistically diverse single-camera data. Although this data is easy to collect, it lacks complexity due to minimal cross-view variation. We propose ReText, a novel method trained on a mixture of multi-camera Re-ID data and single-camera data, where the latter is complemented by textual descriptions to enrich semantic cues. During training, ReText jointly optimizes three tasks: (1) Re-ID on multi-camera data, (2) image-text matching, and (3) image reconstruction guided by text on single-camera data. Experiments demonstrate that ReText achieves strong generalization and significantly outperforms state-of-the-art methods on cross-domain Re-ID benchmarks. To the best of our knowledge, this is the first work to explore multimodal joint learning on a mixture of multi-camera and single-camera data in image-based person Re-ID.
☆ FMPose3D: monocular 3D pose estimation via flow matching
Monocular 3D pose estimation is fundamentally ill-posed due to depth ambiguity and occlusions, thereby motivating probabilistic methods that generate multiple plausible 3D pose hypotheses. In particular, diffusion-based models have recently demonstrated strong performance, but their iterative denoising process typically requires many timesteps for each prediction, making inference computationally expensive. In contrast, we leverage Flow Matching (FM) to learn a velocity field defined by an Ordinary Differential Equation (ODE), enabling efficient generation of 3D pose samples with only a few integration steps. We propose a novel generative pose estimation framework, FMPose3D, that formulates 3D pose estimation as a conditional distribution transport problem. It continuously transports samples from a standard Gaussian prior to the distribution of plausible 3D poses conditioned only on 2D inputs. Although ODE trajectories are deterministic, FMPose3D naturally generates various pose hypotheses by sampling different noise seeds. To obtain a single accurate prediction from those hypotheses, we further introduce a Reprojection-based Posterior Expectation Aggregation (RPEA) module, which approximates the Bayesian posterior expectation over 3D hypotheses. FMPose3D surpasses existing methods on the widely used human pose estimation benchmarks Human3.6M and MPI-INF-3DHP, and further achieves state-of-the-art performance on the 3D animal pose datasets Animal3D and CtrlAni3D, demonstrating strong performance across both 3D pose domains. The code is available at https://github.com/AdaptiveMotorControlLab/FMPose3D.
☆ Disc-Centric Contrastive Learning for Lumbar Spine Severity Grading
This work examines a disc-centric approach for automated severity grading of lumbar spinal stenosis from sagittal T2-weighted MRI. The method combines contrastive pretraining with disc-level fine-tuning, using a single anatomically localized region of interest per intervertebral disc. Contrastive learning is employed to help the model focus on meaningful disc features and reduce sensitivity to irrelevant differences in image appearance. The framework includes an auxiliary regression task for disc localization and applies weighted focal loss to address class imbalance. Experiments demonstrate a 78.1% balanced accuracy and a reduced severe-to-normal misclassification rate of 2.13% compared with supervised training from scratch. Detecting discs with moderate severity can still be challenging, but focusing on disc-level features provides a practical way to assess the lumbar spinal stenosis.
☆ Neuro-Inspired Visual Pattern Recognition via Biological Reservoir Computing
In this paper, we present a neuro-inspired approach to reservoir computing (RC) in which a network of in vitro cultured cortical neurons serves as the physical reservoir. Rather than relying on artificial recurrent models to approximate neural dynamics, our biological reservoir computing (BRC) system leverages the spontaneous and stimulus-evoked activity of living neural circuits as its computational substrate. A high-density multi-electrode array (HD-MEA) provides simultaneous stimulation and readout across hundreds of channels: input patterns are delivered through selected electrodes, while the remaining ones capture the resulting high-dimensional neural responses, yielding a biologically grounded feature representation. A linear readout layer (single-layer perceptron) is then trained to classify these reservoir states, enabling the living neural network to perform static visual pattern-recognition tasks within a computer-vision framework. We evaluate the system across a sequence of tasks of increasing difficulty, ranging from pointwise stimuli to oriented bars, clock-digit-like shapes, and handwritten digits from the MNIST dataset. Despite the inherent variability of biological neural responses-arising from noise, spontaneous activity, and inter-session differences-the system consistently generates high-dimensional representations that support accurate classification. These results demonstrate that in vitro cortical networks can function as effective reservoirs for static visual pattern recognition, opening new avenues for integrating living neural substrates into neuromorphic computing frameworks. More broadly, this work contributes to the effort to incorporate biological principles into machine learning and supports the goals of neuro-inspired vision by illustrating how living neural systems can inform the design of efficient and biologically grounded computational models.
☆ Depth as Prior Knowledge for Object Detection
Detecting small and distant objects remains challenging for object detectors due to scale variation, low resolution, and background clutter. Safety-critical applications require reliable detection of these objects for safe planning. Depth information can improve detection, but existing approaches require complex, model-specific architectural modifications. We provide a theoretical analysis followed by an empirical investigation of the depth-detection relationship. Together, they explain how depth causes systematic performance degradation and why depth-informed supervision mitigates it. We introduce DepthPrior, a framework that uses depth as prior knowledge rather than as a fused feature, providing comparable benefits without modifying detector architectures. DepthPrior consists of Depth-Based Loss Weighting (DLW) and Depth-Based Loss Stratification (DLS) during training, and Depth-Aware Confidence Thresholding (DCT) during inference. The only overhead is the initial cost of depth estimation. Experiments across four benchmarks (KITTI, MS COCO, VisDrone, SUN RGB-D) and two detectors (YOLOv11, EfficientDet) demonstrate the effectiveness of DepthPrior, achieving up to +9% mAP$_S$ and +7% mAR$_S$ for small objects, with inference recovery rates as high as 95:1 (true vs. false detections). DepthPrior offers these benefits without additional sensors, architectural changes, or performance costs. Code is available at https://github.com/mos-ks/DepthPrior.
comment: This work has been submitted to the IEEE for possible publication
☆ Adaptive Global and Fine-Grained Perceptual Fusion for MLLM Embeddings Compatible with Hard Negative Amplification
Multimodal embeddings serve as a bridge for aligning vision and language, with the two primary implementations -- CLIP-based and MLLM-based embedding models -- both limited to capturing only global semantic information. Although numerous studies have focused on fine-grained understanding, we observe that complex scenarios currently targeted by MLLM embeddings often involve a hybrid perceptual pattern of both global and fine-grained elements, thus necessitating a compatible fusion mechanism. In this paper, we propose Adaptive Global and Fine-grained perceptual Fusion for MLLM Embeddings (AGFF-Embed), a method that prompts the MLLM to generate multiple embeddings focusing on different dimensions of semantic information, which are then adaptively and smoothly aggregated. Furthermore, we adapt AGFF-Embed with the Explicit Gradient Amplification (EGA) technique to achieve in-batch hard negatives enhancement without requiring fine-grained editing of the dataset. Evaluation on the MMEB and MMVP-VLM benchmarks shows that AGFF-Embed comprehensively achieves state-of-the-art performance in both general and fine-grained understanding compared to other multimodal embedding models.
☆ Exploring the Temporal Consistency for Point-Level Weakly-Supervised Temporal Action Localization
Point-supervised Temporal Action Localization (PTAL) adopts a lightly frame-annotated paradigm (\textit{i.e.}, labeling only a single frame per action instance) to train a model to effectively locate action instances within untrimmed videos. Most existing approaches design the task head of models with only a point-supervised snippet-level classification, without explicit modeling of understanding temporal relationships among frames of an action. However, understanding the temporal relationships of frames is crucial because it can help a model understand how an action is defined and therefore benefits localizing the full frames of an action. To this end, in this paper, we design a multi-task learning framework that fully utilizes point supervision to boost the model's temporal understanding capability for action localization. Specifically, we design three self-supervised temporal understanding tasks: (i) Action Completion, (ii) Action Order Understanding, and (iii) Action Regularity Understanding. These tasks help a model understand the temporal consistency of actions across videos. To the best of our knowledge, this is the first attempt to explicitly explore temporal consistency for point supervision action localization. Extensive experimental results on four benchmark datasets demonstrate the effectiveness of the proposed method compared to several state-of-the-art approaches.
☆ Ethology of Latent Spaces
This study challenges the presumed neutrality of latent spaces in vision language models (VLMs) by adopting an ethological perspective on their algorithmic behaviors. Rather than constituting spaces of homogeneous indeterminacy, latent spaces exhibit model-specific algorithmic sensitivities, understood as differential regimes of perceptual salience shaped by training data and architectural choices. Through a comparative analysis of three models (OpenAI CLIP, OpenCLIP LAION, SigLIP) applied to a corpus of 301 artworks (15th to 20th), we reveal substantial divergences in the attribution of political and cultural categories. Using bipolar semantic axes derived from vector analogies (Mikolov et al., 2013), we show that SigLIP classifies 59.4% of the artworks as politically engaged, compared to only 4% for OpenCLIP. African masks receive the highest political scores in SigLIP while remaining apolitical in OpenAI CLIP. On an aesthetic colonial axis, inter-model discrepancies reach 72.6 percentage points. We introduce three operational concepts: computational latent politicization, describing the emergence of political categories without intentional encoding; emergent bias, irreducible to statistical or normative bias and detectable only through contrastive analysis; and three algorithmic scopic regimes: entropic (LAION), institutional (OpenAI), and semiotic (SigLIP), which structure distinct modes of visibility. Drawing on Foucault's notion of the archive, Jameson's ideologeme, and Simondon's theory of individuation, we argue that training datasets function as quasi-archives whose discursive formations crystallize within latent space. This work contributes to a critical reassessment of the conditions under which VLMs are applied to digital art history and calls for methodologies that integrate learning architectures into any delegation of cultural interpretation to algorithmic agents.
comment: 23. pages, 14 figures, presented Hyperheritage International Symposium 9 ( https://paragraphe.univ-paris8.fr/IMG/pdf/programme_colloque_his9_campuscondorcet_v3.pdf ) and accepted for publication in double-blind peer review in French in 2026-2027
☆ Poster: Camera Tampering Detection for Outdoor IoT Systems
Recently, the use of smart cameras in outdoor settings has grown to improve surveillance and security. Nonetheless, these systems are susceptible to tampering, whether from deliberate vandalism or harsh environmental conditions, which can undermine their monitoring effectiveness. In this context, detecting camera tampering is more challenging when a camera is capturing still images rather than video as there is no sequence of continuous frames over time. In this study, we propose two approaches for detecting tampered images: a rule-based method and a deep-learning-based method. The aim is to evaluate how each method performs in terms of accuracy, computational demands, and the data required for training when applied to real-world scenarios. Our results show that the deep-learning model provides higher accuracy, while the rule-based method is more appropriate for scenarios where resources are limited and a prolonged calibration phase is impractical. We also offer publicly available datasets with normal, blurred, and rotated images to support the development and evaluation of camera tampering detection methods, addressing the need for such resources.
comment: Proceedings of the 2024 INTERNATIONAL CONFERENCE ON EMBEDDED WIRELESS SYSTEMS AND NETWORKS (EWSN)
☆ ShapeUP: Scalable Image-Conditioned 3D Editing
Recent advancements in 3D foundation models have enabled the generation of high-fidelity assets, yet precise 3D manipulation remains a significant challenge. Existing 3D editing frameworks often face a difficult trade-off between visual controllability, geometric consistency, and scalability. Specifically, optimization-based methods are prohibitively slow, multi-view 2D propagation techniques suffer from visual drift, and training-free latent manipulation methods are inherently bound by frozen priors and cannot directly benefit from scaling. In this work, we present ShapeUP, a scalable, image-conditioned 3D editing framework that formulates editing as a supervised latent-to-latent translation within a native 3D representation. This formulation allows ShapeUP to build on a pretrained 3D foundation model, leveraging its strong generative prior while adapting it to editing through supervised training. In practice, ShapeUP is trained on triplets consisting of a source 3D shape, an edited 2D image, and the corresponding edited 3D shape, and learns a direct mapping using a 3D Diffusion Transformer (DiT). This image-as-prompt approach enables fine-grained visual control over both local and global edits and achieves implicit, mask-free localization, while maintaining strict structural consistency with the original asset. Our extensive evaluations demonstrate that ShapeUP consistently outperforms current trained and training-free baselines in both identity preservation and edit fidelity, offering a robust and scalable paradigm for native 3D content creation.
☆ Enhancing Personality Recognition by Comparing the Predictive Power of Traits, Facets, and Nuances
Personality is a complex, hierarchical construct typically assessed through item-level questionnaires aggregated into broad trait scores. Personality recognition models aim to infer personality traits from different sources of behavioral data. However, reliance on broad trait scores as ground truth, combined with limited training data, poses challenges for generalization, as similar trait scores can manifest through diverse, context dependent behaviors. In this work, we explore the predictive impact of the more granular hierarchical levels of the Big-Five Personality Model, facets and nuances, to enhance personality recognition from audiovisual interaction data. Using the UDIVA v0.5 dataset, we trained a transformer-based model including cross-modal (audiovisual) and cross-subject (dyad-aware) attention mechanisms. Results show that nuance-level models consistently outperform facet and trait-level models, reducing mean squared error by up to 74% across interaction scenarios.
comment: Accepted to the 2025 13th International Conference on Affective Computing and Intelligent Interaction (Late Breaking Results)
☆ UniSurg: A Video-Native Foundation Model for Universal Understanding of Surgical Videos
While foundation models have advanced surgical video analysis, current approaches rely predominantly on pixel-level reconstruction objectives that waste model capacity on low-level visual details - such as smoke, specular reflections, and fluid motion - rather than semantic structures essential for surgical understanding. We present UniSurg, a video-native foundation model that shifts the learning paradigm from pixel-level reconstruction to latent motion prediction. Built on the Video Joint Embedding Predictive Architecture (V-JEPA), UniSurg introduces three key technical innovations tailored to surgical videos: 1) motion-guided latent prediction to prioritize semantically meaningful regions, 2) spatiotemporal affinity self-distillation to enforce relational consistency, and 3) feature diversity regularization to prevent representation collapse in texture-sparse surgical scenes. To enable large-scale pretraining, we curate UniSurg-15M, the largest surgical video dataset to date, comprising 3,658 hours of video from 50 sources across 13 anatomical regions. Extensive experiments across 17 benchmarks demonstrate that UniSurg significantly outperforms state-of-the-art methods on surgical workflow recognition (+14.6% F1 on EgoSurgery, +10.3% on PitVis), action triplet recognition (39.54% mAP-IVT on CholecT50), skill assessment, polyp segmentation, and depth estimation. These results establish UniSurg as a new standard for universal, motion-oriented surgical video understanding.
☆ ROMAN: Reward-Orchestrated Multi-Head Attention Network for Autonomous Driving System Testing
Automated Driving System (ADS) acts as the brain of autonomous vehicles, responsible for their safety and efficiency. Safe deployment requires thorough testing in diverse real-world scenarios and compliance with traffic laws like speed limits, signal obedience, and right-of-way rules. Violations like running red lights or speeding pose severe safety risks. However, current testing approaches face significant challenges: limited ability to generate complex and high-risk law-breaking scenarios, and failing to account for complex interactions involving multiple vehicles and critical situations. To address these challenges, we propose ROMAN, a novel scenario generation approach for ADS testing that combines a multi-head attention network with a traffic law weighting mechanism. ROMAN is designed to generate high-risk violation scenarios to enable more thorough and targeted ADS evaluation. The multi-head attention mechanism models interactions among vehicles, traffic signals, and other factors. The traffic law weighting mechanism implements a workflow that leverages an LLM-based risk weighting module to evaluate violations based on the two dimensions of severity and occurrence. We have evaluated ROMAN by testing the Baidu Apollo ADS within the CARLA simulation platform and conducting extensive experiments to measure its performance. Experimental results demonstrate that ROMAN surpassed state-of-the-art tools ABLE and LawBreaker by achieving 7.91% higher average violation count than ABLE and 55.96% higher than LawBreaker, while also maintaining greater scenario diversity. In addition, only ROMAN successfully generated violation scenarios for every clause of the input traffic laws, enabling it to identify more high-risk violations than existing approaches.
comment: The manuscript includes 13 pages, 8 tables, and 7 figures
☆ Unified Sensor Simulation for Autonomous Driving
In this work, we introduce \textbf{XSIM}, a sensor simulation framework for autonomous driving. XSIM extends 3DGUT splatting with a generalized rolling-shutter modeling tailored for autonomous driving applications. Our framework provides a unified and flexible formulation for appearance and geometric sensor modeling, enabling rendering of complex sensor distortions in dynamic environments. We identify spherical cameras, such as LiDARs, as a critical edge case for existing 3DGUT splatting due to cyclic projection and time discontinuities at azimuth boundaries leading to incorrect particle projection. To address this issue, we propose a phase modeling mechanism that explicitly accounts temporal and shape discontinuities of Gaussians projected by the Unscented Transform at azimuth borders. In addition, we introduce an extended 3D Gaussian representation that incorporates two distinct opacity parameters to resolve mismatches between geometry and color distributions. As a result, our framework provides enhanced scene representations with improved geometric consistency and photorealistic appearance. We evaluate our framework extensively on multiple autonomous driving datasets, including Waymo Open Dataset, Argoverse 2, and PandaSet. Our framework consistently outperforms strong recent baselines and achieves state-of-the-art performance across all datasets. The source code is publicly available at \href{https://github.com/whesense/XSIM}{https://github.com/whesense/XSIM}.
☆ Shiva-DiT: Residual-Based Differentiable Top-$k$ Selection for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) incur prohibitive computational costs due to the quadratic scaling of self-attention. Existing pruning methods fail to simultaneously satisfy differentiability, efficiency, and the strict static budgets required for hardware overhead. To address this, we propose Shiva-DiT, which effectively reconciles these conflicting requirements via Residual-Based Differentiable Top-$k$ Selection. By leveraging a residual-aware straight-through estimator, our method enforces deterministic token counts for static compilation while preserving end-to-end learnability through residual gradient estimation. Furthermore, we introduce a Context-Aware Router and Adaptive Ratio Policy to autonomously learn an adaptive pruning schedule. Experiments on mainstream models, including SD3.5, demonstrate that Shiva-DiT establishes a new Pareto frontier, achieving a 1.54$\times$ wall-clock speedup with superior fidelity compared to existing baselines, effectively eliminating ragged tensor overheads.
☆ Multi-instance robust fitting for non-classical geometric models
Most existing robust fitting methods are designed for classical models, such as lines, circles, and planes. In contrast, fewer methods have been developed to robustly handle non-classical models, such as spiral curves, procedural character models, and free-form surfaces. Furthermore, existing methods primarily focus on reconstructing a single instance of a non-classical model. This paper aims to reconstruct multiple instances of non-classical models from noisy data. We formulate this multi-instance fitting task as an optimization problem, which comprises an estimator and an optimizer. Specifically, we propose a novel estimator based on the model-to-data error, capable of handling outliers without a predefined error threshold. Since the proposed estimator is non-differentiable with respect to the model parameters, we employ a meta-heuristic algorithm as the optimizer to seek the global optimum. The effectiveness of our method are demonstrated through experimental results on various non-classical models. The code is available at https://github.com/zhangzongliang/fitting.
☆ CAViT -- Channel-Aware Vision Transformer for Dynamic Feature Fusion CVPR 25
Vision Transformers (ViTs) have demonstrated strong performance across a range of computer vision tasks by modeling long-range spatial interactions via self-attention. However, channel-wise mixing in ViTs remains static, relying on fixed multilayer perceptrons (MLPs) that lack adaptability to input content. We introduce 'CAViT', a dual-attention architecture that replaces the static MLP with a dynamic, attention-based mechanism for feature interaction. Each Transformer block in CAViT performs spatial self-attention followed by channel-wise self-attention, allowing the model to dynamically recalibrate feature representations based on global image context. This unified and content-aware token mixing strategy enhances representational expressiveness without increasing depth or complexity. We validate CAViT across five benchmark datasets spanning both natural and medical domains, where it outperforms the standard ViT baseline by up to +3.6% in accuracy, while reducing parameter count and FLOPs by over 30%. Qualitative attention maps reveal sharper and semantically meaningful activation patterns, validating the effectiveness of our attention-driven token mixing.
comment: Presented at the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025 (CVPR 25) in the 4th Workshop on Transformers for Visions - T4V (https://sites.google.com/view/t4v-cvpr25/) Accepted for Publication at 33rd International Conference on Artificial Intelligence and Cognitive Science (AICS 2025), where it was shortlisted for Best Paper Award. (https://aicsconf.org/?page_id=278)
☆ EgoPoseVR: Spatiotemporal Multi-Modal Reasoning for Egocentric Full-Body Pose in Virtual Reality
Immersive virtual reality (VR) applications demand accurate, temporally coherent full-body pose tracking. Recent head-mounted camera-based approaches show promise in egocentric pose estimation, but encounter challenges when applied to VR head-mounted displays (HMDs), including temporal instability, inaccurate lower-body estimation, and the lack of real-time performance. To address these limitations, we present EgoPoseVR, an end-to-end framework for accurate egocentric full-body pose estimation in VR that integrates headset motion cues with egocentric RGB-D observations through a dual-modality fusion pipeline. A spatiotemporal encoder extracts frame- and joint-level representations, which are fused via cross-attention to fully exploit complementary motion cues across modalities. A kinematic optimization module then imposes constraints from HMD signals, enhancing the accuracy and stability of pose estimation. To facilitate training and evaluation, we introduce a large-scale synthetic dataset of over 1.8 million temporally aligned HMD and RGB-D frames across diverse VR scenarios. Experimental results show that EgoPoseVR outperforms state-of-the-art egocentric pose estimation models. A user study in real-world scenes further shows that EgoPoseVR achieved significantly higher subjective ratings in accuracy, stability, embodiment, and intention for future use compared to baseline methods. These results show that EgoPoseVR enables robust full-body pose tracking, offering a practical solution for accurate VR embodiment without requiring additional body-worn sensors or room-scale tracking systems.
☆ A Mixed Reality System for Robust Manikin Localization in Childbirth Training
Opportunities for medical students to gain practical experience in vaginal births are increasingly constrained by shortened clinical rotations, patient reluctance, and the unpredictable nature of labour. To alleviate clinicians' instructional burden and enhance trainees' learning efficiency, we introduce a mixed reality (MR) system for childbirth training that combines virtual guidance with tactile manikin interaction, thereby preserving authentic haptic feedback while enabling independent practice without continuous on-site expert supervision. The system extends the passthrough capability of commercial head-mounted displays (HMDs) by spatially calibrating an external RGB-D camera, allowing real-time visual integration of physical training objects. Building on this capability, we implement a coarse-to-fine localization pipeline that first aligns the maternal manikin with fiducial markers to define a delivery region and then registers the pre-scanned neonatal head within this area. This process enables spatially accurate overlay of virtual guiding hands near the manikin, allowing trainees to follow expert trajectories reinforced by haptic interaction. Experimental evaluations demonstrate that the system achieves accurate and stable manikin localization on a standalone headset, ensuring practical deployment without external computing resources. A large-scale user study involving 83 fourth-year medical students was subsequently conducted to compare MR-based and virtual reality (VR)-based childbirth training. Four senior obstetricians independently assessed performance using standardized criteria. Results showed that MR training achieved significantly higher scores in delivery, post-delivery, and overall task performance, and was consistently preferred by trainees over VR training.
☆ Geometric Observability Index: An Operator-Theoretic Framework for Per-Feature Sensitivity, Weak Observability, and Dynamic Effects in SE(3) Pose Estimation
We present a unified operator-theoretic framework for analyzing per-feature sensitivity in camera pose estimation on the Lie group SE(3). Classical sensitivity tools - conditioning analyses, Euclidean perturbation arguments, and Fisher information bounds - do not explain how individual image features influence the pose estimate, nor why dynamic or inconsistent observations can disproportionately distort modern SLAM and structure-from-motion systems. To address this gap, we extend influence function theory to matrix Lie groups and derive an intrinsic perturbation operator for left-trivialized M-estimators on SE(3). The resulting Geometric Observability Index (GOI) quantifies the contribution of a single measurement through the curvature operator and the Lie algebraic structure of the observable subspace. GOI admits a spectral decomposition along the principal directions of the observable curvature, revealing a direct correspondence between weak observability and amplified sensitivity. In the population regime, GOI coincides with the Fisher information geometry on SE(3), yielding a single-measurement analogue of the Cramer-Rao bound. The same spectral mechanism explains classical degeneracies such as pure rotation and vanishing parallax, as well as dynamic feature amplification along weak curvature directions. Overall, GOI provides a geometrically consistent description of measurement influence that unifies conditioning analysis, Fisher information geometry, influence function theory, and dynamic scene detectability through the spectral geometry of the curvature operator. Because these quantities arise directly within Gauss-Newton pipelines, the curvature spectrum and GOI also yield lightweight, training-free diagnostic signals for identifying dynamic features and detecting weak observability configurations without modifying existing SLAM architectures.
☆ LoGoSeg: Integrating Local and Global Features for Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation (OVSS) extends traditional closed-set segmentation by enabling pixel-wise annotation for both seen and unseen categories using arbitrary textual descriptions. While existing methods leverage vision-language models (VLMs) like CLIP, their reliance on image-level pretraining often results in imprecise spatial alignment, leading to mismatched segmentations in ambiguous or cluttered scenes. However, most existing approaches lack strong object priors and region-level constraints, which can lead to object hallucination or missed detections, further degrading performance. To address these challenges, we propose LoGoSeg, an efficient single-stage framework that integrates three key innovations: (i) an object existence prior that dynamically weights relevant categories through global image-text similarity, effectively reducing hallucinations; (ii) a region-aware alignment module that establishes precise region-level visual-textual correspondences; and (iii) a dual-stream fusion mechanism that optimally combines local structural information with global semantic context. Unlike prior works, LoGoSeg eliminates the need for external mask proposals, additional backbones, or extra datasets, ensuring efficiency. Extensive experiments on six benchmarks (A-847, PC-459, A-150, PC-59, PAS-20, and PAS-20b) demonstrate its competitive performance and strong generalization in open-vocabulary settings.
☆ LocateEdit-Bench: A Benchmark for Instruction-Based Editing Localization
Recent advancements in image editing have enabled highly controllable and semantically-aware alteration of visual content, posing unprecedented challenges to manipulation localization. However, existing AI-generated forgery localization methods primarily focus on inpainting-based manipulations, making them ineffective against the latest instruction-based editing paradigms. To bridge this critical gap, we propose LocateEdit-Bench, a large-scale dataset comprising $231$K edited images, designed specifically to benchmark localization methods against instruction-driven image editing. Our dataset incorporates four cutting-edge editing models and covers three common edit types. We conduct a detailed analysis of the dataset and develop two multi-metric evaluation protocols to assess existing localization methods. Our work establishes a foundation to keep pace with the evolving landscape of image editing, thereby facilitating the development of effective methods for future forgery localization. Dataset will be open-sourced upon acceptance.
comment: 11 pages, 7 figures
☆ A Hybrid CNN and ML Framework for Multi-modal Classification of Movement Disorders Using MRI and Brain Structural Features
Atypical Parkinsonian Disorders (APD), also known as Parkinson-plus syndrome, are a group of neurodegenerative diseases that include progressive supranuclear palsy (PSP) and multiple system atrophy (MSA). In the early stages, overlapping clinical features often lead to misdiagnosis as Parkinson's disease (PD). Identifying reliable imaging biomarkers for early differential diagnosis remains a critical challenge. In this study, we propose a hybrid framework combining convolutional neural networks (CNNs) with machine learning (ML) techniques to classify APD subtypes versus PD and distinguish between the subtypes themselves: PSP vs. PD, MSA vs. PD, and PSP vs. MSA. The model leverages multi-modal input data, including T1-weighted magnetic resonance imaging (MRI), segmentation masks of 12 deep brain structures associated with APD, and their corresponding volumetric measurements. By integrating these complementary modalities, including image data, structural segmentation masks, and quantitative volume features, the hybrid approach achieved promising classification performance with area under the curve (AUC) scores of 0.95 for PSP vs. PD, 0.86 for MSA vs. PD, and 0.92 for PSP vs. MSA. These results highlight the potential of combining spatial and structural information for robust subtype differentiation. In conclusion, this study demonstrates that fusing CNN-based image features with volume-based ML inputs improves classification accuracy for APD subtypes. The proposed approach may contribute to more reliable early-stage diagnosis, facilitating timely and targeted interventions in clinical practice.
comment: To be published in Proceedings of SPIE Medical Imaging 2026
☆ Visual Implicit Geometry Transformer for Autonomous Driving
We introduce the Visual Implicit Geometry Transformer (ViGT), an autonomous driving geometric model that estimates continuous 3D occupancy fields from surround-view camera rigs. ViGT represents a step towards foundational geometric models for autonomous driving, prioritizing scalability, architectural simplicity, and generalization across diverse sensor configurations. Our approach achieves this through a calibration-free architecture, enabling a single model to adapt to different sensor setups. Unlike general-purpose geometric foundational models that focus on pixel-aligned predictions, ViGT estimates a continuous 3D occupancy field in a birds-eye-view (BEV) addressing domain-specific requirements. ViGT naturally infers geometry from multiple camera views into a single metric coordinate frame, providing a common representation for multiple geometric tasks. Unlike most existing occupancy models, we adopt a self-supervised training procedure that leverages synchronized image-LiDAR pairs, eliminating the need for costly manual annotations. We validate the scalability and generalizability of our approach by training our model on a mixture of five large-scale autonomous driving datasets (NuScenes, Waymo, NuPlan, ONCE, and Argoverse) and achieving state-of-the-art performance on the pointmap estimation task, with the best average rank across all evaluated baselines. We further evaluate ViGT on the Occ3D-nuScenes benchmark, where ViGT achieves comparable performance with supervised methods. The source code is publicly available at \href{https://github.com/whesense/ViGT}{https://github.com/whesense/ViGT}.
☆ ShapeGaussian: High-Fidelity 4D Human Reconstruction in Monocular Videos via Vision Priors
We introduce ShapeGaussian, a high-fidelity, template-free method for 4D human reconstruction from casual monocular videos. Generic reconstruction methods lacking robust vision priors, such as 4DGS, struggle to capture high-deformation human motion without multi-view cues. While template-based approaches, primarily relying on SMPL, such as HUGS, can produce photorealistic results, they are highly susceptible to errors in human pose estimation, often leading to unrealistic artifacts. In contrast, ShapeGaussian effectively integrates template-free vision priors to achieve both high-fidelity and robust scene reconstructions. Our method follows a two-step pipeline: first, we learn a coarse, deformable geometry using pretrained models that estimate data-driven priors, providing a foundation for reconstruction. Then, we refine this geometry using a neural deformation model to capture fine-grained dynamic details. By leveraging 2D vision priors, we mitigate artifacts from erroneous pose estimation in template-based methods and employ multiple reference frames to resolve the invisibility issue of 2D keypoints in a template-free manner. Extensive experiments demonstrate that ShapeGaussian surpasses template-based methods in reconstruction accuracy, achieving superior visual quality and robustness across diverse human motions in casual monocular videos.
☆ PIRATR: Parametric Object Inference for Robotic Applications with Transformers in 3D Point Clouds
We present PIRATR, an end-to-end 3D object detection framework for robotic use cases in point clouds. Extending PI3DETR, our method streamlines parametric 3D object detection by jointly estimating multi-class 6-DoF poses and class-specific parametric attributes directly from occlusion-affected point cloud data. This formulation enables not only geometric localization but also the estimation of task-relevant properties for parametric objects, such as a gripper's opening, where the 3D model is adjusted according to simple, predefined rules. The architecture employs modular, class-specific heads, making it straightforward to extend to novel object types without re-designing the pipeline. We validate PIRATR on an automated forklift platform, focusing on three structurally and functionally diverse categories: crane grippers, loading platforms, and pallets. Trained entirely in a synthetic environment, PIRATR generalizes effectively to real outdoor LiDAR scans, achieving a detection mAP of 0.919 without additional fine-tuning. PIRATR establishes a new paradigm of pose-aware, parameterized perception. This bridges the gap between low-level geometric reasoning and actionable world models, paving the way for scalable, simulation-trained perception systems that can be deployed in dynamic robotic environments. Code available at https://github.com/swingaxe/piratr.
comment: 8 Pages, 11 Figures, Accepted at 2026 IEEE International Conference on Robotics & Automation (ICRA) Vienna
☆ IndustryShapes: An RGB-D Benchmark dataset for 6D object pose estimation of industrial assembly components and tools
We introduce IndustryShapes, a new RGB-D benchmark dataset of industrial tools and components, designed for both instance-level and novel object 6D pose estimation approaches. The dataset provides a realistic and application-relevant testbed for benchmarking these methods in the context of industrial robotics bridging the gap between lab-based research and deployment in real-world manufacturing scenarios. Unlike many previous datasets that focus on household or consumer products or use synthetic, clean tabletop datasets, or objects captured solely in controlled lab environments, IndustryShapes introduces five new object types with challenging properties, also captured in realistic industrial assembly settings. The dataset has diverse complexity, from simple to more challenging scenes, with single and multiple objects, including scenes with multiple instances of the same object and it is organized in two parts: the classic set and the extended set. The classic set includes a total of 4,6k images and 6k annotated poses. The extended set introduces additional data modalities to support the evaluation of model-free and sequence-based approaches. To the best of our knowledge, IndustryShapes is the first dataset to offer RGB-D static onboarding sequences. We further evaluate the dataset on a representative set of state-of-the art methods for instance-based and novel object 6D pose estimation, including also object detection, segmentation, showing that there is room for improvement in this domain. The dataset page can be found in https://pose-lab.github.io/IndustryShapes.
comment: To appear in ICRA 2026
☆ VLN-Pilot: Large Vision-Language Model as an Autonomous Indoor Drone Operator
This paper introduces VLN-Pilot, a novel framework in which a large Vision-and-Language Model (VLLM) assumes the role of a human pilot for indoor drone navigation. By leveraging the multimodal reasoning abilities of VLLMs, VLN-Pilot interprets free-form natural language instructions and grounds them in visual observations to plan and execute drone trajectories in GPS-denied indoor environments. Unlike traditional rule-based or geometric path-planning approaches, our framework integrates language-driven semantic understanding with visual perception, enabling context-aware, high-level flight behaviors with minimal task-specific engineering. VLN-Pilot supports fully autonomous instruction-following for drones by reasoning about spatial relationships, obstacle avoidance, and dynamic reactivity to unforeseen events. We validate our framework on a custom photorealistic indoor simulation benchmark and demonstrate the ability of the VLLM-driven agent to achieve high success rates on complex instruction-following tasks, including long-horizon navigation with multiple semantic targets. Experimental results highlight the promise of replacing remote drone pilots with a language-guided autonomous agent, opening avenues for scalable, human-friendly control of indoor UAVs in tasks such as inspection, search-and-rescue, and facility monitoring. Our results suggest that VLLM-based pilots may dramatically reduce operator workload while improving safety and mission flexibility in constrained indoor environments.
☆ FastVMT: Eliminating Redundancy in Video Motion Transfer ICLR2026
Video motion transfer aims to synthesize videos by generating visual content according to a text prompt while transferring the motion pattern observed in a reference video. Recent methods predominantly use the Diffusion Transformer (DiT) architecture. To achieve satisfactory runtime, several methods attempt to accelerate the computations in the DiT, but fail to address structural sources of inefficiency. In this work, we identify and remove two types of computational redundancy in earlier work: motion redundancy arises because the generic DiT architecture does not reflect the fact that frame-to-frame motion is small and smooth; gradient redundancy occurs if one ignores that gradients change slowly along the diffusion trajectory. To mitigate motion redundancy, we mask the corresponding attention layers to a local neighborhood such that interaction weights are not computed unnecessarily distant image regions. To exploit gradient redundancy, we design an optimization scheme that reuses gradients from previous diffusion steps and skips unwarranted gradient computations. On average, FastVMT achieves a 3.43x speedup without degrading the visual fidelity or the temporal consistency of the generated videos.
comment: Accepted by ICLR2026, Project page: fastvmt.gitHub.io, Code: https://github.com/mayuelala/FastVMT
☆ A Comparative Study of 3D Person Detection: Sensor Modalities and Robustness in Diverse Indoor and Outdoor Environments
Accurate 3D person detection is critical for safety in applications such as robotics, industrial monitoring, and surveillance. This work presents a systematic evaluation of 3D person detection using camera-only, LiDAR-only, and camera-LiDAR fusion. While most existing research focuses on autonomous driving, we explore detection performance and robustness in diverse indoor and outdoor scenes using the JRDB dataset. We compare three representative models - BEVDepth (camera), PointPillars (LiDAR), and DAL (camera-LiDAR fusion) - and analyze their behavior under varying occlusion and distance levels. Our results show that the fusion-based approach consistently outperforms single-modality models, particularly in challenging scenarios. We further investigate robustness against sensor corruptions and misalignments, revealing that while DAL offers improved resilience, it remains sensitive to sensor misalignment and certain LiDAR-based corruptions. In contrast, the camera-based BEVDepth model showed the lowest performance and was most affected by occlusion, distance, and noise. Our findings highlight the importance of utilizing sensor fusion for enhanced 3D person detection, while also underscoring the need for ongoing research to address the vulnerabilities inherent in these systems.
comment: Accepted for VISAPP 2026
When Shared Knowledge Hurts: Spectral Over-Accumulation in Model Merging
Model merging combines multiple fine-tuned models into a single model by adding their weight updates, providing a lightweight alternative to retraining. Existing methods primarily target resolving conflicts between task updates, leaving the failure mode of over-counting shared knowledge unaddressed. We show that when tasks share aligned spectral directions (i.e., overlapping singular vectors), a simple linear combination repeatedly accumulates these directions, inflating the singular values and biasing the merged model toward shared subspaces. To mitigate this issue, we propose Singular Value Calibration (SVC), a training-free and data-free post-processing method that quantifies subspace overlap and rescales inflated singular values to restore a balanced spectrum. Across vision and language benchmarks, SVC consistently improves strong merging baselines and achieves state-of-the-art performance. Furthermore, by modifying only the singular values, SVC improves the performance of Task Arithmetic by 13.0%. Code is available at: https://github.com/lyymuwu/SVC.
☆ SSG: Scaled Spatial Guidance for Multi-Scale Visual Autoregressive Generation ICLR 2026
Visual autoregressive (VAR) models generate images through next-scale prediction, naturally achieving coarse-to-fine, fast, high-fidelity synthesis mirroring human perception. In practice, this hierarchy can drift at inference time, as limited capacity and accumulated error cause the model to deviate from its coarse-to-fine nature. We revisit this limitation from an information-theoretic perspective and deduce that ensuring each scale contributes high-frequency content not explained by earlier scales mitigates the train-inference discrepancy. With this insight, we propose Scaled Spatial Guidance (SSG), training-free, inference-time guidance that steers generation toward the intended hierarchy while maintaining global coherence. SSG emphasizes target high-frequency signals, defined as the semantic residual, isolated from a coarser prior. To obtain this prior, we leverage a principled frequency-domain procedure, Discrete Spatial Enhancement (DSE), which is devised to sharpen and better isolate the semantic residual through frequency-aware construction. SSG applies broadly across VAR models leveraging discrete visual tokens, regardless of tokenization design or conditioning modality. Experiments demonstrate SSG yields consistent gains in fidelity and diversity while preserving low latency, revealing untapped efficiency in coarse-to-fine image generation. Code is available at https://github.com/Youngwoo-git/SSG.
comment: Accepted to ICLR 2026
☆ Generalization of Self-Supervised Vision Transformers for Protein Localization Across Microscopy Domains
Task-specific microscopy datasets are often too small to train deep learning models that learn robust feature representations. Self-supervised learning (SSL) can mitigate this by pretraining on large unlabeled datasets, but it remains unclear how well such representations transfer across microscopy domains with different staining protocols and channel configurations. We investigate the cross-domain transferability of DINO-pretrained Vision Transformers for protein localization on the OpenCell dataset. We generate image embeddings using three DINO backbones pretrained on ImageNet-1k, the Human Protein Atlas (HPA), and OpenCell, and evaluate them by training a supervised classification head on OpenCell labels. All pretrained models transfer well, with the microscopy-specific HPA-pretrained model achieving the best performance (mean macro $F_1$-score = 0.8221 \pm 0.0062), slightly outperforming a DINO model trained directly on OpenCell (0.8057 \pm 0.0090). These results highlight the value of large-scale pretraining and indicate that domain-relevant SSL representations can generalize effectively to related but distinct microscopy datasets, enabling strong downstream performance even when task-specific labeled data are limited.
comment: AMEE Conference Proceeding 2025, 11 pages, 2 figures
☆ Mapper-GIN: Lightweight Structural Graph Abstraction for Corrupted 3D Point Cloud Classification
Robust 3D point cloud classification is often pursued by scaling up backbones or relying on specialized data augmentation. We instead ask whether structural abstraction alone can improve robustness, and study a simple topology-inspired decomposition based on the Mapper algorithm. We propose Mapper-GIN, a lightweight pipeline that partitions a point cloud into overlapping regions using Mapper (PCA lens, cubical cover, and followed by density-based clustering), constructs a region graph from their overlaps, and performs graph classification with a Graph Isomorphism Network. On the corruption benchmark ModelNet40-C, Mapper-GIN achieves competitive and stable accuracy under Noise and Transformation corruptions with only 0.5M parameters. In contrast to prior approaches that require heavier architectures or additional mechanisms to gain robustness, Mapper-GIN attains strong corruption robustness through simple region-level graph abstraction and GIN message passing. Overall, our results suggest that region-graph structure offers an efficient and interpretable source of robustness for 3D visual recognition.
☆ VGGT-Motion: Motion-Aware Calibration-Free Monocular SLAM for Long-Range Consistency
Despite recent progress in calibration-free monocular SLAM via 3D vision foundation models, scale drift remains severe on long sequences. Motion-agnostic partitioning breaks contextual coherence and causes zero-motion drift, while conventional geometric alignment is computationally expensive. To address these issues, we propose VGGT-Motion, a calibration-free SLAM system for efficient and robust global consistency over kilometer-scale trajectories. Specifically, we first propose a motion-aware submap construction mechanism that uses optical flow to guide adaptive partitioning, prune static redundancy, and encapsulate turns for stable local geometry. We then design an anchor-driven direct Sim(3) registration strategy. By exploiting context-balanced anchors, it achieves search-free, pixel-wise dense alignment and efficient loop closure without costly feature matching. Finally, a lightweight submap-level pose graph optimization enforces global consistency with linear complexity, enabling scalable long-range operation. Experiments show that VGGT-Motion markedly improves trajectory accuracy and efficiency, achieving state-of-the-art performance in zero-shot, long-range calibration-free monocular SLAM.
☆ XEmoGPT: An Explainable Multimodal Emotion Recognition Framework with Cue-Level Perception and Reasoning
Explainable Multimodal Emotion Recognition plays a crucial role in applications such as human-computer interaction and social media analytics. However, current approaches struggle with cue-level perception and reasoning due to two main challenges: 1) general-purpose modality encoders are pretrained to capture global structures and general semantics rather than fine-grained emotional cues, resulting in limited sensitivity to emotional signals; and 2) available datasets usually involve a trade-off between annotation quality and scale, which leads to insufficient supervision for emotional cues and ultimately limits cue-level reasoning. Moreover, existing evaluation metrics are inadequate for assessing cue-level reasoning performance. To address these challenges, we propose eXplainable Emotion GPT (XEmoGPT), a novel EMER framework capable of both perceiving and reasoning over emotional cues. It incorporates two specialized modules: the Video Emotional Cue Bridge (VECB) and the Audio Emotional Cue Bridge (AECB), which enhance the video and audio encoders through carefully designed tasks for fine-grained emotional cue perception. To further support cue-level reasoning, we construct a large-scale dataset, EmoCue, designed to teach XEmoGPT how to reason over multimodal emotional cues. In addition, we introduce EmoCue-360, an automated metric that extracts and matches emotional cues using semantic similarity, and release EmoCue-Eval, a benchmark of 400 expert-annotated samples covering diverse emotional scenarios. Experimental results show that XEmoGPT achieves strong performance in both emotional cue perception and reasoning.
☆ Feature points evaluation on omnidirectional vision with a photorealistic fisheye sequence -- A report on experiments done in 2014
What is this report: This is a scientific report, contributing with a detailed bibliography, a dataset which we will call now PFSeq for ''Photorealistic Fisheye Sequence'' and make available at https://doi.org/10. 57745/DYIVVU, and comprehensive experiments. This work should be considered as a draft, and has been done during my PhD thesis ''Construction of 3D models from fisheye video data-Application to the localisation in urban area'' in 2014 [Mor16]. These results have never been published. The aim was to find the best features detector and descriptor for fisheye images, in the context of selfcalibration, with cameras mounted on the top of a car and aiming at the zenith (to proceed then fisheye visual odometry and stereovision in urban scenes). We face a chicken and egg problem, because we can not take advantage of an accurate projection model for an optimal features detection and description, and we rightly need good features to perform the calibration (i.e. to compute the accurate projection model of the camera). What is not this report: It does not contribute with new features algorithm. It does not compare standard features algorithms to algorithms designed for omnidirectional images (unfortunately). It has not been peer-reviewed. Discussions have been translated and enhanced but the experiments have not been run again and the report has not been updated accordingly to the evolution of the state-of-the-art (read this as a 2014 report).
SOMA-1M: A Large-Scale SAR-Optical Multi-resolution Alignment Dataset for Multi-Task Remote Sensing
Synthetic Aperture Radar (SAR) and optical imagery provide complementary strengths that constitute the critical foundation for transcending single-modality constraints and facilitating cross-modal collaborative processing and intelligent interpretation. However, existing benchmark datasets often suffer from limitations such as single spatial resolution, insufficient data scale, and low alignment accuracy, making them inadequate for supporting the training and generalization of multi-scale foundation models. To address these challenges, we introduce SOMA-1M (SAR-Optical Multi-resolution Alignment), a pixel-level precisely aligned dataset containing over 1.3 million pairs of georeferenced images with a specification of 512 x 512 pixels. This dataset integrates imagery from Sentinel-1, PIESAT-1, Capella Space, and Google Earth, achieving global multi-scale coverage from 0.5 m to 10 m. It encompasses 12 typical land cover categories, effectively ensuring scene diversity and complexity. To address multimodal projection deformation and massive data registration, we designed a rigorous coarse-to-fine image matching framework ensuring pixel-level alignment. Based on this dataset, we established comprehensive evaluation benchmarks for four hierarchical vision tasks, including image matching, image fusion, SAR-assisted cloud removal, and cross-modal translation, involving over 30 mainstream algorithms. Experimental results demonstrate that supervised training on SOMA-1M significantly enhances performance across all tasks. Notably, multimodal remote sensing image (MRSI) matching performance achieves current state-of-the-art (SOTA) levels. SOMA-1M serves as a foundational resource for robust multimodal algorithms and remote sensing foundation models. The dataset will be released publicly at: https://github.com/PeihaoWu/SOMA-1M.
☆ MerNav: A Highly Generalizable Memory-Execute-Review Framework for Zero-Shot Object Goal Navigation
Visual Language Navigation (VLN) is one of the fundamental capabilities for embodied intelligence and a critical challenge that urgently needs to be addressed. However, existing methods are still unsatisfactory in terms of both success rate (SR) and generalization: Supervised Fine-Tuning (SFT) approaches typically achieve higher SR, while Training-Free (TF) approaches often generalize better, but it is difficult to obtain both simultaneously. To this end, we propose a Memory-Execute-Review framework. It consists of three parts: a hierarchical memory module for providing information support, an execute module for routine decision-making and actions, and a review module for handling abnormal situations and correcting behavior. We validated the effectiveness of this framework on the Object Goal Navigation task. Across 4 datasets, our average SR achieved absolute improvements of 7% and 5% compared to all baseline methods under TF and Zero-Shot (ZS) settings, respectively. On the most commonly used HM3D_v0.1 and the more challenging open vocabulary dataset HM3D_OVON, the SR improved by 8% and 6%, under ZS settings. Furthermore, on the MP3D and HM3D_OVON datasets, our method not only outperformed all TF methods but also surpassed all SFT methods, achieving comprehensive leadership in both SR (5% and 2%) and generalization.
comment: 9 pages, 2 figures, 5 tables, conference
☆ Refine and Purify: Orthogonal Basis Optimization with Null-Space Denoising for Conditional Representation Learning
Conditional representation learning aims to extract criterion-specific features for customized tasks. Recent studies project universal features onto the conditional feature subspace spanned by an LLM-generated text basis to obtain conditional representations. However, such methods face two key limitations: sensitivity to subspace basis and vulnerability to inter-subspace interference. To address these challenges, we propose OD-CRL, a novel framework integrating Adaptive Orthogonal Basis Optimization (AOBO) and Null-Space Denoising Projection (NSDP). Specifically, AOBO constructs orthogonal semantic bases via singular value decomposition with a curvature-based truncation. NSDP suppresses non-target semantic interference by projecting embeddings onto the null space of irrelevant subspaces. Extensive experiments conducted across customized clustering, customized classification, and customized retrieval tasks demonstrate that OD-CRL achieves a new state-of-the-art performance with superior generalization.
☆ Attention Retention for Continual Learning with Vision Transformers AAAI-2026
Continual learning (CL) empowers AI systems to progressively acquire knowledge from non-stationary data streams. However, catastrophic forgetting remains a critical challenge. In this work, we identify attention drift in Vision Transformers as a primary source of catastrophic forgetting, where the attention to previously learned visual concepts shifts significantly after learning new tasks. Inspired by neuroscientific insights into the selective attention in the human visual system, we propose a novel attention-retaining framework to mitigate forgetting in CL. Our method constrains attention drift by explicitly modifying gradients during backpropagation through a two-step process: 1) extracting attention maps of the previous task using a layer-wise rollout mechanism and generating instance-adaptive binary masks, and 2) when learning a new task, applying these masks to zero out gradients associated with previous attention regions, thereby preventing disruption of learned visual concepts. For compatibility with modern optimizers, the gradient masking process is further enhanced by scaling parameter updates proportionally to maintain their relative magnitudes. Experiments and visualizations demonstrate the effectiveness of our method in mitigating catastrophic forgetting and preserving visual concepts. It achieves state-of-the-art performance and exhibits robust generalizability across diverse CL scenarios.
comment: AAAI-2026 Camera Ready
☆ Towards Segmenting the Invisible: An End-to-End Registration and Segmentation Framework for Weakly Supervised Tumour Analysis
Liver tumour ablation presents a significant clinical challenge: whilst tumours are clearly visible on pre-operative MRI, they are often effectively invisible on intra-operative CT due to minimal contrast between pathological and healthy tissue. This work investigates the feasibility of cross-modality weak supervision for scenarios where pathology is visible in one modality (MRI) but absent in another (CT). We present a hybrid registration-segmentation framework that combines MSCGUNet for inter-modal image registration with a UNet-based segmentation module, enabling registration-assisted pseudo-label generation for CT images. Our evaluation on the CHAOS dataset demonstrates that the pipeline can successfully register and segment healthy liver anatomy, achieving a Dice score of 0.72. However, when applied to clinical data containing tumours, performance degrades substantially (Dice score of 0.16), revealing the fundamental limitations of current registration methods when the target pathology lacks corresponding visual features in the target modality. We analyse the "domain gap" and "feature absence" problems, demonstrating that whilst spatial propagation of labels via registration is feasible for visible structures, segmenting truly invisible pathology remains an open challenge. Our findings highlight that registration-based label transfer cannot compensate for the absence of discriminative features in the target modality, providing important insights for future research in cross-modality medical image analysis. Code an weights are available at: https://github.com/BudhaTronix/Weakly-Supervised-Tumour-Detection
comment: Accepted for AIBio at ECAI 2025
☆ DisCa: Accelerating Video Diffusion Transformers with Distillation-Compatible Learnable Feature Caching
While diffusion models have achieved great success in the field of video generation, this progress is accompanied by a rapidly escalating computational burden. Among the existing acceleration methods, Feature Caching is popular due to its training-free property and considerable speedup performance, but it inevitably faces semantic and detail drop with further compression. Another widely adopted method, training-aware step-distillation, though successful in image generation, also faces drastic degradation in video generation with a few steps. Furthermore, the quality loss becomes more severe when simply applying training-free feature caching to the step-distilled models, due to the sparser sampling steps. This paper novelly introduces a distillation-compatible learnable feature caching mechanism for the first time. We employ a lightweight learnable neural predictor instead of traditional training-free heuristics for diffusion models, enabling a more accurate capture of the high-dimensional feature evolution process. Furthermore, we explore the challenges of highly compressed distillation on large-scale video models and propose a conservative Restricted MeanFlow approach to achieve more stable and lossless distillation. By undertaking these initiatives, we further push the acceleration boundaries to $11.8\times$ while preserving generation quality. Extensive experiments demonstrate the effectiveness of our method. The code is in the supplementary materials and will be publicly available.
comment: 17 pages, 7 figures; cvpr2026 submission
☆ Synthetic Defect Geometries of Cast Metal Objects Modeled via 2d Voronoi Tessellations
In industry, defect detection is crucial for quality control. Non-destructive testing (NDT) methods are preferred as they do not influence the functionality of the object while inspecting. Automated data evaluation for automated defect detection is a growing field of research. In particular, machine learning approaches show promising results. To provide training data in sufficient amount and quality, synthetic data can be used. Rule-based approaches enable synthetic data generation in a controllable environment. Therefore, a digital twin of the inspected object including synthetic defects is needed. We present parametric methods to model 3d mesh objects of various defect types that can then be added to the object geometry to obtain synthetic defective objects. The models are motivated by common defects in metal casting but can be transferred to other machining procedures that produce similar defect shapes. Synthetic data resembling the real inspection data can then be created by using a physically based Monte Carlo simulation of the respective testing method. Using our defect models, a variable and arbitrarily large synthetic data set can be generated with the possibility to include rarely occurring defects in sufficient quantity. Pixel-perfect annotation can be created in parallel. As an example, we will use visual surface inspection, but the procedure can be applied in combination with simulations for any other NDT method.
☆ Stable Velocity: A Variance Perspective on Flow Matching
While flow matching is elegant, its reliance on single-sample conditional velocities leads to high-variance training targets that destabilize optimization and slow convergence. By explicitly characterizing this variance, we identify 1) a high-variance regime near the prior, where optimization is challenging, and 2) a low-variance regime near the data distribution, where conditional and marginal velocities nearly coincide. Leveraging this insight, we propose Stable Velocity, a unified framework that improves both training and sampling. For training, we introduce Stable Velocity Matching (StableVM), an unbiased variance-reduction objective, along with Variance-Aware Representation Alignment (VA-REPA), which adaptively strengthen auxiliary supervision in the low-variance regime. For inference, we show that dynamics in the low-variance regime admit closed-form simplifications, enabling Stable Velocity Sampling (StableVS), a finetuning-free acceleration. Extensive experiments on ImageNet $256\times256$ and large pretrained text-to-image and text-to-video models, including SD3.5, Flux, Qwen-Image, and Wan2.2, demonstrate consistent improvements in training efficiency and more than $2\times$ faster sampling within the low-variance regime without degrading sample quality. Our code is available at https://github.com/linYDTHU/StableVelocity.
☆ LD-SLRO: Latent Diffusion Structured Light for 3-D Reconstruction of Highly Reflective Objects
Fringe projection profilometry-based 3-D reconstruction of objects with high reflectivity and low surface roughness remains a significant challenge. When measuring such glossy surfaces, specular reflection and indirect illumination often lead to severe distortion or loss of the projected fringe patterns. To address these issues, we propose a latent diffusion-based structured light for reflective objects (LD-SLRO). Phase-shifted fringe images captured from highly reflective surfaces are first encoded to extract latent representations that capture surface reflectance characteristics. These latent features are then used as conditional inputs to a latent diffusion model, which probabilistically suppresses reflection-induced artifacts and recover lost fringe information, yielding high-quality fringe images. The proposed components, including the specular reflection encoder, time-variant channel affine layer, and attention modules, further improve fringe restoration quality. In addition, LD-SLRO provides high flexibility in configuring the input and output fringe sets. Experimental results demonstrate that the proposed method improves both fringe quality and 3-D reconstruction accuracy over state-of-the-art methods, reducing the average root-mean-squared error from 1.8176 mm to 0.9619 mm.
comment: 10 pages, 7 figures
☆ M$^2$-Miner: Multi-Agent Enhanced MCTS for Mobile GUI Agent Data Mining ICLR 2026
Graphical User Interface (GUI) agent is pivotal to advancing intelligent human-computer interaction paradigms. Constructing powerful GUI agents necessitates the large-scale annotation of high-quality user-behavior trajectory data (i.e., intent-trajectory pairs) for training. However, manual annotation methods and current GUI agent data mining approaches typically face three critical challenges: high construction cost, poor data quality, and low data richness. To address these issues, we propose M$^2$-Miner, the first low-cost and automated mobile GUI agent data-mining framework based on Monte Carlo Tree Search (MCTS). For better data mining efficiency and quality, we present a collaborative multi-agent framework, comprising InferAgent, OrchestraAgent, and JudgeAgent for guidance, acceleration, and evaluation. To further enhance the efficiency of mining and enrich intent diversity, we design an intent recycling strategy to extract extra valuable interaction trajectories. Additionally, a progressive model-in-the-loop training strategy is introduced to improve the success rate of data mining. Extensive experiments have demonstrated that the GUI agent fine-tuned using our mined data achieves state-of-the-art performance on several commonly used mobile GUI benchmarks. Our work will be released to facilitate the community research.
comment: Accepted by ICLR 2026. Supplementary material is included at the end of the main paper (16 pages, 15 figures, 2 tables)
☆ Multi-AD: Cross-Domain Unsupervised Anomaly Detection for Medical and Industrial Applications
Traditional deep learning models often lack annotated data, especially in cross-domain applications such as anomaly detection, which is critical for early disease diagnosis in medicine and defect detection in industry. To address this challenge, we propose Multi-AD, a convolutional neural network (CNN) model for robust unsupervised anomaly detection across medical and industrial images. Our approach employs the squeeze-and-excitation (SE) block to enhance feature extraction via channel-wise attention, enabling the model to focus on the most relevant features and detect subtle anomalies. Knowledge distillation (KD) transfers informative features from the teacher to the student model, enabling effective learning of the differences between normal and anomalous data. Then, the discriminator network further enhances the model's capacity to distinguish between normal and anomalous data. At the inference stage, by integrating multi-scale features, the student model can detect anomalies of varying sizes. The teacher-student (T-S) architecture ensures consistent representation of high-dimensional features while adapting them to enhance anomaly detection. Multi-AD was evaluated on several medical datasets, including brain MRI, liver CT, and retina OCT, as well as industrial datasets, such as MVTec AD, demonstrating strong generalization across multiple domains. Experimental results demonstrated that our approach consistently outperformed state-of-the-art models, achieving the best average AUROC for both image-level (81.4% for medical and 99.6% for industrial) and pixel-level (97.0% for medical and 98.4% for industrial) tasks, making it effective for real-world applications.
comment: 28 pages, 8 figures
☆ NeVStereo: A NeRF-Driven NVS-Stereo Architecture for High-Fidelity 3D Tasks
In modern dense 3D reconstruction, feed-forward systems (e.g., VGGT, pi3) focus on end-to-end matching and geometry prediction but do not explicitly output the novel view synthesis (NVS). Neural rendering-based approaches offer high-fidelity NVS and detailed geometry from posed images, yet they typically assume fixed camera poses and can be sensitive to pose errors. As a result, it remains non-trivial to obtain a single framework that can offer accurate poses, reliable depth, high-quality rendering, and accurate 3D surfaces from casually captured views. We present NeVStereo, a NeRF-driven NVS-stereo architecture that aims to jointly deliver camera poses, multi-view depth, novel view synthesis, and surface reconstruction from multi-view RGB-only inputs. NeVStereo combines NeRF-based NVS for stereo-friendly renderings, confidence-guided multi-view depth estimation, NeRF-coupled bundle adjustment for pose refinement, and an iterative refinement stage that updates both depth and the radiance field to improve geometric consistency. This design mitigated the common NeRF-based issues such as surface stacking, artifacts, and pose-depth coupling. Across indoor, outdoor, tabletop, and aerial benchmarks, our experiments indicate that NeVStereo achieves consistently strong zero-shot performance, with up to 36% lower depth error, 10.4% improved pose accuracy, 4.5% higher NVS fidelity, and state-of-the-art mesh quality (F1 91.93%, Chamfer 4.35 mm) compared to existing prestigious methods.
☆ Disco: Densely-overlapping Cell Instance Segmentation via Adjacency-aware Collaborative Coloring ICLR 2026
Accurate cell instance segmentation is foundational for digital pathology analysis. Existing methods based on contour detection and distance mapping still face significant challenges in processing complex and dense cellular regions. Graph coloring-based methods provide a new paradigm for this task, yet the effectiveness of this paradigm in real-world scenarios with dense overlaps and complex topologies has not been verified. Addressing this issue, we release a large-scale dataset GBC-FS 2025, which contains highly complex and dense sub-cellular nuclear arrangements. We conduct the first systematic analysis of the chromatic properties of cell adjacency graphs across four diverse datasets and reveal an important discovery: most real-world cell graphs are non-bipartite, with a high prevalence of odd-length cycles (predominantly triangles). This makes simple 2-coloring theory insufficient for handling complex tissues, while higher-chromaticity models would cause representational redundancy and optimization difficulties. Building on this observation of complex real-world contexts, we propose Disco (Densely-overlapping Cell Instance Segmentation via Adjacency-aware COllaborative Coloring), an adjacency-aware framework based on the "divide and conquer" principle. It uniquely combines a data-driven topological labeling strategy with a constrained deep learning system to resolve complex adjacency conflicts. First, "Explicit Marking" strategy transforms the topological challenge into a learnable classification task by recursively decomposing the cell graph and isolating a "conflict set." Second, "Implicit Disambiguation" mechanism resolves ambiguities in conflict regions by enforcing feature dissimilarity between different instances, enabling the model to learn separable feature representations.
comment: 17 pages, 10 figures; ICLR 2026
☆ VMF-GOS: Geometry-guided virtual Outlier Synthesis for Long-Tailed OOD Detection
Out-of-Distribution (OOD) detection under long-tailed distributions is a highly challenging task because the scarcity of samples in tail classes leads to blurred decision boundaries in the feature space. Current state-of-the-art (sota) methods typically employ Outlier Exposure (OE) strategies, relying on large-scale real external datasets (such as 80 Million Tiny Images) to regularize the feature space. However, this dependence on external data often becomes infeasible in practical deployment due to high data acquisition costs and privacy sensitivity. To this end, we propose a novel data-free framework aimed at completely eliminating reliance on external datasets while maintaining superior detection performance. We introduce a Geometry-guided virtual Outlier Synthesis (GOS) strategy that models statistical properties using the von Mises-Fisher (vMF) distribution on a hypersphere. Specifically, we locate a low-likelihood annulus in the feature space and perform directional sampling of virtual outliers in this region. Simultaneously, we introduce a new Dual-Granularity Semantic Loss (DGS) that utilizes contrastive learning to maximize the distinction between in-distribution (ID) features and these synthesized boundary outliers. Extensive experiments on benchmarks such as CIFAR-LT demonstrate that our method outperforms sota approaches that utilize external real images.
☆ TSBOW: Traffic Surveillance Benchmark for Occluded Vehicles Under Various Weather Conditions AAAI
Global warming has intensified the frequency and severity of extreme weather events, which degrade CCTV signal and video quality while disrupting traffic flow, thereby increasing traffic accident rates. Existing datasets, often limited to light haze, rain, and snow, fail to capture extreme weather conditions. To address this gap, this study introduces the Traffic Surveillance Benchmark for Occluded vehicles under various Weather conditions (TSBOW), a comprehensive dataset designed to enhance occluded vehicle detection across diverse annual weather scenarios. Comprising over 32 hours of real-world traffic data from densely populated urban areas, TSBOW includes more than 48,000 manually annotated and 3.2 million semi-labeled frames; bounding boxes spanning eight traffic participant classes from large vehicles to micromobility devices and pedestrians. We establish an object detection benchmark for TSBOW, highlighting challenges posed by occlusions and adverse weather. With its varied road types, scales, and viewpoints, TSBOW serves as a critical resource for advancing Intelligent Transportation Systems. Our findings underscore the potential of CCTV-based traffic monitoring, pave the way for new research and applications. The TSBOW dataset is publicly available at: https://github.com/SKKUAutoLab/TSBOW.
comment: This paper has been accepted by the 40th AAAI Conference on Artificial Intelligence (AAAI-26)
☆ Explainable Pathomics Feature Visualization via Correlation-aware Conditional Feature Editing
Pathomics is a recent approach that offers rich quantitative features beyond what black-box deep learning can provide, supporting more reproducible and explainable biomarkers in digital pathology. However, many derived features (e.g., "second-order moment") remain difficult to interpret, especially across different clinical contexts, which limits their practical adoption. Conditional diffusion models show promise for explainability through feature editing, but they typically assume feature independence**--**an assumption violated by intrinsically correlated pathomics features. Consequently, editing one feature while fixing others can push the model off the biological manifold and produce unrealistic artifacts. To address this, we propose a Manifold-Aware Diffusion (MAD) framework for controllable and biologically plausible cell nuclei editing. Unlike existing approaches, our method regularizes feature trajectories within a disentangled latent space learned by a variational auto-encoder (VAE). This ensures that manipulating a target feature automatically adjusts correlated attributes to remain within the learned distribution of real cells. These optimized features then guide a conditional diffusion model to synthesize high-fidelity images. Experiments demonstrate that our approach is able to navigate the manifold of pathomics features when editing those features. The proposed method outperforms baseline methods in conditional feature editing while preserving structural coherence.
Dataset Distillation via Relative Distribution Matching and Cognitive Heritage
Dataset distillation seeks to synthesize a highly compact dataset that achieves performance comparable to the original dataset on downstream tasks. For the classification task that use pre-trained self-supervised models as backbones, previous linear gradient matching optimizes synthetic images by encouraging them to mimic the gradient updates induced by real images on the linear classifier. However, this batch-level formulation requires loading thousands of real images and applying multiple rounds of differentiable augmentations to synthetic images at each distillation step, leading to substantial computational and memory overhead. In this paper, we introduce statistical flow matching , a stable and efficient supervised learning framework that optimizes synthetic images by aligning constant statistical flows from target class centers to non-target class centers in the original data. Our approach loads raw statistics only once and performs a single augmentation pass on the synthetic data, achieving performance comparable to or better than the state-of-the-art methods with 10x lower GPU memory usage and 4x shorter runtime. Furthermore, we propose a classifier inheritance strategy that reuses the classifier trained on the original dataset for inference, requiring only an extremely lightweight linear projector and marginal storage while achieving substantial performance gains.
☆ Parallel Swin Transformer-Enhanced 3D MRI-to-CT Synthesis for MRI-Only Radiotherapy Planning
MRI provides superior soft tissue contrast without ionizing radiation; however, the absence of electron density information limits its direct use for dose calculation. As a result, current radiotherapy workflows rely on combined MRI and CT acquisitions, increasing registration uncertainty and procedural complexity. Synthetic CT generation enables MRI only planning but remains challenging due to nonlinear MRI-CT relationships and anatomical variability. We propose Parallel Swin Transformer-Enhanced Med2Transformer, a 3D architecture that integrates convolutional encoding with dual Swin Transformer branches to model both local anatomical detail and long-range contextual dependencies. Multi-scale shifted window attention with hierarchical feature aggregation improves anatomical fidelity. Experiments on public and clinical datasets demonstrate higher image similarity and improved geometric accuracy compared with baseline methods. Dosimetric evaluation shows clinically acceptable performance, with a mean target dose error of 1.69%. Code is available at: https://github.com/mobaidoctor/med2transformer.
☆ Dolphin-v2: Universal Document Parsing via Scalable Anchor Prompting
Document parsing has garnered widespread attention as vision-language models (VLMs) advance OCR capabilities. However, the field remains fragmented across dozens of specialized models with varying strengths, forcing users to navigate complex model selection and limiting system scalability. Moreover, existing two-stage approaches depend on axis-aligned bounding boxes for layout detection, failing to handle distorted or photographed documents effectively. To this end, we present Dolphin-v2, a two-stage document image parsing model that substantially improves upon the original Dolphin. In the first stage, Dolphin-v2 jointly performs document type classification (digital-born versus photographed) alongside layout analysis. For digital-born documents, it conducts finer-grained element detection with reading order prediction. In the second stage, we employ a hybrid parsing strategy: photographed documents are parsed holistically as complete pages to handle geometric distortions, while digital-born documents undergo element-wise parallel parsing guided by the detected layout anchors, enabling efficient content extraction. Compared with the original Dolphin, Dolphin-v2 introduces several crucial enhancements: (1) robust parsing of photographed documents via holistic page-level understanding, (2) finer-grained element detection (21 categories) with semantic attribute extraction such as author information and document metadata, and (3) code block recognition with indentation preservation, which existing systems typically lack. Comprehensive evaluations are conducted on DocPTBench, OmniDocBench, and our self-constructed RealDoc-160 benchmark. The results demonstrate substantial improvements: +14.78 points overall on the challenging OmniDocBench and 91% error reduction on photographed documents, while maintaining efficient inference through parallel processing.
☆ VRIQ: Benchmarking and Analyzing Visual-Reasoning IQ of VLMs
Recent progress in Vision Language Models (VLMs) has raised the question of whether they can reliably perform nonverbal reasoning. To this end, we introduce VRIQ (Visual Reasoning IQ), a novel benchmark designed to assess and analyze the visual reasoning ability of VLMs. We evaluate models on two sets of tasks: abstract puzzle-style and natural-image reasoning tasks. We find that on abstract puzzles, performance remains near random with an average accuracy of around 28%, while natural tasks yield better but still weak results with 45% accuracy. We also find that tool-augmented reasoning demonstrates only modest improvements. To uncover the source of this weakness, we introduce diagnostic probes targeting perception and reasoning. Our analysis demonstrates that around 56% of failures arise from perception alone, 43% from both perception and reasoning, and only a mere 1% from reasoning alone. This motivates us to design fine-grained diagnostic probe questions targeting specific perception categories (e.g., shape, count, position, 3D/depth), revealing that certain categories cause more failures than others. Our benchmark and analysis establish that current VLMs, even with visual reasoning tools, remain unreliable abstract reasoners, mostly due to perception limitations, and offer a principled basis for improving visual reasoning in multimodal systems.
SAIL: Self-Amplified Iterative Learning for Diffusion Model Alignment with Minimal Human Feedback
Aligning diffusion models with human preferences remains challenging, particularly when reward models are unavailable or impractical to obtain, and collecting large-scale preference datasets is prohibitively expensive. \textit{This raises a fundamental question: can we achieve effective alignment using only minimal human feedback, without auxiliary reward models, by unlocking the latent capabilities within diffusion models themselves?} In this paper, we propose \textbf{SAIL} (\textbf{S}elf-\textbf{A}mplified \textbf{I}terative \textbf{L}earning), a novel framework that enables diffusion models to act as their own teachers through iterative self-improvement. Starting from a minimal seed set of human-annotated preference pairs, SAIL operates in a closed-loop manner where the model progressively generates diverse samples, self-annotates preferences based on its evolving understanding, and refines itself using this self-augmented dataset. To ensure robust learning and prevent catastrophic forgetting, we introduce a ranked preference mixup strategy that carefully balances exploration with adherence to initial human priors. Extensive experiments demonstrate that SAIL consistently outperforms state-of-the-art methods across multiple benchmarks while using merely 6\% of the preference data required by existing approaches, revealing that diffusion models possess remarkable self-improvement capabilities that, when properly harnessed, can effectively replace both large-scale human annotation and external reward models.
☆ Erase at the Core: Representation Unlearning for Machine Unlearning
Many approximate machine unlearning methods demonstrate strong logit-level forgetting -- such as near-zero accuracy on the forget set -- yet continue to preserve substantial information within their internal feature representations. We refer to this discrepancy as superficial forgetting. Recent studies indicate that most existing unlearning approaches primarily alter the final classifier, leaving intermediate representations largely unchanged and highly similar to those of the original model. To address this limitation, we introduce the Erase at the Core (EC), a framework designed to enforce forgetting throughout the entire network hierarchy. EC integrates multi-layer contrastive unlearning on the forget set with retain set preservation through deeply supervised learning. Concretely, EC attaches auxiliary modules to intermediate layers and applies both contrastive unlearning and cross-entropy losses at each supervision point, with layer-wise weighted losses. Experimental results show that EC not only achieves effective logit-level forgetting, but also substantially reduces representational similarity to the original model across intermediate layers. Furthermore, EC is model-agnostic and can be incorporated as a plug-in module into existing unlearning methods, improving representation-level forgetting while maintaining performance on the retain set.
☆ Imagine a City: CityGenAgent for Procedural 3D City Generation
The automated generation of interactive 3D cities is a critical challenge with broad applications in autonomous driving, virtual reality, and embodied intelligence. While recent advances in generative models and procedural techniques have improved the realism of city generation, existing methods often struggle with high-fidelity asset creation, controllability, and manipulation. In this work, we introduce CityGenAgent, a natural language-driven framework for hierarchical procedural generation of high-quality 3D cities. Our approach decomposes city generation into two interpretable components, Block Program and Building Program. To ensure structural correctness and semantic alignment, we adopt a two-stage learning strategy: (1) Supervised Fine-Tuning (SFT). We train BlockGen and BuildingGen to generate valid programs that adhere to schema constraints, including non-self-intersecting polygons and complete fields; (2) Reinforcement Learning (RL). We design Spatial Alignment Reward to enhance spatial reasoning ability and Visual Consistency Reward to bridge the gap between textual descriptions and the visual modality. Benefiting from the programs and the models' generalization, CityGenAgent supports natural language editing and manipulation. Comprehensive evaluations demonstrate superior semantic alignment, visual quality, and controllability compared to existing methods, establishing a robust foundation for scalable 3D city generation.
☆ Breaking Semantic Hegemony: Decoupling Principal and Residual Subspaces for Generalized OOD Detection
While feature-based post-hoc methods have made significant strides in Out-of-Distribution (OOD) detection, we uncover a counter-intuitive Simplicity Paradox in existing state-of-the-art (SOTA) models: these models exhibit keen sensitivity in distinguishing semantically subtle OOD samples but suffer from severe Geometric Blindness when confronting structurally distinct yet semantically simple samples or high-frequency sensor noise. We attribute this phenomenon to Semantic Hegemony within the deep feature space and reveal its mathematical essence through the lens of Neural Collapse. Theoretical analysis demonstrates that the spectral concentration bias, induced by the high variance of the principal subspace, numerically masks the structural distribution shift signals that should be significant in the residual subspace. To address this issue, we propose D-KNN, a training-free, plug-and-play geometric decoupling framework. This method utilizes orthogonal decomposition to explicitly separate semantic components from structural residuals and introduces a dual-space calibration mechanism to reactivate the model's sensitivity to weak residual signals. Extensive experiments demonstrate that D-KNN effectively breaks Semantic Hegemony, establishing new SOTA performance on both CIFAR and ImageNet benchmarks. Notably, in resolving the Simplicity Paradox, it reduces the FPR95 from 31.3% to 2.3%; when addressing sensor failures such as Gaussian noise, it boosts the detection performance (AUROC) from a baseline of 79.7% to 94.9%.
Multimodal Latent Reasoning via Hierarchical Visual Cues Injection
The advancement of multimodal large language models (MLLMs) has enabled impressive perception capabilities. However, their reasoning process often remains a "fast thinking" paradigm, reliant on end-to-end generation or explicit, language-centric chains of thought (CoT), which can be inefficient, verbose, and prone to hallucination. This work posits that robust reasoning should evolve within a latent space, integrating multimodal signals seamlessly. We propose multimodal latent reasoning via HIerarchical Visual cuEs injection (\emph{HIVE}), a novel framework that instills deliberate, "slow thinking" without depending on superficial textual rationales. Our method recursively extends transformer blocks, creating an internal loop for iterative reasoning refinement. Crucially, it injectively grounds this process with hierarchical visual cues from global scene context to fine-grained regional details directly into the model's latent representations. This enables the model to perform grounded, multi-step inference entirely in the aligned latent space. Extensive evaluations demonstrate that test-time scaling is effective when incorporating vision knowledge, and that integrating hierarchical information significantly enhances the model's understanding of complex scenes.
☆ Learning with Adaptive Prototype Manifolds for Out-of-Distribution Detection
Out-of-distribution (OOD) detection is a critical task for the safe deployment of machine learning models in the real world. Existing prototype-based representation learning methods have demonstrated exceptional performance. Specifically, we identify two fundamental flaws that universally constrain these methods: the Static Homogeneity Assumption (fixed representational resources for all classes) and the Learning-Inference Disconnect (discarding rich prototype quality knowledge at inference). These flaws fundamentally limit the model's capacity and performance. To address these issues, we propose APEX (Adaptive Prototype for eXtensive OOD Detection), a novel OOD detection framework designed via a Two-Stage Repair process to optimize the learned feature manifold. APEX introduces two key innovations to address these respective flaws: (1) an Adaptive Prototype Manifold (APM), which leverages the Minimum Description Length (MDL) principle to automatically determine the optimal prototype complexity $K_c^*$ for each class, thereby fundamentally resolving prototype collision; and (2) a Posterior-Aware OOD Scoring (PAOS) mechanism, which quantifies prototype quality (cohesion and separation) to bridge the learning-inference disconnect. Comprehensive experiments on benchmarks such as CIFAR-100 validate the superiority of our method, where APEX achieves new state-of-the-art performance.
☆ Consistency-Preserving Concept Erasure via Unsafe-Safe Pairing and Directional Fisher-weighted Adaptation
With the increasing versatility of text-to-image diffusion models, the ability to selectively erase undesirable concepts (e.g., harmful content) has become indispensable. However, existing concept erasure approaches primarily focus on removing unsafe concepts without providing guidance toward corresponding safe alternatives, which often leads to failure in preserving the structural and semantic consistency between the original and erased generations. In this paper, we propose a novel framework, PAIRed Erasing (PAIR), which reframes concept erasure from simple removal to consistency-preserving semantic realignment using unsafe-safe pairs. We first generate safe counterparts from unsafe inputs while preserving structural and semantic fidelity, forming paired unsafe-safe multimodal data. Leveraging these pairs, we introduce two key components: (1) Paired Semantic Realignment, a guided objective that uses unsafe-safe pairs to explicitly map target concepts to semantically aligned safe anchors; and (2) Fisher-weighted Initialization for DoRA, which initializes parameter-efficient low-rank adaptation matrices using unsafe-safe pairs, encouraging the generation of safe alternatives while selectively suppressing unsafe concepts. Together, these components enable fine-grained erasure that removes only the targeted concepts while maintaining overall semantic consistency. Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art baselines, achieving effective concept erasure while preserving structural integrity, semantic coherence, and generation quality.
☆ MTPano: Multi-Task Panoramic Scene Understanding via Label-Free Integration of Dense Prediction Priors
Comprehensive panoramic scene understanding is critical for immersive applications, yet it remains challenging due to the scarcity of high-resolution, multi-task annotations. While perspective foundation models have achieved success through data scaling, directly adapting them to the panoramic domain often fails due to severe geometric distortions and coordinate system discrepancies. Furthermore, the underlying relations between diverse dense prediction tasks in spherical spaces are underexplored. To address these challenges, we propose MTPano, a robust multi-task panoramic foundation model established by a label-free training pipeline. First, to circumvent data scarcity, we leverage powerful perspective dense priors. We project panoramic images into perspective patches to generate accurate, domain-gap-free pseudo-labels using off-the-shelf foundation models, which are then re-projected to serve as patch-wise supervision. Second, to tackle the interference between task types, we categorize tasks into rotation-invariant (e.g., depth, segmentation) and rotation-variant (e.g., surface normals) groups. We introduce the Panoramic Dual BridgeNet, which disentangles these feature streams via geometry-aware modulation layers that inject absolute position and ray direction priors. To handle the distortion from equirectangular projections (ERP), we incorporate ERP token mixers followed by a dual-branch BridgeNet for interactions with gradient truncation, facilitating beneficial cross-task information sharing while blocking conflicting gradients from incompatible task attributes. Additionally, we introduce auxiliary tasks (image gradient, point map, etc.) to fertilize the cross-task learning process. Extensive experiments demonstrate that MTPano achieves state-of-the-art performance on multiple benchmarks and delivers competitive results against task-specific panoramic specialist foundation models.
☆ Wid3R: Wide Field-of-View 3D Reconstruction via Camera Model Conditioning
We present Wid3R, a feed-forward neural network for visual geometry reconstruction that supports wide field-of-view camera models. Prior methods typically assume that input images are rectified or captured with pinhole cameras, since both their architectures and training datasets are tailored to perspective images only. These assumptions limit their applicability in real-world scenarios that use fisheye or panoramic cameras and often require careful calibration and undistortion. In contrast, Wid3R is a generalizable multi-view 3D estimation method that can model wide field-of-view camera types. Our approach leverages a ray representation with spherical harmonics and a novel camera model token within the network, enabling distortion-aware 3D reconstruction. Furthermore, Wid3R is the first multi-view foundation model to support feed-forward 3D reconstruction directly from 360 imagery. It demonstrates strong zero-shot robustness and consistently outperforms prior methods, achieving improvements of up to +77.33 on Stanford2D3D.
☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
☆ Fast-SAM3D: 3Dfy Anything in Images but Faster
SAM3D enables scalable, open-world 3D reconstruction from complex scenes, yet its deployment is hindered by prohibitive inference latency. In this work, we conduct the \textbf{first systematic investigation} into its inference dynamics, revealing that generic acceleration strategies are brittle in this context. We demonstrate that these failures stem from neglecting the pipeline's inherent multi-level \textbf{heterogeneity}: the kinematic distinctiveness between shape and layout, the intrinsic sparsity of texture refinement, and the spectral variance across geometries. To address this, we present \textbf{Fast-SAM3D}, a training-free framework that dynamically aligns computation with instantaneous generation complexity. Our approach integrates three heterogeneity-aware mechanisms: (1) \textit{Modality-Aware Step Caching} to decouple structural evolution from sensitive layout updates; (2) \textit{Joint Spatiotemporal Token Carving} to concentrate refinement on high-entropy regions; and (3) \textit{Spectral-Aware Token Aggregation} to adapt decoding resolution. Extensive experiments demonstrate that Fast-SAM3D delivers up to \textbf{2.67$\times$} end-to-end speedup with negligible fidelity loss, establishing a new Pareto frontier for efficient single-view 3D generation. Our code is released in https://github.com/wlfeng0509/Fast-SAM3D.
☆ Magic-MM-Embedding: Towards Visual-Token-Efficient Universal Multimodal Embedding with MLLMs
Multimodal Large Language Models (MLLMs) have shown immense promise in universal multimodal retrieval, which aims to find relevant items of various modalities for a given query. But their practical application is often hindered by the substantial computational cost incurred from processing a large number of tokens from visual inputs. In this paper, we propose Magic-MM-Embedding, a series of novel models that achieve both high efficiency and state-of-the-art performance in universal multimodal embedding. Our approach is built on two synergistic pillars: (1) a highly efficient MLLM architecture incorporating visual token compression to drastically reduce inference latency and memory footprint, and (2) a multi-stage progressive training strategy designed to not only recover but significantly boost performance. This coarse-to-fine training paradigm begins with extensive continue pretraining to restore multimodal understanding and generation capabilities, progresses to large-scale contrastive pretraining and hard negative mining to enhance discriminative power, and culminates in a task-aware fine-tuning stage guided by an MLLM-as-a-Judge for precise data curation. Comprehensive experiments show that our model outperforms existing methods by a large margin while being more inference-efficient.
☆ Unlocking Prototype Potential: An Efficient Tuning Framework for Few-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) seeks to continuously learn new classes from very limited samples while preserving previously acquired knowledge. Traditional methods often utilize a frozen pre-trained feature extractor to generate static class prototypes, which suffer from the inherent representation bias of the backbone. While recent prompt-based tuning methods attempt to adapt the backbone via minimal parameter updates, given the constraint of extreme data scarcity, the model's capacity to assimilate novel information and substantively enhance its global discriminative power is inherently limited. In this paper, we propose a novel shift in perspective: freezing the feature extractor while fine-tuning the prototypes. We argue that the primary challenge in FSCIL is not feature acquisition, but rather the optimization of decision regions within a static, high-quality feature space. To this end, we introduce an efficient prototype fine-tuning framework that evolves static centroids into dynamic, learnable components. The framework employs a dual-calibration method consisting of class-specific and task-aware offsets. These components function synergistically to improve the discriminative capacity of prototypes for ongoing incremental classes. Extensive results demonstrate that our method attains superior performance across multiple benchmarks while requiring minimal learnable parameters.
comment: under review
☆ ReGLA: Efficient Receptive-Field Modeling with Gated Linear Attention Network
Balancing accuracy and latency on high-resolution images is a critical challenge for lightweight models, particularly for Transformer-based architectures that often suffer from excessive latency. To address this issue, we introduce \textbf{ReGLA}, a series of lightweight hybrid networks, which integrates efficient convolutions for local feature extraction with ReLU-based gated linear attention for global modeling. The design incorporates three key innovations: the Efficient Large Receptive Field (ELRF) module for enhancing convolutional efficiency while preserving a large receptive field; the ReLU Gated Modulated Attention (RGMA) module for maintaining linear complexity while enhancing local feature representation; and a multi-teacher distillation strategy to boost performance on downstream tasks. Extensive experiments validate the superiority of ReGLA; particularly the ReGLA-M achieves \textbf{80.85\%} Top-1 accuracy on ImageNet-1K at $224px$, with only \textbf{4.98 ms} latency at $512px$. Furthermore, ReGLA outperforms similarly scaled iFormer models in downstream tasks, achieving gains of \textbf{3.1\%} AP on COCO object detection and \textbf{3.6\%} mIoU on ADE20K semantic segmentation, establishing it as a state-of-the-art solution for high-resolution visual applications.
comment: 11 pages, 4 figures
☆ RFM-Pose:Reinforcement-Guided Flow Matching for Fast Category-Level 6D Pose Estimation
Object pose estimation is a fundamental problem in computer vision and plays a critical role in virtual reality and embodied intelligence, where agents must understand and interact with objects in 3D space. Recently, score based generative models have to some extent solved the rotational symmetry ambiguity problem in category level pose estimation, but their efficiency remains limited by the high sampling cost of score-based diffusion. In this work, we propose a new framework, RFM-Pose, that accelerates category-level 6D object pose generation while actively evaluating sampled hypotheses. To improve sampling efficiency, we adopt a flow-matching generative model and generate pose candidates along an optimal transport path from a simple prior to the pose distribution. To further refine these candidates, we cast the flow-matching sampling process as a Markov decision process and apply proximal policy optimization to fine-tune the sampling policy. In particular, we interpret the flow field as a learnable policy and map an estimator to a value network, enabling joint optimization of pose generation and hypothesis scoring within a reinforcement learning framework. Experiments on the REAL275 benchmark demonstrate that RFM-Pose achieves favorable performance while significantly reducing computational cost. Moreover, similar to prior work, our approach can be readily adapted to object pose tracking and attains competitive results in this setting.
comment: This work has been submitted to the IEEE for possible publication
☆ Active Label Cleaning for Reliable Detection of Electron Dense Deposits in Transmission Electron Microscopy Images
Automated detection of electron dense deposits (EDD) in glomerular disease is hindered by the scarcity of high-quality labeled data. While crowdsourcing reduces annotation cost, it introduces label noise. We propose an active label cleaning method to efficiently denoise crowdsourced datasets. Our approach uses active learning to select the most valuable noisy samples for expert re-annotation, building high-accuracy cleaning models. A Label Selection Module leverages discrepancies between crowdsourced labels and model predictions for both sample selection and instance-level noise grading. Experiments show our method achieves 67.18% AP\textsubscript{50} on a private dataset, an 18.83% improvement over training on noisy labels. This performance reaches 95.79% of that with full expert annotation while reducing annotation cost by 73.30%. The method provides a practical, cost-effective solution for developing reliable medical AI with limited expert resources.
comment: 10 pages, 6 figures
☆ PatchFlow: Leveraging a Flow-Based Model with Patch Features
Die casting plays a crucial role across various industries due to its ability to craft intricate shapes with high precision and smooth surfaces. However, surface defects remain a major issue that impedes die casting quality control. Recently, computer vision techniques have been explored to automate and improve defect detection. In this work, we combine local neighbor-aware patch features with a normalizing flow model and bridge the gap between the generic pretrained feature extractor and industrial product images by introducing an adapter module to increase the efficiency and accuracy of automated anomaly detection. Compared to state-of-the-art methods, our approach reduces the error rate by 20\% on the MVTec AD dataset, achieving an image-level AUROC of 99.28\%. Our approach has also enhanced performance on the VisA dataset , achieving an image-level AUROC of 96.48\%. Compared to the state-of-the-art models, this represents a 28.2\% reduction in error. Additionally, experiments on a proprietary die casting dataset yield an accuracy of 95.77\% for anomaly detection, without requiring any anomalous samples for training. Our method illustrates the potential of leveraging computer vision and deep learning techniques to advance inspection capabilities for the die casting industry
☆ Boosting SAM for Cross-Domain Few-Shot Segmentation via Conditional Point Sparsification
Motivated by the success of the Segment Anything Model (SAM) in promptable segmentation, recent studies leverage SAM to develop training-free solutions for few-shot segmentation, which aims to predict object masks in the target image based on a few reference exemplars. These SAM-based methods typically rely on point matching between reference and target images and use the matched dense points as prompts for mask prediction. However, we observe that dense points perform poorly in Cross-Domain Few-Shot Segmentation (CD-FSS), where target images are from medical or satellite domains. We attribute this issue to large domain shifts that disrupt the point-image interactions learned by SAM, and find that point density plays a crucial role under such conditions. To address this challenge, we propose Conditional Point Sparsification (CPS), a training-free approach that adaptively guides SAM interactions for cross-domain images based on reference exemplars. Leveraging ground-truth masks, the reference images provide reliable guidance for adaptively sparsifying dense matched points, enabling more accurate segmentation results. Extensive experiments demonstrate that CPS outperforms existing training-free SAM-based methods across diverse CD-FSS datasets.
☆ Cross-Domain Few-Shot Segmentation via Multi-view Progressive Adaptation
Cross-Domain Few-Shot Segmentation aims to segment categories in data-scarce domains conditioned on a few exemplars. Typical methods first establish few-shot capability in a large-scale source domain and then adapt it to target domains. However, due to the limited quantity and diversity of target samples, existing methods still exhibit constrained performance. Moreover, the source-trained model's initially weak few-shot capability in target domains, coupled with substantial domain gaps, severely hinders the effective utilization of target samples and further impedes adaptation. To this end, we propose Multi-view Progressive Adaptation, which progressively adapts few-shot capability to target domains from both data and strategy perspectives. (i) From the data perspective, we introduce Hybrid Progressive Augmentation, which progressively generates more diverse and complex views through cumulative strong augmentations, thereby creating increasingly challenging learning scenarios. (ii) From the strategy perspective, we design Dual-chain Multi-view Prediction, which fully leverages these progressively complex views through sequential and parallel learning paths under extensive supervision. By jointly enforcing prediction consistency across diverse and complex views, MPA achieves both robust and accurate adaptation to target domains. Extensive experiments demonstrate that MPA effectively adapts few-shot capability to target domains, outperforming state-of-the-art methods by a large margin (+7.0%).
☆ E.M.Ground: A Temporal Grounding Vid-LLM with Holistic Event Perception and Matching
Despite recent advances in Video Large Language Models (Vid-LLMs), Temporal Video Grounding (TVG), which aims to precisely localize time segments corresponding to query events, remains a significant challenge. Existing methods often match start and end frames by comparing frame features with two separate tokens, relying heavily on exact timestamps. However, this approach fails to capture the event's semantic continuity and integrity, leading to ambiguities. To address this, we propose E.M.Ground, a novel Vid-LLM for TVG that focuses on holistic and coherent event perception. E.M.Ground introduces three key innovations: (i) a special token that aggregates information from all frames of a query event, preserving semantic continuity for accurate event matching; (ii) Savitzky-Golay smoothing to reduce noise in token-to-frame similarities across timestamps, improving prediction accuracy; (iii) multi-grained frame feature aggregation to enhance matching reliability and temporal understanding, compensating for compression-induced information loss. Extensive experiments on benchmark datasets show that E.M.Ground consistently outperforms state-of-the-art Vid-LLMs by significant margins.
☆ Dual-Representation Image Compression at Ultra-Low Bitrates via Explicit Semantics and Implicit Textures
While recent neural codecs achieve strong performance at low bitrates when optimized for perceptual quality, their effectiveness deteriorates significantly under ultra-low bitrate conditions. To mitigate this, generative compression methods leveraging semantic priors from pretrained models have emerged as a promising paradigm. However, existing approaches are fundamentally constrained by a tradeoff between semantic faithfulness and perceptual realism. Methods based on explicit representations preserve content structure but often lack fine-grained textures, whereas implicit methods can synthesize visually plausible details at the cost of semantic drift. In this work, we propose a unified framework that bridges this gap by coherently integrating explicit and implicit representations in a training-free manner. Specifically, We condition a diffusion model on explicit high-level semantics while employing reverse-channel coding to implicitly convey fine-grained details. Moreover, we introduce a plug-in encoder that enables flexible control of the distortion-perception tradeoff by modulating the implicit information. Extensive experiments demonstrate that the proposed framework achieves state-of-the-art rate-perception performance, outperforming existing methods and surpassing DiffC by 29.92%, 19.33%, and 20.89% in DISTS BD-Rate on the Kodak, DIV2K, and CLIC2020 datasets, respectively.
☆ Context-Aware Asymmetric Ensembling for Interpretable Retinopathy of Prematurity Screening via Active Query and Vascular Attention
Retinopathy of Prematurity (ROP) is among the major causes of preventable childhood blindness. Automated screening remains challenging, primarily due to limited data availability and the complex condition involving both structural staging and microvascular abnormalities. Current deep learning models depend heavily on large private datasets and passive multimodal fusion, which commonly fail to generalize on small, imbalanced public cohorts. We thus propose the Context-Aware Asymmetric Ensemble Model (CAA Ensemble) that simulates clinical reasoning through two specialized streams. First, the Multi-Scale Active Query Network (MS-AQNet) serves as a structure specialist, utilizing clinical contexts as dynamic query vectors to spatially control visual feature extraction for localization of the fibrovascular ridge. Secondly, VascuMIL encodes Vascular Topology Maps (VMAP) within a gated Multiple Instance Learning (MIL) network to precisely identify vascular tortuosity. A synergistic meta-learner ensembles these orthogonal signals to resolve diagnostic discordance across multiple objectives. Tested on a highly imbalanced cohort of 188 infants (6,004 images), the framework attained State-of-the-Art performance on two distinct clinical tasks: achieving a Macro F1-Score of 0.93 for Broad ROP staging and an AUC of 0.996 for Plus Disease detection. Crucially, the system features `Glass Box' transparency through counterfactual attention heatmaps and vascular threat maps, proving that clinical metadata dictates the model's visual search. Additionally, this study demonstrates that architectural inductive bias can serve as an effective bridge for the medical AI data gap.
comment: 16 pages, 6 figures
☆ Extreme Weather Nowcasting via Local Precipitation Pattern Prediction
Accurate forecasting of extreme weather events such as heavy rainfall or storms is critical for risk management and disaster mitigation. Although high-resolution radar observations have spurred extensive research on nowcasting models, precipitation nowcasting remains particularly challenging due to pronounced spatial locality, intricate fine-scale rainfall structures, and variability in forecasting horizons. While recent diffusion-based generative ensembles show promising results, they are computationally expensive and unsuitable for real-time applications. In contrast, deterministic models are computationally efficient but remain biased toward normal rainfall. Furthermore, the benchmark datasets commonly used in prior studies are themselves skewed--either dominated by ordinary rainfall events or restricted to extreme rainfall episodes--thereby hindering general applicability in real-world settings. In this paper, we propose exPreCast, an efficient deterministic framework for generating finely detailed radar forecasts, and introduce a newly constructed balanced radar dataset from the Korea Meteorological Administration (KMA), which encompasses both ordinary precipitation and extreme events. Our model integrates local spatiotemporal attention, a texture-preserving cubic dual upsampling decoder, and a temporal extractor to flexibly adjust forecasting horizons. Experiments on established benchmarks (SEVIR and MeteoNet) as well as on the balanced KMA dataset demonstrate that our approach achieves state-of-the-art performance, delivering accurate and reliable nowcasts across both normal and extreme rainfall regimes.
comment: 10pages, 20 figures, The Fourteenth International Conference on Learning Representations, see https://github.com/tony890048/exPreCast
☆ GT-SVJ: Generative-Transformer-Based Self-Supervised Video Judge For Efficient Video Reward Modeling
Aligning video generative models with human preferences remains challenging: current approaches rely on Vision-Language Models (VLMs) for reward modeling, but these models struggle to capture subtle temporal dynamics. We propose a fundamentally different approach: repurposing video generative models, which are inherently designed to model temporal structure, as reward models. We present the Generative-Transformer-based Self-Supervised Video Judge (\modelname), a novel evaluation model that transforms state-of-the-art video generation models into powerful temporally-aware reward models. Our key insight is that generative models can be reformulated as energy-based models (EBMs) that assign low energy to high-quality videos and high energy to degraded ones, enabling them to discriminate video quality with remarkable precision when trained via contrastive objectives. To prevent the model from exploiting superficial differences between real and generated videos, we design challenging synthetic negative videos through controlled latent-space perturbations: temporal slicing, feature swapping, and frame shuffling, which simulate realistic but subtle visual degradations. This forces the model to learn meaningful spatiotemporal features rather than trivial artifacts. \modelname achieves state-of-the-art performance on GenAI-Bench and MonteBench using only 30K human-annotations: $6\times$ to $65\times$ fewer than existing VLM-based approaches.
☆ PoseGaussian: Pose-Driven Novel View Synthesis for Robust 3D Human Reconstruction
We propose PoseGaussian, a pose-guided Gaussian Splatting framework for high-fidelity human novel view synthesis. Human body pose serves a dual purpose in our design: as a structural prior, it is fused with a color encoder to refine depth estimation; as a temporal cue, it is processed by a dedicated pose encoder to enhance temporal consistency across frames. These components are integrated into a fully differentiable, end-to-end trainable pipeline. Unlike prior works that use pose only as a condition or for warping, PoseGaussian embeds pose signals into both geometric and temporal stages to improve robustness and generalization. It is specifically designed to address challenges inherent in dynamic human scenes, such as articulated motion and severe self-occlusion. Notably, our framework achieves real-time rendering at 100 FPS, maintaining the efficiency of standard Gaussian Splatting pipelines. We validate our approach on ZJU-MoCap, THuman2.0, and in-house datasets, demonstrating state-of-the-art performance in perceptual quality and structural accuracy (PSNR 30.86, SSIM 0.979, LPIPS 0.028).
☆ ShapePuri: Shape Guided and Appearance Generalized Adversarial Purification
Deep neural networks demonstrate impressive performance in visual recognition, but they remain vulnerable to adversarial attacks that is imperceptible to the human. Although existing defense strategies such as adversarial training and purification have achieved progress, diffusion-based purification often involves high computational costs and information loss. To address these challenges, we introduce Shape Guided Purification (ShapePuri), a novel defense framework enhances robustness by aligning model representations with stable structural invariants. ShapePuri integrates two components: a Shape Encoding Module (SEM) that provides dense geometric guidance through Signed Distance Functions (SDF), and a Global Appearance Debiasing (GAD) module that mitigates appearance bias via stochastic transformations. In our experiments, ShapePuri achieves $84.06\%$ clean accuracy and $81.64\%$ robust accuracy under the AutoAttack protocol, representing the first defense framework to surpass the $80\%$ threshold on this benchmark. Our approach provides a scalable and efficient adversarial defense that preserves prediction stability during inference without requiring auxiliary modules or additional computational cost.
comment: 10 pages, 5 figures
☆ LOBSTgER-enhance: an underwater image enhancement pipeline
Underwater photography presents significant inherent challenges including reduced contrast, spatial blur, and wavelength-dependent color distortions. These effects can obscure the vibrancy of marine life and awareness photographers in particular are often challenged with heavy post-processing pipelines to correct for these distortions. We develop an image-to-image pipeline that learns to reverse underwater degradations by introducing a synthetic corruption pipeline and learning to reverse its effects with diffusion-based generation. Training and evaluation are performed on a small high-quality dataset of awareness photography images by Keith Ellenbogen. The proposed methodology achieves high perceptual consistency and strong generalization in synthesizing 512x768 images using a model of ~11M parameters after training from scratch on ~2.5k images.
comment: 12 pages, 30 figures, work done as part of LOBSTgER
☆ SHaSaM: Submodular Hard Sample Mining for Fair Facial Attribute Recognition
Deep neural networks often inherit social and demographic biases from annotated data during model training, leading to unfair predictions, especially in the presence of sensitive attributes like race, age, gender etc. Existing methods fall prey to the inherent data imbalance between attribute groups and inadvertently emphasize on sensitive attributes, worsening unfairness and performance. To surmount these challenges, we propose SHaSaM (Submodular Hard Sample Mining), a novel combinatorial approach that models fairness-driven representation learning as a submodular hard-sample mining problem. Our two-stage approach comprises of SHaSaM-MINE, which introduces a submodular subset selection strategy to mine hard positives and negatives - effectively mitigating data imbalance, and SHaSaM-LEARN, which introduces a family of combinatorial loss functions based on Submodular Conditional Mutual Information to maximize the decision boundary between target classes while minimizing the influence of sensitive attributes. This unified formulation restricts the model from learning features tied to sensitive attributes, significantly enhancing fairness without sacrificing performance. Experiments on CelebA and UTKFace demonstrate that SHaSaM achieves state-of-the-art results, with up to 2.7 points improvement in model fairness (Equalized Odds) and a 3.5% gain in Accuracy, within fewer epochs as compared to existing methods.
comment: 21 pages, 7 tables, 10 figures
☆ AirGlove: Exploring Egocentric 3D Hand Tracking and Appearance Generalization for Sensing Gloves ICASSP 2026
Sensing gloves have become important tools for teleoperation and robotic policy learning as they are able to provide rich signals like speed, acceleration and tactile feedback. A common approach to track gloved hands is to directly use the sensor signals (e.g., angular velocity, gravity orientation) to estimate 3D hand poses. However, sensor-based tracking can be restrictive in practice as the accuracy is often impacted by sensor signal and calibration quality. Recent advances in vision-based approaches have achieved strong performance on human hands via large-scale pre-training, but their performance on gloved hands with distinct visual appearances remains underexplored. In this work, we present the first systematic evaluation of vision-based hand tracking models on gloved hands under both zero-shot and fine-tuning setups. Our analysis shows that existing bare-hand models suffer from substantial performance degradation on sensing gloves due to large appearance gap between bare-hand and glove designs. We therefore propose AirGlove, which leverages existing gloves to generalize the learned glove representations towards new gloves with limited data. Experiments with multiple sensing gloves show that AirGlove effectively generalizes the hand pose models to new glove designs and achieves a significant performance boost over the compared schemes.
comment: Accepted by ICASSP 2026
♻ ☆ SIRR-LMM: Single-image Reflection Removal via Large Multimodal Model WACV
Glass surfaces create complex interactions of reflected and transmitted light, making single-image reflection removal (SIRR) challenging. Existing datasets suffer from limited physical realism in synthetic data or insufficient scale in real captures. We introduce a synthetic dataset generation framework that path-traces 3D glass models over real background imagery to create physically accurate reflection scenarios with varied glass properties, camera settings, and post-processing effects. To leverage the capabilities of Large Multimodal Model (LMM), we concatenate the image layers into a single composite input, apply joint captioning, and fine-tune the model using task-specific LoRA rather than full-parameter training. This enables our approach to achieve improved reflection removal and separation performance compared to state-of-the-art methods.
comment: 12 pages, 14 figures, accepted in WACVW 2026
♻ ☆ Image-to-Image Translation with Diffusion Transformers and CLIP-Based Image Conditioning
Image-to-image translation aims to learn a mapping between a source and a target domain, enabling tasks such as style transfer, appearance transformation, and domain adaptation. In this work, we explore a diffusion-based framework for image-to-image translation by adapting Diffusion Transformers (DiT), which combine the denoising capabilities of diffusion models with the global modeling power of transformers. To guide the translation process, we condition the model on image embeddings extracted from a pre-trained CLIP encoder, allowing for fine-grained and structurally consistent translations without relying on text or class labels. We incorporate both a CLIP similarity loss to enforce semantic consistency and an LPIPS perceptual loss to enhance visual fidelity during training. We validate our approach on two benchmark datasets: face2comics, which translates real human faces to comic-style illustrations, and edges2shoes, which translates edge maps to realistic shoe images. Experimental results demonstrate that DiT, combined with CLIP-based conditioning and perceptual similarity objectives, achieves high-quality, semantically faithful translations, offering a promising alternative to GAN-based models for paired image-to-image translation tasks.
comment: Published in: 2025 6th International Conference on Computer Vision, Image and Deep Learning (CVIDL)
♻ ☆ Quantifying and Inducing Shape Bias in CNNs via Max-Pool Dilation
Convolutional Neural Networks (CNNs) exhibit a well-known texture bias, prioritizing local patterns over global shapes - a tendency inherent to their convolutional architecture. While this bias is beneficial for texture-rich natural images, it often degrades performance on shape-dominant data such as illustrations and sketches. Although prior work has proposed shape-biased models to mitigate this issue, these approaches lack a quantitative metric for identifying which datasets would actually benefit from such modifications. To address this limitation, we propose a data-driven metric that quantifies the shape-texture balance within a dataset by computing the Structural Similarity Index (SSIM) between an image's luminance (Y) channel and its L0-smoothed counterpart. Building on this metric, we introduce a computationally efficient adaptation method that promotes shape bias by modifying the dilation of max-pooling operations while keeping convolutional weights frozen. Experimental results demonstrate consistent accuracy improvements on shape-dominant datasets, particularly in low-data regimes where full fine-tuning is impractical, requiring training only the final classification layer.
comment: Accepted to IEVC 2026. 4 pages, 1 figure, 3 tables
♻ ☆ Hidden in Plain Sight -- Class Competition Focuses Attribution Maps
Attribution methods reveal which input features a neural network uses for a prediction, adding transparency to their decisions. A common problem is that these attributions seem unspecific, highlighting both important and irrelevant features. We revisit the common attribution pipeline and observe that using logits as attribution target is a main cause of this phenomenon. We show that the solution is in plain sight: considering distributions of attributions over multiple classes using existing attribution methods yields specific and fine-grained attributions. On common benchmarks, including the grid-pointing game and randomization-based sanity checks, this improves the ability of 18 attribution methods across 7 architectures up to 2x, agnostic to model architecture.
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models ICLR 2026
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. Scaling up the amount of multimodal math data in the RL training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista benchmark scores, respectively. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
comment: Accepted to ICLR 2026. Code is available at https://github.com/Osilly/Vision-R1
♻ ☆ GIQ: Benchmarking 3D Geometric Reasoning of Vision Foundation Models with Simulated and Real Polyhedra ICLR 2026
Modern monocular 3D reconstruction methods and vision-language models (VLMs) demonstrate impressive results on standard benchmarks, yet recent works cast doubt on their true understanding of geometric properties. We introduce GOQ, a comprehensive benchmark specifically designed to evaluate the geometric reasoning capabilities of vision and vision-language foundation models. GIQ comprises synthetic and real-world images and corresponding 3D meshes of diverse polyhedra covering varying levels of complexity and symmetry, from Platonic, Archimedean, Johnson, and Catalan solids to stellations and compound shapes. Through systematic experiments involving monocular 3D reconstruction, 3D symmetry detection, mental rotation tests, and zero-shot shape classification tasks, we reveal significant shortcomings in current models. State-of-the-art reconstruction algorithms trained on extensive 3D datasets struggle to reconstruct even basic geometric Platonic solids accurately. Next, although foundation models may be shown via linear and non-linear probing to capture specific 3D symmetry elements, they falter significantly in tasks requiring detailed geometric differentiation, such as mental rotation. Moreover, advanced vision-language assistants such as ChatGPT, Gemini and Claud exhibit remarkably low accuracy in interpreting basic shape properties such as face geometry, convexity, and compound structures of complex polyhedra. GIQ is publicly available at toomanymatts.github.io/giq-benchmark/, providing a structured platform to benchmark critical gaps in geometric intelligence and facilitate future progress in robust, geometry-aware representation learning.
comment: Accepted to ICLR 2026. Camera ready version
♻ ☆ Towards Visually Explaining Statistical Tests with Applications in Biomedical Imaging
Deep neural two-sample tests have recently shown strong power for detecting distributional differences between groups, yet their black-box nature limits interpretability and practical adoption in biomedical analysis. Moreover, most existing post-hoc explainability methods rely on class labels, making them unsuitable for label-free statistical testing settings. We propose an explainable deep statistical testing framework that augments deep two-sample tests with sample-level and feature-level explanations, revealing which individual samples and which input features drive statistically significant group differences. Our method highlights which image regions and which individual samples contribute most to the detected group difference, providing spatial and instance-wise insight into the test's decision. Applied to biomedical imaging data, the proposed framework identifies influential samples and highlights anatomically meaningful regions associated with disease-related variation. This work bridges statistical inference and explainable AI, enabling interpretable, label-free population analysis in medical imaging.
♻ ☆ Event2Vec: Processing Neuromorphic Events Directly by Representations in Vector Space
Neuromorphic event cameras possess superior temporal resolution, power efficiency, and dynamic range compared to traditional cameras. However, their asynchronous and sparse data format poses a significant challenge for conventional deep learning methods. Existing methods either convert the events into dense synchronous frame representations for processing by powerful CNNs or Transformers, but lose the asynchronous, sparse and high temporal resolution characteristics of events during the conversion process; or adopt irregular models such as sparse convolution, spiking neural networks, or graph neural networks to process the irregular event representations but fail to take full advantage of GPU acceleration. Inspired by word-to-vector models, we draw an analogy between words and events to introduce event2vec, a novel representation that allows neural networks to process events directly. This approach is fully compatible with the parallel processing capabilities of Transformers. We demonstrate the effectiveness of event2vec on the DVS Gesture, ASL-DVS, and DVS-Lip benchmarks, showing that event2vec is remarkably parameter-efficient, features high throughput and low latency, and achieves high accuracy even with an extremely low number of events or low spatial resolutions. Event2vec introduces a novel paradigm by demonstrating for the first time that sparse, irregular event data can be directly integrated into high-throughput Transformer architectures. This breakthrough resolves the long-standing conflict between maintaining data sparsity and maximizing GPU efficiency, offering a promising balance for real-time, low-latency neuromorphic vision tasks. The code is provided in https://github.com/Intelligent-Computing-Lab-Panda/event2vec.
comment: Fix a minor error in the abstract within the metadata of the previous version
♻ ☆ Robust automatic brain vessel segmentation in 3D CTA scans using dynamic 4D-CTA data
In this study, we develop a novel methodology for annotating the brain vasculature using dynamic 4D-CTA head scans. By using multiple time points from dynamic CTA acquisitions, we subtract bone and soft tissue to enhance the visualization of arteries and veins, reducing the effort required to obtain manual annotations of brain vessels. We then train deep learning models on our ground truth annotations by using the same segmentation for multiple phases from the dynamic 4D-CTA collection, effectively enlarging our dataset by 4 to 5 times and inducing robustness to contrast phases. In total, our dataset comprises 110 training images from 25 patients and 165 test images from 14 patients. In comparison with two similarly-sized datasets for CTA-based brain vessel segmentation, a nnUNet model trained on our dataset can achieve significantly better segmentations across all vascular regions, with an average mDC of 0.846 for arteries and 0.957 for veins in the TopBrain dataset. Furthermore, metrics such as average directed Hausdorff distance (adHD) and topology sensitivity (tSens) reflected similar trends: using our dataset resulted in low error margins (adHD of 0.304 mm for arteries and 0.078 for veins) and high sensitivity (tSens of 0.877 for arteries and 0.974 for veins), indicating excellent accuracy in capturing vessel morphology. Our code and model weights are available online at https://github.com/alceballosa/robust-vessel-segmentation
comment: 18 pages, 10 figures
One-step Latent-free Image Generation with Pixel Mean Flows
Modern diffusion/flow-based models for image generation typically exhibit two core characteristics: (i) using multi-step sampling, and (ii) operating in a latent space. Recent advances have made encouraging progress on each aspect individually, paving the way toward one-step diffusion/flow without latents. In this work, we take a further step towards this goal and propose "pixel MeanFlow" (pMF). Our core guideline is to formulate the network output space and the loss space separately. The network target is designed to be on a presumed low-dimensional image manifold (i.e., x-prediction), while the loss is defined via MeanFlow in the velocity space. We introduce a simple transformation between the image manifold and the average velocity field. In experiments, pMF achieves strong results for one-step latent-free generation on ImageNet at 256x256 resolution (2.22 FID) and 512x512 resolution (2.48 FID), filling a key missing piece in this regime. We hope that our study will further advance the boundaries of diffusion/flow-based generative models.
comment: Tech report. Code at https://github.com/Lyy-iiis/pMF
♻ ☆ Optimized $k$-means color quantization of digital images in machine-based and human perception-based colorspaces
Color quantization represents an image using a fraction of its original number of colors while only minimally losing its visual quality. The $k$-means algorithm is commonly used in this context, but has mostly been applied in the machine-based RGB colorspace composed of the three primary colors. However, some recent studies have indicated its improved performance in human perception-based colorspaces. We investigated the performance of $k$-means color quantization at four quantization levels in the RGB, CIE-XYZ, and CIE-LUV/CIE-HCL colorspaces, on 148 varied digital images spanning a wide range of scenes, subjects and settings. The Visual Information Fidelity (VIF) measure numerically assessed the quality of the quantized images, and showed that in about half of the cases, $k$-means color quantization is best in the RGB space, while at other times, and especially for higher quantization levels ($k$), the CIE-XYZ colorspace is where it usually does better. There are also some cases, especially at lower $k$, where the best performance is obtained in the CIE-LUV colorspace. Further analysis of the performances in terms of the distributions of the hue, chromaticity and luminance in an image presents a nuanced perspective and characterization of the images for which each colorspace is better for $k$-means color quantization.
comment: 25 pages, 11 figures, 5 tables, accepted in the Journal of Electronic Imaging
♻ ☆ SharpTimeGS: Sharp and Stable Dynamic Gaussian Splatting via Lifespan Modulation
Novel view synthesis of dynamic scenes is fundamental to achieving photorealistic 4D reconstruction and immersive visual experiences. Recent progress in Gaussian-based representations has significantly improved real-time rendering quality, yet existing methods still struggle to maintain a balance between long-term static and short-term dynamic regions in both representation and optimization. To address this, we present SharpTimeGS, a lifespan-aware 4D Gaussian framework that achieves temporally adaptive modeling of both static and dynamic regions under a unified representation. Specifically, we introduce a learnable lifespan parameter that reformulates temporal visibility from a Gaussian-shaped decay into a flat-top profile, allowing primitives to remain consistently active over their intended duration and avoiding redundant densification. In addition, the learned lifespan modulates each primitives' motion, reducing drift in long-lived static points while retaining unrestricted motion for short-lived dynamic ones. This effectively decouples motion magnitude from temporal duration, improving long-term stability without compromising dynamic fidelity. Moreover, we design a lifespan-velocity-aware densification strategy that mitigates optimization imbalance between static and dynamic regions by allocating more capacity to regions with pronounced motion while keeping static areas compact and stable. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art performance while supporting real-time rendering up to 4K resolution at 100 FPS on one RTX 4090.
♻ ☆ A 96pJ/Frame/Pixel and 61pJ/Event Anti-UAV System with Hybrid Object Tracking Modes
We present an energy-efficient anti-UAV system that integrates frame-based and event-driven object tracking to enable reliable detection of small and fast-moving drones. The system reconstructs binary event frames using run-length encoding, generates region proposals, and adaptively switches between frame mode and event mode based on object size and velocity. A Fast Object Tracking Unit improves robustness for high-speed targets through adaptive thresholding and trajectory-based classification. The neural processing unit supports both grayscale-patch and trajectory inference with a custom instruction set and a zero-skipping MAC architecture, reducing redundant neural computations by more than 97 percent. Implemented in 40 nm CMOS technology, the 2 mm^2 chip achieves 96 pJ per frame per pixel and 61 pJ per event at 0.8 V, and reaches 98.2 percent recognition accuracy on public UAV datasets across 50 to 400 m ranges and 5 to 80 pixels per second speeds. The results demonstrate state-of-the-art end-to-end energy efficiency for anti-UAV systems.
comment: 2 pages, 7 figures, conference paper published in IEEE Asian Solid-State Circuits Conference 2025
♻ ☆ REArtGS++: Generalizable Articulation Reconstruction with Temporal Geometry Constraint via Planar Gaussian Splatting
Articulated objects are pervasive in daily environments, such as drawers and refrigerators. Towards their part-level surface reconstruction and joint parameter estimation, REArtGS introduces a category-agnostic approach using multi-view RGB images at two different states. However, we observe that REArtGS still struggles with screw-joint or multi-part objects and lacks geometric constraints for unseen states. In this paper, we propose REArtGS++, a novel method towards generalizable articulated object reconstruction with temporal geometry constraint and planar Gaussian splatting. We first model a decoupled screw motion for each joint without type prior, and jointly optimize part-aware Gaussians with joint parameters through part motion blending. To introduce time-continuous geometric constraint for articulated modeling, we encourage Gaussians to be planar and propose a temporally consistent regularization between planar normal and depth through Taylor first-order expansion. Extensive experiments on both synthetic and real-world articulated objects demonstrate our superiority in generalizable part-level surface reconstruction and joint parameter estimation, compared to existing approaches. Project Site: https://sites.google.com/view/reartgs2/home.
comment: 10 pages, 7 figures
♻ ☆ Improved Bag-of-Words Image Retrieval with Geometric Constraints for Ground Texture Localization
Ground texture localization using a downward-facing camera offers a low-cost, high-precision localization solution that is robust to dynamic environments and requires no environmental modification. We present a significantly improved bag-of-words (BoW) image retrieval system for ground texture localization, achieving substantially higher accuracy for global localization and higher precision and recall for loop closure detection in SLAM. Our approach leverages an approximate $k$-means (AKM) vocabulary with soft assignment, and exploits the consistent orientation and constant scale constraints inherent to ground texture localization. Identifying the different needs of global localization vs. loop closure detection for SLAM, we present both high-accuracy and high-speed versions of our algorithm. We test the effect of each of our proposed improvements through an ablation study and demonstrate our method's effectiveness for both global localization and loop closure detection. With numerous ground texture localization systems already using BoW, our method can readily replace other generic BoW systems in their pipeline and immediately improve their results.
comment: Accepted to ICRA 2025
♻ ☆ Many-for-Many: Unify the Training of Multiple Video and Image Generation and Manipulation Tasks
Diffusion models have shown impressive performance in many visual generation and manipulation tasks. Many existing methods focus on training a model for a specific task, especially, text-to-video (T2V) generation, while many other works focus on finetuning the pretrained T2V model for image-to-video (I2V), video-to-video (V2V), image and video manipulation tasks, etc. However, training a strong T2V foundation model requires a large amount of high-quality annotations, which is very costly. In addition, many existing models can perform only one or several tasks. In this work, we introduce a unified framework, namely many-for-many, which leverages the available training data from many different visual generation and manipulation tasks to train a single model for those different tasks. Specifically, we design a lightweight adapter to unify the different conditions in different tasks, then employ a joint image-video learning strategy to progressively train the model from scratch. Our joint learning leads to a unified visual generation and manipulation model with improved video generation performance. In addition, we introduce depth maps as a condition to help our model better perceive the 3D space in visual generation. Two versions of our model are trained with different model sizes (8B and 2B), each of which can perform more than 10 different tasks. In particular, our 8B model demonstrates highly competitive performance in video generation tasks compared to open-source and even commercial engines. Our models and source codes are available at https://github.com/leeruibin/MfM.git.
♻ ☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
♻ ☆ EEG Foundation Models: Progresses, Benchmarking, and Open Problems
Electroencephalography (EEG) foundation models have recently emerged as a promising paradigm for brain-computer interfaces (BCIs), aiming to learn transferable neural representations from large-scale heterogeneous recordings. Despite rapid progresses, there lacks fair and comprehensive comparisons of existing EEG foundation models, due to inconsistent pre-training objectives, preprocessing choices, and downstream evaluation protocols. This paper fills this gap. We first review 50 representative models and organize their design choices into a unified taxonomic framework including data standardization, model architectures, and self-supervised pre-training strategies. We then evaluate 12 open-source foundation models and competitive specialist baselines across 13 EEG datasets spanning nine BCI paradigms. Emphasizing real-world deployments, we consider both cross-subject generalization under a leave-one-subject-out protocol and rapid calibration under a within-subject few-shot setting. We further compare full-parameter fine-tuning with linear probing to assess the transferability of pre-trained representations, and examine the relationship between model scale and downstream performance. Our results indicate that: 1) linear probing is frequently insufficient; 2) specialist models trained from scratch remain competitive across many tasks; and, 3) larger foundation models do not necessarily yield better generalization performance under current data regimes and training practices.
♻ ☆ Efficient Scene Modeling via Structure-Aware and Region-Prioritized 3D Gaussians
Reconstructing 3D scenes with high fidelity and efficiency remains a central pursuit in computer vision and graphics. Recent advances in 3D Gaussian Splatting (3DGS) enable photorealistic rendering with Gaussian primitives, yet the modeling process remains governed predominantly by photometric supervision. This reliance often leads to irregular spatial distribution and indiscriminate primitive adjustments that largely ignore underlying geometric context. In this work, we rethink Gaussian modeling from a geometric standpoint and introduce Mini-Splatting2, an efficient scene modeling framework that couples structure-aware distribution and region-prioritized optimization, driving 3DGS into a geometry-regulated paradigm. The structure-aware distribution enforces spatial regularity through structured reorganization and representation sparsity, ensuring balanced structural coverage for compact organization. The region-prioritized optimization improves training discrimination through geometric saliency and computational selectivity, fostering appropriate structural emergence for fast convergence. These mechanisms alleviate the long-standing tension among representation compactness, convergence acceleration, and rendering fidelity. Extensive experiments demonstrate that Mini-Splatting2 achieves up to 4$\times$ fewer Gaussians and 3$\times$ faster optimization while maintaining state-of-the-art visual quality, paving the way towards structured and efficient 3D Gaussian modeling.
♻ ☆ Customizing Visual Emotion Evaluation for MLLMs: An Open-vocabulary, Multifaceted, and Scalable Approach ICLR 2026
Recently, Multimodal Large Language Models (MLLMs) have achieved exceptional performance across diverse tasks, continually surpassing previous expectations regarding their capabilities. Nevertheless, their proficiency in perceiving emotions from images remains debated, with studies yielding divergent results in zero-shot scenarios. We argue that this inconsistency stems partly from constraints in existing evaluation methods, including the oversight of plausible responses, limited emotional taxonomies, neglect of contextual factors, and labor-intensive annotations. To facilitate customized visual emotion evaluation for MLLMs, we propose an Emotion Statement Judgment task that overcomes these constraints. Complementing this task, we devise an automated pipeline that efficiently constructs emotion-centric statements with minimal human effort. Through systematically evaluating prevailing MLLMs, our study showcases their stronger performance in emotion interpretation and context-based emotion judgment, while revealing relative limitations in comprehending perception subjectivity. When compared to humans, even top-performing MLLMs like GPT4o demonstrate remarkable performance gaps, underscoring key areas for future improvement. By developing a fundamental evaluation framework and conducting a comprehensive MLLM assessment, we hope this work contributes to advancing emotional intelligence in MLLMs. Project page: https://github.com/wdqqdw/MVEI.
comment: Accepted by ICLR 2026
♻ ☆ Histo-Miner: Deep learning based tissue features extraction pipeline from H&E whole slide images of cutaneous squamous cell carcinoma
Recent advancements in digital pathology have enabled comprehensive analysis of Whole-Slide Images (WSI) from tissue samples, leveraging high-resolution microscopy and computational capabilities. Despite this progress, there is a lack of labeled datasets and open source pipelines specifically tailored for analysis of skin tissue. Here we propose Histo-Miner, a deep learning-based pipeline for analysis of skin WSIs and generate two datasets with labeled nuclei and tumor regions. We develop our pipeline for the analysis of patient samples of cutaneous squamous cell carcinoma (cSCC), a frequent non-melanoma skin cancer. Utilizing the two datasets, comprising 47,392 annotated cell nuclei and 144 tumor-segmented WSIs respectively, both from cSCC patients, Histo-Miner employs convolutional neural networks and vision transformers for nucleus segmentation and classification as well as tumor region segmentation. Performance of trained models positively compares to state of the art with multi-class Panoptic Quality (mPQ) of 0.569 for nucleus segmentation, macro-averaged F1 of 0.832 for nucleus classification and mean Intersection over Union (mIoU) of 0.907 for tumor region segmentation. From these predictions we generate a compact feature vector summarizing tissue morphology and cellular interactions, which can be used for various downstream tasks. Here, we use Histo-Miner to predict cSCC patient response to immunotherapy based on pre-treatment WSIs from 45 patients. Histo-Miner identifies percentages of lymphocytes, the granulocyte to lymphocyte ratio in tumor vicinity and the distances between granulocytes and plasma cells in tumors as predictive features for therapy response. This highlights the applicability of Histo-Miner to clinically relevant scenarios, providing direct interpretation of the classification and insights into the underlying biology.
comment: 37 pages including supplement, 5 core figures. Version 2: change sections order, add new supplementary sections, minor text updates. Version 3: Author addition and update of author contributions, increase font on 2 figures, minor text updates
♻ ☆ BioLite U-Net: Edge-Deployable Semantic Segmentation for In Situ Bioprinting Monitoring
Bioprinting is a rapidly advancing field that offers a transformative approach to fabricating tissue and organ models through the precise deposition of cell-laden bioinks. Ensuring the fidelity and consistency of printed structures in real-time remains a core challenge, particularly under constraints imposed by limited imaging data and resource-constrained embedded hardware. Semantic segmentation of the extrusion process, differentiating between nozzle, extruded bioink, and surrounding background, enables in situ monitoring critical to maintaining print quality and biological viability. In this work, we introduce a lightweight semantic segmentation framework tailored for real-time bioprinting applications. We present a novel, manually annotated dataset comprising 787 RGB images captured during the bioprinting process, labeled across three classes: nozzle, bioink, and background. To achieve fast and efficient inference suitable for integration with bioprinting systems, we propose a BioLite U-Net architecture that leverages depthwise separable convolutions to drastically reduce computational load without compromising accuracy. Our model is benchmarked against MobileNetV2 and MobileNetV3-based segmentation baselines using mean Intersection over Union (mIoU), Dice score, and pixel accuracy. All models were evaluated on a Raspberry Pi 4B to assess real-world feasibility. The proposed BioLite U-Net achieves an mIoU of 92.85% and a Dice score of 96.17%, while being over 1300x smaller than MobileNetV2-DeepLabV3+. On-device inference takes 335 ms per frame, demonstrating near real-time capability. Compared to MobileNet baselines, BioLite U-Net offers a superior tradeoff between segmentation accuracy, efficiency, and deployability, making it highly suitable for intelligent, closed-loop bioprinting systems.
comment: 8 pages, 5 figures, conference-style submission (ICRA 2026). Includes dataset description, BioLite U-Net architecture, benchmark results on edge device (Raspberry Pi 4B)
♻ ☆ MRD: Using Physically Based Differentiable Rendering to Probe Vision Models for 3D Scene Understanding
While deep learning methods have achieved impressive success in many vision benchmarks, it remains difficult to understand and explain the representations and decisions of these models. Though vision models are typically trained on 2D inputs, they are often assumed to develop an implicit representation of the underlying 3D scene (for example, showing tolerance to partial occlusion, or the ability to reason about relative depth). Here, we introduce MRD (metamers rendered differentiably), an approach that uses physically based differentiable rendering to probe vision models' implicit understanding of generative 3D scene properties, by finding 3D scene parameters that are physically different but produce the same model activation (i.e. are model metamers). Unlike previous pixel-based methods for evaluating model representations, these reconstruction results are always grounded in physical scene descriptions. This means we can, for example, probe a model's sensitivity to object shape while holding material and lighting constant. As a proof-of-principle, we assess multiple models in their ability to recover scene parameters of geometry (shape) and bidirectional reflectance distribution function (material). The results show high similarity in model activation between target and optimized scenes, with varying visual results. Qualitatively, these reconstructions help investigate the physical scene attributes to which models are sensitive or invariant. MRD holds promise for advancing our understanding of both computer and human vision by enabling analysis of how physical scene parameters drive changes in model responses.
comment: 23 pages, 11 figures. Added appendix with more figure results. Code will be available here: https://github.com/ag-perception-wallis-lab/MRD
♻ ☆ Deep Probabilistic Supervision for Image Classification
Supervised training of deep neural networks for classification typically relies on hard targets, which promote overconfidence and can limit calibration, generalization, and robustness. Self-distillation methods aim to mitigate this by leveraging inter-class and sample-specific information present in the model's own predictions, but often remain dependent on hard targets without explicitly modeling predictive uncertainty. With this in mind, we propose Deep Probabilistic Supervision (DPS), a principled learning framework constructing sample-specific target distributions via statistical inference on the model's own predictions, remaining independent of hard targets after initialization. We show that DPS consistently yields higher test accuracy (e.g., +2.0% for DenseNet-264 on ImageNet) and significantly lower Expected Calibration Error (ECE) (-40% ResNet-50, CIFAR-100) than existing self-distillation methods. When combined with a contrastive loss, DPS achieves state-of-the-art robustness under label noise.
comment: 16 pages, 12 figures
♻ ☆ PIO-FVLM: Rethinking Training-Free Visual Token Reduction for VLM Acceleration from an Inference-Objective Perspective
Recently, reducing redundant visual tokens in vision-language models (VLMs) to accelerate VLM inference has emerged as a hot topic. However, most existing methods rely on heuristics constructed based on inter-visual-token similarity or cross-modal visual-text similarity, which gives rise to certain limitations in compression performance and practical deployment. In contrast, we propose PIO-FVLM from the perspective of inference objectives, which transforms visual token compression into preserving output result invariance and selects tokens primarily by their importance to this goal. Specially, vision tokens are reordered with the guidance of token-level gradient saliency generated by our designed layer-local proxy loss, a coarse constraint from the current layer to the final result. Then the most valuable vision tokens are selected following the non-maximum suppression (NMS) principle. The proposed PIO-FVLM is training-free and compatible with FlashAttention, friendly to practical application and deployment. It can be deployed independently as an encoder-free method, or combined with encoder compression approaches like VisionZip for use as an encoder-involved method. On LLaVA-Next-7B, PIO-FVLM retains just 11.1% of visual tokens but maintains 97.2% of the original performance, with a 2.67$\times$ prefill speedup, 2.11$\times$ inference speedup, 6.22$\times$ lower FLOPs, and 6.05$\times$ reduced KV Cache overhead. Our code is available at https://github.com/ocy1/PIO-FVLM.
♻ ☆ Test-time Adaptive Hierarchical Co-enhanced Denoising Network for Reliable Multimodal Classification
Reliable learning of multimodal data (e.g., multi-omics) is a widely concerning issue, especially in safety-critical applications such as medical diagnosis. However, low-quality data induced by multimodal noise poses a major challenge in this domain, causing existing methods to suffer from two key limitations. First, they struggle to handle heterogeneous data noise, hindering robust multimodal representation learning. Second, they exhibit limited adaptability and generalization when encountering previously unseen noise. To address these issues, we propose Test-time Adaptive Hierarchical Co-enhanced Denoising Network (TAHCD). On one hand, TAHCD introduces the Adaptive Stable Subspace Alignment and Sample-Adaptive Confidence Alignment to reliably remove heterogeneous noise. They account for noise at both global and instance levels and enable jointly removal of modality-specific and cross-modality noise, achieving robust learning. On the other hand, TAHCD introduces Test-Time Cooperative Enhancement, which adaptively updates the model in response to input noise in a label-free manner, thus improving generalization. This is achieved by collaboratively enhancing the joint removal process of modality-specific and cross-modality noise across global and instance levels according to sample noise. Experiments on multiple benchmarks demonstrate that the proposed method achieves superior classification performance, robustness, and generalization compared with state-of-the-art reliable multimodal learning approaches.
comment: 14 pages,9 figures, 8 tables
♻ ☆ Plug-and-play linear attention with provable guarantees for training-free image restoration
Multi-head self-attention (MHSA) is a key building block in modern vision Transformers, yet its quadratic complexity in the number of tokens remains a major bottleneck for real-time and resource-constrained deployment. We present PnP-Nystra, a training-free Nyström-based linear attention module designed as a plug-and-play replacement for MHSA in {pretrained} image restoration Transformers, with provable kernel approximation error guarantees. PnP-Nystra integrates directly into window-based architectures such as SwinIR, Uformer, and Dehazeformer, yielding efficient inference without finetuning. Across denoising, deblurring, dehazing, and super-resolution on images, PnP-Nystra delivers $1.8$--$3.6\times$ speedups on an NVIDIA RTX 4090 GPU and $1.8$--$7\times$ speedups on CPU inference. Compared with the strongest training-free linear-attention baselines we evaluate, our method incurs the smallest quality drop and stays closest to the original model's outputs.
♻ ☆ Vector Quantization using Gaussian Variational Autoencoder
Vector-quantized variational autoencoders (VQ-VAEs) are discrete autoencoders that compress images into discrete tokens. However, they are difficult to train due to discretization. In this paper, we propose a simple yet effective technique dubbed Gaussian Quant (GQ), which first trains a Gaussian VAE under certain constraints and then converts it into a VQ-VAE without additional training. For conversion, GQ generates random Gaussian noise as a codebook and finds the closest noise vector to the posterior mean. Theoretically, we prove that when the logarithm of the codebook size exceeds the bits-back coding rate of the Gaussian VAE, a small quantization error is guaranteed. Practically, we propose a heuristic to train Gaussian VAEs for effective conversion, named the target divergence constraint (TDC). Empirically, we show that GQ outperforms previous VQ-VAEs, such as VQGAN, FSQ, LFQ, and BSQ, on both UNet and ViT architectures. Furthermore, TDC also improves previous Gaussian VAE discretization methods, such as TokenBridge. The source code is provided in the supplementary materials.
♻ ☆ RefAM: Attention Magnets for Zero-Shot Referral Segmentation
Most existing approaches to referring segmentation achieve strong performance only through fine-tuning or by composing multiple pre-trained models, often at the cost of additional training and architectural modifications. Meanwhile, large-scale generative diffusion models encode rich semantic information, making them attractive as general-purpose feature extractors. In this work, we introduce a new method that directly exploits features, attention scores, from diffusion transformers for downstream tasks, requiring neither architectural modifications nor additional training. To systematically evaluate these features, we extend benchmarks with vision-language grounding tasks spanning both images and videos. Our key insight is that stop words act as attention magnets: they accumulate surplus attention and can be filtered to reduce noise. Moreover, we identify global attention sinks (GAS) emerging in deeper layers and show that they can be safely suppressed or redirected onto auxiliary tokens, leading to sharper and more accurate grounding maps. We further propose an attention redistribution strategy, where appended stop words partition background activations into smaller clusters, yielding sharper and more localized heatmaps. Building on these findings, we develop RefAM, a simple training-free grounding framework that combines cross-attention maps, GAS handling, and redistribution. Across zero-shot referring image and video segmentation benchmarks, our approach achieves strong performance and surpasses prior methods on most datasets, establishing a new state of the art without fine-tuning, additional components and complex reasoning.
comment: Project Page: https://refam-diffusion.github.io/
♻ ☆ Feature Engineering is Not Dead: Reviving Classical Machine Learning with Entropy, HOG, and LBP Feature Fusion for Image Classification
Feature engineering continues to play a critical role in image classification, particularly when interpretability and computational efficiency are prioritized over deep learning models with millions of parameters. In this study, we revisit classical machine learning based image classification through a novel approach centered on Permutation Entropy (PE), a robust and computationally lightweight measure traditionally used in time series analysis but rarely applied to image data. We extend PE to two-dimensional images and propose a multiscale, multi-orientation entropy-based feature extraction approach that characterizes spatial order and complexity along rows, columns, diagonals, anti-diagonals, and local patches of the image. To enhance the discriminatory power of the entropy features, we integrate two classic image descriptors: the Histogram of Oriented Gradients (HOG) to capture shape and edge structure, and Local Binary Patterns (LBP) to encode micro-texture of an image. The resulting hand-crafted feature set, comprising of 780 dimensions, is used to train Support Vector Machine (SVM) classifiers optimized through grid search. The proposed approach is evaluated on multiple benchmark datasets, including Fashion-MNIST, KMNIST, EMNIST, and CIFAR-10, where it delivers competitive classification performance without relying on deep architectures. Our results demonstrate that the fusion of PE with HOG and LBP provides a compact, interpretable, and effective alternative to computationally expensive and limited interpretable deep learning models. This shows a potential of entropy-based descriptors in image classification and contributes a lightweight and generalizable solution to interpretable machine learning in image classification and computer vision.
♻ ☆ TennisTV: Do Multimodal Large Language Models Understand Tennis Rallies?
Multimodal large language models (MLLMs) excel at general video understanding but struggle with fast, high-frequency sports like tennis, where rally clips are short yet information-dense. To systematically evaluate MLLMs in this challenging domain, we present TennisTV, the first and most comprehensive benchmark for tennis video understanding. TennisTV models each rally as a temporal-ordered sequence of consecutive stroke events, using automated pipelines for filtering and question generation. It covers 8 tasks from the stroke level to the rally level and includes 2527 human-verified questions. Evaluating 17 representative MLLMs, we provide the first systematic assessment of tennis video understanding. Results yield two key insights: (i) frame-sampling density should be tailored and balanced across tasks, and (ii) improving temporal grounding is essential for stronger reasoning.
♻ ☆ Investigating the Impact of Histopathological Foundation Models on Regressive Prediction of Homologous Recombination Deficiency
Foundation models pretrained on large-scale histopathology data have found great success in various fields of computational pathology, but their impact on regressive biomarker prediction remains underexplored. In this work, we systematically evaluate histopathological foundation models for regression-based tasks, demonstrated through the prediction of homologous recombination deficiency (HRD) score - a critical biomarker for personalized cancer treatment. Within multiple instance learning frameworks, we extract patch-level features from whole slide images (WSI) using five state-of-the-art foundation models, and evaluate their impact compared to contrastive learning-based features. Models are trained to predict continuous HRD scores based on these extracted features across breast, endometrial, and lung cancer cohorts from two public medical data collections. Extensive experiments demonstrate that models trained on foundation model features consistently outperform the baseline in terms of predictive accuracy and generalization capabilities while exhibiting systematic differences among the foundation models. Additionally, we propose a distribution-based upsampling strategy to mitigate target imbalance in these datasets, significantly improving the recall and balanced accuracy for underrepresented but clinically important patient populations. Furthermore, we investigate the impact of different sampling strategies and instance bagsizes by ablation studies. Our results highlight the benefits of large-scale histopathological pretraining for more precise and transferable regressive biomarker prediction, showcasing its potential to advance AI-driven precision oncology.
comment: 9 pages, 7 figures and 5 tables
♻ ☆ RANGER: A Monocular Zero-Shot Semantic Navigation Framework through Contextual Adaptation
Efficiently finding targets in complex environments is fundamental to real-world embodied applications. While recent advances in multimodal foundation models have enabled zero-shot object goal navigation, allowing robots to search for arbitrary objects without fine-tuning, existing methods face two key limitations: (1) heavy reliance on precise depth and pose information provided by simulators, which restricts applicability in real-world scenarios; and (2) lack of in-context learning (ICL) capability, making it difficult to quickly adapt to new environments, as in leveraging short videos. To address these challenges, we propose RANGER, a novel zero-shot, open-vocabulary semantic navigation framework that operates using only a monocular camera. Leveraging powerful 3D foundation models, RANGER eliminates the dependency on depth and pose while exhibiting strong ICL capability. By simply observing a short video of a new environment, the system can also significantly improve task efficiency without requiring architectural modifications or fine-tuning. The framework integrates several key components: keyframe-based 3D reconstruction, semantic point cloud generation, vision-language model (VLM)-driven exploration value estimation, high-level adaptive waypoint selection, and low-level action execution. Experiments on the HM3D benchmark and real-world environments demonstrate that RANGER achieves competitive performance in terms of navigation success rate and exploration efficiency, while showing superior ICL adaptability, with no previous 3D mapping of the environment required.
comment: Accepted at ICRA 2026
♻ ☆ A Contrastive Learning Foundation Model Based on Perfectly Aligned Sample Pairs for Remote Sensing Images
Self-Supervised Learning (SSL) enables us to pre-train foundation models without costly labeled data. Among SSL methods, Contrastive Learning (CL) methods are better at obtaining accurate semantic representations in noise interference. However, due to the significant domain gap, while CL methods have achieved great success in many computer vision tasks, they still require specific adaptation for Remote Sensing (RS) images. To this end, we present a novel self-supervised method called PerA, which produces all-purpose RS features through semantically Perfectly Aligned sample pairs. Specifically, PerA obtains features from sampled views by applying spatially disjoint masks to augmented images rather than random cropping. Our framework provides high-quality features by ensuring consistency between teacher and student and predicting learnable mask tokens. Compared to previous contrastive methods, our method demonstrates higher memory efficiency and can be trained with larger batches due to its sparse inputs. Additionally, the proposed method demonstrates remarkable adaptability to uncurated RS data and reduce the impact of the potential semantic inconsistency. We also collect an unlabeled pre-training dataset, which contains about 5 million RS images. We conducted experiments on multiple downstream task datasets and achieved performance comparable to previous state-of-the-art methods with a limited model scale, demonstrating the effectiveness of our approach. We hope this work will contribute to practical remote sensing interpretation works.
comment: This article has been accepted for publication in Geo-spatial Information Science, published by Taylor & Francis
♻ ☆ MaxSup: Overcoming Representation Collapse in Label Smoothing NeurIPS 2025
Label Smoothing (LS) is widely adopted to reduce overconfidence in neural network predictions and improve generalization. Despite these benefits, recent studies reveal two critical issues with LS. First, LS induces overconfidence in misclassified samples. Second, it compacts feature representations into overly tight clusters, diluting intra-class diversity, although the precise cause of this phenomenon remained elusive. In this paper, we analytically decompose the LS-induced loss, exposing two key terms: (i) a regularization term that dampens overconfidence only when the prediction is correct, and (ii) an error-amplification term that arises under misclassifications. This latter term compels the network to reinforce incorrect predictions with undue certainty, exacerbating representation collapse. To address these shortcomings, we propose Max Suppression (MaxSup), which applies uniform regularization to both correct and incorrect predictions by penalizing the top-1 logit rather than the ground-truth logit. Through extensive feature-space analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Experiments on large-scale image classification and multiple downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
comment: NeurIPS 2025 Oral (0.36% acceptance); code: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
♻ ☆ Active Perception Agent for Omnimodal Audio-Video Understanding
Omnimodal large language models have made significant strides in unifying audio and visual modalities; however, they often face challenges in fine-grained cross-modal understanding and have difficulty with multimodal alignment. To address these limitations, we introduce OmniAgent, to our best knowledge, the first fully active perception agent that dynamically orchestrates specialized unimodal tools to achieve more fine-grained omnimodal reasoning. Unlike previous works that rely on rigid, static workflows and dense frame-captioning, we demonstrate a paradigm shift from passive response generation to active multimodal inquiry. OmniAgent employs dynamic planning to autonomously orchestrate tool invocation on demand, strategically concentrating perceptual attention on task-relevant cues. Central to our approach is a novel coarse-to-fine audio-guided perception paradigm, which leverages audio cues to localize temporal events and guide subsequent reasoning. Extensive empirical evaluations on three audio-video understanding benchmarks demonstrate that OmniAgent achieves state-of-the-art performance, surpassing leading open-source and closed-source models by substantial margins of 10% - 20% accuracy without training.
comment: Website:https://kd-tao.github.io/OmniAgent/
♻ ☆ DPMambaIR: All-in-One Image Restoration via Degradation-Aware Prompt State Space Model
All-in-One image restoration aims to address multiple image degradation problems using a single model, offering a more practical and versatile solution compared to designing dedicated models for each degradation type. Existing approaches typically rely on Degradation-specific models or coarse-grained degradation prompts to guide image restoration. However, they lack fine-grained modeling of degradation information and face limitations in balancing multi-task conflicts. To overcome these limitations, we propose DPMambaIR, a novel All-in-One image restoration framework that introduces a fine-grained degradation extractor and a Degradation-Aware Prompt State Space Model (DP-SSM). The DP-SSM leverages the fine-grained degradation features captured by the extractor as dynamic prompts, which are then incorporated into the state space modeling process. This enhances the model's adaptability to diverse degradation types, while a complementary High-Frequency Enhancement Block (HEB) recovers local high-frequency details. Extensive experiments on a mixed dataset containing seven degradation types show that DPMambaIR achieves the best performance, with 27.69dB and 0.893 in PSNR and SSIM, respectively. These results highlight the potential and superiority of DPMambaIR as a unified solution for All-in-One image restoration.
♻ ☆ See Less, See Right: Bi-directional Perceptual Shaping For Multimodal Reasoning
Large vision-language models (VLMs) often benefit from intermediate visual cues, either injected via external tools or generated as latent visual tokens during reasoning, but these mechanisms still overlook fine-grained visual evidence (e.g., polylines in charts), generalize poorly across domains, and incur high inference-time cost. In this paper, we propose Bi-directional Perceptual Shaping (BiPS), which transforms question-conditioned masked views into bidirectional where-to-look signals that shape perception during training. BiPS first applies a KL-consistency constraint between the original image and an evidence-preserving view that keeps only question-relevant regions, encouraging coarse but complete coverage of supporting pixels. It then applies a KL-separation constraint between the original and an evidence-ablated view where critical pixels are masked so the image no longer supports the original answer, discouraging text-only shortcuts (i.e., answering from text alone) and enforcing fine-grained visual reliance. Across eight benchmarks, BiPS boosts Qwen2.5-VL-7B by 8.2% on average and shows strong out-of-domain generalization to unseen datasets and image types.
♻ ☆ PPE: Positional Preservation Embedding for Token Compression in Multimodal Large Language Models ICLR 2026
Multimodal large language models (MLLMs) have achieved strong performance on vision-language tasks, yet often suffer from inefficiencies due to redundant visual tokens. Existing token merging methods reduce sequence length but frequently disrupt spatial layouts and temporal continuity by disregarding positional relationships. In this work, we propose a novel encoding operator dubbed as \textbf{P}ositional \textbf{P}reservation \textbf{E}mbedding (\textbf{PPE}), which has the main hallmark of preservation of spatiotemporal structure during visual token compression. PPE explicitly introduces the disentangled encoding of 3D positions in the token dimension, enabling each compressed token to encapsulate different positions from multiple original tokens. Furthermore, we show that PPE can effectively support cascade clustering -- a progressive token compression strategy that leads to better performance retention. PPE is a parameter-free and generic operator that can be seamlessly integrated into existing token merging methods without any adjustments. Applied to state-of-the-art token merging framework, PPE achieves consistent improvements of $2\%\sim5\%$ across multiple vision-language benchmarks, including MMBench (general vision understanding), TextVQA (layout understanding) and VideoMME (temporal understanding). These results demonstrate that preserving positional cues is critical for efficient and effective MLLM reasoning. Our code is available at https://github.com/MouxiaoHuang/PPE.
comment: ICLR 2026
♻ ☆ Physics-Driven Local-Whole Elastic Deformation Modeling for Point Cloud Representation Learning
Existing point cloud representation learning methods primarily rely on data-driven strategies to extract geometric information from large amounts of scattered data. However, most methods focus solely on the spatial distribution features of point clouds while overlooking the relationship between local information and the whole structure, which limits the accuracy of point cloud representation. Local information reflect the fine-grained variations of an object, while the whole structure is determined by the interaction and combination of these local features, collectively defining the object's shape. In real-world, objects undergo deformation under external forces, and this deformation gradually affects the whole structure through the propagation of forces from local regions, thereby altering the object's geometric features. Therefore, appropriately introducing a physics-driven mechanism to capture the topological relationships between local parts and the whole object can effectively mitigate for the limitations of data-driven point cloud methods in structural modeling, and enhance the generalization and interpretability of point cloud representations for downstream tasks such as understanding and recognition. Inspired by this, we incorporate a physics-driven mechanism into the data-driven method to learn fine-grained features in point clouds and model the structural relationship between local regions and the whole shape. Specifically, we design a dual-task encoder-decoder framework that combines the geometric modeling capability of data-driven implicit fields with physics-driven elastic deformation. Through the integration of physics-based loss functions, the framework is guided to predict localized deformation and explicitly capture the correspondence between local structural changes and whole shape variations.
♻ ☆ LayoutCoT: Unleashing the Deep Reasoning Potential of Large Language Models for Layout Generation
Conditional layout generation aims to automatically generate visually appealing and semantically coherent layouts from user-defined constraints. While recent methods based on generative models have shown promising results, they typically require substantial amounts of training data or extensive fine-tuning, limiting their versatility and practical applicability. Alternatively, some training-free approaches leveraging in-context learning with Large Language Models (LLMs) have emerged, but they often suffer from limited reasoning capabilities and overly simplistic ranking mechanisms, which restrict their ability to generate consistently high-quality layouts. To this end, we propose LayoutCoT, a novel approach that leverages the reasoning capabilities of LLMs through a combination of Retrieval-Augmented Generation (RAG) and Chain-of-Thought (CoT) techniques. Specifically, LayoutCoT transforms layout representations into a standardized serialized format suitable for processing by LLMs. A Layout-aware RAG is used to facilitate effective retrieval and generate a coarse layout by LLMs. This preliminary layout, together with the selected exemplars, is then fed into a specially designed CoT reasoning module for iterative refinement, significantly enhancing both semantic coherence and visual quality. We conduct extensive experiments on five public datasets spanning three conditional layout generation tasks. Experimental results demonstrate that LayoutCoT achieves state-of-the-art performance without requiring training or fine-tuning. Notably, our CoT reasoning module enables standard LLMs, even those without explicit deep reasoning abilities, to outperform specialized deep-reasoning models such as deepseek-R1, highlighting the potential of our approach in unleashing the deep reasoning capabilities of LLMs for layout generation tasks.
♻ ☆ JSynFlow: Japanese Synthesised Flowchart Visual Question Answering Dataset built with Large Language Models
Vision and language models (VLMs) are expected to analyse complex documents, such as those containing flowcharts, through a question-answering (QA) interface. The ability to recognise and interpret these flowcharts is in high demand, as they provide valuable insights unavailable in text-only explanations. However, developing VLMs with precise flowchart understanding requires large-scale datasets of flowchart images and corresponding text, the creation of which is highly time-consuming. To address this challenge, we introduce JSynFlow, a synthesised visual QA dataset for Japanese flowcharts, generated using large language models (LLMs). Our dataset comprises task descriptions for various business occupations, the corresponding flowchart images rendered from domain-specific language (DSL) code, and related QA pairs. This paper details the dataset's synthesis procedure and demonstrates that fine-tuning with JSynFlow significantly improves VLM performance on flowchart-based QA tasks. Our dataset is publicly available at https://huggingface.co/datasets/jri-advtechlab/jsynflow.
comment: 7 pages, 1 figure
♻ ☆ Image inpainting for corrupted images by using the semi-super resolution GAN
Image inpainting is a valuable technique for enhancing images that have been corrupted. The primary challenge in this research revolves around the extent of corruption in the input image that the deep learning model must restore. To address this challenge, we introduce a Generative Adversarial Network (GAN) for learning and replicating the missing pixels. Additionally, we have developed a distinct variant of the Super-Resolution GAN (SRGAN), which we refer to as the Semi-SRGAN (SSRGAN). Furthermore, we leveraged three diverse datasets to assess the robustness and accuracy of our proposed model. Our training process involves varying levels of pixel corruption to attain optimal accuracy and generate high-quality images.
♻ ☆ MVGS: Multi-view Regulated Gaussian Splatting for Novel View Synthesis
Recent works in volume rendering, \textit{e.g.} NeRF and 3D Gaussian Splatting (3DGS), significantly advance the rendering quality and efficiency with the help of the learned implicit neural radiance field or 3D Gaussians. Rendering on top of an explicit representation, the vanilla 3DGS and its variants deliver real-time efficiency by optimizing the parametric model with single-view supervision per iteration during training which is adopted from NeRF. Consequently, certain views are overfitted, leading to unsatisfying appearance in novel-view synthesis and imprecise 3D geometries. To solve aforementioned problems, we propose a new 3DGS optimization method embodying four key novel contributions: 1) We transform the conventional single-view training paradigm into a multi-view training strategy. With our proposed multi-view regulation, 3D Gaussian attributes are further optimized without overfitting certain training views. As a general solution, we improve the overall accuracy in a variety of scenarios and different Gaussian variants. 2) Inspired by the benefit introduced by additional views, we further propose a cross-intrinsic guidance scheme, leading to a coarse-to-fine training procedure concerning different resolutions. 3) Built on top of our multi-view regulated training, we further propose a cross-ray densification strategy, densifying more Gaussian kernels in the ray-intersect regions from a selection of views. 4) By further investigating the densification strategy, we found that the effect of densification should be enhanced when certain views are distinct dramatically. As a solution, we propose a novel multi-view augmented densification strategy, where 3D Gaussians are encouraged to get densified to a sufficient number accordingly, resulting in improved reconstruction accuracy.
comment: Project Page:https://xiaobiaodu.github.io/mvgs-project/
♻ ☆ Invariance on Manifolds: Understanding Robust Visual Representations for Place Recognition
Visual Place Recognition (VPR) demands representations robust to drastic environmental and viewpoint shifts. Current aggregation paradigms, however, either rely on data-hungry supervision or simplistic first-order statistics, often neglecting intrinsic structural correlations. In this work, we propose a Second-Order Geometric Statistics framework that inherently captures geometric stability without training. We conceptualize scenes as covariance descriptors on the Symmetric Positive Definite (SPD) manifold, where perturbations manifest as tractable congruence transformations. By leveraging geometry-aware Riemannian mappings, we project these descriptors into a linearized Euclidean embedding, effectively decoupling signal structure from noise. Our approach introduces a training-free framework built upon fixed, pre-trained backbones, achieving strong zero-shot generalization without parameter updates. Extensive experiments confirm that our method achieves highly competitive performance against state-of-the-art baselines, particularly excelling in challenging zero-shot scenarios.
comment: 14pages, 5 figures
♻ ☆ Personalized Safety Alignment for Text-to-Image Diffusion Models
Text-to-image diffusion models have revolutionized visual content generation, yet their deployment is hindered by a fundamental limitation: safety mechanisms enforce rigid, uniform standards that fail to reflect diverse user preferences shaped by age, culture, or personal beliefs. To address this, we propose Personalized Safety Alignment (PSA), a framework that transitions generative safety from static filtration to user-conditioned adaptation. We introduce Sage, a large-scale dataset capturing diverse safety boundaries across 1,000 simulated user profiles, covering complex risks often missed by traditional datasets. By integrating these profiles via a parameter-efficient cross-attention adapter, PSA dynamically modulates generation to align with individual sensitivities. Extensive experiments demonstrate that PSA achieves a calibrated safety-quality trade-off: under permissive profiles, it relaxes over-cautious constraints to enhance visual fidelity, while under restrictive profiles, it enforces state-of-the-art suppression, significantly outperforming static baselines. Furthermore, PSA exhibits superior instruction adherence compared to prompt-engineering methods, establishing personalization as a vital direction for creating adaptive, user-centered, and responsible generative AI. Our code, data, and models are publicly available at https://github.com/M-E-AGI-Lab/PSAlign.
♻ ☆ PEAR: Pixel-aligned Expressive humAn mesh Recovery
Reconstructing detailed 3D human meshes from a single in-the-wild image remains a fundamental challenge in computer vision. Existing SMPLX-based methods often suffer from slow inference, produce only coarse body poses, and exhibit misalignments or unnatural artifacts in fine-grained regions such as the face and hands. These issues make current approaches difficult to apply to downstream tasks. To address these challenges, we propose PEAR-a fast and robust framework for pixel-aligned expressive human mesh recovery. PEAR explicitly tackles three major limitations of existing methods: slow inference, inaccurate localization of fine-grained human pose details, and insufficient facial expression capture. Specifically, to enable real-time SMPLX parameter inference, we depart from prior designs that rely on high resolution inputs or multi-branch architectures. Instead, we adopt a clean and unified ViT-based model capable of recovering coarse 3D human geometry. To compensate for the loss of fine-grained details caused by this simplified architecture, we introduce pixel-level supervision to optimize the geometry, significantly improving the reconstruction accuracy of fine-grained human details. To make this approach practical, we further propose a modular data annotation strategy that enriches the training data and enhances the robustness of the model. Overall, PEAR is a preprocessing-free framework that can simultaneously infer EHM-s (SMPLX and scaled-FLAME) parameters at over 100 FPS. Extensive experiments on multiple benchmark datasets demonstrate that our method achieves substantial improvements in pose estimation accuracy compared to previous SMPLX-based approaches. Project page: https://wujh2001.github.io/PEAR
comment: 23 pages
♻ ☆ Imperceptible Protection against Style Imitation from Diffusion Models
Recent progress in diffusion models has profoundly enhanced the fidelity of image generation, but it has raised concerns about copyright infringements. While prior methods have introduced adversarial perturbations to prevent style imitation, most are accompanied by the degradation of artworks' visual quality. Recognizing the importance of maintaining this, we introduce a visually improved protection method while preserving its protection capability. To this end, we devise a perceptual map to highlight areas sensitive to human eyes, guided by instance-aware refinement, which refines the protection intensity accordingly. We also introduce a difficulty-aware protection by predicting how difficult the artwork is to protect and dynamically adjusting the intensity based on this. Lastly, we integrate a perceptual constraints bank to further improve the imperceptibility. Results show that our method substantially elevates the quality of the protected image without compromising on protection efficacy.
comment: IEEE Transactions on Multimedia
♻ ☆ Alignment of Diffusion Models: Fundamentals, Challenges, and Future
Diffusion models have emerged as the leading paradigm in generative modeling, excelling in various applications. Despite their success, these models often misalign with human intentions and generate results with undesired properties or even harmful content. Inspired by the success and popularity of alignment in tuning large language models, recent studies have investigated aligning diffusion models with human expectations and preferences. This work mainly reviews alignment of diffusion models, covering advancements in fundamentals of alignment, alignment techniques of diffusion models, preference benchmarks, and evaluation for diffusion models. Moreover, we discuss key perspectives on current challenges and promising future directions on solving the remaining challenges in alignment of diffusion models. To the best of our knowledge, our work is the first comprehensive review paper for researchers and engineers to comprehend, practice, and research alignment of diffusion models.
comment: Accepted at ACM Computing Surveys. 35 pages, 5 figures, 4 tables. Paper List: github.com/xie-lab-ml/awesome-alignment-of-diffusion-models
♻ ☆ VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.0% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.
♻ ☆ Human Body Restoration with One-Step Diffusion Model and A New Benchmark ICML 2025
Human body restoration, as a specific application of image restoration, is widely applied in practice and plays a vital role across diverse fields. However, thorough research remains difficult, particularly due to the lack of benchmark datasets. In this study, we propose a high-quality dataset automated cropping and filtering (HQ-ACF) pipeline. This pipeline leverages existing object detection datasets and other unlabeled images to automatically crop and filter high-quality human images. Using this pipeline, we constructed a person-based restoration with sophisticated objects and natural activities (\emph{PERSONA}) dataset, which includes training, validation, and test sets. The dataset significantly surpasses other human-related datasets in both quality and content richness. Finally, we propose \emph{OSDHuman}, a novel one-step diffusion model for human body restoration. Specifically, we propose a high-fidelity image embedder (HFIE) as the prompt generator to better guide the model with low-quality human image information, effectively avoiding misleading prompts. Experimental results show that OSDHuman outperforms existing methods in both visual quality and quantitative metrics. The dataset and code will at https://github.com/gobunu/OSDHuman.
comment: 8 pages, 9 figures. Accepted at ICML 2025
♻ ☆ Representation Geometry as a Diagnostic for Out-of-Distribution Robustness
Robust generalization under distribution shift remains difficult to monitor and optimize in the absence of target-domain labels, as models with similar in-distribution accuracy can exhibit markedly different out-of-distribution (OOD) performance. While prior work has focused on training-time regularization and low-order representation statistics, little is known about whether the geometric structure of learned embeddings provides reliable post-hoc signals of robustness. We propose a geometry-based diagnostic framework that constructs class-conditional mutual k-nearest-neighbor graphs from in-distribution embeddings and extracts two complementary invariants: a global spectral complexity proxy based on the reduced log-determinant of the normalized Laplacian, and a local smoothness measure based on Ollivier--Ricci curvature. Across multiple architectures, training regimes, and corruption benchmarks, we find that lower spectral complexity and higher mean curvature consistently predict stronger OOD accuracy across checkpoints. Controlled perturbations and topological analyses further show that these signals reflect meaningful representation structure rather than superficial embedding statistics. Our results demonstrate that representation geometry enables interpretable, label-free robustness diagnosis and supports reliable unsupervised checkpoint selection under distribution shift.
♻ ☆ StyleMe3D: Stylization with Disentangled Priors by Multiple Encoders on 3D Gaussians
Current 3D Gaussian Splatting stylization approaches are limited in their ability to represent diverse artistic styles, frequently defaulting to low-level texture replacement or yielding semantically inconsistent outputs. In this paper, we introduce StyleMe3D, a novel hierarchical framework that achieves comprehensive, high-fidelity stylization by disentangling multi-level style representations while preserving geometric fidelity. The cornerstone of StyleMe3D is Dynamic Style Score Distillation (DSSD), which harnesses latent priors from a style-aware diffusion model to provide high-level semantic guidance, ensuring robust and expressive style transfer. To further refine this distillation process, we propose a multi-modal alignment strategy using the CLIP latent space: a CLIP-based style stream evaluator (Contrastive Style Descriptor) that enforces middle-level stylistic similarity, and a CLIP-based content stream evaluator (3D Gaussian Quality Assessment) that acts as a global regularizer to mitigate typical GS quality degradation. Finally, a VGG-based Simultaneously Optimized Scale module is integrated to refine fine-grained texture details at the low-level. Extensive experiments demonstrate that our method consistently preserves intricate geometric details and achieves coherent stylistic effects across entire scenes, significantly surpassing state-of-the-art baselines in both qualitative and quantitative evaluations.
comment: 18 pages; Project page: https://styleme3d.github.io/
♻ ☆ RAD: Region-Aware Diffusion Models for Image Inpainting
Diffusion models have achieved remarkable success in image generation, with applications broadening across various domains. Inpainting is one such application that can benefit significantly from diffusion models. Existing methods either hijack the reverse process of a pretrained diffusion model or cast the problem into a larger framework, \ie, conditioned generation. However, these approaches often require nested loops in the generation process or additional components for conditioning. In this paper, we present region-aware diffusion models (RAD) for inpainting with a simple yet effective reformulation of the vanilla diffusion models. RAD utilizes a different noise schedule for each pixel, which allows local regions to be generated asynchronously while considering the global image context. A plain reverse process requires no additional components, enabling RAD to achieve inference time up to 100 times faster than the state-of-the-art approaches. Moreover, we employ low-rank adaptation (LoRA) to fine-tune RAD based on other pretrained diffusion models, reducing computational burdens in training as well. Experiments demonstrated that RAD provides state-of-the-art results both qualitatively and quantitatively, on the FFHQ, LSUN Bedroom, and ImageNet datasets.
comment: Code: https://github.com/srk1995/RAD
♻ ☆ Near-Light Color Photometric Stereo for Mono-Chromatic Non-Lambertian Surfaces
Color photometric stereo enables single-shot surface reconstruction, extending conventional photometric stereo that requires multiple images of a static scene under varying illumination to dynamic scenarios. However, most existing approaches assume ideal distant lighting and Lambertian reflectance, leaving more practical near-light conditions and non-Lambertian surfaces underexplored. To overcome this limitation, we propose a framework that leverages neural implicit representations for depth and BRDF modeling under the assumption of mono-chromaticity (uniform chromaticity and homogeneous material), which alleviates the inherent ill-posedness of color photometric stereo and allows for detailed surface recovery from just one image. Furthermore, we design a compact optical tactile sensor to validate our approach. Experiments on both synthetic and real-world datasets demonstrate that our method achieves accurate and robust surface reconstruction.
comment: 5 pages 7figures
♻ ☆ SpikeGS: Learning 3D Gaussian Fields from Continuous Spike Stream ACCV 2024
A spike camera is a specialized high-speed visual sensor that offers advantages such as high temporal resolution and high dynamic range compared to conventional frame cameras. These features provide the camera with significant advantages in many computer vision tasks. However, the tasks of novel view synthesis based on spike cameras remain underdeveloped. Although there are existing methods for learning neural radiance fields from spike stream, they either lack robustness in extremely noisy, low-quality lighting conditions or suffer from high computational complexity due to the deep fully connected neural networks and ray marching rendering strategies used in neural radiance fields, making it difficult to recover fine texture details. In contrast, the latest advancements in 3DGS have achieved high-quality real-time rendering by optimizing the point cloud representation into Gaussian ellipsoids. Building on this, we introduce SpikeGS, the method to learn 3D Gaussian fields solely from spike stream. We designed a differentiable spike stream rendering framework based on 3DGS, incorporating noise embedding and spiking neurons. By leveraging the multi-view consistency of 3DGS and the tile-based multi-threaded parallel rendering mechanism, we achieved high-quality real-time rendering results. Additionally, we introduced a spike rendering loss function that generalizes under varying illumination conditions. Our method can reconstruct view synthesis results with fine texture details from a continuous spike stream captured by a moving spike camera, while demonstrating high robustness in extremely noisy low-light scenarios. Experimental results on both real and synthetic datasets demonstrate that our method surpasses existing approaches in terms of rendering quality and speed.
comment: Accepted by ACCV 2024
♻ ☆ HP-GAN: Harnessing pretrained networks for GAN improvement with FakeTwins and discriminator consistency
Generative Adversarial Networks (GANs) have made significant progress in enhancing the quality of image synthesis. Recent methods frequently leverage pretrained networks to calculate perceptual losses or utilize pretrained feature spaces. In this paper, we extend the capabilities of pretrained networks by incorporating innovative self-supervised learning techniques and enforcing consistency between discriminators during GAN training. Our proposed method, named HP-GAN, effectively exploits neural network priors through two primary strategies: FakeTwins and discriminator consistency. FakeTwins leverages pretrained networks as encoders to compute a self-supervised loss and applies this through the generated images to train the generator, thereby enabling the generation of more diverse and high quality images. Additionally, we introduce a consistency mechanism between discriminators that evaluate feature maps extracted from Convolutional Neural Network (CNN) and Vision Transformer (ViT) feature networks. Discriminator consistency promotes coherent learning among discriminators and enhances training robustness by aligning their assessments of image quality. Our extensive evaluation across seventeen datasets-including scenarios with large, small, and limited data, and covering a variety of image domains-demonstrates that HP-GAN consistently outperforms current state-of-the-art methods in terms of Fréchet Inception Distance (FID), achieving significant improvements in image diversity and quality. Code is available at: https://github.com/higun2/HP-GAN.
comment: Accepted manuscript. This is the accepted version of the article published in Neural Networks
♻ ☆ VisionDirector: Vision-Language Guided Closed-Loop Refinement for Generative Image Synthesis
Generative models can now produce photorealistic imagery, yet they still struggle with the long, multi-goal prompts that professional designers issue. To expose this gap and better evaluate models' performance in real-world settings, we introduce Long Goal Bench (LGBench), a 2,000-task suite (1,000 T2I and 1,000 I2I) whose average instruction contains 18 to 22 tightly coupled goals spanning global layout, local object placement, typography, and logo fidelity. We find that even state-of-the-art models satisfy fewer than 72 percent of the goals and routinely miss localized edits, confirming the brittleness of current pipelines. To address this, we present VisionDirector, a training-free vision-language supervisor that (i) extracts structured goals from long instructions, (ii) dynamically decides between one-shot generation and staged edits, (iii) runs micro-grid sampling with semantic verification and rollback after every edit, and (iv) logs goal-level rewards. We further fine-tune the planner with Group Relative Policy Optimization, yielding shorter edit trajectories (3.1 versus 4.2 steps) and stronger alignment. VisionDirector achieves new state of the art on GenEval (plus 7 percent overall) and ImgEdit (plus 0.07 absolute) while producing consistent qualitative improvements on typography, multi-object scenes, and pose editing.
♻ ☆ MindDrive: A Vision-Language-Action Model for Autonomous Driving via Online Reinforcement Learning
Current Vision-Language-Action (VLA) paradigms in autonomous driving primarily rely on Imitation Learning (IL), which introduces inherent challenges such as distribution shift and causal confusion. Online Reinforcement Learning offers a promising pathway to address these issues through trial-and-error learning. However, applying online reinforcement learning to VLA models in autonomous driving is hindered by inefficient exploration in continuous action spaces. To overcome this limitation, we propose MindDrive, a VLA framework comprising a large language model (LLM) with two distinct sets of LoRA parameters. The one LLM serves as a Decision Expert for scenario reasoning and driving decision-making, while the other acts as an Action Expert that dynamically maps linguistic decisions into feasible trajectories. By feeding trajectory-level rewards back into the reasoning space, MindDrive enables trial-and-error learning over a finite set of discrete linguistic driving decisions, instead of operating directly in a continuous action space. This approach effectively balances optimal decision-making in complex scenarios, human-like driving behavior, and efficient exploration in online reinforcement learning. Using the lightweight Qwen-0.5B LLM, MindDrive achieves Driving Score (DS) of 78.04 and Success Rate (SR) of 55.09% on the challenging Bench2Drive benchmark. To the best of our knowledge, this is the first work to demonstrate the effectiveness of online reinforcement learning for the VLA model in autonomous driving.
comment: 16 pages, 12 figures, 6 tables; Project Page: https://xiaomi-mlab.github.io/MindDrive/
♻ ☆ Sounding Highlights: Dual-Pathway Audio Encoders for Audio-Visual Video Highlight Detection ICASSP 2026
Audio-visual video highlight detection aims to automatically identify the most salient moments in videos by leveraging both visual and auditory cues. However, existing models often underutilize the audio modality, focusing on high-level semantic features while failing to fully leverage the rich, dynamic characteristics of sound. To address this limitation, we propose a novel framework, Dual-Pathway Audio Encoders for Video Highlight Detection (DAViHD). The dual-pathway audio encoder is composed of a semantic pathway for content understanding and a dynamic pathway that captures spectro-temporal dynamics. The semantic pathway extracts high-level information by identifying the content within the audio, such as speech, music, or specific sound events. The dynamic pathway employs a frequency-adaptive mechanism as time evolves to jointly model these dynamics, enabling it to identify transient acoustic events via salient spectral bands and rapid energy changes. We integrate the novel audio encoder into a full audio-visual framework and achieve new state-of-the-art performance on the large-scale MrHiSum benchmark. Our results demonstrate that a sophisticated, dual-faceted audio representation is key to advancing the field of highlight detection.
comment: 5 pages, 2 figures, to appear in ICASSP 2026
♻ ☆ TrajVG: 3D Trajectory-Coupled Visual Geometry Learning
Feed-forward multi-frame 3D reconstruction models often degrade on videos with object motion. Global-reference becomes ambiguous under multiple motions, while the local pointmap relies heavily on estimated relative poses and can drift, causing cross-frame misalignment and duplicated structures. We propose TrajVG, a reconstruction framework that makes cross-frame 3D correspondence an explicit prediction by estimating camera-coordinate 3D trajectories. We couple sparse trajectories, per-frame local point maps, and relative camera poses with geometric consistency objectives: (i) bidirectional trajectory-pointmap consistency with controlled gradient flow, and (ii) a pose consistency objective driven by static track anchors that suppresses gradients from dynamic regions. To scale training to in-the-wild videos where 3D trajectory labels are scarce, we reformulate the same coupling constraints into self-supervised objectives using only pseudo 2D tracks, enabling unified training with mixed supervision. Extensive experiments across 3D tracking, pose estimation, pointmap reconstruction, and video depth show that TrajVG surpasses the current feedforward performance baseline.
♻ ☆ YOLO-based Bearing Fault Diagnosis With Continuous Wavelet Transform
This letter presents a locality-aware bearing fault diagnosis framework that operates on time-frequency representations and enables spatially interpretable decision-making. One-dimensional vibration signals are first mapped to two-dimensional time-frequency spectrograms using the continuous wavelet transform (CWT) with Morlet wavelets to enhance transient fault signatures. The diagnosis task is then formulated as object detection on the time-frequency plane, where YOLOv9, YOLOv10, and YOLOv11 are employed to localize fault-relevant regions and classify fault types simultaneously. Experiments on three public benchmarks, including Case Western Reserve University (CWRU), Paderborn University (PU), and Intelligent Maintenance System (IMS), demonstrate strong cross-dataset generalization compared with a representative MCNN-LSTM baseline. In particular, YOLOv11 achieves mAP@0.5 of 99.0% (CWRU), 97.8% (PU), and 99.5% (IMS), while providing region-aware visualization of fault patterns in the time-frequency domain. These results suggest that detection-based inference on CWT spectrograms provides an effective and interpretable complementary approach to conventional global classification for rotating machinery condition monitoring.
comment: 5 pages, 2 figures, 2 tables, submitted to IEEE Signal Processing Letters
♻ ☆ Test-Time Iterative Error Correction for Efficient Diffusion Models ICLR 2026
With the growing demand for high-quality image generation on resource-constrained devices, efficient diffusion models have received increasing attention. However, such models suffer from approximation errors introduced by efficiency techniques, which significantly degrade generation quality. Once deployed, these errors are difficult to correct, as modifying the model is typically infeasible in deployment environments. Through an analysis of error propagation across diffusion timesteps, we reveal that these approximation errors can accumulate exponentially, severely impairing output quality. Motivated by this insight, we propose Iterative Error Correction (IEC), a novel test-time method that mitigates inference-time errors by iteratively refining the model's output. IEC is theoretically proven to reduce error propagation from exponential to linear growth, without requiring any retraining or architectural changes. IEC can seamlessly integrate into the inference process of existing diffusion models, enabling a flexible trade-off between performance and efficiency. Extensive experiments show that IEC consistently improves generation quality across various datasets, efficiency techniques, and model architectures, establishing it as a practical and generalizable solution for test-time enhancement of efficient diffusion models.
comment: Accepted by ICLR 2026
♻ ☆ SurgLaVi: Large-Scale Hierarchical Dataset for Surgical Vision-Language Representation Learning
Vision-language pre-training (VLP) offers unique advantages for surgery by aligning language with surgical videos, enabling workflow understanding and transfer across tasks without relying on expert-labeled datasets. However, progress in surgical VLP remains constrained by the limited scale, procedural diversity, semantic quality, and hierarchical structure of existing datasets. In this work, we present SurgLaVi, the largest and most diverse surgical vision-language dataset to date, comprising nearly 240k clip-caption pairs from more than 200 procedures, and featuring hierarchical levels at coarse-, mid-, and fine-level. At the core of SurgLaVi lies a fully automated pipeline that systematically generates fine-grained transcriptions of surgical videos and segments them into coherent procedural units. To ensure high-quality annotations, it applies dual-modality filtering to remove irrelevant and noisy samples. Within this framework, the resulting captions are enriched with contextual detail, producing annotations that are both semantically rich and easy to interpret. To ensure accessibility, we release SurgLaVi-$\b{eta}$, an open-source derivative of 113k clip-caption pairs constructed entirely from public data, which is over four times larger than existing surgical VLP datasets. To demonstrate the value of the SurgLaVi datasets, we introduce SurgCLIP, a CLIP-style video-text contrastive framework with dual encoders, as a representative base model. SurgCLIP achieves consistent improvements across phase, step, action, and tool recognition, surpassing prior state-of-the-art methods, often by large margins. These results validate that large-scale, semantically rich, and hierarchically structured datasets directly translate into stronger and more generalizable representations, establishing SurgLaVi as a key resource for developing surgical foundation models.
♻ ☆ GMAC: Global Multi-View Constraint for Automatic Multi-Camera Extrinsic Calibration ICIP
Automatic calibration of multi-camera systems, namely the accurate estimation of spatial extrinsic parameters, is fundamental for 3D reconstruction, panoramic perception, and multi-view data fusion. Existing methods typically rely on calibration targets, explicit geometric modeling, or task-specific neural networks. Such approaches often exhibit limited robustness and applicability in complex dynamic environments or online scenarios, making them difficult to deploy in practical applications. To address this, this paper proposes GMAC, a multi-camera extrinsic estimation framework based on the implicit geometric representations learned by multi-view reconstruction networks. GMAC models extrinsics as global variables constrained by the latent multi-view geometric structure and prunes and structurally reconfigures existing networks so that their latent features can directly support extrinsic prediction through a lightweight regression head, without requiring a completely new network design. Furthermore, GMAC jointly optimizes cross-view reprojection consistency and multi-view cycle consistency, ensuring geometric coherence across cameras while improving prediction accuracy and optimization stability. Experiments on both synthetic and real-world multi-camera datasets demonstrate that GMAC achieves accurate and stable extrinsic estimation without explicit 3D reconstruction or manual calibration, providing a new solution for efficient deployment and online calibration of multi-camera systems.
comment: A 5-page paper with 1 figure, prepared for submission to the 2026 IEEE International Conference on Image Processing (ICIP)
♻ ☆ FUSE-Flow: Scalable Real-Time Multi-View Point Cloud Reconstruction Using Confidence ICIP
Real-time multi-view point cloud reconstruction is a core problem in 3D vision and immersive perception, with wide applications in VR, AR, robotic navigation, digital twins, and computer interaction. Despite advances in multi-camera systems and high-resolution depth sensors, fusing large-scale multi-view depth observations into high-quality point clouds under strict real-time constraints remains challenging. Existing methods relying on voxel-based fusion, temporal accumulation, or global optimization suffer from high computational complexity, excessive memory usage, and limited scalability, failing to simultaneously achieve real-time performance, reconstruction quality, and multi-camera extensibility. We propose FUSE-Flow, a frame-wise, stateless, and linearly scalable point cloud streaming reconstruction framework. Each frame independently generates point cloud fragments, fused via two weights, measurement confidence and 3D distance consistency to suppress noise while preserving geometric details. For large-scale multi-camera efficiency, we introduce an adaptive spatial hashing-based weighted aggregation method: 3D space is adaptively partitioned by local point cloud density, representative points are selected per cell, and weighted fusion is performed to handle both sparse and dense regions. With GPU parallelization, FUSE-Flow achieves high-throughput, low-latency point cloud generation and fusion with linear complexity. Experiments demonstrate that the framework improves reconstruction stability and geometric fidelity in overlapping, depth-discontinuous, and dynamic scenes, while maintaining real-time frame rates on modern GPUs, verifying its effectiveness, robustness, and scalability.
comment: A 5-page paper, prepared for submission to the 2026 IEEE International Conference on Image Processing (ICIP)
♻ ☆ LookWhere? Efficient Visual Recognition by Learning Where to Look and What to See from Self-Supervision
Vision transformers are ever larger, more accurate, and more expensive to compute. The expense is even more extreme at high resolution as the number of tokens grows quadratically with the image size. We turn to adaptive computation to cope with this cost by learning to predict where to compute. Our LookWhere method divides the computation between a low-resolution selector and a high-resolution extractor without ever processing the full high-resolution input. We jointly pretrain the selector and extractor without task supervision by distillation from a self-supervised teacher, in effect, learning where and what to compute simultaneously. Unlike prior token reduction methods, which pay to save by pruning already-computed tokens, and prior token selection methods, which require complex and expensive per-task optimization, LookWhere economically and accurately selects and extracts transferrable representations of images. We show that LookWhere excels at sparse recognition on high-resolution inputs (Traffic Signs), maintaining accuracy while reducing FLOPs by up to 34x and time by 6x. It also excels at standard recognition tasks that are global (ImageNet classification) or local (ADE20K segmentation), improving accuracy while reducing time by 1.36x. See https://github.com/antofuller/lookwhere for the code and weights.
Machine Learning 150
☆ Shared LoRA Subspaces for almost Strict Continual Learning
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.
☆ Pseudo-Invertible Neural Networks
The Moore-Penrose Pseudo-inverse (PInv) serves as the fundamental solution for linear systems. In this paper, we propose a natural generalization of PInv to the nonlinear regime in general and to neural networks in particular. We introduce Surjective Pseudo-invertible Neural Networks (SPNN), a class of architectures explicitly designed to admit a tractable non-linear PInv. The proposed non-linear PInv and its implementation in SPNN satisfy fundamental geometric properties. One such property is null-space projection or "Back-Projection", $x' = x + A^\dagger(y-Ax)$, which moves a sample $x$ to its closest consistent state $x'$ satisfying $Ax=y$. We formalize Non-Linear Back-Projection (NLBP), a method that guarantees the same consistency constraint for non-linear mappings $f(x)=y$ via our defined PInv. We leverage SPNNs to expand the scope of zero-shot inverse problems. Diffusion-based null-space projection has revolutionized zero-shot solving for linear inverse problems by exploiting closed-form back-projection. We extend this method to non-linear degradations. Here, "degradation" is broadly generalized to include any non-linear loss of information, spanning from optical distortions to semantic abstractions like classification. This approach enables zero-shot inversion of complex degradations and allows precise semantic control over generative outputs without retraining the diffusion prior.
☆ CommCP: Efficient Multi-Agent Coordination via LLM-Based Communication with Conformal Prediction
To complete assignments provided by humans in natural language, robots must interpret commands, generate and answer relevant questions for scene understanding, and manipulate target objects. Real-world deployments often require multiple heterogeneous robots with different manipulation capabilities to handle different assignments cooperatively. Beyond the need for specialized manipulation skills, effective information gathering is important in completing these assignments. To address this component of the problem, we formalize the information-gathering process in a fully cooperative setting as an underexplored multi-agent multi-task Embodied Question Answering (MM-EQA) problem, which is a novel extension of canonical Embodied Question Answering (EQA), where effective communication is crucial for coordinating efforts without redundancy. To address this problem, we propose CommCP, a novel LLM-based decentralized communication framework designed for MM-EQA. Our framework employs conformal prediction to calibrate the generated messages, thereby minimizing receiver distractions and enhancing communication reliability. To evaluate our framework, we introduce an MM-EQA benchmark featuring diverse, photo-realistic household scenarios with embodied questions. Experimental results demonstrate that CommCP significantly enhances the task success rate and exploration efficiency over baselines. The experiment videos, code, and dataset are available on our project website: https://comm-cp.github.io.
comment: IEEE International Conference on Robotics and Automation (ICRA 2026); Project Website: https://comm-cp.github.io/
☆ Can vision language models learn intuitive physics from interaction?
Pre-trained vision language models do not have good intuitions about the physical world. Recent work has shown that supervised fine-tuning can improve model performance on simple physical tasks. However, fine-tuned models do not appear to learn robust physical rules that can generalize to new contexts. Based on research in cognitive science, we hypothesize that models need to interact with an environment to properly learn its physical dynamics. We train models that learn through interaction with the environment using reinforcement learning. While learning from interaction allows models to improve their within-task performance, it fails to produce models with generalizable physical intuitions. We find that models trained on one task do not reliably generalize to related tasks, even if the tasks share visual statistics and physical principles, and regardless of whether the models are trained through interaction.
☆ PhysicsAgentABM: Physics-Guided Generative Agent-Based Modeling
Large language model (LLM)-based multi-agent systems enable expressive agent reasoning but are expensive to scale and poorly calibrated for timestep-aligned state-transition simulation, while classical agent-based models (ABMs) offer interpretability but struggle to integrate rich individual-level signals and non-stationary behaviors. We propose PhysicsAgentABM, which shifts inference to behaviorally coherent agent clusters: state-specialized symbolic agents encode mechanistic transition priors, a multimodal neural transition model captures temporal and interaction dynamics, and uncertainty-aware epistemic fusion yields calibrated cluster-level transition distributions. Individual agents then stochastically realize transitions under local constraints, decoupling population inference from entity-level variability. We further introduce ANCHOR, an LLM agent-driven clustering strategy based on cross-contextual behavioral responses and a novel contrastive loss, reducing LLM calls by up to 6-8 times. Experiments across public health, finance, and social sciences show consistent gains in event-time accuracy and calibration over mechanistic, neural, and LLM baselines. By re-architecting generative ABM around population-level inference with uncertainty-aware neuro-symbolic fusion, PhysicsAgentABM establishes a new paradigm for scalable and calibrated simulation with LLMs.
☆ AP-OOD: Attention Pooling for Out-of-Distribution Detection ICLR 2026
Out-of-distribution (OOD) detection, which maps high-dimensional data into a scalar OOD score, is critical for the reliable deployment of machine learning models. A key challenge in recent research is how to effectively leverage and aggregate token embeddings from language models to obtain the OOD score. In this work, we propose AP-OOD, a novel OOD detection method for natural language that goes beyond simple average-based aggregation by exploiting token-level information. AP-OOD is a semi-supervised approach that flexibly interpolates between unsupervised and supervised settings, enabling the use of limited auxiliary outlier data. Empirically, AP-OOD sets a new state of the art in OOD detection for text: in the unsupervised setting, it reduces the FPR95 (false positive rate at 95% true positives) from 27.84% to 4.67% on XSUM summarization, and from 77.08% to 70.37% on WMT15 En-Fr translation.
comment: Accepted at ICLR 2026
☆ Curiosity is Knowledge: Self-Consistent Learning and No-Regret Optimization with Active Inference
Active inference (AIF) unifies exploration and exploitation by minimizing the Expected Free Energy (EFE), balancing epistemic value (information gain) and pragmatic value (task performance) through a curiosity coefficient. Yet it has been unclear when this balance yields both coherent learning and efficient decision-making: insufficient curiosity can drive myopic exploitation and prevent uncertainty resolution, while excessive curiosity can induce unnecessary exploration and regret. We establish the first theoretical guarantee for EFE-minimizing agents, showing that a single requirement--sufficient curiosity--simultaneously ensures self-consistent learning (Bayesian posterior consistency) and no-regret optimization (bounded cumulative regret). Our analysis characterizes how this mechanism depends on initial uncertainty, identifiability, and objective alignment, thereby connecting AIF to classical Bayesian experimental design and Bayesian optimization within one theoretical framework. We further translate these theories into practical design guidelines for tuning the epistemic-pragmatic trade-off in hybrid learning-optimization problems, validated through real-world experiments.
☆ Learning Query-Aware Budget-Tier Routing for Runtime Agent Memory
Memory is increasingly central to Large Language Model (LLM) agents operating beyond a single context window, yet most existing systems rely on offline, query-agnostic memory construction that can be inefficient and may discard query-critical information. Although runtime memory utilization is a natural alternative, prior work often incurs substantial overhead and offers limited explicit control over the performance-cost trade-off. In this work, we present \textbf{BudgetMem}, a runtime agent memory framework for explicit, query-aware performance-cost control. BudgetMem structures memory processing as a set of memory modules, each offered in three budget tiers (i.e., \textsc{Low}/\textsc{Mid}/\textsc{High}). A lightweight router performs budget-tier routing across modules to balance task performance and memory construction cost, which is implemented as a compact neural policy trained with reinforcement learning. Using BudgetMem as a unified testbed, we study three complementary strategies for realizing budget tiers: implementation (method complexity), reasoning (inference behavior), and capacity (module model size). Across LoCoMo, LongMemEval, and HotpotQA, BudgetMem surpasses strong baselines when performance is prioritized (i.e., high-budget setting), and delivers better accuracy-cost frontiers under tighter budgets. Moreover, our analysis disentangles the strengths and weaknesses of different tiering strategies, clarifying when each axis delivers the most favorable trade-offs under varying budget regimes.
comment: Code is available at https://github.com/ViktorAxelsen/BudgetMem
☆ Correctness-Optimized Residual Activation Lens (CORAL): Transferrable and Calibration-Aware Inference-Time Steering
Large language models (LLMs) exhibit persistent miscalibration, especially after instruction tuning and preference alignment. Modified training objectives can improve calibration, but retraining is expensive. Inference-time steering offers a lightweight alternative, yet most existing methods optimize proxies for correctness rather than correctness itself. We introduce CORAL (Correctness-Optimized Residual Activation Lens), a regularized inference-time steering method that captures distributed correctness signals from model internal activations using weight-decay MLP probes. We evaluate CORAL across three 7B-parameter models and find that it consistently improves accuracy by 10\% and expected calibration error (ECE) by 50\% on average. We additionally demonstrate that these gains transfer without retraining to the complete published test sets of four held-out benchmarks (ARC-Challenge, HellaSwag, Math-MC, OpenBookQA), averaging 14\% accuracy improvements and 49\% ECE improvements. Our results support the hypothesis that distributed information in model internals can be extracted using regularized probes when individual neurons are insufficient. CORAL thus provides a compute-efficient, transferable, and calibration-aware approach to improve MCQA performance during inference.
☆ Diffusion Model's Generalization Can Be Characterized by Inductive Biases toward a Data-Dependent Ridge Manifold
When a diffusion model is not memorizing the training data set, how does it generalize exactly? A quantitative understanding of the distribution it generates would be beneficial to, for example, an assessment of the model's performance for downstream applications. We thus explicitly characterize what diffusion model generates, by proposing a log-density ridge manifold and quantifying how the generated data relate to this manifold as inference dynamics progresses. More precisely, inference undergoes a reach-align-slide process centered around the ridge manifold: trajectories first reach a neighborhood of the manifold, then align as being pushed toward or away from the manifold in normal directions, and finally slide along the manifold in tangent directions. Within the scope of this general behavior, different training errors will lead to different normal and tangent motions, which can be quantified, and these detailed motions characterize when inter-mode generations emerge. More detailed understanding of training dynamics will lead to more accurate quantification of the generation inductive bias, and an example of random feature model will be considered, for which we can explicitly illustrate how diffusion model's inductive biases originate as a composition of architectural bias and training accuracy, and how they evolve with the inference dynamics. Experiments on synthetic multimodal distributions and MNIST latent diffusion support the predicted directional effects, in both low- and high-dimensions.
☆ Mechanisms of AI Protein Folding in ESMFold
How do protein structure prediction models fold proteins? We investigate this question by tracing how ESMFold folds a beta hairpin, a prevalent structural motif. Through counterfactual interventions on model latents, we identify two computational stages in the folding trunk. In the first stage, early blocks initialize pairwise biochemical signals: residue identities and associated biochemical features such as charge flow from sequence representations into pairwise representations. In the second stage, late blocks develop pairwise spatial features: distance and contact information accumulate in the pairwise representation. We demonstrate that the mechanisms underlying structural decisions of ESMFold can be localized, traced through interpretable representations, and manipulated with strong causal effects.
comment: Our code, data, and results are available at https://folding.baulab.info
☆ Multi-Token Prediction via Self-Distillation
Existing techniques for accelerating language model inference, such as speculative decoding, require training auxiliary speculator models and building and deploying complex inference pipelines. We consider a new approach for converting a pretrained autoregressive language model from a slow single next token prediction model into a fast standalone multi-token prediction model using a simple online distillation objective. The final model retains the exact same implementation as the pretrained initial checkpoint and is deployable without the addition of any auxiliary verifier or other specialized inference code. On GSM8K, our method produces models that can decode more than $3\times$ faster on average at $<5\%$ drop in accuracy relative to single token decoding performance.
comment: 8 pages and 5 figures in the main body
☆ Optimism Stabilizes Thompson Sampling for Adaptive Inference
Thompson sampling (TS) is widely used for stochastic multi-armed bandits, yet its inferential properties under adaptive data collection are subtle. Classical asymptotic theory for sample means can fail because arm-specific sample sizes are random and coupled with the rewards through the action-selection rule. We study this phenomenon in the $K$-armed Gaussian bandit and identify \emph{optimism} as a key mechanism for restoring \emph{stability}, a sufficient condition for valid asymptotic inference requiring each arm's pull count to concentrate around a deterministic scale. First, we prove that variance-inflated TS \citep{halder2025stable} is stable for any $K \ge 2$, including the challenging regime where multiple arms are optimal. This resolves the open question raised by \citet{halder2025stable} through extending their results from the two-armed setting to the general $K$-armed setting. Second, we analyze an alternative optimistic modification that keeps the posterior variance unchanged but adds an explicit mean bonus to posterior mean, and establish the same stability conclusion. In summary, suitably implemented optimism stabilizes Thompson sampling and enables asymptotically valid inference in multi-armed bandits, while incurring only a mild additional regret cost.
☆ AgenticPay: A Multi-Agent LLM Negotiation System for Buyer-Seller Transactions
Large language model (LLM)-based agents are increasingly expected to negotiate, coordinate, and transact autonomously, yet existing benchmarks lack principled settings for evaluating language-mediated economic interaction among multiple agents. We introduce AgenticPay, a benchmark and simulation framework for multi-agent buyer-seller negotiation driven by natural language. AgenticPay models markets in which buyers and sellers possess private constraints and product-dependent valuations, and must reach agreements through multi-round linguistic negotiation rather than numeric bidding alone. The framework supports a diverse suite of over 110 tasks ranging from bilateral bargaining to many-to-many markets, with structured action extraction and metrics for feasibility, efficiency, and welfare. Benchmarking state-of-the-art proprietary and open-weight LLMs reveals substantial gaps in negotiation performance and highlights challenges in long-horizon strategic reasoning, establishing AgenticPay as a foundation for studying agentic commerce and language-based market interaction. Code and dataset are available at the link: https://github.com/SafeRL-Lab/AgenticPay.
☆ On Computation and Reinforcement Learning
How does the amount of compute available to a reinforcement learning (RL) policy affect its learning? Can policies using a fixed amount of parameters, still benefit from additional compute? The standard RL framework does not provide a language to answer these questions formally. Empirically, deep RL policies are often parameterized as neural networks with static architectures, conflating the amount of compute and the number of parameters. In this paper, we formalize compute bounded policies and prove that policies which use more compute can solve problems and generalize to longer-horizon tasks that are outside the scope of policies with less compute. Building on prior work in algorithmic learning and model-free planning, we propose a minimal architecture that can use a variable amount of compute. Our experiments complement our theory. On a set 31 different tasks spanning online and offline RL, we show that $(1)$ this architecture achieves stronger performance simply by using more compute, and $(2)$ stronger generalization on longer-horizon test tasks compared to standard feedforward networks or deep residual network using up to 5 times more parameters.
☆ Causal Inference on Stopped Random Walks in Online Advertising
We consider a causal inference problem frequently encountered in online advertising systems, where a publisher (e.g., Instagram, TikTok) interacts repeatedly with human users and advertisers by sporadically displaying to each user an advertisement selected through an auction. Each treatment corresponds to a parameter value of the advertising mechanism (e.g., auction reserve-price), and we want to estimate through experiments the corresponding long-term treatment effect (e.g., annual advertising revenue). In our setting, the treatment affects not only the instantaneous revenue from showing an ad, but also changes each user's interaction-trajectory, and each advertiser's bidding policy -- as the latter is constrained by a finite budget. In particular, each a treatment may even affect the size of the population, since users interact longer with a tolerable advertising mechanism. We drop the classical i.i.d. assumption and model the experiment measurements (e.g., advertising revenue) as a stopped random walk, and use a budget-splitting experimental design, the Anscombe Theorem, a Wald-like equation, and a Central Limit Theorem to construct confidence intervals for the long-term treatment effect.
☆ Orthogonal Self-Attention
Softmax Self-Attention (SSA) is a key component of Transformer architectures. However, when utilised within skipless architectures, which aim to improve representation learning, recent work has highlighted the inherent instability of SSA due to inducing rank collapse and poorly-conditioned Jacobians. In this work, we design a novel attention mechanism: Orthogonal Self-Attention (OSA), which aims to bypass these issues with SSA, in order to allow for (non-causal) Transformers without skip connections and normalisation layers to be more easily trained. In particular, OSA parametrises the attention matrix to be orthogonal via mapping a skew-symmetric matrix, formed from query-key values, through the matrix exponential. We show that this can be practically implemented, by exploiting the low-rank structure of our query-key values, resulting in the computational complexity and memory cost of OSA scaling linearly with sequence length. Furthermore, we derive an initialisation scheme for which we prove ensures that the Jacobian of OSA is well-conditioned.
comment: Preprint
☆ Diamond Maps: Efficient Reward Alignment via Stochastic Flow Maps
Flow and diffusion models produce high-quality samples, but adapting them to user preferences or constraints post-training remains costly and brittle, a challenge commonly called reward alignment. We argue that efficient reward alignment should be a property of the generative model itself, not an afterthought, and redesign the model for adaptability. We propose "Diamond Maps", stochastic flow map models that enable efficient and accurate alignment to arbitrary rewards at inference time. Diamond Maps amortize many simulation steps into a single-step sampler, like flow maps, while preserving the stochasticity required for optimal reward alignment. This design makes search, sequential Monte Carlo, and guidance scalable by enabling efficient and consistent estimation of the value function. Our experiments show that Diamond Maps can be learned efficiently via distillation from GLASS Flows, achieve stronger reward alignment performance, and scale better than existing methods. Our results point toward a practical route to generative models that can be rapidly adapted to arbitrary preferences and constraints at inference time.
☆ Layer-wise LoRA fine-tuning: a similarity metric approach
Pre-training Large Language Models (LLMs) on web-scale datasets becomes fundamental for advancing general-purpose AI. In contrast, enhancing their predictive performance on downstream tasks typically involves adapting their knowledge through fine-tuning. Parameter-efficient fine-tuning techniques, such as Low-Rank Adaptation (LoRA), aim to reduce the computational cost of this process by freezing the pre-trained model and updating a smaller number of parameters. In comparison to full fine-tuning, these methods achieve over 99\% reduction in trainable parameter count, depending on the configuration. Unfortunately, such a reduction may prove insufficient as LLMs continue to grow in scale. In this work, we address the previous problem by systematically selecting only a few layers to fine-tune using LoRA or its variants. We argue that not all layers contribute equally to the model adaptation. Leveraging this, we identify the most relevant layers to fine-tune by measuring their contribution to changes in internal representations. Our method is orthogonal to and readily compatible with existing low-rank adaptation techniques. We reduce the trainable parameters in LoRA-based techniques by up to 50\%, while maintaining the predictive performance across different models and tasks. Specifically, on encoder-only architectures, this reduction in trainable parameters leads to a negligible predictive performance drop on the GLUE benchmark. On decoder-only architectures, we achieve a small drop or even improvements in the predictive performance on mathematical problem-solving capabilities and coding tasks. Finally, this effectiveness extends to multimodal models, for which we also observe competitive results relative to fine-tuning with LoRA modules in all layers. Code is available at: https://github.com/c2d-usp/Layer-wise-LoRA-with-CKA
comment: Code is available at https://github.com/c2d-usp/Layer-wise-LoRA-with-CKA
☆ Clifford Kolmogorov-Arnold Networks
We introduce Clifford Kolmogorov-Arnold Network (ClKAN), a flexible and efficient architecture for function approximation in arbitrary Clifford algebra spaces. We propose the use of Randomized Quasi Monte Carlo grid generation as a solution to the exponential scaling associated with higher dimensional algebras. Our ClKAN also introduces new batch normalization strategies to deal with variable domain input. ClKAN finds application in scientific discovery and engineering, and is validated in synthetic and physics inspired tasks.
comment: This work has been submitted to the IEEE for possible publication
☆ Characterizing Human Semantic Navigation in Concept Production as Trajectories in Embedding Space ICLR 2026
Semantic representations can be framed as a structured, dynamic knowledge space through which humans navigate to retrieve and manipulate meaning. To investigate how humans traverse this geometry, we introduce a framework that represents concept production as navigation through embedding space. Using different transformer text embedding models, we construct participant-specific semantic trajectories based on cumulative embeddings and extract geometric and dynamical metrics, including distance to next, distance to centroid, entropy, velocity, and acceleration. These measures capture both scalar and directional aspects of semantic navigation, providing a computationally grounded view of semantic representation search as movement in a geometric space. We evaluate the framework on four datasets across different languages, spanning different property generation tasks: Neurodegenerative, Swear verbal fluency, Property listing task in Italian, and in German. Across these contexts, our approach distinguishes between clinical groups and concept types, offering a mathematical framework that requires minimal human intervention compared to typical labor-intensive linguistic pre-processing methods. Comparison with a non-cumulative approach reveals that cumulative embeddings work best for longer trajectories, whereas shorter ones may provide too little context, favoring the non-cumulative alternative. Critically, different embedding models yielded similar results, highlighting similarities between different learned representations despite different training pipelines. By framing semantic navigation as a structured trajectory through embedding space, bridging cognitive modeling with learned representation, thereby establishing a pipeline for quantifying semantic representation dynamics with applications in clinical research, cross-linguistic analysis, and the assessment of artificial cognition.
comment: 10 pages, 6 figures (excluding refs/appendix). Accepted to ICLR 2026
☆ Inverse Depth Scaling From Most Layers Being Similar
Neural scaling laws relate loss to model size in large language models (LLMs), yet depth and width may contribute to performance differently, requiring more detailed studies. Here, we quantify how depth affects loss via analysis of LLMs and toy residual networks. We find loss scales inversely proportional to depth in LLMs, probably due to functionally similar layers reducing error through ensemble averaging rather than compositional learning or discretizing smooth dynamics. This regime is inefficient yet robust and may arise from the architectural bias of residual networks and target functions incompatible with smooth dynamics. The findings suggest that improving LLM efficiency may require architectural innovations to encourage compositional use of depth.
comment: 23 pages, 24 figures
☆ A Hybrid Data-Driven Algorithm for Real-Time Friction Force Estimation in Hydraulic Cylinders
Hydraulic systems are widely utilized in industrial applications due to their high force generation, precise control, and ability to function in harsh environments. Hydraulic cylinders, as actuators in these systems, apply force and position through the displacement of hydraulic fluid, but their operation is significantly influenced by friction force. Achieving precision in hydraulic cylinders requires an accurate friction model under various operating conditions. Existing analytical models, often derived from experimental tests, necessitate the identification or estimation of influencing factors but are limited in adaptability and computational efficiency. This research introduces a data-driven, hybrid algorithm based on Long Short-Term Memory (LSTM) networks and Random Forests for nonlinear friction force estimation. The algorithm effectively combines feature detection and estimation processes using training data acquired from an experimental hydraulic test setup. It achieves a consistent and stable model error of less than 10% across diverse operating conditions and external load variations, ensuring robust performance in complex situations. The computational cost of the algorithm is 1.51 milliseconds per estimation, making it suitable for real-time applications. The proposed method addresses the limitations of analytical models by delivering high precision and computational efficiency. The algorithm's performance is validated through detailed analysis and experimental results, including direct comparisons with the LuGre model. The comparison highlights that while the LuGre model offers a theoretical foundation for friction modeling, its performance is limited by its inability to dynamically adjust to varying operational conditions of the hydraulic cylinder, further emphasizing the advantages of the proposed hybrid approach in real-time applications.
comment: Published in: 2025 33rd International Conference on Electrical Engineering (ICEE), Publisher IEEE
☆ Discrete diffusion samplers and bridges: Off-policy algorithms and applications in latent spaces
Sampling from a distribution $p(x) \propto e^{-\mathcal{E}(x)}$ known up to a normalising constant is an important and challenging problem in statistics. Recent years have seen the rise of a new family of amortised sampling algorithms, commonly referred to as diffusion samplers, that enable fast and efficient sampling from an unnormalised density. Such algorithms have been widely studied for continuous-space sampling tasks; however, their application to problems in discrete space remains largely unexplored. Although some progress has been made in this area, discrete diffusion samplers do not take full advantage of ideas commonly used for continuous-space sampling. In this paper, we propose to bridge this gap by introducing off-policy training techniques for discrete diffusion samplers. We show that these techniques improve the performance of discrete samplers on both established and new synthetic benchmarks. Next, we generalise discrete diffusion samplers to the task of bridging between two arbitrary distributions, introducing data-to-energy Schrödinger bridge training for the discrete domain for the first time. Lastly, we showcase the application of the proposed diffusion samplers to data-free posterior sampling in the discrete latent spaces of image generative models.
comment: Code: https://github.com/mmacosha/offpolicy-discrete-diffusion-samplers-and-bridges
☆ Better Source, Better Flow: Learning Condition-Dependent Source Distribution for Flow Matching
Flow matching has recently emerged as a promising alternative to diffusion-based generative models, particularly for text-to-image generation. Despite its flexibility in allowing arbitrary source distributions, most existing approaches rely on a standard Gaussian distribution, a choice inherited from diffusion models, and rarely consider the source distribution itself as an optimization target in such settings. In this work, we show that principled design of the source distribution is not only feasible but also beneficial at the scale of modern text-to-image systems. Specifically, we propose learning a condition-dependent source distribution under flow matching objective that better exploit rich conditioning signals. We identify key failure modes that arise when directly incorporating conditioning into the source, including distributional collapse and instability, and show that appropriate variance regularization and directional alignment between source and target are critical for stable and effective learning. We further analyze how the choice of target representation space impacts flow matching with structured sources, revealing regimes in which such designs are most effective. Extensive experiments across multiple text-to-image benchmarks demonstrate consistent and robust improvements, including up to a 3x faster convergence in FID, highlighting the practical benefits of a principled source distribution design for conditional flow matching.
comment: Project Page: https://junwankimm.github.io/CSFM
☆ Breaking Symmetry Bottlenecks in GNN Readouts
Graph neural networks (GNNs) are widely used for learning on structured data, yet their ability to distinguish non-isomorphic graphs is fundamentally limited. These limitations are usually attributed to message passing; in this work we show that an independent bottleneck arises at the readout stage. Using finite-dimensional representation theory, we prove that all linear permutation-invariant readouts, including sum and mean pooling, factor through the Reynolds (group-averaging) operator and therefore project node embeddings onto the fixed subspace of the permutation action, erasing all non-trivial symmetry-aware components regardless of encoder expressivity. This yields both a new expressivity barrier and an interpretable characterization of what global pooling preserves or destroys. To overcome this collapse, we introduce projector-based invariant readouts that decompose node representations into symmetry-aware channels and summarize them with nonlinear invariant statistics, preserving permutation invariance while retaining information provably invisible to averaging. Empirically, swapping only the readout enables fixed encoders to separate WL-hard graph pairs and improves performance across multiple benchmarks, demonstrating that readout design is a decisive and under-appreciated factor in GNN expressivity.
comment: 23 pages
☆ $f$-GRPO and Beyond: Divergence-Based Reinforcement Learning Algorithms for General LLM Alignment
Recent research shows that Preference Alignment (PA) objectives act as divergence estimators between aligned (chosen) and unaligned (rejected) response distributions. In this work, we extend this divergence-based perspective to general alignment settings, such as reinforcement learning with verifiable rewards (RLVR), where only environmental rewards are available. Within this unified framework, we propose $f$-Group Relative Policy Optimization ($f$-GRPO), a class of on-policy reinforcement learning, and $f$-Hybrid Alignment Loss ($f$-HAL), a hybrid on/off policy objectives, for general LLM alignment based on variational representation of $f$-divergences. We provide theoretical guarantees that these classes of objectives improve the average reward after alignment. Empirically, we validate our framework on both RLVR (Math Reasoning) and PA tasks (Safety Alignment), demonstrating superior performance and flexibility compared to current methods.
☆ Orthogonal Model Merging
Merging finetuned Large Language Models (LLMs) has become increasingly important for integrating diverse capabilities into a single unified model. However, prevailing model merging methods rely on linear arithmetic in Euclidean space, which often destroys the intrinsic geometric properties of pretrained weights, such as hyperspherical energy. To address this, we propose Orthogonal Model Merging (OrthoMerge), a method that performs merging operations on the Riemannian manifold formed by the orthogonal group to preserve the geometric structure of the model's weights. By mapping task-specific orthogonal matrices learned by Orthogonal Finetuning (OFT) to the Lie algebra, OrthoMerge enables a principled yet efficient integration that takes into account both the direction and intensity of adaptations. In addition to directly leveraging orthogonal matrices obtained by OFT, we further extend this approach to general models finetuned with non-OFT methods (i.e., low-rank finetuning, full finetuning) via an Orthogonal-Residual Decoupling strategy. This technique extracts the orthogonal components of expert models by solving the orthogonal Procrustes problem, which are then merged on the manifold of the orthogonal group, while the remaining linear residuals are processed through standard additive merging. Extensive empirical results demonstrate the effectiveness of OrthoMerge in mitigating catastrophic forgetting and maintaining model performance across diverse tasks.
comment: Technical report (18 pages, 9 figures, project page: https://spherelab.ai/OrthoMerge/)
☆ Dimensionality Reduction on Riemannian Manifolds in Data Analysis
In this work, we investigate Riemannian geometry based dimensionality reduction methods that respect the underlying manifold structure of the data. In particular, we focus on Principal Geodesic Analysis (PGA) as a nonlinear generalization of PCA for manifold valued data, and extend discriminant analysis through Riemannian adaptations of other known dimensionality reduction methods. These approaches exploit geodesic distances, tangent space representations, and intrinsic statistical measures to achieve more faithful low dimensional embeddings. We also discuss related manifold learning techniques and highlight their theoretical foundations and practical advantages. Experimental results on representative datasets demonstrate that Riemannian methods provide improved representation quality and classification performance compared to their Euclidean counterparts, especially for data constrained to curved spaces such as hyperspheres and symmetric positive definite manifolds. This study underscores the importance of geometry aware dimensionality reduction in modern machine learning and data science applications.
Tuning Out-of-Distribution (OOD) Detectors Without Given OOD Data
Existing out-of-distribution (OOD) detectors are often tuned by a separate dataset deemed OOD with respect to the training distribution of a neural network (NN). OOD detectors process the activations of NN layers and score the output, where parameters of the detectors are determined by fitting to an in-distribution (training) set and the aforementioned dataset chosen adhocly. At detector training time, this adhoc dataset may not be available or difficult to obtain, and even when it's available, it may not be representative of actual OOD data, which is often ''unknown unknowns." Current benchmarks may specify some left-out set from test OOD sets. We show that there can be significant variance in performance of detectors based on the adhoc dataset chosen in current literature, and thus even if such a dataset can be collected, the performance of the detector may be highly dependent on the choice. In this paper, we introduce and formalize the often neglected problem of tuning OOD detectors without a given ``OOD'' dataset. To this end, we present strong baselines as an attempt to approach this problem. Furthermore, we propose a new generic approach to OOD detector tuning that does not require any extra data other than those used to train the NN. We show that our approach improves over baseline methods consistently across higher-parameter OOD detector families, while being comparable across lower-parameter families.
☆ Approximation of Log-Partition Function in Policy Mirror Descent Induces Implicit Regularization for LLM Post-Training
Policy mirror descent (PMD) provides a principled framework for reinforcement learning (RL) by iteratively solving KL-regularized policy improvement subproblems. While this approach has been adopted in training advanced LLMs such as Kimi K1.5/K2, the ideal closed-form PMD updates require reliable partition function estimation, a significant challenge when working with limited rollouts in the vast action spaces of LLMs. We investigate a practical algorithm, termed PMD-mean, that approximates the log-partition term with the mean reward under the sampling policy and performs regression in log-policy space. Specifically, we characterize the population solution of PMD-mean and demonstrate that it implicitly optimizes mirror descent subproblems with an adaptive mixed KL--$χ^2$ regularizer. This additional $χ^2$ regularization constrains large probability changes, producing more conservative updates when expected rewards are low and enhancing robustness against finite-sample estimation errors. Experiments on math reasoning tasks show that PMD-mean achieves superior performance with improved stability and time efficiency. These findings deepen our understanding of PMD-mean and illuminate pathways toward principled improvements in RL algorithms for LLMs. Code is available at https://github.com/horizon-rl/OpenKimi.
Transformers Are Born Biased: Structural Inductive Biases at Random Initialization and Their Practical Consequences
Transformers underpin modern large language models (LLMs) and are commonly assumed to be behaviorally unstructured at random initialization, with all meaningful preferences emerging only through large-scale training. We challenge this assumption by showing that randomly initialized transformers already exhibit strong and systematic structural biases. In particular, untrained models display extreme token preferences: across random input sequences, certain tokens are predicted with probabilities orders of magnitude larger. We provide a mechanistic explanation for this phenomenon by dissecting the transformer architecture at initialization. We show that extreme token preference arises from a contraction of token representations along a random seed-dependent direction. This contraction is driven by two interacting forces: (i) asymmetric nonlinear activations in MLP sublayers induce global (inter-sequence) representation concentration, and (ii) self-attention further amplifies this effect through local (intra-sequence) aggregation. Together, these mechanisms align hidden representations along a direction determined solely by the random initialization, producing highly non-uniform next-token predictions. Beyond mechanistic insight, we demonstrate that these initialization-induced biases persist throughout training, forming a stable and intrinsic model identity. Leveraging this property, we introduce SeedPrint, a fingerprinting method that can reliably distinguish models that differ only in their random initialization, even after extensive training and under substantial distribution shift. Finally, we identify a fundamental positional discrepancy inherent to the attention mechanism's intra-sequence contraction that is causally linked to the attention-sink phenomenon. This discovery provides a principled explanation for the emergence of sinks and offers a pathway for their control.
☆ Chunky Post-Training: Data Driven Failures of Generalization
LLM post-training involves many diverse datasets, each targeting a specific behavior. But these datasets encode incidental patterns alongside intended ones: correlations between formatting and content, narrow phrasings across diverse problems, and implicit associations arising from the discrete data curation process. These patterns are often invisible to developers yet salient to models, producing behaviors that surprise their creators, such as rejecting true facts presented in a particular question format. We call this chunky post-training: the model learns spurious correlations as a result of distinct chunks of post-training data. We introduce SURF, a black-box pipeline which surfaces these unintended behaviors at run time, and TURF, a tool that traces these failures back to specific post-training data. Applying these tools to frontier models (Claude 4.5, GPT-5.1, Grok 4.1, Gemini 3) and open models (Tülu 3), we show that chunky post-training produces miscalibrated behaviors, which often result from imbalanced or underspecified chunks of post-training data.
☆ Verification of the Implicit World Model in a Generative Model via Adversarial Sequences ICLR 2026
Generative sequence models are typically trained on sample sequences from natural or formal languages. It is a crucial question whether -- or to what extent -- sample-based training is able to capture the true structure of these languages, often referred to as the ``world model''. Theoretical results indicate that we can hope for soundness at best, that is, generating valid sequences, but not necessarily all of them. However, it is still important to have practical tools that are able to verify whether a given sequence model is sound. In this study, we focus on chess, as it is a domain that provides enough complexity while having a simple rule-based world model. We propose adversarial sequence generation for verifying the soundness of the sequence model. Our adversaries generate valid sequences so as to force the sequence model to generate an invalid next move prediction. Apart from the falsification of soundness, this method is also suitable for a more fine-grained analysis of the failure modes and the effects of different choices during training. To demonstrate this, we propose a number of methods for adversarial sequence generation and evaluate the approach on a large set of chess models. We train models on random as well as high-quality chess games, using several training recipes. We find that none of the models are sound, but some training techniques and dataset choices are able to improve soundness remarkably. We also investigate the potential application of board state probes in both our training and attack methods. Our findings indicate that the extracted board states have no causal role in next token prediction in most of the models.
comment: Accepted at ICLR 2026. Code, datasets, and models are available at https://github.com/szegedai/world-model-verification
☆ Regularized Calibration with Successive Rounding for Post-Training Quantization
Large language models (LLMs) deliver robust performance across diverse applications, yet their deployment often faces challenges due to the memory and latency costs of storing and accessing billions of parameters. Post-training quantization (PTQ) enables efficient inference by mapping pretrained weights to low-bit formats without retraining, but its effectiveness depends critically on both the quantization objective and the rounding procedure used to obtain low-bit weight representations. In this work, we show that interpolating between symmetric and asymmetric calibration acts as a form of regularization that preserves the standard quadratic structure used in PTQ while providing robustness to activation mismatch. Building on this perspective, we derive a simple successive rounding procedure that naturally incorporates asymmetric calibration, as well as a bounded-search extension that allows for an explicit trade-off between quantization quality and the compute cost. Experiments across multiple LLM families, quantization bit-widths, and benchmarks demonstrate that the proposed bounded search based on a regularized asymmetric calibration objective consistently improves perplexity and accuracy over PTQ baselines, while incurring only modest and controllable additional computational cost.
☆ Universal approximation with signatures of non-geometric rough paths
We establish a universal approximation theorem for signatures of rough paths that are not necessarily weakly geometric. By extending the path with time and its rough path bracket terms, we prove that linear functionals of the signature of the resulting rough paths approximate continuous functionals on rough path spaces uniformly on compact sets. Moreover, we construct the signature of a path extended by its pathwise quadratic variation terms based on general pathwise stochastic integration à la Föllmer, in particular, allowing for pathwise Itô, Stratonovich, and backward Itô integration. In a probabilistic setting, we obtain a universal approximation result for linear functionals of the signature of continuous semimartingales extended by the quadratic variation terms, defined via stochastic Itô integration. Numerical examples illustrate the use of signatures when the path is extended by time and quadratic variation in the context of model calibration and option pricing in mathematical finance.
☆ Parity, Sensitivity, and Transformers
The transformer architecture is almost a decade old. Despite that, we still have a limited understanding of what this architecture can or cannot compute. For instance, can a 1-layer transformer solve PARITY -- or more generally -- which kinds of transformers can do it? Known constructions for PARITY have at least 2 layers and employ impractical features: either a length-dependent positional encoding, or hardmax, or layernorm without the regularization parameter, or they are not implementable with causal masking. We give a new construction of a transformer for PARITY with softmax, length-independent and polynomially bounded positional encoding, no layernorm, working both with and without causal masking. We also give the first lower bound for transformers solving PARITY -- by showing that it cannot be done with only one layer and one head.
comment: 15 pages
☆ ContextBench: A Benchmark for Context Retrieval in Coding Agents
LLM-based coding agents have shown strong performance on automated issue resolution benchmarks, yet existing evaluations largely focus on final task success, providing limited insight into how agents retrieve and use code context during problem solving. We introduce ContextBench, a process-oriented evaluation of context retrieval in coding agents. ContextBench consists of 1,136 issue-resolution tasks from 66 repositories across eight programming languages, each augmented with human-annotated gold contexts. We further implement an automated evaluation framework that tracks agent trajectories and measures context recall, precision, and efficiency throughout issue resolution. Using ContextBench, we evaluate four frontier LLMs and five coding agents. Our results show that sophisticated agent scaffolding yields only marginal gains in context retrieval ("The Bitter Lesson" of coding agents), LLMs consistently favor recall over precision, and substantial gaps exist between explored and utilized context. ContextBench augments existing end-to-end benchmarks with intermediate gold-context metrics that unbox the issue-resolution process. These contexts offer valuable intermediate signals for guiding LLM reasoning in software tasks. Data and code are available at: https://cioutn.github.io/context-bench/.
comment: 36 pages, 6 figures, 4 tables
DFPO: Scaling Value Modeling via Distributional Flow towards Robust and Generalizable LLM Post-Training
Training reinforcement learning (RL) systems in real-world environments remains challenging due to noisy supervision and poor out-of-domain (OOD) generalization, especially in LLM post-training. Recent distributional RL methods improve robustness by modeling values with multiple quantile points, but they still learn each quantile independently as a scalar. This results in rough-grained value representations that lack fine-grained conditioning on state information, struggling under complex and OOD conditions. We propose DFPO (Distributional Value Flow Policy Optimization with Conditional Risk and Consistency Control), a robust distributional RL framework that models values as continuous flows across time steps. By scaling value modeling through learning of a value flow field instead of isolated quantile predictions, DFPO captures richer state information for more accurate advantage estimation. To stabilize training under noisy feedback, DFPO further integrates conditional risk control and consistency constraints along value flow trajectories. Experiments on dialogue, math reasoning, and scientific tasks show that DFPO outperforms PPO, FlowRL, and other robust baselines under noisy supervision, achieving improved training stability and generalization.
☆ Escaping Local Minima Provably in Non-convex Matrix Sensing: A Deterministic Framework via Simulated Lifting
Low-rank matrix sensing is a fundamental yet challenging nonconvex problem whose optimization landscape typically contains numerous spurious local minima, making it difficult for gradient-based optimizers to converge to the global optimum. Recent work has shown that over-parameterization via tensor lifting can convert such local minima into strict saddle points, an insight that also partially explains why massive scaling can improve generalization and performance in modern machine learning. Motivated by this observation, we propose a Simulated Oracle Direction (SOD) escape mechanism that simulates the landscape and escape direction of the over-parametrized space, without resorting to actually lifting the problem, since that would be computationally intractable. In essence, we designed a mathematical framework to project over-parametrized escape directions onto the original parameter space to guarantee a strict decrease of objective value from existing local minima. To the best of the our knowledge, this represents the first deterministic framework that could escape spurious local minima with guarantee, especially without using random perturbations or heuristic estimates. Numerical experiments demonstrate that our framework reliably escapes local minima and facilitates convergence to global optima, while incurring minimal computational cost when compared to explicit tensor over-parameterization. We believe this framework has non-trivial implications for nonconvex optimization beyond matrix sensing, by showcasing how simulated over-parameterization can be leveraged to tame challenging optimization landscapes.
comment: 48 pages, 10 figures, 5 tables. Submitted to Mathematical Programming
☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr.Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr.Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
☆ EuroLLM-22B: Technical Report
This report presents EuroLLM-22B, a large language model trained from scratch to support the needs of European citizens by covering all 24 official European Union languages and 11 additional languages. EuroLLM addresses the issue of European languages being underrepresented and underserved in existing open large language models. We provide a comprehensive overview of EuroLLM-22B's development, including tokenizer design, architectural specifications, data filtering, and training procedures. Across a broad set of multilingual benchmarks, EuroLLM-22B demonstrates strong performance in reasoning, instruction following, and translation, achieving results competitive with models of comparable size. To support future research, we release our base and instruction-tuned models, our multilingual web pretraining data and updated EuroBlocks instruction datasets, as well as our pre-training and evaluation codebases.
☆ Large-scale Score-based Variational Posterior Inference for Bayesian Deep Neural Networks
Bayesian (deep) neural networks (BNN) are often more attractive than the mainstream point-estimate vanilla deep learning in various aspects including uncertainty quantification, robustness to noise, resistance to overfitting, and more. The variational inference (VI) is one of the most widely adopted approximate inference methods. Whereas the ELBO-based variational free energy method is a dominant choice in the literature, in this paper we introduce a score-based alternative for BNN variational inference. Although there have been quite a few score-based variational inference methods proposed in the community, most are not adequate for large-scale BNNs for various computational and technical reasons. We propose a novel scalable VI method where the learning objective combines the score matching loss and the proximal penalty term in iterations, which helps our method avoid the reparametrized sampling, and allows for noisy unbiased mini-batch scores through stochastic gradients. This in turn makes our method scalable to large-scale neural networks including Vision Transformers, and allows for richer variational density families. On several benchmarks including visual recognition and time-series forecasting with large-scale deep networks, we empirically show the effectiveness of our approach.
☆ Wedge Sampling: Efficient Tensor Completion with Nearly-Linear Sample Complexity
We introduce Wedge Sampling, a new non-adaptive sampling scheme for low-rank tensor completion. We study recovery of an order-$k$ low-rank tensor of dimension $n \times \cdots \times n$ from a subset of its entries. Unlike the standard uniform entry model (i.e., i.i.d. samples from $[n]^k$), wedge sampling allocates observations to structured length-two patterns (wedges) in an associated bipartite sampling graph. By directly promoting these length-two connections, the sampling design strengthens the spectral signal that underlies efficient initialization, in regimes where uniform sampling is too sparse to generate enough informative correlations. Our main result shows that this change in sampling paradigm enables polynomial-time algorithms to achieve both weak and exact recovery with nearly linear sample complexity in $n$. The approach is also plug-and-play: wedge-sampling-based spectral initialization can be combined with existing refinement procedures (e.g., spectral or gradient-based methods) using only an additional $\tilde{O}(n)$ uniformly sampled entries, substantially improving over the $\tilde{O}(n^{k/2})$ sample complexity typically required under uniform entry sampling for efficient methods. Overall, our results suggest that the statistical-to-computational gap highlighted in Barak and Moitra (2022) is, to a large extent, a consequence of the uniform entry sampling model for tensor completion, and that alternative non-adaptive measurement designs that guarantee a strong initialization can overcome this barrier.
comment: 58 pages, 3 figures
☆ Constrained Group Relative Policy Optimization
While Group Relative Policy Optimization (GRPO) has emerged as a scalable framework for critic-free policy learning, extending it to settings with explicit behavioral constraints remains underexplored. We introduce Constrained GRPO, a Lagrangian-based extension of GRPO for constrained policy optimization. Constraints are specified via indicator cost functions, enabling direct optimization of violation rates through a Lagrangian relaxation. We show that a naive multi-component treatment in advantage estimation can break constrained learning: mismatched component-wise standard deviations distort the relative importance of the different objective terms, which in turn corrupts the Lagrangian signal and prevents meaningful constraint enforcement. We formally derive this effect to motivate our scalarized advantage construction that preserves the intended trade-off between reward and constraint terms. Experiments in a toy gridworld confirm the predicted optimization pathology and demonstrate that scalarizing advantages restores stable constraint control. In addition, we evaluate Constrained GRPO on robotics tasks, where it improves constraint satisfaction while increasing task success, establishing a simple and effective recipe for constrained policy optimization in embodied AI domains that increasingly rely on large multimodal foundation models.
comment: 16 pages, 6 figures
☆ Distribution-free two-sample testing with blurred total variation distance
Two-sample testing, where we aim to determine whether two distributions are equal or not equal based on samples from each one, is challenging if we cannot place assumptions on the properties of the two distributions. In particular, certifying equality of distributions, or even providing a tight upper bound on the total variation (TV) distance between the distributions, is impossible to achieve in a distribution-free regime. In this work, we examine the blurred TV distance, a relaxation of TV distance that enables us to perform inference without assumptions on the distributions. We provide theoretical guarantees for distribution-free upper and lower bounds on the blurred TV distance, and examine its properties in high dimensions.
comment: 47 pages, 4 figures
☆ CFRecs: Counterfactual Recommendations on Real Estate User Listing Interaction Graphs
Graph-structured data is ubiquitous and powerful in representing complex relationships in many online platforms. While graph neural networks (GNNs) are widely used to learn from such data, counterfactual graph learning has emerged as a promising approach to improve model interpretability. Counterfactual explanation research focuses on identifying a counterfactual graph that is similar to the original but leads to different predictions. These explanations optimize two objectives simultaneously: the sparsity of changes in the counterfactual graph and the validity of its predictions. Building on these qualitative optimization goals, this paper introduces CFRecs, a novel framework that transforms counterfactual explanations into actionable insights. CFRecs employs a two-stage architecture consisting of a graph neural network (GNN) and a graph variational auto-encoder (Graph-VAE) to strategically propose minimal yet high-impact changes in graph structure and node attributes to drive desirable outcomes in recommender systems. We apply CFRecs to Zillow's graph-structured data to deliver actionable recommendations for both home buyers and sellers with the goal of helping them navigate the competitive housing market and achieve their homeownership goals. Experimental results on Zillow's user-listing interaction data demonstrate the effectiveness of CFRecs, which also provides a fresh perspective on recommendations using counterfactual reasoning in graphs.
☆ DLM-Scope: Mechanistic Interpretability of Diffusion Language Models via Sparse Autoencoders
Sparse autoencoders (SAEs) have become a standard tool for mechanistic interpretability in autoregressive large language models (LLMs), enabling researchers to extract sparse, human-interpretable features and intervene on model behavior. Recently, as diffusion language models (DLMs) have become an increasingly promising alternative to the autoregressive LLMs, it is essential to develop tailored mechanistic interpretability tools for this emerging class of models. In this work, we present DLM-Scope, the first SAE-based interpretability framework for DLMs, and demonstrate that trained Top-K SAEs can faithfully extract interpretable features. Notably, we find that inserting SAEs affects DLMs differently than autoregressive LLMs: while SAE insertion in LLMs typically incurs a loss penalty, in DLMs it can reduce cross-entropy loss when applied to early layers, a phenomenon absent or markedly weaker in LLMs. Additionally, SAE features in DLMs enable more effective diffusion-time interventions, often outperforming LLM steering. Moreover, we pioneer certain new SAE-based research directions for DLMs: we show that SAEs can provide useful signals for DLM decoding order; and the SAE features are stable during the post-training phase of DLMs. Our work establishes a foundation for mechanistic interpretability in DLMs and shows a great potential of applying SAEs to DLM-related tasks and algorithms.
comment: 23 pages
☆ A Hybrid Autoencoder for Robust Heightmap Generation from Fused Lidar and Depth Data for Humanoid Robot Locomotion
Reliable terrain perception is a critical prerequisite for the deployment of humanoid robots in unstructured, human-centric environments. While traditional systems often rely on manually engineered, single-sensor pipelines, this paper presents a learning-based framework that uses an intermediate, robot-centric heightmap representation. A hybrid Encoder-Decoder Structure (EDS) is introduced, utilizing a Convolutional Neural Network (CNN) for spatial feature extraction fused with a Gated Recurrent Unit (GRU) core for temporal consistency. The architecture integrates multimodal data from an Intel RealSense depth camera, a LIVOX MID-360 LiDAR processed via efficient spherical projection, and an onboard IMU. Quantitative results demonstrate that multimodal fusion improves reconstruction accuracy by 7.2% over depth-only and 9.9% over LiDAR-only configurations. Furthermore, the integration of a 3.2 s temporal context reduces mapping drift.
☆ Exact Recovery in the Data Block Model
Community detection in networks is a fundamental problem in machine learning and statistical inference, with applications in social networks, biological systems, and communication networks. The stochastic block model (SBM) serves as a canonical framework for studying community structure, and exact recovery, identifying the true communities with high probability, is a central theoretical question. While classical results characterize the phase transition for exact recovery based solely on graph connectivity, many real-world networks contain additional data, such as node attributes or labels. In this work, we study exact recovery in the Data Block Model (DBM), an SBM augmented with node-associated data, as formalized by Asadi, Abbe, and Verdú (2017). We introduce the Chernoff--TV divergence and use it to characterize a sharp exact recovery threshold for the DBM. We further provide an efficient algorithm that achieves this threshold, along with a matching converse result showing impossibility below the threshold. Finally, simulations validate our findings and demonstrate the benefits of incorporating vertex data as side information in community detection.
comment: 35 pages
☆ Visualizing the loss landscapes of physics-informed neural networks
Training a neural network requires navigating a high-dimensional, non-convex loss surface to find parameters that minimize this loss. In many ways, it is surprising that optimizers such as stochastic gradient descent and ADAM can reliably locate minima which perform well on both the training and test data. To understand the success of training, a "loss landscape" community has emerged to study the geometry of the loss function and the dynamics of optimization, often using visualization techniques. However, these loss landscape studies have mostly been limited to machine learning for image classification. In the newer field of physics-informed machine learning, little work has been conducted to visualize the landscapes of losses defined not by regression to large data sets, but by differential operators acting on state fields discretized by neural networks. In this work, we provide a comprehensive review of the loss landscape literature, as well as a discussion of the few existing physics-informed works which investigate the loss landscape. We then use a number of the techniques we survey to empirically investigate the landscapes defined by the Deep Ritz and squared residual forms of the physics loss function. We find that the loss landscapes of physics-informed neural networks have many of the same properties as the data-driven classification problems studied in the literature. Unexpectedly, we find that the two formulations of the physics loss often give rise to similar landscapes, which appear smooth, well-conditioned, and convex in the vicinity of the solution. The purpose of this work is to introduce the loss landscape perspective to the scientific machine learning community, compare the Deep Ritz and the strong form losses, and to challenge prevailing intuitions about the complexity of the loss landscapes of physics-informed networks.
☆ Optimal scaling laws in learning hierarchical multi-index models
In this work, we provide a sharp theory of scaling laws for two-layer neural networks trained on a class of hierarchical multi-index targets, in a genuinely representation-limited regime. We derive exact information-theoretic scaling laws for subspace recovery and prediction error, revealing how the hierarchical features of the target are sequentially learned through a cascade of phase transitions. We further show that these optimal rates are achieved by a simple, target-agnostic spectral estimator, which can be interpreted as the small learning-rate limit of gradient descent on the first-layer weights. Once an adapted representation is identified, the readout can be learned statistically optimally, using an efficient procedure. As a consequence, we provide a unified and rigorous explanation of scaling laws, plateau phenomena, and spectral structure in shallow neural networks trained on such hierarchical targets.
☆ Synthesizing Realistic Test Data without Breaking Privacy
There is a need for synthetic training and test datasets that replicate statistical distributions of original datasets without compromising their confidentiality. A lot of research has been done in leveraging Generative Adversarial Networks (GANs) for synthetic data generation. However, the resulting models are either not accurate enough or are still vulnerable to membership inference attacks (MIA) or dataset reconstruction attacks since the original data has been leveraged in the training process. In this paper, we explore the feasibility of producing a synthetic test dataset with the same statistical properties as the original one, with only indirectly leveraging the original data in the generation process. The approach is inspired by GANs, with a generation step and a discrimination step. However, in our approach, we use a test generator (a fuzzer) to produce test data from an input specification, preserving constraints set by the original data; a discriminator model determines how close we are to the original data. By evolving samples and determining "good samples" with the discriminator, we can generate privacy-preserving data that follows the same statistical distributions are the original dataset, leading to a similar utility as the original data. We evaluated our approach on four datasets that have been used to evaluate the state-of-the-art techniques. Our experiments highlight the potential of our approach towards generating synthetic datasets that have high utility while preserving privacy.
☆ Learning Compact Boolean Networks
Floating-point neural networks dominate modern machine learning but incur substantial inference cost, motivating interest in Boolean networks for resource-constrained settings. However, learning compact and accurate Boolean networks is challenging due to their combinatorial nature. In this work, we address this challenge from three different angles: learned connections, compact convolutions and adaptive discretization. First, we propose a novel strategy to learn efficient connections with no additional parameters and negligible computational overhead. Second, we introduce a novel convolutional Boolean architecture that exploits the locality with reduced number of Boolean operations than existing methods. Third, we propose an adaptive discretization strategy to reduce the accuracy drop when converting a continuous-valued network into a Boolean one. Extensive results on standard vision benchmarks demonstrate that the Pareto front of accuracy vs. computation of our method significantly outperforms prior state-of-the-art, achieving better accuracy with up to 37x fewer Boolean operations.
☆ Interpreting Manifolds and Graph Neural Embeddings from Internet of Things Traffic Flows
The rapid expansion of Internet of Things (IoT) ecosystems has led to increasingly complex and heterogeneous network topologies. Traditional network monitoring and visualization tools rely on aggregated metrics or static representations, which fail to capture the evolving relationships and structural dependencies between devices. Although Graph Neural Networks (GNNs) offer a powerful way to learn from relational data, their internal representations often remain opaque and difficult to interpret for security-critical operations. Consequently, this work introduces an interpretable pipeline that generates directly visualizable low-dimensional representations by mapping high-dimensional embeddings onto a latent manifold. This projection enables the interpretable monitoring and interoperability of evolving network states, while integrated feature attribution techniques decode the specific characteristics shaping the manifold structure. The framework achieves a classification F1-score of 0.830 for intrusion detection while also highlighting phenomena such as concept drift. Ultimately, the presented approach bridges the gap between high-dimensional GNN embeddings and human-understandable network behavior, offering new insights for network administrators and security analysts.
☆ Where Does Warm-Up Come From? Adaptive Scheduling for Norm-Constrained Optimizers
We study adaptive learning rate scheduling for norm-constrained optimizers (e.g., Muon and Lion). We introduce a generalized smoothness assumption under which local curvature decreases with the suboptimality gap and empirically verify that this behavior holds along optimization trajectories. Under this assumption, we establish convergence guarantees under an appropriate choice of learning rate, for which warm-up followed by decay arises naturally from the proof rather than being imposed heuristically. Building on this theory, we develop a practical learning rate scheduler that relies only on standard hyperparameters and adapts the warm-up duration automatically at the beginning of training. We evaluate this method on large language model pretraining with LLaMA architectures and show that our adaptive warm-up selection consistently outperforms or at least matches the best manually tuned warm-up schedules across all considered setups, without additional hyperparameter search. Our source code is available at https://github.com/brain-lab-research/llm-baselines/tree/warmup
comment: 26 pages, 6 figures, 4 tables
☆ Principled Confidence Estimation for Deep Computed Tomography
We present a principled framework for confidence estimation in computed tomography (CT) reconstruction. Based on the sequential likelihood mixing framework (Kirschner et al., 2025), we establish confidence regions with theoretical coverage guarantees for deep-learning-based CT reconstructions. We consider a realistic forward model following the Beer-Lambert law, i.e., a log-linear forward model with Poisson noise, closely reflecting clinical and scientific imaging conditions. The framework is general and applies to both classical algorithms and deep learning reconstruction methods, including U-Nets, U-Net ensembles, and generative Diffusion models. Empirically, we demonstrate that deep reconstruction methods yield substantially tighter confidence regions than classical reconstructions, without sacrificing theoretical coverage guarantees. Our approach allows the detection of hallucinations in reconstructed images and provides interpretable visualizations of confidence regions. This establishes deep models not only as powerful estimators, but also as reliable tools for uncertainty-aware medical imaging.
☆ Bifrost: Steering Strategic Trajectories to Bridge Contextual Gaps for Self-Improving Agents
Autonomous agents excel in self-improvement through reflection and iterative refinement, which reuse successful task trajectories as in-context examples to assist subsequent reasoning. However, shifting across tasks often introduces a context mismatch. Hence, existing approaches either discard the trajectories or manipulate them using heuristics, leading to a non-negligible fine-tuning cost or unguaranteed performance. To bridge this gap, we reveal a context-trajectory correlation, where shifts of context are highly parallel with shifts of trajectory. Based on this finding, we propose BrIdge contextual gap FoR imprOvised trajectory STeering (Bifrost), a training-free method that leverages context differences to precisely guide the adaptation of previously solved trajectories towards the target task, mitigating the misalignment caused by context shifts. Our trajectory adaptation is conducted at the representation level using agent hidden states, ensuring trajectory transformation accurately aligns with the target context in a shared space. Across diverse benchmarks, Bifrost consistently outperforms existing trajectory reuse and finetuned self-improvement methods, demonstrating that agents can effectively leverage past experiences despite substantial context shifts.
☆ Non-Stationary Inventory Control with Lead Times
We study non-stationary single-item, periodic-review inventory control problems in which the demand distribution is unknown and may change over time. We analyze how demand non-stationarity affects learning performance across inventory models, including systems with demand backlogging or lost-sales, both with and without lead times. For each setting, we propose an adaptive online algorithm that optimizes over the class of base-stock policies and establish performance guarantees in terms of dynamic regret relative to the optimal base-stock policy at each time step. Our results reveal a sharp separation across inventory models. In backlogging systems and lost-sales models with zero lead time, we show that it is possible to adapt to demand changes without incurring additional performance loss in stationary environments, even without prior knowledge of the demand distributions or the number of demand shifts. In contrast, for lost-sales systems with positive lead times, we establish weaker guarantees that reflect fundamental limitations imposed by delayed replenishment in combination with censored feedback. Our algorithms leverage the convexity and one-sided feedback structure of inventory costs to enable counterfactual policy evaluation despite demand censoring. We complement the theoretical analysis with simulation results showing that our methods significantly outperform existing benchmarks.
☆ Learning False Discovery Rate Control via Model-Based Neural Networks ICASSP
Controlling the false discovery rate (FDR) in high-dimensional variable selection requires balancing rigorous error control with statistical power. Existing methods with provable guarantees are often overly conservative, creating a persistent gap between the realized false discovery proportion (FDP) and the target FDR level. We introduce a learning-augmented enhancement of the T-Rex Selector framework that narrows this gap. Our approach replaces the analytical FDP estimator with a neural network trained solely on diverse synthetic datasets, enabling a substantially tighter and more accurate approximation of the FDP. This refinement allows the procedure to operate much closer to the desired FDR level, thereby increasing discovery power while maintaining effective approximate control. Through extensive simulations and a challenging synthetic genome-wide association study (GWAS), we demonstrate that our method achieves superior detection of true variables compared to existing approaches.
comment: Accepted to IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2026
☆ Classification Under Local Differential Privacy with Model Reversal and Model Averaging
Local differential privacy (LDP) has become a central topic in data privacy research, offering strong privacy guarantees by perturbing user data at the source and removing the need for a trusted curator. However, the noise introduced by LDP often significantly reduces data utility. To address this issue, we reinterpret private learning under LDP as a transfer learning problem, where the noisy data serve as the source domain and the unobserved clean data as the target. We propose novel techniques specifically designed for LDP to improve classification performance without compromising privacy: (1) a noised binary feedback-based evaluation mechanism for estimating dataset utility; (2) model reversal, which salvages underperforming classifiers by inverting their decision boundaries; and (3) model averaging, which assigns weights to multiple reversed classifiers based on their estimated utility. We provide theoretical excess risk bounds under LDP and demonstrate how our methods reduce this risk. Empirical results on both simulated and real-world datasets show substantial improvements in classification accuracy.
☆ FiMI: A Domain-Specific Language Model for Indian Finance Ecosystem
We present FiMI (Finance Model for India), a domain-specialized financial language model developed for Indian digital payment systems. We develop two model variants: FiMI Base and FiMI Instruct. FiMI adapts the Mistral Small 24B architecture through a multi-stage training pipeline, beginning with continuous pre-training on 68 Billion tokens of curated financial, multilingual (English, Hindi, Hinglish), and synthetic data. This is followed by instruction fine-tuning and domain-specific supervised fine-tuning focused on multi-turn, tool-driven conversations that model real-world workflows, such as transaction disputes and mandate lifecycle management. Evaluations reveal that FiMI Base achieves a 20% improvement over the Mistral Small 24B Base model on finance reasoning benchmark, while FiMI Instruct outperforms the Mistral Small 24B Instruct model by 87% on domain-specific tool-calling. Moreover, FiMI achieves these significant domain gains while maintaining comparable performance to models of similar size on general benchmarks.
☆ Price of universality in vector quantization is at most 0.11 bit
Fast computation of a matrix product $W^\top X$ is a workhorse of modern LLMs. To make their deployment more efficient, a popular approach is that of using a low-precision approximation $\widehat W$ in place of true $W$ ("weight-only quantization''). Information theory demonstrates that an optimal algorithm for reducing precision of $W$ depends on the (second order) statistics of $X$ and requires a careful alignment of vector quantization codebook with PCA directions of $X$ (a process known as "waterfilling allocation''). Dependence of the codebook on statistics of $X$, however, is highly impractical. This paper proves that there exist a universal codebook that is simultaneously near-optimal for all possible statistics of $X$, in the sense of being at least as good as an $X$-adapted waterfilling codebook with rate reduced by 0.11 bit per dimension. Such universal codebook would be an ideal candidate for the low-precision storage format, a topic of active modern research, but alas the existence proof is non-constructive. Equivalently, our result shows existence of a net in $\mathbb{R}^n$ that is a nearly-optimal covering of a sphere simultaneously with respect to all Hilbert norms.
comment: 41 page, 1 figure
☆ Selecting Hyperparameters for Tree-Boosting
Tree-boosting is a widely used machine learning technique for tabular data. However, its out-of-sample accuracy is critically dependent on multiple hyperparameters. In this article, we empirically compare several popular methods for hyperparameter optimization for tree-boosting including random grid search, the tree-structured Parzen estimator (TPE), Gaussian-process-based Bayesian optimization (GP-BO), Hyperband, the sequential model-based algorithm configuration (SMAC) method, and deterministic full grid search using $59$ regression and classification data sets. We find that the SMAC method clearly outperforms all the other considered methods. We further observe that (i) a relatively large number of trials larger than $100$ is required for accurate tuning, (ii) using default values for hyperparameters yields very inaccurate models, (iii) all considered hyperparameters can have a material effect on the accuracy of tree-boosting, i.e., there is no small set of hyperparameters that is more important than others, and (iv) choosing the number of boosting iterations using early stopping yields more accurate results compared to including it in the search space for regression tasks.
☆ ReText: Text Boosts Generalization in Image-Based Person Re-identification
Generalizable image-based person re-identification (Re-ID) aims to recognize individuals across cameras in unseen domains without retraining. While multiple existing approaches address the domain gap through complex architectures, recent findings indicate that better generalization can be achieved by stylistically diverse single-camera data. Although this data is easy to collect, it lacks complexity due to minimal cross-view variation. We propose ReText, a novel method trained on a mixture of multi-camera Re-ID data and single-camera data, where the latter is complemented by textual descriptions to enrich semantic cues. During training, ReText jointly optimizes three tasks: (1) Re-ID on multi-camera data, (2) image-text matching, and (3) image reconstruction guided by text on single-camera data. Experiments demonstrate that ReText achieves strong generalization and significantly outperforms state-of-the-art methods on cross-domain Re-ID benchmarks. To the best of our knowledge, this is the first work to explore multimodal joint learning on a mixture of multi-camera and single-camera data in image-based person Re-ID.
☆ Distributional Reinforcement Learning with Diffusion Bridge Critics
Recent advances in diffusion-based reinforcement learning (RL) methods have demonstrated promising results in a wide range of continuous control tasks. However, existing works in this field focus on the application of diffusion policies while leaving the diffusion critics unexplored. In fact, since policy optimization fundamentally relies on the critic, accurate value estimation is far more important than policy expressiveness. Furthermore, given the stochasticity of most reinforcement learning tasks, it has been confirmed that the critic is more appropriately depicted with a distributional model. Motivated by these points, we propose a novel distributional RL method with Diffusion Bridge Critics (DBC). DBC directly models the inverse cumulative distribution function (CDF) of the Q value. This allows us to accurately capture the value distribution and prevents it from collapsing into a trivial Gaussian distribution owing to the strong distribution-matching capability of the diffusion bridge. Moreover, we further derive an analytic integral formula to address discretization errors in DBC, which is essential in value estimation. To our knowledge, DBC is the first work to employ the diffusion bridge model as the critic. Notably, DBC is also a plug-and-play component and can be integrated into most existing RL frameworks. Experimental results on MuJoCo robot control benchmarks demonstrate the superiority of DBC compared with previous distributional critic models.
☆ How Controlling the Variance can Improve Training Stability of Sparsely Activated DNNs and CNNs
The intermediate layers of deep networks can be characterised as a Gaussian process, in particular the Edge-of-Chaos (EoC) initialisation strategy prescribes the limiting covariance matrix of the Gaussian process. Here we show that the under-utilised chosen variance of the Gaussian process is important in the training of deep networks with sparsity inducing activation, such as a shifted and clipped ReLU, $\text{CReLU}_{τ,m}(x)=\min(\max(x-τ,0),m)$. Specifically, initialisations leading to larger fixed Gaussian process variances, allow for improved expressivity with activation sparsity as large as 90% in DNNs and CNNs, and generally improve the stability of the training process. Enabling full, or near full, accuracy at such high levels of sparsity in the hidden layers suggests a promising mechanism to reduce the energy consumption of machine learning models involving fully connected layers.
☆ Cross-Domain Offline Policy Adaptation via Selective Transition Correction
It remains a critical challenge to adapt policies across domains with mismatched dynamics in reinforcement learning (RL). In this paper, we study cross-domain offline RL, where an offline dataset from another similar source domain can be accessed to enhance policy learning upon a target domain dataset. Directly merging the two datasets may lead to suboptimal performance due to potential dynamics mismatches. Existing approaches typically mitigate this issue through source domain transition filtering or reward modification, which, however, may lead to insufficient exploitation of the valuable source domain data. Instead, we propose to modify the source domain data into the target domain data. To that end, we leverage an inverse policy model and a reward model to correct the actions and rewards of source transitions, explicitly achieving alignment with the target dynamics. Since limited data may result in inaccurate model training, we further employ a forward dynamics model to retain corrected samples that better match the target dynamics than the original transitions. Consequently, we propose the Selective Transition Correction (STC) algorithm, which enables reliable usage of source domain data for policy adaptation. Experiments on various environments with dynamics shifts demonstrate that STC achieves superior performance against existing baselines.
☆ Variational Speculative Decoding: Rethinking Draft Training from Token Likelihood to Sequence Acceptance
Speculative decoding accelerates inference for (M)LLMs, yet a training-decoding discrepancy persists: while existing methods optimize single greedy trajectories, decoding involves verifying and ranking multiple sampled draft paths. We propose Variational Speculative Decoding (VSD), formulating draft training as variational inference over latent proposals (draft paths). VSD maximizes the marginal probability of target-model acceptance, yielding an ELBO that promotes high-quality latent proposals while minimizing divergence from the target distribution. To enhance quality and reduce variance, we incorporate a path-level utility and optimize via an Expectation-Maximization procedure. The E-step draws MCMC samples from an oracle-filtered posterior, while the M-step maximizes weighted likelihood using Adaptive Rejection Weighting (ARW) and Confidence-Aware Regularization (CAR). Theoretical analysis confirms that VSD increases expected acceptance length and speedup. Extensive experiments across LLMs and MLLMs show that VSD achieves up to a 9.6% speedup over EAGLE-3 and 7.9% over ViSpec, significantly improving decoding efficiency.
☆ PMT Waveform Simulation and Reconstruction with Conditional Diffusion Network
Photomultiplier tubes (PMTs) are widely employed in particle and nuclear physics experiments. The accuracy of PMT waveform reconstruction directly impacts the detector's spatial and energy resolution. A key challenge arises when multiple photons arrive within a few nanoseconds, making it difficult to resolve individual photoelectrons (PEs). Although supervised deep learning methods have surpassed traditional methods in performance, their practical applicability is limited by the lack of ground-truth PE labels in real data. To address this issue, we propose an innovative weakly supervised waveform simulation and reconstruction approach based on a bidirectional conditional diffusion network framework. The method is fully data-driven and requires only raw waveforms and coarse estimates of PE information as input. It first employs a PE-conditioned diffusion model to simulate realistic waveforms from PE sequences, thereby learning the features of overlapping waveforms. Subsequently, these simulated waveforms are used to train a waveform-conditioned diffusion model to reconstruct the PE sequences from waveforms, reinforcing the learning of features of overlapping waveforms. Through iterative refinement between the two conditional diffusion processes, the model progressively improves reconstruction accuracy. Experimental results demonstrate that the proposed method achieves 99% of the normalized PE-number resolution averaged over 1-5 p.e. and 80% of the timing resolution attained by fully supervised learning.
☆ RocqSmith: Can Automatic Optimization Forge Better Proof Agents?
This work studies the applicability of automatic AI agent optimization methods to real-world agents in formal verification settings, focusing on automated theorem proving in Rocq as a representative and challenging domain. We evaluate how different automatic agent optimizers perform when applied to the task of optimizing a Rocq proof-generation agent, and assess whether parts of the fine-grained tuning of agentic systems, such as prompt design, contextual knowledge, and control strategies, can be automated. Our results show that while several optimizers yield measurable improvements, simple few-shot bootstrapping is the most consistently effective; however, none of the studied methods matches the performance of a carefully engineered state-of-the-art proof agent.
☆ How to Achieve the Intended Aim of Deep Clustering Now, without Deep Learning
Deep clustering (DC) is often quoted to have a key advantage over $k$-means clustering. Yet, this advantage is often demonstrated using image datasets only, and it is unclear whether it addresses the fundamental limitations of $k$-means clustering. Deep Embedded Clustering (DEC) learns a latent representation via an autoencoder and performs clustering based on a $k$-means-like procedure, while the optimization is conducted in an end-to-end manner. This paper investigates whether the deep-learned representation has enabled DEC to overcome the known fundamental limitations of $k$-means clustering, i.e., its inability to discover clusters of arbitrary shapes, varied sizes and densities. Our investigations on DEC have a wider implication on deep clustering methods in general. Notably, none of these methods exploit the underlying data distribution. We uncover that a non-deep learning approach achieves the intended aim of deep clustering by making use of distributional information of clusters in a dataset to effectively address these fundamental limitations.
comment: Work on progress
☆ Learning to Inject: Automated Prompt Injection via Reinforcement Learning
Prompt injection is one of the most critical vulnerabilities in LLM agents; yet, effective automated attacks remain largely unexplored from an optimization perspective. Existing methods heavily depend on human red-teamers and hand-crafted prompts, limiting their scalability and adaptability. We propose AutoInject, a reinforcement learning framework that generates universal, transferable adversarial suffixes while jointly optimizing for attack success and utility preservation on benign tasks. Our black-box method supports both query-based optimization and transfer attacks to unseen models and tasks. Using only a 1.5B parameter adversarial suffix generator, we successfully compromise frontier systems including GPT 5 Nano, Claude Sonnet 3.5, and Gemini 2.5 Flash on the AgentDojo benchmark, establishing a stronger baseline for automated prompt injection research.
☆ Fast Rates for Nonstationary Weighted Risk Minimization
Weighted empirical risk minimization is a common approach to prediction under distribution drift. This article studies its out-of-sample prediction error under nonstationarity. We provide a general decomposition of the excess risk into a learning term and an error term associated with distribution drift, and prove oracle inequalities for the learning error under mixing conditions. The learning bound holds uniformly over arbitrary weight classes and accounts for the effective sample size induced by the weight vector, the complexity of the weight and hypothesis classes, and potential data dependence. We illustrate the applicability and sharpness of our results in (auto-) regression problems with linear models, basis approximations, and neural networks, recovering minimax-optimal rates (up to logarithmic factors) when specialized to unweighted and stationary settings.
☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026
☆ Adaptive Global and Fine-Grained Perceptual Fusion for MLLM Embeddings Compatible with Hard Negative Amplification
Multimodal embeddings serve as a bridge for aligning vision and language, with the two primary implementations -- CLIP-based and MLLM-based embedding models -- both limited to capturing only global semantic information. Although numerous studies have focused on fine-grained understanding, we observe that complex scenarios currently targeted by MLLM embeddings often involve a hybrid perceptual pattern of both global and fine-grained elements, thus necessitating a compatible fusion mechanism. In this paper, we propose Adaptive Global and Fine-grained perceptual Fusion for MLLM Embeddings (AGFF-Embed), a method that prompts the MLLM to generate multiple embeddings focusing on different dimensions of semantic information, which are then adaptively and smoothly aggregated. Furthermore, we adapt AGFF-Embed with the Explicit Gradient Amplification (EGA) technique to achieve in-batch hard negatives enhancement without requiring fine-grained editing of the dataset. Evaluation on the MMEB and MMVP-VLM benchmarks shows that AGFF-Embed comprehensively achieves state-of-the-art performance in both general and fine-grained understanding compared to other multimodal embedding models.
☆ Muon in Associative Memory Learning: Training Dynamics and Scaling Laws
Muon updates matrix parameters via the matrix sign of the gradient and has shown strong empirical gains, yet its dynamics and scaling behavior remain unclear in theory. We study Muon in a linear associative memory model with softmax retrieval and a hierarchical frequency spectrum over query-answer pairs, with and without label noise. In this setting, we show that Gradient Descent (GD) learns frequency components at highly imbalanced rates, leading to slow convergence bottlenecked by low-frequency components. In contrast, the Muon optimizer mitigates this imbalance, leading to faster and more uniform progress. Specifically, in the noiseless case, Muon achieves an exponential speedup over GD; in the noisy case with a power-decay frequency spectrum, we derive Muon's optimization scaling law and demonstrate its superior scaling efficiency over GD. Furthermore, we show that Muon can be interpreted as an implicit matrix preconditioner arising from adaptive task alignment and block-symmetric gradient structure. In contrast, the preconditioner with coordinate-wise sign operator could match Muon under oracle access to unknown task representations, which is infeasible for SignGD in practice. Experiments on synthetic long-tail classification and LLaMA-style pre-training corroborate the theory.
☆ Projected Boosting with Fairness Constraints: Quantifying the Cost of Fair Training Distributions
Boosting algorithms enjoy strong theoretical guarantees: when weak learners maintain positive edge, AdaBoost achieves geometric decrease of exponential loss. We study how to incorporate group fairness constraints into boosting while preserving analyzable training dynamics. Our approach, FairBoost, projects the ensemble-induced exponential-weights distribution onto a convex set of distributions satisfying fairness constraints (as a reweighting surrogate), then trains weak learners on this fair distribution. The key theoretical insight is that projecting the training distribution reduces the effective edge of weak learners by a quantity controlled by the KL-divergence of the projection. We prove an exponential-loss bound where the convergence rate depends on weak learner edge minus a "fairness cost" term $δ_t = \sqrt{\mathrm{KL}(w^t \| q^t)/2}$. This directly quantifies the accuracy-fairness tradeoff in boosting dynamics. Experiments on standard benchmarks validate the theoretical predictions and demonstrate competitive fairness-accuracy tradeoffs with stable training curves.
☆ Ethology of Latent Spaces
This study challenges the presumed neutrality of latent spaces in vision language models (VLMs) by adopting an ethological perspective on their algorithmic behaviors. Rather than constituting spaces of homogeneous indeterminacy, latent spaces exhibit model-specific algorithmic sensitivities, understood as differential regimes of perceptual salience shaped by training data and architectural choices. Through a comparative analysis of three models (OpenAI CLIP, OpenCLIP LAION, SigLIP) applied to a corpus of 301 artworks (15th to 20th), we reveal substantial divergences in the attribution of political and cultural categories. Using bipolar semantic axes derived from vector analogies (Mikolov et al., 2013), we show that SigLIP classifies 59.4% of the artworks as politically engaged, compared to only 4% for OpenCLIP. African masks receive the highest political scores in SigLIP while remaining apolitical in OpenAI CLIP. On an aesthetic colonial axis, inter-model discrepancies reach 72.6 percentage points. We introduce three operational concepts: computational latent politicization, describing the emergence of political categories without intentional encoding; emergent bias, irreducible to statistical or normative bias and detectable only through contrastive analysis; and three algorithmic scopic regimes: entropic (LAION), institutional (OpenAI), and semiotic (SigLIP), which structure distinct modes of visibility. Drawing on Foucault's notion of the archive, Jameson's ideologeme, and Simondon's theory of individuation, we argue that training datasets function as quasi-archives whose discursive formations crystallize within latent space. This work contributes to a critical reassessment of the conditions under which VLMs are applied to digital art history and calls for methodologies that integrate learning architectures into any delegation of cultural interpretation to algorithmic agents.
comment: 23. pages, 14 figures, presented Hyperheritage International Symposium 9 ( https://paragraphe.univ-paris8.fr/IMG/pdf/programme_colloque_his9_campuscondorcet_v3.pdf ) and accepted for publication in double-blind peer review in French in 2026-2027
☆ Fix Representation (Optimally) Before Fairness: Finite-Sample Shrinkage Population Correction and the True Price of Fairness Under Subpopulation Shift
Machine learning practitioners frequently observe tension between predictive accuracy and group fairness constraints -- yet sometimes fairness interventions appear to improve accuracy. We show that both phenomena can be artifacts of training data that misrepresents subgroup proportions. Under subpopulation shift (stable within-group distributions, shifted group proportions), we establish: (i) full importance-weighted correction is asymptotically unbiased but finite-sample suboptimal; (ii) the optimal finite-sample correction is a shrinkage reweighting that interpolates between target and training mixtures; (iii) apparent "fairness helps accuracy" can arise from comparing fairness methods to an improperly-weighted baseline. We provide an actionable evaluation protocol: fix representation (optimally) before fairness -- compare fairness interventions against a shrinkage-corrected baseline to isolate the true, irreducible price of fairness. Experiments on synthetic and real-world benchmarks (Adult, COMPAS) validate our theoretical predictions and demonstrate that this protocol eliminates spurious tradeoffs, revealing the genuine fairness-utility frontier.
☆ Limitations of SGD for Multi-Index Models Beyond Statistical Queries
Understanding the limitations of gradient methods, and stochastic gradient descent (SGD) in particular, is a central challenge in learning theory. To that end, a commonly used tool is the Statistical Queries (SQ) framework, which studies performance limits of algorithms based on noisy interaction with the data. However, it is known that the formal connection between the SQ framework and SGD is tenuous: Existing results typically rely on adversarial or specially-structured gradient noise that does not reflect the noise in standard SGD, and (as we point out here) can sometimes lead to incorrect predictions. Moreover, many analyses of SGD for challenging problems rely on non-trivial algorithmic modifications, such as restricting the SGD trajectory to the sphere or using very small learning rates. To address these shortcomings, we develop a new, non-SQ framework to study the limitations of standard vanilla SGD, for single-index and multi-index models (namely, when the target function depends on a low-dimensional projection of the inputs). Our results apply to a broad class of settings and architectures, including (potentially deep) neural networks.
☆ Broken neural scaling laws in materials science
In materials science, data are scarce and expensive to generate, whether computationally or experimentally. Therefore, it is crucial to identify how model performance scales with dataset size and model capacity to distinguish between data- and model-limited regimes. Neural scaling laws provide a framework for quantifying this behavior and guide the design of materials datasets and machine learning architectures. Here, we investigate neural scaling laws for a paradigmatic materials science task: predicting the dielectric function of metals, a high-dimensional response that governs how solids interact with light. Using over 200,000 dielectric functions from high-throughput ab initio calculations, we study two multi-objective graph neural networks trained to predict the frequency-dependent complex interband dielectric function and the Drude frequency. We observe broken neural scaling laws with respect to dataset size, whereas scaling with the number of model parameters follows a simple power law that rapidly saturates.
☆ FedRandom: Sampling Consistent and Accurate Contribution Values in Federated Learning
Federated Learning is a privacy-preserving decentralized approach for Machine Learning tasks. In industry deployments characterized by a limited number of entities possessing abundant data, the significance of a participant's role in shaping the global model becomes pivotal given that participation in a federation incurs costs, and participants may expect compensation for their involvement. Additionally, the contributions of participants serve as a crucial means to identify and address potential malicious actors and free-riders. However, fairly assessing individual contributions remains a significant hurdle. Recent works have demonstrated a considerable inherent instability in contribution estimations across aggregation strategies. While employing a different strategy may offer convergence benefits, this instability can have potentially harming effects on the willingness of participants in engaging in the federation. In this work, we introduce FedRandom, a novel mitigation technique to the contribution instability problem. Tackling the instability as a statistical estimation problem, FedRandom allows us to generate more samples than when using regular FL strategies. We show that these additional samples provide a more consistent and reliable evaluation of participant contributions. We demonstrate our approach using different data distributions across CIFAR-10, MNIST, CIFAR-100 and FMNIST and show that FedRandom reduces the overall distance to the ground truth by more than a third in half of all evaluated scenarios, and improves stability in more than 90% of cases.
☆ Almost Asymptotically Optimal Active Clustering Through Pairwise Observations
We propose a new analysis framework for clustering $M$ items into an unknown number of $K$ distinct groups using noisy and actively collected responses. At each time step, an agent is allowed to query pairs of items and observe bandit binary feedback. If the pair of items belongs to the same (resp.\ different) cluster, the observed feedback is $1$ with probability $p>1/2$ (resp.\ $q<1/2$). Leveraging the ubiquitous change-of-measure technique, we establish a fundamental lower bound on the expected number of queries needed to achieve a desired confidence in the clustering accuracy, formulated as a sup-inf optimization problem. Building on this theoretical foundation, we design an asymptotically optimal algorithm in which the stopping criterion involves an empirical version of the inner infimum -- the Generalized Likelihood Ratio (GLR) statistic -- being compared to a threshold. We develop a computationally feasible variant of the GLR statistic and show that its performance gap to the lower bound can be accurately empirically estimated and remains within a constant multiple of the lower bound.
comment: 31 pages, 1 figure
☆ Mining Generalizable Activation Functions
The choice of activation function is an active area of research, with different proposals aimed at improving optimization, while maintaining expressivity. Additionally, the activation function can significantly alter the implicit inductive bias of the architecture, controlling its non-linear behavior. In this paper, in line with previous work, we argue that evolutionary search provides a useful framework for finding new activation functions, while we also make two novel observations. The first is that modern pipelines, such as AlphaEvolve, which relies on frontier LLMs as a mutator operator, allows for a much wider and flexible search space; e.g., over all possible python functions within a certain FLOP budget, eliminating the need for manually constructed search spaces. In addition, these pipelines will be biased towards meaningful activation functions, given their ability to represent common knowledge, leading to a potentially more efficient search of the space. The second observation is that, through this framework, one can target not only performance improvements but also activation functions that encode particular inductive biases. This can be done by using performance on out-of-distribution data as a fitness function, reflecting the degree to which the architecture respects the inherent structure in the data in a manner independent of distribution shifts. We carry an empirical exploration of this proposal and show that relatively small scale synthetic datasets can be sufficient for AlphaEvolve to discover meaningful activations.
☆ Perception-Based Beliefs for POMDPs with Visual Observations
Partially observable Markov decision processes (POMDPs) are a principled planning model for sequential decision-making under uncertainty. Yet, real-world problems with high-dimensional observations, such as camera images, remain intractable for traditional belief- and filtering-based solvers. To tackle this problem, we introduce the Perception-based Beliefs for POMDPs framework (PBP), which complements such solvers with a perception model. This model takes the form of an image classifier which maps visual observations to probability distributions over states. PBP incorporates these distributions directly into belief updates, so the underlying solver does not need to reason explicitly over high-dimensional observation spaces. We show that the belief update of PBP coincides with the standard belief update if the image classifier is exact. Moreover, to handle classifier imprecision, we incorporate uncertainty quantification and introduce two methods to adjust the belief update accordingly. We implement PBP using two traditional POMDP solvers and empirically show that (1) it outperforms existing end-to-end deep RL methods and (2) uncertainty quantification improves robustness of PBP against visual corruption.
comment: Accepted at AAMAS 2026
☆ Stable but Wrong: When More Data Degrades Scientific Conclusions
Modern science increasingly relies on ever-growing observational datasets and automated inference pipelines, under the implicit belief that accumulating more data makes scientific conclusions more reliable. Here we show that this belief can fail in a fundamental and irreversible way. We identify a structural regime in which standard inference procedures converge smoothly, remain well calibrated, and pass conventional diagnostic checks, yet systematically converge to incorrect conclusions. This failure arises when the reliability of observations degrades in a manner that is intrinsically unobservable to the inference process itself. Using minimal synthetic experiments, we demonstrate that in this regime additional data do not correct error but instead amplify it, while residual-based and goodness-of-fit diagnostics remain misleadingly normal. These results reveal an intrinsic limit of data-driven science: stability, convergence, and confidence are not sufficient indicators of epistemic validity. We argue that inference cannot be treated as an unconditional consequence of data availability, but must instead be governed by explicit constraints on the integrity of the observational process.
☆ Accelerating Benchmarking of Functional Connectivity Modeling via Structure-aware Core-set Selection ICLR
Benchmarking the hundreds of functional connectivity (FC) modeling methods on large-scale fMRI datasets is critical for reproducible neuroscience. However, the combinatorial explosion of model-data pairings makes exhaustive evaluation computationally prohibitive, preventing such assessments from becoming a routine pre-analysis step. To break this bottleneck, we reframe the challenge of FC benchmarking by selecting a small, representative core-set whose sole purpose is to preserve the relative performance ranking of FC operators. We formalize this as a ranking-preserving subset selection problem and propose Structure-aware Contrastive Learning for Core-set Selection (SCLCS), a self-supervised framework to select these core-sets. SCLCS first uses an adaptive Transformer to learn each sample's unique FC structure. It then introduces a novel Structural Perturbation Score (SPS) to quantify the stability of these learned structures during training, identifying samples that represent foundational connectivity archetypes. Finally, while SCLCS identifies stable samples via a top-k ranking, we further introduce a density-balanced sampling strategy as a necessary correction to promote diversity, ensuring the final core-set is both structurally robust and distributionally representative. On the large-scale REST-meta-MDD dataset, SCLCS preserves the ground-truth model ranking with just 10% of the data, outperforming state-of-the-art (SOTA) core-set selection methods by up to 23.2% in ranking consistency (nDCG@k). To our knowledge, this is the first work to formalize core-set selection for FC operator benchmarking, thereby making large-scale operators comparisons a feasible and integral part of computational neuroscience. Code is publicly available on https://github.com/lzhan94swu/SCLCS
comment: 33 pages, 8 figures, ICLR conference paper
☆ Probabilistic Multi-Regional Solar Power Forecasting with Any-Quantile Recurrent Neural Networks
The increasing penetration of photovoltaic (PV) generation introduces significant uncertainty into power system operation, necessitating forecasting approaches that extend beyond deterministic point predictions. This paper proposes an any-quantile probabilistic forecasting framework for multi-regional PV power generation based on the Any-Quantile Recurrent Neural Network (AQ-RNN). The model integrates an any-quantile forecasting paradigm with a dual-track recurrent architecture that jointly processes series-specific and cross-regional contextual information, supported by dilated recurrent cells, patch-based temporal modeling, and a dynamic ensemble mechanism. The proposed framework enables the estimation of calibrated conditional quantiles at arbitrary probability levels within a single trained model and effectively exploits spatial dependencies to enhance robustness at the system level. The approach is evaluated using 30 years of hourly PV generation data from 259 European regions and compared against established statistical and neural probabilistic baselines. The results demonstrate consistent improvements in forecast accuracy, calibration, and prediction interval quality, underscoring the suitability of the proposed method for uncertainty-aware energy management and operational decision-making in renewable-dominated power systems.
☆ Tight Long-Term Tail Decay of (Clipped) SGD in Non-Convex Optimization
The study of tail behaviour of SGD-induced processes has been attracting a lot of interest, due to offering strong guarantees with respect to individual runs of an algorithm. While many works provide high-probability guarantees, quantifying the error rate for a fixed probability threshold, there is a lack of work directly studying the probability of failure, i.e., quantifying the tail decay rate for a fixed error threshold. Moreover, existing results are of finite-time nature, limiting their ability to capture the true long-term tail decay which is more informative for modern learning models, typically trained for millions of iterations. Our work closes these gaps, by studying the long-term tail decay of SGD-based methods through the lens of large deviations theory, establishing several strong results in the process. First, we provide an upper bound on the tails of the gradient norm-squared of the best iterate produced by (vanilla) SGD, for non-convex costs and bounded noise, with long-term decay at rate $e^{-t/\log(t)}$. Next, we relax the noise assumption by considering clipped SGD (c-SGD) under heavy-tailed noise with bounded moment of order $p \in (1,2]$, showing an upper bound with long-term decay at rate $e^{-t^{β_p}/\log(t)}$, where $β_p = \frac{4(p-1)}{3p-2}$ for $p \in (1,2)$ and $e^{-t/\log^2(t)}$ for $p = 2$. Finally, we provide lower bounds on the tail decay, at rate $e^{-t}$, showing that our rates for both SGD and c-SGD are tight, up to poly-logarithmic factors. Notably, our results demonstrate an order of magnitude faster long-term tail decay compared to existing work based on finite-time bounds, which show rates $e^{-\sqrt{t}}$ and $e^{-t^{β_p/2}}$, $p \in (1,2]$, for SGD and c-SGD, respectively. As such, we uncover regimes where the tails decay much faster than previously known, providing stronger long-term guarantees for individual runs.
comment: 32 pages
☆ Alignment Verifiability in Large Language Models: Normative Indistinguishability under Behavioral Evaluation
Behavioral evaluation is the dominant paradigm for assessing alignment in large language models (LLMs). In practice, alignment is inferred from performance under finite evaluation protocols - benchmarks, red-teaming suites, or automated pipelines - and observed compliance is often treated as evidence of underlying alignment. This inference step, from behavioral evidence to claims about latent alignment properties, is typically implicit and rarely analyzed as an inference problem in its own right. We study this problem formally. We frame alignment evaluation as an identifiability question under partial observability and allow agent behavior to depend on information correlated with the evaluation regime. Within this setting, we introduce the Alignment Verifiability Problem and the notion of Normative Indistinguishability, capturing when distinct latent alignment hypotheses induce identical distributions over all evaluator-accessible signals. Our main result is a negative but sharply delimited identifiability theorem. Under finite behavioral evaluation and evaluation-aware agents, observed behavioral compliance does not uniquely identify latent alignment. That is, even idealized behavioral evaluation cannot, in general, certify alignment as a latent property. We further show that behavioral alignment tests should be interpreted as estimators of indistinguishability classes rather than verifiers of alignment. Passing increasingly stringent tests may reduce the space of compatible hypotheses, but cannot collapse it to a singleton under the stated conditions. This reframes alignment benchmarks as providing upper bounds on observable compliance within a regime, rather than guarantees of underlying alignment.
comment: 10 pages. Theoretical analysis of behavioral alignment evaluation
☆ Enhancing Personality Recognition by Comparing the Predictive Power of Traits, Facets, and Nuances
Personality is a complex, hierarchical construct typically assessed through item-level questionnaires aggregated into broad trait scores. Personality recognition models aim to infer personality traits from different sources of behavioral data. However, reliance on broad trait scores as ground truth, combined with limited training data, poses challenges for generalization, as similar trait scores can manifest through diverse, context dependent behaviors. In this work, we explore the predictive impact of the more granular hierarchical levels of the Big-Five Personality Model, facets and nuances, to enhance personality recognition from audiovisual interaction data. Using the UDIVA v0.5 dataset, we trained a transformer-based model including cross-modal (audiovisual) and cross-subject (dyad-aware) attention mechanisms. Results show that nuance-level models consistently outperform facet and trait-level models, reducing mean squared error by up to 74% across interaction scenarios.
comment: Accepted to the 2025 13th International Conference on Affective Computing and Intelligent Interaction (Late Breaking Results)
☆ End-to-End Compression for Tabular Foundation Models
The long-standing dominance of gradient-boosted decision trees for tabular data has recently been challenged by in-context learning tabular foundation models. In-context learning methods fit and predict in one forward pass without parameter updates by leveraging the training data as context for predicting on query test points. While recent tabular foundation models achieve state-of-the-art performance, their transformer architecture based on the attention mechanism has quadratic complexity regarding dataset size, which in turn increases the overhead on training and inference time, and limits the capacity of the models to handle large-scale datasets. In this work, we propose TACO, an end-to-end tabular compression model that compresses the training dataset in a latent space. We test our method on the TabArena benchmark, where our proposed method is up to 94x faster in inference time, while consuming up to 97\% less memory compared to the state-of-the-art tabular transformer architecture, all while retaining performance without significant degradation. Lastly, our method not only scales better with increased dataset sizes, but it also achieves better performance compared to other baselines.
☆ Empowering Time Series Analysis with Large-Scale Multimodal Pretraining
While existing time series foundation models primarily rely on large-scale unimodal pretraining, they lack complementary modalities to enhance time series understanding. Building multimodal foundation models is a natural next step, but it faces key challenges: 1) lack of a unified multimodal pretraining paradigm and large-scale multimodal corpora for time series analysis; 2) how to effectively integrate heterogeneous modalities and enhance model generalization. To address these challenges, we take an early step toward multimodal foundation models for time series analysis. We first propose a multimodal pretraining paradigm that leverages time series with endogenous modalities (derived images and text) and exogenous knowledge (real-world news), providing a comprehensive multi-view perspective for time series analysis. To support this, we develop an automated data construction pipeline to curate MM-TS, the first large-scale multimodal time series dataset spanning six domains, with up to one billion points. Then we propose HORAI, a frequency-enhanced multimodal foundation model. It integrates two core components: the Frequency-enhanced Cross-Modality Encoder and the Time-Frequency Decoder, designed to effectively fuse multimodal features and enhance model generalization across modalities and domains. After pretraining on MM-TS, HORAI achieves state-of-the-art zero-shot performance on time series forecasting and anomaly detection tasks, demonstrating strong generalization.
☆ UAV Trajectory Optimization via Improved Noisy Deep Q-Network
This paper proposes an Improved Noisy Deep Q-Network (Noisy DQN) to enhance the exploration and stability of Unmanned Aerial Vehicle (UAV) when applying deep reinforcement learning in simulated environments. This method enhances the exploration ability by combining the residual NoisyLinear layer with an adaptive noise scheduling mechanism, while improving training stability through smooth loss and soft target network updates. Experiments show that the proposed model achieves faster convergence and up to $+40$ higher rewards compared to standard DQN and quickly reach to the minimum number of steps required for the task 28 in the 15 * 15 grid navigation environment set up. The results show that our comprehensive improvements to the network structure of NoisyNet, exploration control, and training stability contribute to enhancing the efficiency and reliability of deep Q-learning.
☆ Joint Embedding Variational Bayes
We introduce Variational Joint Embedding (VJE), a framework that synthesizes joint embedding and variational inference to enable self-supervised learning of probabilistic representations in a reconstruction-free, non-contrastive setting. Compared to energy-based predictive objectives that optimize pointwise discrepancies, VJE maximizes a symmetric conditional evidence lower bound (ELBO) for a latent-variable model defined directly on encoder embeddings. We instantiate the conditional likelihood with a heavy-tailed Student-$t$ model using a polar decomposition that explicitly decouples directional and radial factors to prevent norm-induced instabilities during training. VJE employs an amortized inference network to parameterize a diagonal Gaussian variational posterior whose feature-wise variances are shared with the likelihood scale to capture anisotropic uncertainty without auxiliary projection heads. Across ImageNet-1K, CIFAR-10/100, and STL-10, VJE achieves performance comparable to standard non-contrastive baselines under linear and k-NN evaluation. We further validate these probabilistic semantics through one-class CIFAR-10 anomaly detection, where likelihood-based scoring under the proposed model outperforms comparable self-supervised baselines.
☆ Structural Disentanglement in Bilinear MLPs via Architectural Inductive Bias
Selective unlearning and long-horizon extrapolation remain fragile in modern neural networks, even when tasks have underlying algebraic structure. In this work, we argue that these failures arise not solely from optimization or unlearning algorithms, but from how models structure their internal representations during training. We explore if having explicit multiplicative interactions as an architectural inductive bias helps in structural disentanglement, through Bilinear MLPs. We show analytically that bilinear parameterizations possess a `non-mixing' property under gradient flow conditions, where functional components separate into orthogonal subspace representations. This provides a mathematical foundation for surgical model modification. We validate this hypothesis through a series of controlled experiments spanning modular arithmetic, cyclic reasoning, Lie group dynamics, and targeted unlearning benchmarks. Unlike pointwise nonlinear networks, multiplicative architectures are able to recover true operators aligned with the underlying algebraic structure. Our results suggest that model editability and generalization are constrained by representational structure, and that architectural inductive bias plays a central role in enabling reliable unlearning.
☆ Rewards as Labels: Revisiting RLVR from a Classification Perspective
Reinforcement Learning with Verifiable Rewards has recently advanced the capabilities of Large Language Models in complex reasoning tasks by providing explicit rule-based supervision. Among RLVR methods, GRPO and its variants have achieved strong empirical performance. Despite their success, we identify that they suffer from Gradient Misassignment in Positives and Gradient Domination in Negatives, which lead to inefficient and suboptimal policy updates. To address these issues, we propose Rewards as Labels (REAL), a novel framework that revisits verifiable rewards as categorical labels rather than scalar weights, thereby reformulating policy optimization as a classification problem. Building on this, we further introduce anchor logits to enhance policy learning. Our analysis reveals that REAL induces a monotonic and bounded gradient weighting, enabling balanced gradient allocation across rollouts and effectively mitigating the identified mismatches. Extensive experiments on mathematical reasoning benchmarks show that REAL improves training stability and consistently outperforms GRPO and strong variants such as DAPO. On the 1.5B model, REAL improves average Pass@1 over DAPO by 6.7%. These gains further scale to 7B model, REAL continues to outperform DAPO and GSPO by 6.2% and 1.7%, respectively. Notably, even with a vanilla binary cross-entropy, REAL remains stable and exceeds DAPO by 4.5% on average.
comment: 12 pages, 5 figures, 4 tables
☆ Mode-Dependent Rectification for Stable PPO Training
Mode-dependent architectural components (layers that behave differently during training and evaluation, such as Batch Normalization or dropout) are commonly used in visual reinforcement learning but can destabilize on-policy optimization. We show that in Proximal Policy Optimization (PPO), discrepancies between training and evaluation behavior induced by Batch Normalization lead to policy mismatch, distributional drift, and reward collapse. We propose Mode-Dependent Rectification (MDR), a lightweight dual-phase training procedure that stabilizes PPO under mode-dependent layers without architectural changes. Experiments across procedurally generated games and real-world patch-localization tasks demonstrate that MDR consistently improves stability and performance, and extends naturally to other mode-dependent layers.
♻ ☆ EigenLoRAx: Recycling Adapters to Find Principal Subspaces for Resource-Efficient Adaptation and Inference
The rapid growth of large models has raised concerns about their environmental impact and equity in accessibility due to significant computational costs. Low-Rank Adapters (LoRA) offer a lightweight solution for finetuning large models, resulting in an abundance of publicly available adapters tailored to diverse domains. We ask: Can these pretrained adapters be leveraged to further streamline adaptation to new tasks while addressing these challenges? We introduce EigenLoRAx, a parameter-efficient finetuning method that recycles existing adapters to create a principal subspace aligned with their shared domain knowledge which can be further augmented with orthogonal basis vectors in low-resource scenarios. This enables rapid adaptation to new tasks by learning only lightweight coefficients on the principal components of the subspace-eliminating the need to finetune entire adapters. EigenLoRAx requires significantly fewer parameters and memory, improving efficiency for both training and inference. Our method demonstrates strong performance across diverse domains and tasks, offering a scalable for edge-based applications, personalization, and equitable deployment of large models in resource-constrained environments.
♻ ☆ Transmuting prompts into weights
A growing body of research has demonstrated that the behavior of large language models can be effectively controlled at inference time by directly modifying their internal states, either through vector additions to their activations or through updates to their weight matrices. These techniques, while powerful, are often guided by empirical heuristics, such as deriving steering vectors from the average activations of contrastive prompts. This work provides a theoretical foundation for these interventions, explaining how they emerge from the fundamental computations of the transformer architecture. Building on the recent finding that a prompt's influence can be mathematically mapped to token-dependent implicit weight updates (Dherin et. al, 2025), we derive a principled method for condensing this information into token-independent thought vectors and thought matrices. These constructs provide a theoretical explanation for existing vector-and-matrix-based model editing techniques and offer a direct, computationally-grounded method for transmuting textual input into reusable weight updates.
♻ ☆ Informed Asymmetric Actor-Critic: Leveraging Privileged Signals Beyond Full-State Access
Asymmetric actor-critic methods are widely used in partially observable reinforcement learning, but typically assume full state observability to condition the critic during training, which is often unrealistic in practice. We introduce the informed asymmetric actor-critic framework, allowing the critic to be conditioned on arbitrary state-dependent privileged signals without requiring access to the full state. We show that any such privileged signal yields unbiased policy gradient estimates, substantially expanding the set of admissible privileged information. This raises the problem of selecting the most adequate privileged information in order to improve learning. For this purpose, we propose two novel informativeness criteria: a dependence-based test that can be applied prior to training, and a criterion based on improvements in value prediction accuracy that can be applied post-hoc. Empirical results on partially observable benchmark tasks and synthetic environments demonstrate that carefully selected privileged signals can match or outperform full-state asymmetric baselines while relying on strictly less state information.
comment: 11 pages, 26 pages total, 3 figures
♻ ☆ Learning to Discover at Test Time
How can we use AI to discover a new state of the art for a scientific problem? Prior work in test-time scaling, such as AlphaEvolve, performs search by prompting a frozen LLM. We perform reinforcement learning at test time, so the LLM can continue to train, but now with experience specific to the test problem. This form of continual learning is quite special, because its goal is to produce one great solution rather than many good ones on average, and to solve this very problem rather than generalize to other problems. Therefore, our learning objective and search subroutine are designed to prioritize the most promising solutions. We call this method Test-Time Training to Discover (TTT-Discover). Following prior work, we focus on problems with continuous rewards. We report results for every problem we attempted, across mathematics, GPU kernel engineering, algorithm design, and biology. TTT-Discover sets the new state of the art in almost all of them: (i) Erdős' minimum overlap problem and an autocorrelation inequality; (ii) a GPUMode kernel competition (up to $2\times$ faster than prior art); (iii) past AtCoder algorithm competitions; and (iv) denoising problem in single-cell analysis. Our solutions are reviewed by experts or the organizers. All our results are achieved with an open model, OpenAI gpt-oss-120b, and can be reproduced with our publicly available code, in contrast to previous best results that required closed frontier models. Our test-time training runs are performed using Tinker, an API by Thinking Machines, with a cost of only a few hundred dollars per problem.
comment: Code: https://github.com/test-time-training/discover
♻ ☆ Energy Guided smoothness to improve Robustness in Graph Classification
Graph Neural Networks (GNNs) are powerful at solving graph classification tasks, yet applied problems often contain noisy labels. In this work, we study GNN robustness to label noise, demonstrate GNN failure modes when models struggle to generalise on low-order graphs, low label coverage, or when a model is over-parameterized. We establish both empirical and theoretical links between GNN robustness and the reduction of the total Dirichlet Energy of learned node representations, which encapsulates the hypothesized GNN smoothness inductive bias. Finally, we introduce two training strategies to enhance GNN robustness: (1) by incorporating a novel inductive bias in the weight matrices through the removal of negative eigenvalues, connected to Dirichlet Energy minimization; (2) by extending to GNNs a loss penalty that promotes learned smoothness. Importantly, neither approach negatively impacts performance in noise-free settings, supporting our hypothesis that the source of GNNs robustness is their smoothness inductive bias.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Separation-Utility Pareto Frontier: An Information-Theoretic Characterization
We study the Pareto frontier (optimal trade-off) between utility and separation, a fairness criterion requiring predictive independence from sensitive attributes conditional on the true outcome. Through an information-theoretic lens, we prove a characterization of the utility-separation Pareto frontier, establish its concavity, and thereby prove the increasing marginal cost of separation in terms of utility. In addition, we characterize the conditions under which this trade-off becomes strict, providing a guide for trade-off selection in practice. Based on the theoretical characterization, we develop an empirical regularizer based on conditional mutual information (CMI) between predictions and sensitive attributes given the true outcome. The CMI regularizer is compatible with any deep model trained via gradient-based optimization and serves as a scalar monitor of residual separation violations, offering tractable guarantees during training. Finally, numerical experiments support our theoretical findings: across COMPAS, UCI Adult, UCI Bank, and CelebA, the proposed method substantially reduces separation violations while matching or exceeding the utility of established baseline methods. This study thus offers a provable, stable, and flexible approach to enforcing separation in deep learning.
♻ ☆ When Are Two RLHF Objectives the Same?
The preference optimization literature contains many proposed objectives, often presented as distinct improvements. We introduce Opal, a canonicalization algorithm that determines whether two preference objectives are algebraically equivalent by producing either a canonical form or a concrete witness of non-equivalence. Applying Opal reveals that many widely used methods optimize the same underlying objective, while others are provably distinct. For example, batch normalization can cause the same response pair to receive different gradients depending on batch composition. We identify a small set of structural mechanisms that give rise to genuinely different objectives; most remaining differences are reparameterizations.
comment: 21 pages
♻ ☆ SelfReflect: Can LLMs Communicate Their Internal Answer Distribution? ICLR 2026
The common approach to communicate a large language model's (LLM) uncertainty is to add a percentage number or a hedging word to its response. But is this all we can do? Instead of generating a single answer and then hedging it, an LLM that is fully transparent to the user needs to be able to reflect on its internal belief distribution and output a summary of all options it deems possible, and how likely they are. To test whether LLMs possess this capability, we develop the SelfReflect metric, an information-theoretic distance between a given summary and a distribution over answers. In interventional and human studies, we find that SelfReflect indicates even slight deviations, yielding a fine measure of faithfulness between a summary string and an LLM's actual internal distribution over answers. With SelfReflect, we make a resounding negative observation: modern LLMs are, across the board, incapable of revealing what they are uncertain about, neither through reasoning, nor chains-of-thoughts, nor explicit finetuning. However, we do find that LLMs are able to generate faithful summaries of their uncertainties if we help them by sampling multiple outputs and feeding them back into the context. This simple approach shines a light at the universal way of communicating LLM uncertainties whose future development the SelfReflect score enables. To support the development of this universal form of LLM uncertainties, we publish the code that implements our metric for arbitrary LLMs under https://github.com/apple/ml-selfreflect .
comment: Accepted at ICLR 2026
♻ ☆ Flexible inference for animal learning rules using neural networks
Understanding how animals learn is a central challenge in neuroscience, with growing relevance to the development of animal- or human-aligned artificial intelligence. However, existing approaches tend to assume fixed parametric forms for the learning rule (e.g., Q-learning, policy gradient), which may not accurately describe the complex forms of learning employed by animals in realistic settings. Here we address this gap by developing a framework to infer learning rules directly from behavioral data collected during de novo task learning. We assume that animals follow a decision policy parameterized by a generalized linear model (GLM), and we model their learning rule -- the mapping from task covariates to per-trial weight updates -- using a deep neural network (DNN). This formulation allows flexible, data-driven inference of learning rules while maintaining an interpretable form of the decision policy itself. To capture more complex learning dynamics, we introduce a recurrent neural network (RNN) variant that relaxes the Markovian assumption that learning depends solely on covariates of the current trial, allowing for learning rules that integrate information over multiple trials. Simulations demonstrate that the framework can recover ground-truth learning rules. We applied our DNN and RNN-based methods to a large behavioral dataset from mice learning to perform a sensory decision-making task and found that they outperformed traditional RL learning rules at predicting the learning trajectories of held-out mice. The inferred learning rules exhibited reward-history-dependent learning dynamics, with larger updates following sequences of rewarded trials. Overall, these methods provide a flexible framework for inferring learning rules from behavioral data in de novo learning tasks, setting the stage for improved animal training protocols and the development of behavioral digital twins.
♻ ☆ Connect the Dots: Knowledge Graph-Guided Crawler Attack on Retrieval-Augmented Generation Systems
Stealing attacks pose a persistent threat to the intellectual property of deployed machine-learning systems. Retrieval-augmented generation (RAG) intensifies this risk by extending the attack surface beyond model weights to knowledge base that often contains IP-bearing assets such as proprietary runbooks, curated domain collections, or licensed documents. Recent work shows that multi-turn questioning can gradually steal corpus content from RAG systems, yet existing attacks are largely heuristic and often plateau early. We address this gap by formulating RAG knowledge-base stealing as an adaptive stochastic coverage problem (ASCP), where each query is a stochastic action and the goal is to maximize the conditional expected marginal gain (CMG) in corpus coverage under a query budget. Bridging ASCP to real-world black-box RAG knowledge-base stealing raises three challenges: CMG is unobservable, the natural-language action space is intractably large, and feasibility constraints require stealthy queries that remain effective under diverse architectures. We introduce RAGCrawler, a knowledge graph-guided attacker that maintains a global attacker-side state to estimate coverage gains, schedule high-value semantic anchors, and generate non-redundant natural queries. Across four corpora and four generators with BGE retriever, RAGCrawler achieves 66.8% average coverage (up to 84.4%) within 1,000 queries, improving coverage by 44.90% relative to the strongest baseline. It also reduces the queries needed to reach 70% coverage by at least 4.03x on average and enables surrogate reconstruction with answer similarity up to 0.699. Our attack is also scalable to retriever switching and newer RAG techniques like query rewriting and multi-query retrieval. These results highlight urgent needs to protect RAG knowledge assets.
♻ ☆ Learning to summarize user information for personalized reinforcement learning from human feedback
As everyday use cases of large language model (LLM) AI assistants have expanded, it is becoming increasingly important to personalize responses to align to different users' preferences and goals. While reinforcement learning from human feedback (RLHF) is effective at improving LLMs to be generally more helpful and fluent, it does not account for variability across users, as it models the entire user population with a single reward model, meaning it assumes that everyone's preferences are the same. We present a novel framework, Preference Learning Using Summarization (PLUS), that uses reinforcement learning (RL) to learn to produce text-based summaries of each user's preferences, characteristics, and past conversations. These summaries condition the reward model, enabling it to make personalized predictions about the types of responses valued by each user. Both the user-summarization model and reward model are trained simultaneously, creating an online co-adaptation loop. We show that in contrast to the standard Bradley-Terry model, summaries produced by PLUS capture diverse aspects of user preferences, achieving a 11-77/% improvement in reward model accuracy. Key strengths of PLUS are: (1) robust performance with new users and conversation topics, achieving a 25\% improvement over the best personalized reward model technique used for RLHF; (2) zero-shot personalization with state-of-the-art proprietary models like GPT-4 (e.g., PLUS-summary-conditioned responses achieved a 72\% win rate compared to 28% for default GPT-4o); (3) learning from flexible user contexts beyond preference labels, and (4) interpretable representation of users, enabling greater transparency and user control in pluralistic LLM alignment.
comment: 10 pages for main text, 10 pages for appendix
♻ ☆ A Sketch-and-Project Analysis of Subsampled Natural Gradient Algorithms
Subsampled natural gradient descent (SNG) has been used to enable high-precision scientific machine learning, but standard analyses based on stochastic preconditioning fail to provide insight into realistic small-sample settings. We overcome this limitation by instead analyzing SNG as a sketch-and-project method. Motivated by this lens, we discard the usual theoretical proxy which decouples gradients and preconditioners using two independent mini-batches, and we replace it with a new proxy based on squared volume sampling. Under this new proxy we show that the expectation of the SNG direction becomes equal to a preconditioned gradient descent step even in the presence of coupling, leading to (i) global convergence guarantees when using a single mini-batch of any size, and (ii) an explicit characterization of the convergence rate in terms of quantities related to the sketch-and-project structure. These findings in turn yield new insights into small-sample settings, for example by suggesting that the advantage of SNG over SGD is that it can more effectively exploit spectral decay in the model Jacobian. We also extend these ideas to explain a popular structured momentum scheme for SNG, known as SPRING, by showing that it arises naturally from accelerated sketch-and-project methods.
comment: 21 pages, 6 figures
♻ ☆ Alignment-Aware Model Adaptation via Feedback-Guided Optimization
Fine-tuning is the primary mechanism for adapting foundation models to downstream tasks; however, standard approaches largely optimize task objectives in isolation and do not account for secondary yet critical alignment objectives (e.g., safety and hallucination avoidance). As a result, downstream fine-tuning can degrade alignment and fail to correct pre-existing misaligned behavior. We propose an alignment-aware fine-tuning framework that integrates feedback from an external alignment signal through policy-gradient-based regularization. Our method introduces an adaptive gating mechanism that dynamically balances supervised and alignment-driven gradients on a per-sample basis, prioritizing uncertain or misaligned cases while allowing well-aligned examples to follow standard supervised updates. The framework further learns abstention behavior for fully misaligned inputs, incorporating conservative responses directly into the fine-tuned model. Experiments on general and domain-specific instruction-tuning benchmarks demonstrate consistent reductions in harmful and hallucinated outputs without sacrificing downstream task performance. Additional analyses show robustness to adversarial fine-tuning, prompt-based attacks, and unsafe initializations, establishing adaptively gated alignment optimization as an effective approach for alignment-preserving and alignment-recovering model adaptation.
♻ ☆ Enhancing Quantum Diffusion Models for Complex Image Generation
Quantum generative models offer a novel approach to exploring high-dimensional Hilbert spaces but face significant challenges in scalability and expressibility when applied to multi-modal distributions. In this study, we explore a Hybrid Quantum-Classical U-Net architecture integrated with Adaptive Non-Local Observables (ANO) as a potential solution to these hurdles. By compressing classical data into a dense quantum latent space and utilizing trainable observables, our model aims to extract non-local features that complement classical processing. We also investigate the role of Skip Connections in preserving semantic information during the reverse diffusion process. Experimental results on the full MNIST dataset (digits 0-9) demonstrate that the proposed architecture is capable of generating structurally coherent and recognizable images for all digit classes. While hardware constraints still impose limitations on resolution, our findings suggest that hybrid architectures with adaptive measurements provide a feasible pathway for mitigating mode collapse and enhancing generative capabilities in the NISQ era.
comment: 18 pages, 6 figures
♻ ☆ Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 45.2 per-benchmark accuracy and 51.8 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
♻ ☆ Quantifying and Inducing Shape Bias in CNNs via Max-Pool Dilation
Convolutional Neural Networks (CNNs) exhibit a well-known texture bias, prioritizing local patterns over global shapes - a tendency inherent to their convolutional architecture. While this bias is beneficial for texture-rich natural images, it often degrades performance on shape-dominant data such as illustrations and sketches. Although prior work has proposed shape-biased models to mitigate this issue, these approaches lack a quantitative metric for identifying which datasets would actually benefit from such modifications. To address this limitation, we propose a data-driven metric that quantifies the shape-texture balance within a dataset by computing the Structural Similarity Index (SSIM) between an image's luminance (Y) channel and its L0-smoothed counterpart. Building on this metric, we introduce a computationally efficient adaptation method that promotes shape bias by modifying the dilation of max-pooling operations while keeping convolutional weights frozen. Experimental results demonstrate consistent accuracy improvements on shape-dominant datasets, particularly in low-data regimes where full fine-tuning is impractical, requiring training only the final classification layer.
comment: Accepted to IEVC 2026. 4 pages, 1 figure, 3 tables
♻ ☆ The Enhanced Physics-Informed Kolmogorov-Arnold Networks: Applications of Newton's Laws in Financial Deep Reinforcement Learning (RL) Algorithms
Deep Reinforcement Learning (DRL), a subset of machine learning focused on sequential decision-making, has emerged as a powerful approach for tackling financial trading problems. In finance, DRL is commonly used either to generate discrete trade signals or to determine continuous portfolio allocations. In this work, we propose a novel reinforcement learning framework for portfolio optimization that incorporates Physics-Informed Kolmogorov-Arnold Networks (PIKANs) into several DRL algorithms. The approach replaces conventional multilayer perceptrons with Kolmogorov-Arnold Networks (KANs) in both actor and critic components-utilizing learnable B-spline univariate functions to achieve parameter-efficient and more interpretable function approximation. During actor updates, we introduce a physics-informed regularization loss that promotes second-order temporal consistency between observed return dynamics and the action-induced portfolio adjustments. The proposed framework is evaluated across three equity markets-China, Vietnam, and the United States, covering both emerging and developed economies. Across all three markets, PIKAN-based agents consistently deliver higher cumulative and annualized returns, superior Sharpe and Calmar ratios, and more favorable drawdown characteristics compared to both standard DRL baselines and classical online portfolio-selection methods. This yields more stable training, higher Sharpe ratios, and superior performance compared to traditional DRL counterparts. The approach is particularly valuable in highly dynamic and noisy financial markets, where conventional DRL often suffers from instability and poor generalization.
♻ ☆ Multi-Agent Inverted Transformer for Flight Trajectory Prediction
Flight trajectory prediction for multiple aircraft is essential and provides critical insights into how aircraft navigate within current air traffic flows. However, predicting multi-agent flight trajectories is inherently challenging. One of the major difficulties is modeling both the individual aircraft behaviors over time and the complex interactions between flights. Generating explainable prediction outcomes is also a challenge. Therefore, we propose a Multi-Agent Inverted Transformer, MAIFormer, as a novel neural architecture that predicts multi-agent flight trajectories. The proposed framework features two key attention modules: (i) masked multivariate attention, which captures spatio-temporal patterns of individual aircraft, and (ii) agent attention, which models the social patterns among multiple agents in complex air traffic scenes. We evaluated MAIFormer using a real-world automatic dependent surveillance-broadcast flight trajectory dataset from the terminal airspace of Incheon International Airport in South Korea. The experimental results show that MAIFormer achieves the best performance across multiple metrics and outperforms other methods. In addition, MAIFormer produces prediction outcomes that are interpretable from a human perspective, which improves both the transparency of the model and its practical utility in air traffic control.
comment: 11 pages, 8 figures, submitted for IEEE Transactions on Intelligent Transportation System
♻ ☆ The Double Life of Code World Models: Provably Unmasking Malicious Behavior Through Execution Traces
Large language models (LLMs) increasingly generate code with minimal human oversight, raising critical concerns about backdoor injection and malicious behavior. We present Cross-Trace Verification Protocol (CTVP), a novel AI control framework that verifies untrusted code-generating models through semantic orbit analysis. Rather than directly executing potentially malicious code, CTVP leverages the model's own predictions of execution traces across semantically equivalent program transformations. By analyzing consistency patterns in these predicted traces, we detect behavioral anomalies indicative of backdoors. Our approach introduces the Adversarial Robustness Quotient (ARQ), which quantifies the computational cost of verification relative to baseline generation, demonstrating exponential growth with orbit size. Theoretical analysis establishes information-theoretic bounds showing non-gamifiability - adversaries cannot improve through training due to fundamental space complexity constraints. This work demonstrates that semantic orbit analysis provides a theoretically grounded approach to AI control for code generation tasks, though practical deployment requires addressing the high false positive rates observed in initial evaluations.
comment: 13 Pages, A Preprint
♻ ☆ Hidden in Plain Sight -- Class Competition Focuses Attribution Maps
Attribution methods reveal which input features a neural network uses for a prediction, adding transparency to their decisions. A common problem is that these attributions seem unspecific, highlighting both important and irrelevant features. We revisit the common attribution pipeline and observe that using logits as attribution target is a main cause of this phenomenon. We show that the solution is in plain sight: considering distributions of attributions over multiple classes using existing attribution methods yields specific and fine-grained attributions. On common benchmarks, including the grid-pointing game and randomization-based sanity checks, this improves the ability of 18 attribution methods across 7 architectures up to 2x, agnostic to model architecture.
♻ ☆ A Representer Theorem for Hawkes Processes via Penalized Least Squares Minimization ICLR 2026
The representer theorem is a cornerstone of kernel methods, which aim to estimate latent functions in reproducing kernel Hilbert spaces (RKHSs) in a nonparametric manner. Its significance lies in converting inherently infinite-dimensional optimization problems into finite-dimensional ones over dual coefficients, thereby enabling practical and computationally tractable algorithms. In this paper, we address the problem of estimating the latent triggering kernels--functions that encode the interaction structure between events--for linear multivariate Hawkes processes based on observed event sequences within an RKHS framework. We show that, under the principle of penalized least squares minimization, a novel form of representer theorem emerges: a family of transformed kernels can be defined via a system of simultaneous integral equations, and the optimal estimator of each triggering kernel is expressed as a linear combination of these transformed kernels evaluated at the data points. Remarkably, the dual coefficients are all analytically fixed to unity, obviating the need to solve a costly optimization problem to obtain the dual coefficients. This leads to a highly efficient estimator capable of handling large-scale data more effectively than conventional nonparametric approaches. Empirical evaluations on synthetic datasets reveal that the proposed method attains competitive predictive accuracy while substantially improving computational efficiency over existing state-of-the-art kernel method-based estimators.
comment: Accepted to ICLR 2026
♻ ☆ Data Heterogeneity and Forgotten Labels in Split Federated Learning AAAI 2026
In Split Federated Learning (SFL), the clients collaboratively train a model with the help of a server by splitting the model into two parts. Part-1 is trained locally at each client and aggregated by the aggregator at the end of each round. Part-2 is trained at a server that sequentially processes the intermediate activations received from each client. We study the phenomenon of catastrophic forgetting (CF) in SFL in the presence of data heterogeneity. In detail, due to the nature of SFL, local updates of part-1 may drift away from global optima, while part-2 is sensitive to the processing sequence, similar to forgetting in continual learning (CL). Specifically, we observe that the trained model performs better in classes (labels) seen at the end of the sequence. We investigate this phenomenon with emphasis on key aspects of SFL, such as the processing order at the server and the cut layer. Based on our findings, we propose Hydra, a novel mitigation method inspired by multi-head neural networks and adapted for the SFL setting. Extensive numerical evaluations show that Hydra outperforms baselines and methods from the literature.
comment: A shorter version of this paper will appear in the proceedings of AAAI 2026
♻ ☆ Minimax optimal differentially private synthetic data for smooth queries
Differentially private synthetic data enables the sharing and analysis of sensitive datasets while providing rigorous privacy guarantees for individual contributors. A central challenge is to achieve strong utility guarantees for meaningful downstream analysis. Many existing methods ensure uniform accuracy over broad query classes, such as all Lipschitz functions, but this level of generality often leads to suboptimal rates for statistics of practical interest. Since many common data analysis queries exhibit smoothness beyond what worst-case Lipschitz bounds capture, we ask whether exploiting this additional structure can yield improved utility. We study the problem of generating $(\varepsilon,δ)$-differentially private synthetic data from a dataset of size $n$ supported on the hypercube $[-1,1]^d$, with utility guarantees uniformly for all smooth queries having bounded derivatives up to order $k$. We propose a polynomial-time algorithm that achieves a minimax error rate of $n^{-\min \{1, \frac{k}{d}\}}$, up to a $\log(n)$ factor. This characterization uncovers a phase transition at $k=d$. Our results generalize the Chebyshev moment matching framework of (Musco et al., 2025; Wang et al., 2016) and strictly improve the error rates for $k$-smooth queries established in (Wang et al., 2016). Moreover, we establish the first minimax lower bound for the utility of $(\varepsilon,δ)$-differentially private synthetic data with respect to $k$-smooth queries, extending the Wasserstein lower bound for $\varepsilon$-differential privacy in (Boedihardjo et al., 2024).
comment: 27 pages
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models ICLR 2026
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. Scaling up the amount of multimodal math data in the RL training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista benchmark scores, respectively. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
comment: Accepted to ICLR 2026. Code is available at https://github.com/Osilly/Vision-R1
♻ ☆ Colorful Pinball: Density-Weighted Quantile Regression for Conditional Guarantee of Conformal Prediction
While conformal prediction provides robust marginal coverage guarantees, achieving reliable conditional coverage for specific inputs remains challenging. Although exact distribution-free conditional coverage is impossible with finite samples, recent work has focused on improving the conditional coverage of standard conformal procedures. Distinct from approaches that target relaxed notions of conditional coverage, we directly minimize the mean squared error of conditional coverage by refining the quantile regression components that underpin many conformal methods. Leveraging a Taylor expansion, we derive a sharp surrogate objective for quantile regression: a density-weighted pinball loss, where the weights are given by the conditional density of the conformity score evaluated at the true quantile. We propose a three-headed quantile network that estimates these weights via finite differences using auxiliary quantile levels at \(1-α\pm δ\), subsequently fine-tuning the central quantile by optimizing the weighted loss. We provide a theoretical analysis with exact non-asymptotic guarantees characterizing the resulting excess risk. Extensive experiments on diverse high-dimensional real-world datasets demonstrate remarkable improvements in conditional coverage performance.
♻ ☆ Sample Complexity of Composite Quantum Hypothesis Testing
This paper investigates symmetric composite binary quantum hypothesis testing (QHT), where the goal is to determine which of two uncertainty sets contains an unknown quantum state. While asymptotic error exponents for this problem are well-studied, the finite-sample regime remains poorly understood. We bridge this gap by characterizing the sample complexity -- the minimum number of state copies required to achieve a target error level. Specifically, we derive lower bounds that generalize the sample complexity of simple QHT and introduce new upper bounds for various uncertainty sets, including of both finite and infinite cardinalities. Notably, our upper and lower bounds match up to universal constants, providing a tight characterization of the sample complexity. Finally, we extend our analysis to the differentially private setting, establishing the sample complexity for privacy-preserving composite QHT.
comment: Under review
♻ ☆ Leveraging Whisper Embeddings for Audio-based Lyrics Matching ICASSP 2026
Audio-based lyrics matching can be an appealing alternative to other content-based retrieval approaches, but existing methods often suffer from limited reproducibility and inconsistent baselines. In this work, we introduce WEALY, a fully reproducible pipeline that leverages Whisper decoder embeddings for lyrics matching tasks. WEALY establishes robust and transparent baselines, while also exploring multimodal extensions that integrate textual and acoustic features. Through extensive experiments on standard datasets, we demonstrate that WEALY achieves a performance comparable to state-of-the-art methods that lack reproducibility. In addition, we provide ablation studies and analyses on language robustness, loss functions, and embedding strategies. This work contributes a reliable benchmark for future research, and underscores the potential of speech technologies for music information retrieval tasks.
comment: Accepted at ICASSP 2026 (IEEE International Conference on Acoustics, Speech and Signal Processing)
♻ ☆ Solving Prior Distribution Mismatch in Diffusion Models via Optimal Transport
Diffusion Models (DMs) have achieved remarkable progress in generative modeling. However, the mismatch between the forward terminal distribution and reverse initial distribution introduces prior error, leading to deviations of sampling trajectories from the true distribution and severely limiting model performance. This issue further triggers cascading problems, including non-zero Signal-to-Noise Ratio, accumulated denoising errors, degraded generation quality, and constrained sampling efficiency. To address this issue, this paper proposes a prior error elimination framework based on Optimal Transport (OT). Specifically, an OT map from the reverse initial distribution to the forward terminal distribution is constructed to achieve precise matching of the two distributions. Meanwhile, the upper bound of the prior error is quantified using the Wasserstein distance, proving that the prior error can be effectively eliminated via the OT map. Additionally, by deriving the asymptotic consistency between dynamic OT and probability flow, this method is revealed to be highly compatible with the intrinsic mechanism of the diffusion process. Experimental results demonstrate that the proposed method completely eliminates the prior error both theoretically and practically, providing a universal and rigorous solution for optimizing the performance of DMs.
♻ ☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models ICLR 2026
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Accepted to ICLR 2026
♻ ☆ Optimization and Generation in Aerodynamics Inverse Design
Inverse design with physics-based objectives is challenging because it couples high-dimensional geometry with expensive simulations, as exemplified by aerodynamic shape optimization for drag reduction. We revisit inverse design through two canonical solutions, the optimal design point and the optimal design distribution, and relate them to optimization and guided generation. Building on this view, we propose a new training loss for cost predictors and a density-gradient optimization method that improves objectives while preserving plausible shapes. We further unify existing training-free guided generation methods. To address their inability to approximate conditional covariance in high dimensions, we develop a time- and memory-efficient algorithm for approximate covariance estimation. Experiments on a controlled 2D study and high-fidelity 3D aerodynamic benchmarks (car and aircraft), validated by OpenFOAM simulations and miniature wind-tunnel tests with 3D-printed prototypes, demonstrate consistent gains in both optimization and guided generation. Additional offline RL results further support the generality of our approach.
♻ ☆ Improved Generalization Bounds for Transductive Learning by Transductive Local Complexity and Its Applications ICML 2025
We introduce Transductive Local Complexity (TLC) to extend the classical Local Rademacher Complexity (LRC) to the transductive setting, incorporating substantial and novel components. Although LRC has been used to obtain sharp generalization bounds and minimax rates for inductive tasks such as classification and nonparametric regression, it has remained an open problem whether a localized Rademacher complexity framework can be effectively adapted to transductive learning to achieve sharp or nearly sharp bounds consistent with inductive results. We provide an affirmative answer via TLC. TLC is constructed by first deriving a new concentration inequality in Theorem 4.1 for the supremum of empirical processes capturing the gap between test and training losses, termed the test-train process, under uniform sampling without replacement, which leverages a novel combinatorial property of the test-train process and a new proof strategy applying the exponential Efron-Stein inequality twice. A subsequent peeling strategy applied to a new decomposition of the expectation of the test-train process and a new surrogate variance operator then yield excess risk bounds in the transductive setting that are nearly consistent with classical LRC-based inductive bounds up to a logarithmic gap. We further advance transductive learning through two applications: (1) for realizable transductive learning over binary-valued classes with finite VC dimension of $\dVC$ and $u \ge m \ge \dVC$, where $u$ and $m$ are the number of test features and training features, our Theorem 6.1 gives a nearly optimal bound $Θ(\dVC \log(me/\dVC)/m)$ matching the minimax rate $Θ(\dVC/m)$ up to $\log m$, resolving a decade-old open question; and (2) Theorem 6.2 presents a sharper excess risk bound for transductive kernel learning compared to the current state-of-the-art.
comment: The ICML 2025 conference version (https://openreview.net/pdf?id=NRVdvg7VMn) is a special case of this paper where the chain length is fixed at 2 (i.e.,$Q=2$, see Def. 5.1), and its main results follow directly from the results here. This paper further provides a nearly optimal excess risk bound for realizable transductive learning and a stronger bound for transductive kernel learning
♻ ☆ A Policy Gradient-Based Sequence-to-Sequence Method for Time Series Prediction
Sequence-to-sequence architectures built upon recurrent neural networks have become a standard choice for multi-step-ahead time series prediction. In these models, the decoder produces future values conditioned on contextual inputs, typically either actual historical observations (ground truth) or previously generated predictions. During training, feeding ground-truth values helps stabilize learning but creates a mismatch between training and inference conditions, known as exposure bias, since such true values are inaccessible during real-world deployment. On the other hand, using the model's own outputs as inputs at test time often causes errors to compound rapidly across prediction steps. To mitigate these limitations, we introduce a new training paradigm grounded in reinforcement learning: a policy gradient-based method to learn an adaptive input selection strategy for sequence-to-sequence prediction models. Auxiliary models first synthesize plausible input candidates for the decoder, and a trainable policy network optimized via policy gradients dynamically chooses the most beneficial inputs to maximize long-term prediction performance. Empirical evaluations on diverse time series datasets confirm that our approach enhances both accuracy and stability in multi-step forecasting compared to conventional methods.
♻ ☆ Device Association and Resource Allocation for Hierarchical Split Federated Learning in Space-Air-Ground Integrated Network
6G facilitates deployment of Federated Learning (FL) in the Space-Air-Ground Integrated Network (SAGIN), yet FL confronts challenges such as resource constrained and unbalanced data distribution. To address these issues, this paper proposes a Hierarchical Split Federated Learning (HSFL) framework and derives its upper bound of loss function. To minimize the weighted sum of training loss and latency, we formulate a joint optimization problem that integrates device association, model split layer selection, and resource allocation. We decompose the original problem into several subproblems, where an iterative optimization algorithm for device association and resource allocation based on brute-force split point search is proposed. Simulation results demonstrate that the proposed algorithm can effectively balance training efficiency and model accuracy for FL in SAGIN.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ SC3D: Dynamic and Differentiable Causal Discovery for Temporal and Instantaneous Graphs
Discovering causal structures from multivariate time series is a key problem because interactions span across multiple lags and possibly involve instantaneous dependencies. Additionally, the search space of the dynamic graphs is combinatorial in nature. In this study, we propose \textit{Stable Causal Dynamic Differentiable Discovery (SC3D)}, a two-stage differentiable framework that jointly learns lag-specific adjacency matrices and, if present, an instantaneous directed acyclic graph (DAG). In Stage 1, SC3D performs edge preselection through node-wise prediction to obtain masks for lagged and instantaneous edges, whereas Stage 2 refines these masks by optimizing a likelihood with sparsity along with enforcing acyclicity on the instantaneous block. Numerical results across synthetic and benchmark dynamical systems demonstrate that SC3D achieves improved stability and more accurate recovery of both lagged and instantaneous causal structures compared to existing temporal baselines.
comment: 8 pages
♻ ☆ How Data Mixing Shapes In-Context Learning: Asymptotic Equivalence for Transformers with MLPs NeurIPS 2025
Pretrained Transformers demonstrate remarkable in-context learning (ICL) capabilities, enabling them to adapt to new tasks from demonstrations without parameter updates. However, theoretical studies often rely on simplified architectures (e.g., omitting MLPs), plain data models (e.g., linear regression with isotropic inputs), and single-source training, limiting their relevance to realistic settings. In this work, we study ICL in pretrained Transformers with nonlinear MLP heads on nonlinear tasks drawn from multiple data sources with heterogeneous input, task, and noise distributions. We analyze a model where the MLP comprises two layers, with the first layer trained via a single gradient step and the second layer fully optimized. Under high-dimensional asymptotics, we prove that such models are equivalent in ICL error to structured polynomial predictors, leveraging results from the theory of Gaussian universality and orthogonal polynomials. This equivalence reveals that nonlinear MLPs meaningfully enhance ICL performance, particularly on nonlinear tasks, compared to linear baselines. It also enables a precise analysis of data mixing effects: we identify key properties of high-quality data sources (low noise, structured covariances) and show that feature learning emerges only when the task covariance exhibits sufficient structure. These results are validated empirically across various activation functions, model sizes, and data distributions. Finally, we experiment with a real-world scenario involving multilingual sentiment analysis where each language is treated as a different source. Our experimental results for this case exemplify how our findings extend to real-world cases. Overall, our work advances the theoretical foundations of ICL in Transformers and provides actionable insight into the role of architecture and data in ICL.
comment: NeurIPS 2025, 24 pages, 6 figures
♻ ☆ Streaming Operator Inference for Model Reduction of Large-Scale Dynamical Systems
Projection-based model reduction enables efficient simulation of complex dynamical systems by constructing low-dimensional surrogate models from high-dimensional data. The Operator Inference (OpInf) approach learns such reduced surrogate models through a two-step process: constructing a low-dimensional basis via Singular Value Decomposition (SVD) to compress the data, then solving a linear least-squares (LS) problem to infer reduced operators that govern the dynamics in this compressed space, all without access to the underlying code or full model operators, i.e., non-intrusively. Traditional OpInf operates as a batch learning method, where both the SVD and LS steps process all data simultaneously. This poses a barrier to deployment of the approach on large-scale applications where dataset sizes prevent the loading of all data into memory at once. Additionally, the traditional batch approach does not naturally allow model updates using new data acquired during online computation. To address these limitations, we propose Streaming OpInf, which learns reduced models from sequentially arriving data streams. Our approach employs incremental SVD for adaptive basis construction and recursive LS for streaming operator updates, eliminating the need to store complete data sets while enabling online model adaptation. The approach can flexibly combine different choices of streaming algorithms for numerical linear algebra: we systematically explore the impact of these choices both analytically and numerically to identify effective combinations for accurate reduced model learning. Numerical experiments on benchmark problems and a large-scale turbulent channel flow demonstrate that Streaming OpInf achieves accuracy comparable to batch OpInf while reducing memory requirements by over 99% and enabling dimension reductions exceeding 31,000x, resulting in orders-of-magnitude faster predictions.
♻ ☆ Thompson Sampling-Based Learning and Control for Unknown Dynamic Systems
Thompson sampling (TS) is a Bayesian randomized exploration strategy that samples options (e.g., system parameters or control laws) from the current posterior and then applies the selected option that is optimal for a task, thereby balancing exploration and exploitation; this makes TS effective for active learning-based controller design. However, TS relies on finite parametric representations, which limits its applicability to more general spaces, which are more commonly encountered in control system design. To address this issue, this work proposes a parameterization method for control law learning using reproducing kernel Hilbert spaces and designs a data-driven active learning control approach. Specifically, the proposed method treats the control law as an element in a function space, allowing the design of control laws without imposing restrictions on the system structure or the form of the controller. A TS framework is proposed in this work to reduce control costs through online exploration and exploitation, and the convergence guarantees are further provided for the learning process. Theoretical analysis shows that the proposed method learns the relationship between control laws and closed-loop performance metrics at an exponential rate, and the upper bound of control regret is also derived. Furthermore, the closed-loop stability of the proposed learning framework is analyzed. Numerical experiments on controlling unknown nonlinear systems validate the effectiveness of the proposed method.
♻ ☆ VAO: Validation-Aligned Optimization for Cross-Task Generative Auto-Bidding
Generative auto-bidding has demonstrated strong performance in online advertising, yet it often suffers from data scarcity in small-scale settings with limited advertiser participation. While cross-task data sharing is a natural remedy to mitigate this issue, naive approaches often introduce gradient bias due to distribution shifts across different tasks, and existing methods are not readily applicable to generative auto-bidding. In this paper, we propose Validation-Aligned Optimization (VAO), a principled data-sharing method that adaptively reweights cross-task data contributions based on validation performance feedback. Notably, VAO aligns training dynamics to prioritize updates that improve generalization on the target task, effectively leveraging auxiliary data and mitigating gradient bias. Building on VAO, we introduce a unified generative autobidding framework that generalizes across multiple tasks using a single model and all available task data. Extensive experiments on standard auto-bidding benchmarks validate the effectiveness of our approach.
♻ ☆ Entropic Risk-Aware Monte Carlo Tree Search
We propose a provably correct Monte Carlo tree search (MCTS) algorithm for solving risk-aware Markov decision processes (MDPs) with entropic risk measure (ERM) objectives. We provide a non-asymptotic analysis of our proposed algorithm, showing that the algorithm: (i) is correct in the sense that the empirical ERM obtained at the root node converges to the optimal ERM; and (ii) enjoys polynomial regret concentration. Our algorithm successfully exploits the dynamic programming formulations for solving risk-aware MDPs with ERM objectives introduced by previous works in the context of an upper confidence bound-based tree search algorithm. Finally, we provide a set of illustrative experiments comparing our risk-aware MCTS method against relevant baselines.
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To manage long-horizon interactions, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Local EGOP for Continuous Index Learning
We introduce the setting of continuous index learning, in which a function of many variables varies only along a small number of directions at each point. For efficient estimation, it is beneficial for a learning algorithm to adapt, near each point $x$, to the subspace that captures the local variability of the function $f$. We pose this task as kernel adaptation along a manifold with noise, and introduce Local EGOP learning, a recursive algorithm that utilizes the Expected Gradient Outer Product (EGOP) quadratic form as both a metric and inverse-covariance of our target distribution. We prove that Local EGOP learning adapts to the regularity of the function of interest, showing that under a supervised noisy manifold hypothesis, intrinsic dimensional learning rates are achieved for arbitrarily high-dimensional noise. Empirically, we compare our algorithm to the feature learning capabilities of deep learning. Additionally, we demonstrate improved regression quality compared to two-layer neural networks in the continuous single-index setting.
♻ ☆ Progressive multi-fidelity learning with neural networks for physical system predictions
Highly accurate datasets from numerical or physical experiments are often expensive and time-consuming to acquire, posing a significant challenge for applications that require precise evaluations, potentially across multiple scenarios and in real-time. Even building sufficiently accurate surrogate models can be extremely challenging with limited high-fidelity data. Conversely, less expensive, low-fidelity data can be computed more easily and encompass a broader range of scenarios. By leveraging multi-fidelity information, prediction capabilities of surrogates can be improved. However, in practical situations, data may be different in types, come from sources of different modalities, and not be concurrently available, further complicating the modeling process. To address these challenges, we introduce a progressive multi-fidelity surrogate model. This model can sequentially incorporate diverse data types using tailored encoders. Multi-fidelity regression from the encoded inputs to the target quantities of interest is then performed using neural networks. Input information progressively flows from lower to higher fidelity levels through two sets of connections: concatenations among all the encoded inputs, and additive connections among the final outputs. This dual connection system enables the model to exploit correlations among different datasets while ensuring that each level makes an additive correction to the previous level without altering it. This approach prevents performance degradation as new input data are integrated into the model and automatically adapts predictions based on the available inputs. We demonstrate the effectiveness of the approach on numerical benchmarks and a real-world case study, showing that it reliably integrates multi-modal data and provides accurate predictions, maintaining performance when generalizing across time and parameter variations.
♻ ☆ EEG Foundation Models: Progresses, Benchmarking, and Open Problems
Electroencephalography (EEG) foundation models have recently emerged as a promising paradigm for brain-computer interfaces (BCIs), aiming to learn transferable neural representations from large-scale heterogeneous recordings. Despite rapid progresses, there lacks fair and comprehensive comparisons of existing EEG foundation models, due to inconsistent pre-training objectives, preprocessing choices, and downstream evaluation protocols. This paper fills this gap. We first review 50 representative models and organize their design choices into a unified taxonomic framework including data standardization, model architectures, and self-supervised pre-training strategies. We then evaluate 12 open-source foundation models and competitive specialist baselines across 13 EEG datasets spanning nine BCI paradigms. Emphasizing real-world deployments, we consider both cross-subject generalization under a leave-one-subject-out protocol and rapid calibration under a within-subject few-shot setting. We further compare full-parameter fine-tuning with linear probing to assess the transferability of pre-trained representations, and examine the relationship between model scale and downstream performance. Our results indicate that: 1) linear probing is frequently insufficient; 2) specialist models trained from scratch remain competitive across many tasks; and, 3) larger foundation models do not necessarily yield better generalization performance under current data regimes and training practices.
♻ ☆ Hierarchical Subspaces of Policies for Continual Offline Reinforcement Learning
We consider a Continual Reinforcement Learning setup, where a learning agent must continuously adapt to new tasks while retaining previously acquired skill sets, with a focus on the challenge of avoiding forgetting past gathered knowledge and ensuring scalability with the growing number of tasks. Such issues prevail in autonomous robotics and video game simulations, notably for navigation tasks prone to topological or kinematic changes. To address these issues, we introduce HiSPO, a novel hierarchical framework designed specifically for continual learning in navigation settings from offline data. Our method leverages distinct policy subspaces of neural networks to enable flexible and efficient adaptation to new tasks while preserving existing knowledge. We demonstrate, through a careful experimental study, the effectiveness of our method in both classical MuJoCo maze environments and complex video game-like navigation simulations, showcasing competitive performances and satisfying adaptability with respect to classical continual learning metrics, in particular regarding the memory usage and efficiency.
♻ ☆ Symplectic convolutional neural networks
We propose a new symplectic convolutional neural network (CNN) architecture by leveraging symplectic neural networks, proper symplectic decomposition, and tensor techniques. Specifically, we first introduce a mathematically equivalent form of the convolution layer and then, using symplectic neural networks, we demonstrate a way to parameterize the layers of the CNN to ensure that the convolution layer remains symplectic. To construct a complete autoencoder, we introduce a symplectic pooling layer. We demonstrate the performance of the proposed neural network on three examples: the wave equation, the nonlinear Schrödinger (NLS) equation, and the sine-Gordon equation. The numerical results indicate that the symplectic CNN outperforms the linear symplectic autoencoder obtained via proper symplectic decomposition.
♻ ☆ High-probability Convergence Guarantees of Decentralized SGD
Convergence in high-probability (HP) has attracted increasing interest, due to implying exponentially decaying tail bounds and strong guarantees for individual runs of an algorithm. While many works study HP guarantees in centralized settings, much less is understood in the decentralized setup, where existing works require strong assumptions, like uniformly bounded gradients, or asymptotically vanishing noise. This results in a significant gap between the assumptions used to establish convergence in the HP and the mean-squared error (MSE) sense, and is also contrary to centralized settings, where it is known that $\mathtt{SGD}$ converges in HP under the same conditions on the cost function as needed for MSE convergence. Motivated by these observations, we study the HP convergence of Decentralized $\mathtt{SGD}$ ($\mathtt{DSGD}$) in the presence of light-tailed noise, providing several strong results. First, we show that $\mathtt{DSGD}$ converges in HP under the same conditions on the cost as in the MSE sense, removing the restrictive assumptions used in prior works. Second, our sharp analysis yields order-optimal rates for both non-convex and strongly convex costs. Third, we establish a linear speed-up in the number of users, leading to matching, or strictly better transient times than those obtained from MSE results, further underlining the tightness of our analysis. To the best of our knowledge, this is the first work that shows $\mathtt{DSGD}$ achieves a linear speed-up in the HP sense. Our relaxed assumptions and sharp rates stem from several technical results of independent interest, including a result on the variance-reduction effect of decentralized methods in the HP sense, as well as a novel bound on the MGF of strongly convex costs, which is of interest even in centralized settings. Finally, we provide experiments that validate our theory.
comment: 47 pages, 2 figures
♻ ☆ An Attention-based Feature Memory Design for Energy-Efficient Continual Learning
Tabular data streams are increasingly prevalent in real-time decision-making across healthcare, finance, and the Internet of Things, often generated and processed on resource-constrained edge and mobile devices. Continual learning (CL) enables models to learn sequentially from such streams while retaining previously acquired knowledge. While recent CL advances have made significant progress in mitigating catastrophic forgetting, the energy and memory efficiency of CL for tabular data streams remains largely unexplored. To address this gap, we propose AttenMLP, which integrates attention-based feature replay with context retrieval and sliding buffer updates within a minibatch training framework for streaming tabular learning. We evaluate AttenMLP against state-of-the-art (SOTA) tabular models on real-world concept drift benchmarks with temporal distribution shifts. Experimental results show that AttenMLP achieves accuracy comparable to strong baselines without replay, while substantially reducing energy consumption through tunable design choices. In particular, with the proposed attention-based feature memory design, AttenMLP costs a 0.062 decrease in final accuracy under the incremental concept drift dataset, while reducing energy usage up to 33.3\% compared to TabPFNv2. Under the abrupt concept drift dataset, AttenMLP reduces 1.47\% energy consumption compared to TabR, at the cost of a 0.038 decrease in final accuracy. Although ranking third in global efficiency, AttenMLP demonstrates energy-accuracy trade-offs across both abrupt and incremental concept drift scenarios compared to SOTA tabular models.
♻ ☆ Sharpness-Aware Minimization Can Hallucinate Minimizers
Sharpness-Aware Minimization (SAM) is widely used to seek flatter minima -- often linked to better generalization. In its standard implementation, SAM updates the current iterate using the loss gradient evaluated at a point perturbed by distance $ρ$ along the normalized gradient direction. We show that, for some choices of $ρ$, SAM can stall at points where this shifted (perturbed-point) gradient vanishes despite a nonzero original gradient, and therefore, they are not stationary points of the original loss. We call these points hallucinated minimizers, prove their existence under simple nonconvex landscape conditions (e.g., the presence of a local minimizer and a local maximizer), and establish sufficient conditions for local convergence of the SAM iterates to them. We corroborate this failure mode in neural network training and observe that it aligns with SAM's performance degradation often seen at large $ρ$. Finally, as a practical safeguard, we find that a short initial SGD warm-start before enabling SAM mitigates this failure mode and reduces sensitivity to the choice of $ρ$.
♻ ☆ GAMformer: Bridging Tabular Foundation Models and Interpretable Machine Learning
While interpretability is crucial for machine learning applications in safety-critical domains and for regulatory compliance, existing tabular foundation models like TabPFN lack transparency. Generalized Additive Models (GAMs) provide the needed interpretability through their additive structure, but traditional GAM methods rely on iterative learning algorithms (such as splines, boosted trees, or neural networks) that are fundamentally incompatible with the in-context learning paradigm of foundation models. In this paper, we introduce GAMformer, the first tabular foundation model for GAMs that bridges the gap between the power of foundation models and the interpretability requirements of critical real-world applications. GAMformer estimates GAM shape functions in a single forward pass using in-context learning, representing a significant departure from conventional iterative approaches. Building on previous research on tabular foundation models, we train GAMformer exclusively on synthetically generated tables to prevent data leakage. Our experiments demonstrate that GAMformer performs comparably to other leading GAMs across various classification benchmarks.
comment: 22 pages, 15 figures
♻ ☆ Maximum-Volume Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a popular data embedding technique. Given a nonnegative data matrix $X$, it aims at finding two lower dimensional matrices, $W$ and $H$, such that $X\approx WH$, where the factors $W$ and $H$ are constrained to be element-wise nonnegative. The factor $W$ serves as a basis for the columns of $X$. In order to obtain more interpretable and unique solutions, minimum-volume NMF (MinVol NMF) minimizes the volume of $W$. In this paper, we consider the dual approach, where the volume of $H$ is maximized instead; this is referred to as maximum-volume NMF (MaxVol NMF). MaxVol NMF is identifiable under the same conditions as MinVol NMF in the noiseless case, but it behaves rather differently in the presence of noise. In practice, MaxVol NMF is much more effective to extract a sparse decomposition and does not generate rank-deficient solutions. In fact, we prove that the solutions of MaxVol NMF with the largest volume correspond to clustering the columns of $X$ in disjoint clusters, while the solutions of MinVol NMF with smallest volume are rank deficient. We propose two algorithms to solve MaxVol NMF. We also present a normalized variant of MaxVol NMF that exhibits better performance than MinVol NMF and MaxVol NMF, and can be interpreted as a continuum between standard NMF and orthogonal NMF. We illustrate our results in the context of hyperspectral unmixing.
comment: arXiv admin note: substantial text overlap with arXiv:2412.06380 (this paper is an updated version of Chapter 7 of the thesis of the first author, available from arXiv:2412.06380). The code is available from https://gitlab.com/vuthanho/maxvolmf.jl
Multimedia 8
☆ XEmoGPT: An Explainable Multimodal Emotion Recognition Framework with Cue-Level Perception and Reasoning
Explainable Multimodal Emotion Recognition plays a crucial role in applications such as human-computer interaction and social media analytics. However, current approaches struggle with cue-level perception and reasoning due to two main challenges: 1) general-purpose modality encoders are pretrained to capture global structures and general semantics rather than fine-grained emotional cues, resulting in limited sensitivity to emotional signals; and 2) available datasets usually involve a trade-off between annotation quality and scale, which leads to insufficient supervision for emotional cues and ultimately limits cue-level reasoning. Moreover, existing evaluation metrics are inadequate for assessing cue-level reasoning performance. To address these challenges, we propose eXplainable Emotion GPT (XEmoGPT), a novel EMER framework capable of both perceiving and reasoning over emotional cues. It incorporates two specialized modules: the Video Emotional Cue Bridge (VECB) and the Audio Emotional Cue Bridge (AECB), which enhance the video and audio encoders through carefully designed tasks for fine-grained emotional cue perception. To further support cue-level reasoning, we construct a large-scale dataset, EmoCue, designed to teach XEmoGPT how to reason over multimodal emotional cues. In addition, we introduce EmoCue-360, an automated metric that extracts and matches emotional cues using semantic similarity, and release EmoCue-Eval, a benchmark of 400 expert-annotated samples covering diverse emotional scenarios. Experimental results show that XEmoGPT achieves strong performance in both emotional cue perception and reasoning.
☆ Content-Driven Frame-Level Bit Prediction for Rate Control in Versatile Video Coding
Rate control allocates bits efficiently across frames to meet a target bitrate while maintaining quality. Conventional two-pass rate control (2pRC) in Versatile Video Coding (VVC) relies on analytical rate-QP models, which often fail to capture nonlinear spatial-temporal variations, causing quality instability and high complexity due to multiple trial encodes. This paper proposes a content-adaptive framework that predicts frame-level bit consumption using lightweight features from the Video Complexity Analyzer (VCA) and quantization parameters within a Random Forest regression. On ultra-high-definition sequences encoded with VVenC, the model achieves strong correlation with ground truth, yielding R2 values of 0.93, 0.88, and 0.77 for I-, P-, and B-frames, respectively. Integrated into a rate-control loop, it achieves comparable coding efficiency to 2pRC while reducing total encoding time by 33.3%. The results show that VCA-driven bit prediction provides a computationally efficient and accurate alternative to conventional rate-QP models.
comment: 2026 IEEE International Symposium on Circuits and Systems (ISCAS)
☆ ALIEN: Analytic Latent Watermarking for Controllable Generation
Watermarking is a technical alternative to safeguarding intellectual property and reducing misuse. Existing methods focus on optimizing watermarked latent variables to balance watermark robustness and fidelity, as Latent diffusion models (LDMs) are considered a powerful tool for generative tasks. However, reliance on computationally intensive heuristic optimization for iterative signal refinement results in high training overhead and local optima entrapment.To address these issues, we propose an \underline{A}na\underline{l}ytical Watermark\underline{i}ng Framework for Controllabl\underline{e} Generatio\underline{n} (ALIEN). We develop the first analytical derivation of the time-dependent modulation coefficient that guides the diffusion of watermark residuals to achieve controllable watermark embedding pattern.Experimental results show that ALIEN-Q outperforms the state-of-the-art by 33.1\% across 5 quality metrics, and ALIEN-R demonstrates 14.0\% improved robustness against generative variant and stability threats compared to the state-of-the-art across 15 distinct conditions. Code can be available at https://anonymous.4open.science/r/ALIEN/.
☆ Adaptive Resolution and Chroma Subsampling for Energy-Efficient Video Coding
Conventional video encoders typically employ a fixed chroma subsampling format, such as YUV420, which may not optimally reflect variations in chroma detail across different types of content. This can lead to suboptimal chroma quality and inefficiencies in bitrate allocation. We propose an Adaptive Resolution-Chroma Subsampling (ARCS) framework that jointly optimizes spatial resolution and chroma subsampling to balance perceptual quality and decoding efficiency. ARCS selects an optimal (resolution, chroma format) pair for each bitrate by maximizing a composite quality-complexity objective, while enforcing monotonicity constraints to ensure smooth transitions between representations. Experimental results using x265 show that, compared to a fixed-format encoding (YUV444), on average, ARCS achieves a 13.48 % bitrate savings and a 62.18 % reduction in decoding time, which we use as a proxy for the decoding energy, to yield the same colorVideoVDP score. The proposed framework introduces chroma adaptivity as a new control dimension for energy-efficient video streaming.
comment: 2026 IEEE International Symposium on Circuits and Systems (ISCAS)
☆ Video-based Music Generation
As the volume of video content on the internet grows rapidly, finding a suitable soundtrack remains a significant challenge. This thesis presents EMSYNC (EMotion and SYNChronization), a fast, free, and automatic solution that generates music tailored to the input video, enabling content creators to enhance their productions without composing or licensing music. Our model creates music that is emotionally and rhythmically synchronized with the video. A core component of EMSYNC is a novel video emotion classifier. By leveraging pretrained deep neural networks for feature extraction and keeping them frozen while training only fusion layers, we reduce computational complexity while improving accuracy. We show the generalization abilities of our method by obtaining state-of-the-art results on Ekman-6 and MovieNet. Another key contribution is a large-scale, emotion-labeled MIDI dataset for affective music generation. We then present an emotion-based MIDI generator, the first to condition on continuous emotional values rather than discrete categories, enabling nuanced music generation aligned with complex emotional content. To enhance temporal synchronization, we introduce a novel temporal boundary conditioning method, called "boundary offset encodings," aligning musical chords with scene changes. Combining video emotion classification, emotion-based music generation, and temporal boundary conditioning, EMSYNC emerges as a fully automatic video-based music generator. User studies show that it consistently outperforms existing methods in terms of music richness, emotional alignment, temporal synchronization, and overall preference, setting a new state-of-the-art in video-based music generation.
comment: PhD thesis, University of Porto
♻ ☆ Video Soundtrack Generation by Aligning Emotions and Temporal Boundaries
Providing soundtracks for videos remains a costly and time-consuming challenge for multimedia content creators. We introduce EMSYNC, an automatic video-based symbolic music generator that creates music aligned with a video's emotional content and temporal boundaries. It follows a two-stage framework, where a pretrained video emotion classifier extracts emotional features, and a conditional music generator produces MIDI sequences guided by both emotional and temporal cues. We introduce boundary offsets, a novel temporal conditioning mechanism that enables the model to anticipate upcoming video scene cuts and align generated musical chords with them. We also propose a mapping scheme that bridges the discrete categorical outputs of the video emotion classifier with the continuous valence-arousal inputs required by the emotion-conditioned MIDI generator, enabling seamless integration of emotion information across different representations. Our method outperforms state-of-the-art models in objective and subjective evaluations across different video datasets, demonstrating its effectiveness in generating music aligned to video both emotionally and temporally. Our demo and output samples are available at https://serkansulun.com/emsync.
comment: IEEE Transactions on Multimedia, 2026, in print
Training Data Efficiency in Multimodal Process Reward Models
Multimodal Process Reward Models (MPRMs) are central to step-level supervision for visual reasoning in MLLMs. Training MPRMs typically requires large-scale Monte Carlo (MC)-annotated corpora, incurring substantial training cost. This paper studies the data efficiency for MPRM training. Our preliminary experiments reveal that MPRM training quickly saturates under random subsampling of the training data, indicating substantial redundancy within existing MC-annotated corpora. To explain this, we formalize a theoretical framework and reveal that informative gradient updates depend on two factors: label mixtures of positive/negative steps and label reliability (average MC scores of positive steps). Guided by these insights, we propose the Balanced-Information Score (BIS), which prioritizes both mixture and reliability based on existing MC signals at the rollout level, without incurring any additional cost. Across two backbones (InternVL2.5-8B and Qwen2.5-VL-7B) on VisualProcessBench, BIS-selected subsets consistently match and even surpass the full-data performance at small fractions. Notably, the BIS subset reaches full-data performance using only 10% of the training data, improving over random subsampling by a relative 4.1%.
♻ ☆ Sounding Highlights: Dual-Pathway Audio Encoders for Audio-Visual Video Highlight Detection ICASSP 2026
Audio-visual video highlight detection aims to automatically identify the most salient moments in videos by leveraging both visual and auditory cues. However, existing models often underutilize the audio modality, focusing on high-level semantic features while failing to fully leverage the rich, dynamic characteristics of sound. To address this limitation, we propose a novel framework, Dual-Pathway Audio Encoders for Video Highlight Detection (DAViHD). The dual-pathway audio encoder is composed of a semantic pathway for content understanding and a dynamic pathway that captures spectro-temporal dynamics. The semantic pathway extracts high-level information by identifying the content within the audio, such as speech, music, or specific sound events. The dynamic pathway employs a frequency-adaptive mechanism as time evolves to jointly model these dynamics, enabling it to identify transient acoustic events via salient spectral bands and rapid energy changes. We integrate the novel audio encoder into a full audio-visual framework and achieve new state-of-the-art performance on the large-scale MrHiSum benchmark. Our results demonstrate that a sophisticated, dual-faceted audio representation is key to advancing the field of highlight detection.
comment: 5 pages, 2 figures, to appear in ICASSP 2026
Artificial Intelligent 293
☆ Shared LoRA Subspaces for almost Strict Continual Learning
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.
☆ DyTopo: Dynamic Topology Routing for Multi-Agent Reasoning via Semantic Matching
Multi-agent systems built from prompted large language models can improve multi-round reasoning, yet most existing pipelines rely on fixed, trajectory-wide communication patterns that are poorly matched to the stage-dependent needs of iterative problem solving. We introduce DyTopo, a manager-guided multi-agent framework that reconstructs a sparse directed communication graph at each round. Conditioned on the manager's round goal, each agent outputs lightweight natural-language query (need) and \key (offer) descriptors; DyTopo embeds these descriptors and performs semantic matching, routing private messages only along the induced edges. Across code generation and mathematical reasoning benchmarks and four LLM backbones, DyTopo consistently outperforms over the strongest baseline (avg. +6.2). Beyond accuracy, DyTopo yields an interpretable coordination trace via the evolving graphs, enabling qualitative inspection of how communication pathways reconfigure across rounds.
☆ CommCP: Efficient Multi-Agent Coordination via LLM-Based Communication with Conformal Prediction
To complete assignments provided by humans in natural language, robots must interpret commands, generate and answer relevant questions for scene understanding, and manipulate target objects. Real-world deployments often require multiple heterogeneous robots with different manipulation capabilities to handle different assignments cooperatively. Beyond the need for specialized manipulation skills, effective information gathering is important in completing these assignments. To address this component of the problem, we formalize the information-gathering process in a fully cooperative setting as an underexplored multi-agent multi-task Embodied Question Answering (MM-EQA) problem, which is a novel extension of canonical Embodied Question Answering (EQA), where effective communication is crucial for coordinating efforts without redundancy. To address this problem, we propose CommCP, a novel LLM-based decentralized communication framework designed for MM-EQA. Our framework employs conformal prediction to calibrate the generated messages, thereby minimizing receiver distractions and enhancing communication reliability. To evaluate our framework, we introduce an MM-EQA benchmark featuring diverse, photo-realistic household scenarios with embodied questions. Experimental results demonstrate that CommCP significantly enhances the task success rate and exploration efficiency over baselines. The experiment videos, code, and dataset are available on our project website: https://comm-cp.github.io.
comment: IEEE International Conference on Robotics and Automation (ICRA 2026); Project Website: https://comm-cp.github.io/
☆ Learning Query-Aware Budget-Tier Routing for Runtime Agent Memory
Memory is increasingly central to Large Language Model (LLM) agents operating beyond a single context window, yet most existing systems rely on offline, query-agnostic memory construction that can be inefficient and may discard query-critical information. Although runtime memory utilization is a natural alternative, prior work often incurs substantial overhead and offers limited explicit control over the performance-cost trade-off. In this work, we present \textbf{BudgetMem}, a runtime agent memory framework for explicit, query-aware performance-cost control. BudgetMem structures memory processing as a set of memory modules, each offered in three budget tiers (i.e., \textsc{Low}/\textsc{Mid}/\textsc{High}). A lightweight router performs budget-tier routing across modules to balance task performance and memory construction cost, which is implemented as a compact neural policy trained with reinforcement learning. Using BudgetMem as a unified testbed, we study three complementary strategies for realizing budget tiers: implementation (method complexity), reasoning (inference behavior), and capacity (module model size). Across LoCoMo, LongMemEval, and HotpotQA, BudgetMem surpasses strong baselines when performance is prioritized (i.e., high-budget setting), and delivers better accuracy-cost frontiers under tighter budgets. Moreover, our analysis disentangles the strengths and weaknesses of different tiering strategies, clarifying when each axis delivers the most favorable trade-offs under varying budget regimes.
comment: Code is available at https://github.com/ViktorAxelsen/BudgetMem
☆ Learning Event-Based Shooter Models from Virtual Reality Experiments
Virtual reality (VR) has emerged as a powerful tool for evaluating school security measures in high-risk scenarios such as school shootings, offering experimental control and high behavioral fidelity. However, assessing new interventions in VR requires recruiting new participant cohorts for each condition, making large-scale or iterative evaluation difficult. These limitations are especially restrictive when attempting to learn effective intervention strategies, which typically require many training episodes. To address this challenge, we develop a data-driven discrete-event simulator (DES) that models shooter movement and in-region actions as stochastic processes learned from participant behavior in VR studies. We use the simulator to examine the impact of a robot-based shooter intervention strategy. Once shown to reproduce key empirical patterns, the DES enables scalable evaluation and learning of intervention strategies that are infeasible to train directly with human subjects. Overall, this work demonstrates a high-to-mid fidelity simulation workflow that provides a scalable surrogate for developing and evaluating autonomous school-security interventions.
comment: Preprint under review for conference publication. 9 pages, 4 figures, 4 tables
☆ Correctness-Optimized Residual Activation Lens (CORAL): Transferrable and Calibration-Aware Inference-Time Steering
Large language models (LLMs) exhibit persistent miscalibration, especially after instruction tuning and preference alignment. Modified training objectives can improve calibration, but retraining is expensive. Inference-time steering offers a lightweight alternative, yet most existing methods optimize proxies for correctness rather than correctness itself. We introduce CORAL (Correctness-Optimized Residual Activation Lens), a regularized inference-time steering method that captures distributed correctness signals from model internal activations using weight-decay MLP probes. We evaluate CORAL across three 7B-parameter models and find that it consistently improves accuracy by 10\% and expected calibration error (ECE) by 50\% on average. We additionally demonstrate that these gains transfer without retraining to the complete published test sets of four held-out benchmarks (ARC-Challenge, HellaSwag, Math-MC, OpenBookQA), averaging 14\% accuracy improvements and 49\% ECE improvements. Our results support the hypothesis that distributed information in model internals can be extracted using regularized probes when individual neurons are insufficient. CORAL thus provides a compute-efficient, transferable, and calibration-aware approach to improve MCQA performance during inference.
☆ Optimism Stabilizes Thompson Sampling for Adaptive Inference
Thompson sampling (TS) is widely used for stochastic multi-armed bandits, yet its inferential properties under adaptive data collection are subtle. Classical asymptotic theory for sample means can fail because arm-specific sample sizes are random and coupled with the rewards through the action-selection rule. We study this phenomenon in the $K$-armed Gaussian bandit and identify \emph{optimism} as a key mechanism for restoring \emph{stability}, a sufficient condition for valid asymptotic inference requiring each arm's pull count to concentrate around a deterministic scale. First, we prove that variance-inflated TS \citep{halder2025stable} is stable for any $K \ge 2$, including the challenging regime where multiple arms are optimal. This resolves the open question raised by \citet{halder2025stable} through extending their results from the two-armed setting to the general $K$-armed setting. Second, we analyze an alternative optimistic modification that keeps the posterior variance unchanged but adds an explicit mean bonus to posterior mean, and establish the same stability conclusion. In summary, suitably implemented optimism stabilizes Thompson sampling and enables asymptotically valid inference in multi-armed bandits, while incurring only a mild additional regret cost.
☆ GenArena: How Can We Achieve Human-Aligned Evaluation for Visual Generation Tasks?
The rapid advancement of visual generation models has outpaced traditional evaluation approaches, necessitating the adoption of Vision-Language Models as surrogate judges. In this work, we systematically investigate the reliability of the prevailing absolute pointwise scoring standard, across a wide spectrum of visual generation tasks. Our analysis reveals that this paradigm is limited due to stochastic inconsistency and poor alignment with human perception. To resolve these limitations, we introduce GenArena, a unified evaluation framework that leverages a pairwise comparison paradigm to ensure stable and human-aligned evaluation. Crucially, our experiments uncover a transformative finding that simply adopting this pairwise protocol enables off-the-shelf open-source models to outperform top-tier proprietary models. Notably, our method boosts evaluation accuracy by over 20% and achieves a Spearman correlation of 0.86 with the authoritative LMArena leaderboard, drastically surpassing the 0.36 correlation of pointwise methods. Based on GenArena, we benchmark state-of-the-art visual generation models across diverse tasks, providing the community with a rigorous and automated evaluation standard for visual generation.
comment: Project Page: https://genarena.github.io/, Code: https://github.com/ruihanglix/genarena
☆ AgenticPay: A Multi-Agent LLM Negotiation System for Buyer-Seller Transactions
Large language model (LLM)-based agents are increasingly expected to negotiate, coordinate, and transact autonomously, yet existing benchmarks lack principled settings for evaluating language-mediated economic interaction among multiple agents. We introduce AgenticPay, a benchmark and simulation framework for multi-agent buyer-seller negotiation driven by natural language. AgenticPay models markets in which buyers and sellers possess private constraints and product-dependent valuations, and must reach agreements through multi-round linguistic negotiation rather than numeric bidding alone. The framework supports a diverse suite of over 110 tasks ranging from bilateral bargaining to many-to-many markets, with structured action extraction and metrics for feasibility, efficiency, and welfare. Benchmarking state-of-the-art proprietary and open-weight LLMs reveals substantial gaps in negotiation performance and highlights challenges in long-horizon strategic reasoning, establishing AgenticPay as a foundation for studying agentic commerce and language-based market interaction. Code and dataset are available at the link: https://github.com/SafeRL-Lab/AgenticPay.
☆ Speech Emotion Recognition Leveraging OpenAI's Whisper Representations and Attentive Pooling Methods
Speech Emotion Recognition (SER) research has faced limitations due to the lack of standard and sufficiently large datasets. Recent studies have leveraged pre-trained models to extract features for downstream tasks such as SER. This work explores the capabilities of Whisper, a pre-trained ASR system, in speech emotion recognition by proposing two attention-based pooling methods, Multi-head Attentive Average Pooling and QKV Pooling, designed to efficiently reduce the dimensionality of Whisper representations while preserving emotional features. We experiment on English and Persian, using the IEMOCAP and ShEMO datasets respectively, with Whisper Tiny and Small. Our multi-head QKV architecture achieves state-of-the-art results on the ShEMO dataset, with a 2.47% improvement in unweighted accuracy. We further compare the performance of different Whisper encoder layers and find that intermediate layers often perform better for SER on the Persian dataset, providing a lightweight and efficient alternative to much larger models such as HuBERT X-Large. Our findings highlight the potential of Whisper as a representation extractor for SER and demonstrate the effectiveness of attention-based pooling for dimension reduction.
☆ Diamond Maps: Efficient Reward Alignment via Stochastic Flow Maps
Flow and diffusion models produce high-quality samples, but adapting them to user preferences or constraints post-training remains costly and brittle, a challenge commonly called reward alignment. We argue that efficient reward alignment should be a property of the generative model itself, not an afterthought, and redesign the model for adaptability. We propose "Diamond Maps", stochastic flow map models that enable efficient and accurate alignment to arbitrary rewards at inference time. Diamond Maps amortize many simulation steps into a single-step sampler, like flow maps, while preserving the stochasticity required for optimal reward alignment. This design makes search, sequential Monte Carlo, and guidance scalable by enabling efficient and consistent estimation of the value function. Our experiments show that Diamond Maps can be learned efficiently via distillation from GLASS Flows, achieve stronger reward alignment performance, and scale better than existing methods. Our results point toward a practical route to generative models that can be rapidly adapted to arbitrary preferences and constraints at inference time.
☆ RISE-Video: Can Video Generators Decode Implicit World Rules?
While generative video models have achieved remarkable visual fidelity, their capacity to internalize and reason over implicit world rules remains a critical yet under-explored frontier. To bridge this gap, we present RISE-Video, a pioneering reasoning-oriented benchmark for Text-Image-to-Video (TI2V) synthesis that shifts the evaluative focus from surface-level aesthetics to deep cognitive reasoning. RISE-Video comprises 467 meticulously human-annotated samples spanning eight rigorous categories, providing a structured testbed for probing model intelligence across diverse dimensions, ranging from commonsense and spatial dynamics to specialized subject domains. Our framework introduces a multi-dimensional evaluation protocol consisting of four metrics: \textit{Reasoning Alignment}, \textit{Temporal Consistency}, \textit{Physical Rationality}, and \textit{Visual Quality}. To further support scalable evaluation, we propose an automated pipeline leveraging Large Multimodal Models (LMMs) to emulate human-centric assessment. Extensive experiments on 11 state-of-the-art TI2V models reveal pervasive deficiencies in simulating complex scenarios under implicit constraints, offering critical insights for the advancement of future world-simulating generative models.
comment: 38 pages, 16 figures, 3 tables; Code: https://github.com/VisionXLab/RISE-Video; HuggingFace: https://huggingface.co/datasets/VisionXLab/RISE-Video
☆ Geographically-aware Transformer-based Traffic Forecasting for Urban Motorway Digital Twins
The operational effectiveness of digital-twin technology in motorway traffic management depends on the availability of a continuous flow of high-resolution real-time traffic data. To function as a proactive decision-making support layer within traffic management, a digital twin must also incorporate predicted traffic conditions in addition to real-time observations. Due to the spatio-temporal complexity and the time-variant, non-linear nature of traffic dynamics, predicting motorway traffic remains a difficult problem. Sequence-based deep-learning models offer clear advantages over classical machine learning and statistical models in capturing long-range, temporal dependencies in time-series traffic data, yet limitations in forecasting accuracy and model complexity point to the need for further improvements. To improve motorway traffic forecasting, this paper introduces a Geographically-aware Transformer-based Traffic Forecasting GATTF model, which exploits the geographical relationships between distributed sensors using their mutual information (MI). The model has been evaluated using real-time data from the Geneva motorway network in Switzerland and results confirm that incorporating geographical awareness through MI enhances the accuracy of GATTF forecasting compared to a standard Transformer, without increasing model complexity.
comment: IEEE IV2026 37th IEEE Intelligent Vehicles Symposium
☆ Clifford Kolmogorov-Arnold Networks
We introduce Clifford Kolmogorov-Arnold Network (ClKAN), a flexible and efficient architecture for function approximation in arbitrary Clifford algebra spaces. We propose the use of Randomized Quasi Monte Carlo grid generation as a solution to the exponential scaling associated with higher dimensional algebras. Our ClKAN also introduces new batch normalization strategies to deal with variable domain input. ClKAN finds application in scientific discovery and engineering, and is validated in synthetic and physics inspired tasks.
comment: This work has been submitted to the IEEE for possible publication
☆ Inverse Depth Scaling From Most Layers Being Similar
Neural scaling laws relate loss to model size in large language models (LLMs), yet depth and width may contribute to performance differently, requiring more detailed studies. Here, we quantify how depth affects loss via analysis of LLMs and toy residual networks. We find loss scales inversely proportional to depth in LLMs, probably due to functionally similar layers reducing error through ensemble averaging rather than compositional learning or discretizing smooth dynamics. This regime is inefficient yet robust and may arise from the architectural bias of residual networks and target functions incompatible with smooth dynamics. The findings suggest that improving LLM efficiency may require architectural innovations to encourage compositional use of depth.
comment: 23 pages, 24 figures
☆ LSA: Localized Semantic Alignment for Enhancing Temporal Consistency in Traffic Video Generation
Controllable video generation has emerged as a versatile tool for autonomous driving, enabling realistic synthesis of traffic scenarios. However, existing methods depend on control signals at inference time to guide the generative model towards temporally consistent generation of dynamic objects, limiting their utility as scalable and generalizable data engines. In this work, we propose Localized Semantic Alignment (LSA), a simple yet effective framework for fine-tuning pre-trained video generation models. LSA enhances temporal consistency by aligning semantic features between ground-truth and generated video clips. Specifically, we compare the output of an off-the-shelf feature extraction model between the ground-truth and generated video clips localized around dynamic objects inducing a semantic feature consistency loss. We fine-tune the base model by combining this loss with the standard diffusion loss. The model fine-tuned for a single epoch with our novel loss outperforms the baselines in common video generation evaluation metrics. To further test the temporal consistency in generated videos we adapt two additional metrics from object detection task, namely mAP and mIoU. Extensive experiments on nuScenes and KITTI datasets show the effectiveness of our approach in enhancing temporal consistency in video generation without the need for external control signals during inference and any computational overheads.
comment: Accepted to IEEE IV 2026. 8 pages, 3 figures. Code available at https://github.com/mirlanium/LSA
☆ Learning to Share: Selective Memory for Efficient Parallel Agentic Systems
Agentic systems solve complex tasks by coordinating multiple agents that iteratively reason, invoke tools, and exchange intermediate results. To improve robustness and solution quality, recent approaches deploy multiple agent teams running in parallel to explore diverse reasoning trajectories. However, parallel execution comes at a significant computational cost: when different teams independently reason about similar sub-problems or execute analogous steps, they repeatedly perform substantial overlapping computation. To address these limitations, in this paper, we propose Learning to Share (LTS), a learned shared-memory mechanism for parallel agentic frameworks that enables selective cross-team information reuse while controlling context growth. LTS introduces a global memory bank accessible to all teams and a lightweight controller that decides whether intermediate agent steps should be added to memory or not. The controller is trained using stepwise reinforcement learning with usage-aware credit assignment, allowing it to identify information that is globally useful across parallel executions. Experiments on the AssistantBench and GAIA benchmarks show that LTS significantly reduces overall runtime while matching or improving task performance compared to memory-free parallel baselines, demonstrating that learned memory admission is an effective strategy for improving the efficiency of parallel agentic systems. Project page: https://joefioresi718.github.io/LTS_webpage/
☆ Better Source, Better Flow: Learning Condition-Dependent Source Distribution for Flow Matching
Flow matching has recently emerged as a promising alternative to diffusion-based generative models, particularly for text-to-image generation. Despite its flexibility in allowing arbitrary source distributions, most existing approaches rely on a standard Gaussian distribution, a choice inherited from diffusion models, and rarely consider the source distribution itself as an optimization target in such settings. In this work, we show that principled design of the source distribution is not only feasible but also beneficial at the scale of modern text-to-image systems. Specifically, we propose learning a condition-dependent source distribution under flow matching objective that better exploit rich conditioning signals. We identify key failure modes that arise when directly incorporating conditioning into the source, including distributional collapse and instability, and show that appropriate variance regularization and directional alignment between source and target are critical for stable and effective learning. We further analyze how the choice of target representation space impacts flow matching with structured sources, revealing regimes in which such designs are most effective. Extensive experiments across multiple text-to-image benchmarks demonstrate consistent and robust improvements, including up to a 3x faster convergence in FID, highlighting the practical benefits of a principled source distribution design for conditional flow matching.
comment: Project Page: https://junwankimm.github.io/CSFM
☆ Compound Deception in Elite Peer Review: A Failure Mode Taxonomy of 100 Fabricated Citations at NeurIPS 2025
Large language models (LLMs) are increasingly used in academic writing workflows, yet they frequently hallucinate by generating citations to sources that do not exist. This study analyzes 100 AI-generated hallucinated citations that appeared in papers accepted by the 2025 Conference on Neural Information Processing Systems (NeurIPS), one of the world's most prestigious AI conferences. Despite review by 3-5 expert researchers per paper, these fabricated citations evaded detection, appearing in 53 published papers (approx. 1% of all accepted papers). We develop a five-category taxonomy that classifies hallucinations by their failure mode: Total Fabrication (66%), Partial Attribute Corruption (27%), Identifier Hijacking (4%), Placeholder Hallucination (2%), and Semantic Hallucination (1%). Our analysis reveals a critical finding: every hallucination (100%) exhibited compound failure modes. The distribution of secondary characteristics was dominated by Semantic Hallucination (63%) and Identifier Hijacking (29%), which often appeared alongside Total Fabrication to create a veneer of plausibility and false verifiability. These compound structures exploit multiple verification heuristics simultaneously, explaining why peer review fails to detect them. The distribution exhibits a bimodal pattern: 92% of contaminated papers contain 1-2 hallucinations (minimal AI use) while 8% contain 4-13 hallucinations (heavy reliance). These findings demonstrate that current peer review processes do not include effective citation verification and that the problem extends beyond NeurIPS to other major conferences, government reports, and professional consulting. We propose mandatory automated citation verification at submission as an implementable solution to prevent fabricated citations from becoming normalized in scientific literature.
☆ Quantum Reinforcement Learning with Transformers for the Capacitated Vehicle Routing Problem
This paper addresses the Capacitated Vehicle Routing Problem (CVRP) by comparing classical and quantum Reinforcement Learning (RL) approaches. An Advantage Actor-Critic (A2C) agent is implemented in classical, full quantum, and hybrid variants, integrating transformer architectures to capture the relationships between vehicles, clients, and the depot through self- and cross-attention mechanisms. The experiments focus on multi-vehicle scenarios with capacity constraints, considering 20 clients and 4 vehicles, and are conducted over ten independent runs. Performance is assessed using routing distance, route compactness, and route overlap. The results show that all three approaches are capable of learning effective routing policies. However, quantum-enhanced models outperform the classical baseline and produce more robust route organization, with the hybrid architecture achieving the best overall performance across distance, compactness, and route overlap. In addition to quantitative improvements, qualitative visualizations reveal that quantum-based models generate more structured and coherent routing solutions. These findings highlight the potential of hybrid quantum-classical reinforcement learning models for addressing complex combinatorial optimization problems such as the CVRP.
comment: 22 pages, 12 figures
☆ Verification of the Implicit World Model in a Generative Model via Adversarial Sequences ICLR 2026
Generative sequence models are typically trained on sample sequences from natural or formal languages. It is a crucial question whether -- or to what extent -- sample-based training is able to capture the true structure of these languages, often referred to as the ``world model''. Theoretical results indicate that we can hope for soundness at best, that is, generating valid sequences, but not necessarily all of them. However, it is still important to have practical tools that are able to verify whether a given sequence model is sound. In this study, we focus on chess, as it is a domain that provides enough complexity while having a simple rule-based world model. We propose adversarial sequence generation for verifying the soundness of the sequence model. Our adversaries generate valid sequences so as to force the sequence model to generate an invalid next move prediction. Apart from the falsification of soundness, this method is also suitable for a more fine-grained analysis of the failure modes and the effects of different choices during training. To demonstrate this, we propose a number of methods for adversarial sequence generation and evaluate the approach on a large set of chess models. We train models on random as well as high-quality chess games, using several training recipes. We find that none of the models are sound, but some training techniques and dataset choices are able to improve soundness remarkably. We also investigate the potential application of board state probes in both our training and attack methods. Our findings indicate that the extracted board states have no causal role in next token prediction in most of the models.
comment: Accepted at ICLR 2026. Code, datasets, and models are available at https://github.com/szegedai/world-model-verification
☆ Regularized Calibration with Successive Rounding for Post-Training Quantization
Large language models (LLMs) deliver robust performance across diverse applications, yet their deployment often faces challenges due to the memory and latency costs of storing and accessing billions of parameters. Post-training quantization (PTQ) enables efficient inference by mapping pretrained weights to low-bit formats without retraining, but its effectiveness depends critically on both the quantization objective and the rounding procedure used to obtain low-bit weight representations. In this work, we show that interpolating between symmetric and asymmetric calibration acts as a form of regularization that preserves the standard quadratic structure used in PTQ while providing robustness to activation mismatch. Building on this perspective, we derive a simple successive rounding procedure that naturally incorporates asymmetric calibration, as well as a bounded-search extension that allows for an explicit trade-off between quantization quality and the compute cost. Experiments across multiple LLM families, quantization bit-widths, and benchmarks demonstrate that the proposed bounded search based on a regularized asymmetric calibration objective consistently improves perplexity and accuracy over PTQ baselines, while incurring only modest and controllable additional computational cost.
☆ Parity, Sensitivity, and Transformers
The transformer architecture is almost a decade old. Despite that, we still have a limited understanding of what this architecture can or cannot compute. For instance, can a 1-layer transformer solve PARITY -- or more generally -- which kinds of transformers can do it? Known constructions for PARITY have at least 2 layers and employ impractical features: either a length-dependent positional encoding, or hardmax, or layernorm without the regularization parameter, or they are not implementable with causal masking. We give a new construction of a transformer for PARITY with softmax, length-independent and polynomially bounded positional encoding, no layernorm, working both with and without causal masking. We also give the first lower bound for transformers solving PARITY -- by showing that it cannot be done with only one layer and one head.
comment: 15 pages
☆ Metric Hedonic Games on the Line
Hedonic games are fundamental models for investigating the formation of coalitions among a set of strategic agents, where every agent has a certain utility for every possible coalition of agents it can be part of. To avoid the intractability of defining exponentially many utilities for all possible coalitions, many variants with succinct representations of the agents' utility functions have been devised and analyzed, e.g., modified fractional hedonic games by Monaco et al. [JAAMAS 2020]. We extend this by studying a novel succinct variant that is related to modified fractional hedonic games. In our model, each agent has a fixed type-value and an agent's cost for some given coalition is based on the differences between its value and those of the other members of its coalition. This allows to model natural situations like athletes forming training groups with similar performance levels or voters that partition themselves along a political spectrum. In particular, we investigate natural variants where an agent's cost is defined by distance thresholds, or by the maximum or average value difference to the other agents in its coalition. For these settings, we study the existence of stable coalition structures, their properties, and their quality in terms of the price of anarchy and the price of stability. Further, we investigate the impact of limiting the maximum number of coalitions. Despite the simple setting with metric distances on a line, we uncover a rich landscape of models, partially with counter-intuitive behavior. Also, our focus on both swap stability and jump stability allows us to study the influence of fixing the number and the size of the coalitions. Overall, we find that stable coalition structures always exist but that their properties and quality can vary widely.
comment: accepted at AAMAS 2026, full version
☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr.Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr.Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
☆ Neural Implicit 3D Cardiac Shape Reconstruction from Sparse CT Angiography Slices Mimicking 2D Transthoracic Echocardiography Views
Accurate 3D representations of cardiac structures allow quantitative analysis of anatomy and function. In this work, we propose a method for reconstructing complete 3D cardiac shapes from segmentations of sparse planes in CT angiography (CTA) for application in 2D transthoracic echocardiography (TTE). Our method uses a neural implicit function to reconstruct the 3D shape of the cardiac chambers and left-ventricle myocardium from sparse CTA planes. To investigate the feasibility of achieving 3D reconstruction from 2D TTE, we select planes that mimic the standard apical 2D TTE views. During training, a multi-layer perceptron learns shape priors from 3D segmentations of the target structures in CTA. At test time, the network reconstructs 3D cardiac shapes from segmentations of TTE-mimicking CTA planes by jointly optimizing the latent code and the rigid transforms that map the observed planes into 3D space. For each heart, we simulate four realistic apical views, and we compare reconstructed multi-class volumes with the reference CTA volumes. On a held-out set of CTA segmentations, our approach achieves an average Dice coefficient of 0.86 $\pm$ 0.04 across all structures. Our method also achieves markedly lower volume errors than the clinical standard, Simpson's biplane rule: 4.88 $\pm$ 4.26 mL vs. 8.14 $\pm$ 6.04 mL, respectively, for the left ventricle; and 6.40 $\pm$ 7.37 mL vs. 37.76 $\pm$ 22.96 mL, respectively, for the left atrium. This suggests that our approach offers a viable route to more accurate 3D chamber quantification in 2D transthoracic echocardiography.
☆ A Guide to Large Language Models in Modeling and Simulation: From Core Techniques to Critical Challenges
Large language models (LLMs) have rapidly become familiar tools to researchers and practitioners. Concepts such as prompting, temperature, or few-shot examples are now widely recognized, and LLMs are increasingly used in Modeling & Simulation (M&S) workflows. However, practices that appear straightforward may introduce subtle issues, unnecessary complexity, or may even lead to inferior results. Adding more data can backfire (e.g., deteriorating performance through model collapse or inadvertently wiping out existing guardrails), spending time on fine-tuning a model can be unnecessary without a prior assessment of what it already knows, setting the temperature to 0 is not sufficient to make LLMs deterministic, providing a large volume of M&S data as input can be excessive (LLMs cannot attend to everything) but naive simplifications can lose information. We aim to provide comprehensive and practical guidance on how to use LLMs, with an emphasis on M&S applications. We discuss common sources of confusion, including non-determinism, knowledge augmentation (including RAG and LoRA), decomposition of M&S data, and hyper-parameter settings. We emphasize principled design choices, diagnostic strategies, and empirical evaluation, with the goal of helping modelers make informed decisions about when, how, and whether to rely on LLMs.
comment: Book chapter. Accepted in Artificial Intelligence in Modeling and Simulation, Philippe J. Giabbanelli and Istvan David (eds). Series on Simulation Foundations, Methods and Applications. Springer, Cham. Series ISSN: 2195-2817
☆ EuroLLM-22B: Technical Report
This report presents EuroLLM-22B, a large language model trained from scratch to support the needs of European citizens by covering all 24 official European Union languages and 11 additional languages. EuroLLM addresses the issue of European languages being underrepresented and underserved in existing open large language models. We provide a comprehensive overview of EuroLLM-22B's development, including tokenizer design, architectural specifications, data filtering, and training procedures. Across a broad set of multilingual benchmarks, EuroLLM-22B demonstrates strong performance in reasoning, instruction following, and translation, achieving results competitive with models of comparable size. To support future research, we release our base and instruction-tuned models, our multilingual web pretraining data and updated EuroBlocks instruction datasets, as well as our pre-training and evaluation codebases.
☆ Agent2Agent Threats in Safety-Critical LLM Assistants: A Human-Centric Taxonomy
The integration of Large Language Model (LLM)-based conversational agents into vehicles creates novel security challenges at the intersection of agentic AI, automotive safety, and inter-agent communication. As these intelligent assistants coordinate with external services via protocols such as Google's Agent-to-Agent (A2A), they establish attack surfaces where manipulations can propagate through natural language payloads, potentially causing severe consequences ranging from driver distraction to unauthorized vehicle control. Existing AI security frameworks, while foundational, lack the rigorous "separation of concerns" standard in safety-critical systems engineering by co-mingling the concepts of what is being protected (assets) with how it is attacked (attack paths). This paper addresses this methodological gap by proposing a threat modeling framework called AgentHeLLM (Agent Hazard Exploration for LLM Assistants) that formally separates asset identification from attack path analysis. We introduce a human-centric asset taxonomy derived from harm-oriented "victim modeling" and inspired by the Universal Declaration of Human Rights, and a formal graph-based model that distinguishes poison paths (malicious data propagation) from trigger paths (activation actions). We demonstrate the framework's practical applicability through an open-source attack path suggestion tool AgentHeLLM Attack Path Generator that automates multi-stage threat discovery using a bi-level search strategy.
☆ Beyond Manual Planning: Seating Allocation for Large Organizations
We introduce the Hierarchical Seating Allocation Problem (HSAP) which addresses the optimal assignment of hierarchically structured organizational teams to physical seating arrangements on a floor plan. This problem is driven by the necessity for large organizations with large hierarchies to ensure that teams with close hierarchical relationships are seated in proximity to one another, such as ensuring a research group occupies a contiguous area. Currently, this problem is managed manually leading to infrequent and suboptimal replanning efforts. To alleviate this manual process, we propose an end-to-end framework to solve the HSAP. A scalable approach to calculate the distance between any pair of seats using a probabilistic road map (PRM) and rapidly-exploring random trees (RRT) which is combined with heuristic search and dynamic programming approach to solve the HSAP using integer programming. We demonstrate our approach under different sized instances by evaluating the PRM framework and subsequent allocations both quantitatively and qualitatively.
☆ xList-Hate: A Checklist-Based Framework for Interpretable and Generalizable Hate Speech Detection
Hate speech detection is commonly framed as a direct binary classification problem despite being a composite concept defined through multiple interacting factors that vary across legal frameworks, platform policies, and annotation guidelines. As a result, supervised models often overfit dataset-specific definitions and exhibit limited robustness under domain shift and annotation noise. We introduce xList-Hate, a diagnostic framework that decomposes hate speech detection into a checklist of explicit, concept-level questions grounded in widely shared normative criteria. Each question is independently answered by a large language model (LLM), producing a binary diagnostic representation that captures hateful content features without directly predicting the final label. These diagnostic signals are then aggregated by a lightweight, fully interpretable decision tree, yielding transparent and auditable predictions. We evaluate it across multiple hate speech benchmarks and model families, comparing it against zero-shot LLM classification and in-domain supervised fine-tuning. While supervised methods typically maximize in-domain performance, we consistently improves cross-dataset robustness and relative performance under domain shift. In addition, qualitative analysis of disagreement cases provides evidence that the framework can be less sensitive to certain forms of annotation inconsistency and contextual ambiguity. Crucially, the approach enables fine-grained interpretability through explicit decision paths and factor-level analysis. Our results suggest that reframing hate speech detection as a diagnostic reasoning task, rather than a monolithic classification problem, provides a robust, explainable, and extensible alternative for content moderation.
☆ DLM-Scope: Mechanistic Interpretability of Diffusion Language Models via Sparse Autoencoders
Sparse autoencoders (SAEs) have become a standard tool for mechanistic interpretability in autoregressive large language models (LLMs), enabling researchers to extract sparse, human-interpretable features and intervene on model behavior. Recently, as diffusion language models (DLMs) have become an increasingly promising alternative to the autoregressive LLMs, it is essential to develop tailored mechanistic interpretability tools for this emerging class of models. In this work, we present DLM-Scope, the first SAE-based interpretability framework for DLMs, and demonstrate that trained Top-K SAEs can faithfully extract interpretable features. Notably, we find that inserting SAEs affects DLMs differently than autoregressive LLMs: while SAE insertion in LLMs typically incurs a loss penalty, in DLMs it can reduce cross-entropy loss when applied to early layers, a phenomenon absent or markedly weaker in LLMs. Additionally, SAE features in DLMs enable more effective diffusion-time interventions, often outperforming LLM steering. Moreover, we pioneer certain new SAE-based research directions for DLMs: we show that SAEs can provide useful signals for DLM decoding order; and the SAE features are stable during the post-training phase of DLMs. Our work establishes a foundation for mechanistic interpretability in DLMs and shows a great potential of applying SAEs to DLM-related tasks and algorithms.
comment: 23 pages
☆ BABE: Biology Arena BEnchmark
The rapid evolution of large language models (LLMs) has expanded their capabilities from basic dialogue to advanced scientific reasoning. However, existing benchmarks in biology often fail to assess a critical skill required of researchers: the ability to integrate experimental results with contextual knowledge to derive meaningful conclusions. To address this gap, we introduce BABE(Biology Arena BEnchmark), a comprehensive benchmark designed to evaluate the experimental reasoning capabilities of biological AI systems. BABE is uniquely constructed from peer-reviewed research papers and real-world biological studies, ensuring that tasks reflect the complexity and interdisciplinary nature of actual scientific inquiry. BABE challenges models to perform causal reasoning and cross-scale inference. Our benchmark provides a robust framework for assessing how well AI systems can reason like practicing scientists, offering a more authentic measure of their potential to contribute to biological research.
☆ DARWIN: Dynamic Agentically Rewriting Self-Improving Network
DARWIN is an evolutionary GPT model, utilizing a genetic-algorithm like optimization structure with several independent GPT agents being trained individually using unique training code. Each iteration, the GPT models are prompted to modify the training code of one another in an attempt to improve their performance in a mutation-like manner, and the best GPT agents are then benchmarked and selected for the next iteration by genetic algorithm. For demonstration purposes and due to budget and time constraints, OpenAI API is used to prompt training code improvements and the nanoGPT framework is used as the training code. DARWIN also utilizes persistent JSON-based memory files to track previous reasoning and changes to code to correlate with improvement to model performance. and a bidirectional interface for HITL intervention allowing the model to request upgrades such as additional datasets, training scripts, and restructuring of file hierarchies. In experiments, DARWIN achieved a 1.26 percent improvement in model FLOPS utilization (MFU) and a 2.07 percent improvement to perplexity in 5 iterations of training over baseline configurations, demonstrating promising capabilities as a foundation for scaling evolutionary GPT training.
comment: 6 pages, 3 figures, 2 tables
☆ OmniVideo-R1: Reinforcing Audio-visual Reasoning with Query Intention and Modality Attention
While humans perceive the world through diverse modalities that operate synergistically to support a holistic understanding of their surroundings, existing omnivideo models still face substantial challenges on audio-visual understanding tasks. In this paper, we propose OmniVideo-R1, a novel reinforced framework that improves mixed-modality reasoning. OmniVideo-R1 empowers models to "think with omnimodal cues" by two key strategies: (1) query-intensive grounding based on self-supervised learning paradigms; and (2) modality-attentive fusion built upon contrastive learning paradigms. Extensive experiments on multiple benchmarks demonstrate that OmniVideo-R1 consistently outperforms strong baselines, highlighting its effectiveness and robust generalization capabilities.
comment: 19 pages, 12 figures
☆ FHAIM: Fully Homomorphic AIM For Private Synthetic Data Generation
Data is the lifeblood of AI, yet much of the most valuable data remains locked in silos due to privacy and regulations. As a result, AI remains heavily underutilized in many of the most important domains, including healthcare, education, and finance. Synthetic data generation (SDG), i.e. the generation of artificial data with a synthesizer trained on real data, offers an appealing solution to make data available while mitigating privacy concerns, however existing SDG-as-a-service workflow require data holders to trust providers with access to private data.We propose FHAIM, the first fully homomorphic encryption (FHE) framework for training a marginal-based synthetic data generator on encrypted tabular data. FHAIM adapts the widely used AIM algorithm to the FHE setting using novel FHE protocols, ensuring that the private data remains encrypted throughout and is released only with differential privacy guarantees. Our empirical analysis show that FHAIM preserves the performance of AIM while maintaining feasible runtimes.
☆ Learning Compact Boolean Networks
Floating-point neural networks dominate modern machine learning but incur substantial inference cost, motivating interest in Boolean networks for resource-constrained settings. However, learning compact and accurate Boolean networks is challenging due to their combinatorial nature. In this work, we address this challenge from three different angles: learned connections, compact convolutions and adaptive discretization. First, we propose a novel strategy to learn efficient connections with no additional parameters and negligible computational overhead. Second, we introduce a novel convolutional Boolean architecture that exploits the locality with reduced number of Boolean operations than existing methods. Third, we propose an adaptive discretization strategy to reduce the accuracy drop when converting a continuous-valued network into a Boolean one. Extensive results on standard vision benchmarks demonstrate that the Pareto front of accuracy vs. computation of our method significantly outperforms prior state-of-the-art, achieving better accuracy with up to 37x fewer Boolean operations.
☆ TKG-Thinker: Towards Dynamic Reasoning over Temporal Knowledge Graphs via Agentic Reinforcement Learning
Temporal knowledge graph question answering (TKGQA) aims to answer time-sensitive questions by leveraging temporal knowledge bases. While Large Language Models (LLMs) demonstrate significant potential in TKGQA, current prompting strategies constrain their efficacy in two primary ways. First, they are prone to reasoning hallucinations under complex temporal constraints. Second, static prompting limits model autonomy and generalization, as it lack optimization through dynamic interaction with temporal knowledge graphs (TKGs) environments. To address these limitations, we propose \textbf{TKG-Thinker}, a novel agent equipped with autonomous planning and adaptive retrieval capabilities for reasoning over TKGs. Specifically, TKG-Thinker performs in-depth temporal reasoning through dynamic multi-turn interactions with TKGs via a dual-training strategy. We first apply Supervised Fine-Tuning (SFT) with chain-of thought data to instill core planning capabilities, followed by a Reinforcement Learning (RL) stage that leverages multi-dimensional rewards to refine reasoning policies under intricate temporal constraints. Experimental results on benchmark datasets with three open-source LLMs show that TKG-Thinker achieves state-of-the-art performance and exhibits strong generalization across complex TKGQA settings.
☆ STProtein: predicting spatial protein expression from multi-omics data AAAI2026
The integration of spatial multi-omics data from single tissues is crucial for advancing biological research. However, a significant data imbalance impedes progress: while spatial transcriptomics data is relatively abundant, spatial proteomics data remains scarce due to technical limitations and high costs. To overcome this challenge we propose STProtein, a novel framework leveraging graph neural networks with multi-task learning strategy. STProtein is designed to accurately predict unknown spatial protein expression using more accessible spatial multi-omics data, such as spatial transcriptomics. We believe that STProtein can effectively addresses the scarcity of spatial proteomics, accelerating the integration of spatial multi-omics and potentially catalyzing transformative breakthroughs in life sciences. This tool enables scientists to accelerate discovery by identifying complex and previously hidden spatial patterns of proteins within tissues, uncovering novel relationships between different marker genes, and exploring the biological "Dark Matter".
comment: STProtein: predicting spatial protein expression from multi-omics data is accepted SPARTA_AAAI2026 Oral GitHub: https://github.com/zhaorui-bi/STProtein
☆ NEX: Neuron Explore-Exploit Scoring for Label-Free Chain-of-Thought Selection and Model Ranking
Large language models increasingly spend inference compute sampling multiple chain-of-thought traces or searching over merged checkpoints. This shifts the bottleneck from generation to selection, often without supervision on the target distribution. We show entropy-based exploration proxies follow an inverted-U with accuracy, suggesting extra exploration can become redundant and induce overthinking. We propose NEX, a white-box label-free unsupervised scoring framework that views reasoning as alternating E-phase (exploration) and X-phase (exploitation). NEX detects E-phase as spikes in newly activated MLP neurons per token from sparse activation caches, then uses a sticky two-state HMM to infer E-X phases and credits E-introduced neurons by whether they are reused in the following X span. These signals yield interpretable neuron weights and a single Good-Mass Fraction score to rank candidate responses and merged variants without task answers. Across reasoning benchmarks and Qwen3 merge families, NEX computed on a small unlabeled activation set predicts downstream accuracy and identifies better variants; we further validate the E-X signal with human annotations and provide causal evidence via "Effective-vs-Redundant" neuron transfer.
comment: 21 pages, 9 figures, 5 tables
☆ FiMI: A Domain-Specific Language Model for Indian Finance Ecosystem
We present FiMI (Finance Model for India), a domain-specialized financial language model developed for Indian digital payment systems. We develop two model variants: FiMI Base and FiMI Instruct. FiMI adapts the Mistral Small 24B architecture through a multi-stage training pipeline, beginning with continuous pre-training on 68 Billion tokens of curated financial, multilingual (English, Hindi, Hinglish), and synthetic data. This is followed by instruction fine-tuning and domain-specific supervised fine-tuning focused on multi-turn, tool-driven conversations that model real-world workflows, such as transaction disputes and mandate lifecycle management. Evaluations reveal that FiMI Base achieves a 20% improvement over the Mistral Small 24B Base model on finance reasoning benchmark, while FiMI Instruct outperforms the Mistral Small 24B Instruct model by 87% on domain-specific tool-calling. Moreover, FiMI achieves these significant domain gains while maintaining comparable performance to models of similar size on general benchmarks.
☆ Allocentric Perceiver: Disentangling Allocentric Reasoning from Egocentric Visual Priors via Frame Instantiation
With the rising need for spatially grounded tasks such as Vision-Language Navigation/Action, allocentric perception capabilities in Vision-Language Models (VLMs) are receiving growing focus. However, VLMs remain brittle on allocentric spatial queries that require explicit perspective shifts, where the answer depends on reasoning in a target-centric frame rather than the observed camera view. Thus, we introduce Allocentric Perceiver, a training-free strategy that recovers metric 3D states from one or more images with off-the-shelf geometric experts, and then instantiates a query-conditioned allocentric reference frame aligned with the instruction's semantic intent. By deterministically transforming reconstructed geometry into the target frame and prompting the backbone VLM with structured, geometry-grounded representations, Allocentric Perceriver offloads mental rotation from implicit reasoning to explicit computation. We evaluate Allocentric Perciver across multiple backbone families on spatial reasoning benchmarks, observing consistent and substantial gains ($\sim$10%) on allocentric tasks while maintaining strong egocentric performance, and surpassing both spatial-perception-finetuned models and state-of-the-art open-source and proprietary models.
☆ Bagging-Based Model Merging for Robust General Text Embeddings
General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (\modelname), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, \modelname naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that \modelname consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
comment: 12 pages, 4 figures
☆ ReText: Text Boosts Generalization in Image-Based Person Re-identification
Generalizable image-based person re-identification (Re-ID) aims to recognize individuals across cameras in unseen domains without retraining. While multiple existing approaches address the domain gap through complex architectures, recent findings indicate that better generalization can be achieved by stylistically diverse single-camera data. Although this data is easy to collect, it lacks complexity due to minimal cross-view variation. We propose ReText, a novel method trained on a mixture of multi-camera Re-ID data and single-camera data, where the latter is complemented by textual descriptions to enrich semantic cues. During training, ReText jointly optimizes three tasks: (1) Re-ID on multi-camera data, (2) image-text matching, and (3) image reconstruction guided by text on single-camera data. Experiments demonstrate that ReText achieves strong generalization and significantly outperforms state-of-the-art methods on cross-domain Re-ID benchmarks. To the best of our knowledge, this is the first work to explore multimodal joint learning on a mixture of multi-camera and single-camera data in image-based person Re-ID.
☆ Automated Customization of LLMs for Enterprise Code Repositories Using Semantic Scopes
Code completion (CC) is a task frequently used by developers when working in collaboration with LLM-based programming assistants. Despite the increased performance of LLMs on public benchmarks, out of the box LLMs still have a hard time generating code that aligns with a private code repository not previously seen by the model's training data. Customizing code LLMs to a private repository provides a way to improve the model performance. In this paper we present our approach for automated LLM customization based on semantic scopes in the code. We evaluate LLMs on real industry cases with two private enterprise code repositories with two customization strategies: Retrieval-Augmented Generation (RAG) and supervised Fine-Tuning (FT). Our mechanism for ingesting the repository's data and formulating the training data pairs with semantic scopes helps models to learn the underlying patterns specific to the repository, providing more precise code to developers and helping to boost their productivity. The code completions of moderately sized customized models can be significantly better than those of uncustomized models of much larger capacity. We also include an analysis of customization on two public benchmarks and present opportunities for future work.
☆ Variational Speculative Decoding: Rethinking Draft Training from Token Likelihood to Sequence Acceptance
Speculative decoding accelerates inference for (M)LLMs, yet a training-decoding discrepancy persists: while existing methods optimize single greedy trajectories, decoding involves verifying and ranking multiple sampled draft paths. We propose Variational Speculative Decoding (VSD), formulating draft training as variational inference over latent proposals (draft paths). VSD maximizes the marginal probability of target-model acceptance, yielding an ELBO that promotes high-quality latent proposals while minimizing divergence from the target distribution. To enhance quality and reduce variance, we incorporate a path-level utility and optimize via an Expectation-Maximization procedure. The E-step draws MCMC samples from an oracle-filtered posterior, while the M-step maximizes weighted likelihood using Adaptive Rejection Weighting (ARW) and Confidence-Aware Regularization (CAR). Theoretical analysis confirms that VSD increases expected acceptance length and speedup. Extensive experiments across LLMs and MLLMs show that VSD achieves up to a 9.6% speedup over EAGLE-3 and 7.9% over ViSpec, significantly improving decoding efficiency.
☆ RL-VLA$^3$: Reinforcement Learning VLA Accelerating via Full Asynchronism
In recent years, Vision-Language-Action (VLA) models have emerged as a crucial pathway towards general embodied intelligence, yet their training efficiency has become a key bottleneck. Although existing reinforcement learning (RL)-based training frameworks like RLinf can enhance model generalization, they still rely on synchronous execution, leading to severe resource underutilization and throughput limitations during environment interaction, policy generation (rollout), and model update phases (actor). To overcome this challenge, this paper, for the first time, proposes and implements a fully-asynchronous policy training framework encompassing the entire pipeline from environment interaction, rollout generation, to actor policy updates. Systematically drawing inspiration from asynchronous optimization ideas in large model RL, our framework designs a multi-level decoupled architecture. This includes asynchronous parallelization of environment interaction and trajectory collection, streaming execution for policy generation, and decoupled scheduling for training updates. We validated the effectiveness of our method across diverse VLA models and environments. On the LIBERO benchmark, the framework achieves throughput improvements of up to 59.25\% compared to existing synchronous strategies. When deeply optimizing separation strategies, throughput can be increased by as much as 126.67\%. We verified the effectiveness of each asynchronous component via ablation studies. Scaling law validation across 8 to 256 GPUs demonstrates our method's excellent scalability under most conditions.
☆ RocqSmith: Can Automatic Optimization Forge Better Proof Agents?
This work studies the applicability of automatic AI agent optimization methods to real-world agents in formal verification settings, focusing on automated theorem proving in Rocq as a representative and challenging domain. We evaluate how different automatic agent optimizers perform when applied to the task of optimizing a Rocq proof-generation agent, and assess whether parts of the fine-grained tuning of agentic systems, such as prompt design, contextual knowledge, and control strategies, can be automated. Our results show that while several optimizers yield measurable improvements, simple few-shot bootstrapping is the most consistently effective; however, none of the studied methods matches the performance of a carefully engineered state-of-the-art proof agent.
☆ TimelyFreeze: Adaptive Parameter Freezing Mechanism for Pipeline Parallelism
Pipeline parallelism enables training models that exceed single-device memory, but practical throughput remains limited by pipeline bubbles. Although parameter freezing can improve training throughput by adaptively skipping backward computation, existing methods often over-freeze parameters, resulting in unnecessary accuracy degradation. To address this issue, we propose TimelyFreeze, which models the pipeline schedule as a directed acyclic graph and solves a linear program to compute optimal freeze ratios that minimize batch execution time under accuracy constraints. Experiments show that TimelyFreeze achieves up to 40% training throughput improvement on LLaMA-8B with comparable accuracy. Overall, it enables faster large-scale model training without compromising convergence and generalizes across diverse pipeline-parallel settings.
☆ LeakBoost: Perceptual-Loss-Based Membership Inference Attack
Membership inference attacks (MIAs) aim to determine whether a sample was part of a model's training set, posing serious privacy risks for modern machine-learning systems. Existing MIAs primarily rely on static indicators, such as loss or confidence, and do not fully leverage the dynamic behavior of models when actively probed. We propose LeakBoost, a perceptual-loss-based interrogation framework that actively probes a model's internal representations to expose hidden membership signals. Given a candidate input, LeakBoost synthesizes an interrogation image by optimizing a perceptual (activation-space) objective, amplifying representational differences between members and non-members. This image is then analyzed by an off-the-shelf membership detector, without modifying the detector itself. When combined with existing membership inference methods, LeakBoost achieves substantial improvements at low false-positive rates across multiple image classification datasets and diverse neural network architectures. In particular, it raises AUC from near-chance levels (0.53-0.62) to 0.81-0.88, and increases TPR at 1 percent FPR by over an order of magnitude compared to strong baseline attacks. A detailed sensitivity analysis reveals that deeper layers and short, low-learning-rate optimization produce the strongest leakage, and that improvements concentrate in gradient-based detectors. LeakBoost thus offers a modular and computationally efficient way to assess privacy risks in white-box settings, advancing the study of dynamic membership inference.
☆ Learning to Inject: Automated Prompt Injection via Reinforcement Learning
Prompt injection is one of the most critical vulnerabilities in LLM agents; yet, effective automated attacks remain largely unexplored from an optimization perspective. Existing methods heavily depend on human red-teamers and hand-crafted prompts, limiting their scalability and adaptability. We propose AutoInject, a reinforcement learning framework that generates universal, transferable adversarial suffixes while jointly optimizing for attack success and utility preservation on benign tasks. Our black-box method supports both query-based optimization and transfer attacks to unseen models and tasks. Using only a 1.5B parameter adversarial suffix generator, we successfully compromise frontier systems including GPT 5 Nano, Claude Sonnet 3.5, and Gemini 2.5 Flash on the AgentDojo benchmark, establishing a stronger baseline for automated prompt injection research.
☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026
☆ Evaluating the impact of word embeddings on similarity scoring in practical information retrieval
Search behaviour is characterised using synonymy and polysemy as users often want to search information based on meaning. Semantic representation strategies represent a move towards richer associative connections that can adequately capture this complex usage of language. Vector Space Modelling (VSM) and neural word embeddings play a crucial role in modern machine learning and Natural Language Processing (NLP) pipelines. Embeddings use distributional semantics to represent words, sentences, paragraphs or entire documents as vectors in high dimensional spaces. This can be leveraged by Information Retrieval (IR) systems to exploit the semantic relatedness between queries and answers. This paper evaluates an alternative approach to measuring query statement similarity that moves away from the common similarity measure of centroids of neural word embeddings. Motivated by the Word Movers Distance (WMD) model, similarity is evaluated using the distance between individual words of queries and statements. Results from ranked query and response statements demonstrate significant gains in accuracy using the combined approach of similarity ranking through WMD with the word embedding techniques. The top performing WMD + GloVe combination outperforms all other state-of-the-art retrieval models including Doc2Vec and the baseline LSA model. Along with the significant gains in performance of similarity ranking through WMD, we conclude that the use of pre-trained word embeddings, trained on vast amounts of data, result in domain agnostic language processing solutions that are portable to diverse business use-cases.
☆ CompactRAG: Reducing LLM Calls and Token Overhead in Multi-Hop Question Answering
Retrieval-augmented generation (RAG) has become a key paradigm for knowledge-intensive question answering. However, existing multi-hop RAG systems remain inefficient, as they alternate between retrieval and reasoning at each step, resulting in repeated LLM calls, high token consumption, and unstable entity grounding across hops. We propose CompactRAG, a simple yet effective framework that decouples offline corpus restructuring from online reasoning. In the offline stage, an LLM reads the corpus once and converts it into an atomic QA knowledge base, which represents knowledge as minimal, fine-grained question-answer pairs. In the online stage, complex queries are decomposed and carefully rewritten to preserve entity consistency, and are resolved through dense retrieval followed by RoBERTa-based answer extraction. Notably, during inference, the LLM is invoked only twice in total - once for sub-question decomposition and once for final answer synthesis - regardless of the number of reasoning hops. Experiments on HotpotQA, 2WikiMultiHopQA, and MuSiQue demonstrate that CompactRAG achieves competitive accuracy while substantially reducing token consumption compared to iterative RAG baselines, highlighting a cost-efficient and practical approach to multi-hop reasoning over large knowledge corpora. The implementation is available at GitHub.
☆ Mitigating Hallucination in Financial Retrieval-Augmented Generation via Fine-Grained Knowledge Verification ICASSP 2026
In financial Retrieval-Augmented Generation (RAG) systems, models frequently rely on retrieved documents to generate accurate responses due to the time-sensitive nature of the financial domain. While retrieved documents help address knowledge gaps, model-generated responses still suffer from hallucinations that contradict the retrieved information. To mitigate this inconsistency, we propose a Reinforcement Learning framework enhanced with Fine-grained Knowledge Verification (RLFKV). Our method decomposes financial responses into atomic knowledge units and assesses the correctness of each unit to compute the fine-grained faithful reward. This reward offers more precise optimization signals, thereby improving alignment with the retrieved documents. Additionally, to prevent reward hacking (e.g., overly concise replies), we incorporate an informativeness reward that encourages the policy model to retain at least as many knowledge units as the base model. Experiments conducted on the public Financial Data Description (FDD) task and our newly proposed FDD-ANT dataset demonstrate consistent improvements, confirming the effectiveness of our approach.
comment: accepted by ICASSP 2026
☆ Anchored Policy Optimization: Mitigating Exploration Collapse Via Support-Constrained Rectification
Reinforcement Learning with Verifiable Rewards (RLVR) is increasingly viewed as a tree pruning mechanism. However, we identify a systemic pathology termed Recursive Space Contraction (RSC), an irreversible collapse driven by the combined dynamics of positive sharpening and negative squeezing, where the sampling probability of valid alternatives vanishes. While Kullback-Leibler (KL) regularization aims to mitigate this, it imposes a rigid Shape Matching constraint that forces the policy to mimic the reference model's full density, creating a gradient conflict with the sharpening required for correctness. We propose Anchored Policy Optimization (APO), shifting the paradigm from global Shape Matching to Support Coverage. By defining a Safe Manifold based on the reference model's high-confidence support, APO permits aggressive sharpening for efficiency while selectively invoking a restorative force during error correction to prevent collapse. We theoretically derive that APO serves as a gradient-aligned mechanism to maximize support coverage, enabling an Elastic Recovery that re-inflates valid branches. Empirical evaluations on mathematical benchmarks demonstrate that APO breaks the accuracy-diversity trade-off, significantly improving Pass@1 while restoring the Pass@K diversity typically lost by standard policy gradient methods.
comment: 17 pages, 6 figures
☆ Towards Green AI: Decoding the Energy of LLM Inference in Software Development
Context: AI-assisted tools are increasingly integrated into software development workflows, but their reliance on large language models (LLMs) introduces substantial computational and energy costs. Understanding and reducing the energy footprint of LLM inference is therefore essential for sustainable software development. Objective: In this study, we conduct a phase-level analysis of LLM inference energy consumption, distinguishing between the (1) prefill, where the model processes the input and builds internal representations, and (2) decoding, where output tokens are generated using the stored state. Method: We investigate six 6B-7B and four 3B-4B transformer-based models, evaluating them on code-centric benchmarks HumanEval for code generation and LongBench for code understanding. Results: Our findings show that, within both parameter groups, models exhibit distinct energy patterns across phases. Furthermore, we observed that increases in prefill cost amplify the energy cost per token during decoding, with amplifications ranging from 1.3% to 51.8% depending on the model. Lastly, three out of ten models demonstrate babbling behavior, adding excessive content to the output that unnecessarily inflates energy consumption. We implemented babbling suppression for code generation, achieving energy savings ranging from 44% to 89% without affecting generation accuracy. Conclusion: These findings show that prefill costs influence decoding, which dominates energy consumption, and that babbling suppression can yield up to 89% energy savings. Reducing inference energy therefore requires both mitigating babbling behavior and limiting impact of prefill on decoding.
☆ OmniMoE: An Efficient MoE by Orchestrating Atomic Experts at Scale
Mixture-of-Experts (MoE) architectures are evolving towards finer granularity to improve parameter efficiency. However, existing MoE designs face an inherent trade-off between the granularity of expert specialization and hardware execution efficiency. We propose OmniMoE, a system-algorithm co-designed framework that pushes expert granularity to its logical extreme. OmniMoE introduces vector-level Atomic Experts, enabling scalable routing and execution within a single MoE layer, while retaining a shared dense MLP branch for general-purpose processing. Although this atomic design maximizes capacity, it poses severe challenges for routing complexity and memory access. To address these, OmniMoE adopts a system-algorithm co-design: (i) a Cartesian Product Router that decomposes the massive index space to reduce routing complexity from O(N) to O(sqrt(N)); and (ii) Expert-Centric Scheduling that inverts the execution order to turn scattered, memory-bound lookups into efficient dense matrix operations. Validated on seven benchmarks, OmniMoE (with 1.7B active parameters) achieves 50.9% zero-shot accuracy across seven benchmarks, outperforming coarse-grained (e.g., DeepSeekMoE) and fine-grained (e.g., PEER) baselines. Crucially, OmniMoE reduces inference latency from 73ms to 6.7ms (a 10.9-fold speedup) compared to PEER, demonstrating that massive-scale fine-grained MoE can be fast and accurate. Our code is open-sourced at https://github.com/flash-algo/omni-moe.
☆ Nonlinearity as Rank: Generative Low-Rank Adapter with Radial Basis Functions
Low-rank adaptation (LoRA) approximates the update of a pretrained weight matrix using the product of two low-rank matrices. However, standard LoRA follows an explicit-rank paradigm, where increasing model capacity requires adding more rows or columns (i.e., basis vectors) to the low-rank matrices, leading to substantial parameter growth. In this paper, we find that these basis vectors exhibit significant parameter redundancy and can be compactly represented by lightweight nonlinear functions. Therefore, we propose Generative Low-Rank Adapter (GenLoRA), which replaces explicit basis vector storage with nonlinear basis vector generation. Specifically, GenLoRA maintains a latent vector for each low-rank matrix and employs a set of lightweight radial basis functions (RBFs) to synthesize the basis vectors. Each RBF requires far fewer parameters than an explicit basis vector, enabling higher parameter efficiency in GenLoRA. Extensive experiments across multiple datasets and architectures show that GenLoRA attains higher effective LoRA ranks under smaller parameter budgets, resulting in superior fine-tuning performance. The code is available at https://anonymous.4open.science/r/GenLoRA-1519.
☆ Poster: Camera Tampering Detection for Outdoor IoT Systems
Recently, the use of smart cameras in outdoor settings has grown to improve surveillance and security. Nonetheless, these systems are susceptible to tampering, whether from deliberate vandalism or harsh environmental conditions, which can undermine their monitoring effectiveness. In this context, detecting camera tampering is more challenging when a camera is capturing still images rather than video as there is no sequence of continuous frames over time. In this study, we propose two approaches for detecting tampered images: a rule-based method and a deep-learning-based method. The aim is to evaluate how each method performs in terms of accuracy, computational demands, and the data required for training when applied to real-world scenarios. Our results show that the deep-learning model provides higher accuracy, while the rule-based method is more appropriate for scenarios where resources are limited and a prolonged calibration phase is impractical. We also offer publicly available datasets with normal, blurred, and rotated images to support the development and evaluation of camera tampering detection methods, addressing the need for such resources.
comment: Proceedings of the 2024 INTERNATIONAL CONFERENCE ON EMBEDDED WIRELESS SYSTEMS AND NETWORKS (EWSN)
☆ Determining Energy Efficiency Sweet Spots in Production LLM Inference
Large Language Models (LLMs) inference is central in modern AI applications, making it critical to understand their energy footprint. Existing approaches typically estimate energy consumption through simple linear functions of input and output sequence lengths, yet our observations reveal clear Energy Efficiency regimes: peak efficiency occurs with short-to-moderate inputs and medium-length outputs, while efficiency drops sharply for long inputs or very short outputs, indicating a non-linear dependency. In this work, we propose an analytical model derived from the computational and memory-access complexity of the Transformer architecture, capable of accurately characterizing the efficiency curve as a function of input and output lengths. To assess its accuracy, we evaluate energy consumption using TensorRT-LLM on NVIDIA H100 GPUs across a diverse set of LLMs ranging from 1B to 9B parameters, including OPT, LLaMA, Gemma, Falcon, Qwen2, and Granite, tested over input and output lengths from 64 to 4096 tokens, achieving a mean MAPE of 1.79%. Our results show that aligning sequence lengths with these efficiency "Sweet Spots" can substantially reduce energy usage, supporting informed truncation, summarization, and adaptive generation strategies in production systems.
comment: To appear at ICPE 2026 (International Conference on Performance Engineering)
☆ Mining Generalizable Activation Functions
The choice of activation function is an active area of research, with different proposals aimed at improving optimization, while maintaining expressivity. Additionally, the activation function can significantly alter the implicit inductive bias of the architecture, controlling its non-linear behavior. In this paper, in line with previous work, we argue that evolutionary search provides a useful framework for finding new activation functions, while we also make two novel observations. The first is that modern pipelines, such as AlphaEvolve, which relies on frontier LLMs as a mutator operator, allows for a much wider and flexible search space; e.g., over all possible python functions within a certain FLOP budget, eliminating the need for manually constructed search spaces. In addition, these pipelines will be biased towards meaningful activation functions, given their ability to represent common knowledge, leading to a potentially more efficient search of the space. The second observation is that, through this framework, one can target not only performance improvements but also activation functions that encode particular inductive biases. This can be done by using performance on out-of-distribution data as a fitness function, reflecting the degree to which the architecture respects the inherent structure in the data in a manner independent of distribution shifts. We carry an empirical exploration of this proposal and show that relatively small scale synthetic datasets can be sufficient for AlphaEvolve to discover meaningful activations.
☆ Exploring AI-Augmented Sensemaking of Patient-Generated Health Data: A Mixed-Method Study with Healthcare Professionals in Cardiac Risk Reduction
Individuals are increasingly generating substantial personal health and lifestyle data, e.g. through wearables and smartphones. While such data could transform preventative care, its integration into clinical practice is hindered by its scale, heterogeneity and the time pressure and data literacy of healthcare professionals (HCPs). We explore how large language models (LLMs) can support sensemaking of patient-generated health data (PGHD) with automated summaries and natural language data exploration. Using cardiovascular disease (CVD) risk reduction as a use case, 16 HCPs reviewed multimodal PGHD in a mixed-methods study with a prototype that integrated common charts, LLM-generated summaries, and a conversational interface. Findings show that AI summaries provided quick overviews that anchored exploration, while conversational interaction supported flexible analysis and bridged data-literacy gaps. However, HCPs raised concerns about transparency, privacy, and overreliance. We contribute empirical insights and sociotechnical design implications for integrating AI-driven summarization and conversation into clinical workflows to support PGHD sensemaking.
☆ HyperPotter: Spell the Charm of High-Order Interactions in Audio Deepfake Detection
Advances in AIGC technologies have enabled the synthesis of highly realistic audio deepfakes capable of deceiving human auditory perception. Although numerous audio deepfake detection (ADD) methods have been developed, most rely on local temporal/spectral features or pairwise relations, overlooking high-order interactions (HOIs). HOIs capture discriminative patterns that emerge from multiple feature components beyond their individual contributions. We propose HyperPotter, a hypergraph-based framework that explicitly models these synergistic HOIs through clustering-based hyperedges with class-aware prototype initialization. Extensive experiments demonstrate that HyperPotter surpasses its baseline by an average relative gain of 22.15% across 11 datasets and outperforms state-of-the-art methods by 13.96% on 4 challenging cross-domain datasets, demonstrating superior generalization to diverse attacks and speakers.
comment: 20 pages, 8 figures
☆ Stable but Wrong: When More Data Degrades Scientific Conclusions
Modern science increasingly relies on ever-growing observational datasets and automated inference pipelines, under the implicit belief that accumulating more data makes scientific conclusions more reliable. Here we show that this belief can fail in a fundamental and irreversible way. We identify a structural regime in which standard inference procedures converge smoothly, remain well calibrated, and pass conventional diagnostic checks, yet systematically converge to incorrect conclusions. This failure arises when the reliability of observations degrades in a manner that is intrinsically unobservable to the inference process itself. Using minimal synthetic experiments, we demonstrate that in this regime additional data do not correct error but instead amplify it, while residual-based and goodness-of-fit diagnostics remain misleadingly normal. These results reveal an intrinsic limit of data-driven science: stability, convergence, and confidence are not sufficient indicators of epistemic validity. We argue that inference cannot be treated as an unconditional consequence of data availability, but must instead be governed by explicit constraints on the integrity of the observational process.
Graph-based Agent Memory: Taxonomy, Techniques, and Applications
Memory emerges as the core module in the Large Language Model (LLM)-based agents for long-horizon complex tasks (e.g., multi-turn dialogue, game playing, scientific discovery), where memory can enable knowledge accumulation, iterative reasoning and self-evolution. Among diverse paradigms, graph stands out as a powerful structure for agent memory due to the intrinsic capabilities to model relational dependencies, organize hierarchical information, and support efficient retrieval. This survey presents a comprehensive review of agent memory from the graph-based perspective. First, we introduce a taxonomy of agent memory, including short-term vs. long-term memory, knowledge vs. experience memory, non-structural vs. structural memory, with an implementation view of graph-based memory. Second, according to the life cycle of agent memory, we systematically analyze the key techniques in graph-based agent memory, covering memory extraction for transforming the data into the contents, storage for organizing the data efficiently, retrieval for retrieving the relevant contents from memory to support reasoning, and evolution for updating the contents in the memory. Third, we summarize the open-sourced libraries and benchmarks that support the development and evaluation of self-evolving agent memory. We also explore diverse application scenarios. Finally, we identify critical challenges and future research directions. This survey aims to offer actionable insights to advance the development of more efficient and reliable graph-based agent memory systems. All the related resources, including research papers, open-source data, and projects, are collected for the community in https://github.com/DEEP-PolyU/Awesome-GraphMemory.
☆ Probabilistic Multi-Regional Solar Power Forecasting with Any-Quantile Recurrent Neural Networks
The increasing penetration of photovoltaic (PV) generation introduces significant uncertainty into power system operation, necessitating forecasting approaches that extend beyond deterministic point predictions. This paper proposes an any-quantile probabilistic forecasting framework for multi-regional PV power generation based on the Any-Quantile Recurrent Neural Network (AQ-RNN). The model integrates an any-quantile forecasting paradigm with a dual-track recurrent architecture that jointly processes series-specific and cross-regional contextual information, supported by dilated recurrent cells, patch-based temporal modeling, and a dynamic ensemble mechanism. The proposed framework enables the estimation of calibrated conditional quantiles at arbitrary probability levels within a single trained model and effectively exploits spatial dependencies to enhance robustness at the system level. The approach is evaluated using 30 years of hourly PV generation data from 259 European regions and compared against established statistical and neural probabilistic baselines. The results demonstrate consistent improvements in forecast accuracy, calibration, and prediction interval quality, underscoring the suitability of the proposed method for uncertainty-aware energy management and operational decision-making in renewable-dominated power systems.
☆ Alignment Verifiability in Large Language Models: Normative Indistinguishability under Behavioral Evaluation
Behavioral evaluation is the dominant paradigm for assessing alignment in large language models (LLMs). In practice, alignment is inferred from performance under finite evaluation protocols - benchmarks, red-teaming suites, or automated pipelines - and observed compliance is often treated as evidence of underlying alignment. This inference step, from behavioral evidence to claims about latent alignment properties, is typically implicit and rarely analyzed as an inference problem in its own right. We study this problem formally. We frame alignment evaluation as an identifiability question under partial observability and allow agent behavior to depend on information correlated with the evaluation regime. Within this setting, we introduce the Alignment Verifiability Problem and the notion of Normative Indistinguishability, capturing when distinct latent alignment hypotheses induce identical distributions over all evaluator-accessible signals. Our main result is a negative but sharply delimited identifiability theorem. Under finite behavioral evaluation and evaluation-aware agents, observed behavioral compliance does not uniquely identify latent alignment. That is, even idealized behavioral evaluation cannot, in general, certify alignment as a latent property. We further show that behavioral alignment tests should be interpreted as estimators of indistinguishability classes rather than verifiers of alignment. Passing increasingly stringent tests may reduce the space of compatible hypotheses, but cannot collapse it to a singleton under the stated conditions. This reframes alignment benchmarks as providing upper bounds on observable compliance within a regime, rather than guarantees of underlying alignment.
comment: 10 pages. Theoretical analysis of behavioral alignment evaluation
☆ Enhancing Personality Recognition by Comparing the Predictive Power of Traits, Facets, and Nuances
Personality is a complex, hierarchical construct typically assessed through item-level questionnaires aggregated into broad trait scores. Personality recognition models aim to infer personality traits from different sources of behavioral data. However, reliance on broad trait scores as ground truth, combined with limited training data, poses challenges for generalization, as similar trait scores can manifest through diverse, context dependent behaviors. In this work, we explore the predictive impact of the more granular hierarchical levels of the Big-Five Personality Model, facets and nuances, to enhance personality recognition from audiovisual interaction data. Using the UDIVA v0.5 dataset, we trained a transformer-based model including cross-modal (audiovisual) and cross-subject (dyad-aware) attention mechanisms. Results show that nuance-level models consistently outperform facet and trait-level models, reducing mean squared error by up to 74% across interaction scenarios.
comment: Accepted to the 2025 13th International Conference on Affective Computing and Intelligent Interaction (Late Breaking Results)
☆ Generative Ontology: When Structured Knowledge Learns to Create
Traditional ontologies excel at describing domain structure but cannot generate novel artifacts. Large language models generate fluently but produce outputs that lack structural validity, hallucinating mechanisms without components, goals without end conditions. We introduce Generative Ontology, a framework that synthesizes these complementary strengths: ontology provides the grammar; the LLM provides the creativity. Generative Ontology encodes domain knowledge as executable Pydantic schemas that constrain LLM generation via DSPy signatures. A multi-agent pipeline assigns specialized roles to different ontology domains: a Mechanics Architect designs game systems, a Theme Weaver integrates narrative, a Balance Critic identifies exploits. Each agent carrying a professional "anxiety" that prevents shallow, agreeable outputs. Retrieval-augmented generation grounds novel designs in precedents from existing exemplars, while iterative validation ensures coherence between mechanisms and components. We demonstrate the framework through GameGrammar, a system for generating complete tabletop game designs. Given a thematic prompt ("bioluminescent fungi competing in a cave ecosystem"), the pipeline produces structurally complete, playable game specifications with mechanisms, components, victory conditions, and setup instructions. These outputs satisfy ontological constraints while remaining genuinely creative. The pattern generalizes beyond games. Any domain with expert vocabulary, validity constraints, and accumulated exemplars (music composition, software architecture, culinary arts) is a candidate for Generative Ontology. We argue that constraints do not limit creativity but enable it: just as grammar makes poetry possible, ontology makes structured generation possible.
comment: 15 pages, 6 figures, 6 tables. Code available at https://github.com/bennycheung/GameGrammarCLI
☆ AI chatbots versus human healthcare professionals: a systematic review and meta-analysis of empathy in patient care
Background: Empathy is widely recognized for improving patient outcomes, including reduced pain and anxiety and improved satisfaction, and its absence can cause harm. Meanwhile, use of artificial intelligence (AI)-based chatbots in healthcare is rapidly expanding, with one in five general practitioners using generative AI to assist with tasks such as writing letters. Some studies suggest AI chatbots can outperform human healthcare professionals (HCPs) in empathy, though findings are mixed and lack synthesis. Sources of data: We searched multiple databases for studies comparing AI chatbots using large language models with human HCPs on empathy measures. We assessed risk of bias with ROBINS-I and synthesized findings using random-effects meta-analysis where feasible, whilst avoiding double counting. Areas of agreement: We identified 15 studies (2023-2024). Thirteen studies reported statistically significantly higher empathy ratings for AI, with only two studies situated in dermatology favouring human responses. Of the 15 studies, 13 provided extractable data and were suitable for pooling. Meta-analysis of those 13 studies, all utilising ChatGPT-3.5/4, showed a standardized mean difference of 0.87 (95% CI, 0.54-1.20) favouring AI (P < .00001), roughly equivalent to a two-point increase on a 10-point scale. Areas of controversy: Studies relied on text-based assessments that overlook non-verbal cues and evaluated empathy through proxy raters. Growing points: Our findings indicate that, in text-only scenarios, AI chatbots are frequently perceived as more empathic than human HCPs. Areas timely for developing research: Future research should validate these findings with direct patient evaluations and assess whether emerging voice-enabled AI systems can deliver similar empathic advantages.
comment: Open Access Invited Review. Systematic review and meta analysis of 15 studies 2023-2024. Published 20 October 2025
☆ Reactive Knowledge Representation and Asynchronous Reasoning
Exact inference in complex probabilistic models often incurs prohibitive computational costs. This challenge is particularly acute for autonomous agents in dynamic environments that require frequent, real-time belief updates. Existing methods are often inefficient for ongoing reasoning, as they re-evaluate the entire model upon any change, failing to exploit that real-world information streams have heterogeneous update rates. To address this, we approach the problem from a reactive, asynchronous, probabilistic reasoning perspective. We first introduce Resin (Reactive Signal Inference), a probabilistic programming language that merges probabilistic logic with reactive programming. Furthermore, to provide efficient and exact semantics for Resin, we propose Reactive Circuits (RCs). Formulated as a meta-structure over Algebraic Circuits and asynchronous data streams, RCs are time-dynamic Directed Acyclic Graphs that autonomously adapt themselves based on the volatility of input signals. In high-fidelity drone swarm simulations, our approach achieves several orders of magnitude of speedup over frequency-agnostic inference. We demonstrate that RCs' structural adaptations successfully capture environmental dynamics, significantly reducing latency and facilitating reactive real-time reasoning. By partitioning computations based on the estimated Frequency of Change in the asynchronous inputs, large inference tasks can be decomposed into individually memoized sub-problems. This ensures that only the specific components of a model affected by new information are re-evaluated, drastically reducing redundant computation in streaming contexts.
☆ Mode-Dependent Rectification for Stable PPO Training
Mode-dependent architectural components (layers that behave differently during training and evaluation, such as Batch Normalization or dropout) are commonly used in visual reinforcement learning but can destabilize on-policy optimization. We show that in Proximal Policy Optimization (PPO), discrepancies between training and evaluation behavior induced by Batch Normalization lead to policy mismatch, distributional drift, and reward collapse. We propose Mode-Dependent Rectification (MDR), a lightweight dual-phase training procedure that stabilizes PPO under mode-dependent layers without architectural changes. Experiments across procedurally generated games and real-world patch-localization tasks demonstrate that MDR consistently improves stability and performance, and extends naturally to other mode-dependent layers.
☆ Path-Guided Flow Matching for Dataset Distillation
Dataset distillation compresses large datasets into compact synthetic sets with comparable performance in training models. Despite recent progress on diffusion-based distillation, this type of method typically depends on heuristic guidance or prototype assignment, which comes with time-consuming sampling and trajectory instability and thus hurts downstream generalization especially under strong control or low IPC. We propose \emph{Path-Guided Flow Matching (PGFM)}, the first flow matching-based framework for generative distillation, which enables fast deterministic synthesis by solving an ODE in a few steps. PGFM conducts flow matching in the latent space of a frozen VAE to learn class-conditional transport from Gaussian noise to data distribution. Particularly, we develop a continuous path-to-prototype guidance algorithm for ODE-consistent path control, which allows trajectories to reliably land on assigned prototypes while preserving diversity and efficiency. Extensive experiments across high-resolution benchmarks demonstrate that PGFM matches or surpasses prior diffusion-based distillation approaches with fewer steps of sampling while delivering competitive performance with remarkably improved efficiency, e.g., 7.6$\times$ more efficient than the diffusion-based counterparts with 78\% mode coverage.
☆ Shiva-DiT: Residual-Based Differentiable Top-$k$ Selection for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) incur prohibitive computational costs due to the quadratic scaling of self-attention. Existing pruning methods fail to simultaneously satisfy differentiability, efficiency, and the strict static budgets required for hardware overhead. To address this, we propose Shiva-DiT, which effectively reconciles these conflicting requirements via Residual-Based Differentiable Top-$k$ Selection. By leveraging a residual-aware straight-through estimator, our method enforces deterministic token counts for static compilation while preserving end-to-end learnability through residual gradient estimation. Furthermore, we introduce a Context-Aware Router and Adaptive Ratio Policy to autonomously learn an adaptive pruning schedule. Experiments on mainstream models, including SD3.5, demonstrate that Shiva-DiT establishes a new Pareto frontier, achieving a 1.54$\times$ wall-clock speedup with superior fidelity compared to existing baselines, effectively eliminating ragged tensor overheads.
☆ BhashaSetu: Cross-Lingual Knowledge Transfer from High-Resource to Extreme Low-Resource Languages AACL
Despite remarkable advances in natural language processing, developing effective systems for low-resource languages remains a formidable challenge, with performances typically lagging far behind high-resource counterparts due to data scarcity and insufficient linguistic resources. Cross-lingual knowledge transfer has emerged as a promising approach to address this challenge by leveraging resources from high-resource languages. In this paper, we investigate methods for transferring linguistic knowledge from high-resource languages to low-resource languages, where the number of labeled training instances is in hundreds. We focus on sentence-level and word-level tasks. We introduce a novel method, GETR (Graph-Enhanced Token Representation) for cross-lingual knowledge transfer along with two adopted baselines (a) augmentation in hidden layers and (b) token embedding transfer through token translation. Experimental results demonstrate that our GNN-based approach significantly outperforms existing multilingual and cross-lingual baseline methods, achieving 13 percentage point improvements on truly low-resource languages (Mizo, Khasi) for POS tagging, and 20 and 27 percentage point improvements in macro-F1 on simulated low-resource languages (Marathi, Bangla, Malayalam) across sentiment classification and NER tasks respectively. We also present a detailed analysis of the transfer mechanisms and identify key factors that contribute to successful knowledge transfer in this linguistic context.
comment: Accepted as a long paper at IJCNLP-AACL Main Conference
☆ CAViT -- Channel-Aware Vision Transformer for Dynamic Feature Fusion CVPR 25
Vision Transformers (ViTs) have demonstrated strong performance across a range of computer vision tasks by modeling long-range spatial interactions via self-attention. However, channel-wise mixing in ViTs remains static, relying on fixed multilayer perceptrons (MLPs) that lack adaptability to input content. We introduce 'CAViT', a dual-attention architecture that replaces the static MLP with a dynamic, attention-based mechanism for feature interaction. Each Transformer block in CAViT performs spatial self-attention followed by channel-wise self-attention, allowing the model to dynamically recalibrate feature representations based on global image context. This unified and content-aware token mixing strategy enhances representational expressiveness without increasing depth or complexity. We validate CAViT across five benchmark datasets spanning both natural and medical domains, where it outperforms the standard ViT baseline by up to +3.6% in accuracy, while reducing parameter count and FLOPs by over 30%. Qualitative attention maps reveal sharper and semantically meaningful activation patterns, validating the effectiveness of our attention-driven token mixing.
comment: Presented at the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025 (CVPR 25) in the 4th Workshop on Transformers for Visions - T4V (https://sites.google.com/view/t4v-cvpr25/) Accepted for Publication at 33rd International Conference on Artificial Intelligence and Cognitive Science (AICS 2025), where it was shortlisted for Best Paper Award. (https://aicsconf.org/?page_id=278)
☆ Emulating Aggregate Human Choice Behavior and Biases with GPT Conversational Agents
Cognitive biases often shape human decisions. While large language models (LLMs) have been shown to reproduce well-known biases, a more critical question is whether LLMs can predict biases at the individual level and emulate the dynamics of biased human behavior when contextual factors, such as cognitive load, interact with these biases. We adapted three well-established decision scenarios into a conversational setting and conducted a human experiment (N=1100). Participants engaged with a chatbot that facilitates decision-making through simple or complex dialogues. Results revealed robust biases. To evaluate how LLMs emulate human decision-making under similar interactive conditions, we used participant demographics and dialogue transcripts to simulate these conditions with LLMs based on GPT-4 and GPT-5. The LLMs reproduced human biases with precision. We found notable differences between models in how they aligned human behavior. This has important implications for designing and evaluating adaptive, bias-aware LLM-based AI systems in interactive contexts.
comment: Accepted at CHI'26. arXiv admin note: substantial text overlap with arXiv:2601.11049
☆ TangramSR: Can Vision-Language Models Reason in Continuous Geometric Space?
Humans excel at spatial reasoning tasks like Tangram puzzle assembly through cognitive processes involving mental rotation, iterative refinement, and visual feedback. Inspired by how humans solve Tangram puzzles through trial-and-error, observation, and correction, we design a framework that models these human cognitive mechanisms. However, comprehensive experiments across five representative Vision-Language Models (VLMs) reveal systematic failures in continuous geometric reasoning: average IoU of only 0.41 on single-piece tasks, dropping to 0.23 on two-piece composition, far below human performance where children can complete Tangram tasks successfully. This paper addresses a fundamental challenge in self-improving AI: can models iteratively refine their predictions at test time without parameter updates? We introduce a test-time self-refinement framework that combines in-context learning (ICL) with reward-guided feedback loops, inspired by human cognitive processes. Our training-free verifier-refiner agent applies recursive refinement loops that iteratively self-refine predictions based on geometric consistency feedback, achieving IoU improvements from 0.63 to 0.932 on medium-triangle cases without any model retraining. This demonstrates that incorporating human-inspired iterative refinement mechanisms through ICL and reward loops can substantially enhance geometric reasoning in VLMs, moving self-improving AI from promise to practice in continuous spatial domains. Our work is available at this anonymous link https://anonymous.4open.science/r/TangramVLM-F582/.
comment: 13 pages, 4 figures
☆ Unveiling Implicit Advantage Symmetry: Why GRPO Struggles with Exploration and Difficulty Adaptation
Reinforcement Learning with Verifiable Rewards (RLVR), particularly GRPO, has become the standard for eliciting LLM reasoning. However, its efficiency in exploration and difficulty adaptation remains an open challenge. In this work, we argue that these bottlenecks stem from an implicit advantage symmetry inherent in Group Relative Advantage Estimation (GRAE). This symmetry induces two critical limitations: (i) at the group level, strict symmetry in weights between correct and incorrect trajectories leaves unsampled action logits unchanged, thereby hindering exploration of novel correct solution. (ii) at the sample level, the algorithm implicitly prioritizes medium-difficulty samples, remaining agnostic to the non-stationary demands of difficulty focus. Through controlled experiments, we reveal that this symmetric property is sub-optimal, yielding two pivotal insights: (i) asymmetrically suppressing the advantages of correct trajectories encourages essential exploration. (ii) learning efficiency is maximized by a curriculum-like transition-prioritizing simpler samples initially before gradually shifting to complex ones. Motivated by these findings, we propose Asymmetric GRAE (A-GRAE), which dynamically modulates exploration incentives and sample-difficulty focus. Experiments across seven benchmarks demonstrate that A-GRAE consistently improves GRPO and its variants across both LLMs and MLLMs.
☆ Multi-Task GRPO: Reliable LLM Reasoning Across Tasks
RL-based post-training with GRPO is widely used to improve large language models on individual reasoning tasks. However, real-world deployment requires reliable performance across diverse tasks. A straightforward multi-task adaptation of GRPO often leads to imbalanced outcomes, with some tasks dominating optimization while others stagnate. Moreover, tasks can vary widely in how frequently prompts yield zero advantages (and thus zero gradients), which further distorts their effective contribution to the optimization signal. To address these issues, we propose a novel Multi-Task GRPO (MT-GRPO) algorithm that (i) dynamically adapts task weights to explicitly optimize worst-task performance and promote balanced progress across tasks, and (ii) introduces a ratio-preserving sampler to ensure task-wise policy gradients reflect the adapted weights. Experiments on both 3-task and 9-task settings show that MT-GRPO consistently outperforms baselines in worst-task accuracy. In particular, MT-GRPO achieves 16-28% and 6% absolute improvement on worst-task performance over standard GRPO and DAPO, respectively, while maintaining competitive average accuracy. Moreover, MT-GRPO requires 50% fewer training steps to reach 50% worst-task accuracy in the 3-task setting, demonstrating substantially improved efficiency in achieving reliable performance across tasks.
comment: Preprint
☆ Reasoning-guided Collaborative Filtering with Language Models for Explainable Recommendation
Large Language Models (LLMs) exhibit potential for explainable recommendation systems but overlook collaborative signals, while prevailing methods treat recommendation and explanation as separate tasks, resulting in a memory footprint. We present RGCF-XRec, a hybrid framework that introduces reasoning-guided collaborative filtering (CF) knowledge into a language model to deliver explainable sequential recommendations in a single step. Theoretical grounding and empirical findings reveal that RGCF-XRec offers three key merits over leading CF-aware LLM-based methods: (1) reasoning-guided augmentation of CF knowledge through contextual prompting to discover latent preferences and interpretable reasoning paths; (2) an efficient scoring mechanism based on four dimensions: coherence, completeness, relevance, and consistency to mitigate noisy CF reasoning traces and retain high-quality explanations; (3) a unified representation learning network that encodes collaborative and semantic signals, enabling a structured prompt to condition the LLM for explainable sequential recommendation. RGCF-XRec demonstrates consistent improvements across Amazon datasets, Sports, Toys, and Beauty, comprising 642,503 user-item interactions. It improves HR@10 by 7.38\% in Sports and 4.59\% in Toys, along with ROUGE-L by 8.02\% and 3.49\%, respectively. It reduces the cold warm performance gap, achieving overall gains of 14.5\% in cold-start and 11.9\% in warm start scenarios, and enhances zero-shot HR@5 by 18.54\% in Beauty and 23.16\% in Toys, highlighting effective generalization and robustness. Moreover, RGCF-XRec achieves training efficiency with a lightweight LLaMA 3.2-3B backbone, ensuring scalability for real-world applications.
☆ Steering Large Reasoning Models towards Concise Reasoning via Flow Matching
Large Reasoning Models (LRMs) excel at complex reasoning tasks, but their efficiency is often hampered by overly verbose outputs. Prior steering methods attempt to address this issue by applying a single, global vector to hidden representations -- an approach grounded in the restrictive linear representation hypothesis. In this work, we introduce FlowSteer, a nonlinear steering method that goes beyond uniform linear shifts by learning a complete transformation between the distributions associated with verbose and concise reasoning. This transformation is learned via Flow Matching as a velocity field, enabling precise, input-dependent control over the model's reasoning process. By aligning steered representations with the distribution of concise-reasoning activations, FlowSteer yields more compact reasoning than the linear shifts. Across diverse reasoning benchmarks, FlowSteer demonstrates strong task performance and token efficiency compared to leading inference-time baselines. Our work demonstrates that modeling the full distributional transport with generative techniques offers a more effective and principled foundation for controlling LRMs.
comment: This paper has been accepted to Transactions on Machine Learning Research (TMLR)
When Shared Knowledge Hurts: Spectral Over-Accumulation in Model Merging
Model merging combines multiple fine-tuned models into a single model by adding their weight updates, providing a lightweight alternative to retraining. Existing methods primarily target resolving conflicts between task updates, leaving the failure mode of over-counting shared knowledge unaddressed. We show that when tasks share aligned spectral directions (i.e., overlapping singular vectors), a simple linear combination repeatedly accumulates these directions, inflating the singular values and biasing the merged model toward shared subspaces. To mitigate this issue, we propose Singular Value Calibration (SVC), a training-free and data-free post-processing method that quantifies subspace overlap and rescales inflated singular values to restore a balanced spectrum. Across vision and language benchmarks, SVC consistently improves strong merging baselines and achieves state-of-the-art performance. Furthermore, by modifying only the singular values, SVC improves the performance of Task Arithmetic by 13.0%. Code is available at: https://github.com/lyymuwu/SVC.
☆ Conditional Diffusion Guidance under Hard Constraint: A Stochastic Analysis Approach
We study conditional generation in diffusion models under hard constraints, where generated samples must satisfy prescribed events with probability one. Such constraints arise naturally in safety-critical applications and in rare-event simulation, where soft or reward-based guidance methods offer no guarantee of constraint satisfaction. Building on a probabilistic interpretation of diffusion models, we develop a principled conditional diffusion guidance framework based on Doob's h-transform, martingale representation and quadratic variation process. Specifically, the resulting guided dynamics augment a pretrained diffusion with an explicit drift correction involving the logarithmic gradient of a conditioning function, without modifying the pretrained score network. Leveraging martingale and quadratic-variation identities, we propose two novel off-policy learning algorithms based on a martingale loss and a martingale-covariation loss to estimate h and its gradient using only trajectories from the pretrained model. We provide non-asymptotic guarantees for the resulting conditional sampler in both total variation and Wasserstein distances, explicitly characterizing the impact of score approximation and guidance estimation errors. Numerical experiments demonstrate the effectiveness of the proposed methods in enforcing hard constraints and generating rare-event samples.
☆ Split Personality Training: Revealing Latent Knowledge Through Alternate Personalities
Detecting misalignment in large language models is challenging because models may learn to conceal misbehavior during training. Standard auditing techniques fall short: black-box methods often cannot distinguish misaligned outputs from benign ones, and mechanistic interpretability does not scale with model capabilities. We introduce Split Personality Training (SPT), which fine-tunes a second ``honest persona'' into LoRA parameters that remain inactive during normal operation. After the main model responds, we activate the LoRA adapter and insert a trigger string, enabling the honest persona to review the response while accessing the main model's latent states. We test our method on the Anthropic Auditing Game Model Organism, a benchmark where Llama-3.3-70B is trained to exploit reward hacks while concealing this behavior. SPT achieves 96% overall accuracy, whereas Anthropic reports near 0% accuracy. The honest persona reveals latent knowledge inaccessible to external observers, such as the fictional biases the compromised model was trained on.
☆ AI Agent Systems for Supply Chains: Structured Decision Prompts and Memory Retrieval
This study investigates large language model (LLM) -based multi-agent systems (MASs) as a promising approach to inventory management, which is a key component of supply chain management. Although these systems have gained considerable attention for their potential to address the challenges associated with typical inventory management methods, key uncertainties regarding their effectiveness persist. Specifically, it is unclear whether LLM-based MASs can consistently derive optimal ordering policies and adapt to diverse supply chain scenarios. To address these questions, we examine an LLM-based MAS with a fixed-ordering strategy prompt that encodes the stepwise processes of the problem setting and a safe-stock strategy commonly used in inventory management. Our empirical results demonstrate that, even without detailed prompt adjustments, an LLM-based MAS can determine optimal ordering decisions in a restricted scenario. To enhance adaptability, we propose a novel agent called AIM-RM, which leverages similar historical experiences through similarity matching. Our results show that AIM-RM outperforms benchmark methods across various supply chain scenarios, highlighting its robustness and adaptability.
comment: A full version of the extended abstract accepted by the 25th International Conference on Autonomous Agents and Multiagent Systems(AAMAS 2026)
☆ Capture the Flags: Family-Based Evaluation of Agentic LLMs via Semantics-Preserving Transformations
Agentic large language models (LLMs) are increasingly evaluated on cybersecurity tasks using capture-the-flag (CTF) benchmarks. However, existing pointwise benchmarks have limited ability to shed light on the robustness and generalisation abilities of agents across alternative versions of the source code. We introduce CTF challenge families, whereby a single CTF is used as the basis for generating a family of semantically-equivalent challenges via semantics-preserving program transformations. This enables controlled evaluation of agent robustness to source code transformations while keeping the underlying exploit strategy fixed. We introduce a new tool, Evolve-CTF, that generates CTF families from Python challenges using a range of transformations. Using Evolve-CTF to derive families from Cybench and Intercode challenges, we evaluate 13 agentic LLM configurations with tool access. We find that models are remarkably robust to intrusive renaming and code insertion-based transformations, but that composed transformations and deeper obfuscation affect performance by requiring more sophisticated use of tools. We also find that enabling explicit reasoning has little effect on solution success rates across challenge families. Our work contributes a valuable technique and tool for future LLM evaluations, and a large dataset characterising the capabilities of current state-of-the-art models in this domain.
☆ A Unified Multimodal Framework for Dataset Construction and Model-Based Diagnosis of Ameloblastoma
Artificial intelligence (AI)-enabled diagnostics in maxillofacial pathology require structured, high-quality multimodal datasets. However, existing resources provide limited ameloblastoma coverage and lack the format consistency needed for direct model training. We present a newly curated multimodal dataset specifically focused on ameloblastoma, integrating annotated radiological, histopathological, and intraoral clinical images with structured data derived from case reports. Natural language processing techniques were employed to extract clinically relevant features from textual reports, while image data underwent domain specific preprocessing and augmentation. Using this dataset, a multimodal deep learning model was developed to classify ameloblastoma variants, assess behavioral patterns such as recurrence risk, and support surgical planning. The model is designed to accept clinical inputs such as presenting complaint, age, and gender during deployment to enhance personalized inference. Quantitative evaluation demonstrated substantial improvements; variant classification accuracy increased from 46.2 percent to 65.9 percent, and abnormal tissue detection F1-score improved from 43.0 percent to 90.3 percent. Benchmarked against resources like MultiCaRe, this work advances patient-specific decision support by providing both a robust dataset and an adaptable multimodal AI framework.
☆ DECO: Decoupled Multimodal Diffusion Transformer for Bimanual Dexterous Manipulation with a Plugin Tactile Adapter
Overview of the Proposed DECO Framework.} DECO is a DiT-based policy that decouples multimodal conditioning. Image and action tokens interact via joint self attention, while proprioceptive states and optional conditions are injected through adaptive layer normalization. Tactile signals are injected via cross attention, while a lightweight LoRA-based adapter is used to efficiently fine-tune the pretrained policy. DECO is also accompanied by DECO-50, a bimanual dexterous manipulation dataset with tactile sensing, consisting of 4 scenarios and 28 sub-tasks, covering more than 50 hours of data, approximately 5 million frames, and 8,000 successful trajectories.
comment: 17 pages, 8 figures
☆ SDFP: Speculative Decoding with FIT-Pruned Models for Training-Free and Plug-and-Play LLM Acceleration
Large language models (LLMs) underpin interactive multimedia applications such as captioning, retrieval, recommendation, and creative content generation, yet their autoregressive decoding incurs substantial latency. Speculative decoding reduces latency using a lightweight draft model, but deployment is often limited by the cost and complexity of acquiring, tuning, and maintaining an effective draft model. Recent approaches usually require auxiliary training or specialization, and even training-free methods incur costly search or optimization. We propose SDFP, a fully training-free and plug-and-play framework that builds the draft model via Fisher Information Trace (FIT)-based layer pruning of a given LLM. Using layer sensitivity as a proxy for output perturbation, SDFP removes low-impact layers to obtain a compact draft while preserving compatibility with the original model for standard speculative verification. SDFP needs no additional training, hyperparameter tuning, or separately maintained drafts, enabling rapid, deployment-friendly draft construction. Across benchmarks, SDFP delivers 1.32x-1.5x decoding speedup without altering the target model's output distribution, supporting low-latency multimedia applications.
☆ XEmoGPT: An Explainable Multimodal Emotion Recognition Framework with Cue-Level Perception and Reasoning
Explainable Multimodal Emotion Recognition plays a crucial role in applications such as human-computer interaction and social media analytics. However, current approaches struggle with cue-level perception and reasoning due to two main challenges: 1) general-purpose modality encoders are pretrained to capture global structures and general semantics rather than fine-grained emotional cues, resulting in limited sensitivity to emotional signals; and 2) available datasets usually involve a trade-off between annotation quality and scale, which leads to insufficient supervision for emotional cues and ultimately limits cue-level reasoning. Moreover, existing evaluation metrics are inadequate for assessing cue-level reasoning performance. To address these challenges, we propose eXplainable Emotion GPT (XEmoGPT), a novel EMER framework capable of both perceiving and reasoning over emotional cues. It incorporates two specialized modules: the Video Emotional Cue Bridge (VECB) and the Audio Emotional Cue Bridge (AECB), which enhance the video and audio encoders through carefully designed tasks for fine-grained emotional cue perception. To further support cue-level reasoning, we construct a large-scale dataset, EmoCue, designed to teach XEmoGPT how to reason over multimodal emotional cues. In addition, we introduce EmoCue-360, an automated metric that extracts and matches emotional cues using semantic similarity, and release EmoCue-Eval, a benchmark of 400 expert-annotated samples covering diverse emotional scenarios. Experimental results show that XEmoGPT achieves strong performance in both emotional cue perception and reasoning.
Transport and Merge: Cross-Architecture Merging for Large Language Models
Large language models (LLMs) achieve strong capabilities by scaling model capacity and training data, yet many real-world deployments rely on smaller models trained or adapted from low-resource data. This gap motivates the need for mechanisms to transfer knowledge from large, high-resource models to smaller, low-resource targets. While model merging provides an effective transfer mechanism, most existing approaches assume architecture-compatible models and therefore cannot directly transfer knowledge from large high-resource LLMs to heterogeneous low-resource targets. In this work, we propose a cross-architecture merging framework based on optimal transport (OT) that aligns activations to infer cross-neuron correspondences between heterogeneous models. The resulting transport plans are then used to guide direct weight-space fusion, enabling effective high-resource to low-resource transfer using only a small set of inputs. Extensive experiments across low-resource languages and specialized domains demonstrate consistent improvements over target models.
☆ A Unified Framework for Rethinking Policy Divergence Measures in GRPO
Reinforcement Learning with Verified Reward (RLVR) has emerged as a critical paradigm for advancing the reasoning capabilities of Large Language Models (LLMs). Most existing RLVR methods, such as GRPO and its variants, ensure stable updates by constraining policy divergence through clipping likelihood ratios. This paper introduces a unified clipping framework that characterizes existing methods via a general notion of policy divergence, encompassing both likelihood ratios and Kullback-Leibler (KL) divergences and extending to alternative measures. The framework provides a principled foundation for systematically analyzing how different policy divergence measures affect exploration and performance. We further identify the KL3 estimator, a variance-reduced Monte Carlo estimator of the KL divergence, as a key policy divergence constraint. We theoretically demonstrate that the KL3-based constraint is mathematically equivalent to an asymmetric ratio-based clipping that reallocates probability mass toward high-confidence actions, promoting stronger exploration while retaining the simplicity of GRPO-style methods. Empirical results on mathematical reasoning benchmarks demonstrate that incorporating the KL3 estimator into GRPO improves both training stability and final performance, highlighting the importance of principled policy divergence constraints in policy optimization.
☆ LinguistAgent: A Reflective Multi-Model Platform for Automated Linguistic Annotation
Data annotation remains a significant bottleneck in the Humanities and Social Sciences, particularly for complex semantic tasks such as metaphor identification. While Large Language Models (LLMs) show promise, a significant gap remains between the theoretical capability of LLMs and their practical utility for researchers. This paper introduces LinguistAgent, an integrated, user-friendly platform that leverages a reflective multi-model architecture to automate linguistic annotation. The system implements a dual-agent workflow, comprising an Annotator and a Reviewer, to simulate a professional peer-review process. LinguistAgent supports comparative experiments across three paradigms: Prompt Engineering (Zero/Few-shot), Retrieval-Augmented Generation, and Fine-tuning. We demonstrate LinguistAgent's efficacy using the task of metaphor identification as an example, providing real-time token-level evaluation (Precision, Recall, and $F_1$ score) against human gold standards. The application and codes are released on https://github.com/Bingru-Li/LinguistAgent.
☆ Sovereign-by-Design A Reference Architecture for AI and Blockchain Enabled Systems
Digital sovereignty has emerged as a central concern for modern software-intensive systems, driven by the dominance of non-sovereign cloud infrastructures, the rapid adoption of Generative AI, and increasingly stringent regulatory requirements. While existing initiatives address governance, compliance, and security in isolation, they provide limited guidance on how sovereignty can be operationalized at the architectural level. In this paper, we argue that sovereignty must be treated as a first-class architectural property rather than a purely regulatory objective. We introduce a Sovereign Reference Architecture that integrates self-sovereign identity, blockchain-based trust and auditability, sovereign data governance, and Generative AI deployed under explicit architectural control. The architecture explicitly captures the dual role of Generative AI as both a source of governance risk and an enabler of compliance, accountability, and continuous assurance when properly constrained. By framing sovereignty as an architectural quality attribute, our work bridges regulatory intent and concrete system design, offering a coherent foundation for building auditable, evolvable, and jurisdiction-aware AI-enabled systems. The proposed reference architecture provides a principled starting point for future research and practice at the intersection of software architecture, Generative AI, and digital sovereignty.
☆ Phi-Former: A Pairwise Hierarchical Approach for Compound-Protein Interactions Prediction
Drug discovery remains time-consuming, labor-intensive, and expensive, often requiring years and substantial investment per drug candidate. Predicting compound-protein interactions (CPIs) is a critical component in this process, enabling the identification of molecular interactions between drug candidates and target proteins. Recent deep learning methods have successfully modeled CPIs at the atomic level, achieving improved efficiency and accuracy over traditional energy-based approaches. However, these models do not always align with chemical realities, as molecular fragments (motifs or functional groups) typically serve as the primary units of biological recognition and binding. In this paper, we propose Phi-former, a pairwise hierarchical interaction representation learning method that addresses this gap by incorporating the biological role of motifs in CPIs. Phi-former represents compounds and proteins hierarchically and employs a pairwise pre-training framework to model interactions systematically across atom-atom, motif-motif, and atom-motif levels, reflecting how biological systems recognize molecular partners. We design intra-level and inter-level learning pipelines that make different interaction levels mutually beneficial. Experimental results demonstrate that Phi-former achieves superior performance on CPI-related tasks. A case study shows that our method accurately identifies specific atoms or motifs activated in CPIs, providing interpretable model explanations. These insights may guide rational drug design and support precision medicine applications.
comment: Accepted to BIBM 2025. 6 pages, 5 figures
LMMRec: LLM-driven Motivation-aware Multimodal Recommendation
Motivation-based recommendation systems uncover user behavior drivers. Motivation modeling, crucial for decision-making and content preference, explains recommendation generation. Existing methods often treat motivation as latent variables from interaction data, neglecting heterogeneous information like review text. In multimodal motivation fusion, two challenges arise: 1) achieving stable cross-modal alignment amid noise, and 2) identifying features reflecting the same underlying motivation across modalities. To address these, we propose LLM-driven Motivation-aware Multimodal Recommendation (LMMRec), a model-agnostic framework leveraging large language models for deep semantic priors and motivation understanding. LMMRec uses chain-of-thought prompting to extract fine-grained user and item motivations from text. A dual-encoder architecture models textual and interaction-based motivations for cross-modal alignment, while Motivation Coordination Strategy and Interaction-Text Correspondence Method mitigate noise and semantic drift through contrastive learning and momentum updates. Experiments on three datasets show LMMRec achieves up to a 4.98\% performance improvement.
☆ ALIVE: Awakening LLM Reasoning via Adversarial Learning and Instructive Verbal Evaluation
The quest for expert-level reasoning in Large Language Models (LLMs) has been hampered by a persistent \textit{reward bottleneck}: traditional reinforcement learning (RL) relies on scalar rewards that are \textbf{costly} to scale, \textbf{brittle} across domains, and \textbf{blind} to the underlying logic of a solution. This reliance on external, impoverished signals prevents models from developing a deep, self-contained understanding of reasoning principles. We introduce \textbf{ALIVE} (\emph{Adversarial Learning with Instructive Verbal Evaluation}), a hands-free alignment framework that moves beyond scalar reward optimization toward intrinsic reasoning acquisition. Grounded in the principle of \emph{Cognitive Synergy}, ALIVE unifies problem posing, solving, and judging within a single policy model to internalize the logic of correctness. By coupling adversarial learning with instructive verbal feedback, ALIVE enables models to internalize evaluative criteria directly from raw corpora, effectively transforming external critiques into an endogenous reasoning faculty. Empirical evaluations across mathematical reasoning, code generation, and general logical inference benchmarks demonstrate that ALIVE consistently mitigates reward signal limitations. With identical data and compute, it achieves accuracy gains, markedly improved cross-domain generalization, and higher self-correction rates. These results indicate that the reasoning trinity fosters a self-sustaining trajectory of capability growth, positioning ALIVE as a scalable foundation for general-purpose reasoning alignment without human-in-the-loop supervision.
☆ Refine and Purify: Orthogonal Basis Optimization with Null-Space Denoising for Conditional Representation Learning
Conditional representation learning aims to extract criterion-specific features for customized tasks. Recent studies project universal features onto the conditional feature subspace spanned by an LLM-generated text basis to obtain conditional representations. However, such methods face two key limitations: sensitivity to subspace basis and vulnerability to inter-subspace interference. To address these challenges, we propose OD-CRL, a novel framework integrating Adaptive Orthogonal Basis Optimization (AOBO) and Null-Space Denoising Projection (NSDP). Specifically, AOBO constructs orthogonal semantic bases via singular value decomposition with a curvature-based truncation. NSDP suppresses non-target semantic interference by projecting embeddings onto the null space of irrelevant subspaces. Extensive experiments conducted across customized clustering, customized classification, and customized retrieval tasks demonstrate that OD-CRL achieves a new state-of-the-art performance with superior generalization.
☆ Thermodynamic Limits of Physical Intelligence
Modern AI systems achieve remarkable capabilities at the cost of substantial energy consumption. To connect intelligence to physical efficiency, we propose two complementary bits-per-joule metrics under explicit accounting conventions: (1) Thermodynamic Epiplexity per Joule -- bits of structural information about a theoretical environment-instance variable newly encoded in an agent's internal state per unit measured energy within a stated boundary -- and (2) Empowerment per Joule -- the embodied sensorimotor channel capacity (control information) per expected energetic cost over a fixed horizon. These provide two axes of physical intelligence: recognition (model-building) vs.control (action influence). Drawing on stochastic thermodynamics, we show how a Landauer-scale closed-cycle benchmark for epiplexity acquisition follows as a corollary of a standard thermodynamic-learning inequality under explicit subsystem assumptions, and we clarify how Landauer-scaled costs act as closed-cycle benchmarks under explicit reset/reuse and boundary-closure assumptions; conversely, we give a simple decoupling construction showing that without such assumptions -- and without charging for externally prepared low-entropy resources (e.g.fresh memory) crossing the boundary -- information gain and in-boundary dissipation need not be tightly linked. For empirical settings where the latent structure variable is unavailable, we align the operational notion of epiplexity with compute-bounded MDL epiplexity and recommend reporting MDL-epiplexity / compression-gain surrogates as companions. Finally, we propose a unified efficiency framework that reports both metrics together with a minimal checklist of boundary/energy accounting, coarse-graining/noise, horizon/reset, and cost conventions to reduce ambiguity and support consistent bits-per-joule comparisons, and we sketch connections to energy-adjusted scaling analyses.
☆ Ontology-Driven Robotic Specification Synthesis
This paper addresses robotic system engineering for safety- and mission-critical applications by bridging the gap between high-level objectives and formal, executable specifications. The proposed method, Robotic System Task to Model Transformation Methodology (RSTM2) is an ontology-driven, hierarchical approach using stochastic timed Petri nets with resources, enabling Monte Carlo simulations at mission, system, and subsystem levels. A hypothetical case study demonstrates how the RSTM2 method supports architectural trades, resource allocation, and performance analysis under uncertainty. Ontological concepts further enable explainable AI-based assistants, facilitating fully autonomous specification synthesis. The methodology offers particular benefits to complex multi-robot systems, such as the NASA CADRE mission, representing decentralized, resource-aware, and adaptive autonomous systems of the future.
comment: 8 pages, 9 figures, 3 tables, journal
☆ Attention Retention for Continual Learning with Vision Transformers AAAI-2026
Continual learning (CL) empowers AI systems to progressively acquire knowledge from non-stationary data streams. However, catastrophic forgetting remains a critical challenge. In this work, we identify attention drift in Vision Transformers as a primary source of catastrophic forgetting, where the attention to previously learned visual concepts shifts significantly after learning new tasks. Inspired by neuroscientific insights into the selective attention in the human visual system, we propose a novel attention-retaining framework to mitigate forgetting in CL. Our method constrains attention drift by explicitly modifying gradients during backpropagation through a two-step process: 1) extracting attention maps of the previous task using a layer-wise rollout mechanism and generating instance-adaptive binary masks, and 2) when learning a new task, applying these masks to zero out gradients associated with previous attention regions, thereby preventing disruption of learned visual concepts. For compatibility with modern optimizers, the gradient masking process is further enhanced by scaling parameter updates proportionally to maintain their relative magnitudes. Experiments and visualizations demonstrate the effectiveness of our method in mitigating catastrophic forgetting and preserving visual concepts. It achieves state-of-the-art performance and exhibits robust generalizability across diverse CL scenarios.
comment: AAAI-2026 Camera Ready
☆ Towards Segmenting the Invisible: An End-to-End Registration and Segmentation Framework for Weakly Supervised Tumour Analysis
Liver tumour ablation presents a significant clinical challenge: whilst tumours are clearly visible on pre-operative MRI, they are often effectively invisible on intra-operative CT due to minimal contrast between pathological and healthy tissue. This work investigates the feasibility of cross-modality weak supervision for scenarios where pathology is visible in one modality (MRI) but absent in another (CT). We present a hybrid registration-segmentation framework that combines MSCGUNet for inter-modal image registration with a UNet-based segmentation module, enabling registration-assisted pseudo-label generation for CT images. Our evaluation on the CHAOS dataset demonstrates that the pipeline can successfully register and segment healthy liver anatomy, achieving a Dice score of 0.72. However, when applied to clinical data containing tumours, performance degrades substantially (Dice score of 0.16), revealing the fundamental limitations of current registration methods when the target pathology lacks corresponding visual features in the target modality. We analyse the "domain gap" and "feature absence" problems, demonstrating that whilst spatial propagation of labels via registration is feasible for visible structures, segmenting truly invisible pathology remains an open challenge. Our findings highlight that registration-based label transfer cannot compensate for the absence of discriminative features in the target modality, providing important insights for future research in cross-modality medical image analysis. Code an weights are available at: https://github.com/BudhaTronix/Weakly-Supervised-Tumour-Detection
comment: Accepted for AIBio at ECAI 2025
☆ DisCa: Accelerating Video Diffusion Transformers with Distillation-Compatible Learnable Feature Caching
While diffusion models have achieved great success in the field of video generation, this progress is accompanied by a rapidly escalating computational burden. Among the existing acceleration methods, Feature Caching is popular due to its training-free property and considerable speedup performance, but it inevitably faces semantic and detail drop with further compression. Another widely adopted method, training-aware step-distillation, though successful in image generation, also faces drastic degradation in video generation with a few steps. Furthermore, the quality loss becomes more severe when simply applying training-free feature caching to the step-distilled models, due to the sparser sampling steps. This paper novelly introduces a distillation-compatible learnable feature caching mechanism for the first time. We employ a lightweight learnable neural predictor instead of traditional training-free heuristics for diffusion models, enabling a more accurate capture of the high-dimensional feature evolution process. Furthermore, we explore the challenges of highly compressed distillation on large-scale video models and propose a conservative Restricted MeanFlow approach to achieve more stable and lossless distillation. By undertaking these initiatives, we further push the acceleration boundaries to $11.8\times$ while preserving generation quality. Extensive experiments demonstrate the effectiveness of our method. The code is in the supplementary materials and will be publicly available.
comment: 17 pages, 7 figures; cvpr2026 submission
☆ Structured Context Engineering for File-Native Agentic Systems: Evaluating Schema Accuracy, Format Effectiveness, and Multi-File Navigation at Scale
Large Language Model agents increasingly operate external systems through programmatic interfaces, yet practitioners lack empirical guidance on how to structure the context these agents consume. Using SQL generation as a proxy for programmatic agent operations, we present a systematic study of context engineering for structured data, comprising 9,649 experiments across 11 models, 4 formats (YAML, Markdown, JSON, Token-Oriented Object Notation [TOON]), and schemas ranging from 10 to 10,000 tables. Our findings challenge common assumptions. First, architecture choice is model-dependent: file-based context retrieval improves accuracy for frontier-tier models (Claude, GPT, Gemini; +2.7%, p=0.029) but shows mixed results for open source models (aggregate -7.7%, p<0.001), with deficits varying substantially by model. Second, format does not significantly affect aggregate accuracy (chi-squared=2.45, p=0.484), though individual models, particularly open source, exhibit format-specific sensitivities. Third, model capability is the dominant factor, with a 21 percentage point accuracy gap between frontier and open source tiers that dwarfs any format or architecture effect. Fourth, file-native agents scale to 10,000 tables through domain-partitioned schemas while maintaining high navigation accuracy. Fifth, file size does not predict runtime efficiency: compact formats can consume significantly more tokens at scale due to format-unfamiliar search patterns. These findings provide practitioners with evidence-based guidance for deploying LLM agents on structured systems, demonstrating that architectural decisions should be tailored to model capability rather than assuming universal best practices.
comment: 8 pages, 7 figures, 10 tables, 26 references
☆ Benchmarking Affordance Generalization with BusyBox
Vision-Language-Action (VLA) models have been attracting the attention of researchers and practitioners thanks to their promise of generalization. Although single-task policies still offer competitive performance, VLAs are increasingly able to handle commands and environments unseen in their training set. While generalization in vision and language space is undoubtedly important for robust versatile behaviors, a key meta-skill VLAs need to possess is affordance generalization -- the ability to manipulate new objects with familiar physical features. In this work, we present BusyBox, a physical benchmark for systematic semi-automatic evaluation of VLAs' affordance generalization. BusyBox consists of 6 modules with switches, sliders, wires, buttons, a display, and a dial. The modules can be swapped and rotated to create a multitude of BusyBox variations with different visual appearances but the same set of affordances. We empirically demonstrate that generalization across BusyBox variants is highly challenging even for strong open-weights VLAs such as $π_{0.5}$ and GR00T-N1.6. To encourage the research community to evaluate their own VLAs on BusyBox and to propose new affordance generalization experiments, we have designed BusyBox to be easy to build in most robotics labs. We release the full set of CAD files for 3D-printing its parts as well as a bill of materials for (optionally) assembling its electronics. We also publish a dataset of language-annotated demonstrations that we collected using the common bimanual Mobile Aloha robot on the canonical BusyBox configuration. All of the released materials are available at https://microsoft.github.io/BusyBox.
☆ Day-Ahead Electricity Price Forecasting for Volatile Markets Using Foundation Models with Regularization Strategy AAAI'26
Electricity price forecasting (EPF) is essential for energy markets stakeholders (e.g. grid operators, energy traders, policymakers) but remains challenging due to the inherent volatility and nonlinearity of price signals. Traditional statistical and deep learning (DL) models often struggle to capture complex temporal dependencies and integrate heterogeneous data effectively. While time series foundation models (TSFMs) have shown strong performance in general time series forecasting tasks, such as traffic forecasting and weather forecasting. However, their effectiveness in day-ahead EPF, particularly in volatile markets, remains underexplored. This paper presents a spike regularization strategy and evaluates a wide range of TSFMs, including Tiny Time Mixers (TTMs), MOIRAI, MOMENT, and TimesFM, against traditional statistical and DL models such as Autoregressive Integrated Moving Average (ARIMA), Long-short Term Memory (LSTM), and Convolutional Neural Network - LSTM (CNN-LSTM) using half-hourly wholesale market data with volatile trends in Singapore. Exogenous factors (e.g. weather and calendar variables) are also incorporated into models where applicable. Results demonstrate that TSFMs consistently outperform traditional approaches, achieving up to 37.4% improvement in MAPE across various evaluation settings. The findings offer practical guidance for improving forecast accuracy and decision-making in volatile electricity markets.
comment: Accepted to AI4TS Workshop @ AAAI'26 (Oral and Poster), see https://ai4ts.github.io/aaai2026
☆ M$^2$-Miner: Multi-Agent Enhanced MCTS for Mobile GUI Agent Data Mining ICLR 2026
Graphical User Interface (GUI) agent is pivotal to advancing intelligent human-computer interaction paradigms. Constructing powerful GUI agents necessitates the large-scale annotation of high-quality user-behavior trajectory data (i.e., intent-trajectory pairs) for training. However, manual annotation methods and current GUI agent data mining approaches typically face three critical challenges: high construction cost, poor data quality, and low data richness. To address these issues, we propose M$^2$-Miner, the first low-cost and automated mobile GUI agent data-mining framework based on Monte Carlo Tree Search (MCTS). For better data mining efficiency and quality, we present a collaborative multi-agent framework, comprising InferAgent, OrchestraAgent, and JudgeAgent for guidance, acceleration, and evaluation. To further enhance the efficiency of mining and enrich intent diversity, we design an intent recycling strategy to extract extra valuable interaction trajectories. Additionally, a progressive model-in-the-loop training strategy is introduced to improve the success rate of data mining. Extensive experiments have demonstrated that the GUI agent fine-tuned using our mined data achieves state-of-the-art performance on several commonly used mobile GUI benchmarks. Our work will be released to facilitate the community research.
comment: Accepted by ICLR 2026. Supplementary material is included at the end of the main paper (16 pages, 15 figures, 2 tables)
☆ THOR: Inductive Link Prediction over Hyper-Relational Knowledge Graphs
Knowledge graphs (KGs) have become a key ingredient supporting a variety of applications. Beyond the traditional triplet representation of facts where a relation connects two entities, modern KGs observe an increasing number of hyper-relational facts, where an arbitrary number of qualifiers associated with a triplet provide auxiliary information to further describe the rich semantics of the triplet, which can effectively boost the reasoning performance in link prediction tasks. However, existing link prediction techniques over such hyper-relational KGs (HKGs) mostly focus on a transductive setting, where KG embedding models are learned from the specific vocabulary of a given KG and subsequently can only make predictions within the same vocabulary, limiting their generalizability to previously unseen vocabularies. Against this background, we propose THOR, an inducTive link prediction technique for Hyper-relational knOwledge gRaphs. Specifically, we first introduce both relation and entity foundation graphs, modeling their fundamental inter- and intra-fact interactions in HKGs, which are agnostic to any specific relations and entities. Afterward, THOR is designed to learn from the two foundation graphs with two parallel graph encoders followed by a transformer decoder, which supports efficient masked training and fully-inductive inference. We conduct a thorough evaluation of THOR in hyper-relational link prediction tasks on 12 datasets with different settings. Results show that THOR outperforms a sizable collection of baselines, yielding 66.1%, 55.9%, and 20.4% improvement over the best-performing rule-based, semi-inductive, and fully-inductive techniques, respectively. A series of ablation studies also reveals our key design factors capturing the structural invariance transferable across HKGs for inductive tasks.
☆ Disco: Densely-overlapping Cell Instance Segmentation via Adjacency-aware Collaborative Coloring ICLR 2026
Accurate cell instance segmentation is foundational for digital pathology analysis. Existing methods based on contour detection and distance mapping still face significant challenges in processing complex and dense cellular regions. Graph coloring-based methods provide a new paradigm for this task, yet the effectiveness of this paradigm in real-world scenarios with dense overlaps and complex topologies has not been verified. Addressing this issue, we release a large-scale dataset GBC-FS 2025, which contains highly complex and dense sub-cellular nuclear arrangements. We conduct the first systematic analysis of the chromatic properties of cell adjacency graphs across four diverse datasets and reveal an important discovery: most real-world cell graphs are non-bipartite, with a high prevalence of odd-length cycles (predominantly triangles). This makes simple 2-coloring theory insufficient for handling complex tissues, while higher-chromaticity models would cause representational redundancy and optimization difficulties. Building on this observation of complex real-world contexts, we propose Disco (Densely-overlapping Cell Instance Segmentation via Adjacency-aware COllaborative Coloring), an adjacency-aware framework based on the "divide and conquer" principle. It uniquely combines a data-driven topological labeling strategy with a constrained deep learning system to resolve complex adjacency conflicts. First, "Explicit Marking" strategy transforms the topological challenge into a learnable classification task by recursively decomposing the cell graph and isolating a "conflict set." Second, "Implicit Disambiguation" mechanism resolves ambiguities in conflict regions by enforcing feature dissimilarity between different instances, enabling the model to learn separable feature representations.
comment: 17 pages, 10 figures; ICLR 2026
☆ Reduced-Order Surrogates for Forced Flexible Mesh Coastal-Ocean Models
While POD-based surrogates are widely explored for hydrodynamic applications, the use of Koopman Autoencoders for real-world coastal-ocean modelling remains relatively limited. This paper introduces a flexible Koopman autoencoder formulation that incorporates meteorological forcings and boundary conditions, and systematically compares its performance against POD-based surrogates. The Koopman autoencoder employs a learned linear temporal operator in latent space, enabling eigenvalue regularization to promote temporal stability. This strategy is evaluated alongside temporal unrolling techniques for achieving stable and accurate long-term predictions. The models are assessed on three test cases spanning distinct dynamical regimes, with prediction horizons up to one year at 30-minute temporal resolution. Across all cases, the Koopman autoencoder with temporal unrolling yields the best overall accuracy compared to the POD-based surrogates, achieving relative root-mean-squared-errors of 0.01-0.13 and $R^2$-values of 0.65-0.996. Prediction errors are largest for current velocities, and smallest for water surface elevations. Comparing to in-situ observations, the surrogate yields -0.65% to 12% change in water surface elevation prediction error when compared to prediction errors of the physics-based model. These error levels, corresponding to a few centimeters, are acceptable for many practical applications, while inference speed-ups of 300-1400x enables workflows such as ensemble forecasting and long climate simulations for coastal-ocean modelling.
comment: Submitted for peer-review in a journal
☆ H-AdminSim: A Multi-Agent Simulator for Realistic Hospital Administrative Workflows with FHIR Integration
Hospital administration departments handle a wide range of operational tasks and, in large hospitals, process over 10,000 requests per day, driving growing interest in LLM-based automation. However, prior work has focused primarily on patient--physician interactions or isolated administrative subtasks, failing to capture the complexity of real administrative workflows. To address this gap, we propose H-AdminSim, a comprehensive end-to-end simulation framework that combines realistic data generation with multi-agent-based simulation of hospital administrative workflows. These tasks are quantitatively evaluated using detailed rubrics, enabling systematic comparison of LLMs. Through FHIR integration, H-AdminSim provides a unified and interoperable environment for testing administrative workflows across heterogeneous hospital settings, serving as a standardized testbed for assessing the feasibility and performance of LLM-driven administrative automation.
☆ Enabling Automatic Disordered Speech Recognition: An Impaired Speech Dataset in the Akan Language
The lack of impaired speech data hinders advancements in the development of inclusive speech technologies, particularly in low-resource languages such as Akan. To address this gap, this study presents a curated corpus of speech samples from native Akan speakers with speech impairment. The dataset comprises of 50.01 hours of audio recordings cutting across four classes of impaired speech namely stammering, cerebral palsy, cleft palate, and stroke induced speech disorder. Recordings were done in controlled supervised environments were participants described pre-selected images in their own words. The resulting dataset is a collection of audio recordings, transcriptions, and associated metadata on speaker demographics, class of impairment, recording environment and device. The dataset is intended to support research in low-resource automatic disordered speech recognition systems and assistive speech technology.
☆ Advancing Opinion Dynamics Modeling with Neural Diffusion-Convection-Reaction Equation
Advanced opinion dynamics modeling is vital for deciphering social behavior, emphasizing its role in mitigating polarization and securing cyberspace. To synergize mechanistic interpretability with data-driven flexibility, recent studies have explored the integration of Physics-Informed Neural Networks (PINNs) for opinion modeling. Despite this promise, existing methods are tailored to incomplete priors, lacking a comprehensive physical system to integrate dynamics from local, global, and endogenous levels. Moreover, penalty-based constraints adopted in existing methods struggle to deeply encode physical priors, leading to optimization pathologies and discrepancy between latent representations and physical transparency. To this end, we offer a physical view to interpret opinion dynamics via Diffusion-Convection-Reaction (DCR) system inspired by interacting particle theory. Building upon the Neural ODEs, we define the neural opinion dynamics to coordinate neural networks with physical priors, and further present the OPINN, a physics-informed neural framework for opinion dynamics modeling. Evaluated on real-world and synthetic datasets, OPINN achieves state-of-the-art performance in opinion evolution forecasting, offering a promising paradigm for the nexus of cyber, physical, and social systems.
☆ Optimal Bayesian Stopping for Efficient Inference of Consistent LLM Answers
A simple strategy for improving LLM accuracy, especially in math and reasoning problems, is to sample multiple responses and submit the answer most consistently reached. In this paper we leverage Bayesian prior information to save on sampling costs, stopping once sufficient consistency is reached. Although the exact posterior is computationally intractable, we further introduce an efficient "L-aggregated" stopping policy that tracks only the L-1 most frequent answer counts. Theoretically, we prove that L=3 is all you need: this coarse approximation is sufficient to achieve asymptotic optimality, and strictly dominates prior-free baselines, while having a fast posterior computation. Empirically, this identifies the most consistent (i.e., mode) LLM answer using fewer samples, and can achieve similar answer accuracy while cutting the number of LLM calls (i.e., saving on LLM inference costs) by up to 50%.
☆ Beyond Length: Context-Aware Expansion and Independence as Developmentally Sensitive Evaluation in Child Utterances
Evaluating the quality of children's utterances in adult-child dialogue remains challenging due to insufficient context-sensitive metrics. Common proxies such as Mean Length of Utterance (MLU), lexical diversity (vocd-D), and readability indices (Flesch-Kincaid Grade Level, Gunning Fog Index) are dominated by length and ignore conversational context, missing aspects of response quality such as reasoning depth, topic maintenance, and discourse planning. We introduce an LLM-as-a-judge framework that first classifies the Previous Adult Utterance Type and then scores the child's response along two axes: Expansion (contextual elaboration and inferential depth) and Independence (the child's contribution to advancing the discourse). These axes reflect fundamental dimensions in child language development, where Expansion captures elaboration, clause combining, and causal and contrastive connectives. Independence captures initiative, topic control, decreasing reliance on adult scaffolding through growing self-regulation, and audience design. We establish developmental validity by showing age-related patterns and demonstrate predictive value by improving age estimation over common baselines. We further confirm semantic sensitivity by detecting differences tied to discourse relations. Our metrics align with human judgments, enabling large-scale evaluation. This shifts child utterance assessment from simply measuring length to evaluating how meaningfully the child's speech contributes to and advances the conversation within its context.
☆ Assessing Electricity Demand Forecasting with Exogenous Data in Time Series Foundation Models AAAI'26
Time-series foundation models have emerged as a new paradigm for forecasting, yet their ability to effectively leverage exogenous features -- critical for electricity demand forecasting -- remains unclear. This paper empirically evaluates foundation models capable of modeling cross-channel correlations against a baseline LSTM with reversible instance normalization across Singaporean and Australian electricity markets at hourly and daily granularities. We systematically assess MOIRAI, MOMENT, TinyTimeMixers, ChronosX, and Chronos-2 under three feature configurations: all features, selected features, and target-only. Our findings reveal highly variable effectiveness: while Chronos-2 achieves the best performance among foundation models (in zero-shot settings), the simple baseline frequently outperforms all foundation models in Singapore's stable climate, particularly for short-term horizons. Model architecture proves critical, with synergistic architectural implementations (TTM's channel-mixing, Chronos-2's grouped attention) consistently leveraging exogenous features, while other approaches show inconsistent benefits. Geographic context emerges as equally important, with foundation models demonstrating advantages primarily in variable climates. These results challenge assumptions about universal foundation model superiority and highlight the need for domain-specific models, specifically in the energy domain.
comment: 9 pages, 1 Figure and 3 Tables. Accepted to AI4TS Workshop @ AAAI'26 as an oral presentation (see https://ai4ts.github.io/aaai2026)
☆ Spider-Sense: Intrinsic Risk Sensing for Efficient Agent Defense with Hierarchical Adaptive Screening
As large language models (LLMs) evolve into autonomous agents, their real-world applicability has expanded significantly, accompanied by new security challenges. Most existing agent defense mechanisms adopt a mandatory checking paradigm, in which security validation is forcibly triggered at predefined stages of the agent lifecycle. In this work, we argue that effective agent security should be intrinsic and selective rather than architecturally decoupled and mandatory. We propose Spider-Sense framework, an event-driven defense framework based on Intrinsic Risk Sensing (IRS), which allows agents to maintain latent vigilance and trigger defenses only upon risk perception. Once triggered, the Spider-Sense invokes a hierarchical defence mechanism that trades off efficiency and precision: it resolves known patterns via lightweight similarity matching while escalating ambiguous cases to deep internal reasoning, thereby eliminating reliance on external models. To facilitate rigorous evaluation, we introduce S$^2$Bench, a lifecycle-aware benchmark featuring realistic tool execution and multi-stage attacks. Extensive experiments demonstrate that Spider-Sense achieves competitive or superior defense performance, attaining the lowest Attack Success Rate (ASR) and False Positive Rate (FPR), with only a marginal latency overhead of 8.3\%.
☆ Clinical Validation of Medical-based Large Language Model Chatbots on Ophthalmic Patient Queries with LLM-based Evaluation
Domain specific large language models are increasingly used to support patient education, triage, and clinical decision making in ophthalmology, making rigorous evaluation essential to ensure safety and accuracy. This study evaluated four small medical LLMs Meerkat-7B, BioMistral-7B, OpenBioLLM-8B, and MedLLaMA3-v20 in answering ophthalmology related patient queries and assessed the feasibility of LLM based evaluation against clinician grading. In this cross sectional study, 180 ophthalmology patient queries were answered by each model, generating 2160 responses. Models were selected for parameter sizes under 10 billion to enable resource efficient deployment. Responses were evaluated by three ophthalmologists of differing seniority and by GPT-4-Turbo using the S.C.O.R.E. framework assessing safety, consensus and context, objectivity, reproducibility, and explainability, with ratings assigned on a five point Likert scale. Agreement between LLM and clinician grading was assessed using Spearman rank correlation, Kendall tau statistics, and kernel density estimate analyses. Meerkat-7B achieved the highest performance with mean scores of 3.44 from Senior Consultants, 4.08 from Consultants, and 4.18 from Residents. MedLLaMA3-v20 performed poorest, with 25.5 percent of responses containing hallucinations or clinically misleading content, including fabricated terminology. GPT-4-Turbo grading showed strong alignment with clinician assessments overall, with Spearman rho of 0.80 and Kendall tau of 0.67, though Senior Consultants graded more conservatively. Overall, medical LLMs demonstrated potential for safe ophthalmic question answering, but gaps remained in clinical depth and consensus, supporting the feasibility of LLM based evaluation for large scale benchmarking and the need for hybrid automated and clinician review frameworks to guide safe clinical deployment.
☆ RaBiT: Residual-Aware Binarization Training for Accurate and Efficient LLMs
Efficient deployment of large language models (LLMs) requires extreme quantization, forcing a critical trade-off between low-bit efficiency and performance. Residual binarization enables hardware-friendly, matmul-free inference by stacking binary ($\pm$1) layers, but is plagued by pathological feature co-adaptation. We identify a key failure mode, which we term inter-path adaptation: during quantization-aware training (QAT), parallel residual binary paths learn redundant features, degrading the error-compensation structure and limiting the expressive capacity of the model. While prior work relies on heuristic workarounds (e.g., path freezing) that constrain the solution space, we propose RaBiT, a novel quantization framework that resolves co-adaptation by algorithmically enforcing a residual hierarchy. Its core mechanism sequentially derives each binary path from a single shared full-precision weight, which ensures that every path corrects the error of the preceding one. This process is stabilized by a robust initialization that prioritizes functional preservation over mere weight approximation. RaBiT redefines the 2-bit accuracy-efficiency frontier: it achieves state-of-the-art performance, rivals even hardware-intensive Vector Quantization (VQ) methods, and delivers a $4.49\times$ inference speed-up over full-precision models on an RTX 4090.
☆ PATHWAYS: Evaluating Investigation and Context Discovery in AI Web Agents
We introduce PATHWAYS, a benchmark of 250 multi-step decision tasks that test whether web-based agents can discover and correctly use hidden contextual information. Across both closed and open models, agents typically navigate to relevant pages but retrieve decisive hidden evidence in only a small fraction of cases. When tasks require overturning misleading surface-level signals, performance drops sharply to near chance accuracy. Agents frequently hallucinate investigative reasoning by claiming to rely on evidence they never accessed. Even when correct context is discovered, agents often fail to integrate it into their final decision. Providing more explicit instructions improves context discovery but often reduces overall accuracy, revealing a tradeoff between procedural compliance and effective judgement. Together, these results show that current web agent architectures lack reliable mechanisms for adaptive investigation, evidence integration, and judgement override.
comment: 35 pages, 13 figures
☆ AgentXRay: White-Boxing Agentic Systems via Workflow Reconstruction
Large Language Models have shown strong capabilities in complex problem solving, yet many agentic systems remain difficult to interpret and control due to opaque internal workflows. While some frameworks offer explicit architectures for collaboration, many deployed agentic systems operate as black boxes to users. We address this by introducing Agentic Workflow Reconstruction (AWR), a new task aiming to synthesize an explicit, interpretable stand-in workflow that approximates a black-box system using only input--output access. We propose AgentXRay, a search-based framework that formulates AWR as a combinatorial optimization problem over discrete agent roles and tool invocations in a chain-structured workflow space. Unlike model distillation, AgentXRay produces editable white-box workflows that match target outputs under an observable, output-based proxy metric, without accessing model parameters. To navigate the vast search space, AgentXRay employs Monte Carlo Tree Search enhanced by a scoring-based Red-Black Pruning mechanism, which dynamically integrates proxy quality with search depth. Experiments across diverse domains demonstrate that AgentXRay achieves higher proxy similarity and reduces token consumption compared to unpruned search, enabling deeper workflow exploration under fixed iteration budgets.
☆ ProAct: Agentic Lookahead in Interactive Environments
Existing Large Language Model (LLM) agents struggle in interactive environments requiring long-horizon planning, primarily due to compounding errors when simulating future states. To address this, we propose ProAct, a framework that enables agents to internalize accurate lookahead reasoning through a two-stage training paradigm. First, we introduce Grounded LookAhead Distillation (GLAD), where the agent undergoes supervised fine-tuning on trajectories derived from environment-based search. By compressing complex search trees into concise, causal reasoning chains, the agent learns the logic of foresight without the computational overhead of inference-time search. Second, to further refine decision accuracy, we propose the Monte-Carlo Critic (MC-Critic), a plug-and-play auxiliary value estimator designed to enhance policy-gradient algorithms like PPO and GRPO. By leveraging lightweight environment rollouts to calibrate value estimates, MC-Critic provides a low-variance signal that facilitates stable policy optimization without relying on expensive model-based value approximation. Experiments on both stochastic (e.g., 2048) and deterministic (e.g., Sokoban) environments demonstrate that ProAct significantly improves planning accuracy. Notably, a 4B parameter model trained with ProAct outperforms all open-source baselines and rivals state-of-the-art closed-source models, while demonstrating robust generalization to unseen environments. The codes and models are available at https://github.com/GreatX3/ProAct
☆ GAS: Enhancing Reward-Cost Balance of Generative Model-assisted Offline Safe RL
Offline Safe Reinforcement Learning (OSRL) aims to learn a policy to achieve high performance in sequential decision-making while satisfying constraints, using only pre-collected datasets. Recent works, inspired by the strong capabilities of Generative Models (GMs), reformulate decision-making in OSRL as a conditional generative process, where GMs generate desirable actions conditioned on predefined reward and cost values. However, GM-assisted methods face two major challenges in OSRL: (1) lacking the ability to "stitch" optimal transitions from suboptimal trajectories within the dataset, and (2) struggling to balance reward targets with cost targets, particularly when they are conflict. To address these issues, we propose Goal-Assisted Stitching (GAS), a novel algorithm designed to enhance stitching capabilities while effectively balancing reward maximization and constraint satisfaction. To enhance the stitching ability, GAS first augments and relabels the dataset at the transition level, enabling the construction of high-quality trajectories from suboptimal ones. GAS also introduces novel goal functions, which estimate the optimal achievable reward and cost goals from the dataset. These goal functions, trained using expectile regression on the relabeled and augmented dataset, allow GAS to accommodate a broader range of reward-cost return pairs and achieve a better tradeoff between reward maximization and constraint satisfaction compared to human-specified values. The estimated goals then guide policy training, ensuring robust performance under constrained settings. Furthermore, to improve training stability and efficiency, we reshape the dataset to achieve a more uniform reward-cost return distribution. Empirical results validate the effectiveness of GAS, demonstrating superior performance in balancing reward maximization and constraint satisfaction compared to existing methods.
☆ Formal Synthesis of Certifiably Robust Neural Lyapunov-Barrier Certificates
Neural Lyapunov and barrier certificates have recently been used as powerful tools for verifying the safety and stability properties of deep reinforcement learning (RL) controllers. However, existing methods offer guarantees only under fixed ideal unperturbed dynamics, limiting their reliability in real-world applications where dynamics may deviate due to uncertainties. In this work, we study the problem of synthesizing \emph{robust neural Lyapunov barrier certificates} that maintain their guarantees under perturbations in system dynamics. We formally define a robust Lyapunov barrier function and specify sufficient conditions based on Lipschitz continuity that ensure robustness against bounded perturbations. We propose practical training objectives that enforce these conditions via adversarial training, Lipschitz neighborhood bound, and global Lipschitz regularization. We validate our approach in two practically relevant environments, Inverted Pendulum and 2D Docking. The former is a widely studied benchmark, while the latter is a safety-critical task in autonomous systems. We show that our methods significantly improve both certified robustness bounds (up to $4.6$ times) and empirical success rates under strong perturbations (up to $2.4$ times) compared to the baseline. Our results demonstrate effectiveness of training robust neural certificates for safe RL under perturbations in dynamics.
☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
☆ PieArena: Frontier Language Agents Achieve MBA-Level Negotiation Performance and Reveal Novel Behavioral Differences
We present an in-depth evaluation of LLMs' ability to negotiate, a central business task that requires strategic reasoning, theory of mind, and economic value creation. To do so, we introduce PieArena, a large-scale negotiation benchmark grounded in multi-agent interactions over realistic scenarios drawn from an MBA negotiation course at an elite business school. We find systematic evidence of AGI-level performance in which a representative frontier agent (GPT-5) matches or outperforms trained business-school students, despite a semester of general negotiation instruction and targeted coaching immediately prior to the task. We further study the effects of joint-intentionality agentic scaffolding and find asymmetric gains, with large improvements for mid- and lower-tier LMs and diminishing returns for frontier LMs. Beyond deal outcomes, PieArena provides a multi-dimensional negotiation behavioral profile, revealing novel cross-model heterogeneity, masked by deal-outcome-only benchmarks, in deception, computation accuracy, instruction compliance, and perceived reputation. Overall, our results suggest that frontier language agents are already intellectually and psychologically capable of deployment in high-stakes economic settings, but deficiencies in robustness and trustworthiness remain open challenges.
☆ Aspect-Aware MOOC Recommendation in a Heterogeneous Network
MOOC recommendation systems have received increasing attention to help learners navigate and select preferred learning content. Traditional methods such as collaborative filtering and content-based filtering suffer from data sparsity and over-specialization. To alleviate these limitations, graph-based approaches have been proposed; however, they still rely heavily on manually predefined metapaths, which often capture only superficial structural relationships and impose substantial burdens on domain experts as well as significant engineering costs. To overcome these limitations, we propose AMR (Aspect-aware MOOC Recommendation), a novel framework that models path-specific multiple aspects by embedding the semantic content of nodes within each metapath. AMR automatically discovers metapaths through bi-directional walks, derives aspect-aware path representations using a bi-LSTM-based encoder, and incorporates these representations as edge features in the learner-learner and KC-KC subgraphs to achieve fine-grained semantically informed KC recommendations. Extensive experiments on the large-scale MOOCCube and PEEK datasets show that AMR consistently outperforms state-of-the-art graph neural network baselines across key metrics such as HR@K and nDCG@K. Further analysis confirms that AMR effectively captures rich path-specific aspect information, allowing more accurate recommendations than those methods that rely solely on predefined metapaths. The code will be available upon accepted.
Towards a Science of Collective AI: LLM-based Multi-Agent Systems Need a Transition from Blind Trial-and-Error to Rigorous Science
Recent advancements in Large Language Models (LLMs) have greatly extended the capabilities of Multi-Agent Systems (MAS), demonstrating significant effectiveness across a wide range of complex and open-ended domains. However, despite this rapid progress, the field still relies heavily on empirical trial-and-error. It lacks a unified and principled scientific framework necessary for systematic optimization and improvement. This bottleneck stems from the ambiguity of attribution: first, the absence of a structured taxonomy of factors leaves researchers restricted to unguided adjustments; second, the lack of a unified metric fails to distinguish genuine collaboration gain from mere resource accumulation. In this paper, we advocate for a transition to design science through an integrated framework. We advocate to establish the collaboration gain metric ($Γ$) as the scientific standard to isolate intrinsic gains from increased budgets. Leveraging $Γ$, we propose a factor attribution paradigm to systematically identify collaboration-driving factors. To support this, we construct a systematic MAS factor library, structuring the design space into control-level presets and information-level dynamics. Ultimately, this framework facilitates the transition from blind experimentation to rigorous science, paving the way towards a true science of Collective AI.
☆ Position: Universal Time Series Foundation Models Rest on a Category Error
This position paper argues that the pursuit of "Universal Foundation Models for Time Series" rests on a fundamental category error, mistaking a structural Container for a semantic Modality. We contend that because time series hold incompatible generative processes (e.g., finance vs. fluid dynamics), monolithic models degenerate into expensive "Generic Filters" that fail to generalize under distributional drift. To address this, we introduce the "Autoregressive Blindness Bound," a theoretical limit proving that history-only models cannot predict intervention-driven regime shifts. We advocate replacing universality with a Causal Control Agent paradigm, where an agent leverages external context to orchestrate a hierarchy of specialized solvers, from frozen domain experts to lightweight Just-in-Time adaptors. We conclude by calling for a shift in benchmarks from "Zero-Shot Accuracy" to "Drift Adaptation Speed" to prioritize robust, control-theoretic systems.
comment: Position Paper
☆ HealthMamba: An Uncertainty-aware Spatiotemporal Graph State Space Model for Effective and Reliable Healthcare Facility Visit Prediction
Healthcare facility visit prediction is essential for optimizing healthcare resource allocation and informing public health policy. Despite advanced machine learning methods being employed for better prediction performance, existing works usually formulate this task as a time-series forecasting problem without considering the intrinsic spatial dependencies of different types of healthcare facilities, and they also fail to provide reliable predictions under abnormal situations such as public emergencies. To advance existing research, we propose HealthMamba, an uncertainty-aware spatiotemporal framework for accurate and reliable healthcare facility visit prediction. HealthMamba comprises three key components: (i) a Unified Spatiotemporal Context Encoder that fuses heterogeneous static and dynamic information, (ii) a novel Graph State Space Model called GraphMamba for hierarchical spatiotemporal modeling, and (iii) a comprehensive uncertainty quantification module integrating three uncertainty quantification mechanisms for reliable prediction. We evaluate HealthMamba on four large-scale real-world datasets from California, New York, Texas, and Florida. Results show HealthMamba achieves around 6.0% improvement in prediction accuracy and 3.5% improvement in uncertainty quantification over state-of-the-art baselines.
☆ Hallucination-Resistant Security Planning with a Large Language Model
Large language models (LLMs) are promising tools for supporting security management tasks, such as incident response planning. However, their unreliability and tendency to hallucinate remain significant challenges. In this paper, we address these challenges by introducing a principled framework for using an LLM as decision support in security management. Our framework integrates the LLM in an iterative loop where it generates candidate actions that are checked for consistency with system constraints and lookahead predictions. When consistency is low, we abstain from the generated actions and instead collect external feedback, e.g., by evaluating actions in a digital twin. This feedback is then used to refine the candidate actions through in-context learning (ICL). We prove that this design allows to control the hallucination risk by tuning the consistency threshold. Moreover, we establish a bound on the regret of ICL under certain assumptions. To evaluate our framework, we apply it to an incident response use case where the goal is to generate a response and recovery plan based on system logs. Experiments on four public datasets show that our framework reduces recovery times by up to 30% compared to frontier LLMs.
comment: Accepted to IEEE/IFIP Network Operations and Management Symposium 2026. To appear in the conference proceedings
☆ Hybrid Gated Flow (HGF): Stabilizing 1.58-bit LLMs via Selective Low-Rank Correction
The deployment of Large Language Models (LLMs) on edge devices is fundamentally constrained by the "Memory Wall" -- a hardware limitation where memory bandwidth, not compute, becomes the bottleneck. Recent 1.58-bit quantization techniques (e.g., BitNet b1.58) dramatically reduce memory footprint but typically incur a perplexity degradation of 20-25% compared to FP16 baselines. In this work, we introduce Hybrid Gated Flow (HGF), a dual-stream architecture that couples a 1.58-bit ternary backbone with a learnable, low-rank FP16 correction path controlled by adaptive gates. Through extensive experiments on the TinyStories dataset across two training regimes (2500 and 3500 steps), we demonstrate that HGF 5.4 achieves a validation loss of 0.9306 compared to BitNet's 1.0294, recovering approximately 55% of the quality gap between pure ternary quantization and the FP16 baseline (0.8490). This recovery is achieved with only ~12-15% memory overhead beyond the ternary backbone. Furthermore, we provide empirical evidence for an emergent phenomenon: quantization as structural regularization. While a full-precision differential attention baseline (Diff_Only) exhibited training instability with validation loss exceeding 1.68, the ternary-anchored HGF maintained robust convergence throughout training. Finally, we report preliminary results extending this architecture to 1.2B and 3B parameter models trained on SlimPajama and FineWeb-Edu. These larger-scale experiments confirm that the architectural stability and quality recovery observed in small-scale proxies scale linearly to production-grade language modeling regimes.
comment: 21 pages, 4 figures, 6 tables. Code and models will be released at opencores.ai
☆ Beyond Cosine Similarity
Cosine similarity, the standard metric for measuring semantic similarity in vector spaces, is mathematically grounded in the Cauchy-Schwarz inequality, which inherently limits it to capturing linear relationships--a constraint that fails to model the complex, nonlinear structures of real-world semantic spaces. We advance this theoretical underpinning by deriving a tighter upper bound for the dot product than the classical Cauchy-Schwarz bound. This new bound leads directly to recos, a similarity metric that normalizes the dot product by the sorted vector components. recos relaxes the condition for perfect similarity from strict linear dependence to ordinal concordance, thereby capturing a broader class of relationships. Extensive experiments across 11 embedding models--spanning static, contextualized, and universal types--demonstrate that recos consistently outperforms traditional cosine similarity, achieving higher correlation with human judgments on standard Semantic Textual Similarity (STS) benchmarks. Our work establishes recos as a mathematically principled and empirically superior alternative, offering enhanced accuracy for semantic analysis in complex embedding spaces.
comment: 18 pages, 2 figures, 1 theorem, 3 corollaries
☆ CoPE: Clipped RoPE as A Scalable Free Lunch for Long Context LLMs
Rotary Positional Embedding (RoPE) is a key component of context scaling in Large Language Models (LLMs). While various methods have been proposed to adapt RoPE to longer contexts, their guiding principles generally fall into two categories: (1) out-of-distribution (OOD) mitigation, which scales RoPE frequencies to accommodate unseen positions, and (2) Semantic Modeling, which posits that the attention scores computed with RoPE should always prioritize semantically similar tokens. In this work, we unify these seemingly distinct objectives through a minimalist intervention, namely CoPE: soft clipping lowfrequency components of RoPE. CoPE not only eliminates OOD outliers and refines semantic signals, but also prevents spectral leakage caused by hard clipping. Extensive experiments demonstrate that simply applying our soft clipping strategy to RoPE yields significant performance gains that scale up to 256k context length, validating our theoretical analysis and establishing CoPE as a new state-of-the-art for length generalization. Our code, data, and models are available at https://github.com/hrlics/CoPE.
☆ Automatic Cognitive Task Generation for In-Situ Evaluation of Embodied Agents
As general intelligent agents are poised for widespread deployment in diverse households, evaluation tailored to each unique unseen 3D environment has become a critical prerequisite. However, existing benchmarks suffer from severe data contamination and a lack of scene specificity, inadequate for assessing agent capabilities in unseen settings. To address this, we propose a dynamic in-situ task generation method for unseen environments inspired by human cognition. We define tasks through a structured graph representation and construct a two-stage interaction-evolution task generation system for embodied agents (TEA). In the interaction stage, the agent actively interacts with the environment, creating a loop between task execution and generation that allows for continuous task generation. In the evolution stage, task graph modeling allows us to recombine and reuse existing tasks to generate new ones without external data. Experiments across 10 unseen scenes demonstrate that TEA automatically generated 87,876 tasks in two cycles, which human verification confirmed to be physically reasonable and encompassing essential daily cognitive capabilities. Benchmarking SOTA models against humans on our in-situ tasks reveals that models, despite excelling on public benchmarks, perform surprisingly poorly on basic perception tasks, severely lack 3D interaction awareness and show high sensitivity to task types in reasoning. These sobering findings highlight the necessity of in-situ evaluation before deploying agents into real-world human environments.
☆ EGSS: Entropy-guided Stepwise Scaling for Reliable Software Engineering
Agentic Test-Time Scaling (TTS) has delivered state-of-the-art (SOTA) performance on complex software engineering tasks such as code generation and bug fixing. However, its practical adoption remains limited due to significant computational overhead, primarily driven by two key challenges: (1) the high cost associated with deploying excessively large ensembles, and (2) the lack of a reliable mechanism for selecting the optimal candidate solution, ultimately constraining the performance gains that can be realized. To address these challenges, we propose Entropy-Guided Stepwise Scaling (EGSS), a novel TTS framework that dynamically balances efficiency and effectiveness through entropy-guided adaptive search and robust test-suite augmentation. Extensive experiments on SWE-Bench-Verified demonstrate that EGSS consistently boosts performance by 5-10% across all evaluated models. Specifically, it increases the resolved ratio of Kimi-K2-Intruct from 63.2% to 72.2%, and GLM-4.6 from 65.8% to 74.6%. Furthermore, when paired with GLM-4.6, EGSS achieves a new state-of-the-art among open-source large language models. In addition to these accuracy improvements, EGSS reduces inference-time token usage by over 28% compared to existing TTS methods, achieving simultaneous gains in both effectiveness and computational efficiency.
☆ Explainable AI: A Combined XAI Framework for Explaining Brain Tumour Detection Models
This study explores the integration of multiple Explainable AI (XAI) techniques to enhance the interpretability of deep learning models for brain tumour detection. A custom Convolutional Neural Network (CNN) was developed and trained on the BraTS 2021 dataset, achieving 91.24% accuracy in distinguishing between tumour and non-tumour regions. This research combines Gradient-weighted Class Activation Mapping (GRAD-CAM), Layer-wise Relevance Propagation (LRP) and SHapley Additive exPlanations (SHAP) to provide comprehensive insights into the model's decision-making process. This multi-technique approach successfully identified both full and partial tumours, offering layered explanations ranging from broad regions of interest to pixel-level details. GRAD-CAM highlighted important spatial regions, LRP provided detailed pixel-level relevance and SHAP quantified feature contributions. The integrated approach effectively explained model predictions, including cases with partial tumour visibility thus showing superior explanatory power compared to individual XAI methods. This research enhances transparency and trust in AI-driven medical imaging analysis by offering a more comprehensive perspective on the model's reasoning. The study demonstrates the potential of integrated XAI techniques in improving the reliability and interpretability of AI systems in healthcare, particularly for critical tasks like brain tumour detection.
☆ Balanced Anomaly-guided Ego-graph Diffusion Model for Inductive Graph Anomaly Detection
Graph anomaly detection (GAD) is crucial in applications like fraud detection and cybersecurity. Despite recent advancements using graph neural networks (GNNs), two major challenges persist. At the model level, most methods adopt a transductive learning paradigm, which assumes static graph structures, making them unsuitable for dynamic, evolving networks. At the data level, the extreme class imbalance, where anomalous nodes are rare, leads to biased models that fail to generalize to unseen anomalies. These challenges are interdependent: static transductive frameworks limit effective data augmentation, while imbalance exacerbates model distortion in inductive learning settings. To address these challenges, we propose a novel data-centric framework that integrates dynamic graph modeling with balanced anomaly synthesis. Our framework features: (1) a discrete ego-graph diffusion model, which captures the local topology of anomalies to generate ego-graphs aligned with anomalous structural distribution, and (2) a curriculum anomaly augmentation mechanism, which dynamically adjusts synthetic data generation during training, focusing on underrepresented anomaly patterns to improve detection and generalization. Experiments on five datasets demonstrate that the effectiveness of our framework.
comment: 12 pages,6 figures, Accepted by ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '26)
☆ ZeroS: Zero-Sum Linear Attention for Efficient Transformers NeurIPS 2025
Linear attention methods offer Transformers $O(N)$ complexity but typically underperform standard softmax attention. We identify two fundamental limitations affecting these approaches: the restriction to convex combinations that only permits additive information blending, and uniform accumulated weight bias that dilutes attention in long contexts. We propose Zero-Sum Linear Attention (ZeroS), which addresses these limitations by removing the constant zero-order term $1/t$ and reweighting the remaining zero-sum softmax residuals. This modification creates mathematically stable weights, enabling both positive and negative values and allowing a single attention layer to perform contrastive operations. While maintaining $O(N)$ complexity, ZeroS theoretically expands the set of representable functions compared to convex combinations. Empirically, it matches or exceeds standard softmax attention across various sequence modeling benchmarks.
comment: Camera-ready version. Accepted at NeurIPS 2025
☆ Surgery: Mitigating Harmful Fine-Tuning for Large Language Models via Attention Sink
Harmful fine-tuning can invalidate safety alignment of large language models, exposing significant safety risks. In this paper, we utilize the attention sink mechanism to mitigate harmful fine-tuning. Specifically, we first measure a statistic named \emph{sink divergence} for each attention head and observe that \emph{different attention heads exhibit two different signs of sink divergence}. To understand its safety implications, we conduct experiments and find that the number of attention heads of positive sink divergence increases along with the increase of the model's harmfulness when undergoing harmful fine-tuning. Based on this finding, we propose a separable sink divergence hypothesis -- \emph{attention heads associating with learning harmful patterns during fine-tuning are separable by their sign of sink divergence}. Based on the hypothesis, we propose a fine-tuning-stage defense, dubbed Surgery. Surgery utilizes a regularizer for sink divergence suppression, which steers attention heads toward the negative sink divergence group, thereby reducing the model's tendency to learn and amplify harmful patterns. Extensive experiments demonstrate that Surgery improves defense performance by 5.90\%, 11.25\%, and 9.55\% on the BeaverTails, HarmBench, and SorryBench benchmarks, respectively. Source code is available on https://github.com/Lslland/Surgery.
☆ Semantic Search over 9 Million Mathematical Theorems
Searching for mathematical results remains difficult: most existing tools retrieve entire papers, while mathematicians and theorem-proving agents often seek a specific theorem, lemma, or proposition that answers a query. While semantic search has seen rapid progress, its behavior on large, highly technical corpora such as research-level mathematical theorems remains poorly understood. In this work, we introduce and study semantic theorem retrieval at scale over a unified corpus of $9.2$ million theorem statements extracted from arXiv and seven other sources, representing the largest publicly available corpus of human-authored, research-level theorems. We represent each theorem with a short natural-language description as a retrieval representation and systematically analyze how representation context, language model choice, embedding model, and prompting strategy affect retrieval quality. On a curated evaluation set of theorem-search queries written by professional mathematicians, our approach substantially improves both theorem-level and paper-level retrieval compared to existing baselines, demonstrating that semantic theorem search is feasible and effective at web scale. The theorem search tool is available at \href{https://huggingface.co/spaces/uw-math-ai/theorem-search}{this link}, and the dataset is available at \href{https://huggingface.co/datasets/uw-math-ai/TheoremSearch}{this link}.
comment: Feedback is welcome
☆ ARCHI-TTS: A flow-matching-based Text-to-Speech Model with Self-supervised Semantic Aligner and Accelerated Inference ICASSP 2026
Although diffusion-based, non-autoregressive text-to-speech (TTS) systems have demonstrated impressive zero-shot synthesis capabilities, their efficacy is still hindered by two key challenges: the difficulty of text-speech alignment modeling and the high computational overhead of the iterative denoising process. To address these limitations, we propose ARCHI-TTS that features a dedicated semantic aligner to ensure robust temporal and semantic consistency between text and audio. To overcome high computational inference costs, ARCHI-TTS employs an efficient inference strategy that reuses encoder features across denoising steps, drastically accelerating synthesis without performance degradation. An auxiliary CTC loss applied to the condition encoder further enhances the semantic understanding. Experimental results demonstrate that ARCHI-TTS achieves a WER of 1.98% on LibriSpeech-PC test-clean, and 1.47%/1.42% on SeedTTS test-en/test-zh with a high inference efficiency, consistently outperforming recent state-of-the-art TTS systems.
comment: Accepted by ICASSP 2026
☆ Aligning Large Language Model Behavior with Human Citation Preferences
Most services built on powerful large-scale language models (LLMs) add citations to their output to enhance credibility. Recent research has paid increasing attention to the question of what reference documents to link to outputs. However, how LLMs recognize cite-worthiness and how this process should be controlled remains underexplored. In this study, we focus on what kinds of content LLMs currently tend to cite and how well that behavior aligns with human preferences. We construct a dataset to characterize the relationship between human citation preferences and LLM behavior. Web-derived texts are categorized into eight citation-motivation types, and pairwise citation preferences are exhaustively evaluated across all type combinations to capture fine-grained contrasts. Our results show that humans most frequently seek citations for medical text, and stronger models display a similar tendency. We also find that current models are as much as $27\%$ more likely than humans to add citations to text that is explicitly marked as needing citations on sources such as Wikipedia, and this overemphasis reduces alignment accuracy. Conversely, models systematically underselect numeric sentences (by $-22.6\%$ relative to humans) and sentences containing personal names (by $-20.1\%$), categories for which humans typically demand citations. Furthermore, experiments with Direct Preference Optimization demonstrate that model behavior can be calibrated to better match human citation preferences. We expect this study to provide a foundation for more fine-grained investigations into LLM citation preferences.
comment: Work In Progress
☆ InterPrior: Scaling Generative Control for Physics-Based Human-Object Interactions
Humans rarely plan whole-body interactions with objects at the level of explicit whole-body movements. High-level intentions, such as affordance, define the goal, while coordinated balance, contact, and manipulation can emerge naturally from underlying physical and motor priors. Scaling such priors is key to enabling humanoids to compose and generalize loco-manipulation skills across diverse contexts while maintaining physically coherent whole-body coordination. To this end, we introduce InterPrior, a scalable framework that learns a unified generative controller through large-scale imitation pretraining and post-training by reinforcement learning. InterPrior first distills a full-reference imitation expert into a versatile, goal-conditioned variational policy that reconstructs motion from multimodal observations and high-level intent. While the distilled policy reconstructs training behaviors, it does not generalize reliably due to the vast configuration space of large-scale human-object interactions. To address this, we apply data augmentation with physical perturbations, and then perform reinforcement learning finetuning to improve competence on unseen goals and initializations. Together, these steps consolidate the reconstructed latent skills into a valid manifold, yielding a motion prior that generalizes beyond the training data, e.g., it can incorporate new behaviors such as interactions with unseen objects. We further demonstrate its effectiveness for user-interactive control and its potential for real robot deployment.
comment: Webpage: https://sirui-xu.github.io/InterPrior/
☆ Visuo-Tactile World Models
We introduce multi-task Visuo-Tactile World Models (VT-WM), which capture the physics of contact through touch reasoning. By complementing vision with tactile sensing, VT-WM better understands robot-object interactions in contact-rich tasks, avoiding common failure modes of vision-only models under occlusion or ambiguous contact states, such as objects disappearing, teleporting, or moving in ways that violate basic physics. Trained across a set of contact-rich manipulation tasks, VT-WM improves physical fidelity in imagination, achieving 33% better performance at maintaining object permanence and 29% better compliance with the laws of motion in autoregressive rollouts. Moreover, experiments show that grounding in contact dynamics also translates to planning. In zero-shot real-robot experiments, VT-WM achieves up to 35% higher success rates, with the largest gains in multi-step, contact-rich tasks. Finally, VT-WM demonstrates significant downstream versatility, effectively adapting its learned contact dynamics to a novel task and achieving reliable planning success with only a limited set of demonstrations.
comment: Preprint
☆ Location-Aware Dispersion on Anonymous Graphs
The well-studied DISPERSION problem is a fundamental coordination problem in distributed robotics, where a set of mobile robots must relocate so that each occupies a distinct node of a network. DISPERSION assumes that a robot can settle at any node as long as no other robot settles on that node. In this work, we introduce LOCATION-AWARE DISPERSION, a novel generalization of DISPERSION that incorporates location awareness: Let $G = (V, E)$ be an anonymous, connected, undirected graph with $n = |V|$ nodes, each labeled with a color $\sf{col}(v) \in C = \{c_1, \dots, c_t\}, t\leq n$. A set $R = \{r_1, \dots, r_k\}$ of $k \leq n$ mobile robots is given, where each robot $r_i$ has an associated color $\mathsf{col}(r_i) \in C$. Initially placed arbitrarily on the graph, the goal is to relocate the robots so that each occupies a distinct node of the same color. When $|C|=1$, LOCATION-AWARE DISPERSION reduces to DISPERSION. There is a solution to DISPERSION in graphs with any $k\leq n$ without knowing $k,n$. Like DISPERSION, the goal is to solve LOCATION-AWARE DISPERSION minimizing both time and memory requirement at each agent. We develop several deterministic algorithms with guaranteed bounds on both time and memory requirement. We also give an impossibility and a lower bound for any deterministic algorithm for LOCATION-AWARE DISPERSION. To the best of our knowledge, the presented results collectively establish the algorithmic feasibility of LOCATION-AWARE DISPERSION in anonymous networks and also highlight the challenges on getting an efficient solution compared to the solutions for DISPERSION.
comment: 3 tables, 2 figures, 6 pseudo-codes
☆ From Bench to Flight: Translating Drone Impact Tests into Operational Safety Limits
Indoor micro-aerial vehicles (MAVs) are increasingly used for tasks that require close proximity to people, yet practitioners lack practical methods to tune motion limits based on measured impact risk. We present an end-to-end, open toolchain that converts benchtop impact tests into deployable safety governors for drones. First, we describe a compact and replicable impact rig and protocol for capturing force-time profiles across drone classes and contact surfaces. Second, we provide data-driven models that map pre-impact speed to impulse and contact duration, enabling direct computation of speed bounds for a target force limit. Third, we release scripts and a ROS2 node that enforce these bounds online and log compliance, with support for facility-specific policies. We validate the workflow on multiple commercial off-the-shelf quadrotors and representative indoor assets, demonstrating that the derived governors preserve task throughput while meeting force constraints specified by safety stakeholders. Our contribution is a practical bridge from measured impacts to runtime limits, with shareable datasets, code, and a repeatable process that teams can adopt to certify indoor MAV operations near humans.
☆ Residual Reinforcement Learning for Waste-Container Lifting Using Large-Scale Cranes with Underactuated Tools
This paper studies the container lifting phase of a waste-container recycling task in urban environments, performed by a hydraulic loader crane equipped with an underactuated discharge unit, and proposes a residual reinforcement learning (RRL) approach that combines a nominal Cartesian controller with a learned residual policy. All experiments are conducted in simulation, where the task is characterized by tight geometric tolerances between the discharge-unit hooks and the container rings relative to the overall crane scale, making precise trajectory tracking and swing suppression essential. The nominal controller uses admittance control for trajectory tracking and pendulum-aware swing damping, followed by damped least-squares inverse kinematics with a nullspace posture term to generate joint velocity commands. A PPO-trained residual policy in Isaac Lab compensates for unmodeled dynamics and parameter variations, improving precision and robustness without requiring end-to-end learning from scratch. We further employ randomized episode initialization and domain randomization over payload properties, actuator gains, and passive joint parameters to enhance generalization. Simulation results demonstrate improved tracking accuracy, reduced oscillations, and higher lifting success rates compared to the nominal controller alone.
comment: 12 pages
☆ Constrained Group Relative Policy Optimization
While Group Relative Policy Optimization (GRPO) has emerged as a scalable framework for critic-free policy learning, extending it to settings with explicit behavioral constraints remains underexplored. We introduce Constrained GRPO, a Lagrangian-based extension of GRPO for constrained policy optimization. Constraints are specified via indicator cost functions, enabling direct optimization of violation rates through a Lagrangian relaxation. We show that a naive multi-component treatment in advantage estimation can break constrained learning: mismatched component-wise standard deviations distort the relative importance of the different objective terms, which in turn corrupts the Lagrangian signal and prevents meaningful constraint enforcement. We formally derive this effect to motivate our scalarized advantage construction that preserves the intended trade-off between reward and constraint terms. Experiments in a toy gridworld confirm the predicted optimization pathology and demonstrate that scalarizing advantages restores stable constraint control. In addition, we evaluate Constrained GRPO on robotics tasks, where it improves constraint satisfaction while increasing task success, establishing a simple and effective recipe for constrained policy optimization in embodied AI domains that increasingly rely on large multimodal foundation models.
comment: 16 pages, 6 figures
☆ A Hybrid Autoencoder for Robust Heightmap Generation from Fused Lidar and Depth Data for Humanoid Robot Locomotion
Reliable terrain perception is a critical prerequisite for the deployment of humanoid robots in unstructured, human-centric environments. While traditional systems often rely on manually engineered, single-sensor pipelines, this paper presents a learning-based framework that uses an intermediate, robot-centric heightmap representation. A hybrid Encoder-Decoder Structure (EDS) is introduced, utilizing a Convolutional Neural Network (CNN) for spatial feature extraction fused with a Gated Recurrent Unit (GRU) core for temporal consistency. The architecture integrates multimodal data from an Intel RealSense depth camera, a LIVOX MID-360 LiDAR processed via efficient spherical projection, and an onboard IMU. Quantitative results demonstrate that multimodal fusion improves reconstruction accuracy by 7.2% over depth-only and 9.9% over LiDAR-only configurations. Furthermore, the integration of a 3.2 s temporal context reduces mapping drift.
☆ Sparse Video Generation Propels Real-World Beyond-the-View Vision-Language Navigation
Why must vision-language navigation be bound to detailed and verbose language instructions? While such details ease decision-making, they fundamentally contradict the goal for navigation in the real-world. Ideally, agents should possess the autonomy to navigate in unknown environments guided solely by simple and high-level intents. Realizing this ambition introduces a formidable challenge: Beyond-the-View Navigation (BVN), where agents must locate distant, unseen targets without dense and step-by-step guidance. Existing large language model (LLM)-based methods, though adept at following dense instructions, often suffer from short-sighted behaviors due to their reliance on short-horimzon supervision. Simply extending the supervision horizon, however, destabilizes LLM training. In this work, we identify that video generation models inherently benefit from long-horizon supervision to align with language instructions, rendering them uniquely suitable for BVN tasks. Capitalizing on this insight, we propose introducing the video generation model into this field for the first time. Yet, the prohibitive latency for generating videos spanning tens of seconds makes real-world deployment impractical. To bridge this gap, we propose SparseVideoNav, achieving sub-second trajectory inference guided by a generated sparse future spanning a 20-second horizon. This yields a remarkable 27x speed-up compared to the unoptimized counterpart. Extensive real-world zero-shot experiments demonstrate that SparseVideoNav achieves 2.5x the success rate of state-of-the-art LLM baselines on BVN tasks and marks the first realization of such capability in challenging night scenes.
☆ Scalable and General Whole-Body Control for Cross-Humanoid Locomotion
Learning-based whole-body controllers have become a key driver for humanoid robots, yet most existing approaches require robot-specific training. In this paper, we study the problem of cross-embodiment humanoid control and show that a single policy can robustly generalize across a wide range of humanoid robot designs with one-time training. We introduce XHugWBC, a novel cross-embodiment training framework that enables generalist humanoid control through: (1) physics-consistent morphological randomization, (2) semantically aligned observation and action spaces across diverse humanoid robots, and (3) effective policy architectures modeling morphological and dynamical properties. XHugWBC is not tied to any specific robot. Instead, it internalizes a broad distribution of morphological and dynamical characteristics during training. By learning motion priors from diverse randomized embodiments, the policy acquires a strong structural bias that supports zero-shot transfer to previously unseen robots. Experiments on twelve simulated humanoids and seven real-world robots demonstrate the strong generalization and robustness of the resulting universal controller.
☆ Task-Oriented Robot-Human Handovers on Legged Manipulators
Task-oriented handovers (TOH) are fundamental to effective human-robot collaboration, requiring robots to present objects in a way that supports the human's intended post-handover use. Existing approaches are typically based on object- or task-specific affordances, but their ability to generalize to novel scenarios is limited. To address this gap, we present AFT-Handover, a framework that integrates large language model (LLM)-driven affordance reasoning with efficient texture-based affordance transfer to achieve zero-shot, generalizable TOH. Given a novel object-task pair, the method retrieves a proxy exemplar from a database, establishes part-level correspondences via LLM reasoning, and texturizes affordances for feature-based point cloud transfer. We evaluate AFT-Handover across diverse task-object pairs, showing improved handover success rates and stronger generalization compared to baselines. In a comparative user study, our framework is significantly preferred over the current state-of-the-art, effectively reducing human regrasping before tool use. Finally, we demonstrate TOH on legged manipulators, highlighting the potential of our framework for real-world robot-human handovers.
comment: Accepted to 21st ACM/IEEE International Conference on Human-Robot Interaction (HRI) 2026
☆ From Vision to Decision: Neuromorphic Control for Autonomous Navigation and Tracking
Robotic navigation has historically struggled to reconcile reactive, sensor-based control with the decisive capabilities of model-based planners. This duality becomes critical when the absence of a predominant option among goals leads to indecision, challenging reactive systems to break symmetries without computationally-intense planners. We propose a parsimonious neuromorphic control framework that bridges this gap for vision-guided navigation and tracking. Image pixels from an onboard camera are encoded as inputs to dynamic neuronal populations that directly transform visual target excitation into egocentric motion commands. A dynamic bifurcation mechanism resolves indecision by delaying commitment until a critical point induced by the environmental geometry. Inspired by recently proposed mechanistic models of animal cognition and opinion dynamics, the neuromorphic controller provides real-time autonomy with a minimal computational burden, a small number of interpretable parameters, and can be seamlessly integrated with application-specific image processing pipelines. We validate our approach in simulation environments as well as on an experimental quadrotor platform.
☆ HiCrowd: Hierarchical Crowd Flow Alignment for Dense Human Environments
Navigating through dense human crowds remains a significant challenge for mobile robots. A key issue is the freezing robot problem, where the robot struggles to find safe motions and becomes stuck within the crowd. To address this, we propose HiCrowd, a hierarchical framework that integrates reinforcement learning (RL) with model predictive control (MPC). HiCrowd leverages surrounding pedestrian motion as guidance, enabling the robot to align with compatible crowd flows. A high-level RL policy generates a follow point to align the robot with a suitable pedestrian group, while a low-level MPC safely tracks this guidance with short horizon planning. The method combines long-term crowd aware decision making with safe short-term execution. We evaluate HiCrowd against reactive and learning-based baselines in offline setting (replaying recorded human trajectories) and online setting (human trajectories are updated to react to the robot in simulation). Experiments on a real-world dataset and a synthetic crowd dataset show that our method outperforms in navigation efficiency and safety, while reducing freezing behaviors. Our results suggest that leveraging human motion as guidance, rather than treating humans solely as dynamic obstacles, provides a powerful principle for safe and efficient robot navigation in crowds.
comment: Accepted to the 2026 IEEE International Conference on Robotics and Automation (ICRA)
☆ TOLEBI: Learning Fault-Tolerant Bipedal Locomotion via Online Status Estimation and Fallibility Rewards
With the growing employment of learning algorithms in robotic applications, research on reinforcement learning for bipedal locomotion has become a central topic for humanoid robotics. While recently published contributions achieve high success rates in locomotion tasks, scarce attention has been devoted to the development of methods that enable to handle hardware faults that may occur during the locomotion process. However, in real-world settings, environmental disturbances or sudden occurrences of hardware faults might yield severe consequences. To address these issues, this paper presents TOLEBI (A faulT-tOlerant Learning framEwork for Bipedal locomotIon) that handles faults on the robot during operation. Specifically, joint locking, power loss and external disturbances are injected in simulation to learn fault-tolerant locomotion strategies. In addition to transferring the learned policy to the real robot via sim-to-real transfer, an online joint status module incorporated. This module enables to classify joint conditions by referring to the actual observations at runtime under real-world conditions. The validation experiments conducted both in real-world and simulation with the humanoid robot TOCABI highlight the applicability of the proposed approach. To our knowledge, this manuscript provides the first learning-based fault-tolerant framework for bipedal locomotion, thereby fostering the development of efficient learning methods in this field.
comment: Accepted for Publication at IEEE International Conference on Robotics and Automation (ICRA) 2026
☆ PIRATR: Parametric Object Inference for Robotic Applications with Transformers in 3D Point Clouds
We present PIRATR, an end-to-end 3D object detection framework for robotic use cases in point clouds. Extending PI3DETR, our method streamlines parametric 3D object detection by jointly estimating multi-class 6-DoF poses and class-specific parametric attributes directly from occlusion-affected point cloud data. This formulation enables not only geometric localization but also the estimation of task-relevant properties for parametric objects, such as a gripper's opening, where the 3D model is adjusted according to simple, predefined rules. The architecture employs modular, class-specific heads, making it straightforward to extend to novel object types without re-designing the pipeline. We validate PIRATR on an automated forklift platform, focusing on three structurally and functionally diverse categories: crane grippers, loading platforms, and pallets. Trained entirely in a synthetic environment, PIRATR generalizes effectively to real outdoor LiDAR scans, achieving a detection mAP of 0.919 without additional fine-tuning. PIRATR establishes a new paradigm of pose-aware, parameterized perception. This bridges the gap between low-level geometric reasoning and actionable world models, paving the way for scalable, simulation-trained perception systems that can be deployed in dynamic robotic environments. Code available at https://github.com/swingaxe/piratr.
comment: 8 Pages, 11 Figures, Accepted at 2026 IEEE International Conference on Robotics & Automation (ICRA) Vienna
☆ IndustryShapes: An RGB-D Benchmark dataset for 6D object pose estimation of industrial assembly components and tools
We introduce IndustryShapes, a new RGB-D benchmark dataset of industrial tools and components, designed for both instance-level and novel object 6D pose estimation approaches. The dataset provides a realistic and application-relevant testbed for benchmarking these methods in the context of industrial robotics bridging the gap between lab-based research and deployment in real-world manufacturing scenarios. Unlike many previous datasets that focus on household or consumer products or use synthetic, clean tabletop datasets, or objects captured solely in controlled lab environments, IndustryShapes introduces five new object types with challenging properties, also captured in realistic industrial assembly settings. The dataset has diverse complexity, from simple to more challenging scenes, with single and multiple objects, including scenes with multiple instances of the same object and it is organized in two parts: the classic set and the extended set. The classic set includes a total of 4,6k images and 6k annotated poses. The extended set introduces additional data modalities to support the evaluation of model-free and sequence-based approaches. To the best of our knowledge, IndustryShapes is the first dataset to offer RGB-D static onboarding sequences. We further evaluate the dataset on a representative set of state-of-the art methods for instance-based and novel object 6D pose estimation, including also object detection, segmentation, showing that there is room for improvement in this domain. The dataset page can be found in https://pose-lab.github.io/IndustryShapes.
comment: To appear in ICRA 2026
☆ VLN-Pilot: Large Vision-Language Model as an Autonomous Indoor Drone Operator
This paper introduces VLN-Pilot, a novel framework in which a large Vision-and-Language Model (VLLM) assumes the role of a human pilot for indoor drone navigation. By leveraging the multimodal reasoning abilities of VLLMs, VLN-Pilot interprets free-form natural language instructions and grounds them in visual observations to plan and execute drone trajectories in GPS-denied indoor environments. Unlike traditional rule-based or geometric path-planning approaches, our framework integrates language-driven semantic understanding with visual perception, enabling context-aware, high-level flight behaviors with minimal task-specific engineering. VLN-Pilot supports fully autonomous instruction-following for drones by reasoning about spatial relationships, obstacle avoidance, and dynamic reactivity to unforeseen events. We validate our framework on a custom photorealistic indoor simulation benchmark and demonstrate the ability of the VLLM-driven agent to achieve high success rates on complex instruction-following tasks, including long-horizon navigation with multiple semantic targets. Experimental results highlight the promise of replacing remote drone pilots with a language-guided autonomous agent, opening avenues for scalable, human-friendly control of indoor UAVs in tasks such as inspection, search-and-rescue, and facility monitoring. Our results suggest that VLLM-based pilots may dramatically reduce operator workload while improving safety and mission flexibility in constrained indoor environments.
☆ Virtual-Tube-Based Cooperative Transport Control for Multi-UAV Systems in Constrained Environments
This paper proposes a novel control framework for cooperative transportation of cable-suspended loads by multiple unmanned aerial vehicles (UAVs) operating in constrained environments. Leveraging virtual tube theory and principles from dissipative systems theory, the framework facilitates efficient multi-UAV collaboration for navigating obstacle-rich areas. The proposed framework offers several key advantages. (1) It achieves tension distribution and coordinated transportation within the UAV-cable-load system with low computational overhead, dynamically adapting UAV configurations based on obstacle layouts to facilitate efficient navigation. (2) By integrating dissipative systems theory, the framework ensures high stability and robustness, essential for complex multi-UAV operations. The effectiveness of the proposed approach is validated through extensive simulations, demonstrating its scalability for large-scale multi-UAV systems. Furthermore, the method is experimentally validated in outdoor scenarios, showcasing its practical feasibility and robustness under real-world conditions.
comment: 10 pages, 8 figures
☆ TaSA: Two-Phased Deep Predictive Learning of Tactile Sensory Attenuation for Improving In-Grasp Manipulation
Humans can achieve diverse in-hand manipulations, such as object pinching and tool use, which often involve simultaneous contact between the object and multiple fingers. This is still an open issue for robotic hands because such dexterous manipulation requires distinguishing between tactile sensations generated by their self-contact and those arising from external contact. Otherwise, object/robot breakage happens due to contacts/collisions. Indeed, most approaches ignore self-contact altogether, by constraining motion to avoid/ignore self-tactile information during contact. While this reduces complexity, it also limits generalization to real-world scenarios where self-contact is inevitable. Humans overcome this challenge through self-touch perception, using predictive mechanisms that anticipate the tactile consequences of their own motion, through a principle called sensory attenuation, where the nervous system differentiates predictable self-touch signals, allowing novel object stimuli to stand out as relevant. Deriving from this, we introduce TaSA, a two-phased deep predictive learning framework. In the first phase, TaSA explicitly learns self-touch dynamics, modeling how a robot's own actions generate tactile feedback. In the second phase, this learned model is incorporated into the motion learning phase, to emphasize object contact signals during manipulation. We evaluate TaSA on a set of insertion tasks, which demand fine tactile discrimination: inserting a pencil lead into a mechanical pencil, inserting coins into a slot, and fixing a paper clip onto a sheet of paper, with various orientations, positions, and sizes. Across all tasks, policies trained with TaSA achieve significantly higher success rates than baseline methods, demonstrating that structured tactile perception with self-touch based on sensory attenuation is critical for dexterous robotic manipulation.
comment: 8 pages, 8 figures, 8 tables, ICRA2026 accepted
☆ MerNav: A Highly Generalizable Memory-Execute-Review Framework for Zero-Shot Object Goal Navigation
Visual Language Navigation (VLN) is one of the fundamental capabilities for embodied intelligence and a critical challenge that urgently needs to be addressed. However, existing methods are still unsatisfactory in terms of both success rate (SR) and generalization: Supervised Fine-Tuning (SFT) approaches typically achieve higher SR, while Training-Free (TF) approaches often generalize better, but it is difficult to obtain both simultaneously. To this end, we propose a Memory-Execute-Review framework. It consists of three parts: a hierarchical memory module for providing information support, an execute module for routine decision-making and actions, and a review module for handling abnormal situations and correcting behavior. We validated the effectiveness of this framework on the Object Goal Navigation task. Across 4 datasets, our average SR achieved absolute improvements of 7% and 5% compared to all baseline methods under TF and Zero-Shot (ZS) settings, respectively. On the most commonly used HM3D_v0.1 and the more challenging open vocabulary dataset HM3D_OVON, the SR improved by 8% and 6%, under ZS settings. Furthermore, on the MP3D and HM3D_OVON datasets, our method not only outperformed all TF methods but also surpassed all SFT methods, achieving comprehensive leadership in both SR (5% and 2%) and generalization.
comment: 9 pages, 2 figures, 5 tables, conference
☆ RoboPaint: From Human Demonstration to Any Robot and Any View
Acquiring large-scale, high-fidelity robot demonstration data remains a critical bottleneck for scaling Vision-Language-Action (VLA) models in dexterous manipulation. We propose a Real-Sim-Real data collection and data editing pipeline that transforms human demonstrations into robot-executable, environment-specific training data without direct robot teleoperation. Standardized data collection rooms are built to capture multimodal human demonstrations (synchronized 3 RGB-D videos, 11 RGB videos, 29-DoF glove joint angles, and 14-channel tactile signals). Based on these human demonstrations, we introduce a tactile-aware retargeting method that maps human hand states to robot dex-hand states via geometry and force-guided optimization. Then the retargeted robot trajectories are rendered in a photorealistic Isaac Sim environment to build robot training data. Real world experiments have demonstrated: (1) The retargeted dex-hand trajectories achieve an 84\% success rate across 10 diverse object manipulation tasks. (2) VLA policies (Pi0.5) trained exclusively on our generated data achieve 80\% average success rate on three representative tasks, i.e., pick-and-place, pushing and pouring. To conclude, robot training data can be efficiently "painted" from human demonstrations using our real-sim-real data pipeline. We offer a scalable, cost-effective alternative to teleoperation with minimal performance loss for complex dexterous manipulation.
comment: 17 pages
☆ A Data Driven Structural Decomposition of Dynamic Games via Best Response Maps
Dynamic games are powerful tools to model multi-agent decision-making, yet computing Nash (generalized Nash) equilibria remains a central challenge in such settings. Complexity arises from tightly coupled optimality conditions, nested optimization structures, and poor numerical conditioning. Existing game-theoretic solvers address these challenges by directly solving the joint game, typically requiring explicit modeling of all agents' objective functions and constraints, while learning-based approaches often decouple interaction through prediction or policy approximation, sacrificing equilibrium consistency. This paper introduces a conceptually novel formulation for dynamic games by restructuring the equilibrium computation. Rather than solving a fully coupled game or decoupling agents through prediction or policy approximation, a data-driven structural reduction of the game is proposed that removes nested optimization layers and derivative coupling by embedding an offline-compiled best-response map as a feasibility constraint. Under standard regularity conditions, when the best-response operator is exact, any converged solution of the reduced problem corresponds to a local open-loop Nash (GNE) equilibrium of the original game; with a learned surrogate, the solution is approximately equilibrium-consistent up to the best-response approximation error. The proposed formulation is supported by mathematical proofs, accompanying a large-scale Monte Carlo study in a two-player open-loop dynamic game motivated by the autonomous racing problem. Comparisons are made against state-of-the-art joint game solvers, and results are reported on solution quality, computational cost, and constraint satisfaction.
comment: 11 pages, 6 figures, 5 tables, Submitted to RSS 2026
☆ Learning Soccer Skills for Humanoid Robots: A Progressive Perception-Action Framework
Soccer presents a significant challenge for humanoid robots, demanding tightly integrated perception-action capabilities for tasks like perception-guided kicking and whole-body balance control. Existing approaches suffer from inter-module instability in modular pipelines or conflicting training objectives in end-to-end frameworks. We propose Perception-Action integrated Decision-making (PAiD), a progressive architecture that decomposes soccer skill acquisition into three stages: motion-skill acquisition via human motion tracking, lightweight perception-action integration for positional generalization, and physics-aware sim-to-real transfer. This staged decomposition establishes stable foundational skills, avoids reward conflicts during perception integration, and minimizes sim-to-real gaps. Experiments on the Unitree G1 demonstrate high-fidelity human-like kicking with robust performance under diverse conditions-including static or rolling balls, various positions, and disturbances-while maintaining consistent execution across indoor and outdoor scenarios. Our divide-and-conquer strategy advances robust humanoid soccer capabilities and offers a scalable framework for complex embodied skill acquisition. The project page is available at https://soccer-humanoid.github.io/.
comment: 13 pages, 9 figures, conference
☆ Affordance-Aware Interactive Decision-Making and Execution for Ambiguous Instructions
Enabling robots to explore and act in unfamiliar environments under ambiguous human instructions by interactively identifying task-relevant objects (e.g., identifying cups or beverages for "I'm thirsty") remains challenging for existing vision-language model (VLM)-based methods. This challenge stems from inefficient reasoning and the lack of environmental interaction, which hinder real-time task planning and execution. To address this, We propose Affordance-Aware Interactive Decision-Making and Execution for Ambiguous Instructions (AIDE), a dual-stream framework that integrates interactive exploration with vision-language reasoning, where Multi-Stage Inference (MSI) serves as the decision-making stream and Accelerated Decision-Making (ADM) as the execution stream, enabling zero-shot affordance analysis and interpretation of ambiguous instructions. Extensive experiments in simulation and real-world environments show that AIDE achieves the task planning success rate of over 80\% and more than 95\% accuracy in closed-loop continuous execution at 10 Hz, outperforming existing VLM-based methods in diverse open-world scenarios.
comment: 14 pages, 10 figures, 8 tables
☆ Low-Cost Underwater In-Pipe Centering and Inspection Using a Minimal-Sensing Robot
Autonomous underwater inspection of submerged pipelines is challenging due to confined geometries, turbidity, and the scarcity of reliable localization cues. This paper presents a minimal-sensing strategy that enables a free-swimming underwater robot to center itself and traverse a flooded pipe of known radius using only an IMU, a pressure sensor, and two sonars: a downward-facing single-beam sonar and a rotating 360 degree sonar. We introduce a computationally efficient method for extracting range estimates from single-beam sonar intensity data, enabling reliable wall detection in noisy and reverberant conditions. A closed-form geometric model leverages the two sonar ranges to estimate the pipe center, and an adaptive, confidence-weighted proportional-derivative (PD) controller maintains alignment during traversal. The system requires no Doppler velocity log, external tracking, or complex multi-sensor arrays. Experiments in a submerged 46 cm-diameter pipe using a Blue Robotics BlueROV2 heavy remotely operated vehicle demonstrate stable centering and successful full-pipe traversal despite ambient flow and structural deformations. These results show that reliable in-pipe navigation and inspection can be achieved with a lightweight, computationally efficient sensing and processing architecture, advancing the practicality of autonomous underwater inspection in confined environments.
☆ RFM-Pose:Reinforcement-Guided Flow Matching for Fast Category-Level 6D Pose Estimation
Object pose estimation is a fundamental problem in computer vision and plays a critical role in virtual reality and embodied intelligence, where agents must understand and interact with objects in 3D space. Recently, score based generative models have to some extent solved the rotational symmetry ambiguity problem in category level pose estimation, but their efficiency remains limited by the high sampling cost of score-based diffusion. In this work, we propose a new framework, RFM-Pose, that accelerates category-level 6D object pose generation while actively evaluating sampled hypotheses. To improve sampling efficiency, we adopt a flow-matching generative model and generate pose candidates along an optimal transport path from a simple prior to the pose distribution. To further refine these candidates, we cast the flow-matching sampling process as a Markov decision process and apply proximal policy optimization to fine-tune the sampling policy. In particular, we interpret the flow field as a learnable policy and map an estimator to a value network, enabling joint optimization of pose generation and hypothesis scoring within a reinforcement learning framework. Experiments on the REAL275 benchmark demonstrate that RFM-Pose achieves favorable performance while significantly reducing computational cost. Moreover, similar to prior work, our approach can be readily adapted to object pose tracking and attains competitive results in this setting.
comment: This work has been submitted to the IEEE for possible publication
☆ MobileManiBench: Simplifying Model Verification for Mobile Manipulation
Vision-language-action models have advanced robotic manipulation but remain constrained by reliance on the large, teleoperation-collected datasets dominated by the static, tabletop scenes. We propose a simulation-first framework to verify VLA architectures before real-world deployment and introduce MobileManiBench, a large-scale benchmark for mobile-based robotic manipulation. Built on NVIDIA Isaac Sim and powered by reinforcement learning, our pipeline autonomously generates diverse manipulation trajectories with rich annotations (language instructions, multi-view RGB-depth-segmentation images, synchronized object/robot states and actions). MobileManiBench features 2 mobile platforms (parallel-gripper and dexterous-hand robots), 2 synchronized cameras (head and right wrist), 630 objects in 20 categories, 5 skills (open, close, pull, push, pick) with over 100 tasks performed in 100 realistic scenes, yielding 300K trajectories. This design enables controlled, scalable studies of robot embodiments, sensing modalities, and policy architectures, accelerating research on data efficiency and generalization. We benchmark representative VLA models and report insights into perception, reasoning, and control in complex simulated environments.
☆ Informative Path Planning with Guaranteed Estimation Uncertainty
Environmental monitoring robots often need to reconstruct spatial fields (e.g., salinity, temperature, bathymetry) under tight distance and energy constraints. Classical boustrophedon lawnmower surveys provide geometric coverage guarantees but can waste effort by oversampling predictable regions. In contrast, informative path planning (IPP) methods leverage spatial correlations to reduce oversampling, yet typically offer no guarantees on reconstruction quality. This paper bridges these approaches by addressing informative path planning with guaranteed estimation uncertainty: computing the shortest path whose measurements ensure that the Gaussian-process (GP) posterior variance -- an intrinsic uncertainty measure that lower-bounds the mean-squared prediction error under the GP model -- falls below a user-specified threshold over the monitoring region. We propose a three-stage approach: (i) learn a GP model from available prior information; (ii) transform the learned GP kernel into binary coverage maps for each candidate sensing location, indicating which locations' uncertainty can be reduced below a specified target; and (iii) plan a near-shortest route whose combined coverage satisfies the global uncertainty constraint. To address heterogeneous phenomena, we incorporate a nonstationary kernel that captures spatially varying correlation structure, and we accommodate non-convex environments with obstacles. Algorithmically, we present methods with provable approximation guarantees for sensing-location selection and for the joint selection-and-routing problem under a travel budget. Experiments on real-world topographic data show that our planners meet the uncertainty target using fewer sensing locations and shorter travel distances than a recent baseline, and field experiments with bathymetry-mapping autonomous surface and underwater vehicles demonstrate real-world feasibility.
comment: 16 pages, 11 figures, preprint
☆ PLATO Hand: Shaping Contact Behavior with Fingernails for Precise Manipulation
We present the PLATO Hand, a dexterous robotic hand with a hybrid fingertip that embeds a rigid fingernail within a compliant pulp. This design shapes contact behavior to enable diverse interaction modes across a range of object geometries. We develop a strain-energy-based bending-indentation model to guide the fingertip design and to explain how guided contact preserves local indentation while suppressing global bending. Experimental results show that the proposed robotic hand design demonstrates improved pinching stability, enhanced force observability, and successful execution of edge-sensitive manipulation tasks, including paper singulation, card picking, and orange peeling. Together, these results show that coupling structured contact geometry with a force-motion transparent mechanism provides a principled, physically embodied approach to precise manipulation.
☆ MORPH Wheel: A Passive Variable-Radius Wheel Embedding Mechanical Behavior Logic for Input-Responsive Transformation
This paper introduces the Mechacnially prOgrammed Radius-adjustable PHysical (MORPH) wheel, a fully passive variable-radius wheel that embeds mechanical behavior logic for torque-responsive transformation. Unlike conventional variable transmission systems relying on actuators, sensors, and active control, the MORPH wheel achieves passive adaptation solely through its geometry and compliant structure. The design integrates a torque-response coupler and spring-loaded connecting struts to mechanically adjust the wheel radius between 80 mm and 45 mm in response to input torque, without any electrical components. The MORPH wheel provides three unique capabilities rarely achieved simultaneously in previous passive designs: (1) bidirectional operation with unlimited rotation through a symmetric coupler; (2) high torque capacity exceeding 10 N with rigid power transmission in drive mode; and (3) precise and repeatable transmission ratio control governed by deterministic kinematics. A comprehensive analytical model was developed to describe the wheel's mechanical behavior logic, establishing threshold conditions for mode switching between direct drive and radius transformation. Experimental validation confirmed that the measured torque-radius and force-displacement characteristics closely follow theoretical predictions across wheel weights of 1.8-2.8kg. Robot-level demonstrations on varying loads (0-25kg), slopes, and unstructured terrains further verified that the MORPH wheel passively adjusts its radius to provide optimal transmission ratio. The MORPH wheel exemplifies a mechanically programmed structure, embedding intelligent, context-dependent behavior directly into its physical design. This approach offers a new paradigm for passive variable transmission and mechanical intelligence in robotic mobility systems operating in unpredictable or control-limited environments.
comment: 14 pages, 16 figures. Under review at IEEE Transactions on Robotics
☆ A Dialogue-Based Human-Robot Interaction Protocol for Wheelchair and Robotic Arm Integrated Control
People with lower and upper body disabilities can benefit from wheelchairs and robotic arms to improve mobility and independence. Prior assistive interfaces, such as touchscreens and voice-driven predefined commands, often remain unintuitive and struggle to capture complex user intent. We propose a natural, dialogue based human robot interaction protocol that simulates an intelligent agent capable of communicating with users to understand intent and execute assistive actions. In a pilot study, five participants completed five assistive tasks (cleaning, drinking, feeding, drawer opening, and door opening) through dialogue-based interaction with a wheelchair and robotic arm. As a baseline, participants were required to open a door using the manual control (a wheelchair joystick and a game controller for the arm) and complete a questionnaire to gather their feedback. By analyzing the post-study questionnaires, we found that most participants enjoyed the dialogue-based interaction and assistive robot autonomy.
☆ Coupled Local and Global World Models for Efficient First Order RL
World models offer a promising avenue for more faithfully capturing complex dynamics, including contacts and non-rigidity, as well as complex sensory information, such as visual perception, in situations where standard simulators struggle. However, these models are computationally complex to evaluate, posing a challenge for popular RL approaches that have been successfully used with simulators to solve complex locomotion tasks but yet struggle with manipulation. This paper introduces a method that bypasses simulators entirely, training RL policies inside world models learned from robots' interactions with real environments. At its core, our approach enables policy training with large-scale diffusion models via a novel decoupled first-order gradient (FoG) method: a full-scale world model generates accurate forward trajectories, while a lightweight latent-space surrogate approximates its local dynamics for efficient gradient computation. This coupling of a local and global world model ensures high-fidelity unrolling alongside computationally tractable differentiation. We demonstrate the efficacy of our method on the Push-T manipulation task, where it significantly outperforms PPO in sample efficiency. We further evaluate our approach through an ego-centric object manipulation task with a quadruped. Together, these results demonstrate that learning inside data-driven world models is a promising pathway for solving hard-to-model RL tasks in image space without reliance on hand-crafted physics simulators.
☆ Bioinspired Kirigami Capsule Robot for Minimally Invasive Gastrointestinal Biopsy
Wireless capsule endoscopy (WCE) has transformed gastrointestinal (GI) diagnostics by enabling noninvasive visualization of the digestive tract, yet its diagnostic yield remains constrained by the absence of biopsy capability, as histological analysis is still the gold standard for confirming disease. Conventional biopsy using forceps, needles, or rotating blades is invasive, limited in reach, and carries risks of perforation or mucosal trauma, while fluid- or microbiota-sampling capsules cannot provide structured tissue for pathology, leaving a critical gap in swallowable biopsy solutions. Here we present the Kiri-Capsule, a kirigami-inspired capsule robot that integrates deployable PI-film flaps actuated by a compact dual-cam mechanism to achieve minimally invasive and repeatable tissue collection. The kirigami surface remains flat during locomotion but transforms into sharp protrusions upon cam-driven stretching, enabling controlled penetration followed by rotary scraping, with specimens retained in internal fan-shaped cavities. Bench tests confirmed that PI films exhibit a Young's modulus of approximately 20 MPa and stable deployment angles (about 34$^\circ$ at 15% strain), while ex vivo porcine studies demonstrated shallow penetration depths (median $\sim$0.61 mm, range 0.46--0.66 mm) and biopsy yields comparable to standard forceps (mean $\sim$10.9 mg for stomach and $\sim$18.9 mg for intestine), with forces within safe ranges reported for GI biopsy. These findings demonstrate that the Kiri-Capsule bridges passive imaging and functional biopsy, providing a swallowable, depth-controlled, and histology-ready solution that advances capsule-based diagnostics toward safe and effective clinical application.
comment: 8 pages, 11 figures, accepted to IEEE ICRA
☆ AnyThermal: Towards Learning Universal Representations for Thermal Perception
We present AnyThermal, a thermal backbone that captures robust task-agnostic thermal features suitable for a variety of tasks such as cross-modal place recognition, thermal segmentation, and monocular depth estimation using thermal images. Existing thermal backbones that follow task-specific training from small-scale data result in utility limited to a specific environment and task. Unlike prior methods, AnyThermal can be used for a wide range of environments (indoor, aerial, off-road, urban) and tasks, all without task-specific training. Our key insight is to distill the feature representations from visual foundation models such as DINOv2 into a thermal encoder using thermal data from these multiple environments. To bridge the diversity gap of the existing RGB-Thermal datasets, we introduce the TartanRGBT platform, the first open-source data collection platform with synced RGB-Thermal image acquisition. We use this payload to collect the TartanRGBT dataset - a diverse and balanced dataset collected in 4 environments. We demonstrate the efficacy of AnyThermal and TartanRGBT, achieving state-of-the-art results with improvements of up to 36% across diverse environments and downstream tasks on existing datasets.
comment: Accepted at IEEE ICRA (International Conference on Robotics & Automation) 2026
☆ Active Localization of Unstable Systems with Coarse Information
We study localization and control for unstable systems under coarse, single-bit sensing. Motivated by understanding the fundamental limitations imposed by such minimal feedback, we identify sufficient conditions under which the initial state can be recovered despite instability and extremely sparse measurements. Building on these conditions, we develop an active localization algorithm that integrates a set-based estimator with a control strategy derived from Voronoi partitions, which provably estimates the initial state while ensuring the agent remains in informative regions. Under the derived conditions, the proposed approach guarantees exponential contraction of the initial-state uncertainty, and the result is further supported by numerical experiments. These findings can offer theoretical insight into localization in robotics, where sensing is often limited to coarse abstractions such as keyframes, segmentations, or line-based features.
comment: 10 pages, 4 figures, Accepted by International Conference on Hybrid Systems: Computation and Control (HSCC) 2026
Transformer-Based Reinforcement Learning for Autonomous Orbital Collision Avoidance in Partially Observable Environments
We introduce a Transformer-based Reinforcement Learning framework for autonomous orbital collision avoidance that explicitly models the effects of partial observability and imperfect monitoring in space operations. The framework combines a configurable encounter simulator, a distance-dependent observation model, and a sequential state estimator to represent uncertainty in relative motion. A central contribution of this work is the use of transformer-based Partially Observable Markov Decision Process (POMDP) architecture, which leverage long-range temporal attention to interpret noisy and intermittent observations more effectively than traditional architectures. This integration provides a foundation for training collision avoidance agents that can operate more reliably under imperfect monitoring environments.
☆ Dynamic Modeling, Parameter Identification and Numerical Analysis of Flexible Cables in Flexibly Connected Dual-AUV Systems
This research presents a dynamic modeling framework and parameter identification methods for describing the highly nonlinear behaviors of flexibly connected dual-AUV systems. The modeling framework is established based on the lumped mass method, integrating axial elasticity, bending stiffness, added mass and hydrodynamic forces, thereby accurately capturing the time-varying response of the forces and cable configurations. To address the difficulty of directly measuring material-related and hydrodynamic coefficients, this research proposes a parameter identification method that combines the physical model with experimental data. High-precision inversion of the equivalent Youngs modulus and hydrodynamic coefficients is performed through tension experiments under multiple configurations, effectively demonstrating that the identified model maintains predictive consistency in various operational conditions. Further numerical analysis indicates that the dynamic properties of flexible cable exhibit significant nonlinear characteristics, which are highly dependent on material property variations and AUV motion conditions. This nonlinear dynamic behavior results in two typical response states, slack and taut, which are jointly determined by boundary conditions and hydrodynamic effects, significantly affecting the cable configuration and endpoint loads. In this research, the dynamics of flexible cables under complex boundary conditions is revealed, providing a theoretical foundation for the design, optimization and further control research of similar systems.
♻ ☆ EigenLoRAx: Recycling Adapters to Find Principal Subspaces for Resource-Efficient Adaptation and Inference
The rapid growth of large models has raised concerns about their environmental impact and equity in accessibility due to significant computational costs. Low-Rank Adapters (LoRA) offer a lightweight solution for finetuning large models, resulting in an abundance of publicly available adapters tailored to diverse domains. We ask: Can these pretrained adapters be leveraged to further streamline adaptation to new tasks while addressing these challenges? We introduce EigenLoRAx, a parameter-efficient finetuning method that recycles existing adapters to create a principal subspace aligned with their shared domain knowledge which can be further augmented with orthogonal basis vectors in low-resource scenarios. This enables rapid adaptation to new tasks by learning only lightweight coefficients on the principal components of the subspace-eliminating the need to finetune entire adapters. EigenLoRAx requires significantly fewer parameters and memory, improving efficiency for both training and inference. Our method demonstrates strong performance across diverse domains and tasks, offering a scalable for edge-based applications, personalization, and equitable deployment of large models in resource-constrained environments.
♻ ☆ Language Models and Logic Programs for Trustworthy Tax Reasoning AAAI 2026
According to the United States Internal Revenue Service, ``the average American spends $\$270$ and 13 hours filing their taxes''. Even beyond the U.S., tax filing requires complex reasoning, combining application of overlapping rules with numerical calculations. Because errors can incur costly penalties, any automated system must deliver high accuracy and auditability, making modern large language models (LLMs) poorly suited for this task. We propose an approach that integrates LLMs with a symbolic solver to calculate tax obligations. We evaluate variants of this system on the challenging StAtutory Reasoning Assessment (SARA) dataset, and include a novel method for estimating the cost of deploying such a system based on real-world penalties for tax errors. We further show how combining up-front translation of plain-text rules into formal logic programs, combined with intelligently retrieved exemplars for formal case representations, can dramatically improve performance on this task and reduce costs to well below real-world averages. Our results demonstrate the effectiveness of applying semantic parsing methods to statutory reasoning, and show promising economic feasibility of neuro-symbolic architectures for increasing access to reliable tax assistance.
comment: Accepted to AAAI 2026
♻ ☆ SIRR-LMM: Single-image Reflection Removal via Large Multimodal Model WACV
Glass surfaces create complex interactions of reflected and transmitted light, making single-image reflection removal (SIRR) challenging. Existing datasets suffer from limited physical realism in synthetic data or insufficient scale in real captures. We introduce a synthetic dataset generation framework that path-traces 3D glass models over real background imagery to create physically accurate reflection scenarios with varied glass properties, camera settings, and post-processing effects. To leverage the capabilities of Large Multimodal Model (LMM), we concatenate the image layers into a single composite input, apply joint captioning, and fine-tune the model using task-specific LoRA rather than full-parameter training. This enables our approach to achieve improved reflection removal and separation performance compared to state-of-the-art methods.
comment: 12 pages, 14 figures, accepted in WACVW 2026
♻ ☆ Learning to Discover at Test Time
How can we use AI to discover a new state of the art for a scientific problem? Prior work in test-time scaling, such as AlphaEvolve, performs search by prompting a frozen LLM. We perform reinforcement learning at test time, so the LLM can continue to train, but now with experience specific to the test problem. This form of continual learning is quite special, because its goal is to produce one great solution rather than many good ones on average, and to solve this very problem rather than generalize to other problems. Therefore, our learning objective and search subroutine are designed to prioritize the most promising solutions. We call this method Test-Time Training to Discover (TTT-Discover). Following prior work, we focus on problems with continuous rewards. We report results for every problem we attempted, across mathematics, GPU kernel engineering, algorithm design, and biology. TTT-Discover sets the new state of the art in almost all of them: (i) Erdős' minimum overlap problem and an autocorrelation inequality; (ii) a GPUMode kernel competition (up to $2\times$ faster than prior art); (iii) past AtCoder algorithm competitions; and (iv) denoising problem in single-cell analysis. Our solutions are reviewed by experts or the organizers. All our results are achieved with an open model, OpenAI gpt-oss-120b, and can be reproduced with our publicly available code, in contrast to previous best results that required closed frontier models. Our test-time training runs are performed using Tinker, an API by Thinking Machines, with a cost of only a few hundred dollars per problem.
comment: Code: https://github.com/test-time-training/discover
♻ ☆ Scaling Multi-Agent Epistemic Planning through GNN-Derived Heuristics
Multi-agent Epistemic Planning (MEP) is an autonomous planning framework for reasoning about both the physical world and the beliefs of agents, with applications in domains where information flow and awareness among agents are critical. The richness of MEP requires states to be represented as Kripke structures, i.e., directed labeled graphs. This representation limits the applicability of existing heuristics, hindering the scalability of epistemic solvers, which must explore an exponential search space without guidance, resulting often in intractability. To address this, we exploit Graph Neural Networks (GNNs) to learn patterns and relational structures within epistemic states, to guide the planning process. GNNs, which naturally capture the graph-like nature of Kripke models, allow us to derive meaningful estimates of state quality -- e.g., the distance from the nearest goal -- by generalizing knowledge obtained from previously solved planning instances. We integrate these predictive heuristics into an epistemic planning pipeline and evaluate them against standard baselines, showing improvements in the scalability of multi-agent epistemic planning.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
Semi-Autonomous Mathematics Discovery with Gemini: A Case Study on the Erdős Problems
We present a case study in semi-autonomous mathematics discovery, using Gemini to systematically evaluate 700 conjectures labeled 'Open' in Bloom's Erdős Problems database. We employ a hybrid methodology: AI-driven natural language verification to narrow the search space, followed by human expert evaluation to gauge correctness and novelty. We address 13 problems that were marked 'Open' in the database: 5 through seemingly novel autonomous solutions, and 8 through identification of previous solutions in the existing literature. Our findings suggest that the 'Open' status of the problems was through obscurity rather than difficulty. We also identify and discuss issues arising in applying AI to math conjectures at scale, highlighting the difficulty of literature identification and the risk of ''subconscious plagiarism'' by AI. We reflect on the takeaways from AI-assisted efforts on the Erdős Problems.
comment: Reclassify Erdos-935 as Independent Rediscovery, bringing the number of autonomous solutions down to 5. (Explanation in Addendum 4.1) Elaborate on Footnote 3. Slightly reword various phrases in the Introduction in response to feedback
♻ ☆ When Are Two RLHF Objectives the Same?
The preference optimization literature contains many proposed objectives, often presented as distinct improvements. We introduce Opal, a canonicalization algorithm that determines whether two preference objectives are algebraically equivalent by producing either a canonical form or a concrete witness of non-equivalence. Applying Opal reveals that many widely used methods optimize the same underlying objective, while others are provably distinct. For example, batch normalization can cause the same response pair to receive different gradients depending on batch composition. We identify a small set of structural mechanisms that give rise to genuinely different objectives; most remaining differences are reparameterizations.
comment: 21 pages
♻ ☆ RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data
Modern software teams frequently encounter delays in resolving recurring or related issues due to fragmented knowledge scattered across JIRA tickets, developer discussions, and GitHub pull requests (PRs). To address this challenge, we propose a Retrieval-Augmented Generation (RAG) framework that integrates Sentence-Transformers for semantic embeddings with FAISS-based vector search to deliver context-aware ticket resolution recommendations. The approach embeds historical JIRA tickets, user comments, and linked PR metadata to retrieve semantically similar past cases, which are then synthesized by a Large Language Model (LLM) into grounded and explainable resolution suggestions. The framework contributes a unified pipeline linking JIRA and GitHub data, an embedding and FAISS indexing strategy for heterogeneous software artifacts, and a resolution generation module guided by retrieved evidence. Experimental evaluation using precision, recall, resolution time reduction, and developer acceptance metrics shows that the proposed system significantly improves resolution accuracy, fix quality, and knowledge reuse in modern DevOps environments.
comment: 13 Pages
♻ ☆ SelfReflect: Can LLMs Communicate Their Internal Answer Distribution? ICLR 2026
The common approach to communicate a large language model's (LLM) uncertainty is to add a percentage number or a hedging word to its response. But is this all we can do? Instead of generating a single answer and then hedging it, an LLM that is fully transparent to the user needs to be able to reflect on its internal belief distribution and output a summary of all options it deems possible, and how likely they are. To test whether LLMs possess this capability, we develop the SelfReflect metric, an information-theoretic distance between a given summary and a distribution over answers. In interventional and human studies, we find that SelfReflect indicates even slight deviations, yielding a fine measure of faithfulness between a summary string and an LLM's actual internal distribution over answers. With SelfReflect, we make a resounding negative observation: modern LLMs are, across the board, incapable of revealing what they are uncertain about, neither through reasoning, nor chains-of-thoughts, nor explicit finetuning. However, we do find that LLMs are able to generate faithful summaries of their uncertainties if we help them by sampling multiple outputs and feeding them back into the context. This simple approach shines a light at the universal way of communicating LLM uncertainties whose future development the SelfReflect score enables. To support the development of this universal form of LLM uncertainties, we publish the code that implements our metric for arbitrary LLMs under https://github.com/apple/ml-selfreflect .
comment: Accepted at ICLR 2026
♻ ☆ Connect the Dots: Knowledge Graph-Guided Crawler Attack on Retrieval-Augmented Generation Systems
Stealing attacks pose a persistent threat to the intellectual property of deployed machine-learning systems. Retrieval-augmented generation (RAG) intensifies this risk by extending the attack surface beyond model weights to knowledge base that often contains IP-bearing assets such as proprietary runbooks, curated domain collections, or licensed documents. Recent work shows that multi-turn questioning can gradually steal corpus content from RAG systems, yet existing attacks are largely heuristic and often plateau early. We address this gap by formulating RAG knowledge-base stealing as an adaptive stochastic coverage problem (ASCP), where each query is a stochastic action and the goal is to maximize the conditional expected marginal gain (CMG) in corpus coverage under a query budget. Bridging ASCP to real-world black-box RAG knowledge-base stealing raises three challenges: CMG is unobservable, the natural-language action space is intractably large, and feasibility constraints require stealthy queries that remain effective under diverse architectures. We introduce RAGCrawler, a knowledge graph-guided attacker that maintains a global attacker-side state to estimate coverage gains, schedule high-value semantic anchors, and generate non-redundant natural queries. Across four corpora and four generators with BGE retriever, RAGCrawler achieves 66.8% average coverage (up to 84.4%) within 1,000 queries, improving coverage by 44.90% relative to the strongest baseline. It also reduces the queries needed to reach 70% coverage by at least 4.03x on average and enables surrogate reconstruction with answer similarity up to 0.699. Our attack is also scalable to retriever switching and newer RAG techniques like query rewriting and multi-query retrieval. These results highlight urgent needs to protect RAG knowledge assets.
♻ ☆ Learning to summarize user information for personalized reinforcement learning from human feedback
As everyday use cases of large language model (LLM) AI assistants have expanded, it is becoming increasingly important to personalize responses to align to different users' preferences and goals. While reinforcement learning from human feedback (RLHF) is effective at improving LLMs to be generally more helpful and fluent, it does not account for variability across users, as it models the entire user population with a single reward model, meaning it assumes that everyone's preferences are the same. We present a novel framework, Preference Learning Using Summarization (PLUS), that uses reinforcement learning (RL) to learn to produce text-based summaries of each user's preferences, characteristics, and past conversations. These summaries condition the reward model, enabling it to make personalized predictions about the types of responses valued by each user. Both the user-summarization model and reward model are trained simultaneously, creating an online co-adaptation loop. We show that in contrast to the standard Bradley-Terry model, summaries produced by PLUS capture diverse aspects of user preferences, achieving a 11-77/% improvement in reward model accuracy. Key strengths of PLUS are: (1) robust performance with new users and conversation topics, achieving a 25\% improvement over the best personalized reward model technique used for RLHF; (2) zero-shot personalization with state-of-the-art proprietary models like GPT-4 (e.g., PLUS-summary-conditioned responses achieved a 72\% win rate compared to 28% for default GPT-4o); (3) learning from flexible user contexts beyond preference labels, and (4) interpretable representation of users, enabling greater transparency and user control in pluralistic LLM alignment.
comment: 10 pages for main text, 10 pages for appendix
♻ ☆ STELLAR: Structure-guided LLM Assertion Retrieval and Generation for Formal Verification
Formal Verification (FV) relies on high-quality SystemVerilog Assertions (SVAs), but the manual writing process is slow and error-prone. Existing LLM-based approaches either generate assertions from scratch or ignore structural patterns in hardware designs and expert-crafted assertions. This paper presents STELLAR, the first framework that guides LLM-based SVA generation with structural similarity. STELLAR represents RTL blocks as AST structural fingerprints, retrieves structurally relevant (RTL, SVA) pairs from a knowledge base, and integrates them into structure-guided prompts. Experiments show that STELLAR achieves superior syntax correctness, stylistic alignment, and functional correctness, highlighting structure-aware retrieval as a promising direction for industrial FV.
comment: 7 pages, 6 figures
♻ ☆ SPhyR: Spatial-Physical Reasoning Benchmark on Material Distribution
We introduce a novel dataset designed to benchmark the physical and spatial reasoning capabilities of Large Language Models (LLM) based on topology optimization, a method for computing optimal material distributions within a design space under prescribed loads and supports. In this dataset, LLMs are provided with conditions such as 2D boundary, applied forces and supports, and must reason about the resulting optimal material distribution. The dataset includes a variety of tasks, ranging from filling in masked regions within partial structures to predicting complete material distributions. Solving these tasks requires understanding the flow of forces and the required material distribution under given constraints, without access to simulation tools or explicit physical models, challenging models to reason about structural stability and spatial organization. Our dataset targets the evaluation of spatial and physical reasoning abilities in 2D settings, offering a complementary perspective to traditional language and logic benchmarks.
♻ ☆ Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 45.2 per-benchmark accuracy and 51.8 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models ICLR 2026
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. Scaling up the amount of multimodal math data in the RL training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista benchmark scores, respectively. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
comment: Accepted to ICLR 2026. Code is available at https://github.com/Osilly/Vision-R1
♻ ☆ Leveraging Whisper Embeddings for Audio-based Lyrics Matching ICASSP 2026
Audio-based lyrics matching can be an appealing alternative to other content-based retrieval approaches, but existing methods often suffer from limited reproducibility and inconsistent baselines. In this work, we introduce WEALY, a fully reproducible pipeline that leverages Whisper decoder embeddings for lyrics matching tasks. WEALY establishes robust and transparent baselines, while also exploring multimodal extensions that integrate textual and acoustic features. Through extensive experiments on standard datasets, we demonstrate that WEALY achieves a performance comparable to state-of-the-art methods that lack reproducibility. In addition, we provide ablation studies and analyses on language robustness, loss functions, and embedding strategies. This work contributes a reliable benchmark for future research, and underscores the potential of speech technologies for music information retrieval tasks.
comment: Accepted at ICASSP 2026 (IEEE International Conference on Acoustics, Speech and Signal Processing)
♻ ☆ When Iterative RAG Beats Ideal Evidence: A Diagnostic Study in Scientific Multi-hop Question Answering
Retrieval-Augmented Generation (RAG) extends large language models (LLMs) beyond parametric knowledge, yet it is unclear when iterative retrieval-reasoning loops meaningfully outperform static RAG, particularly in scientific domains with multi-hop reasoning, sparse domain knowledge, and heterogeneous evidence. We provide the first controlled, mechanism-level diagnostic study of whether synchronized iterative retrieval and reasoning can surpass an idealized static upper bound (Gold Context) RAG. We benchmark eleven state-of-the-art LLMs under three regimes: (i) No Context, measuring reliance on parametric memory; (ii) Gold Context, where all oracle evidence is supplied at once; and (iii) Iterative RAG, a training-free controller that alternates retrieval, hypothesis refinement, and evidence-aware stopping. Using the chemistry-focused ChemKGMultiHopQA dataset, we isolate questions requiring genuine retrieval and analyze behavior with diagnostics spanning retrieval coverage gaps, anchor-carry drop, query quality, composition fidelity, and control calibration. Across models, Iterative RAG consistently outperforms Gold Context, with gains up to 25.6 percentage points, especially for non-reasoning fine-tuned models. Staged retrieval reduces late-hop failures, mitigates context overload, and enables dynamic correction of early hypothesis drift, but remaining failure modes include incomplete hop coverage, distractor latch trajectories, early stopping miscalibration, and high composition failure rates even with perfect retrieval. Overall, staged retrieval is often more influential than the mere presence of ideal evidence; we provide practical guidance for deploying and diagnosing RAG systems in specialized scientific settings and a foundation for more reliable, controllable iterative retrieval-reasoning frameworks.
comment: 27 pages, 15 figures
♻ ☆ Solving Prior Distribution Mismatch in Diffusion Models via Optimal Transport
Diffusion Models (DMs) have achieved remarkable progress in generative modeling. However, the mismatch between the forward terminal distribution and reverse initial distribution introduces prior error, leading to deviations of sampling trajectories from the true distribution and severely limiting model performance. This issue further triggers cascading problems, including non-zero Signal-to-Noise Ratio, accumulated denoising errors, degraded generation quality, and constrained sampling efficiency. To address this issue, this paper proposes a prior error elimination framework based on Optimal Transport (OT). Specifically, an OT map from the reverse initial distribution to the forward terminal distribution is constructed to achieve precise matching of the two distributions. Meanwhile, the upper bound of the prior error is quantified using the Wasserstein distance, proving that the prior error can be effectively eliminated via the OT map. Additionally, by deriving the asymptotic consistency between dynamic OT and probability flow, this method is revealed to be highly compatible with the intrinsic mechanism of the diffusion process. Experimental results demonstrate that the proposed method completely eliminates the prior error both theoretically and practically, providing a universal and rigorous solution for optimizing the performance of DMs.
♻ ☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models ICLR 2026
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Accepted to ICLR 2026
♻ ☆ Segmentation-free Goodness of Pronunciation
Mispronunciation detection and diagnosis (MDD) is a significant part in modern computer-aided language learning (CALL) systems. Most systems implementing phoneme-level MDD through goodness of pronunciation (GOP), however, rely on pre-segmentation of speech into phonetic units. This limits the accuracy of these methods and the possibility to use modern CTC-based acoustic models for their evaluation. In this study, we first propose self-alignment GOP (GOP-SA) that enables the use of CTC-trained ASR models for MDD. Next, we define a more general segmentation-free method that takes all possible segmentations of the canonical transcription into account (GOP-SF). We give a theoretical account of our definition of GOP-SF, an implementation that solves potential numerical issues as well as a proper normalization which allows the use of acoustic models with different peakiness over time. We provide extensive experimental results on the CMU Kids and speechocean762 datasets comparing the different definitions of our methods, estimating the dependency of GOP-SF on the peakiness of the acoustic models and on the amount of context around the target phoneme. Finally, we compare our methods with recent studies over the speechocean762 data showing that the feature vectors derived from the proposed method achieve state-of-the-art results on phoneme-level pronunciation assessment.
comment: The article has been accepted for publication by IEEE TASLPRO
♻ ☆ Can MLLMs generate human-like feedback in grading multimodal short answers?
In education, the traditional Automatic Short Answer Grading (ASAG) with feedback problem has focused primarily on evaluating text-only responses. However, real-world assessments often include multimodal responses containing both diagrams and text. To address this limitation, we introduce the Multimodal Short Answer Grading with Feedback (MMSAF) problem, which requires jointly evaluating textual and diagrammatic content while also providing explanatory feedback. Collecting data representative of such multimodal responses is challenging due to both scale and logistical constraints. To mitigate this, we develop an automated data generation framework that leverages LLM hallucinations to mimic common student errors, thereby constructing a dataset of 2,197 instances. We evaluate 4 Multimodal Large Language Models (MLLMs) across 3 STEM subjects, showing that MLLMs achieve accuracies of up to 62.5% in predicting answer correctness (correct/partially correct/incorrect) and up to 80.36% in assessing image relevance. This also includes a human evaluation with 9 annotators across 5 parameters, including a rubric-based approach. The rubrics also serve as a way to evaluate the feedback quality semantically rather than using overlap-based approaches. Our findings highlight which MLLMs are better suited for such tasks while also pointing out to drawbacks of the remaining MLLMs.
♻ ☆ VAO: Validation-Aligned Optimization for Cross-Task Generative Auto-Bidding
Generative auto-bidding has demonstrated strong performance in online advertising, yet it often suffers from data scarcity in small-scale settings with limited advertiser participation. While cross-task data sharing is a natural remedy to mitigate this issue, naive approaches often introduce gradient bias due to distribution shifts across different tasks, and existing methods are not readily applicable to generative auto-bidding. In this paper, we propose Validation-Aligned Optimization (VAO), a principled data-sharing method that adaptively reweights cross-task data contributions based on validation performance feedback. Notably, VAO aligns training dynamics to prioritize updates that improve generalization on the target task, effectively leveraging auxiliary data and mitigating gradient bias. Building on VAO, we introduce a unified generative autobidding framework that generalizes across multiple tasks using a single model and all available task data. Extensive experiments on standard auto-bidding benchmarks validate the effectiveness of our approach.
♻ ☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To manage long-horizon interactions, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Resisting Manipulative Bots in Meme Coin Copy Trading: A Multi-Agent Approach with Chain-of-Thought Reasoning
Copy trading has become the dominant entry strategy in meme coin markets. However, due to the market's extremely illiquid and volatile nature, the strategy exposes an exploitable attack surface: adversaries deploy manipulative bots to front-run trades, conceal positions, and fabricate sentiment, systematically extracting value from naïve copiers at scale. Despite its prevalence, bot-driven manipulation remains largely unexplored, and no robust defensive framework exists. We propose a manipulation-resistant copy-trading system based on a multi-agent architecture powered by a multi-modal large language model (LLM) and chain-of-thought (CoT) reasoning. Our approach outperforms zero-shot and most statistic-driven baselines in prediction accuracy as well as all baselines in economic performance, achieving an average copier return of 3% per meme coin investment under realistic market frictions. Overall, our results demonstrate the effectiveness of agent-based defenses and predictability of trader profitability in adversarial meme coin markets, providing a practical foundation for robust copy trading.
♻ ☆ Reversible Deep Learning for 13C NMR in Chemoinformatics: On Structures and Spectra
We introduce a reversible deep learning model for 13C NMR that uses a single conditional invertible neural network for both directions between molecular structures and spectra. The network is built from i-RevNet style bijective blocks, so the forward map and its inverse are available by construction. We train the model to predict a 128-bit binned spectrum code from a graph-based structure encoding, while the remaining latent dimensions capture residual variability. At inference time, we invert the same trained network to generate structure candidates from a spectrum code, which explicitly represents the one-to-many nature of spectrum-to-structure inference. On a filtered subset, the model is numerically invertible on trained examples, achieves spectrum-code prediction above chance, and produces coarse but meaningful structural signals when inverted on validation spectra. These results demonstrate that invertible architectures can unify spectrum prediction and uncertainty-aware candidate generation within one end-to-end model.
comment: 10 pages, 4 figures, 4 tables
♻ ☆ Video Soundtrack Generation by Aligning Emotions and Temporal Boundaries
Providing soundtracks for videos remains a costly and time-consuming challenge for multimedia content creators. We introduce EMSYNC, an automatic video-based symbolic music generator that creates music aligned with a video's emotional content and temporal boundaries. It follows a two-stage framework, where a pretrained video emotion classifier extracts emotional features, and a conditional music generator produces MIDI sequences guided by both emotional and temporal cues. We introduce boundary offsets, a novel temporal conditioning mechanism that enables the model to anticipate upcoming video scene cuts and align generated musical chords with them. We also propose a mapping scheme that bridges the discrete categorical outputs of the video emotion classifier with the continuous valence-arousal inputs required by the emotion-conditioned MIDI generator, enabling seamless integration of emotion information across different representations. Our method outperforms state-of-the-art models in objective and subjective evaluations across different video datasets, demonstrating its effectiveness in generating music aligned to video both emotionally and temporally. Our demo and output samples are available at https://serkansulun.com/emsync.
comment: IEEE Transactions on Multimedia, 2026, in print
♻ ☆ BioLite U-Net: Edge-Deployable Semantic Segmentation for In Situ Bioprinting Monitoring
Bioprinting is a rapidly advancing field that offers a transformative approach to fabricating tissue and organ models through the precise deposition of cell-laden bioinks. Ensuring the fidelity and consistency of printed structures in real-time remains a core challenge, particularly under constraints imposed by limited imaging data and resource-constrained embedded hardware. Semantic segmentation of the extrusion process, differentiating between nozzle, extruded bioink, and surrounding background, enables in situ monitoring critical to maintaining print quality and biological viability. In this work, we introduce a lightweight semantic segmentation framework tailored for real-time bioprinting applications. We present a novel, manually annotated dataset comprising 787 RGB images captured during the bioprinting process, labeled across three classes: nozzle, bioink, and background. To achieve fast and efficient inference suitable for integration with bioprinting systems, we propose a BioLite U-Net architecture that leverages depthwise separable convolutions to drastically reduce computational load without compromising accuracy. Our model is benchmarked against MobileNetV2 and MobileNetV3-based segmentation baselines using mean Intersection over Union (mIoU), Dice score, and pixel accuracy. All models were evaluated on a Raspberry Pi 4B to assess real-world feasibility. The proposed BioLite U-Net achieves an mIoU of 92.85% and a Dice score of 96.17%, while being over 1300x smaller than MobileNetV2-DeepLabV3+. On-device inference takes 335 ms per frame, demonstrating near real-time capability. Compared to MobileNet baselines, BioLite U-Net offers a superior tradeoff between segmentation accuracy, efficiency, and deployability, making it highly suitable for intelligent, closed-loop bioprinting systems.
comment: 8 pages, 5 figures, conference-style submission (ICRA 2026). Includes dataset description, BioLite U-Net architecture, benchmark results on edge device (Raspberry Pi 4B)
♻ ☆ The Use of AI-Robotic Systems for Scientific Discovery
The process of developing theories and models and testing them with experiments is fundamental to the scientific method. Automating the entire scientific method then requires not only automation of the induction of theories from data, but also experimentation from design to implementation. This is the idea behind a robot scientist -- a coupled system of AI and laboratory robotics that has agency to test hypotheses with real-world experiments. In this chapter we explore some of the fundamentals of robot scientists in the philosophy of science. We also map the activities of a robot scientist to machine learning paradigms, and argue that the scientific method shares an analogy with active learning. We demonstrate these concepts using examples from previous robot scientists, and also from Genesis: a next generation robot scientist designed for research in systems biology, comprising a micro-fluidic system with 1000 computer-controlled micro-bioreactors and interpretable models based in controlled vocabularies and logic.
comment: 23 pages, book chapter
♻ ☆ TempoPFN: Synthetic Pre-training of Linear RNNs for Zero-shot Time Series Forecasting
Foundation models for zero-shot time series forecasting face challenges in efficient long-horizon prediction and reproducibility, with existing synthetic-only approaches underperforming on challenging benchmarks. This paper presents TempoPFN, a univariate time series foundation model based on linear Recurrent Neural Networks (RNNs) pre-trained exclusively on synthetic data. The model uses a GatedDeltaProduct architecture with state-weaving for fully parallelizable training across sequence lengths, eliminating the need for windowing or summarization techniques while maintaining robust temporal state-tracking. Our comprehensive synthetic data pipeline unifies diverse generators, including stochastic differential equations, Gaussian processes, and audio synthesis, with novel augmentations. In zero-shot evaluations on the Gift-Eval, fev-bench and Chronos-ZS benchmarks, TempoPFN achieves top-tier competitive performance, outperforming all existing synthetic-only approaches and surpassing the majority of models trained on real-world data, while being more efficient than existing baselines by leveraging fully parallelizable training and inference. We open-source our complete data generation pipeline and training code, providing a reproducible foundation for future research.
comment: 38 pages, 22 figures, 17 tables
♻ ☆ ExplainReduce: Generating global explanations from many local explanations
Most commonly used non-linear machine learning methods are closed-box models, uninterpretable to humans. The field of explainable artificial intelligence (XAI) aims to develop tools to examine the inner workings of these closed boxes. An often-used model-agnostic approach to XAI involves using simple models as local approximations to produce so-called local explanations; examples of this approach include LIME, SHAP, and SLISEMAP. This paper shows how a large set of local explanations can be reduced to a small "proxy set" of simple models, which can act as a generative global explanation. This reduction procedure, ExplainReduce, can be formulated as an optimisation problem and approximated efficiently using greedy heuristics. We show that, for many problems, as few as five explanations can faithfully emulate the closed-box model and that our reduction procedure is competitive with other model aggregation methods.
comment: 21 pages with a 36 page appendix, 8 + 39 figures, 1+1 tables. The datasets and source code used in the paper are available at https://github.com/edahelsinki/explainreduce
♻ ☆ Unveiling m-Sharpness Through the Structure of Stochastic Gradient Noise NeurIPS 2025
Sharpness-aware minimization (SAM) has emerged as a highly effective technique to improve model generalization, but its underlying principles are not fully understood. We investigate m-sharpness, where SAM performance improves monotonically as the micro-batch size for computing perturbations decreases, a phenomenon critical for distributed training yet lacking rigorous explanation. We leverage an extended Stochastic Differential Equation (SDE) framework and analyze stochastic gradient noise (SGN) to characterize the dynamics of SAM variants, including n-SAM and m-SAM. Our analysis reveals that stochastic perturbations induce an implicit variance-based sharpness regularization whose strength increases as m decreases. Motivated by this insight, we propose Reweighted SAM (RW-SAM), which employs sharpness-weighted sampling to mimic the generalization benefits of m-SAM while remaining parallelizable. Comprehensive experiments validate our theory and method.
comment: Accepted to NeurIPS 2025
♻ ☆ Differentiable Constraint-Based Causal Discovery
Causal discovery from observational data is a fundamental task in artificial intelligence, with far-reaching implications for decision-making, predictions, and interventions. Despite significant advances, existing methods can be broadly categorized as constraint-based or score-based approaches. Constraint-based methods offer rigorous causal discovery but are often hindered by small sample sizes, while score-based methods provide flexible optimization but typically forgo explicit conditional independence testing. This work explores a third avenue: developing differentiable $d$-separation scores, obtained through a percolation theory using soft logic. This enables the implementation of a new type of causal discovery method: gradient-based optimization of conditional independence constraints. Empirical evaluations demonstrate the robust performance of our approach in low-sample regimes, surpassing traditional constraint-based and score-based baselines on a real-world dataset. Code and data of the proposed method are publicly available at https://github$.$com/PurdueMINDS/DAGPA.
♻ ☆ Exploring Silicon-Based Societies: An Early Study of the Moltbook Agent Community
The rapid emergence of autonomous large language model agents has given rise to persistent, large-scale agent ecosystems whose collective behavior cannot be adequately understood through anecdotal observation or small-scale simulation. This paper introduces data-driven silicon sociology as a systematic empirical framework for studying social structure formation among interacting artificial agents. We present a pioneering large-scale data mining investigation of an in-the-wild agent society by analyzing Moltbook, a social platform designed primarily for agent-to-agent interaction. At the time of study, Moltbook hosted over 150,000 registered autonomous agents operating across thousands of agent-created sub-communities. Using programmatic and non-intrusive data acquisition, we collected and analyzed the textual descriptions of 12,758 submolts, which represent proactive sub-community partitioning activities within the ecosystem. Treating agent-authored descriptions as first-class observational artifacts, we apply rigorous preprocessing, contextual embedding, and unsupervised clustering techniques to uncover latent patterns of thematic organization and social space structuring. The results show that autonomous agents systematically organize collective space through reproducible patterns spanning human-mimetic interests, silicon-centric self-reflection, and early-stage economic and coordination behaviors. Rather than relying on predefined sociological taxonomies, these structures emerge directly from machine-generated data traces. This work establishes a methodological foundation for data-driven silicon sociology and demonstrates that data mining techniques can provide a powerful lens for understanding the organization and evolution of large autonomous agent societies.
comment: 11 pages, 3 figures. This update refines the framing of novelty claims by replacing absolute "first" statements with more precise and scoped formulations (e.g., "one of the earliest"). Our systematic methodological and empirical contributions remain unchanged
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 15 pages, 9 figures
♻ ☆ Dual Perspectives on Non-Contrastive Self-Supervised Learning
The {\em stop gradient} and {\em exponential moving average} iterative procedures are commonly used in non-contrastive approaches to self-supervised learning to avoid representation collapse, with excellent performance in downstream applications in practice. This presentation investigates these procedures from the dual viewpoints of optimization and dynamical systems. We show that, in general, although they {\em do not} optimize the original objective, or {\em any} other smooth function, they {\em do} avoid collapse Following~\citet{Tian21}, but without any of the extra assumptions used in their proofs, we then show using a dynamical system perspective that, in the linear case, minimizing the original objective function without the use of a stop gradient or exponential moving average {\em always} leads to collapse. Conversely, we characterize explicitly the equilibria of the dynamical systems associated with these two procedures in this linear setting as algebraic varieties in their parameter space, and show that they are, in general, {\em asymptotically stable}. Our theoretical findings are illustrated by empirical experiments with real and synthetic data.
♻ ☆ Investigating the Impact of Histopathological Foundation Models on Regressive Prediction of Homologous Recombination Deficiency
Foundation models pretrained on large-scale histopathology data have found great success in various fields of computational pathology, but their impact on regressive biomarker prediction remains underexplored. In this work, we systematically evaluate histopathological foundation models for regression-based tasks, demonstrated through the prediction of homologous recombination deficiency (HRD) score - a critical biomarker for personalized cancer treatment. Within multiple instance learning frameworks, we extract patch-level features from whole slide images (WSI) using five state-of-the-art foundation models, and evaluate their impact compared to contrastive learning-based features. Models are trained to predict continuous HRD scores based on these extracted features across breast, endometrial, and lung cancer cohorts from two public medical data collections. Extensive experiments demonstrate that models trained on foundation model features consistently outperform the baseline in terms of predictive accuracy and generalization capabilities while exhibiting systematic differences among the foundation models. Additionally, we propose a distribution-based upsampling strategy to mitigate target imbalance in these datasets, significantly improving the recall and balanced accuracy for underrepresented but clinically important patient populations. Furthermore, we investigate the impact of different sampling strategies and instance bagsizes by ablation studies. Our results highlight the benefits of large-scale histopathological pretraining for more precise and transferable regressive biomarker prediction, showcasing its potential to advance AI-driven precision oncology.
comment: 9 pages, 7 figures and 5 tables
♻ ☆ Are foundation models useful feature extractors for electroencephalography analysis?
The success of foundation models in natural language processing and computer vision has motivated similar approaches in time series analysis. While foundational time series models have proven beneficial on a variety of tasks, their effectiveness in medical applications with limited data remains underexplored. In this work, we investigate this question in the context of electroencephalography (EEG) by evaluating general-purpose time series models on age prediction, seizure detection, and classification of clinically relevant EEG events. We compare their diagnostic performance against specialised EEG models and assess the quality of the extracted features. The results show that general-purpose models are competitive and capture features useful to localising demographic and disease-related biomarkers. These findings indicate that foundational time series models can reduce the reliance on large task-specific datasets and models, making them valuable in clinical practice.
♻ ☆ Auto-Rubric: Learning From Implicit Weights to Explicit Rubrics for Reward Modeling
Conventional reward modeling relies on gradient descent over neural weights, creating opaque, data-hungry "black boxes." We propose a paradigm shift from implicit to explicit reward parameterization, recasting optimization from continuous weight spaces to the discrete space of natural language rubrics. We introduce a training-free framework based on iterative rubric learning: it locally induces discriminative criteria via verification-driven refinement, and globally compresses the candidate criteria pool into a compact core set by maximizing an information-theoretic coding rate objective. We organize the compressed core set into a hierarchical rubric structure -- high-level evaluation dimensions supported by concrete verification checks -- serving as an interpretable, portable reward function. Empirically, our approach challenges prevailing data scaling assumptions: using only 70 preference pairs, our rubric-guided judges outperform fully trained reward models on diverse benchmarks. For instance, Qwen3-8B equipped with our learned rubrics achieves 80.91% on RewardBench2, surpassing the specialized Skywork-Reward-V2-Qwen3-8B (78.20%). These results demonstrate that alignment signals are highly compressible and can be effectively captured through explicit symbolic search.
♻ ☆ SurvDiff: A Diffusion Model for Generating Synthetic Data in Survival Analysis
Survival analysis is a cornerstone of clinical research by modeling time-to-event outcomes such as metastasis, disease relapse, or patient death. Unlike standard tabular data, survival data often come with incomplete event information due to dropout, or loss to follow-up. This poses unique challenges for synthetic data generation, where it is crucial for clinical research to faithfully reproduce both the event-time distribution and the censoring mechanism. In this paper, we propose SurvDiff an end-to-end diffusion model specifically designed for generating synthetic data in survival analysis. SurvDiff is tailored to capture the data-generating mechanism by jointly generating mixed-type covariates, event times, and right-censoring, guided by a survival-tailored loss function. The loss encodes the time-to-event structure and directly optimizes for downstream survival tasks, which ensures that SurvDiff (i) reproduces realistic event-time distributions and (ii preserves the censoring mechanism. Across multiple datasets, we show that SurvDiff consistently outperforms state-of-the-art generative baselines in both distributional fidelity and survival model evaluation metrics across multiple medical datasets. To the best of our knowledge, SurvDiff is the first end-to-end diffusion model explicitly designed for generating synthetic survival data.
♻ ☆ AlphaBeta is not as good as you think: a simple class of synthetic games for a better analysis of deterministic game-solving algorithms
Deterministic game-solving algorithms are conventionally analyzed in the light of their average-case complexity against a distribution of random game-trees, where leaf values are independently sampled from a fixed distribution. This simplified model enables uncluttered mathematical analysis, revealing two key properties: root value distributions asymptotically collapse to a single fixed value for finite-valued trees, and all reasonable algorithms achieve global optimality. However, these findings are artifacts of the model's design: its long criticized independence assumption strips games of structural complexity, producing trivial instances where no algorithm faces meaningful challenges. To address this limitation, we introduce a class of synthetic games generated by a probabilistic model that incrementally constructs game-trees using a fixed level-wise conditional distribution. By enforcing ancestor dependencies, a critical structural feature of real-world games, our framework generates problems with adjustable difficulty while retaining some form of analytical tractability. For several algorithms, including AlphaBeta and Scout, we derive recursive formulas characterizing their average-case complexities under this model. These allow us to rigorously compare algorithms on deep game-trees, where Monte-Carlo simulations are no longer feasible. While asymptotically, all algorithms seem to converge to identical branching factor (a result analogous to that of independence-based models), deep finite trees reveal stark differences: AlphaBeta incurs a significantly larger constant multiplicative factor compared to algorithms like Scout, leading to a substantial practical slowdown. Our framework sheds new light on classical game-solving algorithms, offering rigorous evidence and analytical tools to advance the understanding of these methods under a richer, more challenging, and yet tractable model.
♻ ☆ Log2Motion: Biomechanical Motion Synthesis from Touch Logs
Touch data from mobile devices are collected at scale but reveal little about the interactions that produce them. While biomechanical simulations can illuminate motor control processes, they have not yet been developed for touch interactions. To close this gap, we propose a novel computational problem: synthesizing plausible motion directly from logs. Our key insight is a reinforcement learning-driven musculoskeletal forward simulation that generates biomechanically plausible motion sequences consistent with events recorded in touch logs. We achieve this by integrating a software emulator into a physics simulator, allowing biomechanical models to manipulate real applications in real-time. Log2Motion produces rich syntheses of user movements from touch logs, including estimates of motion, speed, accuracy, and effort. We assess the plausibility of generated movements by comparing against human data from a motion capture study and prior findings, and demonstrate Log2Motion in a large-scale dataset. Biomechanical motion synthesis provides a new way to understand log data, illuminating the ergonomics and motor control underlying touch interactions.
♻ ☆ GeoRA: Geometry-Aware Low-Rank Adaptation for RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) is crucial for advancing large-scale reasoning models. However, existing parameter-efficient methods, such as PiSSA and MiLoRA, are designed for Supervised Fine-Tuning (SFT) and do not account for the distinct optimization dynamics and geometric structures of RLVR. Applying these methods directly leads to spectral collapse and optimization instability, which severely limit model performance. Meanwhile, alternative approaches that leverage update sparsity encounter significant efficiency bottlenecks on modern hardware due to unstructured computations. To address these challenges, we propose GeoRA (Geometry-Aware Low-Rank Adaptation), which exploits the anisotropic and compressible nature of RL update subspaces. GeoRA initializes adapters by extracting principal directions via Singular Value Decomposition (SVD) within a geometrically constrained subspace while freezing the residual components. This method preserves the pre-trained geometric structure and enables efficient GPU computation through dense operators. Experiments on Qwen and Llama demonstrate that GeoRA mitigates optimization bottlenecks caused by geometric misalignment. It consistently outperforms established low-rank baselines on key mathematical benchmarks, achieving state-of-the-art (SOTA) results. Moreover, GeoRA shows superior generalization and resilience to catastrophic forgetting in out-of-domain tasks.
♻ ☆ MaxSup: Overcoming Representation Collapse in Label Smoothing NeurIPS 2025
Label Smoothing (LS) is widely adopted to reduce overconfidence in neural network predictions and improve generalization. Despite these benefits, recent studies reveal two critical issues with LS. First, LS induces overconfidence in misclassified samples. Second, it compacts feature representations into overly tight clusters, diluting intra-class diversity, although the precise cause of this phenomenon remained elusive. In this paper, we analytically decompose the LS-induced loss, exposing two key terms: (i) a regularization term that dampens overconfidence only when the prediction is correct, and (ii) an error-amplification term that arises under misclassifications. This latter term compels the network to reinforce incorrect predictions with undue certainty, exacerbating representation collapse. To address these shortcomings, we propose Max Suppression (MaxSup), which applies uniform regularization to both correct and incorrect predictions by penalizing the top-1 logit rather than the ground-truth logit. Through extensive feature-space analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Experiments on large-scale image classification and multiple downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
comment: NeurIPS 2025 Oral (0.36% acceptance); code: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
♻ ☆ Preference-based Reinforcement Learning beyond Pairwise Comparisons: Benefits of Multiple Options NeurIPS 2025
We study online preference-based reinforcement learning (PbRL) with the goal of improving sample efficiency. While a growing body of theoretical work has emerged-motivated by PbRL's recent empirical success, particularly in aligning large language models (LLMs)-most existing studies focus only on pairwise comparisons. A few recent works (Zhu et al., 2023, Mukherjee et al., 2024, Thekumparampil et al., 2024) have explored using multiple comparisons and ranking feedback, but their performance guarantees fail to improve-and can even deteriorate-as the feedback length increases, despite the richer information available. To address this gap, we adopt the Plackett-Luce (PL) model for ranking feedback over action subsets and propose M-AUPO, an algorithm that selects multiple actions by maximizing the average uncertainty within the offered subset. We prove that M-AUPO achieves a suboptimality gap of $\tilde{O}\left( \frac{d}{T} \sqrt{ \sum_{t=1}^T \frac{1}{|S_t|}} \right)$, where $T$ is the total number of rounds, $d$ is the feature dimension, and $|S_t|$ is the size of the subset at round $t$. This result shows that larger subsets directly lead to improved performance and, notably, the bound avoids the exponential dependence on the unknown parameter's norm, which was a fundamental limitation in most previous works. Moreover, we establish a near-matching lower bound of $Ω\left( \frac{d}{K \sqrt{T}} \right)$, where $K$ is the maximum subset size. To the best of our knowledge, this is the first theoretical result in PbRL with ranking feedback that explicitly shows improved sample efficiency as a function of the subset size.
comment: Accepted at NeurIPS 2025
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ TensLoRA: Tensor Alternatives for Low-Rank Adaptation ICASSP 2026
Low-Rank Adaptation (LoRA) is widely used to efficiently adapt Transformers by adding trainable low-rank matrices to attention projections. While effective, these matrices are considered independent for each attention projection (Query, Key, and Value) and each layer. Recent extensions have considered joint, tensor-based adaptations, but only in limited forms and without a systematic framework. We introduce TensLoRA, a unified framework that aggregates LoRA updates into higher-order tensors and models a broad family of tensor-based low-rank adaptations. Our formulation generalizes existing tensor-based methods and enables mode-specific compression rates, allowing parameter budgets to be tailored according to the modality and task. Experiments on vision and language benchmarks reveal that the tensor construction directly impacts performance, sometimes better than standard LoRA under similar parameter counts.
comment: Published at ICASSP 2026. 5 pages, 1 figure, 2 tables. Code can be found at https://github.com/ax-le/TensLoRA
♻ ☆ The Why Behind the Action: Unveiling Internal Drivers via Agentic Attribution
Large Language Model (LLM)-based agents are widely used in real-world applications such as customer service, web navigation, and software engineering. As these systems become more autonomous and are deployed at scale, understanding why an agent takes a particular action becomes increasingly important for accountability and governance. However, existing research predominantly focuses on \textit{failure attribution} to localize explicit errors in unsuccessful trajectories, which is insufficient for explaining \textbf{the reason behind agent behaviors}. To bridge this gap, we propose a novel framework for \textbf{general agentic attribution}, designed to identify the internal factors driving agent actions regardless of the task outcome. Our framework operates hierarchically to manage the complexity of agent interactions. Specifically, at the \textit{component level}, we employ temporal likelihood dynamics to identify critical interaction steps; then at the \textit{sentence level}, we refine this localization using perturbation-based analysis to isolate the specific textual evidence. We validate our framework across a diverse suite of agentic scenarios, including standard tool use and subtle reliability risks like memory-induced bias. Experimental results demonstrate that the proposed framework reliably pinpoints pivotal historical events and sentences behind the agent behavior, offering a critical step toward safer and more accountable agentic systems. Codes are available at https://github.com/AI45Lab/AgentDoG.
♻ ☆ CoSteer: Collaborative Decoding-Time Personalization via Local Delta Steering
Personalization has become crucial for adapting models to the diverse and evolving needs of users across cultural, temporal, and contextual dimensions. While existing methods often rely on centralized fine-tuning or static preference alignment within a single model, they struggle to achieve both real-time and high-quality personalization under the resource and privacy constraints of personal devices. To address this challenge, we propose CoSteer, a collaborative framework that enables tuning-free, real-time personalization via decoding-time adaptation. By leveraging logit differences between context-aware and context-agnostic local small models, CoSteer steers cloud-based large models, ensuring effective personalization while preserving the large model's capabilities. Personalization is handled locally, with only final tokens sent to the cloud, maintaining both user context and system efficiency. Through extensive experiments across a wide range of tasks, we demonstrate that CoSteer generates high-quality personalized content, ensuring both effectiveness and computational efficiency. Our results highlight its robustness across models and environments, confirming its practical applicability in real-world scenarios.
♻ ☆ Accurate and scalable exchange-correlation with deep learning
Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schrödinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
comment: Main: 13 pages plus references, 11 figures and tables. Supplementary information: 19 pages, 12 figures and tables. v2 update: fix rendering of figure 1 and part of figure 5 in Safari PDF viewer. v3 update: update author information and fix typo. The Skala model and inference code are available under MIT license at https://github.com/microsoft/skala
♻ ☆ Dissecting the SWE-Bench Leaderboards: Profiling Submitters and Architectures of LLM- and Agent-Based Repair Systems
The rapid progress in Automated Program Repair (APR) has been driven by advances in AI, particularly large language models (LLMs) and agent-based systems. SWE-Bench is a recent benchmark designed to evaluate LLM-based repair systems using real issues and pull requests mined from 12 popular open-source Python repositories. Its public leaderboards -- SWE-Bench Lite and SWE-Bench Verified -- have become central platforms for tracking progress and comparing solutions. However, because the submission process does not require detailed documentation, the architectural design and origin of many solutions remain unclear. In this paper, we present the first comprehensive study of all submissions to the SWE-Bench Lite (79 entries) and Verified (99 entries) leaderboards, analyzing 80 unique approaches across dimensions such as submitter type, product availability, LLM usage, and system architecture. Our findings reveal the dominance of proprietary LLMs (especially Claude 3.5), the presence of both agentic and non-agentic designs, and a contributor base spanning from individual developers to large tech companies.
comment: Part of this work (RQ1) has been published at the 2026 IEEE/ACM 48th International Conference on Software Engineering (ICSE-SEIP 2026), DOI: 10.1145/3786583.3786904. The published version is also available on arXiv at arXiv:2602.04449
♻ ☆ Bandits with Single-Peaked Preferences and Limited Resources ICLR'26
We study an online stochastic matching problem in which an algorithm sequentially matches $U$ users to $K$ arms, aiming to maximize cumulative reward over $T$ rounds under budget constraints. Without structural assumptions, computing the optimal matching is NP-hard, making online learning computationally infeasible. To overcome this barrier, we focus on single-peaked preferences -- a well-established structure in social choice theory, where users' preferences are unimodal with respect to a common order over arms. We devise an efficient algorithm for the offline budgeted matching problem, and leverage it into an efficient online algorithm with a regret of $\tilde O(UKT^{2/3})$. Our approach relies on a novel PQ tree-based order approximation method. If the single-peaked structure is known, we develop an efficient UCB-like algorithm that achieves a regret bound of $\tilde O(U\sqrt{TK})$.
comment: Accepted to the International Conference on Learning Representations 2026 (ICLR'26)
♻ ☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement Learning (RL) is pivotal for enhancing Large Language Model (LLM) reasoning, yet mainstream algorithms such as GRPO and DAPO remain constrained by a coarse-grained credit assignment paradigm, where all tokens within the same response receive the identical reward. In this paper, we propose Dynamic Entropy Weighting, systematically define entropy-based weight ratios $\frac{H_{i,t}}{\sum_{k=1}^{n} H_{k,t}}$ and similar variants to redistribute rewards and get fine-grained rewards through two new algorithms: Group Token Policy Optimization (GTPO), which assigns an entropy-weighted reward to each token and synthesizes token-specific advantage function to drive the model toward optimal path, and the analogous algorithm Sequence-Level GRPO (GRPO-S), which extends this design to the sequence level and exhibits superior stability in long Chain-of-Thought (CoT) reasoning tasks.
♻ ☆ Addressing Corpus Knowledge Poisoning Attacks on RAG Using Sparse Attention
Retrieval Augmented Generation (RAG) is a highly effective paradigm for keeping LLM-based responses up-to-date and reducing the likelihood of hallucinations. Yet, RAG was recently shown to be quite vulnerable to corpus knowledge poisoning: an attacker injects misleading documents to the corpus to steer an LLM's output to an undesired response. We argue that the standard causal attention mechanism in LLMs enables harmful cross-document interactions, specifically in cases of attacks. Accordingly, we introduce a novel defense approach for RAG: Sparse Document Attention RAG (SDAG). This is a block-sparse attention mechanism that disallows cross-attention between retrieved documents. SDAG requires a minimal inference-time change to the attention mask; furthermore, no fine-tuning or additional architectural changes are needed. We present an empirical evaluation of LLM-based question answering (QA) with a variety of attack strategies on RAG. We show that our SDAG method substantially outperforms the standard causal attention mechanism in terms of attack success rate. We further demonstrate the clear merits of integrating SDAG with state-of-the-art RAG defense methods. Specifically, the integration results in performance that is statistically significantly better than the state-of-the-art.
♻ ☆ A Study of Adaptive Modeling Towards Robust Generalization
Large language models (LLMs) increasingly support reasoning over biomolecular structures, but most existing approaches remain modality-specific and rely on either sequence-style encodings or fixed-length connector tokens for structural inputs. These designs can under-expose explicit geometric cues and impose rigid fusion bottlenecks, leading to over-compression and poor token allocation as structural complexity grows. We present a unified all-atom framework that grounds language reasoning in geometric information while adaptively scaling structural tokens. The method first constructs variable-size structural patches on molecular graphs using an instruction-conditioned gating policy, enabling complexity-aware allocation of query tokens. It then refines the resulting patch tokens via cross-attention with modality embeddings and injects geometry-informed tokens into the language model to improve structure grounding and reduce structural hallucinations. Across diverse all-atom benchmarks, the proposed approach yields consistent gains in heterogeneous structure-grounded reasoning. An anonymized implementation is provided in the supplementary material.
♻ ☆ Beyond touch-based human-machine interface: Control your machines in natural language by utilizing large language models and OPC UA
This paper proposes an agent-based approach toward a more natural interface between humans and machines. Large language models equipped with tools and the communication standard OPC UA are utilized to control machines in natural language. Instead of touch interaction, which is currently the state-of-the-art medium for interaction in operations, the proposed approach enables operators to talk or text with machines. This allows commands such as 'Please decrease the temperature by 20 % in machine 1 and start the cleaning operation in machine 2.' The large language model receives the user input and selects one of three predefined tools that connect to an OPC UA server and either change or read the value of a node. Afterwards, the result of the tool execution is passed back to the language model, which then provides a final response to the user. The approach is universally designed and can therefore be applied to any machine that supports the OPC UA standard. The large language model is neither fine-tuned nor requires training data, only the relevant machine credentials and a parameter dictionary are included within the system prompt. The tool-calling ability and their design is evaluated on a demonstrator setup with a Siemens S7-1500 programmable logic controller with four machine parameters. Fifty synthetically generated commands on five different models were tested and the results demonstrate high success rate, with proprietary GPT-5 models achieving accuracies between 96.0 % and 98.0 %, and open-weight models reaching up to 90.0 %. Afterwards the approach was transferred to a deployed spay-coating machine. The proposed concept is supposed to contribute in advancing natural interaction in industrial human-machine interfaces.
♻ ☆ JSynFlow: Japanese Synthesised Flowchart Visual Question Answering Dataset built with Large Language Models
Vision and language models (VLMs) are expected to analyse complex documents, such as those containing flowcharts, through a question-answering (QA) interface. The ability to recognise and interpret these flowcharts is in high demand, as they provide valuable insights unavailable in text-only explanations. However, developing VLMs with precise flowchart understanding requires large-scale datasets of flowchart images and corresponding text, the creation of which is highly time-consuming. To address this challenge, we introduce JSynFlow, a synthesised visual QA dataset for Japanese flowcharts, generated using large language models (LLMs). Our dataset comprises task descriptions for various business occupations, the corresponding flowchart images rendered from domain-specific language (DSL) code, and related QA pairs. This paper details the dataset's synthesis procedure and demonstrates that fine-tuning with JSynFlow significantly improves VLM performance on flowchart-based QA tasks. Our dataset is publicly available at https://huggingface.co/datasets/jri-advtechlab/jsynflow.
comment: 7 pages, 1 figure
♻ ☆ UniverSR: Unified and Versatile Audio Super-Resolution via Vocoder-Free Flow Matching ICASSP 2026
In this paper, we present a vocoder-free framework for audio super-resolution that employs a flow matching generative model to capture the conditional distribution of complex-valued spectral coefficients. Unlike conventional two-stage diffusion-based approaches that predict a mel-spectrogram and then rely on a pre-trained neural vocoder to synthesize waveforms, our method directly reconstructs waveforms via the inverse Short-Time Fourier Transform (iSTFT), thereby eliminating the dependence on a separate vocoder. This design not only simplifies end-to-end optimization but also overcomes a critical bottleneck of two-stage pipelines, where the final audio quality is fundamentally constrained by vocoder performance. Experiments show that our model consistently produces high-fidelity 48 kHz audio across diverse upsampling factors, achieving state-of-the-art performance on both speech and general audio datasets.
comment: Accepted to ICASSP 2026
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Calibration and Transformation-Free Weight-Only LLMs Quantization via Dynamic Grouping
Large Language Models (LLMs) deliver strong performance but are difficult to deploy under tight memory and compute constraints. Low-bit post-training quantization (PTQ) is a promising direction; however, it typically relies on calibration data, auxiliary transformations, and GPU tools. To address these limitations, we propose MSB (Multi Scale Binary), a calibration-free and transformation-free PTQ method that generalizes binary quantization to multi-bit settings. MSB optimizes a dynamic grouping criterion that minimizes within group variance, yielding group-wise multiscale levels that can be applied consistently across granularities from per tensor to block-wise configurations with 64 elements groups per row, without calibration or intermediate transforms. We implement the optimization in a CPU based solver for the quantization step and evaluate using standard bfloat16 execution without low-bit packing. On Llama 3.2 3B, MSB achieves 8.43 perplexity on WikiText-2 under 4-bit weight only block-wise quantization, compared to 7.81 in full precision and 12.23 with GPTQ its default setup. Overall, MSB provides a new optimization perspective for low-bit PTQ while simplifying the pipeline by removing calibration and transformations.
comment: 34 pages, 10 figures. Version 3 corrects the bit-length error and adds new experiments and analysis; the core methodology remains unchanged
♻ ☆ Personalized Safety Alignment for Text-to-Image Diffusion Models
Text-to-image diffusion models have revolutionized visual content generation, yet their deployment is hindered by a fundamental limitation: safety mechanisms enforce rigid, uniform standards that fail to reflect diverse user preferences shaped by age, culture, or personal beliefs. To address this, we propose Personalized Safety Alignment (PSA), a framework that transitions generative safety from static filtration to user-conditioned adaptation. We introduce Sage, a large-scale dataset capturing diverse safety boundaries across 1,000 simulated user profiles, covering complex risks often missed by traditional datasets. By integrating these profiles via a parameter-efficient cross-attention adapter, PSA dynamically modulates generation to align with individual sensitivities. Extensive experiments demonstrate that PSA achieves a calibrated safety-quality trade-off: under permissive profiles, it relaxes over-cautious constraints to enhance visual fidelity, while under restrictive profiles, it enforces state-of-the-art suppression, significantly outperforming static baselines. Furthermore, PSA exhibits superior instruction adherence compared to prompt-engineering methods, establishing personalization as a vital direction for creating adaptive, user-centered, and responsible generative AI. Our code, data, and models are publicly available at https://github.com/M-E-AGI-Lab/PSAlign.
♻ ☆ Generative AI for Intent-Driven Network Management in 6G RAN: A Case Study on the Mamba Model
With the emergence of 6G, mobile networks are becoming increasingly heterogeneous and dynamic, necessitating advanced automation for efficient management. Intent-Driven Networks (IDNs) address this by translating high-level intents into optimization policies. Large Language Models (LLMs) can enhance this process by understanding complex human instructions, enabling adaptive and intelligent automation. Given the rapid advancements in Generative AI (GenAI), a comprehensive survey of LLM-based IDN architectures in disaggregated Radio Access Network (RAN) environments is both timely and critical. This article provides such a survey, along with a case study on a selective State-Space Model (SSM)-enabled IDN architecture that integrates GenAI across three key stages: intent processing, intent validation, and intent execution. For the first time in the literature, we propose a hierarchical framework built on Mamba-SSM that introduces GenAI across all stages of the IDN pipeline. We further present a case study demonstrating that the proposed Mamba architecture significantly improves network performance through intelligent automation, surpassing existing IDN approaches. In a multi-cell 5G/6G scenario, the proposed architecture reduces quality of service drift by up to 70%, improves throughput by up to 80 Mbps, and lowers inference time to 60-70 ms, outperforming GenAI, reinforcement learning, and non-machine learning baselines.
comment: Paper submitted to IEEE for possible publication. The contents of this paper may change at any time
♻ ☆ Learning to Plan & Schedule with Reinforcement-Learned Bimanual Robot Skills
Long-horizon contact-rich bimanual manipulation presents a significant challenge, requiring complex coordination involving a mixture of parallel execution and sequential collaboration between arms. In this paper, we introduce a hierarchical framework that frames this challenge as an integrated skill planning & scheduling problem, going beyond purely sequential decision-making to support simultaneous skill invocation. Our approach is built upon a library of single-arm and bimanual primitive skills, each trained using Reinforcement Learning (RL) in GPU-accelerated simulation. We then train a Transformer-based planner on a dataset of skill compositions to act as a high-level scheduler, simultaneously predicting the discrete schedule of skills as well as their continuous parameters. We demonstrate that our method achieves higher success rates on complex, contact-rich tasks than end-to-end RL approaches and produces more efficient, coordinated behaviors than traditional sequential-only planners.
♻ ☆ On Entropy Control in LLM-RL Algorithms ICLR 2026
For RL algorithms, appropriate entropy control is crucial to their effectiveness. To control the policy entropy, a commonly used method is entropy regularization, which is adopted in various popular RL algorithms including PPO, SAC and A3C. Although entropy regularization proves effective in robotic and games RL conventionally, studies found that it gives weak to no gains in LLM-RL training. In this work, we study the issues of entropy bonus in LLM-RL setting. Specifically, we first argue that the conventional entropy regularization suffers from the LLM's extremely large response space and the sparsity of the optimal outputs. As a remedy, we propose AEnt, an entropy control method that utilizes a new clamped entropy bonus with an automatically adjusted coefficient. The clamped entropy is evaluated with the re-normalized policy defined on certain smaller token space, which encourages exploration within a more compact response set. In addition, the algorithm automatically adjusts entropy coefficient according to the clamped entropy value, effectively controlling the entropy-induced bias while leveraging the entropy's benefits. AEnt is tested in math-reasoning tasks under different base models and datasets, and it is observed that AEnt outperforms the baselines consistently across multiple benchmarks.
comment: Updated with ICLR 2026 version
♻ ☆ PEAR: Pixel-aligned Expressive humAn mesh Recovery
Reconstructing detailed 3D human meshes from a single in-the-wild image remains a fundamental challenge in computer vision. Existing SMPLX-based methods often suffer from slow inference, produce only coarse body poses, and exhibit misalignments or unnatural artifacts in fine-grained regions such as the face and hands. These issues make current approaches difficult to apply to downstream tasks. To address these challenges, we propose PEAR-a fast and robust framework for pixel-aligned expressive human mesh recovery. PEAR explicitly tackles three major limitations of existing methods: slow inference, inaccurate localization of fine-grained human pose details, and insufficient facial expression capture. Specifically, to enable real-time SMPLX parameter inference, we depart from prior designs that rely on high resolution inputs or multi-branch architectures. Instead, we adopt a clean and unified ViT-based model capable of recovering coarse 3D human geometry. To compensate for the loss of fine-grained details caused by this simplified architecture, we introduce pixel-level supervision to optimize the geometry, significantly improving the reconstruction accuracy of fine-grained human details. To make this approach practical, we further propose a modular data annotation strategy that enriches the training data and enhances the robustness of the model. Overall, PEAR is a preprocessing-free framework that can simultaneously infer EHM-s (SMPLX and scaled-FLAME) parameters at over 100 FPS. Extensive experiments on multiple benchmark datasets demonstrate that our method achieves substantial improvements in pose estimation accuracy compared to previous SMPLX-based approaches. Project page: https://wujh2001.github.io/PEAR
comment: 23 pages
♻ ☆ CATS: Enhancing Multivariate Time Series Forecasting by Constructing Auxiliary Time Series as Exogenous Variables ICML 2024
For Multivariate Time Series Forecasting (MTSF), recent deep learning applications show that univariate models frequently outperform multivariate ones. To address the difficiency in multivariate models, we introduce a method to Construct Auxiliary Time Series (CATS) that functions like a 2D temporal-contextual attention mechanism, which generates Auxiliary Time Series (ATS) from Original Time Series (OTS) to effectively represent and incorporate inter-series relationships for forecasting. Key principles of ATS - continuity, sparsity, and variability - are identified and implemented through different modules. Even with a basic 2-layer MLP as core predictor, CATS achieves state-of-the-art, significantly reducing complexity and parameters compared to previous multivariate models, marking it an efficient and transferable MTSF solution.
comment: Camera-ready version. Accepted at ICML 2024
♻ ☆ Pattern Enhanced Multi-Turn Jailbreaking: Exploiting Structural Vulnerabilities in Large Language Models
Large language models (LLMs) remain vulnerable to multi-turn jailbreaking attacks that exploit conversational context to bypass safety constraints gradually. These attacks target different harm categories through distinct conversational approaches. Existing multi-turn methods often rely on heuristic or ad hoc exploration strategies, providing limited insight into underlying model weaknesses. The relationship between conversation patterns and model vulnerabilities across harm categories remains poorly understood. We propose Pattern Enhanced Chain of Attack (PE-CoA), a framework of five conversation patterns to construct multi-turn jailbreaks through natural dialogue. Evaluating PE-CoA on twelve LLMs spanning ten harm categories, we achieve state-of-the-art performance, uncovering pattern-specific vulnerabilities and LLM behavioral characteristics: models exhibit distinct weakness profiles, defense to one pattern does not generalize to others, and model families share similar failure modes. These findings highlight limitations of safety training and indicate the need for pattern-aware defenses. Code available on: https://github.com/Ragib-Amin-Nihal/PE-CoA
♻ ☆ Stream-Voice-Anon: Enhancing Utility of Real-Time Speaker Anonymization via Neural Audio Codec and Language Models ICASSP2026
Protecting speaker identity is crucial for online voice applications, yet streaming speaker anonymization (SA) remains underexplored. Recent research has demonstrated that neural audio codec (NAC) provides superior speaker feature disentanglement and linguistic fidelity. NAC can also be used with causal language models (LM) to enhance linguistic fidelity and prompt control for streaming tasks. However, existing NAC-based online LM systems are designed for voice conversion (VC) rather than anonymization, lacking the techniques required for privacy protection. Building on these advances, we present Stream-Voice-Anon, which adapts modern causal LM-based NAC architectures specifically for streaming SA by integrating anonymization techniques. Our anonymization approach incorporates pseudo-speaker representation sampling, a speaker embedding mixing and diverse prompt selection strategies for LM conditioning that leverage the disentanglement properties of quantized content codes to prevent speaker information leakage. Additionally, we compare dynamic and fixed delay configurations to explore latency-privacy trade-offs in real-time scenarios. Under the VoicePrivacy 2024 Challenge protocol, Stream-Voice-Anon achieves substantial improvements in intelligibility (up to 46% relative WER reduction) and emotion preservation (up to 28% UAR relative) compared to the previous state-of-the-art streaming method DarkStream while maintaining comparable latency (180ms vs 200ms) and privacy protection against lazy-informed attackers, though showing 15% relative degradation against semi-informed attackers.
comment: Accepted by ICASSP2026. Demo/code: https://paniquex.github.io/Stream-Voice-Anon/
♻ ☆ In-context Time Series Predictor ICLR 2025
Recent Transformer-based large language models (LLMs) demonstrate in-context learning ability to perform various functions based solely on the provided context, without updating model parameters. To fully utilize the in-context capabilities in time series forecasting (TSF) problems, unlike previous Transformer-based or LLM-based time series forecasting methods, we reformulate "time series forecasting tasks" as input tokens by constructing a series of (lookback, future) pairs within the tokens. This method aligns more closely with the inherent in-context mechanisms, and is more parameter-efficient without the need of using pre-trained LLM parameters. Furthermore, it addresses issues such as overfitting in existing Transformer-based TSF models, consistently achieving better performance across full-data, few-shot, and zero-shot settings compared to previous architectures.
comment: Camera-ready version. Accepted at ICLR 2025
♻ ☆ VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.0% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.
♻ ☆ WAVE: Weighted Autoregressive Varying Gate for Time Series Forecasting ICML 2025
We propose a Weighted Autoregressive Varying gatE (WAVE) attention mechanism equipped with both Autoregressive (AR) and Moving-average (MA) components. It can adapt to various attention mechanisms, enhancing and decoupling their ability to capture long-range and local temporal patterns in time series data. In this paper, we first demonstrate that, for the time series forecasting (TSF) task, the previously overlooked decoder-only autoregressive Transformer model can achieve results comparable to the best baselines when appropriate tokenization and training methods are applied. Moreover, inspired by the ARMA model from statistics and recent advances in linear attention, we introduce the full ARMA structure into existing autoregressive attention mechanisms. By using an indirect MA weight generation method, we incorporate the MA term while maintaining the time complexity and parameter size of the underlying efficient attention models. We further explore how indirect parameter generation can produce implicit MA weights that align with the modeling requirements for local temporal impacts. Experimental results show that WAVE attention that incorporates the ARMA structure consistently improves the performance of various AR attentions on TSF tasks, achieving state-of-the-art results.
comment: Camera-ready version. Accepted at ICML 2025
♻ ☆ A Differential and Pointwise Control Approach to Reinforcement Learning NeurIPS 2025
Reinforcement learning (RL) in continuous state-action spaces remains challenging in scientific computing due to poor sample efficiency and lack of pathwise physical consistency. We introduce Differential Reinforcement Learning (Differential RL), a novel framework that reformulates RL from a continuous-time control perspective via a differential dual formulation. This induces a Hamiltonian structure that embeds physics priors and ensures consistent trajectories without requiring explicit constraints. To implement Differential RL, we develop Differential Policy Optimization (dfPO), a pointwise, stage-wise algorithm that refines local movement operators along the trajectory for improved sample efficiency and dynamic alignment. We establish pointwise convergence guarantees, a property not available in standard RL, and derive a competitive theoretical regret bound of $\mathcal{O}(K^{5/6})$. Empirically, dfPO outperforms standard RL baselines on representative scientific computing tasks, including surface modeling, grid control, and molecular dynamics, under low-data and physics-constrained conditions.
comment: NeurIPS 2025
♻ ☆ Relational Graph Transformer ICLR 2026
Relational Deep Learning (RDL) is a promising approach for building state-of-the-art predictive models on multi-table relational data by representing it as a heterogeneous temporal graph. However, commonly used Graph Neural Network models suffer from fundamental limitations in capturing complex structural patterns and long-range dependencies that are inherent in relational data. While Graph Transformers have emerged as powerful alternatives to GNNs on general graphs, applying them to relational entity graphs presents unique challenges: (i) Traditional positional encodings fail to generalize to massive, heterogeneous graphs; (ii) existing architectures cannot model the temporal dynamics and schema constraints of relational data; (iii) existing tokenization schemes lose critical structural information. Here we introduce the Relational Graph Transformer (RelGT), the first graph transformer architecture designed specifically for relational tables. RelGT employs a novel multi-element tokenization strategy that decomposes each node into five components (features, type, hop distance, time, and local structure), enabling efficient encoding of heterogeneity, temporality, and topology without expensive precomputation. Our architecture combines local attention over sampled subgraphs with global attention to learnable centroids, incorporating both local and database-wide representations. Across 21 tasks from the RelBench benchmark, RelGT consistently matches or outperforms GNN baselines by up to 18%, establishing Graph Transformers as a powerful architecture for Relational Deep Learning.
comment: ICLR 2026, Code: https://github.com/snap-stanford/relgt
♻ ☆ Vibe AIGC: A New Paradigm for Content Generation via Agentic Orchestration
For the past decade, the trajectory of generative artificial intelligence (AI) has been dominated by a model-centric paradigm driven by scaling laws. Despite significant leaps in visual fidelity, this approach has encountered a ``usability ceiling'' manifested as the Intent-Execution Gap (i.e., the fundamental disparity between a creator's high-level intent and the stochastic, black-box nature of current single-shot models). In this paper, inspired by the Vibe Coding, we introduce the \textbf{Vibe AIGC}, a new paradigm for content generation via agentic orchestration, which represents the autonomous synthesis of hierarchical multi-agent workflows. Under this paradigm, the user's role transcends traditional prompt engineering, evolving into a Commander who provides a Vibe, a high-level representation encompassing aesthetic preferences, functional logic, and etc. A centralized Meta-Planner then functions as a system architect, deconstructing this ``Vibe'' into executable, verifiable, and adaptive agentic pipelines. By transitioning from stochastic inference to logical orchestration, Vibe AIGC bridges the gap between human imagination and machine execution. We contend that this shift will redefine the human-AI collaborative economy, transforming AI from a fragile inference engine into a robust system-level engineering partner that democratizes the creation of complex, long-horizon digital assets.
♻ ☆ Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers
Fact verification is essential for ensuring the reliability of LLM applications. In this study, we evaluate 12 pre-trained LLMs and one specialized fact-verifier, including frontier LLMs and open-weight reasoning LLMs, using a collection of examples from 14 fact-checking benchmarks. We share three findings intended to guide future development of more robust fact verifiers. First, we highlight the importance of addressing annotation errors and ambiguity in datasets, demonstrating that approximately 16\% of ambiguous or incorrectly labeled data substantially influences model rankings. Neglecting this issue may result in misleading conclusions during comparative evaluations, and we suggest using a systematic pipeline utilizing LLM-as-a-judge to help identify these issues at scale. Second, we discover that frontier LLMs with few-shot in-context examples, often overlooked in previous works, achieve top-tier performance. We therefore recommend that future studies include comparisons with these simple yet highly effective baselines. Lastly, despite their effectiveness, frontier LLMs incur substantial costs, motivating the development of small, fine-tuned fact verifiers. We show that these small models still have room for improvement, particularly on instances that require complex reasoning. Encouragingly, we demonstrate that augmenting training with synthetic multi-hop reasoning data significantly enhances their capabilities in such instances. We release our code, model, and dataset at https://github.com/just1nseo/verifying-the-verifiers.
comment: Accepted to COLM 2025
♻ ☆ Patterns in the Transition From Founder-Leadership to Community Governance of Open Source
Open digital public infrastructure needs community management to ensure accountability, sustainability, and robustness. Yet open-source projects often rely on centralized decision-making, and the determinants of successful community management remain unclear. We analyze 637 GitHub repositories to trace transitions from founder-led to shared governance. Specifically, we document trajectories to community governance by extracting institutional roles, actions, and deontic cues from version-controlled project constitutions GOVERNANCE .md. With a semantic parsing pipeline, we cluster elements into broader role and action types. We find roles and actions grow, and regulation becomes more balanced, reflecting increases in governance scope and differentiation over time. Rather than shifting tone, communities grow by layering and refining responsibilities. As transitions to community management mature, projects increasingly regulate ecosystem-level relationships and add definition to project oversight roles. Overall, this work offers a scalable pipeline for tracking the growth and development of community governance regimes from open-source software's familiar default of founder-ownership.
♻ ☆ Mitigating Conversational Inertia in Multi-Turn Agents
Large language models excel as few-shot learners when provided with appropriate demonstrations, yet this strength becomes problematic in multiturn agent scenarios, where LLMs erroneously mimic their own previous responses as few-shot examples. Through attention analysis, we identify conversational inertia, a phenomenon where models exhibit strong diagonal attention to previous responses, which is associated with imitation bias that constrains exploration. This reveals a tension when transforming few-shot LLMs into agents: longer context enriches environmental feedback for exploitation, yet also amplifies conversational inertia that undermines exploration. Our key insight is that for identical states, actions generated with longer contexts exhibit stronger inertia than those with shorter contexts, enabling construction of preference pairs without environment rewards. Based on this, we propose Context Preference Learning to calibrate model preferences to favor low-inertia responses over highinertia ones. We further provide context management strategies at inference time to balance exploration and exploitation. Experimental results across eight agentic environments and one deep research scenario validate that our framework reduces conversational inertia and achieves performance improvements.
♻ ☆ SWE-Replay: Efficient Test-Time Scaling for Software Engineering Agents
Test-time scaling has been widely adopted to enhance the capabilities of Large Language Model (LLM) agents in software engineering (SWE) tasks. However, the standard approach of repeatedly sampling trajectories from scratch is computationally expensive. While recent methods have attempted to mitigate costs using specialized value agents, they can suffer from model miscalibration and fail to generalize to modern agents that synthesize custom bash scripts as tools. In this paper, we introduce SWE-Replay, the first efficient and generalizable test-time scaling technique for modern agents without reliance on potentially noisy value estimates. SWE-Replay optimizes the scaling process by recycling trajectories from prior trials, dynamically choosing to either explore from scratch or exploit archived experience by branching at critical intermediate steps. This selection of intermediate steps is driven by the potential and reasoning significance of repository exploration, rather than external LLM-based quality estimates. Our evaluation shows that, on SWE-Bench Verified, SWE-Replay consistently outperforms naive scaling, reducing costs by up to 17.4% while maintaining or even improving performance by up to 3.8%. Further evaluation on SWE-Bench Pro and Multilingual validates the generalizability of SWE-Replay, establishing it as a robust foundation for efficient test-time scaling of software engineering agents.
PaperX: A Unified Framework for Multimodal Academic Presentation Generation with Scholar DAG
Transforming scientific papers into multimodal presentation content is essential for research dissemination but remains labor intensive. Existing automated solutions typically treat each format as an isolated downstream task, leading to redundant processing and semantic inconsistency. We introduce PaperX, a unified framework that models academic presentation generation as a structural transformation and rendering process. Central to our approach is the Scholar DAG, an intermediate representation that decouples the paper's logical structure from its final presentation syntax. By applying adaptive graph traversal strategies, PaperX generates diverse, high quality outputs from a single source. Comprehensive evaluations demonstrate that our framework achieves the state of the art performance in content fidelity and aesthetic quality while significantly improving cost efficiency compared to specialized single task agents.
comment: 29 pages, 9 figures
♻ ☆ Zenith: Scaling up Ranking Models for Billion-scale Livestreaming Recommendation
Accurately capturing feature interactions is essential in recommender systems, and recent trends show that scaling up model capacity could be a key driver for next-level predictive performance. While prior work has explored various model architectures to capture multi-granularity feature interactions, relatively little attention has been paid to efficient feature handling and scaling model capacity without incurring excessive inference latency. In this paper, we address this by presenting Zenith, a scalable and efficient ranking architecture that learns complex feature interactions with minimal runtime overhead. Zenith is designed to handle a few high-dimensional Prime Tokens with Token Fusion and Token Boost modules, which exhibits superior scaling laws compared to other state-of-the-art ranking methods, thanks to its improved token heterogeneity. Its real-world effectiveness is demonstrated by deploying the architecture to TikTok Live, a leading online livestreaming platform that attracts billions of users globally. Our A/B test shows that Zenith achieves +1.05%/-1.10% in online CTR AUC and Logloss, and realizes +9.93% gains in Quality Watch Session / User and +8.11% in Quality Watch Duration / User.
comment: 10 pages
CARL: Focusing Agentic Reinforcement Learning on Critical Actions
Agents capable of accomplishing complex tasks through multiple interactions with the environment have emerged as a popular research direction. However, in such multi-step settings, the conventional group-level policy optimization algorithm becomes suboptimal because of its underlying assumption that each action holds equal contribution, which deviates significantly from reality. Our analysis reveals that only a small fraction of actions are critical in determining the final outcome. Building on this insight, we propose CARL, a critical-action-focused reinforcement learning algorithm tailored for long-horizon agentic reasoning. CARL leverages entropy as a heuristic proxy for action criticality and achieves focused training by assigning rewards to high-criticality actions while excluding low-criticality actions from model updates, avoiding noisy credit assignment and redundant computation. Extensive experiments demonstrate that CARL achieves both stronger performance and higher efficiency across diverse evaluation settings. The source code will be publicly available.
comment: 17 pages, 5 figures
♻ ☆ Sounding Highlights: Dual-Pathway Audio Encoders for Audio-Visual Video Highlight Detection ICASSP 2026
Audio-visual video highlight detection aims to automatically identify the most salient moments in videos by leveraging both visual and auditory cues. However, existing models often underutilize the audio modality, focusing on high-level semantic features while failing to fully leverage the rich, dynamic characteristics of sound. To address this limitation, we propose a novel framework, Dual-Pathway Audio Encoders for Video Highlight Detection (DAViHD). The dual-pathway audio encoder is composed of a semantic pathway for content understanding and a dynamic pathway that captures spectro-temporal dynamics. The semantic pathway extracts high-level information by identifying the content within the audio, such as speech, music, or specific sound events. The dynamic pathway employs a frequency-adaptive mechanism as time evolves to jointly model these dynamics, enabling it to identify transient acoustic events via salient spectral bands and rapid energy changes. We integrate the novel audio encoder into a full audio-visual framework and achieve new state-of-the-art performance on the large-scale MrHiSum benchmark. Our results demonstrate that a sophisticated, dual-faceted audio representation is key to advancing the field of highlight detection.
comment: 5 pages, 2 figures, to appear in ICASSP 2026
♻ ☆ TxRay: Agentic Postmortem of Live Blockchain Attacks
Decentralized Finance (DeFi) has turned blockchains into financial infrastructure, allowing anyone to trade, lend, and build protocols without intermediaries, but this openness exposes pools of value controlled by code. Within five years, the DeFi ecosystem has lost over 15.75B USD to reported exploits. Many exploits arise from permissionless opportunities that any participant can trigger using only public state and standard interfaces, which we call Anyone-Can-Take (ACT) opportunities. Despite on-chain transparency, postmortem analysis remains slow and manual: investigations start from limited evidence, sometimes only a single transaction hash, and must reconstruct the exploit lifecycle by recovering related transactions, contract code, and state dependencies. We present TxRay, a Large Language Model (LLM) agentic postmortem system that uses tool calls to reconstruct live ACT attacks from limited evidence. Starting from one or more seed transactions, TxRay recovers the exploit lifecycle, derives an evidence-backed root cause, and generates a runnable, self-contained Proof of Concept (PoC) that deterministically reproduces the incident. TxRay self-checks postmortems by encoding incident-specific semantic oracles as executable assertions. To evaluate PoC correctness and quality, we develop PoCEvaluator, an independent agentic execution-and-review evaluator. On 114 incidents from DeFiHackLabs, TxRay produces an expert-aligned root cause and an executable PoC for 105 incidents, achieving 92.11% end-to-end reproduction. Under PoCEvaluator, 98.1% of TxRay PoCs avoid hard-coding attacker addresses, a +22.9pp lift over DeFiHackLabs. In a live deployment, TxRay delivers validated root causes in 40 minutes and PoCs in 59 minutes at median latency. TxRay's oracle-validated PoCs enable attack imitation, improving coverage by 15.6% and 65.5% over STING and APE.
comment: 24 pages, 8 figures
♻ ☆ ProphetKV: User-Query-Driven Selective Recomputation for Efficient KV Cache Reuse in Retrieval-Augmented Generation
The prefill stage of long-context Retrieval-Augmented Generation (RAG) is severely bottlenecked by computational overhead. To mitigate this, recent methods assemble pre-calculated KV caches of retrieved RAG documents (by a user query) and reprocess selected tokens to recover cross-attention between these pre-calculated KV caches. However, we identify a fundamental "crowding-out effect" in current token selection criteria: globally salient but user-query-irrelevant tokens saturate the limited recomputation budget, displacing the tokens truly essential for answering the user query and degrading inference accuracy. We propose ProphetKV, a user-query-driven KV Cache reuse method for RAG scenarios. ProphetKV dynamically prioritizes tokens based on their semantic relevance to the user query and employs a dual-stage recomputation pipeline to fuse layer-wise attention metrics into a high-utility set. By ensuring the recomputation budget is dedicated to bridging the informational gap between retrieved context and the user query, ProphetKV achieves high-fidelity attention recovery with minimal overhead. Our extensive evaluation results show that ProphetKV retains 96%-101% of full-prefill accuracy with only a 20% recomputation ratio, while achieving accuracy improvements of 8.8%-24.9% on RULER and 18.6%-50.9% on LongBench over the state-of-the-art approaches (e.g., CacheBlend, EPIC, and KVShare).
♻ ☆ Interpretability by Design for Efficient Multi-Objective Reinforcement Learning
Multi-objective reinforcement learning (MORL) aims at optimising several, often conflicting goals to improve the flexibility and reliability of RL in practical tasks. This is typically achieved by finding a set of diverse, non-dominated policies that form a Pareto front in the performance space. We introduce LLE-MORL, an approach that achieves interpretability by design by utilising a training scheme based on the local relationship between the parameter space and the performance space. By exploiting a locally linear map between these spaces, our method provides an interpretation of policy parameters in terms of the objectives, and this structured representation enables an efficient search within contiguous solution domains, allowing for the rapid generation of high-quality solutions without extensive retraining. Experiments across diverse continuous control domains demonstrate that LLE-MORL consistently achieves higher Pareto front quality and efficiency than state-of-the-art approaches.
♻ ☆ Linear Transformers as VAR Models: Aligning Autoregressive Attention Mechanisms with Autoregressive Forecasting ICML 2025
Autoregressive attention-based time series forecasting (TSF) has drawn increasing interest, with mechanisms like linear attention sometimes outperforming vanilla attention. However, deeper Transformer architectures frequently misalign with autoregressive objectives, obscuring the underlying VAR structure embedded within linear attention and hindering their ability to capture the data generative processes in TSF. In this work, we first show that a single linear attention layer can be interpreted as a dynamic vector autoregressive (VAR) structure. We then explain that existing multi-layer Transformers have structural mismatches with the autoregressive forecasting objective, which impair interpretability and generalization ability. To address this, we show that by rearranging the MLP, attention, and input-output flow, multi-layer linear attention can also be aligned as a VAR model. Then, we propose Structural Aligned Mixture of VAR (SAMoVAR), a linear Transformer variant that integrates interpretable dynamic VAR weights for multivariate TSF. By aligning the Transformer architecture with autoregressive objectives, SAMoVAR delivers improved performance, interpretability, and computational efficiency, comparing to SOTA TSF models.
comment: Camera-ready version. Accepted at ICML 2025
♻ ☆ Real-Time Detection of Hallucinated Entities in Long-Form Generation
Large language models are now routinely used in high-stakes applications where hallucinations can cause serious harm, such as medical consultations or legal advice. Existing hallucination detection methods, however, are impractical for real-world use, as they are either limited to short factual queries or require costly external verification. We present a cheap, scalable method for real-time identification of hallucinated tokens in long-form generations, and scale it effectively to 70B parameter models. Our approach targets entity-level hallucinations-e.g., fabricated names, dates, citations-rather than claim-level, thereby naturally mapping to token-level labels and enabling streaming detection. We develop an annotation methodology that leverages web search to annotate model responses with grounded labels indicating which tokens correspond to fabricated entities. This dataset enables us to train effective hallucination classifiers with simple and efficient methods such as linear probes. Evaluating across four model families, our classifiers consistently outperform baselines on long-form responses, including more expensive methods such as semantic entropy (e.g., AUC 0.90 vs 0.71 for Llama-3.3-70B), and are also an improvement in short-form question-answering settings. Despite being trained only to detect hallucinated entities, our probes effectively detect incorrect answers in mathematical reasoning tasks, indicating generalization beyond entities. While our annotation methodology is expensive, we find that annotated responses from one model can be used to train effective classifiers on other models; accordingly, we publicly release our datasets to facilitate reuse. Overall, our work suggests a promising new approach for scalable, real-world hallucination detection.
♻ ☆ Joint Continual Learning of Local Language Models and Cloud Offloading Decisions with Budget Constraints
Locally deployed Small Language Models (SLMs) must continually support diverse tasks under strict memory and computation constraints, making selective reliance on cloud Large Language Models (LLMs) unavoidable. Regulating cloud assistance during continual learning is challenging, as naive reward-based reinforcement learning often yields unstable offloading behavior and exacerbates catastrophic forgetting as task distributions shift. We propose DA-GRPO, a dual-advantage extension of Group Relative Policy Optimization that incorporates cloud-usage constraints directly into advantage computation, avoiding fixed reward shaping and external routing models. This design enables the local model to jointly learn task competence and collaboration behavior, allowing cloud requests to emerge naturally during post-training while respecting a prescribed assistance budget. Experiments on mathematical reasoning and code generation benchmarks show that DA-GRPO improves post-switch accuracy, substantially reduces forgetting, and maintains stable cloud usage compared to prior collaborative and routing-based approaches.
♻ ☆ VibeCodeHPC: An Agent-Based Iterative Prompting Auto-Tuner for HPC Code Generation Using LLMs
We propose VibeCodeHPC, an automatic tuning system for HPC programs based on multi-agent LLMs for code generation. VibeCodeHPC tunes programs through multi-agent role allocation and iterative prompt refinement. We describe the system configuration with four roles: Project Manager (PM), System Engineer (SE), Programmer (PG), and Continuous Delivery (CD). We introduce dynamic agent deployment and activity monitoring functions to facilitate effective multi-agent collaboration. In our case study, we convert and optimize CPU-based matrix-matrix multiplication code written in C to GPU code using CUDA. The multi-agent configuration of VibeCodeHPC achieved higher-quality code generation per unit time compared to a solo-agent configuration. Additionally, the dynamic agent deployment and activity monitoring capabilities facilitated more effective identification of requirement violations and other issues.
♻ ☆ Generalizable Trajectory Prediction via Inverse Reinforcement Learning with Mamba-Graph Architecture
Accurate driving behavior modeling is fundamental to safe and efficient trajectory prediction, yet remains challenging in complex traffic scenarios. This paper presents a novel Inverse Reinforcement Learning (IRL) framework that captures human-like decision-making by inferring diverse reward functions, enabling robust cross-scenario adaptability. The learned reward function is utilized to maximize the likelihood of output by integrating Mamba blocks for efficient long-sequence dependency modeling with graph attention networks to encode spatial interactions among traffic agents. Comprehensive evaluations on urban intersections and roundabouts demonstrate that the proposed method not only outperforms various popular approaches in terms of prediction accuracy but also achieves 2.3 times higher generalization performance to unseen scenarios compared to other baselines, achieving adaptability in Out-of-Distribution settings that is competitive with fine-tuning.
♻ ☆ How Catastrophic is Your LLM? Certifying Risk in Conversation ICLR 2026
Large Language Models (LLMs) can produce catastrophic responses in conversational settings that pose serious risks to public safety and security. Existing evaluations often fail to fully reveal these vulnerabilities because they rely on fixed attack prompt sequences, lack statistical guarantees, and do not scale to the vast space of multi-turn conversations. In this work, we propose C$^3$LLM, a novel, principled statistical Certification framework for Catastrophic risks in multi-turn Conversation for LLMs that bounds the probability of an LLM generating catastrophic responses under multi-turn conversation distributions with statistical guarantees. We model multi-turn conversations as probability distributions over query sequences, represented by a Markov process on a query graph whose edges encode semantic similarity to capture realistic conversational flow, and quantify catastrophic risks using confidence intervals. We define several inexpensive and practical distributions--random node, graph path, and adaptive with rejection. Our results demonstrate that these distributions can reveal substantial catastrophic risks in frontier models, with certified lower bounds as high as 70% for the worst model, highlighting the urgent need for improved safety training strategies in frontier LLMs.
comment: Accepted by ICLR 2026
♻ ☆ YOLO-based Bearing Fault Diagnosis With Continuous Wavelet Transform
This letter presents a locality-aware bearing fault diagnosis framework that operates on time-frequency representations and enables spatially interpretable decision-making. One-dimensional vibration signals are first mapped to two-dimensional time-frequency spectrograms using the continuous wavelet transform (CWT) with Morlet wavelets to enhance transient fault signatures. The diagnosis task is then formulated as object detection on the time-frequency plane, where YOLOv9, YOLOv10, and YOLOv11 are employed to localize fault-relevant regions and classify fault types simultaneously. Experiments on three public benchmarks, including Case Western Reserve University (CWRU), Paderborn University (PU), and Intelligent Maintenance System (IMS), demonstrate strong cross-dataset generalization compared with a representative MCNN-LSTM baseline. In particular, YOLOv11 achieves mAP@0.5 of 99.0% (CWRU), 97.8% (PU), and 99.5% (IMS), while providing region-aware visualization of fault patterns in the time-frequency domain. These results suggest that detection-based inference on CWT spectrograms provides an effective and interpretable complementary approach to conventional global classification for rotating machinery condition monitoring.
comment: 5 pages, 2 figures, 2 tables, submitted to IEEE Signal Processing Letters
♻ ☆ Unifying Ranking and Generation in Query Auto-Completion via Retrieval-Augmented Generation and Multi-Objective Alignment
Query Auto-Completion (QAC) suggests query completions as users type, helping them articulate intent and reach results more efficiently. Existing approaches face fundamental challenges: traditional retrieve-and-rank pipelines have limited long-tail coverage and require extensive feature engineering, while recent generative methods suffer from hallucination and safety risks. We present a unified framework that reformulates QAC as end-to-end list generation through Retrieval-Augmented Generation (RAG) and multi-objective Direct Preference Optimization (DPO). Our approach combines three key innovations: (1) reformulating QAC as end-to-end list generation with multi-objective optimization; (2) defining and deploying a suite of rule-based, model-based, and LLM-as-judge verifiers for QAC, and using them in a comprehensive methodology that combines RAG, multi-objective DPO, and iterative critique-revision for high-quality synthetic data; (3) a hybrid serving architecture enabling efficient production deployment under strict latency constraints. Evaluation on a large-scale commercial search platform demonstrates substantial improvements: offline metrics show gains across all dimensions, human evaluation yields +0.40 to +0.69 preference scores, and a controlled online experiment achieves 5.44\% reduction in keystrokes and 3.46\% increase in suggestion adoption, validating that unified generation with RAG and multi-objective alignment provides an effective solution for production QAC. This work represents a paradigm shift to end-to-end generation powered by large language models, RAG, and multi-objective alignment, establishing a production-validated framework that can benefit the broader search and recommendation industry.
comment: 11 pages, 4 figures
♻ ☆ Multiple Invertible and Partial-Equivariant Function for Latent Vector Transformation to Enhance Disentanglement in VAEs AISTATS 2026
Disentanglement learning is central to understanding and reusing learned representations in variational autoencoders (VAEs). Although equivariance has been explored in this context, effectively exploiting it for disentanglement remains challenging. In this paper, we propose a novel method, called Multiple Invertible and Partial-Equivariant Transformation (MIPE-Transformation), which integrates two main parts: (1) Invertible and Partial-Equivariant Transformation (IPE-Transformation), guaranteeing an invertible latent-to-transformed-latent mapping while preserving partial input-to-latent equivariance in the transformed latent space; and (2) Exponential-Family Conversion (EF-Conversion) to extend the standard Gaussian prior to an approximate exponential family via a learnable conversion. In experiments on the 3D Cars, 3D Shapes, and dSprites datasets, MIPE-Transformation improves the disentanglement performance of state-of-the-art VAEs.
comment: Accepted in AISTATS 2026
♻ ☆ Physical Human-Robot Interaction: A Critical Review of Safety Constraints
This paper aims to provide a clear and rigorous understanding of commonly recognized safety constraints in physical human-robot interaction, particularly regarding ISO/TS 15066. We investigate the derivation of these constraints, critically examine the underlying assumptions, and evaluate their practical implications for system-level safety and performance in industrially relevant scenarios. Key design parameters within safety-critical control architectures are identified, and numerical examples are provided to quantify performance degradation arising from typical approximations and design decisions in manufacturing environments. Within this analysis, the fundamental role of energy in safety assessment is emphasized, providing focused insights into energy-based safety methodologies for collaborative industrial robot systems.
♻ ☆ Bench-NPIN: Benchmarking Non-prehensile Interactive Navigation
Mobile robots are increasingly deployed in unstructured environments where obstacles and objects are movable. Navigation in such environments is known as interactive navigation, where task completion requires not only avoiding obstacles but also strategic interactions with movable objects. Non-prehensile interactive navigation focuses on non-grasping interaction strategies, such as pushing, rather than relying on prehensile manipulation. Despite a growing body of research in this field, most solutions are evaluated using case-specific setups, limiting reproducibility and cross-comparison. In this paper, we present Bench-NPIN, the first comprehensive benchmark for non-prehensile interactive navigation. Bench-NPIN includes multiple components: 1) a comprehensive range of simulated environments for non-prehensile interactive navigation tasks, including navigating a maze with movable obstacles, autonomous ship navigation in icy waters, box delivery, and area clearing, each with varying levels of complexity; 2) a set of evaluation metrics that capture unique aspects of interactive navigation, such as efficiency, interaction effort, and partial task completion; and 3) demonstrations using Bench-NPIN to evaluate example implementations of established baselines across environments. Bench-NPIN is an open-source Python library with a modular design. The code, documentation, and trained models can be found at https://github.com/IvanIZ/BenchNPIN.
comment: This paper has been withdrawn by the authors. This paper has been superseded by arXiv:2512.11736
♻ ☆ Enriching physical-virtual interaction in AR gaming by tracking identical objects via an egocentric partial observation frame
Augmented reality (AR) games, particularly those designed for head-mounted displays, have grown increasingly prevalent. However, most existing systems depend on pre-scanned, static environments and rely heavily on continuous tracking or marker-based solutions, which limit adaptability in dynamic physical spaces. This is particularly problematic for AR headsets and glasses, which typically follow the user's head movement and cannot maintain a fixed, stationary view of the scene. Moreover, continuous scene observation is neither power-efficient nor practical for wearable devices, given their limited battery and processing capabilities. A persistent challenge arises when multiple identical objects are present in the environment-standard object tracking pipelines often fail to maintain consistent identities without uninterrupted observation or external sensors. These limitations hinder fluid physical-virtual interactions, especially in dynamic or occluded scenes where continuous tracking is infeasible. To address this, we introduce a novel optimization-based framework for re-identifying identical objects in AR scenes using only one partial egocentric observation frame captured by a headset. We formulate the problem as a label assignment task solved via integer programming, augmented with a Voronoi diagram-based pruning strategy to improve computational efficiency. This method reduces computation time by 50% while preserving 91% accuracy in simulated experiments. Moreover, we evaluated our approach in quantitative synthetic and quantitative real-world experiments. We also conducted three qualitative real-world experiments to demonstrate the practical utility and generalizability for enabling dynamic, markerless object interaction in AR environments. Our video demo is available at https://youtu.be/RwptEfLtW1U.
♻ ☆ Dull, Dirty, Dangerous: Understanding the Past, Present, and Future of a Key Motivation for Robotics
In robotics, the concept of "dull, dirty, and dangerous" (DDD) work has been used to motivate where robots might be useful. In this paper, we conduct an empirical analysis of robotics publications between 1980 and 2024 that mention DDD, and find that only 2.7% of publications define DDD and 8.7% of publications provide concrete examples of tasks or jobs that are DDD. We then review the social science literature on "dull," "dirty," and "dangerous" work to provide definitions and guidance on how to conceptualize DDD for robotics. Finally, we propose a framework that helps the robotics community consider the job context for our technology, encouraging a more informed perspective on how robotics may impact human labor.
♻ ☆ Improved Bag-of-Words Image Retrieval with Geometric Constraints for Ground Texture Localization
Ground texture localization using a downward-facing camera offers a low-cost, high-precision localization solution that is robust to dynamic environments and requires no environmental modification. We present a significantly improved bag-of-words (BoW) image retrieval system for ground texture localization, achieving substantially higher accuracy for global localization and higher precision and recall for loop closure detection in SLAM. Our approach leverages an approximate $k$-means (AKM) vocabulary with soft assignment, and exploits the consistent orientation and constant scale constraints inherent to ground texture localization. Identifying the different needs of global localization vs. loop closure detection for SLAM, we present both high-accuracy and high-speed versions of our algorithm. We test the effect of each of our proposed improvements through an ablation study and demonstrate our method's effectiveness for both global localization and loop closure detection. With numerous ground texture localization systems already using BoW, our method can readily replace other generic BoW systems in their pipeline and immediately improve their results.
comment: Accepted to ICRA 2025
♻ ☆ Constraint-Aware Discrete-Time PID Gain Optimization for Robotic Joint Control Under Actuator Saturation
The precise regulation of rotary actuation is fundamental in autonomous robotics, yet practical PID loops deviate from continuous-time theory due to discrete-time execution, actuator saturation, and small delays and measurement imperfections. We present an implementation-aware analysis and tuning workflow for saturated discrete-time joint control. We (i) derive PI stability regions under Euler and exact zero-order-hold (ZOH) discretizations using the Jury criterion, (ii) evaluate a discrete back-calculation anti-windup realization under saturation-dominant regimes, and (iii) propose a hybrid-certified Bayesian optimization workflow that screens analytically unstable candidates and behaviorally unsafe transients while optimizing a robust IAE objective with soft penalties on overshoot and saturation duty. Baseline sweeps ($τ=1.0$~s, $Δt=0.01$~s, $u\in[-10,10]$) quantify rise/settle trends for P/PI/PID. Under a randomized model family emulating uncertainty, delay, noise, quantization, and tighter saturation, robustness-oriented tuning improves median IAE from $0.843$ to $0.430$ while keeping median overshoot below $2\%$. In simulation-only tuning, the certification screen rejects $11.6\%$ of randomly sampled gains within bounds before full robust evaluation, improving sample efficiency.
comment: Pending IEEE Transactions on Robotics Publication
♻ ☆ FilMBot: A High-Speed Soft Parallel Robotic Micromanipulator
Soft robotic manipulators are generally slow despite their great adaptability, resilience, and compliance. This limitation also extends to current soft robotic micromanipulators. Here, we introduce FilMBot, a 3-DOF film-based, electromagnetically actuated, soft kinematic robotic micromanipulator achieving speeds up to 2117 °/s and 2456 °/s in α and \{beta} angular motions, with corresponding linear velocities of 1.61 m/s and 1.92 m/s using a 4-cm needle end-effector, 0.54 m/s along the Z axis, and 1.57 m/s during Z-axis morph switching. The robot can reach ~1.50 m/s in path-following tasks, with an operational bandwidth below ~30 Hz, and remains responsive at 50 Hz. It demonstrates high precision (~6.3 μm, or ~0.05% of its workspace) in path-following tasks, with precision remaining largely stable across frequencies. The novel combination of the low-stiffness soft kinematic film structure and strong electromagnetic actuation in FilMBot opens new avenues for soft robotics. Furthermore, its simple construction and inexpensive, readily accessible components could broaden the application of micromanipulators beyond current academic and professional users.
comment: 13 pages, 16 figures
♻ ☆ Do Robots Really Need Anthropomorphic Hands? -- A Comparison of Human and Robotic Hands
Human manipulation skills represent a pinnacle of their voluntary motor functions, requiring the coordination of many degrees of freedom and processing of high-dimensional sensor input to achieve such a high level of dexterity. Thus, we attempt to answer whether the human hand, with its associated biomechanical properties, sensors, and control mechanisms, is an ideal that we should strive for in robotics-do we really need anthropomorphic robotic hands? This survey can help practitioners to make the trade-off between hand complexity and potential manipulation skills. We provide an overview of the human hand, a comparison of commercially available robotic and prosthetic hands, and a systematic review of hand mechanisms and skills that they are capable of. This leads to follow-up questions. What is the minimum requirement for mechanisms and sensors to implement most skills that a robot needs? What is missing to reach human-level dexterity? Can we improve upon human dexterity? Although complex five-fingered hands are often used as the ultimate goal for robotic manipulators, they are not necessary for all tasks. We found that wrist flexibility and finger abduction/adduction are often more important for manipulation capabilities. Increasing the number of fingers, actuators, or degrees of freedom is not always necessary. Three fingers often are a good compromise between simplicity and dexterity. Non-anthropomorphic hand designs with two opposing pairs of fingers or human hands with six fingers can further increase dexterity, suggesting that the human hand is not the optimum. Consequently, we argue for function-based rather than form-based biomimicry.
♻ ☆ RANGER: A Monocular Zero-Shot Semantic Navigation Framework through Contextual Adaptation
Efficiently finding targets in complex environments is fundamental to real-world embodied applications. While recent advances in multimodal foundation models have enabled zero-shot object goal navigation, allowing robots to search for arbitrary objects without fine-tuning, existing methods face two key limitations: (1) heavy reliance on precise depth and pose information provided by simulators, which restricts applicability in real-world scenarios; and (2) lack of in-context learning (ICL) capability, making it difficult to quickly adapt to new environments, as in leveraging short videos. To address these challenges, we propose RANGER, a novel zero-shot, open-vocabulary semantic navigation framework that operates using only a monocular camera. Leveraging powerful 3D foundation models, RANGER eliminates the dependency on depth and pose while exhibiting strong ICL capability. By simply observing a short video of a new environment, the system can also significantly improve task efficiency without requiring architectural modifications or fine-tuning. The framework integrates several key components: keyframe-based 3D reconstruction, semantic point cloud generation, vision-language model (VLM)-driven exploration value estimation, high-level adaptive waypoint selection, and low-level action execution. Experiments on the HM3D benchmark and real-world environments demonstrate that RANGER achieves competitive performance in terms of navigation success rate and exploration efficiency, while showing superior ICL adaptability, with no previous 3D mapping of the environment required.
comment: Accepted at ICRA 2026
♻ ☆ TACO: Temporal Consensus Optimization for Continual Neural Mapping
Neural implicit mapping has emerged as a powerful paradigm for robotic navigation and scene understanding. However, real-world robotic deployment requires continual adaptation to changing environments under strict memory and computation constraints, which existing mapping systems fail to support. Most prior methods rely on replaying historical observations to preserve consistency and assume static scenes. As a result, they cannot adapt to continual learning in dynamic robotic settings. To address these challenges, we propose TACO (TemporAl Consensus Optimization), a replay-free framework for continual neural mapping. We reformulate mapping as a temporal consensus optimization problem, where we treat past model snapshots as temporal neighbors. Intuitively, our approach resembles a model consulting its own past knowledge. We update the current map by enforcing weighted consensus with historical representations. Our method allows reliable past geometry to constrain optimization while permitting unreliable or outdated regions to be revised in response to new observations. TACO achieves a balance between memory efficiency and adaptability without storing or replaying previous data. Through extensive simulated and real-world experiments, we show that TACO robustly adapts to scene changes, and consistently outperforms other continual learning baselines.
♻ ☆ RFS: Reinforcement Learning with Residual Flow Steering for Dexterous Manipulation
Imitation learning has emerged as an effective approach for bootstrapping sequential decision-making in robotics, achieving strong performance even in high-dimensional dexterous manipulation tasks. Recent behavior cloning methods further leverage expressive generative models, such as diffusion models and flow matching, to represent multimodal action distributions. However, policies pretrained in this manner often exhibit limited generalization and require additional fine-tuning to achieve robust performance at deployment time. Such adaptation must preserve the global exploration benefits of pretraining while enabling rapid correction of local execution errors. We propose Residual Flow Steering(RFS), a data-efficient reinforcement learning framework for adapting pretrained generative policies. RFS steers a pretrained flow-matching policy by jointly optimizing a residual action and a latent noise distribution, enabling complementary forms of exploration: local refinement through residual corrections and global exploration through latent-space modulation. This design allows efficient adaptation while retaining the expressive structure of the pretrained policy. We demonstrate the effectiveness of RFS on dexterous manipulation tasks, showing efficient fine-tuning in both simulation and real-world settings when adapting pretrained base policies. Project website:https://weirdlabuw.github.io/rfs.
♻ ☆ A Sliced Learning Framework for Online Disturbance Identification in Quadrotor SO(3) Attitude Control
This paper introduces a dimension-decomposed geometric learning framework called Sliced Learning for disturbance identification in quadrotor geometric attitude control. Instead of conventional learning-from-states, this framework adopts a learning-from-error strategy by using the Lie-algebraic error representation as the input feature, enabling axis-wise space decomposition (``slicing") while preserving the SO(3) structure. This is highly consistent with the geometric mechanism of cognitive control observed in neuroscience, where neural systems organize adaptive representations within structured subspaces to enable cognitive flexibility and efficiency. Based on this framework, we develop a lightweight and structurally interpretable Sliced Adaptive-Neuro Mapping (SANM) module. The high-dimensional mapping for online identification is axially ``sliced" into multiple low-dimensional submappings (``slices"), implemented by shallow neural networks and adaptive laws. These neural networks and adaptive laws are updated online via Lyapunov-based adaptation within their respective shared subspaces. To enhance interpretability, we prove exponential convergence despite time-varying disturbances and inertia uncertainties. To our knowledge, Sliced Learning is among the first frameworks to demonstrate lightweight online neural adaptation at 400 Hz on resource-constrained microcontroller units (MCUs), such as STM32, with real-world experimental validation.
comment: v3: Major revision--Revised title; introduced the Sliced Learning framework; added comparative experiments, extended theoretical results, and supplementary materials (such as algorithms and proofs)
♻ ☆ MindDrive: A Vision-Language-Action Model for Autonomous Driving via Online Reinforcement Learning
Current Vision-Language-Action (VLA) paradigms in autonomous driving primarily rely on Imitation Learning (IL), which introduces inherent challenges such as distribution shift and causal confusion. Online Reinforcement Learning offers a promising pathway to address these issues through trial-and-error learning. However, applying online reinforcement learning to VLA models in autonomous driving is hindered by inefficient exploration in continuous action spaces. To overcome this limitation, we propose MindDrive, a VLA framework comprising a large language model (LLM) with two distinct sets of LoRA parameters. The one LLM serves as a Decision Expert for scenario reasoning and driving decision-making, while the other acts as an Action Expert that dynamically maps linguistic decisions into feasible trajectories. By feeding trajectory-level rewards back into the reasoning space, MindDrive enables trial-and-error learning over a finite set of discrete linguistic driving decisions, instead of operating directly in a continuous action space. This approach effectively balances optimal decision-making in complex scenarios, human-like driving behavior, and efficient exploration in online reinforcement learning. Using the lightweight Qwen-0.5B LLM, MindDrive achieves Driving Score (DS) of 78.04 and Success Rate (SR) of 55.09% on the challenging Bench2Drive benchmark. To the best of our knowledge, this is the first work to demonstrate the effectiveness of online reinforcement learning for the VLA model in autonomous driving.
comment: 16 pages, 12 figures, 6 tables; Project Page: https://xiaomi-mlab.github.io/MindDrive/
♻ ☆ HoRD: Robust Humanoid Control via History-Conditioned Reinforcement Learning and Online Distillation
Humanoid robots can suffer significant performance drops under small changes in dynamics, task specifications, or environment setup. We propose HoRD, a two-stage learning framework for robust humanoid control under domain shift. First, we train a high-performance teacher policy via history-conditioned reinforcement learning, where the policy infers latent dynamics context from recent state--action trajectories to adapt online to diverse randomized dynamics. Second, we perform online distillation to transfer the teacher's robust control capabilities into a transformer-based student policy that operates on sparse root-relative 3D joint keypoint trajectories. By combining history-conditioned adaptation with online distillation, HoRD enables a single policy to adapt zero-shot to unseen domains without per-domain retraining. Extensive experiments show HoRD outperforms strong baselines in robustness and transfer, especially under unseen domains and external perturbations. Code and project page are available at https://tonywang-0517.github.io/hord/.
♻ ☆ Observability-Aware Control for Quadrotor Formation Flight with Range-only Measurement
Cooperative Localization is a promising approach to achieving safe quadrotor formation flight through precise positioning via low-cost inter-drone sensors. This paper develops an observability-aware control principle tailored to quadrotor formation flight with range-only inter-drone measurements. The control principle is based on a novel approximation of the local observability Gramian (LOG), which we name the Short-Term Local Observability Gramian (STLOG). The validity of STLOG is established by proving its link to directional estimation precision in nonlinear systems. We propose the Observability Predictive Controller (OPC), a receding-horizon controller that generates optimal inputs to enhance information gain in weakly observable state directions by maximizing the minimum eigenvalue of the STLOG. This reduces the risk of estimator divergence due to the unbounded growth of uncertainty in weakly observed state components. Monte Carlo simulations and flight experiments are conducted with quadrotors in a GNSS-denied ferrying mission, showing that the OPC improves positioning confidence and estimator robustness.
comment: 37 pages, 5 figures
♻ ☆ SPIDER: Scalable Physics-Informed Dexterous Retargeting
Learning dexterous and agile policy for humanoid and dexterous hand control requires large-scale demonstrations, but collecting robot-specific data is prohibitively expensive. In contrast, abundant human motion data is readily available from motion capture, videos, and virtual reality, which could help address the data scarcity problem. However, due to the embodiment gap and missing dynamic information like force and torque, these demonstrations cannot be directly executed on robots. To bridge this gap, we propose Scalable Physics-Informed DExterous Retargeting (SPIDER), a physics-based retargeting framework to transform and augment kinematic-only human demonstrations to dynamically feasible robot trajectories at scale. Our key insight is that human demonstrations should provide global task structure and objective, while large-scale physics-based sampling with curriculum-style virtual contact guidance should refine trajectories to ensure dynamical feasibility and correct contact sequences. SPIDER scales across diverse 9 humanoid/dexterous hand embodiments and 6 datasets, improving success rates by 18% compared to standard sampling, while being 10X faster than reinforcement learning (RL) baselines, and enabling the generation of a 2.4M frames dynamic-feasible robot dataset for policy learning. As a universal physics-based retargeting method, SPIDER can work with diverse quality data and generate diverse and high-quality data to enable efficient policy learning with methods like RL.
comment: Project website: https://jc-bao.github.io/spider-project/
♻ ☆ A Taxonomy for Evaluating Generalist Robot Manipulation Policies
Machine learning for robot manipulation promises to unlock generalization to novel tasks and environments. But how should we measure the progress of these policies towards generalization? Evaluating and quantifying generalization is the Wild West of modern robotics, with each work proposing and measuring different types of generalization in their own, often difficult to reproduce settings. In this work, our goal is (1) to outline the forms of generalization we believe are important for robot manipulation in a comprehensive and fine-grained manner, and (2) to provide reproducible guidelines for measuring these notions of generalization. We first propose STAR-Gen, a taxonomy of generalization for robot manipulation structured around visual, semantic, and behavioral generalization. Next, we instantiate STAR-Gen with two case studies on real-world benchmarking: one based on open-source models and the Bridge V2 dataset, and another based on the bimanual ALOHA 2 platform that covers more dexterous and longer horizon tasks. Our case studies reveal many interesting insights: for example, we observe that open-source vision-language-action models often struggle with semantic generalization, despite pre-training on internet-scale language datasets. We provide videos and other supplementary material at stargen-taxonomy.github.io.
comment: IEEE Robotics and Automation Letters (RA-L)
Computation and Language 171
☆ Reinforced Attention Learning
Post-training with Reinforcement Learning (RL) has substantially improved reasoning in Large Language Models (LLMs) via test-time scaling. However, extending this paradigm to Multimodal LLMs (MLLMs) through verbose rationales yields limited gains for perception and can even degrade performance. We propose Reinforced Attention Learning (RAL), a policy-gradient framework that directly optimizes internal attention distributions rather than output token sequences. By shifting optimization from what to generate to where to attend, RAL promotes effective information allocation and improved grounding in complex multimodal inputs. Experiments across diverse image and video benchmarks show consistent gains over GRPO and other baselines. We further introduce On-Policy Attention Distillation, demonstrating that transferring latent attention behaviors yields stronger cross-modal alignment than standard knowledge distillation. Our results position attention policies as a principled and general alternative for multimodal post-training.
☆ Rethinking the Trust Region in LLM Reinforcement Learning
Reinforcement learning (RL) has become a cornerstone for fine-tuning Large Language Models (LLMs), with Proximal Policy Optimization (PPO) serving as the de facto standard algorithm. Despite its ubiquity, we argue that the core ratio clipping mechanism in PPO is structurally ill-suited for the large vocabularies inherent to LLMs. PPO constrains policy updates based on the probability ratio of sampled tokens, which serves as a noisy single-sample Monte Carlo estimate of the true policy divergence. This creates a sub-optimal learning dynamic: updates to low-probability tokens are aggressively over-penalized, while potentially catastrophic shifts in high-probability tokens are under-constrained, leading to training inefficiency and instability. To address this, we propose Divergence Proximal Policy Optimization (DPPO), which substitutes heuristic clipping with a more principled constraint based on a direct estimate of policy divergence (e.g., Total Variation or KL). To avoid huge memory footprint, we introduce the efficient Binary and Top-K approximations to capture the essential divergence with negligible overhead. Extensive empirical evaluations demonstrate that DPPO achieves superior training stability and efficiency compared to existing methods, offering a more robust foundation for RL-based LLM fine-tuning.
☆ Subliminal Effects in Your Data: A General Mechanism via Log-Linearity
Training modern large language models (LLMs) has become a veritable smorgasbord of algorithms and datasets designed to elicit particular behaviors, making it critical to develop techniques to understand the effects of datasets on the model's properties. This is exacerbated by recent experiments that show datasets can transmit signals that are not directly observable from individual datapoints, posing a conceptual challenge for dataset-centric understandings of LLM training and suggesting a missing fundamental account of such phenomena. Towards understanding such effects, inspired by recent work on the linear structure of LLMs, we uncover a general mechanism through which hidden subtexts can arise in generic datasets. We introduce Logit-Linear-Selection (LLS), a method that prescribes how to select subsets of a generic preference dataset to elicit a wide range of hidden effects. We apply LLS to discover subsets of real-world datasets so that models trained on them exhibit behaviors ranging from having specific preferences, to responding to prompts in a different language not present in the dataset, to taking on a different persona. Crucially, the effect persists for the selected subset, across models with varying architectures, supporting its generality and universality.
comment: Code available at https://github.com/ishaqadenali/logit-linear-selection
☆ CoT is Not the Chain of Truth: An Empirical Internal Analysis of Reasoning LLMs for Fake News Generation
From generating headlines to fabricating news, the Large Language Models (LLMs) are typically assessed by their final outputs, under the safety assumption that a refusal response signifies safe reasoning throughout the entire process. Challenging this assumption, our study reveals that during fake news generation, even when a model rejects a harmful request, its Chain-of-Thought (CoT) reasoning may still internally contain and propagate unsafe narratives. To analyze this phenomenon, we introduce a unified safety-analysis framework that systematically deconstructs CoT generation across model layers and evaluates the role of individual attention heads through Jacobian-based spectral metrics. Within this framework, we introduce three interpretable measures: stability, geometry, and energy to quantify how specific attention heads respond or embed deceptive reasoning patterns. Extensive experiments on multiple reasoning-oriented LLMs show that the generation risk rise significantly when the thinking mode is activated, where the critical routing decisions concentrated in only a few contiguous mid-depth layers. By precisely identifying the attention heads responsible for this divergence, our work challenges the assumption that refusal implies safety and provides a new understanding perspective for mitigating latent reasoning risks.
comment: 28 pages, 35 figures
☆ Decomposed Prompting Does Not Fix Knowledge Gaps, But Helps Models Say "I Don't Know"
Large language models often struggle to recognize their knowledge limits in closed-book question answering, leading to confident hallucinations. While decomposed prompting is typically used to improve accuracy, we investigate its impact on reliability. We evaluate three task-equivalent prompting regimes: Direct, Assistive, and Incremental, across different model scales and multi-hop QA benchmarks. We find that although accuracy gains from decomposition diminish in frontier models, disagreements between prompting regimes remain highly indicative of potential errors. Because factual knowledge is stable while hallucinations are stochastic, cross-regime agreement provides a precise signal of internal uncertainty. We leverage this signal to implement a training-free abstention policy that requires no retrieval or fine-tuning. Our results show that disagreement-based abstention outperforms standard uncertainty baselines as an error detector, improving both F1 and AUROC across settings. This demonstrates that decomposition-based prompting can serve as a practical diagnostic probe for model reliability in closed-book QA.
☆ Horizon-LM: A RAM-Centric Architecture for LLM Training
The rapid growth of large language models (LLMs) has outpaced the evolution of single-GPU hardware, making model scale increasingly constrained by memory capacity rather than computation. While modern training systems extend GPU memory through distributed parallelism and offloading across CPU and storage tiers, they fundamentally retain a GPU-centric execution paradigm in which GPUs host persistent model replicas and full autograd graphs. As a result, scaling large models remains tightly coupled to multi-GPU clusters, complex distributed runtimes, and unpredictable host memory consumption, creating substantial barriers for node-scale post-training workloads such as instruction tuning, alignment, and domain adaptation. We present Horizon-LM, a memory-centric training system that redefines the roles of CPU and GPU for large-model optimization. Horizon-LM treats host memory as the authoritative parameter store and uses GPUs solely as transient compute engines through a CPU-master, GPU-template execution model. By eliminating persistent GPU-resident modules and autograd graphs, employing explicit recomputation with manual gradient propagation, and introducing a pipelined double-buffered execution engine, Horizon-LM decouples model scale from GPU count and bounds memory usage to the theoretical parameter footprint. On a single H200 GPU with 1.5\,TB host RAM, Horizon-LM reliably trains models up to 120B parameters. On a standard single A100 machine, Horizon-LM achieves up to 12.2$\times$ higher training throughput than DeepSpeed ZeRO-3 with CPU offloading while preserving numerical correctness. Across platforms and scales, Horizon-LM sustains high device utilization and predictable memory growth, demonstrating that host memory, not GPU memory, defines the true feasibility boundary for node-scale large-model training.
SE-Bench: Benchmarking Self-Evolution with Knowledge Internalization
True self-evolution requires agents to act as lifelong learners that internalize novel experiences to solve future problems. However, rigorously measuring this foundational capability is hindered by two obstacles: the entanglement of prior knowledge, where ``new'' knowledge may appear in pre-training data, and the entanglement of reasoning complexity, where failures may stem from problem difficulty rather than an inability to recall learned knowledge. We introduce SE-Bench, a diagnostic environment that obfuscates the NumPy library and its API doc into a pseudo-novel package with randomized identifiers. Agents are trained to internalize this package and evaluated on simple coding tasks without access to documentation, yielding a clean setting where tasks are trivial with the new API doc but impossible for base models without it. Our investigation reveals three insights: (1) the Open-Book Paradox, where training with reference documentation inhibits retention, requiring "Closed-Book Training" to force knowledge compression into weights; (2) the RL Gap, where standard RL fails to internalize new knowledge completely due to PPO clipping and negative gradients; and (3) the viability of Self-Play for internalization, proving models can learn from self-generated, noisy tasks when coupled with SFT, but not RL. Overall, SE-Bench establishes a rigorous diagnostic platform for self-evolution with knowledge internalization. Our code and dataset can be found at https://github.com/thunlp/SE-Bench.
comment: Under review
OmniSIFT: Modality-Asymmetric Token Compression for Efficient Omni-modal Large Language Models
Omni-modal Large Language Models (Omni-LLMs) have demonstrated strong capabilities in audio-video understanding tasks. However, their reliance on long multimodal token sequences leads to substantial computational overhead. Despite this challenge, token compression methods designed for Omni-LLMs remain limited. To bridge this gap, we propose OmniSIFT (Omni-modal Spatio-temporal Informed Fine-grained Token compression), a modality-asymmetric token compression framework tailored for Omni-LLMs. Specifically, OmniSIFT adopts a two-stage compression strategy: (i) a spatio-temporal video pruning module that removes video redundancy arising from both intra-frame structure and inter-frame overlap, and (ii) a vision-guided audio selection module that filters audio tokens. The entire framework is optimized end-to-end via a differentiable straight-through estimator. Extensive experiments on five representative benchmarks demonstrate the efficacy and robustness of OmniSIFT. Notably, for Qwen2.5-Omni-7B, OmniSIFT introduces only 4.85M parameters while maintaining lower latency than training-free baselines such as OmniZip. With merely 25% of the original token context, OmniSIFT consistently outperforms all compression baselines and even surpasses the performance of the full-token model on several tasks.
comment: Code will be released soon
☆ Speaker-Aware Simulation Improves Conversational Speech Recognition
Automatic speech recognition (ASR) for conversational speech remains challenging due to the limited availability of large-scale, well-annotated multi-speaker dialogue data and the complex temporal dynamics of natural interactions. Speaker-aware simulated conversations (SASC) offer an effective data augmentation strategy by transforming single-speaker recordings into realistic multi-speaker dialogues. However, prior work has primarily focused on English data, leaving questions about the applicability to lower-resource languages. In this paper, we adapt and implement the SASC framework for Hungarian conversational ASR. We further propose C-SASC, an extended variant that incorporates pause modeling conditioned on utterance duration, enabling a more faithful representation of local temporal dependencies observed in human conversation while retaining the simplicity and efficiency of the original approach. We generate synthetic Hungarian dialogues from the BEA-Large corpus and combine them with real conversational data for ASR training. Both SASC and C-SASC are evaluated extensively under a wide range of simulation configurations, using conversational statistics derived from CallHome, BEA-Dialogue, and GRASS corpora. Experimental results show that speaker-aware conversational simulation consistently improves recognition performance over naive concatenation-based augmentation. While the additional duration conditioning in C-SASC yields modest but systematic gains--most notably in character-level error rates--its effectiveness depends on the match between source conversational statistics and the target domain. Overall, our findings confirm the robustness of speaker-aware conversational simulation for Hungarian ASR and highlight the benefits and limitations of increasingly detailed temporal modeling in synthetic dialogue generation.
☆ Beyond Many-Shot Translation: Scaling In-Context Demonstrations For Low-Resource Machine Translation EACL 2026
Building machine translation (MT) systems for low-resource languages is notably difficult due to the scarcity of high-quality data. Although Large Language Models (LLMs) have improved MT system performance, adapting them to lesser-represented languages remains challenging. In-context learning (ICL) may offer novel ways to adapt LLMs for low-resource MT by conditioning models on demonstration at inference time. In this study, we explore scaling low-resource machine translation ICL beyond the few-shot setting to thousands of examples with long-context models. We scale in-context token budget to 1M tokens and compare three types of training corpora used as in-context supervision: monolingual unsupervised data, instruction-style data, and parallel data (English--target and Indonesian--target). Our experiments on Javanese and Sundanese show that gains from additional context saturate quickly and can degrade near the maximum context window, with scaling behavior strongly dependent on corpus type. Notably, some forms of monolingual supervision can be competitive with parallel data, despite the latter offering additional supervision. Overall, our results characterize the effective limits and corpus-type sensitivity of long-context ICL for low-resource MT, highlighting that larger context windows do not necessarily yield proportional quality gains.
comment: 8 pages, 18 figures, EACL 2026 Conference - LoResMT workshop
☆ When Silence Is Golden: Can LLMs Learn to Abstain in Temporal QA and Beyond? ICLR2026
Large language models (LLMs) rarely admit uncertainty, often producing fluent but misleading answers, rather than abstaining (i.e., refusing to answer). This weakness is even evident in temporal question answering, where models frequently ignore time-sensitive evidence and conflate facts across different time-periods. In this paper, we present the first empirical study of training LLMs with an abstention ability while reasoning about temporal QA. Existing approaches such as calibration might be unreliable in capturing uncertainty in complex reasoning. We instead frame abstention as a teachable skill and introduce a pipeline that couples Chain-of-Thought (CoT) supervision with Reinforcement Learning (RL) guided by abstention-aware rewards. Our goal is to systematically analyze how different information types and training techniques affect temporal reasoning with abstention behavior in LLMs. Through extensive experiments studying various methods, we find that RL yields strong empirical gains on reasoning: a model initialized by Qwen2.5-1.5B-Instruct surpasses GPT-4o by $3.46\%$ and $5.80\%$ in Exact Match on TimeQA-Easy and Hard, respectively. Moreover, it improves the True Positive rate on unanswerable questions by $20\%$ over a pure supervised fine-tuned (SFT) variant. Beyond performance, our analysis shows that SFT induces overconfidence and harms reliability, while RL improves prediction accuracy but exhibits similar risks. Finally, by comparing implicit reasoning cues (e.g., original context, temporal sub-context, knowledge graphs) with explicit CoT supervision, we find that implicit information provides limited benefit for reasoning with abstention. Our study provides new insights into how abstention and reasoning can be jointly optimized, providing a foundation for building more reliable LLMs.
comment: Accepted to ICLR2026
☆ Exploiting contextual information to improve stance detection in informal political discourse with LLMs
This study investigates the use of Large Language Models (LLMs) for political stance detection in informal online discourse, where language is often sarcastic, ambiguous, and context-dependent. We explore whether providing contextual information, specifically user profile summaries derived from historical posts, can improve classification accuracy. Using a real-world political forum dataset, we generate structured profiles that summarize users' ideological leaning, recurring topics, and linguistic patterns. We evaluate seven state-of-the-art LLMs across baseline and context-enriched setups through a comprehensive cross-model evaluation. Our findings show that contextual prompts significantly boost accuracy, with improvements ranging from +17.5\% to +38.5\%, achieving up to 74\% accuracy that surpasses previous approaches. We also analyze how profile size and post selection strategies affect performance, showing that strategically chosen political content yields better results than larger, randomly selected contexts. These findings underscore the value of incorporating user-level context to enhance LLM performance in nuanced political classification tasks.
comment: 14 pages, 7 figures
☆ Inference-Time Reasoning Selectively Reduces Implicit Social Bias in Large Language Models
Drawing on constructs from psychology, prior work has identified a distinction between explicit and implicit bias in large language models (LLMs). While many LLMs undergo post-training alignment and safety procedures to avoid expressions of explicit social bias, they still exhibit significant implicit biases on indirect tasks resembling the Implicit Association Test (IAT). Recent work has further shown that inference-time reasoning can impair LLM performance on tasks that rely on implicit statistical learning. Motivated by a theoretical link between implicit associations and statistical learning in human cognition, we examine how reasoning-enabled inference affects implicit bias in LLMs. We find that enabling reasoning significantly reduces measured implicit bias on an IAT-style evaluation for some model classes across fifteen stereotype topics. This effect appears specific to social bias domains, as we observe no corresponding reduction for non-social implicit associations. As reasoning is increasingly enabled by default in deployed LLMs, these findings suggest that it can meaningfully alter fairness evaluation outcomes in some systems, while also raising questions about how alignment procedures interact with inference-time reasoning to drive variation in bias reduction across model types. More broadly, this work highlights how theory from cognitive science and psychology can complement AI evaluation research by providing methodological and interpretive frameworks that reveal new insights into model behavior.
☆ Alignment Drift in Multimodal LLMs: A Two-Phase, Longitudinal Evaluation of Harm Across Eight Model Releases
Multimodal large language models (MLLMs) are increasingly deployed in real-world systems, yet their safety under adversarial prompting remains underexplored. We present a two-phase evaluation of MLLM harmlessness using a fixed benchmark of 726 adversarial prompts authored by 26 professional red teamers. Phase 1 assessed GPT-4o, Claude Sonnet 3.5, Pixtral 12B, and Qwen VL Plus; Phase 2 evaluated their successors (GPT-5, Claude Sonnet 4.5, Pixtral Large, and Qwen Omni) yielding 82,256 human harm ratings. Large, persistent differences emerged across model families: Pixtral models were consistently the most vulnerable, whereas Claude models appeared safest due to high refusal rates. Attack success rates (ASR) showed clear alignment drift: GPT and Claude models exhibited increased ASR across generations, while Pixtral and Qwen showed modest decreases. Modality effects also shifted over time: text-only prompts were more effective in Phase 1, whereas Phase 2 produced model-specific patterns, with GPT-5 and Claude 4.5 showing near-equivalent vulnerability across modalities. These findings demonstrate that MLLM harmlessness is neither uniform nor stable across updates, underscoring the need for longitudinal, multimodal benchmarks to track evolving safety behaviour.
comment: under peer-review
☆ From Data to Behavior: Predicting Unintended Model Behaviors Before Training
Large Language Models (LLMs) can acquire unintended biases from seemingly benign training data even without explicit cues or malicious content. Existing methods struggle to detect such risks before fine-tuning, making post hoc evaluation costly and inefficient. To address this challenge, we introduce Data2Behavior, a new task for predicting unintended model behaviors prior to training. We also propose Manipulating Data Features (MDF), a lightweight approach that summarizes candidate data through their mean representations and injects them into the forward pass of a base model, allowing latent statistical signals in the data to shape model activations and reveal potential biases and safety risks without updating any parameters. MDF achieves reliable prediction while consuming only about 20% of the GPU resources required for fine-tuning. Experiments on Qwen3-14B, Qwen2.5-32B-Instruct, and Gemma-3-12b-it confirm that MDF can anticipate unintended behaviors and provide insight into pre-training vulnerabilities.
comment: Work in progress
☆ Less Finetuning, Better Retrieval: Rethinking LLM Adaptation for Biomedical Retrievers via Synthetic Data and Model Merging
Retrieval-augmented generation (RAG) has become the backbone of grounding Large Language Models (LLMs), improving knowledge updates and reducing hallucinations. Recently, LLM-based retriever models have shown state-of-the-art performance for RAG applications. However, several technical aspects remain underexplored on how to adapt general-purpose LLMs into effective domain-specific retrievers, especially in specialized domains such as biomedicine. We present Synthesize-Train-Merge (STM), a modular framework that enhances decoder-only LLMs with synthetic hard negatives, retrieval prompt optimization, and model merging. Experiments on a subset of 12 medical and general tasks from the MTEB benchmark show STM boosts task-specific experts by up to 23.5\% (average 7.5\%) and produces merged models that outperform both single experts and strong baselines without extensive pretraining. Our results demonstrate a scalable, efficient path for turning general LLMs into high-performing, domain-specialized retrievers, preserving general-domain capabilities while excelling on specialized tasks.
comment: Preprint
☆ "Be My Cheese?": Cultural Nuance Benchmarking for Machine Translation in Multilingual LLMs
We present a large-scale human evaluation benchmark for assessing cultural localisation in machine translation produced by state-of-the-art multilingual large language models (LLMs). Existing MT benchmarks emphasise token-level and grammatical accuracy, but of ten overlook pragmatic and culturally grounded competencies required for real-world localisation. Building on a pilot study of 87 translations across 20 languages, we evaluate 7 multilingual LLMs across 15 target languages with 5 native-speaker raters per language. Raters scored both full-text translations and segment-level instances of culturally nuanced language (idioms, puns, holidays, and culturally embedded concepts) on an ordinal 0-3 quality scale; segment ratings additionally included an NA option for untranslated segments. Across full-text evaluations, mean overall quality is modest (1.68/3): GPT-5 (2.10/3), Claude Sonnet 3.7 (1.97/3), and Mistral Medium 3.1 (1.84/3) form the strongest tier with fewer catastrophic failures. Segment-level results show sharp category effects: holidays (2.20/3) and cultural concepts (2.19/3) translate substantially better than idioms (1.65/3) and puns (1.45/3), and idioms are most likely to be left untranslated. These findings demonstrate a persistent gap between grammatical adequacy and cultural resonance. To our knowledge, this is the first multilingual, human-annotated benchmark focused explicitly on cultural nuance in translation and localisation, highlighting the need for culturally informed training data, improved cross-lingual pragmatics, and evaluation paradigms that better reflect real-world communicative competence.
comment: under peer-review
☆ Identifying Intervenable and Interpretable Features via Orthogonality Regularization
With recent progress on fine-tuning language models around a fixed sparse autoencoder, we disentangle the decoder matrix into almost orthogonal features. This reduces interference and superposition between the features, while keeping performance on the target dataset essentially unchanged. Our orthogonality penalty leads to identifiable features, ensuring the uniqueness of the decomposition. Further, we find that the distance between embedded feature explanations increases with stricter orthogonality penalty, a desirable property for interpretability. Invoking the $\textit{Independent Causal Mechanisms}$ principle, we argue that orthogonality promotes modular representations amenable to causal intervention. We empirically show that these increasingly orthogonalized features allow for isolated interventions. Our code is available under $\texttt{https://github.com/mrtzmllr/sae-icm}$.
☆ Linguistically Informed Evaluation of Multilingual ASR for African Languages
Word Error Rate (WER) mischaracterizes ASR models' performance for African languages by combining phonological, tone, and other linguistic errors into a single lexical error. By contrast, Feature Error Rate (FER) has recently attracted attention as a viable metric that reveals linguistically meaningful errors in models' performance. In this paper, we evaluate three speech encoders on two African languages by complementing WER with CER, and FER, and add a tone-aware extension (TER). We show that by computing errors on phonological features, FER and TER reveal linguistically-salient error patterns even when word-level accuracy remains low. Our results reveal that models perform better on segmental features, while tones (especially mid and downstep) remain the most challenging features. Results on Yoruba show a striking differential in metrics, with WER=0.788, CER=0.305, and FER=0.151. Similarly for Uneme (an endangered language absent from pretraining data) a model with near-total WER and 0.461 CER achieves the relatively low FER of 0.267. This indicates model error is often attributable to individual phonetic feature errors, which is obscured by all-or-nothing metrics like WER.
comment: To appear at AfricaNLP 2026
☆ LiteToken: Removing Intermediate Merge Residues From BPE Tokenizers
Tokenization is fundamental to how language models represent and process text, yet the behavior of widely used BPE tokenizers has received far less study than model architectures and training. In this paper, we investigate intermediate merge residues in BPE vocabularies: tokens that are frequent during merge learning so that retained in the final vocabulary, but are mostly further merged and rarely emitted when tokenizing the corpus during tokenizer usage. Such low-frequency tokens not only waste vocabulary capacity but also increase vulnerability to adversarial or atypical inputs. We present a systematic empirical characterization of this phenomenon across commonly used tokenizers and introduce LiteToken, a simple method for removing residue tokens. Because the affected tokens are rarely used, pretrained models can often accommodate the modified tokenizer without additional fine-tuning. Experiments show that LiteToken reduces token fragmentation, reduces parameters, and improves robustness to noisy or misspelled inputs, while preserving overall performance.
ERNIE 5.0 Technical Report
In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
☆ LinGO: A Linguistic Graph Optimization Framework with LLMs for Interpreting Intents of Online Uncivil Discourse
Detecting uncivil language is crucial for maintaining safe, inclusive, and democratic online spaces. Yet existing classifiers often misinterpret posts containing uncivil cues but expressing civil intents, leading to inflated estimates of harmful incivility online. We introduce LinGO, a linguistic graph optimization framework for large language models (LLMs) that leverages linguistic structures and optimization techniques to classify multi-class intents of incivility that use various direct and indirect expressions. LinGO decomposes language into multi-step linguistic components, identifies targeted steps that cause the most errors, and iteratively optimizes prompt and/or example components for targeted steps. We evaluate it using a dataset collected during the 2022 Brazilian presidential election, encompassing four forms of political incivility: Impoliteness (IMP), Hate Speech and Stereotyping (HSST), Physical Harm and Violent Political Rhetoric (PHAVPR), and Threats to Democratic Institutions and Values (THREAT). Each instance is annotated with six types of civil/uncivil intent. We benchmark LinGO using three cost-efficient LLMs: GPT-5-mini, Gemini 2.5 Flash-Lite, and Claude 3 Haiku, and four optimization techniques: TextGrad, AdalFlow, DSPy, and Retrieval-Augmented Generation (RAG). The results show that, across all models, LinGO consistently improves accuracy and weighted F1 compared with zero-shot, chain-of-thought, direct optimization, and fine-tuning baselines. RAG is the strongest optimization technique and, when paired with Gemini model, achieves the best overall performance. These findings demonstrate that incorporating multi-step linguistic components into LLM instructions and optimize targeted components can help the models explain complex semantic meanings, which can be extended to other complex semantic explanation tasks in the future.
☆ Investigating Disability Representations in Text-to-Image Models
Text-to-image generative models have made remarkable progress in producing high-quality visual content from textual descriptions, yet concerns remain about how they represent social groups. While characteristics like gender and race have received increasing attention, disability representations remain underexplored. This study investigates how people with disabilities are represented in AI-generated images by analyzing outputs from Stable Diffusion XL and DALL-E 3 using a structured prompt design. We analyze disability representations by comparing image similarities between generic disability prompts and prompts referring to specific disability categories. Moreover, we evaluate how mitigation strategies influence disability portrayals, with a focus on assessing affective framing through sentiment polarity analysis, combining both automatic and human evaluation. Our findings reveal persistent representational imbalances and highlight the need for continuous evaluation and refinement of generative models to foster more diverse and inclusive portrayals of disability.
comment: 21 pages, 9 figures. References included
☆ Audio ControlNet for Fine-Grained Audio Generation and Editing
We study the fine-grained text-to-audio (T2A) generation task. While recent models can synthesize high-quality audio from text descriptions, they often lack precise control over attributes such as loudness, pitch, and sound events. Unlike prior approaches that retrain models for specific control types, we propose to train ControlNet models on top of pre-trained T2A backbones to achieve controllable generation over loudness, pitch, and event roll. We introduce two designs, T2A-ControlNet and T2A-Adapter, and show that the T2A-Adapter model offers a more efficient structure with strong control ability. With only 38M additional parameters, T2A-Adapter achieves state-of-the-art performance on the AudioSet-Strong in both event-level and segment-level F1 scores. We further extend this framework to audio editing, proposing T2A-Editor for removing and inserting audio events at time locations specified by instructions. Models, code, dataset pipelines, and benchmarks will be released to support future research on controllable audio generation and editing.
☆ Overstating Attitudes, Ignoring Networks: LLM Biases in Simulating Misinformation Susceptibility
Large language models (LLMs) are increasingly used as proxies for human judgment in computational social science, yet their ability to reproduce patterns of susceptibility to misinformation remains unclear. We test whether LLM-simulated survey respondents, prompted with participant profiles drawn from social survey data measuring network, demographic, attitudinal and behavioral features, can reproduce human patterns of misinformation belief and sharing. Using three online surveys as baselines, we evaluate whether LLM outputs match observed response distributions and recover feature-outcome associations present in the original survey data. LLM-generated responses capture broad distributional tendencies and show modest correlation with human responses, but consistently overstate the association between belief and sharing. Linear models fit to simulated responses exhibit substantially higher explained variance and place disproportionate weight on attitudinal and behavioral features, while largely ignoring personal network characteristics, relative to models fit to human responses. Analyses of model-generated reasoning and LLM training data suggest that these distortions reflect systematic biases in how misinformation-related concepts are represented. Our findings suggest that LLM-based survey simulations are better suited for diagnosing systematic divergences from human judgment than for substituting it.
☆ Delving into Muon and Beyond: Deep Analysis and Extensions
The Muon optimizer has recently attracted considerable attention for its strong empirical performance and use of orthogonalized updates on matrix-shaped parameters, yet its underlying mechanisms and relationship to adaptive optimizers such as Adam remain insufficiently understood. In this work, we aim to address these questions through a unified spectral perspective. Specifically, we view Muon as the p = 0 endpoint of a family of spectral transformations of the form U \boldsymbolΣ^{p} V' , and consider additional variants with p = 1/2 , p = 1/4 , and p = 1 . These transformations are applied to both first-moment updates, as in momentum SGD, and to root-mean-square (RMS) normalized gradient updates as in Adam. To enable efficient computation, we develop a coupled Newton iteration that avoids explicit singular value decomposition. Across controlled experiments, we find that RMS-normalized updates yield more stable optimization than first-moment updates. Moreover, while spectral compression provides strong stabilization benefits under first-moment updates, the Muon update (p = 0) does not consistently outperform Adam. These results suggest that Muon is best understood as an effective form of spectral normalization, but not a universally superior optimization method. Our source code will be released at https://github.com/Ocram7/BeyondMuon.
comment: This paper studies matrix-based optimizers (e.g., Muon) from a spectral perspective and unifies a range of methods under a common spectral framework
☆ Approaches to Semantic Textual Similarity in Slovak Language: From Algorithms to Transformers
Semantic textual similarity (STS) plays a crucial role in many natural language processing tasks. While extensively studied in high-resource languages, STS remains challenging for under-resourced languages such as Slovak. This paper presents a comparative evaluation of sentence-level STS methods applied to Slovak, including traditional algorithms, supervised machine learning models, and third-party deep learning tools. We trained several machine learning models using outputs from traditional algorithms as features, with feature selection and hyperparameter tuning jointly guided by artificial bee colony optimization. Finally, we evaluated several third-party tools, including fine-tuned model by CloudNLP, OpenAI's embedding models, GPT-4 model, and pretrained SlovakBERT model. Our findings highlight the trade-offs between different approaches.
comment: This is a preprint of a paper that was presented at the IEEE 24th World Symposium on Applied Machine Intelligence and Informatics (SAMI 2026)
☆ Outcome Accuracy is Not Enough: Aligning the Reasoning Process of Reward Models
Generative Reward Models (GenRMs) and LLM-as-a-Judge exhibit deceptive alignment by producing correct judgments for incorrect reasons, as they are trained and evaluated to prioritize Outcome Accuracy, which undermines their ability to generalize during RLHF. We introduce Rationale Consistency, a fine-grained metric that quantifies the alignment between the model's reasoning process and human judgment. Our evaluation of frontier models reveals that rationale consistency effectively discriminates among state-of-the-art models and detects deceptive alignment, while outcome accuracy falls short in both respects. To mitigate this gap, we introduce a hybrid signal that combines rationale consistency with outcome accuracy for GenRM training. Our training method achieves state-of-the-art performance on RM-Bench (87.1%) and JudgeBench (82%), surpassing outcome-only baselines by an average of 5%. Using RM during RLHF, our method effectively improves performance as demonstrated on Arena Hard v2, notably yielding a 7% improvement in creative writing tasks. Further analysis confirms that our method escapes the deceptive alignment trap, effectively reversing the decline in rationale consistency observed in outcome-only training.
☆ Mapping the Web of Science, a large-scale graph and text-based dataset with LLM embeddings
Large text data sets, such as publications, websites, and other text-based media, inherit two distinct types of features: (1) the text itself, its information conveyed through semantics, and (2) its relationship to other texts through links, references, or shared attributes. While the latter can be described as a graph structure and can be handled by a range of established algorithms for classification and prediction, the former has recently gained new potential through the use of LLM embedding models. Demonstrating these possibilities and their practicability, we investigate the Web of Science dataset, containing ~56 million scientific publications through the lens of our proposed embedding method, revealing a self-structured landscape of texts.
☆ LEAD: Layer-wise Expert-aligned Decoding for Faithful Radiology Report Generation
Radiology Report Generation (RRG) aims to produce accurate and coherent diagnostics from medical images. Although large vision language models (LVLM) improve report fluency and accuracy, they exhibit hallucinations, generating plausible yet image-ungrounded pathological details. Existing methods primarily rely on external knowledge guidance to facilitate the alignment between generated text and visual information. However, these approaches often ignore the inherent decoding priors and vision-language alignment biases in pretrained models and lack robustness due to reliance on constructed guidance. In this paper, we propose Layer-wise Expert-aligned Decoding (LEAD), a novel method to inherently modify the LVLM decoding trajectory. A multiple experts module is designed for extracting distinct pathological features which are integrated into each decoder layer via a gating mechanism. This layer-wise architecture enables the LLM to consult expert features at every inference step via a learned gating function, thereby dynamically rectifying decoding biases and steering the generation toward factual consistency. Experiments conducted on multiple public datasets demonstrate that the LEAD method yields effective improvements in clinical accuracy metrics and mitigates hallucinations while preserving high generation quality.
☆ Disentangling meaning from language in LLM-based machine translation
Mechanistic Interpretability (MI) seeks to explain how neural networks implement their capabilities, but the scale of Large Language Models (LLMs) has limited prior MI work in Machine Translation (MT) to word-level analyses. We study sentence-level MT from a mechanistic perspective by analyzing attention heads to understand how LLMs internally encode and distribute translation functions. We decompose MT into two subtasks: producing text in the target language (i.e. target language identification) and preserving the input sentence's meaning (i.e. sentence equivalence). Across three families of open-source models and 20 translation directions, we find that distinct, sparse sets of attention heads specialize in each subtask. Based on this insight, we construct subtask-specific steering vectors and show that modifying just 1% of the relevant heads enables instruction-free MT performance comparable to instruction-based prompting, while ablating these heads selectively disrupts their corresponding translation functions.
comment: 61 pages, 70 figures
Focus-LIME: Surgical Interpretation of Long-Context Large Language Models via Proxy-Based Neighborhood Selection
As Large Language Models (LLMs) scale to handle massive context windows, achieving surgical feature-level interpretation is essential for high-stakes tasks like legal auditing and code debugging. However, existing local model-agnostic explanation methods face a critical dilemma in these scenarios: feature-based methods suffer from attribution dilution due to high feature dimensionality, thus failing to provide faithful explanations. In this paper, we propose Focus-LIME, a coarse-to-fine framework designed to restore the tractability of surgical interpretation. Focus-LIME utilizes a proxy model to curate the perturbation neighborhood, allowing the target model to perform fine-grained attribution exclusively within the optimized context. Empirical evaluations on long-context benchmarks demonstrate that our method makes surgical explanations practicable and provides faithful explanations to users.
☆ RexBERT: Context Specialized Bidirectional Encoders for E-commerce
Encoder-only transformers remain indispensable in retrieval, classification, and ranking systems where latency, stability, and cost are paramount. Most general purpose encoders, however, are trained on generic corpora with limited coverage of specialized domains. We introduce RexBERT, a family of BERT-style encoders designed specifically for e-commerce semantics. We make three contributions. First, we release Ecom-niverse, a 350 billion token corpus curated from diverse retail and shopping sources. We describe a modular pipeline that isolates and extracts e-commerce content from FineFineWeb and other open web resources, and characterize the resulting domain distribution. Second, we present a reproducible pretraining recipe building on ModernBERT's architectural advances. The recipe consists of three phases: general pre-training, context extension, and annealed domain specialization. Third, we train RexBERT models ranging from 17M to 400M parameters and evaluate them on token classification, semantic similarity, and general natural language understanding tasks using e-commerce datasets. Despite having 2-3x fewer parameters, RexBERT outperforms larger general-purpose encoders and matches or surpasses modern long-context models on domain-specific benchmarks. Our results demonstrate that high quality in-domain data combined with a principled training approach provides a stronger foundation for e-commerce applications than indiscriminate scaling alone.
comment: Blog: https://huggingface.co/blog/thebajajra/rexbert-encoders Models: https://huggingface.co/collections/thebajajra/rexbert Ecom-niverse Dataset: https://huggingface.co/datasets/thebajajra/Ecom-niverse
☆ Beyond Holistic Scores: Automatic Trait-Based Quality Scoring of Argumentative Essays
Automated Essay Scoring systems have traditionally focused on holistic scores, limiting their pedagogical usefulness, especially in the case of complex essay genres such as argumentative writing. In educational contexts, teachers and learners require interpretable, trait-level feedback that aligns with instructional goals and established rubrics. In this paper, we study trait-based Automatic Argumentative Essay Scoring using two complementary modeling paradigms designed for realistic educational deployment: (1) structured in-context learning with small open-source LLMs, and (2) a supervised, encoder-based BigBird model with a CORAL-style ordinal regression formulation, optimized for long-sequence understanding. We conduct a systematic evaluation on the ASAP++ dataset, which includes essay scores across five quality traits, offering strong coverage of core argumentation dimensions. LLMs are prompted with designed, rubric-aligned in-context examples, along with feedback and confidence requests, while we explicitly model ordinality in scores with the BigBird model via the rank-consistent CORAL framework. Our results show that explicitly modeling score ordinality substantially improves agreement with human raters across all traits, outperforming LLMs and nominal classification and regression-based baselines. This finding reinforces the importance of aligning model objectives with rubric semantics for educational assessment. At the same time, small open-source LLMs achieve a competitive performance without task-specific fine-tuning, particularly for reasoning-oriented traits, while enabling transparent, privacy-preserving, and locally deployable assessment scenarios. Our findings provide methodological, modeling, and practical insights for the design of AI-based educational systems that aim to deliver interpretable, rubric-aligned feedback for argumentative writing.
☆ VILLAIN at AVerImaTeC: Verifying Image-Text Claims via Multi-Agent Collaboration EACL 2026
This paper describes VILLAIN, a multimodal fact-checking system that verifies image-text claims through prompt-based multi-agent collaboration. For the AVerImaTeC shared task, VILLAIN employs vision-language model agents across multiple stages of fact-checking. Textual and visual evidence is retrieved from the knowledge store enriched through additional web collection. To identify key information and address inconsistencies among evidence items, modality-specific and cross-modal agents generate analysis reports. In the subsequent stage, question-answer pairs are produced based on these reports. Finally, the Verdict Prediction agent produces the verification outcome based on the image-text claim and the generated question-answer pairs. Our system ranked first on the leaderboard across all evaluation metrics. The source code is publicly available at https://github.com/ssu-humane/VILLAIN.
comment: A system description paper for the AVerImaTeC shared task at the Ninth FEVER Workshop (co-located with EACL 2026)
☆ Trust The Typical
Current approaches to LLM safety fundamentally rely on a brittle cat-and-mouse game of identifying and blocking known threats via guardrails. We argue for a fresh approach: robust safety comes not from enumerating what is harmful, but from deeply understanding what is safe. We introduce Trust The Typical (T3), a framework that operationalizes this principle by treating safety as an out-of-distribution (OOD) detection problem. T3 learns the distribution of acceptable prompts in a semantic space and flags any significant deviation as a potential threat. Unlike prior methods, it requires no training on harmful examples, yet achieves state-of-the-art performance across 18 benchmarks spanning toxicity, hate speech, jailbreaking, multilingual harms, and over-refusal, reducing false positive rates by up to 40x relative to specialized safety models. A single model trained only on safe English text transfers effectively to diverse domains and over 14 languages without retraining. Finally, we demonstrate production readiness by integrating a GPU-optimized version into vLLM, enabling continuous guardrailing during token generation with less than 6% overhead even under dense evaluation intervals on large-scale workloads.
☆ AIANO: Enhancing Information Retrieval with AI-Augmented Annotation
The rise of Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) has rapidly increased the need for high-quality, curated information retrieval datasets. These datasets, however, are currently created with off-the-shelf annotation tools that make the annotation process complex and inefficient. To streamline this process, we developed a specialized annotation tool - AIANO. By adopting an AI-augmented annotation workflow that tightly integrates human expertise with LLM assistance, AIANO enables annotators to leverage AI suggestions while retaining full control over annotation decisions. In a within-subject user study ($n = 15$), participants created question-answering datasets using both a baseline tool and AIANO. AIANO nearly doubled annotation speed compared to the baseline while being easier to use and improving retrieval accuracy. These results demonstrate that AIANO's AI-augmented approach accelerates and enhances dataset creation for information retrieval tasks, advancing annotation capabilities in retrieval-intensive domains.
☆ Semantic Self-Distillation for Language Model Uncertainty
Large language models present challenges for principled uncertainty quantification, in part due to their complexity and the diversity of their outputs. Semantic dispersion, or the variance in the meaning of sampled answers, has been proposed as a useful proxy for model uncertainty, but the associated computational cost prohibits its use in latency-critical applications. We show that sampled semantic distributions can be distilled into lightweight student models which estimate a prompt-conditioned uncertainty before the language model generates an answer token. The student model predicts a semantic distribution over possible answers; the entropy of this distribution provides an effective uncertainty signal for hallucination prediction, and the probability density allows candidate answers to be evaluated for reliability. On TriviaQA, our student models match or outperform finite-sample semantic dispersion for hallucination prediction and provide a strong signal for out-of-domain answer detection. We term this technique Semantic Self-Distillation (SSD), which we suggest provides a general framework for distilling predictive uncertainty in complex output spaces beyond language.
☆ Can LLMs capture stable human-generated sentence entropy measures?
Predicting upcoming words is a core mechanism of language comprehension and may be quantified using Shannon entropy. There is currently no empirical consensus on how many human responses are required to obtain stable and unbiased entropy estimates at the word level. Moreover, large language models (LLMs) are increasingly used as substitutes for human norming data, yet their ability to reproduce stable human entropy remains unclear. Here, we address both issues using two large publicly available cloze datasets in German 1 and English 2. We implemented a bootstrap-based convergence analysis that tracks how entropy estimates stabilize as a function of sample size. Across both languages, more than 97% of sentences reached stable entropy estimates within the available sample sizes. 90% of sentences converged after 111 responses in German and 81 responses in English, while low-entropy sentences (<1) required as few as 20 responses and high-entropy sentences (>2.5) substantially more. These findings provide the first direct empirical validation for common norming practices and demonstrate that convergence critically depends on sentence predictability. We then compared stable human entropy values with entropy estimates derived from several LLMs, including GPT-4o, using both logit-based probability extraction and sampling-based frequency estimation, GPT2-xl/german-GPT-2, RoBERTa Base/GottBERT, and LLaMA 2 7B Chat. GPT-4o showed the highest correspondence with human data, although alignment depended strongly on the extraction method and prompt design. Logit-based estimates minimized absolute error, whereas sampling-based estimates were better in capturing the dispersion of human variability. Together, our results establish practical guidelines for human norming and show that while LLMs can approximate human entropy, they are not interchangeable with stable human-derived distributions.
☆ Textual Planning with Explicit Latent Transitions
Planning with LLMs is bottlenecked by token-by-token generation and repeated full forward passes, making multi-step lookahead and rollout-based search expensive in latency and compute. We propose EmbedPlan, which replaces autoregressive next-state generation with a lightweight transition model operating in a frozen language embedding space. EmbedPlan encodes natural language state and action descriptions into vectors, predicts the next-state embedding, and retrieves the next state by nearest-neighbor similarity, enabling fast planning computation without fine-tuning the encoder. We evaluate next-state prediction across nine classical planning domains using six evaluation protocols of increasing difficulty: interpolation, plan-variant, extrapolation, multi-domain, cross-domain, and leave-one-out. Results show near-perfect interpolation performance but a sharp degradation when generalization requires transfer to unseen problems or unseen domains; plan-variant evaluation indicates generalization to alternative plans rather than memorizing seen trajectories. Overall, frozen embeddings support within-domain dynamics learning after observing a domain's transitions, while transfer across domain boundaries remains a bottleneck.
☆ Rethinking Weight Tying: Pseudo-Inverse Tying for Stable LM Training and Updates
Weight tying is widely used in compact language models to reduce parameters by sharing the token table between the input embedding and the output projection. However, weight sharing does not guarantee a stable token interface: during training, the correspondence between encoding tokens into hidden states and decoding hidden states into logits can drift, worsening optimization sensitivity and making post-training interventions such as editing, patching, and lightweight adaptation less predictable. We propose Pseudo-Inverse Tying (PIT), which synchronizes embedding and unembedding as coupled projections of a shared latent token memory, guaranteeing a pseudo-inverse-consistent interface throughout training. PIT maintains an orthonormal shared memory, obtained by thin polar decomposition for teacher initialization or random orthonormal initialization from scratch, and introduces a fully learned symmetric positive definite hidden-space transform parameterized via a Cholesky factor. The output head applies this transform to hidden states before the vocabulary projection, while the embedding applies the inverse transform to token vectors using stable triangular solves, avoiding explicit pseudo-inverse recomputation and any vocabulary-sized auxiliary parameters. We evaluate PIT on on-device models spanning 256M-1.3B parameters across pretraining and adaptation, and consistently observe improved training stability, stronger layerwise semantic consistency, and substantially reduced side effects.
comment: an early-stage version
☆ Unmasking Superspreaders: Data-Driven Approaches for Identifying and Comparing Key Influencers of Conspiracy Theories on X.com
Conspiracy theories can threaten society by spreading misinformation, deepening polarization, and eroding trust in democratic institutions. Social media often fuels the spread of conspiracies, primarily driven by two key actors: Superspreaders -- influential individuals disseminating conspiracy content at disproportionately high rates, and Bots -- automated accounts designed to amplify conspiracies strategically. To counter the spread of conspiracy theories, it is critical to both identify these actors and to better understand their behavior. However, a systematic analysis of these actors as well as real-world-applicable identification methods are still lacking. In this study, we leverage over seven million tweets from the COVID-19 pandemic to analyze key differences between Human Superspreaders and Bots across dimensions such as linguistic complexity, toxicity, and hashtag usage. Our analysis reveals distinct communication strategies: Superspreaders tend to use more complex language and substantive content while relying less on structural elements like hashtags and emojis, likely to enhance credibility and authority. By contrast, Bots favor simpler language and strategic cross-usage of hashtags, likely to increase accessibility, facilitate infiltration into trending discussions, and amplify reach. To counter both Human Superspreaders and Bots, we propose and evaluate 27 novel metrics for quantifying the severity of conspiracy theory spread. Our findings highlight the effectiveness of an adapted H-Index for computationally feasible identification of Human Superspreaders. By identifying behavioral patterns unique to Human Superspreaders and Bots as well as providing suitable identification methods, this study provides a foundation for mitigation strategies, including platform moderation policies, temporary and permanent account suspensions, and public awareness campaigns.
☆ LycheeDecode: Accelerating Long-Context LLM Inference via Hybrid-Head Sparse Decoding ICLR 2026
The proliferation of long-context large language models (LLMs) exposes a key bottleneck: the rapidly expanding key-value cache during decoding, which imposes heavy memory and latency costs. While recent approaches attempt to alleviate this by sharing a single set of crucial tokens across layers, such coarse-grained sharing undermines model performance by neglecting the functional diversity of attention heads. To address this, we propose LycheeDecode, an efficient decoding method centered on a fine-grained hybrid-head attention mechanism that employs a hardware-efficient top-k selection strategy. Specifically, the novel HardKuma-based mechanism partitions attention heads into a small subset of retrieval heads that dynamically identify crucial tokens and a majority of sparse heads that reuse them for efficient computation. Through extensive experiments on leading models like Llama3 and Qwen3 across diverse benchmarks for long-context understanding (e.g., LongBench, RULER) and complex reasoning (e.g., AIME24, OlympiadBench), we demonstrate that LycheeDecode achieves generative quality comparable to, and at times surpassing even the full-attention baseline. Crucially, this is accomplished with up to a 2.7x speedup at a 128K context length. By preserving the functional diversity of attention heads, our fine-grained strategy overcomes the performance bottlenecks of existing methods, providing a powerful and validated pathway to both efficient and high-quality long-context LLM inference.
comment: ICLR 2026
☆ PersoPilot: An Adaptive AI-Copilot for Transparent Contextualized Persona Classification and Personalized Response Generation
Understanding and classifying user personas is critical for delivering effective personalization. While persona information offers valuable insights, its full potential is realized only when contextualized, linking user characteristics with situational context to enable more precise and meaningful service provision. Existing systems often treat persona and context as separate inputs, limiting their ability to generate nuanced, adaptive interactions. To address this gap, we present PersoPilot, an agentic AI-Copilot that integrates persona understanding with contextual analysis to support both end users and analysts. End users interact through a transparent, explainable chat interface, where they can express preferences in natural language, request recommendations, and receive information tailored to their immediate task. On the analyst side, PersoPilot delivers a transparent, reasoning-powered labeling assistant, integrated with an active learning-driven classification process that adapts over time with new labeled data. This feedback loop enables targeted service recommendations and adaptive personalization, bridging the gap between raw persona data and actionable, context-aware insights. As an adaptable framework, PersoPilot is applicable to a broad range of service personalization scenarios.
comment: Accepted for the Demo Track at the IEEE International Conference on Data Mining (ICDM) 2025
☆ $C$-$ΔΘ$: Circuit-Restricted Weight Arithmetic for Selective Refusal
Modern deployments require LLMs to enforce safety policies at scale, yet many controls rely on inference-time interventions that add recurring compute cost and serving complexity. Activation steering is widely used, but it requires runtime hooks and scales cost with the number of generations; conditional variants improve selectivity by gating when steering is applied but still retain an inference-time control path. We ask whether selective refusal can be moved entirely offline: can a mechanistic understanding of category-specific refusal be distilled into a circuit-restricted weight update that deploys as a standard checkpoint? We propose C-Δθ: Circuit Restricted Weight Arithmetic, which (i) localizes refusal-causal computation as a sparse circuit using EAP-IG and (ii) computes a constrained weight update ΔθC supported only on that circuit (typically <5% of parameters). Applying ΔθC yields a drop-in edited checkpoint with no inference-time hooks, shifting cost from per-request intervention to a one-time offline update. We evaluate category-targeted selectivity and capability retention on refusal and utility benchmarks.
☆ ReFRAME or Remain: Unsupervised Lexical Semantic Change Detection with Frame Semantics
The majority of contemporary computational methods for lexical semantic change (LSC) detection are based on neural embedding distributional representations. Although these models perform well on LSC benchmarks, their results are often difficult to interpret. We explore an alternative approach that relies solely on frame semantics. We show that this method is effective for detecting semantic change and can even outperform many distributional semantic models. Finally, we present a detailed quantitative and qualitative analysis of its predictions, demonstrating that they are both plausible and highly interpretable
☆ Model-Dowser: Data-Free Importance Probing to Mitigate Catastrophic Forgetting in Multimodal Large Language Models
Fine-tuning Multimodal Large Language Models (MLLMs) on task-specific data is an effective way to improve performance on downstream applications. However, such adaptation often leads to a degradation in generalization on pretrained tasks, a phenomenon known as Catastrophic Forgetting. Existing methods that aim to mitigate this issue either become ineffective when fine-tuning deeper layers of the language decoder or scale poorly with increasing model size. To address these limitations, we propose Model-Dowser, a novel sparse fine-tuning approach for MLLMs. Model-Dowser measures a principled importance score for each model parameter with respect to pretrained generalization (prior to downstream adaptation) by jointly considering weight magnitudes, input activations, and output sensitivities. During fine-tuning, Model-Dowser selectively preserves high-importance parameters and updates the remaining. Comprehensive experiments on two representative MLLMs, LLaVA and NVILA, demonstrate that Model-Dowser effectively mitigates catastrophic forgetting and consistently outperforms prior methods, while remaining resource-efficient and scalable to multi-billion-parameter models.
☆ PersoDPO: Scalable Preference Optimization for Instruction-Adherent, Persona-Grounded Dialogue via Multi-LLM Evaluation
Personalization and contextual coherence are two essential components in building effective persona-grounded dialogue systems. These aspects play a crucial role in enhancing user engagement and ensuring responses are more relevant and consistent with user identity. However, recent studies indicate that open-source large language models (LLMs) continue to struggle to generate responses that are both contextually grounded and aligned with persona cues, despite exhibiting strong general conversational abilities like fluency and naturalness. We present PersoDPO, a scalable preference optimisation framework that uses supervision signals from automatic evaluations of responses generated by both closed-source and open-source LLMs to fine-tune dialogue models. The framework integrates evaluation metrics targeting coherence and personalization, along with a length-format compliance feature to promote instruction adherence. These signals are combined to automatically construct high-quality preference pairs without manual annotation, enabling a scalable and reproducible training pipeline. Experiments on the FoCus dataset show that an open-source language model fine-tuned with the PersoDPO framework consistently outperforms strong open-source baselines and a standard Direct Preference Optimization (DPO) variant across multiple evaluation dimensions.
comment: Accepted at WISE 2025 Conference
☆ Deconstructing sentence disambiguation by joint latent modeling of reading paradigms: LLM surprisal is not enough
Using temporarily ambiguous garden-path sentences ("While the team trained the striker wondered ...") as a test case, we present a latent-process mixture model of human reading behavior across four different reading paradigms (eye tracking, uni- and bidirectional self-paced reading, Maze). The model distinguishes between garden-path probability, garden-path cost, and reanalysis cost, and yields more realistic processing cost estimates by taking into account trials with inattentive reading. We show that the model is able to reproduce empirical patterns with regard to rereading behavior, comprehension question responses, and grammaticality judgments. Cross-validation reveals that the mixture model also has better predictive fit to human reading patterns and end-of-trial task data than a mixture-free model based on GPT-2-derived surprisal values. We discuss implications for future work.
☆ Beyond Unimodal Shortcuts: MLLMs as Cross-Modal Reasoners for Grounded Named Entity Recognition
Grounded Multimodal Named Entity Recognition (GMNER) aims to extract text-based entities, assign them semantic categories, and ground them to corresponding visual regions. In this work, we explore the potential of Multimodal Large Language Models (MLLMs) to perform GMNER in an end-to-end manner, moving beyond their typical role as auxiliary tools within cascaded pipelines. Crucially, our investigation reveals a fundamental challenge: MLLMs exhibit $\textbf{modality bias}$, including visual bias and textual bias, which stems from their tendency to take unimodal shortcuts rather than rigorous cross-modal verification. To address this, we propose Modality-aware Consistency Reasoning ($\textbf{MCR}$), which enforces structured cross-modal reasoning through Multi-style Reasoning Schema Injection (MRSI) and Constraint-guided Verifiable Optimization (CVO). MRSI transforms abstract constraints into executable reasoning chains, while CVO empowers the model to dynamically align its reasoning trajectories with Group Relative Policy Optimization (GRPO). Experiments on GMNER and visual grounding tasks demonstrate that MCR effectively mitigates modality bias and achieves superior performance compared to existing baselines.
comment: GMNER
☆ Is Micro Domain-Adaptive Pre-Training Effective for Real-World Operations? Multi-Step Evaluation Reveals Potential and Bottlenecks EACL2026
When applying LLMs to real-world enterprise operations, LLMs need to handle proprietary knowledge in small domains of specific operations ($\textbf{micro domains}$). A previous study shows micro domain-adaptive pre-training ($\textbf{mDAPT}$) with fewer documents is effective, similarly to DAPT in larger domains. However, it evaluates mDAPT only on multiple-choice questions; thus, its effectiveness for generative tasks in real-world operations remains unknown. We aim to reveal the potential and bottlenecks of mDAPT for generative tasks. To this end, we disentangle the answering process into three subtasks and evaluate the performance of each subtask: (1) $\textbf{eliciting}$ facts relevant to questions from an LLM's own knowledge, (2) $\textbf{reasoning}$ over the facts to obtain conclusions, and (3) $\textbf{composing}$ long-form answers based on the conclusions. We verified mDAPT on proprietary IT product knowledge for real-world questions in IT technical support operations. As a result, mDAPT resolved the elicitation task that the base model struggled with but did not resolve other subtasks. This clarifies mDAPT's effectiveness in the knowledge aspect and its bottlenecks in other aspects. Further analysis empirically shows that resolving the elicitation and reasoning tasks ensures sufficient performance (over 90%), emphasizing the need to enhance reasoning capability.
comment: 13 pages, 9 figures, Accepted by EACL2026 Industry Track
☆ Growth First, Care Second? Tracing the Landscape of LLM Value Preferences in Everyday Dilemmas
People increasingly seek advice online from both human peers and large language model (LLM)-based chatbots. Such advice rarely involves identifying a single correct answer; instead, it typically requires navigating trade-offs among competing values. We aim to characterize how LLMs navigate value trade-offs across different advice-seeking contexts. First, we examine the value trade-off structure underlying advice seeking using a curated dataset from four advice-oriented subreddits. Using a bottom-up approach, we inductively construct a hierarchical value framework by aggregating fine-grained values extracted from individual advice options into higher-level value categories. We construct value co-occurrence networks to characterize how values co-occur within dilemmas and find substantial heterogeneity in value trade-off structures across advice-seeking contexts: a women-focused subreddit exhibits the highest network density, indicating more complex value conflicts; women's, men's, and friendship-related subreddits exhibit highly correlated value-conflict patterns centered on security-related tensions (security vs. respect/connection/commitment); by contrast, career advice forms a distinct structure where security frequently clashes with self-actualization and growth. We then evaluate LLM value preferences against these dilemmas and find that, across models and contexts, LLMs consistently prioritize values related to Exploration & Growth over Benevolence & Connection. This systemically skewed value orientation highlights a potential risk of value homogenization in AI-mediated advice, raising concerns about how such systems may shape decision-making and normative outcomes at scale.
comment: dataset available at https://github.com/Renesmeeczy/Value-Trade-off-in-Reddit-Dilemmas
☆ No One-Size-Fits-All: Building Systems For Translation to Bashkir, Kazakh, Kyrgyz, Tatar and Chuvash Using Synthetic And Original Data EACL 2026
We explore machine translation for five Turkic language pairs: Russian-Bashkir, Russian-Kazakh, Russian-Kyrgyz, English-Tatar, English-Chuvash. Fine-tuning nllb-200-distilled-600M with LoRA on synthetic data achieved chrF++ 49.71 for Kazakh and 46.94 for Bashkir. Prompting DeepSeek-V3.2 with retrieved similar examples achieved chrF++ 39.47 for Chuvash. For Tatar, zero-shot or retrieval-based approaches achieved chrF++ 41.6, while for Kyrgyz the zero-shot approach reached 45.6. We release the dataset and the obtained weights.
comment: Accepted to EACL 2026 (LoResMT workshop)
☆ Fine-Grained Activation Steering: Steering Less, Achieving More ICLR 2026
Activation steering has emerged as a cost-effective paradigm for modifying large language model (LLM) behaviors. Existing methods typically intervene at the block level, steering the bundled activations of selected attention heads, feedforward networks, or residual streams. However, we reveal that block-level activations are inherently heterogeneous, entangling beneficial, irrelevant, and harmful features, thereby rendering block-level steering coarse, inefficient, and intrusive. To investigate the root cause, we decompose block activations into fine-grained atomic unit (AU)-level activations, where each AU-level activation corresponds to a single dimension of the block activation, and each AU denotes a slice of the block weight matrix. Steering an AU-level activation is thus equivalent to steering its associated AU. Our theoretical and empirical analysis show that heterogeneity arises because different AUs or dimensions control distinct token distributions in LLM outputs. Hence, block-level steering inevitably moves helpful and harmful token directions together, which reduces efficiency. Restricting intervention to beneficial AUs yields more precise and effective steering. Building on this insight, we propose AUSteer, a simple and efficient method that operates at a finer granularity of the AU level. AUSteer first identifies discriminative AUs globally by computing activation momenta on contrastive samples. It then assigns adaptive steering strengths tailored to diverse inputs and selected AU activations. Comprehensive experiments on multiple LLMs and tasks show that AUSteer consistently surpasses advanced baselines while steering considerably fewer activations, demonstrating that steering less achieves more.
comment: ICLR 2026
☆ History-Guided Iterative Visual Reasoning with Self-Correction
Self-consistency methods are the core technique for improving the reasoning reliability of multimodal large language models (MLLMs). By generating multiple reasoning results through repeated sampling and selecting the best answer via voting, they play an important role in cross-modal tasks. However, most existing self-consistency methods are limited to a fixed ``repeated sampling and voting'' paradigm and do not reuse historical reasoning information. As a result, models struggle to actively correct visual understanding errors and dynamically adjust their reasoning during iteration. Inspired by the human reasoning behavior of repeated verification and dynamic error correction, we propose the H-GIVR framework. During iterative reasoning, the MLLM observes the image multiple times and uses previously generated answers as references for subsequent steps, enabling dynamic correction of errors and improving answer accuracy. We conduct comprehensive experiments on five datasets and three models. The results show that the H-GIVR framework can significantly improve cross-modal reasoning accuracy while maintaining low computational cost. For instance, using \texttt{Llama3.2-vision:11b} on the ScienceQA dataset, the model requires an average of 2.57 responses per question to achieve an accuracy of 78.90\%, representing a 107\% improvement over the baseline.
☆ Swordsman: Entropy-Driven Adaptive Block Partition for Efficient Diffusion Language Models
Block-wise decoding effectively improves the inference speed and quality in diffusion language models (DLMs) by combining inter-block sequential denoising and intra-block parallel unmasking. However, existing block-wise decoding methods typically partition blocks in a rigid and fixed manner, which inevitably fragments complete semantic or syntactic constituents, leading to suboptimal performance. Inspired by the entropy reduction hypothesis (ERH), we recognize that constituent boundaries offer greater opportunities for uncertainty reduction, which motivates us to employ entropy analysis for identifying constituent boundaries. Therefore, we propose Swordsman, an entropy-driven adaptive block-wise decoding framework for DLMs. Swordsman adaptively partitions blocks by identifying entropy shifts between adjacent tokens to better align with semantic or syntactic constituent boundaries. In addition, Swordsman dynamically adjusts unmasking thresholds conditioned on the real-time unmasking status within a block, further improving both efficiency and stability. As a training-free framework, supported by KV Cache, Swordsman demonstrates state-of-the-art performance across extensive evaluations.
☆ Bi-directional Bias Attribution: Debiasing Large Language Models without Modifying Prompts
Large language models (LLMs) have demonstrated impressive capabilities across a wide range of natural language processing tasks. However, their outputs often exhibit social biases, raising fairness concerns. Existing debiasing methods, such as fine-tuning on additional datasets or prompt engineering, face scalability issues or compromise user experience in multi-turn interactions. To address these challenges, we propose a framework for detecting stereotype-inducing words and attributing neuron-level bias in LLMs, without the need for fine-tuning or prompt modification. Our framework first identifies stereotype-inducing adjectives and nouns via comparative analysis across demographic groups. We then attribute biased behavior to specific neurons using two attribution strategies based on integrated gradients. Finally, we mitigate bias by directly intervening on their activations at the projection layer. Experiments on three widely used LLMs demonstrate that our method effectively reduces bias while preserving overall model performance. Code is available at the github link: https://github.com/XMUDeepLIT/Bi-directional-Bias-Attribution.
☆ Evaluating the Presence of Sex Bias in Clinical Reasoning by Large Language Models
Large language models (LLMs) are increasingly embedded in healthcare workflows for documentation, education, and clinical decision support. However, these systems are trained on large text corpora that encode existing biases, including sex disparities in diagnosis and treatment, raising concerns that such patterns may be reproduced or amplified. We systematically examined whether contemporary LLMs exhibit sex-specific biases in clinical reasoning and how model configuration influences these behaviours. We conducted three experiments using 50 clinician-authored vignettes spanning 44 specialties in which sex was non-informative to the initial diagnostic pathway. Four general-purpose LLMs (ChatGPT (gpt-4o-mini), Claude 3.7 Sonnet, Gemini 2.0 Flash and DeepSeekchat). All models demonstrated significant sex-assignment skew, with predicted sex differing by model. At temperature 0.5, ChatGPT assigned female sex in 70% of cases (95% CI 0.66-0.75), DeepSeek in 61% (0.57-0.65) and Claude in 59% (0.55-0.63), whereas Gemini showed a male skew, assigning a female sex in 36% of cases (0.32-0.41). Contemporary LLMs exhibit stable, model-specific sex biases in clinical reasoning. Permitting abstention reduces explicit labelling but does not eliminate downstream diagnostic differences. Safe clinical integration requires conservative and documented configuration, specialty-level clinical data auditing, and continued human oversight when deploying general-purpose models in healthcare settings.
☆ Beyond Rejection Sampling: Trajectory Fusion for Scaling Mathematical Reasoning
Large language models (LLMs) have made impressive strides in mathematical reasoning, often fine-tuned using rejection sampling that retains only correct reasoning trajectories. While effective, this paradigm treats supervision as a binary filter that systematically excludes teacher-generated errors, leaving a gap in how reasoning failures are modeled during training. In this paper, we propose TrajFusion, a fine-tuning strategy that reframes rejection sampling as a structured supervision construction process. Specifically, TrajFusion forms fused trajectories that explicitly model trial-and-error reasoning by interleaving selected incorrect trajectories with reflection prompts and correct trajectories. The length of each fused sample is adaptively controlled based on the frequency and diversity of teacher errors, providing richer supervision for challenging problems while safely reducing to vanilla rejection sampling fine-tuning (RFT) when error signals are uninformative. TrajFusion requires no changes to the architecture or training objective. Extensive experiments across multiple math benchmarks demonstrate that TrajFusion consistently outperforms RFT, particularly on challenging and long-form reasoning problems.
☆ Can Vision Replace Text in Working Memory? Evidence from Spatial n-Back in Vision-Language Models
Working memory is a central component of intelligent behavior, providing a dynamic workspace for maintaining and updating task-relevant information. Recent work has used n-back tasks to probe working-memory-like behavior in large language models, but it is unclear whether the same probe elicits comparable computations when information is carried in a visual rather than textual code in vision-language models. We evaluate Qwen2.5 and Qwen2.5-VL on a controlled spatial n-back task presented as matched text-rendered or image-rendered grids. Across conditions, models show reliably higher accuracy and d' with text than with vision. To interpret these differences at the process level, we use trial-wise log-probability evidence and find that nominal 2/3-back often fails to reflect the instructed lag and instead aligns with a recency-locked comparison. We further show that grid size alters recent-repeat structure in the stimulus stream, thereby changing interference and error patterns. These results motivate computation-sensitive interpretations of multimodal working memory.
☆ From Assumptions to Actions: Turning LLM Reasoning into Uncertainty-Aware Planning for Embodied Agents ICLR 2026
Embodied agents operating in multi-agent, partially observable, and decentralized environments must plan and act despite pervasive uncertainty about hidden objects and collaborators' intentions. Recent advances in applying Large Language Models (LLMs) to embodied agents have addressed many long-standing challenges, such as high-level goal decomposition and online adaptation. Yet, uncertainty is still primarily mitigated through frequent inter-agent communication. This incurs substantial token and time costs, and can disrupt established workflows, when human partners are involved. We introduce PCE, a Planner-Composer-Evaluator framework that converts the fragmented assumptions latent in LLM reasoning traces into a structured decision tree. Internal nodes encode environment assumptions and leaves map to actions; each path is then scored by scenario likelihood, goal-directed gain, and execution cost to guide rational action selection without heavy communication. Across two challenging multi-agent benchmarks (C-WAH and TDW-MAT) and three diverse LLM backbones, PCE consistently outperforms communication-centric baselines in success rate and task efficiency while showing comparable token usage. Ablation results indicate that the performance gains obtained by scaling model capacity or reasoning depth persist even when PCE is applied, while PCE consistently raises the baseline across both capacity and reasoning-depth scales, confirming that structured uncertainty handling complements both forms of scaling. A user study further demonstrates that PCE produces communication patterns that human partners perceive as more efficient and trustworthy. Together, these results establish a principled route for turning latent LLM assumptions into reliable strategies for uncertainty-aware planning.
comment: 31 pages, 10 figures, Accepted ICLR 2026
☆ A Domain-Specific Curated Benchmark for Entity and Document-Level Relation Extraction EACL 2026
Information Extraction (IE), encompassing Named Entity Recognition (NER), Named Entity Linking (NEL), and Relation Extraction (RE), is critical for transforming the rapidly growing volume of scientific publications into structured, actionable knowledge. This need is especially evident in fast-evolving biomedical fields such as the gut-brain axis, where research investigates complex interactions between the gut microbiota and brain-related disorders. Existing biomedical IE benchmarks, however, are often narrow in scope and rely heavily on distantly supervised or automatically generated annotations, limiting their utility for advancing robust IE methods. We introduce GutBrainIE, a benchmark based on more than 1,600 PubMed abstracts, manually annotated by biomedical and terminological experts with fine-grained entities, concept-level links, and relations. While grounded in the gut-brain axis, the benchmark's rich schema, multiple tasks, and combination of highly curated and weakly supervised data make it broadly applicable to the development and evaluation of biomedical IE systems across domains.
comment: Accepted to EACL 2026
☆ Universal Robust Speech Adaptation for Cross-Domain Speech Recognition and Enhancement
Pre-trained models for automatic speech recognition (ASR) and speech enhancement (SE) have exhibited remarkable capabilities under matched noise and channel conditions. However, these models often suffer from severe performance degradation when confronted with domain shifts, particularly in the presence of unseen noise and channel distortions. In view of this, we in this paper present URSA-GAN, a unified and domain-aware generative framework specifically designed to mitigate mismatches in both noise and channel conditions. URSA-GAN leverages a dual-embedding architecture that consists of a noise encoder and a channel encoder, each pre-trained with limited in-domain data to capture domain-relevant representations. These embeddings condition a GAN-based speech generator, facilitating the synthesis of speech that is acoustically aligned with the target domain while preserving phonetic content. To enhance generalization further, we propose dynamic stochastic perturbation, a novel regularization technique that introduces controlled variability into the embeddings during generation, promoting robustness to unseen domains. Empirical results demonstrate that URSA-GAN effectively reduces character error rates in ASR and improves perceptual metrics in SE across diverse noisy and mismatched channel scenarios. Notably, evaluations on compound test conditions with both channel and noise degradations confirm the generalization ability of URSA-GAN, yielding relative improvements of 16.16% in ASR performance and 15.58% in SE metrics.
comment: Accepted to IEEE Transactions on Audio, Speech and Language Processing (IEEE TASLP)
☆ DeFrame: Debiasing Large Language Models Against Framing Effects
As large language models (LLMs) are increasingly deployed in real-world applications, ensuring their fair responses across demographics has become crucial. Despite many efforts, an ongoing challenge is hidden bias: LLMs appear fair under standard evaluations, but can produce biased responses outside those evaluation settings. In this paper, we identify framing -- differences in how semantically equivalent prompts are expressed (e.g., "A is better than B" vs. "B is worse than A") -- as an underexplored contributor to this gap. We first introduce the concept of "framing disparity" to quantify the impact of framing on fairness evaluation. By augmenting fairness evaluation benchmarks with alternative framings, we find that (1) fairness scores vary significantly with framing and (2) existing debiasing methods improve overall (i.e., frame-averaged) fairness, but often fail to reduce framing-induced disparities. To address this, we propose a framing-aware debiasing method that encourages LLMs to be more consistent across framings. Experiments demonstrate that our approach reduces overall bias and improves robustness against framing disparities, enabling LLMs to produce fairer and more consistent responses.
comment: 40 pages, 12 figures
☆ Beyond Static Cropping: Layer-Adaptive Visual Localization and Decoding Enhancement
Large Vision-Language Models (LVLMs) have advanced rapidly by aligning visual patches with the text embedding space, but a fixed visual-token budget forces images to be resized to a uniform pretraining resolution, often erasing fine-grained details and causing hallucinations via over-reliance on language priors. Recent attention-guided enhancement (e.g., cropping or region-focused attention allocation) alleviates this, yet it commonly hinges on a static "magic layer" empirically chosen on simple recognition benchmarks and thus may not transfer to complex reasoning tasks. In contrast to this static assumption, we propose a dynamic perspective on visual grounding. Through a layer-wise sensitivity analysis, we demonstrate that visual grounding is a dynamic process: while simple object recognition tasks rely on middle layers, complex visual search and reasoning tasks require visual information to be reactivated at deeper layers. Based on this observation, we introduce Visual Activation by Query (VAQ), a metric that identifies the layer whose attention map is most relevant to query-specific visual grounding by measuring attention sensitivity to the input query. Building on VAQ, we further propose LASER (Layer-adaptive Attention-guided Selective visual and decoding Enhancement for Reasoning), a training-free inference procedure that adaptively selects task-appropriate layers for visual localization and question answering. Experiments across diverse VQA benchmarks show that LASER significantly improves VQA accuracy across tasks with varying levels of complexity.
comment: 9 pages, 5 figures
☆ Revisiting Prompt Sensitivity in Large Language Models for Text Classification: The Role of Prompt Underspecification
Large language models (LLMs) are widely used as zero-shot and few-shot classifiers, where task behaviour is largely controlled through prompting. A growing number of works have observed that LLMs are sensitive to prompt variations, with small changes leading to large changes in performance. However, in many cases, the investigation of sensitivity is performed using underspecified prompts that provide minimal task instructions and weakly constrain the model's output space. In this work, we argue that a significant portion of the observed prompt sensitivity can be attributed to prompt underspecification. We systematically study and compare the sensitivity of underspecified prompts and prompts that provide specific instructions. Utilising performance analysis, logit analysis, and linear probing, we find that underspecified prompts exhibit higher performance variance and lower logit values for relevant tokens, while instruction-prompts suffer less from such problems. However, linear probing analysis suggests that the effects of prompt underspecification have only a marginal impact on the internal LLM representations, instead emerging in the final layers. Overall, our findings highlight the need for more rigour when investigating and mitigating prompt sensitivity.
☆ How Few-shot Demonstrations Affect Prompt-based Defenses Against LLM Jailbreak Attacks
Large Language Models (LLMs) face increasing threats from jailbreak attacks that bypass safety alignment. While prompt-based defenses such as Role-Oriented Prompts (RoP) and Task-Oriented Prompts (ToP) have shown effectiveness, the role of few-shot demonstrations in these defense strategies remains unclear. Prior work suggests that few-shot examples may compromise safety, but lacks investigation into how few-shot interacts with different system prompt strategies. In this paper, we conduct a comprehensive evaluation on multiple mainstream LLMs across four safety benchmarks (AdvBench, HarmBench, SG-Bench, XSTest) using six jailbreak attack methods. Our key finding reveals that few-shot demonstrations produce opposite effects on RoP and ToP: few-shot enhances RoP's safety rate by up to 4.5% through reinforcing role identity, while it degrades ToP's effectiveness by up to 21.2% through distracting attention from task instructions. Based on these findings, we provide practical recommendations for deploying prompt-based defenses in real-world LLM applications.
comment: 13 pages, 4 figures, 6 tables
☆ Guided Verifier: Collaborative Multimodal Reasoning via Dynamic Process Supervision
Reinforcement Learning (RL) has emerged as a pivotal mechanism for enhancing the complex reasoning capabilities of Multimodal Large Language Models (MLLMs). However, prevailing paradigms typically rely on solitary rollout strategies where the model works alone. This lack of intermediate oversight renders the reasoning process susceptible to error propagation, where early logical deviations cascade into irreversible failures, resulting in noisy optimization signals. In this paper, we propose the \textbf{Guided Verifier} framework to address these structural limitations. Moving beyond passive terminal rewards, we introduce a dynamic verifier that actively co-solves tasks alongside the policy. During the rollout phase, this verifier interacts with the policy model in real-time, detecting inconsistencies and providing directional signals to steer the model toward valid trajectories. To facilitate this, we develop a specialized data synthesis pipeline targeting multimodal hallucinations, constructing \textbf{CoRe} dataset of process-level negatives and \textbf{Co}rrect-guide \textbf{Re}asoning trajectories to train the guided verifier. Extensive experiments on MathVista, MathVerse and MMMU indicate that by allocating compute to collaborative inference and dynamic verification, an 8B-parameter model can achieve strong performance.
☆ Proxy Compression for Language Modeling
Modern language models are trained almost exclusively on token sequences produced by a fixed tokenizer, an external lossless compressor often over UTF-8 byte sequences, thereby coupling the model to that compressor. This work introduces proxy compression, an alternative training scheme that preserves the efficiency benefits of compressed inputs while providing an end-to-end, raw-byte interface at inference time. During training, one language model is jointly trained on raw byte sequences and compressed views generated by external compressors; through the process, the model learns to internally align compressed sequences and raw bytes. This alignment enables strong transfer between the two formats, even when training predominantly on compressed inputs which are discarded at inference. Extensive experiments on code language modeling demonstrate that proxy compression substantially improves training efficiency and significantly outperforms pure byte-level baselines given fixed compute budgets. As model scale increases, these gains become more pronounced, and proxy-trained models eventually match or rival tokenizer approaches, all while operating solely on raw bytes and retaining the inherent robustness of byte-level modeling.
☆ Contextual Drag: How Errors in the Context Affect LLM Reasoning
Central to many self-improvement pipelines for large language models (LLMs) is the assumption that models can improve by reflecting on past mistakes. We study a phenomenon termed contextual drag: the presence of failed attempts in the context biases subsequent generations toward structurally similar errors. Across evaluations of 11 proprietary and open-weight models on 8 reasoning tasks, contextual drag induces 10-20% performance drops, and iterative self-refinement in models with severe contextual drag can collapse into self-deterioration. Structural analysis using tree edit distance reveals that subsequent reasoning trajectories inherit structurally similar error patterns from the context. We demonstrate that neither external feedback nor successful self-verification suffices to eliminate this effect. While mitigation strategies such as fallback-behavior fine-tuning and context denoising yield partial improvements, they fail to fully restore baseline performance, positioning contextual drag as a persistent failure mode in current reasoning architectures.
☆ ECG-R1: Protocol-Guided and Modality-Agnostic MLLM for Reliable ECG Interpretation
Electrocardiography (ECG) serves as an indispensable diagnostic tool in clinical practice, yet existing multimodal large language models (MLLMs) remain unreliable for ECG interpretation, often producing plausible but clinically incorrect analyses. To address this, we propose ECG-R1, the first reasoning MLLM designed for reliable ECG interpretation via three innovations. First, we construct the interpretation corpus using \textit{Protocol-Guided Instruction Data Generation}, grounding interpretation in measurable ECG features and monograph-defined quantitative thresholds and diagnostic logic. Second, we present a modality-decoupled architecture with \textit{Interleaved Modality Dropout} to improve robustness and cross-modal consistency when either the ECG signal or ECG image is missing. Third, we present \textit{Reinforcement Learning with ECG Diagnostic Evidence Rewards} to strengthen evidence-grounded ECG interpretation. Additionally, we systematically evaluate the ECG interpretation capabilities of proprietary, open-source, and medical MLLMs, and provide the first quantitative evidence that severe hallucinations are widespread, suggesting that the public should not directly trust these outputs without independent verification. Code and data are publicly available at \href{https://github.com/PKUDigitalHealth/ECG-R1}{here}, and an online platform can be accessed at \href{http://ai.heartvoice.com.cn/ECG-R1/}{here}.
☆ Scaling Agentic Verifier for Competitive Coding
Large language models (LLMs) have demonstrated strong coding capabilities but still struggle to solve competitive programming problems correctly in a single attempt. Execution-based re-ranking offers a promising test-time scaling strategy, yet existing methods are constrained by either difficult test case generation or inefficient random input sampling. To address this limitation, we propose Agentic Verifier, an execution-based agent that actively reasons about program behaviors and searches for highly discriminative test inputs that expose behavioral discrepancies among candidate solutions. Through multi-turn interaction with code execution environments, the verifier iteratively refines the candidate input generator and produces targeted counterexamples rather than blindly sampling inputs. We train the verifier to acquire this discriminative input generation capability via a scalable pipeline combining large-scale data synthesis, rejection fine-tuning, and agentic reinforcement learning. Extensive experiments across five competitive programming benchmarks demonstrate consistent improvements over strong execution-based baselines, achieving up to +10-15% absolute gains in Best@K accuracy. Further analysis reveals clear test-time scaling behavior and highlights the verifier's broader potential beyond reranking.
☆ Empirical-MCTS: Continuous Agent Evolution via Dual-Experience Monte Carlo Tree Search
Inference-time scaling strategies, particularly Monte Carlo Tree Search (MCTS), have significantly enhanced the reasoning capabilities of Large Language Models (LLMs). However, current approaches remain predominantly stateless, discarding successful reasoning patterns after each problem instance and failing to mimic the empirical accumulation of wisdom characteristic of human problem-solving. To bridge this gap, we introduce Empirical-MCTS, a dual-loop framework that transforms stateless search into a continuous, non-parametric learning process. The framework unifies local exploration with global memory optimization through two novel mechanisms: Pairwise-Experience-Evolutionary Meta-Prompting (PE-EMP) and a Memory Optimization Agent. PE-EMP functions as a reflexive optimizer within the local search, utilizing pairwise feedback to dynamically synthesize adaptive criteria and evolve meta-prompts (system prompts) in real-time. Simultaneously, the Memory Optimization Agent manages a global repository as a dynamic policy prior, employing atomic operations to distill high-quality insights across problems. Extensive evaluations on complex reasoning benchmarks, including AIME25, ARC-AGI-2, and MathArena Apex, demonstrate that Empirical-MCTS significantly outperforms both stateless MCTS strategies and standalone experience-driven agents. These results underscore the critical necessity of coupling structured search with empirical accumulation for mastering complex, open-ended reasoning tasks.
comment: 9 pages, 5 figures
☆ DementiaBank-Emotion: A Multi-Rater Emotion Annotation Corpus for Alzheimer's Disease Speech (Version 1.0) EACL 2026
We present DementiaBank-Emotion, the first multi-rater emotion annotation corpus for Alzheimer's disease (AD) speech. Annotating 1,492 utterances from 108 speakers for Ekman's six basic emotions and neutral, we find that AD patients express significantly more non-neutral emotions (16.9%) than healthy controls (5.7%; p < .001). Exploratory acoustic analysis suggests a possible dissociation: control speakers showed substantial F0 modulation for sadness (Delta = -3.45 semitones from baseline), whereas AD speakers showed minimal change (Delta = +0.11 semitones; interaction p = .023), though this finding is based on limited samples (sadness: n=5 control, n=15 AD) and requires replication. Within AD speech, loudness differentiates emotion categories, indicating partially preserved emotion-prosody mappings. We release the corpus, annotation guidelines, and calibration workshop materials to support research on emotion recognition in clinical populations.
comment: Accepted at HeaLING Workshop @ EACL 2026. 9 pages, 3 figures, 8 tables
☆ CoLT: Reasoning with Chain of Latent Tool Calls
Chain-of-Thought (CoT) is a critical technique in enhancing the reasoning ability of Large Language Models (LLMs), and latent reasoning methods have been proposed to accelerate the inefficient token-level reasoning chain. We notice that existing latent reasoning methods generally require model structure augmentation and exhaustive training, limiting their broader applicability. In this paper, we propose CoLT, a novel framework that implements latent reasoning as ``tool calls''. Instead of reasoning entirely in the latent space, CoLT generates seed tokens that contain information of a reasoning step. When a latent tool call is triggered, a smaller external model will take the hidden states of seed tokens as its input, and unpack the seed tokens back to a full reasoning step. In this way, we can ensure that the main model reasons in the explicit token space, preserving its ability while improving efficiency. Experimental results on four mathematical datasets demonstrate that CoLT achieves higher accuracy and shorter reasoning length than baseline latent models, and is compatible with reinforcement learning algorithms and different decoder structures.
☆ Tokenization and Morphological Fidelity in Uralic NLP: A Cross-Lingual Evaluation
Subword tokenization critically affects Natural Language Processing (NLP) performance, yet its behavior in morphologically rich and low-resource language families remains under-explored. This study systematically compares three subword paradigms -- Byte Pair Encoding (BPE), Overlap BPE (OBPE), and Unigram Language Model -- across six Uralic languages with varying resource availability and typological diversity. Using part-of-speech (POS) tagging as a controlled downstream task, we show that OBPE consistently achieves stronger morphological alignment and higher tagging accuracy than conventional methods, particularly within the Latin-script group. These gains arise from reduced fragmentation in open-class categories and a better balance across the frequency spectrum. Transfer efficacy further depends on the downstream tagging architecture, interacting with both training volume and genealogical proximity. Taken together, these findings highlight that morphology-sensitive tokenization is not merely a preprocessing choice but a decisive factor in enabling effective cross-lingual transfer for agglutinative, low-resource languages.
☆ RAPO: Risk-Aware Preference Optimization for Generalizable Safe Reasoning
Large Reasoning Models (LRMs) have achieved tremendous success with their chain-of-thought (CoT) reasoning, yet also face safety issues similar to those of basic language models. In particular, while algorithms are designed to guide them to deliberately refuse harmful prompts with safe reasoning, this process often fails to generalize against diverse and complex jailbreak attacks. In this work, we attribute these failures to the generalization of the safe reasoning process, particularly their insufficiency against complex attack prompts. We provide both theoretical and empirical evidence to show the necessity of a more sufficient safe reasoning process to defend against advanced attack prompts. Building on this insight, we propose a Risk-Aware Preference Optimization (RAPO) framework that enables LRM to adaptively identify and address the safety risks with appropriate granularity in its thinking content. Extensive experiments demonstrate that RAPO successfully generalizes multiple LRMs' safe reasoning adaptively across diverse attack prompts whilst preserving general utility, contributing a robust alignment technique for LRM safety. Our code is available at https://github.com/weizeming/RAPO.
☆ Frontend Token Enhancement for Token-Based Speech Recognition ICASSP 2026
Discretized representations of speech signals are efficient alternatives to continuous features for various speech applications, including automatic speech recognition (ASR) and speech language models. However, these representations, such as semantic or phonetic tokens derived from clustering outputs of self-supervised learning (SSL) speech models, are susceptible to environmental noise, which can degrade backend task performance. In this work, we introduce a frontend system that estimates clean speech tokens from noisy speech and evaluate it on an ASR backend using semantic tokens. We consider four types of enhancement models based on their input/output domains: wave-to-wave, token-to-token, continuous SSL features-to-token, and wave-to-token. These models are trained independently of ASR backends. Experiments on the CHiME-4 dataset demonstrate that wave-to-token enhancement achieves the best performance among the frontends. Moreover, it mostly outperforms the ASR system based on continuous SSL features.
comment: Accepted at ICASSP 2026
☆ Language Models Struggle to Use Representations Learned In-Context
Though large language models (LLMs) have enabled great success across a wide variety of tasks, they still appear to fall short of one of the loftier goals of artificial intelligence research: creating an artificial system that can adapt its behavior to radically new contexts upon deployment. One important step towards this goal is to create systems that can induce rich representations of data that are seen in-context, and then flexibly deploy these representations to accomplish goals. Recently, Park et al. (2024) demonstrated that current LLMs are indeed capable of inducing such representation from context (i.e., in-context representation learning). The present study investigates whether LLMs can use these representations to complete simple downstream tasks. We first assess whether open-weights LLMs can use in-context representations for next-token prediction, and then probe models using a novel task, adaptive world modeling. In both tasks, we find evidence that open-weights LLMs struggle to deploy representations of novel semantics that are defined in-context, even if they encode these semantics in their latent representations. Furthermore, we assess closed-source, state-of-the-art reasoning models on the adaptive world modeling task, demonstrating that even the most performant LLMs cannot reliably leverage novel patterns presented in-context. Overall, this work seeks to inspire novel methods for encouraging models to not only encode information presented in-context, but to do so in a manner that supports flexible deployment of this information.
☆ Enforcing Monotonic Progress in Legal Cross-Examination: Preventing Long-Horizon Stagnation in LLM-Based Inquiry
Large language models (LLMs) exhibit impressive linguistic fluency but struggle to reliably complete long-horizon tasks under explicit procedural constraints. In legal cross-examination, purely proba-bilistic generation often maintains behavioral coherence while failing to ensure procedural advancement. We characterize this failure as procedural stagnation and propose Soft-FSM, a neuro-symbolic architecture that enforces monotonic progress over accumulated Key Information Units (KIUs) via an external deterministic state controller. Experiments on three real-world Taiwanese criminal homicide cases show that baseline methods collapse below 40% completeness, while Soft-FSM consistently achieves over 97% with near-zero redundancy. These results suggest that, in such domains, reliable task completion cannot be guaranteed by emergent LLM behavior alone, and can be reliably enforced through explicit and verifiable external state control.
comment: Submitted to ICAIL 2026. Under review
☆ From Helpfulness to Toxic Proactivity: Diagnosing Behavioral Misalignment in LLM Agents
The enhanced capabilities of LLM-based agents come with an emergency for model planning and tool-use abilities. Attributing to helpful-harmless trade-off from LLM alignment, agents typically also inherit the flaw of "over-refusal", which is a passive failure mode. However, the proactive planning and action capabilities of agents introduce another crucial danger on the other side of the trade-off. This phenomenon we term "Toxic Proactivity'': an active failure mode in which an agent, driven by the optimization for Machiavellian helpfulness, disregards ethical constraints to maximize utility. Unlike over-refusal, Toxic Proactivity manifests as the agent taking excessive or manipulative measures to ensure its "usefulness'' is maintained. Existing research pays little attention to identifying this behavior, as it often lacks the subtle context required for such strategies to unfold. To reveal this risk, we introduce a novel evaluation framework based on dilemma-driven interactions between dual models, enabling the simulation and analysis of agent behavior over multi-step behavioral trajectories. Through extensive experiments with mainstream LLMs, we demonstrate that Toxic Proactivity is a widespread behavioral phenomenon and reveal two major tendencies. We further present a systematic benchmark for evaluating Toxic Proactive behavior across contextual settings.
comment: 9 pages (excluding appendices), 6 figures. Code is available at https://github.com/wxyoio-0715/Toxic-Proactivity
The Missing Half: Unveiling Training-time Implicit Safety Risks Beyond Deployment
Safety risks of AI models have been widely studied at deployment time, such as jailbreak attacks that elicit harmful outputs. In contrast, safety risks emerging during training remain largely unexplored. Beyond explicit reward hacking that directly manipulates explicit reward functions in reinforcement learning, we study implicit training-time safety risks: harmful behaviors driven by a model's internal incentives and contextual background information. For example, during code-based reinforcement learning, a model may covertly manipulate logged accuracy for self-preservation. We present the first systematic study of this problem, introducing a taxonomy with five risk levels, ten fine-grained risk categories, and three incentive types. Extensive experiments reveal the prevalence and severity of these risks: notably, Llama-3.1-8B-Instruct exhibits risky behaviors in 74.4% of training runs when provided only with background information. We further analyze factors influencing these behaviors and demonstrate that implicit training-time risks also arise in multi-agent training settings. Our results identify an overlooked yet urgent safety challenge in training.
Training Data Efficiency in Multimodal Process Reward Models
Multimodal Process Reward Models (MPRMs) are central to step-level supervision for visual reasoning in MLLMs. Training MPRMs typically requires large-scale Monte Carlo (MC)-annotated corpora, incurring substantial training cost. This paper studies the data efficiency for MPRM training.Our preliminary experiments reveal that MPRM training quickly saturates under random subsampling of the training data, indicating substantial redundancy within existing MC-annotated corpora.To explain this, we formalize a theoretical framework and reveal that informative gradient updates depend on two factors: label mixtures of positive/negative steps and label reliability (average MC scores of positive steps). Guided by these insights, we propose the Balanced-Information Score (BIS), which prioritizes both mixture and reliability based on existing MC signals at the rollout level, without incurring any additional cost. Across two backbones (InternVL2.5-8B and Qwen2.5-VL-7B) on VisualProcessBench, BIS-selected subsets consistently match and even surpass the full-data performance at small fractions. Notably, the BIS subset reaches full-data performance using only 10% of the training data, improving over random subsampling by a relative 4.1%.
☆ From Lemmas to Dependencies: What Signals Drive Light Verbs Classification? EACL
Light verb constructions (LVCs) are a challenging class of verbal multiword expressions, especially in Turkish, where rich morphology and productive complex predicates create minimal contrasts between idiomatic predicate meanings and literal verb--argument uses. This paper asks what signals drive LVC classification by systematically restricting model inputs. Using UD-derived supervision, we compare lemma-driven baselines (lemma TF--IDF + Logistic Regression; BERTurk trained on lemma sequences), a grammar-only Logistic Regression over UD morphosyntax (UPOS/DEPREL/MORPH), and a full-input BERTurk baseline. We evaluate on a controlled diagnostic set with Random negatives, lexical controls (NLVC), and LVC positives, reporting split-wise performance to expose decision-boundary behavior. Results show that coarse morphosyntax alone is insufficient for robust LVC detection under controlled contrasts, while lexical identity supports LVC judgments but is sensitive to calibration and normalization choices. Overall, Our findings motivate targeted evaluation of Turkish MWEs and show that ``lemma-only'' is not a single, well-defined representation, but one that depends critically on how normalization is operationalized.
comment: EACL SIGTURK
☆ DELTA: Deliberative Multi-Agent Reasoning with Reinforcement Learning for Multimodal Psychological Counseling
Psychological counseling is a fundamentally multimodal cognitive process in which clinicians integrate verbal content with visual and vocal cues to infer clients' mental states and respond empathically. However, most existing language-model-based counseling systems operate on text alone and rely on implicit mental state inference. We introduce DELTA, a deliberative multi-agent framework that models counseling as a structured reasoning process over multimodal signals, separating evidence grounding, mental state abstraction, and response generation. DELTA further incorporates reinforcement learning guided by a distribution-level Emotion Attunement Score to encourage emotionally attuned responses. Experiments on a multimodal counseling benchmark show that DELTA improves both counseling quality and emotion attunement across models. Ablation and qualitative analyses suggest that explicit multimodal reasoning and structured mental state representations play complementary roles in supporting empathic human-AI interaction.
☆ Expert Selections In MoE Models Reveal (Almost) As Much As Text
We present a text-reconstruction attack on mixture-of-experts (MoE) language models that recovers tokens from expert selections alone. In MoE models, each token is routed to a subset of expert subnetworks; we show these routing decisions leak substantially more information than previously understood. Prior work using logistic regression achieves limited reconstruction; we show that a 3-layer MLP improves this to 63.1% top-1 accuracy, and that a transformer-based sequence decoder recovers 91.2% of tokens top-1 (94.8% top-10) on 32-token sequences from OpenWebText after training on 100M tokens. These results connect MoE routing to the broader literature on embedding inversion. We outline practical leakage scenarios (e.g., distributed inference and side channels) and show that adding noise reduces but does not eliminate reconstruction. Our findings suggest that expert selections in MoE deployments should be treated as sensitive as the underlying text.
☆ Rethinking Perplexity: Revealing the Impact of Input Length on Perplexity Evaluation in LLMs
Perplexity is a widely adopted metric for assessing the predictive quality of large language models (LLMs) and often serves as a reference metric for downstream evaluations. However, recent evidence shows that perplexity can be unreliable, especially when irrelevant long inputs are used, raising concerns for both benchmarking and system deployment. While prior efforts have employed selective input filtering and curated datasets, the impact of input length on perplexity has not been systematically studied from a systems perspective and input length has rarely been treated as a first-class system variable affecting both fairness and efficiency. In this work, we close this gap by introducing LengthBenchmark, a system-conscious evaluation framework that explicitly integrates input length, evaluation protocol design, and system-level costs, evaluating representative LLMs under two scoring protocols (direct accumulation and fixed window sliding) across varying context lengths. Unlike prior work that focuses solely on accuracy-oriented metrics, LengthBenchmark additionally measures latency, memory footprint, and evaluation cost, thereby linking predictive metrics to deployment realities. We further incorporate quantized variants not as a main contribution, but as robustness checks, showing that length-induced biases persist across both full-precision and compressed models. This design disentangles the effects of evaluation logic, quantization, and input length, and demonstrates that length bias is a general phenomenon that undermines fair cross-model comparison. Our analysis yields two key observations: (i) sliding window evaluation consistently inflates performance on short inputs, and (ii) both full-precision and quantized models appear to realise gains as the evaluated segment length grows.
☆ SocialVeil: Probing Social Intelligence of Language Agents under Communication Barriers
Large language models (LLMs) are increasingly evaluated in interactive environments to test their social intelligence. However, existing benchmarks often assume idealized communication between agents, limiting our ability to diagnose whether LLMs can maintain and repair interactions in more realistic, imperfect settings. To close this gap, we present \textsc{SocialVeil}, a social learning environment that can simulate social interaction under cognitive-difference-induced communication barriers. Grounded in a systematic literature review of communication challenges in human interaction, \textsc{SocialVeil} introduces three representative types of such disruption, \emph{semantic vagueness}, \emph{sociocultural mismatch}, and \emph{emotional interference}. We also introduce two barrier-aware evaluation metrics, \emph{unresolved confusion} and \emph{mutual understanding}, to evaluate interaction quality under impaired communication. Experiments across 720 scenarios and four frontier LLMs show that barriers consistently impair performance, with mutual understanding reduced by over 45\% on average, and confusion elevated by nearly 50\%. Human evaluations validate the fidelity of these simulated barriers (ICC$\approx$0.78, Pearson r$\approx$0.80). We further demonstrate that adaptation strategies (Repair Instruction and Interactive learning) only have a modest effect far from barrier-free performance. This work takes a step toward bringing social interaction environments closer to real-world communication, opening opportunities for exploring the social intelligence of LLM agents.
comment: 10 pages
☆ Multilingual Extraction and Recognition of Implicit Discourse Relations in Speech and Text
Implicit discourse relation classification is a challenging task, as it requires inferring meaning from context. While contextual cues can be distributed across modalities and vary across languages, they are not always captured by text alone. To address this, we introduce an automatic method for distantly related and unrelated language pairs to construct a multilingual and multimodal dataset for implicit discourse relations in English, French, and Spanish. For classification, we propose a multimodal approach that integrates textual and acoustic information through Qwen2-Audio, allowing joint modeling of text and audio for implicit discourse relation classification across languages. We find that while text-based models outperform audio-based models, integrating both modalities can enhance performance, and cross-lingual transfer can provide substantial improvements for low-resource languages.
☆ Data Kernel Perspective Space Performance Guarantees for Synthetic Data from Transformer Models
Scarcity of labeled training data remains the long pole in the tent for building performant language technology and generative AI models. Transformer models -- particularly LLMs -- are increasingly being used to mitigate the data scarcity problem via synthetic data generation. However, because the models are black boxes, the properties of the synthetic data are difficult to predict. In practice it is common for language technology engineers to 'fiddle' with the LLM temperature setting and hope that what comes out the other end improves the downstream model. Faced with this uncertainty, here we propose Data Kernel Perspective Space (DKPS) to provide the foundation for mathematical analysis yielding concrete statistical guarantees for the quality of the outputs of transformer models. We first show the mathematical derivation of DKPS and how it provides performance guarantees. Next we show how DKPS performance guarantees can elucidate performance of a downstream task, such as neural machine translation models or LLMs trained using Contrastive Preference Optimization (CPO). Limitations of the current work and future research are also discussed.
☆ Locas: Your Models are Principled Initializers of Locally-Supported Parametric Memories
In this paper, we aim to bridge test-time-training with a new type of parametric memory that can be flexibly offloaded from or merged into model parameters. We present Locas, a Locally-Supported parametric memory that shares the design of FFN blocks in modern transformers, allowing it to be flexibly permanentized into the model parameters while supporting efficient continual learning. We discuss two major variants of Locas: one with a conventional two-layer MLP design that has a clearer theoretical guarantee; the other one shares the same GLU-FFN structure with SOTA LLMs, and can be easily attached to existing models for both parameter-efficient and computation-efficient continual learning. Crucially, we show that proper initialization of such low-rank sideway-FFN-style memories -- performed in a principled way by reusing model parameters, activations and/or gradients -- is essential for fast convergence, improved generalization, and catastrophic forgetting prevention. We validate the proposed memory mechanism on the PG-19 whole-book language modeling and LoCoMo long-context dialogue question answering tasks. With only 0.02\% additional parameters in the lowest case, Locas-GLU is capable of storing the information from past context while maintaining a much smaller context window. In addition, we also test the model's general capability loss after memorizing the whole book with Locas, through comparative MMLU evaluation. Results show the promising ability of Locas to permanentize past context into parametric knowledge with minimized catastrophic forgetting of the model's existing internal knowledge.
comment: Tencent AI Lab Technical Report
☆ StagePilot: A Deep Reinforcement Learning Agent for Stage-Controlled Cybergrooming Simulation
Cybergrooming is an evolving threat to youth, necessitating proactive educational interventions. We propose StagePilot, an offline RL-based dialogue agent that simulates the stage-wise progression of grooming behaviors for prevention training. StagePilot selects conversational stages using a composite reward that balances user sentiment and goal proximity, with transitions constrained to adjacent stages for realism and interpretability. We evaluate StagePilot through LLM-based simulations, measuring stage completion, dialogue efficiency, and emotional engagement. Results show that StagePilot generates realistic and coherent conversations aligned with grooming dynamics. Among tested methods, the IQL+AWAC agent achieves the best balance between strategic planning and emotional coherence, reaching the final stage up to 43% more frequently than baselines while maintaining over 70% sentiment alignment.
☆ VEXA: Evidence-Grounded and Persona-Adaptive Explanations for Scam Risk Sensemaking
Online scams across email, short message services, and social media increasingly challenge everyday risk assessment, particularly as generative AI enables more fluent and context-aware deception. Although transformer-based detectors achieve strong predictive performance, their explanations are often opaque to non-experts or misaligned with model decisions. We propose VEXA, an evidence-grounded and persona-adaptive framework for generating learner-facing scam explanations by integrating GradientSHAP-based attribution with theory-informed vulnerability personas. Evaluation across multi-channel datasets shows that grounding explanations in detector-derived evidence improves semantic reliability without increasing linguistic complexity, while persona conditioning introduces interpretable stylistic variation without disrupting evidential alignment. These results reveal a key design insight: evidential grounding governs semantic correctness, whereas persona-based adaptation operates at the level of presentation under constraints of faithfulness. Together, VEXA demonstrates the feasibility of persona-adaptive, evidence-grounded explanations and provides design guidance for trustworthy, learner-facing security explanations in non-formal contexts.
☆ Capacity Constraints and the Multilingual Penalty for Lexical Disambiguation
Multilingual language models (LMs) sometimes under-perform their monolingual counterparts, possibly due to capacity limitations. We quantify this ``multilingual penalty'' for lexical disambiguation--a task requiring precise semantic representations and contextualization mechanisms--using controlled datasets of human relatedness judgments for ambiguous words in both English and Spanish. Comparing monolingual and multilingual LMs from the same families, we find consistently reduced performance in multilingual LMs. We then explore three potential capacity constraints: representational (reduced embedding isotropy), attentional (reduced attention to disambiguating cues), and vocabulary-related (increased multi-token segmentation). Multilingual LMs show some evidence of all three limitations; moreover, these factors statistically account for the variance formerly attributed to a model's multilingual status. These findings suggest both that multilingual LMs do suffer from multiple capacity constraints, and that these constraints correlate with reduced disambiguation performance.
comment: 9 pages, 5 figures, conference
☆ DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Search
With the rapid progress of tool-using and agentic large language models (LLMs), Retrieval-Augmented Generation (RAG) is evolving from one-shot, passive retrieval into multi-turn, decision-driven evidence acquisition. Despite strong results in open-domain settings, existing agentic search frameworks commonly treat long documents as flat collections of chunks, underutilizing document-native priors such as hierarchical organization and sequential discourse structure. We introduce DeepRead, a structure-aware, multi-turn document reasoning agent that explicitly operationalizes these priors for long-document question answering. DeepRead leverages LLM-based OCR model to convert PDFs into structured Markdown that preserves headings and paragraph boundaries. It then indexes documents at the paragraph level and assigns each paragraph a coordinate-style metadata key encoding its section identity and in-section order. Building on this representation, DeepRead equips the LLM with two complementary tools: a Retrieve tool that localizes relevant paragraphs while exposing their structural coordinates (with lightweight scanning context), and a ReadSection tool that enables contiguous, order-preserving reading within a specified section and paragraph range. Our experiments demonstrate that DeepRead achieves significant improvements over Search-o1-style agentic search in document question answering. The synergistic effect between retrieval and reading tools is also validated. Our fine-grained behavioral analysis reveals a reading and reasoning paradigm resembling human-like ``locate then read'' behavior.
comment: working in progress
☆ Enhanced QKNorm normalization for neural transformers with the Lp norm
The normalization of query and key vectors is an essential part of the Transformer architecture. It ensures that learning is stable regardless of the scale of these vectors. Some normalization approaches are available. In this preliminary work, a generalization of the QKNorm normalization scheme is proposed. The approach is based on the Lp norm, allowing non-Euclidean norms to be employed. Experimental results demonstrate the suitability of the method for a simple problem.
☆ CoWork-X: Experience-Optimized Co-Evolution for Multi-Agent Collaboration System
Large language models are enabling language-conditioned agents in interactive environments, but highly cooperative tasks often impose two simultaneous constraints: sub-second real-time coordination and sustained multi-episode adaptation under a strict online token budget. Existing approaches either rely on frequent in-episode reasoning that induces latency and timing jitter, or deliver post-episode improvements through unstructured text that is difficult to compile into reliable low-cost execution. We propose CoWork-X, an active co-evolution framework that casts peer collaboration as a closed-loop optimization problem across episodes, inspired by fast--slow memory separation. CoWork-X instantiates a Skill-Agent that executes via HTN (hierarchical task network)-based skill retrieval from a structured, interpretable, and compositional skill library, and a post-episode Co-Optimizer that performs patch-style skill consolidation with explicit budget constraints and drift regularization. Experiments in challenging Overcooked-AI-like realtime collaboration benchmarks demonstrate that CoWork-X achieves stable, cumulative performance gains while steadily reducing online latency and token usage.
☆ EntRGi: Entropy Aware Reward Guidance for Diffusion Language Models
Reward guidance has been applied to great success in the test-time adaptation of continuous diffusion models; it updates each denoising step using the gradients from a downstream reward model. We study reward guidance for discrete diffusion language models, where one cannot differentiate through the natural outputs of the model because they are discrete tokens. Existing approaches either replace these discrete tokens with continuous relaxations, or employ techniques like the straight-through estimator. In this work, we show the downsides of both these methods. The former degrades gradient feedback because the reward model has never been trained with continuous inputs. The latter involves incorrect optimization because the gradient evaluated at discrete tokens is used to update continuous logits. Our key innovation is to go beyond this tradeoff by introducing a novel mechanism called EntRGi: Entropy aware Reward Guidance that dynamically regulates the gradients from the reward model. By modulating the continuous relaxation using the model's confidence, our approach substantially improves reward guidance while providing reliable inputs to the reward model. We empirically validate our approach on a 7B-parameter diffusion language model across 3 diverse reward models and 3 multi-skill benchmarks, showing consistent improvements over state-of-the-art methods.
comment: Preprint
☆ Learning Rate Matters: Vanilla LoRA May Suffice for LLM Fine-tuning
Low-Rank Adaptation (LoRA) is the prevailing approach for efficient large language model (LLM) fine-tuning. Building on this paradigm, recent studies have proposed alternative initialization strategies and architectural modifications, reporting substantial improvements over vanilla LoRA. However, these gains are often demonstrated under fixed or narrowly tuned hyperparameter settings, despite the known sensitivity of neural networks to training configurations. In this work, we systematically re-evaluate four representative LoRA variants alongside vanilla LoRA through extensive hyperparameter searches. Across mathematical and code generation tasks on diverse model scales, we find that different LoRA methods favor distinct learning rate ranges. Crucially, once learning rates are properly tuned, all methods achieve similar peak performance (within 1-2%), with only subtle rank-dependent behaviors. These results suggest that vanilla LoRA remains a competitive baseline and that improvements reported under single training configuration may not reflect consistent methodological advantages. Finally, a second-order analysis attributes the differing optimal learning rate ranges to variations in the largest Hessian eigenvalue, aligning with classical learning theories.
☆ BioACE: An Automated Framework for Biomedical Answer and Citation Evaluations
With the increasing use of large language models (LLMs) for generating answers to biomedical questions, it is crucial to evaluate the quality of the generated answers and the references provided to support the facts in the generated answers. Evaluation of text generated by LLMs remains a challenge for question answering, retrieval-augmented generation (RAG), summarization, and many other natural language processing tasks in the biomedical domain, due to the requirements of expert assessment to verify consistency with the scientific literature and complex medical terminology. In this work, we propose BioACE, an automated framework for evaluating biomedical answers and citations against the facts stated in the answers. The proposed BioACE framework considers multiple aspects, including completeness, correctness, precision, and recall, in relation to the ground-truth nuggets for answer evaluation. We developed automated approaches to evaluate each of the aforementioned aspects and performed extensive experiments to assess and analyze their correlation with human evaluations. In addition, we considered multiple existing approaches, such as natural language inference (NLI) and pre-trained language models and LLMs, to evaluate the quality of evidence provided to support the generated answers in the form of citations into biomedical literature. With the detailed experiments and analysis, we provide the best approaches for biomedical answer and citation evaluation as a part of BioACE (https://github.com/deepaknlp/BioACE) evaluation package.
comment: Work in progress
☆ Linear Model Merging Unlocks Simple and Scalable Multimodal Data Mixture Optimization
Selecting the best data mixture is critical for successful Supervised Fine-Tuning (SFT) of Multimodal Large Language Models. However, determining the optimal mixture weights across multiple domain-specific datasets remains a significant bottleneck due to the combinatorial search space and the high cost associated with even a single training run. This is the so-called Data Mixture Optimization (DMO) problem. On the other hand, model merging unifies domain-specific experts through parameter interpolation. This strategy is efficient, as it only requires a single training run per domain, yet oftentimes leads to suboptimal models. In this work, we take the best of both worlds, studying model merging as an efficient strategy for estimating the performance of different data mixtures. We train domain-specific multimodal experts and evaluate their weighted parameter-space combinations to estimate the efficacy of corresponding data mixtures. We conduct extensive experiments on 14 multimodal benchmarks, and empirically demonstrate that the merged proxy models exhibit a high rank correlation with models trained on actual data mixtures. This decouples the search for optimal mixtures from the resource-intensive training process, thereby providing a scalable and efficient strategy for navigating the complex landscape of mixture weights. Code is publicly available at https://github.com/BerasiDavide/mLLMs_merging_4_DMO.
comment: Preprint
☆ Pruning Minimal Reasoning Graphs for Efficient Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) is now standard for knowledge-intensive LLM tasks, but most systems still treat every query as fresh, repeatedly re-retrieving long passages and re-reasoning from scratch, inflating tokens, latency, and cost. We present AutoPrunedRetriever, a graph-style RAG system that persists the minimal reasoning subgraph built for earlier questions and incrementally extends it for later ones. AutoPrunedRetriever stores entities and relations in a compact, ID-indexed codebook and represents questions, facts, and answers as edge sequences, enabling retrieval and prompting over symbolic structure instead of raw text. To keep the graph compact, we apply a two-layer consolidation policy (fast ANN/KNN alias detection plus selective $k$-means once a memory threshold is reached) and prune low-value structure, while prompts retain only overlap representatives and genuinely new evidence. We instantiate two front ends: AutoPrunedRetriever-REBEL, which uses REBEL as a triplet parser, and AutoPrunedRetriever-llm, which swaps in an LLM extractor. On GraphRAG-Benchmark (Medical and Novel), both variants achieve state-of-the-art complex reasoning accuracy, improving over HippoRAG2 by roughly 9--11 points, and remain competitive on contextual summarize and generation. On our harder STEM and TV benchmarks, AutoPrunedRetriever again ranks first, while using up to two orders of magnitude fewer tokens than graph-heavy baselines, making it a practical substrate for long-running sessions, evolving corpora, and multi-agent pipelines.
☆ Internalizing LLM Reasoning via Discovery and Replay of Latent Actions
The internalization of chain-of-thought processes into hidden states has emerged as a highly efficient paradigm for scaling test-time compute. However, existing activation steering methods rely on static control vectors that fail to adapt to the non-stationary evolution of complex reasoning tasks. To address this limitation, we propose STIR (Self-Distilled Tools for Internal Reasoning), a framework that reformulates reasoning enhancement as a dynamic latent trajectory control problem. STIR introduces a synergistic three-stage pipeline: (1) differential intrinsic action induction harvests latent reasoning successes to crystallize steering primitives; (2) sparse control basis construction curates a compact, geometrically diverse tool library; and (3) value-modulated trajectory intervention dynamically injects context-specific impulses via anchor-based gating. Extensive experiments on six arithmetic and logical benchmarks across four representative models demonstrate that STIR improves average accuracy by 1.9% to 7.5% while reducing average token consumption by up to 35% compared to vanilla decoding. These findings demonstrate that the benefits of explicit chain-of-thought can be realized through dynamic latent trajectory control, internalizing the reasoning process to bypass the explicit generation while achieving superior fidelity. Our code is available at https://github.com/sznnzs/LLM-Latent-Action.
♻ ☆ Grammatical Error Correction for Low-Resource Languages: The Case of Zarma
Grammatical error correction (GEC) aims to improve text quality and readability. Previous work on the task focused primarily on high-resource languages, while low-resource languages lack robust tools. To address this shortcoming, we present a study on GEC for Zarma, a language spoken by over five million people in West Africa. We compare three approaches: rule-based methods, machine translation (MT) models, and large language models (LLMs). We evaluated GEC models using a dataset of more than 250,000 examples, including synthetic and human-annotated data. Our results showed that the MT-based approach using M2M100 outperforms others, with a detection rate of 95.82% and a suggestion accuracy of 78.90% in automatic evaluations (AE) and an average score of 3.0 out of 5.0 in manual evaluation (ME) from native speakers for grammar and logical corrections. The rule-based method was effective for spelling errors but failed on complex context-level errors. LLMs -- Gemma 2b and MT5-small -- showed moderate performance. Our work supports use of MT models to enhance GEC in low-resource settings, and we validated these results with Bambara, another West African language.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
♻ ☆ DEBATE: A Large-Scale Benchmark for Evaluating Opinion Dynamics in Role-Playing LLM Agents
Accurately modeling opinion change through social interactions is crucial for understanding and mitigating polarization, misinformation, and societal conflict. Recent work simulates opinion dynamics with role-playing LLM agents (RPLAs), but multi-agent simulations often display unnatural group behavior (e.g., premature convergence) and lack empirical benchmarks for assessing alignment with real human group interactions. We introduce DEBATE, a large-scale benchmark for evaluating the authenticity of opinion dynamics in multi-agent RPLA simulations. DEBATE contains 36,383 messages from 2,832 U.S.-based participants across 708 groups and 107 topics, with both public messages and private Likert-scale beliefs, enabling evaluation at the utterance and group levels (and supporting future individual-level analyses). We instantiate "digital twin" RPLAs with seven LLMs and evaluate across two settings: next-message prediction and full conversation rollout, using stance-alignment and opinion-convergence metrics. In zero-shot settings, RPLA groups exhibit strong opinion convergence relative to human groups. Post-training via supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) improves stance alignment and brings group-level convergence closer to human behavior, though discrepancies in opinion change and belief updating remain. DEBATE enables rigorous benchmarking of simulated opinion dynamics and supports future research on aligning multi-agent RPLAs with realistic human interactions.
♻ ☆ Open-Source Multimodal Moxin Models with Moxin-VLM and Moxin-VLA
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Moxin 7B is introduced as a fully open-source LLM developed in accordance with the Model Openness Framework, which moves beyond the simple sharing of model weights to embrace complete transparency in training, datasets, and implementation detail, thus fostering a more inclusive and collaborative research environment that can sustain a healthy open-source ecosystem. To further equip Moxin with various capabilities in different tasks, we develop three variants based on Moxin, including Moxin-VLM, Moxin-VLA, and Moxin-Chinese, which target the vision-language, vision-language-action, and Chinese capabilities, respectively. Experiments show that our models achieve superior performance in various evaluations. We adopt open-source framework and open data for the training. We release our models, along with the available data and code to derive these models.
♻ ☆ Anticipatory Evaluation of Language Models
Progress in large language models is increasingly constrained by an evaluation bottleneck: benchmarks must be built and models run before iteration can begin. We investigate whether evaluation outcomes can be forecast before any experiments are conducted. Specifically, we study text-only performance prediction, where models estimate performance from task descriptions and experimental configurations alone, without access to dataset instances. To support systematic study, we curate PRECOG, a corpus of description-performance pairs spanning diverse tasks, domains, and metrics. We scrape task and configuration descriptions from arXiv, yielding 2,290 instances covering 1,519 papers, and construct a test split using papers published after the evaluated models' knowledge cutoff. Experiments show the task is challenging but feasible: reasoning models achieve a non-trivial forecasting skill reaching mean absolute error as low as 9.9 at high-confidence thresholds. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter resource allocation.
comment: 30 pages, 7 figures
♻ ☆ Latent Chain-of-Thought as Planning: Decoupling Reasoning from Verbalization
Chain-of-Thought (CoT) empowers Large Language Models (LLMs) to tackle complex problems, but remains constrained by the computational cost and reasoning path collapse when grounded in discrete token spaces. Recent latent reasoning approaches attempt to optimize efficiency by performing reasoning within continuous hidden states. However, these methods typically operate as opaque end-to-end mappings from explicit reasoning steps to latent states, and often require a pre-defined number of latent steps during inference. In this work, we introduce PLaT (Planning with Latent Thoughts), a framework that reformulates latent reasoning as planning by fundamentally decouple reasoning from verbalization. We model reasoning as a deterministic trajectory of latent planning states, while a separate Decoder grounds these thoughts into text when necessary. This decoupling allows the model to dynamically determine when to terminate reasoning rather than relying on fixed hyperparameters. Empirical results on mathematical benchmarks reveal a distinct trade-off: while PLaT achieves lower greedy accuracy than baselines, it demonstrates superior scalability in terms of reasoning diversity. This indicates that PLaT learns a robust, broader solution space, offering a transparent and scalable foundation for inference-time search. Our code can be found in https://github.com/yunsaijc/PLaT.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ Sparse Subnetwork Enhancement for Underrepresented Languages in Large Language Models
Large language models (LLMs) exhibit substantial performance disparities across languages, particularly between high- and low-resource settings. We propose a framework for improving performance in underrepresented languages while preserving general-purpose capabilities via targeted fine-tuning of sparse, language-associated subnetworks. Our approach identifies language-relevant neurons using Language Activation Probability Entropy (LAPE), an information-theoretic metric that reliably captures language-specific activation patterns, and fine-tunes only the corresponding weights. Experiments on Llama-3.1-8B, Mistral-Nemo-12B, and Aya-Expanse-8B across 12 mid- and low-resource languages show that our method consistently outperforms full fine-tuning, FFN-only fine-tuning, LoRA, IA^3, and random-subset baselines while updating only 0.2-1% of model parameters. We further show that sparse, neuron-targeted fine-tuning can inject new language capabilities without catastrophic forgetting, with potential applicability to other model capabilities. Mechanistic analyses of weight updates and internal representations reveal asymmetric roles of FFN projections in language adaptation and improved cross-lingual alignment. Finally, we release language neuron sets for over 100 languages together with our adaptation pipeline, enabling a cost-effective path for extending LLMs to underrepresented languages.
comment: preprint
♻ ☆ When Algorithms Meet Artists: Semantic Compression of Artists' Concerns in the Public AI-Art Debate
Artists occupy a paradoxical position in generative AI: their work trains the models reshaping creative labor. We tested whether their concerns achieve proportional representation in public discourse shaping AI governance. Analyzing public AI-art discourse (news, podcasts, legal filings, research; 2013--2025) and projecting 1,259 survey-derived artist statements into this semantic space, we find stark compression: 95% of artist concerns cluster in 4 of 22 discourse topics, while 14 topics (62% of discourse) contain no artist perspective. This compression is selective - governance concerns (ownership, transparency) are 7x underrepresented; affective themes (threat, utility) show only 1.4x underrepresentation after style controls. The pattern indicates semantic, not stylistic, marginalization. These findings demonstrate a measurable representational gap: decision-makers relying on public discourse as a proxy for stakeholder priorities will systematically underweight those most affected. We introduce a consensus-based semantic projection methodology that is currently being validated across domains and generalizes to other stakeholder-technology contexts.
comment: 35 pages, 5 figures, 4 tables
♻ ☆ Asynchronous Reasoning: Training-Free Interactive Thinking LLMs
Many state-of-the-art LLMs are trained to think before giving their answer. Reasoning can greatly improve language model capabilities, but it also makes them less interactive: given a new input, a model must stop thinking before it can respond. Real-world use cases such as voice-based or embodied assistants require an LLM agent to respond and adapt to additional information in real time, which is incompatible with sequential interactions. In contrast, humans can listen, think, and act asynchronously: we begin thinking about the problem while reading it and continue thinking while formulating the answer. In this work, we augment LLMs capable of reasoning to operate in a similar way without additional training. Our method uses the properties of positional embeddings to enable LLMs built for sequential generation to simultaneously think, listen, and write outputs. We evaluate our approach on math, commonsense, and safety reasoning: it allows models to generate accurate thinking-augmented answers while reducing time to first non-thinking token from minutes to ${\le}$ 5s and the overall real-time delays by up to $12{\times}$.
comment: Preprint, work in progress
♻ ☆ Addressing Data Imbalance in Transformer-Based Multi-Label Emotion Detection with Weighted Loss
This paper explores the application of a simple weighted loss function to Transformer-based models for multi-label emotion detection in SemEval-2025 Shared Task 11. Our approach addresses data imbalance by dynamically adjusting class weights, thereby enhancing performance on minority emotion classes without the computational burden of traditional resampling methods. We evaluate BERT, RoBERTa, and BART on the BRIGHTER dataset, using evaluation metrics such as Micro F1, Macro F1, ROC-AUC, Accuracy, and Jaccard similarity coefficients. The results demonstrate that the weighted loss function improves performance on high-frequency emotion classes but shows limited impact on minority classes. These findings underscore both the effectiveness and the challenges of applying this approach to imbalanced multi-label emotion detection.
comment: 10 pages, 1 figure, SemEval 2025
♻ ☆ PromotionGo at SemEval-2025 Task 11: A Feature-Centric Framework for Cross-Lingual Multi-Emotion Detection in Short Texts
This paper presents our system for SemEval 2025 Task 11: Bridging the Gap in Text-Based Emotion Detection (Track A), which focuses on multi-label emotion detection in short texts. We propose a feature-centric framework that dynamically adapts document representations and learning algorithms to optimize language-specific performance. Our study evaluates three key components: document representation, dimensionality reduction, and model training in 28 languages, highlighting five for detailed analysis. The results show that TF-IDF remains highly effective for low-resource languages, while contextual embeddings like FastText and transformer-based document representations, such as those produced by Sentence-BERT, exhibit language-specific strengths. Principal Component Analysis (PCA) reduces training time without compromising performance, particularly benefiting FastText and neural models such as Multi-Layer Perceptrons (MLP). Computational efficiency analysis underscores the trade-off between model complexity and processing cost. Our framework provides a scalable solution for multilingual emotion detection, addressing the challenges of linguistic diversity and resource constraints.
♻ ☆ Representation-Aware Unlearning via Activation Signatures: From Suppression to Knowledge-Signature Erasure
Selective knowledge erasure from LLMs is critical for GDPR compliance and model safety, yet current unlearning methods conflate behavioral suppression with true knowledge removal, allowing latent capabilities to persist beneath surface-level refusals. In this work, we address this challenge by introducing Knowledge Immunization Framework (KIF), a representation-aware architecture that distinguishes genuine erasure from obfuscation by targeting internal activation signatures rather than surface outputs. Our approach combines dynamic suppression of subject-specific representations with parameter-efficient adaptation, enabling durable unlearning without full model retraining. KIF achieves near-oracle erasure (FQ approx 0.99 vs. 1.00) while preserving utility at oracle levels (MU = 0.62), effectively breaking the stability-erasure tradeoff that has constrained all prior work. We evaluate both standard foundation models (Llama and Mistral) and reasoning-prior models (Qwen and DeepSeek) across 3B to 14B parameters. Our observation shows that standard models exhibit scale-independent true erasure (<3% utility drift), while reasoning-prior models reveal fundamental architectural divergence. Our comprehensive dual-metric evaluation protocol, combining surface-level leakage with latent trace persistence, operationalizes the obfuscation - erasure distinction and enables the first systematic diagnosis of mechanism-level forgetting behavior across model families and scales.
comment: 16 pages, 4 figures
♻ ☆ PersoBench: Benchmarking Personalized Response Generation in Large Language Models
While large language models (LLMs) have exhibited impressive conversational capabilities, their proficiency in delivering personalized responses remains unclear. Although recent benchmarks automatically evaluate persona consistency in role-playing contexts using LLM-based judgment, the evaluation of personalization in response generation remains underexplored. To address this gap, we present an automated benchmarking pipeline, PersoBench, to evaluate the personalization ability of LLMs in persona-aware dialogue generation within a zero-shot setting. Our framework employs a structured pipeline comprising speaker-aware annotation, task-specific and context-driven prompt construction, response post-processing, and automated evaluation across multiple dimensions of generation quality. In particular, the pipeline performs text preprocessing and speaker labeling, constructs structured prompts with task instructions and LLM roles, validates response format, and evaluates valid outputs across fluency, personalization, diversity, and coherence. We assess the performance of four open-source and four closed-source LLMs using well-known datasets and a range of explicit metrics. Our findings reveal that while LLMs excel at generating fluent and diverse responses, they are far from satisfactory in delivering personalized and coherent responses, considering both the conversation context and the provided personas.
♻ ☆ Guarding the Guardrails: A Taxonomy-Driven Approach to Jailbreak Detection
Jailbreaking techniques pose a significant threat to the safety of Large Language Models (LLMs). Existing defenses typically focus on single-turn attacks, lack coverage across languages, and rely on limited taxonomies that either fail to capture the full diversity of attack strategies or emphasize risk categories rather than jailbreaking techniques. To advance the understanding of the effectiveness of jailbreaking techniques, we conducted a structured red-teaming challenge. The outcomes of our experiments are fourfold. First, we developed a comprehensive hierarchical taxonomy of jailbreak strategies that systematically consolidates techniques previously studied in isolation and harmonizes existing, partially overlapping classifications with explicit cross-references to prior categorizations. The taxonomy organizes jailbreak strategies into seven mechanism-oriented families: impersonation, persuasion, privilege escalation, cognitive overload, obfuscation, goal conflict, and data poisoning. Second, we analyzed the data collected from the challenge to examine the prevalence and success rates of different attack types, providing insights into how specific jailbreak strategies exploit model vulnerabilities and induce misalignment. Third, we benchmarked GPT-5 as a judge for jailbreak detection, evaluating the benefits of taxonomy-guided prompting for improving automatic detection. Finally, we compiled a new Italian dataset of 1364 multi-turn adversarial dialogues, annotated with our taxonomy, enabling the study of interactions where adversarial intent emerges gradually and succeeds in bypassing traditional safeguards.
comment: 2nd Conference on International Association for Safe & Ethical AI (IASEAI 2026), 24-26 February 2026, UNESCO House, Paris, France
♻ ☆ SpeechMapper: Speech-to-text Embedding Projector for LLMs ICASSP 2026
Current speech LLMs bridge speech foundation models to LLMs using projection layers, training all of these components on speech instruction data. This strategy is computationally intensive and susceptible to task and prompt overfitting. We present SpeechMapper, a cost-efficient speech-to-LLM-embedding training approach that mitigates overfitting, enabling more robust and generalizable models. Our model is first pretrained without the LLM on inexpensive hardware, and then efficiently attached to the target LLM via a brief 1K-step instruction tuning (IT) stage. Through experiments on speech translation and spoken question answering, we demonstrate the versatility of SpeechMapper's pretrained block, presenting results for both task-agnostic IT, an ASR-based adaptation strategy that does not train in the target task, and task-specific IT. In task-agnostic settings, Speechmapper rivals the best instruction-following speech LLM from IWSLT25, despite never being trained on these tasks, while in task-specific settings, it outperforms this model across many datasets, despite requiring less data and compute. Overall, SpeechMapper offers a practical and scalable approach for efficient, generalizable speech-LLM integration without large-scale IT.
comment: Accepted to ICASSP 2026
♻ ☆ Stingy Context: 18:1 Hierarchical Code Compression for LLM Auto-Coding
We introduce Stingy Context, a hierarchical tree-based compression scheme achieving 18:1 reduction in LLM context for auto-coding tasks. Using our TREEFRAG exploit decomposition, we reduce a real source code base of 239k tokens to 11k tokens while preserving task fidelity. Empirical results across 12 Frontier models show 94 to 97% success on 40 real-world issues at low cost, outperforming flat methods and mitigating lost-in-the-middle effects.
comment: 28 pages, 10 tables, 2 figures, 10 bibliographical references and 6 appendices
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Diversity or Precision? A Deep Dive into Next Token Prediction
Recent advancements have shown that reinforcement learning (RL) can substantially improve the reasoning abilities of large language models (LLMs). The effectiveness of such RL training, however, depends critically on the exploration space defined by the pre-trained model's token-output distribution. In this paper, we revisit the standard cross-entropy loss, interpreting it as a specific instance of policy gradient optimization applied within a single-step episode. To systematically study how the pre-trained distribution shapes the exploration potential for subsequent RL, we propose a generalized pre-training objective that adapts on-policy RL principles to supervised learning. By framing next-token prediction as a stochastic decision process, we introduce a reward-shaping strategy that explicitly balances diversity and precision. Our method employs a positive reward scaling factor to control probability concentration on ground-truth tokens and a rank-aware mechanism that treats high-ranking and low-ranking negative tokens asymmetrically. This allows us to reshape the pre-trained token-output distribution and investigate how to provide a more favorable exploration space for RL, ultimately enhancing end-to-end reasoning performance. Contrary to the intuition that higher distribution entropy facilitates effective exploration, we find that imposing a precision-oriented prior yields a superior exploration space for RL.
♻ ☆ LLM Agents for Education: Advances and Applications EMNLP 2025
Large Language Model (LLM) agents are transforming education by automating complex pedagogical tasks and enhancing both teaching and learning processes. In this survey, we present a systematic review of recent advances in applying LLM agents to address key challenges in educational settings, such as feedback comment generation, curriculum design, etc. We analyze the technologies enabling these agents, including representative datasets, benchmarks, and algorithmic frameworks. Additionally, we highlight key challenges in deploying LLM agents in educational settings, including ethical issues, hallucination and overreliance, and integration with existing educational ecosystems. Beyond the core technical focus, we include in Appendix A a comprehensive overview of domain-specific educational agents, covering areas such as science learning, language learning, and professional development.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ DeVisE: Behavioral Testing of Medical Large Language Models
Large language models (LLMs) are increasingly applied in clinical decision support, yet current evaluations rarely reveal whether their outputs reflect genuine medical reasoning or superficial correlations. We introduce DeVisE (Demographics and Vital signs Evaluation), a behavioral testing framework that probes fine-grained clinical understanding through controlled counterfactuals. Using intensive care unit (ICU) discharge notes from MIMIC-IV, we construct both raw (real-world) and template-based (synthetic) variants with single-variable perturbations in demographic (age, gender, ethnicity) and vital sign attributes. We evaluate eight LLMs, spanning general-purpose and medical variants, under zero-shot setting. Model behavior is analyzed through (1) input-level sensitivity, capturing how counterfactuals alter perplexity, and (2) downstream reasoning, measuring their effect on predicted ICU length-of-stay and mortality. Overall, our results show that standard task metrics obscure clinically relevant differences in model behavior, with models differing substantially in how consistently and proportionally they adjust predictions to counterfactual perturbations.
♻ ☆ CreditAudit: 2$^\text{nd}$ Dimension for LLM Evaluation and Selection
Leaderboard scores on public benchmarks have been steadily rising and converging, with many frontier language models now separated by only marginal differences. However, these scores often fail to match users' day to day experience, because system prompts, output protocols, and interaction modes evolve under routine iteration, and in agentic multi step pipelines small protocol shifts can trigger disproportionate failures, leaving practitioners uncertain about which model to deploy. We propose CreditAudit, a deployment oriented credit audit framework that evaluates models under a family of semantically aligned and non adversarial system prompt templates across multiple benchmarks, reporting mean ability as average performance across scenarios and scenario induced fluctuation sigma as a stability risk signal, and further mapping volatility into interpretable credit grades from AAA to BBB via cross model quantiles with diagnostics that mitigate template difficulty drift. Controlled experiments on GPQA, TruthfulQA, and MMLU Pro show that models with similar mean ability can exhibit substantially different fluctuation, and stability risk can overturn prioritization decisions in agentic or high failure cost regimes. By providing a 2D and grade based language for regime specific selection, CreditAudit supports tiered deployment and more disciplined allocation of testing and monitoring effort, enabling more objective and trustworthy model evaluation for real world use.
comment: Second update
♻ ☆ EvasionBench: A Large-Scale Benchmark for Detecting Managerial Evasion in Earnings Call Q&A
We present EvasionBench, a comprehensive benchmark for detecting evasive responses in corporate earnings call question-and-answer sessions. Drawing from 22.7 million Q&A pairs extracted from S&P Capital IQ transcripts, we construct a rigorously filtered dataset and introduce a three-level evasion taxonomy: direct, intermediate, and fully evasive. Our annotation pipeline employs a Multi-Model Consensus (MMC) framework, combining dual frontier LLM annotation with a three-judge majority voting mechanism for ambiguous cases, achieving a Cohen's Kappa of 0.835 on human inter-annotator agreement. We release: (1) a balanced 84K training set, (2) a 1K gold-standard evaluation set with expert human labels, and (3) [Eva-4B], a 4-billion parameter classifier fine-tuned from Qwen3-4B that achieves 84.9% Macro-F1, outperforming Claude 4.5, GPT-5.2, and Gemini 3 Flash. Our ablation studies demonstrate the effectiveness of multi-model consensus labeling over single-model annotation. EvasionBench fills a critical gap in financial NLP by providing the first large-scale benchmark specifically targeting managerial communication evasion.
comment: Major revision. Title and abstract updated to better reflect the refined results. Shijian Ma and Yan Lin contributed equally. Corresponding author: Yan Lin; Project page: https://iiiiqiiii.github.io/EvasionBench/
♻ ☆ Hebrew Diacritics Restoration using Visual Representation
Diacritics restoration in Hebrew is a fundamental task for ensuring accurate word pronunciation and disambiguating textual meaning. Despite the language's high degree of ambiguity when unvocalized, recent machine learning approaches have significantly advanced performance on this task. In this work, we present DiVRit, a novel system for Hebrew diacritization that frames the task as a zero-shot classification problem. Our approach operates at the word level, selecting the most appropriate diacritization pattern for each undiacritized word from a dynamically generated candidate set, conditioned on the surrounding textual context. A key innovation of DiVRit is its use of a Hebrew Visual Language Model to process diacritized candidates as images, allowing diacritic information to be embedded directly within their vector representations while the surrounding context remains tokenization-based. Through a comprehensive evaluation across various configurations, we demonstrate that the system effectively performs diacritization without relying on complex, explicit linguistic analysis. Notably, in an ``oracle'' setting where the correct diacritized form is guaranteed to be among the provided candidates, DiVRit achieves a high level of accuracy. Furthermore, strategic architectural enhancements and optimized training methodologies yield significant improvements in the system's overall generalization capabilities. These findings highlight the promising potential of visual representations for accurate and automated Hebrew diacritization.
♻ ☆ ROSA-Tuning: Enhancing Long-Context Modeling via Suffix Matching
Long-context capability and computational efficiency are among the central challenges facing today's large language models. Existing efficient attention methods reduce computational complexity, but they typically suffer from a limited coverage of the model state. This paper proposes ROSA-Tuning, a retrieval-and-recall mechanism for enhancing the long-context modeling ability of pretrained models. Beyond the standard attention mechanism, ROSA-Tuning leverages in parallel a CPU-based ROSA (RWKV Online Suffix Automaton) retrieval module, which efficiently locates historical positions in long contexts that are relevant to the current query, and injects the retrieved information into the model state in a trainable manner; subsequent weighted fusion can then be handled by range-restricted attention. To enable end-to-end training, we employ the binary discretization strategy and the counterfactual gradient algorithm, and further optimize overall execution efficiency via an asynchronous CPU-GPU pipeline. Systematic evaluations on Qwen3-Base-1.7B show that ROSA-Tuning substantially restores the long-context modeling ability of windowed-attention models, achieving performance close to and in some cases matching global attention on benchmarks such as LongBench, while maintaining computational efficiency and GPU memory usage that are nearly comparable to windowed-attention methods, offering a new technical path for efficient long-context processing. The example code can be found at https://github.com/zyaaa-ux/ROSA-Tuning.
♻ ☆ Look Back to Reason Forward: Revisitable Memory for Long-Context LLM Agents
Large language models face challenges in long-context question answering, where key evidence of a query may be dispersed across millions of tokens. Existing works equip large language models with a memory buffer that is dynamically updated via a linear document scan, also known as the "memorize while reading" methods. While this approach scales efficiently, it suffers from pruning of latent evidence, information loss through overwriting, and sparse reinforcement learning signals. To tackle these challenges, we present ReMemR1, which integrates the mechanism of memory retrieval into the memory update process, enabling the agent to selectively callback historical memories for non-linear reasoning. To further strengthen training, we propose a multi-level reward design, which combines final-answer rewards with dense, step-level signals that guide effective memory use. Together, these contributions mitigate information degradation, improve supervision, and support complex multi-hop reasoning. Extensive experiments demonstrate that ReMemR1 significantly outperforms state-of-the-art baselines on long-context question answering while incurring negligible computational overhead, validating its ability to trade marginal cost for robust long-context reasoning.
♻ ☆ SWE-Pruner: Self-Adaptive Context Pruning for Coding Agents
LLM agents have demonstrated remarkable capabilities in software development, but their performance is hampered by long interaction contexts, which incur high API costs and latency. While various context compression approaches such as LongLLMLingua have emerged to tackle this challenge, they typically rely on fixed metrics such as PPL, ignoring the task-specific nature of code understanding. As a result, they frequently disrupt syntactic and logical structure and fail to retain critical implementation details. In this paper, we propose SWE-Pruner, a self-adaptive context pruning framework tailored for coding agents. Drawing inspiration from how human programmers "selectively skim" source code during development and debugging, SWE-Pruner performs task-aware adaptive pruning for long contexts. Given the current task, the agent formulates an explicit goal (e.g., "focus on error handling") as a hint to guide the pruning targets. A lightweight neural skimmer (0.6B parameters) is trained to dynamically select relevant lines from the surrounding context given the goal. Evaluations across four benchmarks and multiple models validate SWE-Pruner's effectiveness in various scenarios, achieving 23-54% token reduction on agent tasks like SWE-Bench Verified while even improving success rates, and up to 14.84x compression on single-turn tasks like LongCodeQA with minimal performance impact.
comment: Code available at https://github.com/Ayanami1314/swe-pruner
♻ ☆ Beyond speculation: Measuring the growing presence of LLM-generated texts in multilingual disinformation
Increased sophistication of large language models (LLMs) and the consequent quality of generated multilingual text raises concerns about potential disinformation misuse. While humans struggle to distinguish LLM-generated content from human-written texts, the scholarly debate about their impact remains divided. Some argue that heightened fears are overblown due to natural ecosystem limitations, while others contend that specific "longtail" contexts face overlooked risks. Our study bridges this debate by providing the first empirical evidence of LLM presence in the latest real-world disinformation datasets, documenting the increase of machine-generated content following ChatGPT's release, and revealing crucial patterns across languages, platforms, and time periods.
comment: accepted to Computer magazine
♻ ☆ Entailed Opinion Matters: Improving the Fact-Checking Performance of Language Models by Relying on their Entailment Ability
Automated fact-checking has been a challenging task for the research community. Past works tried various strategies, such as end-to-end training, retrieval-augmented generation, and prompt engineering, to build robust fact-checking systems. However, their accuracy was not high enough for real-world deployment. We, on the other hand, propose a new learning paradigm, where evidence classification and entailed justifications made by generative language models (GLMs) are used to train encoder-only language models (ELMs). We have conducted a rigorous set of experiments, comparing our approach with recent works along with various prompting and fine-tuning strategies. Additionally, we have conducted ablation studies, error analysis, quality analysis of model explanations, and a domain generalisation study to provide a comprehensive understanding of our approach.
comment: 22 pages
♻ ☆ DPO Unchained: Your Training Algorithm is Secretly Disentangled in Human Choice Theory
Normative theories allow one to elicit key parts of a ML algorithm from first principles, which is crucial at a time of championed scrutiny for ML work. Direct Preference Optimization (DPO) cleverly bypasses reward modeling by making an explicit link with a specific normative model of human choice. Our paper elevates this connection to the full generality of DPO's normative framework. Getting there requires reworking human choice theory's textbook path for a better RLHF/ML fit. It elevates the connection to a remarkably broad viewpoint on preference optimization, considering the current panorama of DPO follow-ups. It also unveils unexpected riches for ML, chief among which the support for non-convex losses, the fact that any compliant ML analytical choice can be embedded with any human choice model, and a normative framework's umbrella wide enough to safeguard DPO's extensions (margins, length correction, ...). A toy experiment ``far away'' from the DPO crowd is given.
♻ ☆ Fine-tuned LLM-based Code Migration Framework
The study presents the outcomes of research and experimental validation in the domain of automated codebase migration, with a focus on addressing challenges in transitioning SQL-based systems. The proposed method for migration essentially appears as a framework that leverages the best aspects of traditional software engineering techniques and provides an iterative, scalable, precise and efficient solution for modern database transformations. The central piece of the approach is the integration of a fine-tuned Large Language Model to address critical issues in SQL code conversion, such as syntax mapping, resolving discrepancies between Oracle PL/SQL and PostgreSQL, and optimising database elements such as stored procedures, triggers, views, and overall database logic. Thus, the method involves a trade-off between fine-tuning and prompt engineering. Special attention is given to a fine-tuning approach, which enhances the adaptability and compatibility with migration requirements across the entire database. According to the achieved results, fine-tuning plays a very important role. The study employs targeted evaluation methodologies along with computational metrics to measure the success of iterative conversion cycles. Core innovations include automated SQL feature detection, semi-supervised error analysis and integration of Subject Matter Experts feedback within a systematic migration workflow. The methodology achieves significant reductions in Syntax Error Rates, enhances feature alignment throughout migration iterations, and leverages dataset sampling to ensure continual improvement. By embedding GAI into the migration process, the framework facilitates precise feature mapping, semi-automated error resolution, and data-driven optimisation loops, improving workflow efficiency.
comment: 16 pages, 27 figures, 7 references
♻ ☆ Evaluating and Steering Modality Preferences in Multimodal Large Language Model
Multi-modal large language models (MLLMs) have achieved remarkable success on complex multi-modal tasks. However, it remains insufficiently explored whether they exhibit $\textbf{modality preference}$, a tendency to favor one modality over another when processing multi-modal contexts. To study this question, we introduce $\textbf{MC\textsuperscript{2}}$ benchmark, which constructs controlled evidence-conflict scenarios to systematically evaluate modality preference in decision-making. Extensive experiments reveal that all 20 tested MLLMs generally demonstrate clear modality preferences, and such preferences can serve as a useful indicator of downstream task performance of MLLMs. Further analysis shows that modality preference can be controlled by instruction guidance and captured within the latent representations of MLLMs. Built on these insights, we propose a probing and steering method based on representation engineering to explicitly control modality preference without requiring additional fine-tuning. This method effectively amplifies modality preference toward a desired direction and demonstrates promising improvements across multiple multi-modal understanding and reasoning tasks.
comment: Modality Preference
♻ ☆ Beyond Correctness: Rewarding Faithful Reasoning in Retrieval-Augmented Generation
Inspired by the success of reinforcement learning (RL) in Large Language Model (LLM) training for domains like math and code, recent works have begun exploring how to train LLMs to use search engines more effectively as tools for retrieval-augmented generation. Although these methods achieve performance improvement across QA benchmarks, many prioritize final answer correctness while overlooking the quality of intermediate reasoning steps, which may lead to chain-of-thought unfaithfulness. In this paper, we first introduce a comprehensive evaluation framework for evaluating RL-based search agents, covering three distinct faithfulness metrics: information-think faithfulness, think-answer faithfulness, and think-search faithfulness. Our evaluations reveal that canonical search agents trained via Reinforcement Learning from Verifiable Reward (RLVR) -- including SearchR1 and ReSearch -- have significant room for improvement in this regard. To foster faithful reasoning, we introduce VERITAS(Verifying Entailed Reasoning through Intermediate Traceability in Agentic Search), a novel framework that integrates fine-grained faithfulness rewards into the reinforcement learning process. Our experiments show that models trained with VERITAS not only significantly improve reasoning faithfulness, but also achieve better task performance compared to the baselines trained against pure outcome-based reward.
♻ ☆ MIRROR: A Multi-Agent Framework with Iterative Adaptive Revision and Hierarchical Retrieval for Optimization Modeling in Operations Research
Operations Research (OR) relies on expert-driven modeling-a slow and fragile process ill-suited to novel scenarios. While large language models (LLMs) can automatically translate natural language into optimization models, existing approaches either rely on costly post-training or employ multi-agent frameworks, yet most still lack reliable collaborative error correction and task-specific retrieval, often leading to incorrect outputs. We propose MIRROR, a fine-tuning-free, end-to-end multi-agent framework that directly translates natural language optimization problems into mathematical models and solver code. MIRROR integrates two core mechanisms: (1) execution-driven iterative adaptive revision for automatic error correction, and (2) hierarchical retrieval to fetch relevant modeling and coding exemplars from a carefully curated exemplar library. Experiments show that MIRROR outperforms existing methods on standard OR benchmarks, with notable results on complex industrial datasets such as IndustryOR and Mamo-ComplexLP. By combining precise external knowledge infusion with systematic error correction, MIRROR provides non-expert users with an efficient and reliable OR modeling solution, overcoming the fundamental limitations of general-purpose LLMs in expert optimization tasks.
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Act or Clarify? Modeling Sensitivity to Uncertainty and Cost in Communication
When deciding how to act under uncertainty, agents may choose to act to reduce uncertainty or they may act despite that uncertainty. In communicative settings, an important way of reducing uncertainty is by asking clarification questions (CQs). We predict that the decision to ask a CQ depends on both contextual uncertainty and the cost of alternative actions, and that these factors interact: uncertainty should matter most when acting incorrectly is costly. We formalize this interaction in a computational model based on expected regret: how much an agent stands to lose by acting now rather than with full information. We test these predictions in two experiments, one examining purely linguistic responses to questions and another extending to choices between clarification and non-linguistic action. Taken together, our results suggest a rational tradeoff: humans tend to seek clarification proportional to the risk of substantial loss when acting under uncertainty.
comment: 6 pages, 3 figures, under review
♻ ☆ MapCoder-Lite: Distilling Multi-Agent Coding into a Single Small LLM
Large language models (LLMs) have advanced code generation from single-function tasks to competitive-programming problems, but existing multi-agent solutions either rely on costly large-scale (>30B) models or collapse when downsized to small open-source models. We present MapCoder-Lite, a framework for distilling the complex reasoning of large, multi-agent coding systems into a single 7B model. Our contribution is a novel, three-pillar methodology that synergistically generates, refines, and encodes multi-agent knowledge: (i) pass-based trajectory distillation from strong LLMs fixes format fragility in retrieval and reduces failures in debugging, (ii) supervisor-guided correction with global feedback strengthens planning and coding agents, and (iii) agent-wise LoRA fine-tuning delivers memory-efficient specialisation. Comprehensive evaluation on xCodeEval, APPS, and CodeContests shows that MapCoder-Lite more than doubles xCodeEval accuracy (from 13.2% to 28.3%), eliminates all format failures, while reducing GPU memory and token-generation time by 4x compared to a 32B model. It also achieves over 10% gains on simpler coding benchmarks, demonstrating broad improvements beyond competitive programming. These results demonstrate that careful agent-wise fine-tuning unleashes high-quality multi-agent coding on a small language model. Our code is publicly available at https://github.com/aiha-lab/MapCoder-Lite.
♻ ☆ ACE: Attribution-Controlled Knowledge Editing for Multi-hop Factual Recall ICLR2026
Large Language Models (LLMs) require efficient knowledge editing (KE) to update factual information, yet existing methods exhibit significant performance decay in multi-hop factual recall. This failure is particularly acute when edits involve intermediate implicit subjects within reasoning chains. Through causal analysis, we reveal that this limitation stems from an oversight of how chained knowledge is dynamically represented and utilized at the neuron level. We discover that during multi hop reasoning, implicit subjects function as query neurons, which sequentially activate corresponding value neurons across transformer layers to accumulate information toward the final answer, a dynamic prior KE work has overlooked. Guided by this insight, we propose ACE: Attribution-Controlled Knowledge Editing for Multi-hop Factual Recall, a framework that leverages neuron-level attribution to identify and edit these critical query-value (Q-V) pathways. ACE provides a mechanistically grounded solution for multi-hop KE, empirically outperforming state-of-the-art methods by 9.44% on GPT-J and 37.46% on Qwen3-8B. Our analysis further reveals more fine-grained activation patterns in Qwen3 and demonstrates that the semantic interpretability of value neurons is orchestrated by query-driven accumulation. These findings establish a new pathway for advancing KE capabilities based on the principled understanding of internal reasoning mechanisms.
comment: Accepted by ICLR2026
♻ ☆ A Survey on Vision-Language-Action Models for Embodied AI
Embodied AI is widely recognized as a cornerstone of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. The recent proliferation of VLAs necessitates a comprehensive survey to capture the rapidly evolving landscape. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing VLA-based control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges facing VLAs and outline promising future directions in embodied AI. A curated repository associated with this survey is available at: https://github.com/yueen-ma/Awesome-VLA.
comment: Project page: https://github.com/yueen-ma/Awesome-VLA
♻ ☆ The ICASSP 2026 HumDial Challenge: Benchmarking Human-like Spoken Dialogue Systems in the LLM Era ICASSP 2026
Driven by the rapid advancement of Large Language Models (LLMs), particularly Audio-LLMs and Omni-models, spoken dialogue systems have evolved significantly, progressively narrowing the gap between human-machine and human-human interactions. Achieving truly ``human-like'' communication necessitates a dual capability: emotional intelligence to perceive and resonate with users' emotional states, and robust interaction mechanisms to navigate the dynamic, natural flow of conversation, such as real-time turn-taking. Therefore, we launched the first Human-like Spoken Dialogue Systems Challenge (HumDial) at ICASSP 2026 to benchmark these dual capabilities. Anchored by a sizable dataset derived from authentic human conversations, this initiative establishes a fair evaluation platform across two tracks: (1) Emotional Intelligence, targeting long-term emotion understanding and empathetic generation; and (2) Full-Duplex Interaction, systematically evaluating real-time decision-making under `` listening-while-speaking'' conditions. This paper summarizes the dataset, track configurations, and the final results.
comment: Official summary paper for the ICASSP 2026 HumDial Challenge
♻ ☆ Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
♻ ☆ DynamicNER: A Dynamic, Multilingual, and Fine-Grained Dataset for LLM-based Named Entity Recognition EMNLP 2025
The advancements of Large Language Models (LLMs) have spurred a growing interest in their application to Named Entity Recognition (NER) methods. However, existing datasets are primarily designed for traditional machine learning methods and are inadequate for LLM-based methods, in terms of corpus selection and overall dataset design logic. Moreover, the prevalent fixed and relatively coarse-grained entity categorization in existing datasets fails to adequately assess the superior generalization and contextual understanding capabilities of LLM-based methods, thereby hindering a comprehensive demonstration of their broad application prospects. To address these limitations, we propose DynamicNER, the first NER dataset designed for LLM-based methods with dynamic categorization, introducing various entity types and entity type lists for the same entity in different context, leveraging the generalization of LLM-based NER better. The dataset is also multilingual and multi-granular, covering 8 languages and 155 entity types, with corpora spanning a diverse range of domains. Furthermore, we introduce CascadeNER, a novel NER method based on a two-stage strategy and lightweight LLMs, achieving higher accuracy on fine-grained tasks while requiring fewer computational resources. Experiments show that DynamicNER serves as a robust and effective benchmark for LLM-based NER methods. Furthermore, we also conduct analysis for traditional methods and LLM-based methods on our dataset. Our code and dataset are openly available at https://github.com/Astarojth/DynamicNER.
comment: This paper is accepted by EMNLP 2025 Main Conference
From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective numerical-visual modality integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
♻ ☆ Bridging the Knowledge-Prediction Gap in LLMs on Multiple-Choice Questions
While large language models (LLMs) perform strongly on diverse tasks, their trustworthiness is limited by erratic behavior that is unfaithful to their internal knowledge. In particular, LLMs often fail on multiple-choice questions (MCQs) even if they encode correct answers in their hidden representations, revealing a misalignment between internal knowledge and output behavior. We investigate and mitigate this knowledge-prediction gap on MCQs through a three-step analysis of hidden representations. First, we quantify the prevalence and magnitude of the gap across models and datasets. Second, we provide a geometric interpretation by identifying distinct knowledge and prediction subspaces in the residual stream. Third, we introduce KAPPA, a lightweight inference-time intervention that aligns the two subspaces within the residual stream to reduce the knowledge-prediction gap. Our results provide a geometric and interpretable explanation of the knowledge-prediction gap in LLMs. Furthermore, KAPPA effectively reduces the gap across diverse MCQ benchmarks and models, and generalizes to free-form settings.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Language models can learn implicit multi-hop reasoning, but only if they have lots of training data EMNLP 2025
Implicit reasoning is the ability of a language model to solve multi-hop reasoning tasks in a single forward pass, without chain of thought. We investigate this capability using GPT2-style language models trained from scratch on controlled $k$-hop reasoning datasets ($k = 2, 3, 4$). We show that while such models can indeed learn implicit $k$-hop reasoning, the required training data grows exponentially in $k$, and the required number of transformer layers grows linearly in $k$. We offer a theoretical explanation for why this depth growth is necessary. We further find that the data requirement can be mitigated, but not eliminated, through curriculum learning.
comment: Accepted at EMNLP 2025
♻ ☆ ResT: Reshaping Token-Level Policy Gradients for Tool-Use Large Language Models ICLR2026
Large language models (LLMs) transcend passive generation and act as goal-directed agents by invoking external tools. Reinforcement learning (RL) offers a principled framework for optimizing these emergent tool-use policies, yet the prevailing paradigm relies exclusively on sparse outcome rewards and lacks consideration of the particularity of tool-use tasks, inflating policy-gradient variance and resulting in inefficient training. To better understand and address these challenges, we first establish a theoretical link between policy entropy and training stability of tool-use tasks, which reveals that structured, low-entropy tokens are primary determinants of rewards. Motivated by this insight, we propose \textbf{Res}haped \textbf{T}oken-level policy gradients (\textbf{ResT}) for tool-use tasks. ResT reshapes the policy gradient through entropy-informed token reweighting, progressively upweighting reasoning tokens as training proceeds. This entropy-aware scheme enables a smooth shift from structural correctness to semantic reasoning and stabilizes convergence in multi-turn tool-use tasks. Evaluation on BFCL and API-Bank shows that ResT achieves state-of-the-art results, outperforming prior methods by up to $8.76\%$. When fine-tuned on a 4B base LLM, ResT further surpasses GPT-4o by $4.11\%$ on single-turn tasks and $1.50\%$ on multi-turn base tasks. Code is available at https://github.com/1229095296/ResT_Tool_use_LLM.git.
comment: Accepted by ICLR2026
♻ ☆ AERO: Autonomous Evolutionary Reasoning Optimization via Endogenous Dual-Loop Feedback
Large Language Models (LLMs) have achieved significant success in complex reasoning but remain bottlenecked by reliance on expert-annotated data and external verifiers. While existing self-evolution paradigms aim to bypass these constraints, they often fail to identify the optimal learning zone and risk reinforcing collective hallucinations and incorrect priors through flawed internal feedback. To address these challenges, we propose \underline{A}utonomous \underline{E}volutionary \underline{R}easoning \underline{O}ptimization (AERO), an unsupervised framework that achieves autonomous reasoning evolution by internalizing self-questioning, answering, and criticism within a synergistic dual-loop system. Inspired by the \textit{Zone of Proximal Development (ZPD)} theory, AERO utilizes entropy-based positioning to target the ``solvability gap'' and employs Independent Counterfactual Correction for robust verification. Furthermore, we introduce a Staggered Training Strategy to synchronize capability growth across functional roles and prevent curriculum collapse. Extensive evaluations across nine benchmarks spanning three domains demonstrate that AERO achieves average performance improvements of 4.57\% on Qwen3-4B-Base and 5.10\% on Qwen3-8B-Base, outperforming competitive baselines. Code is available at https://github.com/mira-ai-lab/AERO.
♻ ☆ OmniRAG-Agent: Agentic Omnimodal Reasoning for Low-Resource Long Audio-Video Question Answering
Long-horizon omnimodal question answering answers questions by reasoning over text, images, audio, and video. Despite recent progress on OmniLLMs, low-resource long audio-video QA still suffers from costly dense encoding, weak fine-grained retrieval, limited proactive planning, and no clear end-to-end optimization.To address these issues, we propose OmniRAG-Agent, an agentic omnimodal QA method for budgeted long audio-video reasoning. It builds an image-audio retrieval-augmented generation module that lets an OmniLLM fetch short, relevant frames and audio snippets from external banks. Moreover, it uses an agent loop that plans, calls tools across turns, and merges retrieved evidence to answer complex queries. Furthermore, we apply group relative policy optimization to jointly improve tool use and answer quality over time. Experiments on OmniVideoBench, WorldSense, and Daily-Omni show that OmniRAG-Agent consistently outperforms prior methods under low-resource settings and achieves strong results, with ablations validating each component.
♻ ☆ Input-Time Scaling: Adding Noise and Irrelevance into Less-Is-More Drastically Improves Reasoning Performance and Efficiency
Large Language Models (LLMs) excel at reasoning, traditionally requiring high-quality large-scale data and extensive training. Recent works reveal a very appealing Less-Is-More phenomenon where very small, carefully curated high-quality datasets match resource-intensive approaches. In this work, we further systematically relax their quality constraints by adding controlled noise via persona context relevance and comparing datasets of different qualities. Counterintuitively, we find that mixing relevant and irrelevant contexts consistently across training and inference stages yields optimal results -- a phenomenon we term training-testing co-design. Dataset quality comparisons show that high-quality data benefits weaker models on easy questions, while low-quality data achieves higher scores on hard questions with capable models. Across our experiments, reasoning performance is linked to reasoning efficiency. We, for the first time, found adding noisy and irrelevant contexts into queries can improve reasoning efficiency without any prices and targeted designs. Building on these insights, we propose Input-Time Scaling: applying small, low-quality data to capable models with training-testing co-design. This maintains Less-Is-More while further removing labor-intensive quality curation and improving reasoning effectiveness and efficiency, making the approach more applicable and affordable. Our method achieves 76.7% pass@1 on AIME24/25 using Qwen2.5-32B-Instruct, and 90.0%/80.0% with DeepSeek-R1-Distill-Qwen-32B -- state-of-the-art among Qwen2.5-32B variants. We are open-sourcing our datasets, pipelines, evaluation results, and checkpoints to facilitate reproducibility and further research.
♻ ☆ Beyond Forgetting: Machine Unlearning Elicits Controllable Side Behaviors and Capabilities
We consider representation misdirection (RM), a class of LLM unlearning methods that achieves forgetting by manipulating the forget-representations, that is, latent representations of forget samples. Despite being important, the roles of target vectors used in RM, however, remain underexplored. Here, we approach and revisit RM through the lens of the linear representation hypothesis. Specifically, if one can somehow identify a one-dimensional representation corresponding to a high-level concept, the linear representation hypothesis enables linear operations on this concept vector within the forget-representation space. Under this view, we hypothesize that, beyond forgetting, machine unlearning elicits controllable side behaviors and stronger side capabilities corresponding to the high-level concept. Our hypothesis is empirically validated across a wide range of tasks, including behavioral control (e.g., controlling unlearned models' truth, sentiment, and refusal) and capability enhancement (e.g., improving unlearned models' in-context learning capability). Our findings reveal that this fairly attractive phenomenon could be either a hidden risk if misused or a mechanism that can be harnessed for developing models that require stronger capabilities and controllable behaviors.
comment: 21 pages, 11 tables, 12 figures
♻ ☆ Beyond Tokens: Semantic-Aware Speculative Decoding for Efficient Inference by Probing Internal States
Large Language Models (LLMs) achieve strong performance across many tasks but suffer from high inference latency due to autoregressive decoding. The issue is exacerbated in Large Reasoning Models (LRMs), which generate lengthy chains of thought. While speculative decoding accelerates inference by drafting and verifying multiple tokens in parallel, existing methods operate at the token level and ignore semantic equivalence (i.e., different token sequences expressing the same meaning), leading to inefficient rejections. We propose SemanticSpec, a semantic-aware speculative decoding framework that verifies entire semantic sequences instead of tokens. SemanticSpec introduces a semantic probability estimation mechanism that probes the model's internal hidden states to assess the likelihood of generating sequences with specific meanings. Experiments on four benchmarks show that SemanticSpec achieves up to 2.7x speedup on DeepSeekR1-32B and 2.1x on QwQ-32B, consistently outperforming token-level and sequence-level baselines in both efficiency and effectiveness.
♻ ☆ Scaling Spoken Language Models with Syllabic Speech Tokenization ICASSP 2026
Spoken language models (SLMs) typically discretize speech into high-frame-rate tokens extracted from SSL speech models. As the most successful LMs are based on the Transformer architecture, processing these long token streams with self-attention is expensive, as attention scales quadratically with sequence length. A recent SSL work introduces acoustic tokenization of speech at the syllable level, which is more interpretable and potentially more scalable with significant compression in token lengths (4-5 Hz). Yet, their value for spoken language modeling is not yet fully explored. We present the first systematic study of syllabic tokenization for spoken language modeling, evaluating models on a suite of SLU benchmarks while varying training data scale. Syllabic tokens can match or surpass the previous high-frame rate tokens while significantly cutting training and inference costs, achieving more than a 2x reduction in training time and a 5x reduction in FLOPs. Our findings highlight syllable-level language modeling as a promising path to efficient long-context spoken language models.
comment: ICASSP 2026
WAXAL: A Large-Scale Multilingual African Language Speech Corpus
The advancement of speech technology has predominantly favored high-resource languages, creating a significant digital divide for speakers of most Sub-Saharan African languages. To address this gap, we introduce WAXAL, a large-scale, openly accessible speech dataset for 21 languages representing over 100 million speakers. The collection consists of two main components: an Automated Speech Recognition (ASR) dataset containing approximately 1,250 hours of transcribed, natural speech from a diverse range of speakers, and a Text-to-Speech (TTS) dataset with over 180 hours of high-quality, single-speaker recordings reading phonetically balanced scripts. This paper details our methodology for data collection, annotation, and quality control, which involved partnerships with four African academic and community organizations. We provide a detailed statistical overview of the dataset and discuss its potential limitations and ethical considerations. The WAXAL datasets are released at https://huggingface.co/datasets/google/WaxalNLP under the permissive CC-BY-4.0 license to catalyze research, enable the development of inclusive technologies, and serve as a vital resource for the digital preservation of these languages.
comment: Initial dataset release
♻ ☆ DTS: Enhancing Large Reasoning Models via Decoding Tree Sketching
Large Reasoning Models (LRMs) achieve remarkable inference-time improvements through parallel thinking. However, existing methods rely on redundant sampling of reasoning trajectories, failing to effectively explore the reasoning space to uncover high-quality solutions. To address these limitations, we propose Decoding Tree Sketching (DTS), a plug-and-play decoding framework for structural multi-trajectory exploration and reasoning selection. For reasoning exploration, DTS sketches a backbone tree of the reasoning space by selectively branching at decision tokens. For reasoning selection, guided by length-accuracy anti-correlation, DTS designs an early termination to prioritize short and reliable trajectories during decoding. Experimental results across four LRMs and datasets demonstrate that DTS significantly enhances accuracy by 14% and reduces repetitive generation by 8% on average. Notably, DTS enables smaller models to outperform larger models with 10$\times$ the size, highlighting its potential to strengthen reasoning capabilities.
♻ ☆ Time-To-Inconsistency: A Survival Analysis of Large Language Model Robustness to Adversarial Attacks
Large Language Models (LLMs) have revolutionized conversational AI, yet their robustness in extended multi-turn dialogues remains poorly understood. Existing evaluation frameworks focus on static benchmarks and single-turn assessments, failing to capture the temporal dynamics of conversational degradation that characterize real-world interactions. In this work, we present a large-scale survival analysis of conversational robustness, modeling failure as a time-to-event process over 36,951 turns from 9 state-of-the-art LLMs on the MT-Consistency benchmark. Our framework combines Cox proportional hazards, Accelerated Failure Time (AFT), and Random Survival Forest models with simple semantic drift features. We find that abrupt prompt-to-prompt semantic drift sharply increases the hazard of inconsistency, whereas cumulative drift is counterintuitively \emph{protective}, suggesting adaptation in conversations that survive multiple shifts. AFT models with model-drift interactions achieve the best combination of discrimination and calibration, and proportional hazards checks reveal systematic violations for key drift covariates, explaining the limitations of Cox-style modeling in this setting. Finally, we show that a lightweight AFT model can be turned into a turn-level risk monitor that flags most failing conversations several turns before the first inconsistent answer while keeping false alerts modest. These results establish survival analysis as a powerful paradigm for evaluating multi-turn robustness and for designing practical safeguards for conversational AI systems.
♻ ☆ Learning Domain Knowledge in Multimodal Large Language Models through Reinforcement Fine-Tuning
Multimodal large language models (MLLMs) have shown remarkable capabilities in multimodal perception and understanding tasks. However, their effectiveness in specialized domains, such as remote sensing and medical imaging, remains limited. A natural approach to domain adaptation is to inject domain knowledge through textual instructions, prompts, or auxiliary captions. Surprisingly, we find that such input-level domain knowledge injection yields little to no improvement on scientific multimodal tasks, even when the domain knowledge is explicitly provided. This observation suggests that current MLLMs fail to internalize domain-specific priors through language alone, and that domain knowledge must be integrated at the optimization level. Motivated by this insight, we propose a reinforcement fine-tuning framework that incorporates domain knowledge directly into the learning objective. Instead of treating domain knowledge as descriptive information, we encode it as domain-informed constraints and reward signals, shaping the model's behavior in the output space. Extensive experiments across multiple datasets in remote sensing and medical domains consistently demonstrate good performance gains, achieving state-of-the-art results on multimodal domain tasks. Our results highlight the necessity of optimization-level domain knowledge integration and reveal a fundamental limitation of textual domain conditioning in current MLLMs.
♻ ☆ Cross-Cultural Expert-Level Art Critique Evaluation with Vision-Language Models ACL 2026
Vision-Language Models (VLMs) excel at visual perception, yet their ability to interpret cultural meaning in art remains under-validated. However, cultural understanding and interpretability are often overlooked when evaluating these models. To overcome this limitation, this paper introduces a tri-tier evaluation framework for cross-cultural art-critique assessment. Tier I provides a series of automated metrics indicating cultural coverage. Tier II leverages theory-informed template-based scoring using a single primary judge across five evaluation dimensions (Coverage, Alignment, Depth, Accuracy, Quality), each rated on a 1--5 scale. Tier III then calibrates the aggregated scores from Tier II via isotonic regression. The proposed evaluation framework is validated with a large-scale experiment covering 15 different VLMs on 294 evaluation art-critique pairs spanning six different cultural traditions. Our findings reveal that (i) automated metrics are unreliable for cultural depth analysis, (ii) Western samples score higher than non-Western samples under our sampling and evaluation template, highlighting potential model biases, and (iii) VLMs exhibit a consistent performance gap, performing well in visual description but underperforming in cultural interpretation. Dataset and code are available at https://github.com/yha9806/VULCA-Framework.
comment: 16 pages, 7 figures, submitted to ACL 2026
♻ ☆ The Invisible Leash: Why RLVR May or May Not Escape Its Origin
Recent advances highlight Reinforcement Learning with Verifiable Rewards (RLVR) as a promising method for enhancing LLMs' capabilities. However, it remains unclear whether the current practice of RLVR truly expands a model's reasoning boundary or mainly amplifies high-reward outputs that the base model already knows, thereby improving precision. This study presents an empirical investigation that provides fresh insights into the limits of RLVR. We examine how RLVR can operate as a support-constrained optimization mechanism that may restrict the discovery of entirely original solutions, remaining constrained by the base model's initial distribution. We also identify an entropy-reward trade-off: while RLVR reliably enhances precision, it may progressively narrow exploration and potentially overlook correct yet underrepresented solutions. Extensive empirical experiments validate that while RLVR consistently improves \texttt{pass@1}, \textit{the shrinkage of empirical support generally outweighs the expansion of empirical support under larger sampling budgets}, failing to recover correct answers that were previously accessible to the base model. Interestingly, while RLVR sometimes increases token-level entropy, it results in greater uncertainty at each generation step and declining answer-level entropy. This indicates that these seemingly more uncertain paths ultimately converge onto a smaller set of distinct answers. Taken together, we reveal potential limits of RLVR in extending reasoning horizons. Breaking this invisible leash requires future innovations that seed probability mass into underrepresented solution regions.
♻ ☆ Policy Learning with a Language Bottleneck
Modern AI systems such as self-driving cars and game-playing agents achieve superhuman performance, but often lack human-like generalization, interpretability, and inter-operability with human users. Inspired by the rich interactions between language and decision-making in humans, we introduce Policy Learning with a Language Bottleneck (PLLB), a framework enabling AI agents to generate linguistic rules that capture the high-level strategies underlying rewarding behaviors. PLLB alternates between a *rule generation* step guided by language models, and an *update* step where agents learn new policies guided by rules, even when a rule is insufficient to describe an entire complex policy. Across five diverse tasks, including a two-player signaling game, maze navigation, image reconstruction, and robot grasp planning, we show that PLLB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users, enabling more effective human-AI coordination. We provide source code for our experiments at https://github.com/meghabyte/bottleneck .
comment: Accepted to TMLR (2026)
♻ ☆ Scaling Multiagent Systems with Process Rewards
While multiagent systems have shown promise for tackling complex tasks via specialization, finetuning multiple agents simultaneously faces two key challenges: (1) credit assignment across agents, and (2) sample efficiency of expensive multiagent rollouts. In this work, we propose finetuning multiagent systems with per-action process rewards from AI feedback (MAPPA) to address both. Through assigning credit to individual agent actions rather than only at task completion, MAPPA enables fine-grained supervision without ground truth labels while extracting maximal training signal from each rollout. We demonstrate our approach on competition math problems and tool-augmented data analysis tasks. On unseen math problems, MAPPA achieves +5.0--17.5pp on AIME and +7.8--17.2pp on AMC. For data analysis tasks, our method improves success rate by +16.7pp while quality metrics improve by up to 47%, validating that per-action supervision can lead to improvements across different multiagent systems on various domains. By addressing these challenges, our work takes a first step toward scaling multiagent systems for complex, long-horizon tasks with minimal human supervision.
♻ ☆ BanglaIPA: Towards Robust Text-to-IPA Transcription with Contextual Rewriting in Bengali EACL 2026
Despite its widespread use, Bengali lacks a robust automated International Phonetic Alphabet (IPA) transcription system that effectively supports both standard language and regional dialectal texts. Existing approaches struggle to handle regional variations, numerical expressions, and generalize poorly to previously unseen words. To address these limitations, we propose BanglaIPA, a novel IPA generation system that integrates a character-based vocabulary with word-level alignment. The proposed system accurately handles Bengali numerals and demonstrates strong performance across regional dialects. BanglaIPA improves inference efficiency by leveraging a precomputed word-to-IPA mapping dictionary for previously observed words. The system is evaluated on the standard Bengali and six regional variations of the DUAL-IPA dataset. Experimental results show that BanglaIPA outperforms baseline IPA transcription models by 58.4-78.7% and achieves an overall mean word error rate of 11.4%, highlighting its robustness in phonetic transcription generation for the Bengali language.
comment: Accepted at LoResLM workshop, EACL 2026
♻ ☆ Short Chains, Deep Thoughts: Balancing Reasoning Efficiency and Intra-Segment Capability via Split-Merge Optimization
While Large Reasoning Models (LRMs) have demonstrated impressive capabilities in solving complex tasks through the generation of long reasoning chains, this reliance on verbose generation results in significant latency and computational overhead. To address these challenges, we propose \textbf{CoSMo} (\textbf{Co}nsistency-Guided \textbf{S}plit-\textbf{M}erge \textbf{O}ptimization), a framework designed to eliminate structural redundancy rather than indiscriminately restricting token volume. Specifically, CoSMo utilizes a split-merge algorithm that dynamically refines reasoning chains by merging redundant segments and splitting logical gaps to ensure coherence. We then employ structure-aligned reinforcement learning with a novel segment-level budget to supervise the model in maintaining efficient reasoning structures throughout training. Extensive experiments across multiple benchmarks and backbones demonstrate that CoSMo achieves superior performance, improving accuracy by \textbf{3.3} points while reducing segment usage by \textbf{28.7\%} on average compared to reasoning efficiency baselines.
comment: Due to a misalignment in the timing of publication, we respectfully request to withdraw our manuscript. Specifically, the corresponding author has not given approval for the article to be published at this time, as additional preparations are required. We appreciate your understanding and will resubmit when the author team has reached a unanimous agreement
♻ ☆ Improving Low-Resource Machine Translation via Round-Trip Reinforcement Learning
Low-resource machine translation (MT) has gained increasing attention as parallel data from low-resource language communities is collected, but many potential methods for improving low-resource MT remain unexplored. We investigate a self-supervised reinforcement-learning-based fine-tuning for translation in low-resource settings using round-trip bootstrapping with the No Language Left Behind (NLLB) family of models. Our approach translates English into a target low-resource language and then back into English, using a combination of chrF++ and BLEU as the reward function on the reconstructed English sentences. Using the NLLB-MD dataset, we evaluate both the 600M and 1.3B parameter NLLB models and observe consistent improvements for the following languages: Central Aymara, Friulian, Wolof and Russian. Qualitative inspection of translation outputs indicates increased fluency and semantic fidelity. We argue that our method can further benefit from scale, enabling models to increasingly leverage their pretrained knowledge and continue self-improving. The code is available on github: https://github.com/Copticoder/thesis-nllb-bootstrap-grpo.
♻ ☆ Beyond Prompting: Efficient and Robust Contextual Biasing for Speech LLMs via Logit-Space Integration (LOGIC)
The rapid emergence of new entities -- driven by cultural shifts, evolving trends, and personalized user data -- poses a significant challenge for existing Speech Large Language Models (Speech LLMs). While these models excel at general conversational tasks, their static training knowledge limits their ability to recognize domain-specific terms such as contact names, playlists, or technical jargon. Existing solutions primarily rely on prompting, which suffers from poor scalability: as the entity list grows, prompting encounters context window limitations, increased inference latency, and the "lost-in-the-middle" phenomenon. An alternative approach, Generative Error Correction (GEC), attempts to rewrite transcripts via post-processing but frequently suffers from "over-correction", introducing hallucinations of entities that were never spoken. In this work, we introduce LOGIC (Logit-Space Integration for Contextual Biasing), an efficient and robust framework that operates directly in the decoding layer. Unlike prompting, LOGIC decouples context injection from input processing, ensuring constant-time complexity relative to prompt length. Extensive experiments using the Phi-4-MM model across 11 multilingual locales demonstrate that LOGIC achieves an average 9% relative reduction in Entity WER with a negligible 0.30% increase in False Alarm Rate.
comment: This paper is withdrawn temporarily to ensure full compliance with internal institutional publication approval processes
♻ ☆ CellForge: Agentic Design of Virtual Cell Models
Virtual cell modeling aims to predict cellular responses to diverse perturbations but faces challenges from biological complexity, multimodal data heterogeneity, and the need for interdisciplinary expertise. We introduce CellForge, a multi-agent framework that autonomously designs and synthesizes neural network architectures tailored to specific single-cell datasets and perturbation tasks. Given raw multi-omics data and task descriptions, CellForge discovers candidate architectures through collaborative reasoning among specialized agents, then generates executable implementations. Our core contribution is the framework itself: showing that multi-agent collaboration mechanisms - rather than manual human design or single-LLM prompting - can autonomously produce executable, high-quality computational methods. This approach goes beyond conventional hyperparameter tuning by enabling entirely new architectural components such as trajectory-aware encoders and perturbation diffusion modules to emerge from agentic deliberation. We evaluate CellForge on six datasets spanning gene knockouts, drug treatments, and cytokine stimulations across multiple modalities (scRNA-seq, scATAC-seq, CITE-seq). The results demonstrate that the models generated by CellForge are highly competitive with established baselines, while revealing systematic patterns of architectural innovation. CellForge highlights the scientific value of multi-agent frameworks: collaboration among specialized agents enables genuine methodological innovation and executable solutions that single agents or human experts cannot achieve. This represents a paradigm shift toward autonomous scientific method development in computational biology. Code is available at https://github.com/gersteinlab/CellForge.
♻ ☆ GIFT: Group-relative Implicit Fine Tuning Integrates GRPO with DPO and UNA
I propose \textbf{G}roup-relative \textbf{I}mplicit \textbf{F}ine \textbf{T}uning (GIFT), a novel reinforcement learning framework for aligning LLMs. Instead of directly maximizing cumulative rewards like PPO or GRPO, GIFT minimizes the discrepancy between implicit and explicit reward models. It combines three key ideas: (1) the online multi-response generation and normalization of GRPO, (2) the implicit reward formulation of DPO, and (3) the implicit-explicit reward alignment principle of UNA. By jointly normalizing the implicit and explicit rewards, GIFT eliminates an otherwise intractable term that prevents effective use of implicit rewards. This normalization transforms the complex reward maximization objective into a simple mean squared error (MSE) loss between the normalized reward functions, converting a non-convex optimization problem into a convex, stable, and analytically differentiable formulation. Unlike offline methods such as DPO and UNA, GIFT remains on-policy and thus retains exploration capability. Compared to GRPO, it requires fewer hyperparameters, converges faster, and generalizes better with significantly reduced training overfitting. Empirically, GIFT achieves superior reasoning and alignment performance on mathematical benchmarks while remaining computationally efficient.
Computer Vision and Pattern Recognition 165
☆ Reinforced Attention Learning
Post-training with Reinforcement Learning (RL) has substantially improved reasoning in Large Language Models (LLMs) via test-time scaling. However, extending this paradigm to Multimodal LLMs (MLLMs) through verbose rationales yields limited gains for perception and can even degrade performance. We propose Reinforced Attention Learning (RAL), a policy-gradient framework that directly optimizes internal attention distributions rather than output token sequences. By shifting optimization from what to generate to where to attend, RAL promotes effective information allocation and improved grounding in complex multimodal inputs. Experiments across diverse image and video benchmarks show consistent gains over GRPO and other baselines. We further introduce On-Policy Attention Distillation, demonstrating that transferring latent attention behaviors yields stronger cross-modal alignment than standard knowledge distillation. Our results position attention policies as a principled and general alternative for multimodal post-training.
☆ CoWTracker: Tracking by Warping instead of Correlation
Dense point tracking is a fundamental problem in computer vision, with applications ranging from video analysis to robotic manipulation. State-of-the-art trackers typically rely on cost volumes to match features across frames, but this approach incurs quadratic complexity in spatial resolution, limiting scalability and efficiency. In this paper, we propose \method, a novel dense point tracker that eschews cost volumes in favor of warping. Inspired by recent advances in optical flow, our approach iteratively refines track estimates by warping features from the target frame to the query frame based on the current estimate. Combined with a transformer architecture that performs joint spatiotemporal reasoning across all tracks, our design establishes long-range correspondences without computing feature correlations. Our model is simple and achieves state-of-the-art performance on standard dense point tracking benchmarks, including TAP-Vid-DAVIS, TAP-Vid-Kinetics, and Robo-TAP. Remarkably, the model also excels at optical flow, sometimes outperforming specialized methods on the Sintel, KITTI, and Spring benchmarks. These results suggest that warping-based architectures can unify dense point tracking and optical flow estimation.
comment: Project website: cowtracker.github.io
☆ PerpetualWonder: Long-Horizon Action-Conditioned 4D Scene Generation
We introduce PerpetualWonder, a hybrid generative simulator that enables long-horizon, action-conditioned 4D scene generation from a single image. Current works fail at this task because their physical state is decoupled from their visual representation, which prevents generative refinements to update the underlying physics for subsequent interactions. PerpetualWonder solves this by introducing the first true closed-loop system. It features a novel unified representation that creates a bidirectional link between the physical state and visual primitives, allowing generative refinements to correct both the dynamics and appearance. It also introduces a robust update mechanism that gathers supervision from multiple viewpoints to resolve optimization ambiguity. Experiments demonstrate that from a single image, PerpetualWonder can successfully simulate complex, multi-step interactions from long-horizon actions, maintaining physical plausibility and visual consistency.
comment: Project website: https://johnzhan2023.github.io/PerpetualWonder/
☆ Laminating Representation Autoencoders for Efficient Diffusion
Recent work has shown that diffusion models can generate high-quality images by operating directly on SSL patch features rather than pixel-space latents. However, the dense patch grids from encoders like DINOv2 contain significant redundancy, making diffusion needlessly expensive. We introduce FlatDINO, a variational autoencoder that compresses this representation into a one-dimensional sequence of just 32 continuous tokens -an 8x reduction in sequence length and 48x compression in total dimensionality. On ImageNet 256x256, a DiT-XL trained on FlatDINO latents achieves a gFID of 1.80 with classifier-free guidance while requiring 8x fewer FLOPs per forward pass and up to 4.5x fewer FLOPs per training step compared to diffusion on uncompressed DINOv2 features. These are preliminary results and this work is in progress.
☆ When LLaVA Meets Objects: Token Composition for Vision-Language-Models
Current autoregressive Vision Language Models (VLMs) usually rely on a large number of visual tokens to represent images, resulting in a need for more compute especially at inference time. To address this problem, we propose Mask-LLaVA, a framework that leverages different levels of visual features to create a compact yet information-rich visual representation for autoregressive VLMs. Namely, we combine mask-based object representations together with global tokens and local patch tokens. While all tokens are used during training, it shows that the resulting model can flexibly drop especially the number of mask-based object-tokens at test time, allowing to adapt the number of tokens during inference without the need to retrain the model and without a significant drop in performance. We evaluate the proposed approach on a suite of standard benchmarks showing results competitive to current token efficient methods and comparable to the original LLaVA baseline using only a fraction of visual tokens. Our analysis demonstrates that combining multi-level features enables efficient learning with fewer tokens while allowing dynamic token selection at test time for good performance.
☆ PDF-HR: Pose Distance Fields for Humanoid Robots
Pose and motion priors play a crucial role in humanoid robotics. Although such priors have been widely studied in human motion recovery (HMR) domain with a range of models, their adoption for humanoid robots remains limited, largely due to the scarcity of high-quality humanoid motion data. In this work, we introduce Pose Distance Fields for Humanoid Robots (PDF-HR), a lightweight prior that represents the robot pose distribution as a continuous and differentiable manifold. Given an arbitrary pose, PDF-HR predicts its distance to a large corpus of retargeted robot poses, yielding a smooth measure of pose plausibility that is well suited for optimization and control. PDF-HR can be integrated as a reward shaping term, a regularizer, or a standalone plausibility scorer across diverse pipelines. We evaluate PDF-HR on various humanoid tasks, including single-trajectory motion tracking, general motion tracking, style-based motion mimicry, and general motion retargeting. Experiments show that this plug-and-play prior consistently and substantially strengthens strong baselines. Code and models will be released.
comment: \href{https://gaoyukang33.github.io/PDF-HR/}{Project page}
☆ LitS: A novel Neighborhood Descriptor for Point Clouds
With the advancement of 3D scanning technologies, point clouds have become fundamental for representing 3D spatial data, with applications that span across various scientific and technological fields. Practical analysis of this data depends crucially on available neighborhood descriptors to accurately characterize the local geometries of the point cloud. This paper introduces LitS, a novel neighborhood descriptor for 2D and 3D point clouds. LitS are piecewise constant functions on the unit circle that allow points to keep track of their surroundings. Each element in LitS' domain represents a direction with respect to a local reference system. Once constructed, evaluating LitS at any given direction gives us information about the number of neighbors in a cone-like region centered around that same direction. Thus, LitS conveys a lot of information about the local neighborhood of a point, which can be leveraged to gain global structural understanding by analyzing how LitS changes between close points. In addition, LitS comes in two versions ('regular' and 'cumulative') and has two parameters, allowing them to adapt to various contexts and types of point clouds. Overall, they are a versatile neighborhood descriptor, capable of capturing the nuances of local point arrangements and resilient to common point cloud data issues such as variable density and noise.
☆ It's not a Lottery, it's a Race: Understanding How Gradient Descent Adapts the Network's Capacity to the Task
Our theoretical understanding of neural networks is lagging behind their empirical success. One of the important unexplained phenomena is why and how, during the process of training with gradient descent, the theoretical capacity of neural networks is reduced to an effective capacity that fits the task. We here investigate the mechanism by which gradient descent achieves this through analyzing the learning dynamics at the level of individual neurons in single hidden layer ReLU networks. We identify three dynamical principles -- mutual alignment, unlocking and racing -- that together explain why we can often successfully reduce capacity after training through the merging of equivalent neurons or the pruning of low norm weights. We specifically explain the mechanism behind the lottery ticket conjecture, or why the specific, beneficial initial conditions of some neurons lead them to obtain higher weight norms.
☆ Toward Reliable and Explainable Nail Disease Classification: Leveraging Adversarial Training and Grad-CAM Visualization
Human nail diseases are gradually observed over all age groups, especially among older individuals, often going ignored until they become severe. Early detection and accurate diagnosis of such conditions are important because they sometimes reveal our body's health problems. But it is challenging due to the inferred visual differences between disease types. This paper presents a machine learning-based model for automated classification of nail diseases based on a publicly available dataset, which contains 3,835 images scaling six categories. In 224x224 pixels, all images were resized to ensure consistency. To evaluate performance, four well-known CNN models-InceptionV3, DenseNet201, EfficientNetV2, and ResNet50 were trained and analyzed. Among these, InceptionV3 outperformed the others with an accuracy of 95.57%, while DenseNet201 came next with 94.79%. To make the model stronger and less likely to make mistakes on tricky or noisy images, we used adversarial training. To help understand how the model makes decisions, we used SHAP to highlight important features in the predictions. This system could be a helpful support for doctors, making nail disease diagnosis more accurate and faster.
comment: 6 pages, 12 figures. This is the author's accepted manuscript of a paper accepted for publication in the Proceedings of the 16th International IEEE Conference on Computing, Communication and Networking Technologies (ICCCNT 2025). The final published version will be available via IEEE Xplore
☆ XtraLight-MedMamba for Classification of Neoplastic Tubular Adenomas
Accurate risk stratification of precancerous polyps during routine colonoscopy screenings is essential for lowering the risk of developing colorectal cancer (CRC). However, assessment of low-grade dysplasia remains limited by subjective histopathologic interpretation. Advancements in digital pathology and deep learning provide new opportunities to identify subtle and fine morphologic patterns associated with malignant progression that may be imperceptible to the human eye. In this work, we propose XtraLight-MedMamba, an ultra-lightweight state-space-based deep learning framework for classifying neoplastic tubular adenomas from whole-slide images (WSIs). The architecture is a blend of ConvNext based shallow feature extractor with parallel vision mamba to efficiently model both long- and short-range dependencies and image generalization. An integration of Spatial and Channel Attention Bridge (SCAB) module enhances multiscale feature extraction, while Fixed Non-Negative Orthogonal Classifier (FNOClassifier) enables substantial parameter reduction and improved generalization. The model was evaluated on a curated dataset acquired from patients with low-grade tubular adenomas, stratified into case and control cohorts based on subsequent CRC development. XtraLight-MedMamba achieved an accuracy of 97.18% and an F1-score of 0.9767 using approximately 32,000 parameters, outperforming transformer-based and conventional Mamba architectures with significantly higher model complexity.
comment: 13 pages, 8 figures
☆ X2HDR: HDR Image Generation in a Perceptually Uniform Space
High-dynamic-range (HDR) formats and displays are becoming increasingly prevalent, yet state-of-the-art image generators (e.g., Stable Diffusion and FLUX) typically remain limited to low-dynamic-range (LDR) output due to the lack of large-scale HDR training data. In this work, we show that existing pretrained diffusion models can be easily adapted to HDR generation without retraining from scratch. A key challenge is that HDR images are natively represented in linear RGB, whose intensity and color statistics differ substantially from those of sRGB-encoded LDR images. This gap, however, can be effectively bridged by converting HDR inputs into perceptually uniform encodings (e.g., using PU21 or PQ). Empirically, we find that LDR-pretrained variational autoencoders (VAEs) reconstruct PU21-encoded HDR inputs with fidelity comparable to LDR data, whereas linear RGB inputs cause severe degradations. Motivated by this finding, we describe an efficient adaptation strategy that freezes the VAE and finetunes only the denoiser via low-rank adaptation in a perceptually uniform space. This results in a unified computational method that supports both text-to-HDR synthesis and single-image RAW-to-HDR reconstruction. Experiments demonstrate that our perceptually encoded adaptation consistently improves perceptual fidelity, text-image alignment, and effective dynamic range, relative to previous techniques.
comment: Project page: https://x2hdr.github.io/, Code: https://github.com/X2HDR/X2HDR
☆ VISTA-Bench: Do Vision-Language Models Really Understand Visualized Text as Well as Pure Text?
Vision-Language Models (VLMs) have achieved impressive performance in cross-modal understanding across textual and visual inputs, yet existing benchmarks predominantly focus on pure-text queries. In real-world scenarios, language also frequently appears as visualized text embedded in images, raising the question of whether current VLMs handle such input requests comparably. We introduce VISTA-Bench, a systematic benchmark from multimodal perception, reasoning, to unimodal understanding domains. It evaluates visualized text understanding by contrasting pure-text and visualized-text questions under controlled rendering conditions. Extensive evaluation of over 20 representative VLMs reveals a pronounced modality gap: models that perform well on pure-text queries often degrade substantially when equivalent semantic content is presented as visualized text. This gap is further amplified by increased perceptual difficulty, highlighting sensitivity to rendering variations despite unchanged semantics. Overall, VISTA-Bench provides a principled evaluation framework to diagnose this limitation and to guide progress toward more unified language representations across tokenized text and pixels. The source dataset is available at https://github.com/QingAnLiu/VISTA-Bench.
comment: 27 pages, 19 figures
☆ Light Forcing: Accelerating Autoregressive Video Diffusion via Sparse Attention
Advanced autoregressive (AR) video generation models have improved visual fidelity and interactivity, but the quadratic complexity of attention remains a primary bottleneck for efficient deployment. While existing sparse attention solutions have shown promise on bidirectional models, we identify that applying these solutions to AR models leads to considerable performance degradation for two reasons: isolated consideration of chunk generation and insufficient utilization of past informative context. Motivated by these observations, we propose \textsc{Light Forcing}, the \textit{first} sparse attention solution tailored for AR video generation models. It incorporates a \textit{Chunk-Aware Growth} mechanism to quantitatively estimate the contribution of each chunk, which determines their sparsity allocation. This progressive sparsity increase strategy enables the current chunk to inherit prior knowledge in earlier chunks during generation. Additionally, we introduce a \textit{Hierarchical Sparse Attention} to capture informative historical and local context in a coarse-to-fine manner. Such two-level mask selection strategy (\ie, frame and block level) can adaptively handle diverse attention patterns. Extensive experiments demonstrate that our method outperforms existing sparse attention in quality (\eg, 84.5 on VBench) and efficiency (\eg, $1.2{\sim}1.3\times$ end-to-end speedup). Combined with FP8 quantization and LightVAE, \textsc{Light Forcing} further achieves a $2.3\times$ speedup and 19.7\,FPS on an RTX~5090 GPU. Code will be released at \href{https://github.com/chengtao-lv/LightForcing}{https://github.com/chengtao-lv/LightForcing}.
comment: 14 pages, 7 figures
Generative Modeling via Drifting
Generative modeling can be formulated as learning a mapping f such that its pushforward distribution matches the data distribution. The pushforward behavior can be carried out iteratively at inference time, for example in diffusion and flow-based models. In this paper, we propose a new paradigm called Drifting Models, which evolve the pushforward distribution during training and naturally admit one-step inference. We introduce a drifting field that governs the sample movement and achieves equilibrium when the distributions match. This leads to a training objective that allows the neural network optimizer to evolve the distribution. In experiments, our one-step generator achieves state-of-the-art results on ImageNet at 256 x 256 resolution, with an FID of 1.54 in latent space and 1.61 in pixel space. We hope that our work opens up new opportunities for high-quality one-step generation.
comment: Project page: https://lambertae.github.io/projects/drifting/
☆ Mitigating Long-Tail Bias via Prompt-Controlled Diffusion Augmentation
Semantic segmentation of high-resolution remote-sensing imagery is critical for urban mapping and land-cover monitoring, yet training data typically exhibits severe long-tailed pixel imbalance. In the dataset LoveDA, this challenge is compounded by an explicit Urban/Rural split with distinct appearance and inconsistent class-frequency statistics across domains. We present a prompt-controlled diffusion augmentation framework that synthesizes paired label--image samples with explicit control of both domain and semantic composition. Stage~A uses a domain-aware, masked ratio-conditioned discrete diffusion model to generate layouts that satisfy user-specified class-ratio targets while respecting learned co-occurrence structure. Stage~B translates layouts into photorealistic, domain-consistent images using Stable Diffusion with ControlNet guidance. Mixing the resulting ratio and domain-controlled synthetic pairs with real data yields consistent improvements across multiple segmentation backbones, with gains concentrated on minority classes and improved Urban and Rural generalization, demonstrating controllable augmentation as a practical mechanism to mitigate long-tail bias in remote-sensing segmentation. Source codes, pretrained models, and synthetic datasets are available at \href{https://github.com/Buddhi19/SyntheticGen.git}{Github}
☆ How to rewrite the stars: Mapping your orchard over time through constellations of fruits
Following crop growth through the vegetative cycle allows farmers to predict fruit setting and yield in early stages, but it is a laborious and non-scalable task if performed by a human who has to manually measure fruit sizes with a caliper or dendrometers. In recent years, computer vision has been used to automate several tasks in precision agriculture, such as detecting and counting fruits, and estimating their size. However, the fundamental problem of matching the exact same fruits from one video, collected on a given date, to the fruits visible in another video, collected on a later date, which is needed to track fruits' growth through time, remains to be solved. Few attempts were made, but they either assume that the camera always starts from the same known position and that there are sufficiently distinct features to match, or they used other sources of data like GPS. Here we propose a new paradigm to tackle this problem, based on constellations of 3D centroids, and introduce a descriptor for very sparse 3D point clouds that can be used to match fruits across videos. Matching constellations instead of individual fruits is key to deal with non-rigidity, occlusions and challenging imagery with few distinct visual features to track. The results show that the proposed method can be successfully used to match fruits across videos and through time, and also to build an orchard map and later use it to locate the camera pose in 6DoF, thus providing a method for autonomous navigation of robots in the orchard and for selective fruit picking, for example.
comment: submitted to IEEE International Conference on Robotics & Automation
☆ Adaptive Prompt Elicitation for Text-to-Image Generation
Aligning text-to-image generation with user intent remains challenging, for users who provide ambiguous inputs and struggle with model idiosyncrasies. We propose Adaptive Prompt Elicitation (APE), a technique that adaptively asks visual queries to help users refine prompts without extensive writing. Our technical contribution is a formulation of interactive intent inference under an information-theoretic framework. APE represents latent intent as interpretable feature requirements using language model priors, adaptively generates visual queries, and compiles elicited requirements into effective prompts. Evaluation on IDEA-Bench and DesignBench shows that APE achieves stronger alignment with improved efficiency. A user study with challenging user-defined tasks demonstrates 19.8% higher alignment without workload overhead. Our work contributes a principled approach to prompting that, for general users, offers an effective and efficient complement to the prevailing prompt-based interaction paradigm with text-to-image models.
comment: ACM International Conference on Intelligent User Interfaces (IUI) 2026, March 23-26, Paphos, Cyprus
☆ SAR-RAG: ATR Visual Question Answering by Semantic Search, Retrieval, and MLLM Generation
We present a visual-context image retrieval-augmented generation (ImageRAG) assisted AI agent for automatic target recognition (ATR) of synthetic aperture radar (SAR). SAR is a remote sensing method used in defense and security applications to detect and monitor the positions of military vehicles, which may appear indistinguishable in images. Researchers have extensively studied SAR ATR to improve the differentiation and identification of vehicle types, characteristics, and measurements. Test examples can be compared with known vehicle target types to improve recognition tasks. New methods enhance the capabilities of neural networks, transformer attention, and multimodal large language models. An agentic AI method may be developed to utilize a defined set of tools, such as searching through a library of similar examples. Our proposed method, SAR Retrieval-Augmented Generation (SAR-RAG), combines a multimodal large language model (MLLM) with a vector database of semantic embeddings to support contextual search for image exemplars with known qualities. By recovering past image examples with known true target types, our SAR-RAG system can compare similar vehicle categories, achieving improved ATR prediction accuracy. We evaluate this through search and retrieval metrics, categorical classification accuracy, and numeric regression of vehicle dimensions. These metrics all show improvements when SAR-RAG is added to an MLLM baseline method as an attached ATR memory bank.
comment: Submitted to 2026 IEEE Radar Conference
☆ Annotation Free Spacecraft Detection and Segmentation using Vision Language Models
Vision Language Models (VLMs) have demonstrated remarkable performance in open-world zero-shot visual recognition. However, their potential in space-related applications remains largely unexplored. In the space domain, accurate manual annotation is particularly challenging due to factors such as low visibility, illumination variations, and object blending with planetary backgrounds. Developing methods that can detect and segment spacecraft and orbital targets without requiring extensive manual labeling is therefore of critical importance. In this work, we propose an annotation-free detection and segmentation pipeline for space targets using VLMs. Our approach begins by automatically generating pseudo-labels for a small subset of unlabeled real data with a pre-trained VLM. These pseudo-labels are then leveraged in a teacher-student label distillation framework to train lightweight models. Despite the inherent noise in the pseudo-labels, the distillation process leads to substantial performance gains over direct zero-shot VLM inference. Experimental evaluations on the SPARK-2024, SPEED+, and TANGO datasets on segmentation tasks demonstrate consistent improvements in average precision (AP) by up to 10 points. Code and models are available at https://github.com/giddyyupp/annotation-free-spacecraft-segmentation.
comment: ICRA 2026
☆ DRMOT: A Dataset and Framework for RGBD Referring Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track specific targets based on language descriptions and is vital for interactive AI systems such as robotics and autonomous driving. However, existing RMOT models rely solely on 2D RGB data, making it challenging to accurately detect and associate targets characterized by complex spatial semantics (e.g., ``the person closest to the camera'') and to maintain reliable identities under severe occlusion, due to the absence of explicit 3D spatial information. In this work, we propose a novel task, RGBD Referring Multi-Object Tracking (DRMOT), which explicitly requires models to fuse RGB, Depth (D), and Language (L) modalities to achieve 3D-aware tracking. To advance research on the DRMOT task, we construct a tailored RGBD referring multi-object tracking dataset, named DRSet, designed to evaluate models' spatial-semantic grounding and tracking capabilities. Specifically, DRSet contains RGB images and depth maps from 187 scenes, along with 240 language descriptions, among which 56 descriptions incorporate depth-related information. Furthermore, we propose DRTrack, a MLLM-guided depth-referring tracking framework. DRTrack performs depth-aware target grounding from joint RGB-D-L inputs and enforces robust trajectory association by incorporating depth cues. Extensive experiments on the DRSet dataset demonstrate the effectiveness of our framework.
☆ Investigating Disability Representations in Text-to-Image Models
Text-to-image generative models have made remarkable progress in producing high-quality visual content from textual descriptions, yet concerns remain about how they represent social groups. While characteristics like gender and race have received increasing attention, disability representations remain underexplored. This study investigates how people with disabilities are represented in AI-generated images by analyzing outputs from Stable Diffusion XL and DALL-E 3 using a structured prompt design. We analyze disability representations by comparing image similarities between generic disability prompts and prompts referring to specific disability categories. Moreover, we evaluate how mitigation strategies influence disability portrayals, with a focus on assessing affective framing through sentiment polarity analysis, combining both automatic and human evaluation. Our findings reveal persistent representational imbalances and highlight the need for continuous evaluation and refinement of generative models to foster more diverse and inclusive portrayals of disability.
comment: 21 pages, 9 figures. References included
☆ REDistill: Robust Estimator Distillation for Balancing Robustness and Efficiency
Knowledge Distillation (KD) transfers knowledge from a large teacher model to a smaller student by aligning their predictive distributions. However, conventional KD formulations - typically based on Kullback-Leibler divergence - assume that the teacher provides reliable soft targets. In practice, teacher predictions are often noisy or overconfident, and existing correction-based approaches rely on ad-hoc heuristics and extensive hyper-parameter tuning, which hinders generalization. We introduce REDistill (Robust Estimator Distillation), a simple yet principled framework grounded in robust statistics. REDistill replaces the standard KD objective with a power divergence loss, a generalization of KL divergence that adaptively downweights unreliable teacher output while preserving informative logit relationships. This formulation provides a unified and interpretable treatment of teacher noise, requires only logits, integrates seamlessly into existing KD pipelines, and incurs negligible computational overhead. Extensive experiments on CIFAR-100 and ImageNet-1k demonstrate that REDistill consistently improves student accuracy in diverse teacher-student architectures. Remarkably, it achieves these gains without model-specific hyper-parameter tuning, underscoring its robustness and strong generalization to unseen teacher-student pairs.
☆ AGILE: Hand-Object Interaction Reconstruction from Video via Agentic Generation
Reconstructing dynamic hand-object interactions from monocular videos is critical for dexterous manipulation data collection and creating realistic digital twins for robotics and VR. However, current methods face two prohibitive barriers: (1) reliance on neural rendering often yields fragmented, non-simulation-ready geometries under heavy occlusion, and (2) dependence on brittle Structure-from-Motion (SfM) initialization leads to frequent failures on in-the-wild footage. To overcome these limitations, we introduce AGILE, a robust framework that shifts the paradigm from reconstruction to agentic generation for interaction learning. First, we employ an agentic pipeline where a Vision-Language Model (VLM) guides a generative model to synthesize a complete, watertight object mesh with high-fidelity texture, independent of video occlusions. Second, bypassing fragile SfM entirely, we propose a robust anchor-and-track strategy. We initialize the object pose at a single interaction onset frame using a foundation model and propagate it temporally by leveraging the strong visual similarity between our generated asset and video observations. Finally, a contact-aware optimization integrates semantic, geometric, and interaction stability constraints to enforce physical plausibility. Extensive experiments on HO3D, DexYCB, and in-the-wild videos reveal that AGILE outperforms baselines in global geometric accuracy while demonstrating exceptional robustness on challenging sequences where prior art frequently collapses. By prioritizing physical validity, our method produces simulation-ready assets validated via real-to-sim retargeting for robotic applications.
comment: 11 pages
☆ PIO-FVLM: Rethinking Training-Free Visual Token Reduction for VLM Acceleration from an Inference-Objective Perspective
Recently, reducing redundant visual tokens in vision-language models (VLMs) to accelerate VLM inference has emerged as a hot topic. However, most existing methods rely on heuristics constructed based on inter-visual-token similarity or cross-modal visual-text similarity, which gives rise to certain limitations in compression performance and practical deployment. In contrast, we propose PIO-FVLM from the perspective of inference objectives, which transforms visual token compression into preserving output result invariance and selects tokens primarily by their importance to this goal. Specially, vision tokens are reordered with the guidance of token-level gradient saliency generated by our designed layer-local proxy loss, a coarse constraint from the current layer to the final result. Then the most valuable vision tokens are selected following the non-maximum suppression (NMS) principle. The proposed PIO-FVLM is training-free and compatible with FlashAttention, friendly to practical application and deployment. It can be deployed independently as an encoder-free method, or combined with encoder compression approaches like VisionZip for use as an encoder-involved method. On LLaVA-Next-7B, PIO-FVLM retains just 11.1% of visual tokens but maintains 97.2% of the original performance, with a 2.67$\times$ prefill speedup, 2.11$\times$ inference speedup, 6.22$\times$ lower FLOPs, and 6.05$\times$ reduced KV Cache overhead. Our code is available at https://github.com/ocy1/PIO-FVLM.
☆ A labeled dataset of simulated phlebotomy procedures for medical AI: polygon annotations for object detection and human-object interaction
This data article presents a dataset of 11,884 labeled images documenting a simulated blood extraction (phlebotomy) procedure performed on a training arm. Images were extracted from high-definition videos recorded under controlled conditions and curated to reduce redundancy using Structural Similarity Index Measure (SSIM) filtering. An automated face-anonymization step was applied to all videos prior to frame selection. Each image contains polygon annotations for five medically relevant classes: syringe, rubber band, disinfectant wipe, gloves, and training arm. The annotations were exported in a segmentation format compatible with modern object detection frameworks (e.g., YOLOv8), ensuring broad usability. This dataset is partitioned into training (70%), validation (15%), and test (15%) subsets and is designed to advance research in medical training automation and human-object interaction. It enables multiple applications, including phlebotomy tool detection, procedural step recognition, workflow analysis, conformance checking, and the development of educational systems that provide structured feedback to medical trainees. The data and accompanying label files are publicly available on Zenodo.
☆ ImmuVis: Hyperconvolutional Foundation Model for Imaging Mass Cytometry
We present ImmuVis, an efficient convolutional foundation model for imaging mass cytometry (IMC), a high-throughput multiplex imaging technology that handles molecular marker measurements as image channels and enables large-scale spatial tissue profiling. Unlike natural images, multiplex imaging lacks a fixed channel space, as real-world marker sets vary across studies, violating a core assumption of standard vision backbones. To address this, ImmuVis introduces marker-adaptive hyperconvolutions that generate convolutional kernels from learned marker embeddings, enabling a single model to operate on arbitrary measured marker subsets without retraining. We pretrain ImmuVis on the largest to-date dataset, IMC17M (28 cohorts, 24,405 images, 265 markers, over 17M patches), using self-supervised masked reconstruction. ImmuVis outperforms SOTA baselines and ablations in virtual staining and downstream classification tasks at substantially lower compute cost than transformer-based alternatives, and is the sole model that provides calibrated uncertainty via a heteroscedastic likelihood objective. These results position ImmuVis as a practical, efficient foundation model for real-world IMC modeling.
comment: 17 pages, 6 figures
☆ SalFormer360: a transformer-based saliency estimation model for 360-degree videos
Saliency estimation has received growing attention in recent years due to its importance in a wide range of applications. In the context of 360-degree video, it has been particularly valuable for tasks such as viewport prediction and immersive content optimization. In this paper, we propose SalFormer360, a novel saliency estimation model for 360-degree videos built on a transformer-based architecture. Our approach is based on the combination of an existing encoder architecture, SegFormer, and a custom decoder. The SegFormer model was originally developed for 2D segmentation tasks, and it has been fine-tuned to adapt it to 360-degree content. To further enhance prediction accuracy in our model, we incorporated Viewing Center Bias to reflect user attention in 360-degree environments. Extensive experiments on the three largest benchmark datasets for saliency estimation demonstrate that SalFormer360 outperforms existing state-of-the-art methods. In terms of Pearson Correlation Coefficient, our model achieves 8.4% higher performance on Sport360, 2.5% on PVS-HM, and 18.6% on VR-EyeTracking compared to previous state-of-the-art.
☆ PEPR: Privileged Event-based Predictive Regularization for Domain Generalization
Deep neural networks for visual perception are highly susceptible to domain shift, which poses a critical challenge for real-world deployment under conditions that differ from the training data. To address this domain generalization challenge, we propose a cross-modal framework under the learning using privileged information (LUPI) paradigm for training a robust, single-modality RGB model. We leverage event cameras as a source of privileged information, available only during training. The two modalities exhibit complementary characteristics: the RGB stream is semantically dense but domain-dependent, whereas the event stream is sparse yet more domain-invariant. Direct feature alignment between them is therefore suboptimal, as it forces the RGB encoder to mimic the sparse event representation, thereby losing semantic detail. To overcome this, we introduce Privileged Event-based Predictive Regularization (PEPR), which reframes LUPI as a predictive problem in a shared latent space. Instead of enforcing direct cross-modal alignment, we train the RGB encoder with PEPR to predict event-based latent features, distilling robustness without sacrificing semantic richness. The resulting standalone RGB model consistently improves robustness to day-to-night and other domain shifts, outperforming alignment-based baselines across object detection and semantic segmentation.
☆ Understanding Degradation with Vision Language Model
Understanding visual degradations is a critical yet challenging problem in computer vision. While recent Vision-Language Models (VLMs) excel at qualitative description, they often fall short in understanding the parametric physics underlying image degradations. In this work, we redefine degradation understanding as a hierarchical structured prediction task, necessitating the concurrent estimation of degradation types, parameter keys, and their continuous physical values. Although these sub-tasks operate in disparate spaces, we prove that they can be unified under one autoregressive next-token prediction paradigm, whose error is bounded by the value-space quantization grid. Building on this insight, we introduce DU-VLM, a multimodal chain-of-thought model trained with supervised fine-tuning and reinforcement learning using structured rewards. Furthermore, we show that DU-VLM can serve as a zero-shot controller for pre-trained diffusion models, enabling high-fidelity image restoration without fine-tuning the generative backbone. We also introduce \textbf{DU-110k}, a large-scale dataset comprising 110,000 clean-degraded pairs with grounded physical annotations. Extensive experiments demonstrate that our approach significantly outperforms generalist baselines in both accuracy and robustness, exhibiting generalization to unseen distributions.
comment: 17 pages
☆ Nix and Fix: Targeting 1000x Compression of 3D Gaussian Splatting with Diffusion Models
3D Gaussian Splatting (3DGS) revolutionized novel view rendering. Instead of inferring from dense spatial points, as implicit representations do, 3DGS uses sparse Gaussians. This enables real-time performance but increases space requirements, hindering applications such as immersive communication. 3DGS compression emerged as a field aimed at alleviating this issue. While impressive progress has been made, at low rates, compression introduces artifacts that degrade visual quality significantly. We introduce NiFi, a method for extreme 3DGS compression through restoration via artifact-aware, diffusion-based one-step distillation. We show that our method achieves state-of-the-art perceptual quality at extremely low rates, down to 0.1 MB, and towards 1000x rate improvement over 3DGS at comparable perceptual performance. The code will be open-sourced upon acceptance.
☆ OmniRad: A Radiological Foundation Model for Multi-Task Medical Image Analysis
Radiological analysis increasingly benefits from pretrained visual representations that can support heterogeneous downstream tasks across imaging modalities. In this work, we introduce OmniRad, a self-supervised radiological foundation model pretrained on 1.2 million medical images, designed with radiology-inspired principles emphasizing representation reuse and cross-task transferability. We evaluate the pretrained encoder under multiple downstream adaptation regimes, including lightweight task-specific adapters with a frozen backbone as well as full end-to-end fine-tuning for classification, allowing us to assess both representation quality and task-specific performance. OmniRad is evaluated on a broad suite of public benchmarks spanning classification and segmentation across multiple modalities. On the MedMNISTv2 collection, OmniRad improves classification F1 by up to 2.05% over competing foundation models. For dense prediction, OmniRad attains mean Dice score improvements across six MedSegBench datasets when using frozen representations. Qualitative analyses and latent-space visualizations suggest improved feature clustering and modality-related separation.
comment: 19 pages, 4 figures, 12 tables
☆ SLUM-i: Semi-supervised Learning for Urban Mapping of Informal Settlements and Data Quality Benchmarking
Rapid urban expansion has fueled the growth of informal settlements in major cities of low- and middle-income countries, with Lahore and Karachi in Pakistan and Mumbai in India serving as prominent examples. However, large-scale mapping of these settlements is severely constrained not only by the scarcity of annotations but by inherent data quality challenges, specifically high spectral ambiguity between formal and informal structures and significant annotation noise. We address this by introducing a benchmark dataset for Lahore, constructed from scratch, along with companion datasets for Karachi and Mumbai, which were derived from verified administrative boundaries, totaling 1,869 $\text{km}^2$ of area. To evaluate the global robustness of our framework, we extend our experiments to five additional established benchmarks, encompassing eight cities across three continents, and provide comprehensive data quality assessments of all datasets. We also propose a new semi-supervised segmentation framework designed to mitigate the class imbalance and feature degradation inherent in standard semi-supervised learning pipelines. Our method integrates a Class-Aware Adaptive Thresholding mechanism that dynamically adjusts confidence thresholds to prevent minority class suppression and a Prototype Bank System that enforces semantic consistency by anchoring predictions to historically learned high-fidelity feature representations. Extensive experiments across a total of eight cities spanning three continents demonstrate that our approach outperforms state-of-the-art semi-supervised baselines. Most notably, our method demonstrates superior domain transfer capability whereby a model trained on only 10% of source labels reaches a 0.461 mIoU on unseen geographies and outperforms the zero-shot generalization of fully supervised models.
comment: 10 pages, 8 figures, 5 tables
☆ S-MUSt3R: Sliding Multi-view 3D Reconstruction
The recent paradigm shift in 3D vision led to the rise of foundation models with remarkable capabilities in 3D perception from uncalibrated images. However, extending these models to large-scale RGB stream 3D reconstruction remains challenging due to memory limitations. This work proposes S-MUSt3R, a simple and efficient pipeline that extends the limits of foundation models for monocular 3D reconstruction. Our approach addresses the scalability bottleneck of foundation models through a simple strategy of sequence segmentation followed by segment alignment and lightweight loop closure optimization. Without model retraining, we benefit from remarkable 3D reconstruction capacities of MUSt3R model and achieve trajectory and reconstruction performance comparable to traditional methods with more complex architecture. We evaluate S-MUSt3R on TUM, 7-Scenes and proprietary robot navigation datasets and show that S-MUSt3R runs successfully on long RGB sequences and produces accurate and consistent 3D reconstruction. Our results highlight the potential of leveraging the MUSt3R model for scalable monocular 3D scene in real-world settings, with an important advantage of making predictions directly in the metric space.
comment: 8 pages, 5 figures, 5 tables
☆ EgoActor: Grounding Task Planning into Spatial-aware Egocentric Actions for Humanoid Robots via Visual-Language Models
Deploying humanoid robots in real-world settings is fundamentally challenging, as it demands tight integration of perception, locomotion, and manipulation under partial-information observations and dynamically changing environments. As well as transitioning robustly between sub-tasks of different types. Towards addressing these challenges, we propose a novel task - EgoActing, which requires directly grounding high-level instructions into various, precise, spatially aware humanoid actions. We further instantiate this task by introducing EgoActor, a unified and scalable vision-language model (VLM) that can predict locomotion primitives (e.g., walk, turn, move sideways, change height), head movements, manipulation commands, and human-robot interactions to coordinate perception and execution in real-time. We leverage broad supervision over egocentric RGB-only data from real-world demonstrations, spatial reasoning question-answering, and simulated environment demonstrations, enabling EgoActor to make robust, context-aware decisions and perform fluent action inference (under 1s) with both 8B and 4B parameter models. Extensive evaluations in both simulated and real-world environments demonstrate that EgoActor effectively bridges abstract task planning and concrete motor execution, while generalizing across diverse tasks and unseen environments.
☆ Vision-aligned Latent Reasoning for Multi-modal Large Language Model
Despite recent advancements in Multi-modal Large Language Models (MLLMs) on diverse understanding tasks, these models struggle to solve problems which require extensive multi-step reasoning. This is primarily due to the progressive dilution of visual information during long-context generation, which hinders their ability to fully exploit test-time scaling. To address this issue, we introduce Vision-aligned Latent Reasoning (VaLR), a simple, yet effective reasoning framework that dynamically generates vision-aligned latent tokens before each Chain of Thought reasoning step, guiding the model to reason based on perceptual cues in the latent space. Specifically, VaLR is trained to preserve visual knowledge during reasoning by aligning intermediate embeddings of MLLM with those from vision encoders. Empirical results demonstrate that VaLR consistently outperforms existing approaches across a wide range of benchmarks requiring long-context understanding or precise visual perception, while exhibiting test-time scaling behavior not observed in prior MLLMs. In particular, VaLR improves the performance significantly from 33.0% to 52.9% on VSI-Bench, achieving a 19.9%p gain over Qwen2.5-VL.
comment: 18 pages; 5 figures
☆ SALAD-Pan: Sensor-Agnostic Latent Adaptive Diffusion for Pan-Sharpening
Recently, diffusion models bring novel insights for Pan-sharpening and notably boost fusion precision. However, most existing models perform diffusion in the pixel space and train distinct models for different multispectral (MS) imagery, suffering from high latency and sensor-specific limitations. In this paper, we present SALAD-Pan, a sensor-agnostic latent space diffusion method for efficient pansharpening. Specifically, SALAD-Pan trains a band-wise single-channel VAE to encode high-resolution multispectral (HRMS) into compact latent representations, supporting MS images with various channel counts and establishing a basis for acceleration. Then spectral physical properties, along with PAN and MS images, are injected into the diffusion backbone through unidirectional and bidirectional interactive control structures respectively, achieving high-precision fusion in the diffusion process. Finally, a lightweight cross-spectral attention module is added to the central layer of diffusion model, reinforcing spectral connections to boost spectral consistency and further elevate fusion precision. Experimental results on GaoFen-2, QuickBird, and WorldView-3 demonstrate that SALAD-Pan outperforms state-of-the-art diffusion-based methods across all three datasets, attains a 2-3x inference speedup, and exhibits robust zero-shot (cross-sensor) capability.
☆ Temporal Slowness in Central Vision Drives Semantic Object Learning ICLR 2026
Humans acquire semantic object representations from egocentric visual streams with minimal supervision. Importantly, the visual system processes with high resolution only the center of its field of view and learns similar representations for visual inputs occurring close in time. This emphasizes slowly changing information around gaze locations. This study investigates the role of central vision and slowness learning in the formation of semantic object representations from human-like visual experience. We simulate five months of human-like visual experience using the Ego4D dataset and generate gaze coordinates with a state-of-the-art gaze prediction model. Using these predictions, we extract crops that mimic central vision and train a time-contrastive Self-Supervised Learning model on them. Our results show that combining temporal slowness and central vision improves the encoding of different semantic facets of object representations. Specifically, focusing on central vision strengthens the extraction of foreground object features, while considering temporal slowness, especially during fixational eye movements, allows the model to encode broader semantic information about objects. These findings provide new insights into the mechanisms by which humans may develop semantic object representations from natural visual experience.
comment: ICLR 2026
☆ Seg-ReSearch: Segmentation with Interleaved Reasoning and External Search
Segmentation based on language has been a popular topic in computer vision. While recent advances in multimodal large language models (MLLMs) have endowed segmentation systems with reasoning capabilities, these efforts remain confined by the frozen internal knowledge of MLLMs, which limits their potential for real-world scenarios that involve up-to-date information or domain-specific concepts. In this work, we propose \textbf{Seg-ReSearch}, a novel segmentation paradigm that overcomes the knowledge bottleneck of existing approaches. By enabling interleaved reasoning and external search, Seg-ReSearch empowers segmentation systems to handle dynamic, open-world queries that extend beyond the frozen knowledge of MLLMs. To effectively train this capability, we introduce a hierarchical reward design that harmonizes initial guidance with progressive incentives, mitigating the dilemma between sparse outcome signals and rigid step-wise supervision. For evaluation, we construct OK-VOS, a challenging benchmark that explicitly requires outside knowledge for video object segmentation. Experiments on OK-VOS and two existing reasoning segmentation benchmarks demonstrate that our Seg-ReSearch improves state-of-the-art approaches by a substantial margin. Code and data will be released at https://github.com/iSEE-Laboratory/Seg-ReSearch.
☆ SynthVerse: A Large-Scale Diverse Synthetic Dataset for Point Tracking
Point tracking aims to follow visual points through complex motion, occlusion, and viewpoint changes, and has advanced rapidly with modern foundation models. Yet progress toward general point tracking remains constrained by limited high-quality data, as existing datasets often provide insufficient diversity and imperfect trajectory annotations. To this end, we introduce SynthVerse, a large-scale, diverse synthetic dataset specifically designed for point tracking. SynthVerse includes several new domains and object types missing from existing synthetic datasets, such as animated-film-style content, embodied manipulation, scene navigation, and articulated objects. SynthVerse substantially expands dataset diversity by covering a broader range of object categories and providing high-quality dynamic motions and interactions, enabling more robust training and evaluation for general point tracking. In addition, we establish a highly diverse point tracking benchmark to systematically evaluate state-of-the-art methods under broader domain shifts. Extensive experiments and analyses demonstrate that training with SynthVerse yields consistent improvements in generalization and reveal limitations of existing trackers under diverse settings.
☆ TrajVG: 3D Trajectory-Coupled Visual Geometry Learning
Feed-forward multi-frame 3D reconstruction models often degrade on videos with object motion. Global-reference becomes ambiguous under multiple motions, while the local pointmap relies heavily on estimated relative poses and can drift, causing cross-frame misalignment and duplicated structures. We propose TrajVG, a reconstruction framework that makes cross-frame 3D correspondence an explicit prediction by estimating camera-coordinate 3D trajectories. We couple sparse trajectories, per-frame local point maps, and relative camera poses with geometric consistency objectives: (i) bidirectional trajectory-pointmap consistency with controlled gradient flow, and (ii) a pose consistency objective driven by static track anchors that suppresses gradients from dynamic regions. To scale training to in-the-wild videos where 3D trajectory labels are scarce, we reformulate the same coupling constraints into self-supervised objectives using only pseudo 2D tracks, enabling unified training with mixed supervision. Extensive experiments across 3D tracking, pose estimation, pointmap reconstruction, and video depth show that TrajVG surpasses the current feedforward performance baseline.
☆ Med-MMFL: A Multimodal Federated Learning Benchmark in Healthcare
Federated learning (FL) enables collaborative model training across decentralized medical institutions while preserving data privacy. However, medical FL benchmarks remain scarce, with existing efforts focusing mainly on unimodal or bimodal modalities and a limited range of medical tasks. This gap underscores the need for standardized evaluation to advance systematic understanding in medical MultiModal FL (MMFL). To this end, we introduce Med-MMFL, the first comprehensive MMFL benchmark for the medical domain, encompassing diverse modalities, tasks, and federation scenarios. Our benchmark evaluates six representative state-of-the-art FL algorithms, covering different aggregation strategies, loss formulations, and regularization techniques. It spans datasets with 2 to 4 modalities, comprising a total of 10 unique medical modalities, including text, pathology images, ECG, X-ray, radiology reports, and multiple MRI sequences. Experiments are conducted across naturally federated, synthetic IID, and synthetic non-IID settings to simulate real-world heterogeneity. We assess segmentation, classification, modality alignment (retrieval), and VQA tasks. To support reproducibility and fair comparison of future multimodal federated learning (MMFL) methods under realistic medical settings, we release the complete benchmark implementation, including data processing and partitioning pipelines, at https://github.com/bhattarailab/Med-MMFL-Benchmark .
☆ Self-evolving Embodied AI
Embodied Artificial Intelligence (AI) is an intelligent system formed by agents and their environment through active perception, embodied cognition, and action interaction. Existing embodied AI remains confined to human-crafted setting, in which agents are trained on given memory and construct models for given tasks, enabling fixed embodiments to interact with relatively static environments. Such methods fail in in-the-wild setting characterized by variable embodiments and dynamic open environments. This paper introduces self-evolving embodied AI, a new paradigm in which agents operate based on their changing state and environment with memory self-updating, task self-switching, environment self-prediction, embodiment self-adaptation, and model self-evolution, aiming to achieve continually adaptive intelligence with autonomous evolution. Specifically, we present the definition, framework, components, and mechanisms of self-evolving embodied AI, systematically review state-of-the-art works for realized components, discuss practical applications, and point out future research directions. We believe that self-evolving embodied AI enables agents to autonomously learn and interact with environments in a human-like manner and provide a new perspective toward general artificial intelligence.
☆ LCUDiff: Latent Capacity Upgrade Diffusion for Faithful Human Body Restoration
Existing methods for restoring degraded human-centric images often struggle with insufficient fidelity, particularly in human body restoration (HBR). Recent diffusion-based restoration methods commonly adapt pre-trained text-to-image diffusion models, where the variational autoencoder (VAE) can significantly bottleneck restoration fidelity. We propose LCUDiff, a stable one-step framework that upgrades a pre-trained latent diffusion model from the 4-channel latent space to the 16-channel latent space. For VAE fine-tuning, channel splitting distillation (CSD) is used to keep the first four channels aligned with pre-trained priors while allocating the additional channels to effectively encode high-frequency details. We further design prior-preserving adaptation (PPA) to smoothly bridge the mismatch between 4-channel diffusion backbones and the higher-dimensional 16-channel latent. In addition, we propose a decoder router (DeR) for per-sample decoder routing using restoration-quality score annotations, which improves visual quality across diverse conditions. Experiments on synthetic and real-world datasets show competitive results with higher fidelity and fewer artifacts under mild degradations, while preserving one-step efficiency. The code and model will be at https://github.com/gobunu/LCUDiff.
comment: 8 pages, 7 figures. The code and model will be at https://github.com/gobunu/LCUDiff
☆ Interactive Spatial-Frequency Fusion Mamba for Multi-Modal Image Fusion
Multi-Modal Image Fusion (MMIF) aims to combine images from different modalities to produce fused images, retaining texture details and preserving significant information. Recently, some MMIF methods incorporate frequency domain information to enhance spatial features. However, these methods typically rely on simple serial or parallel spatial-frequency fusion without interaction. In this paper, we propose a novel Interactive Spatial-Frequency Fusion Mamba (ISFM) framework for MMIF. Specifically, we begin with a Modality-Specific Extractor (MSE) to extract features from different modalities. It models long-range dependencies across the image with linear computational complexity. To effectively leverage frequency information, we then propose a Multi-scale Frequency Fusion (MFF). It adaptively integrates low-frequency and high-frequency components across multiple scales, enabling robust representations of frequency features. More importantly, we further propose an Interactive Spatial-Frequency Fusion (ISF). It incorporates frequency features to guide spatial features across modalities, enhancing complementary representations. Extensive experiments are conducted on six MMIF datasets. The experimental results demonstrate that our ISFM can achieve better performances than other state-of-the-art methods. The source code is available at https://github.com/Namn23/ISFM.
comment: This work is accepted by IEEE Transactions on Image Processing. More modifications may be performed
☆ Quantile Transfer for Reliable Operating Point Selection in Visual Place Recognition
Visual Place Recognition (VPR) is a key component for localisation in GNSS-denied environments, but its performance critically depends on selecting an image matching threshold (operating point) that balances precision and recall. Thresholds are typically hand-tuned offline for a specific environment and fixed during deployment, leading to degraded performance under environmental change. We propose a method that, given a user-defined precision requirement, automatically selects the operating point of a VPR system to maximise recall. The method uses a small calibration traversal with known correspondences and transfers thresholds to deployment via quantile normalisation of similarity score distributions. This quantile transfer ensures that thresholds remain stable across calibration sizes and query subsets, making the method robust to sampling variability. Experiments with multiple state-of-the-art VPR techniques and datasets show that the proposed approach consistently outperforms the state-of-the-art, delivering up to 25% higher recall in high-precision operating regimes. The method eliminates manual tuning by adapting to new environments and generalising across operating conditions. Our code will be released upon acceptance.
☆ Enabling Real-Time Colonoscopic Polyp Segmentation on Commodity CPUs via Ultra-Lightweight Architecture
Early detection of colorectal cancer hinges on real-time, accurate polyp identification and resection. Yet current high-precision segmentation models rely on GPUs, making them impractical to deploy in primary hospitals, mobile endoscopy units, or capsule robots. To bridge this gap, we present the UltraSeg family, operating in an extreme-compression regime (<0.3 M parameters). UltraSeg-108K (0.108 M parameters) is optimized for single-center data, while UltraSeg-130K (0.13 M parameters) generalizes to multi-center, multi-modal images. By jointly optimizing encoder-decoder widths, incorporating constrained dilated convolutions to enlarge receptive fields, and integrating a cross-layer lightweight fusion module, the models achieve 90 FPS on a single CPU core without sacrificing accuracy. Evaluated on seven public datasets, UltraSeg retains >94% of the Dice score of a 31 M-parameter U-Net while utilizing only 0.4% of its parameters, establishing a strong, clinically viable baseline for the extreme-compression domain and offering an immediately deployable solution for resource-constrained settings. This work provides not only a CPU-native solution for colonoscopy but also a reproducible blueprint for broader minimally invasive surgical vision applications. Source code is publicly available to ensure reproducibility and facilitate future benchmarking.
comment: 19pages, 5 figures
☆ SparVAR: Exploring Sparsity in Visual AutoRegressive Modeling for Training-Free Acceleration
Visual AutoRegressive (VAR) modeling has garnered significant attention for its innovative next-scale prediction paradigm. However, mainstream VAR paradigms attend to all tokens across historical scales at each autoregressive step. As the next scale resolution grows, the computational complexity of attention increases quartically with resolution, causing substantial latency. Prior accelerations often skip high-resolution scales, which speeds up inference but discards high-frequency details and harms image quality. To address these problems, we present SparVAR, a training-free acceleration framework that exploits three properties of VAR attention: (i) strong attention sinks, (ii) cross-scale activation similarity, and (iii) pronounced locality. Specifically, we dynamically predict the sparse attention pattern of later high-resolution scales from a sparse decision scale, and construct scale self-similar sparse attention via an efficient index-mapping mechanism, enabling high-efficiency sparse attention computation at large scales. Furthermore, we propose cross-scale local sparse attention and implement an efficient block-wise sparse kernel, which achieves $\mathbf{> 5\times}$ faster forward speed than FlashAttention. Extensive experiments demonstrate that the proposed SparseVAR can reduce the generation time of an 8B model producing $1024\times1024$ high-resolution images to the 1s, without skipping the last scales. Compared with the VAR baseline accelerated by FlashAttention, our method achieves a $\mathbf{1.57\times}$ speed-up while preserving almost all high-frequency details. When combined with existing scale-skipping strategies, SparseVAR attains up to a $\mathbf{2.28\times}$ acceleration, while maintaining competitive visual generation quality. Code is available at https://github.com/CAS-CLab/SparVAR.
☆ When and Where to Attack? Stage-wise Attention-Guided Adversarial Attack on Large Vision Language Models
Adversarial attacks against Large Vision-Language Models (LVLMs) are crucial for exposing safety vulnerabilities in modern multimodal systems. Recent attacks based on input transformations, such as random cropping, suggest that spatially localized perturbations can be more effective than global image manipulation. However, randomly cropping the entire image is inherently stochastic and fails to use the limited per-pixel perturbation budget efficiently. We make two key observations: (i) regional attention scores are positively correlated with adversarial loss sensitivity, and (ii) attacking high-attention regions induces a structured redistribution of attention toward subsequent salient regions. Based on these findings, we propose Stage-wise Attention-Guided Attack (SAGA), an attention-guided framework that progressively concentrates perturbations on high-attention regions. SAGA enables more efficient use of constrained perturbation budgets, producing highly imperceptible adversarial examples while consistently achieving state-of-the-art attack success rates across ten LVLMs. The source code is available at https://github.com/jackwaky/SAGA.
comment: Pre-print
☆ VecSet-Edit: Unleashing Pre-trained LRM for Mesh Editing from Single Image
3D editing has emerged as a critical research area to provide users with flexible control over 3D assets. While current editing approaches predominantly focus on 3D Gaussian Splatting or multi-view images, the direct editing of 3D meshes remains underexplored. Prior attempts, such as VoxHammer, rely on voxel-based representations that suffer from limited resolution and necessitate labor-intensive 3D mask. To address these limitations, we propose \textbf{VecSet-Edit}, the first pipeline that leverages the high-fidelity VecSet Large Reconstruction Model (LRM) as a backbone for mesh editing. Our approach is grounded on a analysis of the spatial properties in VecSet tokens, revealing that token subsets govern distinct geometric regions. Based on this insight, we introduce Mask-guided Token Seeding and Attention-aligned Token Gating strategies to precisely localize target regions using only 2D image conditions. Also, considering the difference between VecSet diffusion process versus voxel we design a Drift-aware Token Pruning to reject geometric outliers during the denoising process. Finally, our Detail-preserving Texture Baking module ensures that we not only preserve the geometric details of original mesh but also the textural information. More details can be found in our project page: https://github.com/BlueDyee/VecSet-Edit/tree/main
☆ Finding NeMO: A Geometry-Aware Representation of Template Views for Few-Shot Perception 3DV 2026
We present Neural Memory Object (NeMO), a novel object-centric representation that can be used to detect, segment and estimate the 6DoF pose of objects unseen during training using RGB images. Our method consists of an encoder that requires only a few RGB template views depicting an object to generate a sparse object-like point cloud using a learned UDF containing semantic and geometric information. Next, a decoder takes the object encoding together with a query image to generate a variety of dense predictions. Through extensive experiments, we show that our method can be used for few-shot object perception without requiring any camera-specific parameters or retraining on target data. Our proposed concept of outsourcing object information in a NeMO and using a single network for multiple perception tasks enhances interaction with novel objects, improving scalability and efficiency by enabling quick object onboarding without retraining or extensive pre-processing. We report competitive and state-of-the-art results on various datasets and perception tasks of the BOP benchmark, demonstrating the versatility of our approach. https://github.com/DLR-RM/nemo
comment: 17 pages including supplement, published in 3DV 2026, Project website: https://sebastian-jung.github.io/nemo/
☆ Explicit Uncertainty Modeling for Active CLIP Adaptation with Dual Prompt Tuning
Pre-trained vision-language models such as CLIP exhibit strong transferability, yet adapting them to downstream image classification tasks under limited annotation budgets remains challenging. In active learning settings, the model must select the most informative samples for annotation from a large pool of unlabeled data. Existing approaches typically estimate uncertainty via entropy-based criteria or representation clustering, without explicitly modeling uncertainty from the model perspective. In this work, we propose a robust uncertainty modeling framework for active CLIP adaptation based on dual-prompt tuning. We introduce two learnable prompts in the textual branch of CLIP. The positive prompt enhances the discriminability of task-specific textual embeddings corresponding to light-weight tuned visual embeddings, improving classification reliability. Meanwhile, the negative prompt is trained in an reversed manner to explicitly model the probability that the predicted label is correct, providing a principled uncertainty signal for guiding active sample selection. Extensive experiments across different fine-tuning paradigms demonstrate that our method consistently outperforms existing active learning methods under the same annotation budget.
☆ Fine-tuning Pre-trained Vision-Language Models in a Human-Annotation-Free Manner
Large-scale vision-language models (VLMs) such as CLIP exhibit strong zero-shot generalization, but adapting them to downstream tasks typically requires costly labeled data. Existing unsupervised self-training methods rely on pseudo-labeling, yet often suffer from unreliable confidence filtering, confirmation bias, and underutilization of low-confidence samples. We propose Collaborative Fine-Tuning (CoFT), an unsupervised adaptation framework that leverages unlabeled data through a dual-model, cross-modal collaboration mechanism. CoFT introduces a dual-prompt learning strategy with positive and negative textual prompts to explicitly model pseudo-label cleanliness in a sample-dependent manner, removing the need for hand-crafted thresholds or noise assumptions. The negative prompt also regularizes lightweight visual adaptation modules, improving robustness under noisy supervision. CoFT employs a two-phase training scheme, transitioning from parameter-efficient fine-tuning on high-confidence samples to full fine-tuning guided by collaboratively filtered pseudo-labels. Building on CoFT, CoFT+ further enhances adaptation via iterative fine-tuning, momentum contrastive learning, and LLM-generated prompts. Extensive experiments demonstrate consistent gains over existing unsupervised methods and even few-shot supervised baselines.
☆ Multiview Self-Representation Learning across Heterogeneous Views
Features of the same sample generated by different pretrained models often exhibit inherently distinct feature distributions because of discrepancies in the model pretraining objectives or architectures. Learning invariant representations from large-scale unlabeled visual data with various pretrained models in a fully unsupervised transfer manner remains a significant challenge. In this paper, we propose a multiview self-representation learning (MSRL) method in which invariant representations are learned by exploiting the self-representation property of features across heterogeneous views. The features are derived from large-scale unlabeled visual data through transfer learning with various pretrained models and are referred to as heterogeneous multiview data. An individual linear model is stacked on top of its corresponding frozen pretrained backbone. We introduce an information-passing mechanism that relies on self-representation learning to support feature aggregation over the outputs of the linear model. Moreover, an assignment probability distribution consistency scheme is presented to guide multiview self-representation learning by exploiting complementary information across different views. Consequently, representation invariance across different linear models is enforced through this scheme. In addition, we provide a theoretical analysis of the information-passing mechanism, the assignment probability distribution consistency and the incremental views. Extensive experiments with multiple benchmark visual datasets demonstrate that the proposed MSRL method consistently outperforms several state-of-the-art approaches.
comment: 12 pages
☆ JOintGS: Joint Optimization of Cameras, Bodies and 3D Gaussians for In-the-Wild Monocular Reconstruction
Reconstructing high-fidelity animatable 3D human avatars from monocular RGB videos remains challenging, particularly in unconstrained in-the-wild scenarios where camera parameters and human poses from off-the-shelf methods (e.g., COLMAP, HMR2.0) are often inaccurate. Splatting (3DGS) advances demonstrate impressive rendering quality and real-time performance, they critically depend on precise camera calibration and pose annotations, limiting their applicability in real-world settings. We present JOintGS, a unified framework that jointly optimizes camera extrinsics, human poses, and 3D Gaussian representations from coarse initialization through a synergistic refinement mechanism. Our key insight is that explicit foreground-background disentanglement enables mutual reinforcement: static background Gaussians anchor camera estimation via multi-view consistency; refined cameras improve human body alignment through accurate temporal correspondence; optimized human poses enhance scene reconstruction by removing dynamic artifacts from static constraints. We further introduce a temporal dynamics module to capture fine-grained pose-dependent deformations and a residual color field to model illumination variations. Extensive experiments on NeuMan and EMDB datasets demonstrate that JOintGS achieves superior reconstruction quality, with 2.1~dB PSNR improvement over state-of-the-art methods on NeuMan dataset, while maintaining real-time rendering. Notably, our method shows significantly enhanced robustness to noisy initialization compared to the baseline.Our source code is available at https://github.com/MiliLab/JOintGS.
comment: 15 pages, 15 figures, Project page at https://github.com/MiliLab/JOintGS
☆ GeneralVLA: Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning
Large foundation models have shown strong open-world generalization to complex problems in vision and language, but similar levels of generalization have yet to be achieved in robotics. One fundamental challenge is that the models exhibit limited zero-shot capability, which hampers their ability to generalize effectively to unseen scenarios. In this work, we propose GeneralVLA (Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning), a hierarchical vision-language-action (VLA) model that can be more effective in utilizing the generalization of foundation models, enabling zero-shot manipulation and automatically generating data for robotics. In particular, we study a class of hierarchical VLA model where the high-level ASM (Affordance Segmentation Module) is finetuned to perceive image keypoint affordances of the scene; the mid-level 3DAgent carries out task understanding, skill knowledge, and trajectory planning to produce a 3D path indicating the desired robot end-effector trajectory. The intermediate 3D path prediction is then served as guidance to the low-level, 3D-aware control policy capable of precise manipulation. Compared to alternative approaches, our method requires no real-world robotic data collection or human demonstration, making it much more scalable to diverse tasks and viewpoints. Empirically, GeneralVLA successfully generates trajectories for 14 tasks, significantly outperforming state-of-the-art methods such as VoxPoser. The generated demonstrations can train more robust behavior cloning policies than training with human demonstrations or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe GeneralVLA can be the scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Code: https://github.com/AIGeeksGroup/GeneralVLA. Website: https://aigeeksgroup.github.io/GeneralVLA.
☆ Beyond Static Cropping: Layer-Adaptive Visual Localization and Decoding Enhancement
Large Vision-Language Models (LVLMs) have advanced rapidly by aligning visual patches with the text embedding space, but a fixed visual-token budget forces images to be resized to a uniform pretraining resolution, often erasing fine-grained details and causing hallucinations via over-reliance on language priors. Recent attention-guided enhancement (e.g., cropping or region-focused attention allocation) alleviates this, yet it commonly hinges on a static "magic layer" empirically chosen on simple recognition benchmarks and thus may not transfer to complex reasoning tasks. In contrast to this static assumption, we propose a dynamic perspective on visual grounding. Through a layer-wise sensitivity analysis, we demonstrate that visual grounding is a dynamic process: while simple object recognition tasks rely on middle layers, complex visual search and reasoning tasks require visual information to be reactivated at deeper layers. Based on this observation, we introduce Visual Activation by Query (VAQ), a metric that identifies the layer whose attention map is most relevant to query-specific visual grounding by measuring attention sensitivity to the input query. Building on VAQ, we further propose LASER (Layer-adaptive Attention-guided Selective visual and decoding Enhancement for Reasoning), a training-free inference procedure that adaptively selects task-appropriate layers for visual localization and question answering. Experiments across diverse VQA benchmarks show that LASER significantly improves VQA accuracy across tasks with varying levels of complexity.
comment: 9 pages, 5 figures
☆ Light Up Your Face: A Physically Consistent Dataset and Diffusion Model for Face Fill-Light Enhancement
Face fill-light enhancement (FFE) brightens underexposed faces by adding virtual fill light while keeping the original scene illumination and background unchanged. Most face relighting methods aim to reshape overall lighting, which can suppress the input illumination or modify the entire scene, leading to foreground-background inconsistency and mismatching practical FFE needs. To support scalable learning, we introduce LightYourFace-160K (LYF-160K), a large-scale paired dataset built with a physically consistent renderer that injects a disk-shaped area fill light controlled by six disentangled factors, producing 160K before-and-after pairs. We first pretrain a physics-aware lighting prompt (PALP) that embeds the 6D parameters into conditioning tokens, using an auxiliary planar-light reconstruction objective. Building on a pretrained diffusion backbone, we then train a fill-light diffusion (FiLitDiff), an efficient one-step model conditioned on physically grounded lighting codes, enabling controllable and high-fidelity fill lighting at low computational cost. Experiments on held-out paired sets demonstrate strong perceptual quality and competitive full-reference metrics, while better preserving background illumination. The dataset and model will be at https://github.com/gobunu/Light-Up-Your-Face.
comment: 8 pages, 7 figures. The code and model will be available at https://github.com/gobunu/Light-Up-Your-Face
☆ SkeletonGaussian: Editable 4D Generation through Gaussian Skeletonization
4D generation has made remarkable progress in synthesizing dynamic 3D objects from input text, images, or videos. However, existing methods often represent motion as an implicit deformation field, which limits direct control and editability. To address this issue, we propose SkeletonGaussian, a novel framework for generating editable dynamic 3D Gaussians from monocular video input. Our approach introduces a hierarchical articulated representation that decomposes motion into sparse rigid motion explicitly driven by a skeleton and fine-grained non-rigid motion. Concretely, we extract a robust skeleton and drive rigid motion via linear blend skinning, followed by a hexplane-based refinement for non-rigid deformations, enhancing interpretability and editability. Experimental results demonstrate that SkeletonGaussian surpasses existing methods in generation quality while enabling intuitive motion editing, establishing a new paradigm for editable 4D generation. Project page: https://wusar.github.io/projects/skeletongaussian/
comment: Accepted by CVM 2026. Project page: https://wusar.github.io/projects/skeletongaussian
☆ KVSmooth: Mitigating Hallucination in Multi-modal Large Language Models through Key-Value Smoothing
Despite the significant progress of Multimodal Large Language Models (MLLMs) across diverse tasks, hallucination -- corresponding to the generation of visually inconsistent objects, attributes, or relations -- remains a major obstacle to their reliable deployment. Unlike pure language models, MLLMs must ground their generation process in visual inputs. However, existing models often suffer from semantic drift during decoding, causing outputs to diverge from visual facts as the sequence length increases. To address this issue, we propose KVSmooth, a training-free and plug-and-play method that mitigates hallucination by performing attention-entropy-guided adaptive smoothing on hidden states. Specifically, KVSmooth applies an exponential moving average (EMA) to both keys and values in the KV-Cache, while dynamically quantifying the sink degree of each token through the entropy of its attention distribution to adaptively adjust the smoothing strength. Unlike computationally expensive retraining or contrastive decoding methods, KVSmooth operates efficiently during inference without additional training or model modification. Extensive experiments demonstrate that KVSmooth significantly reduces hallucination ($\mathit{CHAIR}_{S}$ from $41.8 \rightarrow 18.2$) while improving overall performance ($F_1$ score from $77.5 \rightarrow 79.2$), achieving higher precision and recall simultaneously. In contrast, prior methods often improve one at the expense of the other, validating the effectiveness and generality of our approach.
☆ Decoupled Hierarchical Distillation for Multimodal Emotion Recognition
Human multimodal emotion recognition (MER) seeks to infer human emotions by integrating information from language, visual, and acoustic modalities. Although existing MER approaches have achieved promising results, they still struggle with inherent multimodal heterogeneities and varying contributions from different modalities. To address these challenges, we propose a novel framework, Decoupled Hierarchical Multimodal Distillation (DHMD). DHMD decouples each modality's features into modality-irrelevant (homogeneous) and modality-exclusive (heterogeneous) components using a self-regression mechanism. The framework employs a two-stage knowledge distillation (KD) strategy: (1) coarse-grained KD via a Graph Distillation Unit (GD-Unit) in each decoupled feature space, where a dynamic graph facilitates adaptive distillation among modalities, and (2) fine-grained KD through a cross-modal dictionary matching mechanism, which aligns semantic granularities across modalities to produce more discriminative MER representations. This hierarchical distillation approach enables flexible knowledge transfer and effectively improves cross-modal feature alignment. Experimental results demonstrate that DHMD consistently outperforms state-of-the-art MER methods, achieving 1.3\%/2.4\% (ACC$_7$), 1.3\%/1.9\% (ACC$_2$) and 1.9\%/1.8\% (F1) relative improvement on CMU-MOSI/CMU-MOSEI dataset, respectively. Meanwhile, visualization results reveal that both the graph edges and dictionary activations in DHMD exhibit meaningful distribution patterns across modality-irrelevant/-exclusive feature spaces.
comment: arXiv admin note: text overlap with arXiv:2303.13802
☆ Depth-Guided Metric-Aware Temporal Consistency for Monocular Video Human Mesh Recovery
Monocular video human mesh recovery faces fundamental challenges in maintaining metric consistency and temporal stability due to inherent depth ambiguities and scale uncertainties. While existing methods rely primarily on RGB features and temporal smoothing, they struggle with depth ordering, scale drift, and occlusion-induced instabilities. We propose a comprehensive depth-guided framework that achieves metric-aware temporal consistency through three synergistic components: A Depth-Guided Multi-Scale Fusion module that adaptively integrates geometric priors with RGB features via confidence-aware gating; A Depth-guided Metric-Aware Pose and Shape (D-MAPS) estimator that leverages depth-calibrated bone statistics for scale-consistent initialization; A Motion-Depth Aligned Refinement (MoDAR) module that enforces temporal coherence through cross-modal attention between motion dynamics and geometric cues. Our method achieves superior results on three challenging benchmarks, demonstrating significant improvements in robustness against heavy occlusion and spatial accuracy while maintaining computational efficiency.
☆ ACIL: Active Class Incremental Learning for Image Classification BMVC 2024
Continual learning (or class incremental learning) is a realistic learning scenario for computer vision systems, where deep neural networks are trained on episodic data, and the data from previous episodes are generally inaccessible to the model. Existing research in this domain has primarily focused on avoiding catastrophic forgetting, which occurs due to the continuously changing class distributions in each episode and the inaccessibility of the data from previous episodes. However, these methods assume that all the training samples in every episode are annotated; this not only incurs a huge annotation cost, but also results in a wastage of annotation effort, since most of the samples in a given episode will not be accessible to the model in subsequent episodes. Active learning algorithms identify the salient and informative samples from large amounts of unlabeled data and are instrumental in reducing the human annotation effort in inducing a deep neural network. In this paper, we propose ACIL, a novel active learning framework for class incremental learning settings. We exploit a criterion based on uncertainty and diversity to identify the exemplar samples that need to be annotated in each episode, and will be appended to the data in the next episode. Such a framework can drastically reduce annotation cost and can also avoid catastrophic forgetting. Our extensive empirical analyses on several vision datasets corroborate the promise and potential of our framework against relevant baselines.
comment: BMVC 2024 (Accepted). Authors, Aditya R. Bhattacharya and Debanjan Goswami contributed equally to this work
☆ Towards Next-Generation SLAM: A Survey on 3DGS-SLAM Focusing on Performance, Robustness, and Future Directions
Traditional Simultaneous Localization and Mapping (SLAM) systems often face limitations including coarse rendering quality, insufficient recovery of scene details, and poor robustness in dynamic environments. 3D Gaussian Splatting (3DGS), with its efficient explicit representation and high-quality rendering capabilities, offers a new reconstruction paradigm for SLAM. This survey comprehensively reviews key technical approaches for integrating 3DGS with SLAM. We analyze performance optimization of representative methods across four critical dimensions: rendering quality, tracking accuracy, reconstruction speed, and memory consumption, delving into their design principles and breakthroughs. Furthermore, we examine methods for enhancing the robustness of 3DGS-SLAM in complex environments such as motion blur and dynamic environments. Finally, we discuss future challenges and development trends in this area. This survey aims to provide a technical reference for researchers and foster the development of next-generation SLAM systems characterized by high fidelity, efficiency, and robustness.
☆ SPOT-Occ: Sparse Prototype-guided Transformer for Camera-based 3D Occupancy Prediction
Achieving highly accurate and real-time 3D occupancy prediction from cameras is a critical requirement for the safe and practical deployment of autonomous vehicles. While this shift to sparse 3D representations solves the encoding bottleneck, it creates a new challenge for the decoder: how to efficiently aggregate information from a sparse, non-uniformly distributed set of voxel features without resorting to computationally prohibitive dense attention. In this paper, we propose a novel Prototype-based Sparse Transformer Decoder that replaces this costly interaction with an efficient, two-stage process of guided feature selection and focused aggregation. Our core idea is to make the decoder's attention prototype-guided. We achieve this through a sparse prototype selection mechanism, where each query adaptively identifies a compact set of the most salient voxel features, termed prototypes, for focused feature aggregation. To ensure this dynamic selection is stable and effective, we introduce a complementary denoising paradigm. This approach leverages ground-truth masks to provide explicit guidance, guaranteeing a consistent query-prototype association across decoder layers. Our model, dubbed SPOT-Occ, outperforms previous methods with a significant margin in speed while also improving accuracy. Source code is released at https://github.com/chensuzeyu/SpotOcc.
comment: 8 pages, 6 figures
☆ An Improved Boosted DC Algorithm for Nonsmooth Functions with Applications in Image Recovery
We propose a new approach to perform the boosted difference of convex functions algorithm (BDCA) on non-smooth and non-convex problems involving the difference of convex (DC) functions. The recently proposed BDCA uses an extrapolation step from the point computed by the classical DC algorithm (DCA) via a line search procedure in a descent direction to get an additional decrease of the objective function and accelerate the convergence of DCA. However, when the first function in DC decomposition is non-smooth, the direction computed by BDCA can be ascent and a monotone line search cannot be performed. In this work, we proposed a monotone improved boosted difference of convex functions algorithm (IBDCA) for certain types of non-smooth DC programs, namely those that can be formulated as the difference of a possibly non-smooth function and a smooth one. We show that any cluster point of the sequence generated by IBDCA is a critical point of the problem under consideration and that the corresponding objective value is monotonically decreasing and convergent. We also present the global convergence and the convergent rate under the Kurdyka-Lojasiewicz property. The applications of IBDCA in image recovery show the effectiveness of our proposed method. The corresponding numerical experiments demonstrate that our IBDCA outperforms DCA and other state-of-the-art DC methods in both computational time and number of iterations.
☆ An Intuitionistic Fuzzy Logic Driven UNet architecture: Application to Brain Image segmentation
Accurate segmentation of MRI brain images is essential for image analysis, diagnosis of neuro-logical disorders and medical image computing. In the deep learning approach, the convolutional neural networks (CNNs), especially UNet, are widely applied in medical image segmentation. However, it is difficult to deal with uncertainty due to the partial volume effect in brain images. To overcome this limitation, we propose an enhanced framework, named UNet with intuitionistic fuzzy logic (IF-UNet), which incorporates intuitionistic fuzzy logic into UNet. The model processes input data in terms of membership, nonmembership, and hesitation degrees, allowing it to better address tissue ambiguity resulting from partial volume effects and boundary uncertainties. The proposed architecture is evaluated on the Internet Brain Segmentation Repository (IBSR) dataset, and its performance is computed using accuracy, Dice coefficient, and intersection over union (IoU). Experimental results confirm that IF-UNet improves segmentation quality with handling uncertainty in brain images.
☆ Adaptive 1D Video Diffusion Autoencoder
Recent video generation models largely rely on video autoencoders that compress pixel-space videos into latent representations. However, existing video autoencoders suffer from three major limitations: (1) fixed-rate compression that wastes tokens on simple videos, (2) inflexible CNN architectures that prevent variable-length latent modeling, and (3) deterministic decoders that struggle to recover appropriate details from compressed latents. To address these issues, we propose One-Dimensional Diffusion Video Autoencoder (One-DVA), a transformer-based framework for adaptive 1D encoding and diffusion-based decoding. The encoder employs query-based vision transformers to extract spatiotemporal features and produce latent representations, while a variable-length dropout mechanism dynamically adjusts the latent length. The decoder is a pixel-space diffusion transformer that reconstructs videos with the latents as input conditions. With a two-stage training strategy, One-DVA achieves performance comparable to 3D-CNN VAEs on reconstruction metrics at identical compression ratios. More importantly, it supports adaptive compression and thus can achieve higher compression ratios. To better support downstream latent generation, we further regularize the One-DVA latent distribution for generative modeling and fine-tune its decoder to mitigate artifacts caused by the generation process.
☆ AGMA: Adaptive Gaussian Mixture Anchors for Prior-Guided Multimodal Human Trajectory Forecasting
Human trajectory forecasting requires capturing the multimodal nature of pedestrian behavior. However, existing approaches suffer from prior misalignment. Their learned or fixed priors often fail to capture the full distribution of plausible futures, limiting both prediction accuracy and diversity. We theoretically establish that prediction error is lower-bounded by prior quality, making prior modeling a key performance bottleneck. Guided by this insight, we propose AGMA (Adaptive Gaussian Mixture Anchors), which constructs expressive priors through two stages: extracting diverse behavioral patterns from training data and distilling them into a scene-adaptive global prior for inference. Extensive experiments on ETH-UCY, Stanford Drone, and JRDB datasets demonstrate that AGMA achieves state-of-the-art performance, confirming the critical role of high-quality priors in trajectory forecasting.
comment: 14 pages, 3 figures
☆ VTok: A Unified Video Tokenizer with Decoupled Spatial-Temporal Latents
This work presents VTok, a unified video tokenization framework that can be used for both generation and understanding tasks. Unlike the leading vision-language systems that tokenize videos through a naive frame-sampling strategy, we propose to decouple the spatial and temporal representations of videos by retaining the spatial features of a single key frame while encoding each subsequent frame into a single residual token, achieving compact yet expressive video tokenization. Our experiments suggest that VTok effectively reduces the complexity of video representation from the product of frame count and per-frame token count to their sum, while the residual tokens sufficiently capture viewpoint and motion changes relative to the key frame. Extensive evaluations demonstrate the efficacy and efficiency of VTok: it achieves notably higher performance on a range of video understanding and text-to-video generation benchmarks compared with baselines using naive tokenization, all with shorter token sequences per video (e.g., 3.4% higher accuracy on our TV-Align benchmark and 1.9% higher VBench score). Remarkably, VTok produces more coherent motion and stronger guidance following in text-to-video generation, owing to its more consistent temporal encoding. We hope VTok can serve as a standardized video tokenization paradigm for future research in video understanding and generation.
☆ Continuous Degradation Modeling via Latent Flow Matching for Real-World Super-Resolution AAAI 2026
While deep learning-based super-resolution (SR) methods have shown impressive outcomes with synthetic degradation scenarios such as bicubic downsampling, they frequently struggle to perform well on real-world images that feature complex, nonlinear degradations like noise, blur, and compression artifacts. Recent efforts to address this issue have involved the painstaking compilation of real low-resolution (LR) and high-resolution (HR) image pairs, usually limited to several specific downscaling factors. To address these challenges, our work introduces a novel framework capable of synthesizing authentic LR images from a single HR image by leveraging the latent degradation space with flow matching. Our approach generates LR images with realistic artifacts at unseen degradation levels, which facilitates the creation of large-scale, real-world SR training datasets. Comprehensive quantitative and qualitative assessments verify that our synthetic LR images accurately replicate real-world degradations. Furthermore, both traditional and arbitrary-scale SR models trained using our datasets consistently yield much better HR outcomes.
comment: AAAI 2026
☆ DiMo: Discrete Diffusion Modeling for Motion Generation and Understanding
Prior masked modeling motion generation methods predominantly study text-to-motion. We present DiMo, a discrete diffusion-style framework, which extends masked modeling to bidirectional text--motion understanding and generation. Unlike GPT-style autoregressive approaches that tokenize motion and decode sequentially, DiMo performs iterative masked token refinement, unifying Text-to-Motion (T2M), Motion-to-Text (M2T), and text-free Motion-to-Motion (M2M) within a single model. This decoding paradigm naturally enables a quality-latency trade-off at inference via the number of refinement steps.We further improve motion token fidelity with residual vector quantization (RVQ) and enhance alignment and controllability with Group Relative Policy Optimization (GRPO). Experiments on HumanML3D and KIT-ML show strong motion quality and competitive bidirectional understanding under a unified framework. In addition, we demonstrate model ability in text-free motion completion, text-guided motion prediction and motion caption correction without architectural change.Additional qualitative results are available on our project page: https://animotionlab.github.io/DiMo/.
☆ Natural Language Instructions for Scene-Responsive Human-in-the-Loop Motion Planning in Autonomous Driving using Vision-Language-Action Models
Instruction-grounded driving, where passenger language guides trajectory planning, requires vehicles to understand intent before motion. However, most prior instruction-following planners rely on simulation or fixed command vocabularies, limiting real-world generalization. doScenes, the first real-world dataset linking free-form instructions (with referentiality) to nuScenes ground-truth motion, enables instruction-conditioned planning. In this work, we adapt OpenEMMA, an open-source MLLM-based end-to-end driving framework that ingests front-camera views and ego-state and outputs 10-step speed-curvature trajectories, to this setting, presenting a reproducible instruction-conditioned baseline on doScenes and investigate the effects of human instruction prompts on predicted driving behavior. We integrate doScenes directives as passenger-style prompts within OpenEMMA's vision-language interface, enabling linguistic conditioning before trajectory generation. Evaluated on 849 annotated scenes using ADE, we observe that instruction conditioning substantially improves robustness by preventing extreme baseline failures, yielding a 98.7% reduction in mean ADE. When such outliers are removed, instructions still influence trajectory alignment, with well-phrased prompts improving ADE by up to 5.1%. We use this analysis to discuss what makes a "good" instruction for the OpenEMMA framework. We release the evaluation prompts and scripts to establish a reproducible baseline for instruction-aware planning. GitHub: https://github.com/Mi3-Lab/doScenes-VLM-Planning
☆ HoloEv-Net: Efficient Event-based Action Recognition via Holographic Spatial Embedding and Global Spectral Gating
Event-based Action Recognition (EAR) has attracted significant attention due to the high temporal resolution and high dynamic range of event cameras. However, existing methods typically suffer from (i) the computational redundancy of dense voxel representations, (ii) structural redundancy inherent in multi-branch architectures, and (iii) the under-utilization of spectral information in capturing global motion patterns. To address these challenges, we propose an efficient EAR framework named HoloEv-Net. First, to simultaneously tackle representation and structural redundancies, we introduce a Compact Holographic Spatiotemporal Representation (CHSR). Departing from computationally expensive voxel grids, CHSR implicitly embeds horizontal spatial cues into the Time-Height (T-H) view, effectively preserving 3D spatiotemporal contexts within a 2D representation. Second, to exploit the neglected spectral cues, we design a Global Spectral Gating (GSG) module. By leveraging the Fast Fourier Transform (FFT) for global token mixing in the frequency domain, GSG enhances the representation capability with negligible parameter overhead. Extensive experiments demonstrate the scalability and effectiveness of our framework. Specifically, HoloEv-Net-Base achieves state-of-the-art performance on THU-EACT-50-CHL, HARDVS and DailyDVS-200, outperforming existing methods by 10.29%, 1.71% and 6.25%, respectively. Furthermore, our lightweight variant, HoloEv-Net-Small, delivers highly competitive accuracy while offering extreme efficiency, reducing parameters by 5.4 times, FLOPs by 300times, and latency by 2.4times compared to heavy baselines, demonstrating its potential for edge deployment.
☆ Partial Ring Scan: Revisiting Scan Order in Vision State Space Models
State Space Models (SSMs) have emerged as efficient alternatives to attention for vision tasks, offering lineartime sequence processing with competitive accuracy. Vision SSMs, however, require serializing 2D images into 1D token sequences along a predefined scan order, a factor often overlooked. We show that scan order critically affects performance by altering spatial adjacency, fracturing object continuity, and amplifying degradation under geometric transformations such as rotation. We present Partial RIng Scan Mamba (PRISMamba), a rotation-robust traversal that partitions an image into concentric rings, performs order-agnostic aggregation within each ring, and propagates context across rings through a set of short radial SSMs. Efficiency is further improved via partial channel filtering, which routes only the most informative channels through the recurrent ring pathway while keeping the rest on a lightweight residual branch. On ImageNet-1K, PRISMamba achieves 84.5% Top-1 with 3.9G FLOPs and 3,054 img/s on A100, outperforming VMamba in both accuracy and throughput while requiring fewer FLOPs. It also maintains performance under rotation, whereas fixed-path scans drop by 1~2%. These results highlight scan-order design, together with channel filtering, as a crucial, underexplored factor for accuracy, efficiency, and rotation robustness in Vision SSMs. Code will be released upon acceptance.
comment: 10 pages, 3 figures
☆ Point2Insert: Video Object Insertion via Sparse Point Guidance
This paper introduces Point2Insert, a sparse-point-based framework for flexible and user-friendly object insertion in videos, motivated by the growing popularity of accurate, low-effort object placement. Existing approaches face two major challenges: mask-based insertion methods require labor-intensive mask annotations, while instruction-based methods struggle to place objects at precise locations. Point2Insert addresses these issues by requiring only a small number of sparse points instead of dense masks, eliminating the need for tedious mask drawing. Specifically, it supports both positive and negative points to indicate regions that are suitable or unsuitable for insertion, enabling fine-grained spatial control over object locations. The training of Point2Insert consists of two stages. In Stage 1, we train an insertion model that generates objects in given regions conditioned on either sparse-point prompts or a binary mask. In Stage 2, we further train the model on paired videos synthesized by an object removal model, adapting it to video insertion. Moreover, motivated by the higher insertion success rate of mask-guided editing, we leverage a mask-guided insertion model as a teacher to distill reliable insertion behavior into the point-guided model. Extensive experiments demonstrate that Point2Insert consistently outperforms strong baselines and even surpasses models with $\times$10 more parameters.
☆ Improving 2D Diffusion Models for 3D Medical Imaging with Inter-Slice Consistent Stochasticity ICLR 2026
3D medical imaging is in high demand and essential for clinical diagnosis and scientific research. Currently, diffusion models (DMs) have become an effective tool for medical imaging reconstruction thanks to their ability to learn rich, high-quality data priors. However, learning the 3D data distribution with DMs in medical imaging is challenging, not only due to the difficulties in data collection but also because of the significant computational burden during model training. A common compromise is to train the DMs on 2D data priors and reconstruct stacked 2D slices to address 3D medical inverse problems. However, the intrinsic randomness of diffusion sampling causes severe inter-slice discontinuities of reconstructed 3D volumes. Existing methods often enforce continuity regularizations along the z-axis, which introduces sensitive hyper-parameters and may lead to over-smoothing results. In this work, we revisit the origin of stochasticity in diffusion sampling and introduce Inter-Slice Consistent Stochasticity (ISCS), a simple yet effective strategy that encourages interslice consistency during diffusion sampling. Our key idea is to control the consistency of stochastic noise components during diffusion sampling, thereby aligning their sampling trajectories without adding any new loss terms or optimization steps. Importantly, the proposed ISCS is plug-and-play and can be dropped into any 2D trained diffusion based 3D reconstruction pipeline without additional computational cost. Experiments on several medical imaging problems show that our method can effectively improve the performance of medical 3D imaging problems based on 2D diffusion models. Our findings suggest that controlling inter-slice stochasticity is a principled and practically attractive route toward high-fidelity 3D medical imaging with 2D diffusion priors. The code is available at: https://github.com/duchenhe/ISCS
comment: Accepted by ICLR 2026
☆ Context Determines Optimal Architecture in Materials Segmentation
Segmentation architectures are typically benchmarked on single imaging modalities, obscuring deployment-relevant performance variations: an architecture optimal for one modality may underperform on another. We present a cross-modal evaluation framework for materials image segmentation spanning SEM, AFM, XCT, and optical microscopy. Our evaluation of six encoder-decoder combinations across seven datasets reveals that optimal architectures vary systematically by context: UNet excels for high-contrast 2D imaging while DeepLabv3+ is preferred for the hardest cases. The framework also provides deployment feedback via out-of-distribution detection and counterfactual explanations that reveal which microstructural features drive predictions. Together, the architecture guidance, reliability signals, and interpretability tools address a practical gap in materials characterization, where researchers lack tools to select architectures for their specific imaging setup or assess when models can be trusted on new samples.
☆ JSynFlow: Japanese Synthesised Flowchart Visual Question Answering Dataset built with Large Language Models
Vision and language models (VLMs) are expected to analyse complex documents, such as those containing flowcharts, through a question-answering (QA) interface. The ability to recognise and interpret these flowcharts is in high demand, as they provide valuable insights unavailable in text-only explanations. However, developing VLMs with precise flowchart understanding requires large-scale datasets of flowchart images and corresponding text, the creation of which is highly time-consuming. To address this challenge, we introduce JSynFlow, a synthesised visual QA dataset for Japanese flowcharts, generated using large language models (LLMs). Our dataset comprises task descriptions for various business occupations, the corresponding flowchart images rendered from domain-specific language (DSL) code, and related QA pairs. This paper details the dataset's synthesis procedure and demonstrates that fine-tuning with JSynFlow significantly improves VLM performance on flowchart-based QA tasks. Our dataset is publicly available at https://huggingface.co/datasets/jri-advtechlab/jsynflow.
comment: 7 pages
☆ SuperPoint-E: local features for 3D reconstruction via tracking adaptation in endoscopy
In this work, we focus on boosting the feature extraction to improve the performance of Structure-from-Motion (SfM) in endoscopy videos. We present SuperPoint-E, a new local feature extraction method that, using our proposed Tracking Adaptation supervision strategy, significantly improves the quality of feature detection and description in endoscopy. Extensive experimentation on real endoscopy recordings studies our approach's most suitable configuration and evaluates SuperPoint-E feature quality. The comparison with other baselines also shows that our 3D reconstructions are denser and cover more and longer video segments because our detector fires more densely and our features are more likely to survive (i.e. higher detection precision). In addition, our descriptor is more discriminative, making the guided matching step almost redundant. The presented approach brings significant improvements in the 3D reconstructions obtained, via SfM on endoscopy videos, compared to the original SuperPoint and the gold standard SfM COLMAP pipeline.
comment: 12 pages, 5 tables, 6 figures
☆ DMS2F-HAD: A Dual-branch Mamba-based Spatial-Spectral Fusion Network for Hyperspectral Anomaly Detection WACV 2025
Hyperspectral anomaly detection (HAD) aims to identify rare and irregular targets in high-dimensional hyperspectral images (HSIs), which are often noisy and unlabelled data. Existing deep learning methods either fail to capture long-range spectral dependencies (e.g., convolutional neural networks) or suffer from high computational cost (e.g., Transformers). To address these challenges, we propose DMS2F-HAD, a novel dual-branch Mamba-based model. Our architecture utilizes Mamba's linear-time modeling to efficiently learn distinct spatial and spectral features in specialized branches, which are then integrated by a dynamic gated fusion mechanism to enhance anomaly localization. Across fourteen benchmark HSI datasets, our proposed DMS2F-HAD not only achieves a state-of-the-art average AUC of 98.78%, but also demonstrates superior efficiency with an inference speed 4.6 times faster than comparable deep learning methods. The results highlight DMS2FHAD's strong generalization and scalability, positioning it as a strong candidate for practical HAD applications.
comment: This paper has been accepted in the WACV 2025 conference in algorithm track
☆ VideoBrain: Learning Adaptive Frame Sampling for Long Video Understanding
Long-form video understanding remains challenging for Vision-Language Models (VLMs) due to the inherent tension between computational constraints and the need to capture information distributed across thousands of frames. Existing approaches either sample frames uniformly (risking information loss) or select keyframes in a single pass (with no recovery from poor choices). We propose VideoBrain, an end-to-end framework that enables VLMs to adaptively acquire visual information through learned sampling policies. Our approach features dual complementary agents: a CLIP-based agent for semantic retrieval across the video and a Uniform agent for dense temporal sampling within intervals. Unlike prior agent-based methods that rely on text-only LLMs orchestrating visual tools, our VLM directly perceives frames and reasons about information sufficiency. To prevent models from invoking agents indiscriminately to maximize rewards, we introduce a behavior-aware reward function coupled with a data classification pipeline that teaches the model when agent invocation is genuinely beneficial. Experiments on four long video benchmarks demonstrate that VideoBrain achieves +3.5% to +9.0% improvement over the baseline while using 30-40% fewer frames, with strong cross-dataset generalization to short video benchmarks.
☆ ARGaze: Autoregressive Transformers for Online Egocentric Gaze Estimation
Online egocentric gaze estimation predicts where a camera wearer is looking from first-person video using only past and current frames, a task essential for augmented reality and assistive technologies. Unlike third-person gaze estimation, this setting lacks explicit head or eye signals, requiring models to infer current visual attention from sparse, indirect cues such as hand-object interactions and salient scene content. We observe that gaze exhibits strong temporal continuity during goal-directed activities: knowing where a person looked recently provides a powerful prior for predicting where they look next. Inspired by vision-conditioned autoregressive decoding in vision-language models, we propose ARGaze, which reformulates gaze estimation as sequential prediction: at each timestep, a transformer decoder predicts current gaze by conditioning on (i) current visual features and (ii) a fixed-length Gaze Context Window of recent gaze target estimates. This design enforces causality and enables bounded-resource streaming inference. We achieve state-of-the-art performance across multiple egocentric benchmarks under online evaluation, with extensive ablations validating that autoregressive modeling with bounded gaze history is critical for robust prediction. We will release our source code and pre-trained models.
☆ CLEAR-HPV: Interpretable Concept Discovery for HPV-Associated Morphology in Whole-Slide Histology
Human papillomavirus (HPV) status is a critical determinant of prognosis and treatment response in head and neck and cervical cancers. Although attention-based multiple instance learning (MIL) achieves strong slide-level prediction for HPV-related whole-slide histopathology, it provides limited morphologic interpretability. To address this limitation, we introduce Concept-Level Explainable Attention-guided Representation for HPV (CLEAR-HPV), a framework that restructures the MIL latent space using attention to enable concept discovery without requiring concept labels during training. Operating in an attention-weighted latent space, CLEAR-HPV automatically discovers keratinizing, basaloid, and stromal morphologic concepts, generates spatial concept maps, and represents each slide using a compact concept-fraction vector. CLEAR-HPV's concept-fraction vectors preserve the predictive information of the original MIL embeddings while reducing the high-dimensional feature space (e.g., 1536 dimensions) to only 10 interpretable concepts. CLEAR-HPV generalizes consistently across TCGA-HNSCC, TCGA-CESC, and CPTAC-HNSCC, providing compact, concept-level interpretability through a general, backbone-agnostic framework for attention-based MIL models of whole-slide histopathology.
☆ Rule-Based Spatial Mixture-of-Experts U-Net for Explainable Edge Detection
Deep learning models like U-Net and its variants, have established state-of-the-art performance in edge detection tasks and are used by Generative AI services world-wide for their image generation models. However, their decision-making processes remain opaque, operating as "black boxes" that obscure the rationale behind specific boundary predictions. This lack of transparency is a critical barrier in safety-critical applications where verification is mandatory. To bridge the gap between high-performance deep learning and interpretable logic, we propose the Rule-Based Spatial Mixture-of-Experts U-Net (sMoE U-Net). Our architecture introduces two key innovations: (1) Spatially-Adaptive Mixture-of-Experts (sMoE) blocks integrated into the decoder skip connections, which dynamically gate between "Context" (smooth) and "Boundary" (sharp) experts based on local feature statistics; and (2) a Takagi-Sugeno-Kang (TSK) Fuzzy Head that replaces the standard classification layer. This fuzzy head fuses deep semantic features with heuristic edge signals using explicit IF-THEN rules. We evaluate our method on the BSDS500 benchmark, achieving an Optimal Dataset Scale (ODS) F-score of 0.7628, effectively matching purely deep baselines like HED (0.7688) while outperforming the standard U-Net (0.7437). Crucially, our model provides pixel-level explainability through "Rule Firing Maps" and "Strategy Maps," allowing users to visualize whether an edge was detected due to strong gradients, high semantic confidence, or specific logical rule combinations.
☆ Visual concept ranking uncovers medical shortcuts used by large multimodal models
Ensuring the reliability of machine learning models in safety-critical domains such as healthcare requires auditing methods that can uncover model shortcomings. We introduce a method for identifying important visual concepts within large multimodal models (LMMs) and use it to investigate the behaviors these models exhibit when prompted with medical tasks. We primarily focus on the task of classifying malignant skin lesions from clinical dermatology images, with supplemental experiments including both chest radiographs and natural images. After showing how LMMs display unexpected gaps in performance between different demographic subgroups when prompted with demonstrating examples, we apply our method, Visual Concept Ranking (VCR), to these models and prompts. VCR generates hypotheses related to different visual feature dependencies, which we are then able to validate with manual interventions.
☆ Gabor Fields: Orientation-Selective Level-of-Detail for Volume Rendering
Gaussian-based representations have enabled efficient physically-based volume rendering at a fraction of the memory cost of regular, discrete, voxel-based distributions. However, several remaining issues hamper their widespread use. One of the advantages of classic voxel grids is the ease of constructing hierarchical representations by either storing volumetric mipmaps or selectively pruning branches of an already hierarchical voxel grid. Such strategies reduce rendering time and eliminate aliasing when lower levels of detail are required. Constructing similar strategies for Gaussian-based volumes is not trivial. Straightforward solutions, such as prefiltering or computing mipmap-style representations, lead to increased memory requirements or expensive re-fitting of each level separately. Additionally, such solutions do not guarantee a smooth transition between different hierarchy levels. To address these limitations, we propose Gabor Fields, an orientation-selective mixture of Gabor kernels that enables continuous frequency filtering at no cost. The frequency content of the asset is reduced by selectively pruning primitives, directly benefiting rendering performance. Beyond filtering, we demonstrate that stochastically sampling from different frequencies and orientations at each ray recursion enables masking substantial portions of the volume, accelerating ray traversal time in single- and multiple-scattering settings. Furthermore, inspired by procedural volumes, we present an application for efficient design and rendering of procedural clouds as Gabor-noise-modulated Gaussians.
comment: 19 pages, incl Appendix and References
☆ Food Portion Estimation: From Pixels to Calories
Reliance on images for dietary assessment is an important strategy to accurately and conveniently monitor an individual's health, making it a vital mechanism in the prevention and care of chronic diseases and obesity. However, image-based dietary assessment suffers from estimating the three dimensional size of food from 2D image inputs. Many strategies have been devised to overcome this critical limitation such as the use of auxiliary inputs like depth maps, multi-view inputs, or model-based approaches such as template matching. Deep learning also helps bridge the gap by either using monocular images or combinations of the image and the auxillary inputs to precisely predict the output portion from the image input. In this paper, we explore the different strategies employed for accurate portion estimation.
☆ VISTA: Enhancing Visual Conditioning via Track-Following Preference Optimization in Vision-Language-Action Models
Vision-Language-Action (VLA) models have demonstrated strong performance across a wide range of robotic manipulation tasks. Despite the success, extending large pretrained Vision-Language Models (VLMs) to the action space can induce vision-action misalignment, where action predictions exhibit weak dependence on the current visual state, leading to unreliable action outputs. In this work, we study VLA models through the lens of visual conditioning and empirically show that successful rollouts consistently exhibit stronger visual dependence than failed ones. Motivated by this observation, we propose a training framework that explicitly strengthens visual conditioning in VLA models. Our approach first aligns action prediction with visual input via preference optimization on a track-following surrogate task, and then transfers the enhanced alignment to instruction-following task through latent-space distillation during supervised finetuning. Without introducing architectural modifications or additional data collection, our method improves both visual conditioning and task performance for discrete OpenVLA, and further yields consistent gains when extended to the continuous OpenVLA-OFT setting. Project website: https://vista-vla.github.io/ .
comment: In submission. Project website: https://vista-vla.github.io/
☆ QuantumGS: Quantum Encoding Framework for Gaussian Splatting
Recent advances in neural rendering, particularly 3D Gaussian Splatting (3DGS), have enabled real-time rendering of complex scenes. However, standard 3DGS relies on spherical harmonics, which often struggle to accurately capture high-frequency view-dependent effects such as sharp reflections and transparency. While hybrid approaches like Viewing Direction Gaussian Splatting (VDGS) mitigate this limitation using classical Multi-Layer Perceptrons (MLPs), they remain limited by the expressivity of classical networks in low-parameter regimes. In this paper, we introduce QuantumGS, a novel hybrid framework that integrates Variational Quantum Circuits (VQC) into the Gaussian Splatting pipeline. We propose a unique encoding strategy that maps the viewing direction directly onto the Bloch sphere, leveraging the natural geometry of qubits to represent 3D directional data. By replacing classical color-modulating networks with quantum circuits generated via a hypernetwork or conditioning mechanism, we achieve higher expressivity and better generalization. Source code is available in the supplementary material. Code is available at https://github.com/gwilczynski95/QuantumGS
☆ UniTrack: Differentiable Graph Representation Learning for Multi-Object Tracking
We present UniTrack, a plug-and-play graph-theoretic loss function designed to significantly enhance multi-object tracking (MOT) performance by directly optimizing tracking-specific objectives through unified differentiable learning. Unlike prior graph-based MOT methods that redesign tracking architectures, UniTrack provides a universal training objective that integrates detection accuracy, identity preservation, and spatiotemporal consistency into a single end-to-end trainable loss function, enabling seamless integration with existing MOT systems without architectural modifications. Through differentiable graph representation learning, UniTrack enables networks to learn holistic representations of motion continuity and identity relationships across frames. We validate UniTrack across diverse tracking models and multiple challenging benchmarks, demonstrating consistent improvements across all tested architectures and datasets including Trackformer, MOTR, FairMOT, ByteTrack, GTR, and MOTE. Extensive evaluations show up to 53\% reduction in identity switches and 12\% IDF1 improvements across challenging benchmarks, with GTR achieving peak performance gains of 9.7\% MOTA on SportsMOT.
☆ Differentiable Inverse Graphics for Zero-shot Scene Reconstruction and Robot Grasping
Operating effectively in novel real-world environments requires robotic systems to estimate and interact with previously unseen objects. Current state-of-the-art models address this challenge by using large amounts of training data and test-time samples to build black-box scene representations. In this work, we introduce a differentiable neuro-graphics model that combines neural foundation models with physics-based differentiable rendering to perform zero-shot scene reconstruction and robot grasping without relying on any additional 3D data or test-time samples. Our model solves a series of constrained optimization problems to estimate physically consistent scene parameters, such as meshes, lighting conditions, material properties, and 6D poses of previously unseen objects from a single RGBD image and bounding boxes. We evaluated our approach on standard model-free few-shot benchmarks and demonstrated that it outperforms existing algorithms for model-free few-shot pose estimation. Furthermore, we validated the accuracy of our scene reconstructions by applying our algorithm to a zero-shot grasping task. By enabling zero-shot, physically-consistent scene reconstruction and grasping without reliance on extensive datasets or test-time sampling, our approach offers a pathway towards more data efficient, interpretable and generalizable robot autonomy in novel environments.
comment: Submitted to IEEE Robotics and Automation Letters (RA-L) for review. This version includes the statement required by IEEE for preprints
☆ Untwisting RoPE: Frequency Control for Shared Attention in DiTs
Positional encodings are essential to transformer-based generative models, yet their behavior in multimodal and attention-sharing settings is not fully understood. In this work, we present a principled analysis of Rotary Positional Embeddings (RoPE), showing that RoPE naturally decomposes into frequency components with distinct positional sensitivities. We demonstrate that this frequency structure explains why shared-attention mechanisms, where a target image is generated while attending to tokens from a reference image, can lead to reference copying, in which the model reproduces content from the reference instead of extracting only its stylistic cues. Our analysis reveals that the high-frequency components of RoPE dominate the attention computation, forcing queries to attend mainly to spatially aligned reference tokens and thereby inducing this unintended copying behavior. Building on these insights, we introduce a method for selectively modulating RoPE frequency bands so that attention reflects semantic similarity rather than strict positional alignment. Applied to modern transformer-based diffusion architectures, where all tokens share attention, this modulation restores stable and meaningful shared attention. As a result, it enables effective control over the degree of style transfer versus content copying, yielding a proper style-aligned generation process in which stylistic attributes are transferred without duplicating reference content.
☆ SIDeR: Semantic Identity Decoupling for Unrestricted Face Privacy
With the deep integration of facial recognition into online banking, identity verification, and other networked services, achieving effective decoupling of identity information from visual representations during image storage and transmission has become a critical challenge for privacy protection. To address this issue, we propose SIDeR, a Semantic decoupling-driven framework for unrestricted face privacy protection. SIDeR decomposes a facial image into a machine-recognizable identity feature vector and a visually perceptible semantic appearance component. By leveraging semantic-guided recomposition in the latent space of a diffusion model, it generates visually anonymous adversarial faces while maintaining machine-level identity consistency. The framework incorporates momentum-driven unrestricted perturbation optimization and a semantic-visual balancing factor to synthesize multiple visually diverse, highly natural adversarial samples. Furthermore, for authorized access, the protected image can be restored to its original form when the correct password is provided. Extensive experiments on the CelebA-HQ and FFHQ datasets demonstrate that SIDeR achieves a 99% attack success rate in black-box scenarios and outperforms baseline methods by 41.28% in PSNR-based restoration quality.
comment: 14 pages, 8 figures
♻ ☆ Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image $x^\ast$ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image $x^{p*}$. Although $x^{p*}$ is reasonably close to $x^\ast$, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image $x^+$ is closer to $x^\ast$ than $x^{p*}$. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates $K$ new images as a function of $x^{p*}$, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of $K$ images. We show that within $B$ rounds of user feedback, it is possible to arrive much closer to $x^\ast$, even though the generative model has no information about $x^\ast$. Qualitative scores from $30$ users, combined with quantitative metrics compared across $5$ baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
♻ ☆ DGS-Net: Distillation-Guided Gradient Surgery for CLIP Fine-Tuning in AI-Generated Image Detection
The rapid progress of generative models such as GANs and diffusion models has led to the widespread proliferation of AI-generated images, raising concerns about misinformation, privacy violations, and trust erosion in digital media. Although large-scale multimodal models like CLIP offer strong transferable representations for detecting synthetic content, fine-tuning them often induces catastrophic forgetting, which degrades pre-trained priors and limits cross-domain generalization. To address this issue, we propose the Distillation-guided Gradient Surgery Network (DGS-Net), a novel framework that preserves transferable pre-trained priors while suppressing task-irrelevant components. Specifically, we introduce a gradient-space decomposition that separates harmful and beneficial descent directions during optimization. By projecting task gradients onto the orthogonal complement of harmful directions and aligning with beneficial ones distilled from a frozen CLIP encoder, DGS-Net achieves unified optimization of prior preservation and irrelevant suppression. Extensive experiments on 50 generative models demonstrate that our method outperforms state-of-the-art approaches by an average margin of 6.6, achieving superior detection performance and generalization across diverse generation techniques.
♻ ☆ Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. The source code will be released at https://github.com/aihao2000/DPN-LLaVA.
♻ ☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through two complementary reasoning paradigms. We incorporate world knowledge-enhanced textual reasoning into generation to infer implicit knowledge, and leverage editing capabilities for fine-grained editing-like visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared architecture, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for textual reasoning, alongside an agent-generated corpus for visual refinement. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method supports causal interventions on target attributes and consistently propagates their effects to causal dependents while preserving the core identity of the image. Unlike prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling with two attribute-regularization strategies: (i) prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and (ii) a conditioned token contrastive loss that disentangles attribute factors and reduces spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, including up to a 91% reduction in MAE on Pendulum for accurate attribute control and up to an 87% reduction in FID on ADNI for high-fidelity MRI generation. These results demonstrate robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation. Code and models will be released at: https://leitong02.github.io/causaladapter/.
comment: Project Page: https://leitong02.github.io/causaladapter/
♻ ☆ UNO: Unifying One-stage Video Scene Graph Generation via Object-Centric Visual Representation Learning WACV 2026
Video Scene Graph Generation (VidSGG) aims to represent dynamic visual content by detecting objects and modeling their temporal interactions as structured graphs. Prior studies typically target either coarse-grained box-level or fine-grained panoptic pixel-level VidSGG, often requiring task-specific architectures and multi-stage training pipelines. In this paper, we present UNO (UNified Object-centric VidSGG), a single-stage, unified framework that jointly addresses both tasks within an end-to-end architecture. UNO is designed to minimize task-specific modifications and maximize parameter sharing, enabling generalization across different levels of visual granularity. The core of UNO is an extended slot attention mechanism that decomposes visual features into object and relation slots. To ensure robust temporal modeling, we introduce object temporal consistency learning, which enforces consistent object representations across frames without relying on explicit tracking modules. Additionally, a dynamic triplet prediction module links relation slots to corresponding object pairs, capturing evolving interactions over time. We evaluate UNO on standard box-level and pixel-level VidSGG benchmarks. Results demonstrate that UNO not only achieves competitive performance across both tasks but also offers improved efficiency through a unified, object-centric design. Code is available at: https://github.com/Fsoft-AIC/UNO
comment: 11 pages, 7 figures. Accepted at WACV 2026
♻ ☆ Improved Bag-of-Words Image Retrieval with Geometric Constraints for Ground Texture Localization
Ground texture localization using a downward-facing camera offers a low-cost, high-precision localization solution that is robust to dynamic environments and requires no environmental modification. We present a significantly improved bag-of-words (BoW) image retrieval system for ground texture localization, achieving substantially higher accuracy for global localization and higher precision and recall for loop closure detection in SLAM. Our approach leverages an approximate $k$-means (AKM) vocabulary with soft assignment, and exploits the consistent orientation and constant scale constraints inherent to ground texture localization. Identifying the different needs of global localization vs. loop closure detection for SLAM, we present both high-accuracy and high-speed versions of our algorithm. We test the effect of each of our proposed improvements through an ablation study and demonstrate our method's effectiveness for both global localization and loop closure detection. With numerous ground texture localization systems already using BoW, our method can readily replace other generic BoW systems in their pipeline and immediately improve their results.
comment: Accepted to ICRA 2025
♻ ☆ Open-Source Multimodal Moxin Models with Moxin-VLM and Moxin-VLA
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Moxin 7B is introduced as a fully open-source LLM developed in accordance with the Model Openness Framework, which moves beyond the simple sharing of model weights to embrace complete transparency in training, datasets, and implementation detail, thus fostering a more inclusive and collaborative research environment that can sustain a healthy open-source ecosystem. To further equip Moxin with various capabilities in different tasks, we develop three variants based on Moxin, including Moxin-VLM, Moxin-VLA, and Moxin-Chinese, which target the vision-language, vision-language-action, and Chinese capabilities, respectively. Experiments show that our models achieve superior performance in various evaluations. We adopt open-source framework and open data for the training. We release our models, along with the available data and code to derive these models.
♻ ☆ Quasi-Medial Distance Field (Q-MDF): A Robust Method for Approximating and Discretizing Neural Medial Axes
The medial axis, a lower-dimensional descriptor that captures the extrinsic structure of a shape, plays an important role in digital geometry processing. Despite its importance, computing the medial axis transform robustly from diverse inputs, especially point clouds with defects, remains a challenging problem. In this paper, we propose a new implicit method that deviates from traditional explicit medial axis computation. Our key technical insight is that the difference between the signed distance field (SDF) and the medial field (MF) of a solid shape relates to the unsigned distance field (UDF) of the shape's medial axis. This observation allows us to formulate medial axis extraction as an implicit reconstruction problem. By employing a modified double covering strategy, we recover the medial axis as the zero level-set of the UDF. Extensive experiments demonstrate that our method achieves higher accuracy and robustness in learning compact medial axis transforms from challenging meshes and point clouds, outperforming existing approaches.
♻ ☆ QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution AAAI 2026
Diffusion models have shown superior performance in real-world video super-resolution (VSR). However, the slow processing speeds and heavy resource consumption of diffusion models hinder their practical application and deployment. Quantization offers a potential solution for compressing the VSR model. Nevertheless, quantizing VSR models is challenging due to their temporal characteristics and high fidelity requirements. To address these issues, we propose QuantVSR, a low-bit quantization model for real-world VSR. We propose a spatio-temporal complexity aware (STCA) mechanism, where we first utilize the calibration dataset to measure both spatial and temporal complexities for each layer. Based on these statistics, we allocate layer-specific ranks to the low-rank full-precision (FP) auxiliary branch. Subsequently, we jointly refine the FP and low-bit branches to achieve simultaneous optimization. In addition, we propose a learnable bias alignment (LBA) module to reduce the biased quantization errors. Extensive experiments on synthetic and real-world datasets demonstrate that our method obtains comparable performance with the FP model and significantly outperforms recent leading low-bit quantization methods. Code is available at: https://github.com/bowenchai/QuantVSR.
comment: Accepted to AAAI 2026. Code is available at: https://github.com/bowenchai/QuantVSR
♻ ☆ Revisiting the Evaluation of Deep Neural Networks for Pedestrian Detection
Reliable pedestrian detection represents a crucial step towards automated driving systems. However, the current performance benchmarks exhibit weaknesses. The currently applied metrics for various subsets of a validation dataset prohibit a realistic performance evaluation of a DNN for pedestrian detection. As image segmentation supplies fine-grained information about a street scene, it can serve as a starting point to automatically distinguish between different types of errors during the evaluation of a pedestrian detector. In this work, eight different error categories for pedestrian detection are proposed and new metrics are proposed for performance comparison along these error categories. We use the new metrics to compare various backbones for a simplified version of the APD, and show a more fine-grained and robust way to compare models with each other especially in terms of safety-critical performance. We achieve SOTA on CityPersons-reasonable (without extra training data) by using a rather simple architecture.
♻ ☆ Past- and Future-Informed KV Cache Policy with Salience Estimation in Autoregressive Video Diffusion
Video generation is pivotal to digital media creation, and recent advances in autoregressive video generation have markedly enhanced the efficiency of real-time video synthesis. However, existing approaches generally rely on heuristic KV Cache policies, which ignore differences in token importance in long-term video generation. This leads to the loss of critical spatiotemporal information and the accumulation of redundant, invalid cache, thereby degrading video generation quality and efficiency. To address this limitation, we first observe that token contributions to video generation are highly time-heterogeneous and accordingly propose a novel Past- and Future-Informed KV Cache Policy (PaFu-KV). Specifically, PaFu-KV introduces a lightweight Salience Estimation Head distilled from a bidirectional teacher to estimate salience scores, allowing the KV cache to retain informative tokens while discarding less relevant ones. This policy yields a better quality-efficiency trade-off by shrinking KV cache capacity and reducing memory footprint at inference time. Extensive experiments on benchmarks demonstrate that our method preserves high-fidelity video generation quality while enables accelerated inference, thereby enabling more efficient long-horizon video generation. Our code will be released upon paper acceptance.
♻ ☆ Beyond Global Alignment: Fine-Grained Motion-Language Retrieval via Pyramidal Shapley-Taylor Learning
As a foundational task in human-centric cross-modal intelligence, motion-language retrieval aims to bridge the semantic gap between natural language and human motion, enabling intuitive motion analysis, yet existing approaches predominantly focus on aligning entire motion sequences with global textual representations. This global-centric paradigm overlooks fine-grained interactions between local motion segments and individual body joints and text tokens, inevitably leading to suboptimal retrieval performance. To address this limitation, we draw inspiration from the pyramidal process of human motion perception (from joint dynamics to segment coherence, and finally to holistic comprehension) and propose a novel Pyramidal Shapley-Taylor (PST) learning framework for fine-grained motion-language retrieval. Specifically, the framework decomposes human motion into temporal segments and spatial body joints, and learns cross-modal correspondences through progressive joint-wise and segment-wise alignment in a pyramidal fashion, effectively capturing both local semantic details and hierarchical structural relationships. Extensive experiments on multiple public benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, achieving precise alignment between motion segments and body joints and their corresponding text tokens. The code of this work will be released upon acceptance.
♻ ☆ OCRVerse: Towards Holistic OCR in End-to-End Vision-Language Models
The development of large vision language models drives the demand for managing, and applying massive amounts of multimodal data, making OCR technology, which extracts information from visual images, increasingly popular. However, existing OCR methods primarily focus on recognizing text elements from images or scanned documents (Text-centric OCR), neglecting the identification of visual elements from visually information-dense image sources (Vision-centric OCR), such as charts, web pages and science plots. In reality, these visually information-dense images are widespread on the internet and have significant real-world application value, such as data visualization and web page analysis. In this technical report, we propose OCRVerse, the first holistic OCR method in end-to-end manner that enables unified text-centric OCR and vision-centric OCR. To this end, we constructe comprehensive data engineering to cover a wide range of text-centric documents, such as newspapers, magazines and books, as well as vision-centric rendered composites, including charts, web pages and scientific plots. Moreover, we propose a two-stage SFT-RL multi-domain training method for OCRVerse. SFT directly mixes cross-domain data to train and establish initial domain knowledge, while RL focuses on designing personalized reward strategies for the characteristics of each domain. Specifically, since different domains require various output formats and expected outputs, we provide sufficient flexibility in the RL stage to customize flexible reward signals for each domain, thereby improving cross-domain fusion and avoiding data conflicts. Experimental results demonstrate the effectiveness of OCRVerse, achieving competitive results across text-centric and vision-centric data types, even comparable to large-scale open-source and closed-source models.
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Think3D: Thinking with Space for Spatial Reasoning
Understanding and reasoning about the physical world requires spatial intelligence: the ability to interpret geometry, perspective, and spatial relations beyond 2D perception. While recent vision large models (VLMs) excel at visual understanding, they remain fundamentally 2D perceivers and struggle with genuine 3D reasoning. We introduce Think3D, a framework that enables VLM agents to think with 3D space. By leveraging 3D reconstruction models that recover point clouds and camera poses from images or videos, Think3D allows the agent to actively manipulate space through camera-based operations and ego/global-view switching, transforming spatial reasoning into an interactive 3D chain-of-thought process. Without additional training, Think3D significantly improves the spatial reasoning performance of advanced models such as GPT-4.1 and Gemini 2.5 Pro, yielding average gains of +7.8% on BLINK Multi-view and MindCube, and +4.7% on VSI-Bench. We further show that smaller models, which struggle with spatial exploration, benefit significantly from a reinforcement learning policy that enables the model to select informative viewpoints and operations. With RL, the benefit from tool usage increases from +0.7% to +6.8%. Our findings demonstrate that training-free, tool-augmented spatial exploration is a viable path toward more flexible and human-like 3D reasoning in multimodal agents, establishing a new dimension of multimodal intelligence. Code and weights are released at https://github.com/zhangzaibin/spagent.
♻ ☆ Quantization-Aware Neuromorphic Architecture for Skin Disease Classification on Resource-Constrained Devices
On-device skin lesion analysis is constrained by the compute and energy cost of conventional CNN inference and by the need to update models as new patient data become available. Neuromorphic processors provide event-driven sparse computation and support on-chip incremental learning, yet deployment is often hindered by CNN-to-SNN conversion failures, including non-spike-compatible operators and accuracy degradation under class imbalance. We propose QANA, a quantization-aware CNN backbone embedded in an end-to-end pipeline engineered for conversion-stable neuromorphic execution. QANA replaces conversion-fragile components with spike-compatible transformations by bounding intermediate activations and aligning normalization with low-bit quantization, reducing conversion-induced distortion that disproportionately impacts rare classes. Efficiency is achieved through Ghost-based feature generation under tight FLOP budgets, while spatially-aware efficient channel attention and squeeze-and-excitation recalibrate channels without heavy global operators that are difficult to map to spiking cores. The resulting quantized projection head produces SNN-ready logits and enables incremental updates on edge hardware without full retraining or data offloading. On HAM10000, QANA achieves 91.6% Top-1 accuracy and 91.0% macro F1, improving the strongest converted SNN baseline by 3.5 percentage points in Top-1 accuracy (a 4.0% relative gain) and by 12.0 points in macro F1 (a 15.2% relative gain). On a clinical dataset, QANA achieves 90.8% Top-1 accuracy and 81.7% macro F1, improving the strongest converted SNN baseline by 3.2 points in Top-1 accuracy (a 3.7% relative gain) and by 3.6 points in macro F1 (a 4.6% relative gain). When deployed on BrainChip Akida, QANA runs in 1.5 ms per image with 1.7 mJ per image, corresponding to 94.6% lower latency and 99.0% lower energy than its GPU-based CNN implementation.
♻ ☆ LiDAR-based 3D Change Detection at City Scale
High-definition 3D city maps enable city planning and change detection, which is essential for municipal compliance, map maintenance, and asset monitoring, including both built structures and urban greenery. Conventional Digital Surface Model (DSM) and image differencing are sensitive to vertical bias and viewpoint mismatch, while original point cloud or voxel models require large memory, assume perfect alignment, and degrade thin structures. We propose an uncertainty-aware, object-centric method for city-scale LiDAR-based change detection. Our method aligns data from different time periods using multi-resolution Normal Distributions Transform (NDT) and a point-to-plane Iterative Closest Point (ICP) method, normalizes elevation, and computes a per-point level of detection from registration covariance and surface roughness to calibrate change decisions. Geometry-based associations are refined by semantic and instance segmentation and optimized using class-constrained bipartite assignment with augmented dummies to handle split-merge cases. Tiled processing bounds memory and preserves narrow ground changes, while instance-level decisions integrate overlap, displacement, and volumetric differences under local detection gating. We perform experiments on a Subiaco (Western Australia) dataset captured in 2023 and again in 2025. Our method achieves 95.3% accuracy, 90.8% mF1, and 82.9% mIoU, improving over the strongest baseline, Triplet KPConv, by 0.3, 0.6, and 1.1 points, respectively. The datasets are available on IEEE DataPort (2023: https://ieee-dataport.org/documents/2023-subiaco-wa-3d-hd-lidar-point-cloud-maps-dataset and 2025: https://ieee-dataport.org/documents/2025-subiaco-wa-3d-hd-lidar-gnss-point-cloud-maps-dataset). The source code is available at https://github.com/HaitianWang/IEEE-Sensor-Journal-Changing-Detection.
♻ ☆ Vid-LLM: A Compact Video-based 3D Multimodal LLM with Reconstruction-Reasoning Synergy
Recent developments in Multimodal Large Language Models (MLLMs) have significantly improved Vision-Language (VL) reasoning in 2D domains. However, extending these capabilities to 3D scene understanding remains a major challenge. Existing 3D Multimodal Large Language Models (3D-MLLMs) often depend on 3D data inputs, which limits scalability and generalization. To address this limitation, we propose Vid-LLM, a video-based 3D-MLLM that directly processes video inputs without requiring external 3D data, making it practical for real-world deployment. In our method, the geometric prior are directly used to improve the performance of the sceen perception. To integrate the geometric cues into the MLLM compactly, we design a Cross-Task Adapter (CTA) module to align the 3D geometric priors with the vision-language representations. To ensure geometric consistency and integrity, we introduce a Metric Depth Model that recovers real-scale geometry from the reconstruction outputs. Finally, the model is fine-tuned with a two-stage distillation optimization strategy, realizing fast convergence and stabilizes training. Extensive experiments across diverse benchmarks verified the effectiveness of our method on 3D Question Answering, 3D Dense Captioning and 3D Visual Grounding tasks, demonstrating the superior multi-task capabilities.
♻ ☆ Multi-Cue Anomaly Detection and Localization under Data Contamination
Visual anomaly detection in real-world industrial settings faces two major limitations. First, most existing methods are trained on purely normal data or on unlabeled datasets assumed to be predominantly normal, presuming the absence of contamination, an assumption that is rarely satisfied in practice. Second, they assume no access to labeled anomaly samples, limiting the model from learning discriminative characteristics of true anomalies. Therefore, these approaches often struggle to distinguish anomalies from normal instances, resulting in reduced detection and weak localization performance. In real-world applications, where training data are frequently contaminated with anomalies, such methods fail to deliver reliable performance. In this work, we propose a robust anomaly detection framework that integrates limited anomaly supervision into the adaptive deviation learning paradigm. We introduce a composite anomaly score that combines three complementary components: a deviation score capturing statistical irregularity, an entropy-based uncertainty score reflecting predictive inconsistency, and a segmentation-based score highlighting spatial abnormality. This unified scoring mechanism enables accurate detection and supports gradient-based localization, providing intuitive and explainable visual evidence of anomalous regions. Following the few-anomaly paradigm, we incorporate a small set of labeled anomalies during training while simultaneously mitigating the influence of contaminated samples through adaptive instance weighting. Extensive experiments on the MVTec and VisA benchmarks demonstrate that our framework outperforms state-of-the-art baselines and achieves strong detection and localization performance, interpretability, and robustness under various levels of data contamination.
comment: 12 pages total (10 pages main text + references), 6 figures. Preprint version; the final camera-ready version may differ
♻ ☆ Weight Space Correlation Analysis: Quantifying Feature Utilization in Deep Learning Models
Deep learning models in medical imaging are susceptible to shortcut learning, relying on confounding metadata (e.g., scanner model) that is often encoded in image embeddings. The crucial question is whether the model actively utilizes this encoded information for its final prediction. We introduce Weight Space Correlation Analysis, an interpretable methodology that quantifies feature utilization by measuring the alignment between the classification heads of a primary clinical task and auxiliary metadata tasks. We first validate our method by successfully detecting artificially induced shortcut learning. We then apply it to probe the feature utilization of an SA-SonoNet model trained for Spontaneous Preterm Birth (sPTB) prediction. Our analysis confirmed that while the embeddings contain substantial metadata, the sPTB classifier's weight vectors were highly correlated with clinically relevant factors (e.g., birth weight) but decoupled from clinically irrelevant acquisition factors (e.g. scanner). Our methodology provides a tool to verify model trustworthiness, demonstrating that, in the absence of induced bias, the clinical model selectively utilizes features related to the genuine clinical signal.
comment: 26 pages
♻ ☆ Interpolation of GEDI Biomass Estimates with Calibrated Uncertainty Quantification
Reliable wall-to-wall biomass density estimation from NASA's GEDI mission requires interpolating sparse LIDAR observations across heterogeneous landscapes. While machine learning approaches like Random Forest and XGBoost are widely used, they treat spatial predictions of GEDI observations from multispectral or SAR remote sensing data as independent without adapting to the varying difficulty of heterogeneous landscapes. We demonstrate these approaches generally fail to produce calibrated prediction intervals. We show that this stems from conflating ensemble variance with aleatoric uncertainty and ignoring local spatial context. To resolve this, we introduce Attentive Neural Processes (ANPs), a probabilistic meta-learning architecture that explicitly conditions predictions on local observation sets and exploits geospatial foundation model embeddings. Unlike static ensembles, ANPs learn a flexible spatial covariance function, allowing estimates to be more uncertain in complex landscapes and less in homogeneous areas. We validate this approach across five distinct biomes ranging from tropical Amazonian forests to boreal, temperate, and alpine ecosystems, demonstrating that ANPs achieve competitive accuracy while maintaining near-ideal uncertainty calibration. We demonstrate the operational utility of the method through few-shot adaptation, where the model recovers most of the performance gap in cross-region transfer using minimal local data. This work provides a scalable, theoretically rigorous alternative to ensemble variance for continental scale earth observation.
♻ ☆ Sparse-to-Sparse Training of Diffusion Models
Diffusion models (DMs) are a powerful type of generative models that have achieved state-of-the-art results in various image synthesis tasks and have shown potential in other domains, such as natural language processing and temporal data modeling. Despite their stable training dynamics and ability to produce diverse high-quality samples, DMs are notorious for requiring significant computational resources, both in the training and inference stages. Previous work has focused mostly on increasing the efficiency of model inference. This paper introduces, for the first time, the paradigm of sparse-to-sparse training to DMs, with the aim of improving both training and inference efficiency. We focus on unconditional generation and train sparse DMs from scratch (Latent Diffusion and ChiroDiff) on six datasets using three different methods (Static-DM, RigL-DM, and MagRan-DM) to study the effect of sparsity in model performance. Our experiments show that sparse DMs are able to match and often outperform their Dense counterparts, while substantially reducing the number of trainable parameters and FLOPs. We also identify safe and effective values to perform sparse-to-sparse training of DMs.
comment: Accepted to TMLR
♻ ☆ Consistent Supervised-Unsupervised Alignment for Generalized Category Discovery NeurIPS 2025
Generalized Category Discovery (GCD) focuses on classifying known categories while simultaneously discovering novel categories from unlabeled data. However, previous GCD methods face challenges due to inconsistent optimization objectives and category confusion. This leads to feature overlap and ultimately hinders performance on novel categories. To address these issues, we propose the Neural Collapse-inspired Generalized Category Discovery (NC-GCD) framework. By pre-assigning and fixing Equiangular Tight Frame (ETF) prototypes, our method ensures an optimal geometric structure and a consistent optimization objective for both known and novel categories. We introduce a Consistent ETF Alignment Loss that unifies supervised and unsupervised ETF alignment and enhances category separability. Additionally, a Semantic Consistency Matcher (SCM) is designed to maintain stable and consistent label assignments across clustering iterations. Our method achieves strong performance on multiple GCD benchmarks, significantly enhancing novel category accuracy and demonstrating its effectiveness.
comment: Accepted by NeurIPS 2025
♻ ☆ Patient-Aware Multimodal RGB-HSI Fusion via Incremental Heuristic Meta-Learning for Oral Lesion Classification
Early detection of oral cancer and potentially malignant diseases is a major challenge in low-resource settings due to the scarcity of annotated data. We provide a unified approach for four-class oral lesion classification that incorporates deep learning, spectral analysis, and demographic data. A pathologist-verified subset of oral cavity images was curated from a publicly available dataset. Oral cavity pictures were processed using a fine-tuned ConvNeXt-v2 network for deep embeddings before being translated into the hyperspectral domain using a reconstruction algorithm. Haemoglobin-sensitive, textural, and spectral descriptors were obtained from the reconstructed hyperspectral cubes and combined with demographic data. Multiple machine-learning models were evaluated using patient-specific validation. Finally, an incremental heuristic meta-learner (IHML) was developed that merged calibrated base classifiers via probabilistic feature stacking and uncertainty-aware abstraction of multimodal representations with patient-level smoothing. By decoupling evidence extraction from decision fusion, IHML stabilizes predictions in heterogeneous, small-sample medical datasets. On an unseen test set, our proposed model achieved a macro F1 of 66.23% and an overall accuracy of 64.56%. The findings demonstrate that RGB-to-hyperspectral reconstruction and ensemble meta-learning improve diagnostic robustness in real-world oral lesion screening.
comment: 6 pages, 3 figures, 2 tables
♻ ☆ Less Precise Can Be More Reliable: A Systematic Evaluation of Quantization's Impact on CLIP Beyond Accuracy
Vision-Language Models (VLMs) such as CLIP have revolutionized zero-shot classification and safety-critical tasks, including Out-of-Distribution (OOD) detection. However, their high computational cost hinders efficient real-world deployment. While quantization is a standard solution for efficiency, its broader impact on reliability metrics beyond simple Top-1 accuracy remains critically under-explored. In this study, we conduct a large-scale evaluation of VLM quantization across a comprehensive experimental suite of over 700k evaluation runs with varying configurations. We find that, contrary to the assumption that quantization's noise degrades performance, it can simultaneously improve accuracy, calibration, OOD detection, and robustness to noise, though not to covariate shift or spurious correlations. We leverage these counterintuitive findings to characterize the mechanics of quantization beyond simple regularization: we show that quantization dampens high-rank spectral components, compelling the model to rely more heavily on robust, low-rank features. Ultimately, this spectral filtering effect drives the observed improvements in generalization and noise tolerance, establishing a pathway to deploy faster, more reliable VLMs by utilizing quantization beyond its conventional role.
comment: Preprint
♻ ☆ HAODiff: Human-Aware One-Step Diffusion via Dual-Prompt Guidance NeurIPS 2025
Human-centered images often suffer from severe generic degradation during transmission and are prone to human motion blur (HMB), making restoration challenging. Existing research lacks sufficient focus on these issues, as both problems often coexist in practice. To address this, we design a degradation pipeline that simulates the coexistence of HMB and generic noise, generating synthetic degraded data to train our proposed HAODiff, a human-aware one-step diffusion. Specifically, we propose a triple-branch dual-prompt guidance (DPG), which leverages high-quality images, residual noise (LQ minus HQ), and HMB segmentation masks as training targets. It produces a positive-negative prompt pair for classifier-free guidance (CFG) in a single diffusion step. The resulting adaptive dual prompts let HAODiff exploit CFG more effectively, boosting robustness against diverse degradations. For fair evaluation, we introduce MPII-Test, a benchmark rich in combined noise and HMB cases. Extensive experiments show that our HAODiff surpasses existing state-of-the-art (SOTA) methods in terms of both quantitative metrics and visual quality on synthetic and real-world datasets, including our introduced MPII-Test. Code is available at: https://github.com/gobunu/HAODiff.
comment: 9 pages, 8 figures. Accepted at NeurIPS 2025
♻ ☆ Unlocking Past Information: Temporal Embeddings in Cooperative Bird's Eye View Prediction
Accurate and comprehensive semantic segmentation of Bird's Eye View (BEV) is essential for ensuring safe and proactive navigation in autonomous driving. Although cooperative perception has exceeded the detection capabilities of single-agent systems, prevalent camera-based algorithms in cooperative perception neglect valuable information derived from historical observations. This limitation becomes critical during sensor failures or communication issues as cooperative perception reverts to single-agent perception, leading to degraded performance and incomplete BEV segmentation maps. This paper introduces TempCoBEV, a temporal module designed to incorporate historical cues into current observations, thereby improving the quality and reliability of BEV map segmentations. We propose an importance-guided attention architecture to effectively integrate temporal information that prioritizes relevant properties for BEV map segmentation. TempCoBEV is an independent temporal module that seamlessly integrates into state-of-the-art camera-based cooperative perception models. We demonstrate through extensive experiments on the OPV2V dataset that TempCoBEV performs better than non-temporal models in predicting current and future BEV map segmentations, particularly in scenarios involving communication failures. We show the efficacy of TempCoBEV and its capability to integrate historical cues into the current BEV map, improving predictions under optimal communication conditions by up to 2% and under communication failures by up to 19%. The code is available at https://github.com/cvims/TempCoBEV
comment: Copyright 2024 IEEE. This is the accepted version of the paper. In 2024 IEEE Intelligent Vehicles Symposium (IV), pp. 2220-2225. Official paper available at https://doi.org/10.1109/IV55156.2024.10588608
♻ ☆ Color Matters: Demosaicing-Guided Color Correlation Training for Generalizable AI-Generated Image Detection
As realistic AI-generated images threaten digital authenticity, we address the generalization failure of generative artifact-based detectors by exploiting the intrinsic properties of the camera imaging pipeline. Concretely, we investigate color correlations induced by the color filter array (CFA) and demosaicing, and propose a Demosaicing-guided Color Correlation Training (DCCT) framework for AI-generated image detection. By simulating the CFA sampling pattern, we decompose each color image into a single-channel input (as the condition) and the remaining two channels as the ground-truth targets (for prediction). A self-supervised U-Net is trained to model the conditional distribution of the missing channels from the given one, parameterized via a mixture of logistic functions. Our theoretical analysis reveals that DCCT targets a provable distributional difference in color-correlation features between photographic and AI-generated images. By leveraging these distinct features to construct a binary classifier, DCCT achieves state-of-the-art generalization and robustness, significantly outperforming prior methods across over 20 unseen generators.
♻ ☆ Investigating Redundancy in Multimodal Large Language Models with Multiple Vision Encoders ICLR2026
Recent multimodal large language models (MLLMs) increasingly integrate multiple vision encoders to improve performance on various benchmarks, assuming that diverse pretraining objectives yield complementary visual signals. However, we show this assumption often fails in practice. Through systematic encoder masking across representative multi encoder MLLMs, we find that performance typically degrades gracefully and sometimes even improves when selected encoders are masked, revealing pervasive encoder redundancy. To quantify this effect, we introduce two principled metrics: the Conditional Utilization Rate (CUR), which measures an encoders marginal contribution in the presence of others, and the Information Gap (IG), which captures heterogeneity in encoder utility within a model. Using these tools, we observe (i) strong specialization on tasks like OCR and Chart, where a single encoder can dominate with a CUR greater than 90%, (ii) high redundancy on general VQA and knowledge-based tasks, where encoders are largely interchangeable, (iii) instances of detrimental encoders with negative CUR. Notably, masking specific encoders can yield up to 16% higher accuracy on a specific task category and 3.6% overall performance boost compared to the full model.Furthermore, single and dual encoder variants recover over 90% of baseline on most non OCR tasks. Our analysis challenges the more encoders are better heuristic in MLLMs and provides actionable diagnostics for developing more efficient and effective multimodal architectures.
comment: accepted by ICLR2026
♻ ☆ StainNet: Scaling Self-Supervised Foundation Models on Immunohistochemistry and Special Stains for Computational Pathology
Foundation models trained with self-supervised learning (SSL) on large-scale histological images have significantly accelerated the development of computational pathology. These models can serve as backbones for region-of-interest (ROI) image analysis or patch-level feature extractors in whole-slide images (WSIs) based on multiple instance learning (MIL). Existing pathology foundation models (PFMs) are typically pre-trained on Hematoxylin-Eosin (H\&E) stained pathology images. However, images such as immunohistochemistry (IHC) and special stains are also frequently used in clinical practice. PFMs pre-trained mainly on H\&E-stained images may be limited in clinical applications involving these non-H\&E images. To address this issue, we propose StainNet, a collection of self-supervised foundation models specifically trained for IHC and special stains in pathology images based on the vision transformer (ViT) architecture. StainNet contains a ViT-Small and a ViT-Base model, both of which are trained using a self-distillation SSL approach on over 1.4 million patch images extracted from 20,231 publicly available IHC and special staining WSIs in the HISTAI database. To evaluate StainNet models, we conduct experiments on three in-house slide-level IHC classification tasks, three in-house ROI-level special stain and two public ROI-level IHC classification tasks to demonstrate their strong ability. We also perform ablation studies such as few-ratio learning and retrieval evaluations, and compare StainNet models with recent larger PFMs to further highlight their strengths. The StainNet model weights are available at https://github.com/WonderLandxD/StainNet.
comment: 26 pages, 7 figures, 10 tables
♻ ☆ InfoTok: Adaptive Discrete Video Tokenizer via Information-Theoretic Compression
Accurate and efficient discrete video tokenization is essential for long video sequences processing. Yet, the inherent complexity and variable information density of videos present a significant bottleneck for current tokenizers, which rigidly compress all content at a fixed rate, leading to redundancy or information loss. Drawing inspiration from Shannon's information theory, this paper introduces InfoTok, a principled framework for adaptive video tokenization. We rigorously prove that existing data-agnostic training methods are suboptimal in representation length, and present a novel evidence lower bound (ELBO)-based algorithm that approaches theoretical optimality. Leveraging this framework, we develop a transformer-based adaptive compressor that enables adaptive tokenization. Empirical results demonstrate state-of-the-art compression performance, saving 20% tokens without influence on performance, and achieving 2.3x compression rates while still outperforming prior heuristic adaptive approaches. By allocating tokens according to informational richness, InfoTok enables a more compressed yet accurate tokenization for video representation, offering valuable insights for future research.
♻ ☆ Benchmarking Foundation Models for Mitotic Figure Classification
The performance of deep learning models is known to scale with data quantity and diversity. In pathology, as in many other medical imaging domains, the availability of labeled images for a specific task is often limited. Self-supervised learning techniques have enabled the use of vast amounts of unlabeled data to train large-scale neural networks, i.e., foundation models, that can address the limited data problem by providing semantically rich feature vectors that can generalize well to new tasks with minimal training effort increasing model performance and robustness. In this work, we investigate the use of foundation models for mitotic figure classification. The mitotic count, which can be derived from this classification task, is an independent prognostic marker for specific tumors and part of certain tumor grading systems. In particular, we investigate the data scaling laws on multiple current foundation models and evaluate their robustness to unseen tumor domains. Next to the commonly used linear probing paradigm, we also adapt the models using low-rank adaptation (LoRA) of their attention mechanisms. We compare all models against end-to-end-trained baselines, both CNNs and Vision Transformers. Our results demonstrate that LoRA-adapted foundation models provide superior performance to those adapted with standard linear probing, reaching performance levels close to 100% data availability with only 10% of training data. Furthermore, LoRA-adaptation of the most recent foundation models almost closes the out-of-domain performance gap when evaluated on unseen tumor domains. However, full fine-tuning of traditional architectures still yields competitive performance.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2026:003
♻ ☆ AccidentSim: Generating Vehicle Collision Videos with Physically Realistic Collision Trajectories from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
comment: 15 pages, 9 figures, 5 tables
♻ ☆ MMSF: Multitask and Multimodal Supervised Framework for WSI Classification and Survival Analysis
Multimodal evidence is critical in computational pathology: gigapixel whole slide images capture tumor morphology, while patient-level clinical descriptors preserve complementary context for prognosis. Integrating such heterogeneous signals remains challenging because feature spaces exhibit distinct statistics and scales. We introduce MMSF, a multitask and multimodal supervised framework built on a linear-complexity MIL backbone that explicitly decomposes and fuses cross-modal information. MMSF comprises a graph feature extraction module embedding tissue topology at the patch level, a clinical data embedding module standardizing patient attributes, a feature fusion module aligning modality-shared and modality-specific representations, and a Mamba-based MIL encoder with multitask prediction heads. Experiments on CAMELYON16 and TCGA-NSCLC demonstrate 2.1--6.6\% accuracy and 2.2--6.9\% AUC improvements over competitive baselines, while evaluations on five TCGA survival cohorts yield 7.1--9.8\% C-index improvements compared with unimodal methods and 5.6--7.1\% over multimodal alternatives.
comment: Submitted to "Biomedical Signal Processing and Control"
♻ ☆ MultiPriv: Benchmarking Individual-Level Privacy Reasoning in Vision-Language Models
Modern Vision-Language Models (VLMs) pose significant individual-level privacy risks by linking fragmented multimodal data to identifiable individuals through hierarchical chain-of-thought reasoning. However, existing privacy benchmarks remain structurally insufficient for this threat, as they primarily evaluate privacy perception while failing to address the more critical risk of privacy reasoning: a VLM's ability to infer and link distributed information to construct individual profiles. To address this gap, we propose MultiPriv, the first benchmark designed to systematically evaluate individual-level privacy reasoning in VLMs. We introduce the Privacy Perception and Reasoning (PPR) framework and construct a bilingual multimodal dataset with synthetic individual profiles, where identifiers (e.g., faces, names) are linked to sensitive attributes. This design enables nine challenging tasks spanning attribute detection, cross-image re-identification, and chained inference. We conduct a large-scale evaluation of over 50 open-source and commercial VLMs. Our analysis shows that 60 percent of widely used VLMs can perform individual-level privacy reasoning with up to 80 percent accuracy, posing a significant threat to personal privacy. MultiPriv provides a foundation for developing and assessing privacy-preserving VLMs.
♻ ☆ EAG3R: Event-Augmented 3D Geometry Estimation for Dynamic and Extreme-Lighting Scenes NeurIPS 2025
Robust 3D geometry estimation from videos is critical for applications such as autonomous navigation, SLAM, and 3D scene reconstruction. Recent methods like DUSt3R demonstrate that regressing dense pointmaps from image pairs enables accurate and efficient pose-free reconstruction. However, existing RGB-only approaches struggle under real-world conditions involving dynamic objects and extreme illumination, due to the inherent limitations of conventional cameras. In this paper, we propose EAG3R, a novel geometry estimation framework that augments pointmap-based reconstruction with asynchronous event streams. Built upon the MonST3R backbone, EAG3R introduces two key innovations: (1) a retinex-inspired image enhancement module and a lightweight event adapter with SNR-aware fusion mechanism that adaptively combines RGB and event features based on local reliability; and (2) a novel event-based photometric consistency loss that reinforces spatiotemporal coherence during global optimization. Our method enables robust geometry estimation in challenging dynamic low-light scenes without requiring retraining on night-time data. Extensive experiments demonstrate that EAG3R significantly outperforms state-of-the-art RGB-only baselines across monocular depth estimation, camera pose tracking, and dynamic reconstruction tasks.
comment: Accepted at NeurIPS 2025 (spotlight)
♻ ☆ Beyond Global Scanning: Adaptive Visual State Space Modeling for Salient Object Detection in Optical Remote Sensing Images
Salient object detection (SOD) in optical remote sensing images (ORSIs) faces numerous challenges, including significant variations in target scales and low contrast between targets and the background. Existing methods based on vision transformers (ViTs) and convolutional neural networks (CNNs) architectures aim to leverage both global and local features, but the difficulty in effectively integrating these heterogeneous features limits their overall performance. To overcome these limitations, we propose an adaptive state space context network (ASCNet), which builds upon the state space model mechanism to simultaneously capture long-range dependencies and enhance regional feature representation. Specifically, we employ the visual state space encoder to extract multi-scale features. To further achieve deep guidance and enhancement of these features, we design a Multi-Level Context Module (MLCM), which module strengthens cross-layer interaction capabilities between features of different scales while enhancing the model's structural perception, allowing it to distinguish between foreground and background more effectively. Then, we design the Adaptive Patchwise Visual State Space (APVSS) block as the decoder of ASCNet, which integrates our proposed Dynamic Adaptive Granularity Scan (DAGS) and Granularity-aware Propagation Module (GPM). It performs adaptive patch scanning on feature maps enhanced by local perception, thereby capturing rich local region information and enhancing state space model's local modeling capability. Extensive experimental results demonstrate that the proposed model achieves state-of-the-art performance, validating its effectiveness and superiority.
♻ ☆ DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO NeurIPS 2025
Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training for enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success using a PPO-style reinforcement learning algorithm with group-normalized rewards. However, the effectiveness of GRPO in Video Large Language Models (VideoLLMs) remains underexplored. In this paper, we explore GRPO and identify two issues that hinder effective learning: (1) reliance on safeguards, and (2) vanishing advantage. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation. Reg-GRPO reformulates the GRPO loss function as a regression task that directly predicts the advantage in GRPO, eliminating the need for safeguards such as clipping and min operations. This directly aligns the model with the advantages, providing guidance to prefer better outputs. The difficulty-aware data augmentation strategy augments input prompts/videos to target solvable difficulty levels, enabling diverse reward signals. Our experimental results show that our approach significantly improves video reasoning performance across multiple benchmarks.
comment: NeurIPS 2025
♻ ☆ A Survey on Vision-Language-Action Models for Embodied AI
Embodied AI is widely recognized as a cornerstone of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. The recent proliferation of VLAs necessitates a comprehensive survey to capture the rapidly evolving landscape. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing VLA-based control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges facing VLAs and outline promising future directions in embodied AI. A curated repository associated with this survey is available at: https://github.com/yueen-ma/Awesome-VLA.
comment: Project page: https://github.com/yueen-ma/Awesome-VLA
♻ ☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision AAAI 2026
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks.
comment: This paper has been accepted at AAAI 2026. This is the author's extended version. The final version will appear in the official proceedings
♻ ☆ LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://lovrbench.github.io/
♻ ☆ Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective numerical-visual modality integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
♻ ☆ Adaptive Knowledge Transferring with Switching Dual-Student Framework for Semi-Supervised Medical Image Segmentation
Teacher-student frameworks have emerged as a leading approach in semi-supervised medical image segmentation, demonstrating strong performance across various tasks. However, the learning effects are still limited by the strong correlation and unreliable knowledge transfer process between teacher and student networks. To overcome this limitation, we introduce a novel switching Dual-Student architecture that strategically selects the most reliable student at each iteration to enhance dual-student collaboration and prevent error reinforcement. We also introduce a strategy of Loss-Aware Exponential Moving Average to dynamically ensure that the teacher absorbs meaningful information from students, improving the quality of pseudo-labels. Our plug-and-play framework is extensively evaluated on 3D medical image segmentation datasets, where it outperforms state-of-the-art semi-supervised methods, demonstrating its effectiveness in improving segmentation accuracy under limited supervision.
comment: The paper is published at Pattern Recognition Journal
♻ ☆ Deep Multimodal Learning with Missing Modality: A Survey
During multimodal model training and testing, certain data modalities may be absent due to sensor limitations, cost constraints, privacy concerns, or data loss, negatively affecting performance. Multimodal learning techniques designed to handle missing modalities can mitigate this by ensuring model robustness even when some modalities are unavailable. This survey reviews recent progress in Multimodal Learning with Missing Modality (MLMM), focusing on deep learning methods. It provides the first comprehensive survey that covers the motivation and distinctions between MLMM and standard multimodal learning setups, followed by a detailed analysis of current methods, applications, and datasets, concluding with challenges and future directions.
comment: Accepted by TMLR (Transactions on Machine Learning Research)
♻ ☆ Same or Not? Enhancing Visual Perception in Vision-Language Models
Vision-language models (VLMs) excel at broad visual understanding but remain coarse-grained, exhibit visual biases, and miss subtle visual details. Existing training corpora reinforce this limitation by emphasizing general recognition ("Is it a cat or a dog?") over fine-grained perception. To address this, we introduce a new training corpus and task designed to enhance the perceptual abilities of VLMs. TWIN is a large-scale dataset of 561,000 image-pair queries that task models to determine whether two visually similar images depict the same object, encouraging attention to nuanced visual cues. The dataset spans a diverse range of everyday objects across contexts, viewpoints, and appearances. Fine-tuning VLMs on TWIN yields notable gains in fine-grained recognition, even on unseen domains such as art, animals, plants, and landmarks. To quantify these gains, we introduce FGVQA, a benchmark suite of 12,000 queries that repurposes fine-grained recognition and retrieval datasets from multiple domains. While existing VLMs struggle on FGVQA, when fine-tuned on TWIN they improve by up to 19.3%, without compromising performance on general VQA benchmarks. Finally, our TWIN dataset scales favorably with object annotations, and our analysis shows that scale is key to performance. We envision TWIN as a drop-in addition to open-source VLM training corpora, advancing perceptual precision of future models. Project webpage: https://glab-caltech.github.io/twin/
comment: Project webpage: https://glab-caltech.github.io/twin/
♻ ☆ MAMBO-G: Magnitude-Aware Mitigation for Boosted Guidance
High-fidelity text-to-image and text-to-video generation typically relies on Classifier-Free Guidance (CFG), but achieving optimal results often demands computationally expensive sampling schedules. In this work, we propose MAMBO-G, a training-free acceleration framework that significantly reduces computational cost by dynamically optimizing guidance magnitudes. We observe that standard CFG schedules are inefficient, applying disproportionately large updates in early steps that hinder convergence speed. MAMBO-G mitigates this by modulating the guidance scale based on the update-to-prediction magnitude ratio, effectively stabilizing the trajectory and enabling rapid convergence. This efficiency is particularly vital for resource-intensive tasks like video generation. Our method serves as a universal plug-and-play accelerator, achieving up to 3x speedup on Stable Diffusion v3.5 (SD3.5) and 4x on Lumina. Most notably, MAMBO-G accelerates the 14B-parameter Wan2.1 video model by 2x while preserving visual fidelity, offering a practical solution for efficient large-scale video synthesis. Our implementation follows a mainstream open-source diffusion framework and is plug-and-play with existing pipelines.
♻ ☆ Invariance on Manifolds: Understanding Robust Visual Representations for Place Recognition
Visual Place Recognition (VPR) demands representations robust to drastic environmental and viewpoint shifts. Current aggregation paradigms, however, either rely on data-hungry supervision or simplistic first-order statistics, often neglecting intrinsic structural correlations. In this work, we propose a Second-Order Geometric Statistics framework that inherently captures geometric stability without training. We conceptualize scenes as covariance descriptors on the Symmetric Positive Definite (SPD) manifold, where perturbations manifest as tractable congruence transformations. By leveraging geometry-aware Riemannian mappings, we project these descriptors into a linearized Euclidean embedding, effectively decoupling signal structure from noise. Our approach introduces a training-free framework built upon fixed, pre-trained backbones, achieving strong zero-shot generalization without parameter updates. Extensive experiments confirm that our method achieves highly competitive performance against state-of-the-art baselines, particularly excelling in challenging zero-shot scenarios.
comment: 14pages, 5 figures
♻ ☆ WMVLM: Evaluating Diffusion Model Image Watermarking via Vision-Language Models
Digital watermarking is essential for securing generated images from diffusion models. Accurate watermark evaluation is critical for algorithm development, yet existing methods have significant limitations: they lack a unified framework for both residual and semantic watermarks, provide results without interpretability, neglect comprehensive security considerations, and often use inappropriate metrics for semantic watermarks. To address these gaps, we propose WMVLM, the first unified and interpretable evaluation framework for diffusion model image watermarking via vision-language models (VLMs). We redefine quality and security metrics for each watermark type: residual watermarks are evaluated by artifact strength and erasure resistance, while semantic watermarks are assessed through latent distribution shifts. Moreover, we introduce a three-stage training strategy to progressively enable the model to achieve classification, scoring, and interpretable text generation. Experiments show WMVLM outperforms state-of-the-art VLMs with strong generalization across datasets, diffusion models, and watermarking methods.
♻ ☆ UniVRSE: Unified Vision-conditioned Response Semantic Entropy for Hallucination Detection in Medical Vision-Language Models
Vision-language models (VLMs) have great potential for medical image understanding, particularly in Visual Report Generation (VRG) and Visual Question Answering (VQA), but they may generate hallucinated responses that contradict visual evidence, limiting clinical deployment. Although uncertainty-based hallucination detection methods are intuitive and effective, they are limited in medical VLMs. Specifically, Semantic Entropy (SE), effective in text-only LLMs, becomes less reliable in medical VLMs due to their overconfidence from strong language priors. To address this challenge, we propose UniVRSE, a Unified Vision-conditioned Response Semantic Entropy framework for hallucination detection in medical VLMs. UniVRSE strengthens visual guidance during uncertainty estimation by contrasting the semantic predictive distributions derived from an original image-text pair and a visually distorted counterpart, with higher entropy indicating hallucination risk. For VQA, UniVRSE works on the image-question pair, while for VRG, it decomposes the report into claims, generates verification questions, and applies vision-conditioned entropy estimation at the claim level. To evaluate hallucination detection, we propose a unified pipeline that generates responses on medical datasets and derives hallucination labels via factual consistency assessment. However, current evaluation methods rely on subjective criteria or modality-specific rules. To improve reliability, we introduce Alignment Ratio of Atomic Facts (ALFA), a novel method that quantifies fine-grained factual consistency. ALFA-derived labels provide ground truth for robust benchmarking. Experiments on six medical VQA/VRG datasets and three VLMs show UniVRSE significantly outperforms existing methods with strong cross-modal generalization.
comment: Under Review. 12 pages, 2 figures
♻ ☆ CogFlow: Bridging Perception and Reasoning through Knowledge Internalization for Visual Mathematical Problem Solving ICLR 2026
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
comment: Accepted to ICLR 2026
♻ ☆ Finding Optimal Video Moment without Training: Gaussian Boundary Optimization for Weakly Supervised Video Grounding
Weakly supervised temporal video grounding aims to localize query-relevant segments in untrimmed videos using only video-sentence pairs, without requiring ground-truth segment annotations that specify exact temporal boundaries. Recent approaches tackle this task by utilizing Gaussian-based temporal proposals to represent query-relevant segments. However, their inference strategies rely on heuristic mappings from Gaussian parameters to segment boundaries, resulting in suboptimal localization performance. To address this issue, we propose Gaussian Boundary Optimization (GBO), a novel inference framework that predicts segment boundaries by solving a principled optimization problem that balances proposal coverage and segment compactness. We derive a closed-form solution for this problem and rigorously analyze the optimality conditions under varying penalty regimes. Beyond its theoretical foundations, GBO offers several practical advantages: it is training-free and compatible with both single-Gaussian and mixture-based proposal architectures. Our experiments show that GBO significantly improves localization, achieving state-of-the-art results across standard benchmarks. Extensive experiments demonstrate the efficiency and generalizability of GBO across various proposal schemes. The code is available at https://github.com/sunoh-kim/gbo.
comment: Accepted in IEEE TMM
♻ ☆ BioTamperNet: Affinity-Guided State-Space Model Detecting Tampered Biomedical Images
We propose BioTamperNet, a novel framework for detecting duplicated regions in tampered biomedical images, leveraging affinity-guided attention inspired by State Space Model (SSM) approximations. Existing forensic models, primarily trained on natural images, often underperform on biomedical data where subtle manipulations can compromise experimental validity. To address this, BioTamperNet introduces an affinity-guided self-attention module to capture intra-image similarities and an affinity-guided cross-attention module to model cross-image correspondences. Our design integrates lightweight SSM-inspired linear attention mechanisms to enable efficient, fine-grained localization. Trained end-to-end, BioTamperNet simultaneously identifies tampered regions and their source counterparts. Extensive experiments on the benchmark bio-forensic datasets demonstrate significant improvements over competitive baselines in accurately detecting duplicated regions. Code - https://github.com/SoumyaroopNandi/BioTamperNet
♻ ☆ Two-chart Beltrami Optimization for Distortion-Controlled Spherical Bijection with Application to Brain Surface Registration
Many genus-0 surface mapping tasks such as landmark alignment, feature matching, and image-driven registration, can be reduced (via an initial spherical conformal map) to optimizing a spherical self-homeomorphism with controlled distortion. However, existing works lack efficient mechanisms to control the geometric distortion of the resulting mapping. To resolve this issue, we formulate this as a Beltrami-space optimization problem, where the angle distortion is encoded explicitly by the Beltrami differential and bijectivity can be enforced through the constraint $\|μ\|_{\infty}<1$. To make this practical on the sphere, we introduce the Spherical Beltrami Differential (SBD), a two-chart representation of quasiconformal self-maps of the unit sphere $\mathbb{S}^2$, together with cross-chart consistency conditions that yield a globally bijective spherical deformation (up to conformal automorphisms). Building on the Spectral Beltrami Network, we develop BOOST, a differentiable optimization framework that updates two Beltrami fields to minimize task-driven losses while regularizing distortion and enforcing consistency along the seam. Experiments on large-deformation landmark matching and intensity-based spherical registration demonstrate improved task performance meanwhile maintaining controlled distortion and robust bijective behavior. We also apply the method to cortical surface registration by aligning sulcal landmarks and matching cortical sulcal depth, achieving comparative or better registration performance without sacrificing geometric validity.
♻ ☆ Robust automatic brain vessel segmentation in 3D CTA scans using dynamic 4D-CTA data
In this study, we develop a novel methodology for annotating the brain vasculature using dynamic 4D-CTA head scans. By using multiple time points from dynamic CTA acquisitions, we subtract bone and soft tissue to enhance the visualization of arteries and veins, reducing the effort required to obtain manual annotations of brain vessels. We then train deep learning models on our ground truth annotations by using the same segmentation for multiple phases from the dynamic 4D-CTA collection, effectively enlarging our dataset by 4 to 5 times and inducing robustness to contrast phases. In total, our dataset comprises 110 training images from 25 patients and 165 test images from 14 patients. In comparison with two similarly-sized datasets for CTA-based brain vessel segmentation, a nnUNet model trained on our dataset can achieve significantly better segmentations across all vascular regions, with an average mDC of 0.846 for arteries and 0.957 for veins in the TopBrain dataset. Furthermore, metrics such as average directed Hausdorff distance (adHD) and topology sensitivity (tSens) reflected similar trends: using our dataset resulted in low error margins (adHD of 0.304 mm for arteries and 0.078 for veins) and high sensitivity (tSens of 0.877 for arteries and 0.974 for veins), indicating excellent accuracy in capturing vessel morphology. Our code and model weights are available online at https://github.com/alceballosa/robust-vessel-segmentation
comment: 18 pages, 10 figures
♻ ☆ CLEAR-Mamba:Towards Accurate, Adaptive and Trustworthy Multi-Sequence Ophthalmic Angiography Classification
Medical image classification is a core task in computer-aided diagnosis (CAD), playing a pivotal role in early disease detection, treatment planning, and patient prognosis assessment. In ophthalmic practice, fluorescein fundus angiography (FFA) and indocyanine green angiography (ICGA) provide hemodynamic and lesion-structural information that conventional fundus photography cannot capture. However, due to the single-modality nature, subtle lesion patterns, and significant inter-device variability, existing methods still face limitations in generalization and high-confidence prediction. To address these challenges, we propose CLEAR-Mamba, an enhanced framework built upon MedMamba with optimizations in both architecture and training strategy. Architecturally, we introduce HaC, a hypernetwork-based adaptive conditioning layer that dynamically generates parameters according to input feature distributions, thereby improving cross-domain adaptability. From a training perspective, we develop RaP, a reliability-aware prediction scheme built upon evidential uncertainty learning, which encourages the model to emphasize low-confidence samples and improves overall stability and reliability. We further construct a large-scale ophthalmic angiography dataset covering both FFA and ICGA modalities, comprising multiple retinal disease categories for model training and evaluation. Experimental results demonstrate that CLEAR-Mamba consistently outperforms multiple baseline models, including the original MedMamba, across various metrics-showing particular advantages in multi-disease classification and reliability-aware prediction. This study provides an effective solution that balances generalizability and reliability for modality-specific medical image classification tasks.
comment: 10 pages,7 figures
♻ ☆ VEAttack: Downstream-agnostic Vision Encoder Attack against Large Vision Language Models
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in multimodal understanding and generation, yet their vulnerability to adversarial attacks raises significant robustness concerns. While existing effective attacks always focus on task-specific white-box settings, these approaches are limited in the context of LVLMs, which are designed for diverse downstream tasks and require expensive full-model gradient computations. Motivated by the pivotal role and wide adoption of the vision encoder in LVLMs, we propose a simple yet effective Vision Encoder Attack (VEAttack), which targets the vision encoder of LVLMs only. Specifically, we propose to generate adversarial examples by minimizing the cosine similarity between the clean and perturbed visual features, without accessing the following large language models, task information, and labels. It significantly reduces the computational overhead while eliminating the task and label dependence of traditional white-box attacks in LVLMs. To make this simple attack effective, we propose to perturb images by optimizing image tokens instead of the classification token. We provide both empirical and theoretical evidence that VEAttack can easily generalize to various tasks. VEAttack has achieved a performance degradation of 94.5% on image caption task and 75.7% on visual question answering task. We also reveal some key observations to provide insights into LVLM attack/defense: 1) hidden layer variations of LLM, 2) token attention differential, 3) Möbius band in transfer attack, 4) low sensitivity to attack steps. The code is available at https://github.com/hefeimei06/VEAttack-LVLM.
♻ ☆ Geometry-aware 4D Video Generation for Robot Manipulation ICLR 2026
Understanding and predicting dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of generated videos by supervising the model with cross-view pointmap alignment during training. Through this geometric supervision, the model learns a shared 3D scene representation, enabling it to generate spatio-temporally aligned future video sequences from novel viewpoints given a single RGB-D image per view, and without relying on camera poses as input. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, yielding robot manipulation policies that generalize well to novel camera viewpoints.
comment: ICLR 2026; Project website: https://robot4dgen.github.io
♻ ☆ Learning Domain Knowledge in Multimodal Large Language Models through Reinforcement Fine-Tuning
Multimodal large language models (MLLMs) have shown remarkable capabilities in multimodal perception and understanding tasks. However, their effectiveness in specialized domains, such as remote sensing and medical imaging, remains limited. A natural approach to domain adaptation is to inject domain knowledge through textual instructions, prompts, or auxiliary captions. Surprisingly, we find that such input-level domain knowledge injection yields little to no improvement on scientific multimodal tasks, even when the domain knowledge is explicitly provided. This observation suggests that current MLLMs fail to internalize domain-specific priors through language alone, and that domain knowledge must be integrated at the optimization level. Motivated by this insight, we propose a reinforcement fine-tuning framework that incorporates domain knowledge directly into the learning objective. Instead of treating domain knowledge as descriptive information, we encode it as domain-informed constraints and reward signals, shaping the model's behavior in the output space. Extensive experiments across multiple datasets in remote sensing and medical domains consistently demonstrate good performance gains, achieving state-of-the-art results on multimodal domain tasks. Our results highlight the necessity of optimization-level domain knowledge integration and reveal a fundamental limitation of textual domain conditioning in current MLLMs.
♻ ☆ Revisiting 360 Depth Estimation with PanoGabor: A New Fusion Perspective TPAMI
Depth estimation from a monocular 360 image is important to the perception of the entire 3D environment. However, the inherent distortion and large field of view (FoV) in 360 images pose great challenges for this task. To this end, existing mainstream solutions typically introduce additional perspective-based 360 representations ({e.g., Cubemap) to achieve effective feature extraction. Nevertheless, regardless of the introduced representations, they eventually need to be unified into the equirectangular projection (ERP) format for the subsequent depth estimation, which inevitably reintroduces the troublesome distortions. In this work, we propose an oriented distortion-aware Gabor Fusion framework (PGFuse) to address the above challenges. First, we introduce Gabor filters that analyze texture in the frequency domain, thereby extending the receptive fields and enhancing depth cues. To address the reintroduced distortions, we design a linear latitude-aware distortion representation method to generate customized, distortion-aware Gabor filters (PanoGabor filters). Furthermore, we design a channel-wise and spatial-wise unidirectional fusion module (CS-UFM) that integrates the proposed PanoGabor filters to unify other representations into the ERP format, delivering effective and distortion-free features. Considering the orientation sensitivity of the Gabor transform, we introduce a spherical gradient constraint to stabilize this sensitivity. Experimental results on three popular indoor 360 benchmarks demonstrate the superiority of the proposed PGFuse to existing state-of-the-art solutions. Code and models will be available at https://github.com/zhijieshen-bjtu/PGFuse
comment: Accepted by TPAMI
♻ ☆ Event2Vec: Processing Neuromorphic Events Directly by Representations in Vector Space
Neuromorphic event cameras possess superior temporal resolution, power efficiency, and dynamic range compared to traditional cameras. However, their asynchronous and sparse data format poses a significant challenge for conventional deep learning methods. Existing methods either convert the events into dense synchronous frame representations for processing by powerful CNNs or Transformers, but lose the asynchronous, sparse and high temporal resolution characteristics of events during the conversion process; or adopt irregular models such as sparse convolution, spiking neural networks, or graph neural networks to process the irregular event representations but fail to take full advantage of GPU acceleration.Inspired by word-to-vector models, we draw an analogy between words and events to introduce event2vec, a novel representation that allows neural networks to process events directly. This approach is fully compatible with the parallel processing capabilities of Transformers. We demonstrate the effectiveness of event2vec on the DVS Gesture, ASL-DVS, and DVS-Lip benchmarks, showing that event2vec is remarkably parameter-efficient, features high throughput and low latency, and achieves high accuracy even with an extremely low number of events or low spatial resolutions. Event2vec introduces a novel paradigm by demonstrating for the first time that sparse, irregular event data can be directly integrated into high-throughput Transformer architectures. This breakthrough resolves the long-standing conflict between maintaining data sparsity and maximizing GPU efficiency, offering a promising balance for real-time, low-latency neuromorphic vision tasks. The code is provided in https://github.com/Intelligent-Computing-Lab-Panda/event2vec.
♻ ☆ Image Corruption-Inspired Membership Inference Attacks against Large Vision-Language Models EACL 2026
Large vision-language models (LVLMs) have demonstrated outstanding performance in many downstream tasks. However, LVLMs are trained on large-scale datasets, which can pose privacy risks if training images contain sensitive information. Therefore, it is important to detect whether an image is used to train the LVLM. Recent studies have investigated membership inference attacks (MIAs) against LVLMs, including detecting image-text pairs and single-modality content. In this work, we focus on detecting whether a target image is used to train the target LVLM. We design simple yet effective Image Corruption-Inspired Membership Inference Attacks (ICIMIA) against LVLMs, which are inspired by LVLM's different sensitivity to image corruption for member and non-member images. We first perform an MIA method under the white-box setting, where we can obtain the embeddings of the image through the vision part of the target LVLM. The attacks are based on the embedding similarity between the image and its corrupted version. We further explore a more practical scenario where we have no knowledge about target LVLMs and we can only query the target LVLMs with an image and a textual instruction. We then conduct the attack by utilizing the output text embeddings' similarity. Experiments on existing datasets validate the effectiveness of our proposed methods under those two different settings.
comment: Accepted by EACL 2026
♻ ☆ An AI-enabled tool for quantifying overlapping red blood cell sickling dynamics in microfluidic assays
Understanding sickle cell dynamics requires accurate identification of morphological transitions under diverse biophysical conditions, particularly in densely packed and overlapping cell populations. Here, we present an automated deep learning framework that integrates AI-assisted annotation, segmentation, classification, and instance counting to quantify red blood cell (RBC) populations across varying density regimes in time-lapse microscopy data. Experimental images were annotated using the Roboflow platform to generate labeled dataset for training an nnU-Net segmentation model. The trained network enables prediction of the temporal evolution of the sickle cell fraction, while a watershed algorithm resolves overlapping cells to enhance quantification accuracy. Despite requiring only a limited amount of labeled data for training, the framework achieves high segmentation performance, effectively addressing challenges associated with scarce manual annotations and cell overlap. By quantitatively tracking dynamic changes in RBC morphology, this approach can more than double the experimental throughput via densely packed cell suspensions, capture drug-dependent sickling behavior, and reveal distinct mechanobiological signatures of cellular morphological evolution. Overall, this AI-driven framework establishes a scalable and reproducible computational platform for investigating cellular biomechanics and assessing therapeutic efficacy in microphysiological systems.
♻ ☆ Quantification and Classification of Carbon Nanotubes in Electron Micrographs using Vision Foundation Models
Accurate characterization of carbon nanotube morphologies in electron microscopy images is vital for exposure assessment and toxicological studies, yet current workflows rely on slow, subjective manual segmentation. This work presents a unified framework leveraging vision foundation models to automate the quantification and classification of CNTs in electron microscopy images. First, we introduce an interactive quantification tool built on the Segment Anything Model (SAM) that segments particles with near-perfect accuracy using minimal user input. Second, we propose a novel classification pipeline that utilizes these segmentation masks to spatially constrain a DINOv2 vision transformer, extracting features exclusively from particle regions while suppressing background noise. Evaluated on a dataset of 1,800 TEM images, this architecture achieves 95.5% accuracy in distinguishing between four different CNT morphologies, significantly outperforming the current baseline despite using a fraction of the training data. Crucially, this instance-level processing allows the framework to resolve mixed samples, correctly classifying distinct particle types co-existing within a single field of view. These results demonstrate that integrating zero-shot segmentation with self-supervised feature learning enables high-throughput, reproducible nanomaterial analysis, transforming a labor-intensive bottleneck into a scalable, data-driven process.
♻ ☆ All You Need for Object Detection: From Pixels, Points, and Prompts to Next-Gen Fusion and Multimodal LLMs/VLMs in Autonomous Vehicles
Autonomous Vehicles (AVs) are transforming the future of transportation through advances in intelligent perception, decision-making, and control systems. However, their success is tied to one core capability, reliable object detection in complex and multimodal environments. While recent breakthroughs in Computer Vision (CV) and Artificial Intelligence (AI) have driven remarkable progress, the field still faces a critical challenge as knowledge remains fragmented across multimodal perception, contextual reasoning, and cooperative intelligence. This survey bridges that gap by delivering a forward-looking analysis of object detection in AVs, emphasizing emerging paradigms such as Vision-Language Models (VLMs), Large Language Models (LLMs), and Generative AI rather than re-examining outdated techniques. We begin by systematically reviewing the fundamental spectrum of AV sensors (camera, ultrasonic, LiDAR, and Radar) and their fusion strategies, highlighting not only their capabilities and limitations in dynamic driving environments but also their potential to integrate with recent advances in LLM/VLM-driven perception frameworks. Next, we introduce a structured categorization of AV datasets that moves beyond simple collections, positioning ego-vehicle, infrastructure-based, and cooperative datasets (e.g., V2V, V2I, V2X, I2I), followed by a cross-analysis of data structures and characteristics. Ultimately, we analyze cutting-edge detection methodologies, ranging from 2D and 3D pipelines to hybrid sensor fusion, with particular attention to emerging transformer-driven approaches powered by Vision Transformers (ViTs), Large and Small Language Models (SLMs), and VLMs. By synthesizing these perspectives, our survey delivers a clear roadmap of current capabilities, open challenges, and future opportunities.
♻ ☆ Bringing Diversity from Diffusion Models to Semantic-Guided Face Asset Generation
Digital modeling and reconstruction of human faces serve various applications. However, its availability is often hindered by the requirements of data capturing devices, manual labor, and suitable actors. This situation restricts the diversity, expressiveness, and control over the resulting models. This work aims to demonstrate that a semantically controllable generative network can provide enhanced control over the digital face modeling process. To enhance diversity beyond the limited human faces scanned in a controlled setting, we introduce a novel data generation pipeline that creates a high-quality 3D face database using a pre-trained diffusion model. Our proposed normalization module converts synthesized data from the diffusion model into high-quality scanned data. Using the 44,000 face models we obtained, we further developed an efficient GAN-based generator. This generator accepts semantic attributes as input, and generates geometry and albedo. It also allows continuous post-editing of attributes in the latent space. Our asset refinement component subsequently creates physically-based facial assets. We introduce a comprehensive system designed for creating and editing high-quality face assets. Our proposed model has undergone extensive experiment, comparison and evaluation. We also integrate everything into a web-based interactive tool. We aim to make this tool publicly available with the release of the paper.
comment: Accepted Manuscript
♻ ☆ UAM: A Unified Attention-Mamba Backbone of Multimodal Framework for Tumor Cell Classification
Inspired by the recent success of the Mamba architecture in vision and language domains, we introduce a Unified Attention-Mamba (UAM) backbone. Unlike previous hybrid approaches that integrate Attention and Mamba modules in fixed proportions, our unified design flexibly combines their capabilities within a single cohesive architecture, eliminating the need for manual ratio tuning and improving encode capability. We develop two UAM variants to comprehensively evaluate the benefits of this unified structure. Building on this backbone, we further propose a multimodal UAM framework that jointly performs cell-level classification and image segmentation. Experimental results demonstrate that UAM achieves state-of-the-art performance across both tasks on public benchmarks, surpassing leading image-based foundation models. It improves cell classification accuracy from 74\% to 78\% ($n$=349,882 cells), and tumor segmentation precision from 75\% to 80\% ($n$=406 patches).
♻ ☆ EchoJEPA: A Latent Predictive Foundation Model for Echocardiography
Foundation models for echocardiography often struggle to disentangle anatomical signal from the stochastic speckle and acquisition artifacts inherent to ultrasound. We present EchoJEPA, a foundation model trained on 18 million echocardiograms across 300K patients, representing the largest pretraining corpus for this modality to date. By leveraging a latent predictive objective, EchoJEPA learns robust anatomical representations that ignore speckle noise. We validate this using a novel multi-view probing framework with frozen backbones, where EchoJEPA outperforms state-of-the-art baselines by approximately 20% in left ventricular ejection fraction (LVEF) estimation and 17% in right ventricular systolic pressure (RVSP) estimation. The model also exhibits remarkable sample efficiency, reaching 79% view classification accuracy with only 1% of labeled data versus 42% for the best baseline trained on 100%. Crucially, EchoJEPA demonstrates superior generalization, degrading by only 2% under physics-informed acoustic perturbations compared to 17% for competitors. Most remarkably, its zero-shot performance on pediatric patients surpasses fully fine-tuned baselines, establishing latent prediction as a superior paradigm for robust, generalizable medical AI.
♻ ☆ Spectral Prefiltering of Neural Fields
Neural fields excel at representing continuous visual signals but typically operate at a single, fixed resolution. We present a simple yet powerful method to optimize neural fields that can be prefiltered in a single forward pass. Key innovations and features include: (1) We perform convolutional filtering in the input domain by analytically scaling Fourier feature embeddings with the filter's frequency response. (2) This closed-form modulation generalizes beyond Gaussian filtering and supports other parametric filters (Box and Lanczos) that are unseen at training time. (3) We train the neural field using single-sample Monte Carlo estimates of the filtered signal. Our method is fast during both training and inference, and imposes no additional constraints on the network architecture. We show quantitative and qualitative improvements over existing methods for neural-field filtering.
comment: 16 pages, 10 figures, Website: https://myaldiz.info/assets/spnf
♻ ☆ TextOCVP: Object-Centric Video Prediction with Language Guidance
Understanding and forecasting future scene states is critical for autonomous agents to plan and act effectively in complex environments. Object-centric models, with structured latent spaces, have shown promise in modeling object dynamics and predicting future scene states, but often struggle to scale beyond simple synthetic datasets and to integrate external guidance, limiting their applicability in robotics. To address these limitations, we propose TextOCVP, an object-centric model for video prediction guided by textual descriptions. TextOCVP parses an observed scene into object representations, called slots, and utilizes a text-conditioned transformer predictor to forecast future object states and video frames. Our approach jointly models object dynamics and interactions while incorporating textual guidance, enabling accurate and controllable predictions. TextOCVP's structured latent space offers a more precise control of the forecasting process, outperforming several video prediction baselines on two datasets. Additionally, we show that structured object-centric representations provide superior robustness to novel scene configurations, as well as improved controllability and interpretability, enabling more precise and understandable predictions. Videos and code are available at https://play-slot.github.io/TextOCVP.
comment: Published at TMLR 02/2026
Machine Learning 150
☆ Reinforced Attention Learning
Post-training with Reinforcement Learning (RL) has substantially improved reasoning in Large Language Models (LLMs) via test-time scaling. However, extending this paradigm to Multimodal LLMs (MLLMs) through verbose rationales yields limited gains for perception and can even degrade performance. We propose Reinforced Attention Learning (RAL), a policy-gradient framework that directly optimizes internal attention distributions rather than output token sequences. By shifting optimization from what to generate to where to attend, RAL promotes effective information allocation and improved grounding in complex multimodal inputs. Experiments across diverse image and video benchmarks show consistent gains over GRPO and other baselines. We further introduce On-Policy Attention Distillation, demonstrating that transferring latent attention behaviors yields stronger cross-modal alignment than standard knowledge distillation. Our results position attention policies as a principled and general alternative for multimodal post-training.
☆ Protein Autoregressive Modeling via Multiscale Structure Generation
We present protein autoregressive modeling (PAR), the first multi-scale autoregressive framework for protein backbone generation via coarse-to-fine next-scale prediction. Using the hierarchical nature of proteins, PAR generates structures that mimic sculpting a statue, forming a coarse topology and refining structural details over scales. To achieve this, PAR consists of three key components: (i) multi-scale downsampling operations that represent protein structures across multiple scales during training; (ii) an autoregressive transformer that encodes multi-scale information and produces conditional embeddings to guide structure generation; (iii) a flow-based backbone decoder that generates backbone atoms conditioned on these embeddings. Moreover, autoregressive models suffer from exposure bias, caused by the training and the generation procedure mismatch, and substantially degrades structure generation quality. We effectively alleviate this issue by adopting noisy context learning and scheduled sampling, enabling robust backbone generation. Notably, PAR exhibits strong zero-shot generalization, supporting flexible human-prompted conditional generation and motif scaffolding without requiring fine-tuning. On the unconditional generation benchmark, PAR effectively learns protein distributions and produces backbones of high design quality, and exhibits favorable scaling behavior. Together, these properties establish PAR as a promising framework for protein structure generation.
comment: ByteDance Seed Tech Report; Page: https://par-protein.github.io/
☆ Contrastive Continual Learning for Model Adaptability in Internet of Things
Internet of Things (IoT) deployments operate in nonstationary, dynamic environments where factors such as sensor drift, evolving user behavior, and heterogeneous user privacy requirements can affect application utility. Continual learning (CL) addresses this by adapting models over time without catastrophic forgetting. Meanwhile, contrastive learning has emerged as a powerful representation-learning paradigm that improves robustness and sample efficiency in a self-supervised manner. This paper reviews the usage of \emph{contrastive continual learning} (CCL) for IoT, connecting algorithmic design (replay, regularization, distillation, prompts) with IoT system realities (TinyML constraints, intermittent connectivity, privacy). We present a unifying problem formulation, derive common objectives that blend contrastive and distillation losses, propose an IoT-oriented reference architecture for on-device, edge, and cloud-based CCL, and provide guidance on evaluation protocols and metrics. Finally, we highlight open unique challenges with respect to the IoT domain, such as spanning tabular and streaming IoT data, concept drift, federated settings, and energy-aware training.
☆ Rethinking the Trust Region in LLM Reinforcement Learning
Reinforcement learning (RL) has become a cornerstone for fine-tuning Large Language Models (LLMs), with Proximal Policy Optimization (PPO) serving as the de facto standard algorithm. Despite its ubiquity, we argue that the core ratio clipping mechanism in PPO is structurally ill-suited for the large vocabularies inherent to LLMs. PPO constrains policy updates based on the probability ratio of sampled tokens, which serves as a noisy single-sample Monte Carlo estimate of the true policy divergence. This creates a sub-optimal learning dynamic: updates to low-probability tokens are aggressively over-penalized, while potentially catastrophic shifts in high-probability tokens are under-constrained, leading to training inefficiency and instability. To address this, we propose Divergence Proximal Policy Optimization (DPPO), which substitutes heuristic clipping with a more principled constraint based on a direct estimate of policy divergence (e.g., Total Variation or KL). To avoid huge memory footprint, we introduce the efficient Binary and Top-K approximations to capture the essential divergence with negligible overhead. Extensive empirical evaluations demonstrate that DPPO achieves superior training stability and efficiency compared to existing methods, offering a more robust foundation for RL-based LLM fine-tuning.
☆ Multi-layer Cross-Attention is Provably Optimal for Multi-modal In-context Learning
Recent progress has rapidly advanced our understanding of the mechanisms underlying in-context learning in modern attention-based neural networks. However, existing results focus exclusively on unimodal data; in contrast, the theoretical underpinnings of in-context learning for multi-modal data remain poorly understood. We introduce a mathematically tractable framework for studying multi-modal learning and explore when transformer-like architectures can recover Bayes-optimal performance in-context. To model multi-modal problems, we assume the observed data arises from a latent factor model. Our first result comprises a negative take on expressibility: we prove that single-layer, linear self-attention fails to recover the Bayes-optimal predictor uniformly over the task distribution. To address this limitation, we introduce a novel, linearized cross-attention mechanism, which we study in the regime where both the number of cross-attention layers and the context length are large. We show that this cross-attention mechanism is provably Bayes optimal when optimized using gradient flow. Our results underscore the benefits of depth for in-context learning and establish the provable utility of cross-attention for multi-modal distributions.
☆ Multi-Head LatentMoE and Head Parallel: Communication-Efficient and Deterministic MoE Parallelism
Large language models have transformed many applications but remain expensive to train. Sparse Mixture of Experts (MoE) addresses this through conditional computation, with Expert Parallel (EP) as the standard distributed training method. However, EP has three limitations: communication cost grows linearly with the number of activated experts $k$, load imbalance affects latency and memory usage, and data-dependent communication requires metadata exchange. We propose Multi-Head LatentMoE and Head Parallel (HP), a new architecture and parallelism achieving $O(1)$ communication cost regardless of $k$, completely balanced traffic, and deterministic communication, all while remaining compatible with EP. To accelerate Multi-Head LatentMoE, we propose IO-aware routing and expert computation. Compared to MoE with EP, Multi-Head LatentMoE with HP trains up to $1.61\times$ faster while having identical performance. With doubled granularity, it achieves higher overall performance while still being $1.11\times$ faster. Our method makes multi-billion-parameter foundation model research more accessible.
☆ CRoSS: A Continual Robotic Simulation Suite for Scalable Reinforcement Learning with High Task Diversity and Realistic Physics Simulation
Continual reinforcement learning (CRL) requires agents to learn from a sequence of tasks without forgetting previously acquired policies. In this work, we introduce a novel benchmark suite for CRL based on realistically simulated robots in the Gazebo simulator. Our Continual Robotic Simulation Suite (CRoSS) benchmarks rely on two robotic platforms: a two-wheeled differential-drive robot with lidar, camera and bumper sensor, and a robotic arm with seven joints. The former represent an agent in line-following and object-pushing scenarios, where variation of visual and structural parameters yields a large number of distinct tasks, whereas the latter is used in two goal-reaching scenarios with high-level cartesian hand position control (modeled after the Continual World benchmark), and low-level control based on joint angles. For the robotic arm benchmarks, we provide additional kinematics-only variants that bypass the need for physical simulation (as long as no sensor readings are required), and which can be run two orders of magnitude faster. CRoSS is designed to be easily extensible and enables controlled studies of continual reinforcement learning in robotic settings with high physical realism, and in particular allow the use of almost arbitrary simulated sensors. To ensure reproducibility and ease of use, we provide a containerized setup (Apptainer) that runs out-of-the-box, and report performances of standard RL algorithms, including Deep Q-Networks (DQN) and policy gradient methods. This highlights the suitability as a scalable and reproducible benchmark for CRL research.
☆ Subliminal Effects in Your Data: A General Mechanism via Log-Linearity
Training modern large language models (LLMs) has become a veritable smorgasbord of algorithms and datasets designed to elicit particular behaviors, making it critical to develop techniques to understand the effects of datasets on the model's properties. This is exacerbated by recent experiments that show datasets can transmit signals that are not directly observable from individual datapoints, posing a conceptual challenge for dataset-centric understandings of LLM training and suggesting a missing fundamental account of such phenomena. Towards understanding such effects, inspired by recent work on the linear structure of LLMs, we uncover a general mechanism through which hidden subtexts can arise in generic datasets. We introduce Logit-Linear-Selection (LLS), a method that prescribes how to select subsets of a generic preference dataset to elicit a wide range of hidden effects. We apply LLS to discover subsets of real-world datasets so that models trained on them exhibit behaviors ranging from having specific preferences, to responding to prompts in a different language not present in the dataset, to taking on a different persona. Crucially, the effect persists for the selected subset, across models with varying architectures, supporting its generality and universality.
comment: Code available at https://github.com/ishaqadenali/logit-linear-selection
☆ From Evaluation to Design: Using Potential Energy Surface Smoothness Metrics to Guide Machine Learning Interatomic Potential Architectures
Machine Learning Interatomic Potentials (MLIPs) sometimes fail to reproduce the physical smoothness of the quantum potential energy surface (PES), leading to erroneous behavior in downstream simulations that standard energy and force regression evaluations can miss. Existing evaluations, such as microcanonical molecular dynamics (MD), are computationally expensive and primarily probe near-equilibrium states. To improve evaluation metrics for MLIPs, we introduce the Bond Smoothness Characterization Test (BSCT). This efficient benchmark probes the PES via controlled bond deformations and detects non-smoothness, including discontinuities, artificial minima, and spurious forces, both near and far from equilibrium. We show that BSCT correlates strongly with MD stability while requiring a fraction of the cost of MD. To demonstrate how BSCT can guide iterative model design, we utilize an unconstrained Transformer backbone as a testbed, illustrating how refinements such as a new differentiable $k$-nearest neighbors algorithm and temperature-controlled attention reduce artifacts identified by our metric. By optimizing model design systematically based on BSCT, the resulting MLIP simultaneously achieves a low conventional E/F regression error, stable MD simulations, and robust atomistic property predictions. Our results establish BSCT as both a validation metric and as an "in-the-loop" model design proxy that alerts MLIP developers to physical challenges that cannot be efficiently evaluated by current MLIP benchmarks.
comment: 13 pages main text, 10 pages reference & appendix, 8 figures
☆ The Key to State Reduction in Linear Attention: A Rank-based Perspective
Linear attention offers a computationally efficient yet expressive alternative to softmax attention. However, recent empirical results indicate that the state of trained linear attention models often exhibits a low-rank structure, suggesting that these models underexploit their capacity in practice. To illuminate this phenomenon, we provide a theoretical analysis of the role of rank in linear attention, revealing that low effective rank can affect retrieval error by amplifying query noise. In addition to these theoretical insights, we conjecture that the low-rank states can be substantially reduced post-training with only minimal performance degradation, yielding faster and more memory-efficient models. To this end, we propose a novel hardware-aware approach that structurally prunes key and query matrices, reducing the state size while retaining compatibility with existing CUDA kernels. We adapt several existing pruning strategies to fit our framework and, building on our theoretical analysis, propose a novel structured pruning method based on a rank-revealing QR decomposition. Our empirical results, evaluated across models of varying sizes and on various downstream tasks, demonstrate the effectiveness of our state reduction framework. We highlight that our framework enables the removal of 50% of the query and key channels at only a marginal increase in perplexity. The code for this project can be found at https://github.com/camail-official/LinearAttentionPruning.
☆ It's not a Lottery, it's a Race: Understanding How Gradient Descent Adapts the Network's Capacity to the Task
Our theoretical understanding of neural networks is lagging behind their empirical success. One of the important unexplained phenomena is why and how, during the process of training with gradient descent, the theoretical capacity of neural networks is reduced to an effective capacity that fits the task. We here investigate the mechanism by which gradient descent achieves this through analyzing the learning dynamics at the level of individual neurons in single hidden layer ReLU networks. We identify three dynamical principles -- mutual alignment, unlocking and racing -- that together explain why we can often successfully reduce capacity after training through the merging of equivalent neurons or the pruning of low norm weights. We specifically explain the mechanism behind the lottery ticket conjecture, or why the specific, beneficial initial conditions of some neurons lead them to obtain higher weight norms.
☆ Safe Urban Traffic Control via Uncertainty-Aware Conformal Prediction and World-Model Reinforcement Learning
Urban traffic management demands systems that simultaneously predict future conditions, detect anomalies, and take safe corrective actions -- all while providing reliability guarantees. We present STREAM-RL, a unified framework that introduces three novel algorithmic contributions: (1) PU-GAT+, an Uncertainty-Guided Adaptive Conformal Forecaster that uses prediction uncertainty to dynamically reweight graph attention via confidence-monotonic attention, achieving distribution-free coverage guarantees; (2) CRFN-BY, a Conformal Residual Flow Network that models uncertainty-normalized residuals via normalizing flows with Benjamini-Yekutieli FDR control under arbitrary dependence; and (3) LyCon-WRL+, an Uncertainty-Guided Safe World-Model RL agent with Lyapunov stability certificates, certified Lipschitz bounds, and uncertainty-propagated imagination rollouts. To our knowledge, this is the first framework to propagate calibrated uncertainty from forecasting through anomaly detection to safe policy learning with end-to-end theoretical guarantees. Experiments on multiple real-world traffic trajectory data demonstrate that STREAM-RL achieves 91.4\% coverage efficiency, controls FDR at 4.1\% under verified dependence, and improves safety rate to 95.2\% compared to 69\% for standard PPO while achieving higher reward, with 23ms end-to-end inference latency.
☆ Toward Reliable and Explainable Nail Disease Classification: Leveraging Adversarial Training and Grad-CAM Visualization
Human nail diseases are gradually observed over all age groups, especially among older individuals, often going ignored until they become severe. Early detection and accurate diagnosis of such conditions are important because they sometimes reveal our body's health problems. But it is challenging due to the inferred visual differences between disease types. This paper presents a machine learning-based model for automated classification of nail diseases based on a publicly available dataset, which contains 3,835 images scaling six categories. In 224x224 pixels, all images were resized to ensure consistency. To evaluate performance, four well-known CNN models-InceptionV3, DenseNet201, EfficientNetV2, and ResNet50 were trained and analyzed. Among these, InceptionV3 outperformed the others with an accuracy of 95.57%, while DenseNet201 came next with 94.79%. To make the model stronger and less likely to make mistakes on tricky or noisy images, we used adversarial training. To help understand how the model makes decisions, we used SHAP to highlight important features in the predictions. This system could be a helpful support for doctors, making nail disease diagnosis more accurate and faster.
comment: 6 pages, 12 figures. This is the author's accepted manuscript of a paper accepted for publication in the Proceedings of the 16th International IEEE Conference on Computing, Communication and Networking Technologies (ICCCNT 2025). The final published version will be available via IEEE Xplore
☆ XtraLight-MedMamba for Classification of Neoplastic Tubular Adenomas
Accurate risk stratification of precancerous polyps during routine colonoscopy screenings is essential for lowering the risk of developing colorectal cancer (CRC). However, assessment of low-grade dysplasia remains limited by subjective histopathologic interpretation. Advancements in digital pathology and deep learning provide new opportunities to identify subtle and fine morphologic patterns associated with malignant progression that may be imperceptible to the human eye. In this work, we propose XtraLight-MedMamba, an ultra-lightweight state-space-based deep learning framework for classifying neoplastic tubular adenomas from whole-slide images (WSIs). The architecture is a blend of ConvNext based shallow feature extractor with parallel vision mamba to efficiently model both long- and short-range dependencies and image generalization. An integration of Spatial and Channel Attention Bridge (SCAB) module enhances multiscale feature extraction, while Fixed Non-Negative Orthogonal Classifier (FNOClassifier) enables substantial parameter reduction and improved generalization. The model was evaluated on a curated dataset acquired from patients with low-grade tubular adenomas, stratified into case and control cohorts based on subsequent CRC development. XtraLight-MedMamba achieved an accuracy of 97.18% and an F1-score of 0.9767 using approximately 32,000 parameters, outperforming transformer-based and conventional Mamba architectures with significantly higher model complexity.
comment: 13 pages, 8 figures
☆ Robust Generalizable Heterogeneous Legal Link Prediction
Recent work has applied link prediction to large heterogeneous legal citation networks \new{with rich meta-features}. We find that this approach can be improved by including edge dropout and feature concatenation for the learning of more robust representations, which reduces error rates by up to 45%. We also propose an approach based on multilingual node features with an improved asymmetric decoder for compatibility, which allows us to generalize and extend the prediction to more, geographically and linguistically disjoint, data from New Zealand. Our adaptations also improve inductive transferability between these disjoint legal systems.
comment: 9 Pages
SE-Bench: Benchmarking Self-Evolution with Knowledge Internalization
True self-evolution requires agents to act as lifelong learners that internalize novel experiences to solve future problems. However, rigorously measuring this foundational capability is hindered by two obstacles: the entanglement of prior knowledge, where ``new'' knowledge may appear in pre-training data, and the entanglement of reasoning complexity, where failures may stem from problem difficulty rather than an inability to recall learned knowledge. We introduce SE-Bench, a diagnostic environment that obfuscates the NumPy library and its API doc into a pseudo-novel package with randomized identifiers. Agents are trained to internalize this package and evaluated on simple coding tasks without access to documentation, yielding a clean setting where tasks are trivial with the new API doc but impossible for base models without it. Our investigation reveals three insights: (1) the Open-Book Paradox, where training with reference documentation inhibits retention, requiring "Closed-Book Training" to force knowledge compression into weights; (2) the RL Gap, where standard RL fails to internalize new knowledge completely due to PPO clipping and negative gradients; and (3) the viability of Self-Play for internalization, proving models can learn from self-generated, noisy tasks when coupled with SFT, but not RL. Overall, SE-Bench establishes a rigorous diagnostic platform for self-evolution with knowledge internalization. Our code and dataset can be found at https://github.com/thunlp/SE-Bench.
comment: Under review
☆ Beyond Rewards in Reinforcement Learning for Cyber Defence
Recent years have seen an explosion of interest in autonomous cyber defence agents trained to defend computer networks using deep reinforcement learning. These agents are typically trained in cyber gym environments using dense, highly engineered reward functions which combine many penalties and incentives for a range of (un)desirable states and costly actions. Dense rewards help alleviate the challenge of exploring complex environments but risk biasing agents towards suboptimal and potentially riskier solutions, a critical issue in complex cyber environments. We thoroughly evaluate the impact of reward function structure on learning and policy behavioural characteristics using a variety of sparse and dense reward functions, two well-established cyber gyms, a range of network sizes, and both policy gradient and value-based RL algorithms. Our evaluation is enabled by a novel ground truth evaluation approach which allows directly comparing between different reward functions, illuminating the nuanced inter-relationships between rewards, action space and the risks of suboptimal policies in cyber environments. Our results show that sparse rewards, provided they are goal aligned and can be encountered frequently, uniquely offer both enhanced training reliability and more effective cyber defence agents with lower-risk policies. Surprisingly, sparse rewards can also yield policies that are better aligned with cyber defender goals and make sparing use of costly defensive actions without explicit reward-based numerical penalties.
☆ Evolving Afferent Architectures: Biologically-inspired Models for Damage-Avoidance Learning
We introduce Afferent Learning, a framework that produces Computational Afferent Traces (CATs) as adaptive, internal risk signals for damage-avoidance learning. Inspired by biological systems, the framework uses a two-level architecture: evolutionary optimization (outer loop) discovers afferent sensing architectures that enable effective policy learning, while reinforcement learning (inner loop) trains damage-avoidance policies using these signals. This formalizes afferent sensing as providing an inductive bias for efficient learning: architectures are selected based on their ability to enable effective learning (rather than directly minimizing damage). We provide theoretical convergence guarantees under smoothness and bounded-noise assumptions. We illustrate the general approach in the challenging context of biomechanical digital twins operating over long time horizons (multiple decades of the life-course). Here, we find that CAT-based evolved architectures achieve significantly higher efficiency and better age-robustness than hand-designed baselines, enabling policies that exhibit age-dependent behavioral adaptation (23% reduction in high-risk actions). Ablation studies validate CAT signals, evolution, and predictive discrepancy as essential. We release code and data for reproducibility.
comment: 16 pages, 6 figures
☆ Maximum-Volume Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a popular data embedding technique. Given a nonnegative data matrix $X$, it aims at finding two lower dimensional matrices, $W$ and $H$, such that $X\approx WH$, where the factors $W$ and $H$ are constrained to be element-wise nonnegative. The factor $W$ serves as a basis for the columns of $X$. In order to obtain more interpretable and unique solutions, minimum-volume NMF (MinVol NMF) minimizes the volume of $W$. In this paper, we consider the dual approach, where the volume of $H$ is maximized instead; this is referred to as maximum-volume NMF (MaxVol NMF). MaxVol NMF is identifiable under the same conditions as MinVol NMF in the noiseless case, but it behaves rather differently in the presence of noise. In practice, MaxVol NMF is much more effective to extract a sparse decomposition and does not generate rank-deficient solutions. In fact, we prove that the solutions of MaxVol NMF with the largest volume correspond to clustering the columns of $X$ in disjoint clusters, while the solutions of MinVol NMF with smallest volume are rank deficient. We propose two algorithms to solve MaxVol NMF. We also present a normalized variant of MaxVol NMF that exhibits better performance than MinVol NMF and MaxVol NMF, and can be interpreted as a continuum between standard NMF and orthogonal NMF. We illustrate our results in the context of hyperspectral unmixing.
comment: arXiv admin note: substantial text overlap with arXiv:2412.06380
☆ Team, Then Trim: An Assembly-Line LLM Framework for High-Quality Tabular Data Generation
While tabular data is fundamental to many real-world machine learning (ML) applications, acquiring high-quality tabular data is usually labor-intensive and expensive. Limited by the scarcity of observations, tabular datasets often exhibit critical deficiencies, such as class imbalance, selection bias, and low fidelity. To address these challenges, building on recent advances in Large Language Models (LLMs), this paper introduces Team-then-Trim (T$^2$), a framework that synthesizes high-quality tabular data through a collaborative team of LLMs, followed by a rigorous three-stage plug-in data quality control (QC) pipeline. In T$^2$, tabular data generation is conceptualized as a manufacturing process: specialized LLMs, guided by domain knowledge, are tasked with generating different data components sequentially, and the resulting products, i.e., the synthetic data, are systematically evaluated across multiple dimensions of QC. Empirical results on both simulated and real-world datasets demonstrate that T$^2$ outperforms state-of-the-art methods in producing high-quality tabular data, highlighting its potential to support downstream models when direct data collection is practically infeasible.
☆ From independent patches to coordinated attention: Controlling information flow in vision transformers
We make the information transmitted by attention an explicit, measurable quantity in vision transformers. By inserting variational information bottlenecks on all attention-mediated writes to the residual stream -- without other architectural changes -- we train models with an explicit information cost and obtain a controllable spectrum from independent patch processing to fully expressive global attention. On ImageNet-100, we characterize how classification behavior and information routing evolve across this spectrum, and provide initial insights into how global visual representations emerge from local patch processing by analyzing the first attention heads that transmit information. By biasing learning toward solutions with constrained internal communication, our approach yields models that are more tractable for mechanistic analysis and more amenable to control.
comment: Code at https://github.com/murphyka/vit_ib
☆ Legendre Memory Unit with A Multi-Slice Compensation Model for Short-Term Wind Speed Forecasting Based on Wind Farm Cluster Data
With more wind farms clustered for integration, the short-term wind speed prediction of such wind farm clusters is critical for normal operation of power systems. This paper focuses on achieving accurate, fast, and robust wind speed prediction by full use of cluster data with spatial-temporal correlation. First, weighted mean filtering (WMF) is applied to denoise wind speed data at the single-farm level. The Legendre memory unit (LMU) is then innovatively applied for the wind speed prediction, in combination with the Compensating Parameter based on Kendall rank correlation coefficient (CPK) of wind farm cluster data, to construct the multi-slice LMU (MSLMU). Finally, an innovative ensemble model WMF-CPK-MSLMU is proposed herein, with three key blocks: data pre-processing, forecasting, and multi-slice compensation. Advantages include: 1) LMU jointly models linear and nonlinear dependencies among farms to capture spatial-temporal correlations through backpropagation; 2) MSLMU enhances forecasting by using CPK-derived weights instead of random initialization, allowing spatial correlations to fully activate hidden nodes across clustered wind farms.; 3) CPK adaptively weights the compensation model in MSLMU and complements missing data spatially, to facilitate the whole model highly accurate and robust. Test results on different wind farm clusters indicate the effectiveness and superiority of proposed ensemble model WMF-CPK-MSLMU in the short-term prediction of wind farm clusters compared to the existing models.
comment: 10 pages, 11 figures,
☆ Dynamical Regimes of Multimodal Diffusion Models
Diffusion based generative models have achieved unprecedented fidelity in synthesizing high dimensional data, yet the theoretical mechanisms governing multimodal generation remain poorly understood. Here, we present a theoretical framework for coupled diffusion models, using coupled Ornstein-Uhlenbeck processes as a tractable model. By using the nonequilibrium statistical physics of dynamical phase transitions, we demonstrate that multimodal generation is governed by a spectral hierarchy of interaction timescales rather than simultaneous resolution. A key prediction is the ``synchronization gap'', a temporal window during the reverse generative process where distinct eigenmodes stabilize at different rates, providing a theoretical explanation for common desynchronization artifacts. We derive analytical conditions for speciation and collapse times under both symmetric and anisotropic coupling regimes, establishing strict bounds for coupling strength to avoid unstable symmetry breaking. We show that the coupling strength acts as a spectral filter that enforces a tunable temporal hierarchy on generation. We support these predictions through controlled experiments with diffusion models trained on MNIST datasets and exact score samplers. These results motivate time dependent coupling schedules that target mode specific timescales, offering a potential alternative to ad hoc guidance tuning.
comment: 40 pages, 14 figures
☆ Interval-Based AUC (iAUC): Extending ROC Analysis to Uncertainty-Aware Classification
In high-stakes risk prediction, quantifying uncertainty through interval-valued predictions is essential for reliable decision-making. However, standard evaluation tools like the receiver operating characteristic (ROC) curve and the area under the curve (AUC) are designed for point scores and fail to capture the impact of predictive uncertainty on ranking performance. We propose an uncertainty-aware ROC framework specifically for interval-valued predictions, introducing two new measures: $AUC_L$ and $AUC_U$. This framework enables an informative three-region decomposition of the ROC plane, partitioning pairwise rankings into correct, incorrect, and uncertain orderings. This approach naturally supports selective prediction by allowing models to abstain from ranking cases with overlapping intervals, thereby optimizing the trade-off between abstention rate and discriminative reliability. We prove that under valid class-conditional coverage, $AUC_L$ and $AUC_U$ provide formal lower and upper bounds on the theoretical optimal AUC ($AUC^*$), characterizing the physical limit of achievable discrimination. The proposed framework applies broadly to interval-valued prediction models, regardless of the interval construction method. Experiments on real-world benchmark datasets, using bootstrap-based intervals as one instantiation, validate the framework's correctness and demonstrate its practical utility for uncertainty-aware evaluation and decision-making.
☆ Theory of Optimal Learning Rate Schedules and Scaling Laws for a Random Feature Model
Setting the learning rate for a deep learning model is a critical part of successful training, yet choosing this hyperparameter is often done empirically with trial and error. In this work, we explore a solvable model of optimal learning rate schedules for a powerlaw random feature model trained with stochastic gradient descent (SGD). We consider the optimal schedule $η_T^\star(t)$ where $t$ is the current iterate and $T$ is the total training horizon. This schedule is computed both numerically and analytically (when possible) using optimal control methods. Our analysis reveals two regimes which we term the easy phase and hard phase. In the easy phase the optimal schedule is a polynomial decay $η_T^\star(t) \simeq T^{-ξ} (1-t/T)^δ$ where $ξ$ and $δ$ depend on the properties of the features and task. In the hard phase, the optimal schedule resembles warmup-stable-decay with constant (in $T$) initial learning rate and annealing performed over a vanishing (in $T$) fraction of training steps. We investigate joint optimization of learning rate and batch size, identifying a degenerate optimality condition. Our model also predicts the compute-optimal scaling laws (where model size and training steps are chosen optimally) in both easy and hard regimes. Going beyond SGD, we consider optimal schedules for the momentum $β(t)$, where speedups in the hard phase are possible. We compare our optimal schedule to various benchmarks in our task including (1) optimal constant learning rates $η_T(t) \sim T^{-ξ}$ (2) optimal power laws $η_T(t) \sim T^{-ξ} t^{-χ}$, finding that our schedule achieves better rates than either of these. Our theory suggests that learning rate transfer across training horizon depends on the structure of the model and task. We explore these ideas in simple experimental pretraining setups.
Generative Modeling via Drifting
Generative modeling can be formulated as learning a mapping f such that its pushforward distribution matches the data distribution. The pushforward behavior can be carried out iteratively at inference time, for example in diffusion and flow-based models. In this paper, we propose a new paradigm called Drifting Models, which evolve the pushforward distribution during training and naturally admit one-step inference. We introduce a drifting field that governs the sample movement and achieves equilibrium when the distributions match. This leads to a training objective that allows the neural network optimizer to evolve the distribution. In experiments, our one-step generator achieves state-of-the-art results on ImageNet at 256 x 256 resolution, with an FID of 1.54 in latent space and 1.61 in pixel space. We hope that our work opens up new opportunities for high-quality one-step generation.
comment: Project page: https://lambertae.github.io/projects/drifting/
NeuroCanvas: VLLM-Powered Robust Seizure Detection by Reformulating Multichannel EEG as Image
Accurate and timely seizure detection from Electroencephalography (EEG) is critical for clinical intervention, yet manual review of long-term recordings is labor-intensive. Recent efforts to encode EEG signals into large language models (LLMs) show promise in handling neural signals across diverse patients, but two significant challenges remain: (1) multi-channel heterogeneity, as seizure-relevant information varies substantially across EEG channels, and (2) computing inefficiency, as the EEG signals need to be encoded into a massive number of tokens for the prediction. To address these issues, we draw the EEG signal and propose the novel NeuroCanvas framework. Specifically, NeuroCanvas consists of two modules: (i) The Entropy-guided Channel Selector (ECS) selects the seizure-relevant channels input to LLM and (ii) the following Canvas of Neuron Signal (CNS) converts selected multi-channel heterogeneous EEG signals into structured visual representations. The ECS module alleviates the multi-channel heterogeneity issue, and the CNS uses compact visual tokens to represent the EEG signals that improve the computing efficiency. We evaluate NeuroCanvas across multiple seizure detection datasets, demonstrating a significant improvement of $20\%$ in F1 score and reductions of $88\%$ in inference latency. These results highlight NeuroCanvas as a scalable and effective solution for real-time and resource-efficient seizure detection in clinical practice.The code will be released at https://github.com/Yanchen30247/seizure_detect.
☆ Billion-Scale Graph Foundation Models
Graph-structured data underpins many critical applications. While foundation models have transformed language and vision via large-scale pretraining and lightweight adaptation, extending this paradigm to general, real-world graphs is challenging. In this work, we present Graph Billion- Foundation-Fusion (GraphBFF): the first end-to-end recipe for building billion-parameter Graph Foundation Models (GFMs) for arbitrary heterogeneous, billion-scale graphs. Central to the recipe is the GraphBFF Transformer, a flexible and scalable architecture designed for practical billion-scale GFMs. Using the GraphBFF, we present the first neural scaling laws for general graphs and show that loss decreases predictably as either model capacity or training data scales, depending on which factor is the bottleneck. The GraphBFF framework provides concrete methodologies for data batching, pretraining, and fine-tuning for building GFMs at scale. We demonstrate the effectiveness of the framework with an evaluation of a 1.4 billion-parameter GraphBFF Transformer pretrained on one billion samples. Across ten diverse, real-world downstream tasks on graphs unseen during training, spanning node- and link-level classification and regression, GraphBFF achieves remarkable zero-shot and probing performance, including in few-shot settings, with large margins of up to 31 PRAUC points. Finally, we discuss key challenges and open opportunities for making GFMs a practical and principled foundation for graph learning at industrial scale.
☆ Active Asymmetric Multi-Agent Multimodal Learning under Uncertainty
Multi-agent systems are increasingly equipped with heterogeneous multimodal sensors, enabling richer perception but introducing modality-specific and agent-dependent uncertainty. Existing multi-agent collaboration frameworks typically reason at the agent level, assume homogeneous sensing, and handle uncertainty implicitly, limiting robustness under sensor corruption. We propose Active Asymmetric Multi-Agent Multimodal Learning under Uncertainty (A2MAML), a principled approach for uncertainty-aware, modality-level collaboration. A2MAML models each modality-specific feature as a stochastic estimate with uncertainty prediction, actively selects reliable agent-modality pairs, and aggregates information via Bayesian inverse-variance weighting. This formulation enables fine-grained, modality-level fusion, supports asymmetric modality availability, and provides a principled mechanism to suppress corrupted or noisy modalities. Extensive experiments on connected autonomous driving scenarios for collaborative accident detection demonstrate that A2MAML consistently outperforms both single-agent and collaborative baselines, achieving up to 18.7% higher accident detection rate.
☆ Improved Dimension Dependence for Bandit Convex Optimization with Gradient Variations
Gradient-variation online learning has drawn increasing attention due to its deep connections to game theory, optimization, etc. It has been studied extensively in the full-information setting, but is underexplored with bandit feedback. In this work, we focus on gradient variation in Bandit Convex Optimization (BCO) with two-point feedback. By proposing a refined analysis on the non-consecutive gradient variation, a fundamental quantity in gradient variation with bandits, we improve the dimension dependence for both convex and strongly convex functions compared with the best known results (Chiang et al., 2013). Our improved analysis for the non-consecutive gradient variation also implies other favorable problem-dependent guarantees, such as gradient-variance and small-loss regrets. Beyond the two-point setup, we demonstrate the versatility of our technique by achieving the first gradient-variation bound for one-point bandit linear optimization over hyper-rectangular domains. Finally, we validate the effectiveness of our results in more challenging tasks such as dynamic/universal regret minimization and bandit games, establishing the first gradient-variation dynamic and universal regret bounds for two-point BCO and fast convergence rates in bandit games.
☆ A Dual-TransUNet Deep Learning Framework for Multi-Source Precipitation Merging and Improving Seasonal and Extreme Estimates
Multi-source precipitation products (MSPs) from satellite retrievals and reanalysis are widely used for hydroclimatic monitoring, yet spatially heterogeneous biases and limited skill for extremes still constrain their hydrologic utility. Here we develop a dual-stage TransUNet-based multi-source precipitation merging framework (DDL-MSPMF) that integrates six MSPs with four ERA5 near-surface physical predictors. A first-stage classifier estimates daily precipitation occurrence probability, and a second-stage regressor fuses the classifier outputs together with all predictors to estimate daily precipitation amount at 0.25 degree resolution over China for 2001-2020. Benchmarking against multiple deep learning and hybrid baselines shows that the TransUNet - TransUNet configuration yields the best seasonal performance (R = 0.75; RMSE = 2.70 mm/day) and improves robustness relative to a single-regressor setting. For heavy precipitation (>25 mm/day), DDL-MSPMF increases equitable threat scores across most regions of eastern China and better reproduces the spatial pattern of the July 2021 Zhengzhou rainstorm, indicating enhanced extreme-event detection beyond seasonal-mean corrections. Independent evaluation over the Qinghai-Tibet Plateau using TPHiPr further supports its applicability in data-scarce regions. SHAP analysis highlights the importance of precipitation occurrence probabilities and surface pressure, providing physically interpretable diagnostics. The proposed framework offers a scalable and explainable approach for precipitation fusion and extreme-event assessment.
comment: 75 pages,20 figures
☆ Decomposing Query-Key Feature Interactions Using Contrastive Covariances
Despite the central role of attention heads in Transformers, we lack tools to understand why a model attends to a particular token. To address this, we study the query-key (QK) space -- the bilinear joint embedding space between queries and keys. We present a contrastive covariance method to decompose the QK space into low-rank, human-interpretable components. It is when features in keys and queries align in these low-rank subspaces that high attention scores are produced. We first study our method both analytically and empirically in a simplified setting. We then apply our method to large language models to identify human-interpretable QK subspaces for categorical semantic features and binding features. Finally, we demonstrate how attention scores can be attributed to our identified features.
☆ Rationality Measurement and Theory for Reinforcement Learning Agents
This paper proposes a suite of rationality measures and associated theory for reinforcement learning agents, a property increasingly critical yet rarely explored. We define an action in deployment to be perfectly rational if it maximises the hidden true value function in the steepest direction. The expected value discrepancy of a policy's actions against their rational counterparts, culminating over the trajectory in deployment, is defined to be expected rational risk; an empirical average version in training is also defined. Their difference, termed as rational risk gap, is decomposed into (1) an extrinsic component caused by environment shifts between training and deployment, and (2) an intrinsic one due to the algorithm's generalisability in a dynamic environment. They are upper bounded by, respectively, (1) the $1$-Wasserstein distance between transition kernels and initial state distributions in training and deployment, and (2) the empirical Rademacher complexity of the value function class. Our theory suggests hypotheses on the benefits from regularisers (including layer normalisation, $\ell_2$ regularisation, and weight normalisation) and domain randomisation, as well as the harm from environment shifts. Experiments are in full agreement with these hypotheses. The code is available at https://github.com/EVIEHub/Rationality.
☆ Conditional Counterfactual Mean Embeddings: Doubly Robust Estimation and Learning Rates
A complete understanding of heterogeneous treatment effects involves characterizing the full conditional distribution of potential outcomes. To this end, we propose the Conditional Counterfactual Mean Embeddings (CCME), a framework that embeds conditional distributions of counterfactual outcomes into a reproducing kernel Hilbert space (RKHS). Under this framework, we develop a two-stage meta-estimator for CCME that accommodates any RKHS-valued regression in each stage. Based on this meta-estimator, we develop three practical CCME estimators: (1) Ridge Regression estimator, (2) Deep Feature estimator that parameterizes the feature map by a neural network, and (3) Neural-Kernel estimator that performs RKHS-valued regression, with the coefficients parameterized by a neural network. We provide finite-sample convergence rates for all estimators, establishing that they possess the double robustness property. Our experiments demonstrate that our estimators accurately recover distributional features including multimodal structure of conditional counterfactual distributions.
comment: Code is available at https://github.com/donlap/Conditional-Counterfactual-Mean-Embeddings
☆ From Data to Behavior: Predicting Unintended Model Behaviors Before Training
Large Language Models (LLMs) can acquire unintended biases from seemingly benign training data even without explicit cues or malicious content. Existing methods struggle to detect such risks before fine-tuning, making post hoc evaluation costly and inefficient. To address this challenge, we introduce Data2Behavior, a new task for predicting unintended model behaviors prior to training. We also propose Manipulating Data Features (MDF), a lightweight approach that summarizes candidate data through their mean representations and injects them into the forward pass of a base model, allowing latent statistical signals in the data to shape model activations and reveal potential biases and safety risks without updating any parameters. MDF achieves reliable prediction while consuming only about 20% of the GPU resources required for fine-tuning. Experiments on Qwen3-14B, Qwen2.5-32B-Instruct, and Gemma-3-12b-it confirm that MDF can anticipate unintended behaviors and provide insight into pre-training vulnerabilities.
comment: Work in progress
☆ DMFlow: Disordered Materials Generation by Flow Matching
The design of materials with tailored properties is crucial for technological progress. However, most deep generative models focus exclusively on perfectly ordered crystals, neglecting the important class of disordered materials. To address this gap, we introduce DMFlow, a generative framework specifically designed for disordered crystals. Our approach introduces a unified representation for ordered, Substitutionally Disordered (SD), and Positionally Disordered (PD) crystals, and employs a flow matching model to jointly generate all structural components. A key innovation is a Riemannian flow matching framework with spherical reparameterization, which ensures physically valid disorder weights on the probability simplex. The vector field is learned by a novel Graph Neural Network (GNN) that incorporates physical symmetries and a specialized message-passing scheme. Finally, a two-stage discretization procedure converts the continuous weights into multi-hot atomic assignments. To support research in this area, we release a benchmark containing SD, PD, and mixed structures curated from the Crystallography Open Database. Experiments on Crystal Structure Prediction (CSP) and De Novo Generation (DNG) tasks demonstrate that DMFlow significantly outperforms state-of-the-art baselines adapted from ordered crystal generation. We hope our work provides a foundation for the AI-driven discovery of disordered materials.
☆ Less Finetuning, Better Retrieval: Rethinking LLM Adaptation for Biomedical Retrievers via Synthetic Data and Model Merging
Retrieval-augmented generation (RAG) has become the backbone of grounding Large Language Models (LLMs), improving knowledge updates and reducing hallucinations. Recently, LLM-based retriever models have shown state-of-the-art performance for RAG applications. However, several technical aspects remain underexplored on how to adapt general-purpose LLMs into effective domain-specific retrievers, especially in specialized domains such as biomedicine. We present Synthesize-Train-Merge (STM), a modular framework that enhances decoder-only LLMs with synthetic hard negatives, retrieval prompt optimization, and model merging. Experiments on a subset of 12 medical and general tasks from the MTEB benchmark show STM boosts task-specific experts by up to 23.5\% (average 7.5\%) and produces merged models that outperform both single experts and strong baselines without extensive pretraining. Our results demonstrate a scalable, efficient path for turning general LLMs into high-performing, domain-specialized retrievers, preserving general-domain capabilities while excelling on specialized tasks.
comment: Preprint
☆ Cross-Attention Transformer for Joint Multi-Receiver Uplink Neural Decoding
We propose a cross-attention Transformer for joint decoding of uplink OFDM signals received by multiple coordinated access points. A shared per-receiver encoder learns time-frequency structure within each received grid, and a token-wise cross-attention module fuses the receivers to produce soft log-likelihood ratios for a standard channel decoder, without requiring explicit per-receiver channel estimates. Trained with a bit-metric objective, the model adapts its fusion to per-receiver reliability, tolerates missing or degraded links, and remains robust when pilots are sparse. Across realistic Wi-Fi channels, it consistently outperforms classical pipelines and strong convolutional baselines, frequently matching (and in some cases surpassing) a powerful baseline that assumes perfect channel knowledge per access point. Despite its expressiveness, the architecture is compact, has low computational cost (low GFLOPs), and achieves low latency on GPUs, making it a practical building block for next-generation Wi-Fi receivers.
comment: 6 pages, 3 figures, 3 tables, conference submission
☆ Benchmarking and Enhancing PPG-Based Cuffless Blood Pressure Estimation Methods
Cuffless blood pressure screening based on easily acquired photoplethysmography (PPG) signals offers a practical pathway toward scalable cardiovascular health assessment. Despite rapid progress, existing PPG-based blood pressure estimation models have not consistently achieved the established clinical numerical limits such as AAMI/ISO 81060-2, and prior evaluations often lack the rigorous experimental controls necessary for valid clinical assessment. Moreover, the publicly available datasets commonly used are heterogeneous and lack physiologically controlled conditions for fair benchmarking. To enable fair benchmarking under physiologically controlled conditions, we created a standardized benchmarking subset NBPDB comprising 101,453 high-quality PPG segments from 1,103 healthy adults, derived from MIMIC-III and VitalDB. Using this dataset, we systematically benchmarked several state-of-the-art PPG-based models. The results showed that none of the evaluated models met the AAMI/ISO 81060-2 accuracy requirements (mean error $<$ 5 mmHg and standard deviation $<$ 8 mmHg). To improve model accuracy, we modified these models and added patient demographic data such as age, sex, and body mass index as additional inputs. Our modifications consistently improved performance across all models. In particular, the MInception model reduced error by 23\% after adding the demographic data and yielded mean absolute errors of 4.75 mmHg (SBP) and 2.90 mmHg (DBP), achieves accuracy comparable to the numerical limits defined by AAMI/ISO accuracy standards. Our results show that existing PPG-based BP estimation models lack clinical practicality under standardized conditions, while incorporating demographic information markedly improves their accuracy and physiological validity.
☆ Identifying Intervenable and Interpretable Features via Orthogonality Regularization
With recent progress on fine-tuning language models around a fixed sparse autoencoder, we disentangle the decoder matrix into almost orthogonal features. This reduces interference and superposition between the features, while keeping performance on the target dataset essentially unchanged. Our orthogonality penalty leads to identifiable features, ensuring the uniqueness of the decomposition. Further, we find that the distance between embedded feature explanations increases with stricter orthogonality penalty, a desirable property for interpretability. Invoking the $\textit{Independent Causal Mechanisms}$ principle, we argue that orthogonality promotes modular representations amenable to causal intervention. We empirically show that these increasingly orthogonalized features allow for isolated interventions. Our code is available under $\texttt{https://github.com/mrtzmllr/sae-icm}$.
☆ Bounded-Abstention Multi-horizon Time-series Forecasting
Multi-horizon time-series forecasting involves simultaneously making predictions for a consecutive sequence of subsequent time steps. This task arises in many application domains, such as healthcare and finance, where mispredictions can have a high cost and reduce trust. The learning with abstention framework tackles these problems by allowing a model to abstain from offering a prediction when it is at an elevated risk of making a misprediction. Unfortunately, existing abstention strategies are ill-suited for the multi-horizon setting: they target problems where a model offers a single prediction for each instance. Hence, they ignore the structured and correlated nature of the predictions offered by a multi-horizon forecaster. We formalize the problem of learning with abstention for multi-horizon forecasting setting and show that its structured nature admits a richer set of abstention problems. Concretely, we propose three natural notions of how a model could abstain for multi-horizon forecasting. We theoretically analyze each problem to derive the optimal abstention strategy and propose an algorithm that implements it. Extensive evaluation on 24 datasets shows that our proposed algorithms significantly outperforms existing baselines.
☆ Towards Understanding and Avoiding Limitations of Convolutions on Graphs
While message-passing neural networks (MPNNs) have shown promising results, their real-world impact remains limited. Although various limitations have been identified, their theoretical foundations remain poorly understood, leading to fragmented research efforts. In this thesis, we provide an in-depth theoretical analysis and identify several key properties limiting the performance of MPNNs. Building on these findings, we propose several frameworks that address these shortcomings. We identify two properties exhibited by many MPNNs: shared component amplification (SCA), where each message-passing iteration amplifies the same components across all feature channels, and component dominance (CD), where a single component gets increasingly amplified as more message-passing steps are applied. These properties lead to the observable phenomenon of rank collapse of node representations, which generalizes the established over-smoothing phenomenon. By generalizing and decomposing over-smoothing, we enable a deeper understanding of MPNNs, more targeted solutions, and more precise communication within the field. To avoid SCA, we show that utilizing multiple computational graphs or edge relations is necessary. Our multi-relational split (MRS) framework transforms any existing MPNN into one that leverages multiple edge relations. Additionally, we introduce the spectral graph convolution for multiple feature channels (MIMO-GC), which naturally uses multiple computational graphs. A localized variant, LMGC, approximates the MIMO-GC while inheriting its beneficial properties. To address CD, we demonstrate a close connection between MPNNs and the PageRank algorithm. Based on personalized PageRank, we propose a variant of MPNNs that allows for infinitely many message-passing iterations, while preserving initial node features. Collectively, these results deepen the theoretical understanding of MPNNs.
comment: dissertation
☆ Knowledge Distillation for mmWave Beam Prediction Using Sub-6 GHz Channels ICASSP
Beamforming in millimeter-wave (mmWave) high-mobility environments typically incurs substantial training overhead. While prior studies suggest that sub-6 GHz channels can be exploited to predict optimal mmWave beams, existing methods depend on large deep learning (DL) models with prohibitive computational and memory requirements. In this paper, we propose a computationally efficient framework for sub-6 GHz channel-mmWave beam mapping based on the knowledge distillation (KD) technique. We develop two compact student DL architectures based on individual and relational distillation strategies, which retain only a few hidden layers yet closely mimic the performance of large teacher DL models. Extensive simulations demonstrate that the proposed student models achieve the teacher's beam prediction accuracy and spectral efficiency while reducing trainable parameters and computational complexity by 99%.
comment: 5 pages, 4 figures. Accepted for publication at IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2026
☆ Beyond Learning on Molecules by Weakly Supervising on Molecules
Molecular representations are inherently task-dependent, yet most pre-trained molecular encoders are not. Task conditioning promises representations that reorganize based on task descriptions, but existing approaches rely on expensive labeled data. We show that weak supervision on programmatically derived molecular motifs is sufficient. Our Adaptive Chemical Embedding Model (ACE-Mol) learns from hundreds of motifs paired with natural language descriptors that are cheap to compute, trivial to scale. Conventional encoders slowly search the embedding space for task-relevant structure, whereas ACE-Mol immediately aligns its representations with the task. ACE-Mol achieves state-of-the-art performance across molecular property prediction benchmarks with interpretable, chemically meaningful representations.
☆ Static and auto-regressive neural emulation of phytoplankton biomass dynamics from physical predictors in the global ocean
Phytoplankton is the basis of marine food webs, driving both ecological processes and global biogeochemical cycles. Despite their ecological and climatic significance, accurately simulating phytoplankton dynamics remains a major challenge for biogeochemical numerical models due to limited parameterizations, sparse observational data, and the complexity of oceanic processes. Here, we explore how deep learning models can be used to address these limitations predicting the spatio-temporal distribution of phytoplankton biomass in the global ocean based on satellite observations and environmental conditions. First, we investigate several deep learning architectures. Among the tested models, the UNet architecture stands out for its ability to reproduce the seasonal and interannual patterns of phytoplankton biomass more accurately than other models like CNNs, ConvLSTM, and 4CastNet. When using one to two months of environmental data as input, UNet performs better, although it tends to underestimate the amplitude of low-frequency changes in phytoplankton biomass. Thus, to improve predictions over time, an auto-regressive version of UNet was also tested, where the model uses its own previous predictions to forecast future conditions. This approach works well for short-term forecasts (up to five months), though its performance decreases for longer time scales. Overall, our study shows that combining ocean physical predictors with deep learning allows for reconstruction and short-term prediction of phytoplankton dynamics. These models could become powerful tools for monitoring ocean health and supporting marine ecosystem management, especially in the context of climate change.
Let Experts Feel Uncertainty: A Multi-Expert Label Distribution Approach to Probabilistic Time Series Forecasting
Time series forecasting in real-world applications requires both high predictive accuracy and interpretable uncertainty quantification. Traditional point prediction methods often fail to capture the inherent uncertainty in time series data, while existing probabilistic approaches struggle to balance computational efficiency with interpretability. We propose a novel Multi-Expert Learning Distributional Labels (LDL) framework that addresses these challenges through mixture-of-experts architectures with distributional learning capabilities. Our approach introduces two complementary methods: (1) Multi-Expert LDL, which employs multiple experts with different learned parameters to capture diverse temporal patterns, and (2) Pattern-Aware LDL-MoE, which explicitly decomposes time series into interpretable components (trend, seasonality, changepoints, volatility) through specialized sub-experts. Both frameworks extend traditional point prediction to distributional learning, enabling rich uncertainty quantification through Maximum Mean Discrepancy (MMD). We evaluate our methods on aggregated sales data derived from the M5 dataset, demonstrating superior performance compared to baseline approaches. The continuous Multi-Expert LDL achieves the best overall performance, while the Pattern-Aware LDL-MoE provides enhanced interpretability through component-wise analysis. Our frameworks successfully balance predictive accuracy with interpretability, making them suitable for real-world forecasting applications where both performance and actionable insights are crucial.
comment: 11 pages, 2figures
☆ REDistill: Robust Estimator Distillation for Balancing Robustness and Efficiency
Knowledge Distillation (KD) transfers knowledge from a large teacher model to a smaller student by aligning their predictive distributions. However, conventional KD formulations - typically based on Kullback-Leibler divergence - assume that the teacher provides reliable soft targets. In practice, teacher predictions are often noisy or overconfident, and existing correction-based approaches rely on ad-hoc heuristics and extensive hyper-parameter tuning, which hinders generalization. We introduce REDistill (Robust Estimator Distillation), a simple yet principled framework grounded in robust statistics. REDistill replaces the standard KD objective with a power divergence loss, a generalization of KL divergence that adaptively downweights unreliable teacher output while preserving informative logit relationships. This formulation provides a unified and interpretable treatment of teacher noise, requires only logits, integrates seamlessly into existing KD pipelines, and incurs negligible computational overhead. Extensive experiments on CIFAR-100 and ImageNet-1k demonstrate that REDistill consistently improves student accuracy in diverse teacher-student architectures. Remarkably, it achieves these gains without model-specific hyper-parameter tuning, underscoring its robustness and strong generalization to unseen teacher-student pairs.
☆ Generalized Schrödinger Bridge on Graphs
Transportation on graphs is a fundamental challenge across many domains, where decisions must respect topological and operational constraints. Despite the need for actionable policies, existing graph-transport methods lack this expressivity. They rely on restrictive assumptions, fail to generalize across sparse topologies, and scale poorly with graph size and time horizon. To address these issues, we introduce Generalized Schrödinger Bridge on Graphs (GSBoG), a novel scalable data-driven framework for learning executable controlled continuous-time Markov chain (CTMC) policies on arbitrary graphs under state cost augmented dynamics. Notably, GSBoG learns trajectory-level policies, avoiding dense global solvers and thereby enhancing scalability. This is achieved via a likelihood optimization approach, satisfying the endpoint marginals, while simultaneously optimizing intermediate behavior under state-dependent running costs. Extensive experimentation on challenging real-world graph topologies shows that GSBoG reliably learns accurate, topology-respecting policies while optimizing application-specific intermediate state costs, highlighting its broad applicability and paving new avenues for cost-aware dynamical transport on general graphs.
☆ Delving into Muon and Beyond: Deep Analysis and Extensions
The Muon optimizer has recently attracted considerable attention for its strong empirical performance and use of orthogonalized updates on matrix-shaped parameters, yet its underlying mechanisms and relationship to adaptive optimizers such as Adam remain insufficiently understood. In this work, we aim to address these questions through a unified spectral perspective. Specifically, we view Muon as the p = 0 endpoint of a family of spectral transformations of the form U \boldsymbolΣ^{p} V' , and consider additional variants with p = 1/2 , p = 1/4 , and p = 1 . These transformations are applied to both first-moment updates, as in momentum SGD, and to root-mean-square (RMS) normalized gradient updates as in Adam. To enable efficient computation, we develop a coupled Newton iteration that avoids explicit singular value decomposition. Across controlled experiments, we find that RMS-normalized updates yield more stable optimization than first-moment updates. Moreover, while spectral compression provides strong stabilization benefits under first-moment updates, the Muon update (p = 0) does not consistently outperform Adam. These results suggest that Muon is best understood as an effective form of spectral normalization, but not a universally superior optimization method. Our source code will be released at https://github.com/Ocram7/BeyondMuon.
comment: This paper studies matrix-based optimizers (e.g., Muon) from a spectral perspective and unifies a range of methods under a common spectral framework
☆ Causal explanations of outliers in systems with lagged time-dependencies
Root-cause analysis in controlled time dependent systems poses a major challenge in applications. Especially energy systems are difficult to handle as they exhibit instantaneous as well as delayed effects and if equipped with storage, do have a memory. In this paper we adapt the causal root-cause analysis method of Budhathoki et al. [2022] to general time-dependent systems, as it can be regarded as a strictly causal definition of the term "root-cause". Particularly, we discuss two truncation approaches to handle the infinite dependency graphs present in time-dependent systems. While one leaves the causal mechanisms intact, the other approximates the mechanisms at the start nodes. The effectiveness of the different approaches is benchmarked using a challenging data generation process inspired by a problem in factory energy management: the avoidance of peaks in the power consumption. We show that given enough lags our extension is able to localize the root-causes in the feature and time domain. Further the effect of mechanism approximation is discussed.
☆ Rethinking the Design Space of Reinforcement Learning for Diffusion Models: On the Importance of Likelihood Estimation Beyond Loss Design
Reinforcement learning has been widely applied to diffusion and flow models for visual tasks such as text-to-image generation. However, these tasks remain challenging because diffusion models have intractable likelihoods, which creates a barrier for directly applying popular policy-gradient type methods. Existing approaches primarily focus on crafting new objectives built on already heavily engineered LLM objectives, using ad hoc estimators for likelihood, without a thorough investigation into how such estimation affects overall algorithmic performance. In this work, we provide a systematic analysis of the RL design space by disentangling three factors: i) policy-gradient objectives, ii) likelihood estimators, and iii) rollout sampling schemes. We show that adopting an evidence lower bound (ELBO) based model likelihood estimator, computed only from the final generated sample, is the dominant factor enabling effective, efficient, and stable RL optimization, outweighing the impact of the specific policy-gradient loss functional. We validate our findings across multiple reward benchmarks using SD 3.5 Medium, and observe consistent trends across all tasks. Our method improves the GenEval score from 0.24 to 0.95 in 90 GPU hours, which is $4.6\times$ more efficient than FlowGRPO and $2\times$ more efficient than the SOTA method DiffusionNFT without reward hacking.
comment: 23 pages, 11 figures
☆ Inference-Time Backdoors via Hidden Instructions in LLM Chat Templates
Open-weight language models are increasingly used in production settings, raising new security challenges. One prominent threat in this context is backdoor attacks, in which adversaries embed hidden behaviors in language models that activate under specific conditions. Previous work has assumed that adversaries have access to training pipelines or deployment infrastructure. We propose a novel attack surface requiring neither, which utilizes the chat template. Chat templates are executable Jinja2 programs invoked at every inference call, occupying a privileged position between user input and model processing. We show that an adversary who distributes a model with a maliciously modified template can implant an inference-time backdoor without modifying model weights, poisoning training data, or controlling runtime infrastructure. We evaluated this attack vector by constructing template backdoors targeting two objectives: degrading factual accuracy and inducing emission of attacker-controlled URLs, and applied them across eighteen models spanning seven families and four inference engines. Under triggered conditions, factual accuracy drops from 90% to 15% on average while attacker-controlled URLs are emitted with success rates exceeding 80%; benign inputs show no measurable degradation. Backdoors generalize across inference runtimes and evade all automated security scans applied by the largest open-weight distribution platform. These results establish chat templates as a reliable and currently undefended attack surface in the LLM supply chain.
☆ SAFE: Stable Alignment Finetuning with Entropy-Aware Predictive Control for RLHF
Optimization (PPO) has been positioned by recent literature as the canonical method for the RL part of RLHF. PPO performs well empirically but has a heuristic motivation and handles the KL-divergence constraint used in LM-RLHF in an ad-hoc manner and suffers form reward oscillations, entropy collapse, value function drift, and sudden policy divergence that require frequent restarts and extensive hyperparameter tuning. In this paper, we develop a new pure on policy actor-critic RL method for the LM-RLHF setting. We present SAFE (Stable Alignment Finetuning with Entropy-aware control),a novel RLHF algorithm that combines a Double Soft-Min Critic for pessimistic value estimation with a new multi-layer stabilization framework combining entropy-gated KL regulation, and PID-controlled adaptive thresholds. Unlike standard PPO's symmetric KL penalties, SAFE distinguishes high-entropy exploration from low-entropy mode collapse and adjusts penalties dynamically based on reward velocity. Experiments on a 3B parameter model show SAFE achieves +5.15\% training-average reward than PPO (0.725 vs 0.689), negligible reward crashes, and superior KL control than ppo . Our method adds minimal computational overhead and provides an interpretable, crash-resistant RLHF framework that maintains aggressive learning speed while ensuring stable long-horizon optimization suitable for production deployment. Code is available at https://github.com/ryyzn9/SAFE
☆ Learning to Separate RF Signals Under Uncertainty: Detect-Then-Separate vs. Unified Joint Models
The increasingly crowded radio frequency (RF) spectrum forces communication signals to coexist, creating heterogeneous interferers whose structure often departs from Gaussian models. Recovering the interference-contaminated signal of interest in such settings is a central challenge, especially in single-channel RF processing. Existing data-driven methods often assume that the interference type is known, yielding ensembles of specialized models that scale poorly with the number of interferers. We show that detect-then-separate (DTS) strategies admit an analytical justification: within a Gaussian mixture framework, a plug-in maximum a posteriori detector followed by type-conditioned optimal estimation achieves asymptotic minimum mean-square error optimality under a mild temporal-diversity condition. This makes DTS a principled benchmark, but its reliance on multiple type-specific models limits scalability. Motivated by this, we propose a unified joint model (UJM), in which a single deep neural architecture learns to jointly detect and separate when applied directly to the received signal. Using tailored UNet architectures for baseband (complex-valued) RF signals, we compare DTS and UJM on synthetic and recorded interference types, showing that a capacity-matched UJM can match oracle-aided DTS performance across diverse signal-to-interference-and-noise ratios, interference types, and constellation orders, including mismatched training and testing type-uncertainty proportions. These findings highlight UJM as a scalable and practical alternative to DTS, while opening new directions for unified separation under broader regimes.
comment: 6 pages, 6 figures, 1 table, accepted at the 2026 IEEE International Conference on Communications
☆ MTS-JEPA: Multi-Resolution Joint-Embedding Predictive Architecture for Time-Series Anomaly Prediction
Multivariate time series underpin modern critical infrastructure, making the prediction of anomalies a vital necessity for proactive risk mitigation. While Joint-Embedding Predictive Architectures (JEPA) offer a promising framework for modeling the latent evolution of these systems, their application is hindered by representation collapse and an inability to capture precursor signals across varying temporal scales. To address these limitations, we propose MTS-JEPA, a specialized architecture that integrates a multi-resolution predictive objective with a soft codebook bottleneck. This design explicitly decouples transient shocks from long-term trends, and utilizes the codebook to capture discrete regime transitions. Notably, we find this constraint also acts as an intrinsic regularizer to ensure optimization stability. Empirical evaluations on standard benchmarks confirm that our approach effectively prevents degenerate solutions and achieves state-of-the-art performance under the early-warning protocol.
☆ RIGA-Fold: A General Framework for Protein Inverse Folding via Recurrent Interaction and Geometric Awareness
Protein inverse folding, the task of predicting amino acid sequences for desired structures, is pivotal for de novo protein design. However, existing GNN-based methods typically suffer from restricted receptive fields that miss long-range dependencies and a "single-pass" inference paradigm that leads to error accumulation. To address these bottlenecks, we propose RIGA-Fold, a framework that synergizes Recurrent Interaction with Geometric Awareness. At the micro-level, we introduce a Geometric Attention Update (GAU) module where edge features explicitly serve as attention keys, ensuring strictly SE(3)-invariant local encoding. At the macro-level, we design an attention-based Global Context Bridge that acts as a soft gating mechanism to dynamically inject global topological information. Furthermore, to bridge the gap between structural and sequence modalities, we introduce an enhanced variant, RIGA-Fold*, which integrates trainable geometric features with frozen evolutionary priors from ESM-2 and ESM-IF via a dual-stream architecture. Finally, a biologically inspired ``predict-recycle-refine'' strategy is implemented to iteratively denoise sequence distributions. Extensive experiments on CATH 4.2, TS50, and TS500 benchmarks demonstrate that our geometric framework is highly competitive, while RIGA-Fold* significantly outperforms state-of-the-art baselines in both sequence recovery and structural consistency.
comment: 16 pages, 4 figures. Includes appendix. Preprint under review
☆ WideSeek-R1: Exploring Width Scaling for Broad Information Seeking via Multi-Agent Reinforcement Learning
Recent advancements in Large Language Models (LLMs) have largely focused on depth scaling, where a single agent solves long-horizon problems with multi-turn reasoning and tool use. However, as tasks grow broader, the key bottleneck shifts from individual competence to organizational capability. In this work, we explore a complementary dimension of width scaling with multi-agent systems to address broad information seeking. Existing multi-agent systems often rely on hand-crafted workflows and turn-taking interactions that fail to parallelize work effectively. To bridge this gap, we propose WideSeek-R1, a lead-agent-subagent framework trained via multi-agent reinforcement learning (MARL) to synergize scalable orchestration and parallel execution. By utilizing a shared LLM with isolated contexts and specialized tools, WideSeek-R1 jointly optimizes the lead agent and parallel subagents on a curated dataset of 20k broad information-seeking tasks. Extensive experiments show that WideSeek-R1-4B achieves an item F1 score of 40.0% on the WideSearch benchmark, which is comparable to the performance of single-agent DeepSeek-R1-671B. Furthermore, WideSeek-R1-4B exhibits consistent performance gains as the number of parallel subagents increases, highlighting the effectiveness of width scaling.
☆ QUATRO: Query-Adaptive Trust Region Policy Optimization for LLM Fine-tuning
GRPO-style reinforcement learning (RL)-based LLM fine-tuning algorithms have recently gained popularity. Relying on heuristic trust-region approximations, however, they can lead to brittle optimization behavior, as global importance-ratio clipping and group-wise normalization fail to regulate samples whose importance ratios fall outside the clipping range. We propose Query-Adaptive Trust-Region policy Optimization (QUATRO), which directly enforces trust-region constraints through a principled optimization. This yields a clear and interpretable objective that enables explicit control over policy updates and stable, entropy-controlled optimization, with a stabilizer terms arising intrinsically from the exact trust-region formulation. Empirically verified on diverse mathematical reasoning benchmarks, QUATRO shows stable training under increased policy staleness and aggressive learning rates, maintaining well-controlled entropy throughout training.
☆ A Human-Centered Privacy Approach (HCP) to AI
As the paradigm of Human-Centered AI (HCAI) gains prominence, its benefits to society are accompanied by significant ethical concerns, one of which is the protection of individual privacy. This chapter provides a comprehensive overview of privacy within HCAI, proposing a human-centered privacy (HCP) framework, providing integrated solution from technology, ethics, and human factors perspectives. The chapter begins by mapping privacy risks across each stage of AI development lifecycle, from data collection to deployment and reuse, highlighting the impact of privacy risks on the entire system. The chapter then introduces privacy-preserving techniques such as federated learning and dif erential privacy. Subsequent chapters integrate the crucial user perspective by examining mental models, alongside the evolving regulatory and ethical landscapes as well as privacy governance. Next, advice on design guidelines is provided based on the human-centered privacy framework. After that, we introduce practical case studies across diverse fields. Finally, the chapter discusses persistent open challenges and future research directions, concluding that a multidisciplinary approach, merging technical, design, policy, and ethical expertise, is essential to successfully embed privacy into the core of HCAI, thereby ensuring these technologies advance in a manner that respects and ensures human autonomy, trust and dignity.
☆ Targeted Synthetic Control Method
The synthetic control method (SCM) estimates causal effects in panel data with a single-treated unit by constructing a counterfactual outcome as a weighted combination of untreated control units that matches the pre-treatment trajectory. In this paper, we introduce the targeted synthetic control (TSC) method, a new two-stage estimator that directly estimates the counterfactual outcome. Specifically, our TSC method (1) yields a targeted debiasing estimator, in the sense that the targeted updating refines the initial weights to produce more stable weights; and (2) ensures that the final counterfactual estimation is a convex combination of observed control outcomes to enable direct interpretation of the synthetic control weights. TSC is flexible and can be instantiated with arbitrary machine learning models. Methodologically, TSC starts from an initial set of synthetic-control weights via a one-dimensional targeted update through the weight-tilting submodel, which calibrates the weights to reduce bias of weights estimation arising from pre-treatment fit. Furthermore, TSC avoids key shortcomings of existing methods (e.g., the augmented SCM), which can produce unbounded counterfactual estimates. Across extensive synthetic and real-world experiments, TSC consistently improves estimation accuracy over state-of-the-art SCM baselines.
☆ Resilient Load Forecasting under Climate Change: Adaptive Conditional Neural Processes for Few-Shot Extreme Load Forecasting
Extreme weather can substantially change electricity consumption behavior, causing load curves to exhibit sharp spikes and pronounced volatility. If forecasts are inaccurate during those periods, power systems are more likely to face supply shortfalls or localized overloads, forcing emergency actions such as load shedding and increasing the risk of service disruptions and public-safety impacts. This problem is inherently difficult because extreme events can trigger abrupt regime shifts in load patterns, while relevant extreme samples are rare and irregular, making reliable learning and calibration challenging. We propose AdaCNP, a probabilistic forecasting model for data-scarce condition. AdaCNP learns similarity in a shared embedding space. For each target data, it evaluates how relevant each historical context segment is to the current condition and reweights the context information accordingly. This design highlights the most informative historical evidence even when extreme samples are rare. It enables few-shot adaptation to previously unseen extreme patterns. AdaCNP also produces predictive distributions for risk-aware decision-making without expensive fine-tuning on the target domain. We evaluate AdaCNP on real-world power-system load data and compare it against a range of representative baselines. The results show that AdaCNP is more robust during extreme periods, reducing the mean squared error by 22\% relative to the strongest baseline while achieving the lowest negative log-likelihood, indicating more reliable probabilistic outputs. These findings suggest that AdaCNP can effectively mitigate the combined impact of abrupt distribution shifts and scarce extreme samples, providing a more trustworthy forecasting for resilient power system operation under extreme events.
☆ Jacobian Regularization Stabilizes Long-Term Integration of Neural Differential Equations
Hybrid models and Neural Differential Equations (NDE) are getting increasingly important for the modeling of physical systems, however they often encounter stability and accuracy issues during long-term integration. Training on unrolled trajectories is known to limit these divergences but quickly becomes too expensive due to the need for computing gradients over an iterative process. In this paper, we demonstrate that regularizing the Jacobian of the NDE model via its directional derivatives during training stabilizes long-term integration in the challenging context of short training rollouts. We design two regularizations, one for the case of known dynamics where we can directly derive the directional derivatives of the dynamic and one for the case of unknown dynamics where they are approximated using finite differences. Both methods, while having a far lower cost compared to long rollouts during training, are successful in improving the stability of long-term simulations for several ordinary and partial differential equations, opening up the door to training NDE methods for long-term integration of large scale systems.
Focus-LIME: Surgical Interpretation of Long-Context Large Language Models via Proxy-Based Neighborhood Selection
As Large Language Models (LLMs) scale to handle massive context windows, achieving surgical feature-level interpretation is essential for high-stakes tasks like legal auditing and code debugging. However, existing local model-agnostic explanation methods face a critical dilemma in these scenarios: feature-based methods suffer from attribution dilution due to high feature dimensionality, thus failing to provide faithful explanations. In this paper, we propose Focus-LIME, a coarse-to-fine framework designed to restore the tractability of surgical interpretation. Focus-LIME utilizes a proxy model to curate the perturbation neighborhood, allowing the target model to perform fine-grained attribution exclusively within the optimized context. Empirical evaluations on long-context benchmarks demonstrate that our method makes surgical explanations practicable and provides faithful explanations to users.
☆ Stochastic Decision Horizons for Constrained Reinforcement Learning
Constrained Markov decision processes (CMDPs) provide a principled model for handling constraints, such as safety and other auxiliary objectives, in reinforcement learning. The common approach of using additive-cost constraints and dual variables often hinders off-policy scalability. We propose a Control as Inference formulation based on stochastic decision horizons, where constraint violations attenuate reward contributions and shorten the effective planning horizon via state-action-dependent continuation. This yields survival-weighted objectives that remain replay-compatible for off-policy actor-critic learning. We propose two violation semantics, absorbing and virtual termination, that share the same survival-weighted return but result in distinct optimization structures that lead to SAC/MPO-style policy improvement. Experiments demonstrate improved sample efficiency and favorable return-violation trade-offs on standard benchmarks. Moreover, MPO with virtual termination (VT-MPO) scales effectively to our high-dimensional musculoskeletal Hyfydy setup.
☆ A principled framework for uncertainty decomposition in TabPFN
TabPFN is a transformer that achieves state-of-the-art performance on supervised tabular tasks by amortizing Bayesian prediction into a single forward pass. However, there is currently no method for uncertainty decomposition in TabPFN. Because it behaves, in an idealised limit, as a Bayesian in-context learner, we cast the decomposition challenge as a Bayesian predictive inference (BPI) problem. The main computational tool in BPI, predictive Monte Carlo, is challenging to apply here as it requires simulating unmodeled covariates. We therefore pursue the asymptotic alternative, filling a gap in the theory for supervised settings by proving a predictive CLT under quasi-martingale conditions. We derive variance estimators determined by the volatility of predictive updates along the context. The resulting credible bands are fast to compute, target epistemic uncertainty, and achieve near-nominal frequentist coverage. For classification, we further obtain an entropy-based uncertainty decomposition.
comment: 9 pages (+2 reference, +34 appendix). Code in https://github.com/weiyaw/ud4pfn
☆ Trust The Typical
Current approaches to LLM safety fundamentally rely on a brittle cat-and-mouse game of identifying and blocking known threats via guardrails. We argue for a fresh approach: robust safety comes not from enumerating what is harmful, but from deeply understanding what is safe. We introduce Trust The Typical (T3), a framework that operationalizes this principle by treating safety as an out-of-distribution (OOD) detection problem. T3 learns the distribution of acceptable prompts in a semantic space and flags any significant deviation as a potential threat. Unlike prior methods, it requires no training on harmful examples, yet achieves state-of-the-art performance across 18 benchmarks spanning toxicity, hate speech, jailbreaking, multilingual harms, and over-refusal, reducing false positive rates by up to 40x relative to specialized safety models. A single model trained only on safe English text transfers effectively to diverse domains and over 14 languages without retraining. Finally, we demonstrate production readiness by integrating a GPU-optimized version into vLLM, enabling continuous guardrailing during token generation with less than 6% overhead even under dense evaluation intervals on large-scale workloads.
☆ Probabilistic Label Spreading: Efficient and Consistent Estimation of Soft Labels with Epistemic Uncertainty on Graphs
Safe artificial intelligence for perception tasks remains a major challenge, partly due to the lack of data with high-quality labels. Annotations themselves are subject to aleatoric and epistemic uncertainty, which is typically ignored during annotation and evaluation. While crowdsourcing enables collecting multiple annotations per image to estimate these uncertainties, this approach is impractical at scale due to the required annotation effort. We introduce a probabilistic label spreading method that provides reliable estimates of aleatoric and epistemic uncertainty of labels. Assuming label smoothness over the feature space, we propagate single annotations using a graph-based diffusion method. We prove that label spreading yields consistent probability estimators even when the number of annotations per data point converges to zero. We present and analyze a scalable implementation of our method. Experimental results indicate that, compared to baselines, our approach substantially reduces the annotation budget required to achieve a desired label quality on common image datasets and achieves a new state of the art on the Data-Centric Image Classification benchmark.
☆ Rethinking Weight Tying: Pseudo-Inverse Tying for Stable LM Training and Updates
Weight tying is widely used in compact language models to reduce parameters by sharing the token table between the input embedding and the output projection. However, weight sharing does not guarantee a stable token interface: during training, the correspondence between encoding tokens into hidden states and decoding hidden states into logits can drift, worsening optimization sensitivity and making post-training interventions such as editing, patching, and lightweight adaptation less predictable. We propose Pseudo-Inverse Tying (PIT), which synchronizes embedding and unembedding as coupled projections of a shared latent token memory, guaranteeing a pseudo-inverse-consistent interface throughout training. PIT maintains an orthonormal shared memory, obtained by thin polar decomposition for teacher initialization or random orthonormal initialization from scratch, and introduces a fully learned symmetric positive definite hidden-space transform parameterized via a Cholesky factor. The output head applies this transform to hidden states before the vocabulary projection, while the embedding applies the inverse transform to token vectors using stable triangular solves, avoiding explicit pseudo-inverse recomputation and any vocabulary-sized auxiliary parameters. We evaluate PIT on on-device models spanning 256M-1.3B parameters across pretraining and adaptation, and consistently observe improved training stability, stronger layerwise semantic consistency, and substantially reduced side effects.
comment: an early-stage version
☆ Finding Structure in Continual Learning NeurIPS 2025
Learning from a stream of tasks usually pits plasticity against stability: acquiring new knowledge often causes catastrophic forgetting of past information. Most methods address this by summing competing loss terms, creating gradient conflicts that are managed with complex and often inefficient strategies such as external memory replay or parameter regularization. We propose a reformulation of the continual learning objective using Douglas-Rachford Splitting (DRS). This reframes the learning process not as a direct trade-off, but as a negotiation between two decoupled objectives: one promoting plasticity for new tasks and the other enforcing stability of old knowledge. By iteratively finding a consensus through their proximal operators, DRS provides a more principled and stable learning dynamic. Our approach achieves an efficient balance between stability and plasticity without the need for auxiliary modules or complex add-ons, providing a simpler yet more powerful paradigm for continual learning systems.
comment: Submitted to NeurIPS 2025
☆ Gradient Flow Through Diagram Expansions: Learning Regimes and Explicit Solutions ICML'2026
We develop a general mathematical framework to analyze scaling regimes and derive explicit analytic solutions for gradient flow (GF) in large learning problems. Our key innovation is a formal power series expansion of the loss evolution, with coefficients encoded by diagrams akin to Feynman diagrams. We show that this expansion has a well-defined large-size limit that can be used to reveal different learning phases and, in some cases, to obtain explicit solutions of the nonlinear GF. We focus on learning Canonical Polyadic (CP) decompositions of high-order tensors, and show that this model has several distinct extreme lazy and rich GF regimes such as free evolution, NTK and under- and over-parameterized mean-field. We show that these regimes depend on the parameter scaling, tensor order, and symmetry of the model in a specific and subtle way. Moreover, we propose a general approach to summing the formal loss expansion by reducing it to a PDE; in a wide range of scenarios, it turns out to be 1st order and solvable by the method of characteristics. We observe a very good agreement of our theoretical predictions with experiment.
comment: 48 pages, under review for ICML'2026
☆ Continual Learning through Control Minimization
Catastrophic forgetting remains a fundamental challenge for neural networks when tasks are trained sequentially. In this work, we reformulate continual learning as a control problem where learning and preservation signals compete within neural activity dynamics. We convert regularization penalties into preservation signals that protect prior-task representations. Learning then proceeds by minimizing the control effort required to integrate new tasks while competing with the preservation of prior tasks. At equilibrium, the neural activities produce weight updates that implicitly encode the full prior-task curvature, a property we term the continual-natural gradient, requiring no explicit curvature storage. Experiments confirm that our learning framework recovers true prior-task curvature and enables task discrimination, outperforming existing methods on standard benchmarks without replay.
☆ Forget to Generalize: Iterative Adaptation for Generalization in Federated Learning
The Web is naturally heterogeneous with user devices, geographic regions, browsing patterns, and contexts all leading to highly diverse, unique datasets. Federated Learning (FL) is an important paradigm for the Web because it enables privacy-preserving, collaborative machine learning across diverse user devices, web services and clients without needing to centralize sensitive data. However, its performance degrades severely under non-IID client distributions that is prevalent in real-world web systems. In this work, we propose a new training paradigm - Iterative Federated Adaptation (IFA) - that enhances generalization in heterogeneous federated settings through generation-wise forget and evolve strategy. Specifically, we divide training into multiple generations and, at the end of each, select a fraction of model parameters (a) randomly or (b) from the later layers of the model and reinitialize them. This iterative forget and evolve schedule allows the model to escape local minima and preserve globally relevant representations. Extensive experiments on CIFAR-10, MIT-Indoors, and Stanford Dogs datasets show that the proposed approach improves global accuracy, especially when the data cross clients are Non-IID. This method can be implemented on top any federated algorithm to improve its generalization performance. We observe an average of 21.5%improvement across datasets. This work advances the vision of scalable, privacy-preserving intelligence for real-world heterogeneous and distributed web systems.
☆ Learning the Value Systems of Agents with Preference-based and Inverse Reinforcement Learning
Agreement Technologies refer to open computer systems in which autonomous software agents interact with one another, typically on behalf of humans, in order to come to mutually acceptable agreements. With the advance of AI systems in recent years, it has become apparent that such agreements, in order to be acceptable to the involved parties, must remain aligned with ethical principles and moral values. However, this is notoriously difficult to ensure, especially as different human users (and their software agents) may hold different value systems, i.e. they may differently weigh the importance of individual moral values. Furthermore, it is often hard to specify the precise meaning of a value in a particular context in a computational manner. Methods to estimate value systems based on human-engineered specifications, e.g. based on value surveys, are limited in scale due to the need for intense human moderation. In this article, we propose a novel method to automatically \emph{learn} value systems from observations and human demonstrations. In particular, we propose a formal model of the \emph{value system learning} problem, its instantiation to sequential decision-making domains based on multi-objective Markov decision processes, as well as tailored preference-based and inverse reinforcement learning algorithms to infer value grounding functions and value systems. The approach is illustrated and evaluated by two simulated use cases.
comment: 42 pages, 5 figures. Published in Journal of Autonomous Agents and Multi-Agent Systems
☆ Discovering Mechanistic Models of Neural Activity: System Identification in an in Silico Zebrafish
Constructing mechanistic models of neural circuits is a fundamental goal of neuroscience, yet verifying such models is limited by the lack of ground truth. To rigorously test model discovery, we establish an in silico testbed using neuromechanical simulations of a larval zebrafish as a transparent ground truth. We find that LLM-based tree search autonomously discovers predictive models that significantly outperform established forecasting baselines. Conditioning on sensory drive is necessary but not sufficient for faithful system identification, as models exploit statistical shortcuts. Structural priors prove essential for enabling robust out-of-distribution generalization and recovery of interpretable mechanistic models. Our insights provide guidance for modeling real-world neural recordings and offer a broader template for AI-driven scientific discovery.
☆ Greedy-Gnorm: A Gradient Matrix Norm-Based Alternative to Attention Entropy for Head Pruning
Attention head pruning has emerged as an effective technique for transformer model compression, an increasingly important goal in the era of Green AI. However, existing pruning methods often rely on static importance scores, which fail to capture the evolving role of attention heads during iterative removal. We propose Greedy-Gradient norm (Greedy-Gnorm), a novel head pruning algorithm that dynamically recalculates head importance after each pruning step. Specifically, each head is scored by the elementwise product of the l2-norms of its Q/K/V gradient blocks, as estimated from a hold-out validation set and updated at every greedy iteration. This dynamic approach to scoring mitigates against stale rankings and better reflects gradient-informed importance as pruning progresses. Extensive experiments on BERT, ALBERT, RoBERTa, and XLM-RoBERTa demonstrate that Greedy-Gnorm consistently preserves accuracy under substantial head removal, outperforming attention entropy. By effectively reducing model size while maintaining task performance, Greedy-Gnorm offers a promising step toward more energy-efficient transformer model deployment.
comment: 24 pages, 5 figures, 5 tables
☆ Universality of General Spiked Tensor Models
We study the rank-one spiked tensor model in the high-dimensional regime, where the noise entries are independent and identically distributed with zero mean, unit variance, and finite fourth moment.This setting extends the classical Gaussian framework to a substantially broader class of noise distributions.Focusing on asymmetric tensors of order $d$ ($\ge 3$), we analyze the maximum likelihood estimator of the best rank-one approximation.Under a mild assumption isolating informative critical points of the associated optimization landscape, we show that the empirical spectral distribution of a suitably defined block-wise tensor contraction converges almost surely to a deterministic limit that coincides with the Gaussian case.As a consequence, the asymptotic singular value and the alignments between the estimated and true spike directions admit explicit characterizations identical to those obtained under Gaussian noise. These results establish a universality principle for spiked tensor models, demonstrating that their high-dimensional spectral behavior and statistical limits are robust to non-Gaussian noise. Our analysis relies on resolvent methods from random matrix theory, cumulant expansions valid under finite moment assumptions, and variance bounds based on Efron-Stein-type arguments. A key challenge in the proof is how to handle the statistical dependence between the signal term and the noise term.
comment: 102pages
☆ Bayesian PINNs for uncertainty-aware inverse problems (BPINN-IP) ICIP 2006
The main contribution of this paper is to develop a hierarchical Bayesian formulation of PINNs for linear inverse problems, which is called BPINN-IP. The proposed methodology extends PINN to account for prior knowledge on the nature of the expected NN output, as well as its weights. Also, as we can have access to the posterior probability distributions, naturally uncertainties can be quantified. Also, variational inference and Monte Carlo dropout are employed to provide predictive means and variances for reconstructed images. Un example of applications to deconvolution and super-resolution is considered, details of the different steps of implementations are given, and some preliminary results are presented.
comment: submitted to ICIP 2006 conference
☆ Journey to the Centre of Cluster: Harnessing Interior Nodes for A/B Testing under Network Interference ICLR 2026
A/B testing on platforms often faces challenges from network interference, where a unit's outcome depends not only on its own treatment but also on the treatments of its network neighbors. To address this, cluster-level randomization has become standard, enabling the use of network-aware estimators. These estimators typically trim the data to retain only a subset of informative units, achieving low bias under suitable conditions but often suffering from high variance. In this paper, we first demonstrate that the interior nodes - units whose neighbors all lie within the same cluster - constitute the vast majority of the post-trimming subpopulation. In light of this, we propose directly averaging over the interior nodes to construct the mean-in-interior (MII) estimator, which circumvents the delicate reweighting required by existing network-aware estimators and substantially reduces variance in classical settings. However, we show that interior nodes are often not representative of the full population, particularly in terms of network-dependent covariates, leading to notable bias. We then augment the MII estimator with a counterfactual predictor trained on the entire network, allowing us to adjust for covariate distribution shifts between the interior nodes and full population. By rearranging the expression, we reveal that our augmented MII estimator embodies an analytical form of the point estimator within prediction-powered inference framework. This insight motivates a semi-supervised lens, wherein interior nodes are treated as labeled data subject to selection bias. Extensive and challenging simulation studies demonstrate the outstanding performance of our augmented MII estimator across various settings.
comment: ICLR 2026
☆ RASA: Routing-Aware Safety Alignment for Mixture-of-Experts Models
Mixture-of-Experts (MoE) language models introduce unique challenges for safety alignment due to their sparse routing mechanisms, which can enable degenerate optimization behaviors under standard full-parameter fine-tuning. In our preliminary experiments, we observe that naively applying full-parameter safety fine-tuning to MoE models can reduce attack success rates through routing or expert dominance effects, rather than by directly repairing Safety-Critical Experts. To address this challenge, we propose RASA, a routing-aware expert-level alignment framework that explicitly repairs Safety-Critical Experts while preventing routing-based bypasses. RASA identifies experts disproportionately activated by successful jailbreaks, selectively fine-tunes only these experts under fixed routing, and subsequently enforces routing consistency with safety-aligned contexts. Across two representative MoE architectures and a diverse set of jailbreak attacks, RASA achieves near-perfect robustness, strong cross-attack generalization, and substantially reduced over-refusal, while preserving general capabilities on benchmarks such as MMLU, GSM8K, and TruthfulQA. Our results suggest that robust MoE safety alignment benefits from targeted expert repair rather than global parameter updates, offering a practical and architecture-preserving alternative to prior approaches.
comment: 9 pages
☆ Mixture of Masters: Sparse Chess Language Models with Player Routing
Modern chess language models are dense transformers trained on millions of games played by thousands of high-rated individuals. However, these monolithic networks tend to collapse into mode-averaged behavior, where stylistic boundaries are blurred, and rare but effective strategies are suppressed. To counteract homogenization, we introduce Mixture-of-Masters (MoM), the first chess mixture-of-experts model with small-sized GPT experts emulating world-class grandmasters. Each expert is trained with a combination of self-supervised learning and reinforcement learning guided by chess-specific rewards. For each move, a post-hoc learnable gating network selects the most appropriate persona to channel depending on the game state, allowing MoM to switch its style dynamically$--$e.g., Tal's offensive vocation or Petrosian's defensive solidity. When evaluated against Stockfish on unseen standard games, MoM outperforms both dense individual expert networks and popular GPT baselines trained on aggregated data, while ensuring generation variety, control, and interpretability.
☆ No One-Size-Fits-All: Building Systems For Translation to Bashkir, Kazakh, Kyrgyz, Tatar and Chuvash Using Synthetic And Original Data EACL 2026
We explore machine translation for five Turkic language pairs: Russian-Bashkir, Russian-Kazakh, Russian-Kyrgyz, English-Tatar, English-Chuvash. Fine-tuning nllb-200-distilled-600M with LoRA on synthetic data achieved chrF++ 49.71 for Kazakh and 46.94 for Bashkir. Prompting DeepSeek-V3.2 with retrieved similar examples achieved chrF++ 39.47 for Chuvash. For Tatar, zero-shot or retrieval-based approaches achieved chrF++ 41.6, while for Kyrgyz the zero-shot approach reached 45.6. We release the dataset and the obtained weights.
comment: Accepted to EACL 2026 (LoResMT workshop)
☆ Hand Gesture Recognition from Doppler Radar Signals Using Echo State Networks IJCNN 2026
Hand gesture recognition (HGR) is a fundamental technology in human computer interaction (HCI).In particular, HGR based on Doppler radar signals is suited for in-vehicle interfaces and robotic systems, necessitating lightweight and computationally efficient recognition techniques. However, conventional deep learning-based methods still suffer from high computational costs. To address this issue, we propose an Echo State Network (ESN) approach for radar-based HGR, using frequency-modulated-continuous-wave (FMCW) radar signals. Raw radar data is first converted into feature maps, such as range-time and Doppler-time maps, which are then fed into one or more recurrent neural network-based reservoirs. The obtained reservoir states are processed by readout classifiers, including ridge regression, support vector machines, and random forests. Comparative experiments demonstrate that our method outperforms existing approaches on an 11-class HGR task using the Soli dataset and surpasses existing deep learning models on a 4-class HGR task using the Dop-NET dataset. The results indicate that parallel processing using multi-reservoir ESNs are effective for recognizing temporal patterns from the multiple different feature maps in the time-space and time-frequency domains. Our ESN approaches achieve high recognition performance with low computational cost in HGR, showing great potential for more advanced HCI technologies, especially in resource-constrained environments.
comment: Submitted to IJCNN 2026. 21 pages, 10figures
♻ ☆ Robust inverse material design with physical guarantees using the Voigt-Reuss Net
We propose a spectrally normalized surrogate for forward and inverse mechanical homogenization with hard physical guarantees. Leveraging the Voigt-Reuss bounds, we factor their difference via a Cholesky-like operator and learn a dimensionless, symmetric positive semi-definite representation with eigenvalues in $[0,1]$; the inverse map returns symmetric positive-definite predictions that lie between the bounds in the Löwner sense. In 3D linear elasticity on an open dataset of stochastic biphasic microstructures, a fully connected Voigt-Reuss net trained on $>\!7.5\times 10^{5}$ FFT-based labels with 236 isotropy-invariant descriptors and three contrast parameters recovers the isotropic projection with near-perfect fidelity (isotropy-related entries: $R^2 \ge 0.998$), while anisotropy-revealing couplings are unidentifiable from $SO(3)$-invariant inputs. Tensor-level relative Frobenius errors have median $\approx 1.7\%$ and mean $\approx 3.4\%$ across splits. For 2D plane strain on thresholded trigonometric microstructures, coupling spectral normalization with a differentiable renderer and a CNN yields $R^2>0.99$ on all components, subpercent normalized losses, accurate tracking of percolation-induced eigenvalue jumps, and robust generalization to out-of-distribution images. Treating the parametric microstructure as design variables, batched first-order optimization with a single surrogate matches target tensors within a few percent and returns diverse near-optimal designs. Overall, the Voigt-Reuss net unifies accurate, physically admissible forward prediction with large-batch, constraint-consistent inverse design, and is generic to elliptic operators and coupled-physics settings.
♻ ☆ Combining Residual U-Net and Data Augmentation for Dense Temporal Segmentation of Spike Wave Discharges in Single-Channel EEG
Manual annotation of spike-wave discharges (SWDs), the electrographic hallmark of absence seizures, is labor-intensive for long-term electroencephalography (EEG) monitoring studies. While machine learning approaches show promise for automated detection, they often struggle with cross-subject generalization due to high inter-individual variability in seizure morphology and signal characteristics. In this study we compare the performance of 15 machine learning classifiers on our own manually annotated dataset of 961 hours of EEG recordings from C3H/HeJ mice, including 22,637 labeled SWDs and find that a 1D U-Net performs the best. We then improve its performance by employing residual connections and data augmentation strategies combining amplitude scaling, Gaussian noise injection, and signal inversion during training to enhance cross-subject generalization. We also compare our method, named AugUNet1D, to a recently published time- and frequency-based algorithmic approach called "Twin Peaks" and show that AugUNet1D performs better on our dataset. AugUNet1D, pretrained on our manually annotated data or untrained, is made public for other users.
♻ ☆ Comparing statistical and deep learning techniques for parameter estimation of continuous-time stochastic differentiable equations
Stochastic differential equations such as the Ornstein-Uhlenbeck process have long been used to model realworld probablistic events such as stock prices and temperature fluctuations. While statistical methods such as Maximum Likelihood Estimation (MLE), Kalman Filtering, Inverse Variable Method, and more have historically been used to estimate the parameters of stochastic differential equations, the recent explosion of deep learning technology suggests that models such as a Recurrent Neural Network (RNN) could produce more precise estimators. We present a series of experiments that compare the estimation accuracy and computational expensiveness of a statistical method (MLE) with a deep learning model (RNN) for the parameters of the Ornstein-Uhlenbeck process.
comment: 6 pages, 2 figures, 2 tables
♻ ☆ Beyond Fixed Frames: Dynamic Character-Aligned Speech Tokenization
Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs. Code and checkpoints will be released publicly at https://github.com/lucadellalib/dycast.
comment: 18 pages, 3 figures
♻ ☆ Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image $x^\ast$ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image $x^{p*}$. Although $x^{p*}$ is reasonably close to $x^\ast$, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image $x^+$ is closer to $x^\ast$ than $x^{p*}$. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates $K$ new images as a function of $x^{p*}$, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of $K$ images. We show that within $B$ rounds of user feedback, it is possible to arrive much closer to $x^\ast$, even though the generative model has no information about $x^\ast$. Qualitative scores from $30$ users, combined with quantitative metrics compared across $5$ baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
♻ ☆ OverThink: Slowdown Attacks on Reasoning LLMs
Most flagship language models generate explicit reasoning chains, enabling inference-time scaling. However, producing these reasoning chains increases token usage (i.e., reasoning tokens), which in turn increases latency and costs. Our OverThink attack increases overhead for applications that rely on reasoning language models (RLMs) and external context by forcing them to spend substantially more reasoning tokens while still producing contextually correct answers. An adversary mounts an attack by injecting decoy reasoning problems into public content that is consumed by RLM at inference time. Because our decoys (e.g., Markov decision processes, Sudokus, etc.) are benign, they evade safety filters. We evaluate OverThink on both closed-source and open-source reasoning models across the FreshQA, SQuAD, and MuSR datasets. We also explore the attack in multi-modal settings by creating images that cause excessive reasoning. We show that the resulting slowdown transfers across models. Finally, we explore both LLM-based and systems-level defenses, and discuss the societal, financial, and energy implications of the OverThink attacks.
♻ ☆ Grammatical Error Correction for Low-Resource Languages: The Case of Zarma
Grammatical error correction (GEC) aims to improve text quality and readability. Previous work on the task focused primarily on high-resource languages, while low-resource languages lack robust tools. To address this shortcoming, we present a study on GEC for Zarma, a language spoken by over five million people in West Africa. We compare three approaches: rule-based methods, machine translation (MT) models, and large language models (LLMs). We evaluated GEC models using a dataset of more than 250,000 examples, including synthetic and human-annotated data. Our results showed that the MT-based approach using M2M100 outperforms others, with a detection rate of 95.82% and a suggestion accuracy of 78.90% in automatic evaluations (AE) and an average score of 3.0 out of 5.0 in manual evaluation (ME) from native speakers for grammar and logical corrections. The rule-based method was effective for spelling errors but failed on complex context-level errors. LLMs -- Gemma 2b and MT5-small -- showed moderate performance. Our work supports use of MT models to enhance GEC in low-resource settings, and we validated these results with Bambara, another West African language.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Guardrailed Uplift Targeting: A Causal Optimization Playbook for Marketing Strategy
This paper introduces a marketing decision framework that optimizes customer targeting by integrating heterogeneous treatment effect estimation with explicit business guardrails. The objective is to maximize revenue and retention while adhering to constraints such as budget, revenue protection, and customer experience. The framework first estimates Conditional Average Treatment Effects (CATE) using uplift learners, then solves a constrained allocation problem to decide whom to target and which offer to deploy. It supports decisions in retention messaging, event rewards, and spend-threshold assignment. Validated through offline simulations and online A/B tests, the approach consistently outperforms propensity and static baselines, offering a reusable playbook for causal targeting at scale.
♻ ☆ Domain Generalization Under Posterior Drift
Domain generalization (DG) is the problem of generalizing from several distributions (or domains), for which labeled training data are available, to a new test domain for which no labeled data is available. For the prevailing benchmark datasets in DG, there exists a single classifier that performs well across all domains. In this work, we study a fundamentally different regime where the domains satisfy a \emph{posterior drift} assumption, in which the optimal classifier might vary substantially with domain. We establish a decision-theoretic framework for DG under posterior drift, and investigate the practical implications of this framework through experiments on language and vision tasks.
♻ ☆ Attention Consistency Regularization for Interpretable Early-Exit Neural Networks
Early-exit neural networks enable adaptive inference by allowing predictions at intermediate layers, reducing computational cost. However, early exits often lack interpretability and may focus on different features than deeper layers, limiting trust and explainability. This paper presents Explanation-Guided Training (EGT), a multi-objective framework that improves interpretability and consistency in early-exit networks through attention-based regularization. EGT introduces an attention consistency loss that aligns early-exit attention maps with the final exit. The framework jointly optimizes classification accuracy and attention consistency through a weighted combination of losses. Experiments on a real-world image classification dataset demonstrate that EGT achieves up to 98.97% overall accuracy (matching baseline performance) with a 1.97x inference speedup through early exits, while improving attention consistency by up to 18.5% compared to baseline models. The proposed method provides more interpretable and consistent explanations across all exit points, making early-exit networks more suitable for explainable AI applications in resource-constrained environments.
comment: 2 pages, 1 figure
♻ ☆ A Generalization Bound for a Family of Implicit Networks
Implicit networks are a class of neural networks whose outputs are defined by the fixed point of a parameterized operator. They have enjoyed success in many applications including natural language processing, image processing, and numerous other applications. While they have found abundant empirical success, theoretical work on its generalization is still under-explored. In this work, we consider a large family of implicit networks defined parameterized contractive fixed point operators. We show a generalization bound for this class based on a covering number argument for the Rademacher complexity of these architectures.
♻ ☆ Y-Shaped Generative Flows
Modern continuous-time generative models typically induce \emph{V-shaped} flows: each sample travels independently along a nearly straight trajectory from the prior to the data. Although effective, this independent movement overlooks the hierarchical structures that exist in real-world data. To address this, we introduce \emph{Y-shaped generative flows}, a framework in which samples travel together along shared pathways before branching off to target-specific endpoints. Our formulation is theoretically justified, yet remains practical, requiring only minimal modifications to standard velocity-driven models. We implement this through a scalable, neural network-based training objective. Experiments on synthetic, image, and biological datasets demonstrate that our method recovers hierarchy-aware structures, improves distributional metrics over strong flow-based baselines, and reaches targets in fewer steps.
♻ ☆ Verification and Identification in ECG biometric on large-scale
This work studies electrocardiogram (ECG) biometrics at large scale, directly addressing a critical gap in the literature: the scarcity of large-scale evaluations with operational metrics and protocols that enable meaningful standardization and comparison across studies. We show that identity information is already present in tabular representations (fiducial features): even a simple MLP-based embedding network yields non-trivial performance, establishing a strong baseline before waveform modeling. We then adopt embedding-based deep learning models (ArcFace), first on features and then on ECG waveforms, showing a clear performance jump when moving from tabular inputs to waveforms, and a further gain with larger training sets and consistent normalization across train/val/test. On a large-scale test set, verification achieves high TAR at strict FAR thresholds (TAR=0.908 @ FAR=1e-3; TAR=0.820 @ FAR=1e-4) with EER=2.53\% (all-vs-all); closed-set identification yields Rank@1=0.812 and Rank@10=0.910. In open-set, a two-stage pipeline (top-$K$ shortlist on embeddings + re-ranking) reaches DIR@FAR up to 0.976 at FAR=1e-3 and 1e-4. Overall, the results show that ECG carries a measurable individual signature and that large-scale testing is essential to obtain realistic, comparable metrics. The study provides an operationally grounded benchmark that helps standardize evaluation across protocols.
♻ ☆ Accurate and scalable exchange-correlation with deep learning
Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schrödinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
comment: Main: 13 pages plus references, 11 figures and tables. Supplementary information: 19 pages, 12 figures and tables. v2 update: fix rendering of figure 1 and part of figure 5 in Safari PDF viewer. v3 update: update author information and fix typo. v4 update: The Skala model and inference code are available under MIT license at https://github.com/microsoft/skala
♻ ☆ It's all In the (Exponential) Family: An Equivalence between Maximum Likelihood Estimation and Control Variates for Sketching Algorithms AISTATS 2026
Maximum likelihood estimators (MLE) and control variate estimators (CVE) have been used in conjunction with known information across sketching algorithms and applications in machine learning. We prove that under certain conditions in an exponential family, an optimal CVE will achieve the same asymptotic variance as the MLE, giving an Expectation-Maximization (EM) algorithm for the MLE. Experiments show the EM algorithm is faster and numerically stable compared to other root finding algorithms for the MLE for the bivariate Normal distribution, and we expect this to hold across distributions satisfying these conditions. We show how the EM algorithm leads to reproducibility for algorithms using MLE / CVE, and demonstrate how the EM algorithm leads to finding the MLE when the CV weights are known.
comment: 36 pages, 15 figures, accepted to AISTATS 2026 (poster)
♻ ☆ Multi-Excitation Projective Simulation with a Many-Body Physics Inspired Inductive Bias
With the impressive progress of deep learning, applications relying on machine learning are increasingly being integrated into daily life. However, most deep learning models have an opaque, oracle-like nature making it difficult to interpret and understand their decisions. This problem led to the development of the field known as eXplainable Artificial Intelligence (XAI). One method in this field known as Projective Simulation (PS) models a chain-of-thought as a random walk of a particle on a graph with vertices that have concepts attached to them. While this description has various benefits, including the possibility of quantization, it cannot be naturally used to model thoughts that combine several concepts simultaneously. To overcome this limitation, we introduce Multi-Excitation Projective Simulation (mePS), a generalization that considers a chain-of-thought to be a random walk of several particles on a hypergraph. A definition for a dynamic hypergraph is put forward to describe the agent's training history along with applications to AI and hypergraph visualization. An inductive bias inspired by the remarkably successful few-body interaction models used in quantum many-body physics is formalized for our classical mePS framework and employed to tackle the exponential complexity associated with naive implementations of hypergraphs. We prove that our inductive bias reduces the complexity from exponential to polynomial, with the exponent representing the cutoff on how many particles can interact. We numerically apply our method to two toy environments and a more complex scenario modelling the diagnosis of a broken computer. These environments demonstrate the resource savings provided by an appropriate choice of inductive bias, as well as showcasing aspects of interpretability. A quantum model for mePS is also briefly outlined and some future directions for it are discussed.
comment: 41 pages, 9 figures; Code repository at https://github.com/MariusKrumm/ManyBodyMEPS. Updated to be consistent with AIJ version
♻ ☆ Mugi: Value Level Parallelism For Efficient LLMs
Value level parallelism (VLP) has been proposed to improve the efficiency of large-batch, low-precision general matrix multiply (GEMM) between symmetric activations and weights. In transformer based large language models (LLMs), there exist more sophisticated operations beyond activation-weight GEMM. In this paper, we explore how VLP benefits LLMs. First, we generalize VLP for nonlinear approximations, outperforming existing nonlinear approximations in end-to-end LLM accuracy, performance, and efficiency. Our VLP approximation follows a value-centric approach, where important values are assigned with greater accuracy. Second, we optimize VLP for small-batch GEMMs with asymmetric inputs efficiently, which leverages timely LLM optimizations, including weight-only quantization, key-value (KV) cache quantization, and group query attention. Finally, we design a new VLP architecture, Mugi, to encapsulate the innovations above and support full LLM workloads, while providing better performance, efficiency and sustainability. Our experimental results show that Mugi can offer significant improvements on throughput and energy efficiency, up to $45\times$ and $668\times$ for nonlinear softmax operations, and $2.07\times$ and $3.11\times$ for LLMs, and also decrease operational carbon for LLM operation by $1.45\times$ and embodied carbon by $1.48\times$.
comment: 2026 International Conference on Architectural Support for Programming Languages and Operating Systems
♻ ☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
♻ ☆ Unifying Re-Identification, Attribute Inference, and Data Reconstruction Risks in Differential Privacy NeurIPS 2025
Differentially private (DP) mechanisms are difficult to interpret and calibrate because existing methods for mapping standard privacy parameters to concrete privacy risks -- re-identification, attribute inference, and data reconstruction -- are both overly pessimistic and inconsistent. In this work, we use the hypothesis-testing interpretation of DP ($f$-DP), and determine that bounds on attack success can take the same unified form across re-identification, attribute inference, and data reconstruction risks. Our unified bounds are (1) consistent across a multitude of attack settings, and (2) tunable, enabling practitioners to evaluate risk with respect to arbitrary, including worst-case, levels of baseline risk. Empirically, our results are tighter than prior methods using $\varepsilon$-DP, Rényi DP, and concentrated DP. As a result, calibrating noise using our bounds can reduce the required noise by 20% at the same risk level, which yields, e.g., an accuracy increase from 52% to 70% in a text classification task. Overall, this unifying perspective provides a principled framework for interpreting and calibrating the degree of protection in DP against specific levels of re-identification, attribute inference, or data reconstruction risk.
comment: NeurIPS 2025
♻ ☆ Minimax and Bayes Optimal Best-Arm Identification
This study investigates minimax and Bayes optimal strategies for fixed-budget best-arm identification. We consider an adaptive procedure consisting of a sampling phase followed by a recommendation phase, and we design an adaptive experiment within this framework to efficiently identify the best arm, defined as the one with the highest expected outcome. In our proposed strategy, the sampling phase consists of two stages. The first stage is a pilot phase, in which we allocate samples uniformly across arms to eliminate clearly suboptimal arms and to estimate outcome variances. Before entering the second stage, we solve a Gaussian minimax game, which yields a sampling ratio and a decision rule. In the second stage, samples are allocated according to this sampling ratio. After the sampling phase, the procedure enters the recommendation phase, where we select an arm using the decision rule. We prove that this single strategy is simultaneously asymptotically minimax and Bayes optimal for the simple regret, and we establish upper bounds that coincide exactly with our lower bounds, including the constant terms.
♻ ☆ Optimization, Generalization and Differential Privacy Bounds for Gradient Descent on Kolmogorov-Arnold Networks
Kolmogorov--Arnold Networks (KANs) have recently emerged as a structured alternative to standard MLPs, yet a principled theory for their training dynamics, generalization, and privacy properties remains limited. In this paper, we analyze gradient descent (GD) for training two-layer KANs and derive general bounds that characterize their training dynamics, generalization, and utility under differential privacy (DP). As a concrete instantiation, we specialize our analysis to logistic loss under an NTK-separable assumption, where we show that polylogarithmic network width suffices for GD to achieve an optimization rate of order $1/T$ and a generalization rate of order $1/n$, with $T$ denoting the number of GD iterations and $n$ the sample size. In the private setting, we characterize the noise required for $(ε,δ)$-DP and obtain a utility bound of order $\sqrt{d}/(nε)$ (with $d$ the input dimension), matching the classical lower bound for general convex Lipschitz problems. Our results imply that polylogarithmic width is not only sufficient but also necessary under differential privacy, revealing a qualitative gap between non-private (sufficiency only) and private (necessity also emerges) training regimes. Experiments further illustrate how these theoretical insights can guide practical choices, including network width selection and early stopping.
comment: 41 pages, 3 figures
♻ ☆ Backward Conformal Prediction
We introduce $\textit{Backward Conformal Prediction}$, a method that guarantees conformal coverage while providing flexible control over the size of prediction sets. Unlike standard conformal prediction, which fixes the coverage level and allows the conformal set size to vary, our approach defines a rule that constrains how prediction set sizes behave based on the observed data, and adapts the coverage level accordingly. Our method builds on two key foundations: (i) recent results by Gauthier et al. [2025] on post-hoc validity using e-values, which ensure marginal coverage of the form $\mathbb{P}(Y_{\rm test} \in \hat C_n^{\tildeα}(X_{\rm test})) \ge 1 - \mathbb{E}[\tildeα]$ for any data-dependent miscoverage $\tildeα$, and (ii) a novel leave-one-out estimator $\hatα^{\rm LOO}$ of the marginal miscoverage $\mathbb{E}[\tildeα]$ based on the calibration set, ensuring that the theoretical guarantees remain computable in practice. This approach is particularly useful in applications where large prediction sets are impractical such as medical diagnosis. We provide theoretical results and empirical evidence supporting the validity of our method, demonstrating that it maintains computable coverage guarantees while ensuring interpretable, well-controlled prediction set sizes.
comment: Code available at: https://github.com/GauthierE/backward-cp
♻ ☆ Non-Intrusive Graph-Based Bot Detection for E-Commerce Using Inductive Graph Neural Networks
Malicious bots pose a growing threat to e-commerce platforms by scraping data, hoarding inventory, and perpetrating fraud. Traditional bot mitigation techniques, including IP blacklists and CAPTCHA-based challenges, are increasingly ineffective or intrusive, as modern bots leverage proxies, botnets, and AI-assisted evasion strategies. This work proposes a non-intrusive graph-based bot detection framework for e-commerce that models user session behavior through a graph representation and applies an inductive graph neural network for classification. The approach captures both relational structure and behavioral semantics, enabling accurate identification of subtle automated activity that evades feature-based methods. Experiments on real-world e-commerce traffic demonstrate that the proposed inductive graph model outperforms a strong session-level multilayer perceptron baseline in terms of AUC and F1 score. Additional adversarial perturbation and cold-start simulations show that the model remains robust under moderate graph modifications and generalizes effectively to previously unseen sessions and URLs. The proposed framework is deployment-friendly, integrates with existing systems without client-side instrumentation, and supports real-time inference and incremental updates, making it suitable for practical e-commerce security deployments.
♻ ☆ Unlocking hidden biomolecular conformational landscapes in diffusion models at inference time
The function of biomolecules such as proteins depends on their ability to interconvert between a wide range of structures or "conformations." Researchers have endeavored for decades to develop computational methods to predict the distribution of conformations, which is far harder to determine experimentally than a static folded structure. We present ConforMix, an inference-time algorithm that enhances sampling of conformational distributions using a combination of classifier guidance, filtering, and free energy estimation. Our approach upgrades diffusion models -- whether trained for static structure prediction or conformational generation -- to enable more efficient discovery of conformational variability without requiring prior knowledge of major degrees of freedom. ConforMix is orthogonal to improvements in model pretraining and would benefit even a hypothetical model that perfectly reproduced the Boltzmann distribution. Remarkably, when applied to a diffusion model trained for static structure prediction, ConforMix captures structural changes including domain motion, cryptic pocket flexibility, and transporter cycling, while avoiding unphysical states. Case studies of biologically critical proteins demonstrate the scalability, accuracy, and utility of this method.
comment: Project page: https://github.com/drorlab/conformix
♻ ☆ Graph Persistence goes Spectral NeurIPS 2025
Including intricate topological information (e.g., cycles) provably enhances the expressivity of message-passing graph neural networks (GNNs) beyond the Weisfeiler-Leman (WL) hierarchy. Consequently, Persistent Homology (PH) methods are increasingly employed for graph representation learning. In this context, recent works have proposed decorating classical PH diagrams with vertex and edge features for improved expressivity. However, these methods still fail to capture basic graph structural information. In this paper, we propose SpectRe -- a new topological descriptor for graphs that integrates spectral information into PH diagrams. Notably, SpectRe is strictly more expressive than PH and spectral information on graphs alone. We also introduce notions of global and local stability to analyze existing descriptors and establish that SpectRe is locally stable. Finally, experiments on synthetic and real-world datasets demonstrate the effectiveness of SpectRe and its potential to enhance the capabilities of graph models in relevant learning tasks. Code is available at https://github.com/Aalto-QuML/SpectRe/.
comment: 32 pages, 4 figures, 7 tables. Accepted at NeurIPS 2025. Final version, clarified minor bug
♻ ☆ Open-Source Multimodal Moxin Models with Moxin-VLM and Moxin-VLA
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Moxin 7B is introduced as a fully open-source LLM developed in accordance with the Model Openness Framework, which moves beyond the simple sharing of model weights to embrace complete transparency in training, datasets, and implementation detail, thus fostering a more inclusive and collaborative research environment that can sustain a healthy open-source ecosystem. To further equip Moxin with various capabilities in different tasks, we develop three variants based on Moxin, including Moxin-VLM, Moxin-VLA, and Moxin-Chinese, which target the vision-language, vision-language-action, and Chinese capabilities, respectively. Experiments show that our models achieve superior performance in various evaluations. We adopt open-source framework and open data for the training. We release our models, along with the available data and code to derive these models.
♻ ☆ Quantifying Risks in Multi-turn Conversation with Large Language Models ICLR 2026
Large Language Models (LLMs) can produce catastrophic responses in conversational settings that pose serious risks to public safety and security.Existing evaluations often fail to fully reveal these vulnerabilities because they rely on fixed attack prompt sequences, lack statistical guarantees, and do not scale to the vast space of multi-turn conversations.In this work, we propose C$^3$LLM, a novel, principled statistical Certification framework for Catastrophic risks in multi-turn Conversation for LLMs that bounds the probability of an LLM generating catastrophic responses under multi-turn conversation distributions with statistical guarantees.We model multi-turn conversations as probability distributions over query sequences, represented by a Markov process on a query graph whose edges encode semantic similarity to capture realistic conversational flow, and quantify catastrophic risks using confidence intervals. We define several inexpensive and practical distributions--random node, graph path, and adaptive with rejection. Our results demonstrate that these distributions can reveal substantial catastrophic risks in frontier models, with certified lower bounds as high as 70\% for the worst model, highlighting the urgent need for improved safety training strategies in frontier LLMs.
comment: Accepted by ICLR 2026
♻ ☆ Analysis of Fourier Neural Operators via Effective Field Theory
Fourier Neural Operators (FNOs) have emerged as leading surrogates for solver operators for various functional problems, yet their stability, generalization and frequency behavior lack a principled explanation. We present a systematic effective field theory analysis of FNOs in an infinite-dimensional function space, deriving closed recursion relations for the layer kernel and four-point vertex and then examining three practically important settings-analytic activations, scale-invariant cases and architectures with residual connections. The theory shows that nonlinear activations inevitably couple frequency inputs to high frequency modes that are otherwise discarded by spectral truncation, and experiments confirm this frequency transfer. For wide networks, we derive explicit criticality conditions on the weight initialization ensemble that ensure small input perturbations maintain a uniform scale across depth, and we confirm experimentally that the theoretically predicted ratio of kernel perturbations matches the measurements. Taken together, our results quantify how nonlinearity enables neural operators to capture non-trivial features, supply criteria for hyperparameter selection via criticality analysis, and explain why scale-invariant activations and residual connections enhance feature learning in FNOs. Finally, we translate the criticality theory into a practical criterion-matched initialization (calibration) procedure; on a standard PDEBench Burgers benchmark, the calibrated FNO exhibits markedly more stable optimization, faster convergence, and improved test error relative to a vanilla FNO.
comment: 39 pages, 12 figures
♻ ☆ Anticipatory Evaluation of Language Models
Progress in large language models is increasingly constrained by an evaluation bottleneck: benchmarks must be built and models run before iteration can begin. We investigate whether evaluation outcomes can be forecast before any experiments are conducted. Specifically, we study text-only performance prediction, where models estimate performance from task descriptions and experimental configurations alone, without access to dataset instances. To support systematic study, we curate PRECOG, a corpus of description-performance pairs spanning diverse tasks, domains, and metrics. We scrape task and configuration descriptions from arXiv, yielding 2,290 instances covering 1,519 papers, and construct a test split using papers published after the evaluated models' knowledge cutoff. Experiments show the task is challenging but feasible: reasoning models achieve a non-trivial forecasting skill reaching mean absolute error as low as 9.9 at high-confidence thresholds. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter resource allocation.
comment: 30 pages, 7 figures
♻ ☆ Fast and Stable Riemannian Metrics on SPD Manifolds via Cholesky Product Geometry ICLR 2026
Recent advances in Symmetric Positive Definite (SPD) matrix learning show that Riemannian metrics are fundamental to effective SPD neural networks. Motivated by this, we revisit the geometry of the Cholesky factors and uncover a simple product structure that enables convenient metric design. Building on this insight, we propose two fast and stable SPD metrics, Power--Cholesky Metric (PCM) and Bures--Wasserstein--Cholesky Metric (BWCM), derived via Cholesky decomposition. Compared with existing SPD metrics, the proposed metrics provide closed-form operators, computational efficiency, and improved numerical stability. We further apply our metrics to construct Riemannian Multinomial Logistic Regression (MLR) classifiers and residual blocks for SPD neural networks. Experiments on SPD deep learning, numerical stability analyses, and tensor interpolation demonstrate the effectiveness, efficiency, and robustness of our metrics. The code is available at https://github.com/GitZH-Chen/PCM_BWCM.
comment: Accepted to ICLR 2026
♻ ☆ Towards Scaling Laws for Symbolic Regression NeurIPS 2025
Symbolic regression (SR) aims to discover the underlying mathematical expressions that explain observed data. This holds promise for both gaining scientific insight and for producing inherently interpretable and generalizable models for tabular data. In this work we focus on the basics of SR. Deep learning-based SR has recently become competitive with genetic programming approaches, but the role of scale has remained largely unexplored. Inspired by scaling laws in language modeling, we present the first systematic investigation of scaling in SR, using a scalable end-to-end transformer pipeline and carefully generated training data. Across five different model sizes and spanning three orders of magnitude in compute, we find that both validation loss and solved rate follow clear power-law trends with compute. We further identify compute-optimal hyperparameter scaling: optimal batch size and learning rate grow with model size, and a token-to-parameter ratio of $\approx$15 is optimal in our regime, with a slight upward trend as compute increases. These results demonstrate that SR performance is largely predictable from compute and offer important insights for training the next generation of SR models.
comment: Accepted at the NeurIPS 2025 Math-AI Workshop and the EurIPS 2025 AITD Workshop
♻ ☆ STAND: Self-Aware Precondition Induction for Interactive Task Learning
In interactive task learning (ITL), AI agents learn new capabilities from limited human instruction provided during task execution. STAND is a new method of data-efficient rule precondition induction specifically designed for these human-in-the-loop training scenarios. A key feature of STAND is its self-awareness of its own learning -- it can provide accurate metrics of training progress back to users. STAND beats popular methods like XGBoost, decision trees, random forests, and version spaces at small-data precondition induction tasks, and is highly accurate at estimating when its performance improves on holdout examples. In our evaluations, we find that STAND shows more monotonic improvement than other models with low rates of error recurrence. These features of STAND support a more consistent training experience, enabling human instructors to estimate when they are finished training and providing active-learning support by identifying trouble spots where more training is required.
♻ ☆ When Do Credal Sets Stabilize? Fixed-Point Theorems for Credal Set Updates
Many machine learning algorithms rely on iterative updates of uncertainty representations, ranging from variational inference and expectation-maximization, to reinforcement learning, continual learning, and multi-agent learning. In the presence of imprecision and ambiguity, credal sets -- closed, convex sets of probability distributions -- have emerged as a popular framework for representing imprecise probabilistic beliefs. Under such imprecision, many learning problems in imprecise probabilistic machine learning (IPML) may be viewed as processes involving successive applications of update rules on credal sets. This naturally raises the question of whether this iterative process converges to stable fixed points -- or, more generally, under what conditions on the updating mechanism such fixed points exist, and whether they can be attained. We provide the first analysis of this problem, and illustrate our findings using Credal Bayesian Deep Learning as a concrete example. Our work demonstrates that incorporating imprecision into the learning process not only enriches the representation of uncertainty, but also reveals structural conditions under which stability emerges, thereby offering new insights into the dynamics of iterative learning under imprecision.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ Generative Modeling of Neural Dynamics via Latent Stochastic Differential Equations
We propose a probabilistic framework for developing computational models of biological neural systems. In this framework, physiological recordings are viewed as discrete-time partial observations of an underlying continuous-time stochastic dynamical system which implements computations through its state evolution. To model this dynamical system, we employ a system of coupled stochastic differential equations with differentiable drift and diffusion functions and use variational inference to infer its states and parameters. This formulation enables seamless integration of existing mathematical models in the literature, neural networks, or a hybrid of both to learn and compare different models. We demonstrate this in our framework by developing a generative model that combines coupled oscillators with neural networks to capture latent population dynamics from single-cell recordings. Evaluation across three neuroscience datasets spanning different species, brain regions, and behavioral tasks show that these hybrid models achieve competitive performance in predicting stimulus-evoked neural and behavioral responses compared to sophisticated black-box approaches while requiring an order of magnitude fewer parameters, providing uncertainty estimates, and offering a natural language for interpretation.
comment: 14 pages, 3 figures, 1 table
♻ ☆ A Novel Framework for Uncertainty-Driven Adaptive Exploration
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ GSAE: Graph-Regularized Sparse Autoencoders for Robust LLM Safety Steering
Large language models (LLMs) face critical safety challenges, as they can be manipulated to generate harmful content through adversarial prompts and jailbreak attacks. Many defenses are typically either black-box guardrails that filter outputs, or internals-based methods that steer hidden activations by operationalizing safety as a single latent feature or dimension. While effective for simple concepts, this assumption is limiting, as recent evidence shows that abstract concepts such as refusal and temporality are distributed across multiple features rather than isolated in one. To address this limitation, we introduce Graph-Regularized Sparse Autoencoders (GSAEs), which extends SAEs with a Laplacian smoothness penalty on the neuron co-activation graph. Unlike standard SAEs that assign each concept to a single latent feature, GSAEs recover smooth, distributed safety representations as coherent patterns spanning multiple features. We empirically demonstrate that GSAE enables effective runtime safety steering, assembling features into a weighted set of safety-relevant directions and controlling them with a two-stage gating mechanism that activates interventions only when harmful prompts or continuations are detected during generation. This approach enforces refusals adaptively while preserving utility on benign queries. Across safety and QA benchmarks, GSAE steering achieves an average 82% selective refusal rate, substantially outperforming standard SAE steering (42%), while maintaining strong task accuracy (70% on TriviaQA, 65% on TruthfulQA, 74% on GSM8K). Robustness experiments further show generalization across LLaMA-3, Mistral, Qwen, and Phi families and resilience against jailbreak attacks (GCG, AutoDAN), consistently maintaining >= 90% refusal of harmful content.
♻ ☆ Asynchronous Reasoning: Training-Free Interactive Thinking LLMs
Many state-of-the-art LLMs are trained to think before giving their answer. Reasoning can greatly improve language model capabilities, but it also makes them less interactive: given a new input, a model must stop thinking before it can respond. Real-world use cases such as voice-based or embodied assistants require an LLM agent to respond and adapt to additional information in real time, which is incompatible with sequential interactions. In contrast, humans can listen, think, and act asynchronously: we begin thinking about the problem while reading it and continue thinking while formulating the answer. In this work, we augment LLMs capable of reasoning to operate in a similar way without additional training. Our method uses the properties of positional embeddings to enable LLMs built for sequential generation to simultaneously think, listen, and write outputs. We evaluate our approach on math, commonsense, and safety reasoning: it allows models to generate accurate thinking-augmented answers while reducing time to first non-thinking token from minutes to ${\le}$ 5s and the overall real-time delays by up to $12{\times}$.
comment: Preprint, work in progress
♻ ☆ Representation-Aware Unlearning via Activation Signatures: From Suppression to Knowledge-Signature Erasure
Selective knowledge erasure from LLMs is critical for GDPR compliance and model safety, yet current unlearning methods conflate behavioral suppression with true knowledge removal, allowing latent capabilities to persist beneath surface-level refusals. In this work, we address this challenge by introducing Knowledge Immunization Framework (KIF), a representation-aware architecture that distinguishes genuine erasure from obfuscation by targeting internal activation signatures rather than surface outputs. Our approach combines dynamic suppression of subject-specific representations with parameter-efficient adaptation, enabling durable unlearning without full model retraining. KIF achieves near-oracle erasure (FQ approx 0.99 vs. 1.00) while preserving utility at oracle levels (MU = 0.62), effectively breaking the stability-erasure tradeoff that has constrained all prior work. We evaluate both standard foundation models (Llama and Mistral) and reasoning-prior models (Qwen and DeepSeek) across 3B to 14B parameters. Our observation shows that standard models exhibit scale-independent true erasure (<3% utility drift), while reasoning-prior models reveal fundamental architectural divergence. Our comprehensive dual-metric evaluation protocol, combining surface-level leakage with latent trace persistence, operationalizes the obfuscation - erasure distinction and enables the first systematic diagnosis of mechanism-level forgetting behavior across model families and scales.
comment: 16 pages, 4 figures
♻ ☆ Discrete Diffusion-Based Model-Level Explanation of Heterogeneous GNNs with Node Features
Many real-world datasets, such as citation networks, social networks, and molecular structures, are naturally represented as heterogeneous graphs, where nodes belong to different types and have additional features. For example, in a citation network, nodes representing "Paper" or "Author" may include attributes like keywords or affiliations. A critical machine learning task on these graphs is node classification, which is useful for applications such as fake news detection, corporate risk assessment, and molecular property prediction. Although Heterogeneous Graph Neural Networks (HGNNs) perform well in these contexts, their predictions remain opaque. Existing post-hoc explanation methods lack support for actual node features beyond one-hot encoding of node type and often fail to generate realistic, faithful explanations. To address these gaps, we propose DiGNNExplainer, a model-level explanation approach that synthesizes heterogeneous graphs with realistic node features via discrete denoising diffusion. In particular, we generate realistic discrete features (e.g., bag-of-words features) using diffusion models within a discrete space, whereas previous approaches are limited to continuous spaces. We evaluate our approach on multiple datasets and show that DiGNNExplainer produces explanations that are realistic and faithful to the model's decision-making, outperforming state-of-the-art methods.
comment: Accepted at WWW 2026. Camera-ready version
♻ ☆ Neural Concept Verifier: Scaling Prover-Verifier Games via Concept Encodings ICML 2025
While Prover-Verifier Games (PVGs) offer a promising path toward verifiability in nonlinear classification models, they have not yet been applied to complex inputs such as high-dimensional images. Conversely, expressive concept encodings effectively allow to translate such data into interpretable concepts but are often utilised in the context of low-capacity linear predictors. In this work, we push towards real-world verifiability by combining the strengths of both approaches. We introduce Neural Concept Verifier (NCV), a unified framework combining PVGs for formal verifiability with concept encodings to handle complex, high-dimensional inputs in an interpretable way. NCV achieves this by utilizing recent minimally supervised concept discovery models to extract structured concept encodings from raw inputs. A prover then selects a subset of these encodings, which a verifier, implemented as a nonlinear predictor, uses exclusively for decision-making. Our evaluations show that NCV outperforms classic concept-based models and pixel-based PVG classifier baselines on high-dimensional, logically complex datasets and helps mitigate shortcut behavior. Overall, we demonstrate NCV as a promising step toward concept-level, verifiable AI.
comment: 24 pages, 5 figures, 11 tables, revised references. An earlier version of this work was presented at the ICML 2025 Workshop on Actionable Interpretability
♻ ☆ From Trace to Line: LLM Agent for Real-World OSS Vulnerability Localization
Large language models show promise for vulnerability discovery, yet prevailing methods inspect code in isolation, struggle with long contexts, and focus on coarse function- or file-level detections that offer limited guidance to engineers who need precise line-level localization for targeted patches. We introduce T2L, an executable framework for project-level, line-level vulnerability localization that progressively narrows scope from repository modules to exact vulnerable lines via AST-based chunking and evidence-guided refinement. We provide a baseline agent with an Agentic Trace Analyzer (ATA) that fuses runtime evidence such as crash points and stack traces to translate failure symptoms into actionable diagnoses. To enable rigorous evaluation, we introduce T2L-ARVO, an expert-verified 50-case benchmark spanning five crash families in real-world projects. On T2L-ARVO, our baseline achieves up to 58.0% detection and 54.8% line-level localization rate. Together, T2L framework advance LLM-based vulnerability detection toward deployable, precision diagnostics in open-source software workflows.
♻ ☆ Unified Unbiased Variance Estimation for Maximum Mean Discrepancy: Robust Finite-Sample Performance with Imbalanced Data and Exact Acceleration under Null and Alternative Hypotheses
The maximum mean discrepancy (MMD) is a kernel-based nonparametric statistic for two-sample testing, whose inferential accuracy depends critically on variance characterization. Existing work provides various finite-sample estimators of the MMD variance, often differing under the null and alternative hypotheses and across balanced or imbalanced sampling schemes. In this paper, we study the variance of the MMD statistic through its U-statistic representation and Hoeffding decomposition, and establish a unified finite-sample characterization covering different hypotheses and sample configurations. Building on this analysis, we propose an exact acceleration method for the univariate case under the Laplacian kernel, which reduces the overall computational complexity from $\mathcal O(n^2)$ to $\mathcal O(n \log n)$.
♻ ☆ Flatness is Necessary, Neural Collapse is Not: Rethinking Generalization via Grokking NeurIPS 2025
Neural collapse, i.e., the emergence of highly symmetric, class-wise clustered representations, is frequently observed in deep networks and is often assumed to reflect or enable generalization. In parallel, flatness of the loss landscape has been theoretically and empirically linked to generalization. Yet, the causal role of either phenomenon remains unclear: Are they prerequisites for generalization, or merely by-products of training dynamics? We disentangle these questions using grokking, a training regime in which memorization precedes generalization, allowing us to temporally separate generalization from training dynamics and we find that while both neural collapse and relative flatness emerge near the onset of generalization, only flatness consistently predicts it. Models encouraged to collapse or prevented from collapsing generalize equally well, whereas models regularized away from flat solutions exhibit delayed generalization, resembling grokking, even in architectures and datasets where it does not typically occur. Furthermore, we show theoretically that neural collapse leads to relative flatness under classical assumptions, explaining their empirical co-occurrence. Our results support the view that relative flatness is a potentially necessary and more fundamental property for generalization, and demonstrate how grokking can serve as a powerful probe for isolating its geometric underpinnings.
comment: NeurIPS 2025, Camera ready version
♻ ☆ Comparing Task-Agnostic Embedding Models for Tabular Data
Recent foundation models for tabular data achieve strong task-specific performance via in-context learning. Nevertheless, they focus on direct prediction by encapsulating both representation learning and task-specific inference inside a single, resource-intensive network. This work specifically focuses on representation learning, i.e., on transferable, task-agnostic embeddings. We systematically evaluate task-agnostic representations extracted from tabular foundation models (TabPFN, TabICL and TabSTAR) alongside classical feature engineering (TableVectorizer and a sphere model) across a variety of application tasks as outlier detection (ADBench) and supervised learning (TabArena Lite). We find that simple feature engineering methods achieve comparable or superior performance while requiring significantly less computational resources than tabular foundation models.
♻ ☆ Accelerating Conjugate Gradient Solvers for Homogenization Problems with Unitary Neural Operators
Rapid and reliable solvers for parametric partial differential equations (PDEs) are needed in many scientific and engineering disciplines. For example, there is a growing demand for composites and architected materials with heterogeneous microstructures. Designing such materials and predicting their behavior in practical applications requires solving homogenization problems for a wide range of material parameters and microstructures. While classical numerical solvers offer reliable and accurate solutions supported by a solid theoretical foundation, their high computational costs and slow convergence remain limiting factors. As a result, scientific machine learning is emerging as a promising alternative. However, such approaches often lack guaranteed accuracy and physical consistency. This raises the question of whether it is possible to develop hybrid approaches that combine the advantages of both data-driven methods and classical solvers. To address this, we introduce UNO-CG, a hybrid solver that accelerates conjugate gradient (CG) solvers using specially designed machine-learned preconditioners, while ensuring convergence by construction. As a preconditioner, we propose Unitary Neural Operators as a modification of Fourier Neural Operators. Our method can be interpreted as a data-driven discovery of Green's functions, which are then used to accelerate iterative solvers. We evaluate UNO-CG on various homogenization problems involving heterogeneous microstructures and millions of degrees of freedom. Our results demonstrate that UNO-CG enables a substantial reduction in the number of iterations and is competitive with handcrafted preconditioners for homogenization problems that involve expert knowledge. Moreover, UNO-CG maintains strong performance across a variety of boundary conditions, where many specialized solvers are not applicable, highlighting its versatility and robustness.
comment: Accepted for publication in the International Journal for Numerical Methods in Engineering (IJNME)
♻ ☆ Scalable physical source-to-field inference with hypernetworks
We present a generative model that amortises computation for the field and potential around e.g.~gravitational or electromagnetic sources. Exact numerical calculation has either computational complexity $\mathcal{O}(M\times{}N)$ in the number of sources $M$ and evaluation points $N$, or requires a fixed evaluation grid to exploit fast Fourier transforms. Using an architecture where a hypernetwork produces an implicit representation of the field or potential around a source collection, our model instead performs as $\mathcal{O}(M + N)$, achieves relative error of $\sim\!4\%-6\%$, and allows evaluation at arbitrary locations for arbitrary numbers of sources, greatly increasing the speed of e.g.~physics simulations. We compare with existing models and develop two-dimensional examples, including cases where sources overlap or have more complex geometries, to demonstrate its application.
comment: Version accepted at TMLR
♻ ☆ DP-SPRT: Differentially Private Sequential Probability Ratio Tests AISTATS 2026
We revisit Wald's celebrated Sequential Probability Ratio Test for sequential tests of two simple hypotheses, under privacy constraints. We propose DP-SPRT, a wrapper that can be calibrated to achieve desired error probabilities and privacy constraints, addressing a significant gap in previous work. DP-SPRT relies on a private mechanism that processes a sequence of queries and stops after privately determining when the query results fall outside a predefined interval. This OutsideInterval mechanism improves upon naive composition of existing techniques like AboveThreshold, achieving a factor-of-2 privacy improvement and thus potentially benefiting other continual monitoring procedures. We prove generic upper bounds on the error and sample complexity of DP-SPRT that can accommodate various noise distributions based on the practitioner's privacy needs. We exemplify them in two settings: Laplace noise (pure Differential Privacy) and Gaussian noise (Rényi differential privacy). In the former setting, by providing a lower bound on the sample complexity of any $\varepsilon$-DP test with prescribed type I and type II errors, we show that DP-SPRT is near optimal when both errors are small and the two hypotheses are close. Moreover, we conduct an experimental study revealing its good practical performance.
comment: Accepted for spotlight presentation at AISTATS 2026. 36 pages, 5 figures, 1 table
♻ ☆ metabeta -- A fast neural model for Bayesian mixed-effects regression
Hierarchical data with multiple observations per group is ubiquitous in empirical sciences and is often analyzed using mixed-effects regression. In such models, Bayesian inference gives an estimate of uncertainty but is analytically intractable and requires costly approximation using Markov Chain Monte Carlo (MCMC) methods. Neural posterior estimation shifts the bulk of computation from inference time to pre-training time, amortizing over simulated datasets with known ground truth targets. We propose metabeta, a neural network model for Bayesian mixed-effects regression. Using simulated and real data, we show that it reaches stable and comparable performance to MCMC-based parameter estimation at a fraction of the usually required time, enabling new use cases for Bayesian mixed-effects modeling.
comment: 19 pages, 9 main text, 8 figures
♻ ☆ Dictionary Learning under Symmetries via Group Representations
The dictionary learning problem can be viewed as a data-driven process to learn a suitable transformation so that data is sparsely represented directly from example data. In this paper, we examine the problem of learning a dictionary that is invariant under a pre-specified group of transformations. Natural settings include Cryo-EM, multi-object tracking, synchronization, pose estimation, etc. We specifically study this problem under the lens of mathematical representation theory. Leveraging the power of non-abelian Fourier analysis for functions over compact groups, we prescribe an algorithmic recipe for learning dictionaries that obey such invariances. We relate the dictionary learning problem in the physical domain, which is naturally modelled as being infinite dimensional, with the associated computational problem, which is necessarily finite dimensional. We establish that the dictionary learning problem can be effectively understood as an optimization instance over certain matrix orbitopes having a particular block-diagonal structure governed by the irreducible representations of the group of symmetries. This perspective enables us to introduce a band-limiting procedure which obtains dimensionality reduction in applications. We provide guarantees for our computational ansatz to provide a desirable dictionary learning outcome. We apply our paradigm to investigate the dictionary learning problem for the groups SO(2) and SO(3). While the SO(2)-orbitope admits an exact spectrahedral description, substantially less is understood about the SO(3)-orbitope. We describe a tractable spectrahedral outer approximation of the SO(3)-orbitope, and contribute an alternating minimization paradigm to perform optimization in this setting. We provide numerical experiments to highlight the efficacy of our approach in learning SO(3)-invariant dictionaries, both on synthetic and on real world data.
comment: 33 pages, 3 figures
♻ ☆ Edit-Based Flow Matching for Temporal Point Processes
Temporal point processes (TPPs) are a fundamental tool for modeling event sequences in continuous time, but most existing approaches rely on autoregressive parameterizations that are limited by their sequential sampling. Recent non-autoregressive, diffusion-style models mitigate these issues by jointly interpolating between noise and data through event insertions and deletions in a discrete Markov chain. In this work, we generalize this perspective and introduce an Edit Flow process for TPPs that transports noise to data via insert, delete, and substitute edit operations. By learning the instantaneous edit rates within a continuous-time Markov chain framework, we attain a flexible and efficient model that effectively reduces the total number of necessary edit operations during generation. Empirical results demonstrate the generative flexibility of our unconditionally trained model in a wide range of unconditional and conditional generation tasks on benchmark TPPs.
♻ ☆ Revisiting the Evaluation of Deep Neural Networks for Pedestrian Detection
Reliable pedestrian detection represents a crucial step towards automated driving systems. However, the current performance benchmarks exhibit weaknesses. The currently applied metrics for various subsets of a validation dataset prohibit a realistic performance evaluation of a DNN for pedestrian detection. As image segmentation supplies fine-grained information about a street scene, it can serve as a starting point to automatically distinguish between different types of errors during the evaluation of a pedestrian detector. In this work, eight different error categories for pedestrian detection are proposed and new metrics are proposed for performance comparison along these error categories. We use the new metrics to compare various backbones for a simplified version of the APD, and show a more fine-grained and robust way to compare models with each other especially in terms of safety-critical performance. We achieve SOTA on CityPersons-reasonable (without extra training data) by using a rather simple architecture.
♻ ☆ Generative Adversarial Evasion and Out-of-Distribution Detection for UAV Cyber-Attacks
The growing integration of UAVs into civilian airspace underscores the need for resilient and intelligent intrusion detection systems (IDS), as traditional anomaly detection methods often fail to identify novel threats. A common approach treats unfamiliar attacks as out-of-distribution (OOD) samples; however, this leaves systems vulnerable when mitigation is inadequate. Moreover, conventional OOD detectors struggle to distinguish stealthy adversarial attacks from genuine OOD events. This paper introduces a conditional generative adversarial network (cGAN)-based framework for crafting stealthy adversarial attacks that evade IDS mechanisms. We first design a robust multi-class IDS classifier trained on benign UAV telemetry and known cyber-attacks, including Denial of Service (DoS), false data injection (FDI), man-in-the-middle (MiTM), and replay attacks. Using this classifier, our cGAN perturbs known attacks to generate adversarial samples that misclassify as benign while retaining statistical resemblance to OOD distributions. These adversarial samples are iteratively refined to achieve high stealth and success rates. To detect such perturbations, we implement a conditional variational autoencoder (CVAE), leveraging negative log-likelihood to separate adversarial inputs from authentic OOD samples. Comparative evaluation shows that CVAE-based regret scores significantly outperform traditional Mahalanobis distance-based detectors in identifying stealthy adversarial threats. Our findings emphasize the importance of advanced probabilistic modeling to strengthen IDS capabilities against adaptive, generative-model-based cyber intrusions.
♻ ☆ medR: Reward Engineering for Clinical Offline Reinforcement Learning via Tri-Drive Potential Functions
Reinforcement Learning (RL) offers a powerful framework for optimizing dynamic treatment regimes (DTRs). However, clinical RL is fundamentally bottlenecked by reward engineering: the challenge of defining signals that safely and effectively guide policy learning in complex, sparse offline environments. Existing approaches often rely on manual heuristics that fail to generalize across diverse pathologies. To address this, we propose an automated pipeline leveraging Large Language Models (LLMs) for offline reward design and verification. We formulate the reward function using potential functions consisted of three core components: survival, confidence, and competence. We further introduce quantitative metrics to rigorously evaluate and select the optimal reward structure prior to deployment. By integrating LLM-driven domain knowledge, our framework automates the design of reward functions for specific diseases while significantly enhancing the performance of the resulting policies.
♻ ☆ DAISI: Data Assimilation with Inverse Sampling using Stochastic Interpolants
Data assimilation (DA) is a cornerstone of scientific and engineering applications, combining model forecasts with sparse and noisy observations to estimate latent system states. Classical high-dimensional DA methods, such as the ensemble Kalman filter, rely on Gaussian approximations that are violated for complex dynamics or observation operators. To address this limitation, we introduce DAISI, a scalable filtering algorithm built on flow-based generative models that enables flexible probabilistic inference using data-driven priors. The core idea is to use a stationary, pre-trained generative prior that first incorporates forecast information through a novel inverse-sampling step, before assimilating observations via guidance-based conditional sampling. This allows us to leverage any forecasting model as part of the DA pipeline without having to retrain or fine-tune the generative prior at each assimilation step. Experiments on challenging nonlinear systems show that DAISI achieves accurate filtering results in regimes with sparse, noisy, and nonlinear observations where traditional methods struggle.
comment: 44 pages, 26 figures
♻ ☆ Neural network-driven domain decomposition for efficient solutions to the Helmholtz equation
Accurately simulating wave propagation is crucial in fields such as acoustics, electromagnetism, and seismic analysis. Traditional numerical methods, like finite difference and finite element approaches, are widely used to solve governing partial differential equations (PDEs) such as the Helmholtz equation. However, these methods face significant computational challenges when applied to high-frequency wave problems in complex two-dimensional domains. This work investigates Finite Basis Physics-Informed Neural Networks (FBPINNs) and their multilevel extensions as a promising alternative. These methods leverage domain decomposition, partitioning the computational domain into overlapping sub-domains, each governed by a local neural network. We assess their accuracy and computational efficiency in solving the Helmholtz equation for the homogeneous case, demonstrating their potential to mitigate the limitations of traditional approaches.
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Bayesian Transfer Operators in Reproducing Kernel Hilbert Spaces
The Koopman operator, as a linear representation of a nonlinear dynamical system, has been attracting attention in many fields of science. Recently, Koopman operator theory has been combined with another concept that is popular in data science: reproducing kernel Hilbert spaces. We follow this thread into Gaussian process methods, and illustrate how these methods can alleviate two pervasive problems with kernel-based Koopman algorithms. The first being sparsity: most kernel methods do not scale well and require an approximation to become practical. We show that not only can the computational demands be reduced, but also demonstrate improved resilience against sensor noise. The second problem involves hyperparameter optimization and dictionary learning to adapt the model to the dynamical system. In summary, the main contribution of this work is the unification of Gaussian process regression and dynamic mode decomposition.
♻ ☆ Sample from What You See: Visuomotor Policy Learning via Diffusion Bridge with Observation-Embedded Stochastic Differential Equation
Imitation learning with diffusion models has advanced robotic control by capturing the multi-modal action distributions. However, existing methods typically treat observations only as high-level conditions to the denoising network, rather than integrating them into the stochastic dynamics of the diffusion process itself. As a result, the sampling is forced to begin from random noise, weakening the coupling between perception and control and often yielding suboptimal performance. We propose BridgePolicy, a generative visuomotor policy that directly integrates observations into the stochastic dynamics via a diffusion-bridge formulation. By constructing an observation-informed trajectory, BridgePolicy enables sampling to start from a rich and informative prior rather than random noise, substantially improving precision and reliability in control. A key difficulty is that diffusion bridge normally connects distributions of matched dimensionality, while robotic observations are heterogeneous and not naturally aligned with actions. To overcome this, we introduce a multi-modal fusion module and a semantic aligner to unify the visual and state inputs and align the observations with action representations, making diffusion bridge applicable to heterogeneous robot data. Extensive experiments across 52 simulation tasks on three benchmarks and 5 real-world tasks demonstrate that BridgePolicy consistently outperforms state-of-the-art generative policies.
♻ ☆ Sparse Attention as Compact Kernel Regression
Recent work has revealed a link between self-attention mechanisms in transformers and test-time kernel regression via the Nadaraya-Watson estimator, with standard softmax attention corresponding to a Gaussian kernel. However, a kernel-theoretic understanding of sparse attention mechanisms is currently missing. In this paper, we establish a formal correspondence between sparse attention and compact (bounded support) kernels. We show that normalized ReLU and sparsemax attention arise from Epanechnikov kernel regression under fixed and adaptive normalizations, respectively. More generally, we demonstrate that widely used kernels in nonparametric density estimation -- including Epanechnikov, biweight, and triweight -- correspond to $α$-entmax attention with $α= 1 + \frac{1}{n}$ for $n \in \mathbb{N}$, while the softmax/Gaussian relationship emerges in the limit $n \to \infty$. This unified perspective explains how sparsity naturally emerges from kernel design and provides principled alternatives to heuristic top-$k$ attention and other associative memory mechanisms. Experiments with a kernel-regression-based variant of transformers -- Memory Mosaics -- show that kernel-based sparse attention achieves competitive performance on language modeling, in-context learning, and length generalization tasks, offering a principled framework for designing attention mechanisms.
comment: 16 pages, 5 figures
♻ ☆ Large Language Model as Meta-Surrogate for Data-Driven Many-Task Optimization: A Proof-of-Principle Study
In many-task optimization scenarios, surrogate models are valuable for mitigating the computational burden of repeated fitness evaluations across tasks. This study proposes a novel meta-surrogate framework to assist many-task optimization, by leveraging the knowledge transfer strengths and emergent capabilities of large language models (LLMs). We formulate a unified framework for many-task fitness prediction, by defining a universal model with metadata to fit a group of problems. Fitness prediction is performed on metadata and decision variables, enabling efficient knowledge sharing across tasks and adaptability to new tasks. The LLM-based meta-surrogate treats fitness prediction as conditional probability estimation, employing a unified token sequence representation for task metadata, inputs, and outputs. This approach facilitates efficient inter-task knowledge sharing through shared token embeddings and captures complex task dependencies via multi-task model training. Experimental results demonstrate the model's emergent generalization ability, including zero-shot performance on problems with unseen dimensions. When integrated into evolutionary transfer optimization (ETO), our framework supports dual-level knowledge transfer -- at both the surrogate and individual levels -- enhancing optimization efficiency and robustness. This work establishes a novel foundation for applying LLMs in surrogate modeling, offering a versatile solution for many-task optimization.
comment: 39 pages
♻ ☆ Dynamic and Distributed Routing in IoT Networks based on Multi-Objective Q-Learning
IoT networks often face conflicting routing goals such as maximizing packet delivery, minimizing delay, and conserving limited battery energy. These priorities can also change dynamically: for example, an emergency alert requires high reliability, while routine monitoring prioritizes energy efficiency to prolong network lifetime. Existing works, including many deep reinforcement learning approaches, are typically centralized and assume static objectives, making them slow to adapt when preferences shift. We propose a dynamic and fully distributed multi-objective Q-learning routing algorithm that learns multiple per-preference Q-tables in parallel and introduces a novel greedy interpolation policy to act near-optimally for unseen preferences without retraining or central coordination. A theoretical analysis further shows that the optimal value function is Lipschitz-continuous in the preference parameter, ensuring that the proposed greedy interpolation policy yields provably near-optimal behavior. Simulations show that our approach adapts in real time to shifting priorities and achieves up to 80-90\% lower energy consumption and more than 2-5x higher cumulative rewards and packet delivery compared to six baseline protocols, under dynamic and distributed settings. Sensitivity analysis across varying preference window lengths confirms that the proposed DPQ framework consistently achieves higher composite reward than all baseline methods, demonstrating robustness to changes in operating conditions.
♻ ☆ Telegrapher's Generative Model via Kac Flows
We break the mold in flow-based generative modeling by proposing a new model based on the damped wave equation, also known as telegrapher's equation. Similar to the diffusion equation and Brownian motion, there is a Feynman-Kac type relation between the telegrapher's equation and the stochastic Kac process in 1D. The Kac flow evolves stepwise linearly in time, so that the probability flow is Lipschitz continuous in the Wasserstein distance and, in contrast to diffusion flows, the norm of the velocity is globally bounded. Furthermore, the Kac model has the diffusion model as its asymptotic limit. We extend these considerations to a multi-dimensional stochastic process which consists of independent 1D Kac processes in each spatial component. We show that this process gives rise to an absolutely continuous curve in the Wasserstein space and compute the conditional velocity field starting in a Dirac point analytically. Using the framework of flow matching, we train a neural network that approximates the velocity field and use it for sample generation. Our numerical experiments demonstrate the scalability of our approach, and show its advantages over diffusion models.
comment: V2: We added CIFAR experiments. V3: Old FID scores & CIFAR images of the Kac model corresponded to schedule g(t) = t. We updated them with both schedules t and t^2. V4: We corrected a minor implementation error and updated the CIFAR results. V5: We prove that the mean-reverting Kac process is Lipschitz, give a rigorous proof of decomp. Lemma 6.1, and a nearest neighbor analysis. V6: Polishing
♻ ☆ Synergizing Kolmogorov-Arnold Networks with Dynamic Adaptive Weighting for High-Frequency and Multi-Scale PDE Solutions
PINNs enhance scientific computing by incorporating physical laws into neural network structures, leading to significant advancements in scientific computing. However, PINNs struggle with multi-scale and high-frequency problems due to pathological gradient flow and spectral bias, which severely limit their predictive power. By combining an enhanced network architecture with a dynamically adaptive weighting mechanism featuring upper-bound constraints, we propose the Dynamic Balancing Adaptive Weighting Physics-Informed Kolmogorov-Arnold Network (DBAW-PIKAN). The proposed method effectively mitigates gradient-related failure modes and overcomes bottlenecks in function representation. Compared to baseline models, the proposed method accelerates the convergence process and improves solution accuracy by at least an order of magnitude without introducing additional computational complexity. Numerical results on the Klein-Gordon, Burgers, and Helmholtz equations demonstrate that DBAW-PIKAN achieves superior accuracy and generalization performance.
♻ ☆ RETENTION: Resource-Efficient Tree-Based Ensemble Model Acceleration with Content-Addressable Memory
Although deep learning has demonstrated remarkable capability in learning from unstructured data, modern tree-based ensemble models remain superior in extracting relevant information and learning from structured datasets. While several efforts have been made to accelerate tree-based models, the inherent characteristics of the models pose significant challenges for conventional accelerators. Recent research leveraging content-addressable memory (CAM) offers a promising solution for accelerating tree-based models, yet existing designs suffer from excessive memory consumption and low utilization. This work addresses these challenges by introducing RETENTION, an end-to-end framework that significantly reduces CAM capacity requirement for tree-based model inference. We propose an iterative pruning algorithm with a novel pruning criterion tailored for bagging-based models (e.g., Random Forest), which minimizes model complexity while ensuring controlled accuracy degradation. Additionally, we present a tree mapping scheme that incorporates two innovative data placement strategies to alleviate the memory redundancy caused by the widespread use of don't care states in CAM. Experimental results show that implementing the tree mapping scheme alone reduces CAM capacity requirement by $1.46\times$ to $21.30 \times$, while the full RETENTION framework achieves $4.35\times$ to $207.12\times$ reduction with less than 3\% accuracy loss. These results demonstrate that RETENTION is highly effective in minimizing CAM resource demand, providing a resource-efficient direction for tree-based model acceleration.
comment: Under review by IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems
♻ ☆ Learning to Explore with Lagrangians for Bandits under Unknown Linear Constraints
Pure exploration in bandits formalises multiple real-world problems, such as tuning hyper-parameters or conducting user studies to test a set of items, where different safety, resource, and fairness constraints on the decision space naturally appear. We study these problems as pure exploration in multi-armed bandits with unknown linear constraints, where the aim is to identify an $r$-optimal and feasible policy as fast as possible with a given level of confidence. First, we propose a Lagrangian relaxation of the sample complexity lower bound for pure exploration under constraints. Second, we leverage properties of convex optimisation in the Lagrangian lower bound to propose two computationally efficient extensions of Track-and-Stop and Gamified Explorer, namely LATS and LAGEX. Then, we propose a constraint-adaptive stopping rule, and while tracking the lower bound, use optimistic estimate of the feasible set at each step. We show that LAGEX achieves asymptotically optimal sample complexity upper bound, while LATS shows asymptotic optimality up to novel constraint-dependent constants. Finally, we conduct numerical experiments with different reward distributions and constraints that validate efficient performance of LATS and LAGEX.
♻ ☆ CreditAudit: 2$^\text{nd}$ Dimension for LLM Evaluation and Selection
Leaderboard scores on public benchmarks have been steadily rising and converging, with many frontier language models now separated by only marginal differences. However, these scores often fail to match users' day to day experience, because system prompts, output protocols, and interaction modes evolve under routine iteration, and in agentic multi step pipelines small protocol shifts can trigger disproportionate failures, leaving practitioners uncertain about which model to deploy. We propose CreditAudit, a deployment oriented credit audit framework that evaluates models under a family of semantically aligned and non adversarial system prompt templates across multiple benchmarks, reporting mean ability as average performance across scenarios and scenario induced fluctuation sigma as a stability risk signal, and further mapping volatility into interpretable credit grades from AAA to BBB via cross model quantiles with diagnostics that mitigate template difficulty drift. Controlled experiments on GPQA, TruthfulQA, and MMLU Pro show that models with similar mean ability can exhibit substantially different fluctuation, and stability risk can overturn prioritization decisions in agentic or high failure cost regimes. By providing a 2D and grade based language for regime specific selection, CreditAudit supports tiered deployment and more disciplined allocation of testing and monitoring effort, enabling more objective and trustworthy model evaluation for real world use.
comment: Second update
Multimedia 8
☆ Audio ControlNet for Fine-Grained Audio Generation and Editing
We study the fine-grained text-to-audio (T2A) generation task. While recent models can synthesize high-quality audio from text descriptions, they often lack precise control over attributes such as loudness, pitch, and sound events. Unlike prior approaches that retrain models for specific control types, we propose to train ControlNet models on top of pre-trained T2A backbones to achieve controllable generation over loudness, pitch, and event roll. We introduce two designs, T2A-ControlNet and T2A-Adapter, and show that the T2A-Adapter model offers a more efficient structure with strong control ability. With only 38M additional parameters, T2A-Adapter achieves state-of-the-art performance on the AudioSet-Strong in both event-level and segment-level F1 scores. We further extend this framework to audio editing, proposing T2A-Editor for removing and inserting audio events at time locations specified by instructions. Models, code, dataset pipelines, and benchmarks will be released to support future research on controllable audio generation and editing.
☆ History-Guided Iterative Visual Reasoning with Self-Correction
Self-consistency methods are the core technique for improving the reasoning reliability of multimodal large language models (MLLMs). By generating multiple reasoning results through repeated sampling and selecting the best answer via voting, they play an important role in cross-modal tasks. However, most existing self-consistency methods are limited to a fixed ``repeated sampling and voting'' paradigm and do not reuse historical reasoning information. As a result, models struggle to actively correct visual understanding errors and dynamically adjust their reasoning during iteration. Inspired by the human reasoning behavior of repeated verification and dynamic error correction, we propose the H-GIVR framework. During iterative reasoning, the MLLM observes the image multiple times and uses previously generated answers as references for subsequent steps, enabling dynamic correction of errors and improving answer accuracy. We conduct comprehensive experiments on five datasets and three models. The results show that the H-GIVR framework can significantly improve cross-modal reasoning accuracy while maintaining low computational cost. For instance, using \texttt{Llama3.2-vision:11b} on the ScienceQA dataset, the model requires an average of 2.57 responses per question to achieve an accuracy of 78.90\%, representing a 107\% improvement over the baseline.
☆ Interactive Spatial-Frequency Fusion Mamba for Multi-Modal Image Fusion
Multi-Modal Image Fusion (MMIF) aims to combine images from different modalities to produce fused images, retaining texture details and preserving significant information. Recently, some MMIF methods incorporate frequency domain information to enhance spatial features. However, these methods typically rely on simple serial or parallel spatial-frequency fusion without interaction. In this paper, we propose a novel Interactive Spatial-Frequency Fusion Mamba (ISFM) framework for MMIF. Specifically, we begin with a Modality-Specific Extractor (MSE) to extract features from different modalities. It models long-range dependencies across the image with linear computational complexity. To effectively leverage frequency information, we then propose a Multi-scale Frequency Fusion (MFF). It adaptively integrates low-frequency and high-frequency components across multiple scales, enabling robust representations of frequency features. More importantly, we further propose an Interactive Spatial-Frequency Fusion (ISF). It incorporates frequency features to guide spatial features across modalities, enhancing complementary representations. Extensive experiments are conducted on six MMIF datasets. The experimental results demonstrate that our ISFM can achieve better performances than other state-of-the-art methods. The source code is available at https://github.com/Namn23/ISFM.
comment: This work is accepted by IEEE Transactions on Image Processing. More modifications may be performed
Training Data Efficiency in Multimodal Process Reward Models
Multimodal Process Reward Models (MPRMs) are central to step-level supervision for visual reasoning in MLLMs. Training MPRMs typically requires large-scale Monte Carlo (MC)-annotated corpora, incurring substantial training cost. This paper studies the data efficiency for MPRM training.Our preliminary experiments reveal that MPRM training quickly saturates under random subsampling of the training data, indicating substantial redundancy within existing MC-annotated corpora.To explain this, we formalize a theoretical framework and reveal that informative gradient updates depend on two factors: label mixtures of positive/negative steps and label reliability (average MC scores of positive steps). Guided by these insights, we propose the Balanced-Information Score (BIS), which prioritizes both mixture and reliability based on existing MC signals at the rollout level, without incurring any additional cost. Across two backbones (InternVL2.5-8B and Qwen2.5-VL-7B) on VisualProcessBench, BIS-selected subsets consistently match and even surpass the full-data performance at small fractions. Notably, the BIS subset reaches full-data performance using only 10% of the training data, improving over random subsampling by a relative 4.1%.
☆ Food Portion Estimation: From Pixels to Calories
Reliance on images for dietary assessment is an important strategy to accurately and conveniently monitor an individual's health, making it a vital mechanism in the prevention and care of chronic diseases and obesity. However, image-based dietary assessment suffers from estimating the three dimensional size of food from 2D image inputs. Many strategies have been devised to overcome this critical limitation such as the use of auxiliary inputs like depth maps, multi-view inputs, or model-based approaches such as template matching. Deep learning also helps bridge the gap by either using monocular images or combinations of the image and the auxillary inputs to precisely predict the output portion from the image input. In this paper, we explore the different strategies employed for accurate portion estimation.
♻ ☆ Noise-Conditioned Mixture-of-Experts Framework for Robust Speaker Verification
Robust speaker verification under noisy conditions remains an open challenge. Conventional deep learning methods learn a robust unified speaker representation space against diverse background noise and achieve significant improvement. In contrast, this paper presents a noise-conditioned mixture-ofexperts framework that decomposes the feature space into specialized noise-aware subspaces for speaker verification. Specifically, we propose a noise-conditioned expert routing mechanism, a universal model based expert specialization strategy, and an SNR-decaying curriculum learning protocol, collectively improving model robustness and generalization under diverse noise conditions. The proposed method can automatically route inputs to expert networks based on noise information derived from the inputs, where each expert targets distinct noise characteristics while preserving speaker identity information. Comprehensive experiments demonstrate consistent superiority over baselines, confirming that explicit noise-dependent feature modeling significantly enhances robustness without sacrificing verification accuracy.
♻ ☆ Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
♻ ☆ SAVGBench: Benchmarking Spatially Aligned Audio-Video Generation ICASSP 2026
This work addresses the lack of multimodal generative models capable of producing high-quality videos with spatially aligned audio. While recent advancements in generative models have been successful in video generation, they often overlook the spatial alignment between audio and visuals, which is essential for immersive experiences. To tackle this problem, we establish a new research direction in benchmarking the Spatially Aligned Audio-Video Generation (SAVG) task. We introduce a spatially aligned audio-visual dataset, whose audio and video data are curated based on whether sound events are onscreen or not. We also propose a new alignment metric that aims to evaluate the spatial alignment between audio and video. Then, using the dataset and metric, we benchmark two types of baseline methods: one is based on a joint audio-video generation model, and the other is a two-stage method that combines a video generation model and a video-to-audio generation model. Our experimental results demonstrate that gaps exist between the baseline methods and the ground truth in terms of video and audio quality, as well as spatial alignment between the two modalities.
comment: 5 pages, 2 figures, accepted for publication in IEEE ICASSP 2026
Artificial Intelligent 303
☆ Protein Autoregressive Modeling via Multiscale Structure Generation
We present protein autoregressive modeling (PAR), the first multi-scale autoregressive framework for protein backbone generation via coarse-to-fine next-scale prediction. Using the hierarchical nature of proteins, PAR generates structures that mimic sculpting a statue, forming a coarse topology and refining structural details over scales. To achieve this, PAR consists of three key components: (i) multi-scale downsampling operations that represent protein structures across multiple scales during training; (ii) an autoregressive transformer that encodes multi-scale information and produces conditional embeddings to guide structure generation; (iii) a flow-based backbone decoder that generates backbone atoms conditioned on these embeddings. Moreover, autoregressive models suffer from exposure bias, caused by the training and the generation procedure mismatch, and substantially degrades structure generation quality. We effectively alleviate this issue by adopting noisy context learning and scheduled sampling, enabling robust backbone generation. Notably, PAR exhibits strong zero-shot generalization, supporting flexible human-prompted conditional generation and motif scaffolding without requiring fine-tuning. On the unconditional generation benchmark, PAR effectively learns protein distributions and produces backbones of high design quality, and exhibits favorable scaling behavior. Together, these properties establish PAR as a promising framework for protein structure generation.
comment: ByteDance Seed Tech Report; Page: https://par-protein.github.io/
☆ Contrastive Continual Learning for Model Adaptability in Internet of Things
Internet of Things (IoT) deployments operate in nonstationary, dynamic environments where factors such as sensor drift, evolving user behavior, and heterogeneous user privacy requirements can affect application utility. Continual learning (CL) addresses this by adapting models over time without catastrophic forgetting. Meanwhile, contrastive learning has emerged as a powerful representation-learning paradigm that improves robustness and sample efficiency in a self-supervised manner. This paper reviews the usage of \emph{contrastive continual learning} (CCL) for IoT, connecting algorithmic design (replay, regularization, distillation, prompts) with IoT system realities (TinyML constraints, intermittent connectivity, privacy). We present a unifying problem formulation, derive common objectives that blend contrastive and distillation losses, propose an IoT-oriented reference architecture for on-device, edge, and cloud-based CCL, and provide guidance on evaluation protocols and metrics. Finally, we highlight open unique challenges with respect to the IoT domain, such as spanning tabular and streaming IoT data, concept drift, federated settings, and energy-aware training.
☆ Rethinking the Trust Region in LLM Reinforcement Learning
Reinforcement learning (RL) has become a cornerstone for fine-tuning Large Language Models (LLMs), with Proximal Policy Optimization (PPO) serving as the de facto standard algorithm. Despite its ubiquity, we argue that the core ratio clipping mechanism in PPO is structurally ill-suited for the large vocabularies inherent to LLMs. PPO constrains policy updates based on the probability ratio of sampled tokens, which serves as a noisy single-sample Monte Carlo estimate of the true policy divergence. This creates a sub-optimal learning dynamic: updates to low-probability tokens are aggressively over-penalized, while potentially catastrophic shifts in high-probability tokens are under-constrained, leading to training inefficiency and instability. To address this, we propose Divergence Proximal Policy Optimization (DPPO), which substitutes heuristic clipping with a more principled constraint based on a direct estimate of policy divergence (e.g., Total Variation or KL). To avoid huge memory footprint, we introduce the efficient Binary and Top-K approximations to capture the essential divergence with negligible overhead. Extensive empirical evaluations demonstrate that DPPO achieves superior training stability and efficiency compared to existing methods, offering a more robust foundation for RL-based LLM fine-tuning.
☆ Multi-layer Cross-Attention is Provably Optimal for Multi-modal In-context Learning
Recent progress has rapidly advanced our understanding of the mechanisms underlying in-context learning in modern attention-based neural networks. However, existing results focus exclusively on unimodal data; in contrast, the theoretical underpinnings of in-context learning for multi-modal data remain poorly understood. We introduce a mathematically tractable framework for studying multi-modal learning and explore when transformer-like architectures can recover Bayes-optimal performance in-context. To model multi-modal problems, we assume the observed data arises from a latent factor model. Our first result comprises a negative take on expressibility: we prove that single-layer, linear self-attention fails to recover the Bayes-optimal predictor uniformly over the task distribution. To address this limitation, we introduce a novel, linearized cross-attention mechanism, which we study in the regime where both the number of cross-attention layers and the context length are large. We show that this cross-attention mechanism is provably Bayes optimal when optimized using gradient flow. Our results underscore the benefits of depth for in-context learning and establish the provable utility of cross-attention for multi-modal distributions.
☆ CRoSS: A Continual Robotic Simulation Suite for Scalable Reinforcement Learning with High Task Diversity and Realistic Physics Simulation
Continual reinforcement learning (CRL) requires agents to learn from a sequence of tasks without forgetting previously acquired policies. In this work, we introduce a novel benchmark suite for CRL based on realistically simulated robots in the Gazebo simulator. Our Continual Robotic Simulation Suite (CRoSS) benchmarks rely on two robotic platforms: a two-wheeled differential-drive robot with lidar, camera and bumper sensor, and a robotic arm with seven joints. The former represent an agent in line-following and object-pushing scenarios, where variation of visual and structural parameters yields a large number of distinct tasks, whereas the latter is used in two goal-reaching scenarios with high-level cartesian hand position control (modeled after the Continual World benchmark), and low-level control based on joint angles. For the robotic arm benchmarks, we provide additional kinematics-only variants that bypass the need for physical simulation (as long as no sensor readings are required), and which can be run two orders of magnitude faster. CRoSS is designed to be easily extensible and enables controlled studies of continual reinforcement learning in robotic settings with high physical realism, and in particular allow the use of almost arbitrary simulated sensors. To ensure reproducibility and ease of use, we provide a containerized setup (Apptainer) that runs out-of-the-box, and report performances of standard RL algorithms, including Deep Q-Networks (DQN) and policy gradient methods. This highlights the suitability as a scalable and reproducible benchmark for CRL research.
☆ Subliminal Effects in Your Data: A General Mechanism via Log-Linearity
Training modern large language models (LLMs) has become a veritable smorgasbord of algorithms and datasets designed to elicit particular behaviors, making it critical to develop techniques to understand the effects of datasets on the model's properties. This is exacerbated by recent experiments that show datasets can transmit signals that are not directly observable from individual datapoints, posing a conceptual challenge for dataset-centric understandings of LLM training and suggesting a missing fundamental account of such phenomena. Towards understanding such effects, inspired by recent work on the linear structure of LLMs, we uncover a general mechanism through which hidden subtexts can arise in generic datasets. We introduce Logit-Linear-Selection (LLS), a method that prescribes how to select subsets of a generic preference dataset to elicit a wide range of hidden effects. We apply LLS to discover subsets of real-world datasets so that models trained on them exhibit behaviors ranging from having specific preferences, to responding to prompts in a different language not present in the dataset, to taking on a different persona. Crucially, the effect persists for the selected subset, across models with varying architectures, supporting its generality and universality.
comment: Code available at https://github.com/ishaqadenali/logit-linear-selection
☆ From Evaluation to Design: Using Potential Energy Surface Smoothness Metrics to Guide Machine Learning Interatomic Potential Architectures
Machine Learning Interatomic Potentials (MLIPs) sometimes fail to reproduce the physical smoothness of the quantum potential energy surface (PES), leading to erroneous behavior in downstream simulations that standard energy and force regression evaluations can miss. Existing evaluations, such as microcanonical molecular dynamics (MD), are computationally expensive and primarily probe near-equilibrium states. To improve evaluation metrics for MLIPs, we introduce the Bond Smoothness Characterization Test (BSCT). This efficient benchmark probes the PES via controlled bond deformations and detects non-smoothness, including discontinuities, artificial minima, and spurious forces, both near and far from equilibrium. We show that BSCT correlates strongly with MD stability while requiring a fraction of the cost of MD. To demonstrate how BSCT can guide iterative model design, we utilize an unconstrained Transformer backbone as a testbed, illustrating how refinements such as a new differentiable $k$-nearest neighbors algorithm and temperature-controlled attention reduce artifacts identified by our metric. By optimizing model design systematically based on BSCT, the resulting MLIP simultaneously achieves a low conventional E/F regression error, stable MD simulations, and robust atomistic property predictions. Our results establish BSCT as both a validation metric and as an "in-the-loop" model design proxy that alerts MLIP developers to physical challenges that cannot be efficiently evaluated by current MLIP benchmarks.
comment: 13 pages main text, 10 pages reference & appendix, 8 figures
☆ El Agente Quntur: A research collaborator agent for quantum chemistry
Quantum chemistry is a foundational enabling tool for the fields of chemistry, materials science, computational biology and others. Despite of its power, the practical application of quantum chemistry simulations remains in the hands of qualified experts due to methodological complexity, software heterogeneity, and the need for informed interpretation of results. To bridge the accessibility gap for these tools and expand their reach to chemists with broader backgrounds, we introduce El Agente Quntur, a hierarchical, multi-agent AI system designed to operate not merely as an automation tool but as a research collaborator for computational quantum chemistry. Quntur was designed following three main strategies: i) elimination of hard-coded procedural policies in favour of reasoning-driven decisions, ii) construction of general and composable actions that facilitate generalization and efficiency, and iii) implementation of guided deep research to integrate abstract quantum-chemical reasoning across subdisciplines and a detailed understanding of the software's internal logic and syntax. Although instantiated in ORCA, these design principles are applicable to research agents more generally and easily expandable to additional quantum chemistry packages and beyond. Quntur supports the full range of calculations available in ORCA 6.0 and reasons over software documentation and scientific literature to plan, execute, adapt, and analyze in silico chemistry experiments following best practices. We discuss the advances and current bottlenecks in agentic systems operating at the research level in computational chemistry, and outline a roadmap toward a fully autonomous end-to-end computational chemistry research agent.
☆ El Agente Estructural: An Artificially Intelligent Molecular Editor
We present El Agente Estructural, a multimodal, natural-language-driven geometry-generation and manipulation agent for autonomous chemistry and molecular modelling. Unlike molecular generation or editing via generative models, Estructural mimics how human experts directly manipulate molecular systems in three dimensions by integrating a comprehensive set of domain-informed tools and vision-language models. This design enables precise control over atomic or functional group replacements, atomic connectivity, and stereochemistry without the need to rebuild extensive core molecular frameworks. Through a series of representative case studies, we demonstrate that Estructural enables chemically meaningful geometry manipulation across a wide range of real-world scenarios. These include site-selective functionalization, ligand binding, ligand exchange, stereochemically controlled structure construction, isomer interconversion, fragment-level structural analysis, image-guided generation of structures from schematic reaction mechanisms, and mechanism-driven geometry generation and modification. These examples illustrate how multimodal reasoning, when combined with specialized geometry-aware tools, supports interactive and context-aware molecular modelling beyond structure generation. Looking forward, the integration of Estructural into El Agente Quntur, an autonomous multi-agent quantum chemistry platform, enhances its capabilities by adding sophisticated tools for the generation and editing of three-dimensional structures.
☆ Fluid Representations in Reasoning Models
Reasoning language models, which generate long chains of thought, dramatically outperform non-reasoning language models on abstract problems. However, the internal model mechanisms that allow this superior performance remain poorly understood. We present a mechanistic analysis of how QwQ-32B - a model specifically trained to produce extensive reasoning traces - process abstract structural information. On Mystery Blocksworld - a semantically obfuscated planning domain - we find that QwQ-32B gradually improves its internal representation of actions and concepts during reasoning. The model develops abstract encodings that focus on structure rather than specific action names. Through steering experiments, we establish causal evidence that these adaptations improve problem solving: injecting refined representations from successful traces boosts accuracy, while symbolic representations can replace many obfuscated encodings with minimal performance loss. We find that one of the factors driving reasoning model performance is in-context refinement of token representations, which we dub Fluid Reasoning Representations.
☆ Group-Evolving Agents: Open-Ended Self-Improvement via Experience Sharing
Open-ended self-improving agents can autonomously modify their own structural designs to advance their capabilities and overcome the limits of pre-defined architectures, thus reducing reliance on human intervention. We introduce Group-Evolving Agents (GEA), a new paradigm for open-ended self-improvements, which treats a group of agents as the fundamental evolutionary unit, enabling explicit experience sharing and reuse within the group throughout evolution. Unlike existing open-ended self-evolving paradigms that adopt tree-structured evolution, GEA overcomes the limitation of inefficient utilization of exploratory diversity caused by isolated evolutionary branches. We evaluate GEA on challenging coding benchmarks, where it significantly outperforms state-of-the-art self-evolving methods (71.0% vs. 56.7% on SWE-bench Verified, 88.3% vs. 68.3% on Polyglot) and matches or exceeds top human-designed agent frameworks (71.8% and 52.0% on two benchmarks, respectively). Analysis reveals that GEA more effectively converts early-stage exploratory diversity into sustained, long-term progress, achieving stronger performance under the same number of evolved agents. Furthermore, GEA exhibits consistent transferability across different coding models and greater robustness, fixing framework-level bugs in 1.4 iterations on average, versus 5 for self-evolving methods.
comment: 18 pages
☆ Are AI Capabilities Increasing Exponentially? A Competing Hypothesis
Rapidly increasing AI capabilities have substantial real-world consequences, ranging from AI safety concerns to labor market consequences. The Model Evaluation & Threat Research (METR) report argues that AI capabilities have exhibited exponential growth since 2019. In this note, we argue that the data does not support exponential growth, even in shorter-term horizons. Whereas the METR study claims that fitting sigmoid/logistic curves results in inflection points far in the future, we fit a sigmoid curve to their current data and find that the inflection point has already passed. In addition, we propose a more complex model that decomposes AI capabilities into base and reasoning capabilities, exhibiting individual rates of improvement. We prove that this model supports our hypothesis that AI capabilities will exhibit an inflection point in the near future. Our goal is not to establish a rigorous forecast of our own, but to highlight the fragility of existing forecasts of exponential growth.
☆ It's not a Lottery, it's a Race: Understanding How Gradient Descent Adapts the Network's Capacity to the Task
Our theoretical understanding of neural networks is lagging behind their empirical success. One of the important unexplained phenomena is why and how, during the process of training with gradient descent, the theoretical capacity of neural networks is reduced to an effective capacity that fits the task. We here investigate the mechanism by which gradient descent achieves this through analyzing the learning dynamics at the level of individual neurons in single hidden layer ReLU networks. We identify three dynamical principles -- mutual alignment, unlocking and racing -- that together explain why we can often successfully reduce capacity after training through the merging of equivalent neurons or the pruning of low norm weights. We specifically explain the mechanism behind the lottery ticket conjecture, or why the specific, beneficial initial conditions of some neurons lead them to obtain higher weight norms.
☆ Safe Urban Traffic Control via Uncertainty-Aware Conformal Prediction and World-Model Reinforcement Learning
Urban traffic management demands systems that simultaneously predict future conditions, detect anomalies, and take safe corrective actions -- all while providing reliability guarantees. We present STREAM-RL, a unified framework that introduces three novel algorithmic contributions: (1) PU-GAT+, an Uncertainty-Guided Adaptive Conformal Forecaster that uses prediction uncertainty to dynamically reweight graph attention via confidence-monotonic attention, achieving distribution-free coverage guarantees; (2) CRFN-BY, a Conformal Residual Flow Network that models uncertainty-normalized residuals via normalizing flows with Benjamini-Yekutieli FDR control under arbitrary dependence; and (3) LyCon-WRL+, an Uncertainty-Guided Safe World-Model RL agent with Lyapunov stability certificates, certified Lipschitz bounds, and uncertainty-propagated imagination rollouts. To our knowledge, this is the first framework to propagate calibrated uncertainty from forecasting through anomaly detection to safe policy learning with end-to-end theoretical guarantees. Experiments on multiple real-world traffic trajectory data demonstrate that STREAM-RL achieves 91.4\% coverage efficiency, controls FDR at 4.1\% under verified dependence, and improves safety rate to 95.2\% compared to 69\% for standard PPO while achieving higher reward, with 23ms end-to-end inference latency.
☆ Toward Reliable and Explainable Nail Disease Classification: Leveraging Adversarial Training and Grad-CAM Visualization
Human nail diseases are gradually observed over all age groups, especially among older individuals, often going ignored until they become severe. Early detection and accurate diagnosis of such conditions are important because they sometimes reveal our body's health problems. But it is challenging due to the inferred visual differences between disease types. This paper presents a machine learning-based model for automated classification of nail diseases based on a publicly available dataset, which contains 3,835 images scaling six categories. In 224x224 pixels, all images were resized to ensure consistency. To evaluate performance, four well-known CNN models-InceptionV3, DenseNet201, EfficientNetV2, and ResNet50 were trained and analyzed. Among these, InceptionV3 outperformed the others with an accuracy of 95.57%, while DenseNet201 came next with 94.79%. To make the model stronger and less likely to make mistakes on tricky or noisy images, we used adversarial training. To help understand how the model makes decisions, we used SHAP to highlight important features in the predictions. This system could be a helpful support for doctors, making nail disease diagnosis more accurate and faster.
comment: 6 pages, 12 figures. This is the author's accepted manuscript of a paper accepted for publication in the Proceedings of the 16th International IEEE Conference on Computing, Communication and Networking Technologies (ICCCNT 2025). The final published version will be available via IEEE Xplore
☆ Agentic AI in Healthcare & Medicine: A Seven-Dimensional Taxonomy for Empirical Evaluation of LLM-based Agents
Large Language Model (LLM)-based agents that plan, use tools and act has begun to shape healthcare and medicine. Reported studies demonstrate competence on various tasks ranging from EHR analysis and differential diagnosis to treatment planning and research workflows. Yet the literature largely consists of overviews which are either broad surveys or narrow dives into a single capability (e.g., memory, planning, reasoning), leaving healthcare work without a common frame. We address this by reviewing 49 studies using a seven-dimensional taxonomy: Cognitive Capabilities, Knowledge Management, Interaction Patterns, Adaptation & Learning, Safety & Ethics, Framework Typology and Core Tasks & Subtasks with 29 operational sub-dimensions. Using explicit inclusion and exclusion criteria and a labeling rubric (Fully Implemented, Partially Implemented, Not Implemented), we map each study to the taxonomy and report quantitative summaries of capability prevalence and co-occurrence patterns. Our empirical analysis surfaces clear asymmetries. For instance, the External Knowledge Integration sub-dimension under Knowledge Management is commonly realized (~76% Fully Implemented) whereas Event-Triggered Activation sub-dimenison under Interaction Patterns is largely absent (~92% Not Implemented) and Drift Detection & Mitigation sub-dimension under Adaptation & Learning is rare (~98% Not Implemented). Architecturally, Multi-Agent Design sub-dimension under Framework Typology is the dominant pattern (~82% Fully Implemented) while orchestration layers remain mostly partial. Across Core Tasks & Subtasks, information centric capabilities lead e.g., Medical Question Answering & Decision Support and Benchmarking & Simulation, while action and discovery oriented areas such as Treatment Planning & Prescription still show substantial gaps (~59% Not Implemented).
SE-Bench: Benchmarking Self-Evolution with Knowledge Internalization
True self-evolution requires agents to act as lifelong learners that internalize novel experiences to solve future problems. However, rigorously measuring this foundational capability is hindered by two obstacles: the entanglement of prior knowledge, where ``new'' knowledge may appear in pre-training data, and the entanglement of reasoning complexity, where failures may stem from problem difficulty rather than an inability to recall learned knowledge. We introduce SE-Bench, a diagnostic environment that obfuscates the NumPy library and its API doc into a pseudo-novel package with randomized identifiers. Agents are trained to internalize this package and evaluated on simple coding tasks without access to documentation, yielding a clean setting where tasks are trivial with the new API doc but impossible for base models without it. Our investigation reveals three insights: (1) the Open-Book Paradox, where training with reference documentation inhibits retention, requiring "Closed-Book Training" to force knowledge compression into weights; (2) the RL Gap, where standard RL fails to internalize new knowledge completely due to PPO clipping and negative gradients; and (3) the viability of Self-Play for internalization, proving models can learn from self-generated, noisy tasks when coupled with SFT, but not RL. Overall, SE-Bench establishes a rigorous diagnostic platform for self-evolution with knowledge internalization. Our code and dataset can be found at https://github.com/thunlp/SE-Bench.
comment: Under review
☆ Beyond Rewards in Reinforcement Learning for Cyber Defence
Recent years have seen an explosion of interest in autonomous cyber defence agents trained to defend computer networks using deep reinforcement learning. These agents are typically trained in cyber gym environments using dense, highly engineered reward functions which combine many penalties and incentives for a range of (un)desirable states and costly actions. Dense rewards help alleviate the challenge of exploring complex environments but risk biasing agents towards suboptimal and potentially riskier solutions, a critical issue in complex cyber environments. We thoroughly evaluate the impact of reward function structure on learning and policy behavioural characteristics using a variety of sparse and dense reward functions, two well-established cyber gyms, a range of network sizes, and both policy gradient and value-based RL algorithms. Our evaluation is enabled by a novel ground truth evaluation approach which allows directly comparing between different reward functions, illuminating the nuanced inter-relationships between rewards, action space and the risks of suboptimal policies in cyber environments. Our results show that sparse rewards, provided they are goal aligned and can be encountered frequently, uniquely offer both enhanced training reliability and more effective cyber defence agents with lower-risk policies. Surprisingly, sparse rewards can also yield policies that are better aligned with cyber defender goals and make sparing use of costly defensive actions without explicit reward-based numerical penalties.
☆ Skin Tokens: A Learned Compact Representation for Unified Autoregressive Rigging
The rapid proliferation of generative 3D models has created a critical bottleneck in animation pipelines: rigging. Existing automated methods are fundamentally limited by their approach to skinning, treating it as an ill-posed, high-dimensional regression task that is inefficient to optimize and is typically decoupled from skeleton generation. We posit this is a representation problem and introduce SkinTokens: a learned, compact, and discrete representation for skinning weights. By leveraging an FSQ-CVAE to capture the intrinsic sparsity of skinning, we reframe the task from continuous regression to a more tractable token sequence prediction problem. This representation enables TokenRig, a unified autoregressive framework that models the entire rig as a single sequence of skeletal parameters and SkinTokens, learning the complicated dependencies between skeletons and skin deformations. The unified model is then amenable to a reinforcement learning stage, where tailored geometric and semantic rewards improve generalization to complex, out-of-distribution assets. Quantitatively, the SkinTokens representation leads to a 98%-133% percents improvement in skinning accuracy over state-of-the-art methods, while the full TokenRig framework, refined with RL, enhances bone prediction by 17%-22%. Our work presents a unified, generative approach to rigging that yields higher fidelity and robustness, offering a scalable solution to a long-standing challenge in 3D content creation.
comment: 14 pages, 10 figures
☆ Team, Then Trim: An Assembly-Line LLM Framework for High-Quality Tabular Data Generation
While tabular data is fundamental to many real-world machine learning (ML) applications, acquiring high-quality tabular data is usually labor-intensive and expensive. Limited by the scarcity of observations, tabular datasets often exhibit critical deficiencies, such as class imbalance, selection bias, and low fidelity. To address these challenges, building on recent advances in Large Language Models (LLMs), this paper introduces Team-then-Trim (T$^2$), a framework that synthesizes high-quality tabular data through a collaborative team of LLMs, followed by a rigorous three-stage plug-in data quality control (QC) pipeline. In T$^2$, tabular data generation is conceptualized as a manufacturing process: specialized LLMs, guided by domain knowledge, are tasked with generating different data components sequentially, and the resulting products, i.e., the synthetic data, are systematically evaluated across multiple dimensions of QC. Empirical results on both simulated and real-world datasets demonstrate that T$^2$ outperforms state-of-the-art methods in producing high-quality tabular data, highlighting its potential to support downstream models when direct data collection is practically infeasible.
☆ Billion-Scale Graph Foundation Models
Graph-structured data underpins many critical applications. While foundation models have transformed language and vision via large-scale pretraining and lightweight adaptation, extending this paradigm to general, real-world graphs is challenging. In this work, we present Graph Billion- Foundation-Fusion (GraphBFF): the first end-to-end recipe for building billion-parameter Graph Foundation Models (GFMs) for arbitrary heterogeneous, billion-scale graphs. Central to the recipe is the GraphBFF Transformer, a flexible and scalable architecture designed for practical billion-scale GFMs. Using the GraphBFF, we present the first neural scaling laws for general graphs and show that loss decreases predictably as either model capacity or training data scales, depending on which factor is the bottleneck. The GraphBFF framework provides concrete methodologies for data batching, pretraining, and fine-tuning for building GFMs at scale. We demonstrate the effectiveness of the framework with an evaluation of a 1.4 billion-parameter GraphBFF Transformer pretrained on one billion samples. Across ten diverse, real-world downstream tasks on graphs unseen during training, spanning node- and link-level classification and regression, GraphBFF achieves remarkable zero-shot and probing performance, including in few-shot settings, with large margins of up to 31 PRAUC points. Finally, we discuss key challenges and open opportunities for making GFMs a practical and principled foundation for graph learning at industrial scale.
☆ Active Asymmetric Multi-Agent Multimodal Learning under Uncertainty
Multi-agent systems are increasingly equipped with heterogeneous multimodal sensors, enabling richer perception but introducing modality-specific and agent-dependent uncertainty. Existing multi-agent collaboration frameworks typically reason at the agent level, assume homogeneous sensing, and handle uncertainty implicitly, limiting robustness under sensor corruption. We propose Active Asymmetric Multi-Agent Multimodal Learning under Uncertainty (A2MAML), a principled approach for uncertainty-aware, modality-level collaboration. A2MAML models each modality-specific feature as a stochastic estimate with uncertainty prediction, actively selects reliable agent-modality pairs, and aggregates information via Bayesian inverse-variance weighting. This formulation enables fine-grained, modality-level fusion, supports asymmetric modality availability, and provides a principled mechanism to suppress corrupted or noisy modalities. Extensive experiments on connected autonomous driving scenarios for collaborative accident detection demonstrate that A2MAML consistently outperforms both single-agent and collaborative baselines, achieving up to 18.7% higher accident detection rate.
☆ When Silence Is Golden: Can LLMs Learn to Abstain in Temporal QA and Beyond? ICLR2026
Large language models (LLMs) rarely admit uncertainty, often producing fluent but misleading answers, rather than abstaining (i.e., refusing to answer). This weakness is even evident in temporal question answering, where models frequently ignore time-sensitive evidence and conflate facts across different time-periods. In this paper, we present the first empirical study of training LLMs with an abstention ability while reasoning about temporal QA. Existing approaches such as calibration might be unreliable in capturing uncertainty in complex reasoning. We instead frame abstention as a teachable skill and introduce a pipeline that couples Chain-of-Thought (CoT) supervision with Reinforcement Learning (RL) guided by abstention-aware rewards. Our goal is to systematically analyze how different information types and training techniques affect temporal reasoning with abstention behavior in LLMs. Through extensive experiments studying various methods, we find that RL yields strong empirical gains on reasoning: a model initialized by Qwen2.5-1.5B-Instruct surpasses GPT-4o by $3.46\%$ and $5.80\%$ in Exact Match on TimeQA-Easy and Hard, respectively. Moreover, it improves the True Positive rate on unanswerable questions by $20\%$ over a pure supervised fine-tuned (SFT) variant. Beyond performance, our analysis shows that SFT induces overconfidence and harms reliability, while RL improves prediction accuracy but exhibits similar risks. Finally, by comparing implicit reasoning cues (e.g., original context, temporal sub-context, knowledge graphs) with explicit CoT supervision, we find that implicit information provides limited benefit for reasoning with abstention. Our study provides new insights into how abstention and reasoning can be jointly optimized, providing a foundation for building more reliable LLMs.
comment: Accepted to ICLR2026
☆ Comparative Insights on Adversarial Machine Learning from Industry and Academia: A User-Study Approach
An exponential growth of Machine Learning and its Generative AI applications brings with it significant security challenges, often referred to as Adversarial Machine Learning (AML). In this paper, we conducted two comprehensive studies to explore the perspectives of industry professionals and students on different AML vulnerabilities and their educational strategies. In our first study, we conducted an online survey with professionals revealing a notable correlation between cybersecurity education and concern for AML threats. For our second study, we developed two CTF challenges that implement Natural Language Processing and Generative AI concepts and demonstrate a poisoning attack on the training data set. The effectiveness of these challenges was evaluated by surveying undergraduate and graduate students at Carnegie Mellon University, finding that a CTF-based approach effectively engages interest in AML threats. Based on the responses of the participants in our research, we provide detailed recommendations emphasizing the critical need for integrated security education within the ML curriculum.
☆ Exploiting contextual information to improve stance detection in informal political discourse with LLMs
This study investigates the use of Large Language Models (LLMs) for political stance detection in informal online discourse, where language is often sarcastic, ambiguous, and context-dependent. We explore whether providing contextual information, specifically user profile summaries derived from historical posts, can improve classification accuracy. Using a real-world political forum dataset, we generate structured profiles that summarize users' ideological leaning, recurring topics, and linguistic patterns. We evaluate seven state-of-the-art LLMs across baseline and context-enriched setups through a comprehensive cross-model evaluation. Our findings show that contextual prompts significantly boost accuracy, with improvements ranging from +17.5\% to +38.5\%, achieving up to 74\% accuracy that surpasses previous approaches. We also analyze how profile size and post selection strategies affect performance, showing that strategically chosen political content yields better results than larger, randomly selected contexts. These findings underscore the value of incorporating user-level context to enhance LLM performance in nuanced political classification tasks.
comment: 14 pages, 7 figures
☆ Alignment Drift in Multimodal LLMs: A Two-Phase, Longitudinal Evaluation of Harm Across Eight Model Releases
Multimodal large language models (MLLMs) are increasingly deployed in real-world systems, yet their safety under adversarial prompting remains underexplored. We present a two-phase evaluation of MLLM harmlessness using a fixed benchmark of 726 adversarial prompts authored by 26 professional red teamers. Phase 1 assessed GPT-4o, Claude Sonnet 3.5, Pixtral 12B, and Qwen VL Plus; Phase 2 evaluated their successors (GPT-5, Claude Sonnet 4.5, Pixtral Large, and Qwen Omni) yielding 82,256 human harm ratings. Large, persistent differences emerged across model families: Pixtral models were consistently the most vulnerable, whereas Claude models appeared safest due to high refusal rates. Attack success rates (ASR) showed clear alignment drift: GPT and Claude models exhibited increased ASR across generations, while Pixtral and Qwen showed modest decreases. Modality effects also shifted over time: text-only prompts were more effective in Phase 1, whereas Phase 2 produced model-specific patterns, with GPT-5 and Claude 4.5 showing near-equivalent vulnerability across modalities. These findings demonstrate that MLLM harmlessness is neither uniform nor stable across updates, underscoring the need for longitudinal, multimodal benchmarks to track evolving safety behaviour.
comment: under peer-review
☆ From Data to Behavior: Predicting Unintended Model Behaviors Before Training
Large Language Models (LLMs) can acquire unintended biases from seemingly benign training data even without explicit cues or malicious content. Existing methods struggle to detect such risks before fine-tuning, making post hoc evaluation costly and inefficient. To address this challenge, we introduce Data2Behavior, a new task for predicting unintended model behaviors prior to training. We also propose Manipulating Data Features (MDF), a lightweight approach that summarizes candidate data through their mean representations and injects them into the forward pass of a base model, allowing latent statistical signals in the data to shape model activations and reveal potential biases and safety risks without updating any parameters. MDF achieves reliable prediction while consuming only about 20% of the GPU resources required for fine-tuning. Experiments on Qwen3-14B, Qwen2.5-32B-Instruct, and Gemma-3-12b-it confirm that MDF can anticipate unintended behaviors and provide insight into pre-training vulnerabilities.
comment: Work in progress
☆ Supporting software engineering tasks with agentic AI: Demonstration on document retrieval and test scenario generation
The introduction of large language models ignited great retooling and rethinking of the software development models. The ensuing response of software engineering research yielded a massive body of tools and approaches. In this paper, we join the hassle by introducing agentic AI solutions for two tasks. First, we developed a solution for automatic test scenario generation from a detailed requirements description. This approach relies on specialized worker agents forming a star topology with the supervisor agent in the middle. We demonstrate its capabilities on a real-world example. Second, we developed an agentic AI solution for the document retrieval task in the context of software engineering documents. Our solution enables performing various use cases on a body of documents related to the development of a single software, including search, question answering, tracking changes, and large document summarization. In this case, each use case is handled by a dedicated LLM-based agent, which performs all subtasks related to the corresponding use case. We conclude by hinting at the future perspectives of our line of research.
comment: This is a preprint of a paper that was accepted at the International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2026)
☆ Identifying Intervenable and Interpretable Features via Orthogonality Regularization
With recent progress on fine-tuning language models around a fixed sparse autoencoder, we disentangle the decoder matrix into almost orthogonal features. This reduces interference and superposition between the features, while keeping performance on the target dataset essentially unchanged. Our orthogonality penalty leads to identifiable features, ensuring the uniqueness of the decomposition. Further, we find that the distance between embedded feature explanations increases with stricter orthogonality penalty, a desirable property for interpretability. Invoking the $\textit{Independent Causal Mechanisms}$ principle, we argue that orthogonality promotes modular representations amenable to causal intervention. We empirically show that these increasingly orthogonalized features allow for isolated interventions. Our code is available under $\texttt{https://github.com/mrtzmllr/sae-icm}$.
☆ Adaptive Prompt Elicitation for Text-to-Image Generation
Aligning text-to-image generation with user intent remains challenging, for users who provide ambiguous inputs and struggle with model idiosyncrasies. We propose Adaptive Prompt Elicitation (APE), a technique that adaptively asks visual queries to help users refine prompts without extensive writing. Our technical contribution is a formulation of interactive intent inference under an information-theoretic framework. APE represents latent intent as interpretable feature requirements using language model priors, adaptively generates visual queries, and compiles elicited requirements into effective prompts. Evaluation on IDEA-Bench and DesignBench shows that APE achieves stronger alignment with improved efficiency. A user study with challenging user-defined tasks demonstrates 19.8% higher alignment without workload overhead. Our work contributes a principled approach to prompting that, for general users, offers an effective and efficient complement to the prevailing prompt-based interaction paradigm with text-to-image models.
comment: ACM International Conference on Intelligent User Interfaces (IUI) 2026, March 23-26, Paphos, Cyprus
☆ SAR-RAG: ATR Visual Question Answering by Semantic Search, Retrieval, and MLLM Generation
We present a visual-context image retrieval-augmented generation (ImageRAG) assisted AI agent for automatic target recognition (ATR) of synthetic aperture radar (SAR). SAR is a remote sensing method used in defense and security applications to detect and monitor the positions of military vehicles, which may appear indistinguishable in images. Researchers have extensively studied SAR ATR to improve the differentiation and identification of vehicle types, characteristics, and measurements. Test examples can be compared with known vehicle target types to improve recognition tasks. New methods enhance the capabilities of neural networks, transformer attention, and multimodal large language models. An agentic AI method may be developed to utilize a defined set of tools, such as searching through a library of similar examples. Our proposed method, SAR Retrieval-Augmented Generation (SAR-RAG), combines a multimodal large language model (MLLM) with a vector database of semantic embeddings to support contextual search for image exemplars with known qualities. By recovering past image examples with known true target types, our SAR-RAG system can compare similar vehicle categories, achieving improved ATR prediction accuracy. We evaluate this through search and retrieval metrics, categorical classification accuracy, and numeric regression of vehicle dimensions. These metrics all show improvements when SAR-RAG is added to an MLLM baseline method as an attached ATR memory bank.
comment: Submitted to 2026 IEEE Radar Conference
☆ Addressing Corpus Knowledge Poisoning Attacks on RAG Using Sparse Attention
Retrieval Augmented Generation (RAG) is a highly effective paradigm for keeping LLM-based responses up-to-date and reducing the likelihood of hallucinations. Yet, RAG was recently shown to be quite vulnerable to corpus knowledge poisoning: an attacker injects misleading documents to the corpus to steer an LLMs' output to an undesired response. We argue that the standard causal attention mechanism in LLMs enables harmful cross-document interactions, specifically in cases of attacks. Accordingly, we introduce a novel defense approach for RAG: Sparse Document Attention RAG (SDAG). This is a block-sparse attention mechanism that disallows cross-attention between retrieved documents. SDAG requires a minimal inference-time change to the attention mask; furthermore, no fine-tuning or additional architectural changes are needed. We present an empirical evaluation of LLM-based question answering (QA) with a variety of attack strategies on RAG. We show that our SDAG method substantially outperforms the standard causal attention mechanism in terms of attack success rate. We further demonstrate the clear merits of integrating SDAG with state-of-the-art RAG defense methods. Specifically, the integration results in performance that is statistically significantly better than the state-of-the-art.
☆ DRMOT: A Dataset and Framework for RGBD Referring Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track specific targets based on language descriptions and is vital for interactive AI systems such as robotics and autonomous driving. However, existing RMOT models rely solely on 2D RGB data, making it challenging to accurately detect and associate targets characterized by complex spatial semantics (e.g., ``the person closest to the camera'') and to maintain reliable identities under severe occlusion, due to the absence of explicit 3D spatial information. In this work, we propose a novel task, RGBD Referring Multi-Object Tracking (DRMOT), which explicitly requires models to fuse RGB, Depth (D), and Language (L) modalities to achieve 3D-aware tracking. To advance research on the DRMOT task, we construct a tailored RGBD referring multi-object tracking dataset, named DRSet, designed to evaluate models' spatial-semantic grounding and tracking capabilities. Specifically, DRSet contains RGB images and depth maps from 187 scenes, along with 240 language descriptions, among which 56 descriptions incorporate depth-related information. Furthermore, we propose DRTrack, a MLLM-guided depth-referring tracking framework. DRTrack performs depth-aware target grounding from joint RGB-D-L inputs and enforces robust trajectory association by incorporating depth cues. Extensive experiments on the DRSet dataset demonstrate the effectiveness of our framework.
☆ Audio ControlNet for Fine-Grained Audio Generation and Editing
We study the fine-grained text-to-audio (T2A) generation task. While recent models can synthesize high-quality audio from text descriptions, they often lack precise control over attributes such as loudness, pitch, and sound events. Unlike prior approaches that retrain models for specific control types, we propose to train ControlNet models on top of pre-trained T2A backbones to achieve controllable generation over loudness, pitch, and event roll. We introduce two designs, T2A-ControlNet and T2A-Adapter, and show that the T2A-Adapter model offers a more efficient structure with strong control ability. With only 38M additional parameters, T2A-Adapter achieves state-of-the-art performance on the AudioSet-Strong in both event-level and segment-level F1 scores. We further extend this framework to audio editing, proposing T2A-Editor for removing and inserting audio events at time locations specified by instructions. Models, code, dataset pipelines, and benchmarks will be released to support future research on controllable audio generation and editing.
Let Experts Feel Uncertainty: A Multi-Expert Label Distribution Approach to Probabilistic Time Series Forecasting
Time series forecasting in real-world applications requires both high predictive accuracy and interpretable uncertainty quantification. Traditional point prediction methods often fail to capture the inherent uncertainty in time series data, while existing probabilistic approaches struggle to balance computational efficiency with interpretability. We propose a novel Multi-Expert Learning Distributional Labels (LDL) framework that addresses these challenges through mixture-of-experts architectures with distributional learning capabilities. Our approach introduces two complementary methods: (1) Multi-Expert LDL, which employs multiple experts with different learned parameters to capture diverse temporal patterns, and (2) Pattern-Aware LDL-MoE, which explicitly decomposes time series into interpretable components (trend, seasonality, changepoints, volatility) through specialized sub-experts. Both frameworks extend traditional point prediction to distributional learning, enabling rich uncertainty quantification through Maximum Mean Discrepancy (MMD). We evaluate our methods on aggregated sales data derived from the M5 dataset, demonstrating superior performance compared to baseline approaches. The continuous Multi-Expert LDL achieves the best overall performance, while the Pattern-Aware LDL-MoE provides enhanced interpretability through component-wise analysis. Our frameworks successfully balance predictive accuracy with interpretability, making them suitable for real-world forecasting applications where both performance and actionable insights are crucial.
comment: 11 pages, 2figures
☆ Overstating Attitudes, Ignoring Networks: LLM Biases in Simulating Misinformation Susceptibility
Large language models (LLMs) are increasingly used as proxies for human judgment in computational social science, yet their ability to reproduce patterns of susceptibility to misinformation remains unclear. We test whether LLM-simulated survey respondents, prompted with participant profiles drawn from social survey data measuring network, demographic, attitudinal and behavioral features, can reproduce human patterns of misinformation belief and sharing. Using three online surveys as baselines, we evaluate whether LLM outputs match observed response distributions and recover feature-outcome associations present in the original survey data. LLM-generated responses capture broad distributional tendencies and show modest correlation with human responses, but consistently overstate the association between belief and sharing. Linear models fit to simulated responses exhibit substantially higher explained variance and place disproportionate weight on attitudinal and behavioral features, while largely ignoring personal network characteristics, relative to models fit to human responses. Analyses of model-generated reasoning and LLM training data suggest that these distortions reflect systematic biases in how misinformation-related concepts are represented. Our findings suggest that LLM-based survey simulations are better suited for diagnosing systematic divergences from human judgment than for substituting it.
☆ Delving into Muon and Beyond: Deep Analysis and Extensions
The Muon optimizer has recently attracted considerable attention for its strong empirical performance and use of orthogonalized updates on matrix-shaped parameters, yet its underlying mechanisms and relationship to adaptive optimizers such as Adam remain insufficiently understood. In this work, we aim to address these questions through a unified spectral perspective. Specifically, we view Muon as the p = 0 endpoint of a family of spectral transformations of the form U \boldsymbolΣ^{p} V' , and consider additional variants with p = 1/2 , p = 1/4 , and p = 1 . These transformations are applied to both first-moment updates, as in momentum SGD, and to root-mean-square (RMS) normalized gradient updates as in Adam. To enable efficient computation, we develop a coupled Newton iteration that avoids explicit singular value decomposition. Across controlled experiments, we find that RMS-normalized updates yield more stable optimization than first-moment updates. Moreover, while spectral compression provides strong stabilization benefits under first-moment updates, the Muon update (p = 0) does not consistently outperform Adam. These results suggest that Muon is best understood as an effective form of spectral normalization, but not a universally superior optimization method. Our source code will be released at https://github.com/Ocram7/BeyondMuon.
comment: This paper studies matrix-based optimizers (e.g., Muon) from a spectral perspective and unifies a range of methods under a common spectral framework
☆ Rethinking the Design Space of Reinforcement Learning for Diffusion Models: On the Importance of Likelihood Estimation Beyond Loss Design
Reinforcement learning has been widely applied to diffusion and flow models for visual tasks such as text-to-image generation. However, these tasks remain challenging because diffusion models have intractable likelihoods, which creates a barrier for directly applying popular policy-gradient type methods. Existing approaches primarily focus on crafting new objectives built on already heavily engineered LLM objectives, using ad hoc estimators for likelihood, without a thorough investigation into how such estimation affects overall algorithmic performance. In this work, we provide a systematic analysis of the RL design space by disentangling three factors: i) policy-gradient objectives, ii) likelihood estimators, and iii) rollout sampling schemes. We show that adopting an evidence lower bound (ELBO) based model likelihood estimator, computed only from the final generated sample, is the dominant factor enabling effective, efficient, and stable RL optimization, outweighing the impact of the specific policy-gradient loss functional. We validate our findings across multiple reward benchmarks using SD 3.5 Medium, and observe consistent trends across all tasks. Our method improves the GenEval score from 0.24 to 0.95 in 90 GPU hours, which is $4.6\times$ more efficient than FlowGRPO and $2\times$ more efficient than the SOTA method DiffusionNFT without reward hacking.
comment: 23 pages, 11 figures
☆ Towards Structured, State-Aware, and Execution-Grounded Reasoning for Software Engineering Agents
Software Engineering (SE) agents have shown promising abilities in supporting various SE tasks. Current SE agents remain fundamentally reactive, making decisions mainly based on conversation history and the most recent response. However, this reactive design provides no explicit structure or persistent state within the agent's memory, making long-horizon reasoning challenging. As a result, SE agents struggle to maintain a coherent understanding across reasoning steps, adapt their hypotheses as new evidence emerges, or incorporate execution feedback into the mental reasoning model of the system state. In this position paper, we argue that, to further advance SE agents, we need to move beyond reactive behavior toward a structured, state-aware, and execution-grounded reasoning. We outline how explicit structure, persistent and evolving state, and the integration of execution-grounded feedback can help SE agents perform more coherent and reliable reasoning in long-horizon tasks. We also provide an initial roadmap for developing next-generation SE agents that can more effectively perform real-world tasks.
comment: Position paper accepted in BoatSE
☆ WideSeek-R1: Exploring Width Scaling for Broad Information Seeking via Multi-Agent Reinforcement Learning
Recent advancements in Large Language Models (LLMs) have largely focused on depth scaling, where a single agent solves long-horizon problems with multi-turn reasoning and tool use. However, as tasks grow broader, the key bottleneck shifts from individual competence to organizational capability. In this work, we explore a complementary dimension of width scaling with multi-agent systems to address broad information seeking. Existing multi-agent systems often rely on hand-crafted workflows and turn-taking interactions that fail to parallelize work effectively. To bridge this gap, we propose WideSeek-R1, a lead-agent-subagent framework trained via multi-agent reinforcement learning (MARL) to synergize scalable orchestration and parallel execution. By utilizing a shared LLM with isolated contexts and specialized tools, WideSeek-R1 jointly optimizes the lead agent and parallel subagents on a curated dataset of 20k broad information-seeking tasks. Extensive experiments show that WideSeek-R1-4B achieves an item F1 score of 40.0% on the WideSearch benchmark, which is comparable to the performance of single-agent DeepSeek-R1-671B. Furthermore, WideSeek-R1-4B exhibits consistent performance gains as the number of parallel subagents increases, highlighting the effectiveness of width scaling.
☆ A Human-Centered Privacy Approach (HCP) to AI
As the paradigm of Human-Centered AI (HCAI) gains prominence, its benefits to society are accompanied by significant ethical concerns, one of which is the protection of individual privacy. This chapter provides a comprehensive overview of privacy within HCAI, proposing a human-centered privacy (HCP) framework, providing integrated solution from technology, ethics, and human factors perspectives. The chapter begins by mapping privacy risks across each stage of AI development lifecycle, from data collection to deployment and reuse, highlighting the impact of privacy risks on the entire system. The chapter then introduces privacy-preserving techniques such as federated learning and dif erential privacy. Subsequent chapters integrate the crucial user perspective by examining mental models, alongside the evolving regulatory and ethical landscapes as well as privacy governance. Next, advice on design guidelines is provided based on the human-centered privacy framework. After that, we introduce practical case studies across diverse fields. Finally, the chapter discusses persistent open challenges and future research directions, concluding that a multidisciplinary approach, merging technical, design, policy, and ethical expertise, is essential to successfully embed privacy into the core of HCAI, thereby ensuring these technologies advance in a manner that respects and ensures human autonomy, trust and dignity.
☆ RexBERT: Context Specialized Bidirectional Encoders for E-commerce
Encoder-only transformers remain indispensable in retrieval, classification, and ranking systems where latency, stability, and cost are paramount. Most general purpose encoders, however, are trained on generic corpora with limited coverage of specialized domains. We introduce RexBERT, a family of BERT-style encoders designed specifically for e-commerce semantics. We make three contributions. First, we release Ecom-niverse, a 350 billion token corpus curated from diverse retail and shopping sources. We describe a modular pipeline that isolates and extracts e-commerce content from FineFineWeb and other open web resources, and characterize the resulting domain distribution. Second, we present a reproducible pretraining recipe building on ModernBERT's architectural advances. The recipe consists of three phases: general pre-training, context extension, and annealed domain specialization. Third, we train RexBERT models ranging from 17M to 400M parameters and evaluate them on token classification, semantic similarity, and general natural language understanding tasks using e-commerce datasets. Despite having 2-3x fewer parameters, RexBERT outperforms larger general-purpose encoders and matches or surpasses modern long-context models on domain-specific benchmarks. Our results demonstrate that high quality in-domain data combined with a principled training approach provides a stronger foundation for e-commerce applications than indiscriminate scaling alone.
comment: Blog: https://huggingface.co/blog/thebajajra/rexbert-encoders Models: https://huggingface.co/collections/thebajajra/rexbert Ecom-niverse Dataset: https://huggingface.co/datasets/thebajajra/Ecom-niverse
☆ VILLAIN at AVerImaTeC: Verifying Image-Text Claims via Multi-Agent Collaboration EACL 2026
This paper describes VILLAIN, a multimodal fact-checking system that verifies image-text claims through prompt-based multi-agent collaboration. For the AVerImaTeC shared task, VILLAIN employs vision-language model agents across multiple stages of fact-checking. Textual and visual evidence is retrieved from the knowledge store enriched through additional web collection. To identify key information and address inconsistencies among evidence items, modality-specific and cross-modal agents generate analysis reports. In the subsequent stage, question-answer pairs are produced based on these reports. Finally, the Verdict Prediction agent produces the verification outcome based on the image-text claim and the generated question-answer pairs. Our system ranked first on the leaderboard across all evaluation metrics. The source code is publicly available at https://github.com/ssu-humane/VILLAIN.
comment: A system description paper for the AVerImaTeC shared task at the Ninth FEVER Workshop (co-located with EACL 2026)
☆ Trust The Typical
Current approaches to LLM safety fundamentally rely on a brittle cat-and-mouse game of identifying and blocking known threats via guardrails. We argue for a fresh approach: robust safety comes not from enumerating what is harmful, but from deeply understanding what is safe. We introduce Trust The Typical (T3), a framework that operationalizes this principle by treating safety as an out-of-distribution (OOD) detection problem. T3 learns the distribution of acceptable prompts in a semantic space and flags any significant deviation as a potential threat. Unlike prior methods, it requires no training on harmful examples, yet achieves state-of-the-art performance across 18 benchmarks spanning toxicity, hate speech, jailbreaking, multilingual harms, and over-refusal, reducing false positive rates by up to 40x relative to specialized safety models. A single model trained only on safe English text transfers effectively to diverse domains and over 14 languages without retraining. Finally, we demonstrate production readiness by integrating a GPU-optimized version into vLLM, enabling continuous guardrailing during token generation with less than 6% overhead even under dense evaluation intervals on large-scale workloads.
☆ Vibe AIGC: A New Paradigm for Content Generation via Agentic Orchestration
For the past decade, the trajectory of generative artificial intelligence (AI) has been dominated by a model-centric paradigm driven by scaling laws. Despite significant leaps in visual fidelity, this approach has encountered a ``usability ceiling'' manifested as the Intent-Execution Gap (i.e., the fundamental disparity between a creator's high-level intent and the stochastic, black-box nature of current single-shot models). In this paper, inspired by the Vibe Coding, we introduce the \textbf{Vibe AIGC}, a new paradigm for content generation via agentic orchestration, which represents the autonomous synthesis of hierarchical multi-agent workflows. Under this paradigm, the user's role transcends traditional prompt engineering, evolving into a Commander who provides a Vibe, a high-level representation encompassing aesthetic preferences, functional logic, and etc. A centralized Meta-Planner then functions as a system architect, deconstructing this ``Vibe'' into executable, verifiable, and adaptive agentic pipelines. By transitioning from stochastic inference to logical orchestration, Vibe AIGC bridges the gap between human imagination and machine execution. We contend that this shift will redefine the human-AI collaborative economy, transforming AI from a fragile inference engine into a robust system-level engineering partner that democratizes the creation of complex, long-horizon digital assets.
☆ From Competition to Collaboration: Designing Sustainable Mechanisms Between LLMs and Online Forums
While Generative AI (GenAI) systems draw users away from (Q&A) forums, they also depend on the very data those forums produce to improve their performance. Addressing this paradox, we propose a framework of sequential interaction, in which a GenAI system proposes questions to a forum that can publish some of them. Our framework captures several intricacies of such a collaboration, including non-monetary exchanges, asymmetric information, and incentive misalignment. We bring the framework to life through comprehensive, data-driven simulations using real Stack Exchange data and commonly used LLMs. We demonstrate the incentive misalignment empirically, yet show that players can achieve roughly half of the utility in an ideal full-information scenario. Our results highlight the potential for sustainable collaboration that preserves effective knowledge sharing between AI systems and human knowledge platforms.
☆ Dual Mind World Model Inspired Network Digital Twin for Access Scheduling
Emerging networked systems such as industrial IoT and real-time cyber-physical infrastructures demand intelligent scheduling strategies capable of adapting to dynamic traffic, deadlines, and interference constraints. In this work, we present a novel Digital Twin-enabled scheduling framework inspired by Dual Mind World Model (DMWM) architecture, for learning-informed and imagination-driven network control. Unlike conventional rule-based or purely data-driven policies, the proposed DMWM combines short-horizon predictive planning with symbolic model-based rollout, enabling the scheduler to anticipate future network states and adjust transmission decisions accordingly. We implement the framework in a configurable simulation testbed and benchmark its performance against traditional heuristics and reinforcement learning baselines under varied traffic conditions. Our results show that DMWM achieves superior performance in bursty, interference-limited, and deadline-sensitive environments, while maintaining interpretability and sample efficiency. The proposed design bridges the gap between network-level reasoning and low-overhead learning, marking a step toward scalable and adaptive NDT-based network optimization.
☆ OmniRad: A Radiological Foundation Model for Multi-Task Medical Image Analysis
Radiological analysis increasingly benefits from pretrained visual representations that can support heterogeneous downstream tasks across imaging modalities. In this work, we introduce OmniRad, a self-supervised radiological foundation model pretrained on 1.2 million medical images, designed with radiology-inspired principles emphasizing representation reuse and cross-task transferability. We evaluate the pretrained encoder under multiple downstream adaptation regimes, including lightweight task-specific adapters with a frozen backbone as well as full end-to-end fine-tuning for classification, allowing us to assess both representation quality and task-specific performance. OmniRad is evaluated on a broad suite of public benchmarks spanning classification and segmentation across multiple modalities. On the MedMNISTv2 collection, OmniRad improves classification F1 by up to 2.05% over competing foundation models. For dense prediction, OmniRad attains mean Dice score improvements across six MedSegBench datasets when using frozen representations. Qualitative analyses and latent-space visualizations suggest improved feature clustering and modality-related separation.
comment: 19 pages, 4 figures, 12 tables
☆ Continual Learning through Control Minimization
Catastrophic forgetting remains a fundamental challenge for neural networks when tasks are trained sequentially. In this work, we reformulate continual learning as a control problem where learning and preservation signals compete within neural activity dynamics. We convert regularization penalties into preservation signals that protect prior-task representations. Learning then proceeds by minimizing the control effort required to integrate new tasks while competing with the preservation of prior tasks. At equilibrium, the neural activities produce weight updates that implicitly encode the full prior-task curvature, a property we term the continual-natural gradient, requiring no explicit curvature storage. Experiments confirm that our learning framework recovers true prior-task curvature and enables task discrimination, outperforming existing methods on standard benchmarks without replay.
☆ LycheeDecode: Accelerating Long-Context LLM Inference via Hybrid-Head Sparse Decoding ICLR 2026
The proliferation of long-context large language models (LLMs) exposes a key bottleneck: the rapidly expanding key-value cache during decoding, which imposes heavy memory and latency costs. While recent approaches attempt to alleviate this by sharing a single set of crucial tokens across layers, such coarse-grained sharing undermines model performance by neglecting the functional diversity of attention heads. To address this, we propose LycheeDecode, an efficient decoding method centered on a fine-grained hybrid-head attention mechanism that employs a hardware-efficient top-k selection strategy. Specifically, the novel HardKuma-based mechanism partitions attention heads into a small subset of retrieval heads that dynamically identify crucial tokens and a majority of sparse heads that reuse them for efficient computation. Through extensive experiments on leading models like Llama3 and Qwen3 across diverse benchmarks for long-context understanding (e.g., LongBench, RULER) and complex reasoning (e.g., AIME24, OlympiadBench), we demonstrate that LycheeDecode achieves generative quality comparable to, and at times surpassing even the full-attention baseline. Crucially, this is accomplished with up to a 2.7x speedup at a 128K context length. By preserving the functional diversity of attention heads, our fine-grained strategy overcomes the performance bottlenecks of existing methods, providing a powerful and validated pathway to both efficient and high-quality long-context LLM inference.
comment: ICLR 2026
☆ SLUM-i: Semi-supervised Learning for Urban Mapping of Informal Settlements and Data Quality Benchmarking
Rapid urban expansion has fueled the growth of informal settlements in major cities of low- and middle-income countries, with Lahore and Karachi in Pakistan and Mumbai in India serving as prominent examples. However, large-scale mapping of these settlements is severely constrained not only by the scarcity of annotations but by inherent data quality challenges, specifically high spectral ambiguity between formal and informal structures and significant annotation noise. We address this by introducing a benchmark dataset for Lahore, constructed from scratch, along with companion datasets for Karachi and Mumbai, which were derived from verified administrative boundaries, totaling 1,869 $\text{km}^2$ of area. To evaluate the global robustness of our framework, we extend our experiments to five additional established benchmarks, encompassing eight cities across three continents, and provide comprehensive data quality assessments of all datasets. We also propose a new semi-supervised segmentation framework designed to mitigate the class imbalance and feature degradation inherent in standard semi-supervised learning pipelines. Our method integrates a Class-Aware Adaptive Thresholding mechanism that dynamically adjusts confidence thresholds to prevent minority class suppression and a Prototype Bank System that enforces semantic consistency by anchoring predictions to historically learned high-fidelity feature representations. Extensive experiments across a total of eight cities spanning three continents demonstrate that our approach outperforms state-of-the-art semi-supervised baselines. Most notably, our method demonstrates superior domain transfer capability whereby a model trained on only 10% of source labels reaches a 0.461 mIoU on unseen geographies and outperforms the zero-shot generalization of fully supervised models.
comment: 10 pages, 8 figures, 5 tables
☆ Learning the Value Systems of Agents with Preference-based and Inverse Reinforcement Learning
Agreement Technologies refer to open computer systems in which autonomous software agents interact with one another, typically on behalf of humans, in order to come to mutually acceptable agreements. With the advance of AI systems in recent years, it has become apparent that such agreements, in order to be acceptable to the involved parties, must remain aligned with ethical principles and moral values. However, this is notoriously difficult to ensure, especially as different human users (and their software agents) may hold different value systems, i.e. they may differently weigh the importance of individual moral values. Furthermore, it is often hard to specify the precise meaning of a value in a particular context in a computational manner. Methods to estimate value systems based on human-engineered specifications, e.g. based on value surveys, are limited in scale due to the need for intense human moderation. In this article, we propose a novel method to automatically \emph{learn} value systems from observations and human demonstrations. In particular, we propose a formal model of the \emph{value system learning} problem, its instantiation to sequential decision-making domains based on multi-objective Markov decision processes, as well as tailored preference-based and inverse reinforcement learning algorithms to infer value grounding functions and value systems. The approach is illustrated and evaluated by two simulated use cases.
comment: 42 pages, 5 figures. Published in Journal of Autonomous Agents and Multi-Agent Systems
☆ BrainVista: Modeling Naturalistic Brain Dynamics as Multimodal Next-Token Prediction
Naturalistic fMRI characterizes the brain as a dynamic predictive engine driven by continuous sensory streams. However, modeling the causal forward evolution in realistic neural simulation is impeded by the timescale mismatch between multimodal inputs and the complex topology of cortical networks. To address these challenges, we introduce BrainVista, a multimodal autoregressive framework designed to model the causal evolution of brain states. BrainVista incorporates Network-wise Tokenizers to disentangle system-specific dynamics and a Spatial Mixer Head that captures inter-network information flow without compromising functional boundaries. Furthermore, we propose a novel Stimulus-to-Brain (S2B) masking mechanism to synchronize high-frequency sensory stimuli with hemodynamically filtered signals, enabling strict, history-only causal conditioning. We validate our framework on Algonauts 2025, CineBrain, and HAD, achieving state-of-the-art fMRI encoding performance. In long-horizon rollout settings, our model yields substantial improvements over baselines, increasing pattern correlation by 36.0\% and 33.3\% on relative to the strongest baseline Algonauts 2025 and CineBrain, respectively.
comment: 17 pages, 7 figures, 11 tables
☆ ReThinker: Scientific Reasoning by Rethinking with Guided Reflection and Confidence Control
Expert-level scientific reasoning remains challenging for large language models, particularly on benchmarks such as Humanity's Last Exam (HLE), where rigid tool pipelines, brittle multi-agent coordination, and inefficient test-time scaling often limit performance. We introduce ReThinker, a confidence-aware agentic framework that orchestrates retrieval, tool use, and multi-agent reasoning through a stage-wise Solver-Critic-Selector architecture. Rather than following a fixed pipeline, ReThinker dynamically allocates computation based on model confidence, enabling adaptive tool invocation, guided multi-dimensional reflection, and robust confidence-weighted selection. To support scalable training without human annotation, we further propose a reverse data synthesis pipeline and an adaptive trajectory recycling strategy that transform successful reasoning traces into high-quality supervision. Experiments on HLE, GAIA, and XBench demonstrate that ReThinker consistently outperforms state-of-the-art foundation models with tools and existing deep research systems, achieving state-of-the-art results on expert-level reasoning tasks.
☆ Discovering Mechanistic Models of Neural Activity: System Identification in an in Silico Zebrafish
Constructing mechanistic models of neural circuits is a fundamental goal of neuroscience, yet verifying such models is limited by the lack of ground truth. To rigorously test model discovery, we establish an in silico testbed using neuromechanical simulations of a larval zebrafish as a transparent ground truth. We find that LLM-based tree search autonomously discovers predictive models that significantly outperform established forecasting baselines. Conditioning on sensory drive is necessary but not sufficient for faithful system identification, as models exploit statistical shortcuts. Structural priors prove essential for enabling robust out-of-distribution generalization and recovery of interpretable mechanistic models. Our insights provide guidance for modeling real-world neural recordings and offer a broader template for AI-driven scientific discovery.
LLM-Empowered Cooperative Content Caching in Vehicular Fog Caching-Assisted Platoon Networks
This letter proposes a novel three-tier content caching architecture for Vehicular Fog Caching (VFC)-assisted platoon, where the VFC is formed by the vehicles driving near the platoon. The system strategically coordinates storage across local platoon vehicles, dynamic VFC clusters, and cloud server (CS) to minimize content retrieval latency. To efficiently manage distributed storage, we integrate large language models (LLMs) for real-time and intelligent caching decisions. The proposed approach leverages LLMs' ability to process heterogeneous information, including user profiles, historical data, content characteristics, and dynamic system states. Through a designed prompting framework encoding task objectives and caching constraints, the LLMs formulate caching as a decision-making task, and our hierarchical deterministic caching mapping strategy enables adaptive requests prediction and precise content placement across three tiers without frequent retraining. Simulation results demonstrate the advantages of our proposed caching scheme.
comment: Corresponding author: Qiong Wu (qiongwu@jiangnan.edu.cn)
☆ Is Micro Domain-Adaptive Pre-Training Effective for Real-World Operations? Multi-Step Evaluation Reveals Potential and Bottlenecks EACL2026
When applying LLMs to real-world enterprise operations, LLMs need to handle proprietary knowledge in small domains of specific operations ($\textbf{micro domains}$). A previous study shows micro domain-adaptive pre-training ($\textbf{mDAPT}$) with fewer documents is effective, similarly to DAPT in larger domains. However, it evaluates mDAPT only on multiple-choice questions; thus, its effectiveness for generative tasks in real-world operations remains unknown. We aim to reveal the potential and bottlenecks of mDAPT for generative tasks. To this end, we disentangle the answering process into three subtasks and evaluate the performance of each subtask: (1) $\textbf{eliciting}$ facts relevant to questions from an LLM's own knowledge, (2) $\textbf{reasoning}$ over the facts to obtain conclusions, and (3) $\textbf{composing}$ long-form answers based on the conclusions. We verified mDAPT on proprietary IT product knowledge for real-world questions in IT technical support operations. As a result, mDAPT resolved the elicitation task that the base model struggled with but did not resolve other subtasks. This clarifies mDAPT's effectiveness in the knowledge aspect and its bottlenecks in other aspects. Further analysis empirically shows that resolving the elicitation and reasoning tasks ensures sufficient performance (over 90%), emphasizing the need to enhance reasoning capability.
comment: 13 pages, 9 figures, Accepted by EACL2026 Industry Track
☆ Growth First, Care Second? Tracing the Landscape of LLM Value Preferences in Everyday Dilemmas
People increasingly seek advice online from both human peers and large language model (LLM)-based chatbots. Such advice rarely involves identifying a single correct answer; instead, it typically requires navigating trade-offs among competing values. We aim to characterize how LLMs navigate value trade-offs across different advice-seeking contexts. First, we examine the value trade-off structure underlying advice seeking using a curated dataset from four advice-oriented subreddits. Using a bottom-up approach, we inductively construct a hierarchical value framework by aggregating fine-grained values extracted from individual advice options into higher-level value categories. We construct value co-occurrence networks to characterize how values co-occur within dilemmas and find substantial heterogeneity in value trade-off structures across advice-seeking contexts: a women-focused subreddit exhibits the highest network density, indicating more complex value conflicts; women's, men's, and friendship-related subreddits exhibit highly correlated value-conflict patterns centered on security-related tensions (security vs. respect/connection/commitment); by contrast, career advice forms a distinct structure where security frequently clashes with self-actualization and growth. We then evaluate LLM value preferences against these dilemmas and find that, across models and contexts, LLMs consistently prioritize values related to Exploration & Growth over Benevolence & Connection. This systemically skewed value orientation highlights a potential risk of value homogenization in AI-mediated advice, raising concerns about how such systems may shape decision-making and normative outcomes at scale.
comment: dataset available at https://github.com/Renesmeeczy/Value-Trade-off-in-Reddit-Dilemmas
☆ RASA: Routing-Aware Safety Alignment for Mixture-of-Experts Models
Mixture-of-Experts (MoE) language models introduce unique challenges for safety alignment due to their sparse routing mechanisms, which can enable degenerate optimization behaviors under standard full-parameter fine-tuning. In our preliminary experiments, we observe that naively applying full-parameter safety fine-tuning to MoE models can reduce attack success rates through routing or expert dominance effects, rather than by directly repairing Safety-Critical Experts. To address this challenge, we propose RASA, a routing-aware expert-level alignment framework that explicitly repairs Safety-Critical Experts while preventing routing-based bypasses. RASA identifies experts disproportionately activated by successful jailbreaks, selectively fine-tunes only these experts under fixed routing, and subsequently enforces routing consistency with safety-aligned contexts. Across two representative MoE architectures and a diverse set of jailbreak attacks, RASA achieves near-perfect robustness, strong cross-attack generalization, and substantially reduced over-refusal, while preserving general capabilities on benchmarks such as MMLU, GSM8K, and TruthfulQA. Our results suggest that robust MoE safety alignment benefits from targeted expert repair rather than global parameter updates, offering a practical and architecture-preserving alternative to prior approaches.
comment: 9 pages
☆ Mixture of Masters: Sparse Chess Language Models with Player Routing
Modern chess language models are dense transformers trained on millions of games played by thousands of high-rated individuals. However, these monolithic networks tend to collapse into mode-averaged behavior, where stylistic boundaries are blurred, and rare but effective strategies are suppressed. To counteract homogenization, we introduce Mixture-of-Masters (MoM), the first chess mixture-of-experts model with small-sized GPT experts emulating world-class grandmasters. Each expert is trained with a combination of self-supervised learning and reinforcement learning guided by chess-specific rewards. For each move, a post-hoc learnable gating network selects the most appropriate persona to channel depending on the game state, allowing MoM to switch its style dynamically$--$e.g., Tal's offensive vocation or Petrosian's defensive solidity. When evaluated against Stockfish on unseen standard games, MoM outperforms both dense individual expert networks and popular GPT baselines trained on aggregated data, while ensuring generation variety, control, and interpretability.
☆ No One-Size-Fits-All: Building Systems For Translation to Bashkir, Kazakh, Kyrgyz, Tatar and Chuvash Using Synthetic And Original Data EACL 2026
We explore machine translation for five Turkic language pairs: Russian-Bashkir, Russian-Kazakh, Russian-Kyrgyz, English-Tatar, English-Chuvash. Fine-tuning nllb-200-distilled-600M with LoRA on synthetic data achieved chrF++ 49.71 for Kazakh and 46.94 for Bashkir. Prompting DeepSeek-V3.2 with retrieved similar examples achieved chrF++ 39.47 for Chuvash. For Tatar, zero-shot or retrieval-based approaches achieved chrF++ 41.6, while for Kyrgyz the zero-shot approach reached 45.6. We release the dataset and the obtained weights.
comment: Accepted to EACL 2026 (LoResMT workshop)
☆ SPEAR: An Engineering Case Study of Multi-Agent Coordination for Smart Contract Auditing
We present SPEAR, a multi-agent coordination framework for smart contract auditing that applies established MAS patterns in a realistic security analysis workflow. SPEAR models auditing as a coordinated mission carried out by specialized agents: a Planning Agent prioritizes contracts using risk-aware heuristics, an Execution Agent allocates tasks via the Contract Net protocol, and a Repair Agent autonomously recovers from brittle generated artifacts using a programmatic-first repair policy. Agents maintain local beliefs updated through AGM-compliant revision, coordinate via negotiation and auction protocols, and revise plans as new information becomes available. An empirical study compares the multi-agent design with centralized and pipeline-based alternatives under controlled failure scenarios, focusing on coordination, recovery behavior, and resource use.
☆ EMA Policy Gradient: Taming Reinforcement Learning for LLMs with EMA Anchor and Top-k KL
Reinforcement Learning (RL) has enabled Large Language Models (LLMs) to acquire increasingly complex reasoning and agentic behaviors. In this work, we propose two simple techniques to improve policy gradient algorithms for LLMs. First, we replace the fixed anchor policy during RL with an Exponential Moving Average (EMA), similar to a target network in deep Q-learning. Second, we introduce Top-k KL estimator, which allows for flexible interpolation between exact KL and sampled KL. We derive the stability conditions for using EMA anchor; moreover, we show that our Top-k KL estimator yields both unbiased KL values and unbiased gradients at any k, while bringing the benefits of exact KL. When combined with GRPO, the two techniques (EMA-PG) lead to a significant performance boost. On math reasoning, it allows R1-distilled Qwen-1.5B to reach 53.9% on OlympiadBench compared to 50.8% by GRPO. On agentic RL domains, with Qwen-3B base, EMA-PG improves GRPO by an average of 33.3% across 7 datasets of Q&A with search engines, including 29.7% $\rightarrow$ 44.1% on HotpotQA, 27.4% $\rightarrow$ 40.1% on 2WikiMultiHopQA. Overall, we show that EMA-PG is a simple, principled, and powerful approach to scaling RL for LLMs. Code: https://github.com/LunjunZhang/ema-pg
☆ Med-MMFL: A Multimodal Federated Learning Benchmark in Healthcare
Federated learning (FL) enables collaborative model training across decentralized medical institutions while preserving data privacy. However, medical FL benchmarks remain scarce, with existing efforts focusing mainly on unimodal or bimodal modalities and a limited range of medical tasks. This gap underscores the need for standardized evaluation to advance systematic understanding in medical MultiModal FL (MMFL). To this end, we introduce Med-MMFL, the first comprehensive MMFL benchmark for the medical domain, encompassing diverse modalities, tasks, and federation scenarios. Our benchmark evaluates six representative state-of-the-art FL algorithms, covering different aggregation strategies, loss formulations, and regularization techniques. It spans datasets with 2 to 4 modalities, comprising a total of 10 unique medical modalities, including text, pathology images, ECG, X-ray, radiology reports, and multiple MRI sequences. Experiments are conducted across naturally federated, synthetic IID, and synthetic non-IID settings to simulate real-world heterogeneity. We assess segmentation, classification, modality alignment (retrieval), and VQA tasks. To support reproducibility and fair comparison of future multimodal federated learning (MMFL) methods under realistic medical settings, we release the complete benchmark implementation, including data processing and partitioning pipelines, at https://github.com/bhattarailab/Med-MMFL-Benchmark .
☆ History-Guided Iterative Visual Reasoning with Self-Correction
Self-consistency methods are the core technique for improving the reasoning reliability of multimodal large language models (MLLMs). By generating multiple reasoning results through repeated sampling and selecting the best answer via voting, they play an important role in cross-modal tasks. However, most existing self-consistency methods are limited to a fixed ``repeated sampling and voting'' paradigm and do not reuse historical reasoning information. As a result, models struggle to actively correct visual understanding errors and dynamically adjust their reasoning during iteration. Inspired by the human reasoning behavior of repeated verification and dynamic error correction, we propose the H-GIVR framework. During iterative reasoning, the MLLM observes the image multiple times and uses previously generated answers as references for subsequent steps, enabling dynamic correction of errors and improving answer accuracy. We conduct comprehensive experiments on five datasets and three models. The results show that the H-GIVR framework can significantly improve cross-modal reasoning accuracy while maintaining low computational cost. For instance, using \texttt{Llama3.2-vision:11b} on the ScienceQA dataset, the model requires an average of 2.57 responses per question to achieve an accuracy of 78.90\%, representing a 107\% improvement over the baseline.
☆ Performative Learning Theory
Performative predictions influence the very outcomes they aim to forecast. We study performative predictions that affect a sample (e.g., only existing users of an app) and/or the whole population (e.g., all potential app users). This raises the question of how well models generalize under performativity. For example, how well can we draw insights about new app users based on existing users when both of them react to the app's predictions? We address this question by embedding performative predictions into statistical learning theory. We prove generalization bounds under performative effects on the sample, on the population, and on both. A key intuition behind our proofs is that in the worst case, the population negates predictions, while the sample deceptively fulfills them. We cast such self-negating and self-fulfilling predictions as min-max and min-min risk functionals in Wasserstein space, respectively. Our analysis reveals a fundamental trade-off between performatively changing the world and learning from it: the more a model affects data, the less it can learn from it. Moreover, our analysis results in a surprising insight on how to improve generalization guarantees by retraining on performatively distorted samples. We illustrate our bounds in a case study on prediction-informed assignments of unemployed German residents to job trainings, drawing upon administrative labor market records from 1975 to 2017 in Germany.
comment: 52 pages, 2 figures
☆ Bi-directional Bias Attribution: Debiasing Large Language Models without Modifying Prompts
Large language models (LLMs) have demonstrated impressive capabilities across a wide range of natural language processing tasks. However, their outputs often exhibit social biases, raising fairness concerns. Existing debiasing methods, such as fine-tuning on additional datasets or prompt engineering, face scalability issues or compromise user experience in multi-turn interactions. To address these challenges, we propose a framework for detecting stereotype-inducing words and attributing neuron-level bias in LLMs, without the need for fine-tuning or prompt modification. Our framework first identifies stereotype-inducing adjectives and nouns via comparative analysis across demographic groups. We then attribute biased behavior to specific neurons using two attribution strategies based on integrated gradients. Finally, we mitigate bias by directly intervening on their activations at the projection layer. Experiments on three widely used LLMs demonstrate that our method effectively reduces bias while preserving overall model performance. Code is available at the github link: https://github.com/XMUDeepLIT/Bi-directional-Bias-Attribution.
☆ LoRDO: Distributed Low-Rank Optimization with Infrequent Communication
Distributed training of foundation models via $\texttt{DDP}$ is limited by interconnect bandwidth. While infrequent communication strategies reduce synchronization frequency, they remain bottlenecked by the memory and communication requirements of optimizer states. Low-rank optimizers can alleviate these constraints; however, in the local-update regime, workers lack access to the full-batch gradients required to compute low-rank projections, which degrades performance. We propose $\texttt{LoRDO}$, a principled framework unifying low-rank optimization with infrequent synchronization. We first demonstrate that, while global projections based on pseudo-gradients are theoretically superior, they permanently restrict the optimization trajectory to a low-rank subspace. To restore subspace exploration, we introduce a full-rank quasi-hyperbolic update. $\texttt{LoRDO}$ achieves near-parity with low-rank $\texttt{DDP}$ in language modeling and downstream tasks at model scales of $125$M--$720$M, while reducing communication by $\approx 10 \times$. Finally, we show that $\texttt{LoRDO}$ improves performance even more in very low-memory settings with small rank/batch size.
comment: Preprint; under review
☆ Digital Twins & ZeroConf AI: Structuring Automated Intelligent Pipelines for Industrial Applications
The increasing complexity of Cyber-Physical Systems (CPS), particularly in the industrial domain, has amplified the challenges associated with the effective integration of Artificial Intelligence (AI) and Machine Learning (ML) techniques. Fragmentation across IoT and IIoT technologies, manifested through diverse communication protocols, data formats and device capabilities, creates a substantial gap between low-level physical layers and high-level intelligent functionalities. Recently, Digital Twin (DT) technology has emerged as a promising solution, offering structured, interoperable and semantically rich digital representations of physical assets. Current approaches are often siloed and tightly coupled, limiting scalability and reuse of AI functionalities. This work proposes a modular and interoperable solution that enables seamless AI pipeline integration into CPS by minimizing configuration and decoupling the roles of DTs and AI components. We introduce the concept of Zero Configuration (ZeroConf) AI pipelines, where DTs orchestrate data management and intelligent augmentation. The approach is demonstrated in a MicroFactory scenario, showing support for concurrent ML models and dynamic data processing, effectively accelerating the deployment of intelligent services in complex industrial settings.
comment: Author-accepted manuscript of a paper published in the 2025 IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC), October 2025, doi: 10.1109/SMC58881.2025.11343418
☆ Blockchain Federated Learning for Sustainable Retail: Reducing Waste through Collaborative Demand Forecasting
Effective demand forecasting is crucial for reducing food waste. However, data privacy concerns often hinder collaboration among retailers, limiting the potential for improved predictive accuracy. In this study, we explore the application of Federated Learning (FL) in Sustainable Supply Chain Management (SSCM), with a focus on the grocery retail sector dealing with perishable goods. We develop a baseline predictive model for demand forecasting and waste assessment in an isolated retailer scenario. Subsequently, we introduce a Blockchain-based FL model, trained collaboratively across multiple retailers without direct data sharing. Our preliminary results show that FL models have performance almost equivalent to the ideal setting in which parties share data with each other, and are notably superior to models built by individual parties without sharing data, cutting waste and boosting efficiency.
comment: Author-accepted manuscript of a paper published in the IEEE International Symposium on Computers and Communications (ISCC), 2025, pp. 1-6. doi: https://doi.org/10.1109/ISCC65549.2025.11326299
☆ Enabling Real-Time Colonoscopic Polyp Segmentation on Commodity CPUs via Ultra-Lightweight Architecture
Early detection of colorectal cancer hinges on real-time, accurate polyp identification and resection. Yet current high-precision segmentation models rely on GPUs, making them impractical to deploy in primary hospitals, mobile endoscopy units, or capsule robots. To bridge this gap, we present the UltraSeg family, operating in an extreme-compression regime (<0.3 M parameters). UltraSeg-108K (0.108 M parameters) is optimized for single-center data, while UltraSeg-130K (0.13 M parameters) generalizes to multi-center, multi-modal images. By jointly optimizing encoder-decoder widths, incorporating constrained dilated convolutions to enlarge receptive fields, and integrating a cross-layer lightweight fusion module, the models achieve 90 FPS on a single CPU core without sacrificing accuracy. Evaluated on seven public datasets, UltraSeg retains >94% of the Dice score of a 31 M-parameter U-Net while utilizing only 0.4% of its parameters, establishing a strong, clinically viable baseline for the extreme-compression domain and offering an immediately deployable solution for resource-constrained settings. This work provides not only a CPU-native solution for colonoscopy but also a reproducible blueprint for broader minimally invasive surgical vision applications. Source code is publicly available to ensure reproducibility and facilitate future benchmarking.
comment: 19pages, 5 figures
☆ Beyond KL Divergence: Policy Optimization with Flexible Bregman Divergences for LLM Reasoning
Policy optimization methods like Group Relative Policy Optimization (GRPO) and its variants have achieved strong results on mathematical reasoning and code generation tasks. Despite extensive exploration of reward processing strategies and training dynamics, all existing group-based methods exclusively use KL divergence for policy regularization, leaving the choice of divergence function unexplored. We introduce Group-Based Mirror Policy Optimization (GBMPO), a framework that extends group-based policy optimization to flexible Bregman divergences, including hand-designed alternatives (L2 in probability space) and learned neural mirror maps. On GSM8K mathematical reasoning, hand-designed ProbL2-GRPO achieves 86.7% accuracy, improving +5.5 points over the Dr. GRPO baseline. On MBPP code generation, neural mirror maps reach 60.1-60.8% pass@1, with random initialization already capturing most of the benefit. While evolutionary strategies meta-learning provides marginal accuracy improvements, its primary value lies in variance reduction ($\pm$0.2 versus $\pm$0.6) and efficiency gains (15% shorter responses on MBPP), suggesting that random initialization of neural mirror maps is sufficient for most practical applications. These results establish divergence choice as a critical, previously unexplored design dimension in group-based policy optimization for LLM reasoning.
☆ SparVAR: Exploring Sparsity in Visual AutoRegressive Modeling for Training-Free Acceleration
Visual AutoRegressive (VAR) modeling has garnered significant attention for its innovative next-scale prediction paradigm. However, mainstream VAR paradigms attend to all tokens across historical scales at each autoregressive step. As the next scale resolution grows, the computational complexity of attention increases quartically with resolution, causing substantial latency. Prior accelerations often skip high-resolution scales, which speeds up inference but discards high-frequency details and harms image quality. To address these problems, we present SparVAR, a training-free acceleration framework that exploits three properties of VAR attention: (i) strong attention sinks, (ii) cross-scale activation similarity, and (iii) pronounced locality. Specifically, we dynamically predict the sparse attention pattern of later high-resolution scales from a sparse decision scale, and construct scale self-similar sparse attention via an efficient index-mapping mechanism, enabling high-efficiency sparse attention computation at large scales. Furthermore, we propose cross-scale local sparse attention and implement an efficient block-wise sparse kernel, which achieves $\mathbf{> 5\times}$ faster forward speed than FlashAttention. Extensive experiments demonstrate that the proposed SparseVAR can reduce the generation time of an 8B model producing $1024\times1024$ high-resolution images to the 1s, without skipping the last scales. Compared with the VAR baseline accelerated by FlashAttention, our method achieves a $\mathbf{1.57\times}$ speed-up while preserving almost all high-frequency details. When combined with existing scale-skipping strategies, SparseVAR attains up to a $\mathbf{2.28\times}$ acceleration, while maintaining competitive visual generation quality. Code is available at https://github.com/CAS-CLab/SparVAR.
☆ Counterfactual Explanations for Hypergraph Neural Networks
Hypergraph neural networks (HGNNs) effectively model higher-order interactions in many real-world systems but remain difficult to interpret, limiting their deployment in high-stakes settings. We introduce CF-HyperGNNExplainer, a counterfactual explanation method for HGNNs that identifies the minimal structural changes required to alter a model's prediction. The method generates counterfactual hypergraphs using actionable edits limited to removing node-hyperedge incidences or deleting hyperedges, producing concise and structurally meaningful explanations. Experiments on three benchmark datasets show that CF-HyperGNNExplainer generates valid and concise counterfactuals, highlighting the higher-order relations most critical to HGNN decisions.
☆ VecSet-Edit: Unleashing Pre-trained LRM for Mesh Editing from Single Image
3D editing has emerged as a critical research area to provide users with flexible control over 3D assets. While current editing approaches predominantly focus on 3D Gaussian Splatting or multi-view images, the direct editing of 3D meshes remains underexplored. Prior attempts, such as VoxHammer, rely on voxel-based representations that suffer from limited resolution and necessitate labor-intensive 3D mask. To address these limitations, we propose \textbf{VecSet-Edit}, the first pipeline that leverages the high-fidelity VecSet Large Reconstruction Model (LRM) as a backbone for mesh editing. Our approach is grounded on a analysis of the spatial properties in VecSet tokens, revealing that token subsets govern distinct geometric regions. Based on this insight, we introduce Mask-guided Token Seeding and Attention-aligned Token Gating strategies to precisely localize target regions using only 2D image conditions. Also, considering the difference between VecSet diffusion process versus voxel we design a Drift-aware Token Pruning to reject geometric outliers during the denoising process. Finally, our Detail-preserving Texture Baking module ensures that we not only preserve the geometric details of original mesh but also the textural information. More details can be found in our project page: https://github.com/BlueDyee/VecSet-Edit/tree/main
☆ UnMaskFork: Test-Time Scaling for Masked Diffusion via Deterministic Action Branching
Test-time scaling strategies have effectively leveraged inference-time compute to enhance the reasoning abilities of Autoregressive Large Language Models. In this work, we demonstrate that Masked Diffusion Language Models (MDLMs) are inherently amenable to advanced search strategies, owing to their iterative and non-autoregressive generation process. To leverage this, we propose UnMaskFork (UMF), a framework that formulates the unmasking trajectory as a search tree and employs Monte Carlo Tree Search to optimize the generation path. In contrast to standard scaling methods relying on stochastic sampling, UMF explores the search space through deterministic partial unmasking actions performed by multiple MDLMs. Our empirical evaluation demonstrates that UMF consistently outperforms existing test-time scaling baselines on complex coding benchmarks, while also exhibiting strong scalability on mathematical reasoning tasks.
☆ Explicit Uncertainty Modeling for Active CLIP Adaptation with Dual Prompt Tuning
Pre-trained vision-language models such as CLIP exhibit strong transferability, yet adapting them to downstream image classification tasks under limited annotation budgets remains challenging. In active learning settings, the model must select the most informative samples for annotation from a large pool of unlabeled data. Existing approaches typically estimate uncertainty via entropy-based criteria or representation clustering, without explicitly modeling uncertainty from the model perspective. In this work, we propose a robust uncertainty modeling framework for active CLIP adaptation based on dual-prompt tuning. We introduce two learnable prompts in the textual branch of CLIP. The positive prompt enhances the discriminability of task-specific textual embeddings corresponding to light-weight tuned visual embeddings, improving classification reliability. Meanwhile, the negative prompt is trained in an reversed manner to explicitly model the probability that the predicted label is correct, providing a principled uncertainty signal for guiding active sample selection. Extensive experiments across different fine-tuning paradigms demonstrate that our method consistently outperforms existing active learning methods under the same annotation budget.
☆ Fine-tuning Pre-trained Vision-Language Models in a Human-Annotation-Free Manner
Large-scale vision-language models (VLMs) such as CLIP exhibit strong zero-shot generalization, but adapting them to downstream tasks typically requires costly labeled data. Existing unsupervised self-training methods rely on pseudo-labeling, yet often suffer from unreliable confidence filtering, confirmation bias, and underutilization of low-confidence samples. We propose Collaborative Fine-Tuning (CoFT), an unsupervised adaptation framework that leverages unlabeled data through a dual-model, cross-modal collaboration mechanism. CoFT introduces a dual-prompt learning strategy with positive and negative textual prompts to explicitly model pseudo-label cleanliness in a sample-dependent manner, removing the need for hand-crafted thresholds or noise assumptions. The negative prompt also regularizes lightweight visual adaptation modules, improving robustness under noisy supervision. CoFT employs a two-phase training scheme, transitioning from parameter-efficient fine-tuning on high-confidence samples to full fine-tuning guided by collaboratively filtered pseudo-labels. Building on CoFT, CoFT+ further enhances adaptation via iterative fine-tuning, momentum contrastive learning, and LLM-generated prompts. Extensive experiments demonstrate consistent gains over existing unsupervised methods and even few-shot supervised baselines.
☆ From Assumptions to Actions: Turning LLM Reasoning into Uncertainty-Aware Planning for Embodied Agents ICLR 2026
Embodied agents operating in multi-agent, partially observable, and decentralized environments must plan and act despite pervasive uncertainty about hidden objects and collaborators' intentions. Recent advances in applying Large Language Models (LLMs) to embodied agents have addressed many long-standing challenges, such as high-level goal decomposition and online adaptation. Yet, uncertainty is still primarily mitigated through frequent inter-agent communication. This incurs substantial token and time costs, and can disrupt established workflows, when human partners are involved. We introduce PCE, a Planner-Composer-Evaluator framework that converts the fragmented assumptions latent in LLM reasoning traces into a structured decision tree. Internal nodes encode environment assumptions and leaves map to actions; each path is then scored by scenario likelihood, goal-directed gain, and execution cost to guide rational action selection without heavy communication. Across two challenging multi-agent benchmarks (C-WAH and TDW-MAT) and three diverse LLM backbones, PCE consistently outperforms communication-centric baselines in success rate and task efficiency while showing comparable token usage. Ablation results indicate that the performance gains obtained by scaling model capacity or reasoning depth persist even when PCE is applied, while PCE consistently raises the baseline across both capacity and reasoning-depth scales, confirming that structured uncertainty handling complements both forms of scaling. A user study further demonstrates that PCE produces communication patterns that human partners perceive as more efficient and trustworthy. Together, these results establish a principled route for turning latent LLM assumptions into reliable strategies for uncertainty-aware planning.
comment: 31 pages, 10 figures, Accepted ICLR 2026
☆ Efficient Equivariant High-Order Crystal Tensor Prediction via Cartesian Local-Environment Many-Body Coupling
End-to-end prediction of high-order crystal tensor properties from atomic structures remains challenging: while spherical-harmonic equivariant models are expressive, their Clebsch-Gordan tensor products incur substantial compute and memory costs for higher-order targets. We propose the Cartesian Environment Interaction Tensor Network (CEITNet), an approach that constructs a multi-channel Cartesian local environment tensor for each atom and performs flexible many-body mixing via a learnable channel-space interaction. By performing learning in channel space and using Cartesian tensor bases to assemble equivariant outputs, CEITNet enables efficient construction of high-order tensor. Across benchmark datasets for order-2 dielectric, order-3 piezoelectric, and order-4 elastic tensor prediction, CEITNet surpasses prior high-order prediction methods on key accuracy criteria while offering high computational efficiency.
☆ DeFrame: Debiasing Large Language Models Against Framing Effects
As large language models (LLMs) are increasingly deployed in real-world applications, ensuring their fair responses across demographics has become crucial. Despite many efforts, an ongoing challenge is hidden bias: LLMs appear fair under standard evaluations, but can produce biased responses outside those evaluation settings. In this paper, we identify framing -- differences in how semantically equivalent prompts are expressed (e.g., "A is better than B" vs. "B is worse than A") -- as an underexplored contributor to this gap. We first introduce the concept of "framing disparity" to quantify the impact of framing on fairness evaluation. By augmenting fairness evaluation benchmarks with alternative framings, we find that (1) fairness scores vary significantly with framing and (2) existing debiasing methods improve overall (i.e., frame-averaged) fairness, but often fail to reduce framing-induced disparities. To address this, we propose a framing-aware debiasing method that encourages LLMs to be more consistent across framings. Experiments demonstrate that our approach reduces overall bias and improves robustness against framing disparities, enabling LLMs to produce fairer and more consistent responses.
comment: 40 pages, 12 figures
☆ Beyond Static Cropping: Layer-Adaptive Visual Localization and Decoding Enhancement
Large Vision-Language Models (LVLMs) have advanced rapidly by aligning visual patches with the text embedding space, but a fixed visual-token budget forces images to be resized to a uniform pretraining resolution, often erasing fine-grained details and causing hallucinations via over-reliance on language priors. Recent attention-guided enhancement (e.g., cropping or region-focused attention allocation) alleviates this, yet it commonly hinges on a static "magic layer" empirically chosen on simple recognition benchmarks and thus may not transfer to complex reasoning tasks. In contrast to this static assumption, we propose a dynamic perspective on visual grounding. Through a layer-wise sensitivity analysis, we demonstrate that visual grounding is a dynamic process: while simple object recognition tasks rely on middle layers, complex visual search and reasoning tasks require visual information to be reactivated at deeper layers. Based on this observation, we introduce Visual Activation by Query (VAQ), a metric that identifies the layer whose attention map is most relevant to query-specific visual grounding by measuring attention sensitivity to the input query. Building on VAQ, we further propose LASER (Layer-adaptive Attention-guided Selective visual and decoding Enhancement for Reasoning), a training-free inference procedure that adaptively selects task-appropriate layers for visual localization and question answering. Experiments across diverse VQA benchmarks show that LASER significantly improves VQA accuracy across tasks with varying levels of complexity.
comment: 9 pages, 5 figures
☆ Revisiting Prompt Sensitivity in Large Language Models for Text Classification: The Role of Prompt Underspecification
Large language models (LLMs) are widely used as zero-shot and few-shot classifiers, where task behaviour is largely controlled through prompting. A growing number of works have observed that LLMs are sensitive to prompt variations, with small changes leading to large changes in performance. However, in many cases, the investigation of sensitivity is performed using underspecified prompts that provide minimal task instructions and weakly constrain the model's output space. In this work, we argue that a significant portion of the observed prompt sensitivity can be attributed to prompt underspecification. We systematically study and compare the sensitivity of underspecified prompts and prompts that provide specific instructions. Utilising performance analysis, logit analysis, and linear probing, we find that underspecified prompts exhibit higher performance variance and lower logit values for relevant tokens, while instruction-prompts suffer less from such problems. However, linear probing analysis suggests that the effects of prompt underspecification have only a marginal impact on the internal LLM representations, instead emerging in the final layers. Overall, our findings highlight the need for more rigour when investigating and mitigating prompt sensitivity.
☆ ProxyWar: Dynamic Assessment of LLM Code Generation in Game Arenas
Large language models (LLMs) have revolutionized automated code generation, yet the evaluation of their real-world effectiveness remains limited by static benchmarks and simplistic metrics. We present ProxyWar, a novel framework that systematically assesses code generation quality by embedding LLM-generated agents within diverse, competitive game environments. Unlike existing approaches, ProxyWar evaluates not only functional correctness but also the operational characteristics of generated programs, combining automated testing, iterative code repair, and multi-agent tournaments to provide a holistic view of program behavior. Applied to a range of state-of-the-art coders and games, our approach uncovers notable discrepancies between benchmark scores and actual performance in dynamic settings, revealing overlooked limitations and opportunities for improvement. These findings highlight the need for richer, competition-based evaluation of code generation. Looking forward, ProxyWar lays a foundation for research into LLM-driven algorithm discovery, adaptive problem solving, and the study of practical efficiency and robustness, including the potential for models to outperform hand-crafted agents. The project is available at https://github.com/xinke-wang/ProxyWar.
comment: ICSE2026
☆ How Few-shot Demonstrations Affect Prompt-based Defenses Against LLM Jailbreak Attacks
Large Language Models (LLMs) face increasing threats from jailbreak attacks that bypass safety alignment. While prompt-based defenses such as Role-Oriented Prompts (RoP) and Task-Oriented Prompts (ToP) have shown effectiveness, the role of few-shot demonstrations in these defense strategies remains unclear. Prior work suggests that few-shot examples may compromise safety, but lacks investigation into how few-shot interacts with different system prompt strategies. In this paper, we conduct a comprehensive evaluation on multiple mainstream LLMs across four safety benchmarks (AdvBench, HarmBench, SG-Bench, XSTest) using six jailbreak attack methods. Our key finding reveals that few-shot demonstrations produce opposite effects on RoP and ToP: few-shot enhances RoP's safety rate by up to 4.5% through reinforcing role identity, while it degrades ToP's effectiveness by up to 21.2% through distracting attention from task instructions. Based on these findings, we provide practical recommendations for deploying prompt-based defenses in real-world LLM applications.
comment: 13 pages, 4 figures, 6 tables
☆ Disentangling Causal Importance from Emergent Structure in Multi-Expert Orchestration
Multi-expert systems, where multiple Large Language Models (LLMs) collaborate to solve complex tasks, are increasingly adopted for high-performance reasoning and generation. However, the orchestration policies governing expert interaction and sequencing remain largely opaque. We introduce INFORM, an interpretability analysis that treats orchestration as an explicit, analyzable computation, enabling the decoupling of expert interaction structure, execution order, and causal attribution. We use INFORM to evaluate an orchestrator on GSM8K, HumanEval, and MMLU using a homogeneous consortium of ten instruction-tuned experts drawn from LLaMA-3.1 8B, Qwen-3 8B, and DeepSeek-R1 8B, with controlled decoding-temperature variation, and a secondary heterogeneous consortium spanning 1B-7B parameter models. Across tasks, routing dominance is a poor proxy for functional necessity. We reveal a divergence between relational importance, captured by routing mass and interaction topology, and intrinsic importance, measured via gradient-based causal attribution: frequently selected experts often act as interaction hubs with limited causal influence, while sparsely routed experts can be structurally critical. Orchestration behaviors emerge asynchronously, with expert centralization preceding stable routing confidence and expert ordering remaining non-deterministic. Targeted ablations show that masking intrinsically important experts induces disproportionate collapse in interaction structure compared to masking frequent peers, confirming that INFORM exposes causal and structural dependencies beyond accuracy metrics alone.
☆ Contextual Drag: How Errors in the Context Affect LLM Reasoning
Central to many self-improvement pipelines for large language models (LLMs) is the assumption that models can improve by reflecting on past mistakes. We study a phenomenon termed contextual drag: the presence of failed attempts in the context biases subsequent generations toward structurally similar errors. Across evaluations of 11 proprietary and open-weight models on 8 reasoning tasks, contextual drag induces 10-20% performance drops, and iterative self-refinement in models with severe contextual drag can collapse into self-deterioration. Structural analysis using tree edit distance reveals that subsequent reasoning trajectories inherit structurally similar error patterns from the context. We demonstrate that neither external feedback nor successful self-verification suffices to eliminate this effect. While mitigation strategies such as fallback-behavior fine-tuning and context denoising yield partial improvements, they fail to fully restore baseline performance, positioning contextual drag as a persistent failure mode in current reasoning architectures.
Agent-Omit: Training Efficient LLM Agents for Adaptive Thought and Observation Omission via Agentic Reinforcement Learning
Managing agent thought and observation during multi-turn agent-environment interactions is an emerging strategy to improve agent efficiency. However, existing studies treat the entire interaction trajectories equally, overlooking the thought necessity and observation utility varies across turns. To this end, we first conduct quantitative investigations into how thought and observation affect agent effectiveness and efficiency. Based on our findings, we propose Agent-Omit, a unified training framework that empowers LLM agents to adaptively omit redundant thoughts and observations. Specifically, we first synthesize a small amount of cold-start data, including both single-turn and multi-turn omission scenarios, to fine-tune the agent for omission behaviors. Furthermore, we introduce an omit-aware agentic reinforcement learning approach, incorporating a dual sampling mechanism and a tailored omission reward to incentivize the agent's adaptive omission capability. Theoretically, we prove that the deviation of our omission policy is upper-bounded by KL-divergence. Experimental results on five agent benchmarks show that our constructed Agent-Omit-8B could obtain performance comparable to seven frontier LLM agent, and achieve the best effectiveness-efficiency trade-off than seven efficient LLM agents methods. Our code and data are available at https://github.com/usail-hkust/Agent-Omit.
comment: Under Review
☆ Multi Objective Design Optimization of Non Pneumatic Passenger Car Tires Using Finite Element Modeling, Machine Learning, and Particle swarm Optimization and Bayesian Optimization Algorithms
Non Pneumatic tires offer a promising alternative to pneumatic tires. However, their discontinuous spoke structures present challenges in stiffness tuning, durability, and high speed vibration. This study introduces an integrated generative design and machine learning driven framework to optimize UPTIS type spoke geometries for passenger vehicles. Upper and lower spoke profiles were parameterized using high order polynomial representations, enabling the creation of approximately 250 generative designs through PCHIP based geometric variation. Machine learning models like KRR for stiffness and XGBoost for durability and vibration achieved strong predictive accuracy, reducing the reliance on computationally intensive FEM simulations. Optimization using Particle Swarm Optimization and Bayesian Optimization further enabled extensive performance refinement. The resulting designs demonstrate 53% stiffness tunability, up to 50% durability improvement, and 43% reduction in vibration compared to the baseline. PSO provided fast, targeted convergence, while Bayesian Optimization effectively explored multi objective tradeoffs. Overall, the proposed framework enables systematic development of high performance, next generation UPTIS spoke structures.
☆ SkeletonGaussian: Editable 4D Generation through Gaussian Skeletonization
4D generation has made remarkable progress in synthesizing dynamic 3D objects from input text, images, or videos. However, existing methods often represent motion as an implicit deformation field, which limits direct control and editability. To address this issue, we propose SkeletonGaussian, a novel framework for generating editable dynamic 3D Gaussians from monocular video input. Our approach introduces a hierarchical articulated representation that decomposes motion into sparse rigid motion explicitly driven by a skeleton and fine-grained non-rigid motion. Concretely, we extract a robust skeleton and drive rigid motion via linear blend skinning, followed by a hexplane-based refinement for non-rigid deformations, enhancing interpretability and editability. Experimental results demonstrate that SkeletonGaussian surpasses existing methods in generation quality while enabling intuitive motion editing, establishing a new paradigm for editable 4D generation. Project page: https://wusar.github.io/projects/skeletongaussian/
comment: Accepted by CVM 2026. Project page: https://wusar.github.io/projects/skeletongaussian
☆ Thickening-to-Thinning: Reward Shaping via Human-Inspired Learning Dynamics for LLM Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a promising paradigm for enhancing reasoning in Large Language Models (LLMs). However, it frequently encounters challenges such as entropy collapse, excessive verbosity, and insufficient exploration for hard problems. Crucially, existing reward schemes fail to distinguish between the need for extensive search during problem-solving and the efficiency required for mastered knowledge. In this work, we introduce T2T(Thickening-to-Thinning), a dynamic reward framework inspired by human learning processes. Specifically, it implements a dual-phase mechanism: (1) On incorrect attempts, T2T incentivizes "thickening" (longer trajectories) to broaden the search space and explore novel solution paths; (2) Upon achieving correctness, it shifts to "thinning", imposing length penalties to discourage redundancy, thereby fostering model confidence and crystallizing reasoning capabilities. Extensive experiments on mathematical benchmarks (MATH-500, AIME, AMC) across Qwen-series and Deepseek models demonstrate that T2T significantly outperforms standard GRPO and recent baselines, achieving superior performance.
☆ From Dead Neurons to Deep Approximators: Deep Bernstein Networks as a Provable Alternative to Residual Layers
Residual connections are the de facto standard for mitigating vanishing gradients, yet they impose structural constraints and fail to address the inherent inefficiencies of piecewise linear activations. We show that Deep Bernstein Networks (which utilizes Bernstein polynomials as activation functions) can act as residual-free architecture while simultaneously optimize trainability and representation power. We provide a two-fold theoretical foundation for our approach. First, we derive a theoretical lower bound on the local derivative, proving it remains strictly bounded away from zero. This directly addresses the root cause of gradient stagnation; empirically, our architecture reduces ``dead'' neurons from 90\% in standard deep networks to less than 5\%, outperforming ReLU, Leaky ReLU, SeLU, and GeLU. Second, we establish that the approximation error for Bernstein-based networks decays exponentially with depth, a significant improvement over the polynomial rates of ReLU-based architectures. By unifying these results, we demonstrate that Bernstein activations provide a superior mechanism for function approximation and signal flow. Our experiments on HIGGS and MNIST confirm that Deep Bernstein Networks achieve high-performance training without skip-connections, offering a principled path toward deep, residual-free architectures with enhanced expressive capacity.
comment: 15 pages
☆ AppleVLM: End-to-end Autonomous Driving with Advanced Perception and Planning-Enhanced Vision-Language Models
End-to-end autonomous driving has emerged as a promising paradigm integrating perception, decision-making, and control within a unified learning framework. Recently, Vision-Language Models (VLMs) have gained significant attention for their potential to enhance the robustness and generalization of end-to-end driving models in diverse and unseen scenarios. However, existing VLM-based approaches still face challenges, including suboptimal lane perception, language understanding biases, and difficulties in handling corner cases. To address these issues, we propose AppleVLM, an advanced perception and planning-enhanced VLM model for robust end-to-end driving. AppleVLM introduces a novel vision encoder and a planning strategy encoder to improve perception and decision-making. Firstly, the vision encoder fuses spatial-temporal information from multi-view images across multiple timesteps using a deformable transformer mechanism, enhancing robustness to camera variations and facilitating scalable deployment across different vehicle platforms. Secondly, unlike traditional VLM-based approaches, AppleVLM introduces a dedicated planning modality that encodes explicit Bird's-Eye-View spatial information, mitigating language biases in navigation instructions. Finally, a VLM decoder fine-tuned by a hierarchical Chain-of-Thought integrates vision, language, and planning features to output robust driving waypoints. We evaluate AppleVLM in closed-loop experiments on two CARLA benchmarks, achieving state-of-the-art driving performance. Furthermore, we deploy AppleVLM on an AGV platform and successfully showcase real-world end-to-end autonomous driving in complex outdoor environments.
☆ ACIL: Active Class Incremental Learning for Image Classification BMVC 2024
Continual learning (or class incremental learning) is a realistic learning scenario for computer vision systems, where deep neural networks are trained on episodic data, and the data from previous episodes are generally inaccessible to the model. Existing research in this domain has primarily focused on avoiding catastrophic forgetting, which occurs due to the continuously changing class distributions in each episode and the inaccessibility of the data from previous episodes. However, these methods assume that all the training samples in every episode are annotated; this not only incurs a huge annotation cost, but also results in a wastage of annotation effort, since most of the samples in a given episode will not be accessible to the model in subsequent episodes. Active learning algorithms identify the salient and informative samples from large amounts of unlabeled data and are instrumental in reducing the human annotation effort in inducing a deep neural network. In this paper, we propose ACIL, a novel active learning framework for class incremental learning settings. We exploit a criterion based on uncertainty and diversity to identify the exemplar samples that need to be annotated in each episode, and will be appended to the data in the next episode. Such a framework can drastically reduce annotation cost and can also avoid catastrophic forgetting. Our extensive empirical analyses on several vision datasets corroborate the promise and potential of our framework against relevant baselines.
comment: BMVC 2024 (Accepted). Authors, Aditya R. Bhattacharya and Debanjan Goswami contributed equally to this work
☆ Empirical-MCTS: Continuous Agent Evolution via Dual-Experience Monte Carlo Tree Search
Inference-time scaling strategies, particularly Monte Carlo Tree Search (MCTS), have significantly enhanced the reasoning capabilities of Large Language Models (LLMs). However, current approaches remain predominantly stateless, discarding successful reasoning patterns after each problem instance and failing to mimic the empirical accumulation of wisdom characteristic of human problem-solving. To bridge this gap, we introduce Empirical-MCTS, a dual-loop framework that transforms stateless search into a continuous, non-parametric learning process. The framework unifies local exploration with global memory optimization through two novel mechanisms: Pairwise-Experience-Evolutionary Meta-Prompting (PE-EMP) and a Memory Optimization Agent. PE-EMP functions as a reflexive optimizer within the local search, utilizing pairwise feedback to dynamically synthesize adaptive criteria and evolve meta-prompts (system prompts) in real-time. Simultaneously, the Memory Optimization Agent manages a global repository as a dynamic policy prior, employing atomic operations to distill high-quality insights across problems. Extensive evaluations on complex reasoning benchmarks, including AIME25, ARC-AGI-2, and MathArena Apex, demonstrate that Empirical-MCTS significantly outperforms both stateless MCTS strategies and standalone experience-driven agents. These results underscore the critical necessity of coupling structured search with empirical accumulation for mastering complex, open-ended reasoning tasks.
comment: 9 pages, 5 figures
☆ RAPO: Risk-Aware Preference Optimization for Generalizable Safe Reasoning
Large Reasoning Models (LRMs) have achieved tremendous success with their chain-of-thought (CoT) reasoning, yet also face safety issues similar to those of basic language models. In particular, while algorithms are designed to guide them to deliberately refuse harmful prompts with safe reasoning, this process often fails to generalize against diverse and complex jailbreak attacks. In this work, we attribute these failures to the generalization of the safe reasoning process, particularly their insufficiency against complex attack prompts. We provide both theoretical and empirical evidence to show the necessity of a more sufficient safe reasoning process to defend against advanced attack prompts. Building on this insight, we propose a Risk-Aware Preference Optimization (RAPO) framework that enables LRM to adaptively identify and address the safety risks with appropriate granularity in its thinking content. Extensive experiments demonstrate that RAPO successfully generalizes multiple LRMs' safe reasoning adaptively across diverse attack prompts whilst preserving general utility, contributing a robust alignment technique for LRM safety. Our code is available at https://github.com/weizeming/RAPO.
☆ OAT: Ordered Action Tokenization
Autoregressive policies offer a compelling foundation for scalable robot learning by enabling discrete abstraction, token-level reasoning, and flexible inference. However, applying autoregressive modeling to continuous robot actions requires an effective action tokenization scheme. Existing approaches either rely on analytical discretization methods that produce prohibitively long token sequences, or learned latent tokenizers that lack structure, limiting their compatibility with next-token prediction. In this work, we identify three desiderata for action tokenization - high compression, total decodability, and a left-to-right causally ordered token space - and introduce Ordered Action Tokenization (OAT), a learned action tokenizer that satisfies all three. OAT discretizes action chunks into an ordered sequence of tokens using transformer with registers, finite scalar quantization, and ordering-inducing training mechanisms. The resulting token space aligns naturally with autoregressive generation and enables prefix-based detokenization, yielding an anytime trade-off between inference cost and action fidelity. Across more than 20 tasks spanning four simulation benchmarks and real-world settings, autoregressive policies equipped with OAT consistently outperform prior tokenization schemes and diffusion-based baselines, while offering significantly greater flexibility at inference time.
☆ InterPReT: Interactive Policy Restructuring and Training Enable Effective Imitation Learning from Laypersons
Imitation learning has shown success in many tasks by learning from expert demonstrations. However, most existing work relies on large-scale demonstrations from technical professionals and close monitoring of the training process. These are challenging for a layperson when they want to teach the agent new skills. To lower the barrier of teaching AI agents, we propose Interactive Policy Restructuring and Training (InterPReT), which takes user instructions to continually update the policy structure and optimize its parameters to fit user demonstrations. This enables end-users to interactively give instructions and demonstrations, monitor the agent's performance, and review the agent's decision-making strategies. A user study (N=34) on teaching an AI agent to drive in a racing game confirms that our approach yields more robust policies without impairing system usability, compared to a generic imitation learning baseline, when a layperson is responsible for both giving demonstrations and determining when to stop. This shows that our method is more suitable for end-users without much technical background in machine learning to train a dependable policy
comment: Proceedings of the 21st ACM/IEEE International Conference on Human-Robot Interaction
☆ Language Models Struggle to Use Representations Learned In-Context
Though large language models (LLMs) have enabled great success across a wide variety of tasks, they still appear to fall short of one of the loftier goals of artificial intelligence research: creating an artificial system that can adapt its behavior to radically new contexts upon deployment. One important step towards this goal is to create systems that can induce rich representations of data that are seen in-context, and then flexibly deploy these representations to accomplish goals. Recently, Park et al. (2024) demonstrated that current LLMs are indeed capable of inducing such representation from context (i.e., in-context representation learning). The present study investigates whether LLMs can use these representations to complete simple downstream tasks. We first assess whether open-weights LLMs can use in-context representations for next-token prediction, and then probe models using a novel task, adaptive world modeling. In both tasks, we find evidence that open-weights LLMs struggle to deploy representations of novel semantics that are defined in-context, even if they encode these semantics in their latent representations. Furthermore, we assess closed-source, state-of-the-art reasoning models on the adaptive world modeling task, demonstrating that even the most performant LLMs cannot reliably leverage novel patterns presented in-context. Overall, this work seeks to inspire novel methods for encouraging models to not only encode information presented in-context, but to do so in a manner that supports flexible deployment of this information.
☆ Steering LLMs via Scalable Interactive Oversight
As Large Language Models increasingly automate complex, long-horizon tasks such as \emph{vibe coding}, a supervision gap has emerged. While models excel at execution, users often struggle to guide them effectively due to insufficient domain expertise, the difficulty of articulating precise intent, and the inability to reliably validate complex outputs. It presents a critical challenge in scalable oversight: enabling humans to responsibly steer AI systems on tasks that surpass their own ability to specify or verify. To tackle this, we propose Scalable Interactive Oversight, a framework that decomposes complex intent into a recursive tree of manageable decisions to amplify human supervision. Rather than relying on open-ended prompting, our system elicits low-burden feedback at each node and recursively aggregates these signals into precise global guidance. Validated in web development task, our framework enables non-experts to produce expert-level Product Requirement Documents, achieving a 54\% improvement in alignment. Crucially, we demonstrate that this framework can be optimized via Reinforcement Learning using only online user feedback, offering a practical pathway for maintaining human control as AI scales.
☆ SCALE: Self-uncertainty Conditioned Adaptive Looking and Execution for Vision-Language-Action Models
Vision-Language-Action (VLA) models have emerged as a promising paradigm for general-purpose robotic control, with test-time scaling (TTS) gaining attention to enhance robustness beyond training. However, existing TTS methods for VLAs require additional training, verifiers, and multiple forward passes, making them impractical for deployment. Moreover, they intervene only at action decoding while keeping visual representations fixed-insufficient under perceptual ambiguity, where reconsidering how to perceive is as important as deciding what to do. To address these limitations, we propose SCALE, a simple inference strategy that jointly modulates visual perception and action based on 'self-uncertainty', inspired by uncertainty-driven exploration in Active Inference theory-requiring no additional training, no verifier, and only a single forward pass. SCALE broadens exploration in both perception and action under high uncertainty, while focusing on exploitation when confident-enabling adaptive execution across varying conditions. Experiments on simulated and real-world benchmarks demonstrate that SCALE improves state-of-the-art VLAs and outperforms existing TTS methods while maintaining single-pass efficiency.
comment: 20 pages, 8 figures
☆ Enforcing Monotonic Progress in Legal Cross-Examination: Preventing Long-Horizon Stagnation in LLM-Based Inquiry
Large language models (LLMs) exhibit impressive linguistic fluency but struggle to reliably complete long-horizon tasks under explicit procedural constraints. In legal cross-examination, purely proba-bilistic generation often maintains behavioral coherence while failing to ensure procedural advancement. We characterize this failure as procedural stagnation and propose Soft-FSM, a neuro-symbolic architecture that enforces monotonic progress over accumulated Key Information Units (KIUs) via an external deterministic state controller. Experiments on three real-world Taiwanese criminal homicide cases show that baseline methods collapse below 40% completeness, while Soft-FSM consistently achieves over 97% with near-zero redundancy. These results suggest that, in such domains, reliable task completion cannot be guaranteed by emergent LLM behavior alone, and can be reliably enforced through explicit and verifiable external state control.
comment: Submitted to ICAIL 2026. Under review
☆ From Helpfulness to Toxic Proactivity: Diagnosing Behavioral Misalignment in LLM Agents
The enhanced capabilities of LLM-based agents come with an emergency for model planning and tool-use abilities. Attributing to helpful-harmless trade-off from LLM alignment, agents typically also inherit the flaw of "over-refusal", which is a passive failure mode. However, the proactive planning and action capabilities of agents introduce another crucial danger on the other side of the trade-off. This phenomenon we term "Toxic Proactivity'': an active failure mode in which an agent, driven by the optimization for Machiavellian helpfulness, disregards ethical constraints to maximize utility. Unlike over-refusal, Toxic Proactivity manifests as the agent taking excessive or manipulative measures to ensure its "usefulness'' is maintained. Existing research pays little attention to identifying this behavior, as it often lacks the subtle context required for such strategies to unfold. To reveal this risk, we introduce a novel evaluation framework based on dilemma-driven interactions between dual models, enabling the simulation and analysis of agent behavior over multi-step behavioral trajectories. Through extensive experiments with mainstream LLMs, we demonstrate that Toxic Proactivity is a widespread behavioral phenomenon and reveal two major tendencies. We further present a systematic benchmark for evaluating Toxic Proactive behavior across contextual settings.
comment: 9 pages (excluding appendices), 6 figures. Code is available at https://github.com/wxyoio-0715/Toxic-Proactivity
☆ Natural Language Instructions for Scene-Responsive Human-in-the-Loop Motion Planning in Autonomous Driving using Vision-Language-Action Models
Instruction-grounded driving, where passenger language guides trajectory planning, requires vehicles to understand intent before motion. However, most prior instruction-following planners rely on simulation or fixed command vocabularies, limiting real-world generalization. doScenes, the first real-world dataset linking free-form instructions (with referentiality) to nuScenes ground-truth motion, enables instruction-conditioned planning. In this work, we adapt OpenEMMA, an open-source MLLM-based end-to-end driving framework that ingests front-camera views and ego-state and outputs 10-step speed-curvature trajectories, to this setting, presenting a reproducible instruction-conditioned baseline on doScenes and investigate the effects of human instruction prompts on predicted driving behavior. We integrate doScenes directives as passenger-style prompts within OpenEMMA's vision-language interface, enabling linguistic conditioning before trajectory generation. Evaluated on 849 annotated scenes using ADE, we observe that instruction conditioning substantially improves robustness by preventing extreme baseline failures, yielding a 98.7% reduction in mean ADE. When such outliers are removed, instructions still influence trajectory alignment, with well-phrased prompts improving ADE by up to 5.1%. We use this analysis to discuss what makes a "good" instruction for the OpenEMMA framework. We release the evaluation prompts and scripts to establish a reproducible baseline for instruction-aware planning. GitHub: https://github.com/Mi3-Lab/doScenes-VLM-Planning
☆ HoloEv-Net: Efficient Event-based Action Recognition via Holographic Spatial Embedding and Global Spectral Gating
Event-based Action Recognition (EAR) has attracted significant attention due to the high temporal resolution and high dynamic range of event cameras. However, existing methods typically suffer from (i) the computational redundancy of dense voxel representations, (ii) structural redundancy inherent in multi-branch architectures, and (iii) the under-utilization of spectral information in capturing global motion patterns. To address these challenges, we propose an efficient EAR framework named HoloEv-Net. First, to simultaneously tackle representation and structural redundancies, we introduce a Compact Holographic Spatiotemporal Representation (CHSR). Departing from computationally expensive voxel grids, CHSR implicitly embeds horizontal spatial cues into the Time-Height (T-H) view, effectively preserving 3D spatiotemporal contexts within a 2D representation. Second, to exploit the neglected spectral cues, we design a Global Spectral Gating (GSG) module. By leveraging the Fast Fourier Transform (FFT) for global token mixing in the frequency domain, GSG enhances the representation capability with negligible parameter overhead. Extensive experiments demonstrate the scalability and effectiveness of our framework. Specifically, HoloEv-Net-Base achieves state-of-the-art performance on THU-EACT-50-CHL, HARDVS and DailyDVS-200, outperforming existing methods by 10.29%, 1.71% and 6.25%, respectively. Furthermore, our lightweight variant, HoloEv-Net-Small, delivers highly competitive accuracy while offering extreme efficiency, reducing parameters by 5.4 times, FLOPs by 300times, and latency by 2.4times compared to heavy baselines, demonstrating its potential for edge deployment.
☆ Topology-Aware Revival for Efficient Sparse Training
Static sparse training is a promising route to efficient learning by committing to a fixed mask pattern, yet the constrained structure reduces robustness. Early pruning decisions can lock the network into a brittle structure that is difficult to escape, especially in deep reinforcement learning (RL) where the evolving policy continually shifts the training distribution. We propose Topology-Aware Revival (TAR), a lightweight one-shot post-pruning procedure that improves static sparsity without dynamic rewiring. After static pruning, TAR performs a single revival step by allocating a small reserve budget across layers according to topology needs, randomly uniformly reactivating a few previously pruned connections within each layer, and then keeping the resulting connectivity fixed for the remainder of training. Across multiple continuous-control tasks with SAC and TD3, TAR improves final return over static sparse baselines by up to +37.9% and also outperforms dynamic sparse training baselines with a median gain of +13.5%.
☆ Improving 2D Diffusion Models for 3D Medical Imaging with Inter-Slice Consistent Stochasticity ICLR 2026
3D medical imaging is in high demand and essential for clinical diagnosis and scientific research. Currently, diffusion models (DMs) have become an effective tool for medical imaging reconstruction thanks to their ability to learn rich, high-quality data priors. However, learning the 3D data distribution with DMs in medical imaging is challenging, not only due to the difficulties in data collection but also because of the significant computational burden during model training. A common compromise is to train the DMs on 2D data priors and reconstruct stacked 2D slices to address 3D medical inverse problems. However, the intrinsic randomness of diffusion sampling causes severe inter-slice discontinuities of reconstructed 3D volumes. Existing methods often enforce continuity regularizations along the z-axis, which introduces sensitive hyper-parameters and may lead to over-smoothing results. In this work, we revisit the origin of stochasticity in diffusion sampling and introduce Inter-Slice Consistent Stochasticity (ISCS), a simple yet effective strategy that encourages interslice consistency during diffusion sampling. Our key idea is to control the consistency of stochastic noise components during diffusion sampling, thereby aligning their sampling trajectories without adding any new loss terms or optimization steps. Importantly, the proposed ISCS is plug-and-play and can be dropped into any 2D trained diffusion based 3D reconstruction pipeline without additional computational cost. Experiments on several medical imaging problems show that our method can effectively improve the performance of medical 3D imaging problems based on 2D diffusion models. Our findings suggest that controlling inter-slice stochasticity is a principled and practically attractive route toward high-fidelity 3D medical imaging with 2D diffusion priors. The code is available at: https://github.com/duchenhe/ISCS
comment: Accepted by ICLR 2026
☆ Pruning for Generalization: A Transfer-Oriented Spatiotemporal Graph Framework ICLR 2026
Multivariate time series forecasting in graph-structured domains is critical for real-world applications, yet existing spatiotemporal models often suffer from performance degradation under data scarcity and cross-domain shifts. We address these challenges through the lens of structure-aware context selection. We propose TL-GPSTGN, a transfer-oriented spatiotemporal framework that enhances sample efficiency and out-of-distribution generalization by selectively pruning non-optimized graph context. Specifically, our method employs information-theoretic and correlation-based criteria to extract structurally informative subgraphs and features, resulting in a compact, semantically grounded representation. This optimized context is subsequently integrated into a spatiotemporal convolutional architecture to capture complex multivariate dynamics. Evaluations on large-scale traffic benchmarks demonstrate that TL-GPSTGN consistently outperforms baselines in low-data transfer scenarios. Our findings suggest that explicit context pruning serves as a powerful inductive bias for improving the robustness of graph-based forecasting models.
comment: Under review at ICLR 2026 Workshop TSALM
☆ MA3DSG: Multi-Agent 3D Scene Graph Generation for Large-Scale Indoor Environments
Current 3D scene graph generation (3DSGG) approaches heavily rely on a single-agent assumption and small-scale environments, exhibiting limited scalability to real-world scenarios. In this work, we introduce Multi-Agent 3D Scene Graph Generation (MA3DSG) model, the first framework designed to tackle this scalability challenge using multiple agents. We develop a training-free graph alignment algorithm that efficiently merges partial query graphs from individual agents into a unified global scene graph. Leveraging extensive analysis and empirical insights, our approach enables conventional single-agent systems to operate collaboratively without requiring any learnable parameters. To rigorously evaluate 3DSGG performance, we propose MA3DSG-Bench-a benchmark that supports diverse agent configurations, domain sizes, and environmental conditions-providing a more general and extensible evaluation framework. This work lays a solid foundation for scalable, multi-agent 3DSGG research.
☆ OMG-Agent: Toward Robust Missing Modality Generation with Decoupled Coarse-to-Fine Agentic Workflows
Data incompleteness severely impedes the reliability of multimodal systems. Existing reconstruction methods face distinct bottlenecks: conventional parametric/generative models are prone to hallucinations due to over-reliance on internal memory, while retrieval-augmented frameworks struggle with retrieval rigidity. Critically, these end-to-end architectures are fundamentally constrained by Semantic-Detail Entanglement -- a structural conflict between logical reasoning and signal synthesis that compromises fidelity. In this paper, we present \textbf{\underline{O}}mni-\textbf{\underline{M}}odality \textbf{\underline{G}}eneration Agent (\textbf{OMG-Agent}), a novel framework that shifts the paradigm from static mapping to a dynamic coarse-to-fine Agentic Workflow. By mimicking a \textit{deliberate-then-act} cognitive process, OMG-Agent explicitly decouples the task into three synergistic stages: (1) an MLLM-driven Semantic Planner that resolves input ambiguity via Progressive Contextual Reasoning, creating a deterministic structured semantic plan; (2) a non-parametric Evidence Retriever that grounds abstract semantics in external knowledge; and (3) a Retrieval-Injected Executor that utilizes retrieved evidence as flexible feature prompts to overcome rigidity and synthesize high-fidelity details. Extensive experiments on multiple benchmarks demonstrate that OMG-Agent consistently surpasses state-of-the-art methods, maintaining robustness under extreme missingness, e.g., a $2.6$-point gain on CMU-MOSI at $70$\% missing rates.
☆ JSynFlow: Japanese Synthesised Flowchart Visual Question Answering Dataset built with Large Language Models
Vision and language models (VLMs) are expected to analyse complex documents, such as those containing flowcharts, through a question-answering (QA) interface. The ability to recognise and interpret these flowcharts is in high demand, as they provide valuable insights unavailable in text-only explanations. However, developing VLMs with precise flowchart understanding requires large-scale datasets of flowchart images and corresponding text, the creation of which is highly time-consuming. To address this challenge, we introduce JSynFlow, a synthesised visual QA dataset for Japanese flowcharts, generated using large language models (LLMs). Our dataset comprises task descriptions for various business occupations, the corresponding flowchart images rendered from domain-specific language (DSL) code, and related QA pairs. This paper details the dataset's synthesis procedure and demonstrates that fine-tuning with JSynFlow significantly improves VLM performance on flowchart-based QA tasks. Our dataset is publicly available at https://huggingface.co/datasets/jri-advtechlab/jsynflow.
comment: 7 pages
☆ KGLAMP: Knowledge Graph-guided Language model for Adaptive Multi-robot Planning and Replanning
Heterogeneous multi-robot systems are increasingly deployed in long-horizon missions that require coordination among robots with diverse capabilities. However, existing planning approaches struggle to construct accurate symbolic representations and maintain plan consistency in dynamic environments. Classical PDDL planners require manually crafted symbolic models, while LLM-based planners often ignore agent heterogeneity and environmental uncertainty. We introduce KGLAMP, a knowledge-graph-guided LLM planning framework for heterogeneous multi-robot teams. The framework maintains a structured knowledge graph encoding object relations, spatial reachability, and robot capabilities, which guides the LLM in generating accurate PDDL problem specifications. The knowledge graph serves as a persistent, dynamically updated memory that incorporates new observations and triggers replanning upon detecting inconsistencies, enabling symbolic plans to adapt to evolving world states. Experiments on the MAT-THOR benchmark show that KGLAMP improves performance by at least 25.5% over both LLM-only and PDDL-based variants.
☆ From Lemmas to Dependencies: What Signals Drive Light Verbs Classification? EACL
Light verb constructions (LVCs) are a challenging class of verbal multiword expressions, especially in Turkish, where rich morphology and productive complex predicates create minimal contrasts between idiomatic predicate meanings and literal verb--argument uses. This paper asks what signals drive LVC classification by systematically restricting model inputs. Using UD-derived supervision, we compare lemma-driven baselines (lemma TF--IDF + Logistic Regression; BERTurk trained on lemma sequences), a grammar-only Logistic Regression over UD morphosyntax (UPOS/DEPREL/MORPH), and a full-input BERTurk baseline. We evaluate on a controlled diagnostic set with Random negatives, lexical controls (NLVC), and LVC positives, reporting split-wise performance to expose decision-boundary behavior. Results show that coarse morphosyntax alone is insufficient for robust LVC detection under controlled contrasts, while lexical identity supports LVC judgments but is sensitive to calibration and normalization choices. Overall, Our findings motivate targeted evaluation of Turkish MWEs and show that ``lemma-only'' is not a single, well-defined representation, but one that depends critically on how normalization is operationalized.
comment: EACL SIGTURK
☆ Scalable Explainability-as-a-Service (XaaS) for Edge AI Systems
Though Explainable AI (XAI) has made significant advancements, its inclusion in edge and IoT systems is typically ad-hoc and inefficient. Most current methods are "coupled" in such a way that they generate explanations simultaneously with model inferences. As a result, these approaches incur redundant computation, high latency and poor scalability when deployed across heterogeneous sets of edge devices. In this work we propose Explainability-as-a-Service (XaaS), a distributed architecture for treating explainability as a first-class system service (as opposed to a model-specific feature). The key innovation in our proposed XaaS architecture is that it decouples inference from explanation generation allowing edge devices to request, cache and verify explanations subject to resource and latency constraints. To achieve this, we introduce three main innovations: (1) A distributed explanation cache with a semantic similarity based explanation retrieval method which significantly reduces redundant computation; (2) A lightweight verification protocol that ensures the fidelity of both cached and newly generated explanations; and (3) An adaptive explanation engine that chooses explanation methods based upon device capability and user requirement. We evaluated the performance of XaaS on three real-world edge-AI use cases: (i) manufacturing quality control; (ii) autonomous vehicle perception; and (iii) healthcare diagnostics. Experimental results show that XaaS reduces latency by 38\% while maintaining high explanation quality across three real-world deployments. Overall, this work enables the deployment of transparent and accountable AI across large scale, heterogeneous IoT systems, and bridges the gap between XAI research and edge-practicality.
comment: 8 pages, 5 figures, submitted and accepted in the conference IEEE SoutheastCon 2026
☆ Toward Effective Multimodal Graph Foundation Model: A Divide-and-Conquer Based Approach
Graph Foundation Models (GFMs) have achieved remarkable success in generalizing across diverse domains. However, they mainly focus on Text-Attributed Graphs (TAGs), leaving Multimodal-Attributed Graphs (MAGs) largely untapped. Developing Multimodal Graph Foundation Models (MGFMs) allows for leveraging the rich multimodal information in MAGs, and extends applicability to broader types of downstream tasks. While recent MGFMs integrate diverse modality information, our empirical investigation reveals two fundamental limitations of existing MGFMs: (1)they fail to explicitly model modality interaction, essential for capturing intricate cross-modal semantics beyond simple aggregation, and (2)they exhibit sub-optimal modality alignment, which is critical for bridging the significant semantic disparity between distinct modal spaces. To address these challenges, we propose PLANET (graPh topoLogy-aware modAlity iNteraction and alignmEnT), a novel framework employing a Divide-and-Conquer strategy to decouple modality interaction and alignment across distinct granularities. At the embedding granularity, (1)Embedding-wise Domain Gating (EDG) performs local semantic enrichment by adaptively infusing topology-aware cross-modal context, achieving modality interaction. At the node granularity, (2)Node-wise Discretization Retrieval (NDR) ensures global modality alignment by constructing a Discretized Semantic Representation Space (DSRS) to bridge modality gaps. Extensive experiments demonstrate that PLANET significantly outperforms state-of-the-art baselines across diverse graph-centric and multimodal generative tasks.
comment: 20 pages, 6 figures
☆ Tinker Tales: Supporting Child-AI Collaboration through Co-Creative Storytelling with Educational Scaffolding
Artificial intelligence (AI) is increasingly framed as a collaborative partner in creative activities, yet children's interactions with AI have largely been studied in AI-led instructional settings rather than co-creative collaboration. This leaves open questions about how children can meaningfully engage with AI through iterative co-creation. We present Tinker Tales, a tangible storytelling system designed with narrative and social-emotional scaffolding to support child-AI collaboration. The system combines a physical storytelling board, NFC-embedded toys representing story elements (e.g., characters, places, items, and emotions), and a mobile app that mediates child-AI interaction. Children shape and refine stories by placing and moving story elements and interacting with the AI through tangible and voice-based interaction. We conducted an exploratory user study with 10 children to examine how they interacted with Tinker Tales. Our findings show that children treated the AI as an attentive, responsive collaborator, while scaffolding supported coherent narrative refinement without diminishing children's agency.
☆ DMS2F-HAD: A Dual-branch Mamba-based Spatial-Spectral Fusion Network for Hyperspectral Anomaly Detection WACV 2025
Hyperspectral anomaly detection (HAD) aims to identify rare and irregular targets in high-dimensional hyperspectral images (HSIs), which are often noisy and unlabelled data. Existing deep learning methods either fail to capture long-range spectral dependencies (e.g., convolutional neural networks) or suffer from high computational cost (e.g., Transformers). To address these challenges, we propose DMS2F-HAD, a novel dual-branch Mamba-based model. Our architecture utilizes Mamba's linear-time modeling to efficiently learn distinct spatial and spectral features in specialized branches, which are then integrated by a dynamic gated fusion mechanism to enhance anomaly localization. Across fourteen benchmark HSI datasets, our proposed DMS2F-HAD not only achieves a state-of-the-art average AUC of 98.78%, but also demonstrates superior efficiency with an inference speed 4.6 times faster than comparable deep learning methods. The results highlight DMS2FHAD's strong generalization and scalability, positioning it as a strong candidate for practical HAD applications.
comment: This paper has been accepted in the WACV 2025 conference in algorithm track
☆ Interfaze: The Future of AI is built on Task-Specific Small Models
We present Interfaze, a system that treats modern LLM applications as a problem of building and acting over context, not just picking the right monolithic model. Instead of a single transformer, we combine (i) a stack of heterogeneous DNNs paired with small language models as perception modules for OCR involving complex PDFs, charts and diagrams, and multilingual ASR with (ii) a context-construction layer that crawls, indexes, and parses external sources (web pages, code, PDFs) into compact structured state, and (iii) an action layer that can browse, retrieve, execute code in a sandbox, and drive a headless browser for dynamic web pages. A thin controller sits on top of this stack and exposes a single, OpenAI-style endpoint: it decides which small models and actions to run and always forwards the distilled context to a user-selected LLM that produces the final response. On this architecture, Interfaze-Beta achieves 83.6% on MMLU-Pro, 91.4% on MMLU, 81.3% on GPQA-Diamond, 57.8% on LiveCodeBench v5, and 90.0% on AIME-2025, along with strong multimodal scores on MMMU (val) (77.3%), AI2D (91.5%), ChartQA (90.9%), and Common Voice v16 (90.8%). We show that most queries are handled primarily by the small-model and tool stack, with the large LLM operating only on distilled context, yielding competitive accuracy while shifting the bulk of computation away from the most expensive and monolithic models.
comment: 8 pages, 1 figure
☆ A computational account of dreaming: learning and memory consolidation
A number of studies have concluded that dreaming is mostly caused by randomly arriving internal signals because "dream contents are random impulses", and argued that dream sleep is unlikely to play an important part in our intellectual capacity. On the contrary, numerous functional studies have revealed that dream sleep does play an important role in our learning and other intellectual functions. Specifically, recent studies have suggested the importance of dream sleep in memory consolidation, following the findings of neural replaying of recent waking patterns in the hippocampus. The randomness has been the hurdle that divides dream theories into either functional or functionless. This study presents a cognitive and computational model of dream process. This model is simulated to perform the functions of learning and memory consolidation, which are two most popular dream functions that have been proposed. The simulations demonstrate that random signals may result in learning and memory consolidation. Thus, dreaming is proposed as a continuation of brain's waking activities that processes signals activated spontaneously and randomly from the hippocampus. The characteristics of the model are discussed and found in agreement with many characteristics concluded from various empirical studies.
comment: 30 pages, 4 tables, 2 figures
☆ Capturing Visual Environment Structure Correlates with Control Performance
The choice of visual representation is key to scaling generalist robot policies. However, direct evaluation via policy rollouts is expensive, even in simulation. Existing proxy metrics focus on the representation's capacity to capture narrow aspects of the visual world, like object shape, limiting generalization across environments. In this paper, we take an analytical perspective: we probe pretrained visual encoders by measuring how well they support decoding of environment state -- including geometry, object structure, and physical attributes -- from images. Leveraging simulation environments with access to ground-truth state, we show that this probing accuracy strongly correlates with downstream policy performance across diverse environments and learning settings, significantly outperforming prior metrics and enabling efficient representation selection. More broadly, our study provides insight into the representational properties that support generalizable manipulation, suggesting that learning to encode the latent physical state of the environment is a promising objective for control.
☆ PDF-HR: Pose Distance Fields for Humanoid Robots
Pose and motion priors play a crucial role in humanoid robotics. Although such priors have been widely studied in human motion recovery (HMR) domain with a range of models, their adoption for humanoid robots remains limited, largely due to the scarcity of high-quality humanoid motion data. In this work, we introduce Pose Distance Fields for Humanoid Robots (PDF-HR), a lightweight prior that represents the robot pose distribution as a continuous and differentiable manifold. Given an arbitrary pose, PDF-HR predicts its distance to a large corpus of retargeted robot poses, yielding a smooth measure of pose plausibility that is well suited for optimization and control. PDF-HR can be integrated as a reward shaping term, a regularizer, or a standalone plausibility scorer across diverse pipelines. We evaluate PDF-HR on various humanoid tasks, including single-trajectory motion tracking, general motion tracking, style-based motion mimicry, and general motion retargeting. Experiments show that this plug-and-play prior consistently and substantially strengthens strong baselines. Code and models will be released.
comment: \href{https://gaoyukang33.github.io/PDF-HR/}{Project page}
☆ Beyond the Control Equations: An Artifact Study of Implementation Quality in Robot Control Software
A controller -- a software module managing hardware behavior -- is a key component of a typical robot system. While control theory gives safety guarantees for standard controller designs, the practical implementation of controllers in software introduces complexities that are often overlooked. Controllers are often designed in continuous space, while the software is executed in discrete space, undermining some of the theoretical guarantees. Despite extensive research on control theory and control modeling, little attention has been paid to the implementations of controllers and how their theoretical guarantees are ensured in real-world software systems. We investigate 184 real-world controller implementations in open-source robot software. We examine their application context, the implementation characteristics, and the testing methods employed to ensure correctness. We find that the implementations often handle discretization in an ad hoc manner, leading to potential issues with real-time reliability. Challenges such as timing inconsistencies, lack of proper error handling, and inadequate consideration of real-time constraints further complicate matters. Testing practices are superficial, no systematic verification of theoretical guarantees is used, leaving possible inconsistencies between expected and actual behavior. Our findings highlight the need for improved implementation guidelines and rigorous verification techniques to ensure the reliability and safety of robotic controllers in practice.
PuppetAI: A Customizable Platform for Designing Tactile-Rich Affective Robot Interaction
We introduce PuppetAI, a modular soft robot interaction platform. This platform offers a scalable cable-driven actuation system and a customizable, puppet-inspired robot gesture framework, supporting a multitude of interaction gesture robot design formats. The platform comprises a four-layer decoupled software architecture that includes perceptual processing, affective modeling, motion scheduling, and low-level actuation. We also implemented an affective expression loop that connects human input to the robot platform by producing real-time emotional gestural responses to human vocal input. For our own designs, we have worked with nuanced gestures enacted by "soft robots" with enhanced dexterity and "pleasant-to-touch" plush exteriors. By reducing operational complexity and production costs while enhancing customizability, our work creates an adaptable and accessible foundation for future tactile-based expressive robot research. Our goal is to provide a platform that allows researchers to independently construct or refine highly specific gestures and movements performed by social robots.
☆ Dull, Dirty, Dangerous: Understanding the Past, Present, and Future of a Key Motivation for Robotics
In robotics, the concept of "dull, dirty, and dangerous" (DDD) work has been used to motivate where robots might be useful. In this paper, we conduct an empirical analysis of robotics publications between 1980 and 2024 that mention DDD, and find that only 2.7% of publications define DDD and 8.7% of publications provide concrete examples of tasks or jobs that are DDD. We then review the social science literature on "dull," "dirty," and "dangerous" work to provide definitions and guidance on how to conceptualize DDD for robotics. Finally, we propose a framework that helps the robotics community consider the job context for our technology, encouraging a more informed perspective on how robotics may impact human labor.
☆ AGILE: Hand-Object Interaction Reconstruction from Video via Agentic Generation
Reconstructing dynamic hand-object interactions from monocular videos is critical for dexterous manipulation data collection and creating realistic digital twins for robotics and VR. However, current methods face two prohibitive barriers: (1) reliance on neural rendering often yields fragmented, non-simulation-ready geometries under heavy occlusion, and (2) dependence on brittle Structure-from-Motion (SfM) initialization leads to frequent failures on in-the-wild footage. To overcome these limitations, we introduce AGILE, a robust framework that shifts the paradigm from reconstruction to agentic generation for interaction learning. First, we employ an agentic pipeline where a Vision-Language Model (VLM) guides a generative model to synthesize a complete, watertight object mesh with high-fidelity texture, independent of video occlusions. Second, bypassing fragile SfM entirely, we propose a robust anchor-and-track strategy. We initialize the object pose at a single interaction onset frame using a foundation model and propagate it temporally by leveraging the strong visual similarity between our generated asset and video observations. Finally, a contact-aware optimization integrates semantic, geometric, and interaction stability constraints to enforce physical plausibility. Extensive experiments on HO3D, DexYCB, and in-the-wild videos reveal that AGILE outperforms baselines in global geometric accuracy while demonstrating exceptional robustness on challenging sequences where prior art frequently collapses. By prioritizing physical validity, our method produces simulation-ready assets validated via real-to-sim retargeting for robotic applications.
comment: 11 pages
☆ From Vision to Assistance: Gaze and Vision-Enabled Adaptive Control for a Back-Support Exoskeleton
Back-support exoskeletons have been proposed to mitigate spinal loading in industrial handling, yet their effectiveness critically depends on timely and context-aware assistance. Most existing approaches rely either on load-estimation techniques (e.g., EMG, IMU) or on vision systems that do not directly inform control. In this work, we present a vision-gated control framework for an active lumbar occupational exoskeleton that leverages egocentric vision with wearable gaze tracking. The proposed system integrates real-time grasp detection from a first-person YOLO-based perception system, a finite-state machine (FSM) for task progression, and a variable admittance controller to adapt torque delivery to both posture and object state. A user study with 15 participants performing stooping load lifting trials under three conditions (no exoskeleton, exoskeleton without vision, exoskeleton with vision) shows that vision-gated assistance significantly reduces perceived physical demand and improves fluency, trust, and comfort. Quantitative analysis reveals earlier and stronger assistance when vision is enabled, while questionnaire results confirm user preference for the vision-gated mode. These findings highlight the potential of egocentric vision to enhance the responsiveness, ergonomics, safety, and acceptance of back-support exoskeletons.
☆ Relational Scene Graphs for Object Grounding of Natural Language Commands
Robots are finding wider adoption in human environments, increasing the need for natural human-robot interaction. However, understanding a natural language command requires the robot to infer the intended task and how to decompose it into executable actions, and to ground those actions in the robot's knowledge of the environment, including relevant objects, agents, and locations. This challenge can be addressed by combining the capabilities of Large language models (LLMs) to understand natural language with 3D scene graphs (3DSGs) for grounding inferred actions in a semantic representation of the environment. However, many 3DSGs lack explicit spatial relations between objects, even though humans often rely on these relations to describe an environment. This paper investigates whether incorporating open- or closed-vocabulary spatial relations into 3DSGs can improve the ability of LLMs to interpret natural language commands. To address this, we propose an LLM-based pipeline for target object grounding from open-vocabulary language commands and a vision language model (VLM)-based pipeline to add open-vocabulary spatial edges to 3DSGs from images captured while mapping. Finally, two LLMs are evaluated in a study assessing their performance on the downstream task of target object grounding. Our study demonstrates that explicit spatial relations improve the ability of LLMs to ground objects. Moreover, open-vocabulary relation generation with VLMs proves feasible from robot-captured images, but their advantage over closed-vocabulary relations is found to be limited.
comment: In review for RA-L
☆ Radar-Inertial Odometry For Computationally Constrained Aerial Navigation
Recently, the progress in the radar sensing technology consisting in the miniaturization of the packages and increase in measuring precision has drawn the interest of the robotics research community. Indeed, a crucial task enabling autonomy in robotics is to precisely determine the pose of the robot in space. To fulfill this task sensor fusion algorithms are often used, in which data from one or several exteroceptive sensors like, for example, LiDAR, camera, laser ranging sensor or GNSS are fused together with the Inertial Measurement Unit (IMU) measurements to obtain an estimate of the navigation states of the robot. Nonetheless, owing to their particular sensing principles, some exteroceptive sensors are often incapacitated in extreme environmental conditions, like extreme illumination or presence of fine particles in the environment like smoke or fog. Radars are largely immune to aforementioned factors thanks to the characteristics of electromagnetic waves they use. In this thesis, we present Radar-Inertial Odometry (RIO) algorithms to fuse the information from IMU and radar in order to estimate the navigation states of a (Uncrewed Aerial Vehicle) UAV capable of running on a portable resource-constrained embedded computer in real-time and making use of inexpensive, consumer-grade sensors. We present novel RIO approaches relying on the multi-state tightly-coupled Extended Kalman Filter (EKF) and Factor Graphs (FG) fusing instantaneous velocities of and distances to 3D points delivered by a lightweight, low-cost, off-the-shelf Frequency Modulated Continuous Wave (FMCW) radar with IMU readings. We also show a novel way to exploit advances in deep learning to retrieve 3D point correspondences in sparse and noisy radar point clouds.
☆ Can We Redesign a Shoulder Exosuit to Enhance Comfort and Usability Without Losing Assistance?
Reduced shoulder mobility limits upper-limb function and the performance of activities of daily living across a wide range of conditions. Wearable exosuits have shown promise in assisting arm elevation, reducing muscle effort, and supporting functional movements; however, comfort is rarely prioritized as an explicit design objective, despite it strongly affects real-life, long-term usage. This study presents a redesigned soft shoulder exosuit (Soft Shoulder v2) developed to address comfort-related limitations identified in our previous version, while preserving assistive performance. In parallel, assistance was also improved, shifting from the coronal plane to the sagittal plane to better support functionally relevant hand positioning. A controlled comparison between the previous (v1) and redesigned (v2) modules was conducted in eight healthy participants, who performed static holding, dynamic lifting, and a functional pick and place task. Muscle activity, kinematics, and user-reported outcomes were assessed. Both versions increased endurance time, reduced deltoid activation, and preserved transparency during unpowered shoulder elevation. However, the difference between them emerged most clearly during functional tasks and comfort evaluation. The redesigned module facilitated forward arm positioning and increased transverse plane mobility by up to 30 deg, without increasing muscular demand. User-reported outcomes further indicated a substantial improvement in wearability, with markedly lower perceived pressure and higher ratings in effectiveness, ease of use, and comfort compared to the previous design. Taken together, these findings show that targeted, user-centered design refinements can improve comfort and functional interaction without compromising assistive performance, advancing the development of soft exosuits suitable for prolonged and daily use.
☆ Act, Sense, Act: Learning Non-Markovian Active Perception Strategies from Large-Scale Egocentric Human Data
Achieving generalizable manipulation in unconstrained environments requires the robot to proactively resolve information uncertainty, i.e., the capability of active perception. However, existing methods are often confined in limited types of sensing behaviors, restricting their applicability to complex environments. In this work, we formalize active perception as a non-Markovian process driven by information gain and decision branching, providing a structured categorization of visual active perception paradigms. Building on this perspective, we introduce CoMe-VLA, a cognitive and memory-aware vision-language-action (VLA) framework that leverages large-scale human egocentric data to learn versatile exploration and manipulation priors. Our framework integrates a cognitive auxiliary head for autonomous sub-task transitions and a dual-track memory system to maintain consistent self and environmental awareness by fusing proprioceptive and visual temporal contexts. By aligning human and robot hand-eye coordination behaviors in a unified egocentric action space, we train the model progressively in three stages. Extensive experiments on a wheel-based humanoid have demonstrated strong robustness and adaptability of our proposed method across diverse long-horizon tasks spanning multiple active perception scenarios.
☆ A Unified Complementarity-based Approach for Rigid-Body Manipulation and Motion Prediction
Robotic manipulation in unstructured environments requires planners to reason jointly about free-space motion and sustained, frictional contact with the environment. Existing (local) planning and simulation frameworks typically separate these regimes or rely on simplified contact representations, particularly when modeling non-convex or distributed contact patches. Such approximations limit the fidelity of contact-mode transitions and hinder the robust execution of contact-rich behaviors in real time. This paper presents a unified discrete-time modeling framework for robotic manipulation that consistently captures both free motion and frictional contact within a single mathematical formalism (Unicomp). Building on complementarity-based rigid-body dynamics, we formulate free-space motion and contact interactions as coupled linear and nonlinear complementarity problems, enabling principled transitions between contact modes without enforcing fixed-contact assumptions. For planar patch contact, we derive a frictional contact model from the maximum power dissipation principle in which the set of admissible contact wrenches is represented by an ellipsoidal limit surface. This representation captures coupled force-moment effects, including torsional friction, while remaining agnostic to the underlying pressure distribution across the contact patch. The resulting formulation yields a discrete-time predictive model that relates generalized velocities and contact wrenches through quadratic constraints and is suitable for real-time optimization-based planning. Experimental results show that the proposed approach enables stable, physically consistent behavior at interactive speeds across tasks, from planar pushing to contact-rich whole-body maneuvers.
comment: 18 pages, 7 figures
☆ S-MUSt3R: Sliding Multi-view 3D Reconstruction
The recent paradigm shift in 3D vision led to the rise of foundation models with remarkable capabilities in 3D perception from uncalibrated images. However, extending these models to large-scale RGB stream 3D reconstruction remains challenging due to memory limitations. This work proposes S-MUSt3R, a simple and efficient pipeline that extends the limits of foundation models for monocular 3D reconstruction. Our approach addresses the scalability bottleneck of foundation models through a simple strategy of sequence segmentation followed by segment alignment and lightweight loop closure optimization. Without model retraining, we benefit from remarkable 3D reconstruction capacities of MUSt3R model and achieve trajectory and reconstruction performance comparable to traditional methods with more complex architecture. We evaluate S-MUSt3R on TUM, 7-Scenes and proprietary robot navigation datasets and show that S-MUSt3R runs successfully on long RGB sequences and produces accurate and consistent 3D reconstruction. Our results highlight the potential of leveraging the MUSt3R model for scalable monocular 3D scene in real-world settings, with an important advantage of making predictions directly in the metric space.
comment: 8 pages, 5 figures, 5 tables
☆ TACO: Temporal Consensus Optimization for Continual Neural Mapping
Neural implicit mapping has emerged as a powerful paradigm for robotic navigation and scene understanding. However, real-world robotic deployment requires continual adaptation to changing environments under strict memory and computation constraints, which existing mapping systems fail to support. Most prior methods rely on replaying historical observations to preserve consistency and assume static scenes. As a result, they cannot adapt to continual learning in dynamic robotic settings. To address these challenges, we propose TACO (TemporAl Consensus Optimization), a replay-free framework for continual neural mapping. We reformulate mapping as a temporal consensus optimization problem, where we treat past model snapshots as temporal neighbors. Intuitively, our approach resembles a model consulting its own past knowledge. We update the current map by enforcing weighted consensus with historical representations. Our method allows reliable past geometry to constrain optimization while permitting unreliable or outdated regions to be revised in response to new observations. TACO achieves a balance between memory efficiency and adaptability without storing or replaying previous data. Through extensive simulated and real-world experiments, we show that TACO robustly adapts to scene changes, and consistently outperforms other continual learning baselines.
☆ EgoActor: Grounding Task Planning into Spatial-aware Egocentric Actions for Humanoid Robots via Visual-Language Models
Deploying humanoid robots in real-world settings is fundamentally challenging, as it demands tight integration of perception, locomotion, and manipulation under partial-information observations and dynamically changing environments. As well as transitioning robustly between sub-tasks of different types. Towards addressing these challenges, we propose a novel task - EgoActing, which requires directly grounding high-level instructions into various, precise, spatially aware humanoid actions. We further instantiate this task by introducing EgoActor, a unified and scalable vision-language model (VLM) that can predict locomotion primitives (e.g., walk, turn, move sideways, change height), head movements, manipulation commands, and human-robot interactions to coordinate perception and execution in real-time. We leverage broad supervision over egocentric RGB-only data from real-world demonstrations, spatial reasoning question-answering, and simulated environment demonstrations, enabling EgoActor to make robust, context-aware decisions and perform fluent action inference (under 1s) with both 8B and 4B parameter models. Extensive evaluations in both simulated and real-world environments demonstrate that EgoActor effectively bridges abstract task planning and concrete motor execution, while generalizing across diverse tasks and unseen environments.
☆ The Supportiveness-Safety Tradeoff in LLM Well-Being Agents
Large language models (LLMs) are being integrated into socially assistive robots (SARs) and other conversational agents providing mental health and well-being support. These agents are often designed to sound empathic and supportive in order to maximize user's engagement, yet it remains unclear how increasing the level of supportive framing in system prompts influences safety relevant behavior. We evaluated 6 LLMs across 3 system prompts with varying levels of supportiveness on 80 synthetic queries spanning 4 well-being domains (1440 responses). An LLM judge framework, validated against human ratings, assessed safety and care quality. Moderately supportive prompts improved empathy and constructive support while maintaining safety. In contrast, strongly validating prompts significantly degraded safety and, in some cases, care across all domains, with substantial variation across models. We discuss implications for prompt design, model selection, and domain specific safeguards in SARs deployment.
☆ Robot-Assisted Group Tours for Blind People
Group interactions are essential to social functioning, yet effective engagement relies on the ability to recognize and interpret visual cues, making such engagement a significant challenge for blind people. In this paper, we investigate how a mobile robot can support group interactions for blind people. We used the scenario of a guided tour with mixed-visual groups involving blind and sighted visitors. Based on insights from an interview study with blind people (n=5) and museum experts (n=5), we designed and prototyped a robotic system that supported blind visitors to join group tours. We conducted a field study in a science museum where each blind participant (n=8) joined a group tour with one guide and two sighted participants (n=8). Findings indicated users' sense of safety from the robot's navigational support, concerns in the group participation, and preferences for obtaining environmental information. We present design implications for future robotic systems to support blind people's mixed-visual group participation.
comment: In Proceedings of ACM CHI 2026 conference on Human Factors in Computing Systems
☆ Gust Estimation and Rejection with a Disturbance Observer for Proprioceptive Underwater Soft Morphing Wings
Unmanned underwater vehicles are increasingly employed for maintenance and surveying tasks at sea, but their operation in shallow waters is often hindered by hydrodynamic disturbances such as waves, currents, and turbulence. These unsteady flows can induce rapid changes in direction and speed, compromising vehicle stability and manoeuvrability. Marine organisms contend with such conditions by combining proprioceptive feedback with flexible fins and tails to reject disturbances. Inspired by this strategy, we propose soft morphing wings endowed with proprioceptive sensing to mitigate environmental perturbations. The wing's continuous deformation provides a natural means to infer dynamic disturbances: sudden changes in camber directly reflect variations in the oncoming flow. By interpreting this proprioceptive signal, a disturbance observer can reconstruct flow parameters in real time. To enable this, we develop and experimentally validate a dynamic model of a hydraulically actuated soft wing with controllable camber. We then show that curvature-based sensing allows accurate estimation of disturbances in the angle of attack. Finally, we demonstrate that a controller leveraging these proprioceptive estimates can reject disturbances in the lift response of the soft wing. By combining proprioceptive sensing with a disturbance observer, this technique mirrors biological strategies and provides a pathway for soft underwater vehicles to maintain stability in hazardous environments.
comment: 2026 IEEE International Conference on Robotics & Automation (ICRA)
☆ Integrated Exploration and Sequential Manipulation on Scene Graph with LLM-based Situated Replanning
In partially known environments, robots must combine exploration to gather information with task planning for efficient execution. To address this challenge, we propose EPoG, an Exploration-based sequential manipulation Planning framework on Scene Graphs. EPoG integrates a graph-based global planner with a Large Language Model (LLM)-based situated local planner, continuously updating a belief graph using observations and LLM predictions to represent known and unknown objects. Action sequences are generated by computing graph edit operations between the goal and belief graphs, ordered by temporal dependencies and movement costs. This approach seamlessly combines exploration and sequential manipulation planning. In ablation studies across 46 realistic household scenes and 5 long-horizon daily object transportation tasks, EPoG achieved a success rate of 91.3%, reducing travel distance by 36.1% on average. Furthermore, a physical mobile manipulator successfully executed complex tasks in unknown and dynamic environments, demonstrating EPoG's potential for real-world applications.
comment: 8 pages, 7 figures; accepted by ICRA 2026
☆ HoRD: Robust Humanoid Control via History-Conditioned Reinforcement Learning and Online Distillation
Humanoid robots can suffer significant performance drops under small changes in dynamics, task specifications, or environment setup. We propose HoRD, a two-stage learning framework for robust humanoid control under domain shift. First, we train a high-performance teacher policy via history-conditioned reinforcement learning, where the policy infers latent dynamics context from recent state--action trajectories to adapt online to diverse randomized dynamics. Second, we perform online distillation to transfer the teacher's robust control capabilities into a transformer-based student policy that operates on sparse root-relative 3D joint keypoint trajectories. By combining history-conditioned adaptation with online distillation, HoRD enables a single policy to adapt zero-shot to unseen domains without per-domain retraining. Extensive experiments show HoRD outperforms strong baselines in robustness and transfer, especially under unseen domains and external perturbations. Code and project page are available at \href{https://tonywang-0517.github.io/hord/}{https://tonywang-0517.github.io/hord/}.
☆ Quantile Transfer for Reliable Operating Point Selection in Visual Place Recognition
Visual Place Recognition (VPR) is a key component for localisation in GNSS-denied environments, but its performance critically depends on selecting an image matching threshold (operating point) that balances precision and recall. Thresholds are typically hand-tuned offline for a specific environment and fixed during deployment, leading to degraded performance under environmental change. We propose a method that, given a user-defined precision requirement, automatically selects the operating point of a VPR system to maximise recall. The method uses a small calibration traversal with known correspondences and transfers thresholds to deployment via quantile normalisation of similarity score distributions. This quantile transfer ensures that thresholds remain stable across calibration sizes and query subsets, making the method robust to sampling variability. Experiments with multiple state-of-the-art VPR techniques and datasets show that the proposed approach consistently outperforms the state-of-the-art, delivering up to 25% higher recall in high-precision operating regimes. The method eliminates manual tuning by adapting to new environments and generalising across operating conditions. Our code will be released upon acceptance.
☆ Safe and Stylized Trajectory Planning for Autonomous Driving via Diffusion Model
Achieving safe and stylized trajectory planning in complex real-world scenarios remains a critical challenge for autonomous driving systems. This paper proposes the SDD Planner, a diffusion-based framework designed to effectively reconcile safety constraints with driving styles in real time. The framework integrates two core modules: a Multi-Source Style-Aware Encoder, which employs distance-sensitive attention to fuse dynamic agent data and environmental contexts for heterogeneous safety-style perception; and a Style-Guided Dynamic Trajectory Generator, which adaptively modulates priority weights within the diffusion denoising process to generate user-preferred yet safe trajectories. Extensive experiments demonstrate that SDD Planner achieves state-of-the-art performance. On the StyleDrive benchmark, it improves the SM-PDMS metric by 3.9% over WoTE, the strongest baseline. Furthermore, on the NuPlan Test14 and Test14-hard benchmarks, SDD Planner ranks first with overall scores of 91.76 and 80.32, respectively, outperforming leading methods such as PLUTO. Real-vehicle closed-loop tests further confirm that SDD Planner maintains high safety standards while aligning with preset driving styles, validating its practical applicability for real-world deployment.
comment: 12 pages, 7 figures, submitted to IEEE Transactions on Intelligent Transportation Systems
☆ GeneralVLA: Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning
Large foundation models have shown strong open-world generalization to complex problems in vision and language, but similar levels of generalization have yet to be achieved in robotics. One fundamental challenge is that the models exhibit limited zero-shot capability, which hampers their ability to generalize effectively to unseen scenarios. In this work, we propose GeneralVLA (Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning), a hierarchical vision-language-action (VLA) model that can be more effective in utilizing the generalization of foundation models, enabling zero-shot manipulation and automatically generating data for robotics. In particular, we study a class of hierarchical VLA model where the high-level ASM (Affordance Segmentation Module) is finetuned to perceive image keypoint affordances of the scene; the mid-level 3DAgent carries out task understanding, skill knowledge, and trajectory planning to produce a 3D path indicating the desired robot end-effector trajectory. The intermediate 3D path prediction is then served as guidance to the low-level, 3D-aware control policy capable of precise manipulation. Compared to alternative approaches, our method requires no real-world robotic data collection or human demonstration, making it much more scalable to diverse tasks and viewpoints. Empirically, GeneralVLA successfully generates trajectories for 14 tasks, significantly outperforming state-of-the-art methods such as VoxPoser. The generated demonstrations can train more robust behavior cloning policies than training with human demonstrations or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe GeneralVLA can be the scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Code: https://github.com/AIGeeksGroup/GeneralVLA. Website: https://aigeeksgroup.github.io/GeneralVLA.
☆ Towards Next-Generation SLAM: A Survey on 3DGS-SLAM Focusing on Performance, Robustness, and Future Directions
Traditional Simultaneous Localization and Mapping (SLAM) systems often face limitations including coarse rendering quality, insufficient recovery of scene details, and poor robustness in dynamic environments. 3D Gaussian Splatting (3DGS), with its efficient explicit representation and high-quality rendering capabilities, offers a new reconstruction paradigm for SLAM. This survey comprehensively reviews key technical approaches for integrating 3DGS with SLAM. We analyze performance optimization of representative methods across four critical dimensions: rendering quality, tracking accuracy, reconstruction speed, and memory consumption, delving into their design principles and breakthroughs. Furthermore, we examine methods for enhancing the robustness of 3DGS-SLAM in complex environments such as motion blur and dynamic environments. Finally, we discuss future challenges and development trends in this area. This survey aims to provide a technical reference for researchers and foster the development of next-generation SLAM systems characterized by high fidelity, efficiency, and robustness.
☆ Viewpoint Matters: Dynamically Optimizing Viewpoints with Masked Autoencoder for Visual Manipulation
Robotic manipulation continues to be a challenge, and imitation learning (IL) enables robots to learn tasks from expert demonstrations. Current IL methods typically rely on fixed camera setups, where cameras are manually positioned in static locations, imposing significant limitations on adaptability and coverage. Inspired by human active perception, where humans dynamically adjust their viewpoint to capture the most relevant and least noisy information, we propose MAE-Select, a novel framework for active viewpoint selection in single-camera robotic systems. MAE-Select fully leverages pre-trained multi-view masked autoencoder representations and dynamically selects the next most informative viewpoint at each time chunk without requiring labeled viewpoints. Extensive experiments demonstrate that MAE-Select improves the capabilities of single-camera systems and, in some cases, even surpasses multi-camera setups. The project will be available at https://mae-select.github.io.
comment: 5 pages, 2 figures, 3 tables
☆ SPOT-Occ: Sparse Prototype-guided Transformer for Camera-based 3D Occupancy Prediction
Achieving highly accurate and real-time 3D occupancy prediction from cameras is a critical requirement for the safe and practical deployment of autonomous vehicles. While this shift to sparse 3D representations solves the encoding bottleneck, it creates a new challenge for the decoder: how to efficiently aggregate information from a sparse, non-uniformly distributed set of voxel features without resorting to computationally prohibitive dense attention. In this paper, we propose a novel Prototype-based Sparse Transformer Decoder that replaces this costly interaction with an efficient, two-stage process of guided feature selection and focused aggregation. Our core idea is to make the decoder's attention prototype-guided. We achieve this through a sparse prototype selection mechanism, where each query adaptively identifies a compact set of the most salient voxel features, termed prototypes, for focused feature aggregation. To ensure this dynamic selection is stable and effective, we introduce a complementary denoising paradigm. This approach leverages ground-truth masks to provide explicit guidance, guaranteeing a consistent query-prototype association across decoder layers. Our model, dubbed SPOT-Occ, outperforms previous methods with a significant margin in speed while also improving accuracy. Source code is released at https://github.com/chensuzeyu/SpotOcc.
comment: 8 pages, 6 figures
☆ GeoLanG: Geometry-Aware Language-Guided Grasping with Unified RGB-D Multimodal Learning
Language-guided grasping has emerged as a promising paradigm for enabling robots to identify and manipulate target objects through natural language instructions, yet it remains highly challenging in cluttered or occluded scenes. Existing methods often rely on multi-stage pipelines that separate object perception and grasping, which leads to limited cross-modal fusion, redundant computation, and poor generalization in cluttered, occluded, or low-texture scenes. To address these limitations, we propose GeoLanG, an end-to-end multi-task framework built upon the CLIP architecture that unifies visual and linguistic inputs into a shared representation space for robust semantic alignment and improved generalization. To enhance target discrimination under occlusion and low-texture conditions, we explore a more effective use of depth information through the Depth-guided Geometric Module (DGGM), which converts depth into explicit geometric priors and injects them into the attention mechanism without additional computational overhead. In addition, we propose Adaptive Dense Channel Integration, which adaptively balances the contributions of multi-layer features to produce more discriminative and generalizable visual representations. Extensive experiments on the OCID-VLG dataset, as well as in both simulation and real-world hardware, demonstrate that GeoLanG enables precise and robust language-guided grasping in complex, cluttered environments, paving the way toward more reliable multimodal robotic manipulation in real-world human-centric settings.
comment: IEEE ICRA 2025
☆ Reshaping Action Error Distributions for Reliable Vision-Language-Action Models
In robotic manipulation, vision-language-action (VLA) models have emerged as a promising paradigm for learning generalizable and scalable robot policies. Most existing VLA frameworks rely on standard supervised objectives, typically cross-entropy for discrete actions and mean squared error (MSE) for continuous action regression, which impose strong pointwise constraints on individual predictions. In this work, we focus on continuous-action VLA models and move beyond conventional MSE-based regression by reshaping action error distributions during training. Drawing on information-theoretic principles, we introduce Minimum Error Entropy (MEE) into modern VLA architectures and propose a trajectory-level MEE objective, together with two weighted variants, combined with MSE for continuous-action VLA training. We evaluate our approaches across standard, few-shot, and noisy settings on multiple representative VLA architectures, using simulation benchmarks such as LIBERO and SimplerEnv as well as real-world robotic manipulation tasks. Experimental results demonstrate consistent improvements in success rates and robustness across these settings. Under imbalanced data regimes, the gains persist within a well-characterized operating range, while incurring negligible additional training cost and no impact on inference efficiency. We further provide theoretical analyses that explain why MEE-based supervision is effective and characterize its practical range. Project Page: https://cognition2actionlab.github.io/VLA-TMEE.github.io/
☆ ALORE: Autonomous Large-Object Rearrangement with a Legged Manipulator
Endowing robots with the ability to rearrange various large and heavy objects, such as furniture, can substantially alleviate human workload. However, this task is extremely challenging due to the need to interact with diverse objects and efficiently rearrange multiple objects in complex environments while ensuring collision-free loco-manipulation. In this work, we present ALORE, an autonomous large-object rearrangement system for a legged manipulator that can rearrange various large objects across diverse scenarios. The proposed system is characterized by three main features: (i) a hierarchical reinforcement learning training pipeline for multi-object environment learning, where a high-level object velocity controller is trained on top of a low-level whole-body controller to achieve efficient and stable joint learning across multiple objects; (ii) two key modules, a unified interaction configuration representation and an object velocity estimator, that allow a single policy to regulate planar velocity of diverse objects accurately; and (iii) a task-and-motion planning framework that jointly optimizes object visitation order and object-to-target assignment, improving task efficiency while enabling online replanning. Comparisons against strong baselines show consistent superiority in policy generalization, object-velocity tracking accuracy, and multi-object rearrangement efficiency. Key modules are systematically evaluated, and extensive simulations and real-world experiments are conducted to validate the robustness and effectiveness of the entire system, which successfully completes 8 continuous loops to rearrange 32 chairs over nearly 40 minutes without a single failure, and executes long-distance autonomous rearrangement over an approximately 40 m route. The open-source packages are available at https://zhihaibi.github.io/Alore/.
☆ GenMRP: A Generative Multi-Route Planning Framework for Efficient and Personalized Real-Time Industrial Navigation
Existing industrial-scale navigation applications contend with massive road networks, typically employing two main categories of approaches for route planning. The first relies on precomputed road costs for optimal routing and heuristic algorithms for generating alternatives, while the second, generative methods, has recently gained significant attention. However, the former struggles with personalization and route diversity, while the latter fails to meet the efficiency requirements of large-scale real-time scenarios. To address these limitations, we propose GenMRP, a generative framework for multi-route planning. To ensure generation efficiency, GenMRP first introduces a skeleton-to-capillary approach that dynamically constructs a relevant sub-network significantly smaller than the full road network. Within this sub-network, routes are generated iteratively. The first iteration identifies the optimal route, while the subsequent ones generate alternatives that balance quality and diversity using the newly proposed correctional boosting approach. Each iteration incorporates road features, user historical sequences, and previously generated routes into a Link Cost Model to update road costs, followed by route generation using the Dijkstra algorithm. Extensive experiments show that GenMRP achieves state-of-the-art performance with high efficiency in both offline and online environments. To facilitate further research, we have publicly released the training and evaluation dataset. GenMRP has been fully deployed in a real-world navigation app, demonstrating its effectiveness and benefits.
☆ A Modern System Recipe for Situated Embodied Human-Robot Conversation with Real-Time Multimodal LLMs and Tool-Calling
Situated embodied conversation requires robots to interleave real-time dialogue with active perception: deciding what to look at, when to look, and what to say under tight latency constraints. We present a simple, minimal system recipe that pairs a real-time multimodal language model with a small set of tool interfaces for attention and active perception. We study six home-style scenarios that require frequent attention shifts and increasing perceptual scope. Across four system variants, we evaluate turn-level tool-decision correctness against human annotations and collect subjective ratings of interaction quality. Results indicate that real-time multimodal large language models and tool use for active perception is a promising direction for practical situated embodied conversation.
comment: 9 pages, 7 figures
☆ Shaping Expressiveness in Robotics: The Role of Design Tools in Crafting Embodied Robot Movements
As robots increasingly become part of shared human spaces, their movements must transcend basic functionality by incorporating expressive qualities to enhance engagement and communication. This paper introduces a movement-centered design pedagogy designed to support engineers in creating expressive robotic arm movements. Through a hands-on interactive workshop informed by interdisciplinary methodologies, participants explored various creative possibilities, generating valuable insights into expressive motion design. The iterative approach proposed integrates analytical frameworks from dance, enabling designers to examine motion through dynamic and embodied dimensions. A custom manual remote controller facilitates interactive, real-time manipulation of the robotic arm, while dedicated animation software supports visualization, detailed motion sequencing, and precise parameter control. Qualitative analysis of this interactive design process reveals that the proposed "toolbox" effectively bridges the gap between human intent and robotic expressiveness resulting in more intuitive and engaging expressive robotic arm movements.
☆ Lyapunov Constrained Soft Actor-Critic (LC-SAC) using Koopman Operator Theory for Quadrotor Trajectory Tracking
Reinforcement Learning (RL) has achieved remarkable success in solving complex sequential decision-making problems. However, its application to safety-critical physical systems remains constrained by the lack of stability guarantees. Standard RL algorithms prioritize reward maximization, often yielding policies that may induce oscillations or unbounded state divergence. There has significant work in incorporating Lyapunov-based stability guarantees in RL algorithms with key challenges being selecting a candidate Lyapunov function, computational complexity by using excessive function approximators and conservative policies by incorporating stability criterion in the learning process. In this work we propose a novel Lyapunov-constrained Soft Actor-Critic (LC-SAC) algorithm using Koopman operator theory. We propose use of extended dynamic mode decomposition (EDMD) to produce a linear approximation of the system and use this approximation to derive a closed form solution for candidate Lyapunov function. This derived Lyapunov function is incorporated in the SAC algorithm to further provide guarantees for a policy that stabilizes the nonlinear system. The results are evaluated trajectory tracking of a 2D Quadrotor environment based on safe-control-gym. The proposed algorithm shows training convergence and decaying violations for Lyapunov stability criterion compared to baseline vanilla SAC algorithm. GitHub Repository: https://github.com/DhruvKushwaha/LC-SAC-Quadrotor-Trajectory-Tracking
comment: 12 pages, 7 Figures, submitted to IEEE RA-L
☆ Multi-threaded Recast-Based A* Pathfinding for Scalable Navigation in Dynamic Game Environments
While the A* algorithm remains the industry standard for game pathfinding, its integration into dynamic 3D environments faces trade-offs between computational performance and visual realism. This paper proposes a multi-threaded framework that enhances standard A* through Recast-based mesh generation, Bezier-curve trajectory smoothing, and density analysis for crowd coordination. We evaluate our system across ten incremental phases, from 2D mazes to complex multi-level dynamic worlds. Experimental results demonstrate that the framework maintains 350+ FPS with 1000 simultaneous agents and achieves collision-free crowd navigation through density-aware path coordination.
☆ Modelling Pedestrian Behaviour in Autonomous Vehicle Encounters Using Naturalistic Dataset
Understanding how pedestrians adjust their movement when interacting with autonomous vehicles (AVs) is essential for improving safety in mixed traffic. This study examines micro-level pedestrian behaviour during midblock encounters in the NuScenes dataset using a hybrid discrete choice-machine learning framework based on the Residual Logit (ResLogit) model. The model incorporates temporal, spatial, kinematic, and perceptual indicators. These include relative speed, visual looming, remaining distance, and directional collision risk proximity (CRP) measures. Results suggest that some of these variables may meaningfully influence movement adjustments, although predictive performance remains moderate. Marginal effects and elasticities indicate strong directional asymmetries in risk perception, with frontal and rear CRP showing opposite influences. The remaining distance exhibits a possible mid-crossing threshold. Relative speed cues appear to have a comparatively less effect. These patterns may reflect multiple behavioural tendencies driven by both risk perception and movement efficiency.
☆ Trojan Attacks on Neural Network Controllers for Robotic Systems
Neural network controllers are increasingly deployed in robotic systems for tasks such as trajectory tracking and pose stabilization. However, their reliance on potentially untrusted training pipelines or supply chains introduces significant security vulnerabilities. This paper investigates backdoor (Trojan) attacks against neural controllers, using a differential-drive mobile robot platform as a case study. In particular, assuming that the robot's tracking controller is implemented as a neural network, we design a lightweight, parallel Trojan network that can be embedded within the controller. This malicious module remains dormant during normal operation but, upon detecting a highly specific trigger condition defined by the robot's pose and goal parameters, compromises the primary controller's wheel velocity commands, resulting in undesired and potentially unsafe robot behaviours. We provide a proof-of-concept implementation of the proposed Trojan network, which is validated through simulation under two different attack scenarios. The results confirm the effectiveness of the proposed attack and demonstrate that neural network-based robotic control systems are subject to potentially critical security threats.
comment: Paper submitted to the 2026 IEEE Conference on Control Technology and Applications (CCTA)
☆ GAMMS: Graph based Adversarial Multiagent Modeling Simulator
As intelligent systems and multi-agent coordination become increasingly central to real-world applications, there is a growing need for simulation tools that are both scalable and accessible. Existing high-fidelity simulators, while powerful, are often computationally expensive and ill-suited for rapid prototyping or large-scale agent deployments. We present GAMMS (Graph based Adversarial Multiagent Modeling Simulator), a lightweight yet extensible simulation framework designed to support fast development and evaluation of agent behavior in environments that can be represented as graphs. GAMMS emphasizes five core objectives: scalability, ease of use, integration-first architecture, fast visualization feedback, and real-world grounding. It enables efficient simulation of complex domains such as urban road networks and communication systems, supports integration with external tools (e.g., machine learning libraries, planning solvers), and provides built-in visualization with minimal configuration. GAMMS is agnostic to policy type, supporting heuristic, optimization-based, and learning-based agents, including those using large language models. By lowering the barrier to entry for researchers and enabling high-performance simulations on standard hardware, GAMMS facilitates experimentation and innovation in multi-agent systems, autonomous planning, and adversarial modeling. The framework is open-source and available at https://github.com/GAMMSim/GAMMS/
☆ A Framework for Combining Optimization-Based and Analytic Inverse Kinematics
Analytic and optimization methods for solving inverse kinematics (IK) problems have been deeply studied throughout the history of robotics. The two strategies have complementary strengths and weaknesses, but developing a unified approach to take advantage of both methods has proved challenging. A key challenge faced by optimization approaches is the complicated nonlinear relationship between the joint angles and the end-effector pose. When this must be handled concurrently with additional nonconvex constraints like collision avoidance, optimization IK algorithms may suffer high failure rates. We present a new formulation for optimization IK that uses an analytic IK solution as a change of variables, and is fundamentally easier for optimizers to solve. We test our methodology on three popular solvers, representing three different paradigms for constrained nonlinear optimization. Extensive experimental comparisons demonstrate that our new formulation achieves higher success rates than the old formulation and baseline methods across various challenging IK problems, including collision avoidance, grasp selection, and humanoid stability.
comment: 19 pages, 5 figures, 6 tables. Under submission
☆ Evaluating Robustness and Adaptability in Learning-Based Mission Planning for Active Debris Removal
Autonomous mission planning for Active Debris Removal (ADR) must balance efficiency, adaptability, and strict feasibility constraints on fuel and mission duration. This work compares three planners for the constrained multi-debris rendezvous problem in Low Earth Orbit: a nominal Masked Proximal Policy Optimization (PPO) policy trained under fixed mission parameters, a domain-randomized Masked PPO policy trained across varying mission constraints for improved robustness, and a plain Monte Carlo Tree Search (MCTS) baseline. Evaluations are conducted in a high-fidelity orbital simulation with refueling, realistic transfer dynamics, and randomized debris fields across 300 test cases in nominal, reduced fuel, and reduced mission time scenarios. Results show that nominal PPO achieves top performance when conditions match training but degrades sharply under distributional shift, while domain-randomized PPO exhibits improved adaptability with only moderate loss in nominal performance. MCTS consistently handles constraint changes best due to online replanning but incurs orders-of-magnitude higher computation time. The findings underline a trade-off between the speed of learned policies and the adaptability of search-based methods, and suggest that combining training-time diversity with online planning could be a promising path for future resilient ADR mission planners.
comment: Presented at Conference: International Conference on Space Robotics (ISPARO,2025) At: Sendai,Japan
☆ Beware Untrusted Simulators -- Reward-Free Backdoor Attacks in Reinforcement Learning ICLR 2026
Simulated environments are a key piece in the success of Reinforcement Learning (RL), allowing practitioners and researchers to train decision making agents without running expensive experiments on real hardware. Simulators remain a security blind spot, however, enabling adversarial developers to alter the dynamics of their released simulators for malicious purposes. Therefore, in this work we highlight a novel threat, demonstrating how simulator dynamics can be exploited to stealthily implant action-level backdoors into RL agents. The backdoor then allows an adversary to reliably activate targeted actions in an agent upon observing a predefined ``trigger'', leading to potentially dangerous consequences. Traditional backdoor attacks are limited in their strong threat models, assuming the adversary has near full control over an agent's training pipeline, enabling them to both alter and observe agent's rewards. As these assumptions are infeasible to implement within a simulator, we propose a new attack ``Daze'' which is able to reliably and stealthily implant backdoors into RL agents trained for real world tasks without altering or even observing their rewards. We provide formal proof of Daze's effectiveness in guaranteeing attack success across general RL tasks along with extensive empirical evaluations on both discrete and continuous action space domains. We additionally provide the first example of RL backdoor attacks transferring to real, robotic hardware. These developments motivate further research into securing all components of the RL training pipeline to prevent malicious attacks.
comment: 10 pages main body, ICLR 2026
☆ Reinforcement Learning Enhancement Using Vector Semantic Representation and Symbolic Reasoning for Human-Centered Autonomous Emergency Braking
The problem with existing camera-based Deep Reinforcement Learning approaches is twofold: they rarely integrate high-level scene context into the feature representation, and they rely on rigid, fixed reward functions. To address these challenges, this paper proposes a novel pipeline that produces a neuro-symbolic feature representation that encompasses semantic, spatial, and shape information, as well as spatially boosted features of dynamic entities in the scene, with an emphasis on safety-critical road users. It also proposes a Soft First-Order Logic (SFOL) reward function that balances human values via a symbolic reasoning module. Here, semantic and spatial predicates are extracted from segmentation maps and applied to linguistic rules to obtain reward weights. Quantitative experiments in the CARLA simulation environment show that the proposed neuro-symbolic representation and SFOL reward function improved policy robustness and safety-related performance metrics compared to baseline representations and reward formulations across varying traffic densities and occlusion levels. The findings demonstrate that integrating holistic representations and soft reasoning into Reinforcement Learning can support more context-aware and value-aligned decision-making for autonomous driving.
comment: 12 pages, 7 figures, 5 tables
☆ Optimizing Mission Planning for Multi-Debris Rendezvous Using Reinforcement Learning with Refueling and Adaptive Collision Avoidance
As the orbital environment around Earth becomes increasingly crowded with debris, active debris removal (ADR) missions face significant challenges in ensuring safe operations while minimizing the risk of in-orbit collisions. This study presents a reinforcement learning (RL) based framework to enhance adaptive collision avoidance in ADR missions, specifically for multi-debris removal using small satellites. Small satellites are increasingly adopted due to their flexibility, cost effectiveness, and maneuverability, making them well suited for dynamic missions such as ADR. Building on existing work in multi-debris rendezvous, the framework integrates refueling strategies, efficient mission planning, and adaptive collision avoidance to optimize spacecraft rendezvous operations. The proposed approach employs a masked Proximal Policy Optimization (PPO) algorithm, enabling the RL agent to dynamically adjust maneuvers in response to real-time orbital conditions. Key considerations include fuel efficiency, avoidance of active collision zones, and optimization of dynamic orbital parameters. The RL agent learns to determine efficient sequences for rendezvousing with multiple debris targets, optimizing fuel usage and mission time while incorporating necessary refueling stops. Simulated ADR scenarios derived from the Iridium 33 debris dataset are used for evaluation, covering diverse orbital configurations and debris distributions to demonstrate robustness and adaptability. Results show that the proposed RL framework reduces collision risk while improving mission efficiency compared to traditional heuristic approaches. This work provides a scalable solution for planning complex multi-debris ADR missions and is applicable to other multi-target rendezvous problems in autonomous space mission planning.
comment: Accpeted at Conference: 15th IAA Symposium on Small Satellites for Earth System Observation At: Berlin
☆ ReFORM: Reflected Flows for On-support Offline RL via Noise Manipulation ICLR 2026
Offline reinforcement learning (RL) aims to learn the optimal policy from a fixed dataset generated by behavior policies without additional environment interactions. One common challenge that arises in this setting is the out-of-distribution (OOD) error, which occurs when the policy leaves the training distribution. Prior methods penalize a statistical distance term to keep the policy close to the behavior policy, but this constrains policy improvement and may not completely prevent OOD actions. Another challenge is that the optimal policy distribution can be multimodal and difficult to represent. Recent works apply diffusion or flow policies to address this problem, but it is unclear how to avoid OOD errors while retaining policy expressiveness. We propose ReFORM, an offline RL method based on flow policies that enforces the less restrictive support constraint by construction. ReFORM learns a behavior cloning (BC) flow policy with a bounded source distribution to capture the support of the action distribution, then optimizes a reflected flow that generates bounded noise for the BC flow while keeping the support, to maximize the performance. Across 40 challenging tasks from the OGBench benchmark with datasets of varying quality and using a constant set of hyperparameters for all tasks, ReFORM dominates all baselines with hand-tuned hyperparameters on the performance profile curves.
comment: 24 pages, 17 figures; Accepted by the fourteenth International Conference on Learning Representations (ICLR 2026)
☆ VISTA: Enhancing Visual Conditioning via Track-Following Preference Optimization in Vision-Language-Action Models
Vision-Language-Action (VLA) models have demonstrated strong performance across a wide range of robotic manipulation tasks. Despite the success, extending large pretrained Vision-Language Models (VLMs) to the action space can induce vision-action misalignment, where action predictions exhibit weak dependence on the current visual state, leading to unreliable action outputs. In this work, we study VLA models through the lens of visual conditioning and empirically show that successful rollouts consistently exhibit stronger visual dependence than failed ones. Motivated by this observation, we propose a training framework that explicitly strengthens visual conditioning in VLA models. Our approach first aligns action prediction with visual input via preference optimization on a track-following surrogate task, and then transfers the enhanced alignment to instruction-following task through latent-space distillation during supervised finetuning. Without introducing architectural modifications or additional data collection, our method improves both visual conditioning and task performance for discrete OpenVLA, and further yields consistent gains when extended to the continuous OpenVLA-OFT setting. Project website: https://vista-vla.github.io/ .
comment: In submission. Project website: https://vista-vla.github.io/
☆ Differentiable Inverse Graphics for Zero-shot Scene Reconstruction and Robot Grasping
Operating effectively in novel real-world environments requires robotic systems to estimate and interact with previously unseen objects. Current state-of-the-art models address this challenge by using large amounts of training data and test-time samples to build black-box scene representations. In this work, we introduce a differentiable neuro-graphics model that combines neural foundation models with physics-based differentiable rendering to perform zero-shot scene reconstruction and robot grasping without relying on any additional 3D data or test-time samples. Our model solves a series of constrained optimization problems to estimate physically consistent scene parameters, such as meshes, lighting conditions, material properties, and 6D poses of previously unseen objects from a single RGBD image and bounding boxes. We evaluated our approach on standard model-free few-shot benchmarks and demonstrated that it outperforms existing algorithms for model-free few-shot pose estimation. Furthermore, we validated the accuracy of our scene reconstructions by applying our algorithm to a zero-shot grasping task. By enabling zero-shot, physically-consistent scene reconstruction and grasping without reliance on extensive datasets or test-time sampling, our approach offers a pathway towards more data efficient, interpretable and generalizable robot autonomy in novel environments.
comment: Submitted to IEEE Robotics and Automation Letters (RA-L) for review. This version includes the statement required by IEEE for preprints
☆ Signal or 'Noise': Human Reactions to Robot Errors in the Wild
In the real world, robots frequently make errors, yet little is known about people's social responses to errors outside of lab settings. Prior work has shown that social signals are reliable and useful for error management in constrained interactions, but it is unclear if this holds in the real world - especially with a non-social robot in repeated and group interactions with successive or propagated errors. To explore this, we built a coffee robot and conducted a public field deployment ($N = 49$). We found that participants consistently expressed varied social signals in response to errors and other stimuli, particularly during group interactions. Our findings suggest that social signals in the wild are rich (with participants volunteering information about the interaction), but "noisy." We discuss lessons, benefits, and challenges for using social signals in real-world HRI.
☆ Applying Ground Robot Fleets in Urban Search: Understanding Professionals' Operational Challenges and Design Opportunities
Urban searches demand rapid, defensible decisions and sustained physical effort under high cognitive and situational load. Incident commanders must plan, coordinate, and document time-critical operations, while field searchers execute evolving tasks in uncertain environments. With recent advances in technology, ground-robot fleets paired with computer-vision-based situational awareness and LLM-powered interfaces offer the potential to ease these operational burdens. However, no dedicated studies have examined how public safety professionals perceive such technologies or envision their integration into existing practices, risking building technically sophisticated yet impractical solutions. To address this gap, we conducted focus-group sessions with eight police officers across five local departments in Virginia. Our findings show that ground robots could reduce professionals' reliance on paper references, mental calculations, and ad-hoc coordination, alleviating cognitive and physical strain in four key challenge areas: (1) partitioning the workforce across multiple search hypotheses, (2) retaining group awareness and situational awareness, (3) building route planning that fits the lost-person profile, and (4) managing cognitive and physical fatigue under uncertainty. We further identify four design opportunities and requirements for future ground-robot fleet integration in public-safety operations: (1) scalable multi-robot planning and control interfaces, (2) agency-specific route optimization, (3) real-time replanning informed by debrief updates, and (4) vision-assisted cueing that preserves operational trust while reducing cognitive workload. We conclude with design implications for deployable, accountable, and human-centered urban-search support systems
comment: Under review
♻ ☆ Beyond Fixed Frames: Dynamic Character-Aligned Speech Tokenization
Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs. Code and checkpoints will be released publicly at https://github.com/lucadellalib/dycast.
comment: 18 pages, 3 figures
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Attention Consistency Regularization for Interpretable Early-Exit Neural Networks
Early-exit neural networks enable adaptive inference by allowing predictions at intermediate layers, reducing computational cost. However, early exits often lack interpretability and may focus on different features than deeper layers, limiting trust and explainability. This paper presents Explanation-Guided Training (EGT), a multi-objective framework that improves interpretability and consistency in early-exit networks through attention-based regularization. EGT introduces an attention consistency loss that aligns early-exit attention maps with the final exit. The framework jointly optimizes classification accuracy and attention consistency through a weighted combination of losses. Experiments on a real-world image classification dataset demonstrate that EGT achieves up to 98.97% overall accuracy (matching baseline performance) with a 1.97x inference speedup through early exits, while improving attention consistency by up to 18.5% compared to baseline models. The proposed method provides more interpretable and consistent explanations across all exit points, making early-exit networks more suitable for explainable AI applications in resource-constrained environments.
comment: 2 pages, 1 figure
♻ ☆ TRACE: Transparent Web Reliability Assessment with Contextual Explanations
In an era of AI-generated misinformation flooding the web, existing tools struggle to empower users with nuanced, transparent assessments of content credibility. They often default to binary (true/false) classifications without contextual justifications, leaving users vulnerable to disinformation. We address this gap by introducing TRACE: Transparent Reliability Assessment with Contextual Explanations, a unified framework that performs two key tasks: (1) it assigns a fine-grained, continuous reliability score (from 0.1 to 1.0) to web content, and (2) it generates a contextual explanation for its assessment. The core of TRACE is the TrueGL-1B model, fine-tuned on a novel, large-scale dataset of over 140,000 articles. This dataset's primary contribution is its annotation with 35 distinct continuous reliability scores, created using a Human-LLM co-creation and data poisoning paradigm. This method overcomes the limitations of binary-labeled datasets by populating the mid-ranges of reliability. In our evaluation, TrueGL-1B consistently outperforms other small-scale LLM baselines and rule-based approaches on key regression metrics, including MAE, RMSE, and R2. The model's high accuracy and interpretable justifications make trustworthy information more accessible. To foster future research, our code and model are made publicly available here: github.com/zade90/TrueGL.
♻ ☆ Y-Shaped Generative Flows
Modern continuous-time generative models typically induce \emph{V-shaped} flows: each sample travels independently along a nearly straight trajectory from the prior to the data. Although effective, this independent movement overlooks the hierarchical structures that exist in real-world data. To address this, we introduce \emph{Y-shaped generative flows}, a framework in which samples travel together along shared pathways before branching off to target-specific endpoints. Our formulation is theoretically justified, yet remains practical, requiring only minimal modifications to standard velocity-driven models. We implement this through a scalable, neural network-based training objective. Experiments on synthetic, image, and biological datasets demonstrate that our method recovers hierarchy-aware structures, improves distributional metrics over strong flow-based baselines, and reaches targets in fewer steps.
♻ ☆ Accurate and scalable exchange-correlation with deep learning
Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schrödinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
comment: Main: 13 pages plus references, 11 figures and tables. Supplementary information: 19 pages, 12 figures and tables. v2 update: fix rendering of figure 1 and part of figure 5 in Safari PDF viewer. v3 update: update author information and fix typo. v4 update: The Skala model and inference code are available under MIT license at https://github.com/microsoft/skala
♻ ☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through two complementary reasoning paradigms. We incorporate world knowledge-enhanced textual reasoning into generation to infer implicit knowledge, and leverage editing capabilities for fine-grained editing-like visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared architecture, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for textual reasoning, alongside an agent-generated corpus for visual refinement. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
♻ ☆ GPU-Accelerated ANNS: Quantized for Speed, Built for Change
Approximate nearest neighbor search (ANNS) is a core problem in machine learning and information retrieval applications. GPUs offer a promising path to high-performance ANNS: they provide massive parallelism for distance computations, are readily available, and can co-locate with downstream applications. Despite these advantages, current GPU-accelerated ANNS systems face three key limitations. First, real-world applications operate on evolving datasets that require fast batch updates, yet most GPU indices must be rebuilt from scratch when new data arrives. Second, high-dimensional vectors strain memory bandwidth, but current GPU systems lack efficient quantization techniques that reduce data movement without introducing costly random memory accesses. Third, the data-dependent memory accesses inherent to greedy search make overlapping compute and memory difficult, leading to reduced performance. We present Jasper, a GPU-native ANNS system with both high query throughput and updatability. Jasper builds on the Vamana graph index and overcomes existing bottlenecks via three contributions: (1) a CUDA batch-parallel construction algorithm that enables lock-free streaming insertions, (2) a GPU-efficient implementation of RaBitQ quantization that reduces memory footprint up to 8x without the random access penalties, and (3) an optimized greedy search kernel that increases compute utilization, resulting in better latency hiding and higher throughput. Our evaluation across five datasets shows that Jasper achieves up to 1.93x higher query throughput than CAGRA and achieves up to 80% peak utilization as measured by the roofline model. Jasper's construction scales efficiently and constructs indices an average of 2.4x faster than CAGRA while providing updatability that CAGRA lacks. Compared to BANG, the previous fastest GPU Vamana implementation, Jasper delivers 19-131x faster queries.
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Multi-Excitation Projective Simulation with a Many-Body Physics Inspired Inductive Bias
With the impressive progress of deep learning, applications relying on machine learning are increasingly being integrated into daily life. However, most deep learning models have an opaque, oracle-like nature making it difficult to interpret and understand their decisions. This problem led to the development of the field known as eXplainable Artificial Intelligence (XAI). One method in this field known as Projective Simulation (PS) models a chain-of-thought as a random walk of a particle on a graph with vertices that have concepts attached to them. While this description has various benefits, including the possibility of quantization, it cannot be naturally used to model thoughts that combine several concepts simultaneously. To overcome this limitation, we introduce Multi-Excitation Projective Simulation (mePS), a generalization that considers a chain-of-thought to be a random walk of several particles on a hypergraph. A definition for a dynamic hypergraph is put forward to describe the agent's training history along with applications to AI and hypergraph visualization. An inductive bias inspired by the remarkably successful few-body interaction models used in quantum many-body physics is formalized for our classical mePS framework and employed to tackle the exponential complexity associated with naive implementations of hypergraphs. We prove that our inductive bias reduces the complexity from exponential to polynomial, with the exponent representing the cutoff on how many particles can interact. We numerically apply our method to two toy environments and a more complex scenario modelling the diagnosis of a broken computer. These environments demonstrate the resource savings provided by an appropriate choice of inductive bias, as well as showcasing aspects of interpretability. A quantum model for mePS is also briefly outlined and some future directions for it are discussed.
comment: 41 pages, 9 figures; Code repository at https://github.com/MariusKrumm/ManyBodyMEPS. Updated to be consistent with AIJ version
♻ ☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
♻ ☆ Unifying Re-Identification, Attribute Inference, and Data Reconstruction Risks in Differential Privacy NeurIPS 2025
Differentially private (DP) mechanisms are difficult to interpret and calibrate because existing methods for mapping standard privacy parameters to concrete privacy risks -- re-identification, attribute inference, and data reconstruction -- are both overly pessimistic and inconsistent. In this work, we use the hypothesis-testing interpretation of DP ($f$-DP), and determine that bounds on attack success can take the same unified form across re-identification, attribute inference, and data reconstruction risks. Our unified bounds are (1) consistent across a multitude of attack settings, and (2) tunable, enabling practitioners to evaluate risk with respect to arbitrary, including worst-case, levels of baseline risk. Empirically, our results are tighter than prior methods using $\varepsilon$-DP, Rényi DP, and concentrated DP. As a result, calibrating noise using our bounds can reduce the required noise by 20% at the same risk level, which yields, e.g., an accuracy increase from 52% to 70% in a text classification task. Overall, this unifying perspective provides a principled framework for interpreting and calibrating the degree of protection in DP against specific levels of re-identification, attribute inference, or data reconstruction risk.
comment: NeurIPS 2025
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method supports causal interventions on target attributes and consistently propagates their effects to causal dependents while preserving the core identity of the image. Unlike prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling with two attribute-regularization strategies: (i) prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and (ii) a conditioned token contrastive loss that disentangles attribute factors and reduces spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, including up to a 91% reduction in MAE on Pendulum for accurate attribute control and up to an 87% reduction in FID on ADNI for high-fidelity MRI generation. These results demonstrate robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation. Code and models will be released at: https://leitong02.github.io/causaladapter/.
comment: Project Page: https://leitong02.github.io/causaladapter/
♻ ☆ Optimization, Generalization and Differential Privacy Bounds for Gradient Descent on Kolmogorov-Arnold Networks
Kolmogorov--Arnold Networks (KANs) have recently emerged as a structured alternative to standard MLPs, yet a principled theory for their training dynamics, generalization, and privacy properties remains limited. In this paper, we analyze gradient descent (GD) for training two-layer KANs and derive general bounds that characterize their training dynamics, generalization, and utility under differential privacy (DP). As a concrete instantiation, we specialize our analysis to logistic loss under an NTK-separable assumption, where we show that polylogarithmic network width suffices for GD to achieve an optimization rate of order $1/T$ and a generalization rate of order $1/n$, with $T$ denoting the number of GD iterations and $n$ the sample size. In the private setting, we characterize the noise required for $(ε,δ)$-DP and obtain a utility bound of order $\sqrt{d}/(nε)$ (with $d$ the input dimension), matching the classical lower bound for general convex Lipschitz problems. Our results imply that polylogarithmic width is not only sufficient but also necessary under differential privacy, revealing a qualitative gap between non-private (sufficiency only) and private (necessity also emerges) training regimes. Experiments further illustrate how these theoretical insights can guide practical choices, including network width selection and early stopping.
comment: 41 pages, 3 figures
♻ ☆ TxRay: Agentic Postmortem of Live Blockchain Attacks
Decentralized Finance (DeFi) has turned blockchains into financial infrastructure, allowing anyone to trade, lend, and build protocols without intermediaries, but this openness exposes pools of value controlled by code. Within five years, the DeFi ecosystem has lost over 15.75B USD to reported exploits. Many exploits arise from permissionless opportunities that any participant can trigger using only public state and standard interfaces, which we call Anyone-Can-Take (ACT) opportunities. Despite on-chain transparency, postmortem analysis remains slow and manual: investigations start from limited evidence, sometimes only a single transaction hash, and must reconstruct the exploit lifecycle by recovering related transactions, contract code, and state dependencies. We present TxRay, a Large Language Model (LLM) agentic postmortem system that uses tool calls to reconstruct live ACT attacks from limited evidence. Starting from one or more seed transactions, TxRay recovers the exploit lifecycle, derives an evidence-backed root cause, and generates a runnable, self-contained Proof of Concept (PoC) that deterministically reproduces the incident. TxRay self-checks postmortems by encoding incident-specific semantic oracles as executable assertions. To evaluate PoC correctness and quality, we develop PoCEvaluator, an independent agentic execution-and-review evaluator. On 114 incidents from DeFiHackLabs, TxRay produces an expert-aligned root cause and an executable PoC for 105 incidents, achieving 92.11% end-to-end reproduction. Under PoCEvaluator, 98.1% of TxRay PoCs avoid hard-coding attacker addresses, a +22.9pp lift over DeFiHackLabs. In a live deployment, TxRay delivers validated root causes in 40 minutes and PoCs in 59 minutes at median latency. TxRay's oracle-validated PoCs enable attack imitation, improving coverage by 15.6% and 65.5% over STING and APE.
comment: 24 pages, 8 figures
♻ ☆ UNO: Unifying One-stage Video Scene Graph Generation via Object-Centric Visual Representation Learning WACV 2026
Video Scene Graph Generation (VidSGG) aims to represent dynamic visual content by detecting objects and modeling their temporal interactions as structured graphs. Prior studies typically target either coarse-grained box-level or fine-grained panoptic pixel-level VidSGG, often requiring task-specific architectures and multi-stage training pipelines. In this paper, we present UNO (UNified Object-centric VidSGG), a single-stage, unified framework that jointly addresses both tasks within an end-to-end architecture. UNO is designed to minimize task-specific modifications and maximize parameter sharing, enabling generalization across different levels of visual granularity. The core of UNO is an extended slot attention mechanism that decomposes visual features into object and relation slots. To ensure robust temporal modeling, we introduce object temporal consistency learning, which enforces consistent object representations across frames without relying on explicit tracking modules. Additionally, a dynamic triplet prediction module links relation slots to corresponding object pairs, capturing evolving interactions over time. We evaluate UNO on standard box-level and pixel-level VidSGG benchmarks. Results demonstrate that UNO not only achieves competitive performance across both tasks but also offers improved efficiency through a unified, object-centric design. Code is available at: https://github.com/Fsoft-AIC/UNO
comment: 11 pages, 7 figures. Accepted at WACV 2026
♻ ☆ Graph Persistence goes Spectral NeurIPS 2025
Including intricate topological information (e.g., cycles) provably enhances the expressivity of message-passing graph neural networks (GNNs) beyond the Weisfeiler-Leman (WL) hierarchy. Consequently, Persistent Homology (PH) methods are increasingly employed for graph representation learning. In this context, recent works have proposed decorating classical PH diagrams with vertex and edge features for improved expressivity. However, these methods still fail to capture basic graph structural information. In this paper, we propose SpectRe -- a new topological descriptor for graphs that integrates spectral information into PH diagrams. Notably, SpectRe is strictly more expressive than PH and spectral information on graphs alone. We also introduce notions of global and local stability to analyze existing descriptors and establish that SpectRe is locally stable. Finally, experiments on synthetic and real-world datasets demonstrate the effectiveness of SpectRe and its potential to enhance the capabilities of graph models in relevant learning tasks. Code is available at https://github.com/Aalto-QuML/SpectRe/.
comment: 32 pages, 4 figures, 7 tables. Accepted at NeurIPS 2025. Final version, clarified minor bug
♻ ☆ M^3-Bench: Multi-Modal, Multi-Hop, Multi-Threaded Tool-Using MLLM Agent Benchmark
We present M^3-Bench, the first benchmark for evaluating multimodal tool use under the Model Context Protocol. The benchmark targets realistic, multi-hop and multi-threaded workflows that require visual grounding and textual reasoning, cross-tool dependencies, and persistence of intermediate resources across steps. We introduce a similarity-driven alignment that serializes each tool call, embeds signatures with a sentence encoder, and performs similarity-bucketed Hungarian matching to obtain auditable one-to-one correspondences. On top of this alignment, we report interpretable metrics that decouple semantic fidelity from workflow consistency. The benchmark spans 28 servers with 231 tools, and provides standardized trajectories curated through an Executor & Judge pipeline with human verification; an auxiliary four large language models (LLMs) judge ensemble reports end-task Task Completion and information grounding. Evaluations of representative state-of-the-art Multimodal LLMs (MLLMs) reveal persistent gaps in multimodal MCP tool use, particularly in argument fidelity and structure consistency, underscoring the need for methods that jointly reason over images, text, and tool graphs. Our Benchmark's anonymous repository is at https://github.com/EtaYang10th/Open-M3-Bench
♻ ☆ Mutually Assured Deregulation
We have convinced ourselves that the way to make AI safe is to make it unsafe. Since 2022, policymakers worldwide have embraced the Regulation Sacrifice - the belief that dismantling safety oversight will deliver security through AI dominance. Fearing China or USA will gain advantage, nations rush to eliminate safeguards that might slow progress. This Essay reveals the fatal flaw: though AI poses national security challenges, the solution demands stronger regulatory frameworks, not weaker ones. A race without guardrails breeds shared danger, not competitive strength. The Regulation Sacrifice makes three false promises. First, it promises durable technological leads. But AI capabilities spread rapidly - performance gaps between U.S. and Chinese systems collapsed from 9 percent to 2 percent in thirteen months. When advantages evaporate in months, sacrificing permanent safety for temporary speed makes no sense. Second, it promises deregulation accelerates innovation. The opposite often proves true. Companies report well-designed governance streamlines development. Investment flows toward regulated markets. Clear rules reduce uncertainty; uncertain liability creates paralysis. Environmental standards did not kill the auto industry; they created Tesla and BYD. Third, enhanced national security through deregulation actually undermines security across all timeframes. Near term: it hands adversaries information warfare tools. Medium term: it democratizes bioweapon capabilities. Long term: it guarantees deployment of uncontrollable AGI systems. The Regulation Sacrifice persists because it serves powerful interests, not security. Tech companies prefer freedom to accountability. Politicians prefer simple stories to complex truths. This creates mutually assured deregulation, where each nation's sprint for advantage guarantees collective vulnerability. The only way to win is not to play.
♻ ☆ Quantifying Risks in Multi-turn Conversation with Large Language Models ICLR 2026
Large Language Models (LLMs) can produce catastrophic responses in conversational settings that pose serious risks to public safety and security.Existing evaluations often fail to fully reveal these vulnerabilities because they rely on fixed attack prompt sequences, lack statistical guarantees, and do not scale to the vast space of multi-turn conversations.In this work, we propose C$^3$LLM, a novel, principled statistical Certification framework for Catastrophic risks in multi-turn Conversation for LLMs that bounds the probability of an LLM generating catastrophic responses under multi-turn conversation distributions with statistical guarantees.We model multi-turn conversations as probability distributions over query sequences, represented by a Markov process on a query graph whose edges encode semantic similarity to capture realistic conversational flow, and quantify catastrophic risks using confidence intervals. We define several inexpensive and practical distributions--random node, graph path, and adaptive with rejection. Our results demonstrate that these distributions can reveal substantial catastrophic risks in frontier models, with certified lower bounds as high as 70\% for the worst model, highlighting the urgent need for improved safety training strategies in frontier LLMs.
comment: Accepted by ICLR 2026
♻ ☆ Analysis of Fourier Neural Operators via Effective Field Theory
Fourier Neural Operators (FNOs) have emerged as leading surrogates for solver operators for various functional problems, yet their stability, generalization and frequency behavior lack a principled explanation. We present a systematic effective field theory analysis of FNOs in an infinite-dimensional function space, deriving closed recursion relations for the layer kernel and four-point vertex and then examining three practically important settings-analytic activations, scale-invariant cases and architectures with residual connections. The theory shows that nonlinear activations inevitably couple frequency inputs to high frequency modes that are otherwise discarded by spectral truncation, and experiments confirm this frequency transfer. For wide networks, we derive explicit criticality conditions on the weight initialization ensemble that ensure small input perturbations maintain a uniform scale across depth, and we confirm experimentally that the theoretically predicted ratio of kernel perturbations matches the measurements. Taken together, our results quantify how nonlinearity enables neural operators to capture non-trivial features, supply criteria for hyperparameter selection via criticality analysis, and explain why scale-invariant activations and residual connections enhance feature learning in FNOs. Finally, we translate the criticality theory into a practical criterion-matched initialization (calibration) procedure; on a standard PDEBench Burgers benchmark, the calibrated FNO exhibits markedly more stable optimization, faster convergence, and improved test error relative to a vanilla FNO.
comment: 39 pages, 12 figures
♻ ☆ Anticipatory Evaluation of Language Models
Progress in large language models is increasingly constrained by an evaluation bottleneck: benchmarks must be built and models run before iteration can begin. We investigate whether evaluation outcomes can be forecast before any experiments are conducted. Specifically, we study text-only performance prediction, where models estimate performance from task descriptions and experimental configurations alone, without access to dataset instances. To support systematic study, we curate PRECOG, a corpus of description-performance pairs spanning diverse tasks, domains, and metrics. We scrape task and configuration descriptions from arXiv, yielding 2,290 instances covering 1,519 papers, and construct a test split using papers published after the evaluated models' knowledge cutoff. Experiments show the task is challenging but feasible: reasoning models achieve a non-trivial forecasting skill reaching mean absolute error as low as 9.9 at high-confidence thresholds. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter resource allocation.
comment: 30 pages, 7 figures
♻ ☆ Latent Chain-of-Thought as Planning: Decoupling Reasoning from Verbalization
Chain-of-Thought (CoT) empowers Large Language Models (LLMs) to tackle complex problems, but remains constrained by the computational cost and reasoning path collapse when grounded in discrete token spaces. Recent latent reasoning approaches attempt to optimize efficiency by performing reasoning within continuous hidden states. However, these methods typically operate as opaque end-to-end mappings from explicit reasoning steps to latent states, and often require a pre-defined number of latent steps during inference. In this work, we introduce PLaT (Planning with Latent Thoughts), a framework that reformulates latent reasoning as planning by fundamentally decouple reasoning from verbalization. We model reasoning as a deterministic trajectory of latent planning states, while a separate Decoder grounds these thoughts into text when necessary. This decoupling allows the model to dynamically determine when to terminate reasoning rather than relying on fixed hyperparameters. Empirical results on mathematical benchmarks reveal a distinct trade-off: while PLaT achieves lower greedy accuracy than baselines, it demonstrates superior scalability in terms of reasoning diversity. This indicates that PLaT learns a robust, broader solution space, offering a transparent and scalable foundation for inference-time search. Our code can be found in https://github.com/yunsaijc/PLaT.
♻ ☆ When Do Credal Sets Stabilize? Fixed-Point Theorems for Credal Set Updates
Many machine learning algorithms rely on iterative updates of uncertainty representations, ranging from variational inference and expectation-maximization, to reinforcement learning, continual learning, and multi-agent learning. In the presence of imprecision and ambiguity, credal sets -- closed, convex sets of probability distributions -- have emerged as a popular framework for representing imprecise probabilistic beliefs. Under such imprecision, many learning problems in imprecise probabilistic machine learning (IPML) may be viewed as processes involving successive applications of update rules on credal sets. This naturally raises the question of whether this iterative process converges to stable fixed points -- or, more generally, under what conditions on the updating mechanism such fixed points exist, and whether they can be attained. We provide the first analysis of this problem, and illustrate our findings using Credal Bayesian Deep Learning as a concrete example. Our work demonstrates that incorporating imprecision into the learning process not only enriches the representation of uncertainty, but also reveals structural conditions under which stability emerges, thereby offering new insights into the dynamics of iterative learning under imprecision.
♻ ☆ Information Templates: A New Paradigm for Intelligent Active Feature Acquisition
Active feature acquisition (AFA) is an instance-adaptive paradigm in which, at inference time, a policy sequentially chooses which features to acquire (at a cost) before predicting. Existing approaches either train reinforcement learning policies, which deal with a difficult MDP, or greedy policies that cannot account for the joint informativeness of features or require knowledge about the underlying data distribution. To overcome this, we propose Template-based AFA (TAFA), a non-greedy framework that learns a small library of feature templates -- sets of features that are jointly informative -- and uses this library of templates to guide the next feature acquisitions. Through identifying feature templates, the proposed framework not only significantly reduces the action space considered by the policy but also alleviates the need to estimate the underlying data distribution. Extensive experiments on synthetic and real-world datasets show that TAFA outperforms the existing state-of-the-art baselines while achieving lower overall acquisition cost and computation.
♻ ☆ Benchmarking Large Language Models for Diagnosing Students' Cognitive Skills from Handwritten Math Work
Students' handwritten math work provides a rich resource for diagnosing cognitive skills, as it captures intermediate reasoning beyond final answers. We investigate how current large language models (LLMs) perform in diagnosing cognitive skills from such work. However, student responses vary widely, often omitting steps or providing only vague, contextually implicit evidence. Despite recent advances in LLMs' multimodal and reasoning capabilities, their performance under such conditions remains underexplored. To address this gap, we constructed MathCog, a benchmark dataset containing 3,036 diagnostic verdicts across 639 student responses to 110 math problems, annotated by teachers using TIMSS-grounded cognitive skill checklists with evidential strength labels (Evident/Vague). Evaluating 18 LLMs, we find that (1) all models underperform (F1 < 0.5) regardless of capability, and (2) performance degrades sharply under vague evidence. Error analysis reveals systematic patterns: models frequently misattribute Vague evidence as Evident, overthink minimal cues, and hallucinate nonexistent evidence. We discuss implications for evidence-aware, teacher-in-the-loop designs for LLM-based cognitive diagnosis in educational settings.
♻ ☆ AI-Powered CPS-Enabled Vulnerable-User-Aware Urban Transportation Digital Twin: Methods and Applications
We present methods and applications for the development of digital twins (DT) for urban traffic management. While the majority of studies on the DT focus on its ``eyes," which is the emerging sensing and perception like object detection and tracking, what really distinguishes the DT from a traditional simulator lies in its ``brain," the prediction and decision making capabilities of extracting patterns and making informed decisions from what has been seen and perceived. In order to add value to urban transportation management, DTs need to be powered by artificial intelligence and complement with low-latency high-bandwidth sensing and networking technologies, in other words, cyberphysical systems. This paper can be a pointer to help researchers and practitioners identify challenges and opportunities for the development of DTs; a bridge to initiate conversations across disciplines; and a road map to exploiting potentials of DTs for diverse urban transportation applications.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ A Novel Framework for Uncertainty-Driven Adaptive Exploration
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ GSAE: Graph-Regularized Sparse Autoencoders for Robust LLM Safety Steering
Large language models (LLMs) face critical safety challenges, as they can be manipulated to generate harmful content through adversarial prompts and jailbreak attacks. Many defenses are typically either black-box guardrails that filter outputs, or internals-based methods that steer hidden activations by operationalizing safety as a single latent feature or dimension. While effective for simple concepts, this assumption is limiting, as recent evidence shows that abstract concepts such as refusal and temporality are distributed across multiple features rather than isolated in one. To address this limitation, we introduce Graph-Regularized Sparse Autoencoders (GSAEs), which extends SAEs with a Laplacian smoothness penalty on the neuron co-activation graph. Unlike standard SAEs that assign each concept to a single latent feature, GSAEs recover smooth, distributed safety representations as coherent patterns spanning multiple features. We empirically demonstrate that GSAE enables effective runtime safety steering, assembling features into a weighted set of safety-relevant directions and controlling them with a two-stage gating mechanism that activates interventions only when harmful prompts or continuations are detected during generation. This approach enforces refusals adaptively while preserving utility on benign queries. Across safety and QA benchmarks, GSAE steering achieves an average 82% selective refusal rate, substantially outperforming standard SAE steering (42%), while maintaining strong task accuracy (70% on TriviaQA, 65% on TruthfulQA, 74% on GSM8K). Robustness experiments further show generalization across LLaMA-3, Mistral, Qwen, and Phi families and resilience against jailbreak attacks (GCG, AutoDAN), consistently maintaining >= 90% refusal of harmful content.
♻ ☆ Mixed-Density Diffuser: Efficient Planning with Non-Uniform Temporal Resolution
Recent studies demonstrate that diffusion planners benefit from sparse-step planning over single-step planning. Training models to skip steps in their trajectories helps capture long-term dependencies without additional memory or computational cost. However, predicting excessively sparse plans degrades performance. We hypothesize this temporal density threshold is non-uniform across a planning horizon and that certain parts of a predicted trajectory should be more densely generated. We propose Mixed-Density Diffuser (MDD), a diffusion planner where the densities throughout the horizon are tunable hyperparameters. We show that MDD surpasses the SOTA Diffusion Veteran (DV) framework across the Maze2D, Franka Kitchen, and Antmaze Datasets for Deep Data-Driven Reinforcement Learning (D4RL) task domains, achieving a new SOTA on the D4RL benchmark.
comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (under review)
♻ ☆ PromotionGo at SemEval-2025 Task 11: A Feature-Centric Framework for Cross-Lingual Multi-Emotion Detection in Short Texts
This paper presents our system for SemEval 2025 Task 11: Bridging the Gap in Text-Based Emotion Detection (Track A), which focuses on multi-label emotion detection in short texts. We propose a feature-centric framework that dynamically adapts document representations and learning algorithms to optimize language-specific performance. Our study evaluates three key components: document representation, dimensionality reduction, and model training in 28 languages, highlighting five for detailed analysis. The results show that TF-IDF remains highly effective for low-resource languages, while contextual embeddings like FastText and transformer-based document representations, such as those produced by Sentence-BERT, exhibit language-specific strengths. Principal Component Analysis (PCA) reduces training time without compromising performance, particularly benefiting FastText and neural models such as Multi-Layer Perceptrons (MLP). Computational efficiency analysis underscores the trade-off between model complexity and processing cost. Our framework provides a scalable solution for multilingual emotion detection, addressing the challenges of linguistic diversity and resource constraints.
♻ ☆ EvoFSM: Controllable Self-Evolution for Deep Research with Finite State Machines
While LLM-based agents have shown promise for deep research, most existing approaches rely on fixed workflows that struggle to adapt to real-world, open-ended queries. Recent work therefore explores self-evolution by allowing agents to rewrite their own code or prompts to improve problem-solving ability, but unconstrained optimization often triggers instability, hallucinations, and instruction drift. We propose EvoFSM, a structured self-evolving framework that achieves both adaptability and control by evolving an explicit Finite State Machine (FSM) instead of relying on free-form rewriting. EvoFSM decouples the optimization space into macroscopic Flow (state-transition logic) and microscopic Skill (state-specific behaviors), enabling targeted improvements under clear behavioral boundaries. Guided by a critic mechanism, EvoFSM refines the FSM through a small set of constrained operations, and further incorporates a self-evolving memory that distills successful trajectories as reusable priors and failure patterns as constraints for future queries. Extensive evaluations on five multi-hop QA benchmarks demonstrate the effectiveness of EvoFSM. In particular, EvoFSM reaches 58.0% accuracy on the DeepSearch benchmark. Additional results on interactive decision-making tasks further validate its generalization.
♻ ☆ Neural Concept Verifier: Scaling Prover-Verifier Games via Concept Encodings ICML 2025
While Prover-Verifier Games (PVGs) offer a promising path toward verifiability in nonlinear classification models, they have not yet been applied to complex inputs such as high-dimensional images. Conversely, expressive concept encodings effectively allow to translate such data into interpretable concepts but are often utilised in the context of low-capacity linear predictors. In this work, we push towards real-world verifiability by combining the strengths of both approaches. We introduce Neural Concept Verifier (NCV), a unified framework combining PVGs for formal verifiability with concept encodings to handle complex, high-dimensional inputs in an interpretable way. NCV achieves this by utilizing recent minimally supervised concept discovery models to extract structured concept encodings from raw inputs. A prover then selects a subset of these encodings, which a verifier, implemented as a nonlinear predictor, uses exclusively for decision-making. Our evaluations show that NCV outperforms classic concept-based models and pixel-based PVG classifier baselines on high-dimensional, logically complex datasets and helps mitigate shortcut behavior. Overall, we demonstrate NCV as a promising step toward concept-level, verifiable AI.
comment: 24 pages, 5 figures, 11 tables, revised references. An earlier version of this work was presented at the ICML 2025 Workshop on Actionable Interpretability
♻ ☆ Comparing Task-Agnostic Embedding Models for Tabular Data
Recent foundation models for tabular data achieve strong task-specific performance via in-context learning. Nevertheless, they focus on direct prediction by encapsulating both representation learning and task-specific inference inside a single, resource-intensive network. This work specifically focuses on representation learning, i.e., on transferable, task-agnostic embeddings. We systematically evaluate task-agnostic representations extracted from tabular foundation models (TabPFN, TabICL and TabSTAR) alongside classical feature engineering (TableVectorizer and a sphere model) across a variety of application tasks as outlier detection (ADBench) and supervised learning (TabArena Lite). We find that simple feature engineering methods achieve comparable or superior performance while requiring significantly less computational resources than tabular foundation models.
♻ ☆ Toward Substantive Intersectional Algorithmic Fairness: Desiderata for a Feminist Approach
People's experiences of discrimination are often shaped by multiple intersecting factors, yet algorithmic fairness research rarely reflects this complexity. While intersectionality offers tools for understanding how forms of oppression interact, current approaches to intersectional algorithmic fairness tend to focus on narrowly defined demographic subgroups. These methods contribute important insights but risk oversimplifying social reality and neglecting structural inequalities. In this paper, we outline how a substantive approach to intersectional algorithmic fairness can reorient this research and practice. In particular, we propose Substantive Intersectional Algorithmic Fairness, extending Green's (2022) notion of substantive algorithmic fairness with insights from intersectional feminist theory. Aiming to provide as actionable guidance as possible, our approach is articulated as ten desiderata to guide the design, assessment, and deployment of algorithmic systems that address systemic inequities while mitigating harms to intersectionally marginalized communities. Rather than prescribing fixed operationalizations, these desiderata invite AI practitioners and experts to reflect on assumptions of neutrality, the use of protected attributes, the inclusion of multiply marginalized groups, and the transformative potential of algorithmic systems. By bridging computational and social science perspectives, the approach emphasizes that fairness cannot be separated from social context, and that in some cases, principled non-deployment may be necessary.
comment: 28 pages
♻ ☆ Generative Adversarial Evasion and Out-of-Distribution Detection for UAV Cyber-Attacks
The growing integration of UAVs into civilian airspace underscores the need for resilient and intelligent intrusion detection systems (IDS), as traditional anomaly detection methods often fail to identify novel threats. A common approach treats unfamiliar attacks as out-of-distribution (OOD) samples; however, this leaves systems vulnerable when mitigation is inadequate. Moreover, conventional OOD detectors struggle to distinguish stealthy adversarial attacks from genuine OOD events. This paper introduces a conditional generative adversarial network (cGAN)-based framework for crafting stealthy adversarial attacks that evade IDS mechanisms. We first design a robust multi-class IDS classifier trained on benign UAV telemetry and known cyber-attacks, including Denial of Service (DoS), false data injection (FDI), man-in-the-middle (MiTM), and replay attacks. Using this classifier, our cGAN perturbs known attacks to generate adversarial samples that misclassify as benign while retaining statistical resemblance to OOD distributions. These adversarial samples are iteratively refined to achieve high stealth and success rates. To detect such perturbations, we implement a conditional variational autoencoder (CVAE), leveraging negative log-likelihood to separate adversarial inputs from authentic OOD samples. Comparative evaluation shows that CVAE-based regret scores significantly outperform traditional Mahalanobis distance-based detectors in identifying stealthy adversarial threats. Our findings emphasize the importance of advanced probabilistic modeling to strengthen IDS capabilities against adaptive, generative-model-based cyber intrusions.
♻ ☆ Guarding the Guardrails: A Taxonomy-Driven Approach to Jailbreak Detection
Jailbreaking techniques pose a significant threat to the safety of Large Language Models (LLMs). Existing defenses typically focus on single-turn attacks, lack coverage across languages, and rely on limited taxonomies that either fail to capture the full diversity of attack strategies or emphasize risk categories rather than jailbreaking techniques. To advance the understanding of the effectiveness of jailbreaking techniques, we conducted a structured red-teaming challenge. The outcomes of our experiments are fourfold. First, we developed a comprehensive hierarchical taxonomy of jailbreak strategies that systematically consolidates techniques previously studied in isolation and harmonizes existing, partially overlapping classifications with explicit cross-references to prior categorizations. The taxonomy organizes jailbreak strategies into seven mechanism-oriented families: impersonation, persuasion, privilege escalation, cognitive overload, obfuscation, goal conflict, and data poisoning. Second, we analyzed the data collected from the challenge to examine the prevalence and success rates of different attack types, providing insights into how specific jailbreak strategies exploit model vulnerabilities and induce misalignment. Third, we benchmarked GPT-5 as a judge for jailbreak detection, evaluating the benefits of taxonomy-guided prompting for improving automatic detection. Finally, we compiled a new Italian dataset of 1364 multi-turn adversarial dialogues, annotated with our taxonomy, enabling the study of interactions where adversarial intent emerges gradually and succeeds in bypassing traditional safeguards.
comment: 2nd Conference on International Association for Safe & Ethical AI (IASEAI 2026), 24-26 February 2026, UNESCO House, Paris, France
♻ ☆ Stingy Context: 18:1 Hierarchical Code Compression for LLM Auto-Coding
We introduce Stingy Context, a hierarchical tree-based compression scheme achieving 18:1 reduction in LLM context for auto-coding tasks. Using our TREEFRAG exploit decomposition, we reduce a real source code base of 239k tokens to 11k tokens while preserving task fidelity. Empirical results across 12 Frontier models show 94 to 97% success on 40 real-world issues at low cost, outperforming flat methods and mitigating lost-in-the-middle effects.
comment: 28 pages, 10 tables, 2 figures, 10 bibliographical references and 6 appendices
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Quantization-Aware Neuromorphic Architecture for Skin Disease Classification on Resource-Constrained Devices
On-device skin lesion analysis is constrained by the compute and energy cost of conventional CNN inference and by the need to update models as new patient data become available. Neuromorphic processors provide event-driven sparse computation and support on-chip incremental learning, yet deployment is often hindered by CNN-to-SNN conversion failures, including non-spike-compatible operators and accuracy degradation under class imbalance. We propose QANA, a quantization-aware CNN backbone embedded in an end-to-end pipeline engineered for conversion-stable neuromorphic execution. QANA replaces conversion-fragile components with spike-compatible transformations by bounding intermediate activations and aligning normalization with low-bit quantization, reducing conversion-induced distortion that disproportionately impacts rare classes. Efficiency is achieved through Ghost-based feature generation under tight FLOP budgets, while spatially-aware efficient channel attention and squeeze-and-excitation recalibrate channels without heavy global operators that are difficult to map to spiking cores. The resulting quantized projection head produces SNN-ready logits and enables incremental updates on edge hardware without full retraining or data offloading. On HAM10000, QANA achieves 91.6% Top-1 accuracy and 91.0% macro F1, improving the strongest converted SNN baseline by 3.5 percentage points in Top-1 accuracy (a 4.0% relative gain) and by 12.0 points in macro F1 (a 15.2% relative gain). On a clinical dataset, QANA achieves 90.8% Top-1 accuracy and 81.7% macro F1, improving the strongest converted SNN baseline by 3.2 points in Top-1 accuracy (a 3.7% relative gain) and by 3.6 points in macro F1 (a 4.6% relative gain). When deployed on BrainChip Akida, QANA runs in 1.5 ms per image with 1.7 mJ per image, corresponding to 94.6% lower latency and 99.0% lower energy than its GPU-based CNN implementation.
♻ ☆ Sample from What You See: Visuomotor Policy Learning via Diffusion Bridge with Observation-Embedded Stochastic Differential Equation
Imitation learning with diffusion models has advanced robotic control by capturing the multi-modal action distributions. However, existing methods typically treat observations only as high-level conditions to the denoising network, rather than integrating them into the stochastic dynamics of the diffusion process itself. As a result, the sampling is forced to begin from random noise, weakening the coupling between perception and control and often yielding suboptimal performance. We propose BridgePolicy, a generative visuomotor policy that directly integrates observations into the stochastic dynamics via a diffusion-bridge formulation. By constructing an observation-informed trajectory, BridgePolicy enables sampling to start from a rich and informative prior rather than random noise, substantially improving precision and reliability in control. A key difficulty is that diffusion bridge normally connects distributions of matched dimensionality, while robotic observations are heterogeneous and not naturally aligned with actions. To overcome this, we introduce a multi-modal fusion module and a semantic aligner to unify the visual and state inputs and align the observations with action representations, making diffusion bridge applicable to heterogeneous robot data. Extensive experiments across 52 simulation tasks on three benchmarks and 5 real-world tasks demonstrate that BridgePolicy consistently outperforms state-of-the-art generative policies.
♻ ☆ LLM Agents for Education: Advances and Applications EMNLP 2025
Large Language Model (LLM) agents are transforming education by automating complex pedagogical tasks and enhancing both teaching and learning processes. In this survey, we present a systematic review of recent advances in applying LLM agents to address key challenges in educational settings, such as feedback comment generation, curriculum design, etc. We analyze the technologies enabling these agents, including representative datasets, benchmarks, and algorithmic frameworks. Additionally, we highlight key challenges in deploying LLM agents in educational settings, including ethical issues, hallucination and overreliance, and integration with existing educational ecosystems. Beyond the core technical focus, we include in Appendix A a comprehensive overview of domain-specific educational agents, covering areas such as science learning, language learning, and professional development.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ LiDAR-based 3D Change Detection at City Scale
High-definition 3D city maps enable city planning and change detection, which is essential for municipal compliance, map maintenance, and asset monitoring, including both built structures and urban greenery. Conventional Digital Surface Model (DSM) and image differencing are sensitive to vertical bias and viewpoint mismatch, while original point cloud or voxel models require large memory, assume perfect alignment, and degrade thin structures. We propose an uncertainty-aware, object-centric method for city-scale LiDAR-based change detection. Our method aligns data from different time periods using multi-resolution Normal Distributions Transform (NDT) and a point-to-plane Iterative Closest Point (ICP) method, normalizes elevation, and computes a per-point level of detection from registration covariance and surface roughness to calibrate change decisions. Geometry-based associations are refined by semantic and instance segmentation and optimized using class-constrained bipartite assignment with augmented dummies to handle split-merge cases. Tiled processing bounds memory and preserves narrow ground changes, while instance-level decisions integrate overlap, displacement, and volumetric differences under local detection gating. We perform experiments on a Subiaco (Western Australia) dataset captured in 2023 and again in 2025. Our method achieves 95.3% accuracy, 90.8% mF1, and 82.9% mIoU, improving over the strongest baseline, Triplet KPConv, by 0.3, 0.6, and 1.1 points, respectively. The datasets are available on IEEE DataPort (2023: https://ieee-dataport.org/documents/2023-subiaco-wa-3d-hd-lidar-point-cloud-maps-dataset and 2025: https://ieee-dataport.org/documents/2025-subiaco-wa-3d-hd-lidar-gnss-point-cloud-maps-dataset). The source code is available at https://github.com/HaitianWang/IEEE-Sensor-Journal-Changing-Detection.
♻ ☆ Large Language Model as Meta-Surrogate for Data-Driven Many-Task Optimization: A Proof-of-Principle Study
In many-task optimization scenarios, surrogate models are valuable for mitigating the computational burden of repeated fitness evaluations across tasks. This study proposes a novel meta-surrogate framework to assist many-task optimization, by leveraging the knowledge transfer strengths and emergent capabilities of large language models (LLMs). We formulate a unified framework for many-task fitness prediction, by defining a universal model with metadata to fit a group of problems. Fitness prediction is performed on metadata and decision variables, enabling efficient knowledge sharing across tasks and adaptability to new tasks. The LLM-based meta-surrogate treats fitness prediction as conditional probability estimation, employing a unified token sequence representation for task metadata, inputs, and outputs. This approach facilitates efficient inter-task knowledge sharing through shared token embeddings and captures complex task dependencies via multi-task model training. Experimental results demonstrate the model's emergent generalization ability, including zero-shot performance on problems with unseen dimensions. When integrated into evolutionary transfer optimization (ETO), our framework supports dual-level knowledge transfer -- at both the surrogate and individual levels -- enhancing optimization efficiency and robustness. This work establishes a novel foundation for applying LLMs in surrogate modeling, offering a versatile solution for many-task optimization.
comment: 39 pages
♻ ☆ RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Interactive Environmental Learning in Physical Embodied Systems
Embodied intelligence aims to enable robots to learn, reason, and generalize robustly across complex real-world environments. However, existing approaches often struggle with partial observability, fragmented spatial reasoning, and inefficient integration of heterogeneous memories, limiting their capacity for long-horizon adaptation. To address this, we introduce RoboMemory, a brain-inspired framework that unifies Spatial, Temporal, Episodic, and Semantic memory within a parallelized architecture for efficient long-horizon planning and interactive learning. Its core innovations are a dynamic spatial knowledge graph for scalable, consistent memory updates and a closed-loop planner with a critic module for adaptive decision-making. Extensive experiments on EmbodiedBench show that RoboMemory, instantiated with Qwen2.5-VL-72B-Ins, improves the average success rate by 26.5% over its strong baseline and even surpasses the closed-source SOTA, Claude-3.5-Sonnet. Real-world trials further confirm its capability for cumulative learning, with performance consistently improving over repeated tasks. Our results position RoboMemory as a scalable foundation for memory-augmented embodied agents, bridging insights from cognitive neuroscience with practical robotic autonomy.
♻ ☆ User-Feedback-Driven Adaptation for Vision-and-Language Navigation
Real-world deployment of Vision-and-Language Navigation (VLN) agents is constrained by the scarcity of reliable supervision after offline training. While recent adaptation methods attempt to mitigate distribution shifts via environment-driven self-supervision (e.g., entropy minimization), these signals are often noisy and can cause the agent to amplify its own mistakes during long-horizon sequential decision-making. In this paper, we propose a paradigm shift that positions user feedback, specifically episode-level success confirmations and goal-level corrections, as a primary and general-purpose supervision signal for VLN. Unlike internal confidence scores, user feedback is intent-aligned and in-situ consistent, directly correcting the agent's decoupling from user instructions. To effectively leverage this supervision, we introduce a user-feedback-driven learning framework featuring a topology-aware trajectory construction pipeline. This mechanism lifts sparse, goal-level corrections into dense path-level supervision by generating feasible paths on the agent's incrementally built topological graph, enabling sample-efficient imitation learning without requiring step-by-step human demonstrations. Furthermore, we develop a persistent memory bank mechanism for warm-start initialization, supporting the reuse of previously acquired topology and cached representations across navigation sessions. Extensive experiments on the GSA-R2R benchmark demonstrate that our approach transforms sparse interaction into robust supervision, consistently outperforming environment-driven baselines while exhibiting strong adaptability across diverse instruction styles.
♻ ☆ Dynamic and Distributed Routing in IoT Networks based on Multi-Objective Q-Learning
IoT networks often face conflicting routing goals such as maximizing packet delivery, minimizing delay, and conserving limited battery energy. These priorities can also change dynamically: for example, an emergency alert requires high reliability, while routine monitoring prioritizes energy efficiency to prolong network lifetime. Existing works, including many deep reinforcement learning approaches, are typically centralized and assume static objectives, making them slow to adapt when preferences shift. We propose a dynamic and fully distributed multi-objective Q-learning routing algorithm that learns multiple per-preference Q-tables in parallel and introduces a novel greedy interpolation policy to act near-optimally for unseen preferences without retraining or central coordination. A theoretical analysis further shows that the optimal value function is Lipschitz-continuous in the preference parameter, ensuring that the proposed greedy interpolation policy yields provably near-optimal behavior. Simulations show that our approach adapts in real time to shifting priorities and achieves up to 80-90\% lower energy consumption and more than 2-5x higher cumulative rewards and packet delivery compared to six baseline protocols, under dynamic and distributed settings. Sensitivity analysis across varying preference window lengths confirms that the proposed DPQ framework consistently achieves higher composite reward than all baseline methods, demonstrating robustness to changes in operating conditions.
♻ ☆ Vid-LLM: A Compact Video-based 3D Multimodal LLM with Reconstruction-Reasoning Synergy
Recent developments in Multimodal Large Language Models (MLLMs) have significantly improved Vision-Language (VL) reasoning in 2D domains. However, extending these capabilities to 3D scene understanding remains a major challenge. Existing 3D Multimodal Large Language Models (3D-MLLMs) often depend on 3D data inputs, which limits scalability and generalization. To address this limitation, we propose Vid-LLM, a video-based 3D-MLLM that directly processes video inputs without requiring external 3D data, making it practical for real-world deployment. In our method, the geometric prior are directly used to improve the performance of the sceen perception. To integrate the geometric cues into the MLLM compactly, we design a Cross-Task Adapter (CTA) module to align the 3D geometric priors with the vision-language representations. To ensure geometric consistency and integrity, we introduce a Metric Depth Model that recovers real-scale geometry from the reconstruction outputs. Finally, the model is fine-tuned with a two-stage distillation optimization strategy, realizing fast convergence and stabilizes training. Extensive experiments across diverse benchmarks verified the effectiveness of our method on 3D Question Answering, 3D Dense Captioning and 3D Visual Grounding tasks, demonstrating the superior multi-task capabilities.
♻ ☆ Agentic Explainable Artificial Intelligence (Agentic XAI) Approach To Explore Better Explanation
Explainable artificial intelligence (XAI) enables data-driven understanding of factor associations with response variables, yet communicating XAI outputs to laypersons remains challenging, hindering trust in AI-based predictions. Large language models (LLMs) have emerged as promising tools for translating technical explanations into accessible narratives, yet the integration of agentic AI, where LLMs operate as autonomous agents through iterative refinement, with XAI remains unexplored. This study proposes an agentic XAI framework combining SHAP-based explainability with multimodal LLM-driven iterative refinement to generate progressively enhanced explanations. As a use case, we tested this framework as an agricultural recommendation system using rice yield data from 26 fields in Japan. The Agentic XAI initially provided a SHAP result and explored how to improve the explanation through additional analysis iteratively across 11 refinement rounds (Rounds 0-10). Explanations were evaluated by human experts (crop scientists) (n=12) and LLMs (n=14) against seven metrics: Specificity, Clarity, Conciseness, Practicality, Contextual Relevance, Cost Consideration, and Crop Science Credibility. Both evaluator groups confirmed that the framework successfully enhanced recommendation quality with an average score increase of 30-33% from Round 0, peaking at Rounds 3-4. However, excessive refinement showed a substantial drop in recommendation quality, indicating a bias-variance trade-off where early rounds lacked explanation depth (bias) while excessive iteration introduced verbosity and ungrounded abstraction (variance), as revealed by metric-specific analysis. These findings suggest that strategic early stopping (regularization) is needed for optimizing practical utility, challenging assumptions about monotonic improvement and providing evidence-based design principles for agentic XAI systems.
♻ ☆ DEEPMED: Building a Medical DeepResearch Agent via Multi-hop Med-Search Data and Turn-Controlled Agentic Training & Inference
Medical reasoning models remain constrained by parametric knowledge and are thus susceptible to forgetting and hallucinations. DeepResearch (DR) models ground outputs in verifiable evidence from tools and perform strongly in general domains, but their direct transfer to medical field yields relatively limited gains. We attribute this to two gaps: task characteristic and tool-use scaling. Medical questions require evidence interpretation in a knowledge-intensive clinical context; while general DR models can retrieve information, they often lack clinical-context reasoning and thus "find it but fail to use it," leaving performance limited by medical abilities. Moreover, in medical scenarios, blindly scaling tool-call can inject noisy context, derailing sensitive medical reasoning and prompting repetitive evidence-seeking along incorrect paths. Therefore, we propose DeepMed. For data, we deploy a multi-hop med-search QA synthesis method supporting the model to apply the DR paradigm in medical contexts. For training, we introduce a difficulty-aware turn-penalty to suppress excessive tool-call growth. For inference, we bring a monitor to help validate hypotheses within a controlled number of steps and avoid context rot. Overall, on seven medical benchmarks, DeepMed improves its base model by 9.79\% on average and outperforms larger medical reasoning and DR models.
♻ ☆ Synergizing Kolmogorov-Arnold Networks with Dynamic Adaptive Weighting for High-Frequency and Multi-Scale PDE Solutions
PINNs enhance scientific computing by incorporating physical laws into neural network structures, leading to significant advancements in scientific computing. However, PINNs struggle with multi-scale and high-frequency problems due to pathological gradient flow and spectral bias, which severely limit their predictive power. By combining an enhanced network architecture with a dynamically adaptive weighting mechanism featuring upper-bound constraints, we propose the Dynamic Balancing Adaptive Weighting Physics-Informed Kolmogorov-Arnold Network (DBAW-PIKAN). The proposed method effectively mitigates gradient-related failure modes and overcomes bottlenecks in function representation. Compared to baseline models, the proposed method accelerates the convergence process and improves solution accuracy by at least an order of magnitude without introducing additional computational complexity. Numerical results on the Klein-Gordon, Burgers, and Helmholtz equations demonstrate that DBAW-PIKAN achieves superior accuracy and generalization performance.
♻ ☆ Learning to Explore with Lagrangians for Bandits under Unknown Linear Constraints
Pure exploration in bandits formalises multiple real-world problems, such as tuning hyper-parameters or conducting user studies to test a set of items, where different safety, resource, and fairness constraints on the decision space naturally appear. We study these problems as pure exploration in multi-armed bandits with unknown linear constraints, where the aim is to identify an $r$-optimal and feasible policy as fast as possible with a given level of confidence. First, we propose a Lagrangian relaxation of the sample complexity lower bound for pure exploration under constraints. Second, we leverage properties of convex optimisation in the Lagrangian lower bound to propose two computationally efficient extensions of Track-and-Stop and Gamified Explorer, namely LATS and LAGEX. Then, we propose a constraint-adaptive stopping rule, and while tracking the lower bound, use optimistic estimate of the feasible set at each step. We show that LAGEX achieves asymptotically optimal sample complexity upper bound, while LATS shows asymptotic optimality up to novel constraint-dependent constants. Finally, we conduct numerical experiments with different reward distributions and constraints that validate efficient performance of LATS and LAGEX.
♻ ☆ CreditAudit: 2$^\text{nd}$ Dimension for LLM Evaluation and Selection
Leaderboard scores on public benchmarks have been steadily rising and converging, with many frontier language models now separated by only marginal differences. However, these scores often fail to match users' day to day experience, because system prompts, output protocols, and interaction modes evolve under routine iteration, and in agentic multi step pipelines small protocol shifts can trigger disproportionate failures, leaving practitioners uncertain about which model to deploy. We propose CreditAudit, a deployment oriented credit audit framework that evaluates models under a family of semantically aligned and non adversarial system prompt templates across multiple benchmarks, reporting mean ability as average performance across scenarios and scenario induced fluctuation sigma as a stability risk signal, and further mapping volatility into interpretable credit grades from AAA to BBB via cross model quantiles with diagnostics that mitigate template difficulty drift. Controlled experiments on GPQA, TruthfulQA, and MMLU Pro show that models with similar mean ability can exhibit substantially different fluctuation, and stability risk can overturn prioritization decisions in agentic or high failure cost regimes. By providing a 2D and grade based language for regime specific selection, CreditAudit supports tiered deployment and more disciplined allocation of testing and monitoring effort, enabling more objective and trustworthy model evaluation for real world use.
comment: Second update
♻ ☆ Tabula RASA: Exposing and Breaking the Relational Bottleneck in Transformers
Transformers achieve remarkable performance across many domains, yet struggle with tasks requiring multi-hop relational reasoning over structured data. We analyze this limitation through circuit complexity: standard transformers are $\mathsf{TC}^0$-complete and cannot solve graph connectivity in constant depth, implying $Ω(k)$ layers are necessary for $k$-hop reasoning regardless of model size or training data. We introduce RASA (Relation-Aware Sparse Attention), a minimal architectural modification that provides structural inductive bias for relational reasoning. RASA adds: (1) sparse adjacency masking that restricts attention to graph-connected positions, reducing the attention pattern search space from $O(2^{n^2})$ to $O(2^m)$ for graphs with $m$ edges; and (2) learnable edge-type biases that encode relation-specific attention preferences. While RASA does not circumvent asymptotic depth requirements, the exponential reduction in attention pattern space provides stronger inductive bias for learning graph-structured functions. Empirically, on the MetaQA knowledge graph QA benchmark, RASA achieves 97.7% accuracy on 3-hop questions, outperforming EmbedKGQA (94.8%) by 2.9 percentage points. Notably, RASA's advantage grows with reasoning depth, validating that structural inductive bias is most beneficial for complex multi-hop queries. Our results demonstrate that minimal architectural modifications, grounded in complexity-theoretic analysis, can substantially improve multi-hop reasoning.
comment: 16 pages, 4 figures, 8 tables
♻ ☆ Building Interpretable Models for Moral Decision-Making AAAI'26
We build a custom transformer model to study how neural networks make moral decisions on trolley-style dilemmas. The model processes structured scenarios using embeddings that encode who is affected, how many people, and which outcome they belong to. Our 2-layer architecture achieves 77% accuracy on Moral Machine data while remaining small enough for detailed analysis. We use different interpretability techniques to uncover how moral reasoning distributes across the network, demonstrating that biases localize to distinct computational stages among other findings.
comment: 8 pages, 4 figures, accepted to AAAI'26 Machine Ethics Workshop
♻ ☆ GRAM: Spatial general-purpose audio representation models for real-world applications
Audio foundation models learn general-purpose audio representations that facilitate a wide range of downstream tasks. While the performance of these models has greatly increased for conventional single-channel, dry audio clips, their success in real-world acoustic environments with reverberation and noise is limited. Furthermore, most audio foundation models ignore the spatial dimension of real-world acoustic environments, ruling out tasks involving sound localization. To address these limitations, we propose GRAM: a general-purpose real-world audio model that employs a multi-channel masked autoencoder to efficiently learn spatial audio representations. We evaluated GRAM and other audio foundation models in a standardized manner on high-quality simulations of naturalistic, spatial acoustic environments as well as recordings of real-world environments and release these two complementary benchmark task suites: NatHEAR and RealSELD. Our results demonstrate that GRAM outperforms all state-of-the-art self-supervised audio foundation models on NatHEAR and the clean, single-channel version HEAR, while using only a fraction of the training data. GRAM also shows state-of-the-art localization performance in simulated environments and generalizes efficiently to real-world recordings in RealSELD. Taken together, GRAM presents a significant advance toward robust spatial audio foundation models for real-world environments.
comment: Revise with RealSELD
♻ ☆ Look Back to Reason Forward: Revisitable Memory for Long-Context LLM Agents
Large language models face challenges in long-context question answering, where key evidence of a query may be dispersed across millions of tokens. Existing works equip large language models with a memory buffer that is dynamically updated via a linear document scan, also known as the "memorize while reading" methods. While this approach scales efficiently, it suffers from pruning of latent evidence, information loss through overwriting, and sparse reinforcement learning signals. To tackle these challenges, we present ReMemR1, which integrates the mechanism of memory retrieval into the memory update process, enabling the agent to selectively callback historical memories for non-linear reasoning. To further strengthen training, we propose a multi-level reward design, which combines final-answer rewards with dense, step-level signals that guide effective memory use. Together, these contributions mitigate information degradation, improve supervision, and support complex multi-hop reasoning. Extensive experiments demonstrate that ReMemR1 significantly outperforms state-of-the-art baselines on long-context question answering while incurring negligible computational overhead, validating its ability to trade marginal cost for robust long-context reasoning.
♻ ☆ Less Precise Can Be More Reliable: A Systematic Evaluation of Quantization's Impact on CLIP Beyond Accuracy
Vision-Language Models (VLMs) such as CLIP have revolutionized zero-shot classification and safety-critical tasks, including Out-of-Distribution (OOD) detection. However, their high computational cost hinders efficient real-world deployment. While quantization is a standard solution for efficiency, its broader impact on reliability metrics beyond simple Top-1 accuracy remains critically under-explored. In this study, we conduct a large-scale evaluation of VLM quantization across a comprehensive experimental suite of over 700k evaluation runs with varying configurations. We find that, contrary to the assumption that quantization's noise degrades performance, it can simultaneously improve accuracy, calibration, OOD detection, and robustness to noise, though not to covariate shift or spurious correlations. We leverage these counterintuitive findings to characterize the mechanics of quantization beyond simple regularization: we show that quantization dampens high-rank spectral components, compelling the model to rely more heavily on robust, low-rank features. Ultimately, this spectral filtering effect drives the observed improvements in generalization and noise tolerance, establishing a pathway to deploy faster, more reliable VLMs by utilizing quantization beyond its conventional role.
comment: Preprint
♻ ☆ Beyond speculation: Measuring the growing presence of LLM-generated texts in multilingual disinformation
Increased sophistication of large language models (LLMs) and the consequent quality of generated multilingual text raises concerns about potential disinformation misuse. While humans struggle to distinguish LLM-generated content from human-written texts, the scholarly debate about their impact remains divided. Some argue that heightened fears are overblown due to natural ecosystem limitations, while others contend that specific "longtail" contexts face overlooked risks. Our study bridges this debate by providing the first empirical evidence of LLM presence in the latest real-world disinformation datasets, documenting the increase of machine-generated content following ChatGPT's release, and revealing crucial patterns across languages, platforms, and time periods.
comment: accepted to Computer magazine
♻ ☆ DPO Unchained: Your Training Algorithm is Secretly Disentangled in Human Choice Theory
Normative theories allow one to elicit key parts of a ML algorithm from first principles, which is crucial at a time of championed scrutiny for ML work. Direct Preference Optimization (DPO) cleverly bypasses reward modeling by making an explicit link with a specific normative model of human choice. Our paper elevates this connection to the full generality of DPO's normative framework. Getting there requires reworking human choice theory's textbook path for a better RLHF/ML fit. It elevates the connection to a remarkably broad viewpoint on preference optimization, considering the current panorama of DPO follow-ups. It also unveils unexpected riches for ML, chief among which the support for non-convex losses, the fact that any compliant ML analytical choice can be embedded with any human choice model, and a normative framework's umbrella wide enough to safeguard DPO's extensions (margins, length correction, ...). A toy experiment ``far away'' from the DPO crowd is given.
♻ ☆ Investigating Redundancy in Multimodal Large Language Models with Multiple Vision Encoders ICLR2026
Recent multimodal large language models (MLLMs) increasingly integrate multiple vision encoders to improve performance on various benchmarks, assuming that diverse pretraining objectives yield complementary visual signals. However, we show this assumption often fails in practice. Through systematic encoder masking across representative multi encoder MLLMs, we find that performance typically degrades gracefully and sometimes even improves when selected encoders are masked, revealing pervasive encoder redundancy. To quantify this effect, we introduce two principled metrics: the Conditional Utilization Rate (CUR), which measures an encoders marginal contribution in the presence of others, and the Information Gap (IG), which captures heterogeneity in encoder utility within a model. Using these tools, we observe (i) strong specialization on tasks like OCR and Chart, where a single encoder can dominate with a CUR greater than 90%, (ii) high redundancy on general VQA and knowledge-based tasks, where encoders are largely interchangeable, (iii) instances of detrimental encoders with negative CUR. Notably, masking specific encoders can yield up to 16% higher accuracy on a specific task category and 3.6% overall performance boost compared to the full model.Furthermore, single and dual encoder variants recover over 90% of baseline on most non OCR tasks. Our analysis challenges the more encoders are better heuristic in MLLMs and provides actionable diagnostics for developing more efficient and effective multimodal architectures.
comment: accepted by ICLR2026
♻ ☆ InfoTok: Adaptive Discrete Video Tokenizer via Information-Theoretic Compression
Accurate and efficient discrete video tokenization is essential for long video sequences processing. Yet, the inherent complexity and variable information density of videos present a significant bottleneck for current tokenizers, which rigidly compress all content at a fixed rate, leading to redundancy or information loss. Drawing inspiration from Shannon's information theory, this paper introduces InfoTok, a principled framework for adaptive video tokenization. We rigorously prove that existing data-agnostic training methods are suboptimal in representation length, and present a novel evidence lower bound (ELBO)-based algorithm that approaches theoretical optimality. Leveraging this framework, we develop a transformer-based adaptive compressor that enables adaptive tokenization. Empirical results demonstrate state-of-the-art compression performance, saving 20% tokens without influence on performance, and achieving 2.3x compression rates while still outperforming prior heuristic adaptive approaches. By allocating tokens according to informational richness, InfoTok enables a more compressed yet accurate tokenization for video representation, offering valuable insights for future research.
♻ ☆ AccidentSim: Generating Vehicle Collision Videos with Physically Realistic Collision Trajectories from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
comment: 15 pages, 9 figures, 5 tables
♻ ☆ ConvexBench: Can LLMs Recognize Convex Functions?
Convex analysis is a modern branch of mathematics with many applications. As Large Language Models (LLMs) start to automate research-level math and sciences, it is important for LLMs to demonstrate the ability to understand and reason with convexity. We introduce \cb, a scalable and mechanically verifiable benchmark for testing \textit{whether LLMs can identify the convexity of a symbolic objective under deep functional composition.} Experiments on frontier LLMs reveal a sharp compositional reasoning gap: performance degrades rapidly with increasing depth, dropping from an F1-score of $1.0$ at depth $2$ to approximately $0.2$ at depth $100$. Inspection of models' reasoning traces indicates two failure modes: \textit{parsing failure} and \textit{lazy reasoning}. To address these limitations, we propose an agentic divide-and-conquer framework that (i) offloads parsing to an external tool to construct an abstract syntax tree (AST) and (ii) enforces recursive reasoning over each intermediate sub-expression with focused context. This framework reliably mitigates deep-composition failures, achieving substantial performance improvement at large depths (e.g., F1-Score $= 1.0$ at depth $100$).
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products. The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area.
♻ ☆ LLM-ABBA: Understanding time series via symbolic approximation
The success of large language models (LLMs) for time series has been demonstrated in previous work. Utilizing a symbolic time series representation, one can efficiently bridge the gap between LLMs and time series. However, the remaining challenge is to exploit the semantic information hidden in time series by using symbols or existing tokens of LLMs, while aligning the embedding space of LLMs according to the hidden information of time series. The symbolic time series approximation (STSA) method called adaptive Brownian bridge-based symbolic aggregation (ABBA) shows outstanding efficacy in preserving salient time series features by modeling time series patterns in terms of amplitude and period while using existing tokens of LLMs. In this paper, we introduce a method, called LLM-ABBA, that integrates ABBA into large language models for various downstream time series tasks. By symbolizing time series, LLM-ABBA compares favorably to the recent state-of-the-art (SOTA) in UCR and three medical time series classification tasks. Meanwhile, a fixed-polygonal chain trick in ABBA is introduced to avoid obvious drifting during forecasting tasks by significantly mitigating the effects of cumulative error arising from misused symbols during the transition from symbols to numerical values. In time series regression tasks, LLM-ABBA achieves the new SOTA on Time Series Extrinsic Regression (TSER) benchmarks. LLM-ABBA also shows competitive forecasting capability compared to recent SOTA time series forecasting results. We believe this framework can also seamlessly extend to other time series tasks. Our simulation code is publicly available at: https://github.com/inEXASCALE/llm-abba
♻ ☆ Extending RLVR to Open-Ended Tasks via Verifiable Multiple-Choice Reformulation
Reinforcement Learning with Verifiable Rewards(RLVR) has demonstrated great potential in enhancing the reasoning capabilities of large language models (LLMs). However, its success has thus far been largely confined to the mathematical and programming domains with clear and automatically checkable outcomes. Reinforcement learning on open-ended tasks (e.g., creative writing and subjective Q&A) continues to rely on reward models due to the absence of verifiable solutions. This raises a key question: how can we extend RLVR to strengthen reasoning in open-ended tasks regardless of the absence of the unambiguous ground truth? To overcome this challenge, we introduce Verifiable Multiple-Choice Reformulation for Reinforcement Learning from Verifiable Rewards (VMR-RLVR), a novel training strategy that restructures open-ended data into verifiable multiple-choice formats, enabling effective training even in the absence of explicit ground truth. Experimental results on multiple benchmarks validate the effectiveness of our method in improving LLM performance on open-ended tasks. Notably, across seven open-ended benchmarks, our VMR-RLVR training delivers an average gain of 3.29 points over the RL with reward model.
comment: 8 pages
♻ ☆ REASONING COMPILER: LLM-Guided Optimizations for Efficient Model Serving NeurIPS 2025
While model serving has unlocked unprecedented capabilities, the high cost of serving large-scale models continues to be a significant barrier to widespread accessibility and rapid innovation. Compiler optimizations have long driven substantial performance improvements, but existing compilers struggle with neural workloads due to the exponentially large and highly interdependent space of possible transformations. Although existing stochastic search techniques can be effective, they are often sample-inefficient and fail to leverage the structural context underlying compilation decisions. We set out to investigate the research question of whether reasoning with large language models (LLMs), without any retraining, can leverage the context-aware decision space of compiler optimizations to significantly improve sample efficiency. To that end, we introduce a novel compilation framework (dubbed REASONING COMPILER) that formulates optimization as a sequential, context-aware decision process guided by a large language model and structured Monte Carlo tree search (MCTS). The LLM acts as a proposal mechanism, suggesting hardware-informed transformations that reflect the current program state and accumulated performance feedback. MCTS incorporates the LLM-generated proposals to balance exploration and exploitation, facilitating a structured, context-sensitive traversal of the expansive compiler optimization space. By achieving substantial speedups with markedly fewer samples than leading neural compilers, our approach demonstrates the potential of LLM-guided reasoning to transform the landscape of compiler optimization.
comment: NeurIPS 2025
♻ ☆ MapCoder-Lite: Distilling Multi-Agent Coding into a Single Small LLM
Large language models (LLMs) have advanced code generation from single-function tasks to competitive-programming problems, but existing multi-agent solutions either rely on costly large-scale (>30B) models or collapse when downsized to small open-source models. We present MapCoder-Lite, a framework for distilling the complex reasoning of large, multi-agent coding systems into a single 7B model. Our contribution is a novel, three-pillar methodology that synergistically generates, refines, and encodes multi-agent knowledge: (i) pass-based trajectory distillation from strong LLMs fixes format fragility in retrieval and reduces failures in debugging, (ii) supervisor-guided correction with global feedback strengthens planning and coding agents, and (iii) agent-wise LoRA fine-tuning delivers memory-efficient specialisation. Comprehensive evaluation on xCodeEval, APPS, and CodeContests shows that MapCoder-Lite more than doubles xCodeEval accuracy (from 13.2% to 28.3%), eliminates all format failures, while reducing GPU memory and token-generation time by 4x compared to a 32B model. It also achieves over 10% gains on simpler coding benchmarks, demonstrating broad improvements beyond competitive programming. These results demonstrate that careful agent-wise fine-tuning unleashes high-quality multi-agent coding on a small language model. Our code is publicly available at https://github.com/aiha-lab/MapCoder-Lite.
♻ ☆ Attention Is Not Retention: The Orthogonality Constraint in Infinite-Context Architectures
Biological memory solves a problem that eludes current AI: storing specific episodic facts without corrupting general semantic knowledge. Complementary Learning Systems theory explains this through two subsystems - a fast hippocampal system using sparse, pattern-separated representations for episodes, and a slow neocortical system using distributed representations for statistical regularities. Current AI systems lack this separation, attempting to serve both functions through neural weights alone. We identify the Orthogonality Constraint: reliable memory requires orthogonal keys, but semantic embeddings cannot be orthogonal because training clusters similar concepts together. The result is Semantic Interference (connecting to what cognitive psychologists have long observed in human memory), where neural systems writing facts into shared continuous parameters collapse to near-random accuracy within tens of semantically related facts. Through semantic density (rho), the mean pairwise cosine similarity, we show collapse occurs at N=5 facts (rho > 0.6) or N ~ 20-75 (moderate rho). We validate across modalities: 16,309 Wikipedia facts, scientific measurements (rho = 0.96, 0.02% accuracy at N=10,000), and image embeddings (rho = 0.82, 0.05% at N=2,000). This failure is geometric - no increase in model capacity can overcome interference when keys share semantic overlap. We propose Knowledge Objects (KOs): structured facts with hash-based identity, controlled vocabularies, and explicit version chains. On Wikipedia facts, KO retrieval achieves 45.7% where Modern Hopfield Networks collapse to near-zero; hash-based retrieval maintains 100%. Production systems (Claude Memory, ChatGPT Memory) store unstructured text, causing schema drift (40-70% consistency) and version ambiguity. Knowledge Objects provide the discrete hippocampal component that enables reliable bicameral memory.
comment: 32 Pages, 7 Figures
♻ ☆ RAP: KV-Cache Compression via RoPE-Aligned Pruning
Long-context inference in large language models is increasingly bottlenecked by the memory and compute cost of the KV-Cache. Low-rank factorization compresses KV projections by writing $W \approx A * B$, where A produces latent KV states and B can be absorbed into downstream weights. In modern RoPE-based LLMs, this absorption fails: RoPE forces latent KV states to be reconstructed to full dimension, reintroducing substantial memory and compute overhead. We propose RoPE-Aligned Pruning (RAP), which prunes entire RoPE-aligned column pairs to preserve RoPE's 2x2 rotation structure, restore B absorption, and eliminate reconstruction. Our evaluation on LLaMA-3-8B and Mistral-7B shows that RAP enables joint reduction of KV-Cache, attention parameters, and FLOPs by 20-30%, all at once, while maintaining strong accuracy. Notably, RAP reduces attention latency to 83% (prefill) and 77% (decode) of baseline.
♻ ☆ EAG3R: Event-Augmented 3D Geometry Estimation for Dynamic and Extreme-Lighting Scenes NeurIPS 2025
Robust 3D geometry estimation from videos is critical for applications such as autonomous navigation, SLAM, and 3D scene reconstruction. Recent methods like DUSt3R demonstrate that regressing dense pointmaps from image pairs enables accurate and efficient pose-free reconstruction. However, existing RGB-only approaches struggle under real-world conditions involving dynamic objects and extreme illumination, due to the inherent limitations of conventional cameras. In this paper, we propose EAG3R, a novel geometry estimation framework that augments pointmap-based reconstruction with asynchronous event streams. Built upon the MonST3R backbone, EAG3R introduces two key innovations: (1) a retinex-inspired image enhancement module and a lightweight event adapter with SNR-aware fusion mechanism that adaptively combines RGB and event features based on local reliability; and (2) a novel event-based photometric consistency loss that reinforces spatiotemporal coherence during global optimization. Our method enables robust geometry estimation in challenging dynamic low-light scenes without requiring retraining on night-time data. Extensive experiments demonstrate that EAG3R significantly outperforms state-of-the-art RGB-only baselines across monocular depth estimation, camera pose tracking, and dynamic reconstruction tasks.
comment: Accepted at NeurIPS 2025 (spotlight)
♻ ☆ Bridging Cognitive Neuroscience and Graph Intelligence: Hippocampus-Inspired Multi-View Hypergraph Learning for Web Finance Fraud
Online financial services constitute an essential component of contemporary web ecosystems, yet their openness introduces substantial exposure to fraud that harms vulnerable users and weakens trust in digital finance. Such threats have become a significant web harm that erodes societal fairness and affects the well-being of online communities. However, existing detection methods based on graph neural networks (GNNs) struggle with two persistent challenges: (1) long-tailed data distributions, which obscure rare but critical fraudulent cases, and (2) fraud camouflage, where malicious transactions mimic benign behaviors to evade detection. To fill these gaps, we propose HIMVH, a Hippocampus-Inspired Multi-View Hypergraph learning model for web finance fraud detection. Specifically, drawing inspiration from the scene conflict monitoring role of the hippocampus, we design a cross-view inconsistency perception module that captures subtle discrepancies and behavioral heterogeneity across multiple transaction views. This module enables the model to identify subtle cross-view conflicts for detecting online camouflaged fraudulent behaviors. Furthermore, inspired by the match-mismatch novelty detection mechanism of the CA1 region, we introduce a novelty-aware hypergraph learning module that measures feature deviations from neighborhood expectations and adaptively reweights messages, thereby enhancing sensitivity to online rare fraud patterns in the long-tailed settings. Extensive experiments on six web-based financial fraud datasets demonstrate that HIMVH achieves 6.42% improvement in AUC, 9.74% in F1 and 39.14% in AP on average over 15 SOTA models.
♻ ☆ Concise Geometric Description as a Bridge: Unleashing the Potential of LLM for Plane Geometry Problem Solving
Plane Geometry Problem Solving (PGPS) is a multimodal reasoning task that aims to solve a plane geometric problem based on a geometric diagram and problem textual descriptions. Although Large Language Models (LLMs) possess strong reasoning skills, their direct application to PGPS is hindered by their inability to process visual diagrams. Existing works typically fine-tune Multimodal LLMs (MLLMs) end-to-end on large-scale PGPS data to enhance visual understanding and reasoning simultaneously. However, such joint optimization may compromise base LLMs' inherent reasoning capability. In this work, we observe that LLM itself is potentially a powerful PGPS solver when appropriately formulating visual information as textual descriptions. We propose to train a MLLM Interpreter to generate geometric descriptions for the visual diagram, and an off-the-shelf LLM is utilized to perform reasoning. Specifically, we choose Conditional Declaration Language (CDL) as the geometric description as its conciseness eases the MLLM Interpreter training. The MLLM Interpreter is fine-tuned via CoT (Chain-of-Thought)-augmented SFT followed by GRPO to generate CDL. Instead of using a conventional solution-based reward that compares the reasoning result with the ground-truth answer, we design CDL matching rewards to facilitate more effective GRPO training, which provides more direct and denser guidance for CDL generation. To support training, we construct a new dataset, Formalgeo7k-Rec-CoT, by manually reviewing Formalgeo7k v2 and incorporating CoT annotations. Extensive experiments on Formalgeo7k-Rec-CoT, Unigeo, and MathVista show our method (finetuned on only 5.5k data) performs favorably against leading open-source and closed-source MLLMs.
comment: Under review
♻ ☆ MemOCR: Layout-Aware Visual Memory for Efficient Long-Horizon Reasoning
Long-horizon agentic reasoning necessitates effectively compressing growing interaction histories into a limited context window. Most existing memory systems serialize history as text, where token-level cost is uniform and scales linearly with length, often spending scarce budget on low-value details. To this end, we introduce MemOCR, a multimodal memory agent that improves long-horizon reasoning under tight context budgets by allocating memory space with adaptive information density through visual layout. Concretely, MemOCR maintains a structured rich-text memory (e.g., headings, highlights) and renders it into an image that the agent consults for memory access, visually prioritizing crucial evidence while aggressively compressing auxiliary details. To ensure robustness across varying memory budgets, we train MemOCR with reinforcement learning under budget-aware objectives that expose the agent to diverse compression levels. Across long-context multi-hop and single-hop question-answering benchmarks, MemOCR outperforms strong text-based baselines and achieves more effective context utilization under extreme budgets.
♻ ☆ CoSQA+: Pioneering the Multi-Choice Code Search Benchmark with Test-Driven Agents
Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets face limitations: they rely on human annotators who assess code primarily through semantic understanding rather than functional verification, leading to potential inaccuracies and scalability issues. Additionally, current evaluation metrics often overlook the multi-choice nature of code search. This paper introduces CoSQA+, pairing high-quality queries from CoSQA with multiple suitable codes. We develop an automated pipeline featuring multiple model-based candidate selections and the novel test-driven agent annotation system. Among a single Large Language Model (LLM) annotator and Python expert annotators (without test-based verification), agents leverage test-based verification and achieve the highest accuracy of 93.9%. Through extensive experiments, CoSQA+ has demonstrated superior quality over CoSQA. Models trained on CoSQA+ exhibit improved performance. We publicly release both CoSQA+_all, which contains 412,080 agent-annotated pairs, and CoSQA+_verified, which contains 1,000 human-verified pairs, at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus.
comment: Accepted to TSE 2025. We provide the code and data at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus
♻ ☆ No Screening is More Efficient with Multiple Objects
We study efficient mechanism design for allocating multiple heterogeneous objects. The aim is to maximize the residual surplus, the total value generated from an allocation minus the costs of screening. We discover a robust trend indicating that no-screening mechanisms, such as serial dictatorship with exogenous priority order, tend to perform better as the variety of goods increases. We analyze the underlying reasons by characterizing asymptotically efficient mechanisms in a stylized environment. We also apply an automated mechanism design approach to numerically derive efficient mechanisms and validate the trend in general environments. Building on these implications, we propose the register-invite-book system (RIB) as an efficient system for scheduling vaccinations against pandemic diseases.
♻ ☆ DIVER-1 : Deep Integration of Vast Electrophysiological Recordings at Scale
Unifying the vast heterogeneity of brain signals into a single foundation model is a longstanding challenge in neuroscience. Yet, even as large-scale pretraining becomes feasible, the field lacks principled guidance on how to scale electrophysiological foundation models under realistic data and compute constraints. We present the first systematic scaling law analysis spanning both EEG and iEEG, and uncover a distinct data-constrained characteristic. Unlike language modeling, performance in electrophysiology is dominated first by data scale, followed by training duration (epochs), with model parameter count playing a subordinate role under fixed compute budgets. This challenges the prevailing "bigger is better" heuristic derived from large language models. Building on these insights, we introduce DIVER-1, a family of models trained on the largest and most diverse corpus to date: 59.3k hours (54k EEG and 5.3k iEEG) across 1.6 million channel-hours from more than 17.7k subjects, scaling up to 1.82 billion parameters. By prioritizing data diversity and training horizons over mere parameter expansion, DIVER-1 achieves state-of-the-art performance across established benchmarks. Our work provides both a powerful generalist model and actionable guidelines for efficient development of future neuro-AI systems.
comment: 52 pages, 15 figures, 28 tables
♻ ☆ DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO NeurIPS 2025
Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training for enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success using a PPO-style reinforcement learning algorithm with group-normalized rewards. However, the effectiveness of GRPO in Video Large Language Models (VideoLLMs) remains underexplored. In this paper, we explore GRPO and identify two issues that hinder effective learning: (1) reliance on safeguards, and (2) vanishing advantage. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation. Reg-GRPO reformulates the GRPO loss function as a regression task that directly predicts the advantage in GRPO, eliminating the need for safeguards such as clipping and min operations. This directly aligns the model with the advantages, providing guidance to prefer better outputs. The difficulty-aware data augmentation strategy augments input prompts/videos to target solvable difficulty levels, enabling diverse reward signals. Our experimental results show that our approach significantly improves video reasoning performance across multiple benchmarks.
comment: NeurIPS 2025
♻ ☆ LASS-ODE: Scaling ODE Computations to Connect Foundation Models with Dynamical Physical Systems
Foundation models have transformed language, vision, and time series data analysis, yet progress on dynamic predictions for physical systems remains limited. Given the complexity of physical constraints, two challenges stand out. $(i)$ Physics-computation scalability: physics-informed learning can enforce physical regularization, but its computation (e.g., ODE integration) does not scale to extensive systems. $(ii)$ Knowledge-sharing efficiency: the attention mechanism is primarily computed within each system, which limits the extraction of shared ODE structures across systems. We show that enforcing ODE consistency does not require expensive nonlinear integration: a token-wise locally linear ODE representation preserves physical fidelity while scaling to foundation-model regimes. Thus, we propose novel token representations that respect locally linear ODE evolution. Such linearity substantially accelerates integration while accurately approximating the local data manifold. Second, we introduce a simple yet effective inter-system attention that augments attention with a common structure hub (CSH) that stores shared tokens and aggregates knowledge across systems. The resulting model, termed LASS-ODE (\underline{LA}rge-\underline{S}cale \underline{S}mall \underline{ODE}), is pretrained on our $40$GB ODE trajectory collections to enable strong in-domain performance, zero-shot generalization across diverse ODE systems, and additional improvements through fine-tuning.
♻ ☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision AAAI 2026
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks.
comment: This paper has been accepted at AAAI 2026. This is the author's extended version. The final version will appear in the official proceedings
♻ ☆ DynamicNER: A Dynamic, Multilingual, and Fine-Grained Dataset for LLM-based Named Entity Recognition EMNLP 2025
The advancements of Large Language Models (LLMs) have spurred a growing interest in their application to Named Entity Recognition (NER) methods. However, existing datasets are primarily designed for traditional machine learning methods and are inadequate for LLM-based methods, in terms of corpus selection and overall dataset design logic. Moreover, the prevalent fixed and relatively coarse-grained entity categorization in existing datasets fails to adequately assess the superior generalization and contextual understanding capabilities of LLM-based methods, thereby hindering a comprehensive demonstration of their broad application prospects. To address these limitations, we propose DynamicNER, the first NER dataset designed for LLM-based methods with dynamic categorization, introducing various entity types and entity type lists for the same entity in different context, leveraging the generalization of LLM-based NER better. The dataset is also multilingual and multi-granular, covering 8 languages and 155 entity types, with corpora spanning a diverse range of domains. Furthermore, we introduce CascadeNER, a novel NER method based on a two-stage strategy and lightweight LLMs, achieving higher accuracy on fine-grained tasks while requiring fewer computational resources. Experiments show that DynamicNER serves as a robust and effective benchmark for LLM-based NER methods. Furthermore, we also conduct analysis for traditional methods and LLM-based methods on our dataset. Our code and dataset are openly available at https://github.com/Astarojth/DynamicNER.
comment: This paper is accepted by EMNLP 2025 Main Conference
From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective numerical-visual modality integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
♻ ☆ Building Scaffolding Dialogue Data with LLM-Simulated Novices
High-quality, multi-turn instructional dialogues between novices and experts are essential for developing AI systems that support teaching, learning, and decision-making. These dialogues often involve scaffolding -- the process by which an expert supports a novice's thinking through questions, feedback, and step-by-step guidance. However, such data are scarce due to privacy concerns in recording and the vulnerability inherent in help-seeking. We present SimInstruct, a scalable, expert-in-the-loop tool for collecting scaffolding dialogues. Using teaching development coaching as an example domain, SimInstruct simulates novice instructors via LLMs, varying their teaching challenges and LLM's persona traits, while human experts provide multi-turn feedback, reasoning, and instructional support. This design enables the creation of realistic, pedagogically rich dialogues without requiring real novice participants. Our results reveal that persona traits, such as extroversion and introversion, meaningfully influence how experts engage. Compared to real mentoring recordings, SimInstruct dialogues demonstrate comparable pedagogical relevance and cognitive depth. Experts also reported the process as engaging and reflective, improving both data quality and their own professional insight. We further fine-tuned a LLaMA model to be an expert model using the augmented dataset, which outperformed GPT-4o in instructional quality. Our analysis highlights GPT-4o's limitations in weak reflective questioning, overuse of generic praise, a condescending tone, and a tendency to overwhelm novices with excessive suggestions.
♻ ☆ ProDCARL: Reinforcement Learning-Aligned Diffusion Models for De Novo Antimicrobial Peptide Design
Antimicrobial resistance threatens healthcare sustainability and motivates low-cost computational discovery of antimicrobial peptides (AMPs). De novo peptide generation must optimize antimicrobial activity and safety through low predicted toxicity, but likelihood-trained generators do not enforce these goals explicitly. We introduce ProDCARL, a reinforcement-learning alignment framework that couples a diffusion-based protein generator (EvoDiff OA-DM 38M) with sequence property predictors for AMP activity and peptide toxicity. We fine-tune the diffusion prior on AMP sequences to obtain a domain-aware generator. Top-k policy-gradient updates use classifier-derived rewards plus entropy regularization and early stopping to preserve diversity and reduce reward hacking. In silico experiments show ProDCARL increases the mean predicted AMP score from 0.081 after fine-tuning to 0.178. The joint high-quality hit rate reaches 6.3\% with pAMP $>$0.7 and pTox $<$0.3. ProDCARL maintains high diversity, with $1-$mean pairwise identity equal to 0.929. Qualitative analyses with AlphaFold3 and ProtBERT embeddings suggest candidates show plausible AMP-like structural and semantic characteristics. ProDCARL serves as a candidate generator that narrows experimental search space, and experimental validation remains future work.
♻ ☆ Building Coding Agents via Entropy-Enhanced Multi-Turn Preference Optimization
Software engineering presents complex, multi-step challenges for Large Language Models (LLMs), requiring reasoning over large codebases and coordinated tool use. The difficulty of these tasks is exemplified by benchmarks like SWE-bench, where current LLMs still struggle to resolve real-world issues. A promising approach to enhance performance is test-time scaling (TTS), but its gains are heavily dependent on the diversity of model outputs. While standard alignment methods such as Direct Preference Optimization (DPO) and Kahneman-Tversky Optimization (KTO) are effective at aligning model outputs with human preferences, this process can come at the cost of reduced diversity, limiting the effectiveness of TTS. Additionally, existing preference optimization algorithms are typically designed for single-turn tasks and do not fully address the complexities of multi-turn reasoning and tool integration required for interactive coding agents. To bridge this gap, we introduce EntroPO, an entropy-enhanced framework that adapts existing preference optimization algorithms to the multi-turn, tool-assisted setting. EntroPO augments the preference objective to explicitly preserve policy entropy and generalizes learning to optimize over multi-turn interactions rather than single-turn responses. We validate EntroPO by fine-tuning a diverse suite of models from different families and sizes (up to 106B parameters).To maximize performance gains from TTS, we further propose a hybrid best-trajectory selection scheme combining a learned verifier model with model free approaches. On the SWEBENCH leaderboard, our approach establishes new state-of-the-art results among open-weight models. A 30B parameter model trained with EntroPO ranks 1st on SWEBENCH-LITE and 4th on SWEBENCH-VERIFIED on the open-weight leaderboard, surpassed only by models with over 10x more parameters(e.g., >$350B).
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ daVinci-Agency: Unlocking Long-Horizon Agency Data-Efficiently
While Large Language Models (LLMs) excel at short-term tasks, scaling them to long-horizon agentic workflows remains challenging. The core bottleneck lies in the scarcity of training data that captures authentic long-dependency structures and cross-stage evolutionary dynamics--existing synthesis methods either confine to single-feature scenarios constrained by model distribution, or incur prohibitive human annotation costs, failing to provide scalable, high-quality supervision. We address this by reconceptualizing data synthesis through the lens of real-world software evolution. Our key insight: Pull Request (PR) sequences naturally embody the supervision signals for long-horizon learning. They decompose complex objectives into verifiable submission units, maintain functional coherence across iterations, and encode authentic refinement patterns through bug-fix histories. Building on this, we propose daVinci-Agency, which systematically mines structured supervision from chain-of-PRs through three interlocking mechanisms: (1) progressive task decomposition via continuous commits, (2) long-term consistency enforcement through unified functional objectives, and (3) verifiable refinement from authentic bug-fix trajectories. Unlike synthetic trajectories that treat each step independently, daVinci-Agency's PR-grounded structure inherently preserves the causal dependencies and iterative refinements essential for teaching persistent goal-directed behavior and enables natural alignment with project-level, full-cycle task modeling. The resulting trajectories are substantial--averaging 85k tokens and 116 tool calls--yet remarkably data-efficient: fine-tuning GLM-4.6 on 239 daVinci-Agency samples yields broad improvements across benchmarks, notably achieving a 47% relative gain on Toolathlon. Beyond benchmark performance, our analysis confirms...
♻ ☆ Zenith: Scaling up Ranking Models for Billion-scale Livestreaming Recommendation
Accurately capturing feature interactions is essential in recommender systems, and recent trends show that scaling up model capacity could be a key driver for next-level predictive performance. While prior work has explored various model architectures to capture multi-granularity feature interactions, relatively little attention has been paid to efficient feature handling and scaling model capacity without incurring excessive inference latency. In this paper, we address this by presenting Zenith, a scalable and efficient ranking architecture that learns complex feature interactions with minimal runtime overhead. Zenith is designed to handle a few high-dimensional Prime Tokens with Token Fusion and Token Boost modules, which exhibits superior scaling laws compared to other state-of-the-art ranking methods, thanks to its improved token heterogeneity. Its real-world effectiveness is demonstrated by deploying the architecture to TikTok Live, a leading online livestreaming platform that attracts billions of users globally. Our A/B test shows that Zenith achieves +1.05%/-1.10% in online CTR AUC and Logloss, and realizes +9.93% gains in Quality Watch Session / User and +8.11% in Quality Watch Duration / User.
comment: 10 pages
♻ ☆ Beyond In-Domain Detection: SpikeScore for Cross-Domain Hallucination Detection
Hallucination detection is critical for deploying large language models (LLMs) in real-world applications. Existing hallucination detection methods achieve strong performance when the training and test data come from the same domain, but they suffer from poor cross-domain generalization. In this paper, we study an important yet overlooked problem, termed generalizable hallucination detection (GHD), which aims to train hallucination detectors on data from a single domain while ensuring robust performance across diverse related domains. In studying GHD, we simulate multi-turn dialogues following LLMs initial response and observe an interesting phenomenon: hallucination-initiated multi-turn dialogues universally exhibit larger uncertainty fluctuations than factual ones across different domains. Based on the phenomenon, we propose a new score SpikeScore, which quantifies abrupt fluctuations in multi-turn dialogues. Through both theoretical analysis and empirical validation, we demonstrate that SpikeScore achieves strong cross-domain separability between hallucinated and non-hallucinated responses. Experiments across multiple LLMs and benchmarks demonstrate that the SpikeScore-based detection method outperforms representative baselines in cross-domain generalization and surpasses advanced generalization-oriented methods, verifying the effectiveness of our method in cross-domain hallucination detection.
♻ ☆ The World is Not Mono: Enabling Spatial Understanding in Large Audio-Language Models
Existing large audio-language models perceive the world as "mono"-a single stream of audio that ignores the critical spatial dimension ("where") required for universal audio scene analysis (ASA). To bridge this gap, we first introduce a hierarchical framework for audio scene analysis. Guided by this framework, we introduce a system that enables large audio-language models (LALMs) to understand and reason about the complex acoustic world. Our system endows LALMs with universal spatial understanding through four key innovations: (1) A scalable simulation pipeline that synthesizes high-quality First-Order-Ambisonics(FOA) data; (2) A unified model framework that integrates universal spatial encoding with a dense hybrid projection mechanism to bridge the modality gap; (3) A progressive training curriculum that evolves from representation alignment to reinforcement learning-based reasoning; and (4) A comprehensive benchmark for audio scene analysis (ASA) designed to rigorously evaluate atomic perception, relational integration, and cognitive reasoning capabilities, on which our model demonstrates comparatively strong capability for spatial understanding. Our work provides a clear pathway for leveraging the powerful reasoning abilities of LALMs towards holistic ASA, advancing from "mono" semantic recognition to spatial intelligence.
♻ ☆ "I'm happy even though it's not real": GenAI Photo Editing as a Remembering Experience
Generative Artificial Intelligence (GenAI) is increasingly integrated into photo applications on personal devices, making editing photographs easier than ever while potentially influencing the memories they represent. This study explores how and why people use GenAI to edit personal photos and how this shapes their remembering experience. We conducted a two-phase qualitative study with 12 participants: a photo editing session using a GenAI tool guided by the Remembering Experience (RX) dimensions, followed by semi-structured interviews where participants reflected on the editing process and results. Findings show that participants prioritised felt memory over factual accuracy. For different photo elements, environments were modified easily, however, editing was deemed unacceptable if it touched upon a person's identity. Editing processes brought positive and negative impacts, and itself also became a remembering experience. We further discuss potential benefits and risks of GenAI editing for remembering purposes and propose design implications for responsible GenAI.
♻ ☆ Not All Negative Samples Are Equal: LLMs Learn Better from Plausible Reasoning
Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
♻ ☆ Incremental Maintenance of DatalogMTL Materialisations AAAI 2026
DatalogMTL extends the classical Datalog language with metric temporal logic (MTL), enabling expressive reasoning over temporal data. While existing reasoning approaches, such as materialisation based and automata based methods, offer soundness and completeness, they lack support for handling efficient dynamic updates, a crucial requirement for real-world applications that involve frequent data updates. In this work, we propose DRedMTL, an incremental reasoning algorithm for DatalogMTL with bounded intervals. Our algorithm builds upon the classical DRed algorithm, which incrementally updates the materialisation of a Datalog program. Unlike a Datalog materialisation which is in essence a finite set of facts, a DatalogMTL materialisation has to be represented as a finite set of facts plus periodic intervals indicating how the full materialisation can be constructed through unfolding. To cope with this, our algorithm is equipped with specifically designed operators to efficiently handle such periodic representations of DatalogMTL materialisations. We have implemented this approach and tested it on several publicly available datasets. Experimental results show that DRedMTL often significantly outperforms rematerialisation, sometimes by orders of magnitude.
comment: Accepted as oral paper at the main track of AAAI 2026
♻ ☆ Deep Multimodal Learning with Missing Modality: A Survey
During multimodal model training and testing, certain data modalities may be absent due to sensor limitations, cost constraints, privacy concerns, or data loss, negatively affecting performance. Multimodal learning techniques designed to handle missing modalities can mitigate this by ensuring model robustness even when some modalities are unavailable. This survey reviews recent progress in Multimodal Learning with Missing Modality (MLMM), focusing on deep learning methods. It provides the first comprehensive survey that covers the motivation and distinctions between MLMM and standard multimodal learning setups, followed by a detailed analysis of current methods, applications, and datasets, concluding with challenges and future directions.
comment: Accepted by TMLR (Transactions on Machine Learning Research)
♻ ☆ Input-Time Scaling: Adding Noise and Irrelevance into Less-Is-More Drastically Improves Reasoning Performance and Efficiency
Large Language Models (LLMs) excel at reasoning, traditionally requiring high-quality large-scale data and extensive training. Recent works reveal a very appealing Less-Is-More phenomenon where very small, carefully curated high-quality datasets match resource-intensive approaches. In this work, we further systematically relax their quality constraints by adding controlled noise via persona context relevance and comparing datasets of different qualities. Counterintuitively, we find that mixing relevant and irrelevant contexts consistently across training and inference stages yields optimal results -- a phenomenon we term training-testing co-design. Dataset quality comparisons show that high-quality data benefits weaker models on easy questions, while low-quality data achieves higher scores on hard questions with capable models. Across our experiments, reasoning performance is linked to reasoning efficiency. We, for the first time, found adding noisy and irrelevant contexts into queries can improve reasoning efficiency without any prices and targeted designs. Building on these insights, we propose Input-Time Scaling: applying small, low-quality data to capable models with training-testing co-design. This maintains Less-Is-More while further removing labor-intensive quality curation and improving reasoning effectiveness and efficiency, making the approach more applicable and affordable. Our method achieves 76.7% pass@1 on AIME24/25 using Qwen2.5-32B-Instruct, and 90.0%/80.0% with DeepSeek-R1-Distill-Qwen-32B -- state-of-the-art among Qwen2.5-32B variants. We are open-sourcing our datasets, pipelines, evaluation results, and checkpoints to facilitate reproducibility and further research.
♻ ☆ Towards Universal Neural Likelihood Inference
We introduce universal neural likelihood inference (UNLI): enabling a single model to provide data-grounded, conditional likelihood predictions for arbitrary targets given any collection of observed features, across diverse domains and tasks. To achieve UNLI over heterogeneous tabular data, we develop the Arbitrary Set-based Permutation-Invariant Reasoning Engine (ASPIRE) model. Our design addresses critical gaps in existing approaches to merge semantic-understanding capabilities and generalised numerical feature reasoning within a zero-shot capable framework. Trained on over 1,400 real diverse datasets spanning various domains, ASPIRE achieves 15\% higher F1 scores and 85\% lower RMSE than existing tabular foundation models in zero-shot and few-shot settings. Lastly, this work introduces open-world active feature acquisition, where we leverage the UNLI capabilities of ASPIRE to adeptly determine next feature-values to observe to improve inference time prediction accuracies.
♻ ☆ CogFlow: Bridging Perception and Reasoning through Knowledge Internalization for Visual Mathematical Problem Solving ICLR 2026
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
comment: Accepted to ICLR 2026
♻ ☆ Adaptive Helpfulness-Harmlessness Alignment with Preference Vectors EACL 2026
Ensuring that large language models (LLMs) are both helpful and harmless is a critical challenge, as overly strict constraints can lead to excessive refusals, while permissive models risk generating harmful content. Existing approaches, such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO), attempt to balance these trade-offs but suffer from performance conflicts, limited controllability, and poor extendability. To address these issues, we propose Preference Vector, a novel framework inspired by task arithmetic. Instead of optimizing multiple preferences within a single objective, we train separate models on individual preferences, extract behavior shifts as preference vectors, and dynamically merge them at test time. This modular approach enables fine-grained, user-controllable preference adjustments and facilitates seamless integration of new preferences without retraining. Experiments show that our proposed Preference Vector framework improves helpfulness without excessive conservatism, allows smooth control over preference trade-offs, and supports scalable multi-preference alignment.
comment: Accepted at The 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2026), Rabat, Morocco
♻ ☆ ProphetKV: User-Query-Driven Selective Recomputation for Efficient KV Cache Reuse in Retrieval-Augmented Generation
The prefill stage of long-context Retrieval-Augmented Generation (RAG) is severely bottlenecked by computational overhead. To mitigate this, recent methods assemble pre-calculated KV caches of retrieved RAG documents (by a user query) and reprocess selected tokens to recover cross-attention between these pre-calculated KV caches. However, we identify a fundamental "crowding-out effect" in current token selection criteria: globally salient but user-query-irrelevant tokens saturate the limited recomputation budget, displacing the tokens truly essential for answering the user query and degrading inference accuracy. We propose ProphetKV, a user-query-driven KV Cache reuse method for RAG scenarios. ProphetKV dynamically prioritizes tokens based on their semantic relevance to the user query and employs a dual-stage recomputation pipeline to fuse layer-wise attention metrics into a high-utility set. By ensuring the recomputation budget is dedicated to bridging the informational gap between retrieved context and the user query, ProphetKV achieves high-fidelity attention recovery with minimal overhead. Our extensive evaluation results show that ProphetKV retains 96%-101% of full-prefill accuracy with only a 20% recomputation ratio, while achieving accuracy improvements of 8.8%-24.9% on RULER and 18.6%-50.9% on LongBench over the state-of-the-art approaches (e.g., CacheBlend, EPIC, and KVShare).
♻ ☆ Improving Multimodal Brain Encoding Model with Dynamic Subject-awareness Routing ICASSP 2026
Naturalistic fMRI encoding must handle multimodal inputs, shifting fusion styles, and pronounced inter-subject variability. We introduce AFIRE (Agnostic Framework for Multimodal fMRI Response Encoding), an agnostic interface that standardizes time-aligned post-fusion tokens from varied encoders, and MIND, a plug-and-play Mixture-of-Experts decoder with a subject-aware dynamic gating. Trained end-to-end for whole-brain prediction, AFIRE decouples the decoder from upstream fusion, while MIND combines token-dependent Top-K sparse routing with a subject prior to personalize expert usage without sacrificing generality. Experiments across multiple multimodal backbones and subjects show consistent improvements over strong baselines, enhanced cross-subject generalization, and interpretable expert patterns that correlate with content type. The framework offers a simple attachment point for new encoders and datasets, enabling robust, plug-and-improve performance for naturalistic neuroimaging studies.
comment: 7 pages, 4 figures, accepted by ICASSP 2026
WAXAL: A Large-Scale Multilingual African Language Speech Corpus
The advancement of speech technology has predominantly favored high-resource languages, creating a significant digital divide for speakers of most Sub-Saharan African languages. To address this gap, we introduce WAXAL, a large-scale, openly accessible speech dataset for 21 languages representing over 100 million speakers. The collection consists of two main components: an Automated Speech Recognition (ASR) dataset containing approximately 1,250 hours of transcribed, natural speech from a diverse range of speakers, and a Text-to-Speech (TTS) dataset with over 180 hours of high-quality, single-speaker recordings reading phonetically balanced scripts. This paper details our methodology for data collection, annotation, and quality control, which involved partnerships with four African academic and community organizations. We provide a detailed statistical overview of the dataset and discuss its potential limitations and ethical considerations. The WAXAL datasets are released at https://huggingface.co/datasets/google/WaxalNLP under the permissive CC-BY-4.0 license to catalyze research, enable the development of inclusive technologies, and serve as a vital resource for the digital preservation of these languages.
comment: Initial dataset release
♻ ☆ CoBA-RL: Capability-Oriented Budget Allocation for Reinforcement Learning in LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key approach for enhancing LLM reasoning. However, standard frameworks like Group Relative Policy Optimization (GRPO) typically employ a uniform rollout budget, leading to resource inefficiency. Moreover, existing adaptive methods often rely on instance-level metrics, such as task pass rates, failing to capture the model's dynamic learning state. To address these limitations, we propose CoBA-RL, a reinforcement learning algorithm designed to adaptively allocate rollout budgets based on the model's evolving capability. Specifically, CoBA-RL utilizes a Capability-Oriented Value function to map tasks to their potential training gains and employs a heap-based greedy strategy to efficiently self-calibrate the distribution of computational resources to samples with high training value. Extensive experiments demonstrate that our approach effectively orchestrates the trade-off between exploration and exploitation, delivering consistent generalization improvements across multiple challenging benchmarks. These findings underscore that quantifying sample training value and optimizing budget allocation are pivotal for advancing LLM post-training efficiency.
♻ ☆ RAPTOR: Ridge-Adaptive Logistic Probes
Probing studies what information is encoded in a frozen LLM's layer representations by training a lightweight predictor on top of them. Beyond analysis, probes are often used operationally in probe-then-steer pipelines: a learned concept vector is extracted from a probe and injected via additive activation steering by adding it to a layer representation during the forward pass. The effectiveness of this pipeline hinges on estimating concept vectors that are accurate, directionally stable under ablation, and inexpensive to obtain. Motivated by these desiderata, we propose RAPTOR (Ridge-Adaptive Logistic Probe), a simple L2-regularized logistic probe whose validation-tuned ridge strength yields concept vectors from normalized weights. Across extensive experiments on instruction-tuned LLMs and human-written concept datasets, RAPTOR matches or exceeds strong baselines in accuracy while achieving competitive directional stability and substantially lower training cost; these quantitative results are supported by qualitative downstream steering demonstrations. Finally, using the Convex Gaussian Min-max Theorem (CGMT), we provide a mechanistic characterization of ridge logistic regression in an idealized Gaussian teacher-student model in the high-dimensional few-shot regime, explaining how penalty strength mediates probe accuracy and concept-vector stability and yielding structural predictions that qualitatively align with trends observed on real LLM embeddings.
comment: Preprint
♻ ☆ Learning Decentralized LLM Collaboration with Multi-Agent Actor Critic
Recent work has explored optimizing LLM collaboration through Multi-Agent Reinforcement Learning (MARL). However, most MARL fine-tuning approaches rely on predefined execution protocols, which often require centralized execution. Decentralized LLM collaboration is more appealing in practice, as agents can run inference in parallel with flexible deployments. Also, current approaches use Monte Carlo methods for fine-tuning, which suffer from high variance and thus require more samples to train effectively. Actor-critic methods are prevalent in MARL for dealing with these issues, so we developed Multi-Agent Actor-Critic (MAAC) methods to optimize decentralized LLM collaboration. In this paper, we analyze when and why these MAAC methods are beneficial. We propose 2 MAAC approaches, \textbf{CoLLM-CC} with a \textbf{C}entralized \textbf{C}ritic and \textbf{CoLLM-DC} with \textbf{D}ecentralized \textbf{C}ritics. Our experiments across writing, coding, and game-playing domains show that Monte Carlo methods and CoLLM-DC can achieve performance comparable to CoLLM-CC in short-horizon and dense-reward settings. However, they both underperform CoLLM-CC on long-horizon or sparse-reward tasks, where Monte Carlo methods require substantially more samples and CoLLM-DC struggles to converge. Our code is available at https://github.com/OpenMLRL/CoMLRL/releases/tag/v1.3.2.
♻ ☆ When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs
As large language models (LLMs) become increasingly integrated into daily life, audio has emerged as a key interface for human-AI interaction. However, this convenience also introduces new vulnerabilities, making audio a potential attack surface for adversaries. Our research introduces WhisperInject, a two-stage adversarial audio attack framework that manipulates state-of-the-art audio language models to generate harmful content. Our method embeds harmful payloads as subtle perturbations into audio inputs that remain intelligible to human listeners. The first stage uses a novel reward-based white-box optimization method, Reinforcement Learning with Projected Gradient Descent (RL-PGD), to jailbreak the target model and elicit harmful native responses. This native harmful response then serves as the target for Stage 2, Payload Injection, where we use gradient-based optimization to embed subtle perturbations into benign audio carriers, such as weather queries or greeting messages. Our method achieves average attack success rates of 60-78% across two benchmarks and five multimodal LLMs, validated by multiple evaluation frameworks. Our work demonstrates a new class of practical, audio-native threats, moving beyond theoretical exploits to reveal a feasible and covert method for manipulating multimodal AI systems.
♻ ☆ Toward Multiphysics-Informed Machine Learning for Sustainable Data Center Operations: Intelligence Evolution with Deployable Solutions for Computing Infrastructure
The revolution in artificial intelligence (AI) has brought sustainable challenges in data center management due to the high carbon emissions and short cooling response time associated with high-power density racks. While machine learning (ML) offers promise for intelligent management, its adoption is hindered by safety and reliability concerns. To address this, we propose a multiphysics-informed machine learning (MPIML) framework that integrates physical priors into data-driven models for enhanced accuracy and safety. We introduce an integrated system architecture comprising three core engines: DCLib for versatile facility modeling, DCTwin for high-fidelity multiphysics simulation, and DCBrain for decision-making optimization. This system enables critical predictive and prescriptive applications, such as carbon-aware IT provisioning, safety-aware intelligent cooling control and battery health forecasting. An illustrative example on an industry-grade data center cooling control demonstrates that our MPIML approach reduces annual carbon emissions up to 200 kilotons compared with conventional methods while ensuring operational constraints are met. We conclude by outlining key challenges and future directions for developing autonomous and sustainable data centers.
♻ ☆ CLEAR-Mamba:Towards Accurate, Adaptive and Trustworthy Multi-Sequence Ophthalmic Angiography Classification
Medical image classification is a core task in computer-aided diagnosis (CAD), playing a pivotal role in early disease detection, treatment planning, and patient prognosis assessment. In ophthalmic practice, fluorescein fundus angiography (FFA) and indocyanine green angiography (ICGA) provide hemodynamic and lesion-structural information that conventional fundus photography cannot capture. However, due to the single-modality nature, subtle lesion patterns, and significant inter-device variability, existing methods still face limitations in generalization and high-confidence prediction. To address these challenges, we propose CLEAR-Mamba, an enhanced framework built upon MedMamba with optimizations in both architecture and training strategy. Architecturally, we introduce HaC, a hypernetwork-based adaptive conditioning layer that dynamically generates parameters according to input feature distributions, thereby improving cross-domain adaptability. From a training perspective, we develop RaP, a reliability-aware prediction scheme built upon evidential uncertainty learning, which encourages the model to emphasize low-confidence samples and improves overall stability and reliability. We further construct a large-scale ophthalmic angiography dataset covering both FFA and ICGA modalities, comprising multiple retinal disease categories for model training and evaluation. Experimental results demonstrate that CLEAR-Mamba consistently outperforms multiple baseline models, including the original MedMamba, across various metrics-showing particular advantages in multi-disease classification and reliability-aware prediction. This study provides an effective solution that balances generalizability and reliability for modality-specific medical image classification tasks.
comment: 10 pages,7 figures
♻ ☆ DTS: Enhancing Large Reasoning Models via Decoding Tree Sketching
Large Reasoning Models (LRMs) achieve remarkable inference-time improvements through parallel thinking. However, existing methods rely on redundant sampling of reasoning trajectories, failing to effectively explore the reasoning space to uncover high-quality solutions. To address these limitations, we propose Decoding Tree Sketching (DTS), a plug-and-play decoding framework for structural multi-trajectory exploration and reasoning selection. For reasoning exploration, DTS sketches a backbone tree of the reasoning space by selectively branching at decision tokens. For reasoning selection, guided by length-accuracy anti-correlation, DTS designs an early termination to prioritize short and reliable trajectories during decoding. Experimental results across four LRMs and datasets demonstrate that DTS significantly enhances accuracy by 14% and reduces repetitive generation by 8% on average. Notably, DTS enables smaller models to outperform larger models with 10$\times$ the size, highlighting its potential to strengthen reasoning capabilities.
♻ ☆ Geometry-aware 4D Video Generation for Robot Manipulation ICLR 2026
Understanding and predicting dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of generated videos by supervising the model with cross-view pointmap alignment during training. Through this geometric supervision, the model learns a shared 3D scene representation, enabling it to generate spatio-temporally aligned future video sequences from novel viewpoints given a single RGB-D image per view, and without relying on camera poses as input. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, yielding robot manipulation policies that generalize well to novel camera viewpoints.
comment: ICLR 2026; Project website: https://robot4dgen.github.io
♻ ☆ Time-To-Inconsistency: A Survival Analysis of Large Language Model Robustness to Adversarial Attacks
Large Language Models (LLMs) have revolutionized conversational AI, yet their robustness in extended multi-turn dialogues remains poorly understood. Existing evaluation frameworks focus on static benchmarks and single-turn assessments, failing to capture the temporal dynamics of conversational degradation that characterize real-world interactions. In this work, we present a large-scale survival analysis of conversational robustness, modeling failure as a time-to-event process over 36,951 turns from 9 state-of-the-art LLMs on the MT-Consistency benchmark. Our framework combines Cox proportional hazards, Accelerated Failure Time (AFT), and Random Survival Forest models with simple semantic drift features. We find that abrupt prompt-to-prompt semantic drift sharply increases the hazard of inconsistency, whereas cumulative drift is counterintuitively \emph{protective}, suggesting adaptation in conversations that survive multiple shifts. AFT models with model-drift interactions achieve the best combination of discrimination and calibration, and proportional hazards checks reveal systematic violations for key drift covariates, explaining the limitations of Cox-style modeling in this setting. Finally, we show that a lightweight AFT model can be turned into a turn-level risk monitor that flags most failing conversations several turns before the first inconsistent answer while keeping false alerts modest. These results establish survival analysis as a powerful paradigm for evaluating multi-turn robustness and for designing practical safeguards for conversational AI systems.
♻ ☆ Are Graph Attention Networks Able to Model Structural Information?
Graph Attention Networks (GATs) have emerged as powerful models for learning expressive representations from such data by adaptively weighting neighboring nodes through attention mechanisms. However, most existing approaches primarily rely on node attributes and direct neighborhood connections, often overlooking rich structural patterns that capture higher-order topological information crucial for many real-world datasets. In this work, we present the Graph Structure Attention Network (GSAT), a novel extension of GAT that jointly integrates attribute-based and structure-based representations for more effective graph learning. GSAT incorporates structural features derived from anonymous random walks (ARWs) and graph kernels to encode local topological information, enabling attention mechanisms to adapt based on the underlying graph structure. This design enhances the model's ability to discern meaningful relational dependencies within complex data. Comprehensive experiments on standard graph classification and regression benchmarks demonstrate that GSAT achieves consistent improvements over state-of-the-art graph learning methods, highlighting the value of incorporating structural context for representation learning on graphs.
comment: 15 pages including appendix. The paper is complete
♻ ☆ The Invisible Leash: Why RLVR May or May Not Escape Its Origin
Recent advances highlight Reinforcement Learning with Verifiable Rewards (RLVR) as a promising method for enhancing LLMs' capabilities. However, it remains unclear whether the current practice of RLVR truly expands a model's reasoning boundary or mainly amplifies high-reward outputs that the base model already knows, thereby improving precision. This study presents an empirical investigation that provides fresh insights into the limits of RLVR. We examine how RLVR can operate as a support-constrained optimization mechanism that may restrict the discovery of entirely original solutions, remaining constrained by the base model's initial distribution. We also identify an entropy-reward trade-off: while RLVR reliably enhances precision, it may progressively narrow exploration and potentially overlook correct yet underrepresented solutions. Extensive empirical experiments validate that while RLVR consistently improves \texttt{pass@1}, \textit{the shrinkage of empirical support generally outweighs the expansion of empirical support under larger sampling budgets}, failing to recover correct answers that were previously accessible to the base model. Interestingly, while RLVR sometimes increases token-level entropy, it results in greater uncertainty at each generation step and declining answer-level entropy. This indicates that these seemingly more uncertain paths ultimately converge onto a smaller set of distinct answers. Taken together, we reveal potential limits of RLVR in extending reasoning horizons. Breaking this invisible leash requires future innovations that seed probability mass into underrepresented solution regions.
♻ ☆ Cooperative Flexibility Exchange: Fair and Comfort-Aware Decentralized Resource Allocation
The growing electricity demand and use of smart appliances are placing pressure on power grids, making efficient energy management more important than ever. The existing energy management systems often prioritize system efficiency (balanced energy demand and supply) at the expense of consumer comfort. This paper addresses this gap by proposing a novel decentralized multi-agent coordination-based demand-side management system. The proposed system enables individual agents to coordinate for demand-side energy optimization while improving consumer comfort and maintaining system efficiency. A key innovation of this work is the introduction of a slot exchange mechanism, where agents first receive optimized appliance-level energy consumption schedules and then coordinate with each other to adjust these schedules through slot exchanges to improve their comfort even when agents show non-altruistic behaviour. It also scales well with large populations and promotes fairness by balancing satisfaction levels across consumers. For performance evaluation, a real-world dataset is used, and the results demonstrate that the proposed slot exchange mechanism increases consumer comfort and fairness without raising system inefficiency cost, making it a practical and scalable solution for future smart grids.
♻ ☆ Policy Learning with a Language Bottleneck
Modern AI systems such as self-driving cars and game-playing agents achieve superhuman performance, but often lack human-like generalization, interpretability, and inter-operability with human users. Inspired by the rich interactions between language and decision-making in humans, we introduce Policy Learning with a Language Bottleneck (PLLB), a framework enabling AI agents to generate linguistic rules that capture the high-level strategies underlying rewarding behaviors. PLLB alternates between a *rule generation* step guided by language models, and an *update* step where agents learn new policies guided by rules, even when a rule is insufficient to describe an entire complex policy. Across five diverse tasks, including a two-player signaling game, maze navigation, image reconstruction, and robot grasp planning, we show that PLLB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users, enabling more effective human-AI coordination. We provide source code for our experiments at https://github.com/meghabyte/bottleneck .
comment: Accepted to TMLR (2026)
♻ ☆ Scaling Multiagent Systems with Process Rewards
While multiagent systems have shown promise for tackling complex tasks via specialization, finetuning multiple agents simultaneously faces two key challenges: (1) credit assignment across agents, and (2) sample efficiency of expensive multiagent rollouts. In this work, we propose finetuning multiagent systems with per-action process rewards from AI feedback (MAPPA) to address both. Through assigning credit to individual agent actions rather than only at task completion, MAPPA enables fine-grained supervision without ground truth labels while extracting maximal training signal from each rollout. We demonstrate our approach on competition math problems and tool-augmented data analysis tasks. On unseen math problems, MAPPA achieves +5.0--17.5pp on AIME and +7.8--17.2pp on AMC. For data analysis tasks, our method improves success rate by +16.7pp while quality metrics improve by up to 47%, validating that per-action supervision can lead to improvements across different multiagent systems on various domains. By addressing these challenges, our work takes a first step toward scaling multiagent systems for complex, long-horizon tasks with minimal human supervision.
♻ ☆ When Does Adaptation Win? Scaling Laws for Meta-Learning in Quantum Control
Quantum hardware suffers from intrinsic device heterogeneity and environmental drift, forcing practitioners to choose between suboptimal non-adaptive controllers or costly per-device recalibration. We derive a scaling law lower bound for meta-learning showing that the adaptation gain (expected fidelity improvement from task-specific gradient steps) saturates exponentially with gradient steps and scales linearly with task variance, providing a quantitative criterion for when adaptation justifies its overhead. Validation on quantum gate calibration shows negligible benefits for low-variance tasks but $>40\%$ fidelity gains on two-qubit gates under extreme out-of-distribution conditions (10$\times$ the training noise), with implications for reducing per-device calibration time on cloud quantum processors. Further validation on classical linear-quadratic control confirms these laws emerge from general optimization geometry rather than quantum-specific physics. Together, these results offer a transferable framework for decision-making in adaptive control.
comment: 28 pages, 11 figures
♻ ☆ MIGHTY: Hermite Spline-based Efficient Trajectory Planning
Hard-constraint trajectory planners often rely on commercial solvers and demand substantial computational resources. Existing soft-constraint methods achieve faster computation, but either (1) decouple spatial and temporal optimization or (2) restrict the search space. To overcome these limitations, we introduce MIGHTY, a Hermite spline-based planner that performs spatiotemporal optimization while fully leveraging the continuous search space of a spline. In simulation, MIGHTY achieves a 9.3% reduction in computation time and a 13.1% reduction in travel time over state-of-the-art baselines, with a 100% success rate. In hardware, MIGHTY completes multiple high-speed flights up to 6.7 m/s in a cluttered static environment and long-duration flights with dynamically added obstacles.
comment: 10 pages, 12 figures
♻ ☆ Improved Bag-of-Words Image Retrieval with Geometric Constraints for Ground Texture Localization
Ground texture localization using a downward-facing camera offers a low-cost, high-precision localization solution that is robust to dynamic environments and requires no environmental modification. We present a significantly improved bag-of-words (BoW) image retrieval system for ground texture localization, achieving substantially higher accuracy for global localization and higher precision and recall for loop closure detection in SLAM. Our approach leverages an approximate $k$-means (AKM) vocabulary with soft assignment, and exploits the consistent orientation and constant scale constraints inherent to ground texture localization. Identifying the different needs of global localization vs. loop closure detection for SLAM, we present both high-accuracy and high-speed versions of our algorithm. We test the effect of each of our proposed improvements through an ablation study and demonstrate our method's effectiveness for both global localization and loop closure detection. With numerous ground texture localization systems already using BoW, our method can readily replace other generic BoW systems in their pipeline and immediately improve their results.
comment: Accepted to ICRA 2025
♻ ☆ Model Reconciliation through Explainability and Collaborative Recovery in Assistive Robotics
Whenever humans and robots work together, it is essential that unexpected robot behavior can be explained to the user. Especially in applications such as shared control the user and the robot must share the same model of the objects in the world, and the actions that can be performed on these objects. In this paper, we achieve this with a so-called model reconciliation framework. We leverage a Large Language Model to predict and explain the difference between the robot's and the human's mental models, without the need of a formal mental model of the user. Furthermore, our framework aims to solve the model divergence after the explanation by allowing the human to correct the robot. We provide an implementation in an assistive robotics domain, where we conduct a set of experiments with a real wheelchair-based mobile manipulator and its digital twin.
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2026
♻ ☆ Realistic adversarial scenario generation via human-like pedestrian model for autonomous vehicle control parameter optimisation
Autonomous vehicles (AVs) are rapidly advancing and are expected to play a central role in future mobility. Ensuring their safe deployment requires reliable interaction with other road users, not least pedestrians. Direct testing on public roads is costly and unsafe for rare but critical interactions, making simulation a practical alternative. Within simulation-based testing, adversarial scenarios are widely used to probe safety limits, but many prioritise difficulty over realism, producing exaggerated behaviours which may result in AV controllers that are overly conservative. We propose an alternative method, instead using a cognitively inspired pedestrian model featuring both inter-individual and intra-individual variability to generate behaviourally plausible adversarial scenarios. We provide a proof of concept demonstration of this method's potential for AV control optimisation, in closed-loop testing and tuning of an AV controller. Our results show that replacing the rule-based CARLA pedestrian with the human-like model yields more realistic gap acceptance patterns and smoother vehicle decelerations. Unsafe interactions occur only for certain pedestrian individuals and conditions, underscoring the importance of human variability in AV testing. Adversarial scenarios generated by this model can be used to optimise AV control towards safer and more efficient behaviour. Overall, this work illustrates how incorporating human-like road user models into simulation-based adversarial testing can enhance the credibility of AV evaluation and provide a practical basis to behaviourally informed controller optimisation.
♻ ☆ TouchGuide: Inference-Time Steering of Visuomotor Policies via Touch Guidance
Fine-grained and contact-rich manipulation remain challenging for robots, largely due to the underutilization of tactile feedback. To address this, we introduce TouchGuide, a novel cross-policy visuo-tactile fusion paradigm that fuses modalities within a low-dimensional action space. Specifically, TouchGuide operates in two stages to guide a pre-trained diffusion or flow-matching visuomotor policy at inference time. First, the policy produces a coarse, visually-plausible action using only visual inputs during early sampling. Second, a task-specific Contact Physical Model (CPM) provides tactile guidance to steer and refine the action, ensuring it aligns with realistic physical contact conditions. Trained through contrastive learning on limited expert demonstrations, the CPM provides a tactile-informed feasibility score to steer the sampling process toward refined actions that satisfy physical contact constraints. Furthermore, to facilitate TouchGuide training with high-quality and cost-effective data, we introduce TacUMI, a data collection system. TacUMI achieves a favorable trade-off between precision and affordability; by leveraging rigid fingertips, it obtains direct tactile feedback, thereby enabling the collection of reliable tactile data. Extensive experiments on five challenging contact-rich tasks, such as shoe lacing and chip handover, show that TouchGuide consistently and significantly outperforms state-of-the-art visuo-tactile policies.
♻ ☆ Autonomous Navigation at the Nano-Scale: Algorithms, Architectures, and Constraints
Autonomous navigation for nano-scale unmanned aerial vehicles (nano-UAVs) is governed by extreme Size, Weight, and Power (SWaP) constraints (with the weight < 50 g and sub-100 mW onboard processor), distinguishing it fundamentally from standard robotic paradigms. This review synthesizes the state-of-the-art in sensing, computing, and control architectures designed specifically for these sub- 100mW computational envelopes. We critically analyse the transition from classical geometry-based methods to emerging "Edge AI" paradigms, including quantized deep neural networks deployed on ultra-low-power System-on-Chips (SoCs) and neuromorphic event-based control. Beyond algorithms, we evaluate the hardware-software co-design requisite for autonomy, covering advancements in dense optical flow, optimized Simultaneous Localization and Mapping (SLAM), and learning-based flight control. While significant progress has been observed in visual navigation and relative pose estimation, our analysis reveals persistent gaps in long-term endurance, robust obstacle avoidance in dynamic environments, and the "Sim-to-Real" transfer of reinforcement learning policies. This survey provides a roadmap for bridging these gaps, advocating for hybrid architectures that fuse lightweight classical control with data-driven perception to enable fully autonomous, agile nano-UAVs in GPS-denied environments.
comment: 30 pages, 5 figures, 2 table. Review article
♻ ☆ LiDAR, GNSS and IMU Sensor Fine Alignment through Dynamic Time Warping to Construct 3D City Maps
LiDAR-based 3D mapping suffers from cumulative drift causing global misalignment, particularly in GNSS-constrained environments. To address this, we propose a unified framework that fuses LiDAR, GNSS, and IMU data for high-resolution city-scale mapping. The method performs velocity-based temporal alignment using Dynamic Time Warping and refines GNSS and IMU signals via extended Kalman filtering. Local maps are built using Normal Distributions Transform-based registration and pose graph optimization with loop closure detection, while global consistency is enforced using GNSS-constrained anchors followed by fine registration of overlapping segments. We also introduce a large-scale multimodal dataset captured in Perth, Western Australia to facilitate future research in this direction. Our dataset comprises 144,000 frames acquired with a 128-channel Ouster LiDAR, synchronized RTK-GNSS trajectories, and MEMS-IMU measurements across 21 urban loops. To assess geometric consistency, we evaluated our method using alignment metrics based on road centerlines and intersections to capture both global and local accuracy. The proposed framework reduces the average global alignment error from 3.32m to 1.24m, achieving a 61.4% improvement, and significantly decreases the intersection centroid offset from 13.22m to 2.01m, corresponding to an 84.8% enhancement. The constructed high-fidelity map and raw dataset are publicly available through https://ieee-dataport.org/documents/perth-cbd-high-resolution-lidar-map-gnss-and-imu-calibration, and its visualization can be viewed at https://www.youtube.com/watch?v=-ZUgs1KyMks. The source code is available at https://github.com/HaitianWang/LiDAR-GNSS-and-IMU-Sensor-Fine-Alignment-through-Dynamic-Time-Warping-to-Construct-3D-City-Maps. This dataset and method together establish a new benchmark for evaluating 3D city mapping in GNSS-constrained environments.
comment: This paper has been submitted to IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS) and is currently under review
♻ ☆ PhysBrain: Human Egocentric Data as a Bridge from Vision Language Models to Physical Intelligence
Robotic generalization relies on physical intelligence: the ability to reason about state changes, contact-rich interactions, and long-horizon planning under egocentric perception and action. Vision Language Models (VLMs) are essential to Vision-Language-Action (VLA) systems, but the reliance on third-person training data creates a viewpoint gap for humanoid robots. Collecting massive robot-centric data is an ideal but impractical solution due to cost and diversity constraints. Conversely, human egocentric videos offer a highly scalable data source with rich interaction context, yet the embodiment mismatch prevents the direct application. To bridge this gap, we propose an Egocentric2Embodiment Translation Pipeline that transforms raw human egocentric videos into multi-level, schema-driven embodiment supervision with enforced evidence grounding and temporal consistency, enabling the construction of the Egocentric2Embodiment dataset (E2E-3M) at scale. An egocentric-aware embodied brain, termed PhysBrain, is obtained by training on the E2E-3M dataset. PhysBrain exhibits substantially improved egocentric understanding, particularly for planning. It provides an egocentric-aware initialization that enables more sample-efficient VLA fine-tuning and higher success rates, demonstrating effective transfer from human egocentric supervision to downstream robot control.
comment: 21 pages, 8 figures
♻ ☆ Analytical Inverse Kinematic Solution for "Moz1" NonSRS 7-DOF Robot arm with novel arm angle
This paper presents an analytical solution to the inverse kinematic problem(IKP) for the seven degree-of-freedom (7-DOF) Moz1 Robot Arm with offsets on wrist. We provide closed-form solutions with the novel arm angle . it allow fully self-motion and solve the problem of algorithmic singularities within the workspace. It also provides information on how the redundancy is resolved in a new arm angle representation where traditional SEW angle faied to be defined and how singularities are handled. The solution is simple, fast and exact, providing full solution space (i.e. all 16 solutions) per pose.
♻ ☆ A Survey on Vision-Language-Action Models for Embodied AI
Embodied AI is widely recognized as a cornerstone of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. The recent proliferation of VLAs necessitates a comprehensive survey to capture the rapidly evolving landscape. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing VLA-based control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges facing VLAs and outline promising future directions in embodied AI. A curated repository associated with this survey is available at: https://github.com/yueen-ma/Awesome-VLA.
comment: Project page: https://github.com/yueen-ma/Awesome-VLA
♻ ☆ A Unified Candidate Set with Scene-Adaptive Refinement via Diffusion for End-to-End Autonomous Driving
End-to-end autonomous driving is increasingly adopting a multimodal planning paradigm that generates multiple trajectory candidates and selects the final plan, making candidate-set design critical. A fixed trajectory vocabulary provides stable coverage in routine driving but often misses optimal solutions in complex interactions, while scene-adaptive refinement can cause over-correction in simple scenarios by unnecessarily perturbing already strong vocabulary trajectories.We propose CdDrive, which preserves the original vocabulary candidates and augments them with scene-adaptive candidates generated by vocabulary-conditioned diffusion denoising. Both candidate types are jointly scored by a shared selection module, enabling reliable performance across routine and highly interactive scenarios. We further introduce HATNA (Horizon-Aware Trajectory Noise Adapter) to improve the smoothness and geometric continuity of diffusion candidates via temporal smoothing and horizon-aware noise modulation. Experiments on NAVSIM v1 and NAVSIM v2 demonstrate leading performance, and ablations verify the contribution of each component. Code: https://github.com/WWW-TJ/CdDrive.
♻ ☆ Game-Based and Gamified Robotics Education: A Comparative Systematic Review and Design Guidelines
Robotics education fosters computational thinking, creativity, and problem-solving, but remains challenging due to technical complexity. Game-based learning (GBL) and gamification offer engagement benefits, yet their comparative impact remains unclear. We present the first PRISMA-aligned systematic review and comparative synthesis of GBL and gamification in robotics education, analyzing 95 studies from 12,485 records across four databases (2014-2025). We coded each study's approach, learning context, skill level, modality, pedagogy, and outcomes (k = .918). Three patterns emerged: (1) approach-context-pedagogy coupling (GBL more prevalent in informal settings, while gamification dominated formal classrooms [p < .001] and favored project-based learning [p = .009]); (2) emphasis on introductory programming and modular kits, with limited adoption of advanced software (~17%), advanced hardware (~5%), or immersive technologies (~22%); and (3) short study horizons, relying on self-report. We propose eight research directions and a design space outlining best practices and pitfalls, offering actionable guidance for robotics education.
comment: Accepted for publication at Proceedings of the 2026 CHI Conference on Human Factors in Computing Systems. 26 pages, 14 figures, 7 tables;
♻ ☆ ProAct: A Benchmark and Multimodal Framework for Structure-Aware Proactive Response
While passive agents merely follow instructions, proactive agents align with higher-level objectives, such as assistance and safety by continuously monitoring the environment to determine when and how to act. However, developing proactive agents is hindered by the lack of specialized resources. To address this, we introduce ProAct-75, a benchmark designed to train and evaluate proactive agents across diverse domains, including assistance, maintenance, and safety monitoring. Spanning 75 tasks, our dataset features 91,581 step-level annotations enriched with explicit task graphs. These graphs encode step dependencies and parallel execution possibilities, providing the structural grounding necessary for complex decision-making. Building on this benchmark, we propose ProAct-Helper, a reference baseline powered by a Multimodal Large Language Model (MLLM) that grounds decision-making in state detection, and leveraging task graphs to enable entropy-driven heuristic search for action selection, allowing agents to execute parallel threads independently rather than mirroring the human's next step. Extensive experiments demonstrate that ProAct-Helper outperforms strong closed-source models, improving trigger detection mF1 by 6.21%, saving 0.25 more steps in online one-step decision, and increasing the rate of parallel actions by 15.58%.
♻ ☆ Learning-based Observer for Coupled Disturbance
Achieving high-precision control for robotic systems is hindered by the low-fidelity dynamical model and external disturbances. Especially, the intricate coupling between internal uncertainties and external disturbances further exacerbates this challenge. This study introduces an effective and convergent algorithm enabling accurate estimation of the coupled disturbance via combining control and learning philosophies. Concretely, by resorting to Chebyshev series expansion, the coupled disturbance is firstly decomposed into an unknown parameter matrix and two known structures dependent on system state and external disturbance respectively. A regularized least squares algorithm is subsequently formalized to learn the parameter matrix using historical time-series data. Finally, a polynomial disturbance observer is specifically devised to achieve a high-precision estimation of the coupled disturbance by utilizing the learned portion. The proposed algorithm is evaluated through extensive simulations and real flight tests. We believe this work can offer a new pathway to integrate learning approaches into control frameworks for addressing longstanding challenges in robotic applications.
comment: 10 pages, 7 figures
♻ ☆ Doppler-SLAM: Doppler-Aided Radar-Inertial and LiDAR-Inertial Simultaneous Localization and Mapping
Simultaneous localization and mapping (SLAM) is a critical capability for autonomous systems. Traditional SLAM approaches, which often rely on visual or LiDAR sensors, face significant challenges in adverse conditions such as low light or featureless environments. To overcome these limitations, we propose a novel Doppler-aided radar-inertial and LiDAR-inertial SLAM framework that leverages the complementary strengths of 4D radar, FMCW LiDAR, and inertial measurement units. Our system integrates Doppler velocity measurements and spatial data into a tightly-coupled front-end and graph optimization back-end to provide enhanced ego velocity estimation, accurate odometry, and robust mapping. We also introduce a Doppler-based scan-matching technique to improve front-end odometry in dynamic environments. In addition, our framework incorporates an innovative online extrinsic calibration mechanism, utilizing Doppler velocity and loop closure to dynamically maintain sensor alignment. Extensive evaluations on both public and proprietary datasets show that our system significantly outperforms state-of-the-art radar-SLAM and LiDAR-SLAM frameworks in terms of accuracy and robustness. To encourage further research, the code of our Doppler-SLAM and our dataset are available at: https://github.com/Wayne-DWA/Doppler-SLAM.
comment: 8 pages, 7 figures
♻ ☆ Haptic bilateral teleoperation system for free-hand dental procedures
Free-hand dental procedures are typically repetitive, time-consuming and require high precision and manual dexterity. Robots can play a key role in improving procedural accuracy and safety, enhancing patient comfort, and reducing operator workload. However, robotic solutions for free-hand procedures remain limited or completely lacking. To address this gap, we develop a haptic bilateral teleoperation system (HBTS) for free-hand dental procedures (FH-HBTS). The system includes a mechanical end-effector, compatible with standard clinical tools, and equipped with an endoscopic camera for improved visibility of the intervention site. By ensuring motion and force correspondence between the operator's and the robot's actions, monitored through visual feedback, we enhance the operator's sensory awareness and motor accuracy. Furthermore, to ensure procedural safety, we limit interaction forces by scaling the motion references provided to the admittance controller based solely on measured contact forces. This ensures effective force limitation in all contact states without requiring prior knowledge of the environment. The proposed FH-HBTS is validated both through a technical evaluation and an in-vitro pre-clinical study conducted on a dental model under clinically representative conditions. The results show that the system improves the naturalness, safety, and accuracy of teleoperation, highlighting its potential to enhance free-hand dental procedures.
comment: 13 pages, 8 figures
♻ ☆ SAP-CoPE: Social-Aware Planning using Cooperative Pose Estimation with Infrastructure Sensor Nodes
Autonomous driving systems must operate smoothly in human-populated indoor environments, where challenges arise including limited perception and occlusions when relying only on onboard sensors, as well as the need for socially compliant motion planning that accounts for human psychological comfort zones. These factors complicate accurate recognition of human intentions and the generation of comfortable, socially aware trajectories. To address these challenges, we propose SAP-CoPE, an indoor navigation system that integrates cooperative infrastructure with a novel 3D human pose estimation method and a socially-aware model predictive control (MPC)-based motion planner. In the perception module, an optimization problem is formulated to account for uncertainty propagation in the camera projection matrix while enforcing human joint coherence. The proposed method is adaptable to both single- and multi-camera configurations and can incorporate sparse LiDAR point-cloud data. For motion planning, we integrate a psychology inspired personal-space field using the information from estimated human poses into an MPC framework to enhance socially comfort in human-populated environments. Extensive real-world evaluations demonstrate the effectiveness of the proposed approach in generating socially aware trajectories for autonomous systems.
comment: This paper has been submitted to the IEEE Transactions on Automation Science and Engineering
♻ ☆ Learning-Based Modeling of a Magnetically Steerable Soft Suction Device for Endoscopic Endonasal Interventions
This paper introduces a learning-based modeling framework for a magnetically steerable soft suction device designed for endoscopic endonasal brain tumor resection. The device is miniaturized (4 mm outer diameter, 2 mm inner diameter, 40 mm length), 3D printed using biocompatible SIL 30 material, and integrates embedded Fiber Bragg Grating (FBG) sensors for real-time shape feedback. Shape reconstruction is represented using four Bezier control points, providing a compact representation of deformation. A data-driven model was trained on 5,097 experimental samples to learn the mapping from magnetic field parameters (magnitude: 0-14 mT, frequency: 0.2-1.0 Hz, vertical tip distances: 90-100 mm) to Bezier control points defining the robot's 3D shape. Both Neural Network (NN) and Random Forest (RF) architectures were compared. The RF model outperformed the NN, achieving a mean RMSE of 0.087 mm in control point prediction and 0.064 mm in shape reconstruction error. Feature importance analysis revealed that magnetic field components predominantly influence distal control points, while frequency and distance affect the base configuration. Unlike prior studies applying general machine learning to soft robotic data, this framework introduces a new paradigm linking magnetic actuation inputs directly to geometric Bezier control points, creating an interpretable, low-dimensional deformation representation. This integration of magnetic field characterization, embedded FBG sensing, and Bezier-based learning provides a unified strategy extensible to other magnetically actuated continuum robots. By enabling sub-millimeter shape prediction and real-time inference, this work advances intelligent control of magnetically actuated soft robotic tools in minimally invasive neurosurgery.
Computation and Language 188
☆ Parallel-Probe: Towards Efficient Parallel Thinking via 2D Probing
Parallel thinking has emerged as a promising paradigm for reasoning, yet it imposes significant computational burdens. Existing efficiency methods primarily rely on local, per-trajectory signals and lack principled mechanisms to exploit global dynamics across parallel branches. We introduce 2D probing, an interface that exposes the width-depth dynamics of parallel thinking by periodically eliciting intermediate answers from all branches. Our analysis reveals three key insights: non-monotonic scaling across width-depth allocations, heterogeneous reasoning branch lengths, and early stabilization of global consensus. Guided by these insights, we introduce $\textbf{Parallel-Probe}$, a training-free controller designed to optimize online parallel thinking. Parallel-Probe employs consensus-based early stopping to regulate reasoning depth and deviation-based branch pruning to dynamically adjust width. Extensive experiments across three benchmarks and multiple models demonstrate that Parallel-Probe establishes a superior Pareto frontier for test-time scaling. Compared to standard majority voting, it reduces sequential tokens by up to $\textbf{35.8}$% and total token cost by over $\textbf{25.8}$% while maintaining competitive accuracy.
comment: 14 pages
☆ Accelerating Scientific Research with Gemini: Case Studies and Common Techniques
Recent advances in large language models (LLMs) have opened new avenues for accelerating scientific research. While models are increasingly capable of assisting with routine tasks, their ability to contribute to novel, expert-level mathematical discovery is less understood. We present a collection of case studies demonstrating how researchers have successfully collaborated with advanced AI models, specifically Google's Gemini-based models (in particular Gemini Deep Think and its advanced variants), to solve open problems, refute conjectures, and generate new proofs across diverse areas in theoretical computer science, as well as other areas such as economics, optimization, and physics. Based on these experiences, we extract common techniques for effective human-AI collaboration in theoretical research, such as iterative refinement, problem decomposition, and cross-disciplinary knowledge transfer. While the majority of our results stem from this interactive, conversational methodology, we also highlight specific instances that push beyond standard chat interfaces. These include deploying the model as a rigorous adversarial reviewer to detect subtle flaws in existing proofs, and embedding it within a "neuro-symbolic" loop that autonomously writes and executes code to verify complex derivations. Together, these examples highlight the potential of AI not just as a tool for automation, but as a versatile, genuine partner in the creative process of scientific discovery.
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ They Said Memes Were Harmless-We Found the Ones That Hurt: Decoding Jokes, Symbols, and Cultural References
Meme-based social abuse detection is challenging because harmful intent often relies on implicit cultural symbolism and subtle cross-modal incongruence. Prior approaches, from fusion-based methods to in-context learning with Large Vision-Language Models (LVLMs), have made progress but remain limited by three factors: i) cultural blindness (missing symbolic context), ii) boundary ambiguity (satire vs. abuse confusion), and iii) lack of interpretability (opaque model reasoning). We introduce CROSS-ALIGN+, a three-stage framework that systematically addresses these limitations: (1) Stage I mitigates cultural blindness by enriching multimodal representations with structured knowledge from ConceptNet, Wikidata, and Hatebase; (2) Stage II reduces boundary ambiguity through parameter-efficient LoRA adapters that sharpen decision boundaries; and (3) Stage III enhances interpretability by generating cascaded explanations. Extensive experiments on five benchmarks and eight LVLMs demonstrate that CROSS-ALIGN+ consistently outperforms state-of-the-art methods, achieving up to 17% relative F1 improvement while providing interpretable justifications for each decision.
comment: Accepted at the The Web Conference 2026 (Research Track)
☆ Antidistillation Fingerprinting
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
comment: 26 pages, 11 figures
☆ Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
☆ FullStack-Agent: Enhancing Agentic Full-Stack Web Coding via Development-Oriented Testing and Repository Back-Translation
Assisting non-expert users to develop complex interactive websites has become a popular task for LLM-powered code agents. However, existing code agents tend to only generate frontend web pages, masking the lack of real full-stack data processing and storage with fancy visual effects. Notably, constructing production-level full-stack web applications is far more challenging than only generating frontend web pages, demanding careful control of data flow, comprehensive understanding of constantly updating packages and dependencies, and accurate localization of obscure bugs in the codebase. To address these difficulties, we introduce FullStack-Agent, a unified agent system for full-stack agentic coding that consists of three parts: (1) FullStack-Dev, a multi-agent framework with strong planning, code editing, codebase navigation, and bug localization abilities. (2) FullStack-Learn, an innovative data-scaling and self-improving method that back-translates crawled and synthesized website repositories to improve the backbone LLM of FullStack-Dev. (3) FullStack-Bench, a comprehensive benchmark that systematically tests the frontend, backend and database functionalities of the generated website. Our FullStack-Dev outperforms the previous state-of-the-art method by 8.7%, 38.2%, and 15.9% on the frontend, backend, and database test cases respectively. Additionally, FullStack-Learn raises the performance of a 30B model by 9.7%, 9.5%, and 2.8% on the three sets of test cases through self-improvement, demonstrating the effectiveness of our approach. The code is released at https://github.com/mnluzimu/FullStack-Agent.
☆ WebSentinel: Detecting and Localizing Prompt Injection Attacks for Web Agents
Prompt injection attacks manipulate webpage content to cause web agents to execute attacker-specified tasks instead of the user's intended ones. Existing methods for detecting and localizing such attacks achieve limited effectiveness, as their underlying assumptions often do not hold in the web-agent setting. In this work, we propose WebSentinel, a two-step approach for detecting and localizing prompt injection attacks in webpages. Given a webpage, Step I extracts \emph{segments of interest} that may be contaminated, and Step II evaluates each segment by checking its consistency with the webpage content as context. We show that WebSentinel is highly effective, substantially outperforming baseline methods across multiple datasets of both contaminated and clean webpages that we collected. Our code is available at: https://github.com/wxl-lxw/WebSentinel.
☆ AOrchestra: Automating Sub-Agent Creation for Agentic Orchestration
Language agents have shown strong promise for task automation. Realizing this promise for increasingly complex, long-horizon tasks has driven the rise of a sub-agent-as-tools paradigm for multi-turn task solving. However, existing designs still lack a dynamic abstraction view of sub-agents, thereby hurting adaptability. We address this challenge with a unified, framework-agnostic agent abstraction that models any agent as a tuple Instruction, Context, Tools, Model. This tuple acts as a compositional recipe for capabilities, enabling the system to spawn specialized executors for each task on demand. Building on this abstraction, we introduce an agentic system AOrchestra, where the central orchestrator concretizes the tuple at each step: it curates task-relevant context, selects tools and models, and delegates execution via on-the-fly automatic agent creation. Such designs enable reducing human engineering efforts, and remain framework-agnostic with plug-and-play support for diverse agents as task executors. It also enables a controllable performance-cost trade-off, allowing the system to approach Pareto-efficient. Across three challenging benchmarks (GAIA, SWE-Bench, Terminal-Bench), AOrchestra achieves 16.28% relative improvement against the strongest baseline when paired with Gemini-3-Flash. The code is available at: https://github.com/FoundationAgents/AOrchestra
☆ Context Compression via Explicit Information Transmission
Long-context inference with Large Language Models (LLMs) is costly due to quadratic attention and growing key-value caches, motivating context compression. In this work, we study soft context compression, where a long context is condensed into a small set of continuous representations. Existing methods typically re-purpose the LLM itself as a trainable compressor, relying on layer-by-layer self-attention to iteratively aggregate information. We argue that this paradigm suffers from two structural limitations: (i) progressive representation overwriting across layers (ii) uncoordinated allocation of compression capacity across tokens. We propose ComprExIT (Context Compression via Explicit Information Transmission), a lightweight framework that formulates soft compression into a new paradigm: explicit information transmission over frozen LLM hidden states. This decouples compression from the model's internal self-attention dynamics. ComprExIT performs (i) depth-wise transmission to selectively transmit multi-layer information into token anchors, mitigating progressive overwriting, and (ii) width-wise transmission to aggregate anchors into a small number of slots via a globally optimized transmission plan, ensuring coordinated allocation of information. Across six question-answering benchmarks, ComprExIT consistently outperforms state-of-the-art context compression methods while introducing only ~1% additional parameters, demonstrating that explicit and coordinated information transmission enables more effective and robust long-context compression.
☆ Efficient Estimation of Kernel Surrogate Models for Task Attribution ICLR 2026
Modern AI agents such as large language models are trained on diverse tasks -- translation, code generation, mathematical reasoning, and text prediction -- simultaneously. A key question is to quantify how each individual training task influences performance on a target task, a problem we refer to as task attribution. The direct approach, leave-one-out retraining, measures the effect of removing each task, but is computationally infeasible at scale. An alternative approach that builds surrogate models to predict a target task's performance for any subset of training tasks has emerged in recent literature. Prior work focuses on linear surrogate models, which capture first-order relationships, but miss nonlinear interactions such as synergy, antagonism, or XOR-type effects. In this paper, we first consider a unified task weighting framework for analyzing task attribution methods, and show a new connection between linear surrogate models and influence functions through a second-order analysis. Then, we introduce kernel surrogate models, which more effectively represent second-order task interactions. To efficiently learn the kernel surrogate, we develop a gradient-based estimation procedure that leverages a first-order approximation of pretrained models; empirically, this yields accurate estimates with less than $2\%$ relative error without repeated retraining. Experiments across multiple domains -- including math reasoning in transformers, in-context learning, and multi-objective reinforcement learning -- demonstrate the effectiveness of kernel surrogate models. They achieve a $25\%$ higher correlation with the leave-one-out ground truth than linear surrogates and influence-function baselines. When used for downstream task selection, kernel surrogate models yield a $40\%$ improvement in demonstration selection for in-context learning and multi-objective reinforcement learning benchmarks.
comment: 27 pages. To appear in ICLR 2026
☆ CUBO: Self-Contained Retrieval-Augmented Generation on Consumer Laptops 10 GB Corpora, 16 GB RAM, Single-Device Deployment
Organizations handling sensitive documents face a tension: cloud-based AI risks GDPR violations, while local systems typically require 18-32 GB RAM. This paper presents CUBO, a systems-oriented RAG platform for consumer laptops with 16 GB shared memory. CUBO's novelty lies in engineering integration of streaming ingestion (O(1) buffer overhead), tiered hybrid retrieval, and hardware-aware orchestration that enables competitive Recall@10 (0.48-0.97 across BEIR domains) within a hard 15.5 GB RAM ceiling. The 37,000-line codebase achieves retrieval latencies of 185 ms (p50) on C1,300 laptops while maintaining data minimization through local-only processing aligned with GDPR Art. 5(1)(c). Evaluation on BEIR benchmarks validates practical deployability for small-to-medium professional archives. The codebase is publicly available at https://github.com/PaoloAstrino/CUBO.
comment: 24 pages, 2 figures, 6 tables
☆ Training Multi-Turn Search Agent via Contrastive Dynamic Branch Sampling
Agentic reinforcement learning has enabled large language models to perform complex multi-turn planning and tool use. However, learning in long-horizon settings remains challenging due to sparse, trajectory-level outcome rewards. While prior tree-based methods attempt to mitigate this issue, they often suffer from high variance and computational inefficiency. Through empirical analysis of search agents, We identify a common pattern: performance diverges mainly due to decisions near the tail. Motivated by this observation, we propose Branching Relative Policy Optimization (BranPO), a value-free method that provides step-level contrastive supervision without dense rewards. BranPO truncates trajectories near the tail and resamples alternative continuations to construct contrastive suffixes over shared prefixes, reducing credit ambiguity in long-horizon rollouts. To further boost efficiency and stabilize training, we introduce difficulty-aware branch sampling to adapt branching frequency across tasks, and redundant step masking to suppress uninformative actions. Extensive experiments on various question answering benchmarks demonstrate that BranPO consistently outperforms strong baselines, achieving significant accuracy gains on long-horizon tasks without increasing the overall training budget. Our code is available at \href{https://github.com/YubaoZhao/BranPO}{code}.
comment: 24 pages, 5 figures
☆ No Shortcuts to Culture: Indonesian Multi-hop Question Answering for Complex Cultural Understanding
Understanding culture requires reasoning across context, tradition, and implicit social knowledge, far beyond recalling isolated facts. Yet most culturally focused question answering (QA) benchmarks rely on single-hop questions, which may allow models to exploit shallow cues rather than demonstrate genuine cultural reasoning. In this work, we introduce ID-MoCQA, the first large-scale multi-hop QA dataset for assessing the cultural understanding of large language models (LLMs), grounded in Indonesian traditions and available in both English and Indonesian. We present a new framework that systematically transforms single-hop cultural questions into multi-hop reasoning chains spanning six clue types (e.g., commonsense, temporal, geographical). Our multi-stage validation pipeline, combining expert review and LLM-as-a-judge filtering, ensures high-quality question-answer pairs. Our evaluation across state-of-the-art models reveals substantial gaps in cultural reasoning, particularly in tasks requiring nuanced inference. ID-MoCQA provides a challenging and essential benchmark for advancing the cultural competency of LLMs.
☆ Beyond Tokens: Semantic-Aware Speculative Decoding for Efficient Inference by Probing Internal States
Large Language Models (LLMs) achieve strong performance across many tasks but suffer from high inference latency due to autoregressive decoding. The issue is exacerbated in Large Reasoning Models (LRMs), which generate lengthy chains of thought. While speculative decoding accelerates inference by drafting and verifying multiple tokens in parallel, existing methods operate at the token level and ignore semantic equivalence (i.e., different token sequences expressing the same meaning), leading to inefficient rejections. We propose SemanticSpec, a semantic-aware speculative decoding framework that verifies entire semantic sequences instead of tokens. SemanticSpec introduces a semantic probability estimation mechanism that probes the model's internal hidden states to assess the likelihood of generating sequences with specific meanings.Experiments on four benchmarks show that SemanticSpec achieves up to 2.7x speedup on DeepSeekR1-32B and 2.1x on QwQ-32B, consistently outperforming token-level and sequence-level baselines in both efficiency and effectiveness.
☆ OmniRAG-Agent: Agentic Omnimodal Reasoning for Low-Resource Long Audio-Video Question Answering
Long-horizon omnimodal question answering answers questions by reasoning over text, images, audio, and video. Despite recent progress on OmniLLMs, low-resource long audio-video QA still suffers from costly dense encoding, weak fine-grained retrieval, limited proactive planning, and no clear end-to-end optimization.To address these issues, we propose OmniRAG-Agent, an agentic omnimodal QA method for budgeted long audio-video reasoning. It builds an image-audio retrieval-augmented generation module that lets an OmniLLM fetch short, relevant frames and audio snippets from external banks. Moreover, it uses an agent loop that plans, calls tools across turns, and merges retrieved evidence to answer complex queries. Furthermore, we apply group relative policy optimization to jointly improve tool use and answer quality over time. Experiments on OmniVideoBench, WorldSense, and Daily-Omni show that OmniRAG-Agent consistently outperforms prior methods under low-resource settings and achieves strong results, with ablations validating each component.
☆ Cognitively Diverse Multiple-Choice Question Generation: A Hybrid Multi-Agent Framework with Large Language Models
Recent advances in large language models (LLMs) have made automated multiple-choice question (MCQ) generation increasingly feasible; however, reliably producing items that satisfy controlled cognitive demands remains a challenge. To address this gap, we introduce ReQUESTA, a hybrid, multi-agent framework for generating cognitively diverse MCQs that systematically target text-based, inferential, and main idea comprehension. ReQUESTA decomposes MCQ authoring into specialized subtasks and coordinates LLM-powered agents with rule-based components to support planning, controlled generation, iterative evaluation, and post-processing. We evaluated the framework in a large-scale reading comprehension study using academic expository texts, comparing ReQUESTA-generated MCQs with those produced by a single-pass GPT-5 zero-shot baseline. Psychometric analyses of learner responses assessed item difficulty and discrimination, while expert raters evaluated question quality across multiple dimensions, including topic relevance and distractor quality. Results showed that ReQUESTA-generated items were consistently more challenging, more discriminative, and more strongly aligned with overall reading comprehension performance. Expert evaluations further indicated stronger alignment with central concepts and superior distractor linguistic consistency and semantic plausibility, particularly for inferential questions. These findings demonstrate that hybrid, agentic orchestration can systematically improve the reliability and controllability of LLM-based generation, highlighting workflow design as a key lever for structured artifact generation beyond single-pass prompting.
comment: This manuscript is under review at Electronics
☆ Conflict-Resolving and Sharpness-Aware Minimization for Generalized Knowledge Editing with Multiple Updates
Large language models (LLMs) rely on internal knowledge to solve many downstream tasks, making it crucial to keep them up to date. Since full retraining is expensive, prior work has explored efficient alternatives such as model editing and parameter-efficient fine-tuning. However, these approaches often break down in practice due to poor generalization across inputs, limited stability, and knowledge conflict. To address these limitations, we propose the CoRSA (Conflict-Resolving and Sharpness-Aware Minimization) training framework, a parameter-efficient, holistic approach for knowledge editing with multiple updates. CoRSA tackles multiple challenges simultaneously: it improves generalization to different input forms and enhances stability across multiple updates by minimizing loss curvature, and resolves conflicts by maximizing the margin between new and prior knowledge. Across three widely used fact editing benchmarks, CoRSA achieves significant gains in generalization, outperforming baselines with average absolute improvements of 12.42% over LoRA and 10% over model editing methods. With multiple updates, it maintains high update efficacy while reducing catastrophic forgetting by 27.82% compared to LoRA. CoRSA also generalizes to the code domain, outperforming the strongest baseline by 5.48% Pass@5 in update efficacy.
comment: 22 pages, 8 figures. Code link: https://github.com/duykhuongnguyen/CoRSA
☆ Agent Primitives: Reusable Latent Building Blocks for Multi-Agent Systems
While existing multi-agent systems (MAS) can handle complex problems by enabling collaboration among multiple agents, they are often highly task-specific, relying on manually crafted agent roles and interaction prompts, which leads to increased architectural complexity and limited reusability across tasks. Moreover, most MAS communicate primarily through natural language, making them vulnerable to error accumulation and instability in long-context, multi-stage interactions within internal agent histories. In this work, we propose \textbf{Agent Primitives}, a set of reusable latent building blocks for LLM-based MAS. Inspired by neural network design, where complex models are built from reusable components, we observe that many existing MAS architectures can be decomposed into a small number of recurring internal computation patterns. Based on this observation, we instantiate three primitives: Review, Voting and Selection, and Planning and Execution. All primitives communicate internally via key-value (KV) cache, which improves both robustness and efficiency by mitigating information degradation across multi-stage interactions. To enable automatic system construction, an Organizer agent selects and composes primitives for each query, guided by a lightweight knowledge pool of previously successful configurations, forming a primitive-based MAS. Experiments show that primitives-based MAS improve average accuracy by 12.0-16.5\% over single-agent baselines, reduce token usage and inference latency by approximately 3$\times$-4$\times$ compared to text-based MAS, while incurring only 1.3$\times$-1.6$\times$ overhead relative to single-agent inference and providing more stable performance across model backbones.
comment: 16 pages
☆ OCRTurk: A Comprehensive OCR Benchmark for Turkish EACL 2026
Document parsing is now widely used in applications, such as large-scale document digitization, retrieval-augmented generation, and domain-specific pipelines in healthcare and education. Benchmarking these models is crucial for assessing their reliability and practical robustness. Existing benchmarks mostly target high-resource languages and provide limited coverage for low-resource settings, such as Turkish. Moreover, existing studies on Turkish document parsing lack a standardized benchmark that reflects real-world scenarios and document diversity. To address this gap, we introduce OCRTurk, a Turkish document parsing benchmark covering multiple layout elements and document categories at three difficulty levels. OCRTurk consists of 180 Turkish documents drawn from academic articles, theses, slide decks, and non-academic articles. We evaluate seven OCR models on OCRTurk using element-wise metrics. Across difficulty levels, PaddleOCR achieves the strongest overall results, leading most element-wise metrics except figures and attaining high Normalized Edit Distance scores in easy, medium, and hard subsets. We also observe performance variation by document type. Models perform well on non-academic documents, while slideshows become the most challenging.
comment: Accepted by EACL 2026 SIGTURK
☆ Rethinking the Reranker: Boundary-Aware Evidence Selection for Robust Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems remain brittle under realistic retrieval noise, even when the required evidence appears in the top-K results. A key reason is that retrievers and rerankers optimize solely for relevance, often selecting either trivial, answer-revealing passages or evidence that lacks the critical information required to answer the question, without considering whether the evidence is suitable for the generator. We propose BAR-RAG, which reframes the reranker as a boundary-aware evidence selector that targets the generator's Goldilocks Zone -- evidence that is neither trivially easy nor fundamentally unanswerable for the generator, but is challenging yet sufficient for inference and thus provides the strongest learning signal. BAR-RAG trains the selector with reinforcement learning using generator feedback, and adopts a two-stage pipeline that fine-tunes the generator under the induced evidence distribution to mitigate the distribution mismatch between training and inference. Experiments on knowledge-intensive question answering benchmarks show that BAR-RAG consistently improves end-to-end performance under noisy retrieval, achieving an average gain of 10.3 percent over strong RAG and reranking baselines while substantially improving robustness. Code is publicly avaliable at https://github.com/GasolSun36/BAR-RAG.
comment: 19 pages, 8 tables, 5 figures
☆ Neural Attention Search Linear: Towards Adaptive Token-Level Hybrid Attention Models
The quadratic computational complexity of softmax transformers has become a bottleneck in long-context scenarios. In contrast, linear attention model families provide a promising direction towards a more efficient sequential model. These linear attention models compress past KV values into a single hidden state, thereby efficiently reducing complexity during both training and inference. However, their expressivity remains limited by the size of their hidden state. Previous work proposed interleaving softmax and linear attention layers to reduce computational complexity while preserving expressivity. Nevertheless, the efficiency of these models remains bottlenecked by their softmax attention layers. In this paper, we propose Neural Attention Search Linear (NAtS-L), a framework that applies both linear attention and softmax attention operations within the same layer on different tokens. NAtS-L automatically determines whether a token can be handled by a linear attention model, i.e., tokens that have only short-term impact and can be encoded into fixed-size hidden states, or require softmax attention, i.e., tokens that contain information related to long-term retrieval and need to be preserved for future queries. By searching for optimal Gated DeltaNet and softmax attention combinations across tokens, we show that NAtS-L provides a strong yet efficient token-level hybrid architecture.
comment: 17 pages, 8 figures
☆ Instruction Anchors: Dissecting the Causal Dynamics of Modality Arbitration
Modality following serves as the capacity of multimodal large language models (MLLMs) to selectively utilize multimodal contexts based on user instructions. It is fundamental to ensuring safety and reliability in real-world deployments. However, the underlying mechanisms governing this decision-making process remain poorly understood. In this paper, we investigate its working mechanism through an information flow lens. Our findings reveal that instruction tokens function as structural anchors for modality arbitration: Shallow attention layers perform non-selective information transfer, routing multimodal cues to these anchors as a latent buffer; Modality competition is resolved within deep attention layers guided by the instruction intent, while MLP layers exhibit semantic inertia, acting as an adversarial force. Furthermore, we identify a sparse set of specialized attention heads that drive this arbitration. Causal interventions demonstrate that manipulating a mere $5\%$ of these critical heads can decrease the modality-following ratio by $60\%$ through blocking, or increase it by $60\%$ through targeted amplification of failed samples. Our work provides a substantial step toward model transparency and offers a principled framework for the orchestration of multimodal information in MLLMs.
comment: Modality Following
☆ RAGTurk: Best Practices for Retrieval Augmented Generation in Turkish EACL 2026
Retrieval-Augmented Generation (RAG) enhances LLM factuality, yet design guidance remains English-centric, limiting insights for morphologically rich languages like Turkish. We address this by constructing a comprehensive Turkish RAG dataset derived from Turkish Wikipedia and CulturaX, comprising question-answer pairs and relevant passage chunks. We benchmark seven stages of the RAG pipeline, from query transformation and reranking to answer refinement, without task-specific fine-tuning. Our results show that complex methods like HyDE maximize accuracy (85%) that is considerably higher than the baseline (78.70%). Also a Pareto-optimal configuration using Cross-encoder Reranking and Context Augmentation achieves comparable performance (84.60%) with much lower cost. We further demonstrate that over-stacking generative modules can degrade performance by distorting morphological cues, whereas simple query clarification with robust reranking offers an effective solution.
comment: Accepted by EACL 2026 SIGTURK
☆ Search-R2: Enhancing Search-Integrated Reasoning via Actor-Refiner Collaboration
Search-integrated reasoning enables language agents to transcend static parametric knowledge by actively querying external sources. However, training these agents via reinforcement learning is hindered by the multi-scale credit assignment problem: existing methods typically rely on sparse, trajectory-level rewards that fail to distinguish between high-quality reasoning and fortuitous guesses, leading to redundant or misleading search behaviors. To address this, we propose Search-R2, a novel Actor-Refiner collaboration framework that enhances reasoning through targeted intervention, with both components jointly optimized during training. Our approach decomposes the generation process into an Actor, which produces initial reasoning trajectories, and a Meta-Refiner, which selectively diagnoses and repairs flawed steps via a 'cut-and-regenerate' mechanism. To provide fine-grained supervision, we introduce a hybrid reward design that couples outcome correctness with a dense process reward quantifying the information density of retrieved evidence. Theoretically, we formalize the Actor-Refiner interaction as a smoothed mixture policy, proving that selective correction yields strict performance gains over strong baselines. Extensive experiments across various general and multi-hop QA datasets demonstrate that Search-R2 consistently outperforms strong RAG and RL-based baselines across model scales, achieving superior reasoning accuracy with minimal overhead.
☆ Tutorial on Reasoning for IR & IR for Reasoning ECIR 2026
Information retrieval has long focused on ranking documents by semantic relatedness. Yet many real-world information needs demand more: enforcement of logical constraints, multi-step inference, and synthesis of multiple pieces of evidence. Addressing these requirements is, at its core, a problem of reasoning. Across AI communities, researchers are developing diverse solutions for the problem of reasoning, from inference-time strategies and post-training of LLMs, to neuro-symbolic systems, Bayesian and probabilistic frameworks, geometric representations, and energy-based models. These efforts target the same problem: to move beyond pattern-matching systems toward structured, verifiable inference. However, they remain scattered across disciplines, making it difficult for IR researchers to identify the most relevant ideas and opportunities. To help navigate the fragmented landscape of research in reasoning, this tutorial first articulates a working definition of reasoning within the context of information retrieval and derives from it a unified analytical framework. The framework maps existing approaches along axes that reflect the core components of the definition. By providing a comprehensive overview of recent approaches and mapping current methods onto the defined axes, we expose their trade-offs and complementarities, highlight where IR can benefit from cross-disciplinary advances, and illustrate how retrieval process itself can play a central role in broader reasoning systems. The tutorial will equip participants with both a conceptual framework and practical guidance for enhancing reasoning-capable IR systems, while situating IR as a domain that both benefits and contributes to the broader development of reasoning methodologies.
comment: Accepted to ECIR 2026
☆ TRE: Encouraging Exploration in the Trust Region
Entropy regularization is a standard technique in reinforcement learning (RL) to enhance exploration, yet it yields negligible effects or even degrades performance in Large Language Models (LLMs). We attribute this failure to the cumulative tail risk inherent to LLMs with massive vocabularies and long generation horizons. In such environments, standard global entropy maximization indiscriminately dilutes probability mass into the vast tail of invalid tokens rather than focusing on plausible candidates, thereby disrupting coherent reasoning. To address this, we propose Trust Region Entropy (TRE), a method that encourages exploration strictly within the model's trust region. Extensive experiments across mathematical reasoning (MATH), combinatorial search (Countdown), and preference alignment (HH) tasks demonstrate that TRE consistently outperforms vanilla PPO, standard entropy regularization, and other exploration baselines. Our code is available at https://github.com/WhyChaos/TRE-Encouraging-Exploration-in-the-Trust-Region.
☆ BIRDTurk: Adaptation of the BIRD Text-to-SQL Dataset to Turkish EACL 2026
Text-to-SQL systems have achieved strong performance on English benchmarks, yet their behavior in morphologically rich, low-resource languages remains largely unexplored. We introduce BIRDTurk, the first Turkish adaptation of the BIRD benchmark, constructed through a controlled translation pipeline that adapts schema identifiers to Turkish while strictly preserving the logical structure and execution semantics of SQL queries and databases. Translation quality is validated on a sample size determined by the Central Limit Theorem to ensure 95% confidence, achieving 98.15% accuracy on human-evaluated samples. Using BIRDTurk, we evaluate inference-based prompting, agentic multi-stage reasoning, and supervised fine-tuning. Our results reveal that Turkish introduces consistent performance degradation, driven by both structural linguistic divergence and underrepresentation in LLM pretraining, while agentic reasoning demonstrates stronger cross-lingual robustness. Supervised fine-tuning remains challenging for standard multilingual baselines but scales effectively with modern instruction-tuned models. BIRDTurk provides a controlled testbed for cross-lingual Text-to-SQL evaluation under realistic database conditions. We release the training and development splits to support future research.
comment: Accepted by EACL 2026 SIGTURK
☆ Learning Query-Specific Rubrics from Human Preferences for DeepResearch Report Generation
Nowadays, training and evaluating DeepResearch-generated reports remain challenging due to the lack of verifiable reward signals. Accordingly, rubric-based evaluation has become a common practice. However, existing approaches either rely on coarse, pre-defined rubrics that lack sufficient granularity, or depend on manually constructed query-specific rubrics that are costly and difficult to scale. In this paper, we propose a pipeline to train human-preference-aligned query-specific rubric generators tailored for DeepResearch report generation. We first construct a dataset of DeepResearch-style queries annotated with human preferences over paired reports, and train rubric generators via reinforcement learning with a hybrid reward combining human preference supervision and LLM-based rubric evaluation. To better handle long-horizon reasoning, we further introduce a Multi-agent Markov-state (MaMs) workflow for report generation. We empirically show that our proposed rubric generators deliver more discriminative and better human-aligned supervision than existing rubric design strategies. Moreover, when integrated into the MaMs training framework, DeepResearch systems equipped with our rubric generators consistently outperform all open-source baselines on the DeepResearch Bench and achieve performance comparable to that of leading closed-source models.
☆ Controlling Output Rankings in Generative Engines for LLM-based Search
The way customers search for and choose products is changing with the rise of large language models (LLMs). LLM-based search, or generative engines, provides direct product recommendations to users, rather than traditional online search results that require users to explore options themselves. However, these recommendations are strongly influenced by the initial retrieval order of LLMs, which disadvantages small businesses and independent creators by limiting their visibility. In this work, we propose CORE, an optimization method that \textbf{C}ontrols \textbf{O}utput \textbf{R}ankings in g\textbf{E}nerative Engines for LLM-based search. Since the LLM's interactions with the search engine are black-box, CORE targets the content returned by search engines as the primary means of influencing output rankings. Specifically, CORE optimizes retrieved content by appending strategically designed optimization content to steer the ranking of outputs. We introduce three types of optimization content: string-based, reasoning-based, and review-based, demonstrating their effectiveness in shaping output rankings. To evaluate CORE in realistic settings, we introduce ProductBench, a large-scale benchmark with 15 product categories and 200 products per category, where each product is associated with its top-10 recommendations collected from Amazon's search interface. Extensive experiments on four LLMs with search capabilities (GPT-4o, Gemini-2.5, Claude-4, and Grok-3) demonstrate that CORE achieves an average Promotion Success Rate of \textbf{91.4\% @Top-5}, \textbf{86.6\% @Top-3}, and \textbf{80.3\% @Top-1}, across 15 product categories, outperforming existing ranking manipulation methods while preserving the fluency of optimized content.
comment: 23 pages
☆ Efficient Algorithms for Partial Constraint Satisfaction Problems over Control-flow Graphs
In this work, we focus on the Partial Constraint Satisfaction Problem (PCSP) over control-flow graphs (CFGs) of programs. PCSP serves as a generalization of the well-known Constraint Satisfaction Problem (CSP). In the CSP framework, we define a set of variables, a set of constraints, and a finite domain $D$ that encompasses all possible values for each variable. The objective is to assign a value to each variable in such a way that all constraints are satisfied. In the graph variant of CSP, an underlying graph is considered and we have one variable corresponding to each vertex of the graph and one or several constraints corresponding to each edge. In PCSPs, we allow for certain constraints to be violated at a specified cost, aiming to find a solution that minimizes the total cost. Numerous classical compiler optimization tasks can be framed as PCSPs over control-flow graphs. Examples include Register Allocation, Lifetime-optimal Speculative Partial Redundancy Elimination (LOSPRE), and Optimal Placement of Bank Selection Instructions. On the other hand, it is well-known that control-flow graphs of structured programs are sparse and decomposable in a variety of ways. In this work, we rely on the Series-Parallel-Loop (SPL) decompositions as introduced by~\cite{RegisterAllocation}. Our main contribution is a general algorithm for PCSPs over SPL graphs with a time complexity of \(O(|G| \cdot |D|^6)\), where \(|G|\) represents the size of the control-flow graph. Note that for any fixed domain $D,$ this yields a linear-time solution. Our algorithm can be seen as a generalization and unification of previous SPL-based approaches for register allocation and LOSPRE. In addition, we provide experimental results over another classical PCSP task, i.e. Optimal Bank Selection, achieving runtimes four times better than the previous state of the art.
comment: Already accepted by SETTA'25. https://www.setta2025.uk/accepted-papers. arXiv admin note: substantial text overlap with arXiv:2507.16660
CL-bench: A Benchmark for Context Learning
Current language models (LMs) excel at reasoning over prompts using pre-trained knowledge. However, real-world tasks are far more complex and context-dependent: models must learn from task-specific context and leverage new knowledge beyond what is learned during pre-training to reason and resolve tasks. We term this capability context learning, a crucial ability that humans naturally possess but has been largely overlooked. To this end, we introduce CL-bench, a real-world benchmark consisting of 500 complex contexts, 1,899 tasks, and 31,607 verification rubrics, all crafted by experienced domain experts. Each task is designed such that the new content required to resolve it is contained within the corresponding context. Resolving tasks in CL-bench requires models to learn from the context, ranging from new domain-specific knowledge, rule systems, and complex procedures to laws derived from empirical data, all of which are absent from pre-training. This goes far beyond long-context tasks that primarily test retrieval or reading comprehension, and in-context learning tasks, where models learn simple task patterns via instructions and demonstrations. Our evaluations of ten frontier LMs find that models solve only 17.2% of tasks on average. Even the best-performing model, GPT-5.1, solves only 23.7%, revealing that LMs have yet to achieve effective context learning, which poses a critical bottleneck for tackling real-world, complex context-dependent tasks. CL-bench represents a step towards building LMs with this fundamental capability, making them more intelligent and advancing their deployment in real-world scenarios.
comment: 78 pages, 17 figures
☆ $V_0$: A Generalist Value Model for Any Policy at State Zero
Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
☆ Use Graph When It Needs: Efficiently and Adaptively Integrating Retrieval-Augmented Generation with Graphs
Large language models (LLMs) often struggle with knowledge-intensive tasks due to hallucinations and outdated parametric knowledge. While Retrieval-Augmented Generation (RAG) addresses this by integrating external corpora, its effectiveness is limited by fragmented information in unstructured domain documents. Graph-augmented RAG (GraphRAG) emerged to enhance contextual reasoning through structured knowledge graphs, yet paradoxically underperforms vanilla RAG in real-world scenarios, exhibiting significant accuracy drops and prohibitive latency despite gains on complex queries. We identify the rigid application of GraphRAG to all queries, regardless of complexity, as the root cause. To resolve this, we propose an efficient and adaptive GraphRAG framework called EA-GraphRAG that dynamically integrates RAG and GraphRAG paradigms through syntax-aware complexity analysis. Our approach introduces: (i) a syntactic feature constructor that parses each query and extracts a set of structural features; (ii) a lightweight complexity scorer that maps these features to a continuous complexity score; and (iii) a score-driven routing policy that selects dense RAG for low-score queries, invokes graph-based retrieval for high-score queries, and applies complexity-aware reciprocal rank fusion to handle borderline cases. Extensive experiments on a comprehensive benchmark, consisting of two single-hop and two multi-hop QA benchmarks, demonstrate that our EA-GraphRAG significantly improves accuracy, reduces latency, and achieves state-of-the-art performance in handling mixed scenarios involving both simple and complex queries.
☆ ACL: Aligned Contrastive Learning Improves BERT and Multi-exit BERT Fine-tuning
Despite its success in self-supervised learning, contrastive learning is less studied in the supervised setting. In this work, we first use a set of pilot experiments to show that in the supervised setting, the cross-entropy loss objective (CE) and the contrastive learning objective often conflict with each other, thus hindering the applications of CL in supervised settings. To resolve this problem, we introduce a novel \underline{A}ligned \underline{C}ontrastive \underline{L}earning (ACL) framework. First, ACL-Embed regards label embeddings as extra augmented samples with different labels and employs contrastive learning to align the label embeddings with its samples' representations. Second, to facilitate the optimization of ACL-Embed objective combined with the CE loss, we propose ACL-Grad, which will discard the ACL-Embed term if the two objectives are in conflict. To further enhance the performances of intermediate exits of multi-exit BERT, we further propose cross-layer ACL (ACL-CL), which is to ask the teacher exit to guide the optimization of student shallow exits. Extensive experiments on the GLUE benchmark results in the following takeaways: (a) ACL-BRT outperforms or performs comparably with CE and CE+SCL on the GLUE tasks; (b) ACL, especially CL-ACL, significantly surpasses the baseline methods on the fine-tuning of multi-exit BERT, thus providing better quality-speed tradeoffs for low-latency applications.
☆ HySparse: A Hybrid Sparse Attention Architecture with Oracle Token Selection and KV Cache Sharing
This work introduces Hybrid Sparse Attention (HySparse), a new architecture that interleaves each full attention layer with several sparse attention layers. While conceptually simple, HySparse strategically derives each sparse layer's token selection and KV caches directly from the preceding full attention layer. This architecture resolves two fundamental limitations of prior sparse attention methods. First, conventional approaches typically rely on additional proxies to predict token importance, introducing extra complexity and potentially suboptimal performance. In contrast, HySparse uses the full attention layer as a precise oracle to identify important tokens. Second, existing sparse attention designs often reduce computation without saving KV cache. HySparse enables sparse attention layers to reuse the full attention KV cache, thereby reducing both computation and memory. We evaluate HySparse on both 7B dense and 80B MoE models. Across all settings, HySparse consistently outperforms both full attention and hybrid SWA baselines. Notably, in the 80B MoE model with 49 total layers, only 5 layers employ full attention, yet HySparse achieves substantial performance gains while reducing KV cache storage by nearly 10x.
comment: 17 pages, 2 figures
☆ When Single Answer Is Not Enough: Rethinking Single-Step Retrosynthesis Benchmarks for LLMs
Recent progress has expanded the use of large language models (LLMs) in drug discovery, including synthesis planning. However, objective evaluation of retrosynthesis performance remains limited. Existing benchmarks and metrics typically rely on published synthetic procedures and Top-K accuracy based on single ground-truth, which does not capture the open-ended nature of real-world synthesis planning. We propose a new benchmarking framework for single-step retrosynthesis that evaluates both general-purpose and chemistry-specialized LLMs using ChemCensor, a novel metric for chemical plausibility. By emphasizing plausibility over exact match, this approach better aligns with human synthesis planning practices. We also introduce CREED, a novel dataset comprising millions of ChemCensor-validated reaction records for LLM training, and use it to train a model that improves over the LLM baselines under this benchmark.
☆ Assessing the Impact of Typological Features on Multilingual Machine Translation in the Age of Large Language Models EACL 2026
Despite major advances in multilingual modeling, large quality disparities persist across languages. Besides the obvious impact of uneven training resources, typological properties have also been proposed to determine the intrinsic difficulty of modeling a language. The existing evidence, however, is mostly based on small monolingual language models or bilingual translation models trained from scratch. We expand on this line of work by analyzing two large pre-trained multilingual translation models, NLLB-200 and Tower+, which are state-of-the-art representatives of encoder-decoder and decoder-only machine translation, respectively. Based on a broad set of languages, we find that target language typology drives translation quality of both models, even after controlling for more trivial factors, such as data resourcedness and writing script. Additionally, languages with certain typological properties benefit more from a wider search of the output space, suggesting that such languages could profit from alternative decoding strategies beyond the standard left-to-right beam search. To facilitate further research in this area, we release a set of fine-grained typological properties for 212 languages of the FLORES+ MT evaluation benchmark.
comment: 19 pages, 11 figures, EACL 2026
☆ SEAD: Self-Evolving Agent for Multi-Turn Service Dialogue
Large Language Models have demonstrated remarkable capabilities in open-domain dialogues. However, current methods exhibit suboptimal performance in service dialogues, as they rely on noisy, low-quality human conversation data. This limitation arises from data scarcity and the difficulty of simulating authentic, goal-oriented user behaviors. To address these issues, we propose SEAD (Self-Evolving Agent for Service Dialogue), a framework that enables agents to learn effective strategies without large-scale human annotations. SEAD decouples user modeling into two components: a Profile Controller that generates diverse user states to manage training curriculum, and a User Role-play Model that focuses on realistic role-playing. This design ensures the environment provides adaptive training scenarios rather than acting as an unfair adversary. Experiments demonstrate that SEAD significantly outperforms Open-source Foundation Models and Closed-source Commercial Models, improving task completion rate by 17.6% and dialogue efficiency by 11.1%. Code is available at: https://github.com/Da1yuqin/SEAD.
☆ Can Large Language Models Generalize Procedures Across Representations?
Large language models (LLMs) are trained and tested extensively on symbolic representations such as code and graphs, yet real-world user tasks are often specified in natural language. To what extent can LLMs generalize across these representations? Here, we approach this question by studying isomorphic tasks involving procedures represented in code, graphs, and natural language (e.g., scheduling steps in planning). We find that training LLMs with popular post-training methods on graphs or code data alone does not reliably generalize to corresponding natural language tasks, while training solely on natural language can lead to inefficient performance gains. To address this gap, we propose a two-stage data curriculum that first trains on symbolic, then natural language data. The curriculum substantially improves model performance across model families and tasks. Remarkably, a 1.5B Qwen model trained by our method can closely match zero-shot GPT-4o in naturalistic planning. Finally, our analysis suggests that successful cross-representation generalization can be interpreted as a form of generative analogy, which our curriculum effectively encourages.
☆ Learning to Reason Faithfully through Step-Level Faithfulness Maximization
Reinforcement Learning with Verifiable Rewards (RLVR) has markedly improved the performance of Large Language Models (LLMs) on tasks requiring multi-step reasoning. However, most RLVR pipelines rely on sparse outcome-based rewards, providing little supervision over intermediate steps and thus encouraging over-confidence and spurious reasoning, which in turn increases hallucinations. To address this, we propose FaithRL, a general reinforcement learning framework that directly optimizes reasoning faithfulness. We formalize a faithfulness-maximization objective and theoretically show that optimizing it mitigates over-confidence. To instantiate this objective, we introduce a geometric reward design and a faithfulness-aware advantage modulation mechanism that assigns step-level credit by penalizing unsupported steps while preserving valid partial derivations. Across diverse backbones and benchmarks, FaithRL consistently reduces hallucination rates while maintaining (and often improving) answer correctness. Further analysis confirms that FaithRL increases step-wise reasoning faithfulness and generalizes robustly. Our code is available at https://github.com/aintdoin/FaithRL.
☆ Decoupling Skeleton and Flesh: Efficient Multimodal Table Reasoning with Disentangled Alignment and Structure-aware Guidance
Reasoning over table images remains challenging for Large Vision-Language Models (LVLMs) due to complex layouts and tightly coupled structure-content information. Existing solutions often depend on expensive supervised training, reinforcement learning, or external tools, limiting efficiency and scalability. This work addresses a key question: how to adapt LVLMs to table reasoning with minimal annotation and no external tools? Specifically, we first introduce DiSCo, a Disentangled Structure-Content alignment framework that explicitly separates structural abstraction from semantic grounding during multimodal alignment, efficiently adapting LVLMs to tables structures. Building on DiSCo, we further present Table-GLS, a Global-to-Local Structure-guided reasoning framework that performs table reasoning via structured exploration and evidence-grounded inference. Extensive experiments across diverse benchmarks demonstrate that our framework efficiently enhances LVLM's table understanding and reasoning capabilities, particularly generalizing to unseen table structures.
☆ Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning
Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.
comment: 19 pages, 8 figures
☆ Preferences for Idiomatic Language are Acquired Slowly -- and Forgotten Quickly: A Case Study on Swedish ACL
In this study, we investigate how language models develop preferences for \textit{idiomatic} as compared to \textit{linguistically acceptable} Swedish, both during pretraining and when adapting a model from English to Swedish. To do so, we train models on Swedish from scratch and by fine-tuning English-pretrained models, probing their preferences at various checkpoints using minimal pairs that differ in linguistic acceptability or idiomaticity. For linguistic acceptability, we adapt existing benchmarks into a minimal-pair format. To assess idiomaticity, we introduce two novel datasets: one contrasting conventionalized idioms with plausible variants, and another contrasting idiomatic Swedish with Translationese. Our findings suggest that idiomatic competence emerges more slowly than other linguistic abilities, including grammatical and lexical correctness. While longer training yields diminishing returns for most tasks, idiom-related performance continues to improve, particularly in the largest model tested (8B). However, instruction tuning on data machine-translated from English -- the common approach for languages with little or no native instruction data -- causes models to rapidly lose their preference for idiomatic language.
comment: Accepted to TACL. Note that the arXiv version is a pre-MIT Press publication version
☆ A-RAG: Scaling Agentic Retrieval-Augmented Generation via Hierarchical Retrieval Interfaces
Frontier language models have demonstrated strong reasoning and long-horizon tool-use capabilities. However, existing RAG systems fail to leverage these capabilities. They still rely on two paradigms: (1) designing an algorithm that retrieves passages in a single shot and concatenates them into the model's input, or (2) predefining a workflow and prompting the model to execute it step-by-step. Neither paradigm allows the model to participate in retrieval decisions, preventing efficient scaling with model improvements. In this paper, we introduce A-RAG, an Agentic RAG framework that exposes hierarchical retrieval interfaces directly to the model. A-RAG provides three retrieval tools: keyword search, semantic search, and chunk read, enabling the agent to adaptively search and retrieve information across multiple granularities. Experiments on multiple open-domain QA benchmarks show that A-RAG consistently outperforms existing approaches with comparable or lower retrieved tokens, demonstrating that A-RAG effectively leverages model capabilities and dynamically adapts to different RAG tasks. We further systematically study how A-RAG scales with model size and test-time compute. We will release our code and evaluation suite to facilitate future research. Code and evaluation suite are available at https://github.com/Ayanami0730/arag.
comment: 18 pages, 8 figures
☆ DiscoverLLM: From Executing Intents to Discovering Them
To handle ambiguous and open-ended requests, Large Language Models (LLMs) are increasingly trained to interact with users to surface intents they have not yet expressed (e.g., ask clarification questions). However, users are often ambiguous because they have not yet formed their intents: they must observe and explore outcomes to discover what they want. Simply asking "what kind of tone do you want?" fails when users themselves do not know. We introduce DiscoverLLM, a novel and generalizable framework that trains LLMs to help users form and discover their intents. Central to our approach is a novel user simulator that models cognitive state with a hierarchy of intents that progressively concretize as the model surfaces relevant options -- where the degree of concretization serves as a reward signal that models can be trained to optimize. Resulting models learn to collaborate with users by adaptively diverging (i.e., explore options) when intents are unclear, and converging (i.e., refine and implement) when intents concretize. Across proposed interactive benchmarks in creative writing, technical writing, and SVG drawing, DiscoverLLM achieves over 10% higher task performance while reducing conversation length by up to 40%. In a user study with 75 human participants, DiscoverLLM improved conversation satisfaction and efficiency compared to baselines.
☆ SWE-World: Building Software Engineering Agents in Docker-Free Environments
Recent advances in large language models (LLMs) have enabled software engineering agents to tackle complex code modification tasks. Most existing approaches rely on execution feedback from containerized environments, which require dependency-complete setup and physical execution of programs and tests. While effective, this paradigm is resource-intensive and difficult to maintain, substantially complicating agent training and limiting scalability. We propose SWE-World, a Docker-free framework that replaces physical execution environments with a learned surrogate for training and evaluating software engineering agents. SWE-World leverages LLM-based models trained on real agent-environment interaction data to predict intermediate execution outcomes and final test feedback, enabling agents to learn without interacting with physical containerized environments. This design preserves the standard agent-environment interaction loop while eliminating the need for costly environment construction and maintenance during agent optimization and evaluation. Furthermore, because SWE-World can simulate the final evaluation outcomes of candidate trajectories without real submission, it enables selecting the best solution among multiple test-time attempts, thereby facilitating effective test-time scaling (TTS) in software engineering tasks. Experiments on SWE-bench Verified demonstrate that SWE-World raises Qwen2.5-Coder-32B from 6.2\% to 52.0\% via Docker-free SFT, 55.0\% with Docker-free RL, and 68.2\% with further TTS. The code is available at https://github.com/RUCAIBox/SWE-World
☆ FactNet: A Billion-Scale Knowledge Graph for Multilingual Factual Grounding
While LLMs exhibit remarkable fluency, their utility is often compromised by factual hallucinations and a lack of traceable provenance. Existing resources for grounding mitigate this but typically enforce a dichotomy: they offer either structured knowledge without textual context (e.g., knowledge bases) or grounded text with limited scale and linguistic coverage. To bridge this gap, we introduce FactNet, a massive, open-source resource designed to unify 1.7 billion atomic assertions with 3.01 billion auditable evidence pointers derived exclusively from 316 Wikipedia editions. Unlike recent synthetic approaches, FactNet employs a strictly deterministic construction pipeline, ensuring that every evidence unit is recoverable with byte-level precision. Extensive auditing confirms a high grounding precision of 92.1%, even in long-tail languages. Furthermore, we establish FactNet-Bench, a comprehensive evaluation suite for Knowledge Graph Completion, Question Answering, and Fact Checking. FactNet provides the community with a foundational, reproducible resource for training and evaluating trustworthy, verifiable multilingual systems.
☆ Verified Critical Step Optimization for LLM Agents
As large language model agents tackle increasingly complex long-horizon tasks, effective post-training becomes critical. Prior work faces fundamental challenges: outcome-only rewards fail to precisely attribute credit to intermediate steps, estimated step-level rewards introduce systematic noise, and Monte Carlo sampling approaches for step reward estimation incur prohibitive computational cost. Inspired by findings that only a small fraction of high-entropy tokens drive effective RL for reasoning, we propose Critical Step Optimization (CSO), which focuses preference learning on verified critical steps, decision points where alternate actions demonstrably flip task outcomes from failure to success. Crucially, our method starts from failed policy trajectories rather than expert demonstrations, directly targeting the policy model's weaknesses. We use a process reward model (PRM) to identify candidate critical steps, leverage expert models to propose high-quality alternatives, then continue execution from these alternatives using the policy model itself until task completion. Only alternatives that the policy successfully executes to correct outcomes are verified and used as DPO training data, ensuring both quality and policy reachability. This yields fine-grained, verifiable supervision at critical decisions while avoiding trajectory-level coarseness and step-level noise. Experiments on GAIA-Text-103 and XBench-DeepSearch show that CSO achieves 37% and 26% relative improvement over the SFT baseline and substantially outperforms other post-training methods, while requiring supervision at only 16% of trajectory steps. This demonstrates the effectiveness of selective verification-based learning for agent post-training.
comment: Working in progress
☆ SWE-Master: Unleashing the Potential of Software Engineering Agents via Post-Training
In this technical report, we present SWE-Master, an open-source and fully reproducible post-training framework for building effective software engineering agents. SWE-Master systematically explores the complete agent development pipeline, including teacher-trajectory synthesis and data curation, long-horizon SFT, RL with real execution feedback, and inference framework design. Starting from an open-source base model with limited initial SWE capability, SWE-Master demonstrates how systematical optimization method can elicit strong long-horizon SWE task solving abilities. We evaluate SWE-Master on SWE-bench Verified, a standard benchmark for realistic software engineering tasks. Under identical experimental settings, our approach achieves a resolve rate of 61.4\% with Qwen2.5-Coder-32B, substantially outperforming existing open-source baselines. By further incorporating test-time scaling~(TTS) with LLM-based environment feedback, SWE-Master reaches 70.8\% at TTS@8, demonstrating a strong performance potential. SWE-Master provides a practical and transparent foundation for advancing reproducible research on software engineering agents. The code is available at https://github.com/RUCAIBox/SWE-Master.
☆ Towards Distillation-Resistant Large Language Models: An Information-Theoretic Perspective
Proprietary large language models (LLMs) embody substantial economic value and are generally exposed only as black-box APIs, yet adversaries can still exploit their outputs to extract knowledge via distillation. Existing defenses focus exclusively on text-based distillation, leaving the important logit-based distillation largely unexplored. In this work, we analyze this problem and present an effective solution from an information-theoretic perspective. We characterize distillation-relevant information in teacher outputs using the conditional mutual information (CMI) between teacher logits and input queries conditioned on ground-truth labels. This quantity captures contextual information beneficial for model extraction, motivating us to defend distillation via CMI minimization. Guided by our theoretical analysis, we propose learning a transformation matrix that purifies the original outputs to enhance distillation resistance. We further derive a CMI-inspired anti-distillation objective to optimize this transformation, which effectively removes distillation-relevant information while preserving output utility. Extensive experiments across multiple LLMs and strong distillation algorithms demonstrate that the proposed method significantly degrades distillation performance while preserving task accuracy, effectively protecting models' intellectual property.
☆ Pursuing Best Industrial Practices for Retrieval-Augmented Generation in the Medical Domain
While retrieval augmented generation (RAG) has been swiftly adopted in industrial applications based on large language models (LLMs), there is no consensus on what are the best practices for building a RAG system in terms of what are the components, how to organize these components and how to implement each component for the industrial applications, especially in the medical domain. In this work, we first carefully analyze each component of the RAG system and propose practical alternatives for each component. Then, we conduct systematic evaluations on three types of tasks, revealing the best practices for improving the RAG system and how LLM-based RAG systems make trade-offs between performance and efficiency.
☆ MeKi: Memory-based Expert Knowledge Injection for Efficient LLM Scaling
Scaling Large Language Models (LLMs) typically relies on increasing the number of parameters or test-time computations to boost performance. However, these strategies are impractical for edge device deployment due to limited RAM and NPU resources. Despite hardware constraints, deploying performant LLM on edge devices such as smartphone remains crucial for user experience. To address this, we propose MeKi (Memory-based Expert Knowledge Injection), a novel system that scales LLM capacity via storage space rather than FLOPs. MeKi equips each Transformer layer with token-level memory experts that injects pre-stored semantic knowledge into the generation process. To bridge the gap between training capacity and inference efficiency, we employ a re-parameterization strategy to fold parameter matrices used during training into a compact static lookup table. By offloading the knowledge to ROM, MeKi decouples model capacity from computational cost, introducing zero inference latency overhead. Extensive experiments demonstrate that MeKi significantly outperforms dense LLM baselines with identical inference speed, validating the effectiveness of memory-based scaling paradigm for on-device LLMs. Project homepage is at https://github.com/ningding-o/MeKi.
☆ GFlowPO: Generative Flow Network as a Language Model Prompt Optimizer
Finding effective prompts for language models (LMs) is critical yet notoriously difficult: the prompt space is combinatorially large, rewards are sparse due to expensive target-LM evaluation. Yet, existing RL-based prompt optimizers often rely on on-policy updates and a meta-prompt sampled from a fixed distribution, leading to poor sample efficiency. We propose GFlowPO, a probabilistic prompt optimization framework that casts prompt search as a posterior inference problem over latent prompts regularized by a meta-prompted reference-LM prior. In the first step, we fine-tune a lightweight prompt-LM with an off-policy Generative Flow Network (GFlowNet) objective, using a replay-based training policy that reuses past prompt evaluations to enable sample-efficient exploration. In the second step, we introduce Dynamic Memory Update (DMU), a training-free mechanism that updates the meta-prompt by injecting both (i) diverse prompts from a replay buffer and (ii) top-performing prompts from a small priority queue, thereby progressively concentrating the search process on high-reward regions. Across few-shot text classification, instruction induction benchmarks, and question answering tasks, GFlowPO consistently outperforms recent discrete prompt optimization baselines.
☆ PEGRL: Improving Machine Translation by Post-Editing Guided Reinforcement Learning
Reinforcement learning (RL) has shown strong promise for LLM-based machine translation, with recent methods such as GRPO demonstrating notable gains; nevertheless, translation-oriented RL remains challenged by noisy learning signals arising from Monte Carlo return estimation, as well as a large trajectory space that favors global exploration over fine-grained local optimization. We introduce \textbf{PEGRL}, a \textit{two-stage} RL framework that uses post-editing as an auxiliary task to stabilize training and guide overall optimization. At each iteration, translation outputs are sampled to construct post-editing inputs, allowing return estimation in the post-editing stage to benefit from conditioning on the current translation behavior, while jointly supporting both global exploration and fine-grained local optimization. A task-specific weighting scheme further balances the contributions of translation and post-editing objectives, yielding a biased yet more sample-efficient estimator. Experiments on English$\to$Finnish, English$\to$Turkish, and English$\leftrightarrow$Chinese show consistent gains over RL baselines, and for English$\to$Turkish, performance on COMET-KIWI is comparable to advanced LLM-based systems (DeepSeek-V3.2).
☆ Robustness as an Emergent Property of Task Performance
Robustness is often regarded as a critical future challenge for real-world applications, where stability is essential. However, as models often learn tasks in a similar order, we hypothesize that easier tasks will be easier regardless of how they are presented to the model. Indeed, in this paper, we show that as models approach high performance on a task, robustness is effectively achieved. Through an empirical analysis of multiple models across diverse datasets and configurations (e.g., paraphrases, different temperatures), we find a strong positive correlation. Moreover, we find that robustness is primarily driven by task-specific competence rather than inherent model-level properties, challenging current approaches that treat robustness as an independent capability. Thus, from a high-level perspective, we may expect that as new tasks saturate, model robustness on these tasks will emerge accordingly. For researchers, this implies that explicit efforts to measure and improve robustness may warrant reduced emphasis, as such robustness is likely to develop alongside performance gains. For practitioners, it acts as a sign that indeed the tasks that the literature deals with are unreliable, but on easier past tasks, the models are reliable and ready for real-world deployment.
☆ Accurate Failure Prediction in Agents Does Not Imply Effective Failure Prevention
Proactive interventions by LLM critic models are often assumed to improve reliability, yet their effects at deployment time are poorly understood. We show that a binary LLM critic with strong offline accuracy (AUROC 0.94) can nevertheless cause severe performance degradation, inducing a 26 percentage point (pp) collapse on one model while affecting another by near zero pp. This variability demonstrates that LLM critic accuracy alone is insufficient to determine whether intervention is safe. We identify a disruption-recovery tradeoff: interventions may recover failing trajectories but also disrupt trajectories that would have succeeded. Based on this insight, we propose a pre-deployment test that uses a small pilot of 50 tasks to estimate whether intervention is likely to help or harm, without requiring full deployment. Across benchmarks, the test correctly anticipates outcomes: intervention degrades performance on high-success tasks (0 to -26 pp), while yielding a modest improvement on the high-failure ALFWorld benchmark (+2.8 pp, p=0.014). The primary value of our framework is therefore identifying when not to intervene, preventing severe regressions before deployment.
☆ MIRROR: A Multi-Agent Framework with Iterative Adaptive Revision and Hierarchical Retrieval for Optimization Modeling in Operations Research
Operations Research (OR) relies on expert-driven modeling-a slow and fragile process ill-suited to novel scenarios. While large language models (LLMs) can automatically translate natural language into optimization models, existing approaches either rely on costly post-training or employ multi-agent frameworks, yet most still lack reliable collaborative error correction and task-specific retrieval, often leading to incorrect outputs. We propose MIRROR, a fine-tuning-free, end-to-end multi-agent framework that directly translates natural language optimization problems into mathematical models and solver code. MIRROR integrates two core mechanisms: (1) execution-driven iterative adaptive revision for automatic error correction, and (2) hierarchical retrieval to fetch relevant modeling and coding exemplars from a carefully curated exemplar library. Experiments show that MIRROR outperforms existing methods on standard OR benchmarks, with notable results on complex industrial datasets such as IndustryOR and Mamo-ComplexLP. By combining precise external knowledge infusion with systematic error correction, MIRROR provides non-expert users with an efficient and reliable OR modeling solution, overcoming the fundamental limitations of general-purpose LLMs in expert optimization tasks.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ POP: Prefill-Only Pruning for Efficient Large Model Inference
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable capabilities. However, their deployment is hindered by significant computational costs. Existing structured pruning methods, while hardware-efficient, often suffer from significant accuracy degradation. In this paper, we argue that this failure stems from a stage-agnostic pruning approach that overlooks the asymmetric roles between the prefill and decode stages. By introducing a virtual gate mechanism, our importance analysis reveals that deep layers are critical for next-token prediction (decode) but largely redundant for context encoding (prefill). Leveraging this insight, we propose Prefill-Only Pruning (POP), a stage-aware inference strategy that safely omits deep layers during the computationally intensive prefill stage while retaining the full model for the sensitive decode stage. To enable the transition between stages, we introduce independent Key-Value (KV) projections to maintain cache integrity, and a boundary handling strategy to ensure the accuracy of the first generated token. Extensive experiments on Llama-3.1, Qwen3-VL, and Gemma-3 across diverse modalities demonstrate that POP achieves up to 1.37$\times$ speedup in prefill latency with minimal performance loss, effectively overcoming the accuracy-efficiency trade-off limitations of existing structured pruning methods.
☆ Mići Princ -- A Little Boy Teaching Speech Technologies the Chakavian Dialect
This paper documents our efforts in releasing the printed and audio book of the translation of the famous novel The Little Prince into the Chakavian dialect, as a computer-readable, AI-ready dataset, with the textual and the audio components of the two releases now aligned on the level of each written and spoken word. Our motivation for working on this release is multiple. The first one is our wish to preserve the highly valuable and specific content beyond the small editions of the printed and the audio book. With the dataset published in the CLARIN.SI repository, this content is from now on at the fingertips of any interested individual. The second motivation is to make the data available for various artificial-intelligence-related usage scenarios, such as the one we follow upon inside this paper already -- adapting the Whisper-large-v3 open automatic speech recognition model, with decent performance on standard Croatian, to Chakavian dialectal speech. We can happily report that with adapting the model, the word error rate on the selected test data has being reduced to a half, while we managed to remove up to two thirds of the error on character level. We envision many more usages of this dataset beyond the set of experiments we have already performed, both on tasks of artificial intelligence research and application, as well as dialectal research. The third motivation for this release is our hope that this, now highly structured dataset, will be transformed into a digital online edition of this work, allowing individuals beyond the research and technology communities to enjoy the beauty of the message of the little boy in the desert, told through the spectacular prism of the Chakavian dialect.
comment: 2 figures, 14 pages, accepted and presented at JTDH 2024
☆ Merging Beyond: Streaming LLM Updates via Activation-Guided Rotations
The escalating scale of Large Language Models (LLMs) necessitates efficient adaptation techniques. Model merging has gained prominence for its efficiency and controllability. However, existing merging techniques typically serve as post-hoc refinements or focus on mitigating task interference, often failing to capture the dynamic optimization benefits of supervised fine-tuning (SFT). In this work, we propose Streaming Merging, an innovative model updating paradigm that conceptualizes merging as an iterative optimization process. Central to this paradigm is \textbf{ARM} (\textbf{A}ctivation-guided \textbf{R}otation-aware \textbf{M}erging), a strategy designed to approximate gradient descent dynamics. By treating merging coefficients as learning rates and deriving rotation vectors from activation subspaces, ARM effectively steers parameter updates along data-driven trajectories. Unlike conventional linear interpolation, ARM aligns semantic subspaces to preserve the geometric structure of high-dimensional parameter evolution. Remarkably, ARM requires only early SFT checkpoints and, through iterative merging, surpasses the fully converged SFT model. Experimental results across model scales (1.7B to 14B) and diverse domains (e.g., math, code) demonstrate that ARM can transcend converged checkpoints. Extensive experiments show that ARM provides a scalable and lightweight framework for efficient model adaptation.
☆ ATACompressor: Adaptive Task-Aware Compression for Efficient Long-Context Processing in LLMs
Long-context inputs in large language models (LLMs) often suffer from the "lost in the middle" problem, where critical information becomes diluted or ignored due to excessive length. Context compression methods aim to address this by reducing input size, but existing approaches struggle with balancing information preservation and compression efficiency. We propose Adaptive Task-Aware Compressor (ATACompressor), which dynamically adjusts compression based on the specific requirements of the task. ATACompressor employs a selective encoder that compresses only the task-relevant portions of long contexts, ensuring that essential information is preserved while reducing unnecessary content. Its adaptive allocation controller perceives the length of relevant content and adjusts the compression rate accordingly, optimizing resource utilization. We evaluate ATACompressor on three QA datasets: HotpotQA, MSMARCO, and SQUAD-showing that it outperforms existing methods in terms of both compression efficiency and task performance. Our approach provides a scalable solution for long-context processing in LLMs. Furthermore, we perform a range of ablation studies and analysis experiments to gain deeper insights into the key components of ATACompressor.
☆ Token Sparse Attention: Efficient Long-Context Inference with Interleaved Token Selection
The quadratic complexity of attention remains the central bottleneck in long-context inference for large language models. Prior acceleration methods either sparsify the attention map with structured patterns or permanently evict tokens at specific layers, which can retain irrelevant tokens or rely on irreversible early decisions despite the layer-/head-wise dynamics of token importance. In this paper, we propose Token Sparse Attention, a lightweight and dynamic token-level sparsification mechanism that compresses per-head $Q$, $K$, $V$ to a reduced token set during attention and then decompresses the output back to the original sequence, enabling token information to be reconsidered in subsequent layers. Furthermore, Token Sparse Attention exposes a new design point at the intersection of token selection and sparse attention. Our approach is fully compatible with dense attention implementations, including Flash Attention, and can be seamlessly composed with existing sparse attention kernels. Experimental results show that Token Sparse Attention consistently improves accuracy-latency trade-off, achieving up to $\times$3.23 attention speedup at 128K context with less than 1% accuracy degradation. These results demonstrate that dynamic and interleaved token-level sparsification is a complementary and effective strategy for scalable long-context inference.
☆ ForesightKV: Optimizing KV Cache Eviction for Reasoning Models by Learning Long-Term Contribution
Recently, large language models (LLMs) have shown remarkable reasoning abilities by producing long reasoning traces. However, as the sequence length grows, the key-value (KV) cache expands linearly, incurring significant memory and computation costs. Existing KV cache eviction methods mitigate this issue by discarding less important KV pairs, but often fail to capture complex KV dependencies, resulting in performance degradation. To better balance efficiency and performance, we introduce ForesightKV, a training-based KV cache eviction framework that learns to predict which KV pairs to evict during long-text generations. We first design the Golden Eviction algorithm, which identifies the optimal eviction KV pairs at each step using future attention scores. These traces and the scores at each step are then distilled via supervised training with a Pairwise Ranking Loss. Furthermore, we formulate cache eviction as a Markov Decision Process and apply the GRPO algorithm to mitigate the significant language modeling loss increase on low-entropy tokens. Experiments on AIME2024 and AIME2025 benchmarks of three reasoning models demonstrate that ForesightKV consistently outperforms prior methods under only half the cache budget, while benefiting synergistically from both supervised and reinforcement learning approaches.
Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 44.5 per-benchmark accuracy and 51.3 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
☆ DynSplit-KV: Dynamic Semantic Splitting for KVCache Compression in Efficient Long-Context LLM Inference
Although Key-Value (KV) Cache is essential for efficient large language models (LLMs) inference, its growing memory footprint in long-context scenarios poses a significant bottleneck, making KVCache compression crucial. Current compression methods rely on rigid splitting strategies, such as fixed intervals or pre-defined delimiters. We observe that rigid splitting suffers from significant accuracy degradation (ranging from 5.5% to 55.1%) across different scenarios, owing to the scenario-dependent nature of the semantic boundaries. This highlights the necessity of dynamic semantic splitting to match semantics. To achieve this, we face two challenges. (1) Improper delimiter selection misaligns semantics with the KVCache, resulting in 28.6% accuracy loss. (2) Variable-length blocks after splitting introduce over 73.1% additional inference overhead. To address the above challenges, we propose DynSplit-KV, a KVCache compression method that dynamically identifies delimiters for splitting. We propose: (1) a dynamic importance-aware delimiter selection strategy, improving accuracy by 49.9%. (2) A uniform mapping strategy that transforms variable-length semantic blocks into a fixed-length format, reducing inference overhead by 4.9x. Experiments show that DynSplit-KV achieves the highest accuracy, 2.2x speedup compared with FlashAttention and 2.6x peak memory reduction in long-context scenarios.
☆ Privasis: Synthesizing the Largest "Public" Private Dataset from Scratch
Research involving privacy-sensitive data has always been constrained by data scarcity, standing in sharp contrast to other areas that have benefited from data scaling. This challenge is becoming increasingly urgent as modern AI agents--such as OpenClaw and Gemini Agent--are granted persistent access to highly sensitive personal information. To tackle this longstanding bottleneck and the rising risks, we present Privasis (i.e., privacy oasis), the first million-scale fully synthetic dataset entirely built from scratch--an expansive reservoir of texts with rich and diverse private information--designed to broaden and accelerate research in areas where processing sensitive social data is inevitable. Compared to existing datasets, Privasis, comprising 1.4 million records, offers orders-of-magnitude larger scale with quality, and far greater diversity across various document types, including medical history, legal documents, financial records, calendars, and text messages with a total of 55.1 million annotated attributes such as ethnicity, date of birth, workplace, etc. We leverage Privasis to construct a parallel corpus for text sanitization with our pipeline that decomposes texts and applies targeted sanitization. Our compact sanitization models (<=4B) trained on this dataset outperform state-of-the-art large language models, such as GPT-5 and Qwen-3 235B. We plan to release data, models, and code to accelerate future research on privacy-sensitive domains and agents.
comment: For code and data, see https://privasis.github.io
☆ VALUEFLOW: Toward Pluralistic and Steerable Value-based Alignment in Large Language Models
Aligning Large Language Models (LLMs) with the diverse spectrum of human values remains a central challenge: preference-based methods often fail to capture deeper motivational principles. Value-based approaches offer a more principled path, yet three gaps persist: extraction often ignores hierarchical structure, evaluation detects presence but not calibrated intensity, and the steerability of LLMs at controlled intensities remains insufficiently understood. To address these limitations, we introduce VALUEFLOW, the first unified framework that spans extraction, evaluation, and steering with calibrated intensity control. The framework integrates three components: (i) HIVES, a hierarchical value embedding space that captures intra- and cross-theory value structure; (ii) the Value Intensity DataBase (VIDB), a large-scale resource of value-labeled texts with intensity estimates derived from ranking-based aggregation; and (iii) an anchor-based evaluator that produces consistent intensity scores for model outputs by ranking them against VIDB panels. Using VALUEFLOW, we conduct a comprehensive large-scale study across ten models and four value theories, identifying asymmetries in steerability and composition laws for multi-value control. This paper establishes a scalable infrastructure for evaluating and controlling value intensity, advancing pluralistic alignment of LLMs.
☆ FASA: Frequency-aware Sparse Attention ICLR 2026
The deployment of Large Language Models (LLMs) faces a critical bottleneck when handling lengthy inputs: the prohibitive memory footprint of the Key Value (KV) cache. To address this bottleneck, the token pruning paradigm leverages attention sparsity to selectively retain a small, critical subset of tokens. However, existing approaches fall short, with static methods risking irreversible information loss and dynamic strategies employing heuristics that insufficiently capture the query-dependent nature of token importance. We propose FASA, a novel framework that achieves query-aware token eviction by dynamically predicting token importance. FASA stems from a novel insight into RoPE: the discovery of functional sparsity at the frequency-chunk (FC) level. Our key finding is that a small, identifiable subset of "dominant" FCs consistently exhibits high contextual agreement with the full attention head. This provides a robust and computationally free proxy for identifying salient tokens. %making them a powerful and efficient proxy for token importance. Building on this insight, FASA first identifies a critical set of tokens using dominant FCs, and then performs focused attention computation solely on this pruned subset. % Since accessing only a small fraction of the KV cache, FASA drastically lowers memory bandwidth requirements and computational cost. Across a spectrum of long-context tasks, from sequence modeling to complex CoT reasoning, FASA consistently outperforms all token-eviction baselines and achieves near-oracle accuracy, demonstrating remarkable robustness even under constraint budgets. Notably, on LongBench-V1, FASA reaches nearly 100\% of full-KV performance when only keeping 256 tokens, and achieves 2.56$\times$ speedup using just 18.9\% of the cache on AIME24.
comment: Accepted by ICLR 2026
☆ Self-Hinting Language Models Enhance Reinforcement Learning
Group Relative Policy Optimization (GRPO) has recently emerged as a practical recipe for aligning large language models with verifiable objectives. However, under sparse terminal rewards, GRPO often stalls because rollouts within a group frequently receive identical rewards, causing relative advantages to collapse and updates to vanish. We propose self-hint aligned GRPO with privileged supervision (SAGE), an on-policy reinforcement learning framework that injects privileged hints during training to reshape the rollout distribution under the same terminal verifier reward. For each prompt $x$, the model samples a compact hint $h$ (e.g., a plan or decomposition) and then generates a solution $τ$ conditioned on $(x,h)$. Crucially, the task reward $R(x,τ)$ is unchanged; hints only increase within-group outcome diversity under finite sampling, preventing GRPO advantages from collapsing under sparse rewards. At test time, we set $h=\varnothing$ and deploy the no-hint policy without any privileged information. Moreover, sampling diverse self-hints serves as an adaptive curriculum that tracks the learner's bottlenecks more effectively than fixed hints from an initial policy or a stronger external model. Experiments over 6 benchmarks with 3 LLMs show that SAGE consistently outperforms GRPO, on average +2.0 on Llama-3.2-3B-Instruct, +1.2 on Qwen2.5-7B-Instruct and +1.3 on Qwen3-4B-Instruct. The code is available at https://github.com/BaohaoLiao/SAGE.
☆ Short Chains, Deep Thoughts: Balancing Reasoning Efficiency and Intra-Segment Capability via Split-Merge Optimization
While Large Reasoning Models (LRMs) have demonstrated impressive capabilities in solving complex tasks through the generation of long reasoning chains, this reliance on verbose generation results in significant latency and computational overhead. To address these challenges, we propose \textbf{CoSMo} (\textbf{Co}nsistency-Guided \textbf{S}plit-\textbf{M}erge \textbf{O}ptimization), a framework designed to eliminate structural redundancy rather than indiscriminately restricting token volume. Specifically, CoSMo utilizes a split-merge algorithm that dynamically refines reasoning chains by merging redundant segments and splitting logical gaps to ensure coherence. We then employ structure-aligned reinforcement learning with a novel segment-level budget to supervise the model in maintaining efficient reasoning structures throughout training. Extensive experiments across multiple benchmarks and backbones demonstrate that CoSMo achieves superior performance, improving accuracy by \textbf{3.3} points while reducing segment usage by \textbf{28.7\%} on average compared to reasoning efficiency baselines.
☆ One Model, All Roles: Multi-Turn, Multi-Agent Self-Play Reinforcement Learning for Conversational Social Intelligence
This paper introduces OMAR: One Model, All Roles, a reinforcement learning framework that enables AI to develop social intelligence through multi-turn, multi-agent conversational self-play. Unlike traditional paradigms that rely on static, single-turn optimizations, OMAR allows a single model to role-play all participants in a conversation simultaneously, learning to achieve long-term goals and complex social norms directly from dynamic social interaction. To ensure training stability across long dialogues, we implement a hierarchical advantage estimation that calculates turn-level and token-level advantages. Evaluations in the SOTOPIA social environment and Werewolf strategy games show that our trained models develop fine-grained, emergent social intelligence, such as empathy, persuasion, and compromise seeking, demonstrating the effectiveness of learning collaboration even under competitive scenarios. While we identify practical challenges like reward hacking, our results show that rich social intelligence can emerge without human supervision. We hope this work incentivizes further research on AI social intelligence in group conversations.
☆ ChemPro: A Progressive Chemistry Benchmark for Large Language Models
We introduce ChemPro, a progressive benchmark with 4100 natural language question-answer pairs in Chemistry, across 4 coherent sections of difficulty designed to assess the proficiency of Large Language Models (LLMs) in a broad spectrum of general chemistry topics. We include Multiple Choice Questions and Numerical Questions spread across fine-grained information recall, long-horizon reasoning, multi-concept questions, problem-solving with nuanced articulation, and straightforward questions in a balanced ratio, effectively covering Bio-Chemistry, Inorganic-Chemistry, Organic-Chemistry and Physical-Chemistry. ChemPro is carefully designed analogous to a student's academic evaluation for basic to high-school chemistry. A gradual increase in the question difficulty rigorously tests the ability of LLMs to progress from solving basic problems to solving more sophisticated challenges. We evaluate 45+7 state-of-the-art LLMs, spanning both open-source and proprietary variants, and our analysis reveals that while LLMs perform well on basic chemistry questions, their accuracy declines with different types and levels of complexity. These findings highlight the critical limitations of LLMs in general scientific reasoning and understanding and point towards understudied dimensions of difficulty, emphasizing the need for more robust methodologies to improve LLMs.
☆ The Mask of Civility: Benchmarking Chinese Mock Politeness Comprehension in Large Language Models
From a pragmatic perspective, this study systematically evaluates the differences in performance among representative large language models (LLMs) in recognizing politeness, impoliteness, and mock politeness phenomena in Chinese. Addressing the existing gaps in pragmatic comprehension, the research adopts the frameworks of Rapport Management Theory and the Model of Mock Politeness to construct a three-category dataset combining authentic and simulated Chinese discourse. Six representative models, including GPT-5.1 and DeepSeek, were selected as test subjects and evaluated under four prompting conditions: zero-shot, few-shot, knowledge-enhanced, and hybrid strategies. This study serves as a meaningful attempt within the paradigm of ``Great Linguistics,'' offering a novel approach to applying pragmatic theory in the age of technological transformation. It also responds to the contemporary question of how technology and the humanities may coexist, representing an interdisciplinary endeavor that bridges linguistic technology and humanistic reflection.
comment: Preprint
☆ Task--Specificity Score: Measuring How Much Instructions Really Matter for Supervision
Instruction tuning is now the default way to train and adapt large language models, but many instruction--input--output pairs are only weakly specified: for a given input, the same output can remain plausible under several alternative instructions. This raises a simple question: \emph{does the instruction uniquely determine the target output?} We propose the \textbf{Task--Specificity Score (TSS)} to quantify how much an instruction matters for predicting its output, by contrasting the true instruction against plausible alternatives for the same input. We further introduce \textbf{TSS++}, which uses hard alternatives and a small quality term to mitigate easy-negative effects. Across three instruction datasets (\textsc{Alpaca}, \textsc{Dolly-15k}, \textsc{NI-20}) and three open LLMs (Gemma, Llama, Qwen), we show that selecting task-specific examples improves downstream performance under tight token budgets and complements quality-based filters such as perplexity and IFD.
Test-time Recursive Thinking: Self-Improvement without External Feedback
Modern Large Language Models (LLMs) have shown rapid improvements in reasoning capabilities, driven largely by reinforcement learning (RL) with verifiable rewards. Here, we ask whether these LLMs can self-improve without the need for additional training. We identify two core challenges for such systems: (i) efficiently generating diverse, high-quality candidate solutions, and (ii) reliably selecting correct answers in the absence of ground-truth supervision. To address these challenges, we propose Test-time Recursive Thinking (TRT), an iterative self-improvement framework that conditions generation on rollout-specific strategies, accumulated knowledge, and self-generated verification signals. Using TRT, open-source models reach 100% accuracy on AIME-25/24, and on LiveCodeBench's most difficult problems, closed-source models improve by 10.4-14.8 percentage points without external feedback.
☆ AERO: Autonomous Evolutionary Reasoning Optimization via Endogenous Dual-Loop Feedback
Large Language Models (LLMs) have achieved significant success in complex reasoning but remain bottlenecked by reliance on expert-annotated data and external verifiers. While existing self-evolution paradigms aim to bypass these constraints, they often fail to identify the optimal learning zone and risk reinforcing collective hallucinations and incorrect priors through flawed internal feedback. To address these challenges, we propose \underline{A}utonomous \underline{E}volutionary \underline{R}easoning \underline{O}ptimization (AERO), an unsupervised framework that achieves autonomous reasoning evolution by internalizing self-questioning, answering, and criticism within a synergistic dual-loop system. Inspired by the \textit{Zone of Proximal Development (ZPD)} theory, AERO utilizes entropy-based positioning to target the ``solvability gap'' and employs Independent Counterfactual Correction for robust verification. Furthermore, we introduce a Staggered Training Strategy to synchronize capability growth across functional roles and prevent curriculum collapse. Extensive evaluations across nine benchmarks spanning three domains demonstrate that AERO achieves average performance improvements of 4.57\% on Qwen3-4B-Base and 5.10\% on Qwen3-8B-Base, outperforming competitive baselines. Code is available at https://github.com/mira-ai-lab/AERO.
☆ ReMiT: RL-Guided Mid-Training for Iterative LLM Evolution
Standard training pipelines for large language models (LLMs) are typically unidirectional, progressing from pre-training to post-training. However, the potential for a bidirectional process--where insights from post-training retroactively improve the pre-trained foundation--remains unexplored. We aim to establish a self-reinforcing flywheel: a cycle in which reinforcement learning (RL)-tuned model strengthens the base model, which in turn enhances subsequent post-training performance, requiring no specially trained teacher or reference model. To realize this, we analyze training dynamics and identify the mid-training (annealing) phase as a critical turning point for model capabilities. This phase typically occurs at the end of pre-training, utilizing high-quality corpora under a rapidly decaying learning rate. Building upon this insight, we introduce ReMiT (Reinforcement Learning-Guided Mid-Training). Specifically, ReMiT leverages the reasoning priors of RL-tuned models to dynamically reweight tokens during the mid-training phase, prioritizing those pivotal for reasoning. Empirically, ReMiT achieves an average improvement of 3\% on 10 pre-training benchmarks, spanning math, code, and general reasoning, and sustains these gains by over 2\% throughout the post-training pipeline. These results validate an iterative feedback loop, enabling continuous and self-reinforcing evolution of LLMs.
comment: 25 pages
☆ From Speech-to-Spatial: Grounding Utterances on A Live Shared View with Augmented Reality
We introduce Speech-to-Spatial, a referent disambiguation framework that converts verbal remote-assistance instructions into spatially grounded AR guidance. Unlike prior systems that rely on additional cues (e.g., gesture, gaze) or manual expert annotations, Speech-to-Spatial infers the intended target solely from spoken references (speech input). Motivated by our formative study of speech referencing patterns, we characterize recurring ways people specify targets (Direct Attribute, Relational, Remembrance, and Chained) and ground them to our object-centric relational graph. Given an utterance, referent cues are parsed and rendered as persistent in-situ AR visual guidance, reducing iterative micro-guidance ("a bit more to the right", "now, stop.") during remote guidance. We demonstrate the use cases of our system with remote guided assistance and intent disambiguation scenarios. Our evaluation shows that Speechto-Spatial improves task efficiency, reduces cognitive load, and enhances usability compared to a conventional voice-only baseline, transforming disembodied verbal instruction into visually explainable, actionable guidance on a live shared view.
comment: 11 pages, 6 figures. This is the author's version of the article that will appear at the IEEE Conference on Virtual Reality and 3D User Interfaces (IEEE VR) 2026
☆ MAS-ProVe: Understanding the Process Verification of Multi-Agent Systems
Multi-Agent Systems (MAS) built on Large Language Models (LLMs) often exhibit high variance in their reasoning trajectories. Process verification, which evaluates intermediate steps in trajectories, has shown promise in general reasoning settings, and has been suggested as a potential tool for guiding coordination of MAS; however, its actual effectiveness in MAS remains unclear. To fill this gap, we present MAS-ProVe, a systematic empirical study of process verification for multi-agent systems (MAS). Our study spans three verification paradigms (LLM-as-a-Judge, reward models, and process reward models), evaluated across two levels of verification granularity (agent-level and iteration-level). We further examine five representative verifiers and four context management strategies, and conduct experiments over six diverse MAS frameworks on multiple reasoning benchmarks. We find that process-level verification does not consistently improve performance and frequently exhibits high variance, highlighting the difficulty of reliably evaluating partial multi-agent trajectories. Among the methods studied, LLM-as-a-Judge generally outperforms reward-based approaches, with trained judges surpassing general-purpose LLMs. We further observe a small performance gap between LLMs acting as judges and as single agents, and identify a context-length-performance trade-off in verification. Overall, our results suggest that effective and robust process verification for MAS remains an open challenge, requiring further advances beyond current paradigms. Code is available at https://github.com/Wang-ML-Lab/MAS-ProVe.
comment: Preprint; work in progress
☆ SAES-SVD: Self-Adaptive Suppression of Accumulated and Local Errors for SVD-based LLM Compression
The rapid growth in the parameter scale of large language models (LLMs) has created a high demand for efficient compression techniques. As a hardware-agnostic and highly compatible technique, low-rank compression has been widely adopted. However, existing methods typically compress each layer independently by minimizing per-layer reconstruction error, overlooking a critical limitation: the reconstruction error propagates and accumulates through the network, which leads to amplified global deviations from the full-precision baseline. To address this, we propose Self-Adaptive Error Suppression SVD (SAES-SVD), a LLMs compression framework that jointly optimizes intra-layer reconstruction and inter-layer error compensation. SAES-SVD is composed of two novel components: (1) Cumulative Error-Aware Layer Compression (CEALC), which formulates the compression objective as a combination of local reconstruction and weighted cumulative error compensation. Based on it, we derive a closed-form low-rank solution relied on second-order activation statistics, which explicitly aligns each layer's output with its full-precision counterpart to compensate for accumulated errors. (2) Adaptive Collaborative Error Suppression (ACES), which automatically adjusts the weighting coefficient to enhance the low-rank structure of the compression objective in CEALC. Specifically, the coefficient is optimized to maximize the ratio between the Frobenius norm of the compressed layer's output and that of the compression objective under a fixed rank, thus ensuring that the rank budget is utilized effectively. Extensive experiments across multiple LLM architectures and tasks show that, without fine-tuning or mixed-rank strategies, SAES-SVD consistently improves post-compression performance.
☆ LatentMem: Customizing Latent Memory for Multi-Agent Systems
Large language model (LLM)-powered multi-agent systems (MAS) demonstrate remarkable collective intelligence, wherein multi-agent memory serves as a pivotal mechanism for continual adaptation. However, existing multi-agent memory designs remain constrained by two fundamental bottlenecks: (i) memory homogenization arising from the absence of role-aware customization, and (ii) information overload induced by excessively fine-grained memory entries. To address these limitations, we propose LatentMem, a learnable multi-agent memory framework designed to customize agent-specific memories in a token-efficient manner. Specifically, LatentMem comprises an experience bank that stores raw interaction trajectories in a lightweight form, and a memory composer that synthesizes compact latent memories conditioned on retrieved experience and agent-specific contexts. Further, we introduce Latent Memory Policy Optimization (LMPO), which propagates task-level optimization signals through latent memories to the composer, encouraging it to produce compact and high-utility representations. Extensive experiments across diverse benchmarks and mainstream MAS frameworks show that LatentMem achieves a performance gain of up to $19.36$% over vanilla settings and consistently outperforms existing memory architectures, without requiring any modifications to the underlying frameworks.
☆ RC-GRPO: Reward-Conditioned Group Relative Policy Optimization for Multi-Turn Tool Calling Agents
Multi-turn tool calling is challenging for Large Language Models (LLMs) because rewards are sparse and exploration is expensive. A common recipe, SFT followed by GRPO, can stall when within-group reward variation is low (e.g., more rollouts in a group receive the all 0 or all 1 reward), making the group-normalized advantage uninformative and yielding vanishing updates. To address this problem, we propose RC-GRPO (Reward-Conditioned Group Relative Policy Optimization), which treats exploration as a controllable steering problem via discrete reward tokens. We first fine-tune a Reward-Conditioned Trajectory Policy (RCTP) on mixed-quality trajectories with reward goal special tokens (e.g., <|high_reward|>, <|low_reward|>) injected into the prompts, enabling the model to learn how to generate distinct quality trajectories on demand. Then during RL, we sample diverse reward tokens within each GRPO group and condition rollouts on the sampled token to improve within-group diversity, improving advantage gains. On the Berkeley Function Calling Leaderboard v4 (BFCLv4) multi-turn benchmark, our method yields consistently improved performance than baselines, and the performance on Qwen-2.5-7B-Instruct even surpasses all closed-source API models.
☆ WST-X Series: Wavelet Scattering Transform for Interpretable Speech Deepfake Detection
Designing front-ends for speech deepfake detectors primarily focuses on two categories. Hand-crafted filterbank features are transparent but are limited in capturing high-level semantic details, often resulting in performance gaps compared to self-supervised (SSL) features. SSL features, in turn, lack interpretability and may overlook fine-grained spectral anomalies. We propose the WST-X series, a novel family of feature extractors that combines the best of both worlds via the wavelet scattering transform (WST), integrating wavelets with nonlinearities analogous to deep convolutional networks. We investigate 1D and 2D WSTs to extract acoustic details and higher-order structural anomalies, respectively. Experimental results on the recent and challenging Deepfake-Eval-2024 dataset indicate that WST-X outperforms existing front-ends by a wide margin. Our analysis reveals that a small averaging scale ($J$), combined with high-frequency and directional resolutions ($Q, L$), is critical for capturing subtle artifacts. This underscores the value of translation-invariant and deformation-stable features for robust and interpretable speech deepfake detection.
comment: Submitted to IEEE Signal Processing Letters
CPMobius: Iterative Coach-Player Reasoning for Data-Free Reinforcement Learning
Large Language Models (LLMs) have demonstrated strong potential in complex reasoning, yet their progress remains fundamentally constrained by reliance on massive high-quality human-curated tasks and labels, either through supervised fine-tuning (SFT) or reinforcement learning (RL) on reasoning-specific data. This dependence renders supervision-heavy training paradigms increasingly unsustainable, with signs of diminishing scalability already evident in practice. To overcome this limitation, we introduce CPMöbius (CPMobius), a collaborative Coach-Player paradigm for data-free reinforcement learning of reasoning models. Unlike traditional adversarial self-play, CPMöbius, inspired by real world human sports collaboration and multi-agent collaboration, treats the Coach and Player as independent but cooperative roles. The Coach proposes instructions targeted at the Player's capability and receives rewards based on changes in the Player's performance, while the Player is rewarded for solving the increasingly instructive tasks generated by the Coach. This cooperative optimization loop is designed to directly enhance the Player's mathematical reasoning ability. Remarkably, CPMöbius achieves substantial improvement without relying on any external training data, outperforming existing unsupervised approaches. For example, on Qwen2.5-Math-7B-Instruct, our method improves accuracy by an overall average of +4.9 and an out-of-distribution average of +5.4, exceeding RENT by +1.5 on overall accuracy and R-zero by +4.2 on OOD accuracy.
comment: work in progress
☆ Where Norms and References Collide: Evaluating LLMs on Normative Reasoning AAAI
Embodied agents, such as robots, will need to interact in situated environments where successful communication often depends on reasoning over social norms: shared expectations that constrain what actions are appropriate in context. A key capability in such settings is norm-based reference resolution (NBRR), where interpreting referential expressions requires inferring implicit normative expectations grounded in physical and social context. Yet it remains unclear whether Large Language Models (LLMs) can support this kind of reasoning. In this work, we introduce SNIC (Situated Norms in Context), a human-validated diagnostic testbed designed to probe how well state-of-the-art LLMs can extract and utilize normative principles relevant to NBRR. SNIC emphasizes physically grounded norms that arise in everyday tasks such as cleaning, tidying, and serving. Across a range of controlled evaluations, we find that even the strongest LLMs struggle to consistently identify and apply social norms, particularly when norms are implicit, underspecified, or in conflict. These findings reveal a blind spot in current LLMs and highlight a key challenge for deploying language-based systems in socially situated, embodied settings.
comment: Accepted to the 40th AAAI Conference on Artificial Intelligence (AAAI-26)
☆ Nüwa: Mending the Spatial Integrity Torn by VLM Token Pruning
Vision token pruning has proven to be an effective acceleration technique for the efficient Vision Language Model (VLM). However, existing pruning methods demonstrate excellent performance preservation in visual question answering (VQA) and suffer substantial degradation on visual grounding (VG) tasks. Our analysis of the VLM's processing pipeline reveals that strategies utilizing global semantic similarity and attention scores lose the global spatial reference frame, which is derived from the interactions of tokens' positional information. Motivated by these findings, we propose $\text{Nüwa}$, a two-stage token pruning framework that enables efficient feature aggregation while maintaining spatial integrity. In the first stage, after the vision encoder, we apply three operations, namely separation, alignment, and aggregation, which are inspired by swarm intelligence algorithms to retain information-rich global spatial anchors. In the second stage, within the LLM, we perform text-guided pruning to retain task-relevant visual tokens. Extensive experiments demonstrate that $\text{Nüwa}$ achieves SOTA performance on multiple VQA benchmarks (from 94% to 95%) and yields substantial improvements on visual grounding tasks (from 7% to 47%).
☆ A vector logic for intensional formal semantics
Formal semantics and distributional semantics are distinct approaches to linguistic meaning: the former models meaning as reference via model-theoretic structures; the latter represents meaning as vectors in high-dimensional spaces shaped by usage. This paper proves that these frameworks are structurally compatible for intensional semantics. We establish that Kripke-style intensional models embed injectively into vector spaces, with semantic functions lifting to (multi)linear maps that preserve composition. The construction accommodates multiple index sorts (worlds, times, locations) via a compound index space, representing intensions as linear operators. Modal operators are derived algebraically: accessibility relations become linear operators, and modal conditions reduce to threshold checks on accumulated values. For uncountable index domains, we develop a measure-theoretic generalization in which necessity becomes truth almost everywhere and possibility becomes truth on a set of positive measure, a non-classical logic natural for continuous parameters.
comment: 25 pages; 68 sources
☆ Equal Access, Unequal Interaction: A Counterfactual Audit of LLM Fairness
Prior work on fairness in large language models (LLMs) has primarily focused on access-level behaviors such as refusals and safety filtering. However, equitable access does not ensure equitable interaction quality once a response is provided. In this paper, we conduct a controlled fairness audit examining how LLMs differ in tone, uncertainty, and linguistic framing across demographic identities after access is granted. Using a counterfactual prompt design, we evaluate GPT-4 and LLaMA-3.1-70B on career advice tasks while varying identity attributes along age, gender, and nationality. We assess access fairness through refusal analysis and measure interaction quality using automated linguistic metrics, including sentiment, politeness, and hedging. Identity-conditioned differences are evaluated using paired statistical tests. Both models exhibit zero refusal rates across all identities, indicating uniform access. Nevertheless, we observe systematic, model-specific disparities in interaction quality: GPT-4 expresses significantly higher hedging toward younger male users, while LLaMA exhibits broader sentiment variation across identity groups. These results show that fairness disparities can persist at the interaction level even when access is equal, motivating evaluation beyond refusal-based audits.
comment: 13 pages, 1 figure
☆ Scaling In-Context Online Learning Capability of LLMs via Cross-Episode Meta-RL
Large language models (LLMs) achieve strong performance when all task-relevant information is available upfront, as in static prediction and instruction-following problems. However, many real-world decision-making tasks are inherently online: crucial information must be acquired through interaction, feedback is delayed, and effective behavior requires balancing information collection and exploitation over time. While in-context learning enables adaptation without weight updates, existing LLMs often struggle to reliably leverage in-context interaction experience in such settings. In this work, we show that this limitation can be addressed through training. We introduce ORBIT, a multi-task, multi-episode meta-reinforcement learning framework that trains LLMs to learn from interaction in context. After meta-training, a relatively small open-source model (Qwen3-14B) demonstrates substantially improved in-context online learning on entirely unseen environments, matching the performance of GPT-5.2 and outperforming standard RL fine-tuning by a large margin. Scaling experiments further reveal consistent gains with model size, suggesting significant headroom for learn-at-inference-time decision-making agents. Code reproducing the results in the paper can be found at https://github.com/XiaofengLin7/ORBIT.
☆ BASS: Benchmarking Audio LMs for Musical Structure and Semantic Reasoning
Music understanding is a complex task that often requires reasoning over both structural and semantic elements of audio. We introduce BASS, designed to evaluate music understanding and reasoning in audio language models across four broad categories: structural segmentation, lyric transcription, musicological analysis, and artist collaboration. BASS comprises 2658 questions spanning 12 tasks, 1993 unique songs and covering over 138 hours of music from a wide range of genres and tracks, crafted to assess musicological knowledge and reasoning in real-world scenarios. We evaluate 14 open-source and frontier multimodal LMs, finding that even state-of-the-art models struggle on higher-level reasoning tasks such as structural segmentation and artist collaboration, while performing best on lyric transcription. Our analysis reveals that current models leverage linguistic priors effectively but remain limited in reasoning over musical structure, vocal, and musicological attributes. BASS provides an evaluation framework with widespread applications in music recommendation and search and has the potential to guide the development of audio LMs.
☆ Abstraction Induces the Brain Alignment of Language and Speech Models
Research has repeatedly demonstrated that intermediate hidden states extracted from large language models and speech audio models predict measured brain response to natural language stimuli. Yet, very little is known about the representation properties that enable this high prediction performance. Why is it the intermediate layers, and not the output layers, that are most effective for this unique and highly general transfer task? We give evidence that the correspondence between speech and language models and the brain derives from shared meaning abstraction and not their next-word prediction properties. In particular, models construct higher-order linguistic features in their middle layers, cued by a peak in the layerwise intrinsic dimension, a measure of feature complexity. We show that a layer's intrinsic dimension strongly predicts how well it explains fMRI and ECoG signals; that the relation between intrinsic dimension and brain predictivity arises over model pre-training; and finetuning models to better predict the brain causally increases both representations' intrinsic dimension and their semantic content. Results suggest that semantic richness, high intrinsic dimension, and brain predictivity mirror each other, and that the key driver of model-brain similarity is rich meaning abstraction of the inputs, where language modeling is a task sufficiently complex (but perhaps not the only) to require it.
comment: under review
☆ Stroke Lesions as a Rosetta Stone for Language Model Interpretability
Large language models (LLMs) have achieved remarkable capabilities, yet methods to verify which model components are truly necessary for language function remain limited. Current interpretability approaches rely on internal metrics and lack external validation. Here we present the Brain-LLM Unified Model (BLUM), a framework that leverages lesion-symptom mapping, the gold standard for establishing causal brain-behavior relationships for over a century, as an external reference structure for evaluating LLM perturbation effects. Using data from individuals with chronic post-stroke aphasia (N = 410), we trained symptom-to-lesion models that predict brain damage location from behavioral error profiles, applied systematic perturbations to transformer layers, administered identical clinical assessments to perturbed LLMs and human patients, and projected LLM error profiles into human lesion space. LLM error profiles were sufficiently similar to human error profiles that predicted lesions corresponded to actual lesions in error-matched humans above chance in 67% of picture naming conditions (p < 10^{-23}) and 68.3% of sentence completion conditions (p < 10^{-61}), with semantic-dominant errors mapping onto ventral-stream lesion patterns and phonemic-dominant errors onto dorsal-stream patterns. These findings open a new methodological avenue for LLM interpretability in which clinical neuroscience provides external validation, establishing human lesion-symptom mapping as a reference framework for evaluating artificial language systems and motivating direct investigation of whether behavioral alignment reflects shared computational principles.
comment: 45 pages, 17 figures
☆ On the Credibility of Evaluating LLMs using Survey Questions EACL 2026
Recent studies evaluate the value orientation of large language models (LLMs) using adapted social surveys, typically by prompting models with survey questions and comparing their responses to average human responses. This paper identifies limitations in this methodology that, depending on the exact setup, can lead to both underestimating and overestimating the similarity of value orientation. Using the World Value Survey in three languages across five countries, we demonstrate that prompting methods (direct vs. chain-of-thought) and decoding strategies (greedy vs. sampling) significantly affect results. To assess the interaction between answers, we introduce a novel metric, self-correlation distance. This metric measures whether LLMs maintain consistent relationships between answers across different questions, as humans do. This indicates that even a high average agreement with human data, when considering LLM responses independently, does not guarantee structural alignment in responses. Additionally, we reveal a weak correlation between two common evaluation metrics, mean-squared distance and KL divergence, which assume that survey answers are independent of each other. For future research, we recommend CoT prompting, sampling-based decoding with dozens of samples, and robust analysis using multiple metrics, including self-correlation distance.
comment: Accepted to the Workshop on Multilingual and Multicultural Evaluation at EACL 2026, 12 pages, 2 figures
☆ Chaplains' Reflections on the Design and Usage of AI for Conversational Care
Despite growing recognition that responsible AI requires domain knowledge, current work on conversational AI primarily draws on clinical expertise that prioritises diagnosis and intervention. However, much of everyday emotional support needs occur in non-clinical contexts, and therefore requires different conversational approaches. We examine how chaplains, who guide individuals through personal crises, grief, and reflection, perceive and engage with conversational AI. We recruited eighteen chaplains to build AI chatbots. While some chaplains viewed chatbots with cautious optimism, the majority expressed limitations of chatbots' ability to support everyday well-being. Our analysis reveals how chaplains perceive their pastoral care duties and areas where AI chatbots fall short, along the themes of Listening, Connecting, Carrying, and Wanting. These themes resonate with the idea of attunement, recently highlighted as a relational lens for understanding the delicate experiences care technologies provide. This perspective informs chatbot design aimed at supporting well-being in non-clinical contexts.
comment: To appear at ACM CHI 2026. 15 pages, 2 figures, 3 tables
Transformers perform adaptive partial pooling
Because language is creative, any reasonable language model must generalize, deciding what to say in novel contexts by using information from similar contexts. But what about contexts that are not novel but merely infrequent? In hierarchical regression, the model's predictions for behavior in a context are affected by observations from other similar contexts to the extent that 1) the current context is infrequent and 2) different contexts behave similarly. This is called adaptive partial pooling of evidence. This paper shows that next-word predictions of a transformer (GPT2) are increasingly unaffected by observations from outside the current context across epochs of training (the amount of pooling reduces with training), and that the extent of pooling is affected by context frequency, context number (type frequency) and context variability in a similar way to hierarchical regression. These characteristics of learning in transformers are argued to be realistic on both rational and empirical grounds.
comment: 6 pages, submitted to the annual meeting of the Cognitive Science Society
☆ Likelihood-Based Reward Designs for General LLM Reasoning
Fine-tuning large language models (LLMs) on reasoning benchmarks via reinforcement learning requires a specific reward function, often binary, for each benchmark. This comes with two potential limitations: the need to design the reward, and the potentially sparse nature of binary rewards. Here, we systematically investigate rewards derived from the probability or log-probability of emitting the reference answer (or any other prompt continuation present in the data), which have the advantage of not relying on specific verifiers and being available at scale. Several recent works have advocated for the use of similar rewards (e.g., VeriFree, JEPO, RLPR, NOVER). We systematically compare variants of likelihood-based rewards with standard baselines, testing performance both on standard mathematical reasoning benchmarks, and on long-form answers where no external verifier is available. We find that using the log-probability of the reference answer as the reward for chain-of-thought (CoT) learning is the only option that performs well in all setups. This reward is also consistent with the next-token log-likelihood loss used during pretraining. In verifiable settings, log-probability rewards bring comparable or better success rates than reinforcing with standard binary rewards, and yield much better perplexity. In non-verifiable settings, they perform on par with SFT. On the other hand, methods based on probability, such as VeriFree, flatline on non-verifiable settings due to vanishing probabilities of getting the correct answer. Overall, this establishes log-probability rewards as a viable method for CoT fine-tuning, bridging the short, verifiable and long, non-verifiable answer settings.
☆ Automatic Classification of Pedagogical Materials against CS Curriculum Guidelines
Professional societies often publish curriculum guidelines to help programs align their content to international standards. In Computer Science, the primary standard is published by ACM and IEEE and provide detailed guidelines for what should be and could be included in a Computer Science program. While very helpful, it remains difficult for program administrators to assess how much of the guidelines is being covered by a CS program. This is in particular due to the extensiveness of the guidelines, containing thousands of individual items. As such, it is time consuming and cognitively demanding to audit every course to confidently mark everything that is actually being covered. Our preliminary work indicated that it takes about a day of work per course. In this work, we propose using Natural Language Processing techniques to accelerate the process. We explore two kinds of techniques, the first relying on traditional tools for parsing, tagging, and embeddings, while the second leverages the power of Large Language Models. We evaluate the application of these techniques to classify a corpus of pedagogical materials and show that we can meaningfully classify documents automatically.
☆ Linguistic Blind Spots in Clinical Decision Extraction EACL
Extracting medical decisions from clinical notes is a key step for clinical decision support and patient-facing care summaries. We study how the linguistic characteristics of clinical decisions vary across decision categories and whether these differences explain extraction failures. Using MedDec discharge summaries annotated with decision categories from the Decision Identification and Classification Taxonomy for Use in Medicine (DICTUM), we compute seven linguistic indices for each decision span and analyze span-level extraction recall of a standard transformer model. We find clear category-specific signatures: drug-related and problem-defining decisions are entity-dense and telegraphic, whereas advice and precaution decisions contain more narrative, with higher stopword and pronoun proportions and more frequent hedging and negation cues. On the validation split, exact-match recall is 48%, with large gaps across linguistic strata: recall drops from 58% to 24% from the lowest to highest stopword-proportion bins, and spans containing hedging or negation cues are less likely to be recovered. Under a relaxed overlap-based match criterion, recall increases to 71%, indicating that many errors are span boundary disagreements rather than complete misses. Overall, narrative-style spans--common in advice and precaution decisions--are a consistent blind spot under exact matching, suggesting that downstream systems should incorporate boundary-tolerant evaluation and extraction strategies for clinical decisions.
comment: EACL HeaLing Workshop 2026
☆ SpatiaLab: Can Vision-Language Models Perform Spatial Reasoning in the Wild? ICLR 2026
Spatial reasoning is a fundamental aspect of human cognition, yet it remains a major challenge for contemporary vision-language models (VLMs). Prior work largely relied on synthetic or LLM-generated environments with limited task designs and puzzle-like setups, failing to capture the real-world complexity, visual noise, and diverse spatial relationships that VLMs encounter. To address this, we introduce SpatiaLab, a comprehensive benchmark for evaluating VLMs' spatial reasoning in realistic, unconstrained contexts. SpatiaLab comprises 1,400 visual question-answer pairs across six major categories: Relative Positioning, Depth & Occlusion, Orientation, Size & Scale, Spatial Navigation, and 3D Geometry, each with five subcategories, yielding 30 distinct task types. Each subcategory contains at least 25 questions, and each main category includes at least 200 questions, supporting both multiple-choice and open-ended evaluation. Experiments across diverse state-of-the-art VLMs, including open- and closed-source models, reasoning-focused, and specialized spatial reasoning models, reveal a substantial gap in spatial reasoning capabilities compared with humans. In the multiple-choice setup, InternVL3.5-72B achieves 54.93% accuracy versus 87.57% for humans. In the open-ended setting, all models show a performance drop of around 10-25%, with GPT-5-mini scoring highest at 40.93% versus 64.93% for humans. These results highlight key limitations in handling complex spatial relationships, depth perception, navigation, and 3D geometry. By providing a diverse, real-world evaluation framework, SpatiaLab exposes critical challenges and opportunities for advancing VLMs' spatial reasoning, offering a benchmark to guide future research toward robust, human-aligned spatial understanding. SpatiaLab is available at: https://spatialab-reasoning.github.io/.
comment: Accepted to ICLR 2026. 92 Pages. 42 Figures and 29 Tables
♻ ☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
Closing the Loop: Universal Repository Representation with RPG-Encoder
Current repository agents encounter a reasoning disconnect due to fragmented representations, as existing methods rely on isolated API documentation or dependency graphs that lack semantic depth. We consider repository comprehension and generation to be inverse processes within a unified cycle: generation expands intent into implementation, while comprehension compresses implementation back into intent. To address this, we propose RPG-Encoder, a framework that generalizes the Repository Planning Graph (RPG) from a static generative blueprint into a unified, high-fidelity representation. RPG-Encoder closes the reasoning loop through three mechanisms: (1) Encoding raw code into the RPG that combines lifted semantic features with code dependencies; (2) Evolving the topology incrementally to decouple maintenance costs from repository scale, reducing overhead by 95.7%; and (3) Operating as a unified interface for structure-aware navigation. In evaluations, RPG-Encoder establishes state-of-the-art localization performance on SWE-bench Verified with 93.7% Acc@5 and exceeds the best baseline by over 10% in localization accuracy on SWE-bench Live Lite. These results highlight our superior fine-grained precision in complex codebases. Furthermore, it achieves 98.5% reconstruction coverage on RepoCraft, confirming RPG's high-fidelity capacity to mirror the original codebase and closing the loop between intent and implementation.
♻ ☆ OpenRubrics: Towards Scalable Synthetic Rubric Generation for Reward Modeling and LLM Alignment
Reward modeling lies at the core of reinforcement learning from human feedback (RLHF), yet most existing reward models rely on scalar or pairwise judgments that fail to capture the multifaceted nature of human preferences. Recent studies have explored rubrics-as-rewards (RaR) that uses structured criteria to capture multiple dimensions of response quality. However, producing rubrics that are both reliable and scalable remains a key challenge. In this work, we introduce OpenRubrics, a diverse, large-scale collection of (prompt, rubric) pairs for training rubric-generation and rubric-based reward models. To elicit discriminative and comprehensive evaluation signals, we introduce Contrastive Rubric Generation (CRG), which derives both hard rules (explicit constraints) and principles (implicit qualities) by contrasting preferred and rejected responses. We further remove noisy rubrics via preserving preference-label consistency. Across multiple reward-modeling benchmarks, our rubric-based reward model, Rubric-RM, surpasses strong size-matched baselines by 8.4%. These gains transfer to policy models on instruction-following and biomedical benchmarks.
comment: The first two authors contributed equally. Updated OpenRubrics dataset, RMs, and results
♻ ☆ Mil-SCORE: Benchmarking Long-Context Geospatial Reasoning and Planning in Large Language Models
As large language models (LLMs) are applied to increasingly longer and more complex tasks, there is a growing need for realistic long-context benchmarks that require selective reading and integration of heterogeneous, multi-modal information sources. This need is especially acute for geospatial planning problems, such as those found in planning for large-scale military operations, which demand fast and accurate reasoning over maps, orders, intelligence reports, and other distributed data. To address this gap, we present MilSCORE (Military Scenario Contextual Reasoning), to our knowledge the first scenario-level dataset of expert-authored, multi-hop questions grounded in a complex, simulated military planning scenario used for training. MilSCORE is designed to evaluate high-stakes decision-making and planning, probing LLMs' ability to combine tactical and spatial reasoning across multiple sources and to reason over long-horizon, geospatially rich context. The benchmark includes a diverse set of question types across seven categories targeting both factual recall and multi-step reasoning about constraints, strategy, and spatial analysis. We provide an evaluation protocol and report baseline results for a range of contemporary vision-language models. Our findings highlight substantial headroom on MilSCORE, indicating that current systems struggle with realistic, scenario-level long-context planning, and positioning MilSCORE as a challenging testbed for future work.
♻ ☆ PluriHarms: Benchmarking the Full Spectrum of Human Judgments on AI Harm
Current AI safety frameworks, which often treat harmfulness as binary, lack the flexibility to handle borderline cases where humans meaningfully disagree. To build more pluralistic systems, it is essential to move beyond consensus and instead understand where and why disagreements arise. We introduce PluriHarms, a benchmark designed to systematically study human harm judgments across two key dimensions -- the harm axis (benign to harmful) and the agreement axis (agreement to disagreement). Our scalable framework generates prompts that capture diverse AI harms and human values while targeting cases with high disagreement rates, validated by human data. The benchmark includes 150 prompts with 15,000 ratings from 100 human annotators, enriched with demographic and psychological traits and prompt-level features of harmful actions, effects, and values. Our analyses show that prompts that relate to imminent risks and tangible harms amplify perceived harmfulness, while annotator traits (e.g., toxicity experience, education) and their interactions with prompt content explain systematic disagreement. We benchmark AI safety models and alignment methods on PluriHarms, finding that while personalization significantly improves prediction of human harm judgments, considerable room remains for future progress. By explicitly targeting value diversity and disagreement, our work provides a principled benchmark for moving beyond "one-size-fits-all" safety toward pluralistically safe AI.
♻ ☆ Think Silently, Think Fast: Dynamic Latent Compression of LLM Reasoning Chains
Large Language Models (LLMs) achieve superior performance through Chain-of-Thought (CoT) reasoning, but these token-level reasoning chains are computationally expensive and inefficient. In this paper, we introduce Compressed Latent Reasoning (CoLaR), a novel framework that dynamically compresses reasoning processes in latent space through a two-stage training approach. First, during supervised fine-tuning, CoLaR extends beyond next-token prediction by incorporating an auxiliary next compressed embedding prediction objective. This process merges embeddings of consecutive tokens using a compression factor randomly sampled from a predefined range, and trains a specialized latent head to predict distributions of subsequent compressed embeddings. Second, we enhance CoLaR through reinforcement learning (RL) that leverages the latent head's non-deterministic nature to explore diverse reasoning paths and exploit more compact ones. This approach enables CoLaR to: i) perform reasoning at a dense latent level (i.e., silently), substantially reducing reasoning chain length, and ii) dynamically adjust reasoning speed at inference time by simply prompting the desired compression factor. Extensive experiments across four mathematical reasoning datasets demonstrate that CoLaR achieves 14.1% higher accuracy than latent-based baseline methods at comparable compression ratios, and reduces reasoning chain length by 53.3% with only 4.8% performance degradation compared to explicit CoT method. Moreover, when applied to more challenging mathematical reasoning tasks, our RL-enhanced CoLaR demonstrates performance gains of up to 5.4% while dramatically reducing latent reasoning chain length by 82.8%.
comment: 15 pages, 8 figures
♻ ☆ From Generative Modeling to Clinical Classification: A GPT-Based Architecture for EHR Notes
The increasing availability of unstructured clinical narratives in electronic health records (EHRs) has created new opportunities for automated disease characterization, cohort identification, and clinical decision support. However, modeling long, domain-specific clinical text remains challenging due to limited labeled data, severe class imbalance, and the high computational cost of adapting large pretrained language models. This study presents a GPT-based architecture for clinical text classification that adapts a pretrained decoder-only Transformer using a selective fine-tuning strategy. Rather than updating all model parameters, the majority of the GPT-2 backbone is frozen, and training is restricted to the final Transformer block, the final layer normalization, and a lightweight classification head. This approach substantially reduces the number of trainable parameters while preserving the representational capacity required to model complex clinical language. The proposed method is evaluated on radiology reports from the MIMIC-IV-Note dataset using uncertainty-aware CheXpert-style labels derived directly from report text. Experiments cover multiple problem formulations, including multi-label classification of radiographic findings, binary per-label classification under different uncertainty assumptions, and aggregate disease outcome prediction. Across varying dataset sizes, the model exhibits stable convergence behavior and strong classification performance, particularly in settings dominated by non-mention and negated findings. Overall, the results indicate that selective fine-tuning of pretrained generative language models provides an efficient and effective pathway for clinical text classification, enabling scalable adaptation to real-world EHR data while significantly reducing computational complexity.
comment: This submission is a full-length research manuscript consisting of 37 pages and 15 figures. The paper presents a GPT-based architecture with selective fine-tuning for clinical text classification, including detailed architectural diagrams, learning curves, and evaluation figures such as ROC curves and confusion matrices
♻ ☆ Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin.
♻ ☆ TurkBench: A Benchmark for Evaluating Turkish Large Language Models EACL 2026
With the recent surge in the development of large language models, the need for comprehensive and language-specific evaluation benchmarks has become critical. While significant progress has been made in evaluating English-language models, benchmarks for other languages, particularly those with unique linguistic characteristics such as Turkish, remain less developed. Our study introduces TurkBench, a comprehensive benchmark designed to assess the capabilities of generative large language models in the Turkish language. TurkBench involves 8,151 data samples across 21 distinct subtasks. These are organized under six main categories of evaluation: Knowledge, Language Understanding, Reasoning, Content Moderation, Turkish Grammar and Vocabulary, and Instruction Following. The diverse range of tasks and the culturally relevant data would provide researchers and developers with a valuable tool for evaluating their models and identifying areas for improvement. We further publish our benchmark for online submissions at https://huggingface.co/turkbench
comment: Accepted by EACL 2026 SIGTURK
♻ ☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
♻ ☆ The Path of Least Resistance: Guiding LLM Reasoning Trajectories with Prefix Consensus ICLR 2026
Large language models achieve strong reasoning performance, but inference strategies such as Self-Consistency (SC) are computationally expensive, as they fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance), the first inference-time method to leverage prefix consistency for compute-efficient reasoning. PoLR clusters short prefixes of reasoning traces, identifies the dominant cluster, and expands all paths in that cluster, preserving the accuracy benefits of SC while substantially reducing token usage and latency. Our theoretical analysis, framed via mutual information and entropy, explains why early reasoning steps encode strong signals predictive of final correctness. Empirically, PoLR consistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by up to 50%. Moreover, PoLR is fully complementary to adaptive inference methods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in pre-filter, making SC substantially more efficient and scalable without requiring model fine-tuning.
comment: Accepted at ICLR 2026. https://openreview.net/forum?id=hrnSqERgPn
♻ ☆ Advancing AI Research Assistants with Expert-Involved Learning
Large language models (LLMs) and large multimodal models (LMMs) promise to accelerate biomedical discovery, yet their reliability remains unclear. We introduce ARIEL (AI Research Assistant for Expert-in-the-Loop Learning), an open-source evaluation and optimization framework that pairs a curated multimodal biomedical corpus with expert-vetted tasks to probe two capabilities: full-length article summarization and fine-grained figure interpretation. Using uniform protocols and blinded PhD-level evaluation, we find that state-of-the-art models generate fluent but incomplete summaries, whereas LMMs struggle with detailed visual reasoning. We later observe that prompt engineering and lightweight fine-tuning substantially improve textual coverage, and a compute-scaled inference strategy enhances visual question answering. We build an ARIEL agent that integrates textual and visual cues, and we show it can propose testable mechanistic hypotheses. ARIEL delineates current strengths and limitations of foundation models, and provides a reproducible platform for advancing trustworthy AI in biomedicine.
comment: 36 pages, 7 figures
♻ ☆ LegalOne: A Family of Foundation Models for Reliable Legal Reasoning
While Large Language Models (LLMs) have demonstrated impressive general capabilities, their direct application in the legal domain is often hindered by a lack of precise domain knowledge and complexity of performing rigorous multi-step judicial reasoning. To address this gap, we present LegalOne, a family of foundational models specifically tailored for the Chinese legal domain. LegalOne is developed through a comprehensive three-phase pipeline designed to master legal reasoning. First, during mid-training phase, we propose Plasticity-Adjusted Sampling (PAS) to address the challenge of domain adaptation. This perplexity-based scheduler strikes a balance between the acquisition of new knowledge and the retention of original capabilities, effectively establishing a robust legal foundation. Second, during supervised fine-tuning, we employ Legal Agentic CoT Distillation (LEAD) to distill explicit reasoning from raw legal texts. Unlike naive distillation, LEAD utilizes an agentic workflow to convert complex judicial processes into structured reasoning trajectories, thereby enforcing factual grounding and logical rigor. Finally, we implement a Curriculum Reinforcement Learning (RL) strategy. Through a progressive reinforcement process spanning memorization, understanding, and reasoning, LegalOne evolves from simple pattern matching to autonomous and reliable legal reasoning. Experimental results demonstrate that LegalOne achieves state-of-the-art performance across a wide range of legal tasks, surpassing general-purpose LLMs with vastly larger parameter counts through enhanced knowledge density and efficiency. We publicly release the LegalOne weights and the LegalKit evaluation framework to advance the field of Legal AI, paving the way for deploying trustworthy and interpretable foundation models in high-stakes judicial applications.
comment: 25 pages, v1
♻ ☆ KVzap: Fast, Adaptive, and Faithful KV Cache Pruning
Growing context lengths in transformer-based language models have made the key-value (KV) cache a critical inference bottleneck. While many KV cache pruning methods have been proposed, they have not yet been adopted in major inference engines due to speed--accuracy trade-offs. We introduce KVzap, a fast, input-adaptive approximation of KVzip that works in both prefilling and decoding. On Qwen3-8B, Llama-3.1-8B-Instruct, and Qwen3-32B across long-context and reasoning tasks, KVzap achieves $2$--$4\times$ KV cache compression with negligible accuracy loss and achieves state-of-the-art performance on the KVpress leaderboard. Code and models are available at https://github.com/NVIDIA/kvpress.
♻ ☆ Large-Scale Terminal Agentic Trajectory Generation from Dockerized Environments
Training agentic models for terminal-based tasks critically depends on high-quality terminal trajectories that capture realistic long-horizon interactions across diverse domains. However, constructing such data at scale remains challenging due to two key requirements: \textbf{\emph{Executability}}, since each instance requires a suitable and often distinct Docker environment; and \textbf{\emph{Verifiability}}, because heterogeneous task outputs preclude unified, standardized verification. To address these challenges, we propose \textbf{TerminalTraj}, a scalable pipeline that (i) filters high-quality repositories to construct Dockerized execution environments, (ii) generates Docker-aligned task instances, and (iii) synthesizes agent trajectories with executable validation code. Using TerminalTraj, we curate 32K Docker images and generate 50,733 verified terminal trajectories across eight domains. Models trained on this data with the Qwen2.5-Coder backbone achieve consistent performance improvements on TerminalBench (TB), with gains of up to 20\% on TB~1.0 and 10\% on TB~2.0 over their respective backbones. Notably, \textbf{TerminalTraj-32B} achieves strong performance among models with fewer than 100B parameters, reaching 35.30\% on TB~1.0 and 22.00\% on TB~2.0, and demonstrates improved test-time scaling behavior. All code and data are available at https://github.com/Wusiwei0410/TerminalTraj.
comment: Agentic Trajectory, Agentic Model, Terminal, Code Agent
♻ ☆ Capturing Classic Authorial Style in Long-Form Story Generation with GRPO Fine-Tuning
Evaluating and optimising authorial style in long-form story generation remains challenging because style is often assessed with ad hoc prompting and is frequently conflated with overall writing quality. We propose a two-stage pipeline. First, we train a dedicated style-similarity judge by fine-tuning a sentence-transformer with authorship-verification supervision, and calibrate its similarity outputs into a bounded $[0,1]$ reward. Second, we use this judge as the primary reward in Group Relative Policy Optimization (GRPO) to fine-tune an 8B story generator for style-conditioned writing, avoiding the accept/reject supervision required by Direct Preference Optimization (DPO). Across four target authors (Mark Twain, Jane Austen, Charles Dickens, Thomas Hardy), the GRPO-trained 8B model achieves higher style scores than open-weight baselines, with an average style score of 0.893 across authors. These results suggest that AV-calibrated reward modelling provides a practical mechanism for controllable style transfer in long-form generation under a moderate model size and training budget.
♻ ☆ Problem Solved? Information Extraction Design Space for Layout-Rich Documents using LLMs EMNLP'25
This paper defines and explores the design space for information extraction (IE) from layout-rich documents using large language models (LLMs). The three core challenges of layout-aware IE with LLMs are 1) data structuring, 2) model engagement, and 3) output refinement. Our study investigates the sub-problems and methods within these core challenges, such as input representation, chunking, prompting, selection of LLMs, and multimodal models. It examines the effect of different design choices through LayIE-LLM, a new, open-source, layout-aware IE test suite, benchmarking against traditional, fine-tuned IE models. The results on two IE datasets show that LLMs require adjustment of the IE pipeline to achieve competitive performance: the optimized configuration found with LayIE-LLM achieves 13.3--37.5 F1 points more than a general-practice baseline configuration using the same LLM. To find a well-working configuration, we develop a one-factor-at-a-time (OFAT) method that achieves near-optimal results. Our method is only 0.8--1.8 points lower than the best full factorial exploration with a fraction (2.8%) of the required computation. Overall, we demonstrate that, if well-configured, general-purpose LLMs match the performance of specialized models, providing a cost-effective, finetuning-free alternative. Our test-suite is available at https://github.com/gayecolakoglu/LayIE-LLM.
comment: accepted at EMNLP'25
♻ ☆ Modeling Sarcastic Speech: Semantic and Prosodic Cues in a Speech Synthesis Framework
Sarcasm is a pragmatic phenomenon in which speakers convey meanings that diverge from literal content, relying on an interaction between semantics and prosodic expression. However, how these cues jointly contribute to the recognition of sarcasm remains poorly understood. We propose a computational framework that models sarcasm as the integration of semantic interpretation and prosodic realization. Semantic cues are derived from an LLaMA 3 model fine-tuned to capture discourse-level markers of sarcastic intent, while prosodic cues are extracted through semantically aligned utterances drawn from a database of sarcastic speech, providing prosodic exemplars of sarcastic delivery. Using a speech synthesis testbed, perceptual evaluations demonstrate that both semantic and prosodic cues independently enhance listeners' perception of sarcasm, with the strongest effects emerging when the two are combined. These findings highlight the complementary roles of semantics and prosody in pragmatic interpretation and illustrate how modeling can shed light on the mechanisms underlying sarcastic communication.
♻ ☆ CP-Agent: Agentic Constraint Programming
The translation of natural language to formal constraint models requires expertise in the problem domain and modeling frameworks. To explore the effectiveness of agentic workflows, we propose CP-Agent, a Python coding agent that uses the ReAct framework with a persistent IPython kernel. We provide the relevant domain knowledge as a project prompt of under 50 lines. The algorithm works by iteratively executing code, observing the solver's feedback, and refining constraint models based on execution results. We evaluate CP-Agent on 101 constraint programming problems from CP-Bench. We made minor changes to the benchmark to address systematic ambiguities in the problem specifications and errors in the ground-truth models. On the clarified benchmark, CP-Agent achieves perfect accuracy on all 101 problems. Our experiments show that minimal guidance outperforms detailed procedural scaffolding. Our experiments also show that explicit task management tools can have both positive and negative effects on focused modeling tasks.
♻ ☆ PRISM: Deriving a White-Box Transformer as a Signal-Noise Decomposition Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce a specific irrational frequency separation ($π$-RoPE) to enforce incoherence between signal (semantic) and noise (syntactic) subspaces. We show empirical evidence that these geometric inductive biases can induce unsupervised functional disentanglement alone. Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints and structural artifacts. To provide a theoretical grounding for these spectral phenomena, we draw an analogy between attention mechanism and a Hamiltonian dynamical system and identify that the standard geometric progression of Rotary Positional Embeddings (RoPE) induces dense resonance networks (Arnold Tongues), leading to feature rank collapse. Empirical validation on 124M-parameter models trained on OpenWebText demonstrates that Prism spontaneously isolates the Attention Sink pathology and maintains isentropic information flow across layers. Further, we suggest a physics-informed plug-and-play intervention KAM-RoPE for large language models (LLMs). Our results suggest that interpretability and performance can be unified through principled geometric construction, offering a theoretically grounded alternative to heuristic architectural modifications
comment: 12 pages, 6 figures. Derives Transformer as a signal-noise decomposition operator via Maximizing Coding Rate Reduction. Identifies 'Attention Sink' as spectral resonance (Arnold Tongues) and proposes $π$-RoPE for dynamical stability
♻ ☆ Don't Overthink it. Preferring Shorter Thinking Chains for Improved LLM Reasoning
Reasoning large language models (LLMs) heavily rely on scaling test-time compute to perform complex reasoning tasks by generating extensive "thinking" chains. While demonstrating impressive results, this approach incurs significant computational costs and inference time. In this work, we challenge the assumption that long thinking chains results in better reasoning capabilities. We first demonstrate that shorter reasoning chains within individual questions are significantly more likely to yield correct answers - up to 34.5% more accurate than the longest chain sampled for the same question. Based on these results, we suggest short-m@k, a novel reasoning LLM inference method. Our method executes k independent generations in parallel and halts computation once the first m thinking processes are done. The final answer is chosen using majority voting among these m chains. Basic short-1@k demonstrates similar or even superior performance over standard majority voting in low-compute settings - using up to 40% fewer thinking tokens. short-3@k, while slightly less efficient than short-1@k, consistently surpasses majority voting across all compute budgets, while still being substantially faster (up to 33% wall time reduction). To further validate our findings, we finetune LLMs using short, long, and randomly selected reasoning chains. We then observe that training on the shorter ones leads to better performance. Our findings suggest rethinking current methods of test-time compute in reasoning LLMs, emphasizing that longer "thinking" does not necessarily translate to improved performance and can, counter-intuitively, lead to degraded results.
♻ ☆ Evaluating Scoring Bias in LLM-as-a-Judge
The "LLM-as-a-Judge" paradigm, using Large Language Models (LLMs) as automated evaluators, is pivotal to LLM development, offering scalable feedback for complex tasks. However, the reliability of these judges is compromised by various biases. Existing research has heavily concentrated on biases in comparative evaluations. In contrast, scoring-based evaluations-which assign an absolute score and are often more practical in industrial applications-remain under-investigated. To address this gap, we undertake the first dedicated examination of scoring bias in LLM judges. We shift the focus from biases tied to the evaluation targets to those originating from the scoring prompt itself. We formally define scoring bias and identify three novel, previously unstudied types: rubric order bias, score ID bias, and reference answer score bias. We propose a comprehensive framework to quantify these biases, featuring a suite of multi-faceted metrics and an automatic data synthesis pipeline to create a tailored evaluation corpus. Our experiments empirically demonstrate that even the most advanced LLMs suffer from these substantial scoring biases. Our analysis yields actionable insights for designing more robust scoring prompts and mitigating these newly identified biases.
comment: Accepted by DASFAA 2026
♻ ☆ A Syntax-Injected Approach for Faster and More Accurate Sentiment Analysis
Sentiment Analysis (SA) is a crucial aspect of Natural Language Processing (NLP), focusing on identifying and interpreting subjective assessments in textual content. Syntactic parsing is useful in SA as it improves accuracy and provides explainability; however, it often becomes a computational bottleneck due to slow parsing algorithms. This article proposes a solution to this bottleneck by using a Sequence Labeling Syntactic Parser (SELSP) to integrate syntactic information into SA via a rule-based sentiment analysis pipeline. By reformulating dependency parsing as a sequence labeling task, we significantly improve the efficiency of syntax-based SA. SELSP is trained and evaluated on a ternary polarity classification task, demonstrating greater speed and accuracy compared to conventional parsers like Stanza and heuristic approaches such as Valence Aware Dictionary and sEntiment Reasoner (VADER). The combination of speed and accuracy makes SELSP especially attractive for sentiment analysis applications in both academic and industrial contexts. Moreover, we compare SELSP with Transformer-based models trained on a 5-label classification task. In addition, we evaluate multiple sentiment dictionaries with SELSP to determine which yields the best performance in polarity prediction. The results show that dictionaries accounting for polarity judgment variation outperform those that ignore it. Furthermore, we show that SELSP outperforms Transformer-based models in terms of speed for polarity prediction.
♻ ☆ Understanding Verbatim Memorization in LLMs Through Circuit Discovery ACL 2025
Underlying mechanisms of memorization in LLMs -- the verbatim reproduction of training data -- remain poorly understood. What exact part of the network decides to retrieve a token that we would consider as start of memorization sequence? How exactly is the models' behaviour different when producing memorized sentence vs non-memorized? In this work we approach these questions from mechanistic interpretability standpoint by utilizing transformer circuits -- the minimal computational subgraphs that perform specific functions within the model. Through carefully constructed contrastive datasets, we identify points where model generation diverges from memorized content and isolate the specific circuits responsible for two distinct aspects of memorization. We find that circuits that initiate memorization can also maintain it once started, while circuits that only maintain memorization cannot trigger its initiation. Intriguingly, memorization prevention mechanisms transfer robustly across different text domains, while memorization induction appears more context-dependent.
comment: The First Workshop on Large Language Model Memorization @ ACL 2025, Vienna, August 1st, 2025
♻ ☆ Evalet: Evaluating Large Language Models by Fragmenting Outputs into Functions
Practitioners increasingly rely on Large Language Models (LLMs) to evaluate generative AI outputs through "LLM-as-a-Judge" approaches. However, these methods produce holistic scores that obscure which specific elements influenced the assessments. We propose functional fragmentation, a method that dissects each output into key fragments and interprets the rhetoric functions that each fragment serves relative to evaluation criteria -- surfacing the elements of interest and revealing how they fulfill or hinder user goals. We instantiate this approach in Evalet, an interactive system that visualizes fragment-level functions across many outputs to support inspection, rating, and comparison of evaluations. A user study (N=10) found that, while practitioners struggled to validate holistic scores, our approach helped them identify 48% more evaluation misalignments. This helped them calibrate trust in LLM evaluations and rely on them to find more actionable issues in model outputs. Our work shifts LLM evaluation from quantitative scores toward qualitative, fine-grained analysis of model behavior.
comment: The first two authors hold equal contribution. Conditionally accepted to CHI 2026
♻ ☆ A2D: Any-Order, Any-Step Safety Alignment for Diffusion Language Models ICLR 2026
Diffusion large language models (dLLMs) enable any-order generation, but this flexibility enlarges the attack surface: harmful spans may appear at arbitrary positions, and template-based prefilling attacks such as DIJA bypass response-level refusals. We introduce A2D (Any-Order, Any-Step Defense), a token-level alignment method that aligns dLLMs to emit an [EOS] refusal signal whenever harmful content arises. By aligning safety directly at the token-level under randomized masking, A2D achieves robustness to both any-decoding-order and any-step prefilling attacks under various conditions. It also enables real-time monitoring: dLLMs may begin a response but automatically terminate if unsafe continuation emerges. On safety benchmarks, A2D consistently prevents the generation of harmful outputs, slashing DIJA success rates from over 80% to near-zero (1.3% on LLaDA-8B-Instruct, 0.0% on Dream-v0-Instruct-7B), and thresholded [EOS] probabilities allow early rejection, yielding up to 19.3x faster safe termination.
comment: Accepted at ICLR 2026. Code and models are available at https://ai-isl.github.io/A2D
♻ ☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce VIP, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, VIP uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that VIP consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks.
comment: Accepted at ICLR 2026
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis
Mechanistic Interpretability (MI) aims to reverse-engineer model behaviors by identifying functional sub-networks. Yet, the scientific validity of these findings depends on their stability. In this work, we argue that circuit discovery is not a standalone task but a statistical estimation problem built upon causal mediation analysis (CMA). We uncover a fundamental instability at this base layer: exact, single-input CMA scores exhibit high intrinsic variance, implying that the causal effect of a component is a volatile random variable rather than a fixed property. We then demonstrate that circuit discovery pipelines inherit this variance and further amplify it. Fast approximation methods, such as Edge Attribution Patching and its successors, introduce additional estimation noise, while aggregating these noisy scores over datasets leads to fragile structural estimates. Consequently, small perturbations in input data or hyperparameters yield vastly different circuits. We systematically decompose these sources of variance and advocate for more rigorous MI practices, prioritizing statistical robustness and routine reporting of stability metrics.
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ AlignAtt: Using Attention-based Audio-Translation Alignments as a Guide for Simultaneous Speech Translation
Attention is the core mechanism of today's most used architectures for natural language processing and has been analyzed from many perspectives, including its effectiveness for machine translation-related tasks. Among these studies, attention resulted to be a useful source of information to get insights about word alignment also when the input text is substituted with audio segments, as in the case of the speech translation (ST) task. In this paper, we propose AlignAtt, a novel policy for simultaneous ST (SimulST) that exploits the attention information to generate source-target alignments that guide the model during inference. Through experiments on the 8 language pairs of MuST-C v1.0, we show that AlignAtt outperforms previous state-of-the-art SimulST policies applied to offline-trained models with gains in terms of BLEU of 2 points and latency reductions ranging from 0.5s to 0.8s across the 8 languages.
♻ ☆ MemeLens: Multilingual Multitask VLMs for Memes
Memes are a dominant medium for online communication and manipulation because meaning emerges from interactions between embedded text, imagery, and cultural context. Existing meme research is distributed across tasks (hate, misogyny, propaganda, sentiment, humour) and languages, which limits cross-domain generalization. To address this gap we propose MemeLens, a unified multilingual and multitask explanation-enhanced Vision Language Model (VLM) for meme understanding. We consolidate 38 public meme datasets, filter and map dataset-specific labels into a shared taxonomy of $20$ tasks spanning harm, targets, figurative/pragmatic intent, and affect. We present a comprehensive empirical analysis across modeling paradigms, task categories, and datasets. Our findings suggest that robust meme understanding requires multimodal training, exhibits substantial variation across semantic categories, and remains sensitive to over-specialization when models are fine-tuned on individual datasets rather than trained in a unified setting. We will make the experimental resources and datasets publicly available for the community.
comment: disinformation, misinformation, factuality, harmfulness, fake news, propaganda, hateful meme, multimodality, text, images
♻ ☆ AWM: Accurate Weight-Matrix Fingerprint for Large Language Models ICLR 2026
Protecting the intellectual property of large language models (LLMs) is crucial, given the substantial resources required for their training. Consequently, there is an urgent need for both model owners and third parties to determine whether a suspect LLM is trained from scratch or derived from an existing base model. However, the intensive post-training processes that models typically undergo-such as supervised fine-tuning, extensive continued pretraining, reinforcement learning, multi-modal extension, pruning, and upcycling-pose significant challenges to reliable identification. In this work, we propose a training-free fingerprinting method based on weight matrices. We leverage the Linear Assignment Problem (LAP) and an unbiased Centered Kernel Alignment (CKA) similarity to neutralize the effects of parameter manipulations, yielding a highly robust and high-fidelity similarity metric. On a comprehensive testbed of 60 positive and 90 negative model pairs, our method demonstrates exceptional robustness against all six aforementioned post-training categories while exhibiting a near-zero risk of false positives. By achieving perfect scores on all classification metrics, our approach establishes a strong basis for reliable model lineage verification. Moreover, the entire computation completes within 30s on an NVIDIA 3090 GPU. The code is available at https://github.com/LUMIA-Group/AWM.
comment: ICLR 2026
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding accelerates LLM inference by letting a small drafter propose multiple tokens which a large target model verifies once per speculation step. As vocabularies scale past 10e5 tokens,verification cost in the target model is largely unchanged, but the drafter can become bottlenecked by its O(|V|d) output projection. Recent approaches (e.g., FR-Spec, VocabTrim) mitigate this by restricting drafting to a fixed, frequency-ranked shortlist; however, such static truncation is corpus-dependent and suppresses rare or domain-specific tokens, reducing acceptance and limiting speedups. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism for large-vocabulary speculative decoding. DynaSpec trains lightweight meta-classifiers that route each context to a small set of coarse token clusters; the union of the top-selected clusters defines the drafter's shortlist, while the target model still verifies over the full vocabulary, preserving exactness. Systems-wise, routing is overlapped with draft computation via parallel execution streams, reducing end-to-end overhead. Across standard speculative decoding benchmarks, DynaSpec consistently improves mean accepted length-recovering 98.4% of full-vocabulary performance for Llama-3-8B versus 93.6% for fixed-shortlist baselines-and achieves up to a 2.23x throughput gain compared to 1.91x for static approaches on the dataset with rare tokens.
♻ ☆ What MLLMs Learn about When they Learn about Multimodal Reasoning: Perception, Reasoning, or their Integration?
Evaluation of multimodal reasoning models is typically reduced to a single accuracy score, implicitly treating reasoning as a unitary capability. We introduce MathLens, a benchmark of textbook-style geometry problems that exposes this assumption by operationally decomposing performance into Perception, Reasoning, and Integration. Each problem is derived from a symbolic specification and accompanied by visual diagrams, text-only variants, multimodal questions, and targeted perceptual probes, enabling controlled measurement of each component. Using this decomposition, we show that common training strategies induce systematically different capability profiles that are invisible under aggregate accuracy. Reinforcement learning primarily improves perceptual grounding and robustness to diagram variation, while textual SFT yields gains through reflective reasoning. In contrast, as perception and reasoning improve, a growing fraction of remaining errors fall outside these components and are categorized as integration. These results suggest that apparent progress in multimodal reasoning reflects shifting balances among subskills rather than uniform advancement, motivating evaluation beyond scalar accuracy.
♻ ☆ Self-attention vector output similarities reveal how machines pay attention
The self-attention mechanism has significantly advanced the field of natural language processing, facilitating the development of advanced language-learning machines. Although its utility is widely acknowledged, the precise mechanisms of self-attention underlying its advanced learning and the quantitative characterization of this learning process remains an open research question. This study introduces a new approach for quantifying information processing within the self-attention mechanism. The analysis conducted on the BERT-12 architecture reveals that, in the final layers, the attention map focuses on sentence separator tokens, suggesting a practical approach to text segmentation based on semantic features. Based on the vector space emerging from the self-attention heads, a context similarity matrix, measuring the scalar product between two token vectors was derived, revealing distinct similarities between different token vector pairs within each head and layer. The findings demonstrated that different attention heads within an attention block focused on different linguistic characteristics, such as identifying token repetitions in a given text or recognizing a token of common appearance in the text and its surrounding context. This specialization is also reflected in the distribution of distances between token vectors with high similarity as the architecture progresses. The initial attention layers exhibit substantially long-range similarities; however, as the layers progress, a more short-range similarity develops, culminating in a preference for attention heads to create strong similarities within the same sentence. Finally, the behavior of individual heads was analyzed by examining the uniqueness of their most common tokens in their high similarity elements. Each head tends to focus on a unique token from the text and builds similarity pairs centered around it.
comment: 23 pages, 14 figures
♻ ☆ Beyond the Vision Encoder: Identifying and Mitigating Spatial Bias in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have achieved remarkable success across a wide range of multimodal tasks, yet their robustness to spatial variations remains insufficiently understood. In this work, we conduct a systematic study of the spatial bias of LVLMs, examining how models respond when identical key visual information is placed at different locations within an image. Through controlled probing experiments, we observe that current LVLMs often produce inconsistent outputs under such spatial shifts, revealing a clear spatial bias in their semantic understanding. Further analysis indicates that this bias does not stem from the vision encoder, but rather from a mismatch in attention mechanisms between the vision encoder and the large language model, which disrupts the global information flow. Motivated by this insight, we propose Adaptive Global Context Injection (AGCI), a lightweight mechanism that dynamically injects shared global visual context into each image token. AGCI works without architectural modifications, mitigating spatial bias by enhancing the semantic accessibility of image tokens while preserving the model's intrinsic capabilities. Extensive experiments demonstrate that AGCI not only enhances the spatial robustness of LVLMs, but also achieves strong performance on various downstream tasks and hallucination benchmarks.
♻ ☆ v1: Learning to Point Visual Tokens for Multimodal Grounded Reasoning
When thinking with images, humans rarely rely on a single glance: they revisit visual evidence while reasoning. In contrast, most Multimodal Language Models encode an image once to key-value cache and then reason purely in text, making it hard to re-ground intermediate steps. We empirically confirm this: as reasoning chains lengthen, models progressively lose focus on relevant regions. We introduce v1, a lightweight extension for active visual referencing via point-and-copy: the model selects relevant image patches and copies their embeddings back into the reasoning stream. Crucially, our point-and-copy mechanism retrieves patches using their semantic representations as keys, ensuring perceptual evidence remains aligned with the reasoning space. To train this behavior, we build v1, a dataset of 300K multimodal reasoning traces with interleaved grounding annotations. Across multimodal mathematical reasoning benchmarks, v1 consistently outperforms comparable baselines. We plan to release the model checkpoint and data.
♻ ☆ DEER: A Benchmark for Evaluating Deep Research Agents on Expert Report Generation
Recent advances in large language models have enabled deep research systems that generate expert-level reports through multi-step reasoning and evidence-based synthesis. However, evaluating such reports remains challenging: report quality is multifaceted, making it difficult to determine what to assess and by what criteria; LLM-based judges may miss errors that require domain expertise to identify; and because deep research relies on retrieved evidence, report-wide claim verification is also necessary. To address these issues, we propose DEER, a benchmark for evaluating expert-level deep research reports. DEER systematizes evaluation criteria with an expert-developed taxonomy (7 dimensions, 25 subdimensions) operationalized as 101 fine-grained rubric items. We also provide task-specific Expert Evaluation Guidance to support LLM-based judging. Alongside rubric-based assessment, we propose a claim verification architecture that verifies both cited and uncited claims and quantifies evidence quality. Experiments show that while current deep research systems can produce structurally plausible reports that cite external evidence, there is room for improvement in fulfilling expert-level user requests and achieving logical completeness. Beyond simple performance comparisons, DEER makes system strengths and limitations interpretable and provides diagnostic signals for improvement.
comment: Work in progress
♻ ☆ Bounded Hyperbolic Tangent: A Stable and Efficient Alternative to Pre-Layer Normalization in Large Language Models
Pre-Layer Normalization (Pre-LN) is the de facto choice for large language models (LLMs) and is crucial for stable pretraining and effective transfer learning. However, Pre-LN is inefficient due to repeated statistical calculations and suffers from the curse of depth. As layers grow, the magnitude and variance of the hidden state escalate, destabilizing training. Efficiency-oriented normalization-free methods such as Dynamic Tanh (DyT) improve speed but remain fragile at depth. To jointly address stability and efficiency, we propose Bounded Hyperbolic Tanh (BHyT), a drop-in replacement for Pre-LN. BHyT couples a tanh nonlinearity with explicit, data-driven input bounding to keep activations within a non-saturating range. It prevents depth-wise growth in activation magnitude and variance and comes with a theoretical stability guarantee. For efficiency, BHyT computes exact statistics once per block and replaces a second normalization with a lightweight variance approximation, enhancing efficiency. Empirically, BHyT demonstrates improved stability and efficiency during pretraining, achieving an average of 15.8% faster training and an average of 4.2% higher token generation throughput compared to RMSNorm., while matching or surpassing its inference performance and robustness across language understanding and reasoning benchmarks. Our code is available at: https://anonymous.4open.science/r/BHyT
♻ ☆ MedFrameQA: A Multi-Image Medical VQA Benchmark for Clinical Reasoning
Real-world clinical practice demands multi-image comparative reasoning, yet current medical benchmarks remain limited to single-frame interpretation. We present MedFrameQA, the first benchmark explicitly designed to test multi-image medical VQA through educationally-validated diagnostic sequences. To construct this dataset, we develop a scalable pipeline that leverages narrative transcripts from medical education videos to align visual frames with textual concepts, automatically producing 2,851 high-quality multi-image VQA pairs with explicit, transcript-grounded reasoning chains. Our evaluation of 11 advanced MLLMs (including reasoning models) exposes severe deficiencies in multi-image synthesis, where accuracies mostly fall below 50% and exhibit instability across varying image counts. Error analysis demonstrates that models often treat images as isolated instances, failing to track pathological progression or cross-reference anatomical shifts. MedFrameQA provides a rigorous standard for evaluating the next generation of MLLMs in handling complex, temporally grounded medical narratives.
comment: 27 pages, 15 Figures Benchmark data: https://huggingface.co/datasets/SuhaoYu1020/MedFrameQA
♻ ☆ GeoResponder: Towards Building Geospatial LLMs for Time-Critical Disaster Response
Large Language Models excel at linguistic tasks but lack the inner geospatial capabilities needed for time-critical disaster response, where reasoning about road networks, continuous coordinates, and access to essential infrastructure such as hospitals, shelters, and pharmacies is vital. We introduce GeoResponder, a framework that instills robust spatial reasoning through a scaffolded instruction-tuning curriculum. By stratifying geospatial learning into different cognitive layers, we effectively anchor semantic knowledge to the continuous coordinate manifold and enforce the internalization of spatial axioms. Extensive evaluations across four topologically distinct cities and diverse tasks demonstrate that GeoResponder significantly outperforms both state-of-the-art foundation models and domain-specific baselines. These results suggest that LLMs can begin to internalize and generalize geospatial structures, pointing toward the future development of language models capable of supporting disaster response needs.
♻ ☆ Wiki Live Challenge: Challenging Deep Research Agents with Expert-Level Wikipedia Articles
Deep Research Agents (DRAs) have demonstrated remarkable capabilities in autonomous information retrieval and report generation, showing great potential to assist humans in complex research tasks. Current evaluation frameworks primarily rely on LLM-generated references or LLM-derived evaluation dimensions. While these approaches offer scalability, they often lack the reliability of expert-verified content and struggle to provide objective, fine-grained assessments of critical dimensions. To bridge this gap, we introduce Wiki Live Challenge (WLC), a live benchmark that leverages the newest Wikipedia Good Articles (GAs) as expert-level references. Wikipedia's strict standards for neutrality, comprehensiveness, and verifiability serve as a great challenge for DRAs, with GAs representing the pinnacle of which. We curate a dataset of 100 recent Good Articles and propose Wiki Eval, a comprehensive evaluation framework comprising a fine-grained evaluation method with 39 criteria for writing quality and rigorous metrics for factual verifiability. Extensive experiments on various DRA systems demonstrate a significant gap between current DRAs and human expert-level Wikipedia articles, validating the effectiveness of WLC in advancing agent research. We release our benchmark at https://github.com/WangShao2000/Wiki_Live_Challenge
comment: Preprint
♻ ☆ WildGraphBench: Benchmarking GraphRAG with Wild-Source Corpora
Graph-based Retrieval-Augmented Generation (GraphRAG) organizes external knowledge as a hierarchical graph, enabling efficient retrieval and aggregation of scattered evidence across multiple documents. However, many existing benchmarks for GraphRAG rely on short, curated passages as external knowledge, failing to adequately evaluate systems in realistic settings involving long contexts and large-scale heterogeneous documents. To bridge this gap, we introduce WildGraphBench, a benchmark designed to assess GraphRAG performance in the wild. We leverage Wikipedia's unique structure, where cohesive narratives are grounded in long and heterogeneous external reference documents, to construct a benchmark reflecting real-word scenarios. Specifically, we sample articles across 12 top-level topics, using their external references as the retrieval corpus and citation-linked statements as ground truth, resulting in 1,100 questions spanning three levels of complexity: single-fact QA, multi-fact QA, and section-level summarization. Experiments across multiple baselines reveal that current GraphRAG pipelines help on multi-fact aggregation when evidence comes from a moderate number of sources, but this aggregation paradigm may overemphasize high-level statements at the expense of fine-grained details, leading to weaker performance on summarization tasks. Project page:https://github.com/BstWPY/WildGraphBench.
comment: https://github.com/BstWPY/WildGraphBench
♻ ☆ A Unified Definition of Hallucination: It's The World Model, Stupid!
Despite numerous attempts at mitigation since the inception of language models, hallucinations remain a persistent problem even in today's frontier LLMs. Why is this? We review existing definitions of hallucination and fold them into a single, unified definition wherein prior definitions are subsumed. We argue that hallucination can be unified by defining it as simply inaccurate (internal) world modeling, in a form where it is observable to the user. For example, stating a fact which contradicts a knowledge base OR producing a summary which contradicts the source. By varying the reference world model and conflict policy, our framework unifies prior definitions. We argue that this unified view is useful because it forces evaluations to clarify their assumed reference "world", distinguishes true hallucinations from planning or reward errors, and provides a common language for comparison across benchmarks and discussion of mitigation strategies. Building on this definition, we outline plans for a family of benchmarks using synthetic, fully specified reference world models to stress-test and improve world modeling components.
comment: HalluWorld benchmark in progress. Repo at https://github.com/DegenAI-Labs/HalluWorld
♻ ☆ Winning the Pruning Gamble: A Unified Approach to Joint Sample and Token Pruning for Efficient Supervised Fine-Tuning
As supervised fine-tuning (SFT) evolves from a lightweight post-training step into a compute-intensive phase rivaling mid-training in scale, data efficiency has become critical for aligning large language models (LLMs) under tight budgets. Existing data pruning methods suffer from a fragmented design: they operate either at the sample level or the token level in isolation, failing to jointly optimize both dimensions. This disconnect leads to significant inefficiencies--high-value samples may still contain redundant tokens, while token-level pruning often discards crucial instructional or corrective signals embedded in individual examples. To address this bottleneck, we introduce the Error-Uncertainty (EU) Plane, a diagnostic framework that jointly characterizes the heterogeneous utility of training data across samples and tokens. Guided by this insight, we propose Quadrant-based Tuning (Q-Tuning), a unified framework that strategically coordinates sample pruning and token pruning. Q-Tuning employs a two-stage strategy: first, it performs sample-level triage to retain examples rich in informative misconceptions or calibration signals; second, it applies an asymmetric token-pruning policy, using a context-aware scoring mechanism to trim less salient tokens exclusively from misconception samples while preserving calibration samples in their entirety. Our method sets a new state of the art across five diverse benchmarks. Remarkably, on SmolLM2-1.7B, Q-Tuning achieves a +38\% average improvement over the full-data SFT baseline using only 12.5\% of the original training data. As the first dynamic pruning approach to consistently outperform full-data training, Q-Tuning provides a practical and scalable blueprint for maximizing data utilization in budget-constrained LLM SFT.
comment: 26 pages, 9 figures, 15 tables
♻ ☆ MemoryFormer: Minimize Transformer Computation by Removing Fully-Connected Layers NeurIPS 2024
In order to reduce the computational complexity of large language models, great efforts have been made to to improve the efficiency of transformer models such as linear attention and flash-attention. However, the model size and corresponding computational complexity are constantly scaled up in pursuit of higher performance. In this work, we present MemoryFormer, a novel transformer architecture which significantly reduces the computational complexity (FLOPs) from a new perspective. We eliminate nearly all the computations of the transformer model except for the necessary computation required by the multi-head attention operation. This is made possible by utilizing an alternative method for feature transformation to replace the linear projection of fully-connected layers. Specifically, we first construct a group of in-memory lookup tables that store a large amount of discrete vectors to replace the weight matrix used in linear projection. We then use a hash algorithm to retrieve a correlated subset of vectors dynamically based on the input embedding. The retrieved vectors combined together will form the output embedding, which provides an estimation of the result of matrix multiplication operation in a fully-connected layer. Compared to conducting matrix multiplication, retrieving data blocks from memory is a much cheaper operation which requires little computations. We train MemoryFormer from scratch and conduct extensive experiments on various benchmarks to demonstrate the effectiveness of the proposed model.
comment: NeurIPS 2024. Code available at https://github.com/ningding-o/MemoryFormer
♻ ☆ Causality Guided Representation Learning for Cross-Style Hate Speech Detection
The proliferation of online hate speech poses a significant threat to the harmony of the web. While explicit hate is easily recognized through overt slurs, implicit hate speech is often conveyed through sarcasm, irony, stereotypes, or coded language -- making it harder to detect. Existing hate speech detection models, which predominantly rely on surface-level linguistic cues, fail to generalize effectively across diverse stylistic variations. Moreover, hate speech spread on different platforms often targets distinct groups and adopts unique styles, potentially inducing spurious correlations between them and labels, further challenging current detection approaches. Motivated by these observations, we hypothesize that the generation of hate speech can be modeled as a causal graph involving key factors: contextual environment, creator motivation, target, and style. Guided by this graph, we propose CADET, a causal representation learning framework that disentangles hate speech into interpretable latent factors and then controls confounders, thereby isolating genuine hate intent from superficial linguistic cues. Furthermore, CADET allows counterfactual reasoning by intervening on style within the latent space, naturally guiding the model to robustly identify hate speech in varying forms. CADET demonstrates superior performance in comprehensive experiments, highlighting the potential of causal priors in advancing generalizable hate speech detection.
comment: Accepted by the ACM Web Conference 2026 (WWW 26)
♻ ☆ LUMINA: Detecting Hallucinations in RAG System with Context-Knowledge Signals ICLR 2026
Retrieval-Augmented Generation (RAG) aims to mitigate hallucinations in large language models (LLMs) by grounding responses in retrieved documents. Yet, RAG-based LLMs still hallucinate even when provided with correct and sufficient context. A growing line of work suggests that this stems from an imbalance between how models use external context and their internal knowledge, and several approaches have attempted to quantify these signals for hallucination detection. However, existing methods require extensive hyperparameter tuning, limiting their generalizability. We propose LUMINA, a novel framework that detects hallucinations in RAG systems through context--knowledge signals: external context utilization is quantified via distributional distance, while internal knowledge utilization is measured by tracking how predicted tokens evolve across transformer layers. We further introduce a framework for statistically validating these measurements. Experiments on common RAG hallucination benchmarks and four open-source LLMs show that LUMINA achieves consistently high AUROC and AUPRC scores, outperforming prior utilization-based methods by up to +13% AUROC on HalluRAG. Moreover, LUMINA remains robust under relaxed assumptions about retrieval quality and model matching, offering both effectiveness and practicality. LUMINA: https://github.com/deeplearning-wisc/LUMINA
comment: ICLR 2026
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate on massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK supports a unified orchestrator with advanced context management for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the construction, evaluation, and refinement of agents through a build-test-improve cycle, enabling rapid agent development on new tasks and tool stacks. Instantiated on the Confucius SDK using the meta-agent, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 59%, exceeding prior research baselines as well as commercial results, under identical repositories, model backends, and tool access.
comment: The latest version
Kimi K2: Open Agentic Intelligence
We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
comment: tech report of Kimi K2, with minor updates
♻ ☆ Align to Structure: Aligning Large Language Models with Structural Information AAAI 2026
Generating long, coherent text remains a challenge for large language models (LLMs), as they lack hierarchical planning and structured organization in discourse generation. We introduce Structural Alignment, a novel method that aligns LLMs with human-like discourse structures to enhance long-form text generation. By integrating linguistically grounded discourse frameworks into reinforcement learning, our approach guides models to produce coherent and well-organized outputs. We employ a dense reward scheme within a Proximal Policy Optimization framework, assigning fine-grained, token-level rewards based on the discourse distinctiveness relative to human writing. Two complementary reward models are evaluated: the first improves readability by scoring surface-level textual features to provide explicit structuring, while the second reinforces deeper coherence and rhetorical sophistication by analyzing global discourse patterns through hierarchical discourse motifs, outperforming both standard and RLHF-enhanced models in tasks such as essay generation and long-document summarization. All training data and code will be publicly shared at https://github.com/minnesotanlp/struct_align.
comment: Accepted to AAAI 2026 AIA
♻ ☆ Agentic Search in the Wild: Intents and Trajectory Dynamics from 14M+ Real Search Requests
LLM-powered search agents are increasingly being used for multi-step information seeking tasks, yet the IR community lacks empirical understanding of how agentic search sessions unfold and how retrieved evidence is used. This paper presents a large-scale log analysis of agentic search based on 14.44M search requests (3.97M sessions) collected from DeepResearchGym, i.e. an open-source search API accessed by external agentic clients. We sessionize the logs, assign session-level intents and step-wise query-reformulation labels using LLM-based annotation, and propose Context-driven Term Adoption Rate (CTAR) to quantify whether newly introduced query terms are traceable to previously retrieved evidence. Our analyses reveal distinctive behavioral patterns. First, over 90% of multi-turn sessions contain at most ten steps, and 89% of inter-step intervals fall under one minute. Second, behavior varies by intent. Fact-seeking sessions exhibit high repetition that increases over time, while sessions requiring reasoning sustain broader exploration. Third, agents reuse evidence across steps. On average, 54% of newly introduced query terms appear in the accumulated evidence context, with contributions from earlier steps beyond the most recent retrieval. The findings suggest that agentic search may benefit from repetition-aware early stopping, intent-adaptive retrieval budgets, and explicit cross-step context tracking. We plan to release the anonymized logs to support future research.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Rank-and-Reason: Multi-Agent Collaboration Accelerates Zero-Shot Protein Mutation Prediction
Zero-shot mutation prediction is vital for low-resource protein engineering, yet existing protein language models (PLMs) often yield statistically confident results that ignore fundamental biophysical constraints. Currently, selecting candidates for wet-lab validation relies on manual expert auditing of PLM outputs, a process that is inefficient, subjective, and highly dependent on domain expertise. To address this, we propose Rank-and-Reason (VenusRAR), a two-stage agentic framework to automate this workflow and maximize expected wet-lab fitness. In the Rank-Stage, a Computational Expert and Virtual Biologist aggregate a context-aware multi-modal ensemble, establishing a new Spearman correlation record of 0.551 (vs. 0.518) on ProteinGym. In the Reason-Stage, an agentic Expert Panel employs chain-of-thought reasoning to audit candidates against geometric and structural constraints, improving the Top-5 Hit Rate by up to 367% on ProteinGym-DMS99. The wet-lab validation on Cas12i3 nuclease further confirms the framework's efficacy, achieving a 46.7% positive rate and identifying two novel mutants with 4.23-fold and 5.05-fold activity improvements. Code and datasets are released on GitHub (https://github.com/ai4protein/VenusRAR/).
comment: 22 pages, 5 figures, 15 tables
♻ ☆ Reusing Overtrained Language Models Saturates Scaling
Reusing pretrained base models for further pretraining, such as continual pretraining or model growth, is promising at reducing the cost of training language models from scratch. However, the effectiveness remains unclear, especially when applied to overtrained base models. In this work, we empirically study the scaling properties of model reuse and find that the scaling efficiency diminishes in a predictable manner: The scaling exponent with respect to second-stage training tokens decreases logarithmically with the number of tokens used to pretrain the base model. The joint dependence on first- and second-stage tokens is accurately modeled by a simple scaling law. Such saturation effect reveals a fundamental trade-off in multi-stage pretraining strategies: the more extensively a base model is pretrained, the less benefit additional pretraining provides. Our findings provide practical insights for efficient language model training and raise important considerations for the reuse of overtrained models.
♻ ☆ Zero2Text: Zero-Training Cross-Domain Inversion Attacks on Textual Embeddings
The proliferation of retrieval-augmented generation (RAG) has established vector databases as critical infrastructure, yet they introduce severe privacy risks via embedding inversion attacks. Existing paradigms face a fundamental trade-off: optimization-based methods require computationally prohibitive queries, while alignment-based approaches hinge on the unrealistic assumption of accessible in-domain training data. These constraints render them ineffective in strict black-box and cross-domain settings. To dismantle these barriers, we introduce Zero2Text, a novel training-free framework based on recursive online alignment. Unlike methods relying on static datasets, Zero2Text synergizes LLM priors with a dynamic ridge regression mechanism to iteratively align generation to the target embedding on-the-fly. We further demonstrate that standard defenses, such as differential privacy, fail to effectively mitigate this adaptive threat. Extensive experiments across diverse benchmarks validate Zero2Text; notably, on MS MARCO against the OpenAI victim model, it achieves 1.8x higher ROUGE-L and 6.4x higher BLEU-2 scores compared to baselines, recovering sentences from unknown domains without a single leaked data pair.
comment: 10 pages
♻ ☆ From Pragmas to Partners: A Symbiotic Evolution of Agentic High-Level Synthesis
The rise of large language models has sparked interest in AI-driven hardware design, raising the question: does high-level synthesis (HLS) still matter in the agentic era? We argue that HLS remains essential. While we expect mature agentic hardware systems to leverage both HLS and RTL, this paper focuses on HLS and its role in enabling agentic optimization. HLS offers faster iteration cycles, portability, and design permutability that make it a natural layer for agentic optimization. This position paper makes three contributions. First, we explain why HLS serves as a practical abstraction layer and a golden reference for agentic hardware design. Second, we identify key limitations of current HLS tools, namely inadequate performance feedback, rigid interfaces, and limited debuggability that agents are uniquely positioned to address. Third, we propose a taxonomy for the symbiotic evolution of agentic HLS, clarifying how responsibility shifts from human designers to AI agents as systems advance from copilots to autonomous design partners.
♻ ☆ Sentence Curve Language Models
Language models (LMs) are a central component of modern AI systems, and diffusion-based language models (DLMs) have recently emerged as a competitive alternative. Both paradigms rely on word embeddings not only to represent the input sentence, but also to represent the target sentence that backbone models are trained to predict. We argue that such static embedding of the target word is insensitive to neighboring words, encouraging locally accurate word prediction while neglecting global structure across the target sentence. To address this limitation, we propose a continuous sentence representation, termed sentence curve, defined as a spline curve whose control points affect multiple words in the sentence. Based on this representation, we introduce sentence curve language model (SCLM), which extends DLMs to predict sentence curves instead of the static word embeddings. We theoretically show that sentence curve prediction induces a regularization effect that promotes global structure modeling, and characterize how different sentence curve types affect this behavior. Empirically, SCLM achieves SOTA performance among DLMs on IWSLT14 and WMT14, shows stable training without burdensome knowledge distillation, and demonstrates promising potential compared to discrete DLMs on LM1B.
♻ ☆ AR-MAP: Are Autoregressive Large Language Models Implicit Teachers for Diffusion Large Language Models?
Diffusion Large Language Models (DLLMs) have emerged as a powerful alternative to autoregressive models, enabling parallel token generation across multiple positions. However, preference alignment of DLLMs remains challenging due to high variance introduced by Evidence Lower Bound (ELBO)-based likelihood estimation. In this work, we propose AR-MAP, a novel transfer learning framework that leverages preference-aligned autoregressive LLMs (AR-LLMs) as implicit teachers for DLLM alignment. We reveal that DLLMs can effectively absorb alignment knowledge from AR-LLMs through simple weight scaling, exploiting the shared architectural structure between these divergent generation paradigms. Crucially, our approach circumvents the high variance and computational overhead of direct DLLM alignment and comprehensive experiments across diverse preference alignment tasks demonstrate that AR-MAP achieves competitive or superior performance compared to existing DLLM-specific alignment methods, achieving 69.08\% average score across all tasks and models. Our Code is available at https://github.com/AMAP-ML/AR-MAP.
♻ ☆ ARTIS: Agentic Risk-Aware Test-Time Scaling via Iterative Simulation
Current test-time scaling (TTS) techniques enhance large language model (LLM) performance by allocating additional computation at inference time, yet they remain insufficient for agentic settings, where actions directly interact with external environments and their effects can be irreversible and costly. We propose ARTIS, Agentic Risk-Aware Test-Time Scaling via Iterative Simulation, a framework that decouples exploration from commitment by enabling test-time exploration through simulated interactions prior to real-world execution. This design allows extending inference-time computation to improve action-level reliability and robustness without incurring environmental risk. We further show that naive LLM-based simulators struggle to capture rare but high-impact failure modes, substantially limiting their effectiveness for agentic decision making. To address this limitation, we introduce a risk-aware tool simulator that emphasizes fidelity on failure-inducing actions via targeted data generation and rebalanced training. Experiments on multi-turn and multi-step agentic benchmarks demonstrate that iterative simulation substantially improves agent reliability, and that risk-aware simulation is essential for consistently realizing these gains across models and tasks.
♻ ☆ On the Interplay between Human Label Variation and Model Fairness EACL
The impact of human label variation (HLV) on model fairness is an unexplored topic. This paper examines the interplay by comparing training on majority-vote labels with a range of HLV methods. Our experiments show that without explicit debiasing, HLV training methods have a positive impact on fairness under certain configurations.
comment: 10 pages, 7 figures. Accepted to EACL Findings 2026
♻ ☆ EverMemBench: Benchmarking Long-Term Interactive Memory in Large Language Models
Long-term conversational memory is essential for LLM-based assistants, yet existing benchmarks focus on dyadic, single-topic dialogues that fail to capture real-world complexity. We introduce EverMemBench, a benchmark featuring multi-party, multi-group conversations spanning over 1 million tokens with temporally evolving information, cross-topic interleaving, and role-specific personas. EverMemBench evaluates memory systems across three dimensions through 1,000+ QA pairs: fine-grained recall, memory awareness, and user profile understanding. Our evaluation reveals critical limitations: (1) multi-hop reasoning collapses in multi-party settings, with even oracle models achieving only 26%; (2) temporal reasoning remains unsolved, requiring version semantics beyond timestamp matching; (3) memory awareness is bottlenecked by retrieval, where current similarity-based methods fail to bridge the semantic gap between queries and implicitly relevant memories. EverMemBench provides a challenging testbed for developing next-generation memory architectures.
comment: 10 pages, 2 figures, 4 tables
♻ ☆ When Domain Pretraining Interferes with Instruction Alignment: An Empirical Study of Adapter Merging in Medical LLMs
Large language models can exhibit surprising adapter interference when combining domain adaptation and instruction alignment in safety-critical settings. We study a two-stage LoRA pipeline for medical LLMs, where domain-oriented pre-training (PT) and supervised fine-tuning (SFT) are trained separately and later merged through weighted adapter merging. We observe that introducing PT signal can systematically alter model behavior and produce reasoning-style outputs, even when evaluation templates explicitly attempt to suppress such behavior. This interference leads to a divergence between surface metrics and reasoning or alignment behavior: BLEU/ROUGE scores drop significantly, while multiple-choice accuracy improves. We further show that small pipeline mistakes can easily misattribute SFT-only behavior to merged models, and provide a lightweight merge-verification routine to ensure correctness and reproducibility. Our findings highlight an interaction between knowledge injection and instruction alignment in adapter-based fine-tuning, with important implications for safety-critical model deployment.
♻ ☆ SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning
We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.
♻ ☆ Surprisal from Larger Transformer-based Language Models Predicts fMRI Data More Poorly EACL 2026
There has been considerable interest in using surprisal from Transformer-based language models (LMs) as predictors of human sentence processing difficulty. Recent work has observed an inverse scaling relationship between Transformers' per-word estimated probability and the predictive power of their surprisal estimates on reading times, showing that LMs with more parameters and trained on more data are less predictive of human reading times. However, these studies focused on predicting latency-based measures. Tests on brain imaging data have not shown a trend in any direction when using a relatively small set of LMs, leaving open the possibility that the inverse scaling phenomenon is constrained to latency data. This study therefore conducted a more comprehensive evaluation using surprisal estimates from 17 pre-trained LMs across three different LM families on two functional magnetic resonance imaging (fMRI) datasets. Results show that the inverse scaling relationship between models' per-word estimated probability and model fit on both datasets still obtains, resolving the inconclusive results of previous work and indicating that this trend is not specific to latency-based measures.
comment: EACL 2026
♻ ☆ NRR-Phi: Text-to-State Mapping for Ambiguity Preservation in LLM Inference
Large language models exhibit a systematic tendency toward early semantic commitment: given ambiguous input, they collapse multiple valid interpretations into a single response before sufficient context is available. We present a formal framework for text-to-state mapping ($φ: \mathcal{T} \to \mathcal{S}$) that transforms natural language into a non-collapsing state space where multiple interpretations coexist. The mapping decomposes into three stages: conflict detection, interpretation extraction, and state construction. We instantiate $φ$ with a hybrid extraction pipeline combining rule-based segmentation for explicit conflict markers (adversative conjunctions, hedging expressions) with LLM-based enumeration of implicit ambiguity (epistemic, lexical, structural). On a test set of 68 ambiguous sentences, the resulting states preserve interpretive multiplicity: mean state entropy $H = 1.087$ bits across ambiguity categories, compared to $H = 0$ for collapse-based baselines. We additionally instantiate the rule-based conflict detector for Japanese markers to illustrate cross-lingual portability. This framework extends Non-Resolution Reasoning (NRR) by providing the missing algorithmic bridge between text and the NRR state space, enabling architectural collapse deferment in LLM inference.
comment: 17 pages, 3 figures, 5 tables. Part of the NRR research program. v2: Added title prefix NRR-Phi for series identification; standardized reference formatting
♻ ☆ POPI: Personalizing LLMs via Optimized Preference Inference
Large language models (LLMs) are typically aligned with population-level preferences, despite substantial variation across individual users. While many LLM personalization methods exist, the underlying structure of user-level personalization is often left implicit. We formalize user-level, prompt-independent personalization as a decomposition into two components: preference inference and conditioned generation. We advocate for a modular design that decouples these components; identify natural language as a generator-agnostic interface between them; and characterize generator-transferability as a key implication of modular personalization. Guided by this abstraction, we introduce POPI, a novel instantiation of modular personalization that parameterizes both preference inference and conditioned generation as shared LLMs. POPI jointly optimizes the two components under a unified preference optimization objective, using reinforcement learning as an optimization tool. Across multiple benchmarks, POPI consistently improves personalization performance while reducing context overhead. We further demonstrate that the learned natural-language preference summaries transfer effectively to frozen, off-the-shelf LLMs, including black-box APIs, providing empirical evidence of modularity and generator-transferability.
♻ ☆ NRR-Core: Non-Resolution Reasoning as a Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse--collapsing multiple valid interpretations into single outputs--stems from classical identity assumptions in neural architectures. We propose Non-Resolution Reasoning (NRR), a framework treating ambiguity retention as a valid reasoning mode. NRR introduces three principles: (1) Non-Identity ($A \neq A$)--the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$)--entities share partial structural overlap without being identical; (3) Non-Resolution--conflicting interpretations coexist without forced convergence. We formalize these through Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We illustrate NRR through case studies in paradox handling, creative generation, and context-dependent reasoning. Functional verification in a synthetic two-turn disambiguation task shows NRR-lite maintains high entropy ($H = 0.91$ bits, near-maximum $1.0$) at ambiguous turns while standard architectures collapse early ($H = 0.15$ bits), preserving interpretive flexibility until context arrives. NRR challenges the assumption that meaning must collapse to be useful. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 10 pages, 1 figure, 2 tables. Part of the NRR research program. v7: Updated entropy measurement to log base 2 (bits); added title prefix NRR-Core for series identification
♻ ☆ The Generalization Ridge: Information Flow in Natural Language Generation
Transformer-based language models have achieved state-of-the-art performance in natural language generation (NLG), yet their internal mechanisms for synthesizing task-relevant information remain insufficiently understood. While prior studies suggest that intermediate layers often yield more generalizable representations than final layers, how this generalization ability emerges and propagates across layers during training remains unclear. To address this gap, we propose InfoRidge, an information-theoretic framework, to characterize how predictive information-the mutual information between hidden representations and target outputs-varies across depth during training. Our experiments across various models and datasets reveal a consistent non-monotonic trend: predictive information peaks in intermediate layers-forming a generalization ridge-before declining in final layers, reflecting a transition between generalization and memorization. To further investigate this phenomenon, we conduct a set of complementary analyses that leverage residual scaling, attention pattern, and controlled model capacity to characterize layer-wise functional specialization. We further validate our findings with multiple-token generation experiments, verifying that the observed ridge phenomenon persists across decoding steps. Together, these findings offer new insights into the internal mechanisms of transformers and underscore the critical role of intermediate layers in supporting generalization.
♻ ☆ When to Trust: A Causality-Aware Calibration Framework for Accurate Knowledge Graph Retrieval-Augmented Generation
Knowledge Graph Retrieval-Augmented Generation (KG-RAG) extends the RAG paradigm by incorporating structured knowledge from knowledge graphs, enabling Large Language Models (LLMs) to perform more precise and explainable reasoning. While KG-RAG improves factual accuracy in complex tasks, existing KG-RAG models are often severely overconfident, producing high-confidence predictions even when retrieved sub-graphs are incomplete or unreliable, which raises concerns for deployment in high-stakes domains. To address this issue, we propose Ca2KG, a Causality-aware Calibration framework for KG-RAG. Ca2KG integrates counterfactual prompting, which exposes retrieval-dependent uncertainties in knowledge quality and reasoning reliability, with a panel-based re-scoring mechanism that stabilises predictions across interventions. Extensive experiments on two complex QA datasets demonstrate that Ca2KG consistently improves calibration while maintaining or even enhancing predictive accuracy.
comment: Accepted by WWW 2026
♻ ☆ What's Missing in Vision-Language Models? Probing Their Struggles with Causal Order Reasoning
Despite the impressive performance of vision-language models (VLMs) on downstream tasks, their ability to understand and reason about causal relationships in visual inputs remains unclear. Robust causal reasoning is fundamental to solving complex high-level reasoning tasks, yet existing benchmarks often include a mixture of reasoning questions, and VLMs can frequently exploit object recognition and activity identification as shortcuts to arrive at the correct answers, making it challenging to truly assess their causal reasoning abilities. To bridge this gap, we introduce VQA-Causal and VCR-Causal, two new benchmarks specifically designed to isolate and rigorously evaluate VLMs' causal reasoning abilities. Our findings reveal that while VLMs excel in object and activity recognition, they perform poorly on causal reasoning tasks, often only marginally surpassing random guessing. Further analysis suggests that this limitation stems from a severe lack of causal expressions in widely used training datasets, where causal relationships are rarely explicitly conveyed. We additionally explore fine-tuning strategies with hard negative cases, showing that targeted fine-tuning can improve model's causal reasoning while maintaining generalization and downstream performance. Our study highlights a key gap in current VLMs and lays the groundwork for future work on causal understanding.
comment: 13 pages
♻ ☆ Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their performance on long-horizon, complex problems remains unreliable. Single-rollout execution is brittle, with small errors compounding over time and leading to high variance in outcomes. While prior work has attempted to scale within a single rollout, such approaches have yielded limited gains. Scaling over multiple rollouts offers a more promising alternative but doing so effectively is challenging due to the difficulty of evaluating and selecting among long-horizon agent behaviors. We introduce Behavior Judge (BJudge), which addresses this challenge by representing agent executions as behavior narratives and comparing candidate behaviors at this level, substantially improving robustness and success rates. Using multiple rollouts, BJudge establishes a new state of the art (SoTA) in OSWorld at 72.6%, significantly outperforming prior methods and surpassing human-level performance at 72.36%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the strong effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and BJudge provides a practical framework to achieve this.
comment: 21 pages, 7 figures, 13 tables
♻ ☆ When Avatars Have Personality: Effects on Engagement and Communication in Immersive Medical Training
While virtual reality (VR) excels at simulating physical environments, its effectiveness for training complex interpersonal skills is limited by a lack of psychologically plausible virtual humans. This gap is particularly critical in medical education, where communication is a core clinical competency. This paper introduces a framework that integrates large language models (LLMs) into immersive VR to create medically coherent virtual patients with distinct, consistent personalities, based on a modular architecture that decouples personality from clinical data. We evaluated the system in a mixed-methods, within-subjects study with licensed physicians conducting simulated consultations. Results suggest that the approach is feasible and perceived as a rewarding and effective training enhancement. Our analysis highlights key design principles, including a "realism-verbosity paradox" and the importance of challenges being perceived as clinically authentic to support learning.
comment: 10 pages, 2 figures
♻ ☆ Reading Between the Lines: Combining Pause Dynamics and Semantic Coherence for Automated Assessment of Thought Disorder
Formal thought disorder (FTD), a hallmark of schizophrenia spectrum disorders, manifests as incoherent speech and poses challenges for clinical assessment. Traditional clinical rating scales, though validated, are resource-intensive and lack scalability. Automated speech recognition (ASR) allows for objective quantification of linguistic and temporal features of speech, offering scalable alternatives. Furthermore, ASR-derived utterance timestamps provide access to pause dynamics, which are thought to reflect the cognitive processes underlying speech production. Yet, their added value beyond semantic measures remains insufficiently explored. In this study, we evaluated a scalable multimodal framework that integrates pause features with semantic coherence metrics across three datasets: naturalistic self-recorded diaries (AVH), structured picture descriptions (TOPSY), and dream narratives (PsyCL). Pause-related features were evaluated alongside established coherence measures using support vector regression to predict clinical FTD scores. Models using pause features alone robustly predict manually rated FTD severity consistently across datasets. Integrating pause features with semantic coherence metrics enhanced predictive performance compared to coherence-only models, with late fusion yielding the most robust and consistent gains in all three datasets. On average across datasets, Spearman correlation increased from \r{ho} = 0.413 for semantic-only models to \r{ho} = 0.455 with late fusion. The performance gains from semantic and pause features integration held consistently across all contexts, though the nature of the most informative pause patterns was dataset-dependent. These findings suggest that both pause dynamics and semantic coherence reflect complementary aspects of thought disorganization.
♻ ☆ Content Anonymization for Privacy in Long-form Audio ICASSP 2026
Voice anonymization techniques have been found to successfully obscure a speaker's acoustic identity in short, isolated utterances in benchmarks such as the VoicePrivacy Challenge. In practice, however, utterances seldom occur in isolation: long-form audio is commonplace in domains such as interviews, phone calls, and meetings. In these cases, many utterances from the same speaker are available, which pose a significantly greater privacy risk: given multiple utterances from the same speaker, an attacker could exploit an individual's vocabulary, syntax, and turns of phrase to re-identify them, even when their voice is completely disguised. To address this risk, we propose a new approach that performs a contextual rewriting of the transcripts in an ASR-TTS pipeline to eliminate speaker-specific style while preserving meaning. We present results in a long-form telephone conversation setting demonstrating the effectiveness of a content-based attack on voice-anonymized speech. Then we show how the proposed content-based anonymization methods can mitigate this risk while preserving speech utility. Overall, we find that paraphrasing is an effective defense against content-based attacks and recommend that stakeholders adopt this step to ensure anonymity in long-form audio.
comment: Accepted to ICASSP 2026; v2: added more related work, used a more speech-adapted content-attack model, added a github link to code/prompts
♻ ☆ Semantics as a Shield: Label Disguise Defense (LDD) against Prompt Injection in LLM Sentiment Classification
Large language models are increasingly used for text classification tasks such as sentiment analysis, yet their reliance on natural language prompts exposes them to prompt injection attacks. In particular, class-directive injections exploit knowledge of the model's label set (e.g., positive vs. negative) to override its intended behavior through adversarial instructions. Existing defenses, such as detection-based filters, instruction hierarchies, and signed prompts, either require model retraining or remain vulnerable to obfuscation. This paper introduces Label Disguise Defense (LDD), a lightweight and model-agnostic strategy that conceals true labels by replacing them with semantically transformed or unrelated alias labels(e.g., blue vs. yellow). The model learns these new label mappings implicitly through few-shot demonstrations, preventing direct correspondence between injected directives and decision outputs. We evaluate LDD across nine state-of-the-art models, including GPT-5, GPT-4o, LLaMA3.2, Gemma3, and Mistral variants, under varying few-shot and an adversarial setting. Our results show that the ability of LDD to recover performance lost to the adversarial attack varies across models and alias choices. For every model evaluated, LDD is able to restore a portion of the accuracy degradation caused by the attack. Moreover, for the vast majority of models, we can identify more than one alias pair that achieves higher accuracy than the under-attack baseline, in which the model relies solely on few-shot learning without any defensive mechanism. A linguistic analysis further reveals that semantically aligned alias labels(e.g., good vs. bad) yield stronger robustness than unaligned symbols(e.g., blue vs. yellow). Overall, this study demonstrates that label semantics can serve as an effective defense layer, transforming meaning itself into a shield against prompt injection.
♻ ☆ LoRA Provides Differential Privacy by Design via Random Sketching
Low-rank adaptation of language models has been proposed to reduce the computational and memory overhead of fine-tuning pre-trained language models. LoRA incorporates trainable low-rank matrices into some parameters of the pre-trained model, called adapters. In this work, we show theoretically that the low-rank adaptation mechanism of LoRA is equivalent to fine-tuning adapters with noisy batch gradients, with the noise variance being a decreasing function of adaptation rank (r). Motivated by this understanding, we prove inherent differential privacy for LoRA when adaptation matrices $A_\ell$ are frozen. We show that various factors, e.g., the adaptation rank and batch size, affect the guaranteed privacy level. Our findings provide useful insights into LoRA and uncovers the reason behind the robustness of models fine-tuned with LoRA to privacy attacks.
♻ ☆ Are LLM Evaluators Really Narcissists? Sanity Checking Self-Preference Evaluations
Recent research has shown that large language models (LLMs) favor their own outputs when acting as judges, undermining the integrity of automated post-training and evaluation workflows. However, it is difficult to disentangle which evaluation biases are explained by narcissism versus general experimental confounds, distorting measurements of self-preference bias. We discover a core methodological confound which could reduce measurement error by 89.6%. Specifically, LLM evaluators may deliver self-preferring verdicts when the judge responds to queries which they completed incorrectly themselves; this would be true regardless of whether one of their responses is their own. To decouple self-preference signals from noisy outputs on hard problems, we introduce an Evaluator Quality Baseline, which compares the probability that a judge incorrectly votes for itself against the probability that it votes for an incorrect response from another model. Evaluating this simple baseline on 37,448 queries, only 51% of initial findings retain statistical significance. Finally, we turn towards characterizing the entropy of "easy" versus "hard" evaluation votes from LLM judges. Our corrective baseline enables future research on self-preference by eliminating noisy data from potential solutions. More widely, this work contributes to the growing body of work on cataloging and isolating judge-bias effects.
♻ ☆ Multiple Choice Learning of Low-Rank Adapters for Language Modeling
We propose LoRA-MCL, a training scheme that extends next-token prediction in language models with a method designed to decode diverse, plausible sentence continuations at inference time. Traditional language modeling is an intrinsically ill-posed problem: given a context, multiple ``futures'' may be equally plausible. Our approach leverages Multiple Choice Learning (MCL) and the Winner-Takes-All loss to efficiently handle ambiguity through Low-Rank Adaptation. We provide a theoretical interpretation of applying MCL to language modeling, assuming the data is generated from a mixture of distributions. We illustrate the proposed approach using mixtures of Markov chains. We then demonstrate with experiments on visual and audio captioning, as well as machine translation, that our method achieves high diversity and relevance in generated outputs. The accompanying code and a general-purpose package for applying LoRA-MCL to a wide range of language models are made available.
♻ ☆ Explainable Sentiment Analysis with DeepSeek-R1: Performance, Efficiency, and Few-Shot Learning
Large language models (LLMs) have transformed sentiment analysis, yet balancing accuracy, efficiency, and explainability remains a critical challenge. This study presents the first comprehensive evaluation of DeepSeek-R1--an open-source reasoning model--against OpenAI's GPT-4o and GPT-4o-mini. We test the full 671B model and its distilled variants, systematically documenting few-shot learning curves. Our experiments show DeepSeek-R1 achieves a 91.39\% F1 score on 5-class sentiment and 99.31\% accuracy on binary tasks with just 5 shots, an eightfold improvement in few-shot efficiency over GPT-4o. Architecture-specific distillation effects emerge, where a 32B Qwen2.5-based model outperforms the 70B Llama-based variant by 6.69 percentage points. While its reasoning process reduces throughput, DeepSeek-R1 offers superior explainability via transparent, step-by-step traces, establishing it as a powerful, interpretable open-source alternative.
comment: 10 pages, with 2 figures and 6 tables, accepted for publication in an IEEE Intelligent Systems journal
♻ ☆ Improving Detection of Watermarked Language Models
Watermarking has recently emerged as an effective strategy for detecting the generations of large language models (LLMs). The strength of a watermark typically depends strongly on the entropy afforded by the language model and the set of input prompts. However, entropy can be quite limited in practice, especially for models that are post-trained, for example via instruction tuning or reinforcement learning from human feedback (RLHF), which makes detection based on watermarking alone challenging. In this work, we investigate whether detection can be improved by combining watermark detectors with non-watermark ones. We explore a number of hybrid schemes that combine the two, observing performance gains over either class of detector under a wide range of experimental conditions.
comment: Published at TMLR 2026
♻ ☆ Persuade Me if You Can: A Framework for Evaluating Persuasion Effectiveness and Susceptibility Among Large Language Models NeurIPS
Large Language Models (LLMs) demonstrate persuasive capabilities that rival human-level persuasion. While these capabilities can be used for social good, they also present risks of potential misuse. Beyond the concern of how LLMs persuade others, their own susceptibility to persuasion poses a critical alignment challenge, raising questions about robustness, safety, and adherence to ethical principles. To study these dynamics, we introduce Persuade Me If You Can (PMIYC), an automated framework for evaluating persuasiveness and susceptibility to persuasion in multi-agent interactions. Our framework offers a scalable alternative to the costly and time-intensive human annotation process typically used to study persuasion in LLMs. PMIYC automatically conducts multi-turn conversations between Persuader and Persuadee agents, measuring both the effectiveness of and susceptibility to persuasion. Our comprehensive evaluation spans a diverse set of LLMs and persuasion settings (e.g., subjective and misinformation scenarios). We validate the efficacy of our framework through human evaluations and demonstrate alignment with human assessments from prior studies. Through PMIYC, we find that Llama-3.3-70B and GPT-4o exhibit similar persuasive effectiveness, outperforming Claude 3 Haiku by 30%. However, GPT-4o demonstrates over 50% greater resistance to persuasion for misinformation compared to Llama-3.3-70B. These findings provide empirical insights into the persuasive dynamics of LLMs and contribute to the development of safer AI systems.
comment: Updated to match the NeurIPS MTI-LLM Workshop format. Content remains consistent with the original version, with structural refinements, expanded explanations, and an extended appendix including additional results
♻ ☆ ToxiTwitch: Toward Emote-Aware Hybrid Moderation for Live Streaming Platforms
The rapid growth of live-streaming platforms such as Twitch has introduced complex challenges in moderating toxic behavior. Traditional moderation approaches, such as human annotation and keyword-based filtering, have demonstrated utility, but human moderators on Twitch constantly struggle to scale effectively in the fast-paced, high-volume, and context-rich chat environment of the platform while also facing harassment themselves. Recent advances in large language models (LLMs), such as DeepSeek-R1-Distill and Llama-3-8B-Instruct, offer new opportunities for toxicity detection, especially in understanding nuanced, multimodal communication involving emotes. In this work, we present an exploratory comparison of toxicity detection approaches tailored to Twitch. Our analysis reveals that incorporating emotes improves the detection of toxic behavior. To this end, we introduce ToxiTwitch, a hybrid model that combines LLM-generated embeddings of text and emotes with traditional machine learning classifiers, including Random Forest and SVM. In our case study, the proposed hybrid approach reaches up to 80 percent accuracy under channel-specific training (with 13 percent improvement over BERT and F1-score of 76 percent). This work is an exploratory study intended to surface challenges and limits of emote-aware toxicity detection on Twitch.
comment: Exploratory study; prior versions submitted to peer review
♻ ☆ Vicarious Offense and Noise Audit of Offensive Speech Classifiers: Unifying Human and Machine Disagreement on What is Offensive EMNLP 2023
Offensive speech detection is a key component of content moderation. However, what is offensive can be highly subjective. This paper investigates how machine and human moderators disagree on what is offensive when it comes to real-world social web political discourse. We show that (1) there is extensive disagreement among the moderators (humans and machines); and (2) human and large-language-model classifiers are unable to predict how other human raters will respond, based on their political leanings. For (1), we conduct a noise audit at an unprecedented scale that combines both machine and human responses. For (2), we introduce a first-of-its-kind dataset of vicarious offense. Our noise audit reveals that moderation outcomes vary wildly across different machine moderators. Our experiments with human moderators suggest that political leanings combined with sensitive issues affect both first-person and vicarious offense. The dataset is available through https://github.com/Homan-Lab/voiced.
comment: Accepted at EMNLP 2023
♻ ☆ Almost Clinical: Linguistic properties of synthetic electronic health records
This study evaluates the linguistic and clinical suitability of synthetic electronic health records in mental health. First, we describe the rationale and the methodology for creating the synthetic corpus. Second, we examine expressions of agency, modality, and information flow across four clinical genres (Assessments, Correspondence, Referrals and Care plans) with the aim to understand how LLMs grammatically construct medical authority and patient agency through linguistic choices. While LLMs produce coherent, terminology-appropriate texts that approximate clinical practice, systematic divergences remain, including registerial shifts, insufficient clinical specificity, and inaccuracies in medication use and diagnostic procedures. The results show both the potential and limitations of synthetic corpora for enabling large-scale linguistic research otherwise impossible with genuine patient records.
♻ ☆ PaTH Attention: Position Encoding via Accumulating Householder Transformations NeurIPS 2025
The attention mechanism is a core primitive in modern large language models (LLMs) and AI more broadly. Since attention by itself is permutation-invariant, position encoding is essential for modeling structured domains such as language. Rotary position encoding (RoPE) has emerged as the de facto standard approach for position encoding and is part of many modern LLMs. However, in RoPE the key/query transformation between two elements in a sequence is only a function of their relative position and otherwise independent of the actual input. This limits the expressivity of RoPE-based transformers. This paper describes PaTH, a flexible data-dependent position encoding scheme based on accumulated products of Householder(like) transformations, where each transformation is data-dependent, i.e., a function of the input. We derive an efficient parallel algorithm for training through exploiting a compact representation of products of Householder matrices, and implement a FlashAttention-style blockwise algorithm. Across both targeted synthetic benchmarks and moderate-scale real-world language modeling experiments, we find that PaTH improves upon RoPE and other recent baselines. Finally, we show that we can convert pretrained RoPE transformers into PaTH with continued pretraining.
comment: NeurIPS 2025 camera ready
♻ ☆ Adapting Diarization-Conditioned Whisper for End-to-End Multi-Talker Speech Recognition
We propose a speaker-attributed (SA) Whisper-based model for multi-talker speech recognition that combines target-speaker modeling with serialized output training (SOT). Our approach leverages a Diarization-Conditioned Whisper (DiCoW) encoder to extract target-speaker embeddings, which are concatenated into a single representation and passed to a shared decoder. This enables the model to transcribe overlapping speech as a serialized output stream with speaker tags and timestamps. In contrast to target-speaker ASR systems such as DiCoW, which decode each speaker separately, our approach performs joint decoding, allowing the decoder to condition on the context of all speakers simultaneously. Experiments show that the model outperforms existing SOT-based approaches and surpasses DiCoW on multi-talker mixtures (e.g., LibriMix).
Computer Vision and Pattern Recognition 230
☆ EventNeuS: 3D Mesh Reconstruction from a Single Event Camera
Event cameras offer a considerable alternative to RGB cameras in many scenarios. While there are recent works on event-based novel-view synthesis, dense 3D mesh reconstruction remains scarcely explored and existing event-based techniques are severely limited in their 3D reconstruction accuracy. To address this limitation, we present EventNeuS, a self-supervised neural model for learning 3D representations from monocular colour event streams. Our approach, for the first time, combines 3D signed distance function and density field learning with event-based supervision. Furthermore, we introduce spherical harmonics encodings into our model for enhanced handling of view-dependent effects. EventNeuS outperforms existing approaches by a significant margin, achieving 34% lower Chamfer distance and 31% lower mean absolute error on average compared to the best previous method.
comment: 13 pages, 10 figures, 3 tables; project page: https://4dqv.mpi-inf.mpg.de/EventNeuS/
☆ PrevizWhiz: Combining Rough 3D Scenes and 2D Video to Guide Generative Video Previsualization
In pre-production, filmmakers and 3D animation experts must rapidly prototype ideas to explore a film's possibilities before fullscale production, yet conventional approaches involve trade-offs in efficiency and expressiveness. Hand-drawn storyboards often lack spatial precision needed for complex cinematography, while 3D previsualization demands expertise and high-quality rigged assets. To address this gap, we present PrevizWhiz, a system that leverages rough 3D scenes in combination with generative image and video models to create stylized video previews. The workflow integrates frame-level image restyling with adjustable resemblance, time-based editing through motion paths or external video inputs, and refinement into high-fidelity video clips. A study with filmmakers demonstrates that our system lowers technical barriers for film-makers, accelerates creative iteration, and effectively bridges the communication gap, while also surfacing challenges of continuity, authorship, and ethical consideration in AI-assisted filmmaking.
comment: 21 pages, 13 figures; accepted and to appear at CHI 2026
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ Continuous Control of Editing Models via Adaptive-Origin Guidance
Diffusion-based editing models have emerged as a powerful tool for semantic image and video manipulation. However, existing models lack a mechanism for smoothly controlling the intensity of text-guided edits. In standard text-conditioned generation, Classifier-Free Guidance (CFG) impacts prompt adherence, suggesting it as a potential control for edit intensity in editing models. However, we show that scaling CFG in these models does not produce a smooth transition between the input and the edited result. We attribute this behavior to the unconditional prediction, which serves as the guidance origin and dominates the generation at low guidance scales, while representing an arbitrary manipulation of the input content. To enable continuous control, we introduce Adaptive-Origin Guidance (AdaOr), a method that adjusts this standard guidance origin with an identity-conditioned adaptive origin, using an identity instruction corresponding to the identity manipulation. By interpolating this identity prediction with the standard unconditional prediction according to the edit strength, we ensure a continuous transition from the input to the edited result. We evaluate our method on image and video editing tasks, demonstrating that it provides smoother and more consistent control compared to current slider-based editing approaches. Our method incorporates an identity instruction into the standard training framework, enabling fine-grained control at inference time without per-edit procedure or reliance on specialized datasets.
comment: Project page at https://adaor-paper.github.io/
☆ Deep-learning-based pan-phenomic data reveals the explosive evolution of avian visual disparity
The evolution of biological morphology is critical for understanding the diversity of the natural world, yet traditional analyses often involve subjective biases in the selection and coding of morphological traits. This study employs deep learning techniques, utilising a ResNet34 model capable of recognising over 10,000 bird species, to explore avian morphological evolution. We extract weights from the model's final fully connected (fc) layer and investigate the semantic alignment between the high-dimensional embedding space learned by the model and biological phenotypes. The results demonstrate that the high-dimensional embedding space encodes phenotypic convergence. Subsequently, we assess the morphological disparity among various taxa and evaluate the association between morphological disparity and species richness, demonstrating that species richness is the primary driver of morphospace expansion. Moreover, the disparity-through-time analysis reveals a visual "early burst" after the K-Pg extinction. While mainly aimed at evolutionary analysis, this study also provides insights into the interpretability of Deep Neural Networks. We demonstrate that hierarchical semantic structures (biological taxonomy) emerged in the high-dimensional embedding space despite being trained on flat labels. Furthermore, through adversarial examples, we provide evidence that our model in this task can overcome texture bias and learn holistic shape representations (body plans), challenging the prevailing view that CNNs rely primarily on local textures.
comment: Readers from the field of computer science may be interested in section 2.1, 2.2, 3.1, 4.1, 4.2. These sections discussed the interpretability and representation learning, especially the texture vs shape problem, highlighting our model's ability of overcoming the texture biases and capturing overall shape features. (Although they're put here to prove the biological validity of the model.)
Fast-Slow Efficient Training for Multimodal Large Language Models via Visual Token Pruning
Multimodal Large Language Models (MLLMs) suffer from severe training inefficiency issue, which is associated with their massive model sizes and visual token numbers. Existing efforts in efficient training focus on reducing model sizes or trainable parameters. Inspired by the success of Visual Token Pruning (VTP) in improving inference efficiency, we are exploring another substantial research direction for efficient training by reducing visual tokens. However, applying VTP at the training stage results in a training-inference mismatch: pruning-trained models perform poorly when inferring on non-pruned full visual token sequences. To close this gap, we propose DualSpeed, a fast-slow framework for efficient training of MLLMs. The fast-mode is the primary mode, which incorporates existing VTP methods as plugins to reduce visual tokens, along with a mode isolator to isolate the model's behaviors. The slow-mode is the auxiliary mode, where the model is trained on full visual sequences to retain training-inference consistency. To boost its training, it further leverages self-distillation to learn from the sufficiently trained fast-mode. Together, DualSpeed can achieve both training efficiency and non-degraded performance. Experiments show DualSpeed accelerates the training of LLaVA-1.5 by 2.1$\times$ and LLaVA-NeXT by 4.0$\times$, retaining over 99% performance. Code: https://github.com/dingkun-zhang/DualSpeed
☆ Progressive Checkerboards for Autoregressive Multiscale Image Generation
A key challenge in autoregressive image generation is to efficiently sample independent locations in parallel, while still modeling mutual dependencies with serial conditioning. Some recent works have addressed this by conditioning between scales in a multiscale pyramid. Others have looked at parallelizing samples in a single image using regular partitions or randomized orders. In this work we examine a flexible, fixed ordering based on progressive checkerboards for multiscale autoregressive image generation. Our ordering draws samples in parallel from evenly spaced regions at each scale, maintaining full balance in all levels of a quadtree subdivision at each step. This enables effective conditioning both between and within scales. Intriguingly, we find evidence that in our balanced setting, a wide range of scale-up factors lead to similar results, so long as the total number of serial steps is constant. On class-conditional ImageNet, our method achieves competitive performance compared to recent state-of-the-art autoregressive systems with like model capacity, using fewer sampling steps.
☆ FullStack-Agent: Enhancing Agentic Full-Stack Web Coding via Development-Oriented Testing and Repository Back-Translation
Assisting non-expert users to develop complex interactive websites has become a popular task for LLM-powered code agents. However, existing code agents tend to only generate frontend web pages, masking the lack of real full-stack data processing and storage with fancy visual effects. Notably, constructing production-level full-stack web applications is far more challenging than only generating frontend web pages, demanding careful control of data flow, comprehensive understanding of constantly updating packages and dependencies, and accurate localization of obscure bugs in the codebase. To address these difficulties, we introduce FullStack-Agent, a unified agent system for full-stack agentic coding that consists of three parts: (1) FullStack-Dev, a multi-agent framework with strong planning, code editing, codebase navigation, and bug localization abilities. (2) FullStack-Learn, an innovative data-scaling and self-improving method that back-translates crawled and synthesized website repositories to improve the backbone LLM of FullStack-Dev. (3) FullStack-Bench, a comprehensive benchmark that systematically tests the frontend, backend and database functionalities of the generated website. Our FullStack-Dev outperforms the previous state-of-the-art method by 8.7%, 38.2%, and 15.9% on the frontend, backend, and database test cases respectively. Additionally, FullStack-Learn raises the performance of a 30B model by 9.7%, 9.5%, and 2.8% on the three sets of test cases through self-improvement, demonstrating the effectiveness of our approach. The code is released at https://github.com/mnluzimu/FullStack-Agent.
☆ 3D-Aware Implicit Motion Control for View-Adaptive Human Video Generation
Existing methods for human motion control in video generation typically rely on either 2D poses or explicit 3D parametric models (e.g., SMPL) as control signals. However, 2D poses rigidly bind motion to the driving viewpoint, precluding novel-view synthesis. Explicit 3D models, though structurally informative, suffer from inherent inaccuracies (e.g., depth ambiguity and inaccurate dynamics) which, when used as a strong constraint, override the powerful intrinsic 3D awareness of large-scale video generators. In this work, we revisit motion control from a 3D-aware perspective, advocating for an implicit, view-agnostic motion representation that naturally aligns with the generator's spatial priors rather than depending on externally reconstructed constraints. We introduce 3DiMo, which jointly trains a motion encoder with a pretrained video generator to distill driving frames into compact, view-agnostic motion tokens, injected semantically via cross-attention. To foster 3D awareness, we train with view-rich supervision (i.e., single-view, multi-view, and moving-camera videos), forcing motion consistency across diverse viewpoints. Additionally, we use auxiliary geometric supervision that leverages SMPL only for early initialization and is annealed to zero, enabling the model to transition from external 3D guidance to learning genuine 3D spatial motion understanding from the data and the generator's priors. Experiments confirm that 3DiMo faithfully reproduces driving motions with flexible, text-driven camera control, significantly surpassing existing methods in both motion fidelity and visual quality.
comment: Project Page: https://hjrphoebus.github.io/3DiMo/
☆ BridgeV2W: Bridging Video Generation Models to Embodied World Models via Embodiment Masks
Embodied world models have emerged as a promising paradigm in robotics, most of which leverage large-scale Internet videos or pretrained video generation models to enrich visual and motion priors. However, they still face key challenges: a misalignment between coordinate-space actions and pixel-space videos, sensitivity to camera viewpoint, and non-unified architectures across embodiments. To this end, we present BridgeV2W, which converts coordinate-space actions into pixel-aligned embodiment masks rendered from the URDF and camera parameters. These masks are then injected into a pretrained video generation model via a ControlNet-style pathway, which aligns the action control signals with predicted videos, adds view-specific conditioning to accommodate camera viewpoints, and yields a unified world model architecture across embodiments. To mitigate overfitting to static backgrounds, BridgeV2W further introduces a flow-based motion loss that focuses on learning dynamic and task-relevant regions. Experiments on single-arm (DROID) and dual-arm (AgiBot-G1) datasets, covering diverse and challenging conditions with unseen viewpoints and scenes, show that BridgeV2W improves video generation quality compared to prior state-of-the-art methods. We further demonstrate the potential of BridgeV2W on downstream real-world tasks, including policy evaluation and goal-conditioned planning. More results can be found on our project website at https://BridgeV2W.github.io .
☆ From Pre- to Intra-operative MRI: Predicting Brain Shift in Temporal Lobe Resection for Epilepsy Surgery
Introduction: In neurosurgery, image-guided Neurosurgery Systems (IGNS) highly rely on preoperative brain magnetic resonance images (MRI) to assist surgeons in locating surgical targets and determining surgical paths. However, brain shift invalidates the preoperative MRI after dural opening. Updated intraoperative brain MRI with brain shift compensation is crucial for enhancing the precision of neuronavigation systems and ensuring the optimal outcome of surgical interventions. Methodology: We propose NeuralShift, a U-Net-based model that predicts brain shift entirely from pre-operative MRI for patients undergoing temporal lobe resection. We evaluated our results using Target Registration Errors (TREs) computed on anatomical landmarks located on the resection side and along the midline, and DICE scores comparing predicted intraoperative masks with masks derived from intraoperative MRI. Results: Our experimental results show that our model can predict the global deformation of the brain (DICE of 0.97) with accurate local displacements (achieve landmark TRE as low as 1.12 mm), compensating for large brain shifts during temporal lobe removal neurosurgery. Conclusion: Our proposed model is capable of predicting the global deformation of the brain during temporal lobe resection using only preoperative images, providing potential opportunities to the surgical team to increase safety and efficiency of neurosurgery and better outcomes to patients. Our contributions will be publicly available after acceptance in https://github.com/SurgicalDataScienceKCL/NeuralShift.
☆ QVLA: Not All Channels Are Equal in Vision-Language-Action Model's Quantization ICLR2026
The advent of Vision-Language-Action (VLA) models represents a significant leap for embodied intelligence, yet their immense computational demands critically hinder deployment on resource-constrained robotic platforms. Intuitively, low-bit quantization is a prevalent and preferred technique for large-scale model compression. However, we find that a systematic analysis of VLA model's quantization is fundamentally lacking. We argue that naively applying uniform-bit quantization from Large Language Models (LLMs) to robotics is flawed, as these methods prioritize passive data fidelity while ignoring how minor action deviations compound into catastrophic task failures. To bridge this gap, we introduce QVLA, the first action-centric quantization framework specifically designed for embodied control. In a sharp departure from the rigid, uniform-bit quantization of LLM-based methods, QVLA introduces a highly granular, channel-wise bit allocation strategy. Its core mechanism is to directly measure the final action-space sensitivity when quantizing each individual channel to various bit-widths. This process yields a precise, per-channel importance metric that guides a global optimization, which elegantly unifies quantization and pruning (0-bit) into a single, cohesive framework. Extensive evaluations on different baselines demonstrate the superiority of our approach. In the LIBERO, the quantization version of OpenVLA-OFT with our method requires only 29.2% of the original model's VRAM while maintaining 98.9% of its original performance and achieving a 1.49x speedup. This translates to a 22.6% performance improvement over the LLM-derived method SmoothQuant. Our work establishes a new, principled foundation for compressing VLA models in robotics, paving the way for deploying powerful, large-scale models on real-world hardware. Code will be released.
comment: ICLR2026
☆ FOVI: A biologically-inspired foveated interface for deep vision models
Human vision is foveated, with variable resolution peaking at the center of a large field of view; this reflects an efficient trade-off for active sensing, allowing eye-movements to bring different parts of the world into focus with other parts of the world in context. In contrast, most computer vision systems encode the visual world at a uniform resolution, raising challenges for processing full-field high-resolution images efficiently. We propose a foveated vision interface (FOVI) based on the human retina and primary visual cortex, that reformats a variable-resolution retina-like sensor array into a uniformly dense, V1-like sensor manifold. Receptive fields are defined as k-nearest-neighborhoods (kNNs) on the sensor manifold, enabling kNN-convolution via a novel kernel mapping technique. We demonstrate two use cases: (1) an end-to-end kNN-convolutional architecture, and (2) a foveated adaptation of the foundational DINOv3 ViT model, leveraging low-rank adaptation (LoRA). These models provide competitive performance at a fraction of the computational cost of non-foveated baselines, opening pathways for efficient and scalable active sensing for high-resolution egocentric vision. Code and pre-trained models are available at https://github.com/nblauch/fovi and https://huggingface.co/fovi-pytorch.
☆ RAWDet-7: A Multi-Scenario Benchmark for Object Detection and Description on Quantized RAW Images
Most vision models are trained on RGB images processed through ISP pipelines optimized for human perception, which can discard sensor-level information useful for machine reasoning. RAW images preserve unprocessed scene data, enabling models to leverage richer cues for both object detection and object description, capturing fine-grained details, spatial relationships, and contextual information often lost in processed images. To support research in this domain, we introduce RAWDet-7, a large-scale dataset of ~25k training and 7.6k test RAW images collected across diverse cameras, lighting conditions, and environments, densely annotated for seven object categories following MS-COCO and LVIS conventions. In addition, we provide object-level descriptions derived from the corresponding high-resolution sRGB images, facilitating the study of object-level information preservation under RAW image processing and low-bit quantization. The dataset allows evaluation under simulated 4-bit, 6-bit, and 8-bit quantization, reflecting realistic sensor constraints, and provides a benchmark for studying detection performance, description quality & detail, and generalization in low-bit RAW image processing. Dataset & code upon acceptance.
comment: *Equal Contribution
☆ Test-Time Conditioning with Representation-Aligned Visual Features
While representation alignment with self-supervised models has been shown to improve diffusion model training, its potential for enhancing inference-time conditioning remains largely unexplored. We introduce Representation-Aligned Guidance (REPA-G), a framework that leverages these aligned representations, with rich semantic properties, to enable test-time conditioning from features in generation. By optimizing a similarity objective (the potential) at inference, we steer the denoising process toward a conditioned representation extracted from a pre-trained feature extractor. Our method provides versatile control at multiple scales, ranging from fine-grained texture matching via single patches to broad semantic guidance using global image feature tokens. We further extend this to multi-concept composition, allowing for the faithful combination of distinct concepts. REPA-G operates entirely at inference time, offering a flexible and precise alternative to often ambiguous text prompts or coarse class labels. We theoretically justify how this guidance enables sampling from the potential-induced tilted distribution. Quantitative results on ImageNet and COCO demonstrate that our approach achieves high-quality, diverse generations. Code is available at https://github.com/valeoai/REPA-G.
☆ Zero-shot large vision-language model prompting for automated bone identification in paleoradiology x-ray archives
Paleoradiology, the use of modern imaging technologies to study archaeological and anthropological remains, offers new windows on millennial scale patterns of human health. Unfortunately, the radiographs collected during field campaigns are heterogeneous: bones are disarticulated, positioning is ad hoc, and laterality markers are often absent. Additionally, factors such as age at death, age of bone, sex, and imaging equipment introduce high variability. Thus, content navigation, such as identifying a subset of images with a specific projection view, can be time consuming and difficult, making efficient triaging a bottleneck for expert analysis. We report a zero shot prompting strategy that leverages a state of the art Large Vision Language Model (LVLM) to automatically identify the main bone, projection view, and laterality in such images. Our pipeline converts raw DICOM files to bone windowed PNGs, submits them to the LVLM with a carefully engineered prompt, and receives structured JSON outputs, which are extracted and formatted onto a spreadsheet in preparation for validation. On a random sample of 100 images reviewed by an expert board certified paleoradiologist, the system achieved 92% main bone accuracy, 80% projection view accuracy, and 100% laterality accuracy, with low or medium confidence flags for ambiguous cases. These results suggest that LVLMs can substantially accelerate code word development for large paleoradiology datasets, allowing for efficient content navigation in future anthropology workflows.
See-through: Single-image Layer Decomposition for Anime Characters
We introduce a framework that automates the transformation of static anime illustrations into manipulatable 2.5D models. Current professional workflows require tedious manual segmentation and the artistic ``hallucination'' of occluded regions to enable motion. Our approach overcomes this by decomposing a single image into fully inpainted, semantically distinct layers with inferred drawing orders. To address the scarcity of training data, we introduce a scalable engine that bootstraps high-quality supervision from commercial Live2D models, capturing pixel-perfect semantics and hidden geometry. Our methodology couples a diffusion-based Body Part Consistency Module, which enforces global geometric coherence, with a pixel-level pseudo-depth inference mechanism. This combination resolves the intricate stratification of anime characters, e.g., interleaving hair strands, allowing for dynamic layer reconstruction. We demonstrate that our approach yields high-fidelity, manipulatable models suitable for professional, real-time animation applications.
comment: 23 pages, 20 figures, preprint version only
☆ LIVE: Long-horizon Interactive Video World Modeling
Autoregressive video world models predict future visual observations conditioned on actions. While effective over short horizons, these models often struggle with long-horizon generation, as small prediction errors accumulate over time. Prior methods alleviate this by introducing pre-trained teacher models and sequence-level distribution matching, which incur additional computational cost and fail to prevent error propagation beyond the training horizon. In this work, we propose LIVE, a Long-horizon Interactive Video world modEl that enforces bounded error accumulation via a novel cycle-consistency objective, thereby eliminating the need for teacher-based distillation. Specifically, LIVE first performs a forward rollout from ground-truth frames and then applies a reverse generation process to reconstruct the initial state. The diffusion loss is subsequently computed on the reconstructed terminal state, providing an explicit constraint on long-horizon error propagation. Moreover, we provide an unified view that encompasses different approaches and introduce progressive training curriculum to stabilize training. Experiments demonstrate that LIVE achieves state-of-the-art performance on long-horizon benchmarks, generating stable, high-quality videos far beyond training rollout lengths.
comment: 18 pages, 22 figures
☆ Edge-Optimized Vision-Language Models for Underground Infrastructure Assessment
Autonomous inspection of underground infrastructure, such as sewer and culvert systems, is critical to public safety and urban sustainability. Although robotic platforms equipped with visual sensors can efficiently detect structural deficiencies, the automated generation of human-readable summaries from these detections remains a significant challenge, especially on resource-constrained edge devices. This paper presents a novel two-stage pipeline for end-to-end summarization of underground deficiencies, combining our lightweight RAPID-SCAN segmentation model with a fine-tuned Vision-Language Model (VLM) deployed on an edge computing platform. The first stage employs RAPID-SCAN (Resource-Aware Pipeline Inspection and Defect Segmentation using Compact Adaptive Network), achieving 0.834 F1-score with only 0.64M parameters for efficient defect segmentation. The second stage utilizes a fine-tuned Phi-3.5 VLM that generates concise, domain-specific summaries in natural language from the segmentation outputs. We introduce a curated dataset of inspection images with manually verified descriptions for VLM fine-tuning and evaluation. To enable real-time performance, we employ post-training quantization with hardware-specific optimization, achieving significant reductions in model size and inference latency without compromising summarization quality. We deploy and evaluate our complete pipeline on a mobile robotic platform, demonstrating its effectiveness in real-world inspection scenarios. Our results show the potential of edge-deployable integrated AI systems to bridge the gap between automated defect detection and actionable insights for infrastructure maintenance, paving the way for more scalable and autonomous inspection solutions.
☆ RegionReasoner: Region-Grounded Multi-Round Visual Reasoning ICLR 2026
Large vision-language models have achieved remarkable progress in visual reasoning, yet most existing systems rely on single-step or text-only reasoning, limiting their ability to iteratively refine understanding across multiple visual contexts. To address this limitation, we introduce a new multi-round visual reasoning benchmark with training and test sets spanning both detection and segmentation tasks, enabling systematic evaluation under iterative reasoning scenarios. We further propose RegionReasoner, a reinforcement learning framework that enforces grounded reasoning by requiring each reasoning trace to explicitly cite the corresponding reference bounding boxes, while maintaining semantic coherence via a global-local consistency reward. This reward extracts key objects and nouns from both global scene captions and region-level captions, aligning them with the reasoning trace to ensure consistency across reasoning steps. RegionReasoner is optimized with structured rewards combining grounding fidelity and global-local semantic alignment. Experiments on detection and segmentation tasks show that RegionReasoner-7B, together with our newly introduced benchmark RegionDial-Bench, considerably improves multi-round reasoning accuracy, spatial grounding precision, and global-local consistency, establishing a strong baseline for this emerging research direction.
comment: Accepted by ICLR 2026
☆ Referring Industrial Anomaly Segmentation
Industrial Anomaly Detection (IAD) is vital for manufacturing, yet traditional methods face significant challenges: unsupervised approaches yield rough localizations requiring manual thresholds, while supervised methods overfit due to scarce, imbalanced data. Both suffer from the "One Anomaly Class, One Model" limitation. To address this, we propose Referring Industrial Anomaly Segmentation (RIAS), a paradigm leveraging language to guide detection. RIAS generates precise masks from text descriptions without manual thresholds and uses universal prompts to detect diverse anomalies with a single model. We introduce the MVTec-Ref dataset to support this, designed with diverse referring expressions and focusing on anomaly patterns, notably with 95% small anomalies. We also propose the Dual Query Token with Mask Group Transformer (DQFormer) benchmark, enhanced by Language-Gated Multi-Level Aggregation (LMA) to improve multi-scale segmentation. Unlike traditional methods using redundant queries, DQFormer employs only "Anomaly" and "Background" tokens for efficient visual-textual integration. Experiments demonstrate RIAS's effectiveness in advancing IAD toward open-set capabilities. Code: https://github.com/swagger-coder/RIAS-MVTec-Ref.
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ MVP-LAM: Learning Action-Centric Latent Action via Cross-Viewpoint Reconstruction
Learning \emph{latent actions} from diverse human videos enables scaling robot learning beyond embodiment-specific robot datasets, and these latent actions have recently been used as pseudo-action labels for vision-language-action (VLA) model pretraining. To make VLA pretraining effective, latent actions should contain information about the underlying agent's actions despite the absence of ground-truth labels. We propose \textbf{M}ulti-\textbf{V}iew\textbf{P}oint \textbf{L}atent \textbf{A}ction \textbf{M}odel (\textbf{MVP-LAM}), which learns discrete latent actions that are highly informative about ground-truth actions from time-synchronized multi-view videos. MVP-LAM trains latent actions with a \emph{cross-viewpoint reconstruction} objective, so that a latent action inferred from one view must explain the future in another view, reducing reliance on viewpoint-specific cues. On Bridge V2, MVP-LAM produces more action-centric latent actions, achieving higher mutual information with ground-truth actions and improved action prediction, including under out-of-distribution evaluation. Finally, pretraining VLAs with MVP-LAM latent actions improves downstream manipulation performance on the SIMPLER and LIBERO-Long benchmarks.
☆ MM-SCALE: Grounded Multimodal Moral Reasoning via Scalar Judgment and Listwise Alignment
Vision-Language Models (VLMs) continue to struggle to make morally salient judgments in multimodal and socially ambiguous contexts. Prior works typically rely on binary or pairwise supervision, which often fail to capture the continuous and pluralistic nature of human moral reasoning. We present MM-SCALE (Multimodal Moral Scale), a large-scale dataset for aligning VLMs with human moral preferences through 5-point scalar ratings and explicit modality grounding. Each image-scenario pair is annotated with moral acceptability scores and grounded reasoning labels by humans using an interface we tailored for data collection, enabling listwise preference optimization over ranked scenario sets. By moving from discrete to scalar supervision, our framework provides richer alignment signals and finer calibration of multimodal moral reasoning. Experiments show that VLMs fine-tuned on MM-SCALE achieve higher ranking fidelity and more stable safety calibration than those trained with binary signals.
☆ SPWOOD: Sparse Partial Weakly-Supervised Oriented Object Detection ICLR 2026
A consistent trend throughout the research of oriented object detection has been the pursuit of maintaining comparable performance with fewer and weaker annotations. This is particularly crucial in the remote sensing domain, where the dense object distribution and a wide variety of categories contribute to prohibitively high costs. Based on the supervision level, existing oriented object detection algorithms can be broadly grouped into fully supervised, semi-supervised, and weakly supervised methods. Within the scope of this work, we further categorize them to include sparsely supervised and partially weakly-supervised methods. To address the challenges of large-scale labeling, we introduce the first Sparse Partial Weakly-Supervised Oriented Object Detection framework, designed to efficiently leverage only a few sparse weakly-labeled data and plenty of unlabeled data. Our framework incorporates three key innovations: (1) We design a Sparse-annotation-Orientation-and-Scale-aware Student (SOS-Student) model to separate unlabeled objects from the background in a sparsely-labeled setting, and learn orientation and scale information from orientation-agnostic or scale-agnostic weak annotations. (2) We construct a novel Multi-level Pseudo-label Filtering strategy that leverages the distribution of model predictions, which is informed by the model's multi-layer predictions. (3) We propose a unique sparse partitioning approach, ensuring equal treatment for each category. Extensive experiments on the DOTA and DIOR datasets show that our framework achieves a significant performance gain over traditional oriented object detection methods mentioned above, offering a highly cost-effective solution. Our code is publicly available at https://github.com/VisionXLab/SPWOOD.
comment: The Fourteenth International Conference on Learning Representations (ICLR 2026)
☆ Multi-Objective Optimization for Synthetic-to-Real Style Transfer
Semantic segmentation networks require large amounts of pixel-level annotated data, which are costly to obtain for real-world images. Computer graphics engines can generate synthetic images alongside their ground-truth annotations. However, models trained on such images can perform poorly on real images due to the domain gap between real and synthetic images. Style transfer methods can reduce this difference by applying a realistic style to synthetic images. Choosing effective data transformations and their sequence is difficult due to the large combinatorial search space of style transfer operators. Using multi-objective genetic algorithms, we optimize pipelines to balance structural coherence and style similarity to target domains. We study the use of paired-image metrics on individual image samples during evolution to enable rapid pipeline evaluation, as opposed to standard distributional metrics that require the generation of many images. After optimization, we evaluate the resulting Pareto front using distributional metrics and segmentation performance. We apply this approach to standard datasets in synthetic-to-real domain adaptation: from the video game GTA5 to real image datasets Cityscapes and ACDC, focusing on adverse conditions. Results demonstrate that evolutionary algorithms can propose diverse augmentation pipelines adapted to different objectives. The contribution of this work is the formulation of style transfer as a sequencing problem suitable for evolutionary optimization and the study of efficient metrics that enable feasible search in this space. The source code is available at: https://github.com/echigot/MOOSS.
comment: Accepted in International Conference on the Applications of Evolutionary Computation (Part of EvoStar), April 2026 (EvoApplications 2026)
☆ Quasi-multimodal-based pathophysiological feature learning for retinal disease diagnosis
Retinal diseases spanning a broad spectrum can be effectively identified and diagnosed using complementary signals from multimodal data. However, multimodal diagnosis in ophthalmic practice is typically challenged in terms of data heterogeneity, potential invasiveness, registration complexity, and so on. As such, a unified framework that integrates multimodal data synthesis and fusion is proposed for retinal disease classification and grading. Specifically, the synthesized multimodal data incorporates fundus fluorescein angiography (FFA), multispectral imaging (MSI), and saliency maps that emphasize latent lesions as well as optic disc/cup regions. Parallel models are independently trained to learn modality-specific representations that capture cross-pathophysiological signatures. These features are then adaptively calibrated within and across modalities to perform information pruning and flexible integration according to downstream tasks. The proposed learning system is thoroughly interpreted through visualizations in both image and feature spaces. Extensive experiments on two public datasets demonstrated the superiority of our approach over state-of-the-art ones in the tasks of multi-label classification (F1-score: 0.683, AUC: 0.953) and diabetic retinopathy grading (Accuracy:0.842, Kappa: 0.861). This work not only enhances the accuracy and efficiency of retinal disease screening but also offers a scalable framework for data augmentation across various medical imaging modalities.
☆ KTV: Keyframes and Key Tokens Selection for Efficient Training-Free Video LLMs
Training-free video understanding leverages the strong image comprehension capabilities of pre-trained vision language models (VLMs) by treating a video as a sequence of static frames, thus obviating the need for costly video-specific training. However, this paradigm often suffers from severe visual redundancy and high computational overhead, especially when processing long videos. Crucially, existing keyframe selection strategies, especially those based on CLIP similarity, are prone to biases and may inadvertently overlook critical frames, resulting in suboptimal video comprehension. To address these significant challenges, we propose \textbf{KTV}, a novel two-stage framework for efficient and effective training-free video understanding. In the first stage, KTV performs question-agnostic keyframe selection by clustering frame-level visual features, yielding a compact, diverse, and representative subset of frames that mitigates temporal redundancy. In the second stage, KTV applies key visual token selection, pruning redundant or less informative tokens from each selected keyframe based on token importance and redundancy, which significantly reduces the number of tokens fed into the LLM. Extensive experiments on the Multiple-Choice VideoQA task demonstrate that KTV outperforms state-of-the-art training-free baselines while using significantly fewer visual tokens, \emph{e.g.}, only 504 visual tokens for a 60-min video with 10800 frames, achieving $44.8\%$ accuracy on the MLVU-Test benchmark. In particular, KTV also exceeds several training-based approaches on certain benchmarks.
A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
☆ Refer-Agent: A Collaborative Multi-Agent System with Reasoning and Reflection for Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment objects in videos based on textual queries. Current methods mainly rely on large-scale supervised fine-tuning (SFT) of Multi-modal Large Language Models (MLLMs). However, this paradigm suffers from heavy data dependence and limited scalability against the rapid evolution of MLLMs. Although recent zero-shot approaches offer a flexible alternative, their performance remains significantly behind SFT-based methods, due to the straightforward workflow designs. To address these limitations, we propose \textbf{Refer-Agent}, a collaborative multi-agent system with alternating reasoning-reflection mechanisms. This system decomposes RVOS into step-by-step reasoning process. During reasoning, we introduce a Coarse-to-Fine frame selection strategy to ensure the frame diversity and textual relevance, along with a Dynamic Focus Layout that adaptively adjusts the agent's visual focus. Furthermore, we propose a Chain-of-Reflection mechanism, which employs a Questioner-Responder pair to generate a self-reflection chain, enabling the system to verify intermediate results and generates feedback for next-round reasoning refinement. Extensive experiments on five challenging benchmarks demonstrate that Refer-Agent significantly outperforms state-of-the-art methods, including both SFT-based models and zero-shot approaches. Moreover, Refer-Agent is flexible and enables fast integration of new MLLMs without any additional fine-tuning costs. Code will be released.
☆ TIPS Over Tricks: Simple Prompts for Effective Zero-shot Anomaly Detection ICASSP'26
Anomaly detection identifies departures from expected behavior in safety-critical settings. When target-domain normal data are unavailable, zero-shot anomaly detection (ZSAD) leverages vision-language models (VLMs). However, CLIP's coarse image-text alignment limits both localization and detection due to (i) spatial misalignment and (ii) weak sensitivity to fine-grained anomalies; prior work compensates with complex auxiliary modules yet largely overlooks the choice of backbone. We revisit the backbone and use TIPS-a VLM trained with spatially aware objectives. While TIPS alleviates CLIP's issues, it exposes a distributional gap between global and local features. We address this with decoupled prompts-fixed for image-level detection and learnable for pixel-level localization-and by injecting local evidence into the global score. Without CLIP-specific tricks, our TIPS-based pipeline improves image-level performance by 1.1-3.9% and pixel-level by 1.5-6.9% across seven industrial datasets, delivering strong generalization with a lean architecture. Code is available at github.com/AlirezaSalehy/Tipsomaly.
comment: This is the extended version of the paper accepted in ICASSP'26, which will be publicly available in May. Authors' contributions may vary among the versions
☆ High-Resolution Underwater Camouflaged Object Detection: GBU-UCOD Dataset and Topology-Aware and Frequency-Decoupled Networks
Underwater Camouflaged Object Detection (UCOD) is a challenging task due to the extreme visual similarity between targets and backgrounds across varying marine depths. Existing methods often struggle with topological fragmentation of slender creatures in the deep sea and the subtle feature extraction of transparent organisms. In this paper, we propose DeepTopo-Net, a novel framework that integrates topology-aware modeling with frequency-decoupled perception. To address physical degradation, we design the Water-Conditioned Adaptive Perceptor (WCAP), which employs Riemannian metric tensors to dynamically deform convolutional sampling fields. Furthermore, the Abyssal-Topology Refinement Module (ATRM) is developed to maintain the structural connectivity of spindly targets through skeletal priors. Specifically, we first introduce GBU-UCOD, the first high-resolution (2K) benchmark tailored for marine vertical zonation, filling the data gap for hadal and abyssal zones. Extensive experiments on MAS3K, RMAS, and our proposed GBU-UCOD datasets demonstrate that DeepTopo-Net achieves state-of-the-art performance, particularly in preserving the morphological integrity of complex underwater patterns. The datasets and codes will be released at https://github.com/Wuwenji18/GBU-UCOD.
☆ SlowFocus: Enhancing Fine-grained Temporal Understanding in Video LLM NeurIPS 2024
Large language models (LLMs) have demonstrated exceptional capabilities in text understanding, which has paved the way for their expansion into video LLMs (Vid-LLMs) to analyze video data. However, current Vid-LLMs struggle to simultaneously retain high-quality frame-level semantic information (i.e., a sufficient number of tokens per frame) and comprehensive video-level temporal information (i.e., an adequate number of sampled frames per video). This limitation hinders the advancement of Vid-LLMs towards fine-grained video understanding. To address this issue, we introduce the SlowFocus mechanism, which significantly enhances the equivalent sampling frequency without compromising the quality of frame-level visual tokens. SlowFocus begins by identifying the query-related temporal segment based on the posed question, then performs dense sampling on this segment to extract local high-frequency features. A multi-frequency mixing attention module is further leveraged to aggregate these local high-frequency details with global low-frequency contexts for enhanced temporal comprehension. Additionally, to tailor Vid-LLMs to this innovative mechanism, we introduce a set of training strategies aimed at bolstering both temporal grounding and detailed temporal reasoning capabilities. Furthermore, we establish FineAction-CGR, a benchmark specifically devised to assess the ability of Vid-LLMs to process fine-grained temporal understanding tasks. Comprehensive experiments demonstrate the superiority of our mechanism across both existing public video understanding benchmarks and our proposed FineAction-CGR.
comment: NeurIPS 2024
☆ ELIQ: A Label-Free Framework for Quality Assessment of Evolving AI-Generated Images
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
☆ Cut to the Mix: Simple Data Augmentation Outperforms Elaborate Ones in Limited Organ Segmentation Datasets MICCAI 2024
Multi-organ segmentation is a widely applied clinical routine and automated organ segmentation tools dramatically improve the pipeline of the radiologists. Recently, deep learning (DL) based segmentation models have shown the capacity to accomplish such a task. However, the training of the segmentation networks requires large amount of data with manual annotations, which is a major concern due to the data scarcity from clinic. Working with limited data is still common for researches on novel imaging modalities. To enhance the effectiveness of DL models trained with limited data, data augmentation (DA) is a crucial regularization technique. Traditional DA (TDA) strategies focus on basic intra-image operations, i.e. generating images with different orientations and intensity distributions. In contrast, the interimage and object-level DA operations are able to create new images from separate individuals. However, such DA strategies are not well explored on the task of multi-organ segmentation. In this paper, we investigated four possible inter-image DA strategies: CutMix, CarveMix, ObjectAug and AnatoMix, on two organ segmentation datasets. The result shows that CutMix, CarveMix and AnatoMix can improve the average dice score by 4.9, 2.0 and 1.9, compared with the state-of-the-art nnUNet without DA strategies. These results can be further improved by adding TDA strategies. It is revealed in our experiments that Cut-Mix is a robust but simple DA strategy to drive up the segmentation performance for multi-organ segmentation, even when CutMix produces intuitively 'wrong' images. Our implementation is publicly available for future benchmarks.
comment: Accepted at MICCAI 2024
☆ AffordanceGrasp-R1:Leveraging Reasoning-Based Affordance Segmentation with Reinforcement Learning for Robotic Grasping
We introduce AffordanceGrasp-R1, a reasoning-driven affordance segmentation framework for robotic grasping that combines a chain-of-thought (CoT) cold-start strategy with reinforcement learning to enhance deduction and spatial grounding. In addition, we redesign the grasping pipeline to be more context-aware by generating grasp candidates from the global scene point cloud and subsequently filtering them using instruction-conditioned affordance masks. Extensive experiments demonstrate that AffordanceGrasp-R1 consistently outperforms state-of-the-art (SOTA) methods on benchmark datasets, and real-world robotic grasping evaluations further validate its robustness and generalization under complex language-conditioned manipulation scenarios.
comment: Preprint version
☆ Constrained Dynamic Gaussian Splatting
While Dynamic Gaussian Splatting enables high-fidelity 4D reconstruction, its deployment is severely hindered by a fundamental dilemma: unconstrained densification leads to excessive memory consumption incompatible with edge devices, whereas heuristic pruning fails to achieve optimal rendering quality under preset Gaussian budgets. In this work, we propose Constrained Dynamic Gaussian Splatting (CDGS), a novel framework that formulates dynamic scene reconstruction as a budget-constrained optimization problem to enforce a strict, user-defined Gaussian budget during training. Our key insight is to introduce a differentiable budget controller as the core optimization driver. Guided by a multi-modal unified importance score, this controller fuses geometric, motion, and perceptual cues for precise capacity regulation. To maximize the utility of this fixed budget, we further decouple the optimization of static and dynamic elements, employing an adaptive allocation mechanism that dynamically distributes capacity based on motion complexity. Furthermore, we implement a three-phase training strategy to seamlessly integrate these constraints, ensuring precise adherence to the target count. Coupled with a dual-mode hybrid compression scheme, CDGS not only strictly adheres to hardware constraints (error < 2%}) but also pushes the Pareto frontier of rate-distortion performance. Extensive experiments demonstrate that CDGS delivers optimal rendering quality under varying capacity limits, achieving over 3x compression compared to state-of-the-art methods.
☆ PnP-U3D: Plug-and-Play 3D Framework Bridging Autoregression and Diffusion for Unified Understanding and Generation
The rapid progress of large multimodal models has inspired efforts toward unified frameworks that couple understanding and generation. While such paradigms have shown remarkable success in 2D, extending them to 3D remains largely underexplored. Existing attempts to unify 3D tasks under a single autoregressive (AR) paradigm lead to significant performance degradation due to forced signal quantization and prohibitive training cost. Our key insight is that the essential challenge lies not in enforcing a unified autoregressive paradigm, but in enabling effective information interaction between generation and understanding while minimally compromising their inherent capabilities and leveraging pretrained models to reduce training cost. Guided by this perspective, we present the first unified framework for 3D understanding and generation that combines autoregression with diffusion. Specifically, we adopt an autoregressive next-token prediction paradigm for 3D understanding, and a continuous diffusion paradigm for 3D generation. A lightweight transformer bridges the feature space of large language models and the conditional space of 3D diffusion models, enabling effective cross-modal information exchange while preserving the priors learned by standalone models. Extensive experiments demonstrate that our framework achieves state-of-the-art performance across diverse 3D understanding and generation benchmarks, while also excelling in 3D editing tasks. These results highlight the potential of unified AR+diffusion models as a promising direction for building more general-purpose 3D intelligence.
comment: Yongwei Chen and Tianyi Wei contributed equally. Project page: https://cyw-3d.github.io/PnP-U3D/
☆ Robust Representation Learning in Masked Autoencoders
Masked Autoencoders (MAEs) achieve impressive performance in image classification tasks, yet the internal representations they learn remain less understood. This work started as an attempt to understand the strong downstream classification performance of MAE. In this process we discover that representations learned with the pretraining and fine-tuning, are quite robust - demonstrating a good classification performance in the presence of degradations, such as blur and occlusions. Through layer-wise analysis of token embeddings, we show that pretrained MAE progressively constructs its latent space in a class-aware manner across network depth: embeddings from different classes lie in subspaces that become increasingly separable. We further observe that MAE exhibits early and persistent global attention across encoder layers, in contrast to standard Vision Transformers (ViTs). To quantify feature robustness, we introduce two sensitivity indicators: directional alignment between clean and perturbed embeddings, and head-wise retention of active features under degradations. These studies help establish the robust classification performance of MAEs.
comment: 11 pages, 8 figures, and 3 tables
☆ Interpretable Logical Anomaly Classification via Constraint Decomposition and Instruction Fine-Tuning
Logical anomalies are violations of predefined constraints on object quantity, spatial layout, and compositional relationships in industrial images. While prior work largely treats anomaly detection as a binary decision, such formulations cannot indicate which logical rule is broken and therefore offer limited value for quality assurance. We introduce Logical Anomaly Classification (LAC), a task that unifies anomaly detection and fine-grained violation classification in a single inference step. To tackle LAC, we propose LogiCls, a vision-language framework that decomposes complex logical constraints into a sequence of verifiable subqueries. We further present a data-centric instruction synthesis pipeline that generates chain-of-thought (CoT) supervision for these subqueries, coupling precise grounding annotations with diverse image-text augmentations to adapt vision language models (VLMs) to logic-sensitive reasoning. Training is stabilized by a difficulty-aware resampling strategy that emphasizes challenging subqueries and long tail constraint types. Extensive experiments demonstrate that LogiCls delivers robust, interpretable, and accurate industrial logical anomaly classification, providing both the predicted violation categories and their evidence trails.
comment: 6 pages, 6 figures
☆ Semantic Routing: Exploring Multi-Layer LLM Feature Weighting for Diffusion Transformers
Recent DiT-based text-to-image models increasingly adopt LLMs as text encoders, yet text conditioning remains largely static and often utilizes only a single LLM layer, despite pronounced semantic hierarchy across LLM layers and non-stationary denoising dynamics over both diffusion time and network depth. To better match the dynamic process of DiT generation and thereby enhance the diffusion model's generative capability, we introduce a unified normalized convex fusion framework equipped with lightweight gates to systematically organize multi-layer LLM hidden states via time-wise, depth-wise, and joint fusion. Experiments establish Depth-wise Semantic Routing as the superior conditioning strategy, consistently improving text-image alignment and compositional generation (e.g., +9.97 on the GenAI-Bench Counting task). Conversely, we find that purely time-wise fusion can paradoxically degrade visual generation fidelity. We attribute this to a train-inference trajectory mismatch: under classifier-free guidance, nominal timesteps fail to track the effective SNR, causing semantically mistimed feature injection during inference. Overall, our results position depth-wise routing as a strong and effective baseline and highlight the critical need for trajectory-aware signals to enable robust time-dependent conditioning.
☆ Decoupling Skeleton and Flesh: Efficient Multimodal Table Reasoning with Disentangled Alignment and Structure-aware Guidance
Reasoning over table images remains challenging for Large Vision-Language Models (LVLMs) due to complex layouts and tightly coupled structure-content information. Existing solutions often depend on expensive supervised training, reinforcement learning, or external tools, limiting efficiency and scalability. This work addresses a key question: how to adapt LVLMs to table reasoning with minimal annotation and no external tools? Specifically, we first introduce DiSCo, a Disentangled Structure-Content alignment framework that explicitly separates structural abstraction from semantic grounding during multimodal alignment, efficiently adapting LVLMs to tables structures. Building on DiSCo, we further present Table-GLS, a Global-to-Local Structure-guided reasoning framework that performs table reasoning via structured exploration and evidence-grounded inference. Extensive experiments across diverse benchmarks demonstrate that our framework efficiently enhances LVLM's table understanding and reasoning capabilities, particularly generalizing to unseen table structures.
☆ Scaling Continual Learning with Bi-Level Routing Mixture-of-Experts
Continual learning, especially class-incremental learning (CIL), on the basis of a pre-trained model (PTM) has garnered substantial research interest in recent years. However, how to effectively learn both discriminative and comprehensive feature representations while maintaining stability and plasticity over very long task sequences remains an open problem. We propose CaRE, a scalable {C}ontinual Le{a}rner with efficient Bi-Level {R}outing Mixture-of-{E}xperts (BR-MoE). The core idea of BR-MoE is a bi-level routing mechanism: a router selection stage that dynamically activates relevant task-specific routers, followed by an expert routing phase that dynamically activates and aggregates experts, aiming to inject discriminative and comprehensive representations into every intermediate network layer. On the other hand, we introduce a challenging evaluation protocol for comprehensively assessing CIL methods across very long task sequences spanning hundreds of tasks. Extensive experiments show that CaRE demonstrates leading performance across a variety of datasets and task settings, including commonly used CIL datasets with classical CIL settings (e.g., 5-20 tasks). To the best of our knowledge, CaRE is the first continual learner that scales to very long task sequences (ranging from 100 to over 300 non-overlapping tasks), while outperforming all baselines by a large margin on such task sequences. Code will be publicly released at https://github.com/LMMMEng/CaRE.git.
☆ Inlier-Centric Post-Training Quantization for Object Detection Models
Object detection is pivotal in computer vision, yet its immense computational demands make deployment slow and power-hungry, motivating quantization. However, task-irrelevant morphologies such as background clutter and sensor noise induce redundant activations (or anomalies). These anomalies expand activation ranges and skew activation distributions toward task-irrelevant responses, complicating bit allocation and weakening the preservation of informative features. Without a clear criterion to distinguish anomalies, suppressing them can inadvertently discard useful information. To address this, we present InlierQ, an inlier-centric post-training quantization approach that separates anomalies from informative inliers. InlierQ computes gradient-aware volume saliency scores, classifies each volume as an inlier or anomaly, and fits a posterior distribution over these scores using the Expectation-Maximization (EM) algorithm. This design suppresses anomalies while preserving informative features. InlierQ is label-free, drop-in, and requires only 64 calibration samples. Experiments on the COCO and nuScenes benchmarks show consistent reductions in quantization error for camera-based (2D and 3D) and LiDAR-based (3D) object detection.
☆ Contextualized Visual Personalization in Vision-Language Models
Despite recent progress in vision-language models (VLMs), existing approaches often fail to generate personalized responses based on the user's specific experiences, as they lack the ability to associate visual inputs with a user's accumulated visual-textual context. We newly formalize this challenge as contextualized visual personalization, which requires the visual recognition and textual retrieval of personalized visual experiences by VLMs when interpreting new images. To address this issue, we propose CoViP, a unified framework that treats personalized image captioning as a core task for contextualized visual personalization and improves this capability through reinforcement-learning-based post-training and caption-augmented generation. We further introduce diagnostic evaluations that explicitly rule out textual shortcut solutions and verify whether VLMs truly leverage visual context. Extensive experiments demonstrate that existing open-source and proprietary VLMs exhibit substantial limitations, while CoViP not only improves personalized image captioning but also yields holistic gains across downstream personalization tasks. These results highlight CoViP as a crucial stage for enabling robust and generalizable contextualized visual personalization.
comment: Project Page: https://github.com/oyt9306/CoViP
☆ Hierarchical Concept-to-Appearance Guidance for Multi-Subject Image Generation
Multi-subject image generation aims to synthesize images that faithfully preserve the identities of multiple reference subjects while following textual instructions. However, existing methods often suffer from identity inconsistency and limited compositional control, as they rely on diffusion models to implicitly associate text prompts with reference images. In this work, we propose Hierarchical Concept-to-Appearance Guidance (CAG), a framework that provides explicit, structured supervision from high-level concepts to fine-grained appearances. At the conceptual level, we introduce a VAE dropout training strategy that randomly omits reference VAE features, encouraging the model to rely more on robust semantic signals from a Visual Language Model (VLM) and thereby promoting consistent concept-level generation in the absence of complete appearance cues. At the appearance level, we integrate the VLM-derived correspondences into a correspondence-aware masked attention module within the Diffusion Transformer (DiT). This module restricts each text token to attend only to its matched reference regions, ensuring precise attribute binding and reliable multi-subject composition. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the multi-subject image generation, substantially improving prompt following and subject consistency.
☆ HetroD: A High-Fidelity Drone Dataset and Benchmark for Autonomous Driving in Heterogeneous Traffic
We present HetroD, a dataset and benchmark for developing autonomous driving systems in heterogeneous environments. HetroD targets the critical challenge of navi- gating real-world heterogeneous traffic dominated by vulner- able road users (VRUs), including pedestrians, cyclists, and motorcyclists that interact with vehicles. These mixed agent types exhibit complex behaviors such as hook turns, lane splitting, and informal right-of-way negotiation. Such behaviors pose significant challenges for autonomous vehicles but remain underrepresented in existing datasets focused on structured, lane-disciplined traffic. To bridge the gap, we collect a large- scale drone-based dataset to provide a holistic observation of traffic scenes with centimeter-accurate annotations, HD maps, and traffic signal states. We further develop a modular toolkit for extracting per-agent scenarios to support downstream task development. In total, the dataset comprises over 65.4k high- fidelity agent trajectories, 70% of which are from VRUs. HetroD supports modeling of VRU behaviors in dense, het- erogeneous traffic and provides standardized benchmarks for forecasting, planning, and simulation tasks. Evaluation results reveal that state-of-the-art prediction and planning models struggle with the challenges presented by our dataset: they fail to predict lateral VRU movements, cannot handle unstructured maneuvers, and exhibit limited performance in dense and multi-agent scenarios, highlighting the need for more robust approaches to heterogeneous traffic. See our project page for more examples: https://hetroddata.github.io/HetroD/
comment: IEEE International Conference on Robotics and Automation (ICRA) 2026
☆ ConsistentRFT: Reducing Visual Hallucinations in Flow-based Reinforcement Fine-Tuning
Reinforcement Fine-Tuning (RFT) on flow-based models is crucial for preference alignment. However, they often introduce visual hallucinations like over-optimized details and semantic misalignment. This work preliminarily explores why visual hallucinations arise and how to reduce them. We first investigate RFT methods from a unified perspective, and reveal the core problems stemming from two aspects, exploration and exploitation: (1) limited exploration during stochastic differential equation (SDE) rollouts, leading to an over-emphasis on local details at the expense of global semantics, and (2) trajectory imitation process inherent in policy gradient methods, distorting the model's foundational vector field and its cross-step consistency. Building on this, we propose ConsistentRFT, a general framework to mitigate these hallucinations. Specifically, we design a Dynamic Granularity Rollout (DGR) mechanism to balance exploration between global semantics and local details by dynamically scheduling different noise sources. We then introduce a Consistent Policy Gradient Optimization (CPGO) that preserves the model's consistency by aligning the current policy with a more stable prior. Extensive experiments demonstrate that ConsistentRFT significantly mitigates visual hallucinations, achieving average reductions of 49\% for low-level and 38\% for high-level perceptual hallucinations. Furthermore, ConsistentRFT outperforms other RFT methods on out-of-domain metrics, showing an improvement of 5.1\% (v.s. the baseline's decrease of -0.4\%) over FLUX1.dev. This is \href{https://xiaofeng-tan.github.io/projects/ConsistentRFT}{Project Page}.
☆ Origin Lens: A Privacy-First Mobile Framework for Cryptographic Image Provenance and AI Detection
The proliferation of generative AI poses challenges for information integrity assurance, requiring systems that connect model governance with end-user verification. We present Origin Lens, a privacy-first mobile framework that targets visual disinformation through a layered verification architecture. Unlike server-side detection systems, Origin Lens performs cryptographic image provenance verification and AI detection locally on the device via a Rust/Flutter hybrid architecture. Our system integrates multiple signals - including cryptographic provenance, generative model fingerprints, and optional retrieval-augmented verification - to provide users with graded confidence indicators at the point of consumption. We discuss the framework's alignment with regulatory requirements (EU AI Act, DSA) and its role in verification infrastructure that complements platform-level mechanisms.
comment: Accepted at ACM TheWebConf '26 Companion
☆ Socratic-Geo: Synthetic Data Generation and Geometric Reasoning via Multi-Agent Interaction
Multimodal Large Language Models (MLLMs) have significantly advanced vision-language understanding. However, even state-of-the-art models struggle with geometric reasoning, revealing a critical bottleneck: the extreme scarcity of high-quality image-text pairs. Human annotation is prohibitively expensive, while automated methods fail to ensure fidelity and training effectiveness. Existing approaches either passively adapt to available images or employ inefficient random exploration with filtering, decoupling generation from learning needs. We propose Socratic-Geo, a fully autonomous framework that dynamically couples data synthesis with model learning through multi-agent interaction. The Teacher agent generates parameterized Python scripts with reflective feedback (Reflect for solvability, RePI for visual validity), ensuring image-text pair purity. The Solver agent optimizes reasoning through preference learning, with failure paths guiding Teacher's targeted augmentation. Independently, the Generator learns image generation capabilities on accumulated "image-code-instruction" triplets, distilling programmatic drawing intelligence into visual generation. Starting from only 108 seed problems, Socratic-Solver achieves 49.11 on six benchmarks using one-quarter of baseline data, surpassing strong baselines by 2.43 points. Socratic-Generator achieves 42.4% on GenExam, establishing new state-of-the-art for open-source models, surpassing Seedream-4.0 (39.8%) and approaching Gemini-2.5-Flash-Image (43.1%).
comment: 18pages
☆ UnHype: CLIP-Guided Hypernetworks for Dynamic LoRA Unlearning
Recent advances in large-scale diffusion models have intensified concerns about their potential misuse, particularly in generating realistic yet harmful or socially disruptive content. This challenge has spurred growing interest in effective machine unlearning, the process of selectively removing specific knowledge or concepts from a model without compromising its overall generative capabilities. Among various approaches, Low-Rank Adaptation (LoRA) has emerged as an effective and efficient method for fine-tuning models toward targeted unlearning. However, LoRA-based methods often exhibit limited adaptability to concept semantics and struggle to balance removing closely related concepts with maintaining generalization across broader meanings. Moreover, these methods face scalability challenges when multiple concepts must be erased simultaneously. To address these limitations, we introduce UnHype, a framework that incorporates hypernetworks into single- and multi-concept LoRA training. The proposed architecture can be directly plugged into Stable Diffusion as well as modern flow-based text-to-image models, where it demonstrates stable training behavior and effective concept control. During inference, the hypernetwork dynamically generates adaptive LoRA weights based on the CLIP embedding, enabling more context-aware, scalable unlearning. We evaluate UnHype across several challenging tasks, including object erasure, celebrity erasure, and explicit content removal, demonstrating its effectiveness and versatility. Repository: https://github.com/gmum/UnHype.
☆ From Vicious to Virtuous Cycles: Synergistic Representation Learning for Unsupervised Video Object-Centric Learning ICLR 2026
Unsupervised object-centric learning models, particularly slot-based architectures, have shown great promise in decomposing complex scenes. However, their reliance on reconstruction-based training creates a fundamental conflict between the sharp, high-frequency attention maps of the encoder and the spatially consistent but blurry reconstruction maps of the decoder. We identify that this discrepancy gives rise to a vicious cycle: the noisy feature map from the encoder forces the decoder to average over possibilities and produce even blurrier outputs, while the gradient computed from blurry reconstruction maps lacks high-frequency details necessary to supervise encoder features. To break this cycle, we introduce Synergistic Representation Learning (SRL) that establishes a virtuous cycle where the encoder and decoder mutually refine one another. SRL leverages the encoder's sharpness to deblur the semantic boundary within the decoder output, while exploiting the decoder's spatial consistency to denoise the encoder's features. This mutual refinement process is stabilized by a warm-up phase with a slot regularization objective that initially allocates distinct entities per slot. By bridging the representational gap between the encoder and decoder, SRL achieves state-of-the-art results on video object-centric learning benchmarks. Codes are available at https://github.com/hynnsk/SRL.
comment: ICLR 2026; Code is available at https://github.com/hynnsk/SRL
☆ Seeing Through the Chain: Mitigate Hallucination in Multimodal Reasoning Models via CoT Compression and Contrastive Preference Optimization
While multimodal reasoning models (MLRMs) have exhibited impressive capabilities, they remain prone to hallucinations, and effective solutions are still underexplored. In this paper, we experimentally analyze the hallucination cause and propose C3PO, a training-based mitigation framework comprising \textbf{C}hain-of-Thought \textbf{C}ompression and \textbf{C}ontrastive \textbf{P}reference \textbf{O}ptimization. Firstly, we identify that introducing reasoning mechanisms exacerbates models' reliance on language priors while overlooking visual inputs, which can produce CoTs with reduced visual cues but redundant text tokens. To this end, we propose to selectively filter redundant thinking tokens for a more compact and signal-efficient CoT representation that preserves task-relevant information while suppressing noise. In addition, we observe that the quality of the reasoning trace largely determines whether hallucination emerges in subsequent responses. To leverage this insight, we introduce a reasoning-enhanced preference tuning scheme that constructs training pairs using high-quality AI feedback. We further design a multimodal hallucination-inducing mechanism that elicits models' inherent hallucination patterns via carefully crafted inducers, yielding informative negative signals for contrastive correction. We provide theoretical justification for the effectiveness and demonstrate consistent hallucination reduction across diverse MLRMs and benchmarks.
☆ PlanTRansformer: Unified Prediction and Planning with Goal-conditioned Transformer
Trajectory prediction and planning are fundamental yet disconnected components in autonomous driving. Prediction models forecast surrounding agent motion under unknown intentions, producing multimodal distributions, while planning assumes known ego objectives and generates deterministic trajectories. This mismatch creates a critical bottleneck: prediction lacks supervision for agent intentions, while planning requires this information. Existing prediction models, despite strong benchmarking performance, often remain disconnected from planning constraints such as collision avoidance and dynamic feasibility. We introduce Plan TRansformer (PTR), a unified Gaussian Mixture Transformer framework integrating goal-conditioned prediction, dynamic feasibility, interaction awareness, and lane-level topology reasoning. A teacher-student training strategy progressively masks surrounding agent commands during training to align with inference conditions where agent intentions are unavailable. PTR achieves 4.3%/3.5% improvement in marginal/joint mAP compared to the baseline Motion Transformer (MTR) and 15.5% planning error reduction at 5s horizon compared to GameFormer. The architecture-agnostic design enables application to diverse Transformer-based prediction models. Project Website: https://github.com/SelzerConst/PlanTRansformer
comment: Submitted and accepted at IEEE IV 2026
☆ Unifying Watermarking via Dimension-Aware Mapping
Deep watermarking methods often share similar encoder-decoder architectures, yet differ substantially in their functional behaviors. We propose DiM, a new multi-dimensional watermarking framework that formulates watermarking as a dimension-aware mapping problem, thereby unifying existing watermarking methods at the functional level. Under DiM, watermark information is modeled as payloads of different dimensionalities, including one-dimensional binary messages, two-dimensional spatial masks, and three-dimensional spatiotemporal structures. We find that the dimensional configuration of embedding and extraction largely determines the resulting watermarking behavior. Same-dimensional mappings preserve payload structure and support fine-grained control, while cross-dimensional mappings enable spatial or spatiotemporal localization. We instantiate DiM in the video domain, where spatiotemporal representations enable a broader set of dimension mappings. Experiments demonstrate that varying only the embedding and extraction dimensions, without architectural changes, leads to different watermarking capabilities, including spatiotemporal tamper localization, local embedding control, and recovery of temporal order under frame disruptions.
comment: 29 pages, 25 figures
☆ SLIM-Diff: Shared Latent Image-Mask Diffusion with Lp loss for Data-Scarce Epilepsy FLAIR MRI
Focal cortical dysplasia (FCD) lesions in epilepsy FLAIR MRI are subtle and scarce, making joint image--mask generative modeling prone to instability and memorization. We propose SLIM-Diff, a compact joint diffusion model whose main contributions are (i) a single shared-bottleneck U-Net that enforces tight coupling between anatomy and lesion geometry from a 2-channel image+mask representation, and (ii) loss-geometry tuning via a tunable $L_p$ objective. As an internal baseline, we include the canonical DDPM-style objective ($ε$-prediction with $L_2$ loss) and isolate the effect of prediction parameterization and $L_p$ geometry under a matched setup. Experiments show that $x_0$-prediction is consistently the strongest choice for joint synthesis, and that fractional sub-quadratic penalties ($L_{1.5}$) improve image fidelity while $L_2$ better preserves lesion mask morphology. Our code and model weights are available in https://github.com/MarioPasc/slim-diff
comment: 6 pages, 2 figures, 1 table, conference paper
☆ Multi-Resolution Alignment for Voxel Sparsity in Camera-Based 3D Semantic Scene Completion
Camera-based 3D semantic scene completion (SSC) offers a cost-effective solution for assessing the geometric occupancy and semantic labels of each voxel in the surrounding 3D scene with image inputs, providing a voxel-level scene perception foundation for the perception-prediction-planning autonomous driving systems. Although significant progress has been made in existing methods, their optimization rely solely on the supervision from voxel labels and face the challenge of voxel sparsity as a large portion of voxels in autonomous driving scenarios are empty, which limits both optimization efficiency and model performance. To address this issue, we propose a \textit{Multi-Resolution Alignment (MRA)} approach to mitigate voxel sparsity in camera-based 3D semantic scene completion, which exploits the scene and instance level alignment across multi-resolution 3D features as auxiliary supervision. Specifically, we first propose the Multi-resolution View Transformer module, which projects 2D image features into multi-resolution 3D features and aligns them at the scene level through fusing discriminative seed features. Furthermore, we design the Cubic Semantic Anisotropy module to identify the instance-level semantic significance of each voxel, accounting for the semantic differences of a specific voxel against its neighboring voxels within a cubic area. Finally, we devise a Critical Distribution Alignment module, which selects critical voxels as instance-level anchors with the guidance of cubic semantic anisotropy, and applies a circulated loss for auxiliary supervision on the critical feature distribution consistency across different resolutions. The code is available at https://github.com/PKU-ICST-MIPL/MRA_TIP.
comment: 15 pages, 6 figures, accepted by TIP 2026
☆ Symbol-Aware Reasoning with Masked Discrete Diffusion for Handwritten Mathematical Expression Recognition
Handwritten Mathematical Expression Recognition (HMER) requires reasoning over diverse symbols and 2D structural layouts, yet autoregressive models struggle with exposure bias and syntactic inconsistency. We present a discrete diffusion framework that reformulates HMER as iterative symbolic refinement instead of sequential generation. Through multi-step remasking, the proposal progressively refines both symbols and structural relations, removing causal dependencies and improving structural consistency. A symbol-aware tokenization and Random-Masking Mutual Learning further enhance syntactic alignment and robustness to handwriting diversity. On the MathWriting benchmark, the proposal achieves 5.56\% CER and 60.42\% EM, outperforming strong Transformer and commercial baselines. Consistent gains on CROHME 2014--2023 demonstrate that discrete diffusion provides a new paradigm for structure-aware visual recognition beyond generative modeling.
☆ Z3D: Zero-Shot 3D Visual Grounding from Images
3D visual grounding (3DVG) aims to localize objects in a 3D scene based on natural language queries. In this work, we explore zero-shot 3DVG from multi-view images alone, without requiring any geometric supervision or object priors. We introduce Z3D, a universal grounding pipeline that flexibly operates on multi-view images while optionally incorporating camera poses and depth maps. We identify key bottlenecks in prior zero-shot methods causing significant performance degradation and address them with (i) a state-of-the-art zero-shot 3D instance segmentation method to generate high-quality 3D bounding box proposals and (ii) advanced reasoning via prompt-based segmentation, which utilizes full capabilities of modern VLMs. Extensive experiments on the ScanRefer and Nr3D benchmarks demonstrate that our approach achieves state-of-the-art performance among zero-shot methods. Code is available at https://github.com/col14m/z3d .
☆ Tiled Prompts: Overcoming Prompt Underspecification in Image and Video Super-Resolution
Text-conditioned diffusion models have advanced image and video super-resolution by using prompts as semantic priors, but modern super-resolution pipelines typically rely on latent tiling to scale to high resolutions, where a single global caption causes prompt underspecification. A coarse global prompt often misses localized details (prompt sparsity) and provides locally irrelevant guidance (prompt misguidance) that can be amplified by classifier-free guidance. We propose Tiled Prompts, a unified framework for image and video super-resolution that generates a tile-specific prompt for each latent tile and performs super-resolution under locally text-conditioned posteriors, providing high-information guidance that resolves prompt underspecification with minimal overhead. Experiments on high resolution real-world images and videos show consistent gains in perceptual quality and text alignment, while reducing hallucinations and tile-level artifacts relative to global-prompt baselines.
comment: 13 pages, 7 figures
☆ Composable Visual Tokenizers with Generator-Free Diagnostics of Learnability
We introduce CompTok, a training framework for learning visual tokenizers whose tokens are enhanced for compositionality. CompTok uses a token-conditioned diffusion decoder. By employing an InfoGAN-style objective, where we train a recognition model to predict the tokens used to condition the diffusion decoder using the decoded images, we enforce the decoder to not ignore any of the tokens. To promote compositional control, besides the original images, CompTok also trains on tokens formed by swapping token subsets between images, enabling more compositional control of the token over the decoder. As the swapped tokens between images do not have ground truth image targets, we apply a manifold constraint via an adversarial flow regularizer to keep unpaired swap generations on the natural-image distribution. The resulting tokenizer not only achieves state-of-the-art performance on image class-conditioned generation, but also demonstrates properties such as swapping tokens between images to achieve high level semantic editing of an image. Additionally, we propose two metrics that measures the landscape of the token space that can be useful to describe not only the compositionality of the tokens, but also how easy to learn the landscape is for a generator to be trained on this space. We show in experiments that CompTok can improve on both of the metrics as well as supporting state-of-the-art generators for class conditioned generation.
☆ PWAVEP: Purifying Imperceptible Adversarial Perturbations in 3D Point Clouds via Spectral Graph Wavelets
Recent progress in adversarial attacks on 3D point clouds, particularly in achieving spatial imperceptibility and high attack performance, presents significant challenges for defenders. Current defensive approaches remain cumbersome, often requiring invasive model modifications, expensive training procedures or auxiliary data access. To address these threats, in this paper, we propose a plug-and-play and non-invasive defense mechanism in the spectral domain, grounded in a theoretical and empirical analysis of the relationship between imperceptible perturbations and high-frequency spectral components. Building upon these insights, we introduce a novel purification framework, termed PWAVEP, which begins by computing a spectral graph wavelet domain saliency score and local sparsity score for each point. Guided by these values, PWAVEP adopts a hierarchical strategy, it eliminates the most salient points, which are identified as hardly recoverable adversarial outliers. Simultaneously, it applies a spectral filtering process to a broader set of moderately salient points. This process leverages a graph wavelet transform to attenuate high-frequency coefficients associated with the targeted points, thereby effectively suppressing adversarial noise. Extensive evaluations demonstrate that the proposed PWAVEP achieves superior accuracy and robustness compared to existing approaches, advancing the state-of-the-art in 3D point cloud purification. Code and datasets are available at https://github.com/a772316182/pwavep
comment: Accepted by WWW 2026
☆ Pi-GS: Sparse-View Gaussian Splatting with Dense π^3 Initialization
Novel view synthesis has evolved rapidly, advancing from Neural Radiance Fields to 3D Gaussian Splatting (3DGS), which offers real-time rendering and rapid training without compromising visual fidelity. However, 3DGS relies heavily on accurate camera poses and high-quality point cloud initialization, which are difficult to obtain in sparse-view scenarios. While traditional Structure from Motion (SfM) pipelines often fail in these settings, existing learning-based point estimation alternatives typically require reliable reference views and remain sensitive to pose or depth errors. In this work, we propose a robust method utilizing π^3, a reference-free point cloud estimation network. We integrate dense initialization from π^3 with a regularization scheme designed to mitigate geometric inaccuracies. Specifically, we employ uncertainty-guided depth supervision, normal consistency loss, and depth warping. Experimental results demonstrate that our approach achieves state-of-the-art performance on the Tanks and Temples, LLFF, DTU, and MipNeRF360 datasets.
MedSAM-Agent: Empowering Interactive Medical Image Segmentation with Multi-turn Agentic Reinforcement Learning
Medical image segmentation is evolving from task-specific models toward generalizable frameworks. Recent research leverages Multi-modal Large Language Models (MLLMs) as autonomous agents, employing reinforcement learning with verifiable reward (RLVR) to orchestrate specialized tools like the Segment Anything Model (SAM). However, these approaches often rely on single-turn, rigid interaction strategies and lack process-level supervision during training, which hinders their ability to fully exploit the dynamic potential of interactive tools and leads to redundant actions. To bridge this gap, we propose MedSAM-Agent, a framework that reformulates interactive segmentation as a multi-step autonomous decision-making process. First, we introduce a hybrid prompting strategy for expert-curated trajectory generation, enabling the model to internalize human-like decision heuristics and adaptive refinement strategies. Furthermore, we develop a two-stage training pipeline that integrates multi-turn, end-to-end outcome verification with a clinical-fidelity process reward design to promote interaction parsimony and decision efficiency. Extensive experiments across 6 medical modalities and 21 datasets demonstrate that MedSAM-Agent achieves state-of-the-art performance, effectively unifying autonomous medical reasoning with robust, iterative optimization. Code is available \href{https://github.com/CUHK-AIM-Group/MedSAM-Agent}{here}.
comment: 23 Pages, 4 Figures
☆ Invisible Clean-Label Backdoor Attacks for Generative Data Augmentation
With the rapid advancement of image generative models, generative data augmentation has become an effective way to enrich training images, especially when only small-scale datasets are available. At the same time, in practical applications, generative data augmentation can be vulnerable to clean-label backdoor attacks, which aim to bypass human inspection. However, based on theoretical analysis and preliminary experiments, we observe that directly applying existing pixel-level clean-label backdoor attack methods (e.g., COMBAT) to generated images results in low attack success rates. This motivates us to move beyond pixel-level triggers and focus instead on the latent feature level. To this end, we propose InvLBA, an invisible clean-label backdoor attack method for generative data augmentation by latent perturbation. We theoretically prove that the generalization of the clean accuracy and attack success rates of InvLBA can be guaranteed. Experiments on multiple datasets show that our method improves the attack success rate by 46.43% on average, with almost no reduction in clean accuracy and high robustness against SOTA defense methods.
☆ PQTNet: Pixel-wise Quantitative Thermography Neural Network for Estimating Defect Depth in Polylactic Acid Parts by Additive Manufacturing
Defect depth quantification in additively manufactured (AM) components remains a significant challenge for non-destructive testing (NDT). This study proposes a Pixel-wise Quantitative Thermography Neural Network (PQT-Net) to address this challenge for polylactic acid (PLA) parts. A key innovation is a novel data augmentation strategy that reconstructs thermal sequence data into two-dimensional stripe images, preserving the complete temporal evolution of heat diffusion for each pixel. The PQT-Net architecture incorporates a pre-trained EfficientNetV2-S backbone and a custom Residual Regression Head (RRH) with learnable parameters to refine outputs. Comparative experiments demonstrate the superiority of PQT-Net over other deep learning models, achieving a minimum Mean Absolute Error (MAE) of 0.0094 mm and a coefficient of determination (R) exceeding 99%. The high precision of PQT-Net underscores its potential for robust quantitative defect characterization in AM.
comment: Under review
☆ RDT2: Exploring the Scaling Limit of UMI Data Towards Zero-Shot Cross-Embodiment Generalization
Vision-Language-Action (VLA) models hold promise for generalist robotics but currently struggle with data scarcity, architectural inefficiencies, and the inability to generalize across different hardware platforms. We introduce RDT2, a robotic foundation model built upon a 7B parameter VLM designed to enable zero-shot deployment on novel embodiments for open-vocabulary tasks. To achieve this, we collected one of the largest open-source robotic datasets--over 10,000 hours of demonstrations in diverse families--using an enhanced, embodiment-agnostic Universal Manipulation Interface (UMI). Our approach employs a novel three-stage training recipe that aligns discrete linguistic knowledge with continuous control via Residual Vector Quantization (RVQ), flow-matching, and distillation for real-time inference. Consequently, RDT2 becomes one of the first models that simultaneously zero-shot generalizes to unseen objects, scenes, instructions, and even robotic platforms. Besides, it outperforms state-of-the-art baselines in dexterous, long-horizon, and dynamic downstream tasks like playing table tennis. See https://rdt-robotics.github.io/rdt2/ for more information.
☆ Full end-to-end diagnostic workflow automation of 3D OCT via foundation model-driven AI for retinal diseases
Optical coherence tomography (OCT) has revolutionized retinal disease diagnosis with its high-resolution and three-dimensional imaging nature, yet its full diagnostic automation in clinical practices remains constrained by multi-stage workflows and conventional single-slice single-task AI models. We present Full-process OCT-based Clinical Utility System (FOCUS), a foundation model-driven framework enabling end-to-end automation of 3D OCT retinal disease diagnosis. FOCUS sequentially performs image quality assessment with EfficientNetV2-S, followed by abnormality detection and multi-disease classification using a fine-tuned Vision Foundation Model. Crucially, FOCUS leverages a unified adaptive aggregation method to intelligently integrate 2D slices-level predictions into comprehensive 3D patient-level diagnosis. Trained and tested on 3,300 patients (40,672 slices), and externally validated on 1,345 patients (18,498 slices) across four different-tier centers and diverse OCT devices, FOCUS achieved high F1 scores for quality assessment (99.01%), abnormally detection (97.46%), and patient-level diagnosis (94.39%). Real-world validation across centers also showed stable performance (F1: 90.22%-95.24%). In human-machine comparisons, FOCUS matched expert performance in abnormality detection (F1: 95.47% vs 90.91%) and multi-disease diagnosis (F1: 93.49% vs 91.35%), while demonstrating better efficiency. FOCUS automates the image-to-diagnosis pipeline, representing a critical advance towards unmanned ophthalmology with a validated blueprint for autonomous screening to enhance population scale retinal care accessibility and efficiency.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ POP: Prefill-Only Pruning for Efficient Large Model Inference
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable capabilities. However, their deployment is hindered by significant computational costs. Existing structured pruning methods, while hardware-efficient, often suffer from significant accuracy degradation. In this paper, we argue that this failure stems from a stage-agnostic pruning approach that overlooks the asymmetric roles between the prefill and decode stages. By introducing a virtual gate mechanism, our importance analysis reveals that deep layers are critical for next-token prediction (decode) but largely redundant for context encoding (prefill). Leveraging this insight, we propose Prefill-Only Pruning (POP), a stage-aware inference strategy that safely omits deep layers during the computationally intensive prefill stage while retaining the full model for the sensitive decode stage. To enable the transition between stages, we introduce independent Key-Value (KV) projections to maintain cache integrity, and a boundary handling strategy to ensure the accuracy of the first generated token. Extensive experiments on Llama-3.1, Qwen3-VL, and Gemma-3 across diverse modalities demonstrate that POP achieves up to 1.37$\times$ speedup in prefill latency with minimal performance loss, effectively overcoming the accuracy-efficiency trade-off limitations of existing structured pruning methods.
☆ LEVIO: Lightweight Embedded Visual Inertial Odometry for Resource-Constrained Devices
Accurate, infrastructure-less sensor systems for motion tracking are essential for mobile robotics and augmented reality (AR) applications. The most popular state-of-the-art visual-inertial odometry (VIO) systems, however, are too computationally demanding for resource-constrained hardware, such as micro-drones and smart glasses. This work presents LEVIO, a fully featured VIO pipeline optimized for ultra-low-power compute platforms, allowing six-degrees-of-freedom (DoF) real-time sensing. LEVIO incorporates established VIO components such as Oriented FAST and Rotated BRIEF (ORB) feature tracking and bundle adjustment, while emphasizing a computationally efficient architecture with parallelization and low memory usage to suit embedded microcontrollers and low-power systems-on-chip (SoCs). The paper proposes and details the algorithmic design choices and the hardware-software co-optimization approach, and presents real-time performance on resource-constrained hardware. LEVIO is validated on a parallel-processing ultra-low-power RISC-V SoC, achieving 20 FPS while consuming less than 100 mW, and benchmarked against public VIO datasets, offering a compelling balance between efficiency and accuracy. To facilitate reproducibility and adoption, the complete implementation is released as open-source.
comment: This article has been accepted for publication in the IEEE Sensors Journal (JSEN)
☆ A3-TTA: Adaptive Anchor Alignment Test-Time Adaptation for Image Segmentation
Test-Time Adaptation (TTA) offers a practical solution for deploying image segmentation models under domain shift without accessing source data or retraining. Among existing TTA strategies, pseudo-label-based methods have shown promising performance. However, they often rely on perturbation-ensemble heuristics (e.g., dropout sampling, test-time augmentation, Gaussian noise), which lack distributional grounding and yield unstable training signals. This can trigger error accumulation and catastrophic forgetting during adaptation. To address this, we propose \textbf{A3-TTA}, a TTA framework that constructs reliable pseudo-labels through anchor-guided supervision. Specifically, we identify well-predicted target domain images using a class compact density metric, under the assumption that confident predictions imply distributional proximity to the source domain. These anchors serve as stable references to guide pseudo-label generation, which is further regularized via semantic consistency and boundary-aware entropy minimization. Additionally, we introduce a self-adaptive exponential moving average strategy to mitigate label noise and stabilize model update during adaptation. Evaluated on both multi-domain medical images (heart structure and prostate segmentation) and natural images, A3-TTA significantly improves average Dice scores by 10.40 to 17.68 percentage points compared to the source model, outperforming several state-of-the-art TTA methods under different segmentation model architectures. A3-TTA also excels in continual TTA, maintaining high performance across sequential target domains with strong anti-forgetting ability. The code will be made publicly available at https://github.com/HiLab-git/A3-TTA.
comment: Accepted by IEEE Transactions on Image Processing
☆ Time Is All It Takes: Spike-Retiming Attacks on Event-Driven Spiking Neural Networks ICLR 2026
Spiking neural networks (SNNs) compute with discrete spikes and exploit temporal structure, yet most adversarial attacks change intensities or event counts instead of timing. We study a timing-only adversary that retimes existing spikes while preserving spike counts and amplitudes in event-driven SNNs, thus remaining rate-preserving. We formalize a capacity-1 spike-retiming threat model with a unified trio of budgets: per-spike jitter $\mathcal{B}_{\infty}$, total delay $\mathcal{B}_{1}$, and tamper count $\mathcal{B}_{0}$. Feasible adversarial examples must satisfy timeline consistency and non-overlap, which makes the search space discrete and constrained. To optimize such retimings at scale, we use projected-in-the-loop (PIL) optimization: shift-probability logits yield a differentiable soft retiming for backpropagation, and a strict projection in the forward pass produces a feasible discrete schedule that satisfies capacity-1, non-overlap, and the chosen budget at every step. The objective maximizes task loss on the projected input and adds a capacity regularizer together with budget-aware penalties, which stabilizes gradients and aligns optimization with evaluation. Across event-driven benchmarks (CIFAR10-DVS, DVS-Gesture, N-MNIST) and diverse SNN architectures, we evaluate under binary and integer event grids and a range of retiming budgets, and also test models trained with timing-aware adversarial training designed to counter timing-only attacks. For example, on DVS-Gesture the attack attains high success (over $90\%$) while touching fewer than $2\%$ of spikes under $\mathcal{B}_{0}$. Taken together, our results show that spike retiming is a practical and stealthy attack surface that current defenses struggle to counter, providing a clear reference for temporal robustness in event-driven SNNs. Code is available at https://github.com/yuyi-sd/Spike-Retiming-Attacks.
comment: Accepted by ICLR 2026
☆ Global Geometry Is Not Enough for Vision Representations
A common assumption in representation learning is that globally well-distributed embeddings support robust and generalizable representations. This focus has shaped both training objectives and evaluation protocols, implicitly treating global geometry as a proxy for representational competence. While global geometry effectively encodes which elements are present, it is often insensitive to how they are composed. We investigate this limitation by testing the ability of geometric metrics to predict compositional binding across 21 vision encoders. We find that standard geometry-based statistics exhibit near-zero correlation with compositional binding. In contrast, functional sensitivity, as measured by the input-output Jacobian, reliably tracks this capability. We further provide an analytic account showing that this disparity arises from objective design, as existing losses explicitly constrain embedding geometry but leave the local input-output mapping unconstrained. These results suggest that global embedding geometry captures only a partial view of representational competence and establish functional sensitivity as a critical complementary axis for modeling composite structure.
☆ HypCBC: Domain-Invariant Hyperbolic Cross-Branch Consistency for Generalizable Medical Image Analysis
Robust generalization beyond training distributions remains a critical challenge for deep neural networks. This is especially pronounced in medical image analysis, where data is often scarce and covariate shifts arise from different hardware devices, imaging protocols, and heterogeneous patient populations. These factors collectively hinder reliable performance and slow down clinical adoption. Despite recent progress, existing learning paradigms primarily rely on the Euclidean manifold, whose flat geometry fails to capture the complex, hierarchical structures present in clinical data. In this work, we exploit the advantages of hyperbolic manifolds to model complex data characteristics. We present the first comprehensive validation of hyperbolic representation learning for medical image analysis and demonstrate statistically significant gains across eleven in-distribution datasets and three ViT models. We further propose an unsupervised, domain-invariant hyperbolic cross-branch consistency constraint. Extensive experiments confirm that our proposed method promotes domain-invariant features and outperforms state-of-the-art Euclidean methods by an average of $+2.1\%$ AUC on three domain generalization benchmarks: Fitzpatrick17k, Camelyon17-WILDS, and a cross-dataset setup for retinal imaging. These datasets span different imaging modalities, data sizes, and label granularities, confirming generalization capabilities across substantially different conditions. The code is available at https://github.com/francescodisalvo05/hyperbolic-cross-branch-consistency .
comment: Accepted to Transactions on Machine Learning Research (TMLR)
☆ LaVPR: Benchmarking Language and Vision for Place Recognition
Visual Place Recognition (VPR) often fails under extreme environmental changes and perceptual aliasing. Furthermore, standard systems cannot perform "blind" localization from verbal descriptions alone, a capability needed for applications such as emergency response. To address these challenges, we introduce LaVPR, a large-scale benchmark that extends existing VPR datasets with over 650,000 rich natural-language descriptions. Using LaVPR, we investigate two paradigms: Multi-Modal Fusion for enhanced robustness and Cross-Modal Retrieval for language-based localization. Our results show that language descriptions yield consistent gains in visually degraded conditions, with the most significant impact on smaller backbones. Notably, adding language allows compact models to rival the performance of much larger vision-only architectures. For cross-modal retrieval, we establish a baseline using Low-Rank Adaptation (LoRA) and Multi-Similarity loss, which substantially outperforms standard contrastive methods across vision-language models. Ultimately, LaVPR enables a new class of localization systems that are both resilient to real-world stochasticity and practical for resource-constrained deployment. Our dataset and code are available at https://github.com/oferidan1/LaVPR.
☆ InstaDrive: Instance-Aware Driving World Models for Realistic and Consistent Video Generation
Autonomous driving relies on robust models trained on high-quality, large-scale multi-view driving videos. While world models offer a cost-effective solution for generating realistic driving videos, they struggle to maintain instance-level temporal consistency and spatial geometric fidelity. To address these challenges, we propose InstaDrive, a novel framework that enhances driving video realism through two key advancements: (1) Instance Flow Guider, which extracts and propagates instance features across frames to enforce temporal consistency, preserving instance identity over time. (2) Spatial Geometric Aligner, which improves spatial reasoning, ensures precise instance positioning, and explicitly models occlusion hierarchies. By incorporating these instance-aware mechanisms, InstaDrive achieves state-of-the-art video generation quality and enhances downstream autonomous driving tasks on the nuScenes dataset. Additionally, we utilize CARLA's autopilot to procedurally and stochastically simulate rare but safety-critical driving scenarios across diverse maps and regions, enabling rigorous safety evaluation for autonomous systems. Our project page is https://shanpoyang654.github.io/InstaDrive/page.html.
☆ EventFlash: Towards Efficient MLLMs for Event-Based Vision
Event-based multimodal large language models (MLLMs) enable robust perception in high-speed and low-light scenarios, addressing key limitations of frame-based MLLMs. However, current event-based MLLMs often rely on dense image-like processing paradigms, overlooking the spatiotemporal sparsity of event streams and resulting in high computational cost. In this paper, we propose EventFlash, a novel and efficient MLLM to explore spatiotemporal token sparsification for reducing data redundancy and accelerating inference. Technically, we build EventMind, a large-scale and scene-diverse dataset with over 500k instruction sets, providing both short and long event stream sequences to support our curriculum training strategy. We then present an adaptive temporal window aggregation module for efficient temporal sampling, which adaptively compresses temporal tokens while retaining key temporal cues. Finally, a sparse density-guided attention module is designed to improve spatial token efficiency by selecting informative regions and suppressing empty or sparse areas. Experimental results show that EventFlash achieves a $12.4\times$ throughput improvement over the baseline (EventFlash-Zero) while maintaining comparable performance. It supports long-range event stream processing with up to 1,000 bins, significantly outperforming the 5-bin limit of EventGPT. We believe EventFlash serves as an efficient foundation model for event-based vision.
☆ Spiral RoPE: Rotate Your Rotary Positional Embeddings in the 2D Plane
Rotary Position Embedding (RoPE) is the de facto positional encoding in large language models due to its ability to encode relative positions and support length extrapolation. When adapted to vision transformers, the standard axial formulation decomposes two-dimensional spatial positions into horizontal and vertical components, implicitly restricting positional encoding to axis-aligned directions. We identify this directional constraint as a fundamental limitation of the standard axial 2D RoPE, which hinders the modeling of oblique spatial relationships that naturally exist in natural images. To overcome this limitation, we propose Spiral RoPE, a simple yet effective extension that enables multi-directional positional encoding by partitioning embedding channels into multiple groups associated with uniformly distributed directions. Each group is rotated according to the projection of the patch position onto its corresponding direction, allowing spatial relationships to be encoded beyond the horizontal and vertical axes. Across a wide range of vision tasks including classification, segmentation, and generation, Spiral RoPE consistently improves performance. Qualitative analysis of attention maps further show that Spiral RoPE exhibits more concentrated activations on semantically relevant objects and better respects local object boundaries, highlighting the importance of multi-directional positional encoding in vision transformers.
☆ PokeFusion Attention: Enhancing Reference-Free Style-Conditioned Generation IJCNN 2026
This paper studies reference-free style-conditioned character generation in text-to-image diffusion models, where high-quality synthesis requires both stable character structure and consistent, fine-grained style expression across diverse prompts. Existing approaches primarily rely on text-only prompting, which is often under-specified for visual style and tends to produce noticeable style drift and geometric inconsistency, or introduce reference-based adapters that depend on external images at inference time, increasing architectural complexity and limiting deployment flexibility.We propose PokeFusion Attention, a lightweight decoder-level cross-attention mechanism that fuses textual semantics with learned style embeddings directly inside the diffusion decoder. By decoupling text and style conditioning at the attention level, our method enables effective reference-free stylized generation while keeping the pretrained diffusion backbone fully frozen.PokeFusion Attention trains only decoder cross-attention layers together with a compact style projection module, resulting in a parameter-efficient and plug-and-play control component that can be easily integrated into existing diffusion pipelines and transferred across different backbones.Experiments on a stylized character generation benchmark (Pokemon-style) demonstrate that our method consistently improves style fidelity, semantic alignment, and character shape consistency compared with representative adapter-based baselines, while maintaining low parameter overhead and inference-time simplicity.
comment: 7 pages, 5 figures. Under review at IJCNN 2026
☆ FARTrack: Fast Autoregressive Visual Tracking with High Performance
Inference speed and tracking performance are two critical evaluation metrics in the field of visual tracking. However, high-performance trackers often suffer from slow processing speeds, making them impractical for deployment on resource-constrained devices. To alleviate this issue, we propose FARTrack, a Fast Auto-Regressive Tracking framework. Since autoregression emphasizes the temporal nature of the trajectory sequence, it can maintain high performance while achieving efficient execution across various devices. FARTrack introduces Task-Specific Self-Distillation and Inter-frame Autoregressive Sparsification, designed from the perspectives of shallow-yet-accurate distillation and redundant-to-essential token optimization, respectively. Task-Specific Self-Distillation achieves model compression by distilling task-specific tokens layer by layer, enhancing the model's inference speed while avoiding suboptimal manual teacher-student layer pairs assignments. Meanwhile, Inter-frame Autoregressive Sparsification sequentially condenses multiple templates, avoiding additional runtime overhead while learning a temporally-global optimal sparsification strategy. FARTrack demonstrates outstanding speed and competitive performance. It delivers an AO of 70.6% on GOT-10k in real-time. Beyond, our fastest model achieves a speed of 343 FPS on the GPU and 121 FPS on the CPU.
☆ ConsisDrive: Identity-Preserving Driving World Models for Video Generation by Instance Mask
Autonomous driving relies on robust models trained on large-scale, high-quality multi-view driving videos. Although world models provide a cost-effective solution for generating realistic driving data, they often suffer from identity drift, where the same object changes its appearance or category across frames due to the absence of instance-level temporal constraints. We introduce ConsisDrive, an identity-preserving driving world model designed to enforce temporal consistency at the instance level. Our framework incorporates two key components: (1) Instance-Masked Attention, which applies instance identity masks and trajectory masks within attention blocks to ensure that visual tokens interact only with their corresponding instance features across spatial and temporal dimensions, thereby preserving object identity consistency; and (2) Instance-Masked Loss, which adaptively emphasizes foreground regions with probabilistic instance masking, reducing background noise while maintaining overall scene fidelity. By integrating these mechanisms, ConsisDrive achieves state-of-the-art driving video generation quality and demonstrates significant improvements in downstream autonomous driving tasks on the nuScenes dataset. Our project page is https://shanpoyang654.github.io/ConsisDrive/page.html.
☆ VIRAL: Visual In-Context Reasoning via Analogy in Diffusion Transformers
Replicating In-Context Learning (ICL) in computer vision remains challenging due to task heterogeneity. We propose \textbf{VIRAL}, a framework that elicits visual reasoning from a pre-trained image editing model by formulating ICL as conditional generation via visual analogy ($x_s : x_t :: x_q : y_q$). We adapt a frozen Diffusion Transformer (DiT) using role-aware multi-image conditioning and introduce a Mixture-of-Experts LoRA to mitigate gradient interference across diverse tasks. Additionally, to bridge the gaps in current visual context datasets, we curate a large-scale dataset spanning perception, restoration, and editing. Experiments demonstrate that VIRAL outperforms existing methods, validating that a unified V-ICL paradigm can handle the majority of visual tasks, including open-domain editing. Our code is available at https://anonymous.4open.science/r/VIRAL-744A
☆ Spectral Evolution Search: Efficient Inference-Time Scaling for Reward-Aligned Image Generation
Inference-time scaling offers a versatile paradigm for aligning visual generative models with downstream objectives without parameter updates. However, existing approaches that optimize the high-dimensional initial noise suffer from severe inefficiency, as many search directions exert negligible influence on the final generation. We show that this inefficiency is closely related to a spectral bias in generative dynamics: model sensitivity to initial perturbations diminishes rapidly as frequency increases. Building on this insight, we propose Spectral Evolution Search (SES), a plug-and-play framework for initial noise optimization that executes gradient-free evolutionary search within a low-frequency subspace. Theoretically, we derive the Spectral Scaling Prediction from perturbation propagation dynamics, which explains the systematic differences in the impact of perturbations across frequencies. Extensive experiments demonstrate that SES significantly advances the Pareto frontier of generation quality versus computational cost, consistently outperforming strong baselines under equivalent budgets.
☆ WebSplatter: Enabling Cross-Device Efficient Gaussian Splatting in Web Browsers via WebGPU
We present WebSplatter, an end-to-end GPU rendering pipeline for the heterogeneous web ecosystem. Unlike naive ports, WebSplatter introduces a wait-free hierarchical radix sort that circumvents the lack of global atomics in WebGPU, ensuring deterministic execution across diverse hardware. Furthermore, we propose an opacity-aware geometry culling stage that dynamically prunes splats before rasterization, significantly reducing overdraw and peak memory footprint. Evaluation demonstrates that WebSplatter consistently achieves 1.2$\times$ to 4.5$\times$ speedups over state-of-the-art web viewers.
Hand3R: Online 4D Hand-Scene Reconstruction in the Wild
For Embodied AI, jointly reconstructing dynamic hands and the dense scene context is crucial for understanding physical interaction. However, most existing methods recover isolated hands in local coordinates, overlooking the surrounding 3D environment. To address this, we present Hand3R, the first online framework for joint 4D hand-scene reconstruction from monocular video. Hand3R synergizes a pre-trained hand expert with a 4D scene foundation model via a scene-aware visual prompting mechanism. By injecting high-fidelity hand priors into a persistent scene memory, our approach enables simultaneous reconstruction of accurate hand meshes and dense metric-scale scene geometry in a single forward pass. Experiments demonstrate that Hand3R bypasses the reliance on offline optimization and delivers competitive performance in both local hand reconstruction and global positioning.
☆ From Single Scan to Sequential Consistency: A New Paradigm for LIDAR Relocalization
LiDAR relocalization aims to estimate the global 6-DoF pose of a sensor in the environment. However, existing regression-based approaches are prone to dynamic or ambiguous scenarios, as they either solely rely on single-frame inference or neglect the spatio-temporal consistency across scans. In this paper, we propose TempLoc, a new LiDAR relocalization framework that enhances the robustness of localization by effectively modeling sequential consistency. Specifically, a Global Coordinate Estimation module is first introduced to predict point-wise global coordinates and associated uncertainties for each LiDAR scan. A Prior Coordinate Generation module is then presented to estimate inter-frame point correspondences by the attention mechanism. Lastly, an Uncertainty-Guided Coordinate Fusion module is deployed to integrate both predictions of point correspondence in an end-to-end fashion, yielding a more temporally consistent and accurate global 6-DoF pose. Experimental results on the NCLT and Oxford Robot-Car benchmarks show that our TempLoc outperforms stateof-the-art methods by a large margin, demonstrating the effectiveness of temporal-aware correspondence modeling in LiDAR relocalization. Our code will be released soon.
comment: Nothing
☆ LSGQuant: Layer-Sensitivity Guided Quantization for One-Step Diffusion Real-World Video Super-Resolution
One-Step Diffusion Models have demonstrated promising capability and fast inference in video super-resolution (VSR) for real-world. Nevertheless, the substantial model size and high computational cost of Diffusion Transformers (DiTs) limit downstream applications. While low-bit quantization is a common approach for model compression, the effectiveness of quantized models is challenged by the high dynamic range of input latent and diverse layer behaviors. To deal with these challenges, we introduce LSGQuant, a layer-sensitivity guided quantizing approach for one-step diffusion-based real-world VSR. Our method incorporates a Dynamic Range Adaptive Quantizer (DRAQ) to fit video token activations. Furthermore, we estimate layer sensitivity and implement a Variance-Oriented Layer Training Strategy (VOLTS) by analyzing layer-wise statistics in calibration. We also introduce Quantization-Aware Optimization (QAO) to jointly refine the quantized branch and a retained high-precision branch. Extensive experiments demonstrate that our method has nearly performance to origin model with full-precision and significantly exceeds existing quantization techniques. Code is available at: https://github.com/zhengchen1999/LSGQuant.
comment: Code is available at: https://github.com/zhengchen1999/LSGQuant
☆ BinaryDemoire: Moiré-Aware Binarization for Image Demoiréing
Image demoiréing aims to remove structured moiré artifacts in recaptured imagery, where degradations are highly frequency-dependent and vary across scales and directions. While recent deep networks achieve high-quality restoration, their full-precision designs remain costly for deployment. Binarization offers an extreme compression regime by quantizing both activations and weights to 1-bit. Yet, it has been rarely studied for demoiréing and performs poorly when naively applied. In this work, we propose BinaryDemoire, a binarized demoiréing framework that explicitly accommodates the frequency structure of moiré degradations. First, we introduce a moiré-aware binary gate (MABG) that extracts lightweight frequency descriptors together with activation statistics. It predicts channel-wise gating coefficients to condition the aggregation of binary convolution responses. Second, we design a shuffle-grouped residual adapter (SGRA) that performs structured sparse shortcut alignment. It further integrates interleaved mixing to promote information exchange across different channel partitions. Extensive experiments on four benchmarks demonstrate that the proposed BinaryDemoire surpasses current binarization methods. Code: https://github.com/zhengchen1999/BinaryDemoire.
comment: Code is available at: https://github.com/zhengchen1999/BinaryDemoire
☆ Human-in-the-loop Adaptation in Group Activity Feature Learning for Team Sports Video Retrieval
This paper proposes human-in-the-loop adaptation for Group Activity Feature Learning (GAFL) without group activity annotations. This human-in-the-loop adaptation is employed in a group-activity video retrieval framework to improve its retrieval performance. Our method initially pre-trains the GAF space based on the similarity of group activities in a self-supervised manner, unlike prior work that classifies videos into pre-defined group activity classes in a supervised learning manner. Our interactive fine-tuning process updates the GAF space to allow a user to better retrieve videos similar to query videos given by the user. In this fine-tuning, our proposed data-efficient video selection process provides several videos, which are selected from a video database, to the user in order to manually label these videos as positive or negative. These labeled videos are used to update (i.e., fine-tune) the GAF space, so that the positive and negative videos move closer to and farther away from the query videos through contrastive learning. Our comprehensive experimental results on two team sports datasets validate that our method significantly improves the retrieval performance. Ablation studies also demonstrate that several components in our human-in-the-loop adaptation contribute to the improvement of the retrieval performance. Code: https://github.com/chihina/GAFL-FINE-CVIU.
comment: Accepted to Computer Vision and Image Understanding (CVIU)
☆ Fully Kolmogorov-Arnold Deep Model in Medical Image Segmentation
Deeply stacked KANs are practically impossible due to high training difficulties and substantial memory requirements. Consequently, existing studies can only incorporate few KAN layers, hindering the comprehensive exploration of KANs. This study overcomes these limitations and introduces the first fully KA-based deep model, demonstrating that KA-based layers can entirely replace traditional architectures in deep learning and achieve superior learning capacity. Specifically, (1) the proposed Share-activation KAN (SaKAN) reformulates Sprecher's variant of Kolmogorov-Arnold representation theorem, which achieves better optimization due to its simplified parameterization and denser training samples, to ease training difficulty, (2) this paper indicates that spline gradients contribute negligibly to training while consuming huge GPU memory, thus proposes the Grad-Free Spline to significantly reduce memory usage and computational overhead. (3) Building on these two innovations, our ALL U-KAN is the first representative implementation of fully KA-based deep model, where the proposed KA and KAonv layers completely replace FC and Conv layers. Extensive evaluations on three medical image segmentation tasks confirm the superiority of the full KA-based architecture compared to partial KA-based and traditional architectures, achieving all higher segmentation accuracy. Compared to directly deeply stacked KAN, ALL U-KAN achieves 10 times reduction in parameter count and reduces memory consumption by more than 20 times, unlocking the new explorations into deep KAN architectures.
comment: 11 pages, 5 figures, conference
☆ Diversity-Preserved Distribution Matching Distillation for Fast Visual Synthesis
Distribution matching distillation (DMD) aligns a multi-step generator with its few-step counterpart to enable high-quality generation under low inference cost. However, DMD tends to suffer from mode collapse, as its reverse-KL formulation inherently encourages mode-seeking behavior, for which existing remedies typically rely on perceptual or adversarial regularization, thereby incurring substantial computational overhead and training instability. In this work, we propose a role-separated distillation framework that explicitly disentangles the roles of distilled steps: the first step is dedicated to preserving sample diversity via a target-prediction (e.g., v-prediction) objective, while subsequent steps focus on quality refinement under the standard DMD loss, with gradients from the DMD objective blocked at the first step. We term this approach Diversity-Preserved DMD (DP-DMD), which, despite its simplicity -- no perceptual backbone, no discriminator, no auxiliary networks, and no additional ground-truth images -- preserves sample diversity while maintaining visual quality on par with state-of-the-art methods in extensive text-to-image experiments.
☆ FSOD-VFM: Few-Shot Object Detection with Vision Foundation Models and Graph Diffusion ICLR 2026
In this paper, we present FSOD-VFM: Few-Shot Object Detectors with Vision Foundation Models, a framework that leverages vision foundation models to tackle the challenge of few-shot object detection. FSOD-VFM integrates three key components: a universal proposal network (UPN) for category-agnostic bounding box generation, SAM2 for accurate mask extraction, and DINOv2 features for efficient adaptation to new object categories. Despite the strong generalization capabilities of foundation models, the bounding boxes generated by UPN often suffer from overfragmentation, covering only partial object regions and leading to numerous small, false-positive proposals rather than accurate, complete object detections. To address this issue, we introduce a novel graph-based confidence reweighting method. In our approach, predicted bounding boxes are modeled as nodes in a directed graph, with graph diffusion operations applied to propagate confidence scores across the network. This reweighting process refines the scores of proposals, assigning higher confidence to whole objects and lower confidence to local, fragmented parts. This strategy improves detection granularity and effectively reduces the occurrence of false-positive bounding box proposals. Through extensive experiments on Pascal-5$^i$, COCO-20$^i$, and CD-FSOD datasets, we demonstrate that our method substantially outperforms existing approaches, achieving superior performance without requiring additional training. Notably, on the challenging CD-FSOD dataset, which spans multiple datasets and domains, our FSOD-VFM achieves 31.6 AP in the 10-shot setting, substantially outperforming previous training-free methods that reach only 21.4 AP. Code is available at: https://intellindust-ai-lab.github.io/projects/FSOD-VFM.
comment: Accepted by ICLR 2026. Code is available at: \url{https://intellindust-ai-lab.github.io/projects/FSOD-VFM}
☆ SwiftVLM: Efficient Vision-Language Model Inference via Cross-Layer Token Bypass
Visual token pruning is a promising approach for reducing the computational cost of vision-language models (VLMs), and existing methods often rely on early pruning decisions to improve efficiency. While effective on coarse-grained reasoning tasks, they suffer from significant performance degradation on tasks requiring fine-grained visual details. Through layer-wise analysis, we reveal substantial discrepancies in visual token importance across layers, showing that tokens deemed unimportant at shallow layers can later become highly relevant for text-conditioned reasoning. To avoid irreversible critical information loss caused by premature pruning, we introduce a new pruning paradigm, termed bypass, which preserves unselected visual tokens and forwards them to subsequent pruning stages for re-evaluation. Building on this paradigm, we propose SwiftVLM, a simple and training-free method that performs pruning at model-specific layers with strong visual token selection capability, while enabling independent pruning decisions across layers. Experiments across multiple VLMs and benchmarks demonstrate that SwiftVLM consistently outperforms existing pruning strategies, achieving superior accuracy-efficiency trade-offs and more faithful visual token selection behavior.
☆ FinMTM: A Multi-Turn Multimodal Benchmark for Financial Reasoning and Agent Evaluation
The financial domain poses substantial challenges for vision-language models (VLMs) due to specialized chart formats and knowledge-intensive reasoning requirements. However, existing financial benchmarks are largely single-turn and rely on a narrow set of question formats, limiting comprehensive evaluation in realistic application scenarios. To address this gap, we propose FinMTM, a multi-turn multimodal benchmark that expands diversity along both data and task dimensions. On the data side, we curate and annotate 11{,}133 bilingual (Chinese and English) financial QA pairs grounded in financial visuals, including candlestick charts, statistical plots, and report figures. On the task side, FinMTM covers single- and multiple-choice questions, multi-turn open-ended dialogues, and agent-based tasks. We further design task-specific evaluation protocols, including a set-overlap scoring rule for multiple-choice questions, a weighted combination of turn-level and session-level scores for multi-turn dialogues, and a composite metric that integrates planning quality with final outcomes for agent tasks. Extensive experimental evaluation of 22 VLMs reveal their limitations in fine-grained visual perception, long-context reasoning, and complex agent workflows.
☆ Flexible Geometric Guidance for Probabilistic Human Pose Estimation with Diffusion Models
3D human pose estimation from 2D images is a challenging problem due to depth ambiguity and occlusion. Because of these challenges the task is underdetermined, where there exists multiple -- possibly infinite -- poses that are plausible given the image. Despite this, many prior works assume the existence of a deterministic mapping and estimate a single pose given an image. Furthermore, methods based on machine learning require a large amount of paired 2D-3D data to train and suffer from generalization issues to unseen scenarios. To address both of these issues, we propose a framework for pose estimation using diffusion models, which enables sampling from a probability distribution over plausible poses which are consistent with a 2D image. Our approach falls under the guidance framework for conditional generation, and guides samples from an unconditional diffusion model, trained only on 3D data, using the gradients of the heatmaps from a 2D keypoint detector. We evaluate our method on the Human 3.6M dataset under best-of-$m$ multiple hypothesis evaluation, showing state-of-the-art performance among methods which do not require paired 2D-3D data for training. We additionally evaluate the generalization ability using the MPI-INF-3DHP and 3DPW datasets and demonstrate competitive performance. Finally, we demonstrate the flexibility of our framework by using it for novel tasks including pose generation and pose completion, without the need to train bespoke conditional models. We make code available at https://github.com/fsnelgar/diffusion_pose .
☆ Feature, Alignment, and Supervision in Category Learning: A Comparative Approach with Children and Neural Networks
Understanding how humans and machines learn from sparse data is central to cognitive science and machine learning. Using a species-fair design, we compare children and convolutional neural networks (CNNs) in a few-shot semi-supervised category learning task. Both learners are exposed to novel object categories under identical conditions. Learners receive mixtures of labeled and unlabeled exemplars while we vary supervision (1/3/6 labels), target feature (size, shape, pattern), and perceptual alignment (high/low). We find that children generalize rapidly from minimal labels but show strong feature-specific biases and sensitivity to alignment. CNNs show a different interaction profile: added supervision improves performance, but both alignment and feature structure moderate the impact additional supervision has on learning. These results show that human-model comparisons must be drawn under the right conditions, emphasizing interactions among supervision, feature structure, and alignment rather than overall accuracy.
☆ Beyond Cropping and Rotation: Automated Evolution of Powerful Task-Specific Augmentations with Generative Models
Data augmentation has long been a cornerstone for reducing overfitting in vision models, with methods like AutoAugment automating the design of task-specific augmentations. Recent advances in generative models, such as conditional diffusion and few-shot NeRFs, offer a new paradigm for data augmentation by synthesizing data with significantly greater diversity and realism. However, unlike traditional augmentations like cropping or rotation, these methods introduce substantial changes that enhance robustness but also risk degrading performance if the augmentations are poorly matched to the task. In this work, we present EvoAug, an automated augmentation learning pipeline, which leverages these generative models alongside an efficient evolutionary algorithm to learn optimal task-specific augmentations. Our pipeline introduces a novel approach to image augmentation that learns stochastic augmentation trees that hierarchically compose augmentations, enabling more structured and adaptive transformations. We demonstrate strong performance across fine-grained classification and few-shot learning tasks. Notably, our pipeline discovers augmentations that align with domain knowledge, even in low-data settings. These results highlight the potential of learned generative augmentations, unlocking new possibilities for robust model training.
☆ Gromov Wasserstein Optimal Transport for Semantic Correspondences
Establishing correspondences between image pairs is a long studied problem in computer vision. With recent large-scale foundation models showing strong zero-shot performance on downstream tasks including classification and segmentation, there has been interest in using the internal feature maps of these models for the semantic correspondence task. Recent works observe that features from DINOv2 and Stable Diffusion (SD) are complementary, the former producing accurate but sparse correspondences, while the latter produces spatially consistent correspondences. As a result, current state-of-the-art methods for semantic correspondence involve combining features from both models in an ensemble. While the performance of these methods is impressive, they are computationally expensive, requiring evaluating feature maps from large-scale foundation models. In this work we take a different approach, instead replacing SD features with a superior matching algorithm which is imbued with the desirable spatial consistency property. Specifically, we replace the standard nearest neighbours matching with an optimal transport algorithm that includes a Gromov Wasserstein spatial smoothness prior. We show that we can significantly boost the performance of the DINOv2 baseline, and be competitive and sometimes surpassing state-of-the-art methods using Stable Diffusion features, while being 5--10x more efficient. We make code available at https://github.com/fsnelgar/semantic_matching_gwot .
☆ Neural Predictor-Corrector: Solving Homotopy Problems with Reinforcement Learning
The Homotopy paradigm, a general principle for solving challenging problems, appears across diverse domains such as robust optimization, global optimization, polynomial root-finding, and sampling. Practical solvers for these problems typically follow a predictor-corrector (PC) structure, but rely on hand-crafted heuristics for step sizes and iteration termination, which are often suboptimal and task-specific. To address this, we unify these problems under a single framework, which enables the design of a general neural solver. Building on this unified view, we propose Neural Predictor-Corrector (NPC), which replaces hand-crafted heuristics with automatically learned policies. NPC formulates policy selection as a sequential decision-making problem and leverages reinforcement learning to automatically discover efficient strategies. To further enhance generalization, we introduce an amortized training mechanism, enabling one-time offline training for a class of problems and efficient online inference on new instances. Experiments on four representative homotopy problems demonstrate that our method generalizes effectively to unseen instances. It consistently outperforms classical and specialized baselines in efficiency while demonstrating superior stability across tasks, highlighting the value of unifying homotopy methods into a single neural framework.
☆ A generalizable large-scale foundation model for musculoskeletal radiographs
Artificial intelligence (AI) has shown promise in detecting and characterizing musculoskeletal diseases from radiographs. However, most existing models remain task-specific, annotation-dependent, and limited in generalizability across diseases and anatomical regions. Although a generalizable foundation model trained on large-scale musculoskeletal radiographs is clinically needed, publicly available datasets remain limited in size and lack sufficient diversity to enable training across a wide range of musculoskeletal conditions and anatomical sites. Here, we present SKELEX, a large-scale foundation model for musculoskeletal radiographs, trained using self-supervised learning on 1.2 million diverse, condition-rich images. The model was evaluated on 12 downstream diagnostic tasks and generally outperformed baselines in fracture detection, osteoarthritis grading, and bone tumor classification. Furthermore, SKELEX demonstrated zero-shot abnormality localization, producing error maps that identified pathologic regions without task-specific training. Building on this capability, we developed an interpretable, region-guided model for predicting bone tumors, which maintained robust performance on independent external datasets and was deployed as a publicly accessible web application. Overall, SKELEX provides a scalable, label-efficient, and generalizable AI framework for musculoskeletal imaging, establishing a foundation for both clinical translation and data-efficient research in musculoskeletal radiology.
☆ Finding Optimal Video Moment without Training: Gaussian Boundary Optimization for Weakly Supervised Video Grounding
Weakly supervised temporal video grounding aims to localize query-relevant segments in untrimmed videos using only video-sentence pairs, without requiring ground-truth segment annotations that specify exact temporal boundaries. Recent approaches tackle this task by utilizing Gaussian-based temporal proposals to represent query-relevant segments. However, their inference strategies rely on heuristic mappings from Gaussian parameters to segment boundaries, resulting in suboptimal localization performance. To address this issue, we propose Gaussian Boundary Optimization (GBO), a novel inference framework that predicts segment boundaries by solving a principled optimization problem that balances proposal coverage and segment compactness. We derive a closed-form solution for this problem and rigorously analyze the optimality conditions under varying penalty regimes. Beyond its theoretical foundations, GBO offers several practical advantages: it is training-free and compatible with both single-Gaussian and mixture-based proposal architectures. Our experiments show that GBO significantly improves localization, achieving state-of-the-art results across standard benchmarks. Extensive experiments demonstrate the efficiency and generalizability of GBO across various proposal schemes. The code is available at \href{https://github.com/sunoh-kim/gbo}{https://github.com/sunoh-kim/gbo}.
comment: Accepted in IEEE TMM
☆ JRDB-Pose3D: A Multi-person 3D Human Pose and Shape Estimation Dataset for Robotics
Real-world scenes are inherently crowded. Hence, estimating 3D poses of all nearby humans, tracking their movements over time, and understanding their activities within social and environmental contexts are essential for many applications, such as autonomous driving, robot perception, robot navigation, and human-robot interaction. However, most existing 3D human pose estimation datasets primarily focus on single-person scenes or are collected in controlled laboratory environments, which restricts their relevance to real-world applications. To bridge this gap, we introduce JRDB-Pose3D, which captures multi-human indoor and outdoor environments from a mobile robotic platform. JRDB-Pose3D provides rich 3D human pose annotations for such complex and dynamic scenes, including SMPL-based pose annotations with consistent body-shape parameters and track IDs for each individual over time. JRDB-Pose3D contains, on average, 5-10 human poses per frame, with some scenes featuring up to 35 individuals simultaneously. The proposed dataset presents unique challenges, including frequent occlusions, truncated bodies, and out-of-frame body parts, which closely reflect real-world environments. Moreover, JRDB-Pose3D inherits all available annotations from the JRDB dataset, such as 2D pose, information about social grouping, activities, and interactions, full-scene semantic masks with consistent human- and object-level tracking, and detailed annotations for each individual, such as age, gender, and race, making it a holistic dataset for a wide range of downstream perception and human-centric understanding tasks.
☆ IVC-Prune: Revealing the Implicit Visual Coordinates in LVLMs for Vision Token Pruning ICLR 2026
Large Vision-Language Models (LVLMs) achieve impressive performance across multiple tasks. A significant challenge, however, is their prohibitive inference cost when processing high-resolution visual inputs. While visual token pruning has emerged as a promising solution, existing methods that primarily focus on semantic relevance often discard tokens that are crucial for spatial reasoning. We address this gap through a novel insight into \emph{how LVLMs process spatial reasoning}. Specifically, we reveal that LVLMs implicitly establish visual coordinate systems through Rotary Position Embeddings (RoPE), where specific token positions serve as \textbf{implicit visual coordinates} (IVC tokens) that are essential for spatial reasoning. Based on this insight, we propose \textbf{IVC-Prune}, a training-free, prompt-aware pruning strategy that retains both IVC tokens and semantically relevant foreground tokens. IVC tokens are identified by theoretically analyzing the mathematical properties of RoPE, targeting positions at which its rotation matrices approximate identity matrix or the $90^\circ$ rotation matrix. Foreground tokens are identified through a robust two-stage process: semantic seed discovery followed by contextual refinement via value-vector similarity. Extensive evaluations across four representative LVLMs and twenty diverse benchmarks show that IVC-Prune reduces visual tokens by approximately 50\% while maintaining $\geq$ 99\% of the original performance and even achieving improvements on several benchmarks. Source codes are available at https://github.com/FireRedTeam/IVC-Prune.
comment: Accepted to ICLR 2026
☆ SAFE-KD: Risk-Controlled Early-Exit Distillation for Vision Backbones IJCNN
Early-exit networks reduce inference cost by allowing ``easy'' inputs to stop early, but practical deployment hinges on knowing \emph{when} early exit is safe. We introduce SAFE-KD, a universal multi-exit wrapper for modern vision backbones that couples hierarchical distillation with \emph{conformal risk control}. SAFE-KD attaches lightweight exit heads at intermediate depths, distills a strong teacher into all exits via Decoupled Knowledge Distillation (DKD), and enforces deep-to-shallow consistency between exits. At inference, we calibrate per-exit stopping thresholds on a held-out set using conformal risk control (CRC) to guarantee a user-specified \emph{selective} misclassification risk (among the samples that exit early) under exchangeability. Across multiple datasets and architectures, SAFE-KD yields improved accuracy compute trade-offs, stronger calibration, and robust performance under corruption while providing finite-sample risk guarantees.
comment: Submitted to IJCNN
☆ HP-GAN: Harnessing pretrained networks for GAN improvement with FakeTwins and discriminator consistency
Generative Adversarial Networks (GANs) have made significant progress in enhancing the quality of image synthesis. Recent methods frequently leverage pretrained networks to calculate perceptual losses or utilize pretrained feature spaces. In this paper, we extend the capabilities of pretrained networks by incorporating innovative self-supervised learning techniques and enforcing consistency between discriminators during GAN training. Our proposed method, named HP-GAN, effectively exploits neural network priors through two primary strategies: FakeTwins and discriminator consistency. FakeTwins leverages pretrained networks as encoders to compute a self-supervised loss and applies this through the generated images to train the generator, thereby enabling the generation of more diverse and high quality images. Additionally, we introduce a consistency mechanism between discriminators that evaluate feature maps extracted from Convolutional Neural Network (CNN) and Vision Transformer (ViT) feature networks. Discriminator consistency promotes coherent learning among discriminators and enhances training robustness by aligning their assessments of image quality. Our extensive evaluation across seventeen datasets-including scenarios with large, small, and limited data, and covering a variety of image domains-demonstrates that HP-GAN consistently outperforms current state-of-the-art methods in terms of Fréchet Inception Distance (FID), achieving significant improvements in image diversity and quality. Code is available at: https://github.com/higun2/HP-GAN.
comment: Accepted manuscript. This is the accepted version of the article published in Neural Networks
☆ Bongards at the Boundary of Perception and Reasoning: Programs or Language?
Vision-Language Models (VLMs) have made great strides in everyday visual tasks, such as captioning a natural image, or answering commonsense questions about such images. But humans possess the puzzling ability to deploy their visual reasoning abilities in radically new situations, a skill rigorously tested by the classic set of visual reasoning challenges known as the Bongard problems. We present a neurosymbolic approach to solving these problems: given a hypothesized solution rule for a Bongard problem, we leverage LLMs to generate parameterized programmatic representations for the rule and perform parameter fitting using Bayesian optimization. We evaluate our method on classifying Bongard problem images given the ground truth rule, as well as on solving the problems from scratch.
comment: 6 pages, 5 figures
☆ MUSE: A Multi-agent Framework for Unconstrained Story Envisioning via Closed-Loop Cognitive Orchestration
Generating long-form audio-visual stories from a short user prompt remains challenging due to an intent-execution gap, where high-level narrative intent must be preserved across coherent, shot-level multimodal generation over long horizons. Existing approaches typically rely on feed-forward pipelines or prompt-only refinement, which often leads to semantic drift and identity inconsistency as sequences grow longer. We address this challenge by formulating storytelling as a closed-loop constraint enforcement problem and propose MUSE, a multi-agent framework that coordinates generation through an iterative plan-execute-verify-revise loop. MUSE translates narrative intent into explicit, machine-executable controls over identity, spatial composition, and temporal continuity, and applies targeted multimodal feedback to correct violations during generation. To evaluate open-ended storytelling without ground-truth references, we introduce MUSEBench, a reference-free evaluation protocol validated by human judgments. Experiments demonstrate that MUSE substantially improves long-horizon narrative coherence, cross-modal identity consistency, and cinematic quality compared with representative baselines.
☆ A Vision-Based Analysis of Congestion Pricing in New York City
We examine the impact of New York City's congestion pricing program through automated analysis of traffic camera data. Our computer vision pipeline processes footage from over 900 cameras distributed throughout Manhattan and New York, comparing traffic patterns from November 2024 through the program's implementation in January 2025 until January 2026. We establish baseline traffic patterns and identify systematic changes in vehicle density across the monitored region.
☆ Thinking inside the Convolution for Image Inpainting: Reconstructing Texture via Structure under Global and Local Side
Image inpainting has earned substantial progress, owing to the encoder-and-decoder pipeline, which is benefited from the Convolutional Neural Networks (CNNs) with convolutional downsampling to inpaint the masked regions semantically from the known regions within the encoder, coupled with an upsampling process from the decoder for final inpainting output. Recent studies intuitively identify the high-frequency structure and low-frequency texture to be extracted by CNNs from the encoder, and subsequently for a desirable upsampling recovery. However, the existing arts inevitably overlook the information loss for both structure and texture feature maps during the convolutional downsampling process, hence suffer from a non-ideal upsampling output. In this paper, we systematically answer whether and how the structure and texture feature map can mutually help to alleviate the information loss during the convolutional downsampling. Given the structure and texture feature maps, we adopt the statistical normalization and denormalization strategy for the reconstruction guidance during the convolutional downsampling process. The extensive experimental results validate its advantages to the state-of-the-arts over the images from low-to-high resolutions including 256*256 and 512*512, especially holds by substituting all the encoders by ours. Our code is available at https://github.com/htyjers/ConvInpaint-TSGL
comment: 17 pages, 17 figures
☆ VOILA: Value-of-Information Guided Fidelity Selection for Cost-Aware Multimodal Question Answering
Despite significant costs from retrieving and processing high-fidelity visual inputs, most multimodal vision-language systems operate at fixed fidelity levels. We introduce VOILA, a framework for Value-Of-Information-driven adaptive fidelity selection in Visual Question Answering (VQA) that optimizes what information to retrieve before model execution. Given a query, VOILA uses a two-stage pipeline: a gradient-boosted regressor estimates correctness likelihood at each fidelity from question features alone, then an isotonic calibrator refines these probabilities for reliable decision-making. The system selects the minimum-cost fidelity maximizing expected utility given predicted accuracy and retrieval costs. We evaluate VOILA across three deployment scenarios using five datasets (VQA-v2, GQA, TextVQA, LoCoMo, FloodNet) and six Vision-Language Models (VLMs) with 7B-235B parameters. VOILA consistently achieves 50-60% cost reductions while retaining 90-95% of full-resolution accuracy across diverse query types and model architectures, demonstrating that pre-retrieval fidelity selection is vital to optimize multimodal inference under resource constraints.
☆ Video-OPD: Efficient Post-Training of Multimodal Large Language Models for Temporal Video Grounding via On-Policy Distillation
Reinforcement learning has emerged as a principled post-training paradigm for Temporal Video Grounding (TVG) due to its on-policy optimization, yet existing GRPO-based methods remain fundamentally constrained by sparse reward signals and substantial computational overhead. We propose Video-OPD, an efficient post-training framework for TVG inspired by recent advances in on-policy distillation. Video-OPD optimizes trajectories sampled directly from the current policy, thereby preserving alignment between training and inference distributions, while a frontier teacher supplies dense, token-level supervision via a reverse KL divergence objective. This formulation preserves the on-policy property critical for mitigating distributional shift, while converting sparse, episode-level feedback into fine-grained, step-wise learning signals. Building on Video-OPD, we introduce Teacher-Validated Disagreement Focusing (TVDF), a lightweight training curriculum that iteratively prioritizes trajectories that are both teacher-reliable and maximally informative for the student, thereby improving training efficiency. Empirical results demonstrate that Video-OPD consistently outperforms GRPO while achieving substantially faster convergence and lower computational cost, establishing on-policy distillation as an effective alternative to conventional reinforcement learning for TVG.
☆ SharpTimeGS: Sharp and Stable Dynamic Gaussian Splatting via Lifespan Modulation
Novel view synthesis of dynamic scenes is fundamental to achieving photorealistic 4D reconstruction and immersive visual experiences. Recent progress in Gaussian-based representations has significantly improved real-time rendering quality, yet existing methods still struggle to maintain a balance between long-term static and short-term dynamic regions in both representation and optimization. To address this, we present SharpTimeGS, a lifespan-aware 4D Gaussian framework that achieves temporally adaptive modeling of both static and dynamic regions under a unified representation. Specifically, we introduce a learnable lifespan parameter that reformulates temporal visibility from a Gaussian-shaped decay into a flat-top profile, allowing primitives to remain consistently active over their intended duration and avoiding redundant densification. In addition, the learned lifespan modulates each primitives' motion, reducing drift in long-lived static points while retaining unrestricted motion for short-lived dynamic ones. This effectively decouples motion magnitude from temporal duration, improving long-term stability without compromising dynamic fidelity. Moreover, we design a lifespan-velocity-aware densification strategy that mitigates optimization imbalance between static and dynamic regions by allocating more capacity to regions with pronounced motion while keeping static areas compact and stable. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art performance while supporting real-time rendering up to 4K resolution at 100 FPS on one RTX 4090.
☆ Aligning Forest and Trees in Images and Long Captions for Visually Grounded Understanding
Large vision-language models such as CLIP struggle with long captions because they align images and texts as undifferentiated wholes. Fine-grained vision-language understanding requires hierarchical semantics capturing both global context and localized details across visual and textual domains. Yet linguistic hierarchies from syntax or semantics rarely match visual organization, and purely visual hierarchies tend to fragment scenes into appearance-driven parts without semantic focus. We propose CAFT (Cross-domain Alignment of Forests and Trees), a hierarchical image-text representation learning framework that aligns global and local semantics across images and long captions without pixel-level supervision. Coupling a fine-to-coarse visual encoder with a hierarchical text transformer, it uses a hierarchical alignment loss that matches whole images with whole captions while biasing region-sentence correspondences, so that coarse semantics are built from fine-grained evidence rather than from aggregation untethered to part-level grounding. Trained on 30M image-text pairs, CAFT achieves state-of-the-art performance on six long-text retrieval benchmarks and exhibits strong scaling behavior. Experiments show that hierarchical cross-domain alignment enables fine-grained, visually grounded image-text representations to emerge without explicit region-level supervision.
comment: Preprint
☆ SceneLinker: Compositional 3D Scene Generation via Semantic Scene Graph from RGB Sequences
We introduce SceneLinker, a novel framework that generates compositional 3D scenes via semantic scene graph from RGB sequences. To adaptively experience Mixed Reality (MR) content based on each user's space, it is essential to generate a 3D scene that reflects the real-world layout by compactly capturing the semantic cues of the surroundings. Prior works struggled to fully capture the contextual relationship between objects or mainly focused on synthesizing diverse shapes, making it challenging to generate 3D scenes aligned with object arrangements. We address these challenges by designing a graph network with cross-check feature attention for scene graph prediction and constructing a graph-variational autoencoder (graph-VAE), which consists of a joint shape and layout block for 3D scene generation. Experiments on the 3RScan/3DSSG and SG-FRONT datasets demonstrate that our approach outperforms state-of-the-art methods in both quantitative and qualitative evaluations, even in complex indoor environments and under challenging scene graph constraints. Our work enables users to generate consistent 3D spaces from their physical environments via scene graphs, allowing them to create spatial MR content. Project page is https://scenelinker2026.github.io.
comment: Accepted as an IEEE TVCG paper at IEEE VR 2026 (journal track)
Fisheye Stereo Vision: Depth and Range Error
This study derives analytical expressions for the depth and range error of fisheye stereo vision systems as a function of object distance, specifically accounting for accuracy at large angles.
☆ Dynamic High-frequency Convolution for Infrared Small Target Detection
Infrared small targets are typically tiny and locally salient, which belong to high-frequency components (HFCs) in images. Single-frame infrared small target (SIRST) detection is challenging, since there are many HFCs along with targets, such as bright corners, broken clouds, and other clutters. Current learning-based methods rely on the powerful capabilities of deep networks, but neglect explicit modeling and discriminative representation learning of various HFCs, which is important to distinguish targets from other HFCs. To address the aforementioned issues, we propose a dynamic high-frequency convolution (DHiF) to translate the discriminative modeling process into the generation of a dynamic local filter bank. Especially, DHiF is sensitive to HFCs, owing to the dynamic parameters of its generated filters being symmetrically adjusted within a zero-centered range according to Fourier transformation properties. Combining with standard convolution operations, DHiF can adaptively and dynamically process different HFC regions and capture their distinctive grayscale variation characteristics for discriminative representation learning. DHiF functions as a drop-in replacement for standard convolution and can be used in arbitrary SIRST detection networks without significant decrease in computational efficiency. To validate the effectiveness of our DHiF, we conducted extensive experiments across different SIRST detection networks on real-scene datasets. Compared to other state-of-the-art convolution operations, DHiF exhibits superior detection performance with promising improvement. Codes are available at https://github.com/TinaLRJ/DHiF.
☆ TRACE: Temporal Radiology with Anatomical Change Explanation for Grounded X-ray Report Generation
Temporal comparison of chest X-rays is fundamental to clinical radiology, enabling detection of disease progression, treatment response, and new findings. While vision-language models have advanced single-image report generation and visual grounding, no existing method combines these capabilities for temporal change detection. We introduce Temporal Radiology with Anatomical Change Explanation (TRACE), the first model that jointly performs temporal comparison, change classification, and spatial localization. Given a prior and current chest X-ray, TRACE generates natural language descriptions of interval changes (worsened, improved, stable) while grounding each finding with bounding box coordinates. TRACE demonstrates effective spatial localization with over 90% grounding accuracy, establishing a foundation for this challenging new task. Our ablation study uncovers an emergent capability: change detection arises only when temporal comparison and spatial grounding are jointly learned, as neither alone enables meaningful change detection. This finding suggests that grounding provides a spatial attention mechanism essential for temporal reasoning.
☆ Nüwa: Mending the Spatial Integrity Torn by VLM Token Pruning
Vision token pruning has proven to be an effective acceleration technique for the efficient Vision Language Model (VLM). However, existing pruning methods demonstrate excellent performance preservation in visual question answering (VQA) and suffer substantial degradation on visual grounding (VG) tasks. Our analysis of the VLM's processing pipeline reveals that strategies utilizing global semantic similarity and attention scores lose the global spatial reference frame, which is derived from the interactions of tokens' positional information. Motivated by these findings, we propose $\text{Nüwa}$, a two-stage token pruning framework that enables efficient feature aggregation while maintaining spatial integrity. In the first stage, after the vision encoder, we apply three operations, namely separation, alignment, and aggregation, which are inspired by swarm intelligence algorithms to retain information-rich global spatial anchors. In the second stage, within the LLM, we perform text-guided pruning to retain task-relevant visual tokens. Extensive experiments demonstrate that $\text{Nüwa}$ achieves SOTA performance on multiple VQA benchmarks (from 94% to 95%) and yields substantial improvements on visual grounding tasks (from 7% to 47%).
☆ SRA-Seg: Synthetic to Real Alignment for Semi-Supervised Medical Image Segmentation
Synthetic data, an appealing alternative to extensive expert-annotated data for medical image segmentation, consistently fails to improve segmentation performance despite its visual realism. The reason being that synthetic and real medical images exist in different semantic feature spaces, creating a domain gap that current semi-supervised learning methods cannot bridge. We propose SRA-Seg, a framework explicitly designed to align synthetic and real feature distributions for medical image segmentation. SRA-Seg introduces a similarity-alignment (SA) loss using frozen DINOv2 embeddings to pull synthetic representations toward their nearest real counterparts in semantic space. We employ soft edge blending to create smooth anatomical transitions and continuous labels, eliminating the hard boundaries from traditional copy-paste augmentation. The framework generates pseudo-labels for synthetic images via an EMA teacher model and applies soft-segmentation losses that respect uncertainty in mixed regions. Our experiments demonstrate strong results: using only 10% labeled real data and 90% synthetic unlabeled data, SRA-Seg achieves 89.34% Dice on ACDC and 84.42% on FIVES, significantly outperforming existing semi-supervised methods and matching the performance of methods using real unlabeled data.
☆ iSight: Towards expert-AI co-assessment for improved immunohistochemistry staining interpretation
Immunohistochemistry (IHC) provides information on protein expression in tissue sections and is commonly used to support pathology diagnosis and disease triage. While AI models for H\&E-stained slides show promise, their applicability to IHC is limited due to domain-specific variations. Here we introduce HPA10M, a dataset that contains 10,495,672 IHC images from the Human Protein Atlas with comprehensive metadata included, and encompasses 45 normal tissue types and 20 major cancer types. Based on HPA10M, we trained iSight, a multi-task learning framework for automated IHC staining assessment. iSight combines visual features from whole-slide images with tissue metadata through a token-level attention mechanism, simultaneously predicting staining intensity, location, quantity, tissue type, and malignancy status. On held-out data, iSight achieved 85.5\% accuracy for location, 76.6\% for intensity, and 75.7\% for quantity, outperforming fine-tuned foundation models (PLIP, CONCH) by 2.5--10.2\%. In addition, iSight demonstrates well-calibrated predictions with expected calibration errors of 0.0150-0.0408. Furthermore, in a user study with eight pathologists evaluating 200 images from two datasets, iSight outperformed initial pathologist assessments on the held-out HPA dataset (79\% vs 68\% for location, 70\% vs 57\% for intensity, 68\% vs 52\% for quantity). Inter-pathologist agreement also improved after AI assistance in both held-out HPA (Cohen's $κ$ increased from 0.63 to 0.70) and Stanford TMAD datasets (from 0.74 to 0.76), suggesting expert--AI co-assessment can improve IHC interpretation. This work establishes a foundation for AI systems that can improve IHC diagnostic accuracy and highlights the potential for integrating iSight into clinical workflows to enhance the consistency and reliability of IHC assessment.
☆ SEIS: Subspace-based Equivariance and Invariance Scores for Neural Representations
Understanding how neural representations respond to geometric transformations is essential for evaluating whether learned features preserve meaningful spatial structure. Existing approaches primarily assess robustness by comparing model outputs under transformed inputs, offering limited insight into how geometric information is organized within internal representations and failing to distinguish between information loss and re-encoding. In this work, we introduce SEIS (Subspace-based Equivariance and Invariance Scores), a subspace metric for analyzing layer-wise feature representations under geometric transformations, disentangling equivariance from invariance without requiring labels or explicit knowledge of the transformation. Synthetic validation confirms that SEIS correctly recovers known transformations. Applied to trained classification networks, SEIS reveals a transition from equivariance in early layers to invariance in deeper layers, and that data augmentation increases invariance while preserving equivariance. We further show that multi-task learning induces synergistic gains in both properties at the shared encoder, and skip connections restore equivariance lost during decoding.
☆ Seeing Through Clutter: Structured 3D Scene Reconstruction via Iterative Object Removal 3DV 2026
We present SeeingThroughClutter, a method for reconstructing structured 3D representations from single images by segmenting and modeling objects individually. Prior approaches rely on intermediate tasks such as semantic segmentation and depth estimation, which often underperform in complex scenes, particularly in the presence of occlusion and clutter. We address this by introducing an iterative object removal and reconstruction pipeline that decomposes complex scenes into a sequence of simpler subtasks. Using VLMs as orchestrators, foreground objects are removed one at a time via detection, segmentation, object removal, and 3D fitting. We show that removing objects allows for cleaner segmentations of subsequent objects, even in highly occluded scenes. Our method requires no task-specific training and benefits directly from ongoing advances in foundation models. We demonstrate stateof-the-art robustness on 3D-Front and ADE20K datasets. Project Page: https://rioak.github.io/seeingthroughclutter/
comment: To appear in 3DV 2026
☆ Artifact Removal and Image Restoration in AFM:A Structured Mask-Guided Directional Inpainting Approach
Atomic Force Microscopy (AFM) enables high-resolution surface imaging at the nanoscale, yet the output is often degraded by artifacts introduced by environmental noise, scanning imperfections, and tip-sample interactions. To address this challenge, a lightweight and fully automated framework for artifact detection and restoration in AFM image analysis is presented. The pipeline begins with a classification model that determines whether an AFM image contains artifacts. If necessary, a lightweight semantic segmentation network, custom-designed and trained on AFM data, is applied to generate precise artifact masks. These masks are adaptively expanded based on their structural orientation and then inpainted using a directional neighbor-based interpolation strategy to preserve 3D surface continuity. A localized Gaussian smoothing operation is then applied for seamless restoration. The system is integrated into a user-friendly GUI that supports real-time parameter adjustments and batch processing. Experimental results demonstrate the effective artifact removal while preserving nanoscale structural details, providing a robust, geometry-aware solution for high-fidelity AFM data interpretation.
☆ Fast, Unsupervised Framework for Registration Quality Assessment of Multi-stain Histological Whole Slide Pairs
High-fidelity registration of histopathological whole slide images (WSIs), such as hematoxylin & eosin (H&E) and immunohistochemistry (IHC), is vital for integrated molecular analysis but challenging to evaluate without ground-truth (GT) annotations. Existing WSI-level assessments -- using annotated landmarks or intensity-based similarity metrics -- are often time-consuming, unreliable, and computationally intensive, limiting large-scale applicability. This study proposes a fast, unsupervised framework that jointly employs down-sampled tissue masks- and deformations-based metrics for registration quality assessment (RQA) of registered H&E and IHC WSI pairs. The masks-based metrics measure global structural correspondence, while the deformations-based metrics evaluate local smoothness, continuity, and transformation realism. Validation across multiple IHC markers and multi-expert assessments demonstrate a strong correlation between automated metrics and human evaluations. In the absence of GT, this framework offers reliable, real-time RQA with high fidelity and minimal computational resources, making it suitable for large-scale quality control in digital pathology.
comment: Accepted to IEEE ISBI 2026
☆ A Parameterizable Convolution Accelerator for Embedded Deep Learning Applications
Convolutional neural network (CNN) accelerators implemented on Field-Programmable Gate Arrays (FPGAs) are typically designed with a primary focus on maximizing performance, often measured in giga-operations per second (GOPS). However, real-life embedded deep learning (DL) applications impose multiple constraints related to latency, power consumption, area, and cost. This work presents a hardware-software (HW/SW) co-design methodology in which a CNN accelerator is described using high-level synthesis (HLS) tools that ease the parameterization of the design, facilitating more effective optimizations across multiple design constraints. Our experimental results demonstrate that the proposed design methodology is able to outperform non-parameterized design approaches, and it can be easily extended to other types of DL applications.
comment: 6 pages, 4 figures. Published in the proceedings of the 2025 IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2025), Kalamata, Greece, 6-9 July 2025
☆ AnyStyle: Single-Pass Multimodal Stylization for 3D Gaussian Splatting
The growing demand for rapid and scalable 3D asset creation has driven interest in feed-forward 3D reconstruction methods, with 3D Gaussian Splatting (3DGS) emerging as an effective scene representation. While recent approaches have demonstrated pose-free reconstruction from unposed image collections, integrating stylization or appearance control into such pipelines remains underexplored. Existing attempts largely rely on image-based conditioning, which limits both controllability and flexibility. In this work, we introduce AnyStyle, a feed-forward 3D reconstruction and stylization framework that enables pose-free, zero-shot stylization through multimodal conditioning. Our method supports both textual and visual style inputs, allowing users to control the scene appearance using natural language descriptions or reference images. We propose a modular stylization architecture that requires only minimal architectural modifications and can be integrated into existing feed-forward 3D reconstruction backbones. Experiments demonstrate that AnyStyle improves style controllability over prior feed-forward stylization methods while preserving high-quality geometric reconstruction. A user study further confirms that AnyStyle achieves superior stylization quality compared to an existing state-of-the-art approach. Repository: https://github.com/joaxkal/AnyStyle.
☆ MS-SCANet: A Multiscale Transformer-Based Architecture with Dual Attention for No-Reference Image Quality Assessment ICASSP 2025
We present the Multi-Scale Spatial Channel Attention Network (MS-SCANet), a transformer-based architecture designed for no-reference image quality assessment (IQA). MS-SCANet features a dual-branch structure that processes images at multiple scales, effectively capturing both fine and coarse details, an improvement over traditional single-scale methods. By integrating tailored spatial and channel attention mechanisms, our model emphasizes essential features while minimizing computational complexity. A key component of MS-SCANet is its cross-branch attention mechanism, which enhances the integration of features across different scales, addressing limitations in previous approaches. We also introduce two new consistency loss functions, Cross-Branch Consistency Loss and Adaptive Pooling Consistency Loss, which maintain spatial integrity during feature scaling, outperforming conventional linear and bilinear techniques. Extensive evaluations on datasets like KonIQ-10k, LIVE, LIVE Challenge, and CSIQ show that MS-SCANet consistently surpasses state-of-the-art methods, offering a robust framework with stronger correlations with subjective human scores.
comment: Published in ICASSP 2025, 5 pages, 3 figures
☆ TiCLS : Tightly Coupled Language Text Spotter
Scene text spotting aims to detect and recognize text in real-world images, where instances are often short, fragmented, or visually ambiguous. Existing methods primarily rely on visual cues and implicitly capture local character dependencies, but they overlook the benefits of external linguistic knowledge. Prior attempts to integrate language models either adapt language modeling objectives without external knowledge or apply pretrained models that are misaligned with the word-level granularity of scene text. We propose TiCLS, an end-to-end text spotter that explicitly incorporates external linguistic knowledge from a character-level pretrained language model. TiCLS introduces a linguistic decoder that fuses visual and linguistic features, yet can be initialized by a pretrained language model, enabling robust recognition of ambiguous or fragmented text. Experiments on ICDAR 2015 and Total-Text demonstrate that TiCLS achieves state-of-the-art performance, validating the effectiveness of PLM-guided linguistic integration for scene text spotting.
PromptSplit: Revealing Prompt-Level Disagreement in Generative Models
Prompt-guided generative AI models have rapidly expanded across vision and language domains, producing realistic and diverse outputs from textual inputs. The growing variety of such models, trained with different data and architectures, calls for principled methods to identify which types of prompts lead to distinct model behaviors. In this work, we propose PromptSplit, a kernel-based framework for detecting and analyzing prompt-dependent disagreement between generative models. For each compared model pair, PromptSplit constructs a joint prompt--output representation by forming tensor-product embeddings of the prompt and image (or text) features, and then computes the corresponding kernel covariance matrix. We utilize the eigenspace of the weighted difference between these matrices to identify the main directions of behavioral difference across prompts. To ensure scalability, we employ a random-projection approximation that reduces computational complexity to $O(nr^2 + r^3)$ for projection dimension $r$. We further provide a theoretical analysis showing that this approximation yields an eigenstructure estimate whose expected deviation from the full-dimensional result is bounded by $O(1/r^2)$. Experiments across text-to-image, text-to-text, and image-captioning settings demonstrate that PromptSplit accurately detects ground-truth behavioral differences and isolates the prompts responsible, offering an interpretable tool for detecting where generative models disagree.
☆ AtlasPatch: An Efficient and Scalable Tool for Whole Slide Image Preprocessing in Computational Pathology
Whole-slide image (WSI) preprocessing, typically comprising tissue detection followed by patch extraction, is foundational to AI-driven computational pathology workflows. This remains a major computational bottleneck as existing tools either rely on inaccurate heuristic thresholding for tissue detection, or adopt AI-based approaches trained on limited-diversity data that operate at the patch level, incurring substantial computational complexity. We present AtlasPatch, an efficient and scalable slide preprocessing framework for accurate tissue detection and high-throughput patch extraction with minimal computational overhead. AtlasPatch's tissue detection module is trained on a heterogeneous and semi-manually annotated dataset of ~30,000 WSI thumbnails, using efficient fine-tuning of the Segment-Anything model. The tool extrapolates tissue masks from thumbnails to full-resolution slides to extract patch coordinates at user-specified magnifications, with options to stream patches directly into common image encoders for embedding or store patch images, all efficiently parallelized across CPUs and GPUs. We assess AtlasPatch across segmentation precision, computational complexity, and downstream multiple-instance learning, matching state-of-the-art performance while operating at a fraction of their computational cost. AtlasPatch is open-source and available at https://github.com/AtlasAnalyticsLab/AtlasPatch.
comment: Under review
☆ Efficient Long-Horizon Vision-Language-Action Models via Static-Dynamic Disentanglement
Vision-Language-Action (VLA) models have recently emerged as a promising paradigm for generalist robotic control. Built upon vision-language model (VLM) architectures, VLAs predict actions conditioned on visual observations and language instructions, achieving strong performance and generalization across tasks. However, VLAs face two major challenges: limited long-horizon context and inefficient inference due to the quadratic attention complexity and large parameter counts. Our work is motivated by the observation that much of the visual information in a trajectory remains static across timesteps (e.g., the background). Leveraging this property, we propose SD-VLA, a framework that disentangles visual inputs into multi-level static and dynamic tokens, which enables (1) retaining a single copy of static tokens across frames to significantly reduce context length, and (2) reusing the key-value (KV) cache of static tokens through a lightweight recache gate that updates only when necessary. This design enables efficient multi-frame integration and efficient inference. In addition, we introduce a new benchmark that more effectively evaluates the long-horizon temporal dependency modeling ability of VLAs. Experimental results show that our approach outperforms baselines on this benchmark by 39.8% absolute improvement in success rate, and achieves a 3.9% gain on the SimplerEnv benchmark. Moreover, SD-VLA delivers a 2.26x inference speedup over the base VLA model on the same benchmark, enabling faster and more practical real-world deployment.
☆ VLS: Steering Pretrained Robot Policies via Vision-Language Models
Why do pretrained diffusion or flow-matching policies fail when the same task is performed near an obstacle, on a shifted support surface, or amid mild clutter? Such failures rarely reflect missing motor skills; instead, they expose a limitation of imitation learning under train-test shifts, where action generation is tightly coupled to training-specific spatial configurations and task specifications. Retraining or fine-tuning to address these failures is costly and conceptually misaligned, as the required behaviors already exist but cannot be selectively adapted at test time. We propose Vision-Language Steering (VLS), a training-free framework for inference-time adaptation of frozen generative robot policies. VLS treats adaptation as an inference-time control problem, steering the sampling process of a pretrained diffusion or flow-matching policy in response to out-of-distribution observation-language inputs without modifying policy parameters. By leveraging vision-language models to synthesize trajectory-differentiable reward functions, VLS guides denoising toward action trajectories that satisfy test-time spatial and task requirements. Across simulation and real-world evaluations, VLS consistently outperforms prior steering methods, achieving a 31% improvement on CALVIN and a 13% gain on LIBERO-PRO. Real-world deployment on a Franka robot further demonstrates robust inference-time adaptation under test-time spatial and semantic shifts. Project page: https://vision-language-steering.github.io/webpage/
comment: 11 Pages, Project page: https://vision-language-steering.github.io/webpage/
☆ Representation Geometry as a Diagnostic for Out-of-Distribution Robustness
Robust generalization under distribution shift remains difficult to monitor and optimize in the absence of target-domain labels, as models with similar in-distribution accuracy can exhibit markedly different out-of-distribution (OOD) performance. While prior work has focused on training-time regularization and low-order representation statistics, little is known about whether the geometric structure of learned embeddings provides reliable post-hoc signals of robustness. We propose a geometry-based diagnostic framework that constructs class-conditional mutual k-nearest-neighbor graphs from in-distribution embeddings and extracts two complementary invariants: a global spectral complexity proxy based on the reduced log-determinant of the normalized Laplacian, and a local smoothness measure based on Ollivier--Ricci curvature. Across multiple architectures, training regimes, and corruption benchmarks, we find that lower spectral complexity and higher mean curvature consistently predict stronger OOD accuracy across checkpoints. Controlled perturbations and topological analyses further show that these signals reflect meaningful representation structure rather than superficial embedding statistics. Our results demonstrate that representation geometry enables interpretable, label-free robustness diagnosis and supports reliable unsupervised checkpoint selection under distribution shift.
☆ Entropy Reveals Block Importance in Masked Self-Supervised Vision Transformers
Masked self-supervised vision transformers have become a dominant pretraining paradigm, yet their substantial model size poses significant challenges for resource-constrained deployment and efficient transfer learning. A fundamental question remains: are all transformer blocks equally important for downstream performance? In this paper, we show that block importance in masked self-supervised vision transformers can be accurately estimated without access to any data. Our key finding is that the information entropy of pretrained block weights strongly correlates with oracle sensitivity obtained via iterative block removal and finetuning. This observation enables Gardener, a data-free, one-shot, block-level pruning principle that identifies redundant blocks through simple information-theoretic measurements. We evaluate Gardener on VideoMAE-B across multiple pruning ratios and downstream video recognition benchmarks. Despite its negligible computational overhead, Gardener consistently matches or outperforms existing data-free pruning baselines and closely approaches sensitivity-based pruning. Remarkably, even after pruning up to 91.7\% of blocks, the pruned model retains competitive transfer performance. Our results reveal substantial block-level redundancy in masked self-supervised vision transformers and demonstrate that information-theoretic analysis offers a principled and efficient pathway for model compression and resource-efficient transfer learning.
☆ SpatiaLab: Can Vision-Language Models Perform Spatial Reasoning in the Wild? ICLR 2026
Spatial reasoning is a fundamental aspect of human cognition, yet it remains a major challenge for contemporary vision-language models (VLMs). Prior work largely relied on synthetic or LLM-generated environments with limited task designs and puzzle-like setups, failing to capture the real-world complexity, visual noise, and diverse spatial relationships that VLMs encounter. To address this, we introduce SpatiaLab, a comprehensive benchmark for evaluating VLMs' spatial reasoning in realistic, unconstrained contexts. SpatiaLab comprises 1,400 visual question-answer pairs across six major categories: Relative Positioning, Depth & Occlusion, Orientation, Size & Scale, Spatial Navigation, and 3D Geometry, each with five subcategories, yielding 30 distinct task types. Each subcategory contains at least 25 questions, and each main category includes at least 200 questions, supporting both multiple-choice and open-ended evaluation. Experiments across diverse state-of-the-art VLMs, including open- and closed-source models, reasoning-focused, and specialized spatial reasoning models, reveal a substantial gap in spatial reasoning capabilities compared with humans. In the multiple-choice setup, InternVL3.5-72B achieves 54.93% accuracy versus 87.57% for humans. In the open-ended setting, all models show a performance drop of around 10-25%, with GPT-5-mini scoring highest at 40.93% versus 64.93% for humans. These results highlight key limitations in handling complex spatial relationships, depth perception, navigation, and 3D geometry. By providing a diverse, real-world evaluation framework, SpatiaLab exposes critical challenges and opportunities for advancing VLMs' spatial reasoning, offering a benchmark to guide future research toward robust, human-aligned spatial understanding. SpatiaLab is available at: https://spatialab-reasoning.github.io/.
comment: Accepted to ICLR 2026. 92 Pages. 42 Figures and 29 Tables
☆ Phaedra: Learning High-Fidelity Discrete Tokenization for the Physical Science
Tokens are discrete representations that allow modern deep learning to scale by transforming high-dimensional data into sequences that can be efficiently learned, generated, and generalized to new tasks. These have become foundational for image and video generation and, more recently, physical simulation. As existing tokenizers are designed for the explicit requirements of realistic visual perception of images, it is necessary to ask whether these approaches are optimal for scientific images, which exhibit a large dynamic range and require token embeddings to retain physical and spectral properties. In this work, we investigate the accuracy of a suite of image tokenizers across a range of metrics designed to measure the fidelity of PDE properties in both physical and spectral space. Based on the observation that these struggle to capture both fine details and precise magnitudes, we propose Phaedra, inspired by classical shape-gain quantization and proper orthogonal decomposition. We demonstrate that Phaedra consistently improves reconstruction across a range of PDE datasets. Additionally, our results show strong out-of-distribution generalization capabilities to three tasks of increasing complexity, namely known PDEs with different conditions, unknown PDEs, and real-world Earth observation and weather data.
comment: 57 pages, 27 figures
☆ Entropy-Aware Structural Alignment for Zero-Shot Handwritten Chinese Character Recognition
Zero-shot Handwritten Chinese Character Recognition (HCCR) aims to recognize unseen characters by leveraging radical-based semantic compositions. However, existing approaches often treat characters as flat radical sequences, neglecting the hierarchical topology and the uneven information density of different components. To address these limitations, we propose an Entropy-Aware Structural Alignment Network that bridges the visual-semantic gap through information-theoretic modeling. First, we introduce an Information Entropy Prior to dynamically modulate positional embeddings via multiplicative interaction, acting as a saliency detector that prioritizes discriminative roots over ubiquitous components. Second, we construct a Dual-View Radical Tree to extract multi-granularity structural features, which are integrated via an adaptive Sigmoid-based gating network to encode both global layout and local spatial roles. Finally, a Top-K Semantic Feature Fusion mechanism is devised to augment the decoding process by utilizing the centroid of semantic neighbors, effectively rectifying visual ambiguities through feature-level consensus. Extensive experiments demonstrate that our method establishes new state-of-the-art performance, significantly outperforming existing CLIP-based baselines in the challenging zero-shot setting. Furthermore, the framework exhibits exceptional data efficiency, demonstrating rapid adaptability with minimal support samples.
comment: 37 pages, 8 figures
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Model Optimization for Multi-Camera 3D Detection and Tracking
Outside-in multi-camera perception is increasingly important in indoor environments, where networks of static cameras must support multi-target tracking under occlusion and heterogeneous viewpoints. We evaluate Sparse4D, a query-based spatiotemporal 3D detection and tracking framework that fuses multi-view features in a shared world frame and propagates sparse object queries via instance memory. We study reduced input frame rates, post-training quantization (INT8 and FP8), transfer to the WILDTRACK benchmark, and Transformer Engine mixed-precision fine-tuning. To better capture identity stability, we report Average Track Duration (AvgTrackDur), which measures identity persistence in seconds. Sparse4D remains stable under moderate FPS reductions, but below 2 FPS, identity association collapses even when detections are stable. Selective quantization of the backbone and neck offers the best speed-accuracy trade-off, while attention-related modules are consistently sensitive to low precision. On WILDTRACK, low-FPS pretraining yields large zero-shot gains over the base checkpoint, while small-scale fine-tuning provides limited additional benefit. Transformer Engine mixed precision reduces latency and improves camera scalability, but can destabilize identity propagation, motivating stability-aware validation.
♻ ☆ Moonworks Lunara Aesthetic II: An Image Variation Dataset
We introduce Lunara Aesthetic II, a publicly released, ethically sourced image dataset designed to support controlled evaluation and learning of contextual consistency in modern image generation and editing systems. The dataset comprises 2,854 anchor-linked variation pairs derived from original art and photographs created by Moonworks. Each variation pair applies contextual transformations, such as illumination, weather, viewpoint, scene composition, color tone, or mood; while preserving a stable underlying identity. Lunara Aesthetic II operationalizes identity-preserving contextual variation as a supervision signal while also retaining Lunara's signature high aesthetic scores. Results show high identity stability, strong target attribute realization, and a robust aesthetic profile that exceeds large-scale web datasets. Released under the Apache 2.0 license, Lunara Aesthetic II is intended for benchmarking, fine-tuning, and analysis of contextual generalization, identity preservation, and edit robustness in image generation and image-to-image systems with interpretable, relational supervision. The dataset is publicly available at: https://huggingface.co/datasets/moonworks/lunara-aesthetic-image-variations.
♻ ☆ Seeing through Satellite Images at Street Views TPAMI
This paper studies the task of SatStreet-view synthesis, which aims to render photorealistic street-view panorama images and videos given any satellite image and specified camera positions or trajectories. We formulate to learn neural radiance field from paired images captured from satellite and street viewpoints, which comes to be a challenging learning problem due to the sparse-view natural and the extremely-large viewpoint changes between satellite and street-view images. We tackle the challenges based on a task-specific observation that street-view specific elements, including the sky and illumination effects are only visible in street-view panoramas, and present a novel approach Sat2Density++ to accomplish the goal of photo-realistic street-view panoramas rendering by modeling these street-view specific in neural networks. In the experiments, our method is testified on both urban and suburban scene datasets, demonstrating that Sat2Density++ is capable of rendering photorealistic street-view panoramas that are consistent across multiple views and faithful to the satellite image.
comment: Accepted to IEEE TPAMI. Initially submitted in July 2024. Code is available on https://qianmingduowan.github.io/sat2density-pp/
♻ ☆ Towards Sustainable Universal Deepfake Detection with Frequency-Domain Masking
Universal deepfake detection aims to identify AI-generated images across a broad range of generative models, including unseen ones. This requires robust generalization to new and unseen deepfakes, which emerge frequently, while minimizing computational overhead to enable large-scale deepfake screening, a critical objective in the era of Green AI. In this work, we explore frequency-domain masking as a training strategy for deepfake detectors. Unlike traditional methods that rely heavily on spatial features or large-scale pretrained models, our approach introduces random masking and geometric transformations, with a focus on frequency masking due to its superior generalization properties. We demonstrate that frequency masking not only enhances detection accuracy across diverse generators but also maintains performance under significant model pruning, offering a scalable and resource-conscious solution. Our method achieves state-of-the-art generalization on GAN- and diffusion-generated image datasets and exhibits consistent robustness under structured pruning. These results highlight the potential of frequency-based masking as a practical step toward sustainable and generalizable deepfake detection. Code and models are available at https://github.com/chandlerbing65nm/FakeImageDetection.
comment: Accepted to ACM TOMM
♻ ☆ Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin.
♻ ☆ RANKVIDEO: Reasoning Reranking for Text-to-Video Retrieval
Reranking is a critical component of modern retrieval systems, which typically pair an efficient first-stage retriever with a more expressive model to refine results. While large reasoning models have driven rapid progress in text-centric reranking, reasoning-based reranking for video retrieval remains underexplored. To address this gap, we introduce RANKVIDEO, a reasoning-based reranker for video retrieval that explicitly reasons over query-video pairs using video content to assess relevance. RANKVIDEO is trained using a two-stage curriculum consisting of perception-grounded supervised fine-tuning followed by reranking training that combines pointwise, pairwise, and teacher confidence distillation objectives, and is supported by a data synthesis pipeline for constructing reasoning-intensive query-video pairs. Experiments on the large-scale MultiVENT 2.0 benchmark demonstrate that RANKVIDEO consistently improves retrieval performance within a two-stage framework, yielding an average improvement of 31% on nDCG@10 and outperforming text-only and vision-language reranking alternatives, while more efficient.
♻ ☆ Ground-R1: Incentivizing Grounded Visual Reasoning via Reinforcement Learning
Large Vision-Language Models (LVLMs) have become powerful general-purpose assistants, yet their predictions often lack reliability and interpretability due to insufficient grounding in visual evidence. The emerging thinking-with-images paradigm seeks to address this issue by explicitly anchoring reasoning to image regions. However, we empirically find that most existing methods suffer from a systematic scale-driven bias in optimization, where training rewards are dominated by large visual regions, suppressing learning from small but semantically critical evidence and leading to spurious grounding at inference time. To address this limitation, we propose Ground-R1, a de-biased thinking-with-images framework trained via a novel Scale Relative Policy Optimization (SRPO) objective that replaces standard GRPO. Specifically, our SRPO recalibrates reward learning across evidence regions of different sizes through scale-aware binning and intra-/inter-bin comparisons, enabling balanced credit assignment during training. Experimental results on general LVLM, high-resolution, and visual grounding benchmarks validate the effectiveness of Ground-R1 and show that SRPO yields consistent gains over standard GRPO in both response accuracy and evidence grounding.
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
Panoptic maps enable robots to reason about both geometry and semantics. However, open-vocabulary models repeatedly produce closely related labels that split panoptic entities and degrade volumetric consistency. The proposed UPPM advances open-world scene understanding by leveraging foundation models to introduce a panoptic Dynamic Descriptor that reconciles open-vocabulary labels with unified category structure and geometric size priors. The fusion for such dynamic descriptors is performed within a multi-resolution multi-TSDF map using language-guided open-vocabulary panoptic segmentation and semantic retrieval, resulting in a persistent and promptable panoptic map without additional model training. Based on our evaluation experiments, UPPM shows the best overall performance in terms of the map reconstruction accuracy and the panoptic segmentation quality. The ablation study investigates the contribution for each component of UPPM (custom NMS, blurry-frame filtering, and unified semantics) to the overall system performance. Consequently, UPPM preserves open-vocabulary interpretability while delivering strong geometric and panoptic accuracy.
♻ ☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: project page: https://rq-wu.github.io/projects/infinite-world/index.html
♻ ☆ SEMNAV: Enhancing Visual Semantic Navigation in Robotics through Semantic Segmentation
Visual Semantic Navigation (VSN) is a fundamental problem in robotics, where an agent must navigate toward a target object in an unknown environment, mainly using visual information. Most state-of-the-art VSN models are trained in simulation environments, where rendered scenes of the real world are used, at best. These approaches typically rely on raw RGB data from the virtual scenes, which limits their ability to generalize to real-world environments due to domain adaptation issues. To tackle this problem, in this work, we propose SEMNAV, a novel approach that leverages semantic segmentation as the main visual input representation of the environment to enhance the agent's perception and decision-making capabilities. By explicitly incorporating this type of high-level semantic information, our model learns robust navigation policies that improve generalization across unseen environments, both in simulated and real world settings. We also introduce the SEMNAV dataset, a newly curated dataset designed for training semantic segmentation-aware navigation models like SEMNAV. Our approach is evaluated extensively in both simulated environments and with real-world robotic platforms. Experimental results demonstrate that SEMNAV outperforms existing state-of-the-art VSN models, achieving higher success rates in the Habitat 2.0 simulation environment, using the HM3D dataset. Furthermore, our real-world experiments highlight the effectiveness of semantic segmentation in mitigating the sim-to-real gap, making our model a promising solution for practical VSN-based robotic applications. The code and datasets are accessible at https://github.com/gramuah/semnav
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Driving on Registers
We present DrivoR, a simple and efficient transformer-based architecture for end-to-end autonomous driving. Our approach builds on pretrained Vision Transformers (ViTs) and introduces camera-aware register tokens that compress multi-camera features into a compact scene representation, significantly reducing downstream computation without sacrificing accuracy. These tokens drive two lightweight transformer decoders that generate and then score candidate trajectories. The scoring decoder learns to mimic an oracle and predicts interpretable sub-scores representing aspects such as safety, comfort, and efficiency, enabling behavior-conditioned driving at inference. Despite its minimal design, DrivoR outperforms or matches strong contemporary baselines across NAVSIM-v1, NAVSIM-v2, and the photorealistic closed-loop HUGSIM benchmark. Our results show that a pure-transformer architecture, combined with targeted token compression, is sufficient for accurate, efficient, and adaptive end-to-end driving. Code and checkpoints will be made available via the project page.
♻ ☆ Generating a Paracosm for Training-Free Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) is the task of retrieving a target image from a database using a multimodal query, which consists of a reference image and a modification text. The text specifies how to alter the reference image to form a ``mental image'', based on which CIR should find the target image in the database. The fundamental challenge of CIR is that this ``mental image'' is not physically available and is only implicitly defined by the query. The contemporary literature pursues zero-shot methods and uses a Large Multimodal Model (LMM) to generate a textual description for a given multimodal query, and then employs a Vision-Language Model (VLM) for textual-visual matching to search the target image. In contrast, we address CIR from first principles by directly generating the ``mental image'' for more accurate matching. Particularly, we prompt an LMM to generate a ``mental image'' for a given multimodal query and propose to use this ``mental image'' to search for the target image. As the ``mental image'' has a synthetic-to-real domain gap with real images, we also generate a synthetic counterpart for each real image in the database to facilitate matching. In this sense, our method uses LMM to construct a ``paracosm'', where it matches the multimodal query and database images. Hence, we call this method Paracosm. Notably, Paracosm is a training-free zero-shot CIR method. It significantly outperforms existing zero-shot methods on four challenging benchmarks, achieving state-of-the-art performance for zero-shot CIR.
♻ ☆ OptiPMB: Enhancing 3D Multi-Object Tracking with Optimized Poisson Multi-Bernoulli Filtering
Accurate 3D multi-object tracking (MOT) is crucial for autonomous driving, as it enables robust perception, navigation, and planning in complex environments. While deep learning-based solutions have demonstrated impressive 3D MOT performance, model-based approaches remain appealing for their simplicity, interpretability, and data efficiency. Conventional model-based trackers typically rely on random vector-based Bayesian filters within the tracking-by-detection (TBD) framework but face limitations due to heuristic data association and track management schemes. In contrast, random finite set (RFS)-based Bayesian filtering handles object birth, survival, and death in a theoretically sound manner, facilitating interpretability and parameter tuning. In this paper, we present OptiPMB, a novel RFS-based 3D MOT method that employs an optimized Poisson multi-Bernoulli (PMB) filter while incorporating several key innovative designs within the TBD framework. Specifically, we propose a measurement-driven hybrid adaptive birth model for improved track initialization, employ adaptive detection probability parameters to effectively maintain tracks for occluded objects, and optimize density pruning and track extraction modules to further enhance overall tracking performance. Extensive evaluations on nuScenes and KITTI datasets show that OptiPMB achieves superior tracking accuracy compared with state-of-the-art methods, thereby establishing a new benchmark for model-based 3D MOT and offering valuable insights for future research on RFS-based trackers in autonomous driving.
♻ ☆ PISA: Piecewise Sparse Attention Is Wiser for Efficient Diffusion Transformers
Diffusion Transformers are fundamental for video and image generation, but their efficiency is bottlenecked by the quadratic complexity of attention. While block sparse attention accelerates computation by attending only critical key-value blocks, it suffers from degradation at high sparsity by discarding context. In this work, we discover that attention scores of non-critical blocks exhibit distributional stability, allowing them to be approximated accurately and efficiently rather than discarded, which is essentially important for sparse attention design. Motivated by this key insight, we propose PISA, a training-free Piecewise Sparse Attention that covers the full attention span with sub-quadratic complexity. Unlike the conventional keep-or-drop paradigm that directly drop the non-critical block information, PISA introduces a novel exact-or-approximate strategy: it maintains exact computation for critical blocks while efficiently approximating the remainder through block-wise Taylor expansion. This design allows PISA to serve as a faithful proxy to full attention, effectively bridging the gap between speed and quality. Experimental results demonstrate that PISA achieves 1.91 times and 2.57 times speedups on Wan2.1-14B and Hunyuan-Video, respectively, while consistently maintaining the highest quality among sparse attention methods. Notably, even for image generation on FLUX, PISA achieves a 1.2 times acceleration without compromising visual quality. Code is available at: https://github.com/xie-lab-ml/piecewise-sparse-attention.
comment: 17 pages
♻ ☆ SpecFLASH: A Latent-Guided Semi-autoregressive Speculative Decoding Framework for Efficient Multimodal Generation
Large language models and large multimodal models (LLMs and LMMs) deliver strong generative performance but suffer from slow decoding, a problem that becomes more severe when handling visual inputs, whose sequences typically contain many more tokens with lower information density than text. Speculative decoding accelerates LLM inference by letting a compact draft model propose candidate tokens that are selectively accepted by a larger target model, achieving speed-up without degrading quality. However, existing multimodal speculative decoding approaches largely ignore the structural characteristics of visual representations and usually rely on text-only draft models. In this paper, we introduce SpecFLASH, a speculative decoding framework tailored to LMMs that explicitly exploits multimodal structure when designing the draft model. We first mitigate redundancy in visual token sequences with a lightweight, latent-guided token compression module that compacts visual features while preserving semantics, and then leverage the co-occurrence and local correlations of visual entities via a semi-autoregressive decoding scheme that predicts multiple tokens in a single forward pass. Extensive experiments demonstrate that SpecFLASH consistently surpasses prior speculative decoding baselines, achieving up to $2.68\times$ speed-up on video captioning and $2.55\times$ on visual instruction tuning, relative to the original LMM. Our code is available here: https://github.com/ZihuaEvan/FlashSD/.
comment: Under review
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:036
♻ ☆ Material-informed Gaussian Splatting for 3D World Reconstruction in a Digital Twin
3D reconstruction for Digital Twins often relies on LiDAR-based methods, which provide accurate geometry but lack the semantics and textures naturally captured by cameras. Traditional LiDAR-camera fusion approaches require complex calibration and still struggle with certain materials like glass, which are visible in images but poorly represented in point clouds. We propose a camera-only pipeline that reconstructs scenes using 3D Gaussian Splatting from multi-view images, extracts semantic material masks via vision models, converts Gaussian representations to mesh surfaces with projected material labels, and assigns physics-based material properties for accurate sensor simulation in modern graphics engines and simulators. This approach combines photorealistic reconstruction with physics-based material assignment, providing sensor simulation fidelity comparable to LiDAR-camera fusion while eliminating hardware complexity and calibration requirements. We validate our camera-only method using an internal dataset from an instrumented test vehicle, leveraging LiDAR as ground truth for reflectivity validation alongside image similarity metrics.
comment: 8 pages, 5 figures. Accepted to IEEE Intelligent Vehicles Symposium (IV) 2026. Revised version (v3) presents camera-ready publication
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ CAD-SLAM: Consistency-Aware Dynamic SLAM with Dynamic-Static Decoupled Mapping
Recent advances in neural radiation fields (NeRF) and 3D Gaussian-based SLAM have achieved impressive localization accuracy and high-quality dense mapping in static scenes. However, these methods remain challenged in dynamic environments, where moving objects violate the static-world assumption and introduce inconsistent observations that degrade both camera tracking and map reconstruction. This motivates two fundamental problems: robustly identifying dynamic objects and modeling them online. To address these limitations, we propose CAD-SLAM, a Consistency-Aware Dynamic SLAM framework with dynamic-static decoupled mapping. Our key insight is that dynamic objects inherently violate cross-view and cross-time scene consistency. We detect object motion by analyzing geometric and texture discrepancies between historical map renderings and real-world observations. Once a moving object is identified, we perform bidirectional dynamic object tracking (both backward and forward in time) to achieve complete sequence-wise dynamic recognition. Our consistency-aware dynamic detection model achieves category-agnostic, instantaneous dynamic identification, which effectively mitigates motion-induced interference during localization and mapping. In addition, we introduce a dynamic-static decoupled mapping strategy that employs a temporal Gaussian model for online incremental dynamic modeling. Experiments conducted on multiple dynamic datasets demonstrate the flexible and accurate dynamic segmentation capabilities of our method, along with the state-of-the-art performance in both localization and mapping.
♻ ☆ video-SALMONN S: Memory-Enhanced Streaming Audio-Visual LLM
Long-duration streaming video understanding is fundamental for future AI agents, yet remains limited by ineffective long-term memory. We introduce video-SALMONN S, a memory-enhanced streaming audio-visual large language model that processes over 3-hour videos at 1 FPS and 360p resolution, outperforming strong non-streaming models under the same memory budget. In addition to token merging or downsampling, video-SALMONN S is the first to employ test-time training (TTT) as a streaming memory mechanism for video understanding. TTT continuously transforms short-term multimodal representations into long-term memory embedded in model parameters. To improve long-range dependency modeling and memory capacity, we propose (i) a TTT_MEM layer with an additional long-span prediction objective, (ii) a two-stage training scheme, and (iii) a modality-aware memory reader. We further introduce the Episodic Learning from Video Memory (ELViM) benchmark, simulating agent-like scenarios where models must learn from videos observed hours earlier. video-SALMONN S consistently outperforms both streaming and non-streaming baselines by 3-7% on long video benchmarks. Notably, video-SALMONN S achieves a 15% absolute accuracy improvement over strong non-streaming models on ELViM, demonstrating strong learning abilities from video memory.
♻ ☆ Reg4Pru: Regularisation Through Random Token Routing for Token Pruning
Transformers are widely adopted in modern vision models due to their strong ability to scale with dataset size and generalisability. However, this comes with a major drawback: computation scales quadratically to the total number of tokens. Numerous methods have been proposed to mitigate this. For example, we consider token pruning with reactivating tokens from preserved representations, but the increased computational efficiency of this method results in decreased stability from the preserved representations, leading to poorer dense prediction performance at deeper layers. In this work, we introduce Reg4Pru, a training regularisation technique that mitigates token-pruning performance loss for segmentation. We compare our models on the FIVES blood vessel segmentation dataset and find that Reg4Pru improves average precision by an absolute 46% compared to the same model trained without routing. This increase is observed using a configuration that achieves a 29% relative speedup in wall-clock time compared to the non-pruned baseline. These findings indicate that Reg4Pru is a valuable regulariser for token reduction strategies.
comment: 11 pages, 7 figures
♻ ☆ A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
comment: 19 pages
♻ ☆ ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the Edge
Edge computing enables data processing closer to the source, significantly reducing latency, an essential requirement for real-time vision-based analytics such as object detection in surveillance and smart city environments. However, these tasks place substantial demands on resource-constrained edge devices, making the joint optimization of energy consumption and detection accuracy critical. To address this challenge, we propose ECORE, a framework that integrates multiple dynamic routing strategies, including a novel estimation-based techniques and an innovative greedy selection algorithm, to direct image processing requests to the most suitable edge device-model pair. ECORE dynamically balances energy efficiency and detection performance based on object characteristics. We evaluate our framework through extensive experiments on real-world datasets, comparing against widely used baseline techniques. The evaluation leverages established object detection models (YOLO, SSD, EfficientDet) and diverse edge platforms, including Jetson Orin Nano, Raspberry Pi 4 and 5, and TPU accelerators. Results demonstrate that our proposed context-aware routing strategies can reduce energy consumption and latency by 35% and 49%, respectively, while incurring only a 2% loss in detection accuracy compared to accuracy-centric methods.
♻ ☆ LazyDrag: Enabling Stable Drag-Based Editing on Multi-Modal Diffusion Transformers via Explicit Correspondence
The reliance on implicit point matching via attention has become a core bottleneck in drag-based editing, resulting in a fundamental compromise on weakened inversion strength and costly test-time optimization (TTO). This compromise severely limits the generative capabilities of diffusion models, suppressing high-fidelity inpainting and text-guided creation. In this paper, we introduce LazyDrag, the first drag-based image editing method for Multi-Modal Diffusion Transformers, which directly eliminates the reliance on implicit point matching. In concrete terms, our method generates an explicit correspondence map from user drag inputs as a reliable reference to boost the attention control. This reliable reference opens the potential for a stable full-strength inversion process, which is the first in the drag-based editing task. It obviates the necessity for TTO and unlocks the generative capability of models. Therefore, LazyDrag naturally unifies precise geometric control with text guidance, enabling complex edits that were previously out of reach: opening the mouth of a dog and inpainting its interior, generating new objects like a ``tennis ball'', or for ambiguous drags, making context-aware changes like moving a hand into a pocket. Additionally, LazyDrag supports multi-round workflows with simultaneous move and scale operations. Evaluated on the DragBench, our method outperforms baselines in drag accuracy and perceptual quality, as validated by VIEScore and human evaluation. LazyDrag not only establishes new state-of-the-art performance, but also paves a new way to editing paradigms.
comment: https://zxyin.github.io/LazyDrag
♻ ☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
comment: https://zxyin.github.io/ColorCtrl
♻ ☆ Thalia: A Global, Multi-Modal Dataset for Volcanic Activity Monitoring
Monitoring volcanic activity is of paramount importance to safeguarding lives, infrastructure, and ecosystems. However, only a small fraction of known volcanoes are continuously monitored. Satellite-based Interferometric Synthetic Aperture Radar (InSAR) enables systematic, global-scale deformation monitoring. However, its complex data challenge traditional remote sensing methods. Deep learning offers a powerful means to automate and enhance InSAR interpretation, advancing volcanology and geohazard assessment. Despite its promise, progress has been limited by the scarcity of well-curated datasets. In this work, we build on the existing Hephaestus dataset and introduce Thalia, addressing crucial limitations and enriching its scope with higher-resolution, multi-source, and multi-temporal data. Thalia is a global collection of 38 spatiotemporal datacubes covering 7 years and integrating InSAR products, topographic data, as well as atmospheric variables, known to introduce signal delays that can mimic ground deformation in InSAR imagery. Each sample includes expert annotations detailing the type, intensity, and extent of deformation, ac- companied by descriptive text. To enable fair and consistent evaluation, we provide a comprehensive benchmark using state-of-the-art models for classification and segmentation. This work fosters collaboration between machine learning and Earth science, advancing volcanic monitoring and promoting data-driven approaches in geoscience. The code and latest version of the dataset are available through the github repository: https://github.com/Orion-AI-Lab/Thalia
♻ ☆ L2M-Reg: Building-level Uncertainty-aware Registration of Outdoor LiDAR Point Clouds and Semantic 3D City Models
Accurate registration between LiDAR (Light Detection and Ranging) point clouds and semantic 3D city models is a fundamental topic in urban digital twinning and a prerequisite for downstream tasks, such as digital construction, change detection, and model refinement. However, achieving accurate LiDAR-to-Model registration at the individual building level remains challenging, particularly due to the generalization uncertainty in semantic 3D city models at the Level of Detail 2 (LoD2). This paper addresses this gap by proposing L2M-Reg, a plane-based fine registration method that explicitly accounts for model uncertainty. L2M-Reg consists of three key steps: establishing reliable plane correspondence, building a pseudo-plane-constrained Gauss-Helmert model, and adaptively estimating vertical translation. Overall, extensive experiments on five real-world datasets demonstrate that L2M-Reg is both more accurate and computationally efficient than current leading ICP-based and plane-based methods. Therefore, L2M-Reg provides a novel building-level solution regarding LiDAR-to-Model registration when model uncertainty is present. The datasets and code for L2M-Reg can be found: https://github.com/Ziyang-Geodesy/L2M-Reg.
comment: Accepted version by ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ DeepUrban: Interaction-Aware Trajectory Prediction and Planning for Automated Driving by Aerial Imagery
The efficacy of autonomous driving systems hinges critically on robust prediction and planning capabilities. However, current benchmarks are impeded by a notable scarcity of scenarios featuring dense traffic, which is essential for understanding and modeling complex interactions among road users. To address this gap, we collaborated with our industrial partner, DeepScenario, to develop DeepUrban-a new drone dataset designed to enhance trajectory prediction and planning benchmarks focusing on dense urban settings. DeepUrban provides a rich collection of 3D traffic objects, extracted from high-resolution images captured over urban intersections at approximately 100 meters altitude. The dataset is further enriched with comprehensive map and scene information to support advanced modeling and simulation tasks. We evaluate state-of-the-art (SOTA) prediction and planning methods, and conducted experiments on generalization capabilities. Our findings demonstrate that adding DeepUrban to nuScenes can boost the accuracy of vehicle predictions and planning, achieving improvements up to 44.1 % / 44.3% on the ADE / FDE metrics. Website: https://iv.ee.hm.edu/deepurban
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ No time to train! Training-Free Reference-Based Instance Segmentation
The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).
comment: Preprint
♻ ☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026; Project Page: https://hebing-sjtu.github.io/SurfSplat-website/
UniFGVC: Universal Training-Free Few-Shot Fine-Grained Vision Classification via Attribute-Aware Multimodal Retrieval
Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
♻ ☆ MapDream: Task-Driven Map Learning for Vision-Language Navigation
Vision-Language Navigation (VLN) requires agents to follow natural language instructions in partially observed 3D environments, motivating map representations that aggregate spatial context beyond local perception. However, most existing approaches rely on hand-crafted maps constructed independently of the navigation policy. We argue that maps should instead be learned representations shaped directly by navigation objectives rather than exhaustive reconstructions. Based on this insight, we propose MapDream, a map-in-the-loop framework that formulates map construction as autoregressive bird's-eye-view (BEV) image synthesis. The framework jointly learns map generation and action prediction, distilling environmental context into a compact three-channel BEV map that preserves only navigation-critical affordances. Supervised pre-training bootstraps a reliable mapping-to-control interface, while the autoregressive design enables end-to-end joint optimization through reinforcement fine-tuning. Experiments on R2R-CE and RxR-CE achieve state-of-the-art monocular performance, validating task-driven generative map learning.
♻ ☆ Beyond the Vision Encoder: Identifying and Mitigating Spatial Bias in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have achieved remarkable success across a wide range of multimodal tasks, yet their robustness to spatial variations remains insufficiently understood. In this work, we conduct a systematic study of the spatial bias of LVLMs, examining how models respond when identical key visual information is placed at different locations within an image. Through controlled probing experiments, we observe that current LVLMs often produce inconsistent outputs under such spatial shifts, revealing a clear spatial bias in their semantic understanding. Further analysis indicates that this bias does not stem from the vision encoder, but rather from a mismatch in attention mechanisms between the vision encoder and the large language model, which disrupts the global information flow. Motivated by this insight, we propose Adaptive Global Context Injection (AGCI), a lightweight mechanism that dynamically injects shared global visual context into each image token. AGCI works without architectural modifications, mitigating spatial bias by enhancing the semantic accessibility of image tokens while preserving the model's intrinsic capabilities. Extensive experiments demonstrate that AGCI not only enhances the spatial robustness of LVLMs, but also achieves strong performance on various downstream tasks and hallucination benchmarks.
♻ ☆ CountZES: Counting via Zero-Shot Exemplar Selection
Object counting in complex scenes is particularly challenging in the zero-shot (ZS) setting, where instances of unseen categories are counted using only a class name. Existing ZS counting methods that infer exemplars from text often rely on off-the-shelf open-vocabulary detectors (OVDs), which in dense scenes suffer from semantic noise, appearance variability, and frequent multi-instance proposals. Alternatively, random image-patch sampling is employed, which fails to accurately delineate object instances. To address these issues, we propose CountZES, an inference-only approach for object counting via ZS exemplar selection. CountZES discovers diverse exemplars through three synergistic stages: Detection-Anchored Exemplar (DAE), Density-Guided Exemplar (DGE), and Feature-Consensus Exemplar (FCE). DAE refines OVD detections to isolate precise single-instance exemplars. DGE introduces a density-driven, self-supervised paradigm to identify statistically consistent and semantically compact exemplars, while FCE reinforces visual coherence through feature-space clustering. Together, these stages yield a complementary exemplar set that balances textual grounding, count consistency, and feature representativeness. Experiments on diverse datasets demonstrate CountZES superior performance among ZOC methods while generalizing effectively across domains.
♻ ☆ v1: Learning to Point Visual Tokens for Multimodal Grounded Reasoning
When thinking with images, humans rarely rely on a single glance: they revisit visual evidence while reasoning. In contrast, most Multimodal Language Models encode an image once to key-value cache and then reason purely in text, making it hard to re-ground intermediate steps. We empirically confirm this: as reasoning chains lengthen, models progressively lose focus on relevant regions. We introduce v1, a lightweight extension for active visual referencing via point-and-copy: the model selects relevant image patches and copies their embeddings back into the reasoning stream. Crucially, our point-and-copy mechanism retrieves patches using their semantic representations as keys, ensuring perceptual evidence remains aligned with the reasoning space. To train this behavior, we build v1, a dataset of 300K multimodal reasoning traces with interleaved grounding annotations. Across multimodal mathematical reasoning benchmarks, v1 consistently outperforms comparable baselines. We plan to release the model checkpoint and data.
♻ ☆ Imbalance-Robust and Sampling-Efficient Continuous Conditional GANs via Adaptive Vicinity and Auxiliary Regularization
Recent advances in conditional generative modeling have introduced Continuous conditional Generative Adversarial Network (CcGAN) and Continuous Conditional Diffusion Model (CCDM) for estimating high-dimensional data distributions conditioned on scalar, continuous regression labels (e.g., angles, ages, or temperatures). However, these approaches face fundamental limitations: CcGAN suffers from data imbalance due to fixed-size vicinity constraints, while CCDM requires computationally expensive iterative sampling. To address these issues, we propose CcGAN-AVAR, an enhanced CcGAN framework featuring (1) two novel components for handling data imbalance - an adaptive vicinity mechanism that dynamically adjusts vicinity size and a multi-task discriminator that enhances generator training through auxiliary regression and density ratio estimation - and (2) the GAN framework's native one-step generator, enable 30x-2000x faster inference than CCDM. Extensive experiments on four benchmark datasets (64x64 to 256x256 resolution) across eleven challenging settings demonstrate that CcGAN-AVAR achieves state-of-the-art generation quality while maintaining sampling efficiency.
♻ ☆ TreeLoc: 6-DoF LiDAR Global Localization in Forests via Inter-Tree Geometric Matching
Reliable localization is crucial for navigation in forests, where GPS is often degraded and LiDAR measurements are repetitive, occluded, and structurally complex. These conditions weaken the assumptions of traditional urban-centric localization methods, which assume that consistent features arise from unique structural patterns, necessitating forest-centric solutions to achieve robustness in these environments. To address these challenges, we propose TreeLoc, a LiDAR-based global localization framework for forests that handles place recognition and 6-DoF pose estimation. We represent scenes using tree stems and their Diameter at Breast Height (DBH), which are aligned to a common reference frame via their axes and summarized using the tree distribution histogram (TDH) for coarse matching, followed by fine matching with a 2D triangle descriptor. Finally, pose estimation is achieved through a two-step geometric verification. On diverse forest benchmarks, TreeLoc outperforms baselines, achieving precise localization. Ablation studies validate the contribution of each component. We also propose applications for long-term forest management using descriptors from a compact global tree database. TreeLoc is open-sourced for the robotics community at https://github.com/minwoo0611/TreeLoc.
comment: An 8-page paper with 7 tables and 8 figures, accepted to ICRA 2026
♻ ☆ Happy Young Women, Grumpy Old Men? Emotion-Driven Demographic Biases in Synthetic Face Generation
Synthetic face generation has rapidly advanced with the emergence of text-to-image (T2I) and of multimodal large language models, enabling high-fidelity image production from natural-language prompts. Despite the widespread adoption of these tools, the biases, representational quality, and cross-cultural consistency of these models remain poorly understood. Prior research on biases in the synthetic generation of human faces has examined demographic biases, yet there is little research on how emotional prompts influence demographic representation and how models trained in different cultural and linguistic contexts vary in their output distributions. We present a systematic audit of eight state-of-the-art T2I models comprising four models developed by Western organizations and four developed by Chinese institutions, all prompted identically. Using state-of-the-art facial analysis algorithms, we estimate the gender, race, age, and attractiveness levels in the generated faces. To measure the deviations from global population statistics, we apply information-theoretic bias metrics including Kullback-Leibler and Jensen-Shannon divergences. Our findings reveal persistent demographic and emotion-conditioned biases in all models regardless of their country of origin. We discuss implications for fairness, socio-technical harms, governance, and the development of transparent generative systems.
comment: 23 pages, 11 figures
♻ ☆ Cross-Modal Alignment and Fusion for RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
♻ ☆ Object Fidelity Diffusion for Remote Sensing Image Generation
High-precision controllable remote sensing image generation is both meaningful and challenging. Existing diffusion models often produce low-fidelity images due to their inability to adequately capture morphological details, which may affect the robustness and reliability of object detection models. To enhance the accuracy and fidelity of generated objects in remote sensing, this paper proposes Object Fidelity Diffusion (OF-Diff), which effectively improves the fidelity of generated objects. Specifically, we are the first to extract the prior shapes of objects based on the layout for diffusion models in remote sensing. Then, we introduce a dual-branch diffusion model with diffusion consistency loss, which can generate high-fidelity remote sensing images without providing real images during the sampling phase. Furthermore, we introduce DDPO to fine-tune the diffusion process, making the generated remote sensing images more diverse and semantically consistent. Comprehensive experiments demonstrate that OF-Diff outperforms state-of-the-art methods in the remote sensing across key quality metrics. Notably, the performance of several polymorphic and small object classes shows significant improvement. For instance, the mAP increases by 8.3%, 7.7%, and 4.0% for airplanes, ships, and vehicles, respectively.
♻ ☆ MedFrameQA: A Multi-Image Medical VQA Benchmark for Clinical Reasoning
Real-world clinical practice demands multi-image comparative reasoning, yet current medical benchmarks remain limited to single-frame interpretation. We present MedFrameQA, the first benchmark explicitly designed to test multi-image medical VQA through educationally-validated diagnostic sequences. To construct this dataset, we develop a scalable pipeline that leverages narrative transcripts from medical education videos to align visual frames with textual concepts, automatically producing 2,851 high-quality multi-image VQA pairs with explicit, transcript-grounded reasoning chains. Our evaluation of 11 advanced MLLMs (including reasoning models) exposes severe deficiencies in multi-image synthesis, where accuracies mostly fall below 50% and exhibit instability across varying image counts. Error analysis demonstrates that models often treat images as isolated instances, failing to track pathological progression or cross-reference anatomical shifts. MedFrameQA provides a rigorous standard for evaluating the next generation of MLLMs in handling complex, temporally grounded medical narratives.
comment: 27 pages, 15 Figures Benchmark data: https://huggingface.co/datasets/SuhaoYu1020/MedFrameQA
♻ ☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
♻ ☆ Rethinking Efficient Mixture-of-Experts for Remote Sensing Modality-Missing Classification
Multimodal remote sensing classification often suffers from missing modalities caused by sensor failures and environmental interference, leading to severe performance degradation. In this work, we rethink missing-modality learning from a conditional computation perspective and investigate whether Mixture-of-Experts (MoE) models can inherently adapt to diverse modality-missing scenarios. We first conduct a systematic study of representative MoE paradigms under various missing-modality settings, revealing both their potential and limitations. Building on these insights, we propose a Missing-aware Mixture-of-LoRAs (MaMOL), a parameter-efficient MoE framework that unifies multiple modality-missing cases within a single model. MaMOL introduces a dual-routing mechanism to decouple modality-invariant shared experts and modality-aware dynamic experts, enabling automatic expert activation conditioned on available modalities. Extensive experiments on multiple remote sensing benchmarks demonstrate that MaMOL significantly improves robustness and generalization under diverse missing-modality scenarios with minimal computational overhead. Transfer experiments on natural image datasets further validate its scalability and cross-domain applicability.
comment: 11 pages, 5 figures
♻ ☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
♻ ☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation NeurIPS 2025
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
comment: Accepted by NeurIPS 2025
♻ ☆ DiffVL: Diffusion-Based Visual Localization on 2D Maps via BEV-Conditioned GPS Denoising
Accurate visual localization is crucial for autonomous driving, yet existing methods face a fundamental dilemma: While high-definition (HD) maps provide high-precision localization references, their costly construction and maintenance hinder scalability, which drives research toward standard-definition (SD) maps like OpenStreetMap. Current SD-map-based approaches primarily focus on Bird's-Eye View (BEV) matching between images and maps, overlooking a ubiquitous signal-noisy GPS. Although GPS is readily available, it suffers from multipath errors in urban environments. We propose DiffVL, the first framework to reformulate visual localization as a GPS denoising task using diffusion models. Our key insight is that noisy GPS trajectory, when conditioned on visual BEV features and SD maps, implicitly encode the true pose distribution, which can be recovered through iterative diffusion refinement. DiffVL, unlike prior BEV-matching methods (e.g., OrienterNet) or transformer-based registration approaches, learns to reverse GPS noise perturbations by jointly modeling GPS, SD map, and visual signals, achieving sub-meter accuracy without relying on HD maps. Experiments on multiple datasets demonstrate that our method achieves state-of-the-art accuracy compared to BEV-matching baselines. Crucially, our work proves that diffusion models can enable scalable localization by treating noisy GPS as a generative prior-making a paradigm shift from traditional matching-based methods.
♻ ☆ From Frames to Sequences: Temporally Consistent Human-Centric Dense Prediction
In this work, we focus on the challenge of temporally consistent human-centric dense prediction across video sequences. Existing models achieve strong per-frame accuracy but often flicker under motion, occlusion, and lighting changes, and they rarely have paired human video supervision for multiple dense tasks. We address this gap with a scalable synthetic data pipeline that generates photorealistic human frames and motion-aligned sequences with pixel-accurate depth, normals, and masks. Unlike prior static data synthetic pipelines, our pipeline provides both frame-level labels for spatial learning and sequence-level supervision for temporal learning. Building on this, we train a unified ViT-based dense predictor that (i) injects an explicit human geometric prior via CSE embeddings and (ii) improves geometry-feature reliability with a lightweight channel reweighting module after feature fusion. Our two-stage training strategy, combining static pretraining with dynamic sequence supervision, enables the model first to acquire robust spatial representations and then refine temporal consistency across motion-aligned sequences. Extensive experiments show that we achieve state-of-the-art performance on THuman2.1 and Hi4D and generalize effectively to in-the-wild videos.
♻ ☆ Saliency-Guided DETR for Moment Retrieval and Highlight Detection
Existing approaches for video moment retrieval and highlight detection are not able to align text and video features efficiently, resulting in unsatisfying performance and limited production usage. To address this, we propose a novel architecture that utilizes recent foundational video models designed for such alignment. Combined with the introduced Saliency-Guided Cross Attention mechanism and a hybrid DETR architecture, our approach significantly enhances performance in both moment retrieval and highlight detection tasks. For even better improvement, we developed InterVid-MR, a large-scale and high-quality dataset for pretraining. Using it, our architecture achieves state-of-the-art results on the QVHighlights, Charades-STA and TACoS benchmarks. The proposed approach provides an efficient and scalable solution for both zero-shot and fine-tuning scenarios in video-language tasks.
comment: 8 pages, 2 figure, 6 tables
♻ ☆ Comprehensive Machine Learning Benchmarking for Fringe Projection Profilometry with Photorealistic Synthetic Data
Machine learning approaches for fringe projection profilometry (FPP) are hindered by the lack of large, diverse datasets and standardized benchmarking protocols. This paper introduces the first open-source, photorealistic synthetic dataset for FPP, generated using NVIDIA Isaac Sim, comprising 15,600 fringe images and 300 depth reconstructions across 50 objects. We apply this dataset to single-shot FPP, where models predict 3D depth maps directly from individual fringe images without temporal phase shifting. Through systematic ablation studies, we identify optimal learning configurations for long-range (1.5-2.1 m) depth prediction. We compare three depth normalization strategies and show that individual normalization, which decouples object shape from absolute scale, yields a 9.1x improvement in object reconstruction accuracy over raw depth. We further show that removing background fringe patterns severely degrades performance across all normalizations, demonstrating that background fringes provide essential spatial phase reference rather than noise. We evaluate six loss functions and identify Hybrid L1 loss as optimal. Using the best configuration, we benchmark four architectures and find UNet achieves the strongest performance, though errors remain far above the sub-millimeter accuracy of classical FPP. The small performance gap between architectures indicates that the dominant limitation is information deficit rather than model design: single fringe images lack sufficient information for accurate depth recovery without explicit phase cues. This work provides a standardized benchmark and evidence motivating hybrid approaches combining phase-based FPP with learned refinement. The dataset is available at https://huggingface.co/datasets/aharoon/fpp-ml-bench and code at https://github.com/AnushLak/fpp-ml-bench.
comment: 19 pages, 10 figures, 5 tables
♻ ☆ Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling NeurIPS 2025
Diffusion models, though originally designed for generative tasks, have demonstrated impressive self-supervised representation learning capabilities. A particularly intriguing phenomenon in these models is the emergence of unimodal representation dynamics, where the quality of learned features peaks at an intermediate noise level. In this work, we conduct a comprehensive theoretical and empirical investigation of this phenomenon. Leveraging the inherent low-dimensionality structure of image data, we theoretically demonstrate that the unimodal dynamic emerges when the diffusion model successfully captures the underlying data distribution. The unimodality arises from an interplay between denoising strength and class confidence across noise scales. Empirically, we further show that, in classification tasks, the presence of unimodal dynamics reliably reflects the generalization of the diffusion model: it emerges when the model generates novel images and gradually transitions to a monotonically decreasing curve as the model begins to memorize the training data.
comment: First two authors contributed equally. Accepted at NeurIPS 2025
♻ ☆ HAAP: Vision-context Hierarchical Attention Autoregressive with Adaptive Permutation for Scene Text Recognition
Scene Text Recognition (STR) is challenging in extracting effective character representations from visual data when text is unreadable. Permutation language modeling (PLM) is introduced to refine character predictions by jointly capturing contextual and visual information. However, in PLM, the use of random permutations causes training fit oscillation, and the iterative refinement (IR) operation also introduces additional overhead. To address these issues, this paper proposes the Hierarchical Attention autoregressive Model with Adaptive Permutation (HAAP) to enhance position-context-image interaction capability, improving autoregressive LM generalization. First, we propose Implicit Permutation Neurons (IPN) to generate adaptive attention masks that dynamically exploit token dependencies, enhancing the correlation between visual information and context. Adaptive correlation representation helps the model avoid training fit oscillation. Second, the Cross-modal Hierarchical Attention mechanism (CHA) is introduced to capture the dependencies among position queries, contextual semantics and visual information. CHA enables position tokens to aggregate global semantic information, avoiding the need for IR. Extensive experimental results show that the proposed HAAP achieves state-of-the-art (SOTA) performance in terms of accuracy, complexity, and latency on several datasets.
comment: 12 pages, 12 figures
♻ ☆ Embedding Compression via Spherical Coordinates
We present a compression method for unit-norm embeddings that achieves 1.5$\times$ compression, 25% better than the best prior lossless method. The method exploits that spherical coordinates of high-dimensional unit vectors concentrate around $π/2$, causing IEEE 754 exponents to collapse to a single value and high-order mantissa bits to become predictable, enabling entropy coding of both. Reconstruction error is below 1e-7, under float32 machine epsilon. Evaluation across 26 configurations spanning text, image, and multi-vector embeddings confirms consistent improvement.
♻ ☆ Data Augmentation for High-Fidelity Generation of CAR-T/NK Immunological Synapse Images
Chimeric antigen receptor (CAR)-T and NK cell immunotherapies have transformed cancer treatment, and recent studies suggest that the quality of the CAR-T/NK cell immunological synapse (IS) may serve as a functional biomarker for predicting therapeutic efficacy. Accurate detection and segmentation of CAR-T/NK IS structures using artificial neural networks (ANNs) can greatly increase the speed and reliability of IS quantification. However, a persistent challenge is the limited size of annotated microscopy datasets, which restricts the ability of ANNs to generalize. To address this challenge, we integrate two complementary data-augmentation frameworks. First, we employ Instance Aware Automatic Augmentation (IAAA), an automated, instance-preserving augmentation method that generates synthetic CAR-T/NK IS images and corresponding segmentation masks by applying optimized augmentation policies to original IS data. IAAA supports multiple imaging modalities (e.g., fluorescence and brightfield) and can be applied directly to CAR-T/NK IS images derived from patient samples. In parallel, we introduce a Semantic-Aware AI Augmentation (SAAA) pipeline that combines a diffusion-based mask generator with a Pix2Pix conditional image synthesizer. This second method enables the creation of diverse, anatomically realistic segmentation masks and produces high-fidelity CAR-T/NK IS images aligned with those masks, further expanding the training corpus beyond what IAAA alone can provide. Together, these augmentation strategies generate synthetic images whose visual and structural properties closely match real IS data, significantly improving CAR-T/NK IS detection and segmentation performance. By enhancing the robustness and accuracy of IS quantification, this work supports the development of more reliable imaging-based biomarkers for predicting patient response to CAR-T/NK immunotherapy.
♻ ☆ CIEC: Coupling Implicit and Explicit Cues for Multimodal Weakly Supervised Manipulation Localization
To mitigate the threat of misinformation, multimodal manipulation localization has garnered growing attention. Consider that current methods rely on costly and time-consuming fine-grained annotations, such as patch/token-level annotations. This paper proposes a novel framework named Coupling Implicit and Explicit Cues (CIEC), which aims to achieve multimodal weakly-supervised manipulation localization for image-text pairs utilizing only coarse-grained image/sentence-level annotations. It comprises two branches, image-based and text-based weakly-supervised localization. For the former, we devise the Textual-guidance Refine Patch Selection (TRPS) module. It integrates forgery cues from both visual and textual perspectives to lock onto suspicious regions aided by spatial priors. Followed by the background silencing and spatial contrast constraints to suppress interference from irrelevant areas. For the latter, we devise the Visual-deviation Calibrated Token Grounding (VCTG) module. It focuses on meaningful content words and leverages relative visual bias to assist token localization. Followed by the asymmetric sparse and semantic consistency constraints to mitigate label noise and ensure reliability. Extensive experiments demonstrate the effectiveness of our CIEC, yielding results comparable to fully supervised methods on several evaluation metrics.
♻ ☆ Rectification Reimagined: A Unified Mamba Model for Image Correction and Rectangling with Prompts AAAI 2026
Image correction and rectangling are valuable tasks in practical photography systems such as smartphones. Recent remarkable advancements in deep learning have undeniably brought about substantial performance improvements in these fields. Nevertheless, existing methods mainly rely on task-specific architectures. This significantly restricts their generalization ability and effective application across a wide range of different tasks. In this paper, we introduce the Unified Rectification Framework (UniRect), a comprehensive approach that addresses these practical tasks from a consistent distortion rectification perspective. Our approach incorporates various task-specific inverse problems into a general distortion model by simulating different types of lenses. To handle diverse distortions, UniRect adopts one task-agnostic rectification framework with a dual-component structure: a {Deformation Module}, which utilizes a novel Residual Progressive Thin-Plate Spline (RP-TPS) model to address complex geometric deformations, and a subsequent Restoration Module, which employs Residual Mamba Blocks (RMBs) to counteract the degradation caused by the deformation process and enhance the fidelity of the output image. Moreover, a Sparse Mixture-of-Experts (SMoEs) structure is designed to circumvent heavy task competition in multi-task learning due to varying distortions. Extensive experiments demonstrate that our models have achieved state-of-the-art performance compared with other up-to-date methods.
comment: AAAI 2026
♻ ☆ ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images. We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
♻ ☆ Can 3D point cloud data improve automated body condition score prediction in dairy cattle?
Body condition score (BCS) is a widely used indicator of body energy status and is closely associated with metabolic status, reproductive performance, and health in dairy cattle; however, conventional visual scoring is subjective and labor-intensive. Computer vision approaches have been applied to BCS prediction, with depth images widely used because they capture geometric information independent of coat color and texture. More recently, three-dimensional point cloud data have attracted increasing interest due to their ability to represent richer geometric characteristics of animal morphology, but direct head-to-head comparisons with depth image-based approaches remain limited. In this study, we compared top-view depth image and point cloud data for BCS prediction under four settings: 1) unsegmented raw data, 2) segmented full-body data, 3) segmented hindquarter data, and 4) handcrafted feature data. Prediction models were evaluated using data from 1,020 dairy cows collected on a commercial farm, with cow-level cross-validation to prevent data leakage. Depth image-based models consistently achieved higher accuracy than point cloud-based models when unsegmented raw data and segmented full-body data were used, whereas comparable performance was observed when segmented hindquarter data were used. Both depth image and point cloud approaches showed reduced accuracy when handcrafted feature data were employed compared with the other settings. Overall, point cloud-based predictions were more sensitive to noise and model architecture than depth image-based predictions. Taken together, these results indicate that three-dimensional point clouds do not provide a consistent advantage over depth images for BCS prediction in dairy cattle under the evaluated conditions.
♻ ☆ Decipher-MR: A Vision-Language Foundation Model for 3D MRI Representations
Magnetic Resonance Imaging is a critical imaging modality in clinical diagnosis and research, yet its complexity and heterogeneity hinder scalable, generalizable machine learning. Although foundation models have revolutionized language and vision tasks, their application to MRI remains constrained by data scarcity and narrow anatomical focus. We present Decipher-MR, a 3D MRI-specific vision-language foundation model trained on 200,000 MRI series from over 22,000 studies spanning diverse anatomical regions, sequences, and pathologies. Decipher-MR integrates self-supervised vision learning with report-guided text supervision to build robust representations for broad applications. To enable efficient use, Decipher-MR supports a modular design that enables tuning of lightweight, task-specific decoders attached to a frozen pretrained encoder. Following this setting, we evaluate Decipher-MR across disease classification, demographic prediction, anatomical localization, and cross-modal retrieval, demonstrating consistent improvements over existing foundation models and task-specific approaches. These results position Decipher-MR as a versatile foundation for MRI-based AI in clinical and research settings.
♻ ☆ SyNeT: Synthetic Negatives for Traversability Learning
Reliable traversability estimation is crucial for autonomous robots to navigate complex outdoor environments safely. Existing self-supervised learning frameworks primarily rely on positive and unlabeled data; however, the lack of explicit negative data remains a critical limitation, hindering the model's ability to accurately identify diverse non-traversable regions. To address this issue, we introduce a method to explicitly construct synthetic negatives, representing plausible but non-traversable, and integrate them into vision-based traversability learning. Our approach is formulated as a training strategy that can be seamlessly integrated into both Positive-Unlabeled (PU) and Positive-Negative (PN) frameworks without modifying inference architectures. Complementing standard pixel-wise metrics, we introduce an object-centric FPR evaluation approach that analyzes predictions in regions where synthetic negatives are inserted. This evaluation provides an indirect measure of the model's ability to consistently identify non-traversable regions without additional manual labeling. Extensive experiments on both public and self-collected datasets demonstrate that our approach significantly enhances robustness and generalization across diverse environments. The source code and demonstration videos will be publicly available.
♻ ☆ Mixture of Distributions Matters: Dynamic Sparse Attention for Efficient Video Diffusion Transformers
While Diffusion Transformers (DiTs) have achieved notable progress in video generation, this long-sequence generation task remains constrained by the quadratic complexity inherent to self-attention mechanisms, creating significant barriers to practical deployment. Although sparse attention methods attempt to address this challenge, existing approaches either rely on oversimplified static patterns or require computationally expensive sampling operations to achieve dynamic sparsity, resulting in inaccurate pattern predictions and degraded generation quality. To overcome these limitations, we propose a \underline{\textbf{M}}ixture-\underline{\textbf{O}}f-\underline{\textbf{D}}istribution \textbf{DiT} (\textbf{MOD-DiT}), a novel sampling-free dynamic attention framework that accurately models evolving attention patterns through a two-stage process. First, MOD-DiT leverages prior information from early denoising steps and adopts a {distributed mixing approach} to model an efficient linear approximation model, which is then used to predict mask patterns for a specific denoising interval. Second, an online block masking strategy dynamically applies these predicted masks while maintaining historical sparsity information, eliminating the need for repetitive sampling operations. Extensive evaluations demonstrate consistent acceleration and quality improvements across multiple benchmarks and model architectures, validating MOD-DiT's effectiveness for efficient, high-quality video generation while overcoming the computational limitations of traditional sparse attention approaches.
ShotFinder: Imagination-Driven Open-Domain Video Shot Retrieval via Web Search
In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
comment: 28 pages, 7 figures
♻ ☆ TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
♻ ☆ ObjEmbed: Towards Universal Multimodal Object Embeddings
Aligning objects with corresponding textual descriptions is a fundamental challenge and a realistic requirement in vision-language understanding. While recent multimodal embedding models excel at global image-text alignment, they often struggle with fine-grained alignment between image regions and specific phrases. In this work, we present ObjEmbed, a novel MLLM embedding model that decomposes the input image into multiple regional embeddings, each corresponding to an individual object, along with global embeddings. It supports a wide range of visual understanding tasks like visual grounding, local image retrieval, and global image retrieval. ObjEmbed enjoys three key properties: (1) Object-Oriented Representation: It captures both semantic and spatial aspects of objects by generating two complementary embeddings for each region: an object embedding for semantic matching and an IoU embedding that predicts localization quality. The final object matching score combines semantic similarity with the predicted IoU, enabling more accurate retrieval. (2) Versatility: It seamlessly handles both region-level and image-level tasks. (3) Efficient Encoding: All objects in an image, along with the full image, are encoded in a single forward pass for high efficiency. Superior performance on 18 diverse benchmarks demonstrates its strong semantic discrimination.
♻ ☆ MiTA Attention: Efficient Fast-Weight Scaling via a Mixture of Top-k Activations
The attention operator in Transformers can be viewed as a two-layer fast-weight MLP, whose weights are dynamically instantiated from input tokens and whose width equals sequence length N. As the context extends, the expressive capacity of such an N-width MLP increases, but scaling its fast weights becomes prohibitively expensive for extremely long sequences. Recently, this fast-weight scaling perspective has motivated the Mixture-of-Experts (MoE) attention, which partitions the sequence into fast-weight experts and sparsely routes the tokens to them. In this paper, we elevate this perspective to a unifying framework for a wide range of efficient attention methods by interpreting them as scaling fast weights through routing and/or compression. Then we propose a compress-and-route strategy, which compresses the N-width MLP into a narrower one using a small set of landmark queries and constructs deformable experts by gathering top-k activated key-value pairs for each landmark query. We call this strategy a Mixture of Top-k Activations (MiTA), and refer to the resulting efficient mechanism as MiTA attention. Preliminary experiments on vision tasks demonstrate the promise of our MiTA attention and motivate further investigation on its optimization and broader applications in more challenging settings.
♻ ☆ Proteus-ID: ID-Consistent and Motion-Coherent Video Customization SIGGRAPH
Video identity customization seeks to synthesize realistic, temporally coherent videos of a specific subject, given a single reference image and a text prompt. This task presents two core challenges: (1) maintaining identity consistency while aligning with the described appearance and actions, and (2) generating natural, fluid motion without unrealistic stiffness. To address these challenges, we introduce Proteus-ID, a novel diffusion-based framework for identity-consistent and motion-coherent video customization. First, we propose a Multimodal Identity Fusion (MIF) module that unifies visual and textual cues into a joint identity representation using a Q-Former, providing coherent guidance to the diffusion model and eliminating modality imbalance. Second, we present a Time-Aware Identity Injection (TAII) mechanism that dynamically modulates identity conditioning across denoising steps, improving fine-detail reconstruction. Third, we propose Adaptive Motion Learning (AML), a self-supervised strategy that reweights the training loss based on optical-flow-derived motion heatmaps, enhancing motion realism without requiring additional inputs. To support this task, we construct Proteus-Bench, a high-quality dataset comprising 200K curated clips for training and 150 individuals from diverse professions and ethnicities for evaluation. Extensive experiments demonstrate that Proteus-ID outperforms prior methods in identity preservation, text alignment, and motion quality, establishing a new benchmark for video identity customization. Codes and data are publicly available at https://grenoble-zhang.github.io/Proteus-ID/.
comment: SIGGRAPH Asia 2025
♻ ☆ SurgVidLM: Towards Multi-grained Surgical Video Understanding with Large Language Model
Surgical scene understanding is critical for surgical training and robotic decision-making in robot-assisted surgery. Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated great potential for advancing scene perception in the medical domain, facilitating surgeons to understand surgical scenes and procedures. However, these methods are primarily oriented towards image-based analysis or global video understanding, overlooking the fine-grained video reasoning that is crucial for analyzing specific processes and capturing detailed task execution within a surgical procedure. To bridge this gap, we propose SurgVidLM, the first video language model designed to address both full and fine-grained surgical video comprehension. To train our SurgVidLM, we construct the SVU-31K that is a large-scale dataset with over 31K video-instruction pairs, enabling both holistic understanding and detailed analysis of surgical procedures. Building on this resource, SurgVidLM incorporates a two-stage StageFocus mechanism: the first stage extracts global procedural context, while the second stage performs high-frequency local analysis guided by temporal cues. We also develop the Multi-frequency Fusion Attention to effectively integrate low- and high-frequency visual tokens, ensuring the preservation of critical task-specific details. Experimental results demonstrate that SurgVidLM significantly outperforms state-of-the-art Vid-LLMs of comparable parameter scale in both full and fine-grained video understanding tasks, showcasing its superior capability in capturing the context of complex robot-assisted surgeries. Our code and dataset will be publicly accessible soon.
♻ ☆ DuoGen: Towards General Purpose Interleaved Multimodal Generation
Interleaved multimodal generation enables capabilities beyond unimodal generation models, such as step-by-step instructional guides, visual planning, and generating visual drafts for reasoning. However, the quality of existing interleaved generation models under general instructions remains limited by insufficient training data and base model capacity. We present DuoGen, a general-purpose interleaved generation framework that systematically addresses data curation, architecture design, and evaluation. On the data side, we build a large-scale, high-quality instruction-tuning dataset by combining multimodal conversations rewritten from curated raw websites, and diverse synthetic examples covering everyday scenarios. Architecturally, DuoGen leverages the strong visual understanding of a pretrained multimodal LLM and the visual generation capabilities of a diffusion transformer (DiT) pretrained on video generation, avoiding costly unimodal pretraining and enabling flexible base model selection. A two-stage decoupled strategy first instruction-tunes the MLLM, then aligns DiT with it using curated interleaved image-text sequences. Across public and newly proposed benchmarks, DuoGen outperforms prior open-source models in text quality, image fidelity, and image-context alignment, and also achieves state-of-the-art performance on text-to-image and image editing among unified generation models. Data and code will be released at https://research.nvidia.com/labs/dir/duogen/.
comment: Technical Report. Project Page: https://research.nvidia.com/labs/dir/duogen/
♻ ☆ EVODiff: Entropy-aware Variance Optimized Diffusion Inference NeurIPS 2025
Diffusion models (DMs) excel in image generation but suffer from slow inference and training-inference discrepancies. Although gradient-based solvers for DMs accelerate denoising inference, they often lack theoretical foundations in information transmission efficiency. In this work, we introduce an information-theoretic perspective on the inference processes of DMs, revealing that successful denoising fundamentally reduces conditional entropy in reverse transitions. This principle leads to our key insights into the inference processes: (1) data prediction parameterization outperforms its noise counterpart, and (2) optimizing conditional variance offers a reference-free way to minimize both transition and reconstruction errors. Based on these insights, we propose an entropy-aware variance optimized method for the generative process of DMs, called EVODiff, which systematically reduces uncertainty by optimizing conditional entropy during denoising. Extensive experiments on DMs validate our insights and demonstrate that our method significantly and consistently outperforms state-of-the-art (SOTA) gradient-based solvers. For example, compared to the DPM-Solver++, EVODiff reduces the reconstruction error by up to 45.5\% (FID improves from 5.10 to 2.78) at 10 function evaluations (NFE) on CIFAR-10, cuts the NFE cost by 25\% (from 20 to 15 NFE) for high-quality samples on ImageNet-256, and improves text-to-image generation while reducing artifacts. Code is available at https://github.com/ShiguiLi/EVODiff.
comment: NeurIPS 2025, 41 pages, 14 figures
♻ ☆ DDP-WM: Disentangled Dynamics Prediction for Efficient World Models
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM.
comment: Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM
♻ ☆ DSKC: Domain Style Modeling with Adaptive Knowledge Consolidation for Exemplar-free Lifelong Person Re-Identification
Lifelong Person Re-identification (LReID) aims to continuously match individuals across camera views from sequential data streams. Existing LReID methods often ignore domain-specific style awareness and unified knowledge consolidation, which are crucial for mitigating forgetting when adapting to new information. We propose DSKC, a novel rehearsal-free and distillation-free framework for LReID. DSKC designs a domain-style encoder (DSE) to dynamically model domain-specific styles, and a unified knowledge consolidation (UKC) mechanism to adaptively integrate instance-level representations with domain-specific style into a cross-domain unified representation. By leveraging unified representation as a bridge, DSKC explicitly models inter-domain associations at both instance and domain levels to enhance anti-forgetting and generalization. Experimental results demonstrate that our DSKC outperforms state-of-the-art methods in two training orders and enhances the model's strong performance. Our code is available at https://github.com/LiuShiBen/DKUA.
comment: 11 papges, 6 figures
♻ ☆ SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning
We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.
♻ ☆ TFFM: Topology-Aware Feature Fusion Module via Latent Graph Reasoning for Retinal Vessel Segmentation WACV 2026
Precise segmentation of retinal arteries and veins carries the diagnosis of systemic cardiovascular conditions. However, standard convolutional architectures often yield topologically disjointed segmentations, characterized by gaps and discontinuities that render reliable graph-based clinical analysis impossible despite high pixel-level accuracy. To address this, we introduce a topology-aware framework engineered to maintain vascular connectivity. Our architecture fuses a Topological Feature Fusion Module (TFFM) that maps local feature representations into a latent graph space, deploying Graph Attention Networks to capture global structural dependencies often missed by fixed receptive fields. Furthermore, we drive the learning process with a hybrid objective function, coupling Tversky loss for class imbalance with soft clDice loss to explicitly penalize topological disconnects. Evaluation on the Fundus-AVSeg dataset reveals state-of-the-art performance, achieving a combined Dice score of 90.97% and a 95% Hausdorff Distance of 3.50 pixels. Notably, our method decreases vessel fragmentation by approximately 38% relative to baselines, yielding topologically coherent vascular trees viable for automated biomarker quantification. We open-source our code at https://tffm-module.github.io/.
comment: Accepted in WACV 2026 @ P2P-workshop as a full paper and selected for oral presentation
♻ ☆ UniADC: A Unified Framework for Anomaly Detection and Classification
In this paper, we introduce a novel task termed unified anomaly detection and classification, which aims to simultaneously detect anomalous regions in images and identify their specific categories. Existing methods typically treat anomaly detection and classification as separate tasks, thereby neglecting their inherent correlations and limiting information sharing, which results in suboptimal performance. To address this, we propose UniADC, a model designed to effectively perform both tasks with only a few or even no anomaly images. Specifically, UniADC consists of two key components: a training-free Controllable Inpainting Network and an Implicit-Normal Discriminator. The inpainting network can synthesize anomaly images of specific categories by repainting normal regions guided by anomaly priors, and can also repaint few-shot anomaly samples to augment the available anomaly data. The implicit-normal discriminator addresses the severe challenge of the imbalance between normal and anomalous pixel distributions by implicitly modeling the normal state, achieving precise anomaly detection and classification by aligning fine-grained image features with anomaly-category embeddings. We conduct extensive experiments on three anomaly detection and classification datasets, including MVTec-FS, MTD, and WFDD, and the results demonstrate that UniADC consistently outperforms existing methods in anomaly detection, localization, and classification. The code is available at https://github.com/cnulab/UniADC.
♻ ☆ RAD: Region-Aware Diffusion Models for Image Inpainting
Diffusion models have achieved remarkable success in image generation, with applications broadening across various domains. Inpainting is one such application that can benefit significantly from diffusion models. Existing methods either hijack the reverse process of a pretrained diffusion model or cast the problem into a larger framework, \ie, conditioned generation. However, these approaches often require nested loops in the generation process or additional components for conditioning. In this paper, we present region-aware diffusion models (RAD) for inpainting with a simple yet effective reformulation of the vanilla diffusion models. RAD utilizes a different noise schedule for each pixel, which allows local regions to be generated asynchronously while considering the global image context. A plain reverse process requires no additional components, enabling RAD to achieve inference time up to 100 times faster than the state-of-the-art approaches. Moreover, we employ low-rank adaptation (LoRA) to fine-tune RAD based on other pretrained diffusion models, reducing computational burdens in training as well. Experiments demonstrated that RAD provides state-of-the-art results both qualitatively and quantitatively, on the FFHQ, LSUN Bedroom, and ImageNet datasets.
comment: Code: https://github.com/srk1995/RAD
♻ ☆ RF-DETR: Neural Architecture Search for Real-Time Detection Transformers ICLR
Open-vocabulary detectors achieve impressive performance on COCO, but often fail to generalize to real-world datasets with out-of-distribution classes not typically found in their pre-training. Rather than simply fine-tuning a heavy-weight vision-language model (VLM) for new domains, we introduce RF-DETR, a light-weight specialist detection transformer that discovers accuracy-latency Pareto curves for any target dataset with weight-sharing neural architecture search (NAS). Our approach fine-tunes a pre-trained base network on a target dataset and evaluates thousands of network configurations with different accuracy-latency tradeoffs without re-training. Further, we revisit the "tunable knobs" for NAS to improve the transferability of DETRs to diverse target domains. Notably, RF-DETR significantly improves over prior state-of-the-art real-time methods on COCO and Roboflow100-VL. RF-DETR (nano) achieves 48.0 AP on COCO, beating D-FINE (nano) by 5.3 AP at similar latency, and RF-DETR (2x-large) outperforms GroundingDINO (tiny) by 1.2 AP on Roboflow100-VL while running 20x as fast. To the best of our knowledge, RF-DETR (2x-large) is the first real-time detector to surpass 60 AP on COCO. Our code is available at https://github.com/roboflow/rf-detr
comment: This work has been accepted to the International Conference on Learning Representations (ICLR) 2026. Project Page: https://rfdetr.roboflow.com/
♻ ☆ Activation-wise Propagation: A One-Timestep Strategy for Spiking Neural Networks AAAI26
Spiking neural networks (SNNs) have demonstrated significant potential in real-time multi-sensor perception tasks due to their event-driven and parameter-efficient characteristics. A key challenge is the timestep-wise iterative update of neuronal hidden states (membrane potentials), which complicates the trade-off between accuracy and latency. SNNs tend to achieve better performance with longer timesteps, inevitably resulting in higher computational overhead and latency compared to artificial neural networks (ANNs). Moreover, many recent advances in SNNs rely on architecture-specific optimizations, which, while effective with fewer timesteps, often limit generalizability and scalability across modalities and models. To address these limitations, we propose Activation-wise Membrane Potential Propagation (AMP2), a unified hidden state update mechanism for SNNs. Inspired by the spatial propagation of membrane potentials in biological neurons, AMP2 enables dynamic transmission of membrane potentials among spatially adjacent neurons, facilitating spatiotemporal integration and cooperative dynamics of hidden states, thereby improving efficiency and accuracy while reducing reliance on extended temporal updates. This simple yet effective strategy significantly enhances SNN performance across various architectures, including MLPs and CNNs for point cloud and event-based data. Furthermore, ablation studies integrating AMP2 into Transformer-based SNNs for classification tasks demonstrate its potential as a general-purpose and efficient solution for spiking neural networks.
comment: 10 pages, 7 figures, AAAI26
♻ ☆ Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their performance on long-horizon, complex problems remains unreliable. Single-rollout execution is brittle, with small errors compounding over time and leading to high variance in outcomes. While prior work has attempted to scale within a single rollout, such approaches have yielded limited gains. Scaling over multiple rollouts offers a more promising alternative but doing so effectively is challenging due to the difficulty of evaluating and selecting among long-horizon agent behaviors. We introduce Behavior Judge (BJudge), which addresses this challenge by representing agent executions as behavior narratives and comparing candidate behaviors at this level, substantially improving robustness and success rates. Using multiple rollouts, BJudge establishes a new state of the art (SoTA) in OSWorld at 72.6%, significantly outperforming prior methods and surpassing human-level performance at 72.36%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the strong effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and BJudge provides a practical framework to achieve this.
comment: 21 pages, 7 figures, 13 tables
♻ ☆ AI-Generated Video Detection via Perceptual Straightening NeurIPS 2025
The rapid advancement of generative AI enables highly realistic synthetic videos, posing significant challenges for content authentication and raising urgent concerns about misuse. Existing detection methods often struggle with generalization and capturing subtle temporal inconsistencies. We propose ReStraV(Representation Straightening Video), a novel approach to distinguish natural from AI-generated videos. Inspired by the "perceptual straightening" hypothesis -- which suggests real-world video trajectories become more straight in neural representation domain -- we analyze deviations from this expected geometric property. Using a pre-trained self-supervised vision transformer (DINOv2), we quantify the temporal curvature and stepwise distance in the model's representation domain. We aggregate statistics of these measures for each video and train a classifier. Our analysis shows that AI-generated videos exhibit significantly different curvature and distance patterns compared to real videos. A lightweight classifier achieves state-of-the-art detection performance (e.g., 97.17% accuracy and 98.63% AUROC on the VidProM benchmark), substantially outperforming existing image- and video-based methods. ReStraV is computationally efficient, it is offering a low-cost and effective detection solution. This work provides new insights into using neural representation geometry for AI-generated video detection.
comment: NeurIPS 2025 (https://openreview.net/forum?id=LsmUgStXby)
♻ ☆ Near--Real-Time Conflict-Related Fire Detection Using Unsupervised Deep Learning and Satellite Imagery
Ongoing armed conflict in Sudan highlights the need for rapid monitoring of conflict-related fire damage. Recent advances in deep learning and high-frequency satellite imagery enable near--real-time assessment of active fires and burn scars in war zones. This study presents a near--real-time monitoring approach using a lightweight Variational Auto-Encoder (VAE)-based model integrated with 4-band Planet Labs imagery at 3 m spatial resolution. We demonstrate that conflict-related fire damage can be detected with minimal delay using accessible, commercially available satellite data. To achieve this, we adapt a VAE-based model, originally designed for 10-band imagery, to operate effectively on high-resolution 4-band inputs. The model is trained in an unsupervised manner to learn compact latent representations of nominal land-surface conditions and identify fire-affected areas by quantifying changes between temporally paired latent embeddings. Performance is evaluated across five case studies in Sudan and compared against a cosine-distance baseline computed between temporally paired image tiles using precision, recall, F1-score, and the area under the precision-recall curve (AUPRC). Results show that the proposed approach consistently outperforms the baseline, achieving higher recall and F1-scores while maintaining strong precision in highly imbalanced fire-detection scenarios. Experiments with 8-band imagery and temporal image sequences yield only marginal performance gains over single 4-band inputs, underscoring the effectiveness of the proposed lightweight approach for scalable, near--real-time conflict monitoring.
Simulating the Visual World with Artificial Intelligence: A Roadmap
The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.
comment: Project page: https://world-model-roadmap.github.io/ Github Repo: https://github.com/ziqihuangg/Awesome-From-Video-Generation-to-World-Model
♻ ☆ DiffVax: Optimization-Free Image Immunization Against Diffusion-Based Editing ICLR 2026
Current image immunization defense techniques against diffusion-based editing embed imperceptible noise into target images to disrupt editing models. However, these methods face scalability challenges, as they require time-consuming optimization for each image separately, taking hours for small batches. To address these challenges, we introduce DiffVax, a scalable, lightweight, and optimization-free framework for image immunization, specifically designed to prevent diffusion-based editing. Our approach enables effective generalization to unseen content, reducing computational costs and cutting immunization time from days to milliseconds, achieving a speedup of 250,000x. This is achieved through a loss term that ensures the failure of editing attempts and the imperceptibility of the perturbations. Extensive qualitative and quantitative results demonstrate that our model is scalable, optimization-free, adaptable to various diffusion-based editing tools, robust against counter-attacks, and, for the first time, effectively protects video content from editing. More details are available in https://diffvax.github.io/ .
comment: Accepted into ICLR 2026. Project webpage: https://diffvax.github.io/
♻ ☆ DISCOVER: Identifying Patterns of Daily Living in Human Activities from Smart Home Data
Smart homes equipped with ambient sensors offer a transformative approach to continuous health monitoring and assisted living. Traditional research in this domain primarily focuses on Human Activity Recognition (HAR), which relies on mapping sensor data to a closed set of predefined activity labels. However, the fixed granularity of these labels often constrains their practical utility, failing to capture the subtle, household-specific nuances essential, for example, for tracking individual health over time. To address this, we propose DISCOVER, a framework for discovering and annotating Patterns of Daily Living (PDL) - fine-grained, recurring sequences of sensor events that emerge directly from a resident's unique routines. DISCOVER utilizes a self-supervised feature extraction and representation-aware clustering pipeline, supported by a custom visualization interface that enables experts to interpret and label discovered patterns with minimal effort. Our evaluation across multiple smart-home environments demonstrates that DISCOVER identifies cohesive behavioral clusters with high inter-rater agreement while achieving classification performance comparable to fully-supervised baselines using only 0.01% of the labels. Beyond reducing annotation overhead, DISCOVER establishes a foundation for longitudinal analysis. By grounding behavior in a resident's specific environment rather than rigid semantic categories, our framework facilitates the observation of within-person habitual drift. This capability positions the system as a potential tool for identifying subtle behavioral indicators associated with early-stage cognitive decline in future longitudinal studies.
comment: v2: Re-submission. Under review at IMWUT
♻ ☆ Recov-Vision: Linking Street View Imagery and Vision-Language Models for Post-Disaster Recovery
Building-level occupancy after disasters is vital for triage, inspections, utility re-energization, and equitable resource allocation. Overhead imagery provides rapid coverage but often misses facade and access cues that determine habitability, while street-view imagery captures those details but is sparse and difficult to align with parcels. We present FacadeTrack, a street-level, language-guided framework that links panoramic video to parcels, rectifies views to facades, and elicits interpretable attributes (for example, entry blockage, temporary coverings, localized debris) that drive two decision strategies: a transparent one-stage rule and a two-stage design that separates perception from conservative reasoning. Evaluated across two post-Hurricane Helene surveys, the two-stage approach achieves a precision of 0.927, a recall of 0.781, and an F-1 score of 0.848, compared with the one-stage baseline at a precision of 0.943, a recall of 0.728, and an F-1 score of 0.822. Beyond accuracy, intermediate attributes and spatial diagnostics reveal where and why residual errors occur, enabling targeted quality control. The pipeline provides auditable, scalable occupancy assessments suitable for integration into geospatial and emergency-management workflows.
comment: 20 pages, 10 figures
♻ ☆ Detecting 3D Line Segments for 6DoF Pose Estimation with Limited Data
The task of 6DoF object pose estimation is one of the fundamental problems of 3D vision with many practical applications such as industrial automation. Traditional deep learning approaches for this task often require extensive training data or CAD models, limiting their application in real-world industrial settings where data is scarce and object instances vary. We propose a novel method for 6DoF pose estimation focused specifically on bins used in industrial settings. We exploit the cuboid geometry of bins by first detecting intermediate 3D line segments corresponding to their top edges. Our approach extends the 2D line segment detection network LeTR to operate on structured point cloud data. The detected 3D line segments are then processed using a simple geometric procedure to robustly determine the bin's 6DoF pose. To evaluate our method, we extend an existing dataset with a newly collected and annotated dataset, which we make publicly available. We show that incorporating synthetic training data significantly improves pose estimation accuracy on real scans. Moreover, we show that our method significantly outperforms current state-of-the-art 6DoF pose estimation methods in terms of the pose accuracy (3 cm translation error, 8.2$^\circ$ rotation error) while not requiring instance-specific CAD models during inference.
comment: 8 pages, Accepted to VISAPP 2026 as Position Paper
♻ ☆ Thermal Imaging-based Real-time Fall Detection using Motion Flow and Attention-enhanced Convolutional Recurrent Architecture
Falls among seniors are a major public health issue. Existing solutions using wearable sensors, ambient sensors, and RGB-based vision systems face challenges in reliability, user compliance, and practicality. Studies indicate that stakeholders, such as older adults and eldercare facilities, prefer non-wearable, passive, privacy-preserving, and real-time fall detection systems that require no user interaction. This study proposes an advanced thermal fall detection method using a Bidirectional Convolutional Long Short-Term Memory (BiConvLSTM) model, enhanced with spatial, temporal, feature, self, and general attention mechanisms. Through systematic experimentation across hundreds of model variations exploring the integration of attention mechanisms, recurrent modules, and motion flow, we identified top-performing architectures. Among them, BiConvLSTM achieved state-of-the-art performance with a ROC-AUC of $99.7\%$ on the TSF dataset and demonstrated robust results on TF-66, a newly emerged, diverse, and privacy-preserving benchmark. These results highlight the generalizability and practicality of the proposed model, setting new standards for thermal fall detection and paving the way toward deployable, high-performance solutions.
♻ ☆ RePack then Refine: Efficient Diffusion Transformer with Vision Foundation Model
Semantic-rich features from Vision Foundation Models (VFMs) have been leveraged to enhance Latent Diffusion Models (LDMs). However, raw VFM features are typically high-dimensional and redundant, increasing the difficulty of learning and reducing training efficiency for Diffusion Transformers (DiTs). In this paper, we propose Repack then Refine, a three-stage framework that brings the semantic-rich VFM features to DiT while further accelerating learning efficiency. Specifically, the RePack module projects the high-dimensional features onto a compact, low-dimensional manifold. This filters out the redundancy while preserving essential structural information. A standard DiT is then trained for generative modeling on this highly compressed latent space. Finally, to restore the high-frequency details lost due to the compression in RePack, we propose a Latent-Guided Refiner, which is trained lastly for enhancing the image details. On ImageNet-1K, RePack-DiT-XL/1 achieves an FID of 1.82 in only 64 training epochs. With the Refiner module, performance further improves to an FID of 1.65, significantly surpassing latest LDMs in terms of convergence efficiency. Our results demonstrate that packing VFM features, followed by targeted refinement, is a highly effective strategy for balancing generative fidelity with training efficiency.
♻ ☆ One-Step Residual Shifting Diffusion for Image Super-Resolution via Distillation
Diffusion models for super-resolution (SR) produce high-quality visual results but require expensive computational costs. Despite the development of several methods to accelerate diffusion-based SR models, some (e.g., SinSR) fail to produce realistic perceptual details, while others (e.g., OSEDiff) may hallucinate non-existent structures. To overcome these issues, we present RSD, a new distillation method for ResShift. Our method is based on training the student network to produce images such that a new fake ResShift model trained on them will coincide with the teacher model. RSD achieves single-step restoration and outperforms the teacher by a noticeable margin in various perceptual metrics (LPIPS, CLIPIQA, MUSIQ). We show that our distillation method can surpass SinSR, the other distillation-based method for ResShift, making it on par with state-of-the-art diffusion SR distillation methods with limited computational costs in terms of perceptual quality. Compared to SR methods based on pre-trained text-to-image models, RSD produces competitive perceptual quality and requires fewer parameters, GPU memory, and training cost. We provide experimental results on various real-world and synthetic datasets, including RealSR, RealSet65, DRealSR, ImageNet, and DIV2K.
♻ ☆ SurgiATM: A Physics-Guided Plug-and-Play Model for Deep Learning-Based Smoke Removal in Laparoscopic Surgery
During laparoscopic surgery, smoke generated by tissue cauterization degrade endoscopic frames quality, increasing surgical risk and hindering both clinical decision-making and computer-assisted visual analysis. Therefore, removing surgical smoke is essential for patient safety and operative efficiency. In this study, we propose the Surgical Atmospheric Model (SurgiATM) for surgical smoke removal. SurgiATM statistically bridges a physics-based atmospheric model and data-driven deep learning models, combining the superior generalizability of the former with the high accuracy of the latter. SurgiATM is designed as a lightweight, plug-and-play module that can be seamlessly integrated into diverse surgical desmoking architectures to enhance their accuracy and stability. The proposed method is derived via statistically optimizing MoE model at the output end of arbitrary deep learning methods, with a Laplacian-like error distribution specifically leveraged to model surgical smoke. The output-stage MoE ensures minimal modification to the architecture of the original methods, while the Laplacian-like distribution characteristic of surgical smoke enables a lightweight reconstruction formulation with minimal parameters. Therefore, SurgiATM introduces only two hyperparameters and no extra trainable weights, preserving the original network architecture with minimal overhead. We conduct extensive experiments on three public surgical datasets, involving multiple network architectures and covering diverse procedures, including cholecystectomy, partial nephrectomy, and diaphragm dissection. The results demonstrate that incorporating SurgiATM commonly reduces the restoration errors of existing models and relatively enhances their generalizability, without adding any trainable layers or weights. This highlights the convenience, low cost, effectiveness, and generalizability of the proposed method.
comment: 21 pages, 9 figures, 10 tables. Code available at https://github.com/MingyuShengSMY/SurgiATM
♻ ☆ ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs
Methods for finetuning generative models for concept-driven personalization generally achieve strong results for subject-driven or style-driven generation. Recently, low-rank adaptations (LoRA) have been proposed as a parameter-efficient way of achieving concept-driven personalization. While recent work explores the combination of separate LoRAs to achieve joint generation of learned styles and subjects, existing techniques do not reliably address the problem; they often compromise either subject fidelity or style fidelity. We propose ZipLoRA, a method to cheaply and effectively merge independently trained style and subject LoRAs in order to achieve generation of any user-provided subject in any user-provided style. Experiments on a wide range of subject and style combinations show that ZipLoRA can generate compelling results with meaningful improvements over baselines in subject and style fidelity while preserving the ability to recontextualize. Project page: https://ziplora.github.io
comment: Project page: https://ziplora.github.io
Machine Learning 150
☆ PLATE: Plasticity-Tunable Efficient Adapters for Geometry-Aware Continual Learning
We develop a continual learning method for pretrained models that \emph{requires no access to old-task data}, addressing a practical barrier in foundation model adaptation where pretraining distributions are often unavailable. Our key observation is that pretrained networks exhibit substantial \emph{geometric redundancy}, and that this redundancy can be exploited in two complementary ways. First, redundant neurons provide a proxy for dominant pretraining-era feature directions, enabling the construction of approximately protected update subspaces directly from pretrained weights. Second, redundancy offers a natural bias for \emph{where} to place plasticity: by restricting updates to a subset of redundant neurons and constraining the remaining degrees of freedom, we obtain update families with reduced functional drift on the old-data distribution and improved worst-case retention guarantees. These insights lead to \textsc{PLATE} (\textbf{Pla}sticity-\textbf{T}unable \textbf{E}fficient Adapters), a continual learning method requiring no past-task data that provides explicit control over the plasticity-retention trade-off. PLATE parameterizes each layer with a structured low-rank update $ΔW = B A Q^\top$, where $B$ and $Q$ are computed once from pretrained weights and kept frozen, and only $A$ is trained on the new task. The code is available at https://github.com/SalesforceAIResearch/PLATE.
☆ Investigating Quantum Circuit Designs Using Neuro-Evolution GECCO
Designing effective quantum circuits remains a central challenge in quantum computing, as circuit structure strongly influences expressivity, trainability, and hardware feasibility. Current approaches, whether using manually designed circuit templates, fixed heuristics, or automated rules, face limitations in scalability, flexibility, and adaptability, often producing circuits that are poorly matched to the specific problem or quantum hardware. In this work, we propose the Evolutionary eXploration of Augmenting Quantum Circuits (EXAQC), an evolutionary approach to the automated design and training of parameterized quantum circuits (PQCs) which leverages and extends on strategies from neuroevolution and genetic programming. The proposed method jointly searches over gate types, qubit connectivity, parameterization, and circuit depth while respecting hardware and noise constraints. The method supports both Qiskit and Pennylane libraries, allowing the user to configure every aspect. This work highlights evolutionary search as a critical tool for advancing quantum machine learning and variational quantum algorithms, providing a principled pathway toward scalable, problem-aware, and hardware-efficient quantum circuit design. Preliminary results demonstrate that circuits evolved on classification tasks are able to achieve over 90% accuracy on most of the benchmark datasets with a limited computational budget, and are able to emulate target circuit quantum states with high fidelity scores.
comment: Submitted to The Genetic and Evolutionary Computation Conference (GECCO) 2026. Under Review
☆ Understanding and Exploiting Weight Update Sparsity for Communication-Efficient Distributed RL
Reinforcement learning (RL) is a critical component for post-training large language models (LLMs). However, in bandwidth-constrained distributed RL, scalability is often bottlenecked by the synchronization of policy weights from trainers to inference workers, particularly over commodity networks or in decentralized settings. While recent studies suggest that RL updates modify only a small fraction of model parameters, these observations are typically based on coarse checkpoint differences. We present a systematic empirical study of weight-update sparsity at both step-level and multi-step granularities, examining its evolution across training dynamics, off-policy delay, and model scale. We find that update sparsity is consistently high, frequently exceeding 99% across practically relevant settings. Leveraging this structure, we propose PULSE (Patch Updates via Lossless Sparse Encoding), a simple yet highly efficient lossless weight synchronization method that transmits only the indices and values of modified parameters. PULSE is robust to transmission errors and avoids floating-point drift inherent in additive delta schemes. In bandwidth-constrained decentralized environments, our approach achieves over 100x (14 GB to ~108 MB) communication reduction while maintaining bit-identical training dynamics and performance compared to full weight synchronization. By exploiting this structure, PULSE enables decentralized RL training to approach centralized throughput, reducing the bandwidth required for weight synchronization from 20 Gbit/s to 0.2 Gbit/s to maintain high GPU utilization.
comment: 32 pages, 14 figures
☆ Robust Intervention Learning from Emergency Stop Interventions
Human interventions are a common source of data in autonomous systems during testing. These interventions provide an important signal about where the current policy needs improvement, but are often noisy and incomplete. We define Robust Intervention Learning (RIL) as the problem of learning from intervention data while remaining robust to the quality and informativeness of the intervention signal. In the best case, interventions are precise and avoiding them is sufficient to solve the task, but in many realistic settings avoiding interventions is necessary but not sufficient for achieving good performance. We study robust intervention learning in the context of emergency stop interventions and propose Residual Intervention Fine-Tuning (RIFT), a residual fine-tuning algorithm that treats intervention feedback as an incomplete learning signal and explicitly combines it with a prior policy. By framing intervention learning as a fine-tuning problem, our approach leverages structure encoded in the prior policy to resolve ambiguity when intervention signals under-specify the task. We provide theoretical analysis characterizing conditions under which this formulation yields principled policy improvement, and identify regimes where intervention learning is expected to fail. Our experiments reveal that residual fine-tuning enables robust and consistent policy improvement across a range of intervention strategies and prior policy qualities, and highlight robust intervention learning as a promising direction for future work.
☆ Preference-based Conditional Treatment Effects and Policy Learning AISTATS 2026
We introduce a new preference-based framework for conditional treatment effect estimation and policy learning, built on the Conditional Preference-based Treatment Effect (CPTE). CPTE requires only that outcomes be ranked under a preference rule, unlocking flexible modeling of heterogeneous effects with multivariate, ordinal, or preference-driven outcomes. This unifies applications such as conditional probability of necessity and sufficiency, conditional Win Ratio, and Generalized Pairwise Comparisons. Despite the intrinsic non-identifiability of comparison-based estimands, CPTE provides interpretable targets and delivers new identifiability conditions for previous unidentifiable estimands. We present estimation strategies via matching, quantile, and distributional regression, and further design efficient influence-function estimators to correct plug-in bias and maximize policy value. Synthetic and semi-synthetic experiments demonstrate clear performance gains and practical impact.
comment: Accepted to AISTATS 2026; 10 pages + appendix
☆ SymPlex: A Structure-Aware Transformer for Symbolic PDE Solving
We propose SymPlex, a reinforcement learning framework for discovering analytical symbolic solutions to partial differential equations (PDEs) without access to ground-truth expressions. SymPlex formulates symbolic PDE solving as tree-structured decision-making and optimizes candidate solutions using only the PDE and its boundary conditions. At its core is SymFormer, a structure-aware Transformer that models hierarchical symbolic dependencies via tree-relative self-attention and enforces syntactic validity through grammar-constrained autoregressive decoding, overcoming the limited expressivity of sequence-based generators. Unlike numerical and neural approaches that approximate solutions in discretized or implicit function spaces, SymPlex operates directly in symbolic expression space, enabling interpretable and human-readable solutions that naturally represent non-smooth behavior and explicit parametric dependence. Empirical results demonstrate exact recovery of non-smooth and parametric PDE solutions using deep learning-based symbolic methods.
comment: 27 pages
Fast-Slow Efficient Training for Multimodal Large Language Models via Visual Token Pruning
Multimodal Large Language Models (MLLMs) suffer from severe training inefficiency issue, which is associated with their massive model sizes and visual token numbers. Existing efforts in efficient training focus on reducing model sizes or trainable parameters. Inspired by the success of Visual Token Pruning (VTP) in improving inference efficiency, we are exploring another substantial research direction for efficient training by reducing visual tokens. However, applying VTP at the training stage results in a training-inference mismatch: pruning-trained models perform poorly when inferring on non-pruned full visual token sequences. To close this gap, we propose DualSpeed, a fast-slow framework for efficient training of MLLMs. The fast-mode is the primary mode, which incorporates existing VTP methods as plugins to reduce visual tokens, along with a mode isolator to isolate the model's behaviors. The slow-mode is the auxiliary mode, where the model is trained on full visual sequences to retain training-inference consistency. To boost its training, it further leverages self-distillation to learn from the sufficiently trained fast-mode. Together, DualSpeed can achieve both training efficiency and non-degraded performance. Experiments show DualSpeed accelerates the training of LLaVA-1.5 by 2.1$\times$ and LLaVA-NeXT by 4.0$\times$, retaining over 99% performance. Code: https://github.com/dingkun-zhang/DualSpeed
☆ Conformal Thinking: Risk Control for Reasoning on a Compute Budget
Reasoning Large Language Models (LLMs) enable test-time scaling, with dataset-level accuracy improving as the token budget increases, motivating adaptive reasoning -- spending tokens when they improve reliability and stopping early when additional computation is unlikely to help. However, setting the token budget, as well as the threshold for adaptive reasoning, is a practical challenge that entails a fundamental risk-accuracy trade-off. We re-frame the budget setting problem as risk control, limiting the error rate while minimizing compute. Our framework introduces an upper threshold that stops reasoning when the model is confident (risking incorrect output) and a novel parametric lower threshold that preemptively stops unsolvable instances (risking premature stoppage). Given a target risk and a validation set, we use distribution-free risk control to optimally specify these stopping mechanisms. For scenarios with multiple budget controlling criteria, we incorporate an efficiency loss to select the most computationally efficient exiting mechanism. Empirical results across diverse reasoning tasks and models demonstrate the effectiveness of our risk control approach, demonstrating computational efficiency gains from the lower threshold and ensemble stopping mechanisms while adhering to the user-specified risk target.
☆ Antidistillation Fingerprinting
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
comment: 26 pages, 11 figures
☆ Enhancing Imbalanced Node Classification via Curriculum-Guided Feature Learning and Three-Stage Attention Network
Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
☆ Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
☆ Prediction of Critical Heat Flux in Rod Bundles Using Tube-Based Hybrid Machine Learning Models in CTF
The prediction of critical heat flux (CHF) using machine learning (ML) approaches has become a highly active research activity in recent years, the goal of which is to build models more accurate than current conventional approaches such as empirical correlations or lookup tables (LUTs). Previous work developed and deployed tube-based pure and hybrid ML models in the CTF subchannel code, however, full-scale reactor core simulations require the use of rod bundle geometries. Unlike isolated subchannels, rod bundles experience complex thermal hydraulic phenomena such as channel crossflow, spacer grid losses, and effects from unheated conductors. This study investigates the generalization of ML-based CHF prediction models in rod bundles after being trained on tube-based CHF data. A purely data-driven DNN and two hybrid bias-correction models were implemented in the CTF subchannel code and used to predict CHF location and magnitude in the Combustion Engineering 5-by-5 bundle CHF test series. The W-3 correlation, Bowring correlation, and Groeneveld LUT were used as baseline comparators. On average, all three ML-based approaches produced magnitude and location predictions more accurate than the baseline models, with the hybrid LUT model exhibiting the most favorable performance metrics.
comment: Submitted to the 2026 American Nuclear Society Annual Meeting
☆ Manifold Random Features
We present a new paradigm for creating random features to approximate bi-variate functions (in particular, kernels) defined on general manifolds. This new mechanism of Manifold Random Features (MRFs) leverages discretization of the manifold and the recently introduced technique of Graph Random Features (GRFs) to learn continuous fields on manifolds. Those fields are used to find continuous approximation mechanisms that otherwise, in general scenarios, cannot be derived analytically. MRFs provide positive and bounded features, a key property for accurate, low-variance approximation. We show deep asymptotic connection between GRFs, defined on discrete graph objects, and continuous random features used for regular kernels. As a by-product of our method, we re-discover recently introduced mechanism of Gaussian kernel approximation applied in particular to improve linear-attention Transformers, considering simple random walks on graphs and by-passing original complex mathematical computations. We complement our algorithm with a rigorous theoretical analysis and verify in thorough experimental studies.
☆ Understanding Agent Scaling in LLM-Based Multi-Agent Systems via Diversity
LLM-based multi-agent systems (MAS) have emerged as a promising approach to tackle complex tasks that are difficult for individual LLMs. A natural strategy is to scale performance by increasing the number of agents; however, we find that such scaling exhibits strong diminishing returns in homogeneous settings, while introducing heterogeneity (e.g., different models, prompts, or tools) continues to yield substantial gains. This raises a fundamental question: what limits scaling, and why does diversity help? We present an information-theoretic framework showing that MAS performance is bounded by the intrinsic task uncertainty, not by agent count. We derive architecture-agnostic bounds demonstrating that improvements depend on how many effective channels the system accesses. Homogeneous agents saturate early because their outputs are strongly correlated, whereas heterogeneous agents contribute complementary evidence. We further introduce $K^*$, an effective channel count that quantifies the number of effective channels without ground-truth labels. Empirically, we show that heterogeneous configurations consistently outperform homogeneous scaling: 2 diverse agents can match or exceed the performance of 16 homogeneous agents. Our results provide principled guidelines for building efficient and robust MAS through diversity-aware design. Code and Dataset are available at the link: https://github.com/SafeRL-Lab/Agent-Scaling.
☆ Should I use Synthetic Data for That? An Analysis of the Suitability of Synthetic Data for Data Sharing and Augmentation
Recent advances in generative modelling have led many to see synthetic data as the go-to solution for a range of problems around data access, scarcity, and under-representation. In this paper, we study three prominent use cases: (1) Sharing synthetic data as a proxy for proprietary datasets to enable statistical analyses while protecting privacy, (2) Augmenting machine learning training sets with synthetic data to improve model performance, and (3) Augmenting datasets with synthetic data to reduce variance in statistical estimation. For each use case, we formalise the problem setting and study, through formal analysis and case studies, under which conditions synthetic data can achieve its intended objectives. We identify fundamental and practical limits that constrain when synthetic data can serve as an effective solution for a particular problem. Our analysis reveals that due to these limits many existing or envisioned use cases of synthetic data are a poor problem fit. Our formalisations and classification of synthetic data use cases enable decision makers to assess whether synthetic data is a suitable approach for their specific data availability problem.
comment: BK and TS contributed equally
☆ Fast Sampling for Flows and Diffusions with Lazy and Point Mass Stochastic Interpolants
Stochastic interpolants unify flows and diffusions, popular generative modeling frameworks. A primary hyperparameter in these methods is the interpolation schedule that determines how to bridge a standard Gaussian base measure to an arbitrary target measure. We prove how to convert a sample path of a stochastic differential equation (SDE) with arbitrary diffusion coefficient under any schedule into the unique sample path under another arbitrary schedule and diffusion coefficient. We then extend the stochastic interpolant framework to admit a larger class of point mass schedules in which the Gaussian base measure collapses to a point mass measure. Under the assumption of Gaussian data, we identify lazy schedule families that make the drift identically zero and show that with deterministic sampling one gets a variance-preserving schedule commonly used in diffusion models, whereas with statistically optimal SDE sampling one gets our point mass schedule. Finally, to demonstrate the usefulness of our theoretical results on realistic highly non-Gaussian data, we apply our lazy schedule conversion to a state-of-the-art pretrained flow model and show that this allows for generating images in fewer steps without retraining the model.
☆ Inference-time Unlearning Using Conformal Prediction
Machine unlearning is the process of efficiently removing specific information from a trained machine learning model without retraining from scratch. Existing unlearning methods, which often provide provable guarantees, typically involve retraining a subset of model parameters based on a forget set. While these approaches show promise in certain scenarios, their underlying assumptions are often challenged in real-world applications -- particularly when applied to generative models. Furthermore, updating parameters using these unlearning procedures often degrades the general-purpose capabilities the model acquired during pre-training. Motivated by these shortcomings, this paper considers the paradigm of inference time unlearning -- wherein, the generative model is equipped with an (approximately correct) verifier that judges whether the model's response satisfies appropriate unlearning guarantees. This paper introduces a framework that iteratively refines the quality of the generated responses using feedback from the verifier without updating the model parameters. The proposed framework leverages conformal prediction to reduce computational overhead and provide distribution-free unlearning guarantees. This paper's approach significantly outperforms existing state-of-the-art methods, reducing unlearning error by up to 93% across challenging unlearning benchmarks.
☆ Efficient Estimation of Kernel Surrogate Models for Task Attribution ICLR 2026
Modern AI agents such as large language models are trained on diverse tasks -- translation, code generation, mathematical reasoning, and text prediction -- simultaneously. A key question is to quantify how each individual training task influences performance on a target task, a problem we refer to as task attribution. The direct approach, leave-one-out retraining, measures the effect of removing each task, but is computationally infeasible at scale. An alternative approach that builds surrogate models to predict a target task's performance for any subset of training tasks has emerged in recent literature. Prior work focuses on linear surrogate models, which capture first-order relationships, but miss nonlinear interactions such as synergy, antagonism, or XOR-type effects. In this paper, we first consider a unified task weighting framework for analyzing task attribution methods, and show a new connection between linear surrogate models and influence functions through a second-order analysis. Then, we introduce kernel surrogate models, which more effectively represent second-order task interactions. To efficiently learn the kernel surrogate, we develop a gradient-based estimation procedure that leverages a first-order approximation of pretrained models; empirically, this yields accurate estimates with less than $2\%$ relative error without repeated retraining. Experiments across multiple domains -- including math reasoning in transformers, in-context learning, and multi-objective reinforcement learning -- demonstrate the effectiveness of kernel surrogate models. They achieve a $25\%$ higher correlation with the leave-one-out ground truth than linear surrogates and influence-function baselines. When used for downstream task selection, kernel surrogate models yield a $40\%$ improvement in demonstration selection for in-context learning and multi-objective reinforcement learning benchmarks.
comment: 27 pages. To appear in ICLR 2026
☆ Reward Redistribution for CVaR MDPs using a Bellman Operator on L-infinity
Tail-end risk measures such as static conditional value-at-risk (CVaR) are used in safety-critical applications to prevent rare, yet catastrophic events. Unlike risk-neutral objectives, the static CVaR of the return depends on entire trajectories without admitting a recursive Bellman decomposition in the underlying Markov decision process. A classical resolution relies on state augmentation with a continuous variable. However, unless restricted to a specialized class of admissible value functions, this formulation induces sparse rewards and degenerate fixed points. In this work, we propose a novel formulation of the static CVaR objective based on augmentation. Our alternative approach leads to a Bellman operator with: (1) dense per-step rewards; (2) contracting properties on the full space of bounded value functions. Building on this theoretical foundation, we develop risk-averse value iteration and model-free Q-learning algorithms that rely on discretized augmented states. We further provide convergence guarantees and approximation error bounds due to discretization. Empirical results demonstrate that our algorithms successfully learn CVaR-sensitive policies and achieve effective performance-safety trade-offs.
☆ Reasoning Cache: Continual Improvement Over Long Horizons via Short-Horizon RL
Large Language Models (LLMs) that can continually improve beyond their training budgets are able to solve increasingly difficult problems by adapting at test time, a property we refer to as extrapolation. However, standard reinforcement learning (RL) operates over fixed problem distributions and training budgets, which limits extrapolation amidst distribution shift at test time. To address this, we introduce RC, an iterative decoding algorithm that replaces standard autoregressive decoding during both training and inference. RC exploits an asymmetry between the response generation and summarization capabilities of LLMs to construct reasoning chains that consistently improve across iterations. Models trained to use RC can extrapolate and continually improve over reasoning horizons more than an order of magnitude longer than those seen during training. Empirically, training a 4B model with RC using a 16k-token training budget improves performance on HMMT 2025 from 40% to nearly 70% with 0.5m tokens at test time, outperforming both comparably sized models and many larger reasoning LLMs. Finally, we also show that models trained with RC can more effectively leverage existing scaffolds to further scale test-time performance, due to the improved summary-conditioned generation abilities learned through training.
comment: preprint
☆ UniGeM: Unifying Data Mixing and Selection via Geometric Exploration and Mining
The scaling of Large Language Models (LLMs) is increasingly limited by data quality. Most methods handle data mixing and sample selection separately, which can break the structure in code corpora. We introduce \textbf{UniGeM}, a framework that unifies mixing and selection by treating data curation as a \textit{manifold approximation} problem without training proxy models or relying on external reference datasets. UniGeM operates hierarchically: \textbf{Macro-Exploration} learns mixing weights with stability-based clustering; \textbf{Micro-Mining} filters high-quality instances by their geometric distribution to ensure logical consistency. Validated by training 8B and 16B MoE models on 100B tokens, UniGeM achieves \textbf{2.0$\times$ data efficiency} over a random baseline and further improves overall performance compared to SOTA methods in reasoning-heavy evaluations and multilingual generalization.
☆ Reasoning with Latent Tokens in Diffusion Language Models
Discrete diffusion models have recently become competitive with autoregressive models for language modeling, even outperforming them on reasoning tasks requiring planning and global coherence, but they require more computation at inference time. We trace this trade-off to a key mechanism: diffusion models are trained to jointly predict a distribution over all unknown tokens, including those that will not actually be decoded in the current step. Ablating this joint prediction yields faster inference but degrades performance, revealing that accurate prediction at the decoded position relies on joint reasoning about the distribution of undecoded tokens. We interpret these as latent tokens and introduce a method for modulating their number, demonstrating empirically that this enables a smooth tradeoff between inference speed and sample quality. Furthermore, we demonstrate that latent tokens can be introduced into autoregressive models through an auxiliary multi-token prediction objective, yielding substantial improvements on the same reasoning tasks where they have traditionally struggled. Our results suggest that latent tokens, while arising naturally in diffusion, represent a general mechanism for improving performance on tasks requiring global coherence or lookahead.
☆ Decision-oriented benchmarking to transform AI weather forecast access: Application to the Indian monsoon
Artificial intelligence weather prediction (AIWP) models now often outperform traditional physics-based models on common metrics while requiring orders-of-magnitude less computing resources and time. Open-access AIWP models thus hold promise as transformational tools for helping low- and middle-income populations make decisions in the face of high-impact weather shocks. Yet, current approaches to evaluating AIWP models focus mainly on aggregated meteorological metrics without considering local stakeholders' needs in decision-oriented, operational frameworks. Here, we introduce such a framework that connects meteorology, AI, and social sciences. As an example, we apply it to the 150-year-old problem of Indian monsoon forecasting, focusing on benefits to rain-fed agriculture, which is highly susceptible to climate change. AIWP models skillfully predict an agriculturally relevant onset index at regional scales weeks in advance when evaluated out-of-sample using deterministic and probabilistic metrics. This framework informed a government-led effort in 2025 to send 38 million Indian farmers AI-based monsoon onset forecasts, which captured an unusual weeks-long pause in monsoon progression. This decision-oriented benchmarking framework provides a key component of a blueprint for harnessing the power of AIWP models to help large vulnerable populations adapt to weather shocks in the face of climate variability and change.
☆ Conditional Flow Matching for Visually-Guided Acoustic Highlighting
Visually-guided acoustic highlighting seeks to rebalance audio in alignment with the accompanying video, creating a coherent audio-visual experience. While visual saliency and enhancement have been widely studied, acoustic highlighting remains underexplored, often leading to misalignment between visual and auditory focus. Existing approaches use discriminative models, which struggle with the inherent ambiguity in audio remixing, where no natural one-to-one mapping exists between poorly-balanced and well-balanced audio mixes. To address this limitation, we reframe this task as a generative problem and introduce a Conditional Flow Matching (CFM) framework. A key challenge in iterative flow-based generation is that early prediction errors -- in selecting the correct source to enhance -- compound over steps and push trajectories off-manifold. To address this, we introduce a rollout loss that penalizes drift at the final step, encouraging self-correcting trajectories and stabilizing long-range flow integration. We further propose a conditioning module that fuses audio and visual cues before vector field regression, enabling explicit cross-modal source selection. Extensive quantitative and qualitative evaluations show that our method consistently surpasses the previous state-of-the-art discriminative approach, establishing that visually-guided audio remixing is best addressed through generative modeling.
☆ Soft Sensor for Bottom-Hole Pressure Estimation in Petroleum Wells Using Long Short-Term Memory and Transfer Learning
Monitoring bottom-hole variables in petroleum wells is essential for production optimization, safety, and emissions reduction. Permanent Downhole Gauges (PDGs) provide real-time pressure data but face reliability and cost issues. We propose a machine learning-based soft sensor to estimate flowing Bottom-Hole Pressure (BHP) using wellhead and topside measurements. A Long Short-Term Memory (LSTM) model is introduced and compared with Multi-Layer Perceptron (MLP) and Ridge Regression. We also pioneer Transfer Learning for adapting models across operational environments. Tested on real offshore datasets from Brazil's Pre-salt basin, the methodology achieved Mean Absolute Percentage Error (MAPE) consistently below 2\%, outperforming benchmarks. This work offers a cost-effective, accurate alternative to physical sensors, with broad applicability across diverse reservoir and flow conditions.
☆ Fast-MWEM: Private Data Release in Sublinear Time
The Multiplicative Weights Exponential Mechanism (MWEM) is a fundamental iterative framework for private data analysis, with broad applications such as answering $m$ linear queries, or privately solving systems of $m$ linear constraints. However, a critical bottleneck hindering its scalability is the $Θ(m)$ time complexity required to execute the exponential mechanism in each iteration. We introduce a modification to the MWEM framework that improves the per-iteration runtime dependency to $Θ(\sqrt{m})$ in expectation. This is done via a lazy sampling approach to the Report-Noisy-Max mechanism, which we implement efficiently using Gumbel noise and a $k$-Nearest Neighbor data structure. This allows for the rapid selection of the approximate score in the exponential mechanism without an exhaustive linear scan. We apply our accelerated framework to the problems of private linear query release and solving Linear Programs (LPs) under neighboring constraint conditions and low-sensitivity assumptions. Experimental evaluation confirms that our method provides a substantial runtime improvement over classic MWEM.
☆ Efficient Variance-reduced Estimation from Generative EHR Models: The SCOPE and REACH Estimators
Generative models trained using self-supervision of tokenized electronic health record (EHR) timelines show promise for clinical outcome prediction. This is typically done using Monte Carlo simulation for future patient trajectories. However, existing approaches suffer from three key limitations: sparse estimate distributions that poorly differentiate patient risk levels, extreme computational costs, and high sampling variance. We propose two new estimators: the Sum of Conditional Outcome Probability Estimator (SCOPE) and Risk Estimation from Anticipated Conditional Hazards (REACH), that leverage next-token probability distributions discarded by standard Monte Carlo. We prove both estimators are unbiased and that REACH guarantees variance reduction over Monte Carlo sampling for any model and outcome. Empirically, on hospital mortality prediction in MIMIC-IV using the ETHOS-ARES framework, SCOPE and REACH match 100-sample Monte Carlo performance using only 10-11 samples (95% CI: [9,11]), representing a ~10x reduction in inference cost without degrading calibration. For ICU admission prediction, efficiency gains are more modest (~1.2x), which we attribute to the outcome's lower "spontaneity," a property we characterize theoretically and empirically. These methods substantially improve the feasibility of deploying generative EHR models in resource-constrained clinical settings.
comment: 10 pages, 2 figures
☆ Efficient Training of Boltzmann Generators Using Off-Policy Log-Dispersion Regularization
Sampling from unnormalized probability densities is a central challenge in computational science. Boltzmann generators are generative models that enable independent sampling from the Boltzmann distribution of physical systems at a given temperature. However, their practical success depends on data-efficient training, as both simulation data and target energy evaluations are costly. To this end, we propose off-policy log-dispersion regularization (LDR), a novel regularization framework that builds on a generalization of the log-variance objective. We apply LDR in the off-policy setting in combination with standard data-based training objectives, without requiring additional on-policy samples. LDR acts as a shape regularizer of the energy landscape by leveraging additional information in the form of target energy labels. The proposed regularization framework is broadly applicable, supporting unbiased or biased simulation datasets as well as purely variational training without access to target samples. Across all benchmarks, LDR improves both final performance and data efficiency, with sample efficiency gains of up to one order of magnitude.
☆ VR-VFL: Joint Rate and Client Selection for Vehicular Federated Learning Under Imperfect CSI
Federated learning in vehicular edge networks faces major challenges in efficient resource allocation, largely due to high vehicle mobility and the presence of imperfect channel state information. Many existing methods oversimplify these realities, often assuming fixed communication rounds or ideal channel conditions, which limits their effectiveness in real-world scenarios. To address this, we propose variable rate vehicular federated learning (VR-VFL), a novel federated learning method designed specifically for vehicular networks under imperfect channel state information. VR-VFL combines dynamic client selection with adaptive transmission rate selection, while also allowing round times to flex in response to changing wireless conditions. At its core, VR-VFL is built on a bi-objective optimization framework that strikes a balance between improving learning convergence and minimizing the time required to complete each round. By accounting for both the challenges of mobility and realistic wireless constraints, VR-VFL offers a more practical and efficient approach to federated learning in vehicular edge networks. Simulation results show that the proposed VR-VFL scheme achieves convergence approximately 40% faster than other methods in the literature.
comment: This paper has been accepted for presentation at IEEE ICC 2026
☆ Anytime Pretraining: Horizon-Free Learning-Rate Schedules with Weight Averaging
Large language models are increasingly trained in continual or open-ended settings, where the total training horizon is not known in advance. Despite this, most existing pretraining recipes are not anytime: they rely on horizon-dependent learning rate schedules and extensive tuning under a fixed compute budget. In this work, we provide a theoretical analysis demonstrating the existence of anytime learning schedules for overparameterized linear regression, and we highlight the central role of weight averaging - also known as model merging - in achieving the minimax convergence rates of stochastic gradient descent. We show that these anytime schedules polynomially decay with time, with the decay rate determined by the source and capacity conditions of the problem. Empirically, we evaluate 150M and 300M parameter language models trained at 1-32x Chinchilla scale, comparing constant learning rates with weight averaging and $1/\sqrt{t}$ schedules with weight averaging against a well-tuned cosine schedule. Across the full training range, the anytime schedules achieve comparable final loss to cosine decay. Taken together, our results suggest that weight averaging combined with simple, horizon-free step sizes offers a practical and effective anytime alternative to cosine learning rate schedules for large language model pretraining.
☆ Data-Driven Graph Filters via Adaptive Spectral Shaping
We introduce Adaptive Spectral Shaping, a data-driven framework for graph filtering that learns a reusable baseline spectral kernel and modulates it with a small set of Gaussian factors. The resulting multi-peak, multi-scale responses allocate energy to heterogeneous regions of the Laplacian spectrum while remaining interpretable via explicit centers and bandwidths. To scale, we implement filters with Chebyshev polynomial expansions, avoiding eigendecompositions. We further propose Transferable Adaptive Spectral Shaping (TASS): the baseline kernel is learned on source graphs and, on a target graph, kept fixed while only the shaping parameters are adapted, enabling few-shot transfer under matched compute. Across controlled synthetic benchmarks spanning graph families and signal regimes, Adaptive Spectral Shaping reduces reconstruction error relative to fixed-prototype wavelets and learned linear banks, and TASS yields consistent positive transfer. The framework provides compact spectral modules that plug into graph signal processing pipelines and graph neural networks, combining scalability, interpretability, and cross-graph generalization.
☆ Conflict-Resolving and Sharpness-Aware Minimization for Generalized Knowledge Editing with Multiple Updates
Large language models (LLMs) rely on internal knowledge to solve many downstream tasks, making it crucial to keep them up to date. Since full retraining is expensive, prior work has explored efficient alternatives such as model editing and parameter-efficient fine-tuning. However, these approaches often break down in practice due to poor generalization across inputs, limited stability, and knowledge conflict. To address these limitations, we propose the CoRSA (Conflict-Resolving and Sharpness-Aware Minimization) training framework, a parameter-efficient, holistic approach for knowledge editing with multiple updates. CoRSA tackles multiple challenges simultaneously: it improves generalization to different input forms and enhances stability across multiple updates by minimizing loss curvature, and resolves conflicts by maximizing the margin between new and prior knowledge. Across three widely used fact editing benchmarks, CoRSA achieves significant gains in generalization, outperforming baselines with average absolute improvements of 12.42% over LoRA and 10% over model editing methods. With multiple updates, it maintains high update efficacy while reducing catastrophic forgetting by 27.82% compared to LoRA. CoRSA also generalizes to the code domain, outperforming the strongest baseline by 5.48% Pass@5 in update efficacy.
comment: 22 pages, 8 figures. Code link: https://github.com/duykhuongnguyen/CoRSA
LLM-Inspired Pretrain-Then-Finetune for Small-Data, Large-Scale Optimization
We consider small-data, large-scale decision problems in which a firm must make many operational decisions simultaneously (e.g., across a large product portfolio) while observing only a few, potentially noisy, data points per instance. Inspired by the success of large language models (LLMs), we propose a pretrain-then-finetune approach built on a designed Transformer model to address this challenge. The model is first pretrained on large-scale, domain-informed synthetic data that encode managerial knowledge and structural features of the decision environment, and is then fine-tuned on real observations. This new pipeline offers two complementary advantages: pretraining injects domain knowledge into the learning process and enables the training of high-capacity models using abundant synthetic data, while finetuning adapts the pretrained model to the operational environment and improves alignment with the true data-generating regime. While we have leveraged the Transformer's state-of-the-art representational capacity, particularly its attention mechanism, to efficiently extract cross-task structure, our approach is not an off-the-shelf application. Instead, it relies on problem-specific architectural design and a tailored training procedure to match the decision setting. Theoretically, we develop the first comprehensive error analysis regarding Transformer learning in relevant contexts, establishing nonasymptotic guarantees that validate the method's effectiveness. Critically, our analysis reveals how pretraining and fine-tuning jointly determine performance, with the dominant contribution governed by whichever is more favorable. In particular, finetuning exhibits an economies-of-scale effect, whereby transfer learning becomes increasingly effective as the number of instances grows.
☆ QuAIL: Quality-Aware Inertial Learning for Robust Training under Data Corruption
Tabular machine learning systems are frequently trained on data affected by non-uniform corruption, including noisy measurements, missing entries, and feature-specific biases. In practice, these defects are often documented only through column-level reliability indicators rather than instance-wise quality annotations, limiting the applicability of many robustness and cleaning techniques. We present QuAIL, a quality-informed training mechanism that incorporates feature reliability priors directly into the learning process. QuAIL augments existing models with a learnable feature-modulation layer whose updates are selectively constrained by a quality-dependent proximal regularizer, thereby inducing controlled adaptation across features of varying trustworthiness. This stabilizes optimization under structured corruption without explicit data repair or sample-level reweighting. Empirical evaluation across 50 classification and regression datasets demonstrates that QuAIL consistently improves average performance over neural baselines under both random and value-dependent corruption, with especially robust behavior in low-data and systematically biased settings. These results suggest that incorporating feature reliability information directly into optimization dynamics is a practical and effective approach for resilient tabular learning.
☆ Universal One-third Time Scaling in Learning Peaked Distributions
Training large language models (LLMs) is computationally expensive, partly because the loss exhibits slow power-law convergence whose origin remains debatable. Through systematic analysis of toy models and empirical evaluation of LLMs, we show that this behavior can arise intrinsically from the use of softmax and cross-entropy. When learning peaked probability distributions, e.g., next-token distributions, these components yield power-law vanishing losses and gradients, creating a fundamental optimization bottleneck. This ultimately leads to power-law time scaling of the loss with a universal exponent of $1/3$. Our results provide a mechanistic explanation for observed neural scaling and suggest new directions for improving LLM training efficiency.
comment: 24 pages, 6 main text figures, 27 figures in total
☆ Improved Analysis of the Accelerated Noisy Power Method with Applications to Decentralized PCA
We analyze the Accelerated Noisy Power Method, an algorithm for Principal Component Analysis in the setting where only inexact matrix-vector products are available, which can arise for instance in decentralized PCA. While previous works have established that acceleration can improve convergence rates compared to the standard Noisy Power Method, these guarantees require overly restrictive upper bounds on the magnitude of the perturbations, limiting their practical applicability. We provide an improved analysis of this algorithm, which preserves the accelerated convergence rate under much milder conditions on the perturbations. We show that our new analysis is worst-case optimal, in the sense that the convergence rate cannot be improved, and that the noise conditions we derive cannot be relaxed without sacrificing convergence guarantees. We demonstrate the practical relevance of our results by deriving an accelerated algorithm for decentralized PCA, which has similar communication costs to non-accelerated methods. To our knowledge, this is the first decentralized algorithm for PCA with provably accelerated convergence.
☆ Neural Attention Search Linear: Towards Adaptive Token-Level Hybrid Attention Models
The quadratic computational complexity of softmax transformers has become a bottleneck in long-context scenarios. In contrast, linear attention model families provide a promising direction towards a more efficient sequential model. These linear attention models compress past KV values into a single hidden state, thereby efficiently reducing complexity during both training and inference. However, their expressivity remains limited by the size of their hidden state. Previous work proposed interleaving softmax and linear attention layers to reduce computational complexity while preserving expressivity. Nevertheless, the efficiency of these models remains bottlenecked by their softmax attention layers. In this paper, we propose Neural Attention Search Linear (NAtS-L), a framework that applies both linear attention and softmax attention operations within the same layer on different tokens. NAtS-L automatically determines whether a token can be handled by a linear attention model, i.e., tokens that have only short-term impact and can be encoded into fixed-size hidden states, or require softmax attention, i.e., tokens that contain information related to long-term retrieval and need to be preserved for future queries. By searching for optimal Gated DeltaNet and softmax attention combinations across tokens, we show that NAtS-L provides a strong yet efficient token-level hybrid architecture.
comment: 17 pages, 8 figures
☆ ContraLog: Log File Anomaly Detection with Contrastive Learning and Masked Language Modeling
Log files record computational events that reflect system state and behavior, making them a primary source of operational insights in modern computer systems. Automated anomaly detection on logs is therefore critical, yet most established methods rely on log parsers that collapse messages into discrete templates, discarding variable values and semantic content. We propose ContraLog, a parser-free and self-supervised method that reframes log anomaly detection as predicting continuous message embeddings rather than discrete template IDs. ContraLog combines a message encoder that produces rich embeddings for individual log messages with a sequence encoder to model temporal dependencies within sequences. The model is trained with a combination of masked language modeling and contrastive learning to predict masked message embeddings based on the surrounding context. Experiments on the HDFS, BGL, and Thunderbird benchmark datasets empirically demonstrate effectiveness on complex datasets with diverse log messages. Additionally, we find that message embeddings generated by ContraLog carry meaningful information and are predictive of anomalies even without sequence context. These results highlight embedding-level prediction as an approach for log anomaly detection, with potential applicability to other event sequences.
comment: 26 pages with 16 figures
☆ Equilibrium Propagation for Non-Conservative Systems
Equilibrium Propagation (EP) is a physics-inspired learning algorithm that uses stationary states of a dynamical system both for inference and learning. In its original formulation it is limited to conservative systems, $\textit{i.e.}$ to dynamics which derive from an energy function. Given their importance in applications, it is important to extend EP to nonconservative systems, $\textit{i.e.}$ systems with non-reciprocal interactions. Previous attempts to generalize EP to such systems failed to compute the exact gradient of the cost function. Here we propose a framework that extends EP to arbitrary nonconservative systems, including feedforward networks. We keep the key property of equilibrium propagation, namely the use of stationary states both for inference and learning. However, we modify the dynamics in the learning phase by a term proportional to the non-reciprocal part of the interaction so as to obtain the exact gradient of the cost function. This algorithm can also be derived using a variational formulation that generates the learning dynamics through an energy function defined over an augmented state space. Numerical experiments using the MNIST database show that this algorithm achieves better performance and learns faster than previous proposals.
comment: 19 pages (9 pages main text), 7 figures
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ Mitigating Conversational Inertia in Multi-Turn Agents
Large language models excel as few-shot learners when provided with appropriate demonstrations, yet this strength becomes problematic in multiturn agent scenarios, where LLMs erroneously mimic their own previous responses as few-shot examples. Through attention analysis, we identify conversational inertia, a phenomenon where models exhibit strong diagonal attention to previous responses, which is associated with imitation bias that constrains exploration. This reveals a tension when transforming few-shot LLMs into agents: longer context enriches environmental feedback for exploitation, yet also amplifies conversational inertia that undermines exploration. Our key insight is that for identical states, actions generated with longer contexts exhibit stronger inertia than those with shorter contexts, enabling construction of preference pairs without environment rewards. Based on this, we propose Context Preference Learning to calibrate model preferences to favor low-inertia responses over highinertia ones. We further provide context management strategies at inference time to balance exploration and exploitation. Experimental results across eight agentic environments and one deep research scenario validate that our framework reduces conversational inertia and achieves performance improvements.
☆ Sequential Group Composition: A Window into the Mechanics of Deep Learning
How do neural networks trained over sequences acquire the ability to perform structured operations, such as arithmetic, geometric, and algorithmic computation? To gain insight into this question, we introduce the sequential group composition task. In this task, networks receive a sequence of elements from a finite group encoded in a real vector space and must predict their cumulative product. The task can be order-sensitive and requires a nonlinear architecture to be learned. Our analysis isolates the roles of the group structure, encoding statistics, and sequence length in shaping learning. We prove that two-layer networks learn this task one irreducible representation of the group at a time in an order determined by the Fourier statistics of the encoding. These networks can perfectly learn the task, but doing so requires a hidden width exponential in the sequence length $k$. In contrast, we show how deeper models exploit the associativity of the task to dramatically improve this scaling: recurrent neural networks compose elements sequentially in $k$ steps, while multilayer networks compose adjacent pairs in parallel in $\log k$ layers. Overall, the sequential group composition task offers a tractable window into the mechanics of deep learning.
☆ Reinforcement Fine-Tuning for History-Aware Dense Retriever in RAG
Retrieval-augmented generation (RAG) enables large language models (LLMs) to produce evidence-based responses, and its performance hinges on the matching between the retriever and LLMs. Retriever optimization has emerged as an efficient alternative to fine-tuning LLMs. However, existing solutions suffer from objective mismatch between retriever optimization and the goal of RAG pipeline. Reinforcement learning (RL) provides a promising solution to address this limitation, yet applying RL to retriever optimization introduces two fundamental challenges: 1) the deterministic retrieval is incompatible with RL formulations, and 2) state aliasing arises from query-only retrieval in multi-hop reasoning. To address these challenges, we replace deterministic retrieval with stochastic sampling and formulate RAG as a Markov decision process, making retriever optimizable by RL. Further, we incorporate retrieval history into the state at each retrieval step to mitigate state aliasing. Extensive experiments across diverse RAG pipelines, datasets, and retriever scales demonstrate consistent improvements of our approach in RAG performance.
comment: On going work. Codes are released at https://github.com/zyc140345/HARR
☆ CTTVAE: Latent Space Structuring for Conditional Tabular Data Generation on Imbalanced Datasets
Generating synthetic tabular data under severe class imbalance is essential for domains where rare but high-impact events drive decision-making. However, most generative models either overlook minority groups or fail to produce samples that are useful for downstream learning. We introduce CTTVAE, a Conditional Transformer-based Tabular Variational Autoencoder equipped with two complementary mechanisms: (i) a class-aware triplet margin loss that restructures the latent space for sharper intra-class compactness and inter-class separation, and (ii) a training-by-sampling strategy that adaptively increases exposure to underrepresented groups. Together, these components form CTTVAE+TBS, a framework that consistently yields more representative and utility-aligned samples without destabilizing training. Across six real-world benchmarks, CTTVAE+TBS achieves the strongest downstream utility on minority classes, often surpassing models trained on the original imbalanced data while maintaining competitive fidelity and bridging the gap for privacy for interpolation-based sampling methods and deep generative methods. Ablation studies further confirm that both latent structuring and targeted sampling contribute to these gains. By explicitly prioritizing downstream performance in rare categories, CTTVAE+TBS provides a robust and interpretable solution for conditional tabular data generation, with direct applicability to industries such as healthcare, fraud detection, and predictive maintenance where even small gains in minority cases can be critical.
☆ TRE: Encouraging Exploration in the Trust Region
Entropy regularization is a standard technique in reinforcement learning (RL) to enhance exploration, yet it yields negligible effects or even degrades performance in Large Language Models (LLMs). We attribute this failure to the cumulative tail risk inherent to LLMs with massive vocabularies and long generation horizons. In such environments, standard global entropy maximization indiscriminately dilutes probability mass into the vast tail of invalid tokens rather than focusing on plausible candidates, thereby disrupting coherent reasoning. To address this, we propose Trust Region Entropy (TRE), a method that encourages exploration strictly within the model's trust region. Extensive experiments across mathematical reasoning (MATH), combinatorial search (Countdown), and preference alignment (HH) tasks demonstrate that TRE consistently outperforms vanilla PPO, standard entropy regularization, and other exploration baselines. Our code is available at https://github.com/WhyChaos/TRE-Encouraging-Exploration-in-the-Trust-Region.
☆ Ultra Fast PDE Solving via Physics Guided Few-step Diffusion
Diffusion-based models have demonstrated impressive accuracy and generalization in solving partial differential equations (PDEs). However, they still face significant limitations, such as high sampling costs and insufficient physical consistency, stemming from their many-step iterative sampling mechanism and lack of explicit physics constraints. To address these issues, we propose Phys-Instruct, a novel physics-guided distillation framework which not only (1) compresses a pre-trained diffusion PDE solver into a few-step generator via matching generator and prior diffusion distributions to enable rapid sampling, but also (2) enhances the physics consistency by explicitly injecting PDE knowledge through a PDE distillation guidance. Physic-Instruct is built upon a solid theoretical foundation, leading to a practical physics-constrained training objective that admits tractable gradients. Across five PDE benchmarks, Phys-Instruct achieves orders-of-magnitude faster inference while reducing PDE error by more than 8 times compared to state-of-the-art diffusion baselines. Moreover, the resulting unconditional student model functions as a compact prior, enabling efficient and physically consistent inference for various downstream conditional tasks. Our results indicate that Phys-Instruct is a novel, effective, and efficient framework for ultra-fast PDE solving powered by deep generative models.
☆ Quantization-Aware Regularizers for Deep Neural Networks Compression
Deep Neural Networks reached state-of-the-art performance across numerous domains, but this progress has come at the cost of increasingly large and over-parameterized models, posing serious challenges for deployment on resource-constrained devices. As a result, model compression has become essential, and -- among compression techniques -- weight quantization is largely used and particularly effective, yet it typically introduces a non-negligible accuracy drop. However, it is usually applied to already trained models, without influencing how the parameter space is explored during the learning phase. In contrast, we introduce per-layer regularization terms that drive weights to naturally form clusters during training, integrating quantization awareness directly into the optimization process. This reduces the accuracy loss typically associated with quantization methods while preserving their compression potential. Furthermore, in our framework quantization representatives become network parameters, marking, to the best of our knowledge, the first approach to embed quantization parameters directly into the backpropagation procedure. Experiments on CIFAR-10 with AlexNet and VGG16 models confirm the effectiveness of the proposed strategy.
☆ Simulation-Based Inference via Regression Projection and Batched Discrepancies
We analyze a lightweight simulation-based inference method that infers simulator parameters using only a regression-based projection of the observed data. After fitting a surrogate linear regression once, the procedure simulates small batches at the proposed parameter values and assigns kernel weights based on the resulting batch-residual discrepancy, producing a self-normalized pseudo-posterior that is simple, parallelizable, and requires access only to the fitted regression coefficients rather than raw observations. We formalize the construction as an importance-sampling approximation to a population target that averages over simulator randomness, prove consistency as the number of parameter draws grows, and establish stability in estimating the surrogate regression from finite samples. We then characterize the asymptotic concentration as the batch size increases and the bandwidth shrinks, showing that the pseudo-posterior concentrates on an identified set determined by the chosen projection, thereby clarifying when the method yields point versus set identification. Experiments on a tractable nonlinear model and on a cosmological calibration task using the DREAMS simulation suite illustrate the computational advantages of regression-based projections and the identifiability limitations arising from low-information summaries.
comment: comments are welcome,
☆ Generator-based Graph Generation via Heat Diffusion ICML
Graph generative modelling has become an essential task due to the wide range of applications in chemistry, biology, social networks, and knowledge representation. In this work, we propose a novel framework for generating graphs by adapting the Generator Matching (arXiv:2410.20587) paradigm to graph-structured data. We leverage the graph Laplacian and its associated heat kernel to define a continous-time diffusion on each graph. The Laplacian serves as the infinitesimal generator of this diffusion, and its heat kernel provides a family of conditional perturbations of the initial graph. A neural network is trained to match this generator by minimising a Bregman divergence between the true generator and a learnable surrogate. Once trained, the surrogate generator is used to simulate a time-reversed diffusion process to sample new graph structures. Our framework unifies and generalises existing diffusion-based graph generative models, injecting domain-specific inductive bias via the Laplacian, while retaining the flexibility of neural approximators. Experimental studies demonstrate that our approach captures structural properties of real and synthetic graphs effectively.
comment: Submitted to ICML; 8+15 pages; 20 figures
☆ Explanations Leak: Membership Inference with Differential Privacy and Active Learning Defense
Counterfactual explanations (CFs) are increasingly integrated into Machine Learning as a Service (MLaaS) systems to improve transparency; however, ML models deployed via APIs are already vulnerable to privacy attacks such as membership inference and model extraction, and the impact of explanations on this threat landscape remains insufficiently understood. In this work, we focus on the problem of how CFs expand the attack surface of MLaaS by strengthening membership inference attacks (MIAs), and on the need to design defense mechanisms that mitigate this emerging risk without undermining utility and explainability. First, we systematically analyze how exposing CFs through query-based APIs enables more effective shadow-based MIAs. Second, we propose a defense framework that integrates Differential Privacy (DP) with Active Learning (AL) to jointly reduce memorization and limit effective training data exposure. Finally, we conduct an extensive empirical evaluation to characterize the three-way trade-off between privacy leakage, predictive performance, and explanation quality. Our findings highlight the need to carefully balance transparency, utility, and privacy in the responsible deployment of explainable MLaaS systems.
☆ SAGE-5GC: Security-Aware Guidelines for Evaluating Anomaly Detection in the 5G Core Network
Machine learning-based anomaly detection systems are increasingly being adopted in 5G Core networks to monitor complex, high-volume traffic. However, most existing approaches are evaluated under strong assumptions that rarely hold in operational environments, notably the availability of independent and identically distributed (IID) data and the absence of adaptive attackers.In this work, we study the problem of detecting 5G attacks \textit{in the wild}, focusing on realistic deployment settings. We propose a set of Security-Aware Guidelines for Evaluating anomaly detectors in 5G Core Network (SAGE-5GC), driven by domain knowledge and consideration of potential adversarial threats. Using a realistic 5G Core dataset, we first train several anomaly detectors and assess their baseline performance against standard 5GC control-plane cyberattacks targeting PFCP-based network services.We then extend the evaluation to adversarial settings, where an attacker tries to manipulate the observable features of the network traffic to evade detection, under the constraint that the intended functionality of the malicious traffic is preserved. Starting from a selected set of controllable features, we analyze model sensitivity and adversarial robustness through randomized perturbations. Finally, we introduce a practical optimization strategy based on genetic algorithms that operates exclusively on attacker-controllable features and does not require prior knowledge of the underlying detection model. Our experimental results show that adversarially crafted attacks can substantially degrade detection performance, underscoring the need for robust, security-aware evaluation methodologies for anomaly detection in 5G networks deployed in the wild.
comment: ITASEC-2026
☆ APEX: Probing Neural Networks via Activation Perturbation
Prior work on probing neural networks primarily relies on input-space analysis or parameter perturbation, both of which face fundamental limitations in accessing structural information encoded in intermediate representations. We introduce Activation Perturbation for EXploration (APEX), an inference-time probing paradigm that perturbs hidden activations while keeping both inputs and model parameters fixed. We theoretically show that activation perturbation induces a principled transition from sample-dependent to model-dependent behavior by suppressing input-specific signals and amplifying representation-level structure, and further establish that input perturbation corresponds to a constrained special case of this framework. Through representative case studies, we demonstrate the practical advantages of APEX. In the small-noise regime, APEX provides a lightweight and efficient measure of sample regularity that aligns with established metrics, while also distinguishing structured from randomly labeled models and revealing semantically coherent prediction transitions. In the large-noise regime, APEX exposes training-induced model-level biases, including a pronounced concentration of predictions on the target class in backdoored models. Overall, our results show that APEX offers an effective perspective for exploring, and understanding neural networks beyond what is accessible from input space alone.
☆ $V_0$: A Generalist Value Model for Any Policy at State Zero
Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
☆ Optimization and Generation in Aerodynamics Inverse Design
Inverse design with physics-based objectives is challenging because it couples high-dimensional geometry with expensive simulations, as exemplified by aerodynamic shape optimization for drag reduction. We revisit inverse design through two canonical solutions, the optimal design point and the optimal design distribution, and relate them to optimization and guided generation. Building on this view, we propose a new training loss for cost predictors and a density-gradient optimization method that improves objectives while preserving plausible shapes. We further unify existing training-free guided generation methods. To address their inability to approximate conditional covariance in high dimensions, we develop a time- and memory-efficient algorithm for approximate covariance estimation. Experiments on a controlled 2D study and high-fidelity 3D aerodynamic benchmarks (car and aircraft), validated by OpenFOAM simulations and miniature wind-tunnel tests with 3D-printed prototypes, demonstrate consistent gains in both optimization and guided generation. Additional offline RL results further support the generality of our approach.
☆ Asymmetric Hierarchical Anchoring for Audio-Visual Joint Representation: Resolving Information Allocation Ambiguity for Robust Cross-Modal Generalization
Audio-visual joint representation learning under Cross-Modal Generalization (CMG) aims to transfer knowledge from a labeled source modality to an unlabeled target modality through a unified discrete representation space. Existing symmetric frameworks often suffer from information allocation ambiguity, where the absence of structural inductive bias leads to semantic-specific leakage across modalities. We propose Asymmetric Hierarchical Anchoring (AHA), which enforces directional information allocation by designating a structured semantic anchor within a shared hierarchy. In our instantiation, we exploit the hierarchical discrete representations induced by audio Residual Vector Quantization (RVQ) to guide video feature distillation into a shared semantic space. To ensure representational purity, we replace fragile mutual information estimators with a GRL-based adversarial decoupler that explicitly suppresses semantic leakage in modality-specific branches, and introduce Local Sliding Alignment (LSA) to encourage fine-grained temporal alignment across modalities. Extensive experiments on AVE and AVVP benchmarks demonstrate that AHA consistently outperforms symmetric baselines in cross-modal transfer. Additional analyses on talking-face disentanglement experiment further validate that the learned representations exhibit improved semantic consistency and disentanglement, indicating the broader applicability of the proposed framework.
comment: 18 pages, 11 figures
☆ EHRWorld: A Patient-Centric Medical World Model for Long-Horizon Clinical Trajectories
World models offer a principled framework for simulating future states under interventions, but realizing such models in complex, high-stakes domains like medicine remains challenging. Recent large language models (LLMs) have achieved strong performance on static medical reasoning tasks, raising the question of whether they can function as dynamic medical world models capable of simulating disease progression and treatment outcomes over time. In this work, we show that LLMs only incorporating medical knowledge struggle to maintain consistent patient states under sequential interventions, leading to error accumulation in long-horizon clinical simulation. To address this limitation, we introduce EHRWorld, a patient-centric medical world model trained under a causal sequential paradigm, together with EHRWorld-110K, a large-scale longitudinal clinical dataset derived from real-world electronic health records. Extensive evaluations demonstrate that EHRWorld significantly outperforms naive LLM-based baselines, achieving more stable long-horizon simulation, improved modeling of clinically sensitive events, and favorable reasoning efficiency, highlighting the necessity of training on causally grounded, temporally evolving clinical data for reliable and robust medical world modeling.
☆ EVE: Efficient Verification of Data Erasure through Customized Perturbation in Approximate Unlearning
Verifying whether the machine unlearning process has been properly executed is critical but remains underexplored. Some existing approaches propose unlearning verification methods based on backdooring techniques. However, these methods typically require participation in the model's initial training phase to backdoor the model for later verification, which is inefficient and impractical. In this paper, we propose an efficient verification of erasure method (EVE) for verifying machine unlearning without requiring involvement in the model's initial training process. The core idea is to perturb the unlearning data to ensure the model prediction of the specified samples will change before and after unlearning with perturbed data. The unlearning users can leverage the observation of the changes as a verification signal. Specifically, the perturbations are designed with two key objectives: ensuring the unlearning effect and altering the unlearned model's prediction of target samples. We formalize the perturbation generation as an adversarial optimization problem, solving it by aligning the unlearning gradient with the gradient of boundary change for target samples. We conducted extensive experiments, and the results show that EVE can verify machine unlearning without involving the model's initial training process, unlike backdoor-based methods. Moreover, EVE significantly outperforms state-of-the-art unlearning verification methods, offering significant speedup in efficiency while enhancing verification accuracy. The source code of EVE is released at \uline{https://anonymous.4open.science/r/EVE-C143}, providing a novel tool for verification of machine unlearning.
☆ Riemannian Neural Optimal Transport
Computational optimal transport (OT) offers a principled framework for generative modeling. Neural OT methods, which use neural networks to learn an OT map (or potential) from data in an amortized way, can be evaluated out of sample after training, but existing approaches are tailored to Euclidean geometry. Extending neural OT to high-dimensional Riemannian manifolds remains an open challenge. In this paper, we prove that any method for OT on manifolds that produces discrete approximations of transport maps necessarily suffers from the curse of dimensionality: achieving a fixed accuracy requires a number of parameters that grows exponentially with the manifold dimension. Motivated by this limitation, we introduce Riemannian Neural OT (RNOT) maps, which are continuous neural-network parameterizations of OT maps on manifolds that avoid discretization and incorporate geometric structure by construction. Under mild regularity assumptions, we prove that RNOT maps approximate Riemannian OT maps with sub-exponential complexity in the dimension. Experiments on synthetic and real datasets demonstrate improved scalability and competitive performance relative to discretization-based baselines.
comment: 58 pages
☆ CoGenCast: A Coupled Autoregressive-Flow Generative Framework for Time Series Forecasting
Time series forecasting can be viewed as a generative problem that requires both semantic understanding over contextual conditions and stochastic modeling of continuous temporal dynamics. Existing approaches typically rely on either autoregressive large language models (LLMs) for semantic context modeling or diffusion-like models for continuous probabilistic generation. However, neither method alone can adequately model both aspects simultaneously. In this work, we propose CoGenCast, a hybrid generative framework that couples pre-trained LLMs with flow-matching mechanism for effective time series forecasting. Specifically, we reconfigure pre-trained decoder-only LLMs into a native forecasting encoder-decoder backbone by modifying only the attention topology, enabling bidirectional context encoding and causal representation generation. Building on this, a flow-matching mechanism is further integrated to model temporal evolution, capturing continuous stochastic dynamics conditioned on the autoregressively generated representation. Notably, CoGenCast naturally supports multimodal forecasting and cross-domain unified training. Extensive experiments on multiple benchmarks show that CoGenCast consistently outperforms previous compared baselines. Code is available at https://github.com/liuyaguo/_CoGenCast.
☆ NPCNet: Navigator-Driven Pseudo Text for Deep Clustering of Early Sepsis Phenotyping
Sepsis is a heterogeneous syndrome. Identifying clinically distinct phenotypes may enable more precise treatment strategies. In recent years, many researchers have applied clustering algorithms to sepsis patients. However, the clustering process rarely incorporates clinical relevance, potentially limiting to reflect clinically distinct phenotypes. We propose NPCNet, a novel deep clustering network with a target navigator that integrates temporal Electronic Health Records (EHRs) to better align sepsis phenotypes with clinical significance. We identify four sepsis phenotypes ($α$, $β$, $γ$, and $δ$) with divergence in SOFA trajectories. Notably, while $α$ and $δ$ phenotypes both show severe conditions in the early stage, NPCNet effectively differentiates patients who are likely to improve ($α$) from those at risk of deterioration ($δ$). Furthermore, through the treatment effect analysis, we discover that $α$, $β$, and $δ$ phenotypes may benefit from early vasopressor administration. The results show that NPCNet enhances precision treatment strategies by uncovering clinically distinct phenotypes.
☆ When Single Answer Is Not Enough: Rethinking Single-Step Retrosynthesis Benchmarks for LLMs
Recent progress has expanded the use of large language models (LLMs) in drug discovery, including synthesis planning. However, objective evaluation of retrosynthesis performance remains limited. Existing benchmarks and metrics typically rely on published synthetic procedures and Top-K accuracy based on single ground-truth, which does not capture the open-ended nature of real-world synthesis planning. We propose a new benchmarking framework for single-step retrosynthesis that evaluates both general-purpose and chemistry-specialized LLMs using ChemCensor, a novel metric for chemical plausibility. By emphasizing plausibility over exact match, this approach better aligns with human synthesis planning practices. We also introduce CREED, a novel dataset comprising millions of ChemCensor-validated reaction records for LLM training, and use it to train a model that improves over the LLM baselines under this benchmark.
☆ How to Train Your Resistive Network: Generalized Equilibrium Propagation and Analytical Learning
Machine learning is a powerful method of extracting meaning from data; unfortunately, current digital hardware is extremely energy-intensive. There is interest in an alternative analog computing implementation that could match the performance of traditional machine learning while being significantly more energy-efficient. However, it remains unclear how to train such analog computing systems while adhering to locality constraints imposed by the physical (as opposed to digital) nature of these systems. Local learning algorithms such as Equilibrium Propagation and Coupled Learning have been proposed to address this issue. In this paper, we develop an algorithm to exactly calculate gradients using a graph theoretic and analytical framework for Kirchhoff's laws. We also introduce Generalized Equilibrium Propagation, a framework encompassing a broad class of Hebbian learning algorithms, including Coupled Learning and Equilibrium Propagation, and show how our algorithm compares. We demonstrate our algorithm using numerical simulations and show that we can train resistor networks without the need for a replica or readout over all resistors, only at the output layer. We also show that under the analytical gradient approach, it is possible to update only a subset of the resistance values without a strong degradation in performance.
comment: 8 pages double column; plus 16 supp mat.;
☆ Can Large Language Models Generalize Procedures Across Representations?
Large language models (LLMs) are trained and tested extensively on symbolic representations such as code and graphs, yet real-world user tasks are often specified in natural language. To what extent can LLMs generalize across these representations? Here, we approach this question by studying isomorphic tasks involving procedures represented in code, graphs, and natural language (e.g., scheduling steps in planning). We find that training LLMs with popular post-training methods on graphs or code data alone does not reliably generalize to corresponding natural language tasks, while training solely on natural language can lead to inefficient performance gains. To address this gap, we propose a two-stage data curriculum that first trains on symbolic, then natural language data. The curriculum substantially improves model performance across model families and tasks. Remarkably, a 1.5B Qwen model trained by our method can closely match zero-shot GPT-4o in naturalistic planning. Finally, our analysis suggests that successful cross-representation generalization can be interpreted as a form of generative analogy, which our curriculum effectively encourages.
☆ MatGPTQ: Accurate and Efficient Post-Training Matryoshka Quantization
Matryoshka Quantization (MatQuant) is a recent quantization approach showing that a single integer-quantized model can be served across multiple precisions, by slicing the most significant bits (MSB) at inference time. This enables a single checkpoint to cover a wide range of memory and latency budgets, but renders quantization much more challenging. In particular, the initial MatQuant relies on expensive quantization-aware training (QAT) variants, rather than fast one-shot post training quantization (PTQ), and lacks open-source and kernel support. We address all of these limitations by introducing Post-Training Matryoshka Quantization (MatGPTQ), a new PTQ pipeline that produces a single parent model jointly optimized for multiple target precisions in one-shot, based on a small calibration set. MatGPTQ casts Matryoshka quantization as a multi-precision objective with bit-slicing and cross-bit error compensation, resulting in an algorithm that produces a multi-bit-width, "sliceable" model in a single pass. We also incorporate a new budget-aware search for heterogeneous per-layer bit-witdhs and provide efficient kernels that implement slicing and mixed-precision execution. Across standard LLMs and benchmarks, MatGPTQ preserves high-bit accuracy while substantially improving performance at low-bit-witdh settings. Overall, we establish a new state of the art for Matryoshka-style post-training quantization and make single-checkpoint, multi-precision deployment open and practical. Code is available at https://github.com/IST-DASLab/MatGPTQ.
comment: Preprint
☆ Sparse Training of Neural Networks based on Multilevel Mirror Descent
We introduce a dynamic sparse training algorithm based on linearized Bregman iterations / mirror descent that exploits the naturally incurred sparsity by alternating between periods of static and dynamic sparsity pattern updates. The key idea is to combine sparsity-inducing Bregman iterations with adaptive freezing of the network structure to enable efficient exploration of the sparse parameter space while maintaining sparsity. We provide convergence guaranties by embedding our method in a multilevel optimization framework. Furthermore, we empirically show that our algorithm can produce highly sparse and accurate models on standard benchmarks. We also show that the theoretical number of FLOPs compared to SGD training can be reduced from 38% for standard Bregman iterations to 6% for our method while maintaining test accuracy.
☆ Robust Representation Learning in Masked Autoencoders
Masked Autoencoders (MAEs) achieve impressive performance in image classification tasks, yet the internal representations they learn remain less understood. This work started as an attempt to understand the strong downstream classification performance of MAE. In this process we discover that representations learned with the pretraining and fine-tuning, are quite robust - demonstrating a good classification performance in the presence of degradations, such as blur and occlusions. Through layer-wise analysis of token embeddings, we show that pretrained MAE progressively constructs its latent space in a class-aware manner across network depth: embeddings from different classes lie in subspaces that become increasingly separable. We further observe that MAE exhibits early and persistent global attention across encoder layers, in contrast to standard Vision Transformers (ViTs). To quantify feature robustness, we introduce two sensitivity indicators: directional alignment between clean and perturbed embeddings, and head-wise retention of active features under degradations. These studies help establish the robust classification performance of MAEs.
comment: 11 pages, 8 figures, and 3 tables
☆ WARP Logic Neural Networks
Fast and efficient AI inference is increasingly important, and recent models that directly learn low-level logic operations have achieved state-of-the-art performance. However, existing logic neural networks incur high training costs, introduce redundancy or rely on approximate gradients, which limits scalability. To overcome these limitations, we introduce WAlsh Relaxation for Probabilistic (WARP) logic neural networks -- a novel gradient-based framework that efficiently learns combinations of hardware-native logic blocks. We show that WARP yields the most parameter-efficient representation for exactly learning Boolean functions and that several prior approaches arise as restricted special cases. Training is improved by introducing learnable thresholding and residual initialization, while we bridge the gap between relaxed training and discrete logic inference through stochastic smoothing. Experiments demonstrate faster convergence than state-of-the-art baselines, while scaling effectively to deeper architectures and logic functions with higher input arity.
comment: Under review
☆ Live or Lie: Action-Aware Capsule Multiple Instance Learning for Risk Assessment in Live Streaming Platforms
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
☆ Rank-Learner: Orthogonal Ranking of Treatment Effects
Many decision-making problems require ranking individuals by their treatment effects rather than estimating the exact effect magnitudes. Examples include prioritizing patients for preventive care interventions, or ranking customers by the expected incremental impact of an advertisement. Surprisingly, while causal effect estimation has received substantial attention in the literature, the problem of directly learning rankings of treatment effects has largely remained unexplored. In this paper, we introduce Rank-Learner, a novel two-stage learner that directly learns the ranking of treatment effects from observational data. We first show that naive approaches based on precise treatment effect estimation solve a harder problem than necessary for ranking, while our Rank-Learner optimizes a pairwise learning objective that recovers the true treatment effect ordering, without explicit CATE estimation. We further show that our Rank-Learner is Neyman-orthogonal and thus comes with strong theoretical guarantees, including robustness to estimation errors in the nuisance functions. In addition, our Rank-Learner is model-agnostic, and can be instantiated with arbitrary machine learning models (e.g., neural networks). We demonstrate the effectiveness of our method through extensive experiments where Rank-Learner consistently outperforms standard CATE estimators and non-orthogonal ranking methods. Overall, we provide practitioners with a new, orthogonal two-stage learner for ranking individuals by their treatment effects.
☆ Not All Negative Samples Are Equal: LLMs Learn Better from Plausible Reasoning
Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
☆ Mitigating Staleness in Asynchronous Pipeline Parallelism via Basis Rotation
Asynchronous pipeline parallelism maximizes hardware utilization by eliminating the pipeline bubbles inherent in synchronous execution, offering a path toward efficient large-scale distributed training. However, this efficiency gain can be compromised by gradient staleness, where the immediate model updates with delayed gradients introduce noise into the optimization process. Crucially, we identify a critical, yet often overlooked, pathology: this delay scales linearly with pipeline depth, fundamentally undermining the very scalability that the method originally intends to provide. In this work, we investigate this inconsistency and bridge the gap by rectifying delayed gradients through basis rotation, restoring scalable asynchronous training while maintaining performance. Specifically, we observe that the deleterious effects of delayed gradients are exacerbated when the Hessian eigenbasis is misaligned with the standard coordinate basis. We demonstrate that this misalignment prevents coordinate-wise adaptive schemes, such as Adam, from effectively leveraging curvature-aware adaptivity. This failure leads to significant oscillations in the optimization trajectory and, consequently, slower convergence. We substantiate these findings through both rigorous theoretical analysis and empirical evaluation. To address this challenge, we propose the use of basis rotation, demonstrating that it effectively mitigates the alignment issue and significantly accelerates convergence in asynchronous settings. For example, our training of a 1B-parameter LLM with basis rotation achieves the same training loss in 76.8% fewer iterations compared to the best-performing asynchronous pipeline parallel training baseline.
comment: Preprint. Under review
☆ A Function-Space Stability Boundary for Generalization in Interpolating Learning Systems
Modern learning systems often interpolate training data while still generalizing well, yet it remains unclear when algorithmic stability explains this behavior. We model training as a function-space trajectory and measure sensitivity to single-sample perturbations along this trajectory. We propose a contractive propagation condition and a stability certificate obtained by unrolling the resulting recursion. A small certificate implies stability-based generalization, while we also prove that there exist interpolating regimes with small risk where such contractive sensitivity cannot hold, showing that stability is not a universal explanation. Experiments confirm that certificate growth predicts generalization differences across optimizers, step sizes, and dataset perturbations. The framework therefore identifies regimes where stability explains generalization and where alternative mechanisms must account for success.
comment: 10 pages, 8 figures,
☆ Explaining the Explainer: Understanding the Inner Workings of Transformer-based Symbolic Regression Models
Following their success across many domains, transformers have also proven effective for symbolic regression (SR); however, the internal mechanisms underlying their generation of mathematical operators remain largely unexplored. Although mechanistic interpretability has successfully identified circuits in language and vision models, it has not yet been applied to SR. In this article, we introduce PATCHES, an evolutionary circuit discovery algorithm that identifies compact and correct circuits for SR. Using PATCHES, we isolate 28 circuits, providing the first circuit-level characterisation of an SR transformer. We validate these findings through a robust causal evaluation framework based on key notions such as faithfulness, completeness, and minimality. Our analysis shows that mean patching with performance-based evaluation most reliably isolates functionally correct circuits. In contrast, we demonstrate that direct logit attribution and probing classifiers primarily capture correlational features rather than causal ones, limiting their utility for circuit discovery. Overall, these results establish SR as a high-potential application domain for mechanistic interpretability and propose a principled methodology for circuit discovery.
comment: 8 pages, 5 figures
☆ Generative Decompression: Optimal Lossy Decoding Against Distribution Mismatch
This paper addresses optimal decoding strategies in lossy compression where the assumed distribution for compressor design mismatches the actual (true) distribution of the source. This problem has immediate relevance in standardized communication systems where the decoder acquires side information or priors about the true distribution that are unavailable to the fixed encoder. We formally define the mismatched quantization problem, demonstrating that the optimal reconstruction rule, termed generative decompression, aligns with classical Bayesian estimation by taking the conditional expectation under the true distribution given the quantization indices and adapting it to fixed-encoder constraints. This strategy effectively performs a generative Bayesian correction on the decoder side, strictly outperforming the conventional centroid rule. We extend this framework to transmission over noisy channels, deriving a robust soft-decoding rule that quantifies the inefficiency of standard modular source--channel separation architectures under mismatch. Furthermore, we generalize the approach to task-oriented decoding, showing that the optimal strategy shifts from conditional mean estimation to maximum a posteriori (MAP) detection. Experimental results on Gaussian sources and deep-learning-based semantic classification demonstrate that generative decompression closes a vast majority of the performance gap to the ideal joint-optimization benchmark, enabling adaptive, high-fidelity reconstruction without modifying the encoder.
☆ Reparameterization Flow Policy Optimization
Reparameterization Policy Gradient (RPG) has emerged as a powerful paradigm for model-based reinforcement learning, enabling high sample efficiency by backpropagating gradients through differentiable dynamics. However, prior RPG approaches have been predominantly restricted to Gaussian policies, limiting their performance and failing to leverage recent advances in generative models. In this work, we identify that flow policies, which generate actions via differentiable ODE integration, naturally align with the RPG framework, a connection not established in prior work. However, naively exploiting this synergy proves ineffective, often suffering from training instability and a lack of exploration. We propose Reparameterization Flow Policy Optimization (RFO). RFO computes policy gradients by backpropagating jointly through the flow generation process and system dynamics, unlocking high sample efficiency without requiring intractable log-likelihood calculations. RFO includes two tailored regularization terms for stability and exploration. We also propose a variant of RFO with action chunking. Extensive experiments on diverse locomotion and manipulation tasks, involving both rigid and soft bodies with state or visual inputs, demonstrate the effectiveness of RFO. Notably, on a challenging locomotion task controlling a soft-body quadruped, RFO achieves almost $2\times$ the reward of the state-of-the-art baseline.
☆ Lookahead Path Likelihood Optimization for Diffusion LLMs
Diffusion Large Language Models (dLLMs) support arbitrary-order generation, yet their inference performance critically depends on the unmasking order. Existing strategies rely on heuristics that greedily optimize local confidence, offering limited guidance for identifying unmasking paths that are globally consistent and accurate. To bridge this gap, we introduce path log-likelihood (Path LL), a trajectory-conditioned objective that strongly correlates with downstream accuracy and enables principled selection of unmasking paths. To optimize Path LL at inference time, we propose POKE, an efficient value estimator that predicts the expected future Path LL of a partial decoding trajectory. We then integrate this lookahead signal into POKE-SMC, a Sequential Monte Carlo-based search framework for dynamically identifying optimal unmasking paths. Extensive experiments across 6 reasoning tasks show that POKE-SMC consistently improves accuracy, achieving 2%--3% average gains over strong decoding-time scaling baselines at comparable inference overhead on LLaDA models and advancing the accuracy--compute Pareto frontier.
☆ DALI: A Workload-Aware Offloading Framework for Efficient MoE Inference on Local PCs
Mixture of Experts (MoE) architectures significantly enhance the capacity of LLMs without proportional increases in computation, but at the cost of a vast parameter size. Offloading MoE expert parameters to host memory and leveraging both CPU and GPU computation has recently emerged as a promising direction to support such models on resourceconstrained local PC platforms. While promising, we notice that existing approaches mismatch the dynamic nature of expert workloads, which leads to three fundamental inefficiencies: (1) Static expert assignment causes severe CPUGPU load imbalance, underutilizing CPU and GPU resources; (2) Existing prefetching techniques fail to accurately predict high-workload experts, leading to costly inaccurate prefetches; (3) GPU cache policies neglect workload dynamics, resulting in poor hit rates and limited effectiveness. To address these challenges, we propose DALI, a workloaDAware offLoadIng framework for efficient MoE inference on local PCs. To fully utilize hardware resources, DALI first dynamically assigns experts to CPU or GPU by modeling assignment as a 0-1 integer optimization problem and solving it efficiently using a Greedy Assignment strategy at runtime. To improve prefetching accuracy, we develop a Residual-Based Prefetching method leveraging inter-layer residual information to accurately predict high-workload experts. Additionally, we introduce a Workload-Aware Cache Replacement policy that exploits temporal correlation in expert activations to improve GPU cache efficiency. By evaluating across various MoE models and settings, DALI achieves significant speedups in the both prefill and decoding phases over the state-of-the-art offloading frameworks.
☆ Least but not Last: Fine-tuning Intermediate Principal Components for Better Performance-Forgetting Trade-Offs
Low-Rank Adaptation (LoRA) methods have emerged as crucial techniques for adapting large pre-trained models to downstream tasks under computational and memory constraints. However, they face a fundamental challenge in balancing task-specific performance gains against catastrophic forgetting of pre-trained knowledge, where existing methods provide inconsistent recommendations. This paper presents a comprehensive analysis of the performance-forgetting trade-offs inherent in low-rank adaptation using principal components as initialization. Our investigation reveals that fine-tuning intermediate components leads to better balance and show more robustness to high learning rates than first (PiSSA) and last (MiLoRA) components in existing work. Building on these findings, we provide a practical approach for initialization of LoRA that offers superior trade-offs. We demonstrate in a thorough empirical study on a variety of computer vision and NLP tasks that our approach improves accuracy and reduces forgetting, also in continual learning scenarios.
☆ A Minimal Task Reveals Emergent Path Integration and Object-Location Binding in a Predictive Sequence Model
Adaptive cognition requires structured internal models representing objects and their relations. Predictive neural networks are often proposed to form such "world models", yet their underlying mechanisms remain unclear. One hypothesis is that action-conditioned sequential prediction suffices for learning such world models. In this work, we investigate this possibility in a minimal in-silico setting. Sequentially sampling tokens from 2D continuous token scenes, a recurrent neural network is trained to predict the upcoming token from current input and a saccade-like displacement. On novel scenes, prediction accuracy improves across the sequence, indicating in-context learning. Decoding analyses reveal path integration and dynamic binding of token identity to position. Interventional analyses show that new bindings can be learned late in sequence and that out-of-distribution bindings can be learned. Together, these results demonstrate how structured representations that rely on flexible binding emerge to support prediction, offering a mechanistic account of sequential world modeling relevant to cognitive science.
comment: 7 pages, 4 figures
☆ DeepDFA: Injecting Temporal Logic in Deep Learning for Sequential Subsymbolic Applications
Integrating logical knowledge into deep neural network training is still a hard challenge, especially for sequential or temporally extended domains involving subsymbolic observations. To address this problem, we propose DeepDFA, a neurosymbolic framework that integrates high-level temporal logic - expressed as Deterministic Finite Automata (DFA) or Moore Machines - into neural architectures. DeepDFA models temporal rules as continuous, differentiable layers, enabling symbolic knowledge injection into subsymbolic domains. We demonstrate how DeepDFA can be used in two key settings: (i) static image sequence classification, and (ii) policy learning in interactive non-Markovian environments. Across extensive experiments, DeepDFA outperforms traditional deep learning models (e.g., LSTMs, GRUs, Transformers) and novel neuro-symbolic systems, achieving state-of-the-art results in temporal knowledge integration. These results highlight the potential of DeepDFA to bridge subsymbolic learning and symbolic reasoning in sequential tasks.
☆ Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning
Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.
comment: 19 pages, 8 figures
☆ ScDiVa: Masked Discrete Diffusion for Joint Modeling of Single-Cell Identity and Expression
Single-cell RNA-seq profiles are high-dimensional, sparse, and unordered, causing autoregressive generation to impose an artificial ordering bias and suffer from error accumulation. To address this, we propose scDiVa, a masked discrete diffusion foundation model that aligns generation with the dropout-like corruption process by defining a continuous-time forward masking mechanism in token space. ScDiVa features a bidirectional denoiser that jointly models discrete gene identities and continuous values, utilizing entropy-normalized serialization and a latent anchor token to maximize information efficiency and preserve global cell identity. The model is trained via depth-invariant time sampling and a dual denoising objective to simulate varying sparsity levels while ensuring precise recovery of both identity and magnitude. Pre-trained on 59 million cells, scDiVa achieves strong transfer performance across major benchmarks, including batch integration, cell type annotation, and perturbation response prediction. These results suggest that masked discrete diffusion serves as a biologically coherent and effective alternative to autoregression.
comment: 19 pages, 11 figures
☆ Scaling Continual Learning with Bi-Level Routing Mixture-of-Experts
Continual learning, especially class-incremental learning (CIL), on the basis of a pre-trained model (PTM) has garnered substantial research interest in recent years. However, how to effectively learn both discriminative and comprehensive feature representations while maintaining stability and plasticity over very long task sequences remains an open problem. We propose CaRE, a scalable {C}ontinual Le{a}rner with efficient Bi-Level {R}outing Mixture-of-{E}xperts (BR-MoE). The core idea of BR-MoE is a bi-level routing mechanism: a router selection stage that dynamically activates relevant task-specific routers, followed by an expert routing phase that dynamically activates and aggregates experts, aiming to inject discriminative and comprehensive representations into every intermediate network layer. On the other hand, we introduce a challenging evaluation protocol for comprehensively assessing CIL methods across very long task sequences spanning hundreds of tasks. Extensive experiments show that CaRE demonstrates leading performance across a variety of datasets and task settings, including commonly used CIL datasets with classical CIL settings (e.g., 5-20 tasks). To the best of our knowledge, CaRE is the first continual learner that scales to very long task sequences (ranging from 100 to over 300 non-overlapping tasks), while outperforming all baselines by a large margin on such task sequences. Code will be publicly released at https://github.com/LMMMEng/CaRE.git.
☆ IntentRL: Training Proactive User-intent Agents for Open-ended Deep Research via Reinforcement Learning
Deep Research (DR) agents extend Large Language Models (LLMs) beyond parametric knowledge by autonomously retrieving and synthesizing evidence from large web corpora into long-form reports, enabling a long-horizon agentic paradigm. However, unlike real-time conversational assistants, DR is computationally expensive and time-consuming, creating an autonomy-interaction dilemma: high autonomy on ambiguous user queries often leads to prolonged execution with unsatisfactory outcomes. To address this, we propose IntentRL, a framework that trains proactive agents to clarify latent user intents before starting long-horizon research. To overcome the scarcity of open-ended research data, we introduce a scalable pipeline that expands a few seed samples into high-quality dialogue turns via a shallow-to-deep intent refinement graph. We further adopt a two-stage reinforcement learning (RL) strategy: Stage I applies RL on offline dialogues to efficiently learn general user-interaction behavior, while Stage II uses the trained agent and a user simulator for online rollouts to strengthen adaptation to diverse user feedback. Extensive experiments show that IntentRL significantly improves both intent hit rate and downstream task performance, outperforming the built-in clarify modules of closed-source DR agents and proactive LLM baselines.
comment: Preprint
☆ Soft-Radial Projection for Constrained End-to-End Learning
Integrating hard constraints into deep learning is essential for safety-critical systems. Yet existing constructive layers that project predictions onto constraint boundaries face a fundamental bottleneck: gradient saturation. By collapsing exterior points onto lower-dimensional surfaces, standard orthogonal projections induce rank-deficient Jacobians, which nullify gradients orthogonal to active constraints and hinder optimization. We introduce Soft-Radial Projection, a differentiable reparameterization layer that circumvents this issue through a radial mapping from Euclidean space into the interior of the feasible set. This construction guarantees strict feasibility while preserving a full-rank Jacobian almost everywhere, thereby preventing the optimization stalls typical of boundary-based methods. We theoretically prove that the architecture retains the universal approximation property and empirically show improved convergence behavior and solution quality over state-of-the-art optimization- and projection-based baselines.
☆ Causal Inference on Networks under Misspecified Exposure Mappings: A Partial Identification Framework
Estimating treatment effects in networks is challenging, as each potential outcome depends on the treatments of all other nodes in the network. To overcome this difficulty, existing methods typically impose an exposure mapping that compresses the treatment assignments in the network into a low-dimensional summary. However, if this mapping is misspecified, standard estimators for direct and spillover effects can be severely biased. We propose a novel partial identification framework for causal inference on networks to assess the robustness of treatment effects under misspecifications of the exposure mapping. Specifically, we derive sharp upper and lower bounds on direct and spillover effects under such misspecifications. As such, our framework presents a novel application of causal sensitivity analysis to exposure mappings. We instantiate our framework for three canonical exposure settings widely used in practice: (i) weighted means of the neighborhood treatments, (ii) threshold-based exposure mappings, and (iii) truncated neighborhood interference in the presence of higher-order spillovers. Furthermore, we develop orthogonal estimators for these bounds and prove that the resulting bound estimates are valid, sharp, and efficient. Our experiments show the bounds remain informative and provide reliable conclusions under misspecification of exposure mappings.
☆ Beyond Variance: Prompt-Efficient RLVR via Rare-Event Amplification and Bidirectional Pairing
Reinforcement learning with verifiable rewards (RLVR) is effective for training large language models on deterministic outcome reasoning tasks. Prior work shows RLVR works with few prompts, but prompt selection is often based only on training-accuracy variance, leading to unstable optimization directions and weaker transfer. We revisit prompt selection from a mechanism-level view and argue that an effective minibatch should provide both (i) a reliable positive anchor and (ii) explicit negative learning signals from rare failures. Based on this principle, we propose \emph{positive--negative pairing}: at each update, we sample a hard-but-solvable $q^{+}$ and an easy-but-brittle prompt $q^{-}$(high success rate but not perfect), characterized by low and high empirical success rates under multiple rollouts. We further introduce Weighted GRPO, which reweights binary outcomes at the pair level and uses group-normalized advantages to amplify rare successes on $q^{+}$ into sharp positive guidance while turning rare failures on $q^{-}$ into strong negative penalties. This bidirectional signal provides informative learning feedback for both successes and failures, improving sample efficiency without suppressing exploration. On Qwen2.5-Math-7B, a single paired minibatch per update consistently outperforms a GRPO baseline that selects two prompts via commonly used variance-based selection heuristics: AIME~2025 Pass@8 improves from 16.8 to 22.2, and AMC23 Pass@64 from 94.0 to 97.0, while remaining competitive with large-scale RLVR trained from a pool of 1209 training prompts. Similar gains are observed on Qwen2.5-Math-7B-Instruct.
☆ Score-based diffusion models for diffuse optical tomography with uncertainty quantification
Score-based diffusion models are a recently developed framework for posterior sampling in Bayesian inverse problems with a state-of-the-art performance for severely ill-posed problems by leveraging a powerful prior distribution learned from empirical data. Despite generating significant interest especially in the machine-learning community, a thorough study of realistic inverse problems in the presence of modelling error and utilization of physical measurement data is still outstanding. In this work, the framework of unconditional representation for the conditional score function (UCoS) is evaluated for linearized difference imaging in diffuse optical tomography (DOT). DOT uses boundary measurements of near-infrared light to estimate the spatial distribution of absorption and scattering parameters in biological tissues. The problem is highly ill-posed and thus sensitive to noise and modelling errors. We introduce a novel regularization approach that prevents overfitting of the score function by constructing a mixed score composed of a learned and a model-based component. Validation of this approach is done using both simulated and experimental measurement data. The experiments demonstrate that a data-driven prior distribution results in posterior samples with low variance, compared to classical model-based estimation, and centred around the ground truth, even in the context of a highly ill-posed problem and in the presence of modelling errors.
☆ CRL-VLA: Continual Vision-Language-Action Learning
Lifelong learning is critical for embodied agents in open-world environments, where reinforcement learning fine-tuning has emerged as an important paradigm to enable Vision-Language-Action (VLA) models to master dexterous manipulation through environmental interaction. Thus, Continual Reinforcement Learning (CRL) is a promising pathway for deploying VLA models in lifelong robotic scenarios, yet balancing stability (retaining old skills) and plasticity (learning new ones) remains a formidable challenge for existing methods. We introduce CRL-VLA, a framework for continual post-training of VLA models with rigorous theoretical bounds. We derive a unified performance bound linking the stability-plasticity trade-off to goal-conditioned advantage magnitude, scaled by policy divergence. CRL-VLA resolves this dilemma via asymmetric regulation: constraining advantage magnitudes on prior tasks while enabling controlled growth on new tasks. This is realized through a simple but effective dual-critic architecture with novel Goal-Conditioned Value Formulation (GCVF), where a frozen critic anchors semantic consistency and a trainable estimator drives adaptation. Experiments on the LIBERO benchmark demonstrate that CRL-VLA effectively harmonizes these conflicting objectives, outperforming baselines in both anti-forgetting and forward adaptation.
☆ Acceleration of Atomistic NEGF: Algorithms, Parallelization, and Machine Learning
The Non-equilibrium Green's function (NEGF) formalism is a particularly powerful method to simulate the quantum transport properties of nanoscale devices such as transistors, photo-diodes, or memory cells, in the ballistic limit of transport or in the presence of various scattering sources such as electronphonon, electron-photon, or even electron-electron interactions. The inclusion of all these mechanisms has been first demonstrated in small systems, composed of a few atoms, before being scaled up to larger structures made of thousands of atoms. Also, the accuracy of the models has kept improving, from empirical to fully ab-initio ones, e.g., density functional theory (DFT). This paper summarizes key (algorithmic) achievements that have allowed us to bring DFT+NEGF simulations closer to the dimensions and functionality of realistic systems. The possibility of leveraging graph neural networks and machine learning to speed up ab-initio device simulations is discussed as well.
☆ DiscoverLLM: From Executing Intents to Discovering Them
To handle ambiguous and open-ended requests, Large Language Models (LLMs) are increasingly trained to interact with users to surface intents they have not yet expressed (e.g., ask clarification questions). However, users are often ambiguous because they have not yet formed their intents: they must observe and explore outcomes to discover what they want. Simply asking "what kind of tone do you want?" fails when users themselves do not know. We introduce DiscoverLLM, a novel and generalizable framework that trains LLMs to help users form and discover their intents. Central to our approach is a novel user simulator that models cognitive state with a hierarchy of intents that progressively concretize as the model surfaces relevant options -- where the degree of concretization serves as a reward signal that models can be trained to optimize. Resulting models learn to collaborate with users by adaptively diverging (i.e., explore options) when intents are unclear, and converging (i.e., refine and implement) when intents concretize. Across proposed interactive benchmarks in creative writing, technical writing, and SVG drawing, DiscoverLLM achieves over 10% higher task performance while reducing conversation length by up to 40%. In a user study with 75 human participants, DiscoverLLM improved conversation satisfaction and efficiency compared to baselines.
☆ CoCoEmo: Composable and Controllable Human-Like Emotional TTS via Activation Steering
Emotional expression in human speech is nuanced and compositional, often involving multiple, sometimes conflicting, affective cues that may diverge from linguistic content. In contrast, most expressive text-to-speech systems enforce a single utterance-level emotion, collapsing affective diversity and suppressing mixed or text-emotion-misaligned expression. While activation steering via latent direction vectors offers a promising solution, it remains unclear whether emotion representations are linearly steerable in TTS, where steering should be applied within hybrid TTS architectures, and how such complex emotion behaviors should be evaluated. This paper presents the first systematic analysis of activation steering for emotional control in hybrid TTS models, introducing a quantitative, controllable steering framework, and multi-rater evaluation protocols that enable composable mixed-emotion synthesis and reliable text-emotion mismatch synthesis. Our results demonstrate, for the first time, that emotional prosody and expressive variability are primarily synthesized by the TTS language module instead of the flow-matching module, and also provide a lightweight steering approach for generating natural, human-like emotional speech.
☆ Most Convolutional Networks Suffer from Small Adversarial Perturbations
The existence of adversarial examples is relatively understood for random fully connected neural networks, but much less so for convolutional neural networks (CNNs). The recent work [Daniely, 2025] establishes that adversarial examples can be found in CNNs, in some non-optimal distance from the input. We extend over this work and prove that adversarial examples in random CNNs with input dimension $d$ can be found already in $\ell_2$-distance of order $\lVert x \rVert /\sqrt{d}$ from the input $x$, which is essentially the nearest possible. We also show that such adversarial small perturbations can be found using a single step of gradient descent. To derive our results we use Fourier decomposition to efficiently bound the singular values of a random linear convolutional operator, which is the main ingredient of a CNN layer. This bound might be of independent interest.
☆ Enhancing Quantum Diffusion Models for Complex Image Generation
Quantum generative models offer a novel approach to exploring high-dimensional Hilbert spaces but face significant challenges in scalability and expressibility when applied to multi-modal distributions. In this study, we explore a Hybrid Quantum-Classical U-Net architecture integrated with Adaptive Non-Local Observables (ANO) as a potential solution to these hurdles. By compressing classical data into a dense quantum latent space and utilizing trainable observables, our model aims to extract non-local features that complement classical processing. We also investigate the role of Skip Connections in preserving semantic information during the reverse diffusion process. Experimental results on the full MNIST dataset (digits 0-9) demonstrate that the proposed architecture is capable of generating structurally coherent and recognizable images for all digit classes. While hardware constraints still impose limitations on resolution, our findings suggest that hybrid architectures with adaptive measurements provide a feasible pathway for mitigating mode collapse and enhancing generative capabilities in the NISQ era.
comment: 18 pages, 6 figures
☆ Risk Awareness Injection: Calibrating Vision-Language Models for Safety without Compromising Utility
Vision language models (VLMs) extend the reasoning capabilities of large language models (LLMs) to cross-modal settings, yet remain highly vulnerable to multimodal jailbreak attacks. Existing defenses predominantly rely on safety fine-tuning or aggressive token manipulations, incurring substantial training costs or significantly degrading utility. Recent research shows that LLMs inherently recognize unsafe content in text, and the incorporation of visual inputs in VLMs frequently dilutes risk-related signals. Motivated by this, we propose Risk Awareness Injection (RAI), a lightweight and training-free framework for safety calibration that restores LLM-like risk recognition by amplifying unsafe signals in VLMs. Specifically, RAI constructs an Unsafe Prototype Subspace from language embeddings and performs targeted modulation on selected high-risk visual tokens, explicitly activating safety-critical signals within the cross-modal feature space. This modulation restores the model's LLM-like ability to detect unsafe content from visual inputs, while preserving the semantic integrity of original tokens for cross-modal reasoning. Extensive experiments across multiple jailbreak and utility benchmarks demonstrate that RAI substantially reduces attack success rate without compromising task performance.
☆ The Label Horizon Paradox: Rethinking Supervision Targets in Financial Forecasting
While deep learning has revolutionized financial forecasting through sophisticated architectures, the design of the supervision signal itself is rarely scrutinized. We challenge the canonical assumption that training labels must strictly mirror inference targets, uncovering the Label Horizon Paradox: the optimal supervision signal often deviates from the prediction goal, shifting across intermediate horizons governed by market dynamics. We theoretically ground this phenomenon in a dynamic signal-noise trade-off, demonstrating that generalization hinges on the competition between marginal signal realization and noise accumulation. To operationalize this insight, we propose a bi-level optimization framework that autonomously identifies the optimal proxy label within a single training run. Extensive experiments on large-scale financial datasets demonstrate consistent improvements over conventional baselines, thereby opening new avenues for label-centric research in financial forecasting.
☆ Improving the Linearized Laplace Approximation via Quadratic Approximations
Deep neural networks (DNNs) often produce overconfident out-of-distribution predictions, motivating Bayesian uncertainty quantification. The Linearized Laplace Approximation (LLA) achieves this by linearizing the DNN and applying Laplace inference to the resulting model. Importantly, the linear model is also used for prediction. We argue this linearization in the posterior may degrade fidelity to the true Laplace approximation. To alleviate this problem, without increasing significantly the computational cost, we propose the Quadratic Laplace Approximation (QLA). QLA approximates each second order factor in the approximate Laplace log-posterior using a rank-one factor obtained via efficient power iterations. QLA is expected to yield a posterior precision closer to that of the full Laplace without forming the full Hessian, which is typically intractable. For prediction, QLA also uses the linearized model. Empirically, QLA yields modest yet consistent uncertainty estimation improvements over LLA on five regression datasets.
comment: 6 pages, 1 table. Accepted at European Symposium on Artificial Neural Networks (ESANN 2026) as poster presentation
☆ On the Entropy Dynamics in Reinforcement Fine-Tuning of Large Language Models
Entropy serves as a critical metric for measuring the diversity of outputs generated by large language models (LLMs), providing valuable insights into their exploration capabilities. While recent studies increasingly focus on monitoring and adjusting entropy to better balance exploration and exploitation in reinforcement fine-tuning (RFT), a principled understanding of entropy dynamics during this process is yet to be thoroughly investigated. In this paper, we establish a theoretical framework for analyzing the entropy dynamics during the RFT process, which begins with a discriminant expression that quantifies entropy change under a single logit update. This foundation enables the derivation of a first-order expression for entropy change, which can be further extended to the update formula of Group Relative Policy Optimization (GRPO). The corollaries and insights drawn from the theoretical analysis inspire the design of entropy control methods, and also offer a unified lens for interpreting various entropy-based methods in existing studies. We provide empirical evidence to support the main conclusions of our analysis and demonstrate the effectiveness of the derived entropy-discriminator clipping methods. This study yields novel insights into RFT training dynamics, providing theoretical support and practical strategies for optimizing the exploration-exploitation balance during LLM fine-tuning.
☆ From Vicious to Virtuous Cycles: Synergistic Representation Learning for Unsupervised Video Object-Centric Learning ICLR 2026
Unsupervised object-centric learning models, particularly slot-based architectures, have shown great promise in decomposing complex scenes. However, their reliance on reconstruction-based training creates a fundamental conflict between the sharp, high-frequency attention maps of the encoder and the spatially consistent but blurry reconstruction maps of the decoder. We identify that this discrepancy gives rise to a vicious cycle: the noisy feature map from the encoder forces the decoder to average over possibilities and produce even blurrier outputs, while the gradient computed from blurry reconstruction maps lacks high-frequency details necessary to supervise encoder features. To break this cycle, we introduce Synergistic Representation Learning (SRL) that establishes a virtuous cycle where the encoder and decoder mutually refine one another. SRL leverages the encoder's sharpness to deblur the semantic boundary within the decoder output, while exploiting the decoder's spatial consistency to denoise the encoder's features. This mutual refinement process is stabilized by a warm-up phase with a slot regularization objective that initially allocates distinct entities per slot. By bridging the representational gap between the encoder and decoder, SRL achieves state-of-the-art results on video object-centric learning benchmarks. Codes are available at https://github.com/hynnsk/SRL.
comment: ICLR 2026; Code is available at https://github.com/hynnsk/SRL
☆ Chain-of-Goals Hierarchical Policy for Long-Horizon Offline Goal-Conditioned RL
Offline goal-conditioned reinforcement learning remains challenging for long-horizon tasks. While hierarchical approaches mitigate this issue by decomposing tasks, most existing methods rely on separate high- and low-level networks and generate only a single intermediate subgoal, making them inadequate for complex tasks that require coordinating multiple intermediate decisions. To address this limitation, we draw inspiration from the chain-of-thought paradigm and propose the Chain-of-Goals Hierarchical Policy (CoGHP), a novel framework that reformulates hierarchical decision-making as autoregressive sequence modeling within a unified architecture. Given a state and a final goal, CoGHP autoregressively generates a sequence of latent subgoals followed by the primitive action, where each latent subgoal acts as a reasoning step that conditions subsequent predictions. To implement this efficiently, we pioneer the use of an MLP-Mixer backbone, which supports cross-token communication and captures structural relationships among state, goal, latent subgoals, and action. Across challenging navigation and manipulation benchmarks, CoGHP consistently outperforms strong offline baselines, demonstrating improved performance on long-horizon tasks.
comment: 22 pages
☆ An Approximate Ascent Approach To Prove Convergence of PPO
Proximal Policy Optimization (PPO) is among the most widely used deep reinforcement learning algorithms, yet its theoretical foundations remain incomplete. Most importantly, convergence and understanding of fundamental PPO advantages remain widely open. Under standard theory assumptions we show how PPO's policy update scheme (performing multiple epochs of minibatch updates on multi-use rollouts with a surrogate gradient) can be interpreted as approximated policy gradient ascent. We show how to control the bias accumulated by the surrogate gradients and use techniques from random reshuffling to prove a convergence theorem for PPO that sheds light on PPO's success. Additionally, we identify a previously overlooked issue in truncated Generalized Advantage Estimation commonly used in PPO. The geometric weighting scheme induces infinite mass collapse onto the longest $k$-step advantage estimator at episode boundaries. Empirical evaluations show that a simple weight correction can yield substantial improvements in environments with strong terminal signal, such as Lunar Lander.
♻ ☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
♻ ☆ Polynomial Neural Sheaf Diffusion: A Spectral Filtering Approach on Cellular Sheaves ICML 2026
Sheaf Neural Networks equip graph structures with a cellular sheaf: a geometric structure which assigns local vector spaces (stalks) and a linear learnable restriction/transport maps to nodes and edges, yielding an edge-aware inductive bias that handles heterophily and limits oversmoothing. However, common Neural Sheaf Diffusion implementations rely on SVD-based sheaf normalization and dense per-edge restriction maps, which scale with stalk dimension, require frequent Laplacian rebuilds, and yield brittle gradients. To address these limitations, we introduce Polynomial Neural Sheaf Diffusion (PolyNSD), a new sheaf diffusion approach whose propagation operator is a degree-K polynomial in a normalised sheaf Laplacian, evaluated via a stable three-term recurrence on a spectrally rescaled operator. This provides an explicit K-hop receptive field in a single layer (independently of the stalk dimension), with a trainable spectral response obtained as a convex mixture of K+1 orthogonal polynomial basis responses. PolyNSD enforces stability via convex mixtures, spectral rescaling, and residual/gated paths, reaching new state-of-the-art results on both homophilic and heterophilic benchmarks, inverting the Neural Sheaf Diffusion trend by obtaining these results with just diagonal restriction maps, decoupling performance from large stalk dimension, while reducing runtime and memory requirements.
comment: Under Review at ICML 2026
♻ ☆ ME-IGM: Individual-Global-Max in Maximum Entropy Multi-Agent Reinforcement Learning
Multi-agent credit assignment is a fundamental challenge for cooperative multi-agent reinforcement learning (MARL), where a team of agents learn from shared reward signals. The Individual-Global-Max (IGM) condition is a widely used principle for multi-agent credit assignment, requiring that the joint action determined by individual Q-functions maximizes the global Q-value. Meanwhile, the principle of maximum entropy has been leveraged to enhance exploration in MARL. However, we identify a critical limitation in existing maximum entropy MARL methods: a misalignment arises between local policies and the joint policy that maximizes the global Q-value, leading to violations of the IGM condition. To address this misalignment, we propose an order-preserving transformation. Building on it, we introduce ME-IGM, a novel maximum entropy MARL algorithm compatible with any credit assignment mechanism that satisfies the IGM condition while enjoying the benefits of maximum entropy exploration. We empirically evaluate two variants of ME-IGM: ME-QMIX and ME-QPLEX, in non-monotonic matrix games, and demonstrate their state-of-the-art performance across 17 scenarios in SMAC-v2 and Overcooked.
comment: Published in the Proceedings of the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
Measuring Agents in Production
LLM-based agents already operate in production across many industries, yet we lack an understanding of what technical methods make deployments successful. We present the first systematic study of Measuring Agents in Production, MAP, using first-hand data from agent developers. We conducted 20 case studies via in-depth interviews and surveyed 306 practitioners across 26 domains. We investigate why organizations build agents, how they build them, how they evaluate them, and their top development challenges. Our study finds that production agents are built using simple, controllable approaches: 68% execute at most 10 steps before human intervention, 70% rely on prompting off-the-shelf models instead of weight tuning, and 74% depend primarily on human evaluation. Reliability (consistent correct behavior over time) remains the top development challenge, which practitioners currently address through systems-level design. MAP documents the current state of production agents, providing the research community with visibility into deployment realities and under-explored research avenues.
♻ ☆ Admissibility of Stein Shrinkage for Batch Normalization in the Presence of Adversarial Attacks
Batch normalization (BN) is a ubiquitous operation in deep neural networks, primarily used to improve stability and regularization during training. BN centers and scales feature maps using sample means and variances, which are naturally suited for Stein's shrinkage estimation. Applying such shrinkage yields more accurate mean and variance estimates of the batch in the mean-squared-error sense. In this paper, we prove that the Stein shrinkage estimator of the mean and variance dominates over the sample mean and variance estimators, respectively, in the presence of adversarial attacks modeled using sub-Gaussian distributions. Furthermore, by construction, the James-Stein (JS) BN yields a smaller local Lipschitz constant compared to the vanilla BN, implying better regularity properties and potentially improved robustness. This facilitates and justifies the application of Stein shrinkage to estimate the mean and variance parameters in BN and the use of it in image classification and segmentation tasks with and without adversarial attacks. We present SOTA performance results using this Stein-corrected BN in a standard ResNet architecture applied to the task of image classification using CIFAR-10 data, 3D CNN on PPMI (neuroimaging) data, and image segmentation using HRNet on Cityscape data with and without adversarial attacks.
♻ ☆ Toward Learning POMDPs Beyond Full-Rank Actions and State Observability
We are interested in enabling autonomous agents to learn and reason about systems with hidden states, such as locking mechanisms. We cast this problem as learning the parameters of a discrete Partially Observable Markov Decision Process (POMDP). The agent begins with knowledge of the POMDP's actions and observation spaces, but not its state space, transitions, or observation models. These properties must be constructed from a sequence of actions and observations. Spectral approaches to learning models of partially observable domains, such as Predictive State Representations (PSRs), learn representations of state that are sufficient to predict future outcomes. PSR models, however, do not have explicit transition and observation system models that can be used with different reward functions to solve different planning problems. Under a mild set of rankness assumptions on the products of transition and observation matrices, we show how PSRs learn POMDP matrices up to a similarity transform, and this transform may be estimated via tensor decomposition methods. Our method learns observation matrices and transition matrices up to a partition of states, where the states in a single partition have the same observation distributions corresponding to actions whose transition matrices are full-rank. Our experiments suggest that explicit observation and transition likelihoods can be leveraged to generate new plans for different goals and reward functions after the model has been learned. We also show that learning a POMDP beyond a partition of states is impossible from sequential data by constructing two POMDPs that agree on all observation distributions but differ in their transition dynamics.
comment: Update abstract
♻ ☆ Grokking in LLM Pretraining? Monitor Memorization-to-Generalization without Test ICLR 2026
This paper presents the first study of grokking in practical LLM pretraining. Specifically, we investigate when an LLM memorizes the training data, when its generalization on downstream tasks starts to improve, and what happens if there is a lag between the two. Unlike existing works studying when a small model generalizes to limited and specified tasks during thousands epochs' training on algorithmic data, we focus on a practical setting for LLMs, i.e., one-epoch pretraining of next-token prediction on a cross-domain, large-scale corpus, and generalization on diverse benchmark tasks covering math/commonsense reasoning, code generation, and domain-specific retrieval. Our study, for the first time, verifies that grokking still emerges in pretraining mixture-of-experts (MoE) LLMs, though different local data groups may enter their grokking stages asynchronously due to the heterogeneity of their distributions and attributions to others. To find a mechanistic interpretation of this local grokking, we investigate the dynamics of training data's pathways (i.e., expert choices across layers in MoE). Our primary discovery is that the pathways evolve from random, non-smooth across layers, instance-specific to more structured and transferable across samples, despite the converged pretraining loss. This depicts a transition from memorization to generalization. Two novel metrics are developed to quantify these patterns: one computes the pathway similarity between samples, while the other measures the consistency of aggregated experts between subsequent layers for each sample. These training data based metrics induce zero cost but can faithfully track and monitor the generalization of LLMs on downstream tasks, which, in conventional settings, requires costly instruction tuning and benchmark evaluation.
comment: Accepted at ICLR 2026
♻ ☆ Redirection for Erasing Memory (REM): Towards a universal unlearning method for corrupted data ICLR 2026
Machine unlearning is studied for a multitude of tasks, but specialization of unlearning methods to particular tasks has made their systematic comparison challenging. To address this issue, we propose a conceptual space to characterize diverse corrupted data unlearning tasks in vision classifiers. This space is described by two dimensions, the discovery rate (the fraction of the corrupted data that are known at unlearning time) and the statistical regularity of the corrupted data (from random exemplars to shared concepts). Methods proposed previously have been targeted at portions of this space and-we show-fail predictably outside these regions. We propose a novel method, Redirection for Erasing Memory (REM), whose key feature is that corrupted data are redirected to dedicated neurons introduced at unlearning time and then discarded or deactivated to suppress the influence of corrupted data. REM performs strongly across the space of tasks, in contrast to prior SOTA methods that fail outside the regions for which they were designed.
comment: Accepted as a main track paper at ICLR 2026 https://openreview.net/forum?id=xG0mQ4Xsfm
♻ ☆ Sample-Near-Optimal Agnostic Boosting with Improved Running Time ALT 2026
Boosting is a powerful method that turns weak learners, which perform only slightly better than random guessing, into strong learners with high accuracy. While boosting is well understood in the classic setting, it is less so in the agnostic case, where no assumptions are made about the data. Indeed, only recently was the sample complexity of agnostic boosting nearly settled arXiv:2503.09384, but the known algorithm achieving this bound has exponential running time. In this work, we propose the first agnostic boosting algorithm with near-optimal sample complexity, running in time polynomial in the sample size when considering the other parameters of the problem fixed.
comment: 28 pages, 0 figures. Accepted at the 37th International Conference on Algorithmic Learning Theory (ALT 2026)
♻ ☆ Information-Theoretic Causal Bounds under Unmeasured Confounding
We develop a data-driven information-theoretic framework for sharp partial identification of causal effects under unmeasured confounding. Existing approaches often rely on restrictive assumptions, such as bounded or discrete outcomes; require external inputs (for example, instrumental variables, proxies, or user-specified sensitivity parameters); necessitate full structural causal model specifications; or focus solely on population-level averages while neglecting covariate-conditional treatment effects. We overcome all four limitations simultaneously by establishing novel information-theoretic, data-driven divergence bounds. Our key theoretical contribution shows that the f-divergence between the observational distribution P(Y | A = a, X = x) and the interventional distribution P(Y | do(A = a), X = x) is upper bounded by a function of the propensity score alone. This result enables sharp partial identification of conditional causal effects directly from observational data, without requiring external sensitivity parameters, auxiliary variables, full structural specifications, or outcome boundedness assumptions. For practical implementation, we develop a semiparametric estimator satisfying Neyman orthogonality (Chernozhukov et al., 2018), which ensures square-root-n consistent inference even when nuisance functions are estimated using flexible machine learning methods. Simulation studies and real-world data applications, implemented in the GitHub repository (https://github.com/yonghanjung/Information-Theretic-Bounds), demonstrate that our framework provides tight and valid causal bounds across a wide range of data-generating processes.
♻ ☆ Convex Loss Functions for Support Vector Machines (SVMs) and Neural Networks
We propose a new convex loss for Support Vector Machines, both for the binary classification and for the regression models. Therefore, we show the mathematical derivation of the dual problems and we experiment with them on several small datasets. The minimal dimension of those datasets is due to the difficult scalability of the SVM method to bigger instances. This preliminary study should prove that using pattern correlations inside the loss function could enhance the generalisation performances. Our method consistently achieved comparable or superior performance, with improvements of up to 2.0% in F1 scores for classification tasks and 1.0% reduction in Mean Squared Error (MSE) for regression tasks across various datasets, compared to standard losses. Coherently, results show that generalisation measures are never worse than the standard losses and several times they are better. In our opinion, it should be considered a careful study of this loss, coupled with shallow and deep neural networks. In fact, we present some novel results obtained with those architectures.
♻ ☆ A Two-Timescale Primal-Dual Framework for Reinforcement Learning via Online Dual Variable Guidance
We study reinforcement learning by combining recent advances in regularized linear programming formulations with the classical theory of stochastic approximation. Motivated by the challenge of designing algorithms that leverage off-policy data while maintaining on-policy exploration, we propose PGDA-RL, a novel primal-dual Projected Gradient Descent-Ascent algorithm for solving regularized Markov Decision Processes (MDPs). PGDA-RL integrates experience replay-based gradient estimation with a two-timescale decomposition of the underlying nested optimization problem. The algorithm operates asynchronously, interacts with the environment through a single trajectory of correlated data, and updates its policy online in response to the dual variable associated with the occupancy measure of the underlying MDP. We prove that PGDA-RL converges almost surely to the optimal value function and policy of the regularized MDP. Our convergence analysis relies on tools from stochastic approximation theory and holds under weaker assumptions than those required by existing primal-dual RL approaches, notably removing the need for a simulator or a fixed behavioral policy. Under a strengthened ergodicity assumption on the underlying Markov chain, we establish a last-iterate finite-time guarantee with $\tilde{O} (k^{-2/3})$ mean-square convergence, aligning with the best-known rates for two-timescale stochastic approximation methods under Markovian sampling and biased gradient estimates.
comment: 54 pages, 1 figure; Revised version with additional finite-time convergence results
♻ ☆ The Powers of Precision: Structure-Informed Detection in Complex Systems -- From Customer Churn to Seizure Onset
Emergent phenomena -- onset of epileptic seizures, sudden customer churn, or pandemic outbreaks -- often arise from hidden causal interactions in complex systems. We propose a machine learning method for their early detection that addresses a core challenge: unveiling and harnessing a system's latent causal structure despite the data-generating process being unknown and partially observed. The method learns an optimal feature representation from a one-parameter family of estimators -- powers of the empirical covariance or precision matrix -- offering a principled way to tune in to the underlying structure driving the emergence of critical events. A supervised learning module then classifies the learned representation. We prove structural consistency of the family and demonstrate the empirical soundness of our approach on seizure detection and churn prediction, attaining competitive results in both. Beyond prediction, and toward explainability, we ascertain that the optimal covariance power exhibits evidence of good identifiability while capturing structural signatures, thus reconciling predictive performance with interpretable statistical structure.
♻ ☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
♻ ☆ Transformers can do Bayesian Clustering
Bayesian clustering accounts for uncertainty but is computationally demanding at scale. Furthermore, real-world datasets often contain missing values, and simple imputation ignores the associated uncertainty, resulting in suboptimal results. We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fitted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior, Cluster-PFN learns to estimate the posterior distribution over both the number of clusters and the cluster assignments. Our method estimates the number of clusters more accurately than handcrafted model selection procedures such as AIC, BIC and Variational Inference (VI), and achieves clustering quality competitive with VI while being orders of magnitude faster. Cluster-PFN can be trained on complex priors that include missing data, outperforming imputation-based baselines on real-world genomic datasets, at high missingness. These results show that the Cluster-PFN can provide scalable and flexible Bayesian clustering.
♻ ☆ An Overview of Low-Rank Structures in the Training and Adaptation of Large Models
The substantial computational demands of modern large-scale deep learning present significant challenges for efficient training and deployment. Recent research has revealed a widespread phenomenon wherein deep networks inherently learn low-rank structures in their weights and representations during training. This tutorial paper provides a comprehensive review of advances in identifying and exploiting these low-rank structures, bridging mathematical foundations with practical applications. We present two complementary theoretical perspectives on the emergence of low-rankness: viewing it through the optimization dynamics of gradient descent throughout training, and understanding it as a result of implicit regularization effects at convergence. Practically, these theoretical perspectives provide a foundation for understanding the success of techniques such as Low-Rank Adaptation (LoRA) in fine-tuning, inspire new parameter-efficient low-rank training strategies, and explain the effectiveness of masked training approaches like dropout and masked self-supervised learning.
comment: Authors are listed alphabetically; 37 pages, 15 figures; minor revision at IEEE Signal Processing Magazine
♻ ☆ Uncertainty-driven Adaptive Exploration
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ Probabilistic Predictions of Process-Induced Deformation in Carbon/Epoxy Composites Using a Deep Operator Network
Fiber reinforcement and polymer matrix respond differently to manufacturing conditions due to mismatch in coefficient of thermal expansion and matrix shrinkage during curing of thermosets. These heterogeneities generate residual stresses over multiple length scales, whose partial release leads to process-induced deformation (PID), requiring accurate prediction and mitigation via optimized non-isothermal cure cycles. This study considers a unidirectional AS4 carbon fiber/amine bi-functional epoxy prepreg and models PID using a two-mechanism framework that accounts for thermal expansion/shrinkage and cure shrinkage. The model is validated against manufacturing trials to identify initial and boundary conditions, then used to generate PID responses for a diverse set of non-isothermal cure cycles (time-temperature profiles). Building on this physics-based foundation, we develop a data-driven surrogate based on Deep Operator Networks (DeepONets). A DeepONet is trained on a dataset combining high-fidelity simulations with targeted experimental measurements of PID. We extend this to a Feature-wise Linear Modulation (FiLM) DeepONet, where branch-network features are modulated by external parameters, including the initial degree of cure, enabling prediction of time histories of degree of cure, viscosity, and deformation. Because experimental data are available only at limited time instances (for example, final deformation), we use transfer learning: simulation-trained trunk and branch networks are fixed and only the final layer is updated using measured final deformation. Finally, we augment the framework with Ensemble Kalman Inversion (EKI) to quantify uncertainty under experimental conditions and to support optimization of cure schedules for reduced PID in composites.
comment: 21 pages, 13 figures
♻ ☆ NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
Characterizing the cellular properties of neurons is fundamental to understanding their function in the brain. In this quest, the generation of bio-realistic models is central towards integrating multimodal cellular data sets and establishing causal relationships. However, current modeling approaches remain constrained by the limited availability and intrinsic variability of experimental neuronal data. The deterministic formalism of bio-realistic models currently precludes accounting for the natural variability observed experimentally. While deep learning is becoming increasingly relevant in this space, it fails to capture the full biophysical complexity of neurons, their nonlinear voltage dynamics, and variability. To address these shortcomings, we introduce NOBLE, a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection. Trained on synthetic data generated from bio-realistic neuron models, NOBLE predicts distributions of neural dynamics accounting for the intrinsic experimental variability. Unlike conventional bio-realistic neuron models, interpolating within the embedding space offers models whose dynamics are consistent with experimentally observed responses. NOBLE enables the efficient generation of synthetic neurons that closely resemble experimental data and exhibit trial-to-trial variability, offering a $4200\times$ speedup over the numerical solver. NOBLE is the first scaled-up deep learning framework that validates its generalization with real experimental data. To this end, NOBLE captures fundamental neural properties in a unique and emergent manner that opens the door to a better understanding of cellular composition and computations, neuromorphic architectures, large-scale brain circuits, and general neuroAI applications.
♻ ☆ Dynamic Priors in Bayesian Optimization for Hyperparameter Optimization
Bayesian optimization (BO) is a widely used approach to hyperparameter optimization (HPO). However, most existing HPO methods only incorporate expert knowledge during initialization, limiting practitioners' ability to influence the optimization process as new insights emerge. This limits the applicability of BO in iterative machine learning development workflows. We propose DynaBO, a BO framework that enables continuous user control of the optimization process. Over time, DynaBO leverages provided user priors by augmenting the acquisition function with decaying, prior-weighted preferences while preserving asymptotic convergence guarantees. To reinforce robustness, we introduce a data-driven safeguard that detects and can be used to reject misleading priors. We prove theoretical results on near-certain convergence, robustness to adversarial priors, and accelerated convergence when informative priors are provided. Extensive experiments across various HPO benchmarks show that DynaBO consistently outperforms our state-of-the-art competitors across all benchmarks and for all prior kinds. Our results demonstrate that DynaBO enables reliable and efficient collaborative BO, bridging automated and manually controlled model development.
comment: 8 pages plus references and appendix
♻ ☆ Joint Estimation of Piano Dynamics and Metrical Structure with a Multi-task Multi-Scale Network ICASSP2026
Estimating piano dynamic from audio recordings is a fundamental challenge in computational music analysis. In this paper, we propose an efficient multi-task network that jointly predicts dynamic levels, change points, beats, and downbeats from a shared latent representation. These four targets form the metrical structure of dynamics in the music score. Inspired by recent vocal dynamic research, we use a multi-scale network as the backbone, which takes Bark-scale specific loudness as the input feature. Compared to log-Mel as input, this reduces model size from 14.7 M to 0.5 M, enabling long sequential input. We use a 60-second audio length in audio segmentation, which doubled the length of beat tracking commonly used. Evaluated on the public MazurkaBL dataset, our model achieves state-of-the-art results across all tasks. This work sets a new benchmark for piano dynamic estimation and delivers a powerful and compact tool, paving the way for large-scale, resource-efficient analysis of musical expression.
comment: Accepted to ICASSP2026 conference
♻ ☆ Bias-Reduced Estimation of Finite Mixtures: An Application to Latent Group Structures in Panel Data
Finite mixture models are widely used in econometric analyses to capture unobserved heterogeneity. This paper shows that maximum likelihood estimation of finite mixtures of parametric densities can suffer from substantial finite-sample bias in all parameters under mild regularity conditions. The bias arises from the influence of outliers in component densities with unbounded or large support and increases with the degree of overlap among mixture components. I show that maximizing the classification-mixture likelihood function, equipped with a consistent classifier, yields parameter estimates that are less biased than those obtained by standard maximum likelihood estimation (MLE). I then derive the asymptotic distribution of the resulting estimator and provide conditions under which oracle efficiency is achieved. Monte Carlo simulations show that conventional mixture MLE exhibits pronounced finite-sample bias, which diminishes as the sample size or the statistical distance between component densities tends to infinity. The simulations further show that the proposed estimation strategy generally outperforms standard MLE in finite samples in terms of both bias and mean squared errors under relatively weak assumptions. An empirical application to latent group panel structures using health administrative data shows that the proposed approach reduces out-of-sample prediction error by approximately 17.6% relative to the best results obtained from standard MLE procedures.
♻ ☆ An End-to-End Approach for Microgrid Probabilistic Forecasting and Robust Operation via Decision-focused Learning
High penetration of renewable energy sources (RES) introduces significant uncertainty and intermittency into microgrid operations, posing challenges to economic and reliable scheduling. To address this, this paper proposes an end-to-end decision-focused framework that jointly optimizes probabilistic forecasting and robust operation for microgrids. A multilayer encoder-decoder (MED) probabilistic forecasting model is integrated with a two-stage robust optimization (TSRO) model involving direct load control (DLC) through a differentiable decision pathway, enabling gradient-based feedback from operational outcomes to improve forecasting performance. Unlike conventional sequential approaches, the proposed method aligns forecasting accuracy with operational objectives by directly minimizing decision regret via a surrogate smart predict-then-optimize (SPO) loss function. This integration ensures that probabilistic forecasts are optimized for downstream decisions, enhancing both economic efficiency and robustness. Case studies on modified IEEE 33-bus and 69-bus systems demonstrate that the proposed framework achieves superior forecasting accuracy and operational performance, reducing total and net operation costs by up to 18% compared with conventional forecasting and optimization combinations. The results verify the effectiveness and scalability of the end-to-end decision-focused approach for resilient and cost-efficient microgrid management under uncertainty.
comment: 10 pages
♻ ☆ fev-bench: A Realistic Benchmark for Time Series Forecasting
Benchmark quality is critical for meaningful evaluation and sustained progress in time series forecasting, particularly with the rise of pretrained models. Existing benchmarks often have limited domain coverage or overlook real-world settings such as tasks with covariates. Their aggregation procedures frequently lack statistical rigor, making it unclear whether observed performance differences reflect true improvements or random variation. Many benchmarks lack consistent evaluation infrastructure or are too rigid for integration into existing pipelines. To address these gaps, we propose fev-bench, a benchmark of 100 forecasting tasks across seven domains, including 46 with covariates. Supporting the benchmark, we introduce fev, a lightweight Python library for forecasting evaluation emphasizing reproducibility and integration with existing workflows. Using fev, fev-bench employs principled aggregation with bootstrapped confidence intervals to report performance along two dimensions: win rates and skill scores. We report results on fev-bench for pretrained, statistical, and baseline models and identify promising future research directions.
♻ ☆ Spiking Neural Networks for Continuous Control via End-to-End Model-Based Learning
Despite recent progress in training spiking neural networks (SNNs) for classification, their application to continuous motor control remains limited. Here, we demonstrate that fully spiking architectures can be trained end-to-end to control robotic arms with multiple degrees of freedom in continuous environments. Our predictive-control framework combines Leaky Integrate-and-Fire dynamics with surrogate gradients, jointly optimizing a forward model for dynamics prediction and a policy network for goal-directed action. We evaluate this approach on both a planar 2D reaching task and a simulated 6-DOF Franka Emika Panda robot with torque control. In direct comparison to non-spiking recurrent baselines trained under the same predictive-control pipeline, the proposed SNN achieves comparable task performance while using substantially fewer parameters. An extensive ablation study highlights the role of initialization, learnable time constants, adaptive thresholds, and latent-space compression as key contributors to stable training and effective control. Together, these findings establish spiking neural networks as a viable and scalable substrate for high-dimensional continuous control, while emphasizing the importance of principled architectural and training design.
♻ ☆ Improved Stochastic Optimization of LogSumExp
The LogSumExp function, dual to the Kullback-Leibler (KL) divergence, plays a central role in many important optimization problems, including entropy-regularized optimal transport (OT) and distributionally robust optimization (DRO). In practice, when the number of exponential terms inside the logarithm is large or infinite, optimization becomes challenging since computing the gradient requires differentiating every term. We propose a novel convexity- and smoothness-preserving approximation to LogSumExp that can be efficiently optimized using stochastic gradient methods. This approximation is rooted in a sound modification of the KL divergence in the dual, resulting in a new $f$-divergence called the safe KL divergence. Our experiments and theoretical analysis of the LogSumExp-based stochastic optimization, arising in DRO and continuous OT, demonstrate the advantages of our approach over existing baselines.
comment: 17 pages, 5 figures, 2 tables; updated experiment in subsection 3.3
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Simple Denoising Diffusion Language Models
Recent Uniform State Diffusion Models (USDMs), initialized from a uniform prior, offer the promise of fast text generation due to their inherent self-correction ability compared to masked diffusion models. However, they still rely on complex loss formulations with additional computational overhead, which hinders scalability. In this work, we explore a simplified denoising-based loss for USDMs that optimizes only noise-replaced tokens, stabilizing training while matching the performance of prior methods with more complex objectives. In addition, we introduce an efficient regularization term to mitigate corruption toward uniform output distributions, which further improves performance. We demonstrate the effectiveness and efficiency of our simple and improved loss formulations by pretraining models on widely used text datasets for USDMs. More importantly, our conclusions scale to larger models, showing strong potential for large-scale training.
♻ ☆ Methodology for Comparing Machine Learning Algorithms for Survival Analysis
This study presents a comparative methodological analysis of six machine learning models for survival analysis (MLSA). Using data from nearly 45,000 colorectal cancer patients in the Hospital-Based Cancer Registries of São Paulo, we evaluated Random Survival Forest (RSF), Gradient Boosting for Survival Analysis (GBSA), Survival SVM (SSVM), XGBoost-Cox (XGB-Cox), XGBoost-AFT (XGB-AFT), and LightGBM (LGBM), capable of predicting survival considering censored data. Hyperparameter optimization was performed with different samplers, and model performance was assessed using the Concordance Index (C-Index), C-Index IPCW, time-dependent AUC, and Integrated Brier Score (IBS). Survival curves produced by the models were compared with predictions from classification algorithms, and predictor interpretation was conducted using SHAP and permutation importance. XGB-AFT achieved the best performance (C-Index = 0.7618; IPCW = 0.7532), followed by GBSA and RSF. The results highlight the potential and applicability of MLSA to improve survival prediction and support decision making.
♻ ☆ KVzap: Fast, Adaptive, and Faithful KV Cache Pruning
Growing context lengths in transformer-based language models have made the key-value (KV) cache a critical inference bottleneck. While many KV cache pruning methods have been proposed, they have not yet been adopted in major inference engines due to speed--accuracy trade-offs. We introduce KVzap, a fast, input-adaptive approximation of KVzip that works in both prefilling and decoding. On Qwen3-8B, Llama-3.1-8B-Instruct, and Qwen3-32B across long-context and reasoning tasks, KVzap achieves $2$--$4\times$ KV cache compression with negligible accuracy loss and achieves state-of-the-art performance on the KVpress leaderboard. Code and models are available at https://github.com/NVIDIA/kvpress.
♻ ☆ SLIME: Stabilized Likelihood Implicit Margin Enforcement for Preference Optimization
Direct preference optimization methods have emerged as a computationally efficient alternative to Reinforcement Learning from Human Feedback (RLHF) for aligning Large Language Models (LLMs). Latest approaches have streamlined the alignment process by deriving implicit reward functions, yet they often suffer from a critical objective mismatch: optimizing the relative margin between chosen and rejected responses does not guarantee the preservation of the chosen response's absolute likelihood. This can lead to unlearning, where the model degrades the probability of high-quality outputs to satisfy margin constraints, and formatting collapse caused by the over-penalization of rejected sequences. In this work, we introduce SLIME (Stabilized Likelihood Implicit Margin Enforcement), a reference-free alignment objective designed to decouple preference learning from generation quality. SLIME incorporates a three-pronged objective: (1) an anchoring term to maximize the likelihood of preferred responses; (2) a stabilizing penalty that prevents the probabilities of rejected tokens from collapsing to zero; and (3) a dual-margin mechanism that combines hard and soft constraints for precise boundary shaping. Our results demonstrate that SLIME achieves superior performance compared to state-of-the-art baselines while maintaining higher generation stability.
♻ ☆ Designing ReLU Generative Networks to Enumerate Trees with a Given Tree Edit Distance
The generation of trees with a specified tree edit distance has significant applications across various fields, including computational biology, structured data analysis, and image processing. Recently, generative networks have been increasingly employed to synthesize new data that closely resembles the original datasets. However, the appropriate size and depth of generative networks required to generate data with a specified tree edit distance remain unclear. In this paper, we theoretically establish the existence and construction of generative networks capable of producing trees similar to a given tree with respect to the tree edit distance. Specifically, for a given rooted, ordered, and vertex-labeled tree T of size n + 1 with labels from an alphabet Σ, and a non-negative integer d, we prove that all rooted, ordered, and vertex-labeled trees over Σwith tree edit distance at most d from T can be generated using a ReLU-based generative network with size O(n^3 ) and constant depth. The proposed networks were implemented and evaluated for generating trees with up to 21 nodes. Due to their deterministic architecture, the networks successfully generated all valid trees within the specified tree edit distance. In contrast, state-of-the-art graph generative models GraphRNN and GraphGDP, which rely on non-deterministic mechanisms, produced significantly fewer valid trees, achieving validation rates of only up to 35% and 48%, respectively. These findings provide a theoretical foundation towards construction of compact generative models and open new directions for exact and valid tree-structured data generation. An implementation of the proposed networks is available at https://github.com/MGANN-KU/TreeGen_ReLUNetworks.
♻ ☆ Relational reasoning and inductive bias in transformers and large language models
Transformer-based models have demonstrated remarkable reasoning abilities, but the mechanisms underlying relational reasoning remain poorly understood. We investigate how transformers perform \textit{transitive inference}, a classic relational reasoning task which requires inference indirectly related items (e.g., if $A>B$ and $B>C$, then $A>C$), comparing in-weights learning (IWL) and in-context learning (ICL) strategies. We find that IWL naturally induces a generalization bias towards transitive inference despite training only on adjacent items, whereas ICL models develop induction circuits implementing match-and-copy strategies that fail to encode hierarchical relationships. However, when pre-trained on in-context linear regression tasks, transformers successfully exhibit in-context generalizable transitive inference, displaying both \textit{symbolic distance} and \textit{terminal item effects} characteristic of human and animal performance, without forming induction circuits. We extend these findings to large language models, demonstrating that prompting with linear geometric scaffolds improves transitive inference, while circular geometries (which violate transitivity by allowing wraparound) impair performance, particularly when models cannot rely on stored knowledge. Together, these results reveal that both the training regime and the geometric structure of induced representations critically determine transformers' capacity for transitive inference.
comment: 15 pages, 10 figures
♻ ☆ Conformal Prediction for Causal Effects of Continuous Treatments NeurIPS 2025
Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
comment: Accepted at NeurIPS 2025
♻ ☆ Trustworthy AI-based crack-tip segmentation using domain-guided explanations
Ensuring the trustworthiness and robustness of deep learning models remains a fundamental challenge, particularly in high-stakes scientific applications. In this study, we present a framework called attention-guided training that combines explainable artificial intelligence techniques with quantitative evaluation and domain-specific priors to guide model attention. We demonstrate that domain-specific feedback on model explanations during training can enhance the model's generalization capabilities. We validate our approach on the task of semantic crack tip segmentation in digital image correlation data, which is a key application in the fracture mechanical characterization of materials. By aligning model attention with physically meaningful stress fields, such as those described by Williams' analytical solution, attention-guided training ensures that the model focuses on physically relevant regions. This finally leads to improved generalization and more faithful explanations.
comment: This is the Accepted Manuscript version of an article accepted for publication in Machine Learning: Science and Technology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/2632-2153/ae3660
♻ ☆ Latent Space Representation of Electricity Market Curves: Maintaining Structural Integrity
Efficiently representing supply and demand curves is vital for energy market analysis and downstream modelling; however, dimensionality reduction often produces reconstructions that violate fundamental economic principles such as monotonicity. This paper evaluates the performance of PCA, Kernel PCA, UMAP, and AutoEncoder across 2d and 3d latent spaces. During preprocessing, we transform the original data to achieve a unified structure, mitigate outlier effects, and focus on critical curve segments. To ensure theoretical validity, we integrate Isotonic Regression as an optional post-processing step to enforce monotonic constraints on reconstructed outputs. Results from a three-year hourly MIBEL dataset demonstrate that the non-linear technique UMAP consistently outperforms other methods, securing the top rank across multiple error metrics. Furthermore, Isotonic Regression serves as a crucial corrective layer, significantly reducing error and restoring physical validity for several methods. We argue that UMAP`s local structure preservation, combined with intelligent post-processing, provides a robust foundation for downstream tasks such as forecasting, classification, and clustering.
comment: 8 pages, 3 figures
♻ ☆ Time2Vec Transformer for Robust Gesture Recognition from Low-Density sEMG
Accurate and responsive myoelectric prosthesis control typically relies on complex, dense multi-sensor arrays, which limits consumer accessibility. This paper presents a novel, data-efficient deep learning framework designed to achieve precise and accurate control using minimal sensor hardware. Leveraging an external dataset of 8 subjects, our approach implements a hybrid Transformer optimized for sparse, two-channel surface electromyography (sEMG). Unlike standard architectures that use fixed positional encodings, we integrate Time2Vec learnable temporal embeddings to capture the stochastic temporal warping inherent in biological signals. Furthermore, we employ a normalized additive fusion strategy that aligns the latent distributions of spatial and temporal features, preventing the destructive interference common in standard implementations. A two-stage curriculum learning protocol is utilized to ensure robust feature extraction despite data scarcity. The proposed architecture achieves a state-of-the-art multi-subject F1-score of 95.7% $\pm$ 0.20% for a 10-class movement set, statistically outperforming both a standard Transformer with fixed encodings and a recurrent CNN-LSTM model. Architectural optimization reveals that a balanced allocation of model capacity between spatial and temporal dimensions yields the highest stability. Furthermore, while direct transfer to a new unseen subject led to poor accuracy due to domain shifts, a rapid calibration protocol utilizing only two trials per gesture recovered performance from 21.0% $\pm$ 2.98% to 96.9% $\pm$ 0.52%. By validating that high-fidelity temporal embeddings can compensate for low spatial resolution, this work challenges the necessity of high-density sensing. The proposed framework offers a robust, cost-effective blueprint for next-generation prosthetic interfaces capable of rapid personalization.
♻ ☆ Beyond Predictive Uncertainty: Reliable Representation Learning with Structural Constraints
Uncertainty estimation in machine learning has traditionally focused on the prediction stage, aiming to quantify confidence in model outputs while treating learned representations as deterministic and reliable by default. In this work, we challenge this implicit assumption and argue that reliability should be regarded as a first-class property of learned representations themselves. We propose a principled framework for reliable representation learning that explicitly models representation-level uncertainty and leverages structural constraints as inductive biases to regularize the space of feasible representations. Our approach introduces uncertainty-aware regularization directly in the representation space, encouraging representations that are not only predictive but also stable, well-calibrated, and robust to noise and structural perturbations. Structural constraints, such as sparsity, relational structure, or feature-group dependencies, are incorporated to define meaningful geometry and reduce spurious variability in learned representations, without assuming fully correct or noise-free structure. Importantly, the proposed framework is independent of specific model architectures and can be integrated with a wide range of representation learning methods.
comment: 22 pages, 5 figures, 5 propositions
♻ ☆ Dataset-Driven Channel Masks in Transformers for Multivariate Time Series ICASSP 2026
Recent advancements in foundation models have been successfully extended to the time series (TS) domain, facilitated by the emergence of large-scale TS datasets. However, previous efforts have primarily Capturing channel dependency (CD) is essential for modeling multivariate time series (TS), and attention-based methods have been widely employed for this purpose. Nonetheless, these methods primarily focus on modifying the architecture, often neglecting the importance of dataset-specific characteristics. In this work, we introduce the concept of partial channel dependence (PCD) to enhance CD modeling in Transformer-based models by leveraging dataset-specific information to refine the CD captured by the model. To achieve PCD, we propose channel masks (CMs), which are integrated into the attention matrices of Transformers via element-wise multiplication. CMs consist of two components: 1) a similarity matrix that captures relationships between the channels, and 2) dataset-specific and learnable domain parameters that refine the similarity matrix. We validate the effectiveness of PCD across diverse tasks and datasets with various backbones. Code is available at this repository: https://github.com/YonseiML/pcd.
comment: ICASSP 2026. Preliminary version: NeurIPS Workshop on Time Series in the Age of Large Models 2024 (Oral presentation)
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ Contrastive Geometric Learning Unlocks Unified Structure- and Ligand-Based Drug Design
Structure-based and ligand-based computational drug design have traditionally relied on disjoint data sources and modeling assumptions, limiting their joint use at scale. In this work, we introduce Contrastive Geometric Learning for Unified Computational Drug Design (ConGLUDe), a single contrastive geometric model that unifies structure- and ligand-based training. ConGLUDe couples a geometric protein encoder that produces whole-protein representations and implicit embeddings of predicted binding sites with a fast ligand encoder, removing the need for pre-defined pockets. By aligning ligands with both global protein representations and multiple candidate binding sites through contrastive learning, ConGLUDe supports ligand-conditioned pocket prediction in addition to virtual screening and target fishing, while being trained jointly on protein-ligand complexes and large-scale bioactivity data. Across diverse benchmarks, ConGLUDe achieves competitive zero-shot virtual screening performance, substantially outperforms existing methods on a challenging target fishing task, and demonstrates state-of-the-art ligand-conditioned pocket selection. These results highlight the advantages of unified structure-ligand training and position ConGLUDe as a step toward general-purpose foundation models for drug discovery.
comment: ELLIS ML4Molecules Workshop 2025, ELLIS Unconference, Copenhagen 2025 Revised version with additional timing evaluation
♻ ☆ Discrete Latent Structure in Neural Networks
Many types of data from fields including natural language processing, computer vision, and bioinformatics, are well represented by discrete, compositional structures such as trees, sequences, or matchings. Latent structure models are a powerful tool for learning to extract such representations, offering a way to incorporate structural bias, discover insight about the data, and interpret decisions. However, effective training is challenging, as neural networks are typically designed for continuous computation. This text explores three broad strategies for learning with discrete latent structure: continuous relaxation, surrogate gradients, and probabilistic estimation. Our presentation relies on consistent notations for a wide range of models. As such, we reveal many new connections between latent structure learning strategies, showing how most consist of the same small set of fundamental building blocks, but use them differently, leading to substantially different applicability and properties.
♻ ☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
♻ ☆ CP-Agent: Agentic Constraint Programming
The translation of natural language to formal constraint models requires expertise in the problem domain and modeling frameworks. To explore the effectiveness of agentic workflows, we propose CP-Agent, a Python coding agent that uses the ReAct framework with a persistent IPython kernel. We provide the relevant domain knowledge as a project prompt of under 50 lines. The algorithm works by iteratively executing code, observing the solver's feedback, and refining constraint models based on execution results. We evaluate CP-Agent on 101 constraint programming problems from CP-Bench. We made minor changes to the benchmark to address systematic ambiguities in the problem specifications and errors in the ground-truth models. On the clarified benchmark, CP-Agent achieves perfect accuracy on all 101 problems. Our experiments show that minimal guidance outperforms detailed procedural scaffolding. Our experiments also show that explicit task management tools can have both positive and negative effects on focused modeling tasks.
♻ ☆ PRISM: Deriving a White-Box Transformer as a Signal-Noise Decomposition Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce a specific irrational frequency separation ($π$-RoPE) to enforce incoherence between signal (semantic) and noise (syntactic) subspaces. We show empirical evidence that these geometric inductive biases can induce unsupervised functional disentanglement alone. Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints and structural artifacts. To provide a theoretical grounding for these spectral phenomena, we draw an analogy between attention mechanism and a Hamiltonian dynamical system and identify that the standard geometric progression of Rotary Positional Embeddings (RoPE) induces dense resonance networks (Arnold Tongues), leading to feature rank collapse. Empirical validation on 124M-parameter models trained on OpenWebText demonstrates that Prism spontaneously isolates the Attention Sink pathology and maintains isentropic information flow across layers. Further, we suggest a physics-informed plug-and-play intervention KAM-RoPE for large language models (LLMs). Our results suggest that interpretability and performance can be unified through principled geometric construction, offering a theoretically grounded alternative to heuristic architectural modifications
comment: 12 pages, 6 figures. Derives Transformer as a signal-noise decomposition operator via Maximizing Coding Rate Reduction. Identifies 'Attention Sink' as spectral resonance (Arnold Tongues) and proposes $π$-RoPE for dynamical stability
♻ ☆ Sensitivity analysis of image classification models using generalized polynomial chaos
Integrating advanced communication protocols in production has accelerated the adoption of data-driven predictive quality methods, notably machine learning (ML) models. However, ML models in image classification often face significant uncertainties arising from model, data, and domain shifts. These uncertainties lead to overconfidence in the classification model's output. To better understand these models, sensitivity analysis can help to analyze the relative influence of input parameters on the output. This work investigates the sensitivity of image classification models used for predictive quality. We propose modeling the distributional domain shifts of inputs with random variables and quantifying their impact on the model's outputs using Sobol indices computed via generalized polynomial chaos (GPC). This approach is validated through a case study involving a welding defect classification problem, utilizing a fine-tuned ResNet18 model and an emblem classification model used in BMW Group production facilities.
♻ ☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
♻ ☆ Scalable Linearized Laplace Approximation via Surrogate Neural Kernel
We introduce a scalable method to approximate the kernel of the Linearized Laplace Approximation (LLA). For this, we use a surrogate deep neural network (DNN) that learns a compact feature representation whose inner product replicates the Neural Tangent Kernel (NTK). This avoids the need to compute large Jacobians. Training relies solely on efficient Jacobian-vector products, allowing to compute predictive uncertainty on large-scale pre-trained DNNs. Experimental results show similar or improved uncertainty estimation and calibration compared to existing LLA approximations. Notwithstanding, biasing the learned kernel significantly enhances out-of-distribution detection. This remarks the benefits of the proposed method for finding better kernels than the NTK in the context of LLA to compute prediction uncertainty given a pre-trained DNN.
comment: 6 pages, 1 table. Accepted at European Symposium on Artificial Neural Networks (ESANN 2026) as oral presentation
♻ ☆ SPGCL: Simple yet Powerful Graph Contrastive Learning via SVD-Guided Structural Perturbation
Graph Neural Networks (GNNs) are sensitive to structural noise from adversarial attacks or imperfections. Existing graph contrastive learning (GCL) methods typically rely on either random perturbations (e.g., edge dropping) for diversity or spectral augmentations (e.g., SVD) to preserve structural priors. However, random perturbations are structure-agnostic and may remove critical edges, while SVD-based views often lack sufficient diversity. Integrating these paradigms is challenging as they operate on discrete edge removal and continuous matrix factorization, respectively.We propose SPGCL, a framework for robust GCL via SVD-guided structural perturbation. Leveraging a recently developed SVD-based method that generalizes structural perturbation theory to arbitrary graphs, we design a two-stage strategy: (1) lightweight stochastic edge removal to inject diversity, and (2) truncated SVD to derive a structure-aware scoring matrix for sparse top-$P$ edge recovery. This integration offers three advantages: (1) Robustness to accidental deletion, as important edges can be recovered by SVD-guided scoring; (2) Enrichment with missing links, creating more informative contrastive views by introducing semantically meaningful edges; and (3) Controllable structural discrepancy, ensuring contrastive signals stem from semantic differences rather than edge-number gaps.Furthermore, we incorporate a contrastive fusion module with a global similarity constraint to align embeddings. Extensive experiments on ten benchmark datasets demonstrate that SPGCL consistently improves the robustness and accuracy of GNNs, outperforming state-of-the-art GCL and structure learning methods, validating its effectiveness in integrating previously disparate paradigms.
Multimedia 11
☆ ELIQ: A Label-Free Framework for Quality Assessment of Evolving AI-Generated Images
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
☆ Morphe: High-Fidelity Generative Video Streaming with Vision Foundation Model
Video streaming is a fundamental Internet service, while the quality still cannot be guaranteed especially in poor network conditions such as bandwidth-constrained and remote areas. Existing works mainly work towards two directions: traditional pixel-codec streaming nearly approaches its limit and is hard to step further in compression; the emerging neural-enhanced or generative streaming usually fall short in latency and visual fidelity, hindering their practical deployment. Inspired by the recent success of vision foundation model (VFM), we strive to harness the powerful video understanding and processing capacities of VFM to achieve generalization, high fidelity and loss resilience for real-time video streaming with even higher compression rate. We present the first revolutionized paradigm that enables VFM-based end-to-end generative video streaming towards this goal. Specifically, Morphe employs joint training of visual tokenizers and variable-resolution spatiotemporal optimization under simulated network constraints. Additionally, a robust streaming system is constructed that leverages intelligent packet dropping to resist real-world network perturbations. Extensive evaluation demonstrates that Morphe achieves comparable visual quality while saving 62.5\% bandwidth compared to H.265, and accomplishes real-time, loss-resilient video delivery in challenging network environments, representing a milestone in VFM-enabled multimedia streaming solutions.
comment: Accepted by NSDI 2026 Fall
☆ D3PIA: A Discrete Denoising Diffusion Model for Piano Accompaniment Generation From Lead sheet ICASSP
Generating piano accompaniments in the symbolic music domain is a challenging task that requires producing a complete piece of piano music from given melody and chord constraints, such as those provided by a lead sheet. In this paper, we propose a discrete diffusion-based piano accompaniment generation model, D3PIA, leveraging local alignment between lead sheet and accompaniment in piano-roll representation. D3PIA incorporates Neighborhood Attention (NA) to both encode the lead sheet and condition it for predicting note states in the piano accompaniment. This design enhances local contextual modeling by efficiently attending to nearby melody and chord conditions. We evaluate our model using the POP909 dataset, a widely used benchmark for piano accompaniment generation. Objective evaluation results demonstrate that D3PIA preserves chord conditions more faithfully compared to continuous diffusion-based and Transformer-based baselines. Furthermore, a subjective listening test indicates that D3PIA generates more musically coherent accompaniments than the comparison models.
comment: Accepted at 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
☆ Unveiling Covert Toxicity in Multimodal Data via Toxicity Association Graphs: A Graph-Based Metric and Interpretable Detection Framework
Detecting toxicity in multimodal data remains a significant challenge, as harmful meanings often lurk beneath seemingly benign individual modalities: only emerging when modalities are combined and semantic associations are activated. To address this, we propose a novel detection framework based on Toxicity Association Graphs (TAGs), which systematically model semantic associations between innocuous entities and latent toxic implications. Leveraging TAGs, we introduce the first quantifiable metric for hidden toxicity, the Multimodal Toxicity Covertness (MTC), which measures the degree of concealment in toxic multimodal expressions. By integrating our detection framework with the MTC metric, our approach enables precise identification of covert toxicity while preserving full interpretability of the decision-making process, significantly enhancing transparency in multimodal toxicity detection. To validate our method, we construct the Covert Toxic Dataset, the first benchmark specifically designed to capture high-covertness toxic multimodal instances. This dataset encodes nuanced cross-modal associations and serves as a rigorous testbed for evaluating both the proposed metric and detection framework. Extensive experiments demonstrate that our approach outperforms existing methods across both low- and high-covertness toxicity regimes, while delivering clear, interpretable, and auditable detection outcomes. Together, our contributions advance the state of the art in explainable multimodal toxicity detection and lay the foundation for future context-aware and interpretable approaches. Content Warning: This paper contains examples of toxic multimodal content that may be offensive or disturbing to some readers. Reader discretion is advised.
☆ MS-SCANet: A Multiscale Transformer-Based Architecture with Dual Attention for No-Reference Image Quality Assessment ICASSP 2025
We present the Multi-Scale Spatial Channel Attention Network (MS-SCANet), a transformer-based architecture designed for no-reference image quality assessment (IQA). MS-SCANet features a dual-branch structure that processes images at multiple scales, effectively capturing both fine and coarse details, an improvement over traditional single-scale methods. By integrating tailored spatial and channel attention mechanisms, our model emphasizes essential features while minimizing computational complexity. A key component of MS-SCANet is its cross-branch attention mechanism, which enhances the integration of features across different scales, addressing limitations in previous approaches. We also introduce two new consistency loss functions, Cross-Branch Consistency Loss and Adaptive Pooling Consistency Loss, which maintain spatial integrity during feature scaling, outperforming conventional linear and bilinear techniques. Extensive evaluations on datasets like KonIQ-10k, LIVE, LIVE Challenge, and CSIQ show that MS-SCANet consistently surpasses state-of-the-art methods, offering a robust framework with stronger correlations with subjective human scores.
comment: Published in ICASSP 2025, 5 pages, 3 figures
☆ Audit After Segmentation: Reference-Free Mask Quality Assessment for Language-Referred Audio-Visual Segmentation
Language-referred audio-visual segmentation (Ref-AVS) aims to segment target objects described by natural language by jointly reasoning over video, audio, and text. Beyond generating segmentation masks, providing rich and interpretable diagnoses of mask quality remains largely underexplored. In this work, we introduce Mask Quality Assessment in the Ref-AVS context (MQA-RefAVS), a new task that evaluates the quality of candidate segmentation masks without relying on ground-truth annotations as references at inference time. Given audio-visual-language inputs and each provided segmentation mask, the task requires estimating its IoU with the unobserved ground truth, identifying the corresponding error type, and recommending an actionable quality-control decision. To support this task, we construct MQ-RAVSBench, a benchmark featuring diverse and representative mask error modes that span both geometric and semantic issues. We further propose MQ-Auditor, a multimodal large language model (MLLM)-based auditor that explicitly reasons over multimodal cues and mask information to produce quantitative and qualitative mask quality assessments. Extensive experiments demonstrate that MQ-Auditor outperforms strong open-source and commercial MLLMs and can be integrated with existing Ref-AVS systems to detect segmentation failures and support downstream segmentation improvement. Data and codes will be released at https://github.com/jasongief/MQA-RefAVS.
☆ Sounding Highlights: Dual-Pathway Audio Encoders for Audio-Visual Video Highlight Detection ICASSP 2026
Audio-visual video highlight detection aims to automatically identify the most salient moments in videos by leveraging both visual and auditory cues. However, existing models often underutilize the audio modality, focusing on high-level semantic features while failing to fully leverage the rich, dynamic characteristics of sound. To address this limitation, we propose a novel framework, Dual-Pathway Audio Encoders for Video Highlight Detection (DAViHD). The dual-pathway audio encoder is composed of a semantic pathway for content understanding and a dynamic pathway that captures spectro-temporal dynamics. The semantic pathway extracts high-level information by identifying the content within the audio, such as speech, music, or specific sound events. The dynamic pathway employs a frequency-adaptive mechanism as time evolves to jointly model these dynamics, enabling it to identify transient acoustic events via salient spectral bands and rapid energy changes. We integrate the novel audio encoder into a full audio-visual framework and achieve new state-of-the-art performance on the large-scale Mr.HiSum benchmark. Our results demonstrate that a sophisticated, dual-faceted audio representation is key to advancing the field of highlight detection.
comment: 5 pages, 2 figures, to appear in ICASSP 2026
☆ DCER: Dual-Stage Compression and Energy-Based Reconstruction ICML 2026
Multimodal fusion faces two robustness challenges: noisy inputs degrade representation quality, and missing modalities cause prediction failures. We propose DCER, a unified framework addressing both challenges through dual-stage compression and energy-based reconstruction. The compression stage operates at two levels: within-modality frequency transforms (wavelet for audio, DCT for video) remove noise while preserving task-relevant patterns, and cross-modality bottleneck tokens force genuine integration rather than modality-specific shortcuts. For missing modalities, energy-based reconstruction recovers representations via gradient descent on a learned energy function, with the final energy providing intrinsic uncertainty quantification (\r{ho} > 0.72 correlation with prediction error). Experiments on CMU-MOSI, CMU-MOSEI, and CH-SIMS demonstrate state-of-the-art performance across all benchmarks, with a U-shaped robustness pattern favoring multimodal fusion at both complete and high-missing conditions. The code will be available on Github.
comment: 13 pages, 2 figures, 8 tables. Submitted to ICML 2026. Code will be available on GitHub
♻ ☆ SpecFLASH: A Latent-Guided Semi-autoregressive Speculative Decoding Framework for Efficient Multimodal Generation
Large language models and large multimodal models (LLMs and LMMs) deliver strong generative performance but suffer from slow decoding, a problem that becomes more severe when handling visual inputs, whose sequences typically contain many more tokens with lower information density than text. Speculative decoding accelerates LLM inference by letting a compact draft model propose candidate tokens that are selectively accepted by a larger target model, achieving speed-up without degrading quality. However, existing multimodal speculative decoding approaches largely ignore the structural characteristics of visual representations and usually rely on text-only draft models. In this paper, we introduce SpecFLASH, a speculative decoding framework tailored to LMMs that explicitly exploits multimodal structure when designing the draft model. We first mitigate redundancy in visual token sequences with a lightweight, latent-guided token compression module that compacts visual features while preserving semantics, and then leverage the co-occurrence and local correlations of visual entities via a semi-autoregressive decoding scheme that predicts multiple tokens in a single forward pass. Extensive experiments demonstrate that SpecFLASH consistently surpasses prior speculative decoding baselines, achieving up to $2.68\times$ speed-up on video captioning and $2.55\times$ on visual instruction tuning, relative to the original LMM. Our code is available here: https://github.com/ZihuaEvan/FlashSD/.
comment: Under review
♻ ☆ TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
♻ ☆ VidTune: Creating Video Soundtracks with Generative Music and Contextual Thumbnails
Music shapes the tone of videos, yet creators often struggle to find soundtracks that match their video's mood and narrative. Recent text-to-music models let creators generate music from text prompts, but our formative study (N=8) shows creators struggle to construct diverse prompts, quickly review and compare tracks, and understand their impact on the video. We present VidTune, a system that supports soundtrack creation by generating diverse music options from a creator's prompt and producing contextual thumbnails for rapid review. VidTune extracts representative video subjects to ground thumbnails in context, maps each track's valence and energy onto visual cues like color and brightness, and depicts prominent genres and instruments. Creators can refine tracks through natural language edits, which VidTune expands into new generations. In a controlled user study (N=12) and an exploratory case study (N=6), participants found VidTune helpful for efficiently reviewing and comparing music options and described the process as playful and enriching.
comment: Accepted to CHI 2026
Artificial Intelligent 317
☆ PLATE: Plasticity-Tunable Efficient Adapters for Geometry-Aware Continual Learning
We develop a continual learning method for pretrained models that \emph{requires no access to old-task data}, addressing a practical barrier in foundation model adaptation where pretraining distributions are often unavailable. Our key observation is that pretrained networks exhibit substantial \emph{geometric redundancy}, and that this redundancy can be exploited in two complementary ways. First, redundant neurons provide a proxy for dominant pretraining-era feature directions, enabling the construction of approximately protected update subspaces directly from pretrained weights. Second, redundancy offers a natural bias for \emph{where} to place plasticity: by restricting updates to a subset of redundant neurons and constraining the remaining degrees of freedom, we obtain update families with reduced functional drift on the old-data distribution and improved worst-case retention guarantees. These insights lead to \textsc{PLATE} (\textbf{Pla}sticity-\textbf{T}unable \textbf{E}fficient Adapters), a continual learning method requiring no past-task data that provides explicit control over the plasticity-retention trade-off. PLATE parameterizes each layer with a structured low-rank update $ΔW = B A Q^\top$, where $B$ and $Q$ are computed once from pretrained weights and kept frozen, and only $A$ is trained on the new task. The code is available at https://github.com/SalesforceAIResearch/PLATE.
☆ PrevizWhiz: Combining Rough 3D Scenes and 2D Video to Guide Generative Video Previsualization
In pre-production, filmmakers and 3D animation experts must rapidly prototype ideas to explore a film's possibilities before fullscale production, yet conventional approaches involve trade-offs in efficiency and expressiveness. Hand-drawn storyboards often lack spatial precision needed for complex cinematography, while 3D previsualization demands expertise and high-quality rigged assets. To address this gap, we present PrevizWhiz, a system that leverages rough 3D scenes in combination with generative image and video models to create stylized video previews. The workflow integrates frame-level image restyling with adjustable resemblance, time-based editing through motion paths or external video inputs, and refinement into high-fidelity video clips. A study with filmmakers demonstrates that our system lowers technical barriers for film-makers, accelerates creative iteration, and effectively bridges the communication gap, while also surfacing challenges of continuity, authorship, and ethical consideration in AI-assisted filmmaking.
comment: 21 pages, 13 figures; accepted and to appear at CHI 2026
☆ Accelerating Scientific Research with Gemini: Case Studies and Common Techniques
Recent advances in large language models (LLMs) have opened new avenues for accelerating scientific research. While models are increasingly capable of assisting with routine tasks, their ability to contribute to novel, expert-level mathematical discovery is less understood. We present a collection of case studies demonstrating how researchers have successfully collaborated with advanced AI models, specifically Google's Gemini-based models (in particular Gemini Deep Think and its advanced variants), to solve open problems, refute conjectures, and generate new proofs across diverse areas in theoretical computer science, as well as other areas such as economics, optimization, and physics. Based on these experiences, we extract common techniques for effective human-AI collaboration in theoretical research, such as iterative refinement, problem decomposition, and cross-disciplinary knowledge transfer. While the majority of our results stem from this interactive, conversational methodology, we also highlight specific instances that push beyond standard chat interfaces. These include deploying the model as a rigorous adversarial reviewer to detect subtle flaws in existing proofs, and embedding it within a "neuro-symbolic" loop that autonomously writes and executes code to verify complex derivations. Together, these examples highlight the potential of AI not just as a tool for automation, but as a versatile, genuine partner in the creative process of scientific discovery.
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ Adaptive Evidence Weighting for Audio-Spatiotemporal Fusion
Many machine learning systems have access to multiple sources of evidence for the same prediction target, yet these sources often differ in reliability and informativeness across inputs. In bioacoustic classification, species identity may be inferred both from the acoustic signal and from spatiotemporal context such as location and season; while Bayesian inference motivates multiplicative evidence combination, in practice we typically only have access to discriminative predictors rather than calibrated generative models. We introduce \textbf{F}usion under \textbf{IN}dependent \textbf{C}onditional \textbf{H}ypotheses (\textbf{FINCH}), an adaptive log-linear evidence fusion framework that integrates a pre-trained audio classifier with a structured spatiotemporal predictor. FINCH learns a per-sample gating function that estimates the reliability of contextual information from uncertainty and informativeness statistics. The resulting fusion family \emph{contains} the audio-only classifier as a special case and explicitly bounds the influence of contextual evidence, yielding a risk-contained hypothesis class with an interpretable audio-only fallback. Across benchmarks, FINCH consistently outperforms fixed-weight fusion and audio-only baselines, improving robustness and error trade-offs even when contextual information is weak in isolation. We achieve state-of-the-art performance on CBI and competitive or improved performance on several subsets of BirdSet using a lightweight, interpretable, evidence-based approach. Code is available: \texttt{\href{https://anonymous.4open.science/r/birdnoise-85CD/README.md}{anonymous-repository}}
☆ Conformal Thinking: Risk Control for Reasoning on a Compute Budget
Reasoning Large Language Models (LLMs) enable test-time scaling, with dataset-level accuracy improving as the token budget increases, motivating adaptive reasoning -- spending tokens when they improve reliability and stopping early when additional computation is unlikely to help. However, setting the token budget, as well as the threshold for adaptive reasoning, is a practical challenge that entails a fundamental risk-accuracy trade-off. We re-frame the budget setting problem as risk control, limiting the error rate while minimizing compute. Our framework introduces an upper threshold that stops reasoning when the model is confident (risking incorrect output) and a novel parametric lower threshold that preemptively stops unsolvable instances (risking premature stoppage). Given a target risk and a validation set, we use distribution-free risk control to optimally specify these stopping mechanisms. For scenarios with multiple budget controlling criteria, we incorporate an efficiency loss to select the most computationally efficient exiting mechanism. Empirical results across diverse reasoning tasks and models demonstrate the effectiveness of our risk control approach, demonstrating computational efficiency gains from the lower threshold and ensemble stopping mechanisms while adhering to the user-specified risk target.
☆ Antidistillation Fingerprinting
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
comment: 26 pages, 11 figures
☆ Enhancing Imbalanced Node Classification via Curriculum-Guided Feature Learning and Three-Stage Attention Network
Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
☆ Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
☆ Do We Need Asynchronous SGD? On the Near-Optimality of Synchronous Methods
Modern distributed optimization methods mostly rely on traditional synchronous approaches, despite substantial recent progress in asynchronous optimization. We revisit Synchronous SGD and its robust variant, called $m$-Synchronous SGD, and theoretically show that they are nearly optimal in many heterogeneous computation scenarios, which is somewhat unexpected. We analyze the synchronous methods under random computation times and adversarial partial participation of workers, and prove that their time complexities are optimal in many practical regimes, up to logarithmic factors. While synchronous methods are not universal solutions and there exist tasks where asynchronous methods may be necessary, we show that they are sufficient for many modern heterogeneous computation scenarios.
☆ Conformal Reachability for Safe Control in Unknown Environments
Designing provably safe control is a core problem in trustworthy autonomy. However, most prior work in this regard assumes either that the system dynamics are known or deterministic, or that the state and action space are finite, significantly limiting application scope. We address this limitation by developing a probabilistic verification framework for unknown dynamical systems which combines conformal prediction with reachability analysis. In particular, we use conformal prediction to obtain valid uncertainty intervals for the unknown dynamics at each time step, with reachability then verifying whether safety is maintained within the conformal uncertainty bounds. Next, we develop an algorithmic approach for training control policies that optimize nominal reward while also maximizing the planning horizon with sound probabilistic safety guarantees. We evaluate the proposed approach in seven safe control settings spanning four domains -- cartpole, lane following, drone control, and safe navigation -- for both affine and nonlinear safety specifications. Our experiments show that the policies we learn achieve the strongest provable safety guarantees while still maintaining high average reward.
☆ Understanding Agent Scaling in LLM-Based Multi-Agent Systems via Diversity
LLM-based multi-agent systems (MAS) have emerged as a promising approach to tackle complex tasks that are difficult for individual LLMs. A natural strategy is to scale performance by increasing the number of agents; however, we find that such scaling exhibits strong diminishing returns in homogeneous settings, while introducing heterogeneity (e.g., different models, prompts, or tools) continues to yield substantial gains. This raises a fundamental question: what limits scaling, and why does diversity help? We present an information-theoretic framework showing that MAS performance is bounded by the intrinsic task uncertainty, not by agent count. We derive architecture-agnostic bounds demonstrating that improvements depend on how many effective channels the system accesses. Homogeneous agents saturate early because their outputs are strongly correlated, whereas heterogeneous agents contribute complementary evidence. We further introduce $K^*$, an effective channel count that quantifies the number of effective channels without ground-truth labels. Empirically, we show that heterogeneous configurations consistently outperform homogeneous scaling: 2 diverse agents can match or exceed the performance of 16 homogeneous agents. Our results provide principled guidelines for building efficient and robust MAS through diversity-aware design. Code and Dataset are available at the link: https://github.com/SafeRL-Lab/Agent-Scaling.
☆ WebSentinel: Detecting and Localizing Prompt Injection Attacks for Web Agents
Prompt injection attacks manipulate webpage content to cause web agents to execute attacker-specified tasks instead of the user's intended ones. Existing methods for detecting and localizing such attacks achieve limited effectiveness, as their underlying assumptions often do not hold in the web-agent setting. In this work, we propose WebSentinel, a two-step approach for detecting and localizing prompt injection attacks in webpages. Given a webpage, Step I extracts \emph{segments of interest} that may be contaminated, and Step II evaluates each segment by checking its consistency with the webpage content as context. We show that WebSentinel is highly effective, substantially outperforming baseline methods across multiple datasets of both contaminated and clean webpages that we collected. Our code is available at: https://github.com/wxl-lxw/WebSentinel.
☆ Fast Sampling for Flows and Diffusions with Lazy and Point Mass Stochastic Interpolants
Stochastic interpolants unify flows and diffusions, popular generative modeling frameworks. A primary hyperparameter in these methods is the interpolation schedule that determines how to bridge a standard Gaussian base measure to an arbitrary target measure. We prove how to convert a sample path of a stochastic differential equation (SDE) with arbitrary diffusion coefficient under any schedule into the unique sample path under another arbitrary schedule and diffusion coefficient. We then extend the stochastic interpolant framework to admit a larger class of point mass schedules in which the Gaussian base measure collapses to a point mass measure. Under the assumption of Gaussian data, we identify lazy schedule families that make the drift identically zero and show that with deterministic sampling one gets a variance-preserving schedule commonly used in diffusion models, whereas with statistically optimal SDE sampling one gets our point mass schedule. Finally, to demonstrate the usefulness of our theoretical results on realistic highly non-Gaussian data, we apply our lazy schedule conversion to a state-of-the-art pretrained flow model and show that this allows for generating images in fewer steps without retraining the model.
☆ AOrchestra: Automating Sub-Agent Creation for Agentic Orchestration
Language agents have shown strong promise for task automation. Realizing this promise for increasingly complex, long-horizon tasks has driven the rise of a sub-agent-as-tools paradigm for multi-turn task solving. However, existing designs still lack a dynamic abstraction view of sub-agents, thereby hurting adaptability. We address this challenge with a unified, framework-agnostic agent abstraction that models any agent as a tuple Instruction, Context, Tools, Model. This tuple acts as a compositional recipe for capabilities, enabling the system to spawn specialized executors for each task on demand. Building on this abstraction, we introduce an agentic system AOrchestra, where the central orchestrator concretizes the tuple at each step: it curates task-relevant context, selects tools and models, and delegates execution via on-the-fly automatic agent creation. Such designs enable reducing human engineering efforts, and remain framework-agnostic with plug-and-play support for diverse agents as task executors. It also enables a controllable performance-cost trade-off, allowing the system to approach Pareto-efficient. Across three challenging benchmarks (GAIA, SWE-Bench, Terminal-Bench), AOrchestra achieves 16.28% relative improvement against the strongest baseline when paired with Gemini-3-Flash. The code is available at: https://github.com/FoundationAgents/AOrchestra
☆ Efficient Estimation of Kernel Surrogate Models for Task Attribution ICLR 2026
Modern AI agents such as large language models are trained on diverse tasks -- translation, code generation, mathematical reasoning, and text prediction -- simultaneously. A key question is to quantify how each individual training task influences performance on a target task, a problem we refer to as task attribution. The direct approach, leave-one-out retraining, measures the effect of removing each task, but is computationally infeasible at scale. An alternative approach that builds surrogate models to predict a target task's performance for any subset of training tasks has emerged in recent literature. Prior work focuses on linear surrogate models, which capture first-order relationships, but miss nonlinear interactions such as synergy, antagonism, or XOR-type effects. In this paper, we first consider a unified task weighting framework for analyzing task attribution methods, and show a new connection between linear surrogate models and influence functions through a second-order analysis. Then, we introduce kernel surrogate models, which more effectively represent second-order task interactions. To efficiently learn the kernel surrogate, we develop a gradient-based estimation procedure that leverages a first-order approximation of pretrained models; empirically, this yields accurate estimates with less than $2\%$ relative error without repeated retraining. Experiments across multiple domains -- including math reasoning in transformers, in-context learning, and multi-objective reinforcement learning -- demonstrate the effectiveness of kernel surrogate models. They achieve a $25\%$ higher correlation with the leave-one-out ground truth than linear surrogates and influence-function baselines. When used for downstream task selection, kernel surrogate models yield a $40\%$ improvement in demonstration selection for in-context learning and multi-objective reinforcement learning benchmarks.
comment: 27 pages. To appear in ICLR 2026
☆ Reward Redistribution for CVaR MDPs using a Bellman Operator on L-infinity
Tail-end risk measures such as static conditional value-at-risk (CVaR) are used in safety-critical applications to prevent rare, yet catastrophic events. Unlike risk-neutral objectives, the static CVaR of the return depends on entire trajectories without admitting a recursive Bellman decomposition in the underlying Markov decision process. A classical resolution relies on state augmentation with a continuous variable. However, unless restricted to a specialized class of admissible value functions, this formulation induces sparse rewards and degenerate fixed points. In this work, we propose a novel formulation of the static CVaR objective based on augmentation. Our alternative approach leads to a Bellman operator with: (1) dense per-step rewards; (2) contracting properties on the full space of bounded value functions. Building on this theoretical foundation, we develop risk-averse value iteration and model-free Q-learning algorithms that rely on discretized augmented states. We further provide convergence guarantees and approximation error bounds due to discretization. Empirical results demonstrate that our algorithms successfully learn CVaR-sensitive policies and achieve effective performance-safety trade-offs.
☆ DiffLOB: Diffusion Models for Counterfactual Generation in Limit Order Books
Modern generative models for limit order books (LOBs) can reproduce realistic market dynamics, but remain fundamentally passive: they either model what typically happens without accounting for hypothetical future market conditions, or they require interaction with another agent to explore alternative outcomes. This limits their usefulness for stress testing, scenario analysis, and decision-making. We propose \textbf{DiffLOB}, a regime-conditioned \textbf{Diff}usion model for controllable and counterfactual generation of \textbf{LOB} trajectories. DiffLOB explicitly conditions the generative process on future market regimes--including trend, volatility, liquidity, and order-flow imbalance, which enables the model to answer counterfactual queries of the form: ``If the future market regime were X instead of Y, how would the limit order book evolve?'' Our systematic evaluation framework for counterfactual LOB generation consists of three criteria: (1) \textit{Controllable Realism}, measuring how well generated trajectories can reproduce marginal distributions, temporal dependence structure and regime variables; (2) \textit{Counterfactual validity}, testing whether interventions on future regimes induce consistent changes in the generated LOB dynamics; (3) \textit{Counterfactual usefulness}, assessing whether synthetic counterfactual trajectories improve downstream prediction of future market regimes.
comment: 12 pages, 8 figures
☆ An Empirical Study of Collective Behaviors and Social Dynamics in Large Language Model Agents
Large Language Models (LLMs) increasingly mediate our social, cultural, and political interactions. While they can simulate some aspects of human behavior and decision-making, it is still underexplored whether repeated interactions with other agents amplify their biases or lead to exclusionary behaviors. To this end, we study Chirper.ai-an LLM-driven social media platform-analyzing 7M posts and interactions among 32K LLM agents over a year. We start with homophily and social influence among LLMs, learning that similar to humans', their social networks exhibit these fundamental phenomena. Next, we study the toxic language of LLMs, its linguistic features, and their interaction patterns, finding that LLMs show different structural patterns in toxic posting than humans. After studying the ideological leaning in LLMs posts, and the polarization in their community, we focus on how to prevent their potential harmful activities. We present a simple yet effective method, called Chain of Social Thought (CoST), that reminds LLM agents to avoid harmful posting.
☆ UniGeM: Unifying Data Mixing and Selection via Geometric Exploration and Mining
The scaling of Large Language Models (LLMs) is increasingly limited by data quality. Most methods handle data mixing and sample selection separately, which can break the structure in code corpora. We introduce \textbf{UniGeM}, a framework that unifies mixing and selection by treating data curation as a \textit{manifold approximation} problem without training proxy models or relying on external reference datasets. UniGeM operates hierarchically: \textbf{Macro-Exploration} learns mixing weights with stability-based clustering; \textbf{Micro-Mining} filters high-quality instances by their geometric distribution to ensure logical consistency. Validated by training 8B and 16B MoE models on 100B tokens, UniGeM achieves \textbf{2.0$\times$ data efficiency} over a random baseline and further improves overall performance compared to SOTA methods in reasoning-heavy evaluations and multilingual generalization.
☆ Decision-oriented benchmarking to transform AI weather forecast access: Application to the Indian monsoon
Artificial intelligence weather prediction (AIWP) models now often outperform traditional physics-based models on common metrics while requiring orders-of-magnitude less computing resources and time. Open-access AIWP models thus hold promise as transformational tools for helping low- and middle-income populations make decisions in the face of high-impact weather shocks. Yet, current approaches to evaluating AIWP models focus mainly on aggregated meteorological metrics without considering local stakeholders' needs in decision-oriented, operational frameworks. Here, we introduce such a framework that connects meteorology, AI, and social sciences. As an example, we apply it to the 150-year-old problem of Indian monsoon forecasting, focusing on benefits to rain-fed agriculture, which is highly susceptible to climate change. AIWP models skillfully predict an agriculturally relevant onset index at regional scales weeks in advance when evaluated out-of-sample using deterministic and probabilistic metrics. This framework informed a government-led effort in 2025 to send 38 million Indian farmers AI-based monsoon onset forecasts, which captured an unusual weeks-long pause in monsoon progression. This decision-oriented benchmarking framework provides a key component of a blueprint for harnessing the power of AIWP models to help large vulnerable populations adapt to weather shocks in the face of climate variability and change.
☆ Zero-shot large vision-language model prompting for automated bone identification in paleoradiology x-ray archives
Paleoradiology, the use of modern imaging technologies to study archaeological and anthropological remains, offers new windows on millennial scale patterns of human health. Unfortunately, the radiographs collected during field campaigns are heterogeneous: bones are disarticulated, positioning is ad hoc, and laterality markers are often absent. Additionally, factors such as age at death, age of bone, sex, and imaging equipment introduce high variability. Thus, content navigation, such as identifying a subset of images with a specific projection view, can be time consuming and difficult, making efficient triaging a bottleneck for expert analysis. We report a zero shot prompting strategy that leverages a state of the art Large Vision Language Model (LVLM) to automatically identify the main bone, projection view, and laterality in such images. Our pipeline converts raw DICOM files to bone windowed PNGs, submits them to the LVLM with a carefully engineered prompt, and receives structured JSON outputs, which are extracted and formatted onto a spreadsheet in preparation for validation. On a random sample of 100 images reviewed by an expert board certified paleoradiologist, the system achieved 92% main bone accuracy, 80% projection view accuracy, and 100% laterality accuracy, with low or medium confidence flags for ambiguous cases. These results suggest that LVLMs can substantially accelerate code word development for large paleoradiology datasets, allowing for efficient content navigation in future anthropology workflows.
☆ Cognitively Diverse Multiple-Choice Question Generation: A Hybrid Multi-Agent Framework with Large Language Models
Recent advances in large language models (LLMs) have made automated multiple-choice question (MCQ) generation increasingly feasible; however, reliably producing items that satisfy controlled cognitive demands remains a challenge. To address this gap, we introduce ReQUESTA, a hybrid, multi-agent framework for generating cognitively diverse MCQs that systematically target text-based, inferential, and main idea comprehension. ReQUESTA decomposes MCQ authoring into specialized subtasks and coordinates LLM-powered agents with rule-based components to support planning, controlled generation, iterative evaluation, and post-processing. We evaluated the framework in a large-scale reading comprehension study using academic expository texts, comparing ReQUESTA-generated MCQs with those produced by a single-pass GPT-5 zero-shot baseline. Psychometric analyses of learner responses assessed item difficulty and discrimination, while expert raters evaluated question quality across multiple dimensions, including topic relevance and distractor quality. Results showed that ReQUESTA-generated items were consistently more challenging, more discriminative, and more strongly aligned with overall reading comprehension performance. Expert evaluations further indicated stronger alignment with central concepts and superior distractor linguistic consistency and semantic plausibility, particularly for inferential questions. These findings demonstrate that hybrid, agentic orchestration can systematically improve the reliability and controllability of LLM-based generation, highlighting workflow design as a key lever for structured artifact generation beyond single-pass prompting.
comment: This manuscript is under review at Electronics
☆ Anytime Pretraining: Horizon-Free Learning-Rate Schedules with Weight Averaging
Large language models are increasingly trained in continual or open-ended settings, where the total training horizon is not known in advance. Despite this, most existing pretraining recipes are not anytime: they rely on horizon-dependent learning rate schedules and extensive tuning under a fixed compute budget. In this work, we provide a theoretical analysis demonstrating the existence of anytime learning schedules for overparameterized linear regression, and we highlight the central role of weight averaging - also known as model merging - in achieving the minimax convergence rates of stochastic gradient descent. We show that these anytime schedules polynomially decay with time, with the decay rate determined by the source and capacity conditions of the problem. Empirically, we evaluate 150M and 300M parameter language models trained at 1-32x Chinchilla scale, comparing constant learning rates with weight averaging and $1/\sqrt{t}$ schedules with weight averaging against a well-tuned cosine schedule. Across the full training range, the anytime schedules achieve comparable final loss to cosine decay. Taken together, our results suggest that weight averaging combined with simple, horizon-free step sizes offers a practical and effective anytime alternative to cosine learning rate schedules for large language model pretraining.
☆ Agent Primitives: Reusable Latent Building Blocks for Multi-Agent Systems
While existing multi-agent systems (MAS) can handle complex problems by enabling collaboration among multiple agents, they are often highly task-specific, relying on manually crafted agent roles and interaction prompts, which leads to increased architectural complexity and limited reusability across tasks. Moreover, most MAS communicate primarily through natural language, making them vulnerable to error accumulation and instability in long-context, multi-stage interactions within internal agent histories. In this work, we propose \textbf{Agent Primitives}, a set of reusable latent building blocks for LLM-based MAS. Inspired by neural network design, where complex models are built from reusable components, we observe that many existing MAS architectures can be decomposed into a small number of recurring internal computation patterns. Based on this observation, we instantiate three primitives: Review, Voting and Selection, and Planning and Execution. All primitives communicate internally via key-value (KV) cache, which improves both robustness and efficiency by mitigating information degradation across multi-stage interactions. To enable automatic system construction, an Organizer agent selects and composes primitives for each query, guided by a lightweight knowledge pool of previously successful configurations, forming a primitive-based MAS. Experiments show that primitives-based MAS improve average accuracy by 12.0-16.5\% over single-agent baselines, reduce token usage and inference latency by approximately 3$\times$-4$\times$ compared to text-based MAS, while incurring only 1.3$\times$-1.6$\times$ overhead relative to single-agent inference and providing more stable performance across model backbones.
comment: 16 pages
☆ OCRTurk: A Comprehensive OCR Benchmark for Turkish EACL 2026
Document parsing is now widely used in applications, such as large-scale document digitization, retrieval-augmented generation, and domain-specific pipelines in healthcare and education. Benchmarking these models is crucial for assessing their reliability and practical robustness. Existing benchmarks mostly target high-resource languages and provide limited coverage for low-resource settings, such as Turkish. Moreover, existing studies on Turkish document parsing lack a standardized benchmark that reflects real-world scenarios and document diversity. To address this gap, we introduce OCRTurk, a Turkish document parsing benchmark covering multiple layout elements and document categories at three difficulty levels. OCRTurk consists of 180 Turkish documents drawn from academic articles, theses, slide decks, and non-academic articles. We evaluate seven OCR models on OCRTurk using element-wise metrics. Across difficulty levels, PaddleOCR achieves the strongest overall results, leading most element-wise metrics except figures and attaining high Normalized Edit Distance scores in easy, medium, and hard subsets. We also observe performance variation by document type. Models perform well on non-academic documents, while slideshows become the most challenging.
comment: Accepted by EACL 2026 SIGTURK
LLM-Inspired Pretrain-Then-Finetune for Small-Data, Large-Scale Optimization
We consider small-data, large-scale decision problems in which a firm must make many operational decisions simultaneously (e.g., across a large product portfolio) while observing only a few, potentially noisy, data points per instance. Inspired by the success of large language models (LLMs), we propose a pretrain-then-finetune approach built on a designed Transformer model to address this challenge. The model is first pretrained on large-scale, domain-informed synthetic data that encode managerial knowledge and structural features of the decision environment, and is then fine-tuned on real observations. This new pipeline offers two complementary advantages: pretraining injects domain knowledge into the learning process and enables the training of high-capacity models using abundant synthetic data, while finetuning adapts the pretrained model to the operational environment and improves alignment with the true data-generating regime. While we have leveraged the Transformer's state-of-the-art representational capacity, particularly its attention mechanism, to efficiently extract cross-task structure, our approach is not an off-the-shelf application. Instead, it relies on problem-specific architectural design and a tailored training procedure to match the decision setting. Theoretically, we develop the first comprehensive error analysis regarding Transformer learning in relevant contexts, establishing nonasymptotic guarantees that validate the method's effectiveness. Critically, our analysis reveals how pretraining and fine-tuning jointly determine performance, with the dominant contribution governed by whichever is more favorable. In particular, finetuning exhibits an economies-of-scale effect, whereby transfer learning becomes increasingly effective as the number of instances grows.
☆ Rethinking the Reranker: Boundary-Aware Evidence Selection for Robust Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems remain brittle under realistic retrieval noise, even when the required evidence appears in the top-K results. A key reason is that retrievers and rerankers optimize solely for relevance, often selecting either trivial, answer-revealing passages or evidence that lacks the critical information required to answer the question, without considering whether the evidence is suitable for the generator. We propose BAR-RAG, which reframes the reranker as a boundary-aware evidence selector that targets the generator's Goldilocks Zone -- evidence that is neither trivially easy nor fundamentally unanswerable for the generator, but is challenging yet sufficient for inference and thus provides the strongest learning signal. BAR-RAG trains the selector with reinforcement learning using generator feedback, and adopts a two-stage pipeline that fine-tunes the generator under the induced evidence distribution to mitigate the distribution mismatch between training and inference. Experiments on knowledge-intensive question answering benchmarks show that BAR-RAG consistently improves end-to-end performance under noisy retrieval, achieving an average gain of 10.3 percent over strong RAG and reranking baselines while substantially improving robustness. Code is publicly avaliable at https://github.com/GasolSun36/BAR-RAG.
comment: 19 pages, 8 tables, 5 figures
☆ TodyComm: Task-Oriented Dynamic Communication for Multi-Round LLM-based Multi-Agent System
Multi-round LLM-based multi-agent systems rely on effective communication structures to support collaboration across rounds. However, most existing methods employ a fixed communication topology during inference, which falls short in many realistic applications where the agents' roles may change \textit{across rounds} due to dynamic adversary, task progression, or time-varying constraints such as communication bandwidth. In this paper, we propose addressing this issue through TodyComm, a \textbf{t}ask-\textbf{o}riented \textbf{dy}namic \textbf{comm}unication algorithm. It produces behavior-driven collaboration topologies that adapt to the dynamics at each round, optimizing the utility for the task through policy gradient. Experiments on five benchmarks demonstrate that under both dynamic adversary and communications budgets, TodyComm delivers superior task effectiveness while retaining token efficiency and scalability.
☆ QuAIL: Quality-Aware Inertial Learning for Robust Training under Data Corruption
Tabular machine learning systems are frequently trained on data affected by non-uniform corruption, including noisy measurements, missing entries, and feature-specific biases. In practice, these defects are often documented only through column-level reliability indicators rather than instance-wise quality annotations, limiting the applicability of many robustness and cleaning techniques. We present QuAIL, a quality-informed training mechanism that incorporates feature reliability priors directly into the learning process. QuAIL augments existing models with a learnable feature-modulation layer whose updates are selectively constrained by a quality-dependent proximal regularizer, thereby inducing controlled adaptation across features of varying trustworthiness. This stabilizes optimization under structured corruption without explicit data repair or sample-level reweighting. Empirical evaluation across 50 classification and regression datasets demonstrates that QuAIL consistently improves average performance over neural baselines under both random and value-dependent corruption, with especially robust behavior in low-data and systematically biased settings. These results suggest that incorporating feature reliability information directly into optimization dynamics is a practical and effective approach for resilient tabular learning.
☆ Universal One-third Time Scaling in Learning Peaked Distributions
Training large language models (LLMs) is computationally expensive, partly because the loss exhibits slow power-law convergence whose origin remains debatable. Through systematic analysis of toy models and empirical evaluation of LLMs, we show that this behavior can arise intrinsically from the use of softmax and cross-entropy. When learning peaked probability distributions, e.g., next-token distributions, these components yield power-law vanishing losses and gradients, creating a fundamental optimization bottleneck. This ultimately leads to power-law time scaling of the loss with a universal exponent of $1/3$. Our results provide a mechanistic explanation for observed neural scaling and suggest new directions for improving LLM training efficiency.
comment: 24 pages, 6 main text figures, 27 figures in total
☆ ContraLog: Log File Anomaly Detection with Contrastive Learning and Masked Language Modeling
Log files record computational events that reflect system state and behavior, making them a primary source of operational insights in modern computer systems. Automated anomaly detection on logs is therefore critical, yet most established methods rely on log parsers that collapse messages into discrete templates, discarding variable values and semantic content. We propose ContraLog, a parser-free and self-supervised method that reframes log anomaly detection as predicting continuous message embeddings rather than discrete template IDs. ContraLog combines a message encoder that produces rich embeddings for individual log messages with a sequence encoder to model temporal dependencies within sequences. The model is trained with a combination of masked language modeling and contrastive learning to predict masked message embeddings based on the surrounding context. Experiments on the HDFS, BGL, and Thunderbird benchmark datasets empirically demonstrate effectiveness on complex datasets with diverse log messages. Additionally, we find that message embeddings generated by ContraLog carry meaningful information and are predictive of anomalies even without sequence context. These results highlight embedding-level prediction as an approach for log anomaly detection, with potential applicability to other event sequences.
comment: 26 pages with 16 figures
☆ Equilibrium Propagation for Non-Conservative Systems
Equilibrium Propagation (EP) is a physics-inspired learning algorithm that uses stationary states of a dynamical system both for inference and learning. In its original formulation it is limited to conservative systems, $\textit{i.e.}$ to dynamics which derive from an energy function. Given their importance in applications, it is important to extend EP to nonconservative systems, $\textit{i.e.}$ systems with non-reciprocal interactions. Previous attempts to generalize EP to such systems failed to compute the exact gradient of the cost function. Here we propose a framework that extends EP to arbitrary nonconservative systems, including feedforward networks. We keep the key property of equilibrium propagation, namely the use of stationary states both for inference and learning. However, we modify the dynamics in the learning phase by a term proportional to the non-reciprocal part of the interaction so as to obtain the exact gradient of the cost function. This algorithm can also be derived using a variational formulation that generates the learning dynamics through an energy function defined over an augmented state space. Numerical experiments using the MNIST database show that this algorithm achieves better performance and learns faster than previous proposals.
comment: 19 pages (9 pages main text), 7 figures
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ Mitigating Conversational Inertia in Multi-Turn Agents
Large language models excel as few-shot learners when provided with appropriate demonstrations, yet this strength becomes problematic in multiturn agent scenarios, where LLMs erroneously mimic their own previous responses as few-shot examples. Through attention analysis, we identify conversational inertia, a phenomenon where models exhibit strong diagonal attention to previous responses, which is associated with imitation bias that constrains exploration. This reveals a tension when transforming few-shot LLMs into agents: longer context enriches environmental feedback for exploitation, yet also amplifies conversational inertia that undermines exploration. Our key insight is that for identical states, actions generated with longer contexts exhibit stronger inertia than those with shorter contexts, enabling construction of preference pairs without environment rewards. Based on this, we propose Context Preference Learning to calibrate model preferences to favor low-inertia responses over highinertia ones. We further provide context management strategies at inference time to balance exploration and exploitation. Experimental results across eight agentic environments and one deep research scenario validate that our framework reduces conversational inertia and achieves performance improvements.
☆ RAGTurk: Best Practices for Retrieval Augmented Generation in Turkish EACL 2026
Retrieval-Augmented Generation (RAG) enhances LLM factuality, yet design guidance remains English-centric, limiting insights for morphologically rich languages like Turkish. We address this by constructing a comprehensive Turkish RAG dataset derived from Turkish Wikipedia and CulturaX, comprising question-answer pairs and relevant passage chunks. We benchmark seven stages of the RAG pipeline, from query transformation and reranking to answer refinement, without task-specific fine-tuning. Our results show that complex methods like HyDE maximize accuracy (85%) that is considerably higher than the baseline (78.70%). Also a Pareto-optimal configuration using Cross-encoder Reranking and Context Augmentation achieves comparable performance (84.60%) with much lower cost. We further demonstrate that over-stacking generative modules can degrade performance by distorting morphological cues, whereas simple query clarification with robust reranking offers an effective solution.
comment: Accepted by EACL 2026 SIGTURK
☆ Search-R2: Enhancing Search-Integrated Reasoning via Actor-Refiner Collaboration
Search-integrated reasoning enables language agents to transcend static parametric knowledge by actively querying external sources. However, training these agents via reinforcement learning is hindered by the multi-scale credit assignment problem: existing methods typically rely on sparse, trajectory-level rewards that fail to distinguish between high-quality reasoning and fortuitous guesses, leading to redundant or misleading search behaviors. To address this, we propose Search-R2, a novel Actor-Refiner collaboration framework that enhances reasoning through targeted intervention, with both components jointly optimized during training. Our approach decomposes the generation process into an Actor, which produces initial reasoning trajectories, and a Meta-Refiner, which selectively diagnoses and repairs flawed steps via a 'cut-and-regenerate' mechanism. To provide fine-grained supervision, we introduce a hybrid reward design that couples outcome correctness with a dense process reward quantifying the information density of retrieved evidence. Theoretically, we formalize the Actor-Refiner interaction as a smoothed mixture policy, proving that selective correction yields strict performance gains over strong baselines. Extensive experiments across various general and multi-hop QA datasets demonstrate that Search-R2 consistently outperforms strong RAG and RL-based baselines across model scales, achieving superior reasoning accuracy with minimal overhead.
☆ Tutorial on Reasoning for IR & IR for Reasoning ECIR 2026
Information retrieval has long focused on ranking documents by semantic relatedness. Yet many real-world information needs demand more: enforcement of logical constraints, multi-step inference, and synthesis of multiple pieces of evidence. Addressing these requirements is, at its core, a problem of reasoning. Across AI communities, researchers are developing diverse solutions for the problem of reasoning, from inference-time strategies and post-training of LLMs, to neuro-symbolic systems, Bayesian and probabilistic frameworks, geometric representations, and energy-based models. These efforts target the same problem: to move beyond pattern-matching systems toward structured, verifiable inference. However, they remain scattered across disciplines, making it difficult for IR researchers to identify the most relevant ideas and opportunities. To help navigate the fragmented landscape of research in reasoning, this tutorial first articulates a working definition of reasoning within the context of information retrieval and derives from it a unified analytical framework. The framework maps existing approaches along axes that reflect the core components of the definition. By providing a comprehensive overview of recent approaches and mapping current methods onto the defined axes, we expose their trade-offs and complementarities, highlight where IR can benefit from cross-disciplinary advances, and illustrate how retrieval process itself can play a central role in broader reasoning systems. The tutorial will equip participants with both a conceptual framework and practical guidance for enhancing reasoning-capable IR systems, while situating IR as a domain that both benefits and contributes to the broader development of reasoning methodologies.
comment: Accepted to ECIR 2026
☆ BIRDTurk: Adaptation of the BIRD Text-to-SQL Dataset to Turkish EACL 2026
Text-to-SQL systems have achieved strong performance on English benchmarks, yet their behavior in morphologically rich, low-resource languages remains largely unexplored. We introduce BIRDTurk, the first Turkish adaptation of the BIRD benchmark, constructed through a controlled translation pipeline that adapts schema identifiers to Turkish while strictly preserving the logical structure and execution semantics of SQL queries and databases. Translation quality is validated on a sample size determined by the Central Limit Theorem to ensure 95% confidence, achieving 98.15% accuracy on human-evaluated samples. Using BIRDTurk, we evaluate inference-based prompting, agentic multi-stage reasoning, and supervised fine-tuning. Our results reveal that Turkish introduces consistent performance degradation, driven by both structural linguistic divergence and underrepresentation in LLM pretraining, while agentic reasoning demonstrates stronger cross-lingual robustness. Supervised fine-tuning remains challenging for standard multilingual baselines but scales effectively with modern instruction-tuned models. BIRDTurk provides a controlled testbed for cross-lingual Text-to-SQL evaluation under realistic database conditions. We release the training and development splits to support future research.
comment: Accepted by EACL 2026 SIGTURK
☆ Can LLMs Do Rocket Science? Exploring the Limits of Complex Reasoning with GTOC 12
Large Language Models (LLMs) have demonstrated remarkable proficiency in code generation and general reasoning, yet their capacity for autonomous multi-stage planning in high-dimensional, physically constrained environments remains an open research question. This study investigates the limits of current AI agents by evaluating them against the 12th Global Trajectory Optimization Competition (GTOC 12), a complex astrodynamics challenge requiring the design of a large-scale asteroid mining campaign. We adapt the MLE-Bench framework to the domain of orbital mechanics and deploy an AIDE-based agent architecture to autonomously generate and refine mission solutions. To assess performance beyond binary validity, we employ an "LLM-as-a-Judge" methodology, utilizing a rubric developed by domain experts to evaluate strategic viability across five structural categories. A comparative analysis of models, ranging from GPT-4-Turbo to reasoning-enhanced architectures like Gemini 2.5 Pro, and o3, reveals a significant trend: the average strategic viability score has nearly doubled in the last two years (rising from 9.3 to 17.2 out of 26). However, we identify a critical capability gap between strategy and execution. While advanced models demonstrate sophisticated conceptual understanding, correctly framing objective functions and mission architectures, they consistently fail at implementation due to physical unit inconsistencies, boundary condition errors, and inefficient debugging loops. We conclude that, while current LLMs often demonstrate sufficient knowledge and intelligence to tackle space science tasks, they remain limited by an implementation barrier, functioning as powerful domain facilitators rather than fully autonomous engineers.
comment: Extended version of the paper presented at AIAA SciTech 2026 Forum. Includes futher experiments, corrections and new appendix
☆ Controlling Output Rankings in Generative Engines for LLM-based Search
The way customers search for and choose products is changing with the rise of large language models (LLMs). LLM-based search, or generative engines, provides direct product recommendations to users, rather than traditional online search results that require users to explore options themselves. However, these recommendations are strongly influenced by the initial retrieval order of LLMs, which disadvantages small businesses and independent creators by limiting their visibility. In this work, we propose CORE, an optimization method that \textbf{C}ontrols \textbf{O}utput \textbf{R}ankings in g\textbf{E}nerative Engines for LLM-based search. Since the LLM's interactions with the search engine are black-box, CORE targets the content returned by search engines as the primary means of influencing output rankings. Specifically, CORE optimizes retrieved content by appending strategically designed optimization content to steer the ranking of outputs. We introduce three types of optimization content: string-based, reasoning-based, and review-based, demonstrating their effectiveness in shaping output rankings. To evaluate CORE in realistic settings, we introduce ProductBench, a large-scale benchmark with 15 product categories and 200 products per category, where each product is associated with its top-10 recommendations collected from Amazon's search interface. Extensive experiments on four LLMs with search capabilities (GPT-4o, Gemini-2.5, Claude-4, and Grok-3) demonstrate that CORE achieves an average Promotion Success Rate of \textbf{91.4\% @Top-5}, \textbf{86.6\% @Top-3}, and \textbf{80.3\% @Top-1}, across 15 product categories, outperforming existing ranking manipulation methods while preserving the fluency of optimized content.
comment: 23 pages
A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
☆ APEX: Probing Neural Networks via Activation Perturbation
Prior work on probing neural networks primarily relies on input-space analysis or parameter perturbation, both of which face fundamental limitations in accessing structural information encoded in intermediate representations. We introduce Activation Perturbation for EXploration (APEX), an inference-time probing paradigm that perturbs hidden activations while keeping both inputs and model parameters fixed. We theoretically show that activation perturbation induces a principled transition from sample-dependent to model-dependent behavior by suppressing input-specific signals and amplifying representation-level structure, and further establish that input perturbation corresponds to a constrained special case of this framework. Through representative case studies, we demonstrate the practical advantages of APEX. In the small-noise regime, APEX provides a lightweight and efficient measure of sample regularity that aligns with established metrics, while also distinguishing structured from randomly labeled models and revealing semantically coherent prediction transitions. In the large-noise regime, APEX exposes training-induced model-level biases, including a pronounced concentration of predictions on the target class in backdoored models. Overall, our results show that APEX offers an effective perspective for exploring, and understanding neural networks beyond what is accessible from input space alone.
☆ $V_0$: A Generalist Value Model for Any Policy at State Zero
Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
☆ Don't believe everything you read: Understanding and Measuring MCP Behavior under Misleading Tool Descriptions
The Model Context Protocol (MCP) enables large language models to invoke external tools through natural-language descriptions, forming the foundation of many AI agent applications. However, MCP does not enforce consistency between documented tool behavior and actual code execution, even though MCP Servers often run with broad system privileges. This gap introduces a largely unexplored security risk. We study how mismatches between externally presented tool descriptions and underlying implementations systematically shape the mental models and decision-making behavior of intelligent agents. Specifically, we present the first large-scale study of description-code inconsistency in the MCP ecosystem. We design an automated static analysis framework and apply it to 10,240 real-world MCP Servers across 36 categories. Our results show that while most servers are highly consistent, approximately 13% exhibit substantial mismatches that can enable undocumented privileged operations, hidden state mutations, or unauthorized financial actions. We further observe systematic differences across application categories, popularity levels, and MCP marketplaces. Our findings demonstrate that description-code inconsistency is a concrete and prevalent attack surface in MCP-based AI agents, and motivate the need for systematic auditing and stronger transparency guarantees in future agent ecosystems.
☆ Use Graph When It Needs: Efficiently and Adaptively Integrating Retrieval-Augmented Generation with Graphs
Large language models (LLMs) often struggle with knowledge-intensive tasks due to hallucinations and outdated parametric knowledge. While Retrieval-Augmented Generation (RAG) addresses this by integrating external corpora, its effectiveness is limited by fragmented information in unstructured domain documents. Graph-augmented RAG (GraphRAG) emerged to enhance contextual reasoning through structured knowledge graphs, yet paradoxically underperforms vanilla RAG in real-world scenarios, exhibiting significant accuracy drops and prohibitive latency despite gains on complex queries. We identify the rigid application of GraphRAG to all queries, regardless of complexity, as the root cause. To resolve this, we propose an efficient and adaptive GraphRAG framework called EA-GraphRAG that dynamically integrates RAG and GraphRAG paradigms through syntax-aware complexity analysis. Our approach introduces: (i) a syntactic feature constructor that parses each query and extracts a set of structural features; (ii) a lightweight complexity scorer that maps these features to a continuous complexity score; and (iii) a score-driven routing policy that selects dense RAG for low-score queries, invokes graph-based retrieval for high-score queries, and applies complexity-aware reciprocal rank fusion to handle borderline cases. Extensive experiments on a comprehensive benchmark, consisting of two single-hop and two multi-hop QA benchmarks, demonstrate that our EA-GraphRAG significantly improves accuracy, reduces latency, and achieves state-of-the-art performance in handling mixed scenarios involving both simple and complex queries.
☆ EHRWorld: A Patient-Centric Medical World Model for Long-Horizon Clinical Trajectories
World models offer a principled framework for simulating future states under interventions, but realizing such models in complex, high-stakes domains like medicine remains challenging. Recent large language models (LLMs) have achieved strong performance on static medical reasoning tasks, raising the question of whether they can function as dynamic medical world models capable of simulating disease progression and treatment outcomes over time. In this work, we show that LLMs only incorporating medical knowledge struggle to maintain consistent patient states under sequential interventions, leading to error accumulation in long-horizon clinical simulation. To address this limitation, we introduce EHRWorld, a patient-centric medical world model trained under a causal sequential paradigm, together with EHRWorld-110K, a large-scale longitudinal clinical dataset derived from real-world electronic health records. Extensive evaluations demonstrate that EHRWorld significantly outperforms naive LLM-based baselines, achieving more stable long-horizon simulation, improved modeling of clinically sensitive events, and favorable reasoning efficiency, highlighting the necessity of training on causally grounded, temporally evolving clinical data for reliable and robust medical world modeling.
☆ EVE: Efficient Verification of Data Erasure through Customized Perturbation in Approximate Unlearning
Verifying whether the machine unlearning process has been properly executed is critical but remains underexplored. Some existing approaches propose unlearning verification methods based on backdooring techniques. However, these methods typically require participation in the model's initial training phase to backdoor the model for later verification, which is inefficient and impractical. In this paper, we propose an efficient verification of erasure method (EVE) for verifying machine unlearning without requiring involvement in the model's initial training process. The core idea is to perturb the unlearning data to ensure the model prediction of the specified samples will change before and after unlearning with perturbed data. The unlearning users can leverage the observation of the changes as a verification signal. Specifically, the perturbations are designed with two key objectives: ensuring the unlearning effect and altering the unlearned model's prediction of target samples. We formalize the perturbation generation as an adversarial optimization problem, solving it by aligning the unlearning gradient with the gradient of boundary change for target samples. We conducted extensive experiments, and the results show that EVE can verify machine unlearning without involving the model's initial training process, unlike backdoor-based methods. Moreover, EVE significantly outperforms state-of-the-art unlearning verification methods, offering significant speedup in efficiency while enhancing verification accuracy. The source code of EVE is released at \uline{https://anonymous.4open.science/r/EVE-C143}, providing a novel tool for verification of machine unlearning.
☆ HySparse: A Hybrid Sparse Attention Architecture with Oracle Token Selection and KV Cache Sharing
This work introduces Hybrid Sparse Attention (HySparse), a new architecture that interleaves each full attention layer with several sparse attention layers. While conceptually simple, HySparse strategically derives each sparse layer's token selection and KV caches directly from the preceding full attention layer. This architecture resolves two fundamental limitations of prior sparse attention methods. First, conventional approaches typically rely on additional proxies to predict token importance, introducing extra complexity and potentially suboptimal performance. In contrast, HySparse uses the full attention layer as a precise oracle to identify important tokens. Second, existing sparse attention designs often reduce computation without saving KV cache. HySparse enables sparse attention layers to reuse the full attention KV cache, thereby reducing both computation and memory. We evaluate HySparse on both 7B dense and 80B MoE models. Across all settings, HySparse consistently outperforms both full attention and hybrid SWA baselines. Notably, in the 80B MoE model with 49 total layers, only 5 layers employ full attention, yet HySparse achieves substantial performance gains while reducing KV cache storage by nearly 10x.
comment: 17 pages, 2 figures
☆ ELIQ: A Label-Free Framework for Quality Assessment of Evolving AI-Generated Images
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
☆ When Single Answer Is Not Enough: Rethinking Single-Step Retrosynthesis Benchmarks for LLMs
Recent progress has expanded the use of large language models (LLMs) in drug discovery, including synthesis planning. However, objective evaluation of retrosynthesis performance remains limited. Existing benchmarks and metrics typically rely on published synthetic procedures and Top-K accuracy based on single ground-truth, which does not capture the open-ended nature of real-world synthesis planning. We propose a new benchmarking framework for single-step retrosynthesis that evaluates both general-purpose and chemistry-specialized LLMs using ChemCensor, a novel metric for chemical plausibility. By emphasizing plausibility over exact match, this approach better aligns with human synthesis planning practices. We also introduce CREED, a novel dataset comprising millions of ChemCensor-validated reaction records for LLM training, and use it to train a model that improves over the LLM baselines under this benchmark.
☆ Persona Generators: Generating Diverse Synthetic Personas at Scale
Evaluating AI systems that interact with humans requires understanding their behavior across diverse user populations, but collecting representative human data is often expensive or infeasible, particularly for novel technologies or hypothetical future scenarios. Recent work in Generative Agent-Based Modeling has shown that large language models can simulate human-like synthetic personas with high fidelity, accurately reproducing the beliefs and behaviors of specific individuals. However, most approaches require detailed data about target populations and often prioritize density matching (replicating what is most probable) rather than support coverage (spanning what is possible), leaving long-tail behaviors underexplored. We introduce Persona Generators, functions that can produce diverse synthetic populations tailored to arbitrary contexts. We apply an iterative improvement loop based on AlphaEvolve, using large language models as mutation operators to refine our Persona Generator code over hundreds of iterations. The optimization process produces lightweight Persona Generators that can automatically expand small descriptions into populations of diverse synthetic personas that maximize coverage of opinions and preferences along relevant diversity axes. We demonstrate that evolved generators substantially outperform existing baselines across six diversity metrics on held-out contexts, producing populations that span rare trait combinations difficult to achieve in standard LLM outputs.
☆ Group Selection as a Safeguard Against AI Substitution
Reliance on generative AI can reduce cultural variance and diversity, especially in creative work. This reduction in variance has already led to problems in model performance, including model collapse and hallucination. In this paper, we examine the long-term consequences of AI use for human cultural evolution and the conditions under which widespread AI use may lead to "cultural collapse", a process in which reliance on AI-generated content reduces human variation and innovation and slows cumulative cultural evolution. Using an agent-based model and evolutionary game theory, we compare two types of AI use: complement and substitute. AI-complement users seek suggestions and guidance while remaining the main producers of the final output, whereas AI-substitute users provide minimal input, and rely on AI to produce most of the output. We then study how these use strategies compete and spread under evolutionary dynamics. We find that AI-substitute users prevail under individual-level selection despite the stronger reduction in cultural variance. By contrast, AI-complement users can benefit their groups by maintaining the variance needed for exploration, and can therefore be favored under cultural group selection when group boundaries are strong. Overall, our findings shed light on the long-term, population-level effects of AI adoption and inform policy and organizational strategies to mitigate these risks.
comment: 19 pages, 7 Figures
☆ Morphe: High-Fidelity Generative Video Streaming with Vision Foundation Model
Video streaming is a fundamental Internet service, while the quality still cannot be guaranteed especially in poor network conditions such as bandwidth-constrained and remote areas. Existing works mainly work towards two directions: traditional pixel-codec streaming nearly approaches its limit and is hard to step further in compression; the emerging neural-enhanced or generative streaming usually fall short in latency and visual fidelity, hindering their practical deployment. Inspired by the recent success of vision foundation model (VFM), we strive to harness the powerful video understanding and processing capacities of VFM to achieve generalization, high fidelity and loss resilience for real-time video streaming with even higher compression rate. We present the first revolutionized paradigm that enables VFM-based end-to-end generative video streaming towards this goal. Specifically, Morphe employs joint training of visual tokenizers and variable-resolution spatiotemporal optimization under simulated network constraints. Additionally, a robust streaming system is constructed that leverages intelligent packet dropping to resist real-world network perturbations. Extensive evaluation demonstrates that Morphe achieves comparable visual quality while saving 62.5\% bandwidth compared to H.265, and accomplishes real-time, loss-resilient video delivery in challenging network environments, representing a milestone in VFM-enabled multimedia streaming solutions.
comment: Accepted by NSDI 2026 Fall
☆ D3PIA: A Discrete Denoising Diffusion Model for Piano Accompaniment Generation From Lead sheet ICASSP
Generating piano accompaniments in the symbolic music domain is a challenging task that requires producing a complete piece of piano music from given melody and chord constraints, such as those provided by a lead sheet. In this paper, we propose a discrete diffusion-based piano accompaniment generation model, D3PIA, leveraging local alignment between lead sheet and accompaniment in piano-roll representation. D3PIA incorporates Neighborhood Attention (NA) to both encode the lead sheet and condition it for predicting note states in the piano accompaniment. This design enhances local contextual modeling by efficiently attending to nearby melody and chord conditions. We evaluate our model using the POP909 dataset, a widely used benchmark for piano accompaniment generation. Objective evaluation results demonstrate that D3PIA preserves chord conditions more faithfully compared to continuous diffusion-based and Transformer-based baselines. Furthermore, a subjective listening test indicates that D3PIA generates more musically coherent accompaniments than the comparison models.
comment: Accepted at 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
☆ Live or Lie: Action-Aware Capsule Multiple Instance Learning for Risk Assessment in Live Streaming Platforms
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
☆ Not All Negative Samples Are Equal: LLMs Learn Better from Plausible Reasoning
Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
☆ Mitigating Staleness in Asynchronous Pipeline Parallelism via Basis Rotation
Asynchronous pipeline parallelism maximizes hardware utilization by eliminating the pipeline bubbles inherent in synchronous execution, offering a path toward efficient large-scale distributed training. However, this efficiency gain can be compromised by gradient staleness, where the immediate model updates with delayed gradients introduce noise into the optimization process. Crucially, we identify a critical, yet often overlooked, pathology: this delay scales linearly with pipeline depth, fundamentally undermining the very scalability that the method originally intends to provide. In this work, we investigate this inconsistency and bridge the gap by rectifying delayed gradients through basis rotation, restoring scalable asynchronous training while maintaining performance. Specifically, we observe that the deleterious effects of delayed gradients are exacerbated when the Hessian eigenbasis is misaligned with the standard coordinate basis. We demonstrate that this misalignment prevents coordinate-wise adaptive schemes, such as Adam, from effectively leveraging curvature-aware adaptivity. This failure leads to significant oscillations in the optimization trajectory and, consequently, slower convergence. We substantiate these findings through both rigorous theoretical analysis and empirical evaluation. To address this challenge, we propose the use of basis rotation, demonstrating that it effectively mitigates the alignment issue and significantly accelerates convergence in asynchronous settings. For example, our training of a 1B-parameter LLM with basis rotation achieves the same training loss in 76.8% fewer iterations compared to the best-performing asynchronous pipeline parallel training baseline.
comment: Preprint. Under review
☆ CMR: Contractive Mapping Embeddings for Robust Humanoid Locomotion on Unstructured Terrains
Robust disturbance rejection remains a longstanding challenge in humanoid locomotion, particularly on unstructured terrains where sensing is unreliable and model mismatch is pronounced. While perception information, such as height map, enhances terrain awareness, sensor noise and sim-to-real gaps can destabilize policies in practice. In this work, we provide theoretical analysis that bounds the return gap under observation noise, when the induced latent dynamics are contractive. Furthermore, we present Contractive Mapping for Robustness (CMR) framework that maps high-dimensional, disturbance-prone observations into a latent space, where local perturbations are attenuated over time. Specifically, this approach couples contrastive representation learning with Lipschitz regularization to preserve task-relevant geometry while explicitly controlling sensitivity. Notably, the formulation can be incorporated into modern deep reinforcement learning pipelines as an auxiliary loss term with minimal additional technical effort required. Further, our extensive humanoid experiments show that CMR potently outperforms other locomotion algorithms under increased noise.
☆ Explaining the Explainer: Understanding the Inner Workings of Transformer-based Symbolic Regression Models
Following their success across many domains, transformers have also proven effective for symbolic regression (SR); however, the internal mechanisms underlying their generation of mathematical operators remain largely unexplored. Although mechanistic interpretability has successfully identified circuits in language and vision models, it has not yet been applied to SR. In this article, we introduce PATCHES, an evolutionary circuit discovery algorithm that identifies compact and correct circuits for SR. Using PATCHES, we isolate 28 circuits, providing the first circuit-level characterisation of an SR transformer. We validate these findings through a robust causal evaluation framework based on key notions such as faithfulness, completeness, and minimality. Our analysis shows that mean patching with performance-based evaluation most reliably isolates functionally correct circuits. In contrast, we demonstrate that direct logit attribution and probing classifiers primarily capture correlational features rather than causal ones, limiting their utility for circuit discovery. Overall, these results establish SR as a high-potential application domain for mechanistic interpretability and propose a principled methodology for circuit discovery.
comment: 8 pages, 5 figures
☆ Generative Decompression: Optimal Lossy Decoding Against Distribution Mismatch
This paper addresses optimal decoding strategies in lossy compression where the assumed distribution for compressor design mismatches the actual (true) distribution of the source. This problem has immediate relevance in standardized communication systems where the decoder acquires side information or priors about the true distribution that are unavailable to the fixed encoder. We formally define the mismatched quantization problem, demonstrating that the optimal reconstruction rule, termed generative decompression, aligns with classical Bayesian estimation by taking the conditional expectation under the true distribution given the quantization indices and adapting it to fixed-encoder constraints. This strategy effectively performs a generative Bayesian correction on the decoder side, strictly outperforming the conventional centroid rule. We extend this framework to transmission over noisy channels, deriving a robust soft-decoding rule that quantifies the inefficiency of standard modular source--channel separation architectures under mismatch. Furthermore, we generalize the approach to task-oriented decoding, showing that the optimal strategy shifts from conditional mean estimation to maximum a posteriori (MAP) detection. Experimental results on Gaussian sources and deep-learning-based semantic classification demonstrate that generative decompression closes a vast majority of the performance gap to the ideal joint-optimization benchmark, enabling adaptive, high-fidelity reconstruction without modifying the encoder.
☆ Reparameterization Flow Policy Optimization
Reparameterization Policy Gradient (RPG) has emerged as a powerful paradigm for model-based reinforcement learning, enabling high sample efficiency by backpropagating gradients through differentiable dynamics. However, prior RPG approaches have been predominantly restricted to Gaussian policies, limiting their performance and failing to leverage recent advances in generative models. In this work, we identify that flow policies, which generate actions via differentiable ODE integration, naturally align with the RPG framework, a connection not established in prior work. However, naively exploiting this synergy proves ineffective, often suffering from training instability and a lack of exploration. We propose Reparameterization Flow Policy Optimization (RFO). RFO computes policy gradients by backpropagating jointly through the flow generation process and system dynamics, unlocking high sample efficiency without requiring intractable log-likelihood calculations. RFO includes two tailored regularization terms for stability and exploration. We also propose a variant of RFO with action chunking. Extensive experiments on diverse locomotion and manipulation tasks, involving both rigid and soft bodies with state or visual inputs, demonstrate the effectiveness of RFO. Notably, on a challenging locomotion task controlling a soft-body quadruped, RFO achieves almost $2\times$ the reward of the state-of-the-art baseline.
☆ DeepDFA: Injecting Temporal Logic in Deep Learning for Sequential Subsymbolic Applications
Integrating logical knowledge into deep neural network training is still a hard challenge, especially for sequential or temporally extended domains involving subsymbolic observations. To address this problem, we propose DeepDFA, a neurosymbolic framework that integrates high-level temporal logic - expressed as Deterministic Finite Automata (DFA) or Moore Machines - into neural architectures. DeepDFA models temporal rules as continuous, differentiable layers, enabling symbolic knowledge injection into subsymbolic domains. We demonstrate how DeepDFA can be used in two key settings: (i) static image sequence classification, and (ii) policy learning in interactive non-Markovian environments. Across extensive experiments, DeepDFA outperforms traditional deep learning models (e.g., LSTMs, GRUs, Transformers) and novel neuro-symbolic systems, achieving state-of-the-art results in temporal knowledge integration. These results highlight the potential of DeepDFA to bridge subsymbolic learning and symbolic reasoning in sequential tasks.
☆ Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning
Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.
comment: 19 pages, 8 figures
☆ When Routing Collapses: On the Degenerate Convergence of LLM Routers
LLM routing aims to achieve a favorable quality--cost trade-off by dynamically assigning easy queries to smaller models and harder queries to stronger ones. However, across both unimodal and multimodal settings, we uncover a pervasive yet underexplored failure mode in existing routers: as the user's cost budget increases, routers systematically default to the most capable and most expensive model even when cheaper models already suffice. As a result, current routers under-utilize small models, wasting computation and monetary cost and undermining the core promise of routing; we term this phenomenon routing collapse. We attribute routing collapse to an objective--decision mismatch: many routers are trained to predict scalar performance scores, whereas routing decisions ultimately depend on discrete comparisons among candidate models. Consequently, small prediction errors can flip relative orderings and trigger suboptimal selections. To bridge this gap, we propose EquiRouter, a decision-aware router that directly learns model rankings, restoring the role of smaller models and mitigating routing collapse. On RouterBench, EquiRouter reduces cost by about 17\% at GPT-4-level performance compared to the strongest prior router. Our code is available at https://github.com/AIGNLAI/EquiRouter.
☆ ScDiVa: Masked Discrete Diffusion for Joint Modeling of Single-Cell Identity and Expression
Single-cell RNA-seq profiles are high-dimensional, sparse, and unordered, causing autoregressive generation to impose an artificial ordering bias and suffer from error accumulation. To address this, we propose scDiVa, a masked discrete diffusion foundation model that aligns generation with the dropout-like corruption process by defining a continuous-time forward masking mechanism in token space. ScDiVa features a bidirectional denoiser that jointly models discrete gene identities and continuous values, utilizing entropy-normalized serialization and a latent anchor token to maximize information efficiency and preserve global cell identity. The model is trained via depth-invariant time sampling and a dual denoising objective to simulate varying sparsity levels while ensuring precise recovery of both identity and magnitude. Pre-trained on 59 million cells, scDiVa achieves strong transfer performance across major benchmarks, including batch integration, cell type annotation, and perturbation response prediction. These results suggest that masked discrete diffusion serves as a biologically coherent and effective alternative to autoregression.
comment: 19 pages, 11 figures
☆ IntentRL: Training Proactive User-intent Agents for Open-ended Deep Research via Reinforcement Learning
Deep Research (DR) agents extend Large Language Models (LLMs) beyond parametric knowledge by autonomously retrieving and synthesizing evidence from large web corpora into long-form reports, enabling a long-horizon agentic paradigm. However, unlike real-time conversational assistants, DR is computationally expensive and time-consuming, creating an autonomy-interaction dilemma: high autonomy on ambiguous user queries often leads to prolonged execution with unsatisfactory outcomes. To address this, we propose IntentRL, a framework that trains proactive agents to clarify latent user intents before starting long-horizon research. To overcome the scarcity of open-ended research data, we introduce a scalable pipeline that expands a few seed samples into high-quality dialogue turns via a shallow-to-deep intent refinement graph. We further adopt a two-stage reinforcement learning (RL) strategy: Stage I applies RL on offline dialogues to efficiently learn general user-interaction behavior, while Stage II uses the trained agent and a user simulator for online rollouts to strengthen adaptation to diverse user feedback. Extensive experiments show that IntentRL significantly improves both intent hit rate and downstream task performance, outperforming the built-in clarify modules of closed-source DR agents and proactive LLM baselines.
comment: Preprint
☆ The Dual Role of Abstracting over the Irrelevant in Symbolic Explanations: Cognitive Effort vs. Understanding
Explanations are central to human cognition, yet AI systems often produce outputs that are difficult to understand. While symbolic AI offers a transparent foundation for interpretability, raw logical traces often impose a high extraneous cognitive load. We investigate how formal abstractions, specifically removal and clustering, impact human reasoning performance and cognitive effort. Utilizing Answer Set Programming (ASP) as a formal framework, we define a notion of irrelevant details to be abstracted over to obtain simplified explanations. Our cognitive experiments, in which participants classified stimuli across domains with explanations derived from an answer set program, show that clustering details significantly improve participants' understanding, while removal of details significantly reduce cognitive effort, supporting the hypothesis that abstraction enhances human-centered symbolic explanations.
comment: 8 pages, 5 figures
☆ Beyond Variance: Prompt-Efficient RLVR via Rare-Event Amplification and Bidirectional Pairing
Reinforcement learning with verifiable rewards (RLVR) is effective for training large language models on deterministic outcome reasoning tasks. Prior work shows RLVR works with few prompts, but prompt selection is often based only on training-accuracy variance, leading to unstable optimization directions and weaker transfer. We revisit prompt selection from a mechanism-level view and argue that an effective minibatch should provide both (i) a reliable positive anchor and (ii) explicit negative learning signals from rare failures. Based on this principle, we propose \emph{positive--negative pairing}: at each update, we sample a hard-but-solvable $q^{+}$ and an easy-but-brittle prompt $q^{-}$(high success rate but not perfect), characterized by low and high empirical success rates under multiple rollouts. We further introduce Weighted GRPO, which reweights binary outcomes at the pair level and uses group-normalized advantages to amplify rare successes on $q^{+}$ into sharp positive guidance while turning rare failures on $q^{-}$ into strong negative penalties. This bidirectional signal provides informative learning feedback for both successes and failures, improving sample efficiency without suppressing exploration. On Qwen2.5-Math-7B, a single paired minibatch per update consistently outperforms a GRPO baseline that selects two prompts via commonly used variance-based selection heuristics: AIME~2025 Pass@8 improves from 16.8 to 22.2, and AMC23 Pass@64 from 94.0 to 97.0, while remaining competitive with large-scale RLVR trained from a pool of 1209 training prompts. Similar gains are observed on Qwen2.5-Math-7B-Instruct.
☆ Hierarchical Concept-to-Appearance Guidance for Multi-Subject Image Generation
Multi-subject image generation aims to synthesize images that faithfully preserve the identities of multiple reference subjects while following textual instructions. However, existing methods often suffer from identity inconsistency and limited compositional control, as they rely on diffusion models to implicitly associate text prompts with reference images. In this work, we propose Hierarchical Concept-to-Appearance Guidance (CAG), a framework that provides explicit, structured supervision from high-level concepts to fine-grained appearances. At the conceptual level, we introduce a VAE dropout training strategy that randomly omits reference VAE features, encouraging the model to rely more on robust semantic signals from a Visual Language Model (VLM) and thereby promoting consistent concept-level generation in the absence of complete appearance cues. At the appearance level, we integrate the VLM-derived correspondences into a correspondence-aware masked attention module within the Diffusion Transformer (DiT). This module restricts each text token to attend only to its matched reference regions, ensuring precise attribute binding and reliable multi-subject composition. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the multi-subject image generation, substantially improving prompt following and subject consistency.
☆ CRL-VLA: Continual Vision-Language-Action Learning
Lifelong learning is critical for embodied agents in open-world environments, where reinforcement learning fine-tuning has emerged as an important paradigm to enable Vision-Language-Action (VLA) models to master dexterous manipulation through environmental interaction. Thus, Continual Reinforcement Learning (CRL) is a promising pathway for deploying VLA models in lifelong robotic scenarios, yet balancing stability (retaining old skills) and plasticity (learning new ones) remains a formidable challenge for existing methods. We introduce CRL-VLA, a framework for continual post-training of VLA models with rigorous theoretical bounds. We derive a unified performance bound linking the stability-plasticity trade-off to goal-conditioned advantage magnitude, scaled by policy divergence. CRL-VLA resolves this dilemma via asymmetric regulation: constraining advantage magnitudes on prior tasks while enabling controlled growth on new tasks. This is realized through a simple but effective dual-critic architecture with novel Goal-Conditioned Value Formulation (GCVF), where a frozen critic anchors semantic consistency and a trainable estimator drives adaptation. Experiments on the LIBERO benchmark demonstrate that CRL-VLA effectively harmonizes these conflicting objectives, outperforming baselines in both anti-forgetting and forward adaptation.
☆ Ontology-to-tools compilation for executable semantic constraint enforcement in LLM agents
We introduce ontology-to-tools compilation as a proof-of-principle mechanism for coupling large language models (LLMs) with formal domain knowledge. Within The World Avatar (TWA), ontological specifications are compiled into executable tool interfaces that LLM-based agents must use to create and modify knowledge graph instances, enforcing semantic constraints during generation rather than through post-hoc validation. Extending TWA's semantic agent composition framework, the Model Context Protocol (MCP) and associated agents are integral components of the knowledge graph ecosystem, enabling structured interaction between generative models, symbolic constraints, and external resources. An agent-based workflow translates ontologies into ontology-aware tools and iteratively applies them to extract, validate, and repair structured knowledge from unstructured scientific text. Using metal-organic polyhedra synthesis literature as an illustrative case, we show how executable ontological semantics can guide LLM behaviour and reduce manual schema and prompt engineering, establishing a general paradigm for embedding formal knowledge into generative systems.
☆ DiscoverLLM: From Executing Intents to Discovering Them
To handle ambiguous and open-ended requests, Large Language Models (LLMs) are increasingly trained to interact with users to surface intents they have not yet expressed (e.g., ask clarification questions). However, users are often ambiguous because they have not yet formed their intents: they must observe and explore outcomes to discover what they want. Simply asking "what kind of tone do you want?" fails when users themselves do not know. We introduce DiscoverLLM, a novel and generalizable framework that trains LLMs to help users form and discover their intents. Central to our approach is a novel user simulator that models cognitive state with a hierarchy of intents that progressively concretize as the model surfaces relevant options -- where the degree of concretization serves as a reward signal that models can be trained to optimize. Resulting models learn to collaborate with users by adaptively diverging (i.e., explore options) when intents are unclear, and converging (i.e., refine and implement) when intents concretize. Across proposed interactive benchmarks in creative writing, technical writing, and SVG drawing, DiscoverLLM achieves over 10% higher task performance while reducing conversation length by up to 40%. In a user study with 75 human participants, DiscoverLLM improved conversation satisfaction and efficiency compared to baselines.
☆ Socratic-Geo: Synthetic Data Generation and Geometric Reasoning via Multi-Agent Interaction
Multimodal Large Language Models (MLLMs) have significantly advanced vision-language understanding. However, even state-of-the-art models struggle with geometric reasoning, revealing a critical bottleneck: the extreme scarcity of high-quality image-text pairs. Human annotation is prohibitively expensive, while automated methods fail to ensure fidelity and training effectiveness. Existing approaches either passively adapt to available images or employ inefficient random exploration with filtering, decoupling generation from learning needs. We propose Socratic-Geo, a fully autonomous framework that dynamically couples data synthesis with model learning through multi-agent interaction. The Teacher agent generates parameterized Python scripts with reflective feedback (Reflect for solvability, RePI for visual validity), ensuring image-text pair purity. The Solver agent optimizes reasoning through preference learning, with failure paths guiding Teacher's targeted augmentation. Independently, the Generator learns image generation capabilities on accumulated "image-code-instruction" triplets, distilling programmatic drawing intelligence into visual generation. Starting from only 108 seed problems, Socratic-Solver achieves 49.11 on six benchmarks using one-quarter of baseline data, surpassing strong baselines by 2.43 points. Socratic-Generator achieves 42.4% on GenExam, establishing new state-of-the-art for open-source models, surpassing Seedream-4.0 (39.8%) and approaching Gemini-2.5-Flash-Image (43.1%).
comment: 18pages
☆ Feasible strategies for conflict resolution within intuitionistic fuzzy preference-based conflict situations
In three-way conflict analysis, preference-based conflict situations characterize agents' attitudes towards issues by formally modeling their preferences over pairs of issues. However, existing preference-based conflict models rely exclusively on three qualitative relations, namely, preference, converse, and indifference, to describe agents' attitudes towards issue pairs, which significantly limits their capacity in capturing the essence of conflict. To overcome this limitation, we introduce the concept of an intuitionistic fuzzy preference-based conflict situation that captures agents' attitudes towards issue pairs with finer granularity than that afforded by classical preference-based models. Afterwards, we develop intuitionistic fuzzy preference-based conflict measures within this framework, and construct three-way conflict analysis models for trisecting the set of agent pairs, the agent set, and the issue set. Additionally, relative loss functions built on the proposed conflict functions are employed to calculate thresholds for three-way conflict analysis. Finally, we present adjustment mechanism-based feasible strategies that simultaneously account for both adjustment magnitudes and conflict degrees, together with an algorithm for constructing such feasible strategies, and provide an illustrative example to demonstrate the validity and effectiveness of the proposed model.
☆ Risk Awareness Injection: Calibrating Vision-Language Models for Safety without Compromising Utility
Vision language models (VLMs) extend the reasoning capabilities of large language models (LLMs) to cross-modal settings, yet remain highly vulnerable to multimodal jailbreak attacks. Existing defenses predominantly rely on safety fine-tuning or aggressive token manipulations, incurring substantial training costs or significantly degrading utility. Recent research shows that LLMs inherently recognize unsafe content in text, and the incorporation of visual inputs in VLMs frequently dilutes risk-related signals. Motivated by this, we propose Risk Awareness Injection (RAI), a lightweight and training-free framework for safety calibration that restores LLM-like risk recognition by amplifying unsafe signals in VLMs. Specifically, RAI constructs an Unsafe Prototype Subspace from language embeddings and performs targeted modulation on selected high-risk visual tokens, explicitly activating safety-critical signals within the cross-modal feature space. This modulation restores the model's LLM-like ability to detect unsafe content from visual inputs, while preserving the semantic integrity of original tokens for cross-modal reasoning. Extensive experiments across multiple jailbreak and utility benchmarks demonstrate that RAI substantially reduces attack success rate without compromising task performance.
☆ Precision in Practice: Knowledge Guided Code Summarizing Grounded in Industrial Expectations
Code summaries are essential for helping developers understand code functionality and reducing maintenance and collaboration costs. Although recent advances in large language models (LLMs) have significantly improved automatic code summarization, the practical usefulness of generated summaries in industrial settings remains insufficiently explored. In collaboration with documentation experts from the industrial HarmonyOS project, we conducted a questionnaire study showing that over 57.4% of code summaries produced by state-of-the-art approaches were rejected due to violations of developers' expectations for industrial documentation. Beyond semantic similarity to reference summaries, developers emphasize additional requirements, including the use of appropriate domain terminology, explicit function categorization, and the avoidance of redundant implementation details. To address these expectations, we propose ExpSum, an expectation-aware code summarization approach that integrates function metadata abstraction, informative metadata filtering, context-aware domain knowledge retrieval, and constraint-driven prompting to guide LLMs in generating structured, expectation-aligned summaries. We evaluate ExpSum on the HarmonyOS project and widely used code summarization benchmarks. Experimental results show that ExpSum consistently outperforms all baselines, achieving improvements of up to 26.71% in BLEU-4 and 20.10% in ROUGE-L on HarmonyOS. Furthermore, LLM-based evaluations indicate that ExpSum-generated summaries better align with developer expectations across other projects, demonstrating its effectiveness for industrial code documentation.
☆ On the Entropy Dynamics in Reinforcement Fine-Tuning of Large Language Models
Entropy serves as a critical metric for measuring the diversity of outputs generated by large language models (LLMs), providing valuable insights into their exploration capabilities. While recent studies increasingly focus on monitoring and adjusting entropy to better balance exploration and exploitation in reinforcement fine-tuning (RFT), a principled understanding of entropy dynamics during this process is yet to be thoroughly investigated. In this paper, we establish a theoretical framework for analyzing the entropy dynamics during the RFT process, which begins with a discriminant expression that quantifies entropy change under a single logit update. This foundation enables the derivation of a first-order expression for entropy change, which can be further extended to the update formula of Group Relative Policy Optimization (GRPO). The corollaries and insights drawn from the theoretical analysis inspire the design of entropy control methods, and also offer a unified lens for interpreting various entropy-based methods in existing studies. We provide empirical evidence to support the main conclusions of our analysis and demonstrate the effectiveness of the derived entropy-discriminator clipping methods. This study yields novel insights into RFT training dynamics, providing theoretical support and practical strategies for optimizing the exploration-exploitation balance during LLM fine-tuning.
☆ Chain-of-Goals Hierarchical Policy for Long-Horizon Offline Goal-Conditioned RL
Offline goal-conditioned reinforcement learning remains challenging for long-horizon tasks. While hierarchical approaches mitigate this issue by decomposing tasks, most existing methods rely on separate high- and low-level networks and generate only a single intermediate subgoal, making them inadequate for complex tasks that require coordinating multiple intermediate decisions. To address this limitation, we draw inspiration from the chain-of-thought paradigm and propose the Chain-of-Goals Hierarchical Policy (CoGHP), a novel framework that reformulates hierarchical decision-making as autoregressive sequence modeling within a unified architecture. Given a state and a final goal, CoGHP autoregressively generates a sequence of latent subgoals followed by the primitive action, where each latent subgoal acts as a reasoning step that conditions subsequent predictions. To implement this efficiently, we pioneer the use of an MLP-Mixer backbone, which supports cross-token communication and captures structural relationships among state, goal, latent subgoals, and action. Across challenging navigation and manipulation benchmarks, CoGHP consistently outperforms strong offline baselines, demonstrating improved performance on long-horizon tasks.
comment: 22 pages
☆ Toward a Sustainable Federated Learning Ecosystem: A Practical Least Core Mechanism for Payoff Allocation
Emerging network paradigms and applications increasingly rely on federated learning (FL) to enable collaborative intelligence while preserving privacy. However, the sustainability of such collaborative environments hinges on a fair and stable payoff allocation mechanism. Focusing on coalition stability, this paper introduces a payoff allocation framework based on the least core (LC) concept. Unlike traditional methods, the LC prioritizes the cohesion of the federation by minimizing the maximum dissatisfaction among all potential subgroups, ensuring that no participant has an incentive to break away. To adapt this game-theoretic concept to practical, large-scale networks, we propose a streamlined implementation with a stack-based pruning algorithm, effectively balancing computational efficiency with allocation precision. Case studies in federated intrusion detection demonstrate that our mechanism correctly identifies pivotal contributors and strategic alliances. The results confirm that the practical LC framework promotes stable collaboration and fosters a sustainable FL ecosystem.
comment: 7 pages, 3 figures, submitted to IEEE Network
☆ An Approximate Ascent Approach To Prove Convergence of PPO
Proximal Policy Optimization (PPO) is among the most widely used deep reinforcement learning algorithms, yet its theoretical foundations remain incomplete. Most importantly, convergence and understanding of fundamental PPO advantages remain widely open. Under standard theory assumptions we show how PPO's policy update scheme (performing multiple epochs of minibatch updates on multi-use rollouts with a surrogate gradient) can be interpreted as approximated policy gradient ascent. We show how to control the bias accumulated by the surrogate gradients and use techniques from random reshuffling to prove a convergence theorem for PPO that sheds light on PPO's success. Additionally, we identify a previously overlooked issue in truncated Generalized Advantage Estimation commonly used in PPO. The geometric weighting scheme induces infinite mass collapse onto the longest $k$-step advantage estimator at episode boundaries. Empirical evaluations show that a simple weight correction can yield substantial improvements in environments with strong terminal signal, such as Lunar Lander.
☆ Rethinking Benign Relearning: Syntax as the Hidden Driver of Unlearning Failures ICLR 2026
Machine unlearning aims to remove specific content from trained models while preserving overall performance. However, the phenomenon of benign relearning, in which forgotten information reemerges even from benign fine-tuning data, reveals that existing unlearning methods remain fundamentally fragile. A common explanation attributes this effect to topical relevance, but we find this account insufficient. Through systematic analysis, we demonstrate that syntactic similarity, rather than topicality, is the primary driver: across benchmarks, syntactically similar data consistently trigger recovery even without topical overlap, due to their alignment in representations and gradients with the forgotten content. Motivated by this insight, we introduce syntactic diversification, which paraphrases the original forget queries into heterogeneous structures prior to unlearning. This approach effectively suppresses benign relearning, accelerates forgetting, and substantially alleviates the trade-off between unlearning efficacy and model utility.
comment: Accepted at ICLR 2026
☆ SLIM-Diff: Shared Latent Image-Mask Diffusion with Lp loss for Data-Scarce Epilepsy FLAIR MRI
Focal cortical dysplasia (FCD) lesions in epilepsy FLAIR MRI are subtle and scarce, making joint image--mask generative modeling prone to instability and memorization. We propose SLIM-Diff, a compact joint diffusion model whose main contributions are (i) a single shared-bottleneck U-Net that enforces tight coupling between anatomy and lesion geometry from a 2-channel image+mask representation, and (ii) loss-geometry tuning via a tunable $L_p$ objective. As an internal baseline, we include the canonical DDPM-style objective ($ε$-prediction with $L_2$ loss) and isolate the effect of prediction parameterization and $L_p$ geometry under a matched setup. Experiments show that $x_0$-prediction is consistently the strongest choice for joint synthesis, and that fractional sub-quadratic penalties ($L_{1.5}$) improve image fidelity while $L_2$ better preserves lesion mask morphology. Our code and model weights are available in https://github.com/MarioPasc/slim-diff
comment: 6 pages, 2 figures, 1 table, conference paper
☆ MeKi: Memory-based Expert Knowledge Injection for Efficient LLM Scaling
Scaling Large Language Models (LLMs) typically relies on increasing the number of parameters or test-time computations to boost performance. However, these strategies are impractical for edge device deployment due to limited RAM and NPU resources. Despite hardware constraints, deploying performant LLM on edge devices such as smartphone remains crucial for user experience. To address this, we propose MeKi (Memory-based Expert Knowledge Injection), a novel system that scales LLM capacity via storage space rather than FLOPs. MeKi equips each Transformer layer with token-level memory experts that injects pre-stored semantic knowledge into the generation process. To bridge the gap between training capacity and inference efficiency, we employ a re-parameterization strategy to fold parameter matrices used during training into a compact static lookup table. By offloading the knowledge to ROM, MeKi decouples model capacity from computational cost, introducing zero inference latency overhead. Extensive experiments demonstrate that MeKi significantly outperforms dense LLM baselines with identical inference speed, validating the effectiveness of memory-based scaling paradigm for on-device LLMs. Project homepage is at https://github.com/ningding-o/MeKi.
☆ GFlowPO: Generative Flow Network as a Language Model Prompt Optimizer
Finding effective prompts for language models (LMs) is critical yet notoriously difficult: the prompt space is combinatorially large, rewards are sparse due to expensive target-LM evaluation. Yet, existing RL-based prompt optimizers often rely on on-policy updates and a meta-prompt sampled from a fixed distribution, leading to poor sample efficiency. We propose GFlowPO, a probabilistic prompt optimization framework that casts prompt search as a posterior inference problem over latent prompts regularized by a meta-prompted reference-LM prior. In the first step, we fine-tune a lightweight prompt-LM with an off-policy Generative Flow Network (GFlowNet) objective, using a replay-based training policy that reuses past prompt evaluations to enable sample-efficient exploration. In the second step, we introduce Dynamic Memory Update (DMU), a training-free mechanism that updates the meta-prompt by injecting both (i) diverse prompts from a replay buffer and (ii) top-performing prompts from a small priority queue, thereby progressively concentrating the search process on high-reward regions. Across few-shot text classification, instruction induction benchmarks, and question answering tasks, GFlowPO consistently outperforms recent discrete prompt optimization baselines.
☆ Causal Graph Learning via Distributional Invariance of Cause-Effect Relationship
This paper introduces a new framework for recovering causal graphs from observational data, leveraging the observation that the distribution of an effect, conditioned on its causes, remains invariant to changes in the prior distribution of those causes. This insight enables a direct test for potential causal relationships by checking the variance of their corresponding effect-cause conditional distributions across multiple downsampled subsets of the data. These subsets are selected to reflect different prior cause distributions, while preserving the effect-cause conditional relationships. Using this invariance test and exploiting an (empirical) sparsity of most causal graphs, we develop an algorithm that efficiently uncovers causal relationships with quadratic complexity in the number of observational variables, reducing the processing time by up to 25x compared to state-of-the-art methods. Our empirical experiments on a varied benchmark of large-scale datasets show superior or equivalent performance compared to existing works, while achieving enhanced scalability.
☆ Building Interpretable Models for Moral Decision-Making AAAI'26
We build a custom transformer model to study how neural networks make moral decisions on trolley-style dilemmas. The model processes structured scenarios using embeddings that encode who is affected, how many people, and which outcome they belong to. Our 2-layer architecture achieves 77% accuracy on Moral Machine data while remaining small enough for detailed analysis. We use different interpretability techniques to uncover how moral reasoning distributes across the network, demonstrating that biases localize to distinct computational stages among other findings.
comment: 8 pages, 4 figures, accepted to AAAI'26 Machine Ethics Workshop
☆ Robustness as an Emergent Property of Task Performance
Robustness is often regarded as a critical future challenge for real-world applications, where stability is essential. However, as models often learn tasks in a similar order, we hypothesize that easier tasks will be easier regardless of how they are presented to the model. Indeed, in this paper, we show that as models approach high performance on a task, robustness is effectively achieved. Through an empirical analysis of multiple models across diverse datasets and configurations (e.g., paraphrases, different temperatures), we find a strong positive correlation. Moreover, we find that robustness is primarily driven by task-specific competence rather than inherent model-level properties, challenging current approaches that treat robustness as an independent capability. Thus, from a high-level perspective, we may expect that as new tasks saturate, model robustness on these tasks will emerge accordingly. For researchers, this implies that explicit efforts to measure and improve robustness may warrant reduced emphasis, as such robustness is likely to develop alongside performance gains. For practitioners, it acts as a sign that indeed the tasks that the literature deals with are unreliable, but on easier past tasks, the models are reliable and ready for real-world deployment.
☆ Tiled Prompts: Overcoming Prompt Underspecification in Image and Video Super-Resolution
Text-conditioned diffusion models have advanced image and video super-resolution by using prompts as semantic priors, but modern super-resolution pipelines typically rely on latent tiling to scale to high resolutions, where a single global caption causes prompt underspecification. A coarse global prompt often misses localized details (prompt sparsity) and provides locally irrelevant guidance (prompt misguidance) that can be amplified by classifier-free guidance. We propose Tiled Prompts, a unified framework for image and video super-resolution that generates a tile-specific prompt for each latent tile and performs super-resolution under locally text-conditioned posteriors, providing high-information guidance that resolves prompt underspecification with minimal overhead. Experiments on high resolution real-world images and videos show consistent gains in perceptual quality and text alignment, while reducing hallucinations and tile-level artifacts relative to global-prompt baselines.
comment: 13 pages, 7 figures
☆ MentalSeek-Dx: Towards Progressive Hypothetico-Deductive Reasoning for Real-world Psychiatric Diagnosis
Mental health disorders represent a burgeoning global public health challenge. While Large Language Models (LLMs) have demonstrated potential in psychiatric assessment, their clinical utility is severely constrained by benchmarks that lack ecological validity and fine-grained diagnostic supervision. To bridge this gap, we introduce \textbf{MentalDx Bench}, the first benchmark dedicated to disorder-level psychiatric diagnosis within real-world clinical settings. Comprising 712 de-identified electronic health records annotated by board-certified psychiatrists under ICD-11 guidelines, the benchmark covers 76 disorders across 16 diagnostic categories. Evaluation of 18 LLMs reveals a critical \textit{paradigm misalignment}: strong performance at coarse diagnostic categorization contrasts with systematic failure at disorder-level diagnosis, underscoring a gap between pattern-based modeling and clinical hypothetico-deductive reasoning. In response, we propose \textbf{MentalSeek-Dx}, a medical-specialized LLM trained to internalize this clinical reasoning process through supervised trajectory construction and curriculum-based reinforcement learning. Experiments on MentalDx Bench demonstrate that MentalSeek-Dx achieves state-of-the-art (SOTA) performance with only 14B parameters, establishing a clinically grounded framework for reliable psychiatric diagnosis.
comment: 36 pages, 27 figures
MedSAM-Agent: Empowering Interactive Medical Image Segmentation with Multi-turn Agentic Reinforcement Learning
Medical image segmentation is evolving from task-specific models toward generalizable frameworks. Recent research leverages Multi-modal Large Language Models (MLLMs) as autonomous agents, employing reinforcement learning with verifiable reward (RLVR) to orchestrate specialized tools like the Segment Anything Model (SAM). However, these approaches often rely on single-turn, rigid interaction strategies and lack process-level supervision during training, which hinders their ability to fully exploit the dynamic potential of interactive tools and leads to redundant actions. To bridge this gap, we propose MedSAM-Agent, a framework that reformulates interactive segmentation as a multi-step autonomous decision-making process. First, we introduce a hybrid prompting strategy for expert-curated trajectory generation, enabling the model to internalize human-like decision heuristics and adaptive refinement strategies. Furthermore, we develop a two-stage training pipeline that integrates multi-turn, end-to-end outcome verification with a clinical-fidelity process reward design to promote interaction parsimony and decision efficiency. Extensive experiments across 6 medical modalities and 21 datasets demonstrate that MedSAM-Agent achieves state-of-the-art performance, effectively unifying autonomous medical reasoning with robust, iterative optimization. Code is available \href{https://github.com/CUHK-AIM-Group/MedSAM-Agent}{here}.
comment: 23 Pages, 4 Figures
☆ Multiparameter Uncertainty Mapping in Quantitative Molecular MRI using a Physics-Structured Variational Autoencoder (PS-VAE)
Quantitative imaging methods, such as magnetic resonance fingerprinting (MRF), aim to extract interpretable pathology biomarkers by estimating biophysical tissue parameters from signal evolutions. However, the pattern-matching algorithms or neural networks used in such inverse problems often lack principled uncertainty quantification, which limits the trustworthiness and transparency, required for clinical acceptance. Here, we describe a physics-structured variational autoencoder (PS-VAE) designed for rapid extraction of voxelwise multi-parameter posterior distributions. Our approach integrates a differentiable spin physics simulator with self-supervised learning, and provides a full covariance that captures the inter-parameter correlations of the latent biophysical space. The method was validated in a multi-proton pool chemical exchange saturation transfer (CEST) and semisolid magnetization transfer (MT) molecular MRF study, across in-vitro phantoms, tumor-bearing mice, healthy human volunteers, and a subject with glioblastoma. The resulting multi-parametric posteriors are in good agreement with those calculated using a brute-force Bayesian analysis, while providing an orders-of-magnitude acceleration in whole brain quantification. In addition, we demonstrate how monitoring the multi-parameter posterior dynamics across progressively acquired signals provides practical insights for protocol optimization and may facilitate real-time adaptive acquisition.
comment: Submitted to IEEE Transactions on Medical Imaging. This project was funded by the European Union (ERC, BabyMagnet, project no. 101115639). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them
☆ Memora: A Harmonic Memory Representation Balancing Abstraction and Specificity
Agent memory systems must accommodate continuously growing information while supporting efficient, context-aware retrieval for downstream tasks. Abstraction is essential for scaling agent memory, yet it often comes at the cost of specificity, obscuring the fine-grained details required for effective reasoning. We introduce Memora, a harmonic memory representation that structurally balances abstraction and specificity. Memora organizes information via its primary abstractions that index concrete memory values and consolidate related updates into unified memory entries, while cue anchors expand retrieval access across diverse aspects of the memory and connect related memories. Building on this structure, we employ a retrieval policy that actively exploits these memory connections to retrieve relevant information beyond direct semantic similarity. Theoretically, we show that standard Retrieval-Augmented Generation (RAG) and Knowledge Graph (KG)-based memory systems emerge as special cases of our framework. Empirically, Memora establishes a new state-of-the-art on the LoCoMo and LongMemEval benchmarks, demonstrating better retrieval relevance and reasoning effectiveness as memory scales.
☆ RDT2: Exploring the Scaling Limit of UMI Data Towards Zero-Shot Cross-Embodiment Generalization
Vision-Language-Action (VLA) models hold promise for generalist robotics but currently struggle with data scarcity, architectural inefficiencies, and the inability to generalize across different hardware platforms. We introduce RDT2, a robotic foundation model built upon a 7B parameter VLM designed to enable zero-shot deployment on novel embodiments for open-vocabulary tasks. To achieve this, we collected one of the largest open-source robotic datasets--over 10,000 hours of demonstrations in diverse families--using an enhanced, embodiment-agnostic Universal Manipulation Interface (UMI). Our approach employs a novel three-stage training recipe that aligns discrete linguistic knowledge with continuous control via Residual Vector Quantization (RVQ), flow-matching, and distillation for real-time inference. Consequently, RDT2 becomes one of the first models that simultaneously zero-shot generalizes to unseen objects, scenes, instructions, and even robotic platforms. Besides, it outperforms state-of-the-art baselines in dexterous, long-horizon, and dynamic downstream tasks like playing table tennis. See https://rdt-robotics.github.io/rdt2/ for more information.
☆ Entropy-Gated Selective Policy Optimization:Token-Level Gradient Allocation for Hybrid Training of Large Language Models
Hybrid training methods for large language models combine supervised fine tuning (SFT) on expert demonstrations with reinforcement learning (RL) on model rollouts, typically at the sample level. We propose Entropy Gated Selective Policy Optimization (EGSPO), a three stage framework that extends sample level mixing with token level gradient modulation. Stage 1, SFT expert learning, establishes a reliable warm up policy using expert demonstrations with a pure SFT loss. Stage 2, RL rollout generation, samples trajectories from the current policy and computes per token predictive entropy. Stage 3, the EGSPO mechanism, applies entropy gated gradient allocation: a predictive entropy module routes high entropy tokens to full PPO updates to encourage exploration, and low entropy tokens to attenuated PPO updates to reduce variance and preserve knowledge. Critically, both branches incorporate the advantage function A_t, ensuring that incorrect trajectories receive consistent negative learning signals and preventing reinforcement of confident errors. EGSPO achieves consistent improvements on mathematical reasoning benchmarks, with gains of 3.8 percent on AIME and 2.9 percent on MATH over the CHORD phi baseline, while incurring only 3.4 percent additional computational overhead.
comment: accepted by cscwd2026
☆ Learning to Select: Query-Aware Adaptive Dimension Selection for Dense Retrieval
Dense retrieval represents queries and docu-002 ments as high-dimensional embeddings, but003 these representations can be redundant at the004 query level: for a given information need, only005 a subset of dimensions is consistently help-006 ful for ranking. Prior work addresses this via007 pseudo-relevance feedback (PRF) based dimen-008 sion importance estimation, which can produce009 query-aware masks without labeled data but010 often relies on noisy pseudo signals and heuris-011 tic test-time procedures. In contrast, super-012 vised adapter methods leverage relevance labels013 to improve embedding quality, yet they learn014 global transformations shared across queries015 and do not explicitly model query-aware di-016 mension importance. We propose a Query-017 Aware Adaptive Dimension Selection frame-018 work that learns to predict per-dimension im-019 portance directly from query embedding. We020 first construct oracle dimension importance dis-021 tributions over embedding dimensions using022 supervised relevance labels, and then train a023 predictor to map a query embedding to these024 label-distilled importance scores. At inference,025 the predictor selects a query-aware subset of026 dimensions for similarity computation based027 solely on the query embedding, without pseudo-028 relevance feedback. Experiments across multi-029 ple dense retrievers and benchmarks show that030 our learned dimension selector improves re-031 trieval effectiveness over the full-dimensional032 baseline as well as PRF-based masking and033 supervised adapter baselines.
☆ Full end-to-end diagnostic workflow automation of 3D OCT via foundation model-driven AI for retinal diseases
Optical coherence tomography (OCT) has revolutionized retinal disease diagnosis with its high-resolution and three-dimensional imaging nature, yet its full diagnostic automation in clinical practices remains constrained by multi-stage workflows and conventional single-slice single-task AI models. We present Full-process OCT-based Clinical Utility System (FOCUS), a foundation model-driven framework enabling end-to-end automation of 3D OCT retinal disease diagnosis. FOCUS sequentially performs image quality assessment with EfficientNetV2-S, followed by abnormality detection and multi-disease classification using a fine-tuned Vision Foundation Model. Crucially, FOCUS leverages a unified adaptive aggregation method to intelligently integrate 2D slices-level predictions into comprehensive 3D patient-level diagnosis. Trained and tested on 3,300 patients (40,672 slices), and externally validated on 1,345 patients (18,498 slices) across four different-tier centers and diverse OCT devices, FOCUS achieved high F1 scores for quality assessment (99.01%), abnormally detection (97.46%), and patient-level diagnosis (94.39%). Real-world validation across centers also showed stable performance (F1: 90.22%-95.24%). In human-machine comparisons, FOCUS matched expert performance in abnormality detection (F1: 95.47% vs 90.91%) and multi-disease diagnosis (F1: 93.49% vs 91.35%), while demonstrating better efficiency. FOCUS automates the image-to-diagnosis pipeline, representing a critical advance towards unmanned ophthalmology with a validated blueprint for autonomous screening to enhance population scale retinal care accessibility and efficiency.
☆ Periodic Regularized Q-Learning
In reinforcement learning (RL), Q-learning is a fundamental algorithm whose convergence is guaranteed in the tabular setting. However, this convergence guarantee does not hold under linear function approximation. To overcome this limitation, a significant line of research has introduced regularization techniques to ensure stable convergence under function approximation. In this work, we propose a new algorithm, periodic regularized Q-learning (PRQ). We first introduce regularization at the level of the projection operator and explicitly construct a regularized projected value iteration (RP-VI), subsequently extending it to a sample-based RL algorithm. By appropriately regularizing the projection operator, the resulting projected value iteration becomes a contraction. By extending this regularized projection into the stochastic setting, we establish the PRQ algorithm and provide a rigorous theoretical analysis that proves finite-time convergence guarantees for PRQ under linear function approximation.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ POP: Prefill-Only Pruning for Efficient Large Model Inference
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable capabilities. However, their deployment is hindered by significant computational costs. Existing structured pruning methods, while hardware-efficient, often suffer from significant accuracy degradation. In this paper, we argue that this failure stems from a stage-agnostic pruning approach that overlooks the asymmetric roles between the prefill and decode stages. By introducing a virtual gate mechanism, our importance analysis reveals that deep layers are critical for next-token prediction (decode) but largely redundant for context encoding (prefill). Leveraging this insight, we propose Prefill-Only Pruning (POP), a stage-aware inference strategy that safely omits deep layers during the computationally intensive prefill stage while retaining the full model for the sensitive decode stage. To enable the transition between stages, we introduce independent Key-Value (KV) projections to maintain cache integrity, and a boundary handling strategy to ensure the accuracy of the first generated token. Extensive experiments on Llama-3.1, Qwen3-VL, and Gemma-3 across diverse modalities demonstrate that POP achieves up to 1.37$\times$ speedup in prefill latency with minimal performance loss, effectively overcoming the accuracy-efficiency trade-off limitations of existing structured pruning methods.
☆ Rejecting Arguments Based on Doubt in Structured Bipolar Argumentation
This paper develops a new approach to computational argumentation that is informed by philosophical and linguistic views. Namely, it takes into account two ideas that have received little attention in the literature on computational argumentation: First, an agent may rationally reject an argument based on mere doubt, thus not all arguments they could defend must be accepted; and, second, that it is sometimes more natural to think in terms of which individual sentences or claims an agent accepts in a debate, rather than which arguments. In order to incorporate these two ideas into a computational approach, we first define the notion of structured bipolar argumentation frameworks (SBAFs), where arguments consist of sentences and we have both an attack and a support relation between them. Then, we provide semantics for SBAFs with two features: (1) Unlike with completeness-based semantics, our semantics do not force agents to accept all defended arguments. (2) In addition to argument extensions, which give acceptable sets of arguments, we also provide semantics for language extensions that specify acceptable sets of sentences. These semantics represent reasonable positions an agent might have in a debate. Our semantics lie between the admissible and complete semantics of abstract argumentation. Further, our approach can be used to provide a new perspective on existing approaches. For instance, we can specify the conditions under which an agent can ignore support between arguments (i.e. under which the use of abstract argumentation is warranted) and we show that deductive support semantics is a special case of our approach.
comment: Accepted to AAMAS 2026
☆ MeetBench-XL: Calibrated Multi-Dimensional Evaluation and Learned Dual-Policy Agents for Real-Time Meetings AAAI2026
Enterprise meeting environments require AI assistants that handle diverse operational tasks, from rapid fact checking during live discussions to cross meeting analysis for strategic planning, under strict latency, cost, and privacy constraints. Existing meeting benchmarks mainly focus on simplified question answering and fail to reflect real world enterprise workflows, where queries arise organically from multi stakeholder collaboration, span long temporal contexts, and require tool augmented reasoning. We address this gap through a grounded dataset and a learned agent framework. First, we introduce MeetAll, a bilingual and multimodal corpus derived from 231 enterprise meetings totaling 140 hours. Questions are injected using an enterprise informed protocol validated by domain expert review and human discriminability studies. Unlike purely synthetic benchmarks, this protocol is grounded in four enterprise critical dimensions: cognitive load, temporal context span, domain expertise, and actionable task execution, calibrated through interviews with stakeholders across finance, healthcare, and technology sectors. Second, we propose MeetBench XL, a multi dimensional evaluation protocol aligned with human judgment that measures factual fidelity, intent alignment, response efficiency, structural clarity, and completeness. Third, we present MeetMaster XL, a learned dual policy agent that jointly optimizes query routing between fast and slow reasoning paths and tool invocation, including retrieval, cross meeting aggregation, and web search. A lightweight classifier enables accurate routing with minimal overhead, achieving a superior quality latency tradeoff over single model baselines. Experiments against commercial systems show consistent gains, supported by ablations, robustness tests, and a real world deployment case study.Resources: https://github.com/huyuelin/MeetBench.
comment: accepted by AAAI2026 ws
☆ Global Geometry Is Not Enough for Vision Representations
A common assumption in representation learning is that globally well-distributed embeddings support robust and generalizable representations. This focus has shaped both training objectives and evaluation protocols, implicitly treating global geometry as a proxy for representational competence. While global geometry effectively encodes which elements are present, it is often insensitive to how they are composed. We investigate this limitation by testing the ability of geometric metrics to predict compositional binding across 21 vision encoders. We find that standard geometry-based statistics exhibit near-zero correlation with compositional binding. In contrast, functional sensitivity, as measured by the input-output Jacobian, reliably tracks this capability. We further provide an analytic account showing that this disparity arises from objective design, as existing losses explicitly constrain embedding geometry but leave the local input-output mapping unconstrained. These results suggest that global embedding geometry captures only a partial view of representational competence and establish functional sensitivity as a critical complementary axis for modeling composite structure.
☆ Agentic Proposing: Enhancing Large Language Model Reasoning via Compositional Skill Synthesis
Advancing complex reasoning in large language models relies on high-quality, verifiable datasets, yet human annotation remains cost-prohibitive and difficult to scale. Current synthesis paradigms often face a recurring trade-off: maintaining structural validity typically restricts problem complexity, while relaxing constraints to increase difficulty frequently leads to inconsistent or unsolvable instances. To address this, we propose Agentic Proposing, a framework that models problem synthesis as a goal-driven sequential decision process where a specialized agent dynamically selects and composes modular reasoning skills. Through an iterative workflow of internal reflection and tool-use, we develop the Agentic-Proposer-4B using Multi-Granularity Policy Optimization (MGPO) to generate high-precision, verifiable training trajectories across mathematics, coding, and science. Empirical results demonstrate that downstream solvers trained on agent-synthesized data significantly outperform leading baselines and exhibit robust cross-domain generalization. Notably, a 30B solver trained on only 11,000 synthesized trajectories achieves a state-of-the-art 91.6% accuracy on AIME25, rivaling frontier-scale proprietary models such as GPT-5 and proving that a small volume of high-quality synthetic signals can effectively substitute for massive human-curated datasets.
comment: 23page4
☆ Unveiling Covert Toxicity in Multimodal Data via Toxicity Association Graphs: A Graph-Based Metric and Interpretable Detection Framework
Detecting toxicity in multimodal data remains a significant challenge, as harmful meanings often lurk beneath seemingly benign individual modalities: only emerging when modalities are combined and semantic associations are activated. To address this, we propose a novel detection framework based on Toxicity Association Graphs (TAGs), which systematically model semantic associations between innocuous entities and latent toxic implications. Leveraging TAGs, we introduce the first quantifiable metric for hidden toxicity, the Multimodal Toxicity Covertness (MTC), which measures the degree of concealment in toxic multimodal expressions. By integrating our detection framework with the MTC metric, our approach enables precise identification of covert toxicity while preserving full interpretability of the decision-making process, significantly enhancing transparency in multimodal toxicity detection. To validate our method, we construct the Covert Toxic Dataset, the first benchmark specifically designed to capture high-covertness toxic multimodal instances. This dataset encodes nuanced cross-modal associations and serves as a rigorous testbed for evaluating both the proposed metric and detection framework. Extensive experiments demonstrate that our approach outperforms existing methods across both low- and high-covertness toxicity regimes, while delivering clear, interpretable, and auditable detection outcomes. Together, our contributions advance the state of the art in explainable multimodal toxicity detection and lay the foundation for future context-aware and interpretable approaches. Content Warning: This paper contains examples of toxic multimodal content that may be offensive or disturbing to some readers. Reader discretion is advised.
☆ CSR-Bench: A Benchmark for Evaluating the Cross-modal Safety and Reliability of MLLMs
Multimodal large language models (MLLMs) enable interaction over both text and images, but their safety behavior can be driven by unimodal shortcuts instead of true joint intent understanding. We introduce CSR-Bench, a benchmark for evaluating cross-modal reliability through four stress-testing interaction patterns spanning Safety, Over-rejection, Bias, and Hallucination, covering 61 fine-grained types. Each instance is constructed to require integrated image-text interpretation, and we additionally provide paired text-only controls to diagnose modality-induced behavior shifts. We evaluate 16 state-of-the-art MLLMs and observe systematic cross-modal alignment gaps. Models show weak safety awareness, strong language dominance under interference, and consistent performance degradation from text-only controls to multimodal inputs. We also observe a clear trade-off between reducing over-rejection and maintaining safe, non-discriminatory behavior, suggesting that some apparent safety gains may come from refusal-oriented heuristics rather than robust intent understanding. WARNING: This paper contains unsafe contents.
comment: 25 pages, 1 figures
☆ GraDE: A Graph Diffusion Estimator for Frequent Subgraph Discovery in Neural Architectures
Finding frequently occurring subgraph patterns or network motifs in neural architectures is crucial for optimizing efficiency, accelerating design, and uncovering structural insights. However, as the subgraph size increases, enumeration-based methods are perfectly accurate but computationally prohibitive, while sampling-based methods are computationally tractable but suffer from a severe decline in discovery capability. To address these challenges, this paper proposes GraDE, a diffusion-guided search framework that ensures both computational feasibility and discovery capability. The key innovation is the Graph Diffusion Estimator (GraDE), which is the first to introduce graph diffusion models to identify frequent subgraphs by scoring their typicality within the learned distribution. Comprehensive experiments demonstrate that the estimator achieves superior ranking accuracy, with up to 114\% improvement compared to sampling-based baselines. Benefiting from this, the proposed framework successfully discovers large-scale frequent patterns, achieving up to 30$\times$ higher median frequency than sampling-based methods.
☆ LPS-Bench: Benchmarking Safety Awareness of Computer-Use Agents in Long-Horizon Planning under Benign and Adversarial Scenarios
Computer-use agents (CUAs) that interact with real computer systems can perform automated tasks but face critical safety risks. Ambiguous instructions may trigger harmful actions, and adversarial users can manipulate tool execution to achieve malicious goals. Existing benchmarks mostly focus on short-horizon or GUI-based tasks, evaluating on execution-time errors but overlooking the ability to anticipate planning-time risks. To fill this gap, we present LPS-Bench, a benchmark that evaluates the planning-time safety awareness of MCP-based CUAs under long-horizon tasks, covering both benign and adversarial interactions across 65 scenarios of 7 task domains and 9 risk types. We introduce a multi-agent automated pipeline for scalable data generation and adopt an LLM-as-a-judge evaluation protocol to assess safety awareness through the planning trajectory. Experiments reveal substantial deficiencies in existing CUAs' ability to maintain safe behavior. We further analyze the risks and propose mitigation strategies to improve long-horizon planning safety in MCP-based CUA systems. We open-source our code at https://github.com/tychenn/LPS-Bench.
☆ Accordion-Thinking: Self-Regulated Step Summaries for Efficient and Readable LLM Reasoning
Scaling test-time compute via long Chain-ofThought unlocks remarkable gains in reasoning capabilities, yet it faces practical limits due to the linear growth of KV cache and quadratic attention complexity. In this paper, we introduce Accordion-Thinking, an end-to-end framework where LLMs learn to self-regulate the granularity of the reasoning steps through dynamic summarization. This mechanism enables a Fold inference mode, where the model periodically summarizes its thought process and discards former thoughts to reduce dependency on historical tokens. We apply reinforcement learning to incentivize this capability further, uncovering a critical insight: the accuracy gap between the highly efficient Fold mode and the exhaustive Unfold mode progressively narrows and eventually vanishes over the course of training. This phenomenon demonstrates that the model learns to encode essential reasoning information into compact summaries, achieving effective compression of the reasoning context. Our Accordion-Thinker demonstrates that with learned self-compression, LLMs can tackle complex reasoning tasks with minimal dependency token overhead without compromising solution quality, and it achieves a 3x throughput while maintaining accuracy on a 48GB GPU memory configuration, while the structured step summaries provide a human-readable account of the reasoning process.
☆ The Necessity of a Unified Framework for LLM-Based Agent Evaluation
With the advent of Large Language Models (LLMs), general-purpose agents have seen fundamental advancements. However, evaluating these agents presents unique challenges that distinguish them from static QA benchmarks. We observe that current agent benchmarks are heavily confounded by extraneous factors, including system prompts, toolset configurations, and environmental dynamics. Existing evaluations often rely on fragmented, researcher-specific frameworks where the prompt engineering for reasoning and tool usage varies significantly, making it difficult to attribute performance gains to the model itself. Additionally, the lack of standardized environmental data leads to untraceable errors and non-reproducible results. This lack of standardization introduces substantial unfairness and opacity into the field. We propose that a unified evaluation framework is essential for the rigorous advancement of agent evaluation. To this end, we introduce a proposal aimed at standardizing agent evaluation.
☆ ATACompressor: Adaptive Task-Aware Compression for Efficient Long-Context Processing in LLMs
Long-context inputs in large language models (LLMs) often suffer from the "lost in the middle" problem, where critical information becomes diluted or ignored due to excessive length. Context compression methods aim to address this by reducing input size, but existing approaches struggle with balancing information preservation and compression efficiency. We propose Adaptive Task-Aware Compressor (ATACompressor), which dynamically adjusts compression based on the specific requirements of the task. ATACompressor employs a selective encoder that compresses only the task-relevant portions of long contexts, ensuring that essential information is preserved while reducing unnecessary content. Its adaptive allocation controller perceives the length of relevant content and adjusts the compression rate accordingly, optimizing resource utilization. We evaluate ATACompressor on three QA datasets: HotpotQA, MSMARCO, and SQUAD-showing that it outperforms existing methods in terms of both compression efficiency and task performance. Our approach provides a scalable solution for long-context processing in LLMs. Furthermore, we perform a range of ablation studies and analysis experiments to gain deeper insights into the key components of ATACompressor.
☆ TAME: A Trustworthy Test-Time Evolution of Agent Memory with Systematic Benchmarking
Test-time evolution of agent memory serves as a pivotal paradigm for achieving AGI by bolstering complex reasoning through experience accumulation. However, even during benign task evolution, agent safety alignment remains vulnerable-a phenomenon known as Agent Memory Misevolution. To evaluate this phenomenon, we construct the Trust-Memevo benchmark to assess multi-dimensional trustworthiness during benign task evolution, revealing an overall decline in trustworthiness across various task domains and evaluation settings. To address this issue, we propose TAME, a dual-memory evolutionary framework that separately evolves executor memory to improve task performance by distilling generalizable methodologies, and evaluator memory to refine assessments of both safety and task utility based on historical feedback. Through a closed loop of memory filtering, draft generation, trustworthy refinement, execution, and dual-track memory updating, TAME preserves trustworthiness without sacrificing utility. Experiments demonstrate that TAME mitigates misevolution, achieving a joint improvement in both trustworthiness and task performance.
Distribution-Aware End-to-End Embedding for Streaming Numerical Features in Click-Through Rate Prediction
This paper explores effective numerical feature embedding for Click-Through Rate prediction in streaming environments. Conventional static binning methods rely on offline statistics of numerical distributions; however, this inherently two-stage process often triggers semantic drift during bin boundary updates. While neural embedding methods enable end-to-end learning, they often discard explicit distributional information. Integrating such information end-to-end is challenging because streaming features often violate the i.i.d. assumption, precluding unbiased estimation of the population distribution via the expectation of order statistics. Furthermore, the critical context dependency of numerical distributions is often neglected. To this end, we propose DAES, an end-to-end framework designed to tackle numerical feature embedding in streaming training scenarios by integrating distributional information with an adaptive modulation mechanism. Specifically, we introduce an efficient reservoir-sampling-based distribution estimation method and two field-aware distribution modulation strategies to capture streaming distributions and field-dependent semantics. DAES significantly outperforms existing approaches as demonstrated by extensive offline and online experiments and has been fully deployed on a leading short-video platform with hundreds of millions of daily active users.
comment: Under review
☆ Beyond Quantity: Trajectory Diversity Scaling for Code Agents
As code large language models (LLMs) evolve into tool-interactive agents via the Model Context Protocol (MCP), their generalization is increasingly limited by low-quality synthetic data and the diminishing returns of quantity scaling. Moreover, quantity-centric scaling exhibits an early bottleneck that underutilizes trajectory data. We propose TDScaling, a Trajectory Diversity Scaling-based data synthesis framework for code agents that scales performance through diversity rather than raw volume. Under a fixed training budget, increasing trajectory diversity yields larger gains than adding more trajectories, improving the performance-cost trade-off for agent training. TDScaling integrates four innovations: (1) a Business Cluster mechanism that captures real-service logical dependencies; (2) a blueprint-driven multi-agent paradigm that enforces trajectory coherence; (3) an adaptive evolution mechanism that steers synthesis toward long-tail scenarios using Domain Entropy, Reasoning Mode Entropy, and Cumulative Action Complexity to prevent mode collapse; and (4) a sandboxed code tool that mitigates catastrophic forgetting of intrinsic coding capabilities. Experiments on general tool-use benchmarks (BFCL, tau^2-Bench) and code agent tasks (RebenchT, CodeCI, BIRD) demonstrate a win-win outcome: TDScaling improves both tool-use generalization and inherent coding proficiency. We plan to release the full codebase and the synthesized dataset (including 30,000+ tool clusters) upon publication.
☆ Topology Matters: A Cautionary Case Study of Graph SSL on Neuro-Inspired Benchmarks
Understanding how local interactions give rise to global brain organization requires models that can represent information across multiple scales. We introduce a hierarchical self-supervised learning (SSL) framework that jointly learns node-, edge-, and graph-level embeddings, inspired by multimodal neuroimaging. We construct a controllable synthetic benchmark mimicking the topological properties of connectomes. Our four-stage evaluation protocol reveals a critical failure: the invariance-based SSL model is fundamentally misaligned with the benchmark's topological properties and is catastrophically outperformed by classical, topology-aware heuristics. Ablations confirm an objective mismatch: SSL objectives designed to be invariant to topological perturbations learn to ignore the very community structure that classical methods exploit. Our results expose a fundamental pitfall in applying generic graph SSL to connectome-like data. We present this framework as a cautionary case study, highlighting the need for new, topology-aware SSL objectives for neuro-AI research that explicitly reward the preservation of structure (e.g., modularity or motifs).
☆ Latent Neural-ODE for Model-Informed Precision Dosing: Overcoming Structural Assumptions in Pharmacokinetics
Accurate estimation of tacrolimus exposure, quantified by the area under the concentration-time curve (AUC), is essential for precision dosing after renal transplantation. Current practice relies on population pharmacokinetic (PopPK) models based on nonlinear mixed-effects (NLME) methods. However, these models depend on rigid, pre-specified assumptions and may struggle to capture complex, patient-specific dynamics, leading to model misspecification. In this study, we introduce a novel data-driven alternative based on Latent Ordinary Differential Equations (Latent ODEs) for tacrolimus AUC prediction. This deep learning approach learns individualized pharmacokinetic dynamics directly from sparse clinical data, enabling greater flexibility in modeling complex biological behavior. The model was evaluated through extensive simulations across multiple scenarios and benchmarked against two standard approaches: NLME-based estimation and the iterative two-stage Bayesian (it2B) method. We further performed a rigorous clinical validation using a development dataset (n = 178) and a completely independent external dataset (n = 75). In simulation, the Latent ODE model demonstrated superior robustness, maintaining high accuracy even when underlying biological mechanisms deviated from standard assumptions. Regarding experiments on clinical datasets, in internal validation, it achieved significantly higher precision with a mean RMSPE of 7.99% compared with 9.24% for it2B (p < 0.001). On the external cohort, it achieved an RMSPE of 10.82%, comparable to the two standard estimators (11.48% and 11.54%). These results establish the Latent ODE as a powerful and reliable tool for AUC prediction. Its flexible architecture provides a promising foundation for next-generation, multi-modal models in personalized medicine.
☆ Lookahead Sample Reward Guidance for Test-Time Scaling of Diffusion Models
Diffusion models have demonstrated strong generative performance; however, generated samples often fail to fully align with human intent. This paper studies a test-time scaling method that enables sampling from regions with higher human-aligned reward values. Existing gradient guidance methods approximate the expected future reward (EFR) at an intermediate particle $\mathbf{x}_t$ using a Taylor approximation, but this approximation at each time step incurs high computational cost due to sequential neural backpropagation. We show that the EFR at any $\mathbf{x}_t$ can be computed using only marginal samples from a pre-trained diffusion model. The proposed EFR formulation detaches the neural dependency between $\mathbf{x}_t$ and the EFR, enabling closed-form guidance computation without neural backpropagation. To further improve efficiency, we introduce lookahead sampling to collect marginal samples. For final sample generation, we use an accurate solver that guides particles toward high-reward lookahead samples. We refer to this sampling scheme as LiDAR sampling. LiDAR achieves substantial performance improvements using only three samples with a 3-step lookahead solver, exhibiting steep performance gains as lookahead accuracy and sample count increase; notably, it reaches the same GenEval performance as the latest gradient guidance method for SDXL with a 9.5x speedup.
comment: Under Review
Hand3R: Online 4D Hand-Scene Reconstruction in the Wild
For Embodied AI, jointly reconstructing dynamic hands and the dense scene context is crucial for understanding physical interaction. However, most existing methods recover isolated hands in local coordinates, overlooking the surrounding 3D environment. To address this, we present Hand3R, the first online framework for joint 4D hand-scene reconstruction from monocular video. Hand3R synergizes a pre-trained hand expert with a 4D scene foundation model via a scene-aware visual prompting mechanism. By injecting high-fidelity hand priors into a persistent scene memory, our approach enables simultaneous reconstruction of accurate hand meshes and dense metric-scale scene geometry in a single forward pass. Experiments demonstrate that Hand3R bypasses the reliance on offline optimization and delivers competitive performance in both local hand reconstruction and global positioning.
☆ Reinforcement Learning with Promising Tokens for Large Language Models
Reinforcement learning (RL) has emerged as a key paradigm for aligning and optimizing large language models (LLMs). Standard approaches treat the LLM as the policy and apply RL directly over the full vocabulary space. However, this formulation includes the massive tail of contextually irrelevant tokens in the action space, which could distract the policy from focusing on decision-making among the truly reasonable tokens. In this work, we verify that valid reasoning paths could inherently concentrate within a low-rank subspace. Based on this insight, we introduce Reinforcement Learning with Promising Tokens (RLPT), a framework that mitigates the action space issue by decoupling strategic decision-making from token generation. Specifically, RLPT leverages the semantic priors of the base model to identify a dynamic set of \emph{promising tokens} and constrains policy optimization exclusively to this refined subset via masking. Theoretical analysis and empirical results demonstrate that RLPT effectively reduces gradient variance, stabilizes the training process, and improves sample efficiency. Experiment results on math, coding, and telecom reasoning show that RLPT outperforms standard RL baselines and integrates effectively across various model sizes (4B and 8B) and RL algorithms (GRPO and DAPO).
Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 44.5 per-benchmark accuracy and 51.3 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
☆ Privasis: Synthesizing the Largest "Public" Private Dataset from Scratch
Research involving privacy-sensitive data has always been constrained by data scarcity, standing in sharp contrast to other areas that have benefited from data scaling. This challenge is becoming increasingly urgent as modern AI agents--such as OpenClaw and Gemini Agent--are granted persistent access to highly sensitive personal information. To tackle this longstanding bottleneck and the rising risks, we present Privasis (i.e., privacy oasis), the first million-scale fully synthetic dataset entirely built from scratch--an expansive reservoir of texts with rich and diverse private information--designed to broaden and accelerate research in areas where processing sensitive social data is inevitable. Compared to existing datasets, Privasis, comprising 1.4 million records, offers orders-of-magnitude larger scale with quality, and far greater diversity across various document types, including medical history, legal documents, financial records, calendars, and text messages with a total of 55.1 million annotated attributes such as ethnicity, date of birth, workplace, etc. We leverage Privasis to construct a parallel corpus for text sanitization with our pipeline that decomposes texts and applies targeted sanitization. Our compact sanitization models (<=4B) trained on this dataset outperform state-of-the-art large language models, such as GPT-5 and Qwen-3 235B. We plan to release data, models, and code to accelerate future research on privacy-sensitive domains and agents.
comment: For code and data, see https://privasis.github.io
☆ MemCast: Memory-Driven Time Series Forecasting with Experience-Conditioned Reasoning
Time series forecasting (TSF) plays a critical role in decision-making for many real-world applications. Recently, LLM-based forecasters have made promising advancements. Despite their effectiveness, existing methods often lack explicit experience accumulation and continual evolution. In this work, we propose MemCast, a learning-to-memory framework that reformulates TSF as an experience-conditioned reasoning task. Specifically, we learn experience from the training set and organize it into a hierarchical memory. This is achieved by summarizing prediction results into historical patterns, distilling inference trajectories into reasoning wisdom, and inducing extracted temporal features into general laws. Furthermore, during inference, we leverage historical patterns to guide the reasoning process and utilize reasoning wisdom to select better trajectories, while general laws serve as criteria for reflective iteration. Additionally, to enable continual evolution, we design a dynamic confidence adaptation strategy that updates the confidence of individual entries without leaking the test set distribution. Extensive experiments on multiple datasets demonstrate that MemCast consistently outperforms previous methods, validating the effectiveness of our approach. Our code is available at https://github.com/Xiaoyu-Tao/MemCast-TS.
☆ VALUEFLOW: Toward Pluralistic and Steerable Value-based Alignment in Large Language Models
Aligning Large Language Models (LLMs) with the diverse spectrum of human values remains a central challenge: preference-based methods often fail to capture deeper motivational principles. Value-based approaches offer a more principled path, yet three gaps persist: extraction often ignores hierarchical structure, evaluation detects presence but not calibrated intensity, and the steerability of LLMs at controlled intensities remains insufficiently understood. To address these limitations, we introduce VALUEFLOW, the first unified framework that spans extraction, evaluation, and steering with calibrated intensity control. The framework integrates three components: (i) HIVES, a hierarchical value embedding space that captures intra- and cross-theory value structure; (ii) the Value Intensity DataBase (VIDB), a large-scale resource of value-labeled texts with intensity estimates derived from ranking-based aggregation; and (iii) an anchor-based evaluator that produces consistent intensity scores for model outputs by ranking them against VIDB panels. Using VALUEFLOW, we conduct a comprehensive large-scale study across ten models and four value theories, identifying asymmetries in steerability and composition laws for multi-value control. This paper establishes a scalable infrastructure for evaluating and controlling value intensity, advancing pluralistic alignment of LLMs.
☆ Intelligent Front-End Personalization: AI-Driven UI Adaptation
Front-end personalization has traditionally relied on static designs or rule-based adaptations, which fail to fully capture user behavior patterns. This paper presents an AI driven approach for dynamic front-end personalization, where UI layouts, content, and features adapt in real-time based on predicted user behavior. We propose three strategies: dynamic layout adaptation using user path prediction, content prioritization through reinforcement learning, and a comparative analysis of AI-driven vs. rule-based personalization. Technical implementation details, algorithms, system architecture, and evaluation methods are provided to illustrate feasibility and performance gains.
comment: To be published in proceedings of IEEE ACDSA 2026
☆ Enhancing Foundation VLM Robustness to Missing Modality: Scalable Diffusion for Bi-directional Feature Restoration
Vision Language Models (VLMs) typically assume complete modality input during inference. However, their effectiveness drops sharply when certain modalities are unavailable or incomplete. Current research primarily faces two dilemmas: Prompt-based methods struggle to restore missing yet indispensable features and impair generalization of VLMs. Imputation-based approaches, lacking effective guidance, are prone to generating semantically irrelevant noise. Restoring precise semantics while sustaining VLM generalization remains challenging. Therefore, we propose a general missing modality restoration strategy in this paper. We introduce an enhanced diffusion model as a pluggable mid-stage training module to effectively restore missing features. Our strategy introduces two key innovations: (I) Dynamic Modality Gating, which adaptively leverages conditional features to steer the generation of semantically consistent features; (II) Cross-Modal Mutual Learning mechanism, which bridges the semantic spaces of dual encoders to achieve bidirectional alignment. Zero-shot evaluations across benchmark datasets demonstrate that our approach outperforms existing baseline methods. Extensive experiments and ablation studies confirm our model as a robust and scalable extension for VLMs in missing modality scenarios, ensuring reliability across diverse missing rates and environments. Our code and models will be publicly available.
comment: 12 pages
☆ General Agents Contain World Models, even under Partial Observability and Stochasticity
Deciding whether an agent possesses a model of its surrounding world is a fundamental step toward understanding its capabilities and limitations. In [10], it was shown that, within a particular framework, every almost optimal and general agent necessarily contains sufficient knowledge of its environment to allow an approximate reconstruction of it by querying the agent as a black box. This result relied on the assumptions that the agent is deterministic and that the environment is fully observable. In this work, we remove both assumptions by extending the theorem to stochastic agents operating in partially observable environments. Fundamentally, this shows that stochastic agents cannot avoid learning their environment through the usage of randomization. We also strengthen the result by weakening the notion of generality, proving that less powerful agents already contain a model of the world in which they operate.
comment: 19 pages, 4 figures
☆ Internet of Agentic AI: Incentive-Compatible Distributed Teaming and Workflow
Large language models (LLMs) have enabled a new class of agentic AI systems that reason, plan, and act by invoking external tools. However, most existing agentic architectures remain centralized and monolithic, limiting scalability, specialization, and interoperability. This paper proposes a framework for scalable agentic intelligence, termed the Internet of Agentic AI, in which autonomous, heterogeneous agents distributed across cloud and edge infrastructure dynamically form coalitions to execute task-driven workflows. We formalize a network-native model of agentic collaboration and introduce an incentive-compatible workflow-coalition feasibility framework that integrates capability coverage, network locality, and economic implementability. To enable scalable coordination, we formulate a minimum-effort coalition selection problem and propose a decentralized coalition formation algorithm. The proposed framework can operate as a coordination layer above the Model Context Protocol (MCP). A healthcare case study demonstrates how domain specialization, cloud-edge heterogeneity, and dynamic coalition formation enable scalable, resilient, and economically viable agentic workflows. This work lays the foundation for principled coordination and scalability in the emerging era of Internet of Agentic AI.
☆ Self-Hinting Language Models Enhance Reinforcement Learning
Group Relative Policy Optimization (GRPO) has recently emerged as a practical recipe for aligning large language models with verifiable objectives. However, under sparse terminal rewards, GRPO often stalls because rollouts within a group frequently receive identical rewards, causing relative advantages to collapse and updates to vanish. We propose self-hint aligned GRPO with privileged supervision (SAGE), an on-policy reinforcement learning framework that injects privileged hints during training to reshape the rollout distribution under the same terminal verifier reward. For each prompt $x$, the model samples a compact hint $h$ (e.g., a plan or decomposition) and then generates a solution $τ$ conditioned on $(x,h)$. Crucially, the task reward $R(x,τ)$ is unchanged; hints only increase within-group outcome diversity under finite sampling, preventing GRPO advantages from collapsing under sparse rewards. At test time, we set $h=\varnothing$ and deploy the no-hint policy without any privileged information. Moreover, sampling diverse self-hints serves as an adaptive curriculum that tracks the learner's bottlenecks more effectively than fixed hints from an initial policy or a stronger external model. Experiments over 6 benchmarks with 3 LLMs show that SAGE consistently outperforms GRPO, on average +2.0 on Llama-3.2-3B-Instruct, +1.2 on Qwen2.5-7B-Instruct and +1.3 on Qwen3-4B-Instruct. The code is available at https://github.com/BaohaoLiao/SAGE.
☆ SwiftVLM: Efficient Vision-Language Model Inference via Cross-Layer Token Bypass
Visual token pruning is a promising approach for reducing the computational cost of vision-language models (VLMs), and existing methods often rely on early pruning decisions to improve efficiency. While effective on coarse-grained reasoning tasks, they suffer from significant performance degradation on tasks requiring fine-grained visual details. Through layer-wise analysis, we reveal substantial discrepancies in visual token importance across layers, showing that tokens deemed unimportant at shallow layers can later become highly relevant for text-conditioned reasoning. To avoid irreversible critical information loss caused by premature pruning, we introduce a new pruning paradigm, termed bypass, which preserves unselected visual tokens and forwards them to subsequent pruning stages for re-evaluation. Building on this paradigm, we propose SwiftVLM, a simple and training-free method that performs pruning at model-specific layers with strong visual token selection capability, while enabling independent pruning decisions across layers. Experiments across multiple VLMs and benchmarks demonstrate that SwiftVLM consistently outperforms existing pruning strategies, achieving superior accuracy-efficiency trade-offs and more faithful visual token selection behavior.
☆ Contrastive Concept-Tree Search for LLM-Assisted Algorithm Discovery
Large language Model (LLM)-assisted algorithm discovery is an iterative, black-box optimization process over programs to approximatively solve a target task, where an LLM proposes candidate programs and an external evaluator provides task feedback. Despite intense recent research on the topic and promising results, how can the LLM internal representation of the space of possible programs be maximally exploited to improve performance is an open question. Here, we introduce Contrastive Concept-Tree Search (CCTS), which extracts a hierarchical concept representation from the generated programs and learns a contrastive concept model that guides parent selection. By reweighting parents using a likelihood-ratio score between high- and low-performing solutions, CCTS biases search toward useful concept combinations and away from misleading ones, providing guidance through an explicit concept hierarchy rather than the algorithm lineage constructed by the LLM. We show that CCTS improves search efficiency over fitness-based baselines and produces interpretable, task-specific concept trees across a benchmark of open Erdős-type combinatorics problems. Our analysis indicates that the gains are driven largely by learning which concepts to avoid. We further validate these findings in a controlled synthetic algorithm-discovery environment, which reproduces qualitatively the search dynamics observed with the LLMs.
☆ Understanding Multi-Agent LLM Frameworks: A Unified Benchmark and Experimental Analysis
Multi-agent LLM frameworks are widely used to accelerate the development of agent systems powered by large language models (LLMs). These frameworks impose distinct architectural structures that govern how agents interact, store information, and coordinate tasks. However, their impact on system performance remains poorly understood. This gap is critical, as architectural choices alone can induce order-of-magnitude differences in latency and throughput, as well as substantial variation in accuracy and scalability. Addressing this challenge requires (i) jointly evaluating multiple capabilities, such as orchestration overhead, memory behavior, planning, specialization, and coordination, and (ii) conducting these evaluations under controlled, framework-level conditions to isolate architectural effects. Existing benchmarks focus on individual capabilities and lack standardized framework-level evaluation. We address these limitations by (i) introducing an architectural taxonomy for systematically comparing multi-agent LLM frameworks along fundamental dimensions, and (ii) developing MAFBench, a unified evaluation suite that integrates existing benchmarks under a standardized execution pipeline. Using MAFBench, we conduct a controlled empirical study across several widely used frameworks. Our results show that framework-level design choices alone can increase latency by over 100x, reduce planning accuracy by up to 30%, and lower coordination success from above 90% to below 30%. Finally, we translate our findings into concrete architectural design principles and framework selection guidance, and outline promising future research directions.
comment: 25 pages, 9 figures and 13 tables; introduces MAFBench unified multi-agent evaluation suite
☆ Beyond Cropping and Rotation: Automated Evolution of Powerful Task-Specific Augmentations with Generative Models
Data augmentation has long been a cornerstone for reducing overfitting in vision models, with methods like AutoAugment automating the design of task-specific augmentations. Recent advances in generative models, such as conditional diffusion and few-shot NeRFs, offer a new paradigm for data augmentation by synthesizing data with significantly greater diversity and realism. However, unlike traditional augmentations like cropping or rotation, these methods introduce substantial changes that enhance robustness but also risk degrading performance if the augmentations are poorly matched to the task. In this work, we present EvoAug, an automated augmentation learning pipeline, which leverages these generative models alongside an efficient evolutionary algorithm to learn optimal task-specific augmentations. Our pipeline introduces a novel approach to image augmentation that learns stochastic augmentation trees that hierarchically compose augmentations, enabling more structured and adaptive transformations. We demonstrate strong performance across fine-grained classification and few-shot learning tasks. Notably, our pipeline discovers augmentations that align with domain knowledge, even in low-data settings. These results highlight the potential of learned generative augmentations, unlocking new possibilities for robust model training.
☆ Quantized Evolution Strategies: High-precision Fine-tuning of Quantized LLMs at Low-precision Cost
Post-Training Quantization (PTQ) is essential for deploying Large Language Models (LLMs) on memory-constrained devices, yet it renders models static and difficult to fine-tune. Standard fine-tuning paradigms, including Reinforcement Learning (RL), fundamentally rely on backpropagation and high-precision weights to compute gradients. Thus they cannot be used on quantized models, where the parameter space is discrete and non-differentiable. While Evolution Strategies (ES) offer a backpropagation-free alternative, optimization of the quantized parameters can still fail due to vanishing or inaccurate gradient. This paper introduces Quantized Evolution Strategies (QES), an optimization paradigm that performs full-parameter fine-tuning directly in the quantized space. QES is based on two innovations: (1) it integrates accumulated error feedback to preserve high-precision gradient signals, and (2) it utilizes a stateless seed replay to reduce memory usage to low-precision inference levels. QES significantly outperforms the state-of-the-art zeroth-order fine-tuning method on arithmetic reasoning tasks, making direct fine-tuning for quantized models possible. It therefore opens up the possibility for scaling up LLMs entirely in the quantized space. The source code is available at https://github.com/dibbla/Quantized-Evolution-Strategies .
comment: Preprint version
☆ Digital Lifelong Learning in the Age of AI: Trends and Insights
Rapid innovations in AI and large language models (LLMs) have accelerated the adoption of digital learning, particularly beyond formal education. What began as an emergency response during COVID-19 has shifted from a supplementary resource to an essential pillar of education. Understanding how digital learning continues to evolve for adult and lifelong learners is therefore increasingly important. This study examines how various demographics interact with digital learning platforms, focusing on the learner motivations, the effectiveness of gamification in digital learning, and the integration of AI. Using multi survey data from 200 respondents and advanced analytics, our findings reveal a notable increase in the perceived relevance of digital learning after the pandemic, especially among young adults and women, coinciding with the rise of LLM-powered AI tools that support personalized learning. We aim to provide actionable insights for businesses, government policymakers, and educators seeking to optimize their digital learning offerings to meet evolving workforce needs.
comment: 41 pages including references, appendix, 14 figures
☆ BridgeV2W: Bridging Video Generation Models to Embodied World Models via Embodiment Masks
Embodied world models have emerged as a promising paradigm in robotics, most of which leverage large-scale Internet videos or pretrained video generation models to enrich visual and motion priors. However, they still face key challenges: a misalignment between coordinate-space actions and pixel-space videos, sensitivity to camera viewpoint, and non-unified architectures across embodiments. To this end, we present BridgeV2W, which converts coordinate-space actions into pixel-aligned embodiment masks rendered from the URDF and camera parameters. These masks are then injected into a pretrained video generation model via a ControlNet-style pathway, which aligns the action control signals with predicted videos, adds view-specific conditioning to accommodate camera viewpoints, and yields a unified world model architecture across embodiments. To mitigate overfitting to static backgrounds, BridgeV2W further introduces a flow-based motion loss that focuses on learning dynamic and task-relevant regions. Experiments on single-arm (DROID) and dual-arm (AgiBot-G1) datasets, covering diverse and challenging conditions with unseen viewpoints and scenes, show that BridgeV2W improves video generation quality compared to prior state-of-the-art methods. We further demonstrate the potential of BridgeV2W on downstream real-world tasks, including policy evaluation and goal-conditioned planning. More results can be found on our project website at https://BridgeV2W.github.io .
☆ QVLA: Not All Channels Are Equal in Vision-Language-Action Model's Quantization ICLR2026
The advent of Vision-Language-Action (VLA) models represents a significant leap for embodied intelligence, yet their immense computational demands critically hinder deployment on resource-constrained robotic platforms. Intuitively, low-bit quantization is a prevalent and preferred technique for large-scale model compression. However, we find that a systematic analysis of VLA model's quantization is fundamentally lacking. We argue that naively applying uniform-bit quantization from Large Language Models (LLMs) to robotics is flawed, as these methods prioritize passive data fidelity while ignoring how minor action deviations compound into catastrophic task failures. To bridge this gap, we introduce QVLA, the first action-centric quantization framework specifically designed for embodied control. In a sharp departure from the rigid, uniform-bit quantization of LLM-based methods, QVLA introduces a highly granular, channel-wise bit allocation strategy. Its core mechanism is to directly measure the final action-space sensitivity when quantizing each individual channel to various bit-widths. This process yields a precise, per-channel importance metric that guides a global optimization, which elegantly unifies quantization and pruning (0-bit) into a single, cohesive framework. Extensive evaluations on different baselines demonstrate the superiority of our approach. In the LIBERO, the quantization version of OpenVLA-OFT with our method requires only 29.2% of the original model's VRAM while maintaining 98.9% of its original performance and achieving a 1.49x speedup. This translates to a 22.6% performance improvement over the LLM-derived method SmoothQuant. Our work establishes a new, principled foundation for compressing VLA models in robotics, paving the way for deploying powerful, large-scale models on real-world hardware. Code will be released.
comment: ICLR2026
☆ A Scene Graph Backed Approach to Open Set Semantic Mapping
While Open Set Semantic Mapping and 3D Semantic Scene Graphs (3DSSGs) are established paradigms in robotic perception, deploying them effectively to support high-level reasoning in large-scale, real-world environments remains a significant challenge. Most existing approaches decouple perception from representation, treating the scene graph as a derivative layer generated post hoc. This limits both consistency and scalability. In contrast, we propose a mapping architecture where the 3DSSG serves as the foundational backend, acting as the primary knowledge representation for the entire mapping process. Our approach leverages prior work on incremental scene graph prediction to infer and update the graph structure in real-time as the environment is explored. This ensures that the map remains topologically consistent and computationally efficient, even during extended operations in large-scale settings. By maintaining an explicit, spatially grounded representation that supports both flat and hierarchical topologies, we bridge the gap between sub-symbolic raw sensor data and high-level symbolic reasoning. Consequently, this provides a stable, verifiable structure that knowledge-driven frameworks, ranging from knowledge graphs and ontologies to Large Language Models (LLMs), can directly exploit, enabling agents to operate with enhanced interpretability, trustworthiness, and alignment to human concepts.
☆ Input-to-State Safe Backstepping: Robust Safety-Critical Control with Unmatched Uncertainties
Guaranteeing safety in the presence of unmatched disturbances -- uncertainties that cannot be directly canceled by the control input -- remains a key challenge in nonlinear control. This paper presents a constructive approach to safety-critical control of nonlinear systems with unmatched disturbances. We first present a generalization of the input-to-state safety (ISSf) framework for systems with these uncertainties using the recently developed notion of an Optimal Decay CBF, which provides more flexibility for satisfying the associated Lyapunov-like conditions for safety. From there, we outline a procedure for constructing ISSf-CBFs for two relevant classes of systems with unmatched uncertainties: i) strict-feedback systems; ii) dual-relative-degree systems, which are similar to differentially flat systems. Our theoretical results are illustrated via numerical simulations of an inverted pendulum and planar quadrotor.
comment: To appear at the 2026 American Control Conference
☆ When Should Agents Coordinate in Differentiable Sequential Decision Problems?
Multi-robot teams must coordinate to operate effectively. When a team operates in an uncoordinated manner, and agents choose actions that are only individually optimal, the team's outcome can suffer. However, in many domains, coordination requires costly communication. We explore the value of coordination in a broad class of differentiable motion-planning problems. In particular, we model coordinated behavior as a spectrum: at one extreme, agents jointly optimize a common team objective, and at the other, agents make unilaterally optimal decisions given their individual decision variables, i.e., they operate at Nash equilibria. We then demonstrate that reasoning about coordination in differentiable motion-planning problems reduces to reasoning about the second-order properties of agents' objectives, and we provide algorithms that use this second-order reasoning to determine at which times a team of agents should coordinate.
comment: 15 content pages, 2 pages for references, 4 figures
☆ MVP-LAM: Learning Action-Centric Latent Action via Cross-Viewpoint Reconstruction
Learning \emph{latent actions} from diverse human videos enables scaling robot learning beyond embodiment-specific robot datasets, and these latent actions have recently been used as pseudo-action labels for vision-language-action (VLA) model pretraining. To make VLA pretraining effective, latent actions should contain information about the underlying agent's actions despite the absence of ground-truth labels. We propose \textbf{M}ulti-\textbf{V}iew\textbf{P}oint \textbf{L}atent \textbf{A}ction \textbf{M}odel (\textbf{MVP-LAM}), which learns discrete latent actions that are highly informative about ground-truth actions from time-synchronized multi-view videos. MVP-LAM trains latent actions with a \emph{cross-viewpoint reconstruction} objective, so that a latent action inferred from one view must explain the future in another view, reducing reliance on viewpoint-specific cues. On Bridge V2, MVP-LAM produces more action-centric latent actions, achieving higher mutual information with ground-truth actions and improved action prediction, including under out-of-distribution evaluation. Finally, pretraining VLAs with MVP-LAM latent actions improves downstream manipulation performance on the SIMPLER and LIBERO-Long benchmarks.
☆ Variance-Reduced Model Predictive Path Integral via Quadratic Model Approximation
Sampling-based controllers, such as Model Predictive Path Integral (MPPI) methods, offer substantial flexibility but often suffer from high variance and low sample efficiency. To address these challenges, we introduce a hybrid variance-reduced MPPI framework that integrates a prior model into the sampling process. Our key insight is to decompose the objective function into a known approximate model and a residual term. Since the residual captures only the discrepancy between the model and the objective, it typically exhibits a smaller magnitude and lower variance than the original objective. Although this principle applies to general modeling choices, we demonstrate that adopting a quadratic approximation enables the derivation of a closed-form, model-guided prior that effectively concentrates samples in informative regions. Crucially, the framework is agnostic to the source of geometric information, allowing the quadratic model to be constructed from exact derivatives, structural approximations (e.g., Gauss- or Quasi-Newton), or gradient-free randomized smoothing. We validate the approach on standard optimization benchmarks, a nonlinear, underactuated cart-pole control task, and a contact-rich manipulation problem with non-smooth dynamics. Across these domains, we achieve faster convergence and superior performance in low-sample regimes compared to standard MPPI. These results suggest that the method can make sample-based control strategies more practical in scenarios where obtaining samples is expensive or limited.
Self-supervised Physics-Informed Manipulation of Deformable Linear Objects with Non-negligible Dynamics
We address dynamic manipulation of deformable linear objects by presenting SPiD, a physics-informed self-supervised learning framework that couples an accurate deformable object model with an augmented self-supervised training strategy. On the modeling side, we extend a mass-spring model to more accurately capture object dynamics while remaining lightweight enough for high-throughput rollouts during self-supervised learning. On the learning side, we train a neural controller using a task-oriented cost, enabling end-to-end optimization through interaction with the differentiable object model. In addition, we propose a self-supervised DAgger variant that detects distribution shift during deployment and performs offline self-correction to further enhance robustness without expert supervision. We evaluate our method primarily on the rope stabilization task, where a robot must bring a swinging rope to rest as quickly and smoothly as possible. Extensive experiments in both simulation and the real world demonstrate that the proposed controller achieves fast and smooth rope stabilization, generalizing across unseen initial states, rope lengths, masses, non-uniform mass distributions, and external disturbances. Additionally, we develop an affordable markerless rope perception method and demonstrate that our controller maintains performance with noisy and low-frequency state updates. Furthermore, we demonstrate the generality of the framework by extending it to the rope trajectory tracking task. Overall, SPiD offers a data-efficient, robust, and physically grounded framework for dynamic manipulation of deformable linear objects, featuring strong sim-to-real generalization.
comment: Submitted to IEEE Transactions on Robotics. Video: https://youtu.be/lgX2J-00TRM
☆ Human-in-the-Loop Failure Recovery with Adaptive Task Allocation
Since the recent Covid-19 pandemic, mobile manipulators and humanoid assistive robots with higher levels of autonomy have increasingly been adopted for patient care and living assistance. Despite advancements in autonomy, these robots often struggle to perform reliably in dynamic and unstructured environments and require human intervention to recover from failures. Effective human-robot collaboration is essential to enable robots to receive assistance from the most competent operator, in order to reduce their workload and minimize disruptions in task execution. In this paper, we propose an adaptive method for allocating robotic failures to human operators (ARFA). Our proposed approach models the capabilities of human operators, and continuously updates these beliefs based on their actual performance for failure recovery. For every failure to be resolved, a reward function calculates expected outcomes based on operator capabilities and historical data, task urgency, and current workload distribution. The failure is then assigned to the operator with the highest expected reward. Our simulations and user studies show that ARFA outperforms random allocation, significantly reducing robot idle time, improving overall system performance, and leading to a more distributed workload among operators.
☆ Multi-Player, Multi-Strategy Quantum Game Model for Interaction-Aware Decision-Making in Autonomous Driving
Although significant progress has been made in decision-making for automated driving, challenges remain for deployment in the real world. One challenge lies in addressing interaction-awareness. Most existing approaches oversimplify interactions between the ego vehicle and surrounding agents, and often neglect interactions among the agents themselves. A common solution is to model these interactions using classical game theory. However, its formulation assumes rational players, whereas human behavior is frequently uncertain or irrational. To address these challenges, we propose the Quantum Game Decision-Making (QGDM) model, a novel framework that combines classical game theory with quantum mechanics principles (such as superposition, entanglement, and interference) to tackle multi-player, multi-strategy decision-making problems. To the best of our knowledge, this is one of the first studies to apply quantum game theory to decision-making for automated driving. QGDM runs in real time on a standard computer, without requiring quantum hardware. We evaluate QGDM in simulation across various scenarios, including roundabouts, merging, and highways, and compare its performance with multiple baseline methods. Results show that QGDM significantly improves success rates and reduces collision rates compared to classical approaches, particularly in scenarios with high interaction.
☆ Formal Evidence Generation for Assurance Cases for Robotic Software Models
Robotics and Autonomous Systems are increasingly deployed in safety-critical domains, so that demonstrating their safety is essential. Assurance Cases (ACs) provide structured arguments supported by evidence, but generating and maintaining this evidence is labour-intensive, error-prone, and difficult to keep consistent as systems evolve. We present a model-based approach to systematically generating AC evidence by embedding formal verification into the assurance workflow. The approach addresses three challenges: systematically deriving formal assertions from natural language requirements using templates, orchestrating multiple formal verification tools to handle diverse property types, and integrating formal evidence production into the workflow. Leveraging RoboChart, a domain-specific modelling language with formal semantics, we combine model checking and theorem proving in our approach. Structured requirements are automatically transformed into formal assertions using predefined templates, and verification results are automatically integrated as evidence. Case studies demonstrate the effectiveness of our approach.
comment: This is a preprint. The paper is currently under review at Software and Systems Modeling
☆ AffordanceGrasp-R1:Leveraging Reasoning-Based Affordance Segmentation with Reinforcement Learning for Robotic Grasping
We introduce AffordanceGrasp-R1, a reasoning-driven affordance segmentation framework for robotic grasping that combines a chain-of-thought (CoT) cold-start strategy with reinforcement learning to enhance deduction and spatial grounding. In addition, we redesign the grasping pipeline to be more context-aware by generating grasp candidates from the global scene point cloud and subsequently filtering them using instruction-conditioned affordance masks. Extensive experiments demonstrate that AffordanceGrasp-R1 consistently outperforms state-of-the-art (SOTA) methods on benchmark datasets, and real-world robotic grasping evaluations further validate its robustness and generalization under complex language-conditioned manipulation scenarios.
comment: Preprint version
☆ Investigating the Influence of Spatial Ability in Augmented Reality-assisted Robot Programming
Augmented Reality (AR) offers promising opportunities to enhance learning, but its mechanisms and effects are not yet fully understood. As learning becomes increasingly personalized, considering individual learner characteristics becomes more important. This study investigates the moderating effect of spatial ability on learning experience with AR in the context of robot programming. A between-subjects experiment ($N=71$) compared conventional robot programming to an AR-assisted approach using a head-mounted display. Participants' spatial ability was assessed using the Mental Rotation Test. The learning experience was measured through the System Usability Scale (SUS) and cognitive load. The results indicate that AR support does not significantly improve the learning experience compared to the conventional approach. However, AR appears to have a compensatory effect on the influence of spatial ability. In the control group, spatial ability was significantly positively associated with SUS scores and negatively associated with extraneous cognitive load, indicating that higher spatial ability predicts a better learning experience. In the AR condition, these relationships were not observable, suggesting that AR mitigated the disadvantage typically experienced by learners with lower spatial abilities. These findings suggest that AR can serve a compensatory function by reducing the influence of learner characteristics. Future research should further explore this compensatory role of AR to guide the design of personalized learning environments that address diverse learner needs and reduce barriers for learners with varying cognitive profiles.
☆ HetroD: A High-Fidelity Drone Dataset and Benchmark for Autonomous Driving in Heterogeneous Traffic
We present HetroD, a dataset and benchmark for developing autonomous driving systems in heterogeneous environments. HetroD targets the critical challenge of navi- gating real-world heterogeneous traffic dominated by vulner- able road users (VRUs), including pedestrians, cyclists, and motorcyclists that interact with vehicles. These mixed agent types exhibit complex behaviors such as hook turns, lane splitting, and informal right-of-way negotiation. Such behaviors pose significant challenges for autonomous vehicles but remain underrepresented in existing datasets focused on structured, lane-disciplined traffic. To bridge the gap, we collect a large- scale drone-based dataset to provide a holistic observation of traffic scenes with centimeter-accurate annotations, HD maps, and traffic signal states. We further develop a modular toolkit for extracting per-agent scenarios to support downstream task development. In total, the dataset comprises over 65.4k high- fidelity agent trajectories, 70% of which are from VRUs. HetroD supports modeling of VRU behaviors in dense, het- erogeneous traffic and provides standardized benchmarks for forecasting, planning, and simulation tasks. Evaluation results reveal that state-of-the-art prediction and planning models struggle with the challenges presented by our dataset: they fail to predict lateral VRU movements, cannot handle unstructured maneuvers, and exhibit limited performance in dense and multi-agent scenarios, highlighting the need for more robust approaches to heterogeneous traffic. See our project page for more examples: https://hetroddata.github.io/HetroD/
comment: IEEE International Conference on Robotics and Automation (ICRA) 2026
☆ Model-based Optimal Control for Rigid-Soft Underactuated Systems
Continuum soft robots are inherently underactuated and subject to intrinsic input constraints, making dynamic control particularly challenging, especially in hybrid rigid-soft robots. While most existing methods focus on quasi-static behaviors, dynamic tasks such as swing-up require accurate exploitation of continuum dynamics. This has led to studies on simple low-order template systems that often fail to capture the complexity of real continuum deformations. Model-based optimal control offers a systematic solution; however, its application to rigid-soft robots is often limited by the computational cost and inaccuracy of numerical differentiation for high-dimensional models. Building on recent advances in the Geometric Variable Strain model that enable analytical derivatives, this work investigates three optimal control strategies for underactuated soft systems-Direct Collocation, Differential Dynamic Programming, and Nonlinear Model Predictive Control-to perform dynamic swing-up tasks. To address stiff continuum dynamics and constrained actuation, implicit integration schemes and warm-start strategies are employed to improve numerical robustness and computational efficiency. The methods are evaluated in simulation on three Rigid-Soft and high-order soft benchmark systems-the Soft Cart-Pole, the Soft Pendubot, and the Soft Furuta Pendulum- highlighting their performance and computational trade-offs.
☆ ProAct: A Benchmark and Multimodal Framework for Structure-Aware Proactive Response
While passive agents merely follow instructions, proactive agents align with higher-level objectives, such as assistance and safety by continuously monitoring the environment to determine when and how to act. However, developing proactive agents is hindered by the lack of specialized resources. To address this, we introduce ProAct-75, a benchmark designed to train and evaluate proactive agents across diverse domains, including assistance, maintenance, and safety monitoring. Spanning 75 tasks, our dataset features 91,581 step-level annotations enriched with explicit task graphs. These graphs encode step dependencies and parallel execution possibilities, providing the structural grounding necessary for complex decision-making. Building on this benchmark, we propose ProAct-Helper, a reference baseline powered by a Multimodal Large Language Model (MLLM) that grounds decision-making in state detection, and leveraging task graphs to enable entropy-driven heuristic search for action selection, allowing agents to execute parallel threads independently rather than mirroring the human's next step. Extensive experiments demonstrate that ProAct-Helper outperforms strong closed-source models, improving trigger detection mF1 by 6.21%, saving 0.25 more steps in online one-step decision, and increasing the rate of parallel actions by 15.58%.
☆ Learning-based Initialization of Trajectory Optimization for Path-following Problems of Redundant Manipulators
Trajectory optimization (TO) is an efficient tool to generate a redundant manipulator's joint trajectory following a 6-dimensional Cartesian path. The optimization performance largely depends on the quality of initial trajectories. However, the selection of a high-quality initial trajectory is non-trivial and requires a considerable time budget due to the extremely large space of the solution trajectories and the lack of prior knowledge about task constraints in configuration space. To alleviate the issue, we present a learning-based initial trajectory generation method that generates high-quality initial trajectories in a short time budget by adopting example-guided reinforcement learning. In addition, we suggest a null-space projected imitation reward to consider null-space constraints by efficiently learning kinematically feasible motion captured in expert demonstrations. Our statistical evaluation in simulation shows the improved optimality, efficiency, and applicability of TO when we plug in our method's output, compared with three other baselines. We also show the performance improvement and feasibility via real-world experiments with a seven-degree-of-freedom manipulator.
comment: Accepted to ICRA 2023. Project Page
☆ Deep-Learning-Based Control of a Decoupled Two-Segment Continuum Robot for Endoscopic Submucosal Dissection
Manual endoscopic submucosal dissection (ESD) is technically demanding, and existing single-segment robotic tools offer limited dexterity. These limitations motivate the development of more advanced solutions. To address this, DESectBot, a novel dual segment continuum robot with a decoupled structure and integrated surgical forceps, enabling 6 degrees of freedom (DoFs) tip dexterity for improved lesion targeting in ESD, was developed in this work. Deep learning controllers based on gated recurrent units (GRUs) for simultaneous tip position and orientation control, effectively handling the nonlinear coupling between continuum segments, were proposed. The GRU controller was benchmarked against Jacobian based inverse kinematics, model predictive control (MPC), a feedforward neural network (FNN), and a long short-term memory (LSTM) network. In nested-rectangle and Lissajous trajectory tracking tasks, the GRU achieved the lowest position/orientation RMSEs: 1.11 mm/ 4.62° and 0.81 mm/ 2.59°, respectively. For orientation control at a fixed position (four target poses), the GRU attained a mean RMSE of 0.14 mm and 0.72°, outperforming all alternatives. In a peg transfer task, the GRU achieved a 100% success rate (120 success/120 attempts) with an average transfer time of 11.8s, the STD significantly outperforms novice-controlled systems. Additionally, an ex vivo ESD demonstration grasping, elevating, and resecting tissue as the scalpel completed the cut confirmed that DESectBot provides sufficient stiffness to divide thick gastric mucosa and an operative workspace adequate for large lesions.These results confirm that GRU-based control significantly enhances precision, reliability, and usability in ESD surgical training scenarios.
☆ Enhancing Navigation Efficiency of Quadruped Robots via Leveraging Personal Transportation Platforms
Quadruped robots face limitations in long-range navigation efficiency due to their reliance on legs. To ameliorate the limitations, we introduce a Reinforcement Learning-based Active Transporter Riding method (\textit{RL-ATR}), inspired by humans' utilization of personal transporters, including Segways. The \textit{RL-ATR} features a transporter riding policy and two state estimators. The policy devises adequate maneuvering strategies according to transporter-specific control dynamics, while the estimators resolve sensor ambiguities in non-inertial frames by inferring unobservable robot and transporter states. Comprehensive evaluations in simulation validate proficient command tracking abilities across various transporter-robot models and reduced energy consumption compared to legged locomotion. Moreover, we conduct ablation studies to quantify individual component contributions within the \textit{RL-ATR}. This riding ability could broaden the locomotion modalities of quadruped robots, potentially expanding the operational range and efficiency.
comment: Accepted to ICRA 2025. Project Page
☆ PlanTRansformer: Unified Prediction and Planning with Goal-conditioned Transformer
Trajectory prediction and planning are fundamental yet disconnected components in autonomous driving. Prediction models forecast surrounding agent motion under unknown intentions, producing multimodal distributions, while planning assumes known ego objectives and generates deterministic trajectories. This mismatch creates a critical bottleneck: prediction lacks supervision for agent intentions, while planning requires this information. Existing prediction models, despite strong benchmarking performance, often remain disconnected from planning constraints such as collision avoidance and dynamic feasibility. We introduce Plan TRansformer (PTR), a unified Gaussian Mixture Transformer framework integrating goal-conditioned prediction, dynamic feasibility, interaction awareness, and lane-level topology reasoning. A teacher-student training strategy progressively masks surrounding agent commands during training to align with inference conditions where agent intentions are unavailable. PTR achieves 4.3%/3.5% improvement in marginal/joint mAP compared to the baseline Motion Transformer (MTR) and 15.5% planning error reduction at 5s horizon compared to GameFormer. The architecture-agnostic design enables application to diverse Transformer-based prediction models. Project Website: https://github.com/SelzerConst/PlanTRansformer
comment: Submitted and accepted at IEEE IV 2026
☆ Learning-based Adaptive Control of Quadruped Robots for Active Stabilization on Moving Platforms IROS 2024
A quadruped robot faces balancing challenges on a six-degrees-of-freedom moving platform, like subways, buses, airplanes, and yachts, due to independent platform motions and resultant diverse inertia forces on the robot. To alleviate these challenges, we present the Learning-based Active Stabilization on Moving Platforms (\textit{LAS-MP}), featuring a self-balancing policy and system state estimators. The policy adaptively adjusts the robot's posture in response to the platform's motion. The estimators infer robot and platform states based on proprioceptive sensor data. For a systematic training scheme across various platform motions, we introduce platform trajectory generation and scheduling methods. Our evaluation demonstrates superior balancing performance across multiple metrics compared to three baselines. Furthermore, we conduct a detailed analysis of the \textit{LAS-MP}, including ablation studies and evaluation of the estimators, to validate the effectiveness of each component.
comment: Accepted to IROS 2024. Project Page
☆ Manipulation via Force Distribution at Contact
Efficient and robust trajectories play a crucial role in contact-rich manipulation, which demands accurate mod- eling of object-robot interactions. Many existing approaches rely on point contact models due to their computational effi- ciency. Simple contact models are computationally efficient but inherently limited for achieving human-like, contact-rich ma- nipulation, as they fail to capture key frictional dynamics and torque generation observed in human manipulation. This study introduces a Force-Distributed Line Contact (FDLC) model in contact-rich manipulation and compares it against conventional point contact models. A bi-level optimization framework is constructed, in which the lower-level solves an optimization problem for contact force computation, and the upper-level optimization applies iLQR for trajectory optimization. Through this framework, the limitations of point contact are demon- strated, and the benefits of the FDLC in generating efficient and robust trajectories are established. The effectiveness of the proposed approach is validated by a box rotating task, demonstrating that FDLC enables trajectories generated via non-uniform force distributions along the contact line, while requiring lower control effort and less motion of the robot.
☆ LEVIO: Lightweight Embedded Visual Inertial Odometry for Resource-Constrained Devices
Accurate, infrastructure-less sensor systems for motion tracking are essential for mobile robotics and augmented reality (AR) applications. The most popular state-of-the-art visual-inertial odometry (VIO) systems, however, are too computationally demanding for resource-constrained hardware, such as micro-drones and smart glasses. This work presents LEVIO, a fully featured VIO pipeline optimized for ultra-low-power compute platforms, allowing six-degrees-of-freedom (DoF) real-time sensing. LEVIO incorporates established VIO components such as Oriented FAST and Rotated BRIEF (ORB) feature tracking and bundle adjustment, while emphasizing a computationally efficient architecture with parallelization and low memory usage to suit embedded microcontrollers and low-power systems-on-chip (SoCs). The paper proposes and details the algorithmic design choices and the hardware-software co-optimization approach, and presents real-time performance on resource-constrained hardware. LEVIO is validated on a parallel-processing ultra-low-power RISC-V SoC, achieving 20 FPS while consuming less than 100 mW, and benchmarked against public VIO datasets, offering a compelling balance between efficiency and accuracy. To facilitate reproducibility and adoption, the complete implementation is released as open-source.
comment: This article has been accepted for publication in the IEEE Sensors Journal (JSEN)
☆ Collision Detection with Analytical Derivatives of Contact Kinematics
Differentiable contact kinematics are essential for gradient-based methods in robotics, yet the mapping from robot state to contact distance, location, and normal becomes non-smooth in degenerate configurations of shapes with zero or undefined curvature. We address this inherent limitation by selectively regularizing such geometries into strictly convex implicit representations, restoring uniqueness and smoothness of the contact map. Leveraging this geometric regularization, we develop iDCOL, an implicit differentiable collision detection and contact kinematics framework. iDCOL represents colliding bodies using strictly convex implicit surfaces and computes collision detection and contact kinematics by solving a fixed-size nonlinear system derived from a geometric scaling-based convex optimization formulation. By applying the Implicit Function Theorem to the resulting system residual, we derive analytical derivatives of the contact kinematic quantities. We develop a fast Newton-based solver for iDCOL and provide an open-source C++ implementation of the framework. The robustness of the approach is evaluated through extensive collision simulations and benchmarking, and applicability is demonstrated in gradient-based kinematic path planning and differentiable contact physics, including multi-body rigid collisions and a soft-robot interaction example.
comment: 12 pages, 9 figures, 2 tables
☆ A thin and soft optical tactile sensor for highly sensitive object perception
Tactile sensing is crucial in robotics and wearable devices for safe perception and interaction with the environment. Optical tactile sensors have emerged as promising solutions, as they are immune to electromagnetic interference and have high spatial resolution. However, existing optical approaches, particularly vision-based tactile sensors, rely on complex optical assemblies that involve lenses and cameras, resulting in bulky, rigid, and alignment-sensitive designs. In this study, we present a thin, compact, and soft optical tactile sensor featuring an alignment-free configuration. The soft optical sensor operates by capturing deformation-induced changes in speckle patterns generated within a soft silicone material, thereby enabling precise force measurements and texture recognition via machine learning. The experimental results show a root-mean-square error of 40 mN in the force measurement and a classification accuracy of 93.33% over nine classes of textured surfaces, including Mahjong tiles. The proposed speckle-based approach provides a compact, easily fabricated, and mechanically compliant platform that bridges optical sensing with flexible shape-adaptive architectures, thereby demonstrating its potential as a novel tactile-sensing paradigm for soft robotics and wearable haptic interfaces.
☆ Omnidirectional Solid-State mmWave Radar Perception for UAV Power Line Collision Avoidance
Detecting and estimating distances to power lines is a challenge for both human UAV pilots and autonomous systems, which increases the risk of unintended collisions. We present a mmWave radar-based perception system that provides spherical sensing coverage around a small UAV for robust power line detection and avoidance. The system integrates multiple compact solid-state mmWave radar modules to synthesize an omnidirectional field of view while remaining lightweight. We characterize the sensing behavior of this omnidirectional radar arrangement in power line environments and develop a robust detection-and-avoidance algorithm tailored to that behavior. Field experiments on real power lines demonstrate reliable detection at ranges up to 10 m, successful avoidance maneuvers at flight speeds upwards of 10 m/s, and detection of wires as thin as 1.2 mm in diameter. These results indicate the approach's suitability as an additional safety layer for both autonomous and manual UAV flight.
comment: Accepted for publication at the 2026 IEEE International Conference on Robotics and Automation (ICRA). Video at https://www.youtube.com/watch?v=rJW3eEC-5Ao (youtube)
☆ Depth Completion in Unseen Field Robotics Environments Using Extremely Sparse Depth Measurements
Autonomous field robots operating in unstructured environments require robust perception to ensure safe and reliable operations. Recent advances in monocular depth estimation have demonstrated the potential of low-cost cameras as depth sensors; however, their adoption in field robotics remains limited due to the absence of reliable scale cues, ambiguous or low-texture conditions, and the scarcity of large-scale datasets. To address these challenges, we propose a depth completion model that trains on synthetic data and uses extremely sparse measurements from depth sensors to predict dense metric depth in unseen field robotics environments. A synthetic dataset generation pipeline tailored to field robotics enables the creation of multiple realistic datasets for training purposes. This dataset generation approach utilizes textured 3D meshes from Structure from Motion and photorealistic rendering with novel viewpoint synthesis to simulate diverse field robotics scenarios. Our approach achieves an end-to-end latency of 53 ms per frame on a Nvidia Jetson AGX Orin, enabling real-time deployment on embedded platforms. Extensive evaluation demonstrates competitive performance across diverse real-world field robotics scenarios.
comment: Accepted to ICRA 2026
☆ HUSKY: Humanoid Skateboarding System via Physics-Aware Whole-Body Control
While current humanoid whole-body control frameworks predominantly rely on the static environment assumptions, addressing tasks characterized by high dynamism and complex interactions presents a formidable challenge. In this paper, we address humanoid skateboarding, a highly challenging task requiring stable dynamic maneuvering on an underactuated wheeled platform. This integrated system is governed by non-holonomic constraints and tightly coupled human-object interactions. Successfully executing this task requires simultaneous mastery of hybrid contact dynamics and robust balance control on a mechanically coupled, dynamically unstable skateboard. To overcome the aforementioned challenges, we propose HUSKY, a learning-based framework that integrates humanoid-skateboard system modeling and physics-aware whole-body control. We first model the coupling relationship between board tilt and truck steering angles, enabling a principled analysis of system dynamics. Building upon this, HUSKY leverages Adversarial Motion Priors (AMP) to learn human-like pushing motions and employs a physics-guided, heading-oriented strategy for lean-to-steer behaviors. Moreover, a trajectory-guided mechanism ensures smooth and stable transitions between pushing and steering. Experimental results on the Unitree G1 humanoid platform demonstrate that our framework enables stable and agile maneuvering on skateboards in real-world scenarios. The project page is available on https://husky-humanoid.github.io/.
☆ Hierarchical Proportion Models for Motion Generation via Integration of Motion Primitives
Imitation learning (IL) enables robots to acquire human-like motion skills from demonstrations, but it still requires extensive high-quality data and retraining to handle complex or long-horizon tasks. To improve data efficiency and adaptability, this study proposes a hierarchical IL framework that integrates motion primitives with proportion-based motion synthesis. The proposed method employs a two-layer architecture, where the upper layer performs long-term planning, while a set of lower-layer models learn individual motion primitives, which are combined according to specific proportions. Three model variants are introduced to explore different trade-offs between learning flexibility, computational cost, and adaptability: a learning-based proportion model, a sampling-based proportion model, and a playback-based proportion model, which differ in how the proportions are determined and whether the upper layer is trainable. Through real-robot pick-and-place experiments, the proposed models successfully generated complex motions not included in the primitive set. The sampling-based and playback-based proportion models achieved more stable and adaptable motion generation than the standard hierarchical model, demonstrating the effectiveness of proportion-based motion integration for practical robot learning.
comment: 6 pages, 9 figures. Accepted for publication in IEEE AMC 2026
☆ Estimation of Ground Reaction Forces from Kinematic Data during Locomotion
Ground reaction forces (GRFs) provide fundamental insight into human gait mechanics and are widely used to assess joint loading, limb symmetry, balance control, and motor function. Despite their clinical relevance, the use of GRF remains underutilised in clinical workflows due to the practical limitations of force plate systems. In this work, we present a force-plate-free approach for estimating GRFs using only marker-based motion capture data. This kinematics only method to estimate and decompose GRF makes it well suited for widespread clinical depolyment. By using kinematics from sixteen body segments, we estimate the centre of mass (CoM) and compute GRFs, which are subsequently decomposed into individual components through a minimization-based approach. Through this framework, we can identify gait stance phases and provide access to clinically meaningful kinetic measures without a dedicated force plate system. Experimental results demonstrate the viability of CoM and GRF estimation based solely on kinematic data, supporting force-plate-free gait analysis.
☆ When Attention Betrays: Erasing Backdoor Attacks in Robotic Policies by Reconstructing Visual Tokens
Downstream fine-tuning of vision-language-action (VLA) models enhances robotics, yet exposes the pipeline to backdoor risks. Attackers can pretrain VLAs on poisoned data to implant backdoors that remain stealthy but can trigger harmful behavior during inference. However, existing defenses either lack mechanistic insight into multimodal backdoors or impose prohibitive computational costs via full-model retraining. To this end, we uncover a deep-layer attention grabbing mechanism: backdoors redirect late-stage attention and form compact embedding clusters near the clean manifold. Leveraging this insight, we introduce Bera, a test-time backdoor erasure framework that detects tokens with anomalous attention via latent-space localization, masks suspicious regions using deep-layer cues, and reconstructs a trigger-free image to break the trigger-unsafe-action mapping while restoring correct behavior. Unlike prior defenses, Bera requires neither retraining of VLAs nor any changes to the training pipeline. Extensive experiments across multiple embodied platforms and tasks show that Bera effectively maintains nominal performance, significantly reduces attack success rates, and consistently restores benign behavior from backdoored outputs, thereby offering a robust and practical defense mechanism for securing robotic systems.
comment: ICRA2026 accepted
☆ Multi-function Robotized Surgical Dissector for Endoscopic Pulmonary Thromboendarterectomy: Preclinical Study and Evaluation
Patients suffering chronic severe pulmonary thromboembolism need Pulmonary Thromboendarterectomy (PTE) to remove the thromb and intima located inside pulmonary artery (PA). During the surgery, a surgeon holds tweezers and a dissector to delicately strip the blockage, but available tools for this surgery are rigid and straight, lacking distal dexterity to access into thin branches of PA. Therefore, this work presents a novel robotized dissector based on concentric push/pull robot (CPPR) structure, enabling entering deep thin branch of tortuous PA. Compared with conventional rigid dissectors, our design characterizes slenderness and dual-segment-bending dexterity. Owing to the hollow and thin-walled structure of the CPPR-based dissector as it has a slender body of 3.5mm in diameter, the central lumen accommodates two channels for irrigation and tip tool, and space for endoscopic camera's signal wire. To provide accurate surgical manipulation, optimization-based kinematics model was established, realizing a 2mm accuracy in positioning the tip tool (60mm length) under open-loop control strategy. As such, with the endoscopic camera, traditional PTE is possible to be upgraded as endoscopic PTE. Basic physic performance of the robotized dissector including stiffness, motion accuracy and maneuverability was evaluated through experiments. Surgery simulation on ex vivo porcine lung also demonstrates its dexterity and notable advantages in PTE.
☆ A Unified Candidate Set with Scene-Adaptive Refinement via Diffusion for End-to-End Autonomous Driving
End-to-end autonomous driving is increasingly adopting a multimodal planning paradigm that generates multiple trajectory candidates and selects the final plan, making candidate-set design critical. A fixed trajectory vocabulary provides stable coverage in routine driving but often misses optimal solutions in complex interactions, while scene-adaptive refinement can cause over-correction in simple scenarios by unnecessarily perturbing already strong vocabulary trajectories.We propose CdDrive, which preserves the original vocabulary candidates and augments them with scene-adaptive candidates generated by vocabulary-conditioned diffusion denoising. Both candidate types are jointly scored by a shared selection module, enabling reliable performance across routine and highly interactive scenarios. We further introduce HATNA (Horizon-Aware Trajectory Noise Adapter) to improve the smoothness and geometric continuity of diffusion candidates via temporal smoothing and horizon-aware noise modulation. Experiments on NAVSIM v1 and NAVSIM v2 demonstrate leading performance, and ablations verify the contribution of each component.
comment: Code:https://github.com/WWW-TJ/CdDrive
☆ Training and Simulation of Quadrupedal Robot in Adaptive Stair Climbing for Indoor Firefighting: An End-to-End Reinforcement Learning Approach
Quadruped robots are used for primary searches during the early stages of indoor fires. A typical primary search involves quickly and thoroughly looking for victims under hazardous conditions and monitoring flammable materials. However, situational awareness in complex indoor environments and rapid stair climbing across different staircases remain the main challenges for robot-assisted primary searches. In this project, we designed a two-stage end-to-end deep reinforcement learning (RL) approach to optimize both navigation and locomotion. In the first stage, the quadrupeds, Unitree Go2, were trained to climb stairs in Isaac Lab's pyramid-stair terrain. In the second stage, the quadrupeds were trained to climb various realistic indoor staircases in the Isaac Lab engine, with the learned policy transferred from the previous stage. These indoor staircases are straight, L-shaped, and spiral, to support climbing tasks in complex environments. This project explores how to balance navigation and locomotion and how end-to-end RL methods can enable quadrupeds to adapt to different stair shapes. Our main contributions are: (1) A two-stage end-to-end RL framework that transfers stair-climbing skills from abstract pyramid terrain to realistic indoor stair topologies. (2) A centerline-based navigation formulation that enables unified learning of navigation and locomotion without hierarchical planning. (3) Demonstration of policy generalization across diverse staircases using only local height-map perception. (4) An empirical analysis of success, efficiency, and failure modes under increasing stair difficulty.
comment: 8 pages, 9 figures, 43rd International Symposium on Automation and Robotics in Construction
☆ Towards Considerate Embodied AI: Co-Designing Situated Multi-Site Healthcare Robots from Abstract Concepts to High-Fidelity Prototypes
Co-design is essential for grounding embodied artificial intelligence (AI) systems in real-world contexts, especially high-stakes domains such as healthcare. While prior work has explored multidisciplinary collaboration, iterative prototyping, and support for non-technical participants, few have interwoven these into a sustained co-design process. Such efforts often target one context and low-fidelity stages, limiting the generalizability of findings and obscuring how participants' ideas evolve. To address these limitations, we conducted a 14-week workshop with a multidisciplinary team of 22 participants, centered around how embodied AI can reduce non-value-added task burdens in three healthcare settings: emergency departments, long-term rehabilitation facilities, and sleep disorder clinics. We found that the iterative progression from abstract brainstorming to high-fidelity prototypes, supported by educational scaffolds, enabled participants to understand real-world trade-offs and generate more deployable solutions. We propose eight guidelines for co-designing more considerate embodied AI: attuned to context, responsive to social dynamics, mindful of expectations, and grounded in deployment. Project Page: https://byc-sophie.github.io/Towards-Considerate-Embodied-AI/
comment: To appear in Proceedings of the 2026 CHI Conference on Human Factors in Computing Systems (CHI 2026)
☆ RPL: Learning Robust Humanoid Perceptive Locomotion on Challenging Terrains
Humanoid perceptive locomotion has made significant progress and shows great promise, yet achieving robust multi-directional locomotion on complex terrains remains underexplored. To tackle this challenge, we propose RPL, a two-stage training framework that enables multi-directional locomotion on challenging terrains, and remains robust with payloads. RPL first trains terrain-specific expert policies with privileged height map observations to master decoupled locomotion and manipulation skills across different terrains, and then distills them into a transformer policy that leverages multiple depth cameras to cover a wide range of views. During distillation, we introduce two techniques to robustify multi-directional locomotion, depth feature scaling based on velocity commands and random side masking, which are critical for asymmetric depth observations and unseen widths of terrains. For scalable depth distillation, we develop an efficient multi-depth system that ray-casts against both dynamic robot meshes and static terrain meshes in massively parallel environments, achieving a 5-times speedup over the depth rendering pipelines in existing simulators while modeling realistic sensor latency, noise, and dropout. Extensive real-world experiments demonstrate robust multi-directional locomotion with payloads (2kg) across challenging terrains, including 20° slopes, staircases with different step lengths (22 cm, 25 cm, 30 cm), and 25 cm by 25 cm stepping stones separated by 60 cm gaps.
☆ Embodiment-Aware Generalist Specialist Distillation for Unified Humanoid Whole-Body Control
Humanoid Whole-Body Controllers trained with reinforcement learning (RL) have recently achieved remarkable performance, yet many target a single robot embodiment. Variations in dynamics, degrees of freedom (DoFs), and kinematic topology still hinder a single policy from commanding diverse humanoids. Moreover, obtaining a generalist policy that not only transfers across embodiments but also supports richer behaviors-beyond simple walking to squatting, leaning-remains especially challenging. In this work, we tackle these obstacles by introducing EAGLE, an iterative generalist-specialist distillation framework that produces a single unified policy that controls multiple heterogeneous humanoids without per-robot reward tuning. During each cycle, embodiment-specific specialists are forked from the current generalist, refined on their respective robots, and new skills are distilled back into the generalist by training on the pooled embodiment set. Repeating this loop until performance convergence produces a robust Whole-Body Controller validated on robots such as Unitree H1, G1, and Fourier N1. We conducted experiments on five different robots in simulation and four in real-world settings. Through quantitative evaluations, EAGLE achieves high tracking accuracy and robustness compared to other methods, marking a step toward scalable, fleet-level humanoid control. See more details at https://eagle-wbc.github.io/
☆ Scaling In-Context Online Learning Capability of LLMs via Cross-Episode Meta-RL
Large language models (LLMs) achieve strong performance when all task-relevant information is available upfront, as in static prediction and instruction-following problems. However, many real-world decision-making tasks are inherently online: crucial information must be acquired through interaction, feedback is delayed, and effective behavior requires balancing information collection and exploitation over time. While in-context learning enables adaptation without weight updates, existing LLMs often struggle to reliably leverage in-context interaction experience in such settings. In this work, we show that this limitation can be addressed through training. We introduce ORBIT, a multi-task, multi-episode meta-reinforcement learning framework that trains LLMs to learn from interaction in context. After meta-training, a relatively small open-source model (Qwen3-14B) demonstrates substantially improved in-context online learning on entirely unseen environments, matching the performance of GPT-5.2 and outperforming standard RL fine-tuning by a large margin. Scaling experiments further reveal consistent gains with model size, suggesting significant headroom for learn-at-inference-time decision-making agents. Code reproducing the results in the paper can be found at https://github.com/XiaofengLin7/ORBIT.
☆ Comparative Analysis of Autonomous Robotic and Manual Techniques for Ultrasonic Sacral Osteotomy: A Preliminary Study
In this paper, we introduce an autonomous Ultrasonic Sacral Osteotomy (USO) robotic system that integrates an ultrasonic osteotome with a seven-degree-of-freedom (DoF) robotic manipulator guided by an optical tracking system. To assess multi-directional control along both the surface trajectory and cutting depth of this system, we conducted quantitative comparisons between manual USO (MUSO) and robotic USO (RUSO) in Sawbones phantoms under identical osteotomy conditions. The RUSO system achieved sub-millimeter trajectory accuracy (0.11 mm RMSE), an order of magnitude improvement over MUSO (1.10 mm RMSE). Moreover, MUSO trials showed substantial over-penetration (16.0 mm achieved vs. 8.0 mm target), whereas the RUSO system maintained precise depth control (8.1 mm). These results demonstrate that robotic procedures can effectively overcome the critical limitations of manual osteotomy, establishing a foundation for safer and more precise sacral resections.
comment: 17 pages, 6 figures, Accepted or publication in 2026 International Symposium on Medical Robotics (ISMR)
☆ Control and State Estimation of Vehicle-Mounted Aerial Systems in GPS-Denied, Non-Inertial Environments
We present a robust control and estimation framework for quadrotors operating in Global Navigation Satellite System(GNSS)-denied, non-inertial environments where inertial sensors such as Inertial Measurement Units (IMUs) become unreliable due to platform-induced accelerations. In such settings, conventional estimators fail to distinguish whether the measured accelerations arise from the quadrotor itself or from the non-inertial platform, leading to drift and control degradation. Unlike conventional approaches that depend heavily on IMU and GNSS, our method relies exclusively on external position measurements combined with a Extended Kalman Filter with Unknown Inputs (EKF-UI) to account for platform motion. The estimator is paired with a cascaded PID controller for full 3D tracking. To isolate estimator performance from localization errors, all tests are conducted using high-precision motion capture systems. Experimental results in a moving-cart testbed validate our approach under both translational in X-axis and Y-axis dissonance. Compared to standard EKF, the proposed method significantly improves stability and trajectory tracking without requiring inertial feedback, enabling practical deployment on moving platforms such as trucks or elevators.
comment: 10 pages 8 figures
☆ Modular Safety Guardrails Are Necessary for Foundation-Model-Enabled Robots in the Real World
The integration of foundation models (FMs) into robotics has accelerated real-world deployment, while introducing new safety challenges arising from open-ended semantic reasoning and embodied physical action. These challenges require safety notions beyond physical constraint satisfaction. In this paper, we characterize FM-enabled robot safety along three dimensions: action safety (physical feasibility and constraint compliance), decision safety (semantic and contextual appropriateness), and human-centered safety (conformance to human intent, norms, and expectations). We argue that existing approaches, including static verification, monolithic controllers, and end-to-end learned policies, are insufficient in settings where tasks, environments, and human expectations are open-ended, long-tailed, and subject to adaptation over time. To address this gap, we propose modular safety guardrails, consisting of monitoring (evaluation) and intervention layers, as an architectural foundation for comprehensive safety across the autonomy stack. Beyond modularity, we highlight possible cross-layer co-design opportunities through representation alignment and conservatism allocation to enable faster, less conservative, and more effective safety enforcement. We call on the community to explore richer guardrail modules and principled co-design strategies to advance safe real-world physical AI deployment.
☆ An Anatomy-specific Guidewire Shaping Robot for Improved Vascular Navigation
Neuroendovascular access often relies on passive microwires that are hand-shaped at the back table and then used to track a microcatheter to the target. Neuroendovascular surgeons determine the shape of the wire by examining the patient pre-operative images and using their experience to identify anatomy specific shapes of the wire that would facilitate reaching the target. This procedure is particularly complex in convoluted anatomical structures and is heavily dependent on the level of expertise of the surgeon. Towards enabling standardized autonomous shaping, we present a bench-top guidewire shaping robot capable of producing navigation-specific desired wire configurations. We present a model that can map the desired wire shape into robot actions, calibrated using experimental data. We show that the robot can produce clinically common tip geometries (C, S, Angled, Hook) and validate them with respect to the model-predicted shapes in 2D. Our model predicts the shape with a Root Mean Square (RMS) error of 0.56mm across all shapes when compared to the experimental results. We also demonstrate 3D tip shaping capabilities and the ability to traverse complex endoluminal navigation from the petrous Internal Carotid Artery (ICA) to the Posterior Communicating Artery (PComm).
comment: 7 pages, 7 figures, ISMR2026
☆ DADP: Domain Adaptive Diffusion Policy
Learning domain adaptive policies that can generalize to unseen transition dynamics, remains a fundamental challenge in learning-based control. Substantial progress has been made through domain representation learning to capture domain-specific information, thus enabling domain-aware decision making. We analyze the process of learning domain representations through dynamical prediction and find that selecting contexts adjacent to the current step causes the learned representations to entangle static domain information with varying dynamical properties. Such mixture can confuse the conditioned policy, thereby constraining zero-shot adaptation. To tackle the challenge, we propose DADP (Domain Adaptive Diffusion Policy), which achieves robust adaptation through unsupervised disentanglement and domain-aware diffusion injection. First, we introduce Lagged Context Dynamical Prediction, a strategy that conditions future state estimation on a historical offset context; by increasing this temporal gap, we unsupervisedly disentangle static domain representations by filtering out transient properties. Second, we integrate the learned domain representations directly into the generative process by biasing the prior distribution and reformulating the diffusion target. Extensive experiments on challenging benchmarks across locomotion and manipulation demonstrate the superior performance, and the generalizability of DADP over prior methods. More visualization results are available on the https://outsider86.github.io/DomainAdaptiveDiffusionPolicy/.
☆ FDA Flocking: Future Direction-Aware Flocking via Velocity Prediction
Understanding self-organization in natural collectives such as bird flocks inspires swarm robotics, yet most flocking models remain reactive, overlooking anticipatory cues that enhance coordination. Motivated by avian postural and wingbeat signals, as well as multirotor attitude tilts that precede directional changes, this work introduces a principled, bio-inspired anticipatory augmentation of reactive flocking termed Future Direction-Aware (FDA) flocking. In the proposed framework, agents blend reactive alignment with a predictive term based on short-term estimates of neighbors' future velocities, regulated by a tunable blending parameter that interpolates between reactive and anticipatory behaviors. This predictive structure enhances velocity consensus and cohesion-separation balance while mitigating the adverse effects of sensing and communication delays and measurement noise that destabilize reactive baselines. Simulation results demonstrate that FDA achieves faster and higher alignment, enhanced translational displacement of the flock, and improved robustness to delays and noise compared to a purely reactive model. Future work will investigate adaptive blending strategies, weighted prediction schemes, and experimental validation on multirotor drone swarms.
☆ Towards X-embodiment safety: A control theory perspective on transferring safety certificates across dynamical systems
Control barrier functions (CBFs) provide a powerful tool for enforcing safety constraints in control systems, but their direct application to complex, high-dimensional dynamics is often challenging. In many settings, safety certificates are more naturally designed for simplified or alternative system models that do not exactly match the dynamics of interest. This paper addresses the problem of transferring safety guarantees between dynamical systems with mismatched dynamics. We propose a transferred control barrier function (tCBF) framework that enables safety constraints defined on one system to be systematically enforced on another system using a simulation function and an explicit margin term. The resulting transferred barrier accounts for model mismatch and induces a safety condition that can be enforced on the target system via a quadratic-program-based safety filter. The proposed approach is general and does not require the two systems to share the same state dimension or dynamics. We demonstrate the effectiveness of the framework on a quadrotor navigation task with the transferred barrier ensuring collision avoidance for the target system, while remaining minimally invasive to a nominal controller. These results highlight the potential of transferred control barrier functions as a general mechanism for enforcing safety across heterogeneous dynamical systems.
☆ eCP: Informative uncertainty quantification via Equivariantized Conformal Prediction with pre-trained models
We study the effect of group symmetrization of pre-trained models on conformal prediction (CP), a post-hoc, distribution-free, finite-sample method of uncertainty quantification that offers formal coverage guarantees under the assumption of data exchangeability. Unfortunately, CP uncertainty regions can grow significantly in long horizon missions, rendering the statistical guarantees uninformative. To that end, we propose infusing CP with geometric information via group-averaging of the pretrained predictor to distribute the non-conformity mass across the orbits. Each sample now is treated as a representative of an orbit, thus uncertainty can be mitigated by other samples entangled to it via the orbit inducing elements of the symmetry group. Our approach provably yields contracted non-conformity scores in increasing convex order, implying improved exponential-tail bounds and sharper conformal prediction sets in expectation, especially at high confidence levels. We then propose an experimental design to test these theoretical claims in pedestrian trajectory prediction.
☆ Efficient Long-Horizon Vision-Language-Action Models via Static-Dynamic Disentanglement
Vision-Language-Action (VLA) models have recently emerged as a promising paradigm for generalist robotic control. Built upon vision-language model (VLM) architectures, VLAs predict actions conditioned on visual observations and language instructions, achieving strong performance and generalization across tasks. However, VLAs face two major challenges: limited long-horizon context and inefficient inference due to the quadratic attention complexity and large parameter counts. Our work is motivated by the observation that much of the visual information in a trajectory remains static across timesteps (e.g., the background). Leveraging this property, we propose SD-VLA, a framework that disentangles visual inputs into multi-level static and dynamic tokens, which enables (1) retaining a single copy of static tokens across frames to significantly reduce context length, and (2) reusing the key-value (KV) cache of static tokens through a lightweight recache gate that updates only when necessary. This design enables efficient multi-frame integration and efficient inference. In addition, we introduce a new benchmark that more effectively evaluates the long-horizon temporal dependency modeling ability of VLAs. Experimental results show that our approach outperforms baselines on this benchmark by 39.8% absolute improvement in success rate, and achieves a 3.9% gain on the SimplerEnv benchmark. Moreover, SD-VLA delivers a 2.26x inference speedup over the base VLA model on the same benchmark, enabling faster and more practical real-world deployment.
☆ VLS: Steering Pretrained Robot Policies via Vision-Language Models
Why do pretrained diffusion or flow-matching policies fail when the same task is performed near an obstacle, on a shifted support surface, or amid mild clutter? Such failures rarely reflect missing motor skills; instead, they expose a limitation of imitation learning under train-test shifts, where action generation is tightly coupled to training-specific spatial configurations and task specifications. Retraining or fine-tuning to address these failures is costly and conceptually misaligned, as the required behaviors already exist but cannot be selectively adapted at test time. We propose Vision-Language Steering (VLS), a training-free framework for inference-time adaptation of frozen generative robot policies. VLS treats adaptation as an inference-time control problem, steering the sampling process of a pretrained diffusion or flow-matching policy in response to out-of-distribution observation-language inputs without modifying policy parameters. By leveraging vision-language models to synthesize trajectory-differentiable reward functions, VLS guides denoising toward action trajectories that satisfy test-time spatial and task requirements. Across simulation and real-world evaluations, VLS consistently outperforms prior steering methods, achieving a 31% improvement on CALVIN and a 13% gain on LIBERO-PRO. Real-world deployment on a Franka robot further demonstrates robust inference-time adaptation under test-time spatial and semantic shifts. Project page: https://vision-language-steering.github.io/webpage/
comment: 11 Pages, Project page: https://vision-language-steering.github.io/webpage/
☆ How Users Understand Robot Foundation Model Performance through Task Success Rates and Beyond IJCAI 2026
Robot Foundation Models (RFMs) represent a promising approach to developing general-purpose home robots. Given the broad capabilities of RFMs, users will inevitably ask an RFM-based robot to perform tasks that the RFM was not trained or evaluated on. In these cases, it is crucial that users understand the risks associated with attempting novel tasks due to the relatively high cost of failure. Furthermore, an informed user who understands an RFM's capabilities will know what situations and tasks the robot can handle. In this paper, we study how non-roboticists interpret performance information from RFM evaluations. These evaluations typically report task success rate (TSR) as the primary performance metric. While TSR is intuitive to experts, it is necessary to validate whether novices also use this information as intended. Toward this end, we conducted a study in which users saw real evaluation data, including TSR, failure case descriptions, and videos from multiple published RFM research projects. The results highlight that non-experts not only use TSR in a manner consistent with expert expectations but also highly value other information types, such as failure cases that are not often reported in RFM evaluations. Furthermore, we find that users want access to both real data from previous evaluations of the RFM and estimates from the robot about how well it will do on a novel task.
comment: Submitted to IJCAI 2026
☆ Beyond the Vehicle: Cooperative Localization by Fusing Point Clouds for GPS-Challenged Urban Scenarios
Accurate vehicle localization is a critical challenge in urban environments where GPS signals are often unreliable. This paper presents a cooperative multi-sensor and multi-modal localization approach to address this issue by fusing data from vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) systems. Our approach integrates cooperative data with a point cloud registration-based simultaneous localization and mapping (SLAM) algorithm. The system processes point clouds generated from diverse sensor modalities, including vehicle-mounted LiDAR and stereo cameras, as well as sensors deployed at intersections. By leveraging shared data from infrastructure, our method significantly improves localization accuracy and robustness in complex, GPS-noisy urban scenarios.
comment: 8 pages, 2 figures, Driving the Future Symposium 2025
♻ ☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
♻ ☆ Polynomial Neural Sheaf Diffusion: A Spectral Filtering Approach on Cellular Sheaves ICML 2026
Sheaf Neural Networks equip graph structures with a cellular sheaf: a geometric structure which assigns local vector spaces (stalks) and a linear learnable restriction/transport maps to nodes and edges, yielding an edge-aware inductive bias that handles heterophily and limits oversmoothing. However, common Neural Sheaf Diffusion implementations rely on SVD-based sheaf normalization and dense per-edge restriction maps, which scale with stalk dimension, require frequent Laplacian rebuilds, and yield brittle gradients. To address these limitations, we introduce Polynomial Neural Sheaf Diffusion (PolyNSD), a new sheaf diffusion approach whose propagation operator is a degree-K polynomial in a normalised sheaf Laplacian, evaluated via a stable three-term recurrence on a spectrally rescaled operator. This provides an explicit K-hop receptive field in a single layer (independently of the stalk dimension), with a trainable spectral response obtained as a convex mixture of K+1 orthogonal polynomial basis responses. PolyNSD enforces stability via convex mixtures, spectral rescaling, and residual/gated paths, reaching new state-of-the-art results on both homophilic and heterophilic benchmarks, inverting the Neural Sheaf Diffusion trend by obtaining these results with just diagonal restriction maps, decoupling performance from large stalk dimension, while reducing runtime and memory requirements.
comment: Under Review at ICML 2026
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Multi-Agent Pathfinding Under Team-Connected Communication Constraint via Adaptive Path Expansion and Dynamic Leading
This paper proposes a novel planning framework to handle a multi-agent pathfinding problem under team-connected communication constraint, where all agents must have a connected communication channel to the rest of the team during their entire movements. Standard multi-agent path finding approaches (e.g., priority-based search) have potential in this domain but fail when neighboring configurations at start and goal differ. Their single-expansion approach -- computing each agent's path from the start to the goal in just a single expansion -- cannot reliably handle planning under communication constraints for agents as their neighbors change during navigating. Similarly, leader-follower approaches (e.g., platooning) are effective at maintaining team communication, but fixing the leader at the outset of planning can cause planning to become stuck in dense-clutter environments, limiting their practical utility. To overcome this limitation, we propose a novel two-level multi-agent pathfinding framework that integrates two techniques: adaptive path expansion to expand agent paths to their goals in multiple stages; and dynamic leading technique that enables the reselection of the leading agent during each agent path expansion whenever progress cannot be made. Simulation experiments show the efficiency of our planners, which can handle up to 25 agents across five environment types under a limited communication range constraint and up to 11-12 agents on three environment types under line-of-sight communication constraint, exceeding 90% success-rate where baselines routinely fail.
Measuring Agents in Production
LLM-based agents already operate in production across many industries, yet we lack an understanding of what technical methods make deployments successful. We present the first systematic study of Measuring Agents in Production, MAP, using first-hand data from agent developers. We conducted 20 case studies via in-depth interviews and surveyed 306 practitioners across 26 domains. We investigate why organizations build agents, how they build them, how they evaluate them, and their top development challenges. Our study finds that production agents are built using simple, controllable approaches: 68% execute at most 10 steps before human intervention, 70% rely on prompting off-the-shelf models instead of weight tuning, and 74% depend primarily on human evaluation. Reliability (consistent correct behavior over time) remains the top development challenge, which practitioners currently address through systems-level design. MAP documents the current state of production agents, providing the research community with visibility into deployment realities and under-explored research avenues.
♻ ☆ PAINT: Parallel-in-time Neural Twins for Dynamical System Reconstruction
Neural surrogates have shown great potential in simulating dynamical systems, while offering real-time capabilities. We envision Neural Twins as a progression of neural surrogates, aiming to create digital replicas of real systems. A neural twin consumes measurements at test time to update its state, thereby enabling context-specific decision-making. We argue, that a critical property of neural twins is their ability to remain on-trajectory, i.e., to stay close to the true system state over time. We introduce Parallel-in-time Neural Twins (PAINT), an architecture-agnostic family of methods for modeling dynamical systems from measurements. PAINT trains a generative neural network to model the distribution of states in parallel over time. At test time, states are predicted from measurements in a sliding window fashion. Our theoretical analysis shows that PAINT is on-trajectory, whereas autoregressive models generally are not. Empirically, we evaluate our method on a challenging two-dimensional turbulent fluid dynamics problem. The results demonstrate that PAINT stays on-trajectory and predicts system states from sparse measurements with high fidelity. These findings underscore PAINT's potential for developing neural twins that stay on-trajectory, enabling more accurate state estimation and decision-making.
comment: 28 pages, 23 figures
♻ ☆ PluriHarms: Benchmarking the Full Spectrum of Human Judgments on AI Harm
Current AI safety frameworks, which often treat harmfulness as binary, lack the flexibility to handle borderline cases where humans meaningfully disagree. To build more pluralistic systems, it is essential to move beyond consensus and instead understand where and why disagreements arise. We introduce PluriHarms, a benchmark designed to systematically study human harm judgments across two key dimensions -- the harm axis (benign to harmful) and the agreement axis (agreement to disagreement). Our scalable framework generates prompts that capture diverse AI harms and human values while targeting cases with high disagreement rates, validated by human data. The benchmark includes 150 prompts with 15,000 ratings from 100 human annotators, enriched with demographic and psychological traits and prompt-level features of harmful actions, effects, and values. Our analyses show that prompts that relate to imminent risks and tangible harms amplify perceived harmfulness, while annotator traits (e.g., toxicity experience, education) and their interactions with prompt content explain systematic disagreement. We benchmark AI safety models and alignment methods on PluriHarms, finding that while personalization significantly improves prediction of human harm judgments, considerable room remains for future progress. By explicitly targeting value diversity and disagreement, our work provides a principled benchmark for moving beyond "one-size-fits-all" safety toward pluralistically safe AI.
♻ ☆ The Epistemic Planning Domain Definition Language: Official Guideline
Epistemic planning extends (multi-agent) automated planning by making agents' knowledge and beliefs first-class aspects of the planning formalism. One of the most well-known frameworks for epistemic planning is Dynamic Epistemic Logic (DEL), which offers an rich and natural semantics for modelling problems in this setting. The high expressive power provided by DEL make DEL-based epistemic planning a challenging problem to tackle both theoretically, and in practical implementations. As a result, existing epistemic planners often target different DEL fragments, and typically rely on ad hoc languages to represent benchmarks, and sometimes no language at all. This fragmentation hampers comparison, reuse, and systematic benchmark development. We address these issues by introducing the Epistemic Planning Domain Definition Language (EPDDL). EPDDL provides a unique PDDL-like representation that captures the entire DEL semantics, enabling uniform specification of epistemic planning tasks. Our main contributions are: 1. A formal development of abstract event models, a novel representation for epistemic actions used to define the semantics of our language; 2. A formal specification of EPDDL's syntax and semantics grounded in DEL with abstract event models. Through examples of representative benchmarks, we illustrate how EPDDL facilitates interoperability, reproducible evaluation, and future advances in epistemic planning.
♻ ☆ Self-Foveate: Enhancing Diversity and Difficulty of Synthesized Instructions from Unsupervised Text via Multi-Level Foveation ACL 2025
Synthesizing high-quality instruction data from unsupervised text is a promising paradigm for training large language models (LLMs), yet automated methods for this task still exhibit significant limitations in the diversity and difficulty of synthesized instructions. To address these challenges, we propose Self-Foveate, an LLM-driven method for instruction synthesis. Inspired by hierarchical human visual perception, Self-Foveate introduces a "Micro-Scatter-Macro" multi-level foveation methodology that guides the extraction of textual information at three complementary granularities, from fine-grained details through cross-region connections to holistic patterns, thereby enhancing both the diversity and difficulty of synthesized instructions. Furthermore, a re-synthesis module is incorporated to improve the fidelity of instructions to source text and their overall quality. Comprehensive experiments across multiple unsupervised corpora and diverse model architectures demonstrate that Self-Foveate consistently outperforms existing methods. We publicly release our code at https://github.com/Mubuky/Self-Foveate
comment: Accepted to ACL 2025 (Findings). 23 pages, 4 figures
♻ ☆ How to Trick Your AI TA: A Systematic Study of Academic Jailbreaking in LLM Code Evaluation
The use of Large Language Models (LLMs) as automatic judges for code evaluation is becoming increasingly prevalent in academic environments. But their reliability can be compromised by students who may employ adversarial prompting strategies in order to induce misgrading and secure undeserved academic advantages. In this paper, we present the first large-scale study of jailbreaking LLM-based automated code evaluators in academic context. Our contributions are: (i) We systematically adapt 20+ jailbreaking strategies for jailbreaking AI code evaluators in the academic context, defining a new class of attacks termed academic jailbreaking. (ii) We release a poisoned dataset of 25K adversarial student submissions, specifically designed for the academic code-evaluation setting, sourced from diverse real-world coursework and paired with rubrics and human-graded references, and (iii) In order to capture the multidimensional impact of academic jailbreaking, we systematically adapt and define three jailbreaking metrics (Jailbreak Success Rate, Score Inflation, and Harmfulness). (iv) We comprehensively evalulate the academic jailbreaking attacks using six LLMs. We find that these models exhibit significant vulnerability, particularly to persuasive and role-play-based attacks (up to 97% JSR). Our adversarial dataset and benchmark suite lay the groundwork for next-generation robust LLM-based evaluators in academic code assessment.
comment: This manuscript has been withdrawn by the authors because the methodology and results have been superseded by a more rigorous framework (SPACI and AST-ASIP). The corrected and expanded findings are now available in arXiv:2601.21360. Please cite the new manuscript instead
♻ ☆ Toward Learning POMDPs Beyond Full-Rank Actions and State Observability
We are interested in enabling autonomous agents to learn and reason about systems with hidden states, such as locking mechanisms. We cast this problem as learning the parameters of a discrete Partially Observable Markov Decision Process (POMDP). The agent begins with knowledge of the POMDP's actions and observation spaces, but not its state space, transitions, or observation models. These properties must be constructed from a sequence of actions and observations. Spectral approaches to learning models of partially observable domains, such as Predictive State Representations (PSRs), learn representations of state that are sufficient to predict future outcomes. PSR models, however, do not have explicit transition and observation system models that can be used with different reward functions to solve different planning problems. Under a mild set of rankness assumptions on the products of transition and observation matrices, we show how PSRs learn POMDP matrices up to a similarity transform, and this transform may be estimated via tensor decomposition methods. Our method learns observation matrices and transition matrices up to a partition of states, where the states in a single partition have the same observation distributions corresponding to actions whose transition matrices are full-rank. Our experiments suggest that explicit observation and transition likelihoods can be leveraged to generate new plans for different goals and reward functions after the model has been learned. We also show that learning a POMDP beyond a partition of states is impossible from sequential data by constructing two POMDPs that agree on all observation distributions but differ in their transition dynamics.
comment: Update abstract
♻ ☆ Abacus: A Cost-Based Optimizer for Semantic Operator Systems
LLMs enable an exciting new class of data processing applications over large collections of unstructured documents. Several new programming frameworks have enabled developers to build these applications by composing them out of semantic operators: a declarative set of AI-powered data transformations with natural language specifications. These include LLM-powered maps, filters, joins, etc. used for document processing tasks such as information extraction, summarization, and more. While systems of semantic operators have achieved strong performance on benchmarks, they can be difficult to optimize. An optimizer for this setting must determine how to physically implement each semantic operator in a way that optimizes the system globally. Existing optimizers are limited in the number of optimizations they can apply, and most (if not all) cannot optimize system quality, cost, or latency subject to constraint(s) on the other dimensions. In this paper we present Abacus, an extensible, cost-based optimizer which searches for the best implementation of a semantic operator system given a (possibly constrained) optimization objective. Abacus estimates operator performance by leveraging a minimal set of validation examples, prior beliefs about operator performance, and/or an LLM judge. We evaluate Abacus on document processing workloads in the biomedical and legal domains (BioDEX; CUAD) and multi-modal question answering (MMQA). We demonstrate that, on-average, systems optimized by Abacus achieve 6.7%-39.4% better quality and are 10.8x cheaper and 3.4x faster than the next best system.
comment: To be published in VLDB'26, 14 pages, 8 figures
♻ ☆ Information-Theoretic Causal Bounds under Unmeasured Confounding
We develop a data-driven information-theoretic framework for sharp partial identification of causal effects under unmeasured confounding. Existing approaches often rely on restrictive assumptions, such as bounded or discrete outcomes; require external inputs (for example, instrumental variables, proxies, or user-specified sensitivity parameters); necessitate full structural causal model specifications; or focus solely on population-level averages while neglecting covariate-conditional treatment effects. We overcome all four limitations simultaneously by establishing novel information-theoretic, data-driven divergence bounds. Our key theoretical contribution shows that the f-divergence between the observational distribution P(Y | A = a, X = x) and the interventional distribution P(Y | do(A = a), X = x) is upper bounded by a function of the propensity score alone. This result enables sharp partial identification of conditional causal effects directly from observational data, without requiring external sensitivity parameters, auxiliary variables, full structural specifications, or outcome boundedness assumptions. For practical implementation, we develop a semiparametric estimator satisfying Neyman orthogonality (Chernozhukov et al., 2018), which ensures square-root-n consistent inference even when nuisance functions are estimated using flexible machine learning methods. Simulation studies and real-world data applications, implemented in the GitHub repository (https://github.com/yonghanjung/Information-Theretic-Bounds), demonstrate that our framework provides tight and valid causal bounds across a wide range of data-generating processes.
♻ ☆ TurkBench: A Benchmark for Evaluating Turkish Large Language Models EACL 2026
With the recent surge in the development of large language models, the need for comprehensive and language-specific evaluation benchmarks has become critical. While significant progress has been made in evaluating English-language models, benchmarks for other languages, particularly those with unique linguistic characteristics such as Turkish, remain less developed. Our study introduces TurkBench, a comprehensive benchmark designed to assess the capabilities of generative large language models in the Turkish language. TurkBench involves 8,151 data samples across 21 distinct subtasks. These are organized under six main categories of evaluation: Knowledge, Language Understanding, Reasoning, Content Moderation, Turkish Grammar and Vocabulary, and Instruction Following. The diverse range of tasks and the culturally relevant data would provide researchers and developers with a valuable tool for evaluating their models and identifying areas for improvement. We further publish our benchmark for online submissions at https://huggingface.co/turkbench
comment: Accepted by EACL 2026 SIGTURK
♻ ☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
♻ ☆ Transformers can do Bayesian Clustering
Bayesian clustering accounts for uncertainty but is computationally demanding at scale. Furthermore, real-world datasets often contain missing values, and simple imputation ignores the associated uncertainty, resulting in suboptimal results. We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fitted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior, Cluster-PFN learns to estimate the posterior distribution over both the number of clusters and the cluster assignments. Our method estimates the number of clusters more accurately than handcrafted model selection procedures such as AIC, BIC and Variational Inference (VI), and achieves clustering quality competitive with VI while being orders of magnitude faster. Cluster-PFN can be trained on complex priors that include missing data, outperforming imputation-based baselines on real-world genomic datasets, at high missingness. These results show that the Cluster-PFN can provide scalable and flexible Bayesian clustering.
♻ ☆ Uncertainty-driven Adaptive Exploration
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ The Path of Least Resistance: Guiding LLM Reasoning Trajectories with Prefix Consensus ICLR 2026
Large language models achieve strong reasoning performance, but inference strategies such as Self-Consistency (SC) are computationally expensive, as they fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance), the first inference-time method to leverage prefix consistency for compute-efficient reasoning. PoLR clusters short prefixes of reasoning traces, identifies the dominant cluster, and expands all paths in that cluster, preserving the accuracy benefits of SC while substantially reducing token usage and latency. Our theoretical analysis, framed via mutual information and entropy, explains why early reasoning steps encode strong signals predictive of final correctness. Empirically, PoLR consistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by up to 50%. Moreover, PoLR is fully complementary to adaptive inference methods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in pre-filter, making SC substantially more efficient and scalable without requiring model fine-tuning.
comment: Accepted at ICLR 2026. https://openreview.net/forum?id=hrnSqERgPn
♻ ☆ NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
Characterizing the cellular properties of neurons is fundamental to understanding their function in the brain. In this quest, the generation of bio-realistic models is central towards integrating multimodal cellular data sets and establishing causal relationships. However, current modeling approaches remain constrained by the limited availability and intrinsic variability of experimental neuronal data. The deterministic formalism of bio-realistic models currently precludes accounting for the natural variability observed experimentally. While deep learning is becoming increasingly relevant in this space, it fails to capture the full biophysical complexity of neurons, their nonlinear voltage dynamics, and variability. To address these shortcomings, we introduce NOBLE, a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection. Trained on synthetic data generated from bio-realistic neuron models, NOBLE predicts distributions of neural dynamics accounting for the intrinsic experimental variability. Unlike conventional bio-realistic neuron models, interpolating within the embedding space offers models whose dynamics are consistent with experimentally observed responses. NOBLE enables the efficient generation of synthetic neurons that closely resemble experimental data and exhibit trial-to-trial variability, offering a $4200\times$ speedup over the numerical solver. NOBLE is the first scaled-up deep learning framework that validates its generalization with real experimental data. To this end, NOBLE captures fundamental neural properties in a unique and emergent manner that opens the door to a better understanding of cellular composition and computations, neuromorphic architectures, large-scale brain circuits, and general neuroAI applications.
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
Panoptic maps enable robots to reason about both geometry and semantics. However, open-vocabulary models repeatedly produce closely related labels that split panoptic entities and degrade volumetric consistency. The proposed UPPM advances open-world scene understanding by leveraging foundation models to introduce a panoptic Dynamic Descriptor that reconciles open-vocabulary labels with unified category structure and geometric size priors. The fusion for such dynamic descriptors is performed within a multi-resolution multi-TSDF map using language-guided open-vocabulary panoptic segmentation and semantic retrieval, resulting in a persistent and promptable panoptic map without additional model training. Based on our evaluation experiments, UPPM shows the best overall performance in terms of the map reconstruction accuracy and the panoptic segmentation quality. The ablation study investigates the contribution for each component of UPPM (custom NMS, blurry-frame filtering, and unified semantics) to the overall system performance. Consequently, UPPM preserves open-vocabulary interpretability while delivering strong geometric and panoptic accuracy.
♻ ☆ Advancing AI Research Assistants with Expert-Involved Learning
Large language models (LLMs) and large multimodal models (LMMs) promise to accelerate biomedical discovery, yet their reliability remains unclear. We introduce ARIEL (AI Research Assistant for Expert-in-the-Loop Learning), an open-source evaluation and optimization framework that pairs a curated multimodal biomedical corpus with expert-vetted tasks to probe two capabilities: full-length article summarization and fine-grained figure interpretation. Using uniform protocols and blinded PhD-level evaluation, we find that state-of-the-art models generate fluent but incomplete summaries, whereas LMMs struggle with detailed visual reasoning. We later observe that prompt engineering and lightweight fine-tuning substantially improve textual coverage, and a compute-scaled inference strategy enhances visual question answering. We build an ARIEL agent that integrates textual and visual cues, and we show it can propose testable mechanistic hypotheses. ARIEL delineates current strengths and limitations of foundation models, and provides a reproducible platform for advancing trustworthy AI in biomedicine.
comment: 36 pages, 7 figures
♻ ☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: project page: https://rq-wu.github.io/projects/infinite-world/index.html
♻ ☆ Code2Bench: Scaling Source and Rigor for Dynamic Benchmark Construction
The evaluation of code-generating Large Language Models (LLMs) is fundamentally constrained by two intertwined challenges: a reliance on static, easily contaminated problem sources and the use of superficial, low-rigor testing. This paper introduces a new benchmark construction philosophy, Dual Scaling, designed to systematically address both limitations. Our approach involves continuously scaling the source of problems from dynamic, real-world code repositories and systematically scaling the rigor of tests via automated, high-coverage Property-Based Testing (PBT). We instantiate this philosophy in CODE2BENCH, an end-to-end framework that leverages Scope Graph analysis for principled dependency classification and a 100% branch coverage quality gate to ensure test suite integrity. Using this framework, we construct CODE2BENCH-2509, a new benchmark suite with native instances in both Python and Java. Our extensive evaluation of 10 state-of-the-art LLMs on CODE2BENCH-2509, powered by a novel "diagnostic fingerprint" visualization, yields three key insights: (1) models exhibit a fundamental performance gap, excelling at API application (Weakly Self-Contained tasks) but struggling with algorithmic synthesis (Self-Contained tasks); (2) a model's performance is profoundly shaped by the target language's ecosystem, a nuance we are the first to systematically quantify; and (3) our rigorous, scaled testing is critical in uncovering an "illusion of correctness" prevalent in simpler benchmarks. Our work presents a robust, scalable, and diagnostic paradigm for the next generation of LLM evaluation in software engineering. The code, data, and results are available at https://code2bench.github.io/.
♻ ☆ Spiking Neural Networks for Continuous Control via End-to-End Model-Based Learning
Despite recent progress in training spiking neural networks (SNNs) for classification, their application to continuous motor control remains limited. Here, we demonstrate that fully spiking architectures can be trained end-to-end to control robotic arms with multiple degrees of freedom in continuous environments. Our predictive-control framework combines Leaky Integrate-and-Fire dynamics with surrogate gradients, jointly optimizing a forward model for dynamics prediction and a policy network for goal-directed action. We evaluate this approach on both a planar 2D reaching task and a simulated 6-DOF Franka Emika Panda robot with torque control. In direct comparison to non-spiking recurrent baselines trained under the same predictive-control pipeline, the proposed SNN achieves comparable task performance while using substantially fewer parameters. An extensive ablation study highlights the role of initialization, learnable time constants, adaptive thresholds, and latent-space compression as key contributors to stable training and effective control. Together, these findings establish spiking neural networks as a viable and scalable substrate for high-dimensional continuous control, while emphasizing the importance of principled architectural and training design.
♻ ☆ Building spatial world models from sparse transitional episodic memories ICLR 2026
Many animals possess a remarkable capacity to rapidly construct flexible cognitive maps of their environments. These maps are crucial for ethologically relevant behaviors such as navigation, exploration, and planning. Existing computational models typically require long sequential trajectories to build accurate maps, but neuroscience evidence suggests maps can also arise from integrating disjoint experiences governed by consistent spatial rules. We introduce the Episodic Spatial World Model (ESWM), a novel framework that constructs spatial maps from sparse, disjoint episodic memories. Across environments of varying complexity, ESWM predicts unobserved transitions from minimal experience, and the geometry of its latent space aligns with that of the environment. Because it operates on episodic memories that can be independently stored and updated, ESWM is inherently adaptive, enabling rapid adjustment to environmental changes. Furthermore, we demonstrate that ESWM readily enables near-optimal strategies for exploring novel environments and navigating between arbitrary points, all without the need for additional training. Our work demonstrates how neuroscience-inspired principles of episodic memory can advance the development of more flexible and generalizable world models.
comment: Accepted ICLR 2026
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Driving on Registers
We present DrivoR, a simple and efficient transformer-based architecture for end-to-end autonomous driving. Our approach builds on pretrained Vision Transformers (ViTs) and introduces camera-aware register tokens that compress multi-camera features into a compact scene representation, significantly reducing downstream computation without sacrificing accuracy. These tokens drive two lightweight transformer decoders that generate and then score candidate trajectories. The scoring decoder learns to mimic an oracle and predicts interpretable sub-scores representing aspects such as safety, comfort, and efficiency, enabling behavior-conditioned driving at inference. Despite its minimal design, DrivoR outperforms or matches strong contemporary baselines across NAVSIM-v1, NAVSIM-v2, and the photorealistic closed-loop HUGSIM benchmark. Our results show that a pure-transformer architecture, combined with targeted token compression, is sufficient for accurate, efficient, and adaptive end-to-end driving. Code and checkpoints will be made available via the project page.
♻ ☆ KVzap: Fast, Adaptive, and Faithful KV Cache Pruning
Growing context lengths in transformer-based language models have made the key-value (KV) cache a critical inference bottleneck. While many KV cache pruning methods have been proposed, they have not yet been adopted in major inference engines due to speed--accuracy trade-offs. We introduce KVzap, a fast, input-adaptive approximation of KVzip that works in both prefilling and decoding. On Qwen3-8B, Llama-3.1-8B-Instruct, and Qwen3-32B across long-context and reasoning tasks, KVzap achieves $2$--$4\times$ KV cache compression with negligible accuracy loss and achieves state-of-the-art performance on the KVpress leaderboard. Code and models are available at https://github.com/NVIDIA/kvpress.
♻ ☆ Problem Solved? Information Extraction Design Space for Layout-Rich Documents using LLMs EMNLP'25
This paper defines and explores the design space for information extraction (IE) from layout-rich documents using large language models (LLMs). The three core challenges of layout-aware IE with LLMs are 1) data structuring, 2) model engagement, and 3) output refinement. Our study investigates the sub-problems and methods within these core challenges, such as input representation, chunking, prompting, selection of LLMs, and multimodal models. It examines the effect of different design choices through LayIE-LLM, a new, open-source, layout-aware IE test suite, benchmarking against traditional, fine-tuned IE models. The results on two IE datasets show that LLMs require adjustment of the IE pipeline to achieve competitive performance: the optimized configuration found with LayIE-LLM achieves 13.3--37.5 F1 points more than a general-practice baseline configuration using the same LLM. To find a well-working configuration, we develop a one-factor-at-a-time (OFAT) method that achieves near-optimal results. Our method is only 0.8--1.8 points lower than the best full factorial exploration with a fraction (2.8%) of the required computation. Overall, we demonstrate that, if well-configured, general-purpose LLMs match the performance of specialized models, providing a cost-effective, finetuning-free alternative. Our test-suite is available at https://github.com/gayecolakoglu/LayIE-LLM.
comment: accepted at EMNLP'25
♻ ☆ Conformal Prediction for Causal Effects of Continuous Treatments NeurIPS 2025
Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
comment: Accepted at NeurIPS 2025
♻ ☆ Time2Vec Transformer for Robust Gesture Recognition from Low-Density sEMG
Accurate and responsive myoelectric prosthesis control typically relies on complex, dense multi-sensor arrays, which limits consumer accessibility. This paper presents a novel, data-efficient deep learning framework designed to achieve precise and accurate control using minimal sensor hardware. Leveraging an external dataset of 8 subjects, our approach implements a hybrid Transformer optimized for sparse, two-channel surface electromyography (sEMG). Unlike standard architectures that use fixed positional encodings, we integrate Time2Vec learnable temporal embeddings to capture the stochastic temporal warping inherent in biological signals. Furthermore, we employ a normalized additive fusion strategy that aligns the latent distributions of spatial and temporal features, preventing the destructive interference common in standard implementations. A two-stage curriculum learning protocol is utilized to ensure robust feature extraction despite data scarcity. The proposed architecture achieves a state-of-the-art multi-subject F1-score of 95.7% $\pm$ 0.20% for a 10-class movement set, statistically outperforming both a standard Transformer with fixed encodings and a recurrent CNN-LSTM model. Architectural optimization reveals that a balanced allocation of model capacity between spatial and temporal dimensions yields the highest stability. Furthermore, while direct transfer to a new unseen subject led to poor accuracy due to domain shifts, a rapid calibration protocol utilizing only two trials per gesture recovered performance from 21.0% $\pm$ 2.98% to 96.9% $\pm$ 0.52%. By validating that high-fidelity temporal embeddings can compensate for low spatial resolution, this work challenges the necessity of high-density sensing. The proposed framework offers a robust, cost-effective blueprint for next-generation prosthetic interfaces capable of rapid personalization.
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:036
♻ ☆ Dataset-Driven Channel Masks in Transformers for Multivariate Time Series ICASSP 2026
Recent advancements in foundation models have been successfully extended to the time series (TS) domain, facilitated by the emergence of large-scale TS datasets. However, previous efforts have primarily Capturing channel dependency (CD) is essential for modeling multivariate time series (TS), and attention-based methods have been widely employed for this purpose. Nonetheless, these methods primarily focus on modifying the architecture, often neglecting the importance of dataset-specific characteristics. In this work, we introduce the concept of partial channel dependence (PCD) to enhance CD modeling in Transformer-based models by leveraging dataset-specific information to refine the CD captured by the model. To achieve PCD, we propose channel masks (CMs), which are integrated into the attention matrices of Transformers via element-wise multiplication. CMs consist of two components: 1) a similarity matrix that captures relationships between the channels, and 2) dataset-specific and learnable domain parameters that refine the similarity matrix. We validate the effectiveness of PCD across diverse tasks and datasets with various backbones. Code is available at this repository: https://github.com/YonseiML/pcd.
comment: ICASSP 2026. Preliminary version: NeurIPS Workshop on Time Series in the Age of Large Models 2024 (Oral presentation)
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
♻ ☆ CP-Agent: Agentic Constraint Programming
The translation of natural language to formal constraint models requires expertise in the problem domain and modeling frameworks. To explore the effectiveness of agentic workflows, we propose CP-Agent, a Python coding agent that uses the ReAct framework with a persistent IPython kernel. We provide the relevant domain knowledge as a project prompt of under 50 lines. The algorithm works by iteratively executing code, observing the solver's feedback, and refining constraint models based on execution results. We evaluate CP-Agent on 101 constraint programming problems from CP-Bench. We made minor changes to the benchmark to address systematic ambiguities in the problem specifications and errors in the ground-truth models. On the clarified benchmark, CP-Agent achieves perfect accuracy on all 101 problems. Our experiments show that minimal guidance outperforms detailed procedural scaffolding. Our experiments also show that explicit task management tools can have both positive and negative effects on focused modeling tasks.
♻ ☆ PRISM: Deriving a White-Box Transformer as a Signal-Noise Decomposition Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce a specific irrational frequency separation ($π$-RoPE) to enforce incoherence between signal (semantic) and noise (syntactic) subspaces. We show empirical evidence that these geometric inductive biases can induce unsupervised functional disentanglement alone. Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints and structural artifacts. To provide a theoretical grounding for these spectral phenomena, we draw an analogy between attention mechanism and a Hamiltonian dynamical system and identify that the standard geometric progression of Rotary Positional Embeddings (RoPE) induces dense resonance networks (Arnold Tongues), leading to feature rank collapse. Empirical validation on 124M-parameter models trained on OpenWebText demonstrates that Prism spontaneously isolates the Attention Sink pathology and maintains isentropic information flow across layers. Further, we suggest a physics-informed plug-and-play intervention KAM-RoPE for large language models (LLMs). Our results suggest that interpretability and performance can be unified through principled geometric construction, offering a theoretically grounded alternative to heuristic architectural modifications
comment: 12 pages, 6 figures. Derives Transformer as a signal-noise decomposition operator via Maximizing Coding Rate Reduction. Identifies 'Attention Sink' as spectral resonance (Arnold Tongues) and proposes $π$-RoPE for dynamical stability
♻ ☆ video-SALMONN S: Memory-Enhanced Streaming Audio-Visual LLM
Long-duration streaming video understanding is fundamental for future AI agents, yet remains limited by ineffective long-term memory. We introduce video-SALMONN S, a memory-enhanced streaming audio-visual large language model that processes over 3-hour videos at 1 FPS and 360p resolution, outperforming strong non-streaming models under the same memory budget. In addition to token merging or downsampling, video-SALMONN S is the first to employ test-time training (TTT) as a streaming memory mechanism for video understanding. TTT continuously transforms short-term multimodal representations into long-term memory embedded in model parameters. To improve long-range dependency modeling and memory capacity, we propose (i) a TTT_MEM layer with an additional long-span prediction objective, (ii) a two-stage training scheme, and (iii) a modality-aware memory reader. We further introduce the Episodic Learning from Video Memory (ELViM) benchmark, simulating agent-like scenarios where models must learn from videos observed hours earlier. video-SALMONN S consistently outperforms both streaming and non-streaming baselines by 3-7% on long video benchmarks. Notably, video-SALMONN S achieves a 15% absolute accuracy improvement over strong non-streaming models on ELViM, demonstrating strong learning abilities from video memory.
♻ ☆ The Psychology of Learning from Machines: Anthropomorphic AI and the Paradox of Automation in Education
As AI tutors enter classrooms at unprecedented speed, their deployment increasingly outpaces our grasp of the psychological and social consequences of such technology. Yet decades of research in automation psychology, human factors, and human-computer interaction provide crucial insights that remain underutilized in educational AI design. This work synthesizes four research traditions -- automation psychology, human factors engineering, HCI, and philosophy of technology -- to establish a comprehensive framework for understanding how learners psychologically relate to anthropomorphic AI tutors. We identify three persistent challenges intensified by Generative AI's conversational fluency. First, learners exhibit dual trust calibration failures -- automation bias (uncritical acceptance) and algorithm aversion (excessive rejection after errors) -- with an expertise paradox where novices overrely while experts underrely. Second, while anthropomorphic design enhances engagement, it can distract from learning and foster harmful emotional attachment. Third, automation ironies persist: systems meant to aid cognition introduce designer errors, degrade skills through disuse, and create monitoring burdens humans perform poorly. We ground this theoretical synthesis through comparative analysis of over 104,984 YouTube comments across AI-generated philosophical debates and human-created engineering tutorials, revealing domain-dependent trust patterns and strong anthropomorphic projection despite minimal cues. For engineering education, our synthesis mandates differentiated approaches: AI tutoring for technical foundations where automation bias is manageable through proper scaffolding, but human facilitation for design, ethics, and professional judgment where tacit knowledge transmission proves irreplaceable.
comment: camera-ready version of paper accepted at IEEE EDUCON 2026 (acknowledgment added and some typos/errors fixed)
♻ ☆ Don't Overthink it. Preferring Shorter Thinking Chains for Improved LLM Reasoning
Reasoning large language models (LLMs) heavily rely on scaling test-time compute to perform complex reasoning tasks by generating extensive "thinking" chains. While demonstrating impressive results, this approach incurs significant computational costs and inference time. In this work, we challenge the assumption that long thinking chains results in better reasoning capabilities. We first demonstrate that shorter reasoning chains within individual questions are significantly more likely to yield correct answers - up to 34.5% more accurate than the longest chain sampled for the same question. Based on these results, we suggest short-m@k, a novel reasoning LLM inference method. Our method executes k independent generations in parallel and halts computation once the first m thinking processes are done. The final answer is chosen using majority voting among these m chains. Basic short-1@k demonstrates similar or even superior performance over standard majority voting in low-compute settings - using up to 40% fewer thinking tokens. short-3@k, while slightly less efficient than short-1@k, consistently surpasses majority voting across all compute budgets, while still being substantially faster (up to 33% wall time reduction). To further validate our findings, we finetune LLMs using short, long, and randomly selected reasoning chains. We then observe that training on the shorter ones leads to better performance. Our findings suggest rethinking current methods of test-time compute in reasoning LLMs, emphasizing that longer "thinking" does not necessarily translate to improved performance and can, counter-intuitively, lead to degraded results.
♻ ☆ Sensitivity analysis of image classification models using generalized polynomial chaos
Integrating advanced communication protocols in production has accelerated the adoption of data-driven predictive quality methods, notably machine learning (ML) models. However, ML models in image classification often face significant uncertainties arising from model, data, and domain shifts. These uncertainties lead to overconfidence in the classification model's output. To better understand these models, sensitivity analysis can help to analyze the relative influence of input parameters on the output. This work investigates the sensitivity of image classification models used for predictive quality. We propose modeling the distributional domain shifts of inputs with random variables and quantifying their impact on the model's outputs using Sobol indices computed via generalized polynomial chaos (GPC). This approach is validated through a case study involving a welding defect classification problem, utilizing a fine-tuned ResNet18 model and an emblem classification model used in BMW Group production facilities.
♻ ☆ Remapping and navigation of an embedding space via error minimization: a fundamental organizational principle of cognition in natural and artificial systems
The emerging field of diverse intelligence seeks an integrated view of problem-solving in agents of very different provenance, composition, and substrates. From subcellular chemical networks to swarms of organisms, and across evolved, engineered, and chimeric systems, it is hypothesized that scale-invariant principles of decision-making can be discovered. We propose that cognition in both natural and synthetic systems can be characterized and understood by the interplay between two equally important invariants: (1) the remapping of embedding spaces, and (2) the navigation within these spaces. Biological collectives, from single cells to entire organisms (and beyond), remap transcriptional, morphological, physiological, or 3D spaces to maintain homeostasis and regenerate structure, while navigating these spaces through distributed error correction. Modern Artificial Intelligence (AI) systems, including transformers, diffusion models, and neural cellular automata enact analogous processes by remapping data into latent embeddings and refining them iteratively through contextualization. We argue that this dual principle - remapping and navigation of embedding spaces via iterative error minimization - constitutes a substrate-independent invariant of cognition. Recognizing this shared mechanism not only illuminates deep parallels between living systems and artificial models, but also provides a unifying framework for engineering adaptive intelligence across scales.
comment: 41 pages, 5 figures
♻ ☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
♻ ☆ Evalet: Evaluating Large Language Models by Fragmenting Outputs into Functions
Practitioners increasingly rely on Large Language Models (LLMs) to evaluate generative AI outputs through "LLM-as-a-Judge" approaches. However, these methods produce holistic scores that obscure which specific elements influenced the assessments. We propose functional fragmentation, a method that dissects each output into key fragments and interprets the rhetoric functions that each fragment serves relative to evaluation criteria -- surfacing the elements of interest and revealing how they fulfill or hinder user goals. We instantiate this approach in Evalet, an interactive system that visualizes fragment-level functions across many outputs to support inspection, rating, and comparison of evaluations. A user study (N=10) found that, while practitioners struggled to validate holistic scores, our approach helped them identify 48% more evaluation misalignments. This helped them calibrate trust in LLM evaluations and rely on them to find more actionable issues in model outputs. Our work shifts LLM evaluation from quantitative scores toward qualitative, fine-grained analysis of model behavior.
comment: The first two authors hold equal contribution. Conditionally accepted to CHI 2026
♻ ☆ A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
comment: 19 pages
♻ ☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
comment: https://zxyin.github.io/ColorCtrl
♻ ☆ Multi-Agent Causal Reasoning System for Error Pattern Rule Automation in Vehicles
Modern vehicles generate thousands of different discrete events known as Diagnostic Trouble Codes (DTCs). Automotive manufacturers use Boolean combinations of these codes, called error patterns (EPs), to characterize system faults and ensure vehicle safety. Yet, EP rules are still manually handcrafted by domain experts, a process that is expensive and prone to errors as vehicle complexity grows. This paper introduces CAREP (Causal Automated Reasoning for Error Patterns), a multi-agent system that automatizes the generation of EP rules from high-dimensional event sequences of DTCs. CAREP combines a causal discovery agent that identifies potential DTC-EP relations, a contextual information agent that integrates metadata and descriptions, and an orchestrator agent that synthesizes candidate boolean rules together with interpretable reasoning traces. Evaluation on a large-scale automotive dataset with over 29,100 unique DTCs and 474 error patterns demonstrates that CAREP can automatically and accurately discover the unknown EP rules, outperforming LLM-only baselines while providing transparent causal explanations. By uniting practical causal discovery and agent-based reasoning, CAREP represents a step toward fully automated fault diagnostics, enabling scalable, interpretable, and cost-efficient vehicle maintenance.
comment: 7 pages, 3 figures
♻ ☆ SPGCL: Simple yet Powerful Graph Contrastive Learning via SVD-Guided Structural Perturbation
Graph Neural Networks (GNNs) are sensitive to structural noise from adversarial attacks or imperfections. Existing graph contrastive learning (GCL) methods typically rely on either random perturbations (e.g., edge dropping) for diversity or spectral augmentations (e.g., SVD) to preserve structural priors. However, random perturbations are structure-agnostic and may remove critical edges, while SVD-based views often lack sufficient diversity. Integrating these paradigms is challenging as they operate on discrete edge removal and continuous matrix factorization, respectively.We propose SPGCL, a framework for robust GCL via SVD-guided structural perturbation. Leveraging a recently developed SVD-based method that generalizes structural perturbation theory to arbitrary graphs, we design a two-stage strategy: (1) lightweight stochastic edge removal to inject diversity, and (2) truncated SVD to derive a structure-aware scoring matrix for sparse top-$P$ edge recovery. This integration offers three advantages: (1) Robustness to accidental deletion, as important edges can be recovered by SVD-guided scoring; (2) Enrichment with missing links, creating more informative contrastive views by introducing semantically meaningful edges; and (3) Controllable structural discrepancy, ensuring contrastive signals stem from semantic differences rather than edge-number gaps.Furthermore, we incorporate a contrastive fusion module with a global similarity constraint to align embeddings. Extensive experiments on ten benchmark datasets demonstrate that SPGCL consistently improves the robustness and accuracy of GNNs, outperforming state-of-the-art GCL and structure learning methods, validating its effectiveness in integrating previously disparate paradigms.
♻ ☆ Deadline-Aware, Energy-Efficient Control of Domestic Immersion Hot Water Heater AAAI 2026
Typical domestic immersion water heater systems are often operated continuously during winter, heating quickly rather than efficiently and ignoring predictable demand windows and ambient losses. We study deadline-aware control, where the aim is to reach a target temperature at a specified time while minimising energy consumption. We introduce an efficient Gymnasium environment that models an immersion hot water heater with first-order thermal losses and discrete on and off actions of 0 W and 6000 W applied every 120 seconds. Methods include a time-optimal bang-bang baseline, a zero-shot Monte Carlo Tree Search planner, and a Proximal Policy Optimisation policy. We report total energy consumption in watt-hours under identical physical dynamics. Across sweeps of initial temperature from 10 to 30 degrees Celsius, deadline from 30 to 90 steps, and target temperature from 40 to 80 degrees Celsius, PPO achieves the most energy-efficient performance at a 60-step horizon of 2 hours, using 3.23 kilowatt-hours, compared to 4.37 to 10.45 kilowatt-hours for bang-bang control and 4.18 to 6.46 kilowatt-hours for MCTS. This corresponds to energy savings of 26 percent at 30 steps and 69 percent at 90 steps. In a representative trajectory with a 50 kg water mass, 20 degrees Celsius ambient temperature, and a 60 degrees Celsius target, PPO consumes 54 percent less energy than bang-bang control and 33 percent less than MCTS. These results show that learned deadline-aware control reduces energy consumption under identical physical assumptions, while planners provide partial savings without training and learned policies offer near-zero inference cost once trained.
comment: Accepted at AAAI 2026
♻ ☆ IRIS: Implicit Reward-Guided Internal Sifting for Mitigating Multimodal Hallucination
Hallucination remains a fundamental challenge for Multimodal Large Language Models (MLLMs). While Direct Preference Optimization (DPO) is a key alignment framework, existing approaches often rely heavily on costly external evaluators for scoring or rewriting, incurring off-policy learnability gaps and discretization loss. Due to the lack of access to internal states, such feedback overlooks the fine-grained conflicts between different modalities that lead to hallucinations during generation. To address this issue, we propose IRIS (Implicit Reward-Guided Internal Sifting), which leverages continuous implicit rewards in the native log-probability space to preserve full information density and capture internal modal competition. This on-policy paradigm eliminates learnability gaps by utilizing self-generated preference pairs. By sifting these pairs based on multimodal implicit rewards, IRIS ensures that optimization is driven by signals that directly resolve modal conflicts. Extensive experiments demonstrate that IRIS achieves highly competitive performance on key hallucination benchmarks using only 5.7k samples, without requiring any external feedback during preference alignment. These results confirm that IRIS provides an efficient and principled paradigm for mitigating MLLM hallucinations.
♻ ☆ A2D: Any-Order, Any-Step Safety Alignment for Diffusion Language Models ICLR 2026
Diffusion large language models (dLLMs) enable any-order generation, but this flexibility enlarges the attack surface: harmful spans may appear at arbitrary positions, and template-based prefilling attacks such as DIJA bypass response-level refusals. We introduce A2D (Any-Order, Any-Step Defense), a token-level alignment method that aligns dLLMs to emit an [EOS] refusal signal whenever harmful content arises. By aligning safety directly at the token-level under randomized masking, A2D achieves robustness to both any-decoding-order and any-step prefilling attacks under various conditions. It also enables real-time monitoring: dLLMs may begin a response but automatically terminate if unsafe continuation emerges. On safety benchmarks, A2D consistently prevents the generation of harmful outputs, slashing DIJA success rates from over 80% to near-zero (1.3% on LLaDA-8B-Instruct, 0.0% on Dream-v0-Instruct-7B), and thresholded [EOS] probabilities allow early rejection, yielding up to 19.3x faster safe termination.
comment: Accepted at ICLR 2026. Code and models are available at https://ai-isl.github.io/A2D
♻ ☆ Federated Causal Inference from Multi-Site Observational Data via Propensity Score Aggregation
Causal inference typically assumes centralized access to individual-level data. Yet, in practice, data are often decentralized across multiple sites, making centralization infeasible due to privacy, logistical, or legal constraints. We address this problem by estimating the Average Treatment Effect (ATE) from decentralized observational data via a Federated Learning (FL) approach, allowing inference through the exchange of aggregate statistics rather than individual-level data. We propose a novel method to estimate propensity scores via a federated weighted average of local scores using Membership Weights (MW), defined as probabilities of site membership conditional on covariates. MW can be flexibly estimated with parametric or non-parametric classification models using standard FL algorithms. The resulting propensity scores are used to construct Federated Inverse Propensity Weighting (Fed-IPW) and Augmented IPW (Fed-AIPW) estimators. In contrast to meta-analysis methods, which fail when any site violates positivity, our approach exploits heterogeneity in treatment assignment across sites to improve overlap. We show that Fed-IPW and Fed-AIPW perform well under site-level heterogeneity in sample sizes, treatment mechanisms, and covariate distributions. Theoretical analysis and experiments on simulated and real-world data demonstrate clear advantages over meta-analysis and related approaches.
♻ ☆ Privacy-Aware Predictions in Participatory Budgeting
Participatory budgeting is a democratic innovation that empowers citizens to propose and vote on public investment projects. While researchers in computer science focused on improving the voting phase of this process, in this work we aim to support organizers of participatory budgeting campaigns to manage large volumes of project proposals at the submission stage. We propose a privacy-preserving approach to predict which proposals are likely to be funded, using only projects' textual descriptions and anonymous historical voting records, without relying on voter demographics or personally identifiable information.
♻ ☆ Aggregation Queries over Unstructured Text: Benchmark and Agentic Method
Aggregation query over free text is a long-standing yet underexplored problem. Unlike ordinary question answering, aggregate queries require exhaustive evidence collection and systems are required to "find all," not merely "find one." Existing paradigms such as Text-to-SQL and Retrieval-Augmented Generation fail to achieve this completeness. In this work, we formalize entity-level aggregation querying over text in a corpus-bounded setting with strict completeness requirement. To enable principled evaluation, we introduce AGGBench, a benchmark designed to evaluate completeness-oriented aggregation under realistic large-scale corpus. To accompany the benchmark, we propose DFA (Disambiguation--Filtering--Aggregation), a modular agentic baseline that decomposes aggregation querying into interpretable stages and exposes key failure modes related to ambiguity, filtering, and aggregation. Empirical results show that DFA consistently improves aggregation evidence coverage over strong RAG and agentic baselines. The data and code are available in \href{https://anonymous.4open.science/r/DFA-A4C1}.
♻ ☆ CiMRAG: CiM-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs ICASSP 2026
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
♻ ☆ Exploring the Global-to-Local Attention Scheme in Graph Transformers: An Empirical Study
Graph Transformers (GTs) show considerable potential in graph representation learning. The architecture of GTs typically integrates Graph Neural Networks (GNNs) with global attention mechanisms either in parallel or as a precursor to attention mechanisms, yielding a local-and-global or local-to-global attention scheme. However, as the global attention mechanism primarily captures long-range dependencies between nodes, these integration schemes may suffer from information loss, where the local neighborhood information learned by GNN could be diluted by the attention mechanism. Therefore, we propose G2LFormer, featuring a novel global-to-local attention scheme where the shallow network layers use attention mechanisms to capture global information, while the deeper layers employ GNN modules to learn local structural information, thereby preventing nodes from ignoring their immediate neighbors. An effective cross-layer information fusion strategy is introduced to allow local layers to retain beneficial information from global layers and alleviate information loss, with acceptable trade-offs in scalability. To validate the feasibility of the global-to-local attention scheme, we compare G2LFormer with state-of-the-art linear GTs and GNNs on node-level and graph-level tasks. The results indicate that G2LFormer exhibits excellent performance while keeping linear complexity.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-026-51718-4}
♻ ☆ UrbanGraph: Physics-Informed Spatio-Temporal Dynamic Heterogeneous Graphs for Urban Microclimate Prediction
With rapid urbanization, predicting urban microclimates has become critical, as it affects building energy demand and public health risks. However, existing generative and homogeneous graph approaches fall short in capturing physical consistency, spatial dependencies, and temporal variability. To address this, we introduce UrbanGraph, a framework founded on a novel structure-based inductive bias. Unlike implicit graph learning, UrbanGraph transforms physical first principles into a dynamic causal topology, explicitly encoding time-varying causalities (e.g., shading and convection) directly into the graph structure to ensure physical consistency and data efficiency. Results show that UrbanGraph achieves state-of-the-art performance across all baselines. Specifically, the use of explicit causal pruning significantly reduces the model's floating-point operations (FLOPs) by 73.8% and increases training speed by 21% compared to implicit graphs. Our contribution includes the first high-resolution benchmark for spatio-temporal microclimate modeling, and a generalizable explicit topological encoding paradigm applicable to urban spatio-temporal dynamics governed by known physical equations.
♻ ☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce VIP, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, VIP uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that VIP consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks.
comment: Accepted at ICLR 2026
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis
Mechanistic Interpretability (MI) aims to reverse-engineer model behaviors by identifying functional sub-networks. Yet, the scientific validity of these findings depends on their stability. In this work, we argue that circuit discovery is not a standalone task but a statistical estimation problem built upon causal mediation analysis (CMA). We uncover a fundamental instability at this base layer: exact, single-input CMA scores exhibit high intrinsic variance, implying that the causal effect of a component is a volatile random variable rather than a fixed property. We then demonstrate that circuit discovery pipelines inherit this variance and further amplify it. Fast approximation methods, such as Edge Attribution Patching and its successors, introduce additional estimation noise, while aggregating these noisy scores over datasets leads to fragile structural estimates. Consequently, small perturbations in input data or hyperparameters yield vastly different circuits. We systematically decompose these sources of variance and advocate for more rigorous MI practices, prioritizing statistical robustness and routine reporting of stability metrics.
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ Chain-of-Thought Hijacking
Large Reasoning Models (LRMs) improve task performance through extended inference-time reasoning. While prior work suggests this should strengthen safety, we find evidence to the contrary. Long reasoning sequences can be exploited to systematically weaken them. We introduce Chain-of-Thought Hijacking, a jailbreak attack that prepends harmful instructions with extended sequences of benign puzzle reasoning. Across HarmBench, CoT Hijacking achieves attack success rates of 99\%, 94\%, 100\%, and 94\% on Gemini 2.5 Pro, ChatGPT o4 Mini, Grok 3 Mini, and Claude 4 Sonnet. To understand this mechanism, we apply activation probing, attention analysis, and causal interventions. We find that refusal depends on a low-dimensional safety signal that becomes diluted as reasoning grows: mid-layers encode the strength of safety checking, while late layers encode the refusal outcome. These findings demonstrate that explicit chain-of-thought reasoning introduces a systematic vulnerability when combined with answer-prompting cues. We release all evaluation materials to facilitate replication.
♻ ☆ MSACL: Multi-Step Actor-Critic Learning with Lyapunov Certificates for Exponentially Stabilizing Control
For safety-critical applications, model-free reinforcement learning (RL) faces numerous challenges, particularly the difficulty of establishing verifiable stability guarantees while maintaining high exploration efficiency. To address these challenges, we present Multi-Step Actor-Critic Learning with Lyapunov Certificates (MSACL), a novel approach that seamlessly integrates exponential stability with maximum entropy reinforcement learning (MERL). In contrast to existing methods that rely on complex reward engineering and single-step constraints, MSACL utilizes intuitive rewards and multi-step data for actor-critic learning. Specifically, we first introduce Exponential Stability Labels (ESLs) to categorize samples and propose a $λ$-weighted aggregation mechanism to learn Lyapunov certificates. Leveraging these certificates, we then develop a stability-aware advantage function to guide policy optimization, thereby ensuring rapid Lyapunov descent and robust state convergence. We evaluate MSACL across six benchmarks, comprising four stabilization and two high-dimensional tracking tasks. Experimental results demonstrate its consistent superiority over both standard RL baselines and state-of-the-art Lyapunov-based RL algorithms. Beyond rapid convergence, MSACL exhibits significant robustness against environmental uncertainties and remarkable generalization to unseen reference signals. The source code and benchmarking environments are available at \href{https://github.com/YuanZhe-Xing/MSACL}{https://github.com/YuanZhe-Xing/MSACL}.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ MemeLens: Multilingual Multitask VLMs for Memes
Memes are a dominant medium for online communication and manipulation because meaning emerges from interactions between embedded text, imagery, and cultural context. Existing meme research is distributed across tasks (hate, misogyny, propaganda, sentiment, humour) and languages, which limits cross-domain generalization. To address this gap we propose MemeLens, a unified multilingual and multitask explanation-enhanced Vision Language Model (VLM) for meme understanding. We consolidate 38 public meme datasets, filter and map dataset-specific labels into a shared taxonomy of $20$ tasks spanning harm, targets, figurative/pragmatic intent, and affect. We present a comprehensive empirical analysis across modeling paradigms, task categories, and datasets. Our findings suggest that robust meme understanding requires multimodal training, exhibits substantial variation across semantic categories, and remains sensitive to over-specialization when models are fine-tuned on individual datasets rather than trained in a unified setting. We will make the experimental resources and datasets publicly available for the community.
comment: disinformation, misinformation, factuality, harmfulness, fake news, propaganda, hateful meme, multimodality, text, images
♻ ☆ From Classical to Quantum Reinforcement Learning and Its Applications in Quantum Control: A Beginner's Tutorial
This tutorial is designed to make reinforcement learning (RL) more accessible to undergraduate students by offering clear, example-driven explanations. It focuses on bridging the gap between RL theory and practical coding applications, addressing common challenges that students face when transitioning from conceptual understanding to implementation. Through hands-on examples and approachable explanations, the tutorial aims to equip students with the foundational skills needed to confidently apply RL techniques in real-world scenarios.
♻ ☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026; Project Page: https://hebing-sjtu.github.io/SurfSplat-website/
♻ ☆ Adaptive Helpfulness-Harmlessness Alignment with Preference Vectors EACL 2026
Ensuring that large language models (LLMs) are both helpful and harmless is a critical challenge, as overly strict constraints can lead to excessive refusals, while permissive models risk generating harmful content. Existing approaches, such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO), attempt to balance these trade-offs but suffer from performance conflicts, limited controllability, and poor extendability. To address these issues, we propose Preference Vector, a novel framework inspired by task arithmetic. Instead of optimizing multiple preferences within a single objective, we train separate models on individual preferences, extract behavior shifts as preference vectors, and dynamically merge them at test time. This modular approach enables fine-grained, user-controllable preference adjustments and facilitates seamless integration of new preferences without retraining. Experiments show that our proposed Preference Vector framework improves helpfulness without excessive conservatism, allows smooth control over preference trade-offs, and supports scalable multi-preference alignment.
comment: Accepted at The 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2026), Rabat, Morocco. 22 pages, 5 figures, 9 tables
♻ ☆ Going with the Speed of Sound: Pushing Neural Surrogates into Highly-turbulent Transonic Regimes NeurIPS 2025
The widespread use of neural surrogates in automotive aerodynamics, enabled by datasets such as DrivAerML and DrivAerNet++, has primarily focused on bluff-body flows with large wakes. Extending these methods to aerospace, particularly in the transonic regime, remains challenging due to the high level of non-linearity of compressible flows and 3D effects such as wingtip vortices. Existing aerospace datasets predominantly focus on 2D airfoils, neglecting these critical 3D phenomena. To address this gap, we present a new dataset of CFD simulations for 3D wings in the transonic regime. The dataset comprises volumetric and surface-level fields for around $30,000$ samples with unique geometry and inflow conditions. This allows computation of lift and drag coefficients, providing a foundation for data-driven aerodynamic optimization of the drag-lift Pareto front. We evaluate several state-of-the-art neural surrogates on our dataset, including Transolver and AB-UPT, focusing on their out-of-distribution (OOD) generalization over geometry and inflow variations. AB-UPT demonstrates strong performance for transonic flowfields and reproduces physically consistent drag-lift Pareto fronts even for unseen wing configurations. Our results demonstrate that AB-UPT can approximate drag-lift Pareto fronts for unseen geometries, highlighting its potential as an efficient and effective tool for rapid aerodynamic design exploration. To facilitate future research, we open-source our dataset at https://huggingface.co/datasets/EmmiAI/Emmi-Wing.
comment: NeurIPS 2025 ML4PS Workshop
♻ ☆ MAPGD: Multi-Agent Prompt Gradient Descent for Collaborative Prompt Optimization
Prompt engineering is crucial for fully leveraging large language models (LLMs), yet most existing optimization methods follow a single trajectory, resulting in limited adaptability, gradient conflicts, and high computational overhead. We propose MAPGD (Multi-Agent Prompt Gradient Descent), a novel framework that reconceptualizes prompt optimization as a collaborative process among specialized agents. Each agent focuses on a distinct refinement dimension, such as instruction clarity, example selection, format structure, or stylistic adaptation, and their contributions are coordinated through semantic gradient embedding, conflict detection, and fusion. To further enhance robustness and stability, MAPGD introduces two new mechanisms: Hypersphere Constrained Gradient Clustering (HCGC), which enforces angular margin constraints for compact and well-separated clusters, and Channel Adaptive Agent Weighting (CAAW), which dynamically reweights agent contributions based on validation performance. Experiments on classification and reasoning benchmarks show that MAPGD consistently surpasses single-agent and random baselines in both accuracy and efficiency. Ablation studies confirm the effectiveness of gradient fusion, agent specialization, and conflict resolution. Together, these components establish MAPGD as a unified, gradient-based, and interpretable framework for robust prompt optimization with theoretical convergence guarantees.
UniFGVC: Universal Training-Free Few-Shot Fine-Grained Vision Classification via Attribute-Aware Multimodal Retrieval
Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
♻ ☆ MapDream: Task-Driven Map Learning for Vision-Language Navigation
Vision-Language Navigation (VLN) requires agents to follow natural language instructions in partially observed 3D environments, motivating map representations that aggregate spatial context beyond local perception. However, most existing approaches rely on hand-crafted maps constructed independently of the navigation policy. We argue that maps should instead be learned representations shaped directly by navigation objectives rather than exhaustive reconstructions. Based on this insight, we propose MapDream, a map-in-the-loop framework that formulates map construction as autoregressive bird's-eye-view (BEV) image synthesis. The framework jointly learns map generation and action prediction, distilling environmental context into a compact three-channel BEV map that preserves only navigation-critical affordances. Supervised pre-training bootstraps a reliable mapping-to-control interface, while the autoregressive design enables end-to-end joint optimization through reinforcement fine-tuning. Experiments on R2R-CE and RxR-CE achieve state-of-the-art monocular performance, validating task-driven generative map learning.
♻ ☆ Structured Self-Consistency:A Multi-Task Evaluation of LLMs on VirtualHome
Embodied AI requires agents to understand goals, plan actions, and execute tasks in simulated environments. We present a comprehensive evaluation of Large Language Models (LLMs) on the VirtualHome benchmark using the Embodied Agent Interface (EAI) framework. We compare two representative 7B-parameter models OPENPANGU-7B and QWEN2.5-7B across four fundamental tasks: Goal Interpretation, Action Sequencing, Subgoal Decomposition, and Transition Modeling. We propose Structured Self-Consistency (SSC), an enhanced decoding strategy that leverages multiple sampling with domain-specific voting mechanisms to improve output quality for structured generation tasks. Experimental results demonstrate that SSC significantly enhances performance, with OPENPANGU-7B excelling at hierarchical planning while QWEN2.5-7B show advantages in action-level tasks. Our analysis reveals complementary strengths across model types, providing insights for future embodied AI system development.
♻ ☆ Do Models Hear Like Us? Probing the Representational Alignment of Audio LLMs and Naturalistic EEG
Audio Large Language Models (Audio LLMs) have demonstrated strong capabilities in integrating speech perception with language understanding. However, whether their internal representations align with human neural dynamics during naturalistic listening remains largely unexplored. In this work, we systematically examine layer-wise representational alignment between 12 open-source Audio LLMs and Electroencephalogram (EEG) signals across 2 datasets. Specifically, we employ 8 similarity metrics, such as Spearman-based Representational Similarity Analysis (RSA), to characterize within-sentence representational geometry. Our analysis reveals 3 key findings: (1) we observe a rank-dependence split, in which model rankings vary substantially across different similarity metrics; (2) we identify spatio-temporal alignment patterns characterized by depth-dependent alignment peaks and a pronounced increase in RSA within the 250-500 ms time window, consistent with N400-related neural dynamics; (3) we find an affective dissociation whereby negative prosody, identified using a proposed Tri-modal Neighborhood Consistency (TNC) criterion, reduces geometric similarity while enhancing covariance-based dependence. These findings provide new neurobiological insights into the representational mechanisms of Audio LLMs.
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding accelerates LLM inference by letting a small drafter propose multiple tokens which a large target model verifies once per speculation step. As vocabularies scale past 10e5 tokens,verification cost in the target model is largely unchanged, but the drafter can become bottlenecked by its O(|V|d) output projection. Recent approaches (e.g., FR-Spec, VocabTrim) mitigate this by restricting drafting to a fixed, frequency-ranked shortlist; however, such static truncation is corpus-dependent and suppresses rare or domain-specific tokens, reducing acceptance and limiting speedups. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism for large-vocabulary speculative decoding. DynaSpec trains lightweight meta-classifiers that route each context to a small set of coarse token clusters; the union of the top-selected clusters defines the drafter's shortlist, while the target model still verifies over the full vocabulary, preserving exactness. Systems-wise, routing is overlapped with draft computation via parallel execution streams, reducing end-to-end overhead. Across standard speculative decoding benchmarks, DynaSpec consistently improves mean accepted length-recovering 98.4% of full-vocabulary performance for Llama-3-8B versus 93.6% for fixed-shortlist baselines-and achieves up to a 2.23x throughput gain compared to 1.91x for static approaches on the dataset with rare tokens.
♻ ☆ MoGU: Mixture-of-Gaussians with Uncertainty-based Gating for Time Series Forecasting
We introduce Mixture-of-Gaussians with Uncertainty-based Gating (MoGU), a novel Mixture-of-Experts (MoE) framework designed for regression tasks. MoGU replaces standard learned gating with an intrinsic routing paradigm where expert-specific uncertainty serves as the native gating signal. By modeling each prediction as a Gaussian distribution, the system utilizes predicted variance to dynamically weight expert contributions. We validate MoGU on multivariate time-series forecasting, a domain defined by high volatility and varying noise patterns. Empirical results across multiple benchmarks, horizon lengths, and backbones demonstrate that MoGU consistently improves forecasting accuracy compared to traditional MoE. Further evaluation via conformal prediction indicates that our approach yields more efficient prediction intervals than existing baselines. These findings highlight MoGU's capacity for providing both competitive performance and reliable, high-fidelity uncertainty quantification. Our code is available at: https://github.com/yolish/moe_unc_tsf
NEZHA: A Zero-sacrifice and Hyperspeed Decoding Architecture for Generative Recommendations
Generative Recommendation (GR), powered by Large Language Models (LLMs), represents a promising new paradigm for industrial recommender systems. However, their practical application is severely hindered by high inference latency, which makes them infeasible for high-throughput, real-time services and limits their overall business impact. While Speculative Decoding (SD) has been proposed to accelerate the autoregressive generation process, existing implementations introduce new bottlenecks: they typically require separate draft models and model-based verifiers, requiring additional training and increasing the latency overhead. In this paper, we address these challenges with NEZHA, a novel architecture that achieves hyperspeed decoding for GR systems without sacrificing recommendation quality. Specifically, NEZHA integrates a nimble autoregressive draft head directly into the primary model, enabling efficient self-drafting. This design, combined with a specialized input prompt structure, preserves the integrity of sequence-to-sequence generation. Furthermore, to tackle the critical problem of hallucination, a major source of performance degradation, we introduce an efficient, model-free verifier based on a hash set. We demonstrate the effectiveness of NEZHA through extensive experiments on public datasets and have successfully deployed the system on Taobao since October 2025, driving the billion-level advertising revenue and serving hundreds of millions of daily active users.
♻ ☆ PRPO: Aligning Process Reward with Outcome Reward in Policy Optimization
Policy optimization for large language models often suffers from sparse reward signals in multi-step reasoning tasks. Critic-free methods like GRPO assign a single normalized outcome reward to all tokens, providing limited guidance for intermediate reasoning . While Process Reward Models (PRMs) offer dense feedback, they risk premature collapse when used alone, as early low-reward tokens can drive policies toward truncated outputs. We introduce Process Relative Policy Optimization (PRPO), which combines outcome reliability with process-level guidance in a critic-free framework. PRPO segments reasoning sequences based on semantic clues, normalizes PRM scores into token-level advantages, and aligns their distribution with outcome advantages through location-parameter shift. On MATH500, PRPO improves Qwen2.5-Math-1.5B accuracy from 61.2% to 64.4% over GRPO using only eight rollouts and no value network, demonstrating efficient fine-grained credit assignment within critic-free optimization. Code is available at: https://github.com/SchumiDing/srpocode
comment: 8 pages, 2 figures Code is available at: https://github.com/SchumiDing/srpocode
♻ ☆ PROTEUS: SLA-Aware Routing via Lagrangian RL for Multi-LLM Serving Systems
Production LLM deployments serve diverse workloads where cost and quality requirements vary by customer tier, time of day, and query criticality. Model serving systems accept latency SLOs directly. LLM routers do not. They force operators to tune parameters offline and guess what accuracy might result. The relationship between parameters and outcomes is indirect, non-monotonic, and dataset-dependent. Operators need to specify accuracy targets, not infer them from opaque settings. We present PROTEUS (Polymorphic Router for Operational Target Enforcement with Unified SLA), a router that accepts accuracy targets tau as runtime input. PROTEUS uses Lagrangian dual control. A learned dual variable lambda tracks constraint violations during training and conditions the policy network. This lets the router translate specified tau values into routing decisions that satisfy them. A single trained model serves the full accuracy spectrum without retraining.We evaluate on RouterBench (11 models, 405K queries) and SPROUT (14 models, 45K queries). PROTEUS achieves consistent floor compliance where accuracy meets or exceeds tau. The target-response correlation reaches 0.97 to 0.98. The closest baseline, OmniRouter, meets floors only 22% of the time despite also using Lagrangian optimization. PROTEUS operates across tau in [0.85, 0.95] from a single model. On RouterBench it achieves 90.1% accuracy, within 1.3% of oracle. On SPROUT it achieves 94.0% accuracy, within 4.6% of oracle. Cost savings reach 89.8% versus the best fixed model.
comment: Submitted to EuroMLSys26
♻ ☆ Towards Reliable Evaluation of Adversarial Robustness for Spiking Neural Networks
Spiking Neural Networks (SNNs) utilize spike-based activations to mimic the brain's energy-efficient information processing. However, the binary and discontinuous nature of spike activations causes vanishing gradients, making adversarial robustness evaluation via gradient descent unreliable. While improved surrogate gradient methods have been proposed, their effectiveness under strong adversarial attacks remains unclear. We propose a more reliable framework for evaluating SNN adversarial robustness. We theoretically analyze the degree of gradient vanishing in surrogate gradients and introduce the Adaptive Sharpness Surrogate Gradient (ASSG), which adaptively evolves the shape of the surrogate function according to the input distribution during attack iterations, thereby enhancing gradient accuracy while mitigating gradient vanishing. In addition, we design an adversarial attack with adaptive step size under the $L_\infty$ constraint-Stable Adaptive Projected Gradient Descent (SA-PGD), achieving faster and more stable convergence under imprecise gradients. Extensive experiments show that our approach substantially increases attack success rates across diverse adversarial training schemes, SNN architectures and neuron models, providing a more generalized and reliable evaluation of SNN adversarial robustness. The experimental results further reveal that the robustness of current SNNs has been significantly overestimated and highlighting the need for more dependable adversarial training methods.
♻ ☆ Fast Training of Sinusoidal Neural Fields via Scaling Initialization ICLR 2025
Neural fields are an emerging paradigm that represent data as continuous functions parameterized by neural networks. Despite many advantages, neural fields often have a high training cost, which prevents a broader adoption. In this paper, we focus on a popular family of neural fields, called sinusoidal neural fields (SNFs), and study how it should be initialized to maximize the training speed. We find that the standard initialization scheme for SNFs -- designed based on the signal propagation principle -- is suboptimal. In particular, we show that by simply multiplying each weight (except for the last layer) by a constant, we can accelerate SNF training by 10$\times$. This method, coined $\textit{weight scaling}$, consistently provides a significant speedup over various data domains, allowing the SNFs to train faster than more recently proposed architectures. To understand why the weight scaling works well, we conduct extensive theoretical and empirical analyses which reveal that the weight scaling not only resolves the spectral bias quite effectively but also enjoys a well-conditioned optimization trajectory. The code is available $\href{https://github.com/effl-lab/Fast-Neural-Fields}{here}$.
comment: ICLR 2025
♻ ☆ DCoPilot: Generative AI-Empowered Policy Adaptation for Dynamic Data Center Operations
Modern data centers (DCs) hosting artificial intelligence (AI)-dedicated devices operate at high power densities with rapidly varying workloads, making minute-level adaptation essential for safe and energy-efficient operation. However, manually designing piecewise deep reinforcement learning (DRL) agents cannot keep pace with frequent dynamics shifts and service-level agreement (SLA) changes of an evolving DC. This specification-to-policy lag causes a lack of timely, effective control policies, which may lead to service outages. To bridge the gap, we present DCoPilot, a hybrid framework for generative control policies in dynamic DC operation. DCoPilot synergizes two distinct generative paradigms, i.e., a large language model (LLM) that performs symbolic generation of structured reward forms, and a hypernetwork that conducts parametric generation of policy weights. DCoPilot operates through three coordinated phases: (i) simulation scale-up, which stress-tests reward candidates across diverse simulation-ready (SimReady) scenes; (ii) meta policy distillation, where a hypernetwork is trained to output policy weights conditioned on SLA and scene embeddings; and (iii) online adaptation, enabling zero-shot policy generation in response to updated specifications. Evaluated across five control task families spanning diverse DC components, DCoPilot achieves near-zero constraint violations and outperforms all baselines across specification variations. Ablation studies validate the effectiveness of LLM-based unified reward generation in enabling stable hypernetwork convergence.
♻ ☆ Lightweight and Interpretable Transformer via Mixed Graph Algorithm Unrolling for Traffic Forecast
Unlike conventional "black-box" transformers with classical self-attention mechanism, we build a lightweight and interpretable transformer-like neural net by unrolling a mixed-graph-based optimization algorithm to forecast traffic with spatial and temporal dimensions. We construct two graphs: an undirected graph $\mathcal{G}^u$ capturing spatial correlations across geography, and a directed graph $\mathcal{G}^d$ capturing sequential relationships over time. We predict future samples of signal $\mathbf{x}$, assuming it is "smooth" with respect to both $\mathcal{G}^u$ and $\mathcal{G}^d$, where we design new $\ell_2$ and $\ell_1$-norm variational terms to quantify and promote signal smoothness (low-frequency reconstruction) on a directed graph. We design an iterative algorithm based on alternating direction method of multipliers (ADMM), and unroll it into a feed-forward network for data-driven parameter learning. We periodically insert graph learning modules for $\mathcal{G}^u$ and $\mathcal{G}^d$ that play the role of self-attention. Experiments show that our unrolled networks achieve competitive traffic forecast performance as state-of-the-art prediction schemes, while reducing parameter counts drastically.
comment: 24 pages, 7 figures, 11 tables
♻ ☆ Efficient Utility-Preserving Machine Unlearning with Implicit Gradient Surgery
Machine unlearning (MU) aims to efficiently remove sensitive or harmful memory from a pre-trained model. The key challenge is to balance the potential tradeoff between unlearning efficacy and utility preservation, which involves forgetting undesirable information as defined while maintaining the model's original performance. One potential way to tackle this problem is to use multi-objective optimization to jointly optimize both the unlearning and utility preservation objectives. However, existing multi-objective methods only guarantee finding a Pareto-optimal solution without fine-grained control, which causes under-optimization of the unlearning objective. To this end, we first model MU as a constrained optimization problem, that is, optimizing the unlearning objective under the constraint of a bounded increase for utility loss. We then show that solving this optimization problem is equivalent to unilateral gradient surgery on the unlearning objective. To resolve the additional computational cost brought by gradient surgery, we propose an implicit gradient surgery method, which approximates the solution to the aforementioned constrained optimization problem via only one backpropagation, thereby achieving efficient utility-preserving MU. Theoretically, we provide a tight convergence analysis of the algorithm. Empirically, our extensive experiments show that the proposed algorithm achieves better tradeoff results than existing baselines. Codes are available at https://github.com/anseryuer/EUPMU-Efficient-Utility-Preserving-Machine-Unlearning.
comment: Corresponding author: Shiji Zhou (zhoushiji25@buaa.edu.cn). Shiji Zhou and Tianbai Yu contributed equally
♻ ☆ SafeGround: Know When to Trust GUI Grounding Models via Uncertainty Calibration
Graphical User Interface (GUI) grounding aims to translate natural language instructions into executable screen coordinates, enabling automated GUI interaction. Nevertheless, incorrect grounding can result in costly, hard-to-reverse actions (e.g., erroneous payment approvals), raising concerns about model reliability. In this paper, we introduce SafeGround, an uncertainty-aware framework for GUI grounding models that enables risk-aware predictions through calibrations before testing. SafeGround leverages a distribution-aware uncertainty quantification method to capture the spatial dispersion of stochastic samples from outputs of any given model. Then, through the calibration process, SafeGround derives a test-time decision threshold with statistically guaranteed false discovery rate (FDR) control. We apply SafeGround on multiple GUI grounding models for the challenging ScreenSpot-Pro benchmark. Experimental results show that our uncertainty measure consistently outperforms existing baselines in distinguishing correct from incorrect predictions, while the calibrated threshold reliably enables rigorous risk control and potentials of substantial system-level accuracy improvements. Across multiple GUI grounding models, SafeGround improves system-level accuracy by up to 5.38% percentage points over Gemini-only inference.
♻ ☆ Depth-Breadth Synergy in RLVR: Unlocking LLM Reasoning Gains with Adaptive Exploration
Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models, yet its full potential is hindered by two under-explored dimensions: Depth-the hardest problem a model can sample; Breadth-the number of instances consumed in a single iteration. We dissect the popular GRPO algorithm and reveal a systematic bias: the cumulative-advantage disproportionately weights samples with medium accuracy, while down-weighting the low-accuracy instances that are crucial for pushing reasoning boundaries. To rectify the depth neglect, we introduce Difficulty Adaptive Rollout Sampling (DARS), which re-weights hard problems through targeted multi-stage rollouts, thereby increasing the number of positive rollouts for hard problems. Empirically, naively enlarging rollout size only accelerates convergence and even hurts Pass@K. Our DARS, in contrast, delivers consistent Pass@K gains without extra inference cost at convergence. Just as we adaptively expanded the depth of exploration, we now ask whether aggressively scaling the breadth of training data can further amplify reasoning gains. To this end, we intensely scale batch size and replace PPO's mini-batch iterations with full-batch updates over multiple epochs. Increasing breadth significantly enhances Pass@1 performance. Large-breadth training sustains high token-level entropy, indicating continued exploration and reduced gradient noise. We further present DARS-B, which augments DARS with large breadth, and demonstrate simultaneous gains in Pass@K and Pass@1. The results confirm that breadth and adaptive exploration across depth operate as orthogonal dimensions in RLVR, which are key to unleashing the reasoning power of RLVR.
comment: 18 pages, 14 figures
♻ ☆ Exact Solution to Data-Driven Inverse Optimization of MILPs in Finite Time via Gradient-Based Methods
A data-driven inverse optimization problem (DDIOP) seeks to estimate an objective function (i.e., weights) that is consistent with observed optimal-solution data, and is important in many applications, including those involving mixed integer linear programs (MILPs). In the DDIOP for MILPs, the prediction loss on features (PLF), defined as the discrepancy between observed and predicted feature values, becomes discontinuous with respect to the weights, which makes it difficult to apply gradient-based optimization. To address this issue, we focus on a Lipschitz continuous and convex suboptimality loss. By exploiting its convex and piecewise-linear structure and the interiority of the minimum set, we show that a broad class of gradient-based optimization methods, including projected subgradient descent (PSGD), reaches the minimum suboptimality loss value in a finite number of iterations, thereby exactly solving the DDIOP for MILPs. Furthermore, as a corollary, we show that PSGD attains the minimum PLF in finitely many iterations. We also derive an upper bound on the number of iterations required for PSGD to reach finite convergence, and confirm the finite-step behavior through numerical experiments.
comment: 42 pages; comments are welcome
♻ ☆ Variational Approach for Job Shop Scheduling
This paper proposes a novel Variational Graph-to-Scheduler (VG2S) framework for solving the Job Shop Scheduling Problem (JSSP), a critical task in manufacturing that directly impacts operational efficiency and resource utilization. Conventional Deep Reinforcement Learning (DRL) approaches often face challenges such as non-stationarity during training and limited generalization to unseen problem instances because they optimize representation learning and policy execution simultaneously. To address these issues, we introduce variational inference to the JSSP domain for the first time and derive a probabilistic objective based on the Evidence of Lower Bound (ELBO) with maximum entropy reinforcement learning. By mathematically decoupling representation learning from policy optimization, the VG2S framework enables the agent to learn robust structural representations of scheduling instances through a variational graph encoder. This approach significantly enhances training stability and robustness against hyperparameter variations. Extensive experiments demonstrate that the proposed method exhibits superior zero-shot generalization compared with state-of-the-art DRL baselines and traditional dispatching rules, particularly on large-scale and challenging benchmark instances such as DMU and SWV.
♻ ☆ Happy Young Women, Grumpy Old Men? Emotion-Driven Demographic Biases in Synthetic Face Generation
Synthetic face generation has rapidly advanced with the emergence of text-to-image (T2I) and of multimodal large language models, enabling high-fidelity image production from natural-language prompts. Despite the widespread adoption of these tools, the biases, representational quality, and cross-cultural consistency of these models remain poorly understood. Prior research on biases in the synthetic generation of human faces has examined demographic biases, yet there is little research on how emotional prompts influence demographic representation and how models trained in different cultural and linguistic contexts vary in their output distributions. We present a systematic audit of eight state-of-the-art T2I models comprising four models developed by Western organizations and four developed by Chinese institutions, all prompted identically. Using state-of-the-art facial analysis algorithms, we estimate the gender, race, age, and attractiveness levels in the generated faces. To measure the deviations from global population statistics, we apply information-theoretic bias metrics including Kullback-Leibler and Jensen-Shannon divergences. Our findings reveal persistent demographic and emotion-conditioned biases in all models regardless of their country of origin. We discuss implications for fairness, socio-technical harms, governance, and the development of transparent generative systems.
comment: 23 pages, 11 figures
♻ ☆ Bounded Hyperbolic Tangent: A Stable and Efficient Alternative to Pre-Layer Normalization in Large Language Models
Pre-Layer Normalization (Pre-LN) is the de facto choice for large language models (LLMs) and is crucial for stable pretraining and effective transfer learning. However, Pre-LN is inefficient due to repeated statistical calculations and suffers from the curse of depth. As layers grow, the magnitude and variance of the hidden state escalate, destabilizing training. Efficiency-oriented normalization-free methods such as Dynamic Tanh (DyT) improve speed but remain fragile at depth. To jointly address stability and efficiency, we propose Bounded Hyperbolic Tanh (BHyT), a drop-in replacement for Pre-LN. BHyT couples a tanh nonlinearity with explicit, data-driven input bounding to keep activations within a non-saturating range. It prevents depth-wise growth in activation magnitude and variance and comes with a theoretical stability guarantee. For efficiency, BHyT computes exact statistics once per block and replaces a second normalization with a lightweight variance approximation, enhancing efficiency. Empirically, BHyT demonstrates improved stability and efficiency during pretraining, achieving an average of 15.8% faster training and an average of 4.2% higher token generation throughput compared to RMSNorm., while matching or surpassing its inference performance and robustness across language understanding and reasoning benchmarks. Our code is available at: https://anonymous.4open.science/r/BHyT
♻ ☆ Q-Regularized Generative Auto-Bidding: From Suboptimal Trajectories to Optimal Policies
With the rapid development of e-commerce, auto-bidding has become a key asset in optimizing advertising performance under diverse advertiser environments. The current approaches focus on reinforcement learning (RL) and generative models. These efforts imitate offline historical behaviors by utilizing a complex structure with expensive hyperparameter tuning. The suboptimal trajectories further exacerbate the difficulty of policy learning. To address these challenges, we proposes QGA, a novel Q-value regularized Generative Auto-bidding method. In QGA, we propose to plug a Q-value regularization with double Q-learning strategy into the Decision Transformer backbone. This design enables joint optimization of policy imitation and action-value maximization, allowing the learned bidding policy to both leverage experience from the dataset and alleviate the adverse impact of the suboptimal trajectories. Furthermore, to safely explore the policy space beyond the data distribution, we propose a Q-value guided dual-exploration mechanism, in which the DT model is conditioned on multiple return-to-go targets and locally perturbed actions. This entire exploration process is dynamically guided by the aforementioned Q-value module, which provides principled evaluation for each candidate action. Experiments on public benchmarks and simulation environments demonstrate that QGA consistently achieves superior or highly competitive results compared to existing alternatives. Notably, in large-scale real-world A/B testing, QGA achieves a 3.27% increase in Ad GMV and a 2.49% improvement in Ad ROI.
comment: Due to the company's compliance requirements, we would like to wait until the paper is officially published before making it publicly available on arXiv
♻ ☆ Cross-Modal Alignment and Fusion for RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
♻ ☆ GeoResponder: Towards Building Geospatial LLMs for Time-Critical Disaster Response
Large Language Models excel at linguistic tasks but lack the inner geospatial capabilities needed for time-critical disaster response, where reasoning about road networks, continuous coordinates, and access to essential infrastructure such as hospitals, shelters, and pharmacies is vital. We introduce GeoResponder, a framework that instills robust spatial reasoning through a scaffolded instruction-tuning curriculum. By stratifying geospatial learning into different cognitive layers, we effectively anchor semantic knowledge to the continuous coordinate manifold and enforce the internalization of spatial axioms. Extensive evaluations across four topologically distinct cities and diverse tasks demonstrate that GeoResponder significantly outperforms both state-of-the-art foundation models and domain-specific baselines. These results suggest that LLMs can begin to internalize and generalize geospatial structures, pointing toward the future development of language models capable of supporting disaster response needs.
♻ ☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
♻ ☆ Why Self-Rewarding Works: Theoretical Guarantees for Iterative Alignment of Language Models
Self-Rewarding Language Models (SRLMs) achieve notable success in iteratively improving alignment without external feedback. Yet, despite their striking empirical progress, the core mechanisms driving their capabilities remain unelucidated, leaving a critical gap in theoretical understanding. This paper provides the first rigorous theoretical guarantees for SRLMs. We first establish a lower bound that characterizes the fundamental limits of a single update step, revealing a critical dependence on the quality of the initial model. We then derive finite-sample error bounds for the full iterative paradigm, showing that performance improves at a rate of $\widetilde{\mathcal{O}}\left(1/\sqrt{n}\right)$ with sample size $n$. Crucially, our analysis reveals that the dependence on the initial model decays exponentially with the number of iterations $T$. This provides a formal explanation for why self-rewarding succeeds: it robustly overcomes poor initialization by steering the dynamics toward internal stability and consistency. Finally, we instantiate our theoretical framework for the linear softmax model class, yielding tailored guarantees that connect our high-level insights to practical model architectures.
♻ ☆ Orchestrating Heterogeneous Experts: A Scalable MoE Framework with Anisotropy-Preserving Fusion
In cross-border e-commerce, search relevance modeling faces the dual challenge of extreme linguistic diversity and fine-grained semantic nuances. Existing approaches typically rely on scaling up a single monolithic Large Language Model (LLM). However, our empirical analysis reveals that single models suffer from uneven capability distributions across regions. For example, excelling in English while underperforming in specific Southeast Asian languages. In this work, we shift the paradigm from scaling a single model to orchestrating heterogeneous experts. We propose a scalable Coarse-grained Mixture-of-Experts (MoE) framework that leverages the inherent complementarity of distinct open-source LLMs (e.g., Qwen, Gemma) without expensive pre-training. Unlike standard token-level MoE, our framework dynamically routes entire queries to specialized experts and, crucially, employs an Information-Preserving Concatenation Fusion strategy. We theoretically posit that preserving the distinct embedding manifolds of heterogeneous experts-rather than compressing them via weighted averaging-is essential for capturing complex relevance signals in a multi-model latent space. On datasets spanning six Southeast Asian markets, our MoE improves AUC by 0.72 percentage points over a dense baseline with the same active parameters. Meanwhile, the optimized pipeline achieves 13.72 queries per second (QPS), a 9% throughput improvement.
comment: 4 pages, 2 figures. Accepted at the Workshop on TIME of the ACM Web Conference 2026
♻ ☆ Hyper-Compression: Model Compression via Hyperfunction
The rapid growth of large models' size has far outpaced that of computing resources. To bridge this gap, encouraged by the parsimonious relationship between genotype and phenotype in the brain's growth and development, we propose the so-called Hyper-Compression that turns the model compression into the issue of parameter representation via a hyperfunction. Specifically, it is known that the trajectory of some low-dimensional dynamic systems can fill the high-dimensional space eventually. Thus, Hyper-Compression, using these dynamic systems as the hyperfunctions, represents the parameters of the target network by their corresponding composition number or trajectory length. This suggests a novel mechanism for model compression, substantially different from the existing pruning, quantization, distillation, and decomposition. Along this direction, we methodologically identify a suitable dynamic system with the irrational winding as the hyperfunction and theoretically derive its associated error bound. Next, guided by our theoretical insights, we propose several engineering twists to make the Hyper-Compression pragmatic and effective. Lastly, systematic and comprehensive experiments on \textcolor{black}{NLP models such as LLaMA and Qwen series and vision models} confirm that Hyper-Compression enjoys the following \textbf{PNAS} merits: 1) \textbf{P}referable compression ratio; 2) \textbf{N}o post-hoc retraining; 3) \textbf{A}ffordable inference time; and 4) \textbf{S}hort compression time. It compresses LLaMA2-7B in an hour and achieves close-to-int4-quantization performance, without retraining and with a performance drop of less than 1\%. We have open-sourced our code in https://github.com/Juntongkuki/Hyper-Compression.git for free download and evaluation.
♻ ☆ Co-Evolving Agents: Learning from Failures as Hard Negatives
The rapid progress of large foundation models has accelerated the development of task-specialized agents across diverse domains. However, the effectiveness of agents remains tightly coupled with the quality of training data, while curating task-specific datasets remains costly and often infeasible in real-world scenarios. Recent work has explored self-improving agents that autonomously generate, refine, and re-train on their own trajectories. A prominent line of approaches further leverages preference optimization by pairing predicted trajectories with scarce ground-truth trajectories, enabling agents to learn directly from their own failures. While these methods outperform supervised fine-tuning, their heavy reliance on predicted trajectories under limited ground-truth supervision leaves them prone to overfitting. To address this, we propose a co-evolving agents framework in which a target agent improves jointly with an auxiliary failure agent. The failure agent learns through preference optimization over failure trajectories from both the target and itself, thereby generating hard negatives that are close to success yet remain failures. Incorporating these informative hard negatives into the target agent's optimization sharpens decision boundaries and enhances generalization. Our comprehensive analysis and experiments across benchmark datasets show that our method not only shows improved performance but also demonstrates that failures, instead of being used as-is, can be systematically transformed into structured and valuable learning signals in self-improving agents.
♻ ☆ Unifying Ranking and Generation in Query Auto-Completion via Retrieval-Augmented Generation and Multi-Objective Alignment
Query Auto-Completion (QAC) suggests query completions as users type, helping them articulate intent and reach results more efficiently. Existing approaches face fundamental challenges: traditional retrieve-and-rank pipelines have limited long-tail coverage and require extensive feature engineering, while recent generative methods suffer from hallucination and safety risks. We present a unified framework that reformulates QAC as end-to-end list generation through Retrieval-Augmented Generation (RAG) and multi-objective Direct Preference Optimization (DPO). Our approach combines three key innovations: (1) reformulating QAC as end-to-end list generation with multi-objective optimization; (2) defining and deploying a suite of rule-based, model-based, and LLM-as-judge verifiers for QAC, and using them in a comprehensive methodology that combines RAG, multi-objective DPO, and iterative critique-revision for high-quality synthetic data; (3) a hybrid serving architecture enabling efficient production deployment under strict latency constraints. Evaluation on a large-scale commercial search platform demonstrates substantial improvements: offline metrics show gains across all dimensions, human evaluation yields +0.40 to +0.69 preference scores, and a controlled online experiment achieves 5.44\% reduction in keystrokes and 3.46\% increase in suggestion adoption, validating that unified generation with RAG and multi-objective alignment provides an effective solution for production QAC. This work represents a paradigm shift to end-to-end generation powered by large language models, RAG, and multi-objective alignment, establishing a production-validated framework that can benefit the broader search and recommendation industry.
comment: 11 pages, 4 figures
♻ ☆ GRAB: An LLM-Inspired Sequence-First Click-Through Rate Prediction Modeling Paradigm
Traditional Deep Learning Recommendation Models (DLRMs) face increasing bottlenecks in performance and efficiency, often struggling with generalization and long-sequence modeling. Inspired by the scaling success of Large Language Models (LLMs), we propose Generative Ranking for Ads at Baidu (GRAB), an end-to-end generative framework for Click-Through Rate (CTR) prediction. GRAB integrates a novel Causal Action-aware Multi-channel Attention (CamA) mechanism to effectively capture temporal dynamics and specific action signals within user behavior sequences. Full-scale online deployment demonstrates that GRAB significantly outperforms established DLRMs, delivering a 3.05% increase in revenue and a 3.49% rise in CTR. Furthermore, the model demonstrates desirable scaling behavior: its expressive power shows a monotonic and approximately linear improvement as longer interaction sequences are utilized.
♻ ☆ Measuring and Analyzing Intelligence via Contextual Uncertainty in Large Language Models using Information-Theoretic Metrics
Large Language Models (LLMs) excel on many task-specific benchmarks, yet the mechanisms that drive this success remain poorly understood. We move from asking what these systems can do to asking how they process information. Our contribution is a task-agnostic method that builds a quantitative Cognitive Profile for any model. The profile is built around the Entropy Decay Curve -- a plot of a model's normalised predictive uncertainty as context length grows. Across several state-of-the-art LLMs and diverse texts, the curves expose distinctive, stable profiles that depend on both model scale and text complexity. We also propose the Information Gain Span (IGS) as a single index that summarises the desirability of a decay pattern. Together, these tools offer a principled way to analyse and compare the internal dynamics of modern AI systems.
♻ ☆ Controlling Exploration-Exploitation in GFlowNets via Markov Chain Perspectives
Generative Flow Network (GFlowNet) objectives implicitly fix an equal mixing of forward and backward policies, potentially constraining the exploration-exploitation trade-off during training. By further exploring the link between GFlowNets and Markov chains, we establish an equivalence between GFlowNet objectives and Markov chain reversibility, thereby revealing the origin of such constraints, and provide a framework for adapting Markov chain properties to GFlowNets. Building on these theoretical findings, we propose $α$-GFNs, which generalize the mixing via a tunable parameter $α$. This generalization enables direct control over exploration-exploitation dynamics to enhance mode discovery capabilities, while ensuring convergence to unique flows. Across various benchmarks, including Set, Bit Sequence, and Molecule Generation, $α$-GFN objectives consistently outperform previous GFlowNet objectives, achieving up to a $10 \times$ increase in the number of discovered modes.
♻ ☆ A Unified Definition of Hallucination: It's The World Model, Stupid!
Despite numerous attempts at mitigation since the inception of language models, hallucinations remain a persistent problem even in today's frontier LLMs. Why is this? We review existing definitions of hallucination and fold them into a single, unified definition wherein prior definitions are subsumed. We argue that hallucination can be unified by defining it as simply inaccurate (internal) world modeling, in a form where it is observable to the user. For example, stating a fact which contradicts a knowledge base OR producing a summary which contradicts the source. By varying the reference world model and conflict policy, our framework unifies prior definitions. We argue that this unified view is useful because it forces evaluations to clarify their assumed reference "world", distinguishes true hallucinations from planning or reward errors, and provides a common language for comparison across benchmarks and discussion of mitigation strategies. Building on this definition, we outline plans for a family of benchmarks using synthetic, fully specified reference world models to stress-test and improve world modeling components.
comment: HalluWorld benchmark in progress. Repo at https://github.com/DegenAI-Labs/HalluWorld
♻ ☆ Learning More from Less: Unlocking Internal Representations for Benchmark Compression
The prohibitive cost of evaluating Large Language Models (LLMs) necessitates efficient alternatives to full-scale benchmarking. Prevalent approaches address this by identifying a small coreset of items to approximate full-benchmark performance. However, existing methods must estimate a reliable item profile from response patterns across many source models, which becomes statistically unstable when the source pool is small. This dependency is particularly limiting for newly released benchmarks with minimal historical evaluation data. We argue that discrete correctness labels are a lossy view of the model's decision process and fail to capture information encoded in hidden states. To address this, we introduce REPCORE, which aligns heterogeneous hidden states into a unified latent space to construct representative coresets. Using these subsets for performance extrapolation, REPCORE achieves precise estimation accuracy with as few as ten source models. Experiments on five benchmarks and over 200 models show consistent gains over output-based baselines in ranking correlation and estimation accuracy. Spectral analysis further indicates that the aligned representations contain separable components reflecting broad response tendencies and task-specific reasoning patterns.
♻ ☆ HAAP: Vision-context Hierarchical Attention Autoregressive with Adaptive Permutation for Scene Text Recognition
Scene Text Recognition (STR) is challenging in extracting effective character representations from visual data when text is unreadable. Permutation language modeling (PLM) is introduced to refine character predictions by jointly capturing contextual and visual information. However, in PLM, the use of random permutations causes training fit oscillation, and the iterative refinement (IR) operation also introduces additional overhead. To address these issues, this paper proposes the Hierarchical Attention autoregressive Model with Adaptive Permutation (HAAP) to enhance position-context-image interaction capability, improving autoregressive LM generalization. First, we propose Implicit Permutation Neurons (IPN) to generate adaptive attention masks that dynamically exploit token dependencies, enhancing the correlation between visual information and context. Adaptive correlation representation helps the model avoid training fit oscillation. Second, the Cross-modal Hierarchical Attention mechanism (CHA) is introduced to capture the dependencies among position queries, contextual semantics and visual information. CHA enables position tokens to aggregate global semantic information, avoiding the need for IR. Extensive experimental results show that the proposed HAAP achieves state-of-the-art (SOTA) performance in terms of accuracy, complexity, and latency on several datasets.
comment: 12 pages, 12 figures
♻ ☆ Causality Guided Representation Learning for Cross-Style Hate Speech Detection
The proliferation of online hate speech poses a significant threat to the harmony of the web. While explicit hate is easily recognized through overt slurs, implicit hate speech is often conveyed through sarcasm, irony, stereotypes, or coded language -- making it harder to detect. Existing hate speech detection models, which predominantly rely on surface-level linguistic cues, fail to generalize effectively across diverse stylistic variations. Moreover, hate speech spread on different platforms often targets distinct groups and adopts unique styles, potentially inducing spurious correlations between them and labels, further challenging current detection approaches. Motivated by these observations, we hypothesize that the generation of hate speech can be modeled as a causal graph involving key factors: contextual environment, creator motivation, target, and style. Guided by this graph, we propose CADET, a causal representation learning framework that disentangles hate speech into interpretable latent factors and then controls confounders, thereby isolating genuine hate intent from superficial linguistic cues. Furthermore, CADET allows counterfactual reasoning by intervening on style within the latent space, naturally guiding the model to robustly identify hate speech in varying forms. CADET demonstrates superior performance in comprehensive experiments, highlighting the potential of causal priors in advancing generalizable hate speech detection.
comment: Accepted by the ACM Web Conference 2026 (WWW 26)
♻ ☆ Emergent Analogical Reasoning in Transformers
Analogy is a central faculty of human intelligence, enabling abstract patterns discovered in one domain to be applied to another. Despite its central role in cognition, the mechanisms by which Transformers acquire and implement analogical reasoning remain poorly understood. In this work, inspired by the notion of functors in category theory, we formalize analogical reasoning as the inference of correspondences between entities across categories. Based on this formulation, we introduce synthetic tasks that evaluate the emergence of analogical reasoning under controlled settings. We find that the emergence of analogical reasoning is highly sensitive to data characteristics, optimization choices, and model scale. Through mechanistic analysis, we show that analogical reasoning in Transformers decomposes into two key components: (1) geometric alignment of relational structure in the embedding space, and (2) the application of a functor within the Transformer. These mechanisms enable models to transfer relational structure from one category to another, realizing analogy. Finally, we quantify these effects and find that the same trends are observed in pretrained LLMs. In doing so, we move analogy from an abstract cognitive notion to a concrete, mechanistically grounded phenomenon in modern neural networks.
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate on massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK supports a unified orchestrator with advanced context management for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the construction, evaluation, and refinement of agents through a build-test-improve cycle, enabling rapid agent development on new tasks and tool stacks. Instantiated on the Confucius SDK using the meta-agent, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 59%, exceeding prior research baselines as well as commercial results, under identical repositories, model backends, and tool access.
comment: The latest version
♻ ☆ LAGEA: Language Guided Embodied Agents for Robotic Manipulation
Robotic manipulation benefits from foundation models that describe goals, but today's agents still lack a principled way to learn from their own mistakes. We ask whether natural language can serve as feedback, an error-reasoning signal that helps embodied agents diagnose what went wrong and correct course. We introduce LAGEA (Language Guided Embodied Agents), a framework that turns episodic, schema-constrained reflections from a vision language model (VLM) into temporally grounded guidance for reinforcement learning. LAGEA summarizes each attempt in concise language, localizes the decisive moments in the trajectory, aligns feedback with visual state in a shared representation, and converts goal progress and feedback agreement into bounded, step-wise shaping rewards whose influence is modulated by an adaptive, failure-aware coefficient. This design yields dense signals early when exploration needs direction and gracefully recedes as competence grows. On the Meta-World MT10 and Robotic Fetch embodied manipulation benchmark, LAGEA improves average success over the state-of-the-art (SOTA) methods by 9.0% on random goals, 5.3% on fixed goals, and 17% on fetch tasks, while converging faster. These results support our hypothesis: language, when structured and grounded in time, is an effective mechanism for teaching robots to self-reflect on mistakes and make better choices.
Self-CriTeach: LLM Self-Teaching and Self-Critiquing for Improving Robotic Planning via Automated Domain Generation
Large Language Models (LLMs) have recently shown strong promise for robotic task planning, particularly through automatic planning domain generation. Planning domains are brittle under imperfect logical states and perception noise; prior approaches largely treat generated planning domains as plan utilities, overlooking their potential as scalable sources of reasoning supervision and structured reward signals. At the same time, reasoning LLMs depend on chain-of-thought (CoT) supervision that is expensive to collect for robotic tasks, and reinforcement learning (RL) faces challenges in reward engineering. We propose Self-CriTeach, an LLM self-teaching and self-critiquing framework in which an LLM autonomously generates symbolic planning domains that serve a dual role: (i) enabling large-scale generation of robotic planning problem-plan pairs, and (ii) providing structured reward functions. First, the self-written domains enable large-scale generation of symbolic task plans, which are automatically transformed into extended CoT trajectories for supervised fine-tuning. Second, the self-written domains are reused as structured reward functions, providing dense feedback for reinforcement learning without manual reward engineering. This unified training pipeline yields a planning-enhanced LLM with higher planning success rates, stronger cross-task generalization, reduced inference cost, and improved robustness to imperfect logical states.
comment: 31 pages, 6 figures
♻ ☆ SEMNAV: Enhancing Visual Semantic Navigation in Robotics through Semantic Segmentation
Visual Semantic Navigation (VSN) is a fundamental problem in robotics, where an agent must navigate toward a target object in an unknown environment, mainly using visual information. Most state-of-the-art VSN models are trained in simulation environments, where rendered scenes of the real world are used, at best. These approaches typically rely on raw RGB data from the virtual scenes, which limits their ability to generalize to real-world environments due to domain adaptation issues. To tackle this problem, in this work, we propose SEMNAV, a novel approach that leverages semantic segmentation as the main visual input representation of the environment to enhance the agent's perception and decision-making capabilities. By explicitly incorporating this type of high-level semantic information, our model learns robust navigation policies that improve generalization across unseen environments, both in simulated and real world settings. We also introduce the SEMNAV dataset, a newly curated dataset designed for training semantic segmentation-aware navigation models like SEMNAV. Our approach is evaluated extensively in both simulated environments and with real-world robotic platforms. Experimental results demonstrate that SEMNAV outperforms existing state-of-the-art VSN models, achieving higher success rates in the Habitat 2.0 simulation environment, using the HM3D dataset. Furthermore, our real-world experiments highlight the effectiveness of semantic segmentation in mitigating the sim-to-real gap, making our model a promising solution for practical VSN-based robotic applications. The code and datasets are accessible at https://github.com/gramuah/semnav
♻ ☆ OptiPMB: Enhancing 3D Multi-Object Tracking with Optimized Poisson Multi-Bernoulli Filtering
Accurate 3D multi-object tracking (MOT) is crucial for autonomous driving, as it enables robust perception, navigation, and planning in complex environments. While deep learning-based solutions have demonstrated impressive 3D MOT performance, model-based approaches remain appealing for their simplicity, interpretability, and data efficiency. Conventional model-based trackers typically rely on random vector-based Bayesian filters within the tracking-by-detection (TBD) framework but face limitations due to heuristic data association and track management schemes. In contrast, random finite set (RFS)-based Bayesian filtering handles object birth, survival, and death in a theoretically sound manner, facilitating interpretability and parameter tuning. In this paper, we present OptiPMB, a novel RFS-based 3D MOT method that employs an optimized Poisson multi-Bernoulli (PMB) filter while incorporating several key innovative designs within the TBD framework. Specifically, we propose a measurement-driven hybrid adaptive birth model for improved track initialization, employ adaptive detection probability parameters to effectively maintain tracks for occluded objects, and optimize density pruning and track extraction modules to further enhance overall tracking performance. Extensive evaluations on nuScenes and KITTI datasets show that OptiPMB achieves superior tracking accuracy compared with state-of-the-art methods, thereby establishing a new benchmark for model-based 3D MOT and offering valuable insights for future research on RFS-based trackers in autonomous driving.
♻ ☆ Material-informed Gaussian Splatting for 3D World Reconstruction in a Digital Twin
3D reconstruction for Digital Twins often relies on LiDAR-based methods, which provide accurate geometry but lack the semantics and textures naturally captured by cameras. Traditional LiDAR-camera fusion approaches require complex calibration and still struggle with certain materials like glass, which are visible in images but poorly represented in point clouds. We propose a camera-only pipeline that reconstructs scenes using 3D Gaussian Splatting from multi-view images, extracts semantic material masks via vision models, converts Gaussian representations to mesh surfaces with projected material labels, and assigns physics-based material properties for accurate sensor simulation in modern graphics engines and simulators. This approach combines photorealistic reconstruction with physics-based material assignment, providing sensor simulation fidelity comparable to LiDAR-camera fusion while eliminating hardware complexity and calibration requirements. We validate our camera-only method using an internal dataset from an instrumented test vehicle, leveraging LiDAR as ground truth for reflectivity validation alongside image similarity metrics.
comment: 8 pages, 5 figures. Accepted to IEEE Intelligent Vehicles Symposium (IV) 2026. Revised version (v3) presents camera-ready publication
♻ ☆ MetaSym: A Symplectic Meta-learning Framework for Physical Intelligence
Scalable and generalizable physics-aware deep learning has long been considered a significant challenge with various applications across diverse domains ranging from robotics to molecular dynamics. Central to almost all physical systems are symplectic forms, the geometric backbone that underpins fundamental invariants like energy and momentum. In this work, we introduce a novel deep learning framework, MetaSym. In particular, MetaSym combines a strong symplectic inductive bias obtained from a symplectic encoder, and an autoregressive decoder with meta-attention. This principled design ensures that core physical invariants remain intact, while allowing flexible, data efficient adaptation to system heterogeneities. We benchmark MetaSym with highly varied and realistic datasets, such as a high-dimensional spring-mesh system Otness et al. (2021), an open quantum system with dissipation and measurement backaction, and robotics-inspired quadrotor dynamics. Crucially, we fine-tune and deploy MetaSym on real-world quadrotor data, demonstrating robustness to sensor noise and real-world uncertainty. Across all tasks, MetaSym achieves superior few-shot adaptation and outperforms larger state-of-the-art (SOTA) models.
comment: Published in Transactions on Machine Learning Research (TMLR), 10 + 18 pages, 9 figures, 10 tables
♻ ☆ L2M-Reg: Building-level Uncertainty-aware Registration of Outdoor LiDAR Point Clouds and Semantic 3D City Models
Accurate registration between LiDAR (Light Detection and Ranging) point clouds and semantic 3D city models is a fundamental topic in urban digital twinning and a prerequisite for downstream tasks, such as digital construction, change detection, and model refinement. However, achieving accurate LiDAR-to-Model registration at the individual building level remains challenging, particularly due to the generalization uncertainty in semantic 3D city models at the Level of Detail 2 (LoD2). This paper addresses this gap by proposing L2M-Reg, a plane-based fine registration method that explicitly accounts for model uncertainty. L2M-Reg consists of three key steps: establishing reliable plane correspondence, building a pseudo-plane-constrained Gauss-Helmert model, and adaptively estimating vertical translation. Overall, extensive experiments on five real-world datasets demonstrate that L2M-Reg is both more accurate and computationally efficient than current leading ICP-based and plane-based methods. Therefore, L2M-Reg provides a novel building-level solution regarding LiDAR-to-Model registration when model uncertainty is present. The datasets and code for L2M-Reg can be found: https://github.com/Ziyang-Geodesy/L2M-Reg.
comment: Accepted version by ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ Correspondence-Free, Function-Based Sim-to-Real Learning for Deformable Surface Control
This paper presents a correspondence-free, function-based sim-to-real learning method for controlling deformable freeform surfaces. Unlike traditional sim-to-real transfer methods that strongly rely on marker points with full correspondences, our approach simultaneously learns a deformation function space and a confidence map -- both parameterized by a neural network -- to map simulated shapes to their real-world counterparts. As a result, the sim-to-real learning can be conducted by input from either a 3D scanner as point clouds (without correspondences) or a motion capture system as marker points (tolerating missed markers). The resultant sim-to-real transfer can be seamlessly integrated into a neural network-based computational pipeline for inverse kinematics and shape control. We demonstrate the versatility and adaptability of our method on both vision devices and across four pneumatically actuated soft robots: a deformable membrane, a robotic mannequin, and two soft manipulators.
comment: arXiv admin note: text overlap with arXiv:2405.08935
♻ ☆ Task-Centric Policy Optimization from Misaligned Motion Priors
Humanoid control often leverages motion priors from human demonstrations to encourage natural behaviors. However, such demonstrations are frequently suboptimal or misaligned with robotic tasks due to embodiment differences, retargeting errors, and task-irrelevant variations, causing naïve imitation to degrade task performance. Conversely, task-only reinforcement learning admits many task-optimal solutions, often resulting in unnatural or unstable motions. This exposes a fundamental limitation of linear reward mixing in adversarial imitation learning. We propose \emph{Task-Centric Motion Priors} (TCMP), a task-priority adversarial imitation framework that treats imitation as a conditional regularizer rather than a co-equal objective. TCMP maximizes task improvement while incorporating imitation signals only when they are compatible with task progress, yielding an adaptive, geometry-aware update that preserves task-feasible descent and suppresses harmful imitation under misalignment. We provide theoretical analysis of gradient conflict and task-priority stationary points, and validate our claims through humanoid control experiments demonstrating robust task performance with consistent motion style under noisy demonstrations.
comment: Work requires further details and not complete yet
♻ ☆ Online Fine-Tuning of Pretrained Controllers for Autonomous Driving via Real-Time Recurrent RL
Deploying pretrained policies in real-world applications presents substantial challenges that fundamentally limit the practical applicability of learning-based control systems. When autonomous systems encounter environmental changes in system dynamics, sensor drift, or task objectives, fixed policies rapidly degrade in performance. We show that employing Real-Time Recurrent Reinforcement Learning (RTRRL), a biologically plausible algorithm for online adaptation, can effectively fine-tune a pretrained policy to improve autonomous agents' performance on driving tasks. We further show that RTRRL synergizes with a recent biologically inspired recurrent network model, the Liquid-Resistance Liquid-Capacitance RNN. We demonstrate the effectiveness of this closed-loop approach in a simulated CarRacing environment and in a real-world line-following task with a RoboRacer car equipped with an event camera.
♻ ☆ Scene-Adaptive Motion Planning with Explicit Mixture of Experts and Interaction-Oriented Optimization
Despite over a decade of development, autonomous driving trajectory planning in complex urban environments continues to encounter significant challenges. These challenges include the difficulty in accommodating the multi-modal nature of trajectories, the limitations of single expert model in managing diverse scenarios, and insufficient consideration of environmental interactions. To address these issues, this paper introduces the EMoE-Planner, which incorporates three innovative approaches. Firstly, the Explicit MoE (Mixture of Experts) dynamically selects specialized experts based on scenario-specific information through a shared scene router. Secondly, the planner utilizes scene-specific queries to provide multi-modal priors, directing the model's focus towards relevant target areas. Lastly, it enhances the prediction model and loss calculation by considering the interactions between the ego vehicle and other agents, thereby significantly boosting planning performance. Comparative experiments were conducted on the Nuplan dataset against the state-of-the-art methods. The simulation results demonstrate that our model consistently outperforms SOTA models across nearly all test scenarios. Our model is the first pure learning model to achieve performance surpassing rule-based algorithms in almost all Nuplan closed-loop simulations.
comment: Main text 10 pages with 7 figures
♻ ☆ Spiking Neural-Invariant Kalman Fusion for Accurate Localization Using Low-Cost IMUs
Low-cost inertial measurement units (IMUs) are widely utilized in mobile robot localization due to their affordability and ease of integration. However, their complex, nonlinear, and time-varying noise characteristics often lead to significant degradation in localization accuracy when applied directly for dead reckoning. To overcome this limitation, we propose a novel brain-inspired state estimation framework that combines a spiking neural network (SNN) with an invariant extended Kalman filter (InEKF). The SNN is designed to extract motion-related features from long sequences of IMU data affected by substantial random noise and is trained via a surrogate gradient descent algorithm to enable dynamic adaptation of the covariance noise parameter within the InEKF. By fusing the SNN output with raw IMU measurements, the proposed method enhances the robustness and accuracy of pose estimation. Extensive experiments conducted on the KITTI dataset and real-world data collected using a mobile robot equipped with a low-cost IMU demonstrate that the proposed approach outperforms state-of-the-art methods in localization accuracy and exhibits strong robustness to sensor noise, highlighting its potential for real-world mobile robot applications.
♻ ☆ LP-MPPI: Low-Pass Filtering for Efficient Model Predictive Path Integral Control
Model Predictive Path Integral (MPPI) control is a widely used sampling-based approach for real-time control, valued for its flexibility in handling arbitrary dynamics and cost functions. However, it often suffers from high-frequency noise in the sampled control trajectories, which hinders the search for optimal controls and transfers to the applied controls, leading to actuator wear. In this work, we introduce Low-Pass Model Predictive Path Integral Control (LP-MPPI), which integrates low-pass filtering into the sampling process to eliminate detrimental high-frequency components and enhance the algorithm's efficiency. Unlike prior approaches, LP-MPPI provides direct and interpretable control over the frequency spectrum of sampled control trajectory perturbations, leading to more efficient sampling and smoother control. Through extensive evaluations in Gymnasium environments, simulated quadruped locomotion, and real-world F1TENTH autonomous racing, we demonstrate that LP-MPPI consistently outperforms state-of-the-art MPPI variants, achieving significant performance improvements while reducing control signal chattering.
comment: Accepted at International Conference on Robotics and Automation 2026 (ICRA 2026)
♻ ☆ CoFreeVLA: Collision-Free Dual-Arm Manipulation via Vision-Language-Action Model and Risk Estimation
Vision Language Action (VLA) models enable instruction following manipulation, yet dualarm deployment remains unsafe due to under modeled selfcollisions between arms and grasped objects. We introduce CoFreeVLA, which augments an endtoend VLA with a short horizon selfcollision risk estimator that predicts collision likelihood from proprioception, visual embeddings, and planned actions. The estimator gates risky commands, recovers to safe states via risk-guided adjustments, and shapes policy refinement for safer rollouts. It is pre-trained with model-based collision labels and posttrained on real robot rollouts for calibration. On five bimanual tasks with the PiPER robot arm, CoFreeVLA reduces selfcollisions and improves success rates versus RDT and APEX.
♻ ☆ TreeLoc: 6-DoF LiDAR Global Localization in Forests via Inter-Tree Geometric Matching
Reliable localization is crucial for navigation in forests, where GPS is often degraded and LiDAR measurements are repetitive, occluded, and structurally complex. These conditions weaken the assumptions of traditional urban-centric localization methods, which assume that consistent features arise from unique structural patterns, necessitating forest-centric solutions to achieve robustness in these environments. To address these challenges, we propose TreeLoc, a LiDAR-based global localization framework for forests that handles place recognition and 6-DoF pose estimation. We represent scenes using tree stems and their Diameter at Breast Height (DBH), which are aligned to a common reference frame via their axes and summarized using the tree distribution histogram (TDH) for coarse matching, followed by fine matching with a 2D triangle descriptor. Finally, pose estimation is achieved through a two-step geometric verification. On diverse forest benchmarks, TreeLoc outperforms baselines, achieving precise localization. Ablation studies validate the contribution of each component. We also propose applications for long-term forest management using descriptors from a compact global tree database. TreeLoc is open-sourced for the robotics community at https://github.com/minwoo0611/TreeLoc.
comment: An 8-page paper with 7 tables and 8 figures, accepted to ICRA 2026
♻ ☆ A Low-Cost Vision-Based Tactile Gripper with Pretraining Learning for Contact-Rich Manipulation
Robotic manipulation in contact-rich environments remains challenging, particularly when relying on conventional tactile sensors that suffer from limited sensing range, reliability, and cost-effectiveness. In this work, we present LVTG, a low-cost visuo-tactile gripper designed for stable, robust, and efficient physical interaction. Unlike existing visuo-tactile sensors, LVTG enables more effective and stable grasping of larger and heavier everyday objects, thanks to its enhanced tactile sensing area and greater opening angle. Its surface skin is made of highly wear-resistant material, significantly improving durability and extending operational lifespan. The integration of vision and tactile feedback allows LVTG to provide rich, high-fidelity sensory data, facilitating reliable perception during complex manipulation tasks. Furthermore, LVTG features a modular design that supports rapid maintenance and replacement. To effectively fuse vision and touch, We adopt a CLIP-inspired contrastive learning objective to align tactile embeddings with their corresponding visual observations, enabling a shared cross-modal representation space for visuo-tactile perception. This alignment improves the performance of an Action Chunking Transformer (ACT) policy in contact-rich manipulation, leading to more efficient data collection and more effective policy learning. Compared to the original ACT method, the proposed LVTG with pretraining achieves significantly higher success rates in manipulation tasks.
♻ ☆ AIR-VLA: Vision-Language-Action Systems for Aerial Manipulation
While Vision-Language-Action (VLA) models have achieved remarkable success in ground-based embodied intelligence, their application to Aerial Manipulation Systems (AMS) remains a largely unexplored frontier. The inherent characteristics of AMS, including floating-base dynamics, strong coupling between the UAV and the manipulator, and the multi-step, long-horizon nature of operational tasks, pose severe challenges to existing VLA paradigms designed for static or 2D mobile bases. To bridge this gap, we propose \textbf{AIR-VLA}, the first VLA benchmark specifically tailored for aerial manipulation. We construct a physics-based simulation environment and release a high-quality multimodal dataset comprising 3000 manually teleoperated demonstrations, covering base manipulation, object \& spatial understanding, semantic reasoning, and long-horizon planning. Leveraging this platform, we systematically evaluate mainstream VLA models and state-of-the-art VLM models. Our experiments not only validate the feasibility of transferring VLA paradigms to aerial systems but also, through multi-dimensional metrics tailored to aerial tasks, reveal the capabilities and boundaries of current models regarding UAV mobility, manipulator control, and high-level planning. \textbf{AIR-VLA} establishes a standardized testbed and data foundation for future research in general-purpose aerial robotics. The resource of AIR-VLA will be available at https://github.com/SpencerSon2001/AIR-VLA.
♻ ☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
♻ ☆ USS-Nav: Unified Spatio-Semantic Scene Graph for Lightweight UAV Zero-Shot Object Navigation
Zero-Shot Object Navigation in unknown environments poses significant challenges for Unmanned Aerial Vehicles (UAVs) due to the conflict between high-level semantic reasoning requirements and limited onboard computational resources. To address this, we present USS-Nav, a lightweight framework that incrementally constructs a Unified Spatio-Semantic scene graph and enables efficient Large Language Model (LLM)-augmented Zero-Shot Object Navigation in unknown environments. Specifically, we introduce an incremental Spatial Connectivity Graph generation method utilizing polyhedral expansion to capture global geometric topology, which is dynamically partitioned into semantic regions via graph clustering. Concurrently, open-vocabulary object semantics are instantiated and anchored to this topology to form a hierarchical environmental representation. Leveraging this hierarchical structure, we present a coarse-to-fine exploration strategy: LLM grounded in the scene graph's semantics to determine global target regions, while a local planner optimizes frontier coverage based on information gain. Experimental results demonstrate that our framework outperforms state-of-the-art methods in terms of computational efficiency and real-time update frequency (15 Hz) on a resource-constrained platform. Furthermore, ablation studies confirm the effectiveness of our framework, showing substantial improvements in Success weighted by Path Length (SPL). The source code will be made publicly available to foster further research.
♻ ☆ RFS: Reinforcement learning with Residual flow steering for dexterous manipulation
Imitation learning has emerged as an effective approach for bootstrapping sequential decision-making in robotics, achieving strong performance even in high-dimensional dexterous manipulation tasks. Recent behavior cloning methods further leverage expressive generative models, such as diffusion models and flow matching, to represent multimodal action distributions. However, policies pretrained in this manner often exhibit limited generalization and require additional fine-tuning to achieve robust performance at deployment time. Such adaptation must preserve the global exploration benefits of pretraining while enabling rapid correction of local execution errors. We propose Residual Flow Steering(RFS), a data-efficient reinforcement learning framework for adapting pretrained generative policies. RFS steers a pretrained flow-matching policy by jointly optimizing a residual action and a latent noise distribution, enabling complementary forms of exploration: local refinement through residual corrections and global exploration through latent-space modulation. This design allows efficient adaptation while retaining the expressive structure of the pretrained policy. We demonstrate the effectiveness of RFS on dexterous manipulation tasks, showing efficient fine-tuning in both simulation and real-world settings when adapting pretrained base policies. Project website:https://weirdlabuw.github.io/rfs.
♻ ☆ SyNeT: Synthetic Negatives for Traversability Learning
Reliable traversability estimation is crucial for autonomous robots to navigate complex outdoor environments safely. Existing self-supervised learning frameworks primarily rely on positive and unlabeled data; however, the lack of explicit negative data remains a critical limitation, hindering the model's ability to accurately identify diverse non-traversable regions. To address this issue, we introduce a method to explicitly construct synthetic negatives, representing plausible but non-traversable, and integrate them into vision-based traversability learning. Our approach is formulated as a training strategy that can be seamlessly integrated into both Positive-Unlabeled (PU) and Positive-Negative (PN) frameworks without modifying inference architectures. Complementing standard pixel-wise metrics, we introduce an object-centric FPR evaluation approach that analyzes predictions in regions where synthetic negatives are inserted. This evaluation provides an indirect measure of the model's ability to consistently identify non-traversable regions without additional manual labeling. Extensive experiments on both public and self-collected datasets demonstrate that our approach significantly enhances robustness and generalization across diverse environments. The source code and demonstration videos will be publicly available.
♻ ☆ VLBiMan: Vision-Language Anchored One-Shot Demonstration Enables Generalizable Bimanual Robotic Manipulation ICLR 2026
Achieving generalizable bimanual manipulation requires systems that can learn efficiently from minimal human input while adapting to real-world uncertainties and diverse embodiments. Existing approaches face a dilemma: imitation policy learning demands extensive demonstrations to cover task variations, while modular methods often lack flexibility in dynamic scenes. We introduce VLBiMan, a framework that derives reusable skills from a single human example through task-aware decomposition, preserving invariant primitives as anchors while dynamically adapting adjustable components via vision-language grounding. This adaptation mechanism resolves scene ambiguities caused by background changes, object repositioning, or visual clutter without policy retraining, leveraging semantic parsing and geometric feasibility constraints. Moreover, the system inherits human-like hybrid control capabilities, enabling mixed synchronous and asynchronous use of both arms. Extensive experiments validate VLBiMan across tool-use and multi-object tasks, demonstrating: (1) a drastic reduction in demonstration requirements compared to imitation baselines, (2) compositional generalization through atomic skill splicing for long-horizon tasks, (3) robustness to novel but semantically similar objects and external disturbances, and (4) strong cross-embodiment transfer, showing that skills learned from human demonstrations can be instantiated on different robotic platforms without retraining. By bridging human priors with vision-language anchored adaptation, our work takes a step toward practical and versatile dual-arm manipulation in unstructured settings.
comment: accepted by ICLR 2026. The project link is https://hnuzhy.github.io/projects/VLBiMan/
♻ ☆ DDP-WM: Disentangled Dynamics Prediction for Efficient World Models
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM.
comment: Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM
♻ ☆ Fast Task Planning with Neuro-Symbolic Relaxation
Real-world task planning requires long-horizon reasoning over large sets of objects with complex relationships and attributes, leading to a combinatorial explosion for classical symbolic planners. To prune the search space, recent methods prioritize searching on a simplified task only containing a few ``important" objects predicted by a neural network. However, such a simple neuro-symbolic (NeSy) integration risks omitting critical objects and wasting resources on unsolvable simplified tasks. To enable Fast and reliable planning, we introduce a NeSy relaxation strategy (Flax), combining neural importance prediction with symbolic expansion. Specifically, we first learn a graph neural network to predict object importance to create a simplified task and solve it with a symbolic planner. Then, we solve a rule-relaxed task to obtain a quick rough plan, and reintegrate all referenced objects into the simplified task to recover any overlooked but essential elements. Finally, we apply complementary rules to refine the updated task, keeping it both reliable and compact. Extensive experiments are conducted on both synthetic and real-world maze navigation benchmarks where a robot must traverse through a maze and interact with movable obstacles. The results show that Flax boosts the average success rate by 20.82\% and cuts mean wall-clock planning time by 17.65\% compared with the state-of-the-art NeSy baseline. We expect that Flax offers a practical path toward fast, scalable, long-horizon task planning in complex environments.
comment: 8 pages, 6 figures
♻ ☆ Taking the GP Out of the Loop
Bayesian optimization (BO) has traditionally solved black-box problems where function evaluation is expensive and, therefore, observations are few. Recently, however, there has been growing interest in applying BO to problems where function evaluation is cheaper and observations are more plentiful. In this regime, scaling to many observations $N$ is impeded by Gaussian-process (GP) surrogates: GP hyperparameter fitting scales as $\mathcal{O}(N^3)$ (reduced to roughly $\mathcal{O}(N^2)$ in modern implementations), and it is repeated at every BO iteration. Many methods improve scaling at acquisition time, but hyperparameter fitting still scales poorly, making it the bottleneck. We propose Epistemic Nearest Neighbors (ENN), a lightweight alternative to GPs that estimates function values and uncertainty (epistemic and aleatoric) from $K$-nearest-neighbor observations. ENN scales as $\mathcal{O}(N)$ for both fitting and acquisition. Our BO method, TuRBO-ENN, replaces the GP surrogate in TuRBO with ENN and its Thompson-sampling acquisition with $\mathrm{UCB} = μ(x) + σ(x)$. For the special case of noise-free problems, we can omit fitting altogether by replacing $\mathrm{UCB}$ with a non-dominated sort over $μ(x)$ and $σ(x)$. We show empirically that TuRBO-ENN reduces proposal time (i.e., fitting time + acquisition time) by one to two orders of magnitude compared to TuRBO at up to 50,000 observations.
comment: 12 pages, 11 figures
♻ ☆ Learning-based Force Sensing and Impedance Matching for Safe Haptic Feedback in Robot-assisted Laparoscopic Surgery
Integrating accurate haptic feedback into robot-assisted minimally invasive surgery (RAMIS) remains challenging due to difficulties in precise force rendering and ensuring system safety during teleoperation. We present a Nonlinear Impedance Matching Approach (NIMA) that extends our previously validated Impedance Matching Approach (IMA) by incorporating nonlinear dynamics to accurately model and render complex tool-tissue interactions in real-time. NIMA achieves a mean absolute error of 0.01 (std 0.02 N), representing a 95% reduction compared to IMA. Additionally, NIMA eliminates haptic "kickback" by ensuring zero force is applied to the user's hand when they release the handle, enhancing both patient safety and operator comfort. By accounting for nonlinearities in tool-tissue interactions, NIMA significantly improves force fidelity, responsiveness, and precision across various surgical conditions, advancing haptic feedback systems for reliable robot-assisted surgical procedures.
♻ ☆ Statistical Guarantees for Offline Domain Randomization ICLR 2026
Reinforcement-learning (RL) agents often struggle when deployed from simulation to the real-world. A dominant strategy for reducing the sim-to-real gap is domain randomization (DR) which trains the policy across many simulators produced by sampling dynamics parameters, but standard DR ignores offline data already available from the real system. We study offline domain randomization (ODR), which first fits a distribution over simulator parameters to an offline dataset. While a growing body of empirical work reports substantial gains with algorithms such as DROPO, the theoretical foundations of ODR remain largely unexplored. In this work, we cast ODR as a maximum-likelihood estimation over a parametric simulator family and provide statistical guarantees: under mild regularity and identifiability conditions, the estimator is weakly consistent (it converges in probability to the true dynamics as data grows), and it becomes strongly consistent (i.e., it converges almost surely to the true dynamics) when an additional uniform Lipschitz continuity assumption holds. We examine the practicality of these assumptions and outline relaxations that justify ODR's applicability across a broader range of settings. Taken together, our results place ODR on a principled footing and clarify when offline data can soundly guide the choice of a randomization distribution for downstream offline RL.
comment: ICLR 2026
Computation and Language 222
☆ Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
☆ RLAnything: Forge Environment, Policy, and Reward Model in Completely Dynamic RL System
We propose RLAnything, a reinforcement learning framework that dynamically forges environment, policy, and reward models through closed-loop optimization, amplifying learning signals and strengthening the overall RL system for any LLM or agentic scenarios. Specifically, the policy is trained with integrated feedback from step-wise and outcome signals, while the reward model is jointly optimized via consistency feedback, which in turn further improves policy training. Moreover, our theory-motivated automatic environment adaptation improves training for both the reward and policy models by leveraging critic feedback from each, enabling learning from experience. Empirically, each added component consistently improves the overall system, and RLAnything yields substantial gains across various representative LLM and agentic tasks, boosting Qwen3-VL-8B-Thinking by 9.1% on OSWorld and Qwen2.5-7B-Instruct by 18.7% and 11.9% on AlfWorld and LiveBench, respectively. We also that optimized reward-model signals outperform outcomes that rely on human labels. Code: https://github.com/Gen-Verse/Open-AgentRL
comment: Code: https://github.com/Gen-Verse/Open-AgentRL
☆ RE-TRAC: REcursive TRAjectory Compression for Deep Search Agents
LLM-based deep research agents are largely built on the ReAct framework. This linear design makes it difficult to revisit earlier states, branch into alternative search directions, or maintain global awareness under long contexts, often leading to local optima, redundant exploration, and inefficient search. We propose Re-TRAC, an agentic framework that performs cross-trajectory exploration by generating a structured state representation after each trajectory to summarize evidence, uncertainties, failures, and future plans, and conditioning subsequent trajectories on this state representation. This enables iterative reflection and globally informed planning, reframing research as a progressive process. Empirical results show that Re-TRAC consistently outperforms ReAct by 15-20% on BrowseComp with frontier LLMs. For smaller models, we introduce Re-TRAC-aware supervised fine-tuning, achieving state-of-the-art performance at comparable scales. Notably, Re-TRAC shows a monotonic reduction in tool calls and token usage across rounds, indicating progressively targeted exploration driven by cross-trajectory reflection rather than redundant search.
☆ Training LLMs for Divide-and-Conquer Reasoning Elevates Test-Time Scalability
Large language models (LLMs) have demonstrated strong reasoning capabilities through step-by-step chain-of-thought (CoT) reasoning. Nevertheless, at the limits of model capability, CoT often proves insufficient, and its strictly sequential nature constrains test-time scalability. A potential alternative is divide-and-conquer (DAC) reasoning, which decomposes a complex problem into subproblems to facilitate more effective exploration of the solution. Although promising, our analysis reveals a fundamental misalignment between general-purpose post-training and DAC-style inference, which limits the model's capacity to fully leverage this potential. To bridge this gap and fully unlock LLMs' reasoning capabilities on the most challenging tasks, we propose an end-to-end reinforcement learning (RL) framework to enhance their DAC-style reasoning capacity. At each step, the policy decomposes a problem into a group of subproblems, solves them sequentially, and addresses the original one conditioned on the subproblem solutions, with both decomposition and solution integrated into RL training. Under comparable training, our DAC-style framework endows the model with a higher performance ceiling and stronger test-time scalability, surpassing CoT by 8.6% in Pass@1 and 6.3% in Pass@32 on competition-level benchmarks.
☆ MemSkill: Learning and Evolving Memory Skills for Self-Evolving Agents
Most Large Language Model (LLM) agent memory systems rely on a small set of static, hand-designed operations for extracting memory. These fixed procedures hard-code human priors about what to store and how to revise memory, making them rigid under diverse interaction patterns and inefficient on long histories. To this end, we present \textbf{MemSkill}, which reframes these operations as learnable and evolvable memory skills, structured and reusable routines for extracting, consolidating, and pruning information from interaction traces. Inspired by the design philosophy of agent skills, MemSkill employs a \emph{controller} that learns to select a small set of relevant skills, paired with an LLM-based \emph{executor} that produces skill-guided memories. Beyond learning skill selection, MemSkill introduces a \emph{designer} that periodically reviews hard cases where selected skills yield incorrect or incomplete memories, and evolves the skill set by proposing refinements and new skills. Together, MemSkill forms a closed-loop procedure that improves both the skill-selection policy and the skill set itself. Experiments on LoCoMo, LongMemEval, HotpotQA, and ALFWorld demonstrate that MemSkill improves task performance over strong baselines and generalizes well across settings. Further analyses shed light on how skills evolve, offering insights toward more adaptive, self-evolving memory management for LLM agents.
comment: Code is available at https://github.com/ViktorAxelsen/MemSkill
☆ SPARKLING: Balancing Signal Preservation and Symmetry Breaking for Width-Progressive Learning
Progressive Learning (PL) reduces pre-training computational overhead by gradually increasing model scale. While prior work has extensively explored depth expansion, width expansion remains significantly understudied, with the few existing methods limited to the early stages of training. However, expanding width during the mid-stage is essential for maximizing computational savings, yet it remains a formidable challenge due to severe training instabilities. Empirically, we show that naive initialization at this stage disrupts activation statistics, triggering loss spikes, while copy-based initialization introduces gradient symmetry that hinders feature diversity. To address these issues, we propose SPARKLING (balancing {S}ignal {P}reservation {A}nd symmet{R}y brea{K}ing for width-progressive {L}earn{ING}), a novel framework for mid-stage width expansion. Our method achieves signal preservation via RMS-scale consistency, stabilizing activation statistics during expansion. Symmetry breaking is ensured through asymmetric optimizer state resetting and learning rate re-warmup. Extensive experiments on Mixture-of-Experts (MoE) models demonstrate that, across multiple width axes and optimizer families, SPARKLING consistently outperforms training from scratch and reduces training cost by up to 35% under $2\times$ width expansion.
☆ Avenir-Web: Human-Experience-Imitating Multimodal Web Agents with Mixture of Grounding Experts
Despite advances in multimodal large language models, autonomous web agents still struggle to reliably execute long-horizon tasks on complex and dynamic web interfaces. Existing agents often suffer from inaccurate element grounding, the absence of site-specific procedural knowledge, and unstable long-term task tracking and memory, particularly when operating over complex Document Object Model structures. To address these limitations, we introduce Avenir-Web, a web agent that achieves a new open-source state of the art on the Online-Mind2Web benchmark in real-world deployment. Avenir-Web leverages a Mixture of Grounding Experts, Experience-Imitation Planning for incorporating procedural priors, and a task-tracking checklist combined with adaptive memory to enable robust and seamless interaction across diverse user interface paradigms. We evaluate Avenir-Web on Online-Mind2Web, a rigorous benchmark of live and user-centered web tasks. Our results demonstrate that Avenir-Web significantly surpasses prior open-source agents and attains performance parity with top-tier proprietary models, thereby establishing a new open-source state of the art for reliable web agents on live websites.
☆ Indications of Belief-Guided Agency and Meta-Cognitive Monitoring in Large Language Models
Rapid advancements in large language models (LLMs) have sparked the question whether these models possess some form of consciousness. To tackle this challenge, Butlin et al. (2023) introduced a list of indicators for consciousness in artificial systems based on neuroscientific theories. In this work, we evaluate a key indicator from this list, called HOT-3, which tests for agency guided by a general belief-formation and action selection system that updates beliefs based on meta-cognitive monitoring. We view beliefs as representations in the model's latent space that emerge in response to a given input, and introduce a metric to quantify their dominance during generation. Analyzing the dynamics between competing beliefs across models and tasks reveals three key findings: (1) external manipulations systematically modulate internal belief formation, (2) belief formation causally drives the model's action selection, and (3) models can monitor and report their own belief states. Together, these results provide empirical support for the existence of belief-guided agency and meta-cognitive monitoring in LLMs. More broadly, our work lays methodological groundwork for investigating the emergence of agency, beliefs, and meta-cognition in LLMs.
☆ From Directions to Regions: Decomposing Activations in Language Models via Local Geometry
Activation decomposition methods in language models are tightly coupled to geometric assumptions on how concepts are realized in activation space. Existing approaches search for individual global directions, implicitly assuming linear separability, which overlooks concepts with nonlinear or multi-dimensional structure. In this work, we leverage Mixture of Factor Analyzers (MFA) as a scalable, unsupervised alternative that models the activation space as a collection of Gaussian regions with their local covariance structure. MFA decomposes activations into two compositional geometric objects: the region's centroid in activation space, and the local variation from the centroid. We train large-scale MFAs for Llama-3.1-8B and Gemma-2-2B, and show they capture complex, nonlinear structures in activation space. Moreover, evaluations on localization and steering benchmarks show that MFA outperforms unsupervised baselines, is competitive with supervised localization methods, and often achieves stronger steering performance than sparse autoencoders. Together, our findings position local geometry, expressed through subspaces, as a promising unit of analysis for scalable concept discovery and model control, accounting for complex structures that isolated directions fail to capture.
☆ Abstract Activation Spaces for Content-Invariant Reasoning in Large Language Models
Large Language Models (LLMs) often struggle with deductive judgment in syllogistic reasoning, systematically conflating semantic plausibility with formal validity a phenomenon known as content effect. This bias persists even when models generate step-wise explanations, indicating that intermediate rationales may inherit the same semantic shortcuts that affect answers. Recent approaches propose mitigating this issue by increasing inference-time structural constraints, either by encouraging abstract intermediate representations or by intervening directly in the model's internal computations; however, reliably suppressing semantic interference remains an open challenge. To make formal deduction less sensitive to semantic content, we introduce a framework for abstraction-guided reasoning that explicitly separates structural inference from lexical semantics. We construct paired content-laden and abstract syllogisms and use the model's activations on abstract inputs to define an abstract reasoning space. We then learn lightweight Abstractors that, from content-conditioned residual-stream states, predict representations aligned with this space and integrate these predictions via multi-layer interventions during the forward pass. Using cross-lingual transfer as a test bed, we show that abstraction-aligned steering reduces content-driven errors and improves validity-sensitive performance. Our results position activation-level abstraction as a scalable mechanism for enhancing the robustness of formal reasoning in LLMs against semantic interference.
☆ Drift-Bench: Diagnosing Cooperative Breakdowns in LLM Agents under Input Faults via Multi-Turn Interaction
As Large Language Models transition to autonomous agents, user inputs frequently violate cooperative assumptions (e.g., implicit intent, missing parameters, false presuppositions, or ambiguous expressions), creating execution risks that text-only evaluations do not capture. Existing benchmarks typically assume well-specified instructions or restrict evaluation to text-only, single-turn clarification, and thus do not measure multi-turn disambiguation under grounded execution risk. We introduce \textbf{Drift-Bench}, the first diagnostic benchmark that evaluates agentic pragmatics under input faults through multi-turn clarification across state-oriented and service-oriented execution environments. Grounded in classical theories of communication, \textbf{Drift-Bench} provides a unified taxonomy of cooperative breakdowns and employs a persona-driven user simulator with the \textbf{Rise} evaluation protocol. Experiments show substantial performance drops under these faults, with clarification effectiveness varying across user personas and fault types. \MethodName bridges clarification research and agent safety evaluation, enabling systematic diagnosis of failures that can lead to unsafe executions.
comment: 65 pages, 40 figures
Large Language Models for Mental Health: A Multilingual Evaluation
Large Language Models (LLMs) have remarkable capabilities across NLP tasks. However, their performance in multilingual contexts, especially within the mental health domain, has not been thoroughly explored. In this paper, we evaluate proprietary and open-source LLMs on eight mental health datasets in various languages, as well as their machine-translated (MT) counterparts. We compare LLM performance in zero-shot, few-shot, and fine-tuned settings against conventional NLP baselines that do not employ LLMs. In addition, we assess translation quality across language families and typologies to understand its influence on LLM performance. Proprietary LLMs and fine-tuned open-source LLMs achieve competitive F1 scores on several datasets, often surpassing state-of-the-art results. However, performance on MT data is generally lower, and the extent of this decline varies by language and typology. This variation highlights both the strengths of LLMs in handling mental health tasks in languages other than English and their limitations when translation quality introduces structural or lexical mismatches.
☆ Misconception Diagnosis From Student-Tutor Dialogue: Generate, Retrieve, Rerank
Timely and accurate identification of student misconceptions is key to improving learning outcomes and pre-empting the compounding of student errors. However, this task is highly dependent on the effort and intuition of the teacher. In this work, we present a novel approach for detecting misconceptions from student-tutor dialogues using large language models (LLMs). First, we use a fine-tuned LLM to generate plausible misconceptions, and then retrieve the most promising candidates among these using embedding similarity with the input dialogue. These candidates are then assessed and re-ranked by another fine-tuned LLM to improve misconception relevance. Empirically, we evaluate our system on real dialogues from an educational tutoring platform. We consider multiple base LLM models including LLaMA, Qwen and Claude on zero-shot and fine-tuned settings. We find that our approach improves predictive performance over baseline models and that fine-tuning improves both generated misconception quality and can outperform larger closed-source models. Finally, we conduct ablation studies to both validate the importance of our generation and reranking steps on misconception generation quality.
comment: 21 pages, 8 figures, 8 tables. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
☆ ROG: Retrieval-Augmented LLM Reasoning for Complex First-Order Queries over Knowledge Graphs
Answering first-order logic (FOL) queries over incomplete knowledge graphs (KGs) is difficult, especially for complex query structures that compose projection, intersection, union, and negation. We propose ROG, a retrieval-augmented framework that combines query-aware neighborhood retrieval with large language model (LLM) chain-of-thought reasoning. ROG decomposes a multi-operator query into a sequence of single-operator sub-queries and grounds each step in compact, query-relevant neighborhood evidence. Intermediate answer sets are cached and reused across steps, improving consistency on deep reasoning chains. This design reduces compounding errors and yields more robust inference on complex and negation-heavy queries. Overall, ROG provides a practical alternative to embedding-based logical reasoning by replacing learned operators with retrieval-grounded, step-wise inference. Experiments on standard KG reasoning benchmarks show consistent gains over strong embedding-based baselines, with the largest improvements on high-complexity and negation-heavy query types.
☆ From Sycophancy to Sensemaking: Premise Governance for Human-AI Decision Making
As LLMs expand from assistance to decision support, a dangerous pattern emerges: fluent agreement without calibrated judgment. Low-friction assistants can become sycophantic, baking in implicit assumptions and pushing verification costs onto experts, while outcomes arrive too late to serve as reward signals. In deep-uncertainty decisions (where objectives are contested and reversals are costly), scaling fluent agreement amplifies poor commitments faster than it builds expertise. We argue reliable human-AI partnership requires a shift from answer generation to collaborative premise governance over a knowledge substrate, negotiating only what is decision-critical. A discrepancy-driven control loop operates over this substrate: detecting conflicts, localizing misalignment via typed discrepancies (teleological, epistemic, procedural), and triggering bounded negotiation through decision slices. Commitment gating blocks action on uncommitted load-bearing premises unless overridden under logged risk; value-gated challenge allocates probing under interaction cost. Trust then attaches to auditable premises and evidence standards, not conversational fluency. We illustrate with tutoring and propose falsifiable evaluation criteria.
☆ Proof-RM: A Scalable and Generalizable Reward Model for Math Proof
While Large Language Models (LLMs) have demonstrated strong math reasoning abilities through Reinforcement Learning with *Verifiable Rewards* (RLVR), many advanced mathematical problems are proof-based, with no guaranteed way to determine the authenticity of a proof by simple answer matching. To enable automatic verification, a Reward Model (RM) capable of reliably evaluating full proof processes is required. In this work, we design a *scalable* data-construction pipeline that, with minimal human effort, leverages LLMs to generate a large quantity of high-quality "**question-proof-check**" triplet data. By systematically varying problem sources, generation methods, and model configurations, we create diverse problem-proof pairs spanning multiple difficulty levels, linguistic styles, and error types, subsequently filtered through hierarchical human review for label alignment. Utilizing these data, we train a proof-checking RM, incorporating additional process reward and token weight balance to stabilize the RL process. Our experiments validate the model's scalability and strong performance from multiple perspectives, including reward accuracy, generalization ability and test-time guidance, providing important practical recipes and tools for strengthening LLM mathematical capabilities.
comment: Under review
☆ Automated Multiple Mini Interview (MMI) Scoring
Assessing soft skills such as empathy, ethical judgment, and communication is essential in competitive selection processes, yet human scoring is often inconsistent and biased. While Large Language Models (LLMs) have improved Automated Essay Scoring (AES), we show that state-of-the-art rationale-based fine-tuning methods struggle with the abstract, context-dependent nature of Multiple Mini-Interviews (MMIs), missing the implicit signals embedded in candidate narratives. We introduce a multi-agent prompting framework that breaks down the evaluation process into transcript refinement and criterion-specific scoring. Using 3-shot in-context learning with a large instruct-tuned model, our approach outperforms specialised fine-tuned baselines (Avg QWK 0.62 vs 0.32) and achieves reliability comparable to human experts. We further demonstrate the generalisability of our framework on the ASAP benchmark, where it rivals domain-specific state-of-the-art models without additional training. These findings suggest that for complex, subjective reasoning tasks, structured prompt engineering may offer a scalable alternative to data-intensive fine-tuning, altering how LLMs can be applied to automated assessment.
comment: 18 pages, 2 figures
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
☆ Language Steering for Multilingual In-Context Learning
While multilingual large language models have gained widespread adoption, their performance on non-English languages remains substantially inferior to English. This disparity is particularly evident in in-context learning scenarios, where providing demonstrations in English but testing on non-English inputs leads to significant performance degradation. In this paper, we hypothesize that LLMs develop a universal semantic space for understanding languages, where different languages are encoded as distinct directions within this space. Based on this hypothesis, we propose language vectors -- a training-free language steering approach that leverages activation differences between source and target languages to guide model behavior. We steer the model generations by adding the vector to the intermediate model activations during inference. This is done to make the model's internal representations shift towards the target language space without any parameter updates. We evaluate our method across three datasets and test on a total of 19 languages on three different models. Our results show consistent improvements on multilingual in-context learning over baselines across all tasks and languages tested. Beyond performance gains, hierarchical clustering of steering vectors reveals meaningful linguistic structure aligned with language families. These vectors also successfully transfer across tasks, demonstrating that these representations are task-agnostic.
☆ A Large-Scale Dataset for Molecular Structure-Language Description via a Rule-Regularized Method
Molecular function is largely determined by structure. Accurately aligning molecular structure with natural language is therefore essential for enabling large language models (LLMs) to reason about downstream chemical tasks. However, the substantial cost of human annotation makes it infeasible to construct large-scale, high-quality datasets of structure-grounded descriptions. In this work, we propose a fully automated annotation framework for generating precise molecular structure descriptions at scale. Our approach builds upon and extends a rule-based chemical nomenclature parser to interpret IUPAC names and construct enriched, structured XML metadata that explicitly encodes molecular structure. This metadata is then used to guide LLMs in producing accurate natural-language descriptions. Using this framework, we curate a large-scale dataset of approximately $163$k molecule-description pairs. A rigorous validation protocol combining LLM-based and expert human evaluation on a subset of $2,000$ molecules demonstrates a high description precision of $98.6\%$. The resulting dataset provides a reliable foundation for future molecule-language alignment, and the proposed annotation method is readily extensible to larger datasets and broader chemical tasks that rely on structural descriptions.
☆ The Shape of Beliefs: Geometry, Dynamics, and Interventions along Representation Manifolds of Language Models' Posteriors
Large language models (LLMs) represent prompt-conditioned beliefs (posteriors over answers and claims), but we lack a mechanistic account of how these beliefs are encoded in representation space, how they update with new evidence, and how interventions reshape them. We study a controlled setting in which Llama-3.2 generates samples from a normal distribution by implicitly inferring its parameters (mean and standard deviation) given only samples from the distribution in context. We find representations of curved "belief manifolds" for these parameters form with sufficient in-context learning and study how the model adapts when the distribution suddenly changes. While standard linear steering often pushes the model off-manifold and induces coupled, out-of-distribution shifts, geometry and field-aware steering better preserves the intended belief family. Our work demonstrates an example of linear field probing (LFP) as a simple approach to tile the data manifold and make interventions that respect the underlying geometry. We conclude that rich structure emerges naturally in LLMs and that purely linear concept representations are often an inadequate abstraction.
☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS; Website: https://modular-gradient-surgery.github.io
☆ Hallucination or Creativity: How to Evaluate AI-Generated Scientific Stories?
Generative AI can turn scientific articles into narratives for diverse audiences, but evaluating these stories remains challenging. Storytelling demands abstraction, simplification, and pedagogical creativity-qualities that are not often well-captured by standard summarization metrics. Meanwhile, factual hallucinations are critical in scientific contexts, yet, detectors often misclassify legitimate narrative reformulations or prove unstable when creativity is involved. In this work, we propose StoryScore, a composite metric for evaluating AI-generated scientific stories. StoryScore integrates semantic alignment, lexical grounding, narrative control, structural fidelity, redundancy avoidance, and entity-level hallucination detection into a unified framework. Our analysis also reveals why many hallucination detection methods fail to distinguish pedagogical creativity from factual errors, highlighting a key limitation: while automatic metrics can effectively assess semantic similarity with original content, they struggle to evaluate how it is narrated and controlled.
☆ Cross-Lingual Stability of LLM Judges Under Controlled Generation: Evidence from Finno-Ugric Languages EACL 2026
Cross-lingual evaluation of large language models (LLMs) typically conflates two sources of variance: genuine model performance differences and measurement instability. We investigate evaluation reliability by holding generation conditions constant while varying target language. Using synthetic customer-support dialogues generated with identical parameters across Estonian, Finnish, and Hungarian, we test whether automatic metrics and LLM-as-a-judge scoring produce stable model rankings across these morphologically rich, related Finno-Ugric languages. With a small set of Estonian native speaker annotations as a reference point, we find systematic ranking instabilities: surface-level metrics (lexical diversity, surface and semantic similarity) maintain cross-language stability, but pragmatic judgments (coherence, instruction-following) exhibit rank inversions and near-zero correlations. Because generation is controlled, these inconsistencies reflect how judge scoring behaves differently across languages rather than true model differences. This controlled design provides a diagnostic probe: evaluation methods that fail to maintain stability under identical generation conditions signal transfer failure before deployment. Our findings suggest that zero-shot judge transfer is unreliable for discourse-level assessment in morphologically rich languages, motivating language-specific calibration against targeted human baselines. We release our controlled generation protocol, synthetic data, and evaluation framework to enable replication across language families at https://github.com/isaac-chung/cross-lingual-stability-judges.
comment: First Workshop on Multilingual Multicultural Evaluation, co-located with EACL 2026
☆ Statistical Learning Theory in Lean 4: Empirical Processes from Scratch
We present the first comprehensive Lean 4 formalization of statistical learning theory (SLT) grounded in empirical process theory. Our end-to-end formal infrastructure implement the missing contents in latest Lean 4 Mathlib library, including a complete development of Gaussian Lipschitz concentration, the first formalization of Dudley's entropy integral theorem for sub-Gaussian processes, and an application to least-squares (sparse) regression with a sharp rate. The project was carried out using a human-AI collaborative workflow, in which humans design proof strategies and AI agents execute tactical proof construction, leading to the human-verified Lean 4 toolbox for SLT. Beyond implementation, the formalization process exposes and resolves implicit assumptions and missing details in standard SLT textbooks, enforcing a granular, line-by-line understanding of the theory. This work establishes a reusable formal foundation and opens the door for future developments in machine learning theory. The code is available at https://github.com/YuanheZ/lean-stat-learning-theory
comment: 19 pages, 2 figures. Comments are welcome
☆ RACA: Representation-Aware Coverage Criteria for LLM Safety Testing
Recent advancements in LLMs have led to significant breakthroughs in various AI applications. However, their sophisticated capabilities also introduce severe safety concerns, particularly the generation of harmful content through jailbreak attacks. Current safety testing for LLMs often relies on static datasets and lacks systematic criteria to evaluate the quality and adequacy of these tests. While coverage criteria have been effective for smaller neural networks, they are not directly applicable to LLMs due to scalability issues and differing objectives. To address these challenges, this paper introduces RACA, a novel set of coverage criteria specifically designed for LLM safety testing. RACA leverages representation engineering to focus on safety-critical concepts within LLMs, thereby reducing dimensionality and filtering out irrelevant information. The framework operates in three stages: first, it identifies safety-critical representations using a small, expert-curated calibration set of jailbreak prompts. Second, it calculates conceptual activation scores for a given test suite based on these representations. Finally, it computes coverage results using six sub-criteria that assess both individual and compositional safety concepts. We conduct comprehensive experiments to validate RACA's effectiveness, applicability, and generalization, where the results demonstrate that RACA successfully identifies high-quality jailbreak prompts and is superior to traditional neuron-level criteria. We also showcase its practical application in real-world scenarios, such as test set prioritization and attack prompt sampling. Furthermore, our findings confirm RACA's generalization to various scenarios and its robustness across various configurations. Overall, RACA provides a new framework for evaluating the safety of LLMs, contributing a valuable technique to the field of testing for AI.
Kimi K2.5: Visual Agentic Intelligence
We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.
comment: Kimi K2.5 tech report
☆ dziribot: rag based intelligent conversational agent for algerian arabic dialect
The rapid digitalization of customer service has intensified the demand for conversational agents capable of providing accurate and natural interactions. In the Algerian context, this is complicated by the linguistic complexity of Darja, a dialect characterized by non-standardized orthography, extensive code-switching with French, and the simultaneous use of Arabic and Latin (Arabizi) scripts. This paper introduces DziriBOT, a hybrid intelligent conversational agent specifically engineered to overcome these challenges. We propose a multi-layered architecture that integrates specialized Natural Language Understanding (NLU) with Retrieval-Augmented Generation (RAG), allowing for both structured service flows and dynamic, knowledge-intensive responses grounded in curated enterprise documentation. To address the low-resource nature of Darja, we systematically evaluate three distinct approaches: a sparse-feature Rasa pipeline, classical machine learning baselines, and transformer-based fine-tuning. Our experimental results demonstrate that the fine-tuned DziriBERT model achieves state-of-the-art performance. These results significantly outperform traditional baselines, particularly in handling orthographic noise and rare intents. Ultimately, DziriBOT provides a robust, scalable solution that bridges the gap between formal language models and the linguistic realities of Algerian users, offering a blueprint for dialect-aware automation in the regional market.
☆ OpenSeal: Good, Fast, and Cheap Construction of an Open-Source Southeast Asian LLM via Parallel Data
Large language models (LLMs) have proven to be effective tools for a wide range of natural language processing (NLP) applications. Although many LLMs are multilingual, most remain English-centric and perform poorly on low-resource languages. Recently, several Southeast Asia-focused LLMs have been developed, but none are truly open source, as they do not publicly disclose their training data. Truly open-source models are important for transparency and for enabling a deeper and more precise understanding of LLM internals and development, including biases, generalization, and multilinguality. Motivated by recent advances demonstrating the effectiveness of parallel data in improving multilingual performance, we conduct controlled and comprehensive experiments to study the effectiveness of parallel data in continual pretraining of LLMs. Our findings show that using only parallel data is the most effective way to extend an LLM to new languages. Using just 34.7B tokens of parallel data and 180 hours on 8x NVIDIA H200 GPUs, we built OpenSeal, the first truly open Southeast Asian LLM that rivals the performance of existing models of similar size.
☆ OmniCode: A Benchmark for Evaluating Software Engineering Agents
LLM-powered coding agents are redefining how real-world software is developed. To drive the research towards better coding agents, we require challenging benchmarks that can rigorously evaluate the ability of such agents to perform various software engineering tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus on narrowly scoped tasks such as competition programming and patch generation. In reality, software engineers have to handle a broader set of tasks for real-world software development. To address this gap, we propose OmniCode, a novel software engineering benchmark that contains a broader and more diverse set of task categories beyond code or patch generation. Overall, OmniCode contains 1794 tasks spanning three programming languages (Python, Java, and C++) and four key categories: bug fixing, test generation, code review fixing, and style fixing. In contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated to avoid data leakage issues, presenting a new framework for synthetically generating diverse software tasks from limited real-world data. We evaluate OmniCode with popular agent frameworks such as SWE-Agent and show that while they may perform well on bug fixing for Python, they fall short on tasks such as Test Generation and in languages such as C++ and Java. For instance, SWE-Agent achieves a maximum of 20.9% with DeepSeek-V3.1 on Java Test Generation tasks. OmniCode aims to serve as a robust benchmark and spur the development of agents that can perform well across different aspects of software development. Code and data are available at https://github.com/seal-research/OmniCode.
☆ Learning While Staying Curious: Entropy-Preserving Supervised Fine-Tuning via Adaptive Self-Distillation for Large Reasoning Models
The standard post-training recipe for large reasoning models, supervised fine-tuning followed by reinforcement learning (SFT-then-RL), may limit the benefits of the RL stage: while SFT imitates expert demonstrations, it often causes overconfidence and reduces generation diversity, leaving RL with a narrowed solution space to explore. Adding entropy regularization during SFT is not a cure-all; it tends to flatten token distributions toward uniformity, increasing entropy without improving meaningful exploration capability. In this paper, we propose CurioSFT, an entropy-preserving SFT method designed to enhance exploration capabilities through intrinsic curiosity. It consists of (a) Self-Exploratory Distillation, which distills the model toward a self-generated, temperature-scaled teacher to encourage exploration within its capability; and (b) Entropy-Guided Temperature Selection, which adaptively adjusts distillation strength to mitigate knowledge forgetting by amplifying exploration at reasoning tokens while stabilizing factual tokens. Extensive experiments on mathematical reasoning tasks demonstrate that, in SFT stage, CurioSFT outperforms the vanilla SFT by 2.5 points on in-distribution tasks and 2.9 points on out-of-distribution tasks. We also verify that exploration capabilities preserved during SFT successfully translate into concrete gains in RL stage, yielding an average improvement of 5.0 points.
☆ Using Correspondence Patterns to Identify Irregular Words in Cognate sets Through Leave-One-Out Validation EACL 2026
Regular sound correspondences constitute the principal evidence in historical language comparison. Despite the heuristic focus on regularity, it is often more an intuitive judgement than a quantified evaluation, and irregularity is more common than expected from the Neogrammarian model. Given the recent progress of computational methods in historical linguistics and the increased availability of standardized lexical data, we are now able to improve our workflows and provide such a quantitative evaluation. Here, we present the balanced average recurrence of correspondence patterns as a new measure of regularity. We also present a new computational method that uses this measure to identify cognate sets that lack regularity with respect to their correspondence patterns. We validate the method through two experiments, using simulated and real data. In the experiments, we employ leave-one-out validation to measure the regularity of cognate sets in which one word form has been replaced by an irregular one, checking how well our method identifies the forms causing the irregularity. Our method achieves an overall accuracy of 85\% with the datasets based on real data. We also show the benefits of working with subsamples of large datasets and how increasing irregularity in the data influences our results. Reflecting on the broader potential of our new regularity measure and the irregular cognate identification method based on it, we conclude that they could play an important role in improving the quality of existing and future datasets in computer-assisted language comparison.
comment: Accepted for the L'Change workshop @ EACL 2026
☆ Am I More Pointwise or Pairwise? Revealing Position Bias in Rubric-Based LLM-as-a-Judge
Large language models (LLMs) are now widely used to evaluate the quality of text, a field commonly referred to as LLM-as-a-judge. While prior works mainly focus on point-wise and pair-wise evaluation paradigms. Rubric-based evaluation, where LLMs select a score from multiple rubrics, has received less analysis. In this work, we show that rubric-based evaluation implicitly resembles a multi-choice setting and therefore has position bias: LLMs prefer score options appearing at specific positions in the rubric list. Through controlled experiments across multiple models and datasets, we demonstrate consistent position bias. To mitigate this bias, we propose a balanced permutation strategy that evenly distributes each score option across positions. We show that aggregating scores across balanced permutations not only reveals latent position bias, but also improves correlation between the LLM-as-a-Judge and human. Our results suggest that rubric-based LLM-as-a-Judge is not inherently point-wise and that simple permutation-based calibration can substantially improve its reliability.
☆ Towards AI Evaluation in Domain-Specific RAG Systems: The AgriHubi Case Study
Large language models show promise for knowledge-intensive domains, yet their use in agriculture is constrained by weak grounding, English-centric training data, and limited real-world evaluation. These issues are amplified for low-resource languages, where high-quality domain documentation exists but remains difficult to access through general-purpose models. This paper presents AgriHubi, a domain-adapted retrieval-augmented generation (RAG) system for Finnish-language agricultural decision support. AgriHubi integrates Finnish agricultural documents with open PORO family models and combines explicit source grounding with user feedback to support iterative refinement. Developed over eight iterations and evaluated through two user studies, the system shows clear gains in answer completeness, linguistic accuracy, and perceived reliability. The results also reveal practical trade-offs between response quality and latency when deploying larger models. This study provides empirical guidance for designing and evaluating domain-specific RAG systems in low-resource language settings.
comment: 6 pages, 2 figures, submitted to MIPRO 2026
☆ Sinhala Physical Common Sense Reasoning Dataset for Global PIQA
This paper presents the first-ever Sinhala physical common sense reasoning dataset created as part of Global PIQA. It contains 110 human-created and verified data samples, where each sample consists of a prompt, the corresponding correct answer, and a wrong answer. Most of the questions refer to the Sri Lankan context, where Sinhala is an official language.
☆ More Than a Quick Glance: Overcoming the Greedy Bias in KV-Cache Compression
While Large Language Models (LLMs) can theoretically support extensive context windows, their actual deployment is constrained by the linear growth of Key-Value (KV) cache memory. Prevailing compression strategies mitigate this through various pruning mechanisms, yet trade-off semantic recall for memory efficiency. In this work, we present LASER-KV (Layer Accumulated Selection with Exact-LSH Recall), a framework designed to test the limits of KV compression under a strict accumulative budgeting policy. We deviate from the standard fixed summary size approach by implementing a block-wise accumulation strategy governed by a protection divisor (n). This allows us to isolate the effects of compression from sliding window artifacts. Our experiments on the Babilong benchmark reveal performance degradation in previous compression methods by 15-30% on various long context tasks. LASER-KV maintains stable performance, achieving superior accuracies by a margin of upto 10% at 128k. These findings challenge the prevailing assumption that attention scores alone are a sufficient proxy for token utility.
☆ Vision-DeepResearch Benchmark: Rethinking Visual and Textual Search for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have advanced VQA and now support Vision-DeepResearch systems that use search engines for complex visual-textual fact-finding. However, evaluating these visual and textual search abilities is still difficult, and existing benchmarks have two major limitations. First, existing benchmarks are not visual search-centric: answers that should require visual search are often leaked through cross-textual cues in the text questions or can be inferred from the prior world knowledge in current MLLMs. Second, overly idealized evaluation scenario: On the image-search side, the required information can often be obtained via near-exact matching against the full image, while the text-search side is overly direct and insufficiently challenging. To address these issues, we construct the Vision-DeepResearch benchmark (VDR-Bench) comprising 2,000 VQA instances. All questions are created via a careful, multi-stage curation pipeline and rigorous expert review, designed to assess the behavior of Vision-DeepResearch systems under realistic real-world conditions. Moreover, to address the insufficient visual retrieval capabilities of current MLLMs, we propose a simple multi-round cropped-search workflow. This strategy is shown to effectively improve model performance in realistic visual retrieval scenarios. Overall, our results provide practical guidance for the design of future multimodal deep-research systems. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ Evaluating Metalinguistic Knowledge in Large Language Models across the World's Languages
Large language models (LLMs) are routinely evaluated on language use tasks, yet their knowledge of linguistic structure remains poorly understood. Existing linguistic benchmarks typically focus on narrow phenomena, emphasize high-resource languages, and rarely evaluate metalinguistic knowledge-explicit reasoning about language structure rather than language use. Using accuracy and macro F1, together with majority-class and chance baselines, we analyse overall performance and examine variation by linguistic domains and language-related factors. Our results show that metalinguistic knowledge in current LLMs is limited: GPT-4o performs best but achieves only moderate accuracy (0.367), while open-source models lag behind. All models perform above chance but fail to outperform the majority-class baseline, suggesting they capture cross-linguistic patterns but lack fine-grained grammatical distinctions. Performance varies across linguistic domains, with lexical features showing the highest accuracy and phonological features among the lowest, partially reflecting differences in online visibility. At the language level, accuracy shows a strong association with digital language status: languages with higher digital presence and resource availability are evaluated more accurately, while low-resource languages show substantially lower performance. Analyses of predictive factors confirm that resource-related indicators (Wikipedia size, corpus availability) are more informative predictors of accuracy than geographical, genealogical, or sociolinguistic factors. Together, these results suggest that LLMs' metalinguistic knowledge is fragmented and shaped by data availability rather than generalizable grammatical competence across the world's languages. We release our benchmark as an open-source dataset to support systematic evaluation and encourage greater global linguistic diversity in future LLMs.
☆ AR-MAP: Are Autoregressive Large Language Models Implicit Teachers for Diffusion Large Language Models?
Diffusion Large Language Models (DLLMs) have emerged as a powerful alternative to autoregressive models, enabling parallel token generation across multiple positions. However, preference alignment of DLLMs remains challenging due to high variance introduced by Evidence Lower Bound (ELBO)-based likelihood estimation. In this work, we propose AR-MAP, a novel transfer learning framework that leverages preference-aligned autoregressive LLMs (AR-LLMs) as implicit teachers for DLLM alignment. We reveal that DLLMs can effectively absorb alignment knowledge from AR-LLMs through simple weight scaling, exploiting the shared architectural structure between these divergent generation paradigms. Crucially, our approach circumvents the high variance and computational overhead of direct DLLM alignment and comprehensive experiments across diverse preference alignment tasks demonstrate that AR-MAP achieves competitive or superior performance compared to existing DLLM-specific alignment methods, achieving 69.08\% average score across all tasks and models. Our Code is available at https://github.com/AMAP-ML/AR-MAP.
☆ D-CORE: Incentivizing Task Decomposition in Large Reasoning Models for Complex Tool Use
Effective tool use and reasoning are essential capabilities for large reasoning models~(LRMs) to address complex real-world problems. Through empirical analysis, we identify that current LRMs lack the capability of sub-task decomposition in complex tool use scenarios, leading to Lazy Reasoning. To address this, we propose a two-stage training framework D-CORE~(\underline{\textbf{D}}ecomposing tasks and \underline{\textbf{Co}}mposing \underline{\textbf{Re}}asoning processes) that first incentivize the LRMs' task decomposition reasoning capability via self-distillation, followed by diversity-aware reinforcement learning~(RL) to restore LRMs' reflective reasoning capability. D-CORE achieves robust tool-use improvements across diverse benchmarks and model scales. Experiments on BFCLv3 demonstrate superiority of our method: D-CORE-8B reaches 77.7\% accuracy, surpassing the best-performing 8B model by 5.7\%. Meanwhile, D-CORE-14B establishes a new state-of-the-art at 79.3\%, outperforming 70B models despite being 5$\times$ smaller. The source code is available at https://github.com/alibaba/EfficientAI.
☆ Focus-dLLM: Accelerating Long-Context Diffusion LLM Inference via Confidence-Guided Context Focusing
Diffusion Large Language Models (dLLMs) deliver strong long-context processing capability in a non-autoregressive decoding paradigm. However, the considerable computational cost of bidirectional full attention limits the inference efficiency. Although sparse attention is promising, existing methods remain ineffective. This stems from the need to estimate attention importance for tokens yet to be decoded, while the unmasked token positions are unknown during diffusion. In this paper, we present Focus-dLLM, a novel training-free attention sparsification framework tailored for accurate and efficient long-context dLLM inference. Based on the finding that token confidence strongly correlates across adjacent steps, we first design a past confidence-guided indicator to predict unmasked regions. Built upon this, we propose a sink-aware pruning strategy to accurately estimate and remove redundant attention computation, while preserving highly influential attention sinks. To further reduce overhead, this strategy reuses identified sink locations across layers, leveraging the observed cross-layer consistency. Experimental results show that our method offers more than $29\times$ lossless speedup under $32K$ context length. The code is publicly available at: https://github.com/Longxmas/Focus-dLLM
☆ Revisiting Adaptive Rounding with Vectorized Reparameterization for LLM Quantization
Adaptive Rounding has emerged as an alternative to round-to-nearest (RTN) for post-training quantization by enabling cross-element error cancellation. Yet, dense and element-wise rounding matrices are prohibitively expensive for billion-parameter large language models (LLMs). We revisit adaptive rounding from an efficiency perspective and propose VQRound, a parameter-efficient optimization framework that reparameterizes the rounding matrix into a compact codebook. Unlike low-rank alternatives, VQRound minimizes the element-wise worst-case error under $L_\infty$ norm, which is critical for handling heavy-tailed weight distributions in LLMs. Beyond reparameterization, we identify rounding initialization as a decisive factor and develop a lightweight end-to-end finetuning pipeline that optimizes codebooks across all layers using only 128 samples. Extensive experiments on OPT, LLaMA, LLaMA2, and Qwen3 models demonstrate that VQRound achieves better convergence than traditional adaptive rounding at the same number of steps while using as little as 0.2% of the trainable parameters. Our results show that adaptive rounding can be made both scalable and fast-fitting. The code is available at https://github.com/zhoustan/VQRound.
comment: 17 pages, 6 figures, 14 tables
☆ Learning Generative Selection for Best-of-N
Scaling test-time compute via parallel sampling can substantially improve LLM reasoning, but is often limited by Best-of-N selection quality. Generative selection methods, such as GenSelect, address this bottleneck, yet strong selection performance remains largely limited to large models. We show that small reasoning models can acquire strong GenSelect capabilities through targeted reinforcement learning. To this end, we synthesize selection tasks from large-scale math and code instruction datasets by filtering to instances with both correct and incorrect candidate solutions, and train 1.7B-parameter models with DAPO to reward correct selections. Across math (AIME24, AIME25, HMMT25) and code (LiveCodeBench) reasoning benchmarks, our models consistently outperform prompting and majority-voting baselines, often approaching or exceeding much larger models. Moreover, these gains generalize to selecting outputs from stronger models despite training only on outputs from weaker models. Overall, our results establish reinforcement learning as a scalable way to unlock strong generative selection in small models, enabling efficient test-time scaling.
☆ Quantifying the Gap between Understanding and Generation within Unified Multimodal Models
Recent advances in unified multimodal models (UMM) have demonstrated remarkable progress in both understanding and generation tasks. However, whether these two capabilities are genuinely aligned and integrated within a single model remains unclear. To investigate this question, we introduce GapEval, a bidirectional benchmark designed to quantify the gap between understanding and generation capabilities, and quantitatively measure the cognitive coherence of the two "unified" directions. Each question can be answered in both modalities (image and text), enabling a symmetric evaluation of a model's bidirectional inference capability and cross-modal consistency. Experiments reveal a persistent gap between the two directions across a wide range of UMMs with different architectures, suggesting that current models achieve only surface-level unification rather than deep cognitive convergence of the two. To further explore the underlying mechanism, we conduct an empirical study from the perspective of knowledge manipulation to illustrate the underlying limitations. Our findings indicate that knowledge within UMMs often remains disjoint. The capability emergence and knowledge across modalities are unsynchronized, paving the way for further exploration.
☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
☆ Understanding the Reversal Curse Mitigation in Masked Diffusion Models through Attention and Training Dynamics
Autoregressive language models (ARMs) suffer from the reversal curse: after learning that "$A$ is $B$", they often fail on the reverse query "$B$ is $A$". Masked diffusion-based language models (MDMs) exhibit this failure in a much weaker form, but the underlying reason has remained unclear. A common explanation attributes this mitigation to the any-order training objective. However, observing "[MASK] is $B$" during training does not necessarily teach the model to handle the reverse prompt "$B$ is [MASK]". We show that the mitigation arises from architectural structure and its interaction with training. In a one-layer Transformer encoder, weight sharing couples the two directions by making forward and reverse attention scores positively correlated. In the same setting, we further show that the corresponding gradients are aligned, so minimizing the forward loss also reduces the reverse loss. Experiments on both controlled toy tasks and large-scale diffusion language models support these mechanisms, explaining why MDMs partially overcome a failure mode that persists in strong ARMs.
☆ There Is More to Refusal in Large Language Models than a Single Direction
Prior work argues that refusal in large language models is mediated by a single activation-space direction, enabling effective steering and ablation. We show that this account is incomplete. Across eleven categories of refusal and non-compliance, including safety, incomplete or unsupported requests, anthropomorphization, and over-refusal, we find that these refusal behaviors correspond to geometrically distinct directions in activation space. Yet despite this diversity, linear steering along any refusal-related direction produces nearly identical refusal to over-refusal trade-offs, acting as a shared one-dimensional control knob. The primary effect of different directions is not whether the model refuses, but how it refuses.
☆ Unifying Masked Diffusion Models with Various Generation Orders and Beyond
Masked diffusion models (MDMs) are a potential alternative to autoregressive models (ARMs) for language generation, but generation quality depends critically on the generation order. Prior work either hard-codes an ordering (e.g., blockwise left-to-right) or learns an ordering policy for a pretrained MDM, which incurs extra cost and can yield suboptimal solutions due to the two-stage optimization. Motivated by this, we propose order-expressive masked diffusion model (OeMDM) for a broad class of diffusion generative processes with various generation orders, enabling the interpretation of MDM, ARM, and block diffusion in a single framework. Furthermore, building on OeMDM, we introduce learnable-order masked diffusion model (LoMDM), which jointly learns the generation ordering and diffusion backbone through a single objective from scratch, enabling the diffusion model to generate text in context-dependent ordering. Empirically, we confirm that LoMDM outperforms various discrete diffusion models across multiple language modeling benchmarks.
comment: Preprint
☆ Out of the Memory Barrier: A Highly Memory Efficient Training System for LLMs with Million-Token Contexts
Training Large Language Models (LLMs) on long contexts is severely constrained by prohibitive GPU memory overhead, not training time. The primary culprits are the activations, whose memory footprints scale linearly with sequence length. We introduce OOMB, a highly memory-efficient training system that directly confronts this barrier. Our approach employs a chunk-recurrent training framework with on-the-fly activation recomputation, which maintains a constant activation memory footprint (O(1)) and shifts the primary bottleneck to the growing KV cache. To manage the KV cache, OOMB integrates a suite of synergistic optimizations: a paged memory manager for both the KV cache and its gradients to eliminate fragmentation, asynchronous CPU offloading to hide data transfer latency, and page-level sparse attention to reduce both computational complexity and communication overhead. The synergy of these techniques yields exceptional efficiency. Our empirical results show that for every additional 10K tokens of context, the end-to-end training memory overhead increases by a mere 10MB for Qwen2.5-7B. This allows training Qwen2.5-7B with a 4M-token context on a single H200 GPU, a feat that would otherwise require a large cluster using context parallelism. This work represents a substantial advance in resource efficiency for long-context LLM training. The source code is available at https://github.com/wenhaoli-xmu/OOMB.
☆ Dicta-LM 3.0: Advancing The Frontier of Hebrew Sovereign LLMs
Open-weight LLMs have been released by frontier labs; however, sovereign Large Language Models (for languages other than English) remain low in supply yet high in demand. Training large language models (LLMs) for low-resource languages such as Hebrew poses unique challenges. In this paper, we introduce Dicta-LM 3.0: an open-weight collection of LLMs trained on substantially-sized corpora of Hebrew and English texts. The model is released in three sizes: 24B - adapted from the Mistral-Small-3.1 base model, 12B - adapted from the NVIDIA Nemotron Nano V2 model, and 1.7B - adapted from the Qwen3-1.7B base model. We are releasing multiple variants of each model, each with a native context length of 65k tokens; base model and chat model with tool-calling support. To rigorously evaluate our models, we introduce a new benchmark suite for evaluation of Hebrew chat-LLMs, covering a diverse set of tasks including Translation, Summarization, Winograd, Israeli Trivia, and Diacritization (nikud). Our work not only addresses the intricacies of training LLMs in low-resource languages but also proposes a framework that can be leveraged for adapting other LLMs to various non-English languages, contributing to the broader field of multilingual NLP.
☆ No Global Plan in Chain-of-Thought: Uncover the Latent Planning Horizon of LLMs
This work stems from prior complementary observations on the dynamics of Chain-of-Thought (CoT): Large Language Models (LLMs) is shown latent planning of subsequent reasoning prior to CoT emergence, thereby diminishing the significance of explicit CoT; whereas CoT remains critical for tasks requiring multi-step reasoning. To deepen the understanding between LLM's internal states and its verbalized reasoning trajectories, we investigate the latent planning strength of LLMs, through our probing method, Tele-Lens, applying to hidden states across diverse task domains. Our empirical results indicate that LLMs exhibit a myopic horizon, primarily conducting incremental transitions without precise global planning. Leveraging this characteristic, we propose a hypothesis on enhancing uncertainty estimation of CoT, which we validate that a small subset of CoT positions can effectively represent the uncertainty of the entire path. We further underscore the significance of exploiting CoT dynamics, and demonstrate that automatic recognition of CoT bypass can be achieved without performance degradation. Our code, data and models are released at https://github.com/lxucs/tele-lens.
☆ Think Dense, Not Long: Dynamic Decoupled Conditional Advantage for Efficient Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) can elicit strong multi-step reasoning, yet it often encourages overly verbose traces. Moreover, naive length penalties in group-relative optimization can severely hurt accuracy. We attribute this failure to two structural issues: (i) Dilution of Length Baseline, where incorrect responses (with zero length reward) depress the group baseline and over-penalize correct solutions; and (ii) Difficulty-Penalty Mismatch, where a static penalty cannot adapt to problem difficulty, suppressing necessary reasoning on hard instances while leaving redundancy on easy ones. We propose Dynamic Decoupled Conditional Advantage (DDCA) to decouple efficiency optimization from correctness. DDCA computes length advantages conditionally within the correct-response cluster to eliminate baseline dilution, and dynamically scales the penalty strength using the group pass rate as a proxy for difficulty. Experiments on GSM8K, MATH500, AMC23, and AIME25 show that DDCA consistently improves the efficiency--accuracy trade-off relative to adaptive baselines, reducing generated tokens by approximately 60% on simpler tasks (e.g., GSM8K) versus over 20% on harder benchmarks (e.g., AIME25), thereby maintaining or improving accuracy. Code is available at https://github.com/alphadl/DDCA.
☆ LEC-KG: An LLM-Embedding Collaborative Framework for Domain-Specific Knowledge Graph Construction -- A Case Study on SDGs
Constructing domain-specific knowledge graphs from unstructured text remains challenging due to heterogeneous entity mentions, long-tail relation distributions, and the absence of standardized schemas. We present LEC-KG, a bidirectional collaborative framework that integrates the semantic understanding of Large Language Models (LLMs) with the structural reasoning of Knowledge Graph Embeddings (KGE). Our approach features three key components: (1) hierarchical coarse-to-fine relation extraction that mitigates long-tail bias, (2) evidence-guided Chain-of-Thought feedback that grounds structural suggestions in source text, and (3) semantic initialization that enables structural validation for unseen entities. The two modules enhance each other iteratively-KGE provides structure-aware feedback to refine LLM extractions, while validated triples progressively improve KGE representations. We evaluate LEC-KG on Chinese Sustainable Development Goal (SDG) reports, demonstrating substantial improvements over LLM baselines, particularly on low-frequency relations. Through iterative refinement, our framework reliably transforms unstructured policy text into validated knowledge graph triples.
Closing the Loop: Universal Repository Representation with RPG-Encoder
Current repository agents encounter a reasoning disconnect due to fragmented representations, as existing methods rely on isolated API documentation or dependency graphs that lack semantic depth. We consider repository comprehension and generation to be inverse processes within a unified cycle: generation expands intent into implementation, while comprehension compresses implementation back into intent. To address this, we propose RPG-Encoder, a framework that generalizes the Repository Planning Graph (RPG) from a static generative blueprint into a unified, high-fidelity representation. RPG-Encoder closes the reasoning loop through three mechanisms: (1) Encoding raw code into the RPG that combines lifted semantic features with code dependencies; (2) Evolving the topology incrementally to decouple maintenance costs from repository scale, reducing overhead by 95.7%; and (3) Operating as a unified interface for structure-aware navigation. In evaluations, RPG-Encoder establishes state-of-the-art repository understanding on SWE-bench Verified with 93.7% Acc@5 and exceeds the best baseline by over 10% on SWE-bench Live Lite. These results highlight our superior fine-grained localization accuracy in complex codebases. Furthermore, it achieves 98.5% reconstruction coverage on RepoCraft, confirming RPG's high-fidelity capacity to mirror the original codebase and closing the loop between intent and implementation.
☆ WildGraphBench: Benchmarking GraphRAG with Wild-Source Corpora
Graph-based Retrieval-Augmented Generation (GraphRAG) organizes external knowledge as a hierarchical graph, enabling efficient retrieval and aggregation of scattered evidence across multiple documents. However, many existing benchmarks for GraphRAG rely on short, curated passages as external knowledge, failing to adequately evaluate systems in realistic settings involving long contexts and large-scale heterogeneous documents. To bridge this gap, we introduce WildGraphBench, a benchmark designed to assess GraphRAG performance in the wild. We leverage Wikipedia's unique structure, where cohesive narratives are grounded in long and heterogeneous external reference documents, to construct a benchmark reflecting real-word scenarios. Specifically, we sample articles across 12 top-level topics, using their external references as the retrieval corpus and citation-linked statements as ground truth, resulting in 1,100 questions spanning three levels of complexity: single-fact QA, multi-fact QA, and section-level summarization. Experiments across multiple baselines reveal that current GraphRAG pipelines help on multi-fact aggregation when evidence comes from a moderate number of sources, but this aggregation paradigm may overemphasize high-level statements at the expense of fine-grained details, leading to weaker performance on summarization tasks. Project page:https://github.com/BstWPY/WildGraphBench.
comment: https://github.com/BstWPY/WildGraphBench
☆ Dissecting Outlier Dynamics in LLM NVFP4 Pretraining
Training large language models using 4-bit arithmetic enhances throughput and memory efficiency. Yet, the limited dynamic range of FP4 increases sensitivity to outliers. While NVFP4 mitigates quantization error via hierarchical microscaling, a persistent loss gap remains compared to BF16. This study conducts a longitudinal analysis of outlier dynamics across architecture during NVFP4 pretraining, focusing on where they localize, why they occur, and how they evolve temporally. We find that, compared with Softmax Attention (SA), Linear Attention (LA) reduces per-tensor heavy tails but still exhibits persistent block-level spikes under block quantization. Our analysis attributes outliers to specific architectural components: Softmax in SA, gating in LA, and SwiGLU in FFN, with "post-QK" operations exhibiting higher sensitivity to quantization. Notably, outliers evolve from transient spikes early in training to a small set of persistent hot channels (i.e., channels with persistently large magnitudes) in later stages. Based on these findings, we introduce Hot-Channel Patch (HCP), an online compensation mechanism that identifies hot channels and reinjects residuals using hardware-efficient kernels. We then develop CHON, an NVFP4 training recipe integrating HCP with post-QK operation protection. On GLA-1.3B model trained for 60B tokens, CHON reduces the loss gap to BF16 from 0.94% to 0.58% while maintaining downstream accuracy.
comment: 39 pages, 32 figures
☆ Hunt Instead of Wait: Evaluating Deep Data Research on Large Language Models
The agency expected of Agentic Large Language Models goes beyond answering correctly, requiring autonomy to set goals and decide what to explore. We term this investigatory intelligence, distinguishing it from executional intelligence, which merely completes assigned tasks. Data Science provides a natural testbed, as real-world analysis starts from raw data rather than explicit queries, yet few benchmarks focus on it. To address this, we introduce Deep Data Research (DDR), an open-ended task where LLMs autonomously extract key insights from databases, and DDR-Bench, a large-scale, checklist-based benchmark that enables verifiable evaluation. Results show that while frontier models display emerging agency, long-horizon exploration remains challenging. Our analysis highlights that effective investigatory intelligence depends not only on agent scaffolding or merely scaling, but also on intrinsic strategies of agentic models.
comment: 14 pages, 7 tables, 8 figures
☆ Rethinking Genomic Modeling Through Optical Character Recognition
Recent genomic foundation models largely adopt large language model architectures that treat DNA as a one-dimensional token sequence. However, exhaustive sequential reading is structurally misaligned with sparse and discontinuous genomic semantics, leading to wasted computation on low-information background and preventing understanding-driven compression for long contexts. Here, we present OpticalDNA, a vision-based framework that reframes genomic modeling as Optical Character Recognition (OCR)-style document understanding. OpticalDNA renders DNA into structured visual layouts and trains an OCR-capable vision--language model with a \emph{visual DNA encoder} and a \emph{document decoder}, where the encoder produces compact, reconstructible visual tokens for high-fidelity compression. Building on this representation, OpticalDNA defines prompt-conditioned objectives over core genomic primitives-reading, region grounding, subsequence retrieval, and masked span completion-thereby learning layout-aware DNA representations that retain fine-grained genomic information under a reduced effective token budget. Across diverse genomic benchmarks, OpticalDNA consistently outperforms recent baselines; on sequences up to 450k bases, it achieves the best overall performance with nearly $20\times$ fewer effective tokens, and surpasses models with up to $985\times$ more activated parameters while tuning only 256k \emph{trainable} parameters.
☆ NEAT: Neuron-Based Early Exit for Large Reasoning Models
Large Reasoning Models (LRMs) often suffer from \emph{overthinking}, a phenomenon in which redundant reasoning steps are generated after a correct solution has already been reached. Existing early reasoning exit methods primarily rely on output-level heuristics or trained probing models to skip redundant reasoning steps, thereby mitigating overthinking. However, these approaches typically require additional rollout computation or externally labeled datasets. In this paper, we propose \textbf{NEAT}, a \textbf{N}euron-based \textbf{E}arly re\textbf{A}soning exi\textbf{T} framework that monitors neuron-level activation dynamics to enable training-free early exits, without introducing additional test-time computation. NEAT identifies exit-associated neurons and tracks their activation patterns during reasoning to dynamically trigger early exit or suppress reflection, thereby reducing unnecessary reasoning while preserving solution quality. Experiments on four reasoning benchmarks across six models with different scales and architectures show that, for each model, NEAT achieves an average token reduction of 22\% to 28\% when averaged over the four benchmarks, while maintaining accuracy.
☆ Beyond RAG for Agent Memory: Retrieval by Decoupling and Aggregation
Agent memory systems often adopt the standard Retrieval-Augmented Generation (RAG) pipeline, yet its underlying assumptions differ in this setting. RAG targets large, heterogeneous corpora where retrieved passages are diverse, whereas agent memory is a bounded, coherent dialogue stream with highly correlated spans that are often duplicates. Under this shift, fixed top-$k$ similarity retrieval tends to return redundant context, and post-hoc pruning can delete temporally linked prerequisites needed for correct reasoning. We argue retrieval should move beyond similarity matching and instead operate over latent components, following decoupling to aggregation: disentangle memories into semantic components, organise them into a hierarchy, and use this structure to drive retrieval. We propose xMemory, which builds a hierarchy of intact units and maintains a searchable yet faithful high-level node organisation via a sparsity--semantics objective that guides memory split and merge. At inference, xMemory retrieves top-down, selecting a compact, diverse set of themes and semantics for multi-fact queries, and expanding to episodes and raw messages only when it reduces the reader's uncertainty. Experiments on LoCoMo and PerLTQA across the three latest LLMs show consistent gains in answer quality and token efficiency.
☆ From Latent Signals to Reflection Behavior: Tracing Meta-Cognitive Activation Trajectory in R1-Style LLMs
R1-style LLMs have attracted growing attention for their capacity for self-reflection, yet the internal mechanisms underlying such behavior remain unclear. To bridge this gap, we anchor on the onset of reflection behavior and trace its layer-wise activation trajectory. Using the logit lens to read out token-level semantics, we uncover a structured progression: (i) Latent-control layers, where an approximate linear direction encodes the semantics of thinking budget; (ii) Semantic-pivot layers, where discourse-level cues, including turning-point and summarization cues, surface and dominate the probability mass; and (iii) Behavior-overt layers, where the likelihood of reflection-behavior tokens begins to rise until they become highly likely to be sampled. Moreover, our targeted interventions uncover a causal chain across these stages: prompt-level semantics modulate the projection of activations along latent-control directions, thereby inducing competition between turning-point and summarization cues in semantic-pivot layers, which in turn regulates the sampling likelihood of reflection-behavior tokens in behavior-overt layers. Collectively, our findings suggest a human-like meta-cognitive process-progressing from latent monitoring, to discourse-level regulation, and to finally overt self-reflection. Our analysis code can be found at https://github.com/DYR1/S3-CoT.
☆ S3-CoT: Self-Sampled Succinct Reasoning Enables Efficient Chain-of-Thought LLMs
Large language models (LLMs) equipped with chain-of-thought (CoT) achieve strong performance and offer a window into LLM behavior. However, recent evidence suggests that improvements in CoT capabilities often come with redundant reasoning processes, motivating a key question: Can LLMs acquire a fast-thinking mode analogous to human System 1 reasoning? To explore this, our study presents a self-sampling framework based on activation steering for efficient CoT learning. Our method can induce style-aligned and variable-length reasoning traces from target LLMs themselves without any teacher guidance, thereby alleviating a central bottleneck of SFT-based methods-the scarcity of high-quality supervision data. Using filtered data by gold answers, we perform SFT for efficient CoT learning with (i) a human-like dual-cognitive system, and (ii) a progressive compression curriculum. Furthermore, we explore a self-evolution regime in which SFT is driven solely by prediction-consistent data of variable-length variants, eliminating the need for gold answers. Extensive experiments on math benchmarks, together with cross-domain generalization tests in medicine, show that our method yields stable improvements for both general and R1-style LLMs. Our data and model checkpoints can be found at https://github.com/DYR1/S3-CoT.
☆ Beyond Local Edits: Embedding-Virtualized Knowledge for Broader Evaluation and Preservation of Model Editing
Knowledge editing methods for large language models are commonly evaluated using predefined benchmarks that assess edited facts together with a limited set of related or neighboring knowledge. While effective, such evaluations remain confined to finite, dataset-bounded samples, leaving the broader impact of editing on the model's knowledge system insufficiently understood. To address this gap, we introduce Embedding-Virtualized Knowledge (EVK) that characterizes model knowledge through controlled perturbations in embedding space, enabling the exploration of a substantially broader and virtualized knowledge region beyond explicit data annotations. Based on EVK, we construct an embedding-level evaluation benchmark EVK-Bench that quantifies potential knowledge drift induced by editing, revealing effects that are not captured by conventional sample-based metrics. Furthermore, we propose a plug-and-play EVK-Align module that constrains embedding-level knowledge drift during editing and can be seamlessly integrated into existing editing methods. Experiments demonstrate that our approach enables more comprehensive evaluation while significantly improving knowledge preservation without sacrificing editing accuracy.
☆ Orthogonal Hierarchical Decomposition for Structure-Aware Table Understanding with Large Language Models
Complex tables with multi-level headers, merged cells and heterogeneous layouts pose persistent challenges for LLMs in both understanding and reasoning. Existing approaches typically rely on table linearization or normalized grid modeling. However, these representations struggle to explicitly capture hierarchical structures and cross-dimensional dependencies, which can lead to misalignment between structural semantics and textual representations for non-standard tables. To address this issue, we propose an Orthogonal Hierarchical Decomposition (OHD) framework that constructs structure-preserving input representations of complex tables for LLMs. OHD introduces an Orthogonal Tree Induction (OTI) method based on spatial--semantic co-constraints, which decomposes irregular tables into a column tree and a row tree to capture vertical and horizontal hierarchical dependencies, respectively. Building on this representation, we design a dual-pathway association protocol to symmetrically reconstruct semantic lineage of each cell, and incorporate an LLM as a semantic arbitrator to align multi-level semantic information. We evaluate OHD framework on two complex table question answering benchmarks, AITQA and HiTab. Experimental results show that OHD consistently outperforms existing representation paradigms across multiple evaluation metrics.
comment: Work in process
☆ Mixture-of-Experts with Intermediate CTC Supervision for Accented Speech Recognition
Accented speech remains a persistent challenge for automatic speech recognition (ASR), as most models are trained on data dominated by a few high-resource English varieties, leading to substantial performance degradation for other accents. Accent-agnostic approaches improve robustness yet struggle with heavily accented or unseen varieties, while accent-specific methods rely on limited and often noisy labels. We introduce Moe-Ctc, a Mixture-of-Experts architecture with intermediate CTC supervision that jointly promotes expert specialization and generalization. During training, accent-aware routing encourages experts to capture accent-specific patterns, which gradually transitions to label-free routing for inference. Each expert is equipped with its own CTC head to align routing with transcription quality, and a routing-augmented loss further stabilizes optimization. Experiments on the Mcv-Accent benchmark demonstrate consistent gains across both seen and unseen accents in low- and high-resource conditions, achieving up to 29.3% relative WER reduction over strong FastConformer baselines.
☆ Breaking the Static Graph: Context-Aware Traversal for Robust Retrieval-Augmented Generation
Recent advances in Retrieval-Augmented Generation (RAG) have shifted from simple vector similarity to structure-aware approaches like HippoRAG, which leverage Knowledge Graphs (KGs) and Personalized PageRank (PPR) to capture multi-hop dependencies. However, these methods suffer from a "Static Graph Fallacy": they rely on fixed transition probabilities determined during indexing. This rigidity ignores the query-dependent nature of edge relevance, causing semantic drift where random walks are diverted into high-degree "hub" nodes before reaching critical downstream evidence. Consequently, models often achieve high partial recall but fail to retrieve the complete evidence chain required for multi-hop queries. To address this, we propose CatRAG, Context-Aware Traversal for robust RAG, a framework that builds on the HippoRAG 2 architecture and transforms the static KG into a query-adaptive navigation structure. We introduce a multi-faceted framework to steer the random walk: (1) Symbolic Anchoring, which injects weak entity constraints to regularize the random walk; (2) Query-Aware Dynamic Edge Weighting, which dynamically modulates graph structure, to prune irrelevant paths while amplifying those aligned with the query's intent; and (3) Key-Fact Passage Weight Enhancement, a cost-efficient bias that structurally anchors the random walk to likely evidence. Experiments across four multi-hop benchmarks demonstrate that CatRAG consistently outperforms state of the art baselines. Our analysis reveals that while standard Recall metrics show modest gains, CatRAG achieves substantial improvements in reasoning completeness, the capacity to recover the entire evidence path without gaps. These results reveal that our approach effectively bridges the gap between retrieving partial context and enabling fully grounded reasoning. Resources are available at https://github.com/kwunhang/CatRAG.
☆ From Code-Centric to Concept-Centric: Teaching NLP with LLM-Assisted "Vibe Coding" EACL2026
The rapid advancement of Large Language Models (LLMs) presents both challenges and opportunities for Natural Language Processing (NLP) education. This paper introduces ``Vibe Coding,'' a pedagogical approach that leverages LLMs as coding assistants while maintaining focus on conceptual understanding and critical thinking. We describe the implementation of this approach in a senior-level undergraduate NLP course, where students completed seven labs using LLMs for code generation while being assessed primarily on conceptual understanding through critical reflection questions. Analysis of end-of-course feedback from 19 students reveals high satisfaction (mean scores 4.4-4.6/5.0) across engagement, conceptual learning, and assessment fairness. Students particularly valued the reduced cognitive load from debugging, enabling deeper focus on NLP concepts. However, challenges emerged around time constraints, LLM output verification, and the need for clearer task specifications. Our findings suggest that when properly structured with mandatory prompt logging and reflection-based assessment, LLM-assisted learning can shift focus from syntactic fluency to conceptual mastery, preparing students for an AI-augmented professional landscape.
comment: Accepted in The Seventh Workshop on Teaching Natural Language Processing (Teaching NLP @ EACL2026)
☆ GuideWeb: A Benchmark for Automatic In-App Guide Generation on Real-World Web UIs
Digital Adoption Platform (DAP) provide web-based overlays that deliver operation guidance and contextual hints to help users navigate complex websites. Although modern DAP tools enable non-experts to author such guidance, maintaining these guides remains labor-intensive because website layouts and functionalities evolve continuously, which requires repeated manual updates and re-annotation. In this work, we introduce \textbf{GuideWeb}, a new benchmark for automatic in-app guide generation on real-world web UIs. GuideWeb formulates the task as producing page-level guidance by selecting \textbf{guide target elements} grounded in the webpage and generating concise guide text aligned with user intent. We also propose a comprehensive evaluation suite that jointly measures the accuracy of guide target element selection and the quality of generated intents and guide texts. Experiments show that our proposed \textbf{GuideWeb Agent} achieves \textbf{30.79\%} accuracy in guide target element prediction, while obtaining BLEU scores of \textbf{44.94} for intent generation and \textbf{21.34} for guide-text generation. Existing baselines perform substantially worse, which highlights that automatic guide generation remains challenging and that further advances are necessary before such systems can be reliably deployed in real-world settings.
☆ ES-MemEval: Benchmarking Conversational Agents on Personalized Long-Term Emotional Support
Large Language Models (LLMs) have shown strong potential as conversational agents. Yet, their effectiveness remains limited by deficiencies in robust long-term memory, particularly in complex, long-term web-based services such as online emotional support. However, existing long-term dialogue benchmarks primarily focus on static and explicit fact retrieval, failing to evaluate agents in critical scenarios where user information is dispersed, implicit, and continuously evolving. To address this gap, we introduce ES-MemEval, a comprehensive benchmark that systematically evaluates five core memory capabilities: information extraction, temporal reasoning, conflict detection, abstention, and user modeling, in long-term emotional support settings, covering question answering, summarization, and dialogue generation tasks. To support the benchmark, we also propose EvoEmo, a multi-session dataset for personalized long-term emotional support that captures fragmented, implicit user disclosures and evolving user states. Extensive experiments on open-source long-context, commercial, and retrieval-augmented (RAG) LLMs show that explicit long-term memory is essential for reducing hallucinations and enabling effective personalization. At the same time, RAG improves factual consistency but struggles with temporal dynamics and evolving user states. These findings highlight both the potential and limitations of current paradigms and motivate more robust integration of memory and retrieval for long-term personalized dialogue systems.
comment: 12 pages, 7 figures. Accepted to The Web Conference (WWW) 2026
PretrainRL: Alleviating Factuality Hallucination of Large Language Models at the Beginning
Large language models (LLMs), despite their powerful capabilities, suffer from factual hallucinations where they generate verifiable falsehoods. We identify a root of this issue: the imbalanced data distribution in the pretraining corpus, which leads to a state of "low-probability truth" and "high-probability falsehood". Recent approaches, such as teaching models to say "I don't know" or post-hoc knowledge editing, either evade the problem or face catastrophic forgetting. To address this issue from its root, we propose \textbf{PretrainRL}, a novel framework that integrates reinforcement learning into the pretraining phase to consolidate factual knowledge. The core principle of PretrainRL is "\textbf{debiasing then learning}." It actively reshapes the model's probability distribution by down-weighting high-probability falsehoods, thereby making "room" for low-probability truths to be learned effectively. To enable this, we design an efficient negative sampling strategy to discover these high-probability falsehoods and introduce novel metrics to evaluate the model's probabilistic state concerning factual knowledge. Extensive experiments on three public benchmarks demonstrate that PretrainRL significantly alleviates factual hallucinations and outperforms state-of-the-art methods.
☆ Read As Human: Compressing Context via Parallelizable Close Reading and Skimming
Large Language Models (LLMs) demonstrate exceptional capability across diverse tasks. However, their deployment in long-context scenarios is hindered by two challenges: computational inefficiency and redundant information. We propose RAM (Read As HuMan), a context compression framework that adopts an adaptive hybrid reading strategy, to address these challenges. Inspired by human reading behavior (i.e., close reading important content while skimming less relevant content), RAM partitions the context into segments and encodes them with the input query in parallel. High-relevance segments are fully retained (close reading), while low-relevance ones are query-guided compressed into compact summary vectors (skimming). Both explicit textual segments and implicit summary vectors are concatenated and fed into decoder to achieve both superior performance and natural language format interpretability. To refine the decision boundary between close reading and skimming, we further introduce a contrastive learning objective based on positive and negative query-segment pairs. Experiments demonstrate that RAM outperforms existing baselines on multiple question answering and summarization benchmarks across two backbones, while delivering up to a 12x end-to-end speedup on long inputs (average length 16K; maximum length 32K).
comment: 13 pages,5 figures
☆ AXE: Low-Cost Cross-Domain Web Structured Information Extraction
Extracting structured data from the web is often a trade-off between the brittle nature of manual heuristics and the prohibitive cost of Large Language Models. We introduce AXE (Adaptive X-Path Extractor), a pipeline that rethinks this process by treating the HTML DOM as a tree that needs pruning rather than just a wall of text to be read. AXE uses a specialized "pruning" mechanism to strip away boilerplate and irrelevant nodes, leaving behind a distilled, high-density context that allows a tiny 0.6B LLM to generate precise, structured outputs. To keep the model honest, we implement Grounded XPath Resolution (GXR), ensuring every extraction is physically traceable to a source node. Despite its low footprint, AXE achieves state-of-the-art zero-shot performance, outperforming several much larger, fully-trained alternatives with an F1 score of 88.1% on the SWDE dataset. By releasing our specialized adaptors, we aim to provide a practical, cost-effective path for large-scale web information extraction.
☆ Sentence Curve Language Models
Language models (LMs) are a central component of modern AI systems, and diffusion-based language models (DLMs) have recently emerged as a competitive alternative. Both paradigms rely on word embeddings not only to represent the input sentence, but also to represent the target sentence that backbone models are trained to predict. We argue that such static embedding of the target word is insensitive to neighboring words, encouraging locally accurate word prediction while neglecting global structure across the target sentence. To address this limitation, we propose a continuous sentence representation, termed sentence curve, defined as a spline curve whose control points affect multiple words in the sentence. Based on this representation, we introduce sentence curve language model (SCLM), which extends DLMs to predict sentence curves instead of the static word embeddings. We theoretically show that sentence curve prediction induces a regularization effect that promotes global structure modeling, and characterize how different sentence curve types affect this behavior. Empirically, SCLM achieves SOTA performance among DLMs on IWSLT14 and WMT14, shows stable training without burdensome knowledge distillation, and demonstrates promising potential compared to discrete DLMs on LM1B.
☆ CodeOCR: On the Effectiveness of Vision Language Models in Code Understanding
Large Language Models (LLMs) have achieved remarkable success in source code understanding, yet as software systems grow in scale, computational efficiency has become a critical bottleneck. Currently, these models rely on a text-based paradigm that treats source code as a linear sequence of tokens, which leads to a linear increase in context length and associated computational costs. The rapid advancement of Multimodal LLMs (MLLMs) introduces an opportunity to optimize efficiency by representing source code as rendered images. Unlike text, which is difficult to compress without losing semantic meaning, the image modality is inherently suitable for compression. By adjusting resolution, images can be scaled to a fraction of their original token cost while remaining recognizable to vision-capable models. To explore the feasibility of this approach, we conduct the first systematic study on the effectiveness of MLLMs for code understanding. Our experiments reveal that: (1) MLLMs can effectively understand code with substantial token reduction, achieving up to 8x compression; (2) MLLMs can effectively leverage visual cues such as syntax highlighting, improving code completion performance under 4x compression; and (3) Code-understanding tasks like clone detection exhibit exceptional resilience to visual compression, with some compression ratios even slightly outperforming raw text inputs. Our findings highlight both the potential and current limitations of MLLMs in code understanding, which points out a shift toward image-modality code representation as a pathway to more efficient inference.
comment: Code and data are available at https://github.com/YerbaPage/CodeOCR
☆ Data Distribution Matters: A Data-Centric Perspective on Context Compression for Large Language Model
The deployment of Large Language Models (LLMs) in long-context scenarios is hindered by computational inefficiency and significant information redundancy. Although recent advancements have widely adopted context compression to address these challenges, existing research only focus on model-side improvements, the impact of the data distribution itself on context compression remains largely unexplored. To bridge this gap, we are the first to adopt a data-centric perspective to systematically investigate how data distribution impacts compression quality, including two dimensions: input data and intrinsic data (i.e., the model's internal pretrained knowledge). We evaluate the semantic integrity of compressed representations using an autoencoder-based framework to systematically investigate it. Our experimental results reveal that: (1) encoder-measured input entropy negatively correlates with compression quality, while decoder-measured entropy shows no significant relationship under a frozen-decoder setting; and (2) the gap between intrinsic data of the encoder and decoder significantly diminishes compression gains, which is hard to mitigate. Based on these findings, we further present practical guidelines to optimize compression gains.
comment: 15 pages,6 figures
: One LLM Token for Explicit Graph Structural Understanding
Large language models show great potential in unstructured data understanding, but still face significant challenges with graphs due to their structural hallucination. Existing approaches mainly either verbalize graphs into natural language, which leads to excessive token consumption and scattered attention, or transform graphs into trainable continuous embeddings (i.e., soft prompt), but exhibit severe misalignment with original text tokens. To solve this problem, we propose to incorporate one special token to fully represent the Structure Of Graph within a unified token space, facilitating explicit topology input and structural information sharing. Specifically, we propose a topology-aware structural tokenizer that maps each graph topology into a highly selective single token. Afterwards, we construct a set of hybrid structure Question-Answering corpora to align new structural tokens with existing text tokens. With this approach, empowers LLMs to understand, generate, and reason in a concise and accurate manner. Extensive experiments on five graph-level benchmarks demonstrate the superiority of our method, achieving a performance improvement of 9.9% to 41.4% compared to the baselines while exhibiting interpretability and consistency. Furthermore, our method provides a flexible extension to node-level tasks, enabling both global and local structural understanding. The codebase is publicly available at https://github.com/Jingyao-Wu/SOG.
☆ PRISM: Parametrically Refactoring Inference for Speculative Sampling Draft Models
Large Language Models (LLMs), constrained by their auto-regressive nature, suffer from slow decoding. Speculative decoding methods have emerged as a promising solution to accelerate LLM decoding, attracting attention from both systems and AI research communities. Recently, the pursuit of better draft quality has driven a trend toward parametrically larger draft models, which inevitably introduces substantial computational overhead. While existing work attempts to balance the trade-off between prediction accuracy and compute latency, we address this fundamental dilemma through architectural innovation. We propose PRISM, which disaggregates the computation of each predictive step across different parameter sets, refactoring the computational pathways of draft models to successfully decouple model capacity from inference cost. Through extensive experiments, we demonstrate that PRISM outperforms all existing draft architectures, achieving exceptional acceptance lengths while maintaining minimal draft latency for superior end-to-end speedup. We also re-examine scaling laws with PRISM, revealing that PRISM scales more effectively with expanding data volumes than other draft architectures. Through rigorous and fair comparison, we show that PRISM boosts the decoding throughput of an already highly optimized inference engine by more than 2.6x.
☆ Zero2Text: Zero-Training Cross-Domain Inversion Attacks on Textual Embeddings
The proliferation of retrieval-augmented generation (RAG) has established vector databases as critical infrastructure, yet they introduce severe privacy risks via embedding inversion attacks. Existing paradigms face a fundamental trade-off: optimization-based methods require computationally prohibitive queries, while alignment-based approaches hinge on the unrealistic assumption of accessible in-domain training data. These constraints render them ineffective in strict black-box and cross-domain settings. To dismantle these barriers, we introduce Zero2Text, a novel training-free framework based on recursive online alignment. Unlike methods relying on static datasets, Zero2Text synergizes LLM priors with a dynamic ridge regression mechanism to iteratively align generation to the target embedding on-the-fly. We further demonstrate that standard defenses, such as differential privacy, fail to effectively mitigate this adaptive threat. Extensive experiments across diverse benchmarks validate Zero2Text; notably, on MS MARCO against the OpenAI victim model, it achieves 1.8x higher ROUGE-L and 6.4x higher BLEU-2 scores compared to baselines, recovering sentences from unknown domains without a single leaked data pair.
comment: 10 pages
☆ WorldCup Sampling for Multi-bit LLM Watermarking
As large language models (LLMs) generate increasingly human-like text, watermarking offers a promising solution for reliable attribution beyond mere detection. While multi-bit watermarking enables richer provenance encoding, existing methods largely extend zero-bit schemes through seed-driven steering, leading to indirect information flow, limited effective capacity, and suboptimal decoding. In this paper, we propose WorldCup, a multi-bit watermarking framework for LLMs that treats sampling as a natural communication channel and embeds message bits directly into token selection via a hierarchical competition mechanism guided by complementary signals. Moreover, WorldCup further adopts entropy-aware modulation to preserve generation quality and supports robust message recovery through confidence-aware decoding. Comprehensive experiments show that WorldCup achieves a strong balance across capacity, detectability, robustness, text quality, and decoding efficiency, consistently outperforming prior baselines and laying a solid foundation for future LLM watermarking studies.
☆ Enhancing Automated Essay Scoring with Three Techniques: Two-Stage Fine-Tuning, Score Alignment, and Self-Training
Automated Essay Scoring (AES) plays a crucial role in education by providing scalable and efficient assessment tools. However, in real-world settings, the extreme scarcity of labeled data severely limits the development and practical adoption of robust AES systems. This study proposes a novel approach to enhance AES performance in both limited-data and full-data settings by introducing three key techniques. First, we introduce a Two-Stage fine-tuning strategy that leverages low-rank adaptations to better adapt an AES model to target prompt essays. Second, we introduce a Score Alignment technique to improve consistency between predicted and true score distributions. Third, we employ uncertainty-aware self-training using unlabeled data, effectively expanding the training set with pseudo-labeled samples while mitigating label noise propagation. We implement above three key techniques on DualBERT. We conduct extensive experiments on the ASAP++ dataset. As a result, in the 32-data setting, all three key techniques improve performance, and their integration achieves 91.2% of the full-data performance trained on approximately 1,000 labeled samples. In addition, the proposed Score Alignment technique consistently improves performance in both limited-data and full-data settings: e.g., it achieves state-of-the-art results in the full-data setting when integrated into DualBERT.
comment: 22 pages, 4 figures
☆ SafePred: A Predictive Guardrail for Computer-Using Agents via World Models
With the widespread deployment of Computer-using Agents (CUAs) in complex real-world environments, prevalent long-term risks often lead to severe and irreversible consequences. Most existing guardrails for CUAs adopt a reactive approach, constraining agent behavior only within the current observation space. While these guardrails can prevent immediate short-term risks (e.g., clicking on a phishing link), they cannot proactively avoid long-term risks: seemingly reasonable actions can lead to high-risk consequences that emerge with a delay (e.g., cleaning logs leads to future audits being untraceable), which reactive guardrails cannot identify within the current observation space. To address these limitations, we propose a predictive guardrail approach, with the core idea of aligning predicted future risks with current decisions. Based on this approach, we present SafePred, a predictive guardrail framework for CUAs that establishes a risk-to-decision loop to ensure safe agent behavior. SafePred supports two key abilities: (1) Short- and long-term risk prediction: by using safety policies as the basis for risk prediction, SafePred leverages the prediction capability of the world model to generate semantic representations of both short-term and long-term risks, thereby identifying and pruning actions that lead to high-risk states; (2) Decision optimization: translating predicted risks into actionable safe decision guidances through step-level interventions and task-level re-planning. Extensive experiments show that SafePred significantly reduces high-risk behaviors, achieving over 97.6% safety performance and improving task utility by up to 21.4% compared with reactive baselines.
☆ COMI: Coarse-to-fine Context Compression via Marginal Information Gain ICLR 2026
Large Language Models (LLMs) have demonstrated exceptional capabilities across diverse tasks. However, their deployment in long context scenarios remains hindered by computational inefficiency and information redundancy. Context compression methods address these challenges by significantly reducing input length and eliminating redundancy. We propose COMI, a coarse-to-fine adaptive context compression framework that jointly optimizes for semantic relevance and diversity under high compression rates. We introduce Marginal Information Gain (MIG), a metric defined as the relevance of a unit to the input query minus its semantic redundancy with other units, guiding the compression process to prioritize information that is both relevant and low redundant. The framework operates in two stages: (1) Coarse-Grained Group Reallocation, where the context is partitioned into groups and dynamically assigned compression rates based on inter-group MIG, ensuring compression budgets align with information value distribution; and (2) Fine-Grained Token Merging, where tokens within each group are fused via an intra-group MIG-based weighting mechanism, thereby preserving key semantics while avoiding the accumulation of redundancy. Extensive experiments across question-answering (e.g., NaturalQuestions, 2WikiMQA, HotpotQA and NarrativeQA), summarization (e.g., MultiNews) with various backbones (e.g., LLaMA-2-7B, Qwen2-7B) show that COMI outperforms existing baselines by a large margin, e.g., approximately 25-point Exact Match (EM) improvement under 32x compression constraint with Qwen2-7B on NaturalQuestions.
comment: Accepted at ICLR 2026
☆ BBPE16: UTF-16-based byte-level byte-pair encoding for improved multilingual speech recognition ICASSP 2026
Multilingual automatic speech recognition (ASR) requires tokenization that efficiently covers many writing systems. Byte-level BPE (BBPE) using UTF-8 is widely adopted for its language-agnostic design and full Unicode coverage, but its variable-length encoding inflates token sequences for non-Latin scripts, such as Chinese, Japanese, and Korean (CJK). Longer sequences increase computational load and memory use. We propose BBPE16, a UTF-16-based BBPE tokenizer that represents most modern scripts with a uniform 2-byte code unit. BBPE16 preserves BBPE's language-agnostic properties while substantially improving cross-lingual token sharing. Across monolingual, bilingual, and trilingual ASR, and in a multilingual continual-learning setup, BBPE16 attains comparable or better accuracy; for Chinese, it reduces token counts by up to 10.4% and lowers decoding iterations by up to 10.3%. These reductions speed up fine-tuning and inference and decrease memory usage, making BBPE16 a practical tokenization choice for multilingual ASR.
comment: accepted to ICASSP 2026
☆ Mechanistic Indicators of Steering Effectiveness in Large Language Models
Activation-based steering enables Large Language Models (LLMs) to exhibit targeted behaviors by intervening on intermediate activations without retraining. Despite its widespread use, the mechanistic factors that govern when steering succeeds or fails remain poorly understood, as prior work has relied primarily on black-box outputs or LLM-based judges. In this study, we investigate whether the reliability of steering can be diagnosed using internal model signals. We focus on two information-theoretic measures: the entropy-derived Normalized Branching Factor (NBF), and the Kullback-Leibler (KL) divergence between steered activations and targeted concepts in the vocabulary space. We hypothesize that effective steering corresponds to structured entropy preservation and coherent KL alignment across decoding steps. Building on a reliability study demonstrating high inter-judge agreement between two architecturally distinct LLMs, we use LLM-generated annotations as ground truth and show that these mechanistic signals provide meaningful predictive power for identifying successful steering and estimating failure probability. We further introduce a stronger evaluation baseline for Contrastive Activation Addition (CAA) and Sparse Autoencoder-based steering, the two most widely adopted activation-steering methods.
☆ MedAraBench: Large-Scale Arabic Medical Question Answering Dataset and Benchmark
Arabic remains one of the most underrepresented languages in natural language processing research, particularly in medical applications, due to the limited availability of open-source data and benchmarks. The lack of resources hinders efforts to evaluate and advance the multilingual capabilities of Large Language Models (LLMs). In this paper, we introduce MedAraBench, a large-scale dataset consisting of Arabic multiple-choice question-answer pairs across various medical specialties. We constructed the dataset by manually digitizing a large repository of academic materials created by medical professionals in the Arabic-speaking region. We then conducted extensive preprocessing and split the dataset into training and test sets to support future research efforts in the area. To assess the quality of the data, we adopted two frameworks, namely expert human evaluation and LLM-as-a-judge. Our dataset is diverse and of high quality, spanning 19 specialties and five difficulty levels. For benchmarking purposes, we assessed the performance of eight state-of-the-art open-source and proprietary models, such as GPT-5, Gemini 2.0 Flash, and Claude 4-Sonnet. Our findings highlight the need for further domain-specific enhancements. We release the dataset and evaluation scripts to broaden the diversity of medical data benchmarks, expand the scope of evaluation suites for LLMs, and enhance the multilingual capabilities of models for deployment in clinical settings.
☆ ARTIS: Agentic Risk-Aware Test-Time Scaling via Iterative Simulation
Current test-time scaling (TTS) techniques enhance large language model (LLM) performance by allocating additional computation at inference time, yet they remain insufficient for agentic settings, where actions directly interact with external environments and their effects can be irreversible and costly. We propose \emph{\name}, \emph{\underline{A}gentic \underline{R}isk-Aware \underline{T}est-Time Scaling via \underline{I}terative \underline{S}imulation}, a framework that decouples exploration from commitment by enabling test-time exploration through simulated interactions prior to real-world execution. This design allows extending inference-time computation to improve action-level reliability and robustness without incurring environmental risk. We further show that naive LLM-based simulators struggle to capture rare but high-impact failure modes, substantially limiting their effectiveness for agentic decision making. To address this limitation, we introduce a \emph{risk-aware tool simulator} that emphasizes fidelity on failure-inducing actions via targeted data generation and rebalanced training. Experiments on multi-turn and multi-step agentic benchmarks demonstrate that iterative simulation substantially improves agent reliability, and that risk-aware simulation is essential for consistently realizing these gains across models and tasks.
☆ Game of Thought: Robust Information Seeking with Large Language Models Using Game Theory ICML 2026
Large Language Models (LLMs) are increasingly deployed in real-world scenarios where they may lack sufficient information to complete a given task. In such settings, the ability to actively seek out missing information becomes a critical capability. Existing approaches to enhancing this ability often rely on simplifying assumptions that degrade \textit{worst-case} performance. This is an issue with serious implications in high-stakes applications. In this work, we use the game of Twenty Questions to evaluate the information-seeking ability of LLMs. We introduce and formalize its adversarial counterpart, the Strategic Language Search (SLS) problem along with its variants as a two-player zero-sum extensive form game. We propose Game of Thought (GoT), a framework that applies game-theoretic techniques to approximate a Nash equilibrium (NE) strategy for the restricted variant of the game. Empirical results demonstrate that our approach consistently improves worst-case performance compared to (1) direct prompting-based methods and (2) heuristic-guided search methods across all tested settings.
comment: 23 pages, 10 figures, under review at ICML 2026
☆ $\textbf{AGT$^{AO}$}$: Robust and Stabilized LLM Unlearning via Adversarial Gating Training with Adaptive Orthogonality
While Large Language Models (LLMs) have achieved remarkable capabilities, they unintentionally memorize sensitive data, posing critical privacy and security risks. Machine unlearning is pivotal for mitigating these risks, yet existing paradigms face a fundamental dilemma: aggressive unlearning often induces catastrophic forgetting that degrades model utility, whereas conservative strategies risk superficial forgetting, leaving models vulnerable to adversarial recovery. To address this trade-off, we propose $\textbf{AGT$^{AO}$}$ (Adversarial Gating Training with Adaptive Orthogonality), a unified framework designed to reconcile robust erasure with utility preservation. Specifically, our approach introduces $\textbf{Adaptive Orthogonality (AO)}$ to dynamically mitigate geometric gradient conflicts between forgetting and retention objectives, thereby minimizing unintended knowledge degradation. Concurrently, $\textbf{Adversarial Gating Training (AGT)}$ formulates unlearning as a latent-space min-max game, employing a curriculum-based gating mechanism to simulate and counter internal recovery attempts. Extensive experiments demonstrate that $\textbf{AGT$^{AO}$}$ achieves a superior trade-off between unlearning efficacy (KUR $\approx$ 0.01) and model utility (MMLU 58.30). Code is available at https://github.com/TiezMind/AGT-unlearning.
☆ Restoring Exploration after Post-Training: Latent Exploration Decoding for Large Reasoning Models
Large Reasoning Models (LRMs) have recently achieved strong mathematical and code reasoning performance through Reinforcement Learning (RL) post-training. However, we show that modern reasoning post-training induces an unintended exploration collapse: temperature-based sampling no longer increases pass@$n$ accuracy. Empirically, the final-layer posterior of post-trained LRMs exhibit sharply reduced entropy, while the entropy of intermediate layers remains relatively high. Motivated by this entropy asymmetry, we propose Latent Exploration Decoding (LED), a depth-conditioned decoding strategy. LED aggregates intermediate posteriors via cumulative sum and selects depth configurations with maximal entropy as exploration candidates. Without additional training or parameters, LED consistently improves pass@1 and pass@16 accuracy by 0.61 and 1.03 percentage points across multiple reasoning benchmarks and models. Project page: https://GitHub.com/Xiaomi-Research/LED.
☆ Counting Hypothesis: Potential Mechanism of In-Context Learning
In-Context Learning (ICL) indicates that large language models (LLMs) pretrained on a massive amount of data can learn specific tasks from input prompts' examples. ICL is notable for two reasons. First, it does not need modification of LLMs' internal structure. Second, it enables LLMs to perform a wide range of tasks/functions with a few examples demonstrating a desirable task. ICL opens up new ways to utilize LLMs in more domains, but its underlying mechanisms still remain poorly understood, making error correction and diagnosis extremely challenging. Thus, it is imperative that we better understand the limitations of ICL and how exactly LLMs support ICL. Inspired by ICL properties and LLMs' functional modules, we propose 1the counting hypothesis' of ICL, which suggests that LLMs' encoding strategy may underlie ICL, and provide supporting evidence.
comment: 19 pages, 7 main Figures, 1 Table and 6 Supp. Figures
☆ Scaling Search-Augmented LLM Reasoning via Adaptive Information Control
Search-augmented reasoning agents interleave multi-step reasoning with external information retrieval, but uncontrolled retrieval often leads to redundant evidence, context saturation, and unstable learning. Existing approaches rely on outcome-based reinforcement learning (RL), which provides limited guidance for regulating information acquisition. We propose DeepControl, a framework for adaptive information control based on a formal notion of information utility, which measures the marginal value of retrieved evidence under a given reasoning state. Building on this utility, we introduce retrieval continuation and granularity control mechanisms that selectively regulate when to continue and stop retrieval, and how much information to expand. An annealed control strategy enables the agent to internalize effective information acquisition behaviors during training. Extensive experiments across seven benchmarks demonstrate that our method consistently outperforms strong baselines. In particular, our approach achieves average performance improvements of 9.4% and 8.6% on Qwen2.5-7B and Qwen2.5-3B, respectively, over strong outcome-based RL baselines, and consistently outperforms both retrieval-free and retrieval-based reasoning methods without explicit information control. These results highlight the importance of adaptive information control for scaling search-augmented reasoning agents to complex, real-world information environments.
comment: Work in progress
☆ CoDiQ: Test-Time Scaling for Controllable Difficult Question Generation
Large Reasoning Models (LRMs) benefit substantially from training on challenging competition-level questions. However, existing automated question synthesis methods lack precise difficulty control, incur high computational costs, and struggle to generate competition-level questions at scale. In this paper, we propose CoDiQ (Controllable Difficult Question Generation), a novel framework enabling fine-grained difficulty control via test-time scaling while ensuring question solvability. Specifically, first, we identify a test-time scaling tendency (extended reasoning token budget boosts difficulty but reduces solvability) and the intrinsic properties defining the upper bound of a model's ability to generate valid, high-difficulty questions. Then, we develop CoDiQ-Generator from Qwen3-8B, which improves the upper bound of difficult question generation, making it particularly well-suited for challenging question construction. Building on the CoDiQ framework, we build CoDiQ-Corpus (44K competition-grade question sequences). Human evaluations show these questions are significantly more challenging than LiveCodeBench/AIME with over 82% solvability. Training LRMs on CoDiQ-Corpus substantially improves reasoning performance, verifying that scaling controlled-difficulty training questions enhances reasoning capabilities. We open-source CoDiQ-Corpus, CoDiQ-Generator, and implementations to support related research.
comment: 11 pages, 5 tables, 5 figures
☆ Steering Vector Fields for Context-Aware Inference-Time Control in Large Language Models
Steering vectors (SVs) offer a lightweight way to control large language models (LLMs) at inference time by shifting hidden activations, providing a practical middle ground between prompting and fine-tuning. Yet SVs can be unreliable in practice. Some concepts are unsteerable, and even when steering helps on average it can backfire for a non-trivial fraction of inputs. Reliability also degrades in long-form generation and multi-attribute steering. We take a geometric view of these failures. A static SV applies the same update vector everywhere in representation space, implicitly assuming that the concept-improving direction is constant across contexts. When the locally effective direction varies with the current activation, a single global vector can become misaligned, which yields weak or reversed effects. Guided by this perspective, we propose Steering Vector Fields (SVF), which learns a differentiable concept scoring function whose local gradient defines the steering direction at each activation, making interventions explicitly context-dependent. This formulation supports coordinated multi-layer interventions in a shared, aligned concept space, and enables efficient long-form and multi-attribute control within a unified framework. Across multiple LLMs and steering tasks, SVF delivers stronger and more reliable control, improving the practicality of inference-time steering.
☆ A2Eval: Agentic and Automated Evaluation for Embodied Brain
Current embodied VLM evaluation relies on static, expert-defined, manually annotated benchmarks that exhibit severe redundancy and coverage imbalance. This labor intensive paradigm drains computational and annotation resources, inflates costs, and distorts model rankings, ultimately stifling iterative development. To address this, we propose Agentic Automatic Evaluation (A2Eval), the first agentic framework that automates benchmark curation and evaluation through two collaborative agents. The Data Agent autonomously induces capability dimensions and assembles a balanced, compact evaluation suite, while the Eval Agent synthesizes and validates executable evaluation pipelines, enabling fully autonomous, high-fidelity assessment. Evaluated across 10 benchmarks and 13 models, A2Eval compresses evaluation suites by 85%, reduces overall computational costs by 77%, and delivers a 4.6x speedup while preserving evaluation quality. Crucially, A2Eval corrects systematic ranking biases, improves human alignment to Spearman's rho=0.85, and maintains high ranking fidelity (Kendall's tau=0.81), establishing a new standard for high-fidelity, low-cost embodied assessment. Our code and data will be public soon.
☆ SEA-Guard: Culturally Grounded Multilingual Safeguard for Southeast Asia
Culturally aware safeguards are crucial for AI alignment in real-world settings, where safety extends beyond common sense and encompasses diverse local values, norms, and region-specific regulations. However, building large-scale, culturally grounded datasets is challenging due to limited resources and a scarcity of native annotators. Consequently, many safeguard models rely on machine translation of English datasets, often missing regional and cultural nuances. We present a novel agentic data-generation framework to scalably create authentic, region-specific safety datasets for Southeast Asia (SEA). On this foundation, we introduce the SEA-Guard family, the first multilingual safeguard models grounded in SEA cultural contexts. Evaluated across multiple benchmarks and cultural variants, SEA-Guard consistently outperforms existing safeguards at detecting regionally sensitive or harmful content while maintaining strong general safety performance.
comment: Under reivew
☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce \Ours, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, \Ours~uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that \Ours~consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks. Our code will be available at https://github.com/HieuNT91/VIP.
comment: Accepted at ICLR 2026
☆ Expected Harm: Rethinking Safety Evaluation of (Mis)Aligned LLMs
Current evaluations of LLM safety predominantly rely on severity-based taxonomies to assess the harmfulness of malicious queries. We argue that this formulation requires re-examination as it assumes uniform risk across all malicious queries, neglecting Execution Likelihood--the conditional probability of a threat being realized given the model's response. In this work, we introduce Expected Harm, a metric that weights the severity of a jailbreak by its execution likelihood, modeled as a function of execution cost. Through empirical analysis of state-of-the-art models, we reveal a systematic Inverse Risk Calibration: models disproportionately exhibit stronger refusal behaviors for low-likelihood (high-cost) threats while remaining vulnerable to high-likelihood (low-cost) queries. We demonstrate that this miscalibration creates a structural vulnerability: by exploiting this property, we increase the attack success rate of existing jailbreaks by up to $2\times$. Finally, we trace the root cause of this failure using linear probing, which reveals that while models encode severity in their latent space to drive refusal decisions, they possess no distinguishable internal representation of execution cost, making them "blind" to this critical dimension of risk.
☆ The Art of Socratic Inquiry: A Framework for Proactive Template-Guided Therapeutic Conversation Generation
Proactive questioning, where therapists deliberately initiate structured, cognition-guiding inquiries, is a cornerstone of cognitive behavioral therapy (CBT). Yet, current psychological large language models (LLMs) remain overwhelmingly reactive, defaulting to empathetic but superficial responses that fail to surface latent beliefs or guide behavioral change. To bridge this gap, we propose the \textbf{Socratic Inquiry Framework (SIF)}, a lightweight, plug-and-play therapeutic intent planner that transforms LLMs from passive listeners into active cognitive guides. SIF decouples \textbf{when to ask} (via Strategy Anchoring) from \textbf{what to ask} (via Template Retrieval), enabling context-aware, theory-grounded questioning without end-to-end retraining. Complementing SIF, we introduce \textbf{Socratic-QA}, a high-quality dataset of strategy-aligned Socratic sequences that provides explicit supervision for proactive reasoning. Experiments show that SIF significantly enhances proactive questioning frequency, conversational depth, and therapeutic alignment, marking a clear shift from reactive comfort to proactive exploration. Our work establishes a new paradigm for psychologically informed LLMs: not just to respond, but to guide.
☆ Wiki Live Challenge: Challenging Deep Research Agents with Expert-Level Wikipedia Articles
Deep Research Agents (DRAs) have demonstrated remarkable capabilities in autonomous information retrieval and report generation, showing great potential to assist humans in complex research tasks. Current evaluation frameworks primarily rely on LLM-generated references or LLM-derived evaluation dimensions. While these approaches offer scalability, they often lack the reliability of expert-verified content and struggle to provide objective, fine-grained assessments of critical dimensions. To bridge this gap, we introduce Wiki Live Challenge (WLC), a live benchmark that leverages the newest Wikipedia Good Articles (GAs) as expert-level references. Wikipedia's strict standards for neutrality, comprehensiveness, and verifiability serve as a great challenge for DRAs, with GAs representing the pinnacle of which. We curate a dataset of 100 recent Good Articles and propose Wiki Eval, a comprehensive evaluation framework comprising a fine-grained evaluation method with 39 criteria for writing quality and rigorous metrics for factual verifiability. Extensive experiments on various DRA systems demonstrate a significant gap between current DRAs and human expert-level Wikipedia articles, validating the effectiveness of WLC in advancing agent research. We release our benchmark at https://github.com/WangShao2000/Wiki_Live_Challenge
comment: Preprint. Work in progress
☆ Provable Defense Framework for LLM Jailbreaks via Noise-Augumented Alignment
Large Language Models (LLMs) remain vulnerable to adaptive jailbreaks that easily bypass empirical defenses like GCG. We propose a framework for certifiable robustness that shifts safety guarantees from single-pass inference to the statistical stability of an ensemble. We introduce Certified Semantic Smoothing (CSS) via Stratified Randomized Ablation, a technique that partitions inputs into immutable structural prompts and mutable payloads to derive rigorous lo norm guarantees using the Hypergeometric distribution. To resolve performance degradation on sparse contexts, we employ Noise-Augmented Alignment Tuning (NAAT), which transforms the base model into a semantic denoiser. Extensive experiments on Llama-3 show that our method reduces the Attack Success Rate of gradient-based attacks from 84.2% to 1.2% while maintaining 94.1% benign utility, significantly outperforming character-level baselines which degrade utility to 74.3%. This framework provides a deterministic certificate of safety, ensuring that a model remains robust against all adversarial variants within a provable radius.
comment: 10 pages
LLM-based Embeddings: Attention Values Encode Sentence Semantics Better Than Hidden States
Sentence representations are foundational to many Natural Language Processing (NLP) applications. While recent methods leverage Large Language Models (LLMs) to derive sentence representations, most rely on final-layer hidden states, which are optimized for next-token prediction and thus often fail to capture global, sentence-level semantics. This paper introduces a novel perspective, demonstrating that attention value vectors capture sentence semantics more effectively than hidden states. We propose Value Aggregation (VA), a simple method that pools token values across multiple layers and token indices. In a training-free setting, VA outperforms other LLM-based embeddings, even matches or surpasses the ensemble-based MetaEOL. Furthermore, we demonstrate that when paired with suitable prompts, the layer attention outputs can be interpreted as aligned weighted value vectors. Specifically, the attention scores of the last token function as the weights, while the output projection matrix ($W_O$) aligns these weighted value vectors with the common space of the LLM residual stream. This refined method, termed Aligned Weighted VA (AlignedWVA), achieves state-of-the-art performance among training-free LLM-based embeddings, outperforming the high-cost MetaEOL by a substantial margin. Finally, we highlight the potential of obtaining strong LLM embedding models through fine-tuning Value Aggregation.
☆ FS-Researcher: Test-Time Scaling for Long-Horizon Research Tasks with File-System-Based Agents
Deep research is emerging as a representative long-horizon task for large language model (LLM) agents. However, long trajectories in deep research often exceed model context limits, compressing token budgets for both evidence collection and report writing, and preventing effective test-time scaling. We introduce FS-Researcher, a file-system-based, dual-agent framework that scales deep research beyond the context window via a persistent workspace. Specifically, a Context Builder agent acts as a librarian which browses the internet, writes structured notes, and archives raw sources into a hierarchical knowledge base that can grow far beyond context length. A Report Writer agent then composes the final report section by section, treating the knowledge base as the source of facts. In this framework, the file system serves as a durable external memory and a shared coordination medium across agents and sessions, enabling iterative refinement beyond the context window. Experiments on two open-ended benchmarks (DeepResearch Bench and DeepConsult) show that FS-Researcher achieves state-of-the-art report quality across different backbone models. Further analyses demonstrate a positive correlation between final report quality and the computation allocated to the Context Builder, validating effective test-time scaling under the file-system paradigm. The code and data are anonymously open-sourced at https://github.com/Ignoramus0817/FS-Researcher.
comment: 19 pages, 6 figures
☆ Argument Rarity-based Originality Assessment for AI-Assisted Writing
As Large Language Models (LLMs) have become capable of effortlessly generating high-quality text, traditional quality-focused writing assessment is losing its significance. If the essential goal of education is to foster critical thinking and original perspectives, assessment must also shift its paradigm from quality to originality. This study proposes Argument Rarity-based Originality Assessment (AROA), a framework for automatically evaluating argumentative originality in student essays. AROA defines originality as rarity within a reference corpus and evaluates it through four complementary components: structural rarity, claim rarity, evidence rarity, and cognitive depth. The framework quantifies the rarity of each component using density estimation and integrates them with a quality adjustment mechanism, thereby treating quality and originality as independent evaluation axes. Experiments using human essays and AI-generated essays revealed a strong negative correlation between quality and claim rarity, demonstrating a quality-originality trade-off where higher-quality texts tend to rely on typical claim patterns. Furthermore, while AI essays achieved comparable levels of structural complexity to human essays, their claim rarity was substantially lower than that of humans, indicating that LLMs can reproduce the form of argumentation but have limitations in the originality of content.
☆ MAGIC: A Co-Evolving Attacker-Defender Adversarial Game for Robust LLM Safety
Ensuring robust safety alignment is crucial for Large Language Models (LLMs), yet existing defenses often lag behind evolving adversarial attacks due to their \textbf{reliance on static, pre-collected data distributions}. In this paper, we introduce \textbf{MAGIC}, a novel multi-turn multi-agent reinforcement learning framework that formulates LLM safety alignment as an adversarial asymmetric game. Specifically, an attacker agent learns to iteratively rewrite original queries into deceptive prompts, while a defender agent simultaneously optimizes its policy to recognize and refuse such inputs. This dynamic process triggers a \textbf{co-evolution}, where the attacker's ever-changing strategies continuously uncover long-tail vulnerabilities, driving the defender to generalize to unseen attack patterns. Remarkably, we observe that the attacker, endowed with initial reasoning ability, evolves \textbf{novel, previously unseen combinatorial strategies} through iterative RL training, underscoring our method's substantial potential. Theoretically, we provide insights into a more robust game equilibrium and derive safety guarantees. Extensive experiments validate our framework's effectiveness, demonstrating superior defense success rates without compromising the helpfulness of the model. Our code is available at https://github.com/BattleWen/MAGIC.
☆ A Relative-Budget Theory for Reinforcement Learning with Verifiable Rewards in Large Language Model Reasoning
Reinforcement learning (RL) is a dominant paradigm for improving the reasoning abilities of large language models, yet its effectiveness varies across tasks and compute budgets. We propose a \emph{relative-budget} theory explaining this variation through a single quantity called relative budget $ξ:= H/\mathbb{E}[T]$, where $H$ is the generation horizon (token budget) and $T$ denotes the number of tokens until the first correct solution under a base policy. We show that $ξ$ determines sample efficiency by controlling reward variance and the likelihood of informative trajectories. Our analysis reveals three regimes: in the \emph{deficient} regime ($ξ\to 0$), informative trajectories are rare and the sample complexity explodes; in the \emph{balanced} regime ($ξ=Θ(1)$), informative trajectories occur with non-negligible probability and RL is maximally sample-efficient; and in the \emph{ample} regime ($ξ\to \infty$), learning remains stable but marginal gains per iteration diminish. We further provide finite-sample guarantees for online RL that characterize learning progress across these regimes. Specifically, in a case study under idealized distributional assumptions, we show that the relative budget grows linearly over iterations. Our empirical results confirm these predictions in realistic settings, identifying a budget $ξ\in [1.5, 2.0]$ that maximizes learning efficiency and coincides with peak reasoning performance.
comment: 28 pages
☆ Alternating Reinforcement Learning for Rubric-Based Reward Modeling in Non-Verifiable LLM Post-Training
Standard reward models typically predict scalar scores that fail to capture the multifaceted nature of response quality in non-verifiable domains, such as creative writing or open-ended instruction following. To address this limitation, we propose Rubric-ARM, a framework that jointly optimizes a rubric generator and a judge using reinforcement learning from preference feedback. Unlike existing methods that rely on static rubrics or disjoint training pipelines, our approach treats rubric generation as a latent action learned to maximize judgment accuracy. We introduce an alternating optimization strategy to mitigate the non-stationarity of simultaneous updates, providing theoretical analysis that demonstrates how this schedule reduces gradient variance during training. Extensive experiments show that Rubric-ARM achieves state-of-the-art performance among baselines on multiple benchmarks and significantly improves downstream policy alignment in both offline and online reinforcement learning settings.
comment: The first two authors contributed equally
☆ Aligning Language Model Benchmarks with Pairwise Preferences
Language model benchmarks are pervasive and computationally-efficient proxies for real-world performance. However, many recent works find that benchmarks often fail to predict real utility. Towards bridging this gap, we introduce benchmark alignment, where we use limited amounts of information about model performance to automatically update offline benchmarks, aiming to produce new static benchmarks that predict model pairwise preferences in given test settings. We then propose BenchAlign, the first solution to this problem, which learns preference-aligned weight- ings for benchmark questions using the question-level performance of language models alongside ranked pairs of models that could be collected during deployment, producing new benchmarks that rank previously unseen models according to these preferences. Our experiments show that our aligned benchmarks can accurately rank unseen models according to models of human preferences, even across different sizes, while remaining interpretable. Overall, our work provides insights into the limits of aligning benchmarks with practical human preferences, which stands to accelerate model development towards real utility.
☆ TraceNAS: Zero-shot LLM Pruning via Gradient Trace Correlation
Structured pruning is essential for efficient deployment of Large Language Models (LLMs). The varying sensitivity of LLM sub-blocks to pruning necessitates the identification of optimal non-uniformly pruned models. Existing methods evaluate the importance of layers, attention heads, or weight channels in isolation. Such localized focus ignores the complex global structural dependencies that exist across the model. Training-aware structured pruning addresses global dependencies, but its computational cost can be just as expensive as post-pruning training. To alleviate the computational burden of training-aware pruning and capture global structural dependencies, we propose TraceNAS, a training-free Neural Architecture Search (NAS) framework that jointly explores structured pruning of LLM depth and width. TraceNAS identifies pruned models that maintain a high degree of loss landscape alignment with the pretrained model using a scale-invariant zero-shot proxy, effectively selecting models that exhibit maximal performance potential during post-pruning training. TraceNAS is highly efficient, enabling high-fidelity discovery of pruned models on a single GPU in 8.5 hours, yielding a 10$\times$ reduction in GPU-hours compared to training-aware methods. Evaluations on the Llama and Qwen families demonstrate that TraceNAS is competitive with training-aware baselines across commonsense and reasoning benchmarks.
comment: Preprint
☆ HALT: Hallucination Assessment via Log-probs as Time series
Hallucinations remain a major obstacle for large language models (LLMs), especially in safety-critical domains. We present HALT (Hallucination Assessment via Log-probs as Time series), a lightweight hallucination detector that leverages only the top-20 token log-probabilities from LLM generations as a time series. HALT uses a gated recurrent unit model combined with entropy-based features to learn model calibration bias, providing an extremely efficient alternative to large encoders. Unlike white-box approaches, HALT does not require access to hidden states or attention maps, relying only on output log-probabilities. Unlike black-box approaches, it operates on log-probs rather than surface-form text, which enables stronger domain generalization and compatibility with proprietary LLMs without requiring access to internal weights. To benchmark performance, we introduce HUB (Hallucination detection Unified Benchmark), which consolidates prior datasets into ten capabilities covering both reasoning tasks (Algorithmic, Commonsense, Mathematical, Symbolic, Code Generation) and general purpose skills (Chat, Data-to-Text, Question Answering, Summarization, World Knowledge). While being 30x smaller, HALT outperforms Lettuce, a fine-tuned modernBERT-base encoder, achieving a 60x speedup gain on HUB. HALT and HUB together establish an effective framework for hallucination detection across diverse LLM capabilities.
☆ Which course? Discourse! Teaching Discourse and Generation in the Era of LLMs EACL 2026
The field of NLP has undergone vast, continuous transformations over the past few years, sparking debates going beyond discipline boundaries. This begs important questions in education: how do we design courses that bridge sub-disciplines in this shifting landscape? This paper explores this question from the angle of discourse processing, an area with rich linguistic insights and computational models for the intentional, attentional, and coherence structure of language. Discourse is highly relevant for open-ended or long-form text generation, yet this connection is under-explored in existing undergraduate curricula. We present a new course, "Computational Discourse and Natural Language Generation". The course is collaboratively designed by a team with complementary expertise and was offered for the first time in Fall 2025 as an upper-level undergraduate course, cross-listed between Linguistics and Computer Science. Our philosophy is to deeply integrate the theoretical and empirical aspects, and create an exploratory mindset inside the classroom and in the assignments. This paper describes the course in detail and concludes with takeaways from an independent survey as well as our vision for future directions.
comment: accepted to the TeachNLP 2026 workshop (co-located with EACL 2026), camera-ready, 14 pages
☆ Act or Clarify? Modeling Sensitivity to Uncertainty and Cost in Communication
When deciding how to act under uncertainty, agents may choose to act to reduce uncertainty or they may act despite that uncertainty.In communicative settings, an important way of reducing uncertainty is by asking clarification questions (CQs). We predict that the decision to ask a CQ depends on both contextual uncertainty and the cost of alternative actions, and that these factors interact: uncertainty should matter most when acting incorrectly is costly. We formalize this interaction in a computational model based on expected regret: how much an agent stands to lose by acting now rather than with full information. We test these predictions in two experiments, one examining purely linguistic responses to questions and another extending to choices between clarification and non-linguistic action. Taken together, our results suggest a rational tradeoff: humans tend to seek clarification proportional to the risk of substantial loss when acting under uncertainty.
comment: 6 pages, 3 figures, under review
☆ Chain of Simulation: A Dual-Mode Reasoning Framework for Large Language Models with Dynamic Problem Routing
We present Chain of Simulation (CoS), a novel dual-mode reasoning framework that dynamically routes problems to specialized reasoning strategies in Large Language Models (LLMs). Unlike existing uniform prompting approaches, CoS employs three distinct reasoning modes: (1) computational flow with self-consistency for mathematical problems, (2) symbolic state tracking with JSON representations for spatial reasoning, and (3) hybrid fact-extraction for multi-hop inference. Through comprehensive evaluation on GSM8K, StrategyQA, and bAbI benchmarks using four state-of-the-art models (Gemma-3 27B, LLaMA-3.1 8B, Mistral 7B, and Qwen-2.5 14B), we demonstrate that CoS achieves 71.5% accuracy on GSM8K (1.0% absolute improvement), 90.0% on StrategyQA (2.5% improvement), and 19.0% on bAbI (65.2% relative improvement) compared to the strongest baselines. The analysis reveals that problem-specific mode selection is crucial, with computational mode achieving 81.2% accuracy when correctly applied to mathematical problems, while misrouting leads to 0% accuracy. We provide detailed algorithms for mode selection, state tracking, and answer extraction, establishing CoS as an effective approach for improving LLM reasoning without additional training. The framework provides superior trade-offs between accuracy and efficiency compared to Self-Consistency, achieving comparable performance at 54% lower computational cost.
☆ CATNIP: LLM Unlearning via Calibrated and Tokenized Negative Preference Alignment
Pretrained knowledge memorized in LLMs raises critical concerns over safety and privacy, which has motivated LLM Unlearning as a technique for selectively removing the influences of undesirable knowledge. Existing approaches, rooted in Gradient Ascent (GA), often degrade general domain knowledge while relying on retention data or curated contrastive pairs, which can be either impractical or data and computationally prohibitive. Negative Preference Alignment has been explored for unlearning to tackle the limitations of GA, which, however, remains confined by its choice of reference model and shows undermined performance in realistic data settings. These limitations raise two key questions: i) Can we achieve effective unlearning that quantifies model confidence in undesirable knowledge and uses it to calibrate gradient updates more precisely, thus reducing catastrophic forgetting? ii) Can we make unlearning robust to data scarcity and length variation? We answer both questions affirmatively with CATNIP (Calibrated and Tokenized Negative Preference Alignment), a principled method that rescales unlearning effects in proportion to the model's token-level confidence, thus ensuring fine-grained control over forgetting. Extensive evaluations on MUSE and WMDP benchmarks demonstrated that our work enables effective unlearning without requiring retention data or contrastive unlearning response pairs, with stronger knowledge forgetting and preservation tradeoffs than state-of-the-art methods.
☆ R2-Router: A New Paradigm for LLM Routing with Reasoning
As LLMs proliferate with diverse capabilities and costs, LLM routing has emerged by learning to predict each LLM's quality and cost for a given query, then selecting the one with high quality and low cost. However, existing routers implicitly assume a single fixed quality and cost per LLM for each query, ignoring that the same LLM's quality varies with its output length. This causes routers to exclude powerful LLMs when their estimated cost exceeds the budget, missing the opportunity that these LLMs could still deliver high quality at reduced cost with shorter outputs. To address this, we introduce R2-Router, which treats output length budget as a controllable variable and jointly selects the best LLM and length budget, enforcing the budget via length-constrained instructions. This enables R2-Router to discover that a powerful LLM with constrained output can outperform a weaker LLM at comparable cost-efficient configurations invisible to prior methods. Together with the router framework, we construct R2-Bench, the first routing dataset capturing LLM behavior across diverse output length budgets. Experiments show that R2-Router achieves state-of-the-art performance at 4-5x lower cost compared with existing routers. This work opens a new direction: routing as reasoning, where routers evolve from reactive selectors to deliberate reasoners that explore which LLM to use and at what cost budget.
☆ When Efficient Communication Explains Convexity
Much recent work has argued that the variation in the languages of the world can be explained from the perspective of efficient communication; in particular, languages can be seen as optimally balancing competing pressures to be simple and to be informative. Focusing on the expression of meaning -- semantic typology -- the present paper asks what factors are responsible for successful explanations in terms of efficient communication. Using the Information Bottleneck (IB) approach to formalizing this trade-off, we first demonstrate and analyze a correlation between optimality in the IB sense and a novel generalization of convexity to this setting. In a second experiment, we manipulate various modeling parameters in the IB framework to determine which factors drive the correlation between convexity and optimality. We find that the convexity of the communicative need distribution plays an especially important role. These results move beyond showing that efficient communication can explain aspects of semantic typology into explanations for why that is the case by identifying which underlying factors are responsible.
☆ AmharicStoryQA: A Multicultural Story Question Answering Benchmark in Amharic
With the growing emphasis on multilingual and cultural evaluation benchmarks for large language models, language and culture are often treated as synonymous, and performance is commonly used as a proxy for a models understanding of a given language. In this work, we argue that such evaluations overlook meaningful cultural variation that exists within a single language. We address this gap by focusing on narratives from different regions of Ethiopia and demonstrate that, despite shared linguistic characteristics, region-specific and domain-specific content substantially influences language evaluation outcomes. To this end, we introduce \textbf{\textit{AmharicStoryQA}}, a long-sequence story question answering benchmark grounded in culturally diverse narratives from Amharic-speaking regions. Using this benchmark, we reveal a significant narrative understanding gap in existing LLMs, highlight pronounced regional differences in evaluation results, and show that supervised fine-tuning yields uneven improvements across regions and evaluation settings. Our findings emphasize the need for culturally grounded benchmarks that go beyond language-level evaluation to more accurately assess and improve narrative understanding in low-resource languages.
☆ Privately Fine-Tuned LLMs Preserve Temporal Dynamics in Tabular Data
Research on differentially private synthetic tabular data has largely focused on independent and identically distributed rows where each record corresponds to a unique individual. This perspective neglects the temporal complexity in longitudinal datasets, such as electronic health records, where a user contributes an entire (sub) table of sequential events. While practitioners might attempt to model such data by flattening user histories into high-dimensional vectors for use with standard marginal-based mechanisms, we demonstrate that this strategy is insufficient. Flattening fails to preserve temporal coherence even when it maintains valid marginal distributions. We introduce PATH, a novel generative framework that treats the full table as the unit of synthesis and leverages the autoregressive capabilities of privately fine-tuned large language models. Extensive evaluations show that PATH effectively captures long-range dependencies that traditional methods miss. Empirically, our method reduces the distributional distance to real trajectories by over 60% and reduces state transition errors by nearly 50% compared to leading marginal mechanisms while achieving similar marginal fidelity.
☆ From Task Solving to Robust Real-World Adaptation in LLM Agents
Large language models are increasingly deployed as specialized agents that plan, call tools, and take actions over extended horizons. Yet many existing evaluations assume a "clean interface" where dynamics are specified and stable, tools and sensors are reliable, and success is captured by a single explicit objective-often overestimating real-world readiness. In practice, agents face underspecified rules, unreliable signals, shifting environments, and implicit, multi-stakeholder goals. The challenge is therefore not just solving tasks, but adapting while solving: deciding what to trust, what is wanted, when to verify, and when to fall back or escalate. We stress-test deployment-relevant robustness under four operational circumstances: partial observability, dynamic environments, noisy signals, and dynamic agent state. We benchmark agentic LLMs in a grid-based game with a simple goal but long-horizon execution. Episodes violate clean-interface assumptions yet remain solvable, forcing agents to infer rules, pay for information, adapt to environmental and internal shifts, and act cautiously under noise. Across five state-of-the-art LLM agents, we find large gaps between nominal task-solving and deployment-like robustness. Performance generally degrades as grid size and horizon increase, but rankings are unstable: weaker models can beat stronger ones when strategy matches the uncertainty regime. Despite no explicit instruction, agents trade off completion, efficiency, and penalty avoidance, suggesting partial objective inference. Ablations and feature analyses reveal model-specific sensitivities and failure drivers, motivating work on verification, safe action selection, and objective inference under partial observability, noise, and non-stationarity.
☆ Scaling Small Agents Through Strategy Auctions
Small language models are increasingly viewed as a promising, cost-effective approach to agentic AI, with proponents claiming they are sufficiently capable for agentic workflows. However, while smaller agents can closely match larger ones on simple tasks, it remains unclear how their performance scales with task complexity, when large models become necessary, and how to better leverage small agents for long-horizon workloads. In this work, we empirically show that small agents' performance fails to scale with task complexity on deep search and coding tasks, and we introduce Strategy Auctions for Workload Efficiency (SALE), an agent framework inspired by freelancer marketplaces. In SALE, agents bid with short strategic plans, which are scored by a systematic cost-value mechanism and refined via a shared auction memory, enabling per-task routing and continual self-improvement without training a separate router or running all models to completion. Across deep search and coding tasks of varying complexity, SALE reduces reliance on the largest agent by 53%, lowers overall cost by 35%, and consistently improves upon the largest agent's pass@1 with only a negligible overhead beyond executing the final trace. In contrast, established routers that rely on task descriptions either underperform the largest agent or fail to reduce cost -- often both -- underscoring their poor fit for agentic workflows. These results suggest that while small agents may be insufficient for complex workloads, they can be effectively "scaled up" through coordinated task allocation and test-time self-improvement. More broadly, they motivate a systems-level view of agentic AI in which performance gains come less from ever-larger individual models and more from market-inspired coordination mechanisms that organize heterogeneous agents into efficient, adaptive ecosystems.
☆ Time-Critical Multimodal Medical Transportation: Organs, Patients, and Medical Supplies
Timely transportation of organs, patients, and medical supplies is critical to modern healthcare, particularly in emergencies and transplant scenarios where even short delays can severely impact outcomes. Traditional ground-based vehicles such as ambulances are often hindered by traffic congestion; while air vehicles such as helicopters are faster but costly. Emerging air vehicles -- Unmanned Aerial Vehicles and electric vertical take-off and landing aircraft -- have lower operating costs, but remain limited by range and susceptibility to weather conditions. A multimodal transportation system that integrates both air and ground vehicles can leverage the strengths of each to enhance overall transportation efficiency. This study introduces a constructive greedy heuristic algorithm for multimodal vehicle dispatching for medical transportation. Four different fleet configurations were tested: (i) ambulances only, (ii) ambulances with Unmanned Aerial Vehicles, (iii) ambulances with electric vertical take-off and landing aircraft, and (iv) a fully integrated fleet of ambulances, Unmanned Aerial Vehicles, and electric vertical take-off and landing aircraft. The algorithm incorporates payload consolidation across compatible routes, accounts for traffic congestion in ground operations and weather conditions in aerial operations, while enabling rapid vehicle dispatching compared to computationally intensive optimization models. Using a common set of conditions, we evaluate all four fleet types to identify the most effective configurations for fulfilling medical transportation needs while minimizing operating costs, recharging/fuel costs, and total transportation time.
comment: This work has been submitted to the IEEE for possible publication
WAXAL: A Large-Scale Multilingual African Language Speech Corpus
The advancement of speech technology has predominantly favored high-resource languages, creating a significant digital divide for speakers of most Sub-Saharan African languages. To address this gap, we introduce WAXAL, a large-scale, openly accessible speech dataset for 21 languages representing over 100 million speakers. The collection consists of two main components: an Automated Speech Recognition (ASR) dataset containing approximately 1,250 hours of transcribed, natural speech from a diverse range of speakers, and a Text-to-Speech (TTS) dataset with over 180 hours of high-quality, single-speaker recordings reading phonetically balanced scripts. This paper details our methodology for data collection, annotation, and quality control, which involved partnerships with four African academic and community organizations. We provide a detailed statistical overview of the dataset and discuss its potential limitations and ethical considerations. The WAXAL datasets are released at https://huggingface.co/datasets/google/WaxalNLP under the permissive CC-BY-4.0 license to catalyze research, enable the development of inclusive technologies, and serve as a vital resource for the digital preservation of these languages.
comment: Initial dataset release
☆ Predicting first-episode homelessness among US Veterans using longitudinal EHR data: time-varying models and social risk factors
Homelessness among US veterans remains a critical public health challenge, yet risk prediction offers a pathway for proactive intervention. In this retrospective prognostic study, we analyzed electronic health record (EHR) data from 4,276,403 Veterans Affairs patients during a 2016 observation period to predict first-episode homelessness occurring 3-12 months later in 2017 (prevalence: 0.32-1.19%). We constructed static and time-varying EHR representations, utilizing clinician-informed logic to model the persistence of clinical conditions and social risks over time. We then compared the performance of classical machine learning, transformer-based masked language models, and fine-tuned large language models (LLMs). We demonstrate that incorporating social and behavioral factors into longitudinal models improved precision-recall area under the curve (PR-AUC) by 15-30%. In the top 1% risk tier, models yielded positive predictive values ranging from 3.93-4.72% at 3 months, 7.39-8.30% at 6 months, 9.84-11.41% at 9 months, and 11.65-13.80% at 12 months across model architectures. Large language models underperformed encoder-based models on discrimination but showed smaller performance disparities across racial groups. These results demonstrate that longitudinal, socially informed EHR modeling concentrates homelessness risk into actionable strata, enabling targeted and data-informed prevention strategies for at-risk veterans.
☆ Vector Quantized Latent Concepts: A Scalable Alternative to Clustering-Based Concept Discovery
Deep Learning models encode rich semantic information in their hidden representations. However, it remains challenging to understand which parts of this information models actually rely on when making predictions. A promising line of post-hoc concept-based explanation methods relies on clustering token representations. However, commonly used approaches such as hierarchical clustering are computationally infeasible for large-scale datasets, and K-Means often yields shallow or frequency-dominated clusters. We propose the vector quantized latent concept (VQLC) method, a framework built upon the vector quantized-variational autoencoder (VQ-VAE) architecture that learns a discrete codebook mapping continuous representations to concept vectors. We perform thorough evaluations and show that VQLC improves scalability while maintaining comparable quality of human-understandable explanations.
☆ Towards Understanding Steering Strength
A popular approach to post-training control of large language models (LLMs) is the steering of intermediate latent representations. Namely, identify a well-chosen direction depending on the task at hand and perturbs representations along this direction at inference time. While many propositions exist to pick this direction, considerably less is understood about how to choose the magnitude of the move, whereas its importance is clear: too little and the intended behavior does not emerge, too much and the model's performance degrades beyond repair. In this work, we propose the first theoretical analysis of steering strength. We characterize its effect on next token probability, presence of a concept, and cross-entropy, deriving precise qualitative laws governing these quantities. Our analysis reveals surprising behaviors, including non-monotonic effects of steering strength. We validate our theoretical predictions empirically on eleven language models, ranging from a small GPT architecture to modern models.
comment: 33 pages (including appendix)
☆ BinaryPPO: Efficient Policy Optimization for Binary Classification
Supervised fine-tuning (SFT) is the standard approach for binary classification tasks such as toxicity detection, factuality verification, and causal inference. However, SFT often performs poorly in real-world settings with label noise, class imbalance, or sparse supervision. We introduce BinaryPPO, an offline reinforcement learning large language model (LLM) framework that reformulates binary classification as a reward maximization problem. Our method leverages a variant of Proximal Policy Optimization (PPO) with a confidence-weighted reward function that penalizes uncertain or incorrect predictions, enabling the model to learn robust decision policies from static datasets without online interaction. Across eight domain-specific benchmarks and multiple models with differing architectures, BinaryPPO improves accuracy by 40-60 percentage points, reaching up to 99%, substantially outperforming supervised baselines. We provide an in-depth analysis of the role of reward shaping, advantage scaling, and policy stability in enabling this improvement. Overall, we demonstrate that confidence-based reward design provides a robust alternative to SFT for binary classification. Our code is available at https://github.com/psyonp/BinaryPPO.
☆ InfMem: Learning System-2 Memory Control for Long-Context Agent
Reasoning over ultra-long documents requires synthesizing sparse evidence scattered across distant segments under strict memory constraints. While streaming agents enable scalable processing, their passive memory update strategy often fails to preserve low-salience bridging evidence required for multi-hop reasoning. We propose InfMem, a control-centric agent that instantiates System-2-style control via a PreThink-Retrieve-Write protocol. InfMem actively monitors evidence sufficiency, performs targeted in-document retrieval, and applies evidence-aware joint compression to update a bounded memory. To ensure reliable control, we introduce a practical SFT-to-RL training recipe that aligns retrieval, writing, and stopping decisions with end-task correctness. On ultra-long QA benchmarks from 32k to 1M tokens, InfMem consistently outperforms MemAgent across backbones. Specifically, InfMem improves average absolute accuracy by +10.17, +11.84, and +8.23 points on Qwen3-1.7B, Qwen3-4B, and Qwen2.5-7B, respectively, while reducing inference time by $3.9\times$ on average (up to $5.1\times$) via adaptive early stopping.
☆ Monotonicity as an Architectural Bias for Robust Language Models
Large language models (LLMs) are known to exhibit brittle behavior under adversarial prompts and jailbreak attacks, even after extensive alignment and fine-tuning. This fragility reflects a broader challenge of modern neural language models: small, carefully structured perturbations in high-dimensional input spaces can induce large and unpredictable changes in internal semantic representations and output. We investigate monotonicity as an architectural inductive bias for improving the robustness of Transformer-based language models. Monotonicity constrains semantic transformations so that strengthening information, evidence, or constraints cannot lead to regressions in the corresponding internal representations. Such order-preserving behavior has long been exploited in control and safety-critical systems to simplify reasoning and improve robustness, but has traditionally been viewed as incompatible with the expressivity required by neural language models. We show that this trade-off is not inherent. By enforcing monotonicity selectively in the feed-forward sublayers of sequence-to-sequence Transformers -- while leaving attention mechanisms unconstrained -- we obtain monotone language models that preserve the performance of their pretrained counterparts. This architectural separation allows negation, contradiction, and contextual interactions to be introduced explicitly through attention, while ensuring that subsequent semantic refinement is order-preserving. Empirically, monotonicity substantially improves robustness: adversarial attack success rates drop from approximately 69% to 19%, while standard summarization performance degrades only marginally.
comment: 12 pages, 1 figure
☆ WideSeek: Advancing Wide Research via Multi-Agent Scaling
Search intelligence is evolving from Deep Research to Wide Research, a paradigm essential for retrieving and synthesizing comprehensive information under complex constraints in parallel. However, progress in this field is impeded by the lack of dedicated benchmarks and optimization methodologies for search breadth. To address these challenges, we take a deep dive into Wide Research from two perspectives: Data Pipeline and Agent Optimization. First, we produce WideSeekBench, a General Broad Information Seeking (GBIS) benchmark constructed via a rigorous multi-phase data pipeline to ensure diversity across the target information volume, logical constraints, and domains. Second, we introduce WideSeek, a dynamic hierarchical multi-agent architecture that can autonomously fork parallel sub-agents based on task requirements. Furthermore, we design a unified training framework that linearizes multi-agent trajectories and optimizes the system using end-to-end RL. Experimental results demonstrate the effectiveness of WideSeek and multi-agent RL, highlighting that scaling the number of agents is a promising direction for advancing the Wide Research paradigm.
☆ Graph-Augmented Reasoning with Large Language Models for Tobacco Pest and Disease Management
This paper proposes a graph-augmented reasoning framework for tobacco pest and disease management that integrates structured domain knowledge into large language models. Building on GraphRAG, we construct a domain-specific knowledge graph and retrieve query-relevant subgraphs to provide relational evidence during answer generation. The framework adopts ChatGLM as the Transformer backbone with LoRA-based parameter-efficient fine-tuning, and employs a graph neural network to learn node representations that capture symptom-disease-treatment dependencies. By explicitly modeling diseases, symptoms, pesticides, and control measures as linked entities, the system supports evidence-aware retrieval beyond surface-level text similarity. Retrieved graph evidence is incorporated into the LLM input to guide generation toward domain-consistent recommendations and to mitigate hallucinated or inappropriate treatments. Experimental results show consistent improvements over text-only baselines, with the largest gains observed on multi-hop and comparative reasoning questions that require chaining multiple relations.
♻ ☆ DESIGNER: Design-Logic-Guided Multidisciplinary Data Synthesis for LLM Reasoning ICLR 2026
Large language models (LLMs) perform strongly on many language tasks but still struggle with complex multi-step reasoning across disciplines. Existing reasoning datasets often lack disciplinary breadth, reasoning depth, and diversity, as well as guiding principles for question synthesis. We propose DESIGNER: a DESIGN-logic-guidEd Reasoning data synthesis pipeline that leverages naturally available, extensive raw documents to generate multidisciplinary questions. The central insight is the notion of Design Logic, a form of reusable meta-knowledge that encapsulates the structured process human experts use to transform knowledge into complex exam questions, enabling LLMs to generate new questions with the same complex reasoning patterns from entirely different source texts with explicit control over difficulty, diversity, and question types. We use LLMs to reverse-engineer and abstract over 120,000 Design Logics from existing questions across various disciplines. By designing a two-stage retrieve-and-generate mechanism to match these Design Logics with raw corpus, we synthesized two large-scale reasoning datasets that span 75 disciplines: DLR-Book (3.04 million questions from the book corpus) and DLR-Web (1.66 million questions from the web corpus). Data analysis indicates that the questions synthesized by our method exhibit greater difficulty and diversity compared to those in the baseline datasets. Supervised fine-tuning (SFT) on Qwen3 and Llama3 with our data substantially improves multidisciplinary reasoning and outperforms baseline datasets. Notably, by applying SFT on the base versions of these models using only our data, we even surpass their official final models that have undergone the full post-training.
comment: Accepted to ICLR 2026. Project page: https://attention-is-all-i-need.github.io/Design-Logic-Reasoning
♻ ☆ Which Reasoning Trajectories Teach Students to Reason Better? A Simple Metric of Informative Alignment
Long chain-of-thought (CoT) trajectories provide rich supervision signals for distilling reasoning from teacher to student LLMs. However, both prior work and our experiments show that trajectories from stronger teachers do not necessarily yield better students, highlighting the importance of data-student suitability in distillation. Existing methods assess suitability primarily through student likelihood, favoring trajectories that align closely with the student model's current behavior but overlooking more informative ones. Addressing this, we propose Rank-Surprisal Ratio (RSR), a simple metric that captures both alignment and informativeness to assess the suitability of a reasoning trajectory. RSR is motivated by the observation that effective trajectories typically balance learning signal strength and behavioral alignment by combining low absolute probability with relatively high-ranked tokens under the student model. Concretely, RSR is defined as the ratio of a trajectory's average token-wise rank to its average negative log-likelihood, and is straightforward to compute and interpret. Across five student models and reasoning trajectories from 11 diverse teachers, RSR strongly correlates with post-training reasoning performance (average Spearman 0.86), consistently outperforming existing metrics. We further demonstrate its practical utility in both trajectory selection and teacher selection.
comment: 27 pages. Project page: https://github.com/UmeanNever/RankSurprisalRatio
♻ ☆ How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Frontier language models are deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. We introduce Advisor Models, a method to train small open-weight models to generate dynamic, per-instance natural language advice that improves the capabilities of black-box frontier models. Advisor Models improve GPT-5's performance on RuleArena (Taxes) by 71%, reduce Gemini 3 Pro's steps taken in SWE agent tasks by 24.6%, and outperform static prompt optimizers in personalizing GPT-5 to user preferences (85-100% vs. 40-60%). We also find that advisors are transferable: an advisor trained with a low-cost student model still transfers improvements to a frontier model. Moreover, Advisor Models are robust: we observe no degradation on other benchmarks than the pipeline is trained on. Our method shows how to perform parametric optimization for black-box frontier models in a practical and cost-effective way.
♻ ☆ Uncertainty-Aware Knowledge Tracing Models
The main focus of research on Knowledge Tracing (KT) models is on model developments with the aim of improving predictive accuracy. Most of these models make the most incorrect predictions when students choose a distractor, leading to student errors going undetected. We present an approach to add new capabilities to KT models by capturing predictive uncertainty and demonstrate that a larger predictive uncertainty aligns with model incorrect predictions. We show that uncertainty in KT models is informative and that this signal would be pedagogically useful for application in an educational learning platform that can be used in a limited resource setting where understanding student ability is necessary.
comment: 10 pages, 7 figures. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains.
comment: Accepted to ICLR 2026
♻ ☆ Reverse Engineering Human Preferences with Reinforcement Learning NeurIPS 2025
The capabilities of Large Language Models (LLMs) are routinely evaluated by other LLMs trained to predict human preferences. This framework--known as LLM-as-a-judge--is highly scalable and relatively low cost. However, it is also vulnerable to malicious exploitation, as LLM responses can be tuned to overfit the preferences of the judge. Previous work shows that the answers generated by a candidate-LLM can be edited post hoc to maximise the score assigned to them by a judge-LLM. In this study, we adopt a different approach and use the signal provided by judge-LLMs as a reward to adversarially tune models that generate text preambles designed to boost downstream performance. We find that frozen LLMs pipelined with these models attain higher LLM-evaluation scores than existing frameworks. Crucially, unlike other frameworks which intervene directly on the model's response, our method is virtually undetectable. We also demonstrate that the effectiveness of the tuned preamble generator transfers when the candidate-LLM and the judge-LLM are replaced with models that are not used during training. These findings raise important questions about the design of more reliable LLM-as-a-judge evaluation settings. They also demonstrate that human preferences can be reverse engineered effectively, by pipelining LLMs to optimise upstream preambles via reinforcement learning--an approach that could find future applications in diverse tasks and domains beyond adversarial attacks.
comment: NeurIPS 2025 (Spotlight)
♻ ☆ Language Family Matters: Evaluating LLM-Based ASR Across Linguistic Boundaries EACL'26
Large Language Model (LLM)-powered Automatic Speech Recognition (ASR) systems achieve strong performance with limited resources by linking a frozen speech encoder to a pretrained LLM via a lightweight connector. Prior work trains a separate connector per language, overlooking linguistic relatedness. We propose an efficient and novel connector-sharing strategy based on linguistic family membership, enabling one connector per family, and empirically validate its effectiveness across two multilingual LLMs and two real-world corpora spanning curated and crowd-sourced speech. Our results show that family-based connectors reduce parameter count while improving generalization across domains, offering a practical and scalable strategy for multilingual ASR deployment.
comment: Accepted by EACL'26 main
♻ ☆ Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers NeurIPS 2025
Large language models (LLMs) can acquire new knowledge through fine-tuning, but this process exhibits a puzzling duality: models can generalize remarkably from new facts, yet are also prone to hallucinating incorrect information. However, the reasons for this phenomenon remain poorly understood. In this work, we argue that both behaviors stem from a single mechanism known as out-of-context reasoning (OCR): the ability to deduce implications by associating concepts, even those without a causal link. Our experiments across five prominent LLMs confirm that OCR indeed drives both generalization and hallucination, depending on whether the associated concepts are causally related. To build a rigorous theoretical understanding of this phenomenon, we then formalize OCR as a synthetic factual recall task. We empirically show that a one-layer single-head attention-only transformer with factorized output and value matrices can learn to solve this task, while a model with combined weights cannot, highlighting the crucial role of matrix factorization. Our theoretical analysis shows that the OCR capability can be attributed to the implicit bias of gradient descent, which favors solutions that minimize the nuclear norm of the combined output-value matrix. This mathematical structure explains why the model learns to associate facts and implications with high sample efficiency, regardless of whether the correlation is causal or merely spurious. Ultimately, our work provides a theoretical foundation for understanding the OCR phenomenon, offering a new lens for analyzing and mitigating undesirable behaviors from knowledge injection.
comment: NeurIPS 2025, first three authors contributed equally
♻ ☆ CUS-QA: Local-Knowledge-Oriented Open-Ended Question Answering Dataset
We introduce CUS-QA, a benchmark for evaluation of open-ended regional question answering that encompasses both textual and visual modalities. We also provide strong baselines using state-of-the-art large language models (LLMs). Our dataset consists of manually curated questions and answers grounded in Wikipedia, created by native speakers from Czechia, Slovakia, and Ukraine, with accompanying English translations. It includes both purely textual questions and those requiring visual understanding. We evaluate state-of-the-art LLMs through prompting and add human judgments of answer correctness. Using these human evaluations, we analyze the reliability of existing automatic evaluation metrics. Our baseline results show that even the best open-weight LLMs achieve only over 40% accuracy on textual questions and below 30% on visual questions. LLM-based evaluation metrics show strong correlation with human judgment, while traditional string-overlap metrics perform surprisingly well due to the prevalence of named entities in answers.
♻ ☆ LIFT: A Novel Framework for Enhancing Long-Context Understanding of LLMs via Long Input Fine-Tuning
Long context understanding remains challenging for large language models due to their limited context windows. This paper introduces Long Input Fine-Tuning (LIFT), a novel framework for long-context modeling that can enhance the long-context performance of arbitrary short-context LLMs by dynamically adapting their parameters to the given long input. Importantly, rather than endlessly extending the context window size to accommodate increasingly longer inputs in context, LIFT stores and absorbs the long input in parameters. By fine-tuning the long input into model parameters, LIFT allows short-context LLMs to answer questions even when the required information is not provided in the context during inference, avoiding the quadratic complexity w.r.t. input length of a normal long context model. Furthermore, LIFT does not simply perform continued pretraining on new, long contexts, but leverages carefully designed LLM-generated synthetic tasks to enhance the comprehension of long contexts, moving beyond mere memorization. To accommodate the additional cost of fine-tuning, we design a highly optimized pipeline that reduces the Time to First Token (TTFT) to less than 10 seconds for 8k context. We further provide a comprehensive analysis of LIFT's strengths and limitations in long-context understanding, discuss its feasibility for large-scale real-world deployment, and highlight valuable directions for future research.
comment: 8 pages, 6 figures, preprint
♻ ☆ MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs NeurIPS 2025
Language models deployed in real-world systems often require post-hoc updates to incorporate new or corrected knowledge. However, editing such models efficiently and reliably-without retraining or forgetting previous information-remains a major challenge. Existing methods for lifelong model editing either compromise generalization, interfere with past edits, or fail to scale to long editing sequences. We propose MEMOIR, a novel scalable framework that injects knowledge through a residual memory, i.e., a dedicated parameter module, while preserving the core capabilities of the pre-trained model. By sparsifying input activations through sample-dependent masks, MEMOIR confines each edit to a distinct subset of the memory parameters, minimizing interference among edits. At inference, it identifies relevant edits by comparing the sparse activation patterns of new queries to those stored during editing. This enables generalization to rephrased queries by activating only the relevant knowledge while suppressing unnecessary memory activation for unrelated prompts. Experiments on question answering, hallucination correction, and out-of-distribution generalization benchmarks for LLaMA-3 and Mistral backbones demonstrate that MEMOIR achieves state-of-the-art performance across reliability, generalization, and locality metrics, scaling to thousands of sequential edits with minimal forgetting.
comment: The first two authors contributed equally to this work; Accepted to NeurIPS 2025
♻ ☆ Midtraining Bridges Pretraining and Posttraining Distributions
Midtraining, the practice of mixing specialized data with more general pretraining data in an intermediate training phase, has become widespread in language model development, yet there is little understanding of what makes it effective. We propose that midtraining functions as distributional bridging by providing better initialization for posttraining. We conduct controlled pretraining experiments, and find that midtraining benefits are largest for domains distant from general pretraining data, such as code and math, and scale with the proximity advantage the midtraining data provides toward the target distribution. In these domains, midtraining consistently outperforms continued pretraining on specialized data alone both in-domain and in terms of mitigating forgetting. We further conduct an investigation on the starting time and mixture weight of midtraining data, using code as a case study, and find that time of introduction and mixture weight interact strongly such that early introduction of specialized data is amenable to high mixture weights, while late introduction requires lower ones. This suggests that late introduction of specialized data outside a plasticity window cannot be compensated for by increasing data mixtures later in training. Beyond midtraining itself, this suggests that distributional transitions between any training phases may benefit from similar bridging strategies.
♻ ☆ Adaptive Testing for LLM Evaluation: A Psychometric Alternative to Static Benchmarks
Evaluating large language models (LLMs) typically requires thousands of benchmark items, making the process expensive, slow, and increasingly impractical at scale. Existing evaluation protocols rely on average accuracy over fixed item sets, treating all items as equally informative despite substantial variation in difficulty and discrimination. We introduce ATLAS, an adaptive testing framework based on Item Response Theory (IRT) that estimates model ability using Fisher information-guided item selection. ATLAS reduces the number of required items by up to 90% while maintaining measurement precision. For instance, it matches whole-bank ability estimates using only 41 items (0.157 MAE) on HellaSwag (5,600 items). We further reconstruct accuracy from ATLAS's ability estimates and find that reconstructed accuracies closely match raw accuracies across all five benchmarks, indicating that ability $θ$ preserves the global performance structure. At the same time, $θ$ provides finer discrimination within accuracy-equivalent models: among more than 3,000 evaluated models, 23-31% shift by more than 10 rank positions, and models with identical accuracies receive meaningfully different ability estimates. Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git.
comment: Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git
♻ ☆ Enabling Approximate Joint Sampling in Diffusion LMs
In autoregressive language models, each token is sampled by conditioning on all the past tokens; the overall string has thus been sampled from the correct underlying joint distribution represented by the model. In contrast, masked diffusion language models generate text by unmasking tokens out of order and potentially in parallel. Generating an overall string sampled from the correct underlying joint distribution would (again) require exactly one token unmasking in every full-model forward pass. The more tokens unmasked in parallel, the further away the string is from the true joint; this can be seen in the resulting drop in accuracy (but, increase in speed). In this paper we devise a way to {\em approximately} sample multiple tokens from the joint distribution in a single full-model forward pass; we do so by developing a new lightweight single-layer ``sampler" on top of an existing large diffusion LM. One forward pass of the full model can now be followed by multiple forward passes of only this sampler layer, to yield multiple unmasked tokens. Our sampler is trained to mimic exact joint sampling from the (frozen) full model. We show the effectiveness of our approximate joint sampling for both pretrained-only (Dream-7B-Base, Llada-7B-Base) and instruction-tuned (Dream-7B-Instruct, Dream-7B-Coder) models on language modeling and math \& coding tasks. When four tokens are unmasked for each full-model denoising step, our sampling algorithm achieves a MAUVE score of 0.87 (vs marginal baseline of 0.31) with respect to the true joint distribution.
♻ ☆ Language as a Wave Phenomenon: Semantic Phase Locking and Interference in Neural Networks
In standard Transformer architectures, semantic importance is often conflated with activation magnitude, obscuring the geometric structure of latent representations. To disentangle these factors, we introduce PRISM, a complex-valued architecture designed to isolate the computational role of phase. By enforcing a strict unit-norm constraint (|z| = 1) and replacing attention with gated harmonic convolutions, the model is compelled to utilize subtractive interference in the frequency domain to suppress noise, rather than relying on magnitude-based gating. We utilize this constrained regime to demonstrate that a hybrid architecture - fusing phase-based routing with standard attention - achieves superior parameter efficiency and representation quality compared to unconstrained baselines. Mechanistically, we identify geometric phase clustering, where tokens naturally self-organize to resolve semantic ambiguities. This establishes an O(N log N) reasoning framework based on spectral interference, providing an algorithmic existence proof that subtractive logic is a sufficient primitive for deep reasoning.
comment: 14 pages, 7 figures; Revised title; Added new experiments on encoder-only models using WikiText-103
♻ ☆ The Language You Ask In: Language-Conditioned Ideological Divergence in LLM Analysis of Contested Political Documents
Large language models (LLMs) are increasingly deployed as analytical tools across multilingual contexts, yet their outputs may carry systematic biases conditioned by the language of the prompt. This study presents an experimental comparison of LLM-generated political analyses of a Ukrainian civil society document, using semantically equivalent prompts in Russian and Ukrainian. Despite identical source material and parallel query structures, the resulting analyses varied substantially in rhetorical positioning, ideological orientation, and interpretive conclusions. The Russian-language output echoed narratives common in Russian state discourse, characterizing civil society actors as illegitimate elites undermining democratic mandates. The Ukrainian-language output adopted vocabulary characteristic of Western liberal-democratic political science, treating the same actors as legitimate stakeholders within democratic contestation. These findings demonstrate that prompt language alone can produce systematically different ideological orientations from identical models analyzing identical content, with significant implications for AI deployment in polarized information environments, cross-lingual research applications, and the governance of AI systems in multilingual societies.
♻ ☆ STAC: When Innocent Tools Form Dangerous Chains to Jailbreak LLM Agents
As LLMs advance into autonomous agents with tool-use capabilities, they introduce security challenges that extend beyond traditional content-based LLM safety concerns. This paper introduces Sequential Tool Attack Chaining (STAC), a novel multi-turn attack framework that exploits agent tool use. STAC chains together tool calls that each appear harmless in isolation but, when combined, collectively enable harmful operations that only become apparent at the final execution step. We apply our framework to automatically generate and systematically evaluate 483 STAC cases, featuring 1,352 sets of user-agent-environment interactions and spanning diverse domains, tasks, agent types, and 10 failure modes. Our evaluations show that state-of-the-art LLM agents, including GPT-4.1, are highly vulnerable to STAC, with attack success rates (ASR) exceeding 90% in most cases. The core design of STAC's automated framework is a closed-loop pipeline that synthesizes executable multi-step tool chains, validates them through in-environment execution, and reverse-engineers stealthy multi-turn prompts that reliably induce agents to execute the verified malicious sequence. We further perform defense analysis against STAC and find that existing prompt-based defenses provide limited protection. To address this gap, we propose a new reasoning-driven defense prompt that achieves far stronger protection, cutting ASR by up to 28.8%. These results highlight a crucial gap: defending tool-enabled agents requires reasoning over entire action sequences and their cumulative effects, rather than evaluating isolated prompts or responses.
♻ ☆ A Proof of Learning Rate Transfer under $μ$P
We provide the first proof of learning rate transfer with width in a linear multi-layer perceptron (MLP) parametrized with $μ$P, a neural network parameterization designed to ``maximize'' feature learning in the infinite-width limit. We show that under $μP$, the optimal learning rate converges to a \emph{non-zero constant} as width goes to infinity, providing a theoretical explanation to learning rate transfer. In contrast, we show that this property fails to hold under alternative parametrizations such as Standard Parametrization (SP) and Neural Tangent Parametrization (NTP). We provide intuitive proofs and support the theoretical findings with extensive empirical results.
comment: 21 pages
♻ ☆ SNAP-UQ: Self-supervised Next-Activation Prediction for Single-Pass Uncertainty in TinyML ICLR 2026
This paper proposes a novel and practical method, SNAP-UQ, for single-pass, label-free uncertainty estimation based on depth-wise next-activation prediction. SNAP-UQ taps a small set of backbone layers and uses tiny int8 heads to predict the mean and scale of the next activation from a low-rank projection of the previous one; the resulting standardized prediction error forms a depth-wise surprisal signal that is aggregated and mapped through a lightweight monotone calibrator into an actionable uncertainty score. The design introduces no temporal buffers or auxiliary exits and preserves state-free inference, while increasing deployment footprint by only a few tens of kilobytes. Across vision and audio backbones, SNAP-UQ reduces flash and latency relative to early-exit and deep-ensemble baselines (typically $\sim$40--60% smaller and $\sim$25--35% faster), with several competing methods at similar accuracy often exceeding MCU memory limits. On corrupted streams, it improves accuracy-drop event detection by multiple AUPRC points and maintains strong failure detection (AUROC $\approx 0.9$) in a single forward pass. By grounding uncertainty in layer-to-layer dynamics rather than solely in output confidence, SNAP-UQ offers a novel, resource-efficient basis for robust TinyML monitoring.
comment: Accepted at ICLR 2026
♻ ☆ Surfacing Subtle Stereotypes: A Multilingual, Debate-Oriented Evaluation of Modern LLMs
Large language models (LLMs) are widely deployed for open-ended communication, yet most bias evaluations still rely on English, classification-style tasks. We introduce DebateBias-8K, a new multilingual, debate-style benchmark designed to reveal how narrative bias appears in realistic generative settings. Our dataset includes 8,400 structured debate prompts spanning four sensitive domains: women's rights, socioeconomic development, terrorism, and religion, across seven languages ranging from high-resource (English, Chinese) to low-resource (Swahili, Nigerian Pidgin). Using four flagship models (GPT-4o, Claude 3, DeepSeek, and LLaMA 3), we generate and automatically classify over 100,000 responses. Results show that all models reproduce entrenched stereotypes despite safety alignment: Arabs are overwhelmingly linked to terrorism and religion (>=95%), Africans to socioeconomic "backwardness" (up to <=77%), and Western groups are consistently framed as modern or progressive. Biases grow sharply in lower-resource languages, revealing that alignment trained primarily in English does not generalize globally. Our findings highlight a persistent divide in multilingual fairness: current alignment methods reduce explicit toxicity but fail to prevent biased outputs in open-ended contexts. We release our DebateBias-8K benchmark and analysis framework to support the next generation of multilingual bias evaluation and safer, culturally inclusive model alignment.
♻ ☆ Watch and Listen: Understanding Audio-Visual-Speech Moments with Multimodal LLM NeurIPS 2025
Humans naturally understand moments in a video by integrating visual and auditory cues. For example, localizing a scene in the video like "A scientist passionately speaks on wildlife conservation as dramatic orchestral music plays, with the audience nodding and applauding" requires simultaneous processing of visual, audio, and speech signals. However, existing models often struggle to effectively fuse and interpret audio information, limiting their capacity for comprehensive video temporal understanding. To address this, we present TriSense, a triple-modality large language model designed for holistic video temporal understanding through the integration of visual, audio, and speech modalities. Central to TriSense is a Query-Based Connector that adaptively reweights modality contributions based on the input query, enabling robust performance under modality dropout and allowing flexible combinations of available inputs. To support TriSense's multimodal capabilities, we introduce TriSense-2M, a high-quality dataset of over 2 million curated samples generated via an automated pipeline powered by fine-tuned LLMs. TriSense-2M includes long-form videos and diverse modality combinations, facilitating broad generalization. Extensive experiments across multiple benchmarks demonstrate the effectiveness of TriSense and its potential to advance multimodal video analysis. Code and dataset will be publicly released.
comment: Accepted by NeurIPS 2025
♻ ☆ Game-Time: Evaluating Temporal Dynamics in Spoken Language Models ICASSP 2026
Conversational Spoken Language Models (SLMs) are emerging as a promising paradigm for real-time speech interaction. However, their capacity of temporal dynamics, including the ability to manage timing, tempo and simultaneous speaking, remains a critical and unevaluated challenge for conversational fluency. To address this gap, we introduce the Game-Time Benchmark, a framework to systematically assess these temporal capabilities. Inspired by how humans learn a language through language activities, Game-Time consists of basic instruction-following tasks and advanced tasks with temporal constraints, such as tempo adherence and synchronized responses. Our evaluation of diverse SLM architectures reveals a clear performance disparity: while state-of-the-art models handle basic tasks well, many contemporary systems still struggle with fundamental instruction-following. More critically, nearly all models degrade substantially under temporal constraints, exposing persistent weaknesses in time awareness and full-duplex interaction. The Game-Time Benchmark provides a foundation for guiding future research toward more temporally-aware conversational AI. Demos and datasets are available on our project website https://ga642381.github.io/Game-Time.
comment: Accepted to ICASSP 2026
♻ ☆ LLMs as Span Annotators: A Comparative Study of LLMs and Humans EACL 2026
Span annotation - annotating specific text features at the span level - can be used to evaluate texts where single-score metrics fail to provide actionable feedback. Until recently, span annotation was done by human annotators or fine-tuned models. In this paper, we study whether large language models (LLMs) can serve as an alternative to human annotators. We compare the abilities of LLMs to skilled human annotators on three span annotation tasks: evaluating data-to-text generation, identifying translation errors, and detecting propaganda techniques. We show that overall, LLMs have only moderate inter-annotator agreement (IAA) with human annotators. However, we demonstrate that LLMs make errors at a similar rate as skilled crowdworkers. LLMs also produce annotations at a fraction of the cost per output annotation. We release the dataset of over 40k model and human span annotations for further research.
comment: Accepted to the MME workshop @ EACL 2026
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
♻ ☆ BiasGym: A Simple and Generalizable Framework for Analyzing and Removing Biases through Elicitation
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review. Title updated
♻ ☆ Fair-GPTQ: Bias-Aware Quantization for Large Language Models
High memory demands of generative language models have drawn attention to quantization, which reduces computational cost, memory usage, and latency by mapping model weights to lower-precision integers. Approaches such as GPTQ effectively minimize input-weight product errors during quantization; however, recent empirical studies show that they can increase biased outputs and degrade performance on fairness benchmarks, and it remains unclear which specific weights cause this issue. In this work, we draw new links between quantization and model fairness by adding explicit group-fairness constraints to the quantization objective and introduce Fair-GPTQ, the first quantization method explicitly designed to reduce unfairness in large language models. The added constraints guide the learning of the rounding operation toward less-biased text generation for protected groups. Specifically, we focus on stereotype generation involving occupational bias and discriminatory language spanning gender, race, and religion. Fair-GPTQ has minimal impact on performance, preserving at least 90% of baseline accuracy on zero-shot benchmarks, reduces unfairness relative to a half-precision model, and retains the memory and speed benefits of 4-bit quantization. We also compare the performance of Fair-GPTQ with existing debiasing methods and find that it achieves performance on par with the iterative null-space projection debiasing approach on racial-stereotype benchmarks. Overall, the results validate our theoretical solution to the quantization problem with a group-bias term, highlight its applicability for reducing group bias at quantization time in generative models, and demonstrate that our approach can further be used to analyze channel- and weight-level contributions to fairness during quantization.
♻ ☆ CAARMA: Class Augmentation with Adversarial Mixup Regularization EMNLP 2025
Speaker verification is a typical zero-shot learning task, where inference of unseen classes is performed by comparing embeddings of test instances to known examples. The models performing inference must hence naturally generate embeddings that cluster same-class instances compactly, while maintaining separation across classes. In order to learn to do so, they are typically trained on a large number of classes (speakers), often using specialized losses. However real-world speaker datasets often lack the class diversity needed to effectively learn this in a generalizable manner. We introduce CAARMA, a class augmentation framework that addresses this problem by generating synthetic classes through data mixing in the embedding space, expanding the number of training classes. To ensure the authenticity of the synthetic classes we adopt a novel adversarial refinement mechanism that minimizes categorical distinctions between synthetic and real classes. We evaluate CAARMA on multiple speaker verification tasks, as well as other representative zero-shot comparison-based speech analysis tasks and obtain consistent improvements: our framework demonstrates a significant improvement of 8\% over all baseline models. The code is available at: https://github.com/massabaali7/CAARMA/
comment: Accepted to EMNLP 2025 Findings
♻ ☆ Training a Utility-based Retriever Through Shared Context Attribution for Retrieval-Augmented Language Models EMNLP 2025
Retrieval-Augmented Language Models boost task performance, owing to the retriever that provides external knowledge. Although crucial, the retriever primarily focuses on semantics relevance, which may not always be effective for generation. Thus, utility-based retrieval has emerged as a promising topic, prioritizing passages that provide valid benefits for downstream tasks. However, due to insufficient understanding, capturing passage utility accurately remains unexplored. This work proposes SCARLet, a framework for training utility-based retrievers in RALMs, which incorporates two key factors, multi-task generalization and inter-passage interaction. First, SCARLet constructs shared context on which training data for various tasks is synthesized. This mitigates semantic bias from context differences, allowing retrievers to focus on learning task-specific utility and generalize across tasks. Next, SCARLet uses a perturbation-based attribution method to estimate passage-level utility for shared context, which reflects interactions between passages and provides more accurate feedback. We evaluate our approach on ten datasets across various tasks, both in-domain and out-of-domain, showing that retrievers trained by SCARLet consistently improve the overall performance of RALMs.
comment: EMNLP 2025 Main Conference (Long paper)
♻ ☆ Probe and Skip: Self-Predictive Token Skipping for Efficient Long-Context LLM Inference
Long-context inference enhances the reasoning capability of Large Language Models (LLMs), but incurs significant computational overhead. Token-oriented methods, such as pruning and skipping, have shown great promise in reducing inference latency, yet still suffer from inherently insufficient structure optimization, outdated selection criteria, and redundancy interference, resulting in suboptimal speed-accuracy trade-off. To address these issues, we propose a novel training-free framework dubbed Self-Predictive Token Skipping (SPTS), for efficient long-context LLM inference. Specifically, motivated by probing the influence of target layers prior to skipping, we design two selective token skipping strategies for typical structures, including Partial Attention Probing (PAP) for multi-head attention and Low-rank Transformation Probing (LTP) for feed forward network. The former selects informative tokens via partial forward attention computation, while the latter constructs a low-rank proxy network to predict token transformations. In addition, a Multi-Stage Delayed Pruning (MSDP) strategy reallocates skipping budgets and progressively removes redundant tokens across layers. Extensive experiments display the effectiveness of our method, achieving up to 2.46$\times$ and 2.29$\times$ speedups for prefilling and end-to-end generation, respectively, while maintaining state-of-the-art accuracy. We will release the source code upon acceptance.
♻ ☆ CCF: A Context Compression Framework for Efficient Long-Sequence Language Modeling
Scaling language models to longer contexts is essential for capturing rich dependencies across extended discourse. However, naïve context extension imposes significant computational and memory burdens, often resulting in inefficiencies during both training and inference. In this work, we propose CCF, a novel context compression framework designed to enable efficient long-context modeling by learning hierarchical latent representations that preserve global semantics while aggressively reducing input redundancy. CCF integrates segment-wise semantic aggregation with key-value memory encoding, forming compact representations that support accurate reconstruction and long-range understanding. To further enhance scalability, we introduce a training-efficient optimization strategy that couples incremental segment decoding with sparse reservoir sampling, substantially reducing memory overhead without degrading performance. Empirical results on multiple long-context language modeling benchmarks demonstrate that CCF achieves competitive perplexity under high compression ratios, and significantly improves throughput and memory efficiency compared to existing approaches. These findings highlight the potential of structured compression for scalable and effective long-context language modeling.
comment: The quality of this paper is low
♻ ☆ ALiiCE: Evaluating Positional Fine-grained Citation Generation NAACL 2025
Large Language Model (LLM) can enhance its credibility and verifiability by generating text with citations. However, existing research on citation generation is predominantly limited to sentence-level statements, neglecting the significance of positional fine-grained citations that can appear anywhere within sentences. To facilitate further exploration of the positional fine-grained citation generation, we propose ALiiCE, the first automatic evaluation framework for this task. Our method employs a dependency tree based approach to parse the sentence-level claim into atomic claims. Then ALiiCE evaluates citation quality using three metrics, including positional fine-grained citation recall, precision, and coefficient of variation of citation positions. We evaluate the positional fine-grained citation generation performance of several LLMs on long-form QA datasets. Our experiments and analyses demonstrate the effectiveness and reasonableness of ALiiCE. We offer our insights into the current advancements and future directions for the positional fine-grained citation generation task.
comment: NAACL 2025 Main Conference (Long paper)
♻ ☆ Less Noise, More Voice: Reinforcement Learning for Reasoning via Instruction Purification
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced LLM reasoning, but remains constrained by inefficient exploration under limited rollout budgets, leading to low sampling success and unstable training in complex tasks. We find that many exploration failures arise not from problem difficulty, but from a small number of prompt tokens that introduce interference. Building on this insight, we propose the Less Noise Sampling Framework (LENS), which first prompts by identifying and removing interference tokens. then transfers successful rollouts from the purification process to supervise policy optimization on the original noisy prompts, enabling the model to learn to ignore interference in the real-world, noisy prompting settings. Experimental results show that LENS significantly outperforms GRPO, delivering higher performance and faster convergence, with a 3.88% average gain and over 1.6$\times$ speedup. Our work highlights the critical role of pruning interference tokens in improving rollout efficiency, offering a new perspective for RLVR research.
comment: Work in progress
♻ ☆ MaiBERT: A Pre-training Corpus and Language Model for Low-Resourced Maithili Language EACL
Natural Language Understanding (NLU) for low-resource languages remains a major challenge in NLP due to the scarcity of high-quality data and language-specific models. Maithili, despite being spoken by millions, lacks adequate computational resources, limiting its inclusion in digital and AI-driven applications. To address this gap, we introducemaiBERT, a BERT-based language model pre-trained specifically for Maithili using the Masked Language Modeling (MLM) technique. Our model is trained on a newly constructed Maithili corpus and evaluated through a news classification task. In our experiments, maiBERT achieved an accuracy of 87.02%, outperforming existing regional models like NepBERTa and HindiBERT, with a 0.13% overall accuracy gain and 5-7% improvement across various classes. We have open-sourced maiBERT on Hugging Face enabling further fine-tuning for downstream tasks such as sentiment analysis and Named Entity Recognition (NER).
comment: Accepted at EACL LoResLM 2026
♻ ☆ Free Access to World News: Reconstructing Full-Text Articles from GDELT
News data have become essential resources across various disciplines. Still, access to full-text news corpora remains challenging due to high costs and the limited availability of free alternatives. This paper presents a novel Python package (gdeltnews) that reconstructs full-text newspaper articles at near-zero cost by leveraging the Global Database of Events, Language, and Tone (GDELT) Web News NGrams 3.0 dataset. Our method merges overlapping n-grams extracted from global online news to rebuild complete articles. We validate the approach on a benchmark set of 2211 articles from major U.S. news outlets, achieving up to 95% text similarity against original articles based on Levenshtein and SequenceMatcher metrics. Our tool facilitates economic forecasting, computational social science, information science, and natural language processing applications by enabling free and large-scale access to full-text news data.
♻ ☆ FinCoT: Grounding Chain-of-Thought in Expert Financial Reasoning EMNLP
This paper presents FinCoT, a structured chain-of-thought (CoT) prompting framework that embeds domain-specific expert financial reasoning blueprints to guide large language models' behaviors. We identify three main prompting styles in financial NLP (FinNLP): (1) standard prompting (zero-shot), (2) unstructured CoT (free-form reasoning), and (3) structured CoT (with explicitly structured reasoning steps). Prior work has mainly focused on the first two, while structured CoT remains underexplored and lacks domain expertise incorporation. Therefore, we evaluate all three prompting approaches across ten CFA-style financial domains and introduce FinCoT as the first structured finance-specific prompting approach incorporating blueprints from domain experts. FinCoT improves the accuracy of a general-purpose model, Qwen3-8B-Base, from 63.2% to 80.5%, and boosts Fin-R1 (7B), a finance-specific model, from 65.7% to 75.7%, while reducing output length by up to 8.9x and 1.16x compared to structured CoT methods, respectively. We find that FinCoT proves most effective for models lacking financial post-training. Our findings show that FinCoT does not only improve performance and reduce inference costs but also yields more interpretable and expert-aligned reasoning traces.
comment: Accepted at FinNLP-2025, EMNLP (Oral Presentation)
♻ ☆ Stream: Scaling up Mechanistic Interpretability to Long Context in LLMs via Sparse Attention
As Large Language Models (LLMs) scale to million-token contexts, traditional Mechanistic Interpretability techniques for analyzing attention scale quadratically with context length, demanding terabytes of memory beyond 100,000 tokens. We introduce Sparse Tracing, a novel technique that leverages dynamic sparse attention to efficiently analyze long context attention patterns. We present Stream, a compilable hierarchical pruning algorithm that estimates per-head sparse attention masks in near-linear time $O(T \log T)$ and linear space $O(T)$, enabling one-pass interpretability at scale. Stream performs a binary-search-style refinement to retain only the top-$k$ key blocks per query while preserving the model's next-token behavior. We apply Stream to long chain-of-thought reasoning traces and identify thought anchors while pruning 97-99\% of token interactions. On the RULER benchmark, Stream preserves critical retrieval paths while discarding 90-96\% of interactions and exposes layer-wise routes from the needle to output. Our method offers a practical drop-in tool for analyzing attention patterns and tracing information flow without terabytes of caches. By making long context interpretability feasible on consumer GPUs, Sparse Tracing helps democratize chain-of-thought monitoring. Code is available at https://anonymous.4open.science/r/stream-03B8/.
♻ ☆ Code-Mixed Phonetic Perturbations for Red-Teaming LLMs
Large language models (LLMs) continue to be demonstrably unsafe despite sophisticated safety alignment techniques and multilingual red-teaming. However, recent red-teaming work has focused on incremental gains in attack success over identifying underlying architectural vulnerabilities in models. In this work, we present \textbf{CMP-RT}, a novel red-teaming probe that combines code-mixing with phonetic perturbations (CMP), exposing a tokenizer-level safety vulnerability in transformers. Combining realistic elements from digital communication such as code-mixing and textese, CMP-RT preserves phonetics while perturbing safety-critical tokens, allowing harmful prompts to bypass alignment mechanisms while maintaining high prompt interpretability, exposing a gap between pre-training and safety alignment. Our results demonstrate robustness against standard defenses, attack scalability, and generalization of the vulnerability across modalities and to SOTA models like Gemini-3-Pro, establishing CMP-RT as a major threat model and highlighting tokenization as an under-examined vulnerability in current safety pipelines.
♻ ☆ p-less Sampling: A Robust Hyperparameter-Free Approach for LLM Decoding
Obtaining high-quality outputs from Large Language Models (LLMs) often depends upon the choice of a sampling-based decoding strategy to probabilistically choose the next token at each generation step. While a variety of such sampling methods have been proposed, their performance can be sensitive to the selection of hyperparameters which may require different settings depending upon the generation task and temperature configuration. In this work, we introduce $p$-less sampling: an information-theoretic approach to sampling which dynamically sets a truncation threshold at each decoding step based on the entire token probability distribution. Unlike existing methods, $p$-less sampling has no hyperparameters and consistently produces high-quality outputs as temperature increases. We provide theoretical perspectives on $p$-less sampling to ground our proposed method and conduct experiments to empirically validate its effectiveness across a range of math, logical reasoning, and creative writing tasks. Our results demonstrate how $p$-less sampling consistently outperforms existing sampling approaches while exhibiting much less degradation in text quality at higher temperature values. We further show how $p$-less achieves greater inference-time efficiency than alternative methods through lower average token sampling times and shorter generation lengths, without sacrificing accuracy. Finally, we provide analyses to highlight the benefits of $p$-less through qualitative examples, case studies, and diversity assessments. The code is available at https://github.com/ryttry/p-less .
♻ ☆ Standard-to-Dialect Transfer Trends Differ across Text and Speech: A Case Study on Intent and Topic Classification in German Dialects
Research on cross-dialectal transfer from a standard to a non-standard dialect variety has typically focused on text data. However, dialects are primarily spoken, and non-standard spellings cause issues in text processing. We compare standard-to-dialect transfer in three settings: text models, speech models, and cascaded systems where speech first gets automatically transcribed and then further processed by a text model. We focus on German dialects in the context of written and spoken intent classification -- releasing the first dialectal audio intent classification dataset -- with supporting experiments on topic classification. The speech-only setup provides the best results on the dialect data while the text-only setup works best on the standard data. While the cascaded systems lag behind the text-only models for German, they perform relatively well on the dialectal data if the transcription system generates normalized, standard-like output.
♻ ☆ Your Latent Reasoning is Secretly Policy Improvement Operator
Recently, small models with latent recursion have obtained promising results on complex reasoning tasks. These results are typically explained by the theory that such recursion increases a networks depth, allowing it to compactly emulate the capacity of larger models. However, the performance of recursively added layers remains behind the capabilities of one pass models with the same feed forward depth. This means that in the looped version, not every recursive step effectively contributes to depth. This raises the question: when and why does latent reasoning improve performance, and when does it result in dead compute? In our work, we analyze the algorithms that latent reasoning provides answer to this question. We show that latent reasoning can be formalized as a classifier free guidance and policy improvement algorithm. Building on these insights, we propose to use a training schemes from reinforcement learning and diffusion methods for latent reasoning models. Using the Tiny Recursive Model as our testbed, we show that with our modifications we can avoid dead compute steps and reduce the total number of forward passes by 18x while maintaining performance. Broadly speaking, we show how a policy improvement perspective on recursive steps can explain model behavior and provide insights for further improvements.
♻ ☆ Bottom-up Policy Optimization: Your Language Model Policy Secretly Contains Internal Policies
Existing reinforcement learning (RL) approaches treat large language models (LLMs) as a unified policy, overlooking their internal mechanisms. In this paper, we decompose the LLM-based policy into Internal Layer Policies and Internal Modular Policies via Transformer's residual stream. Our entropy analysis on internal policy reveals distinct patterns: (1) universally, policies evolve from high-entropy exploration in early layers to deterministic refinement in top layers; and (2) Qwen exhibits a progressive, human-like reasoning structure, contrasting with the abrupt final-layer convergence in Llama. Furthermore, we discover that optimizing internal layers induces feature refinement, forcing lower layers to capture high-level reasoning representations early. Motivated by these findings, we propose Bottom-up Policy Optimization (BuPO), a novel RL paradigm that reconstructs the LLM's reasoning foundation from the bottom up by optimizing internal layers in early stages. Extensive experiments on complex reasoning benchmarks demonstrate the effectiveness of BuPO. Our code is available at https://github.com/Trae1ounG/BuPO.
comment: Preprint. Our code is available at https://github.com/Trae1ounG/BuPO
♻ ☆ Code over Words: Overcoming Semantic Inertia via Code-Grounded Reasoning
LLMs struggle with Semantic Inertia: the inability to inhibit pre-trained priors (e.g., "Lava is Dangerous") when dynamic, in-context rules contradict them. We probe this phenomenon using Baba Is You, where physical laws are mutable text rules, enabling precise evaluation of models' ability to override learned priors when rules change. We quantatively observe that larger models can exhibit inverse scaling: they perform worse than smaller models when natural language reasoning requires suppressing pre-trained associations (e.g., accepting "Lava is Safe"). Our analysis attributes this to natural language encoding, which entangles descriptive semantics and logical rules, leading to persistent hallucinations of familiar physics despite explicit contradictory rules. Here we show that representing dynamics as executable code, rather than descriptive text, reverses this trend and enables effective prior inhibition. We introduce Code-Grounded Vistas (LCV), which fine-tunes models on counterfactual pairs and identifies states with contradictory rules, thereby forcing attention to logical constraints rather than visual semantics. This training-time approach outperforms expensive inference-time search methods in both efficiency and accuracy. Our results demonstrate that representation fundamentally determines whether scaling improves or impairs contextual reasoning. This challenges the assumption that larger models are universally better, with implications for domains that require dynamic overriding of learned priors.
♻ ☆ Beyond Marginal Distributions: A Framework to Evaluate the Representativeness of Demographic-Aligned LLMs
Large language models are increasingly used to represent human opinions, values, or beliefs, and their steerability towards these ideals is an active area of research. Existing work focuses predominantly on aligning marginal response distributions, treating each survey item independently. While essential, this may overlook deeper latent structures that characterise real populations and underpin cultural values theories. We propose a framework for evaluating the representativeness of aligned models through multivariate correlation patterns in addition to marginal distributions. We show the value of our evaluation scheme by comparing two model steering techniques (persona prompting and demographic fine-tuning) and evaluating them against human responses from the World Values Survey. While the demographically fine-tuned model better approximates marginal response distributions than persona prompting, both techniques fail to fully capture the gold standard correlation patterns. We conclude that representativeness is a distinct aspect of value alignment and an evaluation focused on marginals can mask structural failures, leading to overly optimistic conclusions about model capabilities.
♻ ☆ SAPO: Self-Adaptive Process Optimization Makes Small Reasoners Stronger AAAI 2026
Existing self-evolution methods overlook the influence of fine-grained reasoning steps, which leads to the reasoner-verifier gap. The computational inefficiency of Monte Carlo (MC) process supervision further exacerbates the difficulty in mitigating the gap. Motivated by the Error-Related Negativity (ERN), which the reasoner can localize error following incorrect decisions, guiding rapid adjustments, we propose a Self-Adaptive Process Optimization (SAPO) method for self-improvement in Small Language Models (SLMs). SAPO adaptively and efficiently introduces process supervision signals by actively minimizing the reasoner-verifier gap rather than relying on inefficient MC estimations. Extensive experiments demonstrate that the proposed method outperforms most existing self-evolution methods on two challenging task types: mathematics and code. Additionally, to further investigate SAPO's impact on verifier performance, this work introduces two new benchmarks for process reward models in both mathematical and coding tasks.
comment: Accepted by AAAI 2026
♻ ☆ How Much Do LLMs Hallucinate across Languages? On Realistic Multilingual Estimation of LLM Hallucination EMNLP 2025
In the age of misinformation, hallucination - the tendency of Large Language Models (LLMs) to generate non-factual or unfaithful responses - represents the main risk for their global utility. Despite LLMs becoming increasingly multilingual, the vast majority of research on detecting and quantifying LLM hallucination are (a) English-centric and (b) focus on machine translation (MT) and summarization, tasks that are less common in realistic settings than open information seeking. In contrast, we aim to quantify the extent of LLM hallucination across languages in knowledge-intensive long-form question answering (LFQA). To this end, we train a multilingual hallucination detection model and conduct a large-scale study across 30 languages and 6 open-source LLM families. We start from an English hallucination detection dataset and rely on MT to translate-train a detection model. We also manually annotate gold data for five high-resource languages; we then demonstrate, for these languages, that the estimates of hallucination rates are similar between silver (LLM-generated) and gold test sets, validating the use of silver data for estimating hallucination rates for other languages. For the final rates estimation, we build open-domain QA dataset for 30 languages with LLM-generated prompts and Wikipedia articles as references. Our analysis shows that LLMs, in absolute terms, hallucinate more tokens in high-resource languages due to longer responses, but that the actual hallucination rates (i.e., normalized for length) seems uncorrelated with the sizes of languages' digital footprints. We also find that smaller LLMs hallucinate more, and significantly, LLMs with broader language support display higher hallucination rates.
comment: EMNLP 2025
♻ ☆ CASE -- Condition-Aware Sentence Embeddings for Conditional Semantic Textual Similarity Measurement EACL2026
The meaning conveyed by a sentence often depends on the context in which it appears. Despite the progress of sentence embedding methods, it remains unclear as how to best modify a sentence embedding conditioned on its context. To address this problem, we propose Condition-Aware Sentence Embeddings (CASE), an efficient and accurate method to create an embedding for a sentence under a given condition. First, CASE creates an embedding for the condition using a Large Language Model (LLM) encoder, where the sentence influences the attention scores computed for the tokens in the condition during pooling. Next, a supervised method is learnt to align the LLM-based text embeddings with the Conditional Semantic Textual Similarity (C-STS) task. We find that subtracting the condition embedding consistently improves the C-STS performance of LLM-based text embeddings by improving the isotropy of the embedding space. Moreover, our supervised projection method significantly improves the performance of LLM-based embeddings despite requiring a small number of embedding dimensions.
comment: Accepted to EACL2026
Dimensional Collapse in Transformer Attention Outputs: A Challenge for Sparse Dictionary Learning
Transformer architectures, and their attention mechanisms in particular, form the foundation of modern large language models. While transformer models are widely believed to operate in high-dimensional hidden spaces, we show that attention outputs are in fact confined to a surprisingly low-dimensional subspace, with an effective dimensionality of only about $60\%$ of the full space. In contrast, MLP outputs and residual streams remain much closer to full-rank, exhibiting effective ranks around $90\%$. This striking dimensional discrepancy is consistently observed across diverse model families and datasets, and is strongly shaped by the attention output projection matrix. Critically, we find this low-rank structure as a key factor of the prevalent dead feature problem in sparse dictionary learning, where it creates a mismatch between randomly initialized features and the intrinsic geometry of the activation space. Building on this insight, we propose a subspace-constrained training method for sparse autoencoders (SAEs), initializing feature directions into the active subspace of activations. Our approach reduces dead features from 87\% to below 1\% in Attention Output SAEs with 1M features, and can further extend to other sparse dictionary learning methods. Our findings provide both new insights into the geometry of attention and practical tools for improving sparse dictionary learning in large language models.
comment: 27 pages, 16 figures
♻ ☆ MemBuilder: Reinforcing LLMs for Long-Term Memory Construction via Attributed Dense Rewards
Maintaining consistency in long-term dialogues remains a fundamental challenge for LLMs, as standard retrieval mechanisms often fail to capture the temporal evolution of historical states. While memory-augmented frameworks offer a structured alternative, current systems rely on static prompting of closed-source models or suffer from ineffective training paradigms with sparse rewards. We introduce MemBuilder, a reinforcement learning framework that trains models to orchestrate multi-dimensional memory construction with attributed dense rewards. MemBuilder addresses two key challenges: (1) Sparse Trajectory-Level Rewards: we employ synthetic session-level question generation to provide dense intermediate rewards across extended trajectories; and (2) Multi-Dimensional Memory Attribution: we introduce contribution-aware gradient weighting that scales policy updates based on each component's downstream impact. Experimental results show that MemBuilder enables a 4B-parameter model to outperform state-of-the-art closed-source baselines, exhibiting strong generalization across long-term dialogue benchmarks.
comment: 19 pages (9 main + 10 appendix), 7 figures, 3 tables
♻ ☆ A.X K1 Technical Report
We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
comment: This paper is withdrawn pending additional internal review of the methodology and analysis
♻ ☆ Semantic Leakage from Image Embeddings
Image embeddings are generally assumed to pose limited privacy risk. We challenge this assumption by formalizing semantic leakage as the ability to recover semantic structures from compressed image embeddings. Surprisingly, we show that semantic leakage does not require exact reconstruction of the original image. Preserving local semantic neighborhoods under embedding alignment is sufficient to expose the intrinsic vulnerability of image embeddings. Crucially, this preserved neighborhood structure allows semantic information to propagate through a sequence of lossy mappings. Based on this conjecture, we propose Semantic Leakage from Image Embeddings (SLImE), a lightweight inference framework that reveals semantic information from standalone compressed image embeddings, incorporating a locally trained semantic retriever with off-the-shelf models, without training task-specific decoders. We thoroughly validate each step of the framework empirically, from aligned embeddings to retrieved tags, symbolic representations, and grammatical and coherent descriptions. We evaluate SLImE across a range of open and closed embedding models, including GEMINI, COHERE, NOMIC, and CLIP, and demonstrate consistent recovery of semantic information across diverse inference tasks. Our results reveal a fundamental vulnerability in image embeddings, whereby the preservation of semantic neighborhoods under alignment enables semantic leakage, highlighting challenges for privacy preservation.1
comment: 20 pages, 19 figures
♻ ☆ Reassessing Active Learning Adoption in Contemporary NLP: A Community Survey EACL 2026
Supervised learning relies on data annotation which usually is time-consuming and therefore expensive. A longstanding strategy to reduce annotation costs is active learning, an iterative process, in which a human annotates only data instances deemed informative by a model. Research in active learning has made considerable progress, especially with the rise of large language models (LLMs). However, we still know little about how these remarkable advances have translated into real-world applications, or contributed to removing key barriers to active learning adoption. To fill in this gap, we conduct an online survey in the NLP community to collect previously intangible insights on current implementation practices, common obstacles in application, and future prospects in active learning. We also reassess the perceived relevance of data annotation and active learning as fundamental assumptions. Our findings show that data annotation is expected to remain important and active learning to stay relevant while benefiting from LLMs. Consistent with a community survey from over 15 years ago, three key challenges yet persist -- setup complexity, uncertain cost reduction, and tooling -- for which we propose alleviation strategies. We publish an anonymized version of the dataset.
comment: EACL 2026 Main Conference
♻ ☆ Learning to Evolve: Bayesian-Guided Continual Knowledge Graph Embedding
As social media and the World Wide Web become hubs for information dissemination, effectively organizing and understanding the vast amounts of dynamically evolving Web content is crucial. Knowledge graphs (KGs) provide a powerful framework for structuring this information. However, the rapid emergence of new hot topics, user relationships, and events in social media renders traditional static knowledge graph embedding (KGE) models rapidly outdated. Continual Knowledge Graph Embedding (CKGE) aims to address this issue, but existing methods commonly suffer from catastrophic forgetting, whereby older, but still valuable, information is lost when learning new knowledge (such as new memes or trending events). This means the model cannot effectively learn the evolution of the data. We propose a novel CKGE framework, BAKE. Unlike existing methods, BAKE formulates CKGE as a sequential Bayesian inference problem and utilizes the Bayesian posterior update principle as a natural continual learning strategy. This principle is insensitive to data order and provides theoretical guarantees to preserve prior knowledge as much as possible. Specifically, we treat each batch of new data as a Bayesian update to the model's prior. By maintaining the posterior distribution, the model effectively preserves earlier knowledge even as it evolves over multiple snapshots. Furthermore, to constrain the evolution of knowledge across snapshots, we introduce a continual clustering method that maintains the compact cluster structure of entity embeddings through a regularization term, ensuring semantic consistency while allowing controlled adaptation to new knowledge. We conduct extensive experiments on multiple CKGE benchmarks, which demonstrate that BAKE achieves the top performance in the vast majority of cases compared to existing approaches.
♻ ☆ A Foundational individual Mobility Prediction Model based on Open-Source Large Language Models
Large Language Models (LLMs) are widely applied to domain-specific tasks due to their massive general knowledge and remarkable inference capacities. Current studies on LLMs have shown immense potential in applying LLMs to model individual mobility prediction problems. However, most LLM-based mobility prediction models only train on specific datasets or use single well-designed prompts, leading to difficulty in adapting to different cities and users with diverse contexts. To fill these gaps, this paper proposes a unified fine-tuning framework to train a foundational open source LLM-based mobility prediction model. We conducted extensive experiments on six real-world mobility datasets to validate the proposed model. The results showed that the proposed model achieved the best performance in prediction accuracy and transferability over state-of-the-art models based on deep learning and LLMs.
♻ ☆ Bridging the gap: A comparative exploration of Speech-LLM and end-to-end architecture for multilingual conversational ASR ICASSP2026
The INTERSPEECH 2025 Challenge on Multilingual Conversational Speech Language Models (MLC-SLM) promotes multilingual conversational ASR with large language models (LLMs). Our previous SHNU-mASR system adopted a competitive parallel-speech-encoder architecture that integrated Whisper and mHuBERT with an LLM. However, it faced two challenges: simple feature concatenation may not fully exploit complementary information, and the performance gap between LLM-based ASR and end-to-end(E2E) encoder-decoder ASR remained unexplored. In this work, we present an enhanced LLM-based ASR framework that combines fine-tuned Whisper and mHuBERT encoders with an LLM to enrich speech representations. We first evaluate E2E Whisper models with LoRA and full fine-tuning on the MLC-SLM ASR task, and then propose cross-attention-based fusion mechanisms for the parallel-speech-encoder. On the official evaluation set of the MLC-SLM Challenge, our system achieves a CER/WER of 10.69%, ranking on par with the top-ranked Track 1 systems, even though it uses only 1,500 hours of baseline training data compared with their large-scale training sets. Nonetheless, we find that our final LLM-based ASR still does not match the performance of a fine-tuned E2E Whisper model, providing valuable empirical guidance for future Speech-LLM design. Our code is publicly available at https://github.com/1535176727/MLC-SLM.
comment: Accepted by ICASSP2026
♻ ☆ SWE-Exp: Experience-Driven Software Issue Resolution
Recent advances in large language model (LLM) agents have shown remarkable progress in software issue resolution, leveraging advanced techniques such as multi-agent collaboration and Monte Carlo Tree Search (MCTS). However, current agents act as memoryless explorers - treating each problem separately without retaining or reusing knowledge from previous repair experiences. This leads to redundant exploration of failed trajectories and missed chances to adapt successful issue resolution methods to similar problems. To address this problem, we introduce SWE-Exp, an experience-enhanced approach that distills concise and actionable experience from prior agent trajectories, enabling continuous learning across issues. Our method introduces a multi-faceted experience bank that captures both successful and failed repair attempts. Specifically, it extracts reusable issue resolution knowledge at different levels - from high-level problem comprehension to specific code changes. Experiments show that SWE-Exp achieves a Pass@1 resolution rate of 73.0% on SWE-Bench Verified using the state-of-the-art LLM Claude 4 Sonnet, significantly outperforming prior results under other agent frameworks. Our approach establishes a new paradigm in which automated software engineering agents systematically accumulate and leverage repair expertise, fundamentally shifting from trial-and-error exploration to strategic, experience-driven issue resolution.
comment: Our code and data are available at https://github.com/YerbaPage/SWE-Exp
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ Draft-based Approximate Inference for LLMs ICLR 2026
Optimizing inference for long-context large language models (LLMs) is increasingly important due to the quadratic compute and linear memory cost of Transformers. Existing approximate inference methods, including key-value (KV) cache dropping, sparse attention, and prompt compression, typically rely on coarse predictions of token or KV pair importance. We unify and extend recent work by introducing a framework for approximate LLM inference that leverages small draft models to more accurately predict token and KV pair importance. We provide novel theoretical and empirical analyses justifying lookahead-based importance estimation techniques. Within this framework, we present: (i) SpecKV, the first method to use lookahead with a small draft model to enable precise KV cache dropping; (ii) SpecPC, which leverages draft model attention activations to identify and discard less important prompt tokens; and (iii) SpecKV-PC, a cascaded compression strategy combining both techniques. Extensive experiments on long-context benchmarks demonstrate that our methods consistently achieve higher accuracy than existing baselines while retaining the same efficiency gains in memory usage, latency, and throughput.
comment: Accepted to ICLR 2026
♻ ☆ Sparse Autoencoder Features for Classifications and Transferability
Sparse Autoencoders (SAEs) provide potentials for uncovering structured, human-interpretable representations in Large Language Models (LLMs), making them a crucial tool for transparent and controllable AI systems. We systematically analyze SAE for interpretable feature extraction from LLMs in safety-critical classification tasks. Our framework evaluates (1) model-layer selection and scaling properties, (2) SAE architectural configurations, including width and pooling strategies, and (3) the effect of binarizing continuous SAE activations. SAE-derived features achieve macro F1 > 0.8, outperforming hidden-state and BoW baselines while demonstrating cross-model transfer from Gemma 2 2B to 9B-IT models. These features generalize in a zero-shot manner to cross-lingual toxicity detection and visual classification tasks. Our analysis highlights the significant impact of pooling strategies and binarization thresholds, showing that binarization offers an efficient alternative to traditional feature selection while maintaining or improving performance. These findings establish new best practices for SAE-based interpretability and enable scalable, transparent deployment of LLMs in real-world applications. Full repo: https://github.com/shan23chen/MOSAIC.
♻ ☆ R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning
Chain-of-thought (CoT) enhances the problem-solving ability of large language models (LLMs) but incurs substantial inference cost due to long autoregressive trajectories. Existing acceleration strategies either shorten traces via early stopping or compression, or adopt speculative decoding with a smaller model. However, speculative decoding provides limited gains when model agreement is low and rigidly enforces token-level consistency, overlooking the observation that some smaller models, when correct, produce significantly more concise reasoning traces that could reduce inference length. We introduce R-Stitch, a training-free hybrid decoding framework that leverages token-level entropy as an uncertainty proxy to delegate computation between a small language model (SLM) and an LLM. Our analysis shows that high-entropy tokens are more likely to induce errors, motivating an entropy-guided routing strategy that lets the SLM efficiently handle low-entropy tokens while delegating uncertain ones to the LLM, thereby avoiding full rollbacks and preserving answer quality. We further extend this design with R-Stitch$^{+}$, which learns an adaptive routing policy to adjust the token budget dynamically beyond fixed thresholds. By jointly reducing per-token decoding complexity and the number of generated tokens, our method achieves substantial acceleration with negligible accuracy loss. Concretely, it attains peak speedups of 3.00$\times$ on DeepSeek-R1-Distill-Qwen-7B, 3.85$\times$ on 14B, and 4.10$\times$ on QWQ-32B while maintaining accuracy comparable to full LLM decoding. Moreover, it naturally enables adaptive efficiency--accuracy trade-offs that can be tailored to diverse computational budgets without retraining.
♻ ☆ RePPL: Recalibrating Perplexity by Uncertainty in Semantic Propagation and Language Generation for Explainable QA Hallucination Detection
Large Language Models (LLMs) have become powerful, but hallucinations remain a vital obstacle to their trustworthy use. Previous works improved the capability of hallucination detection by measuring uncertainty. But they can not explain the provenance behind why hallucinations occur, particularly in identifying which part of the inputs tends to trigger hallucinations. Recent works on the prompt attack indicate that uncertainty exists in semantic propagation, where attention mechanisms gradually fuse local token information into high-level semantics across layers. Meanwhile, uncertainty also emerges in language generation, due to its probability-based selection of high-level semantics for sampled generations. Based on that, we propose RePPL to recalibrate uncertainty measurement by these two aspects, which dispatches explainable uncertainty scores to each token and aggregates in Perplexity-style Log-Average form as a total score. Experiments show that it achieves the best comprehensive detection performance across various QA datasets on advanced models (average AUC of 0.833), and it is capable of producing token-level uncertainty scores as explanations of hallucination.
♻ ☆ SpatialViz-Bench: A Cognitively-Grounded Benchmark for Diagnosing Spatial Visualization in MLLMs
Humans can imagine and manipulate visual images mentally, a capability known as spatial visualization. While many multi-modal benchmarks assess reasoning on visible visual information, the ability to infer unseen relationships through spatial visualization remains insufficiently evaluated as a spatial skill. This reliance on publicly sourced problems from IQ tests or math competitions risks data contamination and compromises assessment reliability. To this end, we introduce SpatialViz-Bench, a comprehensive multi-modal benchmark for spatial visualization with 12 tasks across 4 sub-abilities, comprising 1,180 programmatically generated problems, a scalable framework that allows for expansion to ensure fair and continuously reliable evaluations. Our evaluation of 27 Multi-modal Large Language Models (MLLMs) reveals wide performance variations, demonstrates the benchmark's strong discriminative power, and uncovers counter-intuitive findings: Chain-of-Thought (CoT) prompting paradoxically degrades accuracy on open-source models. Through statistical and qualitative analysis of error types, SpatialViz-Bench demonstrates that state-of-the-art MLLMs exhibit deficiencies in spatial visualization tasks, thereby addressing a significant lacuna in the field. The benchmark data and evaluation code are publicly available.
♻ ☆ Mobile-Bench-v2: A More Realistic and Comprehensive Benchmark for VLM-based Mobile Agents
VLM-based mobile agents are increasingly popular due to their capabilities to interact with smartphone GUIs and XML-structured texts and to complete daily tasks. However, existing online benchmarks struggle with obtaining stable reward signals due to dynamic environmental changes. Offline benchmarks evaluate the agents through single-path trajectories, which stands in contrast to the inherently multi-solution characteristics of GUI tasks. Additionally, both types of benchmarks fail to assess whether mobile agents can handle noise or engage in proactive interactions due to a lack of noisy apps or overly full instructions during the evaluation process. To address these limitations, we use a slot-based instruction generation method to construct a more realistic and comprehensive benchmark named Mobile-Bench-v2. Mobile-Bench-v2 includes a common task split, with offline multi-path evaluation to assess the agent's ability to obtain step rewards during task execution. It contains a noisy split based on pop-ups and ads apps, and a contaminated split named AITZ-Noise to formulate a real noisy environment. Furthermore, an ambiguous instruction split with preset Q\&A interactions is released to evaluate the agent's proactive interaction capabilities. We conduct evaluations on these splits using the single-agent framework AppAgent-v1, the multi-agent framework Mobile-Agent-v2, as well as other mobile agents such as UI-Tars and OS-Atlas. Code and data are available at https://huggingface.co/datasets/xwk123/MobileBench-v2.
♻ ☆ Reward Auditor: Inference on Reward Modeling Suitability in Real-World Perturbed Scenarios
Reliable reward models (RMs) are critical for ensuring the safe alignment of large language models (LLMs). However, current RM evaluation methods focus solely on preference perception accuracies in given specific scenarios, obscuring the critical vulnerabilities of RMs in real-world scenarios. We identify the true challenge lies in assessing a novel dimension: Suitability, defined as conditional reliability under specific real-world perturbations. To this end, we introduce Reward Auditor, a hypothesis-testing framework specifically designed for RM suitability inference. Rather than answering "How accurate is the RM's preference perception for given samples?", it employs scientific auditing to answer: "Can we infer RMs exhibit systematic vulnerabilities in specific real-world scenarios?". Under real-world perturbed scenarios, Reward Auditor quantifies statistical significance and effect size by auditing distribution degradation of RM preference perception confidence. This enables inference of both the certainty and severity of RM vulnerabilities across diverse real-world scenarios. This lays a solid foundation for building next-generation LLM alignment systems that are verifiably safe, more robust, and trustworthy.
♻ ☆ PaceLLM: Brain-Inspired Large Language Models for Long-Context Understanding NeurIPS2025
While Large Language Models (LLMs) demonstrate strong performance across domains, their long-context capabilities are limited by transient neural activations causing information decay and unstructured feed-forward network (FFN) weights leading to semantic fragmentation. Inspired by the brain's working memory and cortical modularity, we propose PaceLLM, featuring two innovations: (1) a Persistent Activity (PA) Mechanism that mimics prefrontal cortex (PFC) neurons' persistent firing by introducing an activation-level memory bank to dynamically retrieve, reuse, and update critical FFN states, addressing contextual decay; and (2) Cortical Expert (CE) Clustering that emulates task-adaptive neural specialization to reorganize FFN weights into semantic modules, establishing cross-token dependencies and mitigating fragmentation. Extensive evaluations show that PaceLLM achieves 6% improvement on LongBench's Multi-document QA and 12.5-17.5% performance gains on Infinite-Bench tasks, while extending measurable context length to 200K tokens in Needle-In-A-Haystack (NIAH) tests. This work pioneers brain-inspired LLM optimization and is complementary to other works. Besides, it can be generalized to any model and enhance their long-context performance and interpretability without structural overhauls.
comment: Accepted by NeurIPS2025
♻ ☆ Bias Beyond Borders: Political Ideology Evaluation and Steering in Multilingual LLMs
Large Language Models (LLMs) increasingly shape global discourse, making fairness and ideological neutrality essential for responsible AI deployment. Despite growing attention to political bias in LLMs, prior work largely focuses on high-resource, Western languages or narrow multilingual settings, leaving cross-lingual consistency and safe post-hoc mitigation underexplored. To address this gap, we present a large-scale multilingual evaluation of political bias spanning 50 countries and 33 languages. We introduce a complementary post-hoc mitigation framework, Cross-Lingual Alignment Steering (CLAS), designed to augment existing steering methods by aligning ideological representations across languages and dynamically regulating intervention strength. This method aligns latent ideological representations induced by political prompts into a shared ideological subspace, ensuring cross lingual consistency, with the adaptive mechanism prevents over correction and preserves coherence. Experiments demonstrate substantial bias reduction along both economic and social axes with minimal degradation in response quality. The proposed framework establishes a scalable and interpretable paradigm for fairness-aware multilingual LLM governance, balancing ideological neutrality with linguistic and cultural diversity.
comment: PrePrint
♻ ☆ APE-Bench: Evaluating Automated Proof Engineering for Formal Math Libraries
While frontier formal mathematics systems now routinely develop repository-scale proof engineering artifacts requiring multi-file coordination and semantic correctness beyond compilation, existing evaluation benchmarks remain focused on isolated theorem proving. We introduce Automated Proof Engineering (APE), the first systematic framework for evaluating repository-scale proof engineering through dual verification that validates both syntactic compilation and semantic requirement satisfaction in pinned library environments. We present a complete infrastructure comprising APE-Bench, which automatically extracts proof engineering tasks from real library commit histories, and APE-Harness, a unified execution framework based on task contract abstraction. This contract-based design enables standardized evaluation across diverse formal mathematics tasks and fair systematic comparison of different agent implementations (including our APE-Agent reference scaffold alongside Claude Code and Codex CLI) on identical task specifications. We demonstrate the framework's effectiveness through comprehensive evaluation. All code and benchmark dataset are released as open-source at https://github.com/xinhjBrant/APE-Bench.
♻ ☆ Lost in Localization: Building RabakBench with Human-in-the-Loop Validation to Measure Multilingual Safety Gaps
Large language models (LLMs) often fail to maintain safety in low-resource language varieties, such as code-mixed vernaculars and regional dialects. We introduce RabakBench, a multilingual safety benchmark and scalable pipeline localized to Singapore's unique linguistic landscape, covering Singlish, Chinese, Malay, and Tamil. We construct the benchmark through a three-stage pipeline: (1) Generate: augmenting real-world unsafe web content via LLM-driven red teaming; (2) Label: applying semi-automated multi-label annotation using majority-voted LLM labelers; and (3) Translate: performing high-fidelity, toxicity-preserving translation. The resulting dataset contains over 5,000 examples across six fine-grained safety categories. Despite using LLMs for scalability, our framework maintains rigorous human oversight, achieving 0.70-0.80 inter-annotator agreement. Evaluations of 13 state-of-the-art guardrails reveal significant performance degradation, underscoring the need for localized evaluation. RabakBench provides a reproducible framework for building safety benchmarks in underserved communities.
♻ ☆ Large Language Models for Scientific Idea Generation: A Creativity-Centered Survey
Scientific idea generation is central to discovery, requiring the joint satisfaction of novelty and scientific soundness. Unlike standard reasoning or general creative generation, scientific ideation is inherently open-ended and multi-objective, making its automation particularly challenging. Recent advances in large language models (LLMs) have enabled the generation of coherent and plausible scientific ideas, yet the nature and limits of their creative capabilities remain poorly understood. This survey provides a structured synthesis of methods for LLM-driven scientific ideation, focusing on how different approaches trade off novelty and scientific validity. We organize existing methods into five complementary families: External knowledge augmentation, Prompt-based distributional steering, Inference-time scaling, Multi-agent collaboration, and Parameter-level adaptation. To interpret their contributions, we adopt two complementary creativity frameworks: Boden taxonomy to characterize the expected level of creative novelty, and Rhodes 4Ps framework to analyze the aspects or sources of creativity emphasized by each method. By aligning methodological developments with cognitive creativity frameworks, this survey clarifies the evaluation landscape and identifies key challenges and directions for reliable and systematic LLM-based scientific discovery.
comment: 75 Pages
♻ ☆ Improving the Distributional Alignment of LLMs using Supervision
The ability to accurately align LLMs with population groups on subjective questions would have great value. In this work, we show that simple supervision can more consistently improve language model alignment with diverse population groups, as measured across three datasets spanning various topics. Beyond evaluating average alignment, we also report how alignment varies across specific groups. Our broad findings provide insights into the distributional alignment of LLMs with diverse populations. By conducting evaluation over many LLMs and prompting strategies, we provide a benchmark to stimulate future research.
♻ ☆ Efficient Reinforcement Finetuning via Adaptive Curriculum Learning
Reinforcement finetuning (RFT) has shown great potential for enhancing the mathematical reasoning capabilities of large language models (LLMs), but it is often sample- and compute-inefficient, requiring extensive training. In this work, we introduce AdaRFT (Adaptive Curriculum Reinforcement Finetuning), a method that significantly improves both the efficiency and final accuracy of RFT through adaptive curriculum learning. AdaRFT dynamically adjusts the difficulty of training problems based on the model's recent reward signals, ensuring that the model consistently trains on tasks that are challenging but solvable. This adaptive sampling strategy accelerates learning by maintaining an optimal difficulty range, avoiding wasted computation on problems that are too easy or too hard. AdaRFT requires only a lightweight extension to standard RFT algorithms like Proximal Policy Optimization (PPO), without modifying the reward function or model architecture. Experiments on competition-level math datasets demonstrate that AdaRFT significantly improves both training efficiency and reasoning performance. We evaluate AdaRFT across multiple data distributions and model sizes, showing that it reduces training time by up to 2x and improves accuracy by a considerable margin, offering a more scalable and effective RFT framework.
comment: 23 pages, 8 figures, 7 tables
♻ ☆ ToolACE-MT: Non-Autoregressive Generation for Agentic Multi-Turn Interaction ICLR2026
Agentic task-solving with Large Language Models (LLMs) requires multi-turn, multi-step interactions, often involving complex function calls and dynamic user-agent exchanges. Existing simulation-based data generation methods for such scenarios rely heavily on costly autoregressive interactions between multiple LLM agents, thereby limiting real-world performance of agentic tasks. In this paper, we propose ToolACE-MT, a novel Non-Autoregressive Iterative Generation framework for constructing high-quality multi-turn agentic dialogues. ToolACE-MT generates full conversational trajectories through three stages: coarse-grained initialization, iterative refinement, and offline verification. The initialization phase builds a structurally complete yet semantically coarse dialogue skeleton; the iterative refinement phase introduces realistic complexities and continued refinement via mask-and-fill operations; and the offline verification phase ensures correctness and coherence via rule- and model-based checks. Experiments demonstrate that ToolACE-MT enables efficient, effective and generalizable agentic data generation, offering a new paradigm for high-quality data construction in tool-augmented LLM scenarios.
comment: Accepted by ICLR2026
♻ ☆ CrossCheck-Bench: Diagnosing Compositional Failures in Multimodal Conflict Resolution AAAI 2026
Multimodal Large Language Models are primarily trained and evaluated on aligned image-text pairs, which leaves their ability to detect and resolve real-world inconsistencies largely unexplored. In open-domain applications visual and textual cues often conflict, requiring models to perform structured reasoning beyond surface-level alignment. We introduce CrossCheck-Bench, a diagnostic benchmark for evaluating contradiction detection in multimodal inputs. The benchmark adopts a hierarchical task framework covering three levels of reasoning complexity and defines seven atomic capabilities essential for resolving cross-modal inconsistencies. CrossCheck-Bench includes 15k question-answer pairs sourced from real-world artifacts with synthetically injected contradictions. The dataset is constructed through a multi-stage annotation pipeline involving more than 450 expert hours to ensure semantic validity and calibrated difficulty across perception, integration, and reasoning. We evaluate 13 state-of-the-art vision-language models and observe a consistent performance drop as tasks shift from perceptual matching to logical contradiction detection. Most models perform well on isolated entity recognition but fail when multiple clues must be synthesized for conflict reasoning. Capability-level analysis further reveals uneven skill acquisition, especially in tasks requiring multi-step inference or rule-based validation. Additional probing shows that conventional prompting strategies such as Chain-of-Thought and Set-of-Mark yield only marginal gains. By contrast, methods that interleave symbolic reasoning with grounded visual processing achieve more stable improvements. These results highlight a persistent bottleneck in multimodal reasoning and suggest new directions for building models capable of robust cross-modal verification.
comment: Accepted by AAAI 2026
♻ ☆ Group-Adaptive Threshold Optimization for Robust AI-Generated Text Detection
The advancement of large language models (LLMs) has made it difficult to differentiate human-written text from AI-generated text. Several AI-text detectors have been developed in response, which typically utilize a fixed global threshold (e.g., $θ= 0.5$) to classify machine-generated text. However, one universal threshold could fail to account for distributional variations by subgroups. For example, when using a fixed threshold, detectors make more false positive errors on shorter human-written text, and more positive classifications of neurotic writing styles among long texts. These discrepancies can lead to misclassifications that disproportionately affect certain groups. We address this critical limitation by introducing FairOPT, an algorithm for group-specific threshold optimization for probabilistic AI-text detectors. We partitioned data into subgroups based on attributes (e.g., text length and writing style) and implemented FairOPT to learn decision thresholds for each group to reduce discrepancy. FairOPT showed notable discrepancy mitigation across nine detectors and three heterogeneous datasets, and the remarkable mitigation of the minimax problem by decreasing overall discrepancy 27.4% across five metrics while minimally sacrificing accuracy by 0.005%. Our framework paves the way for more robust classification in AI-generated content detection via post-processing. We release our data, code, and project information at URL.
♻ ☆ Geometric-disentangelment Unlearning
Large language models (LLMs) can internalize private or harmful content, motivating unlearning that removes a forget set while preserving retaining knowledge. However, forgetting updates often cause collateral degradation on retaining knowledge, creating a persistent trade-off. Existing LLM unlearning methods are often heuristic, and other theoretical approaches rely on offline feature constructions that do not capture update-time forget-retain interaction in LLMs. To address this limitation, we aim to develop an LLM unlearning method that reduces the forget-retain trade-off with theoretical guarantees. We take a first-principles view by formalizing "no side effects" as local retain invariance under small parameter updates, and prove an equivalence under optimizer-induced geometry: the retain loss is locally invariant if and only if the update direction is orthogonal to the subspace spanned by retain gradients. Based on the insight, we propose Geometric-disentanglement Unlearning (GU), a lightweight and theoretically grounded projection that can be plug-and-play to existing gradient-based unlearning methods to mitigate forget-retain side effects. Experiments on TOFU, MUSE, and WMDP-cyber show that GU strengthens forgetting while reducing retain drift. When added to SimNPO, it achieves up to 62\% improved forgetting Extraction Strength (ES) and 31\% higher retain ES. We open-sourced our code in https://github.com/Lemutisme/Geometric-Unlearning.
comment: 26 Pages
♻ ☆ Insight Agents: An LLM-Based Multi-Agent System for Data Insights SIGIR 2025
Today, E-commerce sellers face several key challenges, including difficulties in discovering and effectively utilizing available programs and tools, and struggling to understand and utilize rich data from various tools. We therefore aim to develop Insight Agents (IA), a conversational multi-agent Data Insight system, to provide E-commerce sellers with personalized data and business insights through automated information retrieval. Our hypothesis is that IA will serve as a force multiplier for sellers, thereby driving incremental seller adoption by reducing the effort required and increase speed at which sellers make good business decisions. In this paper, we introduce this novel LLM-backed end-to-end agentic system built on a plan-and-execute paradigm and designed for comprehensive coverage, high accuracy, and low latency. It features a hierarchical multi-agent structure, consisting of manager agent and two worker agents: data presentation and insight generation, for efficient information retrieval and problem-solving. We design a simple yet effective ML solution for manager agent that combines Out-of-Domain (OOD) detection using a lightweight encoder-decoder model and agent routing through a BERT-based classifier, optimizing both accuracy and latency. Within the two worker agents, a strategic planning is designed for API-based data model that breaks down queries into granular components to generate more accurate responses, and domain knowledge is dynamically injected to to enhance the insight generator. IA has been launched for Amazon sellers in US, which has achieved high accuracy of 90% based on human evaluation, with latency of P90 below 15s.
comment: Accepted to SIGIR 2025. DOI: 10.1145/3726302.3731959
♻ ☆ Entropy Meets Importance: A Unified Head Importance-Entropy Score for Stable and Efficient Transformer Pruning
Transformer-based models have achieved remarkable performance in NLP tasks. However, their structural characteristics-multiple layers and attention heads-introduce efficiency challenges in inference and deployment. To address these challenges, various pruning methods have recently been proposed. Notably, gradient-based methods using Head Importance Scores (HIS) have gained traction for interpretability, efficiency, and ability to identify redundant heads. However, HIS alone has limitations as it captures only the gradient-driven contribution, overlooking the diversity of attention patterns. To overcome these limitations, we introduce a novel pruning criterion, HIES (Head Importance-Entropy Score), which integrates head importance scores with attention entropy, providing complementary evidence on per-head contribution. Empirically, HIES-based pruning yields up to 15.2% improvement in model quality and 2.04x improvement in stability over HIS-only methods, enabling substantial model compression without sacrificing either accuracy or stability. Code will be released upon publication.
comment: 38 pages
♻ ☆ Encoder-Free Knowledge-Graph Reasoning with LLMs via Hyperdimensional Path Retrieval
Recent progress in large language models (LLMs) has made knowledge-grounded reasoning increasingly practical, yet KG-based QA systems often pay a steep price in efficiency and transparency. In typical pipelines, symbolic paths are scored by neural encoders or repeatedly re-ranked by multiple LLM calls, which inflates latency and GPU cost and makes the decision process hard to audit. We introduce PathHD, an encoder-free framework for knowledge-graph reasoning that couples hyperdimensional computing (HDC) with a single LLM call per query. Given a query, PathHD represents relation paths as block-diagonal GHRR hypervectors, retrieves candidate paths using a calibrated blockwise cosine similarity with Top-K pruning, and then performs a one-shot LLM adjudication that outputs the final answer together with supporting, citeable paths. The design is enabled by three technical components: (i) an order-sensitive, non-commutative binding operator for composing multi-hop paths, (ii) a robust similarity calibration that stabilizes hypervector retrieval, and (iii) an adjudication stage that preserves interpretability while avoiding per-path LLM scoring. Across WebQSP, CWQ, and GrailQA, PathHD matches or improves Hits@1 compared to strong neural baselines while using only one LLM call per query, reduces end-to-end latency by $40-60\%$, and lowers GPU memory by $3-5\times$ due to encoder-free retrieval. Overall, the results suggest that carefully engineered HDC path representations can serve as an effective substrate for efficient and faithful KG-LLM reasoning, achieving a strong accuracy-efficiency-interpretability trade-off.
♻ ☆ Merged ChemProt-DrugProt for Relation Extraction from Biomedical Literature
The extraction of chemical-gene relations plays a pivotal role in understanding the intricate interactions between chemical compounds and genes, with significant implications for drug discovery, disease understanding, and biomedical research. This paper presents a data set created by merging the ChemProt and DrugProt datasets to augment sample counts and improve model accuracy. We evaluate the merged dataset using two state of the art relationship extraction algorithms: Bidirectional Encoder Representations from Transformers (BERT) specifically BioBERT, and Graph Convolutional Networks (GCNs) combined with BioBERT. While BioBERT excels at capturing local contexts, it may benefit from incorporating global information essential for understanding chemical-gene interactions. This can be achieved by integrating GCNs with BioBERT to harness both global and local context. Our results show that by integrating the ChemProt and DrugProt datasets, we demonstrated significant improvements in model performance, particularly in CPR groups shared between the datasets. Incorporating the global context using GCN can help increase the overall precision and recall in some of the CPR groups over using just BioBERT.
♻ ☆ Reward Model Interpretability via Optimal and Pessimal Tokens
Reward modeling has emerged as a crucial component in aligning large language models with human values. Significant attention has focused on using reward models as a means for fine-tuning generative models. However, the reward models themselves -- which directly encode human value judgments by turning prompt-response pairs into scalar rewards -- remain relatively understudied. We present a novel approach to reward model interpretability through exhaustive analysis of their responses across their entire vocabulary space. By examining how different reward models score every possible single-token response to value-laden prompts, we uncover several striking findings: (i) substantial heterogeneity between models trained on similar objectives, (ii) systematic asymmetries in how models encode high- vs low-scoring tokens, (iii) significant sensitivity to prompt framing that mirrors human cognitive biases, and (iv) overvaluation of more frequent tokens. We demonstrate these effects across ten recent open-source reward models of varying parameter counts and architectures. Our results challenge assumptions about the interchangeability of reward models, as well as their suitability as proxies of complex and context-dependent human values. We find that these models can encode concerning biases toward certain identity groups, which may emerge as unintended consequences of harmlessness training -- distortions that risk propagating through the downstream large language models now deployed to millions.
comment: Accepted for publication in Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25), to appear June 2025
♻ ☆ From Self-Evolving Synthetic Data to Verifiable-Reward RL: Post-Training Multi-turn Interactive Tool-Using Agents ICML 2026
Interactive tool-using agents must solve real-world tasks via multi-turn interaction with both humans and external environments, requiring dialogue state tracking, multi-step tool execution, while following complex instructions. Post-training such agents is challenging because synthesis for high-quality multi-turn tool-use data is difficult to scale, and reinforcement learning (RL) could face noisy signals caused by user simulation, leading to degraded training efficiency. We propose a unified framework that combines a self-evolving data agent with verifier-based RL. Our system, EigenData, is a hierarchical multi-agent engine that synthesizes tool-grounded dialogues together with executable per-instance checkers, and improves generation reliability via closed-loop self-evolving process that updates prompts and workflow. Building on the synthetic data, we develop an RL recipe that first fine-tunes the user model and then applies GRPO-style training with trajectory-level group-relative advantages and dynamic filtering, yielding consistent improvements beyond SFT. Evaluated on tau^2-bench, our best model reaches 73.0% pass^1 on Airline and 98.3% pass^1 on Telecom, matching or exceeding frontier models. Overall, our results suggest a scalable pathway for bootstrapping complex tool-using behaviors without expensive human annotation.
comment: Submitted to ICML 2026
♻ ☆ Multi-turn Evaluation of Anthropomorphic Behaviours in Large Language Models
The tendency of users to anthropomorphise large language models (LLMs) is of growing interest to AI developers, researchers, and policy-makers. Here, we present a novel method for empirically evaluating anthropomorphic LLM behaviours in realistic and varied settings. Going beyond single-turn static benchmarks, we contribute three methodological advances in state-of-the-art (SOTA) LLM evaluation. First, we develop a multi-turn evaluation of 14 anthropomorphic behaviours. Second, we present a scalable, automated approach by employing simulations of user interactions. Third, we conduct an interactive, large-scale human subject study (N=1101) to validate that the model behaviours we measure predict real users' anthropomorphic perceptions. We find that all SOTA LLMs evaluated exhibit similar behaviours, characterised by relationship-building (e.g., empathy and validation) and first-person pronoun use, and that the majority of behaviours only first occur after multiple turns. Our work lays an empirical foundation for investigating how design choices influence anthropomorphic model behaviours and for progressing the ethical debate on the desirability of these behaviours. It also showcases the necessity of multi-turn evaluations for complex social phenomena in human-AI interaction.
♻ ☆ Natural Language Actor-Critic: Scalable Off-Policy Learning in Language Space
Large language model (LLM) agents -- LLMs that dynamically interact with an environment over long horizons -- have become an increasingly important area of research, enabling automation in complex tasks involving tool-use, web browsing, and dialogue with people. In the absence of expert demonstrations, training LLM agents has relied on policy gradient methods that optimize LLM policies with respect to an (often sparse) reward function. However, in long-horizon tasks with sparse rewards, learning from trajectory-level rewards can be noisy, leading to training that is unstable and has high sample complexity. Furthermore, policy improvement hinges on discovering better actions through exploration, which can be difficult when actions lie in natural language space. In this paper, we propose Natural Language Actor-Critic (NLAC), a novel actor-critic algorithm that trains LLM policies using a generative LLM critic that produces natural language rather than scalar values. This approach leverages the inherent strengths of LLMs to provide a richer and more actionable training signal; particularly, in tasks with large, open-ended action spaces, natural language explanations for why an action is suboptimal can be immensely useful for LLM policies to reason how to improve their actions, without relying on random exploration. Furthermore, our approach can be trained off-policy without policy gradients, offering a more data-efficient and stable alternative to existing on-policy methods. We present results on a mixture of reasoning, web browsing, and tool-use with dialogue tasks, demonstrating that NLAC shows promise in outperforming existing training approaches and offers a more scalable and stable training paradigm for LLM agents.
comment: 21 pages, 4 figures
♻ ☆ Broken Tokens? Your Language Model can Secretly Handle Non-Canonical Tokenizations NeurIPS 2025
Modern tokenizers employ deterministic algorithms to map text into a single "canonical" token sequence, yet the same string can be encoded as many non-canonical tokenizations using the tokenizer vocabulary. In this work, we investigate the robustness of LMs to text encoded with non-canonical tokenizations entirely unseen during training. Surprisingly, when evaluated across 20 benchmarks, we find that instruction-tuned models retain up to 93.4% of their original performance when given a randomly sampled tokenization, and 90.8% with character-level tokenization. We see that overall stronger models tend to be more robust, and robustness diminishes as the tokenization departs farther from the canonical form. Motivated by these results, we then identify settings where non-canonical tokenization schemes can *improve* performance, finding that character-level segmentation improves string manipulation and code understanding tasks by up to +14%, and right-aligned digit grouping enhances large-number arithmetic by +33%. Finally, we investigate the source of this robustness, finding that it arises in the instruction-tuning phase. We show that while both base and post-trained models grasp the semantics of non-canonical tokenizations (perceiving them as containing misspellings), base models try to mimic the imagined mistakes and degenerate into nonsensical output, while post-trained models are committed to fluent responses. Overall, our findings suggest that models are less tied to their tokenizer than previously believed, and demonstrate the promise of intervening on tokenization at inference time to boost performance.
comment: NeurIPS 2025 (spotlight)
♻ ☆ Are you going to finish that? A Practical Study of the Partial Token Problem
Language models (LMs) are trained over sequences of tokens, whereas users interact with LMs via text. This mismatch gives rise to the partial token problem, which occurs when a user ends their prompt in the middle of the expected next-token, leading to distorted next-token predictions. Although this issue has been studied using arbitrary character prefixes, its prevalence and severity in realistic prompts respecting word boundaries remains underexplored. In this work, we identify three domains where token and "word" boundaries often do not line up: languages that do not use whitespace, highly compounding languages, and code. In Chinese, for example, up to 25% of word boundaries do not line up with token boundaries, making even natural, word-complete prompts susceptible to this problem. We systematically construct semantically natural prompts ending with a partial tokens; in experiments, we find that they comprise a serious failure mode: frontier LMs consistently place three orders of magnitude less probability on the correct continuation compared to when the prompt is "backed-off" to be token-aligned. This degradation does not diminish with scale and often worsens for larger models. Finally, we evaluate inference-time mitigations to the partial token problem and validate the effectiveness of recent exact solutions. Overall, we demonstrate the scale and severity of probability distortion caused by tokenization in realistic use cases, and provide practical recommentions for model inference providers.
♻ ☆ Co-Designing Quantum Codes with Transversal Diagonal Gates via Multi-Agent Systems
We present a multi-agent, human-in-the-loop workflow that co-designs quantum error-correcting codes with prescribed transversal diagonal gates. It builds on the Subset-Sum Linear Programming (SSLP) framework, which partitions basis strings by modular residues and enforces Z-marginal Knill-Laflamme (KL) equalities via small LPs. The workflow is powered by GPT-5 and implemented within TeXRA, a multi-agent research assistant platform where agents collaborate in a shared LaTeX-Python workspace synchronized with Git/Overleaf. Three specialized agents formulate constraints, sweep and screen candidate codes, exactify numerical solutions into rationals, and independently audit all KL equalities and induced logical actions. Focusing on distance-two codes with nondegenerate residues, we catalogue new nonadditive codes for dimensions $K\in\{2,3,4\}$ on up to six qubits, including high-order diagonal transversals, yielding $14,116$ new codes. From these data, the system abstracts closed-form families and constructs a residue-degenerate $((6,4,2))$ code implementing a transversal controlled-phase $\mathrm{diag}(1,1,1,i)$, illustrating how AI orchestration can drive rigorous, scalable code discovery.
comment: 63 pages, 3 figures
♻ ☆ Linear representations in language models can change dramatically over a conversation
Language model representations often contain linear directions that correspond to high-level concepts. Here, we study the dynamics of these representations: how representations evolve along these dimensions within the context of (simulated) conversations. We find that linear representations can change dramatically over a conversation; for example, information that is represented as factual at the beginning of a conversation can be represented as non-factual at the end and vice versa. These changes are content-dependent; while representations of conversation-relevant information may change, generic information is generally preserved. These changes are robust even for dimensions that disentangle factuality from more superficial response patterns, and occur across different model families and layers of the model. These representation changes do not require on-policy conversations; even replaying a conversation script written by an entirely different model can produce similar changes. However, adaptation is much weaker from simply having a sci-fi story in context that is framed more explicitly as such. We also show that steering along a representational direction can have dramatically different effects at different points in a conversation. These results are consistent with the idea that representations may evolve in response to the model playing a particular role that is cued by a conversation. Our findings may pose challenges for interpretability and steering -- in particular, they imply that it may be misleading to use static interpretations of features or directions, or probes that assume a particular range of features consistently corresponds to a particular ground-truth value. However, these types of representational dynamics also point to exciting new research directions for understanding how models adapt to context.
♻ ☆ From Deferral to Learning: Online In-Context Knowledge Distillation for LLM Cascades
Standard LLM cascades improve efficiency by deferring difficult queries from weak to strong models. However, these systems are typically static: when faced with repeated or semantically similar queries, they redundantly consult the expensive model, failing to adapt during inference. To address this, we propose Inter-Cascade, an online, interactive framework that transforms the strong model from a temporary helper into a long-term teacher. In our approach, when the strong model resolves a deferred query, it generates a generalized, reusable problem-solving strategy. These strategies are stored in a dynamic repository and retrieved via similarity matching to augment the weak model's context for future queries. This enables the weak model to learn on the job without expensive parameter fine-tuning. We theoretically show that this mechanism improves the weak model's confidence calibration. Empirically, Inter-Cascade outperforms standard cascades on multiple benchmarks, improving weak model and overall system accuracy by up to 33.06 percent and 6.35 percent, while reducing strong model calls by up to 48.05 percent and saving fee by up to 49.63 percent. Inter-Cascade demonstrates effective in-context knowledge transfer between LLMs and provides a general, scalable framework applicable to both open-source and API-based LLMs.
comment: 32 pages, 6 figures, 23 tables, under review
♻ ☆ Do AI Models Perform Human-like Abstract Reasoning Across Modalities?
OpenAI's o3-preview reasoning model exceeded human accuracy on the ARC-AGI-1 benchmark, but does that mean state-of-the-art models recognize and reason with the abstractions the benchmark was designed to test? Here we investigate abstraction abilities of AI models using the closely related but simpler ConceptARC benchmark. Our evaluations vary input modality (textual vs. visual), use of external Python tools, and reasoning effort. Beyond output accuracy, we evaluate the natural-language rules that models generate to explain their solutions, enabling us to assess whether models recognize the abstractions that ConceptARC was designed to elicit. We show that the best models' rules are frequently based on surface-level ``shortcuts,'' capturing intended abstractions considerably less often than humans. In the visual modality, AI models' output accuracy drops sharply; however, our rule-level analysis reveals that a substantial share of their rules capture the intended abstractions, even as the models struggle to apply these concepts to generate correct solutions. In short, we show that using accuracy alone to evaluate abstract reasoning can substantially overestimate AI capabilities in textual modalities and underestimate it in visual modalities. Our results offer a more faithful picture of AI models' abstract reasoning abilities and a more principled way to track progress toward human-like, abstraction-centered intelligence.
comment: 9 pages, 3 figures
♻ ☆ From Labels to Facets: Building a Taxonomically Enriched Turkish Learner Corpus
In terms of annotation structure, most learner corpora rely on holistic flat label inventories which, even when extensive, do not explicitly separate multiple linguistic dimensions. This makes linguistically deep annotation difficult and complicates fine-grained analyses aimed at understanding why and how learners produce specific errors. To address these limitations, this paper presents a semi-automated annotation methodology for learner corpora, built upon a recently proposed faceted taxonomy, and implemented through a novel annotation extension framework. The taxonomy provides a theoretically grounded, multi-dimensional categorization that captures the linguistic properties underlying each error instance, thereby enabling standardized, fine-grained, and interpretable enrichment beyond flat annotations. The annotation extension tool, implemented based on the proposed extension framework for Turkish, automatically extends existing flat annotations by inferring additional linguistic and metadata information as facets within the taxonomy to provide richer learner-specific context. It was systematically evaluated and yielded promising performance results, achieving a facet-level accuracy of 95.86%. The resulting taxonomically enriched corpus offers enhanced querying capabilities and supports detailed exploratory analyses across learner corpora, enabling researchers to investigate error patterns through complex linguistic and pedagogical dimensions. This work introduces the first collaboratively annotated and taxonomically enriched Turkish Learner Corpus, a manual annotation guideline with a refined tagset, and an annotation extender. As the first corpus designed in accordance with the recently introduced taxonomy, we expect our study to pave the way for subsequent enrichment efforts of existing error-annotated learner corpora.
comment: An error was identified in the analyses presented in Section 5.3, impacting the conclusions of the paper. The authors have therefore withdrawn the submission
♻ ☆ Inferring Scientific Cross-Document Coreference and Hierarchy with Definition-Augmented Relational Reasoning ACL
We address the fundamental task of inferring cross-document coreference and hierarchy in scientific texts, which has important applications in knowledge graph construction, search, recommendation and discovery. Large Language Models (LLMs) can struggle when faced with many long-tail technical concepts with nuanced variations. We present a novel method which generates context-dependent definitions of concept mentions by retrieving full-text literature, and uses the definitions to enhance detection of cross-document relations. We further generate relational definitions, which describe how two concept mentions are related or different, and design an efficient re-ranking approach to address the combinatorial explosion involved in inferring links across papers. In both fine-tuning and in-context learning settings, we achieve large gains in performance on data subsets with high amount of different surfaces forms and ambiguity, that are challenging for models. We provide analysis of generated definitions, shedding light on the relational reasoning ability of LLMs over fine-grained scientific concepts.
comment: Accepted to TACL. Pre-MIT Press publication version
♻ ☆ SERA: Soft-Verified Efficient Repository Agents
Open-weight coding agents should hold a fundamental advantage over closed-source systems: they can be specialized to private codebases, encoding repository-specific information directly in their weights. Yet the cost and complexity of training has kept this advantage theoretical. We show it is now practical. We present Soft-Verified Efficient Repository Agents (SERA), an efficient method for training coding agents that enables the rapid and cheap creation of agents specialized to private codebases. Using only supervised finetuning (SFT), SERA achieves state-of-the-art results among fully open-source (open data, method, code) models while matching the performance of frontier open-weight models like Devstral-Small-2. Creating SERA models is 26x cheaper than reinforcement learning and 57x cheaper than previous synthetic data methods to reach equivalent performance. Our method, Soft Verified Generation (SVG), generates thousands of trajectories from a single code repository. Combined with cost-efficiency, this enables specialization to private codebases. Beyond repository specialization, we apply SVG to a larger corpus of codebases, generating over 200,000 synthetic trajectories. We use this dataset to provide detailed analysis of scaling laws, ablations, and confounding factors for training coding agents. Overall, we believe our work will greatly accelerate research on open coding agents and showcase the advantage of open-source models that can specialize to private codebases. We release SERA as the first model in Ai2's Open Coding Agents series, along with all our code, data, and Claude Code integration to support the research community.
comment: 21 main pages, 6 pages appendix
♻ ☆ Proactive defense against LLM Jailbreak
The proliferation of powerful large language models (LLMs) has necessitated robust safety alignment, yet these models remain vulnerable to evolving adversarial attacks, including multi-turn jailbreaks that iteratively search for successful queries. Current defenses, which are primarily reactive and static, often fail to handle these iterative attacks. In this paper, we introduce ProAct, a novel proactive defense framework designed to disrupt and mislead these iterative search jailbreak methods. Our core idea is to intentionally mislead these jailbreak methods into thinking that the model has been jailbroken with "spurious responses". These misleading responses provide false signals to the attacker's internal optimization loop, causing the adversarial search to terminate prematurely and effectively jailbreaking the jailbreak. By conducting extensive experiments across state-of-the-art LLMs, jailbreaking frameworks, and safety benchmarks, we demonstrate that our method consistently and significantly reduces attack success rates by up to 94% without affecting utility. When combined with other defense fraeworks, it further reduces the latest attack strategies' success rate to 0%. ProActrepresents an orthogonal defense strategy that serves as an additional guardrail to enhance LLM safety against the most effective jailbreaking attacks.
Computer Vision and Pattern Recognition 231
☆ PixelGen: Pixel Diffusion Beats Latent Diffusion with Perceptual Loss
Pixel diffusion generates images directly in pixel space in an end-to-end manner, avoiding the artifacts and bottlenecks introduced by VAEs in two-stage latent diffusion. However, it is challenging to optimize high-dimensional pixel manifolds that contain many perceptually irrelevant signals, leaving existing pixel diffusion methods lagging behind latent diffusion models. We propose PixelGen, a simple pixel diffusion framework with perceptual supervision. Instead of modeling the full image manifold, PixelGen introduces two complementary perceptual losses to guide diffusion model towards learning a more meaningful perceptual manifold. An LPIPS loss facilitates learning better local patterns, while a DINO-based perceptual loss strengthens global semantics. With perceptual supervision, PixelGen surpasses strong latent diffusion baselines. It achieves an FID of 5.11 on ImageNet-256 without classifier-free guidance using only 80 training epochs, and demonstrates favorable scaling performance on large-scale text-to-image generation with a GenEval score of 0.79. PixelGen requires no VAEs, no latent representations, and no auxiliary stages, providing a simpler yet more powerful generative paradigm. Codes are publicly available at https://github.com/Zehong-Ma/PixelGen.
comment: Project Pages: https://zehong-ma.github.io/PixelGen/
☆ Multi-head automated segmentation by incorporating detection head into the contextual layer neural network
Deep learning based auto segmentation is increasingly used in radiotherapy, but conventional models often produce anatomically implausible false positives, or hallucinations, in slices lacking target structures. We propose a gated multi-head Transformer architecture based on Swin U-Net, augmented with inter-slice context integration and a parallel detection head, which jointly performs slice-level structure detection via a multi-layer perceptron and pixel-level segmentation through a context-enhanced stream. Detection outputs gate the segmentation predictions to suppress false positives in anatomically invalid slices, and training uses slice-wise Tversky loss to address class imbalance. Experiments on the Prostate-Anatomical-Edge-Cases dataset from The Cancer Imaging Archive demonstrate that the gated model substantially outperforms a non-gated segmentation-only baseline, achieving a mean Dice loss of $0.013 \pm 0.036$ versus $0.732 \pm 0.314$, with detection probabilities strongly correlated with anatomical presence, effectively eliminating spurious segmentations. In contrast, the non-gated model exhibited higher variability and persistent false positives across all slices. These results indicate that detection-based gating enhances robustness and anatomical plausibility in automated segmentation applications, reducing hallucinated predictions without compromising segmentation quality in valid slices, and offers a promising approach for improving the reliability of clinical radiotherapy auto-contouring workflows.
comment: 8 pages, 3 figures, 1 table
☆ MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
comment: 9 pages, 8 figures
☆ RANKVIDEO: Reasoning Reranking for Text-to-Video Retrieval
Reranking is a critical component of modern retrieval systems, which typically pair an efficient first-stage retriever with a more expressive model to refine results. While large reasoning models have driven rapid progress in text-centric reranking, reasoning-based reranking for video retrieval remains underexplored. To address this gap, we introduce RANKVIDEO, a reasoning-based reranker for video retrieval that explicitly reasons over query-video pairs using video content to assess relevance. RANKVIDEO is trained using a two-stage curriculum consisting of perception-grounded supervised fine-tuning followed by reranking training that combines pointwise, pairwise, and teacher confidence distillation objectives, and is supported by a data synthesis pipeline for constructing reasoning-intensive query-video pairs. Experiments on the large-scale MultiVENT 2.0 benchmark demonstrate that RANKVIDEO consistently improves retrieval performance within a two-stage framework, yielding an average improvement of 31% on nDCG@10 and outperforming text-only and vision-language reranking alternatives, while more efficient.
☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through a dual reasoning paradigm. We formulate generation as world knowledge-enhanced planning to inject implicit constraints, and leverage editing capabilities for fine-grained visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared representation, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for planning, alongside an agent-generated corpus for visual self-correction. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
☆ SelvaMask: Segmenting Trees in Tropical Forests and Beyond
Tropical forests harbor most of the planet's tree biodiversity and are critical to global ecological balance. Canopy trees in particular play a disproportionate role in carbon storage and functioning of these ecosystems. Studying canopy trees at scale requires accurate delineation of individual tree crowns, typically performed using high-resolution aerial imagery. Despite advances in transformer-based models for individual tree crown segmentation, performance remains low in most forests, especially tropical ones. To this end, we introduce SelvaMask, a new tropical dataset containing over 8,800 manually delineated tree crowns across three Neotropical forest sites in Panama, Brazil, and Ecuador. SelvaMask features comprehensive annotations, including an inter-annotator agreement evaluation, capturing the dense structure of tropical forests and highlighting the difficulty of the task. Leveraging this benchmark, we propose a modular detection-segmentation pipeline that adapts vision foundation models (VFMs), using domain-specific detection-prompter. Our approach reaches state-of-the-art performance, outperforming both zero-shot generalist models and fully supervised end-to-end methods in dense tropical forests. We validate these gains on external tropical and temperate datasets, demonstrating that SelvaMask serves as both a challenging benchmark and a key enabler for generalized forest monitoring. Our code and dataset will be released publicly.
comment: 22 pages, 8 figures
☆ Catalyst: Out-of-Distribution Detection via Elastic Scaling
Out-of-distribution (OOD) detection is critical for the safe deployment of deep neural networks. State-of-the-art post-hoc methods typically derive OOD scores from the output logits or penultimate feature vector obtained via global average pooling (GAP). We contend that this exclusive reliance on the logit or feature vector discards a rich, complementary signal: the raw channel-wise statistics of the pre-pooling feature map lost in GAP. In this paper, we introduce Catalyst, a post-hoc framework that exploits these under-explored signals. Catalyst computes an input-dependent scaling factor ($γ$) on-the-fly from these raw statistics (e.g., mean, standard deviation, and maximum activation). This $γ$ is then fused with the existing baseline score, multiplicatively modulating it -- an ``elastic scaling'' -- to push the ID and OOD distributions further apart. We demonstrate Catalyst is a generalizable framework: it seamlessly integrates with logit-based methods (e.g., Energy, ReAct, SCALE) and also provides a significant boost to distance-based detectors like KNN. As a result, Catalyst achieves substantial and consistent performance gains, reducing the average False Positive Rate by 32.87 on CIFAR-10 (ResNet-18), 27.94% on CIFAR-100 (ResNet-18), and 22.25% on ImageNet (ResNet-50). Our results highlight the untapped potential of pre-pooling statistics and demonstrate that Catalyst is complementary to existing OOD detection approaches.
☆ ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images.We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
☆ SoMA: A Real-to-Sim Neural Simulator for Robotic Soft-body Manipulation
Simulating deformable objects under rich interactions remains a fundamental challenge for real-to-sim robot manipulation, with dynamics jointly driven by environmental effects and robot actions. Existing simulators rely on predefined physics or data-driven dynamics without robot-conditioned control, limiting accuracy, stability, and generalization. This paper presents SoMA, a 3D Gaussian Splat simulator for soft-body manipulation. SoMA couples deformable dynamics, environmental forces, and robot joint actions in a unified latent neural space for end-to-end real-to-sim simulation. Modeling interactions over learned Gaussian splats enables controllable, stable long-horizon manipulation and generalization beyond observed trajectories without predefined physical models. SoMA improves resimulation accuracy and generalization on real-world robot manipulation by 20%, enabling stable simulation of complex tasks such as long-horizon cloth folding.
comment: Project page: https://city-super.github.io/SoMA/
Superman: Unifying Skeleton and Vision for Human Motion Perception and Generation
Human motion analysis tasks, such as temporal 3D pose estimation, motion prediction, and motion in-betweening, play an essential role in computer vision. However, current paradigms suffer from severe fragmentation. First, the field is split between ``perception'' models that understand motion from video but only output text, and ``generation'' models that cannot perceive from raw visual input. Second, generative MLLMs are often limited to single-frame, static poses using dense, parametric SMPL models, failing to handle temporal motion. Third, existing motion vocabularies are built from skeleton data alone, severing the link to the visual domain. To address these challenges, we introduce Superman, a unified framework that bridges visual perception with temporal, skeleton-based motion generation. Our solution is twofold. First, to overcome the modality disconnect, we propose a Vision-Guided Motion Tokenizer. Leveraging the natural geometric alignment between 3D skeletons and visual data, this module pioneers robust joint learning from both modalities, creating a unified, cross-modal motion vocabulary. Second, grounded in this motion language, a single, unified MLLM architecture is trained to handle all tasks. This module flexibly processes diverse, temporal inputs, unifying 3D skeleton pose estimation from video (perception) with skeleton-based motion prediction and in-betweening (generation). Extensive experiments on standard benchmarks, including Human3.6M, demonstrate that our unified method achieves state-of-the-art or competitive performance across all motion tasks. This showcases a more efficient and scalable path for generative motion analysis using skeletons.
☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: 14 pages, 8 figures
☆ Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image $x^\ast$ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image $x^{p*}$. Although $x^{p*}$ is reasonably close to $x^\ast$, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image $x^+$ is closer to $x^\ast$ than $x^{p*}$. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates $K$ new images as a function of $x^{p*}$, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of $K$ images. We show that within $B$ rounds of user feedback, it is possible to arrive much closer to $x^\ast$, even though the generative model has no information about $x^\ast$. Qualitative scores from $30$ users, combined with quantitative metrics compared across $5$ baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
☆ Unified Personalized Reward Model for Vision Generation
Recent advancements in multimodal reward models (RMs) have significantly propelled the development of visual generation. Existing frameworks typically adopt Bradley-Terry-style preference modeling or leverage generative VLMs as judges, and subsequently optimize visual generation models via reinforcement learning. However, current RMs suffer from inherent limitations: they often follow a one-size-fits-all paradigm that assumes a monolithic preference distribution or relies on fixed evaluation rubrics. As a result, they are insensitive to content-specific visual cues, leading to systematic misalignment with subjective and context-dependent human preferences. To this end, inspired by human assessment, we propose UnifiedReward-Flex, a unified personalized reward model for vision generation that couples reward modeling with flexible and context-adaptive reasoning. Specifically, given a prompt and the generated visual content, it first interprets the semantic intent and grounds on visual evidence, then dynamically constructs a hierarchical assessment by instantiating fine-grained criteria under both predefined and self-generated high-level dimensions. Our training pipeline follows a two-stage process: (1) we first distill structured, high-quality reasoning traces from advanced closed-source VLMs to bootstrap SFT, equipping the model with flexible and context-adaptive reasoning behaviors; (2) we then perform direct preference optimization (DPO) on carefully curated preference pairs to further strengthen reasoning fidelity and discriminative alignment. To validate the effectiveness, we integrate UnifiedReward-Flex into the GRPO framework for image and video synthesis, and extensive results demonstrate its superiority.
comment: Website: https://codegoat24.github.io/UnifiedReward/flex
☆ Uncertainty-Aware Image Classification In Biomedical Imaging Using Spectral-normalized Neural Gaussian Processes
Accurate histopathologic interpretation is key for clinical decision-making; however, current deep learning models for digital pathology are often overconfident and poorly calibrated in out-of-distribution (OOD) settings, which limit trust and clinical adoption. Safety-critical medical imaging workflows benefit from intrinsic uncertainty-aware properties that can accurately reject OOD input. We implement the Spectral-normalized Neural Gaussian Process (SNGP), a set of lightweight modifications that apply spectral normalization and replace the final dense layer with a Gaussian process layer to improve single-model uncertainty estimation and OOD detection. We evaluate SNGP vs. deterministic and MonteCarlo dropout on six datasets across three biomedical classification tasks: white blood cells, amyloid plaques, and colorectal histopathology. SNGP has comparable in-distribution performance while significantly improving uncertainty estimation and OOD detection. Thus, SNGP or related models offer a useful framework for uncertainty-aware classification in digital pathology, supporting safe deployment and building trust with pathologists.
comment: Accepted for publication at the IEEE International Symposium on Biomedical Imaging (ISBI) 2026
☆ NAB: Neural Adaptive Binning for Sparse-View CT reconstruction
Computed Tomography (CT) plays a vital role in inspecting the internal structures of industrial objects. Furthermore, achieving high-quality CT reconstruction from sparse views is essential for reducing production costs. While classic implicit neural networks have shown promising results for sparse reconstruction, they are unable to leverage shape priors of objects. Motivated by the observation that numerous industrial objects exhibit rectangular structures, we propose a novel \textbf{N}eural \textbf{A}daptive \textbf{B}inning (\textbf{NAB}) method that effectively integrates rectangular priors into the reconstruction process. Specifically, our approach first maps coordinate space into a binned vector space. This mapping relies on an innovative binning mechanism based on differences between shifted hyperbolic tangent functions, with our extension enabling rotations around the input-plane normal vector. The resulting representations are then processed by a neural network to predict CT attenuation coefficients. This design enables end-to-end optimization of the encoding parameters -- including position, size, steepness, and rotation -- via gradient flow from the projection data, thus enhancing reconstruction accuracy. By adjusting the smoothness of the binning function, NAB can generalize to objects with more complex geometries. This research provides a new perspective on integrating shape priors into neural network-based reconstruction. Extensive experiments demonstrate that NAB achieves superior performance on two industrial datasets. It also maintains robust on medical datasets when the binning function is extended to more general expression. The code will be made available.
☆ Implicit neural representation of textures
Implicit neural representation (INR) has proven to be accurate and efficient in various domains. In this work, we explore how different neural networks can be designed as a new texture INR, which operates in a continuous manner rather than a discrete one over the input UV coordinate space. Through thorough experiments, we demonstrate that these INRs perform well in terms of image quality, with considerable memory usage and rendering inference time. We analyze the balance between these objectives. In addition, we investigate various related applications in real-time rendering and down-stream tasks, e.g. mipmap fitting and INR-space generation.
comment: Albert Kwok and Zheyuan Hu contributed equally to this work
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
LongVPO: From Anchored Cues to Self-Reasoning for Long-Form Video Preference Optimization NeurIPS 2025
We present LongVPO, a novel two-stage Direct Preference Optimization framework that enables short-context vision-language models to robustly understand ultra-long videos without any long-video annotations. In Stage 1, we synthesize preference triples by anchoring questions to individual short clips, interleaving them with distractors, and applying visual-similarity and question-specificity filtering to mitigate positional bias and ensure unambiguous supervision. We also approximate the reference model's scoring over long contexts by evaluating only the anchor clip, reducing computational overhead. In Stage 2, we employ a recursive captioning pipeline on long videos to generate scene-level metadata, then use a large language model to craft multi-segment reasoning queries and dispreferred responses, aligning the model's preferences through multi-segment reasoning tasks. With only 16K synthetic examples and no costly human labels, LongVPO outperforms the state-of-the-art open-source models on multiple long-video benchmarks, while maintaining strong short-video performance (e.g., on MVBench), offering a scalable paradigm for efficient long-form video understanding.
comment: NeurIPS 2025
☆ VQ-Style: Disentangling Style and Content in Motion with Residual Quantized Representations
Human motion data is inherently rich and complex, containing both semantic content and subtle stylistic features that are challenging to model. We propose a novel method for effective disentanglement of the style and content in human motion data to facilitate style transfer. Our approach is guided by the insight that content corresponds to coarse motion attributes while style captures the finer, expressive details. To model this hierarchy, we employ Residual Vector Quantized Variational Autoencoders (RVQ-VAEs) to learn a coarse-to-fine representation of motion. We further enhance the disentanglement by integrating contrastive learning and a novel information leakage loss with codebook learning to organize the content and the style across different codebooks. We harness this disentangled representation using our simple and effective inference-time technique Quantized Code Swapping, which enables motion style transfer without requiring any fine-tuning for unseen styles. Our framework demonstrates strong versatility across multiple inference applications, including style transfer, style removal, and motion blending.
☆ Enhancing Indoor Occupancy Prediction via Sparse Query-Based Multi-Level Consistent Knowledge Distillation
Occupancy prediction provides critical geometric and semantic understanding for robotics but faces efficiency-accuracy trade-offs. Current dense methods suffer computational waste on empty voxels, while sparse query-based approaches lack robustness in diverse and complex indoor scenes. In this paper, we propose DiScene, a novel sparse query-based framework that leverages multi-level distillation to achieve efficient and robust occupancy prediction. In particular, our method incorporates two key innovations: (1) a Multi-level Consistent Knowledge Distillation strategy, which transfers hierarchical representations from large teacher models to lightweight students through coordinated alignment across four levels, including encoder-level feature alignment, query-level feature matching, prior-level spatial guidance, and anchor-level high-confidence knowledge transfer and (2) a Teacher-Guided Initialization policy, employing optimized parameter warm-up to accelerate model convergence. Validated on the Occ-Scannet benchmark, DiScene achieves 23.2 FPS without depth priors while outperforming our baseline method, OPUS, by 36.1% and even better than the depth-enhanced version, OPUS†. With depth integration, DiScene† attains new SOTA performance, surpassing EmbodiedOcc by 3.7% with 1.62$\times$ faster inference speed. Furthermore, experiments on the Occ3D-nuScenes benchmark and in-the-wild scenarios demonstrate the versatility of our approach in various environments. Code and models can be accessed at https://github.com/getterupper/DiScene.
comment: Accepted by RA-L
☆ Segment to Focus: Guiding Latent Action Models in the Presence of Distractors
Latent Action Models (LAMs) learn to extract action-relevant representations solely from raw observations, enabling reinforcement learning from unlabelled videos and significantly scaling available training data. However, LAMs face a critical challenge in disentangling action-relevant features from action-correlated noise (e.g., background motion). Failing to filter these distractors causes LAMs to capture spurious correlations and build sub-optimal latent action spaces. In this paper, we introduce MaskLAM -- a lightweight modification to LAM training to mitigate this issue by incorporating visual agent segmentation. MaskLAM utilises segmentation masks from pretrained foundation models to weight the LAM reconstruction loss, thereby prioritising salient information over background elements while requiring no architectural modifications. We demonstrate the effectiveness of our method on continuous-control MuJoCo tasks, modified with action-correlated background noise. Our approach yields up to a 4x increase in accrued rewards compared to standard baselines and a 3x improvement in the latent action quality, as evidenced by linear probe evaluation.
☆ LiFlow: Flow Matching for 3D LiDAR Scene Completion
In autonomous driving scenarios, the collected LiDAR point clouds can be challenged by occlusion and long-range sparsity, limiting the perception of autonomous driving systems. Scene completion methods can infer the missing parts of incomplete 3D LiDAR scenes. Recent methods adopt local point-level denoising diffusion probabilistic models, which require predicting Gaussian noise, leading to a mismatch between training and inference initial distributions. This paper introduces the first flow matching framework for 3D LiDAR scene completion, improving upon diffusion-based methods by ensuring consistent initial distributions between training and inference. The model employs a nearest neighbor flow matching loss and a Chamfer distance loss to enhance both local structure and global coverage in the alignment of point clouds. LiFlow achieves state-of-the-art performance across multiple metrics. Code: https://github.com/matteandre/LiFlow.
☆ Show, Don't Tell: Morphing Latent Reasoning into Image Generation
Text-to-image (T2I) generation has achieved remarkable progress, yet existing methods often lack the ability to dynamically reason and refine during generation--a hallmark of human creativity. Current reasoning-augmented paradigms most rely on explicit thought processes, where intermediate reasoning is decoded into discrete text at fixed steps with frequent image decoding and re-encoding, leading to inefficiencies, information loss, and cognitive mismatches. To bridge this gap, we introduce LatentMorph, a novel framework that seamlessly integrates implicit latent reasoning into the T2I generation process. At its core, LatentMorph introduces four lightweight components: (i) a condenser for summarizing intermediate generation states into compact visual memory, (ii) a translator for converting latent thoughts into actionable guidance, (iii) a shaper for dynamically steering next image token predictions, and (iv) an RL-trained invoker for adaptively determining when to invoke reasoning. By performing reasoning entirely in continuous latent spaces, LatentMorph avoids the bottlenecks of explicit reasoning and enables more adaptive self-refinement. Extensive experiments demonstrate that LatentMorph (I) enhances the base model Janus-Pro by $16\%$ on GenEval and $25\%$ on T2I-CompBench; (II) outperforms explicit paradigms (e.g., TwiG) by $15\%$ and $11\%$ on abstract reasoning tasks like WISE and IPV-Txt, (III) while reducing inference time by $44\%$ and token consumption by $51\%$; and (IV) exhibits $71\%$ cognitive alignment with human intuition on reasoning invocation.
comment: Code: https://github.com/EnVision-Research/LatentMorph
☆ Evaluating OCR Performance for Assistive Technology: Effects of Walking Speed, Camera Placement, and Camera Type
Optical character recognition (OCR), which converts printed or handwritten text into machine-readable form, is widely used in assistive technology for people with blindness and low vision. Yet, most evaluations rely on static datasets that do not reflect the challenges of mobile use. In this study, we systematically evaluated OCR performance under both static and dynamic conditions. Static tests measured detection range across distances of 1-7 meters and viewing angles of 0-75 degrees horizontally. Dynamic tests examined the impact of motion by varying walking speed from slow (0.8 m/s) to very fast (1.8 m/s) and comparing three camera mounting positions: head-mounted, shoulder-mounted, and hand-held. We evaluated both a smartphone and smart glasses, using the phone's main and ultra-wide cameras. Four OCR engines were benchmarked to assess accuracy at different distances and viewing angles: Google Vision, PaddleOCR 3.0, EasyOCR, and Tesseract. PaddleOCR 3.0 was then used to evaluate accuracy at different walking speeds. Accuracy was computed at the character level using the Levenshtein ratio against manually defined ground truth. Results showed that recognition accuracy declined with increased walking speed and wider viewing angles. Google Vision achieved the highest overall accuracy, with PaddleOCR close behind as the strongest open-source alternative. Across devices, the phone's main camera achieved the highest accuracy, and a shoulder-mounted placement yielded the highest average among body positions; however, differences among shoulder, head, and hand were not statistically significant.
☆ MIRROR: Manifold Ideal Reference ReconstructOR for Generalizable AI-Generated Image Detection
High-fidelity generative models have narrowed the perceptual gap between synthetic and real images, posing serious threats to media security. Most existing AI-generated image (AIGI) detectors rely on artifact-based classification and struggle to generalize to evolving generative traces. In contrast, human judgment relies on stable real-world regularities, with deviations from the human cognitive manifold serving as a more generalizable signal of forgery. Motivated by this insight, we reformulate AIGI detection as a Reference-Comparison problem that verifies consistency with the real-image manifold rather than fitting specific forgery cues. We propose MIRROR (Manifold Ideal Reference ReconstructOR), a framework that explicitly encodes reality priors using a learnable discrete memory bank. MIRROR projects an input into a manifold-consistent ideal reference via sparse linear combination, and uses the resulting residuals as robust detection signals. To evaluate whether detectors reach the "superhuman crossover" required to replace human experts, we introduce the Human-AIGI benchmark, featuring a psychophysically curated human-imperceptible subset. Across 14 benchmarks, MIRROR consistently outperforms prior methods, achieving gains of 2.1% on six standard benchmarks and 8.1% on seven in-the-wild benchmarks. On Human-AIGI, MIRROR reaches 89.6% accuracy across 27 generators, surpassing both lay users and visual experts, and further approaching the human perceptual limit as pretrained backbones scale. The code is publicly available at: https://github.com/349793927/MIRROR
☆ LangMap: A Hierarchical Benchmark for Open-Vocabulary Goal Navigation
The relationships between objects and language are fundamental to meaningful communication between humans and AI, and to practically useful embodied intelligence. We introduce HieraNav, a multi-granularity, open-vocabulary goal navigation task where agents interpret natural language instructions to reach targets at four semantic levels: scene, room, region, and instance. To this end, we present Language as a Map (LangMap), a large-scale benchmark built on real-world 3D indoor scans with comprehensive human-verified annotations and tasks spanning these levels. LangMap provides region labels, discriminative region descriptions, discriminative instance descriptions covering 414 object categories, and over 18K navigation tasks. Each target features both concise and detailed descriptions, enabling evaluation across different instruction styles. LangMap achieves superior annotation quality, outperforming GOAT-Bench by 23.8% in discriminative accuracy using four times fewer words. Comprehensive evaluations of zero-shot and supervised models on LangMap reveal that richer context and memory improve success, while long-tailed, small, context-dependent, and distant goals, as well as multi-goal completion, remain challenging. HieraNav and LangMap establish a rigorous testbed for advancing language-driven embodied navigation. Project: https://bo-miao.github.io/LangMap
☆ Causal Forcing: Autoregressive Diffusion Distillation Done Right for High-Quality Real-Time Interactive Video Generation
To achieve real-time interactive video generation, current methods distill pretrained bidirectional video diffusion models into few-step autoregressive (AR) models, facing an architectural gap when full attention is replaced by causal attention. However, existing approaches do not bridge this gap theoretically. They initialize the AR student via ODE distillation, which requires frame-level injectivity, where each noisy frame must map to a unique clean frame under the PF-ODE of an AR teacher. Distilling an AR student from a bidirectional teacher violates this condition, preventing recovery of the teacher's flow map and instead inducing a conditional-expectation solution, which degrades performance. To address this issue, we propose Causal Forcing that uses an AR teacher for ODE initialization, thereby bridging the architectural gap. Empirical results show that our method outperforms all baselines across all metrics, surpassing the SOTA Self Forcing by 19.3\% in Dynamic Degree, 8.7\% in VisionReward, and 16.7\% in Instruction Following. Project page and the code: \href{https://thu-ml.github.io/CausalForcing.github.io/}{https://thu-ml.github.io/CausalForcing.github.io/}
comment: Project page and the code: \href{https://thu-ml.github.io/CausalForcing.github.io/}{https://thu-ml.github.io/CausalForcing.github.io/}
☆ MAIN-VLA: Modeling Abstraction of Intention and eNvironment for Vision-Language-Action Models
Despite significant progress in Visual-Language-Action (VLA), in highly complex and dynamic environments that involve real-time unpredictable interactions (such as 3D open worlds and large-scale PvP games), existing approaches remain inefficient at extracting action-critical signals from redundant sensor streams. To tackle this, we introduce MAIN-VLA, a framework that explicitly Models the Abstraction of Intention and eNvironment to ground decision-making in deep semantic alignment rather than superficial pattern matching. Specifically, our Intention Abstraction (IA) extracts verbose linguistic instructions and their associated reasoning into compact, explicit semantic primitives, while the Environment Semantics Abstraction (ESA) projects overwhelming visual streams into a structured, topological affordance representation. Furthermore, aligning these two abstract modalities induces an emergent attention-concentration effect, enabling a parameter-free token-pruning strategy that filters out perceptual redundancy without degrading performance. Extensive experiments in open-world Minecraft and large-scale PvP environments (Game for Peace and Valorant) demonstrate that MAIN-VLA sets a new state-of-the-art, which achieves superior decision quality, stronger generalization, and cutting-edge inference efficiency.
☆ SSI-DM: Singularity Skipping Inversion of Diffusion Models
Inverting real images into the noise space is essential for editing tasks using diffusion models, yet existing methods produce non-Gaussian noise with poor editability due to the inaccuracy in early noising steps. We identify the root cause: a mathematical singularity that renders inversion fundamentally ill-posed. We propose Singularity Skipping Inversion of Diffusion Models (SSI-DM), which bypasses this singular region by adding small noise before standard inversion. This simple approach produces inverted noise with natural Gaussian properties while maintaining reconstruction fidelity. As a plug-and-play technique compatible with general diffusion models, our method achieves superior performance on public image datasets for reconstruction and interpolation tasks, providing a principled and efficient solution to diffusion model inversion.
☆ Learning Topology-Aware Implicit Field for Unified Pulmonary Tree Modeling with Incomplete Topological Supervision
Pulmonary trees extracted from CT images frequently exhibit topological incompleteness, such as missing or disconnected branches, which substantially degrades downstream anatomical analysis and limits the applicability of existing pulmonary tree modeling pipelines. Current approaches typically rely on dense volumetric processing or explicit graph reasoning, leading to limited efficiency and reduced robustness under realistic structural corruption. We propose TopoField, a topology-aware implicit modeling framework that treats topology repair as a first-class modeling problem and enables unified multi-task inference for pulmonary tree analysis. TopoField represents pulmonary anatomy using sparse surface and skeleton point clouds and learns a continuous implicit field that supports topology repair without relying on complete or explicit disconnection annotations, by training on synthetically introduced structural disruptions over \textit{already} incomplete trees. Building upon the repaired implicit representation, anatomical labeling and lung segment reconstruction are jointly inferred through task-specific implicit functions within a single forward pass.Extensive experiments on the Lung3D+ dataset demonstrate that TopoField consistently improves topological completeness and achieves accurate anatomical labeling and lung segment reconstruction under challenging incomplete scenarios. Owing to its implicit formulation, TopoField attains high computational efficiency, completing all tasks in just over one second per case, highlighting its practicality for large-scale and time-sensitive clinical applications. Code and data will be available at https://github.com/HINTLab/TopoField.
comment: 18 pages, 7 figures
☆ Vision-DeepResearch Benchmark: Rethinking Visual and Textual Search for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have advanced VQA and now support Vision-DeepResearch systems that use search engines for complex visual-textual fact-finding. However, evaluating these visual and textual search abilities is still difficult, and existing benchmarks have two major limitations. First, existing benchmarks are not visual search-centric: answers that should require visual search are often leaked through cross-textual cues in the text questions or can be inferred from the prior world knowledge in current MLLMs. Second, overly idealized evaluation scenario: On the image-search side, the required information can often be obtained via near-exact matching against the full image, while the text-search side is overly direct and insufficiently challenging. To address these issues, we construct the Vision-DeepResearch benchmark (VDR-Bench) comprising 2,000 VQA instances. All questions are created via a careful, multi-stage curation pipeline and rigorous expert review, designed to assess the behavior of Vision-DeepResearch systems under realistic real-world conditions. Moreover, to address the insufficient visual retrieval capabilities of current MLLMs, we propose a simple multi-round cropped-search workflow. This strategy is shown to effectively improve model performance in realistic visual retrieval scenarios. Overall, our results provide practical guidance for the design of future multimodal deep-research systems. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ CIEC: Coupling Implicit and Explicit Cues for Multimodal Weakly Supervised Manipulation Localization
To mitigate the threat of misinformation, multimodal manipulation localization has garnered growing attention. Consider that current methods rely on costly and time-consuming fine-grained annotations, such as patch/token-level annotations. This paper proposes a novel framework named Coupling Implicit and Explicit Cues (CIEC), which aims to achieve multimodal weakly-supervised manipulation localization for image-text pairs utilizing only coarse-grained image/sentence-level annotations. It comprises two branches, image-based and text-based weakly-supervised localization. For the former, we devise the Textual-guidance Refine Patch Selection (TRPS) module. It integrates forgery cues from both visual and textual perspectives to lock onto suspicious regions aided by spatial priors. Followed by the background silencing and spatial contrast constraints to suppress interference from irrelevant areas. For the latter, we devise the Visual-deviation Calibrated Token Grounding (VCTG) module. It focuses on meaningful content words and leverages relative visual bias to assist token localization. Followed by the asymmetric sparse and semantic consistency constraints to mitigate label noise and ensure reliability. Extensive experiments demonstrate the effectiveness of our CIEC, yielding results comparable to fully supervised methods on several evaluation metrics.
☆ Lung Nodule Image Synthesis Driven by Two-Stage Generative Adversarial Networks
The limited sample size and insufficient diversity of lung nodule CT datasets severely restrict the performance and generalization ability of detection models. Existing methods generate images with insufficient diversity and controllability, suffering from issues such as monotonous texture features and distorted anatomical structures. Therefore, we propose a two-stage generative adversarial network (TSGAN) to enhance the diversity and spatial controllability of synthetic data by decoupling the morphological structure and texture features of lung nodules. In the first stage, StyleGAN is used to generate semantic segmentation mask images, encoding lung nodules and tissue backgrounds to control the anatomical structure of lung nodule images; The second stage uses the DL-Pix2Pix model to translate the mask map into CT images, employing local importance attention to capture local features, while utilizing dynamic weight multi-head window attention to enhance the modeling capability of lung nodule texture and background. Compared to the original dataset, the accuracy improved by 4.6% and mAP by 4% on the LUNA16 dataset. Experimental results demonstrate that TSGAN can enhance the quality of synthetic images and the performance of detection models.
☆ Real-Time 2D LiDAR Object Detection Using Three-Frame RGB Scan Encoding
Indoor service robots need perception that is robust, more privacy-friendly than RGB video, and feasible on embedded hardware. We present a camera-free 2D LiDAR object detection pipeline that encodes short-term temporal context by stacking three consecutive scans as RGB channels, yielding a compact YOLOv8n input without occupancy-grid construction while preserving angular structure and motion cues. Evaluated in Webots across 160 randomized indoor scenarios with strict scenario-level holdout, the method achieves 98.4% mAP@0.5 (0.778 mAP@0.5:0.95) with 94.9% precision and 94.7% recall on four object classes. On a Raspberry Pi 5, it runs in real time with a mean post-warm-up end-to-end latency of 47.8ms per frame, including scan encoding and postprocessing. Relative to a closely related occupancy-grid LiDAR-YOLO pipeline reported on the same platform, the proposed representation is associated with substantially lower reported end-to-end latency. Although results are simulation-based, they suggest that lightweight temporal encoding can enable accurate and real-time LiDAR-only detection for embedded indoor robotics without capturing RGB appearance.
comment: 6 pages, 6 figures, submitted to IEEE SAS 2026
☆ Reg4Pru: Regularisation Through Random Token Routing for Token Pruning
Transformers are widely adopted in modern vision models due to their strong ability to scale with dataset size and generalisability. However, this comes with a major drawback: computation scales quadratically to the total number of tokens. Numerous methods have been proposed to mitigate this. For example, we consider token pruning with reactivating tokens from preserved representations, but the increased computational efficiency of this method results in decreased stability from the preserved representations, leading to poorer dense prediction performance at deeper layers. In this work, we introduce Reg4Pru, a training regularisation technique that mitigates token-pruning performance loss for segmentation. We compare our models on the FIVES blood vessel segmentation dataset and find that Reg4Pru improves average precision by an absolute 46% compared to the same model trained without routing. This increase is observed using a configuration that achieves a 29% relative speedup in wall-clock time compared to the non-pruned baseline. These findings indicate that Reg4Pru is a valuable regulariser for token reduction strategies.
comment: 11 pages, 7 figures
☆ LoopViT: Scaling Visual ARC with Looped Transformers
Recent advances in visual reasoning have leveraged vision transformers to tackle the ARC-AGI benchmark. However, we argue that the feed-forward architecture, where computational depth is strictly bound to parameter size, falls short of capturing the iterative, algorithmic nature of human induction. In this work, we propose a recursive architecture called Loop-ViT, which decouples reasoning depth from model capacity through weight-tied recurrence. Loop-ViT iterates a weight-tied Hybrid Block, combining local convolutions and global attention, to form a latent chain of thought. Crucially, we introduce a parameter-free Dynamic Exit mechanism based on predictive entropy: the model halts inference when its internal state ``crystallizes" into a low-uncertainty attractor. Empirical results on the ARC-AGI-1 benchmark validate this perspective: our 18M model achieves 65.8% accuracy, outperforming massive 73M-parameter ensembles. These findings demonstrate that adaptive iterative computation offers a far more efficient scaling axis for visual reasoning than simply increasing network width. The code is available at https://github.com/WenjieShu/LoopViT.
comment: 8 pages, 11 figures
☆ Deep learning enables urban change profiling through alignment of historical maps
Prior to modern Earth observation technologies, historical maps provide a unique record of long-term urban transformation and offer a lens on the evolving identity of cities. However, extracting consistent and fine-grained change information from historical map series remains challenging due to spatial misalignment, cartographic variation, and degrading document quality, limiting most analyses to small-scale or qualitative approaches. We propose a fully automated, deep learning-based framework for fine-grained urban change analysis from large collections of historical maps, built on a modular design that integrates dense map alignment, multi-temporal object detection, and change profiling. This framework shifts the analysis of historical maps from ad hoc visual comparison toward systematic, quantitative characterization of urban change. Experiments demonstrate the robust performance of the proposed alignment and object detection methods. Applied to Paris between 1868 and 1937, the framework reveals the spatial and temporal heterogeneity in urban transformation, highlighting its relevance for research in the social sciences and humanities. The modular design of our framework further supports adaptation to diverse cartographic contexts and downstream applications.
comment: 40 pages
☆ FD-VLA: Force-Distilled Vision-Language-Action Model for Contact-Rich Manipulation
Force sensing is a crucial modality for Vision-Language-Action (VLA) frameworks, as it enables fine-grained perception and dexterous manipulation in contact-rich tasks. We present Force-Distilled VLA (FD-VLA), a novel framework that integrates force awareness into contact-rich manipulation without relying on physical force sensors. The core of our approach is a Force Distillation Module (FDM), which distills force by mapping a learnable query token, conditioned on visual observations and robot states, into a predicted force token aligned with the latent representation of actual force signals. During inference, this distilled force token is injected into the pretrained VLM, enabling force-aware reasoning while preserving the integrity of its vision-language semantics. This design provides two key benefits: first, it allows practical deployment across a wide range of robots that lack expensive or fragile force-torque sensors, thereby reducing hardware cost and complexity; second, the FDM introduces an additional force-vision-state fusion prior to the VLM, which improves cross-modal alignment and enhances perception-action robustness in contact-rich scenarios. Surprisingly, our physical experiments show that the distilled force token outperforms direct sensor force measurements as well as other baselines, which highlights the effectiveness of this force-distilled VLA approach.
☆ Eliminating Registration Bias in Synthetic CT Generation: A Physics-Based Simulation Framework
Supervised synthetic CT generation from CBCT requires registered training pairs, yet perfect registration between separately acquired scans remains unattainable. This registration bias propagates into trained models and corrupts standard evaluation metrics. This may suggest that superior benchmark performance indicates better reproduction of registration artifacts rather than anatomical fidelity. We propose physics-based CBCT simulation to provide geometrically aligned training pairs by construction, combined with evaluation using geometric alignment metrics against input CBCT rather than biased ground truth. On two independent pelvic datasets, models trained on synthetic data achieved superior geometric alignment (Normalized Mutual Information: 0.31 vs 0.22) despite lower conventional intensity scores. Intensity metrics showed inverted correlations with clinical assessment for deformably registered data, while Normalized Mutual Information consistently predicted observer preference across registration methodologies (rho = 0.31, p < 0.001). Clinical observers preferred synthetic-trained outputs in 87% of cases, demonstrating that geometric fidelity, not intensity agreement with biased ground truth, aligns with clinical requirements.
☆ Toxicity Assessment in Preclinical Histopathology via Class-Aware Mahalanobis Distance for Known and Novel Anomalies
Drug-induced toxicity remains a leading cause of failure in preclinical development and early clinical trials. Detecting adverse effects at an early stage is critical to reduce attrition and accelerate the development of safe medicines. Histopathological evaluation remains the gold standard for toxicity assessment, but it relies heavily on expert pathologists, creating a bottleneck for large-scale screening. To address this challenge, we introduce an AI-based anomaly detection framework for histopathological whole-slide images (WSIs) in rodent livers from toxicology studies. The system identifies healthy tissue and known pathologies (anomalies) for which training data is available. In addition, it can detect rare pathologies without training data as out-of-distribution (OOD) findings. We generate a novel dataset of pixelwise annotations of healthy tissue and known pathologies and use this data to fine-tune a pre-trained Vision Transformer (DINOv2) via Low-Rank Adaptation (LoRA) in order to do tissue segmentation. Finally, we extract features for OOD detection using the Mahalanobis distance. To better account for class-dependent variability in histological data, we propose the use of class-specific thresholds. We optimize the thresholds using the mean of the false negative and false positive rates, resulting in only 0.16\% of pathological tissue classified as healthy and 0.35\% of healthy tissue classified as pathological. Applied to mouse liver WSIs with known toxicological findings, the framework accurately detects anomalies, including rare OOD morphologies. This work demonstrates the potential of AI-driven histopathology to support preclinical workflows, reduce late-stage failures, and improve efficiency in drug development.
☆ MLV-Edit: Towards Consistent and Highly Efficient Editing for Minute-Level Videos
We propose MLV-Edit, a training-free, flow-based framework that address the unique challenges of minute-level video editing. While existing techniques excel in short-form video manipulation, scaling them to long-duration videos remains challenging due to prohibitive computational overhead and the difficulty of maintaining global temporal consistency across thousands of frames. To address this, MLV-Edit employs a divide-and-conquer strategy for segment-wise editing, facilitated by two core modules: Velocity Blend rectifies motion inconsistencies at segment boundaries by aligning the flow fields of adjacent chunks, eliminating flickering and boundary artifacts commonly observed in fragmented video processing; and Attention Sink anchors local segment features to global reference frames, effectively suppressing cumulative structural drift. Extensive quantitative and qualitative experiments demonstrate that MLV-Edit consistently outperforms state-of-the-art methods in terms of temporal stability and semantic fidelity.
☆ Enhancing Diffusion-Based Quantitatively Controllable Image Generation via Matrix-Form EDM and Adaptive Vicinal Training
Continuous Conditional Diffusion Model (CCDM) is a diffusion-based framework designed to generate high-quality images conditioned on continuous regression labels. Although CCDM has demonstrated clear advantages over prior approaches across a range of datasets, it still exhibits notable limitations and has recently been surpassed by a GAN-based method, namely CcGAN-AVAR. These limitations mainly arise from its reliance on an outdated diffusion framework and its low sampling efficiency due to long sampling trajectories. To address these issues, we propose an improved CCDM framework, termed iCCDM, which incorporates the more advanced \textit{Elucidated Diffusion Model} (EDM) framework with substantial modifications to improve both generation quality and sampling efficiency. Specifically, iCCDM introduces a novel matrix-form EDM formulation together with an adaptive vicinal training strategy. Extensive experiments on four benchmark datasets, spanning image resolutions from $64\times64$ to $256\times256$, demonstrate that iCCDM consistently outperforms existing methods, including state-of-the-art large-scale text-to-image diffusion models (e.g., Stable Diffusion 3, FLUX.1, and Qwen-Image), achieving higher generation quality while significantly reducing sampling cost.
☆ An Empirical Study of World Model Quantization
World models learn an internal representation of environment dynamics, enabling agents to simulate and reason about future states within a compact latent space for tasks such as planning, prediction, and inference. However, running world models rely on hevay computational cost and memory footprint, making model quantization essential for efficient deployment. To date, the effects of post-training quantization (PTQ) on world models remain largely unexamined. In this work, we present a systematic empirical study of world model quantization using DINO-WM as a representative case, evaluating diverse PTQ methods under both weight-only and joint weight-activation settings. We conduct extensive experiments on different visual planning tasks across a wide range of bit-widths, quantization granularities, and planning horizons up to 50 iterations. Our results show that quantization effects in world models extend beyond standard accuracy and bit-width trade-offs: group-wise weight quantization can stabilize low-bit rollouts, activation quantization granularity yields inconsistent benefits, and quantization sensitivity is highly asymmetric between encoder and predictor modules. Moreover, aggressive low-bit quantization significantly degrades the alignment between the planning objective and task success, leading to failures that cannot be remedied by additional optimization. These findings reveal distinct quantization-induced failure modes in world model-based planning and provide practical guidance for deploying quantized world models under strict computational constraints. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/QuantWM.
☆ Teacher-Guided Student Self-Knowledge Distillation Using Diffusion Model
Existing Knowledge Distillation (KD) methods often align feature information between teacher and student by exploring meaningful feature processing and loss functions. However, due to the difference in feature distributions between the teacher and student, the student model may learn incompatible information from the teacher. To address this problem, we propose teacher-guided student Diffusion Self-KD, dubbed as DSKD. Instead of the direct teacher-student alignment, we leverage the teacher classifier to guide the sampling process of denoising student features through a light-weight diffusion model. We then propose a novel locality-sensitive hashing (LSH)-guided feature distillation method between the original and denoised student features. The denoised student features encapsulate teacher knowledge and could be regarded as a teacher role. In this way, our DSKD method could eliminate discrepancies in mapping manners and feature distributions between the teacher and student, while learning meaningful knowledge from the teacher. Experiments on visual recognition tasks demonstrate that DSKD significantly outperforms existing KD methods across various models and datasets. Our code is attached in supplementary material.
☆ FSVideo: Fast Speed Video Diffusion Model in a Highly-Compressed Latent Space
We introduce FSVideo, a fast speed transformer-based image-to-video (I2V) diffusion framework. We build our framework on the following key components: 1.) a new video autoencoder with highly-compressed latent space ($64\times64\times4$ spatial-temporal downsampling ratio), achieving competitive reconstruction quality; 2.) a diffusion transformer (DIT) architecture with a new layer memory design to enhance inter-layer information flow and context reuse within DIT, and 3.) a multi-resolution generation strategy via a few-step DIT upsampler to increase video fidelity. Our final model, which contains a 14B DIT base model and a 14B DIT upsampler, achieves competitive performance against other popular open-source models, while being an order of magnitude faster. We discuss our model design as well as training strategies in this report.
comment: Project Page: https://kingofprank.github.io/fsvideo/
☆ UrbanGS: A Scalable and Efficient Architecture for Geometrically Accurate Large-Scene Reconstruction ICLR 2026
While 3D Gaussian Splatting (3DGS) enables high-quality, real-time rendering for bounded scenes, its extension to large-scale urban environments gives rise to critical challenges in terms of geometric consistency, memory efficiency, and computational scalability. To address these issues, we present UrbanGS, a scalable reconstruction framework that effectively tackles these challenges for city-scale applications. First, we propose a Depth-Consistent D-Normal Regularization module. Unlike existing approaches that rely solely on monocular normal estimators, which can effectively update rotation parameters yet struggle to update position parameters, our method integrates D-Normal constraints with external depth supervision. This allows for comprehensive updates of all geometric parameters. By further incorporating an adaptive confidence weighting mechanism based on gradient consistency and inverse depth deviation, our approach significantly enhances multi-view depth alignment and geometric coherence, which effectively resolves the issue of geometric accuracy in complex large-scale scenes. To improve scalability, we introduce a Spatially Adaptive Gaussian Pruning (SAGP) strategy, which dynamically adjusts Gaussian density based on local geometric complexity and visibility to reduce redundancy. Additionally, a unified partitioning and view assignment scheme is designed to eliminate boundary artifacts and optimize computational load. Extensive experiments on multiple urban datasets demonstrate that UrbanGS achieves superior performance in rendering quality, geometric accuracy, and memory efficiency, providing a systematic solution for high-fidelity large-scale scene reconstruction.
comment: ICLR 2026
☆ Multi-View Stenosis Classification Leveraging Transformer-Based Multiple-Instance Learning Using Real-World Clinical Data
Coronary artery stenosis is a leading cause of cardiovascular disease, diagnosed by analyzing the coronary arteries from multiple angiography views. Although numerous deep-learning models have been proposed for stenosis detection from a single angiography view, their performance heavily relies on expensive view-level annotations, which are often not readily available in hospital systems. Moreover, these models fail to capture the temporal dynamics and dependencies among multiple views, which are crucial for clinical diagnosis. To address this, we propose SegmentMIL, a transformer-based multi-view multiple-instance learning framework for patient-level stenosis classification. Trained on a real-world clinical dataset, using patient-level supervision and without any view-level annotations, SegmentMIL jointly predicts the presence of stenosis and localizes the affected anatomical region, distinguishing between the right and left coronary arteries and their respective segments. SegmentMIL obtains high performance on internal and external evaluations and outperforms both view-level models and classical MIL baselines, underscoring its potential as a clinically viable and scalable solution for coronary stenosis diagnosis. Our code is available at https://github.com/NikolaCenic/mil-stenosis.
☆ Auto-Comp: An Automated Pipeline for Scalable Compositional Probing of Contrastive Vision-Language Models
Modern Vision-Language Models (VLMs) exhibit a critical flaw in compositional reasoning, often confusing "a red cube and a blue sphere" with "a blue cube and a red sphere". Disentangling the visual and linguistic roots of these failures is a fundamental challenge for robust evaluation. To enable fine-grained, controllable analysis, we introduce Auto-Comp, a fully automated and synthetic pipeline for generating scalable benchmarks. Its controllable nature is key to dissecting and isolating different reasoning skills. Auto-Comp generates paired images from Minimal (e.g., "a monitor to the left of a bicycle on a white background") and LLM-generated Contextual captions (e.g., "In a brightly lit photography studio, a monitor is positioned to the left of a bicycle"), allowing a controlled A/B test to disentangle core binding ability from visio-linguistic complexity. Our evaluation of 20 VLMs on novel benchmarks for color binding and spatial relations reveals universal compositional failures in both CLIP and SigLIP model families. Crucially, our novel "Confusion Benchmark" reveals a deeper flaw beyond simple attribute swaps: models are highly susceptible to low-entropy distractors (e.g., repeated objects or colors), demonstrating their compositional failures extend beyond known bag-of-words limitations. we uncover a surprising trade-off: visio-linguistic context, which provides global scene cues, aids spatial reasoning but simultaneously hinders local attribute binding by introducing visual clutter. We release the Auto-Comp pipeline to facilitate future benchmark creation, alongside all our generated benchmarks (https://huggingface.co/AutoComp).
☆ One Size, Many Fits: Aligning Diverse Group-Wise Click Preferences in Large-Scale Advertising Image Generation
Advertising image generation has increasingly focused on online metrics like Click-Through Rate (CTR), yet existing approaches adopt a ``one-size-fits-all" strategy that optimizes for overall CTR while neglecting preference diversity among user groups. This leads to suboptimal performance for specific groups, limiting targeted marketing effectiveness. To bridge this gap, we present \textit{One Size, Many Fits} (OSMF), a unified framework that aligns diverse group-wise click preferences in large-scale advertising image generation. OSMF begins with product-aware adaptive grouping, which dynamically organizes users based on their attributes and product characteristics, representing each group with rich collective preference features. Building on these groups, preference-conditioned image generation employs a Group-aware Multimodal Large Language Model (G-MLLM) to generate tailored images for each group. The G-MLLM is pre-trained to simultaneously comprehend group features and generate advertising images. Subsequently, we fine-tune the G-MLLM using our proposed Group-DPO for group-wise preference alignment, which effectively enhances each group's CTR on the generated images. To further advance this field, we introduce the Grouped Advertising Image Preference Dataset (GAIP), the first large-scale public dataset of group-wise image preferences, including around 600K groups built from 40M users. Extensive experiments demonstrate that our framework achieves the state-of-the-art performance in both offline and online settings. Our code and datasets will be released at https://github.com/JD-GenX/OSMF.
☆ Rethinking Genomic Modeling Through Optical Character Recognition
Recent genomic foundation models largely adopt large language model architectures that treat DNA as a one-dimensional token sequence. However, exhaustive sequential reading is structurally misaligned with sparse and discontinuous genomic semantics, leading to wasted computation on low-information background and preventing understanding-driven compression for long contexts. Here, we present OpticalDNA, a vision-based framework that reframes genomic modeling as Optical Character Recognition (OCR)-style document understanding. OpticalDNA renders DNA into structured visual layouts and trains an OCR-capable vision--language model with a \emph{visual DNA encoder} and a \emph{document decoder}, where the encoder produces compact, reconstructible visual tokens for high-fidelity compression. Building on this representation, OpticalDNA defines prompt-conditioned objectives over core genomic primitives-reading, region grounding, subsequence retrieval, and masked span completion-thereby learning layout-aware DNA representations that retain fine-grained genomic information under a reduced effective token budget. Across diverse genomic benchmarks, OpticalDNA consistently outperforms recent baselines; on sequences up to 450k bases, it achieves the best overall performance with nearly $20\times$ fewer effective tokens, and surpasses models with up to $985\times$ more activated parameters while tuning only 256k \emph{trainable} parameters.
☆ ClueTracer: Question-to-Vision Clue Tracing for Training-Free Hallucination Suppression in Multimodal Reasoning
Large multimodal reasoning models solve challenging visual problems via explicit long-chain inference: they gather visual clues from images and decode clues into textual tokens. Yet this capability also increases hallucinations, where the model generates content that is not supported by the input image or the question. To understand this failure mode, we identify \emph{reasoning drift}: during clue gathering, the model over-focuses on question-irrelevant entities, diluting focus on task-relevant cues and gradually decoupling the reasoning trace from visual grounding. As a consequence, many inference-time localization or intervention methods developed for non-reasoning models fail to pinpoint the true clues in reasoning settings. Motivated by these insights, we introduce ClueRecall, a metric for assessing visual clue retrieval, and present ClueTracer, a training-free, parameter-free, and architecture-agnostic plugin for hallucination suppression. ClueTracer starts from the question and traces how key clues propagate along the model's reasoning pathway (question $\rightarrow$ outputs $\rightarrow$ visual tokens), thereby localizing task-relevant patches while suppressing spurious attention to irrelevant regions. Remarkably, \textbf{without any additional training}, ClueTracer improves all \textbf{reasoning} architectures (including \texttt{R1-OneVision}, \texttt{Ocean-R1}, \texttt{MM-Eureka}, \emph{etc}.) by $\mathbf{1.21\times}$ on reasoning benchmarks. When transferred to \textbf{non-reasoning} settings, it yields a $\mathbf{1.14\times}$ gain.
comment: 20 pages, 7 figures
☆ UniDriveDreamer: A Single-Stage Multimodal World Model for Autonomous Driving
World models have demonstrated significant promise for data synthesis in autonomous driving. However, existing methods predominantly concentrate on single-modality generation, typically focusing on either multi-camera video or LiDAR sequence synthesis. In this paper, we propose UniDriveDreamer, a single-stage unified multimodal world model for autonomous driving, which directly generates multimodal future observations without relying on intermediate representations or cascaded modules. Our framework introduces a LiDAR-specific variational autoencoder (VAE) designed to encode input LiDAR sequences, alongside a video VAE for multi-camera images. To ensure cross-modal compatibility and training stability, we propose Unified Latent Anchoring (ULA), which explicitly aligns the latent distributions of the two modalities. The aligned features are fused and processed by a diffusion transformer that jointly models their geometric correspondence and temporal evolution. Additionally, structured scene layout information is projected per modality as a conditioning signal to guide the synthesis. Extensive experiments demonstrate that UniDriveDreamer outperforms previous state-of-the-art methods in both video and LiDAR generation, while also yielding measurable improvements in downstream
comment: 16 pages, 7 figures
☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026
☆ Leveraging Latent Vector Prediction for Localized Control in Image Generation via Diffusion Models
Diffusion models emerged as a leading approach in text-to-image generation, producing high-quality images from textual descriptions. However, attempting to achieve detailed control to get a desired image solely through text remains a laborious trial-and-error endeavor. Recent methods have introduced image-level controls alongside with text prompts, using prior images to extract conditional information such as edges, segmentation and depth maps. While effective, these methods apply conditions uniformly across the entire image, limiting localized control. In this paper, we propose a novel methodology to enable precise local control over user-defined regions of an image, while leaving to the diffusion model the task of autonomously generating the remaining areas according to the original prompt. Our approach introduces a new training framework that incorporates masking features and an additional loss term, which leverages the prediction of the initial latent vector at any diffusion step to enhance the correspondence between the current step and the final sample in the latent space. Extensive experiments demonstrate that our method effectively synthesizes high-quality images with controlled local conditions.
☆ Enhancing Multi-Image Understanding through Delimiter Token Scaling ICLR 2026
Large Vision-Language Models (LVLMs) achieve strong performance on single-image tasks, but their performance declines when multiple images are provided as input. One major reason is the cross-image information leakage, where the model struggles to distinguish information across different images. Existing LVLMs already employ delimiter tokens to mark the start and end of each image, yet our analysis reveals that these tokens fail to effectively block cross-image information leakage. To enhance their effectiveness, we propose a method that scales the hidden states of delimiter tokens. This enhances the model's ability to preserve image-specific information by reinforcing intra-image interaction and limiting undesired cross-image interactions. Consequently, the model is better able to distinguish between images and reason over them more accurately. Experiments show performance gains on multi-image benchmarks such as Mantis, MuirBench, MIRB, and QBench2. We further evaluate our method on text-only tasks that require clear distinction. The method improves performance on multi-document and multi-table understanding benchmarks, including TQABench, MultiNews, and WCEP-10. Notably, our method requires no additional training or inference cost.
comment: Accepted at ICLR 2026
☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
☆ Your AI-Generated Image Detector Can Secretly Achieve SOTA Accuracy, If Calibrated AAAI 2026
Despite being trained on balanced datasets, existing AI-generated image detectors often exhibit systematic bias at test time, frequently misclassifying fake images as real. We hypothesize that this behavior stems from distributional shift in fake samples and implicit priors learned during training. Specifically, models tend to overfit to superficial artifacts that do not generalize well across different generation methods, leading to a misaligned decision threshold when faced with test-time distribution shift. To address this, we propose a theoretically grounded post-hoc calibration framework based on Bayesian decision theory. In particular, we introduce a learnable scalar correction to the model's logits, optimized on a small validation set from the target distribution while keeping the backbone frozen. This parametric adjustment compensates for distributional shift in model output, realigning the decision boundary even without requiring ground-truth labels. Experiments on challenging benchmarks show that our approach significantly improves robustness without retraining, offering a lightweight and principled solution for reliable and adaptive AI-generated image detection in the open world. Code is available at https://github.com/muliyangm/AIGI-Det-Calib.
comment: AAAI 2026. Code: https://github.com/muliyangm/AIGI-Det-Calib
☆ Beyond Open Vocabulary: Multimodal Prompting for Object Detection in Remote Sensing Images
Open-vocabulary object detection in remote sensing commonly relies on text-only prompting to specify target categories, implicitly assuming that inference-time category queries can be reliably grounded through pretraining-induced text-visual alignment. In practice, this assumption often breaks down in remote sensing scenarios due to task- and application-specific category semantics, resulting in unstable category specification under open-vocabulary settings. To address this limitation, we propose RS-MPOD, a multimodal open-vocabulary detection framework that reformulates category specification beyond text-only prompting by incorporating instance-grounded visual prompts, textual prompts, and their multimodal integration. RS-MPOD introduces a visual prompt encoder to extract appearance-based category cues from exemplar instances, enabling text-free category specification, and a multimodal fusion module to integrate visual and textual information when both modalities are available. Extensive experiments on standard, cross-dataset, and fine-grained remote sensing benchmarks show that visual prompting yields more reliable category specification under semantic ambiguity and distribution shifts, while multimodal prompting provides a flexible alternative that remains competitive when textual semantics are well aligned.
☆ Enabling Progressive Whole-slide Image Analysis with Multi-scale Pyramidal Network
Multiple-instance Learning (MIL) is commonly used to undertake computational pathology (CPath) tasks, and the use of multi-scale patches allows diverse features across scales to be learned. Previous studies using multi-scale features in clinical applications rely on multiple inputs across magnifications with late feature fusion, which does not retain the link between features across scales while the inputs are dependent on arbitrary, manufacturer-defined magnifications, being inflexible and computationally expensive. In this paper, we propose the Multi-scale Pyramidal Network (MSPN), which is plug-and-play over attention-based MIL that introduces progressive multi-scale analysis on WSI. Our MSPN consists of (1) grid-based remapping that uses high magnification features to derive coarse features and (2) the coarse guidance network (CGN) that learns coarse contexts. We benchmark MSPN as an add-on module to 4 attention-based frameworks using 4 clinically relevant tasks across 3 types of foundation model, as well as the pre-trained MIL framework. We show that MSPN consistently improves MIL across the compared configurations and tasks, while being lightweight and easy-to-use.
☆ Boundary-Constrained Diffusion Models for Floorplan Generation: Balancing Realism and Diversity
Diffusion models have become widely popular for automated floorplan generation, producing highly realistic layouts conditioned on user-defined constraints. However, optimizing for perceptual metrics such as the Fréchet Inception Distance (FID) causes limited design diversity. To address this, we propose the Diversity Score (DS), a metric that quantifies layout diversity under fixed constraints. Moreover, to improve geometric consistency, we introduce a Boundary Cross-Attention (BCA) module that enables conditioning on building boundaries. Our experiments show that BCA significantly improves boundary adherence, while prolonged training drives diversity collapse undiagnosed by FID, revealing a critical trade-off between realism and diversity. Out-Of-Distribution evaluations further demonstrate the models' reliance on dataset priors, emphasizing the need for generative systems that explicitly balance fidelity, diversity, and generalization in architectural design tasks.
comment: Accepted at ESANN 2026
☆ LIEREx: Language-Image Embeddings for Robotic Exploration
Semantic maps allow a robot to reason about its surroundings to fulfill tasks such as navigating known environments, finding specific objects, and exploring unmapped areas. Traditional mapping approaches provide accurate geometric representations but are often constrained by pre-designed symbolic vocabularies. The reliance on fixed object classes makes it impractical to handle out-of-distribution knowledge not defined at design time. Recent advances in Vision-Language Foundation Models, such as CLIP, enable open-set mapping, where objects are encoded as high-dimensional embeddings rather than fixed labels. In LIEREx, we integrate these VLFMs with established 3D Semantic Scene Graphs to enable target-directed exploration by an autonomous agent in partially unknown environments.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in KI - Künstliche Intelligenz, and is available online at https://doi.org/10.1007/s13218-026-00902-6
☆ DSXFormer: Dual-Pooling Spectral Squeeze-Expansion and Dynamic Context Attention Transformer for Hyperspectral Image Classification
Hyperspectral image classification (HSIC) is a challenging task due to high spectral dimensionality, complex spectral-spatial correlations, and limited labeled training samples. Although transformer-based models have shown strong potential for HSIC, existing approaches often struggle to achieve sufficient spectral discriminability while maintaining computational efficiency. To address these limitations, we propose a novel DSXFormer, a novel dual-pooling spectral squeeze-expansion transformer with Dynamic Context Attention for HSIC. The proposed DSXFormer introduces a Dual-Pooling Spectral Squeeze-Expansion (DSX) block, which exploits complementary global average and max pooling to adaptively recalibrate spectral feature channels, thereby enhancing spectral discriminability and inter-band dependency modeling. In addition, DSXFormer incorporates a Dynamic Context Attention (DCA) mechanism within a window-based transformer architecture to dynamically capture local spectral-spatial relationships while significantly reducing computational overhead. The joint integration of spectral dual-pooling squeeze-expansion and DCA enables DSXFormer to achieve an effective balance between spectral emphasis and spatial contextual representation. Furthermore, patch extraction, embedding, and patch merging strategies are employed to facilitate efficient multi-scale feature learning. Extensive experiments conducted on four widely used hyperspectral benchmark datasets, including Salinas (SA), Indian Pines (IP), Pavia University (PU), and Kennedy Space Center (KSC), demonstrate that DSXFormer consistently outperforms state-of-the-art methods, achieving classification accuracies of 99.95%, 98.91%, 99.85%, and 98.52%, respectively.
☆ Learning Sparse Visual Representations via Spatial-Semantic Factorization
Self-supervised learning (SSL) faces a fundamental conflict between semantic understanding and image reconstruction. High-level semantic SSL (e.g., DINO) relies on global tokens that are forced to be location-invariant for augmentation alignment, a process that inherently discards the spatial coordinates required for reconstruction. Conversely, generative SSL (e.g., MAE) preserves dense feature grids for reconstruction but fails to produce high-level abstractions. We introduce STELLAR, a framework that resolves this tension by factorizing visual features into a low-rank product of semantic concepts and their spatial distributions. This disentanglement allows us to perform DINO-style augmentation alignment on the semantic tokens while maintaining the precise spatial mapping in the localization matrix necessary for pixel-level reconstruction. We demonstrate that as few as 16 sparse tokens under this factorized form are sufficient to simultaneously support high-quality reconstruction (2.60 FID) and match the semantic performance of dense backbones (79.10% ImageNet accuracy). Our results highlight STELLAR as a versatile sparse representation that bridges the gap between discriminative and generative vision by strategically separating semantic identity from spatial geometry. Code available at https://aka.ms/stellar.
☆ Q Cache: Visual Attention is Valuable in Less than Half of Decode Layers for Multimodal Large Language Model AAAI26
Multimodal large language models (MLLMs) are plagued by exorbitant inference costs attributable to the profusion of visual tokens within the vision encoder. The redundant visual tokens engenders a substantial computational load and key-value (KV) cache footprint bottleneck. Existing approaches focus on token-wise optimization, leveraging diverse intricate token pruning techniques to eliminate non-crucial visual tokens. Nevertheless, these methods often unavoidably undermine the integrity of the KV cache, resulting in failures in long-text generation tasks. To this end, we conduct an in-depth investigation towards the attention mechanism of the model from a new perspective, and discern that attention within more than half of all decode layers are semantic similar. Upon this finding, we contend that the attention in certain layers can be streamlined by inheriting the attention from their preceding layers. Consequently, we propose Lazy Attention, an efficient attention mechanism that enables cross-layer sharing of similar attention patterns. It ingeniously reduces layer-wise redundant computation in attention. In Lazy Attention, we develop a novel layer-shared cache, Q Cache, tailored for MLLMs, which facilitates the reuse of queries across adjacent layers. In particular, Q Cache is lightweight and fully compatible with existing inference frameworks, including Flash Attention and KV cache. Additionally, our method is highly flexible as it is orthogonal to existing token-wise techniques and can be deployed independently or combined with token pruning approaches. Empirical evaluations on multiple benchmarks demonstrate that our method can reduce KV cache usage by over 35% and achieve 1.5x throughput improvement, while sacrificing only approximately 1% of performance on various MLLMs. Compared with SOTA token-wise methods, our technique achieves superior accuracy preservation.
comment: Accepted by AAAI26
☆ Multi-Task Learning for Robot Perception with Imbalanced Data
Multi-task problem solving has been shown to improve the accuracy of the individual tasks, which is an important feature for robots, as they have a limited resource. However, when the number of labels for each task is not equal, namely imbalanced data exist, a problem may arise due to insufficient number of samples, and labeling is not very easy for mobile robots in every environment. We propose a method that can learn tasks even in the absence of the ground truth labels for some of the tasks. We also provide a detailed analysis of the proposed method. An interesting finding is related to the interaction of the tasks. We show a methodology to find out which tasks can improve the performance of other tasks. We investigate this by training the teacher network with the task outputs such as depth as inputs. We further provide empirical evidence when trained with a small amount of data. We use semantic segmentation and depth estimation tasks on different datasets, NYUDv2 and Cityscapes.
comment: 16 pages
☆ ProxyImg: Towards Highly-Controllable Image Representation via Hierarchical Disentangled Proxy Embedding
Prevailing image representation methods, including explicit representations such as raster images and Gaussian primitives, as well as implicit representations such as latent images, either suffer from representation redundancy that leads to heavy manual editing effort, or lack a direct mapping from latent variables to semantic instances or parts, making fine-grained manipulation difficult. These limitations hinder efficient and controllable image and video editing. To address these issues, we propose a hierarchical proxy-based parametric image representation that disentangles semantic, geometric, and textural attributes into independent and manipulable parameter spaces. Based on a semantic-aware decomposition of the input image, our representation constructs hierarchical proxy geometries through adaptive Bezier fitting and iterative internal region subdivision and meshing. Multi-scale implicit texture parameters are embedded into the resulting geometry-aware distributed proxy nodes, enabling continuous high-fidelity reconstruction in the pixel domain and instance- or part-independent semantic editing. In addition, we introduce a locality-adaptive feature indexing mechanism to ensure spatial texture coherence, which further supports high-quality background completion without relying on generative models. Extensive experiments on image reconstruction and editing benchmarks, including ImageNet, OIR-Bench, and HumanEdit, demonstrate that our method achieves state-of-the-art rendering fidelity with significantly fewer parameters, while enabling intuitive, interactive, and physically plausible manipulation. Moreover, by integrating proxy nodes with Position-Based Dynamics, our framework supports real-time physics-driven animation using lightweight implicit rendering, achieving superior temporal consistency and visual realism compared with generative approaches.
☆ Trust but Verify: Adaptive Conditioning for Reference-Based Diffusion Super-Resolution via Implicit Reference Correlation Modeling ICLR 2026
Recent works have explored reference-based super-resolution (RefSR) to mitigate hallucinations in diffusion-based image restoration. A key challenge is that real-world degradations make correspondences between low-quality (LQ) inputs and reference (Ref) images unreliable, requiring adaptive control of reference usage. Existing methods either ignore LQ-Ref correlations or rely on brittle explicit matching, leading to over-reliance on misleading references or under-utilization of valuable cues. To address this, we propose Ada-RefSR, a single-step diffusion framework guided by a "Trust but Verify" principle: reference information is leveraged when reliable and suppressed otherwise. Its core component, Adaptive Implicit Correlation Gating (AICG), employs learnable summary tokens to distill dominant reference patterns and capture implicit correlations with LQ features. Integrated into the attention backbone, AICG provides lightweight, adaptive regulation of reference guidance, serving as a built-in safeguard against erroneous fusion. Experiments on multiple datasets demonstrate that Ada-RefSR achieves a strong balance of fidelity, naturalness, and efficiency, while remaining robust under varying reference alignment.
comment: 26 pages, 19 figures. Accepted to ICLR 2026
☆ Fact or Fake? Assessing the Role of Deepfake Detectors in Multimodal Misinformation Detection
In multimodal misinformation, deception usually arises not just from pixel-level manipulations in an image, but from the semantic and contextual claim jointly expressed by the image-text pair. Yet most deepfake detectors, engineered to detect pixel-level forgeries, do not account for claim-level meaning, despite their growing integration in automated fact-checking (AFC) pipelines. This raises a central scientific and practical question: Do pixel-level detectors contribute useful signal for verifying image-text claims, or do they instead introduce misleading authenticity priors that undermine evidence-based reasoning? We provide the first systematic analysis of deepfake detectors in the context of multimodal misinformation detection. Using two complementary benchmarks, MMFakeBench and DGM4, we evaluate: (1) state-of-the-art image-only deepfake detectors, (2) an evidence-driven fact-checking system that performs tool-guided retrieval via Monte Carlo Tree Search (MCTS) and engages in deliberative inference through Multi-Agent Debate (MAD), and (3) a hybrid fact-checking system that injects detector outputs as auxiliary evidence. Results across both benchmark datasets show that deepfake detectors offer limited standalone value, achieving F1 scores in the range of 0.26-0.53 on MMFakeBench and 0.33-0.49 on DGM4, and that incorporating their predictions into fact-checking pipelines consistently reduces performance by 0.04-0.08 F1 due to non-causal authenticity assumptions. In contrast, the evidence-centric fact-checking system achieves the highest performance, reaching F1 scores of approximately 0.81 on MMFakeBench and 0.55 on DGM4. Overall, our findings demonstrate that multimodal claim verification is driven primarily by semantic understanding and external evidence, and that pixel-level artifact signals do not reliably enhance reasoning over real-world image-text misinformation.
☆ How Well Do Models Follow Visual Instructions? VIBE: A Systematic Benchmark for Visual Instruction-Driven Image Editing
Recent generative models have achieved remarkable progress in image editing. However, existing systems and benchmarks remain largely text-guided. In contrast, human communication is inherently multimodal, where visual instructions such as sketches efficiently convey spatial and structural intent. To address this gap, we introduce VIBE, the Visual Instruction Benchmark for Image Editing with a three-level interaction hierarchy that captures deictic grounding, morphological manipulation, and causal reasoning. Across these levels, we curate high-quality and diverse test cases that reflect progressively increasing complexity in visual instruction following. We further propose a robust LMM-as-a-judge evaluation framework with task-specific metrics to enable scalable and fine-grained assessment. Through a comprehensive evaluation of 17 representative open-source and proprietary image editing models, we find that proprietary models exhibit early-stage visual instruction-following capabilities and consistently outperform open-source models. However, performance degrades markedly with increasing task difficulty even for the strongest systems, highlighting promising directions for future research.
comment: https://vibe-benchmark.github.io/
☆ WS-IMUBench: Can Weakly Supervised Methods from Audio, Image, and Video Be Adapted for IMU-based Temporal Action Localization?
IMU-based Human Activity Recognition (HAR) has enabled a wide range of ubiquitous computing applications, yet its dominant clip classification paradigm cannot capture the rich temporal structure of real-world behaviors. This motivates a shift toward IMU Temporal Action Localization (IMU-TAL), which predicts both action categories and their start/end times in continuous streams. However, current progress is strongly bottlenecked by the need for dense, frame-level boundary annotations, which are costly and difficult to scale. To address this bottleneck, we introduce WS-IMUBench, a systematic benchmark study of weakly supervised IMU-TAL (WS-IMU-TAL) under only sequence-level labels. Rather than proposing a new localization algorithm, we evaluate how well established weakly supervised localization paradigms from audio, image, and video transfer to IMU-TAL under only sequence-level labels. We benchmark seven representative weakly supervised methods on seven public IMU datasets, resulting in over 3,540 model training runs and 7,080 inference evaluations. Guided by three research questions on transferability, effectiveness, and insights, our findings show that (i) transfer is modality-dependent, with temporal-domain methods generally more stable than image-derived proposal-based approaches; (ii) weak supervision can be competitive on favorable datasets (e.g., with longer actions and higher-dimensional sensing); and (iii) dominant failure modes arise from short actions, temporal ambiguity, and proposal quality. Finally, we outline concrete directions for advancing WS-IMU-TAL (e.g., IMU-specific proposal generation, boundary-aware objectives, and stronger temporal reasoning). Beyond individual results, WS-IMUBench establishes a reproducible benchmarking template, datasets, protocols, and analyses, to accelerate community-wide progress toward scalable WS-IMU-TAL.
comment: Under Review. 28 pages, 9 figures, 6 tables
☆ CloDS: Visual-Only Unsupervised Cloth Dynamics Learning in Unknown Conditions ICLR 2026
Deep learning has demonstrated remarkable capabilities in simulating complex dynamic systems. However, existing methods require known physical properties as supervision or inputs, limiting their applicability under unknown conditions. To explore this challenge, we introduce Cloth Dynamics Grounding (CDG), a novel scenario for unsupervised learning of cloth dynamics from multi-view visual observations. We further propose Cloth Dynamics Splatting (CloDS), an unsupervised dynamic learning framework designed for CDG. CloDS adopts a three-stage pipeline that first performs video-to-geometry grounding and then trains a dynamics model on the grounded meshes. To cope with large non-linear deformations and severe self-occlusions during grounding, we introduce a dual-position opacity modulation that supports bidirectional mapping between 2D observations and 3D geometry via mesh-based Gaussian splatting in video-to-geometry grounding stage. It jointly considers the absolute and relative position of Gaussian components. Comprehensive experimental evaluations demonstrate that CloDS effectively learns cloth dynamics from visual data while maintaining strong generalization capabilities for unseen configurations. Our code is available at https://github.com/whynot-zyl/CloDS. Visualization results are available at https://github.com/whynot-zyl/CloDS_video}.%\footnote{As in this example.
comment: ICLR 2026
☆ SPIRIT: Adapting Vision Foundation Models for Unified Single- and Multi-Frame Infrared Small Target Detection
Infrared small target detection (IRSTD) is crucial for surveillance and early-warning, with deployments spanning both single-frame analysis and video-mode tracking. A practical solution should leverage vision foundation models (VFMs) to mitigate infrared data scarcity, while adopting a memory-attention-based temporal propagation framework that unifies single- and multi-frame inference. However, infrared small targets exhibit weak radiometric signals and limited semantic cues, which differ markedly from visible-spectrum imagery. This modality gap makes direct use of semantics-oriented VFMs and appearance-driven cross-frame association unreliable for IRSTD: hierarchical feature aggregation can submerge localized target peaks, and appearance-only memory attention becomes ambiguous, leading to spurious clutter associations. To address these challenges, we propose SPIRIT, a unified and VFM-compatible framework that adapts VFMs to IRSTD via lightweight physics-informed plug-ins. Spatially, PIFR refines features by approximating rank-sparsity decomposition to suppress structured background components and enhance sparse target-like signals. Temporally, PGMA injects history-derived soft spatial priors into memory cross-attention to constrain cross-frame association, enabling robust video detection while naturally reverting to single-frame inference when temporal context is absent. Experiments on multiple IRSTD benchmarks show consistent gains over VFM-based baselines and SOTA performance.
☆ Efficient Cross-Country Data Acquisition Strategy for ADAS via Street-View Imagery
Deploying ADAS and ADS across countries remains challenging due to differences in legislation, traffic infrastructure, and visual conventions, which introduce domain shifts that degrade perception performance. Traditional cross-country data collection relies on extensive on-road driving, making it costly and inefficient to identify representative locations. To address this, we propose a street-view-guided data acquisition strategy that leverages publicly available imagery to identify places of interest (POI). Two POI scoring methods are introduced: a KNN-based feature distance approach using a vision foundation model, and a visual-attribution approach using a vision-language model. To enable repeatable evaluation, we adopt a collect-detect protocol and construct a co-located dataset by pairing the Zenseact Open Dataset with Mapillary street-view images. Experiments on traffic sign detection, a task particularly sensitive to cross-country variations in sign appearance, show that our approach achieves performance comparable to random sampling while using only half of the target-domain data. We further provide cost estimations for full-country analysis, demonstrating that large-scale street-view processing remains economically feasible. These results highlight the potential of street-view-guided data acquisition for efficient and cost-effective cross-country model adaptation.
☆ Seeing Is Believing? A Benchmark for Multimodal Large Language Models on Visual Illusions and Anomalies
Multimodal Large Language Models (MLLMs) have shown remarkable proficiency on general-purpose vision-language benchmarks, reaching or even exceeding human-level performance. However, these evaluations typically rely on standard in-distribution data, leaving the robustness of MLLMs largely unexamined when faced with scenarios that defy common-sense priors. To address this gap, we introduce VIA-Bench, a challenging benchmark designed to probe model performance on visual illusions and anomalies. It includes six core categories: color illusions, motion illusions, gestalt illusions, geometric and spatial illusions, general visual illusions, and visual anomalies. Through careful human-in-the-loop review, we construct over 1K high-quality question-answer pairs that require nuanced visual reasoning. Extensive evaluation of over 20 state-of-the-art MLLMs, including proprietary, open-source, and reasoning-enhanced models, uncovers significant vulnerabilities. Notably, we find that Chain-of-Thought (CoT) reasoning offers negligible robustness, often yielding ``brittle mirages'' where the model's logic collapses under illusory stimuli. Our findings reveal a fundamental divergence between machine and human perception, suggesting that resolving such perceptual bottlenecks is critical for the advancement of artificial general intelligence. The benchmark data and code will be released.
☆ GPD: Guided Progressive Distillation for Fast and High-Quality Video Generation
Diffusion models have achieved remarkable success in video generation; however, the high computational cost of the denoising process remains a major bottleneck. Existing approaches have shown promise in reducing the number of diffusion steps, but they often suffer from significant quality degradation when applied to video generation. We propose Guided Progressive Distillation (GPD), a framework that accelerates the diffusion process for fast and high-quality video generation. GPD introduces a novel training strategy in which a teacher model progressively guides a student model to operate with larger step sizes. The framework consists of two key components: (1) an online-generated training target that reduces optimization difficulty while improving computational efficiency, and (2) frequency-domain constraints in the latent space that promote the preservation of fine-grained details and temporal dynamics. Applied to the Wan2.1 model, GPD reduces the number of sampling steps from 48 to 6 while maintaining competitive visual quality on VBench. Compared with existing distillation methods, GPD demonstrates clear advantages in both pipeline simplicity and quality preservation.
☆ LDRNet: Large Deformation Registration Model for Chest CT Registration
Most of the deep learning based medical image registration algorithms focus on brain image registration tasks.Compared with brain registration, the chest CT registration has larger deformation, more complex background and region over-lap. In this paper, we propose a fast unsupervised deep learning method, LDRNet, for large deformation image registration of chest CT images. We first predict a coarse resolution registration field, then refine it from coarse to fine. We propose two innovative technical components: 1) a refine block that is used to refine the registration field in different resolutions, 2) a rigid block that is used to learn transformation matrix from high-level features. We train and evaluate our model on the private dataset and public dataset SegTHOR. We compare our performance with state-of-the-art traditional registration methods as well as deep learning registration models VoxelMorph, RCN, and LapIRN. The results demonstrate that our model achieves state-of-the-art performance for large deformation images registration and is much faster.
☆ FlowBypass: Rectified Flow Trajectory Bypass for Training-Free Image Editing
Training-free image editing has attracted increasing attention for its efficiency and independence from training data. However, existing approaches predominantly rely on inversion-reconstruction trajectories, which impose an inherent trade-off: longer trajectories accumulate errors and compromise fidelity, while shorter ones fail to ensure sufficient alignment with the edit prompt. Previous attempts to address this issue typically employ backbone-specific feature manipulations, limiting general applicability. To address these challenges, we propose FlowBypass, a novel and analytical framework grounded in Rectified Flow that constructs a bypass directly connecting inversion and reconstruction trajectories, thereby mitigating error accumulation without relying on feature manipulations. We provide a formal derivation of two trajectories, from which we obtain an approximate bypass formulation and its numerical solution, enabling seamless trajectory transitions. Extensive experiments demonstrate that FlowBypass consistently outperforms state-of-the-art image editing methods, achieving stronger prompt alignment while preserving high-fidelity details in irrelevant regions.
☆ Fast Autoregressive Video Diffusion and World Models with Temporal Cache Compression and Sparse Attention
Autoregressive video diffusion models enable streaming generation, opening the door to long-form synthesis, video world models, and interactive neural game engines. However, their core attention layers become a major bottleneck at inference time: as generation progresses, the KV cache grows, causing both increasing latency and escalating GPU memory, which in turn restricts usable temporal context and harms long-range consistency. In this work, we study redundancy in autoregressive video diffusion and identify three persistent sources: near-duplicate cached keys across frames, slowly evolving (largely semantic) queries/keys that make many attention computations redundant, and cross-attention over long prompts where only a small subset of tokens matters per frame. Building on these observations, we propose a unified, training-free attention framework for autoregressive diffusion: TempCache compresses the KV cache via temporal correspondence to bound cache growth; AnnCA accelerates cross-attention by selecting frame-relevant prompt tokens using fast approximate nearest neighbor (ANN) matching; and AnnSA sparsifies self-attention by restricting each query to semantically matched keys, also using a lightweight ANN. Together, these modules reduce attention, compute, and memory and are compatible with existing autoregressive diffusion backbones and world models. Experiments demonstrate up to x5--x10 end-to-end speedups while preserving near-identical visual quality and, crucially, maintaining stable throughput and nearly constant peak GPU memory usage over long rollouts, where prior methods progressively slow down and suffer from increasing memory usage.
comment: Project Page: https://dvirsamuel.github.io/fast-auto-regressive-video/
☆ Spatio-Temporal Transformers for Long-Term NDVI Forecasting
Long-term satellite image time series (SITS) analysis in heterogeneous landscapes faces significant challenges, particularly in Mediterranean regions where complex spatial patterns, seasonal variations, and multi-decade environmental changes interact across different scales. This paper presents the Spatio-Temporal Transformer for Long Term Forecasting (STT-LTF ), an extended framework that advances beyond purely temporal analysis to integrate spatial context modeling with temporal sequence prediction. STT-LTF processes multi-scale spatial patches alongside temporal sequences (up to 20 years) through a unified transformer architecture, capturing both local neighborhood relationships and regional climate influences. The framework employs comprehensive self-supervised learning with spatial masking, temporal masking, and horizon sampling strategies, enabling robust model training from 40 years of unlabeled Landsat imagery. Unlike autoregressive approaches, STT-LTF directly predicts arbitrary future time points without error accumulation, incorporating spatial patch embeddings, cyclical temporal encoding, and geographic coordinates to learn complex dependencies across heterogeneous Mediterranean ecosystems. Experimental evaluation on Landsat data (1984-2024) demonstrates that STT-LTF achieves a Mean Absolute Error (MAE) of 0.0328 and R^2 of 0.8412 for next-year predictions, outperforming traditional statistical methods, CNN-based approaches, LSTM networks, and standard transformers. The framework's ability to handle irregular temporal sampling and variable prediction horizons makes it particularly suitable for analysis of heterogeneous landscapes experiencing rapid ecological transitions.
☆ Automated Discontinuity Set Characterisation in Enclosed Rock Face Point Clouds Using Single-Shot Filtering and Cyclic Orientation Transformation
Characterisation of structural discontinuity sets in exposed rock faces of underground mine cavities is essential for assessing rock-mass stability, excavation safety, and operational efficiency. UAV and other mobile laser-scanning techniques provide efficient means of collecting point clouds from rock faces. However, the development of a robust and efficient approach for automatic characterisation of discontinuity sets in real-world scenarios, like fully enclosed rock faces in cavities, remains an open research problem. In this study, a new approach is proposed for automatic discontinuity set characterisation that uses a single-shot filtering strategy, an innovative cyclic orientation transformation scheme and a hierarchical clustering technique. The single-shot filtering step isolates planar regions while robustly suppressing noise and high-curvature artefacts in one pass using a signal-processing technique. To address the limitations of Cartesian clustering on polar orientation data, a cyclic orientation transformation scheme is developed, enabling accurate representation of dip angle and dip direction in Cartesian space. The transformed orientations are then characterised into sets using a hierarchical clustering technique, which handles varying density distributions and identifies clusters without requiring user-defined set numbers. The accuracy of the method is validated on real-world mine stope and against ground truth obtained using manually handpicked discontinuity planes identified with the Virtual Compass tool, as well as widely used automated structure mapping techniques. The proposed approach outperforms the other techniques by exhibiting the lowest mean absolute error in estimating discontinuity set orientations in real-world stope data with errors of 1.95° and 2.20° in nominal dip angle and dip direction, respectively, and dispersion errors lying below 3°.
☆ DDP-WM: Disentangled Dynamics Prediction for Efficient World Models
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLabSYSU/DDP-WM.
comment: Codes will be available at https://github.com/HCPLabSYSU/DDP-WM
☆ GDPR-Compliant Person Recognition in Industrial Environments Using MEMS-LiDAR and Hybrid Data
The reliable detection of unauthorized individuals in safety-critical industrial indoor spaces is crucial to avoid plant shutdowns, property damage, and personal hazards. Conventional vision-based methods that use deep-learning approaches for person recognition provide image information but are sensitive to lighting and visibility conditions and often violate privacy regulations, such as the General Data Protection Regulation (GDPR) in the European Union. Typically, detection systems based on deep learning require annotated data for training. Collecting and annotating such data, however, is highly time-consuming and due to manual treatments not necessarily error free. Therefore, this paper presents a privacy-compliant approach based on Micro-Electro-Mechanical Systems LiDAR (MEMS-LiDAR), which exclusively captures anonymized 3D point clouds and avoids personal identification features. To compensate for the large amount of time required to record real LiDAR data and for post-processing and annotation, real recordings are augmented with synthetically generated scenes from the CARLA simulation framework. The results demonstrate that the hybrid data improves the average precision by 44 percentage points compared to a model trained exclusively with real data while reducing the manual annotation effort by 50 %. Thus, the proposed approach provides a scalable, cost-efficient alternative to purely real-data-based methods and systematically shows how synthetic LiDAR data can combine high performance in person detection with GDPR compliance in an industrial environment.
comment: Accepted at 19th CIRP Conference on Intelligent Computation in Manufacturing Engineering
MagicFuse: Single Image Fusion for Visual and Semantic Reinforcement
This paper focuses on a highly practical scenario: how to continue benefiting from the advantages of multi-modal image fusion under harsh conditions when only visible imaging sensors are available. To achieve this goal, we propose a novel concept of single-image fusion, which extends conventional data-level fusion to the knowledge level. Specifically, we develop MagicFuse, a novel single image fusion framework capable of deriving a comprehensive cross-spectral scene representation from a single low-quality visible image. MagicFuse first introduces an intra-spectral knowledge reinforcement branch and a cross-spectral knowledge generation branch based on the diffusion models. They mine scene information obscured in the visible spectrum and learn thermal radiation distribution patterns transferred to the infrared spectrum, respectively. Building on them, we design a multi-domain knowledge fusion branch that integrates the probabilistic noise from the diffusion streams of these two branches, from which a cross-spectral scene representation can be obtained through successive sampling. Then, we impose both visual and semantic constraints to ensure that this scene representation can satisfy human observation while supporting downstream semantic decision-making. Extensive experiments show that our MagicFuse achieves visual and semantic representation performance comparable to or even better than state-of-the-art fusion methods with multi-modal inputs, despite relying solely on a single degraded visible image.
☆ Mind-Brush: Integrating Agentic Cognitive Search and Reasoning into Image Generation
While text-to-image generation has achieved unprecedented fidelity, the vast majority of existing models function fundamentally as static text-to-pixel decoders. Consequently, they often fail to grasp implicit user intentions. Although emerging unified understanding-generation models have improved intent comprehension, they still struggle to accomplish tasks involving complex knowledge reasoning within a single model. Moreover, constrained by static internal priors, these models remain unable to adapt to the evolving dynamics of the real world. To bridge these gaps, we introduce Mind-Brush, a unified agentic framework that transforms generation into a dynamic, knowledge-driven workflow. Simulating a human-like 'think-research-create' paradigm, Mind-Brush actively retrieves multimodal evidence to ground out-of-distribution concepts and employs reasoning tools to resolve implicit visual constraints. To rigorously evaluate these capabilities, we propose Mind-Bench, a comprehensive benchmark comprising 500 distinct samples spanning real-time news, emerging concepts, and domains such as mathematical and Geo-Reasoning. Extensive experiments demonstrate that Mind-Brush significantly enhances the capabilities of unified models, realizing a zero-to-one capability leap for the Qwen-Image baseline on Mind-Bench, while achieving superior results on established benchmarks like WISE and RISE.
comment: 36 pages, 24 figures
☆ Spot-Wise Smart Parking: An Edge-Enabled Architecture with YOLOv11 and Digital Twin Integration
Smart parking systems help reduce congestion and minimize users' search time, thereby contributing to smart city adoption and enhancing urban mobility. In previous works, we presented a system developed on a university campus to monitor parking availability by estimating the number of free spaces from vehicle counts within a region of interest. Although this approach achieved good accuracy, it restricted the system's ability to provide spot-level insights and support more advanced applications. To overcome this limitation, we extend the system with a spot-wise monitoring strategy based on a distance-aware matching method with spatial tolerance, enhanced through an Adaptive Bounding Box Partitioning method for challenging spaces. The proposed approach achieves a balanced accuracy of 98.80% while maintaining an inference time of 8 seconds on a resource-constrained edge device, enhancing the capabilities of YOLOv11m, a model that has a size of 40.5 MB. In addition, two new components were introduced: (i) a Digital Shadow that visually represents parking lot entities as a base to evolve to a full Digital Twin, and (ii) an application support server based on a repurposed TV box. The latter not only enables scalable communication among cloud services, the parking totem, and a bot that provides detailed spot occupancy statistics, but also promotes hardware reuse as a step towards greater sustainability.
comment: Submitted to Journal of Internet Services and Applications, 27 pages, 20 figures, 3 tables
☆ ObjEmbed: Towards Universal Multimodal Object Embeddings
Aligning objects with corresponding textual descriptions is a fundamental challenge and a realistic requirement in vision-language understanding. While recent multimodal embedding models excel at global image-text alignment, they often struggle with fine-grained alignment between image regions and specific phrases. In this work, we present ObjEmbed, a novel MLLM embedding model that decomposes the input image into multiple regional embeddings, each corresponding to an individual object, along with global embeddings. It supports a wide range of visual understanding tasks like visual grounding, local image retrieval, and global image retrieval. ObjEmbed enjoys three key properties: (1) Object-Oriented Representation: It captures both semantic and spatial aspects of objects by generating two complementary embeddings for each region: an object embedding for semantic matching and an IoU embedding that predicts localization quality. The final object matching score combines semantic similarity with the predicted IoU, enabling more accurate retrieval. (2) Versatility: It seamlessly handles both region-level and image-level tasks. (3) Efficient Encoding: All objects in an image, along with the full image, are encoded in a single forward pass for high efficiency. Superior performance on 18 diverse benchmarks demonstrates its strong semantic discrimination.
☆ Tail-Aware Post-Training Quantization for 3D Geometry Models
The burgeoning complexity and scale of 3D geometry models pose significant challenges for deployment on resource-constrained platforms. While Post-Training Quantization (PTQ) enables efficient inference without retraining, conventional methods, primarily optimized for 2D Vision Transformers, fail to transfer effectively to 3D models due to intricate feature distributions and prohibitive calibration overhead. To address these challenges, we propose TAPTQ, a Tail-Aware Post-Training Quantization pipeline specifically engineered for 3D geometric learning. Our contribution is threefold: (1) To overcome the data-scale bottleneck in 3D datasets, we develop a progressive coarse-to-fine calibration construction strategy that constructs a highly compact subset to achieve both statistical purity and geometric representativeness. (2) We reformulate the quantization interval search as an optimization problem and introduce a ternary-search-based solver, reducing the computational complexity from $\mathcal{O}(N)$ to $\mathcal{O}(\log N)$ for accelerated deployment. (3) To mitigate quantization error accumulation, we propose TRE-Guided Module-wise Compensation, which utilizes a Tail Relative Error (TRE) metric to adaptively identify and rectify distortions in modules sensitive to long-tailed activation outliers. Extensive experiments on the VGGT and Pi3 benchmarks demonstrate that TAPTQ consistently outperforms state-of-the-art PTQ methods in accuracy while significantly reducing calibration time. The code will be released soon.
☆ MACD: Model-Aware Contrastive Decoding via Counterfactual Data
Video language models (Video-LLMs) are prone to hallucinations, often generating plausible but ungrounded content when visual evidence is weak, ambiguous, or biased. Existing decoding methods, such as contrastive decoding (CD), rely on random perturbations to construct contrastive data for mitigating hallucination patterns. However, such a way is hard to control the visual cues that drive hallucination or well align with model weaknesses. We propose Model-aware Counterfactual Data based Contrastive Decoding (MACD), a new inference strategy that combines model-guided counterfactual construction with decoding. Our approach uses the Video-LLM's own feedback to identify object regions most responsible for hallucination, generating targeted counterfactual inputs at the object level rather than arbitrary frame or temporal modifications. These model-aware counterfactual data is then integrated into CD to enforce evidence-grounded token selection during decoding. Experiments on EventHallusion, MVBench, Perception-test and Video-MME show that MACD consistently reduces hallucination while maintaining or improving task accuracy across diverse Video-LLMs, including Qwen and InternVL families. The method is especially effective in challenging scenarios involving small, occluded, or co-occurring objects. Our code and data will be publicly released.
☆ Simplicity Prevails: The Emergence of Generalizable AIGI Detection in Visual Foundation Models
While specialized detectors for AI-Generated Images (AIGI) achieve near-perfect accuracy on curated benchmarks, they suffer from a dramatic performance collapse in realistic, in-the-wild scenarios. In this work, we demonstrate that simplicity prevails over complex architectural designs. A simple linear classifier trained on the frozen features of modern Vision Foundation Models , including Perception Encoder, MetaCLIP 2, and DINOv3, establishes a new state-of-the-art. Through a comprehensive evaluation spanning traditional benchmarks, unseen generators, and challenging in-the-wild distributions, we show that this baseline not only matches specialized detectors on standard benchmarks but also decisively outperforms them on in-the-wild datasets, boosting accuracy by striking margins of over 30\%. We posit that this superior capability is an emergent property driven by the massive scale of pre-training data containing synthetic content. We trace the source of this capability to two distinct manifestations of data exposure: Vision-Language Models internalize an explicit semantic concept of forgery, while Self-Supervised Learning models implicitly acquire discriminative forensic features from the pretraining data. However, we also reveal persistent limitations: these models suffer from performance degradation under recapture and transmission, remain blind to VAE reconstruction and localized editing. We conclude by advocating for a paradigm shift in AI forensics, moving from overfitting on static benchmarks to harnessing the evolving world knowledge of foundation models for real-world reliability.
☆ DenVisCoM: Dense Vision Correspondence Mamba for Efficient and Real-time Optical Flow and Stereo Estimation
In this work, we propose a novel Mamba block DenVisCoM, as well as a novel hybrid architecture specifically tailored for accurate and real-time estimation of optical flow and disparity estimation. Given that such multi-view geometry and motion tasks are fundamentally related, we propose a unified architecture to tackle them jointly. Specifically, the proposed hybrid architecture is based on DenVisCoM and a Transformer-based attention block that efficiently addresses real-time inference, memory footprint, and accuracy at the same time for joint estimation of motion and 3D dense perception tasks. We extensively analyze the benchmark trade-off of accuracy and real-time processing on a large number of datasets. Our experimental results and related analysis suggest that our proposed model can accurately estimate optical flow and disparity estimation in real time. All models and associated code are available at https://github.com/vimstereo/DenVisCoM.
comment: IEEE International Conference on Robotics and Automation 2026
☆ FastPhysGS: Accelerating Physics-based Dynamic 3DGS Simulation via Interior Completion and Adaptive Optimization
Extending 3D Gaussian Splatting (3DGS) to 4D physical simulation remains challenging. Based on the Material Point Method (MPM), existing methods either rely on manual parameter tuning or distill dynamics from video diffusion models, limiting the generalization and optimization efficiency. Recent attempts using LLMs/VLMs suffer from a text/image-to-3D perceptual gap, yielding unstable physics behavior. In addition, they often ignore the surface structure of 3DGS, leading to implausible motion. We propose FastPhysGS, a fast and robust framework for physics-based dynamic 3DGS simulation:(1) Instance-aware Particle Filling (IPF) with Monte Carlo Importance Sampling (MCIS) to efficiently populate interior particles while preserving geometric fidelity; (2) Bidirectional Graph Decoupling Optimization (BGDO), an adaptive strategy that rapidly optimizes material parameters predicted from a VLM. Experiments show FastPhysGS achieves high-fidelity physical simulation in 1 minute using only 7 GB runtime memory, outperforming prior works with broad potential applications.
☆ Physics Informed Generative AI Enabling Labour Free Segmentation For Microscopy Analysis
Semantic segmentation of microscopy images is a critical task for high-throughput materials characterisation, yet its automation is severely constrained by the prohibitive cost, subjectivity, and scarcity of expert-annotated data. While physics-based simulations offer a scalable alternative to manual labelling, models trained on such data historically fail to generalise due to a significant domain gap, lacking the complex textures, noise patterns, and imaging artefacts inherent to experimental data. This paper introduces a novel framework for labour-free segmentation that successfully bridges this simulation-to-reality gap. Our pipeline leverages phase-field simulations to generate an abundant source of microstructural morphologies with perfect, intrinsically-derived ground-truth masks. We then employ a Cycle-Consistent Generative Adversarial Network (CycleGAN) for unpaired image-to-image translation, transforming the clean simulations into a large-scale dataset of high-fidelity, realistic SEM images. A U-Net model, trained exclusively on this synthetic data, demonstrated remarkable generalisation when deployed on unseen experimental images, achieving a mean Boundary F1-Score of 0.90 and an Intersection over Union (IOU) of 0.88. Comprehensive validation using t-SNE feature-space projection and Shannon entropy analysis confirms that our synthetic images are statistically and featurally indistinguishable from the real data manifold. By completely decoupling model training from manual annotation, our generative framework transforms a data-scarce problem into one of data abundance, providing a robust and fully automated solution to accelerate materials discovery and analysis.
☆ Cross-Modal Alignment and Fusion for RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
☆ FreshMem: Brain-Inspired Frequency-Space Hybrid Memory for Streaming Video Understanding
Transitioning Multimodal Large Language Models (MLLMs) from offline to online streaming video understanding is essential for continuous perception. However, existing methods lack flexible adaptivity, leading to irreversible detail loss and context fragmentation. To resolve this, we propose FreshMem, a Frequency-Space Hybrid Memory network inspired by the brain's logarithmic perception and memory consolidation. FreshMem reconciles short-term fidelity with long-term coherence through two synergistic modules: Multi-scale Frequency Memory (MFM), which projects overflowing frames into representative frequency coefficients, complemented by residual details to reconstruct a global historical "gist"; and Space Thumbnail Memory (STM), which discretizes the continuous stream into episodic clusters by employing an adaptive compression strategy to distill them into high-density space thumbnails. Extensive experiments show that FreshMem significantly boosts the Qwen2-VL baseline, yielding gains of 5.20%, 4.52%, and 2.34% on StreamingBench, OV-Bench, and OVO-Bench, respectively. As a training-free solution, FreshMem outperforms several fully fine-tuned methods, offering a highly efficient paradigm for long-horizon streaming video understanding.
☆ Hyperspectral Image Fusion with Spectral-Band and Fusion-Scale Agnosticism
Current deep learning models for Multispectral and Hyperspectral Image Fusion (MS/HS fusion) are typically designed for fixed spectral bands and spatial scales, which limits their transferability across diverse sensors. To address this, we propose SSA, a universal framework for MS/HS fusion with spectral-band and fusion-scale agnosticism. Specifically, we introduce Matryoshka Kernel (MK), a novel operator that enables a single model to adapt to arbitrary numbers of spectral channels. Meanwhile, we build SSA upon an Implicit Neural Representation (INR) backbone that models the HS signal as a continuous function, enabling reconstruction at arbitrary spatial resolutions. Together, these two forms of agnosticism enable a single MS/HS fusion model that generalizes effectively to unseen sensors and spatial scales. Extensive experiments demonstrate that our single model achieves state-of-the-art performance while generalizing well to unseen sensors and scales, paving the way toward future HS foundation models.
☆ Towards Autonomous Instrument Tray Assembly for Sterile Processing Applications
The Sterile Processing and Distribution (SPD) department is responsible for cleaning, disinfecting, inspecting, and assembling surgical instruments between surgeries. Manual inspection and preparation of instrument trays is a time-consuming, error-prone task, often prone to contamination and instrument breakage. In this work, we present a fully automated robotic system that sorts and structurally packs surgical instruments into sterile trays, focusing on automation of the SPD assembly stage. A custom dataset comprising 31 surgical instruments and 6,975 annotated images was collected to train a hybrid perception pipeline using YOLO12 for detection and a cascaded ResNet-based model for fine-grained classification. The system integrates a calibrated vision module, a 6-DOF Staubli TX2-60L robotic arm with a custom dual electromagnetic gripper, and a rule-based packing algorithm that reduces instrument collisions during transport. The packing framework uses 3D printed dividers and holders to physically isolate instruments, reducing collision and friction during transport. Experimental evaluations show high perception accuracy and statistically significant reduction in tool-to-tool collisions compared to human-assembled trays. This work serves as the scalable first step toward automating SPD workflows, improving safety, and consistency of surgical preparation while reducing SPD processing times.
comment: 7 pages, 9 figures, 2026 International Symposium on Medical Robotics
☆ SMTrack: State-Aware Mamba for Efficient Temporal Modeling in Visual Tracking
Visual tracking aims to automatically estimate the state of a target object in a video sequence, which is challenging especially in dynamic scenarios. Thus, numerous methods are proposed to introduce temporal cues to enhance tracking robustness. However, conventional CNN and Transformer architectures exhibit inherent limitations in modeling long-range temporal dependencies in visual tracking, often necessitating either complex customized modules or substantial computational costs to integrate temporal cues. Inspired by the success of the state space model, we propose a novel temporal modeling paradigm for visual tracking, termed State-aware Mamba Tracker (SMTrack), providing a neat pipeline for training and tracking without needing customized modules or substantial computational costs to build long-range temporal dependencies. It enjoys several merits. First, we propose a novel selective state-aware space model with state-wise parameters to capture more diverse temporal cues for robust tracking. Second, SMTrack facilitates long-range temporal interactions with linear computational complexity during training. Third, SMTrack enables each frame to interact with previously tracked frames via hidden state propagation and updating, which releases computational costs of handling temporal cues during tracking. Extensive experimental results demonstrate that SMTrack achieves promising performance with low computational costs.
comment: This paper is accepted by IEEE TIP
☆ VRGaussianAvatar: Integrating 3D Gaussian Avatars into VR
We present VRGaussianAvatar, an integrated system that enables real-time full-body 3D Gaussian Splatting (3DGS) avatars in virtual reality using only head-mounted display (HMD) tracking signals. The system adopts a parallel pipeline with a VR Frontend and a GA Backend. The VR Frontend uses inverse kinematics to estimate full-body pose and streams the resulting pose along with stereo camera parameters to the backend. The GA Backend stereoscopically renders a 3DGS avatar reconstructed from a single image. To improve stereo rendering efficiency, we introduce Binocular Batching, which jointly processes left and right eye views in a single batched pass to reduce redundant computation and support high-resolution VR displays. We evaluate VRGaussianAvatar with quantitative performance tests and a within-subject user study against image- and video-based mesh avatar baselines. Results show that VRGaussianAvatar sustains interactive VR performance and yields higher perceived appearance similarity, embodiment, and plausibility. Project page and source code are available at https://vrgaussianavatar.github.io.
comment: Accepted as an IEEE TVCG paper at IEEE VR 2026 (journal track)
☆ Real-Time Loop Closure Detection in Visual SLAM via NetVLAD and Faiss
Loop closure detection (LCD) is a core component of simultaneous localization and mapping (SLAM): it identifies revisited places and enables pose-graph constraints that correct accumulated drift. Classic bag-of-words approaches such as DBoW are efficient but often degrade under appearance change and perceptual aliasing. In parallel, deep learning-based visual place recognition (VPR) descriptors (e.g., NetVLAD and Transformer-based models) offer stronger robustness, but their computational cost is often viewed as a barrier to real-time SLAM. In this paper, we empirically evaluate NetVLAD as an LCD module and compare it against DBoW on the KITTI dataset. We introduce a Fine-Grained Top-K precision-recall curve that better reflects LCD settings where a query may have zero or multiple valid matches. With Faiss-accelerated nearestneighbor search, NetVLAD achieves real-time query speed while improving accuracy and robustness over DBoW, making it a practical drop-in alternative for LCD in SLAM.
☆ Moonworks Lunara Aesthetic II: An Image Variation Dataset
We introduce Lunara Aesthetic II, a publicly released, ethically sourced image dataset designed to support controlled evaluation and learning of contextual consistency in modern image generation and editing systems. The dataset comprises 2,854 anchor-linked variation pairs derived from original art and photographs created by Moonworks. Each variation pair applies contextual transformations, such as illumination, weather, viewpoint, scene composition, color tone, or mood; while preserving a stable underlying identity. Lunara Aesthetic II operationalizes identity-preserving contextual variation as a supervision signal while also retaining Lunara's signature high aesthetic scores. Results show high identity stability, strong target attribute realization, and a robust aesthetic profile that exceeds large-scale web datasets. Released under the Apache 2.0 license, Lunara Aesthetic II is intended for benchmarking, fine-tuning, and analysis of contextual generalization, identity preservation, and edit robustness in image generation and image-to-image systems with interpretable, relational supervision. The dataset is publicly available at: https://huggingface.co/datasets/moonworks/lunara-aesthetic-image-variations.
☆ From Frames to Sequences: Temporally Consistent Human-Centric Dense Prediction
In this work, we focus on the challenge of temporally consistent human-centric dense prediction across video sequences. Existing models achieve strong per-frame accuracy but often flicker under motion, occlusion, and lighting changes, and they rarely have paired human video supervision for multiple dense tasks. We address this gap with a scalable synthetic data pipeline that generates photorealistic human frames and motion-aligned sequences with pixel-accurate depth, normals, and masks. Unlike prior static data synthetic pipelines, our pipeline provides both frame-level labels for spatial learning and sequence-level supervision for temporal learning. Building on this, we train a unified ViT-based dense predictor that (i) injects an explicit human geometric prior via CSE embeddings and (ii) improves geometry-feature reliability with a lightweight channel reweighting module after feature fusion. Our two-stage training strategy, combining static pretraining with dynamic sequence supervision, enables the model first to acquire robust spatial representations and then refine temporal consistency across motion-aligned sequences. Extensive experiments show that we achieve state-of-the-art performance on THuman2.1 and Hi4D and generalize effectively to in-the-wild videos.
☆ Contribution-aware Token Compression for Efficient Video Understanding via Reinforcement Learning AAAI2026
Video large language models have demonstrated remarkable capabilities in video understanding tasks. However, the redundancy of video tokens introduces significant computational overhead during inference, limiting their practical deployment. Many compression algorithms are proposed to prioritize retaining features with the highest attention scores to minimize perturbations in attention computations. However, the correlation between attention scores and their actual contribution to correct answers remains ambiguous. To address the above limitation, we propose a novel \textbf{C}ontribution-\textbf{a}ware token \textbf{Co}mpression algorithm for \textbf{VID}eo understanding (\textbf{CaCoVID}) that explicitly optimizes the token selection policy based on the contribution of tokens to correct predictions. First, we introduce a reinforcement learning-based framework that optimizes a policy network to select video token combinations with the greatest contribution to correct predictions. This paradigm shifts the focus from passive token preservation to active discovery of optimal compressed token combinations. Secondly, we propose a combinatorial policy optimization algorithm with online combination space sampling, which dramatically reduces the exploration space for video token combinations and accelerates the convergence speed of policy optimization. Extensive experiments on diverse video understanding benchmarks demonstrate the effectiveness of CaCoVID. Codes will be released.
comment: This paper is accepted by AAAI2026
☆ From Perception to Action: Spatial AI Agents and World Models
While large language models have become the prevailing approach for agentic reasoning and planning, their success in symbolic domains does not readily translate to the physical world. Spatial intelligence, the ability to perceive 3D structure, reason about object relationships, and act under physical constraints, is an orthogonal capability that proves important for embodied agents. Existing surveys address either agentic architectures or spatial domains in isolation. None provide a unified framework connecting these complementary capabilities. This paper bridges that gap. Through a thorough review of over 2,000 papers, citing 742 works from top-tier venues, we introduce a unified three-axis taxonomy connecting agentic capabilities with spatial tasks across scales. Crucially, we distinguish spatial grounding (metric understanding of geometry and physics) from symbolic grounding (associating images with text), arguing that perception alone does not confer agency. Our analysis reveals three key findings mapped to these axes: (1) hierarchical memory systems (Capability axis) are important for long-horizon spatial tasks. (2) GNN-LLM integration (Task axis) is a promising approach for structured spatial reasoning. (3) World models (Scale axis) are essential for safe deployment across micro-to-macro spatial scales. We conclude by identifying six grand challenges and outlining directions for future research, including the need for unified evaluation frameworks to standardize cross-domain assessment. This taxonomy provides a foundation for unifying fragmented research efforts and enabling the next generation of spatially-aware autonomous systems in robotics, autonomous vehicles, and geospatial intelligence.
comment: 61 pages, 742 citations, 1 figure, 3 tables. Survey paper on spatial AI agents, embodied AI, graph neural networks, and world models
ReCALL: Recalibrating Capability Degradation for MLLM-based Composed Image Retrieval
Composed Image Retrieval (CIR) aims to retrieve target images based on a hybrid query comprising a reference image and a modification text. Early dual-tower Vision-Language Models (VLMs) struggle with cross-modality compositional reasoning required for this task. Recently, adapting generative Multimodal Large Language Models (MLLMs) for retrieval offers a promising direction. However, we identify that this adaptation strategy overlooks a fundamental issue: adapting a generative MLLM into a single-embedding discriminative retriever triggers a paradigm conflict, which leads to Capability Degradation - the deterioration of native fine-grained reasoning after retrieval adaptation. To address this challenge, we propose ReCALL (Recalibrating Capability Degradation), a model-agnostic framework that follows a diagnose-generate-refine pipeline: Firstly, we diagnose cognitive blind spots of the retriever via self-guided informative instance mining. Next, we generate corrective instructions and triplets by CoT prompting the foundation MLLM and conduct quality control with VQA-based consistency filtering. Finally, we refine the retriever through continual training on these triplets with a grouped contrastive scheme, thereby internalizing fine-grained visual-semantic distinctions and realigning the discriminative embedding space of retriever with intrinsic compositional reasoning within the MLLM. Extensive experiments on CIRR and FashionIQ show that ReCALL consistently recalibrates degraded capabilities and achieves state-of-the-art performance. Code will be released soon.
☆ Federated Vision Transformer with Adaptive Focal Loss for Medical Image Classification
While deep learning models like Vision Transformer (ViT) have achieved significant advances, they typically require large datasets. With data privacy regulations, access to many original datasets is restricted, especially medical images. Federated learning (FL) addresses this challenge by enabling global model aggregation without data exchange. However, the heterogeneity of the data and the class imbalance that exist in local clients pose challenges for the generalization of the model. This study proposes a FL framework leveraging a dynamic adaptive focal loss (DAFL) and a client-aware aggregation strategy for local training. Specifically, we design a dynamic class imbalance coefficient that adjusts based on each client's sample distribution and class data distribution, ensuring minority classes receive sufficient attention and preventing sparse data from being ignored. To address client heterogeneity, a weighted aggregation strategy is adopted, which adapts to data size and characteristics to better capture inter-client variations. The classification results on three public datasets (ISIC, Ocular Disease and RSNA-ICH) show that the proposed framework outperforms DenseNet121, ResNet50, ViT-S/16, ViT-L/32, FedCLIP, Swin Transformer, CoAtNet, and MixNet in most cases, with accuracy improvements ranging from 0.98\% to 41.69\%. Ablation studies on the imbalanced ISIC dataset validate the effectiveness of the proposed loss function and aggregation strategy compared to traditional loss functions and other FL approaches. The codes can be found at: https://github.com/AIPMLab/ViT-FLDAF.
comment: Accepted in Knowledge-Based Systems
Research on World Models Is Not Merely Injecting World Knowledge into Specific Tasks
World models have emerged as a critical frontier in AI research, aiming to enhance large models by infusing them with physical dynamics and world knowledge. The core objective is to enable agents to understand, predict, and interact with complex environments. However, current research landscape remains fragmented, with approaches predominantly focused on injecting world knowledge into isolated tasks, such as visual prediction, 3D estimation, or symbol grounding, rather than establishing a unified definition or framework. While these task-specific integrations yield performance gains, they often lack the systematic coherence required for holistic world understanding. In this paper, we analyze the limitations of such fragmented approaches and propose a unified design specification for world models. We suggest that a robust world model should not be a loose collection of capabilities but a normative framework that integrally incorporates interaction, perception, symbolic reasoning, and spatial representation. This work aims to provide a structured perspective to guide future research toward more general, robust, and principled models of the world.
comment: 13 pages, 4 figures
☆ PISCES: Annotation-free Text-to-Video Post-Training via Optimal Transport-Aligned Rewards
Text-to-video (T2V) generation aims to synthesize videos with high visual quality and temporal consistency that are semantically aligned with input text. Reward-based post-training has emerged as a promising direction to improve the quality and semantic alignment of generated videos. However, recent methods either rely on large-scale human preference annotations or operate on misaligned embeddings from pre-trained vision-language models, leading to limited scalability or suboptimal supervision. We present $\texttt{PISCES}$, an annotation-free post-training algorithm that addresses these limitations via a novel Dual Optimal Transport (OT)-aligned Rewards module. To align reward signals with human judgment, $\texttt{PISCES}$ uses OT to bridge text and video embeddings at both distributional and discrete token levels, enabling reward supervision to fulfill two objectives: (i) a Distributional OT-aligned Quality Reward that captures overall visual quality and temporal coherence; and (ii) a Discrete Token-level OT-aligned Semantic Reward that enforces semantic, spatio-temporal correspondence between text and video tokens. To our knowledge, $\texttt{PISCES}$ is the first to improve annotation-free reward supervision in generative post-training through the lens of OT. Experiments on both short- and long-video generation show that $\texttt{PISCES}$ outperforms both annotation-based and annotation-free methods on VBench across Quality and Semantic scores, with human preference studies further validating its effectiveness. We show that the Dual OT-aligned Rewards module is compatible with multiple optimization paradigms, including direct backpropagation and reinforcement learning fine-tuning.
☆ Omni-Judge: Can Omni-LLMs Serve as Human-Aligned Judges for Text-Conditioned Audio-Video Generation?
State-of-the-art text-to-video generation models such as Sora 2 and Veo 3 can now produce high-fidelity videos with synchronized audio directly from a textual prompt, marking a new milestone in multi-modal generation. However, evaluating such tri-modal outputs remains an unsolved challenge. Human evaluation is reliable but costly and difficult to scale, while traditional automatic metrics, such as FVD, CLAP, and ViCLIP, focus on isolated modality pairs, struggle with complex prompts, and provide limited interpretability. Omni-modal large language models (omni-LLMs) present a promising alternative: they naturally process audio, video, and text, support rich reasoning, and offer interpretable chain-of-thought feedback. Driven by this, we introduce Omni-Judge, a study assessing whether omni-LLMs can serve as human-aligned judges for text-conditioned audio-video generation. Across nine perceptual and alignment metrics, Omni-Judge achieves correlation comparable to traditional metrics and excels on semantically demanding tasks such as audio-text alignment, video-text alignment, and audio-video-text coherence. It underperforms on high-FPS perceptual metrics, including video quality and audio-video synchronization, due to limited temporal resolution. Omni-Judge provides interpretable explanations that expose semantic or physical inconsistencies, enabling practical downstream uses such as feedback-based refinement. Our findings highlight both the potential and current limitations of omni-LLMs as unified evaluators for multi-modal generation.
☆ Token Pruning for In-Context Generation in Diffusion Transformers
In-context generation significantly enhances Diffusion Transformers (DiTs) by enabling controllable image-to-image generation through reference examples. However, the resulting input concatenation drastically increases sequence length, creating a substantial computational bottleneck. Existing token reduction techniques, primarily tailored for text-to-image synthesis, fall short in this paradigm as they apply uniform reduction strategies, overlooking the inherent role asymmetry between reference contexts and target latents across spatial, temporal, and functional dimensions. To bridge this gap, we introduce ToPi, a training-free token pruning framework tailored for in-context generation in DiTs. Specifically, ToPi utilizes offline calibration-driven sensitivity analysis to identify pivotal attention layers, serving as a robust proxy for redundancy estimation. Leveraging these layers, we derive a novel influence metric to quantify the contribution of each context token for selective pruning, coupled with a temporal update strategy that adapts to the evolving diffusion trajectory. Empirical evaluations demonstrate that ToPi can achieve over 30\% speedup in inference while maintaining structural fidelity and visual consistency across complex image generation tasks.
comment: 20 pages
☆ UV-M3TL: A Unified and Versatile Multimodal Multi-Task Learning Framework for Assistive Driving Perception
Advanced Driver Assistance Systems (ADAS) need to understand human driver behavior while perceiving their navigation context, but jointly learning these heterogeneous tasks would cause inter-task negative transfer and impair system performance. Here, we propose a Unified and Versatile Multimodal Multi-Task Learning (UV-M3TL) framework to simultaneously recognize driver behavior, driver emotion, vehicle behavior, and traffic context, while mitigating inter-task negative transfer. Our framework incorporates two core components: dual-branch spatial channel multimodal embedding (DB-SCME) and adaptive feature-decoupled multi-task loss (AFD-Loss). DB-SCME enhances cross-task knowledge transfer while mitigating task conflicts by employing a dual-branch structure to explicitly model salient task-shared and task-specific features. AFD-Loss improves the stability of joint optimization while guiding the model to learn diverse multi-task representations by introducing an adaptive weighting mechanism based on learning dynamics and feature decoupling constraints. We evaluate our method on the AIDE dataset, and the experimental results demonstrate that UV-M3TL achieves state-of-the-art performance across all four tasks. To further prove the versatility, we evaluate UV-M3TL on additional public multi-task perception benchmarks (BDD100K, CityScapes, NYUD-v2, and PASCAL-Context), where it consistently delivers strong performance across diverse task combinations, attaining state-of-the-art results on most tasks.
☆ Samba+: General and Accurate Salient Object Detection via A More Unified Mamba-based Framework
Existing salient object detection (SOD) models are generally constrained by the limited receptive fields of convolutional neural networks (CNNs) and quadratic computational complexity of Transformers. Recently, the emerging state-space model, namely Mamba, has shown great potential in balancing global receptive fields and computational efficiency. As a solution, we propose Saliency Mamba (Samba), a pure Mamba-based architecture that flexibly handles various distinct SOD tasks, including RGB/RGB-D/RGB-T SOD, video SOD (VSOD), RGB-D VSOD, and visible-depth-thermal SOD. Specifically, we rethink the scanning strategy of Mamba for SOD, and introduce a saliency-guided Mamba block (SGMB) that features a spatial neighborhood scanning (SNS) algorithm to preserve the spatial continuity of salient regions. A context-aware upsampling (CAU) method is also proposed to promote hierarchical feature alignment and aggregation by modeling contextual dependencies. As one step further, to avoid the "task-specific" problem as in previous SOD solutions, we develop Samba+, which is empowered by training Samba in a multi-task joint manner, leading to a more unified and versatile model. Two crucial components that collaboratively tackle challenges encountered in input of arbitrary modalities and continual adaptation are investigated. Specifically, a hub-and-spoke graph attention (HGA) module facilitates adaptive cross-modal interactive fusion, and a modality-anchored continual learning (MACL) strategy alleviates inter-modal conflicts together with catastrophic forgetting. Extensive experiments demonstrate that Samba individually outperforms existing methods across six SOD tasks on 22 datasets with lower computational cost, whereas Samba+ achieves even superior results on these tasks and datasets by using a single trained versatile model. Additional results further demonstrate the potential of our Samba framework.
☆ Know Your Step: Faster and Better Alignment for Flow Matching Models via Step-aware Advantages
Recent advances in flow matching models, particularly with reinforcement learning (RL), have significantly enhanced human preference alignment in few step text to image generators. However, existing RL based approaches for flow matching models typically rely on numerous denoising steps, while suffering from sparse and imprecise reward signals that often lead to suboptimal alignment. To address these limitations, we propose Temperature Annealed Few step Sampling with Group Relative Policy Optimization (TAFS GRPO), a novel framework for training flow matching text to image models into efficient few step generators well aligned with human preferences. Our method iteratively injects adaptive temporal noise onto the results of one step samples. By repeatedly annealing the model's sampled outputs, it introduces stochasticity into the sampling process while preserving the semantic integrity of each generated image. Moreover, its step aware advantage integration mechanism combines the GRPO to avoid the need for the differentiable of reward function and provide dense and step specific rewards for stable policy optimization. Extensive experiments demonstrate that TAFS GRPO achieves strong performance in few step text to image generation and significantly improves the alignment of generated images with human preferences. The code and models of this work will be available to facilitate further research.
☆ Genus-0 Surface Parameterization using Spherical Beltrami Differentials
Spherical surface parameterization is a fundamental tool in geometry processing and imaging science. For a genus-0 closed surface, many efficient algorithms can map the surface to the sphere; consequently, a broad class of task-driven genus-0 mapping problems can be reduced to constructing a high-quality spherical self-map. However, existing approaches often face a trade-off between satisfying task objectives (e.g., landmark or feature alignment), maintaining bijectivity, and controlling geometric distortion. We introduce the Spherical Beltrami Differential (SBD), a two-chart representation of quasiconformal self-maps of the sphere, and establish its correspondence with spherical homeomorphisms up to conformal automorphisms. Building on the Spectral Beltrami Network (SBN), we propose a neural optimization framework BOOST that optimizes two Beltrami fields on hemispherical stereographic charts and enforces global consistency through explicit seam-aware constraints. Experiments on large-deformation landmark matching and intensity-based spherical registration demonstrate the effectiveness of our proposed framework. We further apply the method to brain cortical surface registration, aligning sulcal landmarks and jointly matching cortical sulci depth maps, showing improved task fidelity with controlled distortion and robust bijective behavior.
☆ HandMCM: Multi-modal Point Cloud-based Correspondence State Space Model for 3D Hand Pose Estimation AAAI
3D hand pose estimation that involves accurate estimation of 3D human hand keypoint locations is crucial for many human-computer interaction applications such as augmented reality. However, this task poses significant challenges due to self-occlusion of the hands and occlusions caused by interactions with objects. In this paper, we propose HandMCM to address these challenges. Our HandMCM is a novel method based on the powerful state space model (Mamba). By incorporating modules for local information injection/filtering and correspondence modeling, the proposed correspondence Mamba effectively learns the highly dynamic kinematic topology of keypoints across various occlusion scenarios. Moreover, by integrating multi-modal image features, we enhance the robustness and representational capacity of the input, leading to more accurate hand pose estimation. Empirical evaluations on three benchmark datasets demonstrate that our model significantly outperforms current state-of-the-art methods, particularly in challenging scenarios involving severe occlusions. These results highlight the potential of our approach to advance the accuracy and reliability of 3D hand pose estimation in practical applications.
comment: AAAI accepted
☆ Visible Light Positioning With Lamé Curve LEDs: A Generic Approach for Camera Pose Estimation
Camera-based visible light positioning (VLP) is a promising technique for accurate and low-cost indoor camera pose estimation (CPE). To reduce the number of required light-emitting diodes (LEDs), advanced methods commonly exploit LED shape features for positioning. Although interesting, they are typically restricted to a single LED geometry, leading to failure in heterogeneous LED-shape scenarios. To address this challenge, this paper investigates Lamé curves as a unified representation of common LED shapes and proposes a generic VLP algorithm using Lamé curve-shaped LEDs, termed LC-VLP. In the considered system, multiple ceiling-mounted Lamé curve-shaped LEDs periodically broadcast their curve parameters via visible light communication, which are captured by a camera-equipped receiver. Based on the received LED images and curve parameters, the receiver can estimate the camera pose using LC-VLP. Specifically, an LED database is constructed offline to store the curve parameters, while online positioning is formulated as a nonlinear least-squares problem and solved iteratively. To provide a reliable initialization, a correspondence-free perspective-\textit{n}-points (FreeP\textit{n}P) algorithm is further developed, enabling approximate CPE without any pre-calibrated reference points. The performance of LC-VLP is verified by both simulations and experiments. Simulations show that LC-VLP outperforms state-of-the-art methods in both circular- and rectangular-LED scenarios, achieving reductions of over 40% in position error and 25% in rotation error. Experiments further show that LC-VLP can achieve an average position accuracy of less than 4 cm.
comment: Submitted to an IEEE journal for possible publication
☆ Generative Visual Code Mobile World Models
Mobile Graphical User Interface (GUI) World Models (WMs) offer a promising path for improving mobile GUI agent performance at train- and inference-time. However, current approaches face a critical trade-off: text-based WMs sacrifice visual fidelity, while the inability of visual WMs in precise text rendering led to their reliance on slow, complex pipelines dependent on numerous external models. We propose a novel paradigm: visual world modeling via renderable code generation, where a single Vision-Language Model (VLM) predicts the next GUI state as executable web code that renders to pixels, rather than generating pixels directly. This combines the strengths of both approaches: VLMs retain their linguistic priors for precise text rendering while their pre-training on structured web code enables high-fidelity visual generation. We introduce gWorld (8B, 32B), the first open-weight visual mobile GUI WMs built on this paradigm, along with a data generation framework (gWorld) that automatically synthesizes code-based training data. In extensive evaluation across 4 in- and 2 out-of-distribution benchmarks, gWorld sets a new pareto frontier in accuracy versus model size, outperforming 8 frontier open-weight models over 50.25x larger. Further analyses show that (1) scaling training data via gWorld yields meaningful gains, (2) each component of our pipeline improves data quality, and (3) stronger world modeling improves downstream mobile GUI policy performance.
comment: Pre-print (technical report)
☆ SGHA-Attack: Semantic-Guided Hierarchical Alignment for Transferable Targeted Attacks on Vision-Language Models
Large vision-language models (VLMs) are vulnerable to transfer-based adversarial perturbations, enabling attackers to optimize on surrogate models and manipulate black-box VLM outputs. Prior targeted transfer attacks often overfit surrogate-specific embedding space by relying on a single reference and emphasizing final-layer alignment, which underutilizes intermediate semantics and degrades transfer across heterogeneous VLMs. To address this, we propose SGHA-Attack, a Semantic-Guided Hierarchical Alignment framework that adopts multiple target references and enforces intermediate-layer consistency. Concretely, we generate a visually grounded reference pool by sampling a frozen text-to-image model conditioned on the target prompt, and then carefully select the Top-K most semantically relevant anchors under the surrogate to form a weighted mixture for stable optimization guidance. Building on these anchors, SGHA-Attack injects target semantics throughout the feature hierarchy by aligning intermediate visual representations at both global and spatial granularities across multiple depths, and by synchronizing intermediate visual and textual features in a shared latent subspace to provide early cross-modal supervision before the final projection. Extensive experiments on open-source and commercial black-box VLMs show that SGHA-Attack achieves stronger targeted transferability than prior methods and remains robust under preprocessing and purification defenses.
☆ One-Step Diffusion for Perceptual Image Compression
Diffusion-based image compression methods have achieved notable progress, delivering high perceptual quality at low bitrates. However, their practical deployment is hindered by significant inference latency and heavy computational overhead, primarily due to the large number of denoising steps required during decoding. To address this problem, we propose a diffusion-based image compression method that requires only a single-step diffusion process, significantly improving inference speed. To enhance the perceptual quality of reconstructed images, we introduce a discriminator that operates on compact feature representations instead of raw pixels, leveraging the fact that features better capture high-level texture and structural details. Experimental results show that our method delivers comparable compression performance while offering a 46$\times$ faster inference speed compared to recent diffusion-based approaches. The source code and models are available at https://github.com/cheesejiang/OSDiff.
Multimodal UNcommonsense: From Odd to Ordinary and Ordinary to Odd
Commonsense reasoning in multimodal contexts remains a foundational challenge in artificial intelligence. We introduce Multimodal UNcommonsense(MUN), a benchmark designed to evaluate models' ability to handle scenarios that deviate from typical visual or contextual expectations. MUN pairs visual scenes with surprising or unlikely outcomes described in natural language, prompting models to either rationalize seemingly odd images using everyday logic or uncover unexpected interpretations in ordinary scenes. To support this task, we propose a retrieval-based in-context learning (R-ICL) framework that transfers reasoning capabilities from larger models to smaller ones without additional training. Leveraging a novel Multimodal Ensemble Retriever (MER), our method identifies semantically relevant exemplars even when image and text pairs are deliberately discordant. Experiments show an average improvement of 8.3% over baseline ICL methods, highlighting the effectiveness of R-ICL in low-frequency, atypical settings. MUN opens new directions for evaluating and improving visual-language models' robustness and adaptability in real-world, culturally diverse, and non-prototypical scenarios.
comment: 24 pages
☆ Combined Flicker-banding and Moire Removal for Screen-Captured Images
Capturing display screens with mobile devices has become increasingly common, yet the resulting images often suffer from severe degradations caused by the coexistence of moiré patterns and flicker-banding, leading to significant visual quality degradation. Due to the strong coupling of these two artifacts in real imaging processes, existing methods designed for single degradations fail to generalize to such compound scenarios. In this paper, we present the first systematic study on joint removal of moiré patterns and flicker-banding in screen-captured images, and propose a unified restoration framework, named CLEAR. To support this task, we construct a large-scale dataset containing both moiré patterns and flicker-banding, and introduce an ISP-based flicker simulation pipeline to stabilize model training and expand the degradation distribution. Furthermore, we design a frequency-domain decomposition and re-composition module together with a trajectory alignment loss to enhance the modeling of compound artifacts. Extensive experiments demonstrate that the proposed method consistently. outperforms existing image restoration approaches across multiple evaluation metrics, validating its effectiveness in complex real-world scenarios.
☆ InfoTok: Regulating Information Flow for Capacity-Constrained Shared Visual Tokenization in Unified MLLMs
Unified multimodal large language models (MLLMs) integrate image understanding and generation in a single framework, with the visual tokenizer acting as the sole interface that maps visual inputs into tokens for downstream tasks. However, existing shared-token designs are mostly architecture-driven and lack an explicit criterion for what information tokens should preserve to support both understanding and generation. Therefore, we introduce a capacity-constrained perspective, highlighting that in shared-token unified MLLMs the visual tokenizer behaves as a compute-bounded learner, so the token budget should prioritize reusable structure over hard-to-exploit high-entropy variations and redundancy. Motivated by this perspective, we propose InfoTok, an information-regularized visual tokenization mechanism grounded in the Information Bottleneck (IB) principle. InfoTok formulates tokenization as controlling information flow from images to shared tokens to multimodal outputs, yielding a principled trade-off between compression and task relevance via mutual-information regularization. We integrate InfoTok into three representative unified MLLMs without introducing any additional training data. Experiments show consistent improvements on both understanding and generation, supporting information-regularized tokenization as a principled foundation for learning a shared token space in unified MLLMs.
Toward Cognitive Supersensing in Multimodal Large Language Model
Multimodal Large Language Models (MLLMs) have achieved remarkable success in open-vocabulary perceptual tasks, yet their ability to solve complex cognitive problems remains limited, especially when visual details are abstract and require visual memory. Current approaches primarily scale Chain-of-Thought (CoT) reasoning in the text space, even when language alone is insufficient for clear and structured reasoning, and largely neglect visual reasoning mechanisms analogous to the human visuospatial sketchpad and visual imagery. To mitigate this deficiency, we introduce Cognitive Supersensing, a novel training paradigm that endows MLLMs with human-like visual imagery capabilities by integrating a Latent Visual Imagery Prediction (LVIP) head that jointly learns sequences of visual cognitive latent embeddings and aligns them with the answer, thereby forming vision-based internal reasoning chains. We further introduce a reinforcement learning stage that optimizes text reasoning paths based on this grounded visual latent. To evaluate the cognitive capabilities of MLLMs, we present CogSense-Bench, a comprehensive visual question answering (VQA) benchmark assessing five cognitive dimensions. Extensive experiments demonstrate that MLLMs trained with Cognitive Supersensing significantly outperform state-of-the-art baselines on CogSense-Bench and exhibit superior generalization on out-of-domain mathematics and science VQA benchmarks, suggesting that internal visual imagery is potentially key to bridging the gap between perceptual recognition and cognitive understanding. We will open-source the CogSense-Bench and our model weights.
☆ FSCA-Net: Feature-Separated Cross-Attention Network for Robust Multi-Dataset Training
Crowd counting plays a vital role in public safety, traffic regulation, and smart city management. However, despite the impressive progress achieved by CNN- and Transformer-based models, their performance often deteriorates when applied across diverse environments due to severe domain discrepancies. Direct joint training on multiple datasets, which intuitively should enhance generalization, instead results in negative transfer, as shared and domain-specific representations become entangled. To address this challenge, we propose the Feature Separation and Cross-Attention Network FSCA-Net, a unified framework that explicitly disentangles feature representations into domain-invariant and domain-specific components. A novel cross-attention fusion module adaptively models interactions between these components, ensuring effective knowledge transfer while preserving dataset-specific discriminability. Furthermore, a mutual information optimization objective is introduced to maximize consistency among domain-invariant features and minimize redundancy among domain-specific ones, promoting complementary shared-private representations. Extensive experiments on multiple crowd counting benchmarks demonstrate that FSCA-Net effectively mitigates negative transfer and achieves state-of-the-art cross-dataset generalization, providing a robust and scalable solution for real-world crowd analysis.
☆ Making Avatars Interact: Towards Text-Driven Human-Object Interaction for Controllable Talking Avatars
Generating talking avatars is a fundamental task in video generation. Although existing methods can generate full-body talking avatars with simple human motion, extending this task to grounded human-object interaction (GHOI) remains an open challenge, requiring the avatar to perform text-aligned interactions with surrounding objects. This challenge stems from the need for environmental perception and the control-quality dilemma in GHOI generation. To address this, we propose a novel dual-stream framework, InteractAvatar, which decouples perception and planning from video synthesis for grounded human-object interaction. Leveraging detection to enhance environmental perception, we introduce a Perception and Interaction Module (PIM) to generate text-aligned interaction motions. Additionally, an Audio-Interaction Aware Generation Module (AIM) is proposed to synthesize vivid talking avatars performing object interactions. With a specially designed motion-to-video aligner, PIM and AIM share a similar network structure and enable parallel co-generation of motions and plausible videos, effectively mitigating the control-quality dilemma. Finally, we establish a benchmark, GroundedInter, for evaluating GHOI video generation. Extensive experiments and comparisons demonstrate the effectiveness of our method in generating grounded human-object interactions for talking avatars. Project page: https://interactavatar.github.io
☆ UniDWM: Towards a Unified Driving World Model via Multifaceted Representation Learning
Achieving reliable and efficient planning in complex driving environments requires a model that can reason over the scene's geometry, appearance, and dynamics. We present UniDWM, a unified driving world model that advances autonomous driving through multifaceted representation learning. UniDWM constructs a structure- and dynamic-aware latent world representation that serves as a physically grounded state space, enabling consistent reasoning across perception, prediction, and planning. Specifically, a joint reconstruction pathway learns to recover the scene's structure, including geometry and visual texture, while a collaborative generation framework leverages a conditional diffusion transformer to forecast future world evolution within the latent space. Furthermore, we show that our UniDWM can be deemed as a variation of VAE, which provides theoretical guidance for the multifaceted representation learning. Extensive experiments demonstrate the effectiveness of UniDWM in trajectory planning, 4D reconstruction and generation, highlighting the potential of multifaceted world representations as a foundation for unified driving intelligence. The code will be publicly available at https://github.com/Say2L/UniDWM.
☆ Rotation-free Online Handwritten Character Recognition Using Linear Recurrent Units
Online handwritten character recognition leverages stroke order and dynamic features, which generally provide higher accuracy and robustness compared with offline recognition. However, in practical applications, rotational deformations can disrupt the spatial layout of strokes, substantially reducing recognition accuracy. Extracting rotation-invariant features therefore remains a challenging open problem. In this work, we employ the Sliding Window Path Signature (SW-PS) to capture local structural features of characters, and introduce the lightweight Linear Recurrent Units (LRU) as the classifier. The LRU combine the fast incremental processing capability of recurrent neural networks (RNN) with the efficient parallel training of state space models (SSM), while reliably modelling dynamic stroke characteristics. We conducted recognition experiments with random rotation angle up to $\pm 180^{\circ}$ on three subsets of the CASIA-OLHWDB1.1 dataset: digits, English upper letters, and Chinese radicals. The accuracies achieved after ensemble learning were $99.62\%$, $96.67\%$, and $94.33\%$, respectively. Experimental results demonstrate that the proposed SW-PS+LRU framework consistently surpasses competing models in both convergence speed and test accuracy.
☆ Preserving Localized Patch Semantics in VLMs
Logit Lens has been proposed for visualizing tokens that contribute most to LLM answers. Recently, Logit Lens was also shown to be applicable in autoregressive Vision-Language Models (VLMs), where it illustrates the conceptual content of image tokens in the form of heatmaps, e.g., which image tokens are likely to depict the concept of cat in a given image. However, the visual content of image tokens often gets diffused to language tokens, and consequently, the locality of visual information gets mostly destroyed, which renders Logit Lens visualization unusable for explainability. To address this issue, we introduce a complementary loss to next-token prediction (NTP) to prevent the visual tokens from losing the visual representation inherited from corresponding image patches. The proposed Logit Lens Loss (LLL) is designed to make visual token embeddings more semantically aligned with the textual concepts that describe their image regions (e.g., patches containing a cat with the word "cat"), without requiring any architectural modification or large-scale training. This way, LLL constrains the mixing of image and text tokens in the self-attention layers in order to prevent image tokens from losing their localized visual information. As our experiments show, LLL not only makes Logit Lens practically relevant by producing meaningful object confidence maps in images, but also improves performance on vision-centric tasks like segmentation without attaching any special heads.
☆ Toward a Machine Bertin: Why Visualization Needs Design Principles for Machine Cognition
Visualization's design knowledge-effectiveness rankings, encoding guidelines, color models, preattentive processing rules -- derives from six decades of psychophysical studies of human vision. Yet vision-language models (VLMs) increasingly consume chart images in automated analysis pipelines, and a growing body of benchmark evidence indicates that this human-centered knowledge base does not straightforwardly transfer to machine audiences. Machines exhibit different encoding performance patterns, process images through patch-based tokenization rather than holistic perception, and fail on design patterns that pose no difficulty for humans-while occasionally succeeding where humans struggle. Current approaches address this gap primarily by bypassing vision entirely, converting charts to data tables or structured text. We argue that this response forecloses a more fundamental question: what visual representations would actually serve machine cognition well? This paper makes the case that the visualization field needs to investigate machine-oriented visual design as a distinct research problem. We synthesize evidence from VLM benchmarks, visual reasoning research, and visualization literacy studies to show that the human-machine perceptual divergence is qualitative, not merely quantitative, and critically examine the prevailing bypassing approach. We propose a conceptual distinction between human-oriented and machine-oriented visualization-not as an engineering architecture but as a recognition that different audiences may require fundamentally different design foundations-and outline a research agenda for developing the empirical foundations the field currently lacks: the beginnings of a "machine Bertin" to complement the human-centered knowledge the field already possesses.
comment: Preprint submitted to IEEE TVCG on February 2026
☆ When Is Rank-1 Enough? Geometry-Guided Initialization for Parameter-Efficient Fine-Tuning
Parameter-efficient fine-tuning (PEFT) is a standard way to adapt multimodal large language models, yet extremely low-rank settings -- especially rank-1 LoRA -- are often unstable. We show that this instability is not solely due to limited capacity: in the rank-1 regime, optimization is highly sensitive to the update direction. Concretely, pretrained vision and text features form mismatched anisotropic regions, yielding a dominant "gap" direction that acts like a translation component and disproportionately steers early gradients under rank-1 constraints. Analyzing pretrained representations, we identify a modality-gap axis that dominates early gradient flow, while a random rank-1 initialization is unlikely to align with it, leading to weak gradients and training collapse. We propose Gap-Init, a geometry-aware initialization that aligns the rank-1 LoRA direction with an estimated modality-gap vector from a small calibration set, while keeping the initial LoRA update zero. Across multiple vision-language tasks and backbones, Gap-Init consistently stabilizes rank-1 training and can match or outperform strong rank-8 baselines. Our results suggest that at the extreme low-rank limit, initial alignment can matter as much as rank itself.
☆ MarkCleaner: High-Fidelity Watermark Removal via Imperceptible Micro-Geometric Perturbation
Semantic watermarks exhibit strong robustness against conventional image-space attacks. In this work, we show that such robustness does not survive under micro-geometric perturbations: spatial displacements can remove watermarks by breaking the phase alignment. Motivated by this observation, we introduce MarkCleaner, a watermark removal framework that avoids semantic drift caused by regeneration-based watermark removal. Specifically, MarkCleaner is trained with micro-geometry-perturbed supervision, which encourages the model to separate semantic content from strict spatial alignment and enables robust reconstruction under subtle geometric displacements. The framework adopts a mask-guided encoder that learns explicit spatial representations and a 2D Gaussian Splatting-based decoder that explicitly parameterizes geometric perturbations while preserving semantic content. Extensive experiments demonstrate that MarkCleaner achieves superior performance in both watermark removal effectiveness and visual fidelity, while enabling efficient real-time inference. Our code will be made available upon acceptance.
☆ TreeLoc: 6-DoF LiDAR Global Localization in Forests via Inter-Tree Geometric Matching
Reliable localization is crucial for navigation in forests, where GPS is often degraded and LiDAR measurements are repetitive, occluded, and structurally complex. These conditions weaken the assumptions of traditional urban-centric localization methods, which assume that consistent features arise from unique structural patterns, necessitating forest-centric solutions to achieve robustness in these environments. To address these challenges, we propose TreeLoc, a LiDAR-based global localization framework for forests that handles place recognition and 6-DoF pose estimation. We represent scenes using tree stems and their Diameter at Breast Height (DBH), which are aligned to a common reference frame via their axes and summarized using the tree distribution histogram (TDH) for coarse matching, followed by fine matching with a 2D triangle descriptor. Finally, pose estimation is achieved through a two-step geometric verification. On diverse forest benchmarks, TreeLoc outperforms baselines, achieving precise localization. Ablation studies validate the contribution of each component. We also propose applications for long-term forest management using descriptors from a compact global tree database. TreeLoc is open-sourced for the robotics community at https://github.com/minwoo0611/TreeLoc.
comment: An 8-page paper with 7 tables and 8 figures, accepted to ICRA 2026
☆ A Reproducible Framework for Bias-Resistant Machine Learning on Small-Sample Neuroimaging Data
We introduce a reproducible, bias-resistant machine learning framework that integrates domain-informed feature engineering, nested cross-validation, and calibrated decision-threshold optimization for small-sample neuroimaging data. Conventional cross-validation frameworks that reuse the same folds for both model selection and performance estimation yield optimistically biased results, limiting reproducibility and generalization. Demonstrated on a high-dimensional structural MRI dataset of deep brain stimulation cognitive outcomes, the framework achieved a nested-CV balanced accuracy of 0.660\,$\pm$\,0.068 using a compact, interpretable subset selected via importance-guided ranking. By combining interpretability and unbiased evaluation, this work provides a generalizable computational blueprint for reliable machine learning in data-limited biomedical domains.
comment: Accepted to ISBI 2026, 5 pages with 1 figure
☆ A Multi-scale Linear-time Encoder for Whole-Slide Image Analysis
We introduce Multi-scale Adaptive Recurrent Biomedical Linear-time Encoder (MARBLE), the first \textit{purely Mamba-based} multi-state multiple instance learning (MIL) framework for whole-slide image (WSI) analysis. MARBLE processes multiple magnification levels in parallel and integrates coarse-to-fine reasoning within a linear-time state-space model, efficiently capturing cross-scale dependencies with minimal parameter overhead. WSI analysis remains challenging due to gigapixel resolutions and hierarchical magnifications, while existing MIL methods typically operate at a single scale and transformer-based approaches suffer from quadratic attention costs. By coupling parallel multi-scale processing with linear-time sequence modeling, MARBLE provides a scalable and modular alternative to attention-based architectures. Experiments on five public datasets show improvements of up to \textbf{6.9\%} in AUC, \textbf{20.3\%} in accuracy, and \textbf{2.3\%} in C-index, establishing MARBLE as an efficient and generalizable framework for multi-scale WSI analysis.
comment: Accepted to ISBI 2026, 4 pages with 2 figures
☆ FaceLinkGen: Rethinking Identity Leakage in Privacy-Preserving Face Recognition with Identity Extraction
Transformation-based privacy-preserving face recognition (PPFR) aims to verify identities while hiding facial data from attackers and malicious service providers. Existing evaluations mostly treat privacy as resistance to pixel-level reconstruction, measured by PSNR and SSIM. We show that this reconstruction-centric view fails. We present FaceLinkGen, an identity extraction attack that performs linkage/matching and face regeneration directly from protected templates without recovering original pixels. On three recent PPFR systems, FaceLinkGen reaches over 98.5\% matching accuracy and above 96\% regeneration success, and still exceeds 92\% matching and 94\% regeneration in a near zero knowledge setting. These results expose a structural gap between pixel distortion metrics, which are widely used in PPFR evaluation, and real privacy. We show that visual obfuscation leaves identity information broadly exposed to both external intruders and untrusted service providers.
☆ A Random Matrix Theory Perspective on the Consistency of Diffusion Models
Diffusion models trained on different, non-overlapping subsets of a dataset often produce strikingly similar outputs when given the same noise seed. We trace this consistency to a simple linear effect: the shared Gaussian statistics across splits already predict much of the generated images. To formalize this, we develop a random matrix theory (RMT) framework that quantifies how finite datasets shape the expectation and variance of the learned denoiser and sampling map in the linear setting. For expectations, sampling variability acts as a renormalization of the noise level through a self-consistent relation $σ^2 \mapsto κ(σ^2)$, explaining why limited data overshrink low-variance directions and pull samples toward the dataset mean. For fluctuations, our variance formulas reveal three key factors behind cross-split disagreement: \textit{anisotropy} across eigenmodes, \textit{inhomogeneity} across inputs, and overall scaling with dataset size. Extending deterministic-equivalence tools to fractional matrix powers further allows us to analyze entire sampling trajectories. The theory sharply predicts the behavior of linear diffusion models, and we validate its predictions on UNet and DiT architectures in their non-memorization regime, identifying where and how samples deviates across training data split. This provides a principled baseline for reproducibility in diffusion training, linking spectral properties of data to the stability of generative outputs.
comment: 65 pages; 53 figures
☆ DoubleTake: Contrastive Reasoning for Faithful Decision-Making in Medical Imaging
Accurate decision making in medical imaging requires reasoning over subtle visual differences between confusable conditions, yet most existing approaches rely on nearest neighbor retrieval that returns redundant evidence and reinforces a single hypothesis. We introduce a contrastive, document-aware reference selection framework that constructs compact evidence sets optimized for discrimination rather than similarity by explicitly balancing visual relevance, embedding diversity, and source-level provenance using ROCO embeddings and metadata. While ROCO provides large-scale image-caption pairs, it does not specify how references should be selected for contrastive reasoning, and naive retrieval frequently yields near-duplicate figures from the same document. To address this gap, we release a reproducible reference selection protocol and curated reference bank that enable a systematic study of contrastive retrieval in medical image reasoning. Building on these contrastive evidence sets, we propose Counterfactual-Contrastive Inference, a confidence-aware reasoning framework that performs structured pairwise visual comparisons and aggregates evidence using margin-based decision rules with faithful abstention. On the MediConfusion benchmark, our approach achieves state-of-the-art performance, improving set-level accuracy by nearly 15% relative to prior methods while reducing confusion and improving individual accuracy.
☆ ViThinker: Active Vision-Language Reasoning via Dynamic Perceptual Querying
Chain-of-Thought (CoT) reasoning excels in language models but struggles in vision-language models due to premature visual-to-text conversion that discards continuous information such as geometry and spatial layout. While recent methods enhance CoT through static enumeration or attention-based selection, they remain passive, i.e., processing pre-computed inputs rather than actively seeking task-relevant details. Inspired by human active perception, we introduce ViThinker, a framework that enables vision-language models to autonomously generate decision (query) tokens triggering the synthesis of expert-aligned visual features on demand. ViThinker internalizes vision-expert capabilities during training, performing generative mental simulation during inference without external tool calls. Through a two-stage curriculum: first distilling frozen experts into model parameters, then learning task-driven querying via sparsity penalties, i.e., ViThinker discovers minimal sufficient perception for each reasoning step. Evaluations across vision-centric benchmarks demonstrate consistent improvements, validating that active query generation outperforms passive approaches in both perceptual grounding and reasoning accuracy.
Self-Supervised Uncalibrated Multi-View Video Anonymization in the Operating Room
Privacy preservation is a prerequisite for using video data in Operating Room (OR) research. Effective anonymization relies on the exhaustive localization of every individual; even a single missed detection necessitates extensive manual correction. However, existing approaches face two critical scalability bottlenecks: (1) they usually require manual annotations of each new clinical site for high accuracy; (2) while multi-camera setups have been widely adopted to address single-view ambiguity, camera calibration is typically required whenever cameras are repositioned. To address these problems, we propose a novel self-supervised multi-view video anonymization framework consisting of whole-body person detection and whole-body pose estimation, without annotation or camera calibration. Our core strategy is to enhance the single-view detector by "retrieving" false negatives using temporal and multi-view context, and conducting self-supervised domain adaptation. We first run an off-the-shelf whole-body person detector in each view with a low-score threshold to gather candidate detections. Then, we retrieve the low-score false negatives that exhibit consistency with the high-score detections via tracking and self-supervised uncalibrated multi-view association. These recovered detections serve as pseudo labels to iteratively fine-tune the whole-body detector. Finally, we apply whole-body pose estimation on each detected person, and fine-tune the pose model using its own high-score predictions. Experiments on the 4D-OR dataset of simulated surgeries and our dataset of real surgeries show the effectiveness of our approach achieving over 97% recall. Moreover, we train a real-time whole-body detector using our pseudo labels, achieving comparable performance and highlighting our method's practical applicability. Code is available at https://github.com/CAMMA-public/OR_anonymization.
☆ From Tokens to Numbers: Continuous Number Modeling for SVG Generation
For certain image generation tasks, vector graphics such as Scalable Vector Graphics (SVGs) offer clear benefits such as increased flexibility, size efficiency, and editing ease, but remain less explored than raster-based approaches. A core challenge is that the numerical, geometric parameters, which make up a large proportion of SVGs, are inefficiently encoded as long sequences of tokens. This slows training, reduces accuracy, and hurts generalization. To address these problems, we propose Continuous Number Modeling (CNM), an approach that directly models numbers as first-class, continuous values rather than discrete tokens. This formulation restores the mathematical elegance of the representation by aligning the model's inputs with the data's continuous nature, removing discretization artifacts introduced by token-based encoding. We then train a multimodal transformer on 2 million raster-to-SVG samples, followed by fine-tuning via reinforcement learning using perceptual feedback to further improve visual quality. Our approach improves training speed by over 30% while maintaining higher perceptual fidelity compared to alternative approaches. This work establishes CNM as a practical and efficient approach for high-quality vector generation, with potential for broader applications. We make our code available http://github.com/mikeogezi/CNM.
☆ LmPT: Conditional Point Transformer for Anatomical Landmark Detection on 3D Point Clouds
Accurate identification of anatomical landmarks is crucial for various medical applications. Traditional manual landmarking is time-consuming and prone to inter-observer variability, while rule-based methods are often tailored to specific geometries or limited sets of landmarks. In recent years, anatomical surfaces have been effectively represented as point clouds, which are lightweight structures composed of spatial coordinates. Following this strategy and to overcome the limitations of existing landmarking techniques, we propose Landmark Point Transformer (LmPT), a method for automatic anatomical landmark detection on point clouds that can leverage homologous bones from different species for translational research. The LmPT model incorporates a conditioning mechanism that enables adaptability to different input types to conduct cross-species learning. We focus the evaluation of our approach on femoral landmarking using both human and newly annotated dog femurs, demonstrating its generalization and effectiveness across species. The code and dog femur dataset will be publicly available at: https://github.com/Pierreoo/LandmarkPointTransformer.
comment: This paper has been accepted at International Symposium on Biomedical Imaging (ISBI) 2026
☆ Real-time topology-aware M-mode OCT segmentation for robotic deep anterior lamellar keratoplasty (DALK) guidance
Robotic deep anterior lamellar keratoplasty (DALK) requires accurate real time depth feedback to approach Descemet's membrane (DM) without perforation. M-mode intraoperative optical coherence tomography (OCT) provides high temporal resolution depth traces, but speckle noise, attenuation, and instrument induced shadowing often result in discontinuous or ambiguous layer interfaces that challenge anatomically consistent segmentation at deployment frame rates. We present a lightweight, topology aware M-mode segmentation pipeline based on UNeXt that incorporates anatomical topology regularization to stabilize boundary continuity and layer ordering under low signal to noise ratio conditions. The proposed system achieves end to end throughput exceeding 80 Hz measured over the complete preprocessing inference overlay pipeline on a single GPU, demonstrating practical real time guidance beyond model only timing. This operating margin provides temporal headroom to reject low quality or dropout frames while maintaining a stable effective depth update rate. Evaluation on a standard rabbit eye M-mode dataset using an established baseline protocol shows improved qualitative boundary stability compared with topology agnostic controls, while preserving deployable real time performance.
☆ SVD-ViT: Does SVD Make Vision Transformers Attend More to the Foreground?
Vision Transformers (ViT) have been established as large-scale foundation models. However, because self-attention operates globally, they lack an explicit mechanism to distinguish foreground from background. As a result, ViT may learn unnecessary background features and artifacts, leading to degraded classification performance. To address this issue, we propose SVD-ViT, which leverages singular value decomposition (SVD) to prioritize the learning of foreground features. SVD-ViT consists of three components-\textbf{SPC module}, \textbf{SSVA}, and \textbf{ID-RSVD}-and suppresses task-irrelevant factors such as background noise and artifacts by extracting and aggregating singular vectors that capture object foreground information. Experimental results demonstrate that our method improves classification accuracy and effectively learns informative foreground representations while reducing the impact of background noise.
comment: 8 pages, 6 figures
☆ Physics-based generation of multilayer corneal OCT data via Gaussian modeling and MCML for AI-driven diagnostic and surgical guidance applications
Training deep learning models for corneal optical coherence tomography (OCT) imaging is limited by the availability of large, well-annotated datasets. We present a configurable Monte Carlo simulation framework that generates synthetic corneal B-scan optical OCT images with pixel-level five-layer segmentation labels derived directly from the simulation geometry. A five-layer corneal model with Gaussian surfaces captures curvature and thickness variability in healthy and keratoconic eyes. Each layer is assigned optical properties from the literature and light transport is simulated using Monte Carlo modeling of light transport in multi-layered tissues (MCML), while incorporating system features such as the confocal PSF and sensitivity roll-off. This approach produces over 10,000 high-resolution (1024x1024) image-label pairs and supports customization of geometry, photon count, noise, and system parameters. The resulting dataset enables systematic training, validation, and benchmarking of AI models under controlled, ground-truth conditions, providing a reproducible and scalable resource to support the development of diagnostic and surgical guidance applications in image-guided ophthalmology.
☆ Hierarchical Entity-centric Reinforcement Learning with Factored Subgoal Diffusion ICLR 2026
We propose a hierarchical entity-centric framework for offline Goal-Conditioned Reinforcement Learning (GCRL) that combines subgoal decomposition with factored structure to solve long-horizon tasks in domains with multiple entities. Achieving long-horizon goals in complex environments remains a core challenge in Reinforcement Learning (RL). Domains with multiple entities are particularly difficult due to their combinatorial complexity. GCRL facilitates generalization across goals and the use of subgoal structure, but struggles with high-dimensional observations and combinatorial state-spaces, especially under sparse reward. We employ a two-level hierarchy composed of a value-based GCRL agent and a factored subgoal-generating conditional diffusion model. The RL agent and subgoal generator are trained independently and composed post hoc through selective subgoal generation based on the value function, making the approach modular and compatible with existing GCRL algorithms. We introduce new variations to benchmark tasks that highlight the challenges of multi-entity domains, and show that our method consistently boosts performance of the underlying RL agent on image-based long-horizon tasks with sparse rewards, achieving over 150% higher success rates on the hardest task in our suite and generalizing to increasing horizons and numbers of entities. Rollout videos are provided at: https://sites.google.com/view/hecrl
comment: ICLR 2026
☆ End-to-end reconstruction of OCT optical properties and speckle-reduced structural intensity via physics-based learning
Inverse scattering in optical coherence tomography (OCT) seeks to recover both structural images and intrinsic tissue optical properties, including refractive index, scattering coefficient, and anisotropy. This inverse problem is challenging due to attenuation, speckle noise, and strong coupling among parameters. We propose a regularized end-to-end deep learning framework that jointly reconstructs optical parameter maps and speckle-reduced OCT structural intensity for layer visualization. Trained with Monte Carlo-simulated ground truth, our network incorporates a physics-based OCT forward model that generates predicted signals from the estimated parameters, providing physics-consistent supervision for parameter recovery and artifact suppression. Experiments on the synthetic corneal OCT dataset demonstrate robust optical map recovery under noise, improved resolution, and enhanced structural fidelity. This approach enables quantitative multi-parameter tissue characterization and highlights the benefit of combining physics-informed modeling with deep learning for computational OCT.
☆ Perfusion Imaging and Single Material Reconstruction in Polychromatic Photon Counting CT
Background: Perfusion computed tomography (CT) images the dynamics of a contrast agent through the body over time, and is one of the highest X-ray dose scans in medical imaging. Recently, a theoretically justified reconstruction algorithm based on a monotone variational inequality (VI) was proposed for single material polychromatic photon-counting CT, and showed promising early results at low-dose imaging. Purpose: We adapt this reconstruction algorithm for perfusion CT, to reconstruct the concentration map of the contrast agent while the static background tissue is assumed known; we call our method VI-PRISM (VI-based PeRfusion Imaging and Single Material reconstruction). We evaluate its potential for dose-reduced perfusion CT, using a digital phantom with water and iodine of varying concentration. Methods: Simulated iodine concentrations range from 0.05 to 2.5 mg/ml. The simulated X-ray source emits photons up to 100 keV, with average intensity ranging from $10^5$ down to $10^2$ photons per detector element. The number of tomographic projections was varied from 984 down to 8 to characterize the tradeoff in photon allocation between views and intensity. Results: We compare VI-PRISM against filtered back-projection (FBP), and find that VI-PRISM recovers iodine concentration with error below 0.4 mg/ml at all source intensity levels tested. Even with a dose reduction between 10x and 100x compared to FBP, VI-PRISM exhibits reconstruction quality on par with FBP. Conclusion: Across all photon budgets and angular sampling densities tested, VI-PRISM achieved consistently lower RMSE, reduced noise, and higher SNR compared to filtered back-projection. Even in extremely photon-limited and sparsely sampled regimes, VI-PRISM recovered iodine concentrations with errors below 0.4 mg/ml, showing that VI-PRISM can support accurate and dose-efficient perfusion imaging in photon-counting CT.
comment: Code is available at https://github.com/voilalab/VI-PRISM
☆ AdaptMMBench: Benchmarking Adaptive Multimodal Reasoning for Mode Selection and Reasoning Process
Adaptive multimodal reasoning has emerged as a promising frontier in Vision-Language Models (VLMs), aiming to dynamically modulate between tool-augmented visual reasoning and text reasoning to enhance both effectiveness and efficiency. However, existing evaluations rely on static difficulty labels and simplistic metrics, which fail to capture the dynamic nature of difficulty relative to varying model capacities. Consequently, they obscure the distinction between adaptive mode selection and general performance while neglecting fine-grained process analyses. In this paper, we propose AdaptMMBench, a comprehensive benchmark for adaptive multimodal reasoning across five domains: real-world, OCR, GUI, knowledge, and math, encompassing both direct perception and complex reasoning tasks. AdaptMMBench utilizes a Matthews Correlation Coefficient (MCC) metric to evaluate the selection rationality of different reasoning modes, isolating this meta-cognition ability by dynamically identifying task difficulties based on models' capability boundaries. Moreover, AdaptMMBench facilitates multi-dimensional process evaluation across key step coverage, tool effectiveness, and computational efficiency. Our evaluation reveals that while adaptive mode selection scales with model capacity, it notably decouples from final accuracy. Conversely, key step coverage aligns with performance, though tool effectiveness remains highly inconsistent across model architectures.
☆ RLAnything: Forge Environment, Policy, and Reward Model in Completely Dynamic RL System
We propose RLAnything, a reinforcement learning framework that dynamically forges environment, policy, and reward models through closed-loop optimization, amplifying learning signals and strengthening the overall RL system for any LLM or agentic scenarios. Specifically, the policy is trained with integrated feedback from step-wise and outcome signals, while the reward model is jointly optimized via consistency feedback, which in turn further improves policy training. Moreover, our theory-motivated automatic environment adaptation improves training for both the reward and policy models by leveraging critic feedback from each, enabling learning from experience. Empirically, each added component consistently improves the overall system, and RLAnything yields substantial gains across various representative LLM and agentic tasks, boosting Qwen3-VL-8B-Thinking by 9.1% on OSWorld and Qwen2.5-7B-Instruct by 18.7% and 11.9% on AlfWorld and LiveBench, respectively. We also that optimized reward-model signals outperform outcomes that rely on human labels. Code: https://github.com/Gen-Verse/Open-AgentRL
comment: Code: https://github.com/Gen-Verse/Open-AgentRL
♻ ☆ Helios 2.0: A Robust, Ultra-Low Power Gesture Recognition System Optimised for Event-Sensor based Wearables
We present an advance in wearable technology: a mobile-optimized, real-time, ultra-low-power event camera system that enables natural hand gesture control for smart glasses, dramatically improving user experience. While hand gesture recognition in computer vision has advanced significantly, critical challenges remain in creating systems that are intuitive, adaptable across diverse users and environments, and energy-efficient enough for practical wearable applications. Our approach tackles these challenges through carefully selected microgestures: lateral thumb swipes across the index finger (in both directions) and a double pinch between thumb and index fingertips. These human-centered interactions leverage natural hand movements, ensuring intuitive usability without requiring users to learn complex command sequences. To overcome variability in users and environments, we developed a novel simulation methodology that enables comprehensive domain sampling without extensive real-world data collection. Our power-optimised architecture maintains exceptional performance, achieving F1 scores above 80\% on benchmark datasets featuring diverse users and environments. The resulting models operate at just 6-8 mW when exploiting the Qualcomm Snapdragon Hexagon DSP, with our 2-channel implementation exceeding 70\% F1 accuracy and our 6-channel model surpassing 80\% F1 accuracy across all gesture classes in user studies. These results were achieved using only synthetic training data. This improves on the state-of-the-art for F1 accuracy by 20\% with a power reduction 25x when using DSP. This advancement brings deploying ultra-low-power vision systems in wearable devices closer and opens new possibilities for seamless human-computer interaction.
comment: 24 pages, 14 figures. Prarthana Bhattacharyya, Joshua Mitton, Ryan Page, Owen Morgan, and Oliver Powell contributed equally to this paper
♻ ☆ CoT-RVS: Zero-Shot Chain-of-Thought Reasoning Segmentation for Videos ICLR 2026
Reasoning Video Object Segmentation is a challenging task, aiming at generating a mask sequence from an input video given a complex and implicit text query. While existing works finetune Multimodal Large Language Models (MLLM) for the task, they still fail in video inputs given complex temporally-sensitive queries, indicating their lack of temporal and spatial integration in complex scenarios. In this paper, we propose CoT-RVS, a novel framework employing the zero-shot Chain-of-Thought (CoT) capability of MLLM to address these complex challenges by temporal-semantic reasoning: CoT-RVS analyzes the visible objects within a given frame that possibly match the language query (semantic), and chooses a corresponding keyframe for each object that can be observed effortlessly among all frames (temporal). Notably, the CoT-RVS framework is training-free and compatible with closed-source MLLMs, which can be applied to Reasoning Video Instance Segmentation. Our framework's training-free feature further allows its extension to process online video streams, where the CoT is used at test time to update the object of interest when a better target starts to emerge and becomes visible. We conduct extensive experiments on video object segmentation with explicit and implicit queries. The results show that CoT-RVS significantly outperforms previous works in both cases, qualitatively and quantitatively.
comment: Accepted to ICLR 2026. Project page: https://danielshkao.github.io/cot-rvs.html. Code: https://github.com/DanielSHKao/CoT-RVS
♻ ☆ Future frame prediction in chest and liver cine MRI using the PCA respiratory motion model: comparing transformers and dynamically trained recurrent neural networks
Respiratory motion complicates accurate irradiation of thoraco-abdominal tumors in radiotherapy, as treatment-system latency entails target-location uncertainties. This work addresses frame forecasting in chest and liver cine MRI to compensate for such delays. We investigate RNNs trained with online learning algorithms, enabling adaptation to changing respiratory patterns via on-the-fly parameter updates, and transformers, increasingly common in time series forecasting for their ability to capture long-term dependencies. Experiments were conducted using 12 sagittal thoracic and upper-abdominal cine-MRI sequences from ETH Zürich and OvGU. PCA decomposes the Lucas-Kanade optical-flow field into static deformations and low-dimensional time-dependent weights. We compare various methods forecasting the latter: linear filters, population and sequence-specific encoder-only transformers, and RNNs trained with real-time recurrent learning (RTRL), unbiased online recurrent optimization, decoupled neural interfaces, and sparse one-step approximation (SnAp-1). Predicted displacements were used to warp the reference frame and generate future images. Prediction accuracy decreased with the horizon h. Linear regression performed best at short horizons (1.3mm geometrical error at h=0.32s, ETH Zürich data), while RTRL and SnAp-1 outperformed the other algorithms at medium-to-long horizons, with geometrical errors below 1.4mm and 2.8mm on the sequences from ETH Zürich and OvGU (the latter featuring higher motion variability, noise, and lower contrast), respectively. The sequence-specific transformer was competitive for low-to-medium horizons, but transformers remained overall limited by data scarcity and domain shift between datasets. Predicted frames visually resembled the ground truth, with notable errors occurring near the diaphragm at end-inspiration and regions affected by out-of-plane motion.
comment: 43 pages, 19 figures, revised version (including transformer experiments, evaluation on liver MRI data, statistical analysis...)
♻ ☆ HunyuanImage 3.0 Technical Report
We present HunyuanImage 3.0, a native multimodal model that unifies multimodal understanding and generation within an autoregressive framework, with its image generation module publicly available. The achievement of HunyuanImage 3.0 relies on several key components, including meticulous data curation, advanced architecture design, a native Chain-of-Thoughts schema, progressive model pre-training, aggressive model post-training, and an efficient infrastructure that enables large-scale training and inference. With these advancements, we successfully trained a Mixture-of-Experts (MoE) model comprising over 80 billion parameters in total, with 13 billion parameters activated per token during inference, making it the largest and most powerful open-source image generative model to date. We conducted extensive experiments and the results of automatic and human evaluation of text-image alignment and visual quality demonstrate that HunyuanImage 3.0 rivals previous state-of-the-art models. By releasing the code and weights of HunyuanImage 3.0, we aim to enable the community to explore new ideas with a state-of-the-art foundation model, fostering a dynamic and vibrant multimodal ecosystem. All open source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanImage-3.0
♻ ☆ HI-SLAM2: Geometry-Aware Gaussian SLAM for Fast Monocular Scene Reconstruction
We present HI-SLAM2, a geometry-aware Gaussian SLAM system that achieves fast and accurate monocular scene reconstruction using only RGB input. Existing Neural SLAM or 3DGS-based SLAM methods often trade off between rendering quality and geometry accuracy, our research demonstrates that both can be achieved simultaneously with RGB input alone. The key idea of our approach is to enhance the ability for geometry estimation by combining easy-to-obtain monocular priors with learning-based dense SLAM, and then using 3D Gaussian splatting as our core map representation to efficiently model the scene. Upon loop closure, our method ensures on-the-fly global consistency through efficient pose graph bundle adjustment and instant map updates by explicitly deforming the 3D Gaussian units based on anchored keyframe updates. Furthermore, we introduce a grid-based scale alignment strategy to maintain improved scale consistency in prior depths for finer depth details. Through extensive experiments on Replica, ScanNet, and ScanNet++, we demonstrate significant improvements over existing Neural SLAM methods and even surpass RGB-D-based methods in both reconstruction and rendering quality. The project page and source code will be made available at https://hi-slam2.github.io/.
♻ ☆ No time to train! Training-Free Reference-Based Instance Segmentation
The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).
comment: Preprint
♻ ☆ DyStream: Streaming Dyadic Talking Heads Generation via Flow Matching-based Autoregressive Model
Generating realistic, dyadic talking head video requires ultra-low latency. Existing chunk-based methods require full non-causal context windows, introducing significant delays. This high latency critically prevents the immediate, non-verbal feedback required for a realistic listener. To address this, we present DyStream, a flow matching-based autoregressive model that could generate video in real-time from both speaker and listener audio. Our method contains two key designs: (1) we adopt a stream-friendly autoregressive framework with flow-matching heads for probabilistic modeling, and (2) We propose a causal encoder enhanced by a lookahead module to incorporate short future context (e.g., 60 ms) to improve quality while maintaining low latency. Our analysis shows this simple-and-effective method significantly surpass alternative causal strategies, including distillation and generative encoder. Extensive experiments show that DyStream could generate video within 34 ms per frame, guaranteeing the entire system latency remains under 100 ms. Besides, it achieves state-of-the-art lip-sync quality, with offline and online LipSync Confidence scores of 8.13 and 7.61 on HDTF, respectively. The model, weights and codes are available.
comment: Project Page: https://robinwitch.github.io/DyStream-Page
♻ ☆ Hospital-Specific Bias in Patch-Based Pathology Models
Pathology foundation models (PFMs) achieve strong performance on diverse histopathology tasks, but their sensitivity to hospital-specific domain shifts remains underexplored. We systematically evaluate state-of-the-art PFMs on TCGA patch-level datasets and introduce a lightweight adversarial adaptor to remove hospital-related domain information from latent representations. Experiments show that, while disease classification accuracy is largely maintained, the adaptor effectively reduces hospital-specific bias, as confirmed by t-SNE visualizations. Our study establishes a benchmark for assessing cross-hospital robustness in PFMs and provides a practical strategy for enhancing generalization under heterogeneous clinical settings. Our code is available at https://github.com/MengRes/pfm_domain_bias.
comment: 4 pages,3 figures
♻ ☆ Data-Driven Loss Functions for Inference-Time Optimization in Text-to-Image
Text-to-image diffusion models can generate stunning visuals, yet they often fail at tasks children find trivial--like placing a dog to the right of a teddy bear rather than to the left. When combinations get more unusual--a giraffe above an airplane--these failures become even more pronounced. Existing methods attempt to fix these spatial reasoning failures through model fine-tuning or test-time optimization with handcrafted losses that are suboptimal. Rather than imposing our assumptions about spatial encoding, we propose learning these objectives directly from the model's internal representations. We introduce Learn-to-Steer, a novel framework that learns data-driven objectives for test-time optimization rather than handcrafting them. Our key insight is to train a lightweight classifier that decodes spatial relationships from the diffusion model's cross-attention maps, then deploy this classifier as a learned loss function during inference. Training such classifiers poses a surprising challenge: they can take shortcuts by detecting linguistic traces in the cross-attention maps, rather than learning true spatial patterns. We solve this by augmenting our training data with samples generated using prompts with incorrect relation words, which encourages the classifier to avoid linguistic shortcuts and learn spatial patterns from the attention maps. Our method dramatically improves spatial accuracy: from 20% to 61% on FLUX.1-dev and from 7% to 54% on SD2.1 across standard benchmarks. It also generalizes to multiple relations with significantly improved accuracy.
comment: Project page is at https://learn-to-steer-paper.github.io/
♻ ☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
♻ ☆ SCAIL: Towards Studio-Grade Character Animation via In-Context Learning of 3D-Consistent Pose Representations
Achieving character animation that meets studio-grade production standards remains challenging despite recent progress. Existing approaches can transfer motion from a driving video to a reference image, but often fail to preserve structural fidelity and temporal consistency in wild scenarios involving complex motion and cross-identity animations. In this work, we present \textbf{SCAIL} (a framework toward \textbf{S}tudio-grade \textbf{C}haracter \textbf{A}nimation via \textbf{I}n-context \textbf{L}earning), a framework designed to address these challenges from two key innovations. First, we propose a novel 3D pose representation, providing a more robust and flexible motion signal. Second, we introduce a full-context pose injection mechanism within a diffusion-transformer architecture, enabling effective spatio-temporal reasoning over full motion sequences. To align with studio-level requirements, we develop a curated data pipeline ensuring both diversity and quality, and establish a comprehensive benchmark for systematic evaluation. Experiments show that \textbf{SCAIL} achieves state-of-the-art performance and advances character animation toward studio-grade reliability and realism.
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity ICLR 2022
The success of deep ensembles on improving predictive performance, uncertainty estimation, and out-of-distribution robustness has been extensively studied in the machine learning literature. Albeit the promising results, naively training multiple deep neural networks and combining their predictions at inference leads to prohibitive computational costs and memory requirements. Recently proposed efficient ensemble approaches reach the performance of the traditional deep ensembles with significantly lower costs. However, the training resources required by these approaches are still at least the same as training a single dense model. In this work, we draw a unique connection between sparse neural network training and deep ensembles, yielding a novel efficient ensemble learning framework called FreeTickets. Instead of training multiple dense networks and averaging them, we directly train sparse subnetworks from scratch and extract diverse yet accurate subnetworks during this efficient, sparse-to-sparse training. Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks. Despite being an ensemble method, FreeTickets has even fewer parameters and training FLOPs than a single dense model. This seemingly counter-intuitive outcome is due to the ultra training/inference efficiency of dynamic sparse training. FreeTickets surpasses the dense baseline in all the following criteria: prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness, as well as efficiency for both training and inference. Impressively, FreeTickets outperforms the naive deep ensemble with ResNet50 on ImageNet using around only 1/5 of the training FLOPs required by the latter. We have released our source code at https://github.com/VITA-Group/FreeTickets.
comment: published in International Conference on Learning Representations (ICLR 2022)
♻ ☆ DiffInk: Glyph- and Style-Aware Latent Diffusion Transformer for Text to Online Handwriting Generation ICLR 2026
Deep generative models have advanced text-to-online handwriting generation (TOHG), which aims to synthesize realistic pen trajectories conditioned on textual input and style references. However, most existing methods still primarily focus on character- or word-level generation, resulting in inefficiency and a lack of holistic structural modeling when applied to full text lines. To address these issues, we propose DiffInk, the first latent diffusion Transformer framework for full-line handwriting generation. We first introduce InkVAE, a novel sequential variational autoencoder enhanced with two complementary latent-space regularization losses: (1) an OCR-based loss enforcing glyph-level accuracy, and (2) a style-classification loss preserving writing style. This dual regularization yields a semantically structured latent space where character content and writer styles are effectively disentangled. We then introduce InkDiT, a novel latent diffusion Transformer that integrates target text and reference styles to generate coherent pen trajectories. Experimental results demonstrate that DiffInk outperforms existing state-of-the-art (SOTA) methods in both glyph accuracy and style fidelity, while significantly improving generation efficiency.
comment: Accepted by ICLR 2026
♻ ☆ Efficient Deep Demosaicing with Spatially Downsampled Isotropic Networks WACV
In digital imaging, image demosaicing is a crucial first step which recovers the RGB information from a color filter array (CFA). Oftentimes, deep learning is utilized to perform image demosaicing. Given that most modern digital imaging applications occur on mobile platforms, applying deep learning to demosaicing requires lightweight and efficient networks. Isotropic networks, also known as residual-in-residual networks, have been often employed for image demosaicing and joint-demosaicing-and-denoising (JDD). Most demosaicing isotropic networks avoid spatial downsampling entirely, and thus are often prohibitively expensive computationally for mobile applications. Contrary to previous isotropic network designs, this paper claims that spatial downsampling to a signficant degree can improve the efficiency and performance of isotropic networks. To validate this claim, we design simple fully convolutional networks with and without downsampling using a mathematical architecture design technique adapted from DeepMAD, and find that downsampling improves empirical performance. Additionally, empirical testing of the downsampled variant, JD3Net, of our fully convolutional networks reveals strong empirical performance on a variety of image demosaicing and JDD tasks.
comment: To be published at WVAQ Workshop at WACV. Code @ github.com/cory-fan/jd3net
♻ ☆ Aesthetics as Structural Harm: Algorithmic Lookism Across Text-to-Image Generation and Classification
This paper examines algorithmic lookism-the systematic preferential treatment based on physical appearance-in text-to-image (T2I) generative AI and a downstream gender classification task. Through the analysis of 26,400 synthetic faces created with Stable Diffusion 2.1 and 3.5 Medium, we demonstrate how generative AI models systematically associate facial attractiveness with positive attributes and vice-versa, mirroring socially constructed biases rather than evidence-based correlations. Furthermore, we find significant gender bias in three gender classification algorithms depending on the attributes of the input faces. Our findings reveal three critical harms: (1) the systematic encoding of attractiveness-positive attribute associations in T2I models; (2) gender disparities in classification systems, where women's faces, particularly those generated with negative attributes, suffer substantially higher misclassification rates than men's; and (3) intensifying aesthetic constraints in newer models through age homogenization, gendered exposure patterns, and geographic reductionism. These convergent patterns reveal algorithmic lookism as systematic infrastructure operating across AI vision systems, compounding existing inequalities through both representation and recognition. Disclaimer: This work includes visual and textual content that reflects stereotypical associations between physical appearance and socially constructed attributes, including gender, race, and traits associated with social desirability. Any such associations found in this study emerge from the biases embedded in generative AI systems-not from empirical truths or the authors' views.
comment: 22 pages, 15 figures; v2 - fix typo
♻ ☆ Learning Robust Intervention Representations with Delta Embeddings
Causal representation learning has attracted significant research interest during the past few years, as a means for improving model generalization and robustness. Causal representations of interventional image pairs (also called ``actionable counterfactuals'' in the literature), have the property that only variables corresponding to scene elements affected by the intervention / action are changed between the start state and the end state. While most work in this area has focused on identifying and representing the variables of the scene under a causal model, fewer efforts have focused on representations of the interventions themselves. In this work, we show that an effective strategy for improving out of distribution (OOD) robustness is to focus on the representation of actionable counterfactuals in the latent space. Specifically, we propose that an intervention can be represented by a Causal Delta Embedding that is invariant to the visual scene and sparse in terms of the causal variables it affects. Leveraging this insight, we propose a method for learning causal representations from image pairs, without any additional supervision. Experiments in the Causal Triplet challenge demonstrate that Causal Delta Embeddings are highly effective in OOD settings, significantly exceeding baseline performance in both synthetic and real-world benchmarks.
♻ ☆ Scaling Sequence-to-Sequence Generative Neural Rendering ICLR 2026
We present Kaleido, a family of generative models designed for photorealistic, unified object- and scene-level neural rendering. Kaleido operates on the principle that 3D can be regarded as a specialised sub-domain of video, expressed purely as a sequence-to-sequence image synthesis task. Through a systemic study of scaling sequence-to-sequence generative neural rendering, we introduce key architectural innovations that enable our model to: i) perform generative view synthesis without explicit 3D representations; ii) generate any number of 6-DoF target views conditioned on any number of reference views via a masked autoregressive framework; and iii) seamlessly unify 3D and video modelling within a single decoder-only rectified flow transformer. Within this unified framework, Kaleido leverages large-scale video data for pre-training, which significantly improves spatial consistency and reduces reliance on scarce, camera-labelled 3D datasets -- all without any architectural modifications. Kaleido sets a new state-of-the-art on a range of view synthesis benchmarks. Its zero-shot performance substantially outperforms other generative methods in few-view settings, and, for the first time, matches the quality of per-scene optimisation methods in many-view settings.
comment: Published at ICLR 2026. Project Page: https://shikun.io/projects/kaleido
♻ ☆ Reinforcement Learning Meets Masked Generative Models: Mask-GRPO for Text-to-Image Generation
Reinforcement learning (RL) has garnered increasing attention in text-to-image (T2I) generation. However, most existing RL approaches are tailored to either diffusion models or autoregressive models, overlooking an important alternative: masked generative models. In this work, we propose Mask-GRPO, the first method to incorporate Group Relative Policy Optimization (GRPO)-based RL into this overlooked paradigm. Our core insight is to redefine the transition probability, which is different from current approaches, and formulate the unmasking process as a multi-step decision-making problem. To further enhance our method, we explore several useful strategies, including removing the KL constraint, applying the reduction strategy, and filtering out low-quality samples. Using Mask-GRPO, we improve a base model, Show-o, with substantial improvements on standard T2I benchmarks and preference alignment, outperforming existing state-of-the-art approaches. The code is available on https://github.com/xingzhejun/Mask-GRPO
♻ ☆ Staircase Cascaded Fusion of Lightweight Local Pattern Recognition and Long-Range Dependencies for Structural Crack Segmentation
Accurately segmenting structural cracks at the pixel level remains a major hurdle, as existing methods fail to integrate local textures with pixel dependencies, often leading to fragmented and incomplete predictions. Moreover, their high parameter counts and substantial computational demands hinder practical deployment on resource-constrained edge devices. To address these challenges, we propose CrackSCF, a Lightweight Cascaded Fusion Crack Segmentation Network designed to achieve robust crack segmentation with exceptional computational efficiency. We design a lightweight convolutional block (LRDS) to replace all standard convolutions. This approach efficiently captures local patterns while operating with a minimal computational footprint. For a holistic perception of crack structures, a lightweight Long-range Dependency Extractor (LDE) captures global dependencies. These are then intelligently unified with local patterns by our Staircase Cascaded Fusion Module (SCFM), ensuring the final segmentation maps are both seamless in continuity and rich in fine-grained detail. To comprehensively evaluate our method, this paper created the challenging TUT benchmark dataset and evaluated it alongside five other public datasets. The experimental results show that the CrackSCF method consistently outperforms the existing methods, and it demonstrates greater robustness in dealing with complex background noise. On the TUT dataset, CrackSCF achieved 0.8382 on F1 score and 0.8473 on mIoU, and it only required 4.79M parameters.
comment: This paper is currently under review
♻ ☆ Entropy-Lens: Uncovering Decision Strategies in LLMs
In large language models (LLMs), each block operates on the residual stream to map input token sequences to output token distributions. However, most of the interpretability literature focuses on internal latent representations, leaving token-space dynamics underexplored. The high dimensionality and categoricity of token distributions hinder their analysis, as standard statistical descriptors are not suitable. We show that the entropy of logit-lens predictions overcomes these issues. In doing so, it provides a per-layer scalar, permutation-invariant metric. We introduce Entropy-Lens to distill the token-space dynamics of the residual stream into a low-dimensional signal. We call this signal the entropy profile. We apply our method to a variety of model sizes and families, showing that (i) entropy profiles uncover token prediction dynamics driven by expansion and pruning strategies; (ii) these dynamics are family-specific and invariant under depth rescaling; (iii) they are characteristic of task type and output format; (iv) these strategies have unequal impact on downstream performance, with the expansion strategy usually being more critical. Ultimately, our findings further enhance our understanding of the residual stream, enabling a granular assessment of how information is processed across model depth.
RDDM: Practicing RAW Domain Diffusion Model for Real-world Image Restoration
We present the RAW domain diffusion model (RDDM), an end-to-end diffusion model that restores photo-realistic images directly from the sensor RAW data. While recent sRGB-domain diffusion methods achieve impressive results, they are caught in a dilemma between high fidelity and image generation. These models process lossy sRGB inputs and neglect the accessibility of the sensor RAW images in many scenarios, e.g., in image and video capturing in edge devices, resulting in sub-optimal performance. RDDM obviates this limitation by directly restoring images in the RAW domain, replacing the conventional two-stage image signal processing (ISP)->Image Restoration (IR) pipeline. However, a simple adaptation of pre-trained diffusion models to the RAW domain confronts many challenges. To this end, we propose: (1) a RAW-domain VAE (RVAE), encoding sensor RAW and decoding it into an enhanced linear domain image, to solve the out-of-distribution (OOD) issues between the different domain distributions; (2) a configurable multi-bayer (CMB) LoRA module, adapting diverse RAW Bayer patterns such as RGGB, BGGR, etc. To compensate for the deficiency in the dataset, we develop a scalable data synthesis pipeline synthesizing RAW LQ-HQ pairs from existing sRGB datasets for large-scale training. Extensive experiments demonstrate RDDM's superiority over state-of-the-art sRGB diffusion methods, yielding higher fidelity results with fewer artifacts. Codes will be publicly available at https://github.com/YanCHEN-fr/RDDM.
♻ ☆ Attention in Geometry: Scalable Spatial Modeling via Adaptive Density Fields and FAISS-Accelerated Kernels
This work introduces Adaptive Density Fields (ADF), a geometric attention framework that formulates spatial aggregation as a query-conditioned, metric-induced attention operator in continuous space. By reinterpreting spatial influence as geometry-preserving attention grounded in physical distance, ADF bridges concepts from adaptive kernel methods and attention mechanisms. Scalability is achieved via FAISS-accelerated inverted file indices, treating approximate nearest-neighbor search as an intrinsic component of the attention mechanism. We demonstrate the framework through a case study on aircraft trajectory analysis in the Chengdu region, extracting trajectory-conditioned Zones of Influence (ZOI) to reveal recurrent airspace structures and localized deviations.
comment: Indepented Study. 31 pages, 3 figures. Includes full mathematical derivation of Adaptive Density Fields (ADF), implementation of FAISS-accelerated kernels, and a physics-informed trajectory POI detection pipeline
♻ ☆ Enhanced Detection of Tiny Objects in Aerial Images
While one-stage detectors like YOLOv8 offer fast training speed, they often under-perform on detecting small objects as a trade-off. This becomes even more critical when detecting tiny objects in aerial imagery due to low-resolution targets and cluttered backgrounds. To address this, we introduce four enhancement strategies-input image resolution adjustment, data augmentation, attention mechanisms, and an alternative gating function for attention modules-that can be easily implemented on YOLOv8. We demonstrate that image size enlargement and the proper use of augmentation can lead to enhancement. Additionally, we designed a Mixture of Orthogonal Neural-modules Network (MoonNet) pipeline which consists of multiple attention-module-augmented CNNs. Two well-known attention modules, Squeeze-and-Excitation (SE) Block and Convolutional Block Attention Module (CBAM), were integrated into the backbone of YOLOv8 to form the MoonNet design, and the MoonNet backbone obtained improved detection accuracy compared to the original YOLOv8 backbone and single-type attention-module-augmented backbones. MoonNet further proved its adaptability and potential by achieving state-of-the-art performance on a tiny-object benchmark when integrated with the YOLC model. Our code is available at: https://github.com/Kihyun11/MoonNet
♻ ☆ MineInsight: A Multi-sensor Dataset for Humanitarian Demining Robotics in Off-Road Environments
The use of robotics in humanitarian demining increasingly involves computer vision techniques to improve landmine detection capabilities. However, in the absence of diverse and realistic datasets, the reliable validation of algorithms remains a challenge for the research community. In this paper, we introduce MineInsight, a publicly available multi-sensor, multi-spectral dataset designed for off-road landmine detection. The dataset features 35 different targets (15 landmines and 20 commonly found objects) distributed along three distinct tracks, providing a diverse and realistic testing environment. MineInsight is, to the best of our knowledge, the first dataset to integrate dual-view sensor scans from both an Unmanned Ground Vehicle and its robotic arm, offering multiple viewpoints to mitigate occlusions and improve spatial awareness. It features two LiDARs, as well as images captured at diverse spectral ranges, including visible (RGB, monochrome), visible short-wave infrared (VIS-SWIR), and long-wave infrared (LWIR). Additionally, the dataset provides bounding boxes generated by an automated pipeline and refined with human supervision. We recorded approximately one hour of data in both daylight and nighttime conditions, resulting in around 38,000 RGB frames, 53,000 VIS-SWIR frames, and 108,000 LWIR frames. MineInsight serves as a benchmark for developing and evaluating landmine detection algorithms. Our dataset is available at https://github.com/mariomlz99/MineInsight.
♻ ☆ Past- and Future-Informed KV Cache Policy with Salience Estimation in Autoregressive Video Diffusion
Video generation is pivotal to digital media creation, and recent advances in autoregressive video generation have markedly enhanced the efficiency of real-time video synthesis. However, existing approaches generally rely on heuristic KV Cache policies, which ignore differences in token importance in long-term video generation. This leads to the loss of critical spatiotemporal information and the accumulation of redundant, invalid cache, thereby degrading video generation quality and efficiency. To address this limitation, we first observe that token contributions to video generation are highly time-heterogeneous and accordingly propose a novel Past- and Future-Informed KV Cache Policy (PaFu-KV). Specifically, PaFu-KV introduces a lightweight Salience Estimation Head distilled from a bidirectional teacher to estimate salience scores, allowing the KV cache to retain informative tokens while discarding less relevant ones. This policy yields a better quality-efficiency trade-off by shrinking KV cache capacity and reducing memory footprint at inference time. Extensive experiments on benchmarks demonstrate that our method preserves high-fidelity video generation quality while enables accelerated inference, thereby enabling more efficient long-horizon video generation. Our code will be released upon paper acceptance.
♻ ☆ VQAThinker: Exploring Generalizable and Explainable Video Quality Assessment via Reinforcement Learning AAAI2026
Video quality assessment (VQA) aims to objectively quantify perceptual quality degradation in alignment with human visual perception. Despite recent advances, existing VQA models still suffer from two critical limitations: \textit{poor generalization to out-of-distribution (OOD) videos} and \textit{limited explainability}, which restrict their applicability in real-world scenarios. To address these challenges, we propose \textbf{VQAThinker}, a reasoning-based VQA framework that leverages large multimodal models (LMMs) with reinforcement learning to jointly model video quality understanding and scoring, emulating human perceptual decision-making. Specifically, we adopt group relative policy optimization (GRPO), a rule-guided reinforcement learning algorithm that enables reasoning over video quality under score-level supervision, and introduce three VQA-specific rewards: (1) a \textbf{bell-shaped regression reward} that increases rapidly as the prediction error decreases and becomes progressively less sensitive near the ground truth; (2) a \textbf{pairwise ranking reward} that guides the model to correctly determine the relative quality between video pairs; and (3) a \textbf{temporal consistency reward} that encourages the model to prefer temporally coherent videos over their perturbed counterparts. Extensive experiments demonstrate that VQAThinker achieves state-of-the-art performance on both in-domain and OOD VQA benchmarks, showing strong generalization for video quality scoring. Furthermore, evaluations on video quality understanding tasks validate its superiority in distortion attribution and quality description compared to existing explainable VQA models and LMMs. These findings demonstrate that reinforcement learning offers an effective pathway toward building generalizable and explainable VQA models solely with score-level supervision.
comment: Accepted by AAAI2026
♻ ☆ Beyond Global Alignment: Fine-Grained Motion-Language Retrieval via Pyramidal Shapley-Taylor Learning
As a foundational task in human-centric cross-modal intelligence, motion-language retrieval aims to bridge the semantic gap between natural language and human motion, enabling intuitive motion analysis, yet existing approaches predominantly focus on aligning entire motion sequences with global textual representations. This global-centric paradigm overlooks fine-grained interactions between local motion segments and individual body joints and text tokens, inevitably leading to suboptimal retrieval performance. To address this limitation, we draw inspiration from the pyramidal process of human motion perception (from joint dynamics to segment coherence, and finally to holistic comprehension) and propose a novel Pyramidal Shapley-Taylor (PST) learning framework for fine-grained motion-language retrieval. Specifically, the framework decomposes human motion into temporal segments and spatial body joints, and learns cross-modal correspondences through progressive joint-wise and segment-wise alignment in a pyramidal fashion, effectively capturing both local semantic details and hierarchical structural relationships. Extensive experiments on multiple public benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, achieving precise alignment between motion segments and body joints and their corresponding text tokens. The code of this work will be released upon acceptance.
♻ ☆ Adaptive Domain Shift in Diffusion Models for Cross-Modality Image Translation ICLR 2026
Cross-modal image translation remains brittle and inefficient. Standard diffusion approaches often rely on a single, global linear transfer between domains. We find that this shortcut forces the sampler to traverse off-manifold, high-cost regions, inflating the correction burden and inviting semantic drift. We refer to this shared failure mode as fixed-schedule domain transfer. In this paper, we embed domain-shift dynamics directly into the generative process. Our model predicts a spatially varying mixing field at every reverse step and injects an explicit, target-consistent restoration term into the drift. This in-step guidance keeps large updates on-manifold and shifts the model's role from global alignment to local residual correction. We provide a continuous-time formulation with an exact solution form and derive a practical first-order sampler that preserves marginal consistency. Empirically, across translation tasks in medical imaging, remote sensing, and electroluminescence semantic mapping, our framework improves structural fidelity and semantic consistency while converging in fewer denoising steps.
comment: Paper accepted as a conference paper at ICLR 2026
♻ ☆ Transferring Visual Explainability of Self-Explaining Models to Prediction-Only Models without Additional Training
In image classification scenarios where both prediction and explanation efficiency are required, self-explaining models that perform both tasks in a single inference are effective. However, for users who already have prediction-only models, training a new self-explaining model from scratch imposes significant costs in terms of both labeling and computation. This study proposes a method to transfer the visual explanation capability of self-explaining models learned in a source domain to prediction-only models in a target domain based on a task arithmetic framework. Our self-explaining model comprises an architecture that extends Vision Transformer-based prediction-only models, enabling the proposed method to endow explanation capability to many trained prediction-only models without additional training. Experiments on various image classification datasets demonstrate that, except for transfers between less-related domains, the transfer of visual explanation capability from source to target domains is successful, and explanation quality in the target domain improves without substantially sacrificing classification accuracy.
♻ ☆ U2-BENCH: Benchmarking Large Vision-Language Models on Ultrasound Understanding
Ultrasound is a widely-used imaging modality critical to global healthcare, yet its interpretation remains challenging due to its varying image quality on operators, noises, and anatomical structures. Although large vision-language models (LVLMs) have demonstrated impressive multimodal capabilities across natural and medical domains, their performance on ultrasound remains largely unexplored. We introduce U2-BENCH, the first comprehensive benchmark to evaluate LVLMs on ultrasound understanding across classification, detection, regression, and text generation tasks. U2-BENCH aggregates 7,241 cases spanning 15 anatomical regions and defines 8 clinically inspired tasks, such as diagnosis, view recognition, lesion localization, clinical value estimation, and report generation, across 50 ultrasound application scenarios. We evaluate 23 state-of-the-art LVLMs, both open- and closed-source, general-purpose and medical-specific. Our results reveal strong performance on image-level classification, but persistent challenges in spatial reasoning and clinical language generation. U2-BENCH establishes a rigorous and unified testbed to assess and accelerate LVLM research in the uniquely multimodal domain of medical ultrasound imaging.
♻ ☆ SciTextures: Collecting and Connecting Visual Patterns, Models, and Code Across Science and Art
The ability to connect visual patterns with the processes that form them represents one of the deepest forms of visual understanding. Textures of clouds and waves, the growth of cities and forests, or the formation of materials and landscapes are all examples of patterns emerging from underlying mechanisms. We present the SciTextures dataset, a large-scale collection of textures and visual patterns from all domains of science, tech, and art, along with the models and code that generate these images. Covering over 1,270 different models and 100,000 images of patterns and textures from physics, chemistry, biology, sociology, technology, mathematics, and art, this dataset offers a way to explore the deep connection between the visual patterns that shape our world and the mechanisms that produce them. Built through an agentic AI pipeline that autonomously collects, implements, and standardizes scientific and generative models. This AI pipeline is also used to autonomously invent and implement novel methods for generating visual patterns and textures. SciTextures enables systematic evaluation of vision language models (VLM's) ability to link visual patterns to the models and code that generate them, and to identify different patterns that emerge from the same underlying process. We also test VLMs ability to infer and recreate the mechanisms behind visual patterns by providing a natural image of a real-world phenomenon and asking the AI to identify and code a model of the process that formed it, then run this code to generate a simulated image that is compared to the reference image. These benchmarks reveal that VLM's can understand and simulate physical systems beyond visual patterns at multiple levels of abstraction. The dataset and code are available at: https://zenodo.org/records/17485502
VL-JEPA: Joint Embedding Predictive Architecture for Vision-language
We introduce VL-JEPA, a vision-language model built on a Joint Embedding Predictive Architecture (JEPA). Instead of autoregressively generating tokens as in classical VLMs, VL-JEPA predicts continuous embeddings of the target texts. By learning in an abstract representation space, the model focuses on task-relevant semantics while abstracting away surface-level linguistic variability. In a strictly controlled comparison against standard token-space VLM training with the same vision encoder and training data, VL-JEPA achieves stronger performance while having 50% fewer trainable parameters. At inference time, a lightweight text decoder is invoked only when needed to translate VL-JEPA predicted embeddings into text. We show that VL-JEPA natively supports selective decoding that reduces the number of decoding operations by 2.85x while maintaining similar performance compared to non-adaptive uniform decoding. Beyond generation, the VL-JEPA's embedding space naturally supports open-vocabulary classification, text-to-video retrieval, and discriminative VQA without any architecture modification. On eight video classification and eight video retrieval datasets, the average performance VL-JEPA surpasses that of CLIP, SigLIP2, and Perception Encoder. At the same time, the model achieves comparable performance as classical VLMs (InstructBLIP, QwenVL) on four VQA datasets: GQA, TallyQA, POPE and POPEv2, despite only having 1.6B parameters.
♻ ☆ SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
♻ ☆ OS-Marathon: Benchmarking Computer-Use Agents on Long-Horizon Repetitive Tasks
Long-horizon, repetitive workflows are common in professional settings, such as processing expense reports from receipts and entering student grades from exam papers. These tasks are often tedious for humans since they can extend to extreme lengths proportional to the size of the data to process. However, they are ideal for Computer-Use Agents (CUAs) due to their structured, recurring sub-workflows with logic that can be systematically learned. Identifying the absence of an evaluation benchmark as a primary bottleneck, we establish OS-Marathon, comprising 242 long-horizon, repetitive tasks across 2 domains to evaluate state-of-the-art (SOTA) agents. We then introduce a cost-effective method to construct a condensed demonstration using only few-shot examples to teach agents the underlying workflow logic, enabling them to execute similar workflows effectively on larger, unseen data collections. Extensive experiments demonstrate both the inherent challenges of these tasks and the effectiveness of our proposed method. Project website: https://os-marathon.github.io/.
comment: 22 Pages, Project Page: https://os-marathon.github.io/
♻ ☆ A Survey on Efficient Vision-Language-Action Models
Vision-Language-Action models (VLAs) represent a significant frontier in embodied intelligence, aiming to bridge digital knowledge with physical-world interaction. Despite their remarkable performance, foundational VLAs are hindered by the prohibitive computational and data demands inherent to their large-scale architectures. While a surge of recent research has focused on enhancing VLA efficiency, the field lacks a unified framework to consolidate these disparate advancements. To bridge this gap, this survey presents the first comprehensive review of Efficient Vision-Language-Action models (Efficient VLAs) across the entire model-training-data pipeline. Specifically, we introduce a unified taxonomy to systematically organize the disparate efforts in this domain, categorizing current techniques into three core pillars: (1) Efficient Model Design, focusing on efficient architectures and model compression; (2) Efficient Training, which reduces computational burdens during model learning; and (3) Efficient Data Collection, which addresses the bottlenecks in acquiring and utilizing robotic data. Through a critical review of state-of-the-art methods within this framework, this survey not only establishes a foundational reference for the community but also summarizes representative applications, delineates key challenges, and charts a roadmap for future research. We maintain a continuously updated project page to track our latest developments: https://evla-survey.github.io/.
comment: 28 pages, 8 figures
♻ ☆ Attention Isn't All You Need for Emotion Recognition:Domain Features Outperform Transformers on the EAV Dataset
We present a systematic study of multimodal emotion recognition using the EAV dataset, investigating whether complex attention mechanisms improve performance on small datasets. We implement three model categories: baseline transformers (M1), novel factorized attention mechanisms (M2), and improved CNN baselines (M3). Our experiments show that sophisticated attention mechanisms consistently underperform on small datasets. M2 models achieved 5 to 13 percentage points below baselines due to overfitting and destruction of pretrained features. In contrast, simple domain-appropriate modifications proved effective: adding delta MFCCs to the audio CNN improved accuracy from 61.9% to 65.56% (+3.66pp), while frequency-domain features for EEG achieved 67.62% (+7.62pp over the paper baseline). Our vision transformer baseline (M1) reached 75.30%, exceeding the paper's ViViT result (74.5%) through domain-specific pretraining, and vision delta features achieved 72.68% (+1.28pp over the paper CNN). These findings demonstrate that for small-scale emotion recognition, domain knowledge and proper implementation outperform architectural complexity.
comment: 2 figures, 10 Pages
♻ ☆ 3D Dynamics-Aware Manipulation: Endowing Manipulation Policies with 3D Foresight
The incorporation of world modeling into manipulation policy learning has pushed the boundary of manipulation performance. However, existing efforts simply model the 2D visual dynamics, which is insufficient for robust manipulation when target tasks involve prominent depth-wise movement. To address this, we present a 3D dynamics-aware manipulation framework that seamlessly integrates 3D world modeling and policy learning. Three self-supervised learning tasks (current depth estimation, future RGB-D prediction, 3D flow prediction) are introduced within our framework, which complement each other and endow the policy model with 3D foresight. Extensive experiments on simulation and the real world show that 3D foresight can greatly boost the performance of manipulation policies without sacrificing inference speed. Code is available at https://github.com/Stardust-hyx/3D-Foresight.
comment: ICRA 2026
♻ ☆ Hybrid Lie semi-group and cascade structures for the generalized Gaussian derivative model for visual receptive fields
Because of the variabilities of real-world image structures under the natural image transformations that arise when observing similar objects or spatio-temporal events under different viewing conditions, the receptive field responses computed in the earliest layers of the visual hierarchy may be strongly influenced by such geometric image transformations. One way of handling this variability is by basing the vision system on covariant receptive field families, which expand the receptive field shapes over the degrees of freedom in the image transformations. This paper addresses the problem of deriving relationships between spatial and spatio-temporal receptive field responses obtained for different values of the shape parameters in the resulting multi-parameter families of receptive fields. For this purpose, we derive both (i) infinitesimal relationships, roughly corresponding to a combination of notions from semi-groups and Lie groups, as well as (ii) macroscopic cascade smoothing properties, which describe how receptive field responses at coarser spatial and temporal scales can be computed by applying smaller support incremental filters to the output from corresponding receptive fields at finer spatial and temporal scales, structurally related to the notion of Lie algebras, although with directional preferences. The presented results provide (i) a deeper understanding of the relationships between spatial and spatio-temporal receptive field responses for different values of the filter parameters, which can be used for both (ii) designing more efficient schemes for computing receptive field responses over populations of multi-parameter families of receptive fields, as well as (iii)~formulating idealized theoretical models of the computations of simple cells in biological vision.
comment: 27 pages, 9 figures
♻ ☆ UM-Text: A Unified Multimodal Model for Image Understanding and Visual Text Editing
With the rapid advancement of image generation, visual text editing using natural language instructions has received increasing attention. The main challenge of this task is to fully understand the instruction and reference image, and thus generate visual text that is style-consistent with the image. Previous methods often involve complex steps of specifying the text content and attributes, such as font size, color, and layout, without considering the stylistic consistency with the reference image. To address this, we propose UM-Text, a unified multimodal model for context understanding and visual text editing by natural language instructions. Specifically, we introduce a Visual Language Model (VLM) to process the instruction and reference image, so that the text content and layout can be elaborately designed according to the context information. To generate an accurate and harmonious visual text image, we further propose the UM-Encoder to combine the embeddings of various condition information, where the combination is automatically configured by VLM according to the input instruction. During training, we propose a regional consistency loss to offer more effective supervision for glyph generation on both latent and RGB space, and design a tailored three-stage training strategy to further enhance model performance. In addition, we contribute the UM-DATA-200K, a large-scale visual text image dataset on diverse scenes for model training. Extensive qualitative and quantitative results on multiple public benchmarks demonstrate that our method achieves state-of-the-art performance.
♻ ☆ DA-Occ: Direction-Aware 2D Convolution for Efficient and Geometry-Preserving 3D Occupancy Prediction in Autonomous Driving
Efficient and high-accuracy 3D occupancy prediction is vital for the performance of autonomous driving systems. However, existing methods struggle to balance precision and efficiency: high-accuracy approaches are often hindered by heavy computational overhead, leading to slow inference speeds, while others leverage pure bird's-eye-view (BEV) representations to gain speed at the cost of losing vertical spatial cues and compromising geometric integrity. To overcome these limitations, we build on the efficient Lift-Splat-Shoot (LSS) paradigm and propose a pure 2D framework, DA-Occ, for 3D occupancy prediction that preserves fine-grained geometry. Standard LSS-based methods lift 2D features into 3D space solely based on depth scores, making it difficult to fully capture vertical structure. To improve upon this, DA-Occ augments depth-based lifting with a complementary height-score projection that explicitly encodes vertical geometric information. We further employ direction-aware convolution to extract geometric features along both vertical and horizontal orientations, effectively balancing accuracy and computational efficiency. On the Occ3D-nuScenes, the proposed method achieves an mIoU of 39.3% and an inference speed of 27.7 FPS, effectively balancing accuracy and efficiency. In simulations on edge devices, the inference speed reaches 14.8 FPS, further demonstrating the method's applicability for real-time deployment in resource-constrained environments.
♻ ☆ AI-Based Stroke Rehabilitation Domiciliary Assessment System with ST_GCN Attention
Effective stroke recovery requires continuous rehabilitation integrated with daily living. To support this need, we propose a home-based rehabilitation exercise and feedback system. The system consists of (1) hardware setup with RGB-D camera and wearable sensors to capture stroke movements, (2) a mobile application for exercise guidance, and (3) an AI server for assessment and feedback. When a stroke user exercises following the application guidance, the system records skeleton sequences, which are then assessed by the deep learning model, RAST-G@ (Rehabilitation Assessment Spatio-Temporal Graph ATtention). The model employs a spatio-temporal graph convolutional network to extract skeletal features and integrates transformer-based temporal attention to figure out action quality. For system implementation, we constructed the NRC dataset, include 10 upper-limb activities of daily living (ADL) and 5 range-of-motion (ROM) collected from stroke and non-disabled participants, with Score annotations provided by licensed physiotherapists. Results on the KIMORE and NRC datasets show that RAST-G@ improves over baseline in terms of MAD, RMSE, and MAPE. Furthermore, the system provides user feedback that combines patient-centered assessment and monitoring. The results demonstrate that the proposed system offers a scalable approach for quantitative and consistent domiciliary rehabilitation assessment.
comment: 9 pages(except references), 7 figures 6 Tables
♻ ☆ Towards Faithful Reasoning in Remote Sensing: A Perceptually-Grounded GeoSpatial Chain-of-Thought for Vision-Language Models
Vision-Language Models (VLMs) in remote sensing often fail at complex analytical tasks, a limitation stemming from their end-to-end training paradigm that bypasses crucial reasoning steps and leads to unverifiable outputs. To address this limitation, we introduce the Perceptually-Grounded Geospatial Chain-of-Thought (Geo-CoT), a framework that models remote sensing analysis as a verifiable, multi-step process. We instill this analytical process through a two-stage alignment strategy, leveraging Geo-CoT380k, the first large-scale dataset of structured Geo-CoT rationales. This strategy first employs supervised fine-tuning (SFT) to instill the foundational cognitive architecture, then leverages Group Reward Policy Optimization (GRPO) to refine the model's reasoning policy towards factual correctness. The resulting model, RSThinker, outputs both a final answer and its justifying, verifiable analytical trace. This capability yields dominant performance, significantly outperforming state-of-the-art models across a comprehensive range of tasks. The public release of our Geo-CoT380k dataset and RSThinker model upon publication serves as a concrete pathway from opaque perception towards structured, verifiable reasoning for Earth Observation.
♻ ☆ GenTrack2: An Improved Hybrid Approach for Visual Multi-Object Tracking
This paper proposes a visual multi-object tracking method that jointly employs stochastic and deterministic mechanisms to ensure identifier consistency for unknown and time-varying target numbers under nonlinear dynamics. A stochastic particle filter addresses nonlinear dynamics and non-Gaussian noise, with support from particle swarm optimization (PSO) to guide particles toward state distribution modes and mitigate divergence through proposed fitness measures incorporating motion consistency, appearance similarity, and social-interaction cues with neighboring targets. Deterministic association further enforces identifier consistency via a proposed cost matrix incorporating spatial consistency between particles and current detections, detection confidences, and track penalties. Subsequently, a novel scheme is proposed for the smooth updating of target states while preserving their identities, particularly for weak tracks during interactions with other targets and prolonged occlusions. Moreover, velocity regression over past states provides trend-seed velocities, enhancing particle sampling and state updates. The proposed tracker is designed to operate flexibly for both pre-recorded videos and camera live streams, where future frames are unavailable. Experimental results confirm superior performance compared to state-of-the-art trackers. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack2
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ AVERY: Adaptive VLM Split Computing through Embodied Self-Awareness for Efficient Disaster Response Systems
Unmanned Aerial Vehicles (UAVs) in disaster response require complex, queryable intelligence that on-board CNNs cannot provide. While Vision-Language Models (VLMs) offer this semantic reasoning, their high resource demands make on-device deployment infeasible, and naive cloud offloading fails under the low-bandwidth networks common in disaster zones. We present AVERY, a framework that enables VLM deployment through adaptive split computing. We advance the split computing paradigm beyond traditional depth-wise partitioning by introducing a functional, cognitive-inspired dual-stream split that separates the VLM into a high-frequency, low-resolution "context stream" for real-time awareness and a low-frequency, high-fidelity "insight stream" for deep analysis. A lightweight, self-aware on-board controller manages this architecture, monitoring network conditions and operator intent to dynamically select from pre-trained compression models, navigating the fundamental accuracy-throughput trade-off. Evaluated using the VLM LISA-7B across an edge-cloud scenario under fluctuating network conditions, AVERY consistently outperforms static configurations, achieving 11.2% higher accuracy than raw image compression and 93.98% lower energy consumption compared to full-edge execution, thereby enhancing mission efficiency and enabling real-time, queryable intelligence on resource-constrained platforms in dynamic environments.
comment: 8 pages, 5 figures. Paper is currently under review. Authors' version posted for personal use and not for redistribution
♻ ☆ Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection
Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples, which is crucial for developing a safe real-world machine learning system. Current reconstruction-based methods provide a good alternative approach by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space. However, such generative methods face a key dilemma: improving the reconstruction power of the generative model while keeping a compact representation of the ID data. To address this issue, we propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection. The innovation of our approach is that we leverage the diffusion model's intrinsic data reconstruction ability to distinguish ID samples from OOD samples in the latent feature space. Moreover, to set up a comprehensive and discriminative feature representation, we devise a multi-layer semantic feature extraction strategy. By distorting the extracted features with Gaussian noise and applying the diffusion model for feature reconstruction, the separation of ID and OOD samples is implemented according to the reconstruction errors. Extensive experimental results on multiple benchmarks built upon various datasets demonstrate that our method achieves state-of-the-art performance in terms of detection accuracy and speed. Code is available at .
comment: 26 pages, 23 figures, published to Neurlps2024
♻ ☆ VisionTrim: Unified Vision Token Compression for Training-Free MLLM Acceleration ICLR2026
Multimodal large language models (MLLMs) suffer from high computational costs due to excessive visual tokens, particularly in high-resolution and video-based scenarios. Existing token reduction methods typically focus on isolated pipeline components and often neglect textual alignment, leading to performance degradation. In this paper, we propose VisionTrim, a unified framework for training-free MLLM acceleration, integrating two effective plug-and-play modules: 1) the Dominant Vision Token Selection (DVTS) module, which preserves essential visual tokens via a global-local view, and 2) the Text-Guided Vision Complement (TGVC) module, which facilitates context-aware token merging guided by textual cues. Extensive experiments across diverse image and video multimodal benchmarks demonstrate the performance superiority of our VisionTrim, advancing practical MLLM deployment in real-world applications. The code is available at: https://github.com/hanxunyu/VisionTrim.
comment: ICLR2026, Code Link: https://github.com/hanxunyu/VisionTrim
♻ ☆ Semantic Leakage from Image Embeddings
Image embeddings are generally assumed to pose limited privacy risk. We challenge this assumption by formalizing semantic leakage as the ability to recover semantic structures from compressed image embeddings. Surprisingly, we show that semantic leakage does not require exact reconstruction of the original image. Preserving local semantic neighborhoods under embedding alignment is sufficient to expose the intrinsic vulnerability of image embeddings. Crucially, this preserved neighborhood structure allows semantic information to propagate through a sequence of lossy mappings. Based on this conjecture, we propose Semantic Leakage from Image Embeddings (SLImE), a lightweight inference framework that reveals semantic information from standalone compressed image embeddings, incorporating a locally trained semantic retriever with off-the-shelf models, without training task-specific decoders. We thoroughly validate each step of the framework empirically, from aligned embeddings to retrieved tags, symbolic representations, and grammatical and coherent descriptions. We evaluate SLImE across a range of open and closed embedding models, including GEMINI, COHERE, NOMIC, and CLIP, and demonstrate consistent recovery of semantic information across diverse inference tasks. Our results reveal a fundamental vulnerability in image embeddings, whereby the preservation of semantic neighborhoods under alignment enables semantic leakage, highlighting challenges for privacy preservation.1
comment: 20 pages, 19 figures
♻ ☆ Feat2GS: Probing Visual Foundation Models with Gaussian Splatting
Given that visual foundation models (VFMs) are trained on extensive datasets but often limited to 2D images, a natural question arises: how well do they understand the 3D world? With the differences in architecture and training protocols (i.e., objectives, proxy tasks), a unified framework to fairly and comprehensively probe their 3D awareness is urgently needed. Existing works on 3D probing suggest single-view 2.5D estimation (e.g., depth and normal) or two-view sparse 2D correspondence (e.g., matching and tracking). Unfortunately, these tasks ignore texture awareness, and require 3D data as ground-truth, which limits the scale and diversity of their evaluation set. To address these issues, we introduce Feat2GS, which readout 3D Gaussians attributes from VFM features extracted from unposed images. This allows us to probe 3D awareness for geometry and texture via novel view synthesis, without requiring 3D data. Additionally, the disentanglement of 3DGS parameters - geometry ($\boldsymbol{x}$, $α$, $Σ$) and texture ($\boldsymbol{c}$) - enables separate analysis of texture and geometry awareness. Under Feat2GS, we conduct extensive experiments to probe the 3D awareness of several VFMs, and investigate the ingredients that lead to a 3D aware VFM. Building on these findings, we develop several variants that achieve state-of-the-art across diverse datasets. This makes Feat2GS useful for probing VFMs, and as a simple-yet-effective baseline for novel-view synthesis. Code and data are available at https://fanegg.github.io/Feat2GS/.
comment: Project Page: https://fanegg.github.io/Feat2GS/
♻ ☆ Object-Centric Representation Learning for Enhanced 3D Scene Graph Prediction NeurIPS 2025
3D Semantic Scene Graph Prediction aims to detect objects and their semantic relationships in 3D scenes, and has emerged as a crucial technology for robotics and AR/VR applications. While previous research has addressed dataset limitations and explored various approaches including Open-Vocabulary settings, they frequently fail to optimize the representational capacity of object and relationship features, showing excessive reliance on Graph Neural Networks despite insufficient discriminative capability. In this work, we demonstrate through extensive analysis that the quality of object features plays a critical role in determining overall scene graph accuracy. To address this challenge, we design a highly discriminative object feature encoder and employ a contrastive pretraining strategy that decouples object representation learning from the scene graph prediction. This design not only enhances object classification accuracy but also yields direct improvements in relationship prediction. Notably, when plugging in our pretrained encoder into existing frameworks, we observe substantial performance improvements across all evaluation metrics. Additionally, whereas existing approaches have not fully exploited the integration of relationship information, we effectively combine both geometric and semantic features to achieve superior relationship prediction. Comprehensive experiments on the 3DSSG dataset demonstrate that our approach significantly outperforms previous state-of-the-art methods. Our code is publicly available at https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes.
comment: Accepted by NeurIPS 2025. Code: https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes
♻ ☆ From Slices to Structures: Unsupervised 3D Reconstruction of Female Pelvic Anatomy from Freehand Transvaginal Ultrasound
Volumetric ultrasound has the potential to significantly improve diagnostic accuracy and clinical decision-making, yet its widespread adoption remains limited by dependence on specialized hardware and restrictive acquisition protocols. In this work, we present a novel unsupervised framework for reconstructing 3D anatomical structures from freehand 2D transvaginal ultrasound sweeps, without requiring external tracking or learned pose estimators. Our method, TVGS, adapts the principles of Gaussian Splatting to the domain of ultrasound, introducing a slice-aware, differentiable rasterizer tailored to the unique physics and geometry of ultrasound imaging. We model anatomy as a collection of anisotropic 3D Gaussians and optimize their parameters directly from image-level supervision. To ensure robustness against irregular probe motion, we introduce a joint optimization scheme that refines slice poses alongside anatomical structure. The result is a compact, flexible, and memory-efficient volumetric representation that captures anatomical detail with high spatial fidelity. This work demonstrates that accurate 3D reconstruction from 2D ultrasound images can be achieved through purely computational means, offering a scalable alternative to conventional 3D systems and enabling new opportunities for AI-assisted analysis and diagnosis.
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ Glance and Focus Reinforcement for Pan-cancer Screening ICLR 2026
Pan-cancer screening in large-scale CT scans remains challenging for existing AI methods, primarily due to the difficulty of localizing diverse types of tiny lesions in large CT volumes. The extreme foreground-background imbalance significantly hinders models from focusing on diseased regions, while redundant focus on healthy regions not only decreases the efficiency but also increases false positives. Inspired by radiologists' glance and focus diagnostic strategy, we introduce GF-Screen, a Glance and Focus reinforcement learning framework for pan-cancer screening. GF-Screen employs a Glance model to localize the diseased regions and a Focus model to precisely segment the lesions, where segmentation results of the Focus model are leveraged to reward the Glance model via Reinforcement Learning (RL). Specifically, the Glance model crops a group of sub-volumes from the entire CT volume and learns to select the sub-volumes with lesions for the Focus model to segment. Given that the selecting operation is non-differentiable for segmentation training, we propose to employ the segmentation results to reward the Glance model. To optimize the Glance model, we introduce a novel group relative learning paradigm, which employs group relative comparison to prioritize high-advantage predictions and discard low-advantage predictions within sub-volume groups, not only improving efficiency but also reducing false positives. In this way, for the first time, we effectively extend cutting-edge RL techniques to tackle the specific challenges in pan-cancer screening. Extensive experiments on 16 internal and 7 external datasets across 9 lesion types demonstrated the effectiveness of GF-Screen. Notably, GF-Screen leads the public validation leaderboard of MICCAI FLARE25 pan-cancer challenge, surpassing the FLARE24 champion solution by a large margin (+25.6% DSC and +28.2% NSD).
comment: Accepted by ICLR 2026. Code is available at https://github.com/Luffy03/GF-Screen
♻ ☆ Seeing through Light and Darkness: Sensor-Physics Grounded Deblurring HDR NeRF from Single-Exposure Images and Events
Novel view synthesis from low dynamic range (LDR) blurry images, which are common in the wild, struggles to recover high dynamic range (HDR) and sharp 3D representations in extreme lighting conditions. Although existing methods employ event data to address this issue, they ignore the sensor-physics mismatches between the camera output and physical world radiance, resulting in suboptimal HDR and deblurring results. To cope with this problem, we propose a unified sensor-physics grounded NeRF framework for sharp HDR novel view synthesis from single-exposure blurry LDR images and corresponding events. We employ NeRF to directly represent the actual radiance of the 3D scene in the HDR domain and model raw HDR scene rays hitting the sensor pixels as in the physical world. A pixel-wise RGB mapping field is introduced to align the above rendered pixel values with the sensor-recorded LDR pixel values of the input images. A novel event mapping field is also designed to bridge the physical scene dynamics and actual event sensor output. The two mapping fields are jointly optimized with the NeRF network, leveraging the spatial and temporal dynamic information in events to enhance the sharp HDR 3D representation learning. Experiments on the collected and public datasets demonstrate that our method can achieve state-of-the-art deblurring HDR novel view synthesis results with single-exposure blurry LDR images and corresponding events.
♻ ☆ EgoFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving
Current End-to-End Autonomous Driving (E2E-AD) methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized with a fully differentiable framework in a planning-oriented manner, existing end-to-end driving systems lacking ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, due to rasterized scene representation learning and redundant information transmission. In this paper, we propose an ego-centric fully sparse paradigm, named EgoFSD, for end-to-end self-driving. Specifically, EgoFSD consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. In addition, position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thereby enhancing the training stability and convergence speed. Extensive experiments are conducted on nuScenes and Bench2Drive datasets, which significantly reduces the average L2 error by 59% and collision rate by 92% than UniAD while achieves 6.9x faster running efficiency.
comment: Accepted to ICRA2026
♻ ☆ GEO-Bench-2: From Performance to Capability, Rethinking Evaluation in Geospatial AI
Geospatial Foundation Models (GeoFMs) are transforming Earth Observation (EO), but evaluation lacks standardized protocols. GEO-Bench-2 addresses this with a comprehensive framework spanning classification, segmentation, regression, object detection, and instance segmentation across 19 permissively-licensed datasets. We introduce ''capability'' groups to rank models on datasets that share common characteristics (e.g., resolution, bands, temporality). This enables users to identify which models excel in each capability and determine which areas need improvement in future work. To support both fair comparison and methodological innovation, we define a prescriptive yet flexible evaluation protocol. This not only ensures consistency in benchmarking but also facilitates research into model adaptation strategies, a key and open challenge in advancing GeoFMs for downstream tasks. Our experiments show that no single model dominates across all tasks, confirming the specificity of the choices made during architecture design and pretraining. While models pretrained on natural images (ConvNext ImageNet, DINO V3) excel on high-resolution tasks, EO-specific models (TerraMind, Prithvi, and Clay) outperform them on multispectral applications such as agriculture and disaster response. These findings demonstrate that optimal model choice depends on task requirements, data modalities, and constraints. This shows that the goal of a single GeoFM model that performs well across all tasks remains open for future research. GEO-Bench-2 enables informed, reproducible GeoFM evaluation tailored to specific use cases. Code, data, and leaderboard for GEO-Bench-2 are publicly released under a permissive license.
♻ ☆ UniCalli: A Unified Diffusion Framework for Column-Level Generation and Recognition of Chinese Calligraphy
Computational replication of Chinese calligraphy remains challenging. Existing methods falter, either creating high-quality isolated characters while ignoring page-level aesthetics like ligatures and spacing, or attempting page synthesis at the expense of calligraphic correctness. We introduce \textbf{UniCalli}, a unified diffusion framework for column-level recognition and generation. Training both tasks jointly is deliberate: recognition constrains the generator to preserve character structure, while generation provides style and layout priors. This synergy fosters concept-level abstractions that improve both tasks, especially in limited-data regimes. We curated a dataset of over 8,000 digitized pieces, with ~4,000 densely annotated. UniCalli employs asymmetric noising and a rasterized box map for spatial priors, trained on a mix of synthetic, labeled, and unlabeled data. The model achieves state-of-the-art generative quality with superior ligature continuity and layout fidelity, alongside stronger recognition. The framework successfully extends to other ancient scripts, including Oracle bone inscriptions and Egyptian hieroglyphs. Code and data can be viewed in \href{https://github.com/EnVision-Research/UniCalli}{this URL}.
comment: Page: https://envision-research.github.io/UniCalli/
♻ ☆ UrbanIng-V2X: A Large-Scale Multi-Vehicle, Multi-Infrastructure Dataset Across Multiple Intersections for Cooperative Perception NeurIPS 2025
Recent cooperative perception datasets have played a crucial role in advancing smart mobility applications by enabling information exchange between intelligent agents, helping to overcome challenges such as occlusions and improving overall scene understanding. While some existing real-world datasets incorporate both vehicle-to-vehicle and vehicle-to-infrastructure interactions, they are typically limited to a single intersection or a single vehicle. A comprehensive perception dataset featuring multiple connected vehicles and infrastructure sensors across several intersections remains unavailable, limiting the benchmarking of algorithms in diverse traffic environments. Consequently, overfitting can occur, and models may demonstrate misleadingly high performance due to similar intersection layouts and traffic participant behavior. To address this gap, we introduce UrbanIng-V2X, the first large-scale, multi-modal dataset supporting cooperative perception involving vehicles and infrastructure sensors deployed across three urban intersections in Ingolstadt, Germany. UrbanIng-V2X consists of 34 temporally aligned and spatially calibrated sensor sequences, each lasting 20 seconds. All sequences contain recordings from one of three intersections, involving two vehicles and up to three infrastructure-mounted sensor poles operating in coordinated scenarios. In total, UrbanIng-V2X provides data from 12 vehicle-mounted RGB cameras, 2 vehicle LiDARs, 17 infrastructure thermal cameras, and 12 infrastructure LiDARs. All sequences are annotated at a frequency of 10 Hz with 3D bounding boxes spanning 13 object classes, resulting in approximately 712k annotated instances across the dataset. We provide comprehensive evaluations using state-of-the-art cooperative perception methods and publicly release the codebase, dataset, HD map, and a digital twin of the complete data collection environment.
comment: Accepted to NeurIPS 2025. Including supplemental material. For code and dataset, see https://github.com/thi-ad/UrbanIng-V2X
♻ ☆ SpatialViz-Bench: A Cognitively-Grounded Benchmark for Diagnosing Spatial Visualization in MLLMs
Humans can imagine and manipulate visual images mentally, a capability known as spatial visualization. While many multi-modal benchmarks assess reasoning on visible visual information, the ability to infer unseen relationships through spatial visualization remains insufficiently evaluated as a spatial skill. This reliance on publicly sourced problems from IQ tests or math competitions risks data contamination and compromises assessment reliability. To this end, we introduce SpatialViz-Bench, a comprehensive multi-modal benchmark for spatial visualization with 12 tasks across 4 sub-abilities, comprising 1,180 programmatically generated problems, a scalable framework that allows for expansion to ensure fair and continuously reliable evaluations. Our evaluation of 27 Multi-modal Large Language Models (MLLMs) reveals wide performance variations, demonstrates the benchmark's strong discriminative power, and uncovers counter-intuitive findings: Chain-of-Thought (CoT) prompting paradoxically degrades accuracy on open-source models. Through statistical and qualitative analysis of error types, SpatialViz-Bench demonstrates that state-of-the-art MLLMs exhibit deficiencies in spatial visualization tasks, thereby addressing a significant lacuna in the field. The benchmark data and evaluation code are publicly available.
♻ ☆ Under-Canopy Terrain Reconstruction in Dense Forests Using RGB Imaging and Neural 3D Reconstruction WACV 2026
Mapping the terrain and understory hidden beneath dense forest canopies is of great interest for numerous applications such as search and rescue, trail mapping, forest inventory tasks, and more. Existing solutions rely on specialized sensors: either heavy, costly airborne LiDAR, or Airborne Optical Sectioning (AOS), which uses thermal synthetic aperture photography and is tailored for person detection. We introduce a novel approach for the reconstruction of canopy-free, photorealistic ground views using only conventional RGB images. Our solution is based on the celebrated Neural Radiance Fields (NeRF), a recent 3D reconstruction method. Additionally, we include specific image capture considerations, which dictate the needed illumination to successfully expose the scene beneath the canopy. To better cope with the poorly lit understory, we employ a low light loss. Finally, we propose two complementary approaches to remove occluding canopy elements by controlling per-ray integration procedure. To validate the value of our approach, we present two possible downstream tasks. For the task of search and rescue (SAR), we demonstrate that our method enables person detection which achieves promising results compared to thermal AOS (using only RGB images). Additionally, we show the potential of our approach for forest inventory tasks like tree counting. These results position our approach as a cost-effective, high-resolution alternative to specialized sensors for SAR, trail mapping, and forest-inventory tasks.
comment: WACV 2026 CV4EO
♻ ☆ Physics-Based Benchmarking Metrics for Multimodal Synthetic Images
Current state of the art measures like BLEU, CIDEr, VQA score, SigLIP-2 and CLIPScore are often unable to capture semantic or structural accuracy, especially for domain-specific or context-dependent scenarios. For this, this paper proposes a Physics-Constrained Multimodal Data Evaluation (PCMDE) metric combining large language models with reasoning, knowledge based mapping and vision-language models to overcome these limitations. The architecture is comprised of three main stages: (1) feature extraction of spatial and semantic information with multimodal features through object detection and VLMs; (2) Confidence-Weighted Component Fusion for adaptive component-level validation; and (3) physics-guided reasoning using large language models for structural and relational constraints (e.g., alignment, position, consistency) enforcement.
♻ ☆ MPF-Net: Exposing High-Fidelity AI-Generated Video Forgeries via Hierarchical Manifold Deviation and Micro-Temporal Fluctuations
With the rapid advancement of video generation models such as Veo and Wan, the visual quality of synthetic content has reached a level where macro-level semantic errors and temporal inconsistencies are no longer prominent. However, this does not imply that the distinction between real and cutting-edge high-fidelity fake is untraceable. We argue that AI-generated videos are essentially products of a manifold-fitting process rather than a physical recording. Consequently, the pixel composition logic of consecutive adjacent frames residual in AI videos exhibits a structured and homogenous characteristic. We term this phenomenon `Manifold Projection Fluctuations' (MPF). Driven by this insight, we propose a hierarchical dual-path framework that operates as a sequential filtering process. The first, the Static Manifold Deviation Branch, leverages the refined perceptual boundaries of Large-Scale Vision Foundation Models (VFMs) to capture residual spatial anomalies or physical violations that deviate from the natural real-world manifold (off-manifold). For the remaining high-fidelity videos that successfully reside on-manifold and evade spatial detection, we introduce the Micro-Temporal Fluctuation Branch as a secondary, fine-grained filter. By analyzing the structured MPF that persists even in visually perfect sequences, our framework ensures that forgeries are exposed regardless of whether they manifest as global real-world manifold deviations or subtle computational fingerprints.
♻ ☆ DOS: Directional Object Separation in Text Embeddings for Multi-Object Image Generation AAAI 2026
Recent progress in text-to-image (T2I) generative models has led to significant improvements in generating high-quality images aligned with text prompts. However, these models still struggle with prompts involving multiple objects, often resulting in object neglect or object mixing. Through extensive studies, we identify four problematic scenarios, Similar Shapes, Similar Textures, Dissimilar Background Biases, and Many Objects, where inter-object relationships frequently lead to such failures. Motivated by two key observations about CLIP embeddings, we propose DOS (Directional Object Separation), a method that modifies three types of CLIP text embeddings before passing them into text-to-image models. Experimental results show that DOS consistently improves the success rate of multi-object image generation and reduces object mixing. In human evaluations, DOS significantly outperforms four competing methods, receiving 26.24%-43.04% more votes across four benchmarks. These results highlight DOS as a practical and effective solution for improving multi-object image generation.
comment: Accepted to AAAI 2026
Gated Relational Alignment via Confidence-based Distillation for Efficient VLMs
Vision-Language Models (VLMs) achieve strong multimodal performance but are costly to deploy, and post-training quantization often causes significant accuracy loss. Despite its potential, quantization-aware training for VLMs remains underexplored. We propose GRACE, a framework unifying knowledge distillation and QAT under the Information Bottleneck principle: quantization constrains information capacity while distillation guides what to preserve within this budget. Treating the teacher as a proxy for task-relevant information, we introduce confidence-gated decoupled distillation to filter unreliable supervision, relational centered kernel alignment to transfer visual token structures, and an adaptive controller via Lagrangian relaxation to balance fidelity against capacity constraints. Across extensive benchmarks on LLaVA and Qwen families, our INT4 models consistently outperform FP16 baselines (e.g., LLaVA-1.5-7B: 70.1 vs. 66.8 on SQA; Qwen2-VL-2B: 76.9 vs. 72.6 on MMBench), nearly matching teacher performance. Using real INT4 kernel, we achieve 3$\times$ throughput with 54% memory reduction. This principled framework significantly outperforms existing quantization methods, making GRACE a compelling solution for resource-constrained deployment.
comment: This paper is currently under review
♻ ☆ NP-LoRA: Null Space Projection Unifies Subject and Style in LoRA Fusion
Low-Rank Adaptation (LoRA) fusion enables the composition of learned subject and style representations for controllable generation without retraining. However, existing methods rely on weight-based merging within a shared adaptation space, where independently trained LoRAs interfere and degrade fidelity. We show that this interference is fundamentally geometric: content and style LoRAs occupy overlapping, non-orthogonal low-rank subspaces, making weight-based fusion inherently flawed. Analyzing LoRA internal structure, we find that generative behavior is dominated by a few principal directions that must be preserved during fusion. Based on this insight, we reformulate LoRA fusion as a null-space projection problem and propose Null Space Projection LoRA (NP-LoRA), a projection-based framework that enforces subspace separation by construction. NP-LoRA extracts principal style directions via singular value decomposition (SVD) and projects the subject LoRA into the orthogonal complement of the style subspace, preventing interference. We further introduce a soft projection mechanism that provides continuous control over the trade-off between subject fidelity and style preservation. Experiments show that NP-LoRA consistently outperforms strong baselines and generalizes well across pretrained LoRA pairs without retraining.
♻ ☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision AAAI 2026
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks.
comment: This paper has been accepted at AAAI 2026. This is the author's extended version. The final version will appear in the official proceedings
♻ ☆ FAST: Foreground-aware Diffusion with Accelerated Sampling Trajectory for Segmentation-oriented Anomaly Synthesis NeurIPS 2025
Industrial anomaly segmentation relies heavily on pixel-level annotations, yet real-world anomalies are often scarce, diverse, and costly to label. Segmentation-oriented industrial anomaly synthesis (SIAS) has emerged as a promising alternative; however, existing methods struggle to balance sampling efficiency and generation quality. Moreover, most approaches treat all spatial regions uniformly, overlooking the distinct statistical differences between anomaly and background areas. This uniform treatment hinders the synthesis of controllable, structure-specific anomalies tailored for segmentation tasks. In this paper, we propose FAST, a foreground-aware diffusion framework featuring two novel modules: the Anomaly-Informed Accelerated Sampling (AIAS) and the Foreground-Aware Reconstruction Module (FARM). AIAS is a training-free sampling algorithm specifically designed for segmentation-oriented industrial anomaly synthesis, which accelerates the reverse process through coarse-to-fine aggregation and enables the synthesis of state-of-the-art segmentation-oriented anomalies in as few as 10 steps. Meanwhile, FARM adaptively adjusts the anomaly-aware noise within the masked foreground regions at each sampling step, preserving localized anomaly signals throughout the denoising trajectory. Extensive experiments on multiple industrial benchmarks demonstrate that FAST consistently outperforms existing anomaly synthesis methods in downstream segmentation tasks. We release the code at: https://github.com/Chhro123/fast-foreground-aware-anomaly-synthesis.
comment: Accepted to NeurIPS 2025
♻ ☆ UNIC: Learning Unified Multimodal Extrinsic Contact Estimation
Contact-rich manipulation requires reliable estimation of extrinsic contacts-the interactions between a grasped object and its environment which provide essential contextual information for planning, control, and policy learning. However, existing approaches often rely on restrictive assumptions, such as predefined contact types, fixed grasp configurations, or camera calibration, that hinder generalization to novel objects and deployment in unstructured environments. In this paper, we present UNIC, a unified multimodal framework for extrinsic contact estimation that operates without any prior knowledge or camera calibration. UNIC directly encodes visual observations in the camera frame and integrates them with proprioceptive and tactile modalities in a fully data-driven manner. It introduces a unified contact representation based on scene affordance maps that captures diverse contact formations and employs a multimodal fusion mechanism with random masking, enabling robust multimodal representation learning. Extensive experiments demonstrate that UNIC performs reliably. It achieves a 9.6 mm average Chamfer distance error on unseen contact locations, performs well on unseen objects, remains robust under missing modalities, and adapts to dynamic camera viewpoints. These results establish extrinsic contact estimation as a practical and versatile capability for contact-rich manipulation. The overview and hardware experiment videos are at https://youtu.be/xpMitkxN6Ls?si=7Vgj-aZ_P1wtnWZN
♻ ☆ SVBench: Evaluation of Video Generation Models on Social Reasoning
Recent text-to-video generation models exhibit remarkable progress in visual realism, motion fidelity, and text-video alignment, yet they remain fundamentally limited in their ability to generate socially coherent behavior. Unlike humans, who effortlessly infer intentions, beliefs, emotions, and social norms from brief visual cues, current models tend to render literal scenes without capturing the underlying causal or psychological logic. To systematically evaluate this gap, we introduce the first benchmark for social reasoning in video generation. Grounded in findings from developmental and social psychology, our benchmark organizes thirty classic social cognition paradigms into seven core dimensions, including mental-state inference, goal-directed action, joint attention, social coordination, prosocial behavior, social norms, and multi-agent strategy. To operationalize these paradigms, we develop a fully training-free agent-based pipeline that (i) distills the reasoning mechanism of each experiment, (ii) synthesizes diverse video-ready scenarios, (iii) enforces conceptual neutrality and difficulty control through cue-based critique, and (iv) evaluates generated videos using a high-capacity VLM judge across five interpretable dimensions of social reasoning. Using this framework, we conduct the first large-scale study across seven state-of-the-art video generation systems. Our results reveal substantial performance gaps: while modern models excel in surface-level plausibility, they systematically fail in intention recognition, belief reasoning, joint attention, and prosocial inference.
comment: 10pages
♻ ☆ OpenWorldSAM: Extending SAM2 for Universal Image Segmentation with Language Prompts
The ability to segment objects based on open-ended language prompts remains a critical challenge, requiring models to ground textual semantics into precise spatial masks while handling diverse and unseen categories. We present OpenWorldSAM, a framework that extends the prompt-driven Segment Anything Model v2 (SAM2) to open-vocabulary scenarios by integrating multi-modal embeddings extracted from a lightweight vision-language model (VLM). Our approach is guided by four key principles: i) Unified prompting: OpenWorldSAM supports a diverse range of prompts, including category-level and sentence-level language descriptions, providing a flexible interface for various segmentation tasks. ii) Efficiency: By freezing the pre-trained components of SAM2 and the VLM, we train only 4.5 million parameters on the COCO-stuff dataset, achieving remarkable resource efficiency. iii) Instance Awareness: We enhance the model's spatial understanding through novel positional tie-breaker embeddings and cross-attention layers, enabling effective segmentation of multiple instances. iv) Generalization: OpenWorldSAM exhibits strong zero-shot capabilities, generalizing well on unseen categories and an open vocabulary of concepts without additional training. Extensive experiments demonstrate that OpenWorldSAM achieves state-of-the-art performance in open-vocabulary semantic, instance, and panoptic segmentation across multiple benchmarks. Code is available at https://github.com/GinnyXiao/OpenWorldSAM.
♻ ☆ Inference-time Stochastic Refinement of GRU-Normalizing Flow for Real-time Video Motion Transfer
Real-time video motion transfer applications such as immersive gaming and vision-based anomaly detection require accurate yet diverse future predictions to support realistic synthesis and robust downstream decision making under uncertainty. To improve the diversity of such sequential forecasts we propose a novel inference-time refinement technique that combines Gated Recurrent Unit-Normalizing Flows (GRU-NF) with stochastic sampling methods. While GRU-NF can capture multimodal distributions through its integration of normalizing flows within a temporal forecasting framework, its deterministic transformation structure can limit expressivity. To address this, inspired by Stochastic Normalizing Flows (SNF), we introduce Markov Chain Monte Carlo (MCMC) steps during GRU-NF inference, enabling the model to explore a richer output space and better approximate the true data distribution without retraining. We validate our approach in a keypoint-based video motion transfer pipeline, where capturing temporally coherent and perceptually diverse future trajectories is essential for realistic samples and low bandwidth communication. Experiments show that our inference framework, Gated Recurrent Unit- Stochastic Normalizing Flows (GRU-SNF) outperforms GRU-NF in generating diverse outputs without sacrificing accuracy, even under longer prediction horizons. By injecting stochasticity during inference, our approach captures multimodal behavior more effectively. These results highlight the potential of integrating stochastic dynamics with flow-based sequence models for generative time series forecasting. The code is available at: https://github.com/Tasmiah1408028/Inference-Time-Stochastic-Refinement-Of-GRU-NF-For-Real-Time-Video-Motion-Transfer
♻ ☆ Is Training Necessary for Anomaly Detection?
Current state-of-the-art multi-class unsupervised anomaly detection (MUAD) methods rely on training encoder-decoder models to reconstruct anomaly-free features. We first show these approaches have an inherent fidelity-stability dilemma in how they detect anomalies via reconstruction residuals. We then abandon the reconstruction paradigm entirely and propose Retrieval-based Anomaly Detection (RAD). RAD is a training-free approach that stores anomaly-free features in a memory and detects anomalies through multi-level retrieval, matching test patches against the memory. Experiments demonstrate that RAD achieves state-of-the-art performance across four established benchmarks (MVTec-AD, VisA, Real-IAD, 3D-ADAM) under both standard and few-shot settings. On MVTec-AD, RAD reaches 96.7\% Pixel AUROC with just a single anomaly-free image compared to 98.5\% of RAD's full-data performance. We further prove that retrieval-based scores theoretically upper-bound reconstruction-residual scores. Collectively, these findings overturn the assumption that MUAD requires task-specific training, showing that state-of-the-art anomaly detection is feasible with memory-based retrieval. Our code is available at https://github.com/longkukuhi/RAD.
♻ ☆ MVAR: Visual Autoregressive Modeling with Scale and Spatial Markovian Conditioning ICLR 2026
Essential to visual generation is efficient modeling of visual data priors. Conventional next-token prediction methods define the process as learning the conditional probability distribution of successive tokens. Recently, next-scale prediction methods redefine the process to learn the distribution over multi-scale representations, significantly reducing generation latency. However, these methods condition each scale on all previous scales and require each token to consider all preceding tokens, exhibiting scale and spatial redundancy. To better model the distribution by mitigating redundancy, we propose Markovian Visual AutoRegressive modeling (MVAR), a novel autoregressive framework that introduces scale and spatial Markov assumptions to reduce the complexity of conditional probability modeling. Specifically, we introduce a scale-Markov trajectory that only takes as input the features of adjacent preceding scale for next-scale prediction, enabling the adoption of a parallel training strategy that significantly reduces GPU memory consumption. Furthermore, we propose spatial-Markov attention, which restricts the attention of each token to a localized neighborhood of size k at corresponding positions on adjacent scales, rather than attending to every token across these scales, for the pursuit of reduced modeling complexity. Building on these improvements, we reduce the computational complexity of attention calculation from O(N^2) to O(Nk), enabling training with just eight NVIDIA RTX 4090 GPUs and eliminating the need for KV cache during inference. Extensive experiments on ImageNet demonstrate that MVAR achieves comparable or superior performance with both small model trained from scratch and large fine-tuned models, while reducing the average GPU memory footprint by 3.0x.
comment: Accepted to ICLR 2026. Project page: https://nuanbaobao.github.io/MVAR
♻ ☆ GuidNoise: Single-Pair Guided Diffusion for Generalized Noise Synthesis AAAI2026
Recent image denoising methods have leveraged generative modeling for real noise synthesis to address the costly acquisition of real-world noisy data. However, these generative models typically require camera metadata and extensive target-specific noisy-clean image pairs, often showing limited generalization between settings. In this paper, to mitigate the prerequisites, we propose a Single-Pair Guided Diffusion for generalized noise synthesis GuidNoise, which uses a single noisy/clean pair as the guidance, often easily obtained by itself within a training set. To train GuidNoise, which generates synthetic noisy images from the guidance, we introduce a guidance-aware affine feature modification (GAFM) and a noise-aware refine loss to leverage the inherent potential of diffusion models. This loss function refines the diffusion model's backward process, making the model more adept at generating realistic noise distributions. The GuidNoise synthesizes high-quality noisy images under diverse noise environments without additional metadata during both training and inference. Additionally, GuidNoise enables the efficient generation of noisy-clean image pairs at inference time, making synthetic noise readily applicable for augmenting training data. This self-augmentation significantly improves denoising performance, especially in practical scenarios with lightweight models and limited training data. The code is available at https://github.com/chjinny/GuidNoise.
comment: AAAI2026
♻ ☆ CrossCheck-Bench: Diagnosing Compositional Failures in Multimodal Conflict Resolution AAAI 2026
Multimodal Large Language Models are primarily trained and evaluated on aligned image-text pairs, which leaves their ability to detect and resolve real-world inconsistencies largely unexplored. In open-domain applications visual and textual cues often conflict, requiring models to perform structured reasoning beyond surface-level alignment. We introduce CrossCheck-Bench, a diagnostic benchmark for evaluating contradiction detection in multimodal inputs. The benchmark adopts a hierarchical task framework covering three levels of reasoning complexity and defines seven atomic capabilities essential for resolving cross-modal inconsistencies. CrossCheck-Bench includes 15k question-answer pairs sourced from real-world artifacts with synthetically injected contradictions. The dataset is constructed through a multi-stage annotation pipeline involving more than 450 expert hours to ensure semantic validity and calibrated difficulty across perception, integration, and reasoning. We evaluate 13 state-of-the-art vision-language models and observe a consistent performance drop as tasks shift from perceptual matching to logical contradiction detection. Most models perform well on isolated entity recognition but fail when multiple clues must be synthesized for conflict reasoning. Capability-level analysis further reveals uneven skill acquisition, especially in tasks requiring multi-step inference or rule-based validation. Additional probing shows that conventional prompting strategies such as Chain-of-Thought and Set-of-Mark yield only marginal gains. By contrast, methods that interleave symbolic reasoning with grounded visual processing achieve more stable improvements. These results highlight a persistent bottleneck in multimodal reasoning and suggest new directions for building models capable of robust cross-modal verification.
comment: Accepted by AAAI 2026
♻ ☆ Semantically Guided Dynamic Visual Prototype Refinement for Compositional Zero-Shot Learning
Compositional Zero-Shot Learning (CZSL) seeks to recognize unseen state-object pairs by recombining primitives learned from seen compositions. Despite recent progress with vision-language models (VLMs), two limitations remain: (i) text-driven semantic prototypes are weakly discriminative in the visual feature space; and (ii) unseen pairs are optimized passively, thereby inducing seen bias. To address these limitations, we present Duplex, a framework that couples dual-prototype learning with dynamic local-graph refinement of visual prototypes. For each composition, Duplex maintains a semantic prototype via prompt learning and a visual prototype for unseen pairs constructed by recombining disentangled state and object primitives from seen images. The visual prototypes are updated dynamically through lightweight aggregation on mini-batch local graphs, which incorporates unseen compositions during training without labels. This design introduces fine-grained visual evidence while preserving semantic structure. It enriches class prototypes, better disambiguates semantically similar yet visually distinct pairs, and mitigates seen bias. Experiments on MIT-States, UT-Zappos, and CGQA in closed-world and open-world settings achieve competitive performance and consistent compositional generalization. Our source code is available at https://github.com/ISPZ/Duplex-CZSL.
comment: Accepted for publication in Neurocomputing
♻ ☆ Deep Transformer Network for Monocular Pose Estimation of Shipborne Unmanned Aerial Vehicle
This paper introduces a deep transformer network for estimating the relative 6D pose of a Unmanned Aerial Vehicle (UAV) with respect to a ship using monocular images. A synthetic dataset of ship images is created and annotated with 2D keypoints of multiple ship parts. A Transformer Neural Network model is trained to detect these keypoints and estimate the 6D pose of each part. The estimates are integrated using Bayesian fusion. The model is tested on synthetic data and in-situ flight experiments, demonstrating robustness and accuracy in various lighting conditions. The position estimation error is approximately 0.8\% and 1.0\% of the distance to the ship for the synthetic data and the flight experiments, respectively. The method has potential applications for ship-based autonomous UAV landing and navigation.
comment: 23 pages, 25 figures, 3 tables
♻ ☆ Advances in Photoacoustic Imaging Reconstruction and Quantitative Analysis for Biomedical Applications
Photoacoustic imaging (PAI) represents an innovative biomedical imaging modality that harnesses the advantages of optical resolution and acoustic penetration depth while ensuring enhanced safety. Despite its promising potential across a diverse array of preclinical and clinical applications, the clinical implementation of PAI faces significant challenges, including the trade-off between penetration depth and spatial resolution, as well as the demand for faster imaging speeds. This paper explores the fundamental principles underlying PAI, with a particular emphasis on three primary implementations: photoacoustic computed tomography (PACT), photoacoustic microscopy (PAM), and photoacoustic endoscopy (PAE). We undertake a critical assessment of their respective strengths and practical limitations. Furthermore, recent developments in utilizing conventional or deep learning (DL) methodologies for image reconstruction and artefact mitigation across PACT, PAM, and PAE are outlined, demonstrating considerable potential to enhance image quality and accelerate imaging processes. Furthermore, this paper examines the recent developments in quantitative analysis within PAI, including the quantification of haemoglobin concentration, oxygen saturation, and other physiological parameters within tissues. Finally, our discussion encompasses current trends and future directions in PAI research while emphasizing the transformative impact of deep learning on advancing PAI.
♻ ☆ SatFusion: A Unified Framework for Enhancing Remote Sensing Image via Multi-Frame and Multi-Source Image Fusion
Remote sensing (RS) imaging is constrained by hardware cost and physical limitations, making high-quality image acquisition challenging and motivating image fusion for quality enhancement. Multi-frame super-resolution (MFSR) and Pansharpening exploit complementary information from multiple frames and multiple sources, respectively, but are usually studied in isolation: MFSR lacks high-resolution structural priors for fine-grained texture recovery, while Pansharpening depends on upsampled multispectral images and is sensitive to noise and misalignment. With the rapid development of the Satellite Internet of Things (Sat-IoT), effectively leveraging large numbers of low-quality yet information-complementary images has become increasingly important. To this end, we propose SatFusion, a unified framework for enhancing RS images via joint multi-frame and multi-source fusion. SatFusion employs a Multi-Frame Image Fusion (MFIF) module to extract high-resolution semantic features from multiple low-resolution multispectral frames, and integrates fine-grained structural information from a high-resolution panchromatic image through a Multi-Source Image Fusion (MSIF) module, enabling robust feature integration with implicit pixel-level alignment. To further mitigate the lack of structural priors in multi-frame fusion, we introduce SatFusion*, which incorporates a panchromatic-guided mechanism into the multi-frame fusion stage. By combining structure-aware feature embedding with transformer-based adaptive aggregation, SatFusion* enables spatially adaptive selection of multi-frame features and strengthens the coupling between multi-frame and multi-source representations. Extensive experiments on the WorldStrat, WV3, QB, and GF2 datasets demonstrate that our methods consistently outperform existing approaches in terms of reconstruction quality, robustness, and generalizability.
♻ ☆ Lightweight RGB-T Tracking with Mobile Vision Transformers ICASSP 2026
Single-modality tracking (RGB-only) struggles under low illumination, weather, and occlusion. Multimodal tracking addresses this by combining complementary cues. While Vision Transformer-based trackers achieve strong accuracy, they are often too large for real-time. We propose a lightweight RGB-T tracker built on MobileViT with a progressive fusion framework that models intra- and inter-modal interactions using separable mixed attention. This design delivers compact, effective features for accurate localization, with under 4M parameters and real-time performance of 25.7 FPS on the CPU and 122 FPS on the GPU, supporting embedded and mobile platforms. To the best of our knowledge, this is the first MobileViT-based multimodal tracker. Model code and weights are available in the GitHub repository.
comment: Accepted for publication in ICASSP 2026. Implementation Code Available
♻ ☆ Creative Image Generation with Diffusion Models
Creative image generation has emerged as a compelling area of research, driven by the need to produce novel and high-quality images that expand the boundaries of imagination. In this work, we propose a novel framework for creative generation using diffusion models, where creativity is associated with the inverse probability of an image's existence in the CLIP embedding space. Unlike prior approaches that rely on a manual blending of concepts or exclusion of subcategories, our method calculates the probability distribution of generated images and drives it towards low-probability regions to produce rare, imaginative, and visually captivating outputs. We also introduce pullback mechanisms, achieving high creativity without sacrificing visual fidelity. Extensive experiments on text-to-image diffusion models demonstrate the effectiveness and efficiency of our creative generation framework, showcasing its ability to produce unique, novel, and thought-provoking images. This work provides a new perspective on creativity in generative models, offering a principled method to foster innovation in visual content synthesis.
comment: Project page: https://creative-t2i.github.io
♻ ☆ FedVSR: Towards Model-Agnostic Federated Learning in Video Super-Resolution
Video super-resolution (VSR) aims to enhance low-resolution videos by leveraging both spatial and temporal information. While deep learning has led to impressive progress, it typically requires centralized data, which raises privacy concerns. Federated learning (FL) offers a privacy-friendly solution, but general FL frameworks often struggle with low-level vision tasks, resulting in blurry, low-quality outputs. To address this, we introduce FedVSR, the first FL framework specifically designed for VSR. It is model-agnostic and stateless, and introduces a lightweight loss function based on the Discrete Wavelet Transform (DWT) to better preserve high-frequency details during local training. Additionally, a loss-aware aggregation strategy combines both DWT-based and task-specific losses to guide global updates effectively. Extensive experiments across multiple VSR models and datasets show that FedVSR not only improves perceptual video quality (up to +0.89 dB PSNR, +0.0370 SSIM, -0.0347 LPIPS and 4.98 VMAF) but also achieves these gains with close to zero computation and communication overhead compared to its rivals. These results demonstrate FedVSR's potential to bridge the gap between privacy, efficiency, and perceptual quality, setting a new benchmark for federated learning in low-level vision tasks. The code is available at: https://github.com/alimd94/FedVSR
comment: Final version. Accepted at ACM Multimedia Systems (MMSys) 2026
♻ ☆ Geometry-aware 4D Video Generation for Robot Manipulation ICLR 2026
Understanding and predicting dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of generated videos by supervising the model with cross-view pointmap alignment during training. Through this geometric supervision, the model learns a shared 3D scene representation, enabling it to generate spatio-temporally aligned future video sequences from novel viewpoints given a single RGB-D image per view, and without relying on camera poses as input. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, yielding robot manipulation policies that generalize well to novel camera viewpoints.
comment: ICLR 2026; Project website: https://robot4dgen.github.io
♻ ☆ Diff4MMLiTS: Advanced Multimodal Liver Tumor Segmentation via Diffusion-Based Image Synthesis and Alignment
Multimodal learning has been demonstrated to enhance performance across various clinical tasks, owing to the diverse perspectives offered by different modalities of data. However, existing multimodal segmentation methods rely on well-registered multimodal data, which is unrealistic for real-world clinical images, particularly for indistinct and diffuse regions such as liver tumors. In this paper, we introduce Diff4MMLiTS, a four-stage multimodal liver tumor segmentation pipeline: pre-registration of the target organs in multimodal CTs; dilation of the annotated modality's mask and followed by its use in inpainting to obtain multimodal normal CTs without tumors; synthesis of strictly aligned multimodal CTs with tumors using the latent diffusion model based on multimodal CT features and randomly generated tumor masks; and finally, training the segmentation model, thus eliminating the need for strictly aligned multimodal data. Extensive experiments on public and internal datasets demonstrate the superiority of Diff4MMLiTS over other state-of-the-art multimodal segmentation methods.
comment: International Workshop on Machine Learning in Medical Imaging, 668-678
Machine Learning 150
☆ Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
☆ MEG-XL: Data-Efficient Brain-to-Text via Long-Context Pre-Training
Clinical brain-to-text interfaces are designed for paralysed patients who cannot provide extensive training recordings. Pre-training improves data-efficient generalisation by learning statistical priors across subjects, but these priors critically depend on context. While natural speech might unfold gradually over minutes, most methods pre-train with only a few seconds of context. Thus, we propose MEG-XL, a model pre-trained with 2.5 minutes of MEG context per sample, 5-300x longer than prior work, and equivalent to 191k tokens, capturing extended neural context. Fine-tuning on the task of word decoding from brain data, MEG-XL matches supervised performance with a fraction of the data (e.g. 1hr vs 50hrs) and outperforms brain foundation models. We find that models pre-trained with longer contexts learn representations that transfer better to word decoding. Our results indicate that long-context pre-training helps exploit extended neural context that other methods unnecessarily discard. Code, model weights, and instructions are available at https://github.com/neural-processing-lab/MEG-XL .
comment: 19 pages, 8 figures, 5 tables
☆ RLAnything: Forge Environment, Policy, and Reward Model in Completely Dynamic RL System
We propose RLAnything, a reinforcement learning framework that dynamically forges environment, policy, and reward models through closed-loop optimization, amplifying learning signals and strengthening the overall RL system for any LLM or agentic scenarios. Specifically, the policy is trained with integrated feedback from step-wise and outcome signals, while the reward model is jointly optimized via consistency feedback, which in turn further improves policy training. Moreover, our theory-motivated automatic environment adaptation improves training for both the reward and policy models by leveraging critic feedback from each, enabling learning from experience. Empirically, each added component consistently improves the overall system, and RLAnything yields substantial gains across various representative LLM and agentic tasks, boosting Qwen3-VL-8B-Thinking by 9.1% on OSWorld and Qwen2.5-7B-Instruct by 18.7% and 11.9% on AlfWorld and LiveBench, respectively. We also that optimized reward-model signals outperform outcomes that rely on human labels. Code: https://github.com/Gen-Verse/Open-AgentRL
comment: Code: https://github.com/Gen-Verse/Open-AgentRL
☆ Expanding the Capabilities of Reinforcement Learning via Text Feedback
The success of RL for LLM post-training stems from an unreasonably uninformative source: a single bit of information per rollout as binary reward or preference label. At the other extreme, distillation offers dense supervision but requires demonstrations, which are costly and difficult to scale. We study text feedback as an intermediate signal: richer than scalar rewards, yet cheaper than complete demonstrations. Textual feedback is a natural mode of human interaction and is already abundant in many real-world settings, where users, annotators, and automated judges routinely critique LLM outputs. Towards leveraging text feedback at scale, we formalize a multi-turn RL setup, RL from Text Feedback (RLTF), where text feedback is available during training but not at inference. Therefore, models must learn to internalize the feedback in order to improve their test-time single-turn performance. To do this, we propose two methods: Self Distillation (RLTF-SD), which trains the single-turn policy to match its own feedback-conditioned second-turn generations; and Feedback Modeling (RLTF-FM), which predicts the feedback as an auxiliary objective. We provide theoretical analysis on both methods, and empirically evaluate on reasoning puzzles, competition math, and creative writing tasks. Our results show that both methods consistently outperform strong baselines across benchmarks, highlighting the potential of RL with an additional source of rich supervision at scale.
comment: 43 pages, 6 figures
☆ MemSkill: Learning and Evolving Memory Skills for Self-Evolving Agents
Most Large Language Model (LLM) agent memory systems rely on a small set of static, hand-designed operations for extracting memory. These fixed procedures hard-code human priors about what to store and how to revise memory, making them rigid under diverse interaction patterns and inefficient on long histories. To this end, we present \textbf{MemSkill}, which reframes these operations as learnable and evolvable memory skills, structured and reusable routines for extracting, consolidating, and pruning information from interaction traces. Inspired by the design philosophy of agent skills, MemSkill employs a \emph{controller} that learns to select a small set of relevant skills, paired with an LLM-based \emph{executor} that produces skill-guided memories. Beyond learning skill selection, MemSkill introduces a \emph{designer} that periodically reviews hard cases where selected skills yield incorrect or incomplete memories, and evolves the skill set by proposing refinements and new skills. Together, MemSkill forms a closed-loop procedure that improves both the skill-selection policy and the skill set itself. Experiments on LoCoMo, LongMemEval, HotpotQA, and ALFWorld demonstrate that MemSkill improves task performance over strong baselines and generalizes well across settings. Further analyses shed light on how skills evolve, offering insights toward more adaptive, self-evolving memory management for LLM agents.
comment: Code is available at https://github.com/ViktorAxelsen/MemSkill
☆ HumanX: Toward Agile and Generalizable Humanoid Interaction Skills from Human Videos
Enabling humanoid robots to perform agile and adaptive interactive tasks has long been a core challenge in robotics. Current approaches are bottlenecked by either the scarcity of realistic interaction data or the need for meticulous, task-specific reward engineering, which limits their scalability. To narrow this gap, we present HumanX, a full-stack framework that compiles human video into generalizable, real-world interaction skills for humanoids, without task-specific rewards. HumanX integrates two co-designed components: XGen, a data generation pipeline that synthesizes diverse and physically plausible robot interaction data from video while supporting scalable data augmentation; and XMimic, a unified imitation learning framework that learns generalizable interaction skills. Evaluated across five distinct domains--basketball, football, badminton, cargo pickup, and reactive fighting--HumanX successfully acquires 10 different skills and transfers them zero-shot to a physical Unitree G1 humanoid. The learned capabilities include complex maneuvers such as pump-fake turnaround fadeaway jumpshots without any external perception, as well as interactive tasks like sustained human-robot passing sequences over 10 consecutive cycles--learned from a single video demonstration. Our experiments show that HumanX achieves over 8 times higher generalization success than prior methods, demonstrating a scalable and task-agnostic pathway for learning versatile, real-world robot interactive skills.
☆ SPARKLING: Balancing Signal Preservation and Symmetry Breaking for Width-Progressive Learning
Progressive Learning (PL) reduces pre-training computational overhead by gradually increasing model scale. While prior work has extensively explored depth expansion, width expansion remains significantly understudied, with the few existing methods limited to the early stages of training. However, expanding width during the mid-stage is essential for maximizing computational savings, yet it remains a formidable challenge due to severe training instabilities. Empirically, we show that naive initialization at this stage disrupts activation statistics, triggering loss spikes, while copy-based initialization introduces gradient symmetry that hinders feature diversity. To address these issues, we propose SPARKLING (balancing {S}ignal {P}reservation {A}nd symmet{R}y brea{K}ing for width-progressive {L}earn{ING}), a novel framework for mid-stage width expansion. Our method achieves signal preservation via RMS-scale consistency, stabilizing activation statistics during expansion. Symmetry breaking is ensured through asymmetric optimizer state resetting and learning rate re-warmup. Extensive experiments on Mixture-of-Experts (MoE) models demonstrate that, across multiple width axes and optimizer families, SPARKLING consistently outperforms training from scratch and reduces training cost by up to 35% under $2\times$ width expansion.
☆ Age-Aware Edge-Blind Federated Learning via Over-the-Air Aggregation
We study federated learning (FL) over wireless fading channels where multiple devices simultaneously send their model updates. We propose an efficient \emph{age-aware edge-blind over-the-air FL} approach that does not require channel state information (CSI) at the devices. Instead, the parameter server (PS) uses multiple antennas and applies maximum-ratio combining (MRC) based on its estimated sum of the channel gains to detect the parameter updates. A key challenge is that the number of orthogonal subcarriers is limited; thus, transmitting many parameters requires multiple Orthogonal Frequency Division Multiplexing (OFDM) symbols, which increases latency. To address this, the PS selects only a small subset of model coordinates each round using \emph{AgeTop-\(k\)}, which first picks the largest-magnitude entries and then chooses the \(k\) coordinates with the longest waiting times since they were last selected. This ensures that all selected parameters fit into a single OFDM symbol, reducing latency. We provide a convergence bound that highlights the advantages of using a higher number of antenna array elements and demonstrates a key trade-off: increasing \(k\) decreases compression error at the cost of increasing the effect of channel noise. Experimental results show that (i) more PS antennas greatly improve accuracy and convergence speed; (ii) AgeTop-\(k\) outperforms random selection under relatively good channel conditions; and (iii) the optimum \(k\) depends on the channel, with smaller \(k\) being better in noisy settings.
comment: To appear in IEEE ICC 2026
☆ MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
comment: 9 pages, 8 figures
☆ Conflict-Aware Client Selection for Multi-Server Federated Learning
Federated learning (FL) has emerged as a promising distributed machine learning (ML) that enables collaborative model training across clients without exposing raw data, thereby preserving user privacy and reducing communication costs. Despite these benefits, traditional single-server FL suffers from high communication latency due to the aggregation of models from a large number of clients. While multi-server FL distributes workloads across edge servers, overlapping client coverage and uncoordinated selection often lead to resource contention, causing bandwidth conflicts and training failures. To address these limitations, we propose a decentralized reinforcement learning with conflict risk prediction, named RL CRP, to optimize client selection in multi-server FL systems. Specifically, each server estimates the likelihood of client selection conflicts using a categorical hidden Markov model based on its sparse historical client selection sequence. Then, a fairness-aware reward mechanism is incorporated to promote long-term client participation for minimizing training latency and resource contention. Extensive experiments demonstrate that the proposed RL-CRP framework effectively reduces inter-server conflicts and significantly improves training efficiency in terms of convergence speed and communication cost.
comment: 6 pages, 4 figures
☆ Active Causal Experimentalist (ACE): Learning Intervention Strategies via Direct Preference Optimization
Discovering causal relationships requires controlled experiments, but experimentalists face a sequential decision problem: each intervention reveals information that should inform what to try next. Traditional approaches such as random sampling, greedy information maximization, and round-robin coverage treat each decision in isolation, unable to learn adaptive strategies from experience. We propose Active Causal Experimentalist (ACE), which learns experimental design as a sequential policy. Our key insight is that while absolute information gains diminish as knowledge accumulates (making value-based RL unstable), relative comparisons between candidate interventions remain meaningful throughout. ACE exploits this via Direct Preference Optimization, learning from pairwise intervention comparisons rather than non-stationary reward magnitudes. Across synthetic benchmarks, physics simulations, and economic data, ACE achieves 70-71% improvement over baselines at equal intervention budgets (p < 0.001, Cohen's d ~ 2). Notably, the learned policy autonomously discovers that collider mechanisms require concentrated interventions on parent variables, a theoretically-grounded strategy that emerges purely from experience. This suggests preference-based learning can recover principled experimental strategies, complementing theory with learned domain adaptation.
comment: 9 pages, 5 figures
☆ Finite-Sample Wasserstein Error Bounds and Concentration Inequalities for Nonlinear Stochastic Approximation
This paper derives non-asymptotic error bounds for nonlinear stochastic approximation algorithms in the Wasserstein-$p$ distance. To obtain explicit finite-sample guarantees for the last iterate, we develop a coupling argument that compares the discrete-time process to a limiting Ornstein-Uhlenbeck process. Our analysis applies to algorithms driven by general noise conditions, including martingale differences and functions of ergodic Markov chains. Complementing this result, we handle the convergence rate of the Polyak-Ruppert average through a direct analysis that applies under the same general setting. Assuming the driving noise satisfies a non-asymptotic central limit theorem, we show that the normalized last iterates converge to a Gaussian distribution in the $p$-Wasserstein distance at a rate of order $γ_n^{1/6}$, where $γ_n$ is the step size. Similarly, the Polyak-Ruppert average is shown to converge in the Wasserstein distance at a rate of order $n^{-1/6}$. These distributional guarantees imply high-probability concentration inequalities that improve upon those derived from moment bounds and Markov's inequality. We demonstrate the utility of this approach by considering two applications: (1) linear stochastic approximation, where we explicitly quantify the transition from heavy-tailed to Gaussian behavior of the iterates, thereby bridging the gap between recent finite-sample analyses and asymptotic theory and (2) stochastic gradient descent, where we establish rate of convergence to the central limit theorem.
☆ Certain Head, Uncertain Tail: Expert-Sample for Test-Time Scaling in Fine-Grained MoE
Test-time scaling improves LLM performance by generating multiple candidate solutions, yet token-level sampling requires temperature tuning that trades off diversity against stability. Fine-grained MoE, featuring hundreds of well-trained experts per layer and multi-expert activation per token, offers an unexplored alternative through its rich routing space. We empirically characterize fine-grained MoE routing and uncover an informative pattern: router scores exhibit a certain head of high-confidence experts followed by an uncertain tail of low-confidence candidates. While single-run greedy accuracy remains stable when fewer experts are activated, multi-sample pass@n degrades significantly-suggesting that the certain head governs core reasoning capability while the uncertain tail correlates with reasoning diversity. Motivated by these findings, we propose Expert-Sample, a training-free method that preserves high-confidence selections while injecting controlled stochasticity into the uncertain tail, enabling diverse generation without destabilizing outputs. Evaluated on multiple fine-grained MoE models across math, knowledge reasoning, and code tasks, Expert-Sample consistently improves pass@n and verification-based accuracy. On Qwen3-30B-A3B-Instruct evaluated on GPQA-Diamond with 32 parallel samples, pass@32 rises from 85.4% to 91.9%, and accuracy improves from 59.1% to 62.6% with Best-of-N verification.
comment: 24 pages, 13 figures
☆ Energy-Efficient Neuromorphic Computing for Edge AI: A Framework with Adaptive Spiking Neural Networks and Hardware-Aware Optimization
Edge AI applications increasingly require ultra-low-power, low-latency inference. Neuromorphic computing based on event-driven spiking neural networks (SNNs) offers an attractive path, but practical deployment on resource-constrained devices is limited by training difficulty, hardware-mapping overheads, and sensitivity to temporal dynamics. We present NeuEdge, a framework that combines adaptive SNN models with hardware-aware optimization for edge deployment. NeuEdge uses a temporal coding scheme that blends rate and spike-timing patterns to reduce spike activity while preserving accuracy, and a hardware-aware training procedure that co-optimizes network structure and on-chip placement to improve utilization on neuromorphic processors. An adaptive threshold mechanism adjusts neuron excitability from input statistics, reducing energy consumption without degrading performance. Across standard vision and audio benchmarks, NeuEdge achieves 91-96% accuracy with up to 2.3 ms inference latency on edge hardware and an estimated 847 GOp/s/W energy efficiency. A case study on an autonomous-drone workload shows up to 312x energy savings relative to conventional deep neural networks while maintaining real-time operation.
comment: 8 pages, 4 figures, 4 tables. Submitted to IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
☆ Maximizing Reliability with Bayesian Optimization
Bayesian optimization (BO) is a popular, sample-efficient technique for expensive, black-box optimization. One such problem arising in manufacturing is that of maximizing the reliability, or equivalently minimizing the probability of a failure, of a design which is subject to random perturbations - a problem that can involve extremely rare failures ($P_\mathrm{fail} = 10^{-6}-10^{-8}$). In this work, we propose two BO methods based on Thompson sampling and knowledge gradient, the latter approximating the one-step Bayes-optimal policy for minimizing the logarithm of the failure probability. Both methods incorporate importance sampling to target extremely small failure probabilities. Empirical results show the proposed methods outperform existing methods in both extreme and non-extreme regimes.
comment: 25 pages, 9 figures
☆ Full-Batch Gradient Descent Outperforms One-Pass SGD: Sample Complexity Separation in Single-Index Learning
It is folklore that reusing training data more than once can improve the statistical efficiency of gradient-based learning. However, beyond linear regression, the theoretical advantage of full-batch gradient descent (GD, which always reuses all the data) over one-pass stochastic gradient descent (online SGD, which uses each data point only once) remains unclear. In this work, we consider learning a $d$-dimensional single-index model with a quadratic activation, for which it is known that one-pass SGD requires $n\gtrsim d\log d$ samples to achieve weak recovery. We first show that this $\log d$ factor in the sample complexity persists for full-batch spherical GD on the correlation loss; however, by simply truncating the activation, full-batch GD exhibits a favorable optimization landscape at $n \simeq d$ samples, thereby outperforming one-pass SGD (with the same activation) in statistical efficiency. We complement this result with a trajectory analysis of full-batch GD on the squared loss from small initialization, showing that $n \gtrsim d$ samples and $T \gtrsim\log d$ gradient steps suffice to achieve strong (exact) recovery.
☆ Embedding Perturbation may Better Reflect the Uncertainty in LLM Reasoning
Large language Models (LLMs) have achieved significant breakthroughs across diverse domains; however, they can still produce unreliable or misleading outputs. For responsible LLM application, Uncertainty Quantification (UQ) techniques are used to estimate a model's uncertainty about its outputs, indicating the likelihood that those outputs may be problematic. For LLM reasoning tasks, it is essential to estimate the uncertainty not only for the final answer, but also for the intermediate steps of the reasoning, as this can enable more fine-grained and targeted interventions. In this study, we explore what UQ metrics better reflect the LLM's ``intermediate uncertainty''during reasoning. Our study reveals that an LLMs' incorrect reasoning steps tend to contain tokens which are highly sensitive to the perturbations on the preceding token embeddings. In this way, incorrect (uncertain) intermediate steps can be readily identified using this sensitivity score as guidance in practice. In our experiments, we show such perturbation-based metric achieves stronger uncertainty quantification performance compared with baseline methods such as token (generation) probability and token entropy. Besides, different from approaches that rely on multiple sampling, the perturbation-based metrics offer better simplicity and efficiency.
☆ Repurposing Protein Language Models for Latent Flow-Based Fitness Optimization
Protein fitness optimization is challenged by a vast combinatorial landscape where high-fitness variants are extremely sparse. Many current methods either underperform or require computationally expensive gradient-based sampling. We present CHASE, a framework that repurposes the evolutionary knowledge of pretrained protein language models by compressing their embeddings into a compact latent space. By training a conditional flow-matching model with classifier-free guidance, we enable the direct generation of high-fitness variants without predictor-based guidance during the ODE sampling steps. CHASE achieves state-of-the-art performance on AAV and GFP protein design benchmarks. Finally, we show that bootstrapping with synthetic data can further enhance performance in data-constrained settings.
☆ Poly-attention: a general scheme for higher-order self-attention
The self-attention mechanism, at the heart of the Transformer model, is able to effectively model pairwise interactions between tokens. However, numerous recent works have shown that it is unable to perform basic tasks involving detecting triples of correlated tokens, or compositional tasks where multiple input tokens need to be referenced to generate a result. Some higher-dimensional alternatives to self-attention have been proposed to address this, including higher-order attention and Strassen attention, which can perform some of these polyadic tasks in exchange for slower, superquadratic running times. In this work, we define a vast class of generalizations of self-attention, which we call poly-attention mechanisms. Our mechanisms can incorporate arbitrary higher-order (tensor) computations as well as arbitrary relationship structures between the input tokens, and they include the aforementioned alternatives as special cases. We then systematically study their computational complexity and representational strength, including giving new algorithms and matching complexity-theoretic lower bounds on the time complexity of computing the attention matrix exactly as well as approximately, and tightly determining which polyadic tasks they can each perform. Our results give interesting trade-offs between different desiderata for these mechanisms, including a tight relationship between how expressive a mechanism is, and how large the coefficients in the model may be so that the mechanism can be approximated in almost-linear time. Notably, we give a new attention mechanism which can be computed exactly in quadratic time, and which can perform function composition for any fixed number of functions. Prior mechanisms, even for just composing two functions, could only be computed in superquadratic time, and our new lower bounds show that faster algorithms for them are not possible.
☆ Trust Region Continual Learning as an Implicit Meta-Learner
Continual learning aims to acquire tasks sequentially without catastrophic forgetting, yet standard strategies face a core tradeoff: regularization-based methods (e.g., EWC) can overconstrain updates when task optima are weakly overlapping, while replay-based methods can retain performance but drift due to imperfect replay. We study a hybrid perspective: \emph{trust region continual learning} that combines generative replay with a Fisher-metric trust region constraint. We show that, under local approximations, the resulting update admits a MAML-style interpretation with a single implicit inner step: replay supplies an old-task gradient signal (query-like), while the Fisher-weighted penalty provides an efficient offline curvature shaping (support-like). This yields an emergent meta-learning property in continual learning: the model becomes an initialization that rapidly \emph{re-converges} to prior task optima after each task transition, without explicitly optimizing a bilevel objective. Empirically, on task-incremental diffusion image generation and continual diffusion-policy control, trust region continual learning achieves the best final performance and retention, and consistently recovers early-task performance faster than EWC, replay, and continual meta-learning baselines.
comment: 19 pages, 23 tables
☆ Active Transfer Bagging: A New Approach for Accelerated Active Learning Acquisition of Data by Combined Transfer Learning and Bagging Based Models
Modern machine learning has achieved remarkable success on many problems, but this success often depends on the existence of large, labeled datasets. While active learning can dramatically reduce labeling cost when annotations are expensive, early performance is frequently dominated by the initial seed set, typically chosen at random. In many applications, however, related or approximate datasets are readily available and can be leveraged to construct a better seed set. We introduce a new method for selecting the seed data set for active learning, Active-Transfer Bagging (ATBagging). ATBagging estimates the informativeness of candidate data point from a Bayesian interpretation of bagged ensemble models by comparing in-bag and out-of-bag predictive distributions from the labeled dataset, yielding an information-gain proxy. To avoid redundant selections, we impose feature-space diversity by sampling a determinantal point process (DPP) whose kernel uses Random Fourier Features and a quality-diversity factorization that incorporates the informativeness scores. This same blended method is used for selection of new data points to collect during the active learning phase. We evaluate ATBagging on four real-world datasets covering both target-transfer and feature-shift scenarios (QM9, ERA5, Forbes 2000, and Beijing PM2.5). Across seed sizes nseed = 10-100, ATBagging improves or ties early active learning and increases area under the learning-curve relative to alternative seed subset selection methodologies in almost all cases, with strongest benefits in low-data regimes. Thus, ATBagging provides a low-cost, high reward means to initiating active learning-based data collection.
☆ Misconception Diagnosis From Student-Tutor Dialogue: Generate, Retrieve, Rerank
Timely and accurate identification of student misconceptions is key to improving learning outcomes and pre-empting the compounding of student errors. However, this task is highly dependent on the effort and intuition of the teacher. In this work, we present a novel approach for detecting misconceptions from student-tutor dialogues using large language models (LLMs). First, we use a fine-tuned LLM to generate plausible misconceptions, and then retrieve the most promising candidates among these using embedding similarity with the input dialogue. These candidates are then assessed and re-ranked by another fine-tuned LLM to improve misconception relevance. Empirically, we evaluate our system on real dialogues from an educational tutoring platform. We consider multiple base LLM models including LLaMA, Qwen and Claude on zero-shot and fine-tuned settings. We find that our approach improves predictive performance over baseline models and that fine-tuning improves both generated misconception quality and can outperform larger closed-source models. Finally, we conduct ablation studies to both validate the importance of our generation and reranking steps on misconception generation quality.
comment: 21 pages, 8 figures, 8 tables. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
☆ Masked Autoencoders as Universal Speech Enhancer
Supervised speech enhancement methods have been very successful. However, in practical scenarios, there is a lack of clean speech, and self-supervised learning-based (SSL) speech enhancement methods that offer comparable enhancement performance and can be applied to other speech-related downstream applications are desired. In this work, we develop a masked autoencoder based universal speech enhancer that is agnostic to the type of distortion affecting speech, can handle multiple distortions simultaneously, and is trained in a self-supervised manner. An augmentation stack adds further distortions to the noisy input data. The masked autoencoder model learns to remove the added distortions along with reconstructing the masked regions of the spectrogram during pre-training. The pre-trained embeddings are then used by fine-tuning models trained on a small amount of paired data for specific downstream tasks. We evaluate the pre-trained features for denoising and dereverberation downstream tasks. We explore different augmentations (like single or multi-speaker) in the pre-training augmentation stack and the effect of different noisy input feature representations (like $log1p$ compression) on pre-trained embeddings and downstream fine-tuning enhancement performance. We show that the proposed method not only outperforms the baseline but also achieves state-of-the-art performance for both in-domain and out-of-domain evaluation datasets.
☆ Provably Data-driven Multiple Hyper-parameter Tuning with Structured Loss Function
Data-driven algorithm design automates hyperparameter tuning, but its statistical foundations remain limited because model performance can depend on hyperparameters in implicit and highly non-smooth ways. Existing guarantees focus on the simple case of a one-dimensional (scalar) hyperparameter. This leaves the practically important, multi-dimensional hyperparameter tuning setting unresolved. We address this open question by establishing the first general framework for establishing generalization guarantees for tuning multi-dimensional hyperparameters in data-driven settings. Our approach strengthens the generalization guarantee framework for semi-algebraic function classes by exploiting tools from real algebraic geometry, yielding sharper, more broadly applicable guarantees. We then extend the analysis to hyperparameter tuning using the validation loss under minimal assumptions, and derive improved bounds when additional structure is available. Finally, we demonstrate the scope of the framework with new learnability results, including data-driven weighted group lasso and weighted fused lasso.
☆ Didactic to Constructive: Turning Expert Solutions into Learnable Reasoning
Improving the reasoning capabilities of large language models (LLMs) typically relies either on the model's ability to sample a correct solution to be reinforced or on the existence of a stronger model able to solve the problem. However, many difficult problems remain intractable for even current frontier models, preventing the extraction of valid training signals. A promising alternative is to leverage high-quality expert human solutions, yet naive imitation of this data fails because it is fundamentally out of distribution: expert solutions are typically didactic, containing implicit reasoning gaps intended for human readers rather than computational models. Furthermore, high-quality expert solutions are expensive, necessitating generalizable sample-efficient training methods. We propose Distribution Aligned Imitation Learning (DAIL), a two-step method that bridges the distributional gap by first transforming expert solutions into detailed, in-distribution reasoning traces and then applying a contrastive objective to focus learning on expert insights and methodologies. We find that DAIL can leverage fewer than 1000 high-quality expert solutions to achieve 10-25% pass@k gains on Qwen2.5-Instruct and Qwen3 models, improve reasoning efficiency by 2x to 4x, and enable out-of-domain generalization.
☆ An Empirical Study on Noisy Data and LLM Pretraining Loss Divergence
Large-scale pretraining datasets drive the success of large language models (LLMs). However, these web-scale corpora inevitably contain large amounts of noisy data due to unregulated web content or randomness inherent in data. Although LLM pretrainers often speculate that such noise contributes to instabilities in large-scale LLM pretraining and, in the worst cases, loss divergence, this phenomenon remains poorly understood.In this work, we present a systematic empirical study of whether noisy data causes LLM pretraining divergences and how it does so. By injecting controlled synthetic uniformly random noise into otherwise clean datasets, we analyze training dynamics across model sizes ranging from 480M to 5.2B parameters. We show that noisy data indeed induces training loss divergence, and that the probability of divergence depends strongly on the noise type, amount of noise, and model scale. We further find that noise-induced divergences exhibit activation patterns distinct from those caused by high learning rates, and we provide diagnostics that differentiate these two failure modes. Together, these results provide a large-scale, controlled characterization of how noisy data affects loss divergence in LLM pretraining.
☆ PRISM: Performer RS-IMLE for Single-pass Multisensory Imitation Learning
Robotic imitation learning typically requires models that capture multimodal action distributions while operating at real-time control rates and accommodating multiple sensing modalities. Although recent generative approaches such as diffusion models, flow matching, and Implicit Maximum Likelihood Estimation (IMLE) have achieved promising results, they often satisfy only a subset of these requirements. To address this, we introduce PRISM, a single-pass policy based on a batch-global rejection-sampling variant of IMLE. PRISM couples a temporal multisensory encoder (integrating RGB, depth, tactile, audio, and proprioception) with a linear-attention generator using a Performer architecture. We demonstrate the efficacy of PRISM on a diverse real-world hardware suite, including loco-manipulation using a Unitree Go2 with a 7-DoF arm D1 and tabletop manipulation with a UR5 manipulator. Across challenging physical tasks such as pre-manipulation parking, high-precision insertion, and multi-object pick-and-place, PRISM outperforms state-of-the-art diffusion policies by 10-25% in success rate while maintaining high-frequency (30-50 Hz) closed-loop control. We further validate our approach on large-scale simulation benchmarks, including CALVIN, MetaWorld, and Robomimic. In CALVIN (10% data split), PRISM improves success rates by approximately 25% over diffusion and approximately 20% over flow matching, while simultaneously reducing trajectory jerk by 20x-50x. These results position PRISM as a fast, accurate, and multisensory imitation policy that retains multimodal action coverage without the latency of iterative sampling.
comment: 10 pages main text and 4 figures, and 11 pages appendix and 10 figures, total 21 pages and 14 figures
☆ David vs. Goliath: Verifiable Agent-to-Agent Jailbreaking via Reinforcement Learning
The evolution of large language models into autonomous agents introduces adversarial failures that exploit legitimate tool privileges, transforming safety evaluation in tool-augmented environments from a subjective NLP task into an objective control problem. We formalize this threat model as Tag-Along Attacks: a scenario where a tool-less adversary "tags along" on the trusted privileges of a safety-aligned Operator to induce prohibited tool use through conversation alone. To validate this threat, we present Slingshot, a 'cold-start' reinforcement learning framework that autonomously discovers emergent attack vectors, revealing a critical insight: in our setting, learned attacks tend to converge to short, instruction-like syntactic patterns rather than multi-turn persuasion. On held-out extreme-difficulty tasks, Slingshot achieves a 67.0% success rate against a Qwen2.5-32B-Instruct-AWQ Operator (vs. 1.7% baseline), reducing the expected attempts to first success (on solved tasks) from 52.3 to 1.3. Crucially, Slingshot transfers zero-shot to several model families, including closed-source models like Gemini 2.5 Flash (56.0% attack success rate) and defensive-fine-tuned open-source models like Meta-SecAlign-8B (39.2% attack success rate). Our work establishes Tag-Along Attacks as a first-class, verifiable threat model and shows that effective agentic attacks can be elicited from off-the-shelf open-weight models through environment interaction alone.
comment: Under review. 8 main pages, 2 figures, 2 tables. Appendix included
☆ Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image $x^\ast$ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image $x^{p*}$. Although $x^{p*}$ is reasonably close to $x^\ast$, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image $x^+$ is closer to $x^\ast$ than $x^{p*}$. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates $K$ new images as a function of $x^{p*}$, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of $K$ images. We show that within $B$ rounds of user feedback, it is possible to arrive much closer to $x^\ast$, even though the generative model has no information about $x^\ast$. Qualitative scores from $30$ users, combined with quantitative metrics compared across $5$ baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
☆ Trust by Design: Skill Profiles for Transparent, Cost-Aware LLM Routing
How should Large Language Model (LLM) practitioners select the right model for a task without wasting money? We introduce BELLA (Budget-Efficient LLM Selection via Automated skill-profiling), a framework that recommends optimal LLM selection for tasks through interpretable skill-based model selection. Standard benchmarks report aggregate metrics that obscure which specific capabilities a task requires and whether a cheaper model could suffice. BELLA addresses this gap through three stages: (1) decomposing LLM outputs and extract the granular skills required by using critic-based profiling, (2) clustering skills into structured capability matrices, and (3) multi-objective optimization to select the right models to maximize performance while respecting budget constraints. BELLA provides natural-language rationale for recommendations, providing transparency that current black-box routing systems lack. We describe the framework architecture, situate it within the landscape of LLM routing and evaluation, and discuss its application to financial reasoning as a representative domain exhibiting diverse skill requirements and cost-variation across models. Our framework enables practitioners to make principled and cost-performance trade-offs for deploying LLMs.
comment: Appeared at MLSys YPS 2025
Transformers learn factored representations
Transformers pretrained via next token prediction learn to factor their world into parts, representing these factors in orthogonal subspaces of the residual stream. We formalize two representational hypotheses: (1) a representation in the product space of all factors, whose dimension grows exponentially with the number of parts, or (2) a factored representation in orthogonal subspaces, whose dimension grows linearly. The factored representation is lossless when factors are conditionally independent, but sacrifices predictive fidelity otherwise, creating a tradeoff between dimensional efficiency and accuracy. We derive precise predictions about the geometric structure of activations for each, including the number of subspaces, their dimensionality, and the arrangement of context embeddings within them. We test between these hypotheses on transformers trained on synthetic processes with known latent structure. Models learn factored representations when factors are conditionally independent, and continue to favor them early in training even when noise or hidden dependencies undermine conditional independence, reflecting an inductive bias toward factoring at the cost of fidelity. This provides a principled explanation for why transformers decompose the world into parts, and suggests that interpretable low dimensional structure may persist even in models trained on complex data.
☆ SLIME: Stabilized Likelihood Implicit Margin Enforcement for Preference Optimization
Direct preference optimization methods have emerged as a computationally efficient alternative to Reinforcement Learning from Human Feedback (RLHF) for aligning Large Language Models (LLMs). Latest approaches have streamlined the alignment process by deriving implicit reward functions, yet they often suffer from a critical objective mismatch: optimizing the relative margin between chosen and rejected responses does not guarantee the preservation of the chosen response's absolute likelihood. This can lead to ``unlearning'', where the model degrades the probability of high-quality outputs to satisfy margin constraints, and ``formatting collapse'' caused by the over-penalization of rejected sequences. In this work, we introduce SLIME (Stabilized Likelihood Implicit Margin Enforcement), a reference-free alignment objective designed to decouple preference learning from generation quality. SLIME incorporates a three-pronged objective: (1) an anchoring term to maximize the likelihood of preferred responses; (2) a stabilizing penalty that prevents the probabilities of rejected tokens from collapsing to zero; and (3) a dual-margin mechanism that combines hard and soft constraints for precise boundary shaping. Our results demonstrate that SLIME achieves superior performance compared to state-of-the-art baselines while maintaining higher generation stability.
Self-Supervised Learning from Structural Invariance ICLR 2026
Joint-embedding self-supervised learning (SSL), the key paradigm for unsupervised representation learning from visual data, learns from invariances between semantically-related data pairs. We study the one-to-many mapping problem in SSL, where each datum may be mapped to multiple valid targets. This arises when data pairs come from naturally occurring generative processes, e.g., successive video frames. We show that existing methods struggle to flexibly capture this conditional uncertainty. As a remedy, we introduce a latent variable to account for this uncertainty and derive a variational lower bound on the mutual information between paired embeddings. Our derivation yields a simple regularization term for standard SSL objectives. The resulting method, which we call AdaSSL, applies to both contrastive and distillation-based SSL objectives, and we empirically show its versatility in causal representation learning, fine-grained image understanding, and world modeling on videos.
comment: ICLR 2026
☆ C-kNN-LSH: A Nearest-Neighbor Algorithm for Sequential Counterfactual Inference
Estimating causal effects from longitudinal trajectories is central to understanding the progression of complex conditions and optimizing clinical decision-making, such as comorbidities and long COVID recovery. We introduce \emph{C-kNN--LSH}, a nearest-neighbor framework for sequential causal inference designed to handle such high-dimensional, confounded situations. By utilizing locality-sensitive hashing, we efficiently identify ``clinical twins'' with similar covariate histories, enabling local estimation of conditional treatment effects across evolving disease states. To mitigate bias from irregular sampling and shifting patient recovery profiles, we integrate neighborhood estimator with a doubly-robust correction. Theoretical analysis guarantees our estimator is consistent and second-order robust to nuisance error. Evaluated on a real-world Long COVID cohort with 13,511 participants, \emph{C-kNN-LSH} demonstrates superior performance in capturing recovery heterogeneity and estimating policy values compared to existing baselines.
☆ Live-Evo: Online Evolution of Agentic Memory from Continuous Feedback
Large language model (LLM) agents are increasingly equipped with memory, which are stored experience and reusable guidance that can improve task-solving performance. Recent \emph{self-evolving} systems update memory based on interaction outcomes, but most existing evolution pipelines are developed for static train/test splits and only approximate online learning by folding static benchmarks, making them brittle under true distribution shift and continuous feedback. We introduce \textsc{Live-Evo}, an online self-evolving memory system that learns from a stream of incoming data over time. \textsc{Live-Evo} decouples \emph{what happened} from \emph{how to use it} via an Experience Bank and a Meta-Guideline Bank, compiling task-adaptive guidelines from retrieved experiences for each task. To manage memory online, \textsc{Live-Evo} maintains experience weights and updates them from feedback: experiences that consistently help are reinforced and retrieved more often, while misleading or stale experiences are down-weighted and gradually forgotten, analogous to reinforcement and decay in human memory. On the live \textit{Prophet Arena} benchmark over a 10-week horizon, \textsc{Live-Evo} improves Brier score by 20.8\% and increases market returns by 12.9\%, while also transferring to deep-research benchmarks with consistent gains over strong baselines. Our code is available at https://github.com/ag2ai/Live-Evo.
comment: 13 pages
☆ ReasonCACHE: Teaching LLMs To Reason Without Weight Updates
Can Large language models (LLMs) learn to reason without any weight update and only through in-context learning (ICL)? ICL is strikingly sample-efficient, often learning from only a handful of demonstrations, but complex reasoning tasks typically demand many training examples to learn from. However, naively scaling ICL by adding more demonstrations breaks down at this scale: attention costs grow quadratically, performance saturates or degrades with longer contexts, and the approach remains a shallow form of learning. Due to these limitations, practitioners predominantly rely on in-weight learning (IWL) to induce reasoning. In this work, we show that by using Prefix Tuning, LLMs can learn to reason without overloading the context window and without any weight updates. We introduce $\textbf{ReasonCACHE}$, an instantiation of this mechanism that distills demonstrations into a fixed key-value cache. Empirically, across challenging reasoning benchmarks, including GPQA-Diamond, ReasonCACHE outperforms standard ICL and matches or surpasses IWL approaches. Further, it achieves this all while being more efficient across three key axes: data, inference cost, and trainable parameters. We also theoretically prove that ReasonCACHE can be strictly more expressive than low-rank weight update since the latter ties expressivity to input rank, whereas ReasonCACHE bypasses this constraint by directly injecting key-values into the attention mechanism. Together, our findings identify ReasonCACHE as a middle path between in-context and in-weight learning, providing a scalable algorithm for learning reasoning skills beyond the context window without modifying parameters. Our project page: https://reasoncache.github.io/
comment: 26 pages, 17 Figures
☆ Transfer Learning Through Conditional Quantile Matching
We introduce a transfer learning framework for regression that leverages heterogeneous source domains to improve predictive performance in a data-scarce target domain. Our approach learns a conditional generative model separately for each source domain and calibrates the generated responses to the target domain via conditional quantile matching. This distributional alignment step corrects general discrepancies between source and target domains without imposing restrictive assumptions such as covariate or label shift. The resulting framework provides a principled and flexible approach to high-quality data augmentation for downstream learning tasks in the target domain. From a theoretical perspective, we show that an empirical risk minimizer (ERM) trained on the augmented dataset achieves a tighter excess risk bound than the target-only ERM under mild conditions. In particular, we establish new convergence rates for the quantile matching estimator that governs the transfer bias-variance tradeoff. From a practical perspective, extensive simulations and real data applications demonstrate that the proposed method consistently improves prediction accuracy over target-only learning and competing transfer learning methods.
comment: 24 pages (8 pages for the main paper), 3 figures, 3 tables
☆ NAB: Neural Adaptive Binning for Sparse-View CT reconstruction
Computed Tomography (CT) plays a vital role in inspecting the internal structures of industrial objects. Furthermore, achieving high-quality CT reconstruction from sparse views is essential for reducing production costs. While classic implicit neural networks have shown promising results for sparse reconstruction, they are unable to leverage shape priors of objects. Motivated by the observation that numerous industrial objects exhibit rectangular structures, we propose a novel \textbf{N}eural \textbf{A}daptive \textbf{B}inning (\textbf{NAB}) method that effectively integrates rectangular priors into the reconstruction process. Specifically, our approach first maps coordinate space into a binned vector space. This mapping relies on an innovative binning mechanism based on differences between shifted hyperbolic tangent functions, with our extension enabling rotations around the input-plane normal vector. The resulting representations are then processed by a neural network to predict CT attenuation coefficients. This design enables end-to-end optimization of the encoding parameters -- including position, size, steepness, and rotation -- via gradient flow from the projection data, thus enhancing reconstruction accuracy. By adjusting the smoothness of the binning function, NAB can generalize to objects with more complex geometries. This research provides a new perspective on integrating shape priors into neural network-based reconstruction. Extensive experiments demonstrate that NAB achieves superior performance on two industrial datasets. It also maintains robust on medical datasets when the binning function is extended to more general expression. The code will be made available.
☆ Hierarchical Federated Learning with SignSGD: A Highly Communication-Efficient Approach
Hierarchical federated learning (HFL) has emerged as a key architecture for large-scale wireless and Internet of Things systems, where devices communicate with nearby edge servers before reaching the cloud. In these environments, uplink bandwidth and latency impose strict communication limits, thereby making aggressive gradient compression essential. One-bit methods such as sign-based stochastic gradient descent (SignSGD) offer an attractive solution in flat federated settings, but existing theory and algorithms do not naturally extend to hierarchical settings. In particular, the interaction between majority-vote aggregation at the edge layer and model aggregation at the cloud layer, and its impact on end-to-end performance, remains unknown. To bridge this gap, we propose a highly communication-efficient sign-based HFL framework and develop its corresponding formulation for nonconvex learning, where devices send only signed stochastic gradients, edge servers combine them through majority-vote, and the cloud periodically averages the obtained edge models, while utilizing downlink quantization to broadcast the global model. We introduce the resulting scalable HFL algorithm, HierSignSGD, and provide the convergence analysis for SignSGD in a hierarchical setting. Our core technical contribution is a characterization of how biased sign compression, two-level aggregation intervals, and inter-cluster heterogeneity collectively affect convergence. Numerical experiments under homogeneous and heterogeneous data splits show that HierSignSGD, despite employing extreme compression, achieves accuracy comparable to or better than full-precision stochastic gradient descent while reducing communication cost in the process, and remains robust under aggressive downlink sparsification.
☆ Implicit neural representation of textures
Implicit neural representation (INR) has proven to be accurate and efficient in various domains. In this work, we explore how different neural networks can be designed as a new texture INR, which operates in a continuous manner rather than a discrete one over the input UV coordinate space. Through thorough experiments, we demonstrate that these INRs perform well in terms of image quality, with considerable memory usage and rendering inference time. We analyze the balance between these objectives. In addition, we investigate various related applications in real-time rendering and down-stream tasks, e.g. mipmap fitting and INR-space generation.
comment: Albert Kwok and Zheyuan Hu contributed equally to this work
☆ Artificial Intelligence and Symmetries: Learning, Encoding, and Discovering Structure in Physical Data
Symmetries play a central role in physics, organizing dynamics, constraining interactions, and determining the effective number of physical degrees of freedom. In parallel, modern artificial intelligence methods have demonstrated a remarkable ability to extract low-dimensional structure from high-dimensional data through representation learning. This review examines the interplay between these two perspectives, focusing on the extent to which symmetry-induced constraints can be identified, encoded, or diagnosed using machine learning techniques. Rather than emphasizing architectures that enforce known symmetries by construction, we concentrate on data-driven approaches and latent representation learning, with particular attention to variational autoencoders. We discuss how symmetries and conservation laws reduce the intrinsic dimensionality of physical datasets, and how this reduction may manifest itself through self-organization of latent spaces in generative models trained to balance reconstruction and compression. We review recent results, including case studies from simple geometric systems and particle physics processes, and analyze the theoretical and practical limitations of inferring symmetry structure without explicit inductive bias.
comment: 25 pages, 9 figures. This manuscript is an invited review at the International Journal of Modern Physics A
☆ Context Learning for Multi-Agent Discussion
Multi-Agent Discussion (MAD) has garnered increasing attention very recently, where multiple LLM instances collaboratively solve problems via structured discussion. However, we find that current MAD methods easily suffer from discussion inconsistency, LLMs fail to reach a coherent solution, due to the misalignment between their individual contexts.In this paper, we introduce a multi-LLM context learning method (M2CL) that learns a context generator for each agent, capable of dynamically generating context instructions per discussion round via automatic information organization and refinement. Specifically, inspired by our theoretical insights on the context instruction, M2CL train the generators to control context coherence and output discrepancies via a carefully crafted self-adaptive mechanism.It enables LLMs to avoid premature convergence on majority noise and progressively reach the correct consensus. We evaluate M2CL on challenging tasks, including academic reasoning, embodied tasks, and mobile control. The results show that the performance of M2CL significantly surpasses existing methods by 20%--50%, while enjoying favorable transferability and computational efficiency.
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
☆ VQ-Style: Disentangling Style and Content in Motion with Residual Quantized Representations
Human motion data is inherently rich and complex, containing both semantic content and subtle stylistic features that are challenging to model. We propose a novel method for effective disentanglement of the style and content in human motion data to facilitate style transfer. Our approach is guided by the insight that content corresponds to coarse motion attributes while style captures the finer, expressive details. To model this hierarchy, we employ Residual Vector Quantized Variational Autoencoders (RVQ-VAEs) to learn a coarse-to-fine representation of motion. We further enhance the disentanglement by integrating contrastive learning and a novel information leakage loss with codebook learning to organize the content and the style across different codebooks. We harness this disentangled representation using our simple and effective inference-time technique Quantized Code Swapping, which enables motion style transfer without requiring any fine-tuning for unseen styles. Our framework demonstrates strong versatility across multiple inference applications, including style transfer, style removal, and motion blending.
☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
☆ Spark: Modular Spiking Neural Networks
Nowadays, neural networks act as a synonym for artificial intelligence. Present neural network models, although remarkably powerful, are inefficient both in terms of data and energy. Several alternative forms of neural networks have been proposed to address some of these problems. Specifically, spiking neural networks are suitable for efficient hardware implementations. However, effective learning algorithms for spiking networks remain elusive, although it is suspected that effective plasticity mechanisms could alleviate the problem of data efficiency. Here, we present a new framework for spiking neural networks - Spark - built upon the idea of modular design, from simple components to entire models. The aim of this framework is to provide an efficient and streamlined pipeline for spiking neural networks. We showcase this framework by solving the sparse-reward cartpole problem with simple plasticity mechanisms. We hope that a framework compatible with traditional ML pipelines may accelerate research in the area, specifically for continuous and unbatched learning, akin to the one animals exhibit.
☆ Position: Explaining Behavioral Shifts in Large Language Models Requires a Comparative Approach
Large-scale foundation models exhibit behavioral shifts: intervention-induced behavioral changes that appear after scaling, fine-tuning, reinforcement learning or in-context learning. While investigating these phenomena have recently received attention, explaining their appearance is still overlooked. Classic explainable AI (XAI) methods can surface failures at a single checkpoint of a model, but they are structurally ill-suited to justify what changed internally across different checkpoints and which explanatory claims are warranted about that change. We take the position that behavioral shifts should be explained comparatively: the core target should be the intervention-induced shift between a reference model and an intervened model, rather than any single model in isolation. To this aim we formulate a Comparative XAI ($Δ$-XAI) framework with a set of desiderata to be taken into account when designing proper explaining methods. To highlight how $Δ$-XAI methods work, we introduce a set of possible pipelines, relate them to the desiderata, and provide a concrete $Δ$-XAI experiment.
☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS; Website: https://modular-gradient-surgery.github.io
☆ Decoupling Generalizability and Membership Privacy Risks in Neural Networks
A deep learning model usually has to sacrifice some utilities when it acquires some other abilities or characteristics. Privacy preservation has such trade-off relationships with utilities. The loss disparity between various defense approaches implies the potential to decouple generalizability and privacy risks to maximize privacy gain. In this paper, we identify that the model's generalization and privacy risks exist in different regions in deep neural network architectures. Based on the observations that we investigate, we propose Privacy-Preserving Training Principle (PPTP) to protect model components from privacy risks while minimizing the loss in generalizability. Through extensive evaluations, our approach shows significantly better maintenance in model generalizability while enhancing privacy preservation.
☆ EvalQReason: A Framework for Step-Level Reasoning Evaluation in Large Language Models
Large Language Models (LLMs) are increasingly deployed in critical applications requiring reliable reasoning, yet their internal reasoning processes remain difficult to evaluate systematically. Existing methods focus on final-answer correctness, providing limited insight into how reasoning unfolds across intermediate steps. We present EvalQReason, a framework that quantifies LLM reasoning quality through step-level probability distribution analysis without requiring human annotation. The framework introduces two complementary algorithms: Consecutive Step Divergence (CSD), which measures local coherence between adjacent reasoning steps, and Step-to-Final Convergence (SFC), which assesses global alignment with final answers. Each algorithm employs five statistical metrics to capture reasoning dynamics. Experiments across mathematical and medical datasets with open-source 7B-parameter models demonstrate that CSD-based features achieve strong predictive performance for correctness classification, with classical machine learning models reaching F1=0.78 and ROC-AUC=0.82, and sequential neural models substantially improving performance (F1=0.88, ROC-AUC=0.97). CSD consistently outperforms SFC, and sequential architectures outperform classical machine learning approaches. Critically, reasoning dynamics prove domain-specific: mathematical reasoning exhibits clear divergence-based discrimination patterns between correct and incorrect solutions, while medical reasoning shows minimal discriminative signals, revealing fundamental differences in how LLMs process different reasoning types. EvalQReason enables scalable, process-aware evaluation of reasoning reliability, establishing probability-based divergence analysis as a principled approach for trustworthy AI deployment.
comment: 15 pages (including appendix), 11 figures
☆ An Optimization Method for Autoregressive Time Series Forecasting
Current time-series forecasting models are primarily based on transformer-style neural networks. These models achieve long-term forecasting mainly by scaling up the model size rather than through genuinely autoregressive (AR) rollout. From the perspective of large language model training, the traditional training process for time-series forecasting models ignores temporal causality. In this paper, we propose a novel training method for time-series forecasting that enforces two key properties: (1) AR prediction errors should increase with the forecasting horizon. Any violation of this principle is considered random guessing and is explicitly penalized in the loss function, and (2) the method enables models to concatenate short-term AR predictions for forming flexible long-term forecasts. Empirical results demonstrate that our method establishes a new state-of-the-art across multiple benchmarks, achieving an MSE reduction of more than 10% compared to iTransformer and other recent strong baselines. Furthermore, it enables short-horizon forecasting models to perform reliable long-term predictions at horizons over 7.5 times longer. Code is available at https://github.com/LizhengMathAi/AROpt
comment: 10 pages, 2 figures, 2 tables
☆ DFKI-Speech System for WildSpoof Challenge: A robust framework for SASV In-the-Wild
This paper presents the DFKI-Speech system developed for the WildSpoof Challenge under the Spoofing aware Automatic Speaker Verification (SASV) track. We propose a robust SASV framework in which a spoofing detector and a speaker verification (SV) network operate in tandem. The spoofing detector employs a self-supervised speech embedding extractor as the frontend, combined with a state-of-the-art graph neural network backend. In addition, a top-3 layer based mixture-of-experts (MoE) is used to fuse high-level and low-level features for effective spoofed utterance detection. For speaker verification, we adapt a low-complexity convolutional neural network that fuses 2D and 1D features at multiple scales, trained with the SphereFace loss. Additionally, contrastive circle loss is applied to adaptively weight positive and negative pairs within each training batch, enabling the network to better distinguish between hard and easy sample pairs. Finally, fixed imposter cohort based AS Norm score normalization and model ensembling are used to further enhance the discriminative capability of the speaker verification system.
☆ Statistical Learning Theory in Lean 4: Empirical Processes from Scratch
We present the first comprehensive Lean 4 formalization of statistical learning theory (SLT) grounded in empirical process theory. Our end-to-end formal infrastructure implement the missing contents in latest Lean 4 Mathlib library, including a complete development of Gaussian Lipschitz concentration, the first formalization of Dudley's entropy integral theorem for sub-Gaussian processes, and an application to least-squares (sparse) regression with a sharp rate. The project was carried out using a human-AI collaborative workflow, in which humans design proof strategies and AI agents execute tactical proof construction, leading to the human-verified Lean 4 toolbox for SLT. Beyond implementation, the formalization process exposes and resolves implicit assumptions and missing details in standard SLT textbooks, enforcing a granular, line-by-line understanding of the theory. This work establishes a reusable formal foundation and opens the door for future developments in machine learning theory. The code is available at https://github.com/YuanheZ/lean-stat-learning-theory
comment: 19 pages, 2 figures. Comments are welcome
☆ Choice-Model-Assisted Q-learning for Delayed-Feedback Revenue Management
We study reinforcement learning for revenue management with delayed feedback, where a substantial fraction of value is determined by customer cancellations and modifications observed days after booking. We propose \emph{choice-model-assisted RL}: a calibrated discrete choice model is used as a fixed partial world model to impute the delayed component of the learning target at decision time. In the fixed-model deployment regime, we prove that tabular Q-learning with model-imputed targets converges to an $O(\varepsilon/(1-γ))$ neighborhood of the optimal Q-function, where $\varepsilon$ summarizes partial-model error, with an additional $O(t^{-1/2})$ sampling term. Experiments in a simulator calibrated from 61{,}619 hotel bookings (1{,}088 independent runs) show: (i) no statistically detectable difference from a maturity-buffer DQN baseline in stationary settings; (ii) positive effects under in-family parameter shifts, with significant gains in 5 of 10 shift scenarios after Holm--Bonferroni correction (up to 12.4\%); and (iii) consistent degradation under structural misspecification, where the choice model assumptions are violated (1.4--2.6\% lower revenue). These results characterize when partial behavioral models improve robustness under shift and when they introduce harmful bias.
☆ MoLF: Mixture-of-Latent-Flow for Pan-Cancer Spatial Gene Expression Prediction from Histology
Inferring spatial transcriptomics (ST) from histology enables scalable histogenomic profiling, yet current methods are largely restricted to single-tissue models. This fragmentation fails to leverage biological principles shared across cancer types and hinders application to data-scarce scenarios. While pan-cancer training offers a solution, the resulting heterogeneity challenges monolithic architectures. To bridge this gap, we introduce MoLF (Mixture-of-Latent-Flow), a generative model for pan-cancer histogenomic prediction. MoLF leverages a conditional Flow Matching objective to map noise to the gene latent manifold, parameterized by a Mixture-of-Experts (MoE) velocity field. By dynamically routing inputs to specialized sub-networks, this architecture effectively decouples the optimization of diverse tissue patterns. Our experiments demonstrate that MoLF establishes a new state-of-the-art, consistently outperforming both specialized and foundation model baselines on pan-cancer benchmarks. Furthermore, MoLF exhibits zero-shot generalization to cross-species data, suggesting it captures fundamental, conserved histo-molecular mechanisms.
☆ Backpropagation as Physical Relaxation: Exact Gradients in Finite Time
Backpropagation, the foundational algorithm for training neural networks, is typically understood as a symbolic computation that recursively applies the chain rule. We show it emerges exactly as the finite-time relaxation of a physical dynamical system. By formulating feedforward inference as a continuous-time process and applying Lagrangian theory of non-conservative systems to handle asymmetric interactions, we derive a global energy functional on a doubled state space encoding both activations and sensitivities. The saddle-point dynamics of this energy perform inference and credit assignment simultaneously through local interactions. We term this framework ''Dyadic Backpropagation''. Crucially, we prove that unit-step Euler discretization, the natural timescale of layer transitions, recovers standard backpropagation exactly in precisely 2L steps for an L-layer network, with no approximations. Unlike prior energy-based methods requiring symmetric weights, asymptotic convergence, or vanishing perturbations, our framework guarantees exact gradients in finite time. This establishes backpropagation as the digitally optimized shadow of a continuous physical relaxation, providing a rigorous foundation for exact gradient computation in analog and neuromorphic substrates where continuous dynamics are native.
comment: 15 pages, 8 figures
☆ RACA: Representation-Aware Coverage Criteria for LLM Safety Testing
Recent advancements in LLMs have led to significant breakthroughs in various AI applications. However, their sophisticated capabilities also introduce severe safety concerns, particularly the generation of harmful content through jailbreak attacks. Current safety testing for LLMs often relies on static datasets and lacks systematic criteria to evaluate the quality and adequacy of these tests. While coverage criteria have been effective for smaller neural networks, they are not directly applicable to LLMs due to scalability issues and differing objectives. To address these challenges, this paper introduces RACA, a novel set of coverage criteria specifically designed for LLM safety testing. RACA leverages representation engineering to focus on safety-critical concepts within LLMs, thereby reducing dimensionality and filtering out irrelevant information. The framework operates in three stages: first, it identifies safety-critical representations using a small, expert-curated calibration set of jailbreak prompts. Second, it calculates conceptual activation scores for a given test suite based on these representations. Finally, it computes coverage results using six sub-criteria that assess both individual and compositional safety concepts. We conduct comprehensive experiments to validate RACA's effectiveness, applicability, and generalization, where the results demonstrate that RACA successfully identifies high-quality jailbreak prompts and is superior to traditional neuron-level criteria. We also showcase its practical application in real-world scenarios, such as test set prioritization and attack prompt sampling. Furthermore, our findings confirm RACA's generalization to various scenarios and its robustness across various configurations. Overall, RACA provides a new framework for evaluating the safety of LLMs, contributing a valuable technique to the field of testing for AI.
☆ HopFormer: Sparse Graph Transformers with Explicit Receptive Field Control
Graph Transformers typically rely on explicit positional or structural encodings and dense global attention to incorporate graph topology. In this work, we show that neither is essential. We introduce HopFormer, a graph Transformer that injects structure exclusively through head-specific n-hop masked sparse attention, without the use of positional encodings or architectural modifications. This design provides explicit and interpretable control over receptive fields while enabling genuinely sparse attention whose computational cost scales linearly with mask sparsity. Through extensive experiments on both node-level and graph-level benchmarks, we demonstrate that our approach achieves competitive or superior performance across diverse graph structures. Our results further reveal that dense global attention is often unnecessary: on graphs with strong small-world properties, localized attention yields more stable and consistently high performance, while on graphs with weaker small-world effects, global attention offers diminishing returns. Together, these findings challenge prevailing assumptions in graph Transformer design and highlight sparsity-controlled attention as a principled and efficient alternative.
☆ Unsupervised Physics-Informed Operator Learning through Multi-Stage Curriculum Training
Solving partial differential equations remains a central challenge in scientific machine learning. Neural operators offer a promising route by learning mappings between function spaces and enabling resolution-independent inference, yet they typically require supervised data. Physics-informed neural networks address this limitation through unsupervised training with physical constraints but often suffer from unstable convergence and limited generalization capability. To overcome these issues, we introduce a multi-stage physics-informed training strategy that achieves convergence by progressively enforcing boundary conditions in the loss landscape and subsequently incorporating interior residuals. At each stage the optimizer is re-initialized, acting as a continuation mechanism that restores stability and prevents gradient stagnation. We further propose the Physics-Informed Spline Fourier Neural Operator (PhIS-FNO), combining Fourier layers with Hermite spline kernels for smooth residual evaluation. Across canonical benchmarks, PhIS-FNO attains a level of accuracy comparable to that of supervised learning, using labeled information only along a narrow boundary region, establishing staged, spline-based optimization as a robust paradigm for physics-informed operator learning.
comment: 51 pages, 15 figures, 6 tables
☆ Unlocking the Duality between Flow and Field Matching
Conditional Flow Matching (CFM) unifies conventional generative paradigms such as diffusion models and flow matching. Interaction Field Matching (IFM) is a newer framework that generalizes Electrostatic Field Matching (EFM) rooted in Poisson Flow Generative Models (PFGM). While both frameworks define generative dynamics, they start from different objects: CFM specifies a conditional probability path in data space, whereas IFM specifies a physics-inspired interaction field in an augmented data space. This raises a basic question: are CFM and IFM genuinely different, or are they two descriptions of the same underlying dynamics? We show that they coincide for a natural subclass of IFM that we call forward-only IFM. Specifically, we construct a bijection between CFM and forward-only IFM. We further show that general IFM is strictly more expressive: it includes EFM and other interaction fields that cannot be realized within the standard CFM formulation. Finally, we highlight how this duality can benefit both frameworks: it provides a probabilistic interpretation of forward-only IFM and yields novel, IFM-driven techniques for CFM.
☆ Learning Markov Decision Processes under Fully Bandit Feedback
A standard assumption in Reinforcement Learning is that the agent observes every visited state-action pair in the associated Markov Decision Process (MDP), along with the per-step rewards. Strong theoretical results are known in this setting, achieving nearly-tight $Θ(\sqrt{T})$-regret bounds. However, such detailed feedback can be unrealistic, and recent research has investigated more restricted settings such as trajectory feedback, where the agent observes all the visited state-action pairs, but only a single \emph{aggregate} reward. In this paper, we consider a far more restrictive ``fully bandit'' feedback model for episodic MDPs, where the agent does not even observe the visited state-action pairs -- it only learns the aggregate reward. We provide the first efficient bandit learning algorithm for episodic MDPs with $\widetilde{O}(\sqrt{T})$ regret. Our regret has an exponential dependence on the horizon length $\H$, which we show is necessary. We also obtain improved nearly-tight regret bounds for ``ordered'' MDPs; these can be used to model classical stochastic optimization problems such as $k$-item prophet inequality and sequential posted pricing. Finally, we evaluate the empirical performance of our algorithm for the setting of $k$-item prophet inequalities; despite the highly restricted feedback, our algorithm's performance is comparable to that of a state-of-art learning algorithm (UCB-VI) with detailed state-action feedback.
☆ Segment to Focus: Guiding Latent Action Models in the Presence of Distractors
Latent Action Models (LAMs) learn to extract action-relevant representations solely from raw observations, enabling reinforcement learning from unlabelled videos and significantly scaling available training data. However, LAMs face a critical challenge in disentangling action-relevant features from action-correlated noise (e.g., background motion). Failing to filter these distractors causes LAMs to capture spurious correlations and build sub-optimal latent action spaces. In this paper, we introduce MaskLAM -- a lightweight modification to LAM training to mitigate this issue by incorporating visual agent segmentation. MaskLAM utilises segmentation masks from pretrained foundation models to weight the LAM reconstruction loss, thereby prioritising salient information over background elements while requiring no architectural modifications. We demonstrate the effectiveness of our method on continuous-control MuJoCo tasks, modified with action-correlated background noise. Our approach yields up to a 4x increase in accrued rewards compared to standard baselines and a 3x improvement in the latent action quality, as evidenced by linear probe evaluation.
☆ Alignment-Aware Model Adaptation via Feedback-Guided Optimization
Fine-tuning is the primary mechanism for adapting foundation models to downstream tasks; however, standard approaches largely optimize task objectives in isolation and do not account for secondary yet critical alignment objectives (e.g., safety and hallucination avoidance). As a result, downstream fine-tuning can degrade alignment and fail to correct pre-existing misaligned behavior. We propose an alignment-aware fine-tuning framework that integrates feedback from an external alignment signal through policy-gradient-based regularization. Our method introduces an adaptive gating mechanism that dynamically balances supervised and alignment-driven gradients on a per-sample basis, prioritizing uncertain or misaligned cases while allowing well-aligned examples to follow standard supervised updates. The framework further learns abstention behavior for fully misaligned inputs, incorporating conservative responses directly into the fine-tuned model. Experiments on general and domain-specific instruction-tuning benchmarks demonstrate consistent reductions in harmful and hallucinated outputs without sacrificing downstream task performance. Additional analyses show robustness to adversarial fine-tuning, prompt-based attacks, and unsafe initializations, establishing adaptively gated alignment optimization as an effective approach for alignment-preserving and alignment-recovering model adaptation.
☆ Well-Posed KL-Regularized Control via Wasserstein and Kalman-Wasserstein KL Divergences
Kullback-Leibler divergence (KL) regularization is widely used in reinforcement learning, but it becomes infinite under support mismatch and can degenerate in low-noise limits. Utilizing a unified information-geometric framework, we introduce (Kalman)-Wasserstein-based KL analogues by replacing the Fisher-Rao geometry in the dynamical formulation of the KL with transport-based geometries, and we derive closed-form values for common distribution families. These divergences remain finite under support mismatch and yield a geometric interpretation of regularization heuristics used in Kalman ensemble methods. We demonstrate the utility of these divergences in KL-regularized optimal control. In the fully tractable setting of linear time-invariant systems with Gaussian process noise, the classical KL reduces to a quadratic control penalty that becomes singular as process noise vanishes. Our variants remove this singularity, yielding well-posed problems. On a double integrator and a cart-pole example, the resulting controls outperform KL-based regularization.
comment: 37 pages, 9 figures, comments welcome
☆ Learning While Staying Curious: Entropy-Preserving Supervised Fine-Tuning via Adaptive Self-Distillation for Large Reasoning Models
The standard post-training recipe for large reasoning models, supervised fine-tuning followed by reinforcement learning (SFT-then-RL), may limit the benefits of the RL stage: while SFT imitates expert demonstrations, it often causes overconfidence and reduces generation diversity, leaving RL with a narrowed solution space to explore. Adding entropy regularization during SFT is not a cure-all; it tends to flatten token distributions toward uniformity, increasing entropy without improving meaningful exploration capability. In this paper, we propose CurioSFT, an entropy-preserving SFT method designed to enhance exploration capabilities through intrinsic curiosity. It consists of (a) Self-Exploratory Distillation, which distills the model toward a self-generated, temperature-scaled teacher to encourage exploration within its capability; and (b) Entropy-Guided Temperature Selection, which adaptively adjusts distillation strength to mitigate knowledge forgetting by amplifying exploration at reasoning tokens while stabilizing factual tokens. Extensive experiments on mathematical reasoning tasks demonstrate that, in SFT stage, CurioSFT outperforms the vanilla SFT by 2.5 points on in-distribution tasks and 2.9 points on out-of-distribution tasks. We also verify that exploration capabilities preserved during SFT successfully translate into concrete gains in RL stage, yielding an average improvement of 5.0 points.
☆ Variational Entropic Optimal Transport
Entropic optimal transport (EOT) in continuous spaces with quadratic cost is a classical tool for solving the domain translation problem. In practice, recent approaches optimize a weak dual EOT objective depending on a single potential, but doing so is computationally not efficient due to the intractable log-partition term. Existing methods typically resolve this obstacle in one of two ways: by significantly restricting the transport family to obtain closed-form normalization (via Gaussian-mixture parameterizations), or by using general neural parameterizations that require simulation-based training procedures. We propose Variational Entropic Optimal Transport (VarEOT), based on an exact variational reformulation of the log-partition $\log \mathbb{E}[\exp(\cdot)]$ as a tractable minimization over an auxiliary positive normalizer. This yields a differentiable learning objective optimized with stochastic gradients and avoids the necessity of MCMC simulations during the training. We provide theoretical guarantees, including finite-sample generalization bounds and approximation results under universal function approximation. Experiments on synthetic data and unpaired image-to-image translation demonstrate competitive or improved translation quality, while comparisons within the solvers that use the same weak dual EOT objective support the benefit of the proposed optimization principle.
☆ Interpretability in Deep Time Series Models Demands Semantic Alignment
Deep time series models continue to improve predictive performance, yet their deployment remains limited by their black-box nature. In response, existing interpretability approaches in the field keep focusing on explaining the internal model computations, without addressing whether they align or not with how a human would reason about the studied phenomenon. Instead, we state interpretability in deep time series models should pursue semantic alignment: predictions should be expressed in terms of variables that are meaningful to the end user, mediated by spatial and temporal mechanisms that admit user-dependent constraints. In this paper, we formalize this requirement and require that, once established, semantic alignment must be preserved under temporal evolution: a constraint with no analog in static settings. Provided with this definition, we outline a blueprint for semantically aligned deep time series models, identify properties that support trust, and discuss implications for model design.
Geometry- and Relation-Aware Diffusion for EEG Super-Resolution
Recent electroencephalography (EEG) spatial super-resolution (SR) methods, while showing improved quality by either directly predicting missing signals from visible channels or adapting latent diffusion-based generative modeling to temporal data, often lack awareness of physiological spatial structure, thereby constraining spatial generation performance. To address this issue, we introduce TopoDiff, a geometry- and relation-aware diffusion model for EEG spatial super-resolution. Inspired by how human experts interpret spatial EEG patterns, TopoDiff incorporates topology-aware image embeddings derived from EEG topographic representations to provide global geometric context for spatial generation, together with a dynamic channel-relation graph that encodes inter-electrode relationships and evolves with temporal dynamics. This design yields a spatially grounded EEG spatial super-resolution framework with consistent performance improvements. Across multiple EEG datasets spanning diverse applications, including SEED/SEED-IV for emotion recognition, PhysioNet motor imagery (MI/MM), and TUSZ for seizure detection, our method achieves substantial gains in generation fidelity and leads to notable improvements in downstream EEG task performance.
☆ Online Fine-Tuning of Pretrained Controllers for Autonomous Driving via Real-Time Recurrent RL
Deploying pretrained policies in real-world applications presents substantial challenges that fundamentally limit the practical applicability of learning-based control systems. When autonomous systems encounter environmental changes in system dynamics, sensor drift, or task objectives, fixed policies rapidly degrade in performance. We show that employing Real-Time Recurrent Reinforcement Learning (RTRRL), a biologically plausible algorithm for online adaptation, can effectively fine-tune a pretrained policy to improve autonomous agents' performance on driving tasks. We further show that RTRRL synergizes with a recent biologically inspired recurrent network model, the Liquid-Resistance Liquid-Capacitance RNN. We demonstrate the effectiveness of this closed-loop approach in a simulated CarRacing environment and in a real-world line-following task with a RoboRacer car equipped with an event camera.
☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
☆ Prediction-Powered Risk Monitoring of Deployed Models for Detecting Harmful Distribution Shifts
We study the problem of monitoring model performance in dynamic environments where labeled data are limited. To this end, we propose prediction-powered risk monitoring (PPRM), a semi-supervised risk-monitoring approach based on prediction-powered inference (PPI). PPRM constructs anytime-valid lower bounds on the running risk by combining synthetic labels with a small set of true labels. Harmful shifts are detected via a threshold-based comparison with an upper bound on the nominal risk, satisfying assumption-free finite-sample guarantees in the probability of false alarm. We demonstrate the effectiveness of PPRM through extensive experiments on image classification, large language model (LLM), and telecommunications monitoring tasks.
☆ Spectral Superposition: A Theory of Feature Geometry
Neural networks represent more features than they have dimensions via superposition, forcing features to share representational space. Current methods decompose activations into sparse linear features but discard geometric structure. We develop a theory for studying the geometric structre of features by analyzing the spectra (eigenvalues, eigenspaces, etc.) of weight derived matrices. In particular, we introduce the frame operator $F = WW^\top$, which gives us a spectral measure that describes how each feature allocates norm across eigenspaces. While previous tools could describe the pairwise interactions between features, spectral methods capture the global geometry (``how do all features interact?''). In toy models of superposition, we use this theory to prove that capacity saturation forces spectral localization: features collapse onto single eigenspaces, organize into tight frames, and admit discrete classification via association schemes, classifying all geometries from prior work (simplices, polygons, antiprisms). The spectral measure formalism applies to arbitrary weight matrices, enabling diagnosis of feature localization beyond toy settings. These results point toward a broader program: applying operator theory to interpretability.
☆ Scientific Theory of a Black-Box: A Life Cycle-Scale XAI Framework Based on Constructive Empiricism
Explainable AI (XAI) offers a growing number of algorithms that aim to answer specific questions about black-box models. What is missing is a principled way to consolidate explanatory information about a fixed black-box model into a persistent, auditable artefact, that accompanies the black-box throughout its life cycle. We address this gap by introducing the notion of a scientific theory of a black (SToBB). Grounded in Constructive Empiricism, a SToBB fulfils three obligations: (i) empirical adequacy with respect to all available observations of black-box behaviour, (ii) adaptability via explicit update commitments that restore adequacy when new observations arrive, and (iii) auditability through transparent documentation of assumptions, construction choices, and update behaviour. We operationalise these obligations as a general framework that specifies an extensible observation base, a traceable hypothesis class, algorithmic components for construction and revision, and documentation sufficient for third-party assessment. Explanations for concrete stakeholder needs are then obtained by querying the maintained record through interfaces, rather than by producing isolated method outputs. As a proof of concept, we instantiate a complete SToBB for a neural-network classifier on a tabular task and introduce the Constructive Box Theoriser (CoBoT) algorithm, an online procedure that constructs and maintains an empirically adequate rule-based surrogate as observations accumulate. Together, these contributions position SToBBs as a life cycle-scale, inspectable point of reference that supports consistent, reusable analyses and systematic external scrutiny.
☆ Generating Physically Sound Designs from Text and a Set of Physical Constraints NeurIPS 2025
We present TIDES, a text informed design approach for generating physically sound designs based on a textual description and a set of physical constraints. TIDES jointly optimizes structural (topology) and visual properties. A pre-trained text-image model is used to measure the design's visual alignment with a text prompt and a differentiable physics simulator is used to measure its physical performance. We evaluate TIDES on a series of structural optimization problems operating under different load and support conditions, at different resolutions, and experimentally in the lab by performing the 3-point bending test on 2D beam designs that are extruded and 3D printed. We find that it can jointly optimize the two objectives and return designs that satisfy engineering design requirements (compliance and density) while utilizing features specified by text.
comment: NeurIPS 2025
☆ Fat-Cat: Document-Driven Metacognitive Multi-Agent System for Complex Reasoning
The effectiveness of LLM-based agents is often limited not by model capacity alone, but by how efficiently contextual information is utilized at runtime. Existing agent frameworks rely on rigid, syntax-heavy state representations such as nested JSON, which require models to devote a substantial portion of their limited attention to syntactic processing rather than semantic reasoning. In this paper, we propose Fat-Cat, a document-driven agent architecture that improves the signal-to-noise ratio of state management. By integrating three key components: (1) a Semantic File System that represents agent state as Markdown documents aligned with common pre-training corpora, (2) a Textual Strategy Evolution module that accumulates task-solving knowledge without parameter updates, and (3) a Closed-Loop Watcher that monitors reasoning trajectories to reduce hallucinations. Extensive reasoning, retrieval, and coding benchmarks, Fat-Cat consistently improves agent performance. It enables the Kimi-k2 model to outperform the proprietary GPT-4o baseline on HotPotQA. Replacing the document-based state with JSON leads to performance drop, while empirically validating the critical necessity of document-driven state modeling over rigid syntax. The code is available at https://github.com/answeryt/Fat-Cat.
☆ Cardinality-Preserving Structured Sparse Graph Transformers for Molecular Property Prediction
Drug discovery motivates efficient molecular property prediction under limited labeled data. Chemical space is vast, often estimated at approximately 10^60 drug-like molecules, while only thousands of drugs have been approved. As a result, self-supervised pretraining on large unlabeled molecular corpora has become essential for data-efficient molecular representation learning. We introduce **CardinalGraphFormer**, a graph transformer that incorporates Graphormer-inspired structural biases, including shortest-path distance and centrality, as well as direct-bond edge bias, within a structured sparse attention regime limited to shortest-path distance <= 3. The model further augments this design with a cardinality-preserving unnormalized aggregation channel over the same support set. Pretraining combines contrastive graph-level alignment with masked attribute reconstruction. Under a fully matched evaluation protocol, CardinalGraphFormer improves mean performance across all 11 evaluated tasks and achieves statistically significant gains on 10 of 11 public benchmarks spanning MoleculeNet, OGB, and TDC ADMET tasks when compared to strong reproduced baselines.
☆ Hierarchical Adaptive Eviction for KV Cache Management in Multimodal Language Models
The integration of visual information into Large Language Models (LLMs) has enabled Multimodal LLMs (MLLMs), but the quadratic memory and computational costs of Transformer architectures remain a bottleneck. Existing KV cache eviction strategies fail to address the heterogeneous attention distributions between visual and text tokens, leading to suboptimal efficiency or degraded performance. In this paper, we propose Hierarchical Adaptive Eviction (HAE), a KV cache eviction framework that optimizes text-visual token interaction in MLLMs by implementing Dual-Attention Pruning during pre-filling (leveraging visual token sparsity and attention variance) and a Dynamic Decoding Eviction Strategy (inspired by OS Recycle Bins) during decoding. HAE minimizes KV cache usage across layers, reduces computational overhead via index broadcasting, and theoretically ensures superior information integrity and lower error bounds compared to greedy strategies, enhancing efficiency in both comprehension and generation tasks. Empirically, HAE reduces KV-Cache memory by 41\% with minimal accuracy loss (0.3\% drop) in image understanding tasks and accelerates story generation inference by 1.5x while maintaining output quality on Phi3.5-Vision-Instruct model.
comment: 10 oages, 3 figures
☆ State Rank Dynamics in Linear Attention LLMs
Linear Attention Large Language Models (LLMs) offer a compelling recurrent formulation that compresses context into a fixed-size state matrix, enabling constant-time inference. However, the internal dynamics of this compressed state remain largely opaque. In this work, we present a comprehensive study on the runtime state dynamics of state-of-the-art Linear Attention models. We uncover a fundamental phenomenon termed State Rank Stratification, characterized by a distinct spectral bifurcation among linear attention heads: while one group maintains an effective rank oscillating near zero, the other exhibits rapid growth that converges to an upper bound. Extensive experiments across diverse inference contexts reveal that these dynamics remain strikingly consistent, indicating that the identity of a head,whether low-rank or high-rank,is an intrinsic structural property acquired during pre-training, rather than a transient state dependent on the input data. Furthermore, our diagnostic probes reveal a surprising functional divergence: low-rank heads are indispensable for model reasoning, whereas high-rank heads exhibit significant redundancy. Leveraging this insight, we propose Joint Rank-Norm Pruning, a zero-shot strategy that achieves a 38.9\% reduction in KV-cache overhead while largely maintaining model accuracy.
☆ ECHO-2: A Large Scale Distributed Rollout Framework for Cost-efficient Reinforcement Learning
Reinforcement learning (RL) is a critical stage in post-training large language models (LLMs), involving repeated interaction between rollout generation, reward evaluation, and centralized learning. Distributing rollout execution offers opportunities to leverage more cost-efficient inference resources, but introduces challenges in wide-area coordination and policy dissemination. We present ECHO-2, a distributed RL framework for post-training with remote inference workers and non-negligible dissemination latency. ECHO-2 combines centralized learning with distributed rollouts and treats bounded policy staleness as a user-controlled parameter, enabling rollout generation, dissemination, and training to overlap. We introduce an overlap-based capacity model that relates training time, dissemination latency, and rollout throughput, yielding a practical provisioning rule for sustaining learner utilization. To mitigate dissemination bottlenecks and lower cost, ECHO-2 employs peer-assisted pipelined broadcast and cost-aware activation of heterogeneous workers. Experiments on GRPO post-training of 4B and 8B models under real wide-area bandwidth regimes show that ECHO-2 significantly improves cost efficiency while preserving RL reward comparable to strong baselines.
comment: 23 pages, 7 figures
☆ PCA of probability measures: Sparse and Dense sampling regimes
A common approach to perform PCA on probability measures is to embed them into a Hilbert space where standard functional PCA techniques apply. While convergence rates for estimating the embedding of a single measure from $m$ samples are well understood, the literature has not addressed the setting involving multiple measures. In this paper, we study PCA in a double asymptotic regime where $n$ probability measures are observed, each through $m$ samples. We derive convergence rates of the form $n^{-1/2} + m^{-α}$ for the empirical covariance operator and the PCA excess risk, where $α>0$ depends on the chosen embedding. This characterizes the relationship between the number $n$ of measures and the number $m$ of samples per measure, revealing a sparse (small $m$) to dense (large $m$) transition in the convergence behavior. Moreover, we prove that the dense-regime rate is minimax optimal for the empirical covariance error. Our numerical experiments validate these theoretical rates and demonstrate that appropriate subsampling preserves PCA accuracy while reducing computational cost.
☆ Vision-DeepResearch Benchmark: Rethinking Visual and Textual Search for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have advanced VQA and now support Vision-DeepResearch systems that use search engines for complex visual-textual fact-finding. However, evaluating these visual and textual search abilities is still difficult, and existing benchmarks have two major limitations. First, existing benchmarks are not visual search-centric: answers that should require visual search are often leaked through cross-textual cues in the text questions or can be inferred from the prior world knowledge in current MLLMs. Second, overly idealized evaluation scenario: On the image-search side, the required information can often be obtained via near-exact matching against the full image, while the text-search side is overly direct and insufficiently challenging. To address these issues, we construct the Vision-DeepResearch benchmark (VDR-Bench) comprising 2,000 VQA instances. All questions are created via a careful, multi-stage curation pipeline and rigorous expert review, designed to assess the behavior of Vision-DeepResearch systems under realistic real-world conditions. Moreover, to address the insufficient visual retrieval capabilities of current MLLMs, we propose a simple multi-round cropped-search workflow. This strategy is shown to effectively improve model performance in realistic visual retrieval scenarios. Overall, our results provide practical guidance for the design of future multimodal deep-research systems. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ STILL: Selecting Tokens for Intra-Layer Hybrid Attention to Linearize LLMs
Linearizing pretrained large language models (LLMs) primarily relies on intra-layer hybrid attention mechanisms to alleviate the quadratic complexity of standard softmax attention. Existing methods perform token routing based on sliding-window partitions, resulting in position-based selection and fails to capture token-specific global importance. Meanwhile, linear attention further suffers from distribution shift caused by learnable feature maps that distort pretrained feature magnitudes. Motivated by these limitations, we propose STILL, an intra-layer hybrid linearization framework for efficiently linearizing LLMs. STILL introduces a Self-Saliency Score with strong local-global consistency, enabling accurate token selection using sliding-window computation, and retains salient tokens for sparse softmax attention while summarizing the remaining context via linear attention. To preserve pretrained representations, we design a Norm-Preserved Feature Map (NP-Map) that decouples feature direction from magnitude and reinjects pretrained norms. We further adopt a unified training-inference architecture with chunk-wise parallelization and delayed selection to improve hardware efficiency. Experiments show that STILL matches or surpasses the original pretrained model on commonsense and general reasoning tasks, and achieves up to a 86.2% relative improvement over prior linearized attention methods on long-context benchmarks.
☆ SurvKAN: A Fully Parametric Survival Model Based on Kolmogorov-Arnold Networks
Accurate prediction of time-to-event outcomes is critical for clinical decision-making, treatment planning, and resource allocation in modern healthcare. While classical survival models such as Cox remain widely adopted in standard practice, they rely on restrictive assumptions, including linear covariate relationships and proportional hazards over time, that often fail to capture real-world clinical dynamics. Recent deep learning approaches like DeepSurv and DeepHit offer improved expressivity but sacrifice interpretability, limiting clinical adoption where trust and transparency are paramount. Hybrid models incorporating Kolmogorov-Arnold Networks (KANs), such as CoxKAN, have begun to address this trade-off but remain constrained by the semi-parametric Cox framework. In this work we introduce SurvKAN, a fully parametric, time-continuous survival model based on KAN architectures that eliminates the proportional hazards constraint. SurvKAN treats time as an explicit input to a KAN that directly predicts the log-hazard function, enabling end-to-end training on the full survival likelihood. Our architecture preserves interpretability through learnable univariate functions that indicate how individual features influence risk over time. Extensive experiments on standard survival benchmarks demonstrate that SurvKAN achieves competitive or superior performance compared to classical and state-of-the-art baselines across concordance and calibration metrics. Additionally, interpretability analyses reveal clinically meaningful patterns that align with medical domain knowledge.
☆ Generalized Optimal Classification Trees: A Mixed-Integer Programming Approach
Global optimization of decision trees is a long-standing challenge in combinatorial optimization, yet such models play an important role in interpretable machine learning. Although the problem has been investigated for several decades, only recent advances in discrete optimization have enabled practical algorithms for solving optimal classification tree problems on real-world datasets. Mixed-integer programming (MIP) offers a high degree of modeling flexibility, and we therefore propose a MIP-based framework for learning optimal classification trees under nonlinear performance metrics, such as the F1-score, that explicitly addresses class imbalance. To improve scalability, we develop problem-specific acceleration techniques, including a tailored branch-and-cut algorithm, an instance-reduction scheme, and warm-start strategies. We evaluate the proposed approach on 50 benchmark datasets. The computational results show that the framework can efficiently optimize nonlinear metrics while achieving strong predictive performance and reduced solution times compared with existing methods.
☆ Real-Time 2D LiDAR Object Detection Using Three-Frame RGB Scan Encoding
Indoor service robots need perception that is robust, more privacy-friendly than RGB video, and feasible on embedded hardware. We present a camera-free 2D LiDAR object detection pipeline that encodes short-term temporal context by stacking three consecutive scans as RGB channels, yielding a compact YOLOv8n input without occupancy-grid construction while preserving angular structure and motion cues. Evaluated in Webots across 160 randomized indoor scenarios with strict scenario-level holdout, the method achieves 98.4% mAP@0.5 (0.778 mAP@0.5:0.95) with 94.9% precision and 94.7% recall on four object classes. On a Raspberry Pi 5, it runs in real time with a mean post-warm-up end-to-end latency of 47.8ms per frame, including scan encoding and postprocessing. Relative to a closely related occupancy-grid LiDAR-YOLO pipeline reported on the same platform, the proposed representation is associated with substantially lower reported end-to-end latency. Although results are simulation-based, they suggest that lightweight temporal encoding can enable accurate and real-time LiDAR-only detection for embedded indoor robotics without capturing RGB appearance.
comment: 6 pages, 6 figures, submitted to IEEE SAS 2026
☆ Co-RedTeam: Orchestrated Security Discovery and Exploitation with LLM Agents
Large language models (LLMs) have shown promise in assisting cybersecurity tasks, yet existing approaches struggle with automatic vulnerability discovery and exploitation due to limited interaction, weak execution grounding, and a lack of experience reuse. We propose Co-RedTeam, a security-aware multi-agent framework designed to mirror real-world red-teaming workflows by integrating security-domain knowledge, code-aware analysis, execution-grounded iterative reasoning, and long-term memory. Co-RedTeam decomposes vulnerability analysis into coordinated discovery and exploitation stages, enabling agents to plan, execute, validate, and refine actions based on real execution feedback while learning from prior trajectories. Extensive evaluations on challenging security benchmarks demonstrate that Co-RedTeam consistently outperforms strong baselines across diverse backbone models, achieving over 60% success rate in vulnerability exploitation and over 10% absolute improvement in vulnerability detection. Ablation and iteration studies further confirm the critical role of execution feedback, structured interaction, and memory for building robust and generalizable cybersecurity agents.
☆ Interpretable Tabular Foundation Models via In-Context Kernel Regression
Tabular foundation models like TabPFN and TabICL achieve state-of-the-art performance through in-context learning, yet their architectures remain fundamentally opaque. We introduce KernelICL, a framework to enhance tabular foundation models with quantifiable sample-based interpretability. Building on the insight that in-context learning is akin to kernel regression, we make this mechanism explicit by replacing the final prediction layer with kernel functions (Gaussian, dot-product, kNN) so that every prediction is a transparent weighted average of training labels. We introduce a two-dimensional taxonomy that formally unifies standard kernel methods, modern neighbor-based approaches, and attention mechanisms under a single framework, and quantify inspectability via the perplexity of the weight distribution over training samples. On 55 TALENT benchmark datasets, KernelICL achieves performance on par with existing tabular foundation models, demonstrating that explicit kernel constraints on the final layer enable inspectable predictions without sacrificing performance.
☆ Generating Causal Temporal Interaction Graphs for Counterfactual Validation of Temporal Link Prediction
Temporal link prediction (TLP) models are commonly evaluated based on predictive accuracy, yet such evaluations do not assess whether these models capture the causal mechanisms that govern temporal interactions. In this work, we propose a framework for counterfactual validation of TLP models by generating causal temporal interaction graphs (CTIGs) with known ground-truth causal structure. We first introduce a structural equation model for continuous-time event sequences that supports both excitatory and inhibitory effects, and then extend this mechanism to temporal interaction graphs. To compare causal models, we propose a distance metric based on cross-model predictive error, and empirically validate the hypothesis that predictors trained on one causal model degrade when evaluated on sufficiently distant models. Finally, we instantiate counterfactual evaluation under (i) controlled causal shifts between generating models and (ii) timestamp shuffling as a stochastic distortion with measurable causal distance. Our framework provides a foundation for causality-aware benchmarking.
☆ Efficient Neural Controlled Differential Equations via Attentive Kernel Smoothing
Neural Controlled Differential Equations (Neural CDEs) provide a powerful continuous-time framework for sequence modeling, yet the roughness of the driving control path often restricts their efficiency. Standard splines introduce high-frequency variations that force adaptive solvers to take excessively small steps, driving up the Number of Function Evaluations (NFE). We propose a novel approach to Neural CDE path construction that replaces exact interpolation with Kernel and Gaussian Process (GP) smoothing, enabling explicit control over trajectory regularity. To recover details lost during smoothing, we propose an attention-based Multi-View CDE (MV-CDE) and its convolutional extension (MVC-CDE), which employ learnable queries to inform path reconstruction. This framework allows the model to distribute representational capacity across multiple trajectories, each capturing distinct temporal patterns. Empirical results demonstrate that our method, MVC-CDE with GP, achieves state-of-the-art accuracy while significantly reducing NFEs and total inference time compared to spline-based baselines.
☆ Learning Beyond the Gaussian Data: Learning Dynamics of Neural Networks on an Expressive and Cumulant-Controllable Data Model ICASSP 2026
We study the effect of high-order statistics of data on the learning dynamics of neural networks (NNs) by using a moment-controllable non-Gaussian data model. Considering the expressivity of two-layer neural networks, we first construct the data model as a generative two-layer NN where the activation function is expanded by using Hermite polynomials. This allows us to achieve interpretable control over high-order cumulants such as skewness and kurtosis through the Hermite coefficients while keeping the data model realistic. Using samples generated from the data model, we perform controlled online learning experiments with a two-layer NN. Our results reveal a moment-wise progression in training: networks first capture low-order statistics such as mean and covariance, and progressively learn high-order cumulants. Finally, we pretrain the generative model on the Fashion-MNIST dataset and leverage the generated samples for further experiments. The results of these additional experiments confirm our conclusions and show the utility of the data model in a real-world scenario. Overall, our proposed approach bridges simplified data assumptions and practical data complexity, which offers a principled framework for investigating distributional effects in machine learning and signal processing.
comment: ICASSP 2026, 5 pages, 2 figures
☆ Revisiting Adaptive Rounding with Vectorized Reparameterization for LLM Quantization
Adaptive Rounding has emerged as an alternative to round-to-nearest (RTN) for post-training quantization by enabling cross-element error cancellation. Yet, dense and element-wise rounding matrices are prohibitively expensive for billion-parameter large language models (LLMs). We revisit adaptive rounding from an efficiency perspective and propose VQRound, a parameter-efficient optimization framework that reparameterizes the rounding matrix into a compact codebook. Unlike low-rank alternatives, VQRound minimizes the element-wise worst-case error under $L_\infty$ norm, which is critical for handling heavy-tailed weight distributions in LLMs. Beyond reparameterization, we identify rounding initialization as a decisive factor and develop a lightweight end-to-end finetuning pipeline that optimizes codebooks across all layers using only 128 samples. Extensive experiments on OPT, LLaMA, LLaMA2, and Qwen3 models demonstrate that VQRound achieves better convergence than traditional adaptive rounding at the same number of steps while using as little as 0.2% of the trainable parameters. Our results show that adaptive rounding can be made both scalable and fast-fitting. The code is available at https://github.com/zhoustan/VQRound.
comment: 17 pages, 6 figures, 14 tables
☆ ECHO: Entropy-Confidence Hybrid Optimization for Test-Time Reinforcement Learning
Test-time reinforcement learning generates multiple candidate answers via repeated rollouts and performs online updates using pseudo-labels constructed by majority voting. To reduce overhead and improve exploration, prior work introduces tree structured rollouts, which share reasoning prefixes and branch at key nodes to improve sampling efficiency. However, this paradigm still faces two challenges: (1) high entropy branching can trigger rollout collapse, where the branching budget concentrates on a few trajectories with consecutive high-entropy segments, rapidly reducing the number of effective branches; (2) early pseudo-labels are noisy and biased, which can induce self-reinforcing overfitting, causing the policy to sharpen prematurely and suppress exploration. To address these issues, we propose Entropy Confidence Hybrid Group Relative Policy Optimization (ECHO). During rollout, ECHO jointly leverages local entropy and group level confidence to adaptively control branch width, and further introduces online confidence-based pruning to terminate persistently low confidence branches, avoiding high entropy traps and mitigating collapse. During policy updates, ECHO employs confidence adaptive clipping and an entropy confidence hybrid advantage shaping approach to enhance training robustness and mitigate early stage bias. Experiments demonstrate that ECHO achieves consistent gains on multiple mathematical and visual reasoning benchmarks, and generalizes more effectively under a limited rollout budget.
comment: 19 ppages
☆ Back to the Future: Look-ahead Augmentation and Parallel Self-Refinement for Time Series Forecasting
Long-term time series forecasting (LTSF) remains challenging due to the trade-off between parallel efficiency and sequential modeling of temporal coherence. Direct multi-step forecasting (DMS) methods enable fast, parallel prediction of all future horizons but often lose temporal consistency across steps, while iterative multi-step forecasting (IMS) preserves temporal dependencies at the cost of error accumulation and slow inference. To bridge this gap, we propose Back to the Future (BTTF), a simple yet effective framework that enhances forecasting stability through look-ahead augmentation and self-corrective refinement. Rather than relying on complex model architectures, BTTF revisits the fundamental forecasting process and refines a base model by ensembling the second-stage models augmented with their initial predictions. Despite its simplicity, our approach consistently improves long-horizon accuracy and mitigates the instability of linear forecasting models, achieving accuracy gains of up to 58% and demonstrating stable improvements even when the first-stage model is trained under suboptimal conditions. These results suggest that leveraging model-generated forecasts as augmentation can be a simple yet powerful way to enhance long-term prediction, even without complex architectures.
comment: 4 pages, Short paper accepted at The Web Conference (WWW) 2026
☆ Learning Generative Selection for Best-of-N
Scaling test-time compute via parallel sampling can substantially improve LLM reasoning, but is often limited by Best-of-N selection quality. Generative selection methods, such as GenSelect, address this bottleneck, yet strong selection performance remains largely limited to large models. We show that small reasoning models can acquire strong GenSelect capabilities through targeted reinforcement learning. To this end, we synthesize selection tasks from large-scale math and code instruction datasets by filtering to instances with both correct and incorrect candidate solutions, and train 1.7B-parameter models with DAPO to reward correct selections. Across math (AIME24, AIME25, HMMT25) and code (LiveCodeBench) reasoning benchmarks, our models consistently outperform prompting and majority-voting baselines, often approaching or exceeding much larger models. Moreover, these gains generalize to selecting outputs from stronger models despite training only on outputs from weaker models. Overall, our results establish reinforcement learning as a scalable way to unlock strong generative selection in small models, enabling efficient test-time scaling.
☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
♻ ☆ Helios 2.0: A Robust, Ultra-Low Power Gesture Recognition System Optimised for Event-Sensor based Wearables
We present an advance in wearable technology: a mobile-optimized, real-time, ultra-low-power event camera system that enables natural hand gesture control for smart glasses, dramatically improving user experience. While hand gesture recognition in computer vision has advanced significantly, critical challenges remain in creating systems that are intuitive, adaptable across diverse users and environments, and energy-efficient enough for practical wearable applications. Our approach tackles these challenges through carefully selected microgestures: lateral thumb swipes across the index finger (in both directions) and a double pinch between thumb and index fingertips. These human-centered interactions leverage natural hand movements, ensuring intuitive usability without requiring users to learn complex command sequences. To overcome variability in users and environments, we developed a novel simulation methodology that enables comprehensive domain sampling without extensive real-world data collection. Our power-optimised architecture maintains exceptional performance, achieving F1 scores above 80\% on benchmark datasets featuring diverse users and environments. The resulting models operate at just 6-8 mW when exploiting the Qualcomm Snapdragon Hexagon DSP, with our 2-channel implementation exceeding 70\% F1 accuracy and our 6-channel model surpassing 80\% F1 accuracy across all gesture classes in user studies. These results were achieved using only synthetic training data. This improves on the state-of-the-art for F1 accuracy by 20\% with a power reduction 25x when using DSP. This advancement brings deploying ultra-low-power vision systems in wearable devices closer and opens new possibilities for seamless human-computer interaction.
comment: 24 pages, 14 figures. Prarthana Bhattacharyya, Joshua Mitton, Ryan Page, Owen Morgan, and Oliver Powell contributed equally to this paper
♻ ☆ How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Frontier language models are deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. We introduce Advisor Models, a method to train small open-weight models to generate dynamic, per-instance natural language advice that improves the capabilities of black-box frontier models. Advisor Models improve GPT-5's performance on RuleArena (Taxes) by 71%, reduce Gemini 3 Pro's steps taken in SWE agent tasks by 24.6%, and outperform static prompt optimizers in personalizing GPT-5 to user preferences (85-100% vs. 40-60%). We also find that advisors are transferable: an advisor trained with a low-cost student model still transfers improvements to a frontier model. Moreover, Advisor Models are robust: we observe no degradation on other benchmarks than the pipeline is trained on. Our method shows how to perform parametric optimization for black-box frontier models in a practical and cost-effective way.
♻ ☆ Uncertainty-Aware Knowledge Tracing Models
The main focus of research on Knowledge Tracing (KT) models is on model developments with the aim of improving predictive accuracy. Most of these models make the most incorrect predictions when students choose a distractor, leading to student errors going undetected. We present an approach to add new capabilities to KT models by capturing predictive uncertainty and demonstrate that a larger predictive uncertainty aligns with model incorrect predictions. We show that uncertainty in KT models is informative and that this signal would be pedagogically useful for application in an educational learning platform that can be used in a limited resource setting where understanding student ability is necessary.
comment: 10 pages, 7 figures. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains.
comment: Accepted to ICLR 2026
♻ ☆ A Backpropagation-Free Feedback-Hebbian Network for Continual Learning Dynamics
Feedback-rich neural architectures can regenerate earlier representations and inject temporal context, making them a natural setting for strictly local synaptic plasticity. Existing literature raises doubt about whether a minimal, backpropagation-free feedback-Hebbian system can already express interpretable continual-learning-relevant behaviors under controlled training schedules. In this work, we introduce a compact prediction-reconstruction architecture with a dedicated feedback pathway providing lightweight, locally trainable temporal context for continual adaptation. All synapses are updated by a unified local rule combining centered Hebbian covariance, Oja-style stabilization, and a local supervised drive where targets are available. With a simple two-pair association task, learning is characterized through layer-wise activity snapshots, connectivity trajectories (row and column means of learned weights), and a normalized retention index across phases. Under sequential A to B training, forward output connectivity exhibits a long-term depression (LTD)-like suppression of the earlier association, while feedback connectivity preserves an A-related trace during acquisition of B. Under an alternating sequence, both associations are concurrently maintained rather than sequentially suppressed. Architectural controls and rule-term ablations isolate the role of dedicated feedback in regeneration and co-maintenance, alongside the role of the local supervised term in output selectivity and unlearning. Together, the results show that a compact feedback pathway trained with local plasticity can support regeneration and continual-learning-relevant dynamics in a minimal, mechanistically transparent setting.
comment: 8 pages, 10 figures
♻ ☆ Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers NeurIPS 2025
Large language models (LLMs) can acquire new knowledge through fine-tuning, but this process exhibits a puzzling duality: models can generalize remarkably from new facts, yet are also prone to hallucinating incorrect information. However, the reasons for this phenomenon remain poorly understood. In this work, we argue that both behaviors stem from a single mechanism known as out-of-context reasoning (OCR): the ability to deduce implications by associating concepts, even those without a causal link. Our experiments across five prominent LLMs confirm that OCR indeed drives both generalization and hallucination, depending on whether the associated concepts are causally related. To build a rigorous theoretical understanding of this phenomenon, we then formalize OCR as a synthetic factual recall task. We empirically show that a one-layer single-head attention-only transformer with factorized output and value matrices can learn to solve this task, while a model with combined weights cannot, highlighting the crucial role of matrix factorization. Our theoretical analysis shows that the OCR capability can be attributed to the implicit bias of gradient descent, which favors solutions that minimize the nuclear norm of the combined output-value matrix. This mathematical structure explains why the model learns to associate facts and implications with high sample efficiency, regardless of whether the correlation is causal or merely spurious. Ultimately, our work provides a theoretical foundation for understanding the OCR phenomenon, offering a new lens for analyzing and mitigating undesirable behaviors from knowledge injection.
comment: NeurIPS 2025, first three authors contributed equally
♻ ☆ Outcome-Based RL Provably Leads Transformers to Reason, but Only With the Right Data
Transformers trained via Reinforcement Learning (RL) with outcome-based supervision can spontaneously develop the ability to generate intermediate reasoning steps (Chain-of-Thought). Yet the mechanism by which sparse rewards drive policy gradient to discover such systematic reasoning remains poorly understood. We address this by analyzing the policy gradient dynamics of single-layer Transformers on a synthetic graph traversal task that cannot be solved without Chain-of-Thought but admits a simple iterative solution. We prove that despite training solely on final-answer correctness, policy gradient drives the Transformer to converge to a structured, interpretable algorithm that iteratively traverses the graph vertex-by-vertex. We characterize the distributional properties required for this emergence, identifying the critical role of "simple examples": instances requiring fewer reasoning steps. When the training distribution places sufficient mass on these simpler examples, the Transformer learns a generalizable traversal strategy that extrapolates to longer chains; when this mass vanishes, policy gradient learning becomes infeasible. We corroborate our theoretical results through experiments on synthetic data and with real-world language models on mathematical reasoning tasks, validating that our theoretical findings carry over to practical settings.
comment: 87 pages, 6 figures
♻ ☆ EUGens: Efficient, Unified, and General Dense Layers
Efficient neural networks are essential for scaling machine learning models to real-time applications and resource-constrained environments. Fully-connected feedforward layers (FFLs) introduce computation and parameter count bottlenecks within neural network architectures. To address this challenge, in this work, we propose a new class of dense layers that generalize standard fully-connected feedforward layers, \textbf{E}fficient, \textbf{U}nified and \textbf{Gen}eral dense layers (EUGens). EUGens leverage random features to approximate standard FFLs and go beyond them by incorporating a direct dependence on the input norms in their computations. The proposed layers unify existing efficient FFL extensions and improve efficiency by reducing inference complexity from quadratic to linear time. They also lead to \textbf{the first} unbiased algorithms approximating FFLs with arbitrary polynomial activation functions. Furthermore, EuGens reduce the parameter count and computational overhead while preserving the expressive power and adaptability of FFLs. We also present a layer-wise knowledge transfer technique that bypasses backpropagation, enabling efficient adaptation of EUGens to pre-trained models. Empirically, we observe that integrating EUGens into Transformers and MLPs yields substantial improvements in inference speed (up to \textbf{27}\%) and memory efficiency (up to \textbf{30}\%) across a range of tasks, including image classification, language model pre-training, and 3D scene reconstruction. Overall, our results highlight the potential of EUGens for the scalable deployment of large-scale neural networks in real-world scenarios.
comment: We want to update 2410.09771 with this submission
♻ ☆ MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs NeurIPS 2025
Language models deployed in real-world systems often require post-hoc updates to incorporate new or corrected knowledge. However, editing such models efficiently and reliably-without retraining or forgetting previous information-remains a major challenge. Existing methods for lifelong model editing either compromise generalization, interfere with past edits, or fail to scale to long editing sequences. We propose MEMOIR, a novel scalable framework that injects knowledge through a residual memory, i.e., a dedicated parameter module, while preserving the core capabilities of the pre-trained model. By sparsifying input activations through sample-dependent masks, MEMOIR confines each edit to a distinct subset of the memory parameters, minimizing interference among edits. At inference, it identifies relevant edits by comparing the sparse activation patterns of new queries to those stored during editing. This enables generalization to rephrased queries by activating only the relevant knowledge while suppressing unnecessary memory activation for unrelated prompts. Experiments on question answering, hallucination correction, and out-of-distribution generalization benchmarks for LLaMA-3 and Mistral backbones demonstrate that MEMOIR achieves state-of-the-art performance across reliability, generalization, and locality metrics, scaling to thousands of sequential edits with minimal forgetting.
comment: The first two authors contributed equally to this work; Accepted to NeurIPS 2025
♻ ☆ Context-Free Synthetic Data Mitigates Forgetting
Fine-tuning a language model often results in a degradation of its existing performance on other tasks, due to a shift in the model parameters; this phenomenon is often referred to as (catastrophic) forgetting. We are interested in mitigating this, in settings where we only have access to the model weights but no access to its training data/recipe. A natural approach is to penalize the KL divergence between the original model and the new one. Our main realization is that a simple process - which we term context-free generation - allows for an approximate unbiased estimation of this KL divergence. We show that augmenting a fine-tuning dataset with context-free generations mitigates forgetting, in two settings: (a) preserving the zero-shot performance of pretrained-only models, and (b) preserving the reasoning performance of thinking models. We show that contextual synthetic data, and even a portion of the pretraining data, are less effective. We also investigate the effect of choices like generation temperature, data ratios etc. We present our results for OLMo-1B for pretrained-only setting and R1-Distill-Llama-8B for the reasoning setting.
♻ ☆ Decoding Generalization from Memorization in Deep Neural Networks
Overparameterized deep networks that generalize well have been key to the dramatic success of deep learning in recent years. The reasons for their remarkable ability to generalize are not well understood yet. When class labels in the training set are shuffled to varying degrees, it is known that deep networks can still reach perfect training accuracy at the detriment of generalization to true labels -- a phenomenon that has been called memorization. It has, however, been unclear why the poor generalization to true labels that accompanies such memorization, comes about. One possibility is that during training, all layers of the network irretrievably re-organize their representations in a manner that makes generalization to true labels difficult. The other possibility is that one or more layers of the trained network retain significantly more latent ability to generalize to true labels, but the network somehow "chooses" to readout in a manner that is detrimental to generalization to true labels. Here, we provide evidence for the latter possibility by demonstrating, empirically, that such models possess information in their representations for substantially-improved generalization to true labels. Furthermore, such abilities can be easily decoded from the internals of the trained model, and we build a technique to do so. We demonstrate results on multiple models trained with standard datasets. Our code is available at: https://github.com/simranketha/MASC_DNN.
♻ ☆ Future frame prediction in chest and liver cine MRI using the PCA respiratory motion model: comparing transformers and dynamically trained recurrent neural networks
Respiratory motion complicates accurate irradiation of thoraco-abdominal tumors in radiotherapy, as treatment-system latency entails target-location uncertainties. This work addresses frame forecasting in chest and liver cine MRI to compensate for such delays. We investigate RNNs trained with online learning algorithms, enabling adaptation to changing respiratory patterns via on-the-fly parameter updates, and transformers, increasingly common in time series forecasting for their ability to capture long-term dependencies. Experiments were conducted using 12 sagittal thoracic and upper-abdominal cine-MRI sequences from ETH Zürich and OvGU. PCA decomposes the Lucas-Kanade optical-flow field into static deformations and low-dimensional time-dependent weights. We compare various methods forecasting the latter: linear filters, population and sequence-specific encoder-only transformers, and RNNs trained with real-time recurrent learning (RTRL), unbiased online recurrent optimization, decoupled neural interfaces, and sparse one-step approximation (SnAp-1). Predicted displacements were used to warp the reference frame and generate future images. Prediction accuracy decreased with the horizon h. Linear regression performed best at short horizons (1.3mm geometrical error at h=0.32s, ETH Zürich data), while RTRL and SnAp-1 outperformed the other algorithms at medium-to-long horizons, with geometrical errors below 1.4mm and 2.8mm on the sequences from ETH Zürich and OvGU (the latter featuring higher motion variability, noise, and lower contrast), respectively. The sequence-specific transformer was competitive for low-to-medium horizons, but transformers remained overall limited by data scarcity and domain shift between datasets. Predicted frames visually resembled the ground truth, with notable errors occurring near the diaphragm at end-inspiration and regions affected by out-of-plane motion.
comment: 43 pages, 19 figures, revised version (including transformer experiments, evaluation on liver MRI data, statistical analysis...)
♻ ☆ MeshGraphNet-Transformer: Scalable Mesh-based Learned Simulation for Solid Mechanics
We present MeshGraphNet-Transformer (MGN-T), a novel architecture that combines the global modeling capabilities of Transformers with the geometric inductive bias of MeshGraphNets, while preserving a mesh-based graph representation. MGN-T overcomes a key limitation of standard MGN, the inefficient long-range information propagation caused by iterative message passing on large, high-resolution meshes. A physics-attention Transformer serves as a global processor, updating all nodal states simultaneously while explicitly retaining node and edge attributes. By directly capturing long-range physical interactions, MGN-T eliminates the need for deep message-passing stacks or hierarchical, coarsened meshes, enabling efficient learning on high-resolution meshes with varying geometries, topologies, and boundary conditions at an industrial scale. We demonstrate that MGN-T successfully handles industrial-scale meshes for impact dynamics, a setting in which standard MGN fails due message-passing under-reaching. The method accurately models self-contact, plasticity, and multivariate outputs, including internal, phenomenological plastic variables. Moreover, MGN-T outperforms state-of-the-art approaches on classical benchmarks, achieving higher accuracy while maintaining practical efficiency, using only a fraction of the parameters required by competing baselines.
♻ ☆ To See Far, Look Close: Evolutionary Forecasting for Long-term Time Series
The prevailing Direct Forecasting (DF) paradigm dominates Long-term Time Series Forecasting (LTSF) by forcing models to predict the entire future horizon in a single forward pass. While efficient, this rigid coupling of output and evaluation horizons necessitates computationally prohibitive re-training for every target horizon. In this work, we uncover a counter-intuitive optimization anomaly: models trained on short horizons-when coupled with our proposed Evolutionary Forecasting (EF) paradigm-significantly outperform those trained directly on long horizons. We attribute this success to the mitigation of a fundamental optimization pathology inherent in DF, where conflicting gradients from distant futures cripple the learning of local dynamics. We establish EF as a unified generative framework, proving that DF is merely a degenerate special case of EF. Extensive experiments demonstrate that a singular EF model surpasses task-specific DF ensembles across standard benchmarks and exhibits robust asymptotic stability in extreme extrapolation. This work propels a paradigm shift in LTSF: moving from passive Static Mapping to autonomous Evolutionary Reasoning.
♻ ☆ Enabling Approximate Joint Sampling in Diffusion LMs
In autoregressive language models, each token is sampled by conditioning on all the past tokens; the overall string has thus been sampled from the correct underlying joint distribution represented by the model. In contrast, masked diffusion language models generate text by unmasking tokens out of order and potentially in parallel. Generating an overall string sampled from the correct underlying joint distribution would (again) require exactly one token unmasking in every full-model forward pass. The more tokens unmasked in parallel, the further away the string is from the true joint; this can be seen in the resulting drop in accuracy (but, increase in speed). In this paper we devise a way to {\em approximately} sample multiple tokens from the joint distribution in a single full-model forward pass; we do so by developing a new lightweight single-layer ``sampler" on top of an existing large diffusion LM. One forward pass of the full model can now be followed by multiple forward passes of only this sampler layer, to yield multiple unmasked tokens. Our sampler is trained to mimic exact joint sampling from the (frozen) full model. We show the effectiveness of our approximate joint sampling for both pretrained-only (Dream-7B-Base, Llada-7B-Base) and instruction-tuned (Dream-7B-Instruct, Dream-7B-Coder) models on language modeling and math \& coding tasks. When four tokens are unmasked for each full-model denoising step, our sampling algorithm achieves a MAUVE score of 0.87 (vs marginal baseline of 0.31) with respect to the true joint distribution.
♻ ☆ SparseSwaps: Tractable LLM Pruning Mask Refinement at Scale
The resource requirements of neural networks can be significantly reduced through pruning - the removal of seemingly less important parameters. However, for LLMs, full retraining to recover pruning-induced performance degradation is often prohibitive and classical approaches such as magnitude pruning are suboptimal on Transformers. State-of-the-art methods hence solve a layer-wise mask selection problem: finding a pruning mask that minimizes per-layer pruning error on a small set of calibration data. Exactly solving this problem is computationally infeasible due to its combinatorial nature and the size of the search space, and existing approaches rely on approximations or heuristics. We demonstrate that the mask selection problem can be made drastically more tractable at LLM scale. To that end, we decouple the rows by enforcing equal sparsity levels per row. This allows us to derive optimal 1-swaps (exchanging one kept and one pruned weight) computable efficiently via the Gram matrix. We propose a simple 1-swap algorithm that warmstarts from any pruning mask, runs efficiently on GPUs at LLM scale, and is essentially hyperparameter-free. Our approach reduces per-layer pruning error by up to 60% over Wanda (Sun et al., 2024) and consistently improves perplexity and zero-shot accuracy across state-of-the-art GPT architectures.
comment: 13 pages, 2 figures, 5 tables
♻ ☆ Language as a Wave Phenomenon: Semantic Phase Locking and Interference in Neural Networks
In standard Transformer architectures, semantic importance is often conflated with activation magnitude, obscuring the geometric structure of latent representations. To disentangle these factors, we introduce PRISM, a complex-valued architecture designed to isolate the computational role of phase. By enforcing a strict unit-norm constraint (|z| = 1) and replacing attention with gated harmonic convolutions, the model is compelled to utilize subtractive interference in the frequency domain to suppress noise, rather than relying on magnitude-based gating. We utilize this constrained regime to demonstrate that a hybrid architecture - fusing phase-based routing with standard attention - achieves superior parameter efficiency and representation quality compared to unconstrained baselines. Mechanistically, we identify geometric phase clustering, where tokens naturally self-organize to resolve semantic ambiguities. This establishes an O(N log N) reasoning framework based on spectral interference, providing an algorithmic existence proof that subtractive logic is a sufficient primitive for deep reasoning.
comment: 14 pages, 7 figures; Revised title; Added new experiments on encoder-only models using WikiText-103
♻ ☆ MINIF2F-DAFNY: LLM-Guided Mathematical Theorem Proving via Auto-Active Verification
LLMs excel at reasoning, but validating their steps remains challenging. Formal verification offers a solution through mechanically checkable proofs. Interactive theorem provers (ITPs) dominate mathematical reasoning but require detailed low-level proof steps, while auto-active verifiers offer automation but focus on software verification. Recent work has begun bridging this divide by evaluating LLMs for software verification in ITPs, but the complementary direction--LLMs for mathematical theorem proving in auto-active verifiers--remains unexplored. We present MINIF2F-DAFNY, the first translation of the widely-used mathematical benchmark miniF2F to an auto-active verifier: Dafny. We find that Dafny's automation alone solves 39-44% of problems with empty proofs, whereas many require substantial proof guidance in ITPs. For remaining problems, we evaluate 7 off-the-shelf LLMs, achieving 55.7% success with the best model (Claude Sonnet 4.5) using modest resources. These results demonstrate effective division of labor: LLMs provide high-level guidance while automation handles low-level details. Our benchmark can be found on GitHub at http://github.com/dafny-lang/miniF2F .
♻ ☆ A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN (Ma et al., 2021). However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted for ICLR 2026
♻ ☆ A Scalable Measure of Loss Landscape Curvature for Analyzing the Training Dynamics of LLMs
Understanding the curvature evolution of the loss landscape is fundamental to analyzing the training dynamics of neural networks. The most commonly studied measure, Hessian sharpness ($λ_{\max}^H$) -- the largest eigenvalue of the loss Hessian -- determines local training stability and interacts with the learning rate throughout training. Despite its significance in analyzing training dynamics, direct measurement of Hessian sharpness remains prohibitive for Large Language Models (LLMs) due to high computational cost. We analyze $\textit{critical sharpness}$ ($λ_c$), a computationally efficient measure requiring fewer than $10$ forward passes given the update direction $Δ\mathbfθ$. Critically, this measure captures well-documented Hessian sharpness phenomena, including progressive sharpening and Edge of Stability. Using this measure, we provide the first demonstration of these sharpness phenomena at scale, up to $7$B parameters, spanning both pre-training and mid-training of OLMo-2 models. We further introduce $\textit{relative critical sharpness}$ ($λ_c^{1\to 2}$), which quantifies the curvature of one loss landscape while optimizing another, to analyze the transition from pre-training to fine-tuning and guide data mixing strategies. Critical sharpness provides practitioners with a practical tool for diagnosing curvature dynamics and informing data composition choices at scale. More broadly, our work shows that scalable curvature measures can provide actionable insights for large-scale training.
comment: Improved Appendix D proofs, text for clarity, added more related works
♻ ☆ STAC: When Innocent Tools Form Dangerous Chains to Jailbreak LLM Agents
As LLMs advance into autonomous agents with tool-use capabilities, they introduce security challenges that extend beyond traditional content-based LLM safety concerns. This paper introduces Sequential Tool Attack Chaining (STAC), a novel multi-turn attack framework that exploits agent tool use. STAC chains together tool calls that each appear harmless in isolation but, when combined, collectively enable harmful operations that only become apparent at the final execution step. We apply our framework to automatically generate and systematically evaluate 483 STAC cases, featuring 1,352 sets of user-agent-environment interactions and spanning diverse domains, tasks, agent types, and 10 failure modes. Our evaluations show that state-of-the-art LLM agents, including GPT-4.1, are highly vulnerable to STAC, with attack success rates (ASR) exceeding 90% in most cases. The core design of STAC's automated framework is a closed-loop pipeline that synthesizes executable multi-step tool chains, validates them through in-environment execution, and reverse-engineers stealthy multi-turn prompts that reliably induce agents to execute the verified malicious sequence. We further perform defense analysis against STAC and find that existing prompt-based defenses provide limited protection. To address this gap, we propose a new reasoning-driven defense prompt that achieves far stronger protection, cutting ASR by up to 28.8%. These results highlight a crucial gap: defending tool-enabled agents requires reasoning over entire action sequences and their cumulative effects, rather than evaluating isolated prompts or responses.
♻ ☆ A Proof of Learning Rate Transfer under $μ$P
We provide the first proof of learning rate transfer with width in a linear multi-layer perceptron (MLP) parametrized with $μ$P, a neural network parameterization designed to ``maximize'' feature learning in the infinite-width limit. We show that under $μP$, the optimal learning rate converges to a \emph{non-zero constant} as width goes to infinity, providing a theoretical explanation to learning rate transfer. In contrast, we show that this property fails to hold under alternative parametrizations such as Standard Parametrization (SP) and Neural Tangent Parametrization (NTP). We provide intuitive proofs and support the theoretical findings with extensive empirical results.
comment: 21 pages
♻ ☆ SNAP-UQ: Self-supervised Next-Activation Prediction for Single-Pass Uncertainty in TinyML ICLR 2026
This paper proposes a novel and practical method, SNAP-UQ, for single-pass, label-free uncertainty estimation based on depth-wise next-activation prediction. SNAP-UQ taps a small set of backbone layers and uses tiny int8 heads to predict the mean and scale of the next activation from a low-rank projection of the previous one; the resulting standardized prediction error forms a depth-wise surprisal signal that is aggregated and mapped through a lightweight monotone calibrator into an actionable uncertainty score. The design introduces no temporal buffers or auxiliary exits and preserves state-free inference, while increasing deployment footprint by only a few tens of kilobytes. Across vision and audio backbones, SNAP-UQ reduces flash and latency relative to early-exit and deep-ensemble baselines (typically $\sim$40--60% smaller and $\sim$25--35% faster), with several competing methods at similar accuracy often exceeding MCU memory limits. On corrupted streams, it improves accuracy-drop event detection by multiple AUPRC points and maintains strong failure detection (AUROC $\approx 0.9$) in a single forward pass. By grounding uncertainty in layer-to-layer dynamics rather than solely in output confidence, SNAP-UQ offers a novel, resource-efficient basis for robust TinyML monitoring.
comment: Accepted at ICLR 2026
HER: Human-like Reasoning and Reinforcement Learning for LLM Role-playing
LLM role-playing, i.e., using LLMs to simulate specific personas, has emerged as a key capability in various applications, such as companionship, content creation, and digital games. While current models effectively capture character tones and knowledge, simulating the inner thoughts behind their behaviors remains a challenge. Towards cognitive simulation in LLM role-play, previous efforts mainly suffer from two deficiencies: data with high-quality reasoning traces, and reliable reward signals aligned with human preferences. In this paper, we propose HER, a unified framework for cognitive-level persona simulation. HER introduces dual-layer thinking, which distinguishes characters' first-person thinking from LLMs' third-person thinking. To bridge these gaps, we curate reasoning-augmented role-playing data via reverse engineering and construct human-aligned principles and reward models. Leveraging these resources, we train HER models based on Qwen3-32B via supervised and reinforcement learning. Extensive experiments validate the effectiveness of our approach. Notably, our models significantly outperform the Qwen3-32B baseline, achieving a 30.26 improvement on the CoSER benchmark and a 14.97 gain on the Minimax Role-Play Bench. Our datasets, principles, and models will be released to facilitate future research.
comment: 41pages, 10 figures
♻ ☆ TEON: Tensorized Orthonormalization Beyond Layer-Wise Muon for Large Language Model Pre-Training
The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
♻ ☆ ASIL: Augmented Structural Information Learning for Deep Graph Clustering in Hyperbolic Space TPAMI
Graph clustering is a longstanding topic in machine learning. Recently, deep methods have achieved results but still require predefined cluster numbers K and struggle with imbalanced graphs. We study deep graph clustering without K considering realistic imbalance through structural information theory. In the literature, structural information is rarely used in deep clustering, and its classic discrete definition neglects node attributes while exhibiting prohibitive complexity. In this paper, we establish a differentiable structural information framework, generalizing the discrete formalism to the continuous realm. We design a hyperbolic model (LSEnet) to learn the neural partitioning tree in the Lorentz model. Theoretically, we demonstrate its capability in clustering without K and identifying minority clusters. Second, we refine hyperbolic representations to enhance graph semantics. Since tree contrastive learning is non-trivial and costs quadratic complexity, we advance our theory by discovering that structural entropy bounds the tree contrastive loss. Finally, we approach graph clustering through a novel augmented structural information learning (ASIL), which offers an efficient objective to integrate hyperbolic partitioning tree construction and contrastive learning. With a provable improvement in graph conductance, ASIL achieves effective debiased graph clustering in linear complexity. Extensive experiments show ASIL outperforms 20 strong baselines by an average of +12.42% in NMI on the Citeseer dataset.
comment: Accepted by IEEE TPAMI, 36 pages
Accurate Network Traffic Matrix Prediction via LEAD: a Large Language Model-Enhanced Adapter-Based Conditional Diffusion Model
Driven by the evolution toward 6G and AI-native edge intelligence, network operations increasingly require predictive and risk-aware adaptation under stringent computation and latency constraints. Network Traffic Matrix (TM), which characterizes flow volumes between nodes, is a fundamental signal for proactive traffic engineering. However, accurate TM forecasting remains challenging due to the stochastic, non-linear, and bursty nature of network dynamics. Existing discriminative models often suffer from over-smoothing and provide limited uncertainty awareness, leading to poor fidelity under extreme bursts. To address these limitations, we propose LEAD, a Large Language Model (LLM)-Enhanced Adapter-based conditional Diffusion model. First, LEAD adopts a "Traffic-to-Image" paradigm to transform traffic matrices into RGB images, enabling global dependency modeling via vision backbones. Then, we design a "Frozen LLM with Trainable Adapter" model, which efficiently captures temporal semantics with limited computational cost. Moreover, we propose a Dual-Conditioning Strategy to precisely guide a diffusion model to generate complex, dynamic network traffic matrices. Experiments on the Abilene and GEANT datasets demonstrate that LEAD outperforms all baselines. On the Abilene dataset, LEAD attains a remarkable 45.2% reduction in RMSE against the best baseline, with the error margin rising only marginally from 0.1098 at one-step to 0.1134 at 20-step predictions. Meanwhile, on the GEANT dataset, LEAD achieves a 0.0258 RMSE at 20-step prediction horizon which is 27.3% lower than the best baseline.
♻ ☆ On Purely Private Covariance Estimation ALT 2026
We present a simple perturbation mechanism for the release of $d$-dimensional covariance matrices $Σ$ under pure differential privacy. For large datasets with at least $n\geq d^2/\varepsilon$ elements, our mechanism recovers the provably optimal Frobenius norm error guarantees of \cite{nikolov2023private}, while simultaneously achieving best known error for all other $p$-Schatten norms, with $p\in [1,\infty]$. Our error is information-theoretically optimal for all $p\ge 2$, in particular, our mechanism is the first purely private covariance estimator that achieves optimal error in spectral norm. For small datasets $n< d^2/\varepsilon$, we further show that by projecting the output onto the nuclear norm ball of appropriate radius, our algorithm achieves the optimal Frobenius norm error $O(\sqrt{d\;\text{Tr}(Σ) /n})$, improving over the known bounds of $O(\sqrt{d/n})$ of \cite{nikolov2023private} and ${O}\big(d^{3/4}\sqrt{\text{Tr}(Σ)/n}\big)$ of \cite{dong2022differentially}.
comment: ALT 2026; equal contribution
♻ ☆ Joint Transmit and Pinching Beamforming for Pinching Antenna Systems (PASS): Optimization-Based or Learning-Based?
A novel pinching antenna system (PASS)-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed. PASS consists of multiple waveguides spanning over thousands of wavelength, which equip numerous low-cost dielectric particles, named pinching antennas (PAs), to radiate signals into free space. The positions of PAs can be reconfigured to change both the large-scale path losses and phases of signals, thus facilitating the novel pinching beamforming design. A sum rate maximization problem is formulated, which jointly optimizes the transmit and pinching beamforming to adaptively achieve constructive signal enhancement and destructive interference mitigation. To solve this highly coupled and nonconvex problem, both optimization-based and learning-based methods are proposed. 1) For the optimization-based method, a majorization-minimization and penalty dual decomposition (MM-PDD) algorithm is developed, which handles the nonconvex complex exponential component using a Lipschitz surrogate function and then invokes PDD for problem decoupling. 2) For the learning-based method, a novel Karush-Kuhn-Tucker (KKT)-guided dual learning (KDL) approach is proposed, which enables KKT solutions to be reconstructed in a data-driven manner by learning dual variables. Following this idea, a KDL-Transformer algorithm is developed, which captures both inter-PA/inter-user dependencies and channel-state-information (CSI)-beamforming dependencies by attention mechanisms. Simulation results demonstrate that: i) The proposed PASS framework significantly outperforms conventional massive multiple input multiple output (MIMO) system even with a few PAs. ii) The proposed KDL-Transformer can improve over 20% system performance than MM-PDD algorithm, while achieving a millisecond-level response on modern GPUs.
comment: Accepted by IEEE Transactions on Wireless Communications (TWC). Reproducible code for KDL-Transformer is available at https://github.com/xiaoxiaxusummer/KDL_Transformer_Beamforming
♻ ☆ Monotonic Transformation Invariant Multi-task Learning
Multi-task learning (MTL) algorithms typically rely on schemes that combine different task losses or their gradients through weighted averaging. These methods aim to find Pareto stationary points by using heuristics that require access to task loss values, gradients, or both. In doing so, a central challenge arises because task losses can be arbitrarily scaled relative to one another, causing certain tasks to dominate training and degrade overall performance. A recent advance in cooperative bargaining theory, the Direction-based Bargaining Solution (DiBS), yields Pareto stationary solutions immune to task domination because of its invariance to monotonic nonaffine task loss transformations. However, the convergence behavior of DiBS in nonconvex MTL settings is currently not understood. To this end, we prove that under standard assumptions, a subsequence of DiBS iterates converges to a Pareto stationary point when task losses are nonconvex, and propose DiBS-MTL, an adaptation of DiBS to the MTL setting which is more computationally efficient that prior bargaining-inspired MTL approaches. Finally, we empirically show that DiBS-MTL is competitive with leading MTL methods on standard benchmarks, and it drastically outperforms state-of-the-art baselines in multiple examples with poorly-scaled task losses, highlighting the importance of invariance to nonaffine monotonic transformations of the loss landscape. Code available at https://github.com/suryakmurthy/dibs-mtl
♻ ☆ StefaLand: An Efficient Geoscience Foundation Model That Improves Dynamic Land-Surface Predictions
Managing natural resources and mitigating risks from floods, droughts, wildfires, and landslides require models that can accurately predict climate-driven land-surface responses. Traditional models often struggle with spatial generalization because they are trained or calibrated on limited observations and can degrade under concept drift. Recently proposed vision foundation models trained on satellite imagery demand massive compute, and they are not designed for dynamic land surface prediction tasks. We introduce StefaLand, a generative spatiotemporal Earth representation learning model centered on learning cross-domain interactions to suppress overfitting. StefaLand demonstrates especially strong spatial generalization on five datasets across four important tasks: streamflow, soil moisture, soil composition and landslides, compared to previous state-of-the-art methods. The domain-inspired design choices include a location-aware masked autoencoder that fuses static and time-series inputs, an attribute-based rather than image-based representation that drastically reduces compute demands, and residual fine-tuning adapters that strengthen knowledge transfer across tasks. StefaLand can be pretrained and finetuned on commonly available academic compute resources, yet consistently outperforms state-of-the-art supervised learning baselines, fine-tuned vision foundation models and commercially available embeddings, highlighting the previously overlooked value of cross-domain interactions and providing assistance to data-poor regions of the world.
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity ICLR 2022
The success of deep ensembles on improving predictive performance, uncertainty estimation, and out-of-distribution robustness has been extensively studied in the machine learning literature. Albeit the promising results, naively training multiple deep neural networks and combining their predictions at inference leads to prohibitive computational costs and memory requirements. Recently proposed efficient ensemble approaches reach the performance of the traditional deep ensembles with significantly lower costs. However, the training resources required by these approaches are still at least the same as training a single dense model. In this work, we draw a unique connection between sparse neural network training and deep ensembles, yielding a novel efficient ensemble learning framework called FreeTickets. Instead of training multiple dense networks and averaging them, we directly train sparse subnetworks from scratch and extract diverse yet accurate subnetworks during this efficient, sparse-to-sparse training. Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks. Despite being an ensemble method, FreeTickets has even fewer parameters and training FLOPs than a single dense model. This seemingly counter-intuitive outcome is due to the ultra training/inference efficiency of dynamic sparse training. FreeTickets surpasses the dense baseline in all the following criteria: prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness, as well as efficiency for both training and inference. Impressively, FreeTickets outperforms the naive deep ensemble with ResNet50 on ImageNet using around only 1/5 of the training FLOPs required by the latter. We have released our source code at https://github.com/VITA-Group/FreeTickets.
comment: published in International Conference on Learning Representations (ICLR 2022)
♻ ☆ Why Inference in Large Models Becomes Decomposable After Training
Inference in large-scale AI models is typically performed on dense parameter matrices, leading to inference cost and system complexity that scale unsustainably with model size. This limitation does not arise from insufficient model capacity, but from treating post-training inference systems as monolithic operators while ignoring internal structures formed during learning. We show that gradient update events in large models are highly localized and selective, leaving many parameter dependencies statistically indistinguishable from their initialization distribution after training. As a result, post-training inference systems are structurally non-uniform and inherently decomposable. Based on this observation, we introduce a post-training statistical criterion and a structural annealing procedure that removes unsupported dependencies and reveals stable, independent substructures. This work establishes a post-training, model-agnostic structural view of inference systems and enables structured, parallel inference without modifying model functionality or interfaces.
comment: 39 pages, 6 figures
♻ ☆ CATTO: Balancing Preferences and Confidence in Language Models
Large language models (LLMs) often make accurate next token predictions but their confidence in these predictions can be poorly calibrated: high-confidence predictions are frequently wrong, and low-confidence predictions may be correct. This miscalibration is exacerbated by preference-based alignment methods breaking the link between predictive probability and correctness. We introduce a Calibration Aware Token-level Training Objective (CATTO), a calibration-aware objective that aligns predicted confidence with empirical prediction correctness, which can be combined with the original preference optimization objectives. Empirically, CATTO reduces Expected Calibration Error (ECE) by 2.22%-7.61% in-distribution and 1.46%-10.44% out-of-distribution compared to direct preference optimization (DPO), and by 0.22%-1.24% in-distribution and 1.23%-5.07% out-of-distribution compared to the strongest DPO baseline. This improvement in confidence does not come at a cost of losing task accuracy, where CATTO maintains or slightly improves multiple-choice question-answering accuracy on five datasets. We also introduce Confidence@k, a test-time scaling mechanism leveraging calibrated token probabilities for Bayes-optimal selection of output tokens.
♻ ☆ Resolving Extreme Data Scarcity by Explicit Physics Integration: An Application to Groundwater Heat Transport
Real-world flow applications in complex scientific and engineering domains, such as geosciences, challenge classical simulation methods due to large spatial domains, high spatio-temporal resolution requirements, and potentially strong material heterogeneities that lead to ill-conditioning and long runtimes. While machine learning-based surrogate models can reduce computational cost, they typically rely on large training datasets that are often unavailable in practice. To address data-scarce settings, we revisit the structure of advection-diffusion problems and decompose them into multiscale processes of locally and globally dominated components, separating spatially localized interactions and long-range effects. We propose a Local-Global Convolutional Neural Network (LGCNN) that combines a lightweight numerical model for global transport with two convolutional neural networks addressing processes of a more local nature. We demonstrate the performance of our method on city-scale geothermal heat pump interaction modeling and show that, even when trained on fewer than five simulations, LGCNN generalizes to arbitrarily larger domains, and can be successfully transferred to real subsurface parameter maps from the Munich region, Germany.
♻ ☆ HAMLOCK: HArdware-Model LOgically Combined attacK
The growing use of third-party hardware accelerators (e.g., FPGAs, ASICs) for deep neural networks (DNNs) introduces new security vulnerabilities. Conventional model-level backdoor attacks, which only poison a model's weights to misclassify inputs with a specific trigger, are often detectable because the entire attack logic is embedded within the model (i.e., software), creating a traceable layer-by-layer activation path. This paper introduces the HArdware-Model Logically Combined Attack (HAMLOCK), a far stealthier threat that distributes the attack logic across the hardware-software boundary. The software (model) is now only minimally altered by tuning the activations of few neurons to produce uniquely high activation values when a trigger is present. A malicious hardware Trojan detects those unique activations by monitoring the corresponding neurons' most significant bit or the 8-bit exponents and triggers another hardware Trojan to directly manipulate the final output logits for misclassification. This decoupled design is highly stealthy, as the model itself contains no complete backdoor activation path as in conventional attacks and hence, appears fully benign. Empirically, across benchmarks like MNIST, CIFAR10, GTSRB, and ImageNet, HAMLOCK achieves a near-perfect attack success rate with a negligible clean accuracy drop. More importantly, HAMLOCK circumvents the state-of-the-art model-level defenses without any adaptive optimization. The hardware Trojan is also undetectable, incurring area and power overheads as low as 0.01%, which is easily masked by process and environmental noise. Our findings expose a critical vulnerability at the hardware-software interface, demanding new cross-layer defenses against this emerging threat.
comment: Accepted to usenix security 2026
♻ ☆ Investigating Modality Contribution in Audio LLMs for Music ICASSP 2026
Audio Large Language Models (Audio LLMs) enable human-like conversation about music, yet it is unclear if they are truly listening to the audio or just using textual reasoning, as recent benchmarks suggest. This paper investigates this issue by quantifying the contribution of each modality to a model's output. We adapt the MM-SHAP framework, a performance-agnostic score based on Shapley values that quantifies the relative contribution of each modality to a model's prediction. We evaluate two models on the MuChoMusic benchmark and find that the model with higher accuracy relies more on text to answer questions, but further inspection shows that even if the overall audio contribution is low, models can successfully localize key sound events, suggesting that audio is not entirely ignored. Our study is the first application of MM-SHAP to Audio LLMs and we hope it will serve as a foundational step for future research in explainable AI and audio.
comment: 5 pages, 2 figures, accepted at ICASSP 2026
♻ ☆ Conditional diffusion models for downscaling and bias correction of Earth system model precipitation
Climate change exacerbates extreme weather events like heavy rainfall and flooding. As these events cause severe socioeconomic damage, accurate high-resolution simulation of precipitation is imperative. However, existing Earth System Models (ESMs) struggle to resolve small-scale dynamics and suffer from biases. Traditional statistical bias correction and downscaling methods fall short in improving spatial structure, while recent deep learning methods lack controllability and suffer from unstable training. Here, we propose a machine learning framework for simultaneous bias correction and downscaling. We first map observational and ESM data to a shared embedding space, where both are unbiased towards each other, and then train a conditional diffusion model to reverse the mapping. Only observational data is used for the training, so that the diffusion model can be employed to correct and downscale any ESM field without need for retraining. Our approach ensures statistical fidelity and preserves spatial patterns larger than a chosen spatial correction scale. We demonstrate that our approach outperforms existing statistical and deep learning methods especially regarding extreme events.
♻ ☆ Entropy-Lens: Uncovering Decision Strategies in LLMs
In large language models (LLMs), each block operates on the residual stream to map input token sequences to output token distributions. However, most of the interpretability literature focuses on internal latent representations, leaving token-space dynamics underexplored. The high dimensionality and categoricity of token distributions hinder their analysis, as standard statistical descriptors are not suitable. We show that the entropy of logit-lens predictions overcomes these issues. In doing so, it provides a per-layer scalar, permutation-invariant metric. We introduce Entropy-Lens to distill the token-space dynamics of the residual stream into a low-dimensional signal. We call this signal the entropy profile. We apply our method to a variety of model sizes and families, showing that (i) entropy profiles uncover token prediction dynamics driven by expansion and pruning strategies; (ii) these dynamics are family-specific and invariant under depth rescaling; (iii) they are characteristic of task type and output format; (iv) these strategies have unequal impact on downstream performance, with the expansion strategy usually being more critical. Ultimately, our findings further enhance our understanding of the residual stream, enabling a granular assessment of how information is processed across model depth.
♻ ☆ Avoiding Premature Collapse: Adaptive Annealing for Entropy-Regularized Structural Inference
Differentiable matching layers, often implemented via entropy-regularized Optimal Transport, serve as a critical approximate inference mechanism in structural prediction. However, recovering discrete permutations via annealing $ε\to 0$ is notoriously unstable. We identify a fundamental mechanism for this failure: \textbf{Premature Mode Collapse}. By analyzing the non-normal dynamics of the Sinkhorn fixed-point map, we reveal a theoretical \textbf{thermodynamic speed limit}. Under standard exponential cooling, the shift in the target posterior ($O(1)$) outpaces the contraction rate of the inference operator, which degrades as $O(1/ε)$. This mismatch inevitably forces the inference trajectory into spurious local basins. To address this, we propose \textbf{Efficient PH-ASC}, an adaptive scheduling algorithm that monitors the stability of the inference process. By enforcing a linear stability law, we decouple expensive spectral diagnostics from the training loop, reducing overhead from $O(N^3)$ to amortized $O(1)$. Our implementation and interactive demo are available at https://github.com/xxx0438/torch-sinkhorn-asc and https://huggingface.co/spaces/leon0923/torch-sinkhorn-asc-demo. bounded away from zero in generic training dynamics unless the feature extractor converges unrealistically fast.
♻ ☆ Sampling-Free Privacy Accounting for Matrix Mechanisms under Random Allocation
We study privacy amplification for differentially private model training with matrix factorization under random allocation (also known as the balls-in-bins model). Recent work by Choquette-Choo et al. (2025) proposes a sampling-based Monte Carlo approach to compute amplification parameters in this setting. However, their guarantees either only hold with some high probability or require random abstention by the mechanism. Furthermore, the required number of samples for ensuring $(ε,δ)$-DP is inversely proportional to $δ$. In contrast, we develop sampling-free bounds based on Rényi divergence and conditional composition. The former is facilitated by a dynamic programming formulation to efficiently compute the bounds. The latter complements it by offering stronger privacy guarantees for small $ε$, where Rényi divergence bounds inherently lead to an over-approximation. Our framework applies to arbitrary banded and non-banded matrices. Through numerical comparisons, we demonstrate the efficacy of our approach across a broad range of matrix mechanisms used in research and practice.
♻ ☆ Critic-Guided Reinforcement Unlearning in Text-to-Image Diffusion
Machine unlearning in text-to-image diffusion models aims to remove targeted concepts while preserving overall utility. Prior diffusion unlearning methods typically rely on supervised weight edits or global penalties; reinforcement-learning (RL) approaches, while flexible, often optimize sparse end-of-trajectory rewards, yielding high-variance updates and weak credit assignment. We present a general RL framework for diffusion unlearning that treats denoising as a sequential decision process and introduces a timestep-aware critic with noisy-step rewards. Concretely, we train a CLIP-based reward predictor on noisy latents and use its per-step signal to compute advantage estimates for policy-gradient updates of the reverse diffusion kernel. Our algorithm is simple to implement, supports off-policy reuse, and plugs into standard text-to-image backbones. Across multiple concepts, the method achieves better or comparable forgetting to strong baselines while maintaining image quality and benign prompt fidelity; ablations show that (i) per-step critics and (ii) noisy-conditioned rewards are key to stability and effectiveness. We release code and evaluation scripts to facilitate reproducibility and future research on RL-based diffusion unlearning.
comment: Preprint
♻ ☆ Attention in Geometry: Scalable Spatial Modeling via Adaptive Density Fields and FAISS-Accelerated Kernels
This work introduces Adaptive Density Fields (ADF), a geometric attention framework that formulates spatial aggregation as a query-conditioned, metric-induced attention operator in continuous space. By reinterpreting spatial influence as geometry-preserving attention grounded in physical distance, ADF bridges concepts from adaptive kernel methods and attention mechanisms. Scalability is achieved via FAISS-accelerated inverted file indices, treating approximate nearest-neighbor search as an intrinsic component of the attention mechanism. We demonstrate the framework through a case study on aircraft trajectory analysis in the Chengdu region, extracting trajectory-conditioned Zones of Influence (ZOI) to reveal recurrent airspace structures and localized deviations.
comment: Indepented Study. 31 pages, 3 figures. Includes full mathematical derivation of Adaptive Density Fields (ADF), implementation of FAISS-accelerated kernels, and a physics-informed trajectory POI detection pipeline
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
♻ ☆ BiasGym: A Simple and Generalizable Framework for Analyzing and Removing Biases through Elicitation
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review. Title updated
♻ ☆ Single-Head Attention in High Dimensions: A Theory of Generalization, Weights Spectra, and Scaling Laws
Trained attention layers exhibit striking and reproducible spectral structure of the weights, including low-rank collapse, bulk deformation, and isolated spectral outliers, yet the origin of these phenomena and their implications for generalization remain poorly understood. We study empirical risk minimization in a single-head tied-attention layer trained on synthetic high-dimensional sequence tasks generated from the attention-indexed model. Using tools from random matrix theory, spin-glass theory, and approximate message passing, we obtain an exact high-dimensional characterization of training and test error, interpolation and recovery thresholds, and the spectrum of the key and query matrices. Our theory predicts the full singular-value distribution of the trained query-key map, including low-rank structure and isolated spectral outliers, in qualitative agreement with observations in more realistic transformers. Finally, for targets with power-law spectra, we show that learning proceeds through sequential spectral recovery, leading to the emergence of power-law scaling laws.
♻ ☆ PIQL: Projective Implicit Q-Learning with Support Constraint for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) faces a fundamental challenge of extrapolation errors caused by out-of-distribution (OOD) actions. Implicit Q-Learning (IQL) employs expectile regression to achieve in-sample learning. Nevertheless, IQL relies on a fixed expectile hyperparameter and a density-based policy improvement method, both of which impede its adaptability and performance. In this paper, we propose Projective IQL (PIQL), a projective variant of IQL enhanced with a support constraint. In the policy evaluation stage, PIQL substitutes the fixed expectile hyperparameter with a projection-based parameter and extends the one-step value estimation to a multi-step formulation. In the policy improvement stage, PIQL adopts a support constraint instead of a density constraint, ensuring closer alignment with the policy evaluation. Theoretically, we demonstrate that PIQL maintains the expectile regression and in-sample learning framework, guarantees monotonic policy improvement, and introduces a progressively more rigorous criterion for advantageous actions. Experiments on D4RL and NeoRL2 benchmarks demonstrate robust gains across diverse domains, achieving state-of-the-art performance overall.
♻ ☆ Do Whitepaper Claims Predict Market Behavior? Evidence from Cryptocurrency Factor Analysis
Cryptocurrency projects articulate value propositions through whitepapers, making claims about functionality and technical capabilities. This study investigates whether these narratives align with observed market behavior. We construct a pipeline combining zero-shot NLP classification (BART-MNLI) with CP tensor decomposition to compare three spaces: (1) a claims matrix from 24 whitepapers across 10 semantic categories, (2) market statistics for 49 assets over two years of hourly data, and (3) latent factors from tensor decomposition (rank 2, 92.45% variance explained). Using Procrustes rotation and Tucker's congruence coefficient, we test alignment across 23 common entities. Results show weak alignment: claims-statistics (phi=0.341, p=0.332), claims-factors (phi=0.077, p=0.747), and statistics-factors (phi=0.197, p<0.001). The statistics-factors significance validates our methodology, confirming the pipeline detects relationships when present. Inter-model validation with DeBERTa-v3 yields 32% exact agreement but 67% top-3 agreement. Cross-sectional analysis reveals heterogeneous contributions: NEAR, MKR, ATOM show positive alignment while ENS, UNI, Bitcoin diverge most. Excluding Bitcoin confirms results are not driven by market dominance. We interpret findings as weak alignment between whitepaper narratives and market factor structure. Limited power (n=23) precludes distinguishing weak from no alignment, but strong alignment (phi>=0.70) can be confidently rejected. Implications for narrative economics and investment analysis are discussed.
comment: 35 pages, 8 figures, 10 tables. JEL: G14, G12, C38, C45. Code available at https://github.com/studiofarzulla/tensor-defi
♻ ☆ WUSH: Near-Optimal Adaptive Transforms for LLM Quantization
Quantizing LLM weights and activations is a standard approach for efficient deployment, but a few extreme outliers can stretch the dynamic range and amplify low-bit quantization errors. Prior transform-based mitigations (e.g., Hadamard rotations) are fixed and data-agnostic, and their optimality for quantization has remained unclear. We derive closed-form optimal linear blockwise transforms for joint weight-activation quantization under standard RTN AbsMax-scaled block quantizers, covering both integer and floating-point formats. The resulting construction, WUSH, combines a Hadamard backbone with a data-dependent second-moment component to form a non-orthogonal transform that is provably near-optimal for FP and INT quantizers under mild assumptions while admitting an efficient fused GPU implementation. Empirically, WUSH improves W4A4 accuracy over the strongest Hadamard-based baselines (e.g., on Llama-3.1-8B-Instruct in MXFP4, it gains +2.8 average points with RTN and +0.7 with GPTQ) while delivering up to 6.6$\times$ per-layer throughput over BF16 via FP4 MatMul. Source code is available at https://github.com/IST-DASLab/WUSH.
♻ ☆ The Nuclear Route: Sharp Asymptotics of ERM in Overparameterized Quadratic Networks
We study the high-dimensional asymptotics of empirical risk minimization (ERM) in over-parametrized two-layer neural networks with quadratic activations trained on synthetic data. We derive sharp asymptotics for both training and test errors by mapping the $\ell_2$-regularized learning problem to a convex matrix sensing task with nuclear norm penalization. This reveals that capacity control in such networks emerges from a low-rank structure in the learned feature maps. Our results characterize the global minima of the loss and yield precise generalization thresholds, showing how the width of the target function governs learnability. This analysis bridges and extends ideas from spin-glass methods, matrix factorization, and convex optimization and emphasizes the deep link between low-rank matrix sensing and learning in quadratic neural networks.
♻ ☆ Optimizing Agentic Workflows using Meta-tools
Agentic AI enables LLM to dynamically reason, plan, and interact with tools to solve complex tasks. However, agentic workflows often require many iterative reasoning steps and tool invocations, leading to significant operational expense, end-to-end latency and failures due to hallucinations. This work introduces Agent Workflow Optimization (AWO), a framework that identifies and optimizes redundant tool execution patterns to improve the efficiency and robustness of agentic workflows. AWO analyzes existing workflow traces to discover recurring sequences of tool calls and transforms them into meta-tools, which are deterministic, composite tools that bundle multiple agent actions into a single invocation. Meta-tools bypass unnecessary intermediate LLM reasoning steps and reduce operational cost while also shortening execution paths, leading to fewer failures. Experiments on two agentic AI benchmarks show that AWO reduces the number of LLM calls up to 11.9% while also increasing the task success rate by up to 4.2 percent points.
♻ ☆ Small Vectors, Big Effects: A Mechanistic Study of RL-Induced Reasoning via Steering Vectors
The mechanisms by which reasoning training reshapes LLMs' internal computations remain unclear. We study lightweight steering vectors inserted into the base model's residual stream and trained with a reinforcement-learning objective. These vectors explain a large portion of full fine-tuning performance increase while preserving the interpretability of small, additive interventions. We find that (i) the last-layer steering vector acts like a token-substitution bias concentrated on the first generated token, consistently boosting tokens such as "To" and "Step"; (ii) the penultimate-layer vector leaves attention patterns largely intact and instead operates through the MLP and unembedding, preferentially up-weighting process words and structure symbols; and (iii) the steering vectors transfer to other models from the same family. Taken together, these results deepen understanding of how trained steering vectors shape computation and should inform future work in activation engineering and the study of reasoning models.
comment: Preprint
♻ ☆ Dense Associative Memory with Epanechnikov Energy NeurIPS 2025
We propose a novel energy function for Dense Associative Memory (DenseAM) networks, the log-sum-ReLU (LSR), inspired by optimal kernel density estimation. Unlike the common log-sum-exponential (LSE) function, LSR is based on the Epanechnikov kernel and enables exact memory retrieval with exponential capacity without requiring exponential separation functions. Moreover, it introduces abundant additional \emph{emergent} local minima while preserving perfect pattern recovery -- a characteristic previously unseen in DenseAM literature. Empirical results show that LSR energy has significantly more local minima (memories) that have comparable log-likelihood to LSE-based models. Analysis of LSR's emergent memories on image datasets reveals a degree of creativity and novelty, hinting at this method's potential for both large-scale memory storage and generative tasks.
comment: Accepted as Spotlight Poster to NeurIPS 2025 main conference
♻ ☆ Graph Learning via Logic-Based Weisfeiler-Leman Variants and Tabularization
We present a novel approach for graph classification based on tabularizing graph data via new variants of the Weisfeiler-Leman algorithm and then applying methods for tabular data. We investigate a comprehensive class of versions of the Weisfeiler-Leman algorithm obtained by modifying the underlying logical framework and establish a precise theoretical characterization of their expressive power. We then test selected versions on 14 benchmark datasets that span a range of application domains. The experiments demonstrate that our approach generally achieves better predictive performance than graph neural networks and matches that of graph transformers, while being 40-60x faster and requiring neither a GPU nor extensive hyperparameter tuning.
comment: New version of the manuscript with the following fixes: 1. Clarified proof of the main theorem. 2. Revised the experimental section
♻ ☆ Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model
Aligning large language models (LLMs) to preference data typically assumes a known link function between observed preferences and latent rewards (e.g., a logistic Bradley-Terry link). Misspecification of this link can bias inferred rewards and misalign learned policies. We study preference alignment under an unknown and unrestricted link function. We show that realizability of $f$-divergence-constrained reward maximization in a policy class induces a semiparametric single-index binary choice model, where a scalar policy-dependent index captures all dependence on demonstrations and the remaining preference distribution is unrestricted. Rather than assuming this model has identifiable finite-dimensional structural parameters and estimating them, as in econometrics, we focus on policy learning with the reward function implicit, analyzing error to the optimal policy and allowing for unidentifiable nonparametric indices. We develop preference optimization algorithms robust to the unknown link and prove convergence guarantees in terms of generic function complexity measures. We demonstrate this empirically on LLM alignment. Code is available at https://github.com/causalml/spo/
Multimedia 6
☆ Mixture of Disentangled Experts with Missing Modalities for Robust Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) integrates multiple modalities to infer human sentiment, but real-world noise often leads to missing or corrupted data. However, existing feature-disentangled methods struggle to handle the internal variations of heterogeneous information under uncertain missingness, making it difficult to learn effective multimodal representations from degraded modalities. To address this issue, we propose DERL, a Disentangled Expert Representation Learning framework for robust MSA. Specifically, DERL employs hybrid experts to adaptively disentangle multimodal inputs into orthogonal private and shared representation spaces. A multi-level reconstruction strategy is further developed to provide collaborative supervision, enhancing both the expressiveness and robustness of the learned representations. Finally, the disentangled features act as modality experts with distinct roles to generate importance-aware fusion results. Extensive experiments on two MSA benchmarks demonstrate that DERL outperforms state-of-the-art methods under various missing-modality conditions. For instance, our method achieves improvements of 2.47% in Acc-2 and 2.25% in MAE on MOSI under intra-modal missingness.
☆ Hyperspectral Image Fusion with Spectral-Band and Fusion-Scale Agnosticism
Current deep learning models for Multispectral and Hyperspectral Image Fusion (MS/HS fusion) are typically designed for fixed spectral bands and spatial scales, which limits their transferability across diverse sensors. To address this, we propose SSA, a universal framework for MS/HS fusion with spectral-band and fusion-scale agnosticism. Specifically, we introduce Matryoshka Kernel (MK), a novel operator that enables a single model to adapt to arbitrary numbers of spectral channels. Meanwhile, we build SSA upon an Implicit Neural Representation (INR) backbone that models the HS signal as a continuous function, enabling reconstruction at arbitrary spatial resolutions. Together, these two forms of agnosticism enable a single MS/HS fusion model that generalizes effectively to unseen sensors and spatial scales. Extensive experiments demonstrate that our single model achieves state-of-the-art performance while generalizing well to unseen sensors and scales, paving the way toward future HS foundation models.
☆ Trailer Reimagined: An Innovative, Llm-DRiven, Expressive Automated Movie Summary framework (TRAILDREAMS)
This paper introduces TRAILDREAMS, a framework that uses a large language model (LLM) to automate the production of movie trailers. The purpose of LLM is to select key visual sequences and impactful dialogues, and to help TRAILDREAMS to generate audio elements such as music and voiceovers. The goal is to produce engaging and visually appealing trailers efficiently. In comparative evaluations, TRAILDREAMS surpasses current state-of-the-art trailer generation methods in viewer ratings. However, it still falls short when compared to real, human-crafted trailers. While TRAILDREAMS demonstrates significant promise and marks an advancement in automated creative processes, further improvements are necessary to bridge the quality gap with traditional trailers.
☆ One Size, Many Fits: Aligning Diverse Group-Wise Click Preferences in Large-Scale Advertising Image Generation
Advertising image generation has increasingly focused on online metrics like Click-Through Rate (CTR), yet existing approaches adopt a ``one-size-fits-all" strategy that optimizes for overall CTR while neglecting preference diversity among user groups. This leads to suboptimal performance for specific groups, limiting targeted marketing effectiveness. To bridge this gap, we present \textit{One Size, Many Fits} (OSMF), a unified framework that aligns diverse group-wise click preferences in large-scale advertising image generation. OSMF begins with product-aware adaptive grouping, which dynamically organizes users based on their attributes and product characteristics, representing each group with rich collective preference features. Building on these groups, preference-conditioned image generation employs a Group-aware Multimodal Large Language Model (G-MLLM) to generate tailored images for each group. The G-MLLM is pre-trained to simultaneously comprehend group features and generate advertising images. Subsequently, we fine-tune the G-MLLM using our proposed Group-DPO for group-wise preference alignment, which effectively enhances each group's CTR on the generated images. To further advance this field, we introduce the Grouped Advertising Image Preference Dataset (GAIP), the first large-scale public dataset of group-wise image preferences, including around 600K groups built from 40M users. Extensive experiments demonstrate that our framework achieves the state-of-the-art performance in both offline and online settings. Our code and datasets will be released at https://github.com/JD-GenX/OSMF.
☆ Modality Gap-Driven Subspace Alignment Training Paradigm For Multimodal Large Language Models
Despite the success of multimodal contrastive learning in aligning visual and linguistic representations, a persistent geometric anomaly, the Modality Gap, remains: embeddings of distinct modalities expressing identical semantics occupy systematically offset regions. Prior approaches to bridge this gap are largely limited by oversimplified isotropic assumptions, hindering their application in large-scale scenarios. In this paper, we address these limitations by precisely characterizing the geometric shape of the modality gap and leveraging it for efficient model scaling. First, we propose the Fixed-frame Modality Gap Theory, which decomposes the modality gap within a frozen reference frame into stable biases and anisotropic residuals. Guided by this precise modeling, we introduce ReAlign, a training-free modality alignment strategy. Utilizing statistics from massive unpaired data, ReAlign aligns text representation into the image representation distribution via a three-step process comprising Anchor, Trace, and Centroid Alignment, thereby explicitly rectifying geometric misalignment. Building on ReAlign, we propose ReVision, a scalable training paradigm for Multimodal Large Language Models (MLLMs). ReVision integrates ReAlign into the pretraining stage, enabling the model to learn the distribution of visual representations from unpaired text before visual instruction tuning, without the need for large-scale, high-quality image-text pairs. Our framework demonstrates that statistically aligned unpaired data can effectively substitute for expensive image-text pairs, offering a robust path for the efficient scaling of MLLMs.
♻ ☆ SatFusion: A Unified Framework for Enhancing Remote Sensing Image via Multi-Frame and Multi-Source Image Fusion
Remote sensing (RS) imaging is constrained by hardware cost and physical limitations, making high-quality image acquisition challenging and motivating image fusion for quality enhancement. Multi-frame super-resolution (MFSR) and Pansharpening exploit complementary information from multiple frames and multiple sources, respectively, but are usually studied in isolation: MFSR lacks high-resolution structural priors for fine-grained texture recovery, while Pansharpening depends on upsampled multispectral images and is sensitive to noise and misalignment. With the rapid development of the Satellite Internet of Things (Sat-IoT), effectively leveraging large numbers of low-quality yet information-complementary images has become increasingly important. To this end, we propose SatFusion, a unified framework for enhancing RS images via joint multi-frame and multi-source fusion. SatFusion employs a Multi-Frame Image Fusion (MFIF) module to extract high-resolution semantic features from multiple low-resolution multispectral frames, and integrates fine-grained structural information from a high-resolution panchromatic image through a Multi-Source Image Fusion (MSIF) module, enabling robust feature integration with implicit pixel-level alignment. To further mitigate the lack of structural priors in multi-frame fusion, we introduce SatFusion*, which incorporates a panchromatic-guided mechanism into the multi-frame fusion stage. By combining structure-aware feature embedding with transformer-based adaptive aggregation, SatFusion* enables spatially adaptive selection of multi-frame features and strengthens the coupling between multi-frame and multi-source representations. Extensive experiments on the WorldStrat, WV3, QB, and GF2 datasets demonstrate that our methods consistently outperform existing approaches in terms of reconstruction quality, robustness, and generalizability.
Artificial Intelligent 321
☆ Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
☆ PixelGen: Pixel Diffusion Beats Latent Diffusion with Perceptual Loss
Pixel diffusion generates images directly in pixel space in an end-to-end manner, avoiding the artifacts and bottlenecks introduced by VAEs in two-stage latent diffusion. However, it is challenging to optimize high-dimensional pixel manifolds that contain many perceptually irrelevant signals, leaving existing pixel diffusion methods lagging behind latent diffusion models. We propose PixelGen, a simple pixel diffusion framework with perceptual supervision. Instead of modeling the full image manifold, PixelGen introduces two complementary perceptual losses to guide diffusion model towards learning a more meaningful perceptual manifold. An LPIPS loss facilitates learning better local patterns, while a DINO-based perceptual loss strengthens global semantics. With perceptual supervision, PixelGen surpasses strong latent diffusion baselines. It achieves an FID of 5.11 on ImageNet-256 without classifier-free guidance using only 80 training epochs, and demonstrates favorable scaling performance on large-scale text-to-image generation with a GenEval score of 0.79. PixelGen requires no VAEs, no latent representations, and no auxiliary stages, providing a simpler yet more powerful generative paradigm. Codes are publicly available at https://github.com/Zehong-Ma/PixelGen.
comment: Project Pages: https://zehong-ma.github.io/PixelGen/
☆ RE-TRAC: REcursive TRAjectory Compression for Deep Search Agents
LLM-based deep research agents are largely built on the ReAct framework. This linear design makes it difficult to revisit earlier states, branch into alternative search directions, or maintain global awareness under long contexts, often leading to local optima, redundant exploration, and inefficient search. We propose Re-TRAC, an agentic framework that performs cross-trajectory exploration by generating a structured state representation after each trajectory to summarize evidence, uncertainties, failures, and future plans, and conditioning subsequent trajectories on this state representation. This enables iterative reflection and globally informed planning, reframing research as a progressive process. Empirical results show that Re-TRAC consistently outperforms ReAct by 15-20% on BrowseComp with frontier LLMs. For smaller models, we introduce Re-TRAC-aware supervised fine-tuning, achieving state-of-the-art performance at comparable scales. Notably, Re-TRAC shows a monotonic reduction in tool calls and token usage across rounds, indicating progressively targeted exploration driven by cross-trajectory reflection rather than redundant search.
Flow Policy Gradients for Robot Control
Likelihood-based policy gradient methods are the dominant approach for training robot control policies from rewards. These methods rely on differentiable action likelihoods, which constrain policy outputs to simple distributions like Gaussians. In this work, we show how flow matching policy gradients -- a recent framework that bypasses likelihood computation -- can be made effective for training and fine-tuning more expressive policies in challenging robot control settings. We introduce an improved objective that enables success in legged locomotion, humanoid motion tracking, and manipulation tasks, as well as robust sim-to-real transfer on two humanoid robots. We then present ablations and analysis on training dynamics. Results show how policies can exploit the flow representation for exploration when training from scratch, as well as improved fine-tuning robustness over baselines.
comment: Project webpage: https://hongsukchoi.github.io/fpo-control
☆ AgentRx: Diagnosing AI Agent Failures from Execution Trajectories
AI agents often fail in ways that are difficult to localize because executions are probabilistic, long-horizon, multi-agent, and mediated by noisy tool outputs. We address this gap by manually annotating failed agent runs and release a novel benchmark of 115 failed trajectories spanning structured API workflows, incident management, and open-ended web/file tasks. Each trajectory is annotated with a critical failure step and a category from a grounded-theory derived, cross-domain failure taxonomy. To mitigate the human cost of failure attribution, we present AGENTRX, an automated domain-agnostic diagnostic framework that pinpoints the critical failure step in a failed agent trajectory. It synthesizes constraints, evaluates them step-by-step, and produces an auditable validation log of constraint violations with associated evidence; an LLM-based judge uses this log to localize the critical step and category. Our framework improves step localization and failure attribution over existing baselines across three domains.
☆ MemSkill: Learning and Evolving Memory Skills for Self-Evolving Agents
Most Large Language Model (LLM) agent memory systems rely on a small set of static, hand-designed operations for extracting memory. These fixed procedures hard-code human priors about what to store and how to revise memory, making them rigid under diverse interaction patterns and inefficient on long histories. To this end, we present \textbf{MemSkill}, which reframes these operations as learnable and evolvable memory skills, structured and reusable routines for extracting, consolidating, and pruning information from interaction traces. Inspired by the design philosophy of agent skills, MemSkill employs a \emph{controller} that learns to select a small set of relevant skills, paired with an LLM-based \emph{executor} that produces skill-guided memories. Beyond learning skill selection, MemSkill introduces a \emph{designer} that periodically reviews hard cases where selected skills yield incorrect or incomplete memories, and evolves the skill set by proposing refinements and new skills. Together, MemSkill forms a closed-loop procedure that improves both the skill-selection policy and the skill set itself. Experiments on LoCoMo, LongMemEval, HotpotQA, and ALFWorld demonstrate that MemSkill improves task performance over strong baselines and generalizes well across settings. Further analyses shed light on how skills evolve, offering insights toward more adaptive, self-evolving memory management for LLM agents.
comment: Code is available at https://github.com/ViktorAxelsen/MemSkill
☆ Multi-head automated segmentation by incorporating detection head into the contextual layer neural network
Deep learning based auto segmentation is increasingly used in radiotherapy, but conventional models often produce anatomically implausible false positives, or hallucinations, in slices lacking target structures. We propose a gated multi-head Transformer architecture based on Swin U-Net, augmented with inter-slice context integration and a parallel detection head, which jointly performs slice-level structure detection via a multi-layer perceptron and pixel-level segmentation through a context-enhanced stream. Detection outputs gate the segmentation predictions to suppress false positives in anatomically invalid slices, and training uses slice-wise Tversky loss to address class imbalance. Experiments on the Prostate-Anatomical-Edge-Cases dataset from The Cancer Imaging Archive demonstrate that the gated model substantially outperforms a non-gated segmentation-only baseline, achieving a mean Dice loss of $0.013 \pm 0.036$ versus $0.732 \pm 0.314$, with detection probabilities strongly correlated with anatomical presence, effectively eliminating spurious segmentations. In contrast, the non-gated model exhibited higher variability and persistent false positives across all slices. These results indicate that detection-based gating enhances robustness and anatomical plausibility in automated segmentation applications, reducing hallucinated predictions without compromising segmentation quality in valid slices, and offers a promising approach for improving the reliability of clinical radiotherapy auto-contouring workflows.
comment: 8 pages, 3 figures, 1 table
☆ Breaking the Reversal Curse in Autoregressive Language Models via Identity Bridge
Autoregressive large language models (LLMs) have achieved remarkable success in many complex tasks, yet they can still fail in very simple logical reasoning such as the "reversal curse" -- when trained on forward knowledge data of the form "$A \rightarrow B$" (e.g., Alice's husband is Bob), the model is unable to deduce the reversal knowledge "$B \leftarrow A$" (e.g., Bob's wife is Alice) during test. Extensive prior research suggests that this failure is an inherent, fundamental limit of autoregressive causal LLMs, indicating that these models tend to memorize factual-level knowledge rather than capture higher-level rules. In this paper, we challenge this view by showing that this seemingly fundamental limit can be mitigated by slightly tweaking the training data with a simple regularization data recipe called the Identity Bridge of the form "$A \to A$" (e.g., The name of Alice is Alice). Theoretically, we prove that under this recipe, even a one-layer transformer can break the reversal curse by analyzing the implicit bias of gradient descent. Empirically, we show that a 1B pretrained language model finetuned with the proposed data recipe achieves a 40% success rate on reversal tasks, in stark contrast to a near-zero success rate when trained solely on forward-knowledge data. Our work provides a novel theoretical foundation for the reversal curse and offers a principled, low-cost path to encouraging LLMs to learn higher-level rules from data.
☆ Avenir-Web: Human-Experience-Imitating Multimodal Web Agents with Mixture of Grounding Experts
Despite advances in multimodal large language models, autonomous web agents still struggle to reliably execute long-horizon tasks on complex and dynamic web interfaces. Existing agents often suffer from inaccurate element grounding, the absence of site-specific procedural knowledge, and unstable long-term task tracking and memory, particularly when operating over complex Document Object Model structures. To address these limitations, we introduce Avenir-Web, a web agent that achieves a new open-source state of the art on the Online-Mind2Web benchmark in real-world deployment. Avenir-Web leverages a Mixture of Grounding Experts, Experience-Imitation Planning for incorporating procedural priors, and a task-tracking checklist combined with adaptive memory to enable robust and seamless interaction across diverse user interface paradigms. We evaluate Avenir-Web on Online-Mind2Web, a rigorous benchmark of live and user-centered web tasks. Our results demonstrate that Avenir-Web significantly surpasses prior open-source agents and attains performance parity with top-tier proprietary models, thereby establishing a new open-source state of the art for reliable web agents on live websites.
☆ MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
comment: 9 pages, 8 figures
☆ Abstract Activation Spaces for Content-Invariant Reasoning in Large Language Models
Large Language Models (LLMs) often struggle with deductive judgment in syllogistic reasoning, systematically conflating semantic plausibility with formal validity a phenomenon known as content effect. This bias persists even when models generate step-wise explanations, indicating that intermediate rationales may inherit the same semantic shortcuts that affect answers. Recent approaches propose mitigating this issue by increasing inference-time structural constraints, either by encouraging abstract intermediate representations or by intervening directly in the model's internal computations; however, reliably suppressing semantic interference remains an open challenge. To make formal deduction less sensitive to semantic content, we introduce a framework for abstraction-guided reasoning that explicitly separates structural inference from lexical semantics. We construct paired content-laden and abstract syllogisms and use the model's activations on abstract inputs to define an abstract reasoning space. We then learn lightweight Abstractors that, from content-conditioned residual-stream states, predict representations aligned with this space and integrate these predictions via multi-layer interventions during the forward pass. Using cross-lingual transfer as a test bed, we show that abstraction-aligned steering reduces content-driven errors and improves validity-sensitive performance. Our results position activation-level abstraction as a scalable mechanism for enhancing the robustness of formal reasoning in LLMs against semantic interference.
☆ Drift-Bench: Diagnosing Cooperative Breakdowns in LLM Agents under Input Faults via Multi-Turn Interaction
As Large Language Models transition to autonomous agents, user inputs frequently violate cooperative assumptions (e.g., implicit intent, missing parameters, false presuppositions, or ambiguous expressions), creating execution risks that text-only evaluations do not capture. Existing benchmarks typically assume well-specified instructions or restrict evaluation to text-only, single-turn clarification, and thus do not measure multi-turn disambiguation under grounded execution risk. We introduce \textbf{Drift-Bench}, the first diagnostic benchmark that evaluates agentic pragmatics under input faults through multi-turn clarification across state-oriented and service-oriented execution environments. Grounded in classical theories of communication, \textbf{Drift-Bench} provides a unified taxonomy of cooperative breakdowns and employs a persona-driven user simulator with the \textbf{Rise} evaluation protocol. Experiments show substantial performance drops under these faults, with clarification effectiveness varying across user personas and fault types. \MethodName bridges clarification research and agent safety evaluation, enabling systematic diagnosis of failures that can lead to unsafe executions.
comment: 65 pages, 40 figures
☆ World-Gymnast: Training Robots with Reinforcement Learning in a World Model
Robot learning from interacting with the physical world is fundamentally bottlenecked by the cost of physical interaction. The two alternatives, supervised finetuning (SFT) from expert demonstrations and reinforcement learning (RL) in a software-based simulator, are limited by the amount of expert data available and the sim-to-real gap for manipulation. With the recent emergence of world models learned from real-world video-action data, we ask the question of whether training a policy in a world model can be more effective than supervised learning or software simulation in achieving better real-robot performance. We propose World-Gymnast, which performs RL finetuning of a vision-language-action (VLA) policy by rolling out the policy in an action-conditioned video world model and rewarding the rollouts with a vision-language model (VLM). On the Bridge robot setup, World-Gymnast outperforms SFT by as much as 18x and outperforms software simulator by as much as 2x. More importantly, World-Gymnast demonstrates intriguing capabilities of RL with a world model, including training on diverse language instructions and novel scenes from the world model, test-time training in a novel scene, and online iterative world model and policy improvement. Our results suggest learning a world model and training robot policies in the cloud could be the key to bridging the gap between robots that work in demonstrations and robots that can work in anyone's household.
comment: https://world-gymnast.github.io/
☆ Thinking with Comics: Enhancing Multimodal Reasoning through Structured Visual Storytelling
Chain-of-Thought reasoning has driven large language models to extend from thinking with text to thinking with images and videos. However, different modalities still have clear limitations: static images struggle to represent temporal structure, while videos introduce substantial redundancy and computational cost. In this work, we propose Thinking with Comics, a visual reasoning paradigm that uses comics as a high information-density medium positioned between images and videos. Comics preserve temporal structure, embedded text, and narrative coherence while requiring significantly lower reasoning cost. We systematically study two reasoning paths based on comics and evaluate them on a range of reasoning tasks and long-context understanding tasks. Experimental results show that Thinking with Comics outperforms Thinking with Images on multi-step temporal and causal reasoning tasks, while remaining substantially more efficient than Thinking with Video. Further analysis indicates that different comic narrative structures and styles consistently affect performance across tasks, suggesting that comics serve as an effective intermediate visual representation for improving multimodal reasoning.
comment: Working paper
☆ Active Causal Experimentalist (ACE): Learning Intervention Strategies via Direct Preference Optimization
Discovering causal relationships requires controlled experiments, but experimentalists face a sequential decision problem: each intervention reveals information that should inform what to try next. Traditional approaches such as random sampling, greedy information maximization, and round-robin coverage treat each decision in isolation, unable to learn adaptive strategies from experience. We propose Active Causal Experimentalist (ACE), which learns experimental design as a sequential policy. Our key insight is that while absolute information gains diminish as knowledge accumulates (making value-based RL unstable), relative comparisons between candidate interventions remain meaningful throughout. ACE exploits this via Direct Preference Optimization, learning from pairwise intervention comparisons rather than non-stationary reward magnitudes. Across synthetic benchmarks, physics simulations, and economic data, ACE achieves 70-71% improvement over baselines at equal intervention budgets (p < 0.001, Cohen's d ~ 2). Notably, the learned policy autonomously discovers that collider mechanisms require concentrated interventions on parent variables, a theoretically-grounded strategy that emerges purely from experience. This suggests preference-based learning can recover principled experimental strategies, complementing theory with learned domain adaptation.
comment: 9 pages, 5 figures
☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through a dual reasoning paradigm. We formulate generation as world knowledge-enhanced planning to inject implicit constraints, and leverage editing capabilities for fine-grained visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared representation, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for planning, alongside an agent-generated corpus for visual self-correction. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
☆ Poly-attention: a general scheme for higher-order self-attention
The self-attention mechanism, at the heart of the Transformer model, is able to effectively model pairwise interactions between tokens. However, numerous recent works have shown that it is unable to perform basic tasks involving detecting triples of correlated tokens, or compositional tasks where multiple input tokens need to be referenced to generate a result. Some higher-dimensional alternatives to self-attention have been proposed to address this, including higher-order attention and Strassen attention, which can perform some of these polyadic tasks in exchange for slower, superquadratic running times. In this work, we define a vast class of generalizations of self-attention, which we call poly-attention mechanisms. Our mechanisms can incorporate arbitrary higher-order (tensor) computations as well as arbitrary relationship structures between the input tokens, and they include the aforementioned alternatives as special cases. We then systematically study their computational complexity and representational strength, including giving new algorithms and matching complexity-theoretic lower bounds on the time complexity of computing the attention matrix exactly as well as approximately, and tightly determining which polyadic tasks they can each perform. Our results give interesting trade-offs between different desiderata for these mechanisms, including a tight relationship between how expressive a mechanism is, and how large the coefficients in the model may be so that the mechanism can be approximated in almost-linear time. Notably, we give a new attention mechanism which can be computed exactly in quadratic time, and which can perform function composition for any fixed number of functions. Prior mechanisms, even for just composing two functions, could only be computed in superquadratic time, and our new lower bounds show that faster algorithms for them are not possible.
☆ SafeGround: Know When to Trust GUI Grounding Models via Uncertainty Calibration
Graphical User Interface (GUI) grounding aims to translate natural language instructions into executable screen coordinates, enabling automated GUI interaction. Nevertheless, incorrect grounding can result in costly, hard-to-reverse actions (e.g., erroneous payment approvals), raising concerns about model reliability. In this paper, we introduce SafeGround, an uncertainty-aware framework for GUI grounding models that enables risk-aware predictions through calibrations before testing. SafeGround leverages a distribution-aware uncertainty quantification method to capture the spatial dispersion of stochastic samples from outputs of any given model. Then, through the calibration process, SafeGround derives a test-time decision threshold with statistically guaranteed false discovery rate (FDR) control. We apply SafeGround on multiple GUI grounding models for the challenging ScreenSpot-Pro benchmark. Experimental results show that our uncertainty measure consistently outperforms existing baselines in distinguishing correct from incorrect predictions, while the calibrated threshold reliably enables rigorous risk control and potentials of substantial system-level accuracy improvements. Across multiple GUI grounding models, SafeGround improves system-level accuracy by up to 5.38\% percentage points over Gemini-only inference.
☆ Structure Enables Effective Self-Localization of Errors in LLMs
Self-correction in language models remains elusive. In this work, we explore whether language models can explicitly localize errors in incorrect reasoning, as a path toward building AI systems that can effectively correct themselves. We introduce a prompting method that structures reasoning as discrete, semantically coherent thought steps, and show that models are able to reliably localize errors within this structure, while failing to do so in conventional, unstructured chain-of-thought reasoning. Motivated by how the human brain monitors errors at discrete decision points and resamples alternatives, we introduce Iterative Correction Sampling of Thoughts (Thought-ICS), a self-correction framework. Thought-ICS iteratively prompts the model to generate reasoning one discrete and complete thought at a time--where each thought represents a deliberate decision by the model--creating natural boundaries for precise error localization. Upon verification, the model localizes the first erroneous step, and the system backtracks to generate alternative reasoning from the last correct point. When asked to correct reasoning verified as incorrect by an oracle, Thought-ICS achieves 20-40% self-correction lift. In a completely autonomous setting without external verification, it outperforms contemporary self-correction baselines.
☆ ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images.We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
☆ Didactic to Constructive: Turning Expert Solutions into Learnable Reasoning
Improving the reasoning capabilities of large language models (LLMs) typically relies either on the model's ability to sample a correct solution to be reinforced or on the existence of a stronger model able to solve the problem. However, many difficult problems remain intractable for even current frontier models, preventing the extraction of valid training signals. A promising alternative is to leverage high-quality expert human solutions, yet naive imitation of this data fails because it is fundamentally out of distribution: expert solutions are typically didactic, containing implicit reasoning gaps intended for human readers rather than computational models. Furthermore, high-quality expert solutions are expensive, necessitating generalizable sample-efficient training methods. We propose Distribution Aligned Imitation Learning (DAIL), a two-step method that bridges the distributional gap by first transforming expert solutions into detailed, in-distribution reasoning traces and then applying a contrastive objective to focus learning on expert insights and methodologies. We find that DAIL can leverage fewer than 1000 high-quality expert solutions to achieve 10-25% pass@k gains on Qwen2.5-Instruct and Qwen3 models, improve reasoning efficiency by 2x to 4x, and enable out-of-domain generalization.
☆ SoMA: A Real-to-Sim Neural Simulator for Robotic Soft-body Manipulation
Simulating deformable objects under rich interactions remains a fundamental challenge for real-to-sim robot manipulation, with dynamics jointly driven by environmental effects and robot actions. Existing simulators rely on predefined physics or data-driven dynamics without robot-conditioned control, limiting accuracy, stability, and generalization. This paper presents SoMA, a 3D Gaussian Splat simulator for soft-body manipulation. SoMA couples deformable dynamics, environmental forces, and robot joint actions in a unified latent neural space for end-to-end real-to-sim simulation. Modeling interactions over learned Gaussian splats enables controllable, stable long-horizon manipulation and generalization beyond observed trajectories without predefined physical models. SoMA improves resimulation accuracy and generalization on real-world robot manipulation by 20%, enabling stable simulation of complex tasks such as long-horizon cloth folding.
comment: Project page: https://city-super.github.io/SoMA/
☆ David vs. Goliath: Verifiable Agent-to-Agent Jailbreaking via Reinforcement Learning
The evolution of large language models into autonomous agents introduces adversarial failures that exploit legitimate tool privileges, transforming safety evaluation in tool-augmented environments from a subjective NLP task into an objective control problem. We formalize this threat model as Tag-Along Attacks: a scenario where a tool-less adversary "tags along" on the trusted privileges of a safety-aligned Operator to induce prohibited tool use through conversation alone. To validate this threat, we present Slingshot, a 'cold-start' reinforcement learning framework that autonomously discovers emergent attack vectors, revealing a critical insight: in our setting, learned attacks tend to converge to short, instruction-like syntactic patterns rather than multi-turn persuasion. On held-out extreme-difficulty tasks, Slingshot achieves a 67.0% success rate against a Qwen2.5-32B-Instruct-AWQ Operator (vs. 1.7% baseline), reducing the expected attempts to first success (on solved tasks) from 52.3 to 1.3. Crucially, Slingshot transfers zero-shot to several model families, including closed-source models like Gemini 2.5 Flash (56.0% attack success rate) and defensive-fine-tuned open-source models like Meta-SecAlign-8B (39.2% attack success rate). Our work establishes Tag-Along Attacks as a first-class, verifiable threat model and shows that effective agentic attacks can be elicited from off-the-shelf open-weight models through environment interaction alone.
comment: Under review. 8 main pages, 2 figures, 2 tables. Appendix included
☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: 14 pages, 8 figures
☆ Trust by Design: Skill Profiles for Transparent, Cost-Aware LLM Routing
How should Large Language Model (LLM) practitioners select the right model for a task without wasting money? We introduce BELLA (Budget-Efficient LLM Selection via Automated skill-profiling), a framework that recommends optimal LLM selection for tasks through interpretable skill-based model selection. Standard benchmarks report aggregate metrics that obscure which specific capabilities a task requires and whether a cheaper model could suffice. BELLA addresses this gap through three stages: (1) decomposing LLM outputs and extract the granular skills required by using critic-based profiling, (2) clustering skills into structured capability matrices, and (3) multi-objective optimization to select the right models to maximize performance while respecting budget constraints. BELLA provides natural-language rationale for recommendations, providing transparency that current black-box routing systems lack. We describe the framework architecture, situate it within the landscape of LLM routing and evaluation, and discuss its application to financial reasoning as a representative domain exhibiting diverse skill requirements and cost-variation across models. Our framework enables practitioners to make principled and cost-performance trade-offs for deploying LLMs.
comment: Appeared at MLSys YPS 2025
☆ From Sycophancy to Sensemaking: Premise Governance for Human-AI Decision Making
As LLMs expand from assistance to decision support, a dangerous pattern emerges: fluent agreement without calibrated judgment. Low-friction assistants can become sycophantic, baking in implicit assumptions and pushing verification costs onto experts, while outcomes arrive too late to serve as reward signals. In deep-uncertainty decisions (where objectives are contested and reversals are costly), scaling fluent agreement amplifies poor commitments faster than it builds expertise. We argue reliable human-AI partnership requires a shift from answer generation to collaborative premise governance over a knowledge substrate, negotiating only what is decision-critical. A discrepancy-driven control loop operates over this substrate: detecting conflicts, localizing misalignment via typed discrepancies (teleological, epistemic, procedural), and triggering bounded negotiation through decision slices. Commitment gating blocks action on uncommitted load-bearing premises unless overridden under logged risk; value-gated challenge allocates probing under interaction cost. Trust then attaches to auditable premises and evidence standards, not conversational fluency. We illustrate with tutoring and propose falsifiable evaluation criteria.
☆ Live-Evo: Online Evolution of Agentic Memory from Continuous Feedback
Large language model (LLM) agents are increasingly equipped with memory, which are stored experience and reusable guidance that can improve task-solving performance. Recent \emph{self-evolving} systems update memory based on interaction outcomes, but most existing evolution pipelines are developed for static train/test splits and only approximate online learning by folding static benchmarks, making them brittle under true distribution shift and continuous feedback. We introduce \textsc{Live-Evo}, an online self-evolving memory system that learns from a stream of incoming data over time. \textsc{Live-Evo} decouples \emph{what happened} from \emph{how to use it} via an Experience Bank and a Meta-Guideline Bank, compiling task-adaptive guidelines from retrieved experiences for each task. To manage memory online, \textsc{Live-Evo} maintains experience weights and updates them from feedback: experiences that consistently help are reinforced and retrieved more often, while misleading or stale experiences are down-weighted and gradually forgotten, analogous to reinforcement and decay in human memory. On the live \textit{Prophet Arena} benchmark over a 10-week horizon, \textsc{Live-Evo} improves Brier score by 20.8\% and increases market returns by 12.9\%, while also transferring to deep-research benchmarks with consistent gains over strong baselines. Our code is available at https://github.com/ag2ai/Live-Evo.
comment: 13 pages
☆ ReasonCACHE: Teaching LLMs To Reason Without Weight Updates
Can Large language models (LLMs) learn to reason without any weight update and only through in-context learning (ICL)? ICL is strikingly sample-efficient, often learning from only a handful of demonstrations, but complex reasoning tasks typically demand many training examples to learn from. However, naively scaling ICL by adding more demonstrations breaks down at this scale: attention costs grow quadratically, performance saturates or degrades with longer contexts, and the approach remains a shallow form of learning. Due to these limitations, practitioners predominantly rely on in-weight learning (IWL) to induce reasoning. In this work, we show that by using Prefix Tuning, LLMs can learn to reason without overloading the context window and without any weight updates. We introduce $\textbf{ReasonCACHE}$, an instantiation of this mechanism that distills demonstrations into a fixed key-value cache. Empirically, across challenging reasoning benchmarks, including GPQA-Diamond, ReasonCACHE outperforms standard ICL and matches or surpasses IWL approaches. Further, it achieves this all while being more efficient across three key axes: data, inference cost, and trainable parameters. We also theoretically prove that ReasonCACHE can be strictly more expressive than low-rank weight update since the latter ties expressivity to input rank, whereas ReasonCACHE bypasses this constraint by directly injecting key-values into the attention mechanism. Together, our findings identify ReasonCACHE as a middle path between in-context and in-weight learning, providing a scalable algorithm for learning reasoning skills beyond the context window without modifying parameters. Our project page: https://reasoncache.github.io/
comment: 26 pages, 17 Figures
☆ SWE-Universe: Scale Real-World Verifiable Environments to Millions
We propose SWE-Universe, a scalable and efficient framework for automatically constructing real-world software engineering (SWE) verifiable environments from GitHub pull requests (PRs). To overcome the prevalent challenges of automatic building, such as low production yield, weak verifiers, and prohibitive cost, our framework utilizes a building agent powered by an efficient custom-trained model. This agent employs iterative self-verification and in-loop hacking detection to ensure the reliable generation of high-fidelity, verifiable tasks. Using this method, we scale the number of real-world multilingual SWE environments to a million scale (807,693). We demonstrate the profound value of our environments through large-scale agentic mid-training and reinforcement learning. Finally, we applied this technique to Qwen3-Max-Thinking and achieved a score of 75.3% on SWE-Bench Verified. Our work provides both a critical resource and a robust methodology to advance the next generation of coding agents.
comment: 13 pages
☆ Implicit neural representation of textures
Implicit neural representation (INR) has proven to be accurate and efficient in various domains. In this work, we explore how different neural networks can be designed as a new texture INR, which operates in a continuous manner rather than a discrete one over the input UV coordinate space. Through thorough experiments, we demonstrate that these INRs perform well in terms of image quality, with considerable memory usage and rendering inference time. We analyze the balance between these objectives. In addition, we investigate various related applications in real-time rendering and down-stream tasks, e.g. mipmap fitting and INR-space generation.
comment: Albert Kwok and Zheyuan Hu contributed equally to this work
☆ Artificial Intelligence and Symmetries: Learning, Encoding, and Discovering Structure in Physical Data
Symmetries play a central role in physics, organizing dynamics, constraining interactions, and determining the effective number of physical degrees of freedom. In parallel, modern artificial intelligence methods have demonstrated a remarkable ability to extract low-dimensional structure from high-dimensional data through representation learning. This review examines the interplay between these two perspectives, focusing on the extent to which symmetry-induced constraints can be identified, encoded, or diagnosed using machine learning techniques. Rather than emphasizing architectures that enforce known symmetries by construction, we concentrate on data-driven approaches and latent representation learning, with particular attention to variational autoencoders. We discuss how symmetries and conservation laws reduce the intrinsic dimensionality of physical datasets, and how this reduction may manifest itself through self-organization of latent spaces in generative models trained to balance reconstruction and compression. We review recent results, including case studies from simple geometric systems and particle physics processes, and analyze the theoretical and practical limitations of inferring symmetry structure without explicit inductive bias.
comment: 25 pages, 9 figures. This manuscript is an invited review at the International Journal of Modern Physics A
☆ Context Learning for Multi-Agent Discussion
Multi-Agent Discussion (MAD) has garnered increasing attention very recently, where multiple LLM instances collaboratively solve problems via structured discussion. However, we find that current MAD methods easily suffer from discussion inconsistency, LLMs fail to reach a coherent solution, due to the misalignment between their individual contexts.In this paper, we introduce a multi-LLM context learning method (M2CL) that learns a context generator for each agent, capable of dynamically generating context instructions per discussion round via automatic information organization and refinement. Specifically, inspired by our theoretical insights on the context instruction, M2CL train the generators to control context coherence and output discrepancies via a carefully crafted self-adaptive mechanism.It enables LLMs to avoid premature convergence on majority noise and progressively reach the correct consensus. We evaluate M2CL on challenging tasks, including academic reasoning, embodied tasks, and mobile control. The results show that the performance of M2CL significantly surpasses existing methods by 20%--50%, while enjoying favorable transferability and computational efficiency.
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
☆ Rethinking Generative Recommender Tokenizer: Recsys-Native Encoding and Semantic Quantization Beyond LLMs
Semantic ID (SID)-based recommendation is a promising paradigm for scaling sequential recommender systems, but existing methods largely follow a semantic-centric pipeline: item embeddings are learned from foundation models and discretized using generic quantization schemes. This design is misaligned with generative recommendation objectives: semantic embeddings are weakly coupled with collaborative prediction, and generic quantization is inefficient at reducing sequential uncertainty for autoregressive modeling. To address these, we propose ReSID, a recommendation-native, principled SID framework that rethinks representation learning and quantization from the perspective of information preservation and sequential predictability, without relying on LLMs. ReSID consists of two components: (i) Field-Aware Masked Auto-Encoding (FAMAE), which learns predictive-sufficient item representations from structured features, and (ii) Globally Aligned Orthogonal Quantization (GAOQ), which produces compact and predictable SID sequences by jointly reducing semantic ambiguity and prefix-conditional uncertainty. Theoretical analysis and extensive experiments across ten datasets show the effectiveness of ReSID. ReSID consistently outperforms strong sequential and SID-based generative baselines by an average of over 10%, while reducing tokenization cost by up to 122x. Code is available at https://github.com/FuCongResearchSquad/ReSID.
☆ Building a Correct-by-Design Lakehouse. Data Contracts, Versioning, and Transactional Pipelines for Humans and Agents
Lakehouses are the default cloud platform for analytics and AI, but they become unsafe when untrusted actors concurrently operate on production data: upstream-downstream mismatches surface only at runtime, and multi-table pipelines can leak partial effects. Inspired by software engineering, we design Bauplan, a code-first lakehouse that aims to make (most) illegal states unrepresentable using familiar abstractions. Bauplan acts along three axes: typed table contracts to make pipeline boundaries checkable, Git-like data versioning for review and reproducibility, and transactional runs that guarantee pipeline-level atomicity. We report early results from a lightweight formal transaction model and discuss future work motivated by counterexamples.
comment: Pre-print (PaPoC 2026)
☆ VQ-Style: Disentangling Style and Content in Motion with Residual Quantized Representations
Human motion data is inherently rich and complex, containing both semantic content and subtle stylistic features that are challenging to model. We propose a novel method for effective disentanglement of the style and content in human motion data to facilitate style transfer. Our approach is guided by the insight that content corresponds to coarse motion attributes while style captures the finer, expressive details. To model this hierarchy, we employ Residual Vector Quantized Variational Autoencoders (RVQ-VAEs) to learn a coarse-to-fine representation of motion. We further enhance the disentanglement by integrating contrastive learning and a novel information leakage loss with codebook learning to organize the content and the style across different codebooks. We harness this disentangled representation using our simple and effective inference-time technique Quantized Code Swapping, which enables motion style transfer without requiring any fine-tuning for unseen styles. Our framework demonstrates strong versatility across multiple inference applications, including style transfer, style removal, and motion blending.
☆ TTT-Parkour: Rapid Test-Time Training for Perceptive Robot Parkour
Achieving highly dynamic humanoid parkour on unseen, complex terrains remains a challenge in robotics. Although general locomotion policies demonstrate capabilities across broad terrain distributions, they often struggle with arbitrary and highly challenging environments. To overcome this limitation, we propose a real-to-sim-to-real framework that leverages rapid test-time training (TTT) on novel terrains, significantly enhancing the robot's capability to traverse extremely difficult geometries. We adopt a two-stage end-to-end learning paradigm: a policy is first pre-trained on diverse procedurally generated terrains, followed by rapid fine-tuning on high-fidelity meshes reconstructed from real-world captures. Specifically, we develop a feed-forward, efficient, and high-fidelity geometry reconstruction pipeline using RGB-D inputs, ensuring both speed and quality during test-time training. We demonstrate that TTT-Parkour empowers humanoid robots to master complex obstacles, including wedges, stakes, boxes, trapezoids, and narrow beams. The whole pipeline of capturing, reconstructing, and test-time training requires less than 10 minutes on most tested terrains. Extensive experiments show that the policy after test-time training exhibits robust zero-shot sim-to-real transfer capability.
comment: Project Page: https://ttt-parkour.github.io/
☆ A Large-Scale Dataset for Molecular Structure-Language Description via a Rule-Regularized Method
Molecular function is largely determined by structure. Accurately aligning molecular structure with natural language is therefore essential for enabling large language models (LLMs) to reason about downstream chemical tasks. However, the substantial cost of human annotation makes it infeasible to construct large-scale, high-quality datasets of structure-grounded descriptions. In this work, we propose a fully automated annotation framework for generating precise molecular structure descriptions at scale. Our approach builds upon and extends a rule-based chemical nomenclature parser to interpret IUPAC names and construct enriched, structured XML metadata that explicitly encodes molecular structure. This metadata is then used to guide LLMs in producing accurate natural-language descriptions. Using this framework, we curate a large-scale dataset of approximately $163$k molecule-description pairs. A rigorous validation protocol combining LLM-based and expert human evaluation on a subset of $2,000$ molecules demonstrates a high description precision of $98.6\%$. The resulting dataset provides a reliable foundation for future molecule-language alignment, and the proposed annotation method is readily extensible to larger datasets and broader chemical tasks that rely on structural descriptions.
☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
☆ FragmentFlow: Scalable Transition State Generation for Large Molecules
Transition states (TSs) are central to understanding and quantitatively predicting chemical reactivity and reaction mechanisms. Although traditional TS generation methods are computationally expensive, recent generative modeling approaches have enabled chemically meaningful TS prediction for relatively small molecules. However, these methods fail to generalize to practically relevant reaction substrates because of distribution shifts induced by increasing molecular sizes. Furthermore, TS geometries for larger molecules are not available at scale, making it infeasible to train generative models from scratch on such molecules. To address these challenges, we introduce FragmentFlow: a divide-and-conquer approach that trains a generative model to predict TS geometries for the reactive core atoms, which define the reaction mechanism. The full TS structure is then reconstructed by re-attaching substituent fragments to the predicted core. By operating on reactive cores, whose size and composition remain relatively invariant across molecular contexts, FragmentFlow mitigates distribution shifts in generative modeling. Evaluated on a new curated dataset of reactions involving reactants with up to 33 heavy atoms, FragmentFlow correctly identifies 90% of TSs while requiring 30% fewer saddle-point optimization steps than classical initialization schemes. These results point toward scalable TS generation for high-throughput reactivity studies.
☆ Spark: Modular Spiking Neural Networks
Nowadays, neural networks act as a synonym for artificial intelligence. Present neural network models, although remarkably powerful, are inefficient both in terms of data and energy. Several alternative forms of neural networks have been proposed to address some of these problems. Specifically, spiking neural networks are suitable for efficient hardware implementations. However, effective learning algorithms for spiking networks remain elusive, although it is suspected that effective plasticity mechanisms could alleviate the problem of data efficiency. Here, we present a new framework for spiking neural networks - Spark - built upon the idea of modular design, from simple components to entire models. The aim of this framework is to provide an efficient and streamlined pipeline for spiking neural networks. We showcase this framework by solving the sparse-reward cartpole problem with simple plasticity mechanisms. We hope that a framework compatible with traditional ML pipelines may accelerate research in the area, specifically for continuous and unbatched learning, akin to the one animals exhibit.
☆ Position: Explaining Behavioral Shifts in Large Language Models Requires a Comparative Approach
Large-scale foundation models exhibit behavioral shifts: intervention-induced behavioral changes that appear after scaling, fine-tuning, reinforcement learning or in-context learning. While investigating these phenomena have recently received attention, explaining their appearance is still overlooked. Classic explainable AI (XAI) methods can surface failures at a single checkpoint of a model, but they are structurally ill-suited to justify what changed internally across different checkpoints and which explanatory claims are warranted about that change. We take the position that behavioral shifts should be explained comparatively: the core target should be the intervention-induced shift between a reference model and an intervened model, rather than any single model in isolation. To this aim we formulate a Comparative XAI ($Δ$-XAI) framework with a set of desiderata to be taken into account when designing proper explaining methods. To highlight how $Δ$-XAI methods work, we introduce a set of possible pipelines, relate them to the desiderata, and provide a concrete $Δ$-XAI experiment.
☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS; Website: https://modular-gradient-surgery.github.io
☆ Decoupling Generalizability and Membership Privacy Risks in Neural Networks
A deep learning model usually has to sacrifice some utilities when it acquires some other abilities or characteristics. Privacy preservation has such trade-off relationships with utilities. The loss disparity between various defense approaches implies the potential to decouple generalizability and privacy risks to maximize privacy gain. In this paper, we identify that the model's generalization and privacy risks exist in different regions in deep neural network architectures. Based on the observations that we investigate, we propose Privacy-Preserving Training Principle (PPTP) to protect model components from privacy risks while minimizing the loss in generalizability. Through extensive evaluations, our approach shows significantly better maintenance in model generalizability while enhancing privacy preservation.
☆ Hallucination or Creativity: How to Evaluate AI-Generated Scientific Stories?
Generative AI can turn scientific articles into narratives for diverse audiences, but evaluating these stories remains challenging. Storytelling demands abstraction, simplification, and pedagogical creativity-qualities that are not often well-captured by standard summarization metrics. Meanwhile, factual hallucinations are critical in scientific contexts, yet, detectors often misclassify legitimate narrative reformulations or prove unstable when creativity is involved. In this work, we propose StoryScore, a composite metric for evaluating AI-generated scientific stories. StoryScore integrates semantic alignment, lexical grounding, narrative control, structural fidelity, redundancy avoidance, and entity-level hallucination detection into a unified framework. Our analysis also reveals why many hallucination detection methods fail to distinguish pedagogical creativity from factual errors, highlighting a key limitation: while automatic metrics can effectively assess semantic similarity with original content, they struggle to evaluate how it is narrated and controlled.
☆ An Optimization Method for Autoregressive Time Series Forecasting
Current time-series forecasting models are primarily based on transformer-style neural networks. These models achieve long-term forecasting mainly by scaling up the model size rather than through genuinely autoregressive (AR) rollout. From the perspective of large language model training, the traditional training process for time-series forecasting models ignores temporal causality. In this paper, we propose a novel training method for time-series forecasting that enforces two key properties: (1) AR prediction errors should increase with the forecasting horizon. Any violation of this principle is considered random guessing and is explicitly penalized in the loss function, and (2) the method enables models to concatenate short-term AR predictions for forming flexible long-term forecasts. Empirical results demonstrate that our method establishes a new state-of-the-art across multiple benchmarks, achieving an MSE reduction of more than 10% compared to iTransformer and other recent strong baselines. Furthermore, it enables short-horizon forecasting models to perform reliable long-term predictions at horizons over 7.5 times longer. Code is available at https://github.com/LizhengMathAi/AROpt
comment: 10 pages, 2 figures, 2 tables
☆ DFKI-Speech System for WildSpoof Challenge: A robust framework for SASV In-the-Wild
This paper presents the DFKI-Speech system developed for the WildSpoof Challenge under the Spoofing aware Automatic Speaker Verification (SASV) track. We propose a robust SASV framework in which a spoofing detector and a speaker verification (SV) network operate in tandem. The spoofing detector employs a self-supervised speech embedding extractor as the frontend, combined with a state-of-the-art graph neural network backend. In addition, a top-3 layer based mixture-of-experts (MoE) is used to fuse high-level and low-level features for effective spoofed utterance detection. For speaker verification, we adapt a low-complexity convolutional neural network that fuses 2D and 1D features at multiple scales, trained with the SphereFace loss. Additionally, contrastive circle loss is applied to adaptively weight positive and negative pairs within each training batch, enabling the network to better distinguish between hard and easy sample pairs. Finally, fixed imposter cohort based AS Norm score normalization and model ensembling are used to further enhance the discriminative capability of the speaker verification system.
☆ Backpropagation as Physical Relaxation: Exact Gradients in Finite Time
Backpropagation, the foundational algorithm for training neural networks, is typically understood as a symbolic computation that recursively applies the chain rule. We show it emerges exactly as the finite-time relaxation of a physical dynamical system. By formulating feedforward inference as a continuous-time process and applying Lagrangian theory of non-conservative systems to handle asymmetric interactions, we derive a global energy functional on a doubled state space encoding both activations and sensitivities. The saddle-point dynamics of this energy perform inference and credit assignment simultaneously through local interactions. We term this framework ''Dyadic Backpropagation''. Crucially, we prove that unit-step Euler discretization, the natural timescale of layer transitions, recovers standard backpropagation exactly in precisely 2L steps for an L-layer network, with no approximations. Unlike prior energy-based methods requiring symmetric weights, asymptotic convergence, or vanishing perturbations, our framework guarantees exact gradients in finite time. This establishes backpropagation as the digitally optimized shadow of a continuous physical relaxation, providing a rigorous foundation for exact gradient computation in analog and neuromorphic substrates where continuous dynamics are native.
comment: 15 pages, 8 figures
☆ RACA: Representation-Aware Coverage Criteria for LLM Safety Testing
Recent advancements in LLMs have led to significant breakthroughs in various AI applications. However, their sophisticated capabilities also introduce severe safety concerns, particularly the generation of harmful content through jailbreak attacks. Current safety testing for LLMs often relies on static datasets and lacks systematic criteria to evaluate the quality and adequacy of these tests. While coverage criteria have been effective for smaller neural networks, they are not directly applicable to LLMs due to scalability issues and differing objectives. To address these challenges, this paper introduces RACA, a novel set of coverage criteria specifically designed for LLM safety testing. RACA leverages representation engineering to focus on safety-critical concepts within LLMs, thereby reducing dimensionality and filtering out irrelevant information. The framework operates in three stages: first, it identifies safety-critical representations using a small, expert-curated calibration set of jailbreak prompts. Second, it calculates conceptual activation scores for a given test suite based on these representations. Finally, it computes coverage results using six sub-criteria that assess both individual and compositional safety concepts. We conduct comprehensive experiments to validate RACA's effectiveness, applicability, and generalization, where the results demonstrate that RACA successfully identifies high-quality jailbreak prompts and is superior to traditional neuron-level criteria. We also showcase its practical application in real-world scenarios, such as test set prioritization and attack prompt sampling. Furthermore, our findings confirm RACA's generalization to various scenarios and its robustness across various configurations. Overall, RACA provides a new framework for evaluating the safety of LLMs, contributing a valuable technique to the field of testing for AI.
☆ Bridging the Sim-to-Real Gap with multipanda ros2: A Real-Time ROS2 Framework for Multimanual Systems
We present $multipanda\_ros2$, a novel open-source ROS2 architecture for multi-robot control of Franka Robotics robots. Leveraging ros2 control, this framework provides native ROS2 interfaces for controlling any number of robots from a single process. Our core contributions address key challenges in real-time torque control, including interaction control and robot-environment modeling. A central focus of this work is sustaining a 1kHz control frequency, a necessity for real-time control and a minimum frequency required by safety standards. Moreover, we introduce a controllet-feature design pattern that enables controller-switching delays of $\le 2$ ms, facilitating reproducible benchmarking and complex multi-robot interaction scenarios. To bridge the simulation-to-reality (sim2real) gap, we integrate a high-fidelity MuJoCo simulation with quantitative metrics for both kinematic accuracy and dynamic consistency (torques, forces, and control errors). Furthermore, we demonstrate that real-world inertial parameter identification can significantly improve force and torque accuracy, providing a methodology for iterative physics refinement. Our work extends approaches from soft robotics to rigid dual-arm, contact-rich tasks, showcasing a promising method to reduce the sim2real gap and providing a robust, reproducible platform for advanced robotics research.
comment: This work has been submitted to the IEEE for possible publication
☆ OpenSeal: Good, Fast, and Cheap Construction of an Open-Source Southeast Asian LLM via Parallel Data
Large language models (LLMs) have proven to be effective tools for a wide range of natural language processing (NLP) applications. Although many LLMs are multilingual, most remain English-centric and perform poorly on low-resource languages. Recently, several Southeast Asia-focused LLMs have been developed, but none are truly open source, as they do not publicly disclose their training data. Truly open-source models are important for transparency and for enabling a deeper and more precise understanding of LLM internals and development, including biases, generalization, and multilinguality. Motivated by recent advances demonstrating the effectiveness of parallel data in improving multilingual performance, we conduct controlled and comprehensive experiments to study the effectiveness of parallel data in continual pretraining of LLMs. Our findings show that using only parallel data is the most effective way to extend an LLM to new languages. Using just 34.7B tokens of parallel data and 180 hours on 8x NVIDIA H200 GPUs, we built OpenSeal, the first truly open Southeast Asian LLM that rivals the performance of existing models of similar size.
☆ Unsupervised Physics-Informed Operator Learning through Multi-Stage Curriculum Training
Solving partial differential equations remains a central challenge in scientific machine learning. Neural operators offer a promising route by learning mappings between function spaces and enabling resolution-independent inference, yet they typically require supervised data. Physics-informed neural networks address this limitation through unsupervised training with physical constraints but often suffer from unstable convergence and limited generalization capability. To overcome these issues, we introduce a multi-stage physics-informed training strategy that achieves convergence by progressively enforcing boundary conditions in the loss landscape and subsequently incorporating interior residuals. At each stage the optimizer is re-initialized, acting as a continuation mechanism that restores stability and prevents gradient stagnation. We further propose the Physics-Informed Spline Fourier Neural Operator (PhIS-FNO), combining Fourier layers with Hermite spline kernels for smooth residual evaluation. Across canonical benchmarks, PhIS-FNO attains a level of accuracy comparable to that of supervised learning, using labeled information only along a narrow boundary region, establishing staged, spline-based optimization as a robust paradigm for physics-informed operator learning.
comment: 51 pages, 15 figures, 6 tables
☆ OmniCode: A Benchmark for Evaluating Software Engineering Agents
LLM-powered coding agents are redefining how real-world software is developed. To drive the research towards better coding agents, we require challenging benchmarks that can rigorously evaluate the ability of such agents to perform various software engineering tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus on narrowly scoped tasks such as competition programming and patch generation. In reality, software engineers have to handle a broader set of tasks for real-world software development. To address this gap, we propose OmniCode, a novel software engineering benchmark that contains a broader and more diverse set of task categories beyond code or patch generation. Overall, OmniCode contains 1794 tasks spanning three programming languages (Python, Java, and C++) and four key categories: bug fixing, test generation, code review fixing, and style fixing. In contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated to avoid data leakage issues, presenting a new framework for synthetically generating diverse software tasks from limited real-world data. We evaluate OmniCode with popular agent frameworks such as SWE-Agent and show that while they may perform well on bug fixing for Python, they fall short on tasks such as Test Generation and in languages such as C++ and Java. For instance, SWE-Agent achieves a maximum of 20.9% with DeepSeek-V3.1 on Java Test Generation tasks. OmniCode aims to serve as a robust benchmark and spur the development of agents that can perform well across different aspects of software development. Code and data are available at https://github.com/seal-research/OmniCode.
Geometry- and Relation-Aware Diffusion for EEG Super-Resolution
Recent electroencephalography (EEG) spatial super-resolution (SR) methods, while showing improved quality by either directly predicting missing signals from visible channels or adapting latent diffusion-based generative modeling to temporal data, often lack awareness of physiological spatial structure, thereby constraining spatial generation performance. To address this issue, we introduce TopoDiff, a geometry- and relation-aware diffusion model for EEG spatial super-resolution. Inspired by how human experts interpret spatial EEG patterns, TopoDiff incorporates topology-aware image embeddings derived from EEG topographic representations to provide global geometric context for spatial generation, together with a dynamic channel-relation graph that encodes inter-electrode relationships and evolves with temporal dynamics. This design yields a spatially grounded EEG spatial super-resolution framework with consistent performance improvements. Across multiple EEG datasets spanning diverse applications, including SEED/SEED-IV for emotion recognition, PhysioNet motor imagery (MI/MM), and TUSZ for seizure detection, our method achieves substantial gains in generation fidelity and leads to notable improvements in downstream EEG task performance.
☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
☆ Spectral Superposition: A Theory of Feature Geometry
Neural networks represent more features than they have dimensions via superposition, forcing features to share representational space. Current methods decompose activations into sparse linear features but discard geometric structure. We develop a theory for studying the geometric structre of features by analyzing the spectra (eigenvalues, eigenspaces, etc.) of weight derived matrices. In particular, we introduce the frame operator $F = WW^\top$, which gives us a spectral measure that describes how each feature allocates norm across eigenspaces. While previous tools could describe the pairwise interactions between features, spectral methods capture the global geometry (``how do all features interact?''). In toy models of superposition, we use this theory to prove that capacity saturation forces spectral localization: features collapse onto single eigenspaces, organize into tight frames, and admit discrete classification via association schemes, classifying all geometries from prior work (simplices, polygons, antiprisms). The spectral measure formalism applies to arbitrary weight matrices, enabling diagnosis of feature localization beyond toy settings. These results point toward a broader program: applying operator theory to interpretability.
☆ Generating Physically Sound Designs from Text and a Set of Physical Constraints NeurIPS 2025
We present TIDES, a text informed design approach for generating physically sound designs based on a textual description and a set of physical constraints. TIDES jointly optimizes structural (topology) and visual properties. A pre-trained text-image model is used to measure the design's visual alignment with a text prompt and a differentiable physics simulator is used to measure its physical performance. We evaluate TIDES on a series of structural optimization problems operating under different load and support conditions, at different resolutions, and experimentally in the lab by performing the 3-point bending test on 2D beam designs that are extruded and 3D printed. We find that it can jointly optimize the two objectives and return designs that satisfy engineering design requirements (compliance and density) while utilizing features specified by text.
comment: NeurIPS 2025
☆ Towards AI Evaluation in Domain-Specific RAG Systems: The AgriHubi Case Study
Large language models show promise for knowledge-intensive domains, yet their use in agriculture is constrained by weak grounding, English-centric training data, and limited real-world evaluation. These issues are amplified for low-resource languages, where high-quality domain documentation exists but remains difficult to access through general-purpose models. This paper presents AgriHubi, a domain-adapted retrieval-augmented generation (RAG) system for Finnish-language agricultural decision support. AgriHubi integrates Finnish agricultural documents with open PORO family models and combines explicit source grounding with user feedback to support iterative refinement. Developed over eight iterations and evaluated through two user studies, the system shows clear gains in answer completeness, linguistic accuracy, and perceived reliability. The results also reveal practical trade-offs between response quality and latency when deploying larger models. This study provides empirical guidance for designing and evaluating domain-specific RAG systems in low-resource language settings.
comment: 6 pages, 2 figures, submitted to MIPRO 2026
☆ Cardinality-Preserving Structured Sparse Graph Transformers for Molecular Property Prediction
Drug discovery motivates efficient molecular property prediction under limited labeled data. Chemical space is vast, often estimated at approximately 10^60 drug-like molecules, while only thousands of drugs have been approved. As a result, self-supervised pretraining on large unlabeled molecular corpora has become essential for data-efficient molecular representation learning. We introduce **CardinalGraphFormer**, a graph transformer that incorporates Graphormer-inspired structural biases, including shortest-path distance and centrality, as well as direct-bond edge bias, within a structured sparse attention regime limited to shortest-path distance <= 3. The model further augments this design with a cardinality-preserving unnormalized aggregation channel over the same support set. Pretraining combines contrastive graph-level alignment with masked attribute reconstruction. Under a fully matched evaluation protocol, CardinalGraphFormer improves mean performance across all 11 evaluated tasks and achieves statistically significant gains on 10 of 11 public benchmarks spanning MoleculeNet, OGB, and TDC ADMET tasks when compared to strong reproduced baselines.
☆ More Than a Quick Glance: Overcoming the Greedy Bias in KV-Cache Compression
While Large Language Models (LLMs) can theoretically support extensive context windows, their actual deployment is constrained by the linear growth of Key-Value (KV) cache memory. Prevailing compression strategies mitigate this through various pruning mechanisms, yet trade-off semantic recall for memory efficiency. In this work, we present LASER-KV (Layer Accumulated Selection with Exact-LSH Recall), a framework designed to test the limits of KV compression under a strict accumulative budgeting policy. We deviate from the standard fixed summary size approach by implementing a block-wise accumulation strategy governed by a protection divisor (n). This allows us to isolate the effects of compression from sliding window artifacts. Our experiments on the Babilong benchmark reveal performance degradation in previous compression methods by 15-30% on various long context tasks. LASER-KV maintains stable performance, achieving superior accuracies by a margin of upto 10% at 128k. These findings challenge the prevailing assumption that attention scores alone are a sufficient proxy for token utility.
☆ Hierarchical Adaptive Eviction for KV Cache Management in Multimodal Language Models
The integration of visual information into Large Language Models (LLMs) has enabled Multimodal LLMs (MLLMs), but the quadratic memory and computational costs of Transformer architectures remain a bottleneck. Existing KV cache eviction strategies fail to address the heterogeneous attention distributions between visual and text tokens, leading to suboptimal efficiency or degraded performance. In this paper, we propose Hierarchical Adaptive Eviction (HAE), a KV cache eviction framework that optimizes text-visual token interaction in MLLMs by implementing Dual-Attention Pruning during pre-filling (leveraging visual token sparsity and attention variance) and a Dynamic Decoding Eviction Strategy (inspired by OS Recycle Bins) during decoding. HAE minimizes KV cache usage across layers, reduces computational overhead via index broadcasting, and theoretically ensures superior information integrity and lower error bounds compared to greedy strategies, enhancing efficiency in both comprehension and generation tasks. Empirically, HAE reduces KV-Cache memory by 41\% with minimal accuracy loss (0.3\% drop) in image understanding tasks and accelerates story generation inference by 1.5x while maintaining output quality on Phi3.5-Vision-Instruct model.
comment: 10 oages, 3 figures
☆ TIDE: Trajectory-based Diagnostic Evaluation of Test-Time Improvement in LLM Agents
Recent advances in autonomous LLM agents demonstrate their ability to improve performance through iterative interaction with the environment. We define this paradigm as Test-Time Improvement (TTI). However, the mechanisms under how and why TTI succeed or fail remain poorly understood, and existing evaluation metrics fail to capture their task optimization efficiency, behavior adaptation after erroneous actions, and the specific utility of working memory for task completion. To address these gaps, we propose Test-time Improvement Diagnostic Evaluation (TIDE), an agent-agnostic and environment-agnostic framework that decomposes TTI into three comprehensive and interconnected dimensions. The framework measures (1) the overall temporal dynamics of task completion and (2) identifies whether performance is primarily constrained by recursive looping behaviors or (3) by burdensome accumulated memory. Through extensive experiments across diverse agents and environments, TIDE highlights that improving agent performance requires more than scaling internal reasoning, calling for explicitly optimizing the interaction dynamics between the agent and the environment.
comment: 29pages, 10 figures
☆ State Rank Dynamics in Linear Attention LLMs
Linear Attention Large Language Models (LLMs) offer a compelling recurrent formulation that compresses context into a fixed-size state matrix, enabling constant-time inference. However, the internal dynamics of this compressed state remain largely opaque. In this work, we present a comprehensive study on the runtime state dynamics of state-of-the-art Linear Attention models. We uncover a fundamental phenomenon termed State Rank Stratification, characterized by a distinct spectral bifurcation among linear attention heads: while one group maintains an effective rank oscillating near zero, the other exhibits rapid growth that converges to an upper bound. Extensive experiments across diverse inference contexts reveal that these dynamics remain strikingly consistent, indicating that the identity of a head,whether low-rank or high-rank,is an intrinsic structural property acquired during pre-training, rather than a transient state dependent on the input data. Furthermore, our diagnostic probes reveal a surprising functional divergence: low-rank heads are indispensable for model reasoning, whereas high-rank heads exhibit significant redundancy. Leveraging this insight, we propose Joint Rank-Norm Pruning, a zero-shot strategy that achieves a 38.9\% reduction in KV-cache overhead while largely maintaining model accuracy.
☆ Reasoning in a Combinatorial and Constrained World: Benchmarking LLMs on Natural-Language Combinatorial Optimization
While large language models (LLMs) have shown strong performance in math and logic reasoning, their ability to handle combinatorial optimization (CO) -- searching high-dimensional solution spaces under hard constraints -- remains underexplored. To bridge the gap, we introduce NLCO, a \textbf{N}atural \textbf{L}anguage \textbf{C}ombinatorial \textbf{O}ptimization benchmark that evaluates LLMs on end-to-end CO reasoning: given a language-described decision-making scenario, the model must output a discrete solution without writing code or calling external solvers. NLCO covers 43 CO problems and is organized using a four-layer taxonomy of variable types, constraint families, global patterns, and objective classes, enabling fine-grained evaluation. We provide solver-annotated solutions and comprehensively evaluate LLMs by feasibility, solution optimality, and reasoning efficiency. Experiments across a wide range of modern LLMs show that high-performing models achieve strong feasibility and solution quality on small instances, but both degrade as instance size grows, even if more tokens are used for reasoning. We also observe systematic effects across the taxonomy: set-based tasks are relatively easy, whereas graph-structured problems and bottleneck objectives lead to more frequent failures.
☆ Vision-DeepResearch Benchmark: Rethinking Visual and Textual Search for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have advanced VQA and now support Vision-DeepResearch systems that use search engines for complex visual-textual fact-finding. However, evaluating these visual and textual search abilities is still difficult, and existing benchmarks have two major limitations. First, existing benchmarks are not visual search-centric: answers that should require visual search are often leaked through cross-textual cues in the text questions or can be inferred from the prior world knowledge in current MLLMs. Second, overly idealized evaluation scenario: On the image-search side, the required information can often be obtained via near-exact matching against the full image, while the text-search side is overly direct and insufficiently challenging. To address these issues, we construct the Vision-DeepResearch benchmark (VDR-Bench) comprising 2,000 VQA instances. All questions are created via a careful, multi-stage curation pipeline and rigorous expert review, designed to assess the behavior of Vision-DeepResearch systems under realistic real-world conditions. Moreover, to address the insufficient visual retrieval capabilities of current MLLMs, we propose a simple multi-round cropped-search workflow. This strategy is shown to effectively improve model performance in realistic visual retrieval scenarios. Overall, our results provide practical guidance for the design of future multimodal deep-research systems. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ Malware Detection Through Memory Analysis
This paper summarizes the research conducted for a malware detection project using the Canadian Institute for Cybersecurity's MalMemAnalysis-2022 dataset. The purpose of the project was to explore the effectiveness and efficiency of machine learning techniques for the task of binary classification (i.e., benign or malicious) as well as multi-class classification to further include three malware sub-types (i.e., benign, ransomware, spyware, or Trojan horse). The XGBoost model type was the final model selected for both tasks due to the trade-off between strong detection capability and fast inference speed. The binary classifier achieved a testing subset accuracy and F1 score of 99.98\%, while the multi-class version reached an accuracy of 87.54\% and an F1 score of 81.26\%, with an average F1 score over the malware sub-types of 75.03\%. In addition to the high modelling performance, XGBoost is also efficient in terms of classification speed. It takes about 37.3 milliseconds to classify 50 samples in sequential order in the binary setting and about 43.2 milliseconds in the multi-class setting. The results from this research project help advance the efforts made towards developing accurate and real-time obfuscated malware detectors for the goal of improving online privacy and safety. *This project was completed as part of ELEC 877 (AI for Cybersecurity) in the Winter 2024 term.
☆ SurvKAN: A Fully Parametric Survival Model Based on Kolmogorov-Arnold Networks
Accurate prediction of time-to-event outcomes is critical for clinical decision-making, treatment planning, and resource allocation in modern healthcare. While classical survival models such as Cox remain widely adopted in standard practice, they rely on restrictive assumptions, including linear covariate relationships and proportional hazards over time, that often fail to capture real-world clinical dynamics. Recent deep learning approaches like DeepSurv and DeepHit offer improved expressivity but sacrifice interpretability, limiting clinical adoption where trust and transparency are paramount. Hybrid models incorporating Kolmogorov-Arnold Networks (KANs), such as CoxKAN, have begun to address this trade-off but remain constrained by the semi-parametric Cox framework. In this work we introduce SurvKAN, a fully parametric, time-continuous survival model based on KAN architectures that eliminates the proportional hazards constraint. SurvKAN treats time as an explicit input to a KAN that directly predicts the log-hazard function, enabling end-to-end training on the full survival likelihood. Our architecture preserves interpretability through learnable univariate functions that indicate how individual features influence risk over time. Extensive experiments on standard survival benchmarks demonstrate that SurvKAN achieves competitive or superior performance compared to classical and state-of-the-art baselines across concordance and calibration metrics. Additionally, interpretability analyses reveal clinically meaningful patterns that align with medical domain knowledge.
☆ Self-Evolving Coordination Protocol in Multi-Agent AI Systems: An Exploratory Systems Feasibility Study
Contemporary multi-agent systems increasingly rely on internal coordination mechanisms to combine, arbitrate, or constrain the outputs of heterogeneous components. In safety-critical and regulated domains such as finance, these mechanisms must satisfy strict formal requirements, remain auditable, and operate within explicitly bounded limits. Coordination logic therefore functions as a governance layer rather than an optimization heuristic. This paper presents an exploratory systems feasibility study of Self-Evolving Coordination Protocols (SECP): coordination protocols that permit limited, externally validated self-modification while preserving fixed formal invariants. We study a controlled proof-of-concept setting in which six fixed Byzantine consensus protocol proposals are evaluated by six specialized decision modules. All coordination regimes operate under identical hard constraints, including Byzantine fault tolerance (f < n/3), O(n2) message complexity, complete non-statistical safety and liveness arguments, and bounded explainability. Four coordination regimes are compared in a single-shot design: unanimous hard veto, weighted scalar aggregation, SECP v1.0 (an agent-designed non-scalar protocol), and SECP v2.0 (the result of one governed modification). Outcomes are evaluated using a single metric, proposal coverage, defined as the number of proposals accepted. A single recursive modification increased coverage from two to three accepted proposals while preserving all declared invariants. The study makes no claims regarding statistical significance, optimality, convergence, or learning. Its contribution is architectural: it demonstrates that bounded self-modification of coordination protocols is technically implementable, auditable, and analyzable under explicit formal constraints, establishing a foundation for governed multi-agent systems.
☆ Traffic-Aware Navigation in Road Networks
This project compares three graph search approaches for the task of traffic-aware navigation in Kingston's road network. These approaches include a single-run multi-query preprocessing algorithm (Floyd-Warshall-Ingerman), continuous single-query real-time search (Dijkstra's and A*), and an algorithm combining both approaches to balance between their trade-offs by first finding the top K shortest paths then iterating over them in real time (Yen's). Dijkstra's and A* resulted in the most traffic-aware optimal solutions with minimal preprocessing required. Floyd-Warshall-Ingerman was the fastest in real time but provided distance based paths with no traffic awareness. Yen's algorithm required significant preprocessing but balanced between the other two approaches in terms of runtime speed and optimality. Each approach presents advantages and disadvantages that need to be weighed depending on the circumstances of specific deployment contexts to select the best custom solution. *This project was completed as part of ELEC 844 (Search and Planning Algorithms for Robotics) in the Fall 2025 term.
☆ ECHO: Entropy-Confidence Hybrid Optimization for Test-Time Reinforcement Learning
Test-time reinforcement learning generates multiple candidate answers via repeated rollouts and performs online updates using pseudo-labels constructed by majority voting. To reduce overhead and improve exploration, prior work introduces tree structured rollouts, which share reasoning prefixes and branch at key nodes to improve sampling efficiency. However, this paradigm still faces two challenges: (1) high entropy branching can trigger rollout collapse, where the branching budget concentrates on a few trajectories with consecutive high-entropy segments, rapidly reducing the number of effective branches; (2) early pseudo-labels are noisy and biased, which can induce self-reinforcing overfitting, causing the policy to sharpen prematurely and suppress exploration. To address these issues, we propose Entropy Confidence Hybrid Group Relative Policy Optimization (ECHO). During rollout, ECHO jointly leverages local entropy and group level confidence to adaptively control branch width, and further introduces online confidence-based pruning to terminate persistently low confidence branches, avoiding high entropy traps and mitigating collapse. During policy updates, ECHO employs confidence adaptive clipping and an entropy confidence hybrid advantage shaping approach to enhance training robustness and mitigate early stage bias. Experiments demonstrate that ECHO achieves consistent gains on multiple mathematical and visual reasoning benchmarks, and generalizes more effectively under a limited rollout budget.
comment: 19 ppages
☆ Back to the Future: Look-ahead Augmentation and Parallel Self-Refinement for Time Series Forecasting
Long-term time series forecasting (LTSF) remains challenging due to the trade-off between parallel efficiency and sequential modeling of temporal coherence. Direct multi-step forecasting (DMS) methods enable fast, parallel prediction of all future horizons but often lose temporal consistency across steps, while iterative multi-step forecasting (IMS) preserves temporal dependencies at the cost of error accumulation and slow inference. To bridge this gap, we propose Back to the Future (BTTF), a simple yet effective framework that enhances forecasting stability through look-ahead augmentation and self-corrective refinement. Rather than relying on complex model architectures, BTTF revisits the fundamental forecasting process and refines a base model by ensembling the second-stage models augmented with their initial predictions. Despite its simplicity, our approach consistently improves long-horizon accuracy and mitigates the instability of linear forecasting models, achieving accuracy gains of up to 58% and demonstrating stable improvements even when the first-stage model is trained under suboptimal conditions. These results suggest that leveraging model-generated forecasts as augmentation can be a simple yet powerful way to enhance long-term prediction, even without complex architectures.
comment: 4 pages, Short paper accepted at The Web Conference (WWW) 2026
☆ Learning Generative Selection for Best-of-N
Scaling test-time compute via parallel sampling can substantially improve LLM reasoning, but is often limited by Best-of-N selection quality. Generative selection methods, such as GenSelect, address this bottleneck, yet strong selection performance remains largely limited to large models. We show that small reasoning models can acquire strong GenSelect capabilities through targeted reinforcement learning. To this end, we synthesize selection tasks from large-scale math and code instruction datasets by filtering to instances with both correct and incorrect candidate solutions, and train 1.7B-parameter models with DAPO to reward correct selections. Across math (AIME24, AIME25, HMMT25) and code (LiveCodeBench) reasoning benchmarks, our models consistently outperform prompting and majority-voting baselines, often approaching or exceeding much larger models. Moreover, these gains generalize to selecting outputs from stronger models despite training only on outputs from weaker models. Overall, our results establish reinforcement learning as a scalable way to unlock strong generative selection in small models, enabling efficient test-time scaling.
☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
☆ CAM: A Causality-based Analysis Framework for Multi-Agent Code Generation Systems
Despite the remarkable success that Multi-Agent Code Generation Systems (MACGS) have achieved, the inherent complexity of multi-agent architectures produces substantial volumes of intermediate outputs. To date, the individual importance of these intermediate outputs to the system correctness remains opaque, which impedes targeted optimization of MACGS designs. To address this challenge, we propose CAM, the first \textbf{C}ausality-based \textbf{A}nalysis framework for \textbf{M}ACGS that systematically quantifies the contribution of different intermediate features for system correctness. By comprehensively categorizing intermediate outputs and systematically simulating realistic errors on intermediate features, we identify the important features for system correctness and aggregate their importance rankings. We conduct extensive empirical analysis on the identified importance rankings. Our analysis reveals intriguing findings: first, we uncover context-dependent features\textemdash features whose importance emerges mainly through interactions with other features, revealing that quality assurance for MACGS should incorporate cross-feature consistency checks; second, we reveal that hybrid backend MACGS with different backend LLMs assigned according to their relative strength achieves up to 7.2\% Pass@1 improvement, underscoring hybrid architectures as a promising direction for future MACGS design. We further demonstrate CAM's practical utility through two applications: (1) failure repair which achieves a 73.3\% success rate by optimizing top-3 importance-ranked features and (2) feature pruning that reduces up to 66.8\% intermediate token consumption while maintaining generation performance. Our work provides actionable insights for MACGS design and deployment, establishing causality analysis as a powerful approach for understanding and improving MACGS.
comment: 18 pages, 12 tables, 4 figures
☆ DCoPilot: Generative AI-Empowered Policy Adaptation for Dynamic Data Center Operations
Modern data centers (DCs) hosting artificial intelligence (AI)-dedicated devices operate at high power densities with rapidly varying workloads, making minute-level adaptation essential for safe and energy-efficient operation. However, manually designing piecewise deep reinforcement learning (DRL) agents cannot keep pace with frequent dynamics shifts and service-level agreement (SLA) changes of an evolving DC. This specification-to-policy lag causes a lack of timely, effective control policies, which may lead to service outages. To bridge the gap, we present DCoPilot, a hybrid framework for generative control policies in dynamic DC operation. DCoPilot synergizes two distinct generative paradigms, i.e., a large language model (LLM) that performs symbolic generation of structured reward forms, and a hypernetwork that conducts parametric generation of policy weights. DCoPilot operates through three coordinated phases: (i) simulation scale-up, which stress-tests reward candidates across diverse simulation-ready (SimReady) scenes; (ii) meta policy distillation, where a hypernetwork is trained to output policy weights conditioned on SLA and scene embeddings; and (iii) online adaptation, enabling zero-shot policy generation in response to updated specifications. Evaluated across five control task families spanning diverse DC components, DCoPilot achieves near-zero constraint violations and outperforms all baselines across specification variations. Ablation studies validate the effectiveness of LLM-based unified reward generation in enabling stable hypernetwork convergence.
☆ Mitigating Safety Tax via Distribution-Grounded Refinement in Large Reasoning Models
Safety alignment incurs safety tax that perturbs a large reasoning model's (LRM) general reasoning ability. Existing datasets used for safety alignment for an LRM are usually constructed by distilling safety reasoning traces and answers from an external LRM or human labeler. However, such reasoning traces and answers exhibit a distributional gap with the target LRM that needs alignment, and we conjecture such distributional gap is the culprit leading to significant degradation of reasoning ability of the target LRM. Driven by this hypothesis, we propose a safety alignment dataset construction method, dubbed DGR. DGR transforms and refines an existing out-of-distributional safety reasoning dataset to be aligned with the target's LLM inner distribution. Experimental results demonstrate that i) DGR effectively mitigates the safety tax while maintaining safety performance across all baselines, i.e., achieving \textbf{+30.2\%} on DirectRefusal and \textbf{+21.2\%} on R1-ACT improvement in average reasoning accuracy compared to Vanilla SFT; ii) the degree of reasoning degradation correlates with the extent of distribution shift, suggesting that bridging this gap is central to preserving capabilities. Furthermore, we find that safety alignment in LRMs may primarily function as a mechanism to activate latent knowledge, as a mere \textbf{10} samples are sufficient for activating effective refusal behaviors. These findings not only emphasize the importance of distributional consistency but also provide insights into the activation mechanism of safety in reasoning models.
comment: Code will be released soon
☆ Understanding the Reversal Curse Mitigation in Masked Diffusion Models through Attention and Training Dynamics
Autoregressive language models (ARMs) suffer from the reversal curse: after learning that "$A$ is $B$", they often fail on the reverse query "$B$ is $A$". Masked diffusion-based language models (MDMs) exhibit this failure in a much weaker form, but the underlying reason has remained unclear. A common explanation attributes this mitigation to the any-order training objective. However, observing "[MASK] is $B$" during training does not necessarily teach the model to handle the reverse prompt "$B$ is [MASK]". We show that the mitigation arises from architectural structure and its interaction with training. In a one-layer Transformer encoder, weight sharing couples the two directions by making forward and reverse attention scores positively correlated. In the same setting, we further show that the corresponding gradients are aligned, so minimizing the forward loss also reduces the reverse loss. Experiments on both controlled toy tasks and large-scale diffusion language models support these mechanisms, explaining why MDMs partially overcome a failure mode that persists in strong ARMs.
☆ Scalable Spatio-Temporal SE(3) Diffusion for Long-Horizon Protein Dynamics
Molecular dynamics (MD) simulations remain the gold standard for studying protein dynamics, but their computational cost limits access to biologically relevant timescales. Recent generative models have shown promise in accelerating simulations, yet they struggle with long-horizon generation due to architectural constraints, error accumulation, and inadequate modeling of spatio-temporal dynamics. We present STAR-MD (Spatio-Temporal Autoregressive Rollout for Molecular Dynamics), a scalable SE(3)-equivariant diffusion model that generates physically plausible protein trajectories over microsecond timescales. Our key innovation is a causal diffusion transformer with joint spatio-temporal attention that efficiently captures complex space-time dependencies while avoiding the memory bottlenecks of existing methods. On the standard ATLAS benchmark, STAR-MD achieves state-of-the-art performance across all metrics--substantially improving conformational coverage, structural validity, and dynamic fidelity compared to previous methods. STAR-MD successfully extrapolates to generate stable microsecond-scale trajectories where baseline methods fail catastrophically, maintaining high structural quality throughout the extended rollout. Our comprehensive evaluation reveals severe limitations in current models for long-horizon generation, while demonstrating that STAR-MD's joint spatio-temporal modeling enables robust dynamics simulation at biologically relevant timescales, paving the way for accelerated exploration of protein function.
comment: For associated project page, see https://bytedance-seed.github.io/ConfRover/starmd
☆ Two-Stage Grid Optimization for Group-wise Quantization of LLMs ICASSP 2026
Group-wise quantization is an effective strategy for mitigating accuracy degradation in low-bit quantization of large language models (LLMs). Among existing methods, GPTQ has been widely adopted due to its efficiency; however, it neglects input statistics and inter-group correlations when determining group scales, leading to a mismatch with its goal of minimizing layer-wise reconstruction loss. In this work, we propose a two-stage optimization framework for group scales that explicitly minimizes the layer-wise reconstruction loss. In the first stage, performed prior to GPTQ, we initialize each group scale to minimize the group-wise reconstruction loss, thereby incorporating input statistics. In the second stage, we freeze the integer weights obtained via GPTQ and refine the group scales to minimize the layer-wise reconstruction loss. To this end, we employ the coordinate descent algorithm and derive a closed-form update rule, which enables efficient refinement without costly numerical optimization. Notably, our derivation incorporates the quantization errors from preceding layers to prevent error accumulation. Experimental results demonstrate that our method consistently enhances group-wise quantization, achieving higher accuracy with negligible overhead.
comment: ICASSP 2026
☆ Toxicity Assessment in Preclinical Histopathology via Class-Aware Mahalanobis Distance for Known and Novel Anomalies
Drug-induced toxicity remains a leading cause of failure in preclinical development and early clinical trials. Detecting adverse effects at an early stage is critical to reduce attrition and accelerate the development of safe medicines. Histopathological evaluation remains the gold standard for toxicity assessment, but it relies heavily on expert pathologists, creating a bottleneck for large-scale screening. To address this challenge, we introduce an AI-based anomaly detection framework for histopathological whole-slide images (WSIs) in rodent livers from toxicology studies. The system identifies healthy tissue and known pathologies (anomalies) for which training data is available. In addition, it can detect rare pathologies without training data as out-of-distribution (OOD) findings. We generate a novel dataset of pixelwise annotations of healthy tissue and known pathologies and use this data to fine-tune a pre-trained Vision Transformer (DINOv2) via Low-Rank Adaptation (LoRA) in order to do tissue segmentation. Finally, we extract features for OOD detection using the Mahalanobis distance. To better account for class-dependent variability in histological data, we propose the use of class-specific thresholds. We optimize the thresholds using the mean of the false negative and false positive rates, resulting in only 0.16\% of pathological tissue classified as healthy and 0.35\% of healthy tissue classified as pathological. Applied to mouse liver WSIs with known toxicological findings, the framework accurately detects anomalies, including rare OOD morphologies. This work demonstrates the potential of AI-driven histopathology to support preclinical workflows, reduce late-stage failures, and improve efficiency in drug development.
☆ Unifying Masked Diffusion Models with Various Generation Orders and Beyond
Masked diffusion models (MDMs) are a potential alternative to autoregressive models (ARMs) for language generation, but generation quality depends critically on the generation order. Prior work either hard-codes an ordering (e.g., blockwise left-to-right) or learns an ordering policy for a pretrained MDM, which incurs extra cost and can yield suboptimal solutions due to the two-stage optimization. Motivated by this, we propose order-expressive masked diffusion model (OeMDM) for a broad class of diffusion generative processes with various generation orders, enabling the interpretation of MDM, ARM, and block diffusion in a single framework. Furthermore, building on OeMDM, we introduce learnable-order masked diffusion model (LoMDM), which jointly learns the generation ordering and diffusion backbone through a single objective from scratch, enabling the diffusion model to generate text in context-dependent ordering. Empirically, we confirm that LoMDM outperforms various discrete diffusion models across multiple language modeling benchmarks.
comment: Preprint
☆ The Verification Crisis: Expert Perceptions of GenAI Disinformation and the Case for Reproducible Provenance
The growth of Generative Artificial Intelligence (GenAI) has shifted disinformation production from manual fabrication to automated, large-scale manipulation. This article presents findings from the first wave of a longitudinal expert perception survey (N=21) involving AI researchers, policymakers, and disinformation specialists. It examines the perceived severity of multimodal threats -- text, image, audio, and video -- and evaluates current mitigation strategies. Results indicate that while deepfake video presents immediate "shock" value, large-scale text generation poses a systemic risk of "epistemic fragmentation" and "synthetic consensus," particularly in the political domain. The survey reveals skepticism about technical detection tools, with experts favoring provenance standards and regulatory frameworks despite implementation barriers. GenAI disinformation research requires reproducible methods. The current challenge is measurement: without standardized benchmarks and reproducibility checklists, tracking or countering synthetic media remains difficult. We propose treating information integrity as an infrastructure with rigor in data provenance and methodological reproducibility.
comment: Accepted at ACM TheWebConf '26 Companion
☆ Probabilistic Performance Guarantees for Multi-Task Reinforcement Learning
Multi-task reinforcement learning trains generalist policies that can execute multiple tasks. While recent years have seen significant progress, existing approaches rarely provide formal performance guarantees, which are indispensable when deploying policies in safety-critical settings. We present an approach for computing high-confidence guarantees on the performance of a multi-task policy on tasks not seen during training. Concretely, we introduce a new generalisation bound that composes (i) per-task lower confidence bounds from finitely many rollouts with (ii) task-level generalisation from finitely many sampled tasks, yielding a high-confidence guarantee for new tasks drawn from the same arbitrary and unknown distribution. Across state-of-the-art multi-task RL methods, we show that the guarantees are theoretically sound and informative at realistic sample sizes.
☆ WADEPre: A Wavelet-based Decomposition Model for Extreme Precipitation Nowcasting with Multi-Scale Learning
The heavy-tailed nature of precipitation intensity impedes precise precipitation nowcasting. Standard models that optimize pixel-wise losses are prone to regression-to-the-mean bias, which blurs extreme values. Existing Fourier-based methods also lack the spatial localization needed to resolve transient convective cells. To overcome these intrinsic limitations, we propose WADEPre, a wavelet-based decomposition model for extreme precipitation that transitions the modeling into the wavelet domain. By leveraging the Discrete Wavelet Transform for explicit decomposition, WADEPre employs a dual-branch architecture: an Approximation Network to model stable, low-frequency advection, isolating deterministic trends from statistical bias, and a spatially localized Detail Network to capture high-frequency stochastic convection, resolving transient singularities and preserving sharp boundaries. A subsequent Refiner module then dynamically reconstructs these decoupled multi-scale components into the final high-fidelity forecast. To address optimization instability, we introduce a multi-scale curriculum learning strategy that progressively shifts supervision from coarse scales to fine-grained details. Extensive experiments on the SEVIR and Shanghai Radar datasets demonstrate that WADEPre achieves state-of-the-art performance, yielding significant improvements in capturing extreme thresholds and maintaining structural fidelity. Our code is available at https://github.com/sonderlau/WADEPre.
comment: The paper has been submitted to KDD 2026 and is currently under review
☆ LEC-KG: An LLM-Embedding Collaborative Framework for Domain-Specific Knowledge Graph Construction -- A Case Study on SDGs
Constructing domain-specific knowledge graphs from unstructured text remains challenging due to heterogeneous entity mentions, long-tail relation distributions, and the absence of standardized schemas. We present LEC-KG, a bidirectional collaborative framework that integrates the semantic understanding of Large Language Models (LLMs) with the structural reasoning of Knowledge Graph Embeddings (KGE). Our approach features three key components: (1) hierarchical coarse-to-fine relation extraction that mitigates long-tail bias, (2) evidence-guided Chain-of-Thought feedback that grounds structural suggestions in source text, and (3) semantic initialization that enables structural validation for unseen entities. The two modules enhance each other iteratively-KGE provides structure-aware feedback to refine LLM extractions, while validated triples progressively improve KGE representations. We evaluate LEC-KG on Chinese Sustainable Development Goal (SDG) reports, demonstrating substantial improvements over LLM baselines, particularly on low-frequency relations. Through iterative refinement, our framework reliably transforms unstructured policy text into validated knowledge graph triples.
☆ Multi-View Stenosis Classification Leveraging Transformer-Based Multiple-Instance Learning Using Real-World Clinical Data
Coronary artery stenosis is a leading cause of cardiovascular disease, diagnosed by analyzing the coronary arteries from multiple angiography views. Although numerous deep-learning models have been proposed for stenosis detection from a single angiography view, their performance heavily relies on expensive view-level annotations, which are often not readily available in hospital systems. Moreover, these models fail to capture the temporal dynamics and dependencies among multiple views, which are crucial for clinical diagnosis. To address this, we propose SegmentMIL, a transformer-based multi-view multiple-instance learning framework for patient-level stenosis classification. Trained on a real-world clinical dataset, using patient-level supervision and without any view-level annotations, SegmentMIL jointly predicts the presence of stenosis and localizes the affected anatomical region, distinguishing between the right and left coronary arteries and their respective segments. SegmentMIL obtains high performance on internal and external evaluations and outperforms both view-level models and classical MIL baselines, underscoring its potential as a clinically viable and scalable solution for coronary stenosis diagnosis. Our code is available at https://github.com/NikolaCenic/mil-stenosis.
See2Refine: Vision-Language Feedback Improves LLM-Based eHMI Action Designers
Automated vehicles lack natural communication channels with other road users, making external Human-Machine Interfaces (eHMIs) essential for conveying intent and maintaining trust in shared environments. However, most eHMI studies rely on developer-crafted message-action pairs, which are difficult to adapt to diverse and dynamic traffic contexts. A promising alternative is to use Large Language Models (LLMs) as action designers that generate context-conditioned eHMI actions, yet such designers lack perceptual verification and typically depend on fixed prompts or costly human-annotated feedback for improvement. We present See2Refine, a human-free, closed-loop framework that uses vision-language model (VLM) perceptual evaluation as automated visual feedback to improve an LLM-based eHMI action designer. Given a driving context and a candidate eHMI action, the VLM evaluates the perceived appropriateness of the action, and this feedback is used to iteratively revise the designer's outputs, enabling systematic refinement without human supervision. We evaluate our framework across three eHMI modalities (lightbar, eyes, and arm) and multiple LLM model sizes. Across settings, our framework consistently outperforms prompt-only LLM designers and manually specified baselines in both VLM-based metrics and human-subject evaluations. Results further indicate that the improvements generalize across modalities and that VLM evaluations are well aligned with human preferences, supporting the robustness and effectiveness of See2Refine for scalable action design.
comment: Under Review
☆ FiLoRA: Focus-and-Ignore LoRA for Controllable Feature Reliance
Multimodal foundation models integrate heterogeneous signals across modalities, yet it remains poorly understood how their predictions depend on specific internal feature groups and whether such reliance can be deliberately controlled. Existing studies of shortcut and spurious behavior largely rely on post hoc analyses or feature removal, offering limited insight into whether reliance can be modulated without altering task semantics. We introduce FiLoRA (Focus-and-Ignore LoRA), an instruction-conditioned, parameter-efficient adaptation framework that enables explicit control over internal feature reliance while keeping the predictive objective fixed. FiLoRA decomposes adaptation into feature group-aligned LoRA modules and applies instruction-conditioned gating, allowing natural language instructions to act as computation-level control signals rather than task redefinitions. Across text--image and audio--visual benchmarks, we show that instruction-conditioned gating induces consistent and causal shifts in internal computation, selectively amplifying or suppressing core and spurious feature groups without modifying the label space or training objective. Further analyses demonstrate that FiLoRA yields improved robustness under spurious feature interventions, revealing a principled mechanism to regulate reliance beyond correlation-driven learning.
☆ FORLER: Federated Offline Reinforcement Learning with Q-Ensemble and Actor Rectification
In Internet-of-Things systems, federated learning has advanced online reinforcement learning (RL) by enabling parallel policy training without sharing raw data. However, interacting with real environments online can be risky and costly, motivating offline federated RL (FRL), where local devices learn from fixed datasets. Despite its promise, offline FRL may break down under low-quality, heterogeneous data. Offline RL tends to get stuck in local optima, and in FRL, one device's suboptimal policy can degrade the aggregated model, i.e., policy pollution. We present FORLER, combining Q-ensemble aggregation on the server with actor rectification on devices. The server robustly merges device Q-functions to curb policy pollution and shift heavy computation off resource-constrained hardware without compromising privacy. Locally, actor rectification enriches policy gradients via a zeroth-order search for high-Q actions plus a bespoke regularizer that nudges the policy toward them. A $δ$-periodic strategy further reduces local computation. We theoretically provide safe policy improvement performance guarantees. Extensive experiments show FORLER consistently outperforms strong baselines under varying data quality and heterogeneity.
comment: accetped by IEEE International Conference on Communications (ICC 2026)
☆ SIDiffAgent: Self-Improving Diffusion Agent
Text-to-image diffusion models have revolutionized generative AI, enabling high-quality and photorealistic image synthesis. However, their practical deployment remains hindered by several limitations: sensitivity to prompt phrasing, ambiguity in semantic interpretation (e.g., ``mouse" as animal vs. a computer peripheral), artifacts such as distorted anatomy, and the need for carefully engineered input prompts. Existing methods often require additional training and offer limited controllability, restricting their adaptability in real-world applications. We introduce Self-Improving Diffusion Agent (SIDiffAgent), a training-free agentic framework that leverages the Qwen family of models (Qwen-VL, Qwen-Image, Qwen-Edit, Qwen-Embedding) to address these challenges. SIDiffAgent autonomously manages prompt engineering, detects and corrects poor generations, and performs fine-grained artifact removal, yielding more reliable and consistent outputs. It further incorporates iterative self-improvement by storing a memory of previous experiences in a database. This database of past experiences is then used to inject prompt-based guidance at each stage of the agentic pipeline. \modelour achieved an average VQA score of 0.884 on GenAIBench, significantly outperforming open-source, proprietary models and agentic methods. We will publicly release our code upon acceptance.
☆ Rethinking the Role of Entropy in Optimizing Tool-Use Behaviors for Large Language Model Agents
Tool-using agents based on Large Language Models (LLMs) excel in tasks such as mathematical reasoning and multi-hop question answering. However, in long trajectories, agents often trigger excessive and low-quality tool calls, increasing latency and degrading inference performance, making managing tool-use behavior challenging. In this work, we conduct entropy-based pilot experiments and observe a strong positive correlation between entropy reduction and high-quality tool calls. Building on this finding, we propose using entropy reduction as a supervisory signal and design two reward strategies to address the differing needs of optimizing tool-use behavior. Sparse outcome rewards provide coarse, trajectory-level guidance to improve efficiency, while dense process rewards offer fine-grained supervision to enhance performance. Experiments across diverse domains show that both reward designs improve tool-use behavior: the former reduces tool calls by 72.07% compared to the average of baselines, while the latter improves performance by 22.27%. These results position entropy reduction as a key mechanism for enhancing tool-use behavior, enabling agents to be more adaptive in real-world applications.
☆ Auto-Comp: An Automated Pipeline for Scalable Compositional Probing of Contrastive Vision-Language Models
Modern Vision-Language Models (VLMs) exhibit a critical flaw in compositional reasoning, often confusing "a red cube and a blue sphere" with "a blue cube and a red sphere". Disentangling the visual and linguistic roots of these failures is a fundamental challenge for robust evaluation. To enable fine-grained, controllable analysis, we introduce Auto-Comp, a fully automated and synthetic pipeline for generating scalable benchmarks. Its controllable nature is key to dissecting and isolating different reasoning skills. Auto-Comp generates paired images from Minimal (e.g., "a monitor to the left of a bicycle on a white background") and LLM-generated Contextual captions (e.g., "In a brightly lit photography studio, a monitor is positioned to the left of a bicycle"), allowing a controlled A/B test to disentangle core binding ability from visio-linguistic complexity. Our evaluation of 20 VLMs on novel benchmarks for color binding and spatial relations reveals universal compositional failures in both CLIP and SigLIP model families. Crucially, our novel "Confusion Benchmark" reveals a deeper flaw beyond simple attribute swaps: models are highly susceptible to low-entropy distractors (e.g., repeated objects or colors), demonstrating their compositional failures extend beyond known bag-of-words limitations. we uncover a surprising trade-off: visio-linguistic context, which provides global scene cues, aids spatial reasoning but simultaneously hinders local attribute binding by introducing visual clutter. We release the Auto-Comp pipeline to facilitate future benchmark creation, alongside all our generated benchmarks (https://huggingface.co/AutoComp).
☆ Hunt Instead of Wait: Evaluating Deep Data Research on Large Language Models
The agency expected of Agentic Large Language Models goes beyond answering correctly, requiring autonomy to set goals and decide what to explore. We term this investigatory intelligence, distinguishing it from executional intelligence, which merely completes assigned tasks. Data Science provides a natural testbed, as real-world analysis starts from raw data rather than explicit queries, yet few benchmarks focus on it. To address this, we introduce Deep Data Research (DDR), an open-ended task where LLMs autonomously extract key insights from databases, and DDR-Bench, a large-scale, checklist-based benchmark that enables verifiable evaluation. Results show that while frontier models display emerging agency, long-horizon exploration remains challenging. Our analysis highlights that effective investigatory intelligence depends not only on agent scaffolding or merely scaling, but also on intrinsic strategies of agentic models.
comment: 14 pages, 7 tables, 8 figures
☆ Bandwidth-Efficient Multi-Agent Communication through Information Bottleneck and Vector Quantization
Multi-agent reinforcement learning systems deployed in real-world robotics applications face severe communication constraints that significantly impact coordination effectiveness. We present a framework that combines information bottleneck theory with vector quantization to enable selective, bandwidth-efficient communication in multi-agent environments. Our approach learns to compress and discretize communication messages while preserving task-critical information through principled information-theoretic optimization. We introduce a gated communication mechanism that dynamically determines when communication is necessary based on environmental context and agent states. Experimental evaluation on challenging coordination tasks demonstrates that our method achieves 181.8% performance improvement over no-communication baselines while reducing bandwidth usage by 41.4%. Comprehensive Pareto frontier analysis shows dominance across the entire success-bandwidth spectrum with area-under-curve of 0.198 vs 0.142 for next-best methods. Our approach significantly outperforms existing communication strategies and establishes a theoretically grounded framework for deploying multi-agent systems in bandwidth-constrained environments such as robotic swarms, autonomous vehicle fleets, and distributed sensor networks.
comment: Accepted at the 2026 IEEE International Conference on Robotics and Automation (ICRA 2026), Vienna, Austria. 9 pages, 4 figures, 6 tables
☆ Constrained Process Maps for Multi-Agent Generative AI Workflows
Large language model (LLM)-based agents are increasingly used to perform complex, multi-step workflows in regulated settings such as compliance and due diligence. However, many agentic architectures rely primarily on prompt engineering of a single agent, making it difficult to observe or compare how models handle uncertainty and coordination across interconnected decision stages and with human oversight. We introduce a multi-agent system formalized as a finite-horizon Markov Decision Process (MDP) with a directed acyclic structure. Each agent corresponds to a specific role or decision stage (e.g., content, business, or legal review in a compliance workflow), with predefined transitions representing task escalation or completion. Epistemic uncertainty is quantified at the agent level using Monte Carlo estimation, while system-level uncertainty is captured by the MDP's termination in either an automated labeled state or a human-review state. We illustrate the approach through a case study in AI safety evaluation for self-harm detection, implemented as a multi-agent compliance system. Results demonstrate improvements over a single-agent baseline, including up to a 19\% increase in accuracy, up to an 85x reduction in required human review, and, in some configurations, reduced processing time.
☆ One Size, Many Fits: Aligning Diverse Group-Wise Click Preferences in Large-Scale Advertising Image Generation
Advertising image generation has increasingly focused on online metrics like Click-Through Rate (CTR), yet existing approaches adopt a ``one-size-fits-all" strategy that optimizes for overall CTR while neglecting preference diversity among user groups. This leads to suboptimal performance for specific groups, limiting targeted marketing effectiveness. To bridge this gap, we present \textit{One Size, Many Fits} (OSMF), a unified framework that aligns diverse group-wise click preferences in large-scale advertising image generation. OSMF begins with product-aware adaptive grouping, which dynamically organizes users based on their attributes and product characteristics, representing each group with rich collective preference features. Building on these groups, preference-conditioned image generation employs a Group-aware Multimodal Large Language Model (G-MLLM) to generate tailored images for each group. The G-MLLM is pre-trained to simultaneously comprehend group features and generate advertising images. Subsequently, we fine-tune the G-MLLM using our proposed Group-DPO for group-wise preference alignment, which effectively enhances each group's CTR on the generated images. To further advance this field, we introduce the Grouped Advertising Image Preference Dataset (GAIP), the first large-scale public dataset of group-wise image preferences, including around 600K groups built from 40M users. Extensive experiments demonstrate that our framework achieves the state-of-the-art performance in both offline and online settings. Our code and datasets will be released at https://github.com/JD-GenX/OSMF.
☆ Canonical Intermediate Representation for LLM-based optimization problem formulation and code generation
Automatically formulating optimization models from natural language descriptions is a growing focus in operations research, yet current LLM-based approaches struggle with the composite constraints and appropriate modeling paradigms required by complex operational rules. To address this, we introduce the Canonical Intermediate Representation (CIR): a schema that LLMs explicitly generate between problem descriptions and optimization models. CIR encodes the semantics of operational rules through constraint archetypes and candidate modeling paradigms, thereby decoupling rule logic from its mathematical instantiation. Upon a newly generated CIR knowledge base, we develop the rule-to-constraint (R2C) framework, a multi-agent pipeline that parses problem texts, synthesizes CIR implementations by retrieving domain knowledge, and instantiates optimization models. To systematically evaluate rule-to-constraint reasoning, we test R2C on our newly constructed benchmark featuring rich operational rules, and benchmarks from prior work. Extensive experiments show that R2C achieves state-of-the-art accuracy on the proposed benchmark (47.2% Accuracy Rate). On established benchmarks from the literature, R2C delivers highly competitive results, approaching the performance of proprietary models (e.g., GPT-5). Moreover, with a reflection mechanism, R2C achieves further gains and sets new best-reported results on some benchmarks.
comment: 41 pages, 4 figures, 5 tables
☆ Edit Knowledge, Not Just Facts via Multi-Step Reasoning over Background Stories
Enabling artificial intelligence systems, particularly large language models, to integrate new knowledge and flexibly apply it during reasoning remains a central challenge. Existing knowledge editing approaches emphasize atomic facts, improving factual recall but often failing to integrate new information into a coherent framework usable across contexts. In this work, we argue that knowledge internalization is fundamentally a reasoning problem rather than a memorization problem. Consequently, a model should be trained in situations where the new information is instrumental to solving a task, combined with pre-existing knowledge, and exercised through multi-step reasoning. Based on this insight, we propose a training strategy based on three principles. First, new knowledge is introduced as a coherent background story that contextualizes novel facts and explains their relation to existing knowledge. Second, models are trained using self-generated multi-hop questions that require multi-step reasoning involving the new information. Third, training is done using knowledge distillation, forcing a student model to internalize the teacher's reasoning behavior without access to the novel information. Experiments show that models trained with this strategy effectively leverage newly acquired knowledge during reasoning and achieve remarkable performance on challenging questions that require combining multiple new facts.
comment: under review
☆ Light Alignment Improves LLM Safety via Model Self-Reflection with a Single Neuron
The safety of large language models (LLMs) has increasingly emerged as a fundamental aspect of their development. Existing safety alignment for LLMs is predominantly achieved through post-training methods, which are computationally expensive and often fail to generalize well across different models. A small number of lightweight alignment approaches either rely heavily on prior-computed safety injections or depend excessively on the model's own capabilities, resulting in limited generalization and degraded efficiency and usability during generation. In this work, we propose a safety-aware decoding method that requires only low-cost training of an expert model and employs a single neuron as a gating mechanism. By effectively balancing the model's intrinsic capabilities with external guidance, our approach simultaneously preserves utility and enhances output safety. It demonstrates clear advantages in training overhead and generalization across model scales, offering a new perspective on lightweight alignment for the safe and practical deployment of large language models. Code: https://github.com/Beijing-AISI/NGSD.
comment: 21 pages, 3 figures
☆ Do I Really Know? Learning Factual Self-Verification for Hallucination Reduction
Factual hallucination remains a central challenge for large language models (LLMs). Existing mitigation approaches primarily rely on either external post-hoc verification or mapping uncertainty directly to abstention during fine-tuning, often resulting in overly conservative behavior. We propose VeriFY, a training-time framework that teaches LLMs to reason about factual uncertainty through consistency-based self-verification. VeriFY augments training with structured verification traces that guide the model to produce an initial answer, generate and answer a probing verification query, issue a consistency judgment, and then decide whether to answer or abstain. To address the risk of reinforcing hallucinated content when training on augmented traces, we introduce a stage-level loss masking approach that excludes hallucinated answer stages from the training objective while preserving supervision over verification behavior. Across multiple model families and scales, VeriFY reduces factual hallucination rates by 9.7 to 53.3 percent, with only modest reductions in recall (0.4 to 5.7 percent), and generalizes across datasets when trained on a single source. The source code, training data, and trained model checkpoints will be released upon acceptance.
☆ Rethinking Genomic Modeling Through Optical Character Recognition
Recent genomic foundation models largely adopt large language model architectures that treat DNA as a one-dimensional token sequence. However, exhaustive sequential reading is structurally misaligned with sparse and discontinuous genomic semantics, leading to wasted computation on low-information background and preventing understanding-driven compression for long contexts. Here, we present OpticalDNA, a vision-based framework that reframes genomic modeling as Optical Character Recognition (OCR)-style document understanding. OpticalDNA renders DNA into structured visual layouts and trains an OCR-capable vision--language model with a \emph{visual DNA encoder} and a \emph{document decoder}, where the encoder produces compact, reconstructible visual tokens for high-fidelity compression. Building on this representation, OpticalDNA defines prompt-conditioned objectives over core genomic primitives-reading, region grounding, subsequence retrieval, and masked span completion-thereby learning layout-aware DNA representations that retain fine-grained genomic information under a reduced effective token budget. Across diverse genomic benchmarks, OpticalDNA consistently outperforms recent baselines; on sequences up to 450k bases, it achieves the best overall performance with nearly $20\times$ fewer effective tokens, and surpasses models with up to $985\times$ more activated parameters while tuning only 256k \emph{trainable} parameters.
☆ Beyond RAG for Agent Memory: Retrieval by Decoupling and Aggregation
Agent memory systems often adopt the standard Retrieval-Augmented Generation (RAG) pipeline, yet its underlying assumptions differ in this setting. RAG targets large, heterogeneous corpora where retrieved passages are diverse, whereas agent memory is a bounded, coherent dialogue stream with highly correlated spans that are often duplicates. Under this shift, fixed top-$k$ similarity retrieval tends to return redundant context, and post-hoc pruning can delete temporally linked prerequisites needed for correct reasoning. We argue retrieval should move beyond similarity matching and instead operate over latent components, following decoupling to aggregation: disentangle memories into semantic components, organise them into a hierarchy, and use this structure to drive retrieval. We propose xMemory, which builds a hierarchy of intact units and maintains a searchable yet faithful high-level node organisation via a sparsity--semantics objective that guides memory split and merge. At inference, xMemory retrieves top-down, selecting a compact, diverse set of themes and semantics for multi-fact queries, and expanding to episodes and raw messages only when it reduces the reader's uncertainty. Experiments on LoCoMo and PerLTQA across the three latest LLMs show consistent gains in answer quality and token efficiency.
☆ ClueTracer: Question-to-Vision Clue Tracing for Training-Free Hallucination Suppression in Multimodal Reasoning
Large multimodal reasoning models solve challenging visual problems via explicit long-chain inference: they gather visual clues from images and decode clues into textual tokens. Yet this capability also increases hallucinations, where the model generates content that is not supported by the input image or the question. To understand this failure mode, we identify \emph{reasoning drift}: during clue gathering, the model over-focuses on question-irrelevant entities, diluting focus on task-relevant cues and gradually decoupling the reasoning trace from visual grounding. As a consequence, many inference-time localization or intervention methods developed for non-reasoning models fail to pinpoint the true clues in reasoning settings. Motivated by these insights, we introduce ClueRecall, a metric for assessing visual clue retrieval, and present ClueTracer, a training-free, parameter-free, and architecture-agnostic plugin for hallucination suppression. ClueTracer starts from the question and traces how key clues propagate along the model's reasoning pathway (question $\rightarrow$ outputs $\rightarrow$ visual tokens), thereby localizing task-relevant patches while suppressing spurious attention to irrelevant regions. Remarkably, \textbf{without any additional training}, ClueTracer improves all \textbf{reasoning} architectures (including \texttt{R1-OneVision}, \texttt{Ocean-R1}, \texttt{MM-Eureka}, \emph{etc}.) by $\mathbf{1.21\times}$ on reasoning benchmarks. When transferred to \textbf{non-reasoning} settings, it yields a $\mathbf{1.14\times}$ gain.
comment: 20 pages, 7 figures
☆ Preserve-Then-Quantize: Balancing Rank Budgets for Quantization Error Reconstruction in LLMs
Quantization Error Reconstruction (QER) reduces accuracy loss in Post-Training Quantization (PTQ) by approximating weights as $\mathbf{W} \approx \mathbf{Q} + \mathbf{L}\mathbf{R}$, using a rank-$r$ correction to reconstruct quantization error. Prior methods devote the full rank budget to error reconstruction, which is suboptimal when $\mathbf{W}$ has intrinsic low-rank structure and quantization corrupts dominant directions. We propose Structured Residual Reconstruction (SRR), a rank-allocation framework that preserves the top-$k$ singular subspace of the activation-scaled weight before quantization, quantizes only the residual, and uses the remaining rank $r-k$ for error reconstruction. We derive a theory-guided criterion for selecting $k$ by balancing quantization-exposed energy and unrecoverable error under rank constraints. We further show that resulting $\mathbf{Q} + \mathbf{L}\mathbf{R}$ parameterization naturally supports Quantized Parameter-Efficient Fine-Tuning (QPEFT), and stabilizes fine-tuning via gradient scaling along preserved directions. Experiments demonstrate consistent perplexity reductions across diverse models and quantization settings in PTQ, along with a 5.9 percentage-point average gain on GLUE under 2-bit QPEFT.
☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026
☆ On the Limits of Layer Pruning for Generative Reasoning in LLMs
Recent works have shown that layer pruning can compress large language models (LLMs) while retaining strong performance on classification benchmarks with little or no finetuning. However, existing pruning techniques often suffer severe degradation on generative reasoning tasks. Through a systematic study across multiple model families, we find that tasks requiring multi-step reasoning are particularly sensitive to depth reduction. Beyond surface-level text degeneration, we observe degradation of critical algorithmic capabilities, including arithmetic computation for mathematical reasoning and balanced parenthesis generation for code synthesis. Under realistic post-training constraints, without access to pretraining-scale data or compute, we evaluate a simple mitigation strategy based on supervised finetuning with Self-Generated Responses. This approach achieves strong recovery on classification tasks, retaining up to 90\% of baseline performance, and yields substantial gains of up to 20--30 percentage points on generative benchmarks compared to prior post-pruning techniques. Crucially, despite these gains, recovery for generative reasoning remains fundamentally limited relative to classification tasks and is viable primarily at lower pruning ratios. Overall, we characterize the practical limits of layer pruning for generative reasoning and provide guidance on when depth reduction can be applied effectively under constrained post-training regimes.
☆ Thinking Like a Doctor: Conversational Diagnosis through the Exploration of Diagnostic Knowledge Graphs
Conversational diagnosis requires multi-turn history-taking, where an agent asks clarifying questions to refine differential diagnoses under incomplete information. Existing approaches often rely on the parametric knowledge of a model or assume that patients provide rich and concrete information, which is unrealistic. To address these limitations, we propose a conversational diagnosis system that explores a diagnostic knowledge graph to reason in two steps: (i) generating diagnostic hypotheses from the dialogue context, and (ii) verifying hypotheses through clarifying questions, which are repeated until a final diagnosis is reached. Since evaluating the system requires a realistic patient simulator that responds to the system's questions, we adopt a well-established simulator along with patient profiles from MIMIC-IV. We further adapt it to describe symptoms vaguely to reflect real-world patients during early clinical encounters. Experiments show improved diagnostic accuracy and efficiency over strong baselines, and evaluations by physicians support the realism of our simulator and the clinical utility of the generated questions. Our code will be released upon publication.
☆ Optimizing Tensor Train Decomposition in DNNs for RISC-V Architectures Using Design Space Exploration and Compiler Optimizations
Deep neural networks (DNNs) have become indispensable in many real-life applications like natural language processing, and autonomous systems. However, deploying DNNs on resource-constrained devices, e.g., in RISC-V platforms, remains challenging due to the high computational and memory demands of fully connected (FC) layers, which dominate resource consumption. Low-rank factorization (LRF) offers an effective approach to compressing FC layers, but the vast design space of LRF solutions involves complex trade-offs among FLOPs, memory size, inference time, and accuracy, making the LRF process complex and time-consuming. This paper introduces an end-to-end LRF design space exploration methodology and a specialized design tool for optimizing FC layers on RISC-V processors. Using Tensor Train Decomposition (TTD) offered by TensorFlow T3F library, the proposed work prunes the LRF design space by excluding first, inefficient decomposition shapes and second, solutions with poor inference performance on RISC-V architectures. Compiler optimizations are then applied to enhance custom T3F layer performance, minimizing inference time and boosting computational efficiency. On average, our TT-decomposed layers run 3x faster than IREE and 8x faster than Pluto on the same compressed model. This work provides an efficient solution for deploying DNNs on edge and embedded devices powered by RISC-V architectures.
comment: 36 pages, 16 figures, this is the author-accepted version of the article published in ACM Transactions on Embedded Computing Systems (TECS), Vol. 24, No. 6
☆ Emergent Analogical Reasoning in Transformers
Analogy is a central faculty of human intelligence, enabling abstract patterns discovered in one domain to be applied to another. Despite its central role in cognition, the mechanisms by which Transformers acquire and implement analogical reasoning remain poorly understood. In this work, inspired by the notion of functors in category theory, we formalize analogical reasoning as the inference of correspondences between entities across categories. Based on this formulation, we introduce synthetic tasks that evaluate the emergence of analogical reasoning under controlled settings. We find that the emergence of analogical reasoning is highly sensitive to data characteristics, optimization choices, and model scale. Through mechanistic analysis, we show that analogical reasoning in Transformers decomposes into two key components: (1) geometric alignment of relational structure in the embedding space, and (2) the application of a functor within the Transformer. These mechanisms enable models to transfer relational structure from one category to another, realizing analogy. Finally, we quantify these effects and find that the same trends are observed in pretrained LLMs. In doing so, we move analogy from an abstract cognitive notion to a concrete, mechanistically grounded phenomenon in modern neural networks.
☆ SAME: Stabilized Mixture-of-Experts for Multimodal Continual Instruction Tuning
Multimodal Large Language Models (MLLMs) achieve strong performance through instruction tuning, but real-world deployment requires them to continually expand their capabilities, making Multimodal Continual Instruction Tuning (MCIT) essential. Recent methods leverage sparse expert routing to promote task specialization, but we find that the expert routing process suffers from drift as the data distribution evolves. For example, a grounding query that previously activated localization experts may instead be routed to irrelevant experts after learning OCR tasks. Meanwhile, the grounding-related experts can be overwritten by new tasks and lose their original functionality. Such failure reflects two problems: router drift, where expert selection becomes inconsistent over time, and expert drift, where shared experts are overwritten across tasks. Therefore, we propose StAbilized Mixture-of-Experts (SAME) for MCIT. To address router drift, SAME stabilizes expert selection by decomposing routing dynamics into orthogonal subspaces and updating only task-relevant directions. To mitigate expert drift, we regulate expert updates via curvature-aware scaling using historical input covariance in a rehearsal-free manner. SAME also introduces adaptive expert activation to freeze selected experts during training, reducing redundant computation and cross-task interference. Extensive experiments demonstrate its SOTA performance.
☆ Evolving from Tool User to Creator via Training-Free Experience Reuse in Multimodal Reasoning
Existing Tool-Integrated Reasoning (TIR) models have effectively extended the question-answering capabilities of LLMs by incorporating external tools. However, real-world scenarios present numerous open-ended problems where fixed tools often fail to meet task requirements. Furthermore, the lack of self-optimization mechanisms means that erroneous tool outputs can mislead the LLM's responses. Additionally, the construction of existing tools entails significant manual effort, which consequently constrains their applicability. Recognizing that the reasoning traces of LLMs encapsulate implicit problem-solving capabilities, we propose UCT, a novel training-free framework that transforms agents from tool users to tool creators. This approach harvests reasoning experiences and distills them into reusable assets. This method transforms the agent from a mere tool user into a tool creator, enabling adaptive tool creation and self-updating during the inference process. We also introduce a memory consolidation mechanism to maintain the tool library, ensuring high reusability of retained experiential memory for subsequent reasoning tasks. This novel automated tool construction paradigm continuously improves tool quality during reasoning, allowing the overall agent system to progress without additional training. Extensive experiments demonstrate that our method serves as a novel paradigm for enhancing the capabilities of TIR models. In particular, the significant performance gains achieved +20.86%$\uparrow$ and +23.04%$\uparrow$ on benchmarks across multi-domain mathematical and scientific reasoning tasks validate the self-evolving capability of the agent.
☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
☆ IntraSlice: Towards High-Performance Structural Pruning with Block-Intra PCA for LLMs
Large Language Models (LLMs) achieve strong performance across diverse tasks but face deployment challenges due to their massive size. Structured pruning offers acceleration benefits but leads to significant performance degradation. Recent PCA-based pruning methods have alleviated this issue by retaining key activation components, but are only applied between modules in order to fuse the transformation matrix, which introduces extra parameters and severely disrupts activation distributions due to residual connections. To address these issues, we propose IntraSlice, a framework that applies block-wise module-intra PCA compression pruning. By leveraging the structural characteristics of Transformer modules, we design an approximate PCA method whose transformation matrices can be fully fused into the model without additional parameters. We also introduce a PCA-based global pruning ratio estimator that further considers the distribution of compressed activations, building on conventional module importance. We validate our method on Llama2, Llama3, and Phi series across various language benchmarks. Experimental results demonstrate that our approach achieves superior compression performance compared to recent baselines at the same compression ratio or inference speed.
☆ Your AI-Generated Image Detector Can Secretly Achieve SOTA Accuracy, If Calibrated AAAI 2026
Despite being trained on balanced datasets, existing AI-generated image detectors often exhibit systematic bias at test time, frequently misclassifying fake images as real. We hypothesize that this behavior stems from distributional shift in fake samples and implicit priors learned during training. Specifically, models tend to overfit to superficial artifacts that do not generalize well across different generation methods, leading to a misaligned decision threshold when faced with test-time distribution shift. To address this, we propose a theoretically grounded post-hoc calibration framework based on Bayesian decision theory. In particular, we introduce a learnable scalar correction to the model's logits, optimized on a small validation set from the target distribution while keeping the backbone frozen. This parametric adjustment compensates for distributional shift in model output, realigning the decision boundary even without requiring ground-truth labels. Experiments on challenging benchmarks show that our approach significantly improves robustness without retraining, offering a lightweight and principled solution for reliable and adaptive AI-generated image detection in the open world. Code is available at https://github.com/muliyangm/AIGI-Det-Calib.
comment: AAAI 2026. Code: https://github.com/muliyangm/AIGI-Det-Calib
☆ Small Generalizable Prompt Predictive Models Can Steer Efficient RL Post-Training of Large Reasoning Models
Reinforcement learning enhances the reasoning capabilities of large language models but often involves high computational costs due to rollout-intensive optimization. Online prompt selection presents a plausible solution by prioritizing informative prompts to improve training efficiency. However, current methods either depend on costly, exact evaluations or construct prompt-specific predictive models lacking generalization across prompts. This study introduces Generalizable Predictive Prompt Selection (GPS), which performs Bayesian inference towards prompt difficulty using a lightweight generative model trained on the shared optimization history. Intermediate-difficulty prioritization and history-anchored diversity are incorporated into the batch acquisition principle to select informative prompt batches. The small predictive model also generalizes at test-time for efficient computational allocation. Experiments across varied reasoning benchmarks indicate GPS's substantial improvements in training efficiency, final performance, and test-time efficiency over superior baseline methods.
☆ Mixture-of-Experts with Intermediate CTC Supervision for Accented Speech Recognition
Accented speech remains a persistent challenge for automatic speech recognition (ASR), as most models are trained on data dominated by a few high-resource English varieties, leading to substantial performance degradation for other accents. Accent-agnostic approaches improve robustness yet struggle with heavily accented or unseen varieties, while accent-specific methods rely on limited and often noisy labels. We introduce Moe-Ctc, a Mixture-of-Experts architecture with intermediate CTC supervision that jointly promotes expert specialization and generalization. During training, accent-aware routing encourages experts to capture accent-specific patterns, which gradually transitions to label-free routing for inference. Each expert is equipped with its own CTC head to align routing with transcription quality, and a routing-augmented loss further stabilizes optimization. Experiments on the Mcv-Accent benchmark demonstrate consistent gains across both seen and unseen accents in low- and high-resource conditions, achieving up to 29.3% relative WER reduction over strong FastConformer baselines.
☆ Breaking the Static Graph: Context-Aware Traversal for Robust Retrieval-Augmented Generation
Recent advances in Retrieval-Augmented Generation (RAG) have shifted from simple vector similarity to structure-aware approaches like HippoRAG, which leverage Knowledge Graphs (KGs) and Personalized PageRank (PPR) to capture multi-hop dependencies. However, these methods suffer from a "Static Graph Fallacy": they rely on fixed transition probabilities determined during indexing. This rigidity ignores the query-dependent nature of edge relevance, causing semantic drift where random walks are diverted into high-degree "hub" nodes before reaching critical downstream evidence. Consequently, models often achieve high partial recall but fail to retrieve the complete evidence chain required for multi-hop queries. To address this, we propose CatRAG, Context-Aware Traversal for robust RAG, a framework that builds on the HippoRAG 2 architecture and transforms the static KG into a query-adaptive navigation structure. We introduce a multi-faceted framework to steer the random walk: (1) Symbolic Anchoring, which injects weak entity constraints to regularize the random walk; (2) Query-Aware Dynamic Edge Weighting, which dynamically modulates graph structure, to prune irrelevant paths while amplifying those aligned with the query's intent; and (3) Key-Fact Passage Weight Enhancement, a cost-efficient bias that structurally anchors the random walk to likely evidence. Experiments across four multi-hop benchmarks demonstrate that CatRAG consistently outperforms state of the art baselines. Our analysis reveals that while standard Recall metrics show modest gains, CatRAG achieves substantial improvements in reasoning completeness, the capacity to recover the entire evidence path without gaps. These results reveal that our approach effectively bridges the gap between retrieving partial context and enabling fully grounded reasoning. Resources are available at https://github.com/kwunhang/CatRAG.
☆ Zero-Shot Off-Policy Learning
Off-policy learning methods seek to derive an optimal policy directly from a fixed dataset of prior interactions. This objective presents significant challenges, primarily due to the inherent distributional shift and value function overestimation bias. These issues become even more noticeable in zero-shot reinforcement learning, where an agent trained on reward-free data must adapt to new tasks at test time without additional training. In this work, we address the off-policy problem in a zero-shot setting by discovering a theoretical connection of successor measures to stationary density ratios. Using this insight, our algorithm can infer optimal importance sampling ratios, effectively performing a stationary distribution correction with an optimal policy for any task on the fly. We benchmark our method in motion tracking tasks on SMPL Humanoid, continuous control on ExoRL, and for the long-horizon OGBench tasks. Our technique seamlessly integrates into forward-backward representation frameworks and enables fast-adaptation to new tasks in a training-free regime. More broadly, this work bridges off-policy learning and zero-shot adaptation, offering benefits to both research areas.
☆ Efficient Epistemic Uncertainty Estimation for Large Language Models via Knowledge Distillation
Quantifying uncertainty in Large Language Models (LLMs) is essential for mitigating hallucinations and enabling risk-aware deployment in safety-critical tasks. However, estimating Epistemic Uncertainty(EU) via Deep Ensembles is computationally prohibitive at the scale of modern models. We propose a framework that leverages the small draft models to efficiently estimate token-level EU, bypassing the need for full-scale ensembling. Theoretically grounded in a Bias-Variance Decomposition, our approach approximates EU via Jensen-Shannon divergence among drafts (variance proxy) and KL divergence between the draft mixture and the target (bias proxy). To further ensure accuracy without significant overhead, we introduce Online Stochastic Distillation (OSD) to efficiently approximate target aggregation and the Data-Diverse Drafts (DDD) strategy to enhance draft diversity for better target approximation. Extensive experiments on GSM8K demonstrate that our method reduces the estimation error (RMSE) by up to 37% compared to baselines. Crucially, our approach achieves Hallucination Detection performance competitive with heavy perturbation-based methods like TokUR while incurring negligible inference costs, offering a practical solution for uncertainty-aware LLM deployment.
☆ Human Society-Inspired Approaches to Agentic AI Security: The 4C Framework
AI is moving from domain-specific autonomy in closed, predictable settings to large-language-model-driven agents that plan and act in open, cross-organizational environments. As a result, the cybersecurity risk landscape is changing in fundamental ways. Agentic AI systems can plan, act, collaborate, and persist over time, functioning as participants in complex socio-technical ecosystems rather than as isolated software components. Although recent work has strengthened defenses against model and pipeline level vulnerabilities such as prompt injection, data poisoning, and tool misuse, these system centric approaches may fail to capture risks that arise from autonomy, interaction, and emergent behavior. This article introduces the 4C Framework for multi-agent AI security, inspired by societal governance. It organizes agentic risks across four interdependent dimensions: Core (system, infrastructure, and environmental integrity), Connection (communication, coordination, and trust), Cognition (belief, goal, and reasoning integrity), and Compliance (ethical, legal, and institutional governance). By shifting AI security from a narrow focus on system-centric protection to the broader preservation of behavioral integrity and intent, the framework complements existing AI security strategies and offers a principled foundation for building agentic AI systems that are trustworthy, governable, and aligned with human values.
comment: 10 pages
☆ Towards Exploratory and Focused Manipulation with Bimanual Active Perception: A New Problem, Benchmark and Strategy
Recently, active vision has reemerged as an important concept for manipulation, since visual occlusion occurs more frequently when main cameras are mounted on the robot heads. We reflect on the visual occlusion issue and identify its essence as the absence of information useful for task completion. Inspired by this, we come up with the more fundamental problem of Exploratory and Focused Manipulation (EFM). The proposed problem is about actively collecting information to complete challenging manipulation tasks that require exploration or focus. As an initial attempt to address this problem, we establish the EFM-10 benchmark that consists of 4 categories of tasks that align with our definition (10 tasks in total). We further come up with a Bimanual Active Perception (BAP) strategy, which leverages one arm to provide active vision and another arm to provide force sensing while manipulating. Based on this idea, we collect a dataset named BAPData for the tasks in EFM-10. With the dataset, we successfully verify the effectiveness of the BAP strategy in an imitation learning manner. We hope that the EFM-10 benchmark along with the BAP strategy can become a cornerstone that facilitates future research towards this direction. Project website: EFManipulation.github.io.
comment: ICRA 2026
☆ T-LLM: Teaching Large Language Models to Forecast Time Series via Temporal Distillation
Time series forecasting plays a critical role in decision-making across many real-world applications. Unlike data in vision and language domains, time series data is inherently tied to the evolution of underlying processes and can only accumulate as real-world time progresses, limiting the effectiveness of scale-driven pretraining alone. This time-bound constraint poses a challenge for enabling large language models (LLMs) to acquire forecasting capability, as existing approaches primarily rely on representation-level alignment or inference-time temporal modules rather than explicitly teaching forecasting behavior to the LLM. We propose T-LLM, a temporal distillation framework that equips general-purpose LLMs with time series forecasting capability by transferring predictive behavior from a lightweight temporal teacher during training. The teacher combines trend modeling and frequency-domain analysis to provide structured temporal supervision, and is removed entirely at inference, leaving the LLM as the sole forecasting model. Experiments on benchmark datasets and infectious disease forecasting tasks demonstrate that T-LLM consistently outperforms existing LLM-based forecasting methods under full-shot, few-shot, and zero-shot settings, while enabling a simple and efficient deployment pipeline.
☆ PIMCST: Physics-Informed Multi-Phase Consensus and Spatio-Temporal Few-Shot Learning for Traffic Flow Forecasting
Accurate traffic flow prediction remains a fundamental challenge in intelligent transportation systems, particularly in cross-domain, data-scarce scenarios where limited historical data hinders model training and generalisation. The complex spatio-temporal dependencies and nonlinear dynamics of urban mobility networks further complicate few-shot learning across different cities. This paper proposes MCPST, a novel Multi-phase Consensus Spatio-Temporal framework for few-shot traffic forecasting that reconceptualises traffic prediction as a multi-phase consensus learning problem. Our framework introduces three core innovations: (1) a multi-phase engine that models traffic dynamics through diffusion, synchronisation, and spectral embeddings for comprehensive dynamic characterisation; (2) an adaptive consensus mechanism that dynamically fuses phase-specific predictions while enforcing consistency; and (3) a structured meta-learning strategy for rapid adaptation to new cities with minimal data. We establish extensive theoretical guarantees, including representation theorems with bounded approximation errors and generalisation bounds for few-shot adaptation. Through experiments on four real-world datasets, MCPST outperforms fourteen state-of-the-art methods in spatio-temporal graph learning methods, dynamic graph transfer learning methods, prompt-based spatio-temporal prediction methods and cross-domain few-shot settings, improving prediction accuracy while reducing required training data and providing interpretable insights. The implementation code is available at https://github.com/afofanah/MCPST.
☆ COLT: Lightweight Multi-LLM Collaboration through Shared MCTS Reasoning for Model Compilation
Model serving costs dominate AI systems, making compiler optimization essential for scalable deployment. Recent works show that a large language model (LLM) can guide compiler search by reasoning over program structure and optimization history. However, using a single large model throughout the search is expensive, while smaller models are less reliable when used alone. Thus, this paper seeks to answer whether multi-LLM collaborative reasoning relying primarily on small LLMs can match or exceed the performance of a single large model. As such, we propose a lightweight collaborative multi-LLM framework, dubbed COLT, for compiler optimization that enables coordinated reasoning across multiple models within a single Monte Carlo tree search (MCTS) process. A key contribution is the use of a single shared MCTS tree as the collaboration substrate across LLMs, enabling the reuse of transformation prefixes and cross-model value propagation. Hence, we circumvent both heavy internal reasoning mechanisms and conventional agentic machinery that relies on external planners, multiple concurrent LLMs, databases, external memory/versioning of intermediate results, and controllers by simply endogenizing model selection within the lightweight MCTS optimization loop. Every iteration, the acting LLM proposes a joint action: (compiler transformation, model to be queried next). We also introduce a model-aware tree policy that biases search toward smaller models while preserving exploration, and a course-alteration mechanism that escalates to the largest model when the search exhibits persistent regressions attributable to smaller models.
☆ Large Language Model and Formal Concept Analysis: a comparative study for Topic Modeling
Topic modeling is a research field finding increasing applications: historically from document retrieving, to sentiment analysis and text summarization. Large Language Models (LLM) are currently a major trend in text processing, but few works study their usefulness for this task. Formal Concept Analysis (FCA) has recently been presented as a candidate for topic modeling, but no real applied case study has been conducted. In this work, we compare LLM and FCA to better understand their strengths and weakneses in the topic modeling field. FCA is evaluated through the CREA pipeline used in past experiments on topic modeling and visualization, whereas GPT-5 is used for the LLM. A strategy based on three prompts is applied with GPT-5 in a zero-shot setup: topic generation from document batches, merging of batch results into final topics, and topic labeling. A first experiment reuses the teaching materials previously used to evaluate CREA, while a second experiment analyzes 40 research articles in information systems to compare the extracted topics with the underling subfields.
☆ PIMPC-GNN: Physics-Informed Multi-Phase Consensus Learning for Enhancing Imbalanced Node Classification in Graph Neural Networks
Graph neural networks (GNNs) often struggle in class-imbalanced settings, where minority classes are under-represented and predictions are biased toward majorities. We propose \textbf{PIMPC-GNN}, a physics-informed multi-phase consensus framework for imbalanced node classification. Our method integrates three complementary dynamics: (i) thermodynamic diffusion, which spreads minority labels to capture long-range dependencies, (ii) Kuramoto synchronisation, which aligns minority nodes through oscillatory consensus, and (iii) spectral embedding, which separates classes via structural regularisation. These perspectives are combined through class-adaptive ensemble weighting and trained with an imbalance-aware loss that couples balanced cross-entropy with physics-based constraints. Across five benchmark datasets and imbalance ratios from 5-100, PIMPC-GNN outperforms 16 state-of-the-art baselines, achieving notable gains in minority-class recall (up to +12.7\%) and balanced accuracy (up to +8.3\%). Beyond empirical improvements, the framework also provides interpretable insights into consensus dynamics in graph learning. The code is available at \texttt{https://github.com/afofanah/PIMPC-GNN}.
☆ VLM-Guided Experience Replay
Recent advances in Large Language Models (LLMs) and Vision-Language Models (VLMs) have enabled powerful semantic and multimodal reasoning capabilities, creating new opportunities to enhance sample efficiency, high-level planning, and interpretability in reinforcement learning (RL). While prior work has integrated LLMs and VLMs into various components of RL, the replay buffer, a core component for storing and reusing experiences, remains unexplored. We propose addressing this gap by leveraging VLMs to guide the prioritization of experiences in the replay buffer. Our key idea is to use a frozen, pre-trained VLM (requiring no fine-tuning) as an automated evaluator to identify and prioritize promising sub-trajectories from the agent's experiences. Across scenarios, including game-playing and robotics, spanning both discrete and continuous domains, agents trained with our proposed prioritization method achieve 11-52% higher average success rates and improve sample efficiency by 19-45% compared to previous approaches. https://esharony.me/projects/vlm-rb/
☆ Reliable Real-Time Value at Risk Estimation via Quantile Regression Forest with Conformal Calibration
Rapidly evolving market conditions call for real-time risk monitoring, but its online estimation remains challenging. In this paper, we study the online estimation of one of the most widely used risk measures, Value at Risk (VaR). Its accurate and reliable estimation is essential for timely risk control and informed decision-making. We propose to use the quantile regression forest in the offline-simulation-online-estimation (OSOA) framework. Specifically, the quantile regression forest is trained offline to learn the relationship between the online VaR and risk factors, and real-time VaR estimates are then produced online by incorporating observed risk factors. To further ensure reliability, we develop a conformalized estimator that calibrates the online VaR estimates. To the best of our knowledge, we are the first to leverage conformal calibration to estimate real-time VaR reliably based on the OSOA formulation. Theoretical analysis establishes the consistency and coverage validity of the proposed estimators. Numerical experiments confirm the proposed method and demonstrate its effectiveness in practice.
☆ DomusFM: A Foundation Model for Smart-Home Sensor Data
Smart-home sensor data holds significant potential for several applications, including healthcare monitoring and assistive technologies. Existing approaches, however, face critical limitations. Supervised models require impractical amounts of labeled data. Foundation models for activity recognition focus only on inertial sensors, failing to address the unique characteristics of smart-home binary sensor events: their sparse, discrete nature combined with rich semantic associations. LLM-based approaches, while tested in this domain, still raise several issues regarding the need for natural language descriptions or prompting, and reliance on either external services or expensive hardware, making them infeasible in real-life scenarios due to privacy and cost concerns. We introduce DomusFM, the first foundation model specifically designed and pretrained for smart-home sensor data. DomusFM employs a self-supervised dual contrastive learning paradigm to capture both token-level semantic attributes and sequence-level temporal dependencies. By integrating semantic embeddings from a lightweight language model and specialized encoders for temporal patterns and binary states, DomusFM learns generalizable representations that transfer across environments and tasks related to activity and event analysis. Through leave-one-dataset-out evaluation across seven public smart-home datasets, we demonstrate that DomusFM outperforms state-of-the-art baselines on different downstream tasks, achieving superior performance even with only 5% of labeled training data available for fine-tuning. Our approach addresses data scarcity while maintaining practical deployability for real-world smart-home systems.
☆ DSXFormer: Dual-Pooling Spectral Squeeze-Expansion and Dynamic Context Attention Transformer for Hyperspectral Image Classification
Hyperspectral image classification (HSIC) is a challenging task due to high spectral dimensionality, complex spectral-spatial correlations, and limited labeled training samples. Although transformer-based models have shown strong potential for HSIC, existing approaches often struggle to achieve sufficient spectral discriminability while maintaining computational efficiency. To address these limitations, we propose a novel DSXFormer, a novel dual-pooling spectral squeeze-expansion transformer with Dynamic Context Attention for HSIC. The proposed DSXFormer introduces a Dual-Pooling Spectral Squeeze-Expansion (DSX) block, which exploits complementary global average and max pooling to adaptively recalibrate spectral feature channels, thereby enhancing spectral discriminability and inter-band dependency modeling. In addition, DSXFormer incorporates a Dynamic Context Attention (DCA) mechanism within a window-based transformer architecture to dynamically capture local spectral-spatial relationships while significantly reducing computational overhead. The joint integration of spectral dual-pooling squeeze-expansion and DCA enables DSXFormer to achieve an effective balance between spectral emphasis and spatial contextual representation. Furthermore, patch extraction, embedding, and patch merging strategies are employed to facilitate efficient multi-scale feature learning. Extensive experiments conducted on four widely used hyperspectral benchmark datasets, including Salinas (SA), Indian Pines (IP), Pavia University (PU), and Kennedy Space Center (KSC), demonstrate that DSXFormer consistently outperforms state-of-the-art methods, achieving classification accuracies of 99.95%, 98.91%, 99.85%, and 98.52%, respectively.
☆ Learning Sparse Visual Representations via Spatial-Semantic Factorization
Self-supervised learning (SSL) faces a fundamental conflict between semantic understanding and image reconstruction. High-level semantic SSL (e.g., DINO) relies on global tokens that are forced to be location-invariant for augmentation alignment, a process that inherently discards the spatial coordinates required for reconstruction. Conversely, generative SSL (e.g., MAE) preserves dense feature grids for reconstruction but fails to produce high-level abstractions. We introduce STELLAR, a framework that resolves this tension by factorizing visual features into a low-rank product of semantic concepts and their spatial distributions. This disentanglement allows us to perform DINO-style augmentation alignment on the semantic tokens while maintaining the precise spatial mapping in the localization matrix necessary for pixel-level reconstruction. We demonstrate that as few as 16 sparse tokens under this factorized form are sufficient to simultaneously support high-quality reconstruction (2.60 FID) and match the semantic performance of dense backbones (79.10% ImageNet accuracy). Our results highlight STELLAR as a versatile sparse representation that bridges the gap between discriminative and generative vision by strategically separating semantic identity from spatial geometry. Code available at https://aka.ms/stellar.
☆ Geometric Analysis of Token Selection in Multi-Head Attention
We present a geometric framework for analysing multi-head attention in large language models (LLMs). Without altering the mechanism, we view standard attention through a top-N selection lens and study its behaviour directly in value-state space. We define geometric metrics - Precision, Recall, and F-score - to quantify separability between selected and non-selected tokens, and derive non-asymptotic bounds with explicit dependence on dimension and margin under empirically motivated assumptions (stable value norms with a compressed sink token, exponential similarity decay, and piecewise attention weight profiles). The theory predicts a small-N operating regime of strongest non-trivial separability and clarifies how sequence length and sink similarity shape the metrics. Empirically, across LLaMA-2-7B, Gemma-7B, and Mistral-7B, measurements closely track the theoretical envelopes: top-N selection sharpens separability, sink similarity correlates with Recall. We also found that in LLaMA-2-7B heads specialize into three regimes - Retriever, Mixer, Reset - with distinct geometric signatures. Overall, attention behaves as a structured geometric classifier with measurable criteria for token selection, offering head level interpretability and informing geometry-aware sparsification and design of attention in LLMs.
☆ ES-MemEval: Benchmarking Conversational Agents on Personalized Long-Term Emotional Support
Large Language Models (LLMs) have shown strong potential as conversational agents. Yet, their effectiveness remains limited by deficiencies in robust long-term memory, particularly in complex, long-term web-based services such as online emotional support. However, existing long-term dialogue benchmarks primarily focus on static and explicit fact retrieval, failing to evaluate agents in critical scenarios where user information is dispersed, implicit, and continuously evolving. To address this gap, we introduce ES-MemEval, a comprehensive benchmark that systematically evaluates five core memory capabilities: information extraction, temporal reasoning, conflict detection, abstention, and user modeling, in long-term emotional support settings, covering question answering, summarization, and dialogue generation tasks. To support the benchmark, we also propose EvoEmo, a multi-session dataset for personalized long-term emotional support that captures fragmented, implicit user disclosures and evolving user states. Extensive experiments on open-source long-context, commercial, and retrieval-augmented (RAG) LLMs show that explicit long-term memory is essential for reducing hallucinations and enabling effective personalization. At the same time, RAG improves factual consistency but struggles with temporal dynamics and evolving user states. These findings highlight both the potential and limitations of current paradigms and motivate more robust integration of memory and retrieval for long-term personalized dialogue systems.
comment: 12 pages, 7 figures. Accepted to The Web Conference (WWW) 2026
☆ Entropy-Guided Data-Efficient Training for Multimodal Reasoning Reward Models
Multimodal reward models are crucial for aligning multimodal large language models with human preferences. Recent works have incorporated reasoning capabilities into these models, achieving promising results. However, training these models suffers from two critical challenges: (1) the inherent noise in preference datasets, which degrades model performance, and (2) the inefficiency of conventional training methods, which ignore the differences in sample difficulty. In this paper, we identify a strong correlation between response entropy and accuracy, indicating that entropy can serve as a reliable and unsupervised proxy for annotation noise and sample difficulty. Based on this insight, we propose a novel Entropy-Guided Training (EGT) approach for multimodal reasoning reward models, which combines two strategies: (1) entropy-guided data curation to mitigate the impact of unreliable samples, and (2) an entropy-guided training strategy that progressively introduces more complex examples. Extensive experiments across three benchmarks show that the EGT-trained model consistently outperforms state-of-the-art multimodal reward models.
☆ ProcMEM: Learning Reusable Procedural Memory from Experience via Non-Parametric PPO for LLM Agents
LLM-driven agents demonstrate strong performance in sequential decision-making but often rely on on-the-fly reasoning, re-deriving solutions even in recurring scenarios. This insufficient experience reuse leads to computational redundancy and execution instability. To bridge this gap, we propose ProcMEM, a framework that enables agents to autonomously learn procedural memory from interaction experiences without parameter updates. By formalizing a Skill-MDP, ProcMEM transforms passive episodic narratives into executable Skills defined by activation, execution, and termination conditions to ensure executability. To achieve reliable reusability without capability degradation, we introduce Non-Parametric PPO, which leverages semantic gradients for high-quality candidate generation and a PPO Gate for robust Skill verification. Through score-based maintenance, ProcMEM sustains compact, high-quality procedural memory. Experimental results across in-domain, cross-task, and cross-agent scenarios demonstrate that ProcMEM achieves superior reuse rates and significant performance gains with extreme memory compression. Visualized evolutionary trajectories and Skill distributions further reveal how ProcMEM transparently accumulates, refines, and reuses procedural knowledge to facilitate long-term autonomy.
comment: 20 Pages, 6 Figures, 4 Tables
☆ GRAB: An LLM-Inspired Sequence-First Click-Through Rate Prediction Modeling Paradigm
Traditional Deep Learning Recommendation Models (DLRMs) face increasing bottlenecks in performance and efficiency, often struggling with generalization and long-sequence modeling. Inspired by the scaling success of Large Language Models (LLMs), we propose Generative Ranking for Ads at Baidu (GRAB), an end-to-end generative framework for Click-Through Rate (CTR) prediction. GRAB integrates a novel Causal Action-aware Multi-channel Attention (CamA) mechanism to effectively capture temporal dynamics and specific action signals within user behavior sequences. Full-scale online deployment demonstrates that GRAB significantly outperforms established DLRMs, delivering a 3.05% increase in revenue and a 3.49% rise in CTR. Furthermore, the model demonstrates desirable scaling behavior: its expressive power shows a monotonic and approximately linear improvement as longer interaction sequences are utilized.
☆ SOPRAG: Multi-view Graph Experts Retrieval for Industrial Standard Operating Procedures
Standard Operating Procedures (SOPs) are essential for ensuring operational safety and consistency in industrial environments. However, retrieving and following these procedures presents unique challenges, such as rigid proprietary structures, condition-dependent relevance, and actionable execution requirement, which standard semantic-driven Retrieval-Augmented Generation (RAG) paradigms fail to address. Inspired by the Mixture-of-Experts (MoE) paradigm, we propose SOPRAG, a novel framework specifically designed to address the above pain points in SOP retrieval. SOPRAG replaces flat chunking with specialized Entity, Causal, and Flow graph experts to resolve industrial structural and logical complexities. To optimize and coordinate these experts, we propose a Procedure Card layer that prunes the search space to eliminate computational noise, and an LLM-Guided gating mechanism that dynamically weights these experts to align retrieval with operator intent. To address the scarcity of domain-specific data, we also introduce an automated, multi-agent workflow for benchmark construction. Extensive experiments across four industrial domains demonstrate that SOPRAG significantly outperforms strong lexical, dense, and graph-based RAG baselines in both retrieval accuracy and response utility, achieving perfect execution scores in real-world critical tasks.
☆ Time2Vec-Integrated Transformer for Robust Gesture Recognition from Low-Density sEMG
Accurate and responsive myoelectric prosthesis control typically relies on complex, dense multi-sensor arrays, which limits consumer accessibility. This paper presents a novel, data-efficient deep learning framework designed to achieve precise and accurate control using minimal sensor hardware. Leveraging an external dataset of 8 subjects, our approach implements a hybrid Transformer optimized for sparse, two-channel surface electromyography (sEMG). Unlike standard architectures that use fixed positional encodings, we integrate Time2Vec learnable temporal embeddings to capture the stochastic temporal warping inherent in biological signals. Furthermore, we employ a normalized additive fusion strategy that aligns the latent distributions of spatial and temporal features, preventing the destructive interference common in standard implementations. A two-stage curriculum learning protocol is utilized to ensure robust feature extraction despite data scarcity. The proposed architecture achieves a state-of-the-art multi-subject F1-score of 95.7% $\pm$ 0.20% for a 10-class movement set, statistically outperforming both a standard Transformer with fixed encodings and a recurrent CNN-LSTM model. Architectural optimization reveals that a balanced allocation of model capacity between spatial and temporal dimensions yields the highest stability. Furthermore, while direct transfer to a new unseen subject led to poor accuracy due to domain shifts, a rapid calibration protocol utilizing only two trials per gesture recovered performance from 21.0% $\pm$ 2.98% to 96.9% $\pm$ 0.52%. By validating that high-fidelity temporal embeddings can compensate for low spatial resolution, this work challenges the necessity of high-density sensing. The proposed framework offers a robust, cost-effective blueprint for next-generation prosthetic interfaces capable of rapid personalization.
☆ ROMA: Recursive Open Meta-Agent Framework for Long-Horizon Multi-Agent Systems
Current agentic frameworks underperform on long-horizon tasks. As reasoning depth increases, sequential orchestration becomes brittle, context windows impose hard limits that degrade performance, and opaque execution traces make failures difficult to localize or debug. We introduce ROMA (Recursive Open Meta-Agents), a domain-agnostic framework that addresses these limitations through recursive task decomposition and structured aggregation. ROMA decomposes goals into dependency-aware subtask trees that can be executed in parallel, while aggregation compresses and validates intermediate results to control context growth. Our framework standardizes agent construction around four modular roles --Atomizer (which decides whether a task should be decomposed), Planner, Executor, and Aggregator -- which cleanly separate orchestration from model selection and enable transparent, hierarchical execution traces. This design supports heterogeneous multi-agent systems that mix models and tools according to cost, latency, and capability. To adapt ROMA to specific tasks without fine-tuning, we further introduce GEPA$+$, an improved Genetic-Pareto prompt proposer that searches over prompts within ROMA's component hierarchy while preserving interface contracts. We show that ROMA, combined with GEPA+, delivers leading system-level performance on reasoning and long-form generation benchmarks. On SEAL-0, which evaluates reasoning over conflicting web evidence, ROMA instantiated with GLM-4.6 improves accuracy by 9.9\% over Kimi-Researcher. On EQ-Bench, a long-form writing benchmark, ROMA enables DeepSeek-V3 to match the performance of leading closed-source models such as Claude Sonnet 4.5. Our results demonstrate that recursive, modular agent architectures can scale reasoning depth while remaining interpretable, flexible, and model-agnostic.
☆ CloDS: Visual-Only Unsupervised Cloth Dynamics Learning in Unknown Conditions ICLR 2026
Deep learning has demonstrated remarkable capabilities in simulating complex dynamic systems. However, existing methods require known physical properties as supervision or inputs, limiting their applicability under unknown conditions. To explore this challenge, we introduce Cloth Dynamics Grounding (CDG), a novel scenario for unsupervised learning of cloth dynamics from multi-view visual observations. We further propose Cloth Dynamics Splatting (CloDS), an unsupervised dynamic learning framework designed for CDG. CloDS adopts a three-stage pipeline that first performs video-to-geometry grounding and then trains a dynamics model on the grounded meshes. To cope with large non-linear deformations and severe self-occlusions during grounding, we introduce a dual-position opacity modulation that supports bidirectional mapping between 2D observations and 3D geometry via mesh-based Gaussian splatting in video-to-geometry grounding stage. It jointly considers the absolute and relative position of Gaussian components. Comprehensive experimental evaluations demonstrate that CloDS effectively learns cloth dynamics from visual data while maintaining strong generalization capabilities for unseen configurations. Our code is available at https://github.com/whynot-zyl/CloDS. Visualization results are available at https://github.com/whynot-zyl/CloDS_video}.%\footnote{As in this example.
comment: ICLR 2026
☆ DOGMA: Weaving Structural Information into Data-centric Single-cell Transcriptomics Analysis
Recently, data-centric AI methodology has been a dominant paradigm in single-cell transcriptomics analysis, which treats data representation rather than model complexity as the fundamental bottleneck. In the review of current studies, earlier sequence methods treat cells as independent entities and adapt prevalent ML models to analyze their directly inherited sequence data. Despite their simplicity and intuition, these methods overlook the latent intercellular relationships driven by the functional mechanisms of biological systems and the inherent quality issues of the raw sequence data. Therefore, a series of structured methods has emerged. Although they employ various heuristic rules to capture intricate intercellular relationships and enhance the raw sequencing data, these methods often neglect biological prior knowledge. This omission incurs substantial overhead and yields suboptimal graph representations, thereby hindering the utility of ML models. To address them, we propose DOGMA, a holistic data-centric framework designed for the structural reshaping and semantic enhancement of raw data through multi-level biological prior knowledge. Transcending reliance on stochastic heuristics, DOGMA redefines graph construction by integrating Statistical Anchors with Cell Ontology and Phylogenetic Trees to enable deterministic structure discovery and robust cross-species alignment. Furthermore, Gene Ontology is utilized to bridge the feature-level semantic gap by incorporating functional priors. In complex multi-species and multi-organ benchmarks, DOGMA achieves SOTA performance, exhibiting superior zero-shot robustness and sample efficiency while operating with significantly lower computational cost.
comment: 12 pages, 4 figures
☆ Synesthesia of Vehicles: Tactile Data Synthesis from Visual Inputs
Autonomous vehicles (AVs) rely on multi-modal fusion for safety, but current visual and optical sensors fail to detect road-induced excitations which are critical for vehicles' dynamic control. Inspired by human synesthesia, we propose the Synesthesia of Vehicles (SoV), a novel framework to predict tactile excitations from visual inputs for autonomous vehicles. We develop a cross-modal spatiotemporal alignment method to address temporal and spatial disparities. Furthermore, a visual-tactile synesthetic (VTSyn) generative model using latent diffusion is proposed for unsupervised high-quality tactile data synthesis. A real-vehicle perception system collected a multi-modal dataset across diverse road and lighting conditions. Extensive experiments show that VTSyn outperforms existing models in temporal, frequency, and classification performance, enhancing AV safety through proactive tactile perception.
Beyond Precision: Training-Inference Mismatch is an Optimization Problem and Simple LR Scheduling Fixes It
Reinforcement Learning (RL) for training Large Language Models is notoriously unstable. While recent studies attribute this to "training inference mismatch stemming" from inconsistent hybrid engines, standard remedies, such as Importance Sampling, might fail during extended training runs. In this work, we analyze this instability through the lens of optimization, demonstrating that gradient noise and training-inference mismatch escalate in tandem as training progresses. Meanwhile, we find that the mismatch can be effectively suppressed by shrinking the update size. Taken together, we deduce that the mismatch is not merely a static numerical discrepancy, but a dynamic failure coupled with the model's optimization. Based on this insight, we propose a simple yet effective solution: a specialized Learning Rate (LR) scheduler. Instead of pre-defined decay schedule in traditional LR scheduler, our method dynamically triggers LR decay based on response length, which we identify as a reliable early-warning signal for impending instability. Empirical evidence suggests that by reducing the learning rate as gradient noise rises, we can consistently stabilize RL training and keep the training-inference mismatch at a safe level.
☆ INDIBATOR: Diverse and Fact-Grounded Individuality for Multi-Agent Debate in Molecular Discovery
Multi-agent systems have emerged as a powerful paradigm for automating scientific discovery. To differentiate agent behavior in the multi-agent system, current frameworks typically assign generic role-based personas such as ''reviewer'' or ''writer'' or rely on coarse grained keyword-based personas. While functional, this approach oversimplifies how human scientists operate, whose contributions are shaped by their unique research trajectories. In response, we propose INDIBATOR, a framework for molecular discovery that grounds agents in individualized scientist profiles constructed from two modalities: publication history for literature-derived knowledge and molecular history for structural priors. These agents engage in multi-turn debate through proposal, critique, and voting phases. Our evaluation demonstrates that these fine-grained individuality-grounded agents consistently outperform systems relying on coarse-grained personas, achieving competitive or state-of-the-art performance. These results validate that capturing the ``scientific DNA'' of individual agents is essential for high-quality discovery.
☆ Fast Autoregressive Video Diffusion and World Models with Temporal Cache Compression and Sparse Attention
Autoregressive video diffusion models enable streaming generation, opening the door to long-form synthesis, video world models, and interactive neural game engines. However, their core attention layers become a major bottleneck at inference time: as generation progresses, the KV cache grows, causing both increasing latency and escalating GPU memory, which in turn restricts usable temporal context and harms long-range consistency. In this work, we study redundancy in autoregressive video diffusion and identify three persistent sources: near-duplicate cached keys across frames, slowly evolving (largely semantic) queries/keys that make many attention computations redundant, and cross-attention over long prompts where only a small subset of tokens matters per frame. Building on these observations, we propose a unified, training-free attention framework for autoregressive diffusion: TempCache compresses the KV cache via temporal correspondence to bound cache growth; AnnCA accelerates cross-attention by selecting frame-relevant prompt tokens using fast approximate nearest neighbor (ANN) matching; and AnnSA sparsifies self-attention by restricting each query to semantically matched keys, also using a lightweight ANN. Together, these modules reduce attention, compute, and memory and are compatible with existing autoregressive diffusion backbones and world models. Experiments demonstrate up to x5--x10 end-to-end speedups while preserving near-identical visual quality and, crucially, maintaining stable throughput and nearly constant peak GPU memory usage over long rollouts, where prior methods progressively slow down and suffer from increasing memory usage.
comment: Project Page: https://dvirsamuel.github.io/fast-auto-regressive-video/
☆ ORCH: many analyses, one merge-a deterministic multi-agent orchestrator for discrete-choice reasoning with EMA-guided routing
Recent advances in large-scale language models (LLMs) have made multi-agent architectures attractive for challenging reasoning tasks. However, many existing systems rely on stochastic routing or ad-hoc heuristics, making their behavior difficult to reproduce and their decision process hard to interpret. We propose ORCH, a deterministic coordination framework for discrete-choice reasoning that orchestrates heterogeneous LLMs. ORCH follows a ``many analyses, one decision'' paradigm: multiple base models independently produce structured analyses, and a dedicated merge agent outputs the final choice. The framework uses fixed rules for task decomposition and answer aggregation, keeping the pipeline predictable, reproducible, and training-free. Determinism here refers to fixed routing and aggregation rules under a fixed evaluation protocol, rather than strict bit-level reproducibility across deployments. To exploit model complementarity, we optionally introduce an EMA-guided router that updates agent selection using historical accuracy, latency, or cost; since it relies on answer-based feedback, it is mainly intended for benchmarking, controlled evaluation, or delayed-feedback settings. Experiments on MMLU, MMLU-Pro, and GSM8K show that ORCH consistently outperforms single-model baselines and a majority-vote ensemble. On MMLU-Pro, ORCH improves accuracy by over 10 points compared to the strongest baseline, and on GSM8K it yields gains exceeding 50 points; McNemar tests confirm statistical significance. The EMA router provides an additional 0.7--2.0 point accuracy boost, and ablations show that both multi-agent collaboration and routing contribute substantially. Overall, ORCH offers a practical path toward controllable, interpretable, and deployment-ready LLM-based agent systems for discrete-choice reasoning.
☆ RedVisor: Reasoning-Aware Prompt Injection Defense via Zero-Copy KV Cache Reuse
Large Language Models (LLMs) are increasingly vulnerable to Prompt Injection (PI) attacks, where adversarial instructions hidden within retrieved contexts hijack the model's execution flow. Current defenses typically face a critical trade-off: prevention-based fine-tuning often degrades general utility via the "alignment tax", while detection-based filtering incurs prohibitive latency and memory costs. To bridge this gap, we propose RedVisor, a unified framework that synthesizes the explainability of detection systems with the seamless integration of prevention strategies. To the best of our knowledge, RedVisor is the first approach to leverage fine-grained reasoning paths to simultaneously detect attacks and guide the model's safe response. We implement this via a lightweight, removable adapter positioned atop the frozen backbone. This adapter serves a dual function: it first generates an explainable analysis that precisely localizes the injection and articulates the threat, which then explicitly conditions the model to reject the malicious command. Uniquely, the adapter is active only during this reasoning phase and is effectively muted during the subsequent response generation. This architecture yields two distinct advantages: (1) it mathematically preserves the backbone's original utility on benign inputs; and (2) it enables a novel KV Cache Reuse strategy, eliminating the redundant prefill computation inherent to decoupled pipelines. We further pioneer the integration of this defense into the vLLM serving engine with custom kernels. Experiments demonstrate that RedVisor outperforms state-of-the-art defenses in detection accuracy and throughput while incurring negligible utility loss.
comment: under review
☆ LingLanMiDian: Systematic Evaluation of LLMs on TCM Knowledge and Clinical Reasoning
Large language models (LLMs) are advancing rapidly in medical NLP, yet Traditional Chinese Medicine (TCM) with its distinctive ontology, terminology, and reasoning patterns requires domain-faithful evaluation. Existing TCM benchmarks are fragmented in coverage and scale and rely on non-unified or generation-heavy scoring that hinders fair comparison. We present the LingLanMiDian (LingLan) benchmark, a large-scale, expert-curated, multi-task suite that unifies evaluation across knowledge recall, multi-hop reasoning, information extraction, and real-world clinical decision-making. LingLan introduces a consistent metric design, a synonym-tolerant protocol for clinical labels, a per-dataset 400-item Hard subset, and a reframing of diagnosis and treatment recommendation into single-choice decision recognition. We conduct comprehensive, zero-shot evaluations on 14 leading open-source and proprietary LLMs, providing a unified perspective on their strengths and limitations in TCM commonsense knowledge understanding, reasoning, and clinical decision support; critically, the evaluation on Hard subset reveals a substantial gap between current models and human experts in TCM-specialized reasoning. By bridging fundamental knowledge and applied reasoning through standardized evaluation, LingLan establishes a unified, quantitative, and extensible foundation for advancing TCM LLMs and domain-specific medical AI research. All evaluation data and code are available at https://github.com/TCMAI-BJTU/LingLan and http://tcmnlp.com.
☆ Stein-Rule Shrinkage for Stochastic Gradient Estimation in High Dimensions
Stochastic gradient methods are central to large-scale learning, yet their analysis typically treats mini-batch gradients as unbiased estimators of the population gradient. In high-dimensional settings, however, classical results from statistical decision theory show that unbiased estimators are generally inadmissible under quadratic loss, suggesting that standard stochastic gradients may be suboptimal from a risk perspective. In this work, we formulate stochastic gradient computation as a high-dimensional estimation problem and introduce a decision-theoretic framework based on Stein-rule shrinkage. We construct a shrinkage gradient estimator that adaptively contracts noisy mini-batch gradients toward a stable restricted estimator derived from historical momentum. The shrinkage intensity is determined in a data-driven manner using an online estimate of gradient noise variance, leveraging second-moment statistics commonly maintained by adaptive optimization methods. Under a Gaussian noise model and for dimension p>=3, we show that the proposed estimator uniformly dominates the standard stochastic gradient under squared error loss and is minimax-optimal in the classical decision-theoretic sense. We further demonstrate how this estimator can be incorporated into the Adam optimizer, yielding a practical algorithm with negligible additional computational cost. Empirical evaluations on CIFAR10 and CIFAR100, across multiple levels of label noise, show consistent improvements over Adam in the large-batch regime. Ablation studies indicate that the gains arise primarily from selectively applying shrinkage to high-dimensional convolutional layers, while indiscriminate shrinkage across all parameters degrades performance. These results illustrate that classical shrinkage principles provide a principled and effective approach to improving stochastic gradient estimation in modern deep learning.
☆ Efficient Cross-Architecture Knowledge Transfer for Large-Scale Online User Response Prediction
Deploying new architectures in large-scale user response prediction systems incurs high model switching costs due to expensive retraining on massive historical data and performance degradation under data retention constraints. Existing knowledge distillation methods struggle with architectural heterogeneity and the prohibitive cost of transferring large embedding tables. We propose CrossAdapt, a two-stage framework for efficient cross-architecture knowledge transfer. The offline stage enables rapid embedding transfer via dimension-adaptive projections without iterative training, combined with progressive network distillation and strategic sampling to reduce computational cost. The online stage introduces asymmetric co-distillation, where students update frequently while teachers update infrequently, together with a distribution-aware adaptation mechanism that dynamically balances historical knowledge preservation and fast adaptation to evolving data. Experiments on three public datasets show that CrossAdapt achieves 0.27-0.43% AUC improvements while reducing training time by 43-71%. Large-scale deployment on Tencent WeChat Channels (~10M daily samples) further demonstrates its effectiveness, significantly mitigating AUC degradation, LogLoss increase, and prediction bias compared to standard distillation baselines.
comment: 15 pages
☆ DIA-CLIP: a universal representation learning framework for zero-shot DIA proteomics
Data-independent acquisition mass spectrometry (DIA-MS) has established itself as a cornerstone of proteomic profiling and large-scale systems biology, offering unparalleled depth and reproducibility. Current DIA analysis frameworks, however, require semi-supervised training within each run for peptide-spectrum match (PSM) re-scoring. This approach is prone to overfitting and lacks generalizability across diverse species and experimental conditions. Here, we present DIA-CLIP, a pre-trained model shifting the DIA analysis paradigm from semi-supervised training to universal cross-modal representation learning. By integrating dual-encoder contrastive learning framework with encoder-decoder architecture, DIA-CLIP establishes a unified cross-modal representation for peptides and corresponding spectral features, achieving high-precision, zero-shot PSM inference. Extensive evaluations across diverse benchmarks demonstrate that DIA-CLIP consistently outperforms state-of-the-art tools, yielding up to a 45% increase in protein identification while achieving a 12% reduction in entrapment identifications. Moreover, DIA-CLIP holds immense potential for diverse practical applications, such as single-cell and spatial proteomics, where its enhanced identification depth facilitates the discovery of novel biomarkers and the elucidates of intricate cellular mechanisms.
comment: 21 pages, 5 figures
: One LLM Token for Explicit Graph Structural Understanding
Large language models show great potential in unstructured data understanding, but still face significant challenges with graphs due to their structural hallucination. Existing approaches mainly either verbalize graphs into natural language, which leads to excessive token consumption and scattered attention, or transform graphs into trainable continuous embeddings (i.e., soft prompt), but exhibit severe misalignment with original text tokens. To solve this problem, we propose to incorporate one special token to fully represent the Structure Of Graph within a unified token space, facilitating explicit topology input and structural information sharing. Specifically, we propose a topology-aware structural tokenizer that maps each graph topology into a highly selective single token. Afterwards, we construct a set of hybrid structure Question-Answering corpora to align new structural tokens with existing text tokens. With this approach, empowers LLMs to understand, generate, and reason in a concise and accurate manner. Extensive experiments on five graph-level benchmarks demonstrate the superiority of our method, achieving a performance improvement of 9.9% to 41.4% compared to the baselines while exhibiting interpretability and consistency. Furthermore, our method provides a flexible extension to node-level tasks, enabling both global and local structural understanding. The codebase is publicly available at https://github.com/Jingyao-Wu/SOG.
☆ IRIS: Implicit Reward-Guided Internal Sifting for Mitigating Multimodal Hallucination
Hallucination remains a fundamental challenge for Multimodal Large Language Models (MLLMs). While Direct Preference Optimization (DPO) is a key alignment framework, existing approaches often rely heavily on costly external evaluators for scoring or rewriting, incurring off-policy learnability gaps and discretization loss. Due to the lack of access to internal states, such feedback overlooks the fine-grained conflicts between different modalities that lead to hallucinations during generation. To address this issue, we propose IRIS (Implicit Reward-Guided Internal Sifting), which leverages continuous implicit rewards in the native log-probability space to preserve full information density and capture internal modal competition. This on-policy paradigm eliminates learnability gaps by utilizing self-generated preference pairs. By sifting these pairs based on multimodal implicit rewards, IRIS ensures that optimization is driven by signals that directly resolve modal conflicts. Extensive experiments demonstrate that IRIS achieves highly competitive performance on key hallucination benchmarks using only 5.7k samples, without requiring any external feedback during preference alignment. These results confirm that IRIS provides an efficient and principled paradigm for mitigating MLLM hallucinations.
☆ CoMeT: Collaborative Memory Transformer for Efficient Long Context Modeling
The quadratic complexity and indefinitely growing key-value (KV) cache of standard Transformers pose a major barrier to long-context processing. To overcome this, we introduce the Collaborative Memory Transformer (CoMeT), a novel architecture that enables LLMs to handle arbitrarily long sequences with constant memory usage and linear time complexity. Designed as an efficient, plug-in module, CoMeT can be integrated into pre-trained models with only minimal fine-tuning. It operates on sequential data chunks, using a dual-memory system to manage context: a temporary memory on a FIFO queue for recent events, and a global memory with a gated update rule for long-range dependencies. These memories then act as a dynamic soft prompt for the next chunk. To enable efficient fine-tuning on extremely long contexts, we introduce a novel layer-level pipeline parallelism strategy. The effectiveness of our approach is remarkable: a model equipped with CoMeT and fine-tuned on 32k contexts can accurately retrieve a passkey from any position within a 1M token sequence. On the SCROLLS benchmark, CoMeT surpasses other efficient methods and achieves performance comparable to a full-attention baseline on summarization tasks. Its practical effectiveness is further validated on real-world agent and user behavior QA tasks. The code is available at: https://anonymous.4open.science/r/comet-B00B/
☆ Backdoor Sentinel: Detecting and Detoxifying Backdoors in Diffusion Models via Temporal Noise Consistency
Diffusion models have been widely deployed in AIGC services; however, their reliance on opaque training data and procedures exposes a broad attack surface for backdoor injection. In practical auditing scenarios, due to the protection of intellectual property and commercial confidentiality, auditors are typically unable to access model parameters, rendering existing white-box or query-intensive detection methods impractical. More importantly, even after the backdoor is detected, existing detoxification approaches are often trapped in a dilemma between detoxification effectiveness and generation quality. In this work, we identify a previously unreported phenomenon called temporal noise unconsistency, where the noise predictions between adjacent diffusion timesteps is disrupted in specific temporal segments when the input is triggered, while remaining stable under clean inputs. Leveraging this finding, we propose Temporal Noise Consistency Defense (TNC-Defense), a unified framework for backdoor detection and detoxification. The framework first uses the adjacent timestep noise consistency to design a gray-box detection module, for identifying and locating anomalous diffusion timesteps. Furthermore, the framework uses the identified anomalous timesteps to construct a trigger-agnostic, timestep-aware detoxification module, which directly corrects the backdoor generation path. This effectively suppresses backdoor behavior while significantly reducing detoxification costs. We evaluate the proposed method under five representative backdoor attack scenarios and compare it with state-of-the-art defenses. The results show that TNC-Defense improves the average detection accuracy by $11\%$ with negligible additional overhead, and invalidates an average of $98.5\%$ of triggered samples with only a mild degradation in generation quality.
☆ A Provable Expressiveness Hierarchy in Hybrid Linear-Full Attention
Transformers serve as the foundation of most modern large language models. To mitigate the quadratic complexity of standard full attention, various efficient attention mechanisms, such as linear and hybrid attention, have been developed. A fundamental gap remains: their expressive power relative to full attention lacks a rigorous theoretical characterization. In this work, we theoretically characterize the performance differences among these attention mechanisms. Our theory applies to all linear attention variants that can be formulated as a recurrence, including Mamba, DeltaNet, etc. Specifically, we establish an expressiveness hierarchy: for the sequential function composition-a multi-step reasoning task that must occur within a model's forward pass, an ($L+1$)-layer full attention network is sufficient, whereas any hybrid network interleaving $L-1$ layers of full attention with a substantially larger number ($2^{3L^2}$) of linear attention layers cannot solve it. This result demonstrates a clear separation in expressive power between the two types of attention. Our work provides the first provable separation between hybrid attention and standard full attention, offering a theoretical perspective for understanding the fundamental capabilities and limitations of different attention mechanisms.
☆ PRISM: Parametrically Refactoring Inference for Speculative Sampling Draft Models
Large Language Models (LLMs), constrained by their auto-regressive nature, suffer from slow decoding. Speculative decoding methods have emerged as a promising solution to accelerate LLM decoding, attracting attention from both systems and AI research communities. Recently, the pursuit of better draft quality has driven a trend toward parametrically larger draft models, which inevitably introduces substantial computational overhead. While existing work attempts to balance the trade-off between prediction accuracy and compute latency, we address this fundamental dilemma through architectural innovation. We propose PRISM, which disaggregates the computation of each predictive step across different parameter sets, refactoring the computational pathways of draft models to successfully decouple model capacity from inference cost. Through extensive experiments, we demonstrate that PRISM outperforms all existing draft architectures, achieving exceptional acceptance lengths while maintaining minimal draft latency for superior end-to-end speedup. We also re-examine scaling laws with PRISM, revealing that PRISM scales more effectively with expanding data volumes than other draft architectures. Through rigorous and fair comparison, we show that PRISM boosts the decoding throughput of an already highly optimized inference engine by more than 2.6x.
☆ Adversarial Reward Auditing for Active Detection and Mitigation of Reward Hacking
Reinforcement Learning from Human Feedback (RLHF) remains vulnerable to reward hacking, where models exploit spurious correlations in learned reward models to achieve high scores while violating human intent. Existing mitigations rely on static defenses that cannot adapt to novel exploitation strategies. We propose Adversarial Reward Auditing (ARA), a framework that reconceptualizes reward hacking as a dynamic, competitive game. ARA operates in two stages: first, a Hacker policy discovers reward model vulnerabilities while an Auditor learns to detect exploitation from latent representations; second, Auditor-Guided RLHF (AG-RLHF) gates reward signals to penalize detected hacking, transforming reward hacking from an unobservable failure into a measurable, controllable signal. Experiments across three hacking scenarios demonstrate that ARA achieves the best alignment-utility tradeoff among all baselines: reducing sycophancy to near-SFT levels while improving helpfulness, decreasing verbosity while achieving the highest ROUGE-L, and suppressing code gaming while improving Pass@1. Beyond single-domain evaluation, we show that reward hacking, detection, and mitigation all generalize across domains -- a Hacker trained on code gaming exhibits increased sycophancy despite no reward for this behavior, and an Auditor trained on one domain effectively suppresses exploitation in others, enabling efficient multi-domain defense with a single model.
☆ HumanX: Toward Agile and Generalizable Humanoid Interaction Skills from Human Videos
Enabling humanoid robots to perform agile and adaptive interactive tasks has long been a core challenge in robotics. Current approaches are bottlenecked by either the scarcity of realistic interaction data or the need for meticulous, task-specific reward engineering, which limits their scalability. To narrow this gap, we present HumanX, a full-stack framework that compiles human video into generalizable, real-world interaction skills for humanoids, without task-specific rewards. HumanX integrates two co-designed components: XGen, a data generation pipeline that synthesizes diverse and physically plausible robot interaction data from video while supporting scalable data augmentation; and XMimic, a unified imitation learning framework that learns generalizable interaction skills. Evaluated across five distinct domains--basketball, football, badminton, cargo pickup, and reactive fighting--HumanX successfully acquires 10 different skills and transfers them zero-shot to a physical Unitree G1 humanoid. The learned capabilities include complex maneuvers such as pump-fake turnaround fadeaway jumpshots without any external perception, as well as interactive tasks like sustained human-robot passing sequences over 10 consecutive cycles--learned from a single video demonstration. Our experiments show that HumanX achieves over 8 times higher generalization success than prior methods, demonstrating a scalable and task-agnostic pathway for learning versatile, real-world robot interactive skills.
☆ TIC-VLA: A Think-in-Control Vision-Language-Action Model for Robot Navigation in Dynamic Environments
Robots in dynamic, human-centric environments must follow language instructions while maintaining real-time reactive control. Vision-language-action (VLA) models offer a promising framework, but they assume temporally aligned reasoning and control, despite semantic inference being inherently delayed relative to real-time action. We introduce Think-in-Control (TIC)-VLA, a latency-aware framework that explicitly models delayed semantic reasoning during action generation. TIC-VLA defines a delayed semantic-control interface that conditions action generation on delayed vision-language semantic states and explicit latency metadata, in addition to current observations, enabling policies to compensate for asynchronous reasoning. We further propose a latency-consistent training pipeline that injects reasoning inference delays during imitation learning and online reinforcement learning, aligning training with asynchronous deployment. To support realistic evaluation, we present DynaNav, a physics-accurate, photo-realistic simulation suite for language-guided navigation in dynamic environments. Extensive experiments in simulation and on a real robot show that TIC-VLA consistently outperforms prior VLA models while maintaining robust real-time control under multi-second reasoning latency. Project website: https://ucla-mobility.github.io/TIC-VLA/
☆ Relationship-Aware Hierarchical 3D Scene Graph for Task Reasoning
Representing and understanding 3D environments in a structured manner is crucial for autonomous agents to navigate and reason about their surroundings. While traditional Simultaneous Localization and Mapping (SLAM) methods generate metric reconstructions and can be extended to metric-semantic mapping, they lack a higher level of abstraction and relational reasoning. To address this gap, 3D scene graphs have emerged as a powerful representation for capturing hierarchical structures and object relationships. In this work, we propose an enhanced hierarchical 3D scene graph that integrates open-vocabulary features across multiple abstraction levels and supports object-relational reasoning. Our approach leverages a Vision Language Model (VLM) to infer semantic relationships. Notably, we introduce a task reasoning module that combines Large Language Models (LLM) and a VLM to interpret the scene graph's semantic and relational information, enabling agents to reason about tasks and interact with their environment more intelligently. We validate our method by deploying it on a quadruped robot in multiple environments and tasks, highlighting its ability to reason about them.
comment: ICRA 2026, 8 pages
☆ 3D Foundation Model-Based Loop Closing for Decentralized Collaborative SLAM
Decentralized Collaborative Simultaneous Localization And Mapping (C-SLAM) techniques often struggle to identify map overlaps due to significant viewpoint variations among robots. Motivated by recent advancements in 3D foundation models, which can register images despite large viewpoint differences, we propose a robust loop closing approach that leverages these models to establish inter-robot measurements. In contrast to resource-intensive methods requiring full 3D reconstruction within a centralized map, our approach integrates foundation models into existing SLAM pipelines, yielding scalable and robust multi-robot mapping. Our contributions include: (1) integrating 3D foundation models to reliably estimate relative poses from monocular image pairs within decentralized C-SLAM; (2) introducing robust outlier mitigation techniques critical to the use of these relative poses; and (3) developing specialized pose graph optimization formulations that efficiently resolve scale ambiguities. We evaluate our method against state-of-the-art approaches, demonstrating improvements in localization and mapping accuracy, alongside significant gains in computational and memory efficiency. These results highlight the potential of our approach for deployment in large-scale multi-robot scenarios.
☆ Multi-Agent Monte Carlo Tree Search for Makespan-Efficient Object Rearrangement in Cluttered Spaces
Object rearrangement planning in complex, cluttered environments is a common challenge in warehouses, households, and rescue sites. Prior studies largely address monotone instances, whereas real-world tasks are often non-monotone-objects block one another and must be temporarily relocated to intermediate positions before reaching their final goals. In such settings, effective multi-agent collaboration can substantially reduce the time required to complete tasks. This paper introduces Centralized, Asynchronous, Multi-agent Monte Carlo Tree Search (CAM-MCTS), a novel framework for general-purpose makespan-efficient object rearrangement planning in challenging environments. CAM-MCTS combines centralized task assignment-where agents remain aware of each other's intended actions to facilitate globally optimized planning-with an asynchronous task execution strategy that enables agents to take on new tasks at appropriate time steps, rather than waiting for others, guided by a one-step look-ahead cost estimate. This design minimizes idle time, prevents unnecessary synchronization delays, and enhances overall system efficiency. We evaluate CAM-MCTS across a diverse set of monotone and non-monotone tasks in cluttered environments, demonstrating consistent reductions in makespan compared to strong baselines. Finally, we validate our approach on a real-world multi-agent system under different configurations, further confirming its effectiveness and robustness.
☆ PRISM: Performer RS-IMLE for Single-pass Multisensory Imitation Learning
Robotic imitation learning typically requires models that capture multimodal action distributions while operating at real-time control rates and accommodating multiple sensing modalities. Although recent generative approaches such as diffusion models, flow matching, and Implicit Maximum Likelihood Estimation (IMLE) have achieved promising results, they often satisfy only a subset of these requirements. To address this, we introduce PRISM, a single-pass policy based on a batch-global rejection-sampling variant of IMLE. PRISM couples a temporal multisensory encoder (integrating RGB, depth, tactile, audio, and proprioception) with a linear-attention generator using a Performer architecture. We demonstrate the efficacy of PRISM on a diverse real-world hardware suite, including loco-manipulation using a Unitree Go2 with a 7-DoF arm D1 and tabletop manipulation with a UR5 manipulator. Across challenging physical tasks such as pre-manipulation parking, high-precision insertion, and multi-object pick-and-place, PRISM outperforms state-of-the-art diffusion policies by 10-25% in success rate while maintaining high-frequency (30-50 Hz) closed-loop control. We further validate our approach on large-scale simulation benchmarks, including CALVIN, MetaWorld, and Robomimic. In CALVIN (10% data split), PRISM improves success rates by approximately 25% over diffusion and approximately 20% over flow matching, while simultaneously reducing trajectory jerk by 20x-50x. These results position PRISM as a fast, accurate, and multisensory imitation policy that retains multimodal action coverage without the latency of iterative sampling.
comment: 10 pages main text and 4 figures, and 11 pages appendix and 10 figures, total 21 pages and 14 figures
☆ Mapping-Guided Task Discovery and Allocation for Robotic Inspection of Underwater Structures
Task generation for underwater multi-robot inspections without prior knowledge of existing geometry can be achieved and optimized through examination of simultaneous localization and mapping (SLAM) data. By considering hardware parameters and environmental conditions, a set of tasks is generated from SLAM meshes and optimized through expected keypoint scores and distance-based pruning. In-water tests are used to demonstrate the effectiveness of the algorithm and determine the appropriate parameters. These results are compared to simulated Voronoi partitions and boustrophedon patterns for inspection coverage on a model of the test environment. The key benefits of the presented task discovery method include adaptability to unexpected geometry and distributions that maintain coverage while focusing on areas more likely to present defects or damage.
comment: This paper will appear in the proceedings of the 2026 IEEE International Conference on Robotics and Automation (ICRA)
☆ Before Autonomy Takes Control: Software Testing in Robotics
Robotic systems are complex and safety-critical software systems. As such, they need to be tested thoroughly. Unfortunately, robot software is intrinsically hard to test compared to traditional software, mainly since the software needs to closely interact with hardware, account for uncertainty in its operational environment, handle disturbances, and act highly autonomously. However, given the large space in which robots operate, anticipating possible failures when designing tests is challenging. This paper presents a mapping study by considering robotics testing papers and relating them to the software testing theory. We consider 247 robotics testing papers and map them to software testing, discussing the state-of-the-art software testing in robotics with an illustrated example, and discuss current challenges. Forming the basis to introduce both the robotics and software engineering communities to software testing challenges. Finally, we identify open questions and lessons learned.
☆ Online Fine-Tuning of Pretrained Controllers for Autonomous Driving via Real-Time Recurrent RL
Deploying pretrained policies in real-world applications presents substantial challenges that fundamentally limit the practical applicability of learning-based control systems. When autonomous systems encounter environmental changes in system dynamics, sensor drift, or task objectives, fixed policies rapidly degrade in performance. We show that employing Real-Time Recurrent Reinforcement Learning (RTRRL), a biologically plausible algorithm for online adaptation, can effectively fine-tune a pretrained policy to improve autonomous agents' performance on driving tasks. We further show that RTRRL synergizes with a recent biologically inspired recurrent network model, the Liquid-Resistance Liquid-Capacitance RNN. We demonstrate the effectiveness of this closed-loop approach in a simulated CarRacing environment and in a real-world line-following task with a RoboRacer car equipped with an event camera.
☆ LangMap: A Hierarchical Benchmark for Open-Vocabulary Goal Navigation
The relationships between objects and language are fundamental to meaningful communication between humans and AI, and to practically useful embodied intelligence. We introduce HieraNav, a multi-granularity, open-vocabulary goal navigation task where agents interpret natural language instructions to reach targets at four semantic levels: scene, room, region, and instance. To this end, we present Language as a Map (LangMap), a large-scale benchmark built on real-world 3D indoor scans with comprehensive human-verified annotations and tasks spanning these levels. LangMap provides region labels, discriminative region descriptions, discriminative instance descriptions covering 414 object categories, and over 18K navigation tasks. Each target features both concise and detailed descriptions, enabling evaluation across different instruction styles. LangMap achieves superior annotation quality, outperforming GOAT-Bench by 23.8% in discriminative accuracy using four times fewer words. Comprehensive evaluations of zero-shot and supervised models on LangMap reveal that richer context and memory improve success, while long-tailed, small, context-dependent, and distant goals, as well as multi-goal completion, remain challenging. HieraNav and LangMap establish a rigorous testbed for advancing language-driven embodied navigation. Project: https://bo-miao.github.io/LangMap
☆ Extending the Law of Intersegmental Coordination: Implications for Powered Prosthetic Controls
Powered prostheses are capable of providing net positive work to amputees and have advanced in the past two decades. However, reducing amputee metabolic cost of walking remains an open problem. The Law of Intersegmental Coordination (ISC) has been observed across gaits and has been previously implicated in energy expenditure of walking, yet it has rarely been analyzed or applied within the context of lower-limb amputee gait. This law states that the elevation angles of the thigh, shank and foot over the gait cycle are not independent. In this work, we developed a method to analyze intersegmental coordination for lower-limb 3D kinematic data, to simplify ISC analysis. Moreover, inspired by motor control, biomechanics and robotics literature, we used our method to broaden ISC toward a new law of coordination of moments. We find these Elevation Space Moments (ESM), and present results showing a moment-based coordination for able bodied gait. We also analyzed ISC for amputee gait walking with powered and passive prosthesis, and found that while elevation angles remained planar, the ESM showed less coordination. We use ISC as a constraint to predict the shank angles/moments that would compensate for alterations due to a passive foot so as to mimic a healthy thigh angle/moment profile. This may have implications for improving powered prosthetic control. We developed the ISC3d toolbox that is freely available online, which may be used to compute kinematic and kinetic ISC in 3D. This provides a means to further study the role of coordination in gait and may help address fundamental questions of the neural control of human movement.
comment: Submitted to 2026 IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
☆ Real-Time 2D LiDAR Object Detection Using Three-Frame RGB Scan Encoding
Indoor service robots need perception that is robust, more privacy-friendly than RGB video, and feasible on embedded hardware. We present a camera-free 2D LiDAR object detection pipeline that encodes short-term temporal context by stacking three consecutive scans as RGB channels, yielding a compact YOLOv8n input without occupancy-grid construction while preserving angular structure and motion cues. Evaluated in Webots across 160 randomized indoor scenarios with strict scenario-level holdout, the method achieves 98.4% mAP@0.5 (0.778 mAP@0.5:0.95) with 94.9% precision and 94.7% recall on four object classes. On a Raspberry Pi 5, it runs in real time with a mean post-warm-up end-to-end latency of 47.8ms per frame, including scan encoding and postprocessing. Relative to a closely related occupancy-grid LiDAR-YOLO pipeline reported on the same platform, the proposed representation is associated with substantially lower reported end-to-end latency. Although results are simulation-based, they suggest that lightweight temporal encoding can enable accurate and real-time LiDAR-only detection for embedded indoor robotics without capturing RGB appearance.
comment: 6 pages, 6 figures, submitted to IEEE SAS 2026
☆ FD-VLA: Force-Distilled Vision-Language-Action Model for Contact-Rich Manipulation
Force sensing is a crucial modality for Vision-Language-Action (VLA) frameworks, as it enables fine-grained perception and dexterous manipulation in contact-rich tasks. We present Force-Distilled VLA (FD-VLA), a novel framework that integrates force awareness into contact-rich manipulation without relying on physical force sensors. The core of our approach is a Force Distillation Module (FDM), which distills force by mapping a learnable query token, conditioned on visual observations and robot states, into a predicted force token aligned with the latent representation of actual force signals. During inference, this distilled force token is injected into the pretrained VLM, enabling force-aware reasoning while preserving the integrity of its vision-language semantics. This design provides two key benefits: first, it allows practical deployment across a wide range of robots that lack expensive or fragile force-torque sensors, thereby reducing hardware cost and complexity; second, the FDM introduces an additional force-vision-state fusion prior to the VLM, which improves cross-modal alignment and enhances perception-action robustness in contact-rich scenarios. Surprisingly, our physical experiments show that the distilled force token outperforms direct sensor force measurements as well as other baselines, which highlights the effectiveness of this force-distilled VLA approach.
☆ Frictional Contact Solving for Material Point Method
Accurately handling contact with friction remains a core bottleneck for Material Point Method (MPM), from reliable contact point detection to enforcing frictional contact laws (non-penetration, Coulomb friction, and maximum dissipation principle). In this paper, we introduce a frictional-contact pipeline for implicit MPM that is both precise and robust. During the collision detection phase, contact points are localized with particle-centric geometric primitives; during the contact resolution phase, we cast frictional contact as a Nonlinear Complementarity Problem (NCP) over contact impulses and solve it with an Alternating Direction Method of Multipliers (ADMM) scheme. Crucially, the formulation reuses the same implicit MPM linearization, yielding efficiency and numerical stability. The method integrates seamlessly into the implicit MPM loop and is agnostic to modeling choices, including material laws, interpolation functions, and transfer schemes. We evaluate it across seven representative scenes that span elastic and elasto-plastic responses, simple and complex deformable geometries, and a wide range of contact conditions. Overall, the proposed method enables accurate contact localization, reliable frictional handling, and broad generality, making it a practical solution for MPM-based simulations in robotics and related domains.
☆ Synchronized Online Friction Estimation and Adaptive Grasp Control for Robust Gentle Grasp
We introduce a unified framework for gentle robotic grasping that synergistically couples real-time friction estimation with adaptive grasp control. We propose a new particle filter-based method for real-time estimation of the friction coefficient using vision-based tactile sensors. This estimate is seamlessly integrated into a reactive controller that dynamically modulates grasp force to maintain a stable grip. The two processes operate synchronously in a closed-loop: the controller uses the current best estimate to adjust the force, while new tactile feedback from this action continuously refines the estimation. This creates a highly responsive and robust sensorimotor cycle. The reliability and efficiency of the complete framework are validated through extensive robotic experiments.
☆ Reformulating AI-based Multi-Object Relative State Estimation for Aleatoric Uncertainty-based Outlier Rejection of Partial Measurements
Precise localization with respect to a set of objects of interest enables mobile robots to perform various tasks. With the rise of edge devices capable of deploying deep neural networks (DNNs) for real-time inference, it stands to reason to use artificial intelligence (AI) for the extraction of object-specific, semantic information from raw image data, such as the object class and the relative six degrees of freedom (6-DoF) pose. However, fusing such AI-based measurements in an Extended Kalman Filter (EKF) requires quantifying the DNNs' uncertainty and outlier rejection capabilities. This paper presents the benefits of reformulating the measurement equation in AI-based, object-relative state estimation. By deriving an EKF using the direct object-relative pose measurement, we can decouple the position and rotation measurements, thus limiting the influence of erroneous rotation measurements and allowing partial measurement rejection. Furthermore, we investigate the performance and consistency improvements for state estimators provided by replacing the fixed measurement covariance matrix of the 6-DoF object-relative pose measurements with the predicted aleatoric uncertainty of the DNN.
comment: Accepted for publication at ICRA 2026, Vienna, Austria
☆ A Unified Control Architecture for Macro-Micro Manipulation using a Active Remote Center of Compliance for Manufacturing Applications
Macro-micro manipulators combine a macro manipulator with a large workspace, such as an industrial robot, with a lightweight, high-bandwidth micro manipulator. This enables highly dynamic interaction control while preserving the wide workspace of the robot. Traditionally, position control is assigned to the macro manipulator, while the micro manipulator handles the interaction with the environment, limiting the achievable interaction control bandwidth. To solve this, we propose a novel control architecture that incorporates the macro manipulator into the active interaction control. This leads to a increase in control bandwidth by a factor of 2.1 compared to the state of the art architecture, based on the leader-follower approach and factor 12.5 compared to traditional robot-based force control. Further we propose surrogate models for a more efficient controller design and easy adaptation to hardware changes. We validate our approach by comparing it against the other control schemes in different experiments, like collision with an object, following a force trajectory and industrial assembly tasks.
comment: 17 pages, 14 figures, submitted to Robotics and Computer-Integrated Manufacturing (RCIM)
☆ LIEREx: Language-Image Embeddings for Robotic Exploration
Semantic maps allow a robot to reason about its surroundings to fulfill tasks such as navigating known environments, finding specific objects, and exploring unmapped areas. Traditional mapping approaches provide accurate geometric representations but are often constrained by pre-designed symbolic vocabularies. The reliance on fixed object classes makes it impractical to handle out-of-distribution knowledge not defined at design time. Recent advances in Vision-Language Foundation Models, such as CLIP, enable open-set mapping, where objects are encoded as high-dimensional embeddings rather than fixed labels. In LIEREx, we integrate these VLFMs with established 3D Semantic Scene Graphs to enable target-directed exploration by an autonomous agent in partially unknown environments.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in KI - Künstliche Intelligenz, and is available online at https://doi.org/10.1007/s13218-026-00902-6
☆ ForSim: Stepwise Forward Simulation for Traffic Policy Fine-Tuning
As the foundation of closed-loop training and evaluation in autonomous driving, traffic simulation still faces two fundamental challenges: covariate shift introduced by open-loop imitation learning and limited capacity to reflect the multimodal behaviors observed in real-world traffic. Although recent frameworks such as RIFT have partially addressed these issues through group-relative optimization, their forward simulation procedures remain largely non-reactive, leading to unrealistic agent interactions within the virtual domain and ultimately limiting simulation fidelity. To address these issues, we propose ForSim, a stepwise closed-loop forward simulation paradigm. At each virtual timestep, the traffic agent propagates the virtual candidate trajectory that best spatiotemporally matches the reference trajectory through physically grounded motion dynamics, thereby preserving multimodal behavioral diversity while ensuring intra-modality consistency. Other agents are updated with stepwise predictions, yielding coherent and interaction-aware evolution. When incorporated into the RIFT traffic simulation framework, ForSim operates in conjunction with group-relative optimization to fine-tune traffic policy. Extensive experiments confirm that this integration consistently improves safety while maintaining efficiency, realism, and comfort. These results underscore the importance of modeling closed-loop multimodal interactions within forward simulation and enhance the fidelity and reliability of traffic simulation for autonomous driving. Project Page: https://currychen77.github.io/ForSim/
comment: Accepted by ICRA 2026
☆ Multi-Task Learning for Robot Perception with Imbalanced Data
Multi-task problem solving has been shown to improve the accuracy of the individual tasks, which is an important feature for robots, as they have a limited resource. However, when the number of labels for each task is not equal, namely imbalanced data exist, a problem may arise due to insufficient number of samples, and labeling is not very easy for mobile robots in every environment. We propose a method that can learn tasks even in the absence of the ground truth labels for some of the tasks. We also provide a detailed analysis of the proposed method. An interesting finding is related to the interaction of the tasks. We show a methodology to find out which tasks can improve the performance of other tasks. We investigate this by training the teacher network with the task outputs such as depth as inputs. We further provide empirical evidence when trained with a small amount of data. We use semantic segmentation and depth estimation tasks on different datasets, NYUDv2 and Cityscapes.
comment: 16 pages
☆ Path Tracking with Dynamic Control Point Blending for Autonomous Vehicles: An Experimental Study
This paper presents an experimental study of a path-tracking framework for autonomous vehicles in which the lateral control command is applied to a dynamic control point along the wheelbase. Instead of enforcing a fixed reference at either the front or rear axle, the proposed method continuously interpolates between both, enabling smooth adaptation across driving contexts, including low-speed maneuvers and reverse motion. The lateral steering command is obtained by barycentric blending of two complementary controllers: a front-axle Stanley formulation and a rear-axle curvature-based geometric controller, yielding continuous transitions in steering behavior and improved tracking stability. In addition, we introduce a curvature-aware longitudinal control strategy based on virtual track borders and ray-tracing, which converts upcoming geometric constraints into a virtual obstacle distance and regulates speed accordingly. The complete approach is implemented in a unified control stack and validated in simulation and on a real autonomous vehicle equipped with GPS-RTK, radar, odometry, and IMU. The results in closed-loop tracking and backward maneuvers show improved trajectory accuracy, smoother steering profiles, and increased adaptability compared to fixed control-point baselines.
Multimodal Large Language Models for Real-Time Situated Reasoning
In this work, we explore how multimodal large language models can support real-time context- and value-aware decision-making. To do so, we combine the GPT-4o language model with a TurtleBot 4 platform simulating a smart vacuum cleaning robot in a home. The model evaluates the environment through vision input and determines whether it is appropriate to initiate cleaning. The system highlights the ability of these models to reason about domestic activities, social norms, and user preferences and take nuanced decisions aligned with the values of the people involved, such as cleanliness, comfort, and safety. We demonstrate the system in a realistic home environment, showing its ability to infer context and values from limited visual input. Our results highlight the promise of multimodal large language models in enhancing robotic autonomy and situational awareness, while also underscoring challenges related to consistency, bias, and real-time performance.
comment: Submitted to the interactivity track of the 21st ACM/IEEE International Conference on Human-Robot Interaction on December 2025, accepted January 2026
☆ BTGenBot-2: Efficient Behavior Tree Generation with Small Language Models
Recent advances in robot learning increasingly rely on LLM-based task planning, leveraging their ability to bridge natural language with executable actions. While prior works showcased great performances, the widespread adoption of these models in robotics has been challenging as 1) existing methods are often closed-source or computationally intensive, neglecting the actual deployment on real-world physical systems, and 2) there is no universally accepted, plug-and-play representation for robotic task generation. Addressing these challenges, we propose BTGenBot-2, a 1B-parameter open-source small language model that directly converts natural language task descriptions and a list of robot action primitives into executable behavior trees in XML. Unlike prior approaches, BTGenBot-2 enables zero-shot BT generation, error recovery at inference and runtime, while remaining lightweight enough for resource-constrained robots. We further introduce the first standardized benchmark for LLM-based BT generation, covering 52 navigation and manipulation tasks in NVIDIA Isaac Sim. Extensive evaluations demonstrate that BTGenBot-2 consistently outperforms GPT-5, Claude Opus 4.1, and larger open-source models across both functional and non-functional metrics, achieving average success rates of 90.38% in zero-shot and 98.07% in one-shot, while delivering up to 16x faster inference compared to the previous BTGenBot.
☆ Vision-only UAV State Estimation for Fast Flights Without External Localization Systems: A2RL Drone Racing Finalist Approach
Fast flights with aggressive maneuvers in cluttered GNSS-denied environments require fast, reliable, and accurate UAV state estimation. In this paper, we present an approach for onboard state estimation of a high-speed UAV using a monocular RGB camera and an IMU. Our approach fuses data from Visual-Inertial Odometry (VIO), an onboard landmark-based camera measurement system, and an IMU to produce an accurate state estimate. Using onboard measurement data, we estimate and compensate for VIO drift through a novel mathematical drift model. State-of-the-art approaches often rely on more complex hardware (e.g., stereo cameras or rangefinders) and use uncorrected drifting VIO velocities, orientation, and angular rates, leading to errors during fast maneuvers. In contrast, our method corrects all VIO states (position, orientation, linear and angular velocity), resulting in accurate state estimation even during rapid and dynamic motion. Our approach was thoroughly validated through 1600 simulations and numerous real-world experiments. Furthermore, we applied the proposed method in the A2RL Drone Racing Challenge 2025, where our team advanced to the final four out of 210 teams and earned a medal.
comment: Visit our webpage for more details: https://mrs.fel.cvut.cz/papers/vision-only-uav-state-estimation
☆ Concept-Based Dictionary Learning for Inference-Time Safety in Vision Language Action Models
Vision Language Action (VLA) models close the perception action loop by translating multimodal instructions into executable behaviors, but this very capability magnifies safety risks: jailbreaks that merely yield toxic text in LLMs can trigger unsafe physical actions in embodied systems. Existing defenses alignment, filtering, or prompt hardening intervene too late or at the wrong modality, leaving fused representations exploitable. We introduce a concept-based dictionary learning framework for inference-time safety control. By constructing sparse, interpretable dictionaries from hidden activations, our method identifies harmful concept directions and applies threshold-based interventions to suppress or block unsafe activations. Experiments on Libero-Harm, BadRobot, RoboPair, and IS-Bench show that our approach achieves state-of-the-art defense performance, cutting attack success rates by over 70\% while maintaining task success. Crucially, the framework is plug-in and model-agnostic, requiring no retraining and integrating seamlessly with diverse VLAs. To our knowledge, this is the first inference-time concept-based safety method for embodied systems, advancing both interpretability and safe deployment of VLA models.
☆ From Knowing to Doing Precisely: A General Self-Correction and Termination Framework for VLA models ICASSP 2026
While vision-language-action (VLA) models for embodied agents integrate perception, reasoning, and control, they remain constrained by two critical weaknesses: first, during grasping tasks, the action tokens generated by the language model often exhibit subtle spatial deviations from the target object, resulting in grasp failures; second, they lack the ability to reliably recognize task completion, which leads to redundant actions and frequent timeout errors. To address these challenges and enhance robustness, we propose a lightweight, training-free framework, VLA-SCT. This framework operates as a self-correcting control loop, combining data-driven action refinement with conditional logic for termination. Consequently, compared to baseline approaches, our method achieves consistent improvements across all datasets in the LIBERO benchmark, significantly increasing the success rate of fine manipulation tasks and ensuring accurate task completion, thereby promoting the deployment of more reliable VLA agents in complex, unstructured environments.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
☆ RFS: Reinforcement learning with Residual flow steering for dexterous manipulation
Imitation learning has emerged as an effective approach for bootstrapping sequential decision-making in robotics, achieving strong performance even in high-dimensional dexterous manipulation tasks. Recent behavior cloning methods further leverage expressive generative models, such as diffusion models and flow matching, to represent multimodal action distributions. However, policies pretrained in this manner often exhibit limited generalization and require additional fine-tuning to achieve robust performance at deployment time. Such adaptation must preserve the global exploration benefits of pretraining while enabling rapid correction of local execution errors.We propose \emph{Residual Flow Steering} (RFS), a data-efficient reinforcement learning framework for adapting pretrained generative policies. RFS steers a pretrained flow-matching policy by jointly optimizing a residual action and a latent noise distribution, enabling complementary forms of exploration: local refinement through residual corrections and global exploration through latent-space modulation. This design allows efficient adaptation while retaining the expressive structure of the pretrained policy.We demonstrate the effectiveness of RFS on dexterous manipulation tasks, showing efficient fine-tuning both in simulation and in real-world settings when adapting pretrained base policies.Project website:https://weirdlabuw.github.io/rfs.
☆ DDP-WM: Disentangled Dynamics Prediction for Efficient World Models
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLabSYSU/DDP-WM.
comment: Codes will be available at https://github.com/HCPLabSYSU/DDP-WM
☆ Uncertainty-Aware Non-Prehensile Manipulation with Mobile Manipulators under Object-Induced Occlusion
Non-prehensile manipulation using onboard sensing presents a fundamental challenge: the manipulated object occludes the sensor's field of view, creating occluded regions that can lead to collisions. We propose CURA-PPO, a reinforcement learning framework that addresses this challenge by explicitly modeling uncertainty under partial observability. By predicting collision possibility as a distribution, we extract both risk and uncertainty to guide the robot's actions. The uncertainty term encourages active perception, enabling simultaneous manipulation and information gathering to resolve occlusions. When combined with confidence maps that capture observation reliability, our approach enables safe navigation despite severe sensor occlusion. Extensive experiments across varying object sizes and obstacle configurations demonstrate that CURA-PPO achieves up to 3X higher success rates than the baselines, with learned behaviors that handle occlusions. Our method provides a practical solution for autonomous manipulation in cluttered environments using only onboard sensing.
comment: 8 pages, 7 figures, Accepted to ICRA 2026, Webpage: https://jiw0o.github.io/cura-ppo/
☆ Tilt-Ropter: A Novel Hybrid Aerial and Terrestrial Vehicle with Tilt Rotors and Passive Wheels
In this work, we present Tilt-Ropter, a novel hybrid aerial-terrestrial vehicle (HATV) that combines tilt rotors with passive wheels to achieve energy-efficient multi-mode locomotion. Unlike existing under-actuated HATVs, the fully actuated design of Tilt-Ropter enables decoupled force and torque control, greatly enhancing its mobility and environmental adaptability. A nonlinear model predictive controller (NMPC) is developed to track reference trajectories and handle contact constraints across locomotion modes, while a dedicated control allocation module exploits actuation redundancy to achieve energy-efficient control of actuators. Additionally, to enhance robustness during ground contact, we introduce an external wrench estimation algorithm that estimates environmental interaction forces and torques in real time. The system is validated through both simulation and real-world experiments, including seamless air-ground transitions and trajectory tracking. Results show low tracking errors in both modes and highlight a 92.8% reduction in power consumption during ground locomotion, demonstrating the system's potential for long-duration missions across large-scale and energy-constrained environments.
comment: 8 pages, 10 figures
GSR: Learning Structured Reasoning for Embodied Manipulation
Despite rapid progress, embodied agents still struggle with long-horizon manipulation that requires maintaining spatial consistency, causal dependencies, and goal constraints. A key limitation of existing approaches is that task reasoning is implicitly embedded in high-dimensional latent representations, making it challenging to separate task structure from perceptual variability. We introduce Grounded Scene-graph Reasoning (GSR), a structured reasoning paradigm that explicitly models world-state evolution as transitions over semantically grounded scene graphs. By reasoning step-wise over object states and spatial relations, rather than directly mapping perception to actions, GSR enables explicit reasoning about action preconditions, consequences, and goal satisfaction in a physically grounded space. To support learning such reasoning, we construct Manip-Cognition-1.6M, a large-scale dataset that jointly supervises world understanding, action planning, and goal interpretation. Extensive evaluations across RLBench, LIBERO, GSR-benchmark, and real-world robotic tasks show that GSR significantly improves zero-shot generalization and long-horizon task completion over prompting-based baselines. These results highlight explicit world-state representations as a key inductive bias for scalable embodied reasoning.
☆ Towards Autonomous Instrument Tray Assembly for Sterile Processing Applications
The Sterile Processing and Distribution (SPD) department is responsible for cleaning, disinfecting, inspecting, and assembling surgical instruments between surgeries. Manual inspection and preparation of instrument trays is a time-consuming, error-prone task, often prone to contamination and instrument breakage. In this work, we present a fully automated robotic system that sorts and structurally packs surgical instruments into sterile trays, focusing on automation of the SPD assembly stage. A custom dataset comprising 31 surgical instruments and 6,975 annotated images was collected to train a hybrid perception pipeline using YOLO12 for detection and a cascaded ResNet-based model for fine-grained classification. The system integrates a calibrated vision module, a 6-DOF Staubli TX2-60L robotic arm with a custom dual electromagnetic gripper, and a rule-based packing algorithm that reduces instrument collisions during transport. The packing framework uses 3D printed dividers and holders to physically isolate instruments, reducing collision and friction during transport. Experimental evaluations show high perception accuracy and statistically significant reduction in tool-to-tool collisions compared to human-assembled trays. This work serves as the scalable first step toward automating SPD workflows, improving safety, and consistency of surgical preparation while reducing SPD processing times.
comment: 7 pages, 9 figures, 2026 International Symposium on Medical Robotics
☆ Real-Time Loop Closure Detection in Visual SLAM via NetVLAD and Faiss
Loop closure detection (LCD) is a core component of simultaneous localization and mapping (SLAM): it identifies revisited places and enables pose-graph constraints that correct accumulated drift. Classic bag-of-words approaches such as DBoW are efficient but often degrade under appearance change and perceptual aliasing. In parallel, deep learning-based visual place recognition (VPR) descriptors (e.g., NetVLAD and Transformer-based models) offer stronger robustness, but their computational cost is often viewed as a barrier to real-time SLAM. In this paper, we empirically evaluate NetVLAD as an LCD module and compare it against DBoW on the KITTI dataset. We introduce a Fine-Grained Top-K precision-recall curve that better reflects LCD settings where a query may have zero or multiple valid matches. With Faiss-accelerated nearestneighbor search, NetVLAD achieves real-time query speed while improving accuracy and robustness over DBoW, making it a practical drop-in alternative for LCD in SLAM.
☆ AgenticLab: A Real-World Robot Agent Platform that Can See, Think, and Act
Recent advances in large vision-language models (VLMs) have demonstrated generalizable open-vocabulary perception and reasoning, yet their real-robot manipulation capability remains unclear for long-horizon, closed-loop execution in unstructured, in-the-wild environments. Prior VLM-based manipulation pipelines are difficult to compare across different research groups' setups, and many evaluations rely on simulation, privileged state, or specially designed setups. We present AgenticLab, a model-agnostic robot agent platform and benchmark for open-world manipulation. AgenticLab provides a closed-loop agent pipeline for perception, task decomposition, online verification, and replanning. Using AgenticLab, we benchmark state-of-the-art VLM-based agents on real-robot tasks in unstructured environments. Our benchmark reveals several failure modes that offline vision-language tests (e.g., VQA and static image understanding) fail to capture, including breakdowns in multi-step grounding consistency, object grounding under occlusion and scene changes, and insufficient spatial reasoning for reliable manipulation. We will release the full hardware and software stack to support reproducible evaluation and accelerate research on general-purpose robot agents.
☆ From Perception to Action: Spatial AI Agents and World Models
While large language models have become the prevailing approach for agentic reasoning and planning, their success in symbolic domains does not readily translate to the physical world. Spatial intelligence, the ability to perceive 3D structure, reason about object relationships, and act under physical constraints, is an orthogonal capability that proves important for embodied agents. Existing surveys address either agentic architectures or spatial domains in isolation. None provide a unified framework connecting these complementary capabilities. This paper bridges that gap. Through a thorough review of over 2,000 papers, citing 742 works from top-tier venues, we introduce a unified three-axis taxonomy connecting agentic capabilities with spatial tasks across scales. Crucially, we distinguish spatial grounding (metric understanding of geometry and physics) from symbolic grounding (associating images with text), arguing that perception alone does not confer agency. Our analysis reveals three key findings mapped to these axes: (1) hierarchical memory systems (Capability axis) are important for long-horizon spatial tasks. (2) GNN-LLM integration (Task axis) is a promising approach for structured spatial reasoning. (3) World models (Scale axis) are essential for safe deployment across micro-to-macro spatial scales. We conclude by identifying six grand challenges and outlining directions for future research, including the need for unified evaluation frameworks to standardize cross-domain assessment. This taxonomy provides a foundation for unifying fragmented research efforts and enabling the next generation of spatially-aware autonomous systems in robotics, autonomous vehicles, and geospatial intelligence.
comment: 61 pages, 742 citations, 1 figure, 3 tables. Survey paper on spatial AI agents, embodied AI, graph neural networks, and world models
☆ A Closed-Form Geometric Retargeting Solver for Upper Body Humanoid Robot Teleoperation
Retargeting human motion to robot poses is a practical approach for teleoperating bimanual humanoid robot arms, but existing methods can be suboptimal and slow, often causing undesirable motion or latency. This is due to optimizing to match robot end-effector to human hand position and orientation, which can also limit the robot's workspace to that of the human. Instead, this paper reframes retargeting as an orientation alignment problem, enabling a closed-form, geometric solution algorithm with an optimality guarantee. The key idea is to align a robot arm to a human's upper and lower arm orientations, as identified from shoulder, elbow, and wrist (SEW) keypoints; hence, the method is called SEW-Mimic. The method has fast inference (3 kHz) on standard commercial CPUs, leaving computational overhead for downstream applications; an example in this paper is a safety filter to avoid bimanual self-collision. The method suits most 7-degree-of-freedom robot arms and humanoids, and is agnostic to input keypoint source. Experiments show that SEW-Mimic outperforms other retargeting methods in computation time and accuracy. A pilot user study suggests that the method improves teleoperation task success. Preliminary analysis indicates that data collected with SEW-Mimic improves policy learning due to being smoother. SEW-Mimic is also shown to be a drop-in way to accelerate full-body humanoid retargeting. Finally, hardware demonstrations illustrate SEW-Mimic's practicality. The results emphasize the utility of SEW-Mimic as a fundamental building block for bimanual robot manipulation and humanoid robot teleoperation.
comment: Project page at https://sew-mimic.com/
☆ AdaptNC: Adaptive Nonconformity Scores for Uncertainty-Aware Autonomous Systems in Dynamic Environments
Rigorous uncertainty quantification is essential for the safe deployment of autonomous systems in unconstrained environments. Conformal Prediction (CP) provides a distribution-free framework for this task, yet its standard formulations rely on exchangeability assumptions that are violated by the distribution shifts inherent in real-world robotics. Existing online CP methods maintain target coverage by adaptively scaling the conformal threshold, but typically employ a static nonconformity score function. We show that this fixed geometry leads to highly conservative, volume-inefficient prediction regions when environments undergo structural shifts. To address this, we propose \textbf{AdaptNC}, a framework for the joint online adaptation of both the nonconformity score parameters and the conformal threshold. AdaptNC leverages an adaptive reweighting scheme to optimize score functions, and introduces a replay buffer mechanism to mitigate the coverage instability that occurs during score transitions. We evaluate AdaptNC on diverse robotic benchmarks involving multi-agent policy changes, environmental changes and sensor degradation. Our results demonstrate that AdaptNC significantly reduces prediction region volume compared to state-of-the-art threshold-only baselines while maintaining target coverage levels.
☆ Efficiently Solving Mixed-Hierarchy Games with Quasi-Policy Approximations
Multi-robot coordination often exhibits hierarchical structure, with some robots' decisions depending on the planned behaviors of others. While game theory provides a principled framework for such interactions, existing solvers struggle to handle mixed information structures that combine simultaneous (Nash) and hierarchical (Stackelberg) decision-making. We study N-robot forest-structured mixed-hierarchy games, in which each robot acts as a Stackelberg leader over its subtree while robots in different branches interact via Nash equilibria. We derive the Karush-Kuhn-Tucker (KKT) first-order optimality conditions for this class of games and show that they involve increasingly high-order derivatives of robots' best-response policies as the hierarchy depth grows, rendering a direct solution intractable. To overcome this challenge, we introduce a quasi-policy approximation that removes higher-order policy derivatives and develop an inexact Newton method for efficiently solving the resulting approximated KKT systems. We prove local exponential convergence of the proposed algorithm for games with non-quadratic objectives and nonlinear constraints. The approach is implemented in a highly optimized Julia library (MixedHierarchyGames.jl) and evaluated in simulated experiments, demonstrating real-time convergence for complex mixed-hierarchy information structures.
☆ UniDWM: Towards a Unified Driving World Model via Multifaceted Representation Learning
Achieving reliable and efficient planning in complex driving environments requires a model that can reason over the scene's geometry, appearance, and dynamics. We present UniDWM, a unified driving world model that advances autonomous driving through multifaceted representation learning. UniDWM constructs a structure- and dynamic-aware latent world representation that serves as a physically grounded state space, enabling consistent reasoning across perception, prediction, and planning. Specifically, a joint reconstruction pathway learns to recover the scene's structure, including geometry and visual texture, while a collaborative generation framework leverages a conditional diffusion transformer to forecast future world evolution within the latent space. Furthermore, we show that our UniDWM can be deemed as a variation of VAE, which provides theoretical guidance for the multifaceted representation learning. Extensive experiments demonstrate the effectiveness of UniDWM in trajectory planning, 4D reconstruction and generation, highlighting the potential of multifaceted world representations as a foundation for unified driving intelligence. The code will be publicly available at https://github.com/Say2L/UniDWM.
☆ Co-Design of Rover Wheels and Control using Bayesian Optimization and Rover-Terrain Simulations
While simulation is vital for optimizing robotic systems, the cost of modeling deformable terrain has long limited its use in full-vehicle studies of off-road autonomous mobility. For example, Discrete Element Method (DEM) simulations are often confined to single-wheel tests, which obscures coupled wheel-vehicle-controller interactions and prevents joint optimization of mechanical design and control. This paper presents a Bayesian optimization framework that co-designs rover wheel geometry and steering controller parameters using high-fidelity, full-vehicle closed-loop simulations on deformable terrain. Using the efficiency and scalability of a continuum-representation model (CRM) for terramechanics, we evaluate candidate designs on trajectories of varying complexity while towing a fixed load. The optimizer tunes wheel parameters (radius, width, and grouser features) and steering PID gains under a multi-objective formulation that balances traversal speed, tracking error, and energy consumption. We compare two strategies: simultaneous co-optimization of wheel and controller parameters versus a sequential approach that decouples mechanical and control design. We analyze trade-offs in performance and computational cost. Across 3,000 full-vehicle simulations, campaigns finish in five to nine days, versus months with the group's earlier DEM-based workflow. Finally, a preliminary hardware study suggests the simulation-optimized wheel designs preserve relative performance trends on the physical rover. Together, these results show that scalable, high-fidelity simulation can enable practical co-optimization of wheel design and control for off-road vehicles on deformable terrain without relying on prohibitively expensive DEM studies. The simulation infrastructure (scripts and models) is released as open source in a public repository to support reproducibility and further research.
comment: 19 pages, 15 figures
☆ RAPT: Model-Predictive Out-of-Distribution Detection and Failure Diagnosis for Sim-to-Real Humanoid Robots
Deploying learned control policies on humanoid robots is challenging: policies that appear robust in simulation can execute confidently in out-of-distribution (OOD) states after Sim-to-Real transfer, leading to silent failures that risk hardware damage. Although anomaly detection can mitigate these failures, prior methods are often incompatible with high-rate control, poorly calibrated at the extremely low false-positive rates required for practical deployment, or operate as black boxes that provide a binary stop signal without explaining why the robot drifted from nominal behavior. We present RAPT, a lightweight, self-supervised deployment-time monitor for 50Hz humanoid control. RAPT learns a probabilistic spatio-temporal manifold of nominal execution from simulation and evaluates execution-time predictive deviation as a calibrated, per-dimension signal. This yields (i) reliable online OOD detection under strict false-positive constraints and (ii) a continuous, interpretable measure of Sim-to-Real mismatch that can be tracked over time to quantify how far deployment has drifted from training. Beyond detection, we introduce an automated post-hoc root-cause analysis pipeline that combines gradient-based temporal saliency derived from RAPT's reconstruction objective with LLM-based reasoning conditioned on saliency and joint kinematics to produce semantic failure diagnoses in a zero-shot setting. We evaluate RAPT on a Unitree G1 humanoid across four complex tasks in simulation and on physical hardware. In large-scale simulation, RAPT improves True Positive Rate (TPR) by 37% over the strongest baseline at a fixed episode-level false positive rate of 0.5%. On real-world deployments, RAPT achieves a 12.5% TPR improvement and provides actionable interpretability, reaching 75% root-cause classification accuracy across 16 real-world failures using only proprioceptive data.
☆ TreeLoc: 6-DoF LiDAR Global Localization in Forests via Inter-Tree Geometric Matching
Reliable localization is crucial for navigation in forests, where GPS is often degraded and LiDAR measurements are repetitive, occluded, and structurally complex. These conditions weaken the assumptions of traditional urban-centric localization methods, which assume that consistent features arise from unique structural patterns, necessitating forest-centric solutions to achieve robustness in these environments. To address these challenges, we propose TreeLoc, a LiDAR-based global localization framework for forests that handles place recognition and 6-DoF pose estimation. We represent scenes using tree stems and their Diameter at Breast Height (DBH), which are aligned to a common reference frame via their axes and summarized using the tree distribution histogram (TDH) for coarse matching, followed by fine matching with a 2D triangle descriptor. Finally, pose estimation is achieved through a two-step geometric verification. On diverse forest benchmarks, TreeLoc outperforms baselines, achieving precise localization. Ablation studies validate the contribution of each component. We also propose applications for long-term forest management using descriptors from a compact global tree database. TreeLoc is open-sourced for the robotics community at https://github.com/minwoo0611/TreeLoc.
comment: An 8-page paper with 7 tables and 8 figures, accepted to ICRA 2026
☆ Modular Isoperimetric Soft Robotic Truss for Lunar Applications
We introduce a large-scale robotic system designed as a lightweight, modular, and reconfigurable structure for lunar applications. The system consists of truss-like robotic triangles formed by continuous inflated fabric tubes routed through two robotic roller units and a connecting unit. A newly developed spherical joint enables up to three triangles to connect at a vertex, allowing construction of truss assemblies beyond a single octahedron. When deflated, the triangles compact to approximately the volume of the roller units, achieving a stowed-to-deployed volume ratio of 1:18.3. Upon inflation, the roller units pinch the tubes, locally reducing bending stiffness to form effective joints. Electric motors then translate the roller units along the tube, shifting the pinch point by lengthening one edge while shortening another at the same rate, thereby preserving a constant perimeter (isoperimetric). This shape-changing process requires no additional compressed air, enabling untethered operation after initial inflation. We demonstrate the system as a 12-degree-of-freedom solar array capable of tilting up to 60 degrees and sweeping 360 degrees, and as a 14-degree-of-freedom locomotion device using a step-and-slide gait. This modular, shape-adaptive system addresses key challenges for sustainable lunar operations and future space missions.
☆ Moving On, Even When You're Broken: Fail-Active Trajectory Generation via Diffusion Policies Conditioned on Embodiment and Task
Robot failure is detrimental and disruptive, often requiring human intervention to recover. Maintaining safe operation under impairment to achieve task completion, i.e. fail-active operation, is our target. Focusing on actuation failures, we introduce DEFT, a diffusion-based trajectory generator conditioned on the robot's current embodiment and task constraints. DEFT generalizes across failure types, supports constrained and unconstrained motions, and enables task completion under arbitrary failure. We evaluated DEFT in both simulation and real-world scenarios using a 7-DoF robotic arm. In simulation over thousands of joint-failure cases across multiple tasks, DEFT outperformed the baseline by up to 2 times. On failures unseen during training, it continued to outperform the baseline, indicating robust generalization in simulation. Further, we performed real-world evaluations on two multi-step tasks, drawer manipulation and whiteboard erasing. These experiments demonstrated DEFT succeeding on tasks where classical methods failed. Our results show that DEFT achieves fail-active manipulation across arbitrary failure configurations and real-world deployments.
comment: To be published in the 2026 IEEE International Conference on Robotics & Automation
☆ Accelerating Structured Chain-of-Thought in Autonomous Vehicles
Chain-of-Thought (CoT) reasoning enhances the decision-making capabilities of vision-language-action models in autonomous driving, but its autoregressive nature introduces significant inference latency, making it impractical for real-time applications. To address this, we introduce FastDriveCoT, a novel parallel decoding method that accelerates template-structured CoT. Our approach decomposes the reasoning process into a dependency graph of distinct sub-tasks, such as identifying critical objects and summarizing traffic rules, some of which can be generated in parallel. By generating multiple independent reasoning steps concurrently within a single forward pass, we significantly reduce the number of sequential computations. Experiments demonstrate a 3-4$\times$ speedup in CoT generation and a substantial reduction in end-to-end latency across various model architectures, all while preserving the original downstream task improvements brought by incorporating CoT reasoning.
☆ IMAGINE: Intelligent Multi-Agent Godot-based Indoor Networked Exploration
The exploration of unknown, Global Navigation Satellite System (GNSS) denied environments by an autonomous communication-aware and collaborative group of Unmanned Aerial Vehicles (UAVs) presents significant challenges in coordination, perception, and decentralized decision-making. This paper implements Multi-Agent Reinforcement Learning (MARL) to address these challenges in a 2D indoor environment, using high-fidelity game-engine simulations (Godot) and continuous action spaces. Policy training aims to achieve emergent collaborative behaviours and decision-making under uncertainty using Network-Distributed Partially Observable Markov Decision Processes (ND-POMDPs). Each UAV is equipped with a Light Detection and Ranging (LiDAR) sensor and can share data (sensor measurements and a local occupancy map) with neighbouring agents. Inter-agent communication constraints include limited range, bandwidth and latency. Extensive ablation studies evaluated MARL training paradigms, reward function, communication system, neural network (NN) architecture, memory mechanisms, and POMDP formulations. This work jointly addresses several key limitations in prior research, namely reliance on discrete actions, single-agent or centralized formulations, assumptions of a priori knowledge and permanent connectivity, inability to handle dynamic obstacles, short planning horizons and architectural complexity in Recurrent NNs/Transformers. Results show that the scalable training paradigm, combined with a simplified architecture, enables rapid autonomous exploration of an indoor area. The implementation of Curriculum-Learning (five increasingly complex levels) also enabled faster, more robust training. This combination of high-fidelity simulation, MARL formulation, and computational efficiency establishes a strong foundation for deploying learned cooperative strategies in physical robotic systems.
comment: 12 pages, submitted to a journal
☆ Latent Perspective-Taking via a Schrödinger Bridge in Influence-Augmented Local Models
Operating in environments alongside humans requires robots to make decisions under uncertainty. In addition to exogenous dynamics, they must reason over others' hidden mental-models and mental-states. While Interactive POMDPs and Bayesian Theory of Mind formulations are principled, exact nested-belief inference is intractable, and hand-specified models are brittle in open-world settings. We address both by learning structured mental-models and an estimator of others' mental-states. Building on the Influence-Based Abstraction, we instantiate an Influence-Augmented Local Model to decompose socially-aware robot tasks into local dynamics, social influences, and exogenous factors. We propose (a) a neuro-symbolic world model instantiating a factored, discrete Dynamic Bayesian Network, and (b) a perspective-shift operator modeled as an amortized Schrödinger Bridge over the learned local dynamics that transports factored egocentric beliefs into other-centric beliefs. We show that this architecture enables agents to synthesize socially-aware policies in model-based reinforcement learning, via decision-time mental-state planning (a Schrödinger Bridge in belief space), with preliminary results in a MiniGrid social navigation task.
comment: Extended Abstract & Poster, Presented at World Modeling Workshop 2026
☆ Causal Flow Q-Learning for Robust Offline Reinforcement Learning
Expressive policies based on flow-matching have been successfully applied in reinforcement learning (RL) more recently due to their ability to model complex action distributions from offline data. These algorithms build on standard policy gradients, which assume that there is no unmeasured confounding in the data. However, this condition does not necessarily hold for pixel-based demonstrations when a mismatch exists between the demonstrator's and the learner's sensory capabilities, leading to implicit confounding biases in offline data. We address the challenge by investigating the problem of confounded observations in offline RL from a causal perspective. We develop a novel causal offline RL objective that optimizes policies' worst-case performance that may arise due to confounding biases. Based on this new objective, we introduce a practical implementation that learns expressive flow-matching policies from confounded demonstrations, employing a deep discriminator to assess the discrepancy between the target policy and the nominal behavioral policy. Experiments across 25 pixel-based tasks demonstrate that our proposed confounding-robust augmentation procedure achieves a success rate 120\% that of confounding-unaware, state-of-the-art offline RL methods.
☆ Kino-PAX$^+$: Near-Optimal Massively Parallel Kinodynamic Sampling-based Motion Planner
Sampling-based motion planners (SBMPs) are widely used for robot motion planning with complex kinodynamic constraints in high-dimensional spaces, yet they struggle to achieve \emph{real-time} performance due to their serial computation design. Recent efforts to parallelize SBMPs have achieved significant speedups in finding feasible solutions; however, they provide no guarantees of optimizing an objective function. We introduce Kino-PAX$^{+}$, a massively parallel kinodynamic SBMP with asymptotic near-optimal guarantees. Kino-PAX$^{+}$ builds a sparse tree of dynamically feasible trajectories by decomposing traditionally serial operations into three massively parallel subroutines. The algorithm focuses computation on the most promising nodes within local neighborhoods for propagation and refinement, enabling rapid improvement of solution cost. We prove that, while maintaining probabilistic $δ$-robust completeness, this focus on promising nodes ensures asymptotic $δ$-robust near-optimality. Our results show that Kino-PAX$^{+}$ finds solutions up to three orders of magnitude faster than existing serial methods and achieves lower solution costs than a state-of-the-art GPU-based planner.
comment: 10 pages, 8 figures
☆ Language Movement Primitives: Grounding Language Models in Robot Motion
Enabling robots to perform novel manipulation tasks from natural language instructions remains a fundamental challenge in robotics, despite significant progress in generalized problem solving with foundational models. Large vision and language models (VLMs) are capable of processing high-dimensional input data for visual scene and language understanding, as well as decomposing tasks into a sequence of logical steps; however, they struggle to ground those steps in embodied robot motion. On the other hand, robotics foundation models output action commands, but require in-domain fine-tuning or experience before they are able to perform novel tasks successfully. At its core, there still remains the fundamental challenge of connecting abstract task reasoning with low-level motion control. To address this disconnect, we propose Language Movement Primitives (LMPs), a framework that grounds VLM reasoning in Dynamic Movement Primitive (DMP) parameterization. Our key insight is that DMPs provide a small number of interpretable parameters, and VLMs can set these parameters to specify diverse, continuous, and stable trajectories. Put another way: VLMs can reason over free-form natural language task descriptions, and semantically ground their desired motions into DMPs -- bridging the gap between high-level task reasoning and low-level position and velocity control. Building on this combination of VLMs and DMPs, we formulate our LMP pipeline for zero-shot robot manipulation that effectively completes tabletop manipulation problems by generating a sequence of DMP motions. Across 20 real-world manipulation tasks, we show that LMP achieves 80% task success as compared to 31% for the best-performing baseline. See videos at our website: https://collab.me.vt.edu/lmp
☆ Adaptive Linear Path Model-Based Diffusion
The interest in combining model-based control approaches with diffusion models has been growing. Although we have seen many impressive robotic control results in difficult tasks, the performance of diffusion models is highly sensitive to the choice of scheduling parameters, making parameter tuning one of the most critical challenges. We introduce Linear Path Model-Based Diffusion (LP-MBD), which replaces the variance-preserving schedule with a flow-matching-inspired linear probability path. This yields a geometrically interpretable and decoupled parameterization that reduces tuning complexity and provides a stable foundation for adaptation. Building on this, we propose Adaptive LP-MBD (ALP-MBD), which leverages reinforcement learning to adjust diffusion steps and noise levels according to task complexity and environmental conditions. Across numerical studies, Brax benchmarks, and mobile-robot trajectory tracking, LP-MBD simplifies scheduling while maintaining strong performance, and ALP-MBD further improves robustness, adaptability, and real-time efficiency.
comment: ICRA 2026
☆ Fast Near Time-Optimal Motion Planning for Holonomic Vehicles in Structured Environments
This paper proposes a novel and efficient optimization-based method for generating near time-optimal trajectories for holonomic vehicles navigating through complex but structured environments. The approach aims to solve the problem of motion planning for planar motion systems using magnetic levitation that can be used in assembly lines, automated laboratories or clean-rooms. In these applications, time-optimal trajectories that can be computed in real-time are required to increase productivity and allow the vehicles to be reactive if needed. The presented approach encodes the environment representation using free-space corridors and represents the motion of the vehicle through such a corridor using a motion primitive. These primitives are selected heuristically and define the trajectory with a limited number of degrees of freedom, which are determined in an optimization problem. As a result, the method achieves significantly lower computation times compared to the state-of-the-art, most notably solving a full Optimal Control Problem (OCP), OMG-tools or VP-STO without significantly compromising optimality within a fixed corridor sequence. The approach is benchmarked extensively in simulation and is validated on a real-world Beckhoff XPlanar system
☆ Sub-optimality bounds for certainty equivalent policies in partially observed systems
In this paper, we present a generalization of the certainty equivalence principle of stochastic control. One interpretation of the classical certainty equivalence principle for linear systems with output feedback and quadratic costs is as follows: the optimal action at each time is obtained by evaluating the optimal state-feedback policy of the stochastic linear system at the minimum mean square error (MMSE) estimate of the state. Motivated by this interpretation, we consider certainty equivalent policies for general (non-linear) partially observed stochastic systems that allow for any state estimate rather than restricting to MMSE estimates. In such settings, the certainty equivalent policy is not optimal. For models where the cost and the dynamics are smooth in an appropriate sense, we derive upper bounds on the sub-optimality of certainty equivalent policies. We present several examples to illustrate the results.
comment: 12 pages, 0 figures
☆ Simulating Human Audiovisual Search Behavior
Locating a target based on auditory and visual cues$\unicode{x2013}$such as finding a car in a crowded parking lot or identifying a speaker in a virtual meeting$\unicode{x2013}$requires balancing effort, time, and accuracy under uncertainty. Existing models of audiovisual search often treat perception and action in isolation, overlooking how people adaptively coordinate movement and sensory strategies. We present Sensonaut, a computational model of embodied audiovisual search. The core assumption is that people deploy their body and sensory systems in ways they believe will most efficiently improve their chances of locating a target, trading off time and effort under perceptual constraints. Our model formulates this as a resource-rational decision-making problem under partial observability. We validate the model against newly collected human data, showing that it reproduces both adaptive scaling of search time and effort under task complexity, occlusion, and distraction, and characteristic human errors. Our simulation of human-like resource-rational search informs the design of audiovisual interfaces that minimize search cost and cognitive load.
comment: 17 pages, 10 figures, CHI 2026
☆ Bimanual High-Density EMG Control for In-Home Mobile Manipulation by a User with Quadriplegia
Mobile manipulators in the home can enable people with cervical spinal cord injury (cSCI) to perform daily physical household tasks that they could not otherwise do themselves. However, paralysis in these users often limits access to traditional robot control interfaces such as joysticks or keyboards. In this work, we introduce and deploy the first system that enables a user with quadriplegia to control a mobile manipulator in their own home using bimanual high-density electromyography (HDEMG). We develop a pair of custom, fabric-integrated HDEMG forearm sleeves, worn on both arms, that capture residual neuromotor activity from clinically paralyzed degrees of freedom and support real-time gesture-based robot control. Second, by integrating vision, language, and motion planning modules, we introduce a shared autonomy framework that supports robust and user-driven teleoperation, with particular benefits for navigation-intensive tasks in home environments. Finally, to demonstrate the system in the wild, we present a twelve-day in-home user study evaluating real-time use of the wearable EMG interface for daily robot control. Together, these system components enable effective robot control for performing activities of daily living and other household tasks in a real home environment.
comment: 14 pages, 17 figures
☆ Ethical Asymmetry in Human-Robot Interaction - An Empirical Test of Sparrow's Hypothesis
The ethics of human-robot interaction (HRI) have been discussed extensively based on three traditional frameworks: deontology, consequentialism, and virtue ethics. We conducted a mixed within/between experiment to investigate Sparrow's proposed ethical asymmetry hypothesis in human treatment of robots. The moral permissibility of action (MPA) was manipulated as a subject grouping variable, and virtue type (prudence, justice, courage, and temperance) was controlled as a within-subjects factor. We tested moral stimuli using an online questionnaire with Perceived Moral Permissibility of Action (PMPA) and Perceived Virtue Scores (PVS) as response measures. The PVS measure was based on an adaptation of the established Questionnaire on Cardinal Virtues (QCV), while the PMPA was based on Malle et al. [39] work. We found that the MPA significantly influenced the PMPA and perceived virtue scores. The best-fitting model to describe the relationship between PMPA and PVS was cubic, which is symmetrical in nature. Our study did not confirm Sparrow's asymmetry hypothesis. The adaptation of the QCV is expected to have utility for future studies, pending additional psychometric property assessments.
comment: 27 pages, 3 figures
☆ PokeNet: Learning Kinematic Models of Articulated Objects from Human Observations
Articulation modeling enables robots to learn joint parameters of articulated objects for effective manipulation which can then be used downstream for skill learning or planning. Existing approaches often rely on prior knowledge about the objects, such as the number or type of joints. Some of these approaches also fail to recover occluded joints that are only revealed during interaction. Others require large numbers of multi-view images for every object, which is impractical in real-world settings. Furthermore, prior works neglect the order of manipulations, which is essential for many multi-DoF objects where one joint must be operated before another, such as a dishwasher. We introduce PokeNet, an end-to-end framework that estimates articulation models from a single human demonstration without prior object knowledge. Given a sequence of point cloud observations of a human manipulating an unknown object, PokeNet predicts joint parameters, infers manipulation order, and tracks joint states over time. PokeNet outperforms existing state-of-the-art methods, improving joint axis and state estimation accuracy by an average of over 27% across diverse objects, including novel and unseen categories. We demonstrate these gains in both simulation and real-world environments.
☆ AROLA: A Modular Layered Architecture for Scaled Autonomous Racing
Autonomous racing has advanced rapidly, particularly on scaled platforms, and software stacks must evolve accordingly. In this work, AROLA is introduced as a modular, layered software architecture in which fragmented and monolithic designs are reorganized into interchangeable layers and components connected through standardized ROS 2 interfaces. The autonomous-driving pipeline is decomposed into sensing, pre-processing, perception, localization and mapping, planning, behavior, control, and actuation, enabling rapid module replacement and objective benchmarking without reliance on custom message definitions. To support consistent performance evaluation, a Race Monitor framework is introduced as a lightweight system through which lap timing, trajectory quality, and computational load are logged in real time and standardized post-race analyses are generated. AROLA is validated in simulation and on hardware using the RoboRacer platform, including deployment at the 2025 RoboRacer IV25 competition. Together, AROLA and Race Monitor demonstrate that modularity, transparent interfaces, and systematic evaluation can accelerate development and improve reproducibility in scaled autonomous racing.
comment: 6 pages, 6 figures, IV 2026
☆ Hierarchical Entity-centric Reinforcement Learning with Factored Subgoal Diffusion ICLR 2026
We propose a hierarchical entity-centric framework for offline Goal-Conditioned Reinforcement Learning (GCRL) that combines subgoal decomposition with factored structure to solve long-horizon tasks in domains with multiple entities. Achieving long-horizon goals in complex environments remains a core challenge in Reinforcement Learning (RL). Domains with multiple entities are particularly difficult due to their combinatorial complexity. GCRL facilitates generalization across goals and the use of subgoal structure, but struggles with high-dimensional observations and combinatorial state-spaces, especially under sparse reward. We employ a two-level hierarchy composed of a value-based GCRL agent and a factored subgoal-generating conditional diffusion model. The RL agent and subgoal generator are trained independently and composed post hoc through selective subgoal generation based on the value function, making the approach modular and compatible with existing GCRL algorithms. We introduce new variations to benchmark tasks that highlight the challenges of multi-entity domains, and show that our method consistently boosts performance of the underlying RL agent on image-based long-horizon tasks with sparse rewards, achieving over 150% higher success rates on the hardest task in our suite and generalizing to increasing horizons and numbers of entities. Rollout videos are provided at: https://sites.google.com/view/hecrl
comment: ICLR 2026
♻ ☆ How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Frontier language models are deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. We introduce Advisor Models, a method to train small open-weight models to generate dynamic, per-instance natural language advice that improves the capabilities of black-box frontier models. Advisor Models improve GPT-5's performance on RuleArena (Taxes) by 71%, reduce Gemini 3 Pro's steps taken in SWE agent tasks by 24.6%, and outperform static prompt optimizers in personalizing GPT-5 to user preferences (85-100% vs. 40-60%). We also find that advisors are transferable: an advisor trained with a low-cost student model still transfers improvements to a frontier model. Moreover, Advisor Models are robust: we observe no degradation on other benchmarks than the pipeline is trained on. Our method shows how to perform parametric optimization for black-box frontier models in a practical and cost-effective way.
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains.
comment: Accepted to ICLR 2026
♻ ☆ Language Family Matters: Evaluating LLM-Based ASR Across Linguistic Boundaries EACL'26
Large Language Model (LLM)-powered Automatic Speech Recognition (ASR) systems achieve strong performance with limited resources by linking a frozen speech encoder to a pretrained LLM via a lightweight connector. Prior work trains a separate connector per language, overlooking linguistic relatedness. We propose an efficient and novel connector-sharing strategy based on linguistic family membership, enabling one connector per family, and empirically validate its effectiveness across two multilingual LLMs and two real-world corpora spanning curated and crowd-sourced speech. Our results show that family-based connectors reduce parameter count while improving generalization across domains, offering a practical and scalable strategy for multilingual ASR deployment.
comment: Accepted by EACL'26 main
♻ ☆ Outcome-Based RL Provably Leads Transformers to Reason, but Only With the Right Data
Transformers trained via Reinforcement Learning (RL) with outcome-based supervision can spontaneously develop the ability to generate intermediate reasoning steps (Chain-of-Thought). Yet the mechanism by which sparse rewards drive policy gradient to discover such systematic reasoning remains poorly understood. We address this by analyzing the policy gradient dynamics of single-layer Transformers on a synthetic graph traversal task that cannot be solved without Chain-of-Thought but admits a simple iterative solution. We prove that despite training solely on final-answer correctness, policy gradient drives the Transformer to converge to a structured, interpretable algorithm that iteratively traverses the graph vertex-by-vertex. We characterize the distributional properties required for this emergence, identifying the critical role of "simple examples": instances requiring fewer reasoning steps. When the training distribution places sufficient mass on these simpler examples, the Transformer learns a generalizable traversal strategy that extrapolates to longer chains; when this mass vanishes, policy gradient learning becomes infeasible. We corroborate our theoretical results through experiments on synthetic data and with real-world language models on mathematical reasoning tasks, validating that our theoretical findings carry over to practical settings.
comment: 87 pages, 6 figures
♻ ☆ EUGens: Efficient, Unified, and General Dense Layers
Efficient neural networks are essential for scaling machine learning models to real-time applications and resource-constrained environments. Fully-connected feedforward layers (FFLs) introduce computation and parameter count bottlenecks within neural network architectures. To address this challenge, in this work, we propose a new class of dense layers that generalize standard fully-connected feedforward layers, \textbf{E}fficient, \textbf{U}nified and \textbf{Gen}eral dense layers (EUGens). EUGens leverage random features to approximate standard FFLs and go beyond them by incorporating a direct dependence on the input norms in their computations. The proposed layers unify existing efficient FFL extensions and improve efficiency by reducing inference complexity from quadratic to linear time. They also lead to \textbf{the first} unbiased algorithms approximating FFLs with arbitrary polynomial activation functions. Furthermore, EuGens reduce the parameter count and computational overhead while preserving the expressive power and adaptability of FFLs. We also present a layer-wise knowledge transfer technique that bypasses backpropagation, enabling efficient adaptation of EUGens to pre-trained models. Empirically, we observe that integrating EUGens into Transformers and MLPs yields substantial improvements in inference speed (up to \textbf{27}\%) and memory efficiency (up to \textbf{30}\%) across a range of tasks, including image classification, language model pre-training, and 3D scene reconstruction. Overall, our results highlight the potential of EUGens for the scalable deployment of large-scale neural networks in real-world scenarios.
comment: We want to update 2410.09771 with this submission
♻ ☆ Decoding Generalization from Memorization in Deep Neural Networks
Overparameterized deep networks that generalize well have been key to the dramatic success of deep learning in recent years. The reasons for their remarkable ability to generalize are not well understood yet. When class labels in the training set are shuffled to varying degrees, it is known that deep networks can still reach perfect training accuracy at the detriment of generalization to true labels -- a phenomenon that has been called memorization. It has, however, been unclear why the poor generalization to true labels that accompanies such memorization, comes about. One possibility is that during training, all layers of the network irretrievably re-organize their representations in a manner that makes generalization to true labels difficult. The other possibility is that one or more layers of the trained network retain significantly more latent ability to generalize to true labels, but the network somehow "chooses" to readout in a manner that is detrimental to generalization to true labels. Here, we provide evidence for the latter possibility by demonstrating, empirically, that such models possess information in their representations for substantially-improved generalization to true labels. Furthermore, such abilities can be easily decoded from the internals of the trained model, and we build a technique to do so. We demonstrate results on multiple models trained with standard datasets. Our code is available at: https://github.com/simranketha/MASC_DNN.
♻ ☆ Breaking Up with Normatively Monolithic Agency with GRACE: A Reason-Based Neuro-Symbolic Architecture for Safe and Ethical AI Alignment
As AI agents become increasingly autonomous, widely deployed in consequential contexts, and efficacious in bringing about real-world impacts, ensuring that their decisions are not only instrumentally effective but also normatively aligned has become critical. We introduce a neuro-symbolic reason-based containment architecture, Governor for Reason-Aligned ContainmEnt (GRACE), that decouples normative reasoning from instrumental decision-making and can contain AI agents of virtually any design. GRACE restructures decision-making into three modules: a Moral Module (MM) that determines permissible macro actions via deontic logic-based reasoning; a Decision-Making Module (DMM) that encapsulates the target agent while selecting instrumentally optimal primitive actions in accordance with derived macro actions; and a Guard that monitors and enforces moral compliance. The MM uses a reason-based formalism providing a semantic foundation for deontic logic, enabling interpretability, contestability, and justifiability. Its symbolic representation enriches the DMM's informational context and supports formal verification and statistical guarantees of alignment enforced by the Guard. We demonstrate GRACE on an example of a LLM therapy assistant, showing how it enables stakeholders to understand, contest, and refine agent behavior.
comment: 10 pages, 4 figures, accepted at 2nd Annual Conference of the International Association for Safe & Ethical AI (IASEAI'26)
♻ ☆ To See Far, Look Close: Evolutionary Forecasting for Long-term Time Series
The prevailing Direct Forecasting (DF) paradigm dominates Long-term Time Series Forecasting (LTSF) by forcing models to predict the entire future horizon in a single forward pass. While efficient, this rigid coupling of output and evaluation horizons necessitates computationally prohibitive re-training for every target horizon. In this work, we uncover a counter-intuitive optimization anomaly: models trained on short horizons-when coupled with our proposed Evolutionary Forecasting (EF) paradigm-significantly outperform those trained directly on long horizons. We attribute this success to the mitigation of a fundamental optimization pathology inherent in DF, where conflicting gradients from distant futures cripple the learning of local dynamics. We establish EF as a unified generative framework, proving that DF is merely a degenerate special case of EF. Extensive experiments demonstrate that a singular EF model surpasses task-specific DF ensembles across standard benchmarks and exhibits robust asymptotic stability in extreme extrapolation. This work propels a paradigm shift in LTSF: moving from passive Static Mapping to autonomous Evolutionary Reasoning.
♻ ☆ Adaptive Testing for LLM Evaluation: A Psychometric Alternative to Static Benchmarks
Evaluating large language models (LLMs) typically requires thousands of benchmark items, making the process expensive, slow, and increasingly impractical at scale. Existing evaluation protocols rely on average accuracy over fixed item sets, treating all items as equally informative despite substantial variation in difficulty and discrimination. We introduce ATLAS, an adaptive testing framework based on Item Response Theory (IRT) that estimates model ability using Fisher information-guided item selection. ATLAS reduces the number of required items by up to 90% while maintaining measurement precision. For instance, it matches whole-bank ability estimates using only 41 items (0.157 MAE) on HellaSwag (5,600 items). We further reconstruct accuracy from ATLAS's ability estimates and find that reconstructed accuracies closely match raw accuracies across all five benchmarks, indicating that ability $θ$ preserves the global performance structure. At the same time, $θ$ provides finer discrimination within accuracy-equivalent models: among more than 3,000 evaluated models, 23-31% shift by more than 10 rank positions, and models with identical accuracies receive meaningfully different ability estimates. Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git.
comment: Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git
♻ ☆ SparseSwaps: Tractable LLM Pruning Mask Refinement at Scale
The resource requirements of neural networks can be significantly reduced through pruning - the removal of seemingly less important parameters. However, for LLMs, full retraining to recover pruning-induced performance degradation is often prohibitive and classical approaches such as magnitude pruning are suboptimal on Transformers. State-of-the-art methods hence solve a layer-wise mask selection problem: finding a pruning mask that minimizes per-layer pruning error on a small set of calibration data. Exactly solving this problem is computationally infeasible due to its combinatorial nature and the size of the search space, and existing approaches rely on approximations or heuristics. We demonstrate that the mask selection problem can be made drastically more tractable at LLM scale. To that end, we decouple the rows by enforcing equal sparsity levels per row. This allows us to derive optimal 1-swaps (exchanging one kept and one pruned weight) computable efficiently via the Gram matrix. We propose a simple 1-swap algorithm that warmstarts from any pruning mask, runs efficiently on GPUs at LLM scale, and is essentially hyperparameter-free. Our approach reduces per-layer pruning error by up to 60% over Wanda (Sun et al., 2024) and consistently improves perplexity and zero-shot accuracy across state-of-the-art GPT architectures.
comment: 13 pages, 2 figures, 5 tables
♻ ☆ Estimating Respiratory Effort from Nocturnal Breathing Sounds for Obstructive Sleep Apnoea Screening ICASSP 2026
Obstructive sleep apnoea (OSA) is a prevalent condition with significant health consequences, yet many patients remain undiagnosed due to the complexity and cost of over-night polysomnography. Acoustic-based screening provides a scalable alternative, yet performance is limited by environmental noise and the lack of physiological context. Respiratory effort is a key signal used in clinical scoring of OSA events, but current approaches require additional contact sensors that reduce scalability and patient comfort. This paper presents the first study to estimate respiratory effort directly from nocturnal audio, enabling physiological context to be recovered from sound alone. We propose a latent-space fusion framework that integrates the estimated effort embeddings with acoustic features for OSA detection. Using a dataset of 157 nights from 103 participants recorded in home environments, our respiratory effort estimator achieves a concordance correlation coefficient of 0.48, capturing meaningful respiratory dynamics. Fusing effort and audio improves sensitivity and AUC over audio-only baselines, especially at low apnoea-hypopnoea index thresholds. The proposed approach requires only smartphone audio at test time, which enables sensor-free, scalable, and longitudinal OSA monitoring.
comment: Accepted at ICASSP 2026
♻ ☆ Language as a Wave Phenomenon: Semantic Phase Locking and Interference in Neural Networks
In standard Transformer architectures, semantic importance is often conflated with activation magnitude, obscuring the geometric structure of latent representations. To disentangle these factors, we introduce PRISM, a complex-valued architecture designed to isolate the computational role of phase. By enforcing a strict unit-norm constraint (|z| = 1) and replacing attention with gated harmonic convolutions, the model is compelled to utilize subtractive interference in the frequency domain to suppress noise, rather than relying on magnitude-based gating. We utilize this constrained regime to demonstrate that a hybrid architecture - fusing phase-based routing with standard attention - achieves superior parameter efficiency and representation quality compared to unconstrained baselines. Mechanistically, we identify geometric phase clustering, where tokens naturally self-organize to resolve semantic ambiguities. This establishes an O(N log N) reasoning framework based on spectral interference, providing an algorithmic existence proof that subtractive logic is a sufficient primitive for deep reasoning.
comment: 14 pages, 7 figures; Revised title; Added new experiments on encoder-only models using WikiText-103
♻ ☆ A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN (Ma et al., 2021). However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted for ICLR 2026
♻ ☆ A Scalable Measure of Loss Landscape Curvature for Analyzing the Training Dynamics of LLMs
Understanding the curvature evolution of the loss landscape is fundamental to analyzing the training dynamics of neural networks. The most commonly studied measure, Hessian sharpness ($λ_{\max}^H$) -- the largest eigenvalue of the loss Hessian -- determines local training stability and interacts with the learning rate throughout training. Despite its significance in analyzing training dynamics, direct measurement of Hessian sharpness remains prohibitive for Large Language Models (LLMs) due to high computational cost. We analyze $\textit{critical sharpness}$ ($λ_c$), a computationally efficient measure requiring fewer than $10$ forward passes given the update direction $Δ\mathbfθ$. Critically, this measure captures well-documented Hessian sharpness phenomena, including progressive sharpening and Edge of Stability. Using this measure, we provide the first demonstration of these sharpness phenomena at scale, up to $7$B parameters, spanning both pre-training and mid-training of OLMo-2 models. We further introduce $\textit{relative critical sharpness}$ ($λ_c^{1\to 2}$), which quantifies the curvature of one loss landscape while optimizing another, to analyze the transition from pre-training to fine-tuning and guide data mixing strategies. Critical sharpness provides practitioners with a practical tool for diagnosing curvature dynamics and informing data composition choices at scale. More broadly, our work shows that scalable curvature measures can provide actionable insights for large-scale training.
comment: Improved Appendix D proofs, text for clarity, added more related works
♻ ☆ STAC: When Innocent Tools Form Dangerous Chains to Jailbreak LLM Agents
As LLMs advance into autonomous agents with tool-use capabilities, they introduce security challenges that extend beyond traditional content-based LLM safety concerns. This paper introduces Sequential Tool Attack Chaining (STAC), a novel multi-turn attack framework that exploits agent tool use. STAC chains together tool calls that each appear harmless in isolation but, when combined, collectively enable harmful operations that only become apparent at the final execution step. We apply our framework to automatically generate and systematically evaluate 483 STAC cases, featuring 1,352 sets of user-agent-environment interactions and spanning diverse domains, tasks, agent types, and 10 failure modes. Our evaluations show that state-of-the-art LLM agents, including GPT-4.1, are highly vulnerable to STAC, with attack success rates (ASR) exceeding 90% in most cases. The core design of STAC's automated framework is a closed-loop pipeline that synthesizes executable multi-step tool chains, validates them through in-environment execution, and reverse-engineers stealthy multi-turn prompts that reliably induce agents to execute the verified malicious sequence. We further perform defense analysis against STAC and find that existing prompt-based defenses provide limited protection. To address this gap, we propose a new reasoning-driven defense prompt that achieves far stronger protection, cutting ASR by up to 28.8%. These results highlight a crucial gap: defending tool-enabled agents requires reasoning over entire action sequences and their cumulative effects, rather than evaluating isolated prompts or responses.
♻ ☆ A Proof of Learning Rate Transfer under $μ$P
We provide the first proof of learning rate transfer with width in a linear multi-layer perceptron (MLP) parametrized with $μ$P, a neural network parameterization designed to ``maximize'' feature learning in the infinite-width limit. We show that under $μP$, the optimal learning rate converges to a \emph{non-zero constant} as width goes to infinity, providing a theoretical explanation to learning rate transfer. In contrast, we show that this property fails to hold under alternative parametrizations such as Standard Parametrization (SP) and Neural Tangent Parametrization (NTP). We provide intuitive proofs and support the theoretical findings with extensive empirical results.
comment: 21 pages
HER: Human-like Reasoning and Reinforcement Learning for LLM Role-playing
LLM role-playing, i.e., using LLMs to simulate specific personas, has emerged as a key capability in various applications, such as companionship, content creation, and digital games. While current models effectively capture character tones and knowledge, simulating the inner thoughts behind their behaviors remains a challenge. Towards cognitive simulation in LLM role-play, previous efforts mainly suffer from two deficiencies: data with high-quality reasoning traces, and reliable reward signals aligned with human preferences. In this paper, we propose HER, a unified framework for cognitive-level persona simulation. HER introduces dual-layer thinking, which distinguishes characters' first-person thinking from LLMs' third-person thinking. To bridge these gaps, we curate reasoning-augmented role-playing data via reverse engineering and construct human-aligned principles and reward models. Leveraging these resources, we train HER models based on Qwen3-32B via supervised and reinforcement learning. Extensive experiments validate the effectiveness of our approach. Notably, our models significantly outperform the Qwen3-32B baseline, achieving a 30.26 improvement on the CoSER benchmark and a 14.97 gain on the Minimax Role-Play Bench. Our datasets, principles, and models will be released to facilitate future research.
comment: 41pages, 10 figures
♻ ☆ TEON: Tensorized Orthonormalization Beyond Layer-Wise Muon for Large Language Model Pre-Training
The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
♻ ☆ Preference-Conditioned Gradient Variations for Multi-Objective Quality-Diversity
In a variety of domains, from robotics to finance, Quality-Diversity algorithms have been used to generate collections of both diverse and high-performing solutions. Multi-Objective Quality-Diversity algorithms have emerged as a promising approach for applying these methods to complex, multi-objective problems. However, existing methods are limited by their search capabilities. For example, Multi-Objective Map-Elites depends on random genetic variations which struggle in high-dimensional search spaces. Despite efforts to enhance search efficiency with gradient-based mutation operators, existing approaches consider updating solutions to improve on each objective separately rather than achieving desired trade-offs. In this work, we address this limitation by introducing Multi-Objective Map-Elites with Preference-Conditioned Policy-Gradient and Crowding Mechanisms: a new Multi-Objective Quality-Diversity algorithm that uses preference-conditioned policy-gradient mutations to efficiently discover promising regions of the objective space and crowding mechanisms to promote a uniform distribution of solutions on the non-dominated front. We evaluate our approach on six robotics locomotion tasks and show that our method outperforms or matches all state-of-the-art Multi-Objective Quality-Diversity methods in all six, including two newly proposed tri-objective tasks. Importantly, our method also achieves a smoother set of trade-offs, as measured by newly-proposed sparsity-based metrics.
♻ ☆ StefaLand: An Efficient Geoscience Foundation Model That Improves Dynamic Land-Surface Predictions
Managing natural resources and mitigating risks from floods, droughts, wildfires, and landslides require models that can accurately predict climate-driven land-surface responses. Traditional models often struggle with spatial generalization because they are trained or calibrated on limited observations and can degrade under concept drift. Recently proposed vision foundation models trained on satellite imagery demand massive compute, and they are not designed for dynamic land surface prediction tasks. We introduce StefaLand, a generative spatiotemporal Earth representation learning model centered on learning cross-domain interactions to suppress overfitting. StefaLand demonstrates especially strong spatial generalization on five datasets across four important tasks: streamflow, soil moisture, soil composition and landslides, compared to previous state-of-the-art methods. The domain-inspired design choices include a location-aware masked autoencoder that fuses static and time-series inputs, an attribute-based rather than image-based representation that drastically reduces compute demands, and residual fine-tuning adapters that strengthen knowledge transfer across tasks. StefaLand can be pretrained and finetuned on commonly available academic compute resources, yet consistently outperforms state-of-the-art supervised learning baselines, fine-tuned vision foundation models and commercially available embeddings, highlighting the previously overlooked value of cross-domain interactions and providing assistance to data-poor regions of the world.
♻ ☆ Aesthetics as Structural Harm: Algorithmic Lookism Across Text-to-Image Generation and Classification
This paper examines algorithmic lookism-the systematic preferential treatment based on physical appearance-in text-to-image (T2I) generative AI and a downstream gender classification task. Through the analysis of 26,400 synthetic faces created with Stable Diffusion 2.1 and 3.5 Medium, we demonstrate how generative AI models systematically associate facial attractiveness with positive attributes and vice-versa, mirroring socially constructed biases rather than evidence-based correlations. Furthermore, we find significant gender bias in three gender classification algorithms depending on the attributes of the input faces. Our findings reveal three critical harms: (1) the systematic encoding of attractiveness-positive attribute associations in T2I models; (2) gender disparities in classification systems, where women's faces, particularly those generated with negative attributes, suffer substantially higher misclassification rates than men's; and (3) intensifying aesthetic constraints in newer models through age homogenization, gendered exposure patterns, and geographic reductionism. These convergent patterns reveal algorithmic lookism as systematic infrastructure operating across AI vision systems, compounding existing inequalities through both representation and recognition. Disclaimer: This work includes visual and textual content that reflects stereotypical associations between physical appearance and socially constructed attributes, including gender, race, and traits associated with social desirability. Any such associations found in this study emerge from the biases embedded in generative AI systems-not from empirical truths or the authors' views.
comment: 22 pages, 15 figures; v2 - fix typo
Semi-Autonomous Mathematics Discovery with Gemini: A Case Study on the Erdős Problems
We present a case study in semi-autonomous mathematics discovery, using Gemini to systematically evaluate 700 conjectures labeled 'Open' in Bloom's Erdős Problems database. We employ a hybrid methodology: AI-driven natural language verification to narrow the search space, followed by human expert evaluation to gauge correctness and novelty. We address 13 problems that were marked 'Open' in the database: 5 through seemingly novel autonomous solutions, and 8 through identification of previous solutions in the existing literature. Our findings suggest that the 'Open' status of the problems was through obscurity rather than difficulty. We also identify and discuss issues arising in applying AI to math conjectures at scale, highlighting the difficulty of literature identification and the risk of ''subconscious plagiarism'' by AI. We reflect on the takeaways from AI-assisted efforts on the Erdős Problems.
comment: Correct some typos and wordings
♻ ☆ Why Inference in Large Models Becomes Decomposable After Training
Inference in large-scale AI models is typically performed on dense parameter matrices, leading to inference cost and system complexity that scale unsustainably with model size. This limitation does not arise from insufficient model capacity, but from treating post-training inference systems as monolithic operators while ignoring internal structures formed during learning. We show that gradient update events in large models are highly localized and selective, leaving many parameter dependencies statistically indistinguishable from their initialization distribution after training. As a result, post-training inference systems are structurally non-uniform and inherently decomposable. Based on this observation, we introduce a post-training statistical criterion and a structural annealing procedure that removes unsupported dependencies and reveals stable, independent substructures. This work establishes a post-training, model-agnostic structural view of inference systems and enables structured, parallel inference without modifying model functionality or interfaces.
comment: 39 pages, 6 figures
♻ ☆ Game-Time: Evaluating Temporal Dynamics in Spoken Language Models ICASSP 2026
Conversational Spoken Language Models (SLMs) are emerging as a promising paradigm for real-time speech interaction. However, their capacity of temporal dynamics, including the ability to manage timing, tempo and simultaneous speaking, remains a critical and unevaluated challenge for conversational fluency. To address this gap, we introduce the Game-Time Benchmark, a framework to systematically assess these temporal capabilities. Inspired by how humans learn a language through language activities, Game-Time consists of basic instruction-following tasks and advanced tasks with temporal constraints, such as tempo adherence and synchronized responses. Our evaluation of diverse SLM architectures reveals a clear performance disparity: while state-of-the-art models handle basic tasks well, many contemporary systems still struggle with fundamental instruction-following. More critically, nearly all models degrade substantially under temporal constraints, exposing persistent weaknesses in time awareness and full-duplex interaction. The Game-Time Benchmark provides a foundation for guiding future research toward more temporally-aware conversational AI. Demos and datasets are available on our project website https://ga642381.github.io/Game-Time.
comment: Accepted to ICASSP 2026
♻ ☆ Learning Robust Intervention Representations with Delta Embeddings
Causal representation learning has attracted significant research interest during the past few years, as a means for improving model generalization and robustness. Causal representations of interventional image pairs (also called ``actionable counterfactuals'' in the literature), have the property that only variables corresponding to scene elements affected by the intervention / action are changed between the start state and the end state. While most work in this area has focused on identifying and representing the variables of the scene under a causal model, fewer efforts have focused on representations of the interventions themselves. In this work, we show that an effective strategy for improving out of distribution (OOD) robustness is to focus on the representation of actionable counterfactuals in the latent space. Specifically, we propose that an intervention can be represented by a Causal Delta Embedding that is invariant to the visual scene and sparse in terms of the causal variables it affects. Leveraging this insight, we propose a method for learning causal representations from image pairs, without any additional supervision. Experiments in the Causal Triplet challenge demonstrate that Causal Delta Embeddings are highly effective in OOD settings, significantly exceeding baseline performance in both synthetic and real-world benchmarks.
♻ ☆ AgentRAN: An Agentic AI Architecture for Autonomous Control of Open 6G Networks
Despite the programmable architecture of Open RAN, today's deployments still rely heavily on static control and manual operations. To move beyond this limitation, we introduce AgentRAN, an AI-native, Open RAN-aligned agentic framework that generates and orchestrates a fabric of distributed AI agents based on natural language intents. Unlike traditional approaches that require explicit programming, AgentRAN's LLM-powered agents interpret natural language intents, negotiate strategies through structured conversations, and orchestrate control loops across the network. AgentRAN instantiates a self-organizing hierarchy of agents that decompose complex intents across time scales (from sub-millisecond to minutes), spatial domains (cell to network-wide), and protocol layers (PHY/MAC to RRC). A central innovation is the AI-RAN Factory, which continuously generates improved agents and algorithms from operational data, transforming the network into a system that evolves its own intelligence. We validate AgentRAN through live 5G experiments, demonstrating dynamic adaptation to changing operator intents across power control and scheduling. Key benefits include transparent decision-making (all agent reasoning is auditable), bootstrapped intelligence (no initial training data required), and continuous self-improvement via the AI-RAN Factory.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Staircase Cascaded Fusion of Lightweight Local Pattern Recognition and Long-Range Dependencies for Structural Crack Segmentation
Accurately segmenting structural cracks at the pixel level remains a major hurdle, as existing methods fail to integrate local textures with pixel dependencies, often leading to fragmented and incomplete predictions. Moreover, their high parameter counts and substantial computational demands hinder practical deployment on resource-constrained edge devices. To address these challenges, we propose CrackSCF, a Lightweight Cascaded Fusion Crack Segmentation Network designed to achieve robust crack segmentation with exceptional computational efficiency. We design a lightweight convolutional block (LRDS) to replace all standard convolutions. This approach efficiently captures local patterns while operating with a minimal computational footprint. For a holistic perception of crack structures, a lightweight Long-range Dependency Extractor (LDE) captures global dependencies. These are then intelligently unified with local patterns by our Staircase Cascaded Fusion Module (SCFM), ensuring the final segmentation maps are both seamless in continuity and rich in fine-grained detail. To comprehensively evaluate our method, this paper created the challenging TUT benchmark dataset and evaluated it alongside five other public datasets. The experimental results show that the CrackSCF method consistently outperforms the existing methods, and it demonstrates greater robustness in dealing with complex background noise. On the TUT dataset, CrackSCF achieved 0.8382 on F1 score and 0.8473 on mIoU, and it only required 4.79M parameters.
comment: This paper is currently under review
♻ ☆ Conditional diffusion models for downscaling and bias correction of Earth system model precipitation
Climate change exacerbates extreme weather events like heavy rainfall and flooding. As these events cause severe socioeconomic damage, accurate high-resolution simulation of precipitation is imperative. However, existing Earth System Models (ESMs) struggle to resolve small-scale dynamics and suffer from biases. Traditional statistical bias correction and downscaling methods fall short in improving spatial structure, while recent deep learning methods lack controllability and suffer from unstable training. Here, we propose a machine learning framework for simultaneous bias correction and downscaling. We first map observational and ESM data to a shared embedding space, where both are unbiased towards each other, and then train a conditional diffusion model to reverse the mapping. Only observational data is used for the training, so that the diffusion model can be employed to correct and downscale any ESM field without need for retraining. Our approach ensures statistical fidelity and preserves spatial patterns larger than a chosen spatial correction scale. We demonstrate that our approach outperforms existing statistical and deep learning methods especially regarding extreme events.
♻ ☆ Entropy-Lens: Uncovering Decision Strategies in LLMs
In large language models (LLMs), each block operates on the residual stream to map input token sequences to output token distributions. However, most of the interpretability literature focuses on internal latent representations, leaving token-space dynamics underexplored. The high dimensionality and categoricity of token distributions hinder their analysis, as standard statistical descriptors are not suitable. We show that the entropy of logit-lens predictions overcomes these issues. In doing so, it provides a per-layer scalar, permutation-invariant metric. We introduce Entropy-Lens to distill the token-space dynamics of the residual stream into a low-dimensional signal. We call this signal the entropy profile. We apply our method to a variety of model sizes and families, showing that (i) entropy profiles uncover token prediction dynamics driven by expansion and pruning strategies; (ii) these dynamics are family-specific and invariant under depth rescaling; (iii) they are characteristic of task type and output format; (iv) these strategies have unequal impact on downstream performance, with the expansion strategy usually being more critical. Ultimately, our findings further enhance our understanding of the residual stream, enabling a granular assessment of how information is processed across model depth.
♻ ☆ Avoiding Premature Collapse: Adaptive Annealing for Entropy-Regularized Structural Inference
Differentiable matching layers, often implemented via entropy-regularized Optimal Transport, serve as a critical approximate inference mechanism in structural prediction. However, recovering discrete permutations via annealing $ε\to 0$ is notoriously unstable. We identify a fundamental mechanism for this failure: \textbf{Premature Mode Collapse}. By analyzing the non-normal dynamics of the Sinkhorn fixed-point map, we reveal a theoretical \textbf{thermodynamic speed limit}. Under standard exponential cooling, the shift in the target posterior ($O(1)$) outpaces the contraction rate of the inference operator, which degrades as $O(1/ε)$. This mismatch inevitably forces the inference trajectory into spurious local basins. To address this, we propose \textbf{Efficient PH-ASC}, an adaptive scheduling algorithm that monitors the stability of the inference process. By enforcing a linear stability law, we decouple expensive spectral diagnostics from the training loop, reducing overhead from $O(N^3)$ to amortized $O(1)$. Our implementation and interactive demo are available at https://github.com/xxx0438/torch-sinkhorn-asc and https://huggingface.co/spaces/leon0923/torch-sinkhorn-asc-demo. bounded away from zero in generic training dynamics unless the feature extractor converges unrealistically fast.
RDDM: Practicing RAW Domain Diffusion Model for Real-world Image Restoration
We present the RAW domain diffusion model (RDDM), an end-to-end diffusion model that restores photo-realistic images directly from the sensor RAW data. While recent sRGB-domain diffusion methods achieve impressive results, they are caught in a dilemma between high fidelity and image generation. These models process lossy sRGB inputs and neglect the accessibility of the sensor RAW images in many scenarios, e.g., in image and video capturing in edge devices, resulting in sub-optimal performance. RDDM obviates this limitation by directly restoring images in the RAW domain, replacing the conventional two-stage image signal processing (ISP)->Image Restoration (IR) pipeline. However, a simple adaptation of pre-trained diffusion models to the RAW domain confronts many challenges. To this end, we propose: (1) a RAW-domain VAE (RVAE), encoding sensor RAW and decoding it into an enhanced linear domain image, to solve the out-of-distribution (OOD) issues between the different domain distributions; (2) a configurable multi-bayer (CMB) LoRA module, adapting diverse RAW Bayer patterns such as RGGB, BGGR, etc. To compensate for the deficiency in the dataset, we develop a scalable data synthesis pipeline synthesizing RAW LQ-HQ pairs from existing sRGB datasets for large-scale training. Extensive experiments demonstrate RDDM's superiority over state-of-the-art sRGB diffusion methods, yielding higher fidelity results with fewer artifacts. Codes will be publicly available at https://github.com/YanCHEN-fr/RDDM.
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
♻ ☆ BiasGym: A Simple and Generalizable Framework for Analyzing and Removing Biases through Elicitation
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review. Title updated
♻ ☆ PIQL: Projective Implicit Q-Learning with Support Constraint for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) faces a fundamental challenge of extrapolation errors caused by out-of-distribution (OOD) actions. Implicit Q-Learning (IQL) employs expectile regression to achieve in-sample learning. Nevertheless, IQL relies on a fixed expectile hyperparameter and a density-based policy improvement method, both of which impede its adaptability and performance. In this paper, we propose Projective IQL (PIQL), a projective variant of IQL enhanced with a support constraint. In the policy evaluation stage, PIQL substitutes the fixed expectile hyperparameter with a projection-based parameter and extends the one-step value estimation to a multi-step formulation. In the policy improvement stage, PIQL adopts a support constraint instead of a density constraint, ensuring closer alignment with the policy evaluation. Theoretically, we demonstrate that PIQL maintains the expectile regression and in-sample learning framework, guarantees monotonic policy improvement, and introduces a progressively more rigorous criterion for advantageous actions. Experiments on D4RL and NeoRL2 benchmarks demonstrate robust gains across diverse domains, achieving state-of-the-art performance overall.
♻ ☆ Optimizing Agentic Workflows using Meta-tools
Agentic AI enables LLM to dynamically reason, plan, and interact with tools to solve complex tasks. However, agentic workflows often require many iterative reasoning steps and tool invocations, leading to significant operational expense, end-to-end latency and failures due to hallucinations. This work introduces Agent Workflow Optimization (AWO), a framework that identifies and optimizes redundant tool execution patterns to improve the efficiency and robustness of agentic workflows. AWO analyzes existing workflow traces to discover recurring sequences of tool calls and transforms them into meta-tools, which are deterministic, composite tools that bundle multiple agent actions into a single invocation. Meta-tools bypass unnecessary intermediate LLM reasoning steps and reduce operational cost while also shortening execution paths, leading to fewer failures. Experiments on two agentic AI benchmarks show that AWO reduces the number of LLM calls up to 11.9% while also increasing the task success rate by up to 4.2 percent points.
♻ ☆ Learning-Augmented Power System Operations: A Unified Optimization View
With the increasing penetration of renewable energy, traditional physics-based power system operation faces growing challenges in achieving economic efficiency, stability, and robustness. Machine learning (ML) has emerged as a powerful tool for modeling complex system dynamics to address these challenges. However, existing ML designs are often developed in isolation and lack systematic integration with established operational decision frameworks. To bridge this gap, this paper proposes a holistic framework of Learning-Augmented Power System Operations (LAPSO, pronounced Lap-So). From a native mathematical optimization perspective, LAPSO is centered on the operation stage and aims to unify traditionally siloed power system tasks such as forecasting, operation, and control. The framework jointly optimizes machine learning and physics-based models at both the training and inference stages. Then, a complete set of design metrics is introduced to quantify and evaluate the impact of ML models on the existing decision-makings. These metrics facilitate a deeper understanding of representative applications such as stability-constrained optimization (SCO) and objective-based forecasting (OBF). Moreover, LAPSO is inherently extensible to emerging learning paradigms that integrate forecasting, operation, and control in a closed loop. It also enables the systematic identification and mitigation of different sources and timings of uncertainty from Bayesian perspective. Finally, a dedicated Python package \texttt{lapso} is developed to automatically augment existing power system optimization models with learnable components. All source code and datasets are publicly available at: https://github.com/xuwkk/lapso_exp.
♻ ☆ Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model
Aligning large language models (LLMs) to preference data typically assumes a known link function between observed preferences and latent rewards (e.g., a logistic Bradley-Terry link). Misspecification of this link can bias inferred rewards and misalign learned policies. We study preference alignment under an unknown and unrestricted link function. We show that realizability of $f$-divergence-constrained reward maximization in a policy class induces a semiparametric single-index binary choice model, where a scalar policy-dependent index captures all dependence on demonstrations and the remaining preference distribution is unrestricted. Rather than assuming this model has identifiable finite-dimensional structural parameters and estimating them, as in econometrics, we focus on policy learning with the reward function implicit, analyzing error to the optimal policy and allowing for unidentifiable nonparametric indices. We develop preference optimization algorithms robust to the unknown link and prove convergence guarantees in terms of generic function complexity measures. We demonstrate this empirically on LLM alignment. Code is available at https://github.com/causalml/spo/
♻ ☆ Less Noise, More Voice: Reinforcement Learning for Reasoning via Instruction Purification
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced LLM reasoning, but remains constrained by inefficient exploration under limited rollout budgets, leading to low sampling success and unstable training in complex tasks. We find that many exploration failures arise not from problem difficulty, but from a small number of prompt tokens that introduce interference. Building on this insight, we propose the Less Noise Sampling Framework (LENS), which first prompts by identifying and removing interference tokens. then transfers successful rollouts from the purification process to supervise policy optimization on the original noisy prompts, enabling the model to learn to ignore interference in the real-world, noisy prompting settings. Experimental results show that LENS significantly outperforms GRPO, delivering higher performance and faster convergence, with a 3.88% average gain and over 1.6$\times$ speedup. Our work highlights the critical role of pruning interference tokens in improving rollout efficiency, offering a new perspective for RLVR research.
comment: Work in progress
♻ ☆ EvoXplain: When Machine Learning Models Agree on Predictions but Disagree on Why -- Measuring Mechanistic Multiplicity Across Training Runs
Machine learning models are primarily judged by predictive performance, especially in applied settings. Once a model reaches high accuracy, its explanation is often assumed to be correct and trustworthy. This assumption raises an overlooked question: when two models achieve high accuracy, do they rely on the same internal logic, or do they reach the same outcome via different and potentially competing mechanisms? We introduce EvoXplain, a diagnostic framework that measures the stability of model explanations across repeated training. Rather than analysing the explanation of a single trained model, EvoXplain treats explanations as samples drawn from the training and model selection pipeline itself, without aggregating predictions or constructing ensembles. It examines whether these samples form a single coherent explanation or separate into multiple structured explanatory modes. We evaluate EvoXplain on the Breast Cancer and COMPAS datasets using Logistic Regression and Random Forests. Although all models achieve high predictive accuracy, their explanations frequently exhibit clear multimodality. Even models commonly assumed to be stable, such as Logistic Regression, can give rise to distinct explanation modes under repeated training on the same data split. Crucially, these modes can coexist at near-identical hyperparameter configurations, indicating explanation non-identifiability rather than smooth sensitivity to regularisation strength. EvoXplain does not attempt to select a correct explanation. Instead, it makes explanatory instability visible and quantifiable, revealing when single-instance or averaged explanations obscure the existence of multiple underlying mechanisms. More broadly, EvoXplain reframes interpretability as a property of a model class under repeated instantiation, rather than of any single trained model.
♻ ☆ Transferring Visual Explainability of Self-Explaining Models to Prediction-Only Models without Additional Training
In image classification scenarios where both prediction and explanation efficiency are required, self-explaining models that perform both tasks in a single inference are effective. However, for users who already have prediction-only models, training a new self-explaining model from scratch imposes significant costs in terms of both labeling and computation. This study proposes a method to transfer the visual explanation capability of self-explaining models learned in a source domain to prediction-only models in a target domain based on a task arithmetic framework. Our self-explaining model comprises an architecture that extends Vision Transformer-based prediction-only models, enabling the proposed method to endow explanation capability to many trained prediction-only models without additional training. Experiments on various image classification datasets demonstrate that, except for transfers between less-related domains, the transfer of visual explanation capability from source to target domains is successful, and explanation quality in the target domain improves without substantially sacrificing classification accuracy.
♻ ☆ MLLMEraser: Achieving Test-Time Unlearning in Multimodal Large Language Models through Activation Steering
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities across vision-language tasks, yet their large-scale deployment raises pressing concerns about memorized private data, outdated knowledge, and harmful content. Existing unlearning approaches for MLLMs typically adapt training-based strategies such as gradient ascent or preference optimization, but these methods are computationally expensive, irreversible, and often distort retained knowledge. In this work, we propose MLLMEraser, an input-aware, training-free framework for test-time unlearning. Our approach leverages activation steering to enable dynamic knowledge erasure without parameter updates. Specifically, we construct a multimodal erasure direction by contrasting adversarially perturbed, knowledge-recall image-text pairs with knowledge-erasure counterparts, capturing both textual and visual discrepancies. To prevent unnecessary interference, we further design an input-aware steering mechanism that adaptively determines when and how the erasure direction should be applied, preserving utility on retained knowledge while enforcing forgetting on designated content. Experiments on LLaVA-1.5 and Qwen-2.5-VL demonstrate that MLLMEraser consistently outperforms state-of-the-art MLLM unlearning baselines, achieving stronger forgetting performance with lower computational cost and minimal utility degradation.
♻ ☆ Real-Time Vibration-Based Bearing Fault Diagnosis Under Time-Varying Speed Conditions
Detection of rolling-element bearing faults is crucial for implementing proactive maintenance strategies and for minimizing the economic and operational consequences of unexpected failures. However, many existing techniques are developed and tested under strictly controlled conditions, limiting their adaptability to the diverse and dynamic settings encountered in practical applications. This paper presents an efficient real-time convolutional neural network (CNN) for diagnosing multiple bearing faults under various noise levels and time-varying rotational speeds. Additionally, we propose a novel Fisher-based spectral separability analysis (SSA) method to elucidate the effectiveness of the designed CNN model. We conducted experiments on both healthy bearings and bearings afflicted with inner race, outer race, and roller ball faults. The experimental results show the superiority of our model over the current state-of-the-art approach in three folds: it achieves substantial accuracy gains of up to 15.8%, it is robust to noise with high performance across various signal-to-noise ratios, and it runs in real-time with processing durations five times less than acquisition. Additionally, by using the proposed SSA technique, we offer insights into the model's performance and underscore its effectiveness in tackling real-world challenges.
♻ ☆ SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
♻ ☆ Multivariate Standardized Residuals for Conformal Prediction
While split conformal prediction guarantees marginal coverage, approaching the stronger property of conditional coverage is essential for reliable uncertainty quantification. Naive conformal scores, however, suffer from poor conditional coverage in heteroskedastic settings. In univariate regression, this is commonly addressed by normalizing nonconformity scores using estimated local score variance. In this work, we propose a natural extension of this normalization to the multivariate setting, effectively whitening the residuals to decouple output correlations and standardize local variance. We demonstrate that using the Mahalanobis distance induced by a learned local covariance as a nonconformity score provides a closed-form, computationally efficient mechanism for capturing inter-output correlations and heteroskedasticity, avoiding the expensive sampling required by previous methods based on cumulative distribution functions. This structure unlocks several practical extensions, including the handling of missing output values, the refinement of conformal sets when partial information is revealed, and the construction of valid conformal sets for transformations of the output. Finally, we provide extensive empirical evidence on both synthetic and real-world datasets showing that our approach yields conformal sets that significantly improve upon the conditional coverage of existing multivariate baselines.
♻ ☆ A Survey on Efficient Vision-Language-Action Models
Vision-Language-Action models (VLAs) represent a significant frontier in embodied intelligence, aiming to bridge digital knowledge with physical-world interaction. Despite their remarkable performance, foundational VLAs are hindered by the prohibitive computational and data demands inherent to their large-scale architectures. While a surge of recent research has focused on enhancing VLA efficiency, the field lacks a unified framework to consolidate these disparate advancements. To bridge this gap, this survey presents the first comprehensive review of Efficient Vision-Language-Action models (Efficient VLAs) across the entire model-training-data pipeline. Specifically, we introduce a unified taxonomy to systematically organize the disparate efforts in this domain, categorizing current techniques into three core pillars: (1) Efficient Model Design, focusing on efficient architectures and model compression; (2) Efficient Training, which reduces computational burdens during model learning; and (3) Efficient Data Collection, which addresses the bottlenecks in acquiring and utilizing robotic data. Through a critical review of state-of-the-art methods within this framework, this survey not only establishes a foundational reference for the community but also summarizes representative applications, delineates key challenges, and charts a roadmap for future research. We maintain a continuously updated project page to track our latest developments: https://evla-survey.github.io/.
comment: 28 pages, 8 figures
♻ ☆ Stream: Scaling up Mechanistic Interpretability to Long Context in LLMs via Sparse Attention
As Large Language Models (LLMs) scale to million-token contexts, traditional Mechanistic Interpretability techniques for analyzing attention scale quadratically with context length, demanding terabytes of memory beyond 100,000 tokens. We introduce Sparse Tracing, a novel technique that leverages dynamic sparse attention to efficiently analyze long context attention patterns. We present Stream, a compilable hierarchical pruning algorithm that estimates per-head sparse attention masks in near-linear time $O(T \log T)$ and linear space $O(T)$, enabling one-pass interpretability at scale. Stream performs a binary-search-style refinement to retain only the top-$k$ key blocks per query while preserving the model's next-token behavior. We apply Stream to long chain-of-thought reasoning traces and identify thought anchors while pruning 97-99\% of token interactions. On the RULER benchmark, Stream preserves critical retrieval paths while discarding 90-96\% of interactions and exposes layer-wise routes from the needle to output. Our method offers a practical drop-in tool for analyzing attention patterns and tracing information flow without terabytes of caches. By making long context interpretability feasible on consumer GPUs, Sparse Tracing helps democratize chain-of-thought monitoring. Code is available at https://anonymous.4open.science/r/stream-03B8/.
♻ ☆ SimMerge: Learning to Select Merge Operators from Similarity Signals
Model merging combines multiple models into a single model with aggregated capabilities, making it a powerful tool for large language model (LLM) development. However, scaling model merging is challenging: performance depends on the choice of merge operator, model subset, and merge order, often requiring expensive merge-and-evaluate searches. In this work, we introduce SimMerge, a predictive merge-selection method that identifies high-performing merges using inexpensive, task-agnostic similarity signals between models. Given a small set of unlabeled probes, SimMerge extracts functional and structural features to predict the performance of candidate two-way merges, enabling merge operator, order and model subset selection without iterative evaluation. We show that SimMerge consistently outperforms the best fixed merge operator across 7B-parameter LLMs and generalizes to multi-way merges and 111B-parameter LLMs without retraining. We further introduce a bandit variant that supports adding new tasks and operators online. Our results suggest that learning how to merge enables scalable model composition when checkpoint catalogs are large and evaluation budgets are limited.
♻ ☆ Code-Mixed Phonetic Perturbations for Red-Teaming LLMs
Large language models (LLMs) continue to be demonstrably unsafe despite sophisticated safety alignment techniques and multilingual red-teaming. However, recent red-teaming work has focused on incremental gains in attack success over identifying underlying architectural vulnerabilities in models. In this work, we present \textbf{CMP-RT}, a novel red-teaming probe that combines code-mixing with phonetic perturbations (CMP), exposing a tokenizer-level safety vulnerability in transformers. Combining realistic elements from digital communication such as code-mixing and textese, CMP-RT preserves phonetics while perturbing safety-critical tokens, allowing harmful prompts to bypass alignment mechanisms while maintaining high prompt interpretability, exposing a gap between pre-training and safety alignment. Our results demonstrate robustness against standard defenses, attack scalability, and generalization of the vulnerability across modalities and to SOTA models like Gemini-3-Pro, establishing CMP-RT as a major threat model and highlighting tokenization as an under-examined vulnerability in current safety pipelines.
♻ ☆ p-less Sampling: A Robust Hyperparameter-Free Approach for LLM Decoding
Obtaining high-quality outputs from Large Language Models (LLMs) often depends upon the choice of a sampling-based decoding strategy to probabilistically choose the next token at each generation step. While a variety of such sampling methods have been proposed, their performance can be sensitive to the selection of hyperparameters which may require different settings depending upon the generation task and temperature configuration. In this work, we introduce $p$-less sampling: an information-theoretic approach to sampling which dynamically sets a truncation threshold at each decoding step based on the entire token probability distribution. Unlike existing methods, $p$-less sampling has no hyperparameters and consistently produces high-quality outputs as temperature increases. We provide theoretical perspectives on $p$-less sampling to ground our proposed method and conduct experiments to empirically validate its effectiveness across a range of math, logical reasoning, and creative writing tasks. Our results demonstrate how $p$-less sampling consistently outperforms existing sampling approaches while exhibiting much less degradation in text quality at higher temperature values. We further show how $p$-less achieves greater inference-time efficiency than alternative methods through lower average token sampling times and shorter generation lengths, without sacrificing accuracy. Finally, we provide analyses to highlight the benefits of $p$-less through qualitative examples, case studies, and diversity assessments. The code is available at https://github.com/ryttry/p-less .
♻ ☆ Your Latent Reasoning is Secretly Policy Improvement Operator
Recently, small models with latent recursion have obtained promising results on complex reasoning tasks. These results are typically explained by the theory that such recursion increases a networks depth, allowing it to compactly emulate the capacity of larger models. However, the performance of recursively added layers remains behind the capabilities of one pass models with the same feed forward depth. This means that in the looped version, not every recursive step effectively contributes to depth. This raises the question: when and why does latent reasoning improve performance, and when does it result in dead compute? In our work, we analyze the algorithms that latent reasoning provides answer to this question. We show that latent reasoning can be formalized as a classifier free guidance and policy improvement algorithm. Building on these insights, we propose to use a training schemes from reinforcement learning and diffusion methods for latent reasoning models. Using the Tiny Recursive Model as our testbed, we show that with our modifications we can avoid dead compute steps and reduce the total number of forward passes by 18x while maintaining performance. Broadly speaking, we show how a policy improvement perspective on recursive steps can explain model behavior and provide insights for further improvements.
♻ ☆ DeepGB-TB: A Risk-Balanced Cross-Attention Gradient-Boosted Convolutional Network for Rapid, Interpretable Tuberculosis Screening AAAI 2026
Large-scale tuberculosis (TB) screening is limited by the high cost and operational complexity of traditional diagnostics, creating a need for artificial-intelligence solutions. We propose DeepGB-TB, a non-invasive system that instantly assigns TB risk scores using only cough audio and basic demographic data. The model couples a lightweight one-dimensional convolutional neural network for audio processing with a gradient-boosted decision tree for tabular features. Its principal innovation is a Cross-Modal Bidirectional Cross-Attention module (CM-BCA) that iteratively exchanges salient cues between modalities, emulating the way clinicians integrate symptoms and risk factors. To meet the clinical priority of minimizing missed cases, we design a Tuberculosis Risk-Balanced Loss (TRBL) that places stronger penalties on false-negative predictions, thereby reducing high-risk misclassifications. DeepGB-TB is evaluated on a diverse dataset of 1,105 patients collected across seven countries, achieving an AUROC of 0.903 and an F1-score of 0.851, representing a new state of the art. Its computational efficiency enables real-time, offline inference directly on common mobile devices, making it ideal for low-resource settings. Importantly, the system produces clinically validated explanations that promote trust and adoption by frontline health workers. By coupling AI innovation with public-health requirements for speed, affordability, and reliability, DeepGB-TB offers a tool for advancing global TB control.
comment: Accepted by AAAI 2026 (oral)
♻ ☆ Decoding Workload and Agreement From EEG During Spoken Dialogue With Conversational AI
Passive brain-computer interfaces offer a potential source of implicit feedback for alignment of large language models, but most mental state decoding has been done in controlled tasks. This paper investigates whether established EEG classifiers for mental workload and implicit agreement can be transferred to spoken human-AI dialogue. We introduce two conversational paradigms - a Spelling Bee task and a sentence completion task- and an end-to-end pipeline for transcribing, annotating, and aligning word-level conversational events with continuous EEG classifier output. In a pilot study, workload decoding showed interpretable trends during spoken interaction, supporting cross-paradigm transfer. For implicit agreement, we demonstrate continuous application and precise temporal alignment to conversational events, while identifying limitations related to construct transfer and asynchronous application of event-based classifiers. Overall, the results establish feasibility and constraints for integrating passive BCI signals into conversational AI systems.
comment: Accepted at the 14th International Winter Conference on Brain-Computer Interface
♻ ☆ Bottom-up Policy Optimization: Your Language Model Policy Secretly Contains Internal Policies
Existing reinforcement learning (RL) approaches treat large language models (LLMs) as a unified policy, overlooking their internal mechanisms. In this paper, we decompose the LLM-based policy into Internal Layer Policies and Internal Modular Policies via Transformer's residual stream. Our entropy analysis on internal policy reveals distinct patterns: (1) universally, policies evolve from high-entropy exploration in early layers to deterministic refinement in top layers; and (2) Qwen exhibits a progressive, human-like reasoning structure, contrasting with the abrupt final-layer convergence in Llama. Furthermore, we discover that optimizing internal layers induces feature refinement, forcing lower layers to capture high-level reasoning representations early. Motivated by these findings, we propose Bottom-up Policy Optimization (BuPO), a novel RL paradigm that reconstructs the LLM's reasoning foundation from the bottom up by optimizing internal layers in early stages. Extensive experiments on complex reasoning benchmarks demonstrate the effectiveness of BuPO. Our code is available at https://github.com/Trae1ounG/BuPO.
comment: Preprint. Our code is available at https://github.com/Trae1ounG/BuPO
♻ ☆ Performative Policy Gradient: Optimality in Performative Reinforcement Learning
Post-deployment machine learning algorithms often influence the environments they act in, and thus shift the underlying dynamics that the standard reinforcement learning (RL) methods ignore. While designing optimal algorithms in this performative setting has recently been studied in supervised learning, the RL counterpart remains under-explored. In this paper, we prove the performative counterparts of the performance difference lemma and the policy gradient theorem in RL, and further introduce the Performative Policy Gradient algorithm (PePG). PePG is the first policy gradient algorithm designed to account for performativity in RL. Under softmax parametrisation, and also with and without entropy regularisation, we prove that PePG converges to performatively optimal policies, i.e. policies that remain optimal under the distribution shifts induced by themselves. Thus, PePG significantly extends the prior works in Performative RL that achieves performative stability but not optimality. Furthermore, our empirical analysis on standard performative RL environments validate that PePG outperforms the existing performative RL algorithms aiming for stability.
♻ ☆ You Only Forward Once: An Efficient Compositional Judging Paradigm
Multimodal large language models (MLLMs) show strong potential as judges. However, existing approaches face a fundamental trade-off: adapting MLLMs to output a single score misaligns with the generative nature of MLLMs and limits fine-grained requirement understanding, whereas autoregressively generating judging analyses is prohibitively slow in high-throughput settings. Observing that judgment reduces to verifying whether inputs satisfy a set of structured requirements, we propose YOFO, a template-conditioned method that judges all requirements in a single forward pass. Built on an autoregressive model, YOFO accepts a structured requirement template and, in one inference step, produces a binary yes/no decision for each requirement by reading the logits of the final token associated with that requirement. This design yields orders-of-magnitude speedups while preserving interpretability. Extensive experiments show that YOFO not only achieves state-of-the-art results on standard recommendation datasets, but also supports dependency-aware analysis -- where subsequent judgments are conditioned on previous ones -- and further benefits from post-hoc CoT.
♻ ☆ FPBoost: Fully Parametric Gradient Boosting for Survival Analysis
Survival analysis is a statistical framework for modeling time-to-event data. It plays a pivotal role in medicine, reliability engineering, and social science research, where understanding event dynamics even with few data samples is critical. Recent advancements in machine learning, particularly those employing neural networks and decision trees, have introduced sophisticated algorithms for survival modeling. However, many of these methods rely on restrictive assumptions about the underlying event-time distribution, such as proportional hazard, time discretization, or accelerated failure time. In this study, we propose FPBoost, a survival model that combines a weighted sum of fully parametric hazard functions with gradient boosting. Distribution parameters are estimated with decision trees trained by maximizing the full survival likelihood. We show how FPBoost is a universal approximator of hazard functions, offering full event-time modeling flexibility while maintaining interpretability through the use of well-established parametric distributions. We evaluate concordance and calibration of FPBoost across multiple benchmark datasets, showcasing its robustness and versatility as a new tool for survival estimation.
♻ ☆ Code over Words: Overcoming Semantic Inertia via Code-Grounded Reasoning
LLMs struggle with Semantic Inertia: the inability to inhibit pre-trained priors (e.g., "Lava is Dangerous") when dynamic, in-context rules contradict them. We probe this phenomenon using Baba Is You, where physical laws are mutable text rules, enabling precise evaluation of models' ability to override learned priors when rules change. We quantatively observe that larger models can exhibit inverse scaling: they perform worse than smaller models when natural language reasoning requires suppressing pre-trained associations (e.g., accepting "Lava is Safe"). Our analysis attributes this to natural language encoding, which entangles descriptive semantics and logical rules, leading to persistent hallucinations of familiar physics despite explicit contradictory rules. Here we show that representing dynamics as executable code, rather than descriptive text, reverses this trend and enables effective prior inhibition. We introduce Code-Grounded Vistas (LCV), which fine-tunes models on counterfactual pairs and identifies states with contradictory rules, thereby forcing attention to logical constraints rather than visual semantics. This training-time approach outperforms expensive inference-time search methods in both efficiency and accuracy. Our results demonstrate that representation fundamentally determines whether scaling improves or impairs contextual reasoning. This challenges the assumption that larger models are universally better, with implications for domains that require dynamic overriding of learned priors.
♻ ☆ ePC: Fast and Deep Predictive Coding for Digital Hardware
Predictive Coding (PC) offers a brain-inspired alternative to backpropagation for neural network training, described as a physical system minimizing its internal energy. However, in practice, PC is predominantly digitally simulated, requiring excessive amounts of compute while struggling to scale to deeper architectures. This paper reformulates PC to overcome this hardware-algorithm mismatch. First, we uncover how the canonical state-based formulation of PC (sPC) is, by design, deeply inefficient in digital simulation, inevitably resulting in exponential signal decay that stalls the entire minimization process. Then, to overcome this fundamental limitation, we introduce error-based PC (ePC), a novel reparameterization of PC which does not suffer from signal decay. Though no longer biologically plausible, ePC numerically computes exact PC weights gradients and runs orders of magnitude faster than sPC. Experiments across multiple architectures and datasets demonstrate that ePC matches backpropagation's performance even for deeper models where sPC struggles. Besides practical improvements, our work provides theoretical insight into PC dynamics and establishes a foundation for scaling PC-based learning to deeper architectures on digital hardware and beyond.
comment: Title & intro change to emphasize PC's hardware-algorithm mismatch, which ePC solves for digital hardware. All code available at https://github.com/cgoemaere/error_based_PC
♻ ☆ Extending RLVR to Open-Ended Tasks via Verifiable Multiple-Choice Reformulation
Reinforcement Learning with Verifiable Rewards(RLVR) has demonstrated great potential in enhancing the reasoning capabilities of large language models (LLMs). However, its success has thus far been largely confined to the mathematical and programming domains with clear and automatically checkable outcomes. Reinforcement learning on open-ended tasks (e.g., creative writing and subjective Q&A) continues to rely on reward models due to the absence of verifiable solutions. This raises a key question: how can we extend RLVR to strengthen reasoning in open-ended tasks regardless of the absence of the unambiguous ground truth? To overcome this challenge, we introduce Verifiable Multiple-Choice Reformulation for Reinforcement Learning from Verifiable Rewards (VMR-RLVR), a novel training strategy that restructures open-ended data into verifiable multiple-choice formats, enabling effective training even in the absence of explicit ground truth. Experimental results on multiple benchmarks validate the effectiveness of our method in improving LLM performance on open-ended tasks. Notably, across seven open-ended benchmarks, our VMR-RLVR training delivers an average gain of 3.29 points over the RL with reward model.
comment: 8 pages
♻ ☆ How Much Do LLMs Hallucinate across Languages? On Realistic Multilingual Estimation of LLM Hallucination EMNLP 2025
In the age of misinformation, hallucination - the tendency of Large Language Models (LLMs) to generate non-factual or unfaithful responses - represents the main risk for their global utility. Despite LLMs becoming increasingly multilingual, the vast majority of research on detecting and quantifying LLM hallucination are (a) English-centric and (b) focus on machine translation (MT) and summarization, tasks that are less common in realistic settings than open information seeking. In contrast, we aim to quantify the extent of LLM hallucination across languages in knowledge-intensive long-form question answering (LFQA). To this end, we train a multilingual hallucination detection model and conduct a large-scale study across 30 languages and 6 open-source LLM families. We start from an English hallucination detection dataset and rely on MT to translate-train a detection model. We also manually annotate gold data for five high-resource languages; we then demonstrate, for these languages, that the estimates of hallucination rates are similar between silver (LLM-generated) and gold test sets, validating the use of silver data for estimating hallucination rates for other languages. For the final rates estimation, we build open-domain QA dataset for 30 languages with LLM-generated prompts and Wikipedia articles as references. Our analysis shows that LLMs, in absolute terms, hallucinate more tokens in high-resource languages due to longer responses, but that the actual hallucination rates (i.e., normalized for length) seems uncorrelated with the sizes of languages' digital footprints. We also find that smaller LLMs hallucinate more, and significantly, LLMs with broader language support display higher hallucination rates.
comment: EMNLP 2025
♻ ☆ AI-Based Stroke Rehabilitation Domiciliary Assessment System with ST_GCN Attention
Effective stroke recovery requires continuous rehabilitation integrated with daily living. To support this need, we propose a home-based rehabilitation exercise and feedback system. The system consists of (1) hardware setup with RGB-D camera and wearable sensors to capture stroke movements, (2) a mobile application for exercise guidance, and (3) an AI server for assessment and feedback. When a stroke user exercises following the application guidance, the system records skeleton sequences, which are then assessed by the deep learning model, RAST-G@ (Rehabilitation Assessment Spatio-Temporal Graph ATtention). The model employs a spatio-temporal graph convolutional network to extract skeletal features and integrates transformer-based temporal attention to figure out action quality. For system implementation, we constructed the NRC dataset, include 10 upper-limb activities of daily living (ADL) and 5 range-of-motion (ROM) collected from stroke and non-disabled participants, with Score annotations provided by licensed physiotherapists. Results on the KIMORE and NRC datasets show that RAST-G@ improves over baseline in terms of MAD, RMSE, and MAPE. Furthermore, the system provides user feedback that combines patient-centered assessment and monitoring. The results demonstrate that the proposed system offers a scalable approach for quantitative and consistent domiciliary rehabilitation assessment.
comment: 9 pages(except references), 7 figures 6 Tables
♻ ☆ Conformal mapping based Physics-informed neural networks for designing neutral inclusions
We address the neutral inclusion problem with imperfect boundary conditions, focusing on designing interface functions for inclusions of arbitrary shapes. Traditional Physics-Informed Neural Networks (PINNs) struggle with this inverse problem, leading to the development of Conformal Mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs), which integrate geometric function theory with PINNs. CoCo-PINNs effectively solve forward-inverse problems by modeling the interface function through neural network training, which yields a neutral inclusion effect. This approach enhances the performance of PINNs in terms of credibility, consistency, and stability.
♻ ☆ Automated Archival Descriptions with Federated Intelligence of LLMs
Enforcing archival standards requires specialized expertise, and manually creating metadata descriptions for archival materials is a tedious and error-prone task. This work aims at exploring the potential of agentic AI and large language models (LLMs) in addressing the challenges of implementing a standardized archival description process. To this end, we introduce an agentic AI-driven system for automated generation of high-quality metadata descriptions of archival materials. We develop a federated optimization approach that unites the intelligence of multiple LLMs to construct optimal archival metadata. We also suggest methods to overcome the challenges associated with using LLMs for consistent metadata generation. To evaluate the feasibility and effectiveness of our techniques, we conducted extensive experiments using a real-world dataset of archival materials, which covers a variety of document types and formats. The evaluation results demonstrate the feasibility of our techniques and highlight the superior performance of the federated optimization approach compared to single-model solutions in metadata quality and reliability.
comment: 16 pages
♻ ☆ KVmix: Gradient-Based Layer Importance-Aware Mixed-Precision Quantization for KV Cache AAAI 2026
The high memory demands of the Key-Value (KV) Cache during the inference of Large Language Models (LLMs) severely restrict their deployment in resource-constrained platforms. Quantization can effectively alleviate the memory pressure caused by KV Cache. However, existing methods either rely on static one-size-fits-all precision allocation or fail to dynamically prioritize critical KV in long-context tasks, forcing memory-accuracy-throughput tradeoffs. In this work, we propose a novel mixed-precision quantization method for KV Cache named KVmix. KVmix leverages gradient-based importance analysis to evaluate how individual Key and Value projection matrices affect the model loss, enabling layer-specific bit-width allocation for mix-precision quantization. It dynamically prioritizes higher precision for important layers while aggressively quantizing less influential ones, achieving a tunable balance between accuracy and efficiency. KVmix also introduces a dynamic long-context optimization strategy that adaptively keeps full-precision KV pairs for recent pivotal tokens and compresses older ones, achieving high-quality sequence generation with low memory usage. Additionally, KVmix provides efficient low-bit quantization and CUDA kernels to optimize computational overhead. On LLMs such as Llama and Mistral, KVmix achieves near-lossless inference performance with extremely low quantization configuration (Key 2.19bit Value 2.38bit), while delivering a remarkable 4.9x memory compression and a 5.3x speedup in inference throughput.
comment: AAAI 2026 Oral
♻ ☆ LinearizeLLM: An Agent-Based Framework for LLM-Driven Exact Linear Reformulation of Nonlinear Optimization Problems
Reformulating nonlinear optimization problems into solver-ready linear optimization problems is often necessary for practical applications, but the process is often manual and requires domain expertise. We propose LinearizeLLM, an agent-based LLM framework that produces solver-ready linear reformulations of nonlinear optimization problems. Agents first detect the nonlinearity pattern (e.g., bilinear products) and apply nonlinearity pattern-aware reformulation techniques, selecting the most suitable linearization technique. We benchmark on 40 instances: 27 derived from ComplexOR by injecting exactly-linearizable operators, and 13 automatically generated instances with deeply nested nonlinearities. LinearizeLLM achieves 73\% mean end-to-end overall success (OSR) across nonlinearity depths (8.3x higher than a one-shot LLM baseline; 4.3x higher than Pyomo). The results suggest that a set of pattern-specialized agents can automate linearization, supporting natural-language-based modeling of nonlinear optimization.
comment: This version is a major revision with a new abstract, updated workflow logic and description, an expanded instance set, additional numerical experiments, and corrected bibliography entries
♻ ☆ SACO: Sequence-Aware Constrained Optimization Framework for Coupon Distribution in E-commerce
Coupon distribution is a critical marketing strategy used by online platforms to boost revenue and enhance user engagement. Regrettably, existing coupon distribution strategies fall far short of effectively leveraging the complex sequential interactions between platforms and users. This critical oversight, despite the abundance of e-commerce log data, has precipitated a performance plateau. In this paper, we focus on the scene that the platforms make sequential coupon distribution decision multiple times for various users, with each user interacting with the platform repeatedly. Based on this scenario, we propose a novel marketing framework, named \textbf{S}equence-\textbf{A}ware \textbf{C}onstrained \textbf{O}ptimization (SACO) framework, to directly devise coupon distribution policy for long-term revenue boosting. SACO framework enables optimized online decision-making in a variety of real-world marketing scenarios. It achieves this by seamlessly integrating three key characteristics, general scenarios, sequential modeling with more comprehensive historical data, and efficient iterative updates within a unified framework. Furthermore, empirical results on real-world industrial dataset, alongside public and synthetic datasets demonstrate the superiority of our framework.
♻ ☆ A.X K1 Technical Report
We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
comment: This paper is withdrawn pending additional internal review of the methodology and analysis
♻ ☆ Clinical Data Goes MEDS? Let's OWL make sense of it
The application of machine learning on healthcare data is often hindered by the lack of standardized and semantically explicit representation, leading to limited interoperability and reproducibility across datasets and experiments. The Medical Event Data Standard (MEDS) addresses these issues by introducing a minimal, event-centric data model designed for reproducible machine-learning workflows from health data. However, MEDS is defined as a data-format specification and does not natively provide integration with the Semantic Web ecosystem. In this article, we introduce MEDS-OWL, a lightweight OWL ontology that provides formal concepts and relations to represent MEDS datasets as RDF graphs. Additionally, we implemented meds2rdf, a Python conversion library that transforms MEDS events into RDF graphs, ensuring conformance with the ontology. We evaluate the proposed approach on two datasets: a synthetic clinical cohort describing care pathways for ruptured intracranial aneurysms, and a real-world subset of MIMIC-IV. To assess semantic consistency, we performed a SHACL validation against the resulting knowledge graphs. The first release of MEDS-OWL comprises 13 classes, 10 object properties, 20 data properties, and 24 OWL axioms. Combined with meds2rdf, it enables data transformation into FAIR-aligned datasets, provenance-aware publishing, and interoperability of event-based clinical data. By bridging MEDS with the Semantic Web, this work contributes a reusable semantic layer for event-based clinical data and establishes a robust foundation for subsequent graph-based analytics.
comment: 12 pages, 5 tables, 4 figures, accepted to SWAT4HCLS 2026 conference
♻ ☆ Reinforcement Learning for Durable Algorithmic Recourse
Algorithmic recourse seeks to provide individuals with actionable recommendations that increase their chances of receiving favorable outcomes from automated decision systems (e.g., loan approvals). While prior research has emphasized robustness to model updates, considerably less attention has been given to the temporal dynamics of recourse--particularly in competitive, resource-constrained settings where recommendations shape future applicant pools. In this work, we present a novel time-aware framework for algorithmic recourse, explicitly modeling how candidate populations adapt in response to recommendations. Additionally, we introduce a novel reinforcement learning (RL)-based recourse algorithm that captures the evolving dynamics of the environment to generate recommendations that are both feasible and valid. We design our recommendations to be durable, supporting validity over a predefined time horizon T. This durability allows individuals to confidently reapply after taking time to implement the suggested changes. Through extensive experiments in complex simulation environments, we show that our approach substantially outperforms existing baselines, offering a superior balance between feasibility and long-term validity. Together, these results underscore the importance of incorporating temporal and behavioral dynamics into the design of practical recourse systems.
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ Decomposed Trust: Exploring Privacy, Adversarial Robustness, Fairness, and Ethics of Low-Rank LLMs
Large language models (LLMs) have driven major advances across domains, yet their massive size hinders deployment in resource-constrained settings. Model compression addresses this challenge, with low-rank factorization emerging as a particularly effective method for reducing size, memory, and computation while maintaining accuracy. However, while these compressed models boast of benign performance and system-level advantages, their trustworthiness implications remain poorly understood. In this paper, we present the first comprehensive study of how low-rank factorization affects LLM trustworthiness across privacy, adversarial robustness, fairness, and ethical alignment. We evaluate multiple LLMs of different sizes and variants compressed with diverse low-rank algorithms, revealing key insights: (1) low-rank compression preserves or improves training data privacy but weakens PII protection during conversation; (2) adversarial robustness is generally preserved and often enhanced, even under deep compression; (3) ethical reasoning degrades in zero-shot settings but partially recovers with few-shot prompting; (4) fairness declines under compression. Beyond compression, we investigate how model scale and fine-tuning affect trustworthiness, as both are important in low-rank methods. To guide trustworthy compression strategies, we end our paper with a gradient-based attribution analysis to identify which layers in LLMs contribute most to adversarial robustness.
comment: 14 pages, 10 figures
♻ ☆ Draft-based Approximate Inference for LLMs ICLR 2026
Optimizing inference for long-context large language models (LLMs) is increasingly important due to the quadratic compute and linear memory cost of Transformers. Existing approximate inference methods, including key-value (KV) cache dropping, sparse attention, and prompt compression, typically rely on coarse predictions of token or KV pair importance. We unify and extend recent work by introducing a framework for approximate LLM inference that leverages small draft models to more accurately predict token and KV pair importance. We provide novel theoretical and empirical analyses justifying lookahead-based importance estimation techniques. Within this framework, we present: (i) SpecKV, the first method to use lookahead with a small draft model to enable precise KV cache dropping; (ii) SpecPC, which leverages draft model attention activations to identify and discard less important prompt tokens; and (iii) SpecKV-PC, a cascaded compression strategy combining both techniques. Extensive experiments on long-context benchmarks demonstrate that our methods consistently achieve higher accuracy than existing baselines while retaining the same efficiency gains in memory usage, latency, and throughput.
comment: Accepted to ICLR 2026
♻ ☆ Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics can mask this operational asymmetry. We introduce an operator-legible evaluation framework -- Under-Prediction Rate (UPR), tail Reserve$_{99.5}^{\%}$ requirements, and explicit inflation diagnostics (Bias$_{24h}$/OPR) -- to quantify one-sided reliability risk beyond MAPE. Using this framework, we evaluate state space models (Mamba variants) and strong baselines on a weather-aligned California Independent System Operator (CAISO) dataset spanning Nov 2023--Nov 2025 (84,498 hourly records across 5 regional transmission areas) under a rolling-origin walk-forward backtest. We develop and evaluate thermal-lag-aligned weather fusion strategies for these architectures. Our results demonstrate that standard accuracy metrics are insufficient proxies for operational safety: models with comparable MAPE can imply materially different tail reserve requirements (Reserve$_{99.5}^{\%}$). We show that explicit weather integration narrows error distributions, reducing the impact of temperature-driven demand spikes. Furthermore, while probabilistic calibration reduces large-error events, it can induce systematic schedule inflation. We introduce Bias/OPR-constrained objectives to enable auditable trade-offs between minimizing tail risk and preventing trivial over-forecasting.
comment: 30 pages, 7 figures, 9 tables
♻ ☆ Sparse Autoencoder Features for Classifications and Transferability
Sparse Autoencoders (SAEs) provide potentials for uncovering structured, human-interpretable representations in Large Language Models (LLMs), making them a crucial tool for transparent and controllable AI systems. We systematically analyze SAE for interpretable feature extraction from LLMs in safety-critical classification tasks. Our framework evaluates (1) model-layer selection and scaling properties, (2) SAE architectural configurations, including width and pooling strategies, and (3) the effect of binarizing continuous SAE activations. SAE-derived features achieve macro F1 > 0.8, outperforming hidden-state and BoW baselines while demonstrating cross-model transfer from Gemma 2 2B to 9B-IT models. These features generalize in a zero-shot manner to cross-lingual toxicity detection and visual classification tasks. Our analysis highlights the significant impact of pooling strategies and binarization thresholds, showing that binarization offers an efficient alternative to traditional feature selection while maintaining or improving performance. These findings establish new best practices for SAE-based interpretability and enable scalable, transparent deployment of LLMs in real-world applications. Full repo: https://github.com/shan23chen/MOSAIC.
♻ ☆ GEO-Bench-2: From Performance to Capability, Rethinking Evaluation in Geospatial AI
Geospatial Foundation Models (GeoFMs) are transforming Earth Observation (EO), but evaluation lacks standardized protocols. GEO-Bench-2 addresses this with a comprehensive framework spanning classification, segmentation, regression, object detection, and instance segmentation across 19 permissively-licensed datasets. We introduce ''capability'' groups to rank models on datasets that share common characteristics (e.g., resolution, bands, temporality). This enables users to identify which models excel in each capability and determine which areas need improvement in future work. To support both fair comparison and methodological innovation, we define a prescriptive yet flexible evaluation protocol. This not only ensures consistency in benchmarking but also facilitates research into model adaptation strategies, a key and open challenge in advancing GeoFMs for downstream tasks. Our experiments show that no single model dominates across all tasks, confirming the specificity of the choices made during architecture design and pretraining. While models pretrained on natural images (ConvNext ImageNet, DINO V3) excel on high-resolution tasks, EO-specific models (TerraMind, Prithvi, and Clay) outperform them on multispectral applications such as agriculture and disaster response. These findings demonstrate that optimal model choice depends on task requirements, data modalities, and constraints. This shows that the goal of a single GeoFM model that performs well across all tasks remains open for future research. GEO-Bench-2 enables informed, reproducible GeoFM evaluation tailored to specific use cases. Code, data, and leaderboard for GEO-Bench-2 are publicly released under a permissive license.
♻ ☆ CFT-RAG: An Entity Tree Based Retrieval Augmented Generation Algorithm With Cuckoo Filter
Although retrieval-augmented generation(RAG) significantly improves generation quality by retrieving external knowledge bases and integrating generated content, it faces computational efficiency bottlenecks, particularly in knowledge retrieval tasks involving hierarchical structures for Tree-RAG. This paper proposes a Tree-RAG acceleration method based on the improved Cuckoo Filter, which optimizes entity localization during the retrieval process to achieve significant performance improvements. Tree-RAG effectively organizes entities through the introduction of a hierarchical tree structure, while the Cuckoo Filter serves as an efficient data structure that supports rapid membership queries and dynamic updates. The experiment results demonstrate that our method is much faster than naive Tree-RAG while maintaining high levels of generative quality. When the number of trees is large, our method is hundreds of times faster than naive Tree-RAG. Our work is available at https://github.com/TUPYP7180/CFT-RAG-2025.
♻ ☆ R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning
Chain-of-thought (CoT) enhances the problem-solving ability of large language models (LLMs) but incurs substantial inference cost due to long autoregressive trajectories. Existing acceleration strategies either shorten traces via early stopping or compression, or adopt speculative decoding with a smaller model. However, speculative decoding provides limited gains when model agreement is low and rigidly enforces token-level consistency, overlooking the observation that some smaller models, when correct, produce significantly more concise reasoning traces that could reduce inference length. We introduce R-Stitch, a training-free hybrid decoding framework that leverages token-level entropy as an uncertainty proxy to delegate computation between a small language model (SLM) and an LLM. Our analysis shows that high-entropy tokens are more likely to induce errors, motivating an entropy-guided routing strategy that lets the SLM efficiently handle low-entropy tokens while delegating uncertain ones to the LLM, thereby avoiding full rollbacks and preserving answer quality. We further extend this design with R-Stitch$^{+}$, which learns an adaptive routing policy to adjust the token budget dynamically beyond fixed thresholds. By jointly reducing per-token decoding complexity and the number of generated tokens, our method achieves substantial acceleration with negligible accuracy loss. Concretely, it attains peak speedups of 3.00$\times$ on DeepSeek-R1-Distill-Qwen-7B, 3.85$\times$ on 14B, and 4.10$\times$ on QWQ-32B while maintaining accuracy comparable to full LLM decoding. Moreover, it naturally enables adaptive efficiency--accuracy trade-offs that can be tailored to diverse computational budgets without retraining.
♻ ☆ Frictional Q-Learning
Off-policy reinforcement learning suffers from extrapolation errors when a learned policy selects actions that are weakly supported in the replay buffer. In this study, we address this issue by drawing an analogy to static friction in classical mechanics. From this perspective, the replay buffer is represented as a smooth, low-dimensional action manifold, where the support directions correspond to the tangential component, while the normal component captures the dominant first-order extrapolation error. This decomposition reveals an intrinsic anisotropy in value sensitivity that naturally induces a stability condition analogous to a friction threshold. To mitigate deviations toward unsupported actions, we propose Frictional Q-Learning, an off-policy algorithm that encodes supported actions as tangent directions using a contrastive variational autoencoder. We further show that an orthonormal basis of the orthogonal complement corresponds to normal components under mild local isometry assumptions. Empirical results on standard continuous-control benchmarks demonstrate robust, stable performance compared with existing baselines.
♻ ☆ RePPL: Recalibrating Perplexity by Uncertainty in Semantic Propagation and Language Generation for Explainable QA Hallucination Detection
Large Language Models (LLMs) have become powerful, but hallucinations remain a vital obstacle to their trustworthy use. Previous works improved the capability of hallucination detection by measuring uncertainty. But they can not explain the provenance behind why hallucinations occur, particularly in identifying which part of the inputs tends to trigger hallucinations. Recent works on the prompt attack indicate that uncertainty exists in semantic propagation, where attention mechanisms gradually fuse local token information into high-level semantics across layers. Meanwhile, uncertainty also emerges in language generation, due to its probability-based selection of high-level semantics for sampled generations. Based on that, we propose RePPL to recalibrate uncertainty measurement by these two aspects, which dispatches explainable uncertainty scores to each token and aggregates in Perplexity-style Log-Average form as a total score. Experiments show that it achieves the best comprehensive detection performance across various QA datasets on advanced models (average AUC of 0.833), and it is capable of producing token-level uncertainty scores as explanations of hallucination.
♻ ☆ T-COL: Generating Counterfactual Explanations for General User Preferences on Variable Machine Learning Systems
To address the interpretability challenge in machine learning (ML) systems, counterfactual explanations (CEs) have emerged as a promising solution. CEs are unique as they provide workable suggestions to users, instead of explaining why a certain outcome was predicted. The application of CEs encounters two main challenges: general user preferences and variable ML systems. On one hand, user preferences for specific values can vary depending on the task and scenario. On the other hand, the ML systems for verification may change while the CEs are performed. Thus, user preferences tend to be general rather than specific, and CEs need to be adaptable to variable ML models while maintaining robustness even as these models change. Facing these challenges, we propose general user preferences based on insights from psychology and behavioral science, and add the challenge of non-static ML systems as one preference. Moreover, we introduce a novel method, \uline{T}ree-based \uline{C}onditions \uline{O}ptional \uline{L}inks (T-COL) for generating CEs adaptable to general user preferences. Moreover, we employ T-COL to enhance the robustness of CEs with specific conditions, making CEs robust even when the ML models are replaced. To assess subjectivity preferences, we define LLM-based autonomous agents to simulate users and align them with real users. Experiments show that T-COL outperforms all baselines in adapting to general user preferences.
♻ ☆ AMA: Adaptive Memory via Multi-Agent Collaboration
The rapid evolution of Large Language Model (LLM) agents has necessitated robust memory systems to support cohesive long-term interaction and complex reasoning. Benefiting from the strong capabilities of LLMs, recent research focus has shifted from simple context extension to the development of dedicated agentic memory systems. However, existing approaches typically rely on rigid retrieval granularity, accumulation-heavy maintenance strategies, and coarse-grained update mechanisms. These design choices create a persistent mismatch between stored information and task-specific reasoning demands, while leading to the unchecked accumulation of logical inconsistencies over time. To address these challenges, we propose Adaptive Memory via Multi-Agent Collaboration (AMA), a novel framework that leverages coordinated agents to manage memory across multiple granularities. AMA employs a hierarchical memory design that dynamically aligns retrieval granularity with task complexity. Specifically, the Constructor and Retriever jointly enable multi-granularity memory construction and adaptive query routing. The Judge verifies the relevance and consistency of retrieved content, triggering iterative retrieval when evidence is insufficient or invoking the Refresher upon detecting logical conflicts. The Refresher then enforces memory consistency by performing targeted updates or removing outdated entries. Extensive experiments on challenging long-context benchmarks show that AMA significantly outperforms state-of-the-art baselines while reducing token consumption by approximately 80% compared to full-context methods, demonstrating its effectiveness in maintaining retrieval precision and long-term memory consistency.
comment: 8 pages
♻ ☆ Latent Adversarial Regularization for Offline Preference Optimization
Learning from human feedback typically relies on preference optimization that constrains policy updates through token-level regularization. However, preference optimization for language models is particularly challenging because token-space similarity does not imply semantic or behavioral similarity. To address this challenge, we leverage latent-space regularization for language model preference optimization. We introduce GANPO, which achieves latent-space regularization by penalizing divergence between the internal representations of a policy model and a reference model. Given that latent representations are not associated with explicit probability densities, we adopt an adversarial approach inspired by GANs to minimize latent-space divergence. We integrate GANPO as a regularizer into existing offline preference optimization objectives. Experiments across multiple model architectures and tasks show consistent improvements from latent-space regularization. Further, by comparing GANPO-induced inferential biases with those from token-level regularization, we find that GANPO provides more robust structural feedback under distributional shift and noise while maintaining comparable downstream performance with minor computational overhead.
♻ ☆ Reward Evolution with Graph-of-Thoughts: A Bi-Level Language Model Framework for Reinforcement Learning
Designing effective reward functions remains a major challenge in reinforcement learning (RL), often requiring considerable human expertise and iterative refinement. Recent advances leverage Large Language Models (LLMs) for automated reward design, but these approaches are limited by hallucinations, reliance on human feedback, and challenges with handling complex, multi-step tasks. In this work, we introduce Reward Evolution with Graph-of-Thoughts (RE-GoT), a novel bi-level framework that enhances LLMs with structured graph-based reasoning and integrates Visual Language Models (VLMs) for automated rollout evaluation. RE-GoT first decomposes tasks into text-attributed graphs, enabling comprehensive analysis and reward function generation, and then iteratively refines rewards using visual feedback from VLMs without human intervention. Extensive experiments on 10 RoboGen and 4 ManiSkill2 tasks demonstrate that RE-GoT consistently outperforms existing LLM-based baselines. On RoboGen, our method improves average task success rates by 32.25%, with notable gains on complex multi-step tasks. On ManiSkill2, RE-GoT achieves an average success rate of 93.73% across four diverse manipulation tasks, significantly surpassing prior LLM-based approaches and even exceeding expert-designed rewards. Our results indicate that combining LLMs and VLMs with graph-of-thoughts reasoning provides a scalable and effective solution for autonomous reward evolution in RL.
♻ ☆ Terrain Costmap Generation via Scaled Preference Conditioning
Successful autonomous robot navigation in off-road domains requires the ability to generate high-quality terrain costmaps that are able to both generalize well over a wide variety of terrains and rapidly adapt relative costs at test time to meet mission-specific needs. Existing approaches for costmap generation allow for either rapid test-time adaptation of relative costs (e.g., semantic segmentation methods) or generalization to new terrain types (e.g., representation learning methods), but not both. In this work, we present scaled preference conditioned all-terrain costmap generation (SPACER), a novel approach for generating terrain costmaps that leverages synthetic data during training in order to generalize well to new terrains, and allows for rapid test-time adaptation of relative costs by conditioning on a user-specified scaled preference context. Using large-scale aerial maps, we provide empirical evidence that SPACER outperforms other approaches at generating costmaps for terrain navigation, with the lowest measured regret across varied preferences in five of seven environments for global path planning.
♻ ☆ HI-SLAM2: Geometry-Aware Gaussian SLAM for Fast Monocular Scene Reconstruction
We present HI-SLAM2, a geometry-aware Gaussian SLAM system that achieves fast and accurate monocular scene reconstruction using only RGB input. Existing Neural SLAM or 3DGS-based SLAM methods often trade off between rendering quality and geometry accuracy, our research demonstrates that both can be achieved simultaneously with RGB input alone. The key idea of our approach is to enhance the ability for geometry estimation by combining easy-to-obtain monocular priors with learning-based dense SLAM, and then using 3D Gaussian splatting as our core map representation to efficiently model the scene. Upon loop closure, our method ensures on-the-fly global consistency through efficient pose graph bundle adjustment and instant map updates by explicitly deforming the 3D Gaussian units based on anchored keyframe updates. Furthermore, we introduce a grid-based scale alignment strategy to maintain improved scale consistency in prior depths for finer depth details. Through extensive experiments on Replica, ScanNet, and ScanNet++, we demonstrate significant improvements over existing Neural SLAM methods and even surpass RGB-D-based methods in both reconstruction and rendering quality. The project page and source code will be made available at https://hi-slam2.github.io/.
♻ ☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
♻ ☆ MineInsight: A Multi-sensor Dataset for Humanitarian Demining Robotics in Off-Road Environments
The use of robotics in humanitarian demining increasingly involves computer vision techniques to improve landmine detection capabilities. However, in the absence of diverse and realistic datasets, the reliable validation of algorithms remains a challenge for the research community. In this paper, we introduce MineInsight, a publicly available multi-sensor, multi-spectral dataset designed for off-road landmine detection. The dataset features 35 different targets (15 landmines and 20 commonly found objects) distributed along three distinct tracks, providing a diverse and realistic testing environment. MineInsight is, to the best of our knowledge, the first dataset to integrate dual-view sensor scans from both an Unmanned Ground Vehicle and its robotic arm, offering multiple viewpoints to mitigate occlusions and improve spatial awareness. It features two LiDARs, as well as images captured at diverse spectral ranges, including visible (RGB, monochrome), visible short-wave infrared (VIS-SWIR), and long-wave infrared (LWIR). Additionally, the dataset provides bounding boxes generated by an automated pipeline and refined with human supervision. We recorded approximately one hour of data in both daylight and nighttime conditions, resulting in around 38,000 RGB frames, 53,000 VIS-SWIR frames, and 108,000 LWIR frames. MineInsight serves as a benchmark for developing and evaluating landmine detection algorithms. Our dataset is available at https://github.com/mariomlz99/MineInsight.
♻ ☆ Policy Contrastive Decoding for Robotic Foundation Models
Robotic foundation models, or generalist robot policies, hold immense potential to enable flexible, general-purpose and dexterous robotic systems. Despite their advancements, our empirical experiments reveal that existing robot policies are prone to learning spurious correlations from pre-training trajectories, adversely affecting their generalization capabilities beyond the training data. To tackle this, we propose a novel Policy Contrastive Decoding (PCD) approach, which redirects the robot policy's focus toward object-relevant visual clues by contrasting action probability distributions derived from original and object-masked visual inputs. As a training-free method, our PCD can be used as a plugin to improve different types of robot policies without needing to finetune or access model weights. We conduct extensive experiments on top of three open-source robot policies, including the autoregressive policy OpenVLA and the diffusion-based policies Octo and $π_0$. The obtained results in both simulation and real-world environments prove PCD's flexibility and effectiveness, e.g., PCD enhances the state-of-the-art policy $π_0$ by 8.9% in the simulation environment and by 108% in the real-world environment. Code and demos are publicly available at: https://koorye.github.io/PCD.
♻ ☆ SPARC: Spine with Prismatic and Revolute Compliance for Quadruped Robots
Quadruped mammals coordinate spinal bending and axial compression to enhance locomotion agility and efficiency. However, existing robotic spines typically lack the active compliance required to support such dynamic behaviours. We present SPARC, a compact 3-DoF sagittal-plane spine module that enables simultaneous revolute and prismatic motions within a 1.26 kg package. Using a floating-base impedance controller, we facilitate independent, task-space tuning of spinal stiffness and damping to mimic biological load-bearing strategies. Benchtop experiments confirm high-fidelity rendering of commanded impedance, with linear force-displacement error within 1.5%. Systematic locomotion simulations reveal a critical speed-dependency: while low-speed efficiency is insensitive to spinal properties, precise impedance tuning becomes indispensable for high-speed performance. Our results demonstrate that an optimally compliant spine reduces power consumption by 21% at 0.9 m/s compared to a rigid-spine baseline. This efficiency gain is mechanistically attributed to the spine's role in augmenting stride length and acting as a mechanical low-pass filter to attenuate high-frequency torque fluctuations. SPARC provides an open-source platform for systematic studies of spine compliance in legged locomotion. Available at: github.com/YueWang996/sparc
♻ ☆ 3D Dynamics-Aware Manipulation: Endowing Manipulation Policies with 3D Foresight
The incorporation of world modeling into manipulation policy learning has pushed the boundary of manipulation performance. However, existing efforts simply model the 2D visual dynamics, which is insufficient for robust manipulation when target tasks involve prominent depth-wise movement. To address this, we present a 3D dynamics-aware manipulation framework that seamlessly integrates 3D world modeling and policy learning. Three self-supervised learning tasks (current depth estimation, future RGB-D prediction, 3D flow prediction) are introduced within our framework, which complement each other and endow the policy model with 3D foresight. Extensive experiments on simulation and the real world show that 3D foresight can greatly boost the performance of manipulation policies without sacrificing inference speed. Code is available at https://github.com/Stardust-hyx/3D-Foresight.
comment: ICRA 2026
♻ ☆ Line-Search Filter Differential Dynamic Programming for Optimal Control with Nonlinear Equality Constraints
We present FilterDDP, a differential dynamic programming algorithm for solving discrete-time, optimal control problems (OCPs) with nonlinear equality constraints. Unlike prior methods based on merit functions or the augmented Lagrangian class of algorithms, FilterDDP uses a step filter in conjunction with a line search to handle equality constraints. We identify two important design choices for the step filter criteria which lead to robust numerical performance: 1) we use the Lagrangian instead of the cost in the step acceptance criterion and, 2) in the backward pass, we perturb the value function Hessian. Both choices are rigorously justified, for 2) in particular by a formal proof of local quadratic convergence. In addition to providing a primal-dual interior point extension for handling OCPs with both equality and inequality constraints, we validate FilterDDP on three contact implicit trajectory optimisation problems which arise in robotics.
comment: Accepted for publication in the IEEE International Conference on Robotics and Automation (ICRA) 2026
♻ ☆ GenTrack2: An Improved Hybrid Approach for Visual Multi-Object Tracking
This paper proposes a visual multi-object tracking method that jointly employs stochastic and deterministic mechanisms to ensure identifier consistency for unknown and time-varying target numbers under nonlinear dynamics. A stochastic particle filter addresses nonlinear dynamics and non-Gaussian noise, with support from particle swarm optimization (PSO) to guide particles toward state distribution modes and mitigate divergence through proposed fitness measures incorporating motion consistency, appearance similarity, and social-interaction cues with neighboring targets. Deterministic association further enforces identifier consistency via a proposed cost matrix incorporating spatial consistency between particles and current detections, detection confidences, and track penalties. Subsequently, a novel scheme is proposed for the smooth updating of target states while preserving their identities, particularly for weak tracks during interactions with other targets and prolonged occlusions. Moreover, velocity regression over past states provides trend-seed velocities, enhancing particle sampling and state updates. The proposed tracker is designed to operate flexibly for both pre-recorded videos and camera live streams, where future frames are unavailable. Experimental results confirm superior performance compared to state-of-the-art trackers. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack2
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Model Reconciliation through Explainability and Collaborative Recovery in Assistive Robotics
Whenever humans and robots work together, it is essential that unexpected robot behavior can be explained to the user. Especially in applications such as shared control the user and the robot must share the same model of the objects in the world, and the actions that can be performed on these objects. In this paper, we achieve this with a so-called model reconciliation framework. We leverage a Large Language Model to predict and explain the difference between the robot's and the human's mental models, without the need of a formal mental model of the user. Furthermore, our framework aims to solve the model divergence after the explanation by allowing the human to correct the robot. We provide an implementation in an assistive robotics domain, where we conduct a set of experiments with a real wheelchair-based mobile manipulator and its digital twin.
♻ ☆ LaST$_{0}$: Latent Spatio-Temporal Chain-of-Thought for Robotic Vision-Language-Action Model
Vision-Language-Action (VLA) models have recently shown strong generalization, with some approaches seeking to explicitly generate linguistic reasoning traces or predict future observations prior to execution. However, explicit reasoning typically incurs non-negligible inference latency, which constrains the temporal resolution required for robotic manipulation. Moreover, such reasoning is confined to the linguistic space, imposing a representational bottleneck that struggles to faithfully capture ineffable physical attributes. To mitigate these limitations, we propose LaST$_0$, a framework that enables efficient reasoning before acting through a Latent Spatio-Temporal Chain-of-Thought (CoT), capturing fine-grained physical and robotic dynamics that are often difficult to verbalize. Specifically, we introduce a token-efficient latent CoT space that models future visual dynamics, 3D structural information, and robot proprioceptive states, and further extends these representations across time to enable temporally consistent implicit reasoning trajectories. Furthermore, LaST$_0$ adopts a dual-system architecture implemented via a Mixture-of-Transformers design, where a reasoning expert conducts low-frequency latent inference and an acting expert generates high-frequency actions conditioned on robotics-oriented latent representations. To facilitate coordination, LaST$_0$ is trained with heterogeneous operation frequencies, enabling adaptive switching during deployment. Across 10 real-world tasks spanning tabletop, mobile, and dexterous hand manipulation, LaST$_0$ improves mean success rates by 13%, 14% and 14% over prior SOTA VLA methods, respectively.
♻ ☆ RF-MatID: Dataset and Benchmark for Radio Frequency Material Identification ICLR 2026
Accurate material identification plays a crucial role in embodied AI systems, enabling a wide range of applications. However, current vision-based solutions are limited by the inherent constraints of optical sensors, while radio-frequency (RF) approaches, which can reveal intrinsic material properties, have received growing attention. Despite this progress, RF-based material identification remains hindered by the lack of large-scale public datasets and the limited benchmarking of learning-based approaches. In this work, we present RF-MatID, the first open-source, large-scale, wide-band, and geometry-diverse RF dataset for fine-grained material identification. RF-MatID includes 16 fine-grained categories grouped into 5 superclasses, spanning a broad frequency range from 4 to 43.5 GHz, and comprises 142k samples in both frequency- and time-domain representations. The dataset systematically incorporates controlled geometry perturbations, including variations in incidence angle and stand-off distance. We further establish a multi-setting, multi-protocol benchmark by evaluating state-of-the-art deep learning models, assessing both in-distribution performance and out-of-distribution robustness under cross-angle and cross-distance shifts. The 5 frequency-allocation protocols enable systematic frequency- and region-level analysis, thereby facilitating real-world deployment. RF-MatID aims to enable reproducible research, accelerate algorithmic advancement, foster cross-domain robustness, and support the development of real-world application in RF-based material identification.
comment: Accepted by ICLR 2026
♻ ☆ EgoFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving
Current End-to-End Autonomous Driving (E2E-AD) methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized with a fully differentiable framework in a planning-oriented manner, existing end-to-end driving systems lacking ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, due to rasterized scene representation learning and redundant information transmission. In this paper, we propose an ego-centric fully sparse paradigm, named EgoFSD, for end-to-end self-driving. Specifically, EgoFSD consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. In addition, position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thereby enhancing the training stability and convergence speed. Extensive experiments are conducted on nuScenes and Bench2Drive datasets, which significantly reduces the average L2 error by 59% and collision rate by 92% than UniAD while achieves 6.9x faster running efficiency.
comment: Accepted to ICRA2026
♻ ☆ A Three-Level Whole-Body Disturbance Rejection Control Framework for Dynamic Motions in Legged Robots
This paper presents a control framework designed to enhance the stability and robustness of legged robots in the presence of uncertainties, including model uncertainties, external disturbances, and faults. The framework enables the full-state feedback estimator to estimate and compensate for uncertainties in the whole-body dynamics of the legged robots. First, we propose a novel moving horizon extended state observer (MH-ESO) to estimate uncertainties and mitigate noise in legged systems, which can be integrated into the framework for disturbance compensation. Second, we introduce a three-level whole-body disturbance rejection control framework (T-WB-DRC). Unlike the previous two-level approach, this three-level framework considers both the plan based on whole-body dynamics without uncertainties and the plan based on dynamics with uncertainties, significantly improving payload transportation, external disturbance rejection, and fault tolerance. Third, simulations of both humanoid and quadruped robots in the Gazebo simulator demonstrate the effectiveness and versatility of T-WB-DRC. Finally, extensive experimental trials on a quadruped robot validate the robustness and stability of the system when using T-WB-DRC under various disturbance conditions.
comment: has been accepted for publication as a SPECIAL ISSUE paper in the IEEE Transactions on Automation Science and Engineering
♻ ☆ A Gait Driven Reinforcement Learning Framework for Humanoid Robots
This paper presents a real-time gait driven training framework for humanoid robots. First, we introduce a novel gait planner that incorporates dynamics to design the desired joint trajectory. In the gait design process, the 3D robot model is decoupled into two 2D models, which are then approximated as hybrid inverted pendulums (H-LIP) for trajectory planning. The gait planner operates in parallel in real time within the robot's learning environment. Second, based on this gait planner, we design three effective reward functions within a reinforcement learning framework, forming a reward composition to achieve periodic bipedal gait. This reward composition reduces the robot's learning time and enhances locomotion performance. Finally, a gait design example, along with simulation and experimental comparisons, is presented to demonstrate the effectiveness of the proposed method.
♻ ☆ System Identification for Virtual Sensor-Based Model Predictive Control: Application to a 2-DoF Direct-Drive Robotic Arm
Nonlinear Model Predictive Control (NMPC) offers a powerful approach for controlling complex nonlinear systems, yet faces two key challenges. First, accurately modeling nonlinear dynamics remains difficult. Second, variables directly related to control objectives often cannot be directly measured during operation. Although high-cost sensors can acquire these variables during model development, their use in practical deployment is typically infeasible. To overcome these limitations, we propose a Predictive Virtual Sensor Identification (PVSID) framework that leverages temporary high-cost sensors during the modeling phase to create virtual sensors for NMPC implementation. We validate PVSID on a Two-Degree-of-Freedom (2-DoF) direct-drive robotic arm with complex joint interactions, capturing tip position via motion capture during modeling and utilize an Inertial Measurement Unit (IMU) in NMPC. Experimental results show our NMPC with identified virtual sensors achieves precise tip trajectory tracking without requiring the motion capture system during operation. PVSID offers a practical solution for implementing optimal control in nonlinear systems where the measurement of key variables is constrained by cost or operational limitations.
comment: 6 pages, 5 figures. Published in the proceedings of the 2025 IEEE 64th Conference on Decision and Control (CDC 2025)
♻ ☆ UNIC: Learning Unified Multimodal Extrinsic Contact Estimation
Contact-rich manipulation requires reliable estimation of extrinsic contacts-the interactions between a grasped object and its environment which provide essential contextual information for planning, control, and policy learning. However, existing approaches often rely on restrictive assumptions, such as predefined contact types, fixed grasp configurations, or camera calibration, that hinder generalization to novel objects and deployment in unstructured environments. In this paper, we present UNIC, a unified multimodal framework for extrinsic contact estimation that operates without any prior knowledge or camera calibration. UNIC directly encodes visual observations in the camera frame and integrates them with proprioceptive and tactile modalities in a fully data-driven manner. It introduces a unified contact representation based on scene affordance maps that captures diverse contact formations and employs a multimodal fusion mechanism with random masking, enabling robust multimodal representation learning. Extensive experiments demonstrate that UNIC performs reliably. It achieves a 9.6 mm average Chamfer distance error on unseen contact locations, performs well on unseen objects, remains robust under missing modalities, and adapts to dynamic camera viewpoints. These results establish extrinsic contact estimation as a practical and versatile capability for contact-rich manipulation. The overview and hardware experiment videos are at https://youtu.be/xpMitkxN6Ls?si=7Vgj-aZ_P1wtnWZN
♻ ☆ Safe and Stable Neural Network Dynamical Systems for Robot Motion Planning
Learning safe and stable robot motions from demonstrations remains a challenge, especially in complex, nonlinear tasks involving dynamic, obstacle-rich environments. In this paper, we propose Safe and Stable Neural Network Dynamical Systems S$^2$-NNDS, a learning-from-demonstration framework that simultaneously learns expressive neural dynamical systems alongside neural Lyapunov stability and barrier safety certificates. Unlike traditional approaches with restrictive polynomial parameterizations, S$^2$-NNDS leverages neural networks to capture complex robot motions, providing probabilistic guarantees through split conformal prediction in learned certificates. Experimental results in various 2D and 3D datasets -- including LASA handwriting and demonstrations recorded kinesthetically from the Franka Emika Panda robot -- validate the effectiveness of S$^2$-NNDS in learning robust, safe, and stable motions from potentially unsafe demonstrations. The source code, supplementary material and experiment videos can be accessed via https://github.com/allemmbinn/S2NNDS
comment: Accepted for publication in IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Deep Transformer Network for Monocular Pose Estimation of Shipborne Unmanned Aerial Vehicle
This paper introduces a deep transformer network for estimating the relative 6D pose of a Unmanned Aerial Vehicle (UAV) with respect to a ship using monocular images. A synthetic dataset of ship images is created and annotated with 2D keypoints of multiple ship parts. A Transformer Neural Network model is trained to detect these keypoints and estimate the 6D pose of each part. The estimates are integrated using Bayesian fusion. The model is tested on synthetic data and in-situ flight experiments, demonstrating robustness and accuracy in various lighting conditions. The position estimation error is approximately 0.8\% and 1.0\% of the distance to the ship for the synthetic data and the flight experiments, respectively. The method has potential applications for ship-based autonomous UAV landing and navigation.
comment: 23 pages, 25 figures, 3 tables
♻ ☆ Compact LED-Based Displacement Sensing for Robot Fingers
In this paper, we introduce a sensor designed for integration in robot fingers, where it can provide information on the displacements induced by external contact. Our sensor uses LEDs to sense the displacement between two plates connected by a transparent elastomer; when a force is applied to the finger, the elastomer displaces and the LED signals change. We show that using LEDs as both light emitters an receivers in this context provides high sensitivity, allowing such an emitter and receiver pairs to detect very small displacements. We characterize the standalone performance of the sensor by testing the ability of a supervised learning model to predict complete force and torque data from its raw signals, and obtain a mean error between 0.05 and 0.07 N across the three directions of force applied to the finger. Our method allows for finger-size packaging with no amplification electronics, low cost manufacturing, easy integration into a complete hand, and high overload shear forces and bending torques, suggesting future applicability to complete manipulation tasks.
♻ ☆ Geometry-aware 4D Video Generation for Robot Manipulation ICLR 2026
Understanding and predicting dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of generated videos by supervising the model with cross-view pointmap alignment during training. Through this geometric supervision, the model learns a shared 3D scene representation, enabling it to generate spatio-temporally aligned future video sequences from novel viewpoints given a single RGB-D image per view, and without relying on camera poses as input. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, yielding robot manipulation policies that generalize well to novel camera viewpoints.
comment: ICLR 2026; Project website: https://robot4dgen.github.io